
more information - www.cambridge.org/9781107032026





A C O U R S E I N M A T H E M A T I C A L A N A L Y S I S
Volume I: Foundations and Elementary Real Analysis

The three volumes of A Course in Mathematical Analysis provide a full and
detailed account of all those elements of real and complex analysis that an
undergraduate mathematics student can expect to encounter in the first two
or three years of study. Containing hundreds of exercises, examples and appli-
cations, these books will become an invaluable resource for both students and
instructors.

Volume I focuses on the analysis of real-valued functions of a real variable.
Besides developing the basic theory it describes many applications, including
a chapter on Fourier series. It also includes a Prologue in which the author
introduces the axioms of set theory and uses them to construct the real
number system. Volume II goes on to consider metric and topological spaces,
and functions of several variables. Volume III covers complex analysis and
the theory of measure and integration.

d. j. h. garling is Emeritus Reader in Mathematical Analysis at the
University of Cambridge and Fellow of St John’s College, Cambridge. He has
fifty years’ experience of teaching undergraduate students in most areas of
pure mathematics, but particularly in analysis.





A COURSE IN
MATHEMATICAL ANALYSIS

Volume I
Foundations and

Elementary Real Analysis

D. J. H. G A R L I N G
Emeritus Reader in Mathematical Analysis,

University of Cambridge, and
Fellow of St John’s College, Cambridge



cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town,

Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107032026

c© D. J. H. Garling 2013

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Garling, D. J. H.

Foundations and elementary real analysis / D. J. H. Garling.
pages cm. – (A course in mathematical analysis; volume 1)

Includes bibliographical references and index.
ISBN 978-1-107-03202-6 (hardback) – ISBN 978-1-107-61418-5 (paperback)

1. Mathematical analysis. I. Title.
QA300.G276 2013

515–dc23 2012044420

ISBN 978-1-107-03202-6 Hardback
ISBN 978-1-107-61418-5 Paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

http://www.cambridge.org
http://www.cambridge.org/9781107032026


Contents

Volume I

Introduction page xv

Part One Prologue: The foundations of analysis 1

1 The axioms of set theory 3
1.1 The need for axiomatic set theory 3
1.2 The first few axioms of set theory 5
1.3 Relations and partial orders 9
1.4 Functions 11
1.5 Equivalence relations 16
1.6 Some theorems of set theory 18
1.7 The foundation axiom and the axiom of infinity 20
1.8 Sequences, and recursion 23
1.9 The axiom of choice 26
1.10 Concluding remarks 29

2 Number systems 32
2.1 The non-negative integers and the natural numbers 32
2.2 Finite and infinite sets 37
2.3 Countable sets 42
2.4 Sequences and subsequences 46
2.5 The integers 49
2.6 Divisibility and factorization 53
2.7 The field of rational numbers 59
2.8 Ordered fields 64
2.9 Dedekind cuts 66
2.10 The real number field 70

v



vi Contents

Part Two Functions of a real variable 77

3 Convergent sequences 79
3.1 The real numbers 79
3.2 Convergent sequences 84
3.3 The uniqueness of the real number system 91
3.4 The Bolzano--Weierstrass theorem 94
3.5 Upper and lower limits 95
3.6 The general principle of convergence 98
3.7 Complex numbers 99
3.8 The convergence of complex sequences 105

4 Infinite series 107
4.1 Infinite series 107
4.2 Series with non-negative terms 109
4.3 Absolute and conditional convergence 115
4.4 Iterated limits and iterated sums 118
4.5 Rearranging series 120
4.6 Convolution, or Cauchy, products 123
4.7 Power series 126

5 The topology of R 131
5.1 Closed sets 131
5.2 Open sets 135
5.3 Connectedness 136
5.4 Compact sets 138
5.5 Perfect sets, and Cantor’s ternary set 141

6 Continuity 147
6.1 Limits and convergence of functions 147
6.2 Orders of magnitude 151
6.3 Continuity 153
6.4 The intermediate value theorem 162
6.5 Point-wise convergence and uniform convergence 164
6.6 More on power series 167

7 Differentiation 173
7.1 Differentiation at a point 173
7.2 Convex functions 180
7.3 Differentiable functions on an interval 186
7.4 The exponential and logarithmic functions; powers 189



Contents vii

7.5 The circular functions 193
7.6 Higher derivatives, and Taylor’s theorem 200

8 Integration 209
8.1 Elementary integrals 209
8.2 Upper and lower Riemann integrals 211
8.3 Riemann integrable functions 214
8.4 Algebraic properties of the Riemann integral 220
8.5 The fundamental theorem of calculus 223
8.6 Some mean-value theorems 228
8.7 Integration by parts 231
8.8 Improper integrals and singular integrals 233

9 Introduction to Fourier series 240
9.1 Introduction 240
9.2 Complex Fourier series 243
9.3 Uniqueness 246
9.4 Convolutions, and Parseval’s equation 252
9.5 An example 256
9.6 The Dirichlet kernel 257
9.7 The Fejér kernel and the Poisson kernel 264

10 Some applications 270
10.1 Infinite products 270
10.2 The Taylor series of logarithmic functions 273
10.3 The beta function 274
10.4 Stirling’s formula 277
10.5 The gamma function 278
10.6 Riemann’s zeta function 281
10.7 Chebyshev’s prime number theorem 282
10.8 Evaluating ζ(2) 286
10.9 The irrationality of er 287
10.10 The irrationality of π 289

Appendix A Zorn’s lemma and the well-ordering
principle 291
A.1 Zorn’s lemma 291
A.2 The well-ordering principle 293

Index 295



viii Contents

Volume II

Introduction page xv

Part Three Metric and topological spaces 301

11 Metric spaces and normed spaces 303
11.1 Metric spaces: examples 303
11.2 Normed spaces 309
11.3 Inner-product spaces 312
11.4 Euclidean and unitary spaces 317
11.5 Isometries 319
11.6 *The Mazur−Ulam theorem* 323
11.7 The orthogonal group Od 327

12 Convergence, continuity and topology 330
12.1 Convergence of sequences in a metric space 330
12.2 Convergence and continuity of mappings 337
12.3 The topology of a metric space 342
12.4 Topological properties of metric spaces 349

13 Topological spaces 353
13.1 Topological spaces 353
13.2 The product topology 361
13.3 Product metrics 366
13.4 Separation properties 370
13.5 Countability properties 375
13.6 *Examples and counterexamples* 379

14 Completeness 386
14.1 Completeness 386
14.2 Banach spaces 395
14.3 Linear operators 400
14.4 *Tietze’s extension theorem* 406
14.5 The completion of metric and normed spaces 408
14.6 The contraction mapping theorem 412
14.7 *Baire’s category theorem* 420

15 Compactness 431
15.1 Compact topological spaces 431
15.2 Sequentially compact topological spaces 435
15.3 Totally bounded metric spaces 439
15.4 Compact metric spaces 441
15.5 Compact subsets of C(K) 445



Contents ix

15.6 *The Hausdorff metric* 448
15.7 Locally compact topological spaces 452
15.8 Local uniform convergence 457
15.9 Finite-dimensional normed spaces 460

16 Connectedness 464
16.1 Connectedness 464
16.2 Paths and tracks 470
16.3 Path-connectedness 473
16.4 *Hilbert’s path* 475
16.5 *More space-filling paths* 478
16.6 Rectifiable paths 480

Part Four Functions of a vector variable 483

17 Differentiating functions of a vector variable 485
17.1 Differentiating functions of a vector variable 485
17.2 The mean-value inequality 491
17.3 Partial and directional derivatives 496
17.4 The inverse mapping theorem 500
17.5 The implicit function theorem 502
17.6 Higher derivatives 504

18 Integrating functions of several variables 513
18.1 Elementary vector-valued integrals 513
18.2 Integrating functions of several variables 515
18.3 Integrating vector-valued functions 517
18.4 Repeated integration 525
18.5 Jordan content 530
18.6 Linear change of variables 534
18.7 Integrating functions on Euclidean space 536
18.8 Change of variables 537
18.9 Differentiation under the integral sign 543

19 Differential manifolds in Euclidean space 545
19.1 Differential manifolds in Euclidean space 545
19.2 Tangent vectors 548
19.3 One-dimensional differential manifolds 552
19.4 Lagrange multipliers 555
19.5 Smooth partitions of unity 565
19.6 Integration over hypersurfaces 568
19.7 The divergence theorem 572



x Contents

19.8 Harmonic functions 582
19.9 Curl 587

Appendix B Linear algebra 591
B.1 Finite-dimensional vector spaces 591
B.2 Linear mappings and matrices 594
B.3 Determinants 597
B.4 Cramer’s rule 599
B.5 The trace 600

Appendix C Exterior algebras and the cross product 601
C.1 Exterior algebras 601
C.2 The cross product 604

Appendix D Tychonoff’s theorem 607

Index 612

Volume III

Introduction

Part Five Complex analysis

20 Holomorphic functions and analytic functions
20.1 Holomorphic functions
20.2 The Cauchy−Riemann equations
20.3 Analytic functions
20.4 The exponential, logarithmic and circular

functions
20.5 Infinite products
20.6 The maximum modulus principle

21 The topology of the complex plane
21.1 Winding numbers
21.2 Homotopic closed paths
21.3 The Jordan curve theorem
21.4 Surrounding a compact connected set
21.5 Simply connected sets

22 Complex integration
22.1 Integration along a path
22.2 Approximating path integrals
22.3 Cauchy’s theorem
22.4 The Cauchy kernel



Contents xi

22.5 The winding number as an integral
22.6 Cauchy’s integral formula for circular and

square paths
22.7 Simply connected domains
22.8 Liouville’s theorem
22.9 Cauchy’s theorem revisited
22.10 Cycles; Cauchy’s integral formula revisited
22.11 Functions defined inside a contour
22.12 The Schwarz reflection principle

23 Zeros and singularities
23.1 Zeros
23.2 Laurent series
23.3 Isolated singularities
23.4 Meromorphic functions and the complex

sphere
23.5 The residue theorem
23.6 The principle of the argument
23.7 Locating zeros

24 The calculus of residues
24.1 Calculating residues
24.2 Integrals of the form

∫ 2x
0 f(cos t, sin t)dt

24.3 Integrals of the form
∫∞
−∞ f(x)dx

24.4 Integrals of the form
∫∞
0 xαf(x)dx

24.5 Integrals of the form
∫∞
0 f(x)dx

25 Conformal transformations
25.1 Introduction
25.2 Univalent functions on C
25.3 Univalent functions on the punctured plane C∗

25.4 The Möbius group
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Introduction

This book is the first of three volumes of a full and detailed account of those
elements of real and complex analysis that mathematical undergraduates
may expect to meet in the first two years or so of the study of analysis.
This volume is concerned with the analysis of real-valued functions of a real
variable. Volume II considers metric and topological spaces, and functions of
several variables, while Volume III is concerned with complex analysis, and
with the theory of measure and integration.

Mathematical analysis depends in a fundamental way on the properties of
the real numbers, and indeed much of analysis consists of working out their
consequences. It is therefore essential to develop a full understanding of these
properties. There are two ways of doing this. The traditional and appropriate
way is to take the fundamental properties of the real numbers as axioms -- the
real numbers form an ordered field in which every non-empty subset which
has an upper bound has a least upper bound -- and to develop the theory --
convergence, continuity, differentiation and integration -- from these axioms.
This programme is carried out in Part Two. This theory is meant to be used,
and Part Two ends with an extensive collection of applications. The reader
is strongly recommended to follow this tradition, and to begin at
the beginning of Part Two.

It is however right to ask about the foundations on which these axioms,
and the rest of mathematical analysis, are built. These foundations are con-
sidered in the Prologue. In the twentieth century, analysis was placed in
a set-theoretic setting, and it is worth understanding what this involves.
Chapter 1 contains an account of Zermelo--Fraenkel set theory, together
with a brief discussion of the axiom of choice and its variants. The
Zermelo--Fraenkel axioms lead naturally to the construction of the natural
numbers. In Chapter 2 it is shown that there is then a steady progression
through the integers and the rational numbers to the real numbers and the

xv



xvi Introduction

complex numbers. The problem with the natural numbers, the integers and
the rational numbers is that they are very familiar; this part of the journey
may appear to be spent proving the obvious. The construction of the real
numbers is a quite different matter. There are many possible constructions,
but we describe the first, given by Richard Dedekind. This has great virtue,
since it involves both order and metric properties of the rational numbers and
of the real numbers. The reader is urged to defer a detailed reading of
the Prologue until the occasion demands, for example when it becomes
clear how important the fundamental properties of the real numbers are, or
when it is important to consider carefully the role of induction, recursion and
the axiom of dependent choice.

The text includes plenty of exercises. Some are straightforward, some are
searching, and some contain results needed later. Many concern applications,
and all help develop an understanding of the theory: do them!

I have worked hard to remove errors, but undoubtedly some remain. Cor-
rections and further comments can be found on a web page on my personal
home page at www.dpmms.cam.ac.uk.

http://www.dpmms.cam.ac.uk


Part One

Prologue: The foundations of analysis





1

The axioms of set theory

It is probably sensible to read through this chapter fairly quickly, to find out
the terminology and notation that we shall use, and then to return later to
read it and think about it more carefully.

1.1 The need for axiomatic set theory

Mathematics is written in many languages, such as French, German, Russian,
Chinese, and, as in the present case, English. Mathematics needs a particular
precision, and within each of these languages, most of mathematics, and all
the mathematics that we shall do, is written in the language of sets, using
statements and arguments that are based on the grammar and logic of the
predicate calculus. In this chapter we introduce the set theory that we shall
use. This provides us with a framework in which to work; this framework
includes a model for the natural numbers (1, 2, 3, . . .), together with tools
to construct all the other number systems (rational, real and complex) and
functions that are the subject of mathematical analysis.

The predicate calculus involves rules of grammar for writing ‘well-formed
formulae’, and for providing mathematical arguments which use them. Well-
formed formulae involve variables, and logical operations such as conjunction
(P and Q), disjunction (P or Q (or both)), implication (P implies Q), nega-
tion (not P ), and quantifiers ‘there exists’ and ‘for all’, together, in our case,
with sets and the relation ∈. We shall not describe the predicate calculus,
which formalizes the everyday use of these logical operations (for example,
‘P implies Q’ if and only if ‘(not Q) implies (not P )’), but all our arguments
and constructions will be based on it, and we shall give plenty of examples
of well-formed formulae.1

1 For a good account, see A. G. Hamilton, Logic for Mathematicians, Cambridge University Press,
1988.
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4 The axioms of set theory

Since the beginning of the study of set theory by Cantor in the 1870s
and the introduction of Venn diagrams by Venn in 1881, the simple idea
of a set has become commonplace, and young children happily manipulate
sets such as {Catherine of Aragon, Ann Boleyn, Jane Seymour, Anne of
Cleves, Kathryn Howard, Katherine Parr}, or more prosaically {Alice, Bob},
or the set of numbers {5, 13, 17, 29, 37, 41, 53, 61, 73, 89}. In mathematics, we
consider sets of mathematical objects, such as the last of these examples. Can
we not simply consider a mathematical object to be a collection of all those
things which can be defined by a well-formed formula? Then a set would be
something of the form ‘the collection of those things a for which the well-
formed formula P (a) holds’, where P (x) is a well-formed formula with one
free variable x, and conversely, each such formula would define a set. This
approach is known as the comprehension principle. Unfortunately, it leads
to contradictions. Consider the well-formed statement ‘x does not belong to
x’; according to the comprehension principle, there should be a set b which
consists of those sets which do not belong to themselves. Does b belong to b?
If it does, it fails the criterion for belonging to b, and so it does not belong to
b. But if it does not belong to b, then it meets the criterion, and so it belongs
to b. Thus, either way, we reach a contradiction.

This phenomenon was described by Bertrand Russell in 1901, and is known
as Russell’s paradox. It caused him a great deal of pain, as he described in
his autobiography.2 Concerning the events of May 1901, he wrote

Cantor had a proof that there is no greatest number, and it seemed
to me that the number of things in the world should be the greatest
possible. Accordingly, I examined his proof with some minuteness,
and endeavoured to apply it to the class of all things there are.
This led me to consider those classes which are not members of
themselves, and to ask whether the class of all such classes is or
is not a member of itself. I found that either answer implied its
contradictory.

He continued to consider the problem for several years. Describing the
summers of 1903 and 1904, he wrote

I was trying hard to solve the contradictions mentioned above.
Every morning I would sit down before a blank sheet of paper.
Throughout the day, with a brief interval for lunch, I would stare
at the blank sheet. Often when evening came it was still empty.

Russell’s paradox required a new approach to the theory of sets, which
would provide a framework where Russell’s paradox, and other paradoxes,

2 The Autobiography of Bertrand Russell, George Allen and Unwin, 1967--69.
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are avoided. In 1908, Zermelo introduced a system of axioms; these were
modified in 1922 by Fraenkel and Skolem. The resulting system, known as
the Zermelo--Fraenkel axiom system ZF, has stood the test of time, and it is
the one that we shall describe and use.

1.2 The first few axioms of set theory

In Zermelo--Fraenkel set theory, the basic objects are all called sets, denoted
by upper- or lower-case letters, and there is one relation, ∈. Thus, if a and
b are sets, then either a ∈ b, or this is not so, in which case we write a �∈ b.
(We use the symbol � to mean ‘not’, in a similar way, for other relations.) If
a ∈ b, we say that a belongs to b, or that a is a member or element or point of
b, or, more simply, that a is in b.

The sets and the relation ∈ are required to satisfy certain axioms, and we
shall spend the rest of this chapter introducing and explaining them.

Axiom 1: The extension axiom

This states that two sets are equal if and only if they have the same elements.
Thus the set with members 1, 2 and 3 and the set with members 1, 3, 2 and
1 are the same; the order in which they are listed is unimportant, as is the
fact that repetition can occur. Set theory is all about membership, and about
nothing else.

If a and b are sets, and every member of a is a member of b, then we say
that a is a subset of b, or that b contains a, and write a ⊆ b or b ⊇ a. Thus the
extension axiom says that a = b if and only if a ⊆ b and b ⊆ a. If a ⊆ b and
a �= b, we say that a is a proper subset of b, or that a is properly contained in
b, and write a ⊂ b or b ⊃ a.

Axiom 2: The empty set axiom

This states that there is a set with no members. The extension axiom then
implies that there is only one such set: we denote it by ∅ and call it the empty
set. It is easy to overlook the empty set: arguments involving it take on an
idiosyncratic form. It also has a rather paradoxical nature, since it is a subset
of every set a (if not, there is a member b of ∅ which is not in a; but ∅ has
no members). Thus (looking ahead to some familiar sorts of sets) we can
consider the set F of natural numbers n greater than 2 for which there exist
natural numbers a, b and c with an + bn = cn, and we can consider the set
Q of those complex quadratic polynomials of the form z2 + az + b for which
the equation z2 + az + b = 0 has no complex solutions. Then F = Q, since
each is the empty set.



6 The axioms of set theory

The next four axioms are concerned with creating new sets from old.

Axiom 3: The pairing axiom

This says that if a and b are sets then there exists a set whose members are
a and b. The extension axiom again says that there is only one such set: we
denote it by {a, b}. Note that {a, b} = {b, a}: we have an unordered pair. We
can take a = b: then the set {a, a} has only one element a. We write this set
as {a} and call it a singleton set.

We can use the pairing axiom to define ordered pairs. If a and b are sets,
we define the ordered pair (a, b) to be the set {{a}, {a, b}}.

Proposition 1.2.1 If (a, b) and (c, d) are ordered pairs and (a, b) = (c, d),
then a = c and b = d.

Proof The proof makes repeated use of the extension axiom. First, suppose
that a = b. Then (a, b) = {{a}} = {{c}, {c, d}}, and so {c, d} = {a}, and
a = c = d. Thus a = b = c = d. Similarly, if c = d then a = b = c = d.

Finally, suppose that a �= b and c �= d. Since {a} ∈ (c, d), either {a} = {c}
or {a} = {c, d}. But if {a} = {c, d} then c = a = d, giving a contradiction.
Thus {a} = {c} and a = c. Since {a, b} ∈ (c, d), either {a, b} = {c} or
{a, b} = {c, d}. But if {a, b} = {c}, then a = c = b, giving a contradiction.
Thus {a, b} = {c, d}, and so b = c or b = d. But if b = c then b = c = a,
giving a contradiction. Thus b = d. �

If A is a set, then all its members are sets, and they, in turn, can have
members.

Axiom 4: The union axiom

This says that there is a set whose elements are exactly the sets which are
members of members of A. We denote this set by ∪a∈Aa (here a is a variable,
so we could as well write ∪x∈Ax) and call it the union of the members of A.
The essential feature of this axiom is that the sets whose members make up
the union must all be members of a single set; we cannot form the union of all
sets since, as we shall see, there is no set to which all sets belong. If A and B

are sets, we can consider the set ∪C∈{A,B}C. This is the set whose elements
are either in A or in B: we write this as A ∪ B.

Axiom 5: The power set axiom

There is an essential difference between the statements b ∈ A (b is a member
of A) and b ⊆ A (b is a subset of A). The power set axiom states that if A

is a set, then there exists a set, the power set P (A) of A, whose elements
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are the subsets of A. Thus b ∈ P (A) if and only if b ⊆ A. For example,
the elements of P ({a, b}) are ∅, {a}, {b} and {a, b}, and the ordered pair
(a, b) = {{a}, {a, b}} is an element of P (P ({a, b})).

Axiom 6: The separation axiom

This is particularly important, and is an axiom that is used all the time in
mathematics. It states that if A is a set and Q(x) is a well-formed formula,
then there exists a subset of A whose elements are just those members a of A

for which Q(a) holds. By extensionality, there is only one such set; we denote
it by {x ∈ A : Q(x)}. With this axiom in place, we can use the argument of
Russell’s paradox to show that there is no universal set to which every set
belongs.

Theorem 1.2.2 There is no set Ω such that if a is a set then a ∈ Ω.

Proof Suppose that such a set were to exist. Then the formula x �∈ x is a
well-formed formula, and so there exists a set b = {x ∈ Ω : x �∈ x}. Does
b ∈ b? If it does, it fails the criterion for membership, giving a contradiction.
If it does not, then it meets the criterion, and so belongs to b, giving another
contradiction. This exhausts all possibilities, and so no such universal set can
exist. �

Let us give some more examples of the use of the separation axiom. Suppose
that A and B are sets. The expression x ∈ B is a well-formed formula, and
so the set {x ∈ A : x ∈ B} is a subset of A, the intersection of A and B,
denoted by A ∩ B. Note that A ∩ B = B ∩ A = {x ∈ B : x ∈ A}, since a
set c is an element of either intersection if and only if it belongs to both A

and B. We say that A and B are disjoint if A ∩ B = ∅; A and B are disjoint
if A and B have no member in common. Similarly, the expression x �∈ B is
a well-formed formula, and so the set {x ∈ A : x �∈ B} is a subset of A, the
set difference A \ B. A \ B is also called the relative complement of B in A.
It frequently happens that we consider a particular set A, say, and are only
concerned with subsets of A. In this case, if B ⊆ A, then we denote A \ B by
C(B), or Bc, and call it the complement of B.

We can extend the notion of intersection considerably. Suppose that A is
a set. The expression ‘for all a ∈ A, x ∈ a’ is a well-formed formula with a a
bound variable and x a free variable, and so we can form the set

{x ∈ ∪a∈Aa : for all a ∈ A, x ∈ a}.
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This is the intersection ∩a∈Aa of all the sets a that belong to A: b ∈ ∩a∈Aa

if and only if b ∈ a, for each a ∈ A. Here again a is a variable, and we could
also write ∩x∈Ax. We must reconcile the two definitions of intersection that
we have made: this is easy because A ∩ B = ∩x∈{A,B}x.

A word about notation here. Our aim will be to be accurate and clear
without being pedantic. Suppose that A is a set. For each a ∈ A, we can form
the intersection ∩α∈aα. Using the separation axiom, we can then define the
set I whose elements are exactly these intersections, and can then form the
set ∪i∈Ii. In fact, we write this in the form

∪a∈A(∩α∈aα),

and use other similar expressions. In the same way, we shall use natural
variations of the notation {x ∈ A : Q(x)} to denote sets whose existence
is ensured by the separation axiom; but in each case such a set is a sub-
set of a given set, and it can be written, at greater length, in the form
{x∈A : Q(x)}.

From now on, we shall define sets without appealing to the axioms to ensure
that they are in fact sets. It is a useful exercise for the reader to consider, in
each case, how suitable justification can be given.

It is unfortunately the case that the separation axiom is not strong enough
for all purposes, and another axiom, the replacement axiom, is needed. We
shall defer discussion of this and of the other axioms of ZF, until later. Let
us first see what we can do with the axioms that we now have.

Exercises

Suppose that A, B, C, D are sets.

1.2.1 Show that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
1.2.2 Show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
1.2.3 Show that A \ (B ∪ C) = (A \ B) ∩ (A \ C).
1.2.4 Which of the following statements are necessarily true?

(a) P (A ∩ B) = P (A) ∩ P (B).
(b) P (A ∪ B) = P (A) ∪ P (B).

1.2.5 Define a set I such that ∪i∈Ii = ∪a∈A(∩α∈aα).
1.2.6 Does ∪a∈A(∩α∈aα) necessarily contain ∩a∈A(∪α∈aα)? Is ∪a∈A(∩α∈aα)

necessarily contained in ∩a∈A(∪α∈aα)?
1.2.7 The symmetric difference aΔb of two sets a and b is the set (a\b)∪(b\a).

Establish the following:
(a) AΔB = (A ∪ B) \ (A ∩ B).
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(b) AΔB = BΔA.
(c) AΔ(BΔC) = (AΔB)ΔC.
(d) AΔ∅ = A.
(e) AΔA = ∅.

1.3 Relations and partial orders

The Cartesian product A × B of two sets A and B is the set of all ordered
pairs (a, b) with a ∈ A and b ∈ B. More formally,

A ×B = {x ∈ P (P (A ∪ B)) : there exists a∈A and there exists b ∈ B

such that x = {{a}, {a, b}}}.

(The term Cartesian honours René Descartes, who introduced coordinates
to the plane, so that points in the plane are represented by ordered pairs of
real numbers; the plane is thus represented as the Cartesian product of two
copies of the set of real numbers.)

A relation on A × B is then simply a subset R of A × B. It is customary
to write aRb if (a, b) ∈ R. The set

{a ∈ A : there exists b ∈ B such that (a, b) ∈ R}

is then called the domain of R, and the set

{b ∈ B : there exists a ∈ A such that (a, b) ∈ R}

is called the range of R. A relation on A × A is called a relation on A.
Let us give some examples. First, if A is a set then

∈A= {(b, B) ∈ A × P (A) : b ∈ B}

is a relation on A × P (A). Recall that we introduced the relation ∈ on the
collection of all sets, which we have seen is not a set; εA is the restriction to
a set and its subsets.

Secondly, if A is a set then

⊆A= {(B, C) ∈ P (A) × P (A) : B ⊆ C}

is a relation on P (A). This is an example of a partial order relation. An order
≤ on a set A is a partial order or partial order relation if

(i) if a ≤ b and b ≤ c then a ≤ c (transitivity), and
(ii) a ≤ b and b ≤ a if and only if a = b.
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If a ≤ b then we say that a is less than or equal to b, or that b is greater
than or equal to a, and we also write b ≥ a.

Partial order relations play an important part in analysis. We make some
definitions concerning partial orders here, and will consider them in more
detail later.

Suppose that ≤ is a partial order on a set A, that a ∈ A and that B is a
subset of A.

• a is an upper bound of B if b ≤ a for all b ∈ B.
• a is a lower bound of B if a ≤ b for all b ∈ B.

An upper bound of B need not belong to B. If it does, it is the greatest
element of B. B has at most one greatest element, but may have no greatest
element. Least elements are defined in the same way.

• a ia a maximal element of B if a ∈ B, and if b ∈ B and a ≤ b then a = b.
• a ia a minimal element of B if a ∈ B, and if b ∈ B and b ≤ a then a = b.

A greatest element of B is a maximal element of B, but the converse need
not hold.

• a is the supremum, or least upper bound, of B if a is an upper bound of B,
and if c is an upper bound of B, then a ≤ c. In other words, a is the least
element of the set of upper bounds of B.

• a is the infimum, or greatest lower bound, of B if a is a lower bound of B,
and if c is an lower bound of B, then c ≤ a. In other words, a is the greatest
element of the set of lower bounds of B.

B has at most one least upper bound, but may have no least upper bound.
If a is the least upper bound of B then a may or may not be an element of
B. If a is an element of B, then a is the least upper bound of B if and only
if a is the greatest element of B.

If a ≤ b or b ≤ a then we say that a and b are comparable. In general, not
all pairs are comparable. If, however, any two elements of A are comparable,
then we say that the relation is a total order. As an example, the usual order
on the set of natural numbers N = {1, 2, 3, . . .} (which we shall consider in
Section 2.1) is a total order.

The definition of the notion of partial order includes equality. There is
a closely related notion which forbids equality. Suppose that ≤ is a partial
order relation on a set A. Then the relation

{(a, b) ∈ A × A : a ≤ b and a �= b}
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is a strict partial order on A. It is denoted by < and satisfies
(i) if a < b and b < c then a < c (transitivity), and
(ii) a < a does not hold for any a ∈ A.
Conversely, if < is a strict partial order on A then the relation

{(a, b) ∈ A × A : a < b or a = b}

is a partial order.

Exercises

1.3.1 Which of the following statements are necessarily true?
(a) A × (B ∪ C) = (A × B) ∪ (A × C).
(b) (A × B) ∪ (C × D) = (A ∪ C) × (B ∪ D).
(c) (A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D).

1.3.2 Suppose that ≤1 is a partial order on A1 and that ≤2 is a partial order
on A2. Show that the relation

{(a1, a2), (b1, b2) ∈ (A1 × A2) × (A1 × A2) : a1 ≤1 b1 and a2 ≤2 b2}

is a partial order on A1 × A2.
1.3.3 Show that a subset of a partially ordered set can have at most one

greatest element, and at most one supremum.
1.3.4 This question assumes knowledge of the set N of natural numbers,

and of counting. Let P (N) be given the partial order defined by inclu-
sion, as above. Let Pn(N) be the set of subsets of N with at most n

elements.
(a) What are the upper bounds of Pn(N) in P (N)?
(b) Does Pn(N) have a supremum? If so, is it an element of Pn(N)?
(c) What are the maximal elements of Pn(N)?

1.3.5 Suppose that a is a maximal element of a subset B of a totally ordered
set A. Show that a is the greatest element of B.

1.3.6 Give an example of a subset of a totally ordered set which has a
supremum but no greatest element.

1.4 Functions

The notion of function developed slowly from the time of Descartes and
Leibniz until the end of the nineteenth century. Originally, a function was
something that was given by an analytic formula, but confusion and dispute
arose about what this meant, and confusion was also caused by the fact that
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two formulae could give the same values. Here we simply define a function,
or, synonymously, a mapping, or a map (we shall use the terms interchange-
ably), from a set A to a set B to be a relation f on A × B which satisfies the
condition

for each a ∈ A, there is a unique b ∈ B such that (a, b) ∈ f .
In these circumstances, we write b = f(a), so that f = {x ∈ A × B :

x = (a, f(a))}. The element f(a) of B is called the image of a under f .
It is however helpful to consider a function as some sort of dynamic process

(perhaps taking place in a black box): an element a of A is put in, and f(a)
comes out:

a −→ black box −→ f(a).

Thus we write f : A → B for a function from A to B. The set {x ∈ A × B :
x = (a, f(a))} is then called the graph Gf of f . The set of all mappings from
A to B is denoted by BA; the reason for this notation may become clear later.

Let us consider some examples. First, suppose that f : A → B is a function.
Then we can define a function P (f) : P (A) → P (B) by setting

P (f)(C) = {x ∈ B : there exists a ∈ C such that f(a) = x},

for C a subset of A. It is unfortunately standard practice to denote this
function by f . This can be misleading; for example, it may happen that ∅ ∈ A,
and that f(∅), an element of B, is not the empty set. Then f(∅) �= ∅, whereas
P (f)(∅) = ∅. In spite of this defect, we shall follow standard practice; with
caution and common sense, we can avoid the difficulty we have just described.
Following standard practice, the subset f(C) of B is also called the image of
C under f . We can also define a function f−1 : P (B) → P (A) by setting

f−1(D) = {x ∈ A : f(x) ∈ D},

for D a subset of B. This notation is also unfortunate, as we shall shortly
see. The set f−1(D) is called the inverse image of D; if b ∈ B then the set
f−1({b}) is called the inverse image of b.

Suppose that A is a set. For a ∈ A, define s(a) = {a}; s is a mapping from
A into P (A). It is an example of an injective mapping. A mapping f : A → B

is injective, or an injection, or one-one, if distinct elements of A have distinct
images in B; in other words, if f(a) = f(a′) then a = a′.

Suppose that B is a subset of a set A. The inclusion map jB : B → A

is defined by setting jB(b) = b, for b ∈ B. Thus b ∈ B, whereas jB(b) is an
element of A. jB is again injective. As a special case, when B = A we have
the identity map iA : A → A defined by setting iA(a) = a for a ∈ A.
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Let us consider a Cartesian product A×B, where A and B are non-empty
sets. For (a, b) ∈ A × B, let πA((a, b)) = a and let πB((a, b)) = b. Then πA is
a mapping from A×B to A, and πB is a mapping from A×B to B; they are
the coordinate projections of A×B onto A and B, respectively. The elements
a and b are the coordinates of (a, b). The mappings πA and πB are examples
of surjective mappings. A mapping f : A → B is surjective, or a surjection
or onto, if f(A) = B; every element of B is the image of at least one element
of A.

A mapping f : A → B is bijective, or a bijection, or a one-one correspon-
dence, if it is both injective and surjective; every element b of B is the image
under f of exactly one element of A. We denote this element by f−1(b); then
f−1 is a bijective mapping of B onto A. We have thus used the term f−1 in two
different senses: if f : A → B is a mapping, the mapping f−1 : P (B) → P (A)
is always defined; the mapping f−1 : B → A is only defined when f is
bijective. Once again, caution and common sense are called for.

Suppose that (A,≤A) and (B,≤B) are two partially ordered sets and
that f : A → B is a mapping from A to B. The mapping f is said to be
increasing if f(a) ≤B f(a′) whenever a ≤A a′, and to be strictly increasing if
f(a) <B f(a′) whenever a <A a′. It is said to be decreasing if f(a) ≥B f(a′)
whenever a ≤A a′, and to be strictly decreasing if f(a) >B f(a′) whenever
a <A a′. It is said to be monotonic if it is either increasing or decreasing, and
to be strictly monotonic if it is either strictly increasing or strictly decreasing.

Suppose that f is a mapping from A to B and that g is a mapping from
B to C. We can then define the composite mapping g ◦ f from A to C by
setting (g ◦ f)(a) = g(f(a)), for a ∈ A. Note the order of the terms: first we
use the mapping f and then the mapping g, but the terms in the composite
mapping g ◦ f come in the opposite order.

As examples, if f is a bijection from A onto B then f−1 ◦ f : A → A is the
identity mapping iA on A, and f ◦ f−1 : B → B is the identity mapping iB
on B.

The composition of mappings is associative: if f : A → B, g : B → C and
h : C → D are mappings then

(h ◦ (g ◦ f))(a) = h((g ◦ f)(a)) = h(g(f(a)))

= (h ◦ g)(f(a)) = ((h ◦ g) ◦ f)(a),

so that h ◦ (g ◦ f) = (h ◦ g) ◦ f .
Suppose that f : A → B is a mapping, and that f(A) ⊆ D ⊆ B. Then

Gf ⊆ A × D, and we can consider f as a mapping from A into D. We
usually denote this mapping by f , unless this is likely to cause confusion.
Let us here denote the mapping from A to f(A) by f̃ . Then we have the
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factorization f = jf(A) ◦ f̃ , where f̃ is surjective, and the inclusion mapping
jf(A) : f(A) → B is injective.

Next, consider a subset C of A. Then Gf ∩ (C × B) is the graph of a
mapping from C to B. This is the restriction f|C of f to C. If c ∈ C then
f|C(c) = f(c).

A bijective mapping f : A → A is called a permutation of A. As an example,
suppose that a and b are elements of A. The mapping τ , or τa,b, from A to A

defined by

τ(a) = b, τ(b) = a, τ(c) = c for all other c ∈ A,

the mapping which transposes a and b, is a permutation of A. The set of
permutations of A is denoted by ΣA.

We can describe the composition properties of ΣA in algebraic terms.
A group is a non-empty set, together with a mapping or operation ◦ :

G × G → G which satisfies:

(i) composition is associative: that is, (g ◦h) ◦ j = g ◦ (h ◦ j) for g, h, j ∈ G;
(ii) there exists e ∈ G such that e ◦ g = g ◦ e = g, for all g ∈ G;
(iii) for each g ∈ G there exists g−1 ∈ G such that g ◦ g−1 = g−1 ◦ g = e.

If
(iv) gh = hg for all g, h ∈ G, then G is said to be abelian, or commutative.

Note that the element e is uniquely determined by (ii), for if e also satisfies
(ii), then e′ = e′ ◦ e = e. The element e is called the identity element of G,
and is frequently denoted by eG. Similarly, if g ∈ G then the element g−1 is
uniquely determined by (iii); for if g ◦ h = e then

h = e ◦ h = (g−1 ◦ g) ◦ h = g−1 ◦ (g ◦ h) = g−1 ◦ e = g−1.

The element g−1 is called the inverse of g.
It then follows immediately from the earlier discussions that ΣA is a group,

when the group composition is taken to be the composition of functions and
the identity map iA is taken as the identity element.

Axiom 7: The replacement axiom

Let us end this section by stating the replacement axiom, since it has a
function-like quality. A well-formed formula Q(x, y) with free variables x and
y is said to determine a function if whenever a is a set then there is at most
one set b for which Q(a, b) holds. If there is a set b for which Q(a, b) holds, then
we write b = Q(a), and call b the image of a. The replacement axiom then
states that if Q(x, y) is a well-formed formula which determines a function,
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and if A is a set, then the collection of all images Q(a), as a varies in A, is a
set, which we denote by Q(A). Thus

{x ∈ A : there exists b ∈ Q(A) for which Q(a, b) holds}

is a subset DA(Q) of A, and Q defines a surjection of DA(Q) onto Q(A).
We shall not make explicit use of this axiom.

Exercises

1.4.1 Suppose that f : A → B, and that C, D are subsets of A and that E, F

are subsets of B. Which of the following statements are necessarily
true?
(a) f(C ∪ D) = f(C) ∪ f(D).
(b) f(C ∩ D) = f(C) ∩ f(D).
(c) f−1(C ∪ D) = f−1(C) ∪ f−1(D).
(d) f−1(C ∩ D) = f−1(C) ∩ f−1(D).

1.4.2 Suppose that f : A → B and g : B → C are mappings. What is the
graph of g ◦ f? Verify that g ◦ f is a mapping.

1.4.3 Suppose that f is a mapping from A to B, where A and B are non-
empty sets. A mapping l : B → A is a left inverse of f if l ◦ f = iA, the
identity on A. Show that if f has a left inverse, then f is injective, and
that if f is injective, then f has a left inverse.

1.4.4 Suppose that f is a mapping from A to B, where A and B are non-
empty sets. A mapping r : B → A is a right inverse of f if f ◦ r = iB,
the identity on B. Show that if f has a right inverse, then f is surjective.
Does a surjective mapping always have a right inverse? Think about
this, and then read Section 1.9.

1.4.5 Suppose that f : A → B has a left inverse l and a right inverse r. Show
that f is a bijection and that l = r = f−1.

1.4.6 This question establishes basic facts about groups that we shall need
later. A mapping θ from a group G to a group G′ is a homomorphism
if θ(g1 ◦ g2) = θ(g1) ◦ θ(g2) for all g1, g2 ∈ G. Suppose that θ : G → G′

is a homomorphism.
(a) Show that θ(e) = e′, where e is the identity element of G, e′ the

identity element of G′.
(b) Show that θ(g−1) = (θ(g))−1 for all g ∈ G.
(c) Show that if H is a subgroup of G then θ(H) is a subgroup of G′.
(d) Show that if H ′ is a subgroup of G′ then θ−1(H ′) is a subgroup

of G.
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(e) A bijective homomorphism is called an isomorphism. Show that if
θ is an isomorphism then θ−1 : G′ → G is also an isomorphism.

1.5 Equivalence relations

There is another sort of relation that we shall use later. The axiom of exten-
sionality tells us that two sets are equal if and only if they have the same
members. There are however many occasions when two different sets serve
the same purpose, and we would like to identify them in some way. For exam-
ple, we express a positive rational number as a fraction p/q, where (p, q) is
an ordered pair of natural numbers. The rational number 1/2 is the same as
the rational number 3/6, but the ordered pairs (1, 2) and (3, 6) are different.
In this circumstance, we say that (1, 2) and (3, 6) are equivalent. This leads
to the concept of an equivalence relation.

An equivalence relation on a set A is a relation on A (frequently, as here,
denoted by ∼) which satisfies

(i) if a ∼ b and b ∼ c then a ∼ c (transitivity);
(ii) if a ∼ b then b ∼ a (symmetry);
(iii) a ∼ a for all a ∈ A (reflexivity).

As a trivial example, the relation a = b is an equivalence relation. For a
less trivial example, suppose that f : A → B is a mapping. Let a ∼ a′ if
and only if f(a) = f(a′). Then it is easy to check that ∼ is an equivalence
relation on A. We shall see that any equivalence relation can be expressed in
this way.

Suppose that ∼ is an equivalence relation on a set A and that a ∈ A.
We define the equivalence class Ea to be the set {x ∈ A : a ∼ x}. This is
the traditional name, but an equivalence class is certainly a set. Note that
a ∈ Ea, so that Ea is a non-empty set.

Proposition 1.5.1 Suppose that ∼ is an equivalence relation on a set A.
If a ∼ a′ then Ea = Ea′, and if a �∼ a′ then Ea and Ea′ are disjoint.

Proof Suppose that a ∼ a′. If a′ ∼ c then a ∼ c, by transitivity, and so
Ea′ ⊆ Ea. Further a′ ∼ a, by reflexivity, and so Ea ⊆ Ea′ .

Suppose that b ∈ Ea ∩ Ea′ . Then a ∼ b and a′ ∼ b, so that b ∼ a′, by
reflexivity, and a ∼ a′, by transitivity. Thus if a �∼ a′, then Ea ∩ Ea′ = ∅. �

We now say that a subset E of A is an equivalence class if there exists
a ∈ A such that E = Ea. We denote the set of equivalence classes by A/ ∼.
A/ ∼ is a subset of P (A).
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Corollary 1.5.2 A = ∪E∈A/∼E is a union of disjoint equivalence classes.

Proof We have seen that distinct equivalence classes are disjoint. Their
union is A, since if a ∈ A then a ∈ Ea. �

This leads to the following definition. Suppose that A is a set. A subset Π
of P (A) is a partition of A if

(i) each E ∈ Π is non-empty;
(ii) A = ∪E∈ΠE;
(iii) distinct elements of Π are disjoint.

Thus if ∼ is an equivalence relation on A then the set A/ ∼ of equivalence
classes is a partition of A.

Let EA denote the set of all equivalence relations on A, and let PA denote
the set of all partitions of A. We shall show that there is a natural bijection
of EA onto PA. If ∼∈ EA, let k(∼) = A/ ∼. Then k is a mapping from EA to
PA, and it is easy to see that this is injective. Conversely, if Π is a partition
of A, and we set a ∼ b if a and b are in the same element of Π, then it is easy
to check that ∼ is an equivalence relation on A and that A/ ∼= Π. Thus k

is surjective, and the mapping from PA to EA which we have just defined is
the inverse of k: k is a bijection of EA onto PA.

Suppose now that ∼ is an equivalence relation on a set A, and that A/ ∼
is the corresponding partition of A. We define a mapping q : A → A/ ∼
by setting q(a) = Ea. Then q is a surjection, and a ∼ a′ if and only if
q(a) = q(a′). The set A/ ∼ is called the quotient of A by ∼, and the mapping
q : A → A/ ∼ is called the quotient mapping.

Now suppose that f : A → B is a mapping. Define an equivalence relation
∼ by setting a ∼ a′ if and only if f(a) = f(a′), and let q : A → A/ ∼ be
the quotient mapping. If E = Ea ∈ A/ ∼ and a′ ∈ E, then f(a) = f(a′).
We can therefore define f̃(E) = f(a), and we obtain a well-defined mapping
f̃ of A/ ∼ onto f(A). Suppose that f̃(E) = f̃(E′), that a ∈ E and that
a′ ∈ E′. Then f(a) = f(a′), so that a ∼ a′ and E = E′. Thus f̃ is one-one,
and so f̃ : A/ ∼→ f(A) is a bijection. We have therefore factorized f as
f = jf(A) ◦ f̃ ◦ q, where q is a surjection, f̃ is a bijection and the inclusion
mapping jf(A) : f(A) → B is injective. Thus we have the following diagram
of mappings:

A
f−→ B

q ↓ ↑ jf(A)

A/ ∼
˜f−→ f(A)
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This diagram is commutative: the outcome of the direct journey from A to
B is the same as the outcome of the longer journey going round the other
three sides of the diagram.

Exercises

1.5.1 Suppose that σ is a permutation of a non-empty set A. A subset B of
A is σ-invariant if σ(B) = B. If a ∈ A let

Oa = ∩{B ∈ P (A) : a ∈ B and B is σ-invariant}.

(a) Show that Oa is σ-invariant.
(b) Suppose that Oa ∩ Ob �= ∅. Show that Oa = Ob. (Hint: Consider

Oa \ Ob.)
(c) A subset O of A is an orbit of σ if there exists a ∈ A such that

O = Oa. Show that the set of orbits is a partition of A. What is
the corresponding equivalence relation?

1.5.2 A subgroup H of a group G is a subset of G with the properties
(i) the identity of G belongs to H;
(ii) if h ∈ H then h−1 ∈ H;
(iii) if h and h′ are in H then h ◦ h′ ∈ H.
Thus H is a group with the operations inherited from G.
Suppose now that H is a subgroup of ΣA. A subset B of A is H-invariant
if σ(B) = B for each σ ∈ H. Carry out a programme similar to that of
the previous question.

1.6 Some theorems of set theory

Although we have only met some of the axioms of ZF, we are already in a
position to prove some interesting and important results.

Theorem 1.6.1 (The Knaster--Tarski fixed-point theorem) Suppose that
A is a set and that f : P (A) → P (A) is an increasing function; if B ⊆ C ⊆ A

then f(B) ⊆ f(C). Then there exists G ⊆ A such that f(G) = G.

Proof Note that f is defined as a mapping from P (A) to itself: it is not
defined in terms of a mapping from A to itself. Thus ∅ ⊆ f(∅) and A ⊇ f(A);
the inclusions change direction. The theorem states that equality holds at
some intermediate subset.

We shall show that there exists a set G such that G ⊆ f(G) and f(G) ⊆ G;
the axiom of extensionality then ensures that G = f(G).

Let G = {B ∈ P (A) : B ⊆ f(B)}, and let G = ∪B∈GB. If B ∈ G
then B ⊆ G, and so f(B) ⊆ f(G). Thus B ⊆ f(B) ⊆ f(G). Consequently
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G = ∪B∈GB ⊆ f(G), and so G ∈ G. On the other hand, since G ⊆ f(G)
it follows that f(G) ⊆ f(f(G)), and so f(G) ∈ G. Thus f(G) ⊆ ∪B∈GB =
G. �

Theorem 1.6.2 (The Schröder--Bernstein theorem) Suppose that A and
B are sets, and that f : A → B and g : B → A are injective mappings. Then
there exists a bijection h : A → B.

Proof The existence of f says that ‘A is no bigger than B’ and the existence
of g says that ‘B is no bigger than A’. The conclusion then is that if both hold
then ‘A and B are the same size’. We shall consider the problem of whether
two sets are always comparable in size later (Theorem 1.9.2).

We consider the mappings f : P (A) → P (B) and g : P (B) → P (A)
determined by f and g; they are clearly increasing maps. On the other hand
the mapping CA : P (A) → P (A) defined by CA(D) = A\D is order reversing,
as is the corresponding mapping CB : P (B) → P (B). Thus the composite
mapping S = CA ◦ g ◦ CB ◦ f is an increasing mapping from P (A) into
itself. The Knaster--Tarski fixed-point theorem then tells us that there exists
D ⊆ A such that S(D) = D; the restriction f|D of f to D is a bijection of D

onto f(D). Let E = f(D), so that CB(f(D)) = B \ E. Thus

A \ D = CA(D) = CA(S(D)) = CA(CAgCBf(D))

= g(CBf(D))) = g(B \ E).

Consequently the restriction g|B\E of g to B \ E is a bijection of B \ E onto
A \ D; let k : A \ D → B \ E be its inverse. We now set h(a) = f|D(a)
for a ∈ D, and set h(a) = k(a) for a ∈ A \ D; h clearly has the required
properties. �

A

f

g

F

G

H I

B

S(φ) = F; S(F ) = F∪H; S(A) = F∪H∪I

Figure 1.6. The Schröder--Bernstein theorem.
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The next result uses the argument of Russell’s paradox.

Theorem 1.6.3 (Cantor’s theorem) Suppose that f is a mapping from a
set A to its power set P (A). Then f is not surjective.

Proof Let B = {a ∈ A : a �∈ f(a)}. We claim that B is not in the image of
f . Suppose not, and suppose that B = f(b). Does b belong to B? If it does, it
fails the criterion for membership of B, giving a contradiction. If it does not,
then it meets the criterion for membership of B, again giving a contradiction.
This exhausts the possibilities, and so B is not in the image of f . �

Corollary 1.6.4 Suppose that A is a non-empty set and that g : P (A) →
A is a mapping. Then g is not injective.

Proof The mapping s : A → P (A) defined by s(a) = {a} is injective. If
g were injective, then by the Schröder--Bernstein theorem there would be a
bijection h : A → P (A), which contradicts the theorem. �

1.7 The foundation axiom and the axiom of infinity

Suppose we start with the empty set. Repeatedly using the axioms that we
have described so far to create new sets, we obtain an infinite collection of
sets which satisfy these axioms. But each of these sets has only finitely many
members. This may be satisfactory for certain areas of mathematics, such as
finite group theory, or the mathematics of computer science, but in mathe-
matical analysis we need to consider sets with infinitely many members. We
now introduce two further axioms which enable us to do so.

Axiom 8: The foundation axiom

This states that if A is a non-empty set, then there exists an element a of A

such that a ∩ A = ∅: a and A have no element in common. As we shall see,
this excludes the possibility of infinite regress. It also prevents us from going
round in circles.

Proposition 1.7.1 If a is a set then a �∈ a.

Proof Consider the singleton set {a}. It has a member disjoint from {a}.
But it only has one member, namely a, and so a and {a} are disjoint. Since
a ∈ {a}, a �∈ a. Russell’s paradox has completely disappeared. �

Let us introduce a construction that will shortly be useful to us. If a is a
set, we define a+ to be the set a ∪ {a}. The members of a+ are the members
of a, together with a. Thus a ⊆ a+.
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Corollary 1.7.2 If a is a set then a �= a+.

Proof For a ∈ a+ and a �∈ a. �

Here is another consequence of the foundation axiom.

Proposition 1.7.3 If a and b are sets and a ∈ b then b �∈ a.

Proof Consider the set {a, b} with elements a and b. By the foundation
axiom, either a ∩ {a, b} = ∅ or b ∩ {a, b} = ∅. But a ∈ b ∩ {a, b}, and so
a ∩ {a, b} = ∅. Since b ∈ {a, b}, b �∈ a. �

A set A is called a successor set if ∅ ∈ A and if a+ ∈ A whenever a ∈ A.

Axiom 9: The axiom of infinity

This states that there exists a set S which is a successor set.
Having postulated the existence of a successor set, we now show that there

is a smallest one.

Theorem 1.7.4 There exists a successor set Z+ such that if T is any
successor set then Z+ ⊆ T .

Proof Note that if A is a set, all of whose elements are successor sets, then
it follows immediately from the definitions that the intersection ∩B∈AB is
also a successor set. Suppose that S is a successor set. Let

Z+ = ∩{B ∈ P (S) : B is a successor set}.

Then if T is a successor set, T ∩ S is a successor set, so that Z+ ⊆
T ∩ S ⊆ T . �

The minimality of Z+ is very powerful, and leads to the principle of
induction.

Let us use the foundation axiom to show that infinite regress is not allowed.

Proposition 1.7.5 Suppose that f : Z+ → A is a mapping. Then there
exists n ∈ Z+ such that f(n+) �∈ f(n).

Proof Consider the set f(Z+). By the foundation axiom, there exists
n ∈ Z+ such that no member of f(n) is in f(Z+). But f(n+) ∈ f(Z+),
and so f(n+) �∈ f(n). �

We now show that we can take the minimal successor set Z+ as a model
for the natural numbers. Let us explain what this means. In 1888, Dedekind
described an axiom system for the natural numbers N = (1, 2, 3, . . .). Inde-
pendently, Peano introduced them, in a pamphlet written in Latin. They are
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now known as Peano’s axioms. Replacing 1 by 0, they also serve as axioms for
the non-negative integers Z+ = (0, 1, 2, . . .); in this form, and in set-theoretic
terms, they state the following. There is a set P and a mapping s : P → P

(the successor function) such that

(P1) there is a distinguished element 0 of P ;
(P2) if n ∈ P then s(n) ∈ P (this is included in the fact that s is a mapping

from P to itself);
(P3) if n ∈ P then s(n) �= 0;
(P4) s is injective: if m ∈ P and n ∈ P and s(m) = s(n) then m = n;
(P5) (the principle of induction) if A ⊆ P , if 0 ∈ A and if s(A) ⊆ A then A = P .

We set s(0) = 1, s(1) = 2, and so on.
There are many ways of constructing a pair (P, s) which satisfies these

axioms. Any pair (P, s) which does so is called a model for the non-negative
integers Z+.

Theorem 1.7.6 If n ∈ Z+, let s(n) = n+. Then the pair (Z+, s) is a
model for Z+.

Proof For (P1), we take the empty set ∅ to be the distinguished element.
If n ∈ Z+ then n+ ∈ Z+, so that (P2) holds. Since n ∈ n+, s(n) �= 0, so
that (P3) holds. Suppose that m+ = n+, and that m �= n. Then m ∈ m+ =
n+ = n∪{n}. Since m �= n, m �∈ {n}. Thus m ∈ n. Similarly, exchanging the
roles of m and n, n ∈ m, contradicting Proposition 1.7.3. Thus (P4) holds.
Finally, (P5) follows from Theorem 1.7.4. �

As we have remarked, there are many other ways of constructing pairs
(P, s) for which the Peano axioms hold. We need to show that any two are
essentially the same, but we must wait until the results of the next section
have been established before we can do this.

The principle of induction allows us to prove results relating to the non-
negative integers. Suppose that Q(x) is a well-formed formula and that we
are interested in the subset T of P consisting of those n for which Q(n) holds.
Suppose that we can prove that 0 ∈ T , and that we can also prove that if
Q(n) holds then it follows that Q(s(n)) holds. Then T satisfies the conditions
of (P5), and so T = P ; P (n) holds for all n ∈ P . A proof which uses this
procedure is known as a proof by induction. We shall give many such proofs.
Here is one.

Proposition 1.7.7 Suppose that (P, s) satisfy the Peano axioms, with
distinguished element 0. Then s(P ) = P \ {0}, and s : P → s(P ) is a
bijection.
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Proof The mapping s : P → s(P ) is a bijection, by (P4), and 0 �∈ s(P ), by
(P3). Let A = {0} ∪ s(P ). Then 0 ∈ A, and if n ∈ A then s(n) ∈ A, so that
by (P5), A = P . �

Exercises

1.7.1 Consider the two-point subset {0, 1} of Z+. If A is a set, we denote the
set of functions from A to {0, 1} by 2A. Suppose that B ∈ P (A) and
x ∈ A. Let IB(x) = 1 if x ∈ B, and IB(x) = 0 if x �∈ B. IB is the
indicator function of B. Show that the mapping B → IB : P (A) → 2A

is a bijection.

1.8 Sequences, and recursion

In this section, we shall assume that (P, s) is a model for Z+, with distin-
guished element 0. We write P as (0, 1, 2, . . .), where 1 = s(0), 2 = s(1), and
so on. A function f : P → A is then called a sequence, or an infinite sequence
in A, and is denoted by (fn)n∈P , or by (fn)∞

n=0, or as (f0, f1, f2, . . .). This
notation suggests another way of considering a function: the elements of P

act as labels or indices. Since f need not be one-one, an element of A may
have more than one label. Since f need not be surjective, some elements of
A may have no labels.

It is important to distinguish the sequence (fn)n∈P from its set of values

f(P ) = {x ∈ A : there exists n ∈ P such that x = fn},

but some flexibility is needed. When we consider a term fn of a sequence,
we may consider fn as the value of the sequence at n, but at the same time
keep in mind its index or label n. For sequences, as for fashion, the label is
as important as the object.

The principle of induction lets us prove results about sequences. Recursion
allows us to construct sequences.

Theorem 1.8.1 (The recursion theorem) Suppose that A is a non-empty
set, that f is a mapping of A to itself and that ā ∈ A. Then there is a unique
sequence (an)n∈P such that a0 = ā and as(n) = f(an) for n ∈ P .

Proof Recall that a sequence is a function from P to A, that a function is a
relation satisfying certain conditions, and that a relation is a subset of P ×A.
Let us consider the set of relations on P × A. We say that a relation R is
recursive if
(i) 0Rā and
(ii) if nRa then s(n)Rf(a).
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The set S of all recursive relations is non-empty, since P × A ∈ S. Let
g = ∩R∈SR. We shall show that g is a function, that g(0) = ā and that
g(s(n)) = f(n) for all n ∈ P . Thus an = g(n) satisfies the conditions of the
theorem.

Let
D(g) = {n ∈ P : there exists a ∈ A with (n, a) ∈ g}

be the domain of g. We must show that D(g) = P ; we prove this by induction.
Since (0, ā) ∈ R for all R ∈ S, S(0, ā) ∈ g. Thus 0 ∈ D(g). If n ∈ D(g), there
exists a such that (n, a) ∈ g, and so (n, a) ∈ R for all R ∈ S. Then since each
R ∈ S is recursive, (s(n), f(a)) ∈ R for all R ∈ S, and so (s(n), f(a)) ∈ g.
Thus s(n) ∈ D(g). By the induction principle, it follows that D(g) = P .

Next, we must show that if n ∈ P then there exists exactly one a ∈ A such
that (n, a) ∈ g. Again, we prove this by induction. Let

U = {n ∈ P : if (n, a) ∈ P and (n, a′) ∈ P then a = a′}.

First, we show that 0 ∈ U . (0, ā) ∈ g. Suppose that (0, a′) ∈ g and that
a′ �= ā. Let g′ = g \ {(0, a′)}. Then (0, ā) ∈ g′, since a′ �= ā. If (n, a) ∈ g′ ⊆ g

then (s(n), f(a)) ∈ g, and (s(n), f(a)) �= (0, a′), since s(n) �= 0, so that
(s(n), f(a)) ∈ g′. Thus g′ ∈ S, and so g ⊆ g′, giving a contradiction.

Secondly, we show that if n ∈ U then s(n) ∈ U . Suppose not. There
exists a unique a ∈ A such that (n, a) ∈ g, and so (s(n), f(a)) ∈ g. Since
s(n) �∈ U , there exists a′ ∈ A with a′ �= f(a) such that (s(n), a′) ∈ g. Let
g′ = g\{(s(n), a′)}. We shall show that g′ ∈ S. As before, (0, ā) ∈ g′. Suppose
that (m, b) ∈ g′ ⊆ g. Then (s(m), f(b)) ∈ g. Thus if (s(m), f(b)) �∈ g then
(s(m), f(b)) = (s(n), a′). But then m = n and f(b) = a′. Since n ∈ U ,
(m, b) = (n, a), and so that b = a. Thus f(a) = a′, giving a contradiction.
By the principle of induction, U = P , and so g is a function.

Finally, we show that g is unique. Once again, we prove this by induction.
Suppose that g′ is a function in S. Let G = {n ∈ P : g(n) = g′(n)}. Since
g′(0) = g(0) = ā, 0 ∈ G. Suppose that n ∈ G. Then g′(s(n)) = f(g′(n)) =
f(g(n)) = g(s(n)), so that s(n) ∈ G. By the induction principle, G = P , so
that g = g′. �

If n ∈ Z+ and ā ∈ A, let fn(ā) = an. Then fn is a mapping of A into
itself. We can therefore express the recursion theorem in the following way.

Theorem 1.8.2 Suppose that A is a non-empty set and that f is a
mapping of A to itself. For each n ∈ Z+ there exists a unique map-
ping fn : A → A such that f0(a) = a for all a ∈ A and such that
fs(n)(a) = f(fn(a)) for all n ∈ Z+ and a ∈ A.
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The recursion principle can be extended to more complicated situations.
See Exercise 1.1.1 below.

We can now show that any two models of Z+ have exactly the same
properties.

Theorem 1.8.3 Suppose that (P, s) and (P ′, s′) satisfy the Peano axioms,
with distinguished elements 0 and 0′ respectively. Then there is a unique
bijection t : P → P ′ with t(0) = 0′ and s′t(n) = ts(n) for each n ∈ P . Thus
we have the diagram:

0 s−→ 1 s−→ 2 s−→ · · · s−→ n
s−→ s(n) s−→ · · ·

t ↓ t ↓ t ↓ t ↓ t ↓
0′ s′

−→ 1′ s′
−→ 2′ s′

−→ · · · s′
−→ n′ s′

−→ s′(n′) s′
−→ · · ·

Proof Set t(0) = 0′, and apply recursion to the mapping s′. There is then
a unique mapping t : P → P ′ such that ts(n) = s′(t(n)) for each n ∈ P .
Similarly, there is a unique mapping t′ : P ′ → P such that t′(0′) = 0 and
t′s′(n′) = st′(n′). We shall show by induction that t′t is the identity on P

and that tt′ is the identity on P ′, so that t is a bijection. Let U = {n ∈ P :
t′t(n) = n}. Since t′t(0) = t′(0′) = 0, 0 ∈ U . Suppose that n ∈ U . Then

s(n) = st′t(n) = t′s′t(n) = t′ts(n),

so that s(n) ∈ U . Thus U = P . Exchanging the roles of P and P ′, we also
see that tt′ is the identity on P ′. �

From now on, we take the non-negative integers to be a set Z+ =
{0, 1, 2, . . .}, together with a map s : Z+ → Z+, such that the pair (Z+, s)
satisfies the Peano axioms, and take the natural numbers N = {1, 2, 3, . . .} to
be the set s(Z+). We could, for example, take (Z+, s) to be the pair (Z+,+ ).
Properties of Z+ and N will however be derived from the Peano axioms, and
not from any particular set-theoretical properties that the model might have.

Exercises

1.8.1 Suppose that (An)n∈Z+ is a sequence of non-empty subsets of a set A,
and that for each n ∈ Z+, fn is a mapping from An into As(n). Show
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that if ā ∈ A0 then there exists a unique sequence (an)n∈Z+ in A such
that an ∈ An for n ∈ Z+, a0 = Ā and as(n) = fn(an) for n ∈ Z+.
[Hint: Let

D = {x ∈ Z+ × A : x = (n, a) with a ∈ An},

and consider the mapping φ : D → D defined by φ(n, a) =
(s(n), fn(a)).

1.8.2 Suppose that A is a non-empty set and that S : P (A) → P (A) is an
increasing function.
(a) Use recursion to show that there are sequences (Hn)n∈Z+ and

(Jn)n∈Z+ in P (A) such that H0 = ∅ and S(Hn) = Hs(n) for n ∈ Z+,
and J0 = A and S(Jn) = Js(n) for n ∈ Z+.

(b) Show that (Hn)n∈Z+ is an increasing sequence and that (Jn)n∈Z+

is a decreasing sequence.
(c) Let H = ∪∞

n=0Hn and J = ∩∞
n=0Jn. Show that if G ∈ P (A) and

G = S(G) then H ⊆ G ⊆ J .
(d) Give examples where H �= S(H) and J �= S(J).
(e) Let S be the mapping defined in the proof of the Schröder--

Bernstein theorem. Show that S(H) = H and S(J) = J .

1.9 The axiom of choice

We have seen that a sequence, that is, a mapping from Z+ to a set B, can
be considered as a way of labelling elements of B. We can extend this idea to
other mappings; if f is a mapping from a set A to a set B, we can consider
A as an index set, used to label those elements of B which are in the image
f(A). In this case, we denote the function by (fα)α∈A, and call it a family
of elements of B, indexed by A. Once again, f need not be injective, and so
there may be distinct α and α′ for which fα = fα′ .

Suppose now that (Bα)α∈A is a family of non-empty sets. The Cartesian
product

∏
α∈A(Bα) is then defined to be the set of all families (cα)α∈A with

values in ∪α∈ABα, such that cα ∈ Bα for each α ∈ A. If β ∈ A, then the
mapping πβ defined by πβ(c) = cβ for c = (cα)α∈A in

∏
α∈A(Bα) is the

coordinate projection of
∏

α∈A(Bα) into Bβ: πβ(c) = cβ is the β-th
coordinate of c.

The question then arises: does
∏

α∈A have any members? At first glance, it
appears that it must; since each Bα is non-empty, there exists cα in Bα, and
we can take (cα)α∈A as an element of

∏
α∈A. The problem is that we must

do this simultaneously, for all α ∈ A. We require a further axiom to say that
this is valid.
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Axiom 10: The axiom of choice

This states that if (Bα)α∈A is a family of non-empty sets then
∏

α∈A(Bα) is
non-empty: there exists a function c, a choice function, from A to ∪α∈ABα,
such that cα = c(α) ∈ Bα for each α ∈ A.

The axiom of choice has a particular position in axiomatic set theory, which
we shall discuss further in the next section. On the one hand, the way that
we have presented it makes it seem plausible. On the other hand, there is
no procedure for producing a choice function, so that its use is highly non-
constructive. Further, the axiom of choice leads to some conclusions that
seem bizarre. A famous example is the Banach--Tarski paradox, which says
that a solid ball B in three dimensions can be divided into a finite number of
disjoint sets, which can be rearranged, by rotation and translation, into two
disjoint copies of B.

Even when (Bn)n∈Z+ is a sequence of non-empty sets, we require a ver-
sion of the axiom of choice to ensure that there is a sequence (cn)n∈Z+

in ∪n∈Z+(Bn) with cn ∈ Bn for all n ∈ Z+. Restricting the axiom of
choice to sequences, we obtain the countable axiom of choice; this cer-
tainly seems plausible, and we shall accept it, and use it, generally without
comment.

Although recursion enables us to construct sequences, it requires the use
of a given function f . Let us consider a more general situation. Suppose
that A is a non-empty set, and that φ is a mapping from A into the set
P (A) \ {∅} of non-empty sets of A. Suppose that ā ∈ A. Does there exist
a sequence (an)n∈P such that a0 = ā and as(n) ∈ φ(an), for n ∈ P? At
stage n, we choose as(n) from the set φ(an). The axiom of dependent choice
states that this is always possible. It is an easy consequence of the axiom
of choice, and implies the countable axiom of choice, but is not equivalent
to either of them. Again, we shall accept it, and use it, generally without
comment.

In the general situation, though, we will state explicitly when we use the
axiom of choice or use Zorn’s lemma. Zorn’s lemma is an axiom equivalent
to the axiom of choice, and is particularly useful in analysis.

Zorn’s lemma concerns partially ordered sets, and we need to make a fur-
ther definition in order to formulate it. Suppose that (A,≤) is a partially
ordered set. A subset C is a chain if it is totally ordered under the order
inherited from the partial order on A; that is, if c and c′ are elements of C

then either c ≤ c′ or c′ ≤ c.
Zorn’s lemma then states that if (A,≤) is a partially ordered set in which

each chain has an upper bound, then A has a maximal element.



28 The axioms of set theory

Zorn’s lemma implies the axiom of choice, and the axiom of choice implies
Zorn’s lemma. We shall prove the former statement here. The proof of the
converse is long and technical; we give the details in Appendix A.

Theorem 1.9.1 The axiom of choice is a consequence of Zorn’s lemma.

Proof Suppose that (Bα)α∈A is a non-empty family of non-empty sets. We
consider the set E of all pairs (Δ, c), where Δ is a subset of A, and c : Δ →
∪δ∈ΔBδ is a choice function. E is certainly not empty: if Δ = {δ}, there
exists b ∈ Bδ, and we define c(δ) = b. We give E a partial order by setting
(Δ, c) ≤ (Δ′, c′) if Δ ⊆ Δ′ and c(δ) = c′(δ) for all δ ∈ Δ. (This way of
ordering a set of ordered pairs (X, f), where X is a subset of a set Ω and f

is a mapping from X to a set Y , is typical of the way that Zorn’s lemma is
used.) Suppose that C is a chain in E. Let

ΔC = {δ ∈ A : δ ∈ Δ for some (Δ, c) in C}.

If δ ∈ ΔC then δ ∈ Δ for some (Δ, c) in C. Let cC(δ) = c(δ). Since C is a
chain, if δ ∈ Δ′ for some other (Δ′, c′) in C then c(δ) = c′(δ), so that cC is
well defined (it does not matter which pair we choose). Further, (ΔC , cC) is
an upper bound for C.

We now apply Zorn’s lemma to deduce that there is a maximal element
(Δm, cm) in E. We claim that Δm = A, so that cm is a choice function on
A. Suppose not. Then there exists α ∈ A \ Δm and there exists bα ∈ Bα.
Let Δ̃ = Δm ∪ {α}, let c̃(δ) = cm(δ) for δ ∈ Δm, and let c̃(α) = bα. Then
(Δ̃, c̃) ∈ E, (Δm, cm) ≤ (Δ̃, c̃) and (Δm, cm) �= (Δ̃, c̃), contradicting the
maximality of (Δm, cm). �

Let us give another application of Zorn’s lemma, to obtain a result which
complements the Schröder--Bernstein theorem.

Theorem 1.9.2 Suppose that A and B are non-empty sets. Then either
there exists an injective mapping j : A → B or there exists an injective
mapping k : B → A.

Proof Let E be the set of ordered pairs (H, h), where H is a subset of A, and
h is an injective mapping of H into B. We order E by setting (H, h) ≤ (H ′, h′)
if H ⊆ H ′ and h′(a) = h(a) for a ∈ H. Suppose that C is a chain in E. As
above, we set

HC = {a ∈ A : a ∈ H for some (H, h) in C}.
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If a ∈ HC then a ∈ H for some (H, h) in C. Let hC(a) = c(a). Arguing as
above, hC is well-defined. We must check that it is injective. If a and a′ are
distinct elements of HC , then a ∈ H for some (H, h) ∈ C and a′ ∈ H for
some (H ′, h′) ∈ C. Since C is a chain, either H ⊆ H ′ or H ′ ⊆ H. Suppose
that H ⊆ H ′. Then a ∈ H ′, and so hC(a) = h′(a) �= h′(a′) = hC(a′). A
similar argument holds if H ′ ⊆ H.

We now apply Zorn’s lemma to deduce that there is a maximal element
(Hm, hm) of E. If Hm = A, we are finished. Suppose that Hm �= A. Then
we claim that hm(Hm) = B. For if not, there exist ã ∈ A \ Hm and b̃ ∈
B \ hm(Hm). Let H̃ = Hm ∪ {a} and define h̃ : H̃ → B by setting h̃(a) =
hm(a) for a ∈ Hm and h̃(ã) = b̃. Then (H̃, h̃) ∈ E, (Hm, hm) ≤ (H̃, h̃) and
(Hm, hm) �= (H̃, h̃), contradicting the maximality of (Hm, hm). Thus hm is a
bijective mapping of Hm onto B, and we can take k to be the inverse mapping
h−1

m . �

Exercises

1.10.1 Show that the axiom of choice implies the axiom of dependent choice.
1.10.2 Show that the axiom of dependent choice implies the countable axiom

of choice.
1.10.3 Suppose that (φn)∞

n=0 is a sequence of non-empty subsets of Z+. Use
recursion to show that there exists a sequence (fn)∞

n=0 in Z+ such that
f0 ∈ φ0 and fn+1 ∈ φ(fn), for n ∈ Z+. Why is the axiom of dependent
choice not needed?

1.10.4 Suppose that (A,≤A) and (B,≤B) are partially ordered sets. Define
a relation ≤l on A × B by setting (a, b) ≤l (a′, b′) if either a <A a′ or
a = a′ and b ≤ b′.
(a) Show that ≤l is a partial order on A×B (the lexicographic order).
(b) Show that if ≤A and ≤B are total orders then so is ≤l.

1.10.5 Prove the following variant of Zorn’s lemma. Suppose that (A,≤) sat-
isfies the conditions of Zorn’s lemma, and that C is a chain in A.
Show that there is a maximal element m of A such that c ≤ m for all
c ∈ C.

1.10 Concluding remarks

We have now described the set-theoretical foundations on which we shall
build mathematical analysis. In the process, we have constructed a model for
the non-negative integers, which satisfies the requirements of Peano’s axioms.
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How sound are these foundations? Are they consistent, or is it possible that
they may lead to a contradiction? Are they adequate, or are there problems
which we are unable to solve using them?

In order to discuss these questions, it is helpful to put them in a histori-
cal context. The idea of developing mathematics from a collection of axioms
goes back to Euclid’s Elements of the third century bc. Euclid gave five
postulates, or axioms, from which he deduced geometric theorems. The fifth
postulate, the parallel postulate, states, in the essentially equivalent form of
Playfair’s axiom, that given a straight line in the plane, and a point not on
it, there exists a unique straight line in the plane which passes through the
given point, and which does not meet the given line. This postulate raised
particular interest, since it was felt that it should be possible to deduce it
from the other postulates, and many unsuccessful attempts were made to
do so. In the early part of the nineteenth century, Gauss, János Bolyai and
Lobachevsky all developed the theory of non-Euclidean geometry (where the
parallel postulate fails), but it was not until 1868 that Beltrami produced a
model of a two-dimensional non-Euclidean geometry in the setting of three-
dimensional Euclidean space, showing that the parallel postulate cannot be
deduced from the other postulates. All this raised interest in the axioms, and
in particular interest in their consistency. Hilbert studied this in detail and
observed that if the postulates of Euclidean geometry are not consistent, then
neither are Peano’s axioms. He came to believe that there should be a consis-
tent set of axioms for mathematics, from which all results could be deduced.
In his famous address to the International Congress of Mathematicians in
Paris in 1900, in which he set out his twenty-three important problems for
the twentieth century, he talked of

the conviction (which every mathematician shares, but which no-
one has yet supported by a proof) that every definite mathematical
problem must necessarily be susceptible of an exact settlement,
either in the form of an actual answer to the problem posed or
by the proof of the impossibility of solution and therewith the
necessary failure of all attempts.

Here he clearly had in mind the necessary failure to prove the parallel
postulate from the other postulates. Later on, he said

This conviction of the solvability of every mathematical problem is
a powerful incentive to the worker. We hear within us the perpetual
call: There is the problem. Seek its solution. You can find it by pure
reason, for in mathematics there is no ignorabimus.

This optimism was overturned by Gödel in a spectacular way in 1930 and
1931. First came his incompleteness theorem, which showed that within any
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logical theory (satisfying certain technical conditions, which reasonably can
be expected to hold in a worthwhile theory) there are statements which can-
not be proved, and whose negation cannot be proved. Not every mathematical
problem is susceptible of an exact solution. Alas, ignorabimus! Next came his
inconsistency theorem: if a proof of consistency can be given within the the-
ory, then necessarily a proof of inconsistency can also be given. For a system
to be consistent, it must be impossible to prove its consistency.

Where does this leave ZF? First, and we shall illustrate this in a moment,
the axioms of ZF cannot be the axioms for all of mathematics, nor can we
add to them to obtain a set of axioms for all mathematics. Secondly, they
cannot be proved to be consistent. Nevertheless they have stood the test of
time, and so provide us with a valuable starting point. It is interesting to
speculate what would happen if an inconsistency were found. Mathematics
would not collapse: mathematicians would continue their work, turning to
their logician colleagues to produce a better set of axioms. The effect on the
mathematical analysis that we shall be considering would be negligible.

What about the axiom of choice? In 1938, Gödel showed that if ZF is
consistent, then so is the system obtained by adding the axiom of choice.
In 1963, Cohen showed that there are models of ZF in which the axiom of
choice does not hold. Thus the axiom of choice is independent of the axioms
of ZF, and cannot be proved or disproved, starting from ZF. We can add
the axiom of choice to obtain a stronger axiom system ZFC. Within this,
there are further statements that cannot be proved or disproved, such as the
continuum hypothesis (which states that if A is an uncountable subset of the
set R of real numbers, then there exists a bijection f : A → R). In fact, we
shall adopt the axiom of choice, but will use it as sparingly as possible.
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Number systems

2.1 The non-negative integers and the natural numbers

In this chapter we study various number systems. We begin by developing
the familiar properties of the non-negative integers Z+ = (0, 1, 2, . . .) and
the natural numbers N = (1, 2, 3, . . .), using the Peano axioms, induction
and recursion.

We begin with addition. This is defined by repeatedly adding 1; we use
recursion to formalize this. Suppose that m ∈ Z+. Considering the mapping
s : Z+ → Z+, setting m0 = m, and using recursion, we see that there is a
sequence (mn)n∈Z+ such that m0 = m and ms(n) = s(mn). We call mn the
sum of m and n, and denote it by m+n. This m+0 = m and m+1 = s(m).
The equation ms(n) = s(mn) becomes

m + (n + 1) = (m + n) + 1. (∗)

Here are the fundamental results about addition.

Theorem 2.1.1 Suppose that m, n, p ∈ Z+.

(i) m + n = n + m (commutativity)
(ii) (m + n) + p = m + (n + p) (associativity)
(iii) if m + n = p + n then m = p (cancellation)
(iv) if m + n = 0 then m = n = 0.

Proof The proof uses induction many times over.

(i) We prove this in three steps. First we show that m + 0 = 0 + m for all
m. We use induction. Let U = {m ∈ Z+ : 0 + m = m + 0}. Then 0 ∈ U ,
since 0 + 0 = 0 + 0. Suppose that m ∈ U . Then (m + 1) + 0 = m + 1,
and 0 + (m + 1) = (0 + m) + 1, by (∗), and (0 + m) + 1 = m + 1. Thus
m + 1 ∈ U , and so U = Z+, by induction.

32
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Next, we show that

(m + 1) + n = (m + n) + 1 for all m, n ∈ Z+. (†)

Again, we use induction. Let

V = {n ∈ Z+ : (m + 1) + n = (m + n) + 1 for all m ∈ Z+}.

Since (m + 1) + 0 = m + 1 = (m + 0) + 1, 0 ∈ V . Suppose that n ∈ V .
Then

(m + 1) + (n + 1) = ((m + 1) + n) + 1, by (∗),

= ((m + n) + 1) + 1, since n ∈ V ,

= (m + (n + 1)) + 1, by (∗) again.

Thus n + 1 ∈ V , and V = Z+, by induction.
Finally we establish (i), using induction once more. Let

W = {n ∈ Z+ : m + n = n + m for all m ∈ Z+}.

Then 0 ∈ W , by the first step. Suppose that n ∈ W . Then

m + (n + 1) = (m + n) + 1, by (∗),

= (n + m) + 1, since n ∈ W ,

= (n + 1) + m, by (†).

Thus n + 1 ∈ W , and W = Z+, by induction.
(ii) Induction once more. Let

X = {p ∈ Z+ : (m + n) + p = m + (n + p) for all m, n ∈ Z+}.

Since (m + n) + 0 = m + n = m + (n + 0), 0 ∈ X. Suppose that p ∈ X.
Then

(m + n) + (p + 1) = ((m + n) + p) + 1, by (∗),

= (m + (n + p)) + 1, since p ∈ X,

= m + ((n + p) + 1), by (∗),

= m + (n + (p + 1)), by (∗) again.

Thus p + 1 ∈ X, and X = Z+, by induction.
(iii) A final use of induction. Let

Y = {n ∈ Z+ : if m + n = p + n then m = p, for all m, p ∈ Z+}.
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Since m + 0 = m and p + 0 = p, 0 ∈ Y . Suppose that n ∈ Y and that
m + (n + 1) = p + (n + 1). Then

(m + n) + 1 = m + (n + 1) = p + (n + 1) = (p + n) + 1, by (∗),

and so m + n = p + n, by the Peano axiom (P4). Since n ∈ Y , it follows
that m = p, and so n + 1 ∈ Y . Thus Y = Z+, by induction.

(iv) Suppose that m + n = 0 and that n �= 0. Then n ∈ N = s(Z+), and
so n = p + 1 for some p ∈ Z+. Then 0 = m + (p + 1) = (m + p) + 1,
by (ii). This contradicts the Peano axiom (P3). Thus m = 0, and so
n = n + 0 = 0 + n = 0.

�

As a result of (ii), we can write (m + n) + p = m + (n + p) = m + n + p,
omitting the brackets.

By now, proof by induction should be familiar! In future, the details of
many such proofs will be left to the reader.

We now define multiplication recursively. Suppose that n ∈ Z+. Using
recursion, we see that there exists a sequence (pm)m∈Z+ such that p0 = 0 and
pm+1 = pm + n. We then set pm = m.n (or mn, if this causes no confusion).
The number mn is the product of m and n. Arguing as in Theorem 2.1.1, we
obtain the following.

Theorem 2.1.2 Suppose that m, n, p ∈ Z+.

(i) m.n = n.m (commutativity);
(ii) 0.n = 0 and 1.n = n;
(iii) (m.n).p = m.(n.p) (associativity);
(iv) if m.n = p.n and n �= 0 then m = p (cancellation);
(v) if m.n = 0 then m = 0 or n = 0.

Proof The proofs, by induction, are left as exercises for the reader. �

Again, we can write (mn)p = m(np) = mnp, omitting the brackets. We
also connect addition and multiplication.

Theorem 2.1.3 Suppose that m, n, p ∈ Z+. Then m.(n + p) =
(m.n) + (m.p) (the distributive law).

Proof The proof, by induction, is again left as an exercise for the reader. �

We write (m.n)+(m.p) = mn+mp: multiplication is done before addition.
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Corollary 2.1.4 Suppose that m, n ∈ Z+.
(i) If mn = n then n = 0 or m = 1.
(ii) If mn = 1 then m = n = 1.

Proof We use results from Theorems 2.1.1 and 2.1.2, without comment.
Decide which results are used at each stage of the arguments.

(i) If n �= 0 then m �= 0, and so there exists k ∈ Z+ such that m = k + 1.
Then 0 + n = n = mn = (k + 1)n = kn + n, so that kn = 0, by cancellation.
Since n �= 0, k = 0 and m = 1.

(ii) m �= 0 and n �= 0, so that there exist k, l ∈ Z+ such that m = k + 1
and n = l + 1. Then 1 = mn = (k + 1)(l + 1) = kl + k + l + 1, so that
kl + (k + l) = 0. Thus k + l = 0 and k = l = 0. Thus m = n = 1. �

We now use addition to define an order relation on Z+. If m, n ∈ Z+ we
set m ≤ n if there exists t ∈ Z+ such that n = m + t. Note that 0 ≤ n for all
n ∈ Z+, since n = n + 0. We set m < n if m ≤ n and m �= n. Thus m < n if
and only if there exists u ∈ N such that n = m + u.

Theorem 2.1.5 Z+ is well-ordered by the relation ≤. That is:
(i) if m ≤ n and n ≤ p then m ≤ p;
(ii) If m, n ∈ Z+ then either m ≤ n or n ≤ m;
(iii) if m ≤ n and n ≤ m then m = n;
(iv) if A is a non-empty subset of Z+ then there exists a ∈ A such that

a ≤ a′ for all a′ ∈ A (a is the least element of A, and so is the infimum
of A; we denote it by inf A).

Proof

(i) if m ≤ n and n ≤ p then there exist t, u in Z+ such that n = m + t and
p = n + u. Then p = (m + t) + u = m + (t + u), so that m ≤ p.

(ii) We use induction. Suppose that n ∈ Z+. Let

Un = {m ∈ Z+ : m < n or n ≤ m}.

Then 0 ∈ Un. Suppose that m ∈ Un. We consider two cases. First,
suppose that m < n. Then n = m + u for some u ∈ N. Thus u = r + 1
for some r ∈ Z+, and so n = m + (r + 1) = (m + 1) + r; m + 1 ≤ n and
m + 1 ∈ Un. Secondly, suppose that n ≤ m. Then m = n + t, for some
t ∈ Z+, and so m + 1 = n + t + 1, and m + 1 ∈ Un. It therefore follows
by induction that Un = Z+.

(iii) If m ≤ n and n ≤ m then there exist t, u ∈ Z+ such that n = m + t and
m = n+u. Thus n+0 = n = n+(t+u), so that t+u = 0. By Theorem
2.1.1 (iv), it follows that t = u = 0, so that m = n.
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(iv) Another proof by induction. Suppose that A does not have a least
element. Let

V = {m ∈ Z+ : m ≤ a for all a ∈ A}.

Note that A ∩ V = ∅. 0 ∈ V , since 0 ≤ n for all n ∈ Z+. Suppose that
m ∈ V and that a ∈ A. Since m �∈ A, m < a. Thus a = m + t, where
t ∈ N. Thus t = r + 1 for some r ∈ Z+, so that

a = m + (r + 1) = (m + 1) + r,

and m + 1 ≤ a. Since this holds for all a ∈ A, m + 1 ∈ V . By induc-
tion, V = Z+. Since A ∩ V = ∅, it follows that A is empty, giving a
contradiction. �

The well-ordering property provides an alternative approach to induc-
tion. Suppose that Q(x) is a well-formed formula, that T = {n ∈ Z+ :
Q(n) is true} and that F = {n ∈ Z+ : Q(n) is false}. Suppose that we know
that 0 ∈ T , and can show that if Q(n) holds then Q(n+1) holds. Then F = ∅.
For if not, F has a least element f . Then f �= 0, and so f = n + 1 for some
n ∈ Z+. But then n < f , so that n �∈ F . Thus n ∈ T , and so f ∈ T , giving a
contradiction.

If m ≤ n and n = m + t then we write m = n − t: we shall remove the
restriction m ≤ n in Section 2.4. Similarly, if n = mk, with k �= 0, we write
m = n/k and say that m divides n. We shall consider division further in
Sections 2.5 and 2.6.

Exercises

2.1.1 (The complete induction principle) Suppose that Q(x) is a well-formed
formula, that Q(0) holds, and that we can show that if Q(m) holds for
all m ≤ n then Q(n + 1) holds. Show that Q(n) holds for all n ∈ Z+

(a) by induction, and
(b) by using the well-ordering of Z+.

2.1.2 Define mn recursively by m0 = 1 (note that 00 = 1) and mn+1 = mn.m.
Show that (mn)p = mnp and that (mn)p = mpnp.

2.1.3 Show that n < 2n for all n ∈ Z+. A number n ∈ N is even if 2 divides
n, and odd if not. Show that if n ∈ N then there exist k ∈ Z+ and
j ∈ N such that j is odd and n = 2kj. Show that k and j are uniquely
determined by n.

2.1.4 Show how to define n! so that 0! = 1 and (n + 1)! = (n!)(n + 1).
2.1.5 The Fibonacci sequence (Fn)n∈Z+ is defined by F0 = 0, F1 = 1, Fn+2 =

Fn + Fn+1 for n > 1.
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(a) Explain how this definition can be justified by recursion. The
numbers that occur in the sequence are called Fibonacci numbers.

(b) Show by induction that 2 divides Fk if and only if 3 divides k, and
that 3 divides Fk if and only if 4 divides k. When does 5 divide Fk?

(c) Show that Fn+k+1 = FkFn + Fk+1Fn+1.
2.1.6 Show that 5 divides 22n+2 + 32n for all n ∈ Z+.
2.1.7 Suppose that (An)n∈Z+ is a sequence of non-empty totally ordered

sets and that A =
∏

n∈Z+ An. If x, y ∈ A and x �= y, let k(x, y) =
inf{n ∈ Z+ : xn �= yn}. If x, y ∈ A, set x ≤ y if x = y or
xk(x,y) < yk(x,y). Show that this is a total order on A (the lexicographic
order on A).

2.2 Finite and infinite sets

We are all familiar with the basic properties of finite sets. Nevertheless, we
need to deduce these properties from Peano’s axioms. Since we shall be con-
cerned with counting, we shall work with the natural numbers N, rather than
with Z+.

An initial segment I of N is a non-empty subset of N with the property
that if n ∈ I and m ≤ n then m ∈ I.

Proposition 2.2.1 If I is an initial segment of I then either I = N or
there exists n ∈ N such that I = In = {m ∈ N : m ≤ n}.

Proof It follows immediately from the definition of an initial segment that
if m �∈ I and n ≥ m then n �∈ I. If I �= N, then N \ I is non-empty; let m0

be its least element. Suppose, if possible, that m0 = 1. If n ∈ N, then n ≥ 1,
so that n �∈ I and I = ∅. Thus m0 > 1, and so there exists n ∈ N such that
m0 = n + 1. Then n ∈ I, and so In ⊆ I. But if p > n then p ≥ n + 1 = m0,
and so p �∈ I. Thus I ⊆ In. �

So far, we have defined a sequence to be a mapping from Z+ to a set A.
We now extend the definition, to include mappings from N to A. A mapping
f from an initial segment I to a set A is also called a sequence. If I = In, it
is called a finite sequence in A of length n, or an n-tuple, and is denoted by
(fj)n

j=1 or (f1, . . . , fn).
We say that a set A is finite if either A is empty or there exists n ∈ N and

a bijective mapping c : In → A. Thus the finite sequence (c1, . . . , cn) lists the
elements of A, without repetition. A set is infinite if it is not finite.

Proposition 2.2.2 If j : Im → In is an injective mapping then m ≤ n.
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Proof The proof is by induction on m. The result is trivially true if m = 1.
Suppose that it holds for m, and that f : Im+1 → In is injective. Then
m + 1 ≥ 2, so that f(Im+1) contains at least two points, and so n = k + 1,
for some k ∈ N. Let τ : In → In be the mapping that transposes f(m + 1)
and n and leaves the other elements of In fixed. Then τ ◦ f : Im+1 → In is
injective, and τ(f(Im)) ⊆ Ik. By the inductive hypothesis, m ≤ k, and so
m + 1 ≤ k + 1 = n. �

Corollary 2.2.3 If A is a non-empty finite set, there exists a unique
n ∈ N for which there exists a bijection c : In → A.

Proof Suppose that c : In → A and c′ : In′ → A are bijections. Then
c−1 ◦ c′ : In′ → In is a bijection, and so n′ ≤ n. Similarly, n ≤ n′. �

The number n is the size or cardinality of A; it is written as |A|, or as
#(A). We assign the empty set size 0.

Proposition 2.2.4 Suppose that A is a finite set, and that f : A → B is
a bijection. Then B is finite, and |B| = |A|.

Proof For if C : I|A| → A is a bijection, then the mapping f ◦ c : I|A| → B

is a bijection. �

Proposition 2.2.5 If A is a non-empty subset of In then A has a greatest
element.

Proof Let U = {m ∈ N : a ≤ m for all a ∈ A} be the set of upper bounds of
A. Then n ∈ U , so that U �= ∅. Let b be the least element of U . If b = 1 then
A = {b}, so that b ∈ A. Suppose that b �∈ A. Then b �= 1, and so b = c+1 for
some c ∈ N. But then c ∈ U , contradicting the minimality of b. Thus b ∈ A,
and b is the greatest element of A. �

Corollary 2.2.6 If A is a non-empty subset of In with greatest element
n, then A is finite, and |A| ≤ n, with equality if and only if A = In.

Proof We prove this by complete induction on n. The result is certainly true
if n = 1, since then A = {1} and |A| = 1. Suppose that it is true for all c ≤ n,
and that A is a subset of N with greatest element n + 1. If A is the singleton
{n + 1} then the result certainly holds. Otherwise, let A′ = A \ {n + 1}.
Then A′ �= ∅, and so A′ has a greatest element n′ with n′ ≤ n. By the
inductive hypothesis, A′ is finite, and k = |A′| ≤ n′, with equality only if
A′ = In′ . Let c′ : Ik → A′ be a bijection. If m ∈ Ik+1, let c(m) = c′(m) if
m ≤ k and let c(k + 1) = n + 1. Then c is a bijection of Ik+1 onto A, so that
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|A| = k + 1 ≤ n′ + 1 ≤ n. Finally, k + 1 = n + 1 only if k = n, in which case
A′ = In and A = In+1. �

Corollary 2.2.7 Suppose that B is a subset of a finite set A. Then B is
finite, and |B| ≤ |A|, with equality if and only if B = A.

Proof If B is empty, then B is finite. If B is not empty then A is not empty,
and there exist n ∈ N and a bijection c : In → A. Then c−1(B) is a non-
empty finite subset of In, and so there exists m ∈ N, with m ≤ n, and a
bijection d : Im → c−1(B). Then c ◦ d is a bijection of Im onto B. Thus B

is finite, and |B| = m ≤ n = |A|. Equality holds if and only if c−1(B) = In,
and this happens if and only if B = c(In) = A. �

Corollary 2.2.8 Suppose that A is a non-empty finite set and that f :
A → A is an injective mapping. Then f is bijective.

Proof Let c : I|A| → A be a bijection. Then f ◦c : I|A| → f(A) is a bijection.
Thus |f(A)| = |A|, and so f(A) = A. �

Dedekind defined a set A to be infinite if there is an injective map j :
A → A which is not surjective; such sets are now called Dedekind infinite.
For example, N is Dedekind infinite, since the mapping n → 2n : N → N is
injective, and is not surjective.

Corollary 2.2.9 A Dedekind infinite set is infinite.

Corollary 2.2.10 N is infinite.

There are many other basic properties of finite sets, including those listed
in the exercises. Use only induction, recursion, Peano’s axioms and the results
derived from them to establish them.

Exercises

2.2.1 Suppose that A is a finite set, and that f : A → B is a surjection.
Show that B is finite, and that |B| ≤ |A|, with equality if and only if
f is a bijection.

2.2.2 Suppose that A is an infinite set and that f is a mapping from A into
itself. Show that there exists a non-empty proper subset B of A such
that f(B) ⊆ B.
[Hint: consider the set

{a ∈ A : there exists n ∈ N such that fn(a) = a}.]

Does the same hold for finite sets?
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2.2.3 Show that if A is finite and f is a mapping from A to B then f(A) is
finite.

2.2.4 Show that if A and B are finite subsets of a set X then A∪B is finite,
and show that |A ∪ B| + |A ∩ B| = |A| + |B|.

2.2.5 Suppose that A1, . . . An are finite subsets of a set X. Use induction
and the result of the previous exercise to prove the inclusion-exclusion
principle:

|A1 ∪ · · · ∪ An|

=
n∑

k=1

(
(−1)k+1

∑
{|Aj1 ∩ · · · ∩ Ajk

| : 1 ≤ j1 < · · · < jk ≤ n}
)

.

2.2.6 The pigeonhole principle. Suppose that f is a mapping from a set A

to a finite set B. Show that if A is finite and |A| > |B| then f is not
injective. Show that if A is infinite, then there exists b ∈ B such that
f−1({b}) is infinite.

2.2.7 A tennis club has more than one member. During a season, each mem-
ber plays against none, some or all of the other members. Show that
there are two members who play against the same number of other
members.

2.2.8 Suppose that M and W are non-empty finite sets and that H is a
relation on M × W . If m ∈ M , let h(m) = {w ∈ W : (m, w) ∈ H}
and if A ⊆ M let h(A) = ∪m∈Ah(m). Show that the following are
equivalent:
(a) |h(A)| ≥ |A| for all A ⊆ M .
(b) There exists an injective mapping χ : M → W such that

(m, χ(m)) ∈ H, for all m ∈ M .
[Hint: use induction on |M |. Consider two cases:

(i) |h(A)| > |A| for every non-empty proper subset A of M ;
(ii) there exists a non-empty proper subset A of M for which |h(A)| =

|A|.]
This is Hall’s marriage theorem; M is a set of men, W is a set of
women, and (m, w) ∈ H if m and w know and like each other.

2.2.9 Suppose that (kn)n∈Z+ is a decreasing sequence in Z+ -- if m ≥ n

then km ≤ kn. Show that (kn)n∈N+ is eventually constant: there exists
N ∈ N+ such that if m ≥ N then km = kN .

2.2.10 Suppose that (A,≤) is a non-empty totally ordered set for which each
non-empty subset has a least element and a greatest element. If a ∈ A,
let U(a) = {b ∈ A : a < b} be the set of strict upper bounds of {a}
in A. Let s(a) be the least element of U(a) if U(a) is non-empty, and
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let s(a) = a otherwise. Show by recursion that there is a surjective
mapping f : Z+ → A such that f(m) ≤ f(n) if m ≤ n. Show that A

is finite.
2.2.11 Suppose that (a1, . . . , an) is a finite sequence in Z+. Show that there

are sequences (s1, . . . , sn) and (p1, . . . , pn) such that s1 = p1 = a1 and
sj+1 = sj + aj+1, pj+1 = pj .aj+1 for 1 ≤ j < n. We write

sn = a1 + · · · + an or sn =
n∑

j=1

aj , pn = a1. · · · .an or pn =
n∏

j=1

aj .

(This clearly will extend to other settings.) Suppose that σ is a
permutation of In. Show that

n∑
j=1

aσ(j) =
n∑

j=1

aj and
n∏

j=1

aσ(j) =
n∏

j=1

aj .

2.2.12 Show that 13 + 23 + · · · + r3 = (1 + 2 + · · · + r)2, for all r ∈ N.
2.2.13 Show that 13 + 33 + · · · + (2n − 1)3 = n2(2n2 − 1) for all n ∈ Z+.
2.2.14 Show that any n ∈ N+ can be written as the sum of a strictly

decreasing sequence of Fibonacci numbers. Is this representation
unique?

2.2.15 Suppose that A is finite and that (Bα)α∈A is a family of finite sets.
Show that the Cartesian product

∏
α∈A Bα is finite and determine its

size.
2.2.16 Suppose that A and B are finite. Show that BA is finite, and determine

its size.
2.2.17 Suppose that A is finite. Show that P (A) is finite, and determine its

size. By considering mappings f : A → {0, 1}, relate this result to the
previous one.

2.2.18 Let ΣA be the set of permutations of a non-empty set A. Show that if
A is finite, then ΣA is finite; determine its size.

2.2.19 Suppose that A and B are finite. Let I be the set of injective mappings
from A to B.
(a) Determine the size of I.
(b) Define an equivalence relation on I by setting f ∼ g if f(A) =

g(A). Determine the size of the equivalence classes.
(c) Let

(
n
k

)
denote the size of the set of subsets of In of size k. Show

that if k ≤ n then (
n

k

)
=

n!
(n − k)!k!

.
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(d) Prove de Moivre’s formula(
n + 1

k

)
=
(

n

k

)
+
(

n

k − 1

)
and its generalization, Vandermonde’s formula,(

m + n

k

)
=

k∑
j=0

(
m

j

)(
n

k − j

)
.

(e) By considering the largest member of a subset of In+1 of size k+1,
show that (

n + 1
k + 1

)
=
(

k

k

)
+
(

k + 1
k

)
+ · · · +

(
n

k

)
.

2.2.20 Suppose that k1, . . . , kr ∈ Z+ and that k1 + · · · + kr = n. Show that
there are

n!
k1! . . . kr!

r-tuples (A1, . . . , Ar) of pairwise disjoint subsets of In, with |Aj | = kj

for 1 ≤ j ≤ r.
2.2.21 Show that if A is a non-empty finite set then the number of subsets of

A of even size is the same as the number of subsets of A of odd size.
2.2.22 Suppose that n, k ∈ N. Show that n can be written as a1 + · · · + ak,

with ai ∈ Z+ for 1 ≤ i ≤ k, in
(
n+k−1

k−1

)
distinct ways. How many

distinct ways are there of writing n as b1 + · · · + bk, with bi ∈ N for
1 ≤ i ≤ k?

2.3 Countable sets

A set A is countable if it is finite or if there is a bijection c : N → A; otherwise
it is uncountable. Thus a set is countable if it is empty or if there is a bijection
from an initial segment of N onto A. The function c is called an enumeration
of A. A set is countably infinite if it is infinite and countable.

Thus A is countably infinite if and only if the elements of A can be listed,
or enumerated, as an infinite sequence (c1, c2, . . .), without repetition.

If A is countable (countably infinite) and j : A → B is a bijection, then B

is countable (countably infinite).
Not every set is countable, since it is an immediate consequence of Theorem

1.6.3 that the set P (N) of subsets of N is not countable. It was Cantor who
first showed, in 1873, that there are different sizes of infinite set, showing
that the set of real numbers is uncountable. We shall prove this in Section
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3.6, where we shall also describe the consternation which Cantor’s result
produced. Meanwhile, let us concentrate on countable sets.

Theorem 2.3.1 If A is a subset of N without a greatest element then
there exists a unique strictly increasing function f : N → N (that is, f(n) <

f(n + 1) for all n ∈ N) such that f(N) = A.

Proof We construct the function recursively. If n ∈ N then An = A \ In =
{m ∈ A : m > n} is non-empty, by hypothesis. Let g(n) be the least element
of An. Then g is a mapping from N to N, and g(n) > n for all n ∈ N.
By recursion, there exists a mapping f : N → N such that f(1) = g(1)
and f(n + 1) = g(f(n)), for all n ∈ N. Since g(f(n)) > f(n), f is strictly
increasing; further, f(N) ⊆ A.

Next we show that f(N) = A. If not, let b be the least element of A\f(N).
Then 1 ≤ f(1) < b, so that the set A ∩ {n ∈ N : n < b} is not empty. By
Proposition 2.2.5, it has a greatest element c. Then g(c) = b. But c ∈ A and
c < b, so that c ∈ f(N); if c = f(k), then b = f(k + 1), giving the required
contradiction.

It remains to show that f is unique. Suppose that h : N → N is a strictly
increasing function such that h(N) = A, and that h �= f . Then there exists
a least n such that h(n) �= f(n). Since f(1) = h(1) = g, where g is the least
element of A, n > 1. Suppose that h(n) > f(n). Then h(n − 1) = f(n − 1) <

f(n) < h(n). But f(n) ∈ A, and so f(n) = h(m) for some m ∈ N. Since
h is strictly increasing, n − 1 < m < n, giving a contradiction. A similar
argument applies if h(n) < f(n). Hence f is unique. �

The mapping f is called the standard enumeration of A.

Corollary 2.3.2 Suppose that A is a non-empty subset of N. If A has an
upper bound in N, then A is finite; otherwise, A is countably infinite.

Proof If A has an upper bound, then it is finite, by Proposition 2.2.5 and
Corollary 2.2.6. Otherwise, A does not have a greatest element, so that there
is bijection f : N → A, and A is countably infinite. �

Corollary 2.3.3 A subset B of a countable set A is countable.

Proof If B is finite, then B is countable. If B is infinite, then A is infinite,
and there exists a bijection g : N → A. Then g−1(B) is infinite, and so
does not have a greatest element. By the theorem, there exists a bijection
f : N → g−1(B). Then g ◦ f : N → B is a bijection, so that B is countably
infinite. �
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It is useful to have simple sufficient conditions for a set to be countable.
The next proposition provides these.

Proposition 2.3.4 Suppose that A is a set. The following are equivalent.

(i) A is countable.
(ii) Either A = ∅ or there exists a surjective mapping f : N → A.
(iii) There exists an injective mapping j : A → N.

Proof Suppose that A is a countable non-empty set. If A is finite, there
exists a bijection f : I|A| → A. Extend f to a surjection f : N → A by
setting f(n) = f(1) for n > |A|. If A is countably infinite, there is a bijection
of N onto A. Thus (i) implies (ii).

Suppose that (ii) holds. If A is empty, then the empty mapping is an
injective mapping of A into N. Otherwise, if a ∈ A then {n ∈ N : f(n) = a}
is non-empty; let g(a) be its least element. Then g : A → N is an injective
mapping, and so (ii) implies (iii).

Finally, suppose that (iii) holds. If A = ∅, then A is finite, and so is
countable. If A �= ∅ and j(A) is bounded above, then j(A) is finite, and so A

is finite. If A �= ∅ and j(A) is not bounded above, let f : N → j(A) be the
standard enumeration of j(A). Then j−1 ◦ f is a bijection of N onto A, so
that A is countable: (iii) implies (i). �

In case (ii), each element of A is labelled, all the labels are used, but an
element of A may have many labels. In case (iii), each element of A is given
a separate label from N, but all the labels need not be used.

When condition (ii) is used, it is important to remember that the empty
set needs to be considered separately.

Corollary 2.3.5 If g : A → B, and A is countable, then g(A) is countable.

Proof If A is empty, then g(A) is empty, and so is countable. Otherwise,
there exists a surjective mapping f of N onto A. Then g ◦ f is a surjective
mapping of N onto g(A), so that g(A) is countable. �

Theorem 2.3.6 The set N × N is countable.

Proof Suppose that (k, l) ∈ N. The mapping f : N × N → N defined by
f(k, l) = 2k−1(2l − 1) is a bijection. (See Exercise 2.1.3.) �

Corollary 2.3.7 If A and B are countable sets then A × B is countable.

Proof There exist injective mappings jA : A → N and jB : B → N. If
(a, b) ∈ A × B, set j((a, b)) = (jA(a), jB(b)). Then j : A × B → N × N
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is injective, so that the mapping f ◦ j is injective. The result follows from
Proposition 2.3.4. �

Corollary 2.3.8 If A is a countable set, and each a ∈ A is countable, then
∪a∈Aa is countable. (The countable union of countable sets is countable.)

Proof First, let B = {a ∈ A : a �= ∅}. Then ∪a∈Aa = ∪a∈Ba, and so we
can suppose that each a ∈ A is non-empty. Secondly, if A is empty then
∪a∈Aa is empty, and so is countable. Thus we can suppose that the set A,
and each of the sets a ∈ A, is non-empty. Using Proposition 2.3.4 (iii), there
exists a surjection c : N → A, and for each m ∈ N there exists a surjection
fm : N → c(m). (Note that here we use the countable axiom of choice; in
many specific cases, this can be avoided.) Now if (m, n) ∈ N × N, we set
g(m, n) = fm(n): we use m to select an index c(m) in A, and use n to select
an element of c(m). Then g is a surjection of N × N onto ∪a∈Aa, and so
∪a∈Aa is countable, by Corollary 2.3.5. �

If we assume the axiom of dependent choice, we can establish some
properties of infinite sets.

Proposition 2.3.9 Assuming the axiom of dependent choice, if A is an
infinite set, then A contains a countably infinite subset.

Proof Let S(A) be the set of finite sequences in A. If s = (a0, . . . , an) ∈
S(A), let φ(s) = {(a0, . . . , an, y) : y �∈ {a0, . . . , an}}. Then φ(s) �= ∅.

Let ā be an element of A. Let s0 = (ā). By the axiom of dependent choice,
there exists a sequence (sn)∞

n=0 in S(A) such that sn+1 ∈ φ(sn), for n ∈ Z+.
Set bn = an,n, where sn = (an,0, . . . , an,n). By the construction, (bn)∞

n=0 is a
sequence of distinct elements of A. �

Corollary 2.3.10 Assuming the axiom of dependent choice, if A is an
infinite set then P (A) is uncountable.

Proof If C is a countably infinite subset of A, then P (C) ⊆ P (A), and P (C)
is uncountable. �

Corollary 2.3.11 Assuming the axiom of dependent choice, an infinite
set A is Dedekind infinite.

Proof Let B be a countably infinite subset of A, and let (b1, b2, . . .) be a
listing of the elements of B, without repetition. Let f(bj) = b2j for j ∈ N,
and let f(a) = a for a ∈ A \ B. Then f is an injective map of A into itself,
and A \ f(A) = {b1, b3, b5, . . .} is a countably infinite set. �
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Exercises

2.3.1 Show that a finite product of countable sets is countable. What about
a countable product of finite sets?

2.3.2 The countable pigeonhole principle. Suppose that f is a mapping from
an uncountable set A to a countable set B. Show that there exists b ∈ B

such that f−1({b}) is uncountable.
2.3.3 Suppose that A is a countably infinite set. Determine which of the

following sets are countable and which are not.
(a) The set of finite subsets of A.
(b) The set of permutations of A.
(c) The set of permutations σ of A for which σ2 is the identity.
(d) The set of permutations τ of A for which {a ∈ A : τ(a) �= a} is

finite.
2.3.4 Let J be the set of mappings j : N → N for which j(m) ≤ j(n) for

m ≤ n. Show that J is uncountable.
2.3.5 Let D be the set of mappings d : N → N for which d(m) ≥ d(n) for

m ≤ n. Show that D is countable.
2.3.6 Suppose that B is a disjoint set of subsets of N: if A, A′ ∈ B and A �= A′

then A ∩ A′ = ∅. Show that B is countable.
2.3.7 If A ∈ P (Z+) and n ∈ Z+, let fA(n) = 2n if n ∈ A and let fA(n) = 0

otherwise. Let gA(n) =
∑n

j=0 fA(j), and let G(A) = {gA(n) : n ∈ Z+}.
Show that {G(A) : A ∈ P (Z+)} is an uncountable subset of P (Z+)
with the property that G(A)∩G(A′) is finite, if A �= A′. [Hint: consider
the binary expansion of gA(n).]

2.4 Sequences and subsequences

A strictly increasing function from N to N defines a sequence in N. Such a
sequence (nk)∞

k=1 is called a subsequence of N, and the set {nk : k ∈ N} is
called the image of the subsequence. Theorem 2.3.1 shows that there is a one-
one correspondence between the infinite subsets of N and the subsequences
of N.

Proposition 2.4.1 Suppose that (mk)∞
k=1 and (nk)∞

k=1 are subsequences
of N, with images A and B respectively. If A ⊆ B then mk ≥ nk for all
k ∈ N.

Proof We prove this by induction. First, n1 = inf(A) ≤ inf(B) = m1.
Suppose that mk ≥ nk. If mk = nk then

nk+1 = inf{a ∈ A : a > nk} ≤ inf{b ∈ B : b > mk} = mk+1.
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If mk > nk then nk+1 = inf{a ∈ A : a > nk} ≤ mk < mk+1. �

Frequently we construct a sequence of subsequences, and use them to
construct a further subsequence. This involves a diagonal procedure.

Theorem 2.4.2 (The diagonal procedure) Suppose that ((n(j)
k )∞

k=1)
∞
j=1 is

a sequence of subsequences of N, that Aj is the image of (n(j)
k )∞

k=1, for j ∈ N
and that (Aj)∞

j=1 is a decreasing sequence. Let mk = n
(k)
k , for k ∈ N. Then

(mk)∞
k=1 is a subsequence of N, and mk ∈ Al for k ≥ l.

Proof If k ≥ l then mk ∈ Ak ⊆ Al, so that mk ∈ Al. We must show that
(mk)∞

k=1 is strictly increasing. This follows from Proposition 2.4.1, since

mk = n
(k)
k < n

(k)
k+1 ≤ n

(k+1)
k+1 = mk+1. �

Suppose that (an)∞
n=1 is a sequence in a set A and that (nk)∞

k=1 is a subse-
quence of N. The composite (ank

)∞
k=1 is called a subsequence of (an)∞

n=1. In
fact, it would be more accurate to define the subsequence as the ordered pair
((an)∞

n=1, (nk)∞
k=1), since the set {nk : k ∈ N} is important. We call it the

support of the subsequence, and denote it by supp (ank
)∞
k=1.

Let us give an important example.

Theorem 2.4.3 Suppose that (an)∞
n=1 is a sequence in a totally ordered

set A. Then there exists a subsequence (ank
)∞
k=1 such that either

(i) if k < l then ank
< anl

((ank
)∞
k=1 is strictly increasing), or

(ii) if k < l then ank
> anl

((ank
)∞
k=1 is strictly decreasing), or

(iii) if k < l then ank
= anl

((ank
)∞
k=1 is constant).

Proof Let us say that an index n is a high point if an > am for all m > n.
There are two possibilities. First, there are infinitely many high points n1 <

n2 < · · · . In this case, (ank
)∞
k=1 is strictly decreasing. Secondly, there are only

finitely many high points. In this case, there exists N such that if n ≥ N then
n is not a high point, so that there exists a least m > n with am ≥ an. We
can therefore recursively find a sequence (n1 < n2 < · · · ) with n1 = N and
anj+1 ≥ anj

for all j. Then either there exists k such that anj
= ank

for all
j > k, in which case we have a constant subsequence, or we can extract a
further subsequence which is strictly increasing. �

Theorem 2.4.3 is a consequence of a much more general theorem. This
has considerable theoretical importance, but we shall not use it later. It may
therefore be omitted on a first reading. First we introduce some notation and
terminology. Suppose that C is a finite set and that f : A → C is a surjective
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mapping. Then we call f a colouring of A. The elements of C are the colours;
a has colour f(a). The collection of sets {f−1({c}) : c ∈ C} partitions A into
sets of different colour.

If A is a set and k ∈ N, we denote by Pk(A) the set of all subsets of A of
size k. We identify P1(A) with A. If B ⊆ A then Pk(B) ⊆ Pk(A).

Theorem 2.4.4 (Ramsey’s theorem) Suppose that f : Pk(N) → C

is a colouring of Pk(N). Then there exists an infinite subset M =
{n1 < n2 < · · · } of N such that f(Pk(M)) is a singleton: all the subsets
of M of size k have the same colour.

Proof The proof is by induction on k. The result is true if k = 1, since the
finite collection of sets {f−1({c}) : c ∈ C} is a partition of the infinite set N,
and so, by Exercise 2.2.5, one of the sets f−1({c}) must be infinite. We take
this for M .

Suppose that the result is true for k, and that f : Pk+1(N) → C is a
colouring of Pk+1(N). The sets in Pk+1(N) have k + 1 elements, and, in
order to use the inductive hypothesis, we need to relate them to sets with
k elements. First, let b1 = 1 and let D1 = {n ∈ N : n > b1}. If B ∈
Pk(D1), let g1(B) = f({b1} ∪ B); then g1 is a colouring of Pk(D1). By the
inductive hypothesis, there exist c1 ∈ C and an infinite subset E1 of D1

such that g1(B) = c1 for all B ∈ Pk(E1). Thus f(A) = c1 for those A

in Pk+1({b1} ∪ E1) for which b1 ∈ A. But of course there are many other
subsets in Pk+1({b1} ∪ E1). We therefore iterate the procedure.

We use recursion to show that there exists a sequence (bn, En, cn)∞
n=1,

where (bn)∞
n=1 is a strictly increasing sequence in N, (En)∞

n=1 is a strictly
decreasing sequence of infinite subsets of N and (cn)∞

n=1 is a sequence of
colours, with the following properties:

(i) bn < e for all e ∈ En;
(ii) bn+1 is the least element of En,
(iii) f({bn} ∪ A) = cn for all A ∈ Pk(En).

We have found (b1, E1, c1). Suppose that we have found (bj , Ej , cj) which
satisfy the conditions, for 1 ≤ j ≤ n. Let bn+1 be the least element of En. Let
Dn+1 = En \ {bn+1}. If A ∈ Pk(Dn+1), we set gn+1(A) = f(bn+1 ∪ A). Then
gn+1 is a colouring of Pk(Dn+1). By the inductive hypothesis, there exists
an infinite subset En+1 of Dn+1 and cn+1 ∈ C such that if A ∈ En+1 then
f(bn+1 ∪ A) = gn+1(A) = cn+1. This establishes the recursion.

Now consider the sequence (cn)∞
n=1. If c ∈ C, let Ac = {n ∈ N : cn = c}.

The finite collection {Ac : c ∈ C} of subsets of N forms a partition of the
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infinite set N, and so one of them, Ac0 say, must be infinite. We take this
to be M . Finally, we show that if A ∈ Pk+1(M) then f(A) = c0, so that
M satisfies the conclusions of the theorem. If A ∈ Pk+1(M), we can write
A = {bn} ∪ B, where bn is the least element of A and B = A \ {bn}. Then
bn ∈ M and B ∈ Pk(En), so that f(B) = c0, by (iii). �

Let us now see how Ramsey’s theorem can used to prove Theorem 2.4.3.
Consider P2(N). If m < n, colour the unordered pair {m, n} red if am < an,
yellow if am > an and blue if am = an. Then there exists an infinite subset
M = {n1 < n2 < · · · } such that the sets {nj , nk} with j �= k all have the
same colour. Thus the sets {nj , nj+1} all have the same colour. If the colour is
red, we have a strictly increasing subsequence; if yellow, a strictly decreasing
subsequence; and if blue, a constant subsequence.

Exercises

2.4.1 Suppose that (An)∞
n=1 is a sequence of subsets of a set A. Show that

there exists a subsequence (Ank
)∞
k=1 which is either constant, or strictly

increasing, or strictly decreasing, or such that if k �= l then Ank
�⊆ Anl

and Anl
�⊆ Ank

.
2.4.2 Suppose that (gn)∞

n=1 is a sequence in a group G. Show that either there
is a sequence (gnk

)∞
k=1 such that gnk

gnl
= gnl

gnk
for k, l ∈ N or there

is a sequence (gnk
)∞
k=1 such that gnk

gnl
�= gnl

gnk
if k �= l.

2.5 The integers

Our next task will be to adjoin a set −N of negative numbers to Z+ to obtain
the set Z of integers. There are many ways of doing this. We use a rather
näıve one, which involves a certain amount of case-by-case checking. Another
method appears in Exercise 2.7.5.

Define a mapping n → n+ from Z+ to Z+ × Z+ by setting n+ = (0, n),
and define a mapping n → n− from N to Z+ × Z+ by setting n− = (n, 0),
and set

Z = {n+ : n ∈ Z+} ∪ {n− : n ∈ N}.

We define addition in N by setting

n+ + m+ = (n + m)+,

n− + m− = (n + m)−, and

n+ + m− = m− + n+ =
{

(n − m)+ if n ≥ m,

(m − n)− if n < m.
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Note that addition is commutative: if p, q ∈ N then p + q = q + p.
We now verify that addition is associative; we do this case by case.

Certainly

(m+ + n+) + p+ = (m + n + p)+ = m+ + (n+ + p+)

and (m− + n−) + p− = (m + n + p)− = m− + (n− + p−).

Next,

(m+ + n+) + p− = (m + n)+ + p− =
{

(m + n − p)+ if m + n ≥ p,

(p − m − n)− if m + n < p,

while

m+ + (n+ + p−) =

⎧⎨⎩
m+ + (n − p)+= (m + n − p)+ if n ≥ p,

m+ + (p − n)−= (m + n − p)+ if m + n ≥ p > n,

m+ + (p − n)−= (p − m − n)− if m + n < p.

Thus (m+ + n+) + p− = m+ + (n+ + p−). Using this, and the commutative
property, we find that

(m+ + p−) + n+ = n+ + (m+ + p−) = (n+ + m+) + p−

= (m+ + n+) + p− = m+ + (n+ + p−)

= (m+ + n+) + p−,

and the other cases are dealt with in a similar way.
Note also that 0+ acts as an identity: if p ∈ N then p + 0+ = 0+ + p = p,

and if n ∈ Z+ then n+ + n− = 0+.
Thus we have the following.

Theorem 2.5.1 (Z, +) is an abelian group with identity element 0+, gen-
erated by 1+. The mapping θ : Z+ → Z defined by θ(n) = n+ is an injective
mapping of Z+ into Z, and θ(n + m) = θ(n) + θ(m).

In particular, −(n+) = n− and −(n−) = n+.
The set Z is the set of integers. We identify Z+ with θ(Z+), and N with

θ(N). Thus Z = Z+ ∪ (−Z+) = N ∪ {0} ∪ (−N), and the latter is a disjoint
union. If n ∈ N, we say that n is positive; if n ∈ Z+, we say that n is non-
negative; if n ∈ −N we say that n is negative, and if n ∈ −N ∪ {0} we say
that n is non-positive.

The fact that (Z, +) is a group is important; it leads to useful algebraic
results.
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Proposition 2.5.2 Suppose that (G, ◦) is a group and that g ∈ G. Then
there exists a unique homomorphism φ of (Z, +) into G for which φ(1) = g.

Proof We define φ recursively on Z+. Define a mapping r : G → G by
setting r(h) = h ◦ g, for h ∈ G. By recursion, there exists a unique mapping
φ : Z+ → G such that φ(0) = eG, the identity in G, and φ(n + 1) = r(φ(n)).
Set gn = φ(n). Then

gn+1 = φ(n + 1) = φ(n) ◦ g = gn ◦ g;

an easy induction shows that gm+n = gm ◦ gn, for m, n ∈ Z+. Now define
g−n = (gn)−1, for −n ∈ N−. It is again straightforward to check that ga+b =
ga ◦ gb for a, b ∈ Z. In particular, gn ◦ g−n = g−n ◦ gn = e, so that g−n

is the inverse of gn. Finally, uniqueness follows from the uniqueness of the
recursion. �

The image φ(G) is a subgroup of G. It is the smallest subgroup of G which
contains g, and is denoted by Gp(g). If Gp(g) = G, we say that G is a cyclic
group, with generator g.

Proposition 2.5.3 The additive group (Z, +) is a cyclic group, with
generator 1.

Proof Let Gp(1) be the subgroup of Z generated by 1. Then 0 ∈ Gp(1). By
induction, n ∈ Gp(1) for all n ∈ N. But then −n ∈ Gp(1) for all n ∈ N, and
so Gp(1) = Z. �

Next, we define an order on Z. We set k ≤ j if j − k ∈ Z+. If j − k ∈ Z+

and k − l ∈ Z+ then j − l = (j − k) + (k − l) ∈ Z+; thus if k ≤ j and
l ≤ k then l ≤ j. If k �≤ j then j − k �∈ Z+, so that j − k ∈ N−, and
k − j = −(j − k) ∈ N ⊆ Z+. Thus j < k. Consequently ≤ is a total order
on Z. Note that j ≤ k if and only if j + l ≤ k + l, for any j, k, l ∈ Z. We
can arrange the integers in increasing order as a doubly infinite sequence of
terms:

. . . ,−4,−3,−2,−1, 0, 1, 2, 3, 4, . . .

The order and the group structure of (Z, +,≤) are related. An ordered
group is a group G, together with a total order on G with the property that
if g ≤ g′ and h ∈ G then h ◦ g ≤ h ◦ g′ and g ◦ h ≤ g′ ◦ h. We denote the
set {g ∈ G : e ≤ g} by G+. The preceding remarks show that (Z, +,≤) is an
ordered group. Further, the set Z+ is well-ordered, and Z has at least two
elements. We now show that these properties characterize Z.
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Theorem 2.5.4 Suppose that (G, ◦,≤) is an ordered group with at least
two elements and that G+ is well-ordered. Then there exists a unique order-
preserving group isomorphism θ of (Z, +,≤) onto (G, ◦,≤).

Proof We do not assume that G is an abelian group, and so we write the
group operation as multiplication. If g ∈ G, then either g or g−1 is in G+

(if g �∈ G+ then g ≤ e; composing with g−1, e = g ◦ g−1 ≤ g−1, so that
g−1 ∈ G+). Since G has at least two elements, the set P = {g ∈ G : e < g}
of strictly positive elements is not empty. Let 1G be the least element of
P . By Proposition 2.5.2, there exists a unique homomorphism θ : Z → G

with θ(1) = 1G. An easy induction shows that θ(N) ⊆ P . Suppose that
j, k ∈ Z and that j < k. Then k − j ∈ N, so that θ(k − j) ∈ P . Thus
e < θ(k − j) = θ(k) ◦ (θ(j))−1. Multiplying by θ(j), we see that θ(j) < θ(k);
θ is order-preserving. Since the order on Z is a total order, it follows that θ

is injective.
Next we show that θ(Z) = G. If not, there exists g ∈ G \ θ(Z). Since θ(Z)

is a subgroup of G, g �= 0, and −g ∈ G \ θ(Z). As before, one of g and −g is
strictly positive, and so P \ θ(Z) is non-empty. Let g0 be its least element.
Since 1−1

G = θ(−1) ∈ θ(Z) and g0 �∈ θ(Z), it follows that 1−1
G ◦ g0 �∈ θ(Z).

Since e = θ(0) ∈ θ(Z), it follows 1−1
G ◦ g0 �= e. Since 1−1

G ◦ g0 < g0 and since
g0 is the least element of P \ θ(Z), it follows that 1−1

G ◦ g0 < e. Multiplying
by 1G, it follows that g0 < 1G. But g0 ∈ P and 1G is the least element of P ,
and so we have a contradiction.

Uniqueness then follows from Proposition 2.5.2. �

What about multiplication? We want to extend the multiplication defined
on Z+, and to preserve the distributive law. Thus if m, n ∈ Z+ we require
that

m.n + m.(−n) = m.(n + (−n)) = m.0 = 0 and

n.m + (−n).m = (n + (−n)).m = 0.m = 0,

so that m.(−n) = −(m.n) = −(n.m) = (−n).m. In particular, we require
that 0.(−n) = (−n).0 = 0. Similarly we require that

(−m).n + (−m).(−n) = (−m).(n + (−n)) = (−m).0 = 0 and

n.(−m) + (−m).(−n) = (n + (−n)).(−m) = 0.(−m) = 0,

so that (−m).(−n) = m.n = n.m = (−n).(−m).
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Summing up, we have the following multiplication table:

0 m ∈ N −m ∈ −N

0 0 0 0
n ∈ N 0 nm −nm

−n ∈ −N 0 −nm nm

With this multiplication, we have the following extension of Theorem 2.1.2
and Theorem 2.1.3.

Theorem 2.5.5 Suppose that j, k, l ∈ Z.

(i) j.k = k.j (commutativity);
(ii) 0.j = 0, 1.j = j and (−1).j = −j;
(iii) (j.k).l = j.(k.l) (associativity);
(iv) if j.k = l.k and k �= 0 then j = l (cancellation);
(v) if j.k = 0 then j = 0 or l = 0.
(vi) j.(k + l) = (j.k) + (j.l) (the distributive law).

Proof The proof is again left as an exercise for the reader. �

Again, we can write jk for j.k. Then (jk)l = j(kl) = jkl. We write
(jk) + (jl) = jk + jl; multiplication is carried out before addition.

Exercises

2.5.1 Suppose that x ∈ Z and that x �= 0. Show that x2 > 0.
2.5.2 Show that Z is countable. Define an explicit bijection from N onto Z.

2.6 Divisibility and factorization

We now consider divisibility in N and in Z. If j and k are in Z, we say that
j divides k, and write j|k, if there exists q ∈ Z such that k = qj. It follows
from Corollary 2.1.4 that the only elements of Z which divide every element
of Z are 1 and −1: we call them the units of Z.

In order to study divisibility, we first consider the additive group (Z, +),
and ask the question: what are the subgroups of (Z, +)? Suppose that n ∈ N.
By Proposition 2.5.2, there is a homomorphism θ : Z → Z such that θ(1) = n.
Then

θ(Z) = Zn = {k ∈ Z : k = jn for some j ∈ Z} = {k ∈ Z : n|k},

so that Zn is a subgroup of (Z, +) (note that Z0 = {0} and Z1 = Z). If n �= 0
then n is the least positive element of Zn, and so Zm �= Zn if m �= n.
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These subgroups are useful when considering division with remainder.

Proposition 2.6.1 Suppose that m, n ∈ N. There exist q, r ∈ Z+, with
0 ≤ r < n such that m = qn + r.

Proof Let L = {j ∈ Zn : 0 ≤ j ≤ m}. Since 0 ∈ L, L is a non-empty finite
set, and therefore it has a greatest element l = qn. Let r = m − qn, so that
r ≥ 0. Since qn+n = (q +1)n �∈ L, m < qn+n, and so r = m−nq < n. �

In fact, the subgroups Zn are the only subgroups of Z.

Proposition 2.6.2 If H is a subgroup of (Z, +) then H = Zn for some
n ∈ Z+.

Proof If H �= {0} = Z0, then, since h ∈ H if and only if −h ∈ H, the set
H ∩ N of positive elements of H is non-empty. Let n be its least member.
Then Zn ⊆ H. We shall show that H = Zn. Suppose that m ∈ H and that
m is positive. By the previous proposition, we can write m = qn + r, where
0 ≤ r < n. But qn ∈ H, and so r = m − qn ∈ H. Since n is the least
positive element of H and r < n, it follows that r = 0. Thus m = qn ∈ Zn.
If m ∈ H and m is negative, then −m ∈ H, so that −m ∈ Zn; consequently
m ∈ Zn. �

Now let us return to divisibility. We restrict attention to N. The relation
m|n is a partial order on N, since if m|n and n|p then m|p, and since if
m|n and n|m then m = n. A partially ordered set (A,≤) is called a lattice
if whenever a and b are elements of A then the set {a, b} has an infimum,
denoted by a ∧ b, and a supremum, denoted by a ∨ b.

Theorem 2.6.3 (i) The partially ordered set (N, |) is a lattice.
(ii) If m, n ∈ N then there exist k, l ∈ Z such that m ∧ n = km + ln

(Bachet’s theorem).
(iii) (m ∧ n)(m ∨ n) = mn.

The element m ∧ n is called the highest common factor of m and n, and
is traditionally written as (m, n) [risking confusion with the ordered pair
(m, n)]; m ∨ n is called the lowest common multiple of m and n.

Bachet’s theorem is frequently called Bézout’s lemma; Bachet established
the result in 1624.

Proof Suppose that m, n ∈ N. Let

H = {h ∈ Z : h = um + vn, for some u, v ∈ Z}.
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Then m = 1.m + 0.n ∈ H and n = 0.m + 1.n ∈ H. Since

(um + vn) + (u′m + v′n) = (u + u′)m + (v + v′)n and

−(um + vn) = (−u)m + (−v)n,

H is a subgroup of (Z, +). Further, H is the smallest subgroup of (Z, +)
containing m and n, since if K is a subgroup of (Z, +) which contains m and
n then it contains all the elements um + vn, with u, v ∈ Z. We call H the
subgroup generated by m and n, and denote it by Gp(m, n). By Proposition
2.6.2 there exists h ∈ Z+ such that H = Zh. Since H �= {0}, h > 0. Then
there exist k, l ∈ Z such that h = km + ln. Since m, n ∈ H, h|m and h|n.
Suppose that h′|m and h′|n. Then h′|(km + ln) and so h′|h. Thus h is the
highest common factor of m and n.

Similarly Zm ∩ Zn is a subgroup of (Z, +), and mn ∈ Zm ∩ Zn, so that
Zm ∩ Zn �= {0}. Thus there exists g ∈ N such that Zm ∩ Zn = Zg. Since
g ∈ Zm, m|g, and similarly n|g. If m|g′ and n|g′ then g′ ∈ Zm and g′ ∈ Zn,
so that g′ ∈ Zg. Thus g|g′, and so g is the lowest common multiple of m

and n.
We now show that mn = hg. Recall that h = km+ ln. Since m|g, mn|lng,

and similarly mn|kmg; Thus mn|(km + ln)g; that is, mn|hg. On the other
hand, m = sh and n = th for some s, t ∈ N. Then m|sth and n|sth, so that
sth is a common multiple of m and n; consequently, g|sth. Thus hg|sth2. But
sth2 = mn, and so hg|mn. Consequently mn = hg. �

If the highest common factor of m and n is 1, we say that m and n are
coprime, or relatively prime. Bachet’s theorem has the following consequence.

Proposition 2.6.4 If m and n are coprime, and m|nr, then m|r.

Proof There exist k, l ∈ Z such that 1 = km + ln, and so r = kmr + lnr.
Since m divides each term on the right-hand side of this equation, it also
divides r. �

Theorem 2.6.3 establishes the existence of the highest common factor of
two numbers, but it does not tell us how to find them. For this, we use
Euclid’s algorithm; this was given in Euclid’s Elements. This also enables us
to determine the constants in Bachet’s theorem.

It is convenient to work with Z2 = Z × Z with its product group struc-
ture: the identity element is (0, 0), (j, k) + (j′, k′) = (j + k, j′ + k′) and
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−(j, k) = (−j,−k). Any element (j, k) of Z2 can be written uniquely as
je1 + ke2, where e1 = (1, 0) and e2 = (0, 1). Thus if θ : Z2 → Z2 is a homo-
morphism, then θ((j, k)) = jθ(e1) + kθ(e2). We can express θ in terms of
matrices: if θ(e1) = (θ11, θ12) and θ(e2) = (θ21, θ22) then

θ((j, k)) = (j, k)
[

θ11 θ12

θ21 θ22

]
= (jθ11 + kθ21, jθ12 + kθ22).

Suppose that m0 > n0 > 0 and that we want to find h0 = m0 ∧ n0. Thus
we want to find h0 such that Gp(m0, n0) = Zh0.

We divide: by Proposition 2.6.1, there exist q0 and r0, with 0 ≤ r0 < n0

such that m0 = q0n0 + r0. We set m1 = n0 and n1 = r0. Thus

(m1, n1) = (m0, n0)
[

0 1
1 −q0

]
= (m0, n0)M1, say, and

(m0, n0) = (m1, n1)
[

q0 1
1 0

]
= (m1, n1)N1, say).

From these equations, it follows that m1 and n1 are in Gp(m0, n0), so that
Gp(m1, n1) ⊆ Gp(m0, n0), and that m0 and n0 are in Gp(m1, n1), so that
Gp(m0, n0) ⊆ Gp(m1, n1). Thus

Gp(m1, n1) = Gp(m0, n0) = Gp(h0).

If n0|m0 then n1 = 0 and m1 = h0. Otherwise, if h1 = m1 ∧ n1, then
Gp(h1) = Gp(m1, n1) = Gp(h0), so that h1 = h0; in this case we iterate
the procedure. Since 0 ≤ nj < nj−1, the procedure must stop after a finite
number k of iterations. Then mk = hk−1 = · · · = h0 and nk = 0. Since we
can write (mj , nj) = (mj−1, nj−1)Mj for 1 ≤ j ≤ k, it follows that

(mj , nj) = (m0, n0)M1 . . . Mj = (m0, n0)Pj ,

where Pj = M1 . . . Mj = Pj−1Mj .

At each stage we can calculate the product Pj−1Mj , and so calculate Pj . In
particular, (h0, 0) = (mk, nk)Pk, so that if

Pk =
[

p11 p12

p21 p22

]
then h0 = p11m0 + p21n0.
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Let us give a numerical example. Let m0 = 1677 and n0 = 1131. Then

q0 = 1, r0 = 546, (m1, n1) = (1677, 1131)
[
0 1
1 −1

]
= (1131, 546)

q1 = 2, r1 = 39, (m2, n2) = (1131, 546)
[
0 1
1 −2

]
= (546, 39)

q2 = 14, r2 = 0, (m3, n3) = (546, 39)
[
0 1
1 −14

]
= (39, 0).

Thus the highest common factor of 1677 and 1131 is 39. Further

P3 =
[

0 1
1 −1

] [
0 1
1 −2

] [
0 1
1 −14

]
=
[

−2 −29
3 43

]
,

so that 39 = −2.1677 + 3.1131.
We now turn to factorization. Our aim is to factorize a number as a product

of simpler numbers. An element p of N is a prime, or a prime number, if it
is not a unit (that is, is not equal to 1), and if the only elements of N which
divide it are 1 and p. Bachet’s theorem provides an equivalent definition.

Proposition 2.6.5 Suppose that p ∈ N and p �= 1. The following are
equivalent:

(i) p is a prime;
(ii) if p|mn then p|m or p|n.

Proof Suppose that p is a prime, that p|mn and that p does not divide m.
Then the highest common factor of m and p is 1, and so by Bachet’s theorem
there exist k, l ∈ Z such that 1 = km + lp. Thus n = kmn + lpn. Since p

divides each of the terms on the right-hand side, p divides n.
If q is not a prime, then q = mn for some m, n not equal to 1 or q.

Then q|mn, but q does not divide either m or n, since m and n are smaller
than q. �

Theorem 2.6.6 (The fundamental theorem of arithmetic) If n ∈ N and
n > 1 then n can be written uniquely as a product p1 . . . pk of primes, with
p1 ≤ p2 ≤ · · · ≤ pk.

Proof First we use complete induction to show that n can be written as a
product of primes. 2 is a prime, so 2 = p1 with p1 = 2. Suppose that the
result holds for m with 2 ≤ m < n. Let A be the set of divisors of n which
are greater than 1. A is non-empty, since n ∈ A, and so A has a least element
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p. p must be a prime, for otherwise p = ab, with a, b > 1; then a ∈ A and
a < p. Then n = pq for some q < n. By the inductive hypothesis, we can
write q = p1 . . . pk as a product of primes, with p1 ≤ p2 ≤ · · · ≤ pk. Since
p1 ∈ A, p ≤ p1, and n = pp1 . . . pk.

It is harder to show that the factorization is unique. Again we prove this
by complete induction. It is certainly true when n = 2. Suppose that the
result holds for m with 2 ≤ m < n. Let n = p1 . . . pk = q1 . . . ql be two
factorizations into primes, with p1 ≤ p2 ≤ · · · ≤ pk and q1 ≤ q2 ≤ · · · ≤ ql.
Let s = p2 . . . pk and t = q2 . . . ql, so that n = p1s = q1t. First we show that
p1 = q1. Suppose not, and suppose without loss of generality that p1 < q1.
Since p1|q1t, and since p1 does not divide q1, p1|t, so that t = p1u, for some
u ∈ N. u has a factorization u = r1 . . . rm into primes, and so t = p1r1 . . . rm

is a factorization into primes. Since t < n, the factorization is unique when the
terms are rearranged in increasing order. Since t = q2 . . . ql, with q2 ≤ · · · ≤
ql, q2 is the least of p1, r1, . . . , rm, and so q1 ≤ q2 ≤ p1, giving a contradiction.
Thus p1 = q1. Hence s = p2 . . . pk = t = q2 . . . ql. But s < n, and so the
factorization of s is unique. Thus k = l and pj = qj for 2 ≤ j ≤ k. �

Corollary 2.6.7 There are infinitely many primes.

Proof Suppose, on the contrary that there are only finitely many primes
p1, . . . , pk. Let n = p1 . . . pk + 1. Then pj does not divide n, for 1 ≤ j ≤ k, so
that n has no prime divisors. �

Exercises

2.6.1 Suppose that (X, ≤) is a lattice. Show that (a ∧ b) ∧ c = a ∧ (b ∧ c). Is
(a ∧ b) ∨ c = a ∧ (b ∨ c) always true?

2.6.2 Show that a maximal element of a lattice is the greatest element of L.
2.6.3 Show that the subgroups of a group, ordered by inclusion, form a

lattice.
2.6.4 What is the highest common factor of the Fibonacci numbers Fn+1

and Fn? How many steps does Euclid’s algorithm take to evaluate it?
What is the highest common factor of the Fibonacci numbers Fn+2

and Fn?
2.6.5 Use Euclid’s algorithm to find numbers m and n such that 81m −

100n = 1.
2.6.6 Recall that two natural numbers a and b are coprime if their highest

common factor is 1. Use Bachet’s theorem to show that if a and b are
coprime and a and c are coprime, then a and bc are coprime. Give
another proof, using Theorem 2.6.6.
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2.6.7 Show that given k ∈ N there exists n ∈ N such that n + j is not a
prime, for 1 ≤ j ≤ k.

2.6.8 By considering numbers of the form 4p1 . . . pk −1, show that there are
infinitely many primes of the form 4t − 1.

2.6.9 Show that there are infinitely many primes of the form 6t − 1.
2.6.10 Suppose that p is a prime. Show that p divides

(
p
r

)
for 1 ≤ r < p.

2.7 The field of rational numbers

In Z, we can add, multiply, and subtract, but, as we have seen in the previous
section, division is very limited, but also very interesting. In this section, we
embed Z in a set Q of quotients, in which we can add, subtract, multiply and
divide (but not by 0), according to the usual laws of algebra.

Let us make this last remark explicit. A field is a set F , together with two
laws of composition, addition (+) and multiplication (◦), with the following
properties.

(i) (F +) is an abelian group, with identity element 0.
(ii) Let F ∗ = F \{0}. Then (F ∗, ◦) is an abelian group under multiplication,

with identity element 1.
(iii) There is a distributive law:

a ◦ (b + c) = (a ◦ b) + (a ◦ c), for a, b, c ∈ F.

Note that (b+c)◦a = (b◦a)+(c◦a), by the commutativity of multiplication.
Note also that 1 ∈ F ∗, so that 0 �= 1, and that a◦0 = a◦(0+0) = a◦0+a◦0,
so that a ◦ 0 = 0; Similarly 0 ◦ a = 0. We denote the additive inverse of a by
−a, and the multiplicative inverse (if a �= 0) by a−1.

As an example, let Z2 consist of two elements 0 and 1. With the following
laws of addition and multiplication

0+0 = 1+1 = 0; 0+1 = 1+0 = 1; 0 ◦ 0 = 0 ◦ 1 = 1 ◦ 0 = 0; 1 ◦ 1 = 1,

Z2 becomes a field.

Proposition 2.7.1 Suppose that F is a field and that φ : (Z, +) → (F, +)
is the homomorphism of Proposition 2.5.2. Then φ(mn) = φ(m)φ(n) for
m, n ∈ Z.
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Proof Suppose that n ∈ Z. If m ∈ Z, let ψn(m) = φ(mn) − φ(m)φ(n). If
m1, m2 ∈ Z then

φ((m1 + m2)n) = φ(m1n + m2n) = φ(m1n) + φ(m2n), and

φ(m1 + m2)φ(n) = (φ(m1) + φ(m2))φ(n) = φ(m1)φ(n) + φ(m2)φ(n),

so that ψn(m1 + m2) = ψn(m1) + ψn(m2). Thus ψn is homomorphism of
(Z, +) into (F, +). But ψn(1) = φ(n) − nφ(1) = 0, and so ψn(Z+) = {0}.
Thus φ(mn) = φ(m)φ(n). �

A subset H of a field F is a subfield of F if H is a subgroup of the additive
group (F, +) and H ∩ F ∗ is a subgroup of the multiplicative group F ∗. It
then inherits the field structure from F .

A mapping θ from a field F to a field G is a field homomorphism if

• it is a homomorphism of the additive group (F, +) into (G, +), and
• θ(F ∗) ⊆ G∗ and θ|F ∗ is a homomorphism of the multiplicative group (F ∗, ◦)

into (G∗, ◦).

In particular, if θ is a field homomorphism then θ(0F ) = 0G and θ(1F ) = 1G.
Suppose that θ : F → G is a field homomorphism, and that f and f ′ are

distinct elements of F . Let h = f − f ′. Then h �= 0F , and θ(h)θ(h−1) = 1G,
Thus θ(f) − θ(f ′) = θ(h) �= 0G, so that θ(f) �= θ(f ′). Consequently, θ is
injective.

A surjective field homomorphism is called a field isomorphism.
Suppose that F is a field. A polynomial over Fof degree n is an expression

of the form p(x) = anxn+an−1x
n−1+· · · a1x+a0, where the coefficients aj are

in F and an �= 0. It is monic if an = 1. The polynomial p defines a polynomial
function p : F → F defined by setting p(r) = anrn +an−1r

n−1 + · · · a1r +a0.
An element r of F is a root of p if p(r) = 0.

We shall embed Z in a field Q. We are all familiar with the notion of a
fraction, and of the fact that different fractions, such as 2/3 and 4/6, represent
the same number. Let us formalize this. Let Z∗ = Z \ {0} be the set of non-
zero integers. We define a relation on Z × Z∗ by setting (p, q) ∼ (r, s) if
ps = qr.

Proposition 2.7.2 The relation (p, r) ∼ (q, s) is an equivalence relation
on Z × Z∗.

Proof It follows immediately from the definition that (p, q) ∼ (p, q) and
that if (p, q) ∼ (r, s) then (r, s) ∼ (p, q). Suppose that (p, q) ∼ (r, s) and
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(r, s) ∼ (t, u), so that ps = qr and ru = ts. Thus

pusr = (ps)(ru) = (qr)(ts) = qtsr,

so that (pu − qt)sr = 0. Since sr �= 0, pu = qt, and (p, q) ∼ (t, u). �

We denote the set of equivalence classes by Q, and denote the equivalence
class [(p, q)] by p/q, or p

q . The elements of Q are called rational numbers. If
r = p/q ∈ Q, we call p/q a fraction, representing r. Many different fractions
represent r; for example, 2/3 and 4/6 represent the same element of Q. It
follows immediately from the definition of the equivalence relation on Z×Z∗

that j/k = j′/k′ if and only if jk′ = j′k. In particular, j/k = (−j)/(−k), so
that we can represent r as j/n, where j ∈ Z∗ and n ∈ N.

Let us consider the structure of the equivalence classes further.

Proposition 2.7.3 (i) Suppose that (m, n) ∈ N × N. Then there exists a
unique (m′, n′) ∈ [(m, n)] with m′ and n′ coprime. Then

[(m, n)] = {a ∈ N × N : a = (km′, kn′) for some k ∈ N}.

(ii) Suppose that (−m, n) ∈ N×N. Then there exists a unique (−m′, n′) ∈
[(−m, n)] with m′ and n′ coprime. Then

[(−m, n)] = {a ∈ −N × N : a = (−km′, kn′) for some k ∈ N}.

Proof (i) Let h be the highest common factor of m and n, and let m′ = m/h,
n′ = n/h. Then m′ and n′ are coprime, and mn′ = hm′n′ = m′n, so that
(m, n) ∼ (m′, n′). If (m′′, n′′) ∈ [(m, n)] then m′′n′ = m′n′′, so that m′|m′′,
by Proposition 2.6.4. Let m′′ = km′; then km′n′ = m′′n′ = m′n′′; dividing
by m′, we see that n′′ = kn′. Thus (m′′, n′′) = (km′, kn′). From this it follows
that (m′, n′) is the only element of [(m, n)] with m′ and n′ coprime.

The proof of (ii) is essentially the same as the proof of (i). �

In other words, if r ∈ Q∗, we can write r uniquely as r = m/n or r =
(−m)/n, with m and n coprime. In this case, we say that the fraction m/n is
in lowest terms. As an example, a dyadic number or dyadic rational number
is a rational number of the form m/2k, where m ∈ Z and k ∈ Z+. If k > 1
then it is in lowest terms if and only if m is odd.

We now show how to define addition and multiplication in Q, so that Q
becomes a field. We give the details, though they are very straightforward.
First we define addition. We define p/q+r/s = (ps+qr)/qs. If (p, q) ∼ (p′, q′)
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and (r, s) ∼ (r′, s′) then

(ps + qr)q′s′ = (pq′)(ss′) + (rs′)(qq′)

= (p′q)(ss′) + (r′s)(qq′) = (p′s′ + q′r′)qs

and so this is well-defined: it does not depend on the choice of representatives.

Proposition 2.7.4 (Q, +) is an abelian group.

Proof This is a matter of straightforward verification. Addition is associa-
tive, since (

p

q
+

r

s

)
+

t

u
=

ps + qr

qs
+

t

u
=

psu + qru + qst

qsu

=
p

q
+

ru + ts

su
=

p

q
+
(

r

s
+

t

u

)
,

and clearly p/q + r/s = r/s + p/q. The element 0/1 is the identity, since
0/1 + p/q = p/q + 0/1 = p/q for all (p, q) ∈ Z × Z∗. Similarly,

p

q
+

−p

q
=

pq − pq

q2 =
0
q2 =

0
1
,

so that (−p)/q is the additive inverse of p/q. �

Next we define multiplication. We define (p/q)(r/s) = (pr)/(qs); once
again, as the reader should verify, this does not depend on the choice of
representatives. Let Q∗ = Q\{0/1} be the set of non-zero rational numbers.

Proposition 2.7.5 (Q∗, .) is an abelian group, with identity element 1/1.
The inverse of p/q is q/p.

Proof The details are left as an easy exercise for the reader. �

Theorem 2.7.6 (Q, +, .) is a field.

Proof It remains to prove the distributive law:

p

q

(
r

s
+

t

u

)
=

p

q

(
ru + ts

su

)
=

pru + pts

qsu

=
pru

qsu
+

pts

qsu
=

pr

qs
+

pt

qu
=
(

p

q

)(r

s

)
+
(

p

q

)(
t

u

)
. �

We now embed Z into Q. If n ∈ Z, let φ(n) = n/1. It then follows immedi-
ately from the definitions that φ is an injective homomorphism of the additive
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group (Z, +) into the additive group (Q, +), and that φ(mn) = φ(m)φ(n)
for m, n ∈ Z. Summing up:

Theorem 2.7.7 With addition and multiplication defined as above, Q is a
field. (Q, +) has identity element 0/1, and the multiplicative identity is 1 =
1/1. The additive inverse of j/n is (−j)/n; and, if m ∈ N, the multiplicative
inverse of m/n is n/m and the multiplicative inverse of (−m)/n is (−n)/m.
There is an injective map φ : Z → Q such that φ(0) = 0, φ(1) = 1, and
φ(j + k) = φ(j) + φ(k), φ(jk) = φ(j)φ(k) for all j, k ∈ Z.

We identify Z with φ(Z), and consider Z as a subset of the field Q. Thus we
write n for n/1, so that 0 is the zero element of Q, and 1 is the multiplicative
inverse.

Exercises

2.7.1 Show that there is a field with four elements, and that there is no field
with six elements.

2.7.2 Prove the binomial theorem: if F is a field, if x, y ∈ F and if n ∈ N
then

(x+y)n = xn+
(

n

1

)
xn−1y+· · ·+

(
n

j

)
xn−jyj+· · ·+

(
n

n − 1

)
xyn−1+yn.

2.7.3 Suppose that r = m/n is a rational number in lowest terms, and that
0 < r < 1. Show that there exists k ∈ N such that 1/(k+1) ≤ r < 1/k.
Show that if r �= 1/(k + 1) and r − 1/(k + 1) = p/q in lowest terms,
then p < m. Deduce that there exist 1 < n1 < . . . < nt such that
r = 1/n1 + · · · + 1/nt.

2.7.4 We have adjoined additive inverses to Z+ to construct Z, and we have
adjoined multiplicative inverses to Z∗ to construct Q. These are spe-
cial cases of a general construction to adjoin inverses. We need some
definitions. A monoid is a set S with a binary associative operation
◦ : S × S → S, together with an element e of S (the identity element)
for which s ◦ e = e ◦ s = e, for all s ∈ S. S is commutative, or abelian,
if s ◦ t = t ◦ s for all s, t ∈ S. S has a cancellation law if whenever
s ◦ u = t ◦ u then s = t, and whenever u ◦ s = u ◦ t then s = t.
Suppose that S is a commutative monoid with a cancellation law.
(a) Define a relation on S × S by setting (p, q) ∼ (r, s) if p ◦ s = r ◦ q.

Show that this is an equivalence relation on S.
Let G be the set of equivalence classes.
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(b) Suppose that g = [(p, q)], h = [(r, s)]. Let g + h = [(p ◦ s, q ◦ t)].
Show that this is well-defined -- it does not depend on the choice
of representatives.

(c) Show that addition is associative and commutative.
(d) Show that (G, +) is an abelian group, with identity [(e, e)] and with

−[(p, q)] = [(q, p)].
(e) Let θ : S → G be defined by θ(s) = [(s, e)]. Show that θ is injective

and that θ(s ◦ t) = θ(s) + θ(t).
(f) Show that G = θ(S) − θ(S).

2.7.5 Use the results of the previous question to provide another construction
of (Z, +) from Z+.

2.7.6 There are circumstances (as in the construction of Q), where in Exer-
cise 2.7.4 it is natural to denote the composition in G multiplicatively.
Do this, when S = Z∗[x] is the set of non-zero polynomials with
integer coefficients, and where composition is the multiplication of
polynomials:

if p =
m∑

i=0

aix
i and q =

n∑
j=0

aix
i then p ◦ q =

m+n∑
k=0

ckx
k,

where ck =
∑

{aibj : i ≥ 0, j ≥ 0, i + j = k, }. What have you
constructed?

2.8 Ordered fields

We introduce an order on Q. We set j/m ≤ k/n if jn ≤ km.

Proposition 2.8.1 (i) The relation ≤ is a well-defined total order on Q.
(ii) If r ≤ s, then r + t ≤ s + t for all t ∈ Q.
(iii) If r ≤ s, then rt ≤ st for all t ∈ Q with t ≥ 0.
(iv) If m, n ∈ Z then m ≤ n in the order on Z if and only if m ≤ n in

the order on Q.

Proof The straightforward verifications are left as an exercise for the reader.
(Remember that m and n are positive.) �

A field with a total order that satisfies conditions (ii) and (iii) of Propo-
sition 2.8.1 is called an ordered field. Note that if F is an ordered field, and
f ∈ F , then f2 ≥ 0. For if f ≥ 0, then f2 ≥ 0, and if f < 0 then −f > 0,
so that f2 = (−f)2 ≥ 0. In particular, 1 = 12 > 0. If F is an ordered field,
and f ∈ F , we say that f is positive if f > 0; we say that f is non-negative if
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f ≥ 0; we say that f is negative if f < 0, and we say that f is non-positive if
f ≤ 0.

An ordered field contains a copy of Q as a subfield. We prove this in two
steps.

Proposition 2.8.2 If F is an ordered field, there exists a unique injective
map ψ : Z → F such that ψ(0) = 0F , ψ(1) = 1F , ψ(k + l) = ψ(k) + ψ(l).
Further, ψ(kl) = ψ(k)ψ(l) for all k, l ∈ Z, and ψ(k) ≤ ψ(l) if k ≤ l.

Proof By Proposition 2.5.2, there exists a unique map ψ : Z → F such that
ψ(0) = 0F , ψ(1) = 1F and ψ(k + l) = ψ(k) + ψ(l), for k, l ∈ Z.

A straightforward induction then shows that ψ(ml) = ψ(m)ψ(l) for
m ∈ Z+, l ∈ Z. Since ψ((−m)l) + ψ(ml) = ψ((−m)l + ml) = ψ(0) = 0,
ψ((−m)l) = −ψ(ml) = −(ψ(m)ψ(l)). Since (ψ(m) + (−ψ(m)))ψ(l) = 0,
−(ψ(m)ψ(l) = (−ψ(m))ψ(l) = ψ(−m)ψ(l). Thus ψ(−m)l) = ψ(−m)ψ(l),
and ψ(kl) = ψ(k)ψ(l) for all k, l ∈ Z.

We show by induction that if m ∈ N then ψ(m) > 0F . The result is true
if m = 1, by the preceding remark. If it is true for m, then ψ(m + 1) =
ψ(m) + ψ(1) = ψ(m) + 1F > ψ(m) > 0F . Thus if k ≤ l then l − k ∈ Z+ and
ψ(l) − ψ(k) = ψ(l − k) ≥ 0: ψ(k) ≤ ψ(l). Further, ψ is injective, for if k �= l

and k < l then ψ(l) − ψ(k) = ψ(l − k) > 0, so that ψ(l) �= ψ(k): similarly, if
k > l. �

Theorem 2.8.3 Suppose that F is an ordered field. Then there exists
a unique injective field homomorphism k : Q → F . Further, k is
order-preserving: if r ≤ s then k(r) ≤ k(s).

Proof Let ψ : Z → F be the unique mapping of the previous proposition.
If j ∈ Z, we define k(j) = ψ(j), and if r = j/n ∈ Q, we define k(r) =
ψ(j)(ψ(n))−1. Now ψ(j)(ψ(n))−1 = ψ(j′)(ψ(n′))−1 if and only if ψ(jn′) =
ψ(j)ψ(n′) = ψ(j′)ψ(n) = ψ(jn′), and this happens if and only if j/n = j′/n′.
Thus k is well defined, and is injective. It is a straightforward matter to verify
that k satisfies the other requirements of the theorem. �

This shows that every ordered field has a subfield isomorphic to Q. Q itself
has no proper subfield. For every subfield must contain 0 and 1, and so must
contain (a copy of) Z. Thus it must contain all elements of the form j/n,
with j ∈ Z and n ∈ N. Thus we have the following characterization of the
rational numbers.

Corollary 2.8.4 An ordered field F is isomorphic as a field to Q if and
only if it has no proper subfields.
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We can therefore take any ordered field with no proper subfields as a model
for the field Q of rational numbers.

Exercises

2.8.1 Suppose that A is a countable totally ordered subset with the inter-
mediate property (if a < b then there exists c with a < c < b) with
no greatest or least element. Show that there is an order preserving
bijection j : A → Q.

2.8.2 Give the details of the proof of Proposition 2.8.1.
2.8.3 (a) Suppose that a, b, v are elements of an ordered field F and that

a > v > b > 0. Show that ab < v(a + b − v).
(b) Suppose that a1, . . . , ak are positive elements of an ordered field.
Let v = (a1 + · · · + ak)/k. Use (a) and an inductive argument to show
that vk ≥ a1a2 . . . ak.

2.9 Dedekind cuts

The field of rational numbers is not adequate for our purpose. The ancient
Greeks recognized the inadequacy of the rational numbers: the length of a
diagonal of a square is not a rational multiple of the length of a side.

Proposition 2.9.1 There is no rational number r with r2 = 2.

Proof Suppose that such an r exists; we can suppose that r is positive, and
that r = m/n in lowest terms. Then m2 = 2n2. Since 2 is prime, 2 divides
m, and so m = 2q for some q ∈ N. Then 4q2 = 2n2, and so 2q2 = n2. This
implies that 2 divides n, contradicting the fact that m and n are coprime. �

This result can be extended greatly.

Theorem 2.9.2 If p is a monic polynomial with integer coefficients, then
any r ∈ Q which is a root of p must be an integer.

Proof If r �= 0, let r = j/q, in lowest terms. Then

0 = qn−1p(r) =
jn

q
+ [an−1j

n−1 + an−2qj
n−2 + · · · + a1q

n−2j + a0q
n−1].

The term in square brackets is an integer, and so therefore is jn/q. Since
j and q are coprime, q = 1 and r = j, an integer. �

This result is due to Gauss.
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Corollary 2.9.3 If a ∈ N and n ∈ N then the polynomial xn − a has a
rational root if and only if there exists b ∈ N such that a = bn.

Can we find a number system in which 2 has a square root, which avoids all
other such anomalies, and which provides ‘a purely arithmetic and perfectly
rigorous foundation for the principles of infinitesimal analysis’? Richard
Dedekind, whose phrase this is, was the first person to give a satisfactory
answer. He found a solution to the problem on 24 November 1858, but did
not publish his findings until 1872. His essential insight was that a number
such as

√
2 or π could be characterized by the set of rational numbers greater

than it, and by the set of rational numbers less than it. There are other ways
of proceeding (see Exercise 3.4.3), but in many respects, Dedekind’s approach
remains the best way of defining the real numbers, and it is essentially the
way that we shall follow. As we have seen, the rational numbers Q form an
ordered field: the order relation and the algebra structure interact. In this
section, following Dedekind, we use the order structure of Q to define the
set of real numbers R as a totally ordered set. In the next section, we shall
extend the algebraic operations of addition and multiplication from Q to R.

Suppose that (X, ≤) is a totally ordered set. A non-empty subset A of X

is bounded above if it has an upper bound in X, is bounded below if it has
an lower bound in X, and is bounded if it is bounded above and below. The
totally ordered set (X, ≤) is said to have the supremum property or least
upper bound property if whenever A is a non-empty subset of X which has an
upper bound then A has a supremum: there exists sup A ∈ X such that supA

is an upper bound for A and if b is any other upper bound, then supA ≤ b. It
is most important that supA may or may not be an element of A. We shall
require R to have the supremum property. This fundamental order property
is the basis of almost all the analysis that we shall do.

Proposition 2.9.4 A totally ordered set (X, ≤) has the supremum prop-
erty if and only if every non-empty subset B of X which has a lower bound
has an infimum.

Proof Suppose first that (X, ≤) has the supremum property, and that B is
a non-empty subset of X which is bounded below. Let L be the set of lower
bounds of B. L is non-empty, and any element of B is an upper bound for
L. Thus L has a supremum, s, say. We shall show that s is the infimum of
B. If b ∈ B then b is an upper bound for U , and so b ≥ s. Thus s is a lower
bound for B. If c is a lower bound for B, then c ∈ L, and so c ≤ s; thus s is
the greatest lower bound of B.
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Conversely, suppose that the condition is satisfied and that A is a non-
empty subset of X which has an upper bound. Then an exactly similar
argument shows that the set U of upper bounds of A has an infimum t,
and that t is the supremum of A �

We now show that we can embed the ordered field Q of rational numbers in
an order-preserving way in a totally ordered set with the supremum property.
This is the key construction.

Theorem 2.9.5 There exists a totally ordered set (R,≤) with the supre-
mum property, together with an injective order-preserving map: j : Q → R
such that

(a) if a, b ∈ R and a < b then there exists s ∈ Q such that a < j(s) < b,
and

(b) R has neither a greatest element nor a least element.

Proof We call a subset a of Q a Dedekind cut if it satisfies
(α) a is non-empty and bounded above,
(β) if r ∈ a and s < r then s ∈ a, and
(γ) a does not have a greatest element (if r ∈ a there exists t ∈ a with

t > r).
(Dedekind, who considered the pair {a,Q \ a}, used the word ‘Schnitt’,

which can also be translated as ‘section’, ‘slice’, or ‘intersection’.) As we shall
see, conditions (α) and (β) say that a is a semi-infinite interval, and condition
(γ) says that a is open.

Let R be the set of Dedekind cuts. We define an order on R by setting
a ≤ b if a ⊆ b.

First, we show that this is a total order on R. Suppose that a, b ∈ R and
that b is not less than or equal to a. Thus b is not contained in a, so that
there exists r in b\a. If s ≥ r, then s �∈ a, since otherwise r ∈ a, by (β). Thus
if t ∈ a, t < r, and so t ∈ b. Hence a < b.

Next, we show that (R,≤) has the supremum property. Although this is
the essential property of R, the proof is quite straightforward. Suppose that
A is a non-empty subset of R with upper bound u. Let us set u0 = ∪a∈Aa.

First, we show that u0 is a Dedekind cut. u0 is non-empty, and u0 ≤ u,
and so condition (α) is satisfied. Suppose that r ∈ u0 and that s < r. Then
r ∈ a for some a ∈ A, and s ∈ a, by (β), so that s ∈ u0. Thus condition
(β) is satisfied. Further, there exists t ∈ a with t > r, and then t ∈ u0. Thus
condition (γ) is also satisfied. Hence u0 is a Dedekind cut.

Next, we show that u0 is the supremum of A. If a ∈ A, then a ⊆ u0, so
that u0 ≥ a: u0 is an upper bound for A. If d is an upper bound for A then
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d ≥ a for all a ∈ A, so that a ⊆ d for all a ∈ A, and so u0 = ∪a∈Aa ⊆ d. Thus
d ≥ u0; u0 is the least upper bound of A.

Next, we define the mapping j : Q → R. If r ∈ Q, we set j(r) = {s ∈
Q : s < r}. Let us show that j(r) is a Dedekind cut. Since Q has no least
element, j(r) �= ∅, and r is an upper bound for j(r), so that condition (α)
is satisfied. Condition (β) is clearly satisfied. If s ∈ j(r), let t = (s + r)/2.
Then s < t < r, so that t ∈ j(r). Thus condition (γ) is satisfied, and j(r) is
a Dedekind cut.

The mapping j : Q → R is clearly an order-preserving mapping from
Q to R, and j is injective, for if r < s then r ∈ j(s) \ j(r), so that
j(r) �= j(s).

Let us now show that (a) holds. Suppose that a, b ∈ R and that a < b.
Then there exists r ∈ b \ a. By condition (γ), there exists s > r with s ∈ b.
Then s ∈ b \ j(s) and r ∈ j(s) \ a, so that a < j(s) < b.

Corollary 2.9.6 If a ∈ R then a = sup{j(r) ∈ j(Q) : j(r) < a}. In
particular, if t ∈ Q then j(t) = sup{j(r) : r < t}.

Now let us prove (b). Suppose that a ∈ R. If r ∈ a, then j(r) < a, so that
a is not a least element of R. If s is an upper bound in Q for a, there exists
t ∈ Q with t > s. Then s ∈ j(t) \ a, so that a < j(t) and a is not a greatest
element of R. �

We define the real numbers to be the pair (R, j). We shall usually identify
Q with j(Q). Thus R is a totally ordered set with the supremum property,
with neither a greatest element nor a least element, which contains Q in
an order-preserving way, and which has the property that if a, b ∈ R and
a < b then there exists r ∈ Q such that a < r < b. We shall deduce all the
properties of R from this.

Exercises

2.9.1 Suppose that n ∈ N and that (p/q)2 = n. Show that if p − rq �= 0 then
((nq − rp)/(p − rq))2 = n. Use this to give another proof that if n has
a rational square root then the square root is an integer.

2.9.2 Suppose that p is a polynomial of degree n with coefficients in a field
F . Show that if c is a root of p in F , then p(x) = (x − c)q(x), where q

is a polynomial of degree n − 1. Show that p has at most n roots in F .
2.9.3 Show that there is an order-preserving bijection j of Q onto Q \ {0}.

[Hint: use the intermediate property, and define j recursively, using an
enumeration of Q.]
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2.10 The real number field

Let R be the set of real numbers, and let j : Q → R be the inclusion
mapping. So far, we have only established the order properties of R. We
now define the algebraic properties of R. First, we define the addition of real
numbers in such a way that (R, +) is an ordered abelian group and j is a
group homomorphism.

If x ∈ R let D(x) = {r ∈ Q : r < x}. By Corollary 2.9.6, D(x) is a
Dedekind cut.

Proposition 2.10.1 Suppose that x, y ∈ R. Then

D(x)+D(y) = {r+s : r ∈ D(x), s ∈ D(y)} = {r+s : r, s ∈ Q : r < x, s < y}

is a Dedekind cut.

Proof Let us check the conditions.
(α) The set D(x) + D(y) is not empty, and if rx is an upper bound for

D(x) and ry is an upper bound for D(y) then rx + ry is an upper bound for
D(x) + D(y).

(β) Suppose that r ∈ D(x), that s ∈ D(y) and that t < r+s. Let u = t−s,
Then u < r, so that u ∈ D(x). Hence t = u + s ∈ D(x) + D(y).

(γ) Suppose that w = r + s ∈ D(x) + D(y), with r ∈ D(x), s ∈ D(y).
Then there exists r′ ∈ D(x) with r < r′. Then w′ = r′ + s ∈ D(x) + D(y)
and w < w′. �

We define the real number x + y to be the Dedekind cut D(x) + D(y).
Then D(x + y) = D(x) + D(y).

Corollary 2.10.2 If x, y ∈ R and t ∈ Q, and if j(t) < x + y then there
exist r, s ∈ Q such that j(r) < x, j(s) < y and t = r + s.

Proof For t ∈ D(x + y) = D(x) + D(y). �

Proposition 2.10.3 Suppose that x, y ∈ R and that r, s ∈ Q.
(i) x + y = y + x.
(ii) (x + y) + z = x + (y + z).
(iii) x + j(0) = x.
(iv) If x ≤ y then x + z ≤ y + z.
(v) j(r) + j(s) = j(r + s).

Proof (i)--(iv) are easy consequences of the definition, left as exercises for
the reader.

(v) We must show that D(j(r))+D(j(s)) = D(j(r+s)). If t ∈ D(j(r)) and
u ∈ D(j(s)), then t < r and u < s, so that t+u < r+s and t+u ∈ D(j(r+s)).
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Thus D(j(r)) + D(j(s)) ⊆ D(j(r + s)). Conversely, if t ∈ D(j(r + s)) then
t < r + s. As in Proposition 2.10.1, there exists u ∈ Q with u < r such that
t = u+s. Thus t ∈ D(j(r))+D(j(s)), so that D(j(r+s)) ⊆ D(j(r))+D(j(s)).
Hence D(j(r)) + D(j(s)) = D(j(r + s)). �

We now need to define −x, for x ∈ R, in such a way that x + (−x) = 0. If
−x exists, then

D(−x) = {r ∈ Q : j(r) < −x} = {r ∈ Q : x < j(−r)}.

We therefore define M(x) = {r ∈ Q : x < j(−r)}.

Proposition 2.10.4 If x ∈ R then M(x) is a Dedekind cut.

Proof Again, we check the conditions.
(α) There exists s ∈ Q such that j(s) > x. Let r = −s. Then x < j(−r),

so that r ∈ M(x), and M(x) is not empty. Similarly there exists u ∈ Q such
that j(u) < x. Let t = −u. If r ∈ M(x) then j(−t) = j(u) < x < j(−r), so
that r < t; t is an upper bound for M(x).

(β) Suppose that u ∈ M(x). If t ∈ Q and t < u then x < j(−u) < j(−t),
so that t ∈ M(x).

(γ) Suppose that u ∈ M(x). There exists s ∈ Q such that x < j(s) <

−j(u), so that if t = −s then x < j(−t) < j(−u). Thus t ∈ M(x) and
u < t. �

We now define the real number −x to be M(x). Thus M(x) = D(−x).

Theorem 2.10.5 If x ∈ R then x + (−x) = j(0).

Proof First we show that x + (−x) ≤ j(0). If r ∈ M(x) and s ∈ D(x) then
j(s) < x < j(−r), so that r + s < 0, and r + s ∈ D(j(0)). Consequently,
x + (−x) ≤ j(0).

Secondly, we show that x+(−x) ≥ j(0). Suppose that t ∈ D(j(0)), so that
t ∈ Q and t < 0. There exists r ∈ Q such that x + j(t) < j(r) < x. Thus
x < j(r − t) = j(−(t − r)), so that t − r ∈ M(x). Since j(r) < x, r ∈ D(x).
Thus t ∈ D(x) + M(x) = D(x) + D(−x) = D(x + (−x)). Consequently
D(j(0)) ⊆ D(x + (−x)), and so x + (−x) ≥ j(0). �

Thus R is an ordered abelian group under addition, with identity ele-
ment j(0), and the map r → j(r) is an order-preserving injective group
homomorphism of Q into R.

We now turn to multiplication. Here it is easiest first to define the product
of two non-negative elements of R, and then extend to the whole of R, just as
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we did for Z. As we shall see, the programme is very similar to the programme
for defining addition, and we shall therefore omit many of the details. If
x ∈ R and x > 0, then the Dedekind cut D(x) contains all the negative
rational numbers, and we wish to avoid negative numbers. We therefore define
a positive Dedekind cut to be a non-empty subset a+ of {r ∈ Q : r > 0} which
is bounded above, does not have a greatest element, and has the property
that whenever r ∈ a+, s ∈ Q and 0 < s < r then s ∈ a+. If a+ is a positive
Dedekind cut, then a = a+ ∪ {r ∈ Q : r ≤ 0} is a Dedekind cut.

If x ∈ R and x > 0, let D+(x) = {r ∈ Q : 0 < r < x}. Then D+(x) is a
positive Dedekind cut, and x = sup(D+(x)). If x, y are positive real numbers,
we define D+(x).D+(y) to be {t ∈ Q : t = rs for some r ∈ D+(x), s ∈
D+(y)}.

Proposition 2.10.6 Suppose that x, y are positive real numbers. Then
D+(x).D+(y) is a positive Dedekind cut.

Proof Just like the proof of Proposition 2.10.1. �

Thus D = D+x.D+y ∪ {r ∈ Q : r ≤ 0} is a Dedekind cut. We set
xy = x.y = D. Then D(xy) = D = Dx.Dy.

Corollary 2.10.7 Suppose that x, y are positive real numbers, that t ∈ Q
and that 0 < j(t) < xy. Then there exist r, s ∈ Q such that 0 < j(r) < x,
0 < j(s) < y and t = rs.

Proof For t ∈ D+(xy) = D+(x)D+(y). �

Proposition 2.10.8 Suppose that x, y, z are positive real numbers and
that r and s are positive rational numbers.

(i) xy = yx.
(ii) (xy)z = x(yz).
(iii) j(1).x = x.
(iv) If x ≤ y then xz ≤ yz.
(v) x(y + z) = xy + xz.
(vi) j(rs) = j(r).j(s).

Proof The proofs of (i)--(iv) follow from the definitions.
(v) This is also easy, but here are the details. We need to show that

D+(x).(D+(y) + D+(z)) = (D+(x).D+(y)) + (D+(x).D+(z)).

Clearly

D+(x).(D+(y) + D+(z)) ⊆ (D+(x).D+(y)) + (D+(x).D+(z)).
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Suppose that rs + r′t ∈ (D+(x).D+(y)) + (D+(x).D+(z)). Let r′′ =
max(r, r′). Then r′′(s + t) ∈ D+(x).(D+(y) + D+(z)) and 0 < rs + r′t ≤
r′′(s + t), so that rs + r′t ∈ D+(x).(D+(y) + D+(z)). Thus

(D+(x).D+(y)) + (D+(x).D+(z)) ⊆ D+(x).(D+(y) + D+(z)).

(vi) Just like the proof of Proposition 2.10.3 (v). �

Suppose that x ∈ R and that x > 0. We want to show that x has a
multiplicative inverse x−1. Following the ideas behind the construction of
additive inverses, we get

I(x) = {r ∈ Q : x < j(1/r)} = {x ∈ Q : j(r)x < 1}.

Proposition 2.10.9 If x ∈ R and x > 0 then I(x) is a Dedekind cut.

Proof Just like the proof of Proposition 2.10.4. �

We now define x−1 to be I(x). Thus I(x) = D(x−1).

Theorem 2.10.10 If x ∈ R then x.x−1 = x−1.x = j(1).

Proof Just like the proof of Theorem 2.10.5. �

Thus {x ∈ R+ : x > 0} is an abelian group under multiplication, and x−1

is the multiplicative inverse of x; we also write it as 1/x.
We now extend multiplication to R and multiplicative inversion to R∗ =

R \ {0}. If x, y ∈ R+, we set (−x)y = x(−y) = −(xy) and (−x)(−y) = xy,
and if x > 0, we set 1/(−x) = −(1/x).

With these definitions, R becomes an ordered field with the supremum
property. The mapping j : Q → R is an order-preserving field isomorphism
of Q onto a subfield of R, which we shall now identify with Q. The elements
of j(Q) are rational numbers; the elements of R \ j(Q) are called irrational
numbers.

We shall show in Theorem 3.3.1 that any ordered field with the supremum
property is isomorphic as an ordered field to the ordered field R of real
numbers, and that the isomorphism is unique.

After all this work, we should verify that we can use the real numbers R
to solve the problem that we raised at the beginning of the previous section.
In fact we can say more.

Theorem 2.10.11 Suppose that y is a positive real number and that
n ∈ N. Then there exists a unique positive real number s such that sn = y.

We need the following lemma.
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Lemma 2.10.12 (i) Suppose that 0 < ε < 1 and that n ∈ N. Then

(1 − nε) ≤ (1 − ε)n < (1 + ε)n ≤ 1 + (2n − 1)ε.

(ii) Suppose that a and b are positive real numbers and that n ∈ N. Then
an > bn if and only if a > b.

Proof (i) The proof is by induction on n: the result is true if n = 1. Suppose
that it is true for n. Then

(1 − ε)n+1 = (1 − ε)(1 − ε)n ≥ (1 − ε)(1 − nε)

= 1 − (n + 1)ε + nε2 > 1 − (n + 1)ε

and (1 + ε)n+1 = (1 + ε)(1 + ε)n ≤ (1 + ε)(1 + (2n − 1)ε)

= 1 + (2n − 1)ε + ε + (2n − 1)ε2) < 1 + (2n+1 − 1)ε.

(ii) This follows from the equation

an − bn = (a − b)(an−1 + an−2b + · · · + abn−2 + bn−1). �

Proof of Theorem 2.10.11 Let B = {x ∈ R : xn ≤ y}. Since 0 ∈ B, B is
non-empty. If y ≤ 1 then B is bounded above by 1. If y > 1 then yn > y, so
that if x ∈ B then xn < yn and x < y, by the lemma. Thus B is bounded
above by y. Therefore B has a supremum s, say. We shall show that sn = y.
There are three possibilities; either sn < y or sn > y or sn = y. We shall
show that the first two of these cannot occur, so that sn = y.

Suppose first that sn < y. Choose 0 < η < (y − sn)/(2n − 1)y. Note that
0 < η < 1. By the lemma,

((1 + η)s)n ≤ sn + (2n − 1)ηsn < sn + (y − sn) = y,

so that (1 + η)s ∈ B. Since (1 + η)s > s, this contradicts the fact that s is
an upper bound for B.

Secondly, suppose that sn > y. Choose 0 < θ < (sn − y)/nsn. Note that
0 < θ < 1. If x ∈ B then

((1 − θ)s)n − xn ≥ (1 − nθ)sn − y = (sn − y) − nθsn > 0.

By the lemma, (1 − θ)s > x, so that (1 − θ)s is an upper bound for B,
contradicting the fact that s is the least upper bound of B.

Consequently, sn = y. Finally, s is unique. For if tn = y, then sn − tn = 0,
and it follows from part (ii) of the lemma that s = t. �
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The number s is denoted by y1/n: it is the nth root of y.
This proof is all very well, but it is very cumbersome. Surely there is a

better proof! There certainly is, but it requires us to do a good deal of analysis
first. In due course, we shall see that this result is an easy consequence of the
intermediate value theorem (Theorem 6.4.1).
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Functions of a real variable
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Convergent sequences

3.1 The real numbers

At the beginning of the nineteenth century, it became clear that mathemat-
ical analysis (the study of functions and of series) lacked a satisfactory firm
foundation. In 1821, Augustin-Louis Cauchy published his Cours d’Analyse,
which contained the first rigorous account of mathematical analysis. Cauchy
however took the properties of the real numbers for granted. In 1858, when
Richard Dedekind was preparing a course of lectures on the elements of the
differential calculus at the Polytechnic School in Zürich, he ‘felt more keenly
than ever the lack of a really scientific foundation for arithmetic’, and dis-
covered the construction of the real number system that is described in the
Prologue. In fact, he only published his results in 1872.1 With hindsight, it
has become clear that the properties of the real number system lie at the
heart of all mathematical analysis, and that it is essential to obtain a full
understanding of these properties in order to develop mathematical analysis.

In the Prologue, we have constructed Dedekind’s model for the real num-
bers R and established some of its properties. It is however sensible to take
the construction for granted, to write down the essential properties of R,
and to use these properties to develop the theory of mathematical analysis.
This we shall do.

What are the essential properties of R? First, R is a field: that is, addition,
multiplication, subtraction and division have been defined to satisfy the
usual conditions of arithmetic.

Secondly, there is a total order on R: if x, y ∈ R then either x ≤ y or
y ≤ x, and both occur if and only if x = y; further if x ≤ y and y ≤ z then
x ≤ z. The order makes R an ordered field; if x ≤ y then x + z ≤ y + z,

1 See Richard Dedekind, Essays on the Theory of Numbers, Dover, 1963.
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and if x ≤ y and z ≥ 0 then xz ≤ yz. R contains a copy of the set of
rational numbers Q, and, within it, copies of the integers Z and the natural
numbers N.

The set Q of rational numbers is also an ordered field, but it is not
adequate for analysis. The fundamental property of R that we shall use
over and over again relates to the order structure of R. If A is a non-empty
subset of R and b ∈ R, then b is an upper bound for A if b ≥ a for all a ∈ A.
Then R has the supremum property: if A is a non empty set of R with an
upper bound, then A has a least upper bound, or supremum sup(A): there
exists an upper bound c ∈ R such that if b is any other upper bound of A

then c ≤ b. It is important that the supremum of a non-empty set may or
may not belong to A. For example, if R− = {x ∈ R : x < 0} is the set of
negative numbers, then sup(R−) = 0, and 0 �∈ R−.

The supremum property is equivalent (Proposition 2.9.4) to the require-
ment that every non-empty subset A of R which is bounded below has a
greatest lower bound, or infimum. For the set B of lower bounds of A is non-
empty and bounded above by any element of A, and so B has a supremum,
s, say. We show that s is the infimum of A. Suppose, if possible, that a ∈ A

and that a < s. Then a is not the least upper bound for B, and so there
exists b ∈ B with a < b ≤ s. But then b is not a lower bound for A, giving
a contradiction. Thus a ≥ s, and so s ∈ B. If c > s then c is not a lower
bound for A, and so s is the infimum of A.

Here is a first application of the supremum property.

Theorem 3.1.1 (i) Let J = {1/n : n ∈ N}. Then 0 is the infimum
of J .

(ii) If x ∈ R and x > 0 then there exists n ∈ N with n ≥ x.
(iii) If x < y then there exists r ∈ Q such that x < r < y.

Proof (i) 0 is a lower bound for J , and so l = inf J exists, and l ≥ 0.
Suppose, if possible, that l > 0. Then 2l > l, and so 2l is not a lower bound
for J . Thus there exists n ∈ N such that 1/n < 2l. But then 1/2n < l,
giving a contradiction.

(ii) 1/x > 0, so that 1/x is not a lower bound for J . There exists n ∈ N
such that 1/n < 1/x. Then n > x.

(iii) First, we prove this in the case where 0 ≤ x < y. By (i), there exists
n ∈ N such that 1/n < y − x. Let A = {k ∈ Z+ : k ≤ nx}. A is non-
empty (0 ∈ A) and finite, by (ii), and so it has a greatest element a. Then
a ≤ nx < a + 1, so that if we set r = (a + 1)/n, then x < r. On the other
hand r = a/n + 1/n < x + (y − x) = y.
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If x < 0 < y, we can take r = 0; if x < y ≤ 0, the result follows by
considering −y and −x. �

Statement (i) says that there are no infinitesimally small members of R+,
and statement (ii), which is known as the Archimedean property, says that
there are no infinitely large members.

Statement (iii) is an existence statement; when x > 0, it is desirable to
give an explicit procedure for determining a rational r with x < r < y. There
exists a least positive integer, q0, say, such that 1/q0 < y−x, and there then
exists a least integer, p0, say, such that x < p0/q0. Then x < p0/q0 < y

and r0 = p0/q0 is uniquely determined. Let us call r0 the ‘best’ rational
satisfying x < r < y.

Suppose that x ∈ R. We set

x+ = x

x− = 0
|x| = x+ = x

⎫⎬⎭ if x ≥ 0, and
x+ = 0
x− = −x

|x| = x− = −x

⎫⎬⎭ if x < 0.

Then x = x+ − x− and |x| = x+ + x− ≥ 0. |x| is the modulus, or absolute
value, of x; it measures the size of x. Note that if one of x, y is positive and
the other negative then |x + y| < |x| + |y|; otherwise |x + y| = |x| + |y|;
note also that |x|.|y| = |xy|. We set d(x, y) = |x − y|; d(x, y) is the distance
between x and y.

Proposition 3.1.2 If x, y, z ∈ R then

(i) d(x, y) = d(y, x);
(ii) d(x, y) = 0 if and only if x = y;
(iii) d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality).

Proof (i) follows from the fact that |x| = |−x|, and (ii) from the fact that
|x| = 0 if and only if x = 0. Finally,

|x − z| = |(x − y) + (y − z)| ≤ |x − y| + |y − z|. �

The function d : R × R → R is a metric on R. We shall study more
general metrics in Volume II.

The problem of the existence of the square root of 2 arose as a problem in
geometry. It is natural to think of the set R of real numbers geometrically,
and to think of them as points on a line, the real line, arranged in order.
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Figure 3.1. The real line.

If a ∈ R, we can then consider the mapping x → x + a as a shift, or
translation, shifting everything an amount a to the right, if a ≥ 0, and an
amount |a| to the left, if a < 0. The mapping x → −x is a reflection about
0. If a > 0 then the mapping x → ax is a dilation or scaling, scaling x by a
factor of a.

The totally ordered set R does not have a greatest or least element. It is
sometimes convenient to add two points +∞ and −∞, to obtain the extended
real line R. Thus R = {−∞}∪R∪{+∞}. The order is extended by setting
−∞ < x < +∞ for every real number x. Then R is order complete -- every
non-empty subset has an infimum and a supremum. If A is a non-empty
subset of R then inf A = −∞ if and only if A does not have a lower bound
in R, and supA = +∞ if and only if A does not have an upper bound in R.

Some care must be taken in extending the algebraic operations from R
to R. Common sense and prudence suggest the following rules.

If x ∈ R, then (+∞) + x = x + (+∞) = x − (−∞) = +∞,

(−∞) + x = x + (−∞) = x − (+∞) = −∞,

x/(+∞) = x/(−∞) = 0.

(+∞) + (+∞) = +∞ and (−∞) + (−∞) = −∞.

The sums (+∞) + (−∞) and (−∞) + (+∞) are not defined.

If x ∈ R, and x > 0 then (+∞).x = x.(+∞) = +∞,

(−∞).x = x.(−∞) = −∞, and x/0 = +∞.

If x ∈ R, and x < 0 then (+∞).x = x.(+∞) = −∞,

(−∞).x = x.(−∞) = +∞, and x/0 = −∞.

The products

0.(+∞), 0.(−∞), (+∞).0 and (−∞).0

and the quotients

(+∞)/(+∞), (+∞)/(−∞), (−∞)/(+∞), (−∞)/(+∞),

0/0, (+∞)/0 and (−∞)/0

are not defined.
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Exercises

3.1.1 Show that the sum of a rational number and an irrational number is
irrational. What about the product?

3.1.2 Suppose that r, r′ are two rational numbers, with r < r′. Show that
there exists an irrational number x with r < x < r′.

3.1.3 Suppose that A and B are non-empty subsets of R which are bounded
below. Let A + B = {x ∈ R : x = a + b for some a ∈ A, b ∈ B}. Show
that A + B is bounded below and that inf(A + B) = inf A + inf B.
What about products?

3.1.4 Suppose that (an)∞
n=1 and (bn)∞

n=1 are sequences in R such that the
sets {an : n ∈ N} and {bn : n ∈ N} are bounded above. Show that the
set {an + bn : n ∈ N} is bounded above. Is

sup{an + bn : n ∈ N} = sup{an : n ∈ N} + sup{bn : n ∈ N}?

3.1.5 Let Q(
√

2) be the set of all real numbers of the form r + s
√

2, with
r, s ∈ Q. Show that Q(

√
2) is a subfield of R. Show that there are two

total orderings of Q(
√

2) under which it is an ordered field.
3.1.6 Suppose that a1, . . . , an and b1, . . . , bn are real numbers. Establish

Lagrange’s identity:(
n∑

1=1

aibi

)2

+
∑

{(i,j):i<j}
(aibj − ajbi)2 =

(
n∑

i=1

a2
i

)(
n∑

i=1

b2
i

)
.

Deduce Cauchy’s inequality:

n∑
i=1

aibi ≤
(

n∑
i=1

a2
i

)1
2
(

n∑
i=1

b2
i

)1
2

,

with equality holding if and only if aibj = ajbi for 1 ≤ i, j ≤ n.
3.1.7 If α ∈ R and k ∈ N, define the binomial coefficient to be(

α

k

)
=

α(α − 1) . . . (α − k + 1)
k!

.

Prove de Moivre’s formula(
α + 1

k

)
=
(

α

k

)
+
(

α

k − 1

)
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and its generalization, Vandermonde’s formula,(
α + β

k

)
=

k∑
j=0

(
α

j

)(
β

k − j

)
.

[Hint: First suppose that β ∈ N. Each side of the equation is a polyno-
mial in α, and the two polynomials take the same values when α ∈ N.
Now repeat the argument for β.]

3.2 Convergent sequences

Let us now look again at statement (i) of Theorem 3.1.1.

Theorem 3.2.1 If ε > 0 then there exists n0 such that 0 < 1/n < ε for
n ≥ n0.

Proof Since l > 0 and 0 is the infimum of J = {1/n : n ∈ N}, there exists
n0 such that 1/n0 < ε. If n ≥ n0, then 0 < 1/n < 1/n0 < ε. �

This suggests the following definition for more general sequences than
(1/n)∞

n=1. (We consider sequences indexed either by N or by Z+, the set of
non-negative integers -- since we are concerned with what happens for large
values of n, there is no real difference between the two cases, and we shall
only state and prove results in one or other case.) A real-valued sequence
(an)∞

n=0 converges to 0 as n tends to ∞, or tends to 0 as n tends to ∞, or
is a null sequence, if whenever ε > 0 there exists n0 (which usually depends
on ε) such that |an| < ε for n ≥ n0.

A couple of remarks are in order. First, the condition concerns the size |an|
of an, rather than an itself. We can write the condition as −ε < an < ε for
n ≥ n0; thus an has to satisfy two inequalities, and sometimes it is necessary
to consider the two inequalities separately. Secondly, the sequence (|an|)∞

n=0
need not be decreasing. As an example, if we set an = (−1)n/n + 1/n2 then
(an)n∈N is a null sequence, although an is, after the first term, alternately
negative and positive, and although |an|− |an+1| is alternately negative and
positive .

We can immediately generalize this definition. Suppose that l ∈ R. We
say that a real-valued sequence (an)∞

n=0 converges to l, or tends to l, as n

tends to ∞ if whenever ε > 0 there exists n0 (which usually depends on ε)
such that |an − l| < ε for n ≥ n0. In other words, the sequence (an − l)∞

n=0 is
a null sequence. Once again, we can split the definition into two: we require
that l − ε < an < l + ε, for n ≥ n0.
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If (an)∞
n=0 converges to l, we say that l is the limit of the sequence, and we

write ‘an → l as n → ∞’, and write l = limn→∞ an. A warning: we can only
write l = limn→∞ an if we know that the sequence has a limit; and many
sequences do not have a limit.

an

l + e

l – e

l n

n0

Figure 3.2. A convergent sequence.

When they exist, limits are unique.

Proposition 3.2.2 If an → l as n → ∞ and an → m as n → ∞, then
l = m.

Proof Suppose not. Let ε = |l − m|/3, so that ε > 0. There exists n0 such
that |an − l| < ε for n ≥ n0, and there exists m0 such that |an − m| < ε for
n ≥ m0. Let p0 = max(n0, m0). Then if n ≥ p0,

|l − m| ≤ |an − l| + |an − m| < 2ε = 2|l − m|/3,

giving a contradiction. �

A subset B of R is bounded if it is bounded above and bounded below. A
sequence (an)∞

n=0 is bounded if the set of values {an : n ∈ Z+} is bounded.

Proposition 3.2.3 If an → l as n → ∞ then (an)∞
n=0 is bounded.

Proof There exists n0 such that |an − l| < 1 for n ≥ n0. Let M =
max{|a1|, |a2|, . . . , |an0 |, |l| + 1}. If n > n0 then |an| ≤ |an − l| + |l| ≤ |l| + 1,
so that |an| ≤ M for all n. �

Unbounded sequences can behave in many different ways: we pick out
two where the behaviour is quite respectable. We say that an → +∞ as
n → ∞ if whenever M ∈ R+ there exists n0 (which usually depends on M)
such that an > M for n ≥ n0, and that an → −∞ as n → ∞ if whenever
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M ∈ R+ there exists n0 (which usually depends on M) such that an < −M

for n ≥ n0.
We now come to the most important result of this section.

Theorem 3.2.4 Suppose that (an)∞
n=0 is an increasing sequence of real

numbers. If (an)∞
n=0 is bounded, then an → sup{an : n ∈ Z+} as n → ∞;

otherwise an → +∞ as n → ∞.
Suppose that (an)∞

n=0 is a decreasing sequence of real numbers. If (an)∞
n=0

is bounded, then an → inf{an : n ∈ Z+} as n → ∞; otherwise an → −∞ as
n → ∞.

Proof Suppose that (an)∞
n=0 is increasing and bounded. Let l = sup{an :

n ∈ Z+}. If ε > 0 then l − ε is not an upper bound, and so there exists
n0 such that an0 > l − ε. Since l is an upper bound, and since (an)n∈N is
increasing, l−ε < an0 ≤ an ≤ l for all n ≥ n0, so that |an − l| < ε for n ≥ n0.

Similarly if (an)n∈N is increasing and unbounded and M ∈ R+, then
there exists n0 such that an0 > M ; then an ≥ an0 > M for n ≥ n0.

Exactly similar arguments work for decreasing sequences. �

Why is this so important, when the proof is so easy? First, it provides
us with a rich supply of convergent sequences. Secondly, it is used in an
essential way to prove further deep results. In fact, the results can be taken
to provide another characterization of R, as Exercise 3.2.16 shows.

The notion of convergence fits in well with the algebraic and order
structure of R, as the following collection of results shows.

Theorem 3.2.5 Suppose that (an)∞
n=0 and (bn)∞

n=0 are sequences of real
numbers.

(i) If an = l for all n, then an → l as n → ∞.
(ii) If (an)∞

n=0 is a null sequence, and (bn)∞
n=0 is bounded, then (anbn)∞

n=0
is a null sequence.

(iii) If an → a and bn → b as n → ∞ then an + bn → a + b as n → ∞.
(iv) If an → a as n → ∞ and c ∈ R then can → ca as n → ∞.
(v) If an → a and bn → b as n → ∞ then anbn → ab as n → ∞.
(vi) If an �= 0 and a �= 0 and an → a as n → ∞ then 1/an → 1/a as

n → ∞.
(vii) If an → a and bn → b as n → ∞ and an ≤ bn for all n then a ≤ b.
(viii) If an → a as n → ∞ and if (ank

)∞
k=0 is a subsequence, then ank

→ a

as k → ∞.



3.2 Convergent sequences 87

Proof The proofs are straightforward. We give details, but will subse-
quently leave similar proofs to the reader.

(i) is quite trivial: for any ε > 0, take n0 = 0.
(ii) There exists M > 0 such that |bn| ≤ M for all n. Given ε > 0, there

exists n0 such that |an| < ε/M for n ≥ n0. Then |anbn| < ε for n ≥ n0.
(iii) Given ε > 0, there exists n0 such that |an − a| < ε/2 for n ≥ n0,

and there exists m0 such that |bn − b| < ε/2 for n ≥ m0. Let p0 =
max(n0, m0). Then if n ≥ p0,

|(an + bn) − (a + b)| ≤ |an − a| + |bn − b| < ε.

(iv) Given ε > 0, there exists n0 such that |an −a| < ε/(|c|+1) for n ≥ n0.
Then |can − ca| < ε for n ≥ n0.

(v) anbn − ab = (an − a)(bn − b) + (an − a)b + a(bn − b). The sequence
(bn − b)∞

n=0 is a bounded sequence, by Proposition 3.2.3; since (an −a)
is a null sequence, the sequence ((an−a)(bn−b))∞

n=0 is a null sequence,
by (ii). The sequences ((an − a)b)∞

n=0 and (a(bn − b))∞
n=0 are also null

sequences, by (iv), and so the result follows, using (iii).
(vi) There exists n0 such that |an −a| < |a|/2 for n ≥ n0, so that if n ≥ n0

then |an| ≥ |a| − |an − a| ≥ |a|/2. Thus if n ∈ Z+ then

|1/ana| ≤ max(1/|a0a|, . . . 1/|an0a|, 2/|a|2),

so that the sequence (1/ana)∞
n=0 is bounded. Since 1/an − 1/a = (a −

an)/ana, the result follows from (ii).
(vii) We argue by contradiction. Suppose that a > b. Using (iii) and (iv),

an − bn → a − b as n → ∞, and so there exists n0 such that |(an −
bn) − (a − b)| < a − b for n ≥ n0. But this implies that an − bn > 0,
giving a contradiction. Thus a ≥ b.

(viii) Given ε > 0 there exists N such that |an − a| < ε for n ≥ N , and
there exists k0 such that nk > N for k ≥ k0. Thus if k ≥ k0 then
|ank

− a| < ε. �

As an example, if 0 < r < 1, then the sequence (rn)∞
n=1 is a decreasing

sequence, bounded below by 0, and so it converges to a limit l, say, by
Theorem 3.2.4. Then rn+1 → rl as n → ∞, by (iv), and rn+1 → l as
n → ∞, by (viii). Thus rl = l, by Proposition 3.2.2, and so l = 0: (rn)∞

n=0 is
a null sequence. So also is (rn)∞

n=0, for −1 < r < 0, by (ii).
Some care is needed using (vii). Suppose that an → a and bn → b as

n → ∞ and that an < bn for all n. Then it does not follow that a < b. As an
example, consider the sequences (rn)∞

n=0 and (−rn)∞
n=0, where 0 < r < 1.
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As another example, let us give another proof of Theorem 6.4.6: if y is
a positive real number, if k ∈ N and if k ≥ 2, then there exists a unique
positive real number s such that sk = y. We write s = y1/k.

Let a0 = max(1, y), so that ak
0 ≥ y. We show that we can define the

sequence (an)∞
n=0 recursively by setting

an+1 =
1
k

(
(k − 1)an − y

ak−1
n

)
= an

(
1 − ak

n − y

kak
n

)
for n ∈ N,

and that 0 < an+1 ≤ an and y ≤ ak
n. Suppose that have defined an, and

shown (if n > 0) that 0 < an ≤ an−1 and y ≤ ak
n. Since an > 0, an+1 is

properly defined. Since kak
n > ak

n − y ≥ 0, 0 < an+1 ≤ an. In order to show
that ak

n+1 ≥ y, we use the following inequality, proved in Lemma 2.10.12:

if 0 < t < 1 then (1 − t)k ≥ 1 − kt.

Thus

ak
n+1 = ak

n

(
1 − ak

n − y

kak
n

)k

≥ ak
n

(
1 − ak

n − y

ak
n

)
= y.

Since the sequence (an)∞
n=0 is bounded below, it follows that it converges to

a limit l as n → ∞. Using Theorem 3.2.5, it follows that lk ≥ y, so that
l > 0, and it then follows that

an+1 = an

(
1 − ak

n − y

kak
n

)
→ l

(
1 − lk − y

klk

)
as n → ∞.

Since an → l as n → ∞, it therefore follows from Proposition 3.2.2 that

l = l

(
1 − lk − y

klk

)
,

so that lk = y. If lk = mk then

0 = lk − mk = (l − m)(lk−1 + lk−2m + · · · + mk−1),

so that l = m.
This may seem to be a proof that is too complicated to be interesting.

But it is not. It is an example of the use of the Newton--Raphson method:
the sequence (an)∞

n=0 converges very rapidly. Thus it not only proves the
existence of y1/k, but also enables good approximations to it to be calculated.
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Here is an easy but useful result.

Proposition 3.2.6 (The sandwich principle) Suppose that an ≤ bn ≤ cn

for all n, and that an → l and cn → l as n → ∞. Then bn → l as n → ∞.

Proof Given ε > 0 there exists n0 such that |an − l| < ε and |cn − l| < ε

for n ≥ n0. Thus

l − ε < an ≤ bn ≤ cn < l + ε for n ≥ n0,

so that bn → l as n → ∞. �

Corollary 3.2.7 If x ∈ R, there exist a strictly increasing sequence
(rn)∞

n=1 of rational numbers and a strictly decreasing sequence (sn)∞
n=1 of

rational numbers such that rn → x and sn → x as n → ∞.

Proof Using the notation following Theorem 3.1.1, let r1 be the ‘best’
rational with x − 1 < r1 < x and let s1 be the ‘best’ rational with x < s1 <

x + 1. Arguing recursively, let rn be the ‘best’ rational with

max(x − 1
n

, rn−1) < rn < x,

and let sn be the ‘best’ rational with

x < sn < min(x +
1
n

, sn−1).

Then (rn)∞
n=1 is a strictly increasing sequence and (sn)∞

n=1 is a strictly
decreasing sequence. Since

x − 1
n

< rn < sn < x +
1
n

,

rn → x and sn → x as n → ∞, by the sandwich principle. �

The next result shows that to test for convergence we need only consider
a sequence of values of ε.

Proposition 3.2.8 Suppose that (εk)∞
k=1 is a null sequence of positive

numbers. Then a sequence (an)∞
n=0 converges to l if and only if for each

k there exists nk such that |an − l| < εk for n ≥ nk.

Proof The condition is certainly necessary. If it is satisfied, and if ε > 0,
then there exists k ∈ N such that 0 < εk < ε. If n ≥ nk, then |an − l|
< εk < ε. �

It is often convenient to take εk = 1/k, or to take εk = 1/2k.
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Exercises

3.2.1 Suppose that a > b > 0. Find limn→∞(an − bn)/(an + bn).
3.2.2 Show that

√
n + 1 −

√
n → 0 as n → ∞.

3.2.3 Does n1000000/2n converge, as n → ∞?
3.2.4 Suppose that x ∈ R and that x > 1, and that k ∈ N. Does xn/nk

converge?
3.2.5 Suppose that −1 < x < 1 and that α ∈ R. Show that

(
α

n

)
xn =

α(α − 1) . . . (α − n + 1)
n!

xn → 0 as n → ∞.

3.2.6 Suppose that x ∈ R. Show that xn/n! → 0 as n → ∞.
3.2.7 Let an =

√
n2 + n−n, for n ∈ N. Show that an converges as n → ∞.

What is the limit? Is the sequence (an)∞
n=1 monotonic?

3.2.8 Let an =
∑2n

j=n+1(1/j) and let bn =
∑2n

j=n(1/j). Show that (an)∞
n=1

is an increasing sequence, that (bn)∞
n=1 is a decreasing sequence, and

that they tend to a common limit as n → ∞.
3.2.9 Use a calculator, and the method described, to calculate 21/3 to 5

decimal places.
3.2.10 Suppose that a1, . . . , an are positive real numbers. Let A = (a1 +

· · · + an)/n be the arithmetic mean and let G = (a1a2 . . . an)1/n be
the geometric mean. Suppose that a1, . . . , an are not all equal. Show
that there exist 1 ≤ i, j ≤ n such that ai > A and aj < A. Show that
aiaj < A(ai + aj − A).
Let a′

i = A, a′
j = ai + aj − A and let a′

k = ak for k �= i, j. Let A′ and
G′ be the corresponding means. Show that A′ = A and G′ > G.
Show by induction on |{i : ai �= A}| that A ≥ G, with equality if and
only if a1 = a2 = · · · = an. (The arithmetic mean-geometric mean
inequality.)

3.2.11 Use the arithmetic mean-geometric mean inequality to establish the
following results.
(a) If nt > −1 then (1 − t)n ≥ 1 − nt.
(b) If −x < n < m then (1 + x/n)n ≤ (1 + x/m)m.
(c) If x > 0 then (1−x/n)n converges to a positive limit, as n → ∞.
(d) If x > 0 then (1 − x/n2)n → 1 as n → ∞.
(e) If x > 0 then (1 + x/n)n converges to a finite limit, as n → ∞.

3.2.12 Suppose that −1 ≤ t ≤ 1. Define tn recursively by setting t0 = 0 and
tn = tn−1 + 1

2(t−tn−1)2. Show that 0 ≤ tn−1 ≤ tn ≤ |t|, for all n ∈ N.
What is limn→∞ tn?
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3.2.13 Suppose that 0 < a0 < b0. Define an and bn recursively by setting
an = 2an−1bn−1/(an−1 + bn−1) and bn = (an−1 + bn−1)/2. Show that
an−1 < an < bn < bn−1. Determine limn→∞ an and limn→∞ bn.

3.2.14 Suppose that 0 < a0 < b0. Define an and bn recursively by setting
an =

√
an−1bn−1 and bn = (an−1 + bn−1)/2. Show that an−1 < an <

bn < bn−1, and show that the sequences (an)∞
n=0 and (bn)∞

n=0 tend to
a common limit as n → ∞.

3.2.15 Let Rn = Fn+1/Fn, where Fn is the nth Fibonacci number, and
n ≥ 1. Show that (R2n−1) is an increasing sequence and that (R2n)
is a decreasing sequence. Show that Rn tends to a limit as n → ∞,
and find the limit.

3.2.16 Give an example of a sequence (xn)∞
n=1 such that xnk converges as

n → ∞ for all k ≥ 2, whereas xn does not converge as n → ∞.
3.2.17 Suppose that (xn)∞

n=1 is a sequence such that each of the subsequences
(x2n)∞

n=1, (x2n+1)∞
n=1 and (x3n)∞

n=1 converges as n → ∞. Show that
the sequence (xn)∞

n=1 converges as n → ∞.

3.3 The uniqueness of the real number system

In the Prologue, Dedekind cuts were used to construct the real number
system R. As Exercise 3.3.2 shows, there are other ways of constructing the
real numbers, and we need to show that the outcome is essentially the same.

First, let us introduce some terminology. Suppose that x is a positive real
number. We set �x� = sup{n ∈ N : n ≤ x} and {x} = x − [x], so that
x = �x� + {x}, and 0 ≤ {x} < 1. �x� is the integral part of x, and {x} is the
fractional part of x. The latter is not only bad notation (the context should
however make it clear when {x} is being used for the singleton set) but also
bad terminology, since ‘fractional’ suggests incorrectly that {x} must be a
rational number.

Theorem 3.3.1 Suppose that R′ is an ordered field with the supremum
property. There exists a unique bijection j : R → R′ such that if x, y ∈ R
then
(i) j(x + y) = j(x) + j(y) and j(xy) = j(x)j(y), and
(ii) if x < y then j(x) < j(y).

Proof We use the fact that each of R and R′ contains a copy of the
rational numbers (Theorem 2.8.3). If r is a rational in R, let jQ(r) be the
corresponding rational in R′.

If x is a positive element of R, we set xn = �2nx�/2n. Then (xn)∞
n=0 is an

increasing sequence of rationals in R, bounded above by �x� + 1. Further,
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0 ≤ x − xn ≤ 1/2n, so that xn → x as n → ∞. The sequence (jQ(xn)∞
n=0

is an increasing sequence of rationals in R′, bounded above by jQ(�x� + 1),
and so it converges, by Theorem 3.2.4 (which can clearly be applied to R′).
We set j(x) = limn→∞ jQ(xn). Note that j(x) > 0, and that if x ∈ Q then
jQ(xn) → jQ(x), so that j(x) = jQ(x). If x < 0, we set j(x) = −j(−x).

If x and y are positive elements of R, and n ∈ Z+ then

|jQ((x + y)n) − jQ(xn) − jQ(yn)| = |(x + y)n − xn − yn|
≤ (|x + y) − |(x + y)n| + |x − xn| + |y − yn| ≤ 3/2n,

so that

j(x + y) − j(x) − j(y) = lim
n→∞

(jQ((x + y)n) − jQ(xn) − jQQ(yn)) = 0.

Thus j(x+y) = j(x)+j(y). A similar argument shows that j(xy) = j(x)j(y),
and it then follows easily that (i) holds for all x and y in R.

If x < y then there exist rationals r and s such that x < r < s < y then
j(x) ≤ j(r) < j(s) ≤ j(y), and so (ii) holds. It follows from this that j is
injective.

Using the same procedure, we construct a mapping k : R′ → R for which
the results corresponding to (i) and (ii) hold. If x ∈ R and x > 0 then

k(j(x)) = lim
n→∞

k(j(x)n) = lim
n→∞

xn = x.

If x < 0 then k(j(x) = −k(−j(x)) = −k(j(−x)) = −(−x) = x. A simi-
lar argument shows that j(k(x′)) = x′ for all x′ ∈ R′. Thus j and k are
bijections.

Finally, we show that j is unique. Suppose that j1 : R → R′ is another
mapping satisfying (i) and (ii). Then j1(0) = 0 and j1(1) = 1, from which it
follows that j1(r) = j(r) for r a rational in R. If x is a positive element of
R, then j1(xn) → j1(x) as n → ∞. But j1(xn) = j(xn) → j(x) as n → ∞,
and so j1(x) = j(x). If x < 0 then

j1(x) = −j1(−x) = −j(−x) = j(x).

Thus j is unique. �

Exercises

3.3.1 Define the notion of a convergent sequence in an ordered field. Suppose
that F is an ordered field in which each bounded increasing sequence
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converges. In this exercise we show that F has the supremum property,
so that there exists a unique order-preserving field isomorphism of R
onto F .
(a) Show that each bounded decreasing sequence converges.
(b) Show that if ε > 0 then there exists n such that 1/n < ε.
(c) Suppose that A is a non-empty subset of F which is bounded

above. Show that there exists n ∈ N which is an upper bound for
A.

(d) Suppose that A is a non-empty subset of F+ = {x ∈ F : x ≥ 0}
which is bounded above. If k ∈ N, let

bk = inf{j ∈ N : j ≥ 2ka for each a ∈ A},

and let ck = bk/2k. Show that (ck)∞
k=0 is a bounded decreasing

sequence.
(e) Let c = limk→∞ ck. Show that c = supA.
(f) Show that F has the supremum property.

3.3.2 This extended question provides an alternative construction of the real
numbers.
(a) A rational Cauchy sequence is a sequence r = (rn)∞

n=1 in Q such
that for each j ∈ N there exists nj such that |rm − rn| < 1/j for
m, n ≥ nj . If r and s are rational Cauchy sequences, set r ≤ s if
rn ≤ sn for all n ∈ N. Show that ≤ is a partial order on the set C

of rational Cauchy sequences.
(b) Define a relation r ∼ s on the set C by setting r ∼ s if the sequence

(r1, s1, r2, s2, . . .) is a rational Cauchy sequence. Show that ∼ is an
equivalence relation on C.

(c) Let D = C/ ∼ be the set of equivalence classes in C. Define a
relation ≤ on D by setting a ≤ b if there exist r ∈ a and s ∈ b

such that r ≤ s. Show that this defines a total order on D. Show
that D does not have a greatest or least element.

(d) If r ∈ Q, let r = (rn)∞
n=1, where rn = r for all n ∈ N, and let

j(r) = [r] be its equivalence class in D. Show that j is an injective
order-preserving mapping of Q into D.

(e) Define addition and multiplication of elements of D, and show that
D is an ordered field.

(f) Show that a bounded increasing sequence in D converges. (This
is the hardest part. Choose representatives, and use a diagonal
argument to find the limit.)
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3.4 The Bolzano--Weierstrass theorem

Before reading this section, it is advisable to read Section 2.4, possibly
excluding Ramsey’s theorem (Theorem 2.4.4). You need to understand the
diagonal procedure (Theorem 2.4.2) and Theorem 2.4.3.

Sequences can behave in many different ways: consider for example a
sequence (qn)∞

n=1 which maps N onto the set of rational numbers between 0
and 1. The next theorem is therefore remarkable and is of great theoretical
importance.

Theorem 3.4.1 (The Bolzano--Weierstrass theorem) Suppose that
(an)∞

n=0 is a bounded sequence of real numbers. Then there is a subsequence
(ank

)∞
k=1 which converges.

Proof We shall give two proofs here, and a third proof in the next
section. (It is always worth giving more than one proof of important results;
each proof can throw a different light on the result, and the ideas from a
proof can often be used to prove other results.) Each of the proofs uses
Theorem 3.2.4.

The first proof is very short. (an)∞
n=0 has a monotone subsequence (Corol-

lary 2.4.3). This subsequence is bounded, and so it converges (Theorem
3.2.4).

The second proof, which is essentially the proof that Weierstrass gave,
uses repeated subdivision, and a diagonal argument. Let us introduce some
notation. If b, c ∈ R and b ≤ c, then the closed interval [b, c] is the set
{x ∈ R : b ≤ x ≤ c}. It has length c − b; it is closed because it contains its
endpoints b and c. We shall discuss these notions further in Section 4.1.

Since (an)∞
n=0 is bounded, there exist b0, c0 with b0 ≤ c0 such that an ∈

[b0, c0], for all n. Let d0 = (b0 + c0)/2 be the midpoint of the closed interval.
Then there are two possibilities. First, there are infinitely many n for which
an ∈ [b0, d0]; in this case we set b1 = b0 and c1 = d0, so that [b1, c1] = [b0, d0].
Secondly, there are only finitely many n for which an ∈ [b0, d0]; in this case,
an ∈ [d0, c0] for infinitely many n, and we set b1 = d0 and c1 = c0, so that
[b1, c1] = [d0, c0]. Thus in either case A1 = {n ∈ N : an ∈ [b1, c1]} is an
infinite subset of N. We have an infinite set of terms in an closed interval of
half the length of the original closed interval.

We now iterate this procedure recursively. At the jth step, we obtain a
closed interval [bj , cj ] such that [bj , cj ] ⊆ [bj−1, cj−1] and cj−bj = (c0−b0)/2j ,
and such that Aj = {n ∈ N : an ∈ [bj , cj ]} is an infinite subset of Aj−1.
For each j ∈ N let (n(j)

k )∞
k=1 be the standard enumeration of Aj . Let
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mj = n
(j)
j , so that bj ≤ amj

≤ cj , for j ∈ N. By the diagonal proce-
dure (Theorem 2.4.2) the sequence (mj)∞

j=1 is a subsequence of N. The
sequence (bj)∞

j=0 is increasing, and is bounded above by c0, and so it con-
verges as j → ∞, to b, say. Since cj = bj + (c0 − b0)/2j , cj converges to b as
j → ∞, as well. Since bj ≤ amj

≤ cj , amj
→ b as j → ∞, by the sandwich

principle. �

Exercises

3.4.1 Let (qn)∞
n=1 be a sequence which maps N onto the set of rational

numbers between 0 and 1. Show that if l ∈ [0, 1] then there exists a
subsequence (qnj

)∞
j=1 which converges to l.

3.4.2 Suppose that (an)∞
n=0 is a bounded sequence with the property that

there exists l such that if (anj
)∞
j=1 is any convergent subsequence of

(an)∞
n=0 then its limit is l. Show that an → l as n → ∞.

3.4.3 Suppose that (an)∞
n=0 is a bounded sequence of real numbers which

does not converge. Show that (an)∞
n=0 has two convergent subsequences

which converge to different limits.

3.5 Upper and lower limits

Suppose that (an)∞
n=0 is a bounded sequence, and that (ank

)∞
k=0 is a con-

vergent subsequence, convergent to l, say. What can we say about l?
First, we can say that l ∈ [m0, M0] where m0 = inf{an : n ∈ Z+} and
M0 = sup{an : n ∈ Z+}. But it may happen, for example, that a0 is much
larger than all the other terms in the sequence. Then a0 = M0, and M0

does not give us much information about l. Indeed, the value of l is not
constrained in any way by any finite set of values of an.

Let us therefore set Mj = sup{an : n ∈ Z+, n ≥ j}. Then the sequence
(Mj)∞

j=1 is decreasing (we take suprema over smaller and smaller sets), and
is bounded below by m0. It therefore converges to a limit as j → ∞. This
limit is called the upper limit or limes superior of the sequence (an)∞

n=0 and
is denoted by lim supn→∞(an). In exactly the same way, we define mj =
inf{an : n ∈ N, n ≥ j}; (mj)∞

j=1 is increasing and bounded above by M0 and
converges to the lower limit or limes inferior lim infn→∞(an) of the sequence
(an)∞

n=1. Since mj ≤ Mj for all j, lim infn→∞(an) ≤ lim supn→∞(an).
Upper and lower limits are a little complicated, being defined in two

stages; first we consider a sequence of suprema or infima, and secondly
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we take the limit of these sequences. Such a procedure will recur else-
where! We can characterize upper and lower limits by their fundamental
properties.

Theorem 3.5.1 Suppose that (an)∞
n=0 is a bounded sequence, and that S =

lim supn→∞(an). Then S is the unique real number with the two following
properties:

(i) if t > S then there exists n0 such that an < t for all n > n0;
(ii) if r < S and n ∈ N then there exists m ∈ N with m ≥ n such that

am > r.
There is a similar characterization of lim infn→∞(an).

We can express (i) by saying that an is eventually less than t, and (ii) by
saying that an is frequently greater than r.

Proof First, we show that S satisfies (i) and (ii).
(i) Since S = inf{Mj : j ∈ N} and t > S, t is not a lower bound for

{Mj : j ∈ N}. Thus there exists n0 such that Mn0 < t: then an ≤ Mn0 < t

for n ≥ n0.
(ii) Since r < S ≤ Mn and Mn = sup{am : m ≥ n}, r is not an upper

bound for {am : m ≥ n}. Thus there exists m ≥ n with aM > r.
We now turn to uniqueness. Suppose that T > S. Let U = (S + T )/2, so

that T > U > S. By (i), there exists n0 such that an < U for all n ≥ n0,
and so (ii) does not hold for T .

Suppose that R < S. Let Q = (S + R)/2, so that R < Q < S. By (ii), if
n ∈ N there exists m ≥ n with am > Q, and so (i) does not hold for R. �

We can now answer the question that was raised at the beginning of the
section, and give a third proof of the Bolzano--Weierstrass theorem.

Theorem 3.5.2 Suppose that (anj
)∞
j=0 is a convergent subsequence of a

bounded sequence (an)∞
n=0. Then

lim inf
n→∞

(an) ≤ lim
j→∞

anj
≤ lim sup

n→∞
(an).

Further, there exist subsequences (alj )
∞
j=0 and (amj

)∞
j=0 such that

alj → lim inf
n→∞

(an) and amj
→ lim sup

n→∞
(an) as j → ∞.

Proof Since mnj
≤ anj

≤ Mnj
, and since mnj

→ lim infn→∞(an) and
Mnj

→ lim supn→∞(an), the first result follows from Theorem 3.2.5 (vii).
Let S = lim supn→∞(an). By Theorem 3.5.1 (i), there exists a least n0

such that an < S + 1 for all n ≥ n0, and by (ii) there exists a least p0 > n0
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such that ap0 > S − 1. Continuing recursively, there exists a least nj > pj−1

such that an < S + 1/j for n ≥ nj , and there exists a least pj > nj such
that apj

> S − 1/j. Then S − 1/j < apj
< S + 1/j, so that apj

→ S as
j → ∞, by the sandwich principle. An exactly similar proof works for the
lower limit. �

What happens when the upper and lower limits are equal?

Theorem 3.5.3 Suppose that (an)∞
n=0 is a bounded sequence and that

l ∈ R. Then an → l as n → ∞ if and only if lim supn→∞(an) =
lim infn→∞(an) = l.

Proof If lim supn→∞(an) = lim infn→∞(an) = l, then mj → l and Mj → l

as j → ∞. Since mj ≤ aj ≤ Mj , aj → l, by the sandwich principle.
Conversely, suppose that an → l as n → ∞. Then if ε > 0 there exists

n0 such that l − ε/2 < an < l + ε/2 for n ≥ n0. Thus l − ε < Mn < l + ε

for n ≥ n0, so that Mn → l as n → ∞. Thus lim supn→∞(an) = l. Similarly
lim infn→∞(an) = l. �

What do we do when (an)∞
n=0 is not bounded? If (an)∞

n=0 is not bounded
above, then Mj = ∞ for all j ∈ Z+; we therefore define lim supn→∞ an to be
+∞. If (an)∞

n=0 is bounded above, but is not bounded below, then (Mj)∞
n=0 is

a decreasing sequence. If this is bounded below, we define lim supn→∞ an =
limn→∞ Mn; if not, we set lim supn→∞ an to be −∞. We treat lim infn→∞ an

in a similar way.

Exercises

3.5.1 Consider the second proof of the Bolzano--Weierstrass theorem in the
preceding section. What is limj→∞ amj

?
3.5.2 Suppose that (an)∞

n=0 is a bounded sequence. Let sn = a0 + · · · + an.
Show that

lim inf
n→∞

an ≤ lim inf
n→∞

sn

n + 1
≤ lim sup

n→∞

sn

n + 1
≤ lim sup

n→∞
an.

Deduce that if an → l as n → ∞ then sn/(n + 1) → l as n → ∞. Give
an example to show that the converse does not hold.

3.5.3 Suppose that (an)∞
n=0 is a bounded sequence. Let

U = {x ∈ R : {n ∈ Z+ : an > x} is finite}.

Show that inf U = lim supn→∞ an.
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3.5.4 Suppose that (an)∞
n=0 and (bn)∞

n=0 are bounded sequences. Show that

lim inf
n→∞

an + lim inf
n→∞

bn ≤ lim inf
n→∞

(an + bn) ≤ lim inf
n→∞

an + lim sup
n→∞

bn

≤ lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

Show that equality holds in the last inequality if and only if there
exists a strictly increasing sequence (nj)∞

j=0 ∈ N such that

anj
→ lim sup

n→∞
an and bnj

→ lim sup
n→∞

bn as j → ∞.

Give an example where all the inequalities are strict.
3.5.5 Suppose that (an)∞

n=0 and (bn)∞
n=0 are sequences of positive numbers,

and that an → a as n → ∞. Show that if a > 0 then lim infn→∞ anbn =
a lim infn→∞ bn. Show that equality need not hold if a = 0.

3.5.6 Suppose that (sn)∞
n=0 is a sequence of real numbers and that (tn)∞

n=0
is a strictly increasing unbounded sequence of positive numbers. Show
that lim supn→∞(sn/tn) ≤ lim supn→∞((sn+1 − sn)/(tn+1 − tn)).

3.5.7 Suppose that (an)∞
n=0 is a sequence of positive numbers. Show that

lim supn→∞ a
1/n
n ≤ lim sup(an+1/an).

3.6 The general principle of convergence

Suppose that (an)∞
n=0 is a sequence of real numbers. How can we tell whether

it converges or not? If we suspect that its limit is l, we can consider the
behaviour of |an − l| as n becomes large. But what if we do not know what l

should be? We have seen that we can answer this question when (an)∞
n=0 is

monotonic (Theorem 3.2.4), but this only happens in special circumstances.
Here we provide a more general answer.

A sequence (an)∞
n=0 is a Cauchy sequence if whenever ε > 0 there exists

n0 (usually dependent on ε) such that |am − an| < ε for m, n ≥ n0. The
terms of the sequence become close as m and n become large.

Proposition 3.6.1 A Cauchy sequence (an)∞
n=0 is bounded.

Proof The proof is just like the proof of Proposition 3.2.3. There exists
n0 such that |am − an| < 1 for m, n ≥ n0. Let

M = max{|a0|, |a1|, . . . , |an0 |, |an0 | + 1}.

If n > n0 then |an| ≤ |an − an0 | + |an0 | ≤ |an0 | + 1, so that |an| ≤ M for
all n. �
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Theorem 3.6.2 (The general principle of convergence) A sequence
(an)∞

n=0 of real numbers is convergent if and only if it is a Cauchy sequence.

Proof First, suppose that an → l as n → ∞. Given ε > 0 there exists n0

such that |an − l| < ε/2 for n ≥ n0. If m, n ≥ n0 then

|am − an| ≤ |am − l| + |an − l| < ε/2 + ε/2 = ε,

so that (an)∞
n=0 is a Cauchy sequence.

Conversely, suppose that (an)∞
n=0 is a Cauchy sequence. Then it is

bounded, and so, by the Bolzano--Weierstrass theorem, it has a convergent
subsequence (ank

)∞
k=0, convergent to l say. We shall show that an → l as

n → ∞. Suppose that ε > 0. Then there exist k0 such that |ank
− l| < ε/2

for k ≥ k0 and N such that |am − an| < ε/2 for m, n ≥ N . There exists
k1 ≥ k0 such that nk1 > N . If n ≥ N then

|an − l| ≤ |an − ank1
| + |ank1

− l| < ε/2 + ε/2 = ε. �

A Cauchy sequence is a sequence that looks as if it should converge.
A Cauchy sequence of rational numbers need not converge to a rational
number (consider a sequence of rational numbers converging to

√
2), but

does converge to a real number. This indicates again that the real numbers
provide a good extension of the rational numbers.

Exercises

3.6.1 Show from the definitions that the upper and lower limits of a Cauchy
sequence are equal. Use this to give another proof of the general
principle of convergence.

3.6.2 Let an =
√

n. Show that if ε > 0 then there exists n0 such that
|an+1 − an| < ε for n ≥ n0. Is (an)∞

n=1 a Cauchy sequence?

3.7 Complex numbers

This volume is principally concerned with real analysis: the study of real-
valued functions of a real variable, and sequences of real numbers. There
are however topics, such as the theory of power series, where it is natu-
ral to consider complex-valued functions of a complex variable. This topic
will be considered in much more detail in Volume III, but here, and in
the next section, we introduce some of the basic properties of complex
numbers.
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Why do we need to consider complex numbers? Although the construction
of the real numbers allows us to find roots of the polynomial x2 − 2, there
are plenty of polynomials with no real roots. For example, if a ∈ R then
a2 ≥ 0, so that a2+1 ≥ 1, and so the polynomial x2+1 has no real roots. We
overcome this by enlarging the real field R to obtain the complex field C.

This is a problem of algebra, rather than analysis. We want to adjoin an
element i to R with the property that i2 = −1. We shall describe a simple
way of doing this; Exercises 3.7.1 and 3.7.2 provide other constructions. In
each case, we are concerned with vector spaces. Suppose that K is a field. A
vector space E over K is an abelian additive group (E, +), with zero element
0, together with a mapping (scalar multiplication) (λ, x) → λx of K ×E into
E which satisfies

• 1.x = x,
• (λ + μ)x = λx + μx,
• λ(μx) = (λμ)x,
• λ(x + y) = λx + λy,

for λ, μ ∈ K and x, y ∈ E. The elements of E are called vectors and the
elements of K are called scalars. A vector space over R is called a real vector
space.

It then follows that 0.x = 0 and λ.0 = 0 for x ∈ E and λ ∈ K. [Note that
we use the same symbol 0 for the additive identity element in E (the zero
vector) and the zero element (the zero scalar in K).] We denote E \ {0}
by E∗.

Besides the element i, we want to consider elements bi, where b ∈ R, and
elements a + bi, where a, b ∈ R. We therefore take R2 = {(x, y) : x, y ∈ R}
as our underlying set. R2 is a real vector space:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) and a(x, y) = (ax, ay) for a ∈ R.

We set 1 = (1, 0) and i = (0, 1), so that any element (x, y) ∈ R2 can be
written as (x, y) = x1+yi. We want to define an associative and distributive
multiplication in such a way that

12 = 1, 1.i = i.1 = i and i2 = −1.

Thus we require that

(x11 + y1i)(x21 + y2i) = x1x21.1 + x1y21.i + y1x2i.1 + y1y2i.i

= (x1x2 − y1y2)1 + (x1y2 + y1x2)i,
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and so we define multiplication by setting

(x11 + y1i)(x21 + y2i) = (x1x2 − y1y2)1 + (x1y2 + y1x2)i.

We denote R2, with this multiplication, by C. Note that if a, b ∈ R then
a1 + b1 = (a + b)1 and (a1)(b1) = ab1, so that if we identify R with
R.1 = {(a, 0) : a ∈ R}, then the addition and multiplication on C extends
the addition and multiplication on R.

We need to verify that this multiplication is commutative (this is clear
from the definition) and associative. We verify associativity directly:

[(x11 + y1i)(x21 + y2i)](x31 + y3i)

= [(x1x2 − y1y2)1 + (x1y2 + y1x2)i](x31 + y3i)

= ((x1x2 − y1y2)x3 − (x1y2 + y1x2)y3)1

+((x1x2 − y1y2)y3 + (x1y2 + y1x2)x3)i

= (x1(x2x3 − y2y3) − y1(x2y3 + y2x3))1

+(x1(x2y3 + y2x3) + y1(x2x3 − y2y3))i

= (x11 + y1i)[(x2x3 − y2y3)1 + (x2y3 + y2x3)i]

= (x11 + y1i)[(x21 + y2i)(x31 + y3i)].

It is equally straightforward to verify the distributive law:

(x11 + y1i)[(x21 + y2i) + (x31 + y3i)]

= [(x11 + y1i)(x21 + y2i)] + [(x11 + y1i)(x31 + y3i)].

If z = x1 + yi �= 0 then x2 + y2 �= 0. We define

z−1 =
x

x2 + y21 − y

x2 + y2 i,

and then zz−1 = z−1z = 1, so that z−1 is the multiplicative inverse of z;
it is also written as 1/z. Thus C is a field, the complex number field, which
has a subfield R1 isomorphic to R.

If z = x1 + yi, we define its (complex) conjugate z to be z = x1 − yi.

Theorem 3.7.1 If z ∈ C then z = z. The mapping z → z is a field
isomorphism of C onto itself: 1 = 1, and if z, w ∈ C then z + w = z + w,
zw = z.w and 1/z = 1/z. If z = x1 + yi then zz = (x2 + y2)1.

Proof Easy direct verification. �
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We now write 1 for 1, and i for i, so that (x, y) = x1 + yi = x + iy. x is
the real part of z, denoted by �z, and y is the imaginary part, denoted by
�z. If y = 0 then z is real, and if x = 0 then z is pure imaginary.

We have therefore embedded the real number field R in a larger field C, in
which the polynomial x2+1 has two roots, i and −i, and we can factorize the
polynomial x2 +1 as (x− i)(x+ i). The construction is straightforward, but
the step is enormous. As we shall see, the real numbers, and real analysis, are
fascinating. By comparison, the complex numbers, and complex analysis, are
magical. Let us state one result to illustrate this. If p(x) = anxn+· · ·+a0 is a
complex polynomial, with n > 0 and an �= 0, then p has a root in C, and we
can express p as a product of linear factors: p(x) = an(x−c1) . . . (x−cn). We
have extended the field to deal with one very simple quadratic polynomial,
and the resulting extension is powerful enough to handle all polynomials.

We set |z| = (x2+y2)1/2, so that |z|2 = zz. The quantity |z| is the modulus,
or absolute value, of z; it measures the size of z. Note that |z| = |z|. If x is
real, its modulus as a real number is the same as its modulus as a complex
number. If z �= 0, then |z| > 0, and z−1 = z/|z|2.

Note that z + z = 2x, and z − z = 2y, so that |z + z| ≤ 2|z|, with equality
if and only if z is real, and |z − z| ≤ 2|z|, with equality if and only if z is
pure imaginary. Note also that

|zw|2 = (zw)(zw) = zzww = |z|2|w|2, so that |zw| = |z||w|.

Proposition 3.7.2 If z1, z2 ∈ C, set d(z1, z2) = |z1 − z2|. Then

d(z1, z2) = d(z2, z1);

d(z1, z2) = 0 if and only if z1 = z2;

d(z1, z3) ≤ d(z1, z2) + d(z2, z3) (the triangle inequality).

Proof The first two statements are obvious. For the third, let v = z1 − z2

and w = z2 − z3. Then we must show that |v + w| ≤ |v| + |w|. Let t = vw,
so that t = vw and |t| = |v|.|w|. Then

|v + w|2 = (v + w)(v + w) = vv + t + t + ww

≤ |v|2 + |t + t| + |w|2 ≤ |v|2 + 2|t| + |w|2

= |v|2 + 2|v||w| + |w|2 = (|z| + |w|)2. �
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Figure 3.7. The Argand diagram.

Again, d is a metric on C, which extends the metric on R. We can consider
a point (x, y) ∈ R2 as a point in the plane, with coordinates x and y. When
we identify C with R2, the plane is called the complex plane or Argand
diagram.

If w = u + iv ∈ C, the mapping z → z + w is a represented by a shift,
sending (x, y) to (x+u, y+v). The mapping z → z is represented by reflection
in the real axis {(x, y) ∈ R2 : y = 0}. We shall consider the geometry of
multiplication later, when we have established further properties of complex
numbers.

In Figure 3.7, we take z = 1 + (3/4)i and w = 5/12 + i.
We end this section by listing some of the subsets of C of particular

importance.

• C∗ = {z ∈ C : z �= 0} = C \ {0} is the punctured plane.
• D = {z ∈ C : |z| < 1} is the open unit disc.
• D = {z ∈ C : |z| ≤ 1} is the closed unit disc.
• T = {z ∈ C : |z| = 1} is the unit circle.
• H+ = {z = x + iy : y > 0} is the upper half-plane.
• H− = {z = x + iy : y < 0} is the lower half-plane.
• Hr = {z = x + iy : x > 0} is the right-hand half-plane.
• Hl = {z = x + iy : x < 0} is the left-hand half-plane.
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Exercises

3.7.1 Let R[x] denote the set of all real polynomials. Let N be the set of
all elements of R[x] which are divisible by x2 +1: p(x) ∈ N if we can
write p(x) = (x2+1)q(x), with q(x) ∈ R[x]. Define a relation on R[x]
by setting p(x) ∼ r(x) if p(x)−r(x) ∈ N . Verify that this is an equiv-
alence relation. Show that each equivalence class contains an element
of degree at most 1. Define operations on the equivalence classes by
setting [p(x)]+[r(x)] = [p(x)+q(x)], [p(x)].[r(x)] = [p(x).r(x)]. Show
that these definitions do not depend on the choice of representatives.
Show that with these operations, the quotient space R[x]/ ∼ becomes
a field, isomorphic to C.

3.7.2 If f and g are mappings from R2 to R2 and a, b ∈ R, define
the mapping af + bg : R2 → R2 by setting (af + bg)(z) =
af(z) + bg(z) and define fg as f ◦ g. Let I((x, y)) = (x, y) and let
J((x, y)) = (−y, x). Show that with these laws of composition, the
set of mappings {aI + bJ : (a, b) ∈ R2} becomes a field, isomorphic
to C.

3.7.3 Suppose that θ : C → C is a field isomorphism of C onto itself for
which θ(x) = x for x real. Show that either θ(z) = z for all z ∈ C or
θ(z) = z for all z ∈ C.

3.7.4 Show that if x is a non-zero element of an ordered field then
x2 > 0. Show that there is no total ordering of C which makes it
an ordered field.

3.7.5 Suppose that z = x + iy, with y > 0. Show that there are positive
real numbers u and v with 2u2 = |z| + x and 2v2 = |z| − x. Calculate
(u + iv)2. Show that z has exactly two complex square roots. Show
that the same holds when y < 0.

3.7.6 Suppose that z1 z2 ∈ C. Show that |z1 + z2|2 + |z1 − z2|2 =
2(|z1|2 + |z2|2) (the parallelogram law). Use induction to find a
corresponding result for a finite set {z1, . . . , zn} of complex numbers.

3.7.7 Sketch the region {z ∈ C : |z − 1| < 1} in the Argand diagram.
3.7.8 Sketch the region {z ∈ C : |z| < 2|z − 3|} in the Argand diagram.
3.7.9 Sketch the sets �(z2) = c and �(z2) = d, where c and d are real

constants.
3.7.10 A triple (a, b, c) of integers is called a Pythagorean triple if a2+b2 = c2.

Suppose that (a, b, c) and (m, n, p) are Pythagorean triples. Verify
that (am − bn, an + bm, cp) is a Pythagorean triple, and interpret
this in terms of complex multiplication.
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3.8 The convergence of complex sequences

In this volume, we concentrate almost exclusively on real analysis. In the
next chapter, however, we consider infinite series, and, in particular, power
series. Here it is appropriate to consider series with complex terms. In this
section we consider the convergence of complex-valued sequences.

The definitions are very straightforward generalizations of the definitions
in the real case. Suppose that (zn)∞

n=1 is a sequence of of complex numbers.
It converges to a complex number z if whenever ε > 0 there exists n0 ∈ N
such that |zn −z| < ε for all n ≥ n0, and it is a Cauchy sequence if whenever
ε > 0 there exists n0 ∈ N such that |zn − zm| < ε for all m, n ≥ n0. We
write zn → z as n → ∞ if zn converges to z as n → ∞. If zn converges to 0
as n → ∞, we say that (zn)∞

n=1 is a null sequence.
These definitions can be expressed in terms of real sequences. If z or zn

is a complex number and we write z = x + iy or zn = xn + iyn, then x and
xn are always the real parts and y and yn the imaginary parts of z and zn,
respectively.

Proposition 3.8.1 Suppose that (zn)∞
n=1 = (xn + iyn)∞

n=1 is a sequence in
C and that z = x + iy ∈ C. Then zn → z as n → ∞ if and only if xn → x

and yn → y as n → ∞. The sequence (zn)∞
n=1 is a Cauchy sequence if and

only if each of the real sequences (xn)∞
n=1 and (yn)∞

n=1 is a Cauchy sequence.

Proof First suppose that zn → z as n → ∞. Since |xn − x| ≤ |zn − z|
and |yn − y| ≤ |zn − z|, xn → x and yn → y as n → ∞. Conversely, since
|zn − z| ≤ |xn − x| + |yn − y|, it follows that if xn → x and yn → y as
n → ∞, then zn → z as n → ∞ . The proof of the result concerning Cauchy
sequences is essentially the same. �

These elementary results enable us the deduce the following results from
the results of Section 3.1. A subset B of C is bounded if {|z| : z ∈ B} is
bounded in R. A sequence (zn)∞

n=0 is bounded if the set of values {zn : n ∈
Z+} is bounded.

Theorem 3.8.2 Suppose that (zn)∞
n=1 and (wn)∞

n=1 are sequences in C.

(i) If zn → z as n → ∞ and zn → w as n → ∞, then z = w.
(ii) If zn is a convergent sequence in C , then it is bounded.
(iii) If zn = z for all n, then zn → z as n → ∞.
(iv) If (zn)∞

n=0 is a null sequence, and (wn)∞
n=0 is bounded, then (znwn)∞

n=0
is a null sequence.

(v) If zn → z and wn → w as n → ∞ then zn + wn → z + w as n → ∞.
(v) If zn → z and wn → w as n → ∞ then znwn → zw as n → ∞.
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(vi) If zn �= 0 and z �= 0 and zn → z as n → ∞ then 1/zn → 1/z as
n → ∞.

(viii) If zn → z as n → ∞ and if (znk
)∞
k=0 is a subsequence, then znk

→ z

as k → ∞.

Proof The reader should verify that these results follow from the results
of Section 3.2 and Proposition 3.8.1. �

Similarly, we have the following results.

Theorem 3.8.3 (The complex Bolzano--Weierstrass theorem) Suppose
that (zn)∞

n=0 is a bounded sequence of complex numbers. Then there is a
subsequence (znk

)∞
k=1 which converges.

Proof By the real Bolzano--Weierstrass theorem, there exists a subse-
quence (zml

)∞
l=1 such that the real subsequence (xml

)l=1 → ∞ converges,
and there exists a subsequence (znk

)∞
k=1 of that for which (ynk

)∞
k=1 converges.

Then (znk
)∞
k=1 converges, by Proposition 3.8.1. �

Theorem 3.8.4 (The complex general principle of convergence) A
sequence (zn)∞

n=0 of complex numbers is convergent if and only if it is a
Cauchy sequence.

Proof This follows easily from Proposition 3.8.1. �

Example 3.8.5 Suppose that z ∈ C. Let zn = zn. Then zn → 0 as
n → ∞ if |z| < 1, zn → 1 if z = 1. Otherwise, the sequence (zn)∞

n=1 does
not converge.

For |zn − 0| = |z|n. If |z| < 1 then |z|n → 0 as n → ∞, from which it
follows that zn → 0 as n → ∞. If z = 1 then zn = 1 for all n, so that zn → 1
as n → ∞. If |z| ≥ 1 and z �= 1 then |zn+1 − zn| = |zn||z − 1| ≥ |z − 1| for
all n ∈ N, so that (zn)∞

n=1 is not a Cauchy sequence, and therefore does not
converge.

Exercise

3.8.1 Suppose that (zn)∞
n=1 is a sequence in C which converges to z. Show

that zn → z and |zn| → |z| as n → ∞.
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4.1 Infinite series

The notion of convergence of a sequence allows us to consider infinite sums,
or series. Once again, we take either N or Z+ as index set. We shall generally
consider the case where the terms of the series are complex-valued; since R ⊆
C, the results will also apply to the case where all the terms are real-valued.
Suppose that (zj)∞

j=0 is a sequence of complex numbers. We set

sn =
n∑

j=0

zj = z0 + · · · + zn,

where sn is the nth partial sum. If sn → s as n → ∞, we say that the infinite
sum, or infinite series,

∑∞
j=0 zj converges to s. If sn does not converge, then

we say that
∑∞

j=0 zj diverges.
Here are two easy examples: as we shall see, the first one is particularly

useful. Suppose that |z| < 1. Let zj = zj for j ∈ Z+. Then

(1 − z)sn = (1 + z + · · · + zn) − (z + z2 + · · · + zn+1) = 1 − zn+1,

so that

sn =
1 − zn+1

1 − z
=

1
1 − z

− zn+1

1 − z
and sn → 1

1 − z
as n → ∞.

Thus
∑∞

j=0 zj = 1/(1 − z).
Secondly, let

aj =
1

j(j + 1)
=

1
j

− 1
j + 1

for j ∈ N.

Then

sn =
n∑

j=1

aj =
(

1 − 1
2

)
+
(

1
2

− 1
3

)
+ · · · +

(
1
n

− 1
n + 1

)
= 1 − 1

n + 1
,

107
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so that sn → 1:
∑∞

j=1 1/j(j + 1) = 1.
We can apply the results that we have obtained about convergent sequences

to infinite series. For example, a complex series is convergent if and only if
the sum of the real parts and the sum of the imaginary parts of the terms
both converge.

Proposition 4.1.1 Suppose that zj = xj + iyj and that s = σ + iτ . Then∑∞
j=0 wj converges to s if and only if

∑∞
j=0 xj converges to σ and

∑∞
j=0 yj

converges to τ .

The following result follows immediately from Theorems 3.8.2 and 3.2.5.

Theorem 4.1.2 Suppose that
∑∞

j=0 zj converges to s and that
∑∞

j=0 wj

converges to t.
(i) When it exists, the sum is unique: if

∑∞
j=0 zj = s′, then s = s′.

(ii)
∑∞

j=0(zj + wj) converges to s + t.
(iii) If c ∈ C then

∑∞
j=0 czj converges to cs.

(iv) If zj and wj are real, and zj ≤ wj for all j, then s ≤ t.

Suppose that (jk)∞
k=0 is a strictly increasing sequence in Z+. Set b0 =∑j0

j=0 zj , and set bk =
∑jk

j=jk−1+1 zj for k > 0. Then the sequence (bk)∞
k=0

is called a block sequence, or bracketed sequence, derived from (aj)∞
j=0. The

following result then follows immediately from Theorem 3.2.5 (viii).

Proposition 4.1.3 If
∑∞

j=0 zj converges to s and (bk)∞
k=0 is a block

sequence derived from it, then
∑∞

k=0 bk converges to s.

The converse is false in general (but see Corollary 4.2.3 below). Let zj =
(−1)j , for j ∈ N+. Then s2n = 0 and s2n+1 = 1 for all n ∈ Z+, so that∑∞

j=0 zj diverges. If we set jk = 2k + 1, then bk = z2k + z2k+1 = 0 for
k ∈ N+, so that

∑∞
k=1 bk converges to 0.

We also have the following simple result.

Proposition 4.1.4 If
∑∞

j=0 zj converges, then zj → 0 as j → ∞.

Proof Suppose that the sum is s. Then sj → s and sj−1 → s as j → ∞, so
that zj = sj − sj−1 → 0 as j → ∞. �

The general principle of convergence takes the following form.
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Theorem 4.1.5 (The general principle of convergence) Suppose that
(zj)∞

j=0 is a sequence of complex numbers. Then
∑∞

j=0 zj converges if and
only if given ε > 0 there exists n0 such that |sn − sm| = |

∑n
j=m+1 zj | < ε

for n > m ≥ n0.

Proof This follows immediately from the corresponding result for sequences.
�

Exercises

4.1.1 Show that if |z| < 1 then the series
∑∞

j=0(j + 1)zj converges, and find
its sum.

4.1.2 Simplify 1/(1− z)− z/(1− z2). Hence or otherwise show that if z2 �= 1
then

∑∞
n=0 z2n

/(1 − z2n+1
) converges, and find its sum.

4.1.3 Simplify z/(1 − z) − z/(1 + z). Hence show that if |z| < 1 then

z

1 + z
+

2z2

1 + z2 +
4z4

1 + z4 +
8z8

1 + z8 + · · ·

converges, and find its sum.

4.2 Series with non-negative terms

Series with real non-negative terms behave particularly well. Theorem 3.2.4
has the following immediate consequence.

Theorem 4.2.1 Suppose that (aj)∞
j=0 is a sequence of non-negative real

numbers, and that sn =
∑n

j=1 aj. Then (sn)∞
n=0 is an increasing sequence.

Either (sn)∞
n=0 is bounded, in which case

∑∞
j=0 aj converges to supn sn, or

sn → ∞, in which case we say that
∑∞

j=0 aj diverges to +∞, and write∑∞
j=0 aj = +∞.

This theorem indicates that summing a series of non-negative terms is
reasonably straightforward. Here are some of its consequences; the first is
one of many tests for convergence.

Corollary 4.2.2 (The comparison test) If 0 ≤ cj ≤ aj for all j ≥ j0 and∑∞
j=0 aj converges then

∑∞
j=0 cj converges, and

∑∞
j=0 cj ≤

∑∞
j=0 aj.

For example,
∑∞

j=1 1/j2 converges, since 1/j2 ≤ 2/j(j + 1). Note that
this corollary does not tell us what the sum is, although we can deduce from
Theorem 4.1.2 that it is at most 2. (In fact the sum is π2/6; we shall prove
this much later!)
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Corollary 4.2.3 If (aj)∞
j=0 is a sequence of non-negative numbers and

(bk)∞
k=0 is a block sequence derived from it, then

∑∞
j=1 aj converges to s if

and only if
∑∞

k=1 bk converges to s.

Proof sn → s as n → ∞ if and only if sjl
→ s as l → ∞, and sjl

=∑l
k=0 bk. �

We can say more when (aj)∞
j=0 is a decreasing sequence of non-negative

numbers.

Corollary 4.2.4 (The compression principle) If (aj)∞
j=1 is a decreasing

sequence of non-negative real numbers, then
∑∞

j=1 aj converges if and only
if
∑∞

k=0 2ka2k converges. If so then

1
2

∞∑
k=0

2ka2k ≤
∞∑

j=0

aj ≤
∞∑

k=0

2ka2k .

Proof Let (bk)∞
k=0 be the block sequence obtained by taking jk = 2k. Then

1
2
2ka2k = 2k−1a2k ≤ bk = a2k−1+1 + · · · + a2k ≤ 2k−1a2k−1 ,

since (aj)∞
j=0 is decreasing, and there are 2k−1 summands. Thus the conver-

gence result follows from two applications of the comparison test and the
inequalities from Theorem 4.1.2 (iv). �

Corollary 4.2.5 The harmonic series
∑∞

j=1 1/j diverges to +∞.

Proof For if aj = 1/j then 2ka2k = 1, so that the result follows from the
preceding corollary. �

Corollary 4.2.6 (Cauchy’s test) Suppose that (aj)∞
j=0 is a bounded

sequence of non-negative real numbers. If lim supj→∞ a
1/j
j < 1 then

∑∞
j=1 aj

converges, and if lim supj→∞ a
1/j
j > 1 then

∑∞
j=1 aj = +∞.

Proof In the first case, choose r such that lim supj→∞ a
1/j
j < r < 1. Then

there exists j0 such that a
1/j
j < r for j ≥ j0. Thus aj ≤ rj for j ≥ j0 and so,

using the comparison test,
∑∞

j=1 aj converges.

In the second case, for each j ∈ Z+ there exists k ≥ j such that a
1/k
k > 1,

so that ak > 1. Thus (aj)∞
j=0 is not a null sequence and so

∑∞
j=1 aj diverges

to +∞. �
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Corollary 4.2.7 (D’Alembert’s ratio test) Suppose that (aj)∞
j=0 is a

sequence of positive real numbers. If lim supj→∞ aj+1/aj < 1 then
∑∞

j=1 aj

converges. If lim infj→∞ aj+1/aj > 1 then
∑∞

j=1 aj diverges to +∞.

Proof In the first case, choose r such that lim supj→∞ aj+1/aj < r < 1.
Then there exists j0 such that aj+1/aj < r for j ≥ j0. Thus if j > j0 then

aj =
(

aj

aj−1

)(
aj−1

aj−2

)
. . .

(
aj0+1

aj0

)
aj0 ≤ rj−j0aj0 = (aj0r

j0)rj ,

and so, taking the terms a1, . . . , aj0 into account, there exists M such that
aj ≤ Mrj for all j. By the comparison test,

∑∞
j=1 aj converges.

In the second case, there exists j1 such that aj+1 > aj for j ≥ j1, so that
aj ≥ aj1for j ≥ j1. Thus (aj)∞

j=0 is not a null sequence, so that by Proposition
4.1.4,

∑∞
j=1 aj diverges to +∞ . �

It is important to note that neither corollary gives any information when
lim supj→∞ a

1/j
j = 1 or when lim supj→∞ aj/aj+1 = 1. When aj = 1/j,

the sum diverges, and when aj = 1/j2, the sum converges. In either case,
a

1/j
j → 1 and aj+1/aj → 1 as j → ∞.
We use D’Alembert’s ratio test to introduce the exponential function,

one of the most important functions in analysis. Suppose that x ≥ 0. Let
aj = xj/j!. Then aj+1/aj = x/(j + 1) and x/(j + 1) → 0 as j → ∞,
so that

∑∞
j=0 xj/j! converges, to exp(x), say. The mapping x → exp(x) is

the exponential function. We set e = exp(1) =
∑∞

j=0 1/j!. Note that since
1/n! ≤ 1/2n−1, it follows that

2 ≤ e ≤ 1 +
∞∑

j=1

1
2j−1 = 3.

In fact, e = 2.718281828 . . .. We shall extend this definition for negative x in
the next section and for complex x in Section 4.7.

Let us give an example, relating to the argument of Theorem 3.3.1. Suppose
that x is a positive real number. As in Theorem 3.3.1, we set xn = �2nx�/2n.
Let a0 = x0 = �x� and let an = 2n(xn − xn−1) for n ∈ N. Then an = 0 or 1,
and

xn = a0 +
(a1

2
+

a2

22 + · · · +
an

2n

)
.

Thus x =
∑∞

n=0(an/2n). We can write this as

x = a0 · a1a2 . . . .
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This is the binary expansion of x. Note that, with this procedure, recurrent
1s are avoided.

We can of course also consider expansions with bases other than 2. We can
for example write u = u0 +

∑∞
j=1 uj/10j where 0 ≤ uj ≤ 9, to obtain the

familiar decimal expansion of u, and we can write v = v0+
∑∞

n=1 vj/3j , where
vj = 0, 1 or 2; this is the ternary expansion of v. There are other possibilities:
for example, we can write w = w0 +

∑∞
j=2 wj/j!, where 0 ≤ wj < j.

We can use these ideas to show that R is uncountable.

Theorem 4.2.8 The set R of real numbers is uncountable.

Proof We give two proofs. The first was given by Cantor in 1891. It is
enough to show that [0, 1) = {x ∈ R : 0 ≤ x < 1} is uncountable. Suppose
that (xn)∞

n=1 is a sequence in [0, 1). We show that there exists y ∈ [0, 1) which
does not occur in the sequence, so that there can be no surjective mapping of
N onto [0, 1). Let xn = 0.xn1xn2 . . . be the decimal expansion of xn. We set
yn = 0 if xnn �= 0, and yn = 2 if xnn = 0. The sum

∑∞
n=1 yn/10n converges,

to y, say. From the construction, |xn − y| ≥ 1/10n, and so y �= xn, for any n.
For the second proof, we define an injective map c from P (N) into [0, 1];

since P (N) is uncountable, so is [0, 1]. This time, let us use ternary expan-
sions. Suppose that A ⊆ N. Let aj = 2 if j ∈ A, and let aj = 0 if j �∈ A.
Then

∑∞
j=1 aj/3j converges, to c(A), say. Suppose that A �= B, and that

k is the least integer in exactly one of A and B. Then |c(A) − c(B)| ≥
2/3k −

∑∞
j=k+1 2/3j = 1/3k, and so c(A) �= c(B). Thus the mapping

C : A → c(A) : P (N) → [0, 1] is injective. We shall meet this function
again later. �

Cantor’s result, first proved by him in 1873, was very controversial. We
know that the rationals are countable, and so there are ‘many more’ irra-
tionals than rationals. We can say more. A real number x is algebraic if there
exists a non-zero polynomial p with rational coefficients such that x is a root
of p; otherwise it is transcendental. For example, radicals (numbers of the
form k1/n) are algebraic. So are the three real roots of the quintic x5 −4x+2,
although, following the results of Ruffini and Abel, these roots cannot be
expressed in term of radicals. It can be hard to decide whether a particular
number is algebraic or transcendental, and it was only in 1844 that Liouville
first showed that any transcendental number existed. In 1851 he gave the first
explicit example, showing that the number

∑∞
n=1 1/10n! is trancendental. It

is easy to see that e =
∑∞

n=0 1/n! is not rational. If e = p/q, then q!e must
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be an integer; but

q!e = (q! + q! + q!/2! + · · · + 1) +
(

1
q

+
1

q(q + 1)
+ · · ·

)
.

The first term is an integer, and the second is less than 1, giving a contradic-
tion. It is much harder to determine whether e is algebraic or transcendental,
and it was only in 1873 (the same year as the first proof of Cantor’s theorem)
that Hermite showed that e is transcendental, whereas the transcendence of
π was only established by Lindemann nine years later, in 1882. But the set
of algebraic numbers is countable (Exercise 4.2.15), and so there are ‘many
more’ transcendental numbers than algebraic ones! One valid objection to
this argument is that it is non-constructive; it does not give a method for pro-
ducing transcendental numbers. It is however the case that many important
results of analysis have this non-constructive property.

Exercises

4.2.1 Which of the following series converge, and which diverge?

∞∑
n=1

1
1 + n2 ;

∞∑
n=1

n!
nn

;
∞∑

n=1

1
(n2 + n)1/2 .

4.2.2 Suppose that 0 < an < 1 for n ∈ N. Show that if
∑∞

n=1 an con-
verges, then so do

∑∞
n=1 a2

n and
∑∞

n=1 an/(1 − an). Are the converse
statements true?

4.2.3 Suppose that 0 < a < b. Show that

1 +
1 + a

1 + b
+

(1 + a)(1 + 2a)
(1 + b)(1 + 2b)

+ · · ·

converges.
4.2.4 Suppose that (aj)∞

j=0 is a sequence of non-negative real numbers for
which

∑∞
j=0 aj converges. Show that there is a sequence (mj)∞

j=0 of
positive numbers such that mj → ∞ as j → ∞ and

∑∞
j=0 mjaj

converges.
4.2.5 Suppose that (aj)∞

j=0 is a sequence of non-negative real numbers for
which

∑∞
j=0 aj diverges to +∞. Show that there is a null sequence

(mj)∞
j=0 of positive numbers such that

∑∞
j=0 mjaj diverges to +∞.

4.2.6 Suppose that x > 0. Use the binomial theorem to show that

en(x) =
n∑

j=0

xj

j!
≥ (1 + x/n)n.
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Recall (Exercise 3.1.9) that (1 + x/m)m is an increasing bounded
sequence, which tends to a limit. Show that

lim
m→∞

(1 + x/m)m ≥ en(x).

Show that (1 + x/m)m → exp(x) as m → ∞.
4.2.7 Suppose that (aj)∞

j=1 is a decreasing sequence of non-negative real
numbers. Show that

∑∞
j=1 aj converges if and only if

∑∞
k=0 3ka3k

converges, and if and only if
∑∞

k=0 kak2 converges.
4.2.8 Suppose that (aj)∞

j=1 is a decreasing sequence of non-negative real
numbers for which

∑∞
j=1 aj converges. Show that nan → 0 as n → ∞.

4.2.9 Simplify 1 − a/(1 + a). Suppose that aj ≥ 0 for j ∈ N. Show that∑∞
j=1 aj/(1 + a1)(1 + a2) . . . (1 + aj) converges, to s say, where 0 <

s ≤ 1. Determine s when
∑∞

j=1 aj = +∞.
4.2.10 Suppose that (aj)∞

j=0 and (bj)∞
j=0 are sequences of positive real num-

bers, and that there exists j0 such that aj+1/aj ≤ bj+1/bj for j ≥ j0.
Show that if

∑∞
j=0 bj converges, then so does

∑∞
j=0 aj .

4.2.11 Suppose that (aj)∞
j=1 is a sequence of non-negative real numbers for

which
∑∞

j=1 aj/j converges. Show that (
∑n

j=1 aj)/n → 0 as n → ∞
(Kronecker’s Lemma).

4.2.12 The following tests, due to Kummer and Dini, extend D’Alembert’s
ratio test. Suppose that (aj)∞

j=0 and (cj)∞
j=0 are sequences of positive

real numbers.
Show that if

lim sup
j→∞

(
cj+1aj+1

aj
− cj

)
< 0

then
∑∞

j=1 aj converges.
Show that if

∑∞
j=0(1/cj) diverges to +∞ and

lim inf
j→∞

(
cj+1aj+1

aj
− cj

)
> 0

then
∑∞

j=1 aj diverges to +∞.
4.2.13 As a special case of the tests of the previous exercise, suppose that

(aj)∞
j=0 is a sequences of positive numbers for which aj+1/aj → 1, so

that D’Alembert’s test gives no information.
Show that if

lim sup
j→∞

j(aj+1 − aj)
aj

< 0

then
∑∞

j=1 aj converges.
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Show that if

lim inf
j→∞

j(aj+1 − aj)
aj

> 0

then
∑∞

j=1 aj diverges to +∞.
4.2.14 Suppose that 0 < a < b. Show that

1 +
1 + a

1 + b
+

(1 + a)(2 + a)
(1 + b)(2 + b)

+ · · ·

converges if b > a + 1 and diverges if b < a + 1. What happens if
b = a + 1?

4.2.15 Show that the set of polynomials of degree d with rational coeffi-
cients is countable. Show that the set of all polynomials with rational
coefficients is countable. Show that the set of algebraic numbers is
countable.

4.3 Absolute and conditional convergence

A series
∑∞

j=0 zj is said to converge absolutely if
∑∞

j=0 |zj | converges.

Proposition 4.3.1 If
∑∞

j=0 zj converges absolutely then it converges, and
|
∑∞

j=0 zj | ≤
∑∞

j=0 |aj |.

Proof If zj = xj + iyj then |xj | ≤ |zj | and |yj | ≤ |zj |, so that
∑∞

j=0 zj

converges absolutely if and only if
∑∞

j=0 xj and
∑∞

j=0 yj do; it is enough
to consider series with real terms. Suppose that

∑∞
j=0 aj is an absolutely

convergent real series. Let

a+
j = aj if aj ≥ 0 and a+

j = 0 if aj < 0,

a−
j = 0 if aj ≥ 0 and a−

j = −aj = |aj | if aj < 0.

Since
∑∞

j=0 |aj | converges, each of the series
∑∞

j=0 a+
j and

∑∞
j=0 a−

j converges.
Since aj = a+

j − a−
j ,
∑∞

j=0 aj converges. Since |
∑n

j=0 aj | ≤
∑n

j=0 |aj |, for all
n, |

∑∞
j=0 aj | ≤

∑∞
j=0 |aj |. �

Absolutely convergent series are generally as well behaved as series
with non-negative terms. The comparison test, D’Alembert’s ratio test and
Cauchy’s test can clearly be used to test for absolute convergence. For exam-
ple, if z ∈ C then

∑∞
j=0 zj/j! converges absolutely; we again denote the sum

by exp(z). Thus we have defined the exponential function for all complex z.
A series

∑∞
j=0 aj is said to be conditionally convergent if it converges, but

does not converge absolutely.
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Proposition 4.3.2 If
∑∞

j=0 aj is a conditionally convergent real series
then

∑∞
j=0 a+

j = +∞ and
∑∞

j=0 a−
j = +∞.

Proof At least one of the sums must diverge. Suppose that
∑∞

j=0 a+
j = +∞

and that
∑∞

j=0 a−
j converges to s−. Suppose that M > 0. There exists n0

such that
∑n

j=0 a+
j > M + s− for n ≥ n0, so that

sn =
n∑

j=0

a+
j −

n∑
j=0

a−
j ≥

n∑
j=0

a+
j − s− > M for n ≥ n0.

Thus (sn)∞
n=0 is unbounded, giving a contradiction. A similar argument

applies if
∑∞

j=0 a−
j = +∞ and

∑∞
j=0 a+

j converges. �

Thus conditional convergence depends on cancellation of positive and neg-
ative quantities, and arguments are generally more delicate. Fortunately
there are some useful tests for convergence; the conditions that are imposed
are all-important.

Theorem 4.3.3 (The alternating series test) Suppose that (aj)∞
j=0 is a

decreasing null sequence of positive real numbers. Then
∑∞

j=0(−1)jaj con-
verges, to s, say. Further, the sequence (s2n+1)∞

n=0 increases to s, and the
sequence (s2n)∞

n=0 decreases to s.

Proof Since

s2n+1 = s2n−1 + (a2n − a2n+1) ≥ s2n−1 and

s2n+2 = s2n − (a2n+1 − a2n) ≤ s2n,

the sequence (s2n+1)∞
n=0 is increasing and the sequence (s2n)∞

n=0 is decreasing.
Since

s2n+1 = s2n − a2n+1 ≤ s2n ≤ s0

and s2n+2 = s2n+1 + a2n+1 ≥ s2n+1 ≥ s1,

the sequence (s2n+1)∞
n=0 is bounded above and the sequence (s2n)∞

n=0 is
bounded below. Consequently, they both converge, as n → ∞. Since
s2n−s2n+1 = a2n+1 → 0 as n → ∞, the limits are the same, and sn converges
to the common limit. �

This result has the benefit that if we calculate s2n and s2n+1 then we know
that s2n+1 ≤ s ≤ s2n, and so we have an estimate of the error. But in practice
this estimate is usually too crude to be useful.

The next three tests extend this result, and also apply to complex series.
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Theorem 4.3.4 (Hardy’s test) Suppose that (aj)∞
j=0 is a null sequence

of complex numbers for which
∑∞

j=1 |aj − aj−1| < ∞, and that (zj)∞
j=0

is a sequence of complex numbers for which the sequence of partial sums
(
∑n

j=0 zj)∞
n=0 is bounded. Then

∑∞
j=0 ajzj converges.

Proof This is a result whose proof is almost forced upon us. Since we do not
know what the sum should be, we use the general principle of convergence.
Thus we consider a sum of the form

sn − sm = am+1zm+1 + · · · + anzn.

Let tn =
∑n

j=0 zj and let sn =
∑n

j=0 ajzj for n ∈ Z+. We do not have
information about the terms zj , but we do know that there exists M such
that |tn| ≤ M for all n ∈ Z+. Now zj = tj − tj−1. We therefore substitute,
and rearrange:

sn − sm =

= am+1(tm+1 − tm) + · · · + an(tn − tn−1)

= −am+1tm + (am+1 − am+2)tm+1 + · · · + (an−1 − an)tn−1 + antn.

This equation (and others of a similar form) is known as Abel’s formula.
Suppose that ε > 0. There exists n0 such that

∑∞
j=n0+1 |aj − aj−1| <

ε/3(M + 1) and |an| < ε/3(M + 1), for n ≥ n0. If n > m ≥ n0 then

|sn − sm| ≤ |am+1|.|tm| +

⎛⎝ n−1∑
j=m+1

|(aj − aj+1|.|tj |

⎞⎠+ |an|.|tn|

≤

⎛⎝|am+1| +

⎛⎝ n−1∑
j=m+1

|(aj − aj+1|

⎞⎠+ |an|

⎞⎠M < ε.

Convergence therefore follows from the general principle of convergence. �

Theorem 4.3.5 (Dirichlet’s test) Suppose that (aj)∞
j=0 is a decreasing null

sequence of positive real numbers and that (zj)∞
j=0 is a sequence of complex

numbers for which the sequence of partial sums (
∑n

j=0 zj)∞
n=0 is bounded.

Then
∑∞

j=0 ajzj converges, to s say. Further, if sm =
∑m

j=0 ajzj and M =
supn |tn| then |s − sm| ≤ 2am+1M .

Proof Since
∑∞

j=1 |aj − aj−1| =
∑∞

j=1(aj−1 − aj) = a0, the first state-
ment follows from Hardy’s test. Let tn =

∑n
j=0 zj . Using Abel’s formula, we
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see that

|sn − sm| ≤
≤ |am+1tm| + |(am+1 − am+2)tm+1| + · · · + |(an−1 − an)tn−1| + |antn|
≤ (am+1 + (am+1 − am+2) + · · · + (an−1 − an) + an)M = 2am+1M.

Thus |s − sm| = limn→∞ |sn − sm| ≤ 2am+1M . �

Theorem 4.3.6 (Abel’s test) Suppose that (aj)∞
j=0 is a decreasing

sequence of positive numbers and that
∑∞

j=0 zj converges. Then
∑∞

j=0 ajzj

converges.

Proof We deduce this from Dirichlet’s test. The sequence (aj)∞
j=0 converges:

let a be its limit. Since the sequence of partial sums (
∑n

j=0 zj)∞
n=0 is bounded,

it follows from Dirichlet’s test that
∑∞

j=0(aj − a)zj converges. But
∑∞

j=0 azj

converges. Adding, we obtain the result. �

Exercises

4.3.1 Do the following series converge?

∞∑
n=1

(−1)n

n − (−1)n
;

∞∑
n=1

(−1)n

√
n − (−1)n

.

4.3.2 Prove Abel’s test directly, without appealing to Dirichlet’s test.
4.3.3 Suppose that (aj)∞

j=0 and (zj)∞
j=0 satisfy the conditions of Abel’s test,

and that
∑∞

j=0 ajzj = t. Find an upper bound for |
∑n

j=0 ajzj − t|.
4.3.4 Suppose that

∑∞
j=0 z2

j converges absolutely. Show that
∑∞

j=0 zj/(j +1)
converges absolutely.

4.4 Iterated limits and iterated sums

A real-valued function f on N×N or on Z+ ×Z+ is called a double sequence;
we frequently write (fm,n)∞

m=1
∞
n=1 for f , where fm,n = f(m, n). Suppose that

(fm,n)∞
m=1

∞
n=1 is a double sequence. Suppose that fm,n → gn as m → ∞, for

each n ∈ N and that gn → g as n → ∞. Suppose also that fm,n → hm as
n → ∞, for each m ∈ N and that hm → h as m → ∞. Does it follow that
g = h?
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Simple examples show that the answer is ‘no’. For example, let fm,n = 1
if m ≤ n and let fm,n = 0 if m > n. Then

lim
m→∞

(
lim

n→∞
fm,n

)
= lim

m→∞
1 = 1,

lim
n→∞

(
lim

m→∞
fm,n

)
= lim

n→∞
0 = 0.

Thus even when the iterated limits exist, the value can depend on the order
in which the limits are taken.

The same phenomenon occurs with sums. Let fm,n = 1 if m = n, let
fm,n = −1/2m−n if m > n and let fm,n = 0 if m < n. Then

∞∑
m=1

( ∞∑
n=1

fm,n

)
=

∞∑
m=1

21−m = 2

∞∑
n=1

( ∞∑
m=1

fm,n

)
=

∞∑
n=1

0 = 0.

These examples show that we cannot always interchange the order in which
we take limits. On the other hand, if certain conditions are satisfied, then the
same value is obtained, independent of the order in which the limits are taken.
In the exercises, examples of this are given.

Exercises

4.4.1 Suppose that {ajk : (j, k) ∈ Z+ × Z+} is a double sequence of non-
negative numbers. Show that the following are equivalent.
(a)

∑∞
k=0 ajk converges for each j ∈ Z+, and

∑∞
j=0(

∑∞
k=0 ajk)

converges.
(b)

∑∞
j=0 ajk converges for each k ∈ Z+, and

∑∞
k=0(

∑∞
j=0 ajk)

converges.
(c) The set {

∑n
j=0(

∑n
k=0 ajk) : n ∈ Z+} is bounded.

Show that if these conditions are satisfied then
∞∑

j=0

(
∞∑

k=0

ajk) =
∞∑

k=0

(
∞∑

j=0

ajk).

4.4.2 Suppose that {ajk : (j, k) ∈ Z+ × Z+} is a double sequence of non-
negative numbers. Find a sufficient condition, corresponding to the
condition in the previous example, for the two limits

lim
m→∞

(
lim

n→∞
am,n

)
and lim

n→∞

(
lim

m→∞
am,n

)
to exist and be equal.
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4.4.3 Suppose that {zjk : (j, k) ∈ Z+ × Z+} is a double sequence of complex
numbers. Show that the following are equivalent.
(a)

∑∞
k=0 |zjk| converges for each j ∈ Z+, and

∑∞
j=0(

∑∞
k=0 |zjk|)

converges.
(b)

∑∞
j=0 |zjk| converges for each k ∈ Z+, and

∑∞
k=0(

∑∞
j=0 |zjk|)

converges.
(c) The set {

∑
{zjk : (j, k) ∈ F} : F a finite subset of Z+ × Z+} is

bounded.
Show that if these conditions are satisfied then

∞∑
j=0

(
∞∑

k=0

ajk) =
∞∑

k=0

(
∞∑

j=0

ajk).

4.4.4 Let ajk = 1/(j2 − k2) for (j, k) ∈ N × N with j �= k, and let ajj = 0
for j ∈ N. By writing

1
j2 − k2 =

1
2j

(
1

j + k
+

1
j − k

)
for j �= k,

show that
∑∞

k=1 ajk = −3/4j2, and show that the series converges
absolutely. Deduce that

∑∞
j=1(

∑∞
k=1 ajk) converges. Is

∞∑
j=1

(
∞∑

k=1

ajk) =
∞∑

k=1

(
∞∑

j=1

ajk)?

4.5 Rearranging series

What happens if we try to add the terms of an infinite series in a different
order?

Theorem 4.5.1 Suppose that
∑∞

j=0 zj converges absolutely, and that∑∞
j=0 zj = s. If σ is a permutation of Z+ then

∑∞
j=0 zσ(j) converges to s.

Proof By considering real and imaginary parts, it is enough to consider an
absolutely convergent real series

∑∞
j=0 aj . First consider the case where all

the terms are non-negative. If n ∈ Z+ and k = sup{σ(j) : 1 ≤ j ≤ n} then∑n
j=0 aσ(j) ≤

∑k
i=0 ai ≤ s. Thus

∑∞
j=0 aσ(j) converges, and

∑∞
j=0 aσ(j) ≤ s.

By the same token,

s =
∞∑

j=0

aj =
∞∑

j=0

aσ−1σ(j) ≤
∞∑

j=0

aσ(j).
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In the general case, write aj = a+
j −a−

j . Then aσ(j) = a+
σ(j) −a−

σ(j), so that∑∞
j=0 aσ(j) converges to

∑∞
j=0 a+

σ(j) −
∑∞

j=0 a−
σ(j), and

∞∑
j=0

aσ(j) =
∞∑

j=0

a+
σ(j) −

∞∑
j=0

a−
σ(j) =

∞∑
j=0

a+
j −

∞∑
j=0

a−
j =

∞∑
j=0

aj . �

When
∑∞

j=0 aj converges conditionally, the situation is completely dif-
ferent. Let us give an example. Let aj = (−1)j+1/

√
j, for j ∈ N.

Then

1 − 1√
2

+
1√
3

− 1√
4

+ · · · +
1√

2j − 1
− 1√

2j
+ · · ·

converges, by the alternating series test. Let us rearrange the terms, taking
two positive terms and one negative one, and repeating, to give the series

(1+
1√
3

− 1√
2
)+(

1√
5

+
1√
7

− 1√
4
)+ · · ·+(

1√
4j + 1

+
1√

4j + 3
− 1√

2j
)+ · · · .

Now √
j

(
1√

4j + 1
+

1√
4j + 3

− 1√
2j

)
→ 1 − 1√

2
as j → ∞

so that there exists j0 such that

1√
4j + 1

+
1√

4j + 3
− 1√

2j
>

1
4
√

j
for j ≥ j0.

Thus the sum of the rearranged terms diverges to +∞.
This sort of phenomenon is quite general. Let us illustrate this by giving

one result for real series, which also indicates that there are many other
possibilities.

Theorem 4.5.2 Suppose that
∑∞

j=1 aj is a conditionally convergent real
series, and that m < M . Then there exists a rearrangement

∑∞
j=1 aσ(j) such

that, setting tn =
∑n

j=1 aσ(j), lim infn→∞ tn = m and lim supn→∞ tn = M .

Proof We shall describe the idea of the proof, but omit the technical details.
Let

P = {j1 < j2 < · · · } = {j ∈ N : aj > 0}, Q = {k1 < k2 < · · · } = N \ P.

Then
∑∞

i=1 aji
=
∑∞

j=1 a+
j = +∞ and

∑∞
l=1(−akl

) =
∑∞

j=1 a−
j = +∞.

Let us suppose that M ≥ 0. Let i1 be the least integer such that
∑i1

i=1 aji
>

M . We define σ(i) = ji for 1 ≤ i ≤ i1. Next, let l1 be the least integer such
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that
∑i1

i=1 aji
+
∑l1

l=1 akl
< m. We define σ(i1 + j) = kj for 1 ≤ j ≤ l1. We

now iterate this procedure, so that the partial sums oscillate between values
greater than M and values less than m. The procedure does not terminate,
since the sums

∑∞
i=1 aji

and
∑∞

l=1(−akl
) are infinite. The resulting mapping

σ from N to N is then clearly bijective. Finally, since the sum
∑∞

j=1 aj is
convergent, the sequence (aj)∞

j=1 is a null sequence. Thus the size of the
‘overshoots’ tends to 0, so that lim infn→∞ tn = m and lim supn→∞ tn = M .

If M < 0, we start by finding a sum less than m, and then proceed as
above. �

In particular, we can rearrange the series to converge to any limit whatever.

Corollary 4.5.3 If l ∈ R, there exists a rearrangement
∑∞

j=1 aσ(j) which
converges to l.

Proof Take m = M = l. �

Exercises

4.5.1 Let

1 − 1
2

+
1
3

− 1
4

+
1
5

− 1
6

· · · = s.

Show that

1 − 1
2

+
1
3

+
1
5

− 1
4

+
1
7

+
1
9

− 1
6

+ · · · =
3s

2
.

4.5.2 Show that

1 +
1
32 +

1
52 +

1
72 + · · · =

3
4

(
1 +

1
22 +

1
32 +

1
42 + · · ·

)
.

4.5.3 Suppose that
∑∞

j=0 aj is convergent to s, and that σ is a permutation
of N.
(a) Suppose that |σ(j) − j| ≤ K for all j. Show that

∑∞
j=0 aσ(j) is

convergent to s.
(b) Let mj = sup{|ak| : k > j}. Suppose that mj |σ(j) − j| → 0 as
j → ∞. Show that

∑∞
j=0 aσ(j) is convergent to s.
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4.6 Convolution, or Cauchy, products

The results in this section relate to power series, which we shall consider
in more detail in the next section. Suppose that (aj)∞

j=0 and (bj)∞
j=0 are

sequences of complex numbers. We consider two formal power series

a(x) = a0 + a1x + a2x
2 + · · · , b(x) = b0 + b1x + b2x

2 + · · · .

If we formally multiply them, and collect terms together, we obtain

a(x)b(x) = c(x) = c0 + c1x + c2x
2 + · · · , where cj =

j∑
i=0

aibj−i.

The sequence (cj)∞
j=0 is the convolution product, or Cauchy product, of the

sequences (aj)∞
j=0 and (bj)∞

j=0.
Suppose that

∑∞
j=0 aj converges to s and that

∑∞
j=0 bj converges to t.

What can we say about the convergence of
∑∞

j=0 cj? First, if both converge
conditionally then

∑∞
j=0 cj need not converge. For example, if aj = bj =

(−1)j/
√

j + 1, then
∑∞

j=0 aj and
∑∞

j=0 bj converge, by the alternating series
test. But

cj = (−1)j
j+1∑
k=1

1√
k
√

j + 2 − k
.

Since k(j + 2 − k) ≤ (j + 2)2/4, it follows that |cj | ≥ 2(j + 1)/(j + 2) ≥ 1,
and the series

∑∞
j=0 cj does not converge.

On the other hand, we have the following.

Proposition 4.6.1 If
∑∞

j=0 aj and
∑∞

j=0 bj are absolutely convergent,
to s and t respectively, and cj =

∑j
i=0 aibj−i then

∑∞
j=0 cj is absolutely

convergent to st.

Proof First suppose that aj ≥ 0 and bj ≥ 0 for all j. Consider the terms
aibk arranged in a semi-infinite array:

a0b0 a0b1 a0b2 . . .

a1b0 a1b1 a1b2 . . .

a2b0 a2b1 a2b2 . . .
...

...
...

. . .

Then cj is the sum of the terms on the diagonal line {(i, k) : i + k = j}.
Thus un =

∑n
j=0 cj is the sum of the terms in the triangle on and above the
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line {(i, k) : i + k = n}. Thus if m = [n/2] is the integral part of n/2 then

smtm =
m∑

i=0

ai

m∑
k=0

bk ≤ un ≤
n∑

i=0

ai

n∑
k=0

bk = sntn,

so that un → st, by the sandwich principle.
The result now extends to the case where

∑∞
j=0 aj and

∑∞
j=0 bj are abso-

lutely convergent, by considering real and imaginary parts, and splitting these
into positive and negative parts. �

a0b0

a0bm a0bn

anbnanb0

amb0 ambm

Figure 4.6. Summing a convolution product.

Let us apply this to the exponential function. Let aj = aj/j! and bj = bj/j!.
Then

cj =
bj

j!
+

abj−1

(j − 1)!
+ · · · +

aibj−i

i!(j − i)!
+ · · · +

aj

j!
= (a + b)j/j!,

by the binomial theorem. Thus exp(a) exp(b) = exp(a + b). Consequently
exp(z) exp(−z) = 1, so that ez �= 0. In particular, if x is real and negative
then exp(x) = 1/ exp(−x) > 0. The mapping z → exp(z) is a homomorphism
of the additive group (C, +) into the multiplicative group (C \ {0}),×) of
non-zero complex numbers. For this reason, we frequently write ez for exp(z).

What happens when one series is absolutely convergent and the other is
conditionally convergent?

Theorem 4.6.2 If
∑∞

j=0 aj is absolutely convergent to s and
∑∞

j=0 bj

is conditionally convergent to t, and if cj =
∑j

i=0 aibj−i then
∑∞

j=0 cj is
convergent to st.
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Proof Let sn, tn and un denote the nth partial sums of the three sequences.
The sequence (tn)∞

n=0 is bounded. Let M = supn |tn|, and let L =
∑∞

j=0 |aj |.
Let m = [n/2]. Now

un =
n∑

j=0

cj =
n∑

j=0

(
j∑

i=0

aibj−i

)

=
n∑

i=0

⎛⎝n−i∑
j=0

aibj−i

⎞⎠ =
n∑

i=0

ai

⎛⎝n−i∑
j=0

bj

⎞⎠
= a0tn + · · · + ant0.

Here we first add the rows of the triangle {(i, j) : i+ j ≤ n}, and then add
the resulting sums. Thus

un − snt = a0(tn − t) + · · · + an(t0 − t).

We split the sum into two parts: un − snt = λ1 + λ2, where

λ1 = a0(tn − t) + · · · + am(tn−m − t),

and λ2 = am+1(tn−m−1 − t) + · · · + an(t0 − t).

We consider the two sums separately. Given ε > 0, there exists n0 such that

∞∑
j=n0

|aj | <
ε

3M + 1
and sup

n≥n0

|tn − t| <
ε

3L + 1
for n ≥ n0.

If n ≥ 2n0, then m ≥ n0 and n − j ≥ n0 for 0 ≤ j ≤ m, so that

|λ1| ≤ ε

3L + 1
(

m∑
j=0

|aj |) < ε/3.

Further,

|λ2| ≤ 2M(
∞∑

j=m+1

|aj |)) < 2ε/3

so that un − snt → 0 as n → ∞. Since un − st = un − snt + (sn − s)t, it
follows that un → st as n → ∞. �

The technique of this proof, where we divide a sum into two parts, and
consider each part separately, is one that is used in many areas of analysis.
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Exercises

4.6.1 Let aj = bj = (−1)j/(j + 1) and let cj =
∑j

i=0 aibj−i. Show that

cj = (−1)j 2
j + 2

(
1 +

1
2

+ · · · +
1

j + 1

)
.

Show that (|cj |)∞
j=0 is a decreasing null sequence. Deduce that

∑∞
j=0 cj

converges.
4.6.2 Suppose that an → a as n → ∞. Let sn = a0 + · · · + an. Show that

sn/(n + 1) → a as n → ∞.
Suppose that an → a and that bn → b as n → ∞. Show that

1
n + 1

(a0bn + · · · + anb0) → ab as n → ∞.

Suppose that (cj)∞
j=0 is the convolution product of the sequences (aj)∞

j=0
and (bj)∞

j=0, and that
∑∞

j=0 aj is conditionally convergent to s and∑∞
j=0 bj is conditionally convergent to t. Let un = c0 + · · · + cn.

(a) Show that u0 + · · · + un = s0tn + · · · + snt0.
(b) Show that (u0 + · · · + un)/(n + 1) → st as n → ∞.
(c) Show that if

∑∞
j=0 cj converges, then its sum must be st.

4.7 Power series

A power series is an expression of the form
∑∞

n=0 an(z − z0)n, where (an)∞
n=0

is a sequence of complex numbers, z0 is a complex number, and z is a complex
number, which we also allow to vary. (In fact, in many circumstances we shall
consider complex power series for which the coefficients an are real.) We are
interested in the values of z for which the power series converges. For this it
is clearly sufficient to consider the case where z0 = 0.

We introduce some notation. If 0 < R < ∞ we set UR = {z ∈ C : |z| < R},
the open disc of radius R with centre 0, and we set U∞ = C. Thus U1 = D ,
the open unit disc.

Let us begin with a very simple example. Consider the power series∑∞
n=0 zn. If |z| ≥ 1 then |zn| does not tend to zero, and so the power series

diverges. If |z| < 1, then

sn =
n∑

j=0

zj =
1 − zn+1

1 − z
, so that |sn − 1

1 − z
| =

|z|n+1

|1 − z| ,

so that
∑∞

n=0 zn converges to 1/(1 − z). Thus
∑∞

n=0 zn converges if and only
if z is in the open unit disc D = {z : |z| < 1}.
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We can however say more. If |z| < 1 then

∞∑
n=0

|zn| =
∞∑

n=0

|z|n = 1/(1 − |z|),

so that the series
∑∞

n=0 zn converges absolutely.
Suppose that

∑∞
n=0 anzn is a complex power series. For what values of z

does it converge? To answer this, it is convenient to consider the set

B = {r ∈ [0,∞) : (anrn)∞
n=0 is a bounded sequence}.

0 ∈ B, and if r ∈ B then [0, r] ⊆ B. Thus B is an interval. If B is bounded
we set R = sup B. R may or may not belong to B. If B = [0,∞), we set
R = ∞. R is called the radius of convergence of the power series

∑∞
n=0 anzn.

The next theorem explains the reason for this name.

Theorem 4.7.1 Suppose that
∑∞

n=0 anzn is a complex power series with
radius of convergence R. If z ∈ UR then

∑∞
n=0 anzn converges absolutely. If

|z| > R then
∑∞

n=0 anzn does not converge.

Proof If |z| > R then (anzn)∞
n=0 is unbounded, and so the power series

diverges. (In particular, if R = 0 then the series only converges when z = 0.)
Suppose that |z| < R. There exists s such that |z| < s < R, and so Ms =
supn∈Z+ |ansn| < ∞. Let r = |z|/s, so that 0 ≤ r < 1. Then

|anzn| = |ansnrn| ≤ Msr
n for n ∈ N.

By the comparison test, the series
∑∞

n=0 |anzn| converges, and so
∑∞

n=0 anzn

converges absolutely. �

Note that the proof depends only on the convergence of a geometric series.
This simple idea is very powerful, and we shall use it, and the convergence
of series such as

∑∞
n=0 nkrn, where 0 ≤ r < 1 and k ∈ N, many times in the

future.
We have the following formula for the radius of convergence.

Theorem 4.7.2 Suppose that
∑∞

n=0 anzn is a power series with radius of
convergence R. Let Λ = lim sup |an|1/n. If Λ = 0 then R = ∞. If Λ = ∞
then R = 0. Otherwise, R = 1/Λ.

Proof This is just a matter of teasing out the definitions. Suppose that
Λ < ∞ and that S > Λ. Then there exists n0 such that |an|1/n < S for
n ≥ n0. Thus |an|/Sn < 1 for n ≥ n0; the sequence (an/Sn)∞

n=0 is bounded,
and so 1/S ≤ R. Since this holds for all S > Λ, R = ∞ if Λ = 0, and
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R ≥ 1/Λ otherwise. Suppose that Λ > 0 and 0 < s < Λ. Let s < t < Λ. Then
|an|1/n > t for infinitely many n. Thus |an|/sn ≥ (t/s)n for infinitely many
n; the sequence (an/sn)∞

n=0 is unbounded, and so 1/s ≥ R. Since this holds
for all s < Λ, R = 0 if Λ = ∞, and R ≤ 1/Λ otherwise. �

The theorem says nothing about convergence on the circle of convergence
CR = {z ∈ C : |z| = R}. There are many possibilities, as the following
examples show.

1.
∑∞

n=0 n!zn. Since (n!rn)∞
n=0 is unbounded for all r > 0, R = 0, and the

series only converges when z = 0.
2.
∑∞

n=0 nzn. Here B = [0, 1) and R = 1. The sequence (nzn)∞
n=0 is

unbounded for each z ∈ C1.
3.
∑∞

n=0 zn. Here B = [0, 1] and R = 1. zn �→ 0 as n → ∞ for each z ∈ C1.
4.
∑∞

n=0 zn/n. Here B = [0, 1] and R = 1.
∑

zn/n diverges when z = 1. If
z ∈ C1 and z �= 1 then∣∣∣∣∣∣

n∑
j=0

zj

∣∣∣∣∣∣ =
∣∣∣∣1 − zn+1

1 − z

∣∣∣∣ ≤ ∣∣∣∣ 2
1 − z

∣∣∣∣ ,
so that the sequence (

∑n
j=0 zj)∞

n=1 is bounded. Consequently, the series∑∞
n=0 zn/n converges, by Dirichlet’s test (Theorem 4.3.5).

5.
∑∞

n=0 zn/n2. Here B = [0, 1] and R = 1. The series converges uniformly
on {z ∈ C : |z| ≤ 1}.

6.
∑∞

n=0 zn/n!. Here B = [0,∞) and R = ∞. The function ez = e(z) =∑∞
n=0 zn/n! is the exponential function.

If
∑∞

n=0 anzn and
∑∞

n=0 bnzn are power series, we can form the sum∑∞
n=0(an + bn)zn.

Proposition 4.7.3 Suppose that
∑∞

n=0 anzn has radius of convergence R

and
∑∞

n=0 bnzn has radius of convergence R′. If R �= R′ then the radius of
convergence of

∑∞
n=0(an + bn)zn is min(R, R′); if R = R′ the the radius of

convergence is greater than or equal to R.

Proof The proof is left as an exercise. �

If
∑∞

n=0 anzn and
∑∞

n=0 bnzn are power series, we can form the formal
product

∑∞
n=0 cnzn, where cn =

∑n
j=0 ajbn−j , as in the previous section.

Theorem 4.7.4 If
∑∞

n=0 anzn has radius of convergence R and
∑∞

n=0 bnzn

has radius of convergence R′ then the formal product
∑∞

n=0 cnzn has radius
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of convergence greater than or equal to min(R, R′). If |z| < min(R, R′) then

(
∞∑

n=0

anzn)(
∞∑

n=0

bnzn) =
∞∑

n=0

cnzn.

Proof Let R′′ be the radius of convergence of
∑∞

n=0 cnzn. If |z| < min(R, R′)
then all three series converge absolutely, by Proposition 4.6.1, and

(
∞∑

n=0

anzn)(
∞∑

n=0

bnzn) =
∞∑

n=0

cnzn.

Hence R′′ ≥ min(R, R′) �

We shall consider power series further in Section 6.6, and in Volume III.

Exercises

4.7.1 Prove Proposition 4.7.3.
4.7.2 Find the radii of convergence of the following power series:

∞∑
n=0

(2 + in)nzn;
∞∑

n=0

(2n)!
(n!)2

zn;
∞∑

n=0

n
√

nzn;
∞∑

n=0

z3n

2n(n + 1)
.

4.7.3 What is the radius of convergence of the power series
∞∑

n=0

nn

n!
zn?

At which points, if any, of the circle of convergence does it converge?
4.7.4 Suppose that an+1/an → λ as n → ∞. What is the radius of

convergence of
∑∞

n=0 anzn?
4.7.5 What are the radii of convergence of the power series

1 + z + 2z2 + 4z3 + 8z4 + · · · and 1 − z − z2 − z3 − · · ·?

What is the radius of convergence of their product?
4.7.6 Suppose that the series

∑∞
n=0 anzn has non-zero radius of convergence

R. Let f(z) =
∑∞

n=0 anzn for |z| < R.
(a) Show that if the coefficients an are real, then f(z̄) = f(z) for |z| <

R.
(b) Show that f is even -- that is, f(z) = −f(z) for |z| < R -- if and

only if an = 0 for n odd.
(c) Show that f is odd -- that is, f(z) = −f(z) for |z| < R -- if and

only if an = 0 for n even.
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(d) Suppose that f �= 0. Show that there exists 0 < r < R such that
f(z) �= 0 for 0 < |z| ≤ r.

4.7.7 Suppose that the power series
∑∞

n=0 anzn has radius of convergence R.
Let sn =

∑n
j=0 aj . Investigate the radius of convergence of the power

series
∑∞

n=0 snzn.
4.7.8 Let

a0 = 1, a1 = −1, aj =
(−1)n

n2n
for 2n ≤ j < 2n+1 and n ∈ N.

Show that if |z| = 1 and z �= 1 then

|
j∑

k=2n

akz
k| ≤ 1

n2n|1 − z| for 2n ≤ j < 2n+1.

Show that
∑

n=0 anzn converges conditionally, for all z with |z| = 1.
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The topology of R

In this chapter, we consider some particular sorts of subsets of R, and their
relation to convergence. This involves many definitions; familiarity will only
come with use. We study the ideas that arise here in a more general setting
in Volume II.

5.1 Closed sets

We begin by considering intervals in R. A subset I of R is an interval if
whenever two numbers belong to it, then so do all the intermediate points:
that is, if a < c < b and a, b ∈ I then c ∈ I. R is an interval. The empty set
and singleton sets are degenerate intervals. Other examples of intervals are
the semi-infinite intervals

(−∞, b) = {x ∈ R : x < b}, (−∞, b] = {x ∈ R : x ≤ b},

(a,∞) = {x ∈ R : a < x}, [a,∞) = {x ∈ R : a ≤ x},

and the bounded intervals

(a, b) = (b, a) = {x ∈ R : a < x < b},(a, b] = [b, a) = {x ∈ R : a < x ≤ b},

[a, b) = (b, a] = {x ∈ R : a ≤ x < b},[a, b] = [b, a] = {x ∈ R : a ≤ x ≤ b},

where a < b. It is an easy exercise to show that every interval is of one of
these forms. The length of a bounded interval is b − a; the length of R and
of semi-infinite intervals is +∞.

Note that if I is a set of intervals then ∩I∈II is an interval, and that if I1

and I2 are intervals with I1 ∩ I2 �= ∅ then I1 ∪ I2 is an interval.
Next, we consider the closure of a subset of R. A real number b is called a

closure point of a subset A of R if whenever ε > 0 there exists a ∈ A (which
may depend upon ε) with |b − a| < ε. Thus b is a closure point of A if there
are points of A arbitrarily close to b. If b ∈ A, then b is a closure point of A,
since we can take a = b for any ε > 0.

131
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We can use convergent sequences to characterize closure points.

Proposition 5.1.1 Suppose that A is a subset of R and that b ∈ R. b is
a closure point of A if and only if there exists a sequence (aj)∞

j=1 in A such
that aj → b as j → ∞.

Proof Suppose that there exists a sequence (aj)∞
j=0 in A such that aj → b

as j → ∞. Suppose that ε > 0. There exists j0 such that |b − aj | < ε for
j ≥ j0. Take a = aj0 . Thus b is a closure point of A.

Conversely, if b is a closure point of A then for each j ∈ N there exists
aj ∈ A with |b − aj | < 1/j. Then aj → b as j → ∞. �

The closure A of A is the set of closure points of A. A is a subset of A since
each point of A is a closure point of A. A subset A of R is said to be closed
if A = A:

Proposition 5.1.2 A subset A of R is closed if and only if whenever
(an)∞

n=1 is a sequence in A which converges to b, then b ∈ A.

Proof This is an immediate consequence of Proposition 5.1.1. �

In other words, a subset A of R is closed if and only if it is closed under
taking limits. For example, the interval [a, b] is closed, since if a ≤ xj ≤ b and
xj → x as j → ∞ then a ≤ x ≤ b, by Theorem 3.2.5. (This accords with our
use of the term closed interval in Section 3.2.) If a < b, and xj = a+(b−a)/2j

for j ∈ Z+ then xj ∈ (a, b], and xj → a as j → ∞. Thus (a, b] is not closed,
since a �∈ (a, b]. The set Q of rational numbers is not closed, since if x is any
irrational number then by Corollary 3.2.7 there exists a sequence of rational
numbers which converges to x, so that Q = R. A subset A of a subset B of
R is dense in B if B ⊆ A. Thus Q is dense in R.

Proposition 5.1.3 Suppose that A and B are subsets of R.

(i) If A ⊆ B then A ⊆ B.
(ii) A is closed.
(iii) A is the smallest closed set containing A: if C is closed and A ⊆ C

then A ⊆ C.

Proof (i) follows trivially from the definition of closure.
(ii) Suppose that b is a closure point of A and suppose that ε > 0. Then

there exists c ∈ A such that |b − c| < ε/2, and there exists a ∈ A with
|c − a| < ε/2. Thus |b − a| < ε, and so b ∈ A.

(iii) By (i), A ⊆ C = C. �
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Here are some fundamental properties of the collection of closed subsets
of R.

Proposition 5.1.4 (i) The empty set ∅ and R are closed.
(ii) If A is a set of closed subsets of R then ∩A∈AA is closed.
(iii) If {A1, . . . , An} is a finite set of closed subsets of R then A = ∪n

j=1Aj

is closed.

Proof (i) The empty set is closed, since it has no closure points, and R is
trivially closed.

(ii) Suppose that b is a closure point of ∩A∈AA, and that A ∈ A. If ε > 0
then there exists a ∈ ∩A∈AA with |b − a| < ε. But then a ∈ A. Since this
holds for all ε > 0, a ∈ A = A. Since this holds for all A ∈ A, b ∈ ∩A∈AA.

(iii) Suppose that b �∈ A. If 1 ≤ j ≤ n then b �∈ Aj = Aj , and so there exists
εj > 0 such that if |b − c| < εj then c �∈ Aj . Let ε = min{εj : 1 ≤ j ≤ n}.
Then ε > 0, and if |b − c| < ε then c �∈ ∪n

j=1Aj = A. Thus b is not a closure
point of A; every closure point of A is in A, and so A is closed. �

Corollary 5.1.5 A finite subset of R is closed.

Proof The empty set is closed, and a singleton set {a} is closed, since if b �= a

then, setting ε = |b − a|, {a} ∩ {x : |x − b| < ε} = ∅. Now apply (iii). �

Let us give another example.

Example 5.1.6 Suppose that (aj)∞
j=0 is a sequence of real numbers

convergent to a. Let S = {aj : j ∈ Z+}. Then S = S ∪ {a}.

By Proposition 5.1.1, a ∈ S. Suppose that b �∈ S ∪{a}. We shall show that
b is not a closure point of S. Let η = |b − a|/2: then η > 0. There exists j0

such that |aj − a| < η for j ≥ j0. Then by the triangle inequality,

|b − aj | ≥ |b − a| − |aj − a| ≥ 2η − η = η, for j ≥ j0.

Let ε = min(η,min{|b − aj | : 1 ≤ j < j0}). Then ε > 0, and if s ∈ S then
|b − s| ≥ ε. Thus b is not a closure point of S.

Proposition 5.1.7 If A is a non-empty subset of R which is bounded
above then sup A ∈ A.

Proof For each j ∈ N there exists aj ∈ A with supA − 1/j < aj ≤ sup A.
Then aj → sup A, so that supA ∈ A. �

We can also consider subsets of a subset X of R. Suppose that A is subset
of X. Then the relative closure of A in X is the set A∩X of closure points of
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A which are in X. The set A is relatively closed in X if it is equal to its relative
closure. Relatively closed sets can be characterized in the following way.

Proposition 5.1.8 Suppose that A is a subset of a subset X of R. Then
the following are equivalent:

(i) A is relatively closed in X;
(ii) there exists a closed subset F of R such that A = F ∩ X;
(iii) if (an)∞

n=0 is a sequence in A which converges to a point b of X then
b ∈ A.

Proof This is a worthwhile exercise for the reader. �

Exercises

5.1.1 Verify that every interval in R is of one of the forms described at the
beginning of this section.

5.1.2 Show that a subset I of R is an interval if and only if whenever a, b ∈ I

and 0 ≤ t ≤ 1 then (1 − t)a + tb ∈ I.
5.1.3 Suppose that a ⊆ R. Show that the following are equivalent.

(a) A is closed.
(b) If [a, b] is a closed interval for which A ∩ [a, b] is non-empty then
sup(A ∩ [a, b]) ∈ A and inf(A ∩ [a, b]) ∈ A.

5.1.4 Suppose that A is a non-empty closed subset of R and that b ∈ R.
Show that there exists a ∈ A such that |a − b| = inf{|x − a| : x ∈ A}.
Is a unique?

5.1.5 If A and B are non-empty subsets of R, we set A + B = {a + b :
a ∈ A, b ∈ B}.
(a) Give an example of closed sets A and B for which A + B is not
closed.
(b) Show that if A is closed, and B is closed and bounded, then A + B

is closed. [Hint: Use the Bolzano--Weierstrass theorem.]
5.1.6 Suppose that (Aj)∞

j=0 is a sequence of subsets of R. Show that

∪n
j=0Aj = ∪n

j=0Aj and that ∪∞
j=0Aj ⊇ ∪∞

j=0Aj .

Give an example to show that the inclusion can be strict. What about
intersections?

5.1.7 Suppose that x is an irrational number. Let an = {nx}, the fractional
part of nx. Use the pigeonhole principle to show that if ε > 0 then there
exist m, n such that |am − an| < ε. Show that {an : n ∈ N} is dense in
[0, 1].

5.1.8 Using Proposition 5.1.2, give proofs of Propositions 5.1.3, 5.1.4 and
5.1.7 which use convergent sequences. Do the same for Example 5.1.6.
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5.2 Open sets

Suppose that a ∈ R and ε > 0. We define the open ε-neighbourhood of a to
be the set of all numbers distant less than ε from a:

Nε(a) = {x ∈ R : |x − a| < ε}.

Nε(a) is the interval (a − ε, a + ε). We can express convergence in terms of
ε-neighbourhoods; aj → a as j → ∞ if and only if for each ε > 0 there exists
j0 such that aj ∈ Nε(a) for j ≥ j0. Similarly, the closure of a set is defined in
terms of ε-neighbourhoods: a ∈ Ā if and only if Nε(a) ∩ A �= ∅, for all ε > 0.

Suppose that A is a subset of R. An element a of A is an interior point of
A if there exists ε > 0 such that Nε(a) ⊆ A. In other words, all the numbers
sufficiently close to a are in A; we can move a little way from a without
leaving A. The interior A◦ of A is the set of interior points of A. A subset
U of R is open if U = U◦. The interval (a, c) = {b ∈ R : a < b < c} is
open: if b ∈ (a, c), we can take ε = min(c − b, b − a). In particular, an open
ε-neighbourhood Nε(x) is open.

The collection of open sets of R is called the topology of R. Properties that
can be defined in terms of the open sets are called topological properties. The
word ‘topology’ is also used to describe the study of topological properties.

The interval (a, b] is not open: there is no suitable ε for b. Thus (a, b] is
an example of a set which is neither open nor closed. The set Q of rational
numbers is also neither open nor closed: we have seen that it is not closed,
and it is not open, since if r ∈ Q and ε > 0 then the open ε-neighbourhood
Nε(r) contains irrational points (see Exercise 3.1.2).

‘Interior’ and ‘closure’, ‘open’ and ‘closed’, are closely related, as the next
proposition shows. Recall that we denote the complement R \ S of a subset
S of R by C(S).

Proposition 5.2.1 Suppose that A and B are subsets of R, and that
a ∈ R.

(i) If A ⊆ B then A◦ ⊆ B◦.
(ii) C(A◦) = C(A).
(iii) A is open if and only if C(A) is closed.
(iii) A◦ is open.
(iv) A◦ is the largest open set contained in A: if U is open and U ⊆ A then

U ⊆ A◦.

Proof (i) This follows directly from the definition.
(ii) If b �∈ A◦ then Nε(b) ∩ C(A) �= ∅ for all ε > 0, and so b ∈ C(A).

Conversely, if b ∈ C(A) then Nε(b) ∩ C(A) �= ∅ for all ε > 0, and so
b �∈ A◦.
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(iii) If A is open then C(A) = C(A◦) = C(A), by (ii), and so C(A) is closed.
If C(A) is closed then C(A◦) = C(A) = C(A), so that A◦ = A.

(iv) C(A◦) = C(A) is closed, so that A◦ is open, by (iii).
(v) By (i), U = U◦ ⊆ A◦. �

Corollary 5.2.2 (i) The empty set ∅ and R are open.
(ii) If A is a set of open subsets of R then ∪A∈AA is open.
(iii) If {A1, . . . , An} is a finite set of open subsets of R then ∩n

j=1Aj is open.

Proof Take complements. �

If A is a subset of R then the frontier or boundary ∂A of A is the set
Ā \ A◦. Since ∂A = Ā ∩ C(A), ∂A is closed. x ∈ ∂A if and only if every open
ε-neighbourhood of x contains an element of A and an element of C(A).

We can also consider subsets of a subset X of R. Suppose that A is subset
of X. Then a point a of A is an interior point of A relative to X if there
exists ε > 0 such that Nε(a) ∩ X ⊆ A. The set of interior points of A relative
to X is then the relative interior of A in X, and A is relatively open in X if
it is equal to its relative interior in X.

Relatively open sets can be characterized in the following way.

Proposition 5.2.3 Suppose that A is a subset of a subset X of R. Then
the following are equivalent:

(i) A is relatively open in X;
(ii) there exists an open subset U of R such that A = U ∩ X;
(iii) the set X \ A is relatively closed in X.

Proof Again, this is a worthwhile exercise for the reader. �

Exercises

5.2.1 Suppose that A and B are subsets of R and that A is open. Show that
A + B is open.

5.2.2 Suppose that A is a subset of R. Show that by repeatedly taking clo-
sures and interiors, we can obtain at most six more different sets. Give
an example to show that six more different sets can be obtained.

5.3 Connectedness

We now establish a fundamental characterization of non-empty intervals, in
terms of open sets. This will allow us to say more about open sets. We need
some more terminology. A non-empty subset A of R splits if there exist two
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disjoint open subsets U1 and U2 of R such that A ⊆ U1 ∪ U2 and A ∩ U1 and
A ∩ U2 are non-empty. If A does not split, it is connected.

Theorem 5.3.1 A non-empty subset A of R is connected if and only if it
is an interval.

Proof Suppose first that A is not an interval. Then there exist a < b < c

such that a, c ∈ A and b �∈ A. Let U1 = (−∞, b) and let U2 = (b, +∞). Then
U1 and U2 are disjoint open sets and A∩U1 and A∩U2 are non-empty. Thus
A splits.

Conversely, suppose that A splits. Thus there exist disjoint open subsets
U1 and U2 such that A ⊆ U1 ∪ U2, and A ∩ U1 and A ∩ U2 are non-empty.
Let a1 ∈ A∩U1, and a2 ∈ A∩U2. Without loss of generality, we can suppose
that a1 < a2. Let b = sup(U1 ∩ [a1, a2]). We shall show that a1 < b < a2 and
that b �∈ A, so that A is not an interval. First, there exists 0 < θ ≤ a2 − a1

such that (a1 − θ, a1 + θ) ⊆ U1. Thus b ≥ a1 + θ > a1. Secondly, there exists
0 < ε < a2−a1 such that (a2−ε, a2+ε) ⊆ U2; thus b < a2. Suppose if possible
that b ∈ U1. Then there exists 0 < η < a2 − b such that (b − η, b + η) ⊆ U1.
Then (b, b+ η) ⊆ U1 ∩ [a1, a2], contradicting the definition of b. Thus b �∈ U1.
Suppose if possible that b ∈ U2. Then there exists 0 < ζ < θ such that
(b − ζ, b + ζ) ⊆ U2. Then b − ζ/2 is an upper bound for U1 ∩ [a1, a2], again
contradicting the definition of b. Thus b �∈ U1 ∪ U2, and so b �∈ A. �

Corollary 5.3.2 A subset A of R is both open and closed if and only if
A = ∅ or A = R.

Proof We have seen that ∅ and R are both open and closed. If A is open and
closed then C(A) is open and closed. R = A ∪ C(A); since R is connected,
either A = ∅ or C(A) = ∅. �

Open subsets of R can now be characterized as disjoint unions of open
intervals.

Theorem 5.3.3 Suppose that U is a non-empty subset of R. U is open
if and only if there is a countable set I of disjoint open intervals such that
U = ∪I∈II. The set I is uniquely determined.

Proof A union of open intervals is open, by Corollary 5.2.2, and so the
condition is sufficient. Suppose that U is open. We define an equivalence
relation on U by setting a ∼ b if [a, b] ⊆ U (here we allow the possibility that
a > b, in which case [a, b] = {c ∈ R : b ≤ c ≤ a}). If a ∼ b then b ∼ a, since
[a, b] = [b, a]; if a ∼ b and b ∼ c then a ∼ c, since [a, c] ⊆ [a, b] ∪ [b, c] ⊆ U .
Thus ∼ is an equivalence relation on U . Let I be the set of equivalence classes.
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If I ∈ I, then I is an interval, and I and U \ I are disjoint. If a ∈ I, then
there exists ε > 0 such that Nε(a) ⊆ U . If b ∈ Nε(a) then [a, b] ⊆ Nε(a) and
so b ∈ I. Thus Nε(a) ⊆ I, and I is open. Thus U is a disjoint union of a set
I of open intervals.

If r ∈ U ∩ Q, let Ir be the equivalence class to which r belongs. Since
a non-empty open interval contains rational points (between any two real
numbers, there is a rational number), the mapping r → Ir : U ∩ Q → I is
surjective. Since U ∩ Q is countable, so is I.

The representation is unique. Suppose that U = ∪J∈J J , where J is a set
of disjoint open intervals. Suppose that J ∈ J , and that x ∈ J . Then x ∈ I,
for some I ∈ I. If y ∈ J then [x, y] ⊆ J ⊆ U ; hence y ∈ I and J ⊆ I. Further,
I = J ∪ ((U \ J) ∩ I). Since J and (U \ J) are disjoint open subsets of I, and
I is connected, I = J . Hence J = I. �

Exercises

5.3.1 Suppose that A is a non-empty subset of R. Show that A is connected
if and only if whenever F1 and F2 are closed subsets of R whose union
is R then either A ⊆ F1 or A ⊆ F2.

5.3.2 Suppose that G is a proper closed subgroup of (R, +) and that G �= {0}.
Suppose that (a, b) is a connected component of R \ G. Show that
G = {n(b − a) : n ∈ Z}.

5.3.3 Suppose that F and G are closed subsets of R, that [c0, d0] ⊆ F ∪G and
that c0 ∈ F, d0 ∈ G. If (c0 + d0)/2 ∈ F , set c1 = (c0 + d0)/2, d1 = d0;
otherwise set c1 = c0, d1 = (c0 + d0)/2. Repeat recursively. Show that
there exists b ∈ c0, d0 such that cn → b and dn → b as n → ∞. Show
that b ∈ F ∩ G. Use this to give another proof of Theorem 5.3.1.

5.3.4 Suppose that {Oα}α∈A is a family of disjoint non-empty open subsets
of R (if α �= β then Oα ∩ Oβ = ∅).
(a) Show that A is countable.
(b) Suppose that, for each α, Oα = ∪I∈Iα

I, where Iα is a set of disjoint
non-empty open intervals. Show that J = ∪α∈AIα is a set of disjoint
non-empty open intervals whose union is ∪α∈AOα.

5.4 Compact sets

We now use the Bolzano--Weierstrass theorem to obtain some important
results about the bounded closed subsets of R. Suppose that A is a subset of
a set X and that B is a set of subsets of X. We say that B covers A, or that
B is a cover of A, if A ⊆ ∪B∈BB. A subset C of B is a subcover if it covers A.
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A cover B is finite if the set B is finite. If X = R, a cover B is open if each
B ∈ B is an open set.

Theorem 5.4.1 Suppose that U is an open cover of the bounded closed
interval [a, b]. Then there exists δ > 0 such that if x ∈ [a, b] then there exists
U ∈ U such that Nδ(x) ⊆ U .

Proof Suppose not. Then for each n ∈ N there exists xn such that N1/n(xn)
is not contained in any U ∈ U . By the Bolzano--Weierstrass theorem, there
exists a convergent subsequence (xnk

)∞
k=1, convergent to x, say. Since [a, b] is

closed, x ∈ [a, b]. Thus x ∈ U , for some U ∈ U . Since U is open, there exists
ε > 0 such that Nε(x) ⊆ U . Since xnk

→ x as k → ∞, there exists K ∈ N,
with nK > 2/ε, such that |xnk

−x| < ε/2 for k ≥ K. If y ∈ N1/nK
(xnK

) then,
by the triangle inequality

|y − x| ≤ |y − xnK
| + |xnK

− x| < 1/nK + ε/2 < ε,

so that y ∈ U . Thus N1/nK
(xnK

) ⊆ U , giving a contradiction. �

A positive number δ which satisfies the conclusions of this theorem is called
a Lebesgue number for the cover.

Theorem 5.4.2 (The Heine--Borel theorem for open sets) Suppose that U
is an open cover of the (non-degenerate) closed interval [a, b]. Then there is
a finite subcover.

Proof We give two proofs of this fundamental theorem. Another proof is
given in Exercise 5.4.4. First, let δ be a Lebesgue number for the cover. We
divide [a, b] into finitely many intervals, each of length less than δ: choose
n ∈ N such that n > (b − a)/δ, and let aj = a + j(b − a)/n, for 0 ≤ j ≤ n.
Then a = a0 < a1 < · · · < an = b, and aj − aj−1 = (b − a)/n < δ. For each
0 ≤ j ≤ n there exists Uj ∈ U such that Nδ(aj) ⊆ Uj . Then [a, b] ⊆ ∪n

j=0Uj .
For the second proof, let

C = {x ∈ [a, b] : there is a finite subcover of [a, x]}.

We must show that b ∈ C. Since a ∈ C, C is not empty. Let s = sup C. We
take three steps.

First, c > a. For a ∈ U for some U ∈ U , and there exists ε > 0 such that
Nε(a) ⊆ U . Thus Nε(a)∩ [a, b] ⊆ C, so that if c = min(a+ ε/2, b) then c ∈ C.
Hence s ≥ c > a.

Secondly, s ∈ C. For s ∈ V for some V ∈ U , and there exists η > 0 such
that Nη(s) ⊆ V . Then there exists c ∈ C∩(s−η, s]. [a, c] has a finite subcover
W, and W ∪ {V } is a finite subcover of [a, s].
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Finally, s = b. For if not, and if s < t < min(s + η, b) then W ∪ {V } is a
finite subcover of [a, t], so that t ∈ C. �

A set B is said to be compact if every open cover of B has a finite subcover.

Proposition 5.4.3 Suppose that (Un)∞
n=1 is an increasing sequence of

open sets in R which covers a compact subset K of R. Then there exists
n ∈ N such that K ⊆ Un.

Proof There is a finite subcover {Un1 , . . . , Unk
}. Then K ⊆ UN , where N =

max{n1, . . . , nk}. �

Theorem 5.4.4 A non-empty subset B of R is compact if and only if it
is closed and bounded.

Proof Suppose first that B is closed and bounded. There exists [a, b] such
that B ⊆ [a, b]. Then U ∪ {C(B)} is an open cover of [a, b], and so there is a
finite subcover {U1, . . . , Un, C(B)} of [a, b]. Then {U1, . . . , Un} covers B.

Conversely, suppose that B is compact. Let Un = (−n, n). Then (Un)∞
n=1

is an increasing sequence of open sets which covers B, and so, by Proposition
5.4.3, there exists N ∈ N such that B ⊆ UN ; B is bounded.

Finally, we show that B is closed. Suppose that a �∈ B. We shall show that
a �∈ B. For each n ∈ N let

Vn = {x ∈ R : |x − a| > 1/n) = (−∞, a − 1/n) ∪ (a + 1/n, ∞).

Then (Vn)∞
n=1 is an increasing sequence of open sets which covers B, and so, by

Proposition 5.4.3, there exists N ∈ N such that B ⊆ VN . Then N1/N (a)∩B =
∅, so that a �∈ B. Thus B is closed. �

We can formulate the Heine--Borel theorem in terms of closed sets: this
version is quite as useful as the ‘open sets’ version. We need more terminology.
A set F of subsets of a set X has the finite intersection property if whenever
{F1, . . . , Fn} is a finite subset of F then ∩n

j=1Fj is non-empty.

Theorem 5.4.5 (The Heine--Borel theorem for closed sets) Suppose that
B is a bounded closed subset of R, and that F is a set of closed subsets of
B with the finite intersection property. Then the total intersection ∩F∈FF

is non-empty.

Proof This is just a matter of taking complements. Suppose that ∩F∈FF =
∅. Then {C(F ) : F ∈ F} is an open cover of B, and so there is a finite
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subcover {C(F1), . . . , C(Fn)}. Thus

B ⊆ C(F1) ∪ . . . ∪ C(Fn) = C(F1 ∩ . . . ∩ Fn),

so that F1 ∩ . . . ∩ Fn = ∅, contradicting the finite intersection property. �

Exercises

5.4.1 Let (rn)∞
n=1 be an enumeration of the rational numbers in (0, 1), and

let 0 < ε < 1. For each n let In be an open interval in (0, 1) containing
rn and of length at most ε/2n. Let U = ∪∞

n=1In. Show that U = [0, 1].
Suppose that U = ∪∞

n=1Jn, where (Jn)∞
n=1 is a sequence of disjoint open

intervals; let l(Jn) be the length of Jn. Show that
∞∑

n=1

l(Jn) ≤ ε.

5.4.2 The set Q ∩ [0, 1] is not compact. Find an open cover of Q ∩ [0, 1] with
no finite subcover.

5.4.3 Suppose that F is a finite set of open intervals which covers the closed
interval [a, b], and that F is minimal; no proper subset of F covers [a, b].
Show that F can be listed as I1, . . . , In in such a way that

a ∈ I1, inf Ij < sup Ij−1 ≤ inf Ij+1 < sup Ij for 1 < j < n, and b ∈ In.

Deduce that Ij−1 ∩ Ij �= ∅ for 2 ≤ j ≤ n, and that no point of [a, b] is
in three members of F .

5.4.4 Suppose that U is an open cover of the closed interval [c0, d0], and
suppose, if possible, that there is no finite subcover. If there is no finite
subcover of [c0, (c0 + d0)/2] set c1 = c0, d1 = (c0 + d0)/2; otherwise
set c1 = (c0 + d0)/2, d1 = d0. Show that [c1, d1] has no finite subcover.
Repeat recursively. Show that there exists b ∈ [c0, d0] such that cn → b

and dn → b as n → ∞. Use this to give another proof of the Heine--Borel
theorem.

5.4.5 Suppose that U is an open subset of R and that x ∈ U . Show that there
exist rational numbers r and s such that x ∈ Nr(s) ⊆ U . Show that
if U is an open cover of a subset A of R then there exists a countable
subcover.

5.5 Perfect sets, and Cantor’s ternary set

We now introduce another idea, similar enough to the notion of a closure
point to be confusing. Suppose that A is a subset of R and that a ∈ R.
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A real number b is called a limit point, or accumulation point, of A if
whenever ε > 0 there exists a ∈ A (which may depend upon ε) with 0 <

|b−a| < ε. Thus b is a limit point of A if there are points of A, different from
b, which are arbitrarily close to b.

If a ∈ R and ε > 0 then the punctured ε-neighbourhood N∗
ε (a) of a is

defined as

N∗
ε (a) = {x ∈ R : 0 < |x − a| < ε} = (a − ε, a) ∪ (a, a + ε) = Nε(a) \ {a}.

Thus b is a limit point of A if and only if N∗
ε (b) ∩ A �= ∅, for each ε > 0.

Proposition 5.5.1 Suppose that A is a subset of R and that b ∈ R. b is
a limit point of A if and only if there exists a sequence (aj)∞

j=1 in A \ {b}
such that aj → b as j → ∞.

Proof The proof is just like the proof of Proposition 5.1.1, with obvious
modifications. �

The set of limit points of A is called the derived set of A, and is denoted
by A′. It follows from the definitions that A′ ⊆ A. If A = {a} then A′ = ∅,
so that A need not be a subset of A′. If A = A′, we say that A is perfect. For
example, a non-degenerate closed interval is perfect, as is a finite union of
non-degenerate closed intervals.

Suppose that A is a subset of R and that a ∈ A. a is an isolated point of
A if there exists ε > 0 such that N∗

ε (a) ∩ A = ∅.

Proposition 5.5.2 Suppose that A′ is the derived set of a subset A of R,
and that a ∈ R. Let i(A) be the set of isolated points of A.

(i) A is the disjoint union of A′ and i(A).
(ii) A′ is closed.

Proof (i) Clearly A′ and i(A) are disjoint subsets of A. Suppose that a ∈
A \ i(A). There are two possibilities. First, a ∈ A. Since a is not an isolated
point of A, it must belong to A′. Secondly, a ∈ A \ A. There is a sequence
(an)∞

n=1 in A which tends to a as n → ∞. Since an �= a, for n ∈ N, it follows
that a ∈ A′.

(ii) Suppose, if possible, that b ∈ A′ \ A′. Then b ∈ A \ A′, and so b is an
isolated point of A, by (i). Thus there exists ε > 0 such that N∗

ε (b) ∩ A = ∅.
Since b ∈ A′, there exists c ∈ A′ with |b − c| < ε/2. Then N∗

ε/2(c) ⊆ N∗
ε (b),

so that N∗
ε/2(c) ∩ A = ∅, giving a contradiction. �
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As an example, let A = {1/j : j ∈ N}. Then A = A ∪ {0} and A′ =
{0}. Note that (A′)′ = ∅ �= A′. This example is taken further in Exercises
5.5.2--5.5.4.

We now give an example of a bounded non-empty perfect set which con-
tains no non-degenerate intervals. This set is known as Cantor’s ternary set,
although it was first described by the Irish-born mathematician Henry Smith.
We begin with C0 = [0, 1]. First, we remove the middle third of C0, to obtain

C1 = [0, 1/3] ∪ [2/3, 1] = IL ∪ IR;

IL is the left interval of C1 and IR is the right interval. We then remove the
middle thirds of IL and IR to obtain

C2 = ([0, 1/9] ∪ [2/9, 1/3]) ∪ ([2/3, 7/9] ∪ [8/9, 1])

= (ILL ∪ ILR) ∪ (IRL ∪ IRR);

C2 is the union of 22 disjoint closed intervals, each of length (1/3)2; ILL and
IRL are left intervals, and ILR and IRR are right intervals. We then repeat
the process recursively, to obtain a decreasing sequence (Cn)∞

n=0 of closed
sets; Cn is the union of 2n disjoint closed intervals, each of length (1/3)n, and
each interval is either a left subinterval or a right subinterval of an interval
of Cn−1. We then define Cantor’s ternary set C to be ∩∞

n=0Cn.

C0

C1

C2

C3

C4

C5

0

0

1

1/3 2/3

2/32/9 1/31/90 7/9 8/9

1

1

Figure 5.5. Construction of Cantor’s ternary set.

Here are some of the properties of C.
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Theorem 5.5.3 Cantor’s ternary set C is a perfect subset of [0, 1] with
empty interior. There exists a bijection c : P (N) → C, and so C is
uncountable.

Proof C is closed, and is non-empty, by the Heine--Borel theorem for closed
sets. But in fact, the end points of all the intervals that occur in the construc-
tion are in C. We use this to show that C is perfect. Suppose that x ∈ C and
that ε > 0. Choose j ∈ Z+ such that (1/3)j < ε/2. There exists an interval
Ij of Cj to which x belongs; both its end-points are in C, and at least one
of them is different from x. Thus there exists c ∈ N∗

ε (x) ∩ C, and so C is
perfect.

Further, the ε-neighbourhood Nε(x) is not contained in an interval of Cj ,
and so Nε(x) is not contained in Cj ; thus Nε(x) is not contained in C. Since
this holds for all x ∈ C and all ε > 0, C has an empty interior.

If A ∈ P (N), let aj = 2 if j ∈ A and let aj = 0 otherwise. Let cn(A) =∑n
j=1 aj/3j , and let c(A) =

∑∞
j=1 aj/3j . Then cn(A) ∈ Cn, and cn(A) →

c(A) as n → ∞, and so c(A) ∈ C, since C is closed. As in the proof of
Cantor’s theorem, if A ⊂ B then c(A) < c(B), and c is injective. Conversely,
suppose that x ∈ C. Let

A = {n ∈ N : x is in a right-hand interval of Cn}.

Then x = c(A). �

Cantor’s ternary set has a great deal of symmetry and self-similarity. For
example, the mapping x → 3x is a bijective mapping of C ∩ [0, 1/3] onto C,
and the mapping sj defined by

sj(x) = x + 2/3j for 0 ≤ x < 1 − 2/3j ,

= x + 2/3j − 1 for 1 − 2/3j ≤ x ≤ 1,

is a bijective mapping of C onto itself.
There are many constructions similar to the construction of Cantor’s

ternary set. Suppose that ε = (εn)∞
n=1 is a sequence of positive numbers with∑∞

n=0 εn = s ≤ 1. Let sn =
∑n−1

j=0 εj . We construct a sequence (C(ε)
n )∞

n=0 of

closed sets C
(ε)
n recursively; C

(ε)
0 = [0, 1], and if n ∈ N then C

(ε)
n consists of 2n

disjoint closed subintervals of [0, 1], each of length (1− sn)/2n. We construct
C

(ε)
n+1 by removing an open interval of length εn/2n from the middle of each

of these intervals. Then C
(ε)
n+1 consists of 2n+1 disjoint closed subintervals of

[0, 1], each of length (1 − sn+1)/2n+1. Finally we set C(ε) = ∩∞
n=0C

(ε)
n . Then
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C(ε) is a perfect subset of [0, 1], with empty interior. As we shall see, C(ε) is
of interest when s < 1. In such a case, we call C(ε) a fat Cantor set.

Exercises

5.5.1 Suppose that U is an open subset of R. Show that U = U ′.
5.5.2 Let B = {1/j + 1/k : j, k ∈ N, k > j2}. What is B′? What is (B′)′?

What is ((B′)′)′?
5.5.3 Show that for each k ∈ N there exists a strictly increasing sequence

B0 ⊂ B1 ⊂ · · · ⊂ Bk of subsets of R such that B′
j = Bj−1, for

1 ≤ j ≤ k.
5.5.4 Construct a subset C of R such that, if C1 = C ′, and Cj = C ′

j−1 for
all j ≥ 2 then (Cj)∞

j=0 is a strictly decreasing sequence of non-empty
subsets of R.

5.5.5 Suppose that 0 < λ < 9. If x ∈ [0, 1), let an(x) = (x1 + · · · + xn)/n,
where x = 0.x1x2 . . . is the decimal expansion of x (without recurrent
9s), and let an(1) = 0. Let En = {x ∈ [0, 1] : an(x) ≤ λ}. Show that
En is closed. Show that E = ∩∞

n=1En is a perfect subset of [0, 1] with
an empty interior.

5.5.6 Let (Cn)∞
n=0 be the sequence of closed sets that appears in the con-

struction of Cantor’s ternary set C. Suppose that x ∈ [0, 2]. Show that
for each n ∈ N there exist un, vn ∈ Cn such that x = un + vn. Use the
Bolzano--Weierstrass theorem to show that there exist u, v ∈ C such
that x = u + v. Show that if x ∈ [−1, 1] there exist y, z ∈ C such that
x = y − z.

5.5.7 Suppose that A is a non-empty bounded closed subset of R. Let

C(A) = (−∞, inf A) ∪ (∪I∈J I) ∪ (sup A, +∞),

where J is a set of disjoint open intervals contained in (inf A, sup A).
Order J by setting I < J if sup I ≤ inf J . J has the intermediate
property if whenever I and J are in J and I < J then there exists
K ∈ J with I < K < J .
(a) Show that if J has the intermediate property, then A is perfect.
(b) Suppose that A is perfect and that A◦ = ∅. Show that J has

the intermediate property. Show that there is a bijection of P (N)
onto A.

5.5.8 Suppose that A is a non-empty perfect subset of [0, 1] with empty
interior. Show that there is a bijective mapping of P (N) onto A, using
a construction as in Cantor’s theorem. (Hint: After n steps there are
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2n closed intervals whose union contains A. For the next step, remove
a largest possible open interval from each.)

Deduce that there is an order-preserving bijection φ of Cantor’s
ternary set C onto A.

Deduce that a non-empty perfect subset of R is uncountable.
5.5.9 Suppose that C is a closed subset of R, with complement ∪jIj , where

the Ij are disjoint open intervals. Show that C is perfect if and only
if Ij ∩ Ik = ∅ when Ij �= Ik.
Is it possible to find a sequence of disjoint non-degenerate closed
intervals whose union is (0, 1)?

5.5.10 If A is a subset of R then a point a of R is a condensation point of
A if Nε(a) ∩ A is uncountable, for every ε > 0. Show that if A is
uncountable, then the set C of condensation points of A is closed, and
A \ C is countable. Show that C is the set of condensation points of
itself.

5.5.11 Show that every point of Cantor’s ternary set C is a condensation
point of C.
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Continuity

6.1 Limits and convergence of functions

So far we have considered the limits of sequences of real numbers. These
sequences are real-valued functions defined on Z+ or N. We now consider
real-valued functions defined on a non-empty subset A of R. It is useful to
make definitions for a general set A, but the reader should have in mind
examples such as an open interval, a closed interval, the set Q of rational
numbers and the set {1/n : n ∈ N}.

The notion of limit extends naturally to this setting. Suppose that f :
A → R is a function, that b is a limit point of A (which may or may not be
an element of A) and that l ∈ R. We say that f(x) converges to l, or tends
to l, as x to b if whenever ε > 0 there exists δ > 0 (which usually depends
on ε) such that |f(x) − l| < ε for those x ∈ A for which 0 < |x − b| < δ

(that is, for x ∈ N∗
δ (b) ∩ A). That is to say, as x gets close to b, f(x) gets

close to l. We say that l is the limit of f as x tends to b, write ‘f(x) → l as
x → b’ and also write l = limx→b f(x). Note that in the case where b ∈ A,
we do not consider the value of f(b), but only the values of f at points
nearby.

l + e

l – e

l

b – δ b b + δ

Figure 6.1a. Convergence of functions.
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We now have the following elementary results, which correspond exactly
to Propositions 3.2.2, 3.2.3 and 3.2.6, together with Theorem 3.2.5.We say
that f is bounded on A if the image set f(A) is a bounded set.

Theorem 6.1.1 Suppose that f , g and h are real-valued functions on a
subset A of R and that b is a limit point of A.

(i) If f(x) → l as x → b and f(x) → m as x → b, then l = m.
(ii) If f(x) → l as x → b then there exists δ > 0 such that f is bounded

on N∗
δ (b) ∩ A.

(iii) If f(x) = l for all x ∈ A, then f(x) → l as x → b.
(iv) If f(x) → 0 as x → b, and g(x) is bounded on N∗

δ (b) ∩ A for some
δ > 0, then f(x)g(x) → 0 as x → b.

(v) If f(x) → l and g(x) → m as x → b then f(x) + g(x) → l + m as
x → b.

(vi) If f(x) → l as x → b and c ∈ R then cf(x) → cl as x → b.
(vii) If f(x) → l and g(x) → m as x → b then f(x)g(x) → lm as x → b.
(viii) If f(x) �= 0 for x ∈ A, l �= 0 and f(x) → l as x → b then 1/f(x) →

1/l as x → b.
(ix) If f(x) → l and g(x) → m as x → b, and if f(x) ≤ g(x) for all

x ∈ N∗
δ (b) ∩ A for some δ > 0, then l ≤ m.

(x) (The sandwich principle) Suppose that f(x) ≤ g(x) ≤ h(x) for all
x ∈ N∗

δ (b) ∩ A, for some δ > 0, and that f(x) → l and h(x) → l as x → b.
Then g(x) → l as x → b.

Proof Since the definition of limit is so similar to the limit of a sequence,
the proofs are simple modifications of the proofs of corresponding results for
sequences, established in Section 3.1. The details are left as exercises for the
reader. �

Note that in several cases we have restricted attention to the behaviour of
f in a set N∗

δ (b)∩A. This is clearly appropriate, since we are only concerned
with the behaviour of f as x approaches b.

It is a useful fact that we can characterize convergence in terms of
convergent sequences.

Proposition 6.1.2 Suppose that f is a real-valued function on a subset A

of R, that b is a limit point of A and that l ∈ R. Then f(x) → l as x → b

if and only if whenever (an)∞
n=0 is a sequence in A \ {b} which tends to b as

n → ∞ then f(an) → l as n → ∞.

Proof Suppose that f(x) → l as x → b and that (an)∞
n=0 is a sequence in

A \ {b} which tends to b as n → ∞. Given ε > 0, there exists δ > 0 such
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that if x ∈ N∗
δ (b) ∩ A then |f(x) − l| < ε. There then exists n0 such that

|an − b| < δ for n ≥ n0. Then |f(an) − l| < ε for n ≥ n0, so that f(an) → l

as n → ∞.
Suppose that f(x) does not converge to l as x → b. Then there exists ε > 0

for which we can find no suitable δ > 0. If n ∈ N then 1/n is not suitable,
and so there exists xn ∈ N∗

1/n(b) ∩ A with |f(xn) − l| ≥ ε. Then xn → x as
n → ∞ and f(xn) does not converge to l as n → ∞. �

We have the following general principle of convergence.

Theorem 6.1.3 Suppose that f is a real-valued function on a subset A

of R, that b is a limit point of A and that l ∈ R. Then the following are
equivalent.

(i) There exists l such that f(x) → l as x → b.
(ii) Whenever (an)∞

n=0 is a sequence in A \ {b} which tends to b as n → ∞
then (f(an))∞

n=0 is a Cauchy sequence.
(iii) Given ε > 0 there exists δ > 0 such that if x, y ∈ N∗

δ (b) then
|f(x) − f(y)| < ε.

Proof Suppose that (i) holds, and that(an)∞
n=0 is a sequence in A\{b} which

tends to b as n → ∞. By Proposition 6.1.2, f(an) → l as n → ∞. Since a
convergent sequence is a Cauchy sequence, (ii) holds.

Suppose that (iii) fails. Then there exists ε > 0 for which for each n ∈ N
there exist an, a′

n ∈ N∗
1/n(b) ∩ A with |f(an) − f(a′

n)| ≥ ε. Let c2n−1 = an

and c2n = a′
n, for n ∈ N. Then cn → b as n → ∞, and (f(cn))∞

n=0 is not a
Cauchy sequence. Thus (ii) fails: (ii) implies (iii).

Finally suppose that (iii) holds, and that ε > 0. There exists δ > 0 such
that if x, y ∈ N∗

δ (b) ∩ A then |f(x) − f(y)| < ε/2. Suppose that (an)∞
n=0 is a

sequence in A\{b} which tends to b as n → ∞. Then there exists n0 such that
an ∈ N∗

ε (b) for n ≥ n0. Thus if m, n ≥ n0 then |f(an) − f(am)| < ε/2, and
so (f(an)∞

n=0 is a Cauchy sequence. By the general principle of convergence,
there exists l such that f(an) → l as n → ∞, and if n ≥ n0 then |f(an)− l| ≤
ε/2. Thus if x ∈ N∗

δ (b)∩A then |f(x)− l| ≤ |f(x)−f(an0)|+ |f(an0)− l| < ε;
f(x) → l as x → b. Thus (iii) implies (i). �

We now turn to a result which corresponds to Theorem 3.2.4. First we must
introduce the idea of one-sided convergence. Suppose that f is a real-valued
function on A and that b ∈ R. Let A+ = A∩(b, ∞) and let A− = A∩(−∞, b).
Suppose that b is a limit point of A+ -- that is, (b, b + δ) ∩ A is non-empty,
for each δ > 0. Then we say that f(x) tends to l as x → b from the right
if whenever ε > 0 there exists δ > 0 such that if x ∈ A ∩ (b, b + δ) then
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|f(x)− l| < ε. We then write f(x) → l as x ↘ b, and denote l by limx↘b f(x),
or, more briefly, by f(b+). Similarly if f(x) tends to l as x → b from the
left, we denote the limit l by limx↗b f(x), or f(b−). Why do we use this
terminology? If we consider the graph of f , drawn in the usual way, the
variable x increases from left to right, and the values that the function f

takes increase in an upwards direction. We therefore use ‘left’ and ‘right’ for
the variable x, and reserve words such as ‘upper’ or ‘lower’ for the values of
the function.

Theorem 6.1.4 Suppose that f is a real-valued increasing function on A

and that b is a limit point of A+ = A ∩ (b, ∞). If f is bounded below on A+

then f(x) → inf{f(y) : y ∈ A+} as x → b from the right.
Similar results hold for ‘convergence from the left’, and for decreasing

functions.

Proof Let l = inf{f(y) : y ∈ A+}. Suppose that ε > 0. Then l + ε is not a
lower bound for f on A+, and so there exists a ∈ A+ with f(a) < l + ε. Let
δ = a − b. If x ∈ A ∩ (b, b + δ) = A ∩ (b, a) then l ≤ f(x) ≤ f(a) < l + ε, so
that f(x) → l as x → b from the right. �

This theorem is quite as important as Theorem 3.2.4.

Corollary 6.1.5 If b is a limit point of A+ and A− then f(b−) ≤ f(b+).

Proof For sup{f(x) : x ∈ A−} ≤ inf{f(x) : x ∈ A+}. �

Suppose again that b is a limit point of a subset A of R, and suppose that
f is a real-valued function which is bounded on N∗

δ (b) ∩ A, for some δ > 0.
We can then define the upper and lower limits of f at b. For 0 < t < δ, let
M(t) = sup{f(x) : x ∈ N∗

t (b)}. Then M(t) is an increasing function on (0, δ)
which is bounded below. By Theorem 6.1.4 it follows that M(t) converges
to M(0+) = inf{M(s) : 0 < s < δ} as t ↘ 0. M(0+) is the upper limit or
limes superior of f at b, and is denoted by lim supx→b f(x). The lower limit,
or limes inferior lim infx→b f(x) is defined in a similar way.

The next theorem corresponds to Theorem 3.5.3.

Theorem 6.1.6 Suppose that b is a limit point of a subset A of R, and
suppose that f is a real-valued function which is bounded on N∗

δ (b) ∩ A, for
some δ > 0. Then f(x) → l as x → b if and only if lim supx→b f(x) =
lim infx→b f(x) = l.

Proof Another exercise for the reader. �
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As an example, suppose that x ∈ (0, 1]. If 0 < 1/(n + 1) < x ≤ 1/n,
set f(x) = n(n + 1)(x − 1/(n + 1)). Then lim supx→0 f(x) = 1 and
lim infx→0 f(x) = 0. The function f does not tend to a limit as x → 0,
but oscillates between the values 0 and 1.

1

f (x)
1

x

Figure 6.1b. lim supx→0 f(x) �= lim infx→0 f(x) = 0.

We can also consider limits as x → +∞ or as x → −∞. Suppose that A

is a subset of R which is not bounded above, that f is a real-valued function
on A and that l ∈ R. Then we say that f(x) → l as x → +∞ if whenever
ε > 0 there exists x0 ∈ R such that if x ∈ A and x ≥ x0 then |f(x) − l| < ε.
Similarly, if there exists x0 such that f is bounded on A ∩ [x0,∞), and we
define M(x) = sup{f(a) : a ∈ A∩[x,∞)} for x ≥ x0, then M(x) is a decreas-
ing function on [x0,∞) which is bounded below; we define lim supx→∞ f(x)
as inf{M(x) : x ∈ [x0,∞)}. The lower limit is defined similarly. Limits as
x → −∞ are defined in the same way. The reader should verify that all
the results of this section, with appropriate modifications, extend without
difficulty to these situations.

Exercises

6.1.1 Show that limx→0
√

1 + x + x2 = 1.
6.1.2 Show that(

√
1 + x + x2 − 1)/(

√
1 + x −

√
1 − x) tends to a limit as

x → 0, and evaluate the limit.

6.2 Orders of magnitude

This section is a digression; it introduces some notation that is frequently
used, though we shall use it sparingly.

Suppose that f is a function defined on a subset A of R, and that b is a
limit point of A. Frequently, the principal point of interest is the behaviour of
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f near b, rather than its actual value. The O (big O) and o (little o) notation
is used to describe the magnitude of f near b in terms of another, usually
simpler, function g.

Suppose that g is another real-valued function on A. We write

f(x) = O(g(x)) as x → b

if there exists δ > 0 and M ∈ R such that |f(x)| ≤ M |g(x)| for x ∈ N∗
δ (b)∩A.

Suppose that there exists δ > 0 such that g(x) �= 0 for x ∈ N∗
δ (b) ∩ A.

Then we write

f(x) = o(g(x)) as x → b

if f(x)/g(x) → 0 as x → b and write

f(x) ∼ g(x) as x → b

if f(x)/g(x) → 1 as x → b.
We use the same notation when x → ∞; thus f(x) = o(g(x)) as x → ∞ if

f(x)/g(x) → 0 as x → ∞. As a particular example, if (an)∞
n=1 and (bn)∞

n=1
are real-valued sequences then an ∼ bn if an/bn → 1 as n → ∞.

For example, suppose that p(x) = a0 + a1x + · · · + anxn is a polynomial
function of degree n on R (with an �= 0). Then

p(x) = O(xn) as x → ∞,

p(x) = o(xn+1) as x → ∞,

p(x) ∼ anxn as x → ∞,

p(x) = O(1) as x → 0.

This notation arose in analytic number theory, where a complicated expres-
sion f is approximated by a simpler function g, and the interest lies in
estimating the magnitude of the difference. Thus it might be shown that
f(x)−g(x) = O(h(x)) as x → ∞; in this case we write f(x) = g(x)+O(h(x)).
For example, if p is the polynomial above, then

p(x) = anxn + O(xn−1) = anxn + o(xn) as x → ∞,

and p(x) = a0 + a1x + O(x2) = a0 + o(1) as x → 0.

Although this notation is expressive, its use requires care; in practice, it
is frequently advisable to expand any statement involving it into a more
standard form.
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6.3 Continuity

We now introduce the fundamental concept of continuity. Suppose that f

is a real-valued function defined on a subset A of R, and that a ∈ A. f is
continuous at a if whenever ε > 0 there exists δ > 0 (which usually depends
on ε) such that |f(x) − f(a)| < ε for those x ∈ A for which |x − a| < δ (that
is for x ∈ Nδ(a) ∩ A). That is to say, as x gets close to a, f(x) gets close to
f(a). If f is not continuous at a, we say that f has a discontinuity at a.

Compare this definition with the definition of convergence. First, a must
be an element of A, so that f(a) is defined. Secondly, a need not be a limit
point of a. If it is, then f is continuous at a if and only if f(x) → f(a) as
x → a. If a is not a limit point, then it is an isolated point of A. In this case,
there exists δ > 0 such that Nδ(a) ∩ A = {a}, so that if x ∈ Nδ(a) ∩ A then
f(x) = f(a), and f is continuous at a; functions are always continuous at
isolated points.

We now have the following elementary results, which correspond exactly
to Theorem 6.1.1.

Theorem 6.3.1 Suppose that f , g and h are real-valued functions on a
subset A of R and that a ∈ A.

(i) If f is continuous at a then there exists δ > 0 such that f is bounded
on Nδ(a) ∩ A.

(ii) If f(x) = l for all x ∈ A, then f is continuous at a.
(iii) If f(a) = 0, f is continuous at a, and g(x) is bounded on Nδ(a) ∩ A

for some δ > 0, then fg is continuous at a.
(iv) If f and g are continuous at a then f + g is continuous at a.
(v) If f and g are continuous at a then fg is continuous at a.
(vi) If f(x) �= 0 for x ∈ A, and if f is continuous at a then 1/f is

continuous at a.
(vii) (The sandwich principle) Suppose that f(x) ≤ g(x) ≤ h(x) for all

x ∈ Nδ(a) ∩ A, for some δ > 0, that f(a) = g(a) = h(a) and that f

and h are continuous at a. Then g is continuous at a.

Proof These results follow directly from Theorem 6.1.1, and the remarks
above. �

Similarly, we have the following consequence of Proposition 6.1.2.

Proposition 6.3.2 Suppose that f is a real-valued function on a subset
A of R and that a ∈ A. Then f is continuous at a if and only if whenever
an → a as n → ∞ then f(an) → f(a) as n → ∞.
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Continuity behaves well under composition.

Theorem 6.3.3 Suppose that f is a real-valued function on a subset A of
R and that g is a real-valued function on a subset B of R which contains
f(A). If f is continuous at a ∈ A and g is continuous at f(a), then g ◦ f is
continuous at a.

Proof Suppose that ε > 0. Then there exists η > 0 such that if b ∈ B and
|b − f(a)| < η then |g(b) − g(f(a))| < ε. Similarly there exists δ > 0 such
that if a′ ∈ A and |a′ − a| < δ then |f(a′) − f(a)| < η. Thus if a′ ∈ A and
|a′ − a| < δ then |g(f(a′)) − g(f(a))| < ε. �

The proof is trivial: the theoretical importance and practical usefulness
are enormous.

Continuity is a local phenomenon. Nevertheless, there are many important
cases where f is continuous at every point of A. In this case we say that f is
continuous on A, or more simply, that f is continuous. Continuity on A can
be characterized in terms of open sets, and in terms of closed sets.

Proposition 6.3.4 Suppose that f is a real-valued function on a subset A

of R. The following are equivalent:
(i) f is continuous on A;
(ii) if U is an open subset of R then f−1(U) is a relatively open subset

of A;
(iii) for each c ∈ R the sets Uc = {x ∈ A : f(x) > c} and Lc = {x ∈ A :

f(x) < c} are relatively open in A;
(iv) if F is a closed subset of R then f−1(F ) is a relatively closed subset of

A;
(v) for each c ∈ R the sets Fc = {x ∈ A : f(x) ≥ c} and Gc = {x ∈ A :

f(x) ≤ c} are relatively closed in A.

Proof Suppose that f is continuous on A, that U is an open subset of R and
that x ∈ f−1(U). Since U is open, there exists ε > 0 such that Nε(f(x)) ⊆ U .
Since f is continuous at x, there exists δ > 0 such that if y ∈ Nδ(x) ∩ A

then |f(y) − f(x)| < ε. Thus Nδ(x) ∩ A ⊆ f−1(U), and so f−1(U) is a
relatively open subset of A. Thus (i) implies (ii). Since Uc = f−1((c,∞)) and
Lc = f−1((−∞, c)), and (c,∞) and (−∞, c) are open, (ii) implies (iii).

Suppose that (iii) holds. Suppose that x ∈ A and that ε > 0. Then the
sets Uf(x)−ε and Lf(x)+ε are relatively open in A, and x is in each of them.
Thus Uf(x)−ε ∩ Lf(x)+ε is relatively open, and there exists δ > 0 such that
Nδ(x) ∩ A ⊆ Uf(x)−ε ∩ Lf(x)+ε; thus if y ∈ Nδ(x) ∩ A then f(y) > f(x) − ε
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and f(y) < f(x) + ε, so that |f(y) − f(x)| < ε. Thus f is continuous at x.
Since this holds for all x ∈ A, (iii) implies (i).

Finally, the equivalences of (ii) and (iv), and of (iii) and (v), follow by
considering complements. �

It is important that these conditions involve inverse images of open and
closed sets. Here is a simple example to show that similar results need not
hold for direct images. Let f(x) = 1/(1 + x2). Then f is continuous on R, R
is both open and closed, and f(R) = (0, 1], which is neither open nor closed.
The continuous image of an open set need not be open, and the continuous
image of a closed set need not be closed.

We now consider some simple examples of continuous real-valued func-
tions, and of discontinuities, which will enable us to introduce some more
ideas.

1. Take A = R, and set i(x) = x. Then i is continuous on R; if |x − a| < ε

then |i(x)−i(a)| < ε, so that we can take δ = ε, for each x ∈ R. Combining
this with the results of Theorem 6.3.1, we see that all polynomial functions
on R are continuous.

2. The exponential function is continuous on R. First, note that if |h| < 1
then

|eh − 1| = |h +
h2

2!
+

h3

3!
+ · · · | ≤ |h|(1 +

1
2

+
1
22 + · · · ) = 2|h|.

Suppose that a ∈ R and ε > 0. Let δ = ε/2ea. If |x − a| < δ then

|ex − ea| = |eaex−a − ea| = ea|ex−a − 1| < 2|x − a|ea < 2δea = ε.

3. Take A = R, and set f(x) = x if x �= 0 and set f(0) = 1. Then f is
continuous at every point of R except 0. The discontinuity at 0 is the
simplest sort of discontinuity; if we change the value at 0 to 0, we remove
the discontinuity. More generally, a real-valued function f on A has a
removable discontinuity at a if f(x) → l as x → a, and l �= f(a). If we
redefine f(a) as l, then the discontinuity disappears.

4. Suppose that f is a real-valued function on a subset A of R, and that a ∈ A.
We say that f is continuous on the right at a if whenever ε > 0 there exists
δ > 0 (which usually depends on ε) such that |f(x) − f(a)| < ε for those
x ∈ A with a ≤ x < a + δ. Continuity on the left is defined in a similar
way. f is continuous on the right if and only if either f(a+) = limx↘a f(x)
exists and is equal to f(a), or there exists δ > 0 such that (a, a+δ)∩A = ∅.
We say that f has a jump discontinuity at a if one of the following cases
holds:
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(i) f(a−) and f(a+) both exist and are different, and f(a) ∈
[f(a−), f(a+)] -- in this case we have a jump of (positive or negative)
size f(a+) − f(a−);

(ii) f(a−) exists and is different from f(a), and f is continuous on the
right at a -- in this case we have a jump of (positive or negative) size
f(a) − f(a−);

(iii) f(a+) exists and is different from f(a), and f is continuous on the
left at a -- in this case we have a jump of (positive or negative) size
f(a+) − f(a).

[We give this cumbersome definition to allow for the possibility that
A ∩ (a, a + δ) or A ∩ (a − δ, a) may be empty for some δ > 0.]

f (a+)

f (a)

x=a

x

y

f (a–)

Figure 6.3. A jump discontinuity.

Theorem 6.3.5 The only discontinuities of a monotonic function are
jump discontinuities, and the set of discontinuities is countable.

Proof The first statement follows from Theorem 6.1.4. For the second,
let D be the set of discontinuities of f . If d ∈ D, let i(d) = (f(d−), f(d+))
[in case (i) above] or ((f(d−), f(d)) [in case (ii)], or ((f(d), f(d+)) [in case
(iii)]. Then the open intervals {i(d) : d ∈ D} are disjoint, and their union
is open, and so D is countable, by Theorem 5.3.3. �

5. Suppose that A is a subset of R. Let IA be the indicator function of A:
IA(x) = 1 if x ∈ A and IA(x) = 0 if x �∈ A. If x ∈ A◦ then there exists
δ > 0 such that Nδ(x) ⊆ A, and then IA(y) = IA(x) = 1 for y ∈ Nδ(x).
Thus IA is continuous at each point of A◦. Similarly, IA is continuous at
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each point of (C(A))◦ = C(A). What happens if x ∈ ∂A? If x ∈ ∂A and
δ > 0 then there exit y ∈ Nδ(x) ∩ A and z ∈ Nδ(x) ∩ C(A), so that
IA(y) = 1 and IA(z) = 0. Thus IA is not continuous at x.
For example, the indicator function of Cantor’s ternary set is discontinuous
at points of C, and continuous at points of the complement of C. The
indicator function of the rationals has no points of continuity, since ∂Q =
R.

6. Let f be the saw-tooth function

f(x) =
{

{x} for 2k ≤ x < 2k + 1,

1 − {x} for 2k + 1 ≤ x < 2k + 2,

for k ∈ Z. Let g(x) = f(1/x) for x �= 0, and let g(0) = 0. Then g has a
discontinuity at 0: g(x) oscillates in value between 0 and 1 as x → 0.

These examples by no means exhaust the ways in which a real-valued
function can be discontinuous.

We have seen that the continuous image of a closed set need not be closed.
The situation is different for bounded closed sets. We now use the Bolzano--
Weierstrass theorem to obtain some results of fundamental importance.

Theorem 6.3.6 Suppose that f is a continuous real-valued function on a
non-empty bounded closed subset A of R. The image f(A) = {f(x) : x ∈ A}
is a bounded and closed subset of R. In particular, f attains its bounds: there
exist y, z ∈ A such that f(y) = sup{f(x) : x ∈ A} and f(z) = inf{f(x) :
x ∈ A}.

Proof First, suppose, if possible, that f is not bounded. Then for each n ∈ N
there exists an ∈ A with |f(an)| ≥ n. By the Bolzano--Weierstrass theorem
there exists a subsequence (ank

)∞
k=1 which converges to an element a ∈ A as

k → ∞. Since f is continuous, f(ank
) → f(a) as k → ∞ (Proposition 6.3.2),

and so (f(ank
))∞

k=1 is bounded, giving a contradiction.
Secondly, suppose that b ∈ f(A). Then there exists a sequence (an)∞

n=1
in A such that f(an) → b as n → ∞. By the Bolzano--Weierstrass theorem
there exists a subsequence (ank

)∞
k=1 which converges to an element a ∈ A as

k → ∞. Since f is continuous, f(ank
) → f(a) as k → ∞ (Proposition 6.3.2).

But f(ank
) → b as k → ∞, and so b = f(a) ∈ f(A). Thus f(A) = f(A), and

f(A) is closed. �

Suppose that f is a real-valued function defined on an interval I and that
a is an interior point of I. f has a local maximum at a if there exists δ > 0
such that (a − δ, a + δ) ⊆ I and f(x) ≤ f(a) for all x ∈ (a − δ, a + δ). A local
minimum is defined similarly.
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Corollary 6.3.7 Suppose that f is a continuous real valued function on
an interval I which has no local maximum or local minimum. Then f is a
monotonic function on I.

Proof Suppose that f is not monotonic. Then there exist a < d < b in I

such that either f(a) < f(d) > f(b) or f(a) > f(d) < f(b). Consider the
restriction of f to [a, b]. In the former case, f attains its supremum at a point
c of [a, b]. Since f(c) ≥ f(d) > max(f(a), f(b)), c is an interior point of [a, b],
and c is a local maximum of f . In the second case, f has a local minimum in
[a, b]; the proof is exactly similar. �

Theorem 6.3.8 Suppose that f is an injective continuous real-valued
function on a non-empty bounded closed subset A of R. Then the inverse
mapping f−1 : f(A) → A is continuous.

Proof Let h = f−1. If F is a closed subset of R, then h−1(F ) = f(F ∩ A),
which is closed in R, by Theorem 6.3.6, and is therefore closed in f(A). Thus
h is continuous, by Theorem 6.3.4. �

If f is a continuous real-valued function on a set A, and ε > 0, then for
each x ∈ A there exists a δ > 0 such that f(Nδ(x) ∩ A) ⊆ Nε(f(x)). In
general, the value of δ depends on x. To take a very easy example, consider
the continuous real-valued function f(x) = x2 on R. Then if ε > 0 and x > 0
then

(x + ε/2x)2 = x2 + ε + ε2/4x2 > x2 + ε,

and so δ must be smaller than ε/2x. Thus it is not possible to find a single
δ > 0 that will work for all x. There are however important cases where for
each ε > 0 a single δ will do. This merits a definition. Suppose that f is a
real-valued function defined on a subset A of R. f is uniformly continuous
on A if whenever ε > 0 there exists δ > 0 (which usually depends on ε) such
that if x, y ∈ A and |x − y| < δ then |f(x) − f(y)| < ε.

Theorem 6.3.9 Suppose that f is a continuous real-valued function on a
non-empty bounded closed subset A of R. Then f is uniformly continuous
on A.

Proof Suppose not. Then there exists ε > 0 for which we can find no suitable
δ > 0. Thus for each n ∈ N there exist elements an and bn in A with
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|an−bn| < 1/n and |f(an)−f(bn)| ≥ ε. By the Bolzano--Weierstrass theorem
there exists a subsequence (ank

)∞
k=1 which converges to an element a ∈ A as

k → ∞. Since ank
− bnk

→ 0 as k → ∞, bnk
→ a, as well. Since f is

continuous at a, f(ank
) → f(a) and f(bnk

) → f(a) as k → ∞, so that
f(ank

) − f(bnk
) → 0 as k → ∞. As |f(ank

) − f(bnk
)| ≥ ε for all k ∈ N, we

have a contradiction. �

We have seen that it is not always possible to exchange limiting procedures
when we consider a double sequence. Similar phenomena occur when we
consider a sequence of functions of a real variable, or a function of two real
variables. For example, let f(x, y) = e−x/y for x > 0, y > 0. Then

lim
x→∞

(
lim

y→∞
f(x, y)

)
= lim

x→∞
1 = 1

lim
y→∞

(
lim

x→∞
f(x, y)

)
= = lim

y→∞
0 = 0.

Similarly, let fn(x) = xn, for x ∈ [0, 1] and n ∈ N. Then each function fn

is continuous on [0, 1]. Let f(x) = 0 in 0 ≤ x < 1 and let f(1) = 1. Then
fn(x) → f(x) for each x ∈ [0, 1], and e is not continuous at 1.

There is however one easy and important case, where limits are taken of
increasing functions or sequences, and sums are taken of positive elements.
We shall prove just one case, which we shall need later.

Theorem 6.3.10 Suppose that fn(x) is a sequence of non-negative
increasing functions on an interval [a, b], each of which is continuous on
the left at b. Then

∞∑
n=1

fn(b) = lim
x→b

( ∞∑
n=1

fn(x)

)
.

(Here the sums and limit can be finite or infinite.)

Proof If
∑∞

n=1 fn(c) = ∞ for some c ∈ [a, b), then
∑∞

n=1 fn(x) = ∞ for
x ∈ [c, b], and the result holds. Otherwise, the mapping x →

∑∞
n=1 fn(x) is

increasing, and so

sup
a≤x<b

∞∑
n=1

fn(x) = lim
x→b

∞∑
n=1

fn(x).
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Hence
∞∑

n=1

fn(b) = sup
m∈N

m∑
n=1

fn(b)

= sup
m∈N

(
sup

a≤x<b

m∑
n=1

fn(x)

)

= sup
a≤x<b

(
sup
m∈N

m∑
n=1

fn(x)

)

= sup
a≤x<b

∞∑
n=1

fn(x) = lim
x→b

∞∑
n=1

fn(x).

�

Exercises

6.3.1 A real-valued function on R is periodic if there exists a non-zero num-
ber t such that f(x + t) = f(x) for all x ∈ R. Suppose that f is
periodic. Show that

{t ∈ R : f(x + t) = f(x) for all x ∈ R}

is a subgroup of R. Show that if f is continuous and not constant, then
it is a proper closed subgroup of R, and that there is a least positive
t such that f(x + t) = f(x) for all x ∈ R; t is the period of f .

6.3.2 Show that the exponential function is strictly increasing on R, that
it is not uniformly continuous on R, but that its restriction to any
semi-infinite interval (−∞, A] is uniformly continuous.

6.3.3 Define a real-valued function f on (0, 1) as follows. If r is rational
and r = p/q in lowest terms then f(r) = 1/q; if x is irrational, then
f(x) = 0. Show that f is continuous at every irrational point of (0, 1),
and that f is discontinuous at every rational point of (0, 1).

6.3.4 Suppose that f and g are continuous real-valued functions on A and
that h(x) = max(f(x), g(x)), for x ∈ A. Show that h is continuous.
Give an example of a sequence (fn)∞

n=0 of non-negative continuous
real-valued functions on [0, 1] for which infn∈N fn is not continuous.

6.3.5 Suppose that A is a non-empty subset of R. Let dA(x) = inf{|x − a| :
a ∈ A}, for x ∈ R.
(a) Show that |dA(x) − dA(y)| ≤ |x − y|.
(b) Show that {x ∈ R : dA(x) = 0} = A.
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(c) Suppose that A is closed and that B is compact. Show that
there exist a ∈ A and b ∈ B such that |a − b| = inf{|x − y| :
a ∈ A, y ∈ B}.

(d) Suppose further that A and B are disjoint. Show that there exist
disjoint open sets U and V such that A ⊆ U and B ⊆ V .

(e) Suppose that A and C are disjoint closed subsets of R. Show that
there exist disjoint open sets U and V such that A ⊆ U and
C ⊆ V .

6.3.6 Let K be a closed subset of [0, 1] containing 0 and 1, and let f be
a continuous real-valued function on K. Extend f to [0, 1] by linear
interpolation: if x ∈ [0, 1] \ K let l = sup{k ∈ K : k < x}, let
r = inf{k ∈ K : k > x}, and let

f(x) =
r − x

r − l
f(l) +

x − l

r − l
f(r).

Show that the extended real-valued function f is continuous on [0, 1].
6.3.7 Give an example of a continuous injective real-valued function f on a

closed subset A of R for which the inverse function is not continuous.
6.3.8 Show that if f is a uniformly continuous real-valued function on a

subset A of R then f extends to a uniformly continuous function g

on A, and that the extension is unique. Give an example to show that
the corresponding result for continuous real-valued functions is false.

6.3.9 At the jth stage in the construction of Cantor’s ternary set C, we
remove 2j−1 intervals, each of length 1/3j . List these intervals from
left to right as I1,j , . . . I2j−1,j -- that is, sup(Ii,j) < inf(Ii+1,j) for
1 ≤ i < 2j−1. Define a function f on [0, 1] \ C by setting f(x) =
(2i − 1)/2j for x ∈ Ii,j . Verify that f is an increasing function on
[0, 1] \C. Set f(1) = 1, and if x ∈ C and x �= 1, set f(x) = inf({f(y) :
y > x, y ∈ [0, 1] \ C}. Show that f is a continuous increasing function
on [0, 1]. This is the Cantor--Lebesgue function.

6.3.10 Suppose that f is a real-valued function on R which satisfies f(x+y) =
f(x) + f(y) for all x, y ∈ R, and which is continuous at 0. Show that
there exists λ ∈ R such that f(x) = λx for all x ∈ R.

6.3.11 Suppose that f is a continuous real-valued function on [0, 1] with
f(0) = f(1) = 0. Suppose that for each 0 < x < 1 there exists
h > 0, with 0 ≤ x − h < x < x + h ≤ 1, such that

f(x) = (f(x − h) + f(x + h))/2.

Show that f(x) = 0 for all x ∈ [0, 1].
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6.3.12 If Q ∈ N, let Qq be the set of rationals p/q in [0, 1], where p and q

are coprime. Suppose that n ∈ N and that x ∈ [0, 1]. If there exists
p/q ∈ Qq such that |x−p/q| ≤ 1/2n2, let fn(x) = (1−2n2|x−p/q|)/q;
otherwise let fn(x) = 0. Show that fn is a well-defined function on
[0, 1] and that f is continuous. Show that for each x ∈ [0, 1], fn(x)
converges to f(x) as n → ∞, where f is the function defined in Exer-
cise 6.3.3. The point-wise limit of continuous functions can have a
dense set of discontinuities.

6.4 The intermediate value theorem

We now consider a continuous real-valued function defined on an interval I.
Suppose that f is continuous on I, that a, b ∈ I, and that f(a) is negative
and f(b) is positive. Then intuition suggests that f(c) = 0 for some point c

in the interval [a, b]. This is indeed so, but we must prove it. The result is a
consequence of the connectedness of the interval [a, b].

Theorem 6.4.1 Suppose that f is a continuous function on an interval
I, that a, b are points of I with a < b, and that f(a) < v < f(b). Then there
exists a < c < b such that f(c) = v.

Proof We give two proofs. The first uses the connectedness of I. Let L =
{x ∈ [a, b] : f(x) < v} and let G = {x ∈ [a, b] : f(x) > v}. Then L and G

are disjoint non-empty relatively open subsets of I. Since [a, b] is connected,
it follows that [a, b] �= L ∪ G; if c ∈ [a, b] \ (L ∪ G) then f(c) = v.

For the second proof, we use repeated dissection, as in the second proof
of the Bolzano--Weierstrass theorem. Set a0 = a and b0 = b. Let d0 =
(a0 + b0)/2. If f(d0) ≥ v, we set a1 = a0 and b1 = d0. Otherwise,
f(d0) < v, and we set a1 = d0 and b1 = b0. Thus b1 − a1 = (b0 − a0)/2,
and f(a1) ≤ v ≤ f(b1). We now iterate this procedure recursively. At the
jth step, we obtain a closed interval [aj , bj ] contained in [aj−1, bj−1] with
bj −aj = (b0−a0)/2j , and with f(aj) ≤ v ≤ f(bj). Then the sequence (aj)∞

j=0
is increasing, the sequence (bj)∞

j=0 is decreasing, and both converge to a com-
mon limit c. Then f(c) = limj→∞ f(aj) ≤ v and f(c) = limj→∞ f(bj) ≥ v,
so that f(c) = v. �

Of course, a similar result holds if f(a) > f(b).

Corollary 6.4.2 If f is a continuous function on an interval I then f(I)
is an interval.

Corollary 6.4.3 If f is a continuous strictly monotonic function on an
open interval I then f(I) is an open interval.
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Proof If I is open and x ∈ I, there exist a, b ∈ I with a < x < b, so that
f(x) ∈ (f(a), f(b)) ⊆ f(I); f(I) is open. �

Proposition 6.4.4 If f is a continuous function on an interval I then f

is injective if and only if f is strictly monotonic.

Proof If f is strictly monotonic, then certainly f is injective. Suppose that
f is not strictly monotonic, and suppose for example that a < b < c while
f(a) < f(c) < f(b). Then there exists d ∈ [a, b] such that f(d) = f(c),
contradicting the fact that f is injective. Other possibilities are dealt with in
the same way. �

Proposition 6.4.5 If f is a strictly monotonic function on an interval I

then f−1 : f(I) → I is continuous.

Proof Suppose without loss of generality that f is strictly increasing. Sup-
pose that b ∈ f(I) and that ε > 0. Suppose that a = f−1(b) is an interior
point of I. There exist c, d ∈ I with a − ε < c < a < d < a + ε. Then
f(c) < f(a) = b < f(d); let δ = min(b − f(c), f(d) − b). If |y − b| < δ, then
f(c) < y < f(d), so that c < f−1(y) < d, and |f−1(y) − f−1(b)| < ε. The
case where a is an end-point of I is left to the reader. �

Note that in this last proposition we do not require f to be continuous.
We can now establish the existence of nth roots of positive numbers

without the need for any subsidiary calculations.

Corollary 6.4.6 If a > 0 and k ∈ N then there exists a unique y > 0 such
that yn = a. Let y = a1/n. The the mapping a → a1/n : (0,∞) → (0,∞) is
continuous.

Proof The function f(x) = xn is a strictly increasing continuous function
on (0,∞), so that f((0,∞)) is an interval. Since f(x) → 0 as x → 0 and
f(x) → ∞ as x → ∞, f((0,∞)) = (0,∞). Thus f−1 is a continuous bijection
of (0,∞) onto (0,∞). If a ∈ (0,∞) then y = f−1(a) is the unique positive
nth root of a. �

We also have the following.

Proposition 6.4.7 Suppose that p is a real polynomial of odd degree n.
Then there exists x ∈ R with p(x) = 0.

Proof Without loss of generality, we can suppose that p is monic, so that p =
xn+an−1x

n−1+· · ·+a0. We shall show that p takes both positive and negative
values. If x �= 0 then p(x) = xn(1+q(x)), where q(x) = an−1/x+ · · ·+a0/xn.
Since aj/xn−j → 0 as x → ∞ and as x → −∞, for 0 ≤ j ≤ n−1, there exists
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R > 0 such that |q(x)| < 1/2 for |x| ≥ R. Then 1+q(x) > 1/2 for |x| ≥ R, so
that p(−R) ≤ −Rn/2 < 0 and p(R) ≥ Rn/2 > 0. By the intermediate value
theorem there exists x ∈ [−R, R] for which p(x) = 0. �

We have the following fixed-point theorem.

Theorem 6.4.8 Suppose that [a, b] is a closed bounded interval and that
f : [a, b] → [a, b] is continuous. Then there exists c ∈ [a, b] with f(c) = c.

Proof If f(a) = a or if f(b) = b, there is nothing to prove. Otherwise,
let g(x) = x − f(x). Then g(a) = a − f(a) < 0 and g(b) = b − f(b) > 0.
By the intermediate value theorem, there exists c ∈ [a, b] with g(c) =
c − f(c) = 0. �

Exercises

6.4.1 Suppose that 0 < a < b. Find limn→∞(an + bn)1/n.
6.4.2 Show that n1/n → 1 as n → ∞.
6.4.3 Does (n!)1/n converge, as n → ∞?
6.4.4 Give an example of a continuous bijective map of (0, 1) onto itself with

no fixed point.
6.4.5 Let f(x) = x for x rational and f(x) = 1−x for f irrational. Show that

f is a bijection of [0, 1] onto itself, and that f has exactly one point of
continuity. Can you find a bijection of [0, 1] onto itself with no points
of continuity?

6.4.6 Suppose that f is a continuous periodic function on R, and that t > 0.
Show that there exists x ∈ R with f(x) = 1

2(f(x + t) + f(x − t)).
6.4.7 Suppose that f(x) is a continuous function on [0, 1] with f(0) = f(1).

(a) Use the intermediate value theorem to show that there exists 0 ≤
x ≤ 1/2 with f(x) = f(x + 1/2).

(b) Suppose that n ∈ N and that n > 1. By considering the sequence
(f((j − 1)/n) − f(j/n))n

j=1 show that there exists 0 ≤ x ≤ 1 − 1/n

such that f(x) = f(x + 1/n).
(c) Suppose that 0 < λ < 1 and that 1/λ is not an integer. Let h(x) =

f(2/λ)x − f(2x/λ), where f is the saw-tooth function of Section
6.3. Show that there exists no x ∈ [0, 1 − λ] with h(x) = h(x + λ).

6.5 Point-wise convergence and uniform convergence

Suppose that (fn)∞
n=1 is a sequence of real-valued functions on a set S, and

that f is another such function. The sequence (fn)∞
n=1 converges point-wise

to f if fn(s) → f(s) for each s ∈ S. More formally,
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• the sequence (fn)∞
n=1 converges point-wise to f if for each s ∈ S and each

ε > 0 there exists n0 ∈ N such that |fn(s) − f(s)| < ε for all n ≥ n0.

Note that the choice of n0 depends on both ε and s. This is a very natural
idea to consider, but it turns out that point-wise convergence is too weak for
many purposes, and is awkward to work with. A stronger, and more tractable
notion is that of uniform convergence. Here the number n0 depends only on
ε: the same value works for all s ∈ S. Formally,

• the sequence (fn)∞
n=1 converges uniformly to f on S if for each ε > 0 there

exists n0 ∈ N such that |fn(s) − f(s)| < ε for all n ≥ n0 and all s ∈ S.

Let

fn(x) =

⎧⎨⎩
2nx for 0 ≤ x ≤ 1/2n,

2 − 2nx for 1/2n ≤ x ≤ 1/n,

0 otherwise.

Then fn(0) = 0, and if 0 < x ≤ 1 then fn(x) = 0 if n > 1/x, so that
fn converges point-wise to 0 on [0, 1]. It does not converge uniformly, since
fn(1/2n) = 1, for n ∈ N.

Uniform convergence is particularly useful when we consider continu-
ity. Here is the fundamental result connecting continuity and uniform
convergence: it is very easy, but very important.

Theorem 6.5.1 Suppose that (fn)∞
n=1 is a sequence of continuous real-

valued functions defined on a subset A of R and that fn converges uniformly
to a function f , as n → ∞. Then f is continuous on A.

Proof Suppose that z0 ∈ A and that ε > 0. Then there exists n0 ∈ N
such that |fn(z) − f(z)| < ε/3 for n ≥ n0 and for all z ∈ A. Since fn0 is
continuous at z0, there exists δ > 0 such that if z ∈ A and |z − z0| < δ then
|fn0(z) − fn0(z0)| < ε/3. For such z,

|f(z) − f(z0)| ≤ |f(z) − fn0(z)| + |fn0(z) − fn0(z0)| + |fn0(z0) − f(z0)|
< ε/3 + ε/3 + ε/3 = ε. �

Let fn(x) = xn for x ∈ [0, 1]. Then fn(x) → 0 for 0 ≤ x < 1, and fn(1) = 1,
so that fn converges point-wise on [0, 1] to a discontinuous function; the
point-wise limit of continuous functions need not be continuous.

An infinite series
∑∞

n=0 fn of real-valued functions on a set S converges
point-wise, or uniformly, if the sequence of partial sums does. It is said to
converge absolutely uniformly if

∑∞
n=0 |fn| converges uniformly.
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Proposition 6.5.2 If an infinite series
∑∞

n=0 fn of real-valued functions
on a set S converges absolutely uniformly, then it converges uniformly.

Proof For each s ∈ S,
∑∞

n=0 fn(s) converges absolutely, and therefore con-
verges to t(s), say. Suppose that ε > 0. Then there exists n0 such that∑n

j=m+1 |f(s)| < ε, for n0 ≤ m < n and for all s ∈ S. If s ∈ S and m > n0

then

|
m∑

j=0

fj(s) − t(s)| = lim
n→∞

|
m∑

j=0

fj(s) −
n∑

j=0

fj(s)|

= lim
n→∞

|
n∑

j=m+1

fj(s)| ≤ lim
n→∞

n∑
j=m+1

|fj(s)| ≤ ε.

Since this holds for all s ∈ S,
∑∞

n=0 fn converges uniformly to t. �

Here is a simple test for absolute uniform convergence.

Proposition 6.5.3 (Weierstrass’ uniform M test) Suppose that
∑∞

n=0 fn

is an infinite series of real-valued functions on a set S, and that (Mn)∞
n=0 is

a sequence in R+ for which |fn(s)| ≤ Mn for all s ∈ S and all n ∈ Z+. If∑∞
n=0 Mn < ∞, then

∑∞
n=0 fn converges absolutely uniformly.

Proof An easy exercise. �

We shall consider uniform convergence in a more general setting in
Volume II.

Exercises

6.5.1 Let (rn)∞
n=0 be an enumeration of the rationals in [0, 1], with r0 = 0,

r1 = 1. If x ∈ [0, 1], let f0(x) = x, let f1(x) = 1 − x and let

fk(x) =
{

x/rk if 0 ≤ x ≤ rk

(1 − x)/(1 − rk) if rk ≤ x ≤ 1

for k > 1. Let gn(x) =
∑∞

k=0(fk(x))n/2k, for n ∈ N.
(a) Show that the sum converges uniformly on [0, 1], so that gn is a

continuous function on [0, 1].
(b) Show that gn(rk) → 2rk as n → ∞, for each k ∈ Z+, and that

gn(y) → 0 as n → ∞, for each irrational y in [0, 1].
(c) Let h(x) = limn→∞ gn(x). Show that H is discontinuous at the

rational points of [0, 1] and is continuous at the irrational points.
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6.5.2 Construct a sequence (fn)∞
n=0 of continuous functions such that∑

n=0 |fn| converges point-wise and
∑∞

n=0 fn converges uniformly, but
not absolutely uniformly.

6.5.3 Prove Weierstrass’ uniform M test.
6.5.4 Dirichlet’s test for uniform convergence. Suppose that (fj)∞

j=0 is a
decreasing sequence of non-negative real-valued functions on a set
S which converges uniformly to 0 and that (zj)∞

j=0 is a sequence
of real-valued functions on S for which the sequence of partial
sums (

∑n
j=0 zj)∞

n=0 is uniformly bounded: there exists M such that
|
∑n

j=0 zj(s)| ≤ M for all n ∈ Z+ and all s ∈ S. Use Abel’s formula to
show that

∑∞
j=0 ajzj converges uniformly.

6.6 More on power series

We now consider the continuity of functions defined by power series. These
are complex-valued functions, and we need to introduce the notion of the
continuity of a complex-valued function of a complex variable. The definition
is essentially the same as the definition of continuity of a real-valued function
of a real variable. Suppose that f is a complex-valued function defined on a
subset A of C, and that z0 ∈ A. Then f is continuous at z0 if whenever ε > 0
there exists δ > 0 such that if z ∈ A and |z − z0| < δ then |f(z) − f(z0)| <

ε. f is continuous on A if it is continuous at each point of A. (Of course,
a real-valued function defined on a subset A of R can be considered as a
complex-valued function, and A can be considered as a subset of C: the
two definitions of continuity are then trivially the same.) The reader should
convince himself or herself that, except for the sandwich principle, which
has no obvious analogue, the statements for complex-valued functions of a
complex variable which correspond to the statements of Theorems 6.3.1 and
6.3.3 and Proposition 6.3.2 are also true. In particular, polynomial functions
on C are continuous on C.

There is also a complex version of Theorem 6.5.1. The proof is the same
as in the real case.

Theorem 6.6.1 Suppose that (fn)∞
n=1 is a sequence of continuous real-

valued functions defined on a subset A of R and that fn converges uniformly
to a function f , as n → ∞. Then f is continuous on A.

Complex versions of the Weierstrass M test and Dirichlet’s test also hold
(Exercises 6.5.3 and 6.5.4).

Suppose that
∑∞

n=0 anzn is a complex power series with non-zero radius
of convergence R. If |z| < R, let f(z) =

∑∞
n=0 anzn.
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Theorem 6.6.2 Suppose that
∑∞

n=0 anzn is a complex power series with
radius of convergence R. If r < R then

∑∞
n=0 anzn converges absolutely

uniformly on {z : |z| ≤ r} and the function f(z) =
∑∞

n=0 anzn on z : |z| < R

is continuous on z : |z| < R.

Proof Choose r < s < R, and let Ms = supn∈Z+ |an|sn. Then

∞∑
n=0

|an|rn =
∞∑

n=0

|an|
( r

s

)n
sn ≤

∞∑
n=0

Ms

( r

s

)n
=

Mss

r − s
< ∞,

and if |z| ≤ r then |anzn| ≤ |an|rn. Applying Weierstrass’ uniform M test
(Exercise 6.5.3) and Theorem 6.6.1, it follows that

∑∞
n=0 anzn converges abso-

lutely uniformly on the set {z : |z| ≤ r} to a function which is continuous on
{z : |z| ≤ r}. If |z| < R, choose r with |z| < r < R. Then f is continuous on
the set {z : |z| ≤ r}, and so, considered as a function on the set {z : |z| < R},
it is continuous at z. �

Note that the proof depends only on the convergence of a geometric series.
This simple idea is very powerful, and we shall use it, and the convergence
of series such as

∑∞
n=0 nkrn, where 0 ≤ r < 1 and k ∈ N, many times in the

future.
Provided that their radii of convergence are positive, different power series

define different functions.

Theorem 6.6.3 Suppose that the power series
∑∞

n=0 anzn and
∑∞

n=0 bnzn

each have radius of convergence greater than or equal to R > 0. Let f(z) =∑∞
n=0 anzn and g(z) =

∑∞
n=0 bnzn, for |z| < R. Suppose that (zk)∞

k=1 is
a null sequence of non-zero complex numbers in {z : |z| < R} such that
f(zk) = g(zk) for all k ∈ N. Then an = bn for all n ∈ Z+.

Proof If not, let N be the least integer for which aN �= bN , Let

fN (z) = f(z) −
N−1∑
n=0

anzn =
∞∑

n=N

anzn = zN

( ∞∑
n=0

an+Nzn

)
= zNFN (z),

and let

gN (z) = f(z) −
N−1∑
n=0

bnzn =
∞∑

n=N

bnzn = zN

( ∞∑
n=0

bn+Nzn

)
= zNGN (z).

Then fN (zk) = gN (zk) for all k ∈ N, and so FN (zk) = GN (zk) for all k ∈ N.
Since FN (z) =

∑∞
n=0 an+Nzn for |z| < R, FN is continuous at 0. So is GN ,
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and so
aN = fN (0) = lim

k→∞
FN (zk) = lim

k→∞
GN (zk) = GN (0) = bN ,

giving a contradiction. �

This means that if we obtain two power series for the same function, we
can ‘equate coefficients’.

Suppose that that the power series
∑∞

n=0 anzn has radius of convergence
1. What can we say about

∑∞
n=0 an? We begin with an easy result.

Proposition 6.6.4 Suppose that the power series
∑∞

n=0 anzn has radius
of convergence 1. The following are equivalent.

(i) The series
∑∞

n=0 an is absolutely convergent.
(ii)

∑∞
n=0 anzn converges uniformly on D = {z : |z| ≤ 1} to a continuous

function f on D.
(iii) The set {

∑∞
n=0 |an|xn : 0 ≤ x < 1} is bounded.

Proof Since |anzn| ≤ an for z ∈ L1, the equivalence of (i) and (ii) follows
from the complex version of Weierstrass’ uniform M test (Exercise 6.5.3). If
(i) holds, then f is bounded on D, since

∑∞
n=0 |an|xn ≤

∑∞
n=0 |an|, and so

(iii) holds. Finally, suppose that (iii) holds, and that

M = sup

{ ∞∑
n=0

|an|xn : 0 ≤ x < 1

}
.

If N ∈ N then
N∑

n=0

|an| = lim
x↗1

N∑
n=0

|an|xn ≤ M,

so that
∑∞

n=0 |an| ≤ M , and (i) holds. �

What happens if
∑∞

n=0 an is conditionally convergent? First the radius of
convergence is at least 1, since the sequence (an)∞

n=0 is bounded. If it were
greater than 1, then

∑∞
n=0 an would converge absolutely. Consequently the

radius of convergence is 1.

Theorem 6.6.5 (Abel’s theorem) Suppose that the series
∑∞

n=0 an is
convergent, to s, say. Then

∑∞
n=0 anxn → s as x ↗ 1.

Here we only consider real values of x. A stronger result is obtained in
Exercise 6.6.2.

Proof By replacing a0 by a0 − s, we can suppose that s = 0. Let sn =∑n
j=0 aj , for n ∈ Z+. The sequence (sn)∞

n=0 is bounded: let M = sup{|sn| :
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n ∈ Z+}. If 0 ≤ x < 1, the series
∑∞

n=0 anxn converges absolutely; let
its sum be f(x). The series

∑∞
n=0 xn also converges absolutely, and so by

Proposition 4.6.1, the convolution product
∑∞

n=0 cnxn converges absolutely
to f(x)/(1 − x). But cn = sn, and so f(x) = (1 − x)

∑∞
n=0 snxn.

Suppose that 0 < ε < 1. Let η = ε/2. There exists n0 such that |sn| < η

for n ≥ n0, and so

|(1 − x)
∞∑

n=n0

snxn| ≤ η(1 − x)
∞∑

n=n0

xn ≤ η(1 − x)
∞∑

n=0

xn = η.

On the other hand,

|(1 − x)
n0−1∑
n=0

snxn| ≤ (1 − x)Mn0.

If 1 − η/(M + 1)n0 < x < 1 then |(1 − x)
∑n0−1

n=0 snxn| < η, and so

|
∞∑

n=0

anxn| = |f(x)| = |(1 − x)
∞∑

n=0

snxn| < 2η = ε.

�

The next result involves a decreasing sequence of non-negative coefficients.

Proposition 6.6.6 Suppose that (an)∞
n=0 is a decreasing null-sequence of

positive numbers, and that
∑∞

n=0 anzn has radius of convergence 1. Suppose
that 0 < δ ≤ 1. Then

∑∞
n=0 anzn converges uniformly on the set

Pδ = {z ∈ C : |z| ≤ 1, |z − 1| ≥ δ}.

Proof Let tn(z) = zn, for z ∈ Pδ, so that tn ∈ C(Pδ). Then

|
n∑

j=0

tj(z)| = |
n∑

j=0

zn| =
∣∣∣∣1 − zn+1

1 − z

∣∣∣∣ ≤ 2
δ
,

so that
∥∥∥∑n

j=0 tj

∥∥∥ ≤ 2/δ. The result now follows from Dirichlet’s test for
uniform convergence (Exercise 6.5.4). �

Suppose that the power series
∑∞

n=0 anzn has positive radius of conver-
gence R, and that a0 �= 0. The function f(z) =

∑∞
n=0 anzn is continuous on

UR = {z : |z| < R} and so there exists 0 < r ≤ R such that if |z| < r then
f(z) �= 0, and we can consider the function 1/f(z). Can it be expressed as a
power series?
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Theorem 6.6.7 Suppose that the power series
∑∞

n=0 anzn has positive
radius of convergence R, and let f(z) =

∑∞
n=0 anzn for z ∈ UR. Suppose that

0 < S ≤ R, and that f has no zeros in the disc US = {z : |z| < S}. Then
there exists a power series

∑∞
n=0 cnzn with positive radius of convergence T

such that, if we set g(z) =
∑∞

n=0 cnzn for z ∈ UT , then f(z)g(z) = 1 for
|z| < min(S, T ).

Proof By multiplying f by a−1
0 , we can suppose that a0 = 1. (We do this to

simplify the calculations.) Since the series
∑∞

n=0 anzn converges absolutely
for |z| < R, and since the function

∑∞
n=1 |an|tn is continuous on [0, R), there

exists t > 0 such that
∑∞

n=1 |an|tn ≤ 1.
In order to see how to proceed, we consider the product of the two series.

We require that c0 = 1 and that
∑n

j=0 ajcn−j = 0 for n ∈ N. Thus we require
that

cn = −
n∑

j=1

ajcn−j for j ∈ N.

This provides a recursive formula for the sequence (cn)∞
n=0. We now show

that the series
∑∞

n=0 cnzn has radius of convergence at least t. First we show,
by induction, that |cn|tn ≤ 1 for all n. The result is true if n = 0. Suppose
that it is true for j < n. Then

|cn|tn = |
n∑

j=1

(ajt
j)(cn−jt

n−j)| ≤
n∑

j=1

(|aj |tj)(|cn−j |tn−j) ≤
n∑

j=1

|aj |tj ≤ 1,

establishing the claim. If |z| < t then
∑∞

n=0 |cnzn| ≤
∑∞

n=0(|z|/t)n < ∞, so
that the series

∑∞
n=0 cnzn has positive radius of convergence T , with T ≥ t.

Finally, if |z| < min(S, T ) then f(z)g(z) = 1, by Proposition 4.6.1. �

Exercises

6.6.1 Suppose that f is a complex-valued function on a subset A of C. Show
that f is continuous on A if and only if its real and imaginary parts
are continuous, and if and only if f is continuous. Show that |f | is
continuous if f is.

6.6.2 Suppose that the series
∑∞

n=0 an is convergent, to s, say. Suppose that
K > 0. Let WK = {z : |1 − z| ≤ K(1 − |z|} Sketch WK . Show that∑∞

n=0 anzn → s as z → 1 in WK .
6.6.3 State and prove Weierstrass’ uniform M test for complex-valued

functions.
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6.6.4 Dirichlet’s test for uniform convergence: the complex case. Suppose
that (fj)∞

j=0 is a decreasing sequence of non-negative real-valued func-
tions on a set S which converges uniformly to 0 and that (zj)∞

j=0 is a
sequence of complex-valued functions on S for which the sequence of
partial sums (

∑n
j=0 zj)∞

n=0 is uniformly bounded: there exists M such
that |

∑n
j=0 zj(s)| ≤ M for all n ∈ Z+ and all s ∈ S. Use Abel’s formula

to show that
∑∞

j=0 ajzj converges uniformly.
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Differentiation

7.1 Differentiation at a point

We now restrict attention to real-valued functions defined on an interval.
Suppose that f is a real-valued function on an interval I, and that a is an
interior point of I, so that there exists η > 0 such that (a − η, a + η) ⊆ I.
Then f is differentiable at a, with derivative f ′(a), if whenever ε > 0 there
exists 0 < δ ≤ η such that if 0 < |x − a| < δ then∣∣∣∣f(x) − f(a)

x − a
− f ′(a)

∣∣∣∣ < ε.

In other words, (f(x)−f(a))/(x−a) → f ′(a) as x → a. Thus if f is differen-
tiable at a, then the derivative f ′(a) is uniquely determined. The derivative
f ′(a) is also denoted by df

dx(a).
Note that if 0 < |x − a| < min(δ, 1) then

|f(x) − f(a)| ≤
∣∣∣∣f(x) − f(a)

x − a

∣∣∣∣ .|x − a| < ε,

so that f is continuous at a.
This definition of the derivative involves division. It is convenient to have

characterizations which avoid this.

Proposition 7.1.1 Suppose that f is a real-valued function on an interval
I, that a is an interior point of I, that (a − η, a + η) ⊆ I and that l ∈ R.
The following are equivalent.

(i) f is differentiable at a, with derivative l.
(ii) There is a real-valued function r on (−η, η) \ {0} such that

f(a + h) = f(a) + lh + r(h) for 0 < |h| < η

for which r(h)/h → 0 as h → 0.

173
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(iii) There is a real-valued function s on (−η, η) such that

f(a + h) = f(a) + (l + s(h))h for |h| < η

for which s(0) = 0 and s is continuous at 0.

Proof Conditions (i) and (ii) are equivalent, since

r(h)
h

=
f(a + h) − f(a)

h
− l,

and (ii) and (iii) are equivalent, since s(h) = r(h)/h for h �= 0. �

There are several closely related reasons for considering differentiability.
Suppose that b ∈ I and that b �= a. Then the graph of the function la,b

defined by

la,b(x) = f(a) +
f(b) − f(a)

b − a
(x − a)

is a straight line which includes the line segment [(a, f(a)), (b, f(b))]. The
quantity (f(b)− f(a))/(b−a) is the slope of the line. Thus f is differentiable
at a, with derivative f ′(a), if and only if the slope tends to f ′(a) as b tends
to a. If so, then the graph of the function ta defined by

ta(x) = f(a) + f ′(a)(x − a)

is the tangent to the graph of f at a.

f(x)

ta(x)
f(a+h)

f(a)

a xa+h

Figure 7.1. Differentiation, and the tangent.

If |h| < η, and we write

f(a + h) = ta(a + h) + r(h) = f(a) + f ′(a)h + r(h)



7.1 Differentiation at a point 175

then r(h)/h → 0 as h → 0, so that r(h) = o(|h|) and ta is a linear approxima-
tion to f near a. Further, a small change h in the variable produces a small
change approximately equal to f ′(a)h in the value of the function f , so that
f ′(a) is the rate of change of f at a.

Let us give some easy examples.

Example 7.1.2 The function f(x) = xn, with n ∈ N, n ≥ 2.

By the binomial theorem,

f(a + h) = an + nan−1h + r(h), where r(h) = h2q(h),

with q a polynomial in h of degree n − 2. Thus r(h)/h → 0 as h → 0, and so
f is differentiable, with derivative nan−1.

Example 7.1.3 The function f(x) = 1/x, on (0,∞), or on (−∞, 0).

If 0 < |h| < |a| then

f(a + h) − f(a) = − h

a(a + h)
, so that

f(a + h) − f(a)
h

→ − 1
a2

as h → 0. Thus f is differentiable at a, with derivative −1/a2.

Example 7.1.4 The real exponential function exp(x) on R.

Since exp(a + h) = exp(a) exp(h), it follows that exp(a + h) =
exp(a) + exp(a)h + s(h)h, where

s(h) = exp(a)
exp(h) − 1 − h

h
= exp(a)

(
h

2!
+

h2

3!
+ · · ·

)
,

so that if |h| < 1 then

|s(h)| ≤ exp(a)|h|
2

(
1 + |h| + |h|2 + · · ·

)
=

exp(a)|h|
2(1 − |h|) ,

and s(h) → 0 as h → 0. Thus exp is differentiable, and the derivative at a is
exp(a).

Here are some basic properties of differentiation.

Proposition 7.1.5 Suppose that f and g are real-valued functions on an
interval I, that (a − η, a + η) ⊆ I, and that f and g are differentiable at a.
Suppose also that λ, μ ∈ R.

(i) The derivative f ′(a) is unique.
(ii) λf + μg is differentiable at a, with derivative λf ′(a) + μg′(a).
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(iii) The product fg is differentiable at a, with derivative f ′(a)g(a) +
f(a)g′(a).

(iv) If f is an increasing function, then f ′(a) ≥ 0.
(v) If f ′(a) > 0 then there exists 0 < δ ≤ η such that f(x) < f(a) < f(y)

for a − δ < x < a < y < a + δ.

Proof (i), (ii) and (iv) follow immediately from the definition.
(iii) If 0 < |h| < η,

f(a + h)g(a + h) − f(a)g(a)
h

=

=
(

f(a + h) − f(a)
h

)
g(a + h) + f(a)

(
g(a + h) − g(a)

h

)
→ f ′(a)g(a) + f(a)g′(a) as h → 0.

(v) There exists 0 < δ < η such that∣∣∣∣f(a + h) − f(a)
h

− f ′(a)
∣∣∣∣ < |f ′(a)| for 0 < |h| < δ,

from which it follows that (f(a + h) − f(a))/h > 0 if 0 < h < δ and
(f(a + h) − f(a))/h < 0 if 0 > h > −δ. �

It is tempting to suppose that if f ′(a) > 0 then f must be an increasing
function in some interval (a − δ, a + δ). Exercise 7.1.3 shows that this is not
the case.

Next we turn to the composition of two functions.

Theorem 7.1.6 (The chain rule) Suppose that f is a real-valued function
on an open interval I, that g is a real-valued function on an open interval J ,
and that f(I) ⊆ J . Suppose that a ∈ I, that f is differentiable at a and that
g is differentiable at f(a). Then the composite function g ◦f is differentiable
at a, with derivative (g ◦ f)′(a) = g′(f(a))f ′(a).

Proof First let us give an inadequate ‘proof’. For small h,

g(f(a + h)) − g(f(a))
h

=
g(f(a + h)) − g(f(a))

f(a + h) − f(a)
.
f(a + h) − f(a)

h
(∗).

Since f is continuous at a, f(a + h) − f(a) → 0 as h → 0, and so

g(f(a + h)) − g(f(a))
f(a + h) − f(a)

→ g′(f(a)) as h → 0.

Since (f(a + h) − f(a))/h → f ′(a) as h → 0, the result follows.
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What is wrong with this ‘proof’? It may happen that f(a + h) = f(a), in
which case, the expression (∗) makes no sense. We must avoid dividing by 0.

We consider two possibilities. First, there exists δ > 0 such that
(a − δ, a + δ) ⊆ I and f(a + h) �= f(a) for 0 < |h| < δ. In this case the
preceding argument is valid.

Secondly, a is the limit point of a sequence (an)∞
n=1 in I \ {a} for which

f(an) = f(a). In this case it follows that f ′(a) = 0, and we must show that
g′(f(a)) = 0. Let b = f(a). We use Proposition 7.1.1. There exists η > 0 such
that (b − η, b + η) ⊂ J and a function t on (−η, η), with t(0) = 0, such that
g(b+ k) = g(b)+ (g′(b)+ t(k))k for k ∈ (−η, η) and such that t is continuous
at 0. Similarly, there exists δ > 0 such that (a − δ, a + δ) ⊂ I and a function
s on (−δ, δ), with s(0) = 0, such that f(a + h) = b + (s(h)h for h ∈ (−δ, δ)
and such that s is continuous at 0. Since f is continuous, we can suppose that
f((a − δ, a + δ)) ⊆ (b − η, b + η). If 0 < |h| < δ then

g(f(a + h)) = g(b + s(h)h) = g(b) + (g′(b) + t(s(h)h))s(h)h

so that
g(f(a + h)) − g(f(a))

h
= (g′(b) + t(s(h)h))s(h) → 0 as h → 0,

since s(h) → 0 and t(s(h)h) → 0 as h → 0. �

Corollary 7.1.7 Suppose that g is a real-valued function on an open inter-
val I, that a ∈ I, that g(a) �= 0 and that g is differentiable at a. Then there
exists δ > 0 such that (a − δ, a + δ) ⊆ I and g(x) �= 0 for a − δ < x < a + δ.
The function 1/g on (a − δ, a + δ) is differentiable at a, with derivative
−g′(a)/(g(a))2.

Further, if f is a real-valued function on I which is differentiable at a,
then the function f/g on (a − δ, a + δ) is differentiable at a, with derivative(

f

g

)′
(a) =

f ′(a)g(a) − f(a)g′(a)
(g(a))2

.

Proof We can suppose without loss of generality that g(a) > 0. Since g

is continuous at a, there exists δ > 0 such that (a − δ, a + δ) ⊆ I and
|g(x)− g(a)| < |g(a)| for |x−a| < δ. Then g(x) > 0 for x ∈ (a− δ, a+ δ). Let
h(y) = 1/y for y ∈ (0,∞). Then h is differentiable at g(a), with derivative
−1/g(a)2. The first result therefore follows from the chain rule, applied to the
functions g and h. The second result then follows from the product formula,
applied to the functions f and 1/g. �

Suppose that f is a strictly increasing continuous function on an open
interval I. Recall that f(I) is an open interval, and that f−1 : f(I) → I is
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continuous (Corollary 6.4.3 and Proposition 6.4.5). Suppose that f is differ-
entiable at a ∈ I. Then f ′(a) ≥ 0, but it can happen that f ′(a) = 0 [for
example, if f(x) = x3 for x ∈ R then f is strictly increasing and continuous,
and f ′(0) = 0]. But if f ′(a) > 0 then f−1 is differentiable at f(a).

Theorem 7.1.8 Suppose that f is a strictly increasing continuous function
on an open interval I, that f is differentiable at a ∈ I, and that f ′(a) > 0.
Let b = f(a). Then f−1 is differentiable at b and (f−1)′(b) = 1/f ′(a).

Proof Suppose that ε > 0. Since (f(a + h) − f(a))/h → f ′(a) as h → 0,
since f(a + h) − f(a) �= 0 for h �= 0 and since f ′(a) �= 0, it follows that

h

f(a + h) − f(a)
→ 1

f ′(a)
as h → 0.

Thus there exists η > 0 such that (a − η, a + η) ⊆ I and∣∣∣∣ h

f(a + h) − f(a)
− 1

f ′(a)

∣∣∣∣ < ε for 0 < |h| < η.

By Proposition 6.4.5, the inverse mapping f−1; f(I) → I is continuous.
There therefore exists δ > 0 such that (b − δ, b + δ) ⊆ f(I) and such that
|f−1(b + k) − f−1(b)| < η for |k| < δ. Suppose that 0 < |k| < δ; let
h = f−1(b + k) − a, so that f−1(b + k) = a + h. Then 0 < |h| < η and
f(a + h) − f(a) = k. Consequently∣∣∣∣f−1(b + k) − f−1(b)

k
− 1

f ′(a)

∣∣∣∣ = ∣∣∣∣ h

f(a + h) − f(a)
− 1

f ′(a)

∣∣∣∣ < ε.

�

It is at times useful to consider one-sided derivatives, for example at the
end points of intervals. Suppose that f is a real-valued function on an interval
I, and that [a, a + η) ⊆ I. Then f is differentiable on the right at a, with
right-hand derivative f ′(a+), if (f(x) − f(a))/(x − a) → f ′(a+) as x ↘ a.
If so, then f is continuous on the right. Differentiability on the left and the
left-hand derivative f ′(a−) are defined similarly. Then f is differentiable at
an interior point a if and only if it is differentiable on the right and on the
left and f ′(a+) = f ′(a−).

It is important to realize that differentiability is a very special property.

Example 7.1.9 A bounded continuous function s on R which is not
differentiable at any point.
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Let f0 = f be the saw-tooth function defined in Section 6.3:

f0(x) =

{
{x} for 2k ≤ x < 2k + 1,

1 − {x} for 2k + 1 ≤ x < 2k + 2,

for k ∈ Z. Thus f0 is continuous, is periodic, with period 2 (that is, f(x+2) =
f(x) for all x ∈ R), and is linear, with derivative ±1, in each open interval
(k, k + 1), with k ∈ Z.

Next we define fn, for n ∈ N. We set fn(x) = f0(6nx)/2n. Thus f0 is
shrunk by a factor of 1/2n, but oscillates more rapidly. Let us list some of
the properties of fn. Suppose that x ∈ R.

1. 0 ≤ fn(x) ≤ 1/2n.
2. fn is linear on intervals of length 1/6n, and has derivative ±3n on

each interval. Thus there exists xn such that |xn − x| = 1/6n+1 and
|fn(xn) − fn(x)| = 3n|xn − x|.

3. If j < n then |fj(xn) − fj(x)| = 3j |xn − x|.
4. fj is periodic, with period 2/6j , so that if j > n then fj(x) = fj(xn).

Now let sn(x) =
∑n

j=1 fj(x). Then sn is a continuous function on R. By
(i), and Weierstrass’ uniform M test, sn(x) converges uniformly on R to a
continuous function, s(x) say, as n → ∞. Further |s(x) − sn(x)| ≤ 1/2n.

Suppose that x ∈ R. We show that s is not differentiable at x. Suppose
that n ∈ N and that xn is defined as above. Then by (iv), s(xn) − s(x) =
sn(xn) − sn(x). Now

|sn(xn) − sn(x)| ≥ |fn(xn) − fn(x)| −
n−1∑
j=1

|fj(xn) − fj(x)|

= 3n|xn − x| −
n−1∑
j=1

3j |xn − x| =
(

3n + 3
2

)
|xn − x|,

by (ii) and (iii). Thus xn → x as n → ∞, while∣∣∣∣s(xn) − s(x)
xn − x

∣∣∣∣→ ∞ as n → ∞,

so that s is not differentiable at x.

Exercises

7.1.1 Suppose that n ∈ N. Show that the function f(x) = x1/n on I = (0,∞)
is differentiable at each point of I, and find its derivative.
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7.1.2 Where is the function f(x) = |x| differentiable? Let (qj)∞
j=1 be an

enumeration of the rational numbers in (0, 1). Let

f(x) =
∞∑

j=1

|x − qj |
2j

, for x ∈ (0, 1).

Show that f is a continuous function on (0, 1). Show that f is not
differentiable at the rational points of (0, 1) and that f is differentiable
at the irrational points of (0, 1).

7.1.3 Let xn = 1/2n and let yn = xn +1/5n, so that y1 > x1 > y2 > x2 > . . ..
Define a real-valued function f by setting

f(x) = 1 − |x| − xn

yn − xn
if xn < |x| ≤ yn,

=
|x| − yn+1

xn − yn+1
if yn+1 < |x| ≤ xn,

= 0, otherwise.

Sketch the graph of f . Let g(x) = x + x2f(x). Show that f is differ-
entiable at 0 and that g′(0) = 1. Suppose that δ > 0. Show that there
exist 0 < a < b < δ such that g(a) > g(b).

7.2 Convex functions

We now consider an important class of functions, with interesting continuity
and differentiability properties.

Suppose that E is a real or complex vector space, and that u, v ∈ E. Let
σ : [0, 1] → E be defined by

σ(t) = u + (v − u)t = (1 − t)u + tv for 0 ≤ t ≤ 1.

Then σ([0, 1]) is the straight line segment [u, v] between u and v. A subset C

of E is convex if [u, v] ⊆ C, for each u, v in C. Thus a subset of R is convex
if and only if it is an interval.

Suppose that f is a function on an interval I. f is said to be convex if the
subset {(x, y) ∈ R2 : x ∈ I, y ≥ f(x)} of R2 is a convex set. Equivalently, if
x0, x1 ∈ I, then the straight line segment [(x0, f(x0)), (x1, f(x1))] in R2 lies
above the graph Gf = {(x, f(x)) ∈ R2 : x ∈ I}. Since

[(x0, f(x0)), (x1, f(x1))] =

{((1 − t)x0 + tx1, (1 − t)f(x0) + tf(x1)) : 0 ≤ t ≤ 1},
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this says that

(1 − t)f(x0) + tf(x1) ≥ f((1 − t)x0 + tx1)

for all x0, x1 ∈ I and all 0 ≤ t ≤ 1.
We say that f is strictly convex if

(1 − t)f(x0) + tf(x1) > f((1 − t)x0 + tx1)

for distinct x0, x1 ∈ I and all 0 < t < 1. f is concave if −f is convex; that is,

(1− t)f(x0)+ tf(x1) ≤ f((1− t)x0 + tx1) for all x0, x1 ∈ I and all 0 ≤ t ≤ 1.

Strict concavity is defined similarly.
The next proposition provides some alternative characterizations of con-

vexity.

Proposition 7.2.1 Suppose that f is a real-valued function on an open
interval I. The following are equivalent.

(i) f is convex.
(ii) If a, b, c ∈ I and a < b < c then

f(b) − f(a)
b − a

≤ f(c) − f(a)
c − a

.

(iii) If a, b, c ∈ I and a < b < c then

f(c) − f(a)
c − a

≤ f(c) − f(b)
c − b

.

(iv) If a, b, c ∈ I and a < b < c then

f(b) − f(a)
b − a

≤ f(c) − f(b)
c − b

.
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f (a)

a b c

f (b)

f (c)

x

Figure 7.2. A convex function.

Proof Let t = (b − a)/(c − a), so that 0 < t < 1, 1 − t = (c − b)/(c − a) and

b =
c − b

c − a
a +

b − a

c − a
c = (1 − t)a + tc.

The proof is then simply a matter of using this equation in the definition of
convexity, and rearranging the inequality. For example, if f is convex, then

f(b) ≤ c − b

c − a
f(a) +

b − a

c − a
f(c),

so that

f(b) − f(a) ≤ (c − b) − (c − a)
c − a

f(a) +
b − a

c − a
f(c) =

b − a

c − a
(f(c) − f(a)),

which gives (ii). Conversely, if (ii) holds, and if x0 < x1 and 0 < t < 1 then
setting xt = (1 − t)x0 + tx1,

f(xt) − f(x0)
xt − x0

≤ f(x1) − f(x0)
x1 − x0

.

Since xt − x0 = t(x1 − x0), this gives

f(xt) ≤ f(x0) + t(f(x1) − f(x0)) = (1 − t)f(x0) + tf(x1).

The other equivalences are proved in a similar way. �

Here are some basic properties of convex functions.

Proposition 7.2.2 (i) If f and g are convex functions on an interval I

and a ≥ 0 then f + g and af are convex.
(ii) If (fn)∞

n=1 is a sequence of convex functions on an interval I, and if
fn(x) → f(x) as n → ∞, for each x ∈ I, then f is convex.
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(iii) If {f : f ∈ F} is a family of convex functions on an interval I for
which g(x) = sup{f(x) : f ∈ F} is finite for each x ∈ I then g is convex.

(iv) If f, g are convex, non-negative increasing functions on an interval I

then fg is convex.
(v) If f is a convex function on an interval I, and if φ is an increasing

convex function on an interval J which contains f(I), then φ◦f is a convex
function on I.

Proof (i) and (ii) follow immediately from the definitions.
We suppose that x0, x1 ∈ I and that 0 < t < 1, and we set xt = (1− t)x0 +

tx1.
(iii) Suppose that ε > 0. There exists a function f in F such that f(xt) ≥

g(xt) − ε. Then

g(xt) − ε ≤ f(xt) ≤ (1 − t)f(x0) + tf(x1) ≤ (1 − t)g(x0) + tg(x1).

Since this holds for all ε > 0, g(xt) ≤ (1 − t)g(x0) + tg(x1).
(iv) Since f and g are increasing,

(g(x1) − g(x0))(f(x1) − f(x0)) ≥ 0.

Expanding and rearranging,

f(x0)g(x1) + f(x1)g(x0) ≤ f(x0)g(x0) + f(x1)g(x1),

and so

f(xt)g(xt) ≤
≤ ((1 − t)f(x0) + tf(x1))((1 − t)g(x0) + tg(x1))

= (1 − t)2f(x0)g(x0) + t(1 − t)(f(x0)g(x1) + f(x1)g(x0)) + t2(f(x1)g(x1)

≤ (1 − t)2f(x0)g(x0) + t(1 − t)(f(x0)g(x0) + f(x1)g(x1)) + t2(f(x1)g(x1)

= (1 − t)f(x0)g(x0) + tf(x1)g(x1).

(v) Since φ is convex and increasing,

φ(f(xt)) ≤ φ((1 − t)f(x0) + tf(x1)) ≤ (1 − t)φ(f(x0)) + tφ(f(x1)). �

We now turn to continuity and differentiability properties of convex
functions.
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Theorem 7.2.3 Suppose that f is a convex function on an open interval I.
(i) f is continuous on I.
(ii) f is differentiable on the right and on the left at each point a of I,

and f ′(a−) ≤ f ′(a+).
(iii) If a < b then f ′(a+) ≤ f ′(b−).
(iv) The mapping a → f ′(a+) is increasing, and is continuous on the right

at each point a of I.
(v) The mapping a → f ′(a−) is increasing, and is continuous on the left

at each point a of I.

Proof (i) is a consequence of (ii).
(ii) Suppose that y < a < x, with x, y ∈ I. By Proposition 7.2.1, the

function x → (f(x) − f(a))/(x − a) is an increasing function on I ∩ (a,∞),
bounded below by (f(a) − f(y))/(a − y). Thus (f(x) − f(a))/(x − a) tends
to a limit f ′(a+) as x ↘ a, and (f(a) − f(y))/(a − y) ≤ f ′(a+). Similarly,
(f(a) − f(y))/(a − y) → f ′(a−), and f ′(a−) ≤ f ′(a+).

(iii) f ′(a+) ≤ (f(b) − f(a))/(b − a) ≤ f ′(b−).
(iv) By (ii) and (iii), if a < b then f ′(a+) ≤ f ′(b−) ≤ f ′(b+), so the

mapping x → f ′(x+) is increasing. Suppose that a ∈ I. Given ε > 0, there
exists δ > 0 such that (a, a + δ) ⊆ I and

f ′(a+) ≤ f(x) − f(a)
x − a

< f ′(a+) + ε/2 for x ∈ (a, a + δ).

Choose b ∈ (a, a + δ). Since (f(b) − f(x))/(b − x) → (f(b) − f(a))/(b − a) as
x ↘ a, there exists 0 < η < δ such that

f(b) − f(x)
b − x

<
f(x) − f(a)

x − a
+ ε/2 < f ′(a+) + ε for x ∈ (a, a + η).

Thus if x ∈ (a, a + η) then

f ′(a+) ≤ f ′(x+) ≤ f(b) − f(x)
b − x

≤ f ′(a+) + ε.

The proof of (v) is exactly similar. �

Corollary 7.2.4 The set D of points of discontinuity of the mapping
a → f ′(a+) is countable. D is the set of points of discontinuity of the
mapping a → f ′(a−), and is the set of points at which f is not differentiable.

Proof Since the mapping a → f ′(a+) is increasing, D is countable, by The-
orem 6.3.5. Suppose that d ∈ D. Since the mapping y → f ′(y−) is continuous
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on the left at d,

f ′(d−) = lim
y↗d

f ′(y−) ≤ lim
y↗d

f ′(y+) < f ′(d+),

so that f is not differentiable at d. Further, f ′(d+) ≤ f ′(z−) for z > d, so
that f ′(d−) < limz↘d f ′(z−); d is a point of discontinuity of the mapping
a → f ′(a−) as well.

Conversely, if c �∈ D then

f ′(c−) = lim
y↗c

f ′(y−) = lim
y↗c

f ′(y+) = f ′(c+),

so that f is differentiable at c, and

f ′(c−) = f ′(c+) = lim
x↘c

f ′(x−),

so that the mapping x → f ′(x−) is continuous at c. �

Exercises

7.2.1 Give an example of a convex function on [0, 1] which is discontinuous
at 0 and at 1.

7.2.2 A real-valued function on an interval I is midpoint-convex if

f((a + b)/2) ≤ (f(a) + f(b))/2 for all a, b ∈ I.

Suppose that f is a midpoint-convex function on I.
(a) Suppose that c − h, c, c + h ∈ I, where h > 0. Show that if n ∈ N

then
f(c − h) − f(c)

n + 1
≤ f(c + h/n) − f(c) ≤ f(c + h) − f(c)

n
,

f(c + h) − f(c)
n + 1

≤ f(c − h/n) − f(c) ≤ f(c − h) − f(c)
n

.

(b) Show that if f is bounded on I then f is continuous at c.
(c) Show that if f is bounded on I then f is convex.

7.2.3 State and prove results corresponding to Propositions 7.2.1 and 7.2.2
and Theorem 7.2.3 for strictly convex functions.

7.2.4 Suppose that f is a convex function on an interval I, that x1, . . . , xn are
distinct points in I and that p1, . . . pn are positive numbers for which∑n

j=1 pj = 1. Show that

f(
n∑

j=1

pjxj) ≤
n∑

j=1

pjf(xj). [Jensen’s inequality]

Show that the inequality is strict if f is strictly convex.
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7.2.5 Suppose that f is a convex strictly increasing function on an open
interval I. Show that the inverse function f−1 is concave and strictly
increasing on f(I).

7.3 Differentiable functions on an interval

Proposition 7.3.1 Suppose that f is a real-valued function defined on an
interval I and that f has a local maximum or local minimum at an interior
point c of I. If f is differentiable at c then f ′(c) = 0.

Proof Suppose that f has a local maximum at c. Then

f ′(c) = lim
x↘c

f(x) − f(c)
x − c

≤ 0 and f ′(c) = lim
x↗c

f(x) − f(c)
x − c

≥ 0,

and so f ′(c) = 0. The proof when f has a local minimum at c is exactly
similar. �

A function on an open interval I which is differentiable at every point of
the interval is said to be differentiable on I.

Theorem 7.3.2 (Rolle’s theorem) Suppose that f is a real-valued function,
defined on a closed interval [a, b], which is continuous on the closed interval
[a, b] and differentiable on the open interval (a, b). Suppose that f(a) = f(b).
Then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof If f(x) = f(a) for all x ∈ (a, b) then f ′(x) = 0 for all x ∈ (a, b).
Otherwise f is not monotonic on [a, b], and therefore, by Corollary 6.3.7,
has a local maximum or local minimum at an interior point c of [a, b]. Then
f ′(c) = 0, by Proposition 7.3.1. �

Corollary 7.3.3 Suppose that f ′(x) �= 0, for each x ∈ (a, b). Then f is
strictly monotonic.

Proof If not, f is not injective (Proposition 6.4.4), and so there exists a ≤
a′ < b′ ≤ b for which f(a′) = f(b′). But then there exists a′ < c < b′ with
f ′(c) = 0, giving a contradiction. �

As Exercise 7.5.6 shows, if f is differentiable on an interval then the deriva-
tive need not be continuous. Nevertheless, it satisfies an intermediate value
property. This property is known as Darboux continuity.

Theorem 7.3.4 Suppose that f is a real-valued function which is dif-
ferentiable on the open interval (a, b) and that f ′(c) < f ′(d) for some
a < c < d < b. If f ′(c) < v < f ′(d) there exists c < e < d with f ′(e) = v.
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Proof We apply a shear to the graph of f : let h(x) = f(x) − vx. Then
h′(c) = f ′(c) − v < 0 and h′(d) = f ′(d) − v > 0. There exists e ∈ [c, d]
such that h(e) = inf{h(x) : x ∈ [c, d]}. By Proposition 7.1.5 (v), there exists
0 < δ < d − c such that h(x) < h(c) for c < x < c + δ and h(x) < h(d) for
d − δ < x < d, and so e must be an interior point of [c, d]. Thus h has a local
minimum at e, and h′(e) = f ′(e) − v = 0. �

We applied a shear to obtain this result. We do it again to obtain a mean-
value theorem.

Theorem 7.3.5 (The mean-value theorem) Suppose that f is a real-valued
function which is continuous on the closed interval [a, b] and differen-
tiable on the open interval (a, b). Then there exists a < c < b with
f ′(c) = (f(b) − f(a))/(b − a).

Proof Let hλ(x) = f(x) − λx. If we set λ = (f(b) − f(a))/(b − a) then
hλ(a) = hλ(b), and so there exists a < c < b such that h′

λ(c) = f ′(c)−λ = 0.
Thus f ′(c) = (f(b) − f(a))/(b − a). �

This theorem says that there is a point c in (a, b) at which the tangent to
the graph of f is parallel to the chord joining (a, f(a)) and (b, f(b)).

The next corollary is ‘obviously’ true, but it is not a trivial result; it is
however an immediate consequence of the mean-value theorem.

Corollary 7.3.6 Suppose that f is a real-valued function which is continu-
ous on the closed interval [a, b] and differentiable on the open interval (a, b).
If f ′(x) = 0 for a < x < b then f is constant on [a, b]: f(a) = f(x) = f(b)
for all x ∈ [a, b].

Here is a more sophisticated mean-value theorem.

Theorem 7.3.7 (Cauchy’s mean-value theorem) Suppose that f and g are
real-valued functions which are continuous on the closed interval [a, b] and
differentiable on the open interval (a, b), and suppose that g′(x) �= 0 for all
x ∈ (a, b). Then g(a) �= g(b), and there exists c ∈ (a, b) such that

f ′(c)
g′(c)

=
f(b) − f(a)
g(b) − g(a)

.

Proof By Corollary 7.3.3, g is strictly monotonic on (a, b), and so g(a) �=
g(b). Let

λ =
f(b) − f(a)
g(b) − g(a)

and let hλ(x) = f(x) − λg(x).
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Then hλ(a) = hλ(b), and so there exists a < c < b such that h′
λ(c) =

f ′(c) − λg′(c) = 0. Thus f ′(c)/g′(c) = (f(b) − f(a))/(g(b) − g(a)). �

Corollary 7.3.8 (L’Hôpital’s rule) Suppose that f and g are real-valued
functions which are continuous on the closed interval [a, b] and differentiable
on the open interval (a, b), that f(a) = g(a) = 0 and that g′(x) �= 0 for all
x ∈ (a, b). If f ′(x)/g′(x) → l as x ↘ a then f(x)/g(x) → l as x ↘ a.

Proof Suppose that ε > 0. There exists 0 < δ ≤ b − a such that
|f ′(x)/g′(x) − l| < ε for a < x < a + δ. If a < x < a + δ there exists
a < c < x such that

f(x)
g(x)

=
f(x) − f(a)
g(x) − g(a)

=
f ′(c)
g′(c)

,

and so ∣∣∣∣f(x)
g(x)

− l

∣∣∣∣ = ∣∣∣∣f ′(c)
g′(c)

− l

∣∣∣∣ < ε. �

Exercises

7.3.1 Suppose that f is continuous on [a, b] and differentiable on (a, b) and
that f has a derivative on the right at a [which we denote here by f ′(a)]
and a derivative on the left at b [which we denote here by f ′(b)]. Show
that if f ′ is continuous on [a, b] and ε > 0 then there exists δ > 0 such
that ∣∣∣∣f(x) − f(y)

x − y
− f ′(x)

∣∣∣∣ < ε if x, y ∈ [a, b] and |x − y| < δ.

7.3.2 Suppose that a0, . . . , an ∈ R and that

a0 +
a1

2
+ · · · +

an−1

n
+

an

n + 1
= 0.

Show that there exists 0 < c < 1 such that

a0 + a1c + · · · + an−1c
n−1 + ancn = 0.

7.3.3 Suppose that f is continuous on [a, b] and differentiable on (a, b). Show
that f ′ is an increasing function on (a, b) if and only if f is convex.

7.3.4 Suppose that f is a real-valued function on an interval I which satisfies
|f(x) − f(y)| ≤ |x − y|2 for all x, y ∈ I. Show that f is constant.

7.3.5 Suppose that f is a differentiable function on R and that f ′(x) → l as
x → +∞. Show that f(x)/x → l as x → +∞.



7.4 The exponential and logarithmic functions; powers 189

7.3.6 Suppose that f is continuous on [a, b] and differentiable on (a, b), and
that f ′(x) → l as x ↘ a. Show that f is differentiable on the right at
a and that f ′(a+) = l.

7.3.7 Suppose that f is a differentiable function on [a, b] and that f ′ is con-
tinuous on [a, b]. Let N = {x ∈ [a, b] : f ′(x) = 0}. Suppose that ε > 0.
Show that there are finitely many disjoint intervals I1, . . . , Ik in [a, b]
such that N ⊆ ∪k

j=1Ij and such that |f ′(x)| ≤ ε for x ∈ ∪k
j=1Ij . Show

that f(N) is a closed subset of R with no interior points.
7.3.8 Suppose that a is an algebraic number which is not rational. Show that

there exists a non-zero polynomial p(x) = anxn + · · · + a0 with integer
coefficients such that p(a) = 0, whereas p(r) �= 0 for r ∈ Q. Thus if
r = p/q then qnp(r) is a non-zero integer. Let

M = sup{|p′(x)| : a − 1 ≤ x ≤ a + 1}.

Suppose that r = p/q ∈ Q and that |r − a| ≤ 1. Use the mean-value
theorem to show that |r−a| ≥ 1/Mqn. (This result is due to Liouville.)
Let x =

∑∞
n=1 10−n!. Show that x is not rational. Show that x is not

algebraic.

7.4 The exponential and logarithmic functions; powers

We now consider how the results that we have obtained can be used to
establish properties of some of the fundamental functions of analysis.

We have defined the real exponential function

exp(x) = 1 +
x

1!
+

x2

2!
+ · · · +

xn

n!
+ · · ·

for x ∈ R, and have shown that exp(x + y) = exp(x) exp(y), and that exp
is differentiable, with derivative exp′(x) = exp(x). We set e = exp(1). The
reader should use these results, and the results that have been proved, to
justify the following statements.

1. exp is a non-negative strictly increasing function on R.
2. exp is a strictly convex function on R.
3. If n ∈ Z+ then exp(x)/xn → ∞ as x → +∞.
4. If n ∈ Z+ then xn exp(x) → 0 as x → −∞.
5. exp is a continuous bijection of R onto (0,∞) which is an isomorphism

of the additive group (R, +) onto the multiplicative group ((0,∞),×).
6. The inverse mapping from (0,∞) to R, which is called the logarithmic

function, and denoted log x, is differentiable, and d log x/dx = 1/x, for
0 < x < ∞.
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7. If x, y > 0 then log xy = log x + log y.
8. log x is a strictly increasing strictly concave function on (0,∞).
9. log 1 = 0, log e = 1, log x → ∞ as x → ∞ and log x → −∞ as x ↘ 0.

10. If m ∈ N then log x/x1/m → 0 as x → ∞ and x1/m log x → 0 as x ↘ 0.
11. 1/x = exp(− log x), and if x > 0 and n ∈ N then

xn = exp(n log x) and x1/n = exp((log x)/n).

Thus if r = p/q ∈ Q then xp/q = exp((p/q) log x).
This leads us to define xα = exp(α log x), for x > 0 and α ∈ R.
xα is x raised to the power α. Note that, with this terminology,
exp(x) = exp(x log e) = ex. In future, we shall usually write ex for expx.

12. If x > 0 and α, β ∈ R then xα+β = xαxβ and x0 = 1.
13. For fixed x > 0, the function α → xα from R to (0,∞) is continuous.

Thus if (rn)n∈N is a sequence in Q and rn → α then xrn → xα as n → ∞.
14. For fixed x > 0, the function α → xα from R to (0,∞) is differentiable,

with derivative dxα/dα = xα log x.
15. If x > 1 then the function α → xα from R to (0,∞) is a strictly convex

and strictly increasing bijection of R onto (0,∞).
16. If 0 < x < 1 then the function α → xα from R to (0,∞) is a strictly

convex and strictly decreasing bijection of R onto (0,∞).
17. For fixed α ∈ R, the function x → xα from (0,∞) → (0,∞) is

differentiable, with derivative dxα/dx = αxα−1.
18. If α > 1 then the function x → xα is a strictly increasing strictly convex

bijection of (0,∞) onto (0,∞).
19. If 0 < α < 1 then the function x → xα is a strictly increasing strictly

concave bijection of (0,∞) onto (0,∞).
20. If α < 0 then the function x → xα is a strictly decreasing strictly convex

bijection of (0,∞) onto (0,∞).
A strictly positive function f on an interval I is logarithmically convex if
log f is convex. Since

(1 − θ) log f(x) + θ log f(y) = log(f(x)1−θf(y)θ),

f is logarithmically convex if and only if

f((1 − θ)x + θy) ≤ f(x)1−θf(y)θ

for x, y ∈ I and 0 < θ < 1. Since f = elog f , it follows from Proposition
7.2.2 (v) that a logarithmically convex function is convex.
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Figure 7.4. The exponential and logarithmic functions.

Exercises

7.4.1 Show that n1/n → 1 as n → ∞.
7.4.2 Use the strict concavity of log x to prove the following generaliza-

tion of the arithmetic mean-geometric mean inequality. Suppose that
x1, . . . , xn are positive numbers and that p1, . . . , pn are strictly positive
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numbers with
∑n

j=1 pj = 1. Show that

xp1
1 xp2

2 . . . xpn
n ≤ p1x1 + p2x2 + · · · + pnxn,

with equality if and only if x1 = x2 + · · · = xn.
7.4.3 Suppose that 1 < p, q < ∞. If 1/p + 1/q = 1, then p and q are called

conjugate indices. Suppose that p and q are conjugate indices and that
x and y are non-negative numbers. Show that xy ≤ xp/p+yq/q. When
does equality hold?
Suppose now that x1, . . . , xn, y1, . . . , yn are real numbers, and that∑n

j=1 |xjyj | �= 0. Let S = (
∑n

j=1 |xj |p)1/p, T = (
∑n

j=1 |yj |q)1/q, and
let aj = xj/S, bj = yj/T for 1 ≤ j ≤ n. Show that

∑n
j=1 |ajbj | ≤ 1.

Deduce that

|
n∑

j=1

xjyj | ≤
n∑

j=1

|xjyj | ≤ (
n∑

j=1

|xj |p)1/p.(
n∑

j=1

|yj |q)1/q.

(Hölder’s inequality). Note that this generalizes Cauchy’s inequality.
When does equality hold? Extend this result to infinite sums.

7.4.4 Here is another version of Hölder’s inequality. Suppose that x1, . . . , xn,
y1, . . . , yn are real numbers, and that a1, . . . an are non-negative num-
bers. Show that

|
n∑

j=1

ajxjyj | ≤
n∑

j=1

aj |xjyj | ≤ (
n∑

j=1

aj |xj |p)1/p.(
n∑

j=1

aj |yj |q)1/q.

7.4.5 Show that the function log((1 + x)/(1 − x)) is a strictly increasing
bijection of (−1, 1) onto R. Show that it is convex on (0, 1).

7.4.6 Suppose that y > 0. Show that (y − 1)2 > y(log y)2.
7.4.7 Using the convexity of the function 4−x, show that if 0 < x ≤ 1/2

then 1 − x ≥ 4−x. Let (p1, p2, . . .) be an enumeration of the primes in
increasing order. Show that, for each n ∈ N,

n∑
j=1

1
j

≤
n∏

j=1

(1 +
1
pj

+
1
p2

j

+ · · · ) =

⎛⎝ n∏
j=1

(1 − 1
pj

)

⎞⎠−1

.

Deduce that
∑n

j=1 1/j ≤ 4tn , where tn =
∑n

j=1 1/pj , and deduce that∑∞
j=1 1/pj = ∞.

7.4.8 Use the mean-value theorem to show that if x > 0 then
x

1 + x
< log(1 + x) < x.

Deduce that (1 + x)1/x ↗ e as x ↘ 1.
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7.4.9 Sketch the graph of the function f(x) = x log x, for x ∈ (0,∞). Is it
convex? Does it have any maxima or minima? What is limx↘0 f(x)?
What is limx↘0 f ′(x)?

7.4.10 Suppose that f is positive and differentiable on an open interval I. Show
that (log f)′(x) = f ′(x)/f(x). Let g(x) = xx, for x ∈ (0,∞). Calculate
g′(x). Show that g is logarithmically convex. Sketch the graph of the
function g, answering the same questions as in the previous exercise.

7.4.11 Investigate

lim
x↘0

(1 + x)1/x − e

x
and lim

x→∞
x(x1/x − 1)

log x
.

7.5 The circular functions

Next we consider the cosine and sine functions. These functions arise in geom-
etry and trigonometry, but we are not yet in a position to consider this aspect
of things. Instead, we treat them in a purely analytic way. As we shall see
later, they also have an important part to play in complex analysis, and this
will also throw more light on them.

Each of the power series

cos z =
∞∑

k=0

(−1)k z2k

(2k)!
= 1 − z2

2!
+

z4

4!
− · · · ,

sin z =
∞∑

k=0

(−1)k z2k+1

(2k + 1)!
= z − z3

3!
+

z5

5!
− · · ·

has infinite radius of convergence.
The cosine function cos is an even function (cos z = cos(−z)) and the sine

function sin is an odd function (sin z = − sin(−z)).
Following custom, if n ∈ N we write cosn z for (cos z)n and sinn z for

(sin z)n. But 1/ cos z is denoted by sec z and 1/ sin z is denoted by cosec z:
cos−1 and sin−1 have quite different meanings (see Exercises 7.5.3 and 7.5.4).

We restrict attention to the real-valued functions cos and sin, defined on
the real line R.

Theorem 7.5.1 cos x is differentiable, and cos′ x = − sin x. sin x is
differentiable, and sin′ x = − cos x.

Proof First we establish an elementary inequality. We prove this for complex
numbers, since we shall need such an inequality in Volume III.
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Lemma 7.5.2 Suppose that z, w ∈ C and that n ∈ N. Then

|(z + w)n − zn − nwzn−1| ≤ n(n − 1)
2

|w|2(|z| + |w|)n−2.

Proof The proof is trivially true if n = 1 or 2. Suppose that n ≥ 3. By the
binomial theorem,

(z + w)n − zn − nwzn−1 = w2
n∑

j=2

(
n

j

)
wj−2zn−j

=
n−2∑
k=0

n(n − 1)
(k + 2)(k + 1)

(
n − 2

k

)
wkzn−k−2,

so that

|(z + w)n − zn − nwzn−1| ≤
n−2∑
k=0

n(n − 1)
(k + 2)(k + 1)

(
n − 2

k

)
|w|k|z|n−k−2

≤ n(n − 1)
2

(|z| + |w|)n−2. �

We now prove the theorem. Suppose that h �= 0.

cos(x + h) − cos x

h
+ sin x

=
∞∑

k=0

(−1)k (x + h)2k − x2k − 2khx2k−1

h(2k)!
,

so that ∣∣∣∣cos(x + h) − cos x

h
− sin x

∣∣∣∣
≤
∑
k=0

|(x + h)2k − x2k − 2khx2k−1|
|h|(2k)!

≤ |h|
∞∑

k=0

|(|x| + |h|)2k−2

(2k − 2)!
≤ |h|e|x|+|h|.

A similar argument, left to the reader as an easy exercise, establishes the
result for sin x. �

Corollary 7.5.3 cos2 x + sin2 x = 1, so that −1 ≤ cos x ≤ 1 and −1 ≤
sin x ≤ 1.
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Proof Let f(x) = cos2 x + sin2 x. Then

f ′(x) = 2 cosx(− sin x) + 2 sin x cos x = 0,

so that f is constant, by the mean-value theorem. Thus f(x) = f(0) = 1.
�

The alternating series test shows that sin x ≥ x−x3/3! = x(1−x2/6) > 0
for 0 < x ≤ 2, so that cosx is strictly decreasing on [0, 2]. The alternating
series test also shows that cos x ≥ 1 − x2/2 ≥ 0 for 0 ≤ x ≤

√
2, and that

cos
√

3 ≤ 1 − 3/2 + 9/24 = −1/8. Thus, by the intermediate-value theorem,
there exists

√
2 < x0 <

√
3 such that cosx0 = 0. Since the function cos is

strictly decreasing on [0, 2], x0 is unique. We set π = 2x0.
Since sin′ x = cos x is positive on (0, π/2), sin x is strictly increasing on

[0, π/2]. Since

sin2(π/2) = sin2(π/2) + cos2(π/2) = 1,

sin 0 = 0 and sin(π/2) = 1. Since cos′ x = − sin x is negative and decreas-
ing on (0, π/2), cos x is decreasing and concave on [0, π/2]; since cos x is an
even function, cosx is concave on [−π/2, π/2]. Similarly, sin x is convex on
[−π/2, 0] and concave on [0, π/2].

In order to go further, we need the addition formula.

Theorem 7.5.4 If x, y ∈ R then sin(x + y) = sin x cos y + cos x sin y.

Proof Since the series are absolutely convergent, we can expand the
products as Cauchy products.

sin x cos y =

⎛⎝ ∞∑
j=0

(−1)j x2j+1

(2j + 1)!

⎞⎠( ∞∑
k=0

(−1)k y2k

(2k)!

)

=
∞∑

n=0

⎛⎝ ∑
j+k=n

(−1)n x2j+1

(2j + 1)!
.

y2k

(2k)!

⎞⎠ .

Similarly

cos x sin y =
∞∑

n=0

⎛⎝ ∑
j+k=n

(−1)n x2j

(2j)!
.

y2k+1

(2k + 1)!

⎞⎠ .
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Adding,

sin x cos y + cos x sin y =
∞∑
l=0

⎛⎝ ∑
j+k=2l+1

(−1)l x
j

j!
.
yk

k!

⎞⎠
=

∞∑
l=0

(−1)l (x + y)2l+1

(2l + 1)!
= sin(x + y). �

Corollary 7.5.5 cos(x + y) = cos x cos y − sin x sin y.

Proof Differentiate with respect to x, or with respect to y. �

Corollary 7.5.6 sin(x + π/2) = cos x and cos(x + π/2) = − sin x.

Proof Put y = π/2. �

Corollary 7.5.7 sin(x + π) = − sin x and cos(x + π) = − cos x.
sin(x + 2π) = sin x and cos(x + 2π) = cos x.

Thus the cosine and sine functions are periodic, with period 2π.

Proposition 7.5.8 Suppose that (x, y) ∈ R2 and that x2 + y2 = r2 > 0.
Then there exists a unique θ ∈ (−π, π] such that x = r cos θ and y = r sin θ.

Proof Suppose first that y is non-negative. Since cos 0 = 1 and cosπ = −1,
and since −1 ≤ x/r ≤ 1, it follows from the intermediate value theorem that
there exists 0 ≤ θ ≤ π such that x/r = cos θ. θ is unique, since cos is a strictly
decreasing function on [0, π]. Then (y/r)2 = 1− (x/r)2 = 1− cos2 θ = sin2 θ,
and so y = r sin θ, since y and sin θ are both non-negative.

If y < 0 then there exists 0 < φ < π such that x = r cos φ and −y = r sin φ.
Let θ = −φ. Then x = r cos θ and y = r sin θ, and again, θ is uniquely
determined. �

We now consider the complex case. Inspection shows that

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i
,

and so we obtain Euler’s formula

eiz = cos z + i sin z.

In particular, if x ∈ R then cosx and sin x are the real and imaginary parts
of eix.
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y
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Figure 7.5. The cosine and sine functions.

Proposition 7.5.9 The mapping

t → eit = cos t + i sin t : R → T = {z : |z| = 1}

is a continuous homomorphism of the additive group (R, +) onto the
multiplicative group (T, .), with kernel 2πZ.

Proof The mapping is certainly continuous, and is a homomorphism into
(T, .). It is surjective, by Proposition 7.5.8. Finally, eit = cos t + i sin t = 1 if
and only if cos t = 1 and sin t = 0, which happen if and only if t = 2πk, for
some k ∈ Z. �
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In fact, most of the properties of the real-valued functions cos and sin can
be deduced from the equation eit = cos t + i sin t. For example,

cos2 t + sin2 t = |eit|2 = eiteit = eite−it = 1.

Here are two more examples.

Example 7.5.10 If n ∈ N then

cos nt =
∑

0≤2k≤n

(−1)k

(
2n

2k

)
sin2k t cos2n−2k t

and sin nt =
∑

0≤2k<n

(−1)k

(
2n

2k + 1

)
sin2k+1 t cos2n−2k−1 t.

For

eint = (cos t + i sin t)n =
n∑

j=0

(
n

j

)
(ij sinj t cosn−j t)

=

⎛⎝ ∑
0≤2k≤n

(−1)k

(
2n

2k

)
sin2k t cos2n−2k t

⎞⎠
+ i

⎛⎝ ∑
0≤2k<n

(−1)k

(
2n

2k + 1

)
sin2k+1 t cos2n−2k−1 t

⎞⎠ .

Example 7.5.11 If 0 < |t| ≤ π and n ∈ N then

n∑
j=−n

cos jt =
sin(n + 1

2)t
sin t/2

.

For

n∑
j=−n

cos jt =
n∑

j=−n

eijt = e−int
2n∑

j=0

eijt

= e−int e
i(2n+1)t − 1

eit − 1
=

ei(n+1
2)t − e−i(n+1

2)t

eit/2 − e−it/2 =
sin(n + 1

2)t
sin t/2

.
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Exercises

7.5.1 Show that 2x/π < sin x < x for 0 < x < π/2.
7.5.2 Use the mean-value theorem to show that

0 <
1

sin t
− 1

t
< t for 0 < t < π/2.

7.5.3 Show that the function sin is a continuous strictly increasing bijection
of [−π/2, π/2] onto [−1, 1]. The inverse mapping is denoted by sin−1,
or arcsin. Show that

d sin−1

dx
(x) =

1√
1 − x2

for − 1 < x < 1.

7.5.4 Show that the function cos is a continuous strictly decreasing bijection
of [0, π] onto [−1, 1]. The inverse mapping is denoted by cos−1, or arccos.
Show that

d cos−1

dx
(x) = − 1√

1 − x2
for − 1 < x < 1.

7.5.5 Explain why
d(sin−1 + cos−1)

dx
(x) = 0 for − 1 < x < 1.

7.5.6 Let f(x) = sin(1/x) for x �= 0 and let f(0) = 0. Sketch the graph of f .

(a) For what values of α is the function xαf(x) continuous on R?
(b) For what values of α is the function xαf(x) differentiable on R?
(c) For what values of α is the function xαf(x) continuously differen-

tiable on R?
(d) For what values of α is the function x + xαf(x) strictly increasing

on R?
7.5.7 The tangent function tan is defined as tan x = sin x/ cos x for −π/2 <

x < π/2. Show that it is a strictly increasing differentiable mapping of
(−π/2, π/2) onto R. Its inverse is denoted by tan−1, or arctan. What
is the derivative of tan−1?

7.5.8 Investigate

lim
x→0

x(1 − cos x)
x − sin x

and lim
x→0

tan2 x − sin2 x

(1 − cos x)2
.

7.5.9 Let f(x) = x+2x2 sin(1/x), for x �= 0 and let f(0) = 0. Show that f is
differentiable on R, and calculate its derivative. Show that f ′(0) = 1,
but that there is no interval (−δ, δ) on which f is monotonic.



200 Differentiation

7.6 Higher derivatives, and Taylor’s theorem

Suppose that f is a differentiable function on an open interval I. Then, as with
the functions exp, log, sin and cos, it may happen that f ′ is also differentiable.
We then denote the derivative of f ′ by f ′′, or f (2), or d2f/dx2. The process
may continue, and we obtain higher derivatives f (n), or dnf/dxn, of order n.
If f has derivatives of all orders, we say the f is infinitely differentiable.

We have the following formula for products.

Proposition 7.6.1 (Leibniz’ formula) Suppose that f, g are functions on
an open interval which have derivatives of order n. Then

(fg)(n) = f (n)g + nf (n−1)g′ + · · · +
(

n

r

)
f (n−r)g(r) + · · · + fg(n).

Proof The proof is by induction on n. It is true for n = 1, by Proposition
7.1.5 (iii). Suppose that it is true for n. Using the result for n = 1,

(f (n−r)g(r))′ = f (n−r+1)g(r) + f (n−r)g(r+1),

so that

(fg)(n+1) =
n∑

r=0

(
n

r

)(
f (n−r+1)g(r) + f (n−r)g(r+1)

)

=
n+1∑
r=0

((
n

r

)
+
(

n

r − 1

))
f (n+1−r)g(r)

=
n+1∑
r=0

(
n + 1

r

)
f (n+1−r)g(r),

since (
n

r

)
+
(

n

r − 1

)
=
(

n + 1
r

)
,

by de Moivre’s formula. �

If f is differentiable at a, then the function ta(x) = f(a) + (x − a)f ′(a)
provides a linear approximation to f ; if ra = f − ta, then ra(x) = o(|x − a|).
Suppose that f has higher derivatives, up to order n; can we obtain a better
polynomial approximation? Let us consider a polynomial which has the same
derivatives as f at a. Let

pn(x) = f(a) + (x − a)f ′(a) +
(x − a)2

2!
f ′′(a) + · · · +

(x − a)n

n!
f (n)(a).
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Then pn is a polynomial of degree at most n, pn(a) = f(a) and

p(s)
n (x) =

f (s)(a) + (x − a)fs+1(a) +
(x − a)2

2!
f (s+2)(a) + · · · +

(x − a)n−s

(n − s)!
f (n)(a),

so that p
(s)
n (a) = f (s)(a) for 1 ≤ s ≤ n. Let rn+1 = f − pn: rn+1 is the

remainder term. Then rn+1(a) = 0 and r
(s)
n+1(a) = 0 for 1 ≤ s ≤ n, and we

might hope that the remainder term is small, so that pn is an even better
approximation to f , near a.

Taylor’s theorem provides information about the remainder term. We give
two versions of this theorem here, and shall give another one in Theorem
8.7.3. The different versions each depend in detail upon the conditions that
are placed on f and on its derivatives.

Theorem 7.6.2 (Taylor’s theorem, with Lagrange’s remainder) Suppose
that f is a continuous function on [a, b] which is n-times differentiable on
[a, b) (with one-sided derivatives at a). Then there exists c ∈ (a, b) such that

f(b) = f(a) + (b − a)f ′(a) + · · · +
(b − a)n−1

(n − 1)!
f (n−1)(a) +

(b − a)n

n!
f (n)(c)

= pn−1(b) +
(b − a)n

n!
f (n)(c).

Proof The proof is just like the proof of the mean-value theorem. We
shall assume that a < b; a similar proof applies if b < a. Let hλ(x) =
f(x) − pn−1(x) − λ(x − a)n/n!, where λ is a real number chosen so that
hλ(b) = 0. Then hλ is continuous on [a, b], hλ(a) = 0, and h

(s)
λ (a) = 0 for

1 ≤ s < n.
We need to show that there exists a < c < b such that λ = f (n)(c). To

do this, we repeatedly use Rolle’s theorem. Since hλ(a) = hλ(b) = 0, there
exists a < c1 < b such that h′

λ(c1) = 0. Now h′
λ is continuous on [a, c1]

and h′
λ(a) = h′

λ(c1) = 0, and so, using Rolle’s theorem again, there exists
a < c2 < c1 such that h′′

λ(c2) = 0. Continuing in this way (that is, giving a
proof by induction), we find that there exist a < cn < cn−1 < · · · < c1 < b

such that h
(n)
λ (cn) = 0. But h

(n)
λ = f (n) − λ; setting c = cn, we see that

λ = f (n)(c). Thus

f(b) = pn−1(b) +
(b − a)n

n!
f (n)(c). �

For the second theorem, we impose slightly stronger conditions.



202 Differentiation

Theorem 7.6.3 (Taylor’s theorem, with Cauchy’s remainder) Suppose
that f is a continuous function on [a, b] which is n-times differentiable on
[a, b) (with one-sided derivatives at a), and for which the derivatives are
bounded on [a, b). Suppose that k ∈ R and that k > 0. Then there exists
c ∈ (a, b) such that

f(b) = pn−1(b) +
(b − c)n−k(b − a)k

k(n − 1)!
f (n)(c).

If we write c = (1 − θn)a + θnb, this becomes

f(b) = pn−1(b) +
(1 − θn)n−k(b − a)n

k(n − 1)!
f (n)(c).

Proof Suppose that a < b; a similar proof holds if b < a. Let

h(x) = f(x) +
n−1∑
s=1

(b − x)s

s!
f (s)(x)

for a ≤ x < b, and let h(b) = f(b). Since the derivatives are bounded on
[a, b), the function h is continuous on [a, b] and differentiable on (a, b). The
idea behind this definition is that h(a) = pn−1(b) and

d

dx

(
(b − x)s

s!
f (s)(x)

)
= −(b − x)s−1

(s − 1)!
f (s)(x) +

(b − x)s

s!
f (s+1)(x),

so that

h′(x) =
(b − x)n−1f (n)(x)

(n − 1)!
,

all the other terms cancelling in pairs. Let g(x) = −(b − x)k, so that

g(b) − g(a) = (b − a)k, and g′(x) = k(b − x)k−1 �= 0 for x ∈ (a, b).

Thus by Cauchy’s mean-value theorem there exists a < c < b such that

h(b) − h(a)
g(b) − g(a)

=
h′(c)
g′(c)

.
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Thus

f(b) = h(b) = h(a) + (h(b) − h(a))

= h(a) + (g(b) − g(a))
h′(c)
g′(c)

= pn−1(b) +
(b − c)n−1(b − a)k

k(b − c)k−1(n − 1)!
f (n)(c)

= pn−1(b) +
(b − c)n−k(b − a)k

k(n − 1)!
f (n)(c). �

Suppose that f is infinitely differentiable. Then we can write f(x) =
pn(x) + rn+1(x) for each n. We might hope that rn(x) → 0 as n → ∞,
so that we can write

f(x) = f(a) +
∞∑

j=1

(x − a)j

j!
f (j)(a),

in which case the series on the right-hand side is called the Taylor series
for f . The following example shows that this is not always the case. Let
f(x) = e−1/x2

for x �= 0 and let f(0) = 0. Then f is continuous on R. If x �= 0
then f ′(x) = (2/x3)e−1/x2

, and f ′(0) = limx→0 e−1/x2
/x = 0. An inductive

argument then shows that there exists a sequence (sj) of polynomials such
that

f (j)(x) =
sj(x)
x3j

e−1/x2
for x �= 0,

and f (j+1)(0) = lim
x→0

sj(x)
x3j+1 e−1/x2

= 0,

for all j ∈ N. Thus pn(x) = 0 for all n, and so rn+1(x) = f(x). In this case,
the Taylor series gives us no useful information about f ; the trouble is that
f is too smooth at 0.

Let us give two applications of Taylor’s theorem. Our first application is to
the Newton–Raphson method of approximation. We consider a continuous
function f on an interval [a, b] with the following properties:

(i) f is twice differentiable on (a, b), and f ′′ is bounded on (a, b): there
exists M such that |f ′′(x)| ≤ M for all x ∈ (a, b);

(ii) there exists m > 0 such that f ′(x) ≥ m for all x ∈ (a, b);
(iii) f(a) < 0 and f(b) > 0.
Then f is strictly increasing on [a, b], and so, by the intermediate value

theorem, there exist a unique c ∈ (a, b) with f(c) = 0. The Newton--Raphson
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method provides a sequence of successive approximations to c, and Tay-
lor’s theorem tells us that the approximation can improve extremely rapidly.
We must start with a reasonably good approximation x0. Let K = M/2m.
Suppose that we have found 0 < h < K, a1 and b1 such that

a < b1 − h < a1 < b1 < a1 + h ≤ b, and such that f(a1) < 0 < f(b1).

y

f (x1)

f (x0)

x
x0x1

x = c

Figure 7.6. The Newton--Raphson method.

Let λ = h/K, so that 0 < λ < 1 (the smaller λ is, the better the
approximation will be). Then c ∈ (a1, b1), and

[a1, b1] ⊆ (c − h, c + h) ⊆ (a, b).

Start by choosing x0 ∈ [a1, b1]. Then K|x0 − c| < λ. By Taylor’s theorem,
with Lagrange’s remainder, there exists y0 ∈ (c, x0) such that

0 = f(c) = f(x0) + (c − x0)f ′(x0) + (c − x0)2f ′′(y0)/2.

Hence
f(x0)
f ′(x0)

= (x0 − c) − (c − x0)2
f ′′(y0)
2f ′(x0)

.

We set x1 = x0 − f(x0)/f ′(x0), so that

x1 − c = (c − x0)2
f ′′(y0)
2f ′(x0)

,

and so |x1 − c| ≤ Kh2 = λh. Thus x1 ∈ (c − h, c + h), and K|x1 − c|
≤ λ2. Iterating the process, we obtain a sequence (xn)∞

n=0 such that



7.6 Higher derivatives, and Taylor’s theorem 205

K|xn − c| ≤ λ2n

. This can lead to very rapid convergence; for example, if
K = 1 and λ = 1/10, then |x3 − c| ≤ 1/108.

The proof of the existence of the nth root of a positive number that was
given in Section 3.2 used the Newton--Raphson method.

The classic application of Taylor’s theorem is to the binomial theorem.

Theorem 7.6.4 (The binomial theorem) Suppose that α ∈ R\N and that
−1 < x < 1. Let fα(x) = (1 + x)α. Then

fα(x) = 1 + αx +
∞∑

j=2

α(α − 1) . . . (α − j + 1)
j!

xj = 1 +
∞∑

j=1

(
α

j

)
xj ,

the sum converging absolutely.

Proof The proof is not quite straightforward. (It is unfortunate that Profes-
sor James Moriarty’s treatise is not extant, as it would have thrown light on
how the theorem was considered towards the end of the nineteenth century.)
The ratio test shows that the series converges absolutely. Further,

f (j)
α (x) = α(α − 1) . . . (α − j + 1)(1 + x)α−j .

Thus

fα(x) = 1 +
n−1∑
j=1

(
α

j

)
xj + rn(x).

We need to show that the remainder rn(x) tends to 0 as n → ∞. The
Lagrange form of the remainder is

rn(x) =
(

α

n

)
(1 + θnx)α−nxn = (1 + θnx)α

(
α

n

)(
x

1 + θnx

)n

,

where 0 < θn < 1. If 0 ≤ x < 1 then supn |x/(1+θnx)| < 1, and so rn(x) → 0
as n → ∞ (see Exercise 3.2.5). If −1 < x ≤ −1/2, this argument does not
work.

Instead, we use Cauchy’s form of the remainder. Choose k > |α|. We find
that

rn(x) =
α

k
(1 − θn)n−k

(
α − 1
n − 1

)
(1 + θnx)α−nxn.

Since 1 − θn < 1 + θnx, it follows that if n ≥ α then

|rn(x)| ≤
∣∣∣∣ 1
(1 − |x|)k−α

(
α − 1
n − 1

)
xn

∣∣∣∣ ,
and so rn(x) → 0 as n → ∞. �
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This is a remarkably technical proof. Another, easier, proof is given as an
exercise in Section 8.7. We shall see in Volume III, that these proofs, and
the proofs of other consequences of Taylor’s theorem, are superseded by the
complex version of Taylor’s theorem.

Notice that if α = −β < 0 and 0 < x < 1 then

1
(1 − x)β

= (1 + (−x))α = 1 +
∞∑

j=1

∣∣∣∣(α

j

)∣∣∣∣xj ,

so that all the summands are positive. In particular,

1
(1 − x)1/2 = 1 +

x

2
+

∞∑
j=2

1.3. . . . .(2j − 1)
j!2j

xj = 1 +
x

2
+

∞∑
j=2

(
2j

j

)
xj

22j
.

If f is differentiable at a, then f(x) − f(a) − (x − a)f ′(a) = o(|x − a|); for
this, we do not need to suppose that f is differentiable at any point other
than a. There is a corresponding result for n-times differentiable functions;
this is due to W. H. Young. (We shall not use this result later, and it may be
omitted.)

Theorem 7.6.5 Suppose that f is (n − 1)-times differentiable in an
interval I and that f (n−1) is differentiable at an interior point a of I. Let

pn(x) = f(a) + (x − a)f ′(a) +
(x − a)2

2!
f ′′(a) + · · · +

(x − a)n

n!
f (n)(a),

and let rn+1(x) = f(x) − pn(x). Then rn+1(x) = o(|x − a|n).

Proof Let u(x) = rn+1(x)/(x − a)n, for x �= a. Then we must show that
u(x) → 0 as x → a. Suppose that ε > 0. Let

vε(x) = rn+1(x) + ε(x − a)n.

Then vε(x) = (u(x) + ε)(x− a)n for x �= a, and vε is n-times differentiable at
a;

vε(a) = 0, v(s)
ε (a) = 0 for 1 ≤ s ≤ n − 1 and v(n)

ε (a) = n!ε > 0.

By Proposition 7.1.5 (v), there exists δ > 0 such that [a, a + δ) ⊆ I and
v

(n−1)
ε (x) > 0 for a < x < a + δ. By Corollary 7.3.6, v

(n−2)
ε is strictly

increasing on [a, a + δ), and so v
(n−2)
ε (x) > 0 for a < x < a + δ. Iterating

the argument, it follows that vε(x) = (u(x) + ε)(x − a)n > 0 for a < x <

a + δ. Thus u(x) > −ε for a < x < a + δ. Applying the same argument to
wε(x) = −rn+1(x) + ε(x − a)n, it follows that there exists δ′ > 0 such that
[a, a + δ′) ⊆ I and u(x) < ε for a < x < a + δ′. Consequently, u(x) → 0 as
x ↘ a. Similarly u(x) → 0 as x ↗ a. �
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Exercises

7.6.1 Suppose that f is differentiable in an open interval I, and that f is
twice differentiable at a ∈ I. Show that

f(a + h) + f(a − h) − 2f(a)
h2 → 0 as h → 0.

[Hint: L’Hôpital’s rule.]
7.6.2 Suppose that f is 2k-times differentiable on an open interval I, that

f (j)(a) = 0 for 1 ≤ j ≤ 2k − 1 and that f (2k)(a) < 0. Show that f has
a local maximum at a.

7.6.3 Suppose that f is twice differentiable on an open interval I, that
a, b, c ∈ I, with a < b < c. Show that there exists d ∈ (a, b) such
that

f(c) − f(a)
c − a

− f(b) − f(a)
b − a

= 1
2(c − b)f ′′(d).

7.6.4 Apply the Newton--Raphson method to the function f(x) = x2 − 2,
starting with x0 = 3/2, to obtain rational approximations to

√
2. How

good is the approximation after three iterations?
7.6.5 Let f(x) = log(1 + x), for −1 < x < 1, and let rn(x) be the nth

remainder in the Taylor series expansion of f . Show that rn(x) → 0
as n → ∞, and determine the infinite Taylor series for f .

7.6.6 Let f(x) = tan−1(x). Apply the Newton--Raphson method when 0 <

|x0| < 1, when x0 = 1 and when |x| > 1. When (xn) converges, how
fast does it converge?

7.6.7 Suppose that f is a convex increasing function on the closed interval
[a, b] which is differentiable on the open interval (a, b), and for which
f(a) < 0 < f(b). Suppose that x0 ∈ (a, b) and that f(x0) > 0. Show
that the sequence (xn)∞

n=0 defined by the Newton--Raphson method
is decreasing, that xn > b and that f(xn) ≥ 0. Suppose that xn → c.
Show that f(c) = 0, and that there exists 0 < λ < 1 such that
xn − c ≤ λn(x0 − c). What happens if f(x0) < 0?

7.6.8 Apply the Newton--Raphson method to the function f(x) = xn, where
n ≥ 2, starting with x0 > 0. Calculate xn. Why is the convergence
slower than that described in the text?

7.6.9 Apply the Newton--Raphson method to the function f(x) = x+xα+1,
where x > 0 and 0 < α < 1, starting with x0 > 0. Calculate xn. Why
is the convergence slower than that described in the text?
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7.6.10 Suppose that (aj)∞
j=1 is a sequence of positive terms, and that there

exists a > 0 such that aj+1/aj = 1 − a/j + rj , where rj/j → 0 as
j → ∞. Show that

∑∞
j=1 aj converges if a > 1 and that

∑∞
j=1 aj

diverges if a < 1. (Consider bj = 1/js, where s is between 1 and a.
This extends D’Alembert’s ratio test.)
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Integration

8.1 Elementary integrals

We now turn to integration, which we develop as the ‘area under the curve’.
We establish the existence and properties of the Riemann integral; this is
an integral whose development is quite straightforward, and which is good
for many of the needs of analysis. It has some shortcomings: it can only be
applied to a restricted class of functions, and it is not easy to obtain good
results about limits of integrals. For this, a more sophisticated integral, the
Lebesgue integral, is needed; we shall consider this in Volume III.

As with all theories of integration, we proceed by approximation. To begin
with, we restrict attention to bounded real-valued functions on a finite inter-
val [a, b]. The easiest functions to start with are the step functions -- functions
which take constant values vj on a finite set {Ij : 1 ≤ j ≤ k} of disjoint
sub-intervals of [a, b]. The graph of such a function is a bar graph, and we
define the elementary integral of such a function to be

∑k
j=1 vjl(Ij), where

l(Ij) is the length of the interval Ij . Note that vj can be positive or negative,
so that the integral can take positive and negative values.

The idea of the Riemann integral of a function f is to approximate f from
above and below by step functions. If the integrals of the approximations
from above and from below approach a common limit, then we take this
limit to be the Riemann integral of f .

In order to carry out this programme, we need to set up the appropriate
machinery. A dissection D of [a, b] is a finite subset of [a, b] which contains
both a and b. We arrange the elements of D, the points of dissection of D, in
increasing order: a = x0 < x1 < · · · < xk = b. The dissection splits [a, b] into
k disjoint intervals I1, . . . Ik. We need to decide what to do with the end-
points; we adopt the convention that I1 = [x0, x1] and that Ij = (xj−1, xj ]
for 2 ≤ j < k.

209
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We order the dissections of [a, b] by inclusion: we say that D2 refines
D1 if D1 ⊆ D2, and write D1 ≤ D2. This is a partial order on the set
Δ of all dissections of [a, b], and Δ is a lattice: D1 ∨ D2 = D1 ∪ D2 and
D1 ∧ D2 = D1 ∩ D2. Δ has a least element {a, b}, but has no greatest
element.

Suppose that D is a dissection, with intervals I1, . . . , Ik. We denote the
indicator function of Ij by χj : χj(x) = 1 if x ∈ Ij , and χj(x) = 0 otherwise.
Similarly, we write χ[a,b] for the indicator function of [a, b]. We denote the
linear span of {χj : 1 ≤ j ≤ k} by ED; thus a function f ∈ ED is of the form
f =

∑k
j=1 vjχj , where v1, . . . , vk are real numbers. The elements of ED are

the step functions on [a, b] whose points of discontinuity are contained in D;
note that, according to our convention, step functions are continuous on the
left. ED is a k-dimensional vector space of functions.

If D2 refines D1, then ED1 ⊆ ED2 , and so the set of spaces {ED : D ∈ Δ}
also forms a lattice:

ED1 ∧ ED2 = ED1 ∩ ED2 = ED1∧D2

and ED1 ∨ ED2 = span (ED1 ∪ ED2) = ED1∨D2 .

The union EΔ = ∪{ED : D ∈ Δ} is the infinite-dimensional vector space of
all (left-continuous) step functions.

We now wish to define the elementary integral of a step function f . If
f =

∑k
j=1 vjχj , we want to define

∫ b
a f(x) dx to be

∑k
j=1 vjl(Ij), where

l(Ij) = xj − xj−1 is the length of Ij . But the representation is not unique,
and we need to show that the integral is well-defined.

Proposition 8.1.1 Suppose that D and D′ are dissections of [a, b], and
that f ∈ ED ∩ED′, with representations f =

∑k
j=1 vjχj and f =

∑k′

j=1 v′
jχ

′
j.

Then
∑k

j=1 vjl(Ij) =
∑k′

j=1 v′
jl(I

′
j).

Proof We use the lattice property of Δ. Let D′′ = D ∪ D′. Let D =
{x0, . . . , xk} and D′′ = {x′′

0, . . . , x
′′
k′′}. Then there exist 0 = r0 < r1 < · · · <

rk = k′′ such that xj = x′′
rj

for 0 ≤ j ≤ k. Thus l(Ij) =
∑rj

r=rj−1+1 l(I ′′
r ). We

can write f =
∑k′′

r=1 v′′
r χ′′

r , where vj = v′′
r for rj−1 < r ≤ rj . Consequently,

k∑
j=1

vjl(Ij) =
k∑

j=1

⎛⎝ rj∑
r=rj−1+1

v′′
r l(I ′′

r )

⎞⎠ =
k′′∑

r=1

v′′
r l(I ′′

r ).
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Similarly,
∑k′

j=1 v′
jl(I

′
j) =

∑k′′

r=1 v′′
r l(I ′′

r ), so that

k∑
j=1

vjl(Ij) =
k′∑

j=1

v′
jl(I

′
j).

�

We can therefore define the elementary integral as∫ b

a
f(x) dx =

k∑
j=1

vjl(Ij).

Proposition 8.1.2 Suppose that f and g are step functions and that
c ∈ R. Then f + g and cf are step functions, and
(i)
∫ b
a (f(x) + g(x)) dx =

∫ b
a f(x) dx +

∫ b
a g(x) dx.

(ii)
∫

cf(x) dx = c
∫ b
a f(x) dx.

(iii) If f(x) ≤ g(x) for all x then
∫ b
a f(x) dx ≤

∫ b
a g(x) dx.

Proof (i) Since Δ is a lattice, there exists D ∈ Δ, with intervals I1, . . . , Ik,
such that f, g ∈ ED. Then we can write f =

∑k
j=1 vjχj and g =

∑k
j=1 wjχj .

Then f + g =
∑k

j=1(vj + wj)χj is a step function and

∫ b

a
(f(x) + g(x)) dx =

k∑
j=1

(vj + wj)l(Ij) =
k∑

j=1

vjl(Ij) +
k∑

j=1

wjl(Ij)

=
∫ b

a
f(x) dx +

∫ b

a
g(x) dx.

The proofs of (ii) and (iii) are just as easy, and are left as exercises for the
reader. �

8.2 Upper and lower Riemann integrals

We now consider a bounded function f on [a, b], with m ≤ f(x) ≤ M for all
x ∈ [a, b]. We try to integrate it by approximating from above and below by
step functions. Let

Uf = {g : g ∈ EΔ and g ≥ f}

be the set of step functions which are greater than or equal to f . Uf is
non-empty, since Mχ[a,b] ∈ Uf . If g ∈ Uf , g ≥ mχ[a,b], and so

∫ b
a g(x) dx ≥
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m(b − a). Thus the set {
∫ b
a g(x) dx : g ∈ Uf} is bounded below. We define

the upper Riemann integral of f to be

∫ b

a
f(x) dx = inf{

∫ b

a
g(x) dx : g ∈ Uf}.

Similarly we set

Lf = {h : h ∈ EΔ and h ≤ f}

and define the lower Riemann integral of f to be∫ b

a
f(x) dx = sup{

∫ b

a
h(x) dx : h ∈ Lf}.

Proposition 8.2.1 Suppose that f is a bounded function on [a, b]. Then∫ b
a f(x) dx ≤

∫ b
a f(x) dx.

Proof If h ∈ Lf and g ∈ Uf then h ≤ f ≤ g, so that

∫ b

a
h(x) dx ≤

∫ b

a
g(x) dx.

Taking the supremum over Lf , we see that

∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx,

so that, taking the infimum over Uf ,

∫ b

a
f(x) dx ≤ inf{

∫ b

a
g(x) dx : g ∈ Uf} =

∫ b

a
f(x) dx. �

Suppose that D is a dissection, with intervals I1, . . . , Ik, and that f is
a bounded function on [a, b]. Let M(Ij) = sup{f(x) : x ∈ Ij}, and let
MD(f) =

∑k
j=1 Mjχj . Then MD(f) is the least element of ED ∩ Uf = {g ∈

ED, g ≥ f}. We set

SD = SD(f) =
k∑

j=1

M(Ij)l(Ij) =
∫ b

a
MD(f)(x) dx.



8.2 Upper and lower Riemann integrals 213

Then SD = inf{
∫ b
a g(x) dx : g ∈ Uf ∩ ED}, so that∫ b

a
f(x) dx = inf{inf{

∫ b

a
g(x) dx : g ∈ Uf ∩ ED} : D ∈ Δ}

= inf{SD : D ∈ Δ}.

Similarly, we define m(Ij) = inf{f(x) : x ∈ Ij} and mD(f) =
∑k

j=1 m(Ij)χj ,
and set

sD = sD(f) =
k∑

j=1

mjl(Ij) =
∫ b

a
mD(f)(x) dx.

Then sD = sup{
∫ b
a g(x) dx : g ∈ Lf ∩ ED}, so that∫ b

a
f(x) dx = sup{sup{

∫ b

a
g(x) dx : g ∈ Uf ∩ ED} : D ∈ Δ}

= sup{sD : D ∈ Δ}.

x0 = a x1 xj–1 xk–2 xk–1 xk = bxjx2 x3

Figure 8.2. Upper and lower sums SD and sD.

Note that if D′ refines D then SD′ ≤ SD and sD′ ≥ sD.
In fact, we do not need to consider all the dissections to determine the

upper and lower Riemann integrals. If D is a dissection, with intervals
I1, . . . , Ik, we define the mesh size δ(D) to be max{l(Ij) : 1 ≤ j ≤ k}.

Theorem 8.2.2 Suppose that (Dr)∞
r=1 is a sequence of dissections of [a, b],

and that δ(Dr) → 0 as r → ∞. If f is a bounded function on [a, b] then

SDr
(f) →

∫ b
a f(x) dx as r → ∞.

Proof Suppose that ε > 0. Then there exists a dissection D of [a, b],
with points of dissection a = x0 < x1 < · · · < xk = b such that
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SD <
∫ b
a f(x) dx + ε/2. The idea of the proof is to choose r large enough so

that the set D is contained in a set of intervals of Dr of small total length. Let
η = ε/2(k + 1)(M − m + 1). There exists r0 such that δ(Dr) < η for r ≥ r0.
Suppose that r ≥ r0. Let D′ = D ∨ Dr. Then SD′ ≤ SD. Let {J1, . . . , Jq}
be the intervals of the dissection Dr, and let K1, . . . , Ks be the intervals of
the dissection D′. We divide {1, . . . , q} into two disjoint subsets. Let p ∈ B

if Jp contains one or more elements of D, and let p ∈ G otherwise. (B is the
set of bad indices, and G is the set of good indices.) Then |B| ≤ k + 1. If
p ∈ B, then Jp is the disjoint union ∪r∈Sp

Kr of finitely many of intervals in
D′. Since m ≤ f(x) ≤ M ,

Ml(Jp) ≥ M(Jp)l(Jp) ≥
∑
r∈Sp

M(Kr)l(Kr) ≥ m
∑
r∈Sp

l(Kr) = ml(Jp).

If p ∈ G, then Jp = Kr for some r ∈ {1, . . . , s}, so that M(Jp) = M(Kr).
Thus

SDr
− SD′ =

∑
p∈B

⎛⎝Mpl(Jp)l(Jp) −
∑
r∈Sp

M(Kr)l(Kr))

⎞⎠
≤
∑
p∈B

(M − m)l(Jp) ≤ (M − m)(k + 1)δ(Dr) < ε/2.

Consequently, if r ≥ r0 then∫ b

a
f(x) dx ≤ SDr

≤ SD′ + ε/2 ≤ SD + ε/2 <

∫ b

a
f(x) dx + ε

so that SDr
→
∫ b
a f(x) dx as r → ∞. �

We can for example take Dr to be the dissection dividing [a, b] into r inter-
vals of equal length. Alternatively, we can repeatedly bisect the intervals, so
that Dr is a dissection dividing [a, b] into 2r intervals of equal length; in this
case, (Dr)∞

r=1 is an increasing sequence of dissections, so that (SDr
)∞
r=1 is a

decreasing sequence, converging to
∫ b
a f(x) dx as r → ∞.

8.3 Riemann integrable functions

We say that a bounded function f on [a, b] is Riemann integrable if its
upper and lower integrals are equal. The common value is then the Riemann
integral

∫ b
a f(x) dx. In this expression, f is called the integrand. First, we

must check that this extends the elementary integral of step functions.
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Proposition 8.3.1 If f is a step function then it is Riemann integrable,
and the Riemann integral is the same as the elementary integral.

Proof Let E be the elementary integral. Since f is in both Uf and Lf ,

E ≤
∫ b

a
f(x) dx ≤

∫ b

a
f(x) dx ≤ E,

and so all the quantities are equal. �

Proposition 8.3.2 Suppose that f is a bounded function on [a, b]. Then
f is Riemann integrable if and only if given ε > 0 there exist step functions
g and h with h ≤ f ≤ g and

∫ b
a g(x) dx −

∫ b
a h(x) dx < ε.

Proof This follows immediately from the definition. �

Proposition 8.3.3 Suppose that f is a bounded function on [a, b]. Then
f is Riemann integrable if and only if given ε > 0 there exists a dissection
D such that SD − sD < ε.

Proof The condition is clearly sufficient. If f is Riemann integrable and
ε > 0 then there exist dissections D1 and D2 such that sD1 + ε/2 >∫ b
a f(x) dx > SD2 − ε/2. Let D = D1 ∨ D2. Then

SD ≤ SD2 ≤ sD1 + ε ≤ sD + ε. �

We can express this proposition in terms of the oscillation of f . Sup-
pose that f is a bounded real-valued function on a non-empty set S. The
oscillation Ω = Ω(f, S) of f on S is defined as

Ω(f, S) = sup{|f(s) − f(t)| : s, t ∈ S} = sup
s∈S

f(s) − inf
s∈S

f(s).

Corollary 8.3.4 Suppose that f is a bounded function on [a, b]. Then f

is Riemann integrable if and only if given ε > 0 there exists a dissection
D = {a = x0 < · · · < xk = b} of [a, b], with intervals I1, . . . , Ik such that

k∑
j=1

Ω(f, Ij)(xj − xj−1) < ε.

Proof For SD − sD =
∑k

j=1 Ω(f, Ij)(xj − xj−1). �

Corollary 8.3.5 Suppose that f is a bounded function on [a, b]. Then f

is Riemann integrable if and only if given ε > 0 there exist a dissection
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D = {a = x0 < · · · < xk = b} of [a, b] and a partition G ∪ B of {1, . . . , k}
such that

Ω(f, Ij) ≤ ε for j ∈ G and
∑
j∈B

l(Ij) < ε,

where I1, . . . Ik are the intervals of the dissection.

Proof Suppose that the condition is satisfied, and that ε > 0. Let η =
ε/(b − a + Ω(f, [a, b])). Then

k∑
j=1

Ω(f, Ij)(xj − xj−1) =

=
∑
j∈G

Ω(f, Ij)(xj − xj−1) +
∑
j∈B

Ω(f, Ij)(xj − xj−1)

≤ (sup
j∈G

Ω(f, Ij))
∑
j∈G

(xj − xj−1) + Ω(f, [a, b])
∑
j∈B

(xj − xj−1)

≤ (b − a)η + Ω(f, [a, b])η = ε,

so that f is Riemann integrable. Suppose conversely that f is Riemann
integrable. By the previous corollary there exists a dissection D with

k∑
j=1

Ω(f, Ij)(xj − xj−1) < min(ε, ε2).

Let G = {j ∈ D : Ω(f, Ij) ≤ ε} and let B = {j ∈ D : Ω(f, Ij) > ε}. Then

ε
∑
j∈B

l(Ij) ≤
∑
j∈B

Ω(f, Ij)l(Ij) < ε2,

which give the result. �

Many important functions are Riemann integrable.

Theorem 8.3.6 (i) A continuous function on [a, b] is Riemann integrable.
(ii) A monotonic function on [a, b] is Riemann integrable.

Proof In both cases, we use Proposition 8.3.3.
(i) We use the fact that f is uniformly continuous. Suppose that ε > 0.

There exists δ > 0 such that if |x − y| < δ then |f(x) − f(y)| < ε/(b − a).
Choose N so that (b − a)/N < δ, and let DN be the dissection of [a, b] into
N intervals I1, . . . , IN of equal length. Then l(Ij) = (b − a)/N < δ, so that

Mj = sup{f(x) : x ∈ Ij} < inf{f(x) : x ∈ Ij} + ε/(b − a) = mj + ε/(b − a)},
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for 1 ≤ j ≤ N , and so SDN
< sDN

+ ε.
(ii) Without loss of generality we can suppose that f is increasing. Suppose

that ε > 0. Choose N so that N > (f(b) − f(a))(b − a)/ε. Let DN be
the dissection of [a, b] into N intervals of equal length, as before, and let
a = x0 < x1 < · · · < xN = b be the points of dissection. Then mj ≥ f(xj−1)
and Mj = f(xj), so that

SD =
N∑

j=1

f(xj)
b − a

N
=

N∑
j=1

f(xj−1)
b − a

N
+ (f(b) − f(a)

b − a

N
< sD + ε.

�

As an easy example, let us calculate
∫ a
0 x dx, where a > 0. Then

SDN
=

N∑
j=1

(
aj

N

)( a

N

)
=

a2

N2

N∑
j=1

j =
a2

2

(
1 +

1
N

)
,

and

sDN
=

N∑
j=1

(
a(j − 1)

N

)( a

N

)
=

a2

N2

N∑
j=1

(j − 1) =
a2

2

(
1 − 1

N

)
,

from which it follows that
∫ a
0 x dx = a2/2.

We can also characterize Riemann integrability in terms of a sequence of
dissections.

Proposition 8.3.7 Suppose that (Dr)∞
r=1 is a sequence of dissections of

[a, b], and that δ(Dr) → 0 as r → ∞. If f is a bounded function on [a, b],
then f is Riemann integrable if and only if SDr

− sDr
→ 0 as r → ∞. If so,

then
∫ b
a f(x) dx = limr→∞ SDr

= limr→∞ sDr
.

Proof This follows immediately from the definition and Theorem
8.2.2. �

Corollary 8.3.8 Suppose that f is a bounded function on [a, b], and that
J ∈ R. Then the following are equivalent.
(i) f is Riemann integrable, and

∫ b
a f(x) dx = J .

(ii) If (Dr)∞
r=1 is a sequence of dissections of [a, b] with δ(Dr) → 0 as r → ∞,

if Ir,1, . . . , Ir,qr
are the intervals of the dissection Dr, and if yr,p ∈ Ir,p,

for 1 ≤ p ≤ qr, then

qr∑
p=1

f(yr,p)l(Ir,p) → J as r → ∞.
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It is important that (ii) must hold for every choice of yr,p ∈ Ir,p, and not
just for one particular choice.

Proof If f is Riemann integrable, and
∫ b
a f(x) dx = J , then

sDr
≤

qr∑
p=1

f(yr,p)l(Ir,p) ≤ SDr
,

and so (ii) follows from the proposition and the sandwich principle.
Conversely, suppose that (ii) holds. For each r ∈ N and each p with 1 ≤

p ≤ qr there exist yr,p and zr,p in Ir,p for which f(yr,p)−f(zr,p) ≥ Ω(f, Ir,p)/2.
Then

0 ≤
qr∑

p=1

Ω(f, Ir,p)l(Ir,p) ≤ 2
qr∑

p=1

(f(yr,p) − f(zr,p))l(Ir,p).

But
qr∑

p=1

(f(yr,p) − f(zr,p))l(Ir,p) → 0 as r → ∞

and so
qr∑

p=1

Ω(f, Ir,p)l(Ir,p) → 0 as r → ∞.

Thus f is Riemann integrable, by Corollary 8.3.4. Further, since

sDr
≤

qr∑
p=1

f(yr,p)l(Ir,p) ≤ SDr
,

it follows from the sandwich principle that

J = lim
r→∞

⎛⎝ qr∑
p=1

f(yr,p)l(Ir,p)

⎞⎠ =
∫ b

a
f(x) dx. �

Let us consider some examples.

Example 8.3.9 A bounded function which is not Riemann integrable.

Let f(x) = 1 if x is rational, and f(x) = 0 if x is irrational. If g =∑k
j=0 vjχj ∈ Uf then each Ij contains a rational number, and so vj ≥ 1. Thus∫ b

a g(x) dx ≥ b − a, and so
∫ b
a f(x) dx ≥ b − a. Since χ[a,b] ∈ Uf ,

∫ b
a f(x) dx =

b − a. Similarly, If h =
∑k

j=0 wjχj ∈ Lf then each Ij contains an irrational

number, and so wj ≤ 0. Thus
∫ b
a h(x) dx ≤ 0, and so

∫ b
a f(x) dx ≤ 0. Since

0 ∈ Lf ,
∫ b
a f(x) dx = 0. Thus f is not Riemann integrable.
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Example 8.3.10 A Riemann integrable function on [0, 1] which is discon-
tinuous at the rational points of [0, 1].

If r ∈ [0, 1] is rational, and r = p/q in lowest terms, let g(r) = 1/q, and if x

is irrational, let g(x) = 0. Then g is discontinuous at every rational number.
Suppose that ε > 0. Then there exists q0 such that 1/q0 < ε. Then in a
closed interval [a, b] there are only finitely many rational numbers r = p/q

with q ≤ q0, so that L = {x ∈ [a, b] : g(x) > ε} is finite. We can include L in
a finite set of intervals of total length less than ε: there exists a dissection

D = {0 = x0 < y0 < x1 < y1 < · · · < xk < yk = 1}

such that
L ⊆ [x0, y0] ∪ (x1, y1] ∪ · · · ∪ (xk, yk],

and
∑k

i=0 yk − xk < ε. If we take G = {xi : 1 ≤ i ≤ k} and B = {yi :
0 ≤ i ≤ k} then Ω(g, Ij) ≤ ε for j ∈ G, and

∑
j∈B l(Ij) < ε, so that g is

Riemann integrable, by Corollary 8.3.5. Further, SD < ε(b − a) + ε, so that∫ b
a g(x) dx ≤ 0. Since g is non-negative,

∫ b
a g(x) dx = 0.

Example 8.3.11 A function which is constant on a dense open subset of
[0, 1], but which is not Riemann integrable.

Let C(ε) be a fat Cantor set. C(ε) is a perfect subset of [0, 1] with empty
interior. Let IC(ε) be the indicator function of C(ε). Then IC(ε) is zero on
the dense open subset [0, 1] \ C(ε) of [0, 1]. Since C(ε) has an empty interior,∫ 1
0 IC(ε)(x) dx = 0. On the other hand, if D is a dissection of [0, 1], with

intervals I1, . . . , Ik, and if G = {j : Ij ∩ C(ε) = ∅}, then
∑

j∈G l(Ij) ≤ ε, and

so SD(IC(ε)) ≥ 1 − ε. Thus
∫ 1
0 IC(ε)(x) dx ≥ 1 − ε.

Exercises

8.3.1 Suppose that f is a bounded function on [a, b] which is continu-
ous except at finitely many points of [a, b]. Show that f is Riemann
integrable.

8.3.2 Suppose that f is a Riemann integrable function on [a, b]. Suppose
that ε > 0. Show that there exist a ≤ a1 < b1 ≤ b such that

sup{f(x) : x ∈ [a1, b1]} − inf{f(x) : x ∈ [a1, b1]} < ε.

Show that f has a point of continuity in [a, b].
Suppose that f(x) > 0 for all x ∈ [a, b]. Show that

∫ b
a f(x) dx > 0.

8.3.3 Suppose that f is an integrable function on [a, b] and that φ is uni-
formly continuous on f([a, b]). Show that φ ◦ f is Riemann integrable.
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8.3.4 Suppose that f is a bounded on [a, b]. Show that∫ b

a
f(x) dx = inf{

∫ b

a
g(x) dx : g continuous, g ≥ f}.

8.3.5 Suppose that f is a bounded increasing function on [a, b]. Show that∫ b

a
f(x) dx =

inf{
∫ b

a
g(x) dx : g continuous and strictly increasing, g ≥ f}.

8.4 Algebraic properties of the Riemann integral

Here are some straightforward results about upper and Riemann integrals.

Proposition 8.4.1 Suppose that f and g are bounded functions on [a, b],
and that c ≥ 0.

(i)
∫ b

a
f(x) + g(x) dx ≥

∫ b

a
f(x) dx +

∫ b

a
g(x) dx.

(ii)
∫ b

a
f(x) + g(x) dx ≤

∫ b

a
f(x) dx +

∫ b

a
g(x) dx.

(iii)
∫ b

a
cf(x) dx = c

∫ b

a
f(x) dx and

∫ b

a
cf(x) dx = c

∫ b

a
f(x) dx.

(iv)
∫ b

a
(−f(x)) dx = −

∫ b

a
f(x) dx and

∫ b

a
(−f(x)) dx = −

∫ b

a
f(x) dx.

(v) If f(x) ≤ g(x) for all x ∈ [a, b] then∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx and

∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

Proof If h ∈ Lf and k ∈ Lg then h + k ∈ Lf+g. Thus∫ b

a
f(x) + g(x) dx ≥

∫ b

a
h(x) + k(x) dx =

∫ b

a
h(x) dx +

∫ b

a
k(x) dx.

Taking the suprema over Lf and Lg, we obtain the first result. The rest are
just as easy. �
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Corollary 8.4.2 (i) If f and g are Riemann integrable and c ∈ R then
f + g and cf are Riemann integrable, and∫ b

a
(f(x) + g(x)) dx =

∫ b

a
f(x) dx +

∫ b

a
g(x) dx,∫ b

a
cf(x) dx = c

∫ b

a
f(x) dx.

(ii) If f(x) ≤ g(x) for all x ∈ [a, b] then
∫ b
a f(x) dx ≤

∫ b
a g(x) dx.

Proof (i) We have∫ b

a
(f(x) + g(x)) dx ≥

∫ b

a
f(x) dx +

∫ b

a
g(x) dx

=
∫ b

a
f(x) dx +

∫ b

a
g(x) dx

≥
∫ b

a
(f(x) + g(x)) dx ≥

∫ b

a
(f(x) + g(x)) dx,

and so they are all equal. Scalar multiplication is even easier.
(ii) This follows directly from (v). �

When f is continuous, we can say more.

Proposition 8.4.3 Suppose that f is a non-negative continuous function
on [a, b] and that

∫ b
a f(x) dx = 0. Then f(x) = 0 for all x ∈ [a, b].

Proof Suppose not, and suppose that f(c) > 0 for some c ∈ [a, b]. There
exists δ > 0 such that if x ∈ (c− δ, c+ δ)∩ [a, b] then |f(x)− f(c)| < f(c)/2.
Choose max(a, c − δ) < x1 < x2 < min(b, c + δ). Then f(x) > f(c)/2 for
x ∈ (x1, x2]. Let h(x) = (f(c)/2)χ(x1,x2]. Then f(x) ≥ h(x) for all x ∈ [a, b],
so that ∫ b

a
f(x) dx ≥

∫ b

a
h(x) dx = (x2 − x1)f(c)/2 > 0. �

Corollary 8.4.4 Suppose that f and g are continuous functions on [a, b]
and that f(x) ≥ g(x) for all x ∈ [a, b]. If

∫ b
a f(x) dx =

∫ b
a g(x) dx, then

f(x) = g(x) for all x ∈ [a, b].

Proof The function h = f − g is continuous and non-negative, and∫ b
a h(x) dx = 0. Thus f(x) − g(x) = 0 for all x ∈ [a, b]. �
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Recall that if f is a real-valued function on a set S then f+(s) = (f(s))+ =
max(f(s), 0), f−(s) = (f(s))− = max(−f(s), 0) and |f |(s) = |f(s)|.

Theorem 8.4.5 Suppose that f and g are Riemann integrable functions
on [a, b]. Then f+,f−, |f |, f2 and fg are all Riemann integrable.

Proof We use Corollary 8.3.5. Since Ω(f+, I) ≤ Ω(f, I), it follows from
Corollary 8.3.5 that f+ is Riemann integrable. Similarly, f− is Riemann
integrable, and so therefore is |f | = f+ + f−.

Next we consider f2. Let M = sup{f(x) : x ∈ [a, b]}. Suppose that
ε > 0. Let η = ε/(2M + 1). By Corollary 8.3.5, there exist a dissection D =
{a = x0 < · · · < xk = b} of [a, b] and a partition G ∪ B of {1, . . . , k} such
that

Ω(f, Ij) ≤ η for j ∈ G and
∑
j∈B

l(Ij) < η,

where I1, . . . Ik are the intervals of the dissection. Then
∑

j∈B l(Ij) < ε.
Since |s2 − t2| = |s+ t|.|s− t|, it follows that Ω(f2, Ij) ≤ 2Mη < ε for j ∈ G,
and so f2 is Riemann integrable.

Finally, since fg = 1
2((f + g)2 − f2 − g2), fg is Riemann integrable. [This

last trick is called polarization.] �

Corollary 8.4.6 If f is Riemann integrable on [a, b] then∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx.

Proof For −|f | ≤ f ≤ |f |. �

Exercises

8.4.1 Give an example of a function on [0, 1] which is not Riemann
integrable, but for which |f | and f2 are Riemann integrable.

8.4.2 Suppose that f and g Riemann integrable on [a, b]. By considering the
function (f + λg)2, for suitable λ, or otherwise, establish Schwarz’s
inequality:∫ b

a
f(x)g(x) dx ≤

(∫ b

a
f(x)2 dx

)1/2(∫ b

a
g(x)2 dx

)1/2

.

8.4.3 Suppose that f and g are Riemann integrable on [a, b], and that p and q

are conjugate indices. Show that |f |p and |g|q are Riemann integrable,
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and establish Hölder’s inequality for integrals:

|
∫ b

a
f(x)g(x) dx| ≤

∫ b

a
|f(x)g(x)| dx

≤
(∫ b

a
|f(x)|p dx

)1/p(∫ b

a
|g(x)|q dx

)1/q

.

8.5 The fundamental theorem of calculus

We have introduced the Riemann integral as the measure of an area under
a curve. It also acts as the inverse of differentiation.

Proposition 8.5.1 Suppose that f is a bounded function on [a, b] and that
a < c < b. Then f is Riemann integrable on [a, b] if and only if it is Riemann
integrable on [a, c] and [c, b]. If so

∫ b
a f(x) dx =

∫ c
a f(x) dx +

∫ b
c f(x) dx.

Proof This is an easy exercise for the reader. �

If a < b and f is Riemann integrable on [a, b], we write
∫ a
b f(x) dx =

−
∫ b
a f(x) dx. Thus the formula above can also be written as

∫ c
a f(x) dx =∫ b

a f(x) dx +
∫ c
b f(x) dx.

Theorem 8.5.2 (The fundamental theorem of calculus) (i) Suppose that
f is Riemann integrable on [a, b]. Set F (t) =

∫ t
a f(x) dx, for a ≤ t ≤ b. F is

continuous on [a, b]. If f is continuous at t then F is differentiable at t, and
F ′(t) = f(t). (If t = a or b, then F has a one-sided derivative.)

(ii) Suppose that f is differentiable on [a, b] (with one sided derivatives
at a and b). If f ′ is Riemann integrable then f(x) = f(a) +

∫ x
a f ′(t) dt for

a ≤ x ≤ b.

Proof (i) The function f is bounded, and so there exists M such that
|f(x)| ≤ M for all x ∈ [a, b]. Then if a ≤ t < s ≤ b,

|F (t) − F (s)| =
∣∣∣∣∫ s

t
f(x) dx

∣∣∣∣ ≤ ∫ s

t
|f(x)| dx ≤ M(s − t),

from which it follows that F is continuous.
Suppose that f is continuous at t. Suppose that ε > 0. There exists δ > 0

such that if |s − t| < δ and s ∈ [a, b] then |f(s) − f(t)| < ε. Now∫ s

t
f(x) − f(t) dx = F (s) − F (t) − f(t)(s − t),
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so that if 0 < |s − t| < δ and s ∈ [a, b] then

|F (s) − F (t) − f(t)(s − t)| ≤
∣∣∣∣∫ s

t
f(x) − f(t) dx

∣∣∣∣
≤
∫ s

t
|f(x) − f(t)| dx < ε|s − t|,

since |x − t| ≤ |s − t| < δ for x ∈ [t, s]. Thus F is differentiable at t, with
derivative f(t).

(ii) Let (Dr)∞
r=1 be a sequence of dissections of [a, x], with δ(Dr) → 0.

Suppose that Dr has points of dissection a = xr,0 < · · · < xr,kr
= x. By

the mean-value theorem, for each 1 ≤ j ≤ kr there exists yr,j ∈ [xr,j−1, xr,j ]
such that f(xr,j) − f(xr,j−1) = f ′(yr,j)(xr,j − xr,j−1). Thus

kr∑
j=1

f ′(yr,j)(xr,j − xr,j−1) =
kr∑

j=1

(f(xr,j) − f(xr,j−1)) = f(x) − f(a).

The result now follows from Corollary 8.3.8. �

Thus if f is a continuous function on [a, b], the integral enables us to solve
the first-order differential equation F ′(x) = f(x), with boundary condition
F (a) = 0. Any function F which satisfies F ′ = f is called a primitive, or
anti-derivative, of f . If F and G are primitives of f , then (F − G)′(x) =
F ′(x) − G′(x) = 0 on [a, b], and so F = G + c, where c is a constant.

It is important to note that in Part (ii) of the theorem, we require f ′ to be
Riemann integrable. In general, the primitive of a function is well-behaved,
whereas the derivative, where it exists, need not be. The fundamental theo-
rem of calculus allows us to calculate many integrals without difficulty. Here
are some examples.

1. Suppose that a < b, that k �= 0 and that c > 0. Then

∫ b

a
ekx dx =

∫ b

a

d

dt

(
ekt

k

)
dt =

1
k
(ekb − eka),∫ b

a
cx dx =

∫ b

a

d

dt

(
ct

log c

)
dt =

cb − ca

log c
;∫ b

a
cos x dx =

∫ b

a

d

dt
sin t dt = sin b − sin a,
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a
sin x dx =

∫ b

a

d

dt
(− cos t) dt = cos a − cos b,∫ b

a

dx

1 + x2 =
∫ b

a

d

dt
tan−1 t dt = tan−1 b − tan−1 a.

2. If 0 < a < b then∫ b

a

dx

x
=
∫ b

a

d

dt
log t dt = log b − log a = log

b

a
.

3. If −1 ≤ a < b ≤ 1 then∫ b

a

dx√
1 − x2

=
∫ b

a

d

dt
sin−1 t dt = sin−1 b − sin−1 a = cos−1 a − cos−1 b.

We use the fundamental theorem of calculus to obtain the following
change of variables formula.

Theorem 8.5.3 Suppose that g is a differentiable increasing function on
[a, b], that g′ is Riemann integrable and that f is continuous on [g(a), g(b)].
Then ∫ g(b)

g(a)
f(y) dy =

∫ b

a
f(g(x))g′(x) dx.

Proof Let F be a primitive for f , so that F is continuously differen-
tiable on [g(a), g(b)]. Thus F ◦ g is differentiable on [a, b], and its derivative
F ′(g(x))g′(x) = f(g(x))g′(x) is Riemann integrable. Hence

F (g(b)) − F (g(a)) = (F ◦ g)(b) − (F ◦ g)(a) =
∫ b

a
f(g(x))g′(x) dx.

But

F (g(b)) − F (g(a)) =
∫ g(b)

g(a)
F ′(y) dy =

∫ g(b)

g(a)
f(y) dy. �

The next result, which is occasionally useful, concerns certain infinite
Taylor series.

Proposition 8.5.4 Suppose that f is an infinitely differentiable function
on [a, b) (with one-sided derivatives at a) and that f (n)(a) ≥ 0 for all n ∈ N.
Suppose that the Taylor series

f ′(a) +
∞∑

j=1

f (j+1)(a)
j!

(x − a)j
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for f ′(x) converges to f ′(x) for each x ∈ (a, b). Then

f(x) = f(a) +
∞∑

j=1

f (j)(a)
n!

(x − a)j

for each x ∈ (a, b). If f is bounded then f(b−) = limx↗b f(x) exists, and

f(b−) = f(a) +
∞∑

j=1

f (j)(a)
j!

(b − a)j .

Proof Let

sn(x) = f ′(a) +
n∑

j=1

f (j+1)(a)
j!

(x − a)j , un(x) = f(a) +
n∑

j=1

f (j)(a)
j!

(x − a)j .

If a < t < x then

0 ≤ f ′(t) − sn(t) =
∞∑

j=n+1

f (j+1)(a)
j!

(t − a)j

≤
∞∑

j=n+1

f (j+1)(a)
j!

(x − a)j = f ′(x) − sn(x)

so that

0 ≤ f(x) − un+1(x) =
∫ x

a
(f ′(t) − sn(t)) dt ≤ (x − a)(f ′(x) − sn(x)).

Since sn(x) → f ′(x) as n → ∞, it follows that un(x) → f(x) as n → ∞.
Since f ′(x) ≥ 0 for x ∈ [a, b), f is an increasing function, so that if f

is bounded then f(b−) = limx↗b f(x) exists. The sequence (un(b))∞
n=1 is

increasing. Since each of the polynomials un is continuous, it follows that
f(b−) ≥ un(b), for n ∈ N. But

f(b−) = sup
a≤x<b

f(x) = sup
a≤x<b

sup
n∈N

un(x) ≤ sup
n∈N

un(b),

and so un(b) → f(b−) as n → ∞. �

Here is a particular application.

Corollary 8.5.5 If 0 ≤ x ≤ 1 then

sin−1(x) = x +
∞∑

j=1

(
2j

j

)
x2j+1

22j(2j + 1)
.
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Proof For

d

dx
sin−1 x = (1 − x2)−1/2 = 1 +

∞∑
j=1

(
2j

j

)
x2j

22j
.

�

Exercises

8.5.1 Suppose that f is a Riemann integrable function on [a, b]. Show that
the set of points of continuity of f is dense in [a, b].

8.5.2 It is not easy to give conditions on a differentiable function f to ensure
that f ′ is Riemann integrable. One sufficient condition is that f ′ is
continuous. Use part (i) of the fundamental theorem of calculus to
prove part (ii), in the case where f ′ is a continuous function on [a, b].

8.5.3 Let
L(x) =

∫ x

1

dt

t
for 0 < x < ∞.

Show that L is a continuous strictly increasing mapping of (0,∞) onto
R. Let E be the inverse function. Taking these as the definitions of
the logarithmic and exponential functions, establish the basic results
(i)--(x) of Section 7.4.

8.5.4 Suppose that f is a continuous convex function on [a, b]. Show that

f(b) − f(a) =
∫ b

a
f ′(x+) dx =

∫ b

a
f ′(x−) dx.

8.5.5 Suppose that f is a continuous periodic function on R, with period
1. Suppose that a > 0. Show that

∫ 1
0 f(x + a) − f(x) dx = 0. Deduce

that there exist 0 ≤ x1 < x2 < 1 such that f(x1 + a) = f(x1) and
f(x2 + a) = f(x2).

8.5.6 Show that if −1 < x < 1 then

tan−1(x) = x − x3

3
+

x5

5
− · · · +

(−1)n−1x2n−1

2n − 1
+
∫ x

0

(−t2)n

1 + t2
dt,

and show that

tan−1(x) =
∞∑

n=0

(−1)n x2n+1

(2n + 1)
.

Why is this the Taylor series expansion of tan−1(x)?
8.5.7 Show that tan(2x) = 2 tan(x)/(1 − tan2(x)). Deduce that

π/4 = 4 tan−1(1/5) − tan−1(1/239).
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Use this to calculate π to five decimal places.

[4/239 = 0.001673640....]

8.6 Some mean-value theorems

Here is an easy mean-value theorem.

Theorem 8.6.1 Suppose that f is a continuous function on [a, b]. Then
there exists a < c < b such that

∫ b
a f(x) dx = (b − a)f(c).

Proof Let F (t) =
∫ t
a f(x) dx, for a ≤ t ≤ b. Then

∫ b
a f(x) dx = F (b)−F (a)

and F ′(t) = f(t), and so the result follows from the mean-value theorem.
�

The proof of the next theorem is considerably harder; it is similar to the
proof of Dirichlet’s test.

Theorem 8.6.2 (Bonnet’s mean-value theorem) Suppose that f is a
Riemann integrable function on [a, b] and that φ is a decreasing non-negative
function on [a, b]. Then there exists a < c < b such that∫ b

a
φ(x)f(x) dx = φ(a)

∫ c

a
f(x) dx.

Proof Let F (c) =
∫ c
a f(x) dx for a ≤ c ≤ b, and let

Λ = sup{F (t) : t ∈ [a, b]}, λ = inf{F (t) : t ∈ [a, b]}.

Since F is a continuous function on [a, b], it is sufficient, by the intermediate
value theorem, to show that

φ(a)λ ≤
∫ b

a
f(x)φ(x) dx ≤ φ(a)Λ.

Suppose that ε > 0. There exists a dissection D, with points of dissection
a = x0 < · · · < xk = b, such that SD(f) < sD(f) + ε and

∫ b

a
φ(x)f(x) dx − ε <

k∑
j=1

φ(xj−1)f(xj−1)(xj − xj−1) <

∫ b

a
φ(x)f(x) dx + ε.
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Let aj = f(xj−1)(xj − xj−1), and let bj = a1 + · · · + aj , for 1 ≤ j ≤ k; let
b0 = 0. Then

k∑
j=1

φ(xj−1)f(xj−1)(xj − xj−1) =
k∑

j=1

φ(xj−1)aj =
k∑

j=1

φ(xj−1)(bj − bj−1)

=
k−1∑
j=1

(φ(xj−1) − φ(xj))bj + φ(xk−1)bk.

Now

λ − ε ≤ F (xj) − ε ≤
j∑

i=1

Mi(f)(xi − xi−1) − ε ≤
j∑

i=1

mi(f)(xi − xi−1) ≤ bj

and

bj ≤
j∑

i=1

Mi(f)(xi − xi−1) ≤
j∑

i=1

mi(f)(xi − xi−1) + ε ≤ F (xj) + ε ≤ Λ + ε.

Since φ is non-negative decreasing and λ − ε ≤ bj ≤ Λ + ε, it follows that

φ(a)(λ − ε) =
k−1∑
j=1

(φ(xj−1) − φ(xj))(λ − ε) + φ(xk−1)(λ − ε)

≤
k−1∑
j=1

(φ(xj−1) − φ(xj))bj + φ(xk−1)bj

=
k∑

j=1

φ(xj−1)f(xj−1)(xj − xj−1) <

∫ b

a
φ(x)f(x) dx + ε.

A similar argument shows that

φ(a)(Λ + ε) >

∫ b

a
φ(x)f(x) dx − ε,

and so

φ(a)(λ − ε) − ε ≤
∫ b

a
φ(x)f(x) dx ≤ φ(a)(Λ + ε) + ε.

Since this holds for all ε > 0, the result follows. �

There is also a version for increasing functions.
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Corollary 8.6.3 Suppose that f is a Riemann integrable function on [a, b]
and that φ is an increasing non-negative function on [a, b]. Then there exists
a < c < b such that ∫ b

a
φ(x)f(x) dx = φ(b)

∫ b

c
f(x) dx.

Proof Consider the function g on [−b, −a] defined by g(x) = f(−x). �

We can also drop the non-negativity condition.

Corollary 8.6.4 (Du Bois--Reymond’s mean-value theorem) Suppose that
f is a Riemann integrable function on [a, b] and that ψ is a monotonic
function on [a, b]. Then there exists a < c < b such that∫ b

a
ψ(x)f(x) dx = ψ(a)

∫ c

a
f(x) dx + ψ(b)

∫ b

c
f(x) dx.

Proof If ψ is decreasing, set φ(x) = ψ(x) − ψ(b). If ψ is increasing, set
φ(x) = −ψ(x) + ψ(b). �

Exercises

8.6.1 Suppose that 0 < a < b. Show that∣∣∣∣∫ b

a

sin u

u
du

∣∣∣∣ ≤ π.

8.6.2 Suppose that 0 < a < b and that K > 0. Show that∣∣∣∣∫ b

a

sin Ku

u
du

∣∣∣∣ ≤ π.

8.6.3 Suppose that 0 < s < t ≤ π/2 and that K > 0. Show that∣∣∣∣ 1
2π

∫ t

s

sin Ku

sin u
du

∣∣∣∣ < 1.

8.6.4 Suppose that φ is a non-negative increasing function on (0, t], where
0 < t < π/2, that φ(u) → 0 as u ↘ 0, and that K > 0. Show that∣∣∣∣ 1

2π

∫ t

0

φ(u) sin Ku

sin u
du

∣∣∣∣ ≤ φ(t).
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8.7 Integration by parts

Let us apply the fundamental theorem of calculus to the product of two
functions.

Theorem 8.7.1 (Integration by parts) Suppose that f is continuous on
[a, b] that g is continuous and differentiable on [a, b], and that g′ is Riemann
integrable. Let F be a primitive for f . Then∫ b

a
f(x)g(x) dx = F (b)g(b) − F (a)g(a) −

∫ b

a
F (x)g′(x) dx.

Proof Since F ′ = f , the function F (x)g(x) has derivative f(x)g(x) +
F (x)g′(x), which is Riemann integrable. Applying the fundamental theorem
of calculus,

F (b)g(b) = F (a)g(a) +
∫ b

a
(F (x)g(x))′ dx

= F (a)g(a) +
∫ b

a
f(x)g(x) dx +

∫ b

a
F (x)g′(x) dx,

from which the result follows. �

The difference F (b)g(b) − F (a)g(a) is frequently written as [F (x)g(x)]ba.
As an example, let us calculate

∫ a
0 x sin x dx, where a > 0. Set f(x) = sinx

and g(x) = x. Then we can take F (x) = − cos x, and so∫ π

0
x sin x dx = (− cos a).a − (−1).0 +

∫ a

0
cos x dx = sin a − a cos a.

Although Theorem 8.7.1 is very easy, it is also extremely powerful. It
provides a continuous analogue of the argument used to establish Dirichlet’s
test. To illustrate this, let us use the integration by parts formula to prove a
version of Bonnet’s mean-value theorem (where rather stronger conditions
are imposed).

Theorem 8.7.2 Suppose that f is a Riemann integrable function on [a, b]
and that φ is a decreasing, continuous, differentiable, non-negative function
on [a, b], and that φ′ is Riemann integrable. Then there exists a < c < b such
that ∫ b

a
φ(x)f(x) dx = φ(a)

∫ c

a
f(x) dx.

Proof Let F (c) =
∫ c
a f(x) dx for a ≤ c ≤ b, and let Λ = sup{F (t) : t ∈

[a, b]}, λ = inf{F (t) : t ∈ [a, b]}. As in Theorem 8.6.2, since F is a continuous
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function on [a, b], it is sufficient, by the intermediate value theorem, to show
that

φ(a)λ ≤
∫ b

a
f(x)φ(x) dx ≤ φ(a)Λ.

Integrating by parts,∫ b

a
f(x)φ(x) dx = F (b)φ(b) −

∫ b

a
F (x)φ′(x) dx.

Thus, since φ′ ≤ 0,

λφ(a) = λφ(b) − λ

∫ b

a
φ′(x) dx ≤ F (b)φ(b) −

∫ b

a
F (x)φ′(x) dx

≤ Λφ(b) − Λ
∫ b

a
φ′(x) dx = Λφ(a). �

Integration by parts enables us to give another version of Taylor’s theorem
with remainder.

Theorem 8.7.3 (Taylor’s theorem with integral remainder) Suppose that
f is k times continuously differentiable on [a, b]. Then

f(b) = f(a) +
n−1∑
j=1

(b − a)j

j!
f (j)(a) +

1
(n − 1)!

∫ b

a
(b − x)n−1f (n)(x) dx.

Proof By induction on n. It is true for n = 0, by the fundamental theo-
rem of calculus. Suppose that it is true for n, and that f is (n + 1)-times
continuously differentiable. Then it is n times differentiable, and so by the
inductive hypothesis

f(b) = f(a) +
n−1∑
j=1

(b − a)j

j!
f (j)(a) +

1
(n − 1)!

∫ b

a
(b − x)n−1f (n)(x) dx.

Now −(b − x)n/n is a primitive for (b − x)n−1, and so, integrating by parts,∫ b

a
(b − x)n−1f (n)(x) dx =

0 −
(

−(b − a)n

n
f (n)(a)

)
−
(∫ b

a

−(b − x)n

n
f (n+1)(x) dx

)
.
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Thus

1
(n − 1)!

∫ b

a
(b − x)n−1f (n)(x) dx =

1
n!

(b − a)nf (n)(a) +
1
n!

∫ b

a
(b − x)nf (n+1)(x) dx,

and so

f(b) = f(a) +
n−1∑
j=1

(b − a)j

j!
f (j)(a) +

1
(n − 1)!

∫ b

a
(b − x)n−1f (n)(x) dx. �

This form of Taylor’s theorem differs from the earlier ones, in that it gives
the remainder rn(b) explicitly as a function of b.

Exercises

8.7.1 Show that∫ π/2

0
xn sin x dx = n

(π

2

)n−1
− n(n − 1)

∫ π/2

0
xn−2 sin x dx for n ≥ 2.

8.7.2 Suppose that f is continuous and differentiable on [a, b], and that f ′

is Riemann integrable. Show that∫ b

a
f(x) dx = (b − a)f(b) −

∫ b

a
(x − a)f ′(x) dx.

Suppose that m, n ∈ N and that a ≤ m, n ≤ b. Establish Euler’s
summation formula:

n∑
j=m+1

f(j) =
∫ n

m
f(x) dx +

∫ n

m
(x − [x])f ′(x) dx.

(Here [x] is the integral part of x; the least integer not greater than
x.)

8.7.3 Use Taylor’s theorem with integral remainder to give another proof of
the binomial theorem.

8.8 Improper integrals and singular integrals

So far, we have considered integrals of bounded functions defined on a
bounded closed interval. How can we deal with unbounded functions, or dif-
ferent sorts of interval? There are various limiting processes that we can use;
the resulting integrals are called improper integrals and singular integrals.
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First we consider a function f which is defined on a semi-infinite interval
[a,∞) and whose restriction to each finite subinterval [a, b] is Riemann inte-
grable. If

∫ b
a f(x) dx tends to a limit l as b → ∞, we set l =

∫∞
a f(x) dx; this

is an improper integral. It may also happen that
∫ b
a f(x) dx → ∞ as b → ∞;

in this case we write
∫∞
a f(x) dx = ∞. For example, if f is non-negative, then

the function I(b) =
∫ b
a f(x) dx is an increasing function on [a,∞), and so

either I(b) tends to a finite limit as b → ∞, which is the integral
∫∞
a f(x) dx,

or I(b) → ∞ as b → ∞, in which case
∫∞
a f(x) dx = ∞.

Let us give some examples.
First,∫ ∞

0
(1 + x2)−1 dx = lim

b→∞

∫ b

0
(1 + x2)−1 dx = lim

b→∞
tan−1(b) = π/2.

Secondly, the function sinc x = (sinx)/x is an important function in the
theory of signal processing. What can we say about

∫∞
0 sinc x dx? There is

no problem at 0, since sinc x → 1 as x → 0. Let

In =

∣∣∣∣∣
∫ nπ

(n−1)π
sinc x dx

∣∣∣∣∣ =
∫ nπ

(n−1)π

| sin x|
x

dx.

Then I1 > I2 > · · · , and In → 0 as n → ∞. By the alternating series test,
the limit

lim
n→∞

∫ nπ

0
sinc x dx = lim

n→∞

n∑
j=1

(−1)j+1Ij

exists. Further
∫ bπ
�b�π sinc x dx → 0 as b → ∞, so that∫ ∞

0
sinc x dx = lim

b→∞

∫ b

0
sinc x dx

exists. But note that

|In| ≥
∫ (n−1/3)π

(n−2/3)π
|sinc πx| dx ≥ π

6n
,

so that
∫∞
0 |sinc x| dx = ∞.

This last phenomenon shows that we must proceed with some care. For
example, let f(x) = (sinx)/

√
x. Then arguments just like those for sinc

show that the improper integral
∫∞
0 f(x) dx exists. But

lim
b→∞

∫ b

0
f2(x)dx = lim

b→∞

∫ b

0

sin2 x

x
dx = ∞,
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since ∫ nπ

(n−1)π

sin2 x

x
dx ≥ 1

nπ

∫ nπ

(n−1)π
sin2 x dx =

1
2n

and
∑∞

n=1(1/2n) = ∞.

Theorem 8.8.1 (The integral test) Suppose that f is a decreasing non-
negative function on [0,∞) and that f(x) → 0 as x → ∞.

(i) The series
∑∞

j=0 f(j) converges if and only if limn→∞
∫ n
0 f(x) dx

exists, and then
∞∑

j=1

f(j) ≤
∫ ∞

0
f(x) dx ≤

∞∑
j=0

f(j)

.
(ii) If

Cn =
n−1∑
j=0

f(j) −
∫ n

0
f(x) dx and Dn =

n∑
j=0

f(j) −
∫ n

0
f(x) dx,

so that Cn ≤ Dn, then (Cn)∞
n=1 is an increasing sequence and (Dn)∞

n=1 is a
decreasing sequence, and the two sequences converge to a common limit G.

Proof (i) Let us set g(x) = f(�x�) and h(x) = f(�x� + 1), so that h ≤
f ≤ g. Now

∫ n

0
g(x) dx =

n−1∑
j=0

f(j) and
∫ n

0
h(x) dx =

n∑
j=1

f(j),

and so
n∑

j=1

f(j) ≤
∫ n

0
f(x) dx ≤

n−1∑
j=0

f(j).

Thus either the sum and the integral both converge, or they both diverge.
(ii) Since

Cn+1 − Cn =
∫ n+1

n
f(n) − f(x) dx ≥ 0,

(Cn)∞
n=1 is an increasing sequence; similarly

Dn+1 − Dn =
∫ n+1

n
f(n + 1) − f(x) dx ≤ 0,

so that (Dn)∞
n=1 is a decreasing sequence. Finally, Dn − Cn = f(n), so that

Cn and Dn converge to a common limit G. �
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If we set f(x) = log(1 + x), we see that
∑n

j=1(1/j) − log(n + 1) increases
to a constant γ and that

∑n
j=1(1/j)− log n decreases to γ, where 0 < γ < 1.

The number γ is called Euler’s constant; its value is 0.577 · · · . It is not
known if γ is rational, or if it is algebraic; but every instinct suggests that
it is transcendental. It is sometimes called Mascheroni’s constant, since in
1790 Mascheroni calculated it to 32 decimal places, although in fact only
the first 19 were correct; in 1878, J.C. Adams calculated it to 260 decimal
places. With the use of computers, γ is now known to 1010 decimal places.

As another example, let us consider an = 1/(n log n), for n ≥ 2. Consider
f(x) = 1/(x log x), for x ≥ e. Then∫ n

e

dx

x log x
= log(log n) → ∞,

as n → ∞, and so
∑∞

n=2 1/(n log n) diverges. [Of course no harm is done by
starting at 2, and at e.]

As a second example of an improper integral, let us consider a function
f which is defined on R and whose restriction to each finite subinterval
[a, b] is Riemann integrable. There are then two ways of proceeding. First
we may require that the two improper integrals

∫∞
0 f(x) dx and

∫ 0
−∞ f(x) dx

(defined in the obvious way) both exist, and then define
∫∞
−∞ f(x) dx to be

their sum. In this case, we again call the resulting value the improper integral.
Alternatively, we may simply require that limb→∞

∫ b
−b f(x) dx exists. In this

case, the limit is called the Cauchy principal value of the integral or the
singular integral of the function f , and denote it by (PV )

∫∞
−∞ f(x) dx. For

example, if f(x) = x/(1+x2) then
∫∞
0 f(x) dx = ∞ and

∫ 0
−∞ f(x) dx = −∞,

so that the improper integral does not exist. On the other hand, f is an odd
function, and so the Cauchy principal value is 0. Great caution is needed in
handling singular integrals.

Next, it may happen that f is defined on an interval (a, b], that f is not
bounded, but that f is bounded and Riemann integrable on every interval
[c, b], for a < c < b. If

∫ b
c f(x) dx tends to a limit l as c ↘ a, then we set

l =
∫ b
a f(x) dx; this is a singular integral. For example, let f(x) = xα−1,

where x ∈ (0, 1] and 0 < α < 1. This is unbounded as x ↘ 0, but∫ 1

0
f(x) dx = lim

ε↘0

∫ 1

ε
f(x) dx = lim

ε↘0
(1 − εα)/α = 1/α.

It may also happen that f is defined on a set [a, b] \ {c}, where c is an
interior point of the interval [a, b], and that f is bounded and Riemann
integrable on each of the intervals [a, d] (with a < d < c) and [e, b] (with
c < e < b), while f is unbounded.
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Again we can proceed in two ways. First we can require that the two
improper integrals

∫ c
a f(x) dx and

∫ b
c f(x) dx both exist, and then define the

improper integral
∫ b
a f(x) dx to be their sum. Alternatively if

lim
ε↘0

(∫ c−ε

a
f(x) dx +

∫ b

c+ε
f(x) dx

)
then we again define the limit to be the Cauchy principal value of the
integral. or the singular integral of the function f , and denote it by
(PV )

∫ b
a f(x) dx. For example if f(x) = 1/x on [−1, 1] \ {0} then the singu-

lar integral
∫ 1
0 f(x) dx = ∞, and the improper integral

∫ 1
−1 f(x) dx does not

exist, whereas the singular integral does exist, with value 0.
It is also possible to consider multiple singularities, and to con-

sider improper singular integrals. In each case, ‘caution’ should be your
watchword: results for Riemann integrable functions do not always extend
to improper integrals and singular integrals, and each case should be treated
on its merits.

Finally, let us mention that we can extend all these results to complex-
valued functions; we simply consider, and integrate, the real and imaginary
parts separately.

Exercises

8.8.1 Suppose that f is a real-valued function defined on [0,∞) which is
Riemann integrable on [0, b] for each 0 < b < ∞. f is said to be
absolutely integrable if the improper integral

∫∞
0 |f(x)| dx exists and

is finite. Show that if f is absolutely integrable then the improper
integral

∫∞
0 f(x) dx exists. [If the improper integral

∫∞
0 f(x) dx exists,

but f is not absolutely integrable, then f is said to be conditionally
integrable.] (As with sequences, absolutely integrable functions are
relatively well behaved, whereas conditionally integrable functions
need to be handled with care.)

8.8.2 Suppose that f and g are real-valued functions defined on [0,∞)
which are Riemann integrable on [0, b] for each 0 < b < ∞. Sup-
pose also that p and q are conjugate indices for which the improper
integrals

∫∞
0 |f(x)|p dx and

∫∞
0 |g(x)|q dx are finite. Show that fg is

absolutely integrable, and establish Hölder’s inequality for improper
integrals:

|
∫ ∞

0
f(x)g(x) dx| ≤

∫ ∞

0
|f(x)g(x)| dx

≤
(∫ ∞

0
|f(x)|p dx

)1/p

.

(∫ ∞

0
|g(x)|q dx

)1/q

.
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8.8.3 Prove carefully that∫ ∞

0

cos x

1 + x
dx =

∫ ∞

0

sin x

(1 + x)2
dx.

Show that the first integrand is conditionally integrable, and that the
second is absolutely integrable.

8.8.4 (Euler’s summation formula) Suppose that f is differentiable on
[0,∞).
(a) Suppose that the improper integral

∫∞
0 f(x) dx and the improper

sum
∑∞

j=1 f(j) both exist. Show that

∞∑
j=1

f(j) =
∫ ∞

0
f(x) dx +

∫ ∞

0
(x − �x�)f ′(x) dx.

(b) Suppose that f is decreasing and that f(x) → 0 as x → ∞. Show
that the improper integral

∫∞
0 (x − �x�)f ′(x) dx exists and that

�X�∑
j=1

f(j) −
∫ X

0
f(x) dx →

∫ ∞

0
(x − �x�)f ′(x) dx.

8.8.5 Suppose that f is a monotonic function on [0, π/2]. Show that∫ π/2
0 f(x) sin nx dx → 0 as n → ∞.

8.8.6 Establish the identity

(sin 2nx − sin(2n − 2)x) cos x = (cos 2nx + cos(2n − 2)x) sin x.

Show that ∫ π/2

0

sin 2nx

sin x
cos x dx = π/2.

Show that 1/ tanx−1/x is a bounded monotonic function on (0, π/2].
Show that ∫ π/2

0

sin nx

x
dx →

∫ ∞

0

sin x

x
dx as n → ∞.

Show that ∫ ∞

0

sin x

x
dx =

π

2
.

(This is an ingenious proof. We shall see in Volume III that complex
analysis avoids the need for such ingenuity.)
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8.8.7 Show that

1 +
1
2

+
1
3

+ · · · +
1
n

=
∫ 1

0

1 − xn

1 − x
dx =

∫ n

0

1 − (1 − t/n)n

t
dt.

8.8.8 The gamma function is defined as

Γ(x) =
∫ ∞

0
tx−1e−t dt for 0 < x < ∞.

Interpret this as an improper integral, and prove carefully that
Γ(x + 1) = xΓ(x). Deduce that Γ(n + 1) = n!, for n ∈ N.

8.8.9 Show that

γ = lim
n→∞

(∫ 1

0

1 − (1 − t/n)n

t
dt −

∫ n

1

(1 − t/n)n

t
dt

)
.

Can we take the limit inside the integral? Yes, it is possible to prove
this directly, but the limiting process becomes much clearer when
these integrals are treated as Lebesgue integrals.

8.8.10 Prove the following continuous versions of Dirichlet’s test and Abel’s
test.
(a) Dirichlet’s test. Suppose that φ is a decreasing non-negative func-
tion on [0,∞) and that φ(x) → 0 as x → ∞. Suppose that f is a
function on [0,∞) for which the Riemann integral F (x) =

∫ x
0 f(t) dt

exists for all x ∈ [0,∞), and for which F is bounded on (0,∞). Show
that the improper Riemann integral

∫∞
0 φ(t)f(t) dt exists.

(b) Abel’s test. Suppose that φ is a decreasing non-negative func-
tion on [0,∞). Suppose that f is a function on [0,∞) for which the
improper Riemann integral F (x) =

∫∞
0 f(t) dt exists. Show that the

improper Riemann integral
∫∞
0 φ(t)f(t) dt also exists.
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Introduction to Fourier series

9.1 Introduction

Recall that a function f defined on R is t-periodic (where t > 0) if f(s+ t) =
f(s) for all s ∈ R: t is called a period of f . If f has period t0 and α > 0
then the function f(αt) has period t0/α. Thus, by scaling, we can, and shall,
restrict attention to 2π-periodic functions. For example, the functions cosnt

and sin nt, for n ∈ Z+, are examples of 2π-periodic functions. More generally,
a function of the form

p(t) = a0/2 +
m∑

j=1

aj cos jt +
n∑

j=1

bj sin jt,

where aj , bj ∈ R, is called a real trigonometric polynomial. Trigonometric
polynomials are 2π-periodic. The question that Fourier asked, and began to
answer, is ‘If f is a 2π-periodic function, can it be expressed as a limit of
trigonometric polynomials?’ This question has led to an enormous amount
of mathematics, which has many fundamental applications to the physical
sciences. We shall however restrict our attention to the mathematical analysis
of Fourier’s question.

Suppose that f is a 2π-periodic function. If f is Riemann integrable over
the interval [−π, π], we say that f is locally Riemann integrable. Note that
this implies that f is Riemann integrable over any bounded interval, and that∫ π

−π
f(t) dt =

∫ t0+π

t0−π
f(t) dt for any t0 ∈ R.

The set of all locally Riemann integrable 2π-periodic functions forms a vector
space, which we denote by V. An element of V is bounded. If f ∈ V we set

‖f‖1 =
1
2π

∫ π

−π
|f(t)| dt and ‖f‖∞ = sup

t∈[−π,π]
|f(t)|.

240
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The function ‖.‖∞ is a norm on V: it satisfies

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞ ,

‖αf‖∞ = |α|. ‖f‖∞

and ‖f‖∞ = 0 if and only if f = 0,

for f, g ∈ V and α ∈ R. The function ‖.‖1 is a semi-norm on V: it satisfies
the first two conditions, but not the third. If f ∈ V and ‖f‖1 = 0, we say
that f is a trivial function.

In this chapter, we use the results of analysis that we have obtained so far
to obtain results concerning the Fourier analysis of functions in V. A more
advanced theory requires the theory of Lebesgue integration, and we shall
consider this in Volume III.

Suppose that p(t) = a0/2+
∑m

j=1 aj cos jt+
∑n

j=1 bj sin jt is a real trigono-
metric polynomial function. Can we find the coefficients aj and bj from the
knowledge of p? Here, and elsewhere, orthogonality relations play an essential
role. Since

cos a cos b = 1
2(cos(a + b) + cos(a − b)),

sin a sin b = 1
2(cos(a + b) − cos(a − b))

and sin a cos b = 1
2(sin(a + b) + sin(a − b)),

and since ∫ π

−π
cos mt dt =

∫ π

−π
sin nt dt = 0

for m, n ∈ Z, m �= 0, it follows that∫ π

−π
cos mt cos nt dt =

∫ π

−π
sin mt sin nt dt =

∫ π

−π
sin nt cos pt dt = 0

for m, n, p ∈ Z, m �= n. Since

cos2 t = 1
2(1 + cos 2t) and sin2 t = 1

2(1 − cos 2t)

it follows that∫ π

−π
cos2 mt dt =

∫ π

−π
sin2 nt dt = π, for m, n ∈ Z, m �= 0.

Hence

aj =
1
π

∫ π

−π
p(t) cos jt dt for j ∈ Z+,

bj =
1
π

∫ π

−π
p(t) sin jt dt for j ∈ N.
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Note that this justifies the fact that the constant term appears as a0/2, rather
than a0, in the definition of a trigonometric polynomial.

This suggests that we consider similar integrals for more general functions
than trigonometric polynomial functions. Suppose that f ∈ V. We set

aj(f) =
1
π

∫ π

−π
f(t) cos jt dt for j ∈ Z+

bj(f) =
1
π

∫ π

−π
f(t) sin jt dt for j ∈ N.

The numbers aj(f) are the Fourier cosine coefficients of f and the numbers
bj(f) are the Fourier sine coefficients of f . The Fourier series of f is then
the formal expression

f(t) ∼ a0(f)/2 +
∞∑

j=1

aj(f) cos jt +
∞∑

j=1

bj(f) sin jt.

We can write this in another form. Let A0(f) = a0(f) and Aj(f) =

(aj(f)2 + bj(f)2)
1
2 , for j ∈ N. There exists φj(f) ∈ (−π, π] such that

cos φj(f) = aj(f)/Aj(f) and sin φj(f) = −bj(f)/Aj(f). Then

aj(f) cos jt + bj(f) sin jt = Aj(f) cos j(t + φj(f)),

so that

f(t) ∼ A0(f)/2 +
∞∑

j=1

Aj(f) cos j(t + φj(f)).

The quantities Aj(f) cos j(t + φj(f)) are the harmonics of f . Aj(f) is the
amplitude of the harmonic and φj(f) is its phase. The process of calculating
the harmonics is called harmonic analysis.

Note that we use the symbol ∼ rather than an equality sign. As we
shall see in Section 9.6, the sum need not converge, even when f is a con-
tinuous function. Our aim will be to see when it does converge to f(t),
and to see if there are other ways to approximate f , using the Fourier
coefficients.

Let us remark that we can consider the cosine and sine series separately.
Let

fe(t) = 1
2(f(t) + f(−t)) and fo(t) = 1

2(f(t) − f(−t)).
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Then fe is an even function (fe(t) = fe(−t)), fo is an odd function (fo(t) =
−fo(−t)), and f = fe + fo. Further,

aj(fe) = aj(f), bj(fe) = 0,

aj(f0) = 0, bj(fe) = bj(f),

so that

fe(t) ∼ a0(f)/2 +
∞∑

j=1

aj(f) cos jt and fo(t) ∼
∞∑

j=1

bj(f) sin jt.

Note that if f is an even function then

aj(f) =
2
π

∫ π

0
f(t) cos jt dt for j ∈ Z+,

and that if f is an odd function then

bj(f) =
2
π

∫ π

0
f(t) sin jt dt for j ∈ N.

Suppose that f is any Riemann integrable function on the interval [0, π]. We
can extend f to an even 2π-periodic function by setting f(t) = f(−t) for
t ∈ [−π, 0], and setting f(2πk + t) = f(t) for t ∈ [−π, π] and k ∈ Z. Note
that the extension is continuous on R if f is continuous on [0, π]. Thus Fourier
cosine series become a tool to consider functions defined on the interval [0, π].

9.2 Complex Fourier series

We have seen that Euler’s formulae

eit = cos t + i sin t, cos t =
1
2
(eit + e−it), sin t =

1
2i

(eit − e−it),

are useful, when manipulating formulae involving sine and cosine functions.
There are however stronger underlying reasons for considering the com-
plex case. We consider the doubly infinite sequence (γn)∞

n=−∞ of 2π-periodic
functions defined by

γn(t) = eint.

The subset T = {z ∈ C : |z| = 1} of C is a group under multiplication.
Each function γn is a 2π-periodic continuous homomorphism of the additive
group (R, +) into T (which is surjective if n �= 0), and in fact every such
homomorphism is of this form (Exercise 9.2.1). Further, the set {γn : n ∈ Z}
is a group under point-wise multiplication.
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We therefore consider complex-valued 2π-periodic functions. These are
functions of a real variable t: if f = u + iv, where u and v are the real
and imaginary parts of f , then f is continuous, or 2π-periodic, or Riemann
integrable over a bounded interval [a, b] if and only if u and v are, and the
integral

∫ b
a f(t) dt is defined as∫ b

a
f(t) dt =

∫ b

a
u(t) dt + i

∫ b

a
v(t) dt.

We therefore consider the complex vector space, which we again denote by
V, of complex-valued locally Riemann integrable 2π-periodic functions, and
define ‖.‖1 and ‖.‖∞, as in the real case. If f ∈ V and ‖f‖1 = 0, we again
say that f is a trivial function.

A function of the form
∑n

j=−n cjγj (where each cj ∈ C) is called a complex
trigonometric polynomial. Fourier’s question then becomes ‘If f ∈ V, can f

be expressed as a limit of complex trigonometric polynomials?’
Suppose that f and g are in V. We set

〈f, g〉 =
1
2π

f(t)g(t) dt.

Note that this definition involves a complex conjugate. The function (f, g) →
〈f, g〉 is an example of a complex semi-inner product; we shall study these fur-
ther in Volume II. Let us list some of its properties, which follow immediately
from the definition.

• 〈f, f〉 = 1
2π |f(t)|2 dt ≥ 0.

• 〈g, f〉 = 〈f, g〉.
• 〈α1f1 + α2f2, g〉 = α1 〈f1, g〉 + α2 〈f2, g〉.
• 〈f, β1g1 + β2g2〉 = β1 〈f, g1〉 + β2 〈f, g2〉.

The functions (γn)∞
n=−∞ then form an orthonormal set:

〈γm, γn〉 =

{
1 if m = n,

0 if m �= n.

If p =
∑n

j=−n cjγj is a complex trigonometric polynomial, then it follows
from the orthogonality relations that cj = 〈p, γj〉 for −n ≤ j ≤ n. We
consider similar semi-inner products for functions in V. If f ∈ V, we define
its complex Fourier coefficients (f̂n)∞

n=−∞ as f̂n = 〈f, γn〉, so that

f̂n =
1
2π

∫ π

−π
f(t)γn(t) dt =

1
2π

∫ π

−π
f(t)γ−n (t)dt =

1
2π

∫ π

−π
f(t)e−int dt.
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In particular, f̂0 = 1
2π

∫ π
−π f(t) dt is the average value of f over the interval

[−π, π]. We then write

f ∼
∞∑

−∞
f̂nγn =

∞∑
−∞

〈f, γn〉 γn.

We can define the cosine Fourier coefficients and the sine Fourier coeffi-
cients for complex valued functions. If f ∈ V, it is easy to pass between the
complex Fourier coefficients and the cosine and sine Fourier coefficients. Let
us define the reversal R(f) of f ∈ V by setting R(f)(t) = f(−t). To avoid
too many superscripts, we set C(f) = f and S(f) = R(f̄). We then have the
following identities.

Proposition 9.2.1 Suppose that f ∈ V and that n ∈ N.

1. f̂0 = a0(f)/2.
2. f̂n = an(f) + ibn(f) and f̂−n = an(f) − ibn(f).
3. If f is an even function then f̂n = f̂−n = an(f), and if f is an odd

function then f̂0 = 0 and f̂n = −f̂−n = ibn(f).
4. an(f) = 1

2(f̂n + f̂−n) and bn(f) = i
2(f̂−n − f̂n).

5. Ĉ(f)n = f̂−n.
6. R̂(f)n = f̂−n.

7. Ŝ(f)n = f̂n.

8. If f is real-valued, then f̂−n = f̂n.

Proof The reader should verify these identities. �

Exercises

9.2.1 Suppose that γ is a continuous 2π-periodic homomorphism of (R, +)
into the multiplicative group T. There exists 0 < δ < π such that if
|t| < δ then |γ(t) − 1| < 1.
(a) Suppose that k > 2π/δ. Show that there exists n ∈ Z, with |n| <

k/6, such that γ(2π/k) = e2πin/k.
(b) Show that n does not depend upon k.
(c) Show that if q ∈ Q then γ(2πiq) = e2πinq.
(d) Use continuity to show that γ = γn.

9.2.2 Verify the identities of Proposition 9.2.1.
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9.3 Uniqueness

The size of a function controls the size of its Fourier coefficients. We establish
two fundamental inequalities.

Theorem 9.3.1 (Bessel’s inequality) If f ∈ V, then

∞∑
n=−∞

|f̂n|2 ≤ 〈f, f〉 =
1
2π

∫ π

−π
|f(t)|2 dt.

Proof Let pn =
∑n

j=−n f̂jγj . Then 〈f, γk〉 = 〈pn, γk〉 for k ∈ Z, so that
〈f, pn〉 = 〈pn, pn〉, and similarly 〈pn, f〉 = 〈pn, pn〉. Hence

0 ≤ 〈f − pn, f − pn〉 = 〈f, f〉 − 〈f, pn〉 − 〈pn, f〉 + 〈pn, pn〉

= 〈f, f〉 − 〈pn, pn〉 = 〈f, f〉 −
n∑

j=−n

|f̂j |2.

Since this holds for all n ∈ N, the result follows. �

In fact, equality holds; we prove this (Parseval’s equation: Corollary 9.4.7)
later.

Proposition 9.3.2 If f ∈ V then

|f̂n| ≤ 1
2π

∫ π

−π
|f(t)| dt ≤ sup

t∈R
|f(t)| dt.

Proof For

|f̂n| =
∣∣∣∣ 1
2π

∫ π

−π
f(t)e−int dt

∣∣∣∣ ≤ 1
2π

∫ π

−π
|f(t)e−int| dt =

1
2π

∫ π

−π
|f(t)| dt.

�

Corollary 9.3.3 If f is a trivial function, then f̂n = 0 for all n ∈ Z.

More importantly, the converse is true.

Theorem 9.3.4 If f ∈ V and f̂n = 0 for all n ∈ Z then f is trivial.

Proof Let f = u + iv. Since a0(f) = 2f̂0, and an(f) = 1
2(f̂n + f̂−n)

and bn(f) = i
2(f̂n − f̂−n) for n ∈ N, the Fourier cosine and sine coeffi-

cients of f are all zero, and so therefore are the Fourier cosine and sine
coefficients of u and v. Consequently, if p is a real trigonometric polyno-
mial, then 1

2π

∫ π
−π u(t)p(t) dt = 0 and 1

2π

∫ π
−π v(t)p(t) dt = 0. Suppose that
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1
2π

∫ π
−π |f(t)| dt > 0. Then one of

1
2π

∫ π

−π
u+(t) dt,

1
2π

∫ π

−π
u−(t) dt,

1
2π

∫ π

−π
v+(t) dt,

1
2π

∫ π

−π
v−(t) dt

is non-zero. Suppose that 1
2π

∫ π
−π u+(t) dt > 0. (The argument in the other

cases is essentially the same.) By considering a lower sum for the Riemann
integral of u+, we see that there exists an interval [t0−η, t0+η] in [−π, π] and
λ > 0 such that u(t) ≥ λ for t ∈ [t0 − η, t0 + η]. The idea now is to find a real
trigonometric polynomial which is large on the interval [t0 − η/2, t0 + η/2],
positive on the interval [t0 − η, t0 + η] and bounded in modulus by 1 for
other values of t in [−π, π]. Let α = cos η/2 − cos η: then α > 0. Let l(t) =
1 + cos(t − t0) − cos η. Then

l(t) ≥ 1 + α for t ∈ [t0 − η/2, t0 + η/2],

l(t) ≥ 1 for t ∈ [t0 − η, t0 + η]

and |l(t)| ≤ 1 for other values of t in [−π, π].

y

–π
π t

1

y = l(t)

–1

1+α

t = –π t = π

t0t0–η0 t0– η
2

t0+ηt0+ η
2

Figure 9.3a. The function l(t).
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Let M = supt∈R u+(t). Thus if k ∈ N then

1
2π

∫ π

−π
f(t)(l(t))k dt = I1 + I2 + I3,

where

I1 =
1
2π

∫ t0−η

−π
u+(t)(l(t)k dt ≥ −M(t0 − η + π)

2π
,

I2 =
1
2π

∫ t0+η

t0−η
u+(t)(l(t)k dt ≥ 1

2π

∫ t0+η/2

t0−η/2
u+(t)(l(t)k dt ≥ ηλ(1 + α)k,

I3 =
1
2π

∫ π

t0+η
u+(t)(l(t)k dt ≥ −M(π − (t0 + η))

2π
.

Thus
1
2π

∫ π

−π
u+(t)(l(t)k dt ≥ ηλ(1 + α)k − M,

which is positive for large enough k. Since lk is a trigonometric polynomial,
we obtain a contradiction. �

Corollary 9.3.5 If f, g ∈ V and f̂n = ĝn for all n ∈ Z then f − g is
trivial.

Here is an important application of the corollary.

Theorem 9.3.6 Suppose that f is a continuous function in V and that∑∞
n=−∞ |f̂n| < ∞. Then

∑n
j=−n f̂jγj → f uniformly as n → ∞.

Proof It follows from Weierstrass’ uniform M test that
∑n

j=−n f̂jγj con-
verges uniformly to a continuous function g in V. Then

ĝk = lim
n→∞

1
2π

∫ π

−π

⎛⎝ n∑
j=−n

f̂j(t)γj(t)

⎞⎠ γk(t) dt = f̂k.

It therefore follows from the corollary above that f = g. �

This result is useful when we consider the indefinite integral of a function in
V. If f ∈ V, the function t →

∫ t
0 f(s) ds is not necessarily periodic. Instead,

we consider the function F (t) =
∫ t
0 f(s) ds−f̂0t, which is a continuous element

of V.
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Theorem 9.3.7 Suppose that f ∈ V. Let F (t) =
∫ t
0 f(s) ds− f̂0t. If n �= 0

then F̂n = if̂n/n. Further,
∑∞

n=−∞ |F̂n| < ∞, so that
∑n

j=−n F̂jγj converges
uniformly to F as n → ∞.

Proof Suppose that ε > 0. There exists a continuous function g in V with
1
2π

∫ π
−π |f(s) − g(s)| < ε/4π and with ĝ0 = f̂0. Let G(t) =

∫ t
0 g(s) ds − ĝ0t. If

t ∈ [−π, π], |G(t)−F (t)| ≤
∫ t
0 |f(s)− g(s)| ds < ε/2, so that |Ĝn − F̂n| < ε/2

for all n ∈ N. If n ∈ Z, and n �= 0, we integrate by parts.

Ĝn =
1
2π

∫ π

−π
G(s)e−ins ds =

i

2πn

∫ π

−π
(g(s) − f̂0)e−ins ds =

i

n
ĝn.

But |ĝn − f̂n| ≤ 1
2π

∫ π
−π |f(s)− g(s)|ds < ε/4π, and so |F̂n − if̂n/n| < ε. Since

this holds for all ε > 0, F̂n = if̂n/n.
It now follows from the Cauchy--Schwarz inequality, and Bessel’s inequal-

ity, that

∞∑
n=−∞

|F̂n| ≤
(

|F̂0|2 +
∞∑

n=1

|f̂n|2 + |f̂−n|2
)1

2
(

1 + 2
∞∑

n=1

1
n2

)1
2

< ∞.

Thus
∑n

j=−n F̂jγj converges uniformly to F as n → ∞, by Theorem 9.3.6. �

Corollary 9.3.8 If f is a continuously differentiable function in V, then∑n
j=−n |f̂j | < ∞ and

∑n
j=−n f̂jγj converges uniformly to f as n → ∞.

Let us give two examples.

Example 9.3.9 Suppose that 0 < δ ≤ π/2. Let Iδ(t) = π/δ if 0 ≤ |t| ≤ δ,
let Iδ(t) = 0 if δ < |t| ≤ π and let Iδ(t + 2kπ) = Iδ(t) for k ∈ Z. Then

Iδ(t) ∼ 1 +
∞∑

n=1

2 sin nδ

nπ
cos nt.

–π –δ

π/δ

δ π0

y

y = Iδ (t)

t

Figure 9.3b. The function Iδ(t).
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Certainly a0(Iδ) = 1. (This is the reason for the choice of the constant
π/δ.) Further

an(Iδ) =
2
δ

∫ δ

0
cos nt =

2 sin nδ

nδ
.

Thus

N∑
n=1

an(Iδ) cos nt =
2
δ

N∑
n=1

sin nδ cos nt

n
=

1
δ

N∑
n=1

sin(n(t + δ)) − sin(n(t − δ))
n

.

Do these sums converge, as N → ∞? If 0 < α < π then∣∣∣∣∣
N∑

n=1

sin nα

∣∣∣∣∣ ≤
∣∣∣∣∣

N∑
n=1

einα

∣∣∣∣∣ =
∣∣∣∣∣ei(N+1)α − eiα

eiα − 1

∣∣∣∣∣ = 2
|eiα/2 − e−iα/2|

=
1

sin α/2
.

Thus if |t| ≤ π, and if |t − δ| > η and |t + δ| > η, then∣∣∣∣∣
N∑

n=1

(sin(n(t + δ)) − sin(n(t − δ)))

∣∣∣∣∣ ≤ 2 sin η/2.

It therefore follows from the uniform version of Dirichlet’s test that the
Fourier cosine series converges to a continuous function on [−π, π] \ {δ, −δ},
and converges uniformly on

[−π, π] \ ((δ − η, δ + η) ∪ (−δ − η,−δ + η)).

Does the Fourier series converge to Iδ? We shall consider this question in
Section 9.6.

Example 9.3.10 Suppose that 0 < δ ≤ π/2. Let

Jδ(t) =

{
π
δ

(
1 − t

2δ

)
if 0 ≤ |t| ≤ 2δ,

0 if2δ < |t| ≤ π,

and let Jδ(t + 2kπ) = Jδ(t) for k ∈ Z. Then

Jδ(t) ∼ 1 +
∞∑

n=1

2 sin2 nδ

n2δ2 cos nt.
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π/δ

y = Jδ (t)

t

y

–π –2δ 2δ π0

Figure 9.3c. The function Jδ(t).

Once again, a0(Jδ) = 1. If n > 0 then, integrating by parts, and using the
identity 2 sin2 a = 1 − cos 2a, it follows that

an(Jδ) =
2
δ

∫ 2δ

0
(1 − t

2δ
) cos nt dt

=
1

nδ2

∫ 2δ

0
sin nt dt

=
1

n2δ2 (1 − cos 2nδ) =
2 sin2 nδ

n2δ2 .

In this case, all the Fourier coefficients are non-negative, and∑∞
n=0 an(Jδ) < ∞, and so the Fourier series converges uniformly to Jδ.
When δ = π/2 then Jδ(0) = 2, a2k−1(Jδ) = 8/(2k − 1)2π2, and a2k = 0.

Hence

2 = 1 +
∞∑

k=1

8
(2k − 1)2π2 ,

so that
∞∑

k=1

1
(2k − 1)2

=
π2

8
.

Since
∞∑

n=1

1
n2 =

∞∑
k=1

1
(2k − 1)2

+
∞∑

k=1

1
(2k)2

=
π2

8
+

1
4

∞∑
n=1

1
n2 ,

it follows that
∞∑

n=1

1
n2 =

π2

6
.

This famous equation was proved by Euler, and was one of his early triumphs.
But Euler did not know about Fourier series: we give another proof, due to
him, in Section 10.8.
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Exercises

9.3.1 Show that

1 +
∞∑

k=1

(−1)k

(
1

(4k − 1)2
+

1
(4k + 1)2

)
=

√
2.π2

16
.

9.3.2 Let f(t) = t2 for t ∈ [−π, π], and extend by periodicity. Calculate
the Fourier coefficients of f , and obtain another proof of the equation∑∞

n=1 1/n2 = π2/6.
9.3.3 Let f(t) = 1 for |t| ≤ π/2, let f(t) = −1 for π/2 < |t| ≤ π, and extend

by periodicity. Calculate the Fourier coefficients of f .
9.3.4 Let f(t) = π − 2|t| for t ∈ [−π, π]. Use Example 9.3.10 to calculate the

Fourier coefficients of f .
9.3.5 Suppose that f is a continuously differentiable function in V. Obtain

an upper bound for
∑∞

n=−∞ |f̂n|.
9.3.6 Suppose that (bn)∞

n=1 is a decreasing null sequence of real numbers.
Show that

∑∞
n=1 bn sin nt converges for every t ∈ R. Give examples to

show that the sequence (bn)∞
n=1 need not be the Fourier sine series of

an element of V.

9.4 Convolutions, and Parseval’s equation

Suppose that f ∈ V and that δ ∈ R. We set Tδ(f)(t) = f(t − δ). Tδ(f) is a
translate of f . Note that

T̂δ(f)n =
1
2π

∫ π

−π
f(t − δ)e−int dt =

1
2π

∫ π

−π
f(t)e−in(t+δ) dt = e−inδf̂n

We set
Kδ(f) = ‖f − Tδ(f)‖1 =

1
2π

∫ π

−π
|f(t) − f(t − δ)| dt

Kδ(.) is a semi-norm on V, and Kδ(f) ≤ 2 ‖f‖1.

Proposition 9.4.1 If f ∈ V then Kδ(f) → 0 as δ → 0.

Proof A little thought shows that if f is the indicator function of a proper
subinterval of [−π, π] then Kδ(f) = δ/π for small enough values of δ, and so
the result holds for f . It then follows from the semi-norm properties of Kδ

that the result holds for step-functions. If f ∈ V and ε > 0, there exists a
step function g with ‖f − g‖1 < ε/3. Then

Kδ(f) ≤ Kδ(f − g) + Kδ(g) ≤ 2ε/3 + Kδ(g) < ε,

if |δ| is sufficiently small. �
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If f, g ∈ V we define the convolution product f � g to be the function

f � g(t) =
1
2π

∫ π

−π
f(t − s)g(s) ds.

Example 9.4.2 If f ∈ V then f � γn = f̂nγn. In particular,

γm � γn =

{
γn if m = n,

0 otherwise.

For

f � γn(t) =
1
2π

∫ π

−π
ein(t−s)f(s) ds =

1
2π

∫ π

−π
einte−insf(s) ds = eintf̂n.

Here are some of the properties of convolutions.

Proposition 9.4.3 Suppose that f, f1, f2, g ∈ V and α1, α2 ∈ C.
(i) f � g is a continuous function.
(ii) f � g = g � f .
(iii) Tδ(f) � g = Tδ(f � g).
(iv) (α1f1 + α2f2) � g = α1(f1 � g) + α2(f2 � g).

Proof (i) The function f � g is certainly 2π-periodic. If t, δ ∈ R then

|(f � g)(t + δ) − (f � g)(t)| =
∣∣∣∣ 1
2π

∫ π

−π
(f(t − δ − s) − f(t − s))g(s)| ds

∣∣∣∣
=
∣∣∣∣∫ −π+δ

−π+δ
f(t − s)(g(s + δ) − g(s)) ds

∣∣∣∣
=
∣∣∣∣ 1
2π

∫ π

−π
f(t − s)(g(s + δ) − g(s)) ds

∣∣∣∣
≤ ‖f‖∞ .Kδ(g),

and so the result follows from the preceding proposition.
(ii) Making the change of variables u = t − s, it follows that

(g � f)(t) =
1
2π

∫ π

−π
g(t − u)f(u)du =

1
2π

∫ t+π

t−π
f(t − s)g(s) ds

=
1
2π

∫ π

−π
f(t − s)g(s) ds = (f � g)(t).

(iii) For

(Tδ(f) � g)(t) =
1
2π

∫ π

−π
f(t − δ − s)g(s) ds = (f � g)(t − δ) = Tδ(f � g)(t).

(iv) This follows directly from the definition of convolution. �
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Convolution is an essential element of Fourier analysis.

Theorem 9.4.4 If f, g ∈ V and n ∈ Z then ̂(f � g)n = f̂nĝn.

Proof Here is a quick and easy proof. Changing the order of integration,

̂(f � g)n =
1
2π

∫ π

−π

(
1
2π

∫ π

−π
f(t − s)g(s) ds

)
e−int dt

=
1
2π

∫ π

−π

(
1
2π

∫ π

−π
f(t − s)e−int dt

)
g(s) ds

=
1
2π

∫ π

−π

(
1
2π

∫ π

−π
f(u)e−in(s+u) du

)
g(s) ds

= f̂n
1
2π

∫ π

−π
e−insg(s) ds = f̂nĝn.

Unfortunately, we need to justify the change of order of integration. We do
this for continuous functions in Volume II, and, more generally, in Volume III.

Instead, we proceed as follows. Note that Iδ � Iδ = Jδ, and that ((̂Iδ)n)2 =
(̂Jδ)n, where Iδ and Jδ are the functions of Examples 9.3.9 and 9.3.10. Thus
the result holds when f = g = Iδ. It now follows from Proposition 9.4.3 that
if D is a dissection of [−π, π] into intervals of equal length and if f , g are step
functions that are constant on the intervals of D then ̂(f � g)n = f̂nĝn.

We now use a standard approximation argument. If f, g ∈ V and
ε > 0, there exist step functions h and j, of this form described above, with
‖f − h‖∞ < ε and ‖g − j‖∞ < ε. If n ∈ N then

f � g = h � j + (f − h) � g + h � (g − j)

and f̂nĝn = ĥnĵn + (f̂n − ĥn)ĝn + ĥn(f̂n − ĥn).

Hence ∣∣∣ ̂(f � g)n − ̂(h � j)n

∣∣∣ = ≤ | ̂((f − h) � g)n| + | ̂(h � (g − j))n|

≤ ε(‖g‖∞ + ‖h‖∞) ≤ ε(‖g‖∞ + ‖f‖∞ + ε).

Similarly,

|f̂nĝn − ĥnĵn| ≤ |(f̂n − ĥn)|.|ĝn| + |ĥn|.|ĝn − ĵn|
≤ ε(‖g‖∞ + ‖h‖∞) ≤ ε(‖g‖∞ + ‖f‖∞ + ε).

Since ̂(h � j)n = ĥnĵn, it follows that

| ̂(f � g)n − f̂nĝn| ≤ 2ε(‖g‖∞ + ‖f‖∞ + ε).
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Since ε is arbitrary, it follows that ̂(f � g)n = f̂nĝn. �

Corollary 9.4.5
∑∞

n=−∞ f̂nĝneint converges uniformly to (f � g)(t).

Proof By the Cauchy--Schwarz inequality and Bessel’s inequality,

∞∑
n=−∞

|f̂nĝn| ≤
( ∞∑

n=−∞
|f̂n|2

)1
2

.

( ∞∑
n=−∞

|ĝn|2
)1

2

≤
(

1
2π

∫ π

−π
|f(t)|2 dt

)1
2

.

(
1
2π

∫ π

−π
|g(t)|2 dt

)1
2

< ∞,

and so the result follows from Theorem 9.3.6. �

Corollary 9.4.6 If f, g, h ∈ V then (f � g) � h = f � (g � h).

Proof For each has Fourier series
∑∞

n=−∞ f̂n.ĝn.ĥneint. �

We can therefore write f � g � h for the common value.

Corollary 9.4.7 (Parseval’s equation)

1
2π

∫ π

−π
f(t)g(t) dt =

∞∑
n=−∞

f̂nĝn.

In particular, 1
2π

∫ π
−π |f(t)|2 dt =

∑∞
n=−∞ |f̂n|2.

Proof As in the previous section, let S(g)(t) = g(−t). Then

(S(g) � f)(0) =
1
2π

∫ π

−π
f(t)g(t) dt and ( ̂S(g) � f)n = f̂nĝn. �

Example 9.4.8

1 − 1
33 +

1
53 − 1

73 + · · · =
π3

32
.

Let f = Iπ/2 � Jπ/2. Then f̂0 = 1; if n > 0 then

f̂n =

{
0 if n is even,

8(−1)k/π3(2k + 1)3 if n = 2k + 1 is odd,
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and f̂n = f̂−n if n < 0. Also f(0) = 3/2, and so

3
2

= 1 + 16
∞∑

k=0

(−1)k

π3(2k + 1)3
,

which gives the result.

Exercises

9.4.1 By applying Parseval’s equation to Jπ/2, show that

∞∑
n=1

1/n4 = π4/90.

9.4.2 Calculate the function Iπ/2 � Jπ/2, and deduce that

∞∑
n=1

1/n6 = π6/945.

9.4.3 Calculate the function Jπ/2 � Jπ/2, and deduce that

∞∑
n=1

1/n8 = π8/9450.

9.5 An example

Things can go wrong! We now give an example of an even continuous periodic
function whose Fourier series fails to converge at 0. First, let fj(t) = sin 2j|t|,
for j ∈ N. Then fj is an even function, and

a0(fj) =
2
π

∫ π

0
sin 2jt dt = 0.

If n ∈ N then

an(fj) =
2
π

∫ π

0
sin 2jt cos nt dt

=
2
π

∫ π

0
sin(2j + n)t + sin(2j − n)t dt

=
2

π(2j + n)
+

2
π(2j − n)

if n is odd,
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and an(fj) = 0 if n is even. Note that an(fj) is non-negative if n ≤ 2j and is
negative if n is odd and greater than 2j. We now set

s2r(fj) =
2r∑

j=1

an(fj) cos 0 =
2r−1∑
j=1

an(fj).

Note that s2r(fj) increases for r ≤ j, and then decreases. The maximum
value is

s2j(f2j) =
2
π

j∑
k=1

1
2k − 1

≥ log j

π
.

On the other hand, if r > j then

s2r(fj) =
r∑

k=1

1
2j + (2k − 1)

+
r∑

k=1

1
2j − (2k − 1)

=
r+j∑

k=j+1

1
2j − 1

+

(
j∑

k=1

1
2j − 1

−
r−j∑
k=1

1
2j − 1

)

=
r+j∑

k=r−j+1

1
2j − 1

≥ 0.

Now let Nj = 2j3+1, let gj = fNj
/j(j + 1), let hk =

∑k
j=1 gj . and let

h =
∑∞

j=1 gj . Since |fj(t)| ≤ 1 for all t and all j, it follows from Weier-
strass’ uniform M test that hk → h uniformly, and so h is continuous.
Further, an(h) = limk→∞ an(hk), and s2r(h) = limk→∞ s2r(hk). Since all
the summands are non-negative,

sNj
(h) ≥ sNj

(hj) ≥
sNj

(fNj
)

j(j + 1)
≥ log Nj

πj(j + 1)
=

j3 log 2
πj(j + 1)

≥ j/5.

Thus the sequence (s2r(h))∞
r=1 is unbounded, and so it does not converge.

9.6 The Dirichlet kernel

Suppose that f ∈ V. Let us look more closely at the partial sum sn(f)(t) =∑n
j=−n f̂je

ijt. Since f̂j = 1
2π

∫ π
−π f(s)e−ins ds, it follows that

sn(f)(t) =
1
2π

∫ π

−π
f(s)

⎛⎝ n∑
j=−n

eij(t−s)

⎞⎠ ds = (Dn � f)(t),
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where Dn(0) =
∑n

j=−n 1 = 2n + 1 and

Dn(t) =
n∑

j=−n

eijt =
sin(n + 1

2)t
sin 1

2 t
=

sin nt

tan 1
2 t

+ cos nt

for 0 < |t| ≤ π. The function Dn is called the n-th Dirichlet kernel.
Here are the principal properties of the Dirichlet kernel.

Theorem 9.6.1 Let tj = 2πj/(2n+1) and let Ij = (1/2π)
∫ tj

tj−1
|Dn(t)| dt,

for 1 ≤ j ≤ n.

(i) Dn is an even continuous function in V.
(ii) Dn is a decreasing function on [0, t1].
(iii) Dn(tj) = 0, Dn(t) > 0 if tj−1 < t < tj, where j is odd, and Dn(t) < 0

if tj−1 < t < tj, where j is even, for 1 ≤ j ≤ n.
(iv) I1 < 1 and I1 > I2 > · · · > In > 0.
(v) If −π ≤ a < b ≤ π then |(1/2π)

∫ b
a Dn(t) dt| < 2.

(vi) Ij(t) ≥ 2/π2j, and 1
2π

∫ π
−π |Dn(t)| dt ≥ (4/π2) log n.

Proof (i) and (ii) Each of the summands in the definition is continuous,
even, and decreasing on [0, t1].

(iii) Since sin 1
2 t > 0 for 0 < t ≤ π, this follows from the corresponding

properties of the function sin(n + 1
2)t.

(iv) Since 0 < Dn(t) < 2n + 1 for t ∈ (0, t1], it follows that 0 < I1 <

(2n + 1)t1/2π = 1. Further, if 1 ≤ j < n then

Ij+1 =
1
2π

∫ tj+1

tj

| sin(n + 1
2)t|

sin 1
2 t

dt =
1
2π

∫ t1

0

| sin(n + 1
2)t|

sin 1
2(t + tj)

dt

<
1
2π

∫ t1

0

| sin(n + 1
2)t|

sin 1
2(t + tj−1)

dt = Ij .

(v) It is enough to show that |(1/2π)
∫ b
0 Dn(t) dt| < 1, for 0 < b ≤ π, since

Dn is an even function. This follows because the integral is the sum of terms
which decrease in absolute value, and alternate in sign.

(vi) If tj−1 ≤ t ≤ tj then

|Dn(t)| ≥
| sin(n + 1

2)t|
sin 1

2 tj
≥

2| sin(n + 1
2)t|

tj
,

so that

Ij ≥ 1
2πtj

∫ tj

tj−1

| sin(n + 1
2)t| dt =

1
πtj

∫ t1

0
sin(n + 1

2)t dt =
1

πtj
.
2t1
π

=
2

π2j
.



9.6 The Dirichlet kernel 259

Thus

1
2π

∫ π

−π
|Dn(t)| dt ≥ 4

π2

n∑
j=1

1
j

≥ 4
π2 log n. �

t = –π t = π

t
0

5

10

y = D5(t)

y

–5

Figure 9.6. The Dirichlet kernel D5.

The Dirichlet kernel is not very well behaved. First, it takes both positive
and negative values. Secondly, 1

2π

∫ π
−π |Dn(t)| dt → ∞ as n → ∞. This last

property underlies the fact that Fourier series of continuous functions in V
need not converge point-wise.

Nevertheless, the Dirichlet kernel can be used to provide useful information
about the convergence of Fourier series. We need to impose conditions that
are generally stronger than continuity. Suppose that f ∈ V, that t ∈ [−π, π]
and that we want to investigate the convergence of the Fourier series of f at
t. We set

φt(f)(s) = 1
2(f(t + s) + f(t − s)) − f(t) for |s| ≤ π,

θt(f)(s) =

{
φt(s)/ tan s/2 for 0 < |s| ≤ π,

0 for s = 0,

and extend by periodicity.
Note that φt(f) is an even function and that θt(f) is an odd function. The

function φt(f) is in V, and ‖φt(f)‖1 ≤ 2 ‖f‖1.
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The function θt(f) can behave badly near 0 (although the function
θt(f)(s) sin ns is bounded on [−π, π]). If f is differentiable at t then
θt(f)(s) → 0 as s → 0. Since the Dirichlet kernel is an even function, and
1
2π

∫ π
−π Dn(t) dt = 1,

sn(f)(t) − f(t) =
1
2π

∫ π

−π

(
f(t + s) + f(t − s)

2
− f(t)

)
Dn(s) ds

=
1
π

∫ π

0
φt(f)(s)Dn(s) ds

=
1
π

∫ π

0
θt(f)(s) sin ns ds +

1
π

∫ π

0
φt(f)(s) cos ns ds.

We use this to give a criterion for the Fourier series of f to converge to
f(t) at t.

Theorem 9.6.2 (Dini’s test) If the improper integral

I =
1
π

∫ π

0
|θt(f)(s)| ds = lim

η↘0

1
π

∫ π

η
|θt(f)(s)| ds

is finite, then sn(f)(t) → f(t) as n → ∞.

Proof If ε > 0 there exists 0 < η < π such that

1
π

∫ η

0
|θt(f)(s)| ds = I − 1

π

∫ π

η
|θt(f)(s)| ds < ε/2.

Let

g(s) =

{
0 if |s − t| < η,

f(s) if η ≤ |s − t| ≤ π,

and extend g by periodicity to obtain a function in V. Then θt(g) is an odd
function in V which vanishes in (−η, η), and

sn(g)(t) =
1
π

∫ π

0
θt(g)(s) sin ns ds+

1
π

∫ π

0
φt(g)(s) cos ns ds = θ̂t(g)n+φ̂t(g)n.

Thus sn(g)(t) → 0 as n → ∞, and so there exists n0 such that |sn(g)(t)| < ε/2
for n ≥ n0.

On the other hand,

|sn(g)(t) − (sn(f)(t) − f(t))| =
∣∣∣∣ 1π
∫ η

0
θt(f)(s) sin ns ds

∣∣∣∣
≤ 1

π

∫ η

0
|θt(f)(s)| ds < ε/2,

and so |sn(f)(t) − f(t)| < ε for n ≥ n0. �
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Note that the condition in Dini’s test is equivalent to the requirement that
the improper integral (1/π)

∫ π
0 |φt(f)(s)|/s ds should be finite.

We can say more, if f vanishes on an interval.

Theorem 9.6.3 (Riemann’s localization theorem) Suppose that f ∈ V,
that [a, b] ⊆ [π, π] and that f(t) = 0 for t ∈ [a, b]. Suppose that 0 < δ <

(b − a)/2. Then sn(f)(t) → 0 as n → ∞ uniformly on [a + δ, b − δ].

Proof We need two lemmas, of interest in themselves.

Lemma 9.6.4 If f ∈ V and n ∈ Z \ {0} then |f̂n| ≤ Kπ/n(f)/2.

Proof Since e−in(t+π/n) = −e−int,

|f̂n| =
1
2

∣∣∣∣ 1
2π

∫ π

−π
f(t)(e−int − e−in(t+π/n) dt

∣∣∣∣
=

1
2

∣∣∣∣ 1
2π

∫ π

−π
(f(t) − f(t + π/n))e−int) dt

∣∣∣∣ ≤ Kπ/n(f)
2

. �

Corollary 9.6.5 If n ∈ N then

|an(f)| ≤ Kπ/n(f)/2 and |bn(f)| ≤ Kπ/n(f)/2.

Lemma 9.6.6 Suppose that f, g ∈ V, that t ∈ R and that δ > 0. Let
ht(s) = f(t − s)g(s). Then

Kδ(ht) ≤ ‖g‖∞ Kδ(f) + ‖f‖∞ Kδ(g).

Proof

Kδ(ht) =
1
2π

∫ π

−π
|f(t − s + δ)g(s + δ) − f(t − s)g(s)| ds

≤ 1
2π

∫ π

−π
|(f(t − s + δ) − f(t − s))g(s + δ)| ds +

1
2π

∫ π

−π
|f(t − s)(g(s + δ) − g(s))| ds

≤ ‖g‖∞
1
2π

∫ π

−π
|f(t − s + δ) − f(t − s)| ds +

‖f‖∞
1
2π

∫ π

−π
|(g(s + δ) − g(s))| ds

= ‖g‖∞ Kδ(f) + ‖f‖∞ Kδ(g).
�
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The importance of this lemma is that the right-hand side of the inequality
does not involve t.

We now prove the theorem. Let

g(t) =

{
0 if |t| < δ or |t| = π,

1/ tan 1
2 t if δ ≤ |t| < π,

and extend by periodicity. Then g ∈ V. If t ∈ [a + δ, b − δ] then

sn(f)(t) =
1
2π

∫ π

−π
f(t − s)g(s) sin ns ds +

1
2π

∫ π

−π
f(t − s) cos ns ds,

so that
|sn(f)(t)| ≤ 1

2(‖g‖∞ Kπ/n(f) + ‖f‖∞ Kπ/n(g) + Kπ/n(f)).

The right-hand side of this inequality does not involve t, and tends to 0 as
n → ∞. �

Suppose that f ∈ V, that t0 ∈ (−π, π] and that 0 < η < π. Let g(t) = f(t)
if |t− t0| < η, let g(t) = 0 if η < |t− t0| ≤ π, and extend by periodicity. Since
f − g = 0 on (t0 − η, t0 + η), Riemann’s localization theorem says that the
Fourier series for f converges at t0 (or at any point in (t0 − η, t0 + η)) if and
only if the same holds for g: convergence is a local property, depending only
on the values of f near t0.

Let us apply these results to the function Iδ of Example 9.3.9. It follows
that

sn(f)(t) →

⎧⎪⎪⎨⎪⎪⎩
π/δ uniformly in |t| < δ − η, for 0 < η < δ

π/2δ if t = δ or t = −δ

0 uniformly in δ + η < |t| ≤ π, for 0 < η < π − δ.

In particular, if we set δ = π/2 and t = 0, it follows that

1 − 1
3

+
1
5

− · · · =
π

4
.

We now show that if f is monotonic in an open interval, then the Fourier
series converges at each point of the interval. Recall that if f is monotonic in
an open interval I and that t ∈ I then f(t+) = inf{f(s) : s ∈ I, s > t} and
that f(t−) = sup{f(s) : s ∈ I, s < t}.

Theorem 9.6.7 (Jordan’s theorem) Suppose that f ∈ V and that f is
monotonic in an open interval I. If t ∈ I then the Fourier series for f

converges at t to 1
2(f(t+) + f(t−)).
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Proof We make several simplifications: we remove the jump, and we localize.
We can clearly suppose that f is increasing in I. By a change of variables, we
can suppose that t = 0, so that we need to show that

∑n
j=−n f̂n = 1

2(f(0+)+
f(0−)). We can also suppose that f(0) = 1

2(f(0+) + f(0−)). Let j(0) =
j(π) = 0, let j(s) = 1 for 0 < s ≤ π and j(s) = −1 for −π < s < 0, and
extend j by periodicity. Then j is an odd function, and so

∑n
j=−n ĵn = 0 for

all n ∈ N. Now let

g(s) = f(s) − 1
2(f(0+) − f(0−))j(s) − f(0).

Then
n∑

k=−n

ĝk =
n∑

k=−n

f̂k − f(0),

and so we need to show that
∑n

j=−n ĝn = 0.
From the construction, g(0) = 0 and g is continuous at 0. Suppose that

ε > 0. There exists δ > 0 such that (−δ, δ) ⊆ I and such that −ε/5 <

g(−δ) ≤ g(δ) < ε/5. Now set h(s) = g(s) if |s| ≤ δ and set h(s) = 0 if
δ < |s| ≤ π, and extend by periodicity. Since g(s) − h(s) = 0 on [−δ, δ].∑n

j=−n ĥj −
∑n

j=−n ĝj → 0 as n → ∞, by Riemann’s localization theorem.
Thus there exists n0 such that

|
n∑

j=−n

ĥj −
n∑

j=−n

ĝj | < ε/5 for n ≥ n0.

By Du Bois--Reymond’s mean-value theorem (Corollary 8.6.4), there exists
−δ < c < δ such that

n∑
j=−n

ĥj =
1
2π

∫ δ

−δ
Dn(s)h(s) ds

=
h(−δ)

2π

∫ c

−δ
Dn(s) ds +

h(δ)
2π

∫ −δ

c
Dn(s) ds.

Using Theorem 9.6.1 (v), it follows that

|
n∑

j=−n

ĥj | ≤ ε

5

(∣∣∣∣ 1
2π

∫ c

−δ
Dn(s) ds

∣∣∣∣+ ∣∣∣∣ 1
2π

∫ δ

c
Dn(s) ds

∣∣∣∣) ≤ 4ε

5
.

Thus |
∑n

j=−n ĝj | < ε for n ≥ n0. �
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Exercise

9.6.1 Suppose that f ∈ V and that f is monotonic and continuous in an
open interval I. Show that the Fourier series for f converges uniformly
to f in any closed subinterval of I.

9.7 The Fejér kernel and the Poisson kernel

If f is a continuous function in V, it is an easy matter to calculate its har-
monics. On the other hand, the example of Section 9.5 shows that the partial
sums sn(f)(t) =

∑n
j=−n f̂je

ijt need not converge to f(t). Can we use the
harmonics to reconstruct f? This is the problem of harmonic synthesis. We
give two important examples of harmonic synthesis.

The first was given by Lipót Fejér, at the age of nineteen. It is based on
the idea that the average of terms in a sequence can behave better than the
terms themselves. If f ∈ V, we set

σn(f) =
1

n + 1

n∑
j=0

sj(f) =
1

n + 1

n∑
j=0

(Dj � f) = Fn � f,

where Fn = (
∑n

j=0 Dj)/(n + 1) is the Fejér kernel. Using the formulae

2 sin(j + 1
2)t sin 1

2 t = cos jt − cos(j + 1)t and 1 − cos 2αt = 2 sin2 αt,

we see that fn(0) = n + 1 and that

Fn(t) =
1

n + 1

n∑
j=0

sin(j + 1
2)t sin 1

2 t

2 sin2 1
2 t

=
1

n + 1

(
1 − cos(n + 1)t

2 sin2 1
2 t

)
=

1
n + 1

(
sin2((n + 1)t/2)

sin2 1
2 t

)
,

for 0 < |t| ≤ π.
The Fejér kernel has three important properties.

• Fn(t) is a non-negative function.
• 1

2π

∫ π
−π Fn(t) dt = (

∑n
j=0

1
2π

∫ π
−π Dj(t) dt)/(n + 1) = 1.

• If 0 < δ < π then Fn(t) → 0 uniformly on {t : δ < |t| ≤ π}.

A sequence of functions in V with these properties is called an approximate
identity.

Theorem 9.7.1 If (φn)∞
n=0 is an approximate identity in V and f ∈ V

is continuous at t0 then (φn � f)(t0) → f(t0) as n → ∞. If f is continuous
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y = F5(t)

–3 –2 –1 0 1 2 3

t = –π t = π

t

y

1

2

3

4

5

6

Figure 9.7a. The Fejér kernel.

on a closed interval [a, b] and 0 < η < (b − a)/2, then (φn � f)(t) → f(t), as
n → ∞, uniformly in [a + η, b − η].

Proof Suppose that ε > 0. There exists 0 < δ < π such that if |s − t0| < δ

then |f(s) − f(t0)| < ε/3. Then

|(φn � f)(t0) − f(t0)| = | 1
2π

∫ π

−π
(f(t0 − s) − f(t0))φn(s) ds| ≤ I1 + I2 + I3,

where

I1 =
1
2π

∫ −δ

−π
(|f(t0 − s)| + |f(s)|)φn(s) ds

≤ ‖f‖∞ sup{φn(t) : −π ≤ t ≤ −δ},

I2 =
1
2π

∫ δ

−δ
(|f(t0 − s) − f(s)|)φn(s) ds < ε/3,

I3 =
1
2π

∫ −δ

−π
(|f(t0 − s)| + |f(s)|)φn(s) ds

≤ ‖f‖∞ sup{φn(t) : δ ≤ t ≤ π},

so that there exists n0 such that |(φn � f)(t0) − f(t0)| < ε for n ≥ n0.
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If f is continuous on [a, b] then it is uniformly continuous, and there exists
0 < δ < π such that if s, t ∈ [a, b] and |s − t| < δ then |f(s) − f(t)| < ε/3.
Thus, choosing δ < η in the preceding argument, n0 can be chosen so that
|(φn � f)(t) − f(t)| < ε for all t ∈ [a, b], for n ≥ n0. �

Corollary 9.7.2 If f is a continuous function in V then σn(f)(t) → f(t)
as n → ∞, uniformly in t.

We have a version of Riemann’s localization theorem.

Corollary 9.7.3 If f(t) = 0 on a closed interval [a, b] and 0 < η <

(b − a)/2 then (φn � f)(t) → 0, as n → ∞, uniformly in [a + η, b − η].

Proposition 9.7.4 If f ∈ V and if sn(f)(t) → l as n → ∞ then
σn(f)(t) → l as n → ∞.

Proof This is part of Exercise 4.6.2. �

This has the following important consequence.

Corollary 9.7.5 If f ∈ V is continuous at t0 and if sn(f)(t0) converges
as n → ∞, then it converges to f(t0).

Proof For if sn(f)(t0) → l as n → ∞, then σn(f)(t0) → l as n → ∞, and
so l = f(t0). �

Corollary 9.7.2 shows that a continuous function in V can be uniformly
approximated by trigonometric polynomials: we use this to show that a
continuous function on [0, 1] can be uniformly approximated by polynomials.

Theorem 9.7.6 If f is a continuous function on [0, 1] and ε > 0 there
exists a polynomial p such that |f(x) − p(x)| < ε for all x ∈ [0, 1].

Proof We need a lemma.

Lemma 9.7.7 For each n ∈ Z+ there exists a polynomial Tn such that
cos nt = Tn(cos t) for all t ∈ R.

Proof The proof is by induction on n. The result is true for n = 1 and n = 2.
Suppose that it is true for all m ≤ n, where n ≥ 1. Then

cos(n + 1)t = 2 cos nt cos t − cos(n − 1)t = 2Tn(cos t) cos t − Tn−1(cos t). �

The polynomial Tn is called the n-th Chebyshev polynomial.
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We now prove the theorem. Let g(t) = f(cos t). Then g is a continuous
even function in V, and so there exists n ∈ N such that |σn(g)(t) − g(t)| < ε

for all t. But σn(g) is an even trigonometric polynomial, and so

σn(g)(t) =
n∑

j=0

cj cos jt =
n∑

j=0

cjTj(cos t)

for some constants c0, . . . , cn. Thus if x = cos t ∈ [0, 1] and p =
∑n

j=0 cjTj

then
|f(x) − p(x)| = |f(cos t) − p(cos t)| = |g(t) − σn(g)(t)| < ε. �

The second example of harmonic synthesis is obtained by damping the
contributions for large values of |n|. Suppose that f ∈ V and that 0 ≤ r < 1.
Then we set

Pr(f)(t) =
∞∑

n=−∞
r|n|f̂neint.

Since |f̂n| ≤ ‖f‖1, the series converges absolutely, and converges uniformly
in t. Thus Pr(f) is a continuous function. Let us set

Pr,n =
n∑

j=−n

r|j|γj and Pr =
∞∑

j=−∞
r|j|γj .

Then Pr,n → Pr as n → ∞, uniformly in t, and so

Pr(f)(t) = lim
n→∞

1
2π

∫ π

−π
Pr,n(t − s)f(s) ds

= lim
n→∞

(Pr,n � f)(t) = (Pr � f)(t).

The function (r, t) → Pr(t) is the Poisson kernel. Now

Pr(t) =
∞∑

j=0

rjeijt +
∞∑

j=0

rje−ijt − 1

=
1

1 − reit
+

1
1 − re−it

− 1 =
1 − r2

1 − 2r cos t + r2 .

Note that Pr(0) = (1 + r)/(1 − r), that Pr(t) ≥ 0 and that Pr is an even
function. Further,

1
2π

∫ π

−π
Pr(t) dt =

∞∑
j=−∞

(
r|j|

2π

∫ π

−π
eijt dt

)
= 1.
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Figure 9.7b. The Poisson kernel.

Since

1 − 2r cos t + r2 = (1 − r)2 + 2r(1 − cos t) ≥ 2r(1 − cos t) = 4r sin2 1
2 t,

Pr(t) → 0 uniformly on {t : δ ≤ |t| ≤ π} as r ↗ 1, for 0 < δ < π.
Thus the Poisson kernel is an approximate identity (though here the

parameter r is in [0, 1), and we are concerned with limits as r increases to 1).
Thus we have the following.

Theorem 9.7.8 If f ∈ V is continuous at t0 then Pr(f)(t0) → f(t0) as
r ↗ 1. If f is a continuous function, then Pr(f)(t) → f(t), uniformly in t,
as r ↗ 1.

Which of these two methods is more powerful? In order to answer this, we
need a stronger version of Abel’s theorem (Theorem 6.6.5).

Theorem 9.7.9 Suppose that (an)∞
n=0 is a real or complex sequence. Let

sn =
∑n

j=0 aj, and let σn = (
∑n

j=0 sj)/(n + 1), for n ∈ Z+. Suppose that
σn → σ as n → ∞. Then

∑∞
n=0 anxn → σ as x ↗ 1.

Proof The proof is very similar to the proof of Theorem 6.6.5. By replacing
a0 by a0 − σ, we can suppose that σ = 0. Let sn =

∑n
j=0 aj , for n ∈ Z+.

Suppose that 0 ≤ x < 1. Let f(x) =
∑∞

n=0 anxn. Recall that 1/1 − x)2 =∑∞
n=0(n+1)xn. Each of the series

∑∞
n=0 anxn and

∑∞
n=0(n+1)xn converges

absolutely, and so by Proposition 4.6.1, the convolution product
∑∞

n=0 cnxn

converges absolutely to f(x)/(1 − x)2. But

cn =
n∑

j=0

aj(n + 1 − j) = (n + 1)σn,
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and so f(x) = (1 − x)2
∑∞

n=0(n + 1)σnxn.
Suppose that 0 < ε < 1. There exists n0 such that |σn| < ε/2 for n ≥ n0,

and so

|(1 − x)2
∞∑

n=n0

snxn| ≤ ε(1 − x)2(
∞∑

n=n0

(n + 1)xn)/2

≤ ε(1 − x)2(
∞∑

n=0

(n + 1)xn)/2 = ε/2.

On the other hand, the sequence (σn)∞
n=0 is bounded: let M =

sup{|σn| : n ∈ Z+}. Then

|(1 − x)2
n0−1∑
n=0

(n + 1)σnxn| ≤ (1 − x)2Mn0(n0 + 1)/2.

Let η = (ε/((M + 1)n0(n0 + 1))
1
2 . If 1 − η < x < 1 then

|(1 − x)2
n0−1∑
n=0

(n + 1)σnxn| < ε/2,

and so

|
∞∑

n=0

anxn| = |f(x)| = |(1 − x)2
∞∑

n=0

(n + 1)σnxn| < ε. �

It follows that the Poisson kernel is more powerful than the Fejér kernel.

Exercise

9.7.1 Suppose that (an)∞
n=0 is a real or complex sequence. Let sn =

∑n
j=0 aj ,

and let σn = (
∑n

j=0 sj)/(n + 1), for n ∈ Z+. Suppose that σn → σ as
n → ∞. Suppose that K > 0. Let WK = {z : |1 − z| ≤ K(1 − |z|}.
Show that

∑∞
n=0 anzn → σ as z → 1 in WK .
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Some applications

The theory that we have developed is meant to be used. In this chapter, we
consider various applications of the results that we have established, and in
particular will introduce some of the important special functions of analysis.
Some details are omitted; you should provide them. We shall return later to
some of the topics considered here in Volumes II and III.

10.1 Infinite products

Suppose that (aj)∞
j=0 is a sequence of real numbers, and that aj �= −1 for all

j ∈ Z+. Let pn =
∏n

j=0(1+aj). We say that the infinite product
∏∞

j=0(1+aj)
converges to p if p �= 0 and pn → p as n → ∞. If pn → 0 as n → ∞
we say that the product diverges to 0. If the product converges, then an =
(pn − pn−1)/pn−1 → 0 as n → ∞: this means that we can restrict attention
to products for which aj > −1 for all j ∈ N+, so that 1 + aj > 0 for all
j ∈ N, and pn > 0 for all n ∈ N. The logarithmic function then enables us
to reduce the problem of convergence of the product to the convergence of a
sum. The function log is a continuous bijection of (0,∞) onto (−∞,∞), with
continuous inverse exp. Hence pn → p (with p �= 0) as n → ∞ if and only if

n∑
j=0

log(1 + aj) = log pn → log p as n → ∞.

The general principle of convergence takes the following form.

Proposition 10.1.1 Suppose that (aj)∞
j=0 is a sequence of real numbers,

and that aj > −1 for all j ∈ Z+. Then the product
∏∞

j=0(1 + aj) converges

270
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if and only if, given ε > 0, there exists n0 ∈ Z+ such that∣∣∣∣∣∣
m∏

j=n+1

(1 + aj) − 1

∣∣∣∣∣∣ =
∣∣∣∣pm − pn

pn

∣∣∣∣ < ε

for m > n ≥ n0.

Proof Let us prove this directly. Suppose that pn → p, and that ε > 0. Then
p/pn → 1, and so there exists n0 such that |pm − pn| < ε/2p and p/pn < 2,
for m > n ≥ n0. Then∣∣∣∣∣∣

m∏
j=n+1

(1 + aj) − 1

∣∣∣∣∣∣ =
∣∣∣∣pm − pn

pn

∣∣∣∣ = |pm − pn

p
|. p

pn
< ε

for m > n ≥ n0.
Conversely suppose that the condition is satisfied. Then there exists n0

such that ∣∣∣∣pm

pn
− 1
∣∣∣∣ =

∣∣∣∣∣∣
m∏

j=n+1

(1 + aj) − 1

∣∣∣∣∣∣ < 1/2,

for m > n ≥ n0, and so pn0/2 ≤ pn ≤ 2pn0 for n ≥ n0. Given ε > 0,
there exists n1 ≥ n0 such that |(pm/pn) − 1| < ε/2pn0 for m > n ≥ n1. If
m > n ≥ n1 then

|pm − pn| =
∣∣∣∣pm

pn
− 1
∣∣∣∣ .pn < ε,

so that, by the general principle of convergence, (pn)∞
n=0 converges, to p say.

Further, since pn ≥ pn0/2 for n ≥ n0, p ≥ pn0/2 > 0. �

If the infinite product
∏∞

j=0(1 + aj) converges, then aj → 0 as j → ∞. If∑∞
j=0 a2

j < ∞, we can say much more.

Theorem 10.1.2 Suppose that (aj)∞
j=0 is a sequence of real numbers, that

aj > −1 for all j ∈ Z+ and that
∑∞

j=0 a2
j < ∞. Then the infinite product∏∞

j=0(1 + aj) converges if and only if
∑∞

j=0 aj converges.

Proof We use the fact that if |h| < 1/2 then, by Taylor’s theorem,

log(1 + h) − h = − h2

2(1 + θh)2,
for some 0 < θ < 1,

so that
h − 2h2 ≤ log(1 + h) ≤ h.
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There exists n0 such that |aj | < 1/2 for j ≥ n0. If m > n ≥ n0 then

m∑
j=n+1

log(1 + aj) ≤
n∑

j=m+1

aj ≤
m∑

j=n+1

log(1 + aj) + 2
m∑

j=n+1

a2
j ,

and it follows easily from this that (
∑n

j=0 log(1+aj))∞
n=0 is a Cauchy sequence

if and only if (
∑n

j=0 aj)∞
n=0 is a Cauchy sequence. The result therefore follows

from the general principle of convergence. �

Next let us consider the cases when the terms aj are all positive.

Proposition 10.1.3 Suppose that (aj)∞
j=0 is a sequence of positive num-

bers, and that aj < 1 for all j ∈ N+. The following statements are
equivalent.
(i)
∑∞

j=0 aj converges.
(ii)

∏∞
j=0(1 + aj) converges.

(iii)
∏∞

j=0(1 − aj) converges.
(iv) If |bj | ≤ 1 and ajbj �= −1 for j ∈ Z+ then

∏∞
j=0(1 + bjaj) converges.

Proof If (i) holds and |bj | ≤ 1 for j ∈ Z+ then
∑∞

j=0(ajbj)2 < ∞, and
so (iv) holds, by Theorem 10.1.2. Clearly, (iv) implies (iii). Suppose that∏∞

j=0(1 − aj) converges, to q, say. Then since 1 + aj < 1/(1 − aj),

n∏
j=0

(1 + aj) ≤

⎛⎝ n∏
j=0

(1 − aj)

⎞⎠−1

≤ 1/q,

and so the increasing sequence (
∏n

j=0(1 + aj))∞
n=0 converges: (ii) holds.

Suppose that (ii) holds. Let pn =
∏n

j=0(1 + aj) and let p =
∏∞

j=0(1 + aj).
Since aj → 0 as j → ∞, there exists n0 such that aj < 1 for j ≥ n0. But, by
the mean-value theorem, log(1 + x) = x/(1 + θx) for some 0 < θ < 1 and so
log(1 + x) ≥ x/2, for 0 ≤ x ≤ 1. Therefore

n∑
j=0

aj −
n0∑

j=0

aj ≤ 2
n∑

j=n0+1

log(1 + aj) = 2 log(pn/pn0) ≤ 2 log(p/pn0)

for n ≥ n0, so that
∑∞

j=0 aj converges. Thus (i) holds. �

Corollary 10.1.4 If (aj)∞
j=0 is a real sequence, none of whose terms

takes the value −1, and if
∑∞

j=0 |aj | < ∞, then the infinite product∏∞
j=0(1 + aj) converges. Further, if σ is a permutation of N+ then∏∞
j=0(1 + aσ(j)) converges, to the same value.

Such a product is said to be absolutely convergent.
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Exercises

10.1.1 Use the logarithmic function to deduce Proposition 10.1.1 from
Theorem 3.6.2.

10.1.2 Let a2k = 1/
√

k + 1 and let a2k+1 = −1/
√

k + 1. Show that
∑∞

j=0 aj

converges, whereas
∏∞

j=1(1 + aj) diverges to 0.
10.1.3 Let a0 = 0, let a2k−1 = 1/

√
k and let a2k = −1/

√
k + 1/k, for k ∈ N.

Show that
∑∞

j=0 aj diverges, whereas
∏∞

j=1(1 + aj) converges.
10.1.4 Why do these examples not contradict Theorem 10.1.2?
10.1.5 Let p1 < p2 < · · · be an enumeration of the primes. By consider-

ing products of the form
∏n

j=1(1 − 1/pj)−1, or otherwise, show that∏∞
j=1(1 − 1/pj) diverges to 0. Deduce that

∑∞
j=1(1/pj) = ∞.

10.2 The Taylor series of logarithmic functions

Integrating the identity

1
1 + x

= 1 − x + · · · + (−x)n−1 +
(−x)n

1 + x

we see that

log(1 + x) = x − x2

2
+ · · · − (−x)n

n
+
∫ x

0

(−t)n

1 + t
dt,

for x > −1. Suppose that −1 < x < 1. Then the remainder term tends to 0
as n → ∞, and so

log(1 + x) = x − x2

2
+ · · · − (−x)n

n
+ · · · =

∞∑
n=1

(−1)n+1xn

n
.

Since

log(1 − x) = −x − x2

2
− · · · − xn

n
+ · · · ,

it follows that

log
(

1 + x

1 − x

)
= log(1 + x) − log(1 − x) = 2(x +

x3

3
+

x5

5
+ · · · ),

for −1 < x < 1. We shall use this formula when we establish Stirling’s
formula.
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Exercise

10.2.1 Show that
1
n

(
1 +

1
n

)n log n

→ 1 as n → ∞.

10.3 The beta function

The beta function B(x, y) is defined for x > 0 and y > 0 as

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1 dt.

Note that if x < 1 or y < 1 then this is an improper integral. Note also
that B(x, 1) = 1/x. The change of variables s = 1 − t shows that B(x, y) =
B(y, x). If we make the change of variables t = sin2 θ then 1 − t = cos2 θ and
dt/dθ = 2 sin θ cos θ, so that

B(x, y) = 2
∫ π/2

0
sin2x−1 cos2y−1 dθ.

Proposition 10.3.1 If x > 0 and y > 0 then

B(x, y + 1) =
yB(x, y)

x + y
.

Proof Integrating by parts,

B(x, y + 1) =
∫ 1

0
tx−1(1 − t)y dt

=
∫ 1

0
tx+y−1(

1
t

− 1)y dt

=
[

tx+y

x + y
(
1
t

− 1)y

]1

0
+

y

x + y

∫ 1

0
tx+y−2

(
1
t

− 1
)y−1

dt

=
y

x + y

∫ 1

0
tx−1(1 − t)y−1 dt =

y

x + y
B(x, y). �

This means that we can calculate the value of B(x, y) for all positive x and
y if we can calculate it for 0 < x ≤ 1 and 0 < y ≤ 1. Let

Is =
∫ π/2

0
sins θ dθ for s > −1.
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Corollary 10.3.2 (i) B(1/2, 1/2) = π.
(ii) B(x/2, 1/2) = Ix−1.
(iii) sIs = (s − 1)Is−2, for s > 1.
(iv) If k ∈ N then

I2k =
∫ π/2

0
sin2k θ dθ =

(2k − 1)(2k − 3) . . . 1
(2k)(2k − 2) . . . 2

I0

=
(2k)!

22k(k!)2
.
π

2
=

1
22k

.

(
2k

k

)
.
π

2

and

I2k+1 =
∫ π/2

0
sin2k+1 θ dθ =

(2k)(2k − 2) . . . 2
(2k + 1)(2k − 1) . . . 3

I1 =
22k(k!)2

(2k + 1)!
.

Proof These results all follow easily from the equation

B(x, y) = 2
∫ π/2

0
sin2x−1 cos2y−1 dθ. �

Now
1 ≥ I2k+1

I2k
=

2k

2k + 1
.
I2k−1

I2k
≥ 2k

2k + 1
,

so that I2k+1/I2k → 1 as k → ∞. Thus we obtain Wallis’ formula

24k+1(k!)4

(2k + 1)!(2k)!
→ π as k → ∞.

Let us establish a corresponding result for an infinite product. Since

2k.k!
(2k)!

=
2.2. . . . .2k

1.2. . . . .2k
=

1
1.3.5. . . . .(2k − 1)

and
2k.k!

(2k + 1)!
=

1
3.5. . . . .(2k + 1)

,

it follows that

24k(k!)4

(2k)!(2k + 1)!
=

2.2.4.4. . . . .(2k).(2k)
1.3.3.5. . . . .(2k − 1)(2k + 1)

=
k∏

j=1

(
(2j)2

(2j − 1)(2j + 1)

)
=

k∏
j=1

(
1 +

1
4j2 − 1

)
.

Thus it follows from Wallis’ formula that
∞∏

j=1

(
1 +

1
4j2 − 1

)
=

π

2
.
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If 0 < x < 1 then

B(x, 1 − x) = 2
∫ π/2

0
tan2x−1 θ dθ.

Our main concern now is to find an expression for this integral. Making the
change of variables v = t/(1 − t), we find that

B(x, y) =
∫ ∞

0

vx−1

1 + vx+y
dv, so that B(x, 1 − x) =

∫ ∞

0

vx−1

1 + v
dv.

Now∫ 1

0

vx−1

1 + v
dv =

∫ 1

0
vx−1(1 − v + · · · + (−1)nvn) dv + (−1)n+1

∫ 1

0

vx−1vn

1 + v
dv.

The second term on the right-hand side tends to 0 as n → ∞ (why?), and so∫ 1

0

vx−1

1 + v
dv =

1
x

+
∞∑

n=1

(−1)n 1
x + n

.

Similarly, making the change of variables v = 1/w, we find that∫ ∞

1

vx−1

1 + v
dv =

∫ 1

0

1
wx(1 + w)

dw

=
∫ 1

0
w−x − w1−x + · · · + (−1)nwn−x dw + (−1)n−1

∫ 1

0

wn+1−x

1 + w
dw.

Again, the second term on the right-hand side tends to 0 as n → ∞, and so∫ ∞

1

vx−1

1 + v
dv =

∞∑
n=1

(−1)n−1 1
n − x

.

Adding the two integrals, we find that

B(x, 1 − x) = 2
∫ π/2

0
tan2x−1 θ dθ =

1
x

+
∞∑

n=1

(−1)n

(
1

n + x
− 1

n − x

)

=
1
x

− 2
∞∑

n=1

(−1)n

(
1

n2 − x2

)
.

We shall see in Volume III that this sum can be evaluated; its value is
π/ sin πx.
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The beta function is logarithmically convex: if x0, x1, y0 and y1 are positive
and 0 < θ < 1 then, putting xθ = (1 − θ)x0 + θx1, yθ = (1 − θ)y0 + θy1 and
using Hölder’s inequality with indices 1/(1 − θ) and 1/θ, we see that

B(xθ, yθ) =
∫ 1

0
txθ(1 − t)yθ dt

=
∫ 1

0
(tx0)1−θ(tx1)θ((1 − t)y0)1−θ((1 − t)y1)θ dt

=
∫ 1

0
(tx0(1 − t)y0)1−θ(tx1(1 − t)y1)θ dt

≤
(∫ 1

0
(tx0(1 − t)y0) dt

)1−θ

.

(∫ 1

0
(tx1(1 − t)y1) dt

)θ

= B(x0, y0)1−θB(x1, y1)θ.

Exercises

10.3.1 Show that xB(x, y + 1) = yB(x + 1, y).
10.3.2 Show that B(x, y) = B(x + 1, y) + (B(x, y + 1).
10.3.3 Show that

n∏
j=1

(
1 − 1

4j2

)
→ 2

π
as n → ∞.

10.3.4 Show that n(
∫ π/2
0 sinn t dt)2 → 2π as n → ∞. [Consider the cases n

odd and n even separately.]

10.4 Stirling’s formula

We wish to estimate the size of n!, as n becomes large. Let

an =
n!en

nn+1/2 , and let bn = log an = log(n!) − (n + 1/2) log n + n.

Set s = 1/(2n + 1) (so that (n + 1)/n = (1 + s)/(1 − s)). Using the result
about logarithmic functions established in Section 10.2,

bn − bn+1 = log(n + 1) − (n + 1/2) log n + (n + 3/2) log(n + 1) − 1

= (n + 1/2) log
(

n + 1
n

)
− 1

=
1
2s

log
(

1 + s

1 − s

)
− 1 =

s2

3
+

s4

5
+ · · ·
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Thus

bn − bn+1 ≤ s2

3

(
1

1 − s2

)
=

1
12n(n + 1)

=
1

12n
− 1

12(n + 1)
,

and bn − bn+1 ≥ s2

3
=

1
3(2n + 1)2

>
1

12(n + 1)
− 1

12(n + 2)
.

These inequalities show that the sequences

(bn)∞
n=1 and

(
bn − 1

12(n + 1)

)∞

n=1

are both decreasing sequences, and that the sequence (bn − 1/12n)∞
n=1

is an increasing sequence. Thus all three sequences tend to a com-
mon limit b. Consequently (an)∞

n=1 → a as n → ∞, where a= eb, so that
n! ∼ ann+1/2e−n.

It remains to determine a. We use Wallis’ formula.

4n+1(n!)4

(2n)!(2n + 1)!
∼ a44n+1n4n+2e−4n

a2(2n)4n+1e−4n(2n + 1)
=

a2n

2n + 1
∼ a2/2.

But 4n+1(n!)4/((2n)!(2n + 1)!) → π as n → ∞, by Wallis’ formula, and so
a =

√
2π. Thus we obtain Stirling’s formula

n! ∼
√

2π.nn+1
2 e−n.

More precisely,

e1/12(n+1)
√

2πn
(n

e

)n
≤ n! ≤ e1/12n

√
2πn

(n

e

)n
.

10.5 The gamma function

Suppose that a > 0. The exponential functions eax grows faster than any
polynomial, as x → +∞. On the other hand, n! grows faster than ean, as
x → ∞, for any a ∈ R. Can we find a continuous function f of a natural kind
on [0,∞) such that f(n) = n! for n ∈ N? Perhaps surprisingly, the answer
is ‘yes’; in fact, the function that we shall construct, the gamma function Γ,
satisfies Γ(n + 1) = n!.

We want to define the improper integral
∫∞
0 tx−1e−t dt. We consider the

intervals [0, 1] and [1,∞] separately.
First, suppose that 0 < x < 1. Then tx−1e−t → ∞ as x ↘ 0. But tx−1e−t ≤

tx−1, and
∫ 1
ε tx−1 dt = (1 − εx)/x → 1/x as ε ↘ 0. Thus I(ε) =

∫ 1
ε tx−1e−t dt

is a decreasing function on (0, 1] which is bounded above by 1/x, and so
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the improper integral
∫ 1
0 tx−1e−t dt exists. If x ≥ 1, the function tx−1e−t is

a continuous function on [0, 1], and so the Riemann integral
∫ 1
0 tx−1e−t dt

exists.
The function tx−1e−t is continuous on [1,∞). If n ∈ N and n > x then

et ≥ tn/n!, so that tx−1e−t ≤ n!tx−n−1. Thus∫ T

1
tx−1e−t dt ≤ n!

∫ T

1
tx−n−1 dt =

n!(1 − T x−n)
n − x

≤ n!
n − x

.

Consequently, the improper integral
∫∞
0 tx−1e−t dt exists.

We can therefore define the gamma function for 0 < t < ∞ as

Γ(x) =
∫ ∞

0
tx−1e−t dt;

it exists as an improper integral.
Note that Γ(1) =

∫∞
0 e−t dt = 1.

Proposition 10.5.1 If x > 0 then xΓ(x) = Γ(x + 1).

Proof Integrating by parts,∫ X

ε
tx−1e−t dt =

[
txe−t

x

]X

ε

+
1
x

∫ X

ε
txe−t dt.

Now txe−t → 0 as t → 0 and as t → ∞, and so it follows that xΓ(x) =
Γ(x + 1). �

Corollary 10.5.2 If n ∈ Z then Γ(n + 1) = n!.

Proof The result holds for n = 1, since Γ(2) = Γ(1) = 1. The result then
follows by induction. �

Proposition 10.5.3 Γ is a continuous function on (0,∞).

Proof Suppose that x ∈ (0,∞) and that 0 < a < x < b < ∞. Suppose that
ε > 0. There exist 0 < η < 1 < R < ∞ such that∫ η

0
ta−1e−t dt < ε/5 and

∫ ∞

R
tb−1e−t dt < ε/5.

There then exists 0 < δ < min(x − a, b − x) such that if |x − y| < δ then
|ty−1 − tx−1| < ε/5(R − η). If |x − y| < δ then

Γ(y) − Γ(x) = I0 + (I1 − I2) + (I3 − I4),
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where

I0 =
∫ R

η
(ty−1 − tx−1)e−t dt,

I1 =
∫ η

0
ty−1e−t dt, I2 =

∫ η

0
tx−1e−t dt,

I3 =
∫ ∞

R
ty−1e−t dt, I4 =

∫ ∞

R
tx−1e−t dt.

The modulus of each integral is less that ε/5, so that |Γ(y) − Γ(x)| < ε. �

The beta and gamma functions are closely related.

Proposition 10.5.4 If x > 0 and y > 0 then

Γ(x)Γ(y) = B(x, y)Γ(x + y).

Proof Changing variables by setting t = su, exchanging the order of inte-
gration (this is justified in Volume II), and setting w = s(1 + u), we
find that

Γ(x)Γ(y) =
(∫ ∞

0
sx−1e−s ds

)(∫ ∞

0
ty−1e−t dt

)
=
∫ ∞

0
sx−1e−s

(∫ ∞

0
syuy−1e−su du

)
ds

=
∫ ∞

0
uy−1

(∫ ∞

0
sx+y−1e−s(1+u) ds

)
du

=
∫ ∞

0
uy−1

(∫ ∞

0

wx+y−1e−w

(1 + u)x+y
dw

)
du

=
(∫ ∞

0

uy−1

(1 + u)x+y
du

)
Γ(x + y).

Setting v = u/(1 + u), we find that∫ ∞

0

uy−1

(1 + u)x+y
du =

∫ 1

0
vy−1(1 − v)x−1 dv = B(x, y). �

Exercises

10.5.1 Show that

Γ(x) =
∫ ∞

1

(log y)x−1

y2 dy =
∫ 1

0

(
log

1
u

)x−1

dx.

10.5.2 Show that the gamma function is a logarithmically convex function
on (0,∞).
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10.5.3 Show that if 0 < x < 1 then

1
ex

≤ Γ(x) ≤ 1 +
1
x

.

10.6 Riemann’s zeta function

It follows from the integral test that
∑∞

j=1(1/js) diverges if s ≤ 1, and
converges if s > 1. If s > 1, we set ζ(s) =

∑∞
j=1(1/js). The function ζ is

called Riemann’s zeta function; it is a decreasing function of s.
It follows from the integral test that

1
s − 1

=
∫ ∞

1

dx

xs
ds < ζ(s) = 1 +

∞∑
j=2

(1/js)

≤ 1 +
∫ ∞

1

dx

xs
ds = 1 +

1
s − 1

=
s

s − 1
,

so that ζ(s) → ∞ as s ↘ 1 and ζ(s) → 1 as s → ∞.
It was Euler who first considered the sum as a function of the real vari-

able s. Later, Riemann considered ζ as a function of a complex variable; he
introduced the notation ζ for the function and s for the variable.

Euler recognized the importance of the zeta function for number theory,
and initiated the study of analytic number theory. Let 2 = p1 < p2 < . . . be
the sequence of primes, in increasing order. We shall use Theorem 2.6.6, the
fundamental theorem of arithmetic: every n ≥ 2 can be written uniquely in
the form n = pa1

1 . . . pak

k , where a1, . . . , ak ∈ Z+ and ak �= 0.
We set

Pn(s) =
n∏

j=1

(
1

1 − 1/ps
j

)
=

n∏
j=1

(
1 +

1
ps

j − 1

)
.

Thus Pn(s) is a continuous decreasing function on (0,∞).
Since

1
1 − 1/ps

j

= 1 +
1
ps

j

+
1

p2s
j

+ · · · ,

and since all the terms are non-negative, we can expand the products, to
obtain

Pn(s) =
∑

{ 1
(pk1

1 . . . pkn
n )s

: k1, . . . , kn ∈ Z+}.

This provides an analytic proof of the fact that there are infinitely many
primes. For if there are only finitely many primes p1, . . . , pn then every posi-
tive integer can be written in the form pk1

1 . . . pkn
n , so that Pn(1) =

∑∞
j=1 1/j =

∞, giving a contradiction. We can say more.
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If s > 1 then it follows that Pn(s) ≤
∑∞

n=1 1/ns = ζ(s). The sequence
(Pn(s))∞

n=1 is increasing, and so Pn(s) converges to a limit P (s), with P (s) ≤
ζ(s). On the other hand, suppose that N ∈ N, and let {p1, . . . pk} be the
set of primes less than N . Then every j < N can be written as a product of
powers of p1, . . . pk, and so

P (s) ≥ Pk(s) ≥
N−1∑
j=1

1
js

.

Since this holds for all N , P (s) ≥ ζ(s), and so we have the following.

Proposition 10.6.1 If 1 < s < ∞ then

ζ(s) =
∞∏

j=1

(
1

1 − 1/ps
j

)
=

∞∏
j=1

(
1 +

1
ps

j − 1

)
,

where (p1 < p2 < . . .) is the sequence of primes, arranged in increasing
order.

Corollary 10.6.2
∑∞

n=1(1/pn) = ∞.

Proof If not, then, by Proposition 10.1.3,

∞∏
j=1

(
1 − 1

pj

)
is convergent to a non-zero limit P , say. But

1/ζ(s) =
∞∏

j=1

(
1 − 1

ps
j

)
≥ P

for s > 1, so that 1/P ≥ ζ(s). Since ζ(s) → ∞ as s ↘ 1, this gives a
contradiction. �

10.7 Chebyshev’s prime number theorem

Again, let 2 = p1 < p2 < · · · denote the sequence of primes, in increas-
ing order. The fact that

∑∞
j=1 1/pj = ∞ shows not only that there are

infinitely many primes, but also that they occur fairly frequently; for exam-
ple, if (aj)∞

j=1 is a sequence of positive numbers for which
∑∞

j=1 aj < ∞ then
lim infj→∞ ajpj = 0. This raises the question; how are the prime numbers
distributed? If x > 0, let π(x) be the number of primes not greater than x.
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In 1792, Gauss, at the age of fifteen, conjectured that π(x) ∼ x/ log x: that
is, π(x) log x/x → 1 as x → ∞. In 1850, Chebyshev showed, by elementary
real analysis, that this was the right rate of growth.

First, let us introduce some notation. Suppose that f is a real-valued
function defined on N, and that x > 0. We set∑

p≤x

f(p) =
∑

{f(p) : p a prime, p ≤ x}

∑
y<p≤x

f(p) =
∑

{f(p) : p a prime, y < p ≤ x}

and
∑

pm≤x

f(pm) =
∑

{f(pm) : p a prime, m ∈ N, pm ≤ x},

and use similar notations for products.
Chebyshev introduced two auxiliary functions:

θ(x) =
∑
p≤x

log p and ψ(x) =
∑

pm≤x

log p.

He proved the following.

Theorem 10.7.1 (Chebyshev’s prime number theorem)

(i) lim infx→∞
π(x) log x

x = lim infx→∞
θ(x)

x = lim infx→∞
ψ(x)

x ,

lim supx→∞
π(x) log x

x = lim supx→∞
θ(x)

x = lim supx→∞
ψ(x)

x .

(ii) lim supx→∞
θ(x)

x < lg 4 < 1.387.

(iii) lim infx→∞
ψ(x)

x > 1
2 log 2 > 0.346.

Proof of (i) Clearly θ(x) ≤ ψ(x). Let cp(x) = sup{m : pm ≤ x}. Then

ψ(x) =
∑
p≤x

cp(x) log p =
∑

p≤
√

x

cp(x) log x +
∑

√
x<p≤x

cp(x) log x

≤
√

x log x + θ(x),

since cp(x) = 1 for
√

x < p ≤ x. Thus ψ(x)/x − θ(x)/x → 0 as x → ∞.
Consequently

lim inf
x→∞

θ(x)
x

= lim inf
x→∞

ψ(x)
x

and lim sup
x→∞

θ(x)
x

= lim sup
x→∞

ψ(x)
x

.
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Since cp(x) is the largest integer such that pm ≤ x,

cp(x) log p ≤ log x < (cp(x) + 1) log p,

so that cp(x) is the integral part of log x/ log p. Consequently,

ψ(x) =
∑
p≤x

� log x

log p
�. log p ≤ π(x) log x.

Thus

lim inf
x→∞

ψ(x)
x

≤ lim inf
x→∞

π(x) log x

x
,

lim sup
x→∞

ψ(x)
x

≤ lim sup
x→∞

π(x) log x

x
.

Suppose that 0 < α < 1. Then

θ(x) ≥
∑

xα<p≤x

log p ≥
∑

xα<p≤x

log xα

= (α log x)(π(x) − π(xα)) ≥ (α log x)(π(x) − xα),

so that
θ(x)
x

≥ α

(
π(x) log x

x
− xα−1 log x

)
.

Since xα−1 log x → 0 as x → ∞,

lim inf
x→∞

θ(x)
x

≥ α lim inf
x→∞

π(x) log x

x
,

lim sup
x→∞

θ(x)
x

≥ α lim sup
x→∞

π(x) log x

x
.

Since this holds for all 0 < α < 1,

lim inf
x→∞

θ(x)
x

≥ lim inf
x→∞

π(x) log x

x
,

lim sup
x→∞

θ(x)
x

≥ lim sup
x→∞

π(x) log x

x
.

Proof of (ii) It is sufficient to show that θ(n)/n < log 4, for n ∈ N,
with n ≥ 2. We prove this by induction. Certainly θ(2) = log 2 < 2 log 4,
θ(3) = log 6 ≤ 3 log 4 and θ(4) = log 6 ≤ 4 log 4. Suppose that the result
holds for 2 ≤ j ≤ 2n. Then, since 2n + 2 is not prime,

θ(2n + 2) − θ(n + 1) = θ(2n + 1) − θ(n + 1) =
∑

n+1<p≤2n+1

log p = log P,



10.7 Chebyshev’s prime number theorem 285

where P =
∏

n+1<p≤2n+1 p. Now if p is a prime and n+1 < p ≤ 2n+1 then p

divides (2n+1)! and does not divide (n+1)!, and so p divides
(2n+1

n+1

)
=
(2n+1

n

)
.

Thus P divides
(2n+1

n+1

)
=
(2n+1

n

)
. But(

2n + 1
n + 1

)
=

1
2

((
2n + 1

n

)
+
(

2n + 1
n + 1

))
≤ 1

2

2n+1∑
j=0

(
2n + 1

j

)
= 22n = 4n,

so that P ≤ 4n, log P ≤ n log 4, and

θ(2n + 2) = θ(2n + 1) ≤ θ(n + 1) + n log 4 ≤ (2n + 1) log 4.

Proof of (iii) It is sufficient to show that ψ(2n)/2n ≥ 1
2 log 2, for n ∈ N. By

the fundamental theorem of arithmetic, if n ∈ N we can write n uniquely as∏
p≤n pvp(n). The quantity vp(n) is the p-adic valuation of n. Since {1, . . . , n}

contains �n/p� multiples of p, �n/p2� multiples of p2, and so on,

vp(n!) =
∞∑

j=1

�n/pj�.

(Of course, this is a finite sum.) Now(
2n

n

)
=

(2n)!
(n!)2

=
∏

p≤2n

pgp(n),

where

gp(n) = vp((2n)!) − 2vp(n!) =
∞∑

j=1

�2n/pj� − 2
∞∑

j=1

�n/pj�

=
∞∑

j=1

(
�2n/pj� − 2�n/pj�

)
.

Now if �2n/pj� is even, there are as many numbers of the form apj in
{1, . . . , n} as there are in {n + 1, . . . , 2n}, and if �2n/pj� is odd, there is one
less number of the form apj in {1, . . . , n} as there are in {n+1, . . . , 2n} (why
is this?). Thus

�2n/pj� − 2�n/pj� = 0 if �2n/pj� is even,

= 1 if �2n/pj� is odd,

so that 0 ≤ gp(n) ≤ cp(2n). Consequently

log
(

2n

n

)
=
∑
p≤2n

gp(n) log p ≤
∑
p≤2n

cp(2n) log p = ψ(2n).
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But (
2n

n

)
=

(n + 1)(n + 2) . . . (2n)
1.2. . . . .n

≥ 2n,

so that log
(2n

n

)
≥ n log 2, and ψ(2n)/2n ≥ 1

2 log 2. �

Chebyshev also showed that

lim inf
x→∞

π(x) log x

x
≤ 1 ≤ lim sup

x→∞

π(x) log x

x
,

but the real difficulty is to show that π(x) log x/x tends to a limit as x → ∞.
Gauss’ conjecture was eventually proved independently by Hadamard and

de la Vallée Poussin in 1896.

Theorem 10.7.2 (The prime number theorem) π(x) log x/x → 1 as
x → ∞.

Their proofs are difficult, and use the theory of functions of a complex
variable.

10.8 Evaluating ζ(2)

An outstanding problem at the beginning of the eighteenth century was the
evaluation of

ζ(2) = 1 +
1
4

+
1
9

+ · · · +
1
n2 + · · · .

One of Euler’s early triumphs was to show that ζ(2) = π2/6. We gave a proof
using Fourier series in Example 9.3.10: here we present one given by Euler.
We start by applying the binomial theorem. Suppose that 0 < x < 1. Now

d

dx
(sin−1 x)2 = 2

sin−1(x)√
1 − x2

=
2x√

1 − x2
+ 2

∞∑
j=1

(
(2j)!

(2j + 1)22j(j!)2
x2j+1

√
1 − x2

)
,
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by Corollary 8.5.5. Integrating term by term (justify this carefully),

(sin−1 x)2 = 2
∫ x

0

t√
1 − t2

dt + 2
∞∑

j=1

(
(2j)!

(2j + 1)22j(j!)2

∫ x

0

t2j+1
√

1 − t2
dt

)
,

for 0 ≤ x < 1. Since all the terms are non-negative increasing functions of x,
it follows from Theorem 6.3.10 that the formula also holds if we set x = 1:

π2

8
=
∫ 1

0

t√
1 − t2

dt +
∞∑

j=1

(
(2j)!

(2j + 1)22j(j!)2

∫ 1

0

t2j+1
√

1 − t2
dt

)
.

Setting t = sin θ, and applying Corollary 10.3.2,∫ 1

0

t2j+1
√

1 − t2
dt =

∫ π/2

0
sin2j+1 θ dθ =

22j(j!)2

(2j + 1)!
.

Substituting, we see that

π2

8
= 1 +

∞∑
j=1

1
(2j + 1)2

= 1 +
1
9

+
1
25

+ · · ·

=
(

1 +
1
4

+
1
9

+ · · ·
)

− 1
4

(
1 +

1
4

+
1
9

+ · · ·
)

=
3
4

(
1 +

1
4

+
1
9

+ · · ·
)

,

giving the result.

10.9 The irrationality of er

We have seen in Section 4.2 that e is irrational; we now show that er is
irrational for all non-zero rational r. If r = p/q and er is rational, then
ep = (er)q is rational, and so is e−p = 1/ep. It is therefore enough to show
that e−k is irrational, for each positive integer k. Suppose, if possible, that
e−k = p/q, where p and q are integers.

We use the fact that if f is a differentiable function on [a, b] then

d

dx
(−e−kxf(x)) = e−kx(kf(x) − f ′(x)),

which suggests the possibility of cancellation.
Suppose that f is an (m + 1)-times differentiable on [a, b]; set

g(x) = −e−kx(kmf(x) + km−1f ′(x) + · · · + f (m)(x)).



288 Some applications

Then g′(x) = e−kx(km+1f(x) − f (m+1)(x)), so that

g(b) − g(a) =
∫ b

a
e−kx(km+1f(x) − f (m+1)(x)) dx.

We apply this to the polynomial function

βn(x) =
xn(1 − x)n

n!
=

1
n!

n∑
j=0

(
n

j

)
(−1)jxn+j ,

on the interval [0, 1]. We choose this function, because βn(0) = 0 and
β

(h)
n (0) = 0 for 1 ≤ h < n and for h > 2n. If h = n + j, where 0 ≤ j ≤ n,

then

β(h)
n (0) = (−1)j (n + j)!

n!

(
n

j

)
= (−1)jj!

(
n + j

j

)(
n

j

)
,

which is an integer. Since βn(x) = βn(1 − x), similar phenomena occur when
x = 1. We now take m = 2n, and set

gn(x) = −e−kx(k2nβn(x) + k2n−1β′
n(x) + · · · + β(2n)

n (x)).

Then gn(1) = e−kr = pr/q and g(0) = s, where r and s are integers. Further,
since β

(2n+1)
n (x) = 0 for all x,

gn(1)−gn(0) =
∫ 1

0
e−kx(k2n+1βn(x)−β(2n+1)

n ) dx =
∫ 1

0
e−kxk2n+1βn(x) dx.

Thus

q

(∫ 1

0
e−kxk2n+1βn(x) dx

)
= pr − qs, an integer.

But 0 < βn(x) < 1/n! and e−kx ≤ 1 for 0 < x < 1, and so

0 < q(
∫ 1

0
e−kxk2n+1βn(x) dx) ≤ q

(
k2n+1

n!

)
.

Since k2n+1/n! → 0 as n → ∞, it follows that

0 < q

(∫ 1

0
e−kxk2n+1βn(x) dx

)
< 1

for large enough n, giving the required contradiction.
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10.10 The irrationality of π

We use the idea of the previous example to show that π is irrational. In fact,
we do rather more, and show that π2 is irrational. Suppose that π2 = p/q,
where p and q are integers.

Suppose that u is a twice differentiable function on an interval [a, b]. Let

g(x) = u(x) cos πx,

h(x) = u′(x) sin πx.

Then

g′(x) = u′(x) cos πx − πu(x) sin πx,

h′(x) = πu′(x) cos πx + u′′(x) sin πx,

so that
(h − πg)′(x) = (π2u(x) + u′′(x)) sin πx.

This again suggests the possibility of cancellation.
Suppose that f is a 2n + 2-times differentiable function; set

u(x) = π2n+2f(x) − π2nf ′′(x) + · · · + (−1)nπ2f (2n)(x).

Then
(h/π − g)′(x) =

(
π2n+1f(x) + (−1)nπf (2n+2)(x)

)
sin πx.

Since h(1) = h(0) = 0, it follow that

g(0) − g(1) =
∫ 1

0

(
π2n+1f(x) + (−1)nπf (2n+2)(x)

)
sin πx dx.

Let us take f(x) = βn(x), as before. Recall that βn(0) = βn(1) = 0 and
that β

(h)
n (0) and β

(h)
n (1) are integers for all h ∈ N. Thus qn+1g(0) = qn+1u(0)

and qn+1g(1) = −qn+1u(1) are both integers. Since β
(2n+2)
n (x) = 0 for all x,

g(0) − g(1) =
∫ 1

0
π2n+1βn(x) sin πx dx,

so that

qn+1g(0) − qn+1g(1) =
pn+1

π

∫ 1

0
βn(x) sin πx dx

is an integer. But

0 <
pn+1

π

∫ 1

0
βn(x) sin πx dx ≤ pn+1

π.n!
,
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and pn+1/π.n! → 0 as n → ∞, so that

0 <
pn+1

π

∫ 1

0
βn(x) sin πx dx < 1

for large enough n, giving the required contradiction.



Appendix A

Zorn’s lemma and the well-ordering principle

A.1 Zorn’s lemma

We show that Zorn’s lemma is a consequence of the axiom of choice.

Theorem A.1.1 Assume the axiom of choice. Suppose that (X, ≤) is
a non-empty partially ordered set with the property that every non-empty
chain (totally ordered subset) of X has an upper bound. Then there exists a
maximal element in X.

Proof 1 We need a few more definitions. Suppose that A is a subset of a
partially ordered set (X, ≤) and that x ∈ X. x is a strict upper bound for A

if a < x for all a ∈ A. A totally ordered set (S, ≤) is well-ordered if every
non-empty subset of S has a least element. A subset D of a totally ordered
set (S, ≤) is an initial segment of S if whenever x ∈ S, d ∈ D and x ≤ d then
x ∈ D.

We break the proof into a sequence of lemmas and corollaries. If A is a
subset of X, let A′ be the set of strict upper bounds of A. If A = ∅, then
A′ = X.

Let C be the set of chains in X.

Lemma A.1.2 Suppose that there exists C ∈ C for which C ′ = ∅. Then C

has a unique upper bound, which is a maximal element of X.

Proof C has an upper bound c. Then c ∈ C, and is the unique upper bound
for C, since C is a chain. If x ≥ c, then x is an upper bound for C, and so is
equal to c. Thus c is a maximal element of X. �

We must therefore find a chain C for which C ′ = ∅. Let s be a choice
function on P (X) \ ∅: if A is a non-empty subset of X then s(A) ∈ A. We

1 Thanks to Peter Johnstone for showing me how to simplify the proof.
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use the choice function to define a successor function, and use this to find a
large chain in C.

Let T be the set of chains C in X with the property that if D is an initial
segment of C and D �= C then s(D′) is the least element of C \ D.

Lemma A.1.3 T �= ∅.

Proof The set C = {s(X)} is a non-empty chain in T . Suppose that D is
an initial segment in C. If D �= C then D = ∅, and s(X) is the least element
of C \ D. Thus C ∈ T . �

Lemma A.1.4 If C ∈ T and C ′ �= ∅ then C+ = C ∪ {s(C ′)} ∈ T .

Proof C+ is certainly a chain, with greatest element s(C ′). Suppose that D

is an initial segment of C+ and that D �= C+. There are two possibilities.
First, D is a proper subset of C. Then s(D′) is the least element of D′ ∩ C,
and is therefore the least element of D′∩C+. Secondly, D = C. Then s(D′) =
s(C ′) is the least element of C+ \ D. �

Corollary A.1.5 We order T by inclusion. It is enough to show that T
has a greatest element M .

Proof For if M ′ �= ∅, then M+ ∈ T , contradicting the maximality
of M . �

We show that T is totally ordered by inclusion.

Lemma A.1.6 Suppose that C, D ∈ T , and that C is not contained in D.
Then D is an initial segment of C.

Proof Let

E = {x ∈ C ∩ D : if y ≤ x then y ∈ C if and only if y ∈ D}.

Then E is an initial segment of both C and D. Since E ⊆ D, E �= C, and
s(E′) is the least element of C \ E. Suppose that E �= D. Then s(E′) is the
least element of D\E. But this implies that s(E′) ∈ E, giving a contradiction.
Thus D = E, and so D is an initial segment of C. �

Lemma A.1.7 Let M = ∪C∈T C. Then M ∈ T .

Proof M is certainly a chain in X. Suppose that D is an initial segment in
M , and that D �= M . Then D+ ⊆ M , and so s(D′) ∈ M . If x ∈ M \ D then
x ∈ C \ D for some C ∈ T , and s(D′) is the least element of C \ D. Thus
s(D′) ≤ x, and so s(D′) is the least element of M \ D. Thus M ∈ T . �
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Corollary A.1.8 M is the greatest element of T .

Proof For if C ∈ T , then C ⊆ M , by the definition of M . �

This completes the proof of Theorem A.1.1. �

A.2 The well-ordering principle

Zorn’s lemma implies that any non-empty set can be well-ordered.

Theorem A.2.1 (The well-ordering principle) If S is a non-empty set,
Zorn’s lemma implies that there is a total order on S under which S is
well-ordered.

Proof We sketch the proof, and leave it to the reader to supply all the details.
Let T be the set of all pairs (A,≤A), where A is a non-empty subset of S

and ≤A is a well-ordered total order on A. T is not empty (consider singleton
sets). We define a partial order on T by setting (A,≤A) ≤ (B,≤B) if A is
an initial segment of B, and the two partial orders agree on A: x ≤A y if
and only if x ≤B y. We argue as in Theorem A.1.1. If C is a chain in T , set
M = ∪{A : (A,≤A) ∈ C}. If x, y ∈ M , there exists (A,≤A) ∈ C such that
x, y ∈ A. Set x ≤M y if x ≤A y. This is well defined, and defines a total
order on M . This total order is a well-ordering of M , so that (M,≤M ) ∈ T .
If (A,≤A) ∈ C then A is an initial segment of (M,≤M ). Hence (M,≤M ) is
an upper bound for C. We can apply Zorn’s lemma: there exists a maximal
element (N, ≤N ) of T . We claim that N = X. If not, there exists z ∈ X \ N .
Let N ′ = N ∪ {z}. Define a partial order ≤N ′ on N ′ by setting x ≤N ′ y if
x, y ∈ N and x ≤N y, and by setting x ≤′

N z for all x ∈ N ′. Then N ′ ∈ T ,
and (N, ≤N ) is strictly less than (N ′,≤N ′), contradicting the maximality of
(N, ≤N ). �

There are circumstances in which it may be more convenient to prove
results using the well-ordering principle, rather than the axiom of choice.
The well-ordering principle is used to develop the theory of ordinals.

It is easy to deduce the axiom of choice from the well-ordering
principle.

Theorem A.2.2 The well-ordering principle implies the axiom of choice.

Proof Suppose that {Bα}α∈A is a non-empty family of non-empty sets. Let
X = ∪α∈ABα, and let ≤ be a well-ordered total order on X. If α ∈ A, let
c(α) be the least element of Bα. Then c is a choice function. �
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Exercises

A.2.1 Give the details of the proof of Theorem A.2.1.
A.2.2 Use the well-ordering principle to prove Theorem 1.9.2.
A.2.3 Modify the proof of Theorem A.1.1 in the following way to deduce the

well-ordering principle directly from the axiom of choice.
Let s be a choice function on the non-empty subsets of a non-empty

set X. Let T be the set of pairs (C,≤C), where C is a subset of X and
≤C is a well-ordered total order on C with the property that if D is an
initial segment of C and C \ D is not empty then s(X \ D) is the least
element of C \ D.
(i) Suppose that (C ≤C) and (D ≤D) are elements of X, and that C is
not contained in D. Show that D is an initial segment of C, and that
the two total orders ≤C and ≤D agree on D.
(ii) Let M = {C : (C ≤C) ∈ T }. Define a total order ≤M on M ,
verifying that it is well-defined, and show that (M,≤M ) ∈ T .
(iii) Show that M = X.
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Abel’s formula, 117
Abel’s theorem, 268
Abel, N. H., 112
absolute value, 81, 102
accumulation point, 142
Adams, J. C., 236
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addition formula, 195
amplitude, 242
anti-derivative, 224
approximate identity, 264
arccos, arcsin, arctan, 199
Archimedean property, 81
Argand diagram, 103
arithmetic mean, 90
axiom

empty set, 5
extension, 5
foundation, 20
of choice, 26–29, 291, 293
of countable choice, 27, 45
of dependent choice, 27, 45
of infinity, 20
pairing, 6
Playfair’s, 30
power set, 6
replacement, 14
separation, 7
union, 6
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Peano’s, 22, 30, 34, 37, 39

Bézout’s lemma, 54
Bachet’s theorem, 54–58
Banach–Tarski paradox, 27
bar graph, 209
belong, 5
Beltrami, E., 30
Bessel’s inequality, 246
beta function, 274–277
big O, 152

binary expansion, 46, 112
binomial coefficient, 83
binomial theorem, 63, 113, 175, 205,

286
Bolyai, J., 30
Bolzano–Weierstrass theorem, 94, 134, 138,

145, 157–159, 162
complex, 106

boundary, 136
boundary condition, 224
bounded, 67, 85, 105

above, or below, 67, 72
function, 148

cancellation law, 63
Cantor set

fat, 145, 219
Cantor’s ternary set, 141–146, 157, 161
Cantor’s theorem, 20
Cantor, G. F. L. P., 4, 42, 112
Cantor–Lebesgue function, 161
cardinality, 38
Cartesian product, 9, 26, 41
Cauchy A.–L., 79
Cauchy principal value, 236, 237
Cauchy product, 123, 195
Cauchy’s

Cours d’Analyse, 79
inequality, 83
remainder in Taylor’s theorem, 202,

205
centre, 126
chain, 27–29, 291–292
chain rule, 176–177
change of variables, 225
Chebyshev’s prime number theorem, 283
Chebyshev, P. L., 283
circle

unit, 103
circle of convergence, 128
closed interval, 94
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closed set, 131
in R, 134
relatively, 134

closure, 131
in R, 132
relative, 133

closure point, 131–133
coordinate, 13, 26

projection, 13, 26
Cohen, P., 31
colour, 48
compact set, 138

in R, 141
complement, 7

relative, 7
complex number field, 101
complex plane, 103
comprehension principle, 4
compression principle, 110
condensation point, 146
conjugate

complex, 101
conjugate indices, 192
connected, 136–138
contain, 5
continuity, 153–162

on the right or left, 155, 210
uniform, 158, 216

continuum hypothesis, 31
converge, 84, 105, 107
convergence

absolute, 115
for products, 272

absolute uniform, 165
conditional, 115
of functions, 147–151
of products, 123–126
of sequences, 84–91
of series in C, 107
one-sided, 149
pointwise, 164
uniform, 165

convex
function

midpoint-convex, 185
set, 180

convolution product, 123, 253
coprime, 55
cosine, 193
countable set, 42
cover, 138

finite, 139
open, 139

Darboux continuity, 186
de la Vallée Poussin, C. J. E. G. N., 286
de Moivre’s formula, 42, 83, 200
decimal expansion, 112

decreasing, strictly decreasing, 13
Dedekind

cut, 66–69, 91
cut, positive, 72

Dedekind, J. W. R., 21, 39, 67
dense, 132
derivative, 173

higher, 200
left-hand, right-hand, 178
one-sided, 178

derived set, 142
Descartes, R., 9
diagonal procedure, 47
differentiable, 173

infinitely, 200
on the left, right, 178

differentiation, 173
dilation, 82
Dini, U., 114
Dirichlet kernel, 257
disc

closed unit, 103
open, 126
open unit, 103, 126

discontinuity, 153
jump, 155
removable, 155

disjoint, 7
dissection, 162, 209

points of, 209
distance, 81
diverge, 107

to +∞, 109
division, 36, 53
domain, 9
double sequence, 118

element, 5
end-point, 94
enumeration, 42

standard, 43
equivalence

class, 16
relation, 16

Euclid’s
Elements, 30, 55
algorithm, 55, 58

Euler’s
constant, 236
summation formula, 233, 238

Euler’s formula, 196
Euler, L., 281, 286
evaluating ζ(2), 286
eventually, 96
exponential function, 111, 115, 124, 128,

155, 160, 175, 189, 278

factorization, 53
family, 26
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Fejér kernel, 264
Fejér, L., 264
Fibonacci numbers, 37–91
field, 59

homomorphism, 60
isomorphism, 60
ordered, 64–79

finite intersection property, 140
fixed-point theorem, 164
Fourier cosine coefficients, 242
Fourier series, 242
Fourier sine coefficients, 242
fraction, 61
fractional part, 91
Fraenkel, A. A. H., 5
frequently, 96
frontier, 136
function, 12

choice, 27, 291
circular, 193
concave, 181
convex, 180–186
even, 193
indicator, 23
logarithmically convex, 190
odd, 193
periodic, 160, 179
saw-tooth, 157, 164, 179
strictly concave, 181
strictly convex, 181
successor, 22, 292

fundamental theorem
of arithmetic, 57, 281, 285
of calculus, 223–227

Gödel, K., 30
gamma function, 239, 278
Gauss, J. C. F., 30, 66, 283
general principle of convergence

complex, 106
for functions, 149
for products, 270
for sequences, 98–99
for series, 109

generator, 51
geometric mean, 90
graph, 12
greatest element, 10
greatest lower bound, 10, 80
group, 14

abelian, 14, 50
cyclic, 51
homomorphism, 15
identity element, 14
isomorphism, 16
ordered, 51
permutation, 14
product, 55

subgroup, 18

Hadamard, J. S., 286
half-plane

left-hand, 103
lower, 103
right-hand, 103
upper, 103

Hall’s marriage theorem, 40
harmonic, 242
harmonic analysis, 242
harmonic series, 110
harmonic synthesis, 264
Heine–Borel theorem

for closed sets, 140
for open sets, 139

Hermite, C., 113
high point, 47
highest common factor, 54
Hilbert, D., 30

image, 12, 14, 46
imaginary part, 102
inclusion-exclusion principle, 40
increasing, strictly increasing, 13, 47
index set, 26
index, indices, 23
induction

principle of complete, 36
principle of, 22
proof by, 22

inequality
arithmetic mean-geometric mean, 90, 191
Bessel’s, 255
Cauchy’s, 192
Cauchy–Schwarz, 255
Hölder’s, 192

for integrals, 223, 237
Schwarz’, 222

infimum, 10, 35, 67, 80
infinite series, 107, 107–109
infinite set

countable, 42
Dedekind, 45

infinite sum, 107
initial segment, 37, 291
integers, 49–53

non-negative, 22, 25, 32–37
integrable

absolutely, 237
conditionally, 237

integral
elementary, 209–211
improper, 233–239
Lebesgue, 239
Riemann, 220

upper and lower, 211–214
singular, 236, 236

integral part, 91
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integrand, 214
integration by parts, 231–233
interior, interior point, 135

relative, 136
intermediate property, 66, 145
intermediate value theorem, 75, 162–164,

196
intersection, 7
interval, 131

bounded, 131
degenerate, 131
semi-infinite, 131

inverse, 14
left, 15
right, 15

inverse image, 12, 155
inversion, 73
irrationality

of π, 289
of er, 287

isolated point, 142
iterated limits and sums, 118–120

Jensen’s inequality, 185
Jordan’s theorem, 262
jump discontinuity, 156

Knaster–Tarski fixed-point theorem, 18
Kronecker’s lemma, 114
Kummer, E., 114

L’Hôpital’s rule, 207
label, 23
Lagrange’s identity, 83
lattice, 54, 210
least element, 10, 35, 292
least upper bound, 10, 80

property, 67
Lebesgue number, 139
Leibniz’ formula, 200
length, 94, 131, 209
limes inferior, 95, 150
limes superior, 95, 150
limit, 84–91, 132, 147–151
limit point, 142, 147–151
Lindemann, F., 113
Liouville, J., 112, 189
list, 42
little o, 152
Lobachevsky, N. I., 30
local maximum, minimum, 157,

186
logarithmic function, 189
logarithmically convex, 277
lower bound, 10, 67
lower limit, 95, 150
lowest common multiple, 54
lowest terms, 61

map, mapping, 12
bijective, 13
composite, 13
identity, 12
inclusion, 12
injective, 12
one-one, 12
quotient, 17
restriction of, 14
surjective, 13

Mascheroni’s constant, 236
Mascheroni, L., 236
maximal, 10, 291
mean-value theorem, 187, 228

Bonnet’s, 228, 231
Cauchy’s, 202
DuBois–Reymond’s, 230, 263

member, 5
mesh size, 213
metric, 81
minimal, 10
model, 22
modulus, 81, 102
monic, 60
monoid, 63

commutative, 63
monotonic, strictly monotonic, 13
Moriarty, J., 205
multiplication, 34, 59, 71

natural numbers, 3, 32–37
negative, 50, 65
neighbourhood

open, 135
punctured ε-neighbourhood, 142

Newton–Raphson method, 88, 203, 207
non-negative, 50, 64
non-positive, 50, 65
null sequence, 84
number

algebraic, 112, 115
complex, 99
irrational, 73
rational, 59

dyadic, 61
real, 66, 75
transcendental, 112

one-one correspondence, 13
open set

in R, 135–136
orbit, 18
order

lexicographic, 29–37
partial, 9, 54, 210, 291–293

order complete, 82
orthonormal set, 244
oscillation, 215
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pair
ordered, 6
unordered, 6

parallel postulate, 30
parallelogram law, 104
partial sum, 107
partition, 17
Peano, 21
perfect set, 146
period, 160, 179
permutation, 14, 120
phase, 242
pigeonhole principle, 40, 134

countable, 46
point, 5
Poisson kernel, 267
polarization, 222
polynomial, 60

function, 60, 155
positive, 50, 64

strictly, 52
power, 190
power series, 123, 126–130, 167
predicate calculus, 3
prime number, 57
prime number theorem, 286
primitive, 224
product, 34

infinite, 270
punctured plane, 103
pure imaginary, 102
Pythagorean triple, 104

quotient, 17–59

radius, 126
radius of convergence, 127
Ramsey’s theorem, 48, 94
range, 9
rate of change, 175
real line, 81

extended, 82
real part, 102
recursion, 23–26
recursive, 23
refine, 210
reflection, 82
relation, 9

equivalence, 16
relatively prime, 55
remainder term, 201
reversal, 245
Riemann integrable, 214

locally, 240
Riemann integral, 209

lower, 212, 220
upper, 212, 220

Riemann zeta function, 281–282

Riemann’s localization theorem, 261, 266
Riemann, G. F. B., 281
Rolle’s theorem, 186, 201
root, 60

nth, 75
Ruffini, P., 112
Russell’s paradox, 4, 20
Russell, B. A. W., 4

sandwich principle, 89, 148, 153
scalar, 100
scalar multiplication, 100
scaling, 82
Schröder–Bernstein theorem, 19, 20, 28
semi-inner product, 244
sequence, 23–26, 37

block, 108
bounded, 85, 105
bracketed, 108
Cauchy, 98

complex, 105
rational, 93

finite, 37
null

complex, 105
series, infinite, 107–109
set, 5

bounded, 85, 105
Dedekind infinite, 39
finite, 37–42
index, 26
infinite, 37–42
partially ordered, 27
totally ordered, 40

set difference, 7
shift, 82
sine, 193
singleton, 6
size, 38
Skolem, T. A., 5
slope, 174
Smith, H. J. S., 143
split, 136
step function, 210
Stirling’s formula, 277
straight line segment, 180
strict partial order, 11
subcover, 138
subfield, 60
subsequence, 46
subset, 5

proper, 5
successor set, 21
sum, 32
support, 47
supremum, 10, 80

property, 67, 80, 93
symmetric difference, 8
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tangent, 174
tangent function, 199
Taylor series, 203

of logarithmic functions, 273
Taylor’s theorem, 271

with Cauchy’s remainder, 202
with integral remainder, 232
with Lagrange’s remainder, 201

tend, 84, 147
from the right, from the left, 149

term, 23
ternary expansion, 112
test

Abel’s, 118, 239
alternating series, 116, 121, 123, 195, 234
Cauchy’s, 110, 115
comparison, 109, 115
D’Alembert’s ratio, 111, 114, 115, 208
Dini’s, 260
Dirichlet’s, 117, 128, 228, 231, 239, 250
Dirichlet’s uniform, 167, 172
Hardy’s, 117
integral, 235
Weierstrass’ uniform M , 166, 168, 169

topology, 135
total order, 10
translation, 82
triangle inequality, 81, 102

trigonometric polynomial
real, 240
complex, 244

tuple, 37

uncountable, 42–46, 112
union, 6
unit, 53
upper bound, 10, 80

strict, 40, 291
upper limit, 95, 150

valuation, p-adic, 285
Vandermonde’s formula, 42, 84
vector, vector space, 100
Venn, J., 4

Wallis’ formula, 275, 278
well-formed formulae, 3
well-ordered, 35, 36, 52, 291
well-ordering principle, 293

Young, W. H., 206

Zermelo, E. F. F., 5
zero scalar, 100
zero vector, 100
ZF, 5
Zorn’s lemma, 27, 291–293
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