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The Japanese Association for Evolutionary Economics (JAFEE) always has

adhered to its original aim of taking an explicit “integrated” approach. This path

has been followed steadfastly since the Association’s establishment in 1997 and, as

well, since the inauguration of our international journal in 2004. We have deployed

an agenda encompassing a contemporary array of subjects including but not limited

to: foundations of institutional and evolutionary economics, criticism of main-

stream views in the social sciences, knowledge and learning in socio-economic

life, development and innovation of technologies, transformation of industrial

organizations and economic systems, experimental studies in economics, agent-

based modeling of socio-economic systems, evolution of the governance structure

of firms and other organizations, comparison of dynamically changing institutions

of the world, and policy proposals in the transformational process of economic life.

In short, our starting point is an “integrative science” of evolutionary and institu-

tional views. Furthermore,we always endeavor to stay abreast of newly established

methods such as agent-based modeling, socio/econo-physics, and network analysis

as part of our integrative links.

More fundamentally, “evolution” in social science is interpreted as an essential key

word, i.e., an integrative and/or communicative link to understand and re-domain

various preceding dichotomies in the sciences: ontological or epistemological, sub-

jective or objective, homogeneous or heterogeneous, natural or artificial, selfish or

altruistic, individualistic or collective, rational or irrational, axiomatic or psycholog-

ical-based, causal nexus or cyclic networked, optimal or adaptive, microor macro-

scopic, deterministic or stochastic, historical or theoretical, mathematical or

computational, experimental or empirical, agent-based or socio/econo-physical, insti-

tutional or evolutionary, regional or global, and so on. The conventional meanings

adhering to various traditional dichotomies may be more or less obsolete, to be

replaced with more current ones vis-à-vis contemporary academic trends. Thus we

are strongly encouraged to integrate some of the conventional dichotomies.

These attempts are not limited to the field of economic sciences, including

management sciences, but also include social science in general. In that way,

understanding the social profiles of complex science may then be within our

reach. In the meantime, contemporary society appears to be evolving into a

newly emerging phase, chiefly characterized by an information and communication

technology (ICT) mode of production and a service network system replacing the

earlier established factory system with a new one that is suited to actual observa-

tions. In the face of these changes we are urgently compelled to explore a set of new

properties for a new socio/economic system by implementing new ideas. We thus

are keen to look for “integrated principles” common to the above-mentioned

dichotomies throughout our serial compilation of publications.We are also encour-

aged to create a new, broader spectrum for establishing a specific method positively

integrated in our own original way.
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Preface

For more than 25 years, I have been studying environmental issues that affect

humans, human societies, and the living environment. I started my research career

by studying building physics; in particular, I was concerned with hygrothermal

transfer problems in building envelopes and predictions of thermal loads. After my

Ph.D. work, I extended my research field to a special scale perspective. This

extension was motivated by several factors. One was that I noticed a reciprocal

influence between an individual building environment and the entire urban envi-

ronment. Another was that the so-called urban heat island problem began to draw

much attention in the 1990s. Mitigation of urban heating contributes to energy

conservation and helps improve urban amenity; hence, the urban heat island

problem became one of the most prominent social issues of the time. Thus, I started

to study urban climatology because I was mainly concerned with why and how an

urban heat island forms. The problem was approached with sophisticated tools,

such as wind tunnel experiments, field observations, and computational fluid

dynamics (CFD), and was backed by deep theories concerning heat transfer and

fluid dynamics. A series of such studies forced me to realize that to obtain

meaningful and reasonable solutions, we should focus not only on one area (e.g.,

the scale of building physics) but also on several neighboring areas that involve

complex feedback interactions (e.g., scales of urban canopies and of urban clima-

tology). It is crucially important to establish new bridges that connect several areas

having different spatiotemporal scales.

This experience made me realize another crucial point. The term “environment”

encompasses a very wide range of objects: nature, man-made physical systems,

society, and humanity itself. One obvious fact is that we cannot achieve any

significant progress in solving so-called environmental problems as long as we

focus on just a single issue; everything is profoundly interdependent. Turning on an

air conditioner is not the final solution for feeling comfortable. The operation of an

air conditioner increases urban air temperatures; therefore, the efficiency of the

overall system inevitably goes down and more energy must be provided to the

system. This realization might deter someone from using an air conditioner. This

v



situation is one intelligible example. The decisions of any individual human affect

the environment, and the decisions of a society as a collection of individuals may

substantially impact the environment. In turn, the environment reacts to those

decisions made by individuals and society, and some of that feedback is likely to

be negative. Such feedback crucially influences our decision-making processes.

Interconnected cycling systems always work in this way.

With this realization, I recognized the concept of a combined human–

environmental–social system. To reach the crux of the environmental problem,

which includes physical mechanisms, individual humans, and society, we must

study the combination of these diverse phenomena as an integrated environmental

system. We must consider all interactions between these different systems at all

scales.

I know well that this is easy to say and not so easy to do. I recognize the

difficulties in attempting to establish a new bridge that connects several fields

governed by completely different principles, such as natural environmental systems

and human systems. I understand that I stand before a steep mountain path.

Yet, I have seen a subtle light in recent applied mathematics and physics that

includes operations research, artificial intelligence, and complex science. These

approaches help us model human actions as complex systems. Among those,

evolutionary game theory seems to be one of the most powerful tools because it

gives us a clear-cut template of how we should mathematically treat human

decision making, and a thorough understanding of decision making is essential to

build that new bridge. Thus, for the last decade, I have been deeply committed to

the study of evolutionary game theory and statistical physics.

This book shares the knowledge I have gained so far in collaboration with

graduate students and other researchers who are interested in evolutionary game

theory and its applications. It will be a great pleasure for me if this book can give

readers some insight into recent progress and some hints as to how we should

proceed.

Interdisciplinary Graduate School of Engineering Jun Tanimoto

Sciences, Kyushu University

Fukuoka, Japan
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Chapter 1

Human–Environment–Social System

and Evolutionary Game Theory

Abstract In this chapter, we discuss both the definition of an environmental

system as one of the typical dynamical systems and its relation to evolutionary

game theory. We also outline the structure of each chapter in this book.

1.1 Modeling a Real Complex World

We define the word “system” as a collection of elements, all of which are connected

organically to form an aggregate of elements that collectively possess an overall

function. We know that most real systems are not time constant but time variable,

i.e., they are “dynamical systems.” According to the common sense of the fields of

science and engineering, a dynamical system can be described by space and time

variables, i.e., x and t. Therefore, a dynamical system has a spatiotemporal

structure.

Any system in the real world looks very complex. An environmental system is a

typical example. If an environmental system is interpreted literally, considering

every system involved with the environment, we can see there is a lot of variety

within it.

This variety arises from interactions between different environments (e.g.,

natural, human, and social) and differences in spatial scale (i.e., from the micro-

scopic world weaved by microorganisms to the global environment as a whole, see

Fig. 1.1). To reach the crux of an environmental problem, we must observe and

consider diverse phenomena together, as an integrated environmental system,

considering all interactions between the different systems and scales (Fig. 1.1).

Accordingly, we have coined the phrase “human–environmental–social system”

to encompass all these diverse phenomena.

One important aspect that is revealed when you shed some light on the human–

environment–social system is that human intention and behavior, either supported

by rational decision making, in some cases, or irrational decision making, in others,

has a crucial impact on its dynamics. In fact, what is called “global warming,” as

one example of a global environmental problem, can be understood because of

© Springer Japan 2015
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human overconsumption of fossil fuels over the course of the past couple of

centuries, which seems rational for people only concerned with current comfort

but seems irrational for people who are carefully considering long-term conse-

quences. Hence, in seeking to establish a certain provision to improve environmen-

tal problems, one needs to consider complex interactions between physical

environmental systems and humans as well as social systems as a holistic system

of individuals. In general, the modeling of the human decision-making process or

actual human behavior is harder than that of the transparent physical systems dealt

by traditional science and engineering, because the governing mathematical models

are usually unknown. What we can guess concerning these processes is not

expressed as a set of transparent, deterministic, and explicit equations but black

box-like models or, in some cases, stochastic models. At any rate, in order to solve

those problems in the real world, we must build a holistic model that covers not only

environment as physical systems but also human beings and society as complex

systems. Although this may be a difficult job, we can see some possibility of

progress in the field of applied mathematical theory, which can help to model

complex systems such as human decision-making processes and social dynamics.

Even if it is almost impossible to obtain an all-in-one model to perfectly deal with

the three spheres, i.e., environmental, human, and societal, which have different

spatiotemporal scales as well as different mechanisms, it might be possible to

Fig. 1.1 Wide range of spatial scales over which environmental systems act, and the concept of

the human–environmental–social system (Tanimoto 2014)
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establish bridges to connect the three. One effective tool to do this is evolutionary

game theory.

1.2 Evolutionary Game Theory

Why do we cooperate? Why do we observe many animals cooperating? The

mysterious labyrinth surrounding how cooperative behavior can emerge in the

real world has attracted much attention. The classical metaphor for investigating

this social problem is the prisoner’s dilemma (PD) game, which has been thought

most appropriate, and is most frequently used as a template for social dilemma.

Evolutionary game theory (e.g. Weibull 1995) has evolved from game theory by

merging it with the basic concept of Darwinism so as to compensate for the idea of

time evolution, which is partially lacking in the original game theory that primarily

deals with equilibrium.

Game theory was established in the mid-twentieth century by a novel contribu-

tion by von Neumann and Morgenstern (von Neumann and Morgenstern 1944).

After the inception they provided, the biggest milestone in driving the theory

forward and making it more applicable to various fields (not only economics but

also biology, information science, statistical physics, and other social sciences) was

provided by John Nash, one of the three game theorists awarded the Nobel Prize. He

did this by forming the equilibrium concept, known as Nash Equilibrium (Nash

1949). Another important contribution to evolutionary game theory was provided,

in the 1980s, by Maynard Smith (Maynard Smith 1982). He formulated a central

concept of evolutionary game theory called the evolutionarily stable strategy. In the

1990s, with the rapid growth of computational capabilities, multi-agent simulation

started to strongly drive evolutionary game theory, allowing one to easily build a

flexible model, free from the premises that previous theoretical frameworks pre-

sumed.1 This enables game players in these models to behave more intelligently

and realistically. Consequently, many people have been attracted to seeking

answers for the question of why we can observe so much evidence of the reciprocity

mechanism working in real human social systems, and also among animal species,

even during encounters with severe social dilemma situations, in which the theory

predicts that game players should act defectively. As one example, the theory shows

that all players would be trapped as complete defectors in the case of PD, which will

be explained later in this book. However, we can observe a lot of evidence that

opposes this in the real world, where we ourselves and even some animal spices

show social harmony with mutual cooperation in the respective social context

(Fig. 1.2).

1 The classical game theory assumes infinite population and perfect anonymity among those

players. This is called well-mixed situation. Also, the players are presumed to act in an ideally

rational way.
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Since these developments, thousands of papers have been produced on research

performed by means of computer simulations. Most of them follow the same

pattern, in which each of the new models they build a priori is shown with

numerical results indicating more enhanced cooperation than what the theory pre-

dicts. Those are meaningful from the constructivism viewpoint, but still less

persuasive in answering the question: “What is the substantial mechanism that

causes mutual cooperation to emerge instead of defection?”

Nowak successfully made progress in understanding this problem, to some

extent, with his ground-breaking research (Nowak 2006). He proved theoretically

that all the reciprocity mechanisms that bring mutual cooperation can be classified

into four types, and all of them, amazingly, have similar inequality conditions for

evolving cooperation due to the so-called Hamilton Rule. Nowak calls all these

fundamental mechanisms “social viscosity.” The Hamilton Rule (Hamilton 1964)

finally solved the puzzle, which was originally posed by Charles Darwin’s book—
The Origin of Species (1859)—of why sterile social insects, such as honey bees,

leave reproduction to their sisters by arguing that a selection benefit to related

organisms would allow the evolution of a trait that confers the benefit but destroys

the individual at the same time. Hamilton clearly deduced that kin selection favors

cooperative behavior as long as the inclusive fitness surge due to the concept of

relatedness is larger than the dilemma strength. This finding by Nowak, though he

assumed several premises in his analytical procedure, elucidates that all the reci-

procity mechanisms ever discussed can be explained with a simple mathematical

formula, very similar to the Hamilton Rule, implying that “Nature is controlled by a

simple rule.” The Nowak classifications—kin selection, direct reciprocity, indirect

reciprocity, network reciprocity, and group selection—successfully presented a

new level to the controversy, but there have still been a lot of papers reporting

“how much cooperation thrives if you rely on our particular model”-type stories,

because Nowak’s deduction is based on several limitations, and thus the real

reciprocity mechanism may differ from it. In fact, among the five mechanisms,

network reciprocity has been very well received, since people believe complex

social networks may relate to emerging mutual cooperation in social system.

This is why this book primarily focuses network reciprocity in Chap. 3.

Fig. 1.2 How are humans able to establish reciprocity when encountering a social dilemma

situation in the real world?

4 1 Human–Environment–Social System and Evolutionary Game Theory
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1.3 Structure of This Book

This book does not try to cover all the developments concerning evolutionary

games, not even all the most important ones. In fact, it strives to describe several

fundamental issues, a selected set of core elements of both evolutionary games and

network reciprocity, and self-contained applications, which are drawn from our

studies over the last decade.

Chapter 2 describes some theoretical foundations for dealing with evolutionary

games in view of so-called social dilemma games. Some points such as universal

scaling for dilemma strength might be useful from a theoretical viewpoint.

In Chap. 3, we focus on network reciprocity. We provide a transparent discus-

sion on why limiting game opponents with a network helps the emergence of

cooperation.

The remaining chapters demonstrate real-life applications of evolutionary

games. Chapter 4 touches on the story of what triggers evolving communication

among animal species. Chapter 5 demonstrates that social dilemma seems ubiqui-

tous, even in traffic flow, which has been thought to be one of the typical applica-

tions that fluid dynamics deals with. Chapter 6 concerns spreading epidemics and

social provision for this by vaccination through the vaccination game, one of the

hottest areas in evolutionary games.
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Chapter 2

Fundamental Theory for Evolutionary

Games

Abstract In this chapter, we take a look at the appropriate treatment of linear

dynamical systems, which you may be familiar with if you have taken some

standard engineering undergraduate classes. The discussion is then extended to

non-linear systems and their general dynamic properties. In this discussion, we

introduce the 2-player and 2-strategy (2� 2) game, which is the most important

archetype among evolutionary games. Multi-player and 2-strategy games are also

introduced. In the latter parts of this chapter, we define the dilemma strength, which

is useful for the universal comparison of the various reciprocity mechanisms

supported by different models.

2.1 Linear Dynamical Systems

Let us start with an example. Consider the dynamics of an arbitrary linear thermal

system.1 One typical case is a thermal field of semi-infinite soil, as shown in

Fig. 2.1. The x-coordinate axis takes the ground surface as its origin and measures

depth underground. Underground heat propagates only by conduction, but convec-

tive heat transfer occurs on the ground surface, which is exposed to the external

temperature. Also, radiation, evaporative cooling, and incoming solar radiation

have an effect on the surface. As can be seen in Fig. 2.1, a discretization of space

has been imposed, and thus the system is no longer continuous. The system

featured, with thermal mass M, is affected by thermal conduction, convection,

liberalized radiation, evaporative cooling, and solar radiation. Therefore, the tem-

perature field is variable with time (t). All thermal balance equations, located on

nodes designated in the thermal system, can be expressed with a single matrix–

vector equation, the system state equation:

1 Concerning detail of this discussion, you should consult with Tanimoto (2014).
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M
dθ
dt
¼ Cθþ Coθo þ f: (2.1)

Here, θ is a vector of unknown variables, which is each temperature of the nodes of

the underground. M is called the heat capacitance matrix. C is called the heat

conductance matrix, and the vector–matrix product Cθ expresses the influence of

heat conduction. Another vector–matrix product Coθo means the influence derived

from heat convection. The vector f indicates other thermal influences given by a

form of heat flux. Thermal influences other than conduction happening with in the

system, expressed by Coθo þ f, are called boundary condition. One extremely

important thing is that the system state equation has universal form. Regardless

of what particular problem you have, as long as linear system it would be, what you

see as a final equation is always same as expressed in Eq. (2.1). It might be

understood by the fact that Eq. (2.1) can be likened to the Newton’s equation of

motion for a particle, where dθ
dt
implies first derivation of velocity; namely acceler-

ation, M is literally “mass”, and the terms appeared in the right side; Cθþ Coθo
þ f imply respective forces acting on the particle.

By the concept of time discretization, the left side of Eq. (2.1) is easily

discretized as

Fig. 2.1 Space

discretization model based

on Control Volume Method

in which the surface layers

of the semi-infinite soil are

lumped parameterized
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M
dθ
dt
¼ 1

Δt
M θiþ1 � θi
� �

: (2.2)

The superscripted indices in the above equation are not exponentials, but represent

the discretised time steps i and i+ 1. The right side of Eq. (2.1) is slightly problem-

atic because we must decide at what point in time the vectors θ, θo, and f should be
discretized; more specifically, whether they should be computed at the i th or (i+ 1)
th time step. The former is a forward-difference computation; the latter constitutes

backward difference, respectively summarized by;

Time-forward scheme; θiþ1 ¼ 1

Δt
M

� ��1
1

Δt
Mþ C

� �
θi þ Coθoi þ f i

� �
: (2.3)

Time-backwardscheme;θiþ1¼ 1

Δt
M�C

� ��1
1

Δt
M

� �
θiþCoθoiþ1þ f iþ1

� �
: (2.4)

In any cases, after the time discretization, we can transform Eq. (2.1) into;

θiþ1 ¼ Tθi þ heat impact on the systembased onboundary conditionsð Þ: (2.5)

Hence, the true impact of the aforementioned system is expressed as

T ¼ 1
ΔtM� kC
� 	�1 1

ΔtMþ 1� kð ÞC� 	
, where the forward and backward schemes

are specified by k¼ 0 and k¼ 1, respectively. The matrix T is a transition matrix,

so-called, because it embodies the characteristics of the time transition. If the

second term on the right side in row 3 of Eq. (2.5) is ignored, θiþ1 ¼ Tθi, equivalent
to geometric progression in scalar recursions. We now ask: what is the necessary

and sufficient condition for convergence and stability of the general terms in the

following geometric progression?

a1; a2; a3; . . . ; anf g ¼ a, ar, ar2, . . . , arn�1

 �, an ¼ r � an�1

Here knowledge from junior high school may be useful, that is, a series converges if

its geometric ratio r satisfies rj j � 1. The same idea applies to vector matrix

recurrence formulae. However, the problem of how to measure the size of the

transition matrix T arises. The answer lies in the eigenvalues of T. Generally, an

n� n square matrix has n eigenvalues. For convergence, it could be argued that the
absolute value for the maximum eigenvalue should not exceed 1. In other words,2

Max eigen T½ �½ �j j � 1: (2.6)

2 This argument derives from the fact that the time evolution of the error between the numerical

solution and the explicit solution obeys the original equation.
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Let us back to Eq. (2.1), that is the form before time discretization process. To

discuss about its dynamics, it is an acceptable idea that the boundary conditions are

not considered. As already explained, a boundary condition operates externally to

the system (in this case, via a “temperature raising” mechanism) and is not related

to the intrinsic dynamics of the system. If it is the case, we are allowed to discuss in

a general form;

dx

dt
¼ _x ¼ Ax: (2.7)

Equation (2.7) is in a linear format. By linear format3 we mean that the time

evolution of the system is described by a vector matrix operation. In other words,

in a linear system, the elapsed time in the system (dynamics) can be described by

the familiar linear algebra introduced at senior school.

What happens to in Eq. (2.7) as t!1? One might imagine that changes will

occur until dx
dt
¼ 0 , _x ¼ 0, denoting a state of no further change. This eventual

state, called steady state in many engineering fields, is called equilibrium in

physical dynamical systems (or in fields such as economics). Hence, the equilib-

rium state is defined as _x ¼ 0. The equilibrium point is frequently expressed as x *.

By treating Eq. (4.1) as an ordinary scalar differential equation, its solutions are

obtained as

dx

dt
¼ A x, 1

x
dx ¼ Adt, x ¼ exp A t½ � þ c; (2.8)

where c is an integration constant vector. At equilibrium,

_x ¼ 0 ) Ax* ¼ 0 , x* ¼ 0. Under what circumstances will x! 0as t!1
in Eq. (2.8)? Let us once again use the analogy with scalar cases. Evidently, the

solutions x tð Þ ¼ exp a t½ � ! 0 as t!1 if and only if a < 0. Vector matrix systems

of equations are solved similarly, by finding the eigenvalues of the matrixA. If the

equilibrium point in Eq. (2.7) is to satisfy x! 0, all n eigenvalues of the n� n
matrixA must be negative. Thus, to explain the equilibrium situation in Eq. (2.7),

we should examine each eigenvalue in the transition matrixA, which determines the

time evolution of the system.

To simplify the discussion without loss of generality, we suppose that A is a

2� 2 matrix with eigenvalues λ1 and λ2. Three sign combinations of these eigen-

values are possible; both positive, both negative, or one positive and one negative.

The signs of the eigenvalues determine the stability of the equilibrium point x* ¼ 0

in our current problem, as illustrated in Fig. 2.2. When all eigenvalues are negative,

the equilibrium point x * is stable (in Eq. (2.7), x* ¼ 0). In stable equilibrium, x *

behaves like a jug whose potential is minimized at its base, so that all points

3 The “linear” quality of a system is truly beneficial in engineering. No sharp fluctuations develop

over time; therefore, future behavior is easily extrapolated from currently available information.

10 2 Fundamental Theory for Evolutionary Games



surrounding x * are drawn toward it. In Eq. (2.7), with a single equilibrium point at

x* ¼ 0, the system eventually converges to x* ¼ 0 regardless of the initial condi-

tions. If all eigenvalues are positive then x* ¼ 0behaves like the peak of a dune (see

central panel of Fig. 2.2). In this case, regardless of the initial conditions, the system

never attains x* ¼ 0, and the system is unstable. If both positive and negative

eigenvalues exist, x* ¼ 0 converges in one direction but diverges in a linearly

independent direction, as shown in the right panel of Fig. 2.2. Such an equilibrium

point is called a saddle point (viewed three-dimensionally in Fig. 2.3), and is also

unstable.

In summary, the equilibrium point is the solution of the given system state

equation satisfying _x ¼ 0. The signs of the eigenvalues of the transition matrix

determine whether the equilibrium point x ¼ x* is a source, a sink, or a saddle

point. Negative and positive eigenvalues give rise to sinks and sources, respec-

tively, while mixed eigenvalues signify a saddle point. This seemingly trivial fact is

of critical importance. Once the nature of the equilibrium points of a system is

determined, laborious numerical calculations to find stationary solutions are not

required. Estimating the system dynamics by closely examining the eigenvalues is

known as the deductive approach. To reiterate, if a deductive approach is possible,

there is no requirement for numerical solutions.

Thus far, Eq. (2.7) has been considered as continuous in time. We now reinter-

pret (2.7) as a time-discretized system and investigate its behavior. The essence of

time discretization was explained in Eqs. (2.1, 2.2, 2.3, 2.4, 2.5, and 2.6).

Initially, we adopt a forward difference scheme in time. Equation (2.7) becomes

xkþ1 � xk ¼ Δt � A xk , xkþ1 ¼ Δt � Aþ Eð Þxk: (2.9)

In physical dynamical systems, a recurrence equation such (2.9), in which a linear

continuous equation is discretized in time, is sometimes called a linear mapping.

The transition matrix Δt � Aþ E � T of Eq. (2.9) is essentially equal to Eq. (2.3).

Fig. 2.2 Characteristics of equilibrium point
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For this linear mapping to be stable (non-diverging), the absolute value of the

maximum eigenvalue of the transition matrix must not exceed 1. Again, the

necessary and sufficient stability criterion is as follows:

Max eigen T½ �½ �j j � 1:

Now, let us assume stability as an original system characteristic. In other words,

assume that the following is true:

Max eigen A½ �½ � � 0: (2.10)

The eigenvalue of the unit matrix E is 1. We know that if the eigenvalues λD of a

matrix D are known, the eigenvalues of a function of D, f(D), are f(λD). Applying
this rule under the assumptions of Eq. (2.10), the transition matrix of the linear

mapping becomes

Max eigen T½ �½ � < �1: (2.11)

Equation (2.11) suggests that even when Eq. (2.10) holds, Max eigen T½ �½ �j j � 1 is

not necessarily satisfied. Thus, the linear mapping of an originally stable system

may be unstable. This is a surprising result. It implies that even though the original

qualities were good, the calculations fail because of errors introduced in subsequent

“time discretization” operations. This potential instability, generated when contin-

uous time is mapped to a discrete system, is exactly the numerical instability. We

now consider the same linear mapping under backward difference time

discretization. In this case, the mapping is

Fig. 2.3 Saddle
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xkþ1 � xk ¼ Δt � A xkþ1

, xkþ1 ¼ 1� Δt � A½ ��1xk ¼ Txk (2.12)

from which we obtain

0 < Max eigen T½ �½ � < 1: (2.13)

This linear mapping never diverges and will not cause the numerical fluctuations.

Thus, if the original qualities are good, it appears that the integrity of the system is

retained under backward difference time discretization.

2.2 Non-linear Dynamical Systems

Consider a continuous dynamical system in which the system state equations are

expressed by a non-linear function f:

dx

dt
¼ _x ¼ f xð Þ: (2.14)

The subsequent procedure is typical of how nonlinearities are treated in all types of

analyses. Non-linear functions are approximated to linear functions over infinites-

imal intervals by Taylor expansion. Expanding the right hand side of Eq. (2.14), we

get

f xð Þ ¼ f x*
� �þ f 0 x*

� �
x� x*
� �þ f

00
x*
� �
2!

x� x*
� �2 þ � � �

, f xð Þ ffi f x*
� �þ f 0 x*

� �
x� x*
� �

:
(2.15)

From the definition of equilibrium point, f x*
� � ¼ 0 (this should be evident by

substituting dx
dt

��
x¼x* ¼ 0 in Eq. (2.14)), Eq. (2.15) is approximately equal to

f xð Þ ¼ f 0 x*
� �

x� x*
� �

: (2.16)

Equation (2.16) is approximated to a linear equation as follows:

f xð Þ ¼ f 0 x*
� �

x� x*
� � ¼ f 0 x*

� �
x� f 0 x*

� �
x*: (2.17)

The first term on the right of (2.17) is first-order in x, while the second term is

constant. Now we can apply the deductive approach introduced in the previous

section. Clearly the transition matrix is f0(x*). We must determine the signs of the

eigenvalues corresponding to the equilibrium points of this matrix.
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The transition matrix is the Jacobian matrix of tangent gradients of the multi-

variable vector function.

f 0 x*
� � ¼ ∂ f xð Þ

∂x

����
x¼x*
¼

∂ f 1 xð Þ
∂x1

� � � ∂ f 1 xð Þ
∂xn

⋮ ⋱ ⋮
∂ f n xð Þ
∂x1

� � � ∂ f n xð Þ
∂xn

2
64

3
75
x¼x*

: (2.18)

Let us apply the deductive procedure of Sect. 2.1 to the non-linear system state

Eq. (2.14). First, we seek the equilibrium points of Eq. (2.14), which are solutions to

_x ¼ 0 in the given system state equation. A system may contain one or several

equilibrium points. In general, quadratic and quartic non-linear functions possess

two and four equilibrium points, respectively. Whether each of these equilibrium

points (x ¼ x*) is a source, a sink, or a saddle point is determined by the sign of the

eigenvalues of the transition matrix (2.18). As before, if all n eigenvalues are

negative, the equilibrium point is a stable sink, if all are positive, it is an unstable

source, and if a mix of signs is found, it is an unstable saddle point. The stability

characteristics of the equilibrium points apply only within the vicinity of the

equilibrium points (as assumed in the Taylor expansion). Hence, when several

equilibrium points exist, the behavior of the system as t!1 depends on the

starting point of the dynamics, i.e., the initial values. Because the linear system in

Sect. 2.1 possessed a single equilibrium point atx* ¼ 0, this type of initial condition

dependency was irrelevant, but non-linear systems can depend heavily on the initial

conditions.

2.3 2-Player & 2-Stratey (2� 2) Games

In this section, the 2-player 2-strategy game (abbreviated as two-by-two game or

2� 2 game) is presented as an example of a non-linear system. As the reader will

come to appreciate, this apparently esoteric two-by-two game is related to environ-

mental problems.

As previously explained, the two-by-two game is a branch of applied mathe-

matics that models human decision making. It is a relatively new mathematical tool

based on the pioneering work of von Neumann and Morgenstern entitled “Theory

of games and economic behavior” published in 1944. The applications of the two-

by-two game are extremely diverse, ranging from social sciences such as econom-

ics and politics to biology, information science, and physics. If a group of particles

possessing binary strategies of cooperation or defection is imposed to develop a

spatial structure, clusters of cooperation particles emerge abruptly. This seems

similar to formation of crystallization or phase transitions in materials. Currently,

these analogies have drawn huge interest from members of the statistical physics

community.
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From an unlimited population, two individuals are selected at random and made

to play the game. The game uses two discrete strategies (as shown in Fig. 2.4);

cooperation (C) and defection (D). The pair of players receives payoffs in each of

the four combinations of C and D. A symmetrical structure between the two players

is assumed. In Fig. 2.4, the payoff of player 1 (the “row” player) is represented by

the entries preceding the commas; the payoff of player 2 (the “column” player) by

the entries after the commas. The payoff matrix is denoted by
R S
T P

� �
. A player

can also be called an agent. Depending on the relative magnitudes of the matrix

elements P, R, S, and T, the game can be divided into 4 classes; the Trivial game

with no dilemma, the Prisoner’s Dilemma (sometimes abbreviated to PD),

Chicken (also known as Snow Drift Game or Hawk–Dove Game) and Shag

Hunt (sometimes abbreviated to SH). The main aim of this section is to show

that these four game classes can be derived from the eigenvalues of the system per

deductible approach for non-linear system equation explained in the previous

section.

Here, the gamble-intending dilemma (hereafter referred to as GID) and risk-

averting dilemma (hereafter referred to as RAD) are introduced. The existence of

these dilemmas is determined by Dg and Dr, defined as follows4:

Dg � T � R,
Dr � P� S:

(2.19)

If Dg> 0, GID behavior results, while Dr> 0 leads to RAD. Each of the dilemma

classes and the existence of GIDs and RADs are summarized in Fig. 2.5. Although,

the reader may be overwhelmed at this point having been introduced to a large set of

Fig. 2.4 Payoff matrix of

2� 2 game

4 To precisely know about GID & RAD and Dg and Dr, you should consult with Tanimoto and

Sagara (2007a).
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qualities without proofs or detailed explanations, we request the reader to bear with

this for just a little bit longer. GIDs are sometimes called Chicken dilemmas while

RIDs can be referred to as SH dilemmas. Figure 2.5 shows that the PD game may be

Chicken or SH (details will be provided later).

A couple of further explanations are needed here.

Figure 2.6(a) shows a game setup of the prisoner’s dilemma (PD) class. Calcu-

lating Dg and Dr from Eq. (2.19), both eigenvalues are seen to be positive; thus,

from Fig. 2.5, the game is PD, for reasons which will be explained later. For now,

examine panel (b) in Fig. 2.6. The payoff values before the commas, i.e., those of

Fig. 2.5 Class type in 2� 2

game

3, 37, 1D
1, 75, 5C
DC

3, 37, 1D
1, 75, 5C
DC

3, 37, 1D
1, 75, 5C
DC

3, 37, 1D
1, 75, 5C
DC

3, 37, 1D
1, 75, 5C
DC

3, 37, 1D
1, 75, 5C
DC

3, 37, 1D
1, 75, 5C
DC

3, 37, 1D
1, 75, 5C
DC

(a)

(b)

(c)

(d)

Nash 
equilibrium

Fig. 2.6 Derivation

method for Nash

equilibrium with PD as an

example
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the row-represented agent, are shaded orange and green. In these situations, the

column agent is fixed in strategy C or D. The larger of the two elements shaded with

the same colour is marked in bold text. These bold values denote whether C or D is

the more rational choice for the row agent. Panel (c) illustrates a similar scenario

with fixed row agent, indicating whether C or D is the most rational strategy for the

column agent. In panel (d), the element for which both row and column agents

appears bold is shaded red. The state thus obtained (the game outcome) is known as

theNash equilibrium. In this example, the Nash equilibrium indicates the grouping

of rational strategies adopted by an agent selected at random from an unlimited

agents who participates in a single game. Figure 2.6 reveals that both agents exhibit

D behavior, and defect each another to accept low profit P (also from that figure, the

relationship T>R>P> S is seen to hold in PD). Relating this outcome to the

non-linear dynamics of the previous section, even if the unlimited agents began

with an even division of cooperative and defection agents (50 % cooperators &

50 % defectors), once the game is started and the strategy of the agents reviewed

according to a certain set of rules after every step5; as time progresses,6 the system

will stabilize into a state in which all members (despite the unlimited population

size) exhibit defection behavior.

Figure 2.7 plots the payoffs for Agents 1 and 2 on the vertical and horizontal

axis, respectively, and displays the payoff matrices for each of the four game

classes. These diagrams show the feasible solutions regions. The pink areas within

the feasible solutions of PD and Chicken reside in the 1st, 2nd, and 4th quadrant

(around the central point R). When several plots exist in these regions, we hope to

determine the most desirable game outcome between the equal outcomes of Agents

1 and 2. In reality, T and S are clearly the desirable outcomes for Agent 1 and his

opponent, respectively. However, we have seen that both agents compromise by

taking the fair option R, rather than seeking maximum payoffs for themselves. In

this case, R is not the optimal solution but is merely a fair Pareto optimum. In

contrast to this, in SH and Trivial games, R is the only possible outcome in the pink

region (result not shown), and a unique optimal solution exists, R.
In Fig. 2.7, the open and filled circles ○ and ● indicate that Agent 1 (your own

offer, say), adopts C and D strategies, respectively. The C and D strategies of Agent

2 (the opponent’s offer) are delineated by gray and black dotted lines, respectively.

With this visualization, the following discussion should be apparent. In the PD

game (upper left panel of Fig. 2.7), if the strategy of the opponent’s offer is fixed as
C (region within the gray dotted lines), the most rational strategy for your hand is D,

which lies further along the horizontal axis (indicating a higher payoff for Agent 1).

If your opponent’s offer is fixed on D, the same situation arises; within the D region

of Agent 2, the D strategy of Agent 1 lies further along the horizontal axis than the

C strategy. In other words, you should adopt the D strategy regardless of your

opponent’s behavior, and the system settles into Nash equilibrium. Similarly for the

5 This is referred to as strategy adaptation.
6 This is referred to as evolution.
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Trivial game (lower right panel of Fig. 2.7), comparing the areas enclosed by black

and grey dotted lines, we observe that Agent 1 should adopt the C strategy

regardless of the opponent’s offer, and that Nash equilibrium is the R outcome

(C, C). The Nash equilibria in the Chicken and SH games are obtained from the

payoff matrices as explained in Fig. 2.6. The Nash equilibria in Chicken are the

S and T outcomes (C, D) and (D, C), while in SH, they are the R and P outcomes (C,

C) and (D, D). In Chicken and SH, the Nash equilibria cannot be determined from

the feasible solution regions in Fig. 2.7, but whether one’s own strategy should

change in response to the opponent’s strategy (C or D) can be gauged from the

horizontal axis’s value of the plots surrounded by black or gray (see upper right and
lower left panels of Fig. 2.7 for Chicken and SH games, respectively).

The above dilemmas, to which we have referred so extensively, are defined in

the following paragraphs.

A dilemma, from mathematical meaning, is introduced whenever the Pareto

optimum does not match the Nash equilibria. In PD, Chicken, and SH, the fair

Fig. 2.7 Feasible solution regions of each game class and examples of Dg and Dr
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Pareto optimums differ from the Nash equilibria. SH yields only partial match ((C,

C) is one of Nash equilibria), but causes dilemma because other outcomes are also

possible. The details are explained below.

In PD, the magnitudes of the outcomes are T>R>P> S. In reverse phrasing,

the order T>R>P> S characterizes the PD game class. Since Dg and Dr are both

positive, GIDs and RADs coexist. The Chicken dilemma, an alternative name for

the former, arises from the positive value of Dg¼ T�R. However, as evident from
the regions of feasible solutions in the PD and Chicken games shown in Fig. 2.7,

when this condition is satisfied, T and S always exist in the first, second, and fourth
quadrants (assuming R as the center). Thus, it could be argued that “an incentive to

exploit the opponent” exists. In a similar vein, positive Dr¼P� S leads to the SH

dilemma. However, when this condition is satisfied (results not schematically

shown with color highlight), the feasible solution regions in Fig. 2.7 become that

T and S always exist in the second, third, and fourth quadrants (assuming P as the

center), suggesting “an incentive of not being exploited by the opponent.” In fact,

this situation emerged in the PD dynamics discussed earlier; as t!1, the entire

population became defection. Such an equilibrium state is called D-dominate.

In the Chicken game, T>R> S>P. Since Dg> 0 and Dr< 0, the gamble-

intending (Chicken-type) dilemma exists in the absence of the risk-averting (SH-

type) dilemma. In this game, you incur little risk of being ruined by your opponent

but you may gain an advantage by exploiting the opponent. The Chicken game is

characterized by S>P. That is, the most convenient situation for yourself would

arise if you and your opponent adopt the D and C strategies, respectively (T>R).
Conversely, if you and your opponent both adopt the D strategy, the worst outcome

(P, P) results. Being ruined by your opponent would be a more favorable scenario

(S>P). The structure of environmental issues is very similar. The environment is a

public property available to anyone, but if overused by all individuals, it gets

depleted. To preserve the environment, individuals might benefit from not using

it, and hence a social dilemma is created. This supposed environment may be

regarded as a public pastureland, from which your cows may be permitted to

consume an unlimited or restricted amount (corresponding to defection and coop-

eration strategies, respectively). In the short-term, the cooperative strategy restricts

the cows’ diet until the ground has recovered. This situation can be modelled as a

multi-player Chicken game termed the tragedy of commons (Hardin 1968). The

Nash equilibria of the Chicken game are (C, D) and (D, C), implying that if half of

the population are initially cooperative,7 as t!1, cooperation and defection

members exist in certain proportions (this does not mean that specific agents are

restricted to C and D strategies, but rather that the proportions of individuals

adopting C and D stabilize to fixed values). This scenario is called coexistence or

polymorphic equilibrium.

7 The proportion of cooperative members at the start of a series of games is 0.5.
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The SH game is characterized by R> T>P> S. SinceDg< 0 whileDr> 0, risk-

averting (SH-type) dilemmas exist in the absence of gamble-intending (Chicken-

type) dilemmas. Although there is no incentive to exploit one’s opponent (since R is

optimal and R> T ), an individual risks damage from an opponent (P> S). For
instance, if two hunters cooperate to secure a large catch, such as a deer, a

successful outcome is likely. However, if the opponent is not certain to cooperate

(but instead might defect to cause trouble for the co-operator while knowingly

losing their share of the catch), the dilemma of whether one should go on a rabbit

hunt (which can be undertaken single-handedly, and is a defection strategy) arises.

The name “deer hunting game” is derived from this episode in Chapter Two of

“Discourse on Inequality” by Jean-Jacques Rousseau, who is famous for “The

Social Contract” and “Émile.” The deer hunting game epitomises SH. The Nash

equilibria in SH are (C, C) and (D, D), but the dynamics depend on the initial

proportion of cooperative individuals. As t!1, the systems converge to either

complete defection or complete cooperation. In other words, whether a dark,

uncooperative society or a fully cooperative society emerges depends on the initial

proportion of cooperators. This type of dynamics is known as bi-stable.

In the Trivial game, R> T> S>P, andDg andDr are both negative. This system

is devoid of GIDs and RADs. The Nash equilibrium matches the optimal solution

(C, C); thus, regardless of initial cooperation status, all members become cooper-

ative as t!1. This type of equilibrium is called C-dominate.

The PD game presents tough dilemmas containing both Chicken and SH-type

dilemmas. Since a portion of the optimal SH solutions matches the Nash equilibria,

the SH dilemma is weaker than the Chicken dilemma. As previously explained,

whether a fully cooperating society emerges depends upon the initial values.

There are other several game classes. More precisely, Chicken game contains

two sub-classes; one is Leader Game and another is Hero Game. Those two have

polymorphic equilibriums, because Dg> 0 and Dr< 0, the gamble-intending

(Chicken-type) dilemma exists in the absence of the risk-averting (SH-type)

dilemma. The feasible solutions regions of those two are shown in Fig. 2.8.

Crucially important feature of those games is S + T> 2R is always satisfied. Only

the difference to identify those two is the order of T and S. If T> S is valid, it is a

Leader game. It is a Hero game, if S> T is valid. Those two types of 2� 2 games

are very special. It is because, unlike PD (Dg> 0 &Dr> 0, and S+ T< 2R) and pure
Chicken (Dg> 0 & Dr< 0, and S + T< 2R), continuing mutual cooperation (con-

tinuously obtaining R; hereafter we call R-reciprocity) is not a fair Pareto optimum.

The fair Pareto optimum in the cases is obtaining T (S) followed with S (T) in an

entire alternating way (ST-reciprocity). In this point, we cannot evaluate a social

efficiency by a cooperation rate, which is measured by cooperators fraction among

the mother population, anymore. Instead, we have to take average payoff of all

game players. Summing up, we should say that both Leader and Hero games have

Chicken-type dilemma, and are expected to realize ST-reciprocity to attain the fair
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Pareto optimum unlike PD and pure Chicken favoring R-reciprocity. We will

deliberately discuss about R-reciprocity and ST-Reciprocity latter.8

Another sub-game class to be noted is Donor & Recipient Game (sometimes

abbreviated by D & R Game), where Dg> 0 & Dr >0 and Dg¼Dr are satisfied.

This means D & R game belongs to PD. This particular game has been used as one

of the template models by theoretical biologist, because this game captures a social

dilemma situation observed in many biological applications. Suppose you donate

cost; c to help your game opponent. If your opponent is also willing to donate you

by paying c, both of you and your opponent obtain benefit; b. Thus, the net payoff of
both you and your opponent is b – c. Contrariwise, if your opponent rejects to

donate even you offering donation, your net payoff is – c (namely, you are exploited

by your opponent) and that of your opponent is b. The asymmetric situation, where

you and your opponent respectively offer D and C, gives you and your opponent;

b and – c, respectively. Let alone, this story can be rewritten by; P¼ 0, R¼ b �c,
S¼� c and T¼ b.

Although 2� 2 games have four parterres; P, R, S and T, we can restrict the

parameter area by fixing P and R. The most commonly accepted way is presuming

P¼ 0 and R¼ 1. In this parameterization, games are expressed by remaining two

variables; T¼ 1 +Dg and S¼�Dr. Thus, the games are parameterized by only Dg

and Dr. Figure 2.9 shows all the game classes above mentioned in Dg�Dr plane.

Fig. 2.8 Feasible solution regions of Leader and Hero Games

8 To precisely know about R-reciprocity and ST-Reciprocity, you should consult with Tanimoto

and Sagara (2007b).

2.3 2-Player & 2-Stratey (2� 2) Games 21



2.4 Dynamics Analysis of the 2� 2 Game

This section explores how the two-by-two game dynamics differ between the four

game classes explained in the previous section, i.e., Trivial with no dilemmas, PD,

Chicken, and SH with dilemmas. A deductive approach, relating to the non-linear

system state equations derived in Sect. 2.2, is adopted.

As before, we assume unlimited group size (i.e., infinite number of agents)

existing in a well-mixed state with no social viscosities. The strategies (offers)

adopted by an agent are cooperation (C) or defection (D), expressed by the

following state vectors:

Strategy C; Te1 ¼ 1 0ð Þ; (2.20-1)

Strategy D; Te2 ¼ 0 1ð Þ: (2.20-2)

The payoff matrix of the game structure is

R S
T P

� �
�M: (2.21)

Moreover, the proportions of agents adopting strategy C and strategy D at a given

time (referred to as the strategy ratio) are defined by s1 and s2 respectively. These
strategy ratios are expressed as

Ts ¼ s1 s2ð Þ: (2.22)

From the condition of simplex we get

Fig. 2.9 Game classes of

2� 2 game for varying Dg

and Dr in case R¼ 1 and

P¼ 0
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s2 ¼ 1� s1: (2.23)

The validity of Eqs. (2.20-1, 2.20-2, 2.21, 2.22, and 2.23) should be understood

from the following matrix equation describing the battle between two agents

adopting strategy D, in which the outcome is P:

πDD ¼ 0 1ð Þ � P S
T P

� �
0

1

 �
¼ P: (2.24)

A variant form of Eq. (2.24) also computes the payoff when one strategy plays a

game M against another with a different strategy. The expected payoff when an

agent using strategy C battles with a randomly sampled agent at the present time

expressed as strategy ratio s is

Te1 �M s:

Similarly, the expected payoff when an agent using strategy D fights a randomly

sampled agent at the present time expressed as strategy ratio s is

Te2 �M s:

The replicator dynamics are defined as the strategy ratio dynamics of strategy i,
expressed as

_si
si
¼ Tei �M s� Ts �M s: (2.25)

The dimensionless quantity on the left hand side of (2.25), obtained by dividing

ṡi by the strategy ratio itself, indicates the level of change. As the reader should

certainly appreciate, this quantity is determines by the extent to which the payoff

for strategy i playing against the society average at a given time differs from the

expected society payoff at that time. Recall how we discussed in page 17, “. . .even
division of cooperative and defection agents (50 % cooperators & 50 % defectors),

once the game is started and the strategy of the agents reviewed according to a

certain set of rules after every step. . .” As part of this “set of rules,” we investigate
the evolution of the system under the replicator dynamics described in Eq. (2.25).

Although other temporal dynamics can be supposed, replicator dynamics provide

an adequate “set of rules” to govern evolution, for the following reason. After a

game, the successful strategies (those achieving higher payoff than the average

accumulated by the strategy ratio) will increase in the next time step, whereas less

successful strategies will decrease. The ratio of this extent is thought to be decided

by comparing with the aforementioned level of “success.” In such a system, good

conduct is rewarded whereas bad conduct is punished (a form of survival of the

fittest). Selection mechanisms in the natural world (including human social sys-

tems) tend to operate in this manner. Alternative systems of rewarding the good and
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punishing the bad exist in which the response to the acquired payoffs differs from

that of Eq. (2.25) may be possible. Also randomness caused by luck may enter the

dynamics (i.e., poor-scoring individuals could, if lucky enough, produce offspring).

In any case, we suppose replicator dynamics as the “set of rules” in the following

analysis.

Substituting Eqs. (2.20-1, 2.20-2, 2.21, and 2.22) into Eq. (2.25) and explicitly

writing the elements, we obtain

_s1 ¼ R� Tð Þ � s1 � P� Sð Þ � s2½ � � s1 � s2,
_s2 ¼ � R� Tð Þ � s1 � P� Sð Þ � s2½ � � s1 � s2:

�
(2.26)

Note that when the right hand side of (2.26)¼ 0, the equation becomes a cubic in

s1 and s2; that is, the system contains three equilibrium points. Two of these are self-

evident:

s1 s2ð Þ ¼ 1 0ð Þ � s*
��
C-dominate; (2.27-1)

s1 s2ð Þ ¼ 0 1ð Þ � s*
��
D-dominate: (2.27-2)

In the former, all individuals ultimately become cooperative; the latter leads to

the defection state, implying C-dominant and D-dominant, respectively. The

remaining equilibrium point is obtained by simultaneously solving Eq. (2.26),

setting [. . .] on the right hand side to 0 and eliminating s2 through Eq. (2.23) (the

reader should confirm this for themselves):

s1 s2ð Þ ¼ P� S

P� T � Sþ R

R� T

P� T � Sþ R

 �
� s*

��
Polymorphic: (2.27-3)

This third equilibrium point lies within [0, 1] depending on the values of P, R, S,
and T. In this case, the dynamics become polymorphic or bi-stable. Equation (2.27-

3) defines an internal equilibrium point.

Once the three equilibrium points are obtained, the signs of the eigenvalues of

the Jacobian matrix at each equilibrium point are determined, and the equilibrium

points are assessed as sink, source, or saddle.

To this end, we re-write Eq. (2.26) as follows:

_s1 � f 1 s1; s2ð Þ; (2.28-1)

_s2 � f 2 s1; s2ð Þ: (2.28-2)

From Eq. (2.23), we observe that f 1 ¼ � f 2. Hence, the Jacobian (2.18) is

calculated as
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The reader is encouraged to verify these equations. The Jacobian matrix

J ¼
∂ f 1
∂s1

∂ f 1
∂s2

∂ f 2
∂s1

∂ f 2
∂s2

2
664

3
775 ¼

∂ f 1
∂s1

∂ f 1
∂s2

�∂ f 1
∂s1

�∂ f 1
∂s2

2
664

3
775 is a 2� 2 matrix, so its eigenvalues (0 and

∂ f 1
∂s1
� ∂ f 1

∂s2
)

are easily obtained using senior school mathematics (readers should try to recall and

apply the eigenvalue calculations from their maths textbooks). Since 0 is unsigned,

we need only obtain the sign of
∂ f 1
∂s1
� ∂ f 1

∂s2
to establish the equilibrium conditions.

Explicitly, these eigenvalues are

λ ¼ ∂ f 1
∂s1
� ∂ f 1

∂s2
¼ 6 �Rþ Sþ T � Pð Þs12

þ 4 R� 2S� T þ 2Pð Þs1 þ 2 S� Pð Þ
(2.30)

1. The necessary and sufficient condition for the equilibrium point s*|C-dominate to

be sink is λ < 0 when substituting s1 s2ð Þ ¼ 1 0ð Þ into Eq. (2.30). The

following conditions are sought:

T � R ¼ Dg < 0: (2.31)

2. The necessary and sufficient condition for the equilibrium point s*|D-dominate to

be a sink is λ < 0when substituting s1 s2ð Þ ¼ 0 1ð Þ into Eq. (2.30). We now

require that

P� S ¼ Dr > 0: (2.32)

3. The necessary and sufficient conditions for the equilibrium point s*|Polymorphic to

be a sink is λ < 0 with s1 s2ð Þ ¼ P� S

P� T � Sþ R

R� T

P� T � Sþ R

 �
substituted into

Eq. (2.30). Noting that λ ¼ 2
R�Tð Þ P�Sð Þ
R�S�TþP , we seek the following conditions:

P < S ^ R < T , P� S ¼ Dr < 0 ^ T � R ¼ Dg > 0: (2.33)

The above conditions are summarized in Table 2.1, with the following

substitution:
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s*
��
Polymorphic ¼ P� S

P� T � Sþ R

R� T

P� T � Sþ R

 �
¼ Dr

Dg � Dr

�Dg

Dr � Dg

 �
:

Defining Dg and Dr in Eq. (2.19), the four game classes were established as PD,

Chicken, SH, and Trivial (see Fig. 2.5). Here, these divisions are represented by the

difference between the signs of the three equilibrium points.

In PD, s*|C-dominate and s*|D-dominate are source and sink, respectively; hence,

regardless of the initial cooperation proportion in [0, 1] the ultimate state is one of

complete defection at t!1.

In Chicken, s*|C-dominate and s*|D-dominate are both sources. In this case

s*|Polymorphic (value in [0, 1]) is a sink, so regardless of initial cooperation propor-

tion, as t!1, the system settles to the internal equilibrium point s*|Polymorphic. As

previously mentioned, this state does not imply that specific agents are fixed into

cooperation or defection strategies, but that when the infinitely large group is

viewed as a whole, the proportions of cooperation and defection players are

(dynamically) steady.

In SH, the internal equilibrium point s*|Polymorphic is a source, while s*|C-dominate

and s*|D-dominate are both sinks. Therefore if the initial proportion of cooperative

players is smaller (or larger) than s*|Polymorphic, the ultimate state is pure defection,

(or pure cooperation), and the system is bi-stable.

In Trivial, s*|C-dominate is a sink and s*|D-dominate is a source, so regardless of the

initial cooperation proportion, the pure cooperation state is inevitable. For this

reason, Trivial is a game with no dilemmas.

The above discussion is summarized schematically in Fig. 2.10.

Here, we have fully characterized the 2� 2 replicator dynamics, expressed as

non-linear cubic equations.

The following is provided for interest only. A two by two game has two

strategies, so the dynamics are relatively simple, and one of the equilibrium points

inevitably acts as a sink. If the number of strategies is increased, more degrees of

freedom are introduced, leading to perturbation dynamics (which display periodic

behavior) or chaos (which is deterministic but unpredictable). The interested reader

should take a look at related literatures (Weibull 1997; Nowak 2006a).

2.5 Multi-player Games

Though we have so far assumed that there are two game players, a multi-player

situation is more typical in a realistic context. It is therefore natural that the

discussion can now be extended to multi-player games.

First, we outline the so-called Public Goods Game (PGG), which has been used

most often in the field as a template for multi-player games. This game is based on a

social dilemma around a public good that can only be sustained by a reasonable

number of moral-minded cooperators through their donations. This means players

have an incentive not to donate but also to want to get their share of the cooperative

fruits brought about by the donations of others.
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Suppose G players participate in a single multi-player game, where a cooperator

is requested to donate a cost c (in most cases, as in Fig. 2.11, assuming c¼ 1) to a

public pool. The number of cooperators is denoted by nc. After collecting the

donations from all cooperators among the G players, the total pooled donation is

multiplied by an amplifying factor, r. Thus, the public good is amplified. The fruits

of this public good are distributed equally to all game participants irrespective of

whether they are a cooperator or defector. In this sense, a defector can be called a

free-rider.9 Here, we can define the payoff structure functions for both cooperators

and defectors as shown in Fig. 2.11, which can be drawn from the cooperation

fractions in the lower panel of Fig. 2.11. One important thing is that the defectors’
payoff is always larger than that of the cooperators at any particular cooperation

fraction. This schematic relation is redrawn more precisely in Fig. 2.12, where the

cooperator and defector plots indicate the respective payoffs at discrete cooperation

fractions, where Pc¼ nc/G. The figure obviously suggests that, as long asπD nc � 1ð Þ
> πC ncð Þ is satisfied, a cooperator has no incentive to keep cooperating at any

cooperation fraction, and thus the cooperation fraction is always declining regardless

Fig. 2.10 Phase diagram of dynamics classified byDg andDr of two-by-two game and a summary

of dynamics of each game class (left panel). Right panel; Cooperation fraction at equilibrium when

an infinite and well-mixed population with replicator dynamics is assumed when initial cooper-

ation fraction; Pc of 0.5 presuming. PD and Trivial are colored with blue and red, respectively,
since D-dominate and C-dominate phases are established. In Chicken game region, gradually

shifting of cooperation fraction at equilibrium is observed due to polymorphic phase. In SH game

region, bi-stable shows twofold phases; either absorbed all cooperation bor all defection

9 Precisely speaking, we should call it a 1st order free-rider, because in the models considering the

punishment mechanism, which many previous studies have investigated, there are 1st order free-

riders, meaning simple defectors, as well as 2nd order free-riders, implying cooperators who are

not punishing other defectors.
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of the initial cooperation fraction. Consequently, Nash equilibrium is absorbed by an

all defectors state, i.e., Pc¼ 0. On the other hand, the maximum social payoff, or fair

Pareto optimum, appears at the all cooperators state, Pc¼ 1. This is why we can

basically identify PGG as multi-player Prisoner’s Dilemma (N-PD) game. Compar-

ing with 2� 2 PD games, it can be seen that πD 0ð Þ ¼ P and πC 1ð Þ ¼ R.
Noting the relative geometric relationship between the payoff structure functions

for cooperators and defectors, we can summarize the classes of multi-player games

as in Fig. 2.13.

Multi-player Chicken (N-Chicken) is featured when the cooperator’s payoff

function crosses with the defector’s one at a certain cooperation fraction, which is

called an internal equilibrium point, as in 2� 2 Chicken. As mentioned before, a

Fig. 2.11 Public Goods Game (PGG); N-Prisoner’s Dilemma Game

Fig. 2.12 Payoff structure function of multi-player PD
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multi-player Chicken game termed “the tragedy of commons” has been accepted as

one of the typical template models for describing a social dilemma caused by

environmental problems.10 Multi-players Stag Hunt (N-SH) games also have a

crossing point between the two payoff functions. But the dynamics differ from

those of N-Chicken, as shown schematically in the figure. Multi-player Trivial (N-
Trivial) has no social dilemma, since cooperation dominates defection meaning the

cooperator’s payoff exceeds the defector’s one at any cooperation fraction.

2.6 Social Viscosity; Reciprocity Mechanisms

As long as an infinite and well-mixed population is assumed, the theory correctly

predicts the dynamics of any symmetric 2-strategy game as well as its equilibrium

as we discussed in Sects. 2.5 and 2.6.

Although the fundamental theory seems transparent and unsurprising, the inter-

disciplinary field around the study of evolutionary games has been persistent, with a

new paper appearing every day, or even every hour or minute. What has aroused

this enthusiasm to study the field in mathematicians, biologists, physicists,

Fig. 2.13 Four game classes and payoff structure functions of multi-players games

10 But there have been several indications that “tragedy of commons”, or say a multi-players

Chicken game is insufficient to model with general environmental problems on the ground that the

model does not consider any dynamics of the environment. Even though a grass field or fishing

field temporarily becomes exhaustive, it can gradually recover according to dynamics the envi-

ronment has. More intimately, you can consult with Tanimoto (2005).
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information scientists, and even common foot soldiers such as the author? At the

end of the day, it comes down to a single question: What additional mechanisms

will promote the ultimate cooperation among agents if a pair of agents is randomly

selected from an unlimited group (i.e., an infinite and well-mixed selection) and

forced into a specified game (such as PD)? In the natural world, cooperative

behavior is found not only in human societies, but also among social insects such

as ants and bees. This question invokes the mysteries of biological evolution, and

invites analogies with the statistical physics of crystal structure and phase transi-

tions. Solutions may lead to suggestions for an improved human society.

From recent theoretical studies, the puzzle of what can be “supplementary

framework” of dilemma resolution has been unfolded. Nowak (2006b) showed

there are the five fundamental protocols to mitigate or cancel dilemmas,11 summa-

rized as in Fig. 2.14. The mechanisms of these activities are governed by very

ordinary and beautiful mathematical expressions similar to those of kin selection

(Hamilton 1963). Nowak refers to these mechanisms as “Social Viscosity.” Under

these circumstances, the population is initially well-mixed as before, and each game

is played by a single person whose next encounter is unknown. But, in repeated

game battles between a pair of individuals (direct reciprocity),12 or observing the

tag of the opponent (indirect reciprocity), the behaviour of opponent; cooperation or

defection, can be distinguished. Or, when players play games against only the

neighboring players throughout the network, information relating to strategy is

obtained (network reciprocity). All these enable the agents to overcome the

dilemmas and create a cooperative society.13 These processes essentially reduce

Fig. 2.14 Five basic

mechanisms of dilemma

resolution and example of

Network Reciprocity

11 Strictly speaking PD satisfying Dg¼Dr.
12 This situation accords with common sense. If a game is played against the same partner each

time rather than against an unknown one, both individuals should accept the cooperation option to

avoid strategies leading merely to short term profit. If both individuals take the defection option P,
neither will benefit long-term. Our daily behavior follows the former pattern.
13Many of these dynamics can be verified by simulation. Games are repeated between multiple

agents in a simulated society; this approach is known as multi-agent simulation.
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the anonymity from that of an infinite and well-mixed population (which exists in a

total anonymous state) and authenticate the battle opponent. By carefully studying

the authentication of others through indirect reciprocity, it may be possible to

elucidate how notable features of organisms (such as colour differences in bird

crests) evolve, or evolution of language, which is the ultimate third party identifi-

cation system. Network reciprocity may also help us understand the structure of

special network topologies such as the scale-free graphs observed in many natural

phenomena, as well as human social systems; in particular, how cooperation self-

organizes in such networks.

2.7 Universal Scaling for Dilemma Strength in 2� 2 Games

As long as an infinite and well-mixed population is presumed with the replicator

dynamics, an evolutionary trail can be stipulated strictly by what Table 2.1 shows.

In a nutshell, whenever both Dg and Dr are fixed, the evolutionary dynamics are

determined. In this sense, Dg and Dr are scaling parameters of dilemma strength,

and the dynamics of equilibrium are determined by their values.

However, Dg and Dr are not sufficient for indicating the dilemma strength when

a certain specific reciprocity mechanism is introduced into a game. For example in

Fig. 2.15, we show the equilibrium cooperation fractions of spatial PD games on a

lattice network with degree k¼ 8 (the details of simulation setting are described

later). Although these three games have the same Dg and Dr, cooperation fractions

in Fig. 2.15 are completely different depending on the value of R�P. The larger

R�P becomes, the higher is the equilibrium cooperation fraction.

Thus, in a game with a certain reciprocity mechanism, the dilemma strength

cannot be quantified only by Dg and Dr, which can be sufficient indicators in an

infinite well-mixed population game. Let us assume two PDs having the same Dg

and Dr, as shown in Fig. 2.16, which visually explains the preceding discussion. As

R�P becomes larger relative to Dg and Dr, we can regard T ! R and P! S

0 10.5

1

0

0.5

Dr

Dg

(a) R = 1.5, P = 1 R = 4, P = 2R = 1, P = 0
1

0 10.5

1

0

0.5

Dr

(b) 

0 10.5

1

0

0.5

Dr

(c) 

0.5

0

Fig. 2.15 Averaged cooperation fraction Dr�Dg diagrams for (a) R¼ 1.5, P¼ 1, (b) R¼ 1,

P¼ 0, and (c) R¼ 4, P¼ 2. Games are played on 8-neighbor lattice. Imitation Max (IM) is adopted

as the strategy update rule

32 2 Fundamental Theory for Evolutionary Games



asymptotically. This is similar to the Avatamasaka game, defined by Akiyama and

Aruka (2004), wherein a focal player’s gain becomes irrelevant to his own offer, but

is entirely dominated by his opponent’s offer. Thus, in game (b), the payoff

increment of the focal player by his offering either cooperation (C) or defection

(D) is relatively lower than that of whether his opponent offering cooperation (C) or

defection (D). This is because the focal player’s payoff is affected more by his

opponent’s offer than by his own decision, whether C or D. Thus, we can say that

game (b) has a relatively higher incentive to establish a reciprocal relationship than

does game (a). Therefore, we should take R�P into a new index parameter to

evaluate dilemma strength when a game is played in a situation with social

viscosity, wherein an agent might play with the same opponent in several rounds;

because of a reciprocity mechanism.

In the discussion about the five reciprocity mechanisms in explained Sect. 2.6,

Nowak assumed PD games of Dg¼Dr, which is a Donor and Recipient (D & R)

game as shown in Fig. 2.9 (Nowak 2006a, 2006b). In a D & R game, the game

structure can be described by two parameters, benefit (b) and cost (c) of coopera-
tion. Nowak reported that any reciprocity mechanism among the five can be

expressed by; (cooperation fraction; Pc)¼ function(c/b). Thus, in short, universal

scaling is possible for D & R game by using c/b. Assuming P¼ 0, R¼ b� c,
S¼�c, and T¼ b, we can derive c/b¼Dg/(R�P+Dr). Therefore, Nowak’s scal-
ing parameter c/b has already quantified R�P as well as Dg and Dr. Despite his

work implying that c/b can work as a scaling parameter to express dilemma

strength, Nowak’s discussion is restricted to D&R games.

Inspired by Nowak’s scaling concept, Tanimoto (2009) proposed a set of

universal scaling parameters defined as b/cc and b/cd. This concept can extend

Nowak’s scaling to the general PD game by considering two parameters—cc and
cd—implying the focal player’s costs when his opponent offers C and D, respec-

tively. However, Tanimoto’s report assumed only PD games, and he did not

demonstrate any theoretical plausibility.

R
TP

S

Dg

Dr

(a)

R
TP

S

Dg

Dr

(b)

Fig. 2.16 Two PD games having the same Dg and Dr but different R�P; (a) smaller (R�P) and
(b) larger (R�P)
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This section shows a new set of universal scaling parameters that can be

applicable to all 2� 2 games, i.e., from those with an infinite well-mixed popula-

tion, which is the premise for the replicator dynamics, to those having a population

with any of the five reciprocity mechanisms.

2.7.1 Concept of the Universal Scaling for Dilemma Strength

We consider 2� 2 games composed of N agents. Let us denote the payoff matrix as;

C D

A � ai j
� 	 ¼ C

D

R S
T P

 �
:

(2.34)

When we consider an infinite well-mixed population (N !1) and denote xi(t)
as the frequency of strategy i at time t, the expected payoff of strategy i is given by

f i ¼
X2

j¼1 x jai j. Hence, the average payoff is given by φ ¼
X2

i¼1 xi f i. The

replicator dynamics can be written by;

_xi ¼ xi f i � φð Þ: (2.35)

From the definition of the payoff matrix; Eq. (2.34), we note i¼ 1 and i¼ 2,

representing C and D strategies, respectively. Since the simplex condition;

x1+ x2¼ 1 is kept for any time, we can reduce the two variables by introducing

x1¼ x. Recalling (2.27-1, 2.27-2, and 2.27-3), we can deduce the three of equilib-

rium x* for Eq. (2.34) by;

x* ¼ 0, 1,
P� S

R� S� T þ P
: (2.36)

It is worthwhile to note again that in a finite well-mixed population or a

population with any of reciprocity mechanisms, the equilibrium under the replicator

dynamics can no longer be given by Eq. (2.36).

According to Eq. (2.19), the payoff matrix; Eq. (2.34) can be re-written as;

C D

A ¼ ai j
� 	 ¼ C

D

R P� Dr

Rþ Dg P

 �
:

(2.37)

We also note that the third equilibrium of Eq. (2.36), which is the so-called

internal equilibrium, can be given as follows:
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x* ¼ Dr

Dr � Dg
: (2.38)

Here, let us introduce a new set of scaling parameters considering a finite

population with any of reciprocity mechanisms by defining a new set of GID and

RAD as Dg
0 and Dr

0, respectively.

Dg
0 ¼ T � R

R� P
¼ Dg

R� P
, Dr

0 ¼ P� S

R� P
¼ Dr

R� P
(2.39)

This is what we call the new universal scaling for dilemma strength. Based on

this definition, the payoff matrix can be re-written again in following form:

C D

A ¼ ai j
� 	 ¼ C

D

R P� R� Pð ÞDr
0

Rþ R� Pð ÞDg
0 P

 �
:

(2.40)

2.7.2 Analytical Approach

Taylor and Nowak (2007) successfully deduced that any of the five reciprocity

mechanisms by Nowak can be expressed by each transformation that is applied to

an original 2� 2 game payoff; Eq. (2.34). This allows us to derive the equilibriums

of each of the five mechanisms when applying the replicator dynamics on the basis

of the transformed matrix.

In this sub-section, following the analytical approach presented by their work,

we determine whether Dg
0 and Dr

0 are theoretically consistent as scaling parameters

for evaluating each of the five reciprocity mechanisms. After confirming this

theoretical consistency, we demonstrate that the set of these new scaling parameters

works well in a finite and well-mixed population. Finally, we demonstrate that Dg
0

andDr
0 can prove that the “paradox of cooperation” reported by Németh and Takács

(2010) is not paradox at all.

Theoretical Consistency for Nowak’s Five Reciprocity Mechanisms

Following Taylor and Nowak (2007), let us describe how the Nowak’s five reci-

procity mechanisms can be expressed by applying their respective transformed

game matrices.

Direct Reciprocity

In repeated games by a pair composed with same two agents, or when the same

agents play a different game in another round, direct reciprocity stimulates
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cooperation (Trivers 1971, 1985). In each round, the two agents must choose either

cooperation or defection. With probability, w, the same two agents play another

round. We assume that defectors, denoted by D, always choose defection and

cooperators, C, play tit-for-tat (TFT): they start with cooperation and then follow

what the other player has done in the previous move.

Indirect Reciprocity

Indirect reciprocity is based on reputation (Alexander 1987; Nowak and Sigmund

1998). Unlike the direct reciprocity, where the focal player’s decision is based on

whether cooperation or defection her opponent has offered to her in the previous

encounter; in the indirect reciprocity, the focal agent’s decision is determined on

whether cooperation or defection her opponent has offered to another agent in the

previous round. In fact, the focal agent chooses her strategy (offering C or D) based

on her opponent’s reputation; called Image Score (IS). The parameter q denotes the
probability of knowing the IS of another individual, in short knowing whether

another individual is a cooperator or defector. Let us assume, a defector, D, always

defects, whereas a cooperator, C, only defects when she knows her opponent is a

defector, and cooperates otherwise. Thus, C cooperates with D with probability

1� q.

Kin Selection

The concept of kin selection arose from the idea that evolutionary games are often

played between individuals who are genetic relatives (Hamilton 1964). Consider a

population in which the average relatedness between interacting individuals is

given by r, which is a real number between 0 and 1. In such a population, the

opponent’s contribution that equals the r of the opponent’s payoff can be joined to

the focal agent’s payoff.

Group Selection

Group selection is based on the idea that competition occurs not only between

individuals but also between groups.14 Here, we use the approach described by

Traulsen and Nowak (2006). A population is subdivided into m groups. The

maximum group size is n. Individuals interact with others in the same group

according to a 2� 2 game. The fitness of an individual is 1� ω� ωF, where F is

14 There are so many literatures concerning this point. Because of space limitation, we cite only

five of those; Wynne-Edwards (1962), Williams (1996), Wilson (1975), Maynard Smith (1976),

Slatkin and Wade (1978).
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the payoff and ω is the intensity of selection. At each round, an individual from the

entire population is chosen for reproduction proportional to fitness. The offspring is

added to the same group. If the group reaches the maximum size, it can split into

two groups with a certain probability, p. In this procedure, a randomly selected

group dies to prevent the population from exploding. The maximum population

size is defined as mn. With probability 1� p, however, the group does not

divide, but a random individual of that group is chosen to die. We assume weak

selection (ω << 1) and rare group splitting ( p<< 1) large n and m.

Network Reciprocity

Network reciprocity relies on two effects: (1) limiting the number of game oppo-

nents (diminishing anonymity), leading to increased mutual cooperation; and (2) a

local adaptation mechanism wherein a player copies a strategy from a neighbor

linked to the player through a network. These two effects explain how cooperators

survive in a network game of PD, even though players are required to use only the

simplest strategy—either cooperation or defection (requiring only 1 bit memory)

(Nowak and May 1992). Therefore, hundreds of studies have reported on network

reciprocity, primarily in the fields of theoretical biology and statistical physics.15

The individuals of a population occupy the vertices of a graph. The edges denote

who interacts with whom. Each individual interacts with all of its neighbors

according to the standard payoff matrix, as in Eq. (2.34). The payoff of each

agent is totaled over all games with her neighbors. An individual’s fitness is

given by 1� ω� ωF where F is the payoff for the individual and ω (ω 2 0; 1½ �)
is the intensity of selection. Here, we consider evolutionary dynamics according to

Death-Birth updating (DB) (Ohtsuki et al. 2006), where in each round a random

individual is chosen to die; then the neighbors compete for the empty site propor-

tional to their fitness.

A calculation using pair approximation on regular graphs (where each vertex has

k edges) leads to a deterministic differential equation that describes how the

expected frequency of cooperation (defection) changes over time. This differential

equation is actually a standard replicator equation with a modified payoff matrix

(Ohtsuki and Nowak 2006).

From the above-mentioned discussion, now we are able to describe the five

reciprocity mechanisms in the following transformed 2� 2 matrix from the original

game payoff matrix, as in Eq. (2.34) (Taylor and Nowak 2007).

15 Because of space limitation, we can cite here only five of those; Hassell et al. (1994), Ebel and

Bornholdts (2002), Santos and Pacheco (2005), Santos et al. (2006), Yamauchi et al. (2010).
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C D

Direct Reciprocity
C

D

R

1� w
Sþ wP

1� w

T þ wP

1� w

P

1� w

0
BB@

1
CCA;

(2.41)

C D

Indirect Reciprocity
C

D

R 1� qð ÞSþ qP
1� qð ÞT þ qP P

 �
;

(2.42)

C D

Kin Selection
C

D

R
Sþ rT

1þ r
T þ rS

1þ r
P

0
B@

1
CA;

(2.43)

C D

Group Selection
C

D

nþ mð ÞR nSþ mR
nT þ mP nþ mð ÞP

 �
;

(2.44)

C D

Network Reciprocity
C

D

R Sþ H
T � H P

 �
:

(2.45)

Here, H in Eq. (2.45) is defined as follows:

H ¼ k þ 1ð Þ R� Pð Þ � T þ S

k þ 1ð Þ k � 2ð Þ : (2.46)

We assume k> 2.

It is worth noting that, in Eq. (2.43), summations of two players, Rþ R, Pþ P,
and Sþ rTð Þ= 1þ rð Þ þ T þ rSð Þ= 1þ rð Þ are consistent with those of Eq. (2.34),

Rþ R, Pþ P, and Sþ T.
From these equations, we can draw each set of conditions, wherein C and D

become evolutionarily stable strategies (ESS), and the internal equilibrium, as

shown in Table 2.2. One important point to be addressed is that all these conditions

and the internal equilibrium can be described only by Dg
0 and Dr

0 with the defined

model parameters.

Assuming the parameters w¼ 0.1, q¼ 0.1, r¼ 0.1, m¼ 50, n¼ 500, and k¼ 12,

we obtain Figs. 2.17, 2.18, 2.19, 2.20, and 2.21, (Fig. 2.17; direct reciprocity;

Fig. 2.18; indirect reciprocity; Fig. 2.19; kin selection; Fig. 2.20; group selection;

Fig. 2.21; network reciprocity), wherein the Dg�Dr diagrams (upper panels) as

well as the Dg
0 �Dr

0 diagrams (lower panels) of equilibria for different R�P are

shown. Those results come from Eqs. (2.41, 2.42, 2.43, 2.44, 2.45, and 2.46),

assuming that the initial cooperation fraction is 0.5. In these figures, each of

white circles indicates the boundary point of four games classes; D-dominant,

C-dominant, polymorphic and bi-stable (hereafter “four-corners”). Each horizontal
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black broken-line in Figs. 2.17 and 2.18 means the difference between the four-

corners in case of R¼ 1 and P¼ 0 and that of Dg
0 ¼Dr

0 ¼ 0. Whereas, each white

broken-line in Figs. 2.19, 2.20, and 2.21 shows that the four-corners shifting from

the point of Dg
0 ¼Dr

0 ¼ 0 along Dg
0 ¼Dr

0 line (45 degree line).

Let us confirm that by the effect of direct and indirect reciprocity, the original

four game-classes (PD in the first quadrant, Chicken in the second quadrant, Trivial

Table 2.2 Conditions of cooperation being ESS, defection being ESS, and interior equilibrium

for each of the five mechanisms: direct reciprocity, indirect reciprocity, kin selection, group

selection, and network reciprocity

Cooperation is ESS Defection is ESS Internal equilibrium

Direct reciprocity w
1�w > Dg

0 Dr
0 > 0 x* ¼ 1�wð ÞDr

0

1�wð Þ Dr
0�Dg

0ð Þþw
Indirect

reciprocity

q
1�q > Dg

0 Dr
0 > 0 x* ¼ 1�qð ÞDr

0

1�qð Þ Dr
0�Dg

0ð Þþq
Kin selection r 1þ Dr

0ð Þ > Dg
0 r 1þ Dg

0� �
< Dr

0
x* ¼ �r Dg

0þ1ð ÞþDr
0

1þrð Þ Dr
0�Dg

0ð Þ
Group selection m

n > Dg
0 m

n < Dr
0

x* ¼ nDr
0�m

n Dr
0�Dg

0ð Þ
Network

reciprocity
k2Dg

0 � k Dg
0 þ 1

� �
þ Dr

0 � Dg
0� �
< 0

k2Dr
0 � k Dr

0 þ 1ð Þ
þ Dg

0 � Dr
0� �
> 0

x* ¼ k2�k�1ð ÞDr
0þDg

0�k
k2�k�2ð Þ Dr

0�Dg
0ð Þ

1
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(a-1) R = 1.7, P = 1.2 (b-1) R = 1, P = 0 (c-1) R = 10, P = 2 
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Fig. 2.17 Equilibrium cooperation fraction-Dr�Dg (in the upper line) andDr
0 �Dg

0 (in the lower
line) diagrams of direct reciprocity for (a) R¼ 1.7, P¼ 1.2, (b) R¼ 1, P¼ 0, and (c) R¼ 10, P¼ 2

with probability of another round w¼ 0.1
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in the third quadrant, and SH in the fourth quadrant) shift to the positive side of the

Dg-axis (Dg
0-axis) (depicted by the black dotted line). Shifting upward implies that

the weaker region of PD changes to SH, which has a bi-stable equilibrium. In short,

direct and indirect reciprocities can weaken GID (Dg¼ T�R or Dg
0 ¼ (T�R)/

(R�P)). Further, through the effects of kin selection, group selection, and network
reciprocity, the four original game-classes simultaneously shift to the positive side

of both the Dg-axis (Dg
0-axis) and Dr-axis (Dr

0-axis). Shifting upper-right along the
Dg
0 ¼Dr

0 line means that a weaker region of PD changes to either Chicken SH, or

even Trivial, as confirmed on the Dg
0 �Dr

0 diagram. Thus, kin selection, group

selection, and network reciprocity can weaken both GID and RAD.

In the Dg�Dr diagrams of Figs. 2.17, 2.18, 2.19, 2.20, and 2.21, (upper panels),

the larger R�P becomes, the larger upward shifting can be observed. In the

Dg
0 �Dr

0 diagrams of Figs. 2.17, 2.18, 2.19, 2.20, and 2.21, (lower panels), how-

ever, the upward shifting is irrespective to R�P. Surprisingly, respective equilib-
riums on the Dg

0 �Dr
0 diagrams are completely consistent with each other, despite

different R�P. Therefore a set of parameters, Dg
0 and Dr

0, that considers Dg and Dr

as well as R�P, can be universally appropriate for evaluating dilemma strength in

a population with any reciprocity mechanisms.

Concerning kin selection (Fig. 2.19), we can observe the interesting phenome-

non of where the cooperation fraction increases with the increase of both Dg
0 and

Dr
0 (see the dotted box in Fig. 2.22(a)). Figure 2.22 shows equilibrium cooperation

(a-1) R = 1.7, P = 1.2 (b-1) R = 1, P = 0 (c-1) R = 10, P = 2 (

(a-2) R = 1.7, P = 1.2 (b-2) R = 1, P = 0 (c-2) R = 10, P = 2 
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Fig. 2.18 Equilibrium cooperation fraction-Dr�Dg (in the upper line) andDr
0 �Dg

0 (in the lower
line) diagrams of indirect reciprocity for (a) R¼ 1.7, P¼ 1.2, (b) R¼ 1, P¼ 0, and (c) R¼ 10,

P¼ 2 with probability of knowing the reputation of another individual q¼ 0.1
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when assuming r¼ 0.3. Figure 2.22(a) shows the Dg
0 �Dr

0 diagram, and (b) shows

the relationship between Dg
0 and the cooperation fraction when Dr

0 ¼ 0.46. In a

population with kin selection, the payoff of a focal agent is determined by a part of

the opponent agent’s payoff as described in Eq. (2.43). This creates evolutionary

dynamics attracted by an internal (polymorphic) equilibrium in which both C and D

agents co-exist, rather than an equilibrium consisting of only D agents, because the

mutual dependency on payoff enables an agent to offer C instead of D even if

increasing a risk to be exploited by opponent. It is possible in this situation that the

total of S and the contribution from the opponent (i.e. rT) is much greater than (1

+ r)P, and this possibility increases as r and T (Dg
0) become larger. The behavior

explains the paradoxical situation, wherein more cooperative equilibrium can be

attained under a larger Dg
0. We can observe lots of proofs to back this interesting

thing in real human societies. A parent is willing to support his/ her child, some-

times giving more and more to the child even if the parent eating nothing caused by

a bleaker social dilemma situation than usual time, isn’t he/ she? This phenomenon

causes another paradoxical situation, wherein less cooperative equilibrium can be

attained under smaller Dr
0. We must note that this particular phenomenon has no

relevance to what Németh and Takács (2010) reported about the possibility of the

paradox of cooperation benefits when a population is featured with positive assort-

ment. As we discuss in the text below, our new scaling parameters, Dg
0 and Dr

0,
demonstrate that their finding is not paradoxical whatsoever.
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Fig. 2.19 Equilibrium cooperation fraction-Dr�Dg (in the upper line) andDr
0 �Dg

0 (in the lower
line) diagrams of kin selection for (a) R¼ 1.7, P¼ 1.2, (b) R¼ 1, P¼ 0, and (c) R¼ 10, P¼ 2 with

the average relatedness between interacting individuals r¼ 0.1
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Theoretical Consistency for Finite Well-Mixed Population

Even a well-mixed population should be considered for the influence of social

viscosity when the population in not infinite but finite. Although being a finite, well-

mixed population is not one of Nowak’s five reciprocity mechanisms, “finiteness”

allows the possibility of repeated encounters between two agents. Because of a

finite population, we cannot apply replicator dynamics. In this situation, we should

discuss the so-called fixation probability, i.e., whether a selection favors the

mutant’s strategy over the resident’s strategy (Nowak et al. 2004). Let us denote

finite population size as N. If the fixation probability of C (D) is greater than 1/N,
then the selection favors C (D), which implies that the resident D (C) population

would be replaced by a single mutant C (D) in the long term. Let us consider a

Moran process with frequency dependent fitness. At each round, an individual is

chosen for reproduction proportional to its fitness. One identical offspring is

produced that replaces another randomly chosen individual. The fixation probabil-

ity of C (D), ρC (ρD), is given by the probability that a single C (D) player in a

population of N� 1 D (C) agents generates a lineage of C (D) that does not

become extinct, but rather takes over the entire population. When assuming weak

selection (ω << 1) both ρC and ρD are given as follows.
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Fig. 2.20 Equilibrium cooperation fraction-Dr�Dg (in the upper line) andDr
0 �Dg

0 (in the lower
line) diagrams of group selection for (a) R¼ 1.7, P¼ 1.2, (b) R¼ 1, P¼ 0, and (c) R¼ 10, P¼ 2

with the number of groups m¼ 50 and maximum size of group n¼ 500
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ρC 	
1

N

1

N � αCN � βCð Þw=6, ρD 	
1

N

1

N � αDN � βDð Þw=6: (2.47)

Here, αC ¼ Rþ 2S� T � 2P, αD ¼ Pþ 2T � S� 2R, βC ¼ 2Rþ Sþ T � 4P, and
βD ¼ 2Pþ T þ S� 4R. If ρC > 1=N (ρD > 1=N ) is satisfied, then the selection

favors C (D) replacing D (C). These conditions are as follows:

1

0.5

0

1

0.5

0

Dg=Dr

-1 0 1

Dg

-1

0

1

Dr

-1 0 1
-1

0

1

Dr

-1 0 1
-1

0

1

Dr

-1 0 1

Dg’

-1

0

1

Dr’
-1 0 1

-1

0

1

Dr’
-1 0 1

-1

0

1

Dr’

(a-1) R = 1.7, P = 1.2 (b-1) R = 1, P = 0 (c-1) R = 10, P = 2 (

(a-2) R = 1.7, P = 1.2 (b-2) R = 1, P = 0 (c-2) R = 10, P = 2 

Fig. 2.21 Equilibrium cooperation fraction-Dr�Dg (in the upper line) andDr
0 �Dg

0 (in the lower
line) diagrams of network reciprocity for (a) R¼ 1.7, P¼ 1.2, (b) R¼ 1, P¼ 0, and (c) R¼ 10,

P¼ 2 with the number of neighbors k¼ 12
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0 ¼ 0:46 (highlighted areas within dashed-line boxes) with the

average relatedness between interacting individuals r¼ 0.3
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ρC > 1=N , Dg N þ 1ð Þ þ Dr 2N � 1ð Þ þ 3 R� Pð Þ < 0; (2.48-1)

ρD > 1=N , Dr N þ 1ð Þ þ Dg 2N � 1ð Þ þ 3 R� Pð Þ > 0: (2.48-2)

To describe this condition in relation with the game structure, say the dilemma

strength, one needs not only Dg and Dr, but also R and P. This indicates that the set
of parameters, Dg and Dr is not appropriate for evaluating the process. However,

adopting Dg
0 and Dr

0 instead of Dg and Dr, we can transform inequalities (2.48-1)

and (2.48-2) into the following:

ρC > 1=N , Dg
0 N þ 1ð Þ þ Dr

0 2N � 1ð Þ þ 3 < 0; (2.49-1)

ρD > 1=N , Dr
0 N þ 1ð Þ þ Dg

0 2N � 1ð Þ þ 3 > 0: (2.49-2)

Now, we can say that the fixation probabilities can be described by only Dg
0 and Dr

0

as inequality (2.49-1), (2.49-2).

When dilemma strength becomes weaker by increasing R�P, the selection

favors D rather than C strategy because inequality (2.48-2) tends to be easily

satisfied, but the opposite is true for inequality (2.48-1). Although this fact seems

paradoxical at the first glance, it can be justified when we recall that the fixation

probability intrinsically means the probability that a mutant can take over the entire

population. In an Avatamasaka game (Akiyama and Aruka 2004), wherein R�P is

very large, a focal player’s gain becomes irrelevant to his own offer. Instead, it is

affected more by whether her opponent offers C or D. Thus, as R�P becomes

greater, it is more difficult for a single C player, in a population of N� 1, and D

agents to take over the entire population, and the reverse situation becomes more

easily achieved.

Is There a Real Paradox?

In this sub-ion, we discuss the paradox reported by Németh and Takács (2010). We

introduce their model and discuss why they call it a paradox. Further, we prove that

the paradox is not paradoxical by applying the scaling parameters, Dg
0 and Dr

0.

Populations with a Positive Assortment Model

Let us consider a population wherein the interaction probability of an individual

playing a game with another individual having the same strategy is greater than the

focal agent’s strategy fraction, which is called an assortative population (Németh

and Takács 2010). The interaction probability of two individuals of the same

strategy is denoted by α (If α ¼ 1, then an individual interacts with only same

strategy opponents, and if α ¼ 0, then an individual interacts with randomly chosen

individuals.) The average fitness of Cooperators, fC, and Defectors, fD, are given as
follows:
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f C ¼ αRþ 1� αð Þ xRþ 1� xð ÞS½ �; (2.50-1)

fD ¼ αPþ 1� αð Þ xT þ 1� xð ÞP½ �: (2.50-2)

From the Price equation (Price 1970), the conditions in which C (D) becomes ESS,

the internal equilibrium can be given as

α T � Pð Þ > T � R: (2.51-1)

α R� Sð Þ < P� S: (2.52-1)

x* ¼ P� αR� 1� αð ÞS
1� αð Þ Rþ P� S� Tð Þ : (2.53-1)

The internal equilibrium x* is stable (sinks) and exists in the region [0, 1], if

R� S< T�P and (P� S)/(R� S)< (T�R)/(T�P). It is unstable (source) and

exists in the region [0, 1], if R� S> T�P and (P� S)/(R� S)> (T�R)/ (T�P).
Inequalities (2.51-1) and (2.52-1) and Eq. (2.53-1) can be described as follows by

applying Dg
0 and Dr

0:

α 1þ Dg
0� �
> Dg

0; (2.51-2)

α 1þ Dr
0ð Þ < Dr

0; (2.52-2)

x* ¼ 1� αð ÞDr
0 � α

1� αð Þ Dr
0 � Dg

0� � : (2.53-2)

The internal equilibrium x* is stable and exists in the region [0, 1], if Dr
0<Dg

0 and
Dr
0< α= 1� αð Þ <Dg

0. It is unstable and exists in the region [0, 1], if Dr
0>Dg

0 and
Dr
0> α= 1� αð Þ >Dg

0. Thus, the condition of ESS (inequalities (2.51-1) and

(2.52-1)) and the internal equilibrium (Eq. (2.53-1)) can be described by only Dg
0,

Dr
0, and α.

The Paradox of Cooperation Benefits by Németh and Takács

In the model, mentioned above, Németh and Takács (2010) insisted that a paradox

may occur when two or more payoff elements among P, R, S, and T are modified.

Let us consider PD in which T>R>P> S is satisfied. When assuming two

equations derived from inequality (2.51-1) and (2.52-1), i.e.,

αL ¼ P� Sð Þ= R� Sð Þ and (2.54-1)

αH ¼ T � Rð Þ= T � Pð Þ; (2.55-1)

we note that the conditions in which C and D become ESS are αH < α and αL > α,
respectively. Figure 2.23 shows equilibrium curves (1) with keeping payoff struc-

ture and increasing α from 0 to 1. When R� S< T�P, the equilibrium point is
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x¼ 0 for 0 < α < αL; internal equilibrium x* (Eqs. (2.53-1 and 2.53-2)) for αL < α
< αH; and x¼ 1 for αL < α < 1 (Fig. 2.23(a)). However, when R� S> T�P, the
equilibrium point is x¼ 0 for 0 < α < αH; x¼ 0 or x¼ 1 for αH < α < αL and x¼ 1

for αL < α < 1 (Fig. 2.23(b)).

Here, let us consider Game A1, wherein T¼ 7, R¼ 3, P¼ 1, and S¼ 0, and

Game B1, where T¼ 21, R¼ 5, P¼ 1, and S¼ 0 for the sake of discussion.

Comparing those two examples, we should note that ΔR ¼ 2 and ΔT ¼ 14. Both

games have stable internal equilibria x* as shown in Fig. 2.23(a) because they

satisfy R� S< T�P. When we apply Dg and Dr as scaling parameters (not Dg
0 and

Dr
0), 0 < ΔR < ΔT means that the incentive for offering D in Game B1 is larger

than that inGame A1 becauseDg increases. Thus, the equilibrium point ofGame B1
seems to be lower than that ofGame A1. However, within a certain range of positive
assortment, α, the paradox can occur, i.e., cooperation growing despite Dg increas-

ing (0 < ΔR < ΔT). Noting that αH GameA1 < αH GameB1 and αL GameA1 > αL GameB1

are satisfied, we can draw equilibria of these two games as shown in Fig. 2.24. From

Fig. 2.24, one could say that a paradox exists because there is the region where the

cooperation fraction of Game B1 is greater than that ofGame A1. This phenomenon

can occur in each combination of any two parameters among P, R, S, and T. Németh

and Takács see this phenomenon as paradoxical.

In the next sub-section, we demonstrate that their paradox is, in fact, never a

paradox by applying the proposed scaling parameters, Dg
0 and Dr

0.

Explanation of the Paradox of Cooperation Benefits by Applying Dg
0 and Dr

0

If 0 < ΔR < ΔT, Dg increases. In contrast, there exists the possibility that Dg
0

decreases. In addition, Dr
0 must always decrease. In fact, differences in Dg, Dr, Dg

0,
and Dr

0 between Game A1 and Game B1 are ΔDg ¼ 12, ΔDr ¼ 0, ΔDg
0 ¼ 2, and

ΔDr
0 ¼ �1=4, respectively. Because Dg

0 is defined by GID divided (scaled) with

x

0
0 1
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La Ha

)'')(1(

')1(

gr

r*

DD
Dx
--
--

=
a

aa

0 1
LaHa
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(a) R − S < T − P (b) R − S > T − P 

aa

Polymorphi
Bi-stable

Fig. 2.23 Equilibrium cooperation fraction as a function of α in PD with positive assortment, if

(a) R� S< T�P and (b) R� S> T�P. The dashed line indicates the unstable internal equilib-

rium point x*
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R�P and Dr
0 is defined by RAD scaled with R�P, those two intrinsically imply

different dilemma strengths. Therefore, it makes no sense to compare ΔDg with

ΔDr
0. Thus, ΔDg

0 > 0 > ΔDr
0 and ΔDg

0�� �� > ΔDr
0j j does not imply that the

cooperation fraction at an equilibrium decreases. Finally, we cannot say that

dilemma strength always increases when 0 < ΔR < ΔT, as Németh and Takács

assert. Therefore, increasing the equilibrium cooperation fraction in such a case is

not paradoxical. This argument is true for any combinations of two payoff elements

other than R and T.
Let us confirm that a paradox never occurs when applying the proposed scaling

parameters. First, we discuss the equilibrium on the basis of Eqs. (2.51-2), (2.52-2)

and (2.53-2). Equations (2.54-1) and (2.55-1) can be described as follows by

applying Dg
0 and Dr

0, respectively:

αL ¼ Dr
0= 1þ Dr

0ð Þ; (2.54-2)

αH ¼ Dg
0= 1þ Dg

0� �
: (2.55-2)

Here, we limit our discussion comparing Game A2 and Game B2, wherein Dg
0 and

Dr
0 of Game B2 are simultaneously larger than those of Game A2; i.e., Dg GameA2

0

� Dg GameB2
0 and Dr GameA2

0 � Dr GameB2
0. Unlike Game A1 and Game B1, we can

argue the following without presuming concrete T, R, P, and S. From Eqs. (2.54-2)

and (2.55-2), whenever Dr
0>�1 and Dg

0>�1, it is obvious that

αL GameA2 � αL GameB2 and αH GameA2 � αH GameB2. Figure 2.25 shows equilibrium

curves when (a) Dr
0<Dg

0, wherein internal equilibrium x* is stable (polymorphic)

and (b) Dr
0>Dg

0, wherein x* is unstable (bi-stable). It is notable that the equilib-

rium cooperation fraction in games having greater dilemma strength (Game B2; red
dashed line) is always lower than the black line (Game A2) whenever the same α is

Fig. 2.24 The paradox of

cooperation benefits in PD

with positive assortment

reported by Németh and

Takács (2010) in Game A1,
in which T¼ 7, R¼ 3,

P¼ 1, S¼ 0 (black solid
line) andGame B1, in which
T¼ 21, R¼ 5, P¼ 1, S¼ 0

(red dashed line)
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assumed. Thus, no paradox ever occurs. Even ifDg
0 � �1 orDr

0 � �1, we deduce
that no paradox ever occurs.

In summary, from the viewpoint of Németh and Takács’s paradox, we can prove
that the proposed parameters, Dg

0 and Dr
0, are appropriate as universal scaling

parameters to evaluate dilemma strength.

2.7.3 Simulation Approach

Although we will elaborate network reciprocity in the next Chapter, it is one of the

Nowak’s five social viscosity mechanisms, which has been already discussed

around Eq. (2.45). To this point the discussion concerning network reciprocity

assumes that an underlying network must be regular and strategy updating must

follow the Death-Birth (DB)31 process, as required by the analytic approach. In this

section, we discuss whether the set of Dg
0 and Dr

0 is appropriate as universal scaling
parameters for various situations through a series of numerical simulations.

Simulation Setting

In this discussion, we limit the game class to be observed to PD, wherein 0 � Dg

� 1 and 0 � Dr � 1 or 0 � Dg
0 � 1 and 0 � Dr

0 � 1 for various R�P. We assume

Fig. 2.25 Equilibrium cooperation fraction as a function of α in PD with positive assortment in (a)

Dr
0<Dg

0 and (b) Dr
0>Dg

0 for comparison between Games A2 and B2. The strength for Game
B2’s dilemma is higher than that of Game A2. The black solid line and the black dashed line
indicate stable equilibrium points and unstable equilibrium points, respectively, for Game A2. The
red dashed line and the red dotted line indicate stable equilibrium points and unstable equilibrium

points, respectively, for Game B2. The paradox of cooperation benefits never occurs
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specially structured agents on a network. Because we confirmed that the equilib-

rium has no sensitivity to the number of agents when considering a sufficiently

large number (N> 1600) (Yamauchi et al. 2011), we assumed N¼ 4900. The

average degree< k> is assumed to be 8. We investigate four types of network

structures: (i) lattice; (ii) homogeneous small world network, (hereafter Ho-SW),

generated from a cycle graph by replacing several links with random shortcuts

(a shortcut probability of 0.2) strictly enforcing the condition that every vertex has

the same degree; (iii) Watts–Strogatz’s (1998) heterogeneous small world network

(hereafter He-SW), which is generated from a cycle graph with swapping proba-

bility 0.2 (Ren et al. 2007) such that every vertex may have different degrees;

(iv) scale-free network (hereafter SF) based on the Barabasi–Albert algorithm

(Barabasi and Albert 1999) In every round, an agent plays with her neighbors and

accumulates payoffs resulting from games played with all neighbors in that round.

An agent synchronously updates her strategy in every round on the basis of the

accumulated payoffs with all neighbors during each round. In this study, we adopt

four strategy updating rules.

(i) Imitation Max (hereafter IM): A focal player imitates the strategy having the

largest payoff among all the strategies adopted by the focal player and her

immediate neighbors.

(ii) Fermi-PW (hereafter F-PW): A focal player i adopts a randomly chosen player

j’s strategy with the probability calculated using the Fermi function. A F-PW

process determines the probability of her imitating the strategy, depending on

differences in payoff:

Wsi s j
¼ 1

1þ exp Πi � Π j

� �
=κ

� 	: (2.56)

Here, Πi and si indicate the accumulated payoff and strategy, respectively,

of the ith (focal) agent. The parameter κ in the Fermi function is set to 0.2.

(iii) Linear-PW (hereafter L-PW): The strategy of a player j is chosen as in Fermi-

PW, but the probability is given by a linear function and operates as follows:

Wsi s j
¼ Π j � Πi

max ki; k j

� �
max R; T; S;Pð Þ �min R;T; S;Pð Þ½ � : (2.57)

Here, ki indicates the degree of the ith (focal) agent.

(iv) Roulette (hereafter RS): A focal player chooses one among the strategies

adopted by the focal player and her immediate neighbors with a probability

proportional to the payoff and operates as follows:
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WS j Si ¼
Π j �mink2Ni

Πk½ �X
j2 Nif g

Π j �min
k2Ni

Πk½ �
 � ; (2.58)

where {Ni} indicates the set of neighbors for the focal agent i and himself.

When all agents of {Ni} happen to have an exactly same payoff, a focal player

randomly chooses one of agents of {Ni} to copy with a probability as follows:

WS j Si ¼
1

ki þ 1
: (2.59)

The initial fraction of C, imposed at the beginning of every simulation round, is

assumed to be 0.5. A single simulation round continues until the time variations of

the average social cooperation fraction and the payoff are sufficiently small to

equal an asymptotic equilibrium. If the frequency of cooperation continues to

fluctuate, we calculate the average cooperation for the last 100 generations over a

10,000-generation run. We conduct this procedure at 11� 11 points on the PD area

( 0 � Dg � 1, 0 � Dr � 1 or 0 � Dg
0 � 1, 0 � Dr � 1 ) 100 times to draw an

ensemble average at each point.

Results

Figures 2.26, 2.27, 2.28, and 2.29 show results on lattice and Ho-SW, which are

regular networks and the equilibrium cooperation fraction on Dg�Dr diagrams and

Dg
0 �Dr

0 diagrams. Although we can see Dg�Dr diagrams for the IM in Fig. 2.15,

we describe these again in Fig. 2.26(a) to make it easier to compare. As mentioned

in the previous section, although results on the Dg�Dr diagram are significantly

affected by the value of R�P, those on the Dg
0 and Dr

0 diagram never depend on

R�P, with the exception of the result for F-PW. Thus, the set ofDg andDr does not

provide appropriate scaling parameters, whereas Dg
0 and Dr

0 perform much better.

Again, for F-PW, we cannot see universal contour areas consistent with each

other for different R�P even when applying Dg
0 and Dr

0 as scaling parameters.

This occurs because, unlike other rules, F-PW uses the parameter κ, indicating
intensity of selection. Increasing R�P leads to larger payoff differences among

agents, which inevitably entails increased intensity of selection. Therefore, the set

of Dg
0 and Dr

0 seems insufficient as universal scaling parameters. To compensate

for this shortcoming, one reasonable solution is to scale the intensity of selection in

F-PW with R�P; i.e., we should apply κ0 ¼ κ R� Pð Þ instead of κ; Fig. 2.30 shows
the result. We obtained a universal equilibrium cooperation fraction, irrespective of

R�P. A plausible question might arise here: why does the scaling by Dg
0 and Dr

0

look good for L-PW and RS, even though the copying probabilities of L-PW and RS

depend on payoff differences as does F-PW? As shown in Eqs. (2.57) and (2.58)

contain terms to scale the payoff difference, max R; T; S;Pð Þ �min R; T; S;Pð Þ½ � for
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Fig. 2.26 Averaged cooperation fraction-Dr�Dg diagrams for (a) R¼ 1.5, P¼ 1, (b) R¼ 1,

P¼ 0, and (c) R¼ 4, P¼ 2. Games are played on 8-neighbor lattice. IM (in the first line), RS
(in the second line), L-PW (in the third line) and F-PW (in the last line) are adopted as the strategy
update rule. For results in case of IM, see Fig. 2.15
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Fig. 2.27 Averaged cooperation fraction-Dr�Dg diagrams for (a) R¼ 1.5, P¼ 1, (b) R¼ 1,

P¼ 0, and (c) R¼ 4, P¼ 2. Games are played on 8-neighbor Ho-SW. IM (in the first line), RS
(in the second line), L-PW (in the third line), and F-PW (in the last line) are adopted as the strategy
update rule

52 2 Fundamental Theory for Evolutionary Games



1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

00 10.5

1

0

0.5

0 10.5

1

0

0.5

0 10.5

1

0

0.5

F-PW

Dg’

0 10.5

1

0

0.5

0 10.5

1

0

0.5

0 10.5

1

0

0.5

RS

0 10.5

1

0

0.5

0 10.5

1

0

0.5

0 10.5

1

0

0.5

L-PW Dr’ Dr’ Dr’

Dr’ Dr’ Dr’

Dr’ Dr’ Dr’

Dg’

0 10.5

1

0

0.5

0 10.5

1

0

0.5

0 10.5

1

0

0.5

IM

Dg’

Dg’

Dr’ Dr’ Dr’

(a-1) R = 1.5, P = 1 (b-1) R = 1, P = 0 (c-1) R = 4, P = 2

(a-2) R = 1.5, P = 1 (b-2) R = 1, P = 0 (c-2) R = 4, P = 2

(a-3) R = 1.5, P = 1 (b-3) R = 1, P = 0 (c-3) R = 4, P = 2

(a-4) R = 1.5, P = 1 (b-4) R = 1, P = 0 (c-4) R = 4, P = 2

Fig. 2.28 Averaged cooperation fraction-Dr
0 �Dg

0 diagrams for (a) R¼ 1.5, P¼ 1, (b) R¼ 1,

P¼ 0, and (c) R¼ 4, P¼ 2. Games are played on 8-neighbor lattice. IM (in the first line), RS (in the

second line), L-PW (in the third line), and F-PW (in the last line) are adopted as the strategy update
rule
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Fig. 2.29 Averaged cooperation fraction-Dr
0 �Dg

0 diagrams for (a) R¼ 1.5, P¼ 1, (b) R¼ 1,

P¼ 0, and (c) R¼ 4, P¼ 2. Games are played on 8-neighbor Ho-SW. IM (in the first line), RS
(in the second line), L-PW (in the third line), and F-PW (in the last line) are adopted as the strategy
update rule
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L-PW and
X
j2Ni

Π j �min
k2Ni

Πk½ �
 �

for RS., those terms depend on value of R�P. As

a result, it is possible to capture uniform contours irrespective of R�P in the two

update rules.

Next, let us discuss He-SW and SF, which are both degree-heterogeneous

networks. Figures 2.31 and 2.32 show contours of the equilibrium cooperation

fraction on the Dg�Dr diagram and the Dg
0 �Dr

0 diagram. For simplicity in this

discussion, we limit IM as an updating rule (which we confirmed to draw qualita-

tively the same conclusion as below, even though other updating rules are

assumed). Both the sets of Dg and Dr and those of Dg
0 and Dr

0 do not operate

appropriately as scaling parameters. This failure is particularly noticeable when

assuming SF. This shortcoming might be justified by the fact that “in a degree-

heterogeneous network for underlying topology, there is significant influence on

payoff caused by the difference of the number of games played by agents depending

on their degrees,” as reported by Masuda (2007) and Tanimoto and Yamauchi

(2010). Obviously, when the number of games differs depending on the degree of

distribution, the dilemma strength affecting each agent must also differ. Therefore,
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Fig. 2.30 Averaged cooperation fraction-Dr
0 �Dg

0 diagrams for (a) R¼ 1.5, P¼ 1, (b) R¼ 1,

P¼ 0, and (c) R¼ 4, P¼ 2. Games are played on 8-neighbor lattice (in the upper line) and Ho-SW
(in the lower line). F-PW, of which intensity of selection is scaled by R�P, is adopted as the

strategy update rule
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scaling by Dg
0 and Dr

0, i.e., considering only the effect of dilemma per one game, is

insufficient.

In summary, we have confirmed that the universal scaling concept byDg
0 andDr

0

reasonably works well even if various strategy update rules are assumed. In

assuming degree-heterogeneous networks instead of regular topology, the scaling

concept malfunctions, because different number of playing games among agents

that a degree-heterogeneous networks intrinsically allows significantly affects on its

evolutionary process. Thus, underlying topology sometimes becomes more signif-

icant than influence resulting from game structure.

2.8 R-Reciprocity and ST-Reciprocity

Unequivocally, Prisoner’s Dilemma (PD) is the most well-known archetype for

dilemma games. From a biological viewpoint, the Chicken game is sometimes

called a Hawk–Dove game (Maynard Smith 1982), which revolves around a pair of

organisms competing for a resource and engaging in moderate fighting (C) or
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Fig. 2.31 Averaged cooperation fraction-Dr�Dg diagrams for (a) R¼ 1.5, P¼ 1, (b) R¼ 1,

P¼ 0, and (c) R¼ 4, P¼ 2. Games are played on He-SW (in the upper line) and SF (in the

lower line) with the average degree< k>¼ 8. IM is adopted as the strategy update rule
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defecting through escalated fighting (D).16 The Leader game may occur in nature

when two organisms need to escape from a predator via an escape route through

which only one can pass at a time. Each player can choose either to escape before

the other player (D) or wait for the other player to escape with the intention of

following immediately after (C). The Hero game, sometimes called Battle of Sexes,

was introduced by Luce and Raiffa (1957). A typical biological application might

occur if two predators feeding on a kill are being harassed by scavengers (Browning

and Colman 2004). Obviously, although we continue to use the symbols C and D

for convenience, the terms cooperation and defection are hardly applicable to this

game. Each predator can either ignore the scavengers (C), or temporarily abandon

the prey to chase the scavengers (D). The best payoff for a player results from

ignoring the scavengers and continuing to feed while the co-player chases the

scavengers (S). The second best option is for a player to stop feeding in order to

chase the scavengers, losing a little feeding time (T ). The third best for each player
is that both ignore the scavengers and therefore lose some of the prey (R). The worst
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Fig. 2.32 Averaged cooperation fraction-Dr
0 �Dg

0 diagrams for (a) R¼ 1.5, P¼ 1, (b) R¼ 1,

P¼ 0, and (c) R¼ 4, P¼ 2. Games are played on He-SW (in the upper line) and SF (in the lower
line) with the average degree< k>¼ 8. IM is adopted as the strategy update rule

16 Also, multi-player Chicken game is sometimes used as a template for the discussion on

environmental problems like Hardin’s tragedy of commons (Hardin 1968) as mentioned before.
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option is that both players simultaneously abandon the prey to chase the scavengers,

since they run the risk of losing the whole prey (P).
A set of Chicken-type games satisfying T + S> 2R, such as Leader and Hero,

have a feature that is different from PD, where the mixing of S and T shared by focal

and opposing players can get more payoff than mutual Cs (or R), which is the best

cooperative solution in PD (R reciprocity). This quite unique feature of getting a

high payoff by sharing S and T is called Alternating Reciprocity (Browning and

Colman 2004) or ST-reciprocity. In terms of direct reciprocity, ST-reciprocity
seems to be as important as mutual cooperation in PD.

Crowley (2001) investigated ST-reciprocity in a series of numerical experiments,

where agents possessing a 2-length memory (capable of memorizing previous focal

and opposing actions) classifier system play generalized Hawk–Dove games. He

assumes four fundamental strategies for the classifier system: (1) AllC, always

offering C, (2) AllD, always offering D, (3) CAD, random responses initially,

followed by coordinated alternating responses (S and T ), and (4) DorC, random

responses initially, followed by repeated responses of S or T. He confirmed that ST-
reciprocity can be established by CAD or DorC classifiers in usual Hawk–Dove

games. However, in games having strong dilemmas, the AllD classifier dominates

the strategy space, eliminating CAD and DorC.

Browning and Colman (2004) also investigated ST-reciprocity by assuming

2� 2 games with a 6-length memory strategy (memorizing three previous iterations

of focal and opponent actions), where more effective ST-reciprocity can be

observed in Leader and Hero games satisfying T + S> 2R than in Chicken games

(which we should call pure Chicken to distinguish it from general Chicken games,

which include Leader and Hero) not satisfying T + S> 2R.
An important condition is that organized ST-reciprocity needs some asymmetric

cooperation, because the two players must offer C or D differently, and this differs

substantially from the PD situation. In fact, in the PD game, TFT (tit-for-tat) can

create stable cooperation (R reciprocity) under certain conditions (e.g., disregarding

error and noise effects). The TFT requires a 1-length memory that can only

remember the previous action of his opponent. It seems, however, that 1-length

memory cannot successfully produce ST reciprocity, since “alternating” reciprocity

inevitably requires information on the previous actions of both the focal player and

the opponent. Therefore, ST reciprocity requires 2-length memory, and 1-length

memory is insufficient. Therefore, it is necessary to embed an agent’s memory into

a model to obtain efficient ST reciprocity. Of course, assuming a memory-free

scenario, we could observe ST reciprocity to some extent, determined by the interior

stationary equilibrium with co-existing C and D. However, this ST reciprocity is

less efficient (and also, less intentional) than the memory entailing case discussed in

the present paper.

The most important goal of this section is to decide whether there is a relation-

ship between game structure (characterized by both the dilemma strength and the

extent of T+ S> 2R) and the emerging ST reciprocity phase. In other words, ST
reciprocity has different phases depending upon a game’s structure.
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For our example, we made two assumptions: (1) a player has a 2-length memory

strategy, and (2) the game has an infinite number of iterations. Due to the latter

assumption, we can explicitly determine a 32� 32 game structure matrix that

expresses respective payoffs for any gaming pairs among 25¼ 32 strategies.

Thus, an analytical approach is made possible by means of replicator dynamics.

We assumed that a player’s strategy is defined by a 5-bit string like “11010”. The
first bit indicates the player’s decision in favor of C (1) or D (0) at the beginning of a

game sequence. Each subsequent bit indicates the player’s decision in favor of C

(1) or D (0) when the previous consequence is P (mutual defection), R (mutual

cooperation), S (a focal and opponent offering C and D) or T (a focal and opponent

offering D and C), respectively. According to the strategy description, TFT and

PAVLOV are defined as “10101” and “11100,” respectively. The total number of

strategies is 25¼ 32. The idea of strategy depiction of the present model is basically

the same as the Look-up Table, Finite State Machine (FSM).

Assuming that a game is infinitely iterated, we can predict a periodic steady state

of game consequences for any pairs of 32 strategies, as shown in Fig. 2.33. Thus,

the game structure matrix M must be defined by an element value divided by the

period (for RST in Fig. 2.33, the element value is (R + S+ T)/3). This particular

simplification inevitably entails a certain error derived from transient influence. For

example, in a game played with AllD and TFT, the assumed method indicates that

both AllD and TFT get the same P on the ground of infinite mutual defection. And

yet, the exact reality is that TFT can never defeat AllD, because TFT is exploited by

AllD at the beginning of the session. In that sense, our assumption seems to be for a

hypothetical game only. However, we thought the advantage coming from this

particular assumption, allowing us to see an analytical picture by replicator dynam-

ics, was much more important than this drawback.

Assuming the number of game players is sufficiently large (namely, infinite and

well-mixed population), we can apply replicator dynamics to the game evolution as

described in Eq. (2.35):

Fig. 2.33 P, R, S, T sequences of any two of 32 strategies
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_si
si
¼ Tsi �M s� Ts �M s

� 	
: (2.60)

Both si and s indicate 32-row vectors. The former indicates the i-th strategy

expressed as si 2 S ¼ 1 0 � � � 0ð Þ; � � �; 0 � � � 0 1ð Þf g. The latter is a

strategy distribution at a certain time-step expressed by s ¼ s1 s2 � � � s32ð Þ.
The superscript T indicates a transposition.

In general, the number of equilibriums of Eq. (2.60) is
Xn

k ¼ 1
nCk, where n is the

number of strategies. There are about 4.29� 109 equilibria in this case (n¼ 32).

Hence, a perfect analytical approach based on replicator dynamics is almost

impossible.

Because of the difficulties of the perfectly analytical approach, we numerically

obtain an equilibrium strategy distribution by means of a recurrence formula

calculation for Eq. (2.60) and assuming initial distribution as

s ¼ 1=32 � � � 1=32ð Þ. We confirm that the result is not very sensitive to the

initial distribution, although the influence surely exists. The equilibrium strategy

distribution based on the random initial distribution is almost consistent with the

uniform case.

We varied the universal scaling parameters with �5 � D0g � 5 and

�5 � D0r � 5. Although we take overview on the result we obtained as following,

you can consult with Tanimoto and Sagara (2007b) if you are interested in more

detailed result.

The result expressed in a for of Dg
0 �Dr

0diagram is shown in Fig. 2.34, (b) rel-

ative payoff, defined by ([payoff]�R)/(R�P); (c) – (d) showing frequencies of

mutual defection, R-reciprocity and ST-reciprocity, respectively. For comparison,

(a) shows the relative payoff derived from the analytic solution where no-memory

(only 1 bit; C or D) agents playing games in an infinite and well-mixed population,

which is derived from the procedure explained in the previous sections.

What we have to address here, first of all after comparing Fig. 2.34(b) and (a), is

that the social averaged payoff is never less than R in any games even with strong

dilemmas composed of GID and RAD. This is because the 2-length memory acts to

support mutual cooperation; R-reciprocity, which is consistent with the fair Pareto

Optimum, at least. In other words, agents equipped with 2-length memory under

direct reciprocity situation (because they play infinite times with a same oppo-

nent17) can establish cooperative state where they obtain R at least in any dilemma

strength, or say, can establish R-reciprocity under any stronger dilemma is imposed

to the agents.

17 It is worthwhile to note that an individual agent in the assumed model is exposed to direct

reciprocity situation because the number of games played with a same opponent is presumed

infinite. But, viewing each of 32 strategies (not viewing each of agents), we can say this society is

well-mixed because we applied replicator dynamics to solve the equilibrium distribution of

strategies.
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Let us discuss about what happens in the area on Dg
0 �Dr

0diagram where ST-
reciprocity is beneficial than R-reciprocity, which is the area upper than the line of

S+ T¼ 2R drawn in Fig. 2.34. In the analytic solution, Chicken area shows gradual

payoff increase/ decrease, which is basically consistent with what we observed in

the sub-panel in Fig. 2.10.18 In region far from the line of S+ T¼ 2R, ST-reciproc-
ity, where social average payoff is larger than R, is realized. However, this is a

product of incidence. Since cooperators and defectors co-exist in a population,

happening C – D and D – C is inevitable. Thus, we should call this unintentional ST-
reciprocity. So our question should be how much more effective the current ST-
reciprocity works than this. Obviously, Fig. 2.34(b) shows more effective ST-
reciprocity than the analytic solution. Careful observation on the area upper than

the line of S + T¼ 2R makes us perceive that there are distinctly four phases;

denoted by (I), (II), (III) and (IV). Figure 2.35 shows time evolution of structure

distribution at each of representative game structures of Phase (I), (I) and (III),

denoted by Point 1, 2 and 3 (as shown in panel (d)).
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Fig. 2.34 Numerical result described on a Dg
0 �Dr

0diagram; (b) relative payoff, defined by

([payoff]�R) / (R�P); (c) – (d) showing frequencies of mutual defection, R-reciprocity and

ST-reciprocity, respectively. For comparison, (a) shows the relative payoff derived from the

analytic solution where no-memory (only 1 bit; C or D) agents playing games in a infinite and

well-mixed population. (a) Relative payoff of analytic solution, (b) Relative payoff, (c)

P frequency, (d) R frequency, (e) S or T frequency

18 That is just part of the Chicken area in Fig. 2.34 (a), because, in Fig. 2.10, we assumed R¼ 1 &

P¼ 1, and �1 � Dg � 1 & �1 � Dr � 1.
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Fig. 2.35 Strategy distribution in each evolution process; (a) Point 1 (representing Phase I), (b)

Point 2 (Phase II), and (c) Point 3 (Phase III). Panel (d) indicates game structures; Dg
0 and Dr

0.
Legends of D(C)**** mean 0(1)**** implying respective 5 bit strategies
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By a series of deliberate investigations on strategy distribution at equilibrium,

detailed time evolution etc., the following facts are elucidated (Tanimoto and

Sagara 2007b).

2.8.1 ST-Reciprocity in Phase (I)

As shown in Fig. 2.34(b), Phase (I) extends to a dilemma-free Trivial game area. In

Fig 2.25(a), it turns out that “***01” occupies most of the strategy distribution. If

two players having “***01” strategy play iterated games, it is possible that T and

S appear alternately, which result in 2-periodic ST or TS. Hence, in Phase (I),

coordinated alternating games just like an effective role-play bringing S and T are

performed; this can be said to be the same phase of ST-reciprocity that Crowley

(2001) called ST-reciprocity established by a CAD classifier. Then, we call this

particular ST-reciprocity emerging in Phase (I) as a “CAD-type ST-reciprocity”. In
the same manner, if two players, one having “**011” and another having “**101”,

play iterated games, 3-periodic RST can be possible. This is, however, proved

unlikely, since we could find very few “**011” strategies in Phase (I), which is

also confirmed by Fig. 2.25(a).

Let us carefully observe the evolutionary process shown in Fig. 2.35(a). We can

see the main remnant strategies on the equilibrium at the right margin of the graph

(e.g. “D1101 (01101)”), while temporarily prosperous strategies on the evolution

process at the upper margin are enclosed by a break line rectangle (e.g. “D1111

(01111)”). At the early stage of the evolution, strategies trying to exploit others

perish. At this moment, the final remnant strategies are minorities beside the

temporarily prosperous strategies aiming at obtaining R at least. The remnants,

however, gradually have grown over temporary strategies, because they can obtain

higher payoff by means of CAD-type ST-reciprocity than R-reciprocity. Finally,
they can overwhelm the temporary strategies.

Summing up so far, the major cause for CAD-type ST-reciprocity observed in

Phase (I) is that the strategy “***01” has evolved as the major strategy in order to

benefit the game’s structural feature characterized by T + S> 2R.

2.8.2 ST-Reciprocity in Phase (II)

In Phase (II) where a Chicken-type dilemma exists, strategy “***01” cannot

survive, which inevitably leads to another ST-reciprocity phase. As shown in

Fig. 2.35(b), there are three major strategies on the equilibrium: “*1010”;

“*1110” and “*0010”. These three strategies prompt players to offer C after S or

D after T. So we could say from a figurative point of view that these strategies are

ordered to play in the same manner as at the previous step irrespective of being

exploited or exploiting the opponent. This implies that ST-reciprocity occurring in
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Phase (II) seems to be the same phase that Crowley (2001) called an ST-reciprocity
established by DorC classifier. Thus, we call this particular ST-reciprocity emerging

in Phase (II) “DorC-type ST-reciprocity”. This particular system makes sense for a

certain player who can obtain not only S but also T at a flat-rate base: Even if he has

been exploited by someone for some time, he has another chance to exploit

someone in return by changing his opponent. In short, a player never changes his

role for a single session playing with a certain opponent, but he does change his role

in cases of shuffling his opponent.

One plausible explanation for this emergence of DorC-type ST-reciprocity
instead of CAD-type ST-reciprocity in Phase (II) is that strategy “***01” (playing

an efficient role within a single playing session) is inevitably culled out in the path

of evolutionary process due to the dilemma stress brought on by GID. This is

confirmed by comparing Fig. 2.35(b) with Fig. 2.35(a) and (c). Namely, at the early

stage of the evolution, strategies for CAD-type ST-reciprocity perish; however,

strategies for DorC-type ST-reciprocity can never be dominated by initially-

defective strategies “D**** (0****)” (as in Point 3; Phase (III)). Eventually,

Strategies for DorC-type ST-reciprocity stably survive.

2.8.3 ST-Reciprocity in Phase (III)

It might be interesting to raise the question of why ST-reciprocity cannot be

observed in Phase (III) even though satisfying T + S> 2R. With increasing dilemma

stress expressed by Dg
0, the evolutionary process cannot maintain DorC-type ST-

reciprocity, then gives up ST-reciprocity itself and selects the second-best solution,

which is simple mutual cooperation to gain R by R-reciprocity. In the course of the

evolution process (Fig. 2.35(c)), a group of initially-defective strategies “D****

(0****)” that are likely trapped by consecutive Ps or periodic Ps are dominant.

Under this particular circumstance, “C0100 (10100)” is a minority that gradually

overwhelms others, because “C0100 (10100)”s can obtain Rs for each other.

Finally, this strategy monopolizes.

Let us analyze the phase transition from (II) to (III).

Observing the equilibrium, we can notice a monopoly by strategy “C0100

(10100)” that can be named #9 in the right column of Fig. 2.33. This fact implies

that s9 is one of the equilibriums of Eq. (2.60). Eigenvalues of Jacobi matrix J can

be solved in an analytical way that leads to 32 eigenvalues for the equilibrium.

Namely, 0 (7th repeated), � 1ffiffi
2
p (9th repeated), �2� 1

2
ffiffi
2
p (single), � 1

2
ffiffi
2
p þ r � cos

π
4
þ θ

� �
(9th repeated), �2� 1

2
ffiffi
2
p þ 1

2
� 4� 1

2
ffiffi
2
p þ r � cos π

4
þ θ

� �� �
(6th repeated),

where D
0
g ¼ �0:5þ r cos θ þ sin θð Þ and D

0
r ¼ �0:5� r cos θ � sin θð Þ. The nec-

essary and sufficient condition to avoid negative signs for these 32 eigenvalues is;

cos π
4
þ θ

� �
< 1

r � 1

2
ffiffi
2
p .
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The relationship on the critical situation between θ and r can be drawn in

Fig. 2.36 that shows the feasible solutions region. The threshold is in the Leader

game region. This schematic expression makes us understand that all 32 eigenvalues

become non-positive unless the angle composed by linking the plots of S, R and

T would be less than π/2 rad, which means that s9 becomes a stable equilibrium.

That is to say, if θ becomes large, so that the S-R-T angle exceeds π/2 rad, only

“10100”, a very stiff and intransigent strategy that can endure strong dilemma stress

for maintaining mutual cooperation (R-reciprocity), can survive. Inversely, if θ is

less than the threshold, meaning less dilemma stress relatively compared with the

extent of S+ T-2R (meaning a benefit of ST-reciprocity) strategies to attain DorC-

type ST-reciprocity such as “*1010”, “*1110” and “*0010” can survive.

2.8.4 ST-Reciprocity in Phase (IV)

By observing detailed strategy distribution carefully, it turns out that in Phase (IV),

appeared in region of S+ T>> 2R of PD area, both CAD-type and CorD-type ST-
reciprocities simultaneously happen only when S+ T >> 2R is satisfied.

Let us summarize the discussion so far. What we have to mention, first of all, is

that the effect of 2-length memory indeed helps cooperation to avoid mutual

defection. In this sense, the dilemma has completely suppressed by the assistance

of memory strategy.

1. If T+ S> 2R and the game is dilemma free, CAD-type ST-reciprocity where

S and T are alternating within a single game session can evolve.

2. If T + S> 2R and the game contains a dilemma, DorC-type ST-reciprocity where
S and T are alternating in several game sessions can evolve.

Fig. 2.36 The critical

situation if all the

eigenvalues are negative
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3. If T+ S> 2R but the game contains a strong dilemma crossing over the critical

condition, ST-reciprocity cannot evolve; thus, only the mutual cooperation

backed by R-reciprocity emerges.
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Chapter 3

Network Reciprocity

Abstract In the previous chapter, we discussed Nowak’s five fundamental reci-

procity mechanisms for adding social viscosity: kin selection, direct reciprocity,

indirect reciprocity, network reciprocity, and group selection. In this chapter, we

focus specifically on network reciprocity, as this mechanism has received the most

attention in communities of statistical physicists and theoretical biologists who

specialize in evolutionary game theory. Since 1992, when the first study of the

spatial prisoner’s dilemma (SPD) was conducted by Nowak and May (1992), the

number of papers dealing with network reciprocity has increased to several thou-

sand. The main reason for this is that network reciprocity is regarded as the most

important and interesting of the mechanisms from an application point of view. In

fact, we can observe a lot of evidence in real life of network reciprocity working to

establish mutual cooperation not only in human social systems but also in those of

other animal species. The network reciprocity mechanism relies on two effects. The

first is limiting the number of game opponents (that is, “depressing anonymity,”

rather than having an infinite and well-mixed population), and the second is a local

adaptation mechanism, in which an agent copies a strategy from a neighbor linked

by a network. These two effects explain how cooperators survive in a social

dilemma system, even though it requires agents to use only the simplest strat-

egy—either cooperation (C) or defection (D), and this has attracted biologists who

guess that network reciprocity may explain the evolution of cooperation even

among primitive organisms without any sophisticated intelligence.

In this chapter, we begin to discuss the factors that influence network reciprocity,

e.g., the underlying network topology, the update rule, and whether synchronous or

asynchronous update are more influential in enhancing network reciprocity.

We also discuss how the initial cooperation fraction influences the equilibrium

when we are concerned with network reciprocity.

After this, we discuss several new mechanisms relevant to network reciprocity,

like coevolution, where not only strategy but also network topology can evolve.

Also, we discuss how the definition of strategy, either discrete (binary – C or D),

mixed, or continuous strategy, influences the features of network reciprocity.

Finally, we try to draw a holistic picture to understand the network reciprocity

from a dynamics point of view, which may end the bells-and-whistles situation in
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the field, with one paper after another claiming a new model for enhancing network

reciprocity, but none providing an explanation for a substantial mechanism working

behind the network reciprocity.

3.1 What Is Most Influential to Enhance Network

Reciprocity? Is Topology So Critically Influential

on Network Reciprocity?

As mentioned just above, in the last decades, many studies have dealt with network

reciprocity. From the network topology viewpoint, previous works have assumed

evolutionary games to be played not only on regular graphs where respective

vertices have identical degrees (e.g., a ring or square lattice, which we refer to as

regular networks), but also on complex networks where vertices have different

degrees, which we call degree-heterogeneous networks. Figure 3.1 shows several

representative networks (e.g., Tang et al. 2006). Examples of degree-heterogeneous

Fig. 3.1 Regular and degree-heterogeneous networks. Ring and Lattice are representative regular

networks, while Small World (SW) and Scale Free (SF) are degree-heterogeneous ones. A SW can

be generated from a regular network like Ring and Lattice by replacing (or adding) random

short cuts
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networks include the small-world (SW) network (e.g., Tomochi 2004) and the

scale-free (SF) network (e.g., Gomez-Gardenes et al. 2007). In particular, it has

been shown that an SF network enhances cooperation more easily than any other

networks, since it allows the existence of hub C-agents, which compel cooperation

among their neighbors, leading to strong and stable cooperation. Moreover, some

reports have found that a difference in the assortativity coefficient (Newman 2002)

in degree-heterogeneous networks (Rong et al. 2007; Roca et al. 2009; Tanimoto

2010) changes the robustness of the dilemma. Thus, it is reasonable to say that most

previous works have focused on network reciprocity with respect to the network

topology. A simple question comes our mind is whether network topology really

dominates the network reciprocity as we have imagined, when we note there are

other factors affecting on the network reciprocity other than topology; such as

strategy update method and so forth. One problem is that factors other than network

topology are assumed to have different properties respectively in different respec-

tive studies, which implies that we can not compare the previous works on a same

ground despite huge number of papers have been reported. If the factors such as

update rules, update dynamics, average degree, and population size influence

network reciprocity, we cannot compare previous results with each other.

In the case of update rules, four particular rules have been studied widely. The

simplest of them is the so-called Best Imitation (IM), where a focal player copies the

strategy of the neighbor getting the largest payoff in the current time step. Two others

can be classified as pairwise stochastic updating, in which a player compares his or her

payoff with that of a randomly selected neighbor and copies the neighbor’s strategy
according to a certain function. In the second rule, the so-called Fermi function

(Fermi-PW or F-PW) and in the third rule, the linear function of the payoff difference

is adopted (Linear-PW or L-PW). The fourth rule is also stochastic, each focal player

chooses either to repeat his or her strategy or to take on a neighbor’s strategy with a

probability proportional to the payoffs in the previous step (Roulette).

Also, there are two update dynamics, synchronous update and asynchronous

update, which are known to influence the results, according to work reported by

Grilo and Correia (2007).

Reviewing previous studies on network reciprocity, we notice that each study

draws a different conclusion based on its own particular assumptions relating to the

various choices we have described, although several comprehensive review papers

have been shown (Szabo and Fath 2007; Perc and Szolnoki 2010). Thus, we cannot

generally answer in a quantitative manner such questions as whether network

topology is more influential than the update rule or; whether the factorial effect

of degree-heterogeneous vis-�a-vis regular networks is larger than that of synchro-

nous vis-�a-vis asynchronous updates. Although there have been several earlier

studies suggesting that the substance of network reciprocity might be relevant to

the time scale of strategy adaptation on the network (e.g., Santos et al. 2006b), and

also suggesting that the co-evolution model could explain the network reciprocity

(e.g., Szolnoki and Perc 2009a, b), it seems difficult to generalize which factors

determine network reciprocity as a whole.
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On this point, the studies of Nowak (2006) and Ohtsuki et al. (2006) seem

important. They deduced that, in general, a smaller average degree< k> of the

network implies more robust dynamics in playing the dilemma regardless of

network topology. However, their deductive approach was premised on the death-

birth update rule, which is similar to the roulette selection described above (spe-

cifically, it does not consider the focal player’s contribution). They also postulated

weak selection and a Donor & Recipient games (descried in the previous chapter), a

special case of PD. Therefore, it is still not clear whether their results are universal

and will hold in the face of changes in the other assumptions (update rules, for

example).

We also point out that most of the previous work has focused only on the network

effect, ignoring the effects from assumptions made about other conditions, which is

more significant than the network topology. Studies by Roca et al. (2006) and

Tomassini et al. (2007) are exceptions, as they considered other effects extensively

and also acknowledged that the point is open to further discussion. Grilo and Correia

(2008) examined network reciprocity mainly for SW networks with simultaneous

consideration of various update rules and synchronism, but there has not yet been a

comprehensive look at what is important in terms of the network reciprocity.

Regarding the technical question of how to develop a comprehensive perspective

that considers various independent factors and several different levels, we suggest

applying the so-called FFDOE (Full Factorial Design of Experiments), which is a

well-established statistical approach used in various engineering fields. Let us sup-

pose, for example, that there are three factors (A�B�C) with respective levels (a1,a2
/ b1, b2, b3, b4 / c1, c2, c3). Considering all combinations; 2� 4� 3¼ 24 cases, we

can obtain each factorial effect. For example, the factorial effect of A is expressed

by the two averages derived from the 12 cases of a1� b*� c* and a2� b*� c*

(where * indicates wildcard). We can also evaluate which factors are more influential

than others by comparing the F-value of each, derived from an ANOVA (Analysis of

Variance) process. F-value is regarded as a guidepost to evaluate whether a certain

factor is significant or not, which is coming from F-test theory. In general, the larger
F-value means that the factorial effect is more influential.

In this section, we discuss how various factors influence network reciprocity in

order to obtain a holistic picture of what is significant in an evolutionary game on a

network. Our approach is to apply a series of systematic numerical experiments, or

say a series of systematic simulations based on FFDOE, which will enable us to

compare the quantitative factorial effects comprehensively.

3.1.1 Model Description

Game Setting

According to the discussion expanded in the previous chapter, by assuming R¼ 1

and P¼ 0, we define the dilemma from a stag-hunt type of game as Dr¼P� S and
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from a chicken type of game as Dg¼ T�R,1 and in this case the payoff matrix can

be given as

R S
T P

� �
¼ 1 �Dr

1þ Dg 0

� �
: ð3:1Þ

In this section, we limit the PD game class by assuming that 0 � Dg � 1 and

0 � Dr � 1. Each agent plays 2� 2 games with all other neighboring agents

connected via his or her links that will be explained in the next section. The total

payoff is evaluated by summing all games played by a certain agent at a certain

time step.

Networks

We assume three levels for the number of players, N¼ {1600, 2500, 3600}, and

four levels for average degree, <k>¼ {4, 6, 8, 12}.

We investigate eight types of network structures: (i) lattice, (ii) cycle, (iii)

homogeneous SW (made from a cycle graph by replacing several links with random

shortcuts, with a shortcut probability of 0.2, so that every vertex has the same

degree), and (iv) heterogeneous SW (hetero-SW) which is the same as Watts–

Strogatz SW (1998), which is generated from a cycle graph with swapping prob-

ability 0.2, (v) a regular random network (RR), and three SF networks based on the

BA algorithm (SF) (Barabasi and Albert 1999). In the SF networks, we limit the

assortativity coefficient to 0.15, 0, or �0.15 by the algorithm proposed by Xulvi–

Brunet and Sokolov (2004); those three networks will be indicated by (vi) SF(0.15),

(vii) SF(0), and (viii) SF(�0.15), respectively. Thus, the factor for network struc-

ture has eight levels. In preliminary experiments, we added (ix) a Erdős–Rényi

random network (E-R) (Bollobás 1985). In this case, we cannot help

excluding< k>¼ 4 from the average degree levels to meet the inequality < k
>� ln N (Tomochi 2004), which is necessary to obtain a single clumpy random

network. However, considering that a small average degree is important for com-

parison with previous works, and having confirmed that the general tendency of the

result with (ix) E-R (and without< k>¼ 4) is similar to the result without E-R (and

with< k>¼ 4),2 we decided to exclude the E-R random network in order to keep

four levels for the average degree factor.

1 For a more precise discussion, we should use Dg
0 and Dr

0 by varying R while keeping P¼ 0 for

example, instead of relying on Dg and Dr. Although we can go along that, hereafter, throughout

the following text in the book, we assume assuming R¼ 1 and P¼ 0, and apply Dg
0 (¼ Dg

0) and Dr

(¼ Dr
0) as a set of scaling parameters for simplicity and transparency for the discussion.

2 Not only this point but also all the detailed result provided in this section can be referenced to

Yamauchi et al. (2010, 2011).
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Strategy Update and Its Dynamics

Concerning the update rule, we assume, as mentioned before, the four levels shown

in Table 3.1. Those four are commonly used in previous studies. In the first case of

Fermi-PW, a focal player i adopts a randomly chosen player j’s strategy with

probability calculated by a Fermi function. Although we recognize that the noise

effect influences the cooperation level to some extent (Vukov et al. 2006), the

parameter τ in the Fermi function is set to 0.2. The second level is Linear-PW, in

which the strategy of a player j is chosen as in Fermi-PW, but the probability is given

by a linear function. One important difference between Fermi-PW and Linear-PW is

that the former might allow copying an opponent’s strategy even if the opponent’s
strategy has a far smaller payoff than that of the focal player. In a sense, this allows

the adoption of a worse strategy, which may help to avoid local maxima during

evolution. The third level is IM, in which the focal player i imitates the strategy with

the maximum payoff among all the strategies taken by the focal player and his or her

immediate neighbors. The last level is roulette, in which a focal player chooses from

among all the strategies taken by the focal player and his /her immediate neighbors

with a probability proportional to the payoff (or, strictly speaking, to the payoff

difference with the minimum of the neighbors’ payoffs; see Table 3.1).
For update dynamics, we use two levels. In synchronous updating, after playing

all games, all players update their strategy simultaneously. In asynchronous

updating, a randomly chosen player plays the game immediately followed by

his/her strategy update; following that, another randomly chosen player plays and

updates.

Mutation

We assume that an agent is infected with a mutation in the strategy update process

where he or she takes C or D randomly with probability ε. We assume two level of

the mutations; ε¼ {0, 0.01}.

Table 3.1 Update rules. We

assumed the following four

rules in the experiment

Update rules Procedures

Fermi-PW WSi S j
¼ 1

1þexp Πi�Π jð Þ=τ½ �
Linear-PW WSi S j

¼ Π j�Πi

max ki ;k jð Þ max T;1ð Þ�min S;0ð Þ½ �
IM

Si ¼ Si if Πi > max Π 2 Nif g
S j if Π j ¼ max Π 2 Nif g

�

Roulette
WS j Si ¼

Π j�min
k2Ni

Πk½ �X
j2Ni

Π j �min
k2Ni

Πk½ �
� �

Si is the strategy of the ith agent, ki is the degree of i, Πi is the

payoff of i, Ni is the neighbor agents of i (in the case of Roulette

selection, Ni includes i), τ is an assumed constant, andW Si  S j

is the probability of i’s strategy being overwritten by j’s
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Experimental Setting

We simulate a series of perfect factorial experiments consisting of

3� 4� 4� 2� 2� 8¼ 1536 combination cases, reflecting the above-described

choices: (a) the number of players has three levels, (b) the average degree has

four levels, (c) the update rule has four levels, (d) the update dynamics has two

levels, (e) the mutation has two levels, and (f) the network has eight levels, Each

simulation runs as follows. Initially, an equal percentage of strategies are distrib-

uted randomly to the players allocated on different vertices of the network. Then,

several generations are run until the frequency of cooperation arrives at a certain

quasi-equilibrium. If the frequency of cooperation continues fluctuating, we obtain

the frequency of cooperation for the last 100 generations over a 3000-generation

run. We conduct this procedure at 11� 11 points of the PD area (0 � Dg � 1, 0

� Dr � 1) 20 times to draw 121 ensemble averages.

As the characteristic values used to evaluate cooperation, we defined three

sub-classes of PD. The first one is a single algebraic average of those 121 ensemble

averages covering all PD areas (hereafter All). The second is another average of

11 points featured by Dg ¼ Dr, which is the so-called Donor & Recipient Game

(hereafter D&R). The last is another 11-points average collected from the region of

Dr ¼ 0, which consists of boundary games between the PD and Chicken games

featured without stag-hunt type dilemma (hereafter PDCH). Many previous works

prefer to postulate PDCH for representing PD, because it can be characterized by a

single dilemma parameter Dg.

3.1.2 Results and Discussion

Which Main Effect Is Significant?

Figure 3.2 shows the F-value for each factor normalized by the largest one, which is

the factorial effect of the update rule. F-values are derived from an analysis of

variance (ANOVA) based on the result obtained by FFDOE. In ANOVA, a larger

F-value implies a greater factorial effect, which significantly influences the equi-

librium frequency of cooperation.

Examining the differences that arise in choosing which game area is evaluated,

we found that All and D&R had similar tendencies in general but PDCH appeared

different. In PDCH, the all factorial effects except for the number of players were

observed to be stronger than those for All and D&R. In particular, the effect of the

network structure is remarkably stronger than the case for All and D&R. This

implies that one might overestimate the network reciprocity that results from

network topology when using the boundary games (PDCH) to evaluate the coop-

eration level, as the results are not consistent with the network reciprocity obtained

3.1 What Is Most Influential to Enhance Network Reciprocity? Is Topology So. . . 75



for the all-PD-game area. The D&R set is much better as a representing archetype

for all PD games.

As for the fundamental question of which factor is more important than the

others, our results show that the factorial effects from the update rule and its

dynamics are the most and the second-most significant; they are more significant

than network topology. The factorial effect of network topology (meaning the

influence caused by network structural differences), with which most of the previ-

ous studies have been concerned, is not so significant, being similar to the effects

due to average degree and mutation.

Main Factorial Effects

Figure 3.3 shows the main factorial effects except for the effects of the network

structure. The bold lines indicate level average values and distributions mean

frequency of all combination cases that are scattering from entire defective situation

to reasonable cooperation level in X-axis. For example, in the case of (a) the number

of agents, Y-axis values of three bar lines are the average cooperation fractions of

the respective experimental levels, which are based on 1536/3¼ 512 combination

cases. In the following text, we will restrict our discussion to the results for All

unless otherwise noted, because no significant differences among the results of All,

D&R, and PDCH were found.

Figure 3.3(a) shows no sensitivity to the number of agents this implies that a

social size of N¼ 1600 is sufficient for this simulation study.

Remarkably, we can see an irregular behavior in which< k>¼ 6 is observed to

be slightly more cooperative than< k>¼ 4 (Fig. 3.3(b)). This is inconsistent with

the report by Nowak (2006) and Ohtsuki et al. (2006), who found that a lower

average degree tends to enhance cooperation. This contrasting result might be

Fig. 3.2 Result of ANOVA for the main effect analyzed on different dilemma areas. Values along

the Y-axis indicate the normalized F-value. Plot legend is as follows: Closed blue diamonds
represent the number of agents; circles, the average degree; squares, the strategy update rule;

closed green diamonds, the update dynamics; plus signs, the mutation rate; and closed triangles,
the network structure. All means averages over all PD area. D & R and PDCH indicate averages of

Donor and Recipient games and boundary games between PD and Chicken (see text)
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drawn if we are concerned on the average effect considered by every network

structure, number of agents, up date rules, synchronism, and others on average.

In fact, we can see results that are consistent with Nowak and Ohtsuki when

considering certain interaction effects, as will be discussed later. One important

thing to note is that the statement “a lower average degree tends to enhance

cooperation” is true under certain conditions, but we cannot say the average degree

dominates (or can explain for) network reciprocity, because its factorial effects are

subtle (Fig. 3.3(b)) and less than the factorial effects due to the update rule and

dynamics (Fig. 3.2).

Observing Fig. 3.3(c), we see that IM is the only deterministic update rule that

shows a much stronger cooperation-enhancing effect than others. Concerning the

update dynamics illustrated in Fig. 3.3(d), Asynchronous is more significant than

Synchronous in supporting cooperation, which is consistent with previous studies

Fig. 3.3 Frequency distribution of average cooperation fraction and mean frequency of cooper-

ation of each level for (a) number of agents, (b) average degree, (c) strategy update rule, (d) update

dynamics, and (e) mutation rate. The bold lines indicate level average values and distributions

mean frequency of all combination cases that are scattering from entire defective situation to

reasonable cooperation level in X-axis
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(e.g., Roca et al. 2006). The results of Fig. 3.3(e) seem plausible, since mutation

damages cooperation by destroying C clusters.

Main Factorial Effect of Network Structure

Figure 3.4 shows the factorial effects of the network structure for both All and

PDCH. The results for D&R were similar to those for All. Observing PDCH in

Fig. 3.4(b), we can see that the more degree-heterogeneous network lead to more

cooperative situations, this is consistent with what Santos et al. (2006a) found.

However, in All there is a different tendency, as can be seen in Fig. 3.4(a).

Amazingly, aside from the SF networks with neutral and negative assortative

mixing, that is, SF(0) and SF(�0.15), the degree-heterogeneous networks, such as

He-SW, RR, and SF(0.15) show less cooperation than the regular networks, i.e., the

high spatial regularity graphs, cycle and lattice. Usually, the fact that degree-

heterogeneous networks such as FS enhance cooperation is explained by the

generally accepted suggestion that a hub C agent (that is, a hub vertex occupied

by a C strategy) makes its neighbors maintain a C strategy because of its large

accumulated payoff. In this sense, high heterogeneity, that is, a broad degree

distribution allows high degree (hub) agents to exist. Although it might seem that

the observations in Fig. 3.3 are opposed to this general consensus, that is not

necessarily so. When Dr > 0, a hub C agent is more difficult to keep C than

when Dr ¼ 0 because for a hub C agent in a degree-heterogeneous network being

exploited by D neighbors (obtaining S, in other words) whenP > S (Dr > 0) is more

serious than being exploited by D neighbors when P ¼ S (Dr ¼ 0). Thus, we can

predict that if all PD game area is considered, regular networks are not as much

weaker than degree-heterogeneous networks as the general consensus based on the

previous studies. It should be noted that just observing PDCH game area investi-

gation is dangerous, although it is easier due to a single dilemma parameter; Dg. If

you prefer a single dilemma parameter system like PDCH and still try to evaluate

all PD games, D&R (Dg ¼ Dr) is better than PDCH, which is already insisted in the

earlier section.

Fig. 3.4 Frequency of

cooperation for each

network. (a) shows the

results analyzed on All PD

game area and (b) shows

results for PDCH area
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Second Interaction of Update Rule�Update Dynamics

Figure 3.5 shows the second interactions normalized by the update rule� update

dynamics for different PD areas in a manner similar to that used for Fig. 3.2. The

interactions relating to the number of agents are not shown because they are

negligible. The interaction of the update rule� update dynamics is particularly

significant, whereas the other interactions are stronger or weaker depending on PD

area.

Let us confirm the details of the interaction of update rule� update dynamics in

Fig. 3.6, which displays not only average values but also maximum and minimum

values. Obviously, the cooperation level when adopting either Fermi-PW or Linear-

PW is independent of whether Synchronous or Asynchronous is chosen, which is

consistent with the report by Grilo and Correia (2008). They suggest that this

Fig. 3.5 Result of ANOVA for the second interaction analyzed on various dilemma areas. Y-axis
shows the normalized F-value. Legends are shown at right side of the figure. The second

interactions normalized by the update rule� update dynamics for different PD areas in a manner

similar to that used for Fig. 3.2

Fig. 3.6 The second interaction of update rule� update dynamics. Maximum value, minimum

value, and average value under the condition of each update rule. Blue plots show the results of

synchronous update, and red plots show that of asynchronous update

3.1 What Is Most Influential to Enhance Network Reciprocity? Is Topology So. . . 79



phenomenon is explained by a situation in which a certain agent tends not to copy

an opponent’s strategy when the opponent has fewer payoff, which they call Payoff
Monotonicity. From a microscopic view, there are many agents who do not change

their own strategy due to Payoff Monotonicity when a pairwise update is imposed.

It is as if the agents’ strategy updates are taking place in sequential manner even

though the Synchronous update is imposed. This explains why there is no signif-

icant difference between Synchronous and Asynchronous in Fig. 3.6. Furthermore,

this particular process, which entails gradual updating in a single time step, that is,

as if there is asynchronous updating even if Synchronous was selected, prevents D

agents from amplifying (see Fig. 3.10). Thus in IM and RS, which do not contain

this function, the Asynchronous update enhances cooperation more than Synchro-

nous, since the cooperation diffusion effect occurs more effectively for the Asyn-

chronous update than for Synchronous.

Second Interaction Relating to Mutations

Figure 3.7 shows the interactions of mutations with update rule (a) as well as with

network structure (b) expressed in the same manner as in Fig. 3.6.
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Fig. 3.7 The second interactions of mutations with update rule (a) as well as with network

structure (b). Maximum value, minimum value, and average value under the condition of (a)

each update rule and (b) each network structure. Blue plots show the results of no update error, and

red plots show the results with error rate ε¼ 0.01
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Concerning the update rule illustrated in Fig. 3.7(a), we note that RS has no

significant difference between the cases with and without mutations. This results

from the fact that RS contains a probabilistic element in its copying process. In

contrast, for other update rules, including pairwise rules that contain some proba-

bilistic facet not in the update rule itself but in the random process used to select an

opponent, mutation evidently devastates cooperation. This can be explained by the

fact that, for update rules other than RS, it is difficult to expel D agents once they

have successfully invaded a C cluster, which inevitably makes it difficult to rebuild

the C cluster once it has been impaired. This is consistent with what Tomassini

et al. (2007) reported.

Observing the interaction with the network structure illustrated in Fig. 3.7(b), we

can see SF is significantly affected by the consideration of a mutation. This can be

explained by the fact that hub C agents that can take charge of diffusing a C strategy

are going to spread a D strategy when mutated from C to D, which is consistent with

the well-known observation that SF free networks such as the Internet are fragile in

the face of attacks concentrated on hub nodes.

Second Interaction Relating to Average Degree

Figure 3.8 shows the interactions between the average degree and the update rule.

As mentioned before, the statement by Ohtsuki et al. (2006) that “a smaller average

degree< k> of the network implies more robust dynamics against the dilemma

irrespective of network topology” (Ohtsuki et al. 2006) is premised on the death-

birth update rule, that is, more or less, similar to the RS. Certainly, we can confirm

here that their statement is true when RS is assumed (Fig. 3.8(d)) as well as for

pairwise rules (Fig. 3.8(a), (b)) despite a feeble tendency in these cases. However,
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Fig. 3.8 The second interactions between the average degree and the update rule. Maximum

value, minimum value, and average value on respective average degree under the condition of (a)

F-PW, (b) L-PW, (c) IM, and (d) RS
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the IM case is obviously different, as an irregular peak at< k>¼ 6 is observed.

This is why we cannot see the consistent tendency with the Ohtsuki’s statement as

the whole main factorial effect for average degree in Fig. 3.3(b). It is important to

address that the Ohtsuki’s statement cannot be permissively interpreted by “average

degree on networks determines network reciprocity in PD games,” although their

deductive work is possibly perfect on the ground of analogy or consistency to the

so-called Hamilton principle (Hamilton 1964) expressed by a simple inequality

equation explaining for a question when collective cooperation can be evolved

under dilemma situations.

Third Interaction

Figure 3.9 shows the third interaction effect in the update rule� update

dynamics� network structure, which has the largest F-value among all the third

interactions. Figure 3.9 is a breakdown of Fig. 3.6 into their respective network

structures. When pairwise update is used, there is none of significant difference

between Synchronous and Asynchronous update among all networks structures. If

IM is used, however, Asynchronous operation enhances more cooperation than

Synchronous, this tendency is evident for SF, especially for SF with negative

assortative mixing. Surprisingly, if IM and Synchronous update are chosen, SF

(0) and SF (0.15) become the worst and second worst networks for cooperation.

Fig. 3.9 The third interaction effect in the update rule� update dynamics� network structure.

Maximum value, minimum value, and average value of (a) Fermi-PW, (b) Linear-PW, (c) IM, (d)

Roulette selection update rules on each network. Blue plots show the results of synchronous

update, and red plots show results of asynchronous update
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This indicates that degree-heterogeneous networks are not always the most effec-

tive in enhancing cooperation. This disagrees with the existing consensus, but it can

be explained as follows. Under the condition of both IM and Synchronous, D agents

that are initially allocated on high-degree vertices (say, hub D agents) can diffuse

the D strategy quickly and efficiently through a degree-heterogeneous network

structure, which is counterproductive to the generally recognized hub effect of SF

networks to support cooperation. In contrast, if Asynchronous update dynamics are

put into effect, the strategy diffusion during a single time step (i.e., the discrete time

step at which point all agents have finished strategy refreshing) is gradual so that a

hub D agent can be taken over by a C strategy copied from a neighboring hub

C. Figure 3.10 illustrates those two different scenarios for Synchronous and Asyn-

chronous updating, which was presented in our previous report (Yamauchi

et al. 2010). In RS, Asynchronous is superior to Synchronous at enhancing coop-

eration for every network except Cycle, where network reciprocity is so weak that it

is not possible to attain any cooperative germs.

Fig. 3.10 Intuition of SF with synchronous and asynchronous updating. In synchronous updating,

hub C player refers to neighbor hub D’s strategy easily, while in asynchronous updating, players

surrounding hub C change to C, but players surrounding hub D change to D in the middle of a

generation, which causes a reversal of the hubs’ payoff. Subsequently, the hub D player refers to

hub C’s strategy
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Summary

We have conducted a series of systematic FFDOE considering all factors related to

network reciprocity, such as the number of agents, average degree, update rule,

update dynamics, network structure, and mutation (noise of strategy) in order to

clarify which effects dominate network reciprocity and what is network reciprocity.

For the experimental evaluation, we considered three PD game areas: All, PDCH,

and D&R. To supplement our previous work, we added a new factor (mutation),

and revised some levels, which seems meaningful to draw more robust results,

Our first result, which is consistent with what we saw in our previous work, is

that strategy update rules and update dynamics are much more significant than

network topology. Whether the mutation is considered or not is more influential

than the average degree, which has been accepted as the primary factor explaining

the network reciprocity originally reported by Ohtsuki et al. (2006).

Our analysis of the interactions indicates that Ohtsuki’s statement, “the effect of

average degree, where a smaller degree network can be more robust for coopera-

tion,” is questionable and not universal. If Imitation Max is assumed to be the

update rule, this statement is invalid.

Furthermore, if Imitation Max and Synchronous are used for updating, the SF

network, one of the representative degree-heterogeneous topologies, shows only

meager enhancing of cooperation compared with regular graphs. In this condition,

the cycle graph offers the most favorable conditions for supporting cooperation.

These findings can be explained by the relationship between the network topol-

ogy and the stochastic characteristics of strategy updating, in other words, which

network structure is suitable to a certain updating (rule and dynamics) is the most

dominant for supporting cooperation.

Finally, we find that the PD game type chosen for evaluation is very important

and has great influence on the consequence. Boundary games between PD and

Chicken, commonly used as an archetype for PD, tend to overestimate the network

reciprocity of Scale Free networks.

3.2 Effect of the Initial Fraction of Cooperators

on Cooperative Behavior in the Evolutionary

Prisoner’s Dilemma Game

Concerning the detailed content discussed in this section, one should consult with

Shigaki et al. (2013). In spite of the relatively large body of work concerning

network reciprocity that has accumulated, there is one situation of particular

relevance that has received little attention until now. That is the impact of the

initial fraction of cooperators on the final equilibrium state.

Most previous works offering simulation results have assumed an initial popu-

lation of half cooperators and half defectors, randomly assigned on the vertices of a
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network grid, as the initial condition. This has been the de facto standard, accepted

without any doubt, for a long time. It might be acceptable and plausible if one relies

on a standpoint that the evolutionary trail reproduced by their particular model

should be regarded as one of the general dynamical systems, because the assump-

tion of 50 % initial cooperators fraction implies neutrality and fairness, in not

particularly favoring the success of cooperators or defectors. However, it seems

rather specific from a biological scenario point of view. What biologists are

primarily interested in is whether a mutant cooperator can invade a resident

population of non-cooperators (defectors) and fix it, or whether a mutant defector

can invade a cooperative population and dominate. This kind of discussion can

imply that the system features a stable cooperative phase, or that the system is

vulnerable against the invasion of defectors, which is crucially important in the

context of biological applications. Thus, an allegation that the automatic assump-

tion of 50 % initial cooperators might be questionable seems persuasive. At the very

least, it is important that we discuss whether network reciprocity has a significant

sensitivity to the initial cooperation fraction or not.

We will focus on this point in this section.

In a recent research by Poncela et al. (2007), where the stochastic updating rule

and degree-heterogeneous networks were implemented, it was demonstrated that

the characterization of the asymptotic states of the evolutionary dynamics was

largely independent of the initial concentration of cooperators. However, it was

obvious that the stochastic influence coming from updating rule and degree-

heterogeneous topology always existed within such a framework. Based on the

achievement, one question poses itself, which we aim to address in what follows.

Namely, if we remove these stochastic factors, how does the initial concentration of

cooperators affects the final equilibrium states?

In the following discussion, we refer to the result of a series of simulations we

did, where a PD game of 0 � Dg � 1 and 0 � Dr � 1 with synchronous updating

based on Imitation Max (IM) is assumed. As the interaction network, we use a

cycle, a square lattice with periodic boundary condition having 4 or 8 nearest

neighbors, the regular random graph (RR) or the scale-free (SF) network with

average degree of 4 or 8 (i.e., <k>¼ 4, 8) generated via the Barabási-Albert

algorithm (Barabasi and Albert 1999). The total number of agents is N¼ 10,000.

3.2.1 Enduring and Expanding Periods

For the sake of the following discussion, we define the terminology as the enduring

(END) period and the expanding (EXP) period as shown in Fig. 3.11. In a typical

evolution course, where the initial value of the cooperation fraction is 0.5, there are

usually two evident processes: the former period features the rapid downfall of

cooperation, while the following one is along with the increase of cooperation level

unless the evolutionary trail is absorbed by all-defectors state during the foregoing
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period. In our study the first is the so-called enduring (END) period because

cooperators try to endure defectors’ invasion (or cooperators avoid learning defec-

tion from neighbors). Correspondingly, we call the other the expanding (EXP)

period, since cooperators, who successfully survive in the END period by forming

cooperative clusters (C-clusters), expand their area by converting defectors into

cooperators. In some particular cases (such as, weak dilemma), when the initial

fraction of cooperation is low, the evolutionary trail may start from EXP period.

One thing to be confirmed is the discussion above, about Fig. 3.11 presumes that

an underlying network is regular like a lattice, and strategy update rule is deter-

ministic like IM. For the sake of a substantial discussion, it seems more transparent

to assume entirely deterministic processes for topology, update rule, whether

synchronous (deterministic) or asynchronous (stochastic), and others than stochas-

tic ones. Although we know some regular networks enable to enhance network

reciprocity and asynchronous and stochastic updates seem plausible if one observes

what happening in real world, adding noise makes hard to be observed the substan-

tial effect caused by network reciprocity. Noise masks the substance, which makes

ambiguous our following discussion, even though it can somehow foster the instinct

network reciprocity.

3.2.2 Cluster Characteristics

To feature how emerging spatial patterns qualitatively affect the evolution of

cooperation, three cluster characteristics: cluster number NC, cluster size SC and

Fig. 3.11 Schematic view for the evolution of cooperation in spatial prisoner’s dilemma game

with concept of END and EXP. Enduring (END) period: Initial cooperators will be rapidly

plundered by defectors, which cause only few cooperators left through forming compact

C-clusters. Expanding (EXP) period: C-clusters start to expand, since a cooperator on the clusters’
border can attract a neighboring defector into the cluster
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cluster shape SHC of cooperator aggregations are employed (Fu et al. 2010). In

particular, we need to give the detailed definition of the third term. For each cluster

i, we can derive SHCi based on the number of C-C links, lCC, within cluster i and the
number of C-D links, OCD, that connect cluster i with the surrounding defectors:

SHCi ¼ 2lCC � OCD

2lCC þ OCD
ð3:2Þ

The value of SHCi is constrained to the interval [�1, 1]. Obviously, compact

C-cluster has more links within the cluster rather than to the surrounding defectors.

The value of SHCi is positive, which indicates positive assortment of cooperators.

While for the sparse cluster there are fewer links within the cluster but more links

connecting to surrounding defectors. Thus, SHCi <0 and negative assortment

among cooperators takes place (or positive assortment between cooperators and

defectors). Moreover, in order to eliminate the influence of isolated cooperators, the

cluster size SC and cluster shape SHC are weighed such that the weight of each

cluster corresponds to its size.

3.2.3 Results and Discussion

We have performed extensive numerical simulations under different interaction

networks. The equilibrium fraction of cooperation ρeqC is determined within the last

5000 generations out of the total 105 iteration steps. Moreover, to guarantee validity

and statistical robustness of data, the final results are averaged over up to 100 inde-

pendent runs for each set of parameter values. During one time step, the agents

update their strategies synchronously. In all the figs, we use ρiniC to denote the initial

fraction of cooperators.

Effect of Initial Fraction of Cooperators

We start by presenting the color map encoding the equilibrium fraction of cooper-

ators ρeqC on the ρiniC � r parameter plane for different interaction topology networks

and degree in Fig. 3.12. It is noteworthy that, on regular network, higher initial

fraction of cooperators ρiniC does not necessarily lead to the high equilibrium fraction

of cooperation ρeqC in weaker dilemma region (r< 0.3), especially on the square

lattice with low degree (see Fig. 3.12(b)). On the contrary, a relatively low initial

fraction of cooperators can induce the undisputed dominance of cooperation. While

for the degree-heterogeneous networks, a higher initial fraction of cooperators

usually provides better environment for the evolution of cooperation. This can be

easily explained by the fact that enhanced initial fraction of cooperators increases

the possibility of cooperators holding the highly connected nodes (such as, hub
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nodes), which in turn attract their neighbors into cooperators and guarantee in this

way their long-time success (Poncela et al. 2007). Thus, these results suggest that

when the stochastic factor is removed (namely, the combination of deterministic

updating rule and regular interaction topology), a relatively low initial fraction of

cooperators can create better environment for the sustenance of cooperation. To

simplify the discussion, we mainly focus on the case of square lattice with k¼ 4.

Square Lattice Network (k¼ 4, IM)

Figure 3.13 shows how ρeqC varies as a function of the initial fraction of cooperators

ρiniC on a square lattice with k¼ 4 and IM rule. It is clear that the region of ρiniC

� 0:15 exhibits higher cooperation level than the other regions with a relatively low
or high initial fraction of cooperators, which, to some extent, is similar to phenom-

enon of evolutionary resonance (Perc and Marhl 2006). For lower initial fraction of

cooperators (ρiniC < 0:15), though few cases can reach the coexistence phase of

cooperators and defectors, majority of the realizations is absorbed by the phase

of pure defectors. On the other hand, a relatively high initial fraction of cooperators

(ρiniC > 0:15) shows that its dynamics always ends up with the coexisting equilib-

rium in which cooperators and defectors simultaneously survive. To explain these

Fig. 3.12 Equilibrium fraction of cooperators ρeqC on the ρiniC -r parameter plane on various

topologies. From left to right ((a–d) and (e–h)), the interaction networks are cycle network, square

lattice network, RR and the scale-free network, respectively. For top panel, the average degree

is< k>¼ 4, for bottom panel it is< k>¼ 8
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phenomena, we quantitatively explore the characters of microscopic evolution

dynamics.

Figure 3.14 presents characteristic evolution snapshots of cooperators and

defectors for different initial fractions of cooperators; (a) ρiniC ¼ 0:15 and (b)

ρiniC ¼ 0:85, respectively. In the case of low initial cooperation fraction, the system

rapidly falls into the state of numerous defectors. However, at the end of EXP

period, a few C-clusters can successfully survive under the exploitation of free-

riders, and then these remaining C-clusters start recovering lost ground against

weakened defectors. During the END period, a defector is always ready to change

its status and tries to penetrate into the C-clusters, which finally yields the exclusive

dominance of cooperators. On the other hand, for large initial value of ρiniC , a great

number of C-clusters can survive during the END period. But these C-clusters

mutually hinder the expansion of others in EXP period (namely, can not expand

Fig. 3.13 Equilibrium fraction of cooperators ρeqC in dependence on the density of initial cooper-

ators ρiniC on the square lattice network with k¼ 4 and IM rule. Panel (a) illustrates the average

fraction of cooperators, while (b) corresponds to the level of cooperation reached in each of the

100 realizations. Depicted results are obtained for r¼ 0.2

Fig. 3.14 Evolutionary snapshots for cooperators (white) and defectors (black) under different

initial fraction of cooperators: (a) ρiniC ¼ 0:15 and (b) ρiniC ¼ 0:85. From left to right, the snapshots

are given at t¼ 0, 1, 3, 5, 100 steps for all panels. Depicted results are obtained for r¼ 0.2
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enough smoothly), which thus induces many remaining defectors surrounding the

C-clusters.

Furthermore, we quantify the effect of ρiniC from the viewpoint of cluster char-

acteristics. Figure 3.15 features how three C-cluster characteristics and the equi-

librium fraction of cooperators change versus initial fraction of cooperators. In the

region of ρiniC � 0:15, where the cooperation reaches the optimal state, both cluster

size SC and cluster shape SHC also obtain their maximum values. On the contrary,

cluster number NC shows its minimum value. This means that the formed C-clusters

in the END period can most effectively expand and even dominate the whole

system. In order to further support our results, we examine the time course for

fraction of cooperators and three cluster characteristics under different initial

fractions of cooperators in Fig. 3.16. For ρiniC ¼ 0:15, during both END and EXP

periods, the cluster size SC and the cluster shape SHCmonotonically increase, while

the cluster number NC decreases (see Fig. 3.16(a), (b)). Correspondingly, in the case

of ρiniC ¼ 0:85, the cluster size SC and the cluster shape SHC decrease, while the

cluster number NC increases during the END period, However, concerned with the

EXP period, the cluster size SC and the cluster shape SHC start to increase, the

cluster number NC decreases (see Table 3.2). It is interesting that the change of

evolution trend for cluster characteristics prevents the smooth expansion of

C-clusters in EXP period. Thus, the consistency of trend for three cluster charac-

teristics during END and EXP periods may be seen as an effective index to estimate

whether the initial state is able to bring a highly cooperation equilibrium.

3.2.4 Summary

We have investigated the effect of initial fraction of cooperators on the equilibrium

level of cooperation. Our results show that when regular network is assumed as the

underling topology, an interesting phenomenon takes place: relatively low initial

fraction of cooperators can lead to a higher level of cooperation at equilibrium. To

Fig. 3.15 Macroscopic features for the cluster characteristics and the equilibrium fraction of

cooperators. Panel (a): cluster size SC and cluster number NC as well as (b): equilibrium fraction of

cooperators ρeqC and cluster shape SHC in dependence on the initial fraction of cooperators ρiniC .

Depicted results are obtained for r¼ 0.2
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support this, we examine the time courses. We find that for low initial fraction of

cooperators, a few C-clusters can survive during the END period. And, in the

following EXP period, these C-clusters expand smoothly till they dominate nearly

the whole system. On the other hand, when one starts from a high initial fraction of

cooperators, a great number of C-clusters survive during END period. But these

C-clusters can not guarantee the prosperity of cooperation because they mutually

hinder the expansion of other clusters in the EXP period. Moreover, we study the

performance of three cluster characteristics: cluster size, cluster number and cluster

shape under different initial cooperation setup. If one observes coherent tendency of

those three cluster characteristics in both END and EXP periods, the scope of

cooperation could be extended.

Fig. 3.16 Time evolution of the fraction of cooperators (top row, black solid line), cluster size
(top row, red dotted line), cluster number (bottom row, gray dashed-dotted line) and cluster shape

(bottom row, blue dashed line) for ρiniC ¼ 0:15 (left) and ρiniC ¼ 0:85 (right) when assuming r¼ 0.2.

Each of the time evolution curves indicates an ensemble average of 100 realizations

Table 3.2 Cluster characteristics (cluster size, cluster number and cluster shape) for two different

initial fractions of cooperators ρiniC ¼ 0:15, 0:85

ρiniC ¼ 0:15 END EXP

SC Increase Increase

NC Decrease Decrease

SHC Increase Increase

ρiniC ¼ 0:85 END EXP

SC Decrease Increase

NC Increase Decrease

SHC Decrease Increase

Note that in the case of ρiniC ¼ 0:15, the tendency of three cluster characteristics is same from END

to EXP period, on the other hand, in the case of ρiniC ¼ 0:85, the tendency of three cluster

characteristics is different with END from EXP period
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3.3 Several Applications of Stronger Network Reciprocity

As mentioned previously, there has been huge number of papers dealing with

network reciprocity for last several years. Due to our space limitation, this book

does not touch each of those respectively, but a reader who is interested can consult

with the affluent stock of those papers that can be reached by a retrieval termed with

“network reciprocity & games” at Web of Science for example. Each of them

insists that a new model enhanced network reciprocity is found, which might be

likened a situation of “bells-and-whistles”, in which one new attractive and inter-

esting model is reported after another, while no holistic picture to persuade what

network reciprocity is. On this point, as profoundly declared at the ground summary

provided at the beginning of this chapter, we discuss in the next section. Before

entering the “main-event”, I think it would be a good idea that we discuss several

models to strongly enhance network reciprocity reported by recent works.

3.3.1 Co-evolutionary Model

One important model is the so-called co-evolutional model (e.g., Szolnoki and Perc

2009a, b). Although we do not note detail, let me give an overview about

co-evolutionary models.

As mentioned in the Sect. 2.1, many previous studies have insisted that degree-

heterogeneous networks, such as scale-free (SF) networks, generate more robust

cooperation than regular networks, because the degree-heterogeneous networks can

bring hub cooperators (hub C agents) which compel cooperation among their

neighbors, leading to strong and stable cooperation.

Those previous studies were based on a framework, where agents are initially

allocated to a fixed network. Zimmermann and Eguiluz (2005), who is a precursor

with respect to co-evolutionary games, demonstrated a variant of a co-evolutionary

system in a networking game considering simultaneous evolution of networks and

strategies. The co-evolution model might enable more robust cooperation than fixed

network games and shed light on what network type is adaptively appropriate for

cooperation to emerge. In fact, by applying this model to several PDs, they

observed a stable cooperation phase when a cooperative hub agent (the C Leader)

emerged, resulting in a SF degree-heterogeneous network, even though starting

from a random network.

Following Zimmerman’s milestone study, many studies on co-evolution models

have been undertaken,3 mainly in the field of physics. Poncela and her colleagues

(2008) assume dynamic networks with growing degrees (i.e., those growing net-

work models involving an increase in the social size). However, most previous

3A reader can find many literatures. Among those, we only cite, here, only four works as below:

Tanimoto (2007a), Li et al. (2007), Fu et al. (2009), Chen et al. (2009).
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works including that of Zimmermann, presume dynamic networks with the total

number of links frozen, which signifies that the number of agents and links are

preserved. Tanimoto (2009, 2010) discovered that with a relatively weak dilemma,

the adaptation process favors non-deviated (relatively regular) networks with

positive assortative mixing5; however, in a relatively strong dilemma, network

adaptation favors degree-heterogeneous topology with negative assortative mixing.

Pacheco et al. (2006) and Santos et al. (2006a, b) found that robust cooperation can

be observed when the speed of network adaptation is greater than the speed of

strategy adaptation. This can be explained by the fact that network adaptation can

expel neighboring D agents effectively and quickly by severing links with them,

which serves the same function as the Game Exiting Option (e.g., Schuessler 1989).

Namely, for defending a C cluster from D agents’ attacks, immediately severing

links with D agents is more effective than instigating D against D agents as

retaliation. Van Segbroeck et al. (2009) and Szolnoki and Perc (2009a, b) are

concerned with link-severing procedures of the network dynamics and with pro-

cedures to build new links after severing by means of deductive and numerical

approaches. Their approach illuminates how significantly the network dynamics

affects network reciprocity. Moreover, Pestelacci et al. (2008) study an endogenous

criterion for severing and rewiring links.

Meanwhile, a relevant novel study was reported by Moyano and Sanchez (2009),

who introduced a different type of co-evolution model. Their model permits

strategy plus strategy updating rules (not for network) to evolve. An agent copies

a strategy from her neighbors’ sets (including the focal player) based on a selected

updating rule. At the same time, the agent copies the update rule itself from the

selected neighbor to copy the strategy. Moyano and Sanchez presume three differ-

ent variants of updating rules: Imitation Max (IM), in which a focal player copies

the strategy of the neighbor receiving the largest payoff in the current time step;

Pairwise (PW), in which a player compares his or her payoff with that of a randomly

selected neighbor and copies that neighbor’s strategy according to a certain func-

tion; and pairwise comparison with all neighbors, which is analogous to Roulette

Selection (RS). There are differences in how these three rules contain stochastic

characteristics in the process of selecting opponents. Needless to say, IM is defined

as deterministic in selecting opponents (there is no choice of copying from the best-

payoff neighbor), whereas PW is entirely stochastic.

If we suppose a situation in which there is a spatial distribution of updating rules

adopted by respective agents in a network, then we may consider that the strategy

adaptation speed is also spatially distributed. This is because a stochastic updating

rule implies lower strategy adaptation speed vis-�a-vis a deterministic updating rule.

This particular spatial distribution of strategy adaptation speed might help a C

cluster grow, since a lower strategy adaptation speed avoids D diffusion among C

agents (although it also prevents C dissemination among D agents). In the initial

stage of an evolutionary trail, the question of how the network can prevent D

diffusion rather than propel C diffusion is crucially important for sustainable

cooperation, because the former determines whether C clusters can survive by
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enduring initial D agents’ attacks. Moyano and Sanchez (2009) assume time-

constant networks. In that respect, their model differs from the co-evolutionary

model for both strategy and network by Pacheco et al. (2006) and Santos

et al. (2006a, b), but the principle underlying those two different models seem

analogous. This is because quick-severing links with D agents prevents D diffusion,

allowing C clusters to survive by avoiding D attacks in the early stage of evolution.

According to the discussion above, like network adaptation, update rule adaptation

might be an important factor for exploring network reciprocity.

Returning to co-evolution models, Van Segbroeck et al. (2009) and Szolnoki and

Perc (2009a, b) decompose network adaptation into a severing process and a link

re-building process, and they investigate network reciprocity by changing sub-rules

for severing links for respective agents. Taking their work a step forward, we

investigate another adaptation. Namely, if we define severing probability in net-

work adaptation as one of the adaptation variables, each agent can control network

adaptation speed against strategy adaptation speed to adapt more appropriately to

circumstances. Among other pioneering works, in Kirchkamp’s model (Kirchkamp

1999) both strategy and strategy adaptation mechanisms can evolve.

To that end, Tanimoto investigated what happens if the degree of freedom in an

evolutionary trail would be enhanced by adopting adaptation variables other than

agents’ strategy and network topology, where a quadruple co-evolution model was

established that makes an agent’s four attributes evolve: strategy, network, update
rule, and link-severing probability (Tanimoto 2011). He elucidated that the impact

of network adaptation is dominant in enhancing cooperation. The impact of sever-

ing probability adaptation is secondary and that of update rule adaptation is

negative. Thus, the double co-evolution framework that allows both strategy and

topology to evolve is most important in terms of co-evolution.

3.3.2 Selecting Appropriate Partners for Gaming
and Strategy Update Enhances Network Reciprocity

Concerning the detailed content discussed in this section, one should consult with

Tanimoto (2014). Recently, researchers have been heavily concerned with identi-

fying frameworks that can be added to the baseline model and that can realize the

heightened levels of cooperation brought about by network reciprocity.

Reminding what we discussed in Fig. 3.11, this enhancement can be substan-

tially understood by how the new model framework (a) can—at the beginning of a

simulation episode—reduce defector invasions into cooperator clusters constructed

by random allocation and (b) can encourage prosperous expansion of the surviving

cooperator clusters in the neighboring sea of defectors as the global cooperation

fraction (Pc) increases. The termed the initial period in which Pc decreases as the
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enduring (END) period and the following period in which Pc increases as the

expanding (EXP) period.

Among the many previous papers, it seems worthwhile to note two outstanding

ideas to foster network reciprocity.

One is stochastically skewed selection of a pairwise opponent in the strategy

adaptation process by using Fermi functions (Wang and Perc 2010; Perc and Wang

2010; Tanimoto et al. 2011). In this approach, more significant cooperation occurs

if a pairwise opponent, chosen as a reference for comparison, is selected, not by

random selection from all neighbors, but by a nonlinear proportional procedure

applied to the payoff of each neighbor. Wang & Perc and also Tanimoto

et al. confirmed that more significant cooperation can be attained if a high-payoff

neighbor is selected as a pairwise opponent. For the second idea, perhaps inspired

by these results, Brede (2011) investigated what happens if the focal player

stochastically selects a gaming opponent at every game, instead of gaming with

each neighbor; the number of neighbors is consistent with the degree of the focal

player. He found outstanding enhancement of cooperation when a neighbor with a

positively large payoff difference over the focal player was chosen more frequently.

At a glance, these two ideas seem completely different but are analogous if we

notice that the former idea addresses what happens when a stochastically skewed

selection of an adaptation reference is presumed instead of random selection, and

that the latter addresses what happens when a stochastically skewed selection of a

gaming opponent is implemented.

The basic purpose of the discussion in this section is to determine what happens

and how cooperative equilibrium comes about if both stochastic skewed processes,

one for strategy adaptation and the other for gaming, are implemented simulta-

neously, potentially expecting to find a significant enhanced network reciprocity

than usual one. This might be a plausible scenario in real human societies, consid-

ering that a human tends to select, among several potential neighbors, one or

two (or a few, anyway) favorable neighbors as friend(s); further, her/his manner

is more likely to be influenced by those few particular friends than by the other

neighbors.

3.3.2.1 Model Setup

At every timestep, an agent on a network plays prisoner’s dilemma (PD) games

with neighbors varying 0 � Dg � 1 and 0 � Dr � 1 at Eq. (3.1) and obtains payoffs

from all games. As the underlying topology, we use a two-dimensional lattice graph

of degree k¼ 8, which means Moore neighborhood. The total number of agents is

set to N¼ 104, confirmed as sufficiently large to yield simulation results that are

insensitive to system size. After gaming, each agent updates his/her strategy

synchronously. The boundaries of the system are looped, which implies all agents

have 8 neighbors.
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3.3.2.2 Selection of a Game Opponent and an Adaptation Reference

We presume two methods to implement stochastically skewed selection of a

gaming partner and an adaptation reference. Namely, following Eqs. (3.3) and

(3.4) are used alternatively for game/ reference partner selection.

The first one is what Brede (2011) did in his model, which we hereafter call “B”

Brede assumed that an agent x selects agent y as a partner with probability PB
y

proportional to the payoff difference between agent x and each of k neighbors,

PB
y ¼

1= 1þ exp wB � πy � πx
� �� �� �

X
j2 Nxf g

1= 1þ exp wB � π j � πx
� �� �� � : ð3:3Þ

Here, π is the accumulated payoff, {Nx} is the set of neighbors for agent x, andw
B is

the skewed weight. If wB is negative (positive), a neighbor who has a larger

(smaller) payoff difference with agent x is more likely to be selected.

The second method is originally implemented by Wang & Perc (2010), hereafter

referred to as “W-P” They assumed that an agent x selects agent y as a partner with

probability PW�P
y proportional to the payoff of each of k neighbors,

PW�P
y ¼ exp wW�P � πy

� �
X
j2 Nxf g

exp wW�P � π j

� � ; ð3:4Þ

where wW�P is the skewed weight. If wW�P is positive (negative), a neighbor who

has a larger (smaller) payoff is more likely to be selected.

At every timestep, an agent plays a PD game k times. Unlike a conventional SPD

game in which each agent plays a PD with one neighbor after another, our model

lets each agent select a game partner at every time based on either B orW-P. When

the weight (wB
int ¼ 0 or wW�P

int ¼ 0) is assumed 0, a game partner is randomly

chosen among all neighbors every time; this would almost recover the

conventional SPD.

After gaming, agents accumulate all payoffs and synchronously update their

strategies. Based on either B orW-P, each agent first selects an opponent to compare

mutually accumulated payoffs; this identifies the adaptation reference (W-P) or
adaptation partner (B). Then, the focal agent x may or may not copy the strategy of

pairwise opponent y based on a pairwise Fermi function (Fermi-PW). This decision

is based on the difference in payoff between x and y, px y
copy ¼ 1= 1þ exp

πx�π y

κ

� �� �
.

When the weight (wB
ad p ¼ 0 or wW�P

ad p ¼ 0 ) is assumed 0, the model exactly

recovers the conventional Fermi-PW process. In this study, we assumed κ ¼ 0:1.
Let us confirm one important point. That is, our model is run such that each agent

selects k gaming partners in a row before selecting an individual reference partner.
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3.3.2.3 Simulation Procedure

Each simulation was performed as follows. Initially, an equal percentage of strat-

egies was randomly distributed to the agents allocated on different vertices of the

network. Several simulation timesteps, or generations, were run until the frequency

of cooperation reached quasi-equilibrium. If the cooperation frequency continued

to fluctuate, we used the average frequency of cooperation over the last 250 gener-

ations of a 10,000-generation run. We varied the dilemma strength to cover PD,

0 � Dg � 1 and 0 � Dr � 1. The results shown below were drawn from 100 runs;

that is, each ensemble average was formed from 100 independent simulations.

3.3.2.4 Results and Discussion

Let us use the notation for the presumed weights; wB
int (w

W�P
int ) and wW�P

ad p (wB
ad p) to

imply selecting a game interaction partner and an adaptation reference, respec-

tively. Figure 3.17 shows social average cooperation fractions for four cases:

(a) conventional SPD, (b) wB
int ¼ 1000 and wB

ad p ¼ � 1000, (c)

wB
int ¼ � 1000 and wW�P

ad p ¼ 3, and (d) wW�P
int ¼ 3 and wW�P

ad p ¼ 3. Regions

where cooperation fraction is almost 1 and 0 indicate C-dominate and D-dominate

respectively, while other area implies co-existence phase, in which both coopera-

tors and defectors survive at equilibrium. In the work by Wang & Perc, wW�P
ad p ¼ 3

showed significantly strong enhancement of the cooperation fraction. In contrast,

Brede usedwB
int ¼ � 1000 to enhance cooperation. The result for the conventional

SPD in Fig. 3.17(a) represents the baseline of network reciprocity for a k¼ 8 lattice

with synchronous strategy adaptation based on the Fermi-PW function. Figure 3.17

(b) shows that inappropriate assumptions for both weights devastate the original

network reciprocity. Figure 3.17(c) and (d) show that, although wB
int ¼ � 1000

enhances cooperation when B is used as the model for selecting a game partner,W-

P with wW�P
int ¼ 3 shows somewhat better performance. This might be interpreted

that stochastically choosing a game partner based on payoff enhances cooperation

more than choosing a partner based on payoff differences with the focal agent.

However, combining both stochastically skewed selection processes ((c) and (d))

shows much better cooperation than applying either of the two strategies

independently.

As described before, one obvious difference in terms of basic concept is that

B relies on payoff difference of a focal agent and neighboring agents whileW-P refers

to agents’ payoff. Relating to this, because of their different mathematical definitions,

W-P approach more exclusively favors the dominating agent than B approach does.

Those points, to some extent, can explain the difference of Fig. 3.17(c) and (d). But,

one point we would like to address is that combining both stochastically skewed

selection processesmay be able to thrust up further cooperation than applying either of

the two independently, irrespective to whetherW-P or B is presumed.
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3.3.2.5 Effective Degree

To understand more precisely what is happening in our model, let us define a new

characteristic value to measure the effectiveness brought about by network reci-

procity. Although each agent has k links, because of the stochastically skewed

selection, the number of active links is likely to be less than the nominal degree. By

active links, we mean those that are heavily involved in gaming and strategy

adaptation. Therefore, we define S( j) to be the frequency with which the average

agent chooses link j as a gaming/adaptation partner. Let us suppose a time-step.

Each of N agents plays k games with her neighbors selected by the game partner

selection process. Define Agent j as the j-th largest payoff neighbor among

k neighbors, which globally means not indicating a particular neighbor of a partic-

ular agent among N agents. Taking the statistics over all N agents, we can evaluate

how frequently Agent j is nominated as a game partner, which is the definition of

S( j) for the game partner selection process. Meanwhile, each agent selects one of

her neighbors selected by the adaptation partner selection process. Thus, we can
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Fig. 3.17 Cooperation fractions ensemble-averaged over 100 realizations of PD with 0 � Dg � 1

and 0 � Dr � 1. (a) Conventional SPD, (b) using weights¼ 1000 and¼�1000, (c) using

weights¼�1000 and¼ 3, (d) using weights¼ 3 and¼ 3. In panel (d), black cross is for

Dg¼ 0.7 and Dr¼ 0.1, which is the subject of Figs. 3.21 and 3.23; white cross is for Dg¼Dr¼ 0.7,

which is the subject of Figs. 3.19 and 3.22
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also evaluate how frequently Agent j, who means the j-th largest payoff neighbor

among k neighbors of any arbitrary agent, is nominated as a reference partner. This

is the definition of S( j) for the adaptation partner selection process. Then, we define
the effective degree (ED) by

ED ¼ k � k
X
j2 Nif g

Max S jð Þ � 1

k
, 0

	 

: ð3:5Þ

The concept for ED is illustrated schematically in Fig. 3.18. A small value for ED
implies a situation in which the active links actually used for gaming or strategy

adaptation are limited; thus, the actual anonymity vis-�a-vis a well-mixed situation

among agents is smaller than the nominal degree k.
Time evolutions of representative episodes over 100 realizations are shown in

Fig. 3.19 for Dg¼Dr¼ 0.7 when wW�P
int ¼ 3 and wW�P

ad p ¼ 3, in Fig. 3.20 for

Dg¼ 0.1 and Dr¼ 0 when wB
int ¼ 1000 and wB

ad p ¼ � 1000, and in Fig. 3.21 for

Dg¼ 0.7 andDr¼ 0.1 whenwW�P
int ¼ 3andwW�P

ad p ¼ 3. In these figures, each panel

(a) gives the cooperation fraction up to timestep 1000, and (b) indicates S( j) and
EDs for both gaming and adaptation at timesteps 3, 10, 50, 100, 250, 500, 750, and

1000. Each panel (c) shows (i) conditional probabilities for a cooperator (defector)

selecting a cooperator as a game partner fCC_int ( fDC_int) and as an adaptation

reference fCC_adp ( fDC_adp) and (ii) conditional probabilities that a cooperator

(defector) has cooperators (defectors) among neighbors fCC ( fDC).

Fig. 3.18 Schematics illustrating effective degree (ED). Small values for ED represent situations

in which only a limited number of active links are actually used for gaming or strategy adaptation
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Figure 3.19(a) indicates that the model allows very small ED values near the end

of the END period; this implies that agents successfully “endure” invasions of

neighboring defectors by reducing the number of active links. More importantly,

values of ED for both game partner and adaptation reference selections are almost

unity, which is the minimum value; this means that the game partner chosen by a

certain agent is also his/her adaptation reference at the same time. This complete

correlation works much more positively to increase social viscosity than the

nominal degree of the underlying network can provide as original network reci-

procity. After this period (i.e., in the EXP period), ED tend to increase as the global

cooperation fraction increases. This is because agents belonging to a C-cluster do

not necessarily continue to limit game partners and adaptation references since

there are fewer defectors around them. In Fig. 3.19(b), note that the model realizes

fCC< fCC_int during the END period; this implies that cooperators in a C-cluster, i.e.,

agents who facing defectors in particular, tend to select cooperators for gaming.

This helps them avoid being exploited by neighboring defectors. Also, during the

EXP period, there occurs the rigid relation fCC< fCC_adp; this means that
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Fig. 3.19 Time evolution of representative episodes among 100 realizations for Dg¼Dr¼ 0.7

when¼ 3 and¼ 3. Panel (a) shows cooperation fractions up to timestep 1000. Panel (b) gives S( j)
and ED for both gaming (upper panels with red areas) and adaptation (lower panels with blue
areas) at timesteps 3, 10, 50, 100, 250, 500, 750, and 1000. Panel (c) shows conditional

probabilities of a cooperator (defector) selecting a cooperator as a game partner fCC_int ( fDC_int)
(red line (red dotted-line)) and as an adaptation reference fCC_adp ( fDC_adp) (blue line (blue dotted-
line)). Also shown are conditional probabilities for cooperators among neighbors of a cooperator

(defector) fCC ( fDC) (green line (green dotted-line))
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Fig. 3.20 Time evolution of representative episodes among 100 realizations for Dg¼ 0.1 and

Dr¼ 0 when¼ 1000 and¼�1000. Keys to panels and lines are the same as in Fig. 3.19

0

0.2

0.4

0.6

0.8

1

1 10 100 1000
time step

C
oo

pe
ra

tio
n 

fra
ct

io
n

(a)

END EXP

3 step 10 step 50 step 100 step 250 step 500 step 750 step

0

1

1 2 3 4 5 6 7 8

ED adp =2.7

0

1

1 2 3 4 5 6 7 8

ED int =2.8
1000 step

0

1

1 2 3 4 5 6 7 8

ED adp =2.6

0

1

1 2 3 4 5 6 7 8

ED int =2.6
750 step

0

1

1 2 3 4 5 6 7 8

ED int =2.1

500 step

0

1

1 2 3 4 5 6 7 8

ED adp =2.1

0

1

1 2 3 4 5 6 7 8

ED int =1.6
250 step

0

1

1 2 3 4 5 6 7 8

ED adp =1.7

0

1

1 2 3 4 5 6 7 8

ED int =1.6
100 step

0

1

1 2 3 4 5 6 7 8

ED adp =1.6

0

1

1 2 3 4 5 6 7 8

ED int =1.5
50
t

0

1

1 2 3 4 5 6 7 8

ED adp =1.5

0

1

1 2 3 4 5 6 7 8

ED int =1.4
10 step

0

1

1 2 3 4 5 6 7 8

ED adp =1.3

0

1

1 2 3 4 5 6 7 8

ED int =3.3
3
t

0

1

1 2 3 4 5 6 7 8

ED adp =1.3

(b) S ( j )int

S ( j )adp

0

0.2

0.4

0.6

0.8

1

1 10 100 1000
time step

C
on

di
tio

na
l p

ro
ba

bi
lit

y

f CC_int

f CC_adp

f CC

(c)

f DC_int

f DC

f DC_adp

step step

Fig. 3.21 Time evolution of representative episodes among 100 realizations for Dg¼ 0.7 and

Dr¼ 0.1 when¼ 3 and¼ 3. Keys to panels and lines are the same as in Fig. 3.19
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cooperators tend to select cooperators for pairwise opponents, leading to the

situation in which a cooperator facing defectors can ignore the option of converting

his/her strategy to defection.

In contrast to Fig. 3.19, for the situation in Fig. 3.20, agents fail to establish

cooperation because of the large values for ED and because fCC> fCC_int. One
important point in this case is that distributions of S( j) for both gaming and

adaptation are inversely correlated with each other at early stages of the evolution

(timestep 3); this occurs because the values assigned towB
int andw

B
ad p were mutually

conflicting. Namely, wB
int ¼ 1000 realizes that a neighbor of negative payoff

difference over a focal agent; relatively small payoff neighbor in other words, is

selected. Whereas, wB
ad p ¼ �1000 invites that a neighbor of positive payoff

difference over a focal agent; relatively large payoff neighbor in other words, is

selected.

3.3.2.6 Rather Bleak Environment During END Helps Cooperation?

Let us return to Fig. 3.17(d). Notice the curious fact that a critically severe dilemma

(Dg¼Dr¼ 0.7, highlighted with the white cross) shows rather higher cooperation

than a relatively less severe dilemma (Dg¼ 0.7 and Dr¼ 0.1 highlighted with the

black cross). Why is this possible? Figs. 3.19 and 3.21 show that the equilibrium

cooperation fractions for Dg and Dr are 0.563 and 0.247, respectively, while the

ensemble averages over 100 realizations for those two dilemma conditions, shown

in Fig. 3.17(d), are 0.565 and 0.196, respectively. Let us also note that both

timesteps 6 in Fig. 3.22 and 8 in Fig. 3.23 are the end of END period with 9 and

25 C-clusters surviving, of which instantaneous cooperation fractions are 0.02 and

0.05, respectively.

Figures 3.22 and 3.23 show snapshots of those two cases. Both panels (d) in

Figs. 3.22 and 3.23 show the time evolutions of number of C-clusters and their

averaged size with cooperation fraction. Figure 3.23 shows that the less-severe

dilemma case (Dg¼ 0.7 and Dr¼ 0.1) allows more C-clusters to survive until the

end of the END period than does the more-severe dilemma case (Fig. 3.22;

Dg¼Dr¼ 0.7). This is thought to be the crucially important point that explains

the behaviors in those two cases. If a huge number of small-size C-clusters survive

through the END period, then the following EXP period ends with a relatively low

level of cooperation. This is perhaps because, as the C-clusters start expanding into

the surrounding sea of defectors, the C-clusters inevitably interfere with each other;

this allows many defectors to survive in the many chasms between C-clusters,

allowing them to exploit different C-clusters. This illustrates one possible scenario

by which strong network reciprocity comes about. Namely, a rather bleak situation

during the END period may be able to bring about high cooperation at the end of an

evolutionary process. However, if the environment is too bleak, the situation is

counterproductive because no C-clusters survive the END period, which in turn
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leads to an undesirable equilibrium containing only defectors. Thus, a reasonably

bleak environment in which a single C-cluster survives, ideally speaking, is most

preferable for realizing high cooperation.

3.3.2.7 Summary

We established a new model for the spatial prisoner’s dilemma game in which an

agent selects a game partner and an adaptation reference independently using a

stochastically skewed selection process based on the partner’s payoff among her

neighbors. This model can emulate relationships in a real human society because a

human tends to select one or two favorable friend(s) from among the many potential

acquaintances provided by a social network.

Fig. 3.22 Snapshot of representative episodes for Dg¼Dr¼ 0.7 when¼ 3 and¼ 3, which is

shown in Fig. 3.19. Black and white indicate cooperators and defectors, respectively. Timestep

6 is the end of the END period. Panel (d) shows time evolutions of cooperation fraction, number of

clusters and averaged cluster size in this episode. (a) initial (b) timestep 6 (c) timestep 1000
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We showed that the model can significantly enhance cooperation by

implementing both stochastically skewed selection processes with appropriate

parameters to ensure that high-payoff neighbors are more frequently selected as a

partner. This claim is justified by our finding that agents reduce their degrees of real

activity, which can be measured by ED. Generally speaking, small degrees of

activity limit anonymity in interactions with neighbors, which in turn can lead to

stronger network reciprocity.

By tuning our model, phenomenally enhanced cooperation can be realized in

which only a small number of C-clusters survive the END period; this assures

prosperous and smooth expansions of C-clusters into the sea of defectors in the

following EXP period. This appears to be the most important factor that determines

how network reciprocity can be bolstered in SPD models, and perhaps this factor

captures the substance of how network reciprocity really works. Although this was

drawn from our present result as a likely mechanism to highlight on how the

Fig. 3.23 Snapshot of representative episodes for Dg¼ 0.7 and Dr¼ 0.1 when¼ 3 and¼ 3, which

is shown in Fig. 3.21. Black and white indicate cooperators and defectors, respectively. Timestep

8 is the end of the END period. Panel (d) shows time evolutions of cooperation fraction, number of

clusters and averaged cluster size in this episode. (a) initial (b) timestep 8 (c) timestep 1000
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so-called network reciprocity really works, the idea still stays at hypothetic stage.

Thus, further well- intrigued statistical analysis and even deductive approach

should be expected in our future works.

3.4 Discrete, Mixed and Continuous Strategies Bring

Different Pictures of Network Reciprocity

The discussion so far has assumed one central premise that the strategy of game

players is defined by binary; namely either cooperation (C) or defection (D). A

question everyone wonders is whether this central assumption is appropriate or not.

In fact, we know lots of proofs indicating what happening in real world differs. In

some situations, not only extreme two options either C/ D but also middle course

offers like fairly cooperative, neutral, little bit defective etc. might be allowed,

although the definition of binary strategy, let us call “discrete strategy” for the sake

of following discussion, seems reasonable to start the discussion, and still mean-

ingful for a first approximation to capture what happens in the assumed dynamical

systems. Let us call this “continuous strategy”, where a strategy is defined by a real

number of [0,1] (0 and 1 meaning entire defection and cooperation respectively)

and an actual offer is consistent with the strategy’s real number. We there is another

important strategy definition, which is the so-called mixed strategy, where a

strategy is defined by a real number of [0,1] like continuous strategy but an actual

offer is limited by binary C or D, that is determined with the strategy’s real number

in stochastic manner.

Recent works show that when the payoff of the continuous strategy model is a

linear function, continuous setup poses the identical equilibrium with that of

discrete protocol in the infinite well-mixed population (Vincent and Cressman

2000; Day and Taylor 2003). In addition, a recent investigation reports that a finite

size of population can bring obvious different equilibria for continuous and

discrete setups (Zhong et al. 2012). However, this is only suitable for the case of

limited population. When the population size is sufficient large, the difference will

become not so significant. Recalling that a finite population, instead of infinite,

somehow adds Nowak’s social viscosity even if the population is well-mixed, we

can guess that network games, as another way of adding social viscosity, also

brings different equilibria for continuous and discrete setups. If, moreover, more

complex network is considered as the underlying interaction topology, what would

happen? Inspired by these interesting questions, let us examine, in this section,

how different strategy setups fare on complex networks, in particular, whether it

promotes or hinders the evolution on cooperation (i.e., the development of network

reciprocity).
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3.4.1 Setting for Discrete, Continuous and Mixed Strategy
Models

We consider the pairwise interaction game; 2� 2 games as the archetype, that is

described by Eq. (3.1) with R¼ 1, P¼ 0, chicken-type dilemma strength; Dg (¼
P� S), and stag hunt-type dilemma strength Dr (¼ T�R). When the discrete

strategy is presumed, two players simultaneously have the choice between cooper-

ation (C) and defection (D). If both cooperate (defect) they receive the reward

R (the punishment P). If, however, one chooses cooperation while the other defects,
the later gets the temptation T and the cooperator is left the sucker’s payoff S.

With respect to continuous strategy, we assign each player i a random parameter

si in the interval between zero to one to denote his strategy (the probability of

cooperation). This setting is performed uniformly before the formal interaction.

When player i plays the game with agent j, he can obtain the payoff;

π si; s j
� �	 S� Pð Þsi þ T � Pð Þs j þ P� S� T þ Rð Þsis j þ P

¼ �Dr � si þ 1þ Dg

� � � s j þ �Dg þ Dr

� � � si � s j :
ð3:6Þ

This might be the simplest and most plausible setup, which expands the discrete

strategy model but still uses the elementary payoff matrix.

When the mixed strategy is presummed, each agent i is still assigned with a real

number si 2 0; 1½ � as what to do in the continuous setup. But he can only offer either
pure cooperation or defection as his strategy. That is, he chooses cooperation when

Rnd[]< si otherwise he offers defection, where Rnd[] represents the random num-

ber obeying a uniform distribution.

3.4.2 Simulation Setting

Through this work we mainly study the spatial reciprocity in the prisoner’s dilemma

(PD) game, where 0 � Dr � 1 and 0 � Dg � 1 in Eq. (3.1) (See section “Supple-

mental discussion D”; latter, we discuss what happens in Chicken games). As the

interaction networks, we use seven types of topology structure; (i) cycle; (ii) square

lattice; (iii) homogeneous small world network (Ho-SW), which is made from a

cycle graph by replacing several links with random shortcuts (a shortcut probability

of 0.2); (iv) Watts–Strogatz’s (1998) heterogeneous small world network (He-SW),

which is generated from a cycle graph with swapping probability 0.2; (v) regular

random network (RR); (vi) Erdos–Renyi random network (E-R) (Ballobas 1985);

(vii) scale-free network (SF) constructed via the Barabasi–Albert algo-

rithm (Barabashi and Albert 1999). For these networks, the total number of nodes

N is 4900 and average degree< k> is assumed to be 8 or 12. In particular, we do

not consider the case of< k>¼ 8 on E-R, since the condition of a single clumpy

network < k >� ln N is required.
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The game is iterated forward in accordance with the sequential simulation

procedure comprising the following elementary steps. In every time step, all the

agents acquire their payoffs by playing the games with all their neighbors. Then,

they synchronously update their strategy every τ step based on the accumulated

payoffs during the last τ steps. Lastly, players mimic the strategy of agent who has

the highest payoff among their neighborhoods (including themselves, this is the

so-called Imitation Max rule, IM, as we mentioned before). We assume τ¼ 1. We

have approved that when τ!1 a mixed strategy model approaches to the

continuous strategy setup, which might be acceptable for readers qualitatively

(section “Supplemental discussion C”).

Subsequently, we focus on the initial distribution of strategies in different

models. For discrete setup, (without loss of generality) each player i is initially

designated either as a cooperator (si ¼ 1) or defector (si ¼ 0) with equal probability,

meaning initial cooperation fraction is 0.5. While for both continuous and mixed

models, the uniform distribution ofsi 2 0; 1½ � is performed inmajority situations. But

in certain cases, we use the prepared initial state: half of them are randomly chosen

as the perfect cooperators (expressed by si ¼ 1, similar to the pure cooperators in the

discrete setup), others are perfect defectors (expressed by si ¼ 0). The expected

values of initial cooperation fraction for those two different ways are same as what

the discrete setup assumes; 0.5. In order to make no practical difference with the

above continuous and mixed models, we also consider the strategy mutation

by adding a random number drawn from the Gaussian distribution (See section

“Supplemental discussion A and B”).

Results of simulations presented below were obtained by averaging out the final

5000 steps after the 2*104 relaxation time, and the final results were averaged over

up to 100 independent realizations for each set to guarantee the accuracy. We

conduct this procedure at 11� 11 points of the prisoner’s dilemma (PD) area

(0 � Dg � 1, 0 � Dr � 1). As the characteristic values used to evaluate coopera-

tion, we classify the prisoner’s dilemma (PD) game into four subclasses. The first is

a single algebraic average of the 121 ensemble averages covering all PD areas

(AllPD). The second is an average of 11 points represented by Dg ¼ Dr, which is

so-called donor and recipient game (DRG). The third is another 11-point average

collected from the region ofDr ¼ 0, which consists of boundary game between the

prisoner’s dilemma game and chicken game without a stag-hunt-type dilemma

(BCH). The last is another 11-point average collected from the region of Dg ¼ 0,

which consists of boundary game between the prisoner’s dilemma and stag-hunt

game without a chicken-type dilemma (BSH).

3.4.3 Main Results and Discussion

For comparison Fig. 3.24 features the average cooperation fraction under three

types of setups: discrete, continuous, and mixed strategy model, remarkably, the
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Fig. 3.24 Averaged cooperation proportion in different setups for (a) all PD games (AllPD), (b)

Donor & Recipient Games (DRG), (c) boundary games between PD and Chicken (BCH), and (d)

boundary games between PD and Stag-Hunt (BSH) within the limits of 0 � Dg � 1 and

0 � Dr � 1. The underlying interaction networks are cycle, lattice, Ho-SW, He-SW, RR, E-R

and SF, respectively. Average degrees are 8 and 12 for these topologies. We adopt the Imitation

Max (IM) as the strategy updating rule
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equilibrium cooperation fraction varies widely. In the region of AllPD and DRG,

the cooperation level of mixed model is highest, continuous model guarantees an

intermediate level and discrete setup provides the least beneficial environment for

the evolution of cooperation (Fig. 3.24(a) and (b)).

Cooperation among the three strategies is completely different depending on the

dilemma subclass, BCH or BSH (Fig. 3.24(c) and (d)). Thus, in the following

subsections, we discuss BCH and BSH separately. We restrict the almost all

discussion to the lattice network with the degree k¼ 8, where the cooperation

fraction is shown in Fig. 3.25 for each of the three strategies. Although not

shown, what observed in the lattice seems general except for several cases.

Features in BCH

In BCH, equilibrium cooperation fractions of continuous and mixed strategy games

are greater than those of discrete games (see lattice with k¼ 8 in Fig. 3.24(c)). In

Fig. 3.25, we note that mid-level cooperation can be allowed for moderate strength

dilemma games in continuous and mixed strategy systems (see highlighted areas

within dashed-line boxes in Fig. 3.25(b) and (c)). In general, a situation with a

relatively strong Chicken-type dilemma naturally tends to lead to what is consid-

ered internal equilibrium. In a discrete strategy game, players are not allowed to

take a mid-cooperative strategy as in continuous and mixed strategy games but are

forced to choose either C or D. Thus, a discrete strategy game rapidly declines from

a state where all players offer C to a state where all offer D at a certain Dg, whereas

continuous and mixed strategy games can maintain a moderate cooperation level

even with a larger Dg. Relating to this, we note that continuous and mixed strategy

games reveal lower cooperation levels than discrete games with a weak dilemma.

This phenomenon has the following two causes. First, the proportion of perfect
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Fig. 3.25 Averaged cooperation proportion within the limits of 0 � Dg � 1 and0 � Dr � 1based

on (a) discrete, (b) continuous, and (c) mixed strategy games. Games are played on 8-neighbor

lattices (k¼ 8) with 4900 agents
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cooperators in both continuous and mixed strategy games is lower than that of

discrete games at the beginning of each simulation episode. If we provisionally

define perfect cooperators as those who have si> 0.9, the proportion of perfect

cooperators in continuous and mixed strategy games in the initial allocation is only

10 % (because we assumed uniform distribution within [0,1] for strategies in

continuous and mixed strategy games). In contrast, the proportion of perfect

cooperators in discrete strategy games at the beginning is 50 %. Second, at the

beginning of an episode, neighbors of a perfect cooperator (defined by si> 0.9)

possibly have lower strategy values than the focal perfect cooperator. Mean field

approximation suggests that 90 % of neighbors of the perfect cooperator have more

defective strategy than the perfect cooperator in continuous and mixed strategy

games. In discrete strategy games, however, only 50 % of neighbors are more

defective than the player. In summary, when assuming either continuous or mixed

strategy, there are necessarily fewer perfect cooperators in the first place. In

addition, these rare perfect cooperators might immediately copy a more defective

strategy from relatively more defective neighbors. This fact inevitably causes scant

cooperation even in weaker dilemma games than in a discrete strategy game.

Figure 3.26 shows the variance of equilibrium cooperation fraction among

100 episodes. The reason that we observe the moderately large variance close to

BCH in a discrete strategy (the highlighted area in the dashed-line box in Fig. 3.26

(a)) indicates that bi-stable-like equilibrium occurs. In contrast, there is no larger

variance area close to BCH in both continuous and mixed strategy games because a

mid-cooperative strategy is allowed. Another highlighted area in the dashed-line

box in Fig. 3.26(b) close to the BSH border in continuous strategy games also shows

a large variance, which implies occurrence of bi-stable-like equilibrium.

Figure 3.27 shows equilibrium strategy distributions of continuous and mixed

strategy games for BCH. It is worth noting that peak strategy gradually declines to

the defective side with the increasing dilemma strength.

Fig. 3.26 Variance of equilibrium cooperation proportion among 100 trials within the limits of

0 � Dg � 1 and 0 � Dr � 1 based on (a) discrete, (b) continuous, and (c) mixed strategy games.

Games are played on 8-neighbor lattices (k¼ 8) with 4900 agents
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Therefore, one possible reason for the equilibrium cooperation proportion of

continuous and mixed strategy games being greater than that of discrete games is

that in continuous and mixed strategy games, agents are allowed to adopt

mid-strategy values between perfect defection and perfect cooperation.

Summing up Figs. 3.26 and 3.27, we can infer that a PD game with a relatively

larger Chicken-type dilemma naturally generates an internal equilibrium situation.

Thus, a player, who is allowed to adopt mid-strategy values between perfect

defection and perfect cooperation, as continuous and mixed strategy systems

permit, can achieve the necessary internal equilibrium by having an appropriate

real value strategy. By contrast, the discrete strategy inhibits the system from

reaching that state because it provides only a binary option, either C or D. This

situation can be explained as follows. In general, agents cannot establish a C-cluster

in the Chicken dilemma games despite being able to in PD games. Thus, we observe

not emerging C-clusters but strip-like C chunks in the Chicken games because

building a C-cluster (the focal agent and all her neighbors offering C simulta-

neously) is less beneficial in solving a Chicken-type dilemma, where a player is

forced to choose either C or D strategy. A player in continuous and mixed strategy

games, however, can adopt a mid-cooperative (mid-defective) strategy, which

might be consistent with internal equilibrium if a pure Chicken game is assumed.

This encourages them to form mid-C clusters consisting of mid-cooperative strat-

egies, which can establish reasonable cooperation (See section “Supplemental

discussion D”).

Features in BSH

Here, we compare three types of strategy games by focusing on BSH. Differences

of equilibria between discrete and continuous strategy games are different from

those between discrete and mixed strategy games (Fig. 3.24(d)). Thus, we divide

the discussion of BSH into two parts, namely comparison between discrete and

continuous strategy games and that between discrete and mixed games.
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Fig. 3.27 Strategy distributions at equilibria for BCH based on (a) continuous and (b) mixed

strategy games. Games are played on 8-neighbor lattices (k¼ 8) with 4900 agents
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First, we compare discrete and continuous strategy game equilibria. The

amounts of cooperation and degrees of difference in equilibrium cooperation levels

vary between these two games according to the network topology. As opposed to

the results for BCH, discrete strategy in BSH can be more cooperative than

continuous strategy in major networks. One reason explaining this might be related

to the fact that the Stag-Hunt-type dilemma leads a game to a particular bi-stable-

like equilibrium. As mentioned in the previous sub-section, it is difficult for perfect

cooperators in a continuous strategy game with several moderate cooperators to

survive at the early stage of an episode. If a PD game with a relatively larger

Chicken-type dilemma than a Stag-Hunt-type dilemma is assumed, players could

maintain a certain level of cooperation by C-clusters formed by moderate cooper-

ators who can endure the invasion of defectors. In contrast, when a PD with

relatively larger Stag-Hunt-type dilemma than a Chicken-type dilemma is assumed,

a player with mid-strategy value would be weeded out by perfect defectors, because

the Stag-Hunt-type dilemma leads a game to a bi-stable-like equilibrium. Fig-

ure 3.28 shows equilibrium strategy distributions of continuous and mixed strategy

games for BSH. It should be noted that a player holding mid-strategy value never

exists at equilibrium. Consequently, for BSH, a continuous strategy game tends to

attain an equilibrium composing only of more defectors than does a discrete

strategy game. In short, existence of mid-strategy value players tends to encourage

D-like behavior and prevent C-like behavior in BSH.

Next, we compare the equilibria of discrete and mixed strategy games. We can

find a greater cooperation level in mixed strategy games than in discrete games in

major networks. The following model scenario might occur. In a mixed strategy

game, an agent probabilistically offers either C or D based on her real number

strategy. As an example, let us assume that one Agent i whose strategy value is si
plays with another agent j whose strategy value is sj. When si is higher than sj
(si> sj), agent j always achieves higher fitness than agent i in discrete and contin-

uous strategy games. However, in mixed strategy games, agent i might be able to

achieve higher fitness than agent j, because agent i might be able to exploit agent
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Fig. 3.28 Strategy distributions at equilibria for BSH based on (a) continuous and (b) mixed

strategy games. Games are played on 8-neighbor lattices (k¼ 8) with 4900 agents
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j by offering D against agent j’s C, although that would occur less frequently. This

“come-from-behind” victory for a more cooperative agent over a defective agent,

occurring probabilistically, causes higher cooperation in the area close to BSH in a

mixed strategy game because cooperative agents have the opportunity to survive by

enduring invasion from neighboring defectors at the early stage in an episode.

Figure 3.29 might prove this hypothesis, showing the survival of perfect coopera-

tors (whose strategy values are higher than 0.9, si> 0.9) for initial second time

steps.

However, we observe an exceptional result in BSH of an SF network, where the

cooperation levels of continuous and mixed strategy games are almost consistent

and larger than that of discrete games (Fig. 3.24(d)). Figure 3.30 shows the

respective cooperation proportions within the limits of 0 � Dg � 1 and 0 � Dr

� 1 based on discrete, continuous, and mixed strategy games, which are played on

Fig. 3.29 Survival ratio of agents with cooperative strategy si, > 0.9 for BSH at the initial two

time steps. Games are played on 8-neighbor lattices (k¼ 8) with 4900 agents
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Fig. 3.30 Averaged cooperation proportion within the limit of 0 � Dg � 1 and 0 � Dr � 1 based

on (a) discrete, (b) continuous and (c) mixed strategy games. Games are played on SF networks

with the average degree< k>¼ 8
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SF networks with the average degree< k>¼ 8. Compared with discrete strategy

games, both continuous and mixed strategy games can maintain a moderate coop-

eration level even with larger Dg and Dr. By contrast, both continuous and mixed

strategy games exhibit a cooperation level in a weak dilemma lower than that

exhibited by discrete games. Following Figs. 3.30 and 3.31 shows the equilibrium

cooperation proportion of each episode and the average cooperation proportion of

100 episodes for BSH. This completely differs from the result with a lattice

(Fig. 3.28). Evidently, the equilibrium of each episode is not bi-stable but is various

internal equilibria. Figure 3.32 shows the variance of the strategies of agents at the

equilibrium. Except for strong Stag-Hunt-type dilemma games, we note that this

internal equilibrium contains less deviated continuous strategy values (Fig. 3.32

(a) and (b)). From these results, we can infer the following. In general, hub agents

Fig. 3.31 Equilibrium cooperation proportion of each episode and average cooperation fraction of

100 trials based on (a) continuous and (b) mixed strategy games. Games are played on SF

networks with the average degree< k>¼ 8
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Fig. 3.32 Variance of strategy value at equilibrium within the limit of 0 � Dg � 1 and 0 � Dr

� 1 based on (a) continuous and (b) mixed strategy games. These data are the average values of

100 trials. Games are played on SF networks with the average degree< k>¼ 8
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having a very high degree (i.e. ki>><k>) in a degree-heterogeneous network such

as an SF network play an important role in diffusing a strategy to the entire society,

because they have a large number of neighbors. In both continuous and mixed

strategy games, perfect cooperators (si> 0.9, for example) can rarely become hub

agents at the beginning of an episode compared with discrete strategy games,

because 90 % of their neighbors have a more defective strategy, and thus, they

would be immediately replaced by defectors. In contrast, when a continuous or

mixed strategy game is played, perfect defectors (si< 0.1, for example) can also

rarely become hub agents at the beginning of an episode. Toward the games’ end,
hub agents in both continuous and mixed strategy games would become less

cooperative and less defective than their initial strategies. This situation causes

both continuous and mixed strategy games played on an SF network to attain more

cooperative equilibrium than attained by discrete strategy games with a relatively

stronger dilemma, whereas they exhibit less cooperation than discrete games with a

relatively weaker dilemma.

Recalling Fig. 3.24(d), we can also note that the difference in equilibrium

cooperation among the three strategy games in both RR and E-R networks is

smaller than that in other networks. One plausible reason for this is that the

substantial feature of these two topologies can be called a well-mixed population,

especially if the average degree becomes large. As Zhong et al. (2012) revealed, in a

large population of well-mixed situation with no special structure, there is almost

no difference in terms of equilibria among discrete and continuous strategies,

although there is little difference in terms of deductive point of view.

Insight into What Happens in the Early Stage of an Evolutionary Process

One simple question is why continuous strategy has a different equilibrium from

discrete strategy. To seek an acceptable answer, let us examine what happens in the

early stage of an episode. Roughly speaking, we can say that the most important

core mechanism of network reciprocity is how initially allocated C clusters can

survive over D invasions in the early stage of an evolutionary process. If C clusters,

initially formed by random allocation of cooperators and defectors, would be

eradicated by defectors’ initial diffusion, cooperation can never expand, whereas

if they survive, cooperation might increase in the long run to a level approaching

either the co-existence of C and D or perfect cooperation. Thus, we have investi-

gated what happens during the early stage of evolution in each of the three strategy

games (played on 8-neighbor lattices).

Figures 3.33, 3.34, and 3.35 show ψD!C, ψC!D, ΔpC, and pC at each initial fifth

time step, where ψD!C (ψC!D) denotes the sum of the strategy variations of players

who convert D (C) to C (D) at each time step for discrete strategy games, and in

both continuous and mixed strategy games, ψD!C (ψC!D) denotes the sum of the

strategy variations of players who convert to a more cooperative (defective)
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strategy at each time step. Here pC indicates cooperation proportion at each time

step. Thus, Δ pC ¼ ψD!C � ψC!D. Therefore, we can say that ψC!D denotes how

quickly and strongly D (defective) attacks C (cooperative) agents, and ψD!C

denotes how quickly and robustly C-clusters expand by overcoming D.

It is obvious that both continuous and mixed strategy games exhibit less D

invasion and more steady C expansion than do discrete games even with increasing

dilemma strength. Those two points are crucially important for cooperation to

emerge, because they are related to how successfully the initially allocated C

clusters can survive D invasions, and how significantly the C clusters can expand

after the initial D attacking phase to attain a moderate cooperation level at the end

of the evolution process. Adopting a real number strategy makes these outcomes

possible.
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Fig. 3.33 Relationships between dilemma strength and ψD!C, ψC!D, ΔpC, and pC at each initial

fifth time step of (a) discrete, (b) continuous, and (c) mixed strategy games. Game structure is

BCH. Games are played on 8-neighbor lattices (k¼ 8) with 4900 agents
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Supplemental Discussion A

This appendix sub-section presents continuous or mixed strategy’s influences on

equilibrium, depending on the assumed initial strategy distribution and whether a

mutation event is assumed. As explained in the main text, we have assumed that the

initial distributions of both continuous and mixed strategy games are uniform

distribution for si 2 0; 1½ �. Furthermore, we have not assumed strategy mutation.

As another possible setting, we could assume the specific initial state, where half

the agents are perfect cooperators (expressed by si¼ 1) and remaining half are

perfect defectors (expressed by si¼ 0), rather than uniform distribution. This initial

setting emulates the initial state in discrete strategy games. In this setting, we must

assume strategy mutation by adding a random number drawn from a Gaussian

distribution with a mean of 0 and an s.d. of 0.002 [5], otherwise agents having only

either 1 or 0 can never develop their strategy to a real equilibrium. A mutation
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Fig. 3.34 Relationships between dilemma strength and ψD!C, ψC!D, ΔpC, and pC at each initial

fifth time step of (a) discrete, (b) continuous, and (c) mixed strategy games. The game structure is

BSH. Games are played on 8-neighbor lattices (k¼ 8) with 4900 agents
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occurs with a small probability (0.1). Figure 3.36 summarizes average cooperation

proportions for visual comparison among the three types of games: discrete,

continuous, and mixed strategies. Note that the mutation procedure above is applied

only to continuous and mixed strategies. Their equilibrium cooperation faction

markedly differ from each other, but we should note that the degree of difference

among the three strategies shown in Fig. 3.36 is not entirely consistent with that

shown in Fig. 3.24. This fact must be attributed to different assumptions in initial

distribution and mutation. Although detailed discussion will be presented in Sup-

plemental discussion B, even at a glance, we note that the continuous strategy in

Fig. 3.36(c) (BCH) shows less cooperation than that in Fig. 3.24(c), whereas in

BSH, the result in Fig. 3.36(d) shows more cooperation than that in Fig. 3.24(d).

Previously we showed the comparison for the assumption of uniform distribu-

tion without mutation for continuous and mixed strategies and equal proportions of

C and D (i.e., binary) without mutation for discrete strategy. We justify this

1 2
2 3
3 4
4 5
5 6
1 2
2 3
3 4
4 5
5 6

0 0.2 0.4 0.6 0.8 1

Dg=Dr

ra
tio

0

-0.4

0.2

0.4

0.6

0.8

1

-0.2

-0.6

(a)

0 0.2 0.4 0.6 0.8 1

Dg=Dr

ra
tio

0

-0.4

0.2

0.4

0.6

0.8

1

-0.2

-0.6

(b)

0 0.2 0.4 0.6 0.8 1

Dg=Dr

ra
tio

0

-0.4

0.2

0.4

0.6

0.8

1

-0.2

-0.6

(c)

CD®y

DC®-y

Cp
CpD

Fig. 3.35 Relationships between dilemma strength and ψD!C, ψC!D, ΔpC, and pC at each initial

fifth time step of (a) discrete, (b) continuous, and (c) mixed strategy games. Games are played on

8-neighbor lattices (k¼ 8) with 4900 agents
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Fig. 3.36 Averaged cooperation proportions of three strategy games for (a) AllPD, (b) DRG, (c)

BCH, and (d) BSH within the limit of 0 � Dg � 1 and 0 � Dr � 1. Games are played on seven

network structures: Cycle, Lattice, Ho-SW, He-SW, RR, E-R, and SF, and two average degrees:

8 and 12. The initial distribution assumed here is the same as that of a discrete strategy game,

where half the agents are perfect cooperators (expressed by si¼ 1) and the remaining half are

perfect defectors (expressed by si¼ 0). We also assumed a mutation after copying the neighbor’s
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assumption because the strategy mutation setting inevitably causes the difficult

problem that any practical assumption of mutation for both continuous and mixed

strategies might not be consistent with that for a discrete strategy. In fact, a certain

mutation probability for both continuous and mixed strategies does not have the

same impact on the discrete strategy case, because in the former case, a mutation

means si ! si þ
ffiffiffiffiffiffiffiffiffiffiffi
0:002
p

*Gaussian Rnd½�, whereas in the latter case, a mutation

indicates either C to D (1! 0) or D to C (0! 1). Thus, when we plausibly propose

that the three strategies (continuous, mixed, and discrete) must be consistent in

mutation setting, the only choice is to assume no mutation process. Further, when

we propose that the three cases should be consistent in initial distribution, the only

possible choice is the binary setting, which, however, requires the mutation process

for continuous and mixed strategies so that they operate as described. Therefore, it

is not realistic to establish the binary setting as the initial strategy distribution for all

three cases.

Supplemental Discussion B

This appendix sub-section discusses continuous or mixed strategy’s influences on
equilibrium depending on the assumptions regarding initial strategy distribution

and whether a mutation event occurs. Thus, we here discuss the differences between

Fig. 3.24 and Fig. 3.36. Hereafter, for simplicity, we express the conditions of

Fig. 3.24 and Fig. 3.36 as Condition A (uniform distribution without mutation) and

Condition B (binary distribution with mutation), respectively. In this section, we

also discuss BCH and BSH separately as in Sects. 3.4.3.1 and 3.4.3.2.

We first discuss features in BCH. Observing both Figs. 3.24(c) and 3.36(c), we

note that the influence of both continuous and mixed strategies on equilibrium

results from the assumptions about initial strategy distribution and whether a

mutation event occurs and is classified into following three categories: (1) consid-

erable influence on only continuous strategy games and no influence on mixed

strategy games (cycle and lattice); (2) negligible influence on both continuous and

mixed strategy games (Ho-SW, He-SW, RR, and E-R); and (3) considerable influ-

ence on both continuous and mixed strategy games (SF).

We begin with cycle and lattice structures, where equilibria are influenced only

when a continuous strategy is assumed. Figure 3.36(c) shows a cooperation level

lower compared with that in Fig. 3.24(c). We limit this discussion to degree k¼ 8 as

we did previously.

Figures 3.37 and 3.38 show the equilibrium cooperation proportions drawn from

100 realizations based on a continuous strategy in BCH. In addition to Conditions A
and B, we added Condition C, in which the initial distribution is given by a uniform

Fig. 3.36 (continued) strategy so as to enable the agent to search the strategy space si 2 0; 1½ �,
which was applied to only continuous and mixed strategies
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distribution: si 2 0; 1½ � with a mutation event. Comparing Conditions A and C, we
note that the cooperation level assumed with a mutation event is lower than that

without a mutation. Moreover, when presuming mutation, the cooperation level in a

binary initial setting is inferior to that of a uniform initial distribution setting. From

Fig. 3.38, we observe that the equilibrium in Condition B shows bi-stable-like

feature when Dg becomes relatively large. As mentioned in Sect. 3.1, in continuous

and mixed strategy games, a reasonable cooperation level can be established by

forming a “mid-C cluster” consisting of mid-cooperative strategies even when a

strong Chicken-type dilemma is imposed. However, it might be also true in strong

dilemma games with binary initial distribution that some episodes can establish an

Fig. 3.37 Averaged cooperation proportion of a continuous strategy game for uniform distribu-

tion without a mutation event (Condition A), binary distribution with a mutation event (Condition
B), and uniform distribution with a mutation event (Condition C). Games are played on lattice

networks with the average degree< k>¼ 8. Dilemma subclass is BCH

Fig. 3.38 Equilibrium cooperation proportion of each episode in a continuous strategy game for

uniform distribution without a mutation event (Condition A), binary distribution with a mutation

event (Condition B), and uniform distribution with a mutation event (Condition C). Games are

played on lattice networks with the average degree< k>¼ 8. The dilemma subclass is BCH
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equilibrium consisting of only D-players before players attain a mid-cooperative

level because D invasions in the early stage of an evolutionary process strengthen as

the dilemma becomes stronger (see Figs. 3.33, 3.34, and 3.35). This leads to the

result that cooperation in Condition B attains a level lower than that of Condition
C. Except for those realizations where the cooperation proportion at equilibrium is

0, Condition B is comparable to Condition C. Deviation among realizations of

Condition A is always large irrespective of the dilemma strength, which differs

from that of Condition C. This fact implies that there is an instinct difference in

equilibrium depending on whether mutation occurs, even if the same initial distri-

bution (uniform distribution) is assumed. In the main discussion in the previous

sub-section, we thought it appropriate to assume Condition A in order to compare

discrete strategy cases with mutation excluded in order to consider in the evolu-

tionary process.

However, there is less significant influence on the equilibrium of mixed strategy

games from the assumed initial distribution. This relates to the “come-from-

behind” victory probabilistically occurring in mixed strategy games. In mixed

strategy games, which take a considerably long time to reach equilibrium,

mid-cooperative strategies derived from mutation can be transmitted to all the

agents through this “come-from-behind” victory event. That phenomenon explains

why there is no difference between Conditions A and B in mixed strategy games

(Figs. 3.24(c) and 3.36(c)).

Next, let us discuss Ho-SW, He-SW, RR, and E-R, where the equilibria are

nearly independent of the assumptions about the initial setting and whether a

mutation event occurs, for either continuous or mixed strategy games. In general,

average path lengths of these four networks are relatively short compared with

regular networks. Thus, a mid-cooperative strategy derived from mutation in these

four networks is transmitted to all the agents more easily than that in cycle and

lattice networks, which have relatively long average path lengths. Therefore, in

these four networks, each episode does not exhibit bi-stable-like equilibrium but the

same internal (polymorphic) equilibrium (not shown). This leads to the presence of

no differences between Fig. 3.24(c) and Fig. 3.36(c).

Finally, let us discuss SF, where equilibrium depends on the assumptions about

the initial setting and whether a mutation event occurs, for either continuous or

mixed strategy. Figure 3.39 shows the respective cooperation fractions within the

limits of 0 � Dg � 1 and 0 � Dr � 1 based on continuous and mixed strategy

games played on SF networks with the average degree< k>¼ 8. As we confirmed,

in SF, the initial assumed distribution’s influence on equilibrium is larger than that

from the assumption of whether mutation event occurs. As mentioned before, an

equilibrium cooperation proportion of a SF network depends on a hub agent’s
strategy value at the beginning of an episode. When we assume a binary initial

setting, hub agents can have either a perfect cooperative strategy or a perfect

defective strategy. Thus, continuous and mixed strategy games exhibit the same

feature as discrete strategy games, whose phase diagram clearly shows whether

cooperation can survive.
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Next, let us discuss features in BSH. Observing both Figs. 3.24(d) and 3.36(d),

we also note, as in BCH, that the influence of either continuous or mixed strategy,

depending on assumptions about initial strategy distribution and whether a mutation

event occurs, on equilibrium can be classified into the following three categories:

(1) considerable influence on only continuous strategy games and no influence on

mixed strategy games (cycle and lattice); (2) negligible influence on both contin-

uous and mixed strategy games (Ho-SW, He-SW, RR, and E-R); and (3) consider-

able influence on both continuous and mixed strategy games (SF).

First, let us discuss cycle, lattice, Ho-SW, and He-SW structures, where equi-

libria are influenced only in continuous strategy games. Figure 3.36(d) shows a

higher cooperation level compared with Fig. 3.24(d). For the sake of discussion

here, we also limit the lattice network with the degree k¼ 8. Figure 3.40 shows the

equilibrium cooperation proportion derived from 100 episodes based on a contin-

uous strategy in BSH. Let us consider the critical dilemma strengthDr_cr. We define

Dr_cr by the threshold Stag-Hunt-type dilemma strength when the equilibrium
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Fig. 3.39 Averaged cooperation proportion within the limit of 0 � Dg � 1 and 0 � Dr � 1 based

on (a) Condition B in a continuous strategy game, (b) Condition C in a continuous strategy game,

(c) Condition B in a mixed strategy game, and (d) Condition C in a mixed strategy game. Games

are played on SF networks with the average degree< k>¼ 8
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cooperation proportion falls below 0.1. Observing Fig. 3.40, we can see thatDr_cr of

a discrete strategy game is obviously inferior to that of a continuous strategy game.

Moreover, a continuous strategy game with a mutation has a largerDr_cr than that of

a continuous strategy game without a mutation. As mentioned, the most important

core-mechanism to explain network reciprocity is how initially allocated C clusters

can survive D invasions in the early stage of an evolutionary process and how

robustly these C-clusters can expand to the surrounding D area after the initial

ordeal. Therefore, we can say that Dr_cr is almost the same dilemma strength that

determines whether a C-cluster can expand in a D population. Let us take an

example shown in Fig. 3.41 to discuss Dr_cr that determines whether a C-cluster

can expand in a D population. In Fig. 3.41, a blue square illustrates relatively

Fig. 3.40 Averaged cooperation proportion for Condition A in a continuous strategy game,

Condition B in a continuous strategy game, Condition C in a continuous strategy game, and

discrete strategy game. Games are played on lattice networks with the average degree< k>¼
8. The dilemma subclass is BSH

Fig. 3.41 A blue square illustrate a C-player, a red one illustrates a D-player, and the topology is

an 8-neighbor lattice. The strategy values of player X and player Y are sx and sy, respectively
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cooperative players, a red square indicates relatively defective players, and the

topology is an 8-neighbor lattice. As long as we assume Imitation Max (IM) as the

strategy update rule, we can derive Dr_cr by comparing the benefit of Agent X

(sX¼ x) with that of Agent Y (sY¼ y) in Fig. 3.41. We can derive Dr cr ¼ 2
8�5 xþyð Þ.

The sum of x and y must always be 1 (x+ y¼ 1) in a discrete strategy game, but it

can be larger than 1 (x+ y> 1) in both continuous and mixed strategy games. Thus,

the relationship between the critical dilemma strength of a discrete strategy game

Dr_cr_discrete and that of a continuous strategy gameDr_cr_continuous obeysDr_cr_discre-

te<Dr_cr_continuous, which is consistent with Fig. 3.40. The reason that

Dr_cr_continuous in a mutation event is considered as larger than that in the mutation

excluded condition is as follows. For a continuous strategy game with uniform

initial distribution and mutation excluded, it is difficult for perfect cooperators (e.g.,

si> 0.9) to survive in the early stage of an episode and C-clusters tend to be

eliminated because the proportion of perfect cooperators is lower (see Sect. 3.1).

Assuming a mutation event tends to relax the drawback that the cooperative agents

cluster consists of fewer agents. This leads to the fact that Dr_cr becomes larger,

which is consistent with what we observed in Fig. 3.40.

Next, let us discuss RR and E-R, whose equilibria are nearly independent of the

assumption about initial setting and whether a mutation event occurs, for either

continuous or mixed strategy games. Because these two networks have a relatively

lower clustering coefficient than do the previous four networks, the underlying

topology of these two networks exhibits a feature such as a well-mixed situation,

with no difference of equilibria between discrete and continuous strategies (Vincent

and Cressman 2000). Therefore, as long as we assume a large enough number of

agents (N >> 1), the assumed initial distribution and possibility of a mutation

become irrelevant to equilibrium.

Finally, let us discuss SF, where the equilibrium depends on assumptions

regarding the initial setting and whether mutation event occurs, for either contin-

uous or mixed strategy game. The observed result is caused by the crucial fact that

hubs are occupied by either a perfect cooperative or perfect defective strategy. This

is the same as what we discussed for BCH.

Supplemental Discussion C

As mentioned, in the model we assumed that an agent synchronously updates

her strategy every τ step based on the accumulated payoffs with all neighbors

during τ steps. We have assumed τ ¼ 1 thus far. In this sub-section, we assume

τ > 1, which implies the speed of strategy updating is slower than that of game

progress. Figure 3.42 shows how mixed strategy games approach continuous

strategy games if τ!1. We note that Fig. 3.42(d) is almost consistent with

Fig. 3.25(b).
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Supplemental Discussion D

Thus far, we limited our study to the prisoner’s dilemma game (PD), where 0 � Dg

� 1 and 0 � Dr � 1. In this appendix, we consider another important social

dilemma class: Chicken game (CH game), where 0 � Dg � 1 and �1 � Dr � 0.

In CH game, sub game class depends on the case whether S+ T (¼�Dr+Dg+ 1) is

larger than 2R. If S + T> 2R, alternating S and T is more effective than mutual R,
which simply means ST-reciprocity is better than R-reciprocity. Therefore, it is not
appropriate to evaluate how efficient reciprocity is achieved via averaged cooper-

ation proportion. Figure 3.43 shows averaged payoff per link instead of averaged

cooperation proportion. It is obvious that averaged payoff per link of continuous

and mixed strategy games are larger than that discrete strategy game. Especially in

the in the region S+ T> 2R and Dg> 0.7, the later becomes very low. In addition,

discrete strategy game has no region where averaged payoff per link is larger than

2 (¼ 2R, amount of R reciprocity bringing).
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Fig. 3.42 Averaged cooperation proportion within the limit of 0 � Dg � 1 and 0 � Dr � 1 based

on a mixed strategy game with (a) τ ¼ 10, (b) τ ¼ 25, (c) τ ¼ 50, and (d) τ ¼ 100 assumed. Games

are played on 8-neighbor lattices (k¼ 8) with 4900 agents. These data are the average values of

20 trials
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3.4.4 Summary

We thoroughly investigated the differences in terms of game equilibrium among

continuous, mixed, and discrete strategies in spatially structured populations. We

found that there are substantial differences among these strategies, which cannot

exist in well-mixed populations. These findings might raise a significant question as

to whether the previous approach to network reciprocity, presuming only binary C

or D strategies, is really appropriate.

By a series of comprehensive and systematic numerical simulations, we showed

how different equilibria among the three strategies can be established, assuming

various underlying topologies as well as different average degrees in fundamentally

Prisoner’s Dilemma games.

The results imply that BCH (boundary games to Chicken) and BSH (boundary

games to Stag Hunt) have different mechanisms encouraging significant differences

in equilibria between continuous or mixed strategy and discrete strategy games.
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Fig. 3.43 Averaged payoff per link within the limit of 0 � Dg � 1 and �1 � Dr � 0 (CH game)

based on (a) discrete, (b) continuous, and (c) mixed strategy games. Games are played on

8-neighbor lattices (k¼ 8) with 4900 agents. The region above the broken line is 2R< T+ S
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In BCH games with continuous and mixed strategies, mid-cooperative clusters

consisting of mid-cooperative strategies, which can establish reasonable coopera-

tion, are formed.

In BSH games with mixed strategy, a “come-from-behind” victory event, where

a more cooperative agent defeats a defective agent, occurring probabilistically, and

causes a higher cooperation level than adopting either discrete or continuous

strategy.

Furthermore, the underlying topology, whether SF or others, causes inconsis-

tencies in equilibria among the three strategies. In general, hub agents play an

important role in diffusing a strategy to the entire society, because they have many

neighbors. Hub agents in continuous and mixed strategy games would become less

cooperative as well as less defective than their initial strategies. Therefore, when

the underlying topology is SF, the cooperation levels of continuous and mixed

strategy games are almost consistent with each other but different from that of

discrete strategy games.

3.5 A Substantial Mechanism of Network Reciprocity

So far in this chapter, we have discussed various aspects of network reciprocity,

which is one of the five fundamental mechanisms for enhancing cooperation in

evolutionary games classified as prisoner’s dilemma.

In recent decades, there have been a great number of papers, perhaps hundreds or

even thousands, reporting a “new SPD model” that can show more enhanced

cooperation than the conventional SPD model when enhanced by typical network

reciprocity. But, in most cases, the question of why each particular enhancement

works is neglected, or at least, is treated with less concern. This is because finding a

new enhancement model alone is meaningful as well as valuable. It would now be a

good idea to look back at this affluent supply of work so as to take this discussion a

step further. Here, let us inquire ourselves into what network reciprocity really

means, and what we mean when we say the substance of network reciprocity.

Figure 3.11 gives us a good start for seeking an answer to this inquiry. The social

viscosity resulting from network reciprocity should be considered to have two main

aspects, END and EXP, which we have defined in the previous discussion. As

mentioned previously, END refers to a period when the global cooperation fraction

decreases, after starting out on an evolutionary path, from the initial arrangement of

cooperators and defectors. Most previous studies assumed that an equal number of

cooperators and defectors are randomly placed on the vertices of a presumed

underlying network. EXP, which takes place following END in the same evolu-

tionary path, refers to a period when the global cooperation fraction increases.

However, if the particular path is absorbed by an all-defectors-state in END, EXP

never happens.

One acceptable idea is that if a certain mechanism could make the probability of

absorption by an all-defectors-state in END lower than the usual network reciproc-

ity, we would call that particular mechanism more enhanced than the usual network
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reciprocity. If a mechanism could make the level of cooperation in EXP increase

more significantly than typical network reciprocity does, we could regard that

particular mechanism as more enhanced than usual network reciprocity. This

concept enables us to evaluate to what extent each of the enhancement models

proposed in the previous studies can bolster the network reciprocity in either END

or in EXP, making the real substance of network reciprocity transparent.

For the sake of simplicity, in the following discussion, we concern ourselves

with the case in which we presume a lattice and Imitation Max (IM) as the

underlying network and strategy update rule, respectively. We do not introduce a

degree-heterogeneous graph, such as Scale-Free, or a stochastic strategy update,

such as Pairwise Fermi. This is because those features, like degree distribution,

random connection among agents, and stochastic perturbation in the strategy update

rule, make it more ambiguous for us to observe the natural effect resulting from the

enhanced network reciprocity.

3.5.1 Simulation Settings and Evaluating the Concept
of END & EXP

In the following investigation, we assume a Donor & Recipient (D & R) game, one

of the representative sub-classes of Prisoner’s Dilemma (PD) games, where a

chicken-type dilemma strength, Dg (¼ P� S) is consistent with a stag hunt-type

dilemma strength, Dr (¼ T�R). Without a loss of generality, we adopt Eq. (3.1)

with R¼ 1 and P¼ 0. As mentioned before, we adopt a lattice of k¼ 8 for the

underlying network, with a size N of 100� 100, and IM with synchronous strategy

updating. Each simulation starts from equal number of cooperators and defectors

randomly assigned to each vertex of the network to obtained quasi-equilibrium. We

evaluate cooperation fraction by ensemble average formed from 100 independent

simulations.

The key point is how we measure the effectiveness of network reciprocity in

END and EXP. Here, let us define the following two parameters.

EEND Effectiveness in END. We define EEND as the average cluster shape, SHC,

at the end of END, when initial cooperation fraction of 0.5 is imposed. As

originally defined by Eq. (3.2) in Sect. 3.2, the shape of a i is defined by

SHCi¼ (2lCC�OCD) / (2lCC +OCD), where lCC is the number of C-C links

within the C-cluster i and OCD is the number of C-D links that connect the

C-cluster i with the surrounding defectors. The value of SHC, defined on a

scale of [�1,+1], is obtained by averaging over all SHCi and weighted by

its size. A negative SHCmeans that cooperators are placed dissortatively in

a domain, which implies that cooperative clusters have convexo-concave

boundaries with defectors surrounding them. Contrariwise, a positive SHC

means that cooperators are placed assortatively, which implies

cooperators’ clusters have clumpy shapes with fewer convexo-concave
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boundaries surrounded by defectors. Obviously, a positive SHC is expected

to lead to a favorable EXP, in which a C-cluster can smoothly expand to

the surrounding region mainly occupied by defectors. If there is a single

cooperator in a domain, this cluster shape is evaluated as SHC¼ (2 * 0� k)
/ (2 * 0 + k)¼�1. Thus, we presume SHC¼�1, in the case of an

all-defectors-state, as the ultimate situation, although the original

definition by Eq. (3.2) becomes indefinite. Without losing the generality

of the argument so far, we can rescale SHC from [�1, +1] to [0, 1] by

applying a transform of 0.5* SHC + 0.5. The definition of EEND means the

following. If a simulation episode is absorbed by an all-defectors-state in

END, its EEND is evaluated to be zero. When an EEND close to 1 (0) is

observed, the C-clusters surviving in END have good (bad) shapes for

growing with high probability.

EEXP Effectiveness in EXP, which is defined as the cooperation fraction at

equilibrium averaged over 100 realizations, when each realization begins

with the initial setting of a “perfect C-cluster,” where a block of nine (¼
3� 3) cooperators are placed in the center of the domain while the other

vertices are occupied by defectors. Let us presume a perfect C-cluster in a

sea of defectors as shown in Fig. 3.44(a). Agent (D-1) neighboring the

perfect C-cluster most effectively exploits the neighboring cooperator,

who gets 3 T+ 5P. This is rewritten as 3 � 1þ Dg

� �
when substituting

into Eq. (3.1). His neighbor, cooperative agent (C-1) is exploited by

three neighboring defectors, and thus only earns 5Rþ 3S ¼ 5� 3 � Dr.

However, one of his neighbors, agent (C-2), at the center of the perfect

C-cluster, gains a high payoff, 8R ¼ 8. Even if an agent is severely

exploited by his defective neighbors, the IM rule compels him to keep

cooperating as long as he has a cooperative neighbor who obtains a high

payoff. For these reasons, we can infer that a perfect C-cluster, initially

placed in the center of an all-defectors domain, never perishes, as long as

Dg <
5
3
. We also infer that this perfect C-cluster can expand in the domain,

as long as Dg þ Dr <
2
3
. These two particular conditions are shown in

Fig. 3.44(b), in which the green and blue regions meet at the first

Fig. 3.44 Conditions in

which a perfect can survive

and expand in the case in

which and IM are assumed.

(a) Cooperators and

defectors around a Perfect

C-Cluster, (b) Dg - Dr

diagram
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inequality, and the blue region represents where (, ) satisfies the second

inequality. Therefore, we can deduce that a dynamical episode starting

with a single perfect C-cluster in a sea of defectors and satisfying the

second inequality could ultimately attain an all-cooperators-state if we

assume a sufficiently large domain. Paraphrasing this, as long as 0 � Dg

� 1 and 0 � Dr � 1 are satisfied, any evolutionary path implemented with

the usual mechanism can never be absorbed by an all-defectors-state, and

that at least the initial nine cooperators will always remain, which implies

there is actually no . Instead, this particular initial setting ensures that every

evolutionary path starts immediately in the , not undergoing any END

period as cooperation can grow immediately from this initial situation.

In the following discussion, we focus in particular on the following ten enhanced

mechanisms as representative ones.

Enlarging interaction neighborhood (IN) and learning neighborhood (LN): In a

commonly-shared assumption in SPD games, a gaming neighborhood, or IN (the

range of neighbors with which games can be played) is presumed to be equiv-

alent to the strategy adaptation neighborhood, or LN (the range of neighbors

from which the focal agent copies its strategy). Recently, Xia et al. (2013)

delivered a rebuttal to this, in which they explored simulations to see what

happens if IN and LN expand independently. They found that appropriately

selecting IN and LN, if they are respectively larger than a first neighborhood,

enhances network reciprocity. But they do not clearly explain what causes the

appropriate IN and LN size to bolster network reciprocity and this has been

comprehensively assessed by Ogasawara et al. (2014) very recently. Here, we

apply a second Moore neighborhood, with k¼ 24, as the enlarged IN and LN as

compared to the default k¼ 8, the first Moore neighborhood.

Void site: Vainstein and Arenzon (2001) found that the cooperation in SPD games

is significantly enhanced by considering site diluted lattices. But, exactly speak-

ing, they assumed spatial Public Goods Games with Pairwise Fermi for updating

rule, which is different from the current discussion. Here, we vary the ratio of

void sites to be 1 %, 5 %, 10 %, and 25 % out of N.
Time delay: Pan et al. (2013) found that the cooperation in SPD games is reason-

ably enhanced by introducing a time delay between the time-step when payoff

information is acquired and the time-step when strategy update actually happens.

Here, we apply time delay of τ¼ 1 time step, which indicates an agent updates

his strategy based on his accumulated payoff in the previous time-step.

Copy error: Cong et al. (2010) found that a small amount of copy error can

promote cooperation in SPD, because copy error adds some noise into the

dynamical system that may work effectively for enhancing cooperation in

some situations, like with the resonance effect, but may work counterpro-

ductively in other situations. One point that should be noted is that they premise

a scale-free graph as the underlying network rather than a lattice in their study.

Here, we vary the copy error between 1 %, 5 %, 10 %, and 25 %.
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Facilitator: Szolnoki et al. (2014) identified significant cooperation enhancement

by introducing “facilitators” who behave as mirrors to their neighbors—they

cooperate with cooperators and defect with defectors—but they do not partici-

pate in the exchange of strategies. Here, we vary the ratio of facilitators between

1 %, 5 %, 10 %, and 25 %.

Action error: Dai et al. (2010) found that adding action error but not copying error

is able to significantly improve cooperation compared to the network reciprocity

in the usual SPD model. Here, we vary the action error between 1 %, 5 %, 10 %,

and 25 %.

Cumulative payoff: Ren and Wang (2014) reported more enhanced cooperation in

SPD games if an agent updates based on the cumulative payoff based on all

payoffs from the beginning of an episode instead of the temporal payoff obtained

in a particular time-step.

Selecting game opponent: Berde (2011) found more enhanced cooperation in SPD

games if an agent only plays selective neighbors stochastically selected based on

their payoff, where a neighbor who obtains much more payoff than the focal

agent is more frequently elected as a game opponent.

Payoff noise: Perc (2006a, b, 2007), also Tanimoto (2007b), found that adding

noise to the payoff matrix can significantly bolster network reciprocity, which is

equivalent to the so-called stochastic resonance effects commonly observed in

many physical phenomena.

3.5.2 Results and Discussion

Figure 3.45 shows the EEND and EEXP of the above ten enhanced models as

compared with the default model where typical network reciprocity is presumed.

The cross point of the horizontal and vertical coordinates represents (EEND, EEXP) of

the default model. Thus, each EEND (EEXP) of the ten models represents how much

the model bolsters network reciprocity in END (EXP) as compared with the default

model if EEND (EEXP) has a positive value. The plot’s size (area) represents the

averaged cooperation fraction at equilibrium over the region of0 � Dg ¼ Drð Þ � 1,

in which we let each of the evolutionary episodes start from the initial state where

an equal number of cooperators and defectors are randomly distributed in the

domain. Thus, we can evaluate whether the network reciprocity of each of the ten

models is superior to the default model or not by comparing the areas of the plots.

Firstly, it is worthwhile to note that mechanisms showing larger EEND and EEXP

than those of the default case, such as “selecting game opponent,” all cases of

“action error,” and the 25 % case of “facilitator,” show more enhanced network

reciprocity than the default case. Whereas, on the other hand, cases of “enlarging

IN” and “copy error” provide much more meager network reciprocity as a whole

vis-�a-vis the default case, because of the smaller EEND and EEXP values than in the

default case. The point to be addressed here is that the map can let you capture
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clearly, almost at a glance, which models are likely to perform with more enhanced

cooperation than the default model by comparing the EEND and EEXP values with

those of the default case.

Let us start with “enlarging LN and IN.” Enlarging LNmakes END a little worse

than the default. This results from the situation in which cooperators, initially

distributed in a random arrangement, convert to defectors by copying defection

(d)
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Fig. 3.45 (EEND, EEND) and holistic network reciprocity (represented by the plot’s area) compar-

ing the default model with (a) models enhanced by enlarging IN, enlarging LN, time delay,

cumulative payoff, and selecting game opponents, (b) a model enhanced by a void site, (c) a

model enhanced by copy error, (d) models enhanced by a facilitator, and (e) a model enhanced by

action error
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from a neighbor who efficiently exploits from plural cooperators, which relatively

increases the probability of absorption by an all-defectors-state in END, or just

allows SHC to be worse even if fortunate C-clusters can survive. However, enlarg-

ing LN improves EEXP a great deal. This is obviously because even a defector who

is the secondary neighbor of a C-cluster converts to a cooperator, which inevitably

makes it difficult for a defector to remain in a gap between plural C-clusters by

efficiently exploiting cooperators in a general case of dynamics. In fact, as we can

confirm by comparing the sizes of plots of “enlarging LN” cases and the default

case, enlarging LN allows much more prosperous cooperation. Contrariwise,

enlarging IN seems hopeless at increasing cooperation, which devastates both in

END and EXP. This is not surprising in a way, because even a cooperator in the

center of a perfect C-cluster is exploited by his secondary neighboring defectors.

Thus, the surviving probability of C-clusters initially placed in the domain to avoid

absorption of all-defector-state decreases, and the chance of expansion of C-clusters

is depressed in EXP even if they survive the END period.

As reported by Cong et al. (2010), the model of “copy error” might work only for

degree-heterogeneous networks like scale-free. Because of this, both EEND and

EEXP are inferior to the default case. Thus, it leads to a very poor result compared

to the default case.

The highest cooperation fraction of equilibrium, expressed by each plot size,

among the ten models, is found in the case of “selecting game opponent,” which

shows both EEND and EEXP to be improved. This particular option allows a

cooperator on the border of a C-cluster, facing defectors, to play only with a

neighboring cooperator and earn 8R, avoiding interaction with defectors, in

games hosted by that particular cooperator, even though he is exploited by his

neighboring defectors in the games hosted by those defectors. This system works to

depress the probability of absorption by an all-defectors-state, as well as to convert

more defectors to cooperation.

Interestingly, although the cases of “time delay” and “cumulative payoff” only

show a slightly improved EEND, these holistic network reciprocities vis-�a-vis the
default case are reasonably improved. An improvement in EEND creates a situation

where surviving C-clusters have appropriate shapes for growing with high proba-

bility. This fact might bring significant amelioration in these two models.

More interestingly, although the case of the “void site” with a rate of 25 % can

result in an improved EEND compared to lower percentile cases (but a worse EEXP),

the holistic network reciprocity is devastated as compared with the default case.

This is because a worse EEXP has a more significant effect in this particular model.

In fact, we can easily imagine that a larger number of void sites will destroy a

spatially smooth expansion of C-clusters in EXP that have survived END.

The cases of “facilitator” and “action error” show improved EEXP as well as

EEND, except for the lower percentile cases in “facilitator,” which show no improve-

ment in EEXP. This is why the level of network reciprocity of these two settings is

much better than that in the default case. As previously mentioned regarding the

“selecting game opponent” case, these two mechanisms can simultaneously realize

the following two things: (1) the probability of C-clusters surviving in good shape
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until the end of END increases and (2) the spatially smooth expansion of those

C-clusters in EXP can be improved. Thus, a high level of equilibrium cooperation

fraction, as observed in the “selecting game opponent” case, is attained.

The case of “payoff noise” shows a very subtle improvement in terms of the

cooperation level compared with the default case, because of just a slightly better

EEXP than the default case.

3.5.3 Relation Between Network Reciprocity and EEND &
EEXP

Here, we pursue a most interesting and important question in Sects. 3.3, 3.4, and

3.5. That question is what mechanism determines network reciprocity, in other

words, how qualitatively influential END is on the improved cooperation by a

certain network reciprocity mechanism, and likewise, how influential EXP is.

Figure 3.46(a) shows the correlation between averaged cooperation fractions

covering the whole range of 0 � Dg ¼ Drð Þ � 1 (that is, equivalent to the area, size

of each of the plots in Fig. 3.45) and EEND. Figure 3.46(b) shows another correlation

with EEXP. Although both contributing ratios, R2¼ 0.425 and 0.506, respectively

shown in the figures do not seem too bad, we observe some shattered plots away

from the respective regression lines. Needless to say, this is because the network

reciprocity by each model including the default setting is not only influenced by

END but also by how much EXP is improved.

Fig. 3.46 Single regression analysis between the average cooperation fraction and (a) EEND, or

(b) EEND. The regression equation with the correlation coefficient is provided in the figure.

Table shows the results of statistical test. In the upper part, a regression line is significant if

“Significant F-value” (bold number) is less than 0.05. While, in the lower part of the table, a

regression coefficient is significant if the absolute value of “t-value” (marked by bold as well) is

more than 2.2. Thus, both regressions are evaluated statistically robust
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One plausible idea is to take correlation with EEND * EEXP. The fact that EXP

takes place following END in a single episode lets us expect that the product of

EEND and EEXP has a high correlation with the final equilibrium cooperation level.

The result is shown in Fig. 3.47. Note that R2 is much improved from the results of

the respective single regression analyses presented in Fig. 3.46.

Another alternative idea is to apply multiregression analysis. The result is shown

in Fig. 3.48, where a better R2 is obtained than for the results of the respective single

regression analyses.

These two regression analyses imply that a great contribution to the network

reciprocity resulting from any models, including the default model, can be

Fig. 3.47 Single regression analysis between the average cooperation fraction and the product of

EEND and EEXP. Table shows the results of statistical test

Fig. 3.48 Multiregression analysis between the average cooperation fraction and EEND & EEXP.

Table shows the results of statistical test
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explained by the behavior during END and EXP in its evolutionary path, which can

be evaluated using EEND and EEXP.

3.5.4 Summary

The procedure presented here might be meaningful, because it enables transparent

dissection of holistic network reciprocity, a certain newly-proposed model involv-

ing two different factors. One is how well the model can lead to good C-cluster

shapes at the end of END by avoiding absorption by an all-defectors-state in END, a

parameter that is measured as EEND. The second factor is how well the model helps

spatially smooth the expansion of C-clusters that successfully survive END in EXP,

measured as EEXP.

This concept, supported by the idea that we should consider an evolutionary path

as divided into END and EXP periods, helps us to understand the nature of network

reciprocity.

In a sense, END is the period in which the dynamical system introduced by a

particular network reciprocity model takes time to relax the influence resulting from

the initial noise impact caused by the initial configuration of agents in the domain,

usually assumed to be a random assignment of half cooperators and half defectors.

As is commonly recognized in statistical physics, adding a reasonable level of noise

can improve system efficiency, because of the so-called resonance effect. This fact

seems consistent with the result that all models backed by a stochastic process

except for “copy error” show better EEND than that of the default case (both

“enlarging LN and IN” contain deterministic processes).

EXP is the period during which a cooperation fraction, which originally

decreased, recovers. EEND represents the level of cooperation to which the model

achieves in this period.

The simulation result amazingly reveals that most of the network reciprocity in

any specific model can be quantitatively evaluated by EEND and EEXP. Thus, the

concept of dissecting the holistic network reciprocity into two processes, END and

EXP, is fully justified.

This discussion has presumed IM and a lattice of k¼ 8 as the update rule and

underlying topology, which is defined as entirely deterministic. We can immedi-

ately apply this procedure to different strategy update rules, even to stochastic ones

such as Pairwise-Fermi, one of the most commonly-used update rules in previous

studies. If Fermi-PW is assumed as a base-line, evaluating EEND might be less

influential on the holistic network reciprocity effect, because Pairwise-Fermi adds

some noise effect into the dynamics when referring to what happens in IM. A more

serious problem for this application is how we apply this concept to degree-

heterogeneous topologies such as Scale-Free and Small-World networks. This is

because the idea of EEXP premises the perfect C-cluster to measure. The question

that occurs to us is how we define a perfect C-cluster in the case of degree-

heterogeneous networks.
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Chapter 4

Evolution of Communication

Abstract In this chapter, we discuss several interesting applications of evolution-

ary game theory. The chapter first takes up one possible scenario for why and how

animal communication evolves. A series of numerical experiments based on an

evolutionary game elucidates that one of the key points is time flexibility in the

evolutionary trail. A social dilemma situation in a static environment only requires

time-constant -reciprocity that can be emulated by Prisoner’s Dilemma (PD) games,

which does not give rise to any communication at all. On the other hand, a dynamic

environment needs -reciprocity to solve a social dilemma. This compels commu-

nication to emerge among agents so that they can obtain a high payoff, leading to

Fair Pareto optimum. This kind of constructivist approach suggests that a PD game

seems less appropriate as an argument for the inception of communication, but

Leader or Hero might be better.

4.1 Communication; as an Authentication Mechanism

With respect to what this section noting, a reader can consult with Tanimoto (2008).

Communication is widely observed in various animal species and human language

is its highly evolved form. The question of what initially brought about animal

communications (including human language) and how it evolved is one of the most

challenging problems, in terms of interdisciplinary viewpoint, which is still unsolved.

For example, some analysts and anthropologists are seeking proof that relates

language acquisition and basicranial curves. One crucial impediment to

this research is that communication is only software; it is impossible to find biological

evidence such as fossils and bones. To circumvent this limitation, an approach based

on artificial life and complex sciences seems useful, as it can effectively shed some

light on the process of emergence of animal communication. By means of this kind of

approach, one establishes a model based on a hypothesis. And if a simulation result

by the model is consistent with an observatory proof, one can say that the hypothesis

might be likely. It is generally called a constructivism approach, which powerfully

works for problems where none of direct and hard evidence is not brought about, and
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of which background mechanism is sought to be clarified. A question of how a

communication evolves might be one of typical applications.

Rationale mechanisms observed in animal communication have given several

useful mathematical frameworks, which have been applied to many engineering

fields. The ant system, initially proposed by Dorigo et al. (1996), is widely used to

solve optimization problems such as the traveling salesman problem (e.g.,

Kawamura et al. (1998)). The ant system assumes that a group of ants develop

pheromone communication in order to maximize their fitness.

Let us be concerned on the question of why and how communication evolves.

Van Baalen and Jansen (2003) studied the communication strategies of bird alarm

calls, using a Spaced-Chicken type dilemma game. When a dilemma tempting an

agent to exploit is relatively small, the population uses a single signal for its alarm

call. However, with growing dilemma strength, reliability of the alarm call decays,

because of an increase in the number of mimics (who use false signals). The social

system begins to fluctuate between cooperative (reliable alarm call) and defective

(false information) eras. This is a perturbation phase, commonly observed in

various unsteady dynamic systems. Later, assuming a strong dilemma, the com-

munication value of the alarm call is completely disrupted, leading to a situation

called the Tower of Babel.

Several previous studies dealt with emerging (self-organizing) communication

processes. Grim et al. (2004) demonstrated a multi-agent simulation, where agent’s
action (gesture), which was initially meaningless, can acquire meaning, in order to

share specific information about a predator or prey with other agents.

Buzing et al. (2005) investigated the relationship between environment and

communication using their sugarscape-like multi-agent simulation. They insist

that pressure to cooperate leads to the evolution of communication skills, which

facilitate cooperation. Furthermore, higher levels of cooperation pressure coming

from the environment encourage high-density communication.

These previous studies see communication as a way of increasing individual

fitness. An animal’s struggle for existence has been regarded as a social dilemma

game, where a player intends to increase his fitness to produce more offspring than

others. In the last decade, dilemma games based on the evolutionary game theory

have been extensively investigated. The central question they ask is how the game

dilemma disappears or is ameliorated? What additional game option should be

imposed on the original dilemma games to dilute those that are mostly emulated by

2� 2 Prisoner’s Dilemma (PD)? To the end, as we mentioned in the previous

chapters, Nowak (2006) sums that those additional options to solve dilemma should

be called mechanisms to add social viscosity to a social system where one can

classifies five frameworks under several assumptions: kin selection, direct reciproc-

ity, indirect reciprocity, network reciprocity and group selection (see Sect. 2.6). All

of those mechanisms to add social viscosity can compress “anonymity” in a society.

If a society has infinite agents and is defined as well-mixed, the society assures

perfect anonymity. In this situation, none of agents has incentive to mutually

cooperate because probability of the opponent, to whom a focal agent gives help,

giving help in return, is zero. Thus, a framework to dilute or disappear a social
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dilemma is paraphrased to be a provision to identify whether an opponent is

appropriate one to cooperate or not in a social context.

Following these works, we can possibly guess that communication evolved as

one of those schemes, and has the same “function”—to increase fitness by means of

identifying appropriate opponents from others who have a non-reciprocity attitude.

But is that true?

Sato et al. (2007) developed a simulation model for proto-communication,

which emulates a turf war between two fixed agents. The two agents face each

other in one-dimensional space, and try to occupy the opponent’s space. The agents
have cognitive faculty for whether his opponent’s light is on or off, which means

nothing exists at the beginning of each simulation episode. The agent can also

control his own light status and action. Actions are defined as either going forward

or pulling back. This study suggested that the two agents, even without any initial

knowledge, could develop reciprocity in an interactive game campaign, by bilater-

ally alternating the actions of going forward and pulling back. This provides them a

high payoff. Amazingly, this coordinated alternating reciprocity action is synchro-

nized with the sequence of light on/off for both the agents. Sato et al. insisted that

this co-evolution system—a combination of the actions (offering “going forward”

or “pulling back”) and lighting (switching “on” or “off”)—could contribute to the

emergence of protopathic communication.

This particular game, seems to have the structure of a Leader (T>R& S>P and

S+ T> 2R & T> S) or Hero (T>R & S>P and S + T> 2R & S> T ) game with a

Chicken-type dilemma, where ST-reciprocity is more preferable than R-reciprocity
as discussed in Sect. 2.8. Because an alternating set of “going forward” and “pulling

back” actions is thought to be equivalent to the fair Pareto Optimum of both the

Leader and Hero game, an alternating set of (C, D) (namely S) and (D, C) (T ) is
preferred to maximize equal payoffs.

4.2 An Evolutionary Hypothesis Suggested by

Constructivism Approach

The work by Sato and his colleagues is persuasive, and their approach obviously

relies on constructivism. In fact, what they showed implies one of the possible

scenarios of how a primitive communication evolves. However, the game defined

by Sato et al. seems more particular than the other universal and general games.

Also, their game presumes an infinite iteration, the results of which cannot explain

how communication works in an indirect reciprocity situation. Therefore, in the

discussion of this chapter, we assume one-shot 2� 2 games, covering the entire set

of game structures, including PD, Chicken, Stag Hunt (ST), Leader, Hero, and even

Trivial games. Our primary intention in the discussion study is to show how a game

structure (dilemma feature and its strength) affects the emergence of an agent’s
communication.
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4.2.1 Model Setup

Game Setting

Standing on what was assumed in the previous chapters, we describe all classes of

2� 2 game by assuming payoff matrix;
R S
T P

� �
. As we discussed in Sect. 2.7, if

we rely on the scalding parameter expressed by Eq. (2.39); Dg
0 ¼ T�R

R�P ¼
Dg

R�P and

Dr
0 ¼ P�S

R�P ¼ Dr

R�P, the all four 2� 2 game classes can be reproduced by varying Dg
0

and Dr
0. If both Dg

0 and Dr
0 are positive, a game is Prisoner’s Dilemma (PD). In

contrast, in case of both negative, it belongs to Trivial Game that has none of

dilemma at all. If only Dg
0 is positive, it is Chicken, while if only Dr

0 is positive, it
belongs to Shag Hunt. Moreover, A game becomes Leader, which is a sub-class of

Chicken, when Dg
0 > 0, Dr

0 < 0, Sþ T > 2R and T > S. Also, it is a Hero game,

another sub-class of Chicken, when Dg
0 > 0, Dr

0 < 0, Sþ T > 2R and S > T.

All other dilemma games than Leader and Hero become fair Pareto Optimum

meaning social payoff maximum when R-reciprocity where mutual cooperation

offering is realized. On the other hand, ST-reciprocity, where alternating S and

T happening, makes Leader and Hero be a fair Pareto Optimum.

Finite State Machine (FSM)

Let us assume a well-mixed population consisting of n agents.

Each agent has two finite state machines (FSM), having a receptor and a reactor,

as shown in Fig. 4.1. Through FSM #2, the agent receives information about

previous game consequences—whether P, R, S, or T occurred at the receptor.

Using a 4-bit processing system, he determines his action for the current time-

step offering—whether his light should be switched on or off. Following that, he

recognizes the input information about his and his opponents’ lighting status in the

current time step, through the receptor of FSM #1. Also, using the 4-bit processing

system, he determines his next action—offering C or D in the current time step.

This total of eight bits used for both FSMs comprise an agent’s gene.
In each generation, each agent plays M one-shot games, changing opponents

randomly. The sum of the obtained payoffs during a generation is regarded as the

fitness. At the end of each generation, the genetic evolutionary process of the total

population is operated. In the GA (genetic algorithm) process, the probability of

crossover is 1, in which one-point crossover is imposed. Also, there exists 1 %

mutation, where one of 8-bit binary codes is flipped.

At the beginning of each simulation episode, the agent’s 8-bit gene codes are

randomly shuffled.
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Numerical Simulation

We assume total population; n ¼ 100, number of one-shot 2� 2 games in one

generation;M ¼ 10. Each episode is calculated up to 20,000 generations. We adopt

an average of 10,000–20,000 generations as a quasi-equilibrium solution. We

finally observe an ensemble average based on five simulation episodes.

4.2.2 Results and Discussion

Generative Transition of Hero and PD

Figure 4.2 shows a generative transition of Dg
0 ¼ 0.31 and Dr

0 ¼�1.66 Hero game,

with 0–10,000 generations. Figure 4.3 is a counterpart of a Dg
0 ¼ 0.5 and Dr

0 ¼ 0.5

PD case. These indicate (a) average payoff and cooperation fraction (PC),

(b) lighting fraction (Pon), (c) occurring fractions of P, R, S, and T, (d) information

Fig. 4.1 Structure of assumed FSMs and game flow
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Fig. 4.2 Generative transition of Dg
0 ¼ 0.31 and Dr

0 ¼�1.66 Hero game assumed 100 agents and

M ¼ 100. (a) Average payoff and cooperation fraction, (b) lighting fraction, (c) fractions of P, R,
S and T, (d) information rate of FSM #1 and FSM #2, (e) fraction of “1” on either first or second bit

of FSM #1, (f) fraction of “1” on either third or fourth bit of FSM #1, (g) and (h) same for FSM #2,

(i) fractions of two sequence games resulting in S & on after S & on; S & off after S & off; T & on

after T & on; T & off after T & off; S (or T ) & on (or off) after T (or S) & off (or on), and

(j) fractions of two sequence games resulting in R & on after R & on; R & off after R & off
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Fig. 4.3 Generative transition of Dg
0 ¼ 0.5 and Dr

0 ¼ 0.5 PD game. Same setting of Fig. 4.2 is

applied
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rate of FSM #1 and FSM #2,1 (e) fraction of “1” on either first or second bit of FSM

#1, (f) fraction of “1” on either third or fourth bit of FSM #1, (g) and (h) same for

FSM #2, (i) fractions of two sequence games resulting in S&on after S&on; S&off

after S & off; T & on after T & on; T & off after T & off; S (or T )& on (or off) after

T (or S) & off (or on), (j) fractions of two sequence games resulting in R & on after

R & on; R & off after R & off.

In PD (see Fig. 4.4), there are unstable fluctuations perturbing between R reci-

procity (with PC ffi 1) and mutual defection (with PC ffi 0). This is because of a

Fig. 4.4 Summary content of FSMs and possible happening game events of (a) Dg
0 ¼ 0.31 and

Dr
0 ¼�1.66 Hero game case and (b) the era after 8000 generation of Dg

0 ¼ 0.5 and Dr
0 ¼ 0.5 PD.

Each table summary of both FSM #1 and FSM #2 makes an event happening drawn in the right

panel scheme. (a) The case of θ¼� 10 deg, r¼ 1.0. (b) The era after 8000 generation in the case

of θ¼ 90 deg, r¼ 1.0

1 The Information Entropy Hact|sense[bit] of action outputting xk under information inputting yi can
be defined as;

H
act
��sense ¼ �

X
j ¼ 1

X
k ¼ 1

p xk; y j

� �
� log2 p xk

��y j

� �
;

where p(xk, yj) is the compounded probability of xk and yi, and p xk
��y j

� �
is the conditional

probability of xk under yi. The Information Rate Isense[bit] is defined as the difference between

information entropy without any information input Hact [bit] and Hact|sense,

Isense ¼ Hact � H
act
��sense:
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mutant mimic, who defects even though signaling like other cooperators, can

invade the R reciprocity population and increase by exploiting cooperators. During

the R reciprocity eras, lighting on or off is a signal to cooperate (see Fig. 4.3(j)).

Once either lighting on or off is established as a signal, it will not change until it is

corrupted by a mimic invasion. Therefore, during R reciprocity, the signal can be

considered as a superficial symbol, which is different from the dynamic signaling of

an S & T reciprocity, which will be explained in the following text. Furthermore, the

signal in an R reciprocity era functions like a Tag, to discriminate cooperators from

others, and is not robust enough to defend mimic invasions. Consequently, the

signal sometimes shifts from generation to generation.

Here, a question may arise regarding how an R reciprocity era is eroded, leading

to mutual defection, once cooperation is established. Consider two examples, one

just after 6000 and the other after 8000 generations. These are highlighted as dotted

rectangles in Fig. 4.3. The respective signals in both R reciprocity eras are lighting

on and off (see Fig. 4.3(j)).

In the first era, after 6000 generations, an agent agrees to offer C when he

recognizes a signal of mutual lighting on. It is confirmed by the fact that the first

bit of FSM #1 is almost “1” (see Fig. 4.3(e)). However, in the latter part of this era, a

rapidly increasing number of agents offer C, with a signal of mutual lighting off

(who have “1” in the fourth bit of FSM #1, see Fig. 4.3(f)). This implies that there

are agents offering C with mutual lighting on and also off. When these agents

increase in the population, a game, matching agents with lighting on against those

with lighting off, inevitably takes place. In this game, the consequence is mutual

defection (P), even though they are instinctively cooperative. This leads to the

corruption of R reciprocity.

In the second era, after 8000 generations, an agent agrees to offer C when he

recognizes the signal of mutual lighting off. It is confirmed by the fact that the

fourth bit of FSM #1 is almost “1” (see Fig. 4.3(f)). In Fig. 4.3(h), we notice that the

fourth bit of FSM #2 is almost “1”. This means that agents share using the “signal of

confession,” in which the light is put on whenever he accidentally exploits his

opponent by obtaining T. However, in the last period of this era, a mimic mutant

having “0” in the fourth bit of FSM #2 can successfully invade, and his offspring

immediately spreads in the population. Hence, the “signal of confession,” which

can function as a protocol preventing mutual defection (a so-called “safety-net” for

R reciprocity) is destroyed.

There are many dynamic patterns that shift from R reciprocity to mutual

defection, but we discussed only two examples here. R reciprocity has various

possible trails leading to mutual defection due to erosion of a particular bit of an

FSM by mimic agents, which consequently leads to unstable reciprocity-defection

cycles—the perturbation phase.

What happens in the Hero game shown in Fig. 4.2?

Payoff transition is more stable than the PD (see Fig. 4.2(a)), in which R reci-

procity and S & T reciprocity are combined (see Fig. 4.2(c)). Generally speaking, a

Hero game has less dilemma than PD, sinceDr
0 of the Hero is negative while that of

the PD is positive. This is qualitatively attributable to the fact that the Hero has
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more stable payoff transition than PD, by avoiding mutual defection. Amazingly,

the very efficient S & T reciprocity obtaining S and T by turns occurs significantly

(see Fig. 4.2(i)), although R reciprocity through a lighting signal (off) is observed

more frequently (see Fig. 4.2(j)). This ST-reciprocity is same as the CAD-type

coordinate alternating reciprocity discussed in Sect. 2.8. The most important point

is that obtaining S and T by turns is synchronized with switching signals—either

lighting off after on or lighting on after off. This implies that information processing

by switching light on and off plays an important role in attaining indirect reciprocity

in such an anonymous matching one-shot game. This is confirmed by larger

information rate (Fig. 4.2(d)), than in the PD case (Fig. 4.3(d)). In Fig. 4.2(e) and

(f), we notice a manifest protocol, in which a focal agent offers D when his own

light is turned on and his opponent’s light is off (the second bit of FSM #1 is almost

“0”); he offers C when both his and his opponent’s lights are either on or off,

simultaneously (the first and fourth bits of FSM #1 are almost “1”). This is

attributable to the high performance of CAD-type ST-reciprocity in the Hero

game. As discussed, continuous lighting on or off, to produce R reciprocity in the

PD, works as a superficial symbol, and is static during the evolution period. In the

Hero, however, this phenomenon results in the emergence of CAD-type ST-reci-
procity followed by primitive communication.

Note that there exists a slightly eroded period of CAD-type ST-reciprocity, based
on communications, after 7000 generations, highlighted by a dotted rectangle in

Fig. 4.2(i). In this period, R reciprocity is also eroded, as shown in Fig. 4.2(j).

Because the third bit of FSM #2 decreases rapidly from almost “1” to “0,” the

disturbance brought by mimic invasion destroys the “help call,” in which a focal

agent turns his light on when he is exploited by his opponent obtaining S. When the

“help call” malfunctions, not only R-reciprocity but also ST-reciprocity are

affected.

Why R-Reciprocity in PD Is More Fragile than ST-Reciprocity in Hero?

Figure 4.4 schematically shows a summary of the content of FSMs and possible

game events of (a) θ¼�10 deg and r¼ 1.0 Hero game case and (b) during the era

after 8000 generations of θ¼ 90 deg and r¼ 1.0 PD. Observing Figs. 4.5(b) and 4.4,

in the era after 8000 generation, typically two agents with lights off meet and

mutually offer C, thus obtaining R. This is a single game event.

As opposed to this, in the Hero game shown in Figs. 4.4(a) and 4.2, there are

mainly three game events. If a lighting-on agent meets a lighting-off agent, ST-
reciprocity occurs. In cases where agents with the same signal meet, they coinci-

dently offer C to obtain R, which is the second highest payoff combination after S&
T. In this society, both lighting-on and lighting-off agents co-exist (see Pon in

Fig. 4.2(b)), which implies that these three game events can respectively occur at

certain frequencies. Therefore, the binary bits of both FSMs shown in Fig. 4.4(a) are

meaningful, except for the first and second bits of FSM #2, which are expressed by

wild card marks. In other words, if any single bit of those significant binary bits is
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mutated, reciprocity would never work. Once reciprocity is established, a mimic

who mutated a single bit among those significant binary bits finds it hard to invade

and settle in the population. This is why the reciprocity observed in the Hero game

is robust and sustainable.

In the PD shown in Figs. 4.4(b) and 4.3, the situation is completely different.

Once reciprocity has been established, only the fourth bit of FSM #1 and the second

bit of FSM #2 are significant, because most of the agents in the population offer C

and light off (see PC and Pon in Fig. 4.3(a) and (b)). Therefore, binary bits other than

these two are not significant in sustaining the R reciprocity once it is built. This is

why a mutant with a malfunctioning “signal of confession” can invade the popu-

lation. As explained in the previous section, after spreading this particular mutant,
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signaling with lighting does not make any sense, and the situation is very vulnerable

to attack by a mutant who defects in the case of mutual lighting off.

Equilibrium Features of the 2� 2 Games

Figure 4.5 indicates quasi-equilibrium solutions covering the entire 2� 2 game

world, derived from an ensemble average of five simulation trials. Figure 4.5(a)

shows payoff difference obtained with an analytical solution based on replicator

dynamics, without any supporting provisions for cooperation such as memory, tag,

network, and others. Figure 4.5(b) and (c) shows isographs of the information rates

of both FSM #1 and FSM #2. Figure 4.5(d), (e), and (f) indicates fractions of two

sequence games resulting in S (or T)& on (or off) after T (or S) & off (or on),

S (or T ) & on (or off) after S (or T) & on (or off), and R & on (or off) after R & on

(or off).

Figure 4.5(a) indicates that the present model can gain larger payoff than the

analytical solution in the areas of SH close to PD. However, the model only

provides the same meager payoff (zero) of the analytical solution in PD area.

Although the agents in the model equip memory and light as a sophisticated tool

to support communication, the well-mixed situation only allowing one-shot game

sequence is severe to emerge R-reciprocity in PD games as noted above. But, in SH

where none of chicken-type dilemma exists anymore, the model makes R-reciproc-
ity in function. Amazingly, the model in the areas of Leader and Hero where S + T
>> 2R is satisfied indicating much more incentive for ST-reciprocity, can provide

larger payoffs than the analytical solution even in the larger dilemma (namely

larger Dg
0) case. This area is consistent with the region where the information rates

of both FSMs (especially FSM #2) are large (Fig. 4.5(b), (c)) and high frequency of

CAD-type S & T reciprocity is observed (Fig. 4.5(d)).

As shown in Fig. 4.3, the information rate of FSM #1 describes how the

information input derived from lighting status affects the action output—whether

an agent offers C or D. In addition, the information rate of FSM #2 implies how the

information input derived from previous game consequences affects the action

output—whether an agent lights are on or off. In brief, the former and the latter

are orders of degree of the action strategy regulating C or D and the communication

protocol (language distribution).

The above-mentioned discussion might imply that, in terms of reciprocity being

synchronized with communication, both Hero and Leader games with CAD-type

ST-reciprocity seem more important than PD with R-reciprocity. This can be

explained by our observation that R-reciprocity in PD can only work as a time-

static symbol, like the Tag system, but CAD-type ST-reciprocity in Hero and

Leader can convey meaningful information by means of intermittent lighting

on/off. In addition, R reciprocity seems vulnerable against dilemma strength,

which can be confirmed by the fact that there is mutual defection, the Nash

Equilibrium, in PD (Fig. 4.5(a)). On the contrary, the CAD-type ST-reciprocity is

robust. We can see that larger payoff for larger Dg
0 (Fig. 4.5(a)) and the CAD-type
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ST-reciprocity is maintained to some extent (Fig. 4.5(d)). Again, the most important

feature of both Hero and Leader, which are different from PD and pure Chicken, is

the condition S+ T> 2R. Extrapolating, we can say that primitive communication

among animals was encouraged by a particular dilemma situation, represented by

Hero and Leader, where agents could only solve the dilemma by sharing unequal

roles (C or D). If so, PD, which is the focus of most previous work concerning

evolutionary game theory, cannot explain the question.

Relation to the Co-evolution Model of Norm and Action Strategy by

Chalub et al.

Our model presented here is deeply related to the co-evolution model of norm and

action strategy proposed by Chalub et al (2006). In their model, an agent having

different action strategies plays one-shot 2� 2 games with opponents who live on

the same island, where a norm is commonly shared by all inhabitants. The action

strategy is defined as a look-up table (same as an FSM) regulating a focal agent’s
strategy (C or D) under the input information of his opponent’s image score

(originally proposed by Nowak and Sigmund (1998)). The norm determines the

relationship between actions and image scores. For example, consider three norms:

One in which a cooperator’s cooperation with a cooperator increases the focal

cooperator’s image score; another in which a cooperator’s cooperation against a

defector decreases the focal cooperator’s image score; and the last one in which

defector’s defection against a defector increases the focal defector’s image score.

The second statement is the so-called protection code for the second-order free-

rider. The third one is called the “safety-net” protocol for losers (those who have a

low image score). The norm regulates the good or bad actions on each island.

Chalub et al. report that a stable cooperative society can be obtained by the

co-evolution of the individual agent’s action strategy and respective island norms.

The action strategy is the counterpart of our FSM #1 and the norm accounts for

FSM #2. However, there are two major differences between their theory and this

study. The first difference is that not only FSM #1 but also FSM #2 are individually

variable in this study. In other words, the counterpart of their norm, FSM #2, is not

commonly shared with other agents in the population. This complicates the

dilemma problem. The second notable difference is that the viewpoint of their

norm is defined as an objective (because the norm is shared with others). On the

other hand, in our model, the method to determine whether lighting is on/off, FSM

#2, is defined subjectively (because the individual level defines FSM #2). In that

sense, FSM #2 can be called a norm in which a focal agent can determine his own

image score based on his own ideas. This also complicates the dilemma, because a

vicious agent can easily diffuse false information in the society. Despite these

crucial differences, in our model, we can observe the emergence of several phases

of reciprocity as previously discussed. Ohtsuki and Iwasa (2004) addressed how

different standpoints of the norm affect the possibility of emerging cooperation.
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Summary

In order to shed some light on how animal communication evolved and led to

reciprocity, we built a 2-layer co-evolution model. This model contains two FSM

layers that express an agent’s intelligence via two information input-action output

machines for a well-mixed population only allowing agents one-shot games. The

first one (FSM #1) regulates the agent’s offer in a game, whether C or D, based on

the light on/off status for himself and his opponent. The second one stipulates his

lighting on/off status, based on information from previous game results—whether

P, R, S, or T. Compared with the analytical solution derived from the replicator

dynamics, where no cooperation support mechanism is assumed, our model pro-

vides higher payoffs in various dilemma games. In Particular, combining R-reci-
procity and ST-reciprocity in Hero and Leader areas is observed. Time evolution in

the PD is prone to unstable fluctuation between R-reciprocity and mutual defection.

The R-reciprocity is unstable, and intermittently succumbs to mimic invasion,

leading to defection periods. Time evolution in Hero and Leader, however, seems

stable, in which the CAD-type ST-reciprocity is intermixed with R-reciprocity.
From the communications point of view, R reciprocity in PD seems only to work

as a time-static symbol, just like the Tag system, although it affords some flexibil-

ity, as one can change lighting from on to off (or off to on) for use as a signal.

CAD-type ST-reciprocity in Hero and Leader can convey meaningful information

by alternating lighting on and off. This implies that primitive communication

among animals was encouraged by a particular dilemma situation, represented by

Hero and Leader, where agents could only solve the dilemma by sharing unequal

roles (C or D). If so, studies based on PD or pure Chicken, which have been well

investigated in the evolutionary game theory, cannot answer the question.

Our study and the studies of Chalub et al. (2006) and Ohtsuki and Iwasa (2004)

are compared in terms of 2-layer co-evolution. The present model is unique in that,

FSM #2, a counterpart to the norm in Chalub et al. (2006), is assumed to evolve at

an individual-agent level, and lighting on or off is determined by his will, rather

than a commonly shared norm.
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Chapter 5

Traffic Flow Analysis Dovetailed

with Evolutionary Game Theory

Abstract In this chapter, we concern ourselves with traffic flow as another mean-

ingful example of a situation in which evolutionary game theory can be applied.

Although the study of traffic flow was originally thought to be best explained using

fluid dynamics, a multi-agent simulation technique that has been widely used in the

field of evolutionary games has been applied to the problem, under the name of

cellular automaton (CA). In this chapter, we first explain how traffic flow can be

modeled. Next, we discuss how evolutionary game theory can be applied to this

traffic flow. One can consider the dynamics of traffic flow to be like a multi-player

game, with vehicles being controlled by drivers who compete to access to a road as

a finite resource in order to reduce their personal travel time. This implies that

traffic flow may change its phase depending on traffic density, and that it entails a

social dilemma that might also change its game class, depending on the density. We

reveal that various social dilemmas are hidden behind different aspects of traffic

flows, which may be considered remarkable. Traffic flow is a game committed by

agents – drivers, which seems some sort of human drama unlike we naturally think

that traffic flow is governed by rigid physics because the theory of fluid dynamics,

one of the representative hard-core physics fields, has been applied to it.

5.1 Modeling and Analysis of the Fundamental Theory

of Traffic Flow

In studies concerning traffic flow, especially simulation studies, model reproduc-

ibility might be the most important issue. Roughly speaking, there have been two

main physical approaches (see Fig. 5.1) to the studies concerning traffic flow:

continuum models and discrete models including cellular automaton (CA) models.

Continuum models view traffic flow as fluid flow, which is a macroscopic feature,

Eulerian in scope. The latter, discrete or microscopic models, view traffic flow as

vehicle granular dynamics from a Lagrangian viewpoint.

It has struck many physicists as interesting that traffic flow can be interpreted as

a self-driven multi-particle system, which is linked to a second concept, the
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microscopic model or Lagrangian viewpoint. Among several traffic models, such as

the kinetic gas theory (e.g., Lighthill and Whitham 1955), fluid dynamical model

(e.g., Kerner and Konhäuser 1994; Helbing 1995), and car-following model (e.g.,

Pipes 1953; Gazis et al. 1961), the cellular automaton (CA) model has been the

most heavily investigated. In addition, there is a very intriguing consistency from a

theoretical standpoint between the CA traffic model and traffic flow kinetics. In

fact, a series of studies revealed that Burgers’ equation, which governs

one-dimensional shock wave propagation, is exactly equivalent to the asymptotic

behavior of elementary CA rule 184 (Wolfram 1986), when the Cole–Hopf trans-

formation is applied to the ultra discrete diffusion equation (Nishinari and

Takahashi 1998).

It is not just all of this background work, but also an increase in computational

power that has attracted heavy attention to the CAmodel, as a CA model is far more

flexible than other models in taking account of the plausible motions by each of the

vehicles such as lane-changing, influences from an intersection and signals, another

road merging with or exiting from the focus road, lane closing, and all other likely

realistic scenarios. In fact, a lot of observational data have proved that CA models

are able to replicate real traffic flows in various situations (e.g., Neubert et al. 1999;

Kerner et al. 2013).

Concerning CA models, the first milestone model we must cite is by Nagel and

Schreckenberg (1992) (abbreviated as the NaSch model or NS model). Although

the NS model is simple and considers the dynamics of a vehicle that accelerates its

unit velocity if possible, and also probabilistically decelerates its unit velocity

according to random brake probability, it roughly reproduces a realistic traffic

Fig. 5.1 Overview of traffic models: the macroscopic and microscopic approaches
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flow. In fact, the NS model reasonably reproduces a free flow phase, in which every

vehicle is driving at maximum speed, and a congested phase in the so-called

fundamental diagram that indicates a relation between traffic flow and density

(namely the slope of the interpolated line over points indicating speed). Therefore,

due to this success, many works have made use of the NS model. However, the NS

model has drawbacks resulting from its simplicity, because, of course, actual

driving behavior possesses rich complexity. One of the state-of-the-art models is

the stochastic Nishinari–Fukui–Schadschneider (S-NFS) model (Sakai et al. 2006),

which takes into account the motions that are commonly observed in real vehicles:

slow-to-start (S2S), quick start (QS), and random braking (RB). S2S implies an

inertial effect, which importantly produces metastable states in the fundamental

diagrams. Metastable phases are observed and thought to be an important feature in

real traffic flow, where a group of vehicles with less heading distance (implying

reasonable middle traffic density) drive at reasonably high speed (referred to as

“platoon driving”), showing maximum flux, but this is a volatile situation and it

easily phase-shifts to a congested phase irreversibly. QS is the result of acceleration

or deceleration by a driver who is anticipating the intentions of both the preceding

vehicle and several further preceding vehicles.

One important thing to be noted is that variants of the NS model including the

S-NSF model suffer when a high speed vehicle shows an unrealistic slow-down

manner like a sudden stop by bumping with a heading vehicle. This is because the

NS-based models always accelerate irrespective of heading distance and do not

decelerate gradually when approaching to a vehicle ahead, which seems unlikely if

we remember what happens in reality. On the other hand, we consider the optimum

velocity (OV) model (Bando et al. 1994, 1995), one of the Car Following models,

categorized as a microscopic model with a spatiotemporally continuous view point

as shown in Fig. 5.1, and the stochastic optimum velocity (SOV) model (e.g.,

Shigaki et al. 2011), which is one of the CA models as also shown in Fig. 5.1,

and regarded as a powerful tool due to having two exact solutions: zero range

process (ZRP) and asymmetric simple exclusion process (ASEP) at the two limits

of the stochastic parameter range: 0 and 1. These two models both provide good

performance, because they modulate acceleration or deceleration according to a

heading distance related to the traffic density around the focal vehicle. The lack of

this particular feature brings unlikely phase transition from free phase (F) to jam

phase (J), while free (F) to jam (J) through a synchronous phase (S) is what really

happens, as claimed by Kerner (2009) in the three phase theory.

To end this discussion, we would say it is necessary to establish a CA model,

considered as plausible, which is possible at reproducing real driving dynamics,

while maintaining high flexibility to extend its framework by adding the lane-

change sub-model. For example, Kokubo et al. (2011) have successfully produced

one possibility by introducing the Revised S-NFS model, refining RB in the S-NFS

model to improve the reproducibility of Kerner’s three phase theory.
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5.2 A Cellular Automaton (CA) Model to Reproduce

Realistic Traffic Flow

In this section, the revised S-NFS model is explained.

In real flow fields, the field-observations confirm many complex phases, for

example, some of these phases imply that two congested phases may coexist.

Spontaneous phase transition from free flow to wide moving jam (F ! J transition)

is not observed in a real traffic as mentioned above. A wide moving jam can emerge

spontaneously only in synchronized flow (S ! J transition). Therefore, a wide

moving jam emerges spontaneously because of a sequence of F ! S ! J transi-

tions. This is what Kerner’s three phase theory insists. However, in most of the

conventional CA models based on the NS model, synchronized flow is not

reproduced very well. On the other hand, several previous authors have reported

that the synchronized flow can be reproduced by considering the appropriate

deceleration process of each vehicle depending on the velocity difference or

heading distance with a preceding car (e.g., Gao et al. 2007, 2009; Knospe

et al. 2000).

Another problem, previously mentioned as well, is that most NS-based CA

models show unrealistic deceleration dynamics for each vehicle agent. If there is

a relatively slower vehicle ahead, a real vehicle would gradually decelerate when

approaching the preceding vehicle. However, most CA models based on the NS

model only reproduce an unrealistic rapid deceleration where the focal vehicle

stops by a collision

Note that the above-mentioned two problems, namely, reproduction of the three

phase theory and appropriate deceleration dynamics, are mutually related, because

an unrealistic abrupt deceleration would cause a rapid growth of a stop-and-go

wave, which rarely permits synchronized flow to emerge. If a model overestimates

stopping probability, the excessive stop-and-go wave inevitably occurs. On the

other hand, if a vehicle is allowed to gradually decelerate when approaching the

tail-end of a jam, the stopping probability would be decreased. Thus, an occurrence

of this excessive stop-and-go wave would be discouraged and synchronized flow

could result.

5.2.1 Model Setup

The updating rules of the Revised S-NFS model can be written as follows.

Rule 1 “Acceleration”

v
1ð Þ
i ¼ min Vmax, vi

0ð Þ þ 1
h i

ð5:1Þ

(only if gi � G [ vi
0ð Þ � viþ1

0ð Þ then Rule 1 is applied).
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Rule 2 “Slow-to-start”

v
2ð Þ
i ¼ min vi

1ð Þ, xt�1
iþsi

� xt�1
i � si

h i
ð5:2Þ

(only if rand()� q then Rule 2 is applied) and (if rand()� r then si¼ S else

si¼ 1).

Rule 3 “Perspective (Quick start)”

v
3ð Þ
i ¼ min vi

2ð Þ, x tiþsi
� x ti � si

h i
ð5:3Þ

Rule 4 “Random brake”

v
4ð Þ
i ¼ max 1, vi

3ð Þ � 1
h i

ð5:4Þ

(only if rand() <1� pi then Rule 4 is applied).

if gi � Gð Þ
i pi ¼ P1 ð5:5-1Þ

if gi < Gð Þ
pi ¼ P2 for v

0ð Þ
i < v

0ð Þ
iþ1 ð5:5-2Þ

pi ¼ P3 for v
0ð Þ
i ¼ v

0ð Þ
iþ1 ð5:5-3Þ

pi ¼ P4 for v
0ð Þ
i > v

0ð Þ
iþ1 ð5:5-4Þ

Rule 5 “Avoid collision”

v
5ð Þ
i ¼ min vi

4ð Þ, x tiþ1 � x ti � 1þ viþ1
4ð Þ

h i
ð5:6Þ

Rule 6 “Moving forward”

xtþ1
i ¼ x ti þ v

5ð Þ
i ð5:7Þ

where xti is the position of vehicle i at time t, v
ð0Þ
i is the velocity v

ð5Þ
i at the

previous time step t� 1, defined by x ti � xt�1
i , si is the number of precedent vehicles

from the ith driver’s perspective, gi is the gap between vehicle i and vehicle i+ 1
(thus, gi ¼ x tiþ1 � x ti ), and Vmax is the maximum velocity. The notation rand()
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represents a random number drawn from the uniform distribution on [0, 1]. The

quantities G, q, r, S, P1, P2, P3, and P4 are model parameters. The probability of

random braking is given by 1� pi. We presume P1>P2>P3>P4.

5.2.2 Model Performance Explored by Simulations

We assumed model parameters as follows: q¼ 0.99, r¼ 0.99, S¼ 2, Vmax¼ 5,

p¼ 0.96, P1¼ 0.999, P2¼ 0.99, P3¼ 0.98, P4¼ 0.01, and D¼ 15. The simulations

are implemented under the open boundary condition.

5.2.3 Discussion on the Deceleration Dynamics of Vehicle
Particles

First, let us discuss the reproducibility of the real deceleration process by the

proposed model. The first simulation is implemented when all vehicles are required

to stop in the vicinity of the exit by assuming outflow probability at the posterior

open boundary: β ¼ 0. The system length L is set to 500. Figure 5.2 shows

spatiotemporal diagrams that show trajectories of several successive vehicles in

this episode. Each line shows the trajectory of a car. Because the vertical axis is the

position of vehicles and the horizontal axis is time step, the slope indicates the

velocity of each vehicle. In the default S-NFS model, no vehicle ever decelerates

before being caught up in the tail of the jam. On the other hand, the deceleration

process by the Revised S-NFS model seems to reproduce well the gradual dynamics

showing smooth curves. In the NS model, on which many CA models are based, any

velocity-adjusting process that considers the velocity difference and heading distance

with respect to the preceding vehicle, which is the so-called optimal velocity model,

is not taken into account. This process is also disregarded in the S-NFS model, even

though it takes into account the slow-to-start and perspective effects. In the proposed
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Fig. 5.2 Spatiotemporal diagram for a set of sequential eight cars facing the tail of jam by: (a) the

pure S-NSF model, (b) the Revised S-NFS
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model, the random braking effect, where the probability changes in relation to

velocity difference and distance, substitutes this specified process.

Next, we extend the system length for it to be sufficiently large, L¼ 2500, which

has a dead-end at the end of the system. In order to measure the deceleration extent,

we cause 1000 vehicles to drive from the upper open boundary. Table 5.1 shows the

number of decelerating events having more than three velocity units for a single

time step, which implies an unrealistic rapid deceleration such as a collision. In the

S-NFS model, this unrealistic deceleration event is observed more than half the

time, while the events in the Revised S-NFS are considerably decreased.

Summing up, we conclude that the proposed model embedded into S-NFS,

which modifies the variable random braking probability depending on velocity

difference and heading distance, is able to prevent the occurrence of unrealistic

deceleration events.

5.2.4 Discussion of Three Phase Theory

In this section, we discuss whether the proposed model is able to reproduce

synchronized flow to agree with the three phase theory.

Figure 5.3 shows the fundamental diagrams of the S-NFS model and the

proposed model. There are unusual line-like plots with flux of about 0.1 which is

independent of the density, and some unusual blanks which exist in the line of free

flow and the wide moving jam. These drawbacks are caused by the open boundary

condition we assumed. First, let us discuss the unusual line. Because we got the

results of Fig. 5.3 by controlling both inflow probability at the upper open boundary

and outflow probability at the posterior open boundary within the region [0.0, 1.0]

by 0.1 increments, the extreme situation when outflow probability is very low, β
¼ 0:1 brings this unusual line-like plots. Next, let us discuss the unusual blanks.

There are two causes for this specific problem: (i) Because the simulation is

implemented with the open boundary condition which is controlled by the proce-

dure above mentioned, we cannot always catch smoothly and continuously stringed

plots. (ii) Because the results are drawn from each 30-trial ensemble average

observed from the 3001st to the 3500th time step, instantaneous results are not

included. For those reasons, the variety of the results which can be obtained is

limited. Anyhow we see those are technical problems, not crucial drawbacks.

Hence, as shown in Fig. 5.3, it is worthwhile to confirm that the proposed model

Table 5.1 Number of collision-like deceleration events occurring

S-NFS model Present study

vt�1
i � vti ¼ 5 211 0

vt�1
i � vti � 4 562 1

vt�1
i � vti � 3 929 8
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reproduce a plausible fundamental diagram, which the original S-NFS model was,

of course, able to show.

Although the two models indicate equivalent peak fluxes at the metastable

phase, the following points should be noted. First, the S-NFS shows slightly larger

normalized flux than the proposed model when the normalized density ranges from

0.1 to 0.2 (see Fig. 5.2(b) and (c)). However, as the second point, the proposed

model contrastingly shows larger flux than the S-NFS model in a density range 0.2–

0.5. The reasons for these points are possibly as follows:

Concerning the first point, the proposed model assumes slightly larger random

braking owing to the variable probability with increasing density even in free flow

phase than that of S-NFS with constant random braking probability.

With respect to the second point, the original S-NFS model only reproduces an

unrealistic deceleration process, which causes frequent stop-and-go waves. Lack of

a synchronized flow phase inevitably leads to a smaller flux. However, in our
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model, synchronized flow might be reproduced properly, which can cause a rea-

sonably larger flux than that of the S-NFS model in the J phase.

Figure 5.4 shows velocity distributions of the respective two models in relation

to the normalized density. It is obvious that the distribution of the S-NFS model in a

density range of 0.2–0.5, largely consists of the maximum (Vmax¼ 5) and minimum

(v¼ 0) velocities, while the proposed model is composed of various velocity

vehicles. Observing the proposed model (Fig. 5.3(b)) in a density range of 0.1–

0.2, we note that not only v¼ 5 but also v¼ 4, the second largest velocity, appear in

its distribution. This also explains why our model is featured with slightly less flux

than the S-NFS model in free flow phase, which was discussed previously.

Summarizing the above discussion, we would conclude that the proposed new

model is able to reproduce not only the F and J phases but also the S phase

reasonably.

Focusing on a density range of 0.2–0.5, let us observe the spatiotemporal

diagrams. Figure 5.5 shows a comparison of two models having equivalent densi-

ties. The S-NFS model suffers from a huge wide moving jam, which causes smaller

flux, 0.815, than that of the proposed model, 0.92. On the other hand, the new model

evidently shows a different congested cluster from that of the S-NFS model, where
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Fig. 5.4 Velocity distribution in relationship with normalized density: (a) S-NFS model, (b) the

proposed model
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normalized density condition, 0.269, and normalized flux, 0.805, (b) a flow by the proposed model

under the condition of normalized density, 0.268, and normalized flux, 0.997
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vehicles are able to maintain nonzero velocity, implying synchronized flow might

occur.

Figure 5.6 shows the time-series of local velocities and local fluxes of both flows

(Fig. 5.5(a) and (b)) observed at 229< x< 250. The different feature of each cluster

shown in Fig. 5.5(a) and (b) can be confirmed by Fig. 5.6. As shown in Fig. 5.5

(a) and (c), it is confirmed that the traffic flow is interrupted by the cluster of Fig. 5.5

(a) which is regarded as wide moving jam. On the other hand, as shown in Fig. 5.6

(b), (d), it is confirmed that the traffic flow is not interrupted by the cluster of

Fig. 5.5(b), which is regarded as synchronized flow.

Concerning reproducibility for both free flow and jam phase, the proposed model

seems appropriate as confirmed in Fig. 5.7.

To show that the proposed model can secure a phase transition F ! S ! J, we

conducted another simulation. We presumed the road with a on- ramp bottleneck at

the position x¼ 249 and x¼ 250, where new vehicles having velocity with Vmax

appear at sites x 2 249; 250f gwith probability αon ¼ 0:05. Three panels in Fig. 5.8
indicate different spatiotemporal diagrams under different in-coming and

out-flowing open boundary conditions. Obviously, Fig. 5.8(a) shows F ! S tran-

sition, while (b) and (c) indicate appearing S ! J transition just after the

bottle neck.

We further confirm that the proposed model shows acceptable reproducibility for

synchronized flow in terms of time series analysis. We emulate a road with a

bottleneck in the region of 2499< x< 2700, where a velocity limitation of Vmax¼ 2

is implemented. We assume a system length, L¼ 3000, and inflow probability at the

upper open boundary α ¼ 0:65 (Fig. 5.9). We see several wide moving jams in the

original S-NFS model. However, in the proposed model, a single flow state with
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Fig. 5.6 Time-series of the flow in the region of 229< x< 250 shown in Fig. 5.5 (a), (b) (regions

surrounded by broken line). Both local average velocities by S-NFS and the proposed model are

shown in (a) and (b), which are consistent with Fig. 5.5 (a) and (b) respectively. Likewise local

average fluxes by S-NFS model and the proposed model are shown in (c) and (d)
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low velocity emerges, which belongs to a synchronized flow phase. We estimate

both autocorrelation functions of density, flux, and velocity, and a cross-correlation

function between density and velocity, based on the data measured within the

region of 2479< x< 2500 for 60 steps. Figure 5.10 shows the results. Because

there are no correlations, we can conclude that the flow filed observed here is

classified as synchronized flow.
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5.2.5 Summary

We developed a new model based on S-NFS, which adjusts the occurrence prob-

ability of random braking depending on velocity difference and heading distance

with a preceding vehicle.

A series of simulations for a single lane flow with the open boundary condition

reveals that the model revision is able to reproduce realistic smooth deceleration

dynamics, which never causes a vehicle collision in a stopping event.

This model revision also improves reproducibility for Kerner’s three phase

theory, which reproduces not only free flow and jam phases but also synchronized

flow phase by suppressing excessive occurrence of stop-and-go waves.
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5.3 Social Dilemma Structure Hidden Behind Various

Traffic Contexts

Traffic flow can be treated as a multi-player game with agents as drivers who wish

to minimize their own travel time compared to others by competing for a road that is

a finite recourse. Going back to the original question of what creates a dilemma

situation, as discussed in Chap. 2, we remember that there is a social dilemma if a

fair Pareto Optimum, meaning a best possible solution for all, is inconsistent with

an individual best solution. This suggests that in real-life traffic, excessive speed,

intrusion into a line of vehicles, frequent lane-changing, or other egocentric driving

behaviors likely reduce a focal driver’s travel time but also have a negative impact

on and create annoyance for surrounding drivers, causing inefficiency in terms of

whole the traffic flow. For example, a dangerous intrusion gives rise to turbulence in

the traffic flow that may create a traffic jam. If this is the case, the vehicle that

resorts to the dangerous intrusion successfully exploits others in order to move

ahead, but the move is detrimental to other drivers/vehicles and reduced efficiency

is inflicted on the system as a whole. This implies a typical social dilemma. The

hypothesis that a social dilemma lies behind traffic flow may be surprising, because

analysis of traffic flow is one of the problems that pure physics—namely, fluid

dynamics—can deal with, and therefore seems far from a problem dominated by

human decision making like an evolutionary game. In this sense, whether the

hypothesis is valid or not is a meaningful and interesting question to be explored

from a scientific viewpoint. Moreover, this could be followed by another challeng-

ing question, whether each of the traffic phases: the free, metastable, congested, and

jam phases, can be related to each of the dilemma classes, i.e., the prisoner’s
dilemma (PD), chicken, stag hunt (SH), and trivial games. In this section, we

further discuss this fascinating subject.

5.3.1 Social Dilemma Structures Hidden Behind a Traffic
Flow with Lane Changes

With the background noted in the previous paragraph, we detected that several

social dilemma structures, represented by n-person Prisoner’s Dilemma (n-PD)
games, appear in certain traffic flow phases at a bottleneck caused by a lane closing

(e.g., Yamauchi et al. 2009; Nakata et al. 2010). We confirmed that an n-PD game

structure appears in the high-density phase area, but no social dilemma exists in the

free-flow and jam phases. It seems plausible for a social dilemma to underlie such

traffic flows because closing a lane creates an obvious bottleneck. Thus, our next

challenge is whether a social dilemma still lies beneath traffic flow that does not

involve any explicit bottleneck like a lane closing, on-ramp (merging), off-ramp

(exit), or uphill travel. Although there have been several reports of work addressing

dilemmas in traffic flow, none have considered the issue we raise here. Thus, this
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sub-section addresses whether or not only lane-changing actions by drivers can give

rise to a social dilemma in an ordinal two-lane road system with cyclic boundaries.

We applied the Revised S-NFS model, explained in the previous section, for

driving vehicles forward.

Lane-Changing Rule

We applied the lane-changing rule used by Kukida et al. (2011) in the CA model.

That rule is defined as follows:

Incentive criterion : gap f
p � v

pð Þ
i � v

pð Þ
iþ1 \ gap f

n > v
pð Þ

i � v
nð Þ
iþ1; ð5:8Þ

Safe criterion : gapb
n � v

nð Þ
i�1 � v

pð Þ
i : ð5:9Þ

Here, gap f
p is the number of unoccupied sites in front of the focal vehicle (agent i) in

the same lane, gap f
n is the number of unoccupied sites in front of the focal vehicle in

the opposite lane, and gapbn is the number of unoccupied sites behind the focal

vehicle in the opposite lane. If a vehicle meets the two criteria (5.8) and (5.9), an

actual lane change occurs with probability PLC. This lane-change rule applies

symmetrically in the two lanes.

Agent and Simulation Flow

In the system there are two types of agents: cooperators (C-agents) remain in the

lane initially assigned without making any lane changes, and defectors (D-agents)

change lanes according to the rule in Sect. 2.2. We use cyclic boundary conditions

to keep the vehicle density constant during a single simulation episode. The

procedure in a single simulation episode, repeats the following steps (i) to (v) in

which steps (ii) to (v) correspond to one time step.

(i) NS vehicles are generated and placed at random positions in the system. The C

(D)-agent fraction among NS is Pc (1�Pc).

(ii) Only D-agents decide whether or not to change lanes, based on (8) and (9).

(iii) The random brake probability, 1� pi, of all agents is determined according to

(5–1)–(5–4).

(iv) The next step velocity of all agents is determined from (1)–(4) and (6).

(v) All agents update their positions in the system by (7).

Simulation Setting

In the actual numerical experiments, we set the system length to L¼ 500 and

assumed the following values for model parameters: q¼ 0.99, r¼ 0.99, S¼ 2,
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Vmax¼ 5, P1¼ 0.999, P2¼ 0.99, P3¼ 0.98, P4¼ 0.01, G¼ 15, and PLC¼ 1. We

basically varied NS from 50 to 950 in increments of ten vehicles, although for cases

in the middle density region (012 � ρ � 0:35), we used NS increments of 1 due to

the high sensitivity in that region because it contains a metastable phase. We also

varied Pc from 0 to 1 in increments of 0.1.

All results were drawn from 100 independent realizations. We evaluated the

average velocity of each agent by L/(travel time), and then averaged those over all

C-agents (D-agents) for the average payoff of each strategy. For the social payoff,

we used the time-averaged traffic flux.

Each realization (a single simulation episode) involved a run-up period

(RU-period) to attain a fully developed flow, followed by an observation period

(O-period) in which the above simulation results were evaluated. Because a devel-

oped flow may contain unsteady features, the run-up and observation periods

differed depending on traffic density.

For ρ � 0:65, RU-period¼ 10,000 time steps and O-period¼ 500 time steps.

For 0:65 � ρ � 0:82, RU-period¼ 25,000 time steps and O-period¼ 2500 time

steps.

For 0:82 � ρ � 0:95, RU-period¼ 50,000 time steps and O-period¼ 5000 time

steps.

Results and Discussion

Figure 5.11 shows fundamental diagrams for (a) Pc¼ 1 and (b) Pc¼ 0 in which each

dilemma class discussed below is identified by a different color. Figure 5.11(a)

shows that flows of all cooperators can exhibit the so-called metastable phase, while

Fig. 5.11(b) shows that no metastable phase occurs in flows of all defectors. This

seems plausible because a flow in relatively high-density regions can be stable with

high traffic flux so long as none of the vehicles change lanes. In contrast, a flow with

lane changes becomes volatile, since turbulence caused by frequent lane changes

promotes traffic jams. Behaviors of the observed dilemma classes are explicitly

discussed below; here, we merely note that only the Prisoner’s Dilemma (including

quasi-PD and quasi-little PD) class appears in the middle density region with

relatively high traffic fluxes. The Trivial game and Neutral game also appear

there, but these are not categories of social dilemmas.

Effects of Vehicle Density

Figure 5.12 shows the payoff functions and velocity frequencies for Case A in

Fig. 5.11(a) (ρ ¼ 0:1), which is in the free-flow phase. Panel 2(a) shows that all

payoffs for Case A are insensitive to the cooperation fraction; this implies a kind of

gameless situation. So we denote this as a Neutral game class. This is not surprising

because most of the vehicles in Case A run at maximum velocity (see Panel 2(b)),

so lane changes in the system are rare.
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Figures 5.13, 5.14, 5.15, 5.16, 5.17, 5.18, and 5.19 show counterparts of

Fig. 5.12 for the other cases explicitly marked in Fig. 5.11(a). The situation in

Fig. 5.13 (ρ ¼ 0:141) can be called a Trivial game because Nash equilibrium (NE)
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Fig. 5.16 Same as in Fig. 5.12, except at, which corresponds to point D in Fig. 5.11 (a). This

behavior corresponds to a D-dominate quasi-Prisoner’s Dilemma game. (a) Payoff functions (b)
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Fig. 5.17 Same as in Fig. 5.12, except at, which corresponds to one of the two points B in

Fig. 5.11 (a). This behavior corresponds to a weak Prisoner’s Dilemma game. (a) Payoff functions

(b) Velocity frequency
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Fig. 5.18 Same as in Fig. 5.12, except at, which corresponds to point E in Fig. 5.11 (a). This

behavior corresponds to a D-dominate quasi-light PD game. (a) Payoff functions (b) Velocity

frequency

176 5 Traffic Flow Analysis Dovetailed with Evolutionary Game Theory



accords with the fair Pareto Optimum (FPO) at Pc¼ 0. This game is dominated by

defection, since the defector’s payoff is always larger than that of the cooperator.

However, the maximum social payoff also appears at all defector states. In a

nutshell, we call this a D-dominate Trivial game, which implies that more frequent

lane changing is preferable in this density region from both social and individual

points of view.

Figures 5.15 (ρ ¼ 0:179) and 5.19 (ρ ¼ 0:6) show the same tendencies as in

Fig. 5.13. Thus, all these should be classified as D-dominate Trivial games. The fact

that the jam phase belongs to the D-dominate Trivial game (Fig. 5.19) seems

reasonable because lane changes into even a slightly small vacant space between

jamming vehicles brings benefits for not only the focal vehicle who changes lanes

but also for the society as a whole, even if its frequency is low.

Figure 5.14 (ρ ¼ 0:155 ) suggests a weak Prisoner’s Dilemma (PD). This is

confirmed by the following facts. At Pc¼ 0, NE is trapped because the defector’s
payoff is always greater than that of the cooperator. EPO appears at Pc¼ 1 because

the social payoff increases with increasing cooperation fraction, although the effect

is subtle. The same tendency appears in Fig. 5.17 (ρ ¼ 0:211), although the extent of
this dilemma (discussed in latter) seems more severe than that in Fig. 5.14. In

Fig. 5.17, the social payoff function does not monotonically increase with the

increase in the cooperation fraction, as observed in Fig. 5.14; rather, it shows an

N-character shape, in which a local peak (much smaller than FPO at Pc¼ 1) appears

at a lower cooperation fraction. This point is carefully discussed in latter.

Figure 5.16 (ρ ¼ 0:194) differs slightly from the simple PD because FPO is not

observed at Pc¼ 1, although NE is trapped at Pc¼ 0. At any rate, FPO is largely

inconsistent with NE since FPO, which is the peak of social payoff, appears above

Pc¼ 0.5. Therefore, we call this game structure a D-dominate quasi-Prisoner’s
Dilemma game.

Figure 5.18 (ρ ¼ 0:244) seems odd; it looks analogous to a D-dominate quasi-PD

Game (Fig. 5.16), but it differs. FPO defined by the peak of social payoff appears

below Pc¼ 0.5 and is relatively close to NE found at Pc¼ 0. Therefore, we call this

a D-dominate quasi-light PD game.

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

0 0.5 1
0.4

0.42

0.44

0.46

0.48

0.5

PC

N
or

m
al

iz
ed

 V
el

oc
ity N

orm
alized flux

Ve
lo

ci
ty

 fr
eq

ue
nc

y

PC

0.50 1

(a) Payoff functions (b) Velocity frequency

V=5
V=4

V=2
V=3

V=1
V=0

V=5
V=4

V=2
V=3

V=1
V=0

0.6

0

Fig. 5.19 Same as in Fig. 5.12, except at, which corresponds to one of the three points C in

Fig. 5.11 (a). This behavior corresponds to a D-dominate Trivial game. (a) Payoff functions (b)

Velocity frequency
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Figure 5.20 shows the effects of vehicle density on the strength of dilemma, η,
defined by Nakata et al. (2010) and expressed by;

η ¼ qEPO � qNE
qEPO

: ð5:10Þ

Here qEPO and qNE are the fluxes at FPO and NE, respectively. Figure 5.20 shows

that the density at severe dilemma strength is consistent with the density observed

in the high-flux region, including the metastable phase (Fig. 5.11(a)). This seems

physically plausible because, in this density region, a driver has a strong incentive

for changing lanes to exploit other drivers and ensure his own benefit is maximized

(smaller travel time). However, when one driver changes lanes, others might

follow. Therefore, states with high flux, say in the metastable phase, collapse

with the phase shifting to the jam phase.

Multiple Game Structures at One Vehicle Density

As discussed above, Fig. 5.17 ( ρ ¼ 0:211 ) shows the general tendency of the

Prisoner’s Dilemma game class, although the social payoff function has an

N-character shape rather than a monotonic increase. We discuss this point later.

Figure 5.11(c) shows that, even when the same traffic density is presumed

(ρ¼ 0.211), the equilibrium points are scattered. Obviously, there are three differ-

ent subphases in this particular density region, denoted by I, II, and III in Fig. 5.11

(c). Figure 5.11 shows all 100 realizations for ρ ¼ 0:211, sorted by the fluxes, for

Pc¼ 1. The inset panels in Fig. 5.21 indicate the typical payoff functions for the

subphases I, II, and III when we vary Pc. Note that the subphase with the higher flux

Fig. 5.20 Effects of vehicle density on dilemma strength, η. Each color identifies one of the

dilemma classes shown in Fig. 5.11 (a): (A) Neutral game, (B) Prisoner’s Dilemma game, (C) D-

dominate Trivial game, (D) D-dominate quasi-PD game, and (E) D-dominate quasi-light-PD game
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(I) shows an obvious PD tendency; however, for the subphase with the lower flux

(III), the three payoff functions are insensitive to the cooperation fraction, so the

presence of PD behavior is ambiguous. This implies that the N-character appears in

Fig. 5.17 because the payoff functions in Fig. 5.17 were drawn from averages over

all the data shown in Fig. 5.21.

Figure 5.22 shows spatiotemporal diagrams for both lanes at Pc¼ 0 and Pc¼ 1

for subphases I, II, and III. At Pc¼ 0 in which all drivers are defectors, a huge stop-

and-go wave—a jam—occurs in all realizations. However, at Pc¼ 1, some reali-

zations successfully avoid forming a jam; these correspond to high fluxes and,

consequently, appear in subphase I. In some other realizations, a jam only happens

in one of the two lanes; these correspond to reasonable fluxes and appear in

subphase II. In other realizations, both lanes suffer jams; this significantly reduces

the flux and appear in subphase III. This particular bifurcation into the three

subphases I, II, and III is caused by the initial random allocation of vehicles

between C and D.

In short, we can say that in the density region near ρ¼ 0.211, where scattered

points occur in Fig. 5.11(c) (and which is almost consistent with the density region

found in Fig. 5.20 for large dilemma strength), the flow field potentially contains

several different fully developed states or equilibrium states. This means that

several dilemma games may form with slightly different structures. This is why

the N-character shape appears in Fig. 5.17, and why the dilemma class underlying

that shape is not obvious. Nevertheless, we can identify the game class and dilemma

strength, as a whole, by referring to Fig. 5.20 at any arbitrary density.
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Fig. 5.21 Upper panel shows results from all 100 realizations for Pc¼ 1 and ρ ¼ 0:211. The
results are sorted by fluxes into the three subphases I, II, and III. Lower panels show the

corresponding payoff functions for subphases I, II, and III

5.3 Social Dilemma Structure Hidden Behind Various Traffic Contexts 179



5.3.2 Summary

For ordinal traffic flows, we have successfully demonstrated that there are hidden

social-dilemma structures evoked by drivers’ decisions whether or not they should

change lanes. This was confirmed by a series of numerical simulations using the

revised S-NFS cellular automaton model combined with a lane-changing model

that we developed and applied with cyclic boundary conditions.

Interestingly, social dilemmas, as classified by the Prisoner’s Dilemma game or

its variants, were only observed in situations of middle vehicle density; these

situations correspond to the region on the fundamental diagram, including the

metastable phase, in which data are scattered. This seems plausible because,

when a driver is surrounded by other vehicles, that driver has a serious incentive

to change lanes. However, if all drivers make the same decision, social efficiency

declines phenomenally and huge traffic jams emerge. We also evaluated the

relation between dilemma strength and density of vehicles.

Left lane Right lane Right lane Left lane 
Pc=0 Pc=1 

( ) 

( ) 

( ) 

Fig. 5.22 Spatiotemporal diagrams at ρ ¼ 0:211 for both lanes at (left) Pc¼ 0 and (right) Pc¼ 1.

Results are shown for each of the three subphases identified in Fig. 5.21: (top row) subphase I,

(middle row) subphase II, and (bottom row) subphase III
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Our results imply that social-dilemma structures used by game theorists may

underlie traffic flow phenomena that are commonly believed to be mere physics

problems. Although the current model assumes symmetric lane-changing rules and

makes no distinctions among vehicles, asymmetric lane-changing behaviors and

mixed-flow situations should be considered if we want to model what happens in

real traffic flows. These kinds of realistic cases should be investigated in

future work.
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Chapter 6

Pandemic Analysis and Evolutionary Games

Abstract Human social networks are a central theme to which evolutionary game

theory has been applied because the complexity of the underlying network serves as

the key factor in determining game equilibrium. The spread of an epidemic

throughout such a network is mathematically described by percolation theory,

which is an archetype of the physics of diffusion processes. Vaccination, which is

driven by individual decision making, inhibits the spread of infectious diseases. In

addition, if the so-called herd immunity is established, a free-rider, who pays no

cost for vaccination, can escape infection. Obviously, there is a conflict between

individual and social benefits; in short, a conflict between individual rational

choices: trying to avoid vaccination, or everyone taking the vaccine achieving the

fair Pareto optimum. This conflict is why we introduce evolutionary game theory

into epidemiology; vaccination can be viewed as a game in a complex social

network. In this chapter, we examine pandemic analysis as another application to

which evolutionary game theory can be applied.

6.1 Modeling the Spread of Infectious Diseases

and Vaccination Behavior

Pre-emptive vaccination is one of the best public health measures for preventing

epidemics of infectious diseases as well as reducing morbidity and mortality

(Anderson and May 1991). However, most societies entrust vaccination to the

autonomy of the individual: vaccination is usually voluntary, despite some national

or local governments providing subsidies for it. Therefore, decision making at the

individual level may be the result of a trade-off between protection and perceived

risks and costs of vaccination and infection. Furthermore, it might be that an

individual’s decision is influenced by the vaccination behaviors of others (Chapman

and Coups 1999, 2006; Basu et al. 2008). The only example of a vaccination

campaign completely eradicating a vaccine-preventable disease is smallpox,

while cyclic (seasonal) epidemics of other infectious diseases, such as flu-like

diseases and influenza, remain a serious threat to mankind.
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One major reason for the difficulty in eradicating vaccine-preventable diseases is

related to an inherent paradox in epidemiology. As vaccination coverage increases

over a population, the proportion of immunized individuals finally exceeds a

critical level above which the disease can no longer persist; this point is called

the herd immunity. Once the herd immunity is attained, the remaining unvaccinated

individuals are quite unlikely to become infected since they are indirectly protected

by vaccinated individuals. Thus, unvaccinated individuals obtain benefits from the

herd immunity without considering the perceived risks associated with vaccination,

such as complications, side effects, and financial costs. There is less incentive for

them to get vaccinated, and then, the so-called first-order free-rider problem1 arises.

Some reports suggest that the welfare of a society can be threatened if too many

individuals perceive the herd immunity as a public good (Asch et al. 1994). As a

result, too much self-interest destabilizes the herd immunity state, and the disease

resurges. This paradox makes complete eradication of the disease difficult under a

voluntary vaccination policy, and it causes a conflict between the optimal vaccina-

tion behavior for each individual and the sufficient level of vaccination needed to

protect the whole society via the herd immunity (e.g., Cullen and West 1979; Fine

and Clarkson 1986; Geoffard and Philipson 1997; Bauch et al. 2003; Bauch and

Earn 2004). In addition, the number of vaccinated individuals may be reduced by

underestimates of infection risk due to lack of knowledge about the disease and/or

by overestimates of vaccine risk based on scientifically groundless information

(Jansen et al. 2003).

Interrelations among vaccination coverage, disease prevalence, and the vacci-

nation behaviors of individuals are complicated, and we should duplicate and

dynamically as well as quantitatively predict the consequences of these interrela-

tions if we intend to develop effective public health measures for preventing

epidemics of infectious diseases. In this regard, many studies of the vaccination

dilemma have applied a game theoretic framework to a population wherein each

individual tries to maximize his or her own payoff. These studies have provided

highly fruitful results (e.g., Bauch 2005). Previous analyses of vaccination behavior

by game theory have assumed a static game wherein individuals always act with

perfect information on their probability of becoming infected. In reality, individuals

cannot precisely know this probability. Moreover, the game should allow individ-

uals to update their strategies through learning by imitating others who appear to

have adopted more successful strategies. In this context, imitating others means

adapting one’s strategy based on his or her own personal experience and based on

information from media (the former and latter can be called active and passive

information, respectively). To describe this process explicitly, we should construct

a model that combines mathematical epidemiologic dynamics with game-theoretic

1 In 2� 2 games, a defector who is harmful to cooperators is called a first-order free-rider. When a

costly punishment scheme for defectors exists, there can be defined a strategy of the masked good

guy, who cooperates with others but never punishes defectors; such an individual is called a

second-order free-rider. There is much literature on the second-order freerider problem. For

example, Olson (1965), Axelrod (1986), Yamagishi (1986).
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dynamics. For example, Bauch constructed and analyzed a model that combines

epidemiological dynamics with replicator dynamics of evolutionary game theory to

capture the imitative behavior of individuals during outbreaks of diseases; he found

that imitative behavior provokes periodic outbreaks of diseases (e.g., Bauch 2005).

Vardavas et al. (2007) proposed an individual-level adaptive decision-making

model that was inspired by Minority Game methodology. By solving the model

numerically and analytically, they showed that incentive-based vaccination pro-

grams are indispensable to control epidemics of infectious disease but that misuse

of these programs may lead to a severe epidemic.

These studies have assumed that the population is homogeneously mixed and

that individuals are fully rational in the sense that they make decisions to pursue

maximum personal utility based on their perceived risks. Yet, in reality, there are

always spatial structures for networks of both disease transmission and an individ-

ual’s contacts, and any individual’s behavior is not completely rational. Accord-

ingly, Fu et al. (2011), for example, elevated a model to that of evolutionary game

theory to explore the effects of individual adaptation behavior and population

structure on vaccination when a population is faced with an epidemic of an

infectious disease.

Let us revisit the term paradox in epidemiology in the context of a game

theoretical application. Any rational individual has a strong incentive to exploit

the public good by free-riding on the herd immunity. However, this incentive,

wherein the individual pays nothing but still obtains a benefit, only works as long

as the majority in the community spontaneously receive the vaccination. In con-

trast, if the majority disregards vaccination, then doing nothing is no longer a better

option because infection is likely. In this case, spontaneous vaccination becomes

the rational option. This difference implies that the best choice for an individual is

to always adopt the strategy of the social minority; either free-ride when the herd

immunity is well established or take the vaccination when most people neglect to do

so. This situation obviously contains the structure of a Minority Game, as Vardavas

pointed out (Vardavas et al. 2007). A Minority Game (e.g., Challet et al. 2005),

originally defined as the El Farol Bar problem (Brian Arthur 1994), is a typical

social dilemma that can be observed in many real situations. The most heavily

concentrated applications are in financial markets. In a Minority Game, any indi-

vidual has the incentive to adopt the strategy of the minority under any circum-

stance. This duality might be interpreted as a Chicken-type dilemma wherein the

fair Pareto optimum is realized when two strategies coexist, as discussed in Chap. 2.

From the perspective of evolutionary game theory, a simple, honest question

might be raised: does a Chicken-type dilemma really appear in a particular expected

situation wherein individuals live in a complex social network on which an epi-

demic is spreading? If so, what impact does the dilemma strength have? Dilemma

strength is influenced by the underlying network topology. Furthermore, what

social provisions can be taken to prevent a pandemic? For example, can the

government provide subsidies to encourage people to take the vaccine? And do

such actions really contribute to preventing outbreaks of a disease?
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To start the discussion, let us focus on the following point: what classes of game

structures apply to those social dilemmas and dilemma strengths that underlie the

paradox in epidemiology?

6.1.1 Infinite & Well-Mixed Population

We start our discussion with the simplest situation (Fu et al. 2011). We presume that

a population is infinite and well mixed, which implies the lack of any of the

so-called social viscosity that was discussed in Chap. 2. In this context, the

dynamics can be formulated by a set of ordinary differential equations (ODEs).

To model disease transmission, we apply the susceptible-infectious-recovered

(SIR) model2 wherein the population is divided into three groups: susceptible

individuals (S), who are currently healthy but may or may not be infected with

the disease; infectious individuals (I), who are currently infected and will recover;

and recovered individuals (R), who are never infected again (see Fig. 6.11). Immu-

nity is acquired by either recovering from the disease or by pre-emptive vaccina-

tion. The immunity is presumed to be effective over an individual’s life span. The
SIR model is expressed by

dS tð Þ
dt
¼ �β � S tð Þ � I tð Þ;

dI tð Þ
dt
¼ β � S tð Þ � I tð Þ � γ � I tð Þ;
dR tð Þ
dt
¼ γ � I tð Þ;

and

S tð Þ þ I tð Þ þ R tð Þ ¼ 1; ð6:1Þ

where β and γ indicate the disease transmission rate per capita and the rate of

recovery, respectively. Obviously, the SIR process always takes place in a unilat-

eral direction, S ! I ! R, which is unlike the SIS model (Hethcote and van den

Driessche 1995) wherein immunization efficacy is neglected. Therefore, we can

deduce the final epidemic size at the equilibrium of the dynamics: R 1ð Þ is the

fraction of individuals who were once infected with the disease. According to

Eq. (6.1) with initial conditions S(0)� 1, R(0)¼ 0, I(1)¼ 0, and S(1)¼ 1�R
(1), we derive

2 The SIR model is widely applied to infectious diseases, such as influenza and measles. An

example can be found in Keeling and Eames (2005).
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R 1ð Þ ¼ 1� exp �R0 � R 1ð Þ½ �: ð6:2Þ

Here, R0�β=γ is called the basic reproduction ratio, which is the number of

secondary infections caused by a single infected individual. Let x be the fraction

of the total population that is vaccinated, so the remaining fraction 1� x is not.

Then, we can rewrite the final epidemic size at the equilibrium of the dynamics

when the fraction of pre-emptive vaccination is x,R x;1ð Þ, by solving the following
equation:

R x;1ð Þ ¼ 1� xð Þ � 1� exp �R0 � R x;1ð Þ½ �ð Þ: ð6:3Þ

This equation is obviously nonlinear and transcendental. Technically, we cannot

derive an exact analytic solution, but we can obtain a numerical solution by, for

instance, using the Newton–Raphson method. The solution is in Fig. 6.1, which

shows the relation between R x;1ð Þ and x. One important factor wherein we are

interested is the infection point at which R x;1ð Þ rises from zero with a decreasing

vaccination rate. Let us call this value the critical vaccination rate, xcr, because the
epidemic cannot be suppressed if the vaccination rate decreases below this critical

value. The value of xcr can be obtained by solving the nonlinear Eq. (6.3) to obtain,

xcr ¼ 1� 1

R0

: ð6:4Þ

The critical value xcr is the so-called herd immunity threshold; if x exceeds xcr,
further propagation of the disease cannot occur in the population (R(xcr,1)¼ 0).

Now, let us extend the discussion further, leading to evolutionary game theory.

A fair Pareto optimum, defined in Chap. 2, means a state wherein the accumulated

social payoff is maximal but fairness is maintained among all individuals. This

concept has already been applied in the discussion in Chap. 5 wherein we

Fig. 6.1 Relation between

R x;1ð Þ and x when
R0¼ 2.5
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considered a social dilemma structure hidden in various traffic contexts. Being

concerned with the payoff structure functions for both cooperators and defectors as

well as that of society as a whole, we regarded the fair Pareto optimum as a state at

which the maximum social flux appeared. By determining whether or not this

maximum social payoff is consistent with Nash equilibrium, we can identify the

dilemma class; whether a PD (defection-dominate), Chicken (polymorphic), or SH

(bistable) dilemma exists in the model. In the current discussion, we can derive a

vaccination rate at which a social payoff is maximized, xsocial�max, which identifies a

state at which the epidemic is successfully suppressed (R(xsocial-max,1)¼ 0) by a

minimum vaccination rate. We want the minimum vaccination rate because both

vaccination and infection are costly. The maximum social payoff is attained when

the vaccination rate is

xsocial�max ¼ xcr ¼ 1� 1

R0

if R0 > 1,

0 if R0 � 1:

(
ð6:5Þ

An important point is that Eq. (6.5) does not cover Cr¼ 0, which should be

considered as the limit. This omission is present because, when the range of

x which exceeds xcr, every value of x corresponds to that of xsocial-max. It is

qualitatively obvious that xsocial�max ¼ 1 when Cr¼ 0.

The next step is to find the Nash equilibrium. The vaccination rate, which is the

strategy in this game, is defined as continuous. In a game defined with a continuous

strategy, the Nash equilibrium was provided by Doebeli et al. (2004). We follow

their development. Let us presume a resident strategy x. Suppose, here, a small

proportion of the resident, defined as ε, which is called mutant, converts from x to
y (x 6¼ y). The new average social strategy, p, for example, the new vaccination rate,

is obtained from p ¼ x � 1� εð Þ þ y � ε. The expected payoffs (average social

payoffs) of mutants y are as follows:

E y; pð Þ ¼ �y � Cr þ 1� yð Þ � R p;1ð Þ; ð6:6Þ

where, again for confirmation, Cr is the vaccination cost normalized by the infec-

tion cost of 1. The necessary and sufficient conditions that xNE is a stable equilib-

rium are the following:

∂E y, p
�� �

∂y

����
y¼xNE

¼ 0 and
∂2

E y, p
�� �

∂y2

�����
y¼xNE

� 0: ð6:7Þ

These two equations lead us to the explicit form for xNE,
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xNE ¼
1 if Cr ¼ 0,

1þ ln 1� Crð Þ
Cr � R0

if 0 < Cr � R0 0;1ð Þ,
0 if R0 0;1ð Þ < Cr:

8><
>: ð6:8Þ

Figure 6.2 shows how xsocial-max and xNE are affected by the vaccination cost

(relative cost of vaccination to infection) when we assume R0¼ 2.5. At the point

Cr¼ 0, the social maximum is consistent with Nash equilibrium; thus, we would

say it is a Trivial game, or, more precisely, a C-dominate Trivial game. At the point

Cr ¼0, Nash equilibrium becomes discontinuous, as described in Eq. (6.8). If the

vaccination cost increases, the Chicken game class appears because its dynamics

are absorbed by an internal equilibrium. With additional increases in cost, the

Prisoner’s Dilemma (PD) class is finally observed, and the absorbed state is an

all-defectors-state. Note that this Chicken-type game is a game wherein ST-reci-
procity, which was discussed in Sect. 2.8, is more appropriate than R-reciprocity.
This characteristic is confirmed by the fact that the vaccination rate for the maxi-

mum social payoff is not an all-cooperators state, x¼ 1, but one that has

x¼ xcr¼ 0.6.

As the final product of this discussion, Fig. 6.3 shows the phase diagram on the

cost-R0 plane. In the figure, the upper panel shows Nash equilibrium with xNE
indicating the vaccination rate as the final game result. The lower panel shows the

normalized dilemma strength, which varies from 0 to 1 according to the definition

by Nakata et al. (2010), and is formulated by

η ¼ E xsocial�maxð Þ � E xNEð Þ: ð6:9Þ

In Fig. 6.3, the regionR0 � 1 has no dilemma because an epidemic is completely

suppressed even though xsocial�max ¼ 0. Thus, this game belongs to the defectors-

dominate (D-dominate) but still Trivial game class (hereafter, D-dominate Trivial

Fig. 6.2 Vaccination rate

at the social maximum

payoff and Nash

equilibrium when R0¼ 2.5
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or D-Trivial). The region Cr ¼ 0 and R0 > 1, highlighted by the bold gray line, is a

cooperators-dominate (C-dominate) and Trivial game, as mentioned in Fig. 6.2

(hereafter, C-dominate Trivial or C-Trivial), wherein all individuals take a vaccine,

so no infection occurs.

A social dilemma only appears in the region Cr > 0 and R0 > 1. As the relative

cost of vaccination increases, the PD replaces the Chicken-type game. In the PD

region at extremely high cost, the dilemma strength is rather relaxed because too

much increased vaccination cost does not differ from the cost of infection, which,

for the individual, is not only socially unacceptable but also rather hopeless. The

highest social dilemma occurs on the boundary between PD and Chicken in the

middle range of the basic reproduction ratio, 1:5 < R0 < 2:5. This range of R0

corresponds to typical influenza.

Large values of R0 make the entire region (except for Cr¼ 0) belong to a

Chicken-type game, and the game becomes less sensitive to further increases in

R0. Sensitivity to cost also becomes less than that for small R0. Moreover, the

dilemma strength with large R0 gradually becomes small. This decrease occurs

because large R0, implying higher likelihood to be infected, instinctively motivates

more people to take the vaccine (letting xNE increase with the increase in R0, which

is manifestly understood by Eq. (6.9) as well as the upper panel of Fig. 6.3). Thus,

the discrepancy between xNE and xsocial-max becomes relatively small. At the

extreme limit of R0 !1, there is only a C-dominate Trivial game for any Cr,

although Fig. 6.3 does not extend that far. In this sense, a middle level of epidemic

infection, rather than a high level, evokes a social dilemma (this claim can be

confirmed by the fact that the light yellow region spreads around 1:5 < R0 < 2:5).
This interesting result crucially affects people’s decisions regarding whether or not

to be vaccinated.

Fig. 6.3 Phase diagram on the cost-R0 plane with colored contours indicating Nash equilibrium

xNE (upper panel) and dilemma strength η (bottom panel)
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6.1.2 Topological Influence

The discussion in the previous subsection assumes an infinite and well-mixed

population. No doubt our real society is built on a certain human network wherein

an epidemic spreads from one individual to others. So, let us extend the previous

discussion to those situations. Since we can no longer apply an analytical approach,

we must rely on a numerical route.

Here, we assume N individuals are placed on vertices of an underlying network.

In the following, the assumed topologies of the underlying network are complete

graphs, a lattice with k¼ 4, and a Barabási-Albert scale-free (BA-SF) network

(Barabási and Albert 1999) with kh i ¼ 4, where k and hki indicate degree and

average degree of the topology.

At the beginning of a simulation episode, we randomly place l0 infectious

individuals and presume a vaccination rate that remains constant over a single

simulation episode. At the initial state of a simulation episode, x�N vaccinated

individuals are randomly placed on vertices of the underlying network. After that,

we track the time-evolution of epidemiological dynamics by the Gillespie algo-

rithm (Gillespie 1977) based on the SIR model. At equilibrium, we measure a final

epidemic size. This process is repeated 100 times to obtain the ensemble average of

the final epidemic size for a certain vaccination rate, x.
Unlike in the analytical approach in the previous section, we cannot directly

control R0. Again, let us confirm that the disease transmission rate through a link is

defined as β [day�1 person�1] and the recovery rate is γ [day�1]. Because of the

locality caused by the topology, R0 is not consistent with β/γ in the network context.
However, by recalling that R0 qualitatively implies how easily the epidemic

spreads, we can translate R0, used in the analytical approach above, to β and γ,
used in the simulation approach here. In the following discussion, we set γ ¼ 1=3.
Thus, in a multi-individual simulation with a certain underlying network, the

counterpart variable must be β if γ is fixed. To determine the β that is the

counterpart to a certain R0, we proceed as follows. Based on a given R0 and

presuming a vaccination rate x¼ 0, we seek a β value that reproduces the same

final epidemic size that the analytic solution yields, R 0;1ð Þ. This particular β
depends on the underlying topology. For example, for BA-SF (N¼ 4900 and kh i
¼ 4) with R0¼ 2.5, the counterpart β must be 0.55. Figure 6.4 shows how the final

epidemic size decreases with increasing vaccination rate when we presume BA-SF

and β¼ 0.55; this distribution is actually the counterpart of Fig. 6.1. The intercept

with the Y-axis is the final epidemic size, showing that both the analytical solution

and simulation are consistent. Unlike what we observed in Fig. 6.1, in the simula-

tion approach it is difficult to clearly define the critical vaccination rate xcr because
the random drift resulting from the presumed random numbers introduces some

stochastic uncertainty. Therefore, we define the critical vaccination rate in simula-

tions as the vaccination rate that can subdue a final epidemic size to less than

2 � I0=N. The criterion “2” adopted here comes from the literature (Fu et al. 2011).
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As shown in Fig. 6.4, the critical value is 0.86 in this example. The yellow

highlighted region indicates the vaccination rate that attains herd immunity.

Over a series of simulations wherein vaccination cost, Cr, and β are varied, we

can identify both the game class and dilemma strength defined by Eq. (6.9). As an

example, Fig. 6.5 shows how we perform this identification; in this example, we

used BA-SF (N¼ 4900 and kh i ¼ 4), β ¼0.55, and l0¼ 5. For Cr¼ 0, the vaccina-

tion rate yielding the maximum social payoff, xsocial-max, is identified by the peak of

the social payoff function, hπsociali, and Nash equilibrium, xNE, is identified by the

crossing point of the defectors payoff function, hπDi and that for cooperators, hπCi.
The top panel of Fig. 6.5 shows that the vaccination rate for maximum social payoff

and Nash equilibrium are consistent atxcr ¼ 0:86. Thus, this situation belongs to the
C-Trivial game class.

For Cr¼ 0.5, xsocial-max appears in the middle of [0, 1], which indicates an

internal equilibrium that differs from Nash equilibrium, xNE. Therefore, this situa-
tion belongs to the Chicken game class. The game for the bottom panel, where

Cr¼ 0.96 is presumed, belongs to the PD game class because Nash equilibrium is

an all-defectors-state, xNE¼ 0, and is inconsistent with xsocial-max. In this analysis,

we should disregard plots for x > xcr ¼ 0:86 (highlighted by yellow in Fig. 6.5)

because the simulation results are contaminated with the random drift, as men-

tioned above.

The last result we show here is Fig. 6.6, which should be compared with Fig. 6.3.

Again, we assume BA-SF of N ¼4900, kh i ¼ 4, β ¼0.55, and l0¼ 5. The upper

panel in Fig. 6.6 shows Nash equilibrium, xNE, indicating vaccination rate as the

final game result. The lower panel shows the dilemma strength. The red dotted line

is for β¼ 0.55, which we discussed in relation to Fig. 6.5.

In comparing Fig. 6.6 with Fig. 6.3, the most important point is that dilemma

strength is relaxed by introducing an underlying network, BA-SF in this case. In

other words, introducing a network strongly motivates individuals to receive the

vaccine. The reason is as follows. In a BA-SF network, a pandemic can easily occur

if hub individuals, who have relatively large numbers of neighbors, are infected;

this feature is called the super-spreader effect. Unless vaccinated, both individual

Fig. 6.4 Relation between

vaccination rate and final

epidemic size for BA-SF

(N¼ 4900 and kh i ¼ 4) and

β¼ 0.55 with l0¼ 5
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Fig. 6.5 Payoff structure functions for three different vaccination costs using BA-SF (N¼ 4900

and kh i ¼ 4), β ¼0.55, and l0¼ 5

Fig. 6.6 Phase diagram on the cost-β plane with colored contours indicating Nash equilibrium xNE
(upper panel) and dilemma strength η (bottom panel) for BA-SF with N¼ 4900, kh i ¼ 4, and

l0¼ 5. The red dotted line indicates β¼ 0.55
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and social payoffs inevitably deflate. In this social context, getting vaccination is an

acceptable solution to avoid infection rather than attempting to free ride on the herd

immunity. In fact, the upper panel of Fig. 6.6 shows a relatively high vaccination

rate as long as the vaccination cost is relatively low. Despite subtle differences, a

slightly larger dilemma region appears on the border of Chicken and PD, where the

vaccination cost is relatively large and β is less than 1 but not too small. Although

Fig. 6.6 does not extend to very large β, unlike the case of well-mixed and infinite

populations in Fig. 6.3, the C-dominate Trivial game does not occupy all regions of

relative cost of vaccination even in the extreme limit of β!1. This feature occurs

because the effects of spatial (population) structure allow several individuals, who

can avoid infection without vaccination (free-riding on herd immunity), to remain

in the system even if the environment becomes extremely infectious. This tendency

is also true when using a lattice.

Figure 6.7 shows the results for a 2D lattice of N¼ 4900, k¼ 4, and l0¼ 5.

Compared with the results for BA-SF, the vaccination rate as the final game result

(upper panel) is less. Because of this decrease, a relatively larger dilemma occurs

vis-�a-vis the BA-SF (lower panel). In particular, the region with high vaccination

cost and lower β is marked with a higher dilemma compared to that in the case of

BA-SF. The relatively longer average path length of the lattice compared to that of

BA-SF tends to inhibit spreading of the epidemic, which makes individuals less

motivated to receive the vaccine as compared with those in the case of BA-SF. This

difference occurs because, in situations with low possibility of infection, no vacci-

nation might be beneficial due to free-riding on the herd immunity. Consequently,

more social dilemma is present in the lattice than in the BA-SF network.

Since the horizontal axis in Fig. 6.3 (R0) differs from those in Figs. 6.6 and 6.7

(β), a candidate for comparing with Fig. 6.3 is shown in Fig. 6.8, for which a

complete graph for N¼ 1000 and l0¼ 5 was used. Using a complete graph certainly

indicates a well-mixed situation, but it does not mean an infinite population.

Fig. 6.7 Phase diagram on the cost-β plane with colored contours indicating Nash equilibrium xNE
(upper panel) and dilemma strength η (bottom panel) for a lattice of N¼ 4900, k¼ 4 and l0¼ 5
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Because of this difference, Fig. 6.8 is not strictly comparable to Fig. 6.3. Figure 6.3

only covers the left part of Fig. 6.8, so, again, there are substantial differences

between Figs. 6.3 and 6.8. Many of those differences are due to differences in

population size: Fig. 6.8 applies to a finite population of N¼ 1000, while Fig. 6.3

applies to an infinite population.

6.1.3 Summary

In this section, we proposed new tools for addressing the vaccination dilemma. One

tool is a phase diagram that allows us to identify the dilemma class that underlies

the problem. Another is the combined use of dilemma strength and final vaccination

rate, provided that the epidemic transition rate and vaccination cost vary

independently.

A Chicken-type dilemma, which should be expected in ST-reciprocity but not in
R-reciprocity, appears as the main underlying dilemma class. At high vaccination

costs, a PD class dilemma appears with relatively large dilemma strength. Increas-

ing the transition rate can relax the dilemma because a high likelihood of being

infected becomes more important, regardless of the cost of vaccination.

The topology of the underlying network has a significant impact on the structure

of the vaccination dilemma. Generally, a network with a small average path length

can relax the vaccination dilemma because a long distance between any two

arbitrarily selected individuals effectively prevents rapid spread of infection

through the society. This separation allows agents to stray in whether they take

the vaccination or try to free-ride on the herd immunity.

Fig. 6.8 Phase diagram on the cost-β plane with colored contours indicating Nash equilibrium xNE
(upper panel) and dilemma strength η (bottom panel) for a complete graph with N¼ 1000 and

l0¼ 5. The game class “Trivial” means that no dilemma game was absorbed by either the

all-defectors state (D-Trivial) or all-cooperators state (C-Trivial)
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6.2 Vaccination Games in Complex Social Networks

In the previous section, the game we studied did not include any evolutionary

process. What we discussed was whether or not the process leading to a particular

payoff structure contained a dilemma; if so, then we wanted to identify the dilemma

game class. An important point might be how the instinct dilemma can be diluted by

each of the various subsidy campaigns that might be invoked to motivate vaccina-

tion, which might be meaningful for public health officials.

In this section, let us take a further realistic step wherein not only epidemic

spreading but also an individual’s decision for or against voluntary vaccination are

both time-evolving on a complex social network (Fukuda et al. 2014). This kind of

exploration was originally reported by Fu and his colleagues (Fu et al. 2011). They

constructed a model wherein the network of disease transmission was just the same

as that of strategic interactions among individuals on complex networks, and they

found that vaccination coverage sensitively depends on the cost of vaccination.

More precisely, their model has two stages. The first stage is decision making.

Each individual in a population (represented by a node (vertex) in a social network)

makes a decision whether or not to get vaccinated; this decision corresponds to his

or her choice of strategy. The second stage is an epidemic season. To describe the

epidemiologic dynamics in a structured population, their combined model uses SIR

dynamics on a social network. In the SIR model, a fixed population is divided into

three groups: susceptible (S), infected (I), and recovered (R) (or vaccinated (V)).
Each group develops temporally according to a certain mathematical structure.

Those who decide not to be vaccinated are included in the susceptible group. At the

end of the epidemic season, the epidemic transmission on the network determines

whether each susceptible individual has been infected or not. According to the final

epidemic state, a stipulated payoff is assigned to each individual. After that, each

individual re-examines his or her strategy regarding vaccination via an imitation

process. In Fu’s work, an individual compares his or her payoff to the payoff of a

randomly chosen neighbor. If that neighbor earned a higher payoff than he or she

did in the last epidemic season, this individual may imitate the selected neighbor’s
strategy with higher probability. This concept has been commonly adopted in

spatial versions of 2� 2 games, such as the prisoner’s dilemma and snow drift

(chicken) games.

However, it is not always true that an individual relies only on the payoff of his

or her neighbor to make a decision regarding whether or not to imitate. For

example, mass media, such as television, radio, and newspapers, have the potential

to powerfully influence people’s behaviors; for this discussion, those media can

present objective information about a currently spreading disease. Consequently,

each individual can take into account a survey on the social circumstances wherein

an infectious disease spreads, and that survey could affect his or her decision

concerning vaccination. That is, an individual can adjust the probability of getting

vaccinated based on the level of the epidemic. This adjustment might be crucially

important in attempting to reproduce how each individual behaves in a real social

context.
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This situation is closely linked to the evolution of cooperation in the usual

evolutionary game theory wherein network reciprocity helps emerging coopera-

tion—getting vaccination instead of defection—which we discussed in Chap. 3.

Shigaki et al. (2012) constructed a model of the prisoner’s dilemma as a typical

2� 2 game for a network wherein an individual extracts the number of other

individuals who adopt a strategy sj, depending on some sampling rate, and com-

pares his or her own payoff to the payoff averaged over those extracted individuals

for strategy adaptation. In particular, they studied the effects of sampling rate on the

frequency of cooperation. They found that cooperative behavior was most often

promoted when the sampling rate was relatively low. An average with a low

sampling rate generally fluctuates around its overall average; thus, the average

exceeds the overall average over some durations and falls below the average in

other durations. They proved that this instantaneous spiking of the average sampled

payoff among cooperators over the overall average plays a key role in promoting

cooperation. This feature indicates that cooperative behavior is more likely when

people put trust in so-called anecdotal information, meaning someone’s “success
story,” rather than in public information that reflects the whole of society. This

contrast is thought to be meaningful in the sense that the evolutionary game is able

to show a possible scenario on how mass media work to significantly enhance

cooperation in a modern society. Then, such scenarios might be applied to other

situations, like what we have just argued—how we can control a spreading epi-

demic by means of vaccination.

Motivated by the above reasons, in this section, we assume that an individual in a

population grasps the whole situation in the society; that is, he or she obtains

complete information about the society and updates his or her strategy based on

that information. Namely, an individual determines his or her strategy-updating

probability, not based on the payoff of a selected opponent among neighbors, but on

the averaged payoff that is obtained by averaging the payoffs over those who adopt

the same strategy that the individual’s opponent adopts. We analyze in detail how

this newly proposed strategy-updating rule affects vaccination coverage and the

final proportion of the population who are infectious. The results might be inter-

esting in relation to Shigaki’s network reciprocity as one of the supporting mutual-

cooperation frameworks for 2� 2 games.

6.2.1 Model Setup

In this section, we describe the basic model introduced originally by Fu

et al. (2011), which presumes an individual-based risk assessment for strategy

update. Then, we propose a new model in which each individual assesses risks

based on the averaged payoff resulting from adopting a certain strategy (Fig. 6.9).
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Model Assumption

Consider a population in which each individual on a social network decides whether

to be vaccinated. Seasonal and periodical infectious diseases, such as flu, are

assumed to spread through such a population. The protective efficacy of a flu

vaccine persists for less than a year because of waning antibodies and year-to-

year changes in the circulating virus. Therefore, under a voluntary vaccination

program, individuals must decide every year whether to be vaccinated. Thus, the

dynamics of our model consists of two stages: the first stage is a vaccination

campaign, and the second is an epidemic season.

The First Stage: The Vaccination Campaign

Here, in this stage, each individual makes a decision whether to get vaccinated

before the beginning of the seasonal epidemic, i.e., before any individuals are

exposed to the epidemic strain. Vaccination imposes a cost Cv on each individual

who decides to be vaccinated. The cost of vaccination includes the monetary cost

and other perceived risks, such as adverse side effects. For simplicity, we assume

that the vaccination provides perfect immunity to an individual against the disease

during a season; however, an unvaccinated individual faces the risk of being

exposed to infection during a season.

Fig. 6.9 Model at a glance
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The Second Stage: The Epidemic Season

Here, at the beginning of this stage, the epidemic strain enters the population, and

a number I0 of randomly selected susceptible individuals are identified as the

initially infected ones. Then, the epidemic spreads according to SIR dynamics

(Fig. 6.10).

SIR Dynamics in Finite Populations on Social Networks

The classic SIR model is given by coupled (integro-) differential equations and does

not assume any spatial structure for the population. Using SIR model, a short-range

and local epidemic outbreak of infectious diseases such as plague are modeled

(Kermack and McKendrick 1927). Here, we use an extended SIR model that

involves a spatial structure for the whole population. This structure is represented

by a network consisting of nodes and links. The dynamics of SIR on a spatially

structured population is not captured by a system of differential equations; thus, we

numerically simulate an epidemic spreading on a network by using the Gillespie

algorithm (Gillespie 1977) to the extended SIR model.

Fig. 6.10 Time evolution covering the first and second stage
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In the model, the whole population N is divided into three sub groups: suscep-

tible (S), infected (I ), and recovered (R) individuals (see Fig. 6.11). The disease

parameters are β, which is the transmission rate per day per person, and γ, which is

the recovery rate per day (i.e., the inverse of the mean number of days required to

recover from the infection).

In this study, we consider three typical networks: a square lattice, a random

regular graph (RRG), and the Barabási-Albert scale-free (BA-SF) networks

(Barabási and Albert 1999). An epidemic spreads much more easily on the RRG

and the BA-SF network, even when the transmission rate is lower than that on the

square lattice (Keeling and Eames 2005; Pastor-Satorras and Vespignani 2001). In

this study, we set the disease transmission rate β to ensure that the risk of infection

in a population with only the unvaccinated individuals is equivalent for all three

network structures. That is, we calibrate the value of β such that the final proportion
of infected individuals across the networks will be 0.9. Accordingly, we set

β¼ 0.46 day�1 person�1 for the square lattice, β¼ 0.37 day�1 person�1 for the

RRG, and β¼ 0.55 day�1 person�1 for the BA-SF network (see Fig. 6.13). We set

the recovery rate γ¼ 1/3 day�1. A typical flu is assumed to determine these disease

parameters.

An epidemic season lasts until no infection exists in the population. Each

individual who gets infected during the epidemic season incurs the cost of infection,

Ci. However, the cost paid by a “free-rider” who does not vaccinate and still is free

from infection is zero. For simplicity, we renormalize these costs (payoffs) by

defining the relative cost of vaccination Cr¼Cv/Ci (0�Cr� 1). Then, the payoff

for every individual after the end of an epidemic season is summarized according to

her state in Table 6.1.

Fig. 6.11 Schematic of the SIR model. In this model, the population is divided into three

categories on their epidemiological states: susceptible individuals (S), infected individuals (I ),
and recovered individuals (R), respectively. We assumed that Rwho had come down the infectious

disease and recovered acquires perfect immunity. Therefore, they do not get infected again within

the same epidemic season
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Strategy Adaptation: The Original Individual-Based Risk Assessment

(IB-RA)

After the above two stages, every individual again examines vaccination decision-

making at the beginning of next season. The rule of strategy adaptation is given as

follows. A certain individual i chooses randomly individual j among all of her

neighbors. Let πi,, πj denote the payoffs of individual i and j respectively. The

probability P si  s j
� �

that the individual i (whose strategy is si) imitates the

individual j’s strategy, sj, is given by a pairwise comparison of their payoff

difference according to the Fermi function, which has been repeatedly appeared

in previous chapters;

P si  s j
� � ¼ 1

1þ exp
πi�π j

κ

� �; ð6:10Þ

where the term “strategy” implies an individual’s decision to be vaccinated and κ is
the sensitivity of individuals to the difference in the payoff. For κ!1 (weak

selection pressure), an individual i is insensitive to the payoff difference πi� πj
against another individual j and the probability P si  s j

� �
approaches 1/2 asymp-

totically, regardless of the payoff difference. For κ! 0 (strong selection pressure),

individuals are sensitive to the payoff difference, and they definitely copy the

successful strategy that earns the higher payoff, even if the difference in the payoff

is very small. In the present study, we set κ¼ 0.1, which has been used as a typical

selection pressure in most previous studies. This value of κ implies that, in most

situations, individuals adopt any successful strategy; however, occasionally they

end up imitating a worse performer with a lower payoff. Such erratic decision

making is a reflection of irrationality or mistakes made by ordinary individuals.

Figure 6.12 shows the flow of the model described so far.

The Proposed Model: The Strategy-Based Risk Assessment (SB-RA)

Equation (6.10) indicates that as the negative payoff difference increases, the

probability that an individual will change her strategy to that of her successful

neighbor increases. Observing (6.10) from a different viewpoint, this rule of

Table 6.1 The payoff for the three types of individuals’ strategy and state in the population after

the epidemic season

Strategy/State Healthy Infected

Vaccination �Cr

Non-vaccination 0 �1
We assume that vaccinators acquire perfect immunity by vaccination to the seasonal infectious

disease during the epidemic season. Therefore, there is no simultaneously vaccinated and infected

individual in the population
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strategy adaptation can be interpreted as follows: each individual evaluates both the

risk of maintaining her own strategy and imitating her opponent’s strategy and then
selects the one with the smaller risk. In this method, each individual i assesses the
risk based only on one certain individual j because (6.10) uses only the payoff of i’s
opponent (individual j). Thus, we call the updating rule (6.10) as individual-based

risk assessment updating rule (IB-RA).

However, when we assume that the information regarding the consequences of

adopting a certain strategy are disclosed to the society and everyone in the popu-

lation has access to those consequences, then individuals no longer rely heavily on

the payoff of any one neighbor. Instead, in adapting their strategy, they tend to

assess the risk based on a socially averaged payoff that results from adopting a

certain strategy.

To reflect the above situation, we propose a modified imitation probability,

which is as follows.

P si  s j
� � ¼ 1

1þ exp
πi�<πs j>

κ

h i; ð6:11Þ

where< πs j
> is an average payoff obtained by averaging a collective payoff over

individuals who adopt the same strategy as that of a randomly selected neighbor j of
the individual i. The sampling number is a control parameter that ranges from only

one individual (i.e., only one of i’s neighbors, j) to all individuals among the whole

population who adopt the strategy same as that of j. That is, if sj is the strategy of

vaccination (Cooperation, C), then< πs j
>¼ �Cr (since the payoff of a vaccinated

individual is uniquely determined); whereas, if sj is the strategy of no-vaccination

(Defection, D), then < πs j
> takes a value between 0 and 1, depending on the

fractions of infected and healthy individuals (free-riders) with the strategy sj in the

population at the end of the epidemic. Moreover, if sampling is impossible because

the population size of individuals with the strategy sj is too small, the individual

i uses the payoff of one randomly selected neighbor instead of < πs j
> in (6.11),

Fig. 6.12 The flow of the model we used. That dynamics is modeled as a two-stage dynamics. In

the first stage (vaccination campaign), each individual decides whether or not to get vaccinated. An

individual who decides to get vaccinated incurs the cost of vaccination Cv, and acquires perfect

immunity to the infectious disease. In the second stage (epidemic season), the epidemic spreads

according to SIR dynamics. Each infected individual incurs the cost of infection Ci. Successful

individuals who are unvaccinated and remain healthy (free-riders) avoid any cost, and they are

indirectly free-riding off the vaccination efforts of others. For simplicity, we set Ci¼ 1, and rescale

the payoffs by introducing the relative cost of vaccination Cr¼Cv, / Ci (0�Cr� 1)
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which leads to an expression that is same as (6.10). Thus, when the sampling rate is

set to zero, (6.11) reduces to (6.10).

Equation (6.11) implies that an individual i assesses the risk of changing her

strategy based on the payoff attained by adopting a certain strategy, and not the

payoff attained by a certain other individual. Thus, we call the updating rule (6.11)

as strategy-based risk assessment updating rule (SB-RA). Note that, for a vaccina-

tion strategy, risk assessment based on the consequences of that strategy is the same

as that based on a unique individual because the immune effect of vaccination is

perfect during an epidemic season. However, for the no-vaccination strategy, the

risk may differ from season to season because the degree of the epidemic may

differ.

Simulation Assumption

Initially, equal fractions of the vaccinated and unvaccinated individuals are ran-

domly distributed among the population allocated on the network. The vaccination

coverage and the fraction of infected individuals are updated by iterating each

two-stage process (the vaccination campaign and the epidemic season). The equi-

librium results shown in Figs. 6.14 and 6.16 represent average fractions over the last

1000 from among 3000 iterations in 100 independent simulations. In the present

study, we show only the results for which the population size N¼ 4900 and the

sampling rate when collecting individuals who adopt the strategy sj was 100 %. We

confirmed that the results show no differences unless the sampling rate was changed

to as low as 0.1 % and the population size was set to N ¼1600. In such cases,

sampling becomes quite difficult.

6.2.2 Results and Discussion

Figure 6.14 shows equilibrium values for vaccination coverage and final proportion

infected individuals as functions of the relative cost of vaccination Cr. Generally,

vaccination coverage in the RRG shows better results than that on the square lattice

(Fig. 6.14(a1) and (b1)), and that the BA-SF network is superior to the RRG at the

same values of Cr (Fig. 6.14(b1) and (c1)). As a result, the RRG shows lower final

proportions of infected individuals than that shown by the square lattice (Fig. 6.14

(a2) and (b2)), and the BA-SF network can show even lower proportions than that

shown by the RRG (Fig. 6.14(b2) and (c2)). These tendencies are because the RRG

and the BA-SF network make it easier for infectious diseases to spread due to the

randomness or heterogeneity of the networks, which is basically confirmed in

Fig. 6.13. Ease of epidemic spreading makes it difficult to achieve the herd

immunity state; thus, it is difficult for both free-riders and selfish individuals to

remain uninfected. Consequently, both the randomness of the RRG and the

6.2 Vaccination Games in Complex Social Networks 203



heterogeneity of the BA-SF network enhance the voluntary vaccination of individ-

uals. The results for each network have been shown separately in the following

sections.

Lattice Populations

From Fig. 6.14(a1), (a2), one can find that for wider range of Cr (roughly Cr< 0.7),

the SB-RA can suppress the final proportion in infectious by increasing the equi-

librium vaccination coverage compared to the case of the IB-RA. Figure 6.15

illustrates snapshots of the system with different risk assessment schema when

Cr¼ 0.05 after approaching equilibrium. As can be seen from these figures, the

SB-RA promotes the growth of larger clusters of vaccinators which work as

bulwarks to infectious disease. Therefore, the risk assessment based on the strategy

for imitation has a large impact on the suppression of epidemics for wider range of

Cr. The difference in the results due to the different risk-assessment schema fades

out at large value of Cr, the reason of which will be explained qualitatively as

follows.

Fig. 6.13 Final proportion of infected individuals as a function of transmission rate β when no

individuals are vaccinated on each network: square lattice (circles), random regular graph (RRG)

(triangles), Barabási-Albert scale-free (BA-SF) network (squares). For the lattice (circles): pop-
ulation size N¼ 70� 70 with von Neumann neighborhood, recovery rate γ¼ 1/3 day�1, seeds of
epidemic spreading I0¼ 5. For RRG (triangles): population size N¼ 4900, degree k¼ 4, recovery

rate γ¼ 1/3 day�1, seeds of epidemic spreading I0¼ 5. For BA-SF network (squares): population
size N¼ 4900, average degree< k>¼ 4, recovery rate γ¼ 1/3 day�1, seeds of epidemic spreading

I0¼ 5. Each plotted point represents an average over 100 runs
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Fig. 6.14 Vaccination coverage (upper three panels) and final proportion of infected individuals

(lower three panels) as functions of relative cost of vaccination Cr for each network: lattice

population (circles in Panels a1 and a2), RRG network (triangles in Panels b1 and b2), and

BA-SF network (squares in Panels c1 and c2). Filled symbols are for the original individual-based

risk assessment updating rule (IB-RA). Open symbols are for the proposed strategy-based risk

assessment updating rule (SB-RA). For the lattice (circles): transmission rate β¼ 0.46 day�1

person�1. For the RRG (triangles): transmission rate β¼ 0.37 day�1 person�1. For BA-SF network

(squares): transmission rate β¼ 0.55 day�1 person�1. Other parameters used in the simulation are

given in the caption to Fig. 6.13

Fig. 6.15 Typical snapshots of systems in the equilibrium state for Cr¼ 0.05 on the lattice

network utilizing (a) original IB-RA and (b) proposed SB-RA. Blue denotes a vaccinated

individual, red an infected individual, and white a free-rider. For the original IB-RA in (a), the

vaccinated individuals form some small clusters whose fraction is about 18 % of the population.

For the proposed SB-RA in (b), the vaccinated individuals form some larger clusters whose

fraction is about 59 % of the population
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In the square lattice, infectious disease is relatively more difficult to spread than

other kinds of network (e.g. the BA-SF treated in this paper). Thus each individual

ceases to get vaccinated even if Cr is small, finally leading to relatively higher level

of final proportion in infectious. In turn, the number of infected individuals is larger

than that of free-riders and so an individual i has quite a few opportunities to keep

her own strategy. That is, if a focal i’s opponent j is a free-rider, the payoff of

i cannot be larger than that of j under the IB-RA updating rule, while< πs j
>which

is calculated under the SB-RA updating rule may be smaller than i’s payoff,

meaning that the focal i can keep her original strategy. Meanwhile if i’s opponent
j is infected, – Cr> < πs j

>may hold when Cr is moderately low and then the focal

i who adopt the cooperative strategy (vaccinator) is unlikely to imitate the defective

strategy (non-vaccinator) of her focal j for the SB-RA updating rule. (The cooper-

ator i basically do not imitate the defective strategy of an infected opponent j under
the IB-RA.)

Increase of Cr decreases the vaccination coverage and then increases the final

fraction of infection, thus resulting in – Cr ffi< πs j
>. Hence it cannot be expected

that the SB-RA helps vaccinators to keep their cooperative strategy. Additionally

free-riders basically keep their defective strategy because the payoff difference

between a free-rider and a vaccinator becomes large at larger Cr. This is the case for

both the IB-RA and the SB-RA. In other words, the possibility for defectors (free-

riders) to change the strategy from D to C cannot be enhanced by applying the

SB-RA updating rule. That is the reason why the SB-RA gives no enhancement

effect at larger Cr.

Barabási-Albert Scale-Free Networks

For the BA-SF network, we found that, unlike the other networks, the SB-RA leads

to lower vaccination coverage and higher levels of final proportion of infected

individuals over a narrower range of Cr (approximately Cr> 0.4) (Fig. 6.14(c1) and

(c2)). Figure 6.16 shows the fraction of vaccinated individuals as the functions of

the number of neighbors for Cr¼ 0.1 and 0.6. This figure shows that highly

connected individuals (hubs) who have larger risks of infection are active to

voluntary vaccination; whereas, individuals with smaller number of neighbors

ride freely on the benefits brought by the voluntary vaccination of the hubs. A

risk assessment based on strategy is effective for suppressing the spread of an

epidemic when the relative cost of vaccination Cr is small; however, it has the

opposite effect when Cr is large. The explanation is as follows.

When Cr¼ 0.1 (low cost of vaccination), 70 % of the overall population gets

vaccinated and 5 % are infected at the equilibrium state (Fig. 6.14(c1) and (c2)),

then the averaged payoff for the defective strategy< πs j
> is nearly �0.17. Thus, a

cooperative individual is likely to maintain her strategy even if her opponent j is a
defector, since -Cr> < πs j

> holds. As mentioned earlier, any defective individual

has the same imitation probability under the IB-RA and SB-RA.
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In Fig. 6.16(a), the SB-RA provides higher vaccination coverage for all number

of neighbors, and enhancement is more remarkable for fewer neighbors. The

SB-RA enhances the tendency for cooperators to maintain their cooperative strat-

egy; however, it cannot increase the vaccination coverage of hubs. Those hubs

naturally have strong tendencies to get vaccinated, irrespective of the risk assess-

ment schema. However, individuals with few neighbors become more likely to get

vaccinated by imitating the cooperative hubs, and the SB-RA gives an additional

impetus for them to maintain their cooperative strategy. Thus, the result is shown in

Fig. 6.16(a).

An infectious disease is well known to spread easily on a scale-free network with

heterogeneity in the neighbor distribution due to the presence of hubs as super-

spreaders. Therefore, the final proportion of infected individuals cannot be inhibited

effectively unless individuals with large number of neighbors are more likely to get

vaccinated.

Thus, we conclude that the SB-RA helps the hubs in maintaining their cooper-

ative strategy. This increases the frequency for individuals with few contacts to

change their strategy from defection to cooperation and cooperators to maintain

their cooperative strategy. This finally results in slightly improved vaccination

coverage for small values of Cr. However, the SB-RA does not have a significant

impact on suppressing the final proportion of infected individuals because it has

little influence on the decision-making processes of highly connected individuals.

When Cr¼ 0.6 (a moderately higher cost of vaccination), the average payoff

brought about by adopting a defective strategy < πs j
> is nearly �0.57. Since the

average payoff of the defective strategy is larger than that of the cooperative

strategy, cooperative individuals find it difficult to maintain their own strategy.

For defective individuals, there is no difference in the imitation probability between

the IB-RA and SB-RA. Figure 6.16(b) shows the fraction of vaccinated individuals

as a function of number of neighbors when Cr¼ 0.6. The results are explained as

follows.

Fig. 6.16 Fraction of the vaccinated individuals on the Barabási–Albert scale-free network as a

function of the number of neighbors (degree) for (a) Cr¼ 0.1 and (b) Cr¼ 0.6. Open squares are
for the proposed SB-RA. Filled squares are for the original IB-RA
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Compared to IB-RA, the result of vaccination coverage using SB-RA is lower

for all the degrees of contact, and the difference is larger for higher number of

neighbors. Moreover, the level of vaccination coverage using IB-RA for number of

nodes k¼ 3, 4, 5 are lower than that for k¼ 2 with IB-RA. To understand this, note

that the number of nodes with k¼ 2 is very large, which implies that the number of

individuals who connect to the hubs is also very large. Then, the decision making of

individuals with k¼ 2 is considerably affected by the decisions of the hubs. When

the vaccination coverage of hubs is high, individuals with k¼ 2 can ride freely on

the preventive ability of hubs against infectious diseases. However, for IB-RA, the

influence of the attitude of cooperation by hubs on individuals with k¼ 2 surpasses

the temptation for free-riding, and thus the vaccination coverage of individuals with

k¼ 2 is superior to that with k¼ 3, 4, 5.

For SB-RA, the decline in vaccination incentive due to larger values of Cr

remarkably influences vaccination coverage. Generally, the BA-SF network con-

sists of a great majority of individuals with few contacts and relatively few hubs.

Thus, even if only one hub selects the defective strategy (no -vaccination), it causes

a large reduction in vaccination coverage. Because of this reduction in vaccination

coverage of hubs, those with fewer contacts who connect to hubs tend to decline to

get vaccinated (C to D) or maintain their defective strategy (D to D). As discussed

previously, the average payoff of the defective strategy is larger than that of the

cooperative strategy. These two factors induce individuals with fewer contacts to

adopt the defective strategy, yielding the result shown in Fig. 6.16(b).

Summing up, for moderately large values of the cost Cr, a strategy-based risk

assessment makes it difficult for each individual to maintain the cooperative

strategy of vaccination, and thus vaccination coverage declines and a large epi-

demic ensues.

Random Regular Graphs

Figure 6.14(b1) and (b2) show that, compared to IB-RA, SB-RA can suppress the

final proportion of infected individuals by increasing the equilibrium vaccination

coverage over a moderately wider range of Cr (approximately Cr> 0.6). Moreover,

this threshold value of Cr is greater than that for the square lattice, but smaller than

that for the BA-SF network. This is because the RRG is not only homogeneous in its

degree distribution, like a square lattice, but also random in its network structure. In

general, an epidemic spreads more easily through a network in which the average

path length is small, such as an RRG or BA-SF network. Hence, on these networks,

the vaccination behavior of individuals can be promoted to more than that on a

square lattice. Further, in a BA-SF network, cooperative hubs can allow many

neighboring individuals to imitate the behavior of the hub individual. For these

reasons, in the RRG, all fractions of each possible state (vaccinated, infected, and

free-rider) and the value of < πs j
> for a certain Cr are between those of the other

kinds of networks. Thus, in the RRG, the threshold value of Cr crossing �Cr and
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< πs j
> (i.e., the inversion of whether SB-RA or IB-RA effectively works better to

deter the spread of an epidemic) occurs at an intermediate value of Cr between that

of the square lattice and the BA-SF network.

6.2.3 Summary

In this study, we investigated how the method of risk assessment affects (1) an

individual’s decision to get vaccinated against a spreading epidemic and (2) the

aggregate vaccination behavior of the population. In most previous studies, risk

assessment has been based at the individual level in the sense that a focal individual

compares her payoff to that of one of her randomly selected neighbor. However, in

this paper, we propose a strategy-based risk assessment in which a focal individual

compares her payoff to an average payoff that is realized by adopting a strategy

adopted by one of her neighbors.

Consequently, a more effective method of risk assessment to prevent the spread-

ing of an infectious disease depends on both the network structure and the cost of

vaccination. In the RRG and the BA-SF network, the average path lengths between

individuals are smaller than that on a square lattice; thus, an infectious disease

spreads more easily. Moreover, the infection of hub individuals induces a pandemic

in a heterogeneous graph, such as the BA-SF network. This implies that the

vaccination of hubs is more important in a heterogeneous network. However, in a

homogeneous network, vaccination of any individual helps to suppress the final

proportion of infected individuals.

Based on our results, it is suggested that, for a society to select the preferable

method of risk assessment, each individual should know the spatial structure of the

network in which she is involved, or at the regional level, an administrative agency

should disclose the information on the status of an infectious disease after identi-

fying the network structure. At low values of vaccination cost Cr, our proposed

method of risk assessment enhances vaccination coverage and reduces the final

proportion of infected individuals, irrespective of network structure. Thus, if the

cost of vaccination can be lowered, we can prevent the spread of an infectious

disease, irrespective of the underlying network structure, so long as individual

actions are based on public information and not on merely imitating their immedi-

ate neighbors. This argument provides supporting evidences for subsidizing people

to get vaccinated.

For simplicity, we assumed that individuals acquire perfect immunity from

vaccination against a seasonal infectious disease during an epidemic season. That

is, the probability that a vaccinated individual gets infected is 0 % during an

epidemic season. In reality, the efficacy and effectiveness of a vaccination are not

always perfect for some infectious diseases. In future work, vaccine efficacy must

be considered for allowing us to make a more realistic proposal for preventing

epidemics.
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