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Preface

In 1989 when the first edition of this book was completed, my sons David and
Greg were 3 and 1, and the cover picture showed the Dow Jones at 2650. The past
20 years have brought many changes, but the song remains the same. The title
of the book indicates that as we develop the theory, we will focus our attention
on examples. Hoping that the book would be a useful reference for people who
apply probability in their work, we have tried to emphasize the results that are
important for applications, and have illustrated their use with roughly 200 examples.
Probability is not a spectator sport, so the book contains almost 450 exercises to
challenge readers and to deepen their understanding.

This fourth edition has two major changes (in addition to a new publisher):

(i) The book has been converted from TeX to LaTeX. The systematic use of labels
should eventually eliminate problems with references to other points in the
text. In addition, the picture environment and graphicx package has allowed
the figures lost from the third edition to be reintroduced and a number of new
ones to be added.

(ii) Four sections of the old appendix have been combined with the first three
sections of Chapter 1 to make a new first chapter on measure theory, which
should allow the book to be used by people who do not have this background
without making the text tedious for those who have.

Acknowledgments. I am always grateful to the many people who sent me com-
ments and typos. Helping to correct the first edition were David Aldous, Ken
Alexander, Daren Cline, Ted Cox, Robert Dalang, Joe Glover, David Griffeath, Phil
Griffin, Joe Horowitz, Olav Kallenberg, Jim Kuelbs, Robin Pemantle, Yuval Peres,
Ken Ross, Steve Samuels, Byron Schmuland, Jon Wellner, and Ruth Williams.

The third edition benefited from input from Manel Baucells, Eric Blair, Zhen-
Qing Chen, Finn Christensen, Ted Cox, Bradford Crain, Winston Crandall, Amir
Dembo, Neil Falkner, Changyong Feng, Brighten Godfrey, Boris Granovsky, Jan
Hannig, Andrew Hayen, Martin Hildebrand, Kyoungmun Jang, Anatole Joffe,
Daniel Kifer, Steve Krone, Greg Lawler, T. Y. Lee, Shlomo Levental, Torgny Lind-
vall, Arif Mardin, Carl Mueller, Robin Pemantle, Yuval Peres, Mark Pinsky, Ross
Pinsky, Boris Pittel, David Pokorny, Vinayak Prabhu, Brett Presnell, Jim Propp,

ix
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Yossi Schwarzfuchs, Rami Shakarchi, Lian Shen, Marc Shivers, Rich Sowers, Bob
Strain, Tsachy Weissman, and Hao Zhang.

New helpers for the fourth edition include John Angus, Phillipe Charmony, Adam
Cruz, Ricky Der, Justin Dyer, Piet Groeneboom, Vlad Island, Elena Kosygina,
Richard Laugesen, Sungchul Lee, Shlomo Levental, Ping Li, Fredddy López, Lutz
Mattner, Piotr Milos, Davey Owen, Brett Presnell, Igal Sason, Alex Smith, Laurent
Tournier, Harsha Wabgaonkar, John Walsh, Tsachy Weissman, Neil Wu, Ofer
Zeitouni, Martin Zerner, and Andrei Zherebtsov. I apologize to those whose names
have been omitted or are new typos.

Family update. David graduated from Ithaca College in May 2009 with a degree
in print journalism, and like many of his peers is struggling to find work. Greg has
one semester to go at MIT and is applying to graduate schools in computer science.
He says he wants to do research in “machine learning,” so perhaps he can write a
program to find and correct the typos in my books.

After 25 years in Ithaca, we moved to Durham in June 2010 and I have taken a
position in the math department at Duke. Everyone seems to focus on the fact that
we are trading very cold winters for hotter summers and a much longer growing
season, but the real attraction is the excellent opportunities for interdisciplinary
research in the Research Triangle.

The more things change, the more they stay the same: inevitably there will be
typos in the new version. You can email me at rtd@math.duke.edu

Rick Durrett, July 2010



1

Measure Theory

In this chapter, we recall some definitions and results from measure theory. Our
purpose here is to provide an introduction for readers who have not seen these
concepts before and to review that material for those who have. Harder proofs,
especially those that do not contribute much to one’s intuition, are hidden away
in the Appendix. Readers with a solid background in measure theory can skip
Sections 1.4, 1.5, and 1.7, which were previously part of the Appendix.

1.1 Probability Spaces

Here and throughout the book, terms being defined are set in boldface. We begin
with the most basic quantity. A probability space is a triple (�,F, P ) where � is
a set of “outcomes,” F is a set of “events,” and P : F → [0, 1] is a function that
assigns probabilities to events. We assume that F is a σ -field (or σ -algebra), that
is, a (nonempty) collection of subsets of � that satisfy

(i) if A ∈ F then Ac ∈ F , and
(ii) if Ai ∈ F is a countable sequence of sets then ∪iAi ∈ F .

Here and in what follows, countable means finite or countably infinite. Since
∩iAi = (∪iA

c
i )

c, it follows that a σ -field is closed under countable intersections.
We omit the last property from the definition to make it easier to check.

Without P , (�,F) is called a measurable space, that is, it is a space on which
we can put a measure. A measure is a nonnegative countably additive set function;
that is, a function µ : F → R with

(i) µ(A) ≥ µ(∅) = 0 for all A ∈ F, and
(ii) if Ai ∈ F is a countable sequence of disjoint sets, then

µ(∪iAi) =
∑

i

µ(Ai)

If µ(�) = 1, we call µ a probability measure. In this book, probability mea-
sures are usually denoted by P .

1



2 Measure Theory

The next result gives some consequences of the definition of a measure that we
will need later. In all cases, we assume that the sets we mention are in F .

Theorem 1.1.1. Let µ be a measure on (�,F)
(i) Monotonicity. If A ⊂ B then µ(A) ≤ µ(B).

(ii) Subadditivity. If A ⊂ ∪∞
m=1Am then µ(A) ≤∑∞

m=1 µ(Am).
(iii) Continuity from below. If Ai ↑ A (i.e., A1 ⊂ A2 ⊂ . . . and ∪iAi = A) then

µ(Ai) ↑ µ(A).
(iv) Continuity from above. If Ai ↓ A (i.e., A1 ⊃ A2 ⊃ . . . and ∩iAi = A), with

µ(A1) < ∞ then µ(Ai) ↓ µ(A).

Proof.
(i) Let B − A = B ∩ Ac be the difference of the two sets. Using + to denote

disjoint union, B = A + (B − A) so

µ(B) = µ(A) + µ(B − A) ≥ µ(A).

(ii) Let A′
n = An ∩ A, B1 = A′

1 and for n > 1, Bn = A′
n − ∪n−1

m=1(A′
m)c. Since the

Bn are disjoint and have union A, we have, using (i) of the definition of
measure, Bm ⊂ Am, and (i) of this theorem,

µ(A) =
∞∑

m=1

µ(Bm) ≤
∞∑

m=1

µ(Am)

(iii) Let Bn = An − An−1. Then the Bn are disjoint and have ∪∞
m=1Bm = A,

∪n
m=1Bm = An so

µ(A) =
∞∑

m=1

µ(Bm) = lim
n→∞

n∑
m=1

µ(Bm) = lim
n→∞ µ(An)

(iv) A1 − An ↑ A1 − A so (iii) implies µ(A1 − An) ↑ µ(A1 − A). Since A1 ⊃ B,
we have µ(A1 − B) = µ(A1) − µ(B) and it follows that µ(An) ↓ µ(A). �

The simplest setting, which should be familiar from undergraduate probabi-
lity, is:

Example 1.1.1. Discrete probability spaces. Let � = a countable set, that is,
finite or countably infinite. Let F = the set of all subsets of �. Let

P (A) =
∑
ω∈A

p(ω) where p(ω) ≥ 0 and
∑
ω∈�

p(ω) = 1

A little thought reveals that this is the most general probability measure on this
space. In many cases when � is a finite set, we have p(ω) = 1/|�| where |�| =
the number of points in �.

For a simple concrete example that requires this level of generality, consider the
astragali, dice used in ancient Egypt made from the ankle bones of sheep. This die
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could come to rest on the top side of the bone for four points or on the bottom for
three points. The side of the bone was slightly rounded. The die could come to rest
on a flat and narrow piece for six points or somewhere on the rest of the side for
one point. There is no reason to think that all four outcomes are equally likely, so
we need probabilities p1, p3, p4, and p6 to describe P .

To prepare for our next definition, we need:

Exercise 1.1.1. (i) If Fi , i ∈ I are σ -fields, then ∩i∈IFi is. Here I �= ∅ is an
arbitrary index set (i.e., possibly uncountable). (ii) Use the result in (i) to show that
if we are given a set � and a collection A of subsets of �, then there is a smallest
σ -field containing A. We will call this the σ -field generated by A and denote it
by σ (A).

Let Rd be the set of vectors (x1, . . . xd) of real numbers and Rd be the Borel sets,
the smallest σ -field containing the open sets. When d = 1, we drop the superscript.

Example 1.1.2. Measures on the real line. Measures on (R,R) are defined by
giving probability a Stieltjes measure function with the following properties:
(i) F is nondecreasing.

(ii) F is right continuous, that is, limy↓x F (y) = F (x).

Theorem 1.1.2. Associated with each Stieltjes measure function F there is a unique
measure µ on (R,R) with µ(a, b]) = F (b) − F (a)

µ((a, b]) = F (b) − F (a) (1.1.1)

When F (x) = x the resulting measure is called Lebesgue measure.
The proof of Theorem 1.1.2 is a long and winding road, so we will content

ourselves with describing the main ideas involved in this section and hide the
remaining details in the Appendix in Section A.1. The choice of “closed on the
right” in (a, b] is dictated by the fact that if bn ↓ b then we have

∩n(a, bn] = (a, b]

The next definition will explain the choice of “open on the left.”
A collection S of sets is said to be a semialgebra if (i) it is closed under

intersection, that is, S, T ∈ S implies S ∩ T ∈ S, and (ii) if S ∈ S then Sc is a
finite disjoint union of sets in S. An important example of a semialgebra is:

Example 1.1.3. Sd = the empty set plus all sets of the form

(a1, b1] × · · · × (ad, bd] ⊂ Rd where − ∞ ≤ ai < bi ≤ ∞

The definition in (1.1.1) gives the values of µ on the semialgebra S1. To go from
semialgebra to σ -algebra we use an intermediate step. A collection A of subsets
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of � is called an algebra (or field) if A,B ∈ A implies Ac and A ∪ B are in A.
Since A ∩ B = (Ac ∪ Bc)c, it follows that A ∩ B ∈ A. Obviously a σ -algebra is
an algebra. An example in which the converse is false is:

Example 1.1.4. Let � = Z = the integers. A = the collection of A ⊂ Z so that A

or Ac is finite is an algebra.

Lemma 1.1.3. If S is a semialgebra, then S̄ = {finite disjoint unions of sets in S}
is an algebra, called the algebra generated by S.

Proof. Suppose A = +iSi and B = +jTj , where + denotes disjoint union and
we assume the index sets are finite. Then A ∩ B = +i,j Si ∩ Tj ∈ S̄. As for com-
plements, if A = +iSi then Ac = ∩iS

c
i . The definition of S implies Sc

i ∈ S̄. We
have shown that S̄ is closed under intersection, so it follows by induction that
Ac ∈ S̄. �

Example 1.1.5. Let � = R and S = S1. Then S̄1 = the empty set plus all sets of
the form

∪k
i=1(ai, bi] where − ∞ ≤ ai < bi ≤ ∞

Given a set function µ on S, we can extend it to S̄ by

µ
(+n

i=1Ai

) =
n∑

i=1

µ(Ai)

By a measure on an algebra A, we mean a set function µ with

(i) µ(A) ≥ µ(∅) = 0 for all A ∈ A, and
(ii) if Ai ∈ A are disjoint and their union is in A, then

µ
(∪∞

i=1Ai

) =
∞∑
i=1

µ(Ai)

µ is said to be σ -finite if there is a sequence of sets An ∈ A so that µ(An) < ∞
and ∪nAn = �. Letting A′

1 = A1 and for n ≥ 2,

A′
n = ∪n

m=1Am or A′
n = An ∩ (∩n−1

m=1A
c
m

) ∈ A

we can without loss of generality assume that An ↑ � or the An are disjoint.
The next result helps us to extend a measure defined on a semialgebra S to the

σ -algebra it generates, σ (S)

Theorem 1.1.4. Let S be a semialgebra and let µ defined on S have µ(∅) = 0.
Suppose (i) if S ∈ S is a finite disjoint union of sets Si ∈ S then µ(S) =∑i µ(Si),
and (ii) if Si, S ∈ S with S = +i≥1Si then µ(S) ≤∑i≥1 µ(Si). Then µ has a unique
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extension µ̄ that is a measure on S̄ the algebra generated by S. If µ̄ is sigma-finite
then there is a unique extension ν that is a measure on σ (S).

In (ii) above, and in what follows, i ≥ 1 indicates a countable union, while a plain
subscript i or j indicates a finite union. The proof of Theorems 1.1.4 is rather
involved, so it is given in Section A.1. To check condition (ii) in the theorem, the
following is useful.

Lemma 1.1.5. Suppose only that (i) holds.
(a) If A,Bi ∈ S̄ with A = +n

i=1Bi then µ̄(A) =∑i µ̄(Bi).
(b) If A,Bi ∈ S̄ with A ⊂ ∪n

i=1Bi then µ̄(A) ≤∑i µ̄(Bi).

Proof. Observe that it follows from the definition that if A = +iBi is a finite
disjoint union of sets in S̄ and Bi = +jSi,j , then

µ̄(A) =
∑
i,j

µ(Si,j ) =
∑

i

µ̄(Bi)

To prove (b), we begin with the case n = 1, B1 = B. B = A + (B ∩ Ac) and
B ∩ Ac ∈ S̄ , so

µ̄(A) ≤ µ̄(A) + µ̄(B ∩ Ac) = µ̄(B)

To handle n > 1 now, let Fk = Bc
1 ∩ · · · ∩ Bc

k−1 ∩ Bk and note

∪iBi = F1 + · · · + Fn

A = A ∩ (∪iBi) = (A ∩ F1) + · · · + (A ∩ Fn)

so using (a), (b) with n = 1, and (a) again

µ̄(A) =
n∑

k=1

µ̄(A ∩ Fk) ≤
n∑

k=1

µ̄(Fk) = µ̄ (∪iBi) �

Proof of Theorem 1.1.2. Let S be the semialgebra of half-open intervals (a, b]
with −∞ ≤ a < b ≤ ∞. To define µ on S, we begin by observing that

F (∞) = lim
x↑∞

F (x) and F (−∞) = lim
x↓−∞

F (x) exist

and µ((a, b]) = F (b) − F (a) makes sense for all −∞ ≤ a < b ≤ ∞ since
F (∞) > −∞ and F (−∞) < ∞.

If (a, b] = +n
i=1(ai, bi] then after relabeling the intervals we must have a1 = a,

bn = b, and ai = bi−1 for 2 ≤ i ≤ n, so condition (i) in Theorem 1.1.4 holds. To
check (ii), suppose first that −∞ < a < b < ∞, and (a, b] ⊂ ∪i≥1(ai, bi] where
(without loss of generality) −∞ < ai < bi < ∞. Pick δ > 0 so that F (a + δ) <

F (a) + ε and pick ηi so that

F (bi + ηi) < F (bi) + ε2−i
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The open intervals (ai, bi + ηi) cover [a + δ, b], so there is a finite subcover
(αj , βj ), 1 ≤ j ≤ J . Since (a + δ, b] ⊂ ∪J

j=1(αj , βj ], (b) in Lemma 1.1.5 implies

F (b) − F (a + δ) ≤
J∑

j=1

F (βj ) − F (αj ) ≤
∞∑
i=1

(F (bi + ηi) − F (ai))

So, by the choice of δ and ηi ,

F (b) − F (a) ≤ 2ε +
∞∑
i=1

(F (bi) − F (ai))

and since ε is arbitrary, we have proved the result in the case −∞ < a < b < ∞. To
remove the last restriction, observe that if (a, b] ⊂ ∪i(ai, bi] and (A,B] ⊂ (a, b]
has −∞ < A < B < ∞, then we have

F (B) − F (A) ≤
∞∑
i=1

(F (bi) − F (ai))

Since the last result holds for any finite (A,B] ⊂ (a, b], the desired result
follows. �

Measures on Rd

Our next goal is to prove a version of Theorem 1.1.2 for Rd . The first step is to
introduce the assumptions on the defining function F . By analogy with the case
d = 1 it is natural to assume:

(i) It is nondecreasing, that is, if x ≤ y (meaning xi ≤ yi for all i), then F (x) ≤
F (y).

(ii) F is right continuous, that is, limy↓x F (y) = F (x) (here y ↓ x means each
yi ↓ xi).

However this time it is not enough. Consider the following F :

F (x1, x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if x1, x2 ≥ 1

2/3 if x1 ≥ 1 and 0 ≤ x2 < 1

2/3 if x2 ≥ 1 and 0 ≤ x2 < 1

0 otherwise

See Figure 1.1 for a picture. A little thought shows that

µ((a1, b1] × (a2, b2]) = µ((−∞, b1] × (−∞, b2]) − µ((−∞, a1] × (−∞, b2])

− µ((−∞, b1] × (−∞, a2]) + µ((−∞, a1] × (−∞, a2])

= F (b1, b2) − F (a1, b2) − F (b1, a2) + F (a1, a2)

Using this with a1 = a2 = 1 − ε and b1 = b2 = 1 and letting ε → 0, we see that

µ({1, 1}) = 1 − 2/3 − 2/3 + 0 = −1/3
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2/3
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0

0

0

0

0

Figure 1.1. Picture of the counterexample.

Similar reasoning shows that µ({1, 0}) = µ({0, 1} = 2/3.
To formulate the third and final condition for F to define a measure, let

A = (a1, b1] × · · · × (ad, bd]

V = {a1, b1} × · · · × {ad, bd}
where −∞ < ai < bi < ∞. To emphasize that ∞’s are not allowed, we will call
A a finite rectangle. Then V = the vertices of the rectangle A. If v ∈ V , let

sgn (v) = (−1)# of a’s in v


AF =
∑
v∈V

sgn (v)F (v)

We will let µ(A) = 
AF , so we must assume

(iii) 
AF ≥ 0 for all rectangles A.

Theorem 1.1.6. Suppose F : Rd → [0, 1] satisfies (i)–(iii) given above. Then there
is a unique probability measure µ on (Rd,Rd) so that µ(A) = 
AF for all finite
rectangles.

Example 1.1.6. Suppose F (x) =∏d
i=1 Fi(x), where the Fi satisfy (i) and (ii) of

Theorem 1.1.2. In this case,


AF =
d∏

i=1

(Fi(bi) − Fi(ai))

When Fi(x) = x for all i, the resulting measure is Lebesgue measure on Rd .

Proof. We let µ(A) = 
AF for all finite rectangles and then use monotonicity
to extend the definition to Sd . To check (i) of Theorem 1.1.4, call A = +kBk a
regular subdivision of A if there are sequences ai = αi,0 < αi,1 . . . < αi,ni

= bi

so that each rectangle Bk has the form

(α1,j1−1, α1,j1 ] × · · · × (αd,jd−1, αd,jd
] where 1 ≤ ji ≤ ni
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Figure 1.2. Conversion of a subdivision to a regular one.

It is easy to see that for regular subdivisions λ(A) =∑k λ(Bk). (First consider the
case in which all the endpoints are finite, and then take limits to get the general
case.) To extend this result to a general finite subdivision A = +jAj , subdivide
further to get a regular one see Figure 1.2.

The proof of (ii) is almost identical to that in Theorem 1.1.2. To make things
easier to write and to bring out the analogies with Theorem 1.1.2, we let

(x, y) = (x1, y1) × · · · × (xd, yd)

(x, y] = (x1, y1] × · · · × (xd, yd]

[x, y] = [x1, y1] × · · · × [xd, yd]

for x, y ∈ Rd . Suppose first that −∞ < a < b < ∞, where the inequalities mean
that each component is finite, and suppose (a, b] ⊂ ∪i≥1(ai, bi], where (without
loss of generality) −∞ < ai < bi < ∞. Let 1̄ = (1, . . . , 1), pick δ > 0 so that

µ((a + δ1̄, b]) < µ((a, b]) + ε

and pick ηi so that

µ((a, bi + ηi 1̄]) < µ((ai, bi]) + ε2−i

The open rectangles (ai, bi + ηi 1̄) cover [a + δ1̄, b], so there is a finite subcover
(αj , βj ), 1 ≤ j ≤ J . Since (a + δ1̄, b] ⊂ ∪J

j=1(αj , βj ], (b) in Lemma 1.1.5 implies

µ([a + δ1̄, b]) ≤
J∑

j=1

µ((αj , βj ]) ≤
∞∑
i=1

µ((ai, bi + ηi 1̄])

So, by the choice of δ and ηi ,

µ((a, b]) ≤ 2ε +
∞∑
i=1

µ((ai, bi])

and since ε is arbitrary, we have proved the result in the case −∞ < a < b < ∞.
The proof can now be completed exactly as before. �
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Exercises

1.1.2. Let � = R, F = all subsets so that A or Ac is countable, P (A) = 0 in the
first case and = 1 in the second. Show that (�,F, P ) is a probability space.

1.1.3. Recall the definition of Sd from Example 1.1.3. Show that σ (Sd) = Rd , the
Borel subsets of Rd .

1.1.4. A σ -field F is said to be countably generated if there is a countable
collection C ⊂ F so that σ (C) = F . Show that Rd is countably generated.

1.1.5. (i) Show that if F1 ⊂ F2 ⊂ . . . are σ -algebras, then ∪iFi is an algebra. (ii)
Give an example to show that ∪iFi need not be a σ -algebra.

1.1.6. A set A ⊂ {1, 2, . . .} is said to have asymptotic density θ if

lim
n→∞ |A ∩ {1, 2, . . . , n}|/n = θ

Let A be the collection of sets for which the asymptotic density exists. Is A a
σ -algebra? an algebra?

1.2 Distributions

Probability spaces become a little more interesting when we define random vari-
ables on them. A real-valued function X defined on � is said to be a random
variable if for every Borel set B ⊂ R we have X−1(B) = {ω : X(ω) ∈ B} ∈ F .
When we need to emphasize the σ -field, we will say that X is F-measurable or
write X ∈ F . If � is a discrete probability space (see Example 1.1.1), then any
function X : � → R is a random variable. A second trivial, but useful, type of
example of a random variable is the indicator function of a set A ∈ F :

1A(ω) =
{

1 ω ∈ A

0 ω �∈ A

The notation is supposed to remind you that this function is 1 on A. Analysts call
this object the characteristic function of A. In probability, that term is used for
something quite different. (See Section 3.3.)

If X is a random variable, then X induces a probability measure on R called
its distribution by setting µ(A) = P (X ∈ A) for Borel sets A. Using the notation
introduced above, the right-hand side can be written as P (X−1(A)). In words, we
pull A ∈ R back to X−1(A) ∈ F and then take P of that set.

To check that µ is a probability measure we observe that if the Ai are disjoint,
then using the definition of µ; the fact that X lands in the union if and only if it
lands in one of the Ai ; the fact that if the sets Ai ∈ R are disjoint then the events
{X ∈ Ai} are disjoint; and the definition of µ again, we have:

µ (∪iAi) = P (X ∈ ∪iAi) = P (∪i{X ∈ Ai}) =
∑

i

P (X ∈ Ai) =
∑

i

µ(Ai)
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X� A
X−1(A)

�
�

�

(�,F, P ) (R,R) µ = P ◦ X−1

Figure 1.3. Definition of the distribution of X.

The distribution of a random variable X is usually described by giving its
distribution function, F (x) = P (X ≤ x).

Theorem 1.2.1. Any distribution function F has the following properties:
(i) F is nondecreasing.

(ii) limx→∞ F (x) = 1, limx→−∞ F (x) = 0.
(iii) F is right continuous, that is, limy↓x F (y) = F (x).
(iv) If F (x−) = limy↑x F (y) then F (x−) = P (X < x).
(v) P (X = x) = F (x) − F (x−).

Proof. To prove (i), note that if x ≤ y then {X ≤ x} ⊂ {X ≤ y}, and then use (i)
in Theorem 1.1.1 to conclude that P (X ≤ x) ≤ P (X ≤ y).

To prove (ii), we observe that if x ↑ ∞, then {X ≤ x} ↑ �, while if x ↓ −∞, then
{X ≤ x} ↓ ∅, and then use (iii) and (iv) of Theorem 1.1.1.

To prove (iii), we observe that if y ↓ x, then {X ≤ y} ↓ {X ≤ x}.
To prove (iv), we observe that if y ↑ x, then {X ≤ y} ↑ {X < x}.
For (v), note P (X = x) = P (X ≤ x) − P (X < x) and use (iii) and (iv). �

The next result shows that we have found more than enough properties to char-
acterize distribution functions.

Theorem 1.2.2. If F satisfies (i), (ii), and (iii) in Theroem 1.2.1, then it is the
distribution function of some random variable.

Proof. Let � = (0, 1),F = the Borel sets, and P = Lebesgue measure. If ω ∈ (0, 1),
let

X(ω) = sup{y : F (y) < ω}
Once we show that

(∗) {ω : X(ω) ≤ x} = {ω : ω ≤ F (x)}
the desired result follows immediately since P (ω : ω ≤ F (x)) = F (x). (Recall P

is Lebesgue measure.) To check (
), we observe that if ω ≤ F (x) then X(ω) ≤ x,
since x /∈ {y : F (y) < ω}. On the other hand if ω > F (x), then since F is right
continuous, there is an ε > 0 so that F (x + ε) < ω and X(ω) ≥ x + ε > x. �
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x

F−1(x)

y

F−1(y)

���
���� �

Figure 1.4. Picture of the inverse defined in the proof of Theorem 1.2.2.

Even though F may not be 1-1 and onto, we will call X the inverse of F and
denote it by F−1. The scheme in the proof of Theorem 1.2.2 is useful in generating
random variables on a computer. Standard algorithms generate random variables
U with a uniform distribution; then one applies the inverse of the distribution func-
tion defined in Theorem 1.2.2 to get a random variable F−1(U ) with distribution
function F .

If X and Y induce the same distribution µ on (R,R), we say X and Y are equal
in distribution. In view of Theorem 1.1.2, this holds if and only if X and Y have
the same distribution function, that is, P (X ≤ x) = P (Y ≤ x) for all x. When X

and Y have the same distribution, we like to write

X
d= Y

but this is too tall to use in text, so for typographical reasons we will also use
X =d Y .

When the distribution function F (x) = P (X ≤ x) has the form

F (x) =
∫ x

−∞
f (y) dy (1.2.1)

we say that X has density function f . In remembering formulas, it is often useful
to think of f (x) as being P (X = x) although

P (X = x) = lim
ε→0

∫ x+ε

x−ε

f (y) dy = 0

By popular demand we have ceased our previous practice of writing P (X = x)
for the density function. Instead we will use things like the lovely and informative
fX(x).

We can start with f and use (1.2.1) to define a distribution function F . In order
to end up with a distribution function it is necessary and sufficient that f (x) ≥ 0
and
∫

f (x) dx = 1. Three examples that will be important in what follows are:

Example 1.2.1. Uniform distribution on (0,1). f (x) = 1 for x ∈ (0, 1) and 0
otherwise. Distribution function:

F (x) =

⎧⎪⎨
⎪⎩

0 x ≤ 0

x 0 ≤ x ≤ 1

1 x > 1
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Example 1.2.2. Exponential distribution with rate λ. f (x) = λe−λx for x ≥ 0
and 0 otherwise. Distribution function:

F (x) =
{

0 x ≤ 0

1 − e−x x ≥ 0

Example 1.2.3. Standard normal distribution.

f (x) = (2π )−1/2 exp(−x2/2)

In this case, there is no closed-form expression for F (x), but we have the following
bounds that are useful for large x:

Theorem 1.2.3. For x > 0,

(x−1 − x−3) exp(−x2/2) ≤
∫ ∞

x

exp(−y2/2)dy ≤ x−1 exp(−x2/2)

Proof. Changing variables y = x + z and using exp(−z2/2) ≤ 1 gives∫ ∞

x

exp(−y2/2) dy ≤ exp(−x2/2)
∫ ∞

0
exp(−xz) dz = x−1 exp(−x2/2)

For the other direction, we observe∫ ∞

x

(1 − 3y−4) exp(−y2/2) dy = (x−1 − x−3) exp(−x2/2) �

A distribution function on R is said to be absolutely continuous if it has a density
and singular if the corresponding measure is singular w.r.t. Lebesgue measure. See
Section A.4 for more on these notions. An example of a singular distribution is:

Example 1.2.4. Uniform distribution on the Cantor set. The Cantor set C is
defined by removing (1/3, 2/3) from [0,1] and then removing the middle third
of each interval that remains. We define an associated distribution function by
setting F (x) = 0 for x ≤ 0, F (x) = 1 for x ≥ 1, F (x) = 1/2 for x ∈ [1/3, 2/3],
F (x) = 1/4 for x ∈ [1/9, 2/9], F (x) = 3/4 for x ∈ [7/9, 8/9], . . . There is no f

for which (1.2.1) holds because such an f would be equal to 0 on a set of measure 1.
From the definition, it is immediate that the corresponding measure has µ(Cc) = 0.

A probability measure P (or its associated distribution function) is said to be
discrete if there is a countable set S with P (Sc) = 0. The simplest example of a
discrete distribution is

Example 1.2.5. Point mass at 0. F (x) = 1 for x ≥ 0, F (x) = 0 for x < 0.
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Figure 1.5. Cantor distribution function.

In Section 1.6, we will see the Bernoulli, Poisson, and geometric distributions.
The next example shows that the distribution function associated with a discrete
probability measure can be quite wild.

Example 1.2.6. Dense discontinuities. Let q1, q2, . . . be an enumeration of the
rationals. Let αi > 0 have

∑∞
i=1 α1 = 1 and let

F (x) =
∞∑
i=1

αi1[qi ,∞)

where 1[θ,∞)(x) = 1 if x ∈ [θ,∞) = 0 otherwise.

Exercises

1.2.1. Suppose X and Y are random variables on (�,F, P ) and let A ∈ F . Show
that if we let Z(ω) = X(ω) for ω ∈ A and Z(ω) = Y (ω) for ω ∈ Ac, then Z is a
random variable.

1.2.2. Let χ have the standard normal distribution. Use Theorem 1.2.3 to get upper
and lower bounds on P (χ ≥ 4).

1.2.3. Show that a distribution function has at most countably many discontinuities.

1.2.4. Show that if F (x) = P (X ≤ x) is continuous then Y = F (X) has a uniform
distribution on (0,1), that is, if y ∈ [0, 1], P (Y ≤ y) = y.

1.2.5. Suppose X has continuous density f , P (α ≤ X ≤ β) = 1 and g is a function
that is strictly increasing and differentiable on (α, β). Then g(X) has density
f (g−1(y))/g′(g−1(y)) for y ∈ (g(α), g(β)) and 0 otherwise. When g(x) = ax + b

with a > 0, g−1(y) = (y − b)/a, so the answer is (1/a)f ((y − b)/a).

1.2.6. Suppose X has a normal distribution. Use the previous exercise to compute
the density of exp(X). (The answer is called the lognormal distribution.)

1.2.7. (i) Suppose X has density function f . Compute the distribution function
of X2 and then differentiate to find its density function. (ii) Work out the answer
when X has a standard normal distribution to find the density of the chi-square
distribution.
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1.3 Random Variables

In this section, we will develop some results that will help us later to prove that
quantities we define are random variables, that is, they are measurable. Since most
of what we have to say is true for random elements of an arbitrary measurable
space (S,S) and the proofs are the same (sometimes easier), we will develop our
results in that generality. First we need a definition. A function X : � → S is said
to be a measurable map from (�,F) to (S,S) if

X−1(B) ≡ {ω : X(ω) ∈ B} ∈ F for all B ∈ S

If (S,S) = (Rd,Rd) and d > 1, then X is called a random vector. Of course, if
d = 1, X is called a random variable, or r.v. for short.

The next result is useful for proving that maps are measurable.

Theorem 1.3.1. If {ω : X(ω) ∈ A} ∈ F for all A ∈ A and A generates S (i.e., S
is the smallest σ -field that contains A), then X is measurable.

Proof. Writing {X ∈ B} as shorthand for {ω : X(ω) ∈ B}, we have

{X ∈ ∪iBi} = ∪i{X ∈ Bi}
{X ∈ Bc} = {X ∈ B}c

So the class of sets B = {B : {X ∈ B} ∈ F} is a σ -field. Since B ⊃ A and A
generates S, B ⊃ S. �

It follows from the two equations displayed in the previous proof that if S is a
σ -field, then {{X ∈ B} : B ∈ S} is a σ -field. It is the smallest σ -field on � that
makes X a measurable map. It is called the σ -field generated by X and denoted
σ (X). For future reference we note that

σ (X) = {{X ∈ B} : B ∈ S} (1.3.1)

Example 1.3.1. If (S,S) = (R,R), then possible choices of A in Theorem 1.3.1
are {(−∞, x] : x ∈ R} or {(−∞, x) : x ∈ Q} where Q = the rationals.

Example 1.3.2. If (S,S) = (Rd,Rd), a useful choice of A is

{(a1, b1) × · · · × (ad, bd) : −∞ < ai < bi < ∞}
or occasionally the larger collection of open sets.

Theorem 1.3.2. If X : (�,F) → (S,S) and f : (S,S) → (T , T ) are measurable
maps, then f (X) is a measurable map from (�,F) to (T , T )

Proof. Let B ∈ T . {ω : f (X(ω)) ∈ B} = {ω : X(ω) ∈ f −1(B)} ∈ F , since by
assumption f −1(B) ∈ S. �
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From Theorem 1.3.2, it follows immediately that if X is a random variable then
so is cX for all c ∈ R, X2, sin(X), and so on. The next result shows why we wanted
to prove Theorem 1.3.2 for measurable maps.

Theorem 1.3.3. If X1, . . . Xn are random variables and f : (Rn,Rn) → (R,R)
is measurable, then f (X1, . . . , Xn) is a random variable.

Proof. In view of Theorem 1.3.2, it suffices to show that (X1, . . . , Xn) is a random
vector. To do this, we observe that if A1, . . . , An are Borel sets then

{(X1, . . . , Xn) ∈ A1 × · · · × An} = ∩i{Xi ∈ Ai} ∈ F

Since sets of the form A1 × · · · × An generate Rn, the desired result follows from
Theorem 1.3.1. �

Theorem 1.3.4. If X1, . . . , Xn are random variables then X1 + · · · + Xn is a
random variable.

Proof. In view of Theorem 1.3.3, it suffices to show that f (x1, . . . , xn) =
x1 + · · · + xn is measurable. To do this, we use Example 1.3.1 and note that
{x : x1 + · · · + xn < a} is an open set and hence is in Rn. �

Theorem 1.3.5. If X1, X2, . . . are random variables then so are

inf
n

Xn sup
n

Xn lim sup
n

Xn lim inf
n

Xn

Proof. Since the infimum of a sequence is < a if and only if some term is < a (if
all terms are ≥ a, then so is the infimum), we have

{inf
n

Xn < a} = ∪n{Xn < a} ∈ F

A similar argument shows {supn Xn > a} = ∪n{Xn > a} ∈ F . For the last two, we
observe

lim inf
n→∞ Xn = sup

n

(
inf
m≥n

Xm

)

lim sup
n→∞

Xn = inf
n

(
sup
m≥n

Xm

)

To complete the proof in the first case, note that Yn = infm≥n Xm is a random
variable for each n, so supn Yn is as well. �

From Theorem 1.3.5, we see that

�o ≡ {ω : lim
n→∞ Xn exists } = {ω : lim sup

n→∞
Xn − lim inf

n→∞ Xn = 0}
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is a measurable set. (Here ≡ indicates that the first equality is a definition.) If
P (�o) = 1, we say that Xn converges almost surely, or a.s. for short. This type of
convergence is called almost everywhere in measure theory. To have a limit defined
on the whole space, it is convenient to let

X∞ = lim sup
n→∞

Xn

but this random variable may take the value +∞ or −∞. To accommodate this
and some other headaches, we will generalize the definition of random variable.

A function whose domain is a set D ∈ F and whose range is R∗ ≡ [−∞,∞] is
said to be a random variable if for all B ∈ R∗ we have X−1(B) = {ω : X(ω) ∈
B} ∈ F . Here R∗ = the Borel subsets of R∗ with R∗ given the usual topology,
that is, the one generated by intervals of the form [−∞, a), (a, b) and (b, ∞]
where a, b ∈ R. The reader should note that the extended real line (R∗,R∗) is a
measurable space, so all the results above generalize immediately.

Exercises

1.3.1. Show that if A generates S, then X−1(A) ≡ {{X ∈ A} : A ∈ A} generates
σ (X) = {{X ∈ B} : B ∈ S}.
1.3.2. Prove Theorem 1.3.4 when n = 2 by checking {X1 + X2 < x} ∈ F .

1.3.3. Show that if f is continuous and Xn → X almost surely, then f (Xn) →
f (X) almost surely.

1.3.4. (i) Show that a continuous function from Rd → R is a measurable map from
(Rd,Rd) to (R,R). (ii) Show that Rd is the smallest σ -field that makes all the
continuous functions measurable.

1.3.5. A function f is said to be lower semicontinuous or l.s.c. if

lim inf
y→x

f (y) ≥ f (x)

and upper semicontinuous (u.s.c.) if −f is l.s.c. Show that f is l.s.c. if and
only if {x : f (x) ≤ a} is closed for each a ∈ R and conclude that semicontinuous
functions are measurable.

1.3.6. Let f : Rd → R be an arbitrary function and let f δ(x) = sup{f (y) : |y −
x| < δ} and fδ(x) = inf{f (y) : |y − x| < δ} where |z| = (z2

1 + · · · + z2
d)1/2. Show

that f δ is l.s.c. and fδ is u.s.c. Let f 0 = limδ↓0 f δ, f0 = limδ↓0 fδ, and conclude
that the set of points at which f is discontinuous = {f 0 �= f0} is measurable.

1.3.7. A function ϕ : � → R is said to be simple if

ϕ(ω) =
n∑

m=1

cm1Am
(ω)
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where the cm are real numbers and Am ∈ F . Show that the class of F measurable
functions is the smallest class containing the simple functions and closed under
pointwise limits.

1.3.8. Use the previous exercise to conclude that Y is measurable with respect to
σ (X) if and only if Y = f (X) where f : R → R is measurable.

1.3.9. To get a constructive proof of the last result, note that {ω : m2−n ≤ Y <

(m + 1)2−n} = {X ∈ Bm,n} for some Bm,n ∈ R and set fn(x) = m2−n for x ∈ Bm,n

and show that as n → ∞ fn(x) → f (x) and Y = f (X).

1.4 Integration

Let µ be a σ -finite measure on (�,F). We will be primarily interested in the
special case µ is a probability measure, but we will sometimes need to integrate
with respect to infinite measure, and and it is no harder to develop the results in
general.

In this section we will define
∫

f dµ for a class of measurable functions. This
is a four-step procedure:

1. Simple functions
2. Bounded functions
3. Nonnegative functions
4. General functions

This sequence of four steps is also useful in proving integration formulas. See, for
example, the proofs of Theorems 1.6.9 and 1.7.2.

Step 1. ϕ is said to be a simple function if ϕ(ω) =∑n
i=1 ai1Ai

and Ai are disjoint
sets with µ(Ai) < ∞. If ϕ is a simple function, we let

∫
ϕ dµ =

n∑
i=1

aiµ(Ai)

The representation of ϕ is not unique since we have not supposed that the ai

are distinct. However, it is easy to see that the last definition does not contradict
itself.

We will prove the next three conclusions four times, but before we can state
them for the first time, we need a definition. ϕ ≥ ψ µ-almost everywhere (or
ϕ ≥ ψ µ-a.e.) means µ({ω : ϕ(ω) < ψ(ω)}) = 0. When there is no doubt about
what measure we are referring to, we drop the µ.

Lemma 1.4.1. Let ϕ and ψ be simple functions.
(i) If ϕ ≥ 0 a.e. then

∫
ϕ dµ ≥ 0.

(ii) For any a ∈ R,
∫

aϕ dµ = a
∫

ϕ dµ.

(iii)
∫

ϕ + ψ dµ = ∫ ϕ dµ + ∫ ψ dµ.
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Proof. (i) and (ii) are immediate consequences of the definition. To prove (iii),
suppose

ϕ =
m∑

i=1

ai1Ai
and ψ =

n∑
j=1

bj 1Bj

To make the supports of the two functions the same, we let A0 = ∪iBi − ∪iAi , let
B0 = ∪iAi − ∪iBi , and let a0 = b0 = 0. Now

ϕ + ψ =
m∑

i=0

n∑
j=0

(ai + bj )1(Ai∩Bj )

and the Ai ∩ Bj are pairwise disjoint, so∫
(ϕ + ψ) dµ =

m∑
i=0

n∑
j=0

(ai + bj )µ(Ai ∩ Bj )

=
m∑

i=0

n∑
j=0

aiµ(Ai ∩ Bj ) +
n∑

j=0

m∑
i=0

bjµ(Ai ∩ Bj )

=
m∑

i=0

ai µ(Ai) +
n∑

j=0

bj µ(Bj ) =
∫

ϕ dµ +
∫

ψ dµ

In the next-to-last step, we used Ai = +j (Ai ∩ Bj ) and Bj = +i(Ai ∩ Bj ),
where + denotes a disjoint union. �

We will prove (i)–(iii) three more times as we generalize our integral. As a
consequence of (i)–(iii), we get three more useful properties. To keep from repeating
their proofs, which do not change, we will prove:

Lemma 1.4.2. If (i) and (iii) hold then we have:
(iv) If ϕ ≤ ψ a.e. then

∫
ϕ dµ ≤ ∫ ψ dµ.

(v) If ϕ = ψ a.e. then
∫

ϕ dµ = ∫ ψ dµ.

If, in addition, (ii) holds when a = −1 we have
(vi) | ∫ φ dµ| ≤ ∫ |φ| dµ

Proof. By (iii),
∫

ψ dµ = ∫ φ dµ + ∫ (ψ − φ) dµ and the second integral is ≥ 0
by (i), so (iv) holds. ϕ = ψ a.e. implies ϕ ≤ ψ a.e. and ψ ≤ ϕ a.e, so (v) follows
from two applications of (iv). To prove (vi) now, notice that φ ≤ |φ|, so (iv) implies∫

φ dµ ≤ ∫ |φ| dµ. −φ ≤ |φ|, so (iv) and (ii) imply − ∫ φ dµ ≤ ∫ |φ| dµ. Since
|y| = max(y, −y), the result follows. �

Step 2. Let E be a set with µ(E) < ∞ and let f be a bounded function that
vanishes on Ec. To define the integral of f , we observe that if ϕ, ψ are simple
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functions that have ϕ ≤ f ≤ ψ , then we want to have∫
ϕ dµ ≤

∫
f dµ ≤

∫
ψ dµ

so we let ∫
f dµ = sup

φ≤f

∫
ϕ dµ = inf

ψ≥f

∫
ψ dµ (1.4.1)

Here and for the rest of Step 2, we assume that ϕ and ψ vanish on Ec. To justify
the definition, we have to prove that the sup and inf are equal. It follows from (iv)
in Lemma 1.4.2 that

sup
φ≤f

∫
ϕ dµ ≤ inf

ψ≥f

∫
ψ dµ

To prove the other inequality, suppose |f | ≤ M and let

Ek =
{
x ∈ E :

kM

n
≥ f (x) >

(k − 1)M

n

}
for − n ≤ k ≤ n

ψn(x) =
n∑

k=−n

kM

n
1Ek

ϕn(x) =
n∑

k=−n

(k − 1)M

n
1Ek

By definition, ψn(x) − ϕn(x) = (M/n)1E , so∫
ψn(x) − ϕn(x) dµ = M

n
µ(E)

Since ϕn(x) ≤ f (x) ≤ ψn(x), it follows from (iii) in Lemma 1.4.1 that

sup
φ≤f

∫
ϕ dµ ≥

∫
ϕn dµ = −M

n
µ(E) +

∫
ψn dµ

≥ −M

n
µ(E) + inf

ψ≥f

∫
ψ dµ

The last inequality holds for all n, so the proof is complete. �

Lemma 1.4.3. Let E be a set with µ(E) < ∞. If f and g are bounded functions
that vanish on Ec then:

(i) If f ≥ 0 a.e. then
∫

f dµ ≥ 0.

(ii) For any a ∈ R,
∫

af dµ = a
∫

f dµ.

(iii)
∫

f + g dµ = ∫ f dµ + ∫ g dµ.

(iv) If g ≤ f a.e. then
∫

g dµ ≤ ∫ f dµ.
(v) If g = f a.e. then

∫
g dµ = ∫ f dµ.

(vi) | ∫ f dµ| ≤ ∫ |f | dµ.
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Proof. Since we can take φ ≡ 0, (i) is clear from the definition. To prove (ii), we
observe that if a > 0, then aϕ ≤ af if and only if ϕ ≤ f , so∫

af dµ = sup
φ≤f

∫
aϕ dµ = sup

φ≤f

a

∫
ϕ dµ = a sup

φ≤f

∫
ϕ dµ = a

∫
f dµ

For a < 0, we observe that aϕ ≤ af if and only if ϕ ≥ f , so∫
af dµ = sup

φ≥f

∫
aϕ dµ = sup

φ≥f

a

∫
ϕ dµ = a inf

φ≥f

∫
ϕ dµ = a

∫
f dµ

To prove (iii), we observe that if ψ1 ≥ f and ψ2 ≥ g, then ψ1 + ψ2 ≥ f + g, so

inf
ψ≥f +g

∫
ψ dµ ≤ inf

ψ1≥f,ψ2≥g

∫
ψ1 + ψ2 dµ

Using linearity for simple functions, it follows that∫
f + g dµ = inf

ψ≥f +g

∫
ψ dµ

≤ inf
ψ1≥f,ψ2≥g

∫
ψ1 dµ +

∫
ψ2 dµ =

∫
f dµ +

∫
g dµ

To prove the other inequality, observe that the last conclusion applied to −f

and −g and (ii) imply

−
∫

f + g dµ ≤ −
∫

f dµ −
∫

g dµ

(iv)–(vi) follow from (i)–(iii) by Lemma 1.4.2. �

Notation. We define the integral of f over the set E:∫
E

f dµ ≡
∫

f · 1E dµ

Step 3. If f ≥ 0, then we let∫
f dµ = sup

{∫
h dµ : 0 ≤ h ≤ f, h is bounded and µ({x : h(x) > 0}) < ∞

}

The last definition is nice since it is clear that this is well defined. The next result
will help us compute the value of the integral.

Lemma 1.4.4. Let En ↑ � have µ(En) < ∞ and let a ∧ b = min(a, b). Then∫
En

f ∧ n dµ ↑
∫

f dµ as n ↑ ∞

Proof. It is clear that from (iv) in Lemma 1.4.3 that the left-hand side increases as n

does. Since h = (f ∧ n)1En
is a possibility in the sup, each term is smaller than the
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integral on the right. To prove that the limit is
∫

f dµ, observe that if 0 ≤ h ≤ f ,
h ≤ M , and µ({x : h(x) > 0}) < ∞, then for n ≥ M using h ≤ M , (iv), and (iii),∫

En

f ∧ n dµ ≥
∫

En

h dµ =
∫

h dµ −
∫

Ec
n

h dµ

Now 0 ≤ ∫
Ec

n
h dµ ≤ Mµ(Ec

n ∩ {x : h(x) > 0}) → 0 as n → ∞, so

lim inf
n→∞

∫
En

f ∧ n dµ ≥
∫

h dµ

which proves the desired result since h is an arbitrary member of the class that
defines the integral of f . �

Lemma 1.4.5. Suppose f , g ≥ 0.

(i)
∫

f dµ ≥ 0
(ii) If a > 0 then

∫
af dµ = a

∫
f dµ.

(iii)
∫

f + g dµ = ∫ f dµ + ∫ g dµ

(iv) If 0 ≤ g ≤ f a.e. then
∫

g dµ ≤ ∫ f dµ.
(v) If 0 ≤ g = f a.e. then

∫
g dµ = ∫ f dµ.

Here we have dropped (vi) because it is trivial for f ≥ 0.

Proof. (i) is trivial from the definition. (ii) is clear, since when a > 0, ah ≤ af if
and only if h ≤ f and we have

∫
ah dµ = a

∫
h du for h in the defining class. For

(iii), we observe that if f ≥ h and g ≥ k, then f + g ≥ h + k so taking the sup
over h and k in the defining classes for f and g gives∫

f + g dµ ≥
∫

f dµ +
∫

g dµ

To prove the other direction, we observe (a + b) ∧ n ≤ (a ∧ n) + (b ∧ n), so (iv)
from Lemma 1.4.3 and (iii) from Lemma 1.4.4 imply∫

En

(f + g) ∧ n dµ ≤
∫

En

f ∧ n dµ +
∫

En

g ∧ n dµ

Letting n → ∞ and using Lemma 1.4.4 gives (iii). As before, (iv) and (v) follow
from (i), (iii), and Lemma 1.4.2. �

Step 4. We say f is integrable if
∫ |f | dµ < ∞. Let

f +(x) = f (x) ∨ 0 and f −(x) = (−f (x)) ∨ 0

where a ∨ b = max(a, b). Clearly,

f (x) = f +(x) − f −(x) and |f (x)| = f +(x) + f −(x)

We define the integral of f by∫
f dµ =

∫
f + dµ −

∫
f − dµ
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The right-hand side is well defined since f +, f − ≤ |f | and we have (iv) in Lemma
1.4.5. For the final time, we will prove our six properties. To do this, it is useful to
know:

Lemma 1.4.6. If f = f1 − f2 where f1, f2 ≥ 0 and
∫

fi dµ < ∞, then∫
f dµ =

∫
f1 dµ −

∫
f2 dµ

Proof. f1 + f − = f2 + f + and all four functions are ≥ 0, so by (iii) of
Lemma 1.4.5,∫

f1 dµ +
∫

f − dµ =
∫

f1 + f − dµ =
∫

f2 + f + dµ =
∫

f2 dµ +
∫

f + dµ

Rearranging gives the desired conclusion. �

Theorem 1.4.7. Suppose f and g are integrable.
(i) If f ≥ 0 a.e. then

∫
f dµ ≥ 0.

(ii) For all a ∈ R,
∫

af dµ = a
∫

f dµ.

(iii)
∫

f + g dµ = ∫ f dµ + ∫ g dµ.
(iv) If g ≤ f a.e. then

∫
g dµ ≤ ∫ f dµ.

(v) If g = f a.e. then
∫

g dµ = ∫ f dµ.
(vi) | ∫ f dµ| ≤ ∫ |f | dµ.

Proof. (i) is trivial. (ii) is clear since if a > 0, then (af )+ = a(f +), and so on. To
prove (iii), observe that f + g = (f + + g+) − (f − + g−), so using Lemma 1.4.6
and Lemma 1.4.5,∫

f + g dµ =
∫

f + + g+ dµ −
∫

f − + g− dµ

=
∫

f + dµ +
∫

g+ dµ −
∫

f − dµ −
∫

g− dµ

As usual, (iv)–(vi) follow from (i)–(iii) and Lemma 1.4.2. �

Notation for special cases

(a) When (�,F, µ) = (Rd,Rd, λ), we write
∫

f (x) dx for
∫

f dλ.

(b) When (�,F, µ) = (R,R, λ) and E = [a, b], we write
∫ b

a
f (x) dx for

∫
E

f dλ.

(c) When (�,F, µ) = (R,R, µ) with µ((a, b]) = G(b) − G(a) for a < b, we
write

∫
f (x) dG(x) for

∫
f dµ.

(d) When � is a countable set, F = all subsets of �, and µ is counting measure,
we write

∑
i∈� f (i) for

∫
f dµ.

We mention example (d) primarily to indicate that results for sums follow from
those for integrals. The notation for the special case in which µ is a probability
measure will be taken up in Section 1.6.
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Exercises

1.4.1. Show that if f ≥ 0 and
∫

f dµ = 0, then f = 0 a.e.

1.4.2. Let f ≥ 0 and En,m = {x : m/2n ≤ f (x) < (m + 1)/2n}. As n ↑ ∞,

∞∑
m=1

m

2n
µ(En,m) ↑

∫
f dµ

1.4.3. Let g be an integrable function on R and ε > 0. (i) Use the definition of the
integral to conclude there is a simple function ϕ =∑k bk1Ak

with
∫ |g − ϕ| dx <

ε. (ii) Use Exercise A.2.1 to approximate the Ak by finite unions of intervals to get
a step function

q =
k∑

j=1

cj 1(aj−1,aj )

with a0 < a1 < · · · < ak, so that
∫ |ϕ − q| < ε. (iii) Round the corners of q to get

a continuous function r so that
∫ |q − r| dx < ε.

1.4.4. Prove the Riemann-Lebesgue lemma. If g is integrable then

lim
n→∞

∫
g(x) cos nx dx = 0

Hint: If g is a step function, this is easy. Now use the previous exercise.

1.5 Properties of the Integral

In this section, we will develop properties of the integral defined in the last section.
Our first result generalizes (vi) from Theorem 1.4.7.

Theorem 1.5.1. Jensen’s inequality. Suppose ϕ is convex, that is,

λϕ(x) + (1 − λ)ϕ(y) ≥ ϕ(λ x + (1 − λ)y)

for all λ ∈ (0, 1) and x, y ∈ R. If µ is a probability measure, and f and ϕ(f ) are
integrable then

ϕ

(∫
f dµ

)
≤
∫

ϕ(f ) dµ

Proof. Let c = ∫ f dµ and let �(x) = ax + b be a linear function that has �(c) =
ϕ(c) and ϕ(x) ≥ �(x). To see that such a function exists, recall that convexity
implies

lim
h↓0

ϕ(c) − ϕ(c − h)

h
≤ lim

h↓0

ϕ(c + h) − ϕ(c)

h

(The limits exist since the sequences are monotone.) If we let a be any number
between the two limits and let �(x) = a(x − c) + ϕ(c), then � has the desired
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properties. With the existence of � established, the rest is easy. (iv) in Theorem
1.4.7 implies∫

ϕ(f ) dµ ≥
∫

(af + b) dµ = a

∫
f dµ + b = �

(∫
f dµ

)
= ϕ

(∫
f dµ

)

since c = ∫ f dµ and �(c) = φ(c). �

Let ‖f ‖p = (
∫ |f |p dµ)1/p for 1 ≤ p < ∞, and notice ‖cf ‖p = |c| · ‖f ‖p for

any real number c.

Theorem 1.5.2. Hölder’s inequality. If p, q ∈ (1, ∞) with 1/p + 1/q = 1, then∫
|fg| dµ ≤ ‖f ‖p‖g‖q

Proof. If ‖f ‖p or ‖g‖q = 0, then |fg| = 0 a.e., so it suffices to prove the result
when ‖f ‖p and ‖g‖q > 0 or by dividing both sides by ‖f ‖p‖g‖q , when ‖f ‖p =
‖g‖q = 1. Fix y ≥ 0 and let

ϕ(x) = xp/p + yq/q − xy for x ≥ 0

ϕ′(x) = xp−1 − y and ϕ′′(x) = (p − 1)xp−2

so ϕ has a minimum at xo = y1/(p−1). q = p/(p − 1) and x
p
o = yp/(p−1) = yq , so

ϕ(xo) = yq(1/p + 1/q) − y1/(p−1)y = 0

Since xo is the minimum, it follows that xy ≤ xp/p + yq/q. Letting x = |f |,
y = |g|, and integrating∫

|fg| dµ ≤ 1

p
+ 1

q
= 1 = ‖f ‖p‖g‖q �

Remark. The special case p = q = 2 is called the Cauchy-Schwarz inequality.
One can give a direct proof of the result in this case by observing that for any θ ,

0 ≤
∫

(f + θg)2 dµ =
∫

f 2 dµ + θ

(
2
∫

fg dµ

)
+ θ2

(∫
g2 dµ

)

so the quadratic aθ2 + bθ + c on the right-hand side has at most one real root.
Recalling the formula for the roots of a quadratic

−b ± √
b2 − 4ac

2a

we see b2 − 4ac ≤ 0, which is the desired result.
Our next goal is to give conditions that guarantee

lim
n→∞

∫
fn dµ =

∫ (
lim

n→∞ fn

)
dµ

First, we need a definition. We say that fn → f in measure, that is, for any ε > 0,
µ({x : |fn(x) − f (x)| > ε}) → 0 as n → ∞. On a space of finite measure, this is
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a weaker assumption than fn → f a.e., but the next result is easier to prove in the
greater generality.

Theorem 1.5.3. Bounded convergence theorem. Let E be a set with µ(E) < ∞.
Suppose fn vanishes on Ec, |fn(x)| ≤ M , and fn → f in measure. Then∫

f dµ = lim
n→∞

∫
fn dµ

Example 1.5.1. Consider the real line R equipped with the Borel sets R and
Lebesgue measure λ. The functions fn(x) = 1/n on [0, n] and 0 otherwise on
show that the conclusion of Theorem 1.5.3 does not hold when µ(E) = ∞.

Proof. Let ε > 0, Gn = {x : |fn(x) − f (x)| < ε} and Bn = E − Gn. Using (iii)
and (vi) from Theorem 1.4.7,∣∣∣∣

∫
f dµ −

∫
fn dµ

∣∣∣∣ =
∣∣∣∣
∫

(f − fn) dµ

∣∣∣∣ ≤
∫

|f − fn| dµ

=
∫

Gn

|f − fn| dµ +
∫

Bn

|f − fn| dµ

≤ εµ(E) + 2Mµ(Bn)

fn → f in measure implies µ(Bn) → 0. ε > 0 is arbitrary and µ(E) < ∞, so the
proof is complete. �

Theorem 1.5.4. Fatou’s lemma. If fn ≥ 0 then

lim inf
n→∞

∫
fn dµ ≥

∫ (
lim inf
n→∞ fn

)
dµ

Example 1.5.2. Example 1.5.1 shows that we may have strict inequality in Theorem
1.5.4. The functions fn(x) = n1(0,1/n](x) on (0,1) equipped with the Borel sets and
Lebesgue measure show that this can happen on a space of finite measure.

Proof. Let gn(x) = infm≥n fm(x). fn(x) ≥ gn(x) and as n ↑ ∞,

gn(x) ↑ g(x) = lim inf
n→∞ fn(x)

Since
∫

fn dµ ≥ ∫ gn dµ, it suffices then to show that

lim inf
n→∞

∫
gn dµ ≥

∫
g dµ

Let Em ↑ � be sets of finite measure. Since gn ≥ 0 and for fixed m

(gn ∧ m) · 1Em
→ (g ∧ m) · 1Em

a.e.
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the bounded convergence theorem, 1.5.3, implies

lim inf
n→∞

∫
gn dµ ≥

∫
Em

gn ∧ m dµ →
∫

Em

g ∧ m dµ

Taking the sup over m and using Theorem 1.4.4 gives the desired result. �

Theorem 1.5.5. Monotone convergence theorem. If fn ≥ 0 and fn ↑ f then∫
fn dµ ↑

∫
f dµ

Proof. Fatou’s lemma, Theorem 1.5.4, implies liminf
∫

fn dµ ≥ ∫ f dµ. On the
other hand, fn ≤ f implies lim sup

∫
fn dµ ≤ ∫ f dµ. �

Theorem 1.5.6. Dominated convergence theorem. If fn → f a.e., |fn| ≤ g for
all n, and g is integrable, then

∫
fn dµ → ∫

f dµ.

Proof. fn + g ≥ 0 so Fatou’s lemma implies

lim inf
n→∞

∫
fn + g dµ ≥

∫
f + g dµ

Subtracting
∫

g dµ from both sides gives

lim inf
n→∞

∫
fn dµ ≥

∫
f dµ

Applying the last result to −fn, we get

lim sup
n→∞

∫
fn dµ ≤

∫
f dµ

and the proof is complete. �

Exercises

1.5.1. Let ‖f ‖∞ = inf{M : µ({x : |f (x)| > M}) = 0}. Prove that∫
|fg|dµ ≤ ‖f ‖1‖g‖∞

1.5.2. Show that if µ is a probability measure then

‖f ‖∞ = lim
p→∞ ‖f ‖p

1.5.3. Minkowski’s inequality. (i) Suppose p ∈ (1, ∞). The inequality |f +
g|p ≤ 2p(|f |p + |g|p) shows that if ‖f ‖p and ‖g‖p are < ∞ then ‖f + g‖p < ∞.
Apply Hölder’s inequality to |f ||f + g|p−1 and |g||f + g|p−1 to show ‖f + g‖p ≤
‖f ‖p + ‖g‖p. (ii) Show that the last result remains true when p = 1 or p = ∞.
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1.5.4. If f is integrable and Em are disjoint sets with union E then

∞∑
m=0

∫
Em

f dµ =
∫

E

f dµ

So if f ≥ 0, then ν(E) = ∫
E

f dµ defines a measure.

1.5.5. If gn ↑ g and
∫

g−
1 dµ < ∞ then

∫
gn dµ ↑ ∫ g dµ.

1.5.6. If gm ≥ 0 then
∫ ∑∞

m=0 gm dµ =∑∞
m=0

∫
gm dµ.

1.5.7. Let f ≥ 0. (i) Show that
∫

f ∧ n dµ ↑ ∫ f dµ as n → ∞. (ii) Use (i) to
conclude that if g is integrable and ε > 0, then we can pick δ > 0 so that µ(A) < δ

implies
∫
A

|g|dµ < ε.

1.5.8. Show that if f is integrable on [a, b], g(x) = ∫[a,x] f (y) dy is continuous on
(a, b).

1.5.9. Show that if f has ‖f ‖p = (
∫ |f |pdµ)1/p < ∞, then there are simple func-

tions φn so that ‖φn − f ‖p → 0.

1.5.10. Show that if
∑

n

∫ |fn|dµ < ∞ then
∑

n

∫
fn dµ = ∫ ∑n fn dµ.

1.6 Expected Value

We now specialize to integration with respect to a probability measure P . If
X ≥ 0 is a random variable on (�,F, P ) then we define its expected value to
be EX = ∫ X dP , which always makes sense, but may be ∞. To reduce the gen-
eral case to the nonnegative case, let x+ = max{x, 0} be the positive part and
let x− = max{−x, 0} be the negative part of x. We declare that EX exists and set
EX = EX+ − EX− whenever the subtraction makes sense, that is, EX+ < ∞ or
EX− < ∞.

EX is often called the mean of X and denoted by µ. EX is defined by integrating
X, so it has all the properties that integrals do. From Theorems 1.4.5 and 1.4.7 and
the trivial observation that E(b) = b for any real number b, we get the following:

Theorem 1.6.1. Suppose X, Y ≥ 0 or E|X|, E|Y | < ∞.
(a) E(X + Y ) = EX + EY .
(b) E(aX + b) = aE(X) + b for any real numbers a, b.
(c) If X ≥ Y then EX ≥ EY .

In this section, we will restate some properties of the integral derived in the last
section in terms of expected value and prove some new ones. To organize things,
we will divide the developments into three subsections.

1.6.1 Inequalities

For probability measures, Theorem 1.5.1 becomes:
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Figure 1.6. Jensen’s inequality for g(x) = x2 − 3x + 3, P (X = 1) = P (X = 3) = 1/2.

Theorem 1.6.2. Jensen’s inequality. Suppose ϕ is convex, that is,

λϕ(x) + (1 − λ)ϕ(y) ≥ ϕ(λx + (1 − λ)y)

for all λ ∈ (0, 1) and x, y ∈ R. Then

E(ϕ(X)) ≥ ϕ(EX)

provided both expectations exist, that is, E|X| and E|ϕ(X)| < ∞.

To recall the direction in which the inequality goes, note that if P (X = x) = λ and
P (X = y) = 1 − λ, then (see Figure 1.6)

Eφ(X) = λϕ(x) + (1 − λ)ϕ(y) ≥ ϕ(λx + (1 − λ)y) = φ(EX)

Two useful special cases are |EX| ≤ E|X| and (EX)2 ≤ E(X2).

Theorem 1.6.3. Hölder’s inequality. If p, q ∈ [1, ∞] with 1/p + 1/q = 1, then

E|XY | ≤ ‖X‖p‖Y‖q

Here ‖X‖r = (E|X|r )1/r for r ∈ [1, ∞); ‖X‖∞ = inf{M : P (|X| > M) = 0}.

To state our next result, we need some notation. If we only integrate over A ⊂ �,
we write

E(X; A) =
∫

A

X dP

Theorem 1.6.4. Chebyshev’s inequality. Suppose ϕ : R → R has ϕ ≥ 0, let A ∈
R and let iA = inf{ϕ(y) : y ∈ A}.

iAP (X ∈ A) ≤ E(ϕ(X); X ∈ A) ≤ Eϕ(X)

Proof. The definition of iA and the fact that φ ≥ 0 imply that

iA1(X∈A) ≤ ϕ(X)1(X∈A) ≤ ϕ(X)
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So taking expected values and using part (c) of Theorem 1.6.1 gives the desired
result. �

Remark. Some authors call this result Markov’s inequality and use the name
Chebyshev’s inequality for the special case in which ϕ(x) = x2 and A = {x :
|x| ≥ a}:

a2P (|X| ≥ a) ≤ EX2 (1.6.1)

1.6.2 Integration to the Limit

Our next step is to restate the three classic results from the previous section about
what happens when we interchange limits and integrals.

Theorem 1.6.5. Fatou’s lemma. If Xn ≥ 0 then

lim inf
n→∞ EXn ≥ E(lim inf

n→∞ Xn)

Theorem 1.6.6. Monotone convergence theorem. If 0 ≤ Xn ↑ X then EXn ↑
EX.

Theorem 1.6.7. Dominated convergence theorem. If Xn → X a.s., |Xn| ≤ Y for
all n, and EY < ∞, then EXn → EX.

The special case of Theorem 1.6.7 in which Y is constant is called the bounded
convergence theorem.

In the developments below, we will need another result on integration to the limit.
Perhaps the most important special case of this result occurs when g(x) = |x|p with
p > 1 and h(x) = x.

Theorem 1.6.8. Suppose Xn → X a.s. Let g, h be continuous functions with
(i) g ≥ 0 and g(x) → ∞ as |x| → ∞,

(ii) |h(x)|/g(x) → 0 as |x| → ∞, and
(iii) Eg(Xn) ≤ K < ∞ for all n.
Then Eh(Xn) → Eh(X).

Proof. By subtracting a constant from h, we can suppose without loss of generality
that h(0) = 0. Pick M large so that P (|X| = M) = 0 and g(x) > 0 when |x| ≥ M .
Given a random variable Y , let Ȳ = Y1(|Y |≤M). Since P (|X| = M) = 0, X̄n → X̄

a.s. Since h(X̄n) is bounded and h is continuous, it follows from the bounded
convergence theorem that

(a) Eh(X̄n) → Eh(X̄)
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To control the effect of the truncation, we use the following:

(b) |Eh(Ȳ ) − Eh(Y )| ≤ E|h(Ȳ ) − h(Y )| ≤ E(|h(Y )|; |Y | > M) ≤ εMEg(Y )

where εM = sup{|h(x)|/g(x) : |x| ≥ M}. To check the second inequality, note that
when |Y | ≤ M , Ȳ = Y , and we have supposed h(0) = 0. The third inequality
follows from the definition of εM .

Taking Y = Xn in (b) and using (iii), it follows that

(c) |Eh(X̄n) − Eh(Xn)| ≤ KεM

To estimate |Eh(X̄) − Eh(X)|, we observe that g ≥ 0 and g is continuous, so
Fatou’s lemma implies

Eg(X) ≤ lim inf
n→∞ Eg(Xn) ≤ K

Taking Y = X in (b) gives

(d) |Eh(X̄) − Eh(X)| ≤ KεM

The triangle inequality implies

|Eh(Xn) − Eh(X)| ≤ |Eh(Xn) − Eh(X̄n)|
+ |Eh(X̄n) − Eh(X̄)| + |Eh(X̄) − Eh(X)|

Taking limits and using (a), (c), (d), we have

lim sup
n→∞

|Eh(Xn) − Eh(X)| ≤ 2KεM

which proves the desired result since K < ∞ and εM → 0 as M → ∞. �

1.6.3 Computing Expected Values

Integrating over (�,F, P ) is nice in theory, but to do computations we have to
shift to a space on which we can do calculus. In most cases, we will apply the next
result with S = Rd .

Theorem 1.6.9. Change of variables formula. Let X be a random element of
(S,S) with distribution µ, that is, µ(A) = P (X ∈ A). If f is a measurable function
from (S,S) to (R,R) so that f ≥ 0 or E|f (X)| < ∞, then

Ef (X) =
∫

S

f (y) µ(dy)

Remark. To explain the name, write h for X and P ◦ h−1 for µ to get∫
�

f (h(ω)) dP =
∫

S

f (y) d(P ◦ h−1)
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Proof. We will prove this result by verifying it in four increasingly general special
cases that parallel the way that the integral was defined in Section 1.4. The reader
should note the method employed, since it will be used several times below.

Case 1: Indicator functions. If B ∈ S and f = 1B , then recalling the relevant
definitions shows

E1B(X) = P (X ∈ B) = µ(B) =
∫

S

1B(y) µ(dy)

Case 2: Simple functions. Let f (x) =∑n
m=1 cm1Bm

where cm ∈ R, Bm ∈ S. The
linearity of expected value, the result of Case 1, and the linearity of integration
imply

Ef (X) =
n∑

m=1

cmE1Bm
(X)

=
n∑

m=1

cm

∫
S

1Bm
(y) µ(dy) =

∫
S

f (y) µ(dy)

Case 3: Nonegative functions. Now if f ≥ 0 and we let

fn(x) = ([2nf (x)]/2n) ∧ n

where [x] = the largest integer ≤ x and a ∧ b = min{a, b}, then the fn are simple
and fn ↑ f , so using the result for simple functions and the monotone convergence
theorem:

Ef (X) = lim
n

Efn(X) = lim
n

∫
S

fn(y) µ(dy) =
∫

S

f (y) µ(dy)

Case 4: Integrable functions. The general case now follows by writing
f (x) = f (x)+ − f (x)−. The condition E|f (X)| < ∞ guarantees that Ef (X)+

and Ef (X)− are finite. So using the result for nonnegative functions and linearity
of expected value and integration:

Ef (X) = Ef (X)+ − Ef (X)− =
∫

S

f (y)+ µ(dy) −
∫

S

f (y)− µ(dy)

=
∫

S

f (y) µ(dy)

which completes the proof. �

A consequence of Theorem 1.6.9 is that we can compute expected values of
functions of random variables by performing integrals on the real line. Before we
can treat some examples, we need to introduce the terminology for what we are
about to compute. If k is a positive integer, then EXk is called the kth moment of X.
The first moment EX is usually called the mean and denoted by µ. If EX2 < ∞,
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then the variance of X is defined to be var (X) = E(X − µ)2. To compute the
variance the following formula is useful:

var (X) = E(X − µ)2

= EX2 − 2µEX + µ2 = EX2 − µ2 (1.6.2)

From this it is immediate that

var (X) ≤ EX2 (1.6.3)

Here EX2 is the expected value of X2. When we want the square of EX, we will
write (EX)2. Since E(aX + b) = aEX + b by (b) of Theorem 1.6.1, it follows
easily from the definition that

var (aX + b) = E(aX + b − E(aX + b))2

= a2E(X − EX)2 = a2 var (X) (1.6.4)

We turn now to concrete examples and leave the calculus in the first two examples
to the reader. (Integrate by parts.)

Example 1.6.1. If X has an exponential distribution with rate 1, then

EXk =
∫ ∞

0
xke−xdx = k!

So the mean of X is 1 and variance is EX2 − (EX)2 = 2 − 12 = 1. If we let
Y = X/λ, then by Exercise 1.2.5, Y has density λe−λy for y ≥ 0, the exponential
density with parameter λ. From (b) of Theorem 1.6.1 and (1.6.4), it follows that Y

has mean 1/λ and variance 1/λ2.

Example 1.6.2. If X has a standard normal distribution,

EX =
∫

x(2π )−1/2 exp(−x2/2) dx = 0 (by symmetry)

var (X) = EX2 =
∫

x2(2π )−1/2 exp(−x2/2) dx = 1

If we let σ > 0, µ ∈ R, and Y = σX + µ, then (b) of Theorem 1.6.1 and (1.6.4)
imply EY = µ and var (Y ) = σ 2. By Exercise 1.2.5, Y has density

(2πσ 2)−1/2 exp(−(y − µ)2/2σ 2)

the normal distribution with mean µ and variance σ 2.

We will next consider some discrete distributions. The first is very simple, but
will be useful several times below, so we record it here.
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Example 1.6.3. We say that X has a Bernoulli distribution with parameter p if
P (X = 1) = p and P (X = 0) = 1 − p. Clearly,

EX = p · 1 + (1 − p) · 0 = p

Since X2 = X, we have EX2 = EX = p and

var (X) = EX2 − (EX)2 = p − p2 = p(1 − p)

Example 1.6.4. We say that X has a Poisson distribution with parameter λ if

P (X = k) = e−λλk/k! for k = 0, 1, 2, . . .

To evaluate the moments of the Poisson random variable, we use a little inspiration
to observe that for k ≥ 1

E(X(X − 1) · · · (X − k + 1)) =
∞∑

j=k

j (j − 1) · · · (j − k + 1)e−λ λj

j !

= λk

∞∑
j=k

e−λ λj−k

(j − k)!
= λk

where the equalities follow from (i) the fact that j (j − 1) · · · (j − k + 1) = 0 when
j < k, (ii) canceling part of the factorial, and (iii) the fact that Poisson distribution
has total mass 1. Using the last formula, it follows that EX = λ while

var (X) = EX2 − (EX)2 = E(X(X − 1)) + EX − λ2 = λ

Example 1.6.5. N is said to have a geometric distribution with success probability
p ∈ (0, 1) if

P (N = k) = p(1 − p)k−1 for k = 1, 2, . . .

N is the number of independent trials needed to observe an event with probability
p. Differentiating the identity

∞∑
k=0

(1 − p)k = 1/p

and referring to Example A.5.3 for the justification gives

−
∞∑

k=1

k(1 − p)k−1 = −1/p2

∞∑
k=2

k(k − 1)(1 − p)k−2 = 2/p3
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From this it follows that

EN =
∞∑

k=1

kp(1 − p)k−1 = 1/p

EN(N − 1) =
∞∑

k=1

k(k − 1)p(1 − p)k−1 = 2(1 − p)/p2

var (N ) = EN2 − (EN)2 = EN(N − 1) + EN − (EN)2

= 2(1 − p)

p2
+ p

p2
− 1

p2
= 1 − p

p2

Exercises

1.6.1. Suppose ϕ is strictly convex, that is, > holds for λ ∈ (0, 1). Show that, under
the assumptions of Theorem 1.6.2, ϕ(EX) = Eϕ(X) implies X = EX a.s.

1.6.2. Suppose φ : Rn → R is convex. Imitate the proof of Theorem 1.5.1 to show

Eφ(X1, . . . , Xn) ≥ φ(EX1, . . . , EXn)

provided E|φ(X1, . . . , Xn)| < ∞ and E|Xi | < ∞ for all i.

1.6.3. Chebyshev’s inequality is and is not sharp. (i) Show that Theorem 1.6.4
is sharp by showing that if 0 < b ≤ a are fixed, there is an X with EX2 = b2 for
which P (|X| ≥ a) = b2/a2. (ii) Show that Theorem 1.6.4 is not sharp by showing
that if X has 0 < EX2 < ∞, then

lim
a→∞ a2P (|X| ≥ a)/EX2 = 0

1.6.4. One-sided Chebyshev bound. (i) Let a > b > 0, 0 < p < 1, and let X have
P (X = a) = p and P (X = −b) = 1 − p. Apply Theorem 1.6.4 to φ(x) = (x +
b)2 and conclude that if Y is any random variable with EY = EX and var (Y ) =
var (X), then P (Y ≥ a) ≤ p and equality holds when Y = X.
(ii) Suppose EY = 0, var (Y ) = σ 2, and a > 0. Show that P (Y ≥ a) ≤ σ 2/(a2 +
σ 2), and there is a Y for which equality holds.

1.6.5. Two nonexistent lower bounds.
Show that: (i) if ε > 0, inf{P (|X| > ε) : EX = 0, var (X) = 1} = 0.
(ii) if y ≥ 1, σ 2 ∈ (0, ∞), inf{P (|X| > y) : EX = 1, var (X) = σ 2} = 0.

1.6.6. A useful lower bound. Let Y ≥ 0 with EY 2 < ∞. Apply the Cauchy-
Schwarz inequality to Y1(Y>0) and conclude

P (Y > 0) ≥ (EY )2/EY 2

1.6.7. Let � = (0, 1) equipped with the Borel sets and Lebesgue measure. Let
α ∈ (1, 2) and Xn = nα1(1/(n+1),1/n) → 0 a.s. Show that Theorem 1.6.8 can be
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applied with h(x) = x and g(x) = |x|2/α, but the Xn are not dominated by an
integrable function.

1.6.8. Suppose that the probability measure µ has µ(A) = ∫
A

f (x) dx for all A ∈
R. Use the proof technique of Theorem 1.6.9 to show that for any g with g ≥ 0 or∫ |g(x)|µ(dx) < ∞, we have∫

g(x) µ(dx) =
∫

g(x)f (x) dx

1.6.9. Inclusion-exclusion formula. Let A1, A2, . . . An be events and A =
∪n

i=1Ai . Prove that 1A = 1 −∏n
i=1(1 − 1Ai

). Expand out the right-hand side, then
take expected value to conclude

P
(∪n

i=1Ai

) =
n∑

i=1

P (Ai) −
∑
i<j

P (Ai ∩ Aj )

+
∑

i<j<k

P (Ai ∩ Aj ∩ Ak) − · · · + (−1)n−1P (∩n
i=1Ai)

1.6.10. Bonferroni inequalities. Let A1, A2, . . . An be events and A = ∪n
i=1Ai .

Show that 1A ≤∑n
i=1 1Ai

, and so forth, and then take expected values to conclude

P
(∪n

i=1Ai

) ≤
n∑

i=1

P (Ai)

P
(∪n

i=1Ai

) ≥
n∑

i=1

P (Ai) −
∑
i<j

P (Ai ∩ Aj )

P
(∪n

i=1Ai

) ≤
n∑

i=1

P (Ai) −
∑
i<j

P (Ai ∩ Aj ) +
∑

i<j<k

P (Ai ∩ Aj ∩ Ak)

In general, if we stop the inclusion-exclusion formula after an even (odd) number
of sums, we get an lower (upper) bound.

1.6.11. If E|X|k < ∞ then for 0 < j < k, E|X|j < ∞, and furthermore

E|X|j ≤ (E|X|k)j/k

1.6.12. Apply Jensen’s inequality with ϕ(x) = ex and P (X = log ym) = p(m) to
conclude that if

∑n
m=1 p(m) = 1 and p(m), ym > 0, then

n∑
m=1

p(m)ym ≥
n∏

m=1

yp(m)
m

When p(m) = 1/n, this says the arithmetic mean exceeds the geometric mean.

1.6.13. If EX−
1 < ∞ and Xn ↑ X, then EXn ↑ EX.
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1.6.14. Let X ≥ 0 but do NOT assume E(1/X) < ∞. Show

lim
y→∞ yE(1/X; X > y) = 0, lim

y↓0
yE(1/X; X > y) = 0.

1.6.15. If Xn ≥ 0, then E(
∑∞

n=0 Xn) =∑∞
n=0 EXn.

1.6.16. If X is integrable and An are disjoint sets with union A, then

∞∑
n=0

E(X; An) = E(X; A)

that is, the sum converges absolutely and has the value on the right.

1.7 Product Measures, Fubini’s Theorem

Let (X,A, µ1) and (Y,B, µ2) be two σ -finite measure spaces. Let

� = X × Y = {(x, y) : x ∈ X, y ∈ Y }
S = {A × B : A ∈ A, B ∈ B}

Sets in S are called rectangles. It is easy to see that S is a semialgebra:

(A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D)

(A × B)c = (Ac × B) ∪ (A × Bc) ∪ (Ac × Bc)

Let F = A × B be the σ -algebra generated by S.

Theorem 1.7.1. There is a unique measure µ on F with

µ(A × B) = µ1(A)µ2(B)

Notation. µ is often denoted by µ1 × µ2.

Proof. By Theorem 1.1.4 it is enough to show that if A × B = +i(Ai × Bi) is a
finite or countable disjoint union, then

µ(A × B) =
∑

i

µ(Ai × Bi)

For each x ∈ A, let I (x) = {i : x ∈ Ai}. B = +i∈I (x)Bi , so

1A(x)µ2(B) =
∑

i

1Ai
(x)µ2(Bi)

Integrating with respect to µ1 and using Exercise 1.5.6 gives

µ1(A)µ2(B) =
∑

i

µ1(Ai)µ2(Bi)

which proves the result. �
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Using Theorem 1.7.1 and induction, it follows that if (�i,Fi , µi), i = 1, . . . , n,
are σ -finite measure spaces and � = �1 × · · · × �n, there is a unique measure µ

on the σ -algebra F generated by sets of the form A1 × · · · × An, Ai ∈ Fi , that has

µ(A1 × · · · × An) =
n∏

m=1

µm(Am)

When (�i,Fi , µi) = (R,R, λ) for all i, the result is Lebesgue measure on the
Borel subsets of n dimensional Euclidean space Rn.

Returning to the case in which (�,F, µ) is the product of two measure spaces,
(X,A, µ) and (Y,B, ν), our next goal is to prove:

Theorem 1.7.2. Fubini’s theorem. If f ≥ 0 or
∫ |f | dµ < ∞, then

(∗)
∫

X

∫
Y

f (x, y) µ2(dy) µ1(dx) =
∫

X×Y

f dµ =
∫

Y

∫
X

f (x, y) µ1(dx) µ2(dy)

Proof. We will prove only the first equality, since the second follows by symmetry.
Two technical things that need to be proved before we can assert that the first
integral makes sense are:

When x is fixed, y → f (x, y) is B measurable.

x → ∫
Y

f (x, y)µ2(dy) is A measurable.

We begin with the case f = 1E . Let Ex = {y : (x, y) ∈ E} be the cross-section
at x.

Lemma 1.7.3. If E ∈ F then Ex ∈ B.

Proof. (Ec)x = (Ex)c and (∪iEi)x = ∪i(Ei)x , so if E is the collection of sets E for
which Ex ∈ B, then E is a σ -algebra. Since E contains the rectangles, the result
follows. �

Lemma 1.7.4. If E ∈ F , then g(x) ≡ µ2(Ex) is A measurable and∫
X

g dµ1 = µ(E)

Notice that it is not obvious that the collection of sets for which the conclusion is
true is a σ -algebra since µ(E1 ∪ E2) = µ(E1) + µ(E2) − µ(E1 ∩ E2). Dynkin’s
π − λ Theorem (A.1.4) was tailor-made for situations like this.

Proof. If conclusions hold for En and En ↑ E, then Theorem 1.3.5 and the mono-
tone convergence theorem imply that they hold for E. Since µ1 and µ2 are σ -
finite, it is enough then to prove the result for E ⊂ F × G with µ1(F ) < ∞ and
µ2(G) < ∞, or taking � = F × G we can suppose without loss of generality that
µ(�) < ∞. Let L be the collection of sets E for which the conclusions hold.
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We will now check that L is a λ-system. Property (i) of a λ-system is trivial.
(iii) follows from the first sentence in the proof. To check (ii) we observe that

µ2((A − B)x) = µ2(Ax − Bx) = µ2(Ax) − µ2(Bx)

and integrating over x gives the second conclusion. Since L contains the rect-
angles, a π -system that generates F , the desired result follows from the π − λ

theorem. �

We are now ready to prove Theorem 1.7.2 by verifying it in four increasingly
general special cases.

Case 1. If E ∈ F and f = 1E , then (∗) follows from Lemma 1.7.4

Case 2. Since each integral is linear in f , it follows that (∗) holds for simple
functions.

Case 3. Now if f ≥ 0 and we let fn(x) = ([2nf (x)]/2n) ∧ n, where [x] = the
largest integer ≤ x, then the fn are simple and fn ↑ f , so it follows from the
monotone convergence theorem that (∗) holds for all f ≥ 0.

Case 4. The general case now follows by writing f (x) = f (x)+ − f (x)− and
applying Case 3 to f +, f −, and |f |. �

To illustrate why the various hypotheses of Theorem 1.7.2 are needed, we will
now give some examples where the conclusion fails.

Example 1.7.1. Let X = Y = {1, 2, . . .} withA = B = all subsets and µ1 = µ2 =
counting measure. For m ≥ 1, let f (m, m) = 1 and f (m + 1, m) = −1, and let
f (m, n) = 0 otherwise. We claim that∑

m

∑
n

f (m, n) = 1 but
∑

n

∑
m

f (m, n) = 0

A picture is worth several dozen words:

...
...

...
...

0 0 0 1 . . .

↑ 0 0 1 −1 . . .

n 0 1 −1 0 . . .

1 −1 0 0 . . .

m →
In words, if we sum the columns first, the first one gives us a 1 and the others 0,
while if we sum the rows each one gives us a 0.
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Example 1.7.2. Let X = (0, 1), Y = (1, ∞), both equipped with the Borel sets
and Lebesgue measure. Let f (x, y) = e−xy − 2e−2xy.

∫ 1

0

∫ ∞

1
f (x, y) dy dx =

∫ 1

0
x−1(e−x − e−2x) dx > 0

∫ ∞

1

∫ 1

0
f (x, y) dx dy =

∫ ∞

1
y−1(e−2y − e−y) dy < 0

The next example indicates why µ1 and µ2 must be σ -finite.

Example 1.7.3. Let X = (0, 1) with A = the Borel sets and µ1 = Lebesgue
measure. Let Y = (0, 1) with B = all subsets and µ2 = counting measure. Let
f (x, y) = 1 if x = y and 0 otherwise

∫
Y

f (x, y) µ2(dy) = 1 for all x so
∫

X

∫
Y

f (x, y) µ2(dy) µ1(dx) = 1

∫
X

f (x, y) µ1(dx) = 0 for all y so
∫

Y

∫
X

f (x, y) µ1(dy) µ2(dx) = 0

Our last example shows that measurability is important or maybe that some of
the axioms of set theory are not as innocent as they seem.

Example 1.7.4. By the axiom of choice and the continuum hypothesis one can
define an order relation <′ on (0,1) so that {x : x <′ y} is countable for each y. Let
X = Y = (0, 1), let A = B = the Borel sets and µ1 = µ2 = Lebesgue measure.
Let f (x, y) = 1 if x <′ y, = 0 otherwise. Since {x : x <′ y} and {y : x <′ y}c are
countable,

∫
X

f (x, y) µ1(dx) = 0 for all y

∫
Y

f (x, y) µ2(dy) = 1 for all x

Exercises

1.7.1. If
∫
X

∫
Y

|f (x, y)|µ2(dy)µ1(dx) < ∞, then∫
X

∫
Y

f (x, y)µ2(dy)µ1(dx) =
∫

X×Y

f d(µ1 × µ2) =
∫

Y

∫
X

f (x, y)µ1(dx)µ2(dy)

Corollary. Let X = {1, 2, . . .} ,A = all subsets of X, and µ1 = counting measure.
If
∑

n

∫ |fn|dµ < ∞, then
∑

n

∫
fn dµ = ∫ ∑n fn dµ.
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1.7.2. Let g ≥ 0 be a measurable function on (X,A, µ). Use Theorem 1.7.2 to
conclude that∫

X

g dµ = (µ × λ)({(x, y) : 0 ≤ y < g(x)}) =
∫ ∞

0
µ({x : g(x) > y}) dy

1.7.3. Let F , G be Stieltjes measure functions, and let µ, ν be the corresponding
measures on (R,R). Show that

(i)
∫

(a,b]{F (y) − F (a)}dG(y) = (µ × ν)({(x, y) : a < x ≤ y ≤ b})
(ii)
∫

(a,b] F (y) dG(y) + ∫(a,b] G(y) dF (y)

= F (b)G(b) − F (a)G(a) +
∑

x∈(a,b]

µ({x})ν({x})

(iii) If F = G is continuous, then
∫

(a,b] 2F (y)dF (y) = F 2(b) − F 2(a).

To see that the second term in (ii) is needed, let F (x) = G(x) = 1[0,∞)(x) and
a < 0 < b.

1.7.4. Let µ be a finite measure on R and F (x) = µ((−∞, x]). Show that∫
(F (x + c) − F (x)) dx = cµ(R)

1.7.5. Show that e−xy sin x is integrable in the strip 0 < x < a, 0 < y. Perform the
double integral in the two orders to get∫ a

0

sin x

x
dx = (arctan a) − (cos a)

∫ ∞

0

e−ay

1 + y2
dy − (sin a)

∫ ∞

0

ye−ay

1 + y2
dy

and replace 1 + y2 by 1 to conclude
∣∣∫ a

0 (sin x)/x dx − (arctan a)
∣∣ ≤ 2/a for

a ≥ 1.
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Laws of Large Numbers

2.1 Independence

Measure theory ends and probability begins with the definition of independence.
We begin with what we hope is a familiar definition and then work our way up to
a definition that is appropriate for our current setting.

Two events A and B are independent if P (A ∩ B) = P (A)P (B).

Two random variables X and Y are independent if for all C, D ∈ R,

P (X ∈ C, Y ∈ D) = P (X ∈ C)P (Y ∈ D)

that is, the events A = {X ∈ C} and B = {Y ∈ D} are independent.

Two σ -fields F and G are independent if for all A ∈ F and B ∈ G the events A

and B are independent.

As the next exercise shows, the second definition is a special case of the third.

Exercise 2.1.1. (i) Show that if X and Y are independent then σ (X) and σ (Y ) are.
(ii) Conversely, if F and G are independent, X ∈ F , and Y ∈ G, then X and Y are
independent.

The first definition is, in turn, a special case of the second.

Exercise 2.1.2. (i) Show that if A and B are independent, then so are Ac and B, A

and Bc, and Ac and Bc. (ii) Conclude that events A and B are independent if and
only if their indicator random variables 1A and 1B are independent.

In view of the fact that the first definition is a special case of the second, which
is a special case of the third, we take things in the opposite order when we say what
it means for several things to be independent. We begin by reducing to the case of
finitely many objects. An infinite collection of objects (σ -fields, random variables,
or sets) is said to be independent if every finite subcollection is.

41
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σ -fields F1,F2, . . . ,Fn are independent if whenever Ai ∈ Fi for i = 1, . . . , n,
we have

P
(∩n

i=1Ai

) =
n∏

i=1

P (Ai)

Random variables X1, . . . , Xn are independent if whenever Bi ∈ R for i =
1, . . . , n we have

P
(∩n

i=1{Xi ∈ Bi}
) =

n∏
i=1

P (Xi ∈ Bi)

Sets A1, . . . , An are independent if whenever I ⊂ {1, . . . n} we have

P (∩i∈IAi) =
∏
i∈I

P (Ai)

At first glance, it might seem that the last definition does not match the other two.
However, if you think about it for a minute, you will see that if the indicator variables
1Ai

, 1 ≤ i ≤ n are independent and we take Bi = {1} for i ∈ I , and Bi = R for
i �∈ I then the condition in the definition results. Conversely,

Exercise 2.1.3. Let A1, A2, . . . , An be independent. Show (i) Ac
1, A2, . . . , An are

independent; (ii) 1A1, . . . , 1An
are independent.

One of the first things to understand about the definition of independent events is
that it is not enough to assume P (Ai ∩ Aj ) = P (Ai)P (Aj ) for all i �= j . A sequence
of events A1, . . . , An with the last property is called pairwise independent. It is
clear that independent events are pairwise independent. The next example shows
that the converse is not true.

Example 2.1.1. Let X1, X2, X3 be independent random variables with

P (Xi = 0) = P (Xi = 1) = 1/2

Let A1 = {X2 = X3}, A2 = {X3 = X1} and A3 = {X1 = X2}. These events are
pairwise independent since if i �= j , then

P (Ai ∩ Aj ) = P (X1 = X2 = X3) = 1/4 = P (Ai)P (Aj )

but they are not independent since

P (A1 ∩ A2 ∩ A3) = 1/4 �= 1/8 = P (A1)P (A2)P (A3)

In order to show that random variables X and Y are independent, we have to
check that P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) for all Borel sets A and B.
Since there are a lot of Borel sets, our next topic is
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2.1.1 Sufficient Conditions for Independence

Our main result is Theorem 2.1.3. To state that result, we need a definition that
generalizes all our earlier definitions.

Collections of sets A1,A2, . . . ,An ⊂ F are said to be independent if whenever
Ai ∈ Ai and I ⊂ {1, . . . , n} we have P (∩i∈IAi) =∏i∈I P (Ai)

If each collection is a single set, that is, Ai = {Ai}, this definition reduces to the
one for sets.

Lemma 2.1.1. Without loss of generality we can suppose each Ai contains �. In
this case the condition is equivalent to

P
(∩n

i=1Ai

) =
n∏

i=1

P (Ai) whenever Ai ∈ Ai

since we can set Ai = � for i �∈ I .

Proof. If A1,A2, . . . ,An are independent and Āi = Ai ∪ {�} then Ā1, Ā2, . . . ,

Ān are independent, since if Ai ∈ Āi and I = {j : Aj = �} ∩iAi = ∩i∈IAi . �

The proof of Theorem 2.1.3 is based on Dynkin’s π − λ theorem. To state this
result, we need two definitions. We say that A is a π -system if it is closed under
intersection, that is, if A,B ∈ A then A ∩ B ∈ A. We say that L is a λ-system if (i)
� ∈ L. (ii) If A,B ∈ L and A ⊂ B, then B − A ∈ L. (iii) If An ∈ L and An ↑ A,
then A ∈ L.

Theorem 2.1.2. π − λ Theorem. If P is a π -system and L is a λ-system that
contains P , then σ (P) ⊂ L.

The proof is hidden away in Section A.1 of the Appendix.

Theorem 2.1.3. Suppose A1,A2, . . . ,An are independent and each Ai is a π -
system. Then σ (A1), σ (A2), . . . , σ (An) are independent.

Proof. Let A2, . . . , An be sets with Ai ∈ Ai , let F = A2 ∩ · · · ∩ An and let L =
{A : P (A ∩ F ) = P (A)P (F )}. Since P (� ∩ F ) = P (�)P (F ), � ∈ L. To check
(ii) of the definition of a λ-system, we note that if A,B ∈ L with A ⊂ B, then
(B − A) ∩ F = (B ∩ F ) − (A ∩ F ). So, using (i) in Theorem 1.1.1, the fact A,B ∈
L and then (i) in Theorem 1.1.1 again:

P ((B − A) ∩ F ) = P (B ∩ F ) − P (A ∩ F ) = P (B)P (F ) − P (A)P (F )

= {P (B) − P (A)}P (F ) = P (B − A)P (F )

and we have B − A ∈ L. To check (iii), let Bk ∈ L with Bk ↑ B and note that
(Bk ∩ F ) ↑ (B ∩ F ), so using (iii) in Theorem 1.1.1, the fact that Bk ∈ L, and then
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(iii) in Theorem 1.1.1 again:

P (B ∩ F ) = lim
k

P (Bk ∩ F ) = lim
k

P (Bk)P (F ) = P (B)P (F )

Applying the π − λ theorem now givesL ⊃ σ (A1). It follows that if A1 ∈ σ (A1)
and Ai ∈ Ai for 2 ≤ i ≤ n, then

P (∩n
i=1Ai) = P (A1)P (∩n

i=2Ai) =
n∏

i=1

P (Ai)

Using Lemma 2.1.1 now, we have

(∗) If A1,A2, . . . ,An are independent then σ (A1),A2, . . . ,An are independent.

Applying (∗) to A2, . . . ,An, σ (A1) (which are independent since the definition
is unchanged by permuting the order) shows that σ (A2),A3, . . . ,An, σ (A1) are
independent, and after n iterations we have the desired result. �

Remark. The reader should note that it is not easy to show that if A,B ∈ L then
A ∩ B ∈ L, or A ∪ B ∈ L, but it is easy to check that if A,B ∈ L with A ⊂ B

then B − A ∈ L.

Having worked to establish Theorem 2.1.3, we get several corollaries.

Theorem 2.1.4. In order for X1, . . . , Xn to be independent, it is sufficient that for
all x1, . . . , xn ∈ (−∞,∞]

P (X1 ≤ x1, . . . , Xn ≤ xn) =
n∏

i=1

P (Xi ≤ xi)

Proof. Let Ai = the sets of the form {Xi ≤ xi}. Since

{Xi ≤ x} ∩ {Xi ≤ y} = {Xi ≤ x ∧ y},
where (x ∧ y)i = xi ∧ yi = min{xi, yi}. Ai is a π -system. Since we have allowed
xi = ∞, � ∈ Ai . Exercise 1.3.1 implies σ (Ai) = σ (Xi), so the result follows from
Theorem 2.1.3. �

The last result expresses independence of random variables in terms of their dis-
tribution functions. The next two exercises treat density functions and discrete
random variables.

Exercise 2.1.4. Suppose (X1, . . . , Xn) has density f (x1, x2, . . . , xn), that is

P ((X1, X2, . . . , Xn) ∈ A) =
∫

A

f (x) dx for A ∈ Rn
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If f (x) can be written as g1(x1) · · · gn(xn) where the gm ≥ 0 are measurable, then
X1, X2, . . . , Xn are independent. Note that the gm are not assumed to be probability
densities.

Exercise 2.1.5. Suppose X1, . . . , Xn are random variables that take values in
countable sets S1, . . . , Sn. Then in order for X1, . . . , Xn to be independent, it is
sufficient that whenever xi ∈ Si ,

P (X1 = x1, . . . , Xn = xn) =
n∏

i=1

P (Xi = xi)

Our next goal is to prove that functions of disjoint collections of independent
random variables are independent. See Theorem 2.1.6 for the precise statement.
First we will prove an analogous result for σ -fields.

Theorem 2.1.5. Suppose Fi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ m(i) are independent and let
Gi = σ (∪jFi,j ). Then G1, . . . ,Gn are independent.

Proof. Let Ai be the collection of sets of the form ∩jAi,j where Ai,j ∈ Fi,j . Ai

is a π -system that contains � and contains ∪jFi,j , so Theorem 2.1.3 implies
σ (Ai) = Gi are independent. �

Theorem 2.1.6. If for 1 ≤ i ≤ n, 1 ≤ j ≤ m(i), Xi,j are independent and fi :
Rm(i) → R are measurable, then fi(Xi,1, . . . , Xi,m(i)) are independent.

Proof. Let Fi,j = σ (Xi,j ) and Gi = σ (∪jFi,j ). Since fi(Xi,1, . . . , Xi,m(i)) ∈ Gi ,
the desired result follows from Theorem 2.1.5 and Exercise 2.1.1. �

A concrete special case of Theorem 2.1.6 that we will use in a minute is: if
X1, . . . , Xn are independent, then X = X1 and Y = X2 · · ·Xn are independent.
Later, when we study sums Sm = X1 + · · · + Xm of independent random variables
X1, . . . , Xn, we will use Theorem 2.1.6 to conclude that if m < n then Sn − Sm is
independent of the indicator function of the event {max1≤k≤m Sk > x}.

2.1.2 Independence, Distribution, and Expectation

Our next goal is to obtain formulas for the distribution and expectation of indepen-
dent random variables.

Theorem 2.1.7. Suppose X1, . . . , Xn are independent random variables and Xi

has distribution µi . Then (X1, . . . , Xn) has distribution µ1 × · · · × µn.
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Proof. Using the definitions of (i) A1 × · · · × An, (ii) independence, (iii) µi , and
(iv) µ1 × · · · × µn,

P ((X1, . . . , Xn) ∈ A1 × · · · × An) = P (X1 ∈ A1, . . . , Xn ∈ An)

=
n∏

i=1

P (Xi ∈ Ai) =
n∏

i=1

µi(Ai) = µ1 × · · · × µn(A1 × · · · × An)

The last formula shows that the distribution of (X1, . . . , Xn) and the measure
µ1 × · · · × µn agree on sets of the form A1 × · · · × An, a π -system that generates
Rn. So Theorem 2.1.2 implies they must agree. �

Theorem 2.1.8. Suppose X and Y are independent and have distributions µ and
ν. If h : R2 → R is a measurable function with h ≥ 0 or E|h(X, Y )| < ∞, then

Eh(X, Y ) =
∫∫

h(x, y) µ(dx) ν(dy)

In particular, if h(x, y) = f (x)g(y) where f, g : R → R are measurable functions
with f, g ≥ 0 or E|f (X)| and E|g(Y )| < ∞, then

Ef (X)g(Y ) = Ef (X) · Eg(Y )

Proof. Using Theorem 1.6.9 and then Fubini’s theorem (Theorem 1.7.2), we have

Eh(X, Y ) =
∫

R2
h d(µ × ν) =

∫∫
h(x, y) µ(dx) ν(dy)

To prove the second result, we start with the result when f, g ≥ 0. In this case,
using the first result, the fact that g(y) does not depend on x, and then Theorem
1.6.9 twice, we get

Ef (X)g(Y ) =
∫∫

f (x)g(y) µ(dx) ν(dy) =
∫

g(y)
∫

f (x) µ(dx) ν(dy)

=
∫

Ef (X)g(y) ν(dy) = Ef (X)Eg(Y )

Applying the result for nonnegative f and g to |f | and |g| shows E|f (X)g(Y )| =
E|f (X)|E|g(Y )| < ∞, and we can repeat the last argument to prove the desired
result. �

From Theorem 2.1.8, it is only a small step to

Theorem 2.1.9. If X1, . . . , Xn are independent and have (a) Xi ≥ 0 for all i, or
(b) E|Xi | < ∞ for all i, then

E

(
n∏

i=1

Xi

)
=

n∏
i=1

EXi

that is, the expectation on the left exists and has the value given on the right.
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Proof. X = X1 and Y = X2 · · ·Xn are independent by Theorem 2.1.6, so taking
f (x) = |x| and g(y) = |y|, we have E|X1 · · ·Xn| = E|X1|E|X2 · · ·Xn|, and it
follows by induction that if 1 ≤ m ≤ n,

E|Xm · · ·Xn| =
n∏

i=m

E|Xk|

If the Xi ≥ 0, then |Xi | = Xi and the desired result follows from the special case
m = 1. To prove the result in general, note that the special case m = 2 implies
E|Y | = E|X2 · · ·Xn| < ∞, so using Theorem 2.1.8 with f (x) = x and g(y) =
y shows E(X1 · · ·Xn) = EX1 · E(X2 · · ·Xn), and the desired result follows by
induction. �

Example 2.1.2. It can happen that E(XY ) = EX · EY without the variables being
independent. Suppose the joint distribution of X and Y is given by the following
table:

Y

1 0 −1
1 0 a 0

X 0 b c b

−1 0 a 0

where a, b > 0, c ≥ 0, and 2a + 2b + c = 1. Things are arranged so that XY ≡ 0.
Symmetry implies EX = 0 and EY = 0, so E(XY ) = 0 = EXEY . The random
variables are not independent since

P (X = 1, Y = 1) = 0 < ab = P (X = 1)P (Y = 1)

Two random variables X and Y with EX2, EY 2 < ∞ that have EXY = EXEY

are said to be uncorrelated. The finite second moments are needed so that we
know E|XY | < ∞ by the Cauchy-Schwarz inequality.

2.1.3 Sums of Independent Random Variables

Theorem 2.1.10. If X and Y are independent, F (x) = P (X ≤ x), and G(y) =
P (Y ≤ y), then

P (X + Y ≤ z) =
∫

F (z − y) dG(y)

The integral on the right-hand side is called the convolution of F and G and is
denoted F ∗ G(z). The meaning of dG(y) will be explained in the proof.

Proof. Let h(x, y) = 1(x+y≤z). Let µ and ν be the probability measures with distri-
bution functions F and G. Since for fixed y∫

h(x, y) µ(dx) =
∫

1(−∞,z−y](x) µ(dx) = F (z − y)
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using Theorem 2.1.8 gives

P (X + Y ≤ z) =
∫∫

1(x+y≤z) µ(dx) ν(dy)

=
∫

F (z − y) ν(dy) =
∫

F (z − y) dG(y)

The last equality is just a change of notation. We regard dG(y) as a shorthand for
“integrate with respect to the measure ν with distribution function G.” �

To treat concrete examples, we need a special case of Theorem 2.1.10.

Theorem 2.1.11. Suppose that X with density f and Y with distribution function
G are independent. Then X + Y has density

h(x) =
∫

f (x − y) dG(y)

When Y has density g, the last formula can be written as

h(x) =
∫

f (x − y) g(y) dy

Proof. From Theorem 2.1.10, the definition of density function, and Fubini’s the-
orem (Theorem 1.7.2), which is justified since everything is nonnegative, we get

P (X + Y ≤ z) =
∫

F (z − y) dG(y) =
∫ ∫ z

−∞
f (x − y) dx dG(y)

=
∫ z

−∞

∫
f (x − y) dG(y) dx

The last equation says that X + Y has density h(x) = ∫ f (x − y)dG(y). The sec-
ond formula follows from the first when we recall the meaning of dG(y) given in
the proof of Theorem 2.1.10 and use Exercise 1.6.8. �

Theorem 2.1.11 plus some ugly calculus allows us to treat two standard examples.
These facts should be familiar from undergraduate probability.

Example 2.1.3. The gamma density with parameters α and λ is given by

f (x) =
{

λαxα−1e−λx/�(α) for x ≥ 0

0 for x < 0

where �(α) = ∫∞
0 xα−1e−xdx.

Theorem 2.1.12. If X = gamma(α, λ) and Y = gamma(β, λ) are independent,
then X + Y is gamma(α + β, λ). Consequently if X1, . . . Xn are independent
exponential(λ) r.v.’s, then X1 + · · · + Xn, has a gamma(n, λ) distribution.
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Proof. Writing fX+Y (z) for the density function of X + Y and using Theorem
2.1.11

fX+Y (x) =
∫ x

0

λα(x − y)α−1

�(α)
e−λ(x−y) λβyβ−1

�(β)
e−λy dy

= λα+βe−λx

�(α)�(β)

∫ x

0
(x − y)α−1yβ−1 dy

so it suffices to show the integral is xα+β−1�(α)�(β)/�(α + β). To do this, we
begin by changing variables y = xu, dy = x du to get

xα+β−1
∫ 1

0
(1 − u)α−1uβ−1 du =

∫ x

0
(x − y)α−1yβ−1 dy (2.1.1)

There are two ways to complete the proof at this point. The soft solution is to
note that we have shown that the density fX+Y (x) = cα,βe−λλα+βxα+β−1 where

cα,β = 1

�(α)�(β)

∫ 1

0
(1 − u)α−1uβ−1 du

There is only one norming constant cα,β that makes this a probability distribution, so
recalling the definition of the beta distribution, we must have cα,β = 1/�(α + β).

The less elegant approach for those of us who cannot remember the definition
of the beta is to prove the last equality by calculus. Rewriting (2.1.1) with the
right-hand side on the left, multiplying each side of by e−x , integrating from 0 to
∞, and then using Fubini’s theorem on the right we have

�(α + β)
∫ 1

0
(1 − u)α−1uβ−1 du

=
∫ ∞

0

∫ x

0
yβ−1e−y(x − y)α−1e−(x−y) dy dx

=
∫ ∞

0
yβ−1e−y

∫ ∞

x

(x − y)α−1e−(x−y) dx dy = �(α)�(β)

which gives the first result. The second follows from the fact that a gamma(1, λ) is
an exponential with parameter λ and induction. �

Example 2.1.4. Normal distribution. In Example 1.6.2, we introduced the normal
density with mean µ and variance a,

(2πa)−1/2 exp(−(x − µ)2/2a).

Theorem 2.1.13. If X = normal(µ, a) and Y = normal(ν, b) are independent,
then X + Y = normal(µ + ν, a + b).
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Proof. It is enough to prove the result for µ = ν = 0. Suppose Y1 = normal(0, a)
and Y2 = normal(0, b). Then Theorem 2.1.11 implies

fY1+Y2 (z) = 1

2π
√

ab

∫
e−x2/2ae−(z−x)2/2b dx

Dropping the constant in front, the integral can be rewritten as∫
exp

(
−bx2 + ax2 − 2axz + az2

2ab

)
dx

=
∫

exp

(
−a + b

2ab

{
x2 − 2a

a + b
xz + a

a + b
z2

})
dx

=
∫

exp

(
−a + b

2ab

{(
x − a

a + b
z

)2

+ ab

(a + b)2
z2

})
dx

since −{a/(a + b)}2 + {a/(a + b)} = ab/(a + b)2. Factoring out the term that
does not depend on x, the last integral

= exp

(
− z2

2(a + b)

)∫
exp

(
−a + b

2ab

(
x − a

a + b
z

)2
)

dx

= exp

(
− z2

2(a + b)

)√
2πab/(a + b)

since the last integral is the normal density with parameters µ = az/(a + b) and
σ 2 = ab/(a + b) without its proper normalizing constant. Reintroducing the con-
stant we dropped at the beginning,

fY1+Y2 (z) = 1

2π
√

ab

√
2πab/(a + b) exp

(
− z2

2(a + b)

)
�

2.1.4 Constructing Independent Random Variables

The last question that we have to address before we can study independent random
variables is: do they exist? (If they don’t exist, then there is no point in studying
them!) If we are given a finite number of distribution functions Fi, 1 ≤ i ≤ n, it
is easy to construct independent random variables X1, . . . , Xn with P (Xi ≤ x) =
Fi(x). Let � = Rn, F = Rn, Xi(ω1, . . . , ωn) = ωi (the ith coordinate of ω ∈ Rn),
and let P be the measure on Rn that has

P ((a1, b1] × · · · × (an, bn]) = (F1(b1) − F1(a1)) · · · (Fn(bn) − Fn(an))

If µi is the measure with distribution function Fi then P = µ1 × · · · × µn.
To construct an infinite sequence X1, X2, . . . of independent random variables

with given distribution functions, we want to perform the last construction on the
infinite product space

RN = {(ω1, ω2, . . .) : ωi ∈ R} = {functions ω : N → R}
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where N = {1, 2, . . .} and N stands for natural numbers. We define Xi(ω) = ωi

and we equip RN with the product σ -field RN, which is generated by the finite
dimensional sets = sets of the form {ω : ωi ∈ Bi, 1 ≤ i ≤ n} where Bi ∈ R. It is
clear how we want to define P for finite dimensional sets. To assert the existence
of a unique extension to RN, we use Theorem A.3.1:

Theorem 2.1.14. Kolmogorov’s extension theorem. Suppose we are given prob-
ability measures µn on (Rn,Rn) that are consistent, that is,

µn+1((a1, b1] × · · · × (an, bn] × R) = µn((a1, b1] × · · · × (an, bn])

Then there is a unique probability measure P on (RN,RN) with

P (ω : ωi ∈ (ai, bi], 1 ≤ i ≤ n) = µn((a1, b1] × · · · × (an, bn])

In what follows we will need to construct sequences of random variables that
take values in other measurable spaces (S,S). Unfortunately, Theorem 2.1.14 is not
valid for arbitrary measurable spaces. The first example (on an infinite product of
different spaces �1 × �2 × . . .) was constructed by Andersen and Jessen (1948).
(See Halmos, 1950, p. 214, or Neveu, 1965, p. 84.) For an example in which all
the spaces �i are the same, see Wegner (1973). Fortunately, there is a class of
spaces that is adequate for all of our results and for which the generalization of
Kolmogorov’s theorem is trivial.

(S,S) is said to be nice if there is a 1-1 map ϕ from S into R so that ϕ and ϕ−1 are
both measurable.

Such spaces are often called standard Borel spaces, but we already have too
many things named after Borel. The next result shows that most spaces arising in
applications are nice.

Theorem 2.1.15. If S is a Borel subset of a complete separable metric space M ,
and S is the collection of Borel subsets of S, then (S,S) is nice.

Proof. We begin with the special case S = [0, 1)N with metric

ρ(x, y) =
∞∑

n=1

|xn − yn|/2n

If x = (x1, x2, x3, . . .), expand each component in binary xj = .x
j

1 x
j

2 x
j

3 . . . (taking
the expansion with an infinite number of 0’s). Let

ϕo(x) = .x1
1x

1
2x

2
1x

1
3x

2
2x

3
1x

1
4x

2
3x

3
2x

4
1 . . .

To treat the general case, we observe that by letting

d(x, y) = ρ(x, y)/(1 + ρ(x, y))
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(for more details, see Exercise 2.1.6), we can suppose that the metric has d(x, y) <

1 for all x, y. Let q1, q2, . . . be a countable dense set in S. Let

ψ(x) = (d(x, q1), d(x, q2), . . .).

ψ : S → [0, 1)N is continuous and 1-1. ϕo ◦ ψ gives the desired mapping. �

Exercise 2.1.6. Let ρ(x, y) be a metric. (i) Suppose h is differentiable with h(0) =
0, h′(x) > 0 for x > 0, and h′(x) decreasing on [0,∞). Then h(ρ(x, y)) is a metric.
(ii) h(x) = x/(x + 1) satisfies the hypotheses in (i).

Caveat emptor. The proof above is somewhat light when it comes to details. For a
more comprehensive discussion, see Section 13.1 of Dudley (1989). An interesting
consequence of the analysis there is that for Borel subsets of a complete separable
metric space the continuum hypothesis is true: that is, all sets are either finite,
countably infinite, or have the cardinality of the real numbers.

Exercises

2.1.7. Let � = (0, 1), F = Borel sets, P = Lebesgue measure. Xn(ω) =
sin(2πnω), n = 1, 2, . . . are uncorrelated but not independent.

2.1.8. (i) Show that if X and Y are independent with distributions µ and ν, then

P (X + Y = 0) =
∑

y

µ({−y})ν({y})

(ii) Conclude that if X has continuous distribution, P (X = Y ) = 0.

2.1.9. Prove directly from the definition that if X and Y are independent and f and
g are measurable functions, then f (X) and g(Y ) are independent.

2.1.10. Let K ≥ 3 be a prime and let X and Y be independent random variables
that are uniformly distributed on {0, 1, . . . , K − 1}. For 0 ≤ n < K , let Zn =
X + nY mod K . Show that Z0, Z1, . . . , ZK−1 are pairwise independent, that is,
each pair is independent. They are not independent because if we know the values
of two of the variables, then we know the values of all the variables.

2.1.11. Find four random variables taking values in {−1, 1} so that any three are
independent but all four are not. Hint: Consider products of independent random
variables.

2.1.12. Let � = {1, 2, 3, 4}, F = all subsets of �, and P ({i}) = 1/4. Give an
example of two collections of sets A1 and A2 that are independent but whose
generated σ -fields are not.
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2.1.13. Show that if X and Y are independent, integer-valued random variables,
then

P (X + Y = n) =
∑
m

P (X = m)P (Y = n − m)

2.1.14. In Example 1.6.4, we introduced the Poisson distribution with parameter
λ, which is given by P (Z = k) = e−λλk/k! for k = 0, 1, 2, . . . Use the previous
exercise to show that if X = Poisson(λ) and Y = Poisson(µ) are independent, then
X + Y = Poisson(λ + µ).

2.1.15. X is said to have a Binomial(n, p) distribution if

P (X = m) =
(

n

m

)
pm(1 − p)n−m

(i) Show that if X = Binomial(n, p) and Y = Binomial(m, p) are independent,
then X + Y = Binomial(n + m, p). (ii) Look at Example 1.6.3 and use induc-
tion to conclude that the sum of n independent Bernoulli(p) random variables is
Binomial(n, p).

2.1.16. It should not be surprising that the distribution of X + Y can be F ∗ G

without the random variables being independent. Suppose X, Y ∈ {0, 1, 2} and
take each value with probability 1/3. (a) Find the distribution of X + Y assuming
X and Y are independent. (b) Find all the joint distributions (X, Y ) so that the
distribution of X + Y is the same as the answer to (a).

2.1.17. Let X, Y ≥ 0 be independent with distribution functions F and G. Find
the distribution function of XY .

2.1.18. If we want an infinite sequence of coin tossings, we do not have to use
Kolmogorov’s theorem. Let � be the unit interval (0,1) equipped with the Borel
sets F and Lebesgue measure P. Let Yn(ω) = 1 if [2nω] is odd and 0 if [2nω] is
even. Show that Y1, Y2, . . . are independent with P (Yk = 0) = P (Yk = 1) = 1/2.

2.2 Weak Laws of Large Numbers

In this section, we will prove several “weak laws of large numbers.” The first order
of business is to define the mode of convergence that appears in the conclusions
of the theorems. We say that Yn converges to Y in probability if for all ε > 0,
P (|Yn − Y | > ε) → 0 as n → ∞.

2.2.1 L2 Weak Laws

Our first set of weak laws come from computing variances and using Chebyshev’s
inequality. Extending a definition given in Example 2.1.2 for two random variables,
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a family of random variables Xi , i ∈ I with EX2
i < ∞ is said to be uncorrelated

if we have

E(XiXj ) = EXiEXj whenever i �= j

The key to our weak law for uncorrelated random variables, Theorem 2.2.3, is:

Theorem 2.2.1. Let X1, . . . , Xn have E(X2
i ) < ∞ and be uncorrelated. Then

var (X1 + · · · + Xn) = var (X1) + · · · + var (Xn)

where var (Y ) = the variance of Y.

Proof. Let µi = EXi and Sn =∑n
i=1 Xi . Since ESn =∑n

i=1 µi , using the defini-
tion of the variance, writing the square of the sum as the product of two copies of
the sum, and then expanding, we have

var (Sn) = E(Sn − ESn)2 = E

(
n∑

i=1

(Xi − µi)

)2

= E

⎛
⎝ n∑

i=1

n∑
j=1

(Xi − µi)(Xj − µj )

⎞
⎠

=
n∑

i=1

E(Xi − µi)
2 + 2

n∑
i=1

i−1∑
j=1

E((Xi − µi)(Xj − µj ))

where in the last equality we have separated out the diagonal terms i = j and used
the fact that the sum over 1 ≤ i < j ≤ n is the same as the sum over 1 ≤ j < i ≤ n.

The first sum is var (X1) + · · · + var (Xn), so we want to show that the second
sum is zero. To do this, we observe

E((Xi − µi)(Xj − µj )) = EXiXj − µiEXj − µjEXi + µiµj

= EXiXj − µiµj = 0

since Xi and Xj are uncorrelated. �

In words, Theorem 2.2.1 says that for uncorrelated random variables, the variance
of the sum is the sum of the variances. The second ingredient in our proof of
Theorem 2.2.3 is the following consequence of (1.6.4):

var (cY ) = c2 var (Y )

The third and final ingredient is

Lemma 2.2.2. If p > 0 and E|Zn|p → 0 then Zn → 0 in probability.

Proof. Chebyshev’s inequality, Theorem 1.6.4, with ϕ(x) = xp and X = |Zn|
implies that if ε > 0 then P (|Zn| ≥ ε) ≤ ε−pE|Zn|p → 0. �
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We can now easily prove

Theorem 2.2.3. L2 weak law. Let X1, X2, . . . be uncorrelated random variables
with EXi = µ and var (Xi) ≤ C < ∞. If Sn = X1 + · · · + Xn then as n → ∞,
Sn/n → µ in L2 and in probability.

Proof. To prove L2 convergence, observe that E(Sn/n) = µ, so

E(Sn/n − µ)2 = var (Sn/n) = 1

n2
( var (X1) + · · · + var (Xn)) ≤ Cn

n2
→ 0

To conclude there is also convergence in probability, we apply the Lemma 2.2.2 to
Zn = Sn/n − µ. �

The most important special case of Theorem 2.2.3 occurs when X1, X2, . . . are
independent random variables that all have the same distribution. In the jargon,
they are independent and identically distributed, or i.i.d. for short. Theorem
2.2.3 tells us in this case that if EX2

i < ∞, then Sn/n converges to µ = EXi in
probability as n → ∞. In Theorem 2.2.9 below, we will see that E|Xi | < ∞ is
sufficient for the last conclusion, but for the moment we will concern ourselves
with consequences of the weaker result.

Our first application is to a situation that on the surface has nothing to do with
randomness.

Example 2.2.1. Polynomial approximation. Let f be a continuous function on
[0,1], and let

fn(x) =
n∑

m=0

(
n

m

)
xm(1 − x)n−mf (m/n) where

(
n

m

)
= n!

m!(n − m)!

be the Bernstein polynomial of degree n associated with f . Then as n → ∞

sup
x∈[0,1]

|fn(x) − f (x)| → 0

Proof. First observe that if Sn is the sum of n independent random variables with
P (Xi = 1) = p and P (Xi = 0) = 1 − p, then EXi = p, var (Xi) = p(1 − p) and

P (Sn = m) =
(

n

m

)
pm(1 − p)n−m

so Ef (Sn/n) = fn(p). Theorem 2.2.3 tells us that as n → ∞, Sn/n → p in prob-
ability. The last two observations motivate the definition of fn(p), but to prove the
desired conclusion we have to use the proof of Theorem 2.2.3 rather than the result
itself.
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Combining the proof of Theorem 2.2.3 with our formula for the variance of Xi

and the fact that p(1 − p) ≤ 1/4 when p ∈ [0, 1], we have

P (|Sn/n − p| > δ) ≤ var (Sn/n)

δ2
= p(1 − p)

nδ2
≤ 1

4nδ2

To conclude now that Ef (Sn/n) → f (p), let M = supx∈[0,1] |f (x)|, let ε > 0, and
pick δ > 0 so that if |x − y| < δ then |f (x) − f (y)| < ε. (This is possible since
a continuous function is uniformly continuous on each bounded interval.) Now,
using Jensen’s inequality, Theorem 1.6.2, gives

|Ef (Sn/n) − f (p)| ≤ E|f (Sn/n) − f (p)| ≤ ε + 2MP (|Sn/n − p| > δ)

Letting n → ∞, we have lim supn→∞ |Ef (Sn/n) − f (p)| ≤ ε, but ε is arbitrary
so this gives the desired result. �

Our next result is for comic relief.

Example 2.2.2. A high-dimensional cube is almost the boundary of a ball.
Let X1, X2, . . . be independent and uniformly distributed on (−1, 1). Let Yi = X2

i ,
which are independent since they are functions of independent random variables.
EYi = 1/3 and var (Yi) ≤ EY 2

i ≤ 1, so Theorem 2.2.3 implies

(X2
1 + · · · + X2

n)/n → 1/3 in probability as n → ∞
Let An,ε ={x ∈ Rn : (1−ε)

√
n/3< |x|< (1 + ε)

√
n/3} where |x|= (x2

1 + · · · +
x2

n)1/2. If we let |S| denote the Lebesgue measure of S, then the last conclu-
sion implies that for any ε > 0, |An,ε ∩ (−1, 1)n|/2n → 1, or, in words, most of
the volume of the cube (−1, 1)n comes from An,ε , which is almost the boundary of
the ball of radius

√
n/3.

2.2.2 Triangular Arrays

Many classical limit theorems in probability concern arrays Xn,k, 1 ≤ k ≤ n of
random variables and investigate the limiting behavior of their row sums Sn =
Xn,1 + · · · + Xn,n. In most cases, we assume that the random variables on each
row are independent, but for the next trivial (but useful) result, we do not need that
assumption. Indeed, here Sn can be any sequence of random variables.

Theorem 2.2.4. Let µn = ESn, σ 2
n = var (Sn). If σ 2

n /b2
n → 0 then

Sn − µn

bn

→ 0 in probability

Proof. Our assumptions imply E((Sn − µn)/bn)2 = b−2
n var (Sn) → 0, so the

desired conclusion follows from Lemma 2.2.2. �
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We will now give three applications of Theorem 2.2.4. For these three examples,
the following calculation is useful:

n∑
m=1

1

m
≥
∫ n

1

dx

x
≥

n∑
m=2

1

m

log n ≤
n∑

m=1

1

m
≤ 1 + log n (2.2.1)

Example 2.2.3. Coupon collector’s problem. Let X1, X2, . . . be i.i.d. uniform on
{1, 2, . . . , n}. To motivate the name, think of collecting baseball cards (or coupons).
Suppose that the ith item we collect is chosen at random from the set of possibilities
and is independent of the previous choices. Let τn

k = inf{m : |{X1, . . . , Xm}| = k}
be the first time we have k different items. In this problem, we are interested in
the asymptotic behavior of Tn = τn

n , the time to collect a complete set. It is easy to
see that τn

1 = 1. To make later formulas work out nicely, we will set τn
0 = 0. For

1 ≤ k ≤ n, Xn,k ≡ τn
k − τn

k−1 represents the time to get a choice different from our
first k − 1, so Xn,k has a geometric distribution with parameter 1 − (k − 1)/n and
is independent of the earlier waiting times Xn,j , 1 ≤ j < k. Example 1.6.5 tells
us that if X has a geometric distribution with parameter p, then EX = 1/p and
var (X) ≤ 1/p2. Using the linearity of expected value, bounds on

∑n
m=1 1/m in

(2.2.1), and Theorem 2.2.1, we see that

ETn =
n∑

k=1

(
1 − k − 1

n

)−1

= n

n∑
m=1

m−1 ∼ n log n

var (Tn) ≤
n∑

k=1

(
1 − k − 1

n

)−2

= n2
n∑

m=1

m−2 ≤ n2
∞∑

m=1

m−2

Taking bn = n log n and using Theorem 2.2.4, it follows that

Tn − n
∑n

m=1 m−1

n log n
→ 0 in probability

and hence Tn/(n log n) → 1 in probability.
For a concrete example, take n = 365, that is, we are interested in the number

of people we need to meet until we have seen someone with every birthday. In this
case the limit theorem says it will take about 365 log 365 = 2153.46 tries to get a
complete set. Note that the number of trials is 5.89 times the number of birthdays.

Example 2.2.4. Random permutations. Let �n consist of the n! permutations
(i.e., one-to-one mappings from {1, . . . , n} onto {1, . . . , n}) and make this into a
probability space by assuming all the permutations are equally likely. This appli-
cation of the weak law concerns the cycle structure of a random permutation π , so
we begin by describing the decompostion of a permutation into cycles. Consider
the sequence 1, π (1), π (π (1)), . . . Eventually, πk(1) = 1. When it does, we say the
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first cycle is completed and has length k. To start the second cycle, we pick the
smallest integer i not in the first cycle and look at i, π (i), π (π (i)), . . . until we
come back to i. We repeat the construction until all the elements are accounted for.
For example, if the permutation is

i 1 2 3 4 5 6 7 8 9
π (i) 3 9 6 8 2 1 5 4 7

then the cycle decomposition is (136) (2975) (48).
Let Xn,k = 1 if a right parenthesis occurs after the kth number in the decompo-

sition, Xn,k = 0 otherwise and let Sn = Xn,1 + · · · + Xn,n = the number of cycles.
(In the example, X9,3 = X9,7 = X9,9 = 1, and the other X9,m = 0.) I claim that

Lemma 2.2.5. Xn,1, . . . , Xn,n are independent and P (Xn,j = 1) = 1
n−j+1 .

Intuitively, this is true since, independent of what has happened so far, there are
n − j + 1 values that have not appeared in the range, and only one of them will
complete the cycle.

Proof. To prove this, it is useful to generate the permutation in a special way. Let
i1 = 1. Pick j1 at random from {1, . . . , n} and let π (i1) = j1. If j1 �= 1, let i2 = j1.
If j1 = 1, let i2 = 2. In either case, pick j2 at random from {1, . . . , n} − {j1}. In
general, if i1, j1, . . . , ik−1, jk−1 have been selected and we have set π (i�) = j� for
1 ≤ � < k, then (a) if jk−1 ∈ {i1, . . . , ik−1} so a cycle has just been completed,
we let ik = inf({1, . . . , n} − {i1, . . . , ik−1}) and (b) if jk−1 /∈ {i1, . . . , ik−1}, we let
ik = jk−1. In either case we pick jk at random from {1, . . . , n} − {j1, . . . , jk−1}
and let π (ik) = jk.

The construction above is tedious to write out, or to read, but now I can claim
with a clear conscience that Xn,1, . . . , Xn,n are independent and P (Xn,k = 1) =
1/(n − j + 1) because when we pick jk, there are n − j + 1 values in {1, . . . , n} −
{j1, . . . , jk−1} and only one of them will complete the cycle. �

To check the conditions of Theorem 2.2.4, now note

ESn = 1/n + 1/(n − 1) + · · · + 1/2 + 1

var (Sn) =
n∑

k=1

var (Xn,k) ≤
n∑

k=1

E(X2
n,k) =

n∑
k=1

E(Xn,k) = ESn

where the results on the second line follow from Theorem 2.2.1, the fact that
var (Y ) ≤ EY 2, and X2

n,k = Xn,k. Now ESn ∼ log n, so if bn = (log n).5+ε with
ε > 0, the conditions of Theorem 2.2.4 are satisfied and it follows that

Sn −∑n
m=1 m−1

(log n).5+ε
→ 0 in probability



2.2 Weak Laws of Large Numbers 59

Taking ε = 0.5, we have that Sn/ log n → 1 in probability, but (∗) says more. We
will see in Example 3.4.6 that (∗) is false if ε = 0.

Example 2.2.5. An occupancy problem. Suppose we put r balls at random in n

boxes, that is, all nr assignments of balls to boxes have equal probability. Let Ai

be the event that the ith box is empty and Nn = the number of empty boxes. It is
easy to see that

P (Ai) = (1 − 1/n)r and ENn = n(1 − 1/n)r

A little calculus (take logarithms) shows that if r/n → c, ENn/n → e−c. (For a
proof, see Lemma 3.1.1.) To compute the variance of Nn, we observe that

EN2
n = E

(
n∑

m=1

1Am

)2

=
∑

1≤k,m≤n

P (Ak ∩ Am)

var (Nn) = EN2
n − (ENn)2 =

∑
1≤k,m≤n

P (Ak ∩ Am) − P (Ak)P (Am)

= n(n − 1){(1 − 2/n)r − (1 − 1/n)2r} + n{(1 − 1/n)r − (1 − 1/n)2r}
The first term comes from k �= m and the second from k = m. Since (1 −
2/n)r → e−2c and (1 − 1/n)r → e−c, it follows easily from the last formula that
var (Nn/n) = var (Nn)/n2 → 0. Taking bn = n in Theorem 2.2.4 now we have

Nn/n → e−c in probability

2.2.3 Truncation

To truncate a random variable X at level M means to consider

X̄ = X1(|X|≤M) =
{

X if |X| ≤ M

0 if |X| > M

To extend the weak law to random variables without a finite second moment, we
will truncate and then use Chebyshev’s inequality. We begin with a very general
but also very useful result. Its proof is easy because we have assumed what we
need for the proof. Later we will have to work a little to verify the assumptions in
special cases, but the general result serves to identify the essential ingredients in
the proof.

Theorem 2.2.6. Weak law for triangular arrays. For each n let Xn,k, 1 ≤ k ≤ n,
be independent. Let bn > 0 with bn → ∞, and let X̄n,k = Xn,k1(|Xn,k |≤bn). Suppose
that as n → ∞
(i)
∑n

k=1 P (|Xn,k| > bn) → 0, and
(ii) b−2

n

∑n
k=1 EX̄2

n,k → 0.
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If we let Sn = Xn,1 + · · · + Xn,n and put an =∑n
k=1 EX̄n,k, then

(Sn − an)/bn → 0 in probability

Proof. Let S̄n = X̄n,1 + · · · + X̄n,n. Clearly,

P

(∣∣∣∣Sn − an

bn

∣∣∣∣ > ε

)
≤ P (Sn �= S̄n) + P

(∣∣∣∣ S̄n − an

bn

∣∣∣∣ > ε

)

To estimate the first term, we note that

P (Sn �= S̄n) ≤ P
(∪n

k=1{X̄n,k �= Xn,k}
) ≤

n∑
k=1

P (|Xn,k| > bn) → 0

by (i). For the second term, we note that Chebyshev’s inequality, an = ES̄n,
Theorem 2.2.1, and var (X) ≤ EX2 imply

P

(∣∣∣∣ S̄n − an

bn

∣∣∣∣ > ε

)
≤ ε−2E

∣∣∣∣ S̄n − an

bn

∣∣∣∣
2

= ε−2b−2
n var (S̄n)

= (bnε)−2
n∑

k=1

var (X̄n,k) ≤ (bnε)−2
n∑

k=1

E(X̄n,k)2 → 0

by (ii), and the proof is complete. �

From Theorem 2.2.6, we get the following result for a single sequence.

Theorem 2.2.7. Weak law of large numbers. Let X1, X2, . . . be i.i.d. with

xP (|Xi | > x) → 0 as x → ∞
Let Sn = X1 + · · · + Xn and let µn = E(X11(|X1|≤n)). Then Sn/n − µn → 0 in
probability.

Remark. The assumption in the theorem is necessary for the existence of constants
an so that Sn/n − an → 0. See Feller, Vol. II (1971), pp. 234–6, for a proof.

Proof. We will apply Theorem 2.2.6 with Xn,k = Xk and bn = n. To check (i), we
note

n∑
k=1

P (|Xn,k| > n) = nP (|Xi | > n) → 0

by assumption. To check (ii), we need to show n−2 · nEX̄2
n,1 → 0. To do this, we

need the following result, which will be useful several times below.

Lemma 2.2.8. If Y ≥ 0 and p > 0 then E(Yp) = ∫∞
0 pyp−1P (Y > y) dy.
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Proof. Using the definition of expected value, Fubini’s theorem (for nonnegative
random variables), and then calculating the resulting integrals gives∫ ∞

0
pyp−1P (Y > y) dy =

∫ ∞

0

∫
�

pyp−11(Y>y) dP dy

=
∫

�

∫ ∞

0
pyp−11(Y>y) dy dP

=
∫

�

∫ Y

0
pyp−1 dy dP =

∫
�

Yp dP = EYp

which is the desired result. �

Returning to the proof of Theorem 2.2.7, we observe that Lemma 2.2.8 and the
fact that X̄n,1 = X11(|X1|≤n) imply

E(X̄2
n,1) =

∫ ∞

0
2yP (|X̄n,1| > y) dy ≤

∫ n

0
2yP (|X1| > y) dy

since P (|X̄n,1| > y) = 0 for y ≥ n and = P (|X1| > y) − P (|X1| > n) for y ≤ n.
We claim that yP (|X1| > y) → 0 implies

E(X̄2
n,1)/n = 1

n

∫ n

0
2yP (|X1| > y) dy → 0

as n → ∞. Intuitively, this holds since the right-hand side is the average of g(y) =
2yP (|X1| > y) over [0, n] and g(y) → 0 as y → ∞. To spell out the details, note
that 0 ≤ g(y) ≤ 2y and g(y) → 0 as y → ∞, so we must have M = sup g(y) <

∞. If we let εK = sup{g(y) : y > K}, then by considering the integrals over [0, K]
and [K, n] separately∫ n

0
2yP (|X1| > y) dy ≤ KM + (n − K)εK

Dividing by n and letting n → ∞, we have

lim sup
n→∞

1

n

∫ n

0
2yP (|X1| > y) dy ≤ εK

Since K is arbitrary and εK → 0 as K → ∞, the desired result follows. �

Finally, we have the weak law in its most familiar form.

Theorem 2.2.9. Let X1, X2, . . . be i.i.d. with E|Xi | < ∞. Let Sn = X1 + · · · + Xn

and let µ = EX1. Then Sn/n → µ in probability.

Remark. Applying Lemma 2.2.8 with p = 1 − ε and ε > 0, we see that
xP (|X1| > x) → 0 implies E|X1|1−ε < ∞, so the assumption in is not much
weaker than finite mean.
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Proof. Two applications of the dominated convergence theorem imply

xP (|X1| > x) ≤ E(|X1|1(|X1|>x)) → 0 as x → ∞
µn = E(X11(|X1|≤n)) → E(X1) = µ as n → ∞

Using Theorem 2.2.7, we see that if ε > 0 then P (|Sn/n − µn| > ε/2) → 0. Since
µn → µ, it follows that P (|Sn/n − µ| > ε) → 0. �

Example 2.2.6. For an example where the weak law does not hold, suppose
X1, X2, . . . are independent and have a Cauchy distribution:

P (Xi ≤ x) =
∫ x

−∞

dt

π (1 + t2)

As x → ∞,

P (|X1| > x) = 2
∫ ∞

x

dt

π (1 + t2)
∼ 2

π

∫ ∞

x

t−2dt = 2

π
x−1

From the necessity of the condition above, we can conclude that there is no sequence
of constants µn so that Sn/n − µn → 0. We will see later that Sn/n always has the
same distribution as X1. (See Exercise 3.3.8.)

As the next example shows, we can have a weak law in some situations in which
E|X| = ∞.

Example 2.2.7. The “St. Petersburg paradox.” Let X1, X2, . . . be independent
random variables with

P (Xi = 2j ) = 2−j for j ≥ 1

In words, you win 2j dollars if it takes j tosses to get a heads. The paradox here is
that EX1 = ∞, but you clearly wouldn’t pay an infinite amount to play this game.
An application of Theorem 2.2.6 will tell us how much we should pay to play the
game n times.

In this example, Xn,k = Xk. To apply Theorem 2.2.6, we have to pick bn. To do
this, we are guided by the principle that in checking (ii) we want to take bn as small
as we can and have (i) hold. With this in mind, we observe that if m is an integer,

P (X1 ≥ 2m) =
∞∑

j=m

2−j = 2−m+1

Let m(n) = log2 n + K(n) where K(n) → ∞ and is chosen so that m(n) is an
integer (and hence the displayed formula is valid). Letting bn = 2m(n), we have

nP (X1 ≥ bn) = n2−m(n)+1 = 2−K(n)+1 → 0
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proving (i). To check (ii), we observe that if X̄n,k = Xk1(|Xk |≤bn) then

EX̄2
n,k =

m(n)∑
j=1

22j · 2−j ≤ 2m(n)
∞∑

k=0

2−k = 2bn

So the expression in (ii) is smaller than 2n/bn, which → 0 since

bn = 2m(n) = n2K(n) and K(n) → ∞
The last two steps are to evaluate an and to apply Theorem 2.2.6.

EX̄n,k =
m(n)∑
j=1

2j 2−j = m(n)

so an = nm(n). We have m(n) = log n + K(n) (here and until the end of the
example all logs are base 2), so if we pick K(n)/ log n → 0, then an/n log n → 1
as n → ∞. Using Theorem 2.2.6 now, we have

Sn − an

n2K(n)
→ 0 in probability

If we suppose that K(n) ≤ log log n for large n, then the last conclusion holds
with the denominator replaced by n log n, and it follows that Sn/(n log n) → 1 in
probability.

Returning to our original question, we see that a fair price for playing n times is
$ log2 n per play. When n = 1024, this is $10 per play. Nicolas Bernoulli wrote in
1713, “There ought not to exist any even halfway sensible person who would not
sell the right of playing the game for 40 ducates (per play).” If the wager were 1
ducat, one would need 240 ≈ 1012 plays to start to break even.

Exercises

2.2.1. Let X1, X2, . . . be uncorrelated with EXi = µi and var (Xi)/i → 0 as i →
∞. Let Sn = X1 + · · · + Xn and νn = ESn/n then as n → ∞, Sn/n − νn → 0 in
L2 and in probability.

2.2.2. The L2 weak law generalizes immediately to certain dependent sequences.
Suppose EXn = 0 and EXnXm ≤ r(n − m) for m ≤ n (no absolute value on the
left-hand side!) with r(k) → 0 as k → ∞. Show that (X1 + · · · + Xn)/n → 0 in
probability.

2.2.3. Monte Carlo integration. (i) Let f be a measurable function on [0, 1] with∫ 1
0 |f (x)|dx < ∞. Let U1, U2, . . . be independent and uniformly distributed on

[0, 1], and let

In = n−1(f (U1) + · · · + f (Un))

Show that In → I ≡ ∫ 1
0 f dx in probability. (ii) Suppose

∫ 1
0 |f (x)|2 dx < ∞. Use

Chebyshev’s inequality to estimate P (|In − I | > a/n1/2).
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2.2.4. Let X1, X2, . . . be i.i.d. with P (Xi = (−1)kk) = C/k2 log k for k ≥ 2 where
C is chosen to make the sum of the probabilities = 1. Show that E|Xi | = ∞, but
there is a finite constant µ so that Sn/n → µ in probability.

2.2.5. Let X1, X2, . . . be i.i.d. with P (Xi > x) = e/x log x for x ≥ e. Show that
E|Xi | = ∞, but there is a sequence of constants µn → ∞ so that Sn/n − µn → 0
in probability.

2.2.6. (i) Show that if X ≥ 0 is integer valued EX =∑n≥1 P (X ≥ n). (ii) Find a
similar expression for EX2.

2.2.7. Generalize Lemma 2.2.8 to conclude that if H (x) = ∫(−∞,x] h(y) dy with
h(y) ≥ 0, then

E H (X) =
∫ ∞

−∞
h(y)P (X ≥ y) dy

An important special case is H (x) = exp(θx) with θ > 0.

2.2.8. An unfair “fair game.” Let pk = 1/2kk(k + 1), k = 1, 2, . . . and p0 =
1 −∑k≥1 pk.

∞∑
k=1

2kpk = (1 − 1

2
) + (

1

2
− 1

3
) + . . . = 1

so if we let X1, X2, . . . be i.i.d. with P (Xn = −1) = p0 and

P (Xn = 2k − 1) = pk for k ≥ 1

then EXn = 0. Let Sn = X1 + · · · + Xn. Use (5.5) with bn = 2m(n) where m(n) =
min{m : 2−mm−3/2 ≤ n−1} to conclude that

Sn/(n/ log2 n) → −1 in probability

2.2.9. Weak law for positive variables. Suppose X1, X2, . . . are i.i.d., P (0 ≤
Xi < ∞) = 1 and P (Xi > x) > 0 for all x. Let µ(s) = ∫ s

0 x dF (x) and ν(s) =
µ(s)/s(1 − F (s)). It is known that there exist constants an so that Sn/an → 1 in
probability, if and only if ν(s) → ∞ as s → ∞. Pick bn ≥ 1 so that nµ(bn) = bn

(this works for large n), and use Theorem 2.2.6 to prove that the condition is
sufficient.

2.3 Borel-Cantelli Lemmas

If An is a sequence of subsets of �, we let

lim sup An = lim
m→∞ ∪∞

n=mAn = {ω that are in infinitely many An}

(the limit exists since the sequence is decreasing in m) and let

lim inf An = lim
m→∞ ∩∞

n=mAn = {ω that are in all but finitely many An}
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(the limit exists since the sequence is increasing in m). The names lim sup and
lim inf can be explained by noting that

lim sup
n→∞

1An
= 1(lim sup An) lim inf

n→∞ 1An
= 1(lim inf An)

It is common to write lim sup An = {ω : ω ∈ An i.o.}, where i.o. stands for infinitely
often. An example which illustrates the use of this notation is “Xn → 0 a.s. if
and only if for all ε > 0, P (|Xn| > ε i.o.) = 0.” The reader will see many other
examples below. The next result should be familiar from measure theory even
though its name may not be.

Theorem 2.3.1. Borel-Cantelli lemma. If
∑∞

n=1 P (An) < ∞ then

P (An i.o.) = 0.

Proof. Let N =∑k 1Ak
be the number of events that occur. Fubini’s theorem

implies EN =∑k P (Ak) < ∞, so we must have N < ∞ a.s. �

The next result is a typical application of the Borel-Cantelli lemma.

Theorem 2.3.2. Xn → X in probability if and only if for every subsequence Xn(m)

there is a further subsequence Xn(mk) that converges almost surely to X.

Proof. Let εk be a sequence of positive numbers that ↓ 0. For each k, there is an
n(mk) > n(mk−1) so that P (|Xn(mk) − X| > εk) ≤ 2−k. Since

∞∑
k=1

P (|Xn(mk) − X| > εk) < ∞

the Borel-Cantelli lemma implies P (|Xn(mk) − X| > εk i.o.) = 0, that is, Xn(mk) →
X a.s. To prove the second conclusion, we note that if for every subsequence Xn(m)

there is a further subsequence Xn(mk) that converges almost surely to X then we
can apply the next lemma to the sequence of numbers yn = P (|Xn − X| > δ) for
any δ > 0 to get the desired result. �

Theorem 2.3.3. Let yn be a sequence of elements of a topological space. If every
subsequence yn(m) has a further subsequence yn(mk) that converges to y, then
yn → y.

Proof. If yn �→ y, then there is an open set G containing y and a subsequence yn(m)

with yn(m) �∈ G for all m, but clearly no subsequence of yn(m) converges to y. �

Remark. Since there is a sequence of random variables that converges in proba-
bility but not a.s. (for an example, see Exercises 2.3.13 or 2.3.14), it follows from
Theorem 2.3.3 that a.s. convergence does not come from a metric, or even from
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a topology. Exercise 2.3.8 will give a metric for convergence in probability, and
Exercise 2.3.9 will show that the space of random variables is a complete space
under this metric.

Theorem 2.3.2 allows us to upgrade convergence in probability to convergence
almost surely. An example of the usefulness of this is

Theorem 2.3.4. If f is continuous and Xn → X in probability then f (Xn) →
f (X) in probability. If, in addition, f is bounded, then Ef (Xn) → Ef (X).

Proof. If Xn(m) is a subsequence then Theorem 2.3.2 implies there is a further
subsequence Xn(mk) → X almost surely. Since f is continuous, Exercise 1.3.3
implies f (Xn(mk)) → f (X) almost surely and Theorem 2.3.2 implies f (Xn) →
f (X) in probability. If f is bounded, then the bounded convergence theorem
implies Ef (Xn(mk)) → Ef (X), and applying Theorem 2.3.3 to yn = Ef (Xn) gives
the desired result. �

As our second application of the Borel-Cantelli lemma, we get our first strong
law of large numbers:

Theorem 2.3.5. Let X1, X2, . . . be i.i.d. with EXi = µ and EX4
i < ∞. If Sn =

X1 + · · · + Xn then Sn/n → µ a.s.

Proof. By letting X′
i = Xi − µ, we can suppose without loss of generality that

µ = 0. Now

ES4
n = E

(
n∑

i=1

Xi

)4

= E
∑

1≤i,j,k,�≤n

XiXjXkX�

Terms in the sum of the form E(X3
i Xj ), E(X2

i XjXk), and E(XiXjXkX�) are 0
(if i, j, k, � are distinct) since the expectation of the product is the product of the
expectations, and in each case one of the terms has expectation 0. The only terms
that do not vanish are those of the form EX4

i and EX2
i X

2
j = (EX2

i )2. There are n

and 3n(n − 1) of these terms, respectively. (In the second case we can pick the two
indices in n(n − 1)/2 ways, and with the indices fixed, the term can arise in a total
of six ways.) The last observation implies

ES4
n = nEX4

1 + 3(n2 − n)(EX2
1)2 ≤ Cn2

where C < ∞. Chebyshev’s inequality gives us

P (|Sn| > nε) ≤ E(S4
n)/(nε)4 ≤ C/(n2ε4)

Summing on n and using the Borel-Cantelli lemma gives P (|Sn| > nε i.o.) = 0.
Since ε is arbitrary, the proof is complete. �

The converse of the Borel-Cantelli lemma is trivially false.
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Example 2.3.1. Let � = (0, 1), F = Borel sets, P = Lebesgue measure. If An =
(0, an) where an → 0 as n → ∞, then lim sup An = ∅, but if an ≥ 1/n, we have∑

an = ∞.

The example just given suggests that for general sets we cannot say much more
than the next result.

Exercise 2.3.1. Prove that P (lim sup An) ≥ lim sup P (An) and
P (lim inf An) ≤ lim inf P (An)

For independent events, however, the necessary condition for P (lim sup An) > 0
is sufficient for P (lim sup An) = 1.

Theorem 2.3.6. The second Borel-Cantelli lemma. If the events An are indepen-
dent, then

∑
P (An) = ∞ implies P (An i.o.) = 1.

Proof. Let M < N < ∞. Independence and 1 − x ≤ e−x imply

P
(∩N

n=MAc
n

) =
N∏

n=M

(1 − P (An)) ≤
N∏

n=M

exp(−P (An))

= exp

(
−

N∑
n=M

P (An)

)
→ 0 as N → ∞

So P (∪∞
n=MAn) = 1 for all M , and since ∪∞

n=MAn ↓ lim sup An it follows that
P (lim sup An) = 1. �

A typical application of the second Borel-Cantelli lemma is:

Theorem 2.3.7. If X1, X2, . . . are i.i.d. with E|Xi | = ∞, then P (|Xn| ≥ n i.o.) =
1. So if Sn = X1 + · · · + Xn then P (lim Sn/n exists ∈ (−∞,∞)) = 0.

Proof. From Lemma 2.2.8, we get

E|X1| =
∫ ∞

0
P (|X1| > x) dx ≤

∞∑
n=0

P (|X1| > n)

Since E|X1| = ∞ and X1, X2, . . . are i.i.d., it follows from the second Borel-
Cantelli lemma that P (|Xn| ≥ n i.o.) = 1. To prove the second claim, observe that

Sn

n
− Sn+1

n + 1
= Sn

n(n + 1)
− Xn+1

n + 1
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and on C ≡ {ω : limn→∞ Sn/n exists ∈ (−∞,∞)}, Sn/(n(n + 1)) → 0. So, on
C ∩ {ω : |Xn| ≥ n i.o.}, we have∣∣∣∣Sn

n
− Sn+1

n + 1

∣∣∣∣ > 2/3 i.o.

contradicting the fact that ω ∈ C. From the last observation, we conclude that

{ω : |Xn| ≥ n i.o.} ∩ C = ∅
and since P (|Xn| ≥ n i.o.) = 1, it follows that P (C) = 0. �

Theorem 2.3.7 shows that E|Xi | < ∞ is necessary for the strong law of large
numbers. The reader will have to wait until Theorem 2.4.1 to see that condition
is also sufficient. The next result extends the second Borel-Cantelli lemma and
sharpens its conclusion.

Theorem 2.3.8. If A1, A2, . . . are pairwise independent and
∑∞

n=1 P (An) = ∞,
then as n → ∞

n∑
m=1

1Am

/
n∑

m=1

P (Am) → 1 a.s.

Proof. Let Xm = 1Am
and let Sn = X1 + · · · + Xn. Since the Am are pairwise

independent, the Xm are uncorrelated and hence Theorem 2.2.1 implies

var (Sn) = var (X1) + · · · + var (Xn)

var (Xm) ≤ E(X2
m) = E(Xm), since Xm ∈ {0, 1}, so var (Sn) ≤ E(Sn). Cheby-

shev’s inequality implies

(∗) P (|Sn − ESn| > δESn) ≤ var (Sn)/(δESn)2 ≤ 1/(δ2ESn) → 0

as n → ∞ (since we have assumed ESn → ∞).
The last computation shows that Sn/ESn → 1 in probability. To get almost

sure convergence, we have to take subsequences. Let nk = inf{n : ESn ≥ k2}. Let
Tk = Snk

and note that the definition and EXm ≤ 1 imply k2 ≤ ETk ≤ k2 + 1.
Replacing n by nk in (∗) and using ETk ≥ k2 shows

P (|Tk − ETk| > δETk) ≤ 1/(δ2k2)

So
∑∞

k=1 P (|Tk − ETk| > δETk) < ∞, and the Borel-Cantelli lemma implies
P (|Tk − ETk| > δETk i.o.) = 0. Since δ is arbitrary, it follows that Tk/ETk → 1
a.s. To show Sn/ESn → 1 a.s., pick an ω so that Tk(ω)/ETk → 1 and observe that
if nk ≤ n < nk+1, then

Tk(ω)

ETk+1
≤ Sn(ω)

ESn

≤ Tk+1(ω)

ETk
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To show that the terms at the left and right ends → 1, we rewrite the last inequalities
as

ETk

ETk+1
· Tk(ω)

ETk

≤ Sn(ω)

ESn

≤ Tk+1(ω)

ETk+1
· ETk+1

ETk

From this, we see it is enough to show ETk+1/ETk → 1, but this follows from

k2 ≤ ETk ≤ ETk+1 ≤ (k + 1)2 + 1

and the fact that {(k + 1)2 + 1}/k2 = 1 + 2/k + 2/k2 → 1. �

The moral of the proof of Theorem 2.3.8 is that if you want to show that
Xn/cn → 1 a.s. for sequences cn, Xn ≥ 0 that are increasing, it is enough to prove
the result for a subsequence n(k) that has cn(k+1)/cn(k) → 1. For practice with this
technique, try the following.

Exercise 2.3.2. Let 0 ≤ X1 ≤ X2 . . . be random variables with EXn ∼ anα with
a, α > 0, and var (Xn) ≤ Bnβ with β < 2α. Show that Xn/nα → a a.s.

Exercise 2.3.3. Let Xn be independent Poisson r.v.’s with EXn = λn, and let
Sn = X1 + · · · + Xn. Show that if

∑
λn = ∞, then Sn/ESn → 1 a.s.

Example 2.3.2. Record values. Let X1, X2, . . . be a sequence of random variables
and think of Xk as the distance for an individual’s kth high jump or shot-put toss
so that Ak = {Xk > supj<k Xj } is the event that a record occurs at time k. Ignoring
the fact that an athelete’s performance may get better with more experience or that
injuries may occur, we will suppose that X1, X2, . . . are i.i.d. with a distribution
F (x) that is continuous. Even though it may seem that the occurrence of a record
at time k will make it less likely that one will occur at time k + 1, we

Claim. The Ak are independent with P (Ak) = 1/k.

To prove this, we start by observing that since F is continuous P (Xj = Xk) = 0 for
any j �= k (see Exercise 2.1.8), so we can let Yn

1 > Yn
2 > · · · > Yn

n be the random
variables X1, . . . , Xn put into decreasing order and define a random permutation
of {1, . . . , n} by πn(i) = j if Xi = Yn

j , that is, if the ith random variable has rank
j . Since the distribution of (X1, . . . , Xn) is not affected by changing the order of
the random variables, it is easy to see:

(a) The permutation πn is uniformly distributed over the set of n! possibilities.

Proof of (a). This is “obvious” by symmetry, but if one wants to hear more, we can
argue as follows. Let πn be the permutation induced by (X1, . . . , Xn), and let σn

be a randomly chosen permutation of {1, . . . , n} independent of the X sequence.
Then we can say two things about the permutation induced by (Xσ (1), . . . , Xσ (n)):
(i) it is πn ◦ σn, and (ii) it has the same distribution as πn. The desired result follows
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now by noting that if π is any permutation, π ◦ σn, is uniform over the n! possibi-
lities. �

Once you believe (a), the rest is easy:

(b) P (An) = P (πn(n) = 1) = 1/n.

(c) If m < n and im+1, . . . in are distinct elements of {1, . . . , n} then

P (Am|πn(j ) = ij for m + 1 ≤ j ≤ n) = 1/m

Intuitively, this is true since if we condition on the ranks of Xm+1, . . . , Xn, then
this determines the set of ranks available for X1, . . . , Xm, but all possible orderings
of the ranks are equally likely and hence there is probability 1/m that the smallest
rank will end up at m.

Proof of (c). If we let σm be a randomly chosen permutation of {1, . . . , m}, then
(i) πn ◦ σm has the same distribution as πn, and (ii) since the application of σm

randomly rearranges πn(1), . . . , πn(m) the desired result follows. �

If we let m1 < m2 . . . < mk, then it follows from (c) that

P (Am1 |Am2 ∩ . . . ∩ Amk
) = P (Am1 )

and the claim follows by induction.

Using Theorem 2.3.8 and the by now familiar fact that
∑n

m=1 1/m ∼ log n, we
have

Theorem 2.3.9. If Rn =∑n
m=1 1Am

is the number of records at time n then as
n → ∞,

Rn/ log n → 1 a.s.

The reader should note that the last result is independent of the distribution F (as
long as it is continuous).

Remark. Let X1, X2, . . . be i.i.d. with a distribution that is continuous. Let Yi be
the number of j ≤ i with Xj > Xi . It follows from (a) that Yi are independent
random variables with P (Yi = j ) = 1/i for 0 ≤ j < i − 1.

Comic relief. Let X0, X1, . . . be i.i.d. and imagine they are the offers you get for
a car you are going to sell. Let N = inf{n ≥ 1 : Xn > X0}. Symmetry implies
P (N > n) ≥ 1/(n + 1). (When the distribution is continuous this probability is
exactly 1/(n + 1), but our distribution now is general and ties go to the first person
who calls.) Using Exercise 2.2.7 now:

EN =
∞∑

n=0

P (N > n) ≥
∞∑

n=0

1

n + 1
= ∞
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so the expected time you have to wait until you get an offer better than the first
one is ∞. To avoid lawsuits, let me hasten to add that I am not suggesting that you
should take the first offer you get!

Example 2.3.3. Head runs. Let Xn, n ∈ Z, be i.i.d. with P (Xn = 1) = P (Xn =
−1) = 1/2. Let �n = max{m : Xn−m+1 = · · · = Xn = 1} be the length of the run
of +1’s at time n, and let Ln = max1≤m≤n �m be the longest run at time n. We
use a two-sided sequence so that for all n, P (�n = k) = (1/2)k+1 for k ≥ 0. Since
�1 < ∞, the result we are going to prove

Ln/ log2 n → 1 a.s. (2.3.1)

is also true for a one-sided sequence. To prove (2.3.1), we begin by observing

P (�n ≥ (1 + ε) log2 n) ≤ n−(1+ε)

for any ε > 0, so it follows from the Borel-Cantelli lemma that �n ≤ (1 + ε) log2 n

for n ≥ Nε . Since ε is arbitrary, it follows that

lim sup
n→∞

Ln/ log2 n ≤ 1 a.s.

To get a result in the other direction, we break the first n trials into disjoint blocks
of length [(1 − ε) log2 n] + 1, on which the variables are all 1 with probability

2−[(1−ε) log2 n]−1 ≥ n−(1−ε)/2,

to conclude that if n is large enough so that [n/{[(1 − ε) log2 n] + 1}] ≥ n/ log2 n

P (Ln ≤ (1 − ε) log2 n) ≤ (1 − n−(1−ε)/2)n/(log2 n) ≤ exp(−nε/2 log2 n)

which is summable, so the Borel-Cantelli lemma implies

lim inf
n→∞ Ln/ log2 n ≥ 1 a.s.

Exercise 2.3.4. Show that lim supn→∞ �n/ log2 n = 1, lim infn→∞ �n = 0 a.s.

Exercises

2.3.5. Prove the first result in Theorem 2.3.4 directly from the definition.

2.3.6. Fatou’s lemma. Suppose Xn ≥ 0 and Xn → X in probability. Show that
lim infn→∞ EXn ≥ EX.

2.3.7. Dominated convergence. Suppose Xn → X in probability and (a) |Xn| ≤ Y

with EY < ∞ or (b) there is a continuous function g with g(x) > 0 for large x

with |x|/g(x) → 0 as |x| → ∞ so that Eg(Xn) ≤ C < ∞ for all n. Show that
EXn → EX.

2.3.8. Show (a) that d(X, Y ) = E(|X − Y |/(1 + |X − Y |)) defines a metric on the
set of random variables, that is, (i) d(X, Y ) = 0 if and only if X = Y a.s., (ii)
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d(X, Y ) = d(Y,X), (iii) d(X, Z) ≤ d(X, Y ) + d(Y,Z) and (b) that d(Xn, X) → 0
as n → ∞ if and only if Xn → X in probability.

2.3.9. Show that random variables are a complete space under the metric defined in
the previous exercise, that is, if d(Xm, Xn) → 0 whenever m, n → ∞, then there
is a r.v. X∞ so that Xn → X∞ in probability.

2.3.10. If Xn is any sequence of random variables, there are constants cn → ∞ so
that Xn/cn → 0 a.s.

2.3.11. (i) If P (An) → 0 and
∑∞

n=1 P (Ac
n ∩ An+1) < ∞ then P (An i.o.) = 0. (ii)

Find an example of a sequence An to which the result in (i) can be applied but the
Borel-Cantelli lemma cannot.

2.3.12. Let An be a sequence of independent events with P (An) < 1 for all n.
Show that P (∪An) = 1 implies P (An i.o.) = 1.

2.3.13. Let X1, X2, . . . be independent. Show that sup Xn < ∞ a.s. if and only if∑
n P (Xn > A) < ∞ for some A.

2.3.14. Let X1, X2, . . . be independent with P (Xn = 1) = pn and P (Xn = 0) =
1 − pn. Show that (i) Xn → 0 in probability if and only if pn → 0, and (ii) Xn → 0
a.s. if and only if

∑
pn < ∞.

2.3.15. Let Y1, Y2, . . . be i.i.d. Find necessary and sufficient conditions for
(i) Yn/n → 0 almost surely, (ii) (maxm≤n Ym)/n → 0 almost surely,
(iii) (maxm≤n Ym)/n → 0 in probability, and (iv) Yn/n → 0 in probability.

2.3.16. The last two exercises give examples with Xn → X in probability without
Xn → X a.s. There is one situation in which the two notions are equivalent.
Let X1, X2, . . . be a sequence of r.v.’s on (�,F, P ) where � is a countable set
and F consists of all subsets of �. Show that Xn → X in probability implies
Xn → X a.s.

2.3.17. Show that if Xn is the outcome of the nth play of the St. Petersburg
game (Example 2.2.7), then lim supn→∞ Xn/(n log2 n) = ∞ a.s. and hence the
same result holds for Sn. This shows that the convergence Sn/(n log2 n) → 1 in
probability proved in Section 2.2 does not occur a.s.

2.3.18. Let X1, X2, . . . be i.i.d. with P (Xi > x) = e−x , let Mn = max1≤m≤n Xm.
Show that (i) lim supn→∞ Xn/ log n = 1 a.s. and (ii) Mn/ log n → 1 a.s.

2.3.19. Let X1, X2, . . . be i.i.d. with distribution F , let λn ↑ ∞, and let An =
{max1≤m≤n Xm > λn}. Show that P (An i.o.) = 0 or 1 according as

∑
n≥1(1 −

F (λn)) < ∞ or = ∞.
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2.3.20. Kochen-Stone lemma. Suppose
∑

P (Ak) = ∞. Use Exercises 1.6.6 and
2.3.1 to show that if

lim sup
n→∞

(
n∑

k=1

P (Ak)

)2/⎛
⎝ ∑

1≤j,k≤n

P (Aj ∩ Ak)

⎞
⎠ = α > 0

then P (An i.o.) ≥ α. The case α = 1 contains Theorem 2.3.6.

2.4 Strong Law of Large Numbers

We are now ready to give Etemadi’s (1981) proof of

Theorem 2.4.1. Strong law of large numbers. Let X1, X2, . . . be pairwise inde-
pendent identically distributed random variables with E|Xi | < ∞. Let EXi = µ

and Sn = X1 + · · · + Xn. Then Sn/n → µ a.s. as n → ∞.

Proof. As in the proof of the weak law of large numbers, we begin by truncating.

Lemma 2.4.2. Let Yk = Xk1(|Xk |≤k) and Tn = Y1 + · · · + Yn. It is sufficient to prove
that Tn/n → µ a.s.

Proof.
∑∞

k=1 P (|Xk| > k) ≤ ∫∞
0 P (|X1| > t) dt = E|X1| < ∞ so P (Xk �=

Yk i.o.) = 0. This shows that |Sn(ω) − Tn(ω)| ≤ R(ω) < ∞ a.s. for all n, from
which the desired result follows. �

The second step is not so intuitive, but it is an important part of this proof and
the one given in Section 2.5.

Lemma 2.4.3.
∑∞

k=1 var (Yk)/k2 ≤ 4E|X1| < ∞.

Proof. To bound the sum, we observe

var (Yk) ≤ E(Y 2
k ) =

∫ ∞

0
2yP (|Yk| > y) dy ≤

∫ k

0
2yP (|X1| > y) dy

so using Fubini’s theorem (since everything is ≥ 0 and the sum is just an integral
with respect to counting measure on {1, 2, . . .})

∞∑
k=1

E(Y 2
k )/k2 ≤

∞∑
k=1

k−2
∫ ∞

0
1(y<k) 2y P (|X1| > y) dy

=
∫ ∞

0

{ ∞∑
k=1

k−21(y<k)

}
2yP (|X1| > y) dy

Since E|X1| = ∫∞
0 P (|X1| > y) dy, we can complete the proof by showing �
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Lemma 2.4.4. If y ≥ 0 then 2y
∑

k>y k−2 ≤ 4.

Proof. We being with the observation that if m ≥ 2 then

∑
k≥m

k−2 ≤
∫ ∞

m−1
x−2dx = (m − 1)−1

When y ≥1, the sum starts with k = [y] + 1 ≥ 2, so

2y
∑
k>y

k−2 ≤ 2y/[y] ≤ 4

since y/[y] ≤ 2 for y ≥ 1 (the worst case being y close to 2). To cover 0 ≤ y < 1,
we note that in this case

2y
∑
k>y

k−2 ≤ 2

(
1 +

∞∑
k=2

k−2

)
≤ 4

This establishes Lemma 2.4.4 which completes the proof of Lemma 2.4.3 and of
the theorem. �

The first two steps, Lemmas 2.4.2 and 2.4.3 above, are standard. Etemadi’s
inspiration was that since X+

n , n ≥ 1, and X−
n , n ≥ 1, satisfy the assumptions of the

theorem and Xn = X+
n − X−

n , we can without loss of generality suppose Xn ≥ 0.
As in the proof of Theorem 2.3.8, we will prove the result first for a subsequence
and then use monotonicity to control the values in between. This time, however,
we let α > 1 and k(n) = [αn]. Chebyshev’s inequality implies that if ε > 0

∞∑
n=1

P (|Tk(n) − ETk(n)| > εk(n)) ≤ ε−2
∞∑

n=1

var (Tk(n))/k(n)2

= ε−2
∞∑

n=1

k(n)−2
k(n)∑
m=1

var (Ym) = ε−2
∞∑

m=1

var (Ym)
∑

n:k(n)≥m

k(n)−2

where we have used Fubini’s theorem to interchange the two summations of non-
negative terms. Now k(n) = [αn] and [αn] ≥ αn/2 for n ≥ 1, so summing the
geometric series and noting that the first term is ≤ m−2:∑

n:αn≥m

[αn]−2 ≤ 4
∑

n:αn≥m

α−2n ≤ 4(1 − α−2)−1m−2

Combining our computations shows

∞∑
n=1

P (|Tk(n) − ETk(n)| > εk(n)) ≤ 4(1 − α−2)−1ε−2
∞∑

m=1

E(Y 2
m)m−2 < ∞

by Lemma 2.4.3. Since ε is arbitrary (Tk(n) − ETk(n))/k(n) → 0 a.s. The dominated
convergence theorem implies EYk → EX1 as k → ∞, so ETk(n)/k(n) → EX1
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and we have shown Tk(n)/k(n) → EX1 a.s. To handle the intermediate values, we
observe that if k(n) ≤ m < k(n + 1)

Tk(n)

k(n + 1)
≤ Tm

m
≤ Tk(n+1)

k(n)

(here we use Yi ≥ 0), so recalling k(n) = [αn], we have k(n + 1)/k(n) → α and

1

α
EX1 ≤ lim inf

n→∞ Tm/m ≤ lim sup
m→∞

Tm/m ≤ αEX1

Since α > 1 is arbitrary, the proof is complete. �

The next result shows that the strong law holds whenever EXi exists.

Theorem 2.4.5. Let X1, X2, . . . be i.i.d. with EX+
i = ∞ and EX−

i < ∞. If Sn =
X1 + · · · + Xn then Sn/n → ∞ a.s.

Proof. Let M > 0 and XM
i = Xi ∧ M . The XM

i are i.i.d. with E|XM
i | < ∞, so if

SM
i = XM

1 + · · · + XM
n then Theorem 2.4.1 implies SM

n /n → EXM
i . Since Xi ≥

XM
i , it follows that

lim inf
n→∞ Sn/n ≥ lim

n→∞ SM
n /n = EXM

i

The monotone convergence theorem implies E(XM
i )+ ↑ EX+

i = ∞ as M ↑ ∞,
so EXM

i = E(XM
i )+ − E(XM

i )− ↑ ∞, and we have lim infn→∞ Sn/n ≥ ∞, which
implies the desired result. �

The rest of this section is devoted to applications of the strong law of large
numbers.

Example 2.4.1. Renewal theory. Let X1, X2, . . . be i.i.d. with 0 < Xi < ∞. Let
Tn = X1 + · · · + Xn and think of Tn as the time of nth occurrence of some event.
For a concrete situation, consider a diligent janitor who replaces a light bulb the
instant it burns out. Suppose the first bulb is put in at time 0 and let Xi be the
lifetime of the ith light bulb. In this interpretation, Tn is the time the nth light bulb
burns out and Nt = sup{n : Tn ≤ t} is the number of light bulbs that have burned
out by time t.

Theorem 2.4.6. If EX1 = µ ≤ ∞, then as t → ∞,

Nt/t → 1/µ a.s. (1/∞ = 0).

Proof. By Theorems 2.4.1 and 2.4.5, Tn/n → µ a.s. From the definition of Nt , it
follows that T (Nt ) ≤ t < T (Nt + 1), so dividing through by Nt gives

T (Nt )

Nt

≤ t

Nt

≤ T (Nt + 1)

Nt + 1
· Nt + 1

Nt
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To take the limit, we note that since Tn < ∞ for all n, we have Nt ↑ ∞ as t → ∞.
The strong law of large numbers implies that for ω ∈ �0 with P (�0) = 1, we have
Tn(ω)/n → µ, Nt (ω) ↑ ∞, and hence

TNt (ω)(ω)

Nt (ω)
→ µ

Nt (ω) + 1

Nt (ω)
→ 1

From this it follows that for ω ∈ �0 that t/Nt (ω) → µ a.s. �

The last argument shows that if Xn → X∞ a.s. and N (n) → ∞ a.s. then
XN (n) → X∞ a.s. We have written this out with care because the analogous result
for convergence in probability is false.

Exercise 2.4.1. Give an example with Xn ∈ {0, 1}, Xn → 0 in probability, N (n) ↑
∞ a.s., and XN (n) → 1 a.s.

Example 2.4.2. Empirical distribution functions. Let X1, X2, . . . be i.i.d. with
distribution F and let

Fn(x) = n−1
n∑

m=1

1(Xm≤x)

Fn(x) = the observed frequency of values that are ≤ x, hence the name given
above. The next result shows that Fn converges uniformly to F as n → ∞.

Theorem 2.4.7. The Glivenko-Cantelli theorem. As n → ∞,

sup
x

|Fn(x) − F (x)| → 0 a.s.

Proof. Fix x and let Yn = 1(Xn≤x). Since the Yn are i.i.d. with EYn = P (Xn ≤ x) =
F (x), the strong law of large numbers implies that Fn(x) = n−1∑n

m=1 Ym → F (x)
a.s. In general, if Fn is a sequence of nondecreasing functions that converges
pointwise to a bounded and continuous limit F , then supx |Fn(x) − F (x)| → 0.
However, the distribution function F (x) may have jumps, so we have to work a
little harder.

Again, fix x and let Zn = 1(Xn<x). Since the Zn are i.i.d. with EZn = P (Xn <

x) = F (x−) = limy↑x F (y), the strong law of large numbers implies that Fn(x−) =
n−1∑n

m=1 Zm → F (x−) a.s. For 1 ≤ j ≤ k − 1 let xj,k = inf{y : F (y) ≥ j/k}.
The pointwise convergence of Fn(x) and Fn(x−) imply that we can pick Nk(ω) so
that if n ≥ Nk(ω), then

|Fn(xj,k) − F (xj,k)| < k−1 and |Fn(xj,k−) − F (xj,k−)| < k−1

for 1 ≤ j ≤ k − 1. If we let x0,k = −∞ and xk,k = ∞, then the last two inequalities
hold for j = 0 or k. If x ∈ (xj−1,k, xj,k) with 1 ≤ j ≤ k and n ≥ Nk(ω), then using
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the monotonicity of Fn and F , and F (xj,k−) − F (xj−1,k) ≤ k−1, we have

Fn(x) ≤ Fn(xj,k−) ≤ F (xj,k−) + k−1 ≤ F (xj−1,k) + 2k−1 ≤ F (x) + 2k−1

Fn(x) ≥ Fn(xj−1,k) ≥ F (xj−1,k) − k−1 ≥ F (xj,k−) − 2k−1 ≥ F (x) − 2k−1

so supx |Fn(x) − F (x)| ≤ 2k−1, and we have proved the result. �

Example 2.4.3. Shannon’s theorem. Let X1, X2, . . . ∈ {1, . . . , r} be independent
with P (Xi = k) = p(k) > 0 for 1 ≤ k ≤ r . Here we are thinking of 1, . . . , r as
the letters of an alphabet, and X1, X2, . . . are the successive letters produced by an
information source. In this i.i.d. case, it is the proverbial monkey at a typewriter. Let
πn(ω) = p(X1(ω)) · · · p(Xn(ω)) be the probability of the realization we observed
in the first n trials. Since log πn(ω) is a sum of independent random variables, it
follows from the strong law of large numbers that

−n−1 log πn(ω) → H ≡ −
r∑

k=1

p(k) log p(k) a.s.

The constant H is called the entropy of the source and is a measure of how random
it is. The last result is the asymptotic equipartition property: If ε > 0, then as
n → ∞,

P {exp(−n(H + ε)) ≤ πn(ω) ≤ exp(−n(H − ε)} → 1

Exercises

2.4.2. Lazy janitor. Suppose the ith light bulb burns for an amount of time Xi and
then remains burned out for time Yi before being replaced. Suppose the Xi, Yi are
positive and independent with the X’s having distribution F and the Y ’s having
distribution G, both of which have finite mean. Let Rt be the amount of time in
[0, t] that we have a working light bulb. Show that Rt/t → EXi/(EXi + EYi)
almost surely.

2.4.3. Let X0 = (1, 0) and define Xn ∈ R2 inductively by declaring that Xn+1 is
chosen at random from the ball of radius |Xn| centered at the origin, i.e., Xn+1/|Xn|
is uniformly distributed on the ball of radius 1 and independent of X1, . . . , Xn.
Prove that n−1 log |Xn| → c a.s. and compute c.

2.4.4. Investment problem. We assume that at the beginning of each year you can
buy bonds for $1 that are worth $ a at the end of the year or stocks that are worth a
random amount V ≥ 0. If you always invest a fixed proportion p of your wealth in
bonds, then your wealth at the end of year n + 1 is Wn+1 = (ap + (1 − p)Vn)Wn.
Suppose V1, V2, . . . are i.i.d. with EV 2

n < ∞ and E(V −2
n ) < ∞. (i) Show that

n−1 log Wn → c(p) a.s. (ii) Show that c(p) is concave. (Use Theorem A.5.1 in the
Appendix to justify differentiating under the expected value.) (iii) By investigating
c′(0) and c′(1), give conditions on V that guarantee that the optimal choice of p
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is in (0,1). (iv) Suppose P (V = 1) = P (V = 4) = 1/2. Find the optimal p as a
function of a.

2.5 Convergence of Random Series*

In this section, we will pursue a second approach to the strong law of large numbers
based on the convergence of random series. This approach has the advantage that it
leads to estimates on the rate of convergence under moment assumptions, Theorems
2.5.7 and 2.5.8, and to a negative result for the infinite mean case, Theorem 2.5.9,
which is stronger than the one in Theorem 2.3.7. The first two results in this section
are of considerable interest in their own right, although we will see more general
versions in Lemma 3.1.1 and Theorem 3.4.2.

To state the first result, we need some notation. Let F ′
n = σ (Xn, Xn+1, . . .) = the

future after time n = the smallest σ -field with respect to which all the Xm, m ≥ n are
measurable. Let T = ∩nF ′

n = the remote future, or tail σ -field. Intuitively, A ∈ T
if and only if changing a finite number of values does not affect the occurrence of
the event. As usual, we turn to examples to help explain the definition.

Example 2.5.1. If Bn ∈ R then {Xn ∈ Bn i.o.} ∈ T . If we let Xn = 1An
and Bn =

{1}, this example becomes {An i.o.}.

Example 2.5.2. Let Sn = X1 + · · · + Xn. It is easy to check that
{limn→∞ Sn exists } ∈ T ,
{lim supn→∞ Sn > 0} �∈ T ,
{lim supn→∞ Sn/cn > x} ∈ T if cn → ∞

The next result shows that all examples are trivial.

Theorem 2.5.1. Kolmogorov’s 0-1 law. If X1, X2, . . . are independent and A ∈ T ,
then P (A) = 0 or 1.

Proof. We will show that A is independent of itself, that is, P (A ∩ A) =
P (A)P (A), so P (A) = P (A)2, and hence P (A) = 0 or 1. We will sneak up on
this conclusion in two steps:

(a) A ∈ σ (X1, . . . , Xk) and B ∈ σ (Xk+1, Xk+2, . . .) are independent.

Proof of (a). If B ∈ σ (Xk+1, . . . , Xk+j ) for some j , this follows from Theorem
2.1.5. Since σ (X1, . . . , Xk) and ∪jσ (Xk+1, . . . , Xk+j ) are π -systems that contain
� (a) follows from Theorem 2.1.3.

(b) A ∈ σ (X1, X2, . . .) and B ∈ T are independent.

Proof of (b). Since T ⊂ σ (Xk+1, Xk+2, . . .), if A ∈ σ (X1, . . . , Xk) for some k, this
follows from (a). ∪kσ (X1, . . . , Xk) and T are π -systems that contain �, so (b)
follows from Theorem 2.1.3.
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Since T ⊂ σ (X1, X2, . . .), (b) implies an A ∈ T is independent of itself, and
Theorem 2.5.1 follows. �

If A1, A2, . . . are independent, then Theorem 2.5.1 implies P (An i.o.) = 0 or 1.
Applying Theorem 2.5.1 to Example 2.5.2 gives P (limn→∞ Sn exists) = 0 or 1.
The next result will help us prove the probability is 1 in certain situations.

Theorem 2.5.2. Kolmogorov’s maximal inequality. Suppose X1, . . . , Xn are
independent with EXi = 0 and var (Xi) < ∞. If Sn = X1 + · · · + Xn, then

P

(
max

1≤k≤n
|Sk| ≥ x

)
≤ x−2 var (Sn)

Remark. Under the same hypotheses, Chebyshev’s inequality (Theorem 1.6.4)
gives only

P (|Sn| ≥ x) ≤ x−2 var (Sn)

Proof. Let Ak = {|Sk| ≥ x but |Sj | < x for j < k}, that is, we break things down
according to the time that |Sk| first exceeds x. Since the Ak are disjoint and
(Sn − Sk)2 ≥ 0,

ES2
n ≥

n∑
k=1

∫
Ak

S2
n dP =

n∑
k=1

∫
Ak

S2
k + 2Sk(Sn − Sk) + (Sn − Sk)2 dP

≥
n∑

k=1

∫
Ak

S2
k dP +

n∑
k=1

∫
2Sk1Ak

· (Sn − Sk) dP

Sk1Ak
∈ σ (X1, . . . , Xk) and Sn − Sk ∈ σ (Xk+1, . . . , Xn) are independent by

Theorem 2.1.6, so using Theorem 2.1.9 and E(Sn − Sk) = 0 shows∫
2Sk1Ak

· (Sn − Sk) dP = E(2Sk1Ak
) · E(Sn − Sk) = 0

Now, using the fact that |Sk| ≥ x on Ak and the Ak are disjoint,

ES2
n ≥

n∑
k=1

∫
Ak

S2
k dP ≥

n∑
k=1

x2P (Ak) = x2P

(
max

1≤k≤n
|Sk| ≥ x

)
�

Exercise 2.5.1. Suppose X1, X2, . . . are i.i.d. with EXi = 0, var (Xi) = C < ∞.
Use Theorem 2.5.2 with n = mα where α(2p − 1) > 1 to conclude that if Sn =
X1 + · · · + Xn and p > 1/2, then Sn/np → 0 almost surely.

We turn now to our results on convergence of series. To state them, we need a
definition. We say that

∑∞
n=1 an converges if limN→∞

∑N
n=1 an exists.
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Theorem 2.5.3. Suppose X1, X2, . . . are independent and have EXn = 0. If

∞∑
n=1

var (Xn) < ∞

then with probability one
∑∞

n=1 Xn(ω) converges.

Proof. Let SN =∑N
n=1 Xn. From Theorem 2.5.2, we get

P

(
max

M≤m≤N
|Sm − SM | > ε

)
≤ ε−2 var (SN − SM ) = ε−2

N∑
n=M+1

var (Xn)

Letting N → ∞ in the last result, we get

P

(
sup
m≥M

|Sm − SM | > ε

)
≤ ε−2

∞∑
n=M+1

var (Xn) → 0 as M → ∞

If we let wM = supm,n≥M |Sm − Sn| then wM ↓ as M ↑ and

P (wM > 2ε) ≤ P

(
sup
m≥M

|Sm − SM | > ε

)
→ 0

as M → ∞ so wM ↓ 0 almost surely. But wM (ω) ↓ 0 implies Sn(ω) is a Cauchy
sequence and hence limn→∞ Sn(ω) exists, so the proof is complete. �

Example 2.5.3. Let X1, X2, . . . be independent with

P (Xn = n−α) = P (Xn = −n−α) = 1/2

EXn = 0 and var (Xn) = n−2α so if α > 1/2 it follows from Theorem 2.5.3 that∑
Xn converges. Theorem 2.5.4 below shows that α > 1/2 is also necessary for

this conclusion. Notice that there is absolute convergence, that is,
∑ |Xn| < ∞, if

and only if α > 1.

Theorem 2.5.3 is sufficient for all of our applications, but our treatment would
not be complete if we did not mention the last word on convergence of random
series.

Theorem 2.5.4. Kolmogorov’s three-series theorem. Let X1, X2, . . . be indepen-
dent. Let A > 0 and let Yi = Xi1(|Xi |≤A). In order that

∑∞
n=1 Xn converges a.s., it

is necessary and sufficient that

(i)
∞∑

n=1

P (|Xn| > A) < ∞, (ii)
∞∑

n=1

EYn converges, and (iii)
∞∑

n=1

var (Yn) < ∞

Proof. We will prove the necessity in Example 3.4.7 as an application of the
central limit theorem. To prove the sufficiency, let µn = EYn. (iii) and Theorem
2.5.3 imply that

∑∞
n=1(Yn − µn) converges a.s. Using (ii) now gives that

∑∞
n=1 Yn
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converges a.s. (i) and the Borel-Cantelli lemma imply P (Xn �= Yn i.o.) = 0, so∑∞
n=1 Xn converges a.s. �

The link between convergence of series and the strong law of large numbers is
provided by

Theorem 2.5.5. Kronecker’s lemma. If an ↑ ∞ and
∑∞

n=1 xn/an converges then

a−1
n

n∑
m=1

xm → 0

Proof. Let a0 = 0, b0 = 0, and for m ≥ 1, let bm =∑m
k=1 xk/ak. Then xm =

am(bm − bm−1) and so

a−1
n

n∑
m=1

xm = a−1
n

{
n∑

m=1

ambm −
n∑

m=1

ambm−1

}

= a−1
n

{
anbn +

n∑
m=2

am−1bm−1 −
n∑

m=1

ambm−1

}

= bn −
n∑

m=1

(am − am−1)

an

bm−1

(Recall a0 = 0.) By hypothesis, bn → b∞ as n → ∞. Since am − am−1 ≥ 0, the
last sum is an average of b0, . . . , bn. Intuitively, if ε > 0 and M < ∞ are fixed and
n is large, the average assigns mass ≥ 1 − ε to the bm with m ≥ M , so

n∑
m=1

(am − am−1)

an

bm−1 → b∞

To argue formally, let B = sup |bn|, pick M so that |bm − b∞| < ε/2 for m ≥ M ,
then pick N so that aM/an < ε/4B for n ≥ N . Now if n ≥ N , we have∣∣∣∣∣

n∑
m=1

(am − am−1)

an

bm−1 − b∞

∣∣∣∣∣ ≤
n∑

m=1

(am − am−1)

an

|bm−1 − b∞|

≤ aM

an

· 2B + an − aM

an

· ε

2
< ε

proving the desired result since ε is arbitrary. �

Theorem 2.5.6. The strong law of large numbers. Let X1, X2, . . . be i.i.d. random
variables with E|Xi | < ∞. Let EXi = µ and Sn = X1 + · · · + Xn. Then Sn/n →
µ a.s. as n → ∞.

Proof. Let Yk = Xk1(|Xk |≤k) and Tn = Y1 + · · · + Yn. By (a) in the proof of The-
orem 2.4.1 it suffices to show that Tn/n → µ. Let Zk = Yk − EYk, so EZk = 0.
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Now var (Zk) = var (Yk) ≤ EY 2
k and (b) in the proof of Theorem 2.4.1 imply

∞∑
k=1

var (Zk)/k2 ≤
∞∑

k=1

EY 2
k /k2 < ∞

Applying Theorem 2.5.3 now, we conclude that
∑∞

k=1 Zk/k converges a.s., so
Theorem 2.5.5 implies

n−1
n∑

k=1

(Yk − EYk) → 0 and hence
Tn

n
− n−1

n∑
k=1

EYk → 0 a.s.

The dominated convergence theorem implies EYk → µ as k → ∞. From this, it
follows easily that n−1∑n

k=1 EYk → µ and hence Tn/n → µ. �

2.5.1 Rates of Convergence

As mentioned earlier, one of the advantages of the random series proof is that
it provides estimates on the rate of convergence of Sn/n → µ. By subtracting µ

from each random variable, we can and will suppose without loss of generality that
µ = 0.

Theorem 2.5.7. Let X1, X2, . . . be i.i.d. random variables with EXi = 0 and
EX2

i = σ 2 < ∞. Let Sn = X1 + · · · + Xn. If ε > 0 then

Sn/n1/2(log n)1/2+ε → 0 a.s.

Remark. Kolmogorov’s test, Theorem 8.8.2, will show that

lim sup
n→∞

Sn/n1/2(log log n)1/2 = σ
√

2 a.s.

so the last result is not far from the best possible.

Proof. Let an = n1/2(log n)1/2+ε for n ≥ 2 and a1 > 0.

∞∑
n=1

var (Xn/an) = σ 2

(
1

a2
1

+
∞∑

n=2

1

n(log n)1+2ε

)
< ∞

so applying Theorem 2.5.3 we get
∑∞

n=1 Xn/an converges a.s., and the indicated
result follows from Theorem 2.5.5. �

The next result, due to Marcinkiewicz and Zygmund, treats the situation in which
EX2

i = ∞ but E|Xi |p < ∞ for some 1 < p < 2.

Theorem 2.5.8. Let X1, X2, . . . be i.i.d. with EX1 = 0 and E|X1|p < ∞ where
1 < p < 2. If Sn = X1 + · · · + Xn then Sn/n1/p → 0 a.s.
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Proof. Let Yk = Xk1(|Xk |≤k1/p) and Tn = Y1 + · · · + Yn.

∞∑
k=1

P (Yk �= Xk) =
∞∑

k=1

P (|Xk|p > k) ≤ E|Xk|p < ∞

so the Borel-Cantelli lemma implies P (Yk �= Xk i.o.) = 0, and it suffices to show
Tn/n1/p → 0. Using var (Ym) ≤ E(Y 2

m), Lemma 2.2.8 with p = 2, P (|Ym| > y) ≤
P (|X1| > y), and Fubini’s theorem (everything is ≥ 0), we have

∞∑
m=1

var (Ym/m1/p) ≤
∞∑

m=1

EY 2
m/m2/p

≤
∞∑

m=1

m∑
n=1

∫ n1/p

(n−1)1/p

2y

m2/p
P (|X1| > y) dy

=
∞∑

n=1

∫ n1/p

(n−1)1/p

∞∑
m=n

2y

m2/p
P (|X1| > y) dy

To bound the integral, we note that for n ≥ 2 comparing the sum with the integral
of x−2/p

∞∑
m=n

m−2/p ≤ p

2 − p
(n − 1)(p−2)/p ≤ Cyp−2

when y ∈ [(n − 1)1/p, n1/p]. Since E|Xi |p = ∫∞
0 pxp−1P (|Xi | > x) dx < ∞, it

follows that
∞∑

m=1

var (Ym/m1/p) < ∞

If we let µm = EYm and apply Theorem 2.5.3 and Theorem 2.5.5, it follows that

n−1/p

n∑
m=1

(Ym − µm) → 0 a.s.

To estimate µm, we note that since EXm = 0, µm = −E(Xi ; |Xi | > m1/p), so

|µm| ≤ E(|X|; |Xi | > m1/p) = m1/pE(|X|/m1/p; |Xi | > m1/p)

≤ m1/pE((|X|/m1/p)p; |Xi | > m1/p)

≤ m−1+1/pp−1E(|Xi |p; |Xi | > m1/p)

Now
∑n

m=1 m−1+1/p ≤ Cn1/p and E(|Xi |p; |Xi | > m1/p) → 0 as m → ∞, so
n−1/p

∑n
m=1 µm → 0, and the desired result follows. �

Exercise 2.5.2. The converse of the last result is much easier. Let p > 0. If
Sn/n1/p → 0 a.s., then E|X1|p < ∞.
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2.5.2 Infinite Mean

The St. Petersburg game, discussed in Example 2.2.7 and Exercise 2.3.17, is a
situation in which EXi = ∞, Sn/n log2 n → 1 in probability but

lim sup
n→∞

Sn/(n log2 n) = ∞ a.s.

The next result, due to Feller (1946), shows that when E|X1| = ∞, Sn/an cannot
converge almost surely to a nonzero limit. In Theorem 2.3.7 we considered the
special case an = n.

Theorem 2.5.9. Let X1, X2, . . . be i.i.d. with E|X1| = ∞ and let Sn = X1 + · · · +
Xn. Let an be a sequence of positive numbers with an/n increasing. Then
lim supn→∞ |Sn|/an = 0 or ∞ according as

∑
n P (|X1| ≥ an) < ∞ or = ∞.

Proof. Since an/n ↑, akn ≥ kan for any integer k. Using this and an ↑,

∞∑
n=1

P (|X1| ≥ kan) ≥
∞∑

n=1

P (|X1| ≥ akn) ≥ 1

k

∞∑
m=k

P (|X1| ≥ am)

The last observation shows that if the sum is infinite, lim supn→∞ |Xn|/an = ∞.
Since max{|Sn−1|, |Sn|} ≥ |Xn|/2, it follows that lim supn→∞ |Sn|/an = ∞.

To prove the other half, we begin with the identity

(∗)
∞∑

m=1

mP (am−1 ≤ |Xi | < am) =
∞∑

n=1

P (|Xi | ≥ an−1)

To see this, write m =∑m
n=1 1 and then use Fubini’s theorem. We now let Yn =

Xn1(|Xn|<an), and Tn = Y1 + · · · + Yn. When the sum is finite, P (Yn �= Xn i.o.) = 0,
and it suffices to investigate the behavior of the Tn. To do this, we let a0 = 0 and
compute

∞∑
n=1

var (Yn/an) ≤
∞∑

n=1

EY 2
n /a2

n

=
∞∑

n=1

a−2
n

n∑
m=1

∫
[am−1,am)

y2 dF (y)

=
∞∑

m=1

∫
[am−1,am)

y2 dF (y)
∞∑

n=m

a−2
n

Since an ≥ nam/m, we have
∑∞

n=m a−2
n ≤ (m2/a2

m)
∑∞

n=m n−2 ≤ Cma−2
m , so

≤ C

∞∑
m=1

m

∫
[am−1,am)

dF (y)

Using (∗) now, we conclude
∑∞

n=1 var (Yn/an) < ∞.
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The last step is to show ETn/an → 0. To begin, we note that if E|Xi | = ∞,∑∞
n=1 P (|Xi | > an) < ∞, and an/n ↑ we must have an/n ↑ ∞. To estimate

ETn/an now, we observe that∣∣∣∣∣a−1
n

n∑
m=1

EYm

∣∣∣∣∣ ≤ a−1
n n

n∑
m=1

E(|Xm|; |Xm| < am)

≤ naN

an

+ n

an

E(|Xi |; aN ≤ |Xi | < an)

where the last inequality holds for any fixed N . Since an/n → ∞, the first term
converges to 0. Since m/am ↓, the second is

≤
n∑

m=N+1

m

am

E(|Xi |; am−1 ≤ |Xi | < am)

≤
∞∑

m=N+1

mP (am−1 ≤ |Xi | < am)

(∗) shows that the sum is finite, so it is small if N is large and the desired result
follows. �

Exercises

2.5.3. Let X1, X2, . . . be i.i.d. standard normals. Show that for any t

∞∑
n=1

Xn · sin(nπt)

n
converges a.s.

We will see this series again at the end of Section 8.1.

2.5.4. Let X1, X2, . . . be independent with EXn = 0, var (Xn) = σ 2
n . (i) Show that

if
∑

n σ 2
n /n2 < ∞ then

∑
n Xn/n converges a.s. and hence n−1∑n

m=1 Xm → 0
a.s. (ii) Suppose

∑
σ 2

n /n2 = ∞ and without loss of generality that σ 2
n ≤ n2 for

all n. Show that there are independent random variables Xn with EXn = 0 and
var (Xn) ≤ σ 2

n so that Xn/n and hence n−1∑
m≤n Xm does not converge to 0 a.s.

2.5.5. Let Xn ≥ 0 be independent for n ≥ 1. The following are equivalent:
(i)
∑∞

n=1 Xn < ∞ a.s. (ii)
∑∞

n=1[P (Xn > 1) + E(Xn1(Xn≤1))] < ∞
(iii)

∑∞
n=1 E(Xn/(1 + Xn)) < ∞.

2.5.6. Let ψ(x) = x2 when |x| ≤ 1 and = |x| when |x| ≥ 1. Show that
if X1, X2, . . . are independent with EXn = 0 and

∑∞
n=1 Eψ(Xn) < ∞, then∑∞

n=1 Xn converges a.s.

2.5.7. Let Xn be independent. Suppose
∑∞

n=1 E|Xn|p(n) < ∞ where 0 < p(n) ≤ 2
for all n and EXn = 0 when p(n) > 1. Show that

∑∞
n=1 Xn converges a.s.
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2.5.8. Let X1, X2, . . . be i.i.d. and not ≡ 0. Then the radius of convergence of the
power series

∑
n≥1 Xn(ω)zn (i.e., r(ω) = sup{c :

∑ |Xn(ω)|cn < ∞}) is 1 a.s. or
0 a.s., according as E log+ |X1| < ∞ or = ∞ where log+ x = max(log x, 0).

2.5.9. Let X1, X2, . . . be independent and let Sm,n = Xm+1 + · · · + Xn. Then

(
) P

(
max

m<j≤n
|Sm,j | > 2a

)
min

m<k≤n
P (|Sk,n| ≤ a) ≤ P (|Sm,n| > a)

2.5.10. Use (
) to prove a theorem of P. Lévy: Let X1, X2, . . . be independent and
let Sn = X1 + · · · + Xn. If limn→∞ Sn exists in probability, then it also exists a.s.

2.5.11. Let X1, X2, . . . be i.i.d. and Sn = X1 + · · · + Xn. Use (
) to conclude that
if Sn/n → 0 in probability, then (max1≤m≤n Sm)/n → 0 in probability.

2.5.12. Let X1, X2, . . . be i.i.d. and Sn = X1 + · · · + Xn. Suppose an ↑ ∞ and
a(2n)/a(2n−1) is bounded. (i) Use (
) to show that if Sn/a(n) → 0 in probability and
S2n/a(2n) → 0 a.s., then Sn/a(n) → 0 a.s. (ii) Suppose in addition that EX1 = 0
and EX2

1 < ∞. Use the previous exercise and Chebyshev’s inequality to conclude
that Sn/n1/2(log2 n)1/2+ε → 0 a.s.

2.6 Large Deviations*

Let X1, X2, . . . be i.i.d. and let Sn = X1 + · · · + Xn. In this section, we will inves-
tigate the rate at which P (Sn > na) → 0 for a > µ = EXi . We will ultimately
conclude that if the moment-generating function ϕ(θ ) = E exp(θXi) < ∞ for
some θ > 0, P (Sn ≥ na) → 0 exponentially rapidly and we will identify

γ (a) = lim
n→∞

1

n
log P (Sn ≥ na)

Our first step is to prove that the limit exists. This is based on an observation
that will be useful several times below. Let πn = P (Sn ≥ na).

πm+n ≥ P (Sm ≥ ma, Sn+m − Sm ≥ na) = πmπn

since Sm and Sn+m − Sm are independent. Letting γn = log πn transforms multipli-
cation into addition.

Lemma 2.6.1. If γm+n ≥ γm + γn then as n → ∞, γn/n → supm γm/m.

Proof. Clearly, lim sup γn/n ≤ sup γm/m. To complete the proof, it suffices to
prove that for any m liminf γn/n ≥ γm/m. Writing n = km + � with 0 ≤ � < m

and making repeated use of the hypothesis gives γn ≥ kγm + γ�. Dividing by
n = km + � gives

γ (n)

n
≥
(

km

km + �

)
γ (m)

m
+ γ (�)

n
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Letting n → ∞ and recalling n = km + � with 0 ≤ � < m gives the desired result.
�

Lemma 2.6.1 implies that limn→∞ 1
n

log P (Sn ≥ na) = γ (a) exists ≤ 0. It fol-
lows from the formula for the limit that

P (Sn ≥ na) ≤ enγ (a) (2.6.1)

The last two observations give us some useful information about γ (a).

Exercise 2.6.1. The following are equivalent: (a) γ (a) = −∞, (b) P (X1 ≥ a) = 0,
and (c) P (Sn ≥ na) = 0 for all n.

Exercise 2.6.2. Use the definition to conclude that if λ ∈ [0, 1] is rational, then
γ (λa + (1 − λ)b) ≥ λγ (a) + (1 − λ)γ (b). Use monotonicity to conclude that the
last relationship holds for all λ ∈ [0, 1] so γ is concave and hence Lipschitz con-
tinuous on compact subsets of γ (a) > −∞.

The conclusions above are valid for any distribution. For the rest of this section,
we will suppose:

(H1) ϕ(θ ) = E exp(θXi) < ∞ for some θ > 0

Let θ+ = sup{θ : φ(θ ) < ∞}, θ− = inf{θ : φ(θ ) < ∞} and note that φ(θ ) < ∞ for
θ ∈ (θ−, θ+). (H1) implies that EX+

i < ∞ so µ = EX+ − EX− ∈ [−∞,∞). If
θ > 0 Chebyshev’s inequality implies

eθnaP (Sn ≥ na) ≤ E exp(θSn) = ϕ(θ )n

or letting κ(θ ) = log ϕ(θ )

P (Sn ≥ na) ≤ exp(−n{aθ − κ(θ )}) (2.6.2)

Our first goal is to show:

Lemma 2.6.2. If a > µ and θ > 0 is small, then aθ − κ(θ ) > 0.

Proof. κ(0) = log ϕ(0) = 0, so it suffices to show that (i) κ is continuous at 0, (ii)
differentiable on (0, θ+), and (iii) κ ′(θ ) → µ as θ → 0. For then

aθ − κ(θ ) =
∫ θ

0
a − κ ′(x) dx > 0

for small θ .
Let F (x) = P (Xi ≤ x). To prove (i), we note that if 0 < θ < θ0 < θ−

eθx ≤ 1 + eθ0x (∗)
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so by the dominated convergence theorem as θ → 0∫
eθx dF →

∫
1 dF = 1

To prove (ii) we note that if |h| < h0, then

|ehx − 1| =
∣∣∣∣
∫ hx

0
ey dy

∣∣∣∣ ≤ |hx|eh0x

so an application of the dominated convergence theorem shows that

ϕ′(θ ) = lim
h→0

ϕ(θ + h) − ϕ(θ )

h

= lim
h→0

∫
ehx − 1

h
eθx dF (x)

=
∫

xeθxdF (x) for θ ∈ (0, θ+)

From the last equation, it follows that κ(θ ) = log φ(θ ) has κ ′(θ ) = φ′(θ )/φ(θ ).
Using (∗) and the dominated convergence theorem gives (iii), and the proof is
complete. �

Having found an upper bound on P (Sn ≥ na), it is natural to optimize it by
finding the maximum of θa − κ(θ ):

d

dθ
{θa − log ϕ(θ )} = a − ϕ′(θ )/ϕ(θ )

so (assuming things are nice) the maximum occurs when a = ϕ′(θ )/ϕ(θ ). To turn
the parenthetical clause into a mathematical hypothesis, we begin by defining

Fθ (x) = 1

ϕ(θ )

∫ x

−∞
eθy dF (y)

whenever φ(θ ) < ∞. It follows from the proof of Lemma 2.6.2 that if θ ∈ (θ−, θ+),
Fθ is a distribution function with mean∫

x dFθ (x) = 1

ϕ(θ )

∫ ∞

−∞
xeθx dF (x) = ϕ′(θ )

ϕ(θ )

Repeating the proof in Lemma 2.6.2, it is easy to see that if θ ∈ (θ−, θ+), then

φ′′(θ ) =
∫ ∞

−∞
x2eθx dF (x)

So we have

d

dθ

ϕ′(θ )

ϕ(θ )
= ϕ′′(θ )

ϕ(θ )
−
(

ϕ′(θ )

ϕ(θ )

)2

=
∫

x2 dFθ (x) −
(∫

x dFθ (x)

)2

≥ 0

since the last expression is the variance of Fθ . If we assume

(H2) the distribution F is not a point mass at µ
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then ϕ′(θ )/ϕ(θ ) is strictly increasing and aθ − log φ(θ ) is concave. Since we have
ϕ′(0)/ϕ(0) = µ, this shows that for each a > µ there is at most one θa ≥ 0 that
solves a = ϕ′(θa)/ϕ(θa), and this value of θ maximizes aθ − log ϕ(θ ). Before
discussing the existence of θa , we will consider some examples.

Example 2.6.1. Normal distribution.∫
eθx(2π )−1/2 exp(−x2/2) dx = exp(θ2/2)

∫
(2π )−1/2 exp(−(x − θ )2/2) dx

The integrand in the last integral is the density of a normal distribution with mean θ

and variance 1, so ϕ(θ ) = exp(θ2/2), θ ∈ (−∞,∞). In this case, ϕ′(θ )/ϕ(θ ) = θ

and

Fθ (x) = e−θ2/2
∫ x

−∞
eθy(2π )−1/2e−y2/2 dy

is a normal distribution with mean θ and variance 1.

Example 2.6.2. Exponential distribution with parameter λ. If θ < λ∫ ∞

0
eθxλe−λx dx = λ/(λ − θ )

ϕ′(θ )ϕ(θ ) = 1/(λ − θ ) and

Fθ (x) = λ

λ − θ

∫ x

0
eθyλe−λy dy

is an exponential distribution with parameter λ − θ and hence mean 1/(λ − θ ).

Example 2.6.3. Coin flips. P (Xi = 1) = P (Xi = −1) = 1/2

ϕ(θ ) = (eθ + e−θ )/2

ϕ′(θ )/ϕ(θ ) = (eθ − e−θ )/(eθ + e−θ )

Fθ ({x})/F ({x}) = eθx/φ(θ ) so

Fθ ({1}) = eθ/(eθ + e−θ ) and Fθ ({−1}) = e−θ/(eθ + e−θ )

Example 2.6.4. Perverted exponential. Let g(x) = Cx−3e−x for x ≥ 1, g(x) = 0
otherwise, and choose C so that g is a probability density. In this case,

ϕ(θ ) =
∫

eθxg(x)dx < ∞

if and only if θ ≤ 1, and when θ ≤ 1, we have

ϕ′(θ )

ϕ(θ )
≤ ϕ′(1)

ϕ(1)
=
∫ ∞

1
Cx−2 dx

/∫ ∞

1
Cx−3dx = 2

Recall θ+ = sup{θ : ϕ(θ ) < ∞}. In Examples 2.6.1 and 2.6.2, we have
φ′(θ )/φ(θ ) ↑ ∞ as θ ↑ θ+ so we can solve a = φ′(θ )/φ(θ ) for any a > µ. In
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Example 2.6.3, φ′(θ )/φ(θ ) ↑ 1 as θ → ∞, but we cannot hope for much more
since F and hence Fθ is supported on {−1, 1}.

Exercise 2.6.3. Let xo = sup{x : F (x) < 1}. Show that if xo < ∞ then φ(θ ) < ∞
for all θ > 0 and φ′(θ )/φ(θ ) → xo as θ ↑ ∞.

Example 2.6.4 presents a problem since we cannot solve a = ϕ′(θ )/ϕ(θ ) when
a > 2. Theorem 2.6.5 will cover this problem case, but first we will treat the cases
in which we can solve the equation.

Theorem 2.6.3. Suppose in addition to (H1) and (H2) that there is a θa ∈ (0, θ+)
so that a = ϕ′(θa)/ϕ(θa). Then, as n → ∞,

n−1 log P (Sn ≥ na) → −aθa + log ϕ(θa)

Proof. The fact that the limsup of the left-hand side ≤ the right-hand side follows
from (2.6.2). To prove the other inequality, pick λ ∈ (θa, θ+), let Xλ

1 , X
λ
2 , . . . be

i.i.d. with distribution Fλ and let Sλ
n = Xλ

1 + · · · + Xλ
n . Writing dF/dFλ for the

Radon-Nikodym derivative of the associated measures, it is immediate from the
definition that dF/dFλ = e−λxϕ(λ). If we let Fn

λ and Fn denote the distributions
of Sλ

n and Sn, then

Lemma 2.6.4.
dFn

dFn
λ

= e−λxϕ(λ)n.

Proof. We will prove this by induction. The result holds when n = 1. For n > 1,
we note that

Fn = Fn−1 ∗ F (z) =
∫ ∞

−∞
dFn−1(x)

∫ z−x

−∞
dF (y)

=
∫

dFn−1
λ (x)

∫
dFλ(y) 1(x+y≤z)e

−λ(x+y)ϕ(λ)n

= E
(

1(Sλ
n−1+Xλ

n≤z)e
−λ(Sλ

n−1+Xλ
n)ϕ(λ)n

)

=
∫ z

−∞
dFn

λ (u)e−λuϕ(λ)n

where in the last two equalities we have used Theorem 1.6.9 for (Sλ
n−1, X

λ
n)

and Sλ
n . �

If ν > a, then the lemma and monotonicity imply

(∗) P (Sn ≥ na) ≥
∫ nν

na

e−λxϕ(λ)ndF n
λ (x) ≥ ϕ(λ)ne−λnν(Fn

λ (nν) − Fn
λ (na))
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Fλ has mean ϕ′(λ)/ϕ(λ), so if we have a < ϕ′(λ)/ϕ(λ) < ν, then the weak law of
large numbers implies

Fn
λ (nν) − Fn

λ (na) → 1 as n → ∞
From the last conclusion and (∗) it follows that

lim inf
n→∞ n−1 log P (Sn > na) ≥ −λν + log φ(λ)

Since λ > θa and ν > a are arbitrary, the proof is complete. �

To get a feel for what the answers look like, we consider our examples. To
prepare for the computations, we recall some important information:

κ(θ ) = log φ(θ ) κ ′(θ ) = φ′(θ )/φ(θ ) θa solves κ ′(θa) = a

γ (a) = lim
n→∞(1/n) log P (Sn ≥ na) = −aθa + κ(θa)

Normal distribution. (Example 2.6.1):

κ(θ ) = θ2/2 κ ′(θ ) = θ θa = a

γ (a) = −aθa + κ(θa) = −a2/2

Exercise 2.6.4. Check the last result by observing that Sn has a normal distribution
with mean 0 and variance n, and then using Theorem 1.2.3.

Exponential distribution. (Example 2.6.2) with λ = 1:

κ(θ ) = − log(1 − θ ) κ ′(θ ) = 1/(1 − θ ) θa = 1 − 1/a

γ (a) = −aθa + κ(θa) = −a + 1 + log a

With these two examples as models, the reader should be able to do

Exercise 2.6.5. Let X1, X2, . . . be i.i.d. Poisson with mean 1, and let Sn =
X1 + · · · + Xn. Find limn→∞(1/n) log P (Sn ≥ na) for a > 1. The answer and
another proof can be found in Exercise 3.1.4.

Coin flips. (Example 2.6.3). Here we take a different approach. To find the θ that
makes the mean of Fθ = a, we set Fθ ({1}) = eθ/(eθ + e−θ ) = (1 + a)/2. Letting
x = eθ gives

2x = (1 + a)(x + x−1) (a − 1)x2 + (1 + a) = 0

So x = √
(1 + a)/(1 − a) and θa = log x = {log(1 + a) − log(1 − a)}/2.

φ(θa) = eθa + e−θa

2
= eθa

1 + a
= 1√

(1 + a)(1 − a)

γ (a) = −aθa + κ(θa) = −{(1 + a) log(1 + a) + (1 − a) log(1 − a)}/2
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In Exercise 3.1.3, this result will be proved by a direct computation. Since the
formula for γ (a) is rather ugly, the following simpler bound is useful.

Exercise 2.6.6. Show that for coin flips ϕ(θ ) ≤ exp(ϕ(θ ) − 1) ≤ exp(βθ2) for
θ ≤ 1 where β =∑∞

n=1 1/(2n)! ≈ 0.586, and use (2.6.2) to conclude that P (Sn ≥
an) ≤ exp(−na2/4β) for all a ∈ [0, 1]. It is customary to simplify this further by
using β ≤∑∞

n=1 2−n = 1.

Turning now to the problematic values for which we cannot solve a =
φ′(θa)/φ(θa), we begin by observing that if xo = sup{x : F (x) < 1} and F is not
a point mass at xo, then φ′(θ )/φ(θ ) ↑ x0 as θ ↑ ∞ but φ′(θ )/φ(θ ) < x0 for all
θ < ∞. However, the result for a = xo is trivial:

1

n
log P (Sn ≥ nxo) = log P (Xi = xo) for all n

Exercise 2.6.7. Show that as a ↑ xo, γ (a) ↓ log P (Xi = xo).

When xo = ∞, φ′(θ )/φ(θ ) ↑ ∞ as θ ↑ ∞, so the only case that remains is covered
by

Theorem 2.6.5. Suppose xo = ∞, θ+ < ∞, and ϕ′(θ )/ϕ(θ ) increases to a finite
limit a0 as θ ↑ θ+. If a0 ≤ a < ∞

n−1 log P (Sn ≥ na) → −aθ+ + log ϕ(θ+)

that is, γ (a) is linear for a ≥ a0.

Proof. Since (log ϕ(θ ))′ = ϕ′(θ )/ϕ(θ ), integrating from 0 to θ+ shows that
log(ϕ(θ+)) < ∞. Letting θ = θ+ in (2.6.2) shows that the limsup of the left-hand
side ≤ the right-hand side. To get the other direction we will use the transformed
distribution Fλ, for λ = θ+. Letting θ ↑ θ+ and using the dominated convergence
theorem for x ≤ 0 and the monotone convergence theorem for x ≥ 0, we see
that Fλ has mean a0. From (∗) in the proof of Theorem 2.6.3, we see that if
a0 ≤ a < ν = a + 3ε

P (Sn ≥ na) ≥ ϕ(λ)ne−nλν(Fn
λ (nν) − Fn

λ (na))

and hence

1

n
log P (Sn ≥ na) ≥ log ϕ(λ) − λν + 1

n
log P (Sλ

n ∈ (na, nν])
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Letting Xλ
1 , X

λ
2 , . . . be i.i.d. with distribution Fλ and Sλ

n = Xλ
1 + · · · + Xλ

n , we have

P (Sλ
n ∈ (na, nν]) ≥ P {Sλ

n−1 ∈ ((a0 − ε)n, (a0 + ε)n]}
· P {Xλ

n ∈ ((a − a0 + ε)n, (a − a0 + 2ε)n]}

≥ 1

2
P {Xλ

n ∈ ((a − a0 + ε)n, (a − a0 + ε)(n + 1)]}
for large n by the weak law of large numbers. To get a lower bound on the right-hand
side of the last equation, we observe that

lim sup
n→∞

1

n
log P (Xλ

1 ∈ ((a − a0 + ε)n, (a − a0 + ε)(n + 1)]) = 0

for if the lim sup was < 0, we would have E exp(ηXλ
1 ) < ∞ for some η > 0 and

hence E exp((λ + η)X1) < ∞, contradicting the definition of λ = θ+. To finish the
argument now, we recall that Theorem 2.6.1 implies that

lim
n→∞

1

n
log P (Sn ≥ na) = γ (a)

exists, so our lower bound on the lim sup is good enough. �

By adapting the proof of the last result, you can show that (H1) is necessary for
exponential convergence:

Exercise 2.6.8. Suppose EXi = 0 and E exp(θXi) = ∞ for all θ > 0. Then

1

n
log P (Sn ≥ na) → 0 for all a > 0

Exercise 2.6.9. Suppose EXi = 0. Show that if ε > 0 then

lim inf
n→∞ P (Sn ≥ na)/nP (X1 ≥ n(a + ε)) ≥ 1

Hint: Let Fn = {Xi ≥ n(a + ε) for exactly one i ≤ n}.
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Central Limit Theorems

The first four sections of this chapter develop the central limit theorem. The last five
treat various extensions and complements. We begin this chapter by considering
special cases of these results that can be treated by elementary computations.

3.1 The De Moivre-Laplace Theorem

Let X1, X2, . . . be i.i.d. with P (X1 = 1) = P (X1 = −1) = 1/2 and let Sn =
X1 + · · · + Xn. In words, we are betting $1 on the flipping of a fair coin and
Sn is our winnings at time n. If n and k are integers

P (S2n = 2k) =
(

2n

n + k

)
2−2n

since S2n = 2k if and only if there are n + k flips that are +1 and n − k flips that
are −1 in the first 2n. The first factor gives the number of such outcomes and the
second the probability of each one. Stirling’s formula (see Feller, Vol. I., 1968,
p. 52) tells us

n! ∼ nne−n
√

2πn as n → ∞ (3.1.1)

where an ∼ bn means an/bn → 1 as n → ∞, so(
2n

n + k

)
= (2n)!

(n + k)!(n − k)!

∼ (2n)2n

(n + k)n+k(n − k)n−k
· (2π (2n))1/2

(2π (n + k))1/2(2π (n − k))1/2

and we have (
2n

n + k

)
2−2n ∼

(
1 + k

n

)−n−k

·
(

1 − k

n

)−n+k

· (πn)−1/2 ·
(

1 + k

n

)−1/2

·
(

1 − k

n

)−1/2

(3.1.2)

94
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The first two terms on the right are

=
(

1 − k2

n2

)−n

·
(

1 + k

n

)−k

·
(

1 − k

n

)k

A little calculus shows that:

Lemma 3.1.1. If cj → 0, aj → ∞ and ajcj → λ then (1 + cj )aj → eλ.

Proof. As x → 0, log(1 + x)/x → 1, so aj log(1 + cj ) → λ, and the desired result
follows. �

Exercise 3.1.1. Generalize the last proof to conclude that if max1≤j≤n |cj,n| → 0,∑n
j=1 cj,n → λ, and supn

∑n
j=1 |cj,n| < ∞ then

∏n
j=1(1 + cj,n) → eλ.

Using Lemma 3.1.1 now, we see that if 2k = x
√

2n, that is, k = x
√

n/2, then(
1 − k2

n2

)−n

= (1 − x2/2n
)−n → ex2/2

(
1 + k

n

)−k

=
(

1 + x/
√

2n
)−x

√
n/2

→ e−x2/2

(
1 − k

n

)k

=
(

1 − x/
√

2n
)x

√
n/2

→ e−x2/2

For this choice of k, k/n → 0, so(
1 + k

n

)−1/2

·
(

1 − k

n

)−1/2

→ 1

and putting things together gives:

Theorem 3.1.2. If 2k/
√

2n → x then P (S2n = 2k) ∼ (πn)−1/2e−x2/2.

Our next step is to compute

P (a
√

2n ≤ S2n ≤ b
√

2n) =
∑

m∈[a
√

2n,b
√

2n]∩2Z

P (S2n = m)

Changing variables m = x
√

2n, we have that the above is

≈
∑

x∈[a,b]∩(2Z/
√

2n)

(2π )−1/2e−x2/2 · (2/n)1/2

where 2Z/
√

2n = {2z/
√

2n : z ∈ Z}. We have multiplied and divided by
√

2 since
the space between points in the sum is (2/n)1/2, so if n is large, the sum above is

≈
∫ b

a

(2π )−1/2e−x2/2dx
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The integrand is the density of the (standard) normal distribution, so, changing
notation, we can write the last quantity as P (a ≤ χ ≤ b) where χ is a random
variable with that distribution.

It is not hard to fill in the details to get:

Theorem 3.1.3. The De Moivre-Laplace Theorem. If a < b then as m → ∞

P (a ≤ Sm/
√

m ≤ b) →
∫ b

a

(2π )−1/2e−x2/2dx

(To remove the restriction to even integers observe S2n+1 = S2n ± 1.) The last result
is a special case of the central limit theorem given in Section 3.4, so further details
are left to the reader.

Exercises

The next three exercises illustrate the use of Stirling’s formula. In them,
X1, X2, . . . are i.i.d. and Sn = X1 + · · · + Xn.

3.1.2. If the Xi have a Poisson distribution with mean 1, then Sn has a Poisson
distribution with mean n, i.e., P (Sn = k) = e−nnk/k! Use Stirling’s formula to
show that if (k − n)/

√
n → x then
√

2πnP (Sn = k) → exp(−x2/2)

As in the case of coin flips it follows that

P (a ≤ (Sn − n)/
√

n ≤ b) →
∫ b

a

(2π )−1/2e−x2/2 dx

but proving the last conclusion is not part of the exercise.
In the next two examples you should begin by considering P (Sn = k) when

k/n → a and then relate P (Sn = j + 1) to P (Sn = j ) to show P (Sn ≥ k) ≤
CP (Sn = k).

3.1.3. Suppose P (Xi = 1) = P (Xi = −1) = 1/2. Show that if a ∈ (0, 1)

1

2n
log P (S2n ≥ 2na) → −γ (a)

where γ (a) = 1
2{(1 + a) log(1 + a) + (1 − a) log(1 − a)}.

3.1.4. Suppose P (Xi = k) = e−1/k! for k = 0, 1, . . . Show that if a > 1

1

n
log P (Sn ≥ na) → a − 1 − a log a
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3.2 Weak Convergence

In this section, we will define the type of convergence that appears in the central limit
theorem and explore some of its properties. A sequence of distribution functions
is said to converge weakly to a limit F (written Fn ⇒ F ) if Fn(y) → F (y) for all
y that are continuity points of F . A sequence of random variables Xn is said to
converge weakly or converge in distribution to a limit X∞ (written Xn ⇒ X∞)
if their distribution functions Fn(x) = P (Xn ≤ x) converge weakly. To see that
convergence at continuity points is enough to identify the limit, observe that F

is right continuous and by Exercise 1.2.3, the discontinuities of F are at most a
countable set.

3.2.1 Examples

Two examples of weak convergence that we have seen earlier are:

Example 3.2.1. Let X1, X2, . . . be i.i.d. with P (Xi = 1) = P (Xi = −1) = 1/2
and let Sn = X1 + · · · + Xn. Then Theorem 3.1.3 implies

Fn(y) = P (Sn/
√

n ≤ y) →
∫ y

−∞
(2π )−1/2e−x2/2 dx

Example 3.2.2. Let X1, X2, . . . be i.i.d. with distribution F . The Glivenko-Cantelli
theorem (Theorem 2.4.7) implies that for almost every ω,

Fn(y) = n−1
n∑

m=1

1(Xm(ω)≤y) → F (y) for all y

In the last two examples convergence occurred for all y, even though in the
second case the distribution function could have discontinuities. The next example
shows why we restrict our attention to continuity points.

Example 3.2.3. Let X have distribution F . Then X + 1/n has distribution

Fn(x) = P (X + 1/n ≤ x) = F (x − 1/n)

As n → ∞, Fn(x) → F (x−) = limy↑x F (y), so convergence only occurs at con-
tinuity points.

Example 3.2.4. Waiting for rare events. Let Xp be the number of trials needed to
get a success in a sequence of independent trials with success probability p. Then
P (Xp ≥ n) = (1 − p)n−1 for n = 1, 2, 3, . . . , and it follows from Lemma 3.1.1
that as p → 0,

P (pXp > x) → e−x for all x ≥ 0

In words, pXp converges weakly to an exponential distribution.
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Example 3.2.5. Birthday problem. Let X1, X2, . . . be independent and uniformly
distributed on {1, . . . , N}, and let TN = min{n : Xn = Xm for some m < n}.

P (TN > n) =
n∏

m=2

(
1 − m − 1

N

)

When N = 365, this is the probability that two people in a group of size n do not
have the same birthday (assuming all birthdays are equally likely). Using Exercise
3.1.1, it is easy to see that

P (TN/N1/2 > x) → exp(−x2/2) for all x ≥ 0

Taking N = 365 and noting 22/
√

365 = 1.1515 and (1.1515)2/2 = 0.6630, this
says that

P (T365 > 22) ≈ e−0.6630 ≈ 0.515

This answer is 2% smaller than the true probability 0.524.

Before giving our sixth example, we need a simple result called Scheffé’s
theorem. Suppose we have probability densities fn, 1 ≤ n ≤ ∞, and fn → f∞
pointwise as n → ∞. Then for all Borel sets B∣∣∣∣

∫
B

fn(x)dx −
∫

B

f∞(x)dx

∣∣∣∣ ≤
∫

|fn(x) − f∞(x)|dx

= 2
∫

(f∞(x) − fn(x))+ dx → 0

by the dominated convergence theorem, the equality following from the fact that
the fn ≥ 0 and have integral = 1. Writing µn for the corresponding measures, we
have shown that the total variation norm

‖µn − µ∞‖ ≡ sup
B

|µn(B) − µ∞(B)| → 0

a conclusion stronger than weak convergence. (Take B = (−∞, x].) The example
µn = a point mass at 1/n (with 1/∞ = 0) shows that we may have µn ⇒ µ∞
with ‖µn − µ∞‖ = 1 for all n.

Exercise 3.2.1. Give an example of random variables Xn with densities fn so that
Xn ⇒ a uniform distribution on (0,1) but fn(x) does not converge to 1 for any
x ∈ [0, 1].

Example 3.2.6. Central order statistic. Put (2n + 1) points at random in (0,1),
that is, with locations that are independent and uniformly distributed. Let Vn+1 be
the (n + 1)th largest point. It is easy to see that
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Lemma 3.2.1. Vn+1 has density function

fVn+1 (x) = (2n + 1)

(
2n

n

)
xn(1 − x)n

Proof. There are 2n + 1 ways to pick the observation that falls at x, then we
have to pick n indices for observations < x, which can be done in

(2n

n

)
ways.

Once we have decided on the indices that will land < x and > x, the probability
the corresponding random variables will do what we want is xn(1 − x)n, and
the probability density that the remaining one will land at x is 1. If you don’t
like the previous sentence, compute the probability X1 < x − ε, . . . , Xn < x − ε,
x − ε < Xn+1 < x + ε, Xn+2 > x + ε, . . . X2n+1 > x + ε, then let ε → 0. �

To compute the density function of Yn = 2(Vn+1 − 1/2)
√

2n, we use
Exercise 1.2.5, or simply change variables x = 1/2 + y/2

√
2n, dx = dy/2

√
2n

to get

fYn
(y) = (2n + 1)

(
2n

n

)(
1

2
+ y

2
√

2n

)n (1

2
− y

2
√

2n

)n 1

2
√

2n

=
(

2n

n

)
2−2n · (1 − y2/2n)n · 2n + 1

2n
·
√

n

2

The first factor is P (S2n = 0) for a simple random walk, so Theorem 3.1.2 and
Lemma 3.1.1 imply that

fYn
(y) → (2π )−1/2 exp(−y2/2) as n → ∞

Here and in what follows we write P (Yn = y) for the density function of Yn. Using
Scheffé’s theorem now, we conclude that Yn converges weakly to a standard normal
distribution.

Exercise 3.2.2. Convergence of maxima. Let X1, X2, . . . be independent with
distribution F , and let Mn = maxm≤n Xm. Then P (Mn ≤ x) = F (x)n. Prove the
following limit laws for Mn:

(i) If F (x) = 1 − x−α for x ≥ 1 where α > 0, then for y > 0,

P (Mn/n1/α ≤ y) → exp(−y−α)

(ii) If F (x) = 1 − |x|β for −1 ≤ x ≤ 0 where β > 0, then for y < 0,

P (n1/βMn ≤ y) → exp(−|y|β)

(iii) If F (x) = 1 − e−x for x ≥ 0 then for all y ∈ (−∞,∞)

P (Mn − log n ≤ y) → exp(−e−y)

The limits that appear above are called the extreme value distributions. The last
one is called the double exponential or Gumbel distribution. Necessary and
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sufficient conditions for (Mn − bn)/an to converge to these limits were obtained
by Gnedenko (1943). For a recent treatment, see Resnick (1987).

Exercise 3.2.3. Let X1, X2, . . . be i.i.d. and have the standard normal distribution.
(i) From Theorem 1.2.3, we know

P (Xi > x) ∼ 1√
2π x

e−x2/2 as x → ∞

Use this to conclude that for any real number θ

P (Xi > x + (θ/x))/P (Xi > x) → e−θ

(ii) Show that if we define bn by P (Xi > bn) = 1/n

P (bn(Mn − bn) ≤ x) → exp(−e−x)

(iii) Show that bn ∼ (2 log n)1/2 and conclude Mn/(2 log n)1/2 → 1 in probability.

3.2.2 Theory

The next result is useful for proving things about weak convergence.

Theorem 3.2.2. If Fn ⇒ F∞ then there are random variables Yn, 1 ≤ n ≤ ∞,
with distribution Fn so that Yn → Y∞ a.s.

Proof. Let � = (0, 1), F = Borel sets, P = Lebesgue measure, and let Yn(x) =
sup{y : Fn(y) < x}. By Theorem 1.2.2, Yn has distribution Fn. We will now show
that Yn(x) → Y∞(x) for all but a countable number of x. To do this, it is convenient
to write Yn(x) as F−1

n (x) and drop the subscript when n = ∞. We begin by identify-
ing the exceptional set. Let ax = sup{y : F (y) < x}, bx = inf{y : F (y) > x}, and
�0 = {x : (ax, bx) = ∅} where (ax, bx) is the open interval with the indicated end-
points. � − �0 is countable since the (ax, bx) are disjoint and each nonempty inter-
val contains a different rational number. If x ∈ �0 then F (y) < x for y < F−1(x)
and F (z) > x for z > F−1(x). To prove that F−1

n (x) → F−1(x) for x ∈ �0, there
are two things to show:

(a) lim infn→∞ F−1
n (x) ≥ F−1(x)

Proof of (a). Let y < F−1(x) be such that F is continuous at y. Since x ∈ �0,
F (y) < x and if n is sufficiently large Fn(y) < x, that is, F−1

n (x) ≥ y. Since this
holds for all y satisfying the indicated restrictions, the result follows.

(b) lim supn→∞ F−1
n (x) ≤ F−1(x)

Proof of (b). Let y > F−1(x) be such that F is continuous at y. Since x ∈ �0,
F (y) > x and if n is sufficiently large Fn(y) > x, that is, F−1

n (x) ≤ y. Since this
holds for all y satisfying the indicated restrictions, the result follows and we have
completed the proof. �
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Theorem 3.2.2 allows us to immediately generalize some of our earlier results.

Exercise 3.2.4. Fatou’s lemma. Let g ≥ 0 be continuous. If Xn ⇒ X∞ then

lim inf
n→∞ Eg(Xn) ≥ Eg(X∞)

Exercise 3.2.5. Integration to the limit. Suppose g, h are continuous with g(x) >

0, and |h(x)|/g(x) → 0 as |x| → ∞. If Fn ⇒ F and
∫

g(x) dFn(x) ≤ C < ∞,
then ∫

h(x) dFn(x) →
∫

h(x)dF (x)

The next result illustrates the usefulness of Theorem 3.2.2 and gives an equivalent
definition of weak convergence that makes sense in any topological space.

Theorem 3.2.3. Xn ⇒ X∞ if and only if for every bounded continuous function g

we have Eg(Xn) → Eg(X∞).

Proof. Let Yn have the same distribution as Xn and converge a.s. Since g is con-
tinuous, g(Yn) → g(Y∞) a.s. and the bounded convergence theorem implies

Eg(Xn) = Eg(Yn) → Eg(Y∞) = Eg(X∞)

To prove the converse, let

gx,ε(y) =

⎧⎪⎨
⎪⎩

1 y ≤ x

0 y ≥ x + ε

linear x ≤ y ≤ x + ε

Since gx,ε(y) = 1 for y ≤ x, gx,ε is continuous, and gx,ε(y) = 0 for y > x + ε,

lim sup
n→∞

P (Xn ≤ x) ≤ lim sup
n→∞

Egx,ε(Xn) = Egx,ε(X∞) ≤ P (X∞ ≤ x + ε)

Letting ε → 0 gives lim supn→∞ P (Xn ≤ x) ≤ P (X∞ ≤ x). The last conclusion
is valid for any x. To get the other direction, we observe

lim inf
n→∞ P (Xn ≤ x) ≥ lim inf

n→∞ Egx−ε,ε(Xn) = Egx−ε,ε(X∞) ≥ P (X∞ ≤ x − ε)

Letting ε → 0 gives lim infn→∞ P (Xn ≤ x) ≥ P (X∞ < x) = P (X∞ ≤ x) if x is
a continuity point. The results for the lim sup and the lim inf combine to give the
desired result. �

The next result is a trivial but useful generalization of Theorem 3.2.3.

Theorem 3.2.4. Continuous mapping theorem. Let g be a measurable function
and Dg = {x : g is discontinuous at x}. If Xn ⇒ X∞ and P (X∞ ∈ Dg) = 0 then
g(Xn) ⇒ g(X). If in addition g is bounded, then Eg(Xn) → Eg(X∞).
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Remark. Dg is always a Borel set. See Exercise 1.3.6.

Proof. Let Yn =d Xn with Yn → Y∞ a.s. If f is continuous, then Df ◦g ⊂ Dg,
so P (Y∞ ∈ Df ◦g) = 0, and it follows that f (g(Yn)) → f (g(Y∞) a.s. If, in addi-
tion, f is bounded, then the bounded convergence theorem implies Ef (g(Yn)) →
Ef (g(Y∞). Since this holds for all bounded continuous functions, it follows from
Theorem 3.2.3 that g(Xn) ⇒ g(X∞).

The second conclusion is easier. Since P (Y∞ ∈ Dg) = 0, g(Yn) → g(Y∞) a.s.,
and the desired result follows from the bounded convergence theorem. �

The next result provides a number of useful alternative definitions of weak
convergence.

Theorem 3.2.5. The following statements are equivalent:
(i) Xn ⇒ X∞

(ii) For all open sets G, lim infn→∞ P (Xn ∈ G) ≥ P (X∞ ∈ G).
(iii) For all closed sets K , lim supn→∞ P (Xn ∈ K) ≤ P (X∞ ∈ K).
(iv) For all sets A with P (X∞ ∈ ∂A) = 0, limn→∞ P (Xn ∈ A) = P (X∞ ∈ A).

Remark. To help remember the directions of the inequalities in (ii) and (iii),
consider the special case in which P (Xn = xn) = 1. In this case, if xn ∈ G and
xn → x∞ ∈ ∂G, then P (Xn ∈ G) = 1 for all n but P (X∞ ∈ G) = 0. Letting K =
Gc gives an example for (iii).

Proof. We will prove four things and leave it to the reader to check that we have
proved the result given above.

(i) implies (ii): Let Yn have the same distribution as Xn and Yn → Y∞ a.s. Since G

is open,

lim inf
n→∞ 1G(Yn) ≥ 1G(Y∞)

so Fatou’s lemma implies

lim inf
n→∞ P (Yn ∈ G) ≥ P (Y∞ ∈ G)

(ii) is equivalent to (iii): This follows easily from: A is open if and only if Ac is
closed and P (A) + P (Ac) = 1.

(ii) and (iii) imply (iv): Let K = Ā and G = Ao be the closure and interior of A,
respectively. The boundary of A, ∂A = Ā − Ao and P (X∞ ∈ ∂A) = 0, so

P (X∞ ∈ K) = P (X∞ ∈ A) = P (X∞ ∈ G)
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Using (ii) and (iii) now

lim sup
n→∞

P (Xn ∈ A) ≤ lim sup
n→∞

P (Xn ∈ K) ≤ P (X∞ ∈ K) = P (X∞ ∈ A)

lim inf
n→∞ P (Xn ∈ A) ≥ lim inf

n→∞ P (Xn ∈ G) ≥ P (X∞ ∈ G) = P (X∞ ∈ A)

(iv) implies (i): Let x be such that P (X∞ = x) = 0, i.e., x is a continuity point of
F , and let A = (−∞, x]. �

The next result is useful in studying limits of sequences of distributions.

Theorem 3.2.6. Helly’s selection theorem. For every sequence Fn of distribu-
tion functions, there is a subsequence Fn(k) and a right continuous nondecreasing
function F so that limk→∞ Fn(k)(y) = F (y) at all continuity points y of F .

Remark. The limit may not be a distribution function. For example, if a + b + c =
1 and Fn(x) = a 1(x≥n) + b 1(x≥−n) + c G(x) where G is a distribution function,
then Fn(x) → F (x) = b + cG(x),

lim
x↓−∞

F (x) = b and lim
x↑∞

F (x) = b + c = 1 − a

In words, an amount of mass a escapes to +∞, and mass b escapes to −∞.
The type of convergence that occurs in Theorem 3.2.6 is sometimes called vague
convergence, and will be denoted here by ⇒v.

Proof. The first step is a diagonal argument. Let q1, q2, . . . be an enumeration
of the rationals. Since for each k, Fm(qk) ∈ [0, 1] for all m, there is a sequence
mk(i) → ∞ that is a subsequence of mk−1(j ) (let m0(j ) ≡ j ) so that

Fmk(i)(qk) converges to G(qk) as i → ∞
Let Fn(k) = Fmk(k). By construction Fn(k)(q) → G(q) for all rational q. The function
G may not be right continuous, but F (x) = inf{G(q) : q ∈ Q, q > x} is, since

lim
xn↓x

F (xn) = inf{G(q) : q ∈ Q, q > xn for some n}

= inf{G(q) : q ∈ Q, q > x} = F (x)

To complete the proof, let x be a continuity point of F . Pick rationals r1, r2, s with
r1 < r2 < x < s so that

F (x) − ε < F (r1) ≤ F (r2) ≤ F (x) ≤ F (s) < F (x) + ε

Since Fn(k)(r2) → G(r2) ≥ F (r1), and Fn(k)(s) → G(s) ≤ F (s), it follows that if k

is large,

F (x) − ε < Fn(k)(r2) ≤ Fn(k)(x) ≤ Fn(k)(s) < F (x) + ε

which is the desired conclusion. �
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The last result raises a question: When can we conclude that no mass is lost in
the limit in Theorem 3.2.6?

Theorem 3.2.7. Every subsequential limit is the distribution function of a proba-
bility measure if and only if the sequence Fn is tight, that is, for all ε > 0 there is
an Mε so that

lim sup
n→∞

1 − Fn(Mε) + Fn(−Mε) ≤ ε

Proof. Suppose the sequence is tight and Fn(k) ⇒v F . Let r < −Mε and s > Mε

be continuity points of F . Since Fn(r) → F (r) and Fn(s) → F (s), we have

1 − F (s) + F (r) = lim
k→∞

1 − Fn(k)(s) + Fn(k)(r)

≤ lim sup
n→∞

1 − Fn(Mε) + Fn(−Mε) ≤ ε

The last result implies lim supx→∞ 1 − F (x) + F (−x) ≤ ε. Since ε is arbitrary, it
follows that F is the distribution function of a probability measure.

To prove the converse now suppose Fn is not tight. In this case, there is an ε > 0
and a subsequence n(k) → ∞ so that

1 − Fn(k)(k) + Fn(k)(−k) ≥ ε

for all k. By passing to a further subsequence Fn(kj ) we can suppose that Fn(kj ) ⇒v

F . Let r < 0 < s be continuity points of F .

1 − F (s) + F (r) = lim
j→∞

1 − Fn(kj )(s) + Fn(kj )(r)

≥ lim inf
j→∞

1 − Fn(kj )(kj ) + Fn(kj )(−kj ) ≥ ε

Letting s → ∞ and r → −∞, we see that F is not the distribution function of a
probability measure. �

The following sufficient condition for tightness is often useful.

Theorem 3.2.8. If there is a ϕ ≥ 0 so that ϕ(x) → ∞ as |x| → ∞ and

C = sup
n

∫
ϕ(x)dFn(x) < ∞

then Fn is tight.

Proof. 1 − Fn(M) + Fn(−M) ≤ C/ inf|x|≥M ϕ(x). �

The first two exercises below define metrics for convergence in distriubtion. The
fact that convergence in distribution comes from a metric immediately implies
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Theorem 3.2.9. If each subsequence of Xn has a further subsequence that con-
verges to X, then Xn ⇒ X.

We will prove this again at the end of the proof of Theorem 3.3.6.

Exercises

3.2.6. The Lévy Metric. Show that

ρ(F, G) = inf{ε : F (x − ε) − ε ≤ G(x) ≤ F (x + ε) + ε for all x}
defines a metric on the space of distributions and ρ(Fn, F ) → 0 if and only if
Fn ⇒ F.

3.2.7. The Ky Fan metric on random variables is defined by

α(X, Y ) = inf{ε ≥ 0 : P (|X − Y | > ε) ≤ ε}
Show that if α(X, Y ) = α, then the corresponding distributions have Lévy distance
ρ(F, G) ≤ α.

3.2.8. Let α(X, Y ) be the metric in the previous exercise and let β(X, Y ) = E(|X −
Y |/(1 + |X − Y |)) be the metric of Exercise 2.3.8. If α(X, Y ) = a, then

a2/(1 + a) ≤ β(X, Y ) ≤ a + (1 − a)a/(1 + a)

3.2.9. If Fn ⇒ F and F is continuous, then supx |Fn(x) − F (x)| → 0.

3.2.10. If F is any distribution function, there is a sequence of distribution functions
of the form

∑n
m=1 an,m1(xn,m≤x) with Fn ⇒ F . Hint: Use Theorem 2.4.7.

3.2.11. Let Xn, 1 ≤ n ≤ ∞, be integer valued. Show that Xn ⇒ X∞ if and only if
P (Xn = m) → P (X∞ = m) for all m.

3.2.12. Show that if Xn → X in probability then Xn ⇒ X, and that, conversely, if
Xn ⇒ c, where c is a constant, then Xn → c in probability.

3.2.13. Converging together lemma. If Xn ⇒ X and Yn ⇒ c, where c is a con-
stant, then Xn + Yn ⇒ X + c. A useful consequence of this result is that if Xn ⇒ X

and Zn − Xn ⇒ 0, then Zn ⇒ X.

3.2.14. Suppose Xn ⇒ X, Yn ≥ 0, and Yn ⇒ c, where c > 0 is a constant. Then
XnYn ⇒ cX. This result is true without the assumptions Yn ≥ 0 and c > 0. We
have imposed these only to make the proof less tedious.

3.2.15. Show that if Xn = (X1
n, . . . , X

n
n) is uniformly distributed over the surface of

the sphere of radius
√

n in Rn then X1
n ⇒ a standard normal. Hint: Let Y1, Y2, . . . be

i.i.d. standard normals and let Xi
n = Yi(n/

∑n
m=1 Y 2

m)1/2.

3.2.16. Suppose Yn ≥ 0, EYα
n → 1 and EY

β
n → 1 for some 0 < α < β. Show that

Yn → 1 in probability.
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3.2.17. For each K < ∞ and y < 1 there is a cy,K > 0 so that EX2 = 1 and
EX4 ≤ K implies P (|X| > y) ≥ cy,K .

3.3 Characteristic Functions

This long section is divided into five parts. The first three are required reading, the
last two are optional. In the first part, we show that the characteristic function ϕ(t) =
E exp(itX) determines F (x) = P (X ≤ x), and we give recipes for computing F

from ϕ. In the second part, we relate weak convergence of distributions to the
behavior of the corresponding characteristic functions. In the third part, we relate
the behavior of ϕ(t) at 0 to the moments of X. In the fourth part, we prove
Polya’s criterion and use it to construct some famous and some strange examples of
characteristic functions. Finally, in the fifth part, we consider the moment problem,
that is, when is a distribution characterized by its moments.

3.3.1 Definition, Inversion Formula

If X is a random variable we define its characteristic function (ch.f.) by

ϕ(t) = EeitX = E cos tX + iE sin tX

The last formula requires taking the expected value of a complex-valued random
variable, but as the second equality may suggest, no new theory is required. If Z is
complex valued, we define EZ = E( Re Z) + iE( Im Z) where Re (a + bi) = a is
the real part and Im (a + bi) = b is the imaginary part. Some other definitions
we will need are: the modulus of the complex number z = a + bi is |a + bi| =
(a2 + b2)1/2, and the complex conjugate of z = a + bi, z̄ = a − bi.

Theorem 3.3.1. All characteristic functions have the following properties:
(a) ϕ(0) = 1,
(b) ϕ(−t) = ϕ(t),
(c) |ϕ(t)| = |EeitX| ≤ E|eitX| = 1
(d) |ϕ(t + h) − ϕ(t)| ≤ E|eihX − 1|, so ϕ(t) is uniformly continuous on (−∞,∞).
(e) Eeit(aX+b) = eitbϕ(at)

Proof. (a) is obvious. For (b) we note that

ϕ(−t) = E(cos(−tX) + i sin(−tX)) = E(cos(tX) − i sin(tX))

(c) follows from Exercise 1.6.2 since ϕ(x, y) = (x2 + y2)1/2 is convex.

|ϕ(t + h) − ϕ(t)| = |E(ei(t+h)X − eitX)|
≤ E|ei(t+h)X − eitX| = E|eihX − 1|

so uniform convergence follows from the bounded convergence theorem. For (e)
we note Eeit(aX+b) = eitbEei(ta)X = eitbϕ(at). �
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The main reason for introducing charactersitic functions is the following:

Theorem 3.3.2. If X1 and X2 are independent and have ch.f.’s ϕ1 and ϕ2, then
X1 + X2 has ch.f. ϕ1(t)ϕ2(t).

Proof.

Eeit(X1+X2) = E(eitX1eitX2 ) = EeitX1EeitX2

since eitX1 and eitX2 are independent. �

The next order of business is to give some examples.

Example 3.3.1. Coin flips. If P (X = 1) = P (X = −1) = 1/2, then

EeitX = (eit + e−it )/2 = cos t

Example 3.3.2. Poisson distribution. If P (X = k) = e−λλk/k! for k = 0, 1,

2, . . . , then

EeitX =
∞∑

k=0

e−λ λkeitk

k!
= exp(λ(eit − 1))

Example 3.3.3. Normal distribution

Density (2π )−1/2 exp(−x2/2)
Ch.f. exp(−t2/2)

Combining this result with (e) of Theorem 3.3.1, we see that a normal distribution
with mean µ and variance σ 2 has ch.f. exp(iµt − σ 2t2/2). Similar scalings can be
applied to other examples, so we will often just give the ch.f. for one member of
the family.

Physics Proof.∫
eitx(2π )−1/2e−x2/2 dx = e−t2/2

∫
(2π )−1/2e−(x−it)2/2 dx

The integral is 1 since the integrand is the normal density with mean it and
variance 1. �

Math Proof. Now that we have cheated and figured out the answer, we can verify
it by a formal calculation that gives very little insight into why it is true. Let

ϕ(t) =
∫

eitx(2π )−1/2e−x2/2dx =
∫

cos tx (2π )−1/2e−x2/2dx
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since i sin tx is an odd function. Differentiating with respect to t (referring to
Theorem A.5.1 for the justification) and then integrating by parts gives

ϕ′(t) =
∫

−x sin tx (2π )−1/2e−x2/2dx

= −
∫

t cos tx (2π )−1/2e−x2/2dx = −tϕ(t)

This implies d
dt

{ϕ(t) exp(t2/2)} = 0, so ϕ(t) exp(t2/2) = ϕ(0) = 1. �

In the next three examples, the density is 0 outside the indicated range.

Example 3.3.4. Uniform distribution on (a, b)

Density 1/(b − a) x ∈ (a, b)
Ch.f. (eitb − eita)/ it(b − a)

In the special case a = −c, b = c, the ch.f. is (eitc − e−itc)/2cit = (sin ct)/ct .

Proof. Once you recall that
∫ b

a
eλx dx = (eλb − eλa)/λ holds for complex λ, this is

immediate. �

Example 3.3.5. Triangular distribution

Density 1 − |x| x ∈ (−1, 1)
Ch.f. 2(1 − cos t)/t2

Proof. To see this, notice that if X and Y are independent and uniform on
(−1/2, 1/2), then X + Y has a triangular distribution. Using Example 3.3.4 now
and Theorem 3.3.2, it follows that the desired ch.f. is

{(eit/2 − e−it/2)/it}2 = {2 sin(t/2)/t}2

Using the trig identity cos 2θ = 1 − 2 sin2 θ with θ = t/2 converts the answer into
the form given above. �

Example 3.3.6. Exponential distribution

Density e−x x ∈ (0, ∞)
Ch.f. 1/(1 − it)

Proof. Integrating gives∫ ∞

0
eitxe−xdx = e(it−1)x

it − 1

∣∣∣∣
∞

0

= 1

1 − it

since exp((it − 1)x) → 0 as x → ∞. �

For the next result we need the following fact, which follows from the fact that∫
f d(µ + ν) = ∫ f dµ + ∫ f dν.
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Lemma 3.3.3. If F1, . . . , Fn have ch.f. ϕ1, . . . , ϕn and λi ≥ 0 have λ1 + . . . +
λn = 1, then

∑n
i=1 λiFi has ch.f.

∑n
i=1 λiϕi .

Example 3.3.7. Bilateral exponential

Density 1
2e

−|x| x ∈ (−∞,∞)
Ch.f. 1/(1 + t2)

Proof. This follows from Lemma 3.3.3 with F1 the distribution of an exponential
random variable X, F2 the distribution of −X, and λ1 = λ2 = 1/2. Then using (b)
of Theorem 3.3.1 we see the desired ch.f. is

1

2(1 − it)
+ 1

2(1 + it)
= (1 + it) + (1 − it)

2(1 + t2)
= 1

(1 + t2)
�

Exercise 3.3.1. Show that if ϕ is a ch.f., then Re ϕ and |ϕ|2 are also.

The first issue to be settled is that the characteristic function uniquely determines
the distribution. This and more is provided by

Theorem 3.3.4. The inversion formula. Let ϕ(t) = ∫ eitxµ(dx) where µ is a
probability measure. If a < b, then

lim
T →∞

(2π )−1
∫ T

−T

e−ita − e−itb

it
ϕ(t) dt = µ(a, b) + 1

2
µ({a, b})

Remark. The existence of the limit is part of the conclusion. If µ = δ0, a point
mass at 0, ϕ(t) ≡ 1. In this case, if a = −1 and b = 1, the integrand is (2 sin t)/t

and the integral does not converge absolutely.

Proof. Let

IT =
∫ T

−T

e−ita − e−itb

it
ϕ(t) dt =

∫ T

−T

∫
e−ita − e−itb

it
eitxµ(dx) dt

The integrand may look bad near t = 0, but if we observe that

e−ita − e−itb

it
=
∫ b

a

e−ity dy

we see that the modulus of the integrand is bounded by b − a. Since µ is a prob-
ability measure and [−T , T ] is a finite interval, it follows from Fubini’s theorem,
cos(−x) = cos x, and sin(−x) = − sin x that

IT =
∫ ∫ T

−T

e−ita − e−itb

it
eitx dt µ(dx)

=
∫ {∫ T

−T

sin(t(x − a))

t
dt −

∫ T

−T

sin(t(x − b))

t
dt

}
µ(dx)
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Introducing R(θ, T ) = ∫ T

−T
(sin θt)/t dt , we can write the last result as

(∗) IT =
∫

{R(x − a, T ) − R(x − b, T )}µ(dx)

If we let S(T ) = ∫ T

0 (sin x)/x dx, then for θ > 0 changing variables t = x/θ shows
that

R(θ, T ) = 2
∫ T θ

0

sin x

x
dx = 2S(T θ)

while for θ < 0, R(θ, T ) = −R(|θ |, T ). Introducing the function sgn x, which is
1 if x > 0, −1 if x < 0, and 0 if x = 0, we can write the last two formulas together
as

R(θ, T ) = 2( sgn θ )S(T |θ |)
As T → ∞, S(T ) → π/2 (see Exercise 1.7.5), so we have R(θ, T ) → π sgn θ

and

R(x − a, T ) − R(x − b, T ) →

⎧⎪⎨
⎪⎩

2π a < x < b

π x = a or x = b

0 x < a or x > b

|R(θ, T )| ≤ 2 supy S(y) < ∞, so using the bounded convergence theorem with (∗)
implies

(2π )−1IT → µ(a, b) + 1

2
µ({a, b})

proving the desired result. �

Exercise 3.3.2. (i) Imitate the proof of Theorem 3.3.4 to show that

µ({a}) = lim
T →∞

1

2T

∫ T

−T

e−itaϕ(t) dt

(ii) If P (X ∈ hZ) = 1 where h > 0, then its ch.f. has ϕ(2π/h + t) = ϕ(t), so

P (X = x) = h

2π

∫ π/h

−π/h

e−itxϕ(t) dt for x ∈ hZ

(iii) If X = Y + b, then E exp(itX) = eitbE exp(itY ). So if P (X ∈ b + hZ) = 1,
the inversion formula in (ii) is valid for x ∈ b + hZ.

Two trivial consequences of the inversion formula are:

Exercise 3.3.3. If ϕ is real then X and −X have the same distribution.

Exercise 3.3.4. If Xi , i = 1, 2 are independent and have normal distributions with
mean 0 and variance σ 2

i , then X1 + X2 has a normal distribution with mean 0 and
variance σ 2

1 + σ 2
2 .
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The inversion formula is simpler when ϕ is integrable, but as the next result
shows, this only happens when the underlying measure is nice.

Theorem 3.3.5. If
∫ |ϕ(t)| dt < ∞, then µ has bounded continuous density

f (y) = 1

2π

∫
e−ityϕ(t) dt

Proof. As we observed in the proof of Theorem 3.3.4∣∣∣∣e−ita − e−itb

it

∣∣∣∣ =
∣∣∣∣
∫ b

a

e−ity dy

∣∣∣∣ ≤ |b − a|

so the integral in Theorem 3.3.4 converges absolutely in this case and

µ(a, b) + 1

2
µ({a, b}) = 1

2π

∫ ∞

−∞

e−ita − e−itb

it
ϕ(t) dt ≤ (b − a)

2π

∫ ∞

−∞
|ϕ(t)|dt

The last result implies µ has no point masses and

µ(x, x + h) = 1

2π

∫
e−itx − e−it(x+h)

it
ϕ(t) dt

= 1

2π

∫ (∫ x+h

x

e−ity dy

)
ϕ(t) dt

=
∫ x+h

x

(
1

2π

∫
e−ityϕ(t) dt

)
dy

by Fubini’s theorem, so the distribution µ has density function

f (y) = 1

2π

∫
e−ityϕ(t) dt

The dominated convergence theorem implies f is continuous, and the proof is
complete. �

Exercise 3.3.5. Give an example of a measure µ with a density but for which∫ |ϕ(t)|dt = ∞. Hint: Two of the examples above have this property.

Exercise 3.3.6. Show that if X1, . . . , Xn are independent and uniformly distributed
on (−1, 1), then for n ≥ 2, X1 + · · · + Xn has density

f (x) = 1

π

∫ ∞

0
(sin t/t)n cos tx dt

Although it is not obvious from the formula, f is a polynomial in each interval
(k, k + 1), k ∈ Z and vanishes on [−n, n]c.

Theorem 3.3.5 and the next result show that the behavior of ϕ at infinity is related
to the smoothness of the underlying measure.
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Exercise 3.3.7. Suppose X and Y are independent and have ch.f. ϕ and distribution
µ. Apply Exercise 3.3.2 to X − Y and use Exercise 2.1.8 to get

lim
T →∞

1

2T

∫ T

−T

|ϕ(t)|2 dt = P (X − Y = 0) =
∑

x

µ({x})2

Remark. The last result implies that if ϕ(t) → 0 as t → ∞, µ has no point
masses. Exercise 3.3.13 gives an example to show that the converse is false. The
Riemann-Lebesgue lemma (Exercise 1.4.4) shows that if µ has a density, ϕ(t) → 0
as t → ∞.

Applying the inversion formula Theorem 3.3.5 to the ch.f. in Examples 3.3.5 and
3.3.7 gives us two more examples of ch.f. The first one does not have an official
name, so we gave it one to honor its role in the proof of Polya’s criterion; see
Theorem 3.3.10.

Example 3.3.8. Polya’s distribution

Density (1 − cos x)/πx2

Ch.f. (1 − |t |)+

Proof. Theorem 3.3.5 implies

1

2π

∫
2(1 − cos s)

s2
e−isy ds = (1 − |y|)+

Now let s = x, y = −t . �

Example 3.3.9. The Cauchy distribution

Density 1/π (1 + x2)
Ch.f. exp(−|t |)

Proof. Theorem 3.3.5 implies

1

2π

∫
1

1 + s2
e−isy ds = 1

2
e−|y|

Now let s = x, y = −t and multiply each side by 2. �

Exercise 3.3.8. Use the last result to conclude that if X1, X2, . . . are independent
and have the Cauchy distribution, then (X1 + · · · + Xn)/n has the same distribution
as X1.

3.3.2 Weak Convergence

Our next step toward the central limit theorem is to relate convergence of charac-
teristic functions to weak convergence.



3.3 Characteristic Functions 113

Theorem 3.3.6. Continuity theorem. Let µn, 1 ≤ n ≤ ∞ be probability measures
with ch.f. ϕn. (i) If µn ⇒ µ∞ then ϕn(t) → ϕ∞(t) for all t . (ii) If ϕn(t) converges
pointwise to a limit ϕ(t) that is continuous at 0, then the associated sequence of
distributions µn is tight and converges weakly to the measure µ with characteristic
function ϕ.

Remark. To see why continuity of the limit at 0 is needed in (ii), let µn have a nor-
mal distribution with mean 0 and variance n. In this case ϕn(t) = exp(−nt2/2) → 0
for t �= 0, and ϕn(0) = 1 for all n, but the measures do not converge weakly since
µn((−∞, x]) → 1/2 for all x.

Proof. (i) is easy. eitx is bounded and continuous, so if µn ⇒ µ∞, then Theorem
3.2.3 implies ϕn(t) → ϕ∞(t). To prove (ii), our first goal is to prove tightness. We
begin with some calculations that may look mysterious but will prove to be very
useful. ∫ u

−u

1 − eitx dt = 2u −
∫ u

−u

(cos tx + i sin tx) dt = 2u − 2 sin ux

x

Dividing both sides by u, integrating µn(dx), and using Fubini’s theorem on the
left-hand side gives

u−1
∫ u

−u

(1 − ϕn(t)) dt = 2
∫ (

1 − sin ux

ux

)
µn(dx)

To bound the right-hand side, we note that

| sin x| =
∣∣∣∣
∫ x

0
cos(y) dy

∣∣∣∣ ≤ |x| for all x

so we have 1 − (sin ux/ux) ≥ 0. Discarding the integral over (−2/u, 2/u) and
using | sin ux| ≤ 1 on the rest, the right-hand side is

≥ 2
∫

|x|≥2/u

(
1 − 1

|ux|
)

µn(dx) ≥ µn({x : |x| > 2/u})

Since ϕ(t) → 1 as t → 0,

u−1
∫ u

−u

(1 − ϕ(t)) dt → 0 as u → 0

Pick u so that the integral is < ε. Since ϕn(t) → ϕ(t) for each t , it follows from
the bounded convergence theorem that for n ≥ N

2ε ≥ u−1
∫ u

−u

(1 − ϕn(t)) dt ≥ µn{x : |x| > 2/u}

Since ε is arbitrary, the sequence µn is tight.
To complete the proof now we observe that if µn(k) ⇒ µ, then it follows from

the first sentence of the proof that µ has ch.f. ϕ. The last observation and tightness
imply that every subsequence has a further subsequence that converges to µ. I
claim that this implies the whole sequence converges to µ. To see this, observe
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that we have shown that if f is bounded and continuous then every subsequence
of
∫

f dµn has a further subsequence that converges to
∫

f dµ, so Theorem 2.3.3
implies that the whole sequence converges to that limit. This shows

∫
f dµn →∫

f dµ for all bounded continuous functions f , so the desired result follows from
Theorem 3.2.3. �

Exercise 3.3.9. Suppose that Xn ⇒ X and Xn has a normal distribution with mean
0 and variance σ 2

n . Prove that σ 2
n → σ 2 ∈ [0, ∞).

Exercise 3.3.10. Show that if Xn and Yn are independent for 1 ≤ n ≤ ∞, Xn ⇒
X∞, and Yn ⇒ Y∞, then Xn + Yn ⇒ X∞ + Y∞.

Exercise 3.3.11. Let X1, X2, . . . be independent and let Sn = X1 + · · · + Xn. Let
ϕj be the ch.f. of Xj and suppose that Sn → S∞ a.s. Then S∞ has ch.f.

∏∞
j=1 ϕj (t).

Exercise 3.3.12. Using the identity sin t = 2 sin(t/2) cos(t/2) repeatedly leads to
(sin t)/t =∏∞

m=1 cos(t/2m). Prove the last identity by interpreting each side as a
characteristic function.

Exercise 3.3.13. Let X1, X2, . . . be independent taking values 0 and 1 with prob-
ability 1/2 each. X = 2

∑
j≥1 Xj/3j has the Cantor distribution. Compute the

ch.f. ϕ of X and notice that ϕ has the same value at t = 3kπ for k = 0, 1, 2, . . .

3.3.3 Moments and Derivatives

In the proof of Theorem 3.3.6, we derived the inequality

µ{x : |x| > 2/u} ≤ u−1
∫ u

−u

(1 − ϕ(t)) dt (3.3.1)

which shows that the smoothness of the characteristic function at 0 is related to
the decay of the measure at ∞. The next result continues this theme. We leave the
proof to the reader. (Use Theorem A.5.1.)

Exercise 3.3.14. If
∫ |x|nµ(dx) < ∞, then its characteristic function ϕ has a

continuous derivative of order n given by ϕ(n)(t) = ∫ (ix)neitxµ(dx).

Exercise 3.3.15. Use the last exercise and the series expansion for e−t2/2 to show
that the standard normal distribution has

EX2n = (2n)!/2nn! = (2n − 1)(2n − 3) · · · 3 · 1 ≡ (2n − 1)!!

The result in Exercise 3.3.14 shows that if E|X|n < ∞, then its characteristic
function is n times differentiable at 0, and ϕn(0) = E(iX)n. Expanding ϕ in a
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Taylor series about 0 leads to

ϕ(t) =
n∑

m=0

E(itX)m

m!
+ o(tn)

where o(tn) indicates a quantity g(t) that has g(t)/tn → 0 as t → 0. For our
purposes below, it will be important to have a good estimate on the error term, so
we will now derive the last result. The starting point is a little calculus.

Lemma 3.3.7. ∣∣∣∣∣eix −
n∑

m=0

(ix)m

m!

∣∣∣∣∣ ≤ min

( |x|n+1

(n + 1)!
,

2|x|n
n!

)
(3.3.2)

The first term on the right is the usual order of magnitude we expect in the
correction term. The second is better for large |x| and will help us prove the central
limit theorem without assuming finite third moments.

Proof. Integrating by parts gives∫ x

0
(x − s)neis ds = xn+1

n + 1
+ i

n + 1

∫ x

0
(x − s)n+1eis ds

When n = 0, this says ∫ x

0
eis ds = x + i

∫ x

0
(x − s)eis ds

The left-hand side is (eix − 1)/i, so rearranging gives

eix = 1 + ix + i2
∫ x

0
(x − s)eisds

Using the result for n = 1 now gives

eix = 1 + ix + i2x2

2
+ i3

2

∫ x

0
(x − s)2eisds

and iterating we arrive at

(a) eix −
n∑

m=0

(ix)m

m!
= in+1

n!

∫ x

0
(x − s)neisds

To prove the result now it only remains to estimate the “error term” on the right-hand
side. Since |eis | ≤ 1 for all s,

(b)

∣∣∣∣ in+1

n!

∫ x

0
(x − s)neisds

∣∣∣∣ ≤ |x|n+1/(n + 1)!
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The last estimate is good when x is small. The next is designed for large x.
Integrating by parts

i

n

∫ x

0
(x − s)neisds = −xn

n
+
∫ x

0
(x − s)n−1eisds

Noticing xn/n = ∫ x

0 (x − s)n−1ds now gives

in+1

n!

∫ x

0
(x − s)neisds = in

(n − 1)!

∫ x

0
(x − s)n−1(eis − 1)ds

and since |eix − 1| ≤ 2, it follows that

(c)

∣∣∣∣ in+1

n!

∫ x

0
(x − s)neisds

∣∣∣∣ ≤
∣∣∣∣ 2

(n − 1)!

∫ x

0
(x − s)n−1 ds

∣∣∣∣ ≤ 2|x|n/n!

Combining (a), (b), and (c) we have the desired result. �

Taking expected values, using Jensen’s inequality, applying Theorem 3.3.2 to
x = tX, gives ∣∣∣∣∣EeitX −

n∑
m=0

E
(itX)m

m!

∣∣∣∣∣ ≤ E

∣∣∣∣∣eitX −
n∑

m=0

(itX)m

m!

∣∣∣∣∣
≤ E min

(|tX|n+1, 2|tX|n) (3.3.3)

where in the second step we have dropped the denominators to make the bound
simpler.

In the next section, the following special case will be useful.

Theorem 3.3.8. If E|X|2 < ∞, then

ϕ(t) = 1 + itEX − t2E(X2)/2 + o(t2)

Proof. The error term is ≤ t2E(|t | · |X|3 ∧ 2|X|2). The variable in parentheses is
smaller than 2|X|2 and converges to 0 as t → 0, so the desired conclusion follows
from the dominated convergence theorem. �

Remark. The point of the estimate in (3.3.3), which involves the minimum of two
terms rather than just the first one which would result from a naive application of
Taylor series, is that we get the conclusion in Theorem 3.3.8 under the assumption
E|X|2 < ∞, that is, we do not have to assume E|X|3 < ∞.

Exercise 3.3.16. (i) Suppose that the family of measures {µi, i ∈ I } is tight, that
is, supi µi([−M,M]c) → 0 as M → ∞. Use (d) in Theorem 3.3.1 and (3.3.3) with
n = 0 to show that their ch.f.’s ϕi are equicontinuous, that is, if ε > 0 we can pick
δ > 0 so that if |h| < δ, then |ϕi(t + h) − ϕi(t)| < ε. (ii) Suppose µn ⇒ µ∞. Use
Theorem 3.3.6 and equicontinuity to conclude that the ch.f.’s ϕn → ϕ∞ uniformly
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on compact sets. [Argue directly. You don’t need to go to AA.] (iii) Give an example
to show that the convergence need not be uniform on the whole real line.

Exercise 3.3.17. Let X1, X2, . . . be i.i.d. with characteristic function ϕ. (i) If
ϕ′(0) = ia and Sn = X1 + · · · + Xn then Sn/n → a in probability. (ii) If Sn/n →
a in probability then ϕ(t/n)n → eiat as n → ∞ through the integers. (iii) Use
(ii) and the uniform continuity established in (d) of Theorem 3.3.1 to show that
(ϕ(h) − 1)/h → −ia as h → 0 through the positive reals. Thus the weak law holds
if and only if ϕ′(0) exists. This result is due to E. J. G. Pitman (1956), with a little
help from John Walsh, who pointed out that we should prove (iii).

The last exercise in combination with Exercise 2.2.4 shows that ϕ′(0) may exist
when E|X| = ∞.

Exercise 3.3.18. 2
∫∞

0 (1 − Re ϕ(t))/(πt2) dt = ∫ |y|dF (y). Hint: Change vari-
ables x = |y|t in the density function of Example 3.3.8, which integrates to 1.

The next result shows that the existence of second derivatives implies the existence
of second moments.

Theorem 3.3.9. If lim suph↓0{ϕ(h) − 2ϕ(0) + ϕ(−h)}/h2 > −∞, then E|X|2 <

∞.

Proof. (eihx − 2 + e−ihx)/h2 = −2(1 − cos hx)/h2 ≤ 0 and 2(1 − cos hx)/
h2 → x2 as h → 0, so Fatou’s lemma and Fubini’s theorem imply∫

x2 dF (x) ≤ 2 lim inf
h→0

∫
1 − cos hx

h2
dF (x)

= − lim sup
h→0

ϕ(h) − 2ϕ(0) + ϕ(−h)

h2
< ∞

which proves the desired result. �

Exercise 3.3.19. Show that if limt↓0(ϕ(t) − 1)/t2 = c > −∞ then EX = 0 and
E|X|2 = −2c < ∞. In particular, if ϕ(t) = 1 + o(t2), then ϕ(t) ≡ 1.

Exercise 3.3.20. If Yn are r.v.’s with ch.f.’s ϕn, then Yn ⇒ 0 if and only if there is
a δ > 0 so that ϕn(t) → 1 for |t | ≤ δ.

Exercise 3.3.21. Let X1, X2, . . . be independent. If Sn =∑m≤n Xm converges in
distribution, then it converges in probability (and hence a.s. by Exercise 2.5.10).
Hint: The last exercise implies that if m, n → ∞ then Sm − Sn → 0 in probability.
Now use Exercise 2.5.11.
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3.3.4 Polya’s Criterion*

The next result is useful for constructing examples of ch.f.’s.

Theorem 3.3.10. Polya’s criterion. Let ϕ(t) be real nonnegative and have ϕ(0) =
1, ϕ(t) = ϕ(−t), and ϕ is decreasing and convex on (0, ∞) with

lim
t↓0

ϕ(t) = 1, lim
t↑∞

ϕ(t) = 0

Then there is a probability measure ν on (0, ∞), so that

(∗) ϕ(t) =
∫ ∞

0

(
1 −
∣∣∣∣ ts
∣∣∣∣
)+

ν(ds)

and hence ϕ is a characteristic function.

Remark. Before we get lost in the details of the proof, the reader should note that
(∗) displays ϕ as a convex combination of ch.f.’s of the form given in Example
3.3.8, so an extension of Lemma 3.3.3 (to be proved below) implies that this
is a ch.f.

The assumption that limt→0 ϕ(t) = 1 is necessary because the function ϕ(t) =
1{0}(t) which is 1 at 0 and 0 otherwise, satisfies all the other hypotheses. We could
allow limt→∞ ϕ(t) = c > 0 by having a point mass of size c at 0, but we leave this
extension to the reader.

Proof. Let ϕ′ be the right derivative of φ, that is,

ϕ′(t) = lim
h↓0

ϕ(t + h) − ϕ(t)

h

Since ϕ is convex, this exists and is right continuous and increasing. So we can let
µ be the measure on (0, ∞) with µ(a, b] = ϕ′(b) − ϕ′(a) for all 0 ≤ a < b < ∞,
and let ν be the measure on (0, ∞) with dν/dµ = s.

Now ϕ′(t) → 0 as t → ∞ (for if ϕ′(t) ↓ −ε we would have ϕ(t) ≤ 1 − εt for
all t), so Exercise A.4.7 implies

−ϕ′(s) =
∫ ∞

s

r−1ν(dr)

Integrating again and using Fubini’s theorem we have for t ≥ 0

ϕ(t) =
∫ ∞

t

∫ ∞

s

r−1ν(dr) ds =
∫ ∞

t

r−1
∫ r

t

ds ν(dr)

=
∫ ∞

t

(
1 − t

r

)
ν(dr) =

∫ ∞

0

(
1 − t

r

)+
ν(dr)

Using ϕ(−t) = ϕ(t) to extend the formula to t ≤ 0, we have (∗). Setting t = 0 in
(∗) shows ν has total mass 1.

If ϕ is piecewise linear, ν has a finite number of atoms, and the result follows
from Example 3.3.8 and Lemma 3.3.3. To prove the general result, let νn be a
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sequence of measures on (0, ∞) with a finite number of atoms that converges
weakly to ν (see Exercise 3.2.10) and let

ϕn(t) =
∫ ∞

0

(
1 −
∣∣∣∣ ts
∣∣∣∣
)+

νn(ds)

Since s → (1 − |t/s|)+ is bounded and continuous, ϕn(t) → ϕ(t), and the desired
result follows from part (ii) of Theorem 3.3.6. �

A classic application of Polya’s criterion is:

Exercise 3.3.22. Show that exp(−|t |α) is a characteristic function for 0 < α ≤ 1.

(The case α = 1 corresponds to the Cauchy distribution.) The next argument, which
we learned from Frank Spitzer, proves that this is true for 0 < α ≤ 2. The case
α = 2 corresponds to a normal distribution, so that case can be safely ignored in
the proof.

Example 3.3.10. exp(−|t |α) is a characteristic function for 0 < α < 2.

Proof. A little calculus shows that for any β and |x| < 1

(1 − x)β =
∞∑

n=0

(
β

n

)
(−x)n

where (
β

n

)
= β(β − 1) · · · (β − n + 1)

1 · 2 · · · n
Let ψ(t) = 1 − (1 − cos t)α/2 =∑∞

n=1 cn(cos t)n where

cn =
(

α/2

n

)
(−1)n+1

cn ≥ 0 (here we use α < 2), and
∑∞

n=1 cn = 1 (take t = 0 in the definition of
ψ). cos t is a characteristic function (see Example 3.3.1), so an easy extension of
Lemma 3.3.3 shows that ψ is a ch.f. We have 1 − cos t ∼ t2/2 as t → 0, so

1 − cos(t · 21/2 · n−1/α) ∼ n−2/αt2

Using Lemma 3.1.1 and (ii) of Theorem 3.3.6 now, it follows that

exp(−|t |α) = lim
n→∞{ψ(t · 21/2 · n−1/α)}n

is a ch.f. �

Exercise 3.3.19 shows that exp(−|t |α) is not a ch.f. when α > 2. A reason for
interest in these characteristic functions is explained by the following generalization
of Exercise 3.3.8.



120 Central Limit Theorems

Exercise 3.3.23. If X1, X2, . . . are independent and have characteristic function
exp(−|t |α), then (X1 + · · · + Xn)/n1/α has the same distribution as X1.

We will return to this topic in Section 3.7. Polya’s criterion can also be used to
construct some “pathological examples.”

Exercise 3.3.24. Let ϕ1 and ϕ2 be ch.f’s. Show that A = {t : ϕ1(t) = ϕ2(t)} is
closed, contains 0, and is symmetric about 0. Show that if A is a set with these
properties and ϕ1(t) = e−|t |, there is a ϕ2 so that {t : ϕ1(t) = ϕ2(t)} = A.

Example 3.3.11. For some purposes, it is nice to have an explicit example of two
ch.f.’s that agree on [−1, 1]. From Example 3.3.8, we know that (1 − |t |)+ is the
ch.f. of the density (1 − cos x)/πx2. Define ψ(t) to be equal to ϕ on [−1, 1] and
periodic with period 2, that is, ψ(t) = ψ(t + 2). The Fourier series for ψ is

ψ(u) = 1

2
+

∞∑
n=−∞

2

π2(2n − 1)2
exp(i(2n − 1)πu)

The right-hand side is the ch.f. of a discrete distribution with

P (X = 0) = 1/2 and P (X = (2n − 1)π ) = 2π−2(2n − 1)−2 n ∈ Z.

Exercise 3.3.25. Find independent r.v.’s X, Y , and Z so that Y and Z do not have
the same distribution but X + Y and X + Z do.

Exercise 3.3.26. Show that if X and Y are independent and X + Y and X have the
same distribution, then Y = 0 a.s.

For more curiosities, see Feller, Vol. II (1971), Section XV.2a.

3.3.5 The Moment Problem*

Suppose
∫

xkdFn(x) has a limit µk for each k. Then the sequence of distributions
is tight by Theorem 3.2.8 and every subsequential limit has the moments µk by
Exercise 3.2.5, so we can conclude the sequence converges weakly if there is
only one distribution with these moments. It is easy to see that this is true if F

is concentrated on a finite interval [−M,M] since every continuous function can
be approximated uniformly on [−M,M] by polynomials. The result is false in
general.

Counterexample 1. Heyde (1963). Consider the lognormal density

f0(x) = (2π )−1/2x−1 exp(−(log x)2/2) x ≥ 0

and for −1 ≤ a ≤ 1 let

fa(x) = f0(x){1 + a sin(2π log x)}
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To see that fa is a density and has the same moments as f0, it suffices to show that∫ ∞

0
xrf0(x) sin(2π log x) dx = 0 for r = 0, 1, 2, . . .

Changing variables x = exp(s + r), s = log x − r , ds = dx/x the integral
becomes

(2π )−1/2
∫ ∞

−∞
exp(rs + r2) exp(−(s + r)2/2) sin(2π (s + r)) ds

= (2π )−1/2 exp(r2/2)
∫ ∞

−∞
exp(−s2/2) sin(2πs) ds = 0

The two equalities holding because r is an integer and the integrand is odd. From
the proof, it should be clear that we could let

g(x) = f0(x)

{
1 +

∞∑
k=1

ak sin(kπ log x)

}
if

∞∑
k=1

|ak| ≤ 1

to get a large family of densities having the same moments as the lognormal.
The moments of the lognormal are easy to compute. Recall that if χ has the

standard normal distribution, then Exercise 1.2.6 implies exp(χ ) has the lognormal
distribution.

EXn = E exp(nχ) =
∫

enx(2π )−1/2e−x2/2 dx

= en2/2
∫

(2π )−1/2e−(x−n)2/2 dx = exp(n2/2)

since the last integrand is the density of the normal with mean n and variance 1.
Somewhat remarkably, there is a family of discrete random variables with these
moments. Let a > 0 and

P (Ya = aek) = a−k exp(−k2/2)/ca for k ∈ Z

where ca is chosen to make the total mass 1.

exp(−n2/2)EYn
a = exp(−n2/2)

∑
k

(aek)na−k exp(−k2/2)/ca

=
∑

k

a−(k−n) exp(−(k − n)2/2)/ca = 1

by the definition of ca .
The lognormal density decays like exp(−(log x)2/2) as |x| → ∞. The next

counterexample has more rapid decay. Since the exponential distribution, e−x for
x ≥ 0, is determined by its moments (see Exercise 3.3.28 below), we cannot hope
to do much better than this.

Counterexample 2. Let λ ∈ (0, 1) and for −1 ≤ a ≤ 1 let

fa,λ(x) = cλ exp(−|x|λ){1 + a sin(β|x|λ sgn (x))}
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where β = tan(λπ/2) and 1/cλ = ∫ exp(−|x|λ) dx. To prove that these are density
functions and that for a fixed value of λ they have the same moments, it suffices to
show ∫

xn exp(−|x|λ) sin(β|x|λ sgn (x)) dx = 0 for n = 0, 1, 2, . . .

This is clear for even n since the integrand is odd. To prove the result for odd n, it
suffices to integrate over [0, ∞). Using the identity∫ ∞

0
tp−1e−qtdt = �(p)/qp when Re q > 0

with p = (n + 1)/λ, q = 1 + βi, and changing variables t = xλ, we get

�((n + 1)/λ)/(1 + β i)(n+1)/λ

=
∫ ∞

0
xλ{(n+1)/λ−1} exp(−(1 + βi)xλ)λ xλ−1 dx

= λ

∫ ∞

0
xn exp(−xλ) cos(βxλ)dx − iλ

∫ ∞

0
xn exp(−xλ) sin(βxλ) dx

Since β = tan(λπ/2)

(1 + βi)(n+1)/λ = (cos λπ/2)−(n+1)/λ(exp(iλπ/2))(n+1)/λ

The right-hand side is real since λ < 1 and (n + 1) is even, so∫ ∞

0
xn exp(−xλ) sin(βxλ) dx = 0

A useful sufficient condition for a distribution to be determined by its
moments is

Theorem 3.3.11. If lim supk→∞ µ
1/2k

2k /2k = r < ∞, then there is at most one
d.f. F with µk = ∫ xkdF (x) for all positive integers k.

Remark. This is slightly stronger than Carleman’s condition

∞∑
k=1

1/µ
1/2k

2k = ∞

which is also sufficient for the conclusion of Theorem 3.3.11.

Proof. Let F be any d.f. with the moments µk and let νk = ∫ |x|kdF (x). The
Cauchy-Schwarz inequality implies ν2

2k+1 ≤ µ2kµ2k+2, so

lim sup
k→∞

(ν1/k

k )/k = r < ∞
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Taking x = tX in Lemma 3.3.2 and multiplying by eiθX, we have∣∣∣∣∣ eiθX

(
eitX −

n−1∑
m=0

(itX)m

m!

)∣∣∣∣∣ ≤ |tX|n
n!

Taking expected values and using Exercise 3.3.14 gives∣∣∣∣ϕ(θ + t) − ϕ(θ ) − tϕ′(θ ) . . . − tn−1

(n − 1)!
ϕ(n−1)(θ )

∣∣∣∣ ≤ |t |n
n!

νn

Using the last result, the fact that νk ≤ (r + ε)kkk for large k, and the trivial bound
ek ≥ kk/k! (expand the left-hand side in its power series), we see that for any θ

(∗) ϕ(θ + t) = ϕ(θ ) +
∞∑

m=1

tm

m!
ϕ(m)(θ ) for |t | < 1/er

Let G be another distribution with the given moments and ψ its ch.f. Since ϕ(0) =
ψ(0) = 1, it follows from (∗) and induction that ϕ(t) = ψ(t) for |t | ≤ k/3r for all
k, so the two ch.f.’s coincide and the distributions are equal. �

Combining Theorem 3.3.11 with the discussion that began our consideration of
the moment problem.

Theorem 3.3.12. Suppose
∫

xkdFn(x) has a limit µk for each k and

lim sup
k→∞

µ
1/2k

2k /2k < ∞

then Fn converges weakly to the unique distribution with these moments.

Exercise 3.3.27. Let G(x) = P (|X| < x), λ = sup{x : G(x) < 1}, and νk =
E|X|k. Show that ν

1/k

k → λ, so the assumption of Theorem 3.3.12 holds if λ < ∞.

Exercise 3.3.28. Suppose |X| has density Cxα exp(−xλ) on (0, ∞). Changing
variables y = xλ, dy = λxλ−1 dx

E|X|n =
∫ ∞

0
Cλy(n+α)/λ exp(−y)y1/λ−1dy = Cλ�((n + α + 1)/λ)

Use the identity �(x + 1) = x�(x) for x ≥ 0 to conclude that the assumption of
Theorem 3.3.12 is satisfied for λ ≥ 1 but not for λ < 1. This shows the normal
(λ = 2) and gamma (λ = 1) distributions are determined by their moments.

Our results so far have been for the so-called Hamburger moment problem.
If we assume a priori that the distribution is concentrated on [0, ∞), we have
the Stieltjes moment problem. There is a 1-1 correspondence between X ≥ 0 and
symmetric distributions on R given by X → ξX2 where ξ ∈ {−1, 1} is independent
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of X and takes its two values with equal probability. From this we see that

lim sup
k→∞

ν
1/2k

k /2k < ∞

is sufficient for there to be a unique distribution on [0, ∞) with the given moments.
The next example shows that for nonnegative random variables, the last result is
close to the best possible.

Counterexample 3. Let λ ∈ (0, 1/2), β = tan(λπ ), −1 ≤ a ≤ 1 and

fa(x) = cλ exp(−xλ)(1 + a sin(βxλ)) for x ≥ 0

where 1/cλ = ∫∞
0 exp(−xλ) dx.

By imitating the calculations in Counterexample 2, it is easy to see that the fa are
probability densities that have the same moments. This example seems to be due
to Stoyanov (1987), pp. 92–3. The special case λ = 1/4 is widely known.

3.4 Central Limit Theorems

We are now ready for the main business of the chapter. We will first prove the
central limit theorem for

3.4.1 i.i.d. Sequences

Theorem 3.4.1. Let X1, X2, . . . be i.i.d. with EXi = µ, var (Xi) = σ 2 ∈ (0, ∞).
If Sn = X1 + · · · + Xn then

(Sn − nµ)/σn1/2 ⇒ χ

where χ has the standard normal distribution.

This notation is non-standard but convenient. To see the logic, note that the square
of a normal has a chi-squared distribution.

Proof. By considering X′
i = Xi − µ, it suffices to prove the result when µ = 0.

From Theorem 3.3.8,

ϕ(t) = E exp(itX1) = 1 − σ 2t2

2
+ o(t2)

so

E exp(itSn/σn1/2) =
(

1 − t2

2n
+ o(n−1)

)n

From Lemma 3.1.1 it should be clear that the last quantity → exp(−t2/2) as
n → ∞, which with Theorem 3.3.6 completes the proof. However, Lemma 3.1.1 is
a fact about real numbers, so we need to extend it to the complex case to complete
the proof.
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Theorem 3.4.2. If cn → c ∈ C then (1 + cn/n)n → ec.

Proof. The proof is based on two simple facts:

Lemma 3.4.3. Let z1, . . . , zn and w1, . . . , wn be complex numbers of modulus ≤ θ .
Then ∣∣∣∣∣

n∏
m=1

zm −
n∏

m=1

wm

∣∣∣∣∣ ≤ θn−1
n∑

m=1

|zm − wm|

Proof. The result is true for n = 1. To prove it for n > 1 observe that∣∣∣∣∣
n∏

m=1

zm −
n∏

m=1

wm

∣∣∣∣∣ ≤
∣∣∣∣∣z1

n∏
m=2

zm − z1

n∏
m=2

wm

∣∣∣∣∣+
∣∣∣∣∣z1

n∏
m=2

wm − w1

n∏
m=2

wm

∣∣∣∣∣
≤ θ

∣∣∣∣∣
n∏

m=2

zm −
n∏

m=2

wm

∣∣∣∣∣+ θn−1|z1 − w1|

and use induction. �

Lemma 3.4.4. If b is a complex number with |b| ≤ 1 then |eb − (1 + b)| ≤ |b|2.

Proof. eb − (1 + b) = b2/2! + b3/3! + b4/4! + . . . , so if |b| ≤ 1, then

|eb − (1 + b)| ≤ |b|2
2

(1 + 1/2 + 1/22 + . . .) = |b|2 �

Proof of Theorem 3.4.2. Let zm = (1 + cn/n), wm = exp(cn/n), and γ > |c|. For
large n, |cn| < γ . Since 1 + γ /n ≤ exp(γ /n), it follows from Lemmas 3.4.3 and
3.4.4 that

|(1 + cn/n)n − ecn | ≤ (eγ/n
)n−1

n

∣∣∣cn

n

∣∣∣2 ≤ eγ γ 2

n
→ 0

as n → ∞. �

To get a feel for what the central limit theorem says, we will look at some
concrete cases.

Example 3.4.1. Roulette. A roulette wheel has slots numbered 1–36 (18 red and
18 black) and two slots numbered 0 and 00 that are painted green. Players can bet
$1 that the ball will land in a red (or black) slot and win $1 if it does. If we let Xi

be the winnings on the ith play, then X1, X2, . . . are i.i.d. with P (Xi = 1) = 18/38
and P (Xi = −1) = 20/38.

EXi = −1/19 and var (X) = EX2 − (EX)2 = 1 − (1/19)2 = 0.9972
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We are interested in

P (Sn ≥ 0) = P

(
Sn − nµ

σ
√

n
≥ −nµ

σ
√

n

)

Taking n = 361 = 192 and replacing σ by 1 to keep computations simple,

−nµ

σ
√

n
= 361 · (1/19)√

361
= 1

So the central limit theorem and our table of the normal distribution in the back of
the book tells us that

P (Sn ≥ 0) ≈ P (χ ≥ 1) = 1 − 0.8413 = 0.1587

In words, after 361 spins of the roulette wheel, the casino will have won $19 of
your money on the average, but there is a probability of about 0.16 that you will be
ahead.

Example 3.4.2. Coin flips. Let X1, X2, . . . be i.i.d. with P (Xi = 0) = P (Xi =
1) = 1/2. If Xi = 1 indicates that a heads occured on the ith toss, then Sn =
X1 + · · · + Xn is the total number of heads at time n.

EXi = 1/2 and var (X) = EX2 − (EX)2 = 1/2 − 1/4 = 1/4

So the central limit theorem tells us (Sn − n/2)/
√

n/4 ⇒ χ . Our table of the
normal distribution tells us that

P (χ > 2) = 1 − 0.9773 = 0.0227

so P (|χ | ≤ 2) = 1 − 2(0.0227) = 0.9546, or plugging into the central limit theo-
rem

0.95 ≈ P ((Sn − n/2)/
√

n/4 ∈ [−2, 2]) = P (Sn − n/2 ∈ [−√
n,

√
n])

Taking n = 10,000, this says that 95% of the time the number of heads will be
between 4900 and 5100.

Example 3.4.3. Normal approximation to the binomial. Let X1, X2, . . . and Sn

be as in the previous example. To estimate P (S16 = 8) using the central limit
theorem, we regard 8 as the interval [7.5, 8.5]. Since µ = 1/2, and σ

√
n = 2 for

n = 16

P (|S16 − 8| ≤ 0.5) = P

( |Sn − nµ|
σ
√

n
≤ 0.25

)

≈ P (|χ | ≤ 0.25) = 2(0.5987 − 0.5) = 0.1974

Even though n is small, this agrees well with the exact probability(
16

8

)
2−16 = 13 · 11 · 10 · 9

65, 536
= 0.1964.
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The computations above motivate the histogram correction, which is important
in using the normal approximation for small n. For example, if we are going to
approximate P (S16 ≤ 11), then we regard this probability as P (S16 ≤ 11.5). One
obvious reason for doing this is to get the same answer if we regard P (S16 ≤ 11) =
1 − P (S16 ≥ 12).

Exercise 3.4.1. Suppose you roll a die 180 times. Use the normal approximation
(with the histogram correction) to estimate the probability that you will get fewer
than 25 sixes.

Example 3.4.4. Normal approximation to the Poisson. Let Zλ have a Poisson
distribution with mean λ. If X1, X2, . . . are independent and have Poisson distribu-
tions with mean 1, then Sn = X1 + · · · + Xn has a Poisson distribution with mean
n. Since var (Xi) = 1, the central limit theorem implies

(Sn − n)/n1/2 ⇒ χ as n → ∞
To deal with values of λ that are not integers, let N1, N2, N3 be independent

Poisson with means [λ], λ − [λ], and [λ] + 1 − λ. If we let S[λ] = N1, Zλ = N1 +
N2 and S[λ]+1 = N1 + N2 + N3 then S[λ] ≤ Zλ ≤ S[λ]+1 and using the limit theorem
for the Sn it follows that

(Zλ − λ)/λ1/2 ⇒ χ as λ → ∞

Example 3.4.5. Pairwise independence is good enough for the strong law of large
numbers (see Theorem 2.4.1). It is not good enough for the central limit theorem.
Let ξ1, ξ2, . . . be i.i.d. with P (ξi = 1) = P (ξi = −1) = 1/2. We will arrange things
so that for n ≥ 1,

S2n = ξ1(1 + ξ2) · · · (1 + ξn+1) =
{

±2n with prob 2−n−1

0 with prob 1 − 2−n

To do this we let X1 = ξ1, X2 = ξ1ξ2, and for m = 2n−1 + j , 0 < j ≤ 2n−1, n ≥ 2
let Xm = Xjξn+1. Each Xm is a product of a different set of ξj ’s, so they are
pairwise independent.

Exercises

3.4.2. Let X1, X2, . . . be i.i.d. with EXi = 0, 0 < var (Xi) < ∞, and let Sn =
X1 + · · · + Xn. (a) Use the central limit theorem and Kolmogorov’s zero-one law
to conclude that limsup Sn/

√
n = ∞ a.s. (b) Use an argument by contradiction to

show that Sn/
√

n does not converge in probability. Hint: Consider n = m!.

3.4.3. Let X1, X2, . . . be i.i.d. and let Sn = X1 + · · · + Xn. Assume that Sn/√
n ⇒ a limit and conclude that EX2

i < ∞. Sketch: Suppose EX2
i = ∞. Let X′

1,

X′
2, . . . be an independent copy of the original sequence. Let Yi = Xi − X′

i ,
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Ui = Yi1(|Yi |≤A), Vi = Yi1(|Yi |>A), and observe that for any K

P

(
n∑

m=1

Ym ≥ K
√

n

)
≥ P

(
n∑

m=1

Um ≥ K
√

n,

n∑
m=1

Vm ≥ 0

)

≥ 1

2
P

(
n∑

m=1

Um ≥ K
√

n

)
≥ 1

5

for large n if A is large enough. Since K is arbitrary, this is a contradiction.

3.4.4. Let X1, X2, . . . be i.i.d. with Xi ≥ 0, EXi = 1, and var (Xi) = σ 2 ∈ (0, ∞).
Show that 2(

√
Sn − √

n) ⇒ σχ .

3.4.5. Self-normalized sums. Let X1, X2, . . . be i.i.d. with EXi = 0 and EX2
i =

σ 2 ∈ (0, ∞). Then

n∑
m=1

Xm

/(
n∑

m=1

X2
m

)1/2

⇒ χ

3.4.6. Random index central limit theorem. Let X1, X2, . . . be i.i.d. with EXi =
0 and EX2

i = σ 2 ∈ (0, ∞), and let Sn = X1 + · · · + Xn. Let Nn be a sequence of
nonnegative integer-valued random variables and an a sequence of integers with
an → ∞ and Nn/an → 1 in probability. Show that

SNn
/σ

√
an ⇒ χ

Hint: Use Kolmogorov’s inequality (Theorem 2.5.2) to conclude that if Yn =
SNn

/σ
√

an and Zn = San
/σ

√
an, then Yn − Zn → 0 in probability.

3.4.7. A central limit theorem in renewal theory. Let Y1, Y2, . . . be i.i.d. positive
random variables with EYi = µ and var (Yi) = σ 2 ∈ (0, ∞). Let Sn = Y1 + · · · +
Yn and Nt = sup{m : Sm ≤ t}. Apply the previous exercise to Xi = Yi − µ to prove
that as t → ∞,

(µNt − t)/(σ 2t/µ)1/2 ⇒ χ

3.4.8. A second proof of the renewal CLT. Let Y1, Y2, . . . , Sn, and Nt be as in the
last exercise. Let u = [t/µ], Dt = Su − t . Use Kolmogorov’s inequality to show

P (|Su+m − (Su + mµ)| > t2/5 for some m ∈ [−t3/5, t3/5]) → 0 as t → ∞

Conclude |Nt − (t − Dt )/µ|/ t1/2 → 0 in probability, and then obtain the result in
the previous exercise.

Our next step is to generalize the central limit theorem to:
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3.4.2 Triangular Arrays

Theorem 3.4.5. The Lindeberg-Feller theorem. For each n, let Xn,m, 1 ≤ m ≤ n,
be independent random variables with EXn,m = 0. Suppose
(i)
∑n

m=1 EX2
n,m → σ 2 > 0

(ii) For all ε > 0, limn→∞
∑n

m=1 E(|Xn,m|2; |Xn,m| > ε) = 0.

Then Sn = Xn,1 + · · · + Xn,n ⇒ σχ as n → ∞.

Remarks. In words, the theorem says that a sum of a large number of small
independent effects has approximately a normal distribution. To see that Theorem
3.4.5 contains our first central limit theorem, let Y1, Y2 . . . be i.i.d. with EYi = 0
and EY 2

i = σ 2 ∈ (0, ∞), and let Xn,m = Ym/n1/2. Then
∑n

m=1 EX2
n,m = σ 2 and if

ε > 0
n∑

m=1

E(|Xn,m|2; |Xn,m| > ε) = nE(|Y1/n1/2|2; |Y1/n1/2| > ε)

= E(|Y1|2; |Y1| > εn1/2) → 0

by the dominated convergence theorem since EY 2
1 < ∞.

Proof. Let ϕn,m(t) = E exp(itXn,m), σ 2
n,m = EX2

n,m. By Theorem 3.3.6, it suffices
to show that

n∏
m=1

ϕn,m(t) → exp(−t2σ 2/2)

Let zn,m = ϕn,m(t) and wn,m = (1 − t2σ 2
n,m/2). By (3.3.3)

|zn,m − wn,m| ≤ E(|tXn,m|3 ∧ 2|tXn,m|2)

≤ E(|tXn,m|3; |Xn,m| ≤ ε) + E(2|tXn,m|2; |Xn,m| > ε)

≤ εt3E(|Xn,m|2; |Xn,m| ≤ ε) + 2t2E(|Xn,m|2; |Xn,m| > ε)

Summing m = 1 to n, letting n → ∞, and using (i) and (ii) gives

lim sup
n→∞

n∑
m=1

|zn,m − wn,m| ≤ εt3σ 2

Since ε > 0 is arbitrary, it follows that the sequence converges to 0. Our next step
is to use Lemma 3.4.3 with θ = 1 to get∣∣∣∣∣

n∏
m=1

ϕn,m(t) −
n∏

m=1

(1 − t2σ 2
n,m/2)

∣∣∣∣∣→ 0

To check the hypotheses of Lemma 3.4.3, note that since ϕn,m is a ch.f. |ϕn,m(t)| ≤ 1
for all n,m. For the terms in the second product we note that

σ 2
n,m ≤ ε2 + E(|Xn,m|2 ; |Xn,m| > ε)
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and ε is arbitrary so (ii) implies supm σ 2
n,m → 0 and thus if n is large 1 ≥ 1 −

t2σ 2
n,m/2 > −1 for all m.

To complete the proof now, we apply Exercise 3.1.1 with cm,n = −t2σ 2
n,m/2. We

have just shown supm σ 2
n,m → 0. (i) implies

n∑
m=1

cm,n → −σ 2t2/2

so
∏n

m=1(1 − t2σ 2
n,m/2) → exp(−t2σ 2/2) and the proof is complete. �

Example 3.4.6. Cycles in a random permutation and record values. Continuing
the analysis of Examples 2.2.4 and 2.3.2, let Y1, Y2, . . . be independent with P (Ym =
1) = 1/m, and P (Ym = 0) = 1 − 1/m. EYm = 1/m and var (Ym) = 1/m − 1/m2.
So if Sn = Y1 + · · · + Yn then ESn ∼ log n and var (Sn) ∼ log n. Let

Xn,m = (Ym − 1/m)/(log n)1/2

EXn,m = 0,
∑n

m=1 EX2
n,m → 1, and for any ε > 0

n∑
m=1

E(|Xn,m|2; |Xn,m| > ε) → 0

since the sum is 0 as soon as (log n)−1/2 < ε. Applying Theorem 3.4.5 now gives

(log n)−1/2

(
Sn −

n∑
m=1

1

m

)
⇒ χ

Observing that

n−1∑
m=1

1

m
≥
∫ n

1
x−1 dx = log n ≥

n∑
m=2

1

m

shows
∣∣log n −∑n

m=1 1/m
∣∣ ≤ 1 and the conclusion can be written as

(Sn − log n)/(log n)1/2 ⇒ χ

Example 3.4.7. The converse of the three series theorem. Recall the setup of
Theorem 2.5.4. Let X1, X2, . . . be independent, let A > 0, and let Ym =
Xm1(|Xm|≤A). In order that

∑∞
n=1 Xn converges (i.e., limN→∞

∑N
n=1 Xn exists) it

is necessary that

(i)
∞∑

n=1

P (|Xn| > A) < ∞, (ii)
∞∑

n=1

EYn converges, and (iii)
∞∑

n=1

var (Yn) < ∞

Proof. The necessity of the first condition is clear. For if that sum is infinite,
P (|Xn| > A i.o.) > 0 and limn→∞

∑n
m=1 Xm cannot exist. Suppose next that the
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sum in (i) is finite but the sum in (iii) is infinite. Let

cn =
n∑

m=1

var (Ym) and Xn,m = (Ym − EYm)/c1/2
n

EXn,m = 0,
∑n

m=1 EX2
n,m = 1, and for any ε > 0

n∑
m=1

E(|Xn,m|2; |Xn,m| > ε) → 0

since the sum is 0 as soon as 2A/c
1/2
n < ε. Applying Theorem 3.4.5 now gives that

if Sn = Xn,1 + · · · + Xn,n then Sn ⇒ χ . Now

(i) if limn→∞
∑n

m=1 Xm exists, limn→∞
∑n

m=1 Ym exists.
(ii) if we let Tn = (

∑
m≤n Ym)/c1/2

n then Tn ⇒ 0.

The last two results and Exercise 3.2.13 imply (Sn − Tn) ⇒ χ . Since

Sn − Tn = −
(∑

m≤n

EYm

)
/c1/2

n

is not random, this is absurd.
Finally, assume the series in (i) and (iii) are finite. Theorem 2.5.3 implies

that limn→∞
∑n

m=1(Ym − EYm) exists, so if limn→∞
∑n

m=1 Xm and hence
limn→∞

∑n
m=1 Ym does, taking differences shows that (ii) holds. �

Example 3.4.8. Infinite variance. Suppose X1, X2, . . . are i.i.d. and have P (X1 >

x) = P (X1 < −x) and P (|X1| > x) = x−2 for x ≥ 1.

E|X1|2 =
∫ ∞

0
2xP (|X1| > x) dx = ∞

but it turns out that when Sn = X1 + · · · + Xn is suitably normalized it converges
to a normal distribution. Let

Yn,m = Xm1(|Xm|≤n1/2 log log n)

The truncation level cn = n1/2 log log n is chosen large enough to make
n∑

m=1

P (Yn,m �= Xm) ≤ nP (|X1| > cn) → 0

However, we want the variance of Yn,m to be as small as possible, so we keep the
truncation close to the lowest possible level.

Our next step is to show EY 2
n,m ∼ log n. For this we need upper and lower

bounds. Since P (|Yn,m| > x) ≤ P (|X1| > x) and is 0 for x > cn, we have

EY 2
n,m ≤

∫ cn

0
2yP (|X1| > y) dy = 1 +

∫ cn

1
2/y dy

= 1 + 2 log cn = 1 + log n + 2 log log log n ∼ log n
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In the other direction, we observe P (|Yn,m| > x) = P (|X1| > x) − P (|X1| > cn)
and the right-hand side is ≥ (1 − (log log n)−2)P (|X1| > x) when x ≤ √

n so

EY 2
n,m ≥ (1 − (log log n)−2)

∫ √
n

1
2/y dy ∼ log n

If S ′
n = Yn,1 + · · · + Yn,n then var (S ′

n) ∼ n log n, so we apply Theorem 3.4.5
to Xn,m = Yn,m/(n log n)1/2. Things have been arranged so that (i) is satisfied.
Since |Yn,m| ≤ n1/2 log log n, the sum in (ii) is 0 for large n, and it follows that
S ′

n/(n log n)1/2 ⇒ χ . Since the choice of cn guarantees P (Sn �= S ′
n) → 0, the same

result holds for Sn.

Remark. In Section 3.6, we will see that if we replace P (|X1| > x) = x−2 in
Example 3.4.8 by P (|X1| > x) = x−α where 0 < α < 2, then Sn/n1/α ⇒ to a
limit which is not χ . The last word on convergence to the normal distribution is the
next result, due to Lévy.

Theorem 3.4.6. Let X1, X2, . . . be i.i.d. and Sn = X1 + · · · + Xn. In order that
there exist constants an and bn > 0 so that (Sn − an)/bn ⇒ χ , it is necessary and
sufficient that

y2P (|X1| > y)/E(|X1|2; |X1| ≤ y) → 0.

A proof can be found in Gnedenko and Kolmogorov (1954), a reference that
contains the last word on many results about sums of independent random
variables.

Exercises

In the next five problems X1, X2, . . . are independent and Sn = X1 + · · · + Xn.

3.4.9. Suppose P (Xm = m) = P (Xm = −m) = m−2/2, and for m ≥ 2

P (Xm = 1) = P (Xm = −1) = (1 − m−2)/2

Show that var (Sn)/n → 2 but Sn/
√

n ⇒ χ . The trouble here is that Xn,m =
Xm/

√
n does not satisfy (ii) of Theorem 3.4.5.

3.4.10. Show that if |Xi | ≤ M and
∑

n var (Xn) = ∞, then

(Sn − ESn)/
√

var (Sn) ⇒ χ

3.4.11. Suppose EXi = 0, EX2
i = 1, and E|Xi |2+δ ≤ C for some 0 < δ, C < ∞.

Show that Sn/
√

n ⇒ χ .
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3.4.12. Prove Lyapunov’s Theorem. Let αn = { var (Sn)}1/2. If there is a δ > 0 so
that

lim
n→∞ α−(2+δ)

n

n∑
m=1

E(|Xm − EXm|2+δ) = 0

then (Sn − ESn)/αn ⇒ χ . Note that the previous exercise is a special case of this
result.

3.4.13. Suppose P (Xj = j ) = P (Xj = −j ) = 1/2jβ and P (Xj = 0) = 1 − j−β

where β > 0. Show that (i) if β > 1 then Sn → S∞ a.s., (ii) if β < 1 then
Sn/n(3−β)/2 ⇒ cχ , (iii) if β = 1 then Sn/n ⇒ ℵ where

E exp(itℵ) = exp

(
−
∫ 1

0
x−1(1 − cos xt) dx

)

3.4.3 Prime Divisors (Erdös-Kac)*

Our aim here is to prove that an integer picked at random from {1, 2, . . . , n} has
about

log log n + χ (log log n)1/2

prime divisors. Since exp(e4) = 5.15 × 1023, this result does not apply to most
numbers we encounter in “everyday life.” The first step in deriving this result is to
give a

Second proof of Theorem 3.4.5. The first step is to let

hn(ε) =
n∑

m=1

E(X2
n,m; |Xn,m| > ε)

and observe

Lemma 3.4.7. hn(ε) → 0 for each fixed ε > 0 so we can pick εn → 0 so that
hn(εn) → 0.

Proof. Let Nm be chosen so that hn(1/m) ≤ 1/m for n ≥ Nm and m → Nm

is increasing. Let εn = 1/m for Nm ≤ n < Nm+1, and = 1 for n < N1. When
Nm ≤ n < Nm+1, εn = 1/m, so |hn(εn)| = |hn(1/m)| ≤ 1/m, and the desired
result follows. �

Let X′
n,m = Xn,m1(|Xn,m|>εn), Yn,m = Xn,m1(|Xn,m|≤εn), and Zn,m = Yn,m −

EYn,m. Clearly |Zn,m| ≤ 2εn. Using Xn,m = X′
n,m + Yn,m, Zn,m = Yn,m − EYn,m,

EYn,m = −EX′
n,m, the variance of the sum is the sum of the variances, and
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var (W ) ≤ EW 2, we have

E

(
n∑

m=1

Xn,m −
n∑

m=1

Zn,m

)2

= E

(
n∑

m=1

X′
n,m − EX′

n,m

)2

=
n∑

m=1

E(X′
n,m − EX′

n,m)2 ≤
n∑

m=1

E(X′
n,m)2 → 0

as n → ∞, by the choice of εn.
Let Sn =∑n

m=1 Xn,m and Tn =∑n
m=1 Zn,m. The last computation shows Sn −

Tn → 0 in L2 and hence in probability by Lemma 2.2.2. Thus, by Exercise 3.2.13,
it suffices to show Tn ⇒ σχ . (i) implies ES2

n → σ 2. We have just shown that
E(Sn − Tn)2 → 0, so the triangle inequality for the L2 norm implies ET 2

n → σ 2.
To compute higher moments, we observe

T r
n =

r∑
k=1

∑
ri

r!

r1! · · · rk!

1

k!

∑
ij

Z
r1
n,i1

· · ·Zrk

n,ik

where
∑

ri
extends over all k-tuples of positive integers with r1 + · · · + rk = r and∑

ij
extends over all k-tuples of distinct integers with 1 ≤ i ≤ n. If we let

An(r1, . . . , rk) =
∑
ij

EZ
r1
n,i1

· · ·EZ
rk

n,ik

then

ET r
n =

r∑
k=1

∑
ri

r!

r1! · · · rk!

1

k!
An(r1, . . . rk)

To evaluate the limit of ET r
n we observe:

(a) If some rj = 1, then An(r1, . . . rk) = 0 since EZn,ij = 0.

(b) If all rj = 2, then

∑
ij

EZ2
n,i1

· · ·EZ2
n,ik

≤
(

n∑
m=1

EZ2
n,m

)k
→ σ 2k

To argue the other inequality, we note that for any 1 ≤ a < b ≤ k we can
estimate the sum over all the i1, . . . , ik with ia = ib by replacing EZ2

n,ia
by

(2εn)2 to get (the factor
(
k

2

)
giving the number of ways to pick 1 ≤ a < b ≤ k)(

n∑
m=1

EZ2
n,m

)k

−
∑
ij

EZ2
n,i1

· · ·EZ2
n,ik

≤
(

k

2

)
(2εn)2

(
n∑

m=1

EZ2
n,m

)k−1

→ 0

(c) If all the ri ≥ 2 but some rj > 2 then using

E|Zn,ij |rj ≤ (2εn)rj −2EZ2
n,ij
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we have

|An(r1, . . . rk)| ≤
∑
ij

E|Zn,i1 |r1 · · ·E|Zn,ik |rk

≤ (2εn)r−2kAn(2, . . . 2) → 0

When r is odd, some rj must be = 1 or ≥ 3 so ET r
n → 0 by (a) and (c). If

r = 2k is even, (a)–(c) imply

ET r
n → σ 2k(2k)!

2kk!
= E(σχ)r

and the result follows from Theorem 3.3.12. �

Turning to the result for prime divisors, let Pn denote the uniform distribution on
{1, . . . , n}. If P∞(A) ≡ lim Pn(A) exists, the limit is called the density of A ⊂ Z.
Let Ap be the set of integers divisible by p. Clearly, if p is a prime P∞(Ap) = 1/p

and q �= p is another prime

P∞(Ap ∩ Aq) = 1/pq = P∞(Ap)P∞(Aq)

Even though P∞ is not a probability measure (since P ({i}) = 0 for all i), we can
interpret this as saying that the events of being divisible by p and q are independent.
Let δp(n) = 1 if n is divisible by p, and = 0 otherwise, and

g(n) =
∑
p≤n

δp(n) be the number of prime divisors of n

this and future sums on p being over the primes. Intuitively, the δp(n) behave like
Xp that are i.i.d. with

P (Xp = 1) = 1/p and P (Xp = 0) = 1 − 1/p

The mean and variance of
∑

p≤n Xp are∑
p≤n

1/p and
∑
p≤n

1/p(1 − 1/p)

respectively. It is known that

(∗)
∑
p≤n

1/p = log log n + O(1)

(see Hardy and Wright, 1959, Chapter XXII), while anyone can see
∑

p 1/p2 < ∞,
so applying Theorem 3.4.5 to Xp and making a small leap of faith gives us:

Theorem 3.4.8. Erdös-Kac central limit theorem. As n → ∞
Pn

(
m ≤ n : g(m) − log log n ≤ x(log log n)1/2

)→ P (χ ≤ x)
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Proof. We begin by showing that we can ignore the primes “near” n. Let

αn = n1/ log log n

log αn = log n/ log log n

log log αn = log log n − log log log n

The sequence αn has two nice properties:

(a)
(∑

αn<p≤n 1/p
)

/(log log n)1/2 → 0 by (∗)

Proof of (a). By (∗) ∑
αn<p≤n

1/p =
∑
p≤n

1/p −
∑
p≤αn

1/p

= log log n − log log αn + O(1)

= log log log n + O(1)

(b) If ε > 0, then αn ≤ nε for large n and hence αr
n/n → 0 for all r < ∞. �

Proof of (b). 1/ log log n → 0 as n → ∞.

Let gn(m) =∑p≤αn
δp(m) and let En denote expected value w.r.t. Pn.

En

( ∑
αn<p≤n

δp

)
=
∑

αn<p≤n

Pn(m : δp(m) = 1) ≤
∑

αn<p≤n

1/p

so by (a) it is enough to prove the result for gn. Let

Sn =
∑
p≤αn

Xp

where the Xp are the independent random variables introduced above. Let bn =
ESn and a2

n = var (Sn). (a) tells us that bn and a2
n are both

log log n + o((log log n)1/2)

so it suffices to show

Pn(m : gn(m) − bn ≤ xan) → P (χ ≤ x)

An application of Theorem 3.4.5 shows (Sn − bn)/an ⇒ χ , and since |Xp| ≤ 1 it
follows from the second proof of Theorem 3.4.5 that

E ((Sn − bn)/an)r → Eχr for all r

Using notation from that proof (and replacing ij by pj )

ESr
n =

r∑
k=1

∑
ri

r!

r1! · · · rk!

1

k!

∑
pj

E(Xr1
p1

· · ·Xrk

pk
)



3.4 Central Limit Theorems 137

Since Xp ∈ {0, 1}, the summand is

E(Xp1 · · ·Xpk
) = 1/(p1 · · ·pk)

A little thought reveals that

En(δp1 · · · δpk
) ≤ 1

n
[n/(p1 · · ·pk)]

The two moments differ by ≤ 1/n, so

|E(Sr
n) − En(gr

n)| =
r∑

k=1

∑
ri

r!

r1! · · · rk!

1

k!

∑
pj

1

n

≤ 13n
(∑

p≤αn

1
)r

≤ αr
n

n
→ 0

by (b). Now

E(Sn − bn)r =
r∑

m=0

(
r

m

)
ESm

n (−bn)r−m

E(gn − bn)r =
r∑

m=0

(
r

m

)
Egm

n (−bn)r−m

so subtracting and using our bound on |E(Sr
n) − En(gr

n)| with r = m

|E(Sn − bn)r − E(gn − bn)r | ≤
r∑

m=0

(
r

m

)
1

n
αm

n br−m
n = (αn + bn)r/n → 0

since bn ≤ αn. This is more than enough to conclude that

E ((gn − bn)/an)r → Eχr

and the desired result follows from Theorem 3.3.12. �

3.4.4 Rates of Convergence (Berry-Esseen)*

Theorem 3.4.9. Let X1, X2, . . . be i.i.d. with EXi = 0, EX2
i = σ 2, and E|Xi |3 =

ρ < ∞. If Fn(x) is the distribution of (X1 + · · · + Xn)/σ
√

n and N (x) is the
standard normal distribution, then

|Fn(x) − N (x)| ≤ 3ρ/σ 3√n

Remarks. The reader should note that the inequality holds for all n and x, but
since ρ ≥ σ 3, it only has nontrivial content for n ≥ 10. It is easy to see that the rate
cannot be faster than n−1/2. When P (Xi = 1) = P (Xi = −1) = 1/2, symmetry
and (1.4) imply

F2n(0) = 1

2
{1 + P (S2n = 0)} = 1

2
(1 + (πn)−1/2) + o(n−1/2)
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The constant 3 is not the best known (van Beek, 1972, gets 0.8), but as Feller brags,
“our streamlined method yields a remarkably good bound even though it avoids
the usual messy numerical calculations.” The hypothesis E|X|3 is needed to get
the rate n−1/2. Heyde (1967) has shown that for 0 < δ < 1

∞∑
n=1

n−1+δ/2 sup
x

|Fn(x) − N (x)| < ∞

if and only if E|X|2+δ < ∞. For this and more on rates of convergence, see Hall
(1982).

Proof. Since neither side of the inequality is affected by scaling, we can suppose
without loss of generality that σ 2 = 1. The first phase of the argument is to derive an
inequality, Lemma 3.4.11, that relates the difference between the two distributions
to the distance between their ch.f.’s. Polya’s density (see Example 3.3.8 and use (e)
of Theorem 3.3.1)

hL(x) = 1 − cos Lx

πLx2

has ch.f. ωL(θ ) = (1 − |θ/L|)+ for |θ | ≤ L. We will use HL for its distribution
function. We will convolve the distributions under consideration with HL to get
ch.f. that have compact support. The first step is to show that convolution with HL

does not reduce the difference between the distributions too much.

Lemma 3.4.10. Let F and G be distribution functions with G′(x) ≤ λ < ∞. Let

(x) = F (x) − G(x), η = sup |
(x)|, 
L = 
 ∗ HL, and ηL = sup |
L(x)|. Then

ηL ≥ η

2
− 12λ

πL
or η ≤ 2ηL + 24λ

πL

Proof. 
 goes to 0 at ±∞, G is continuous, and F is a d.f., so there is an x0 with

(x0) = η or 
(x0−) = −η. By looking at the d.f.’s of (−1) times the r.v.’s in
the second case, we can suppose without loss of generality that 
(x0) = η. Since
G′(x) ≤ λ and F is nondecreasing, 
(x0 + s) ≥ η − λs. Letting δ = η/2λ, and
t = x0 + δ, we have


(t − x) ≥
{

(η/2) + λx for |x| ≤ δ

−η otherwise

To estimate the convolution 
L, we observe

2
∫ ∞

δ

hL(x) dx ≤ 2
∫ ∞

δ

2/(πLx2)dx = 4/(πLδ)
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Looking at (−δ, δ) and its complement separately and noticing that symmetry
implies

∫ δ

−δ
xhL(x) dx = 0, we have

ηL ≥ 
L(t) ≥ η

2

(
1 − 4

πLδ

)
− η

4

πLδ
= η

2
− 6η

πLδ
= η

2
− 12λ

πL

which proves the lemma. �

Lemma 3.4.11. Let K1 and K2 be d.f. with mean 0 whose ch.f. κi are integrable

K1(x) − K2(x) = (2π )−1
∫

−e−itx κ1(t) − κ2(t)

it
dt

Proof. Since the κi are integrable, the inversion formula, Theorem 3.3.4, implies
that the density ki(x) has

ki(y) = (2π )−1
∫

e−ityκi(t) dt

Subtracting the last expression with i = 2 from the one with i = 1, then integrating
from a to x and letting 
K = K1 − K2 gives


K(x) − 
K(a) = (2π )−1
∫ x

a

∫
e−ity{κ1(t) − κ2(t)} dt dy

= (2π )−1
∫

{e−ita − e−itx}κ1(t) − κ2(t)

it
dt

the application of Fubini’s theorem being justified since the κi are integrable in t

and we are considering a bounded interval in y.
The factor 1/it could cause problems near zero, but we have supposed that the Ki

have mean 0, so {1 − κi(t)}/t → 0 by Exercise 3.3.14, and hence (κ1(t) − κ2(t))/it

is bounded and continuous. The factor 1/it improves the integrability for large t so
(κ1(t) − κ2(t))/it is integrable. Letting a → −∞ and using the Riemann-Lebesgue
lemma (Exercise 1.4.4) proves the result. �

Let ϕF and ϕG be the ch.f.’s of F and G. Applying Lemma 3.4.11 to FL = F ∗ HL

and GL = G ∗ HL, gives

|FL(x) − GL(x)| ≤ 1

2π

∫
|ϕF (t)ωL(t) − ϕG(t)ωL(t)| dt

|t |

≤ 1

2π

∫ L

−L

|ϕF (t) − ϕG(t)| dt

|t |
because |ωL(t)| ≤ 1. Using Lemma 3.4.10 now, we have

|F (x) − G(x)| ≤ 1

π

∫ L

−L

|ϕF (θ ) − ϕG(θ )| dθ

|θ | + 24λ

πL
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where λ = supx G′(x). Plugging in F = Fn and G = N gives

|Fn(x) − N (x)| ≤ 1

π

∫ L

−L

|ϕn(θ/
√

n) − ψ(θ )| dθ

|θ | + 24λ

πL
(3.4.1)

and it remains to estimate the right-hand side. This phase of the argument is fairly
routine, but there is a fair amount of algebra. To save the reader from trying to
improve the inequalities along the way in hopes of getting a better bound, we
would like to observe that we have used the fact that C = 3 to get rid of the cases
n ≤ 9, and we use n ≥ 10 in (e).

To estimate the second term in (3.4.1), we observe that

(a) sup
x

G′(x) = G′(0) = (2π )−1/2 = 0.39894 < 2/5

For the first, we observe that if |α|, |β| ≤ γ

(b) |αn − βn| ≤
n−1∑
m=0

|αn−mβm − αn−m−1βm+1| ≤ n|α − β|γ n−1

Using (3.3.3) now gives (recall we are supposing σ 2 = 1)

(c) |ϕ(t) − 1 + t2/2| ≤ ρ|t |3/6

so if t2 ≤ 2

(d) |ϕ(t)| ≤ 1 − t2/2 + ρ|t |3/6

Let L = 4
√

n/3ρ. If |θ | ≤ L, then by (d) and the fact ρ|θ |/√n ≤ 4/3

|ϕ(θ/
√

n)| ≤ 1 − θ2/2n + ρ|θ |3/6n3/2

≤ 1 − 5θ2/18n ≤ exp(−5θ2/18n)

since 1 − x ≤ e−x . We will now apply (b) with

α = ϕ(θ/
√

n) β = exp(−θ2/2n) γ = exp(−5θ2/18n)

Since we are supposing n ≥ 10

(e) γ n−1 ≤ exp(−θ2/4)

For the other part of (b), we write

n|α − β| ≤ n|ϕ(θ/
√

n) − 1 + θ2/2n| + n|1 − θ2/2n − exp(−θ2/2n)|
To bound the first term on the right-hand side, observe that (c) implies

n|ϕ(θ/
√

n) − 1 + θ2/2n| ≤ ρ|θ |3/6n1/2

For the second term, note that if 0 < x < 1, then we have an alternating series with
decreasing terms, so

|e−x − (1 − x)| =
∣∣∣∣−x2

2!
+ x3

3!
− . . .

∣∣∣∣ ≤ x2

2
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Taking x = θ2/2n, it follows that for |θ | ≤ L ≤ √
2n

n|1 − θ2/2n − exp(−θ2/2n)| ≤ θ4/8n

Combining this with our estimate on the first term gives

(f) n|α − β| ≤ ρ|θ |3/6n1/2 + θ4/8n

Using (f) and (e) in (b), gives

1

|θ | |ϕ
n(θ/

√
n) − exp(−θ2/2)| ≤ exp(−θ2/4)

{
ρθ2

6n1/2
+ |θ |3

8n

}

≤ 1

L
exp(−θ2/4)

{
2θ2

9
+ |θ |3

18

}

since ρ/
√

n = 4/3L, and 1/n = 1/
√

n · 1/
√

n ≤ 4/3L · 1/3 since ρ ≥ 1 and n ≥
10. Using the last result and (a) in Lemma 3.4.11 gives

πL|Fn(x) − N (x)| ≤
∫

exp(−θ2/4)

{
2θ2

9
+ |θ |3

18

}
dθ + 9.6

Recalling L = 4
√

n/3ρ, we see that the last result is of the form |Fn(x) − N (x)| ≤
Cρ/

√
n. To evaluate the constant, we observe∫

(2πa)−1/2x2 exp(−x2/2a)dx = a

and writing x3 = 2x2 · x/2 and integrating by parts

2
∫ ∞

0
x3 exp(−x2/4) dx = 2

∫ ∞

0
4x exp(−x2/4) dx

= −16e−x2/4
∣∣∣∞
0

= 16

This gives us

|Fn(x) − N (x)| ≤ 1

π
· 3

4

(
2

9
· 2 ·

√
4π + 16

18
+ 9.6

)
ρ√
n

< 3
ρ√
n

For the last step, you have to get out your calculator or trust Feller. �

3.5 Local Limit Theorems*

In Section 3.1 we saw that if X1, X2, . . . are i.i.d. with P (X1 = 1) = P (X1 =
−1) = 1/2 and kn is a sequence of integers with 2kn/(2n)1/2 → x, then

P (S2n = 2kn) ∼ (πn)−1/2 exp(−x2/2)

In this section, we will prove two theorems that generalize the last result. We begin
with two definitions. A random variable X has a lattice distribution if there are con-
stants b and h > 0 so that P (X ∈ b +hZ) = 1, where b +hZ = {b +hz : z ∈ Z}.
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The largest h for which the last statement holds is called the span of the
distribution.

Example 3.5.1. If P (X = 1) = P (X = −1) = 1/2, then X has a lattice distribu-
tion with span 2. When h is 2, one possible choice is b = −1.

The next result relates the last definition to the characteristic function. To check
(ii) in its statement, note that in the last example E(eitX) = cos t has | cos(t)| = 1
when t = nπ .

Theorem 3.5.1. Let ϕ(t) = EeitX. There are only three possibilities.
(i) |ϕ(t)| < 1 for all t �= 0.

(ii) There is a λ > 0 so that |ϕ(λ)| = 1 and |ϕ(t)| < 1 for 0 < t < λ. In this case,
X has a lattice distribution with span 2π/λ.

(iii) |ϕ(t)| = 1 for all t . In this case, X = b a.s. for some b.

Proof. We begin with (ii). It suffices to show that |ϕ(t)| = 1 if and only if P (X ∈
b + (2π/t)Z) = 1 for some b. First, if P (X ∈ b + (2π/t)Z) = 1, then

ϕ(t) = EeitX = eitb
∑
n∈Z

ei2πnP (X = b + (2π/t)n) = eitb

Conversely, if |ϕ(t)| = 1, then there is equality in the inequality |EeitX| ≤ E|eitX|,
so by Exercise 1.6.1 the distribution of eitX must be concentrated at some point
eitb, and P (X ∈ b + (2π/t)Z) = 1.

To prove trichotomy now, we suppose that (i) and (ii) do not hold, that is, there
is a sequence tn ↓ 0 so that |ϕ(tn)| = 1. The first paragraph shows that there is
a bn so that P (X ∈ bn + (2π/tn)Z) = 1. Without loss of generality, we can pick
bn ∈ (−π/tn, π/tn]. As n → ∞, P (X /∈ (−π/tn, π/tn]) → 0, so it follows that
P (X = bn) → 1. This is only possible if bn = b for n ≥ N , and P (X = b) = 1. �

We call the three cases in Theorem 3.5.1 (i) nonlattice, (ii) lattice, and (iii)
degenerate. The reader should notice that this means that lattice random variables
are by definition nondegenerate. Before we turn to the main business of this section,
we would like to introduce one more special case. If X is a lattice distribution and
we can take b = 0, i.e., P (X ∈ hZ) = 1, then X is said to be arithmetic. In this
case, if λ = 2π/h then ϕ(λ) = 1 and ϕ is periodic: ϕ(t + λ) = ϕ(t).

Our first local limit theorem is for the lattice case. Let X1, X2, . . . be i.i.d. with
EXi = 0, EX2

i = σ 2 ∈ (0, ∞), and having a common lattice distribution with span
h. If Sn = X1 + · · · + Xn and P (Xi ∈ b + hZ) = 1 then P (Sn ∈ nb + hZ) = 1.
We put

pn(x) = P (Sn/
√

n = x) for x ∈ Ln = {(nb + hz)/
√

n : z ∈ Z}
and

n(x) = (2πσ 2)−1/2 exp(−x2/2σ 2) for x ∈ (−∞,∞)
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Theorem 3.5.2. Under the hypotheses above, as n → ∞

sup
x∈Ln

∣∣∣∣n1/2

h
pn(x) − n(x)

∣∣∣∣→ 0

Remark. To explain the statement, note that if we followed the approach in Exam-
ple 3.4.3, then we would conclude that for x ∈ Ln,

pn(x) ≈
∫ x+h/2

√
n

x−h/2
√

n

n(y) dy ≈ h√
n
n(x)

Proof. Let Y be a random variable with P (Y ∈ a + θZ) = 1 and ψ(t) =
E exp(itY ). It follows from part (iii) of Exercise 3.3.2 that

P (Y = x) = 1

2π/θ

∫ π/θ

−π/θ

e−itxψ(t) dt

Using this formula with θ = h/
√

n, ψ(t) = E exp(itSn/
√

n) = ϕn(t/
√

n), and
then multiplying each side by 1/θ gives

n1/2

h
pn(x) = 1

2π

∫ π
√

n/h

−π
√

n/h

e−itxϕn(t/
√

n) dt

Using the inversion formula, Theorem 3.3.5, for n(x), which has ch.f.
exp(−σ 2t2/2), gives

n(x) = 1

2π

∫
e−itx exp(−σ 2t2/2) dt

Subtracting the last two equations gives (recall π > 1, |e−itx | ≤ 1)∣∣∣∣n1/2

h
pn(x) − n(x)

∣∣∣∣ ≤
∫ π

√
n/h

−π
√

n/h

|ϕn(t/
√

n) − exp(−σ 2t2/2)| dt

+
∫ ∞

π
√

n/h

exp(−σ 2t2/2) dt

The right-hand side is independent of x, so to prove Theorem 3.5.2 it suffices to
show that it approaches 0. The second integral clearly → 0. To estimate the first
integral, we observe that ϕn(t/

√
n) → exp(−σ 2t2/2), so the integrand goes to 0

and it is now just a question of “applying the dominated convergence theorem.”
To do this, we will divide the integral into three pieces. The bounded convergence

theorem implies that for any A < ∞ the integral over (−A,A) approaches 0. To
estimate the integral over (−A,A)c, we observe that since EXi = 0 and EX2

i = σ 2,
formula (3.3.3) and the triangle inequality imply that

|ϕ(u)| ≤ |1 − σ 2u2/2| + u2

2
E(min(|u| · |X|3, 6|X|2))

The last expected value → 0 as u → 0. This means we can pick δ > 0 so that if
|u| < δ, it is ≤ σ 2/2 and hence

|ϕ(u)| ≤ 1 − σ 2u2/2 + σ 2u2/4 = 1 − σ 2u2/4 ≤ exp(−σ 2u2/4)
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since 1 − x ≤ e−x . Applying the last result to u = t/
√

n, we see that for t ≤ δ
√

n

(∗) |ϕ(t/
√

n)n| ≤ exp(−σ 2t2/4)

So the integral over (−δ
√

n, δ
√

n) − (−A,A) is smaller than

2
∫ δ

√
n

A

exp(−σ 2t2/4) dt

which is small if A is large.
To estimate the rest of the integral we observe that since X has span h, Theorem

3.5.1 implies |ϕ(u)| �= 1 for u ∈ [δ, π/h]. ϕ is continuous, so there is an η < 1 so
that |ϕ(u)| ≤ η < 1 for |u| ∈ [δ, π/h]. Letting u = t/

√
n again, we see that the

integral over [−π
√

n/h, π
√

n/h] − (−δ
√

n, δ
√

n) is smaller than

2
∫ π

√
n/h

δ
√

n

ηn + exp(−σ 2t2/2) dt

which → 0 as n → ∞. This completes the proof. �

We turn now to the nonlattice case. Let X1, X2, . . .be i.i.d. with EXi = 0,
EX2

i = σ 2 ∈ (0, ∞), and having a common characteristic function ϕ(t) that
has |ϕ(t)| < 1 for all t �= 0. Let Sn = X1 + · · · + Xn and n(x) = (2πσ 2)−1/2

exp(−x2/2σ 2).

Theorem 3.5.3. Under the hypotheses above, if xn/
√

n → x and a < b,
√

nP (Sn ∈ (xn + a, xn + b)) → (b − a)n(x)

Remark. The proof of this result has to be a little devious because the assumption
above does not give us much control over the behavior of ϕ. For a bad example, let
q1, q2, . . . be an enumeration of the positive rationals that has qn ≤ n. Suppose

P (X = qn) = P (X = −qn) = 1/2n+1

In this case EX = 0, EX2 < ∞, and the distribution is nonlattice. However, the
characteristic function has lim supt→∞ |ϕ(t)| = 1.

Proof. To tame bad ch.f.’s, we use a trick. Let δ > 0

h0(y) = 1

π
· 1 − cos δy

δy2

be the density of the Polya’s distribution and let hθ (x) = eiθxh0(x). If we introduce
the Fourier transform

ĝ(u) =
∫

eiuyg(y) dy
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then it follows from Example 3.3.8 that

ĥ0(u) =
{

1 − |u/δ| if |u| ≤ δ

0 otherwise

and it is easy to see that ĥθ (u) = ĥ0(u + θ ). We will show that for any θ

(a)
√

n Ehθ (Sn − xn) → n(x)
∫

hθ (y) dy

Before proving (a), we will show it implies Theorem 3.5.3. Let

µn(A) = √
nP (Sn − xn ∈ A), and µ(A) = n(x)|A|

where |A| = the Lebesgue measure of A. Let

αn = √
n Eh0(Sn − xn) and α = n(x)

∫
h0(y) dy = n(x)

Finally, define probability measures by

νn(B) = 1

αn

∫
B

h0(y)µn(dy), and ν(B) = 1

α

∫
B

h0(y)µ(dy)

Taking θ = 0 in (a) we see αn → α and so (a) implies

(b)
∫

eiθyνn(dy) →
∫

eiθyν(dy)

Since this holds for all θ , it follows from Theorem 3.3.6 that νn ⇒ ν. Now if
|a|, |b| < 2π/δ, then the function

k(y) = 1

h0(y)
· 1(a,b)(y)

is bounded and continuous a.s. with respect to ν so it follows from Theorem 3.2.4
that ∫

k(y)νn(dy) →
∫

k(y)ν(dy)

Since αn → α, this implies
√

nP (Sn ∈ (xn + a, xn + b)) → (b − a)n(x)

which is the conclusion of Theorem 3.5.3.
Turning now to the proof of (a), the inversion formula, Theorem 3.3.5, implies

h0(x) = 1

2π

∫
e−iuxĥ0(u) du

Recalling the definition of hθ , using the last result, and changing variables u =
v + θ , we have

hθ (x) = eiθxh0(x) = 1

2π

∫
e−i(u−θ )xĥ0(u) du

= 1

2π

∫
e−ivxĥθ (v) dv
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since ĥθ (v) = ĥ0(v + θ ). Letting Fn be the distribution of Sn − xn and integrating
gives

Ehθ (Sn − xn) = 1

2π

∫ ∫
e−iuxĥθ (u) du dFn(x)

= 1

2π

∫ ∫
e−iux dFn(x)ĥθ (u) du

by Fubini’s theorem. (Recall that ĥθ (u) has compact support and Fn is a distribution
function.) Using (e) of Theorem 3.3.1, we see that the last expression

= 1

2π

∫
ϕ(−u)neiuxn ĥθ (u) du

To take the limit as n → ∞ of this integral, let [−M,M] be an interval with
ĥθ (u) = 0 for u /∈ [−M,M]. By (∗) above, we can pick δ so that for |u| < δ

(c) |ϕ(u)| ≤ exp(−σ 2u2/4)

Let I = [−δ, δ] and J = [−M,M] − I . Since |ϕ(u)| < 1 for u �= 0 and ϕ is contin-
uous, there is a constant η < 1 so that |ϕ(u)| ≤ η < 1 for u ∈ J . Since |ĥθ (u)| ≤ 1,
this implies that∣∣∣∣

√
n

2π

∫
J

ϕ(−u)neiuxn ĥθ (u) du

∣∣∣∣ ≤
√

n

2π
· 2Mηn → 0

as n → ∞. For the integral over I , change variables u = t/
√

n to get

1

2π

∫ δ
√

n

−δ
√

n

ϕ(−t/
√

n)neitxn/
√

nĥθ (t/
√

n) dt

The central limit theorem implies ϕ(−t/
√

n)n → exp(−σ 2t2/2). Using (c) now
and the dominated convergence theorem gives (recall xn/

√
n → x)

√
n

2π

∫
I

ϕ(−u)neiuxn ĥθ (u) du → 1

2π

∫
exp(−σ 2t2/2)eitxĥθ (0) dt

= n(x)ĥθ (0) = n(x)
∫

hθ (y) dy

by the inversion formula, Theorem 3.3.5, and the definition of ĥθ (0). This proves
(a) and completes the proof of Theorem 3.5.3. �

3.6 Poisson Convergence

3.6.1 The Basic Limit Theorem

Our first result is sometimes facetiously called the “weak law of small numbers” or
the “law of rare events.” These names derive from the fact that the Poisson appears
as the limit of a sum of indicators of events that have small probabilities.
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Theorem 3.6.1. For each n, let Xn,m, 1 ≤ m ≤ n be independent random variables
with P (Xn,m = 1) = pn,m, P (Xn,m = 0) = 1 − pn,m. Suppose
(i)
∑n

m=1 pn,m → λ ∈ (0, ∞), and
(ii) max1≤m≤n pn,m → 0.

If Sn = Xn,1 + · · · + Xn,n then Sn ⇒ Z where Z is Poisson(λ).

Here Poisson(λ) is shorthand for Poisson distribution with mean λ, that is,

P (Z = k) = e−λλk/k!

Note that in the spirit of the Lindeberg-Feller theorem, no single term contributes
very much to the sum. In contrast to that theorem, the contributions, when positive,
are not small.

First proof. Let ϕn,m(t) = E(exp(itXn,m)) = (1 − pn,m) + pn,meit and let Sn =
Xn,1 + · · · + Xn,n. Then

E exp(itSn) =
n∏

m=1

(1 + pn,m(eit − 1))

Let 0 ≤ p ≤ 1. | exp(p(eit − 1))| = exp(p Re (eit − 1)) ≤ 1 and |1 + p(eit −
1)| ≤ 1 since it is on the line segment connecting 1 to eit . Using Lemma 3.4.3
with θ = 1 and then Lemma 3.4.4, which is valid when maxm pn,m ≤ 1/2 since
|eit − 1| ≤ 2, ∣∣∣∣∣exp

(
n∑

m=1

pn,m(eit − 1)

)
−

n∏
m=1

{1 + pn,m(eit − 1)}
∣∣∣∣∣

≤
n∑

m=1

∣∣exp(pn,m(eit − 1)) − {1 + pn,m(eit − 1)}∣∣

≤
n∑

m=1

p2
n,m|eit − 1|2

Using |eit − 1| ≤ 2 again, it follows that the last expression

≤ 4

(
max

1≤m≤n
pn,m

) n∑
m=1

pn,m → 0

by assumptions (i) and (ii). The last conclusion and
∑n

m=1 pn,m → λ imply

E exp(itSn) → exp(λ(eit − 1))

To complete the proof now, we consult Example 3.3.2 for the ch.f. of the Poisson
distribution and apply Theorem 3.3.6. �

We will now consider some concrete situations in which Theorem 3.6.1 can be
applied. In each case we are considering a situation in which pn,m = c/n, so we
approximate the distribution of the sum by a Poisson with mean c.
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Example 3.6.1. In a calculus class with 400 students, the number of students
who have their birthday on the day of the final exam has approximately a Poisson
distribution with mean 400/365 = 1.096. This means that the probability no one
was born on that date is about e−1.096 = 0.334. Similar reasoning shows that the
number of babies born on a given day or the number of people who arrive at a bank
between 1:15 and 1:30 should have a Poisson distribution.

Example 3.6.2. Suppose we roll two dice 36 times. The probability of “double
ones” (one on each die) is 1/36, so the number of times this occurs should have
approximately a Poisson distribution with mean 1. Comparing the Poisson approx-
imation with exact probabilities shows that the agreement is good even though the
number of trials is small.

k 0 1 2 3

Poisson 0.3678 0.3678 0.1839 0.0613
exact 0.3627 0.3730 0.1865 0.0604

After we give the second proof of Theorem 3.6.1, we will discuss rates of conver-
gence. Those results will show that for large n the largest discrepancy occurs for
k = 1 and is about 1/2en ( = 0.0051 in this case).

Example 3.6.3. Let ξn,1, . . . , ξn,n be independent and uniformly distributed over
[−n, n]. Let Xn,m = 1 if ξn,m ∈ (a, b), = 0 otherwise. Sn is the number of points
that land in (a, b). pn,m = (b − a)/2n so

∑
m pn,m = (b − a)/2. This shows that

(i) and (ii) in Theorem 3.6.1 hold, and we conclude that Sn ⇒ Z, a Poisson r.v. with
mean (b − a)/2. A two-dimensional version of the last theorem might explain why
the statistics of flying bomb hits in the South of London during World War II fit
a Poisson distribution. As Feller, Vol. I (1968), pp. 160–161 reports, the area was
divided into 576 areas of 1/4 square kilometers each. The total number of hits was
537 for an average of 0.9323 per cell. The following table compares Nk the number
of cells with k hits with the predictions of the Poisson approximation.

k 0 1 2 3 4 ≥5

Nk 229 211 93 35 7 1
Poisson 226.74 211.39 98.54 30.62 7.14 1.57

For other observations fitting a Poisson distribution, see Feller, Vol. I (1968),
Section VI.7.

Our second proof of Theorem 3.6.1 requires a little more work but provides
information about the rate of convergence. We begin by defining the total variation
distance between two measures on a countable set S.

‖µ − ν‖ ≡ 1

2

∑
z

|µ(z) − ν(z)| = sup
A⊂S

|µ(A) − ν(A)|
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The first equality is a definition. To prove the second, note that for any A∑
z

|µ(z) − ν(z)| ≥ |µ(A) − ν(A)| + |µ(Ac) − ν(Ac)| = 2|µ(A) − ν(A)|

and there is equality when A = {z : µ(z) ≥ ν(z)}.

Exercise 3.6.1. Show that (i) d(µ, ν) = ‖µ − ν‖ defines a metric on probability
measures on Z and (ii) ‖µn − µ‖ → 0 if and only if µn(x) → µ(x) for each x ∈ Z,
which by Exercise 3.2.11 is equivalent to µn ⇒ µ.

Exercise 3.6.2. Show that ‖µ − ν‖ ≤ 2δ if and only if there are random variables
X and Y with distributions µ and ν so that P (X �= Y ) ≤ δ.

The next three lemmas are the keys to our second proof.

Lemma 3.6.2. If µ1 × µ2 denotes the product measure on Z × Z that has (µ1 ×
µ2)(x, y) = µ1(x)µ2(y), then

‖µ1 × µ2 − ν1 × ν2‖ ≤ ‖µ1 − ν1‖ + ‖µ2 − ν2‖

Proof. 2‖µ1 × µ2 − ν1 × ν2‖ =∑x,y |µ1(x)µ2(y) − ν1(x)ν2(y)|

≤
∑
x,y

|µ1(x)µ2(y) − ν1(x)µ2(y)| +
∑
x,y

|ν1(x)µ2(y) − ν1(x)ν2(y)|

=
∑

y

µ2(y)
∑

x

|µ1(x) − ν1(x)| +
∑

x

ν1(x)
∑

y

|µ2(y) − ν2(y)|

= 2‖µ1 − ν1‖ + 2‖µ2 − ν2‖
which gives the desired result. �

Lemma 3.6.3. If µ1 ∗ µ2 denotes the convolution of µ1 and µ2, that is,

µ1 ∗ µ2(x) =
∑

y

µ1(x − y)µ2(y)

then ‖µ1 ∗ µ2 − ν1 ∗ ν2‖ ≤ ‖µ1 × µ2 − ν1 × ν2‖

Proof. 2‖µ1 ∗ µ2 − ν1 ∗ ν2‖ =∑x

∣∣∣∑y µ1(x − y)µ2(y) −∑y ν1(x − y)ν2(y)
∣∣∣

≤
∑

x

∑
y

|µ1(x − y)µ2(y) − ν1(x − y)ν2(y)|

= 2‖µ1 × µ2 − ν1 × ν2‖
which gives the desired result. �
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Lemma 3.6.4. Let µ be the measure with µ(1) = p and µ(0) = 1 − p. Let ν be a
Poisson distribution with mean p. Then ‖µ − ν‖ ≤ p2.

Proof. 2‖µ − ν‖ = |µ(0) − ν(0)| + |µ(1) − ν(1)| +∑n≥2 ν(n)

= |1 − p − e−p| + |p − p e−p| + 1 − e−p(1 + p)

Since 1 − x ≤ e−x ≤ 1 for x ≥ 0, the above

= e−p − 1 + p + p(1 − e−p) + 1 − e−p − pe−p

= 2p(1 − e−p) ≤ 2p2

which gives the desired result. �

Second proof of Theorem 3.6.1. Let µn,m be the distribution of Xn,m. Let µn be
the distribution of Sn. Let νn,m, νn, and ν be Poisson distributions with means
pn,m, λn =∑m≤n pn,m, and λ, respectively. Since µn = µn,1 ∗ · · · ∗ µn,n and νn =
νn,1 ∗ · · · ∗ νn,n, Lemmas 3.6.3, 3.6.2, and 3.6.4 imply

‖µn − νn‖ ≤
n∑

m=1

‖µn,m − νn,m‖ ≤ 2
n∑

m=1

p2
n,m (3.6.1)

Using the definition of total variation distance now gives

sup
A

|µn(A) − νn(A)| ≤
n∑

m=1

p2
n,m

Assumptions (i) and (ii) imply that the right-hand side → 0. Since νn ⇒ ν as
n → ∞, the result follows. �

Remark. The proof above is due to Hodges and Le Cam (1960). By different
methods, C. Stein (1987) (see (43) on p. 89) has proved

sup
A

|µn(A) − νn(A)| ≤ (λ ∨ 1)−1
n∑

m=1

p2
n,m

Rates of convergence. When pn,m = 1/n, (3.6.1) becomes

sup
A

|µn(A) − νn(A)| ≤ 1/n

To assess the quality of this bound, we will compare the Poisson and binomial
probabilities for k successes.

k Poisson Binomial

0 e−1
(
1 − 1

n

)n
1 e−1 n · n−1

(
1 − 1

n

)n−1 = (1 − 1
n

)n−1

2 e−1/2!
(
n

2

)
n−2
(
1 − 1

n

)n−2 = (1 − 1
n

)n−1
/ 2!

3 e−1/3!
(
n

3

)
n−3
(
1 − 1

n

)n−3 = (1 − 2
n

) (
1 − 1

n

)n−2
/

3!
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Since (1 − x) ≤ e−x , we have µn(0) − νn(0) ≤ 0. Expanding

log(1 + x) = x − x2

2
+ x3

3
− . . .

gives

(n − 1) log

(
1 − 1

n

)
= −n − 1

n
− n − 1

2n2
− · · · = −1 + 1

2n
+ O(n−2)

So

n

((
1 − 1

n

)n−1

− e−1

)
= ne−1

(
exp{1/2n + O(n−2)} − 1

)→ e−1/2

and it follows that

n(µn(1) − νn(1)) → e−1/2

n(µn(2) − νn(2)) → e−1/4

For k ≥ 3, using (1 − 2/n) ≤ (1 − 1/n)2 and (1 − x) ≤ e−x shows µn(k) −
νn(k) ≤ 0, so

sup
A⊂Z

|µn(A) − νn(A)| ≈ 3/4en

There is a large literature on Poisson approximations for dependent events. Here
we consider

3.6.2 Two Examples with Dependence

Example 3.6.4. Matching. Let π be a random permutation of {1, 2, . . . , n}, let
Xn,m = 1 if m is a fixed point (0 otherwise), and let Sn = Xn,1 + · · · + Xn,n be the
number of fixed points. We want to compute P (Sn = 0). (For a more exciting story,
consider men checking hats or wives swapping husbands.) Let An,m = {Xn,m = 1}.
The inclusion-exclusion formula implies

P
(∪n

m=1Am

) =
∑
m

P (Am) −
∑
�<m

P (A� ∩ Am)

+
∑

k<�<m

P (Ak ∩ A� ∩ Am) − . . .

= n · 1

n
−
(

n

2

)
(n − 2)!

n!
+
(

n

3

)
(n − 3)!

n!
− . . .

since the number of permutations with k specified fixed points is (n − k)! Canceling
some factorials gives

P (Sn > 0) =
n∑

m=1

(−1)m−1

m!
so P (Sn = 0) =

n∑
m=0

(−1)m

m!
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Recognizing the second sum as the first n + 1 terms in the expansion of e−1 gives

|P (Sn = 0) − e−1| =
∣∣∣∣∣

∞∑
m=n+1

(−1)m

m!

∣∣∣∣∣
≤ 1

(n + 1)!

∣∣∣∣∣
∞∑

k=0

(n + 2)−k

∣∣∣∣∣ = 1

(n + 1)!
·
(

1 − 1

n + 2

)−1

a much better rate of convergence than 1/n. To compute the other probabilities, we
observe that by considering the locations of the fixed points

P (Sn = k) =
(

n

k

)
1

n(n − 1) · · · (n − k + 1)
P (Sn−k = 0)

= 1

k!
P (Sn−k = 0) → e−1/k!

Example 3.6.5. Occupancy problem. Suppose that r balls are placed at random
into n boxes. It follows from the Poisson approximation to the binomial that if
n → ∞ and r/n → c, then the number of balls in a given box will approach a
Poisson distribution with mean c. The last observation should explain why the
fraction of empty boxes approached e−c in Example 2.2.5. Here we will show:

Theorem 3.6.5. If ne−r/n → λ ∈ [0, ∞) the number of empty boxes approaches a
Poisson distribution with mean λ.

Proof. To see where the answer comes from, notice that in the Poisson approxima-
tion the probability that a given box is empty is e−r/n ≈ λ/n, so if the occupancy of
the various boxes were independent, the result would follow from Theorem 3.6.1.
To prove the result, we begin by observing

P ( boxes i1, i2, . . . , ik are empty ) =
(

1 − k

n

)r
If we let pm(r, n) = the probability exactly m boxes are empty when r balls are
put in n boxes, then P ( no empty box ) = 1 − P (at least one empty box). So by
inclusion-exclusion

(a) p0(r, n) =
n∑

k=0

(−1)k
(

n

k

)(
1 − k

n

)r

By considering the locations of the empty boxes

(b) pm(r, n) =
(

n

m

)(
1 − m

n

)r
p0(r, n − m)

To evaluate the limit of pm(r, n) we begin by showing that if ne−r/n → λ then

(c)

(
n

m

)(
1 − m

n

)r
→ λm/m!
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One half of this is easy. Since (1 − x) ≤ e−x and ne−r/n → λ

(d)

(
n

m

)(
1 − m

n

)r
≤ nm

m!
e−mr/n → λm/m!

For the other direction, observe
(

n

m

) ≥ (n − m)m/m! so(
n

m

)(
1 − m

n

)r
≥
(

1 − m

n

)m+r

nm/m!

Now (1 − m/n)m → 1 as n → ∞ and 1/m! is a constant. To deal with the rest,
we note that if 0 ≤ t ≤ 1/2 then

log(1 − t) = −t − t2/2 − t3/3 . . .

≥ −t − t2

2

(
1 + 2−1 + 2−2 + · · · ) = −t − t2

so we have

log
(
nm
(

1 − m

n

)r)
≥ m log n − rm/n − r(m/n)2

Our assumption ne−r/n → λ means

r = n log n − n log λ + o(n)

so r(m/n)2 → 0. Multiplying the last display by m/n and rearranging gives
m log n − rm/n → m log λ. Combining the last two results shows

lim inf
n→∞ nm

(
1 − m

n

)r
≥ λm

and (c) follows. From (a), (c), and the dominated convergence theorem (using (d)
to get the domination), we get

(e) if ne−r/n → λ then p0(r, n) →∑∞
k=0(−1)k λk

k! = e−λ

For fixed m, (n − m)e−r/(n−m) → λ, so it follows from (e) that p0(r, n − m) → e−λ.
Combining this with (b) and (c) completes the proof. �

Example 3.6.6. Coupon collector’s problem. Let X1, X2, . . . be i.i.d. uniform on
{1, 2, . . . , n} and Tn = inf{m : {X1, . . . Xm} = {1, 2, . . . , n}}. Since Tn ≤ m if and
only if m balls fill up all n boxes, it follows from Theorem 3.6.5 that

P (Tn − n log n ≤ nx) → exp(−e−x)

Proof. If r = n log n + nx then ne−r/n → e−x . �

Note that Tn is the sum of n independent random variables (see Example 2.2.3), but
Tn does not converge to the normal distribution. The problem is that the last few
terms in the sum are of order n, so the hypotheses of the Lindeberg-Feller theorem
are not satisfied.
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For a concrete instance of the previous result consider: What is the probability
that in a village of 2190 (= 6 · 365) people all birthdays are represented? Do you
think the answer is much different for 1825 (= 5 · 365) people?

Solution. Here n = 365, so 365 log 365 = 2153, and

P (T365 ≤ 2190) = P ((T365 − 2153)/365 ≤ 37/365)

≈ exp(−e−0.1014) = exp(−0.9036) = 0.4051

P (T365 ≤ 1825) = P ((T365 − 2153)/365 ≤ −328/365)

≈ exp(−e0.8986) = exp(−2.4562) = 0.085

As we observed in Example 2.2.3, if we let

τn
k = inf{m : |{X1, . . . , Xm}| = k}

then τn
1 = 1 and for 2 ≤ k ≤ n, τn

k − τn
k−1 are independent and have a geometric

distribution with parameter 1 − (k − 1)/n.

Exercise 3.6.3. Suppose k/n1/2 → λ ∈ [0, ∞) and show that τn
k − k ⇒

Poisson(λ2/2). Hint: This is easy if you use Theorem 3.6.6 below.

Exercise 3.6.4. Let µn,k = Eτn
k and σ 2

n,k = var (τn
k ). Suppose k/n → a ∈ (0, 1),

and use the Lindeberg-Feller theorem to show (τn
k − µn,k)/

√
n ⇒ σχ.

The last result is true when k/n1/2 → ∞ and n − k → ∞; see Baum and Billings-
ley (1966). Results for k = n − j can be obtained from Theorem 3.6.5, so we have
examined all the possibilities.

3.6.3 Poisson Processes

Theorem 3.6.1 generalizes trivially to give the following result.

Theorem 3.6.6. Let Xn,m, 1 ≤ m ≤ n be independent nonnegative integer valued
random variables with P (Xn,m = 1) = pn,m, P (Xn,m ≥ 2) = εn,m.

(i)
∑n

m=1 pn,m → λ ∈ (0, ∞),
(ii) max1≤m≤n pn,m → 0, and

(iii)
∑n

m=1 εn,m → 0.

If Sn = Xn,1 + · · · + Xn,n then Sn ⇒ Z where Z is Poisson(λ).

Proof. Let X′
n,m = 1 if Xn,m = 1, and 0 otherwise. Let S ′

n = X′
n,1 + · · · + X′

n,n.
(i)–(ii) and Theorem 3.6.1 imply S ′

n ⇒ Z, (iii) tells us P (Sn �= S ′
n) → 0, and the

result follows from the converging together lemma, Exercise 3.2.13. �
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The next result, which uses Theorem 3.6.6, explains why the Poisson distribution
comes up so frequently in applications. Let N (s, t) be the number of arrivals at a
bank or an ice cream parlor in the time interval (s, t]. Suppose

(i) the numbers of arrivals in disjoint intervals are independent,
(ii) the distribution of N (s, t) only depends on t − s,

(iii) P (N(0, h) = 1) = λh + o(h), and
(iv) P (N(0, h) ≥ 2) = o(h).

Here, the two o(h) stand for functions g1(h) and g2(h) with gi(h)/h → 0 as h → 0.

Theorem 3.6.7. If (i)–(iv) hold, then N (0, t) has a Poisson distribution with mean
λt.

Proof. Let Xn,m = N ((m − 1)t/n, mt/n) for 1 ≤ m ≤ n and apply Theo-
rem 3.6.6. �

A family of random variables Nt , t ≥ 0 satisfying

(i) if 0 = t0 < t1 < · · · < tn, N (tk) − N (tk−1), 1 ≤ k ≤ n are independent,
(ii) N (t) − N (s) is Poisson(λ(t − s)),

is called a Poisson process with rate λ. To understand how Nt behaves, it is useful to
have another method to construct it. Let ξ1, ξ2, . . . be independent random variables
with P (ξi > t) = e−λt for t ≥ 0. Let Tn = ξ1 + · · · + ξn and Nt = sup{n : Tn ≤ t}
where T0 = 0. In the language of renewal theory (see Theorem 2.4.6), Tn is the
time of the nth arrival and Nt is the number of arrivals by time t . To check that Nt

is a Poisson process, we begin by recalling (see Theorem 2.1.12):

fTn
(s) = λnsn−1

(n − 1)!
e−λs for s ≥ 0

that is, the distribution of Tn has a density given by the right-hand side. Now

P (Nt = 0) = P (T1 > t) = e−λt

and for n ≥ 1

P (Nt = n) = P (Tn ≤ t < Tn+1) =
∫ t

0
P (Tn = s)P (ξn+1 > t − s) ds

=
∫ t

0

λnsn−1

(n − 1)!
e−λse−λ(t−s) ds = e−λt (λt)n

n!

The last two formulas show that Nt has a Poisson distribution with mean λt . To
check that the number of arrivals in disjoint intervals is independent, we observe

P (Tn+1 ≥ u|Nt = n) = P (Tn+1 ≥ u, Tn ≤ t)/P (Nt = n)
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To compute the numerator, we observe

P (Tn+1 ≥ u, Tn ≤ t) =
∫ t

0
fTn

(s)P (ξn+1 ≥ u − s) ds

=
∫ t

0

λnsn−1

(n − 1)!
e−λse−λ(u−s)ds = e−λu (λt)n

n!

The denominator is P (Nt = n) = e−λt (λt)n/n!, so

P (Tn+1 ≥ u|Nt = n) = e−λu/e−λt = e−λ(u−t)

or, rewriting things, P (Tn+1 − t ≥ s|Nt = n) = e−λs . Let T ′
1 = TN (t)+1 − t , and

T ′
k = TN (t)+k − TN (t)+k−1 for k ≥ 2. The last computation shows that T ′

1 is inde-
pendent of Nt . If we observe that

P (Tn ≤ t, Tn+1 ≥ u, Tn+k − Tn+k−1 ≥ vk, k = 2, . . . , K)

= P (Tn ≤ t, Tn+1 ≥ u)
K∏

k=2

P (ξn+k ≥ vk)

then it follows that

(a) T ′
1, T

′
2, . . . are i.i.d. and independent of Nt.

The last observation shows that the arrivals after time t are independent of Nt and
have the same distribution as the original sequence. From this it follows easily that

(b) If 0 = t0 < t1 . . . < tn then N (ti) − N (ti−1), i = 1, . . . , n are independent.

To see this, observe that the vector (N (t2) − N (t1), . . . , N(tn) − N (tn−1)) is
σ (T ′

k , k ≥ 1) measurable and hence is independent of N (t1). Then use induction to
conclude

P (N(ti) − N (ti−1) = ki, i = 1, . . . , n) =
n∏

i=1

exp(−λ(ti − ti−1))
λ(ti − ti−1))ki

ki!

Remark. The key to the proof of (a) is the lack of memory property of the
exponential distribution:

(∗) P (T > t + s|T > t) = P (T > s)

which implies that the location of the first arrival after t is independent of what
occurred before time t and has an exponential distribution.

Exercise 3.6.5. Show that if P (T > 0) = 1 and (∗) holds, then there is a λ > 0 so
that P (T > t) = e−λt for t ≥ 0. Hint: First show that this holds for t = m2−n.

Exercise 3.6.6. Show that (iii) and (iv) in Theorem 3.6.7 can be replaced by

(v) If Ns− = limr↑s Nr then P (Ns − Ns− ≥ 2 for some s) = 0.
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That is, if (i), (ii), and (v) hold, then there is a λ ≥ 0 so that N (0, t) has a Poisson
distribution with mean λt . Prove this by showing: (a) If u(s) = P (Ns = 0) then
(i) and (ii) imply u(r)u(s) = u(r + s). It follows that u(s) = e−λs for some λ ≥ 0,
so (iii) holds. (b) If v(s) = P (Ns ≥ 2) and An = {Nk/n − N(k−1)/n ≥ 2 for some
k ≤ n} then (v) implies P (An) → 0 as n → ∞ and (iv) holds.

Exercise 3.6.7. Let Tn be the time of the nth arrival in a rate λ Poisson pro-
cess. Let U1, U2, . . . , Un be independent uniform on (0,1) and let V n

k be the
kth smallest number in {U1, . . . , Un}. Show that the vectors (V n

1 , . . . , V n
n ) and

(T1/Tn+1, . . . , Tn/Tn+1) have the same distribution.

Spacings. The last result can be used to study the spacings between the order
statistics of i.i.d. uniforms. We use notation of Exercise 3.6.7 in the next four
exercises, taking λ = 1 and letting V n

0 = 0, and V n
n+1 = 1.

Exercise 3.6.8. Smirnov (1949) nV n
k ⇒ Tk.

Exercise 3.6.9. Weiss (1955) n−1∑n
m=1 1(n(V n

i −V n
i−1)>x) → e−x in probability.

Exercise 3.6.10. (n/ log n) max1≤m≤n+1 V n
m − V n

m−1 → 1 in probability.

Exercise 3.6.11. P (n2 min1≤m≤n V n
m − V n

m−1 > x) → e−x .

For the rest of the section, we concentrate on the Poisson process itself.

Exercise 3.6.12. Thinning. Let N have a Poisson distribution with mean λ

and let X1, X2, . . . be an independent i.i.d. sequence with P (Xi = j ) = pj for
j = 0, 1, . . . , k. Let Nj = |{m ≤ N : Xm = j}|. Show that N0, N1, . . . , Nk are
independent and Nj has a Poisson distribution with mean λpj .

In the important special case Xi ∈ {0, 1}, the result says that if we thin a Poisson
process by flipping a coin with probability p of heads to see if we keep the arrival,
then the result is a Poisson process with rate λp.

Exercise 3.6.13. Poissonization and the occupancy problem. If we put a Poisson
number of balls with mean r in n boxes and let Ni be the number of balls in box
i, then the last exercise implies N1, . . . , Nn are independent and have a Poisson
distribution with mean r/n. Use this observation to prove Theorem 3.6.5.
Hint: If r = n log n − (log λ)n + o(n) and si = n log n − (log µi)n with µ2 < λ <

µ1, then the normal approximation to the Poisson tells us P (Poisson(s1) < r <

Poisson(s2)) → 1 as n → ∞.

Example 3.6.7. Compound Poisson process. At the arrival times T1, T2, . . . of
a Poisson process with rate λ, groups of customers of size ξ1, ξ2, . . . arrive at an
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ice cream parlor. Suppose the ξi are i.i.d. and independent of the T ′
j s. This is a

compound Poisson process. The result of Exercise 3.6.12 shows that Nk
t = the

number of groups of size k to arrive in [0, t] are independent Poisson’s with mean
pkλt.

Example 3.6.8. A Poisson process on a measure space (S,S, µ) is a random
map m : S → {0, 1, . . .} that for each ω is a measure on S and has the following
property: if A1, . . . , An are disjoint sets with µ(Ai) < ∞, then m(A1), . . . , m(An)
are independent and have Poisson distributions with means µ(Ai). µ is called the
mean measure of the process. Exercise 3.6.12 implies that if µ(S) < ∞ we can
construct m by the following recipe: let X1, X2, . . . be i.i.d. elements of S with
distribution ν(·) = µ(·)/µ(S), let N be an independent Poisson random variable
with mean µ(S), and let m(A) = |{j ≤ N : Xj ∈ A}|. To extend the construction
to infinite measure spaces, e.g., S = Rd , S = Borel sets, µ = Lebesgue measure,
divide the space up into disjoint sets of finite measure and put independent Poisson
processes on each set.

3.7 Stable Laws*

Let X1, X2, . . . be i.i.d. and Sn = X1 + · · · + Xn. Theorem 3.4.1 showed that if
EXi = µ and var (Xi) = σ 2 ∈ (0, ∞), then

(Sn − nµ)/ σn1/2 ⇒ χ

In this section, we will investigate the case EX2
1 = ∞ and give necessary and

sufficient conditions for the existence of constants an and bn so that

(Sn − bn)/an ⇒ Y where Y is nondegenerate

We begin with an example. Suppose the distribution of Xi has

P (X1 > x) = P (X1 < −x) = x−α/2 for x ≥ 1 (3.7.1)

where 0 < α < 2. If ϕ(t) = E exp(itX1), then

1 − ϕ(t) =
∫ ∞

1
(1 − eitx)

α

2|x|α+1
dx +

∫ −1

−∞
(1 − eitx)

α

2|x|α+1
dx

= α

∫ ∞

1

1 − cos(tx)

xα+1
dx

Changing variables tx = u, dx = du/t , the last integral becomes

= α

∫ ∞

t

1 − cos u

(u/t)α+1

du

t
= tαα

∫ ∞

t

1 − cos u

uα+1
du

As u → 0, 1 − cos u ∼ u2/2. So (1 − cos u)/uα+1 ∼ u−α+1/2, which is integrable,
since α < 2 implies −α + 1 > −1. If we let

C = α

∫ ∞

0

1 − cos u

uα+1
du < ∞
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and observe (3.7.1) implies ϕ(t) = ϕ(−t), then the results above show

1 − ϕ(t) ∼ C|t |α as t → 0 (3.7.2)

Let X1, X2, . . . be i.i.d. with the distribution given in (3.7.1) and let Sn =
X1 + · · · + Xn.

E exp(itSn/n1/α) = ϕ(t/n1/α)n = (1 − {1 − ϕ(t/n1/α)})n

As n → ∞, n(1 − ϕ(t/n1/α)) → C|t |α, so it follows from Theorem 3.4.2 that

E exp(itSn/n1/α) → exp(−C|t |α)

From part (ii) of Theorem 3.3.6, it follows that the expression on the right is the
characteristic function of some Y and

Sn/n1/α ⇒ Y (3.7.3)

To prepare for our general result, we will now give another proof of (3.7.3). If
0 < a < b and an1/α > 1, then

P (an1/α < X1 < bn1/α) = 1

2
(a−α − b−α)n−1

so it follows from Theorem 3.6.1 that

Nn(a, b) ≡ |{m ≤ n : Xm/n1/α ∈ (a, b)}| ⇒ N (a, b)

where N (a, b) has a Poisson distribution with mean (a−α − b−α)/2. An easy exten-
sion of the last result shows that if A ⊂ R − (−δ, δ) and δn1/α > 1, then

P (X1/n1/α ∈ A) = n−1
∫

A

α

2|x|α+1
dx

so Nn(A) ≡ |{m ≤ n : Xm/n1/α ∈ A}| ⇒ N (A), where N (A) has a Poisson distri-
bution with mean

µ(A) =
∫

A

α

2|x|α+1
dx < ∞

The limiting family of random variables N (A) is called a Poisson process on
(−∞,∞) with mean measure µ. (See Example 3.6.8 for more on this process.)
Notice that for any ε > 0, µ(ε,∞) = ε−α/2 < ∞, so N(ε,∞) < ∞.

The last paragraph describes the limiting behavior of the random set

Xn = {Xm/n1/α : 1 ≤ m ≤ n}
To describe the limit of Sn/n1/α, we will “sum up the points.” Let ε > 0 and

In(ε) = {m ≤ n : |Xm| > εn1/α}
Ŝn(ε) =

∑
m∈In(ε)

Xm S̄n(ε) = Sn − Ŝn(ε)

In(ε) = the indices of the “big terms,” that is, those > εn1/α in magnitude. Ŝn(ε)
is the sum of the big terms, and S̄n(ε) is the rest of the sum. The first thing we will
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do is show that the contribution of S̄n(ε) is small if ε is. Let

X̄m(ε) = Xm1(|Xm|≤εn1/α)

Symmetry implies EX̄m(ε) = 0, so E(S̄n(ε)2) = nEX̄1(ε)2.

EX̄1(ε)2 =
∫ ∞

0
2yP (|X̄1(ε)| > y) dy ≤

∫ 1

0
2y dy +

∫ εn1/α

1
2y y−α dy

= 1 + 2

2 − α
ε2−αn2/α−1 − 2

2 − α
≤ 2ε2−α

2 − α
n2/α−1

where we have used α < 2 in computing the integral and α > 0 in the final inequal-
ity. From this it follows that

E(S̄n(ε)/n1/α)2 ≤ 2ε2−α

2 − α
(3.7.4)

To compute the limit of Ŝn(ε)/n1/α, we observe that |In(ε)| has a binomial
distribution with success probability p = ε−α/n. Given |In(ε)| = m, Ŝn(ε)/n1/α is
the sum of m independent random variables with a distribution Fε

n that is symmetric
about 0 and has

1 − Fε
n (x) = P (X1/n1/α > x | |X1|/n1/α > ε) = x−α/2ε−α for x ≥ ε

The last distribution is the same as that of εX1, so if ϕ(t) = E exp(itX1), the
distribution Fε

n has characteristic function ϕ(εt). Combining the observations in
this paragraph gives

E exp(it Ŝn(ε)/n1/α) =
n∑

m=0

(
n

m

)
(ε−α/n)m(1 − ε−α/n)n−mϕ(εt)m

Writing (
n

m

)
1

nm
= 1

m!

n(n − 1) · · · (n − m + 1)

nm
≤ 1

m!

noting (1 − ε−α/n)n ≤ exp(−ε−α) and using the dominated convergence theorem

E exp(it Ŝn(ε)/n1/α) →
∞∑

m=0

exp(−ε−α)(ε−α)mϕ(εt)m/m!

= exp(−ε−α{1 − ϕ(εt)}) (3.7.5)

To get (3.7.3) now, we use the following generalization of Lemma 3.4.7.

Lemma 3.7.1. If hn(ε) → g(ε) for each ε > 0 and g(ε) → g(0) as ε → 0, then
we can pick εn → 0 so that hn(εn) → g(0).

Proof. Let Nm be chosen so that |hn(1/m) − g(1/m)| ≤ 1/m for n ≥ Nm and
m → Nm is increasing. Let εn = 1/m for Nm ≤ n < Nm+1 and = 1 for n < N1.
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When Nm ≤ n < Nm+1, εn = 1/m, so it follows from the triangle inequality and
the definition of εn that

|hn(εn) − g(0)| ≤ |hn(1/m) − g(1/m)| + |g(1/m) − g(0)|
≤ 1/m + |g(1/m) − g(0)|

When n → ∞, we have m → ∞ and the result follows. �

Let hn(ε) = E exp(it Ŝn(ε)/n1/α) and g(ε) = exp(−ε−α{1 − ϕ(εt)}). (3.7.2)
implies 1 − ϕ(t) ∼ C|t |α as t → 0, so

g(ε) → exp(−C|t |α) as ε → 0

and Lemma 3.7.1 implies we can pick εn → 0 with hn(εn) → exp(−C|t |α). Intro-
ducing Y with E exp(itY ) = exp(−C|t |α), it follows that Ŝn(εn)/n1/α ⇒ Y . If
εn → 0, then (3.7.4) implies

S̄n(εn)/n1/α ⇒ 0

and (3.7.3) follows from the converging together lemma, Exercise 3.2.13. �

Once we give one final definition, we will state and prove the general result
alluded to above. L is said to be slowly varying, if

lim
x→∞ L(tx)/L(x) = 1 for all t > 0

Exercise 3.7.1. Show that L(t) = log t is slowly varying but t ε is not if ε �= 0.

Theorem 3.7.2. Suppose X1, X2, . . . are i.i.d. with a distribution that satisfies
(i) limx→∞ P (X1 > x)/P (|X1| > x) = θ ∈ [0, 1]

(ii) P (|X1| > x) = x−αL(x)
where α < 2 and L is slowly varying. Let Sn = X1 + · · · + Xn

an = inf{x : P (|X1| > x) ≤ n−1} and bn = nE(X11(|X1|≤an))

As n → ∞, (Sn − bn)/an ⇒ Y where Y has a nondegenerate distribution.

Remark. This is not much of a generalization of the example, but the conditions
are necessary for the existence of constants an and bn so that (Sn − bn)/an ⇒ Y ,
where Y is nondegenerate. Proofs of necessity can be found in Chapter 9 of Breiman
(1968) or in Gnedenko and Kolmogorov (1954). (3.7.11) gives the ch.f. of Y . The
reader has seen the main ideas in the second proof of (3.7.3) and so can skip to that
point without much loss.

Proof. It is not hard to see that (ii) implies

nP (|X1| > an) → 1 (3.7.6)
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To prove this, note that nP (|X1| > an) ≤ 1 and let ε > 0. Taking x = an/(1 + ε)
and t = 1 + 2ε, (ii) implies

(1 + 2ε)−α = lim
n→∞

P (|X1| > (1 + 2ε)an/(1 + ε))

P (|X1| > an/(1 + ε))
≤ lim inf

n→∞
P (|X1| > an)

1/n

proving (3.7.6) since ε is arbitrary. Combining (3.7.6) with (i) and (ii) gives

nP (X1 > xan) → θx−α for x > 0 (3.7.7)

so |{m ≤ n : Xm > xan}| ⇒ Poisson(θx−α). The last result leads, as before, to
the conclusion that Xn = {Xm/an : 1 ≤ m ≤ n} converges to a Poisson process on
(−∞,∞) with mean measure

µ(A) =
∫

A∩(0,∞)
θα|x|−(α+1) dx +

∫
A∩(−∞,0)

(1 − θ )α|x|−(α+1) dx

To sum up the points, let In(ε) = {m ≤ n : |Xm| > εan}
µ̂(ε) = EXm1(εan<|Xm|≤an) Ŝn(ε) =

∑
m∈In(ε)

Xm

µ̄(ε) = EXm1(|Xm|≤εan)

S̄n(ε) = (Sn − bn) − (Ŝn(ε) − nµ̂(ε)) =
n∑

m=1

{Xm1(|Xm|≤εan) − µ̄(ε)}

If we let X̄m(ε) = Xm1(|Xm|≤εan), then

E(S̄n(ε)/an)2 = n var (X̄1(ε)/an) ≤ nE(X̄1(ε)/an)2

E(X̄1(ε)/an)2 ≤
∫ ε

0
2yP (|X1| > yan) dy

= P (|X1| > an)
∫ ε

0
2y

P (|X1| > yan)

P (|X1| > an)
dy

We would like to use (3.7.7) and (ii) to conclude

nE(X̄1(ε)/an)2 →
∫ ε

0
2y y−α dy = 2

2 − α
ε2−α

and hence

lim sup
n→∞

E(S̄n(ε)/an)2 ≤ 2ε2−α

2 − α
(3.7.8)

To justify interchanging the limit and the integral and complete the proof of (3.7.8),
we show the following (take δ < 2 − α):

Lemma 3.7.3. For any δ > 0 there is C so that for all t ≥ t0 and y ≤ 1

P (|X1| > yt)/P (|X1| > t) ≤ Cy−α−δ
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Proof. (ii) implies that as t → ∞
P (|X1| > t/2)/P (|X1| > t) → 2α

so for t ≥ t0 we have

P (|X1| > t/2)/P (|X1| > t) ≤ 2α+δ

Iterating and stopping the first time t/2m < t0, we have for all n ≥ 1

P (|X1| > t/2n)/P (|X1| > t) ≤ C2(α+δ)n

where C = 1/P (|X1| > t0). Applying the last result to the first n with 1/2n < y

and noticing y ≤ 1/2n−1, we have

P (|X1| > yt)/P (|X1| > t) ≤ C2α+δy−α−δ

which proves the lemma. �

To compute the limit of Ŝn(ε), we observe that |In(ε)| ⇒ Poisson(ε−α). Given
|In(ε)| = m, Ŝn(ε)/an is the sum of m independent random variables with distribu-
tion Fε

n that has

1 − Fε
n (x) = P (X1/an > x | |X1|/an > ε) → θx−α/ε−α

F ε
n (−x) = P (X1/an < −x | |X1|/an > ε) → (1 − θ )|x|−α/ε−α

for x ≥ ε. If we let ψε
n(t) denote the characteristic function of F ε

n , then Theo-
rem 3.3.6 implies

ψε
n(t) → ψε(t) =

∫ ∞

ε

eitxθεααx−(α+1)dx +
∫ −ε

−∞
eitx(1 − θ )εαα|x|−(α+1) dx

as n → ∞. So repeating the proof of (3.7.5) gives

E exp(it Ŝn(ε)/an) → exp(−ε−α{1 − ψε(t)})

= exp

(∫ ∞

ε

(eitx − 1)θαx−(α+1) dx

+
∫ −ε

−∞
(eitx − 1)(1 − θ )α|x|−(α+1)dx

)

where we have used ε−α = ∫∞
ε

αx−(α+1) dx. To bring in

µ̂(ε) = EXm1(εan<|Xm|≤an)

we observe that (3.7.7) implies nP (xan < Xm ≤ yan) → θ (x−α − y−α). So

nµ̂(ε)/an →
∫ 1

ε

xθαx−(α+1) dx +
∫ −ε

−1
x(1 − θ )α|x|−(α+1) dx
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From this it follows that E exp(it{Ŝn(ε) − nµ̂(ε)}/an) →

exp

(∫ ∞

1
(eitx − 1)θαx−(α+1) dx

+
∫ 1

ε

(eitx − 1 − itx)θαx−(α+1) dx

+
∫ −ε

−1
(eitx − 1 − itx)(1 − θ )α|x|−(α+1) dx (3.7.9)

+
∫ −1

−∞
(eitx − 1)(1 − θ )α|x|−(α+1) dx

)

The last expression is messy, but eitx − 1 − itx ∼ −t2x2/2 as t → 0, so we need
to subtract the itx to make∫ 1

0
(eitx − 1 − itx)x−(α+1)dx converge when α ≥ 1

To reduce the number of integrals from four to two, we can write the limit as ε → 0
of the right-hand side of (3.7.9) as

exp

(
itc +

∫ ∞

0

(
eitx − 1 − itx

1 + x2

)
θαx−(α+1) dx

+
∫ 0

−∞

(
eitx − 1 − itx

1 + x2

)
(1 − θ )α|x|−(α+1) dx

)
(3.7.10)

where c is a constant. Combining (3.7.6) and (3.7.9) using Lemma 3.7.1, it follows
easily that (Sn − bn)/an ⇒ Y where EeitY is given in (3.7.10). �

Exercise 3.7.2. Show that when α < 1, centering is unnecessary, that is, we can
let bn = 0.

By doing some calculus (see Breiman, 1968, pp. 204–206) one can rewrite
(3.7.10) as

exp(itc − b|t |α{1 + iκ sgn (t)wα(t)}) (3.7.11)

where −1 ≤ κ ≤ 1, (κ = 2θ − 1) and

wα(t) =
{

tan(πα/2) if α �= 1

(2/π ) log |t | if α = 1

The reader should note that while we have assumed 0 < α < 2 throughout the
developments above, if we set α = 2 then the term with κ vanishes and (3.7.11)
reduces to the characteristic function of the normal distribution with mean c and
variance 2b.

The distributions whose characteristic functions are given in (3.7.11) are called
stable laws. α is commonly called the index. When α = 1, c = 0, and κ = 0, we
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have the Cauchy distribution. Apart from the Cauchy and the normal, there is only
one other case in which the density is known: When α = 1/2, κ = 1, c = 0, and
b = 1, the density is

(2πy3)−1/2 exp(−1/2y) for y ≥ 0 (3.7.12)

One can calculate the ch.f. and verify our claim. However, later (see Section 7.4)
we will be able to check the claim without effort, so we leave the somewhat tedious
calculation to the reader.

We are now finally ready to treat some examples.

Example 3.7.1. Let X1, X2, . . . be i.i.d. with a density that is symmetric about 0,
and continuous and positive at 0. We claim that

1

n

(
1

X1
+ · · · + 1

Xn

)
⇒ a Cauchy distribution (α = 1, κ = 0)

To verify this, note that

P (1/Xi > x) = P (0 < Xi < x−1) =
∫ x−1

0
f (y) dy ∼ f (0)/x

as x → ∞. A similar calculation shows P (1/Xi < −x) ∼ f (0)/x, so in (i) in
Theorem 3.7.2 holds with θ = 1/2, and (ii) holds with α = 1. The scaling constant
an ∼ 2f (0)n, whereas the centering constant vanishes because we have supposed
the distribution of X is symmetric about 0.

Remark. Readers who want a challenge should try to drop the symmetry assump-
tion, assuming for simplicity that f is differentiable at 0.

Example 3.7.2. Let X1, X2, . . . be i.i.d. with P (Xi = 1) = P (Xi = −1) = 1/2,
let Sn = X1 + · · · + Xn, and let τ = inf{n ≥ 1 : Sn = 1}. In Chapter 4 (see the
discussion after (4.3.2)) we will show

P (τ > 2n) ∼ π−1/2n−1/2 as n → ∞
Let τ1, τ2, . . . be independent with the same distribution as τ , and let Tn =
τ1 + · · · + τn. Results in Section 4.1 imply that Tn has the same distribution as
the nth time Sm hits 0. We claim that Tn/n2 converges to the stable law with
α = 1/2, κ = 1 and note that this is the key to the derivation of (3.7.12). To prove
the claim, note that in (i) in Theorem 3.7.2 holds with θ = 1 and (ii) holds with
α = 1/2. The scaling constant an ∼ Cn2. Since α < 1, Exercise 3.7.2 implies the
centering constant is unnecessary.

Example 3.7.3. Assume n objects Xn,1, . . . , Xn,n are placed independently and at
random in [−n, n]. Let

Fn =
n∑

m=1

sgn (Xn,m)/|Xn,m|p
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be the net force exerted on 0. We will now show that if p > 1/2, then

lim
n→∞ E exp(itFn) = exp(−c|t |1/p)

To do this, it is convenient to let Xn,m = nYm where the Yi are i.i.d. on [−1, 1].
Then

Fn = n−p

n∑
m=1

sgn (Ym)/|Ym|p

Letting Zm = sgn (Ym)/|Ym|p, Zm is symmetric about 0 with P (|Zm| > x) =
P (|Ym| < x−1/p), so (i) in Theorem 3.7.2 holds with θ = 1/2 and (ii) holds
with α = 1/p. The scaling constant an ∼ Cnp and the centering constant is 0 by
symmetry.

Exercise 3.7.3. Show that (i) If p < 1/2 then Fn/n1/2−p ⇒ cχ .
(ii) If p = 1/2 then Fn/(log n)1/2 ⇒ cχ .

Example 3.7.4. In the examples above, we have had bn = 0. To get a feel for the
centering constants, consider X1, X2, . . . i.i.d. with

P (Xi > x) = θx−α P (Xi < −x) = (1 − θ )x−α

where 0 < α < 2. In this case an = n1/α and

bn = n

∫ n1/α

1
(2θ − 1)αx−α dx ∼

⎧⎪⎨
⎪⎩

cn α > 1

cn log n α = 1

cn1/α α < 1

When α < 1 the centering is the same size as the scaling and can be ignored. When
α > 1, bn ∼ nµ where µ = EXi .

Our next result explains the name stable laws. A random variable Y is said to
have a stable law if for every integer k > 0 there are constants ak and bk so that
if Y1, . . . , Yk are i.i.d. and have the same distribution as Y , then (Y1 + · · · + Yk −
bk)/ak =d Y . The last definition makes half of the next result obvious.

Theorem 3.7.4. Y is the limit of (X1 + · · · + Xk − bk)/ak for some i.i.d. sequence
Xi if and only if Y has a stable law.

Proof. If Y has a stable law, we can take X1, X2, . . . i.i.d. with distribution Y . To
go the other way, let

Zn = (X1 + · · · + Xn − bn)/an
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and S
j
n = X(j−1)n+1 + · · · + Xjn. A little arithmetic shows

Znk = (S1
n + · · · + Sk

n − bnk)/ank

ankZnk = (S1
n − bn) + · · · + (Sk

n − bn) + (kbn − bnk)

ankZnk/an = (S1
n − bn)/an + · · · + (Sk

n − bn)/an + (kbn − bnk)/an

The first k terms on the right-hand side ⇒ Y1 + · · · + Yk as n → ∞ where
Y1, . . . , Yk are independent and have the same distribution as Y , and Znk ⇒ Y .
Taking Wn = Znk and

W ′
n = akn

an

Znk − kbn − bnk

an

gives the desired result. �

Theorem 3.7.5. Convergence of types theorem. If Wn ⇒ W and there are con-
stants αn > 0, βn so that W ′

n = αnWn + βn ⇒ W ′ where W and W ′ are nondegen-
erate, then there are constants α and β so that αn → α and βn → β.

Proof. Let ϕn(t) = E exp(itWn).

ψn(t) = E exp(it(αnWn + βn)) = exp(itβn)ϕn(αnt)

If ϕ and ψ are the characteristic functions of W and W ′, then

(a) ϕn(t) → ϕ(t) ψn(t) = exp(itβn)ϕn(αnt) → ψ(t)

Take a subsequence αn(m) that converges to a limit α ∈ [0, ∞]. Our first step is to
observe α = 0 is impossible. If this happens, then using the uniform convergence
proved in Exercise 3.3.16

(b) |ψn(t)| = |ϕn(αnt)| → 1

|ψ(t)| ≡ 1, and the limit is degenerate by Theorem 3.5.1. Letting t = u/αn and
interchanging the roles of ϕ and ψ shows α = ∞ is impossible. If α is a subsequen-
tial limit, then arguing as in (b) gives |ψ(t)| = |ϕ(αt)|. If there are two subsequential
limits α′ < α, using the last equation for both limits implies |ϕ(u)| = |ϕ(uα′/α)|.
Iterating gives |ϕ(u)| = |ϕ(u(α′/α)k)| → 1 as k → ∞, contradicting our assump-
tion that W ′ is nondegenerate, so αn → α ∈ [0, ∞).

To conclude that βn → β now, we observe that (ii) of Exercise 3.3.16 implies
ϕn → ϕ uniformly on compact sets so ϕn(αnt) → ϕ(αt). If δ is small enough so
that |ϕ(αt)| > 0 for |t | ≤ δ, it follows from (a) and another use of Exercise 3.3.16
that

exp(itβn) = ψn(t)

ϕn(αt)
→ ψ(t)

ϕ(αt)

uniformly on [−δ, δ]. exp(itβn) is the ch.f. of a point mass at βn. Using (3.3.1)
now as in the proof of Theorem 3.3.6, it follows that the sequence of distributions
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that are point masses at βn is tight, that is, βn is bounded. If βnm
→ β, then

exp(itβ) = ψ(t)/ϕ(αt) for |t | ≤ δ, so there can only be one subsequential limit. �

Theorem 3.7.4 justifies calling the distributions with characteristic functions
given by (3.7.11) or (3.7.10) stable laws. To complete the story, we should mention
that these are the only stable laws. Again, see Chapter 9 of Breiman (1968) or
Gnedenko and Kolmogorov (1954). The next example shows that it is sometimes
useful to know what all the possible limits are.

Example 3.7.5. The Holtsmark distribution. (α = 3/2, κ = 0). Suppose stars
are distributed in space according to a Poisson process with density t and their
masses are i.i.d. Let Xt be the x-component of the gravitational force at 0 when
the density is t . A change of density 1 → t corresponds to a change of length
1 → t−1/3, and gravitational attraction follows an inverse square law, so

Xt
d= t3/2X1 (3.7.13)

If we imagine thinning the Poisson process by rolling an n-sided die, then Exer-
cise 3.6.12 implies

Xt
d= X1

t/n + · · · + Xn
t/n

where the random variables on the right-hand side are independent and have the
same distribution as Xt/n. It follows from Theorem 3.7.4 that Xt has a stable law.
The scaling property (3.7.13) implies α = 3/2. Since Xt =d −Xt , κ = 0.

Exercises

3.7.4. Let Y be a stable law with κ = 1. Use the limit theorem Theorem 3.7.2 to
conclude that Y ≥ 0 if α < 1.

3.7.5. Let X be symmetric stable with index α. (i) Use (3.3.1) to show that E|X|p <

∞ for p < α. (ii) Use the second proof of (3.7.3) to show that P (|X| ≥ x) ≥ Cx−α,
so E|X|α = ∞.

3.7.6. Let Y, Y1, Y2, . . . be independent and have a stable law with index α. Theorem
3.7.4 implies there are constants αk and βk so that Y1 + · · · + Yk and αkY + βk have
the same distribution. Use the proof of Theorem 3.7.4, Theorem 3.7.2, and Exercise
3.7.2 to conclude that (i) αk = k1/α, (ii) if α < 1 then βk = 0.

3.7.7. Let Y be a stable law with index α < 1 and κ = 1. Exercise 3.7.4 implies that
Y ≥ 0, so we can define its Laplace transform ψ(λ) = E exp(−λY ). The previous
exercise implies that for any integer n ≥ 1 we have ψ(λ)n = ψ(n1/αλ). Use this to
conclude E exp(−λY ) = exp(−cλα).
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3.7.8. (i) Show that if X is symmetric stable with index α and Y ≥ 0 is an inde-
pendent stable with index β < 1, then XY 1/α is symmetric stable with index αβ.
(ii) Let W1 and W2 be independent standard normals. Check that 1/W 2

2 has the
density given in (3.7.12) and use this to conclude that W1/W2 has a Cauchy distri-
bution.

3.8 Infinitely Divisible Distributions*

In the last section, we identified the distributions that can appear as the limit of
normalized sums of i.i.d.r.v.’s. In this section, we will describe those that are limits
of sums

(∗) Sn = Xn,1 + · · · + Xn,n

where the Xn,m are i.i.d. Note the verb “describe.” We will prove almost nothing
in this section, just state some of the most important facts to bring the reader up to
cocktail-party literacy.

A sufficient condition for Z to be a limit of sums of the form (∗) is that Z has
an infinitely divisible distribution, that is, for each n there is an i.i.d. sequence
Yn,1, . . . , Yn,n so that

Z
d= Yn,1 + · · · + Yn,n

Our first result shows that this condition is also necessary.

Theorem 3.8.1. Z is a limit of sums of type (∗) if and only if Z has an infinitely
divisible distribution.

Proof. As remarked above, we only have to prove necessity. Write

S2n = (X2n,1 + · · · + X2n,n) + (X2n,n+1 + · · · + X2n,2n) ≡ Yn + Y ′
n

The random variables Yn and Y ′
n are independent and have the same distribution. If

Sn ⇒ Z, then the distributions of Yn are a tight sequence since

P (Yn > y)2 = P (Yn > y)P (Y ′
n > y) ≤ P (S2n > 2y)

and similarly P (Yn < −y)2 ≤ P (S2n < −2y). If we take a subsequence nk so that
Ynk

⇒ Y (and hence Y ′
nk

⇒ Y ′), then Z =d Y + Y ′. A similar argument shows that
Z can be divided into n > 2 pieces, and the proof is complete. �

With Theorem 3.8.1 established, we turn now to examples. In the first three
cases, the distribution is infinitely divisible because it is a limit of sums of the form
(∗). The number gives the relevant limit theorem.

Example 3.8.1. Normal distribution. Theorem 3.4.1
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Example 3.8.2. Stable laws. Theorem 3.7.2

Example 3.8.3. Poisson distribution. Theorem 3.6.1

Example 3.8.4. Compound Poisson distribution. Let ξ1, ξ2, . . . be i.i.d. and N (λ)
be an independent Poisson r.v. with mean λ. Then Z = ξ1 + · · · + ξN (λ) has an
infinitely divisible distribution. (Let Xn,j =d ξ1 + · · · + ξN (λ/n).) For developments
below, we would like to observe that if ϕ(t) = E exp(itξi) then

E exp(itZ) =
∞∑

n=0

e−λ λn

n!
ϕ(t)n = exp(−λ(1 − ϕ(t))) (3.8.1)

Exercise 3.8.1. Show that the gamma distribution is infinitely divisible.

The next two exercises give examples of distributions that are not infinitely
divisible.

Exercise 3.8.2. Show that the distribution of a bounded r.v. Z is infinitely divisible
if and only if Z is constant. Hint: Show var (Z) = 0.

Exercise 3.8.3. Show that if µ is infinitely divisible, its ch.f. ϕ never vanishes.
Hint: Look at ψ = |ϕ|2, which is also infinitely divisible; to avoid taking nth roots
of complex numbers, then use Exercise 3.3.20.

Example 2.8.4 is a son of 2.8.3 but a father of 2.8.1 and 2.8.2. To explain
this remark, we observe that if ξ = ε and −ε with probability 1/2 each then
ϕ(t) = (eiεt + e−iεt )/2 = cos(εt). So if λ = ε−2, then (3.8.1) implies

E exp(itZ) = exp(−ε−2(1 − cos(εt))) → exp(−t2/2)

as ε → 0. In words, the normal distribution is a limit of compound Poisson distri-
butions. To see that stable laws are also a special case (using the notation from the
proof of Theorem 3.7.2), let

In(ε) = {m ≤ n : |Xm| > εan}
Ŝn(ε) =

∑
m∈In(ε)

Xm

S̄n(ε) = Sn − Ŝn(ε)

If εn → 0 then S̄n(εn)/an ⇒ 0. If ε is fixed then as n → ∞ we have |In(ε)| ⇒
Poisson(ε−α) and Ŝn(ε)/an ⇒ a compound Poisson distribution:

E exp(it Ŝn(ε)/an) → exp(−ε−α{1 − ψε(t)})
Combining the last two observations and using the proof of Theorem 3.7.2
shows that stable laws are limits of compound Poisson distributions. The
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formula (3.7.10) for the limiting ch.f.

exp

(
itc +

∫ ∞

0

(
eitx − 1 − itx

1 + x2

)
θαx−(α+1) dx

+
∫ 0

−∞

(
eitx − 1 − itx

1 + x2

)
(1 − θ )α|x|−(α+1) dx

)
(3.8.2)

helps explain:

Theorem 3.8.2. Lévy-Khinchin theorem. Z has an infinitely divisible distribution
if and only if its characteristic function has

log ϕ(t) = ict − σ 2t2

2
+
∫ (

eitx − 1 − itx

1 + x2

)
µ(dx)

where µ is a measure with µ({0}) = 0 and
∫

x2

1+x2 µ(dx) < ∞.

For a proof, see Breiman (1968), Section 9.5., or Feller II (1971), Section
XVII.2. µ is called the Lévy measure of the distribution. Comparing with (3.8.2)
and recalling the proof of Theorem 3.7.2 suggests the following interpretation of
µ: If σ 2 = 0 then Z can be built up by making a Poisson process on R with mean
measure µ and then summing up the points. As in the case of stable laws, we have
to sum the points in [−ε, ε]c, subtract an appropriate constant, and let ε → 0.

Exercise 3.8.4. What is the Lévy measure for the limit ℵ in part (iii) of Exercise
3.4.13?

The theory of infinitely divisible distributions is simpler in the case of finite
variance. In this case, we have:

Theorem 3.8.3. Kolmogorov’s theorem. Z has an infinitely divisible distribution
with mean 0 and finite variance if and only if its ch.f. has

log ϕ(t) =
∫

(eitx − 1 − itx)x−2 ν(dx)

Here the integrand is −t2/2 at 0, ν is called the canonical measure, and var (Z) =
ν(R).

To explain the formula, note that if Zλ has a Poisson distribution with mean λ,

E exp(itx(Zλ − λ)) = exp(λ(eitx − 1 − itx))

so the measure for Z = x(Zλ − λ) has ν({x}) = λx2.
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3.9 Limit Theorems in Rd

Let X = (X1, . . . , Xd) be a random vector. We define its distribution function by
F (x) = P (X ≤ x). Here x ∈ Rd , and X ≤ x means Xi ≤ xi for i = 1, . . . , d. As
in one dimension, F has three obvious properties:

(i) It is nondecreasing, that is, if x ≤ y then F (x) ≤ F (y).
(ii) limx→∞ F (x) = 1, limxi→−∞ F (x) = 0.

(iii) F is right continuous, that is, limy↓x F (y) = F (x).

Here x → ∞ means each coordinate xi goes to ∞, xi → −∞ means we let xi →
−∞ keeping the other coordinates fixed, and y ↓ x means each coordinate yi ↓ xi .

As discussed in Section 1.1, an additional condition is needed to guarantee that
F is the distribution function of a probability measure. Let

A = (a1, b1] × · · · × (ad, bd]

V = {a1, b1} × · · · × {ad, bd}
V = the vertices of the rectangle A. If v ∈ V , let

sgn (v) = (−1)# of a’s in v

The inclusion-exclusion formula implies

P (X ∈ A) =
∑
v∈V

sgn (v)F (v)

So if we use 
AF to denote the right-hand side, we need

(iv) 
AF ≥ 0 for all rectangles A.

The last condition guarantees that the measure assigned to each rectangle is ≥ 0. At
this point we have defined the measure on the semialgebra Sd defined in Example
1.1.3. Theorem 1.1.6 now implies that there is a unique probability measure with
distribution F.

Exercise 3.9.1. If F is the distribution of (X1, . . . , Xd), then Fi(x) = P (Xi ≤ x)
are its marginal distributions. How can they be obtained from F ?

Exercise 3.9.2. Let F1, . . . , Fd be distributions on R. Show that for any α ∈ [−1, 1]

F (x1, . . . , xd) =
{

1 + α

d∏
i=1

(1 − Fi(xi))

}
d∏

j=1

Fj (xj )

is a d.f. with the given marginals. The case α = 0 corresponds to independent r.v.’s.

Exercise 3.9.3. A distribution F is said to have a density f if

F (x1, . . . , xk) =
∫ x1

−∞
. . .

∫ xk

−∞
f (y) dyk . . . dy1

Show that if f is continuous, ∂kF/∂x1 . . . ∂xk = f.
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If Fn and F are distribution functions on Rd , we say that Fn converges weakly
to F , and write Fn ⇒ F , if Fn(x) → F (x) at all continuity points of F . Our first
task is to show that there are enough continuity points for this to be a sensible
definition. For a concrete example, consider

F (x, y) =

⎧⎪⎨
⎪⎩

1 if x ≥ 0, y ≥ 1

y if x ≥ 0, 0 ≤ y < 1

0 otherwise

F is the distribution function of (0, Y ) where Y is uniform on (0,1). Notice that
this distribution has no atoms, but F is discontinuous at (0, y) when y > 0.

Keeping the last example in mind, observe that if xn < x, that is, xn,i < xi for
all coordinates i, and xn ↑ x as n → ∞ then

F (x) − F (xn) = P (X ≤ x) − P (X ≤ xn) ↓ P (X ≤ x) − P (X < x)

In d = 2, the last expression is the probability X lies in

{(a, x2) : a ≤ x1} ∪ {(x1, b) : b ≤ x2}
Let Hi

c = {x : xi = c} be the hyperplane where the ith coordinate is c. For each i,
the Hi

c are disjoint so Di = {c : P (X ∈ Hi
c ) > 0} is at most countable. It is easy

to see that if x has xi /∈ Di for all i then F is continuous at x. This gives us more
than enough points to reconstruct F.

As in Section 3.2, it will be useful to have several equivalent definitions of weak
convergence. In Chapter 8, we will need to know that this is valid for an arbitrary
metric space (S, ρ), so we will prove the result in that generality and insert another
equivalence that will be useful there. f is said to be Lipschitz continuous if there
is a constant C so that |f (x) − f (y)| ≤ Cρ(x, y).

Theorem 3.9.1. The following statements are equivalent to Xn ⇒ X∞.

(i) Ef (Xn) → Ef (X∞) for all bounded continuous f.

(ii) Ef (Xn) → Ef (X∞) for all bounded Lipschitz continuous f.

(iii) For all closed sets K , lim supn→∞ P (Xn ∈ K) ≤ P (X∞ ∈ K).
(iv) For all open sets G, lim infn→∞ P (Xn ∈ G) ≥ P (X∞ ∈ G).
(v) For all sets A with P (X∞ ∈ ∂A) = 0, limn→∞ P (Xn ∈ A) = P (X∞ ∈ A).

(vi) Let Df = the set of discontinuities of f . For all bounded functions f with
P (X∞ ∈ Df ) = 0, we have Ef (Xn) → Ef (X∞).

Proof. We will begin by showing that (i)–(vi) are equivalent.

(i) implies (ii): Trivial.

(ii) implies (iii): Let ρ(x, K) = inf{ρ(x, y) : y ∈ K}, ϕj (r) = (1 − jr)+, and
fj (x) = ϕj (ρ(x, K)). fj is Lipschitz continuous, has values in [0,1], and ↓ 1K (x)
as j ↑ ∞. So

lim sup
n→∞

P (Xn ∈ K) ≤ lim
n→∞ Efj (Xn) = Efj (X∞) ↓ P (X∞ ∈ K) as j ↑ ∞
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(iii) is equivalent to (iv): As in the proof of Theorem 3.2.5, this follows easily from
two facts: A is open if and only if Ac is closed; P (A) + P (Ac) = 1.

(iii) and (iv) imply (v): Let K = Ā, G = Ao, and reason as in the proof of Theorem
3.2.5.

(v) implies (vi): Suppose |f (x)| ≤ K and pick α0 < α1 < · · · < α� so that
P (f (X∞) = αi) = 0 for 0 ≤ i ≤ �, α0 < −K < K < α�, and αi − αi−1 < ε. This
is always possible since {α : P (f (X∞) = α) > 0} is a countable set. Let Ai = {x :
αi−1 < f (x) ≤ αi}. ∂Ai ⊂ {x : f (x) ∈ {αi−1, αi}} ∪ Df , so P (X∞ ∈ ∂Ai) = 0,
and it follows from (v) that

�∑
i=1

αiP (Xn ∈ Ai) →
�∑

i=1

αiP (X∞ ∈ Ai)

The definition of the αi implies

0 ≤
�∑

i=1

αiP (Xn ∈ Ai) − Ef (Xn) ≤ ε for 1 ≤ n ≤ ∞

Since ε is arbitrary, it follows that Ef (Xn) → Ef (X∞).

(vi) implies (i): Trivial.

It remains to show that the six conditions are equivalent to weak convergence (⇒).

(v) implies (⇒) : If F is continuous at x, then A = (−∞, x1] × · · · × (−∞, xd]
has µ(∂A) = 0, so Fn(x) = P (Xn ∈ A) → P (X∞ ∈ A) = F (x).

(⇒) implies (iv): Let Di = {c : P (X∞ ∈ Hi
c ) > 0} where Hi

c = {x : xi = c}. We
say a rectangle A = (a1, b1] × · · · × (ad, bd] is good if ai , bi /∈ Di for all i. (⇒)
implies that for all good rectangles P (Xn ∈ A) → P (X∞ ∈ A). This is also true
for B that are a finite disjoint union of good rectangles. Now any open set G is an
increasing limit of Bk’s that are a finite disjoint union of good rectangles, so

lim inf
n→∞ P (Xn ∈ G) ≥ lim inf

n→∞ P (Xn ∈ Bk) = P (X∞ ∈ Bk) ↑ P (X∞ ∈ G)

as k → ∞. The proof is complete. �

Remark. In Section 3.2, we proved that (i)–(v) are consequences of weak conver-
gence by constructing r.v.’s with the given distributions so that Xn → X∞ a.s. This
can be done in Rd (or any complete separable metric space), but the construction
is rather messy. See Billingsley (1979), pp. 337–340, for a proof in Rd .

Exercise 3.9.4. Let Xn be random vectors. Show that if Xn ⇒ X, then the co-
ordinates Xn,i ⇒ Xi.

A sequence of probability measures µn is said to be tight if for any ε > 0, there
is an M so that lim infn→∞ µn([−M,M]d) ≥ 1 − ε.
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Theorem 3.9.2. If µn is tight, then there is a weakly convergent subsequence.

Proof. Let Fn be the associated distribution functions, and let q1, q2, . . . be an
enumeration of Qd = the points in Rd with rational coordinates. By a diagonal
argument like the one in the proof of Theorem 3.2.6, we can pick a subsequence
so that Fn(k)(q) → G(q) for all q ∈ Qd . Let

F (x) = inf{G(q) : q ∈ Qd, q > x}
where q > x means qi > xi for all i. It is easy to see that F is right continuous.
To check that it is a distribution function, we observe that if A is a rectangle with
vertices in Qd , then 
AFn ≥ 0 for all n, so 
AG ≥ 0, and taking limits we see
that the last conclusion holds for F for all rectangles A. Tightness implies that F

has properties (i) and (ii) of a distribution F . We leave it to the reader to check
that Fn ⇒ F . The proof of Theorem 3.2.6 works if you read inequalities such as
r1 < r2 < x < s as the corresponding relations between vectors. �

The characteristic function of (X1, . . . , Xd) is ϕ(t) = E exp(it · X) where t ·
X = t1X1 + · · · + tdXd is the usual dot product of two vectors.

Theorem 3.9.3. Inversion formula. If A = [a1, b1] × · · · × [ad, bd] with
µ(∂A) = 0 then

µ(A) = lim
T →∞

(2π )−d

∫
[−T ,T ]d

d∏
j=1

ψj (tj )ϕ(t) dt

where ψj (s) = (exp(−isaj ) − exp(−isbj ))/is.

Proof. Fubini’s theorem implies

∫
[−T ,T ]d

∫ d∏
j=1

ψj (tj ) exp(itj xj ) µ(dx) dt

=
∫ d∏

j=1

∫ T

−T

ψj (tj ) exp(itj xj ) dtj µ(dx)

It follows from the proof of Theorem 3.3.4 that∫ T

−T

ψj (tj ) exp(itj xj ) dtj → π
(
1(aj ,bj )(x) + 1[aj ,bj ](x)

)
so the desired conclusion follows from the bounded convergence theorem. �

Exercise 3.9.5. Let ϕ be the ch.f. of a distribution F on R. What is the distribution
on Rd that corresponds to the ch.f. ψ(t1, . . . , td) = ϕ(t1 + · · · + td)?



176 Central Limit Theorems

Exercise 3.9.6. Show that random variables X1, . . . , Xk are independent if and
only if

ϕX1,...Xk
(t) =

k∏
j=1

ϕXj
(tj )

Theorem 3.9.4. Convergence theorem. Let Xn, 1 ≤ n ≤ ∞ be random vectors
with ch.f. ϕn. A necessary and sufficient condition for Xn ⇒ X∞ is that ϕn(t) →
ϕ∞(t).

Proof. exp(it · x) is bounded and continuous, so if Xn ⇒ X∞ then ϕn(t) → ϕ∞(t).
To prove the other direction it suffices, as in the proof of Theorem 3.3.6, to prove
that the sequence is tight. To do this, we observe that if we fix θ ∈ Rd , then for all
s ∈ R, ϕn(sθ) → ϕ∞(sθ), so it follows from Theorem 3.3.6 that the distributions
of θ · Xn are tight. Applying the last observation to the d unit vectors e1, . . . , ed

shows that the distributions of Xn are tight and completes the proof. �

Remark. As before, if ϕn(t) → ϕ∞(t) with ϕ∞(t) continuous at 0, then ϕ∞(t) is
the ch.f. of some X∞ and Xn ⇒ X∞.

Theorem 3.9.4 has an important corollary.

Theorem 3.9.5. Cramér-Wold device. A sufficient condition for Xn ⇒ X∞ is that
θ · Xn ⇒ θ · X∞ for all θ ∈ Rd .

Proof. The indicated condition implies E exp(iθ · Xn) → E exp(iθ · X∞) for all
θ ∈ Rd . �

Theorem 3.9.5 leads immediately to

Theorem 3.9.6. The central limit theorem in Rd . Let X1, X2, . . . be i.i.d. random
vectors with EXn = µ, and finite covariances

�ij = E((Xn,i − µi)(Xn,j − µj ))

If Sn = X1 + · · · + Xn then (Sn − nµ)/n1/2 ⇒ χ , where χ has a multivariate
normal distribution with mean 0 and covariance �, that is,

E exp(iθ · χ ) = exp

⎛
⎝−

∑
i

∑
j

θiθj�ij /2

⎞
⎠

Proof. By considering X′
n = Xn − µ, we can suppose without loss of generality

that µ = 0. Let θ ∈ Rd . θ · Xn is a random variable with mean 0 and variance

E
(∑

i

θiXn,i

)2
=
∑

i

∑
j

E
(
θiθjXn,iXn,j

) =
∑

i

∑
j

θiθj�ij
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so it follows from the one-dimensional central limit theorem and Theorem 3.9.5
that Sn/n1/2 ⇒ χ where

E exp(iθ · χ ) = exp

⎛
⎝−

∑
i

∑
j

θiθj�ij /2

⎞
⎠

which proves the desired result. �

To illustrate the use of Theorem 3.9.6, we consider two examples. In each
e1, . . . , ed are the d unit vectors.

Example 3.9.1. Simple random walk on Zd . Let X1, X2, . . . be i.i.d. with

P (Xn = +ei) = P (Xn = −ei) = 1/2d for i = 1, . . . , d

EXi
n = 0 and if i �= j then EXi

nX
j
n = 0 since both components cannot be nonzero

simultaneously. So the covariance matrix is �ij = (1/2d)I.

Example 3.9.2. Let X1, X2, . . . be i.i.d. with P (Xn = ei) = 1/6 for i = 1,

2, . . . , 6. In words, we are rolling a die and keeping track of the numbers that
come up. EXn,i = 1/6 and EXn,iXn,j = 0 for i �= j , so �ij = (1/6)(5/6) when
i = j and = −(1/6)2 when i �= j . In this case, the limiting distribution is con-
centrated on {x :

∑
i xi = 0}.

Our treatment of the central limit theorem would not be complete without some
discussion of the multivariate normal distribution. We begin by observing that
�ij = �ji , and if EXi = 0 and EXiXj = �i,j ,

∑
i

∑
j

θiθj�ij = E

(∑
i

θiXi

)2

≥ 0

so � is symmetric and nonnegative definite. A well-known result implies that there
is an orthogonal matrix U (i.e., one with UtU = I , the identity matrix) so that
� = UtV U , where V ≥ 0 is a diagonal matrix. Let W be the nonnegative diagonal
matrix with W 2 = V . If we let A = WU , then � = AtA. Let Y be a d-dimensional
vector whose components are independent and have normal distributions with mean
0 and variance 1. If we view vectors as 1 × d matrices and let χ = YA, then χ has
the desired normal distribution. To check this, observe that

θ · YA =
∑

i

θi

∑
j

YjAji

has a normal distribution with mean 0 and variance

∑
j

(∑
i

Ajiθi

)2

=
∑

j

(∑
i

θiA
t
ij

)(∑
k

Ajkθk

)
= θAtAθt = θ�θt

so E(exp(iθ · χ )) = exp(−(θ�θt )/2).
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If the covariance matrix has rank d, we say that the normal distribution is
nondegenerate. In this case, its density function is given by

(2π )−d/2(det �)−1/2 exp

⎛
⎝−

∑
i,j

yi�
−1
ij yj /2

⎞
⎠

The joint distribution in degenerate cases can be computed by using a linear
transformation to reduce to the nondegenerate case. For instance, in Example 3.9.2
we can look at the distribution of (X1, . . . , X5).

Exercise 3.9.7. Suppose (X1, . . . , Xd) has a multivariate normal distribution with
mean vector θ and covariance �. Show X1, . . . , Xd are independent if and only
if �ij = 0 for i �= j . In words, uncorrelated random variables with a joint normal
distribution are independent.

Exercise 3.9.8. Show that (X1, . . . , Xd) has a multivariate normal distribution
with mean vector θ and covariance � if and only if every linear combination
c1X1 + · · · + cdXd has a normal distribution with mean cθ t and variance c�ct .
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Random Walks

Let X1, X2, . . . be i.i.d. taking values in Rd and let Sn = X1 + · · · + Xn. Sn is
a random walk. In the previous chapter, we were primarily concerned with
the distribution of Sn. In this one, we will look at properties of the sequence
S1(ω), S2(ω), . . . For example, does the last sequence return to (or near) 0 infinitely
often? The first section introduces stopping times, a concept that will be very
important in this and the next two chapters. After the first section is completed, the
remaining three can be read in any order or skipped without much loss. The second
section is not starred since it contains some basic facts about random walks.

4.1 Stopping Times

Most of the results in this section are valid for i.i.d. X’s taking values in some nice
measurable space (S,S) and will be proved in that generality. For several reasons,
it is convenient to use the special probability space from the proof of Kolmogorov’s
extension theorem:

� = {(ω1, ω2, . . .) : ωi ∈ S}
F = S × S × . . .

P = µ × µ × . . . µ is the distribution of Xi

Xn(ω) = ωn

So, throughout this section, we will suppose (without loss of generality) that our
random variables are constructed on this special space.

Before taking up our main topic, we will prove a 0-1 law that, in the i.i.d. case,
generalizes Kolmogorov’s. To state the new 0-1 law, we need two definitions. A
finite permutation of N = {1, 2, . . .} is a map π from N onto N so that π (i) �= i

for only finitely many i. If π is a finite permutation of N and ω ∈ SN, we define
(πω)i = ωπ(i). In words, the coordinates of ω are rearranged according to π . Since
Xi(ω) = ωi , this is the same as rearranging the random variables. An event A is
permutable if π−1A ≡ {ω : πω ∈ A} is equal to A for any finite permutation π ,
or in other words, if its occurrence is not affected by rearranging finitely many of

179
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the random variables. The collection of permutable events is a σ -field. It is called
the exchangeable σ -field and denoted by E .

To see the reason for interest in permutable events, suppose S = R and let
Sn(ω) = X1(ω) + · · · + Xn(ω). Two examples of permutable events are

(i) {ω : Sn(ω) ∈ B i.o.}
(ii) {ω : lim supn→∞ Sn(ω)/cn ≥ 1}
In each case, the event is permutable because Sn(ω) = Sn(πω) for large n. The list
of examples can be enlarged considerably by observing:

(iii) All events in the tail σ -field T are permutable.

To see this, observe that if A ∈ σ (Xn+1, Xn+2, . . .), then the occurrence of A is
unaffected by a permutation of X1, . . . , Xn. (i) shows that the converse of (iii)
is false. The next result shows that for an i.i.d. sequence, there is no difference
between E and T . They are both trivial.

Theorem 4.1.1. Hewitt-Savage 0-1 law. If X1, X2, . . . are i.i.d. and A ∈ E then
P (A) ∈ {0, 1}.

Proof. Let A ∈ E . As in the proof of Kolmogorov’s 0-1 law, we will show that A

is independent of itself, that is, P (A) = P (A ∩ A) = P (A)P (A) so P (A) ∈ {0, 1}.
Let An ∈ σ (X1, . . . , Xn) so that

(a) P (An
A) → 0

Here A
B = (A − B) ∪ (B − A) is the symmetric difference. The existence of the
An’s is proved in part ii of Lemma A.2.1. An can be written as {ω : (ω1, . . . , ωn) ∈
Bn} with Bn ∈ Sn. Let

π (j ) =

⎧⎪⎨
⎪⎩

j + n if 1 ≤ j ≤ n

j − n if n + 1 ≤ j ≤ 2n

j if j ≥ 2n + 1

Observing that π2 is the identity (so we don’t have to worry about whether to write
π or π−1) and the coordinates are i.i.d. (so the permuted coordinates are) gives

(b) P (ω : ω ∈ An
A) = P (ω : πω ∈ An
A)

Now {ω : πω ∈ A} = {ω : ω ∈ A}, since A is permutable, and

{ω : πω ∈ An} = {ω : (ωn+1, . . . , ω2n) ∈ Bn}
If we use A′

n to denote the last event then we have

(c) {ω : πω ∈ An
A} = {ω : ω ∈ A′
n
A}

Combining (b) and (c) gives

(d) P (An
A) = P (A′
n
A)
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It is easy to see that

|P (B) − P (C)| ≤ |P (B
C)|
so (d) implies P (An), P (A′

n) → P (A). Now A − C ⊂ (A − B) ∪ (B − C) and,
with a similar inequality for C − A, implies A
C ⊂ (A
B) ∪ (B
C). The last
inequality, (d), and (a) imply

P (An
A′
n) ≤ P (An
A) + P (A
A′

n) → 0

The last result implies

0 ≤ P (An) − P (An ∩ A′
n)

≤ P (An ∪ A′
n) − P (An ∩ A′

n) = P (An
A′
n) → 0

so P (An ∩ A′
n) → P (A). But An and A′

n are independent, so

P (An ∩ A′
n) = P (An)P (A′

n) → P (A)2

This shows P (A) = P (A)2 and proves Theorem 4.1.1. �

A typical application of Theorem 4.1.1 is

Theorem 4.1.2. For a random walk on R, there are only four possibilities, one of
which has probability 1.

(i) Sn = 0 for all n.

(ii) Sn → ∞.

(iii) Sn → −∞.

(iv) −∞ = lim inf Sn < lim sup Sn = ∞.

Proof. Theorem 4.1.1 implies lim sup Sn is a constant c ∈ [−∞,∞]. Let S ′
n =

Sn+1 − X1. Since S ′
n has the same distribution as Sn, it follows that c = c − X1.

If c is finite, subtracting c from both sides we conclude X1 ≡ 0 and (i) occurs.
Turning the last statement around, we see that if X1 �≡ 0, then c = −∞ or ∞.
The same analysis applies to the liminf. Discarding the impossible combination
lim sup Sn = −∞ and lim inf Sn = +∞, we have proved the result. �

Exercise 4.1.1. Symmetric random walk. Let X1, X2, . . .∈ R be i.i.d. with a
distribution that is symmetric about 0 and nondegenerate (i.e., P (Xi = 0) < 1).
Show that we are in case (iv) of Theorem 4.1.2.

Exercise 4.1.2. Let X1, X2, . . . be i.i.d. with EXi = 0 and EX2
i = σ 2 ∈ (0, ∞).

Use the central limit theorem to conclude that we are in case (iv) of Theorem 4.1.2.
Later in Exercise 4.1.11 you will show that EXi = 0 and P (Xi = 0) < 1 is
sufficient.
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The special case in which P (Xi = 1) = P (Xi = −1) = 1/2 is called simple ran-
dom walk. Since a simple random walk cannot skip over any integers, it follows
from either exercise above that with probability 1 it visits every integer infinitely
many times.

Let Fn = σ (X1, . . . , Xn) = the information known at time n. A random variable
N taking values in {1, 2, . . .} ∪ {∞} is said to be a stopping time or an optional
random variable if for every n < ∞, {N = n} ∈ Fn. If we think of Sn as giving
the (logarithm of the) price of a stock at time n, and N as the time we sell it, then
the last definition says that the decision to sell at time n must be based on the
information known at that time. The last interpretation gives one explanation for
the second name. N is a time at which we can exercise an option to buy a stock.
Chung prefers the second name because N is “usually rather a momentary pause
after which the process proceeds again: time marches on!”

The canonical example of a stopping time is N = inf{n : Sn ∈ A}, the hitting
time of A. To check that this is a stopping time, we observe that

{N = n} = {S1 ∈ Ac, . . . , Sn−1 ∈ Ac, Sn ∈ A} ∈ Fn

Two concrete examples of hitting times that have appeared above are

Example 4.1.1. N = inf{k : |Sk| ≥ x} from the proof of Theorem 2.5.2.

Example 4.1.2. If the Xi ≥ 0 and Nt = sup{n : Sn ≤ t} is the random variable that
first appeared in Example 2.4.1, then Nt + 1 = inf{n : Sn > t} is a stopping time.

The next result allows us to construct new examples from the old ones.

Exercise 4.1.3. If S and T are stopping times, then S ∧ T and S ∨ T are stopping
times. Since constant times are stopping times, it follows that S ∧ n and S ∨ n are
stopping times.

Exercise 4.1.4. Suppose S and T are stopping times. Is S + T a stopping time?
Give a proof or a counterexample.

Associated with each stopping time N is a σ -field FN = the information known
at time N . Formally, FN is the collection of sets A that have A ∩ {N = n} ∈ Fn

for all n < ∞, that is, when N = n, A must be measurable with respect to the
information known at time n. Trivial but important examples of sets in FN are
{N ≤ n}, that is, N is measurable with respect to FN .

Exercise 4.1.5. Show that if Yn ∈ Fn and N is a stopping time, YN ∈ FN . As a
corollary of this result, we see that if f : S → R is measurable, Tn =∑m≤n f (Xm),
and Mn = maxm≤n Tm, then TN and MN ∈ FN . An important special case is S = R,
f (x) = x.
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Exercise 4.1.6. Show that if M ≤ N are stopping times, then FM ⊂ FN.

Exercise 4.1.7. Show that if L ≤ M and A ∈ FL, then

N =
{

L on A

M on Ac
is a stopping time

Our first result about FN is

Theorem 4.1.3. Let X1, X2, . . . be i.i.d.,Fn = σ (X1, . . . , Xn) and N be a stopping
time with P (N < ∞) > 0. Conditional on {N < ∞}, {XN+n, n ≥ 1} is indepen-
dent of FN and has the same distribution as the original sequence.

Proof. By Theorem A.1.5, it is enough to show that if A ∈ FN and Bj ∈ S for
1 ≤ j ≤ k, then

P (A,N < ∞, XN+j ∈ Bj, 1 ≤ j ≤ k) = P (A ∩ {N < ∞})
k∏

j=1

µ(Bj )

where µ(B) = P (Xi ∈ B). The method (“divide and conquer”) is one that we will
see many times below. We break things down according to the value of N in order
to replace N by n and reduce to the case of a fixed time.

P (A,N = n,XN+j ∈ Bj, 1 ≤ j ≤ k) = P (A,N = n,Xn+j ∈ Bj, 1 ≤ j ≤ k)

= P (A ∩ {N = n})
k∏

j=1

µ(Bj )

since A ∩ {N = n} ∈ Fn and that σ -field is independent of Xn+1, . . . , Xn+k. Sum-
ming over n now gives the desired result. �

To delve further into properties of stopping times, we recall that we have sup-
posed � = SN and define the shift θ : � → � by

(θω)(n) = ω(n + 1) n = 1, 2, . . .

In words, we drop the first coordinate and shift the others one place to the left.
The iterates of θ are defined by composition. Let θ1 = θ , and for k ≥ 2, let θk =
θ ◦ θk−1. Clearly, (θkω)(n) = ω(n + k), n = 1, 2, . . . To extend the last definition
to stopping times, we let

θNω =
{

θnω on {N = n}

 on {N = ∞}

Here 
 is an extra point that we add to �. According to the only joke in Blumenthal
and Getoor (1968), 
 is a “cemetery or heaven depending upon your point of view.”
Seriously, 
 is a convenience in making definitions like the next one.
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Example 4.1.3. Returns to 0. For a concrete example of the use of θ , suppose
S = Rd and let

τ (ω) = inf{n : ω1 + · · · + ωn = 0}
where inf ∅ = ∞, and we set τ (
) = ∞. If we let τ2(ω) = τ (ω) + τ (θτω), then
on {τ < ∞},

τ (θτω) = inf{n : (θτω)1 + · · · + (θτω)n = 0}
= inf{n : ωτ+1 + · · · + ωτ+n = 0}

τ (ω) + τ (θτω) = inf{m > τ : ω1 + · · · + ωm = 0}
So τ2 is the time of the second visit to 0 (and thanks to the conventions θ∞ω = 


and τ (
) = ∞, this is true for all ω). The last computation generalizes easily to
show that if we let

τn(ω) = τn−1(ω) + τ (θτn−1ω)

then τn is the time of the nth visit to 0.

If we have any stopping time T , we can define its iterates by T0 = 0 and

Tn(ω) = Tn−1(ω) + T (θTn−1ω) for n ≥ 1

If we assume P = µ × µ × . . . then

P (Tn < ∞) = P (T < ∞)n (4.1.1)

Proof. We will prove this by induction. The result is trivial when n = 1. Suppose
now that it is valid for n − 1. Applying Theorem 4.1.3 to N = Tn−1, we see
that T (θTn−1 ) < ∞ is independent of Tn−1 < ∞ and has the same probability as
T < ∞, so

P (Tn < ∞) = P (Tn−1 < ∞, T (θTn−1ω) < ∞)

= P (Tn−1 < ∞)P (T < ∞) = P (T < ∞)n

by the induction hypothesis. �

Letting tn = T (θTn−1 ), we can extend Theorem 4.1.3 to

Theorem 4.1.4. Suppose P (T < ∞) = 1. Then the “random vectors”

Vn = (tn, XTn−1+1, . . . , XTn
)

are independent and identically distributed.

Proof. It is clear from Theorem 4.1.3 that Vn and V1 have the same distribution.
The independence follows from Theorem 4.1.3 and induction since V1, . . . , Vn−1 ∈
F(Tn−1). �
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Example 4.1.4. Ladder variables. Let α(ω) = inf{n : ω1 + · · · + ωn > 0} where
inf ∅ = ∞, and set α(
) = ∞. Let α0 = 0 and let

αk(ω) = αk−1(ω) + α(θαk−1ω)

for k ≥ 1. At time αk, the random walk is at a record high value.

The next three exercises investigate these times.

Exercise 4.1.8. (i) If P (α < ∞) < 1 then P (sup Sn < ∞) = 1.

(ii) If P (α < ∞) = 1, then P (sup Sn = ∞) = 1.

Exercise 4.1.9. Let β = inf{n : Sn < 0}. Prove that the four possibilities in The-
orem 4.1.2 correspond to the four combinations of P (α < ∞) < 1 or = 1, and
P (β < ∞) < 1 or = 1.

Exercise 4.1.10. Let S0 = 0, β̄ = inf{n ≥ 1 : Sn ≤ 0} and

An
m = {0 ≥ Sm, S1 ≥ Sm, . . . , Sm−1 ≥ Sm, Sm < Sm+1, . . . , Sm < Sn}

(i) Show 1 =∑n
m=0 P (An

m) =∑n
m=0 P (α > m)P (β̄ > n − m).

(ii) Let n → ∞ and conclude Eα = 1/P (β̄ = ∞).

Exercise 4.1.11. (i) Combine the last exercise with the proof of (ii) in Exercise
4.1.8 to conclude that if EXi = 0, then P (β̄ = ∞) = 0. (ii) Show that if we assume
in addition that P (Xi = 0) < 1, then P (β = ∞) = 0, and Exercise 4.1.9 implies
we are in case (iv) of Theorem 4.1.2.

A famous result about stopping times for random walks is:

Theorem 4.1.5. Wald’s equation. Let X1, X2, . . . be i.i.d. with E|Xi | < ∞. If N

is a stopping time with EN < ∞, then ESN = EX1EN.

Proof. First suppose the Xi ≥ 0.

ESN =
∫

SNdP =
∞∑

n=1

∫
Sn1{N=n}dP =

∞∑
n=1

n∑
m=1

∫
Xm1{N=n}dP

Since the Xi ≥ 0, we can interchange the order of summation (i.e., use Fubini’s
theorem) to conclude that the last expression

=
∞∑

m=1

∞∑
n=m

∫
Xm1{N=n}dP =

∞∑
m=1

∫
Xm1{N≥m}dP
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Now {N ≥ m} = {N ≤ m − 1}c ∈ Fm−1 and is independent of Xm, so the last
expression

=
∞∑

m=1

EXmP (N ≥ m) = EX1EN

To prove the result in general, we run the last argument backwards. If we have
EN < ∞ then

∞ >

∞∑
m=1

E|Xm|P (N ≥ m) =
∞∑

m=1

∞∑
n=m

∫
|Xm|1{N=n} dP

The last formula shows that the double sum converges absolutely in one order, so
Fubini’s theorem gives

∞∑
m=1

∞∑
n=m

∫
Xm1{N=n}dP =

∞∑
n=1

n∑
m=1

∫
Xm1{N=n}dP

Using the independence of {N ≥ m} ∈ Fm−1 and Xm, and rewriting the last identity,
it follows that

∞∑
m=1

EXmP (N ≥ m) = ESN

Since the left-hand side is EN EX1, the proof is complete. �

Exercise 4.1.12. Let X1, X2, . . . be i.i.d. uniform on (0,1), let Sn = X1 + · · · +
Xn, and let T = inf{n : Sn > 1}. Show that P (T > n) = 1/n!, so ET = e and
EST = e/2.

Example 4.1.5. Simple random walk. Let X1, X2, . . . be i.i.d. with P (Xi = 1) =
1/2 and P (Xi = −1) = 1/2. Let a < 0 < b be integers and let N = inf{n : Sn �∈
(a, b)}. To apply Theorem 4.1.5, we have to check that EN < ∞. To do this, we
observe that if x ∈ (a, b), then

P (x + Sb−a /∈ (a, b)) ≥ 2−(b−a)

since b − a steps of size +1 in a row will take us out of the interval. Iterating the
last inequality, it follows that

P (N > n(b − a)) ≤ (1 − 2−(b−a)
)n

so EN < ∞. Applying Theorem 4.1.5 now gives ESN = 0 or

bP (SN = b) + aP (SN = a) = 0

Since P (SN = b) + P (SN = a) = 1, it follows that (b − a)P (SN = b) = −a, so

P (SN = b) = −a

b − a
P (SN = a) = b

b − a
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Letting Ta = inf{n : Sn = a}, we can write the last conclusion as

P (Ta < Tb) = b

b − a
for a < 0 < b (4.1.2)

Setting b = M and letting M → ∞ gives

P (Ta < ∞) ≥ P (Ta < TM ) → 1

for all a < 0. From symmetry (and the fact that T0 ≡ 0), it follows that

P (Tx < ∞) = 1 for all x ∈ Z (4.1.3)

Our final fact about Tx is that ETx = ∞ for x �= 0. To prove this, note that if
ETx < ∞ then Theorem 4.1.5 would imply

x = ESTx
= EX1ETx = 0

In Section 4.3, we will compute the distribution of T1 and show that

P (T1 > t) ∼ C t−1/2

Exercise 4.1.13. Asymmetric simple random walk. Let X1, X2, . . . be i.i.d. with
P (X1 = 1) = p > 1/2 and P (X1 = −1) = 1 − p, and let Sn = X1 + · · · + Xn.

Let α = inf{m : Sm > 0} and β = inf{n : Sn < 0}.
(i) Use Exercise 4.1.9 to conclude that P (α < ∞) = 1 and P (β < ∞) < 1.

(ii) If Y = inf Sn, then P (Y ≤ −k) = P (β < ∞)k.
(iii) Apply Wald’s equation to α ∧ n and let n → ∞ to get Eα = 1/EX1 =

1/(2p − 1). Comparing with Exercise 4.1.10 shows P (β̄ = ∞) = 2p − 1.

Exercise 4.1.14. An optimal stopping problem. Let Xn, n ≥ 1 be i.i.d. with
EX+

1 < ∞ and let

Yn = max
1≤m≤n

Xm − cn

That is, we are looking for a large value of X, but we have to pay c > 0 for each
observation. (i) Let T = inf{n : Xn > a}, p = P (Xn > a), and compute EYT .
(ii) Let α (possibly < 0) be the unique solution of E(X1 − α)+ = c. Show that
EYT = α in this case and use the inequality

Yn ≤ α +
n∑

m=1

((Xm − α)+ − c)

for n ≥ 1 to conclude that if τ ≥ 1 is a stopping time with Eτ < ∞, then EYτ ≤ α.
The analysis above assumes that you have to play at least once. If the optimal α < 0,
then you shouldn’t play at all.

Theorem 4.1.6. Wald’s second equation. Let X1, X2, . . . be i.i.d. with EXn = 0
and EX2

n = σ 2 < ∞. If T is a stopping time with ET < ∞, then ES2
T = σ 2ET .
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Proof. Using the definitions and then taking expected value

S2
T ∧n = S2

T ∧(n−1) + (2XnSn−1 + X2
n)1(T ≥n)

ES2
T ∧n = ES2

T ∧(n−1) + σ 2P (T ≥ n)

since EXn = 0 and Xn is independent of Sn−1 and 1(T ≥n) ∈ Fn−1. [The expectation
of Sn−1Xn exists since both random variables are in L2.] From the last equality and
induction we get

ES2
T ∧n = σ 2

n∑
m=1

P (T ≥ m)

E(ST ∧n − ST ∧m)2 = σ 2
n∑

k=m+1

P (T ≥ n)

The second equality follows from the first applied to Xm+1, Xm+2, . . .. The second
equality implies that ST ∧n is a Cauchy sequence in L2, so letting n → ∞ in the
first, it follows that ES2

T = σ 2ET . �

Example 4.1.6. Simple random walk, II. Continuing Example 4.1.5 we investi-
gate N = inf{Sn �∈ (a, b)}. We have shown that EN < ∞. Since σ 2 = 1, it follows
from Theorem 4.1.6 and (4.1.2) that

EN = ES2
N = a2 b

b − a
+ b2 −a

b − a
= −ab

If b = L and a = −L, EN = L2.

An amusing consequence of Theorem 4.1.6 is

Theorem 4.1.7. Let X1, X2, . . . be i.i.d. with EXn = 0 and EX2
n = 1, and let

Tc = inf{n ≥ 1 : |Sn| > cn1/2}.

ETc

{
< ∞ for c < 1

= ∞ for c ≥ 1

Proof. One half of this is easy. If ETc < ∞ then, the previous exercise implies
ETc = E(S2

Tc
) > c2ETc, a contradiction if c ≥ 1. To prove the other direction,

we let τ = Tc ∧ n and observe S2
τ−1 ≤ c2(τ − 1), so using the Cauchy-Schwarz

inequality

Eτ = ES2
τ = ES2

τ−1 + 2E(Sτ−1Xτ ) + EX2
τ ≤ c2Eτ + 2c(Eτ EX2

τ )1/2 + EX2
τ

To complete the proof now, we will show

Lemma 4.1.8. If T is a stopping time with ET = ∞, then

EX2
T ∧n/E(T ∧ n) → 0
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Theorem 4.1.7 follows, for if ε < 1 − c2 and n is large, we will have Eτ ≤ (c2 + ε)
Eτ , a contradiction.

Proof. We begin by writing

E(X2
T ∧n) = E(X2

T ∧n; X2
T ∧n ≤ ε(T ∧ n)) +

n∑
j=1

E(X2
j ; T ∧ n = j,X2

j > εj )

The first term is ≤ εE(T ∧ n). To bound the second, choose N ≥ 1 so that for
n ≥ N

n∑
j=1

E(X2
j ; X2

j > εj ) < nε

This is possible since the dominated convergence theorem implies E(X2
j ; X2

j >

εj ) → 0 as j → ∞. For the first part of the sum, we use a trivial bound

N∑
j=1

E(X2
j ; T ∧ n = j,X2

j > εj ) ≤ NEX2
1

To bound the remainder of the sum, we note (i) X2
j ≥ 0; (ii) {T ∧ n ≥ j} is ∈ Fj−1

and hence is independent of X2
j 1(X2

j >εj ), (iii) use some trivial arithmetic, (iv) use
Fubini’s theorem and enlarge the range of j , (v) use the choice of N and a trivial
inequality

n∑
j=N

E(X2
j ; T ∧ n = j,X2

j >εj ) ≤
n∑

j=N

E(X2
j ; T ∧ n ≥ j,X2

j > εj )

=
n∑

j=N

P (T ∧ n ≥ j )E(X2
j ; X2

j >εj ) =
n∑

j=N

∞∑
k=j

P (T ∧ n = k)E(X2
j ; X2

j >εj )

≤
∞∑

k=N

k∑
j=1

P (T ∧ n = k)E(X2
j ; X2

j >εj ) ≤
∞∑

k=N

εkP (T ∧ n = k) ≤ εE(T ∧ n)

Combining our estimates shows

EX2
T ∧n ≤ 2εE(T ∧ n) + NEX2

1

Letting n → ∞ and noting E(T ∧ n) → ∞, we have

lim sup
n→∞

EX2
T ∧n/E(T ∧ n) ≤ 2ε

where ε is arbitrary. �

4.2 Recurrence

Throughout this section, Sn will be a random walk, that is, Sn = X1 + · · · + Xn

where X1, X2, . . . are i.i.d., and we will investigate the question mentioned at the
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beginning of the chapter. Does the sequence S1(ω), S2(ω), . . . return to (or near) 0
infinitely often? The answer to the last question is either Yes or No, and the random
walk is called recurrent or transient accordingly. We begin with some definitions
that formulate the question precisely and a result that establishes a dichotomy
between the two cases.

The number x ∈ Rd is said to be a recurrent value for the random walk Sn if for
every ε > 0, P (‖Sn − x‖ < ε i.o.) = 1. Here ‖x‖ = sup |xi |. The reader will see
the reason for this choice of norm in the proof of Lemma 4.2.5. The Hewitt-Savage
0-1 law, Theorem 4.1.1, implies that if the last probability is < 1, it is 0. Our first
result shows that to know the set of recurrent values, it is enough to check x = 0.
A number x is said to be a possible value of the random walk if for any ε > 0,
there is an n so that P (‖Sn − x‖ < ε) > 0.

Theorem 4.2.1. The set V of recurrent values is either ∅ or a closed subgroup of
Rd . In the second case, V = U , the set of possible values.

Proof. Suppose V �= ∅. It is clear that Vc is open, so V is closed. To prove that V
is a group, we will first show that

(∗) if x ∈ U and y ∈ V then y − x ∈ V .

This statement has been formulated so that once it is established, the result follows
easily. Let

pδ,m(z) = P (‖Sn − z‖ ≥ δ for all n ≥ m)

If y − x /∈ V , there is an ε > 0 and m ≥ 1 so that p2ε,m(y − x) > 0. Since x ∈ U ,
there is a k so that P (‖Sk − x‖ < ε) > 0. Since

P (‖Sn − Sk − (y − x)‖ ≥ 2ε for all n ≥ k + m) = p2ε,m(y − x)

and is independent of {‖Sk − x‖ < ε}, it follows that

pε,m+k(y) ≥ P (‖Sk − x‖ < ε)p2ε,m(y − x) > 0

contradicting y ∈ V , so y − x ∈ V .
To conclude that V is a group when V �= ∅, let q, r ∈ V , and observe: (i) taking

x = y = r in (∗) shows 0 ∈ V , (ii) taking x = r , y = 0 shows −r ∈ V , and (iii)
taking x = −r , y = q shows q + r ∈ V . To prove that V = U now, observe that if
u ∈ U taking x = u, y = 0 shows −u ∈ V , and since V is a group, it follows that
u ∈ V . �

If V = ∅, the random walk is said to be transient; otherwise it is called recur-
rent. Before plunging into the technicalities needed to treat a general random walk,
we begin by analyzing the special case Polya considered in 1921. Legend has it
that Polya thought of this problem while wandering around in a park near Zürich
when he noticed that he kept encountering the same young couple. History does
not record what the young couple thought.
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Example 4.2.1. Simple random walk on Zd .

P (Xi = ej ) = P (Xi = −ej ) = 1/2d

for each of the d unit vectors ej . To analyze this case, we begin with a result that
is valid for any random walk. Let τ0 = 0 and τn = inf{m > τn−1 : Sm = 0} be the
time of the nth return to 0. From (4.1.1), it follows that

P (τn < ∞) = P (τ1 < ∞)n

a fact that leads easily to:

Theorem 4.2.2. For any random walk, the following are equivalent:
(i) P (τ1 < ∞) = 1, (ii) P (Sm = 0 i.o.) = 1, and (iii)

∑∞
m=0 P (Sm = 0) = ∞.

Proof. If P (τ1 < ∞) = 1, then P (τn < ∞) = 1 for all n and P (Sm = 0 i.o.) = 1.
Let

V =
∞∑

m=0

1(Sm=0) =
∞∑

n=0

1(τn<∞)

be the number of visits to 0, counting the visit at time 0. Taking expected value and
using Fubini’s theorem to put the expected value inside the sum:

EV =
∞∑

m=0

P (Sm = 0) =
∞∑

n=0

P (τn < ∞)

=
∞∑

n=0

P (τ1 < ∞)n = 1

1 − P (τ1 < ∞)

The second equality shows that (ii) implies (iii) and, in combination with the last
two, shows that if (i) is false, then (iii) is false (i.e., (iii) implies (i)). �

Theorem 4.2.3. Simple random walk is recurrent in d ≤ 2 and transient in d ≥ 3.

To steal a joke from Kakutani (UCLA colloquium talk): “A drunk man will even-
tually find his way home, but a drunk bird may get lost forever.”

Proof. Let ρd(m) = P (Sm = 0). ρd(m) is 0 if m is odd. From Theorem 3.1.3, we
get ρ1(2n) ∼ (πn)−1/2 as n → ∞. This and Theorem 4.2.2 gives the result in one
dimension. Our next step is

Simple random walk is recurrent in two dimensions. Note that in order for S2n = 0,
we must for some 0 ≤ m ≤ n have m up steps, m down steps, n − m to the left,
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and n − m to the right, so

ρ2(2n) = 4−2n

n∑
m=0

2n!

m! m! (n − m)! (n − m)!

= 4−2n

(
2n

n

) n∑
m=0

(
n

m

)(
n

n − m

)
= 4−2n

(
2n

n

)2

= ρ1(2n)2

To see the next-to-last equality, consider choosing n students from a class with
n boys and n girls and observe that for some 0 ≤ m ≤ n, you must choose m

boys and n − m girls. Using the asymptotic formula ρ1(2n) ∼ (πn)−1/2, we get
ρ2(2n) ∼ (πn)−1. Since

∑
n−1 = ∞, the result follows from Theorem 4.2.2.

Remark. For a direct proof of ρ2(2n) = ρ1(2n)2, note that if T 1
n and T 2

n are
independent, one-dimensional random walks, then Tn jumps from x to x + (1, 1),
x + (1, −1), x + (−1, 1), and x + (−1, −1) with equal probability, so rotating Tn

by 45 degrees and dividing by
√

2 gives Sn.

Simple random walk is transient in three dimensions. Intuitively, this holds since
the probability of being back at 0 after 2n steps is ∼ cn−3/2, and this is summable.
We will not compute the probability exactly but will get an upper bound of the
right order of magnitude. Again, since the number of steps in the directions ±ei

must be equal for i = 1, 2, 3,

ρ3(2n) = 6−2n
∑
j,k

(2n)!

(j !k!(n − j − k)!)2

= 2−2n

(
2n

n

)∑
j,k

(
3−n n!

j !k!(n − j − k)!

)2

≤ 2−2n

(
2n

n

)
max
j,k

3−n n!

j !k!(n − j − k)!

where in the last inequality we have used the fact that if aj,k are ≥ 0 and sum to 1,
then

∑
j,k a2

j,k ≤ maxj,k aj,k. Our last step is to show

max
j,k

3−n n!

j !k!(n − j − k)!
≤ Cn−1

To do this, we note that (a) if any of the numbers j , k or n − j − k is < [n/3],
increasing the smallest number and decreasing the largest number decreases the
denominator (since x(1 − x) is maximized at 1/2), so the maximum occurs when
all three numbers are as close as possible to n/3; (b) Stirling’s formula implies

n!

j !k!(n − j − k)!
∼ nn

jjkk(n − j − k)n−j−k
·
√

n

jk(n − j − k)
· 1

2π

Taking j and k within 1 of n/3 the first term on the right is ≤ C3n, and the desired
result follows.
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Simple random walk is transient in d > 3. Let Tn = (S1
n, S

2
n, S

3
n), N (0) = 0 and

N (n) = inf{m > N (n − 1) : Tm �= TN (n−1)}. It is easy to see that TN (n) is a three-
dimensional simple random walk. Since TN (n) returns infinitely often to 0 with
probability 0 and the first three coordinates are constant in between the N (n), Sn is
transient. �

Remark. Let πd = P (Sn = 0 for some n ≥ 1) be the probability that simple ran-
dom walk on Zd returns to 0. The last display in the proof of Theorem 4.2.2 implies

∞∑
n=0

P (S2n = 0) = 1

1 − πd

(4.2.1)

In d = 3, P (S2n = 0) ∼ Cn−3/2 so
∑∞

n=N P (S2n = 0) ∼ C ′N−1/2, and the series
converges rather slowly. For example, if we want to compute the return probability
to five decimal places, we would need 1010 terms. At the end of the section, we
will give another formula that leads very easily to accurate results.

The rest of this section is devoted to proving the following facts about random
walks:

� Sn is recurrent in d = 1 if Sn/n → 0 in probability.
� Sn is recurrent in d = 2 if Sn/n1/2 ⇒ a nondegenerate normal distribution.
� Sn is transient in d ≥ 3 if it is “truly three-dimensional.”

To prove the last result, we will give a necessary and sufficient condition for
recurrence.

The first step in deriving these results is to generalize Theorem 4.2.2.

Lemma 4.2.4. If
∑∞

n=1 P (‖Sn‖ < ε) < ∞, then P (‖Sn‖ < ε i.o.) = 0.

If
∑∞

n=1 P (‖Sn‖ < ε) = ∞ then P (‖Sn‖ < 2ε i.o.) = 1.

Proof. The first conclusion follows from the Borel-Cantelli lemma. To prove the
second, let F = {‖Sn‖ < ε i.o.}c. Breaking things down according to the last time
‖Sn‖ < ε,

P (F ) =
∞∑

m=0

P (‖Sm‖ < ε, ‖Sn‖ ≥ ε for all n ≥ m + 1)

≥
∞∑

m=0

P (‖Sm‖ < ε, ‖Sn − Sm‖ ≥ 2ε for all n ≥ m + 1)

=
∞∑

m=0

P (‖Sm‖ < ε)ρ2ε,1
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where ρδ,k = P (‖Sn‖ ≥ δ for all n ≥ k). Since P (F ) ≤ 1, and

∞∑
m=0

P (‖Sm‖ < ε) = ∞

it follows that ρ2ε,1 = 0. To extend this conclusion to ρ2ε,k with k ≥ 2, let

Am = {‖Sm‖ < ε, ‖Sn‖ ≥ ε for all n ≥ m + k}
Since any ω can be in at most k of the Am, repeating the argument above gives

k ≥
∞∑

m=0

P (Am) ≥
∞∑

m=0

P (‖Sm‖ < ε)ρ2ε,k

So ρ2ε,k = P (‖Sn‖ ≥ 2ε for all j ≥ k) = 0, and since k is arbitrary, the desired
conclusion follows. �

Our second step is to show that the convergence or divergence of the sums in
Lemma 4.2.4 is independent of ε. The previous proof works for any norm. For the
next one, we need ‖x‖ = supi |xi |.

Lemma 4.2.5. Let m be an integer ≥ 2.

∞∑
n=0

P (‖Sn‖ < mε) ≤ (2m)d
∞∑

n=0

P (‖Sn‖ < ε)

Proof. We begin by observing
∞∑

n=0

P (‖Sn‖ < mε) ≤
∞∑

n=0

∑
k

P (Sn ∈ kε + [0, ε)d)

where the inner sum is over k ∈ {−m, . . . , m − 1}d . If we let

Tk = inf{� ≥ 0 : S� ∈ kε + [0, ε)d}
then breaking things down according to the value of Tk and using Fubini’s theorem
gives

∞∑
n=0

P (Sn ∈ kε + [0, ε)d) =
∞∑

n=0

n∑
�=0

P (Sn ∈ kε + [0, ε)d, Tk = �)

≤
∞∑

�=0

∞∑
n=�

P (‖Sn − S�‖ < ε, Tk = �)

Since {Tk = �} and {‖Sn − S�‖ < ε} are independent, the last sum

=
∞∑

m=0

P (Tk = m)
∞∑

j=0

P (‖Sj‖ < ε) ≤
∞∑

j=0

P (‖Sj‖ < ε)

Since there are (2m)d values of k in {−m, . . . , m − 1}d , the proof is complete. �
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Combining Lemmas 4.2.4 and 4.2.5 gives:

Theorem 4.2.6. The convergence (resp. divergence) of
∑

n P (‖Sn‖ < ε) for a
single value of ε > 0 is sufficient for transience (resp. recurrence).

In d = 1, if EXi = µ �= 0, then the strong law of large numbers implies Sn/n →
µ, so |Sn| → ∞ and Sn is transient. As a converse, we have

Theorem 4.2.7. Chung-Fuchs theorem. Suppose d = 1. If the weak law of large
numbers holds in the form Sn/n → 0 in probability, then Sn is recurrent.

Proof. Let un(x) = P (|Sn| < x) for x > 0. Lemma 4.2.5 implies

∞∑
n=0

un(1) ≥ 1

2m

∞∑
n=0

un(m) ≥ 1

2m

Am∑
n=0

un(n/A)

for any A < ∞ since un(x) ≥ 0 and is increasing in x. By hypothesis un(n/A) → 1,
so letting m → ∞ and noticing the right-hand side is A/2 times the average of the
first Am terms

∞∑
n=0

un(1) ≥ A/2

Since A is arbitrary, the sum must be ∞, and the desired conclusion follows from
Theorem 4.2.6. �

Theorem 4.2.8. If Sn is a random walk in R2 and Sn/n1/2 ⇒ a nondegenerate
normal distribution, then Sn is recurrent.

Remark. The conclusion is also true if the limit is degenerate, but in that case the
random walk is essentially one- (or zero)-dimensional, and the result follows from
the Chung-Fuchs theorem.

Proof. Let u(n,m) = P (‖Sn‖ < m). Lemma 4.2.5 implies

∞∑
n=0

u(n, 1) ≥ (4m2)−1
∞∑

n=0

u(n,m)

If m/
√

n → c, then

u(n,m) →
∫

[−c,c]2
n(x) dx
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where n(x) is the density of the limiting normal distribution. If we use ρ(c) to denote
the right-hand side and let n = [θm2], it follows that u([θm2], m) → ρ(θ−1/2). If
we write

m−2
∞∑

n=0

u(n,m) =
∫ ∞

0
u([θm2], m) dθ

let m → ∞, and use Fatou’s lemma, we get

lim inf
m→∞ (4m2)−1

∞∑
n=0

u(n,m) ≥ 4−1
∫ ∞

0
ρ(θ−1/2) dθ

Since the normal density is positive and continuous at 0,

ρ(c) =
∫

[−c,c]2
n(x) dx ∼ n(0)(2c)2

as c → 0. So ρ(θ−1/2) ∼ 4n(0)/θ as θ → ∞, the integral diverges, and backtrack-
ing to the first inequality in the proof, it follows that

∑∞
n=0 u(n, 1) = ∞, proving

the result. �

We come now to the promised necessary and sufficient condition for recurrence.
Here φ = E exp(it · Xj ) is the ch.f. of one step of the random walk.

Theorem 4.2.9. Let δ > 0. Sn is recurrent if and only if∫
(−δ,δ)d

Re
1

1 − ϕ(y)
dy = ∞

We will prove a weaker result:

Theorem 4.2.10. Let δ > 0. Sn is recurrent if and only if

sup
r<1

∫
(−δ,δ)d

Re
1

1 − rϕ(y)
dy = ∞

Remark. Half of the work needed to get the first result from the second is trivial.

0 ≤ Re
1

1 − rϕ(y)
→ Re

1

1 − ϕ(y)
as r → 1

so Fatou’s lemma shows that if the integral is infinite, the walk is recurrent. The
other direction is rather difficult: the second result is in Chung and Fuchs (1951),
but a proof of the first result had to wait for Ornstein (1969) and Stone (1969)
to solve the problem independently. Their proofs use a trick to reduce to the case
where the increments have a density and then a second trick to deal with that case,
so we will not give the details here. The reader can consult either of the sources
cited or Port and Stone (1969), where the result is demonstrated for random walks
on Abelian groups.
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Proof. The first ingredient in the solution is the

Lemma 4.2.11. Parseval relation. Let µ and ν be probability measures on Rd

with ch.f.’s ϕ and ψ . ∫
ψ(t) µ(dt) =

∫
ϕ(x) ν(dx)

Proof. Since eit ·x is bounded, Fubini’s theorem implies∫
ψ(t)µ(dt) =

∫∫
eitxν(dx)µ(dt) =

∫∫
eitxµ(dt)ν(dx) =

∫
ϕ(x)ν(dx) �

Our second ingredient is a little calculus.

Lemma 4.2.12. If |x| ≤ π/3 then 1 − cos x ≥ x2/4.

Proof. It suffices to prove the result for x > 0. If z ≤ π/3, then cos z ≥ 1/2,

sin y =
∫ y

0
cos z dz ≥ y

2

1 − cos x =
∫ x

0
sin y dy ≥

∫ x

0

y

2
dy = x2

4

which proves the desired result. �

From Example 3.3.5, we see that the density

δ − |x|
δ2

when |x| ≤ δ, 0 otherwise

has ch.f. 2(1 − cos δt)/(δt)2. Let µn denote the distribution of Sn. Using
Lemma 4.2.12 (note π/3 ≥ 1) and then Lemma 4.2.11, we have

P (‖Sn‖ < 1/δ) ≤ 4d

∫ d∏
i=1

1 − cos(δti)

(δti)2
µn(dt)

= 2d

∫
(−δ,δ)d

d∏
i=1

δ − |xi |
δ2

ϕn(x) dx

Our next step is to sum from 0 to ∞. To be able to interchange the sum and the
integral, we first multiply by rn, where r < 1:

∞∑
n=0

rnP (‖Sn‖ < 1/δ) ≤ 2d

∫
(−δ,δ)d

d∏
i=1

δ − |xi |
δ2

1

1 − rϕ(x)
dx
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Symmetry dictates that the integral on the right is real, so we can take the real part
without affecting its value. Letting r ↑ 1 and using (δ − |x|)/δ ≤ 1

∞∑
n=0

P (‖Sn‖ < 1/δ) ≤
(

2

δ

)d
sup
r<1

∫
(−δ,δ)d

Re
1

1 − rϕ(x)
dx

and using Theorem 4.2.6 gives half of Theorem 4.2.10.
To prove the other direction, we begin by noting that Example 3.3.8 shows that

the density (1 − cos(x/δ))/πx2/δ has ch.f. 1 − |δt | when |t | ≤ 1/δ, 0 otherwise.
Using 1 ≥∏d

i=1(1 − |δxi |) and then Lemma 4.2.11,

P (‖Sn‖ < 1/δ) ≥
∫

(−1/δ,1/δ)d

d∏
i=1

(1 − |δxi |) µn(dx)

=
∫ d∏

i=1

1 − cos(ti/δ)

πt2
i /δ

ϕn(t) dt

Multiplying by rn and summing gives

∞∑
n=0

rnP (‖Sn‖ < 1/δ) ≥
∫ d∏

i=1

1 − cos(ti/δ)

πt2
i /δ

1

1 − rϕ(t)
dt

The last integral is real, so its value is unaffected if we integrate only the real part
of the integrand. If we do this and apply Lemma 4.2.12, we get

∞∑
n=0

rnP (‖Sn‖ < 1/δ) ≥ (4πδ)−d

∫
(−δ,δ)d

Re
1

1 − rϕ(t)
dt

Letting r ↑ 1 and using Theorem 4.2.6 now completes the proof of Theorem
4.2.10. �

We will now consider some examples. Our goal in d = 1 and d = 2 is to convince
you that the conditions in Theorems 4.2.7 and 4.2.8 are close to the best possible.

d = 1. Consider the symmetric stable laws that have ch.f. ϕ(t) = exp(−|t |α). To
avoid using facts that we have not proved, we will obtain our conclusions from
Theorem 4.2.10. It is not hard to use that form of the criterion in this case since

1 − rϕ(t) ↓ 1 − exp(−|t |α) as r ↑ 1

1 − exp(−|t |α) ∼ |t |α as t → 0

From this, it follows that the corresponding random walk is transient for α < 1
and recurrent for α ≥ 1. The case α > 1 is covered by Theorem 4.2.7 since these
random walks have mean 0. The result for α = 1 is new because the Cauchy
distribution does not satisfy Sn/n → 0 in probability. The random walks with
α < 1 are interesting because Theorem 4.1.2 implies (see Exercise 4.1.1)

−∞ = lim inf Sn < lim sup Sn = ∞
but P (|Sn| < M i.o.) = 0 for any M < ∞.
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Remark. The stable law examples are misleading in one respect. Shepp (1964)
proved that recurrent random walks may have arbitrarily large tails. To be precise,
given a function ε(x) ↓ 0 as x ↑ ∞, there is a recurrent random walk with P (|X1| ≥
x) ≥ ε(x) for large x.

d = 2. Let α < 2, and let ϕ(t) = exp(−|t |α) where |t | = (t2
1 + t2

2 )1/2. ϕ is the
characteristic function of a random vector (X1, X2) that has two nice properties:

(i) the distribution of (X1, X2) is invariant under rotations,
(ii) X1 and X2 have symmetric stable laws with index α.

Again, 1 − rϕ(t) ↓ 1 − exp(−|t |α) as r ↑ 1 and 1 − exp(−|t |α) ∼ |t |α as t → 0.
Changing to polar coordinates and noticing

2π

∫ δ

0
dx x x−α < ∞

when 1 − α > −1 shows that the random walks with ch.f. exp(−|t |α), α < 2 are
transient. When p < α, we have E|X1|p < ∞ by Exercise 3.7.5, so these examples
show that Theorem 4.2.8 is reasonably sharp.

d ≥ 3. The integral
∫ δ

0 dx xd−1 x−2 < ∞, so if a random walk is recurrent in d ≥ 3,
its ch.f. must → 1 faster than t2. In Exercise 3.3.19, we observed that (in one
dimension) if ϕ(r) = 1 + o(r2), then ϕ(r) ≡ 1. By considering ϕ(rθ ) where r is
real and θ is a fixed vector, the last conclusion generalizes easily to Rd , d > 1,
and suggests that once we exclude walks that stay on a plane through 0, no three-
dimensional random walks are recurrent.

A random walk in R3 is truly three-dimensional if the distribution of X1 has
P (X1 · θ �= 0) > 0 for all θ �= 0.

Theorem 4.2.13. No truly three-dimensional random walk is recurrent.

Proof. We will deduce the result from Theorem 4.2.10. We begin with some
arithmetic. If z is complex, the conjugate of 1 − z is 1 − z̄, so

1

1 − z
= 1 − z̄

|1 − z|2 and Re
1

1 − z
= Re (1 − z)

|1 − z|2

If z = a + bi with a ≤ 1, then using the previous formula and dropping the b2

from the denominator,

Re
1

1 − z
= 1 − a

(1 − a)2 + b2
≤ 1

1 − a

Taking z = rφ(t) and supposing for the second inequality that 0 ≤ Re φ(t) ≤ 1,
we have

(a) Re
1

1 − rϕ(t)
≤ 1

Re (1 − rϕ(t))
≤ 1

Re (1 − ϕ(t))
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The last calculation shows that it is enough to estimate

Re (1 − ϕ(t)) =
∫

{1 − cos(x · t)}µ(dx) ≥
∫

|x·t |<π/3

|x · t |2
4

µ(dx)

by Lemma 4.2.12. Writing t = ρθ where θ ∈ S = {x : |x| = 1} gives

(b) Re (1 − ϕ(ρθ)) ≥ ρ2

4

∫
|x·θ |<π/3ρ

|x · θ |2µ(dx)

Fatou’s lemma implies that if we let ρ → 0 and θ (ρ) → θ , then

(c) lim inf
ρ→0

∫
|x·θ (ρ)|<π/3ρ

|x · θ (ρ)|2µ(dx) ≥
∫

|x · θ |2µ(dx) > 0

I claim that this implies that for ρ < ρ0

(d) inf
θ∈S

∫
|x·θ |<π/3ρ

|x · θ |2µ(dx) = C > 0

To get the last conclusion, observe that if it is false, then for ρ = 1/n there is a θn

so that ∫
|x·θn|<nπ/3

|x · θn|2µ(dx) ≤ 1/n

All the θn lie in S, a compact set, so if we pick a convergent subsequence, we
contradict (c). Combining (b) and (d) gives

Re (1 − ϕ(ρθ)) ≥ Cρ2/4

Using the last result and (a) then changing to polar coordinates, we see that if δ is
small (so Re φ(y) ≥ 0 on (−δ, δ)d)∫

(−δ,δ)d
Re

1

1 − rφ(y)
dy ≤

∫ δ
√

d

0
dρ ρd−1

∫
dθ

1

Re (1 − φ(ρθ))

≤ C ′
∫ 1

0
dρ ρd−3 < ∞

when d > 2, so the desired result follows from Theorem 4.2.10. �

Remark. The analysis becomes much simpler when we consider random walks on
Zd . The inversion formula given in Exercise 3.3.2 implies

P (Sn = 0) = (2π )−d

∫
(−π,π )d

ϕn(t) dt

Multiplying by rn and summing gives

∞∑
n=0

rnP (Sn = 0) = (2π )−d

∫
(−π,π )d

1

1 − rϕ(t)
dt
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In the case of simple random walk in d = 3, φ(t) = 1
3

∑3
j=1 cos tj is real.

1

1 − rφ(t)
↑ 1

1 − φ(t)
when φ(t) > 0

0 ≤ 1

1 − rφ(t)
≤ 1 when φ(t) ≤ 0

So, using the monotone and bounded convergence theorems

∞∑
n=0

P (Sn = 0) = (2π )−3
∫

(−π,π )3

(
1 − 1

3

3∑
i=1

cos xi

)−1

dx

This integral was first evaluated by Watson in 1939 in terms of elliptic integrals,
which could be found in tables. Glasser and Zucker (1977) showed that it was

(
√

6/32π3)�(1/24)�(5/24)�(7/24)�(11/24) = 1.516386059137 . . .

so it follows from (4.2.1) that

π3 = 0.340537329544 . . .

For numerical results in 4 ≤ d ≤ 9, see Kondo and Hara (1987).

4.3 Visits to 0, Arcsine Laws*

In the last section, we took a broad look at the recurrence of random walks. In this
section, we will take a deep look at one example: simple random walk (on Z). To
steal a line from Chung, “We shall treat this by combinatorial methods as an antidote
to the analytic skulduggery above.” The developments here follow Chapter III of
Feller, vol. I. To facilitate discussion, we will think of the sequence S1, S2, . . . , Sn

as being represented by a polygonal line with segments (k − 1, Sk−1) → (k, Sk).
A path is a polygonal line that is a possible outcome of simple random walk.
To count the number of paths from (0,0) to (n, x), it is convenient to introduce
a and b defined as follows: a = (n + x)/2 is the number of positive steps in the
path and b = (n − x)/2 is the number of negative steps. Notice that n = a + b

and x = a − b. If −n ≤ x ≤ n and n − x is even, the a and b defined above are
nonnegative integers, and the number of paths from (0,0) to (n, x) is

Nn,x =
(

n

a

)
(4.3.1)

Otherwise, the number of paths is 0.

Theorem 4.3.1. Reflection principle. If x, y > 0, then the number of paths from
(0, x) to (n, y) that are 0 at some time is equal to the number of paths from (0, −x)
to (n, y).
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Figure 4.1. Reflection principle.

Proof. Suppose (0, s0), (1, s1), . . . , (n, sn) is a path from (0, x) to (n, y). Let K =
inf{k : sk = 0}. Let s ′

k = −sk for k ≤ K , s ′
k = sk for K ≤ k ≤ n. Then (k, s ′

k),
0 ≤ k ≤ n, is a path from (0, −x) to (n, y). Conversely, if (0, t0), (1, t1), . . . , (n, tn)
is a path from (0, −x) to (n, y), then it must cross 0. Let K = inf{k : tk = 0}. Let
t ′k = −tk for k ≤ K , t ′k = tk for K ≤ k ≤ n. Then (k, t ′k), 0 ≤ k ≤ n, is a path from
(0, −x) to (n, y) that is 0 at time K . The last two observations set up a one-to-
one correspondence between the two classes of paths, so their numbers must be
equal. �

From Theorem 4.3.1 we get a result first proved in 1878.

Theorem 4.3.2. Ballot theorem. Suppose that in an election candidate A gets α

votes, and candidate B gets β votes where β < α. The probability that throughout
the counting A always leads B is (α − β)/(α + β).

Proof. Let x = α − β, n = α + β. Clearly, there are as many such outcomes as
there are paths from (1,1) to (n, x) that are never 0. The reflection principle implies
that the number of paths from (1,1) to (n, x) that are 0 at some time the number of
paths from (1,−1) to (n, x), so by (4.3.1) the number of paths from (1,1) to (n, x)
that are never 0 is

Nn−1,x−1 − Nn−1,x+1 =
(

n − 1

α − 1

)
−
(

n − 1

α

)

= (n − 1)!

(α − 1)!(n − α)!
− (n − 1)!

α!(n − α − 1)!

= α − (n − α)

n
· n!

α!(n − α)!
= α − β

α + β
Nn,x

since n = α + β, this proves the desired result. �

Using the ballot theorem, we can compute the distribution of the time to hit 0
for simple random walk.

Lemma 4.3.3. P (S1 �= 0, . . . , S2n �= 0) = P (S2n = 0).
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Proof. P (S1 >0, . . . , S2n >0) =∑∞
r=1 P (S1 >0, . . . , S2n−1 >0, S2n = 2r). From

the proof of Theorem 4.3.2, we see that the number of paths from (0,0) to (2n, 2r)
that are never 0 at positive times (= the number of paths from (1,1) to (2n, 2r) that
are never 0) is

N2n−1,2r−1 − N2n−1,2r+1

If we let pn,x = P (Sn = x), then this implies

P (S1 > 0, . . . , S2n−1 > 0, S2n = 2r) = 1

2
(p2n−1,2r−1 − p2n−1,2r+1)

Summing from r = 1 to ∞ gives

P (S1 > 0, . . . , S2n > 0) = 1

2
p2n−1,1 = 1

2
P (S2n = 0)

Symmetry implies P (S1 < 0, . . . , S2n < 0) = (1/2)P (S2n = 0), and the proof is
complete. �

Let R = inf{m ≥ 1 : Sm = 0}. Combining Lemma 4.3.2 with Theorem 3.1.2
gives

P (R > 2n) = P (S2n = 0) ∼ π−1/2n−1/2 (4.3.2)

Since P (R > x)/ P (|R| > x) = 1, it follows from Theorem 3.7.4 that R is in
the domain of attraction of the stable law with α = 1/2 and κ = 1. This implies
that if Rn is the time of the nth return to 0 then Rn/n2 ⇒ Y , the indicated stable
law. In Example 3.7.2, we considered τ = T1 where Tx = inf{n : Sn = x}. Since
S1 ∈ {−1, 1} and T1 =d T−1, R =d 1 + T1, and it follows that Tn/n2 ⇒ Y , the same
stable law. In Example 8.6.6, we will use this observation to show that the limit
has the same distribution as the hitting time of 1 for Brownian motion, which has
a density given in (8.4.8).

This completes our discussion of visits to 0. We turn now to the arcsine laws.
The first one concerns

L2n = sup{m ≤ 2n : Sm = 0}
It is remarkably easy to compute the distribution of L2n.

Lemma 4.3.4. Let u2m = P (S2m = 0). Then P (L2n = 2k) = u2ku2n−2k.

Proof. P (L2n = 2k) = P (S2k = 0, S2k+1 �= 0, . . . , S2n �= 0), so the desired result
follows from Lemma 4.3.3. �

Theorem 4.3.5. Arcsine law for the last visit to 0. For 0 < a < b < 1,

P (a ≤ L2n/2n ≤ b) →
∫ b

a

π−1(x(1 − x))−1/2 dx
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To see the reason for the name, substitute y = x1/2, dy = (1/2)x−1/2 dx in the
integral to obtain

∫ √
b

√
a

2

π
(1 − y2)−1/2 dy = 2

π
{arcsin(

√
b) − arcsin(

√
a)}

Since L2n is the time of the last zero before 2n, it is surprising that the answer is
symmetric about 1/2. The symmetry of the limit distribution implies

P (L2n/2n ≤ 1/2) → 1/2

In gambling terms, if two people were to bet $1 on a coin flip every day of the year,
then with probability 1/2, one of the players will be ahead from July 1 to the end
of the year, an event that would undoubtedly cause the other player to complain
about his bad luck.

Proof of Theorem 4.3.5. From the asymptotic formula for u2n, it follows that if
k/n → x, then

nP (L2n = 2k) → π−1(x(1 − x))−1/2

To get from this to the desired result, we let 2nan = the smallest even integer
≥ 2na, let 2nbn = the largest even integer ≤ 2nb, and let fn(x) = nP (L2n = k)
for 2k/2n ≤ x < 2(k + 1)/2n, so we can write

P (a ≤ L2n/2n ≤ b) =
nbn∑

k=nan

P (L2n = 2k) =
∫ bn+1/n

an

fn(x) dx

Our first result implies that uniformly on compact sets

fn(x) → f (x) = π−1(x(1 − x))−1/2

The uniformity of the convergence implies

sup
an≤x≤bn+1/n

fn(x) → sup
a≤x≤b

f (x) < ∞

if 0 < a ≤ b < 1, so the bounded convergence theorem gives∫ bn+1/n

an

fn(x) dx →
∫ b

a

f (x) dx �

The next result deals directly with the amount of time one player is ahead.

Theorem 4.3.6. Arcsine law for time above 0. Let π2n be the number of segments
(k − 1, Sk−1) → (k, Sk) that lie above the axis (i.e., in {(x, y) : y ≥ 0}), and let
um = P (Sm = 0).

P (π2n = 2k) = u2ku2n−2k
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and consequently, if 0 < a < b < 1,

P (a ≤ π2n/2n ≤ b) →
∫ b

a

π−1(x(1 − x))−1/2 dx

Remark. Since π2n =d L2n, the second conclusion follows from the proof of
Theorem 4.3.5. The reader should note that the limiting density π−1(x(1 − x))−1/2

has a minimum at x = 1/2, and → ∞ as x → 0 or 1. An equal division of steps
between the positive and negative side is therefore the least likely possibility, and
completely one-sided divisions have the highest probability.

Proof. Let β2k,2n denote the probability of interest. We will prove β2k,2n =
u2ku2n−2k by induction. When n = 1, it is clear that

β0,2 = β2,2 = 1/2 = u0u2

For a general n, first suppose k = n. From the proof of Lemma 4.3.3, we have

1

2
u2n = P (S1 > 0, . . . , S2n > 0)

= P (S1 = 1, S2 − S1 ≥ 0, . . . , S2n − S1 ≥ 0)

= 1

2
P (S1 ≥ 0, . . . , S2n−1 ≥ 0)

= 1

2
P (S1 ≥ 0, . . . , S2n ≥ 0) = 1

2
β2n,2n

The next-to-last equality follows from the observation that if S2n−1 ≥ 0, then
S2n−1 ≥ 1, and hence S2n ≥ 0.

The last computation proves the result for k = n. Since β0,2n = β2n,2n, the result
is also true when k = 0. Suppose now that 1 ≤ k ≤ n − 1. In this case, if R is the
time of the first return to 0, then R = 2m with 0 < m < n. Letting f2m = P (R =
2m) and breaking things up according to whether the first excursion was on the
positive or negative side gives

β2k,2n = 1

2

k∑
m=1

f2mβ2k−2m,2n−2m + 1

2

n−k∑
m=1

f2mβ2k,2n−2m

Using the induction hypothesis, it follows that

β2k,2n = 1

2
u2n−2k

k∑
m=1

f2mu2k−2m + 1

2
u2k

n−k∑
m=1

f2mu2n−2k−2m

By considering the time of the first return to 0, we see

u2k =
k∑

m=1

f2mu2k−2m u2n−2k =
n−k∑
m=1

f2mu2n−2k−2m

and the desired result follows. �
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Our derivation of Theorem 4.3.6 relied heavily on special properties of simple
random walk. There is a closely related result due to E. Sparre-Andersen that is
valid for very general random walks. However, notice that the hypothesis (ii) in the
next result excludes simple random walk.

Theorem 4.3.7. Let νn = |{k : 1 ≤ k ≤ n, Sk > 0}|. Then
(i) P (νn = k) = P (νk = k)P (νn−k = 0)

(ii) If the distribution of X1 is symmetric and P (Sm = 0) = 0 for all m ≥ 1, then

P (νn = k) = u2ku2n−2k

where u2m = 2−2m
(2m

m

)
is the probability simple random walk is 0 at time 2m.

(iii) Under the hypotheses of (ii),

P (a ≤ νn/n ≤ b) →
∫ b

a

π−1(x(1 − x))−1/2 dx for 0 < a < b < 1

Proof. Taking things in reverse order, (iii) is an immediate consequence of (ii) and
the proof of Theorem 4.3.5. Our next step is to show that (ii) follows from (i) by
induction. When n = 1, our assumptions imply P (ν1 = 0) = 1/2 = u0u2. If n > 1
and 1 ≤ k < n, then (i) and the induction hypothesis imply

P (νn = k) = u2ku0 · u0u2n−2k = u2ku2n−2k

since u0 = 1. To handle the cases k = 0 and k = n, we note that Lemma 4.3.4
implies

n∑
k=0

u2ku2n−2k = 1

We have
∑n

k=0 P (νn = k) = 1 and our assumptions imply P (νn = 0) = P (νn = n),
so these probabilities must be equal to u0u2n.

The proof of (i) is tricky and requires careful definitions since we are not
supposing X1 is symmetric or that P (Sm = 0) = 0. Let ν ′

n = |{k : 1 ≤ k ≤ n,
Sk ≤ 0}| = n − νn.

Mn = max
0≤j≤n

Sj �n = min{j : 0 ≤ j ≤ n, Sj = Mn}

M ′
n = min

0≤j≤n
Sj �′

n = max{j : 0 ≤ j ≤ n, Sj = M ′
n}

The first symmetry is straightforward.

Lemma 4.3.8. (�n, Sn) and (n − �′
n, Sn) have the same distribution.

Proof. If we let Tk = Sn − Sn−k = Xn + · · · + Xn−k+1, then Tk 0 ≤ k ≤ n has the
same distribution as Sk, 0 ≤ k ≤ n. Clearly,

max
0≤k≤n

Tk = Sn − min
0≤k≤n

Sn−k

and the set of k for which the extrema are attained are the same. �
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The second symmetry is much less obvious.

Lemma 4.3.9. (�n, Sn) and (νn, Sn) have the same distribution.
(�′

n, Sn) and (ν ′
n, Sn) have the same distribution.

Remark. (i) follows from Lemma 4.3.8 and the trivial observation

P (�n = k) = P (�k = k)P (�n−k = 0)

so, once Lemma 4.3.9 is established, the proof of Theorem 4.3.7 will be complete.

Proof. When n = 1, {�1 = 0} = {S1 ≤ 0} = {ν1 = 0}, and {�′
1 = 0} = {S1 > 0} =

{ν ′
1 = 0}. We shall prove the general case by induction, supposing that both state-

ments have been proved when n is replaced by n − 1. Let

G(y) = P (�n−1 = k, Sn−1 ≤ y)

H (y) = P (νn−1 = k, Sn−1 ≤ y)

On {Sn ≤ 0}, we have �n−1 = �n, and νn−1 = νn, so if F (y) = P (X1 ≤ y), then for
x ≤ 0,

P (�n = k, Sn ≤ x) =
∫

F (x − y) dG(y) (4.3.3)

=
∫

F (x − y) dH (y) = P (νn = k, Sn ≤ x)

On {Sn > 0}, we have �′
n−1 = �′

n, and ν ′
n−1 = ν ′

n, so repeating the last computation
shows that for x ≥ 0

P (�′
n = n − k, Sn > x) = P (ν ′

n = n − k, Sn > x)

Since (�n, Sn) has the same distribution as (n − �′
n, Sn) and ν ′

n = n − νn, it follows
that for x ≥ 0

P (�n = k, Sn > x) = P (νn = k, Sn > x)

Setting x = 0 in the last result and (4.3.3) and adding gives

P (�n = k) = P (νn = k)

Subtracting the last two equations and combining the result with (4.3.3) gives

P (�n = k, Sn ≤ x) = P (νn = k, Sn ≤ x)

for all x. Since (�n, Sn) has the same distribution as (n − �′
n, Sn) and ν ′

n = n − νn,
it follows that

P (�′
n = n − k, Sn > x) = P (ν ′

n = n − k, Sn > x)

for all x. This completes the proof of Lemma 4.3.9 and hence of Theorem 4.3.7. �
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4.4 Renewal Theory*

Let ξ1, ξ2, . . . be i.i.d. positive random variables with distribution F and define
a sequence of times by T0 = 0, and Tk = Tk−1 + ξk for k ≥ 1. As explained in
Section 2.4, we think of ξi as the lifetime of the ith light bulb, and Tk is the time the
kth bulb burns out. A second interpretation from Section 3.6 is that Tk is the time
of arrival of the kth customer. To have a neutral terminology, we will refer to the
Tk as renewals. The term refers to the fact that the process “starts afresh” at Tk,
that is, {Tk+j − Tk, j ≥ 1} has the same distribution as {Tj , j ≥ 1}.

• • • • • •
0 t

T1 T2 TN (t)

Figure 4.2. Renewal sequence.

Departing slightly from the notation in Sections 2.4 and 3.6, we let Nt = inf{k :
Tk > t}. Nt is the number of renewals in [0, t], counting the renewal at time 0 (see
Figure 4.2). In Theorem 2.4.6, we showed that

Theorem 4.4.1. As t → ∞, Nt/t → 1/µ a.s. where µ = Eξi ∈ (0, ∞] and
1/∞ = 0.

Our first result concerns the asymptotic behavior of U (t) = ENt.

Theorem 4.4.2. As t → ∞, U (t)/t → 1/µ.

Proof. We will apply Wald’s equation to the stopping time Nt . The first step
is to show that P (ξi > 0) > 0 implies ENt < ∞. To do this, pick δ > 0 so that
P (ξi > δ) = ε > 0 and pick K so that Kδ ≥ t . Since K consecutive ξ ′

i s that are > δ

will make Tn > t , we have

P (Nt > mK) ≤ (1 − εK )m

and ENt < ∞. If µ < ∞, applying Wald’s equation now gives

µENt = ETNt
≥ t

so U (t) ≥ t/µ. The last inequality is trivial when µ = ∞, so it holds in general.
Turning to the upper bound, we observe that if P (ξi ≤ c) = 1, then repeating

the last argument shows µENt = ESNt
≤ t + c, and the result holds for bounded

distributions. If we let ξ̄i = ξi ∧ c and define T̄n and N̄t in the obvious way then

ENt ≤ EN̄t ≤ (t + c)/E(ξ̄i)

Letting t → ∞ and then c → ∞ gives lim supt→∞ ENt/t ≤ 1/µ, and the proof
is complete. �

Exercise 4.4.1. Show that t/E(ξi ∧ t) ≤ U (t) ≤ 2t/E(ξi ∧ t).
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Exercise 4.4.2. Deduce Theorem 4.4.2 from Theorem 4.4.1 by showing

lim sup
t→∞

E(Nt/t)2 < ∞.

Hint: Use a comparison like the one in the proof of Theorem 4.4.2.

Exercise 4.4.3. Customers arrive at times of a Poisson process with rate 1. If the
server is occupied, they leave. (Think of a public telephone or prostitute.) If not,
they enter service and require a service time with a distribution F that has mean µ.
Show that the times at which customers enter service are a renewal process with
mean µ + 1, and use Theorem 4.4.1 to conclude that the asymptotic fraction of
customers served is 1/(µ + 1).

To take a closer look at when the renewals occur, we let

U (A) =
∞∑

n=0

P (Tn ∈ A)

U is called the renewal measure. We absorb the old definition, U (t) = ENt , into
the new one by regarding U (t) as shorthand for U ([0, t]). This should not cause
problems, since U (t) is the distribution function for the renewal measure. The
asymptotic behavior of U (t) depends on whether the distribution F is arithmetic,
that is, concentrated on {δ, 2δ, 3δ, . . .} for some δ > 0, or nonarithmetic, that is,
not arithmetic. We will treat the first case in Chapter 5 as an application of Markov
chains, so we will restrict our attention to the second case here.

Theorem 4.4.3. Blackwell’s renewal theorem. If F is nonarithmetic, then

U ([t, t + h]) → h/µ as t → ∞.

We will prove the result in the case µ < ∞ by “coupling” following Lindvall
(1977) and Athreya, McDonald, and Ney (1978). To set the stage for the proof,
we need a definition and some preliminary computations. If T0 ≥ 0 is independent
of ξ1, ξ2, . . . and has distribution G, then Tk = Tk−1 + ξk, k ≥ 1 defines a delayed
renewal process, and G is the delay distribution. If we let Nt = inf{k : Tk > t}
as before and set V (t) = ENt , then breaking things down according to the value
of T0 gives

V (t) =
∫ t

0
U (t − s) dG(s) (4.4.1)

The last integral, and all similar expressions below, is intended to include the
contribution of any mass G has at 0. If we let U (r) = 0 for r < 0, then the last
equation can be written as V = U ∗ G, where ∗ denotes convolution.

Applying similar reasoning to U gives

U (t) = 1 +
∫ t

0
U (t − s) dF (s) (4.4.2)
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or, introducing convolution notation,

U = 1[0,∞)(t) + U ∗ F.

Convolving each side with G (and recalling G ∗ U = U ∗ G) gives

V = G ∗ U = G + V ∗ F (4.4.3)

We know U (t) ∼ t/µ. Our next step is to find a G so that V (t) = t/µ. Plugging
what we want into (4.4.3) gives

t/µ = G(t) +
∫ t

0

t − y

µ
dF (y)

so G(t) = t/µ −
∫ t

0

t − y

µ
dF (y)

The integration-by-parts formula is∫ t

0
K(y) dH (y) = H (t)K(t) − H (0)K(0) −

∫ t

0
H (y) dK(y)

If we let H (y) = (y − t)/µ and K(y) = 1 − F (y), then

1

µ

∫ t

0
1 − F (y) dy = t

µ
−
∫ t

0

t − y

µ
dF (y)

so we have

G(t) = 1

µ

∫ t

0
1 − F (y) dy (4.4.4)

It is comforting to note that µ = ∫[0,∞) 1 − F (y) dy, so the last formula defines a
probability distribution. When the delay distribution G is the one given in (4.4.4),
we call the result the stationary renewal process. Something very special happens
when F (t) = 1 − exp(−λt), t ≥ 0 where λ > 0 (i.e., the renewal process is a rate
λ Poisson process). In this case, µ = 1/λ so G(t) = F (t).

Proof of Theorem 4.4.3 for µ < ∞. Let Tn be a renewal process (with T0 = 0) and
T ′

n be an independent stationary renewal process. Our first goal is to find J and K so
that |TJ − T ′

K | < ε and the increments {TJ+i − TJ , i ≥ 1} and {T ′
K+i − T ′

K, i ≥ 1}
are i.i.d. sequences independent of what has come before.

Let η1, η2, . . . and η′
1, η

′
2, . . . be i.i.d. independent of Tn and T ′

n, and take the
values 0 and 1 with probability 1/2 each. Let νn = η1 + · · · + ηn and ν ′

n = 1 +
η′

1 + · · · + η′
n, Sn = Tνn

and S ′
n = T ′

ν ′
n
. The increments of Sn − S ′

n are 0 with prob-
ability at least 1/4, and the support of their distribution is symmetric and contains
the support of the ξk, so if the distribution of the ξk is nonarithmetic, the ran-
dom walk Sn − S ′

n is irreducible. Since the increments of Sn − S ′
n have mean

0, N = inf{n : |Sn − S ′
n| < ε} has P (N < ∞) = 1, and we can let J = νN and

K = ν ′
N . Let (see Figure 4.3 for a picture)

T ′′
n =

{
Tn if J ≥ n

TJ + T ′
K+(n−J ) − T ′

K if J < n

In other words, the increments T ′′
J+i − T ′′

J are the same as T ′
K+i − T ′

K for i ≥ 1.
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•
T0 •

T1 •
T2 • •

TJ •
T ′′

J+1 •
T ′′

J+2•
•
T ′

1

•
T ′

2

• •
T ′

K

•
T ′

K+1

•
T ′

K+2

•

Figure 4.3. Coupling of renewal processes.

It is easy to see from the construction that Tn and T ′′
n have the same distribution.

If we let

N ′[s, t] = |{n : T ′
n ∈ [s, t]}| and N ′′[s, t] = |{n : T ′′

n ∈ [s, t]}|
be the number of renewals in [s, t] in the two processes, then on {TJ ≤ t}

N ′′[t, t + h] = N ′[t + T ′
K − TJ , t + h + T ′

K − TJ ]

{
≥ N ′[t + ε, t + h − ε]

≤ N ′[t − ε, t + h + ε]

To relate the expected number of renewals in the two processes, we observe
that even if we condition on the location of all the renewals in [0, s], the expected
number of renewals in [s, s + t] is at most U (t), since the worst thing that could
happen is to have a renewal at time s. Combining the last two observations, we see
that if ε < h/2 (so [t + ε, t + h − ε] has positive length)

U ([t, t + h]) = EN ′′[t, t + h] ≥ E(N ′[t + ε, t + h − ε]; TJ ≤ t)

≥ h − 2ε

µ
− P (TJ > t)U (h)

since EN ′[t + ε, t + h − ε] = (h − 2ε)/µ and {TJ > t} is determined by the
renewals of T in [0, t] and the renewals of T ′ in [0, t + ε]. For the other direction,
we observe

U ([t, t + h]) ≤ E(N ′[t − ε, t + h + ε]; TJ ≤ t) + E(N ′′[t, t + h]; TJ > t)

≤ h + 2ε

µ
+ P (TJ > t)U (h)

The desired result now follows from the fact that P (TJ > t) → 0 and ε < h/2 is
arbitrary. �

Proof of Theorem 4.4.3 for µ = ∞. In this case, there is no stationary renewal
process, so we have to resort to other methods. Let

β = lim sup
t→∞

U (t, t + 1] = lim
k→∞

U (tk, tk + 1]

for some sequence tk → ∞. We want to prove that β = 0, for then by addition the
previous conclusion holds with 1 replaced by any integer n and, by monotonicity,
with n replaced by any h < n, and this gives us the result in Theorem 4.4.3. Fix i

and let

ak,j =
∫

(j−1,j ]
U (tk − y, tk + 1 − y] dF i∗(y)



212 Random Walks

By considering the location of Ti we get

(a) lim
k→∞

∞∑
j=1

ak,j = lim
k→∞

∫
U (tk − y, tk + 1 − y] dF i∗(y) = β

Since β is the lim sup, we must have

(b) lim sup
k→∞

ak,j ≤ β · P (Ti ∈ (j − 1, j ])

We want to conclude from (a) and (b) that

(c) lim inf
k→∞

ak,j ≥ β · P (Ti ∈ (j − 1, j ])

To do this, we observe that by considering the location of the first renewal in
(j − 1, j ]

(d) 0 ≤ ak,j ≤ U (1)P (Ti ∈ (j − 1, j ])

(c) is trivial when β = 0, so we can suppose β > 0. To argue by contradiction,
suppose there exist j0 and ε > 0 so that

lim inf
k→∞

ak,j0 ≤ β · {P (Ti ∈ (j0 − 1, j0]) − ε}

Pick kn → ∞ so that

akn,j0 → β · {P (Ti ∈ (j0 − 1, j0]) − ε}
Using (d), we can pick J ≥ j0 so that

lim sup
n→∞

∞∑
j=J+1

akn,j ≤ U (1)
∞∑

j=J+1

P (Ti ∈ (j − 1, j ]) ≤ βε/2

Now an easy argument shows

lim sup
n→∞

J∑
j=1

akn,j ≤
J∑

j=1

lim sup
n→∞

akn,j ≤ β

⎛
⎝ J∑

j=1

P (Ti ∈ (j − 1, j ]) − ε

⎞
⎠

by (b) and our assumption. Adding the last two results shows

lim sup
n→∞

∞∑
j=1

akn,j ≤ β(1 − ε/2)

which contradicts (a), and proves (c).
Now, if j − 1 < y ≤ j , we have

U (tk − y, tk + 1 − y] ≤ U (tk − j, tk + 2 − j ]

so using (c), it follows that for j with P (Ti ∈ (j − 1, j ]) > 0, we must have

lim inf
k→∞

U (tk − j, tk + 2 − j ] ≥ β

Summing over i, we see that the last conclusion is true when U (j − 1, j ] > 0.
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The support of U is closed under addition. (If x is in the support of Fm∗ and
y is in the support of Fn∗, then x + y is in the support of F (m+n)∗.) We have
assumed F is nonarithmetic, so U (j − 1, j ] > 0 for j ≥ j0. Letting rk = tk − j0

and considering the location of the last renewal in [0, rk] and the index of the Ti

gives

1 =
∞∑
i=0

∫ rk

0
(1 − F (rk − y)) dF i∗(y) =

∫ rk

0
(1 − F (rk − y)) dU (y)

≥
∞∑

n=1

(1 − F (2n)) U (rk − 2n, rk + 2 − 2n]

Since lim infk→∞ U (rk − 2n, rk + 2 − 2n] ≥ β and

∞∑
n=0

(1 − F (2n)) ≥ µ/2 = ∞

β must be 0, and the proof is complete. �

Remark. Following Lindvall (1977), we have based the proof for µ = ∞ on
part of Feller’s (1961) proof of the discrete renewal theorem (i.e., for arithmetic
distributions). See Freedman (1971b), pp. 22–25, for an account of Feller’s proof.
Purists can find a proof that does everything by coupling in Thorisson (1987).

Our next topic is the renewal equation: H = h + H ∗ F . Two cases we have
seen in (4.4.2) and (4.4.3) are:

Example 4.4.1. h ≡ 1: U (t) = 1 + ∫ t

0 U (t − s) dF (s)

Example 4.4.2. h(t) = G(t): V (t) = G(t) + ∫ t

0 V (t − s) dF (s)

The last equation is valid for an arbitrary delay distribution. If we let G be the
distribution in (4.4.4) and subtract the last two equations, we get

Example 4.4.3. H (t) = U (t) − t/µ satisfies the renewal equation with h(t) =
1
µ

∫∞
t

1 − F (s) ds.

Last but not least, we have an example that is a typical application of the renewal
equation.

Example 4.4.4. Let x > 0 be fixed, and let H (t) = P (TN (t) − t > x). By consid-
ering the value of T1, we get

H (t) = (1 − F (t + x)) +
∫ t

0
H (t − s) dF (s)
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The examples above should provide motivation for:

Theorem 4.4.4. If h is bounded then the function

H (t) =
∫ t

0
h(t − s) dU (s)

is the unique solution of the renewal equation that is bounded on bounded intervals.

Proof. Let Un(A) =∑n
m=0 P (Tm ∈ A) and

Hn(t) =
∫ t

0
h(t − s) dUn(s) =

n∑
m=0

(
h ∗ Fm∗) (t)

Here, Fm∗ is the distribution of Tm, and we have extended the definition of h by
setting h(r) = 0 for r < 0. From the last expression, it should be clear that

Hn+1 = h + Hn ∗ F

The fact that U (t) < ∞ implies U (t) − Un(t) → 0. Since h is bounded,

|Hn(t) − H (t)| ≤ ‖h‖∞|U (t) − Un(t)|
and Hn(t) → H (t) uniformly on bounded intervals. To estimate the convolution,
we note that

|Hn ∗ F (t) − H ∗ F (t)| ≤ sup
s≤t

|Hn(s) − H (s)|

≤ ‖h‖∞|U (t) − Un(t)|
since U − Un =∑∞

m=n+1 Fm∗ is increasing in t . Letting n → ∞ in Hn+1 = h +
Hn ∗ F , we see that H is a solution of the renewal equation that is bounded on
bounded intervals.

To prove uniqueness, we observe that if H1 and H2 are two solutions, then
K = H1 − H2 satisfies K = K ∗ F . If K is bounded on bounded intervals, iterating
gives K = K ∗ Fn∗ → 0 as n → ∞, so H1 = H2. �

The proof of Theorem 4.4.4 is valid when F (∞) = P (ξi < ∞) < 1. In this case,
we have a terminating renewal process. After a geometric number of trials with
mean 1/(1 − F (∞)), Tn = ∞. This “trivial case” has some interesting applications.

Example 4.4.5. Pedestrian delay. A chicken wants to cross a road (we won’t ask
why) on which the traffic is a Poisson process with rate λ. She needs one unit
of time with no arrival to safely cross the road. Let M = inf{t ≥ 0 : there are no
arrivals in (t, t + 1]} be the waiting time until she starts to cross the street. By
considering the time of the first arrival, we see that H (t) = P (M ≤ t) satisfies

H (t) = e−λ +
∫ 1

0
H (t − y) λe−λy dy
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Comparing with Example 4.4.1 and using Theorem 4.4.4, we see that

H (t) = e−λ

∞∑
n=0

Fn∗(t)

We could have gotten this answer without renewal theory by noting

P (M ≤ t) =
∞∑

n=0

P (Tn ≤ t, Tn+1 = ∞)

The last representation allows us to compute the mean of M . Let µ be the mean of
the interarrival time given that it is < 1, and note that the lack of memory property
of the exponential distribution implies

µ =
∫ 1

0
xλe−λx dx =

∫ ∞

0
−
∫ ∞

1
= 1

λ
−
(

1 + 1

λ

)
e−λ

Then, by considering the number of renewals in our terminating renewal process,

EM =
∞∑

n=0

e−λ(1 − e−λ)nnµ = (eλ − 1)µ

since if X is a geometric with success probability e−λ, then EM = µE(X − 1).

Example 4.4.6. Cramér’s estimates of ruin. Consider an insurance company that
collects money at rate c and experiences i.i.d. claims at the arrival times of a Poisson
process Nt with rate 1. If its initial capital is x, its wealth at time t is

Wx(t) = x + ct −
Nt∑

m=1

Yi

Here Y1, Y2, . . . are i.i.d. with distribution G and mean µ. Let

R(x) = P (Wx(t) ≥ 0 for all t)

be the probability of never going bankrupt starting with capital x. By considering
the time and size of the first claim:

(a) R(x) =
∫ ∞

0
e−s

∫ x+cs

0
R(x + cs − y) dG(y) ds

This does not look much like a renewal equation, but with some ingenuity it can
be transformed into one. Changing variables t = x + cs,

R(x)e−x/c =
∫ ∞

x

e−t/c

∫ t

0
R(t − y) dG(y)

dt

c

Differentiating w.r.t. x and then multiplying by ex/c,

R′(x) = 1

c
R(x) −

∫ x

0
R(x − y) dG(y) · 1

c
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Integrating x from 0 to w,

(b) R(w) − R(0) = 1

c

∫ w

0
R(x) dx − 1

c

∫ w

0

∫ x

0
R(x − y) dG(y) dx

Interchanging the order of integration in the double integral, letting

S(w) =
∫ w

0
R(x) dx

using dG = −d(1 − G), and then integrating by parts,

−1

c

∫ w

0

∫ w

y

R(x − y)dx dG(y) = −1

c

∫ w

0
S(w − y) dG(y)

= 1

c

∫ w

0
S(w − y) d(1 − G)(y)

= 1

c

{
−S(w) +

∫ w

0
(1 − G(y))R(w − y) dy

}

Plugging this into (b), we finally have a renewal equation:

(c) R(w) = R(0) +
∫ w

0
R(w − y)

1 − G(y)

c
dy

It took some cleverness to arrive at the last equation, but it is straightforward to
analyze. First, we dismiss a trivial case. If µ > c,

1

t

(
ct −

Nt∑
m=1

Yi

)
→ c − µ < 0 a.s.

so R(x) ≡ 0. When µ < c,

F (x) =
∫ x

0

1 − G(y)

c
dy

is a defective probability distribution with F (∞) = µ/c. Our renewal equation can
be written as

(d) R = R(0) + R ∗ F

so comparing with Example 4.4.1 and using Theorem 4.4.4 tells us R(w) =
R(0)U (w). To complete the solution, we have to compute the constant R(0).
Letting w → ∞ and noticing R(w) → 1, U (w) → (1 − F (∞))−1 = (1 − µ/c)−1,
we have R(0) = 1 − µ/c.

The basic fact about solutions of the renewal equation (in the nonterminating
case) is:

Theorem 4.4.5. The renewal theorem. If F is nonarithmetic and h is directly
Riemann integrable then as t → ∞

H (t) → 1

µ

∫ ∞

0
h(s) ds
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Intuitively, this holds since Theorem 4.4.4 implies

H (t) =
∫ t

0
h(t − s) dU (s)

and Theorem 4.4.3 implies dU (s) → ds/µ as s → ∞. We will define directly
Riemann integrable in a minute. We will start doing the proof and then figure out
what we need to assume.

Proof. Suppose

h(s) =
∞∑

k=0

ak1[kδ,(k+1)δ)(s)

where
∑∞

k=0 |ak| < ∞. Since U ([t, t + δ]) ≤ U ([0, δ]) < ∞, it follows easily
from Theorem 4.4.3 that∫ t

0
h(t − s)dU (s) =

∞∑
k=0

akU ((t − (k + 1)δ, t − kδ]) → 1

µ

∞∑
k=0

akδ

(Pick K so that
∑

k≥K |ak| ≤ ε/2U ([0, δ]) and then T so that

|ak| · |U ((t − (k + 1)δ, t − kδ]) − δ/µ| ≤ ε

2K

for t ≥ T and 0 ≤ k < K.) If h is an arbitrary function on [0, ∞), we let

I δ =
∞∑

k=0

δ sup{h(x) : x ∈ [kδ, (k + 1)δ)}

Iδ =
∞∑

k=0

δ inf{h(x) : x ∈ [kδ, (k + 1)δ)}

be upper and lower Riemann sums approximating the integral of h over [0, ∞).
Comparing h with the obvious upper and lower bounds that are constant on [kδ, (k +
1)δ) and using the result for the special case,

Iδ

µ
≤ lim inf

t→∞

∫ t

0
h(t − s) dU (s) ≤ lim sup

t→∞

∫ t

0
h(t − s) dU (s) ≤ I δ

µ

If I δ and Iδ both approach the same finite limit I as δ → 0, then h is said to be
directly Riemann integrable, and it follows that∫ t

0
h(t − s) dU (y) → I/µ �

Remark. The word “direct” in the name refers to the fact that although the Riemann
integral over [0, ∞) is usually defined as the limit of integrals over [0, a], we are
approximating the integral over [0, ∞) directly.

In checking the new hypothesis in Theorem 4.4.5, the following result is useful.

Lemma 4.4.6. If h(x) ≥ 0 is decreasing with h(0) < ∞ and
∫∞

0 h(x) dx < ∞,
then h is directly Riemann integrable.
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Proof. Because h is decreasing, I δ =∑∞
k=0 δh(kδ) and Iδ =∑∞

k=0 δh((k + 1)δ).
So

I δ ≥
∫ ∞

0
h(x) dx ≥ Iδ = I δ − h(0)δ

proving the desired result. �

The last result suffices for all our applications, so we leave it to the reader to do.

Exercise 4.4.4. If h ≥ 0 is continuous, then h is directly Riemann integrable if and
only if I δ < ∞ for some δ > 0 (and hence for all δ > 0).

Returning now to our examples, we skip the first two because, in those cases,
h(t) → 1 as t → ∞, so h is not integrable in any sense.

Example 4.4.7. Continuation of Example 4.4.3. h(t) = 1
µ

∫
[t,∞) 1 − F (s) ds. h

is decreasing, h(0) = 1, and

µ

∫ ∞

0
h(t) dt =

∫ ∞

0

∫ ∞

t

1 − F (s) ds dt

=
∫ ∞

0

∫ s

0
1 − F (s) dt ds =

∫ ∞

0
s(1 − F (s)) ds = E(ξ 2

i /2)

So, if ν ≡ E(ξ 2
i ) < ∞, it follows from Lemma 4.4.6, Theorem 4.4.5, and the

formula in Example 4.4.3 that

0 ≤ U (t) − t/µ → ν/2µ2 as t → ∞
When the renewal process is a rate λ Poisson process, that is, P (ξi > t) = e−λt ,
N (t) − 1 has a Poisson distribution with mean λt , so U (t) = 1 + λt . According to
Feller, Vol. II (1971), p. 385, if the ξi are uniform on (0,1), then

U (t) =
n∑

k=0

(−1)ket−k(t − k)k/k! for n ≤ t ≤ n + 1

As he says, the exact expression “reveals little about the nature of U . The asymptotic
formula 0 ≤ U (t) − 2t → 2/3 is much more interesting.”

Example 4.4.8. Continuation of Example 4.4.4. h(t) = 1 − F (t + x). Again, h is
decreasing, but this time h(0) ≤ 1 and the integral of h is finite when µ = E(ξi) <

∞. Applying Lemma 4.4.6 and Theorem 4.4.5 now gives

P (TN (t) − t > x) → 1

µ

∫ ∞

0
h(s) ds = 1

µ

∫ ∞

x

1 − F (t) dt

so (when µ < ∞) the distribution of the residual waiting time TN (t) − t converges
to the delay distribution that produces the stationary renewal process. This fact also
follows from our proof of 4.4.3.
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Using the method employed to study Example 4.4.4, one can analyze various
other aspects of the asymptotic behavior of renewal processes. To avoid repeating
ourselves:

We assume throughout that F is nonarithmetic, and in problems where the mean
appears we assume it is finite.

Exercise 4.4.5. Let At = t − TN (t)−1 be the “age” at time t , that is, the amount of
time since the last renewal. If we fix x > 0, then H (t) = P (At > x) satisfies the
renewal equation

H (t) = (1 − F (t)) · 1(x,∞)(t) +
∫ t

0
H (t − s) dF (s)

so P (At > x) → 1
µ

∫
(x,∞)(1 − F (t))dt , which is the limit distribution for the resid-

ual lifetime Bt = TN (t) − t .

Remark. The last result can be derived from Example 4.4.4 by noting that if
t > x, then P (At ≥ x) = P (Bt−x > x) = P ( no renewal in (t − x, t]). To check
the placement of the strict inequality, recall that Nt = inf{k : Tk > t}, so we always
have As ≥ 0 and Bs > 0.

Exercise 4.4.6. Use the renewal equation in the last problem and Theorem 4.4.4 to
conclude that if T is a rate λ Poisson process At has the same distribution as ξi ∧ t.

Exercise 4.4.7. Let At = t − TN (t)−1 and Bt = TN (t) − t . Show that

P (At > x, Bt > y) → 1

µ

∫ ∞

x+y

(1 − F (t)) dt

Exercise 4.4.8. Alternating renewal process. Let ξ1, ξ2, . . . > 0 be i.i.d. with
distribution F1, and let η1, η2, . . . > 0 be i.i.d. with distribution F2. Let T0 = 0,
and for k ≥ 1, let Sk = Tk−1 + ξk and Tk = Sk + ηk. In words, we have a machine
that works for an amount of time ξk, breaks down, and then requires ηk units of
time to be repaired. Let F = F1 ∗ F2, and let H (t) be the probability the machine
is working at time t . Show that if F is nonarithmetic then, as t → ∞

H (t) → µ1/(µ1 + µ2)

where µi is the mean of Fi.

Exercise 4.4.9. Write a renewal equation for H (t) = P (number of renewals in
[0, t] is odd) and use the renewal theorem to show that H (t) → 1/2. Note: This is
a special case of the previous exercise.
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Exercise 4.4.10. Renewal densities. Show that if F (t) has a directly Riemann
integrable density function f (t), then the V = U − 1[0,∞) has a density v that
satisfies

v(t) = f (t) +
∫ t

0
v(t − s) dF (s)

Use the renewal theorem to conclude that if f is directly Riemann integrable, then
v(t) → 1/µ as t → ∞.

Finally, we have an example that would have been given right after Theorem
4.4.1 but was delayed because we had not yet defined a delayed renewal process.

Example 4.4.9. Patterns in coin tossing. Let Xn, n ≥ 1 take values H and T with
probability 1/2 each. Let T0 = 0 and Tm = inf{n > Tm−1 : (Xn, . . . , Xn+k−1) =
(i1, . . . , ik)}, where (i1, . . . , ik) is some pattern of heads and tails. It is easy to see
that the Tj form a delayed renewal process, that is, tj = Tj − Tj−1 are independent
for j ≥ 1 and identically distributed for j ≥ 2. To see that the distribution of
t1 may be different, let (i1, i2, i3) = (H, H, H ). In this case, P (t1 = 1) = 1/8,
P (t2 = 1) = 1/2.

Exercise 4.4.11.
(i) Show that for any pattern of length k, Etj = 2k for j ≥ 2.

(ii) Compute Et1 when the pattern is HH, and when it is HT. Hint: For HH, observe

Et1 = P (HH ) + P (HT )E(t1 + 2) + P (T )E(t1 + 1)
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Martingales

A martingale Xn can be thought of as the fortune at time n of a player who is betting
on a fair game; submartingales (supermartingales) as the outcome of betting on
a favorable (unfavorable) game. There are two basic facts about martingales. The
first is that you cannot make money betting on them (see Theorem 5.2.5), and
in particular if you choose to stop playing at some bounded time N , then your
expected winnings EXN are equal to your initial fortune X0. (We are supposing
for the moment that X0 is not random.) Our second fact, Theorem 5.2.8, concerns
submartingales. To use a heuristic we learned from Mike Brennan, “They are the
stochastic analogues of nondecreasing sequences and so if they are bounded above
(to be precise, supn EX+

n < ∞) they converge almost surely.” As the material in
Section 5.3 shows, this result has diverse applications. Later sections give sufficient
conditions for martingales to converge in Lp, p > 1 (Section 5.4) and in L1 (Sec-
tion 5.5); consider martingales indexed by n ≤ 0 (Section 5.6); and give sufficient
conditions for EXN = EX0 to hold for unbounded stopping times (Section 5.7).
The last result is quite useful for studying the behavior of random walks and other
systems.

5.1 Conditional Expectation

We begin with a definition that is important for this chapter and the next one. After
giving the definition, we will consider several examples to explain it. Given are
a probability space (�,Fo, P ), a σ -field F ⊂ Fo, and a random variable X ∈ Fo

with E|X| < ∞. We define the conditional expectation of X given F , E(X|F),
to be any random variable Y that has

(i) Y ∈ F , that is, is F measurable, and
(ii) for all A ∈ F ,

∫
A

X dP = ∫
A

Y dP .

Any Y satisfying (i) and (ii) is said to be a version of E(X|F). The first thing to
be settled is that the conditional expectation exists and is unique. We tackle the
second claim first, but start with a technical point.

221
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Lemma 5.1.1. If Y satisfies (i) and (ii), then it is integrable.

Proof. Letting A = {Y > 0} ∈ F , using (ii) twice, and then adding∫
A

Y dP =
∫

A

X dP ≤
∫

A

|X| dP

∫
Ac

−Y dP =
∫

Ac

−X dP ≤
∫

Ac

|X| dP

So we have E|Y | ≤ E|X|. �

Uniqueness. If Y ′ also satisfies (i) and (ii), then∫
A

Y dP =
∫

A

Y ′ dP for all A ∈ F

Taking A = {Y − Y ′ ≥ ε > 0}, we see

0 =
∫

A

X − X dP =
∫

A

Y − Y ′ dP ≥ εP (A)

so P (A) = 0. Since this holds for all ε, we have Y ≤ Y ′ a.s., and interchanging
the roles of Y and Y ′, we have Y = Y ′ a.s. Technically, all equalities such as
Y = E(X|F) should be written as Y = E(X|F) a.s., but we have ignored this
point in previous chapters and will continue to do so.

Exercise 5.1.1. Generalize the last argument to show that if X1 = X2 on B ∈ F
then E(X1|F) = E(X2|F) a.s. on B.

Existence. To start, we recall ν is said to be absolutely continuous with respect to
µ (abbreviated ν << µ) if µ(A) = 0 implies ν(A) = 0, and we use Theorem A.4.6:

Radon-Nikodym theorem. Let µ and ν be σ -finite measures on (�,F). If ν << µ,
there is a function f ∈ F so that for all A ∈ F ,∫

A

f dµ = ν(A)

f is usually denoted dν/dµ and called the Radon-Nikodym derivative.

The last theorem easily gives the existence of conditional expectation. Suppose
first that X ≥ 0. Let µ = P and

ν(A) =
∫

A

X dP for A ∈ F

The dominated convergence theorem implies ν is a measure (see Exercise 1.5.4),
and the definition of the integral implies ν << µ. The Radon- Nikodym derivative
dν/dµ ∈ F and for any A ∈ F has∫

A

X dP = ν(A) =
∫

A

dν

dµ
dP
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Taking A = �, we see that dν/dµ ≥ 0 is integrable, and we have shown that
dν/dµ is a version of E(X|F).

To treat the general case now, write X = X+ − X−, let Y1 = E(X+|F) and
Y2 = E(X−|F). Now Y1 − Y2 ∈ F is integrable, and for all A ∈ F we have∫

A

X dP =
∫

A

X+ dP −
∫

A

X− dP

=
∫

A

Y1 dP −
∫

A

Y2 dP =
∫

A

(Y1 − Y2) dP

This shows Y1 − Y2 is a version of E(X|F) and completes the proof. �

5.1.1 Examples

Intuitively, we think of F as describing the information we have at our disposal –
for each A ∈ F , we know whether or not A has occurred. E(X|F) is then our “best
guess” of the value of X given the information we have. Some examples should help
to clarify this and connect E(X|F) with other definitions of conditional expectation.

Example 5.1.1. If X ∈ F , then E(X|F) = X; that is, if we know X, then our “best
guess” is X itself. Since X always satisfies (ii), the only thing that can keep X from
being E(X|F) is condition (i). A special case of this example is X = c, where c is
a constant.

Example 5.1.2. At the other extreme from perfect information is no information.
Suppose X is independent of F , that is, for all B ∈ R and A ∈ F ,

P ({X ∈ B} ∩ A) = P (X ∈ B)P (A)

We claim that, in this case, E(X|F) = EX; that is, if you don’t know anything
about X, then the best guess is the mean EX. To check the definition, note that
EX ∈ F so (i). To verify (ii), we observe that if A ∈ F , then since X and 1A ∈ F
are independent, Theorem 2.1.9 implies∫

A

X dP = E(X1A) = EX E1A =
∫

A

EX dP

The reader should note that here and in what follows the game is “guess and verify.”
We come up with a formula for the conditional expectation and then check that it
satisfies (i) and (ii).

Example 5.1.3. In this example, we relate the new definition of conditional expec-
tation to the first one taught in an undergraduate probability course. Suppose
�1, �2, . . . is a finite or infinite partition of � into disjoint sets, each of which has
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positive probability, and let F = σ (�1, �2, . . .) be the σ -field generated by these
sets. Then

E(X|F) = E(X; �i)

P (�i)
on �i

In words, the information in �i tells us which element of the partition our outcome
lies in, and given this information, the best guess for X is the average value of
X over �i . To prove our guess is correct, observe that the proposed formula is
constant on each �i , so it is measurable with respect to F . To verify (ii), it is
enough to check the equality for A = �i , but this is trivial:∫

�i

E(X; �i)

P (�i)
dP = E(X; �i) =

∫
�i

X dP

A degenerate but important special case is F = {∅, �}, the trivial σ -field. In this
case, E(X|F) = EX.

To continue the connection with undergraduate notions, let

P (A|G) = E(1A|G)

P (A|B) = P (A ∩ B)/P (B)

and observe that in the last example P (A|F) = P (A|�i) on �i.

Exercise 5.1.2. Bayes’ formula. Let G ∈ G and show that

P (G|A) =
∫

G

P (A|G) dP

/∫
�

P (A|G) dP

When G is the σ -field generated by a partition, this reduces to the usual Bayes’
formula

P (Gi |A) = P (A|Gi)P (Gi)

/∑
j

P (A|Gj )P (Gj )

The definition of conditional expectation given a σ -field contains conditioning
on a random variable as a special case. We define

E(X|Y ) = E(X|σ (Y ))

where σ (Y ) is the σ -field generated by Y .

Example 5.1.4. To continue making connection with definitions of conditional
expectation from undergraduate probability, suppose X and Y have joint density
f (x, y), that is,

P ((X, Y ) ∈ B) =
∫

B

f (x, y) dx dy for B ∈ R2
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and suppose for simplicity that
∫

f (x, y) dx > 0 for all y. We claim that in this
case, if E|g(X)| < ∞ then E(g(X)|Y ) = h(Y ), where

h(y) =
∫

g(x)f (x, y) dx

/∫
f (x, y) dx

To “guess” this formula, note that treating the probability densities P (Y = y) as if
they were real probabilities

P (X = x|Y = y) = P (X = x, Y = y)

P (Y = y)
= f (x, y)∫

f (x, y) dx

so, integrating against the conditional probability density, we have

E(g(X)|Y = y) =
∫

g(x)P (X = x|Y = y) dx

To “verify” the proposed formula now, observe h(Y ) ∈ σ (Y ) so (i) holds. To check
(ii), observe that if A ∈ σ (Y ) then A = {ω : Y (ω) ∈ B} for some B ∈ R, so

E(h(Y ); A) =
∫

B

∫
h(y)f (x, y) dx dy =

∫
B

∫
g(x)f (x, y) dx dy

= E(g(X)1B(Y )) = E(g(X); A)

Remark. To drop the assumption that
∫

f (x, y) dx > 0, define h by

h(y)
∫

f (x, y) dx =
∫

g(x)f (x, y) dx

(i.e., h can be anything where
∫

f (x, y) dx = 0), and observe that this is enough
for the proof.

Example 5.1.5. Suppose X and Y are independent. Let ϕ be a function with
E|ϕ(X, Y )| < ∞ and let g(x) = E(ϕ(x, Y )). We will now show that

E(ϕ(X, Y )|X) = g(X)

Proof. It is clear that g(X) ∈ σ (X). To check (ii), note that if A ∈ σ (X), then
A = {X ∈ C}, so using the change of variables formula (Theorem 1.6.9) and the
fact that the distribution of (X, Y ) is product measure (Theorem 2.1.7), then the
definition of g, and change of variables again,∫

A

φ(X, Y ) dP = E{φ(X, Y )1C(X)}

=
∫∫

φ(x, y)1C(x) ν(dy) µ(dx)

=
∫

1C(x)g(x) µ(dx) =
∫

A

g(X) dP

which proves the desired result. �
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Example 5.1.6. Borel’s paradox. Let X be a randomly chosen point on the earth,
let θ be its longitude, and ϕ be its latitude. It is customary to take θ ∈ [0, 2π )
and ϕ ∈ (−π/2, π/2] but we can equally well take θ ∈ [0, π ) and ϕ ∈ (−π, π ]. In
words, the new longitude specifies the great circle on which the point lies and then
ϕ gives the angle.

At first glance it might seem that if X is uniform on the globe, then θ and the
angle ϕ on the great circle should both be uniform over their possible values. θ is
uniform, but ϕ is not. The paradox completely evaporates once we realize that in
the new or in the traditional formulation ϕ is independent of θ , so the conditional
distribution is the unconditional one, which is not uniform since there is more land
near the equator than near the North Pole.

5.1.2 Properties

Conditional expectation has many of the same properties that ordinary expectation
does.

Theorem 5.1.2. (a) Conditional expectation is linear:

E(aX + Y |F) = aE(X|F) + E(Y |F) (5.1.1)

(b) If X ≤ Y , then

E(X|F) ≤ E(Y |F). (5.1.2)

(c) If Xn ≥ 0 and Xn ↑ X with EX < ∞, then

E(Xn|F) ↑ E(X|F) (5.1.3)

Remark. By applying the last result to Y1 − Yn, we see that if Yn ↓ Y and we have
E|Y1|, E|Y | < ∞, then E(Yn|F) ↓ E(Y |F).

Proof. To prove (a), we need to check that the right-hand side is a version of the
left. It clearly is F-measurable. To check (ii), we observe that if A ∈ F , then by
linearity of the integral and the defining properties of E(X|F) and E(Y |F),∫

A

{aE(X|F) + E(Y |F)} dP = a

∫
A

E(X|F) dP +
∫

A

E(Y |F) dP

= a

∫
A

X dP +
∫

A

Y dP =
∫

A

aX + Y dP

which proves (5.1.1).
Using the definition∫

A

E(X|F) dP =
∫

A

X dP ≤
∫

A

Y dP =
∫

A

E(Y |F) dP

Letting A = {E(X|F) − E(Y |F) ≥ ε > 0}, we see that the indicated set has prob-
ability 0 for all ε > 0, and we have proved (5.1.2).
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Let Yn = X − Xn. It suffices to show that E(Yn|F) ↓ 0. Since Yn ↓, (5.1.2)
implies Zn ≡ E(Yn|F) ↓ a limit Z∞. If A ∈ F , then∫

A

Zn dP =
∫

A

Yn dP

Letting n → ∞, noting Yn ↓ 0, and using the dominated convergence theorem
gives that

∫
A

Z∞ dP = 0 for all A ∈ F , so Z∞ ≡ 0. �

Exercise 5.1.3. Prove Chebyshev’s inequality. If a > 0, then

P (|X| ≥ a|F) ≤ a−2E(X2|F)

Exercise 5.1.4. Suppose X ≥ 0 and EX = ∞. (There is nothing to prove when
EX < ∞.) Show there is a unique F-measurable Y with 0 ≤ Y ≤ ∞ so that∫

A

X dP =
∫

A

Y dP for all A ∈ F

Hint: Let XM = X ∧ M , YM = E(XM |F), and let M → ∞.

Theorem 5.1.3. If ϕ is convex and E|X|, E|ϕ(X)| < ∞, then

ϕ(E(X|F)) ≤ E(ϕ(X)|F) (5.1.4)

Proof. If ϕ is linear, the result is trivial, so we will suppose ϕ is not linear. We
do this so that if we let S = {(a, b) : a, b ∈ Q, ax + b ≤ ϕ(x) for all x}, then
ϕ(x) = sup{ax + b : (a, b) ∈ S}. See the proof of Theorem 1.6.2 for more details.
If ϕ(x) ≥ ax + b, then (5.1.2) and (5.1.1) imply

E(ϕ(X)|F) ≥ a E(X|F) + b a.s.

Taking the sup over (a, b) ∈ S gives

E(ϕ(X)|F) ≥ ϕ(E(X|F)) a.s.

which proves the desired result. �

Remark. Here we have written a.s. by the inequalities to stress that there is an
exceptional set for each a, b, so we have to take the sup over a countable set.

Exercise 5.1.5. Imitate the proof in the remark after Theorem 1.5.2 to prove the
conditional Cauchy-Schwarz inequality.

E(XY |G)2 ≤ E(X2|G)E(Y 2|G)

Theorem 5.1.4. Conditional expectation is a contraction in Lp, p ≥ 1.

Proof. (5.1.4) implies |E(X|F)|p ≤ E(|X|p|F). Taking expected values gives

E(|E(X|F)|p) ≤ E(E(|X|p|F)) = E|X|p �
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In the last equality, we have used an identity that is an immediate consequence
of the definition (use property (ii) in the definition with A = �).

E(E(Y |F)) = E(Y ) (5.1.5)

Conditional expectation also has properties, like (5.1.5), that have no analogue
for “ordinary” expectation.

Theorem 5.1.5. If F ⊂ G and E(X|G) ∈ F , then E(X|F) = E(X|G).

Proof. By assumption, E(X|G) ∈ F . To check the other part of the definition, we
note that if A ∈ F ⊂ G, then∫

A

X dP =
∫

A

E(X|G dP �

Theorem 5.1.6. If F1 ⊂ F2, then (i) E(E(X|F1)|F2) = E(X|F1),
(ii) E(E(X|F2)|F1) = E(X|F1).

In words, the smaller σ -field always wins. As the proof will show, the first equality
is trivial. The second is easy to prove, but in combination with Theorem 5.1.7 is a
powerful tool for computing conditional expectations. I have seen it used several
times to prove results that are false.

Proof. Once we notice that E(X|F1) ∈ F2, (i) follows from Example 5.1.1. To
prove (ii), notice that E(X|F1) ∈ F1, and if A ∈ F1 ⊂ F2, then∫

A

E(X|F1) dP =
∫

A

X dP =
∫

A

E(X|F2) dP �

Exercise 5.1.6. Give an example on � = {a, b, c} in which

E(E(X|F1)|F2) �= E(E(X|F2)|F1)

The next result shows that for conditional expectation with respect to F , random
variables X ∈ F are like constants. They can be brought outside the “integral.”

Theorem 5.1.7. If X ∈ F and E|Y |, E|XY | < ∞, then

E(XY |F) = XE(Y |F).

Proof. The right-hand side ∈ F , so we have to check (ii). To do this, we use
the usual four-step procedure. First, suppose X = 1B with B ∈ F . In this case, if
A ∈ F ,∫

A

1BE(Y |F) dP =
∫

A∩B

E(Y |F) dP =
∫

A∩B

Y dP =
∫

A

1BY dP
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so (ii) holds. The last result extends to simple X by linearity. If X, Y ≥ 0, let Xn

be simple random variables that ↑ X, and use the monotone convergence theorem
to conclude that ∫

A

XE(Y |F) dP =
∫

A

XY dP

To prove the result in general, split X and Y into their positive and negative
parts. �

Exercise 5.1.7. Show that when E|X|, E|Y |, and E|XY | are finite, each statement
implies the next one, and give examples with X, Y ∈ {−1, 0, 1} a.s. that show the
reverse implications are false: (i) X and Y are independent, (ii) E(Y |X) = EY ,
(iii) E(XY ) = EXEY .
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0

↑
E(X|F)

L2(F)

X

Figure 5.1. Conditional expectation as projection in L2.

Theorem 5.1.8. Suppose EX2 < ∞. E(X|F) is the variable Y ∈ F that minimizes
the “mean square error” E(X − Y )2.

Remark. This result gives a “geometric interpretation” of E(X|F) (see Figure 5.1).
L2(Fo) = {Y ∈ Fo : EY 2 < ∞} is a Hilbert space, and L2(F) is a closed subspace.
In this case, E(X|F) is the projection of X onto L2(F). That is, the point in the
subspace closest to X.

Proof. We begin by observing that if Z ∈ L2(F), then Theorem 5.1.7 implies

ZE(X|F) = E(ZX|F)

(E|XZ| < ∞ by the Cauchy-Schwarz inequality.) Taking expected values gives

E(ZE(X|F)) = E(E(ZX|F)) = E(ZX)

or, rearranging,

E[Z(X − E(X|F))] = 0 for Z ∈ L2(F)

If Y ∈ L2(F) and Z = E(X|F) − Y , then

E(X − Y )2 = E{X − E(X|F) + Z}2 = E{X − E(X|F)}2 + EZ2
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since the cross-product term vanishes. From the last formula, it is easy to see
E(X − Y )2 is minimized when Z = 0. �

Exercise 5.1.8. Show that if G ⊂ F and EX2 < ∞, then

E({X − E(X|F)}2) + E({E(X|F) − E(X|G)}2) = E({X − E(X|G)}2)

Dropping the second term on the left, we get an inequality that says geometrically,
the larger the subspace, the closer the projection is, or statistically, more informa-
tion means a smaller mean square error. An important special case occurs when
G = {∅, �}.

Exercise 5.1.9. Let var (X|F) = E(X2|F) − E(X|F)2. Show that

var (X) = E( var (X|F)) + var (E(X|F))

Exercise 5.1.10. Let Y1, Y2, . . . be i.i.d. with mean µ and variance σ 2, N an inde-
pendent positive integer valued r.v. with EN2 < ∞ and X = Y1 + · · · + YN . Show
that var (X) = σ 2 EN + µ2 var (N ). To understand and help remember the for-
mula, think about the two special cases in which N or Y is constant.

Exercise 5.1.11. Show that if X and Y are random variables with E(Y |G) = X

and EY 2 = EX2 < ∞, then X = Y a.s.

Exercise 5.1.12. The result in the last exercise implies that if EY 2 < ∞ and
E(Y |G) has the same distribution as Y , then E(Y |G) = Y a.s. Prove this under the
assumption E|Y | < ∞. Hint: The trick is to prove that sgn (X) = sgn (E(X|G))
a.s., and then take X = Y − c to get the desired result.

5.1.3 Regular Conditional Probabilities*

Let (�,F, P ) be a probability space, X : (�,F) → (S,S) a measurable map,
and G a σ -field ⊂ F . µ : � × S → [0, 1] is said to be a regular conditional
distribution for X given G if

(i) For each A, ω → µ(ω, A) is a version of P (X ∈ A|G).
(ii) For a.e. ω, A → µ(ω, A) is a probability measure on (S,S).

When S = � and X is the identity map, µ is called a regular conditional
probability.

Exercise 5.1.13. Continuation of Example 1.4. Suppose X and Y have a joint
density f (x, y) > 0. Let

µ(y, A) =
∫

A

f (x, y) dx

/∫
f (x, y) dx

Show that µ(Y (ω), A) is a r.c.d. for X given σ (Y ).
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Regular conditional distributions are useful because they allow us to simultane-
ously compute the conditional expectation of all functions of X and to generalize
properties of ordinary expectation in a more straightforward way.

Exercise 5.1.14. Let µ(ω, A) be a r.c.d. for X givenF , and let f : (S,S) → (R,R)
have E|f (X)| < ∞. Start with simple functions and show that

E(f (X)|F) =
∫

µ(ω, dx)f (x) a.s.

Exercise 5.1.15. Use regular conditional probability to get the conditional Hölder
inequality from the unconditional one, that is, show that if p, q ∈ (1, ∞) with
1/p + 1/q = 1 then

E(|XY ||G) ≤ E(|X|p|G)1/pE(|Y |q |G)1/q

Unfortunately, r.c.d.’s do not always exist. The first example was due to
Dieudonné (1948). See Doob (1953), p. 624, or Faden (1985) for more recent
developments. Without going into the details of the example, it is easy to see the
source of the problem. If A1, A2, . . . are disjoint, then (5.1.1) and (5.1.3) imply

P (X ∈ ∪nAn|G) =
∑

n

P (X ∈ An|G) a.s.

but if S contains enough countable collections of disjoint sets, the exceptional sets
may pile up. Fortunately,

Theorem 5.1.9. r.c.d.’s exist if (S,S) is nice.

Proof. By definition, there is a 1-1 map ϕ : S → R so that ϕ and ϕ−1 are measur-
able. Using monotonicity (5.1.2) and throwing away a countable collection of null
sets, we find there is a set �o with P (�o) = 1 and a family of random variables
G(q, ω), q ∈ Q so that q → G(q, ω) is nondecreasing and ω → G(q, ω) is a ver-
sion of P (ϕ(X) ≤ q|G). Let F (x, ω) = inf{G(q, ω) : q > x}. The notation may
remind the reader of the proof of Theorem 3.2.6. The argument given there shows
F is a distribution function. Since G(qn, ω) ↓ F (x, ω), the remark after Theorem
5.1.2 implies that F (x, ω) is a version of P (ϕ(X) ≤ x|G).

Now, for each ω ∈ �o, there is a unique measure ν(ω, ·) on (R,R) so that
ν(ω, (−∞, x]) = F (x, ω). To check that for each B ∈ R , ν(ω, B) is a version of
P (ϕ(X) ∈ B|G), we observe that the class of B for which this statement is true
(this includes the measurability of ω → ν(ω, B)) is a λ-system that contains all
sets of the form (a1, b1] ∪ · · · (ak, bk] where −∞ ≤ ai < bi ≤ ∞, so the desired
result follows from the π − λ theorem. To extract the desired r.c.d., notice that if
A ∈ S and B = ϕ(A), then B = (ϕ−1)−1(A) ∈ R, and set µ(ω, A) = ν(ω, B). �

The following generalization of Theorem 5.1.9 will be needed in Section 6.1.
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Exercise 5.1.16. Suppose X and Y take values in a nice space (S,S) andG = σ (Y ).
There is a function µ : S × S → [0, 1] so that
(i) for each A, µ(Y (ω), A) is a version of P (X ∈ A|G)

(ii) for a.e. ω, A → µ(Y (ω), A) is a probability measure on (S,S).

5.2 Martingales, Almost Sure Convergence

In this section we will define martingales and their cousins supermartingales and
submartingales, and take the first steps in developing their theory. Let Fn be a
filtration, that is, an increasing sequence of σ -fields. A sequence Xn is said to be
adapted to Fn if Xn ∈ Fn for all n. If Xn is sequence with

(i) E|Xn| < ∞,
(ii) Xn is adapted to Fn,

(iii) E(Xn+1|Fn) = Xn for all n,

then X is said to be a martingale (with respect to Fn). If in the last definition, =
is replaced by ≤ or ≥, then X is said to be a supermartingale or submartingale,
respectively.

Example 5.2.1. Simple random walk. Consider the successive tosses of a fair
coin and let ξn = 1 if the nth toss is heads and ξn = −1 if the nth toss is tails. Let
Xn = ξ1 + · · · + ξn and Fn = σ (ξ1, . . . , ξn) for n ≥ 1, X0 = 0 and F0 = {∅, �}. I
claim that Xn, n ≥ 0, is a martingale with respect to Fn. To prove this, we observe
that Xn ∈ Fn, E|Xn| < ∞, and ξn+1 is independent of Fn, so using the linearity of
conditional expectation, (5.1.1), and Example 5.1.2,

E(Xn+1|Fn) = E(Xn|Fn) + E(ξn+1|Fn) = Xn + Eξn+1 = Xn

Note that, in this example, Fn = σ (X1, . . . , Xn) and Fn is the smallest filtration
that Xn is adapted to. In what follows, when the filtration is not mentioned, we will
take Fn = σ (X1, . . . , Xn).

Exercise 5.2.1. Suppose Xn is a martingale w.r.t. Gn and let Fn = σ (X1, . . . , Xn).
Then Gn ⊃ Fn and Xn is a martingale w.r.t. Fn.

Example 5.2.2. Superharmonic functions. If the coin tosses considered above
have P (ξn = 1) ≤ 1/2 then the computation just completed shows E(Xn+1|Fn) ≤
Xn, i.e., Xn is a supermartingale. In this case, Xn corresponds to betting on an
unfavorable game so there is nothing “super” about a supermartingale. The name
comes from the fact that if f is superharmonic (i.e., f has continuous derivatives
of order ≤ 2 and ∂2f/∂x2

1 + · · · + ∂2f/∂x2
d ≤ 0), then

f (x) ≥ 1

|B(0, r)|
∫

B(x,r)
f (y) dy
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where B(x, r) = {y : |x − y| ≤ r} is the ball of radius r , and |B(0, r)| is the volume
of the ball of radius r .

Exercise 5.2.2. Suppose f is superharmonic on Rd . Let ξ1, ξ2, . . . be i.i.d. uniform
on B(0, 1), and define Sn by Sn = Sn−1 + ξn for n ≥ 1 and S0 = x. Show that
Xn = f (Sn) is a supermartingale.

Our first result is an immediate consequence of the definition of a supermartin-
gale. We could take the conclusion of the result as the definition of supermartingale,
but then the definition would be harder to check.

Theorem 5.2.1. If Xn is a supermartingale then for n > m, E(Xn|Fm) ≤ Xm.

Proof. The definition gives the result for n = m + 1. Suppose n = m + k with
k ≥ 2. By Theorem 5.1.2,

E(Xm+k|Fm) = E(E(Xm+k|Fm+k−1)|Fm) ≤ E(Xm+k−1|Fm)

by the definition and (5.1.2). The desired result now follows by induction. �

Theorem 5.2.2. (i) If Xn is a submartingale, then for n > m, E(Xn|Fm) ≥ Xm.
(ii) If Xn is a martingale then for n > m, E(Xn|Fm) = Xm.

Proof. To prove (i), note that −Xn is a supermartingale and use (5.1.1). For (ii),
observe that Xn is a supermartingale and a submartingale. �

Remark. The idea in the proof of Theorem 5.2.2 can be used many times below. To
keep from repeating ourselves, we will just state the result for either supermartin-
gales or submartingales and leave it to the reader to translate the result for the other
two.

Theorem 5.2.3. If Xn is a martingale w.r.t. Fn and ϕ is a convex function with
E|ϕ(Xn)| < ∞ for all n, then ϕ(Xn) is a submartingale w.r.t. Fn. Consequently, if
p ≥ 1 and E|Xn|p < ∞ for all n, then |Xn|p is a submartingale w.r.t. Fn.

Proof. By Jensen’s inequality and the definition,

E(ϕ(Xn+1)|Fn) ≥ ϕ(E(Xn+1|Fn)) = ϕ(Xn) �

Theorem 5.2.4. If Xn is a submartingale w.r.t. Fn and ϕ is an increasing convex
function with E|ϕ(Xn)| < ∞ for all n, then ϕ(Xn) is a submartingale w.r.t. Fn.
Consequently (i) If Xn is a submartingale, then (Xn − a)+ is a submartingale. (ii)
If Xn is a supermartingale, then Xn ∧ a is a supermartingale.
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Proof. By Jensen’s inequality and the assumptions,

E(ϕ(Xn+1)|Fn) ≥ ϕ(E(Xn+1|Fn)) ≥ ϕ(Xn) �

Exercise 5.2.3. Give an example of a submartingale Xn so that X2
n is a super-

martingale. Hint: Xn does not have to be random.

Let Fn, n ≥ 0 be a filtration. Hn, n ≥ 1 is said to be a predictable sequence
if Hn ∈ Fn−1 for all n ≥ 1. In words, the value of Hn may be predicted (with
certainty) from the information available at time n − 1. In this section, we will be
thinking of Hn as the amount of money a gambler will bet at time n. This can be
based on the outcomes at times 1, . . . , n − 1, but not on the outcome at time n!

Once we start thinking of Hn as a gambling system, it is natural to ask how
much money we would make if we used it. For concreteness, let us suppose that
the game consists of flipping a coin and that for each dollar you bet, you win one
dollar when the coin comes up heads and lose your dollar when the coin comes up
tails. Let Xn be the net amount of money you would have won at time n if you had
bet one dollar each time. If you bet according to a gambling system H , then your
winnings at time n would be

(H · X)n =
n∑

m=1

Hm(Xm − Xm−1)

since Xm − Xm−1 = +1 or −1 when the mth toss results in a win or loss, respec-
tively.

Let ξm = Xm − Xm−1. A famous gambling system called the “martingale” is
defined by H1 = 1 and for n ≥ 2, Hn = 2Hn−1 if ξn−1 = −1 and Hn = 1 if ξn−1 =
1. In words, we double our bet when we lose, so that if we lose k times and then
win, our net winnings will be −1 − 2 . . . − 2k−1 + 2k = 1. This system seems to
provide us with a “sure thing” as long as P (ξm = 1) > 0. However, the next result
says there is no system for beating an unfavorable game.

Theorem 5.2.5. Let Xn, n ≥ 0, be a supermartingale. If Hn ≥ 0 is predictable and
each Hn is bounded then (H · X)n is a supermartingale.

Proof. Using the fact that conditional expectation is linear, (H · X)n ∈ Fn, Hn ∈
Fn−1, and (5.1.7), we have

E((H · X)n+1|Fn) = (H · X)n + E(Hn+1(Xn+1 − Xn)|Fn)

= (H · X)n + Hn+1E((Xn+1 − Xn)|Fn) ≤ (H · X)n

since E((Xn+1 − Xn)|Fn) ≤ 0 and Hn+1 ≥ 0. �

Remark. The same result is obviously true for submartingales and for martingales
(in the last case, without the restriction Hn ≥ 0).
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The notion of a stopping time, introduced in Section 4.1, is closely related to
the concept of a gambling system. Recall that a random variable N is said to be
a stopping time if {N = n} ∈ Fn for all n < ∞. If you think of N as the time a
gambler stops gambling, then the condition above says that the decision to stop at
time n must be measurable with respect to the information he has at that time. If we
let Hn = 1{N≥n}, then {N ≥ n} = {N ≤ n − 1}c ∈ Fn−1, so Hn is predictable, and
it follows from Theorem 5.2.5 that (H · X)n = XN∧n − X0 is a supermartingale.
Since the constant sequence Yn = X0 is a supermartingale and the sum of two
supermartingales is also, we have:

Theorem 5.2.6. If N is a stopping time and Xn is a supermartingale, then XN∧n

is a supermartingale.
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Figure 5.2. Upcrossings of (a, b). Lines indicate increments that are included in (H · X)n.
In Yn the points < a are moved up to a.

Although you cannot make money with gambling systems, you can prove theo-
rems with them. Suppose Xn, n ≥ 0, is a submartingale. Let a < b, let N0 = −1,
and for k ≥ 1 let (see Figure 5.2 for a picture)

N2k−1 = inf{m > N2k−2 : Xm ≤ a}
N2k = inf{m > N2k−1 : Xm ≥ b}

The Nj are stopping times, and {N2k−1 < m ≤ N2k} = {N2k−1 ≤ m − 1} ∩ {N2k ≤
m − 1}c ∈ Fm−1, so

Hm =
{

1 if N2k−1 < m ≤ N2k for some k

0 otherwise

defines a predictable sequence. X(N2k−1) ≤ a and X(N2k) ≥ b, so between times
N2k−1 and N2k, Xm crosses from below a to above b. Hm is a gambling system
that tries to take advantage of these “upcrossings.” In stock market terms, we buy
when Xm ≤ a and sell when Xm ≥ b, so every time an upcrossing is completed,
we make a profit of ≥ (b − a). Finally, Un = sup{k : N2k ≤ n} is the number of
upcrossings completed by time n.

Theorem 5.2.7. Upcrossing inequality. If Xm, m ≥ 0, is a submartingale, then

(b − a)EUn ≤ E(Xn − a)+ − E(X0 − a)+
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Proof. Let Ym = a + (Xm − a)+. By Theorem 5.2.4, Ym is a submartingale.
Clearly, it upcrosses [a, b] the same number of times that Xm does, and we have
(b − a)Un ≤ (H · Y )n, since each upcrossing results in a profit ≥ (b − a), and a
final incomplete upcrossing (if there is one) makes a nonnegative contribution to the
right-hand side. Let Km = 1 − Hm. Clearly, Yn − Y0 = (H · Y )n + (K · Y )n, and
it follows from Theorem 5.2.5 that E(K · Y )n ≥ E(K · Y )0 = 0, so E(H · Y )n ≤
E(Yn − Y0), proving the desired inequality. �

We have proved the result in its classical form, even though this is a little
misleading. The key fact is that E(K · Y )n ≥ 0, that is, no matter how hard you try,
you can’t lose money betting on a submartingale. From the upcrossing inequality,
we easily get

Theorem 5.2.8. Martingale convergence theorem. If Xn is a submartingale with
sup EX+

n < ∞, then as n → ∞, Xn converges a.s. to a limit X with E|X| < ∞.

Proof. Since (X − a)+ ≤ X+ + |a|, Theorem 5.2.7 implies that

EUn ≤ (|a| + EX+
n )/(b − a)

As n ↑ ∞, Un ↑ U the number of upcrossings of [a, b] by the whole sequence, so
if sup EX+

n < ∞, then EU < ∞ and hence U < ∞ a.s. Since the last conclusion
holds for all rational a and b,

∪a,b∈Q{lim inf Xn < a < b < lim sup Xn} has probability 0

and hence lim sup Xn = lim inf Xn a.s., that is, lim Xn exists a.s. Fatou’s lemma
guarantees EX+ ≤ lim inf EX+

n < ∞, so X < ∞ a.s. To see X > −∞, we
observe that

EX−
n = EX+

n − EXn ≤ EX+
n − EX0

(since Xn is a submartingale), so another application of Fatou’s lemma shows

EX− ≤ lim inf
n→∞ EX−

n ≤ sup
n

EX+
n − EX0 < ∞

and completes the proof. �

Remark. To prepare for the proof of Theorem 5.6.1, the reader should note that
we have shown that if the number of upcrossings of (a, b) by Xn is finite for all
a, b ∈ Q, then the limit of Xn exists.

An important special case of Theorem 5.2.8 is

Theorem 5.2.9. If Xn ≥ 0 is a supermartingale, then as n → ∞, Xn → X a.s. and
EX ≤ EX0.
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Proof. Yn = −Xn ≤ 0 is a submartingale with EY+
n = 0. Since EX0 ≥ EXn, the

inequality follows from Fatou’s lemma. �

In the next section, we will give several applications of the last two results. We
close this one by giving two “counterexamples.”

Example 5.2.3. The first shows that the assumptions of Theorem 5.2.9 (or 5.2.8)
do not guarantee convergence in L1. Let Sn be a symmetric simple random walk
with S0 = 1, that is, Sn = Sn−1 + ξn where ξ1, ξ2, . . . are i.i.d. with P (ξi = 1) =
P (ξi = −1) = 1/2. Let N = inf{n : Sn = 0} and let Xn = SN∧n. Theorem 5.2.6
implies that Xn is a nonnegative martingale. Theorem 5.2.9 implies Xn converges
to a limit X∞ < ∞ that must be ≡ 0, since convergence to k > 0 is impossible. (If
Xn = k > 0, then Xn+1 = k ± 1.) Since EXn = EX0 = 1 for all n and X∞ = 0,
convergence cannot occur in L1.

Example 5.2.3 is an important counterexample to keep in mind as you read the
rest of this chapter. The next two are not as important.

Example 5.2.4. We will now give an example of a martingale with Xk → 0 in
probability but not a.s. Let X0 = 0. When Xk−1 = 0, let Xk = 1 or −1 with prob-
ability 1/2k and = 0 with probability 1 − 1/k. When Xk−1 �= 0, let Xk = kXk−1

with probability 1/k and = 0 with probability 1 − 1/k. From the construc-
tion, P (Xk = 0) = 1 − 1/k, so Xk → 0 in probability. On the other hand, the
second Borel-Cantelli lemma implies P (Xk = 0 for k ≥ K) = 0, and values in
(−1, 1) − {0} are impossible, so Xk does not converge to 0 a.s.

Exercise 5.2.4. Give an example of a martingale Xn with Xn → −∞ a.s. Hint: Let
Xn = ξ1 + · · · + ξn, where the ξi are independent (but not identically distributed)
with Eξi = 0.

Our final result is useful in reducing questions about submartingales to questions
about martingales.

Theorem 5.2.10. Doob’s decomposition. Any submartingale Xn, n ≥ 0, can be
written in a unique way as Xn = Mn + An, where Mn is a martingale and An is a
predictable increasing sequence with A0 = 0.

Proof. We want Xn = Mn + An, E(Mn|Fn−1) = Mn−1, and An ∈ Fn−1. So we
must have

E(Xn|Fn−1) = E(Mn|Fn−1) + E(An|Fn−1)

= Mn−1 + An = Xn−1 − An−1 + An
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and it follows that

(a) An − An−1 = E(Xn|Fn−1) − Xn−1

(b) Mn = Xn − An

Now A0 = 0 and M0 = X0 by assumption, so we have An and Mn defined for all
time, and we have proved uniqueness. To check that our recipe works, we observe
that An − An−1 ≥ 0 since Xn is a submartingale and induction shows An ∈ Fn−1.
To see that Mn is a martingale, we use (b), An ∈ Fn−1 and (a):

E(Mn|Fn−1) = E(Xn − An|Fn−1)

= E(Xn|Fn−1) − An = Xn−1 − An−1 = Mn−1

which completes the proof. �

Exercise 5.2.5. Let Xn =∑m≤n 1Bm
and suppose Bn ∈ Fn. What is the Doob

decomposition for Xn?

Exercises

5.2.6. Let ξ1, ξ2, . . . be independent with Eξi = 0 and var (ξm) = σ 2
m < ∞, and let

s2
n =∑n

m=1 σ 2
m. Then S2

n − s2
n is a martingale.

5.2.7. If ξ1, ξ2, . . . are independent and have Eξi = 0, then

X(k)
n =

∑
1≤i1<...<ik≤n

ξi1 · · · ξik

is a martingale. When k = 2 and Sn = ξ1 + · · · + ξn, 2X(2)
n = S2

n −∑m≤n ξ 2
m.

5.2.8. Generalize (i) of Theorem 5.2.4 by showing that if Xn and Yn are submartin-
gales w.r.t. Fn then Xn ∨ Yn is also.

5.2.9. Let Y1, Y2, . . . be nonnegative i.i.d. random variables with EYm = 1 and
P (Ym = 1) < 1. (i) Show that Xn =∏m≤n Ym defines a martingale. (ii) Use The-
orem 5.2.9 and an argument by contradiction to show Xn → 0 a.s. (iii) Use the
strong law of large numbers to conclude (1/n) log Xn → c < 0.

5.2.10. Suppose yn > −1 for all n and
∑ |yn| < ∞. Show that

∏∞
m=1(1 + ym)

exists.

5.2.11. Let Xn and Yn be positive integrable and adapted to Fn. Suppose

E(Xn+1|Fn) ≤ (1 + Yn)Xn

with
∑

Yn < ∞ a.s. Prove that Xn converges a.s. to a finite limit by finding a
closely related supermartingale to which Theorem 5.2.9 can be applied.
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5.2.12. Use the random walks in Exercise 5.2.2 to conclude that in d ≤ 2, non-
negative superharmonic functions must be constant. The example f (x) = |x|2−d

shows this is false in d > 2.

5.2.13. The switching principle. Suppose X1
n and X2

n are supermartingales with
respect to Fn, and N is a stopping time so that X1

N ≥ X2
N . Then

Yn = X1
n1(N>n) + X2

n1(N≤n) is a supermartingale.

Zn = X1
n1(N≥n) + X2

n1(N<n) is a supermartingale.

5.2.14. Dubins’ inequality. For every positive supermartingale Xn, n ≥ 0, the
number of upcrossings U of [a, b] satisfies

P (U ≥ k) ≤
(a

b

)k
E min(X0/a, 1)

To prove this, we let N0 = −1 and for j ≥ 1, let

N2j−1 = inf{m > N2j−2 : Xm ≤ a}
N2j = inf{m > N2j−1 : Xm ≥ b}

Let Yn = 1 for 0 ≤ n < N1 and for j ≥ 1,

Yn =
{

(b/a)j−1(Xn/a) for N2j−1 ≤ n < N2j

(b/a)j for N2j ≤ n < N2j+1

(i) Use the switching principle in the previous exercise and induction to show that
Z

j
n = Yn∧Nj

is a supermartingale. (ii) Use EYn∧N2k
≤ EY0 and let n → ∞ to get

Dubins’ inequality.

5.3 Examples

In this section, we will apply the martingale convergence theorem to generalize the
second Borel-Cantelli lemma and to study Polya’s urn scheme, Radon Nikodym
derivatives, and branching processes. The four topics are independent of each other
and are taken up in the order indicated.

5.3.1 Bounded Increments

Our first result shows that martingales with bounded increments either converge or
oscillate between +∞ and −∞.

Theorem 5.3.1. Let X1, X2, . . . be a martingale with |Xn+1 − Xn| ≤ M < ∞. Let

C = {lim Xn exists and is finite}
D = {lim sup Xn = +∞ and lim inf Xn = −∞}

Then P (C ∪ D) = 1.
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Proof. Since Xn − X0 is a martingale, we can without loss of generality suppose
that X0 = 0. Let 0 < K < ∞ and let N = inf{n : Xn ≤ −K}. Xn∧N is a martin-
gale with Xn∧N ≥ −K − M a.s. so applying Theorem 5.2.9 to Xn∧N + K + M

shows lim Xn exists on {N = ∞}. Letting K → ∞, we see that the limit exists
on {lim inf Xn > −∞}. Applying the last conclusion to −Xn, we see that lim Xn

exists on {lim sup Xn < ∞} and the proof is complete. �

Exercise 5.3.1. Let Xn, n ≥ 0, be a submartingale with sup Xn < ∞. Let ξn =
Xn − Xn−1, and suppose E(sup ξ+

n ) < ∞. Show that Xn converges a.s.

Exercise 5.3.2. Give an example of a martingale Xn with supn |Xn| < ∞ and
P (Xn = a i.o.) = 1 for a = −1, 0, 1. This example shows that it is not enough to
have sup |Xn+1 − Xn| < ∞ in Theorem 5.3.1.

Exercise 5.3.3. (Assumes familiarity with finite state Markov chains.) Fine tune the
example for the previous problem so that P (Xn = 0) → 1 − 2p and P (Xn = −1),
P (Xn = 1) → p, where p is your favorite number in (0, 1), that is, you are
asked to do this for one value of p that you may choose. This example shows
that a martingale can converge in distribution without converging a.s. (or in
probability).

Exercise 5.3.4. Let Xn and Yn be positive integrable and adapted to Fn. Suppose
E(Xn+1|Fn) ≤ Xn + Yn, with

∑
Yn < ∞ a.s. Prove that Xn converges a.s. to a

finite limit. Hint: Let N = infk

∑k
m=1 Ym > M , and stop your supermartingale at

time N .

Theorem 5.3.2. Second Borel-Cantelli lemma, II. Let Fn, n ≥ 0 be a filtration
with F0 = {∅, �} and An, n ≥ 1 a sequence of events with An ∈ Fn. Then

{An i.o.} =
{ ∞∑

n=1

P (An|Fn−1) = ∞
}

Proof. If we let X0 = 0 and Xn =∑n
m=1 1Am

− P (Am|Fm−1) for n ≥ 1, then Xn

is a martingale with |Xn − Xn−1| ≤ 1. Using the notation of Theorem 5.3.1, we
have

on C,

∞∑
n=1

1An
= ∞ if and only if

∞∑
n=1

P (An|Fn−1) = ∞

on D,

∞∑
n=1

1An
= ∞ and

∞∑
n=1

P (An|Fn−1) = ∞

Since P (C ∪ D) = 1, the result follows. �
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Exercise 5.3.5. Let pm ∈ [0, 1). Use the Borel-Cantelli lemmas to show that
∞∏

m=1

(1 − pm) = 0 if and only if
∞∑

m=1

pm = ∞.

Exercise 5.3.6. Show
∑∞

n=2 P (An| ∩n−1
m=1 Ac

m) = ∞ implies P (∩∞
m=1A

c
m) = 0.

5.3.2 Polya’s Urn Scheme

An urn contains r red and g green balls. At each time we draw a ball out, then
replace it, and add c more balls of the color drawn. Let Xn be the fraction of green
balls after the nth draw. To check that Xn is a martingale, note that if there are i

red balls and j green balls at time n, then

Xn+1 =
{

(j + c)/(i + j + c) with probability j/(i + j )

j/(i + j + c) with probability i/(i + j )

and we have

j + c

i + j + c
· j

i + j
+ j

i + j + c
· i

i + j
= (j + c + i)j

(i + j + c)(i + j )
= j

i + j

Since Xn ≥ 0, Theorem 5.2.9 implies that Xn → X∞ a.s. To compute the dis-
tribution of the limit, we observe (a) the probability of getting green on the first m

draws then red on the next � = n − m draws is

g

g + r
· g + c

g + r + c
· · · g + (m − 1)c

g + r + (m − 1)c
· r

g + r + mc
· · · r + (� − 1)c

g + r + (n − 1)c

and (b) any other outcome of the first n draws with m green balls drawn and � red
balls drawn has the same probability since the denominator remains the same and
the numerator is permuted. Consider the special case c = 1, g = 1, r = 1. Let Gn

be the number of green balls after the nth draw has been completed and the new
ball has been added. It follows from (a) and (b) that

P (Gn = m + 1) =
(

n

m

)
m!(n − m)!

(n + 1)!
= 1

n + 1

so X∞ has a uniform distribution on (0,1).
If we suppose that c = 1, g = 2, and r = 1, then

P (Gn = m + 2) = n!

m!(n − m)!

(m + 1)!(n − m)!

(n + 2)!/2
→ 2x

if n → ∞ and m/n → x. In general, the distribution of X∞ has density

�((g + r)/c)

�(g/c)�(r/c)
x(g/c)−1(1 − x)(r/c)−1

This is the beta distribution with parameters g/c and r/c. In Example 5.4.5 we
will see that the limit behavior changes drastically if, in addition to the c balls of
the color chosen, we always add one ball of the opposite color.
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5.3.3 Radon-Nikodym Derivatives

Let µ be a finite measure and ν a probability measure on (�,F). Let Fn ↑ F be
σ -fields (i.e., σ (∪Fn) = F). Let µn and νn be the restrictions of µ and ν to Fn.

Theorem 5.3.3. Suppose µn << νn for all n. Let Xn = dµn/dνn and let X =
lim sup Xn. Then

µ(A) =
∫

A

Xdν + µ(A ∩ {X = ∞})

Remark. µr (A) ≡ ∫
A

X dν is a measure << ν. Since Theorem 5.2.9 implies ν(X =
∞) = 0, µs(A) ≡ µ(A ∩ {X = ∞}) is singular w.r.t. ν. Thus µ = µr + µs gives
the Lebesgue decomposition of µ (see Theorem A.4.5), and X∞ = dµr/dν, ν-a.s.
Here and in the proof we need to keep track of the measure to which the a.s. refers.

Proof. As the reader can probably anticipate:

Lemma 5.3.4. Xn (defined on (�,F, ν)) is a martingale w.r.t. Fn.

Proof. We observe that, by definition, Xn ∈ Fn. Let A ∈ Fn. Since Xn ∈ Fn and
νn is the restriction of ν to Fn∫

A

Xn dν =
∫

A

Xn dνn

Using the definition of Xn and Exercise A.4.7∫
A

Xn dνn = µn(A) = µ(A)

the last equality holding since A ∈ Fn and µn is the restriction of µ to Fn. If
A ∈ Fm−1 ⊂ Fm, using the last result for n = m and n = m − 1 gives∫

A

Xmdν = µ(A) =
∫

A

Xm−1dν

so E(Xm|Fm−1) = Xm−1. �

Since Xn is a nonnegative martingale, Theorem 5.2.9 implies that Xn → X ν-
a.s. We want to check that the equality in the theorem holds. Dividing µ(A) by
µ(�), we can without loss of generality suppose µ is a probability measure. Let
ρ = (µ + ν)/2, ρn = (µn + νn)/2 = the restriction of ρ to Fn. Let Yn = dµn/dρn,
Zn = dνn/dρn. Yn, Zn ≥ 0 and Yn + Zn = 2 (by Exercise A.4.6), so Yn and Zn are
bounded martingales with limits Y and Z. As the reader can probably guess,

(∗) Y = dµ/dρ Z = dν/dρ
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It suffices to prove the first equality. From the proof of Lemma 5.3.4, if
A ∈ Fm ⊂ Fn,

µ(A) =
∫

A

Yn dρ →
∫

A

Y dρ

by the bounded convergence theorem. The last computation shows that

µ(A) =
∫

A

Y dρ for all A ∈ G = ∪mFm

G is a π -system, so the π − λ theorem implies the equality is valid for all A ∈ F =
σ (G) and (∗) is proved.

It follows from Exercises A.4.8 and A.4.9 that Xn = Yn/Zn. At this point, the
reader can probably leap to the conclusion that X = Y/Z. To get there carefully,
note that Y + Z = 2 ρ-a.s., so ρ(Y = 0, Z = 0) = 0. Having ruled out 0/0, we
have X = Y/Z ρ-a.s. (Recall X ≡ lim sup Xn.) Let W = (1/Z) · 1(Z>0). Using
(∗), then 1 = ZW + 1(Z=0), we have

(a) µ(A) =
∫

A

Y dρ =
∫

A

YWZ dρ +
∫

A

1(Z=0)Y dρ

Now (∗) implies dν = Z dρ, and it follows from the definitions that

YW = X1(Z>0) = X ν-a.s.

the second equality holding since ν({Z = 0}) = 0. Combining things, we have

(b)
∫

A

YWZ dρ =
∫

A

X dν

To handle the other term, we note that (∗) implies dµ = Y dρ, and it follows from
the definitions that {X = ∞} = {Z = 0} µ-a.s. so

(c)
∫

A

1(Z=0)Y dρ =
∫

A

1(X=∞) dµ

Combining (a), (b), and (c) gives the desired result. �

Example 5.3.1. Suppose Fn = σ (Ik,n : 0 ≤ k < Kn) where for each n, Ik,n is a
partition of �, and the (n + 1)th partition is a refinement of the nth. In this case, the
condition µn << νn is ν(Ik,n) = 0 implies µ(Ik,n) = 0, and the martingale Xn =
µ(Ik,n)/ν(Ik,n) on Ik,n is an approximation to the Radon-Nikodym derivative. For a
concrete example, consider � = [0, 1), Ik,n = [k2−n, (k + 1)2−n) for 0 ≤ k < 2n,
and ν = Lebesgue measure.

Exercise 5.3.7. Check by direct computation that the Xn in Example 5.3.1 is a
martingale. Show that if we drop the condition µn << νn and set Xn = 0 when
ν(Ik,n) = 0, then E(Xn+1|Fn) ≤ Xn.

Exercise 5.3.8. Apply Theorem 5.3.3 to Example 5.3.1 to get a “probabilistic”
proof of the Radon-Nikodym theorem. To be precise, suppose F is countably
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generated (i.e., there is a sequence of sets An so that F = σ (An : n ≥ 1)) and
show that if µ and ν are σ -finite measures and µ << ν, then there is a function g

so that µ(A) = ∫
A

g dν.

Remark. Before you object to this as circular reasoning (the Radon-Nikodym
theorem was used to define conditional expectation!), observe that the conditional
expectations that are needed for Example 5.3.1 have elementary definitions.

Kakutani dichotomy for infinite product measures. Let µ and ν be mea-
sures on sequence space (RN,RN) that make the coordinates ξn(ω) = ωn inde-
pendent. Let Fn(x) = µ(ξn ≤ x), Gn(x) = ν(ξn ≤ x). Suppose Fn << Gn and let
qn = dFn/dGn. Let Fn = σ (ξm : m ≤ n), let µn and νn be the restrictions of µ

and ν to Fn, and let

Xn = dµn

dνn

=
n∏

m=1

qm.

Theorem 5.3.3 implies that Xn → X ν-a.s.
∑∞

m=1 log(qm) > −∞ is a tail event,
so the Kolmogorov 0-1 law implies

ν(X = 0) ∈ {0, 1} (5.3.1)

and it follows from Theorem 5.3.3 that either µ << ν or µ ⊥ ν. The next result
gives a concrete criterion for which of the two alternatives occurs.

Theorem 5.3.5. µ << ν or µ ⊥ ν, according as
∏∞

m=1

∫ √
qm dGm > 0 or = 0.

Proof. Jensen’s inequality and Exercise A.4.7 imply(∫ √
qm dGm

)2

≤
∫

qm dGm =
∫

dFm = 1

so the infinite product of the integrals is well defined and ≤ 1. Let

Xn =
∏
m≤n

qm(ωm)

as above, and recall that Xn → X ν-a.s. If the infinite product is 0, then∫
X1/2

n dν =
n∏

m=1

∫ √
qm dGm → 0

Fatou’s lemma implies∫
X1/2 dν ≤ lim inf

n→∞

∫
X1/2

n dν = 0

so X = 0 ν-a.s., and Theorem 5.3.3 implies µ ⊥ ν. To prove the other direction,
let Yn = X

1/2
n . Now

∫
qm dGm = 1, so if we use E to denote expected value with
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respect to ν, then EY 2
m = EXm = 1, so

E(Yn+k − Yn)2 = E(Xn+k + Xn − 2X1/2
n X

1/2
n+k) = 2

(
1 −

n+k∏
m=n+1

∫ √
qm dGm

)

Now |a − b| = |a1/2 − b1/2| · (a1/2 + b1/2), so using Cauchy-Schwarz and the fact
(a + b)2 ≤ 2a2 + 2b2 gives

E|Xn+k − Xn| = E(|Yn+k − Yn|(Yn+k + Yn))

≤ (E(Yn+k − Yn)2E(Yn+k + Yn)2
)1/2

≤ (4E(Yn+k − Yn)2
)1/2

From the last two equations, it follows that if the infinite product is > 0, then Xn

converges to X in L1(ν), so ν(X = 0) < 1, (5.3.1) implies the probability is 0, and
the desired result follows from Theorem 5.3.3. �

Bernoulli product measures. For the next three exercises, suppose Fn, Gn are
concentrated on {0, 1} and have Fn(0) = 1 − αn, Gn(0) = 1 − βn.

Exercise 5.3.9. (i) Use Theorem 5.3.5 to find a necessary and sufficient condition
for µ << ν. (ii) Suppose that 0 < ε ≤ αn, βn ≤ 1 − ε < 1. Show that in this case
the condition is simply

∑
(αn − βn)2 < ∞.

Exercise 5.3.10. Show that if
∑

αn < ∞ and
∑

βn = ∞ in the previous exercise
then µ ⊥ ν. This shows that the condition

∑
(αn − βn)2 < ∞ is not sufficient for

µ << ν in general.

Exercise 5.3.11. Suppose 0 < αn, βn < 1. Show that
∑ |αn − βn| < ∞ is suffi-

cient for µ << ν in general.

5.3.4 Branching Processes

Let ξn
i , i, n ≥ 1, be i.i.d. nonnegative integer-valued random variables. Define a

sequence Zn, n ≥ 0 by Z0 = 1 and

Zn+1 =
{

ξn+1
1 + · · · + ξn+1

Zn
if Zn > 0

0 if Zn = 0
(5.3.2)

Zn is called a Galton-Watson process. The idea behind the definitions is that
Zn is the number of individuals in the nth generation, and each member of the
nth generation gives birth independently to an identically distributed number of
children. pk = P (ξn

i = k) is called the offspring distribution.

Lemma 5.3.6. Let Fn = σ (ξm
i : i ≥ 1, 1 ≤ m ≤ n) and µ = Eξm

i ∈ (0, ∞). Then
Zn/µ

n is a martingale w.r.t. Fn.
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Proof. Clearly, Zn ∈ Fn.

E(Zn+1|Fn) =
∞∑

k=1

E(Zn+11{Zn=k}|Fn)

by the linearity of conditional expectation, (5.1.1), and the monotone convergence
theorem, (5.1.3). On {Zn = k}, Zn+1 = ξn+1

1 + · · · + ξn+1
k , so the sum is

∞∑
k=1

E((ξn+1
1 + · · · + ξn+1

k )1{Zn=k}|Fn) =
∞∑

k=1

1{Zn=k}E(ξn+1
1 + · · · + ξn+1

k |Fn)

by Theorem 5.1.7. Since each ξn+1
j is independent of Fn, the last expression

=
∞∑

k=1

1{Zn=k}kµ = µZn

Dividing both sides by µn+1 now gives the desired result. �

Remark. The reader should notice that in the proof of Lemma 5.3.6 we broke
things down according to the value of Zn to get rid of the random index. A simpler
way of doing the last argument (that we will use in the future) is to use Exercise
5.1.1 to conclude that on {Zn = k}

E(Zn+1|Fn) = E(ξn+1
1 + · · · + ξn+1

k |Fn) = kµ = µZn

Zn/µ
n is a nonnegative martingale, so Theorem 5.2.9 implies Zn/µ

n → a limit
a.s. We begin by identifying cases when the limit is trivial.

Theorem 5.3.7. If µ < 1 then Zn = 0 for all n sufficiently large, so Zn/µ
n → 0.

Proof. E(Zn/µ
n) = E(Z0) = 1, so E(Zn) = µn. Now Zn ≥ 1 on {Zn > 0} so

P (Zn > 0) ≤ E(Zn; Zn > 0) = E(Zn) = µn → 0

exponentially fast if µ < 1. �

The last answer should be intuitive. If each individual on the average gives birth
to less than one child, the species will die out. The next result shows that after we
exclude the trivial case in which each individual has exactly one child, the same
result holds when µ = 1.

Theorem 5.3.8. If µ = 1 and P (ξm
i = 1) < 1 then Zn = 0 for all n sufficiently

large.

Proof. When µ = 1, Zn is itself a nonnegative martingale. Since Zn is integer
valued and by Theorem 5.2.9 converges to an a.s. finite limit Z∞, we must have
Zn = Z∞ for large n. If P (ξm

i = 1) < 1 and k > 0, then P (Zn = k for all n ≥
N ) = 0 for any N , so we must have Z∞ ≡ 0. �
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Figure 5.3. Generating function for Binomial(3,1/2).

When µ ≤ 1, the limit of Zn/µ
n is 0 because the branching process dies out.

Our next step is to show that if µ > 1, then P (Zn > 0 for all n) > 0. For s ∈ [0, 1],
let ϕ(s) =∑k≥0 pks

k where pk = P (ξm
i = k). ϕ is the generating function for

the offspring distribution pk. See Figure 5.3 for an example.

Theorem 5.3.9. P (Zn = 0 for some n) = ρ the unique fixed point of φ in [0, 1).

Proof. Differentiating and referring to Theorem A.5.2 for the justification gives for
s < 1

ϕ′(s) =
∞∑

k=1

k pks
k−1 ≥ 0

ϕ′′(s) =
∞∑

k=2

k(k − 1)pks
k−2 ≥ 0

So ϕ is increasing and convex, and lims↑1 ϕ′(s) =∑∞
k=1 kpk = µ.

Our interest in ϕ stems from the following facts.

(a) If θm = P (Zm = 0) then θm =∑∞
k=0 pk(θm−1)k.

Proof of (a). If Z1 = k, an event with probability pk, then Zm = 0 if and only if
all k families die out in the remaining m − 1 units of time, an independent event
with probability θk

m−1. Summing over the disjoint possibilities for each k gives the
desired result. �

(b) If ϕ′(1) = µ > 1, there is a unique ρ < 1 so that ϕ(ρ) = ρ.

Proof of (b). ϕ(0) ≥ 0, ϕ(1) = 1, and ϕ′(1) > 1, so ϕ(1 − ε) < 1 − ε for small ε.
The last two observations imply the existence of a fixed point. To see it is unique,
observe that µ > 1 implies pk > 0 for some k > 1, so ϕ′′(θ ) > 0 for θ > 0. Since
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Figure 5.4. Iteration as in part (c) for the Binomial (3,1/2) generating function.

ϕ is strictly convex, it follows that if ρ < 1 is a fixed point, then ϕ(x) < x for
x ∈ (ρ, 1). �

(c) As m ↑ ∞, θm ↑ ρ.

Proof of (c). θ0 = 0, ϕ(ρ) = ρ, and ϕ is increasing, so induction implies θm is
increasing and θm ≤ ρ. Let θ∞ = lim θm. Taking limits in θm = ϕ(θm−1), we see
θ∞ = ϕ(θ∞). Since θ∞ ≤ ρ, it follows that θ∞ = ρ. �

Combining (a)–(c) shows P (Zn = 0 for some n) = lim θn = ρ < 1 and proves
Theorem 5.3.9. �

The last result shows that when µ > 1, the limit of Zn/µ
n has a chance of being

nonzero. The best result on this question is due to Kesten and Stigum:

Theorem 5.3.10. W = lim Zn/µ
n is not ≡ 0 if and only if

∑
pkk log k < ∞.

For a proof, see Athreya and Ney (1972), pp. 24–29. In the next section, we will
show that

∑
k2pk < ∞ is sufficient for a nontrivial limit.

Exercise 5.3.12. Show that if P (lim Zn/µ
n = 0) < 1, then it is = ρ, and hence

{lim Zn/µ
n > 0} = {Zn > 0 for all n} a.s.

Exercise 5.3.13. Galton and Watson, who invented the process that bears their
names, were interested in the survival of family names. Suppose each family has
exactly three children but coin flips determine their sex. In the 1800s, only male
children kept the family name, so following the male offspring leads to a branching
process with p0 = 1/8, p1 = 3/8, p2 = 3/8, p3 = 1/8. Compute the probability
ρ that the family name will die out when Z0 = 1.
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5.4 Doob’s Inequality, Convergence in L p

We begin by proving a consequence of Theorem 5.2.6.

Theorem 5.4.1. If Xn is a submartingale and N is a stopping time with P (N ≤
k) = 1 then

EX0 ≤ EXN ≤ EXk

Remark. Let Sn be a simple random walk with S0 = 1 and let N = inf{n : Sn = 0}.
(See Example 5.2.3 for more details.) ES0 = 1 > 0 = ESN , so the first inequality
need not hold for unbounded stopping times. In Section 5.7 we will give conditions
that guarantee EX0 ≤ EXN for unbounded N.

Proof. Theorem 5.2.6 implies XN∧n is a submartingale, so it follows that

EX0 = EXN∧0 ≤ EXN∧k = EXN

To prove the other inequality, let Kn = 1{N<n} = 1{N≤n−1}. Kn is predictable, so
Theorem 5.2.5 implies (K · X)n = Xn − XN∧n is a submartingale, and it follows
that

EXk − EXN = E(K · X)k ≥ E(K · X)0 = 0 �

Exercise 5.4.1. Show that if j ≤ k, then E(Xj ; N = j ) ≤ E(Xk; N = j ) and sum
over j to get a second proof of EXN ≤ EXk.

Exercise 5.4.2. Generalize the proof of Theorem 5.4.1 to show that if Xn is a
submartingale and M ≤ N are stopping times with P (N ≤ k) = 1, then EXM ≤
EXN .

Exercise 5.4.3. Use the stopping times from the Exercise 4.1.7 to strengthen the
conclusion of the previous exercise to E(XN |FM ) ≥ XM .

We will see below that Theorem 5.4.1 is very useful. The first indication of this
is:

Theorem 5.4.2. Doob’s inequality. Let Xm be a submartingale,

X̄n = max
0≤m≤n

X+
m

λ > 0, and A = {X̄n ≥ λ}. Then

λP (A) ≤ EXn1A ≤ EX+
n

Proof. Let N = inf{m : Xm ≥ λ or m = n}. Since XN ≥ λ on A,

λP (A) ≤ EXN1A ≤ EXn1A
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The second inequality follows from the fact that Theorem 5.4.1 implies EXN ≤
EXn, and we have XN = Xn on Ac. The second inequality is trivial, so the proof
is complete. �

Example 5.4.1. Random walks. If we let Sn = ξ1 + · · · + ξn where the ξm are
independent and have Eξm = 0, σ 2

m = Eξ 2
m < ∞, then Theorem 5.2.3 implies

Xn = S2
n is a submartingale. If we let λ = x2 and apply Theorem 5.4.2 to Xn, we

get Kolmogorov’s maximal inequality, Theorem 2.5.2:

P

(
max

1≤m≤n
|Sm| ≥ x

)
≤ x−2 var (Sn)

Using martingales, one can also prove a lower bound on the maximum that can
be used instead of the central limit theorem in our proof of the necessity of the
conditions in the three series theorem. (See Example 3.4.7.)

Exercise 5.4.4. Suppose in addition to the conditions introduced above that |ξm| ≤
K and let s2

n =∑m≤n σ 2
m. Exercise 5.2.6 implies that S2

n − s2
n is a martingale. Use

this and Theorem 5.4.1 to conclude

P

(
max

1≤m≤n
|Sm| ≤ x

)
≤ (x + K)2/ var (Sn)

Exercise 5.4.5. Let Xn be a martingale with X0 = 0 and EX2
n < ∞. Show that

P

(
max

1≤m≤n
Xm ≥ λ

)
≤ EX2

n/(EX2
n + λ2)

Hint: Use the fact that (Xn + c)2 is a submartingale and optimize over c.

Integrating the inequality in Theorem 5.4.2 gives:

Theorem 5.4.3. Lp maximum inequality. If Xn is a submartingale, then for
1 < p < ∞,

E(X̄p
n ) ≤

(
p

p − 1

)p

E(X+
n )p

Consequently, if Yn is a martingale and Y ∗
n = max0≤m≤n |Ym|,

E|Y ∗
n |p ≤

(
p

p − 1

)p

E(|Yn|p)

Proof. The second inequality follows by applying the first to Xn = |Yn|. To prove
the first we will, for reasons that will become clear in a moment, work with
X̄n ∧ M rather than X̄n. Since {X̄n ∧ M ≥ λ} is always {X̄n ≥ λ} or ∅, this does
not change the application of Theorem 5.4.2. Using Lemma 2.2.8, Theorem 5.4.2,
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Fubini’s theorem, and a little calculus gives

E((X̄n ∧ M)p) =
∫ ∞

0
pλp−1P (X̄n ∧ M ≥ λ) dλ

≤
∫ ∞

0
pλp−1

(
λ−1
∫

X+
n 1(X̄n∧M≥λ) dP

)
dλ

=
∫

X+
n

∫ X̄n∧M

0
pλp−2 dλ dP

= p

p − 1

∫
X+

n (X̄n ∧ M)p−1 dP

If we let q = p/(p − 1) be the exponent conjugate to p and apply Hölder’s inequal-
ity, Theorem 1.6.3, we see that the above

≤ q(E|X+
n |p)1/p(E|X̄n ∧ M|p)1/q

If we divide both sides of the last inequality by (E|X̄n ∧ M|p)1/q , we get

E(|X̄n ∧ M|p) ≤
(

p

p − 1

)p

E(X+
n )p

Letting M → ∞ and using the monotone convergence theorem gives the desired
result. �

Example 5.4.2. Theorem 5.4.3 is false when p = 1. Again, the counterexample is
provided by Example 5.2.3. Let Sn be a simple random walk starting from S0 = 1,
N = inf{n : Sn = 0}, and Xn = SN∧n. Theorem 5.4.1 implies EXn = ESN∧n =
ES0 = 1 for all n. Using hitting probabilities for simple random walk, (4.1.2)
a = −1, b = M − 1, we have

P
(

max
m

Xm ≥ M
)

= 1

M

so E(maxm Xm) =∑∞
M=1 P (maxm Xm ≥ M) =∑∞

M=1 1/M = ∞. The monotone
convergence theorem implies that E maxm≤n Xm ↑ ∞ as n ↑ ∞.

The next result gives an extension of Theorem 5.4.2 to p = 1. Since this is not
one of the most important results, the proof is left to the reader.

Theorem 5.4.4. Let Xn be a submartingale and log+ x = max(log x, 0).

EX̄n ≤ (1 − e−1)−1{1 + E(X+
n log+(X+

n ))}

Remark. The last result is almost the best possible condition for sup |Xn| ∈ L1.
Gundy has shown that if Xn is a positive martingale that has Xn+1 ≤ CXn and
EX0 log+ X0 < ∞, then E(sup Xn) < ∞ implies sup E(Xn log+ Xn) < ∞. For a
proof, see Neveu (1975), pp. 71–73.
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Exercise 5.4.6. Prove Theorem 5.4.4 by carrying out the following steps: (i) Imitate
the proof of 5.4.2 but use the trivial bound P (A) ≤ 1 for λ ≤ 1 to show

E(X̄n ∧ M) ≤ 1 +
∫

X+
n log(X̄n ∧ M) dP

(ii) Use calculus to show a log b ≤ a log a + b/e ≤ a log+ a + b/e.

From Theorem 5.4.2, we get the following:

Theorem 5.4.5. L p convergence theorem. If Xn is a martingale with
sup E|Xn|p < ∞ where p > 1, then Xn → X a.s. and in Lp.

Proof. (EX+
n )p ≤ (E|Xn|)p ≤ E|Xn|p, so it follows from the martingale conver-

gence theorem (5.2.8) that Xn → X a.s. The second conclusion in Theorem 5.4.3
implies

E

(
sup

0≤m≤n

|Xm|
)p

≤
(

p

p − 1

)p

E|Xn|p

Letting n → ∞ and using the monotone convergence theorem implies sup |Xn| ∈
Lp. Since |Xn − X|p ≤ (2 sup |Xn|)p, it follows from the dominated convergence
theorem that E|Xn − X|p → 0. �

The most important special case of the results in this section occurs when p = 2.
To treat this case, the next two results are useful.

Theorem 5.4.6. Orthogonality of martingale increments. Let Xn be a martingale
with EX2

n < ∞ for all n. If m ≤ n and Y ∈ Fm has EY 2 < ∞, then

E((Xn − Xm)Y ) = 0

Proof. The Cauchy-Schwarz inequality implies E|(Xn − Xm)Y | < ∞. Using
(5.1.5), Theorem 5.1.7, and the definition of a martingale,

E((Xn − Xm)Y ) = E[E((Xn − Xm)Y |Fm)] = E[YE((Xn − Xm)|Fm)] = 0 �

Theorem 5.4.7. Conditional variance formula. If Xn is a martingale with EX2
n <

∞ for all n,

E((Xn − Xm)2|Fm) = E(X2
n|Fm) − X2

m.

Remark. This is the conditional analogue of E(X − EX)2 = EX2 − (EX)2 and
is proved in exactly the same way.
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Proof. Using the linearity of conditional expectation and then Theorem 5.1.7, we
have

E(X2
n − 2XnXm + X2

m|Fm) = E(X2
n|Fm) − 2XmE(Xn|Fm) + X2

m

= E(X2
n|Fm) − 2X2

m + X2
m

which gives the desired result. �

Exercise 5.4.7. Let Xn and Yn be martingales with EX2
n < ∞ and EY 2

n < ∞.

EXnYn − EX0Y0 =
n∑

m=1

E(Xm − Xm−1)(Ym − Ym−1)

The next two results generalize Theorems 2.5.3 and 2.5.7. Let Xn, n ≥ 0, be a
martingale and let ξn = Xn − Xn−1 for n ≥ 1.

Exercise 5.4.8. If EX2
0,
∑∞

m=1 Eξ 2
m < ∞ then Xn → X∞ a.s. and in L2.

Exercise 5.4.9. If bm ↑ ∞ and
∑∞

m=1 Eξ 2
m/b2

m < ∞, then Xn/bn → 0 a.s.
In particular, if Eξ 2

n ≤ K < ∞ and
∑∞

m=1 b−2
m < ∞, then Xn/bn → 0 a.s.

Example 5.4.3. Branching processes. We continue the study begun at the end of
the last section. Using the notation introduced there, we suppose µ = E(ξm

i ) > 1
and var (ξm

i ) = σ 2 < ∞. Let Xn = Zn/µ
n. Taking m = n − 1 in Theorem 5.4.7

and rearranging, we have

E(X2
n|Fn−1) = X2

n−1 + E((Xn − Xn−1)2|Fn−1)

To compute the second term, we observe

E((Xn − Xn−1)2|Fn−1) = E((Zn/µ
n − Zn−1/µ

n−1)2|Fn−1)

= µ−2nE((Zn − µZn−1)2|Fn−1)

It follows from Exercise 5.1.1 that on {Zn−1 = k},

E((Zn − µZn−1)2|Fn−1) = E

(( k∑
i=1

ξn
i − µk

)2∣∣∣∣Fn−1

)
= kσ 2 = Zn−1σ

2

Combining the last three equations gives

EX2
n = EX2

n−1 + E(Zn−1σ
2/µ2n) = EX2

n−1 + σ 2/µn+1

since E(Zn−1/µ
n−1) = EZ0 = 1. Now EX2

0 = 1, so EX2
1 = 1 + σ 2/µ2, and

induction gives

EX2
n = 1 + σ 2

n+1∑
k=2

µ−k
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This shows sup EX2
n < ∞, so Xn → X in L2, and hence EXn → EX. EXn = 1

for all n, so EX = 1 and X is not ≡ 0. It follows from Exercise 5.3.12 that
{X > 0} = {Zn > 0 for all n }.

5.4.1 Square Integrable Martingales*

For the rest of this section, we will suppose

Xn is a martingale with X0 = 0 and EX2
n < ∞ for all n

Theorem 5.2.3 implies X2
n is a submartingale. It follows from Doob’s decomposition

Theorem 5.2.10 that we can write X2
n = Mn + An, where Mn is a martingale, and

from formulas in Theorems 5.2.10 and 5.4.7 that

An =
n∑

m=1

E(X2
m|Fm−1) − X2

m−1 =
n∑

m=1

E((Xm − Xm−1)2|Fm−1)

An is called the increasing process associated with Xn. An can be thought of as a
path by path measurement of the variance at time n, and A∞ = lim An as the total
variance in the path. Theorems 5.4.9 and 5.4.10 describe the behavior of the
martingale on {An < ∞} and {An = ∞}, respectively. The key to the proof of the
first result is the following:

Theorem 5.4.8. E
(
supm |Xm|2) ≤ 4EA∞.

Proof. Applying the L2 maximum inequality (Theorem 5.4.3) to Xn gives

E

(
sup

0≤m≤n

|Xm|2
)

≤ 4EX2
n = 4EAn

since EX2
n = EMn + EAn and EMn = EM0 = EX2

0 = 0. Using the monotone
convergence theorem now gives the desired result. �

Theorem 5.4.9. limn→∞ Xn exists and is finite a.s. on {A∞ < ∞}.

Proof. Let a > 0. Since An+1 ∈ Fn, N = inf{n : An+1 > a2} is a stopping time.
Applying Theorem 5.4.8 to XN∧n and noticing AN∧n ≤ a2 gives

E

(
sup

n

|XN∧n|2
)

≤ 4a2

so the L2 convergence theorem, 5.4.5, implies that lim XN∧n exists and is finite
a.s. Since a is arbitrary, the desired result follows. �

The next result is a variation on the theme of Exercise 5.4.9.

Theorem 5.4.10. Let f ≥ 1 be increasing with
∫∞

0 f (t)−2 dt < ∞. Then
Xn/f (An) → 0 a.s. on {A∞ = ∞}.
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Proof. Hm = f (Am)−1 is bounded and predictable, so Theorem 5.2.5 implies

Yn ≡ (H · X)n =
n∑

m=1

Xm − Xm−1

f (Am)
is a martingale

If Bn is the increasing process associated with Yn, then

Bn+1 − Bn = E((Yn+1 − Yn)2|Fn)

= E

(
(Xn+1 − Xn)2

f (An+1)2

∣∣∣∣Fn

)
= An+1 − An

f (An+1)2

since f (An+1) ∈ Fn. Our hypotheses on f imply that

∞∑
n=0

An+1 − An

f (An+1)2
≤

∞∑
n=0

∫
[An,An+1)

f (t)−2 dt < ∞

so it follows from Theorem 5.4.9 that Yn → Y∞, and the desired conclusion follows
from Kronecker’s lemma, Theorem 2.5.5. �

Example 5.4.4. Let ε > 0 and f (t) = (t log1+ε t)1/2 ∨ 1. Then f satisfies the
hypotheses of Theorem 5.4.10. Let ξ1, ξ2, . . . be independent with Eξm = 0 and
Eξ 2

m = σ 2
m. In this case, Xn = ξ1 + · · · + ξn is a square integrable martingale with

An = σ 2
1 + · · · + σ 2

n , so if
∑∞

i=1 σ 2
i = ∞, Theorem 5.4.10 implies Xn/f (An) → 0,

generalizing Theorem 2.5.7.

From Theorem 5.4.10 we get a result due to Dubins and Freedman (1965) that
extends our two previous versions in Theorems 2.3.6 and 5.3.2.

Theorem 5.4.11. Second Borel-Cantelli Lemma, III. Suppose Bn is adapted to
Fn and let pn = P (Bn|Fn−1). Then

n∑
m=1

1B(m)

/
n∑

m=1

pm → 1 a.s. on

{ ∞∑
m=1

pm = ∞
}

Proof. Define a martingale by X0 = 0 and Xn − Xn−1 = 1Bn
− P (Bn|Fn−1) for

n ≥ 1 so that we have(
n∑

m=1

1B(m)

/
n∑

m=1

pm

)
− 1 = Xn

/
n∑

m=1

pm

The increasing process associated with Xn has

An − An−1 = E((Xn − Xn−1)2|Fn−1)

= E
(

(1Bn
− pn)2

∣∣Fn−1
) = pn − p2

n ≤ pn
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On {A∞ < ∞}, Xn → a finite limit by Theorem 5.4.9, so on {A∞ < ∞} ∩
{∑m pm = ∞}

Xn

/
n∑

m=1

pm → 0

{A∞ = ∞} = {∑m pm(1 − pm) = ∞} ⊂ {∑m pm = ∞}, so on {A∞ = ∞} the
desired conclusion follows from Theorem 5.4.10 with f (t) = t ∨ 1. �

Remark. The trivial example Bn = � for all n shows we may have A∞ < ∞ and∑
pm = ∞ a.s.

Example 5.4.5. Bernard Friedman’s urn. Consider a variant of Polya’s urn (see
Section 5.3) in which we add a balls of the color drawn and b balls of the opposite
color where a ≥ 0 and b > 0. We will show that if we start with g green balls and
r red balls, where g, r > 0, then the fraction of green balls gn → 1/2. Let Gn and
Rn be the number of green and red balls after the nth draw is completed. Let Bn be
the event that the nth ball drawn is green, and let Dn be the number of green balls
drawn in the first n draws. It follows from Theorem 5.4.11 that

(
) Dn

/
n∑

m=1

gm−1 → 1 a.s. on
∞∑

m=1

gm−1 = ∞

which always holds since gm ≥ g/(g + r + (a + b)m). At this point, the argument
breaks into three cases.

Case 1. a = b = c. In this case, the result is trivial since we always add c balls of
each color.

Case 2. a > b. We begin with the observation

(∗) gn+1 = Gn+1

Gn+1 + Rn+1
= g + aDn + b(n − Dn)

g + r + n(a + b)

If limsupn→∞gn ≤ x then (
) implies limsupn→∞Dn/n ≤ x and (since a > b)

lim sup
n→∞

gn+1 ≤ ax + b(1 − x)

a + b
= b + (a − b)x

a + b

The right-hand side is a linear function with slope < 1 and fixed point at 1/2,
so starting with the trivial upper bound x = 1 and iterating, we conclude that
lim sup gn ≤ 1/2. Interchanging the roles of red and green shows lim infn→∞ gn ≥
1/2, and the result follows.

Case 3. a < b. The result is easier to believe in this case, since we are adding more
balls of the type not drawn, but is a little harder to prove. The trouble is that when
b > a and Dn ≤ xn, the right-hand side of (∗) is maximized by taking Dn = 0, so
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we need to also use the fact that if rn is fraction of red balls, then

rn+1 = Rn+1

Gn+1 + Rn+1
= r + bDn + a(n − Dn)

g + r + n(a + b)

Combining this with the formula for gn+1, it follows that if lim supn→∞ gn ≤ x and
lim supn→∞ rn ≤ y, then

lim sup
n→∞

gn ≤ a(1 − y) + by

a + b
= a + (b − a)y

a + b

lim sup
n→∞

rn ≤ bx + a(1 − x)

a + b
= a + (b − a)x

a + b

Starting with the trivial bounds x = 1, y = 1 and iterating (observe that the two
upper bounds are always the same), we conclude as in Case 2 that both limsups
are ≤1/2. �

Remark. B. Friedman (1949) considered a number of different urn models. The
result above is due to Freedman (1965), who proved the result by different methods.
The proof above is due to Ornstein and comes from a remark in Freedman’s paper.

Theorem 5.4.8 came from using Theorem 5.4.3. If we use Theorem 5.4.2 instead,
we get a slightly better result.

Theorem 5.4.12. E(supn |Xn|) ≤ 3EA
1/2
∞ .

Proof. As in the proof of Theorem 5.4.9 we let a > 0 and let N = inf{n : An+1 >

a2}. This time, however, our starting point is

P

(
sup
m

|Xm| > a

)
≤ P (N < ∞) + P

(
sup
m

|XN∧m| > a

)

P (N < ∞) = P (A∞ > a2). To bound the second term, we apply Theorem 5.4.2
to X2

N∧m with λ = a2 to get

P

(
sup
m≤n

|XN∧m| > a

)
≤ a−2EX2

N∧n = a−2EAN∧n ≤ a−2E(A∞ ∧ a2)

Letting n → ∞ in the last inequality, substituting the result in the first one, and
integrating gives

∫ ∞

0
P

(
sup
m

|Xm| > a

)
da ≤

∫ ∞

0
P (A∞ > a2) da +

∫ ∞

0
a−2E(A∞ ∧ a2) da
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Since P (A∞ > a2) = P (A1/2
∞ > a), the first integral is EA

1/2
∞ . For the second, we

use Lemma 2.2.8 (in the first and fourth steps), Fubini’s theorem, and calculus to get∫ ∞

0
a−2E(A∞ ∧ a2) da =

∫ ∞

0
a−2
∫ a2

0
P (A∞ > b) db da

=
∫ ∞

0
P (A∞ > b)

∫ ∞
√

b

a−2 da db =
∫ ∞

0
b−1/2P (A∞ > b) db = 2EA1/2

∞

which completes the proof. �

Exercise 5.4.10. Let ξ1, ξ2, . . . be i.i.d. with Eξi = 0 and Eξ 2
i < ∞. Let Sn =

ξ1 + · · · + ξn. Theorem 5.4.1 implies that for any stopping time N , ESN∧n = 0.
Use Theorem 5.4.12 to conclude that if EN1/2 < ∞ then ESN = 0.

Remark. Let ξi in Exercise 5.4.10 take the values ±1 with equal probability, and
let T = inf{n : Sn = −1}. Since ST = −1 does not have mean 0, it follows that
ET 1/2 = ∞. If we recall from (4.3.2) that P (T > t) ∼ Ct−1/2, we see that the
result in Exercise 5.4.10 is almost the best possible.

5.5 Uniform Integrability, Convergence in L1

In this section, we will give necessary and sufficient conditions for a martingale to
converge in L1. The key to this is the following definition. A collection of random
variables Xi , i ∈ I , is said to be uniformly integrable if

lim
M→∞

(
sup
i∈I

E(|Xi |; |Xi | > M)

)
= 0

If we pick M large enough so that the sup < 1, it follows that

sup
i∈I

E|Xi | ≤ M + 1 < ∞

This remark will be useful several times below.
A trivial example of a uniformly integrable family is a collection of random

variables that are dominated by an integrable random variable, that is, |Xi | ≤ Y

where EY < ∞. Our first result gives an interesting example that shows that
uniformly integrable families can be very large.

Theorem 5.5.1. Given a probability space (�,Fo, P ) and an X ∈ L1, then
{E(X|F) : F is a σ -field ⊂ Fo} is uniformly integrable.

Proof. If An is a sequence of sets with P (An) → 0, then the dominated convergence
theorem implies E(|X|; An) → 0. From the last result, it follows that if ε > 0, we
can pick δ > 0 so that if P (A) ≤ δ then E(|X|; A) ≤ ε. (If not, there are sets An

with P (An) ≤ 1/n and E(|X|; An) > ε, a contradiction.)
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Pick M large enough so that E|X|/M ≤ δ. Jensen’s inequality and the definition
of conditional expectation imply

E( |E(X|F)| ; |E(X|F)| > M) ≤ E( E(|X||F) ; E(|X||F) > M)

= E( |X| ; E(|X||F) > M)

since {E(|X||F) > M} ∈ F . Using Chebyshev’s inequality and recalling the defi-
nition of M , we have

P {E(|X||F) > M} ≤ E{E(|X||F)}/M = E|X|/M ≤ δ

So, by the choice of δ, we have

E(|E(X|F)|; |E(X|F)| > M) ≤ ε for all F

Since ε was arbitrary, the collection is uniformly integrable. �

A common way to check uniform integrability is to use:

Exercise 5.5.1. Let ϕ ≥ 0 be any function with ϕ(x)/x → ∞ as x → ∞, for
example, ϕ(x) = xp with p > 1 or ϕ(x) = x log+ x. If Eϕ(|Xi |) ≤ C for all i ∈ I ,
then {Xi : i ∈ I } is uniformly integrable.

The relevance of uniform integrability to convergence in L1 is explained by:

Theorem 5.5.2. If Xn → X in probability, then the following are equivalent:
(i) {Xn : n ≥ 0} is uniformly integrable.

(ii) Xn → X in L1.

(iii) E|Xn| → E|X| < ∞.

Proof. (i) implies (ii). Let

ϕM (x) =

⎧⎪⎨
⎪⎩

M if x ≥ M

x if |x| ≤ M

−M if x ≤ −M

The triangle inequality implies

|Xn − X| ≤ |Xn − ϕM (Xn)| + |ϕM (Xn) − ϕM (X)| + |ϕM (X) − X|
Since |ϕM (Y ) − Y )| = (|Y | − M)+ ≤ |Y |1(|Y |>M), taking expected value gives

E|Xn − X| ≤ E|ϕM (Xn) − ϕM (X)| + E(|Xn|; |Xn| > M) + E(|X|; |X| > M)

Theorem 2.3.4 implies that ϕM (Xn) → ϕM (X) in probability, so the first term → 0
by the bounded convergence theorem. (See Exercise 2.3.7.) If ε > 0 and M is
large, uniform integrability implies that the second term ≤ ε. To bound the third
term, we observe that uniform integrability implies sup E|Xn| < ∞, so Fatou’s
lemma (in the form given in Exercise 2.3.6) implies E|X| < ∞, and by making
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M larger we can make the third term ≤ ε. Combining the last three facts shows
lim sup E|Xn − X| ≤ 2ε. Since ε is arbitrary, this proves (ii).

(ii) implies (iii). Jensen’s inequality implies

|E|Xn| − E|X|| ≤ E||Xn| − |X|| ≤ E|Xn − X| → 0

(iii) implies (i). Let

ψM (x) =

⎧⎪⎨
⎪⎩

x on [0, M − 1],

0 on [M, ∞)

linear on [M − 1, M]

.

The dominated convergence theorem implies that if M is large, E|X| −
EψM (|X|) ≤ ε/2. As in the first part of the proof, the bounded convergence theo-
rem implies EψM (|Xn|) → EψM (|X|), so using (iii) we get that if n ≥ n0

E(|Xn|; |Xn| > M) ≤ E|Xn| − EψM (|Xn|)
≤ E|X| − EψM (|X|) + ε/2 < ε

By choosing M larger, we can make E(|Xn|; |Xn| > M) ≤ ε for 0 ≤ n < n0, so
Xn is uniformly integrable. �

We are now ready to state the main theorems of this section. We have already
done all the work, so the proofs are short.

Theorem 5.5.3. For a submartingale, the following are equivalent:
(i) It is uniformly integrable.

(ii) It converges a.s. and in L1.

(iii) It converges in L1.

Proof. (i) implies (ii). Uniform integrability implies sup E|Xn| < ∞ so the mar-
tingale convergence theorem implies Xn → X a.s., and Theorem 5.5.2 implies
Xn → X in L1. (ii) implies (iii). Trivial. (iii) implies (i). Xn → X in L1 implies
Xn → X in probability, (see Lemma 2.2.2) so this follows from Theorem 5.5.2. �

Before proving the analogue of Theorem 5.5.3 for martingales, we will isolate
two parts of the argument that will be useful later.

Lemma 5.5.4. If integrable random variables Xn → X in L1 then

E(Xn; A) → E(X; A)

Proof. |EXm1A − EX1A| ≤ E|Xm1A − X1A| ≤ E|Xm − X| → 0. �

Lemma 5.5.5. If a martingale Xn → X in L1, then Xn = E(X|Fn).
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Proof. The martingale property implies that if m > n, E(Xm|Fn) = Xn, so if A ∈
Fn, E(Xn; A) = E(Xm; A). Lemma 5.5.4 implies E(Xm; A) → E(X; A), so we
have E(Xn; A) = E(X; A) for all A ∈ Fn. Recalling the definition of conditional
expectation, it follows that Xn = E(X|Fn). �

Theorem 5.5.6. For a martingale, the following are equivalent:
(i) It is uniformly integrable.

(ii) It converges a.s. and in L1.

(iii) It converges in L1.

(iv) There is an integrable random variable X so that Xn = E(X|Fn).

Proof. (i) implies (ii). Since martingales are also submartingales, this follows from
Theorem 5.5.3. (ii) implies (iii). Trivial. (iii) implies (iv). Follows from Lemma
5.5.5. (iv) implies (i). This follows from Theorem 5.5.1. �

The next result is related to Lemma 5.5.5, but goes in the other direction.

Theorem 5.5.7. Suppose Fn ↑ F∞, i.e., Fn is an increasing sequence of σ -fields
and F∞ = σ (∪nFn). As n → ∞,

E(X|Fn) → E(X|F∞) a.s. and in L1

Proof. The first step is to note that if m > n then Theorem 5.1.6 implies

E(E(X|Fm)|Fn) = E(X|Fn)

so Yn = E(X|Fn) is a martingale. Theorem 5.5.1 implies that Yn is uniformly
integrable, so Theorem 5.5.6 implies that Yn converges a.s. and in L1 to a limit
Y∞. The definition of Yn and Lemma 5.5.5 imply E(X|Fn) = Yn = E(Y∞|Fn), and
hence ∫

A

X dP =
∫

A

Y∞ dP for all A ∈ Fn

Since X and Y∞ are integrable, and ∪nFn is a π -system, the π − λ theorem
implies that the last result holds for all A ∈ F∞. Since Y∞ ∈ F∞, it follows that
Y∞ = E(X|F∞). �

Exercise 5.5.2. Let Z1, Z2, . . . be i.i.d. with E|Zi | < ∞, let θ be an indepen-
dent r.v. with finite mean, and let Yi = Zi + θ . If Zi is normal(0,1), then in
statistical terms we have a sample from a normal population with variance 1
and unknown mean. The distribution of θ is called the prior distribution, and
P (θ ∈ ·|Y1, . . . , Yn) is called the posterior distribution after n observations. Show
that E(θ |Y1, . . . , Yn) → θ a.s.

In the next two exercises, � = [0, 1), Ik,n = [k2−n, (k + 1)2−n), and Fn =
σ (Ik,n : 0 ≤ k < 2n).
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Exercise 5.5.3. f is said to be Lipschitz continuous if |f (t) − f (s)| ≤ K|t − s|
for 0 ≤ s, t < 1. Show that Xn = (f ((k + 1)2−n) − f (k2−n))/2−n on Ik,n defines
a martingale, Xn → X∞ a.s. and in L1, and

f (b) − f (a) =
∫ b

a

X∞(ω) dω

Exercise 5.5.4. Suppose f is integrable on [0,1). E(f |Fn) is a step function
and → f in L1. From this it follows immediately that if ε > 0, there is a step
function g on [0,1] with

∫ |f − g| dx < ε. This approximation is much simpler
than the bare-hands approach we used in Exercise 1.4.3, but of course we are using
a lot of machinery.

An immediate consequence of Theorem 5.5.7 is:

Theorem 5.5.8. Lévy’s 0-1 law. If Fn ↑ F∞ and A ∈ F∞, then E(1A|Fn) → 1A

a.s.

To steal a line from Chung: “The reader is urged to ponder over the meaning of
this result and judge for himself whether it is obvious or incredible.” We will now
argue for the two points of view.

“It is obvious.” 1A ∈ F∞, and Fn ↑ F∞, so our best guess of 1A given the infor-
mation in Fn should approach 1A (the best guess given F∞).

“It is incredible.” Let X1, X2, . . . be independent and suppose A ∈ T , the tail
σ -field. For each n, A is independent of Fn, so E(1A|Fn) = P (A). As n → ∞,
the left-hand side converges to 1A a.s., so P (A) = 1A a.s., and it follows that
P (A) ∈ {0, 1}, that is, we have proved Kolmogorov’s 0-1 law.

The last argument may not show that Theorem 5.5.8 is “too unusual or improbable
to be possible,” but this and other applications of Theorem 5.5.8 below show that
it is a very useful result.

Exercise 5.5.5. Let Xn be r.v.’s taking values in [0, ∞). Let D = {Xn = 0 for some
n ≥ 1} and assume

P (D|X1, . . . , Xn) ≥ δ(x) > 0 a.s. on {Xn ≤ x}

Use Theorem 5.5.8 to conclude that P (D ∪ {limn Xn = ∞}) = 1.

Exercise 5.5.6. Let Zn be a branching process with offspring distribution pk (see
the end of Section 5.3 for definitions). Use the last result to show that if p0 > 0,
then P (limn Zn = 0 or ∞) = 1.
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Exercise 5.5.7. Let Xn ∈ [0, 1] be adapted to Fn. Let α, β > 0 with α + β = 1
and suppose

P (Xn+1 = α + βXn|Fn) = Xn P (Xn+1 = βXn|Fn) = 1 − Xn

Show P (limn Xn = 0 or 1) = 1 and if X0 = θ then P (limn Xn = 1) = θ.

A more technical consequence of Theorem 5.5.7 is:

Theorem 5.5.9. Dominated convergence theorem for conditional expectations.
Suppose Yn → Y a.s. and |Yn| ≤ Z for all n where EZ < ∞. If Fn ↑ F∞ then

E(Yn|Fn) → E(Y |F∞) a.s.

Proof. Let WN = sup{|Yn − Ym| : n,m ≥ N}. WN ≤ 2Z, so EWN < ∞. Using
monotonicity (5.1.2) and applying Theorem 5.5.7 to WN gives

lim sup
n→∞

E(|Yn − Y ||Fn) ≤ lim
n→∞ E(WN |Fn) = E(WN |F∞)

The last result is true for all N and WN ↓ 0 as N ↑ ∞, so (5.1.3) implies
E(WN |F∞) ↓ 0, and Jensen’s inequality gives us

|E(Yn|Fn) − E(Y |Fn)| ≤ E(|Yn − Y ||Fn) → 0 a.s. as n → ∞
Theorem 5.5.7 implies E(Y |Fn) → E(Y |F∞) a.s. The desired result follows from
the last two conclusions and the triangle inequality. �

Exercise 5.5.8. Show that if Fn ↑ F∞ and Yn → Y in L1, then E(Yn|Fn) →
E(Y |F∞) in L1.

Example 5.5.1. Suppose X1, X2, . . . are uniformly integrable and → X a.s. The-
orem 5.5.2 implies Xn → X in L1, and combining this with Exercise 5.5.8 shows
E(Xn|F) → E(X|F) in L1. We will now show that E(Xn|F) need not converge
a.s. Let Y1, Y2, . . . and Z1, Z2, . . . be independent r.v.’s with

P (Yn = 1) = 1/n P (Yn = 0) = 1 − 1/n

P (Zn = n) = 1/n P (Zn = 0) = 1 − 1/n

Let Xn = YnZn. P (Xn > 0) = 1/n2 so the Borel-Cantelli lemma implies Xn →
0 a.s. E(Xn; |Xn| ≥ 1) = n/n2, so Xn is uniformly integrable. Let F =
σ (Y1, Y2, . . .).

E(Xn|F) = YnE(Zn|F) = YnEZn = Yn

Since Yn → 0 in L1 but not a.s., the same is true for E(Xn|F).
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5.6 Backwards Martingales

A backwards martingale (some authors call them reversed) is a martingale
indexed by the negative integers, that is, Xn, n ≤ 0, adapted to an increasing
sequence of σ -fields Fn with

E(Xn+1|Fn) = Xn for n ≤ −1

Because the σ -fields decrease as n ↓ −∞, the convergence theory for backwards
martingales is particularly simple.

Theorem 5.6.1. X−∞ = limn→−∞ Xn exists a.s. and in L1.

Proof. Let Un be the number of upcrossings of [a, b] by X−n, . . . , X0. The
upcrossing inequality, Theorem 5.2.7, implies (b − a)EUn ≤ E(X0 − a)+. Let-
ting n → ∞ and using the monotone convergence theorem, we have EU∞ < ∞,
so by the remark after the proof of Theorem 5.2.8, the limit exists a.s. The martin-
gale property implies Xn = E(X0|Fn), so Theorem 5.5.1 implies Xn is uniformly
integrable and Theorem 5.5.2 tells us that the convergence occurs in L1. �

Exercise 5.6.1. Show that if X0 ∈ Lp the convergence occurs in Lp.

The next result identifies the limit in Theorem 5.6.1.

Theorem 5.6.2. If X−∞ = limn→−∞ Xn and F−∞ = ∩nFn, then X−∞ =
E(X0|F−∞).

Proof. Clearly, X−∞ ∈ F−∞. Xn = E(X0|Fn), so if A ∈ F−∞ ⊂ Fn then∫
A

Xn dP =
∫

A

X0 dP

Theorem 5.6.1 and Lemma 5.5.4 imply E(Xn; A) → E(X−∞; A), so∫
A

X−∞ dP =
∫

A

X0 dP

for all A ∈ F−∞, proving the desired conclusion. �

The next result is Theorem 5.5.7 backwards.

Theorem 5.6.3. If Fn ↓ F−∞ as n ↓ −∞ (i.e., F−∞ = ∩nFn), then

E(Y |Fn) → E(Y |F−∞) a.s. and in L1

Proof. Xn = E(Y |Fn) is a backwards martingale, so Theorem 5.6.1 and 5.6.2 imply
that as n ↓ −∞, Xn → X−∞ a.s. and in L1, where

X−∞ = E(X0|F−∞) = E(E(Y |F0)|F−∞) = E(Y |F−∞) �
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Exercise 5.6.2. Prove the backwards analogue of Theorem 5.5.9. Suppose Yn →
Y−∞ a.s. as n → −∞ and |Yn| ≤ Z a.s. where EZ < ∞. If Fn ↓ F−∞, then
E(Yn|Fn) → E(Y−∞|F−∞) a.s.

Even though the convergence theory for backwards martingales is easy, there are
some nice applications. For the rest of the section, we return to the special space
utilized in Section 4.1, so we can utilize definitions given there. That is, we suppose

� = {(ω1, ω2, . . .) : ωi ∈ S}
F = S × S × . . .

Xn(ω) = ωn

Let En be the σ -field generated by events that are invariant under permutations that
leave n + 1, n + 2, . . . fixed and let E = ∩nEn be the exchangeable σ -field.

Example 5.6.1. Strong law of large numbers. Let ξ1, ξ2, . . . be i.i.d. with E|ξi | <

∞. Let Sn = ξ1 + · · · + ξn, let X−n = Sn/n, and let

F−n = σ (Sn, Sn+1, Sn+2, . . .) = σ (Sn, ξn+1, ξn+2, . . .)

To compute E(X−n|F−n−1), we observe that if j, k ≤ n + 1, symmetry implies
E(ξj |F−n−1) = E(ξk|F−n−1), so

E(ξn+1|F−n−1) = 1

n + 1

n+1∑
k=1

E(ξk|F−n−1)

= 1

n + 1
E(Sn+1|F−n−1) = Sn+1

n + 1

Since X−n = (Sn+1 − ξn+1)/n, it follows that

E(X−n|F−n−1) = E(Sn+1/n|F−n−1) − E(ξn+1/n|F−n−1)

= Sn+1

n
− Sn+1

n(n + 1)
= Sn+1

n + 1
= X−n−1

The last computation shows that X−n is a backwards martingale, so it follows from
Theorems 5.6.1 and 5.6.2 that limn→∞ Sn/n = E(X−1|F−∞). Since F−n ⊂ En,
F−∞ ⊂ E . The Hewitt-Savage 0-1 law (Theorem 4.1.1) says E is trivial, so we
have

lim
n→∞ Sn/n = E(X−1) a.s.

Example 5.6.2. Ballot theorem. Let {ξj , 1 ≤ j ≤ n} be i.i.d. nonnegative
integer-valued r.v.’s, let Sk = ξ1 + · · · + ξk, and let G = {Sj < j for 1 ≤ j ≤ n}.
Then

P (G|Sn) = (1 − Sn/n)+ (5.6.1)
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Remark. To explain the name, let ξ1, ξ2, . . . , ξn be i.i.d. and take values 0 or 2 with
probability 1/2 each. Interpreting 0’s and 2’s as votes for candidates A and B, we
see that G = {A leads B throughout the counting} so if n = α + β

P (G|B gets β votes) =
(

1 − 2β

n

)+
= α − β

α + β

the result in Theorem 4.3.2.

Proof. The result is trivial when Sn ≥ n, so suppose Sn < n. Computations in
Example 5.6.1 show that X−j = Sj/j is a martingale w.r.t. F−j = σ (Sj , . . . , Sn).
Let T = inf{k ≥ −n : Xk ≥ 1} and set T = −1 if the set is ∅. We claim that
XT = 1 on Gc. To check this, note that if Sj+1 < j + 1, then Sj ≤ Sj+1 ≤ j .
Since G ⊂ {T = −1} and S1 < 1 implies S1 = 0, we have XT = 0 on G. Noting
F−n = σ (Sn) and using Exercise 5.4.3, we see that on {Sn < n},

P (Gc|Sn) = E(XT |F−n) = X−n = Sn/n �

Example 5.6.3. Hewitt-Savage 0-1 law. If X1, X2, . . . are i.i.d. and A ∈ E , then
P (A) ∈ {0, 1}.
The key to the new proof is:

Lemma 5.6.4. Suppose X1, X2, . . . are i.i.d. and let

An(ϕ) = 1

(n)k

∑
i

ϕ(Xi1, . . . , Xik )

where the sum is over all sequences of distinct integers 1 ≤ i1, . . . , ik ≤ n and

(n)k = n(n − 1) · · · (n − k + 1)

is the number of such sequences. If ϕ is bounded, An(ϕ) → Eϕ(X1, . . . , Xk) a.s.

Proof. An(ϕ) ∈ En, so

An(ϕ) = E(An(ϕ)|En) = 1

(n)k

∑
i

E(ϕ(Xi1, . . . , Xik )|En)

= E(ϕ(X1, . . . , Xk)|En)

since all the terms in the sum are the same. Theorem 5.6.3 with F−m = Em for
m ≥ 1 implies that

E(ϕ(X1, . . . , Xk)|En) → E(ϕ(X1, . . . , Xk)|E)

We want to show that the limit is E(ϕ(X1, . . . , Xk)). The first step is to observe
that there are k(n − 1)k−1 terms in An(ϕ) involving X1 and ϕ is bounded, so if we
let 1 ∈ i denote the sum over sequences that contain 1.

1

(n)k

∑
1∈i

ϕ(Xi1, . . . , Xik ) ≤ k(n − 1)k−1

(n)k
sup φ → 0
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This shows that

E(ϕ(X1, . . . , Xk)|E) ∈ σ (X2, X3, . . .)

Repeating the argument for 2, 3, . . . , k shows

E(ϕ(X1, . . . , Xk)|E) ∈ σ (Xk+1, Xk+2, . . .)

Intuitively, if the conditional expectation of a r.v. is independent of the r.v. then

(a) E(ϕ(X1, . . . , Xk)|E) = E(ϕ(X1, . . . , Xk))

To show this, we prove:

(b) If EX2 < ∞ and E(X|G) ∈ F with X independent of F then E(X|G) = EX.

Proof. Let Y = E(X|G) and note that Theorem 5.1.4 implies EY 2 ≤ EX2 < ∞.
By independence, EXY = EX EY = (EY )2 since EY = EX. From the geometric
interpretation of conditional expectation, Theorem 5.1.8, E((X − Y )Y ) = 0, so
EY 2 = EXY = (EY )2 and var (Y ) = EY 2 − (EY )2 = 0. �

(a) holds for all bounded ϕ, so E is independent of Gk = σ (X1, . . . , Xk). Since this
holds for all k, and ∪kGk is a π -system that contains �, Theorem 2.1.2 implies
that E is independent of σ (∪kGk) ⊃ E , and we get the usual 0-1 law punch line. If
A ∈ E , it is independent of itself, and hence P (A) = P (A ∩ A) = P (A)P (A), that
is, P (A) ∈ {0, 1}. �

Example 5.6.4. de Finetti’s Theorem. A sequence X1, X2, . . . is said to be
exchangeable if for each n and permutation π of {1, . . . , n}, (X1, . . . , Xn) and
(Xπ(1), . . . , Xπ(n)) have the same distribution.

Theorem 5.6.5. de Finetti’s Theorem. If X1, X2, . . . are exchangeable, then con-
ditional on E , X1, X2, . . . are independent and identically distributed.

Proof. Repeating the first calculation in the proof of Lemma 5.6.4 and using the
notation introduced there shows that for any exchangeable sequence,

An(ϕ) = E(An(ϕ)|En) = 1

(n)k

∑
i

E(ϕ(Xi1, . . . , Xik )|En)

= E(ϕ(X1, . . . , Xk)|En)

since all the terms in the sum are the same. Again, Theorem 5.6.3 implies that

An(ϕ) → E(ϕ(X1, . . . , Xk)|E) (5.6.2)

This time, however, E may be nontrivial, so we cannot hope to show that the limit
is E(ϕ(X1, . . . , Xk)).
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Let f and g be bounded functions on Rk−1 and R, respectively. If we let In,k be
the set of all sequences of distinct integers 1 ≤ i1, . . . , ik ≤ n, then

(n)k−1An(f ) nAn(g) =
∑

i∈In,k−1

f (Xi1, . . . , Xik−1 )
∑
m

g(Xm)

=
∑
i∈In,k

f (Xi1, . . . , Xik−1 )g(Xik )

+
∑

i∈In,k−1

k−1∑
j=1

f (Xi1, . . . , Xik−1 )g(Xij )

If we let ϕ(x1, . . . , xk) = f (x1, . . . , xk−1)g(xk), note that

(n)k−1n

(n)k
= n

(n − k + 1)
and

(n)k−1

(n)k
= 1

(n − k + 1)

then rearrange, we have

An(ϕ) = n

n − k + 1
An(f )An(g) − 1

n − k + 1

k−1∑
j=1

An(ϕj )

where ϕj (x1, . . . , xk−1) = f (x1, . . . , xk−1)g(xj ). Applying (5.6.2) to ϕ, f , g, and
all the ϕj gives

E(f (X1, . . . , Xk−1)g(Xk)|E) = E(f (X1, . . . , Xk−1)|E)E(g(Xk)|E)

It follows by induction that

E

⎛
⎝ k∏

j=1

fj (Xj )

∣∣∣∣∣∣ E
⎞
⎠ =

k∏
j=1

E(fj (Xj )|E) �

When the Xi take values in a nice space, there is a regular conditional distribution
for (X1, X2, . . .) given E , and the sequence can be represented as a mixture of
i.i.d. sequences. Hewitt and Savage (1956) call the sequence presentable in this
case. For the usual measure theoretic problems, the last result is not valid when
the Xi take values in an arbitrary measure space. See Dubins and Freedman (1979)
and Freedman (1980) for counterexamples.

The simplest special case of Theorem 5.6.5 occurs when the Xi ∈ {0, 1}. In this
case,

Theorem 5.6.6. If X1, X2, . . . are exchangeable and take values in {0, 1} then there
is a probability distribution on [0, 1] so that

P (X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0) =
∫ 1

0
θk(1 − θ )n−k dF (θ )

This result is useful for people concerned about the foundations of statistics (see
Section 3.7 of Savage (1972)), since from the palatable assumption of symmetry
one gets the powerful conclusion that the sequence is a mixture of i.i.d. sequences.
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Theorem 5.6.6 has been proved in a variety of different ways. See Feller, Vol. II
(1971), pp. 228–9, for a proof that is related to the moment problem. Diaconis
and Freedman (1980) have a nice proof that starts with the trivial observation that
the distribution of a finite exchangeable sequence Xm, 1 ≤ m ≤ n has the form
p0H0,n + · · · + pnHn,n where Hm,n is “drawing without replacement from an urn
with m ones and n − m zeros.” If m → ∞ and m/n → p then Hm,n approaches
product measure with density p. Theorem 5.6.6 follows easily from this, and one
can get bounds on the rate of convergence.

Exercises

5.6.3. Prove directly from the definition that if X1, X2, . . . ∈ {0, 1} are exchange-
able,

P (X1 = 1, . . . , Xk = 1|Sn = m) =
(

n − k

n − m

)/(
n

m

)

5.6.4. If X1, X2, . . . ∈ R are exchangeable with EX2
i < ∞ then E(X1X2) ≥ 0.

5.6.5. Use the first few lines of the proof of Lemma 5.6.4 to conclude that if
X1, X2, . . . are i.i.d. with EXi = µ and var (Xi) = σ 2 < ∞ then(

n

2

)−1 ∑
1≤i<j≤n

(Xi − Xj )2 → 2σ 2

5.7 Optional Stopping Theorems

In this section, we will prove a number of results that allow us to conclude that if Xn

is a submartingale and M ≤ N are stopping times, then EXM ≤ EXN . Example
5.2.3 shows that this is not always true, but Exercise 5.4.2 shows this is true if N

is bounded, so our attention will be focused on the case of unbounded N.

Theorem 5.7.1. If Xn is a uniformly integrable submartingale, then for any stop-
ping time N , XN∧n is uniformly integrable.

Proof. X+
n is a submartingale, so Theorem 5.4.1 implies EX+

N∧n ≤ EX+
n . Since

X+
n is uniformly integrable, it follows from the remark after the definition that

sup
n

EX+
N∧n ≤ sup

n

EX+
n < ∞

Using the martingale convergence theorem (5.2.8) now gives XN∧n → XN a.s.
(here X∞ = limn Xn) and E|XN | < ∞. With this established, the rest is easy. We
write

E(|XN∧n|; |XN∧n| > K) = E(|XN |; |XN | > K, N ≤ n)

+ E(|Xn|; |Xn| > K, N > n)
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Since E|XN | < ∞ and Xn is uniformly integrable, if K is large then each term
is < ε/2. �

From the last computation in the proof of Theorem 5.7.1, we get:

Theorem 5.7.2. If E|XN | < ∞ and Xn1(N>n) is uniformly integrable, then XN∧n

is uniformly integrable.

From Theorem 5.7.1, we immediately get:

Theorem 5.7.3. If Xn is a uniformly integrable submartingale, then for any stop-
ping time N ≤ ∞, we have EX0 ≤ EXN ≤ EX∞, where X∞ = lim Xn.

Proof. Theorem 5.4.1 implies EX0 ≤ EXN∧n ≤ EXn. Letting n → ∞ and
observing that Theorem 5.7.1 and 5.5.3 imply XN∧n → XN and Xn → X∞ in
L1 gives the desired result. �

From Theorem 5.7.3, we get the following useful corollary.

Theorem 5.7.4. Optional stopping theorem. If L ≤ M are stopping times and
YM∧n is a uniformly integrable submartingale, then EYL ≤ EYM and

YL ≤ E(YM |FL)

Proof. Use the inequality EXN ≤ EX∞ in Theorem 5.7.3 with Xn = YM∧n and
N = L. To prove the second result, let A ∈ FL and

N =
{

L on A

M on Ac

is a stopping time by Exercise 4.1.7. Using the first result now shows EYN ≤ EYM .
Since N = M on Ac, it follows from the last inequality and the definition of
conditional expectation that

E(YL; A) ≤ E(YM ; A) = E(E(YM |FL); A)

Taking Aε = {YL − E(YM |FL) > ε}, we conclude P (Aε) = 0 for all ε > 0 and the
desired result follows. �

The last result is the one we use the most (usually the first inequality with L = 0).
Theorem 5.7.2 is useful in checking the hypothesis. A typical application is the
following generalization of Wald’s equation, Theorem 4.1.5.

Theorem 5.7.5. Suppose Xn is a submartingale and E(|Xn+1 − Xn||Fn) ≤ B a.s.
If N is a stopping time with EN < ∞, then XN∧n is uniformly integrable and
hence EXN ≥ EX0.
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Remark. As usual, using the last result twice shows that if X is a martingale,
then EXN = EX0. To recover Wald’s equation, let Sn be a random walk, let
µ = E(Sn − Sn−1), and apply the martingale result to Xn = Sn − nµ.

Proof. We begin by observing that

|XN∧n| ≤ |X0| +
∞∑

m=0

|Xm+1 − Xm|1(N>m)

To prove uniform integrability, it suffices to show that the right-hand side has finite
expectation for then |XN∧n| is dominated by an integrable r.v. Now, {N > m} ∈ Fm,
so

E(|Xm+1 − Xm|; N > m) = E(E(|Xm+1 − Xm||Fm); N > m) ≤ BP (N > m)

and E
∑∞

m=0 |Xm+1 − Xm|1(N>m) ≤ B
∑∞

m=0 P (N > m) = BEN < ∞. �

Before we delve further into applications, we pause to prove one last stopping
theorem that does not require uniform integrability.

Theorem 5.7.6. If Xn is a nonnegative supermartingale and N ≤ ∞ is a stopping
time, then EX0 ≥ EXN where X∞ = lim Xn, which exists by Theorem 5.2.9.

Proof. By Theorem 5.4.1, EX0 ≥ EXN∧n. The monotone convergence theorem
implies

E(XN ; N < ∞) = lim
n→∞ E(XN ; N ≤ n)

and Fatou’s lemma implies

E(XN ; N = ∞) ≤ lim inf
n→∞ E(Xn; N > n)

Adding the last two lines and using our first observation,

EXN ≤ lim inf
n→∞ EXN∧n ≤ EX0 �

Exercise 5.7.1. If Xn ≥ 0 is a supermartingale, then P (sup Xn > λ) ≤ EX0/λ.

Applications to random walks. For the rest of the section, including all the
exercises below, ξ1, ξ2, . . . are i.i.d., Sn = ξ1 + · · · + ξn, and Fn = σ (ξ1, . . . , ξn).

Theorem 5.7.7. Asymmetric simple random walk refers to the special case in
which P (ξi = 1) = p and P (ξi = −1) = q ≡ 1 − p with p �= q. Without loss of
generality we assume 1/2 < p < 1.
(a) If ϕ(x) = {(1 − p)/p}x , then ϕ(Sn) is a martingale.
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(b) If we let Tx = inf{n : Sn = x}, then for a < 0 < b

P (Ta < Tb) = φ(b) − φ(0)

φ(b) − φ(a)

(c) If a < 0, then P (minn Sn ≤ a) = P (Ta < ∞) = {(1 − p)/p}−a .
(d) If b > 0, then P (Tb < ∞) = 1 and ETb = b/(2p − 1).

Proof. Since Sn and ξn+1 are independent, Example 5.1.5 implies that on {Sn = m},

E(φ(Sn+1)|Fn) = p ·
(

1 − p

p

)m+1

+ (1 − p)

(
1 − p

p

)m−1

= {1 − p + p}
(

1 − p

p

)m

= φ(Sn)

which proves (a).
Let N = Ta ∧ Tb. We showed in Example 4.1.5 that N < ∞. Since φ(SN∧n)

is bounded, it is uniformly integrable, and Theorem 5.7.4 with L = 0, M = N

implies

φ(0) = Eφ(SN ) = P (Ta < Tb)φ(a) + P (Tb < Ta)φ(b)

Using P (Ta < Tb) + P (Tb < Ta) = 1 and solving gives (b).
Letting b → ∞ and noting φ(b) → 0 gives the result in (c), since Ta < ∞ if

and only if Ta < Tb for some b. To start to prove (d) we note that φ(a) → ∞
as a → −∞, so P (Tb < ∞) = 1. For the second conclusion, we note that Xn =
Sn − (p − q)n is a martingale. Since Tb ∧ n is a bounded stopping time, Theorem
5.4.1 implies

0 = E
(
STb∧n − (p − q)(Tb ∧ n)

)
Now b ≥ STb∧n ≥ minm Sm and (c) implies E(infm Sm) > −∞, so the dominated
convergence theorem implies ESTb∧n → ESTb

as n → ∞. The monotone conver-
gence theorem implies E(Tb ∧ n) ↑ ETb, so we have b = (p − q)ETb. �

Remark. The reader should study the technique in this proof of (d) because it is
useful in a number of situations (e.g., the exercises below). We apply Theorem
5.4.1 to the bounded stopping time Tb ∧ n, then let n → ∞, and use appropriate
convergence theorems. Here this is an alternative to showing that XTb∧n is uniformly
integrable.

Exercises

5.7.2. Let Sn be an asymmetric simple random walk with 1/2 < p < 1, and let
σ 2 = pq. Use the fact that Xn = (Sn − (p − q)n)2 − σ 2n is a martingale to show
var (Tb) = bσ 2/(p − q)3.

5.7.3. Let Sn be a symmetric simple random walk starting at 0, and let T = inf{n :
Sn /∈ (−a, a)} where a is an integer. (i) Use the fact that S2

n − n is a martingale to
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show that ET = a2. (ii) Find constants b and c so that Yn = S4
n − 6nS2

n + bn2 + cn

is a martingale, and use this to compute ET 2.

The last five exercises are devoted to the study of exponential martingales.

5.7.4. Suppose ξi is not constant. Let ϕ(θ ) = E exp(θξ1) < ∞ for θ ∈ (−δ, δ), and
let ψ(θ ) = log ϕ(θ ). (i) Xθ

n = exp(θSn − nψ(θ )) is a martingale. (ii) ψ is strictly
convex. (iii) Show E

√
Xθ

n → 0 and conclude that Xθ
n → 0 a.s.

5.7.5. Let Sn be asymmetric simple random walk with p ≥ 1/2. Let T1 = inf{n :
Sn = 1}. Use the martingale of Exercise 7.4 to conclude (i) if θ > 0 then 1 =
eθEϕ(θ )−T1 , where ϕ(θ ) = peθ + qe−θ and q = 1 − p. (ii) Set peθ + qe−θ = 1/s

and then solve for x = e−θ to get

EsT1 = (1 − {1 − 4pqs2}1/2)/2qs

5.7.6. Suppose ϕ(θo) = E exp(θoξ1) = 1 for some θo < 0 and ξi is not constant.
It follows from the result in Exercise 5.7.4 that Xn = exp(θoSn) is a martingale.
Let T = inf{n : Sn /∈ (a, b)} and Yn = Xn∧T . Use Theorem 5.7.4 to conclude that
EXT = 1 and P (ST leqa) ≤ exp(−θoa).

5.7.7. Suppose the ξi are integer valued with P (ξi < −1) = 0 and EXi > 0. Show
that ϕ(θo) = E exp(θoξ1) = 1 for some θo < 0. Use the martingale Xn = exp(θoSn)
to conclude that P (ST ≤ a) = exp(−θoa).

5.7.8. Let Sn be the total assets of an insurance company at the end of year n. In
year n, premiums totaling c > 0 are received and claims ζn are paid where ζn is
Normal(µ, σ 2) and µ < c. To be precise, if ξn = c − ζn then Sn = Sn−1 + ξn. The
company is ruined if its assets drop to 0 or less. Show that if S0 > 0 is nonrandom,
then

P ( ruin ) ≤ exp(−2(c − µ)S0/σ
2)

5.7.9. Let Zn be a branching process with offspring distribution pk, defined in part d
of Section 4.3, and let ϕ(θ ) =∑pkθ

k. Suppose ρ < 1 has ϕ(ρ) = ρ. Show that ρZn

is a martingale and use this to conclude P (Zn = 0 for some n ≥ 1|Z0 = x) = ρx.
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Markov Chains

The main object of study in this chapter is (temporally homogeneous) Markov
chains on a countable state space S. That is, a sequence of r.v.’s Xn, n ≥ 0, with

P (Xn+1 = j |Fn) = p(Xn, j )

where Fn = σ (X0, . . . , Xn), p(i, j ) ≥ 0 and
∑

j p(i, j ) = 1. The theory focuses
on the asymptotic behavior of pn(i, j ) ≡ P (Xn = j |X0 = i). The basic results are
that

lim
n→∞

1

n

n∑
m=1

pm(i, j ) exists always

and under a mild assumption called aperiodicity:

lim
n→∞ pn(i, j ) exists

In nice situations, that is, Xn is irreducible and positive recurrent, the limits above
are a probability distribution that is independent of the starting state i. In words,
the chain converges to equilibrium as n → ∞. One of the attractions of Markov
chain theory is that these powerful conclusions come out of assumptions that are
satisfied in a large number of examples.

6.1 Definitions

Let (S,S) be a measurable space.

A function p : S × S → R is said to be a transition probability if:

(i) For each x ∈ S, A → p(x, A) is a probability measure on (S,S).
(ii) For each A ∈ S , x → p(x, A) is a measurable function.

We say Xn is a Markov chain (w.r.t. Fn) with transition probability p if

P (Xn+1 ∈ B|Fn) = p(Xn, B)

274
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Given a transition probability p and an initial distribution µ on (S,S), we can
define a consistent set of finite dimensional distributions by

P (Xj ∈ Bj, 0 ≤ j ≤ n) =
∫

B0

µ(dx0)
∫

B1

p(x0, dx1)

· · ·
∫

Bn

p(xn−1, dxn) (6.1.1)

If we suppose that (S,S) is nice, Kolmogorov’s extenson theorem, Theorem
2.1.14, allows us to construct a probability measure Pµ on sequence space
(S{0,1,...},S{0,1,...}) so that the coordinate maps Xn(ω) = ωn have the desired distri-
butions.

Notation. When µ = δx , a point mass at x, we use Px as an abbreviation for Pδx
.

The measures Px are the basic objects because, once they are defined, we can define
the Pµ (even for infinite measures µ) by

Pµ(A) =
∫

µ(dx) Px(A)

Our next step is to show

Theorem 6.1.1. Xn is a Markov chain (with respect to Fn = σ (X0, X1, . . . , Xn))
with transition probability p.

Proof. To prove this, we let A = {X0 ∈ B0, X1 ∈ B1, . . . , Xn ∈ Bn}, Bn+1 = B,
and observe that using the definition of the integral, the definition of A, and the
definition of Pµ∫

A

1(Xn+1∈B) dPµ = Pµ(A,Xn+1 ∈ B)

= Pµ(X0 ∈ B0, X1 ∈ B1, . . . , Xn ∈ Bn, Xn+1 ∈ B)

=
∫

B0

µ(dx0)
∫

B1

p(x0, dx1) · · ·
∫

Bn

p(xn−1, dxn) p(xn, Bn+1)

We would like to assert that the last expression is

=
∫

A

p(Xn, B) dPµ

To do this, replace p(xn, Bn) by a general function f (xn). If f is an indicator
function, the desired equality is true. Linearity implies that it is valid for simple
functions, and the bounded convergence theorem implies that it is valid for bounded
measurable f , for example, f (x) = p(x, Bn+1).

The collection of sets for which∫
A

1(Xn+1∈B) dPµ =
∫

A

pn(Xn, B) dPµ
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holds is a λ-system, and the collection for which it has been proved is a π -system,
so it follows from the π − λ theorem, Theorem 2.1.2, that the equality is true for
all A ∈ Fn. This shows that

P (Xn+1 ∈ B|Fn) = p(Xn, B)

and proves the desired result. �

At this point, we have shown that given a sequence of transition probabilities
and an initial distribution, we can construct a Markov chain. Conversely,

Theorem 6.1.2. If Xn is a Markov chain with transition probabilities p and initial
distribution µ, then the finite dimensional distributions are given by (6.1.1).

Proof. Our first step is to show that if Xn has transition probability p, then for any
bounded measurable f

E(f (Xn+1)|Fn) =
∫

p(Xn, dy)f (y) (6.1.2)

The desired conclusion is a consequence of the next result. Let H = the collection
of bounded functions for which the identity holds.

Theorem 6.1.3. Monotone class theorem. Let A be a π -system that contains �

and let H be a collection of real-valued functions that satisfies:
(i) If A ∈ A, then 1A ∈ H.

(ii) If f, g ∈ H, then f + g, and cf ∈ H for any real number c.
(iii) If fn ∈ H are nonnegative and increase to a bounded function f , then f ∈ H.
Then H contains all bounded functions measurable with respect to σ (A).

Proof. The assumption � ∈ A, (ii), and (iii) imply that G = {A : 1A ∈ H} is a
λ-system, so by (i) and the π − λ theorem, Theorem 2.1.2, G ⊃ σ (A). (ii) implies
that H contains all simple functions, and (iii) implies that H contains all bounded
measurable functions. �

Returning to our main topic, we observe that familiar properties of conditional
expectation and (6.1.2) imply

E

(
n∏

m=0

fm(Xm)

)
= E E

(
n∏

m=0

fm(Xm)

∣∣∣∣∣Fn−1

)

= E

(
n−1∏
m=0

fm(Xm)E(fn(Xn)|Fn−1)

)

= E

(
n−1∏
m=0

fm(Xm)
∫

pn−1(Xn−1, dy)fn(y)

)
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The last integral is a bounded measurable function of Xn−1, so it follows by
induction that if µ is the distribution of X0, then

E

(
n∏

m=0

fm(Xm)

)
=
∫

µ(dx0)f0(x0)
∫

p0(x0, dx1)f1(x1)

· · ·
∫

pn−1(xn−1, dxn)fn(xn) (6.1.3)

that is, the finite dimensional distributions coincide with those in (6.1.1). �

With Theorem 6.1.2 established, it follows that we can describe a Markov chain
by giving a transition probabilities p. Having done this, we can and will suppose
that the random variables Xn are the coordinate maps (Xn(ω) = ωn) on sequence
space

(�o,F) = (S{0,1,...},S{0,1,...})

We choose this representation because it gives us two advantages in investigating
the Markov chain: (i) For each initial distribution µ we have a measure Pµ defined
by (6.1.1) that makes Xn a Markov chain with Pµ(X0 ∈ A) = µ(A). (ii) We have
the shift operators θn defined in Section 4.1: (θnω)(m) = ωm+n.

6.2 Examples

Having introduced on the framework in which we will investigate things, we can
finally give some more examples.

Example 6.2.1. Random walk. Let ξ1, ξ2, . . . ∈ Rd be independent with distribu-
tion µ. Let X0 = x ∈ Rd and let Xn = X0 + ξ1 + · · · + ξn. Then Xn is a Markov
chain with transition probability.

p(x, A) = µ(A − x)

where A − x = {y − x : y ∈ A}.
To prove this, we will use an extension of Example 5.1.5.

Lemma 6.2.1. Let X and Y take values in (S,S). SupposeF and Y are independent.
Let X ∈ F , ϕ be a function with E|ϕ(X, Y )| < ∞ and let g(x) = E(ϕ(x, Y )).

E(ϕ(X, Y )|F) = g(X)

Proof. Suppose first that φ(x, y) = 1A(x)1B(y) and let C ∈ F .

E(ϕ(X, Y ); C) = P ({X ∈ A} ∩ C ∩ {Y ∈ B})
= P ({X ∈ A} ∩ C)P ({Y ∈ B})
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since {X ∈ A} ∩ C ∈ F and {Y ∈ B} are independent. g(x) = 1A(x)P (Y ∈ B), so
the above

= E(g(X); C)

We now apply the monotone class theorem, Theorem 6.1.3. Let A be the subsets
of S × S of the form A × B with A,B ∈ S. A is a π -system that contains �. Let
H be the collection of φ for which the result holds. We have shown (i). Properties
(ii) and (iii) follow from the bounded convergence theorem which completes the
proof. �

To get the desired result from Lemma 6.2.1, we let F = Fn, X = Xn, Y =
ξn+1, and φ(x, y) = 1{x+y∈A}. In this case g(x) = µ(A − x) and the desired result
follows.

In the next four examples, S is a countable set and S = all subsets of S. Let
p(i, j ) ≥ 0 and suppose

∑
j p(i, j ) = 1 for all i. Intuitively, p(i, j ) = P (Xn+1 =

j |Xn = i). From p(i, j ) we can define a transition probability by

p(i, A) =
∑
j∈A

p(i, j )

In each case, we will not be as formal in checking the Markov property, but simply
give the transition probability and leave the rest to the reader. The details are much
simpler because all we have to show is that

P (Xn+1 = j |Xn = i, Xn−1 = in−1, . . . X0 = i0) = p(i, j )

and these are elementary conditional probabilities.

Example 6.2.2. Branching processes. S = {0, 1, 2, . . .}

p(i, j ) = P

(
i∑

m=1

ξm = j

)

where ξ1, ξ2, . . . are i.i.d. nonnegative integer-valued random variables. In words
each of the i individuals at time n (or in generation n) gives birth to an independent
and identically distributed number of offspring.

To make the connection with our earlier discussion of branching processes, do:

Exercise 6.2.1. Let Zn be the process defined in (5.3.2). Check that Zn is a Markov
chain with the indicated transition probability.

Example 6.2.3. Renewal chain. S = {0, 1, 2, . . .}, fk ≥ 0, and
∑∞

k=1 fk = 1.

p(0, j ) = fj+1 for j ≥ 0

p(i, i − 1) = 1 for i ≥ 1

p(i, j ) = 0 otherwise
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To explain the definition, let ξ1, ξ2, . . . be i.i.d. with P (ξm = j ) = fj , let T0 = i0

and for k ≥ 1 let Tk = Tk−1 + ξk. Tk is the time of the kth arrival in a renewal
process that has its first arrival at time i0. Let

Ym =
{

1 if m ∈ {T0, T1, T2, . . .}
0 otherwise

and let Xn = inf{m − n : m ≥ n, Ym = 1}. Ym = 1 if a renewal occurs at time m,
and Xn is the amount of time until the first renewal ≥ n.

An example should help clarify the definition:

Yn 0 0 0 1 0 0 1 1 0 0 0 0 1
Xn 3 2 1 0 2 1 0 0 4 3 2 1 0

It is clear that if Xn = i > 0 then Xn+1 = i − 1. When Xn = 0, we have TNn
= n,

where Nn = inf{k : Tk ≥ n} is a stopping time, so Theorem 4.1.3 implies ξNn+1

is independent of σ (X0, ξ1, . . . , ξNn
) ⊃ σ (X0, . . . , Xn). We have p(0, j ) = fj+1

since ξNn+1 = j + 1 implies Xn+1 = j .

• • • •
X0 = 0 X1 = 1 X2 = 0 X3 = 0

ξ1 = 1 ξ2 = −1 ξ3 = −1

Figure 6.1. Realization of the M/G/1 queue. Black dots indicate the times at which the
customers enter service.

Example 6.2.4. M/G/1 queue. In this model, customers arrive according to a
Poisson process with rate λ. (M is for Markov and refers to the fact that in a
Poisson process the number of arrivals in disjoint time intervals is independent.)
Each customer requires an independent amount of service with distribution F . (G
is for general service distribution. 1 indicates that there is one server.) Let Xn be
the number of customers waiting in the queue at the time the nth customer enters
service. To be precise, when X0 = x, the chain starts with x people waiting in line
and customer 0 just beginning her service.

To understand the definitions that follow, Figure 6.1 is useful. To define our
Markov chain Xn, let

ak =
∫ ∞

0
e−λt (λt)k

k!
dF (t)

be the probability that k customers arrive during a service time. Let ξ1, ξ2, . . . be
i.i.d. with P (ξi = k − 1) = ak. We think of ξi as the net number of customers to
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arrive during the ith service time, subtracting 1 for the customer who completed
service, so we define Xn by

Xn+1 = (Xn + ξn+1)+ (6.2.1)

The positive part only takes effect when Xn = 0 and ξn+1 = −1 (e.g., X2 = 0,
ξ3 = −1) and reflects the fact that when the queue has size 0 and no one arrives
during the service time, the next queue size is 0, since we do not start counting
until the next customer arrives and then the queue length will be 0.

It is easy to see that the sequence defined in (6.2.1) is a Markov chain with
transition probability

p(0, 0) = a0 + a1

p(j, j − 1 + k) = ak if j ≥ 1 or k > 1

The formula for ak is rather complicated, and its exact form is not important, so we
will simplify things by assuming only that ak > 0 for all k ≥ 0 and

∑
k≥0 ak = 1.

◦

◦

◦

◦

◦
◦
◦

◦

◦

◦
◦

◦

◦
◦
◦

◦

◦

◦

◦

◦
◦

◦

◦

Figure 6.2. Physical motivation for the Ehrenfest chain.

Example 6.2.5. Ehrenfest chain. S = {0, 1, . . . , r}

p(k, k + 1) = (r − k)/r

p(k, k − 1) = k/r

p(i, j ) = 0 otherwise

In words, there is a total of r balls in two urns; k in the first and r − k in the second.
We pick one of the r balls at random and move it to the other urn. See Figure 6.2
for a picture. Ehrenfest used this to model the division of air molecules between
two chambers (of equal size and shape) that are connected by a small hole. For an
interesting account of this chain, see Kac (1947a).

Example 6.2.6. Birth and death chains. S = {0, 1, 2, . . .} These chains are
defined by the restriction p(i, j ) = 0 when |i − j | > 1. The fact that these pro-
cesses cannot jump over any integers makes it particularly easy to compute things
for them.
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That should be enough examples for the moment. We conclude this section with
some simple calculations. For a Markov chain on a countable state space, (6.1.1)
says

Pµ(Xk = ik, 0 ≤ k ≤ n) = µ(i0)
n∏

m=1

p(im−1, im)

When n = 1

Pµ(X1 = j ) =
∑

i

µ(i)p(i, j ) = µp(j )

that is, the product of the row vector µ with the matrix p. When n = 2,

Pi(X2 = k) =
∑

j

p(i, j )p(j, k) = p2(i, k)

that is, the second power of the matrix p. Combining the two formulas and gener-
alizing,

Pµ(Xn = j ) =
∑

i

µ(i)pn(i, j ) = µpn(j )

Exercises

6.2.2. Suppose S = {1, 2, 3} and

p =
⎛
⎝.1 0 .9

.7 .3 0
0 .4 .6

⎞
⎠

Compute p2(1, 2) and p3(2, 3) by considering the different ways to get from 1 to
2 in two steps and from 2 to 3 in three steps.

6.2.3. Suppose S = {0, 1} and

p =
(

1 − α α

β 1 − β

)

Use induction to show that

Pµ(Xn = 0) = β

α + β
+ (1 − α − β)n

{
µ(0) − β

α + β

}

6.2.4. Let ξ0, ξ1, . . . be i.i.d. ∈ {H, T }, taking each value with probability 1/2.
Show that Xn = (ξn, ξn+1) is a Markov chain and compute its transition probability
p. What is p2?

6.2.5. Brother-sister mating. In this scheme, two animals are mated, and among
their direct descendants two individuals of opposite sex are selected at random.
These animals are mated and the process continues. Suppose each individual can
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be one of three genotypes AA, Aa, aa, and suppose that the type of the offspring
is determined by selecting a letter from each parent. With these rules, the pair of
genotypes in the nth generation is a Markov chain with six states:

AA, AA AA, Aa AA, aa Aa, Aa Aa, aa aa, aa

Compute its transition probability.

6.2.6. Bernoulli-Laplace model of diffusion. Suppose two urns, which we will
call left and right, have m balls each. b (which we will assume is ≤ m) balls are
black, and 2m − b are white. At each time, we pick one ball from each urn and
interchange them. Let the state at time n be the number of black balls in the left
urn. Compute the transition probability.

6.2.7. Let ξ1, ξ2, . . . be i.i.d. ∈ {1, 2, . . . , N} and taking each value with probability
1/N . Show that Xn = |{ξ1, . . . , ξn}| is a Markov chain and compute its transition
probability.

6.2.8. Let ξ1, ξ2, . . . be i.i.d. ∈ {−1, 1}, taking each value with probability 1/2. Let
S0 = 0, Sn = ξ1 + · · · ξn and Xn = max{Sm : 0 ≤ m ≤ n}. Show that Xn is not a
Markov chain.

6.2.9. Let θ , U1, U2, ... be independent and uniform on (0, 1). Let Xi = 1 if Ui ≤ θ ,
= −1 if Ui > θ , and let Sn = X1 + · · · + Xn. In words, we first pick θ according
to the uniform distribution and then flip a coin with probability θ of heads to
generate a random walk. Compute P (Xn+1 = 1|X1, . . . , Xn) and conclude Sn is
a temporally inhomogeneous Markov chain. This is due to the fact that “Sn is a
sufficient statistic for estimating θ .”

6.3 Extensions of the Markov Property

If Xn is a Markov chain with transition probability p, then by definition,

P (Xn+1 ∈ B|Fn) = p(Xn, B)

In this section, we will prove two extensions of the last equality in which {Xn+1 ∈
B} is replaced by a bounded function of the future, h(Xn, Xn+1, . . .), and n is
replaced by a stopping time N . These results, especially the second, will be the
keys to developing the theory of Markov chains.

As mentioned in Section 6.1, we can and will suppose that the Xn are the
coordinate maps on sequence space

(�o,F) = (S{0,1,...},S{0,1,...})

Fn = σ (X0, X1, . . . , Xn), and for each initial distribution µ we have a measure
Pµ defined by (6.1.1) that makes Xn a Markov chain with Pµ(X0 ∈ A) = µ(A).
Define the shift operators θn : �o → �o by (θnω)(m) = ω(m + n).
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Theorem 6.3.1. The Markov property. Let Y : �o → R be bounded and
measurable.

Eµ(Y ◦ θn|Fn) = EXn
Y

Remark. Here the subscript µ on the left-hand side indicates that the conditional
expectation is taken with respect to Pµ. The right-hand side is the function ϕ(x) =
ExY evaluated at x = Xn. To make the connection with the introduction of this
section, let

Y (ω) = h(ω0, ω1, . . .)

We denote the function by Y , a letter usually used for random variables, because
that’s exactly what Y is, a measurable function defined on our probability
space �o.

Proof. We begin by proving the result in a special case and then use the π − λ and
monotone class theorems to get the general result. Let A = {ω : ω0 ∈ A0, . . . , ωm ∈
Am} and g0, . . . gn be bounded and measurable. Applying (6.1.3) with fk = 1Ak

for
k < m, fm = 1Am

g0, and fk = gk−m for m < k ≤ m + n gives

Eµ

(
n∏

k=0

gk(Xm+k); A

)
=
∫

A0

µ(dx0)
∫

A1

p(x0, dx1) · · ·
∫

Am

p(xm−1, dxm)

· g0(xm)
∫

p(xm, dxm+1)g1(xm+1)

· · ·
∫

p(xm+n−1, dxm+n)gn(xm+n)

= Eµ

(
EXm

(
n∏

k=0

gk(Xk)

)
; A

)

The collection of sets for which the last formula holds is a λ-system, and the
collection for which it has been proved is a π -system, so using the π − λ theorem,
Theorem 2.1.2, shows that the last identity holds for all A ∈ Fm.

Fix A ∈ Fm and let H be the collection of bounded measurable Y for which

(∗) Eµ(Y ◦ θm; A) = Eµ(EXm
Y ; A)

The last computation shows that (∗) holds when

Y (ω) =
∏

0≤k≤n

gk(ωk)

To finish the proof, we will apply the monotone class theorem, Theorem 6.1.3.
Let A be the collection of sets of the form {ω : ω0 ∈ A0, . . . , ωk ∈ Ak}. A is a
π -system, so taking gk = 1Ak

shows (i) holds. H clearly has properties (ii) and
(iii), so Theorem 6.1.3 implies that H contains the bounded functions measurable
w.r.t σ (A), and the proof is complete. �
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Exercise 6.3.1. Use the Markov property to show that if A ∈ σ (X0, . . . , Xn) and
B ∈ σ (Xn, Xn+1, . . .), then for any initial distribution µ

Pµ(A ∩ B|Xn) = Pµ(A|Xn)Pµ(B|Xn)

In words, the past and future are conditionally independent given the present.
Hint: Write the left-hand side as Eµ(Eµ(1A1B |Fn)|Xn).

The next two results illustrate the use of Theorem 6.3.1. We will see many other
applications below.

Theorem 6.3.2. Chapman-Kolmogorov equation.

Px(Xm+n = z) =
∑

y

Px(Xm = y)Py(Xn = z)

Proof. Px(Xn+m =z)=Ex(Px(Xn+m =z|Fm))=Ex(PXm
(Xn =z)) by the Markov

property, Theorem 6.3.1 since 1(Xn=z) ◦ θm = 1(Xn+m=z). �

Theorem 6.3.3. Let Xn be a Markov chain and suppose

P
(∪∞

m=n+1{Xm ∈ Bm}∣∣Xn

) ≥ δ > 0 on {Xn ∈ An}
Then P ({Xn ∈ An i.o.} − {Xn ∈ Bn i.o.}) = 0.

Remark. To quote Chung, “The intuitive meaning of the preceding theorem has
been given by Doeblin as follows: if the chance of a pedestrian’s getting run over is
greater than δ > 0 each time he crosses a certain street, then he will not be crossing
it indefinitely (since he will be killed first)!”

Proof. Let �n = {Xn+1 ∈ Bn+1} ∪ {Xn+2 ∈ Bn+2} ∪ . . .

� = ∩�n = {Xn ∈ Bn i.o.}
and � = {Xn ∈ An i.o.}. Let Fn = σ (X0, X1, . . . , Xn) and F∞ = σ (∪Fn). Using
the Markov property and the dominated convergence theorem for conditional
expectations, Theorem 5.5.9,

E(1�n
|Xn) = E(1�n

|Fn) → E(1�|F∞) = 1�

On �, the left-hand side is ≥ δ i.o. This is only possible if � ⊂ �. �

Exercise 6.3.2. A state a is called absorbing if Pa(X1 = a) = 1. Let D = {Xn = a

for some n ≥ 1} and let h(x) = Px(D). (i) Use Theorem 6.3.3 to conclude that
h(Xn) → 0 a.s. on Dc. Here a.s. means Pµ a.s. for any initial distribution µ. (ii)
Obtain the result in Exercise 5.5.5 as a special case.
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We are now ready for our second extension of the Markov property. Recall N is
said to be a stopping time if {N = n} ∈ Fn. As in Chapter 4, let

FN = {A : A ∩ {N = n} ∈ Fn for all n}
be the information known at time N , and let

θNω =
{

θnω on {N = n}

 on {N = ∞}

where 
 is an extra point that we add to �o. In the next result and its applications,
we will explicitly restrict our attention to {N < ∞}, so the reader does not have to
worry about the second part of the definition of θN .

Theorem 6.3.4. Strong Markov property. Suppose that for each n, Yn : � → R
is measurable and |Yn| ≤ M for all n. Then

Eµ(YN ◦ θN |FN ) = EXN
YN on {N < ∞}

where the right-hand side is ϕ(x, n) = ExYn evaluated at x = XN , n = N.

Proof. Let A ∈ FN. Breaking things down according to the value of N ,

Eµ(YN ◦ θN ; A ∩ {N < ∞}) =
∞∑

n=0

Eµ(Yn ◦ θn; A ∩ {N = n})

Since A ∩ {N = n} ∈ Fn, using Theorem 6.3.1 now converts the right side into

∞∑
n=0

Eµ(EXn
Yn; A ∩ {N = n}) = Eµ(EXN

YN ; A ∩ {N < ∞}) �

Remark. The reader should notice that the proof is trivial. All we do is break things
down according to the value of N , replace N by n, apply the Markov property,
and reverse the process. This is the standard technique for proving results about
stopping times.

The next example illustrates the use of Theorem 6.3.4 and explains why we want
to allow the Y that we apply to the shifted path to depend on n.

Theorem 6.3.5. Reflection principle. Let ξ1, ξ2, . . . be independent and identically
distributed with a distribution that is symmetric about 0. Let Sn = ξ1 + · · · + ξn. If
a > 0, then

P

(
sup
m≤n

Sm > a

)
≤ 2P (Sn > a)

Remark. First, a trivial comment: The strictness of the inequality is not important.
If the result holds for >, it holds for ≥ and vice versa.
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Figure 6.3. Proof by picture of the reflection principle.

A second more important one: We do the proof in two steps because that is how
formulas like this are derived in practice. First, one computes intuitively and then
figures out how to extract the desired formula from Theorem 6.3.4.

Proof in words. First note that if Z has a distribution that is symmetric about 0,
then

P (Z ≥ 0) ≥ P (Z > 0) + 1

2
P (Z = 0) = 1

2

If we let N = inf{m ≤ n : Sm > a} (with inf ∅ = ∞), then on {N < ∞}, Sn − SN

is independent of SN and has P (Sn − SN ≥ 0) ≥ 1/2. So (see Figure 6.3 for a
picture)

P (Sn > a) ≥ 1

2
P (N ≤ n)

Proof. Let Ym(ω) = 1 if m ≤ n and ωn−m > a, Ym(ω) = 0 otherwise. The defi-
nition of Ym is chosen so that (YN ◦ θN )(ω) = 1 if ωn > a (and hence N ≤ n),
and = 0 otherwise. The strong Markov property implies

E0(YN ◦ θN |FN ) = ESN
YN on {N < ∞} = {N ≤ n}

To evaluate the right-hand side, we note that if y > a, then

EyYm = Py(Sn−m > a) ≥ Py(Sn−m ≥ y) ≥ 1/2

So integrating over {N ≤ n} and using the definition of conditional expectation
gives

1

2
P (N ≤ n) ≤ E0(E0(YN ◦ θN |FN ); N ≤ n) = E0(YN ◦ θN ; N ≤ n)

since {N ≤ n} ∈ FN . Recalling that YN ◦ θN = 1{Sn>a}, the last quantity

= E0(1{Sn>a}; N ≤ n) = P0(Sn > a)

since {Sn > a} ⊂ {N ≤ n}. �
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Exercises

The next five exercises concern the hitting times

τA = inf{n ≥ 0 : Xn ∈ A} τy = τ{y}

TA = inf{n ≥ 1 : Xn ∈ A} Ty = T{y}

To keep the two definitions straight, note that the symbol τ is smaller than T . Some
of the results below are valid for a general S, but for simplicity,

We will suppose throughout that S is countable.

6.3.3. First entrance decomposition. Let Ty = inf{n ≥ 1 : Xn = y}. Show that

pn(x, y) =
n∑

m=1

Px(Ty = m)pn−m(y, y)

6.3.4. Show that
∑n

m=0 Px(Xm = x) ≥∑n+k
m=k Px(Xm = x).

6.3.5. Suppose that S − C is finite and for each x ∈ S − C Px(τC < ∞) > 0. Then
there is an N < ∞ and ε > 0 so that Py(τC > kN ) ≤ (1 − ε)k.

6.3.6. Let h(x) = Px(τA < τB). Suppose A ∩ B = ∅, S − (A ∪ B) is finite, and
Px(τA∪B < ∞) > 0 for all x ∈ S − (A ∪ B). (i) Show that

(∗) h(x) =
∑

y

p(x, y)h(y) for x /∈ A ∪ B

(ii) Show that if h satisfies (∗) then h(X(n ∧ τA∪B)) is a martingale. (iii) Use this
and Exercise 6.3.5 to conclude that h(x) = Px(τA < τB) is the only solution of (∗)
that is 1 on A and 0 on B.

6.3.7. Let Xn be a Markov chain with S = {0, 1, . . . , N} and suppose that Xn is a
martingale and Px(τ0 ∧ τN < ∞) > 0 for all x. (i) Show that 0 and N are absorbing
states, that is, p(0, 0) = p(N, N) = 1. (ii) Show Px(τN < τ0) = x/N.

6.3.8. Wright-Fisher model. Suppose S = {0, 1, . . . , N} and consider

p(i, j ) =
(

N

j

)
(i/N)j (1 − i/N)N−j

Show that this chain satisfies the hypotheses of Exercise 6.3.7.

6.3.9. In brother-sister mating described in Exercise 6.2.5, AA, AA and aa, aa are
absorbing states. Show that the number of A’s in the pair is a martingale and use
this to compute the probability of getting absorbed in AA, AA starting from each
of the states.
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6.3.10. Let τA = inf{n ≥ 0 : Xn ∈ A} and g(x) = ExτA. Suppose that S − A is
finite and for each x ∈ S − A, Px(τA < ∞) > 0. (i) Show that

(∗) g(x) = 1 +
∑

y

p(x, y)g(y) for x /∈ A

(ii) Show that if g satisfies (∗), g(X(n ∧ τA)) + n ∧ τA is a martingale. (iii) Use
this to conclude that g(x) = ExτA is the only solution of (∗) that is 0 on A.

6.3.11. Let ξ0, ξ1, . . . be i.i.d. ∈ {H, T }, taking each value with probability 1/2,
and let Xn = (ξn, ξn+1) be the Markov chain from Exercise 6.2.4. Let N1 = inf{n ≥
0 : (ξn, ξn+1) = (H, H )}. Use the results in the last exercise to compute EN1. [No,
there is no missing subscript on E, but you will need to first compute g(x).]

6.3.12. Consider simple random walk Sn, the Markov chain with p(x, x + 1) =
1/2, and p(x, x − 1) = 1/2. Let τ = min{n : Sn �∈ (0, N )}. Use the result from
Exercise 6.3.10 to show that Exτ = x(N − x).

6.4 Recurrence and Transience

In this section and the next two, we will consider only Markov chains on a countable
state space. Let T 0

y = 0, and for k ≥ 1, let

T k
y = inf{n > T k−1

y : Xn = y}
T k

y is the time of the kth return to y. The reader should note that T 1
y > 0 so any

visit at time 0 does not count. We adopt this convention so that if we let Ty = T 1
y

and ρxy = Px(Ty < ∞), then

Theorem 6.4.1. Px(T k
y < ∞) = ρxyρ

k−1
yy .

Intuitively, in order to make k visits to y, we first have to go from x to y and then
return k − 1 times to y.

Proof. When k = 1, the result is trivial, so we suppose k ≥ 2. Let Y (ω) = 1 if
ωn = y for some n ≥ 1, Y (ω) = 0 otherwise. If N = T k−1

y , then Y ◦ θN = 1 if
T k

y < ∞. The strong Markov property, Theorem 6.3.4, implies

Ex(Y ◦ θN |FN ) = EXN
Y on {N < ∞}

On {N < ∞}, XN = y, so the right-hand side is Py(Ty < ∞) = ρyy , and it follows
that

Px(T k
y < ∞) = Ex(Y ◦ θN ; N < ∞)

= Ex(Ex(Y ◦ θN |FN ); N < ∞)

= Ex(ρyy ; N < ∞) = ρyyPx(T k−1
y < ∞)

The result now follows by induction. �
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A state y is said to be recurrent if ρyy = 1 and transient if ρyy < 1. If y is
recurrent, Theorem 6.4.1 implies Py(T k

y < ∞) = 1 for all k, so Py(Xn = y i.o.) = 1.

Exercise 6.4.1. Suppose y is recurrent and for k ≥ 0, let Rk = T k
y be the time

of the kth return to y, and for k ≥ 1 let rk = Rk − Rk−1 be the kth interarrival
time. Use the strong Markov property to conclude that under Py , the vectors
vk = (rk, XRk−1, . . . , XRk−1), k ≥ 1 are i.i.d.

If y is transient and we let N (y) =∑∞
n=1 1(Xn=y) be the number of visits to y at

positive times, then

ExN (y) =
∞∑

k=1

Px(N(y) ≥ k) =
∞∑

k=1

Px(T k
y < ∞)

=
∞∑

k=1

ρxyρ
k−1
yy = ρxy

1 − ρyy

< ∞ (6.4.1)

Combining the last computation with our result for recurrent states gives a result
that generalizes Theorem 4.2.2.

Theorem 6.4.2. y is recurrent if and only if EyN (y) = ∞.

Exercise 6.4.2. Let a ∈ S, fn = Pa(Ta = n), and un = Pa(Xn = a). (i) Show that
un =∑1≤m≤n fmun−m. (ii) Let u(s) =∑n≥0 uns

n, f (s) =∑n≥1 fns
n, and show

u(s) = 1/(1 − f (s)). Setting s = 1 gives (6.4.1) for x = y = a.

Exercise 6.4.3. Consider asymmetric simple random walk on Z, that is, we have
p(i, i + 1) = p, p(i, i − 1) = q = 1 − p. In this case,

p2m(0, 0) =
(

2m

m

)
pmqm and p2m+1(0, 0) = 0

(i) Use the Taylor series expansion for h(x) = (1 − x)−1/2 to show u(s) = (1 −
4pqs2)−1/2 and use the last exercise to conclude f (s) = 1 − (1 − 4pqs2)1/2. (ii)
Set s = 1 to get the probability the random walk will return to 0 and check that this
is the same as the answer given in part (c) of Theorem 5.7.7.

The next result shows that recurrence is contagious.

Theorem 6.4.3. If x is recurrent and ρxy > 0 then y is recurrent and ρyx = 1.
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Proof. We will first show ρyx = 1 by showing that if ρxy > 0 and ρyx < 1, then
ρxx < 1. Let K = inf{k : pk(x, y) > 0}. There is a sequence y1, . . . , yK−1 so that

p(x, y1)p(y1, y2) · · ·p(yK−1, y) > 0

Since K is minimal, yi �= x for 1 ≤ i ≤ K − 1. If ρyx < 1, we have

Px(Tx = ∞) ≥ p(x, y1)p(y1, y2) · · · p(yK−1, y)(1 − ρyx) > 0

a contradiction. So ρyx = 1.

To prove that y is recurrent, observe that ρyx > 0 implies there is an L so that
pL(y, x) > 0. Now

pL+n+K (y, y) ≥ pL(y, x)pn(x, x)pK (x, y)

Summing over n, we see

∞∑
n=1

pL+n+K (y, y) ≥ pL(y, x)pK (x, y)
∞∑

n=1

pn(x, x) = ∞

so Theorem 6.4.2 implies y is recurrent. �

Exercise 6.4.4. Use the strong Markov property to show that ρxz ≥ ρxyρyz.

The next fact will help us identify recurrent states in examples. First we need
two definitions. C is closed if x ∈ C and ρxy > 0 implies y ∈ C. The name comes
from the fact that if C is closed and x ∈ C then Px(Xn ∈ C) = 1 for all n. D is
irreducible if x, y ∈ D implies ρxy > 0.

Theorem 6.4.4. Let C be a finite closed set. Then C contains a recurrent state. If
C is irreducible then all states in C are recurrent.

Proof. In view of Theorem 6.4.3, it suffices to prove the first claim. Suppose it
is false. Then for all y ∈ C, ρyy < 1 and ExN (y) = ρxy/(1 − ρyy), but this is
ridiculous since it implies

∞ >
∑
y∈C

ExN (y) =
∑
y∈C

∞∑
n=1

pn(x, y) =
∞∑

n=1

∑
y∈C

pn(x, y) =
∞∑

n=1

1

The first inequality follows from the fact that C is finite and the last equality from
the fact that C is closed. �

To illustrate the use of the last result, consider:
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Example 6.4.1. A seven-state chain. Consider the transition probability:

1 2 3 4 5 6 7
1 .3 0 0 0 .7 0 0
2 .1 .2 .3 .4 0 0 0
3 0 0 .5 .5 0 0 0
4 0 0 0 .5 0 .5 0
5 .6 0 0 0 .4 0 0
6 0 0 0 0 0 .2 .8
7 0 0 0 1 0 0 0

To identify the states that are recurrent and those that are transient, we begin by
drawing a graph that will contain an arc from i to j if p(i, j ) > 0 and i �= j . We
do not worry about drawing the self-loops corresponding to states with p(i, i) > 0
since such transitions cannot help the chain get somewhere new.

5 3 7

1 2 4 6

�

�

�

�

�

� �
�

�
�

�� �
���

�

�
�

�
�

Figure 6.4. Graph for the seven-state chain.

In the case under consideration, we draw arcs from 1 → 5, 2 → 1, 2 → 3,
2 → 4, 3 → 4, 4 → 6, 4 → 7, 5 → 1, 6 → 4, 6 → 7, 7 → 4 (see Figure 6.4 for
a picture).

(i) ρ21 > 0 and ρ12 = 0, so 2 must be transient, or we would contradict Theo-
rem 6.4.3. Similarly, ρ43 > 0 and ρ34 = 0, so 4 must be transient

(ii) {1, 5} and {4, 6, 7} are irreducible closed sets, so Theorem 6.4.4 implies these
states are recurrent.

The last reasoning can be used to identify transient and recurrent states when S

is finite, since for x ∈ S either (i) there is a y with ρxy > 0 and ρyx = 0 and x must
be transient, or (ii) ρxy > 0 implies ρyx > 0 . In case (ii), Exercise 6.4.4 implies
Cx = {y : ρxy > 0} is an irreducible closed set. (If y, z ∈ Cx then ρyz ≥ ρyxρxz >

0. If ρyw > 0 then ρxw ≥ ρxyρyw > 0, so w ∈ Cx.) So Theorem 6.4.4 implies that
x is recurrent.

Exercise 6.4.5. Show that in the Ehrenfest chain (Example 6.2.5), all states are
recurrent.

Example 6.4.1 motivates the following:

Theorem 6.4.5. Decomposition theorem. Let R = {x : ρxx = 1} be the recurrent
states of a Markov chain. R can be written as ∪iRi , where each Ri is closed and
irreducible.
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Remark. This result shows that for the study of recurrent states we can, without
loss of generality, consider a single irreducible closed set.

Proof. If x ∈ R let Cx = {y : ρxy > 0}. By Theorem 6.4.3, Cx ⊂ R, and if y ∈
Cx then ρyx > 0. From this it follows easily that either Cx ∩ Cy = ∅ or Cx =
Cy . To prove the last claim, suppose Cx ∩ Cy �= ∅. If z ∈ Cx ∩ Cy then ρxy ≥
ρxzρzy > 0, so if w ∈ Cy , we have ρxw ≥ ρxyρyw > 0, and it follows that Cx ⊃ Cy .
Interchanging the roles of x and y gives Cy ⊃ Cx , and we have proved our claim.
If we let Ri be a listing of the sets that appear as some Cx , we have the desired
decomposition. �

The rest of this section is devoted to examples. Specifically, we concentrate on
the question: how do we tell whether a state is recurrent or transient? Reasoning
based on Theorem 6.4.3 works occasionally when S is infinite.

Example 6.4.2. Branching process. If the probability of no children is positive,
then ρk0 > 0 and ρ0k = 0 for k ≥ 1, so Theorem 6.4.4 implies that all states k ≥ 1
are transient. The state 0 has p(0, 0) = 1 and is recurrent. It is called an absorbing
state to reflect the fact that once the chain enters 0, it remains there for all time.

If S is infinite and irreducible, all that Theorem 6.4.3 tells us is that either all
the states are recurrent or all are transient, and we are left to figure out which case
occurs.

Example 6.4.3. Renewal chain. Since p(i, i − 1) = 1 for i ≥ 1, it is clear that
ρi0 = 1 for all i ≥ 1 and hence also for i = 0, that is, 0 is recurrent. If we recall that
p(0, j ) = fj+1 and suppose that {k : fk > 0} is unbounded, then ρ0i > 0 for all i

and all states are recurrent. If K = sup{k : fk > 0} < ∞, then {0, 1, . . . , K − 1}
is an irreducible closed set of recurrent states and all states k ≥ K are transient.

Example 6.4.4. Birth and death chains on {0, 1, 2, . . .}. Let

p(i, i + 1) = pi p(i, i − 1) = qi p(i, i) = ri

where q0 = 0. Let N = inf{n : Xn = 0}. To analyze this example, we are going to
define a function ϕ so that ϕ(XN∧n) is a martingale. We start by setting ϕ(0) = 0
and ϕ(1) = 1. For the martingale property to hold when Xn = k ≥ 1, we must have

ϕ(k) = pkϕ(k + 1) + rkϕ(k) + qkϕ(k − 1)

Using rk = 1 − (pk + qk), we can rewrite the last equation as

qk(ϕ(k) − ϕ(k − 1)) = pk(ϕ(k + 1) − ϕ(k))

or ϕ(k + 1) − ϕ(k) = qk

pk

(ϕ(k) − ϕ(k − 1))
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Here and in what follows, we suppose that pk, qk > 0 for k ≥ 1. Otherwise, the
chain is not irreducible. Since ϕ(1) − ϕ(0) = 1, iterating the last result gives

ϕ(m + 1) − ϕ(m) =
m∏

j=1

qj

pj

for m ≥ 1

ϕ(n) =
n−1∑
m=0

m∏
j=1

qj

pj

for n ≥ 1

if we interpret the product as 1 when m = 0. Let Tc = inf{n ≥ 1 : Xn = c}. Now
I claim that:

Theorem 6.4.6. If a < x < b, then

Px(Ta < Tb) = ϕ(b) − ϕ(x)

ϕ(b) − ϕ(a)
Px(Tb < Ta) = ϕ(x) − ϕ(a)

ϕ(b) − ϕ(a)

Proof. If we let T = Ta ∧ Tb then ϕ(Xn∧T ) is a bounded martingale and T < ∞
a.s. by Theorem 6.3.3, so ϕ(x) = Exϕ(XT ) by Theorem 5.7.4. Since XT ∈ {a, b}
a.s.,

ϕ(x) = ϕ(a)Px(Ta < Tb) + ϕ(b)[1 − Px(Ta < Tb)]

and solving gives the indicated formula. �

Remark. The answer and the proof should remind the reader of Example 4.1.5
and Theorem 5.7.7. To help remember the formula, observe that for any α and β,
if we let ψ(x) = αϕ(x) + β then ψ(Xn∧T ) is also a martingale and the answer we
get using ψ must be the same. The last observation explains why the answer is a
ratio of differences. To help remember which one, observe that the answer is 1 if
x = a and 0 if x = b.

Letting a = 0 and b = M in Theorem 6.4.6 gives

Px(T0 > TM ) = ϕ(x)/ϕ(M)

Letting M → ∞ and observing that TM ≥ M − x, Px a.s. we have proved:

Theorem 6.4.7. 0 is recurrent if and only if ϕ(M) → ∞ as M → ∞, that is,

ϕ(∞) ≡
∞∑

m=0

m∏
j=1

qj

pj

= ∞

If ϕ(∞) < ∞ then Px(T0 = ∞) = ϕ(x)/ϕ(∞).

We will now see what Theorem 6.4.7 says about some concrete cases.
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Example 6.4.5. Asymmetric simple random walk. Suppose pj = p and qj =
1 − p for j ≥ 1. In this case,

ϕ(n) =
n−1∑
m=0

(
1 − p

p

)m

From Theorem 6.4.7, it follows that 0 is recurrent if and only if p ≤ 1/2, and if
p > 1/2, then

Px(T0 < ∞) = ϕ(∞) − ϕ(x)

ϕ(∞)
=
(

1 − p

p

)x

Exercise 6.4.6. A gambler is playing roulette and betting $1 on black each time.
The probability she wins $1 is 18/38, and the probability she loses $1 is 20/38. (i)
Calculate the probability that starting with $20 she reaches $40 before losing her
money. (ii) Use the fact that Xn + 2n/38 is a martingale to calculate E(T40 ∧ T0).

Example 6.4.6. To probe the boundary between recurrence and transience, suppose
pj = 1/2 + εj where εj ∼ Cj−α as j → ∞, and qj = 1 − pj . A little arithmetic
shows

qj

pj

= 1/2 − εj

1/2 + εj

= 1 − 2εj

1/2 + εj

≈ 1 − 4Cj−α for large j

Case 1. α > 1. It is easy to show that if 0 < δj < 1, then
∏

j (1 − δj ) > 0 if and
only if

∑
j δj < ∞, (see Exercise 5.3.5), so if α > 1,

∏
j≤k(qj/pj ) ↓ a positive

limit, and 0 is recurrent.

Case 2. α < 1. Using the fact that log(1 − δ) ∼ −δ as δ → 0, we see that

log
k∏

j=1

qj/pj ∼ −
k∑

j=1

4Cj−α ∼ − 4C

1 − α
k1−α as k → ∞

so, for k ≥ K ,
∏k

j=1 qj/pj ≤ exp(−2Ck1−α/(1 − α)) and
∑∞

k=0

∏k
j=1

qj

pj
< ∞

and hence 0 is transient.

Case 3. α = 1. Repeating the argument for Case 2 shows log
∏k

j=1
qj

pj
∼

−4C log k. So, if C > 1/4, 0 is transient, and if C < 1/4, 0 is recurrent. The
case C = 1/4 can go either way.

Example 6.4.7. M/G/1 queue. Let µ =∑ kak be the mean number of cus-
tomers who arrive during one service time. We will now show that if µ > 1,
the chain is transient (i.e., all states are), but if µ ≤ 1, it is recurrent. For the
case µ > 1, we observe that if ξ1, ξ2, . . . are i.i.d. with P (ξm = j ) = aj+1 for
j ≥ −1 and Sn = ξ1 + · · · + ξn, then X0 + Sn and Xn behave the same until time
N = inf{n : X0 + Sn = 0}. When µ > 1, Eξm = µ − 1 > 0, so Sn → ∞ a.s., and
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inf Sn > −∞ a.s. It follows from the last observation that if x is large, Px(N <

∞) < 1, and the chain is transient.
To deal with the case µ ≤ 1, we observe that it follows from arguments in the

last paragraph that Xn∧N is a supermartingale. Let T = inf{n : Xn ≥ M}. Since
Xn∧N is a nonnegative supermartingale, using Theorem 5.7.6 at time τ = T ∧ N ,
and observing Xτ ≥ M on {T < N}, Xτ = 0 on {N < T } gives

x ≥ MPx(T < N)

Letting M → ∞ shows Px(N < ∞) = 1, so the chain is recurrent.

Remark. There is another way of seeing that the M/G/1 queue is transient when
µ > 1. If we consider the customers who arrive during a person’s service time
to be her children, then we get a branching process. Results in Section 5.3 imply
that when µ ≤ 1 the branching process dies out with probability 1 (i.e., the queue
becomes empty), so the chain is recurrent. When µ > 1, Theorem 5.3.9 implies
Px(T0 < ∞) = ρx , where ρ is the unique fixed point ∈ (0, 1) of the function
ϕ(θ ) =∑∞

k=0 akθ
k.

The next result encapsulates the techniques we used for birth and death chains
and the M/G/1 queue.

Theorem 6.4.8. Suppose S is irreducible, and ϕ ≥ 0 with Exϕ(X1) ≤ ϕ(x) for
x /∈ F , a finite set, and ϕ(x) → ∞ as x → ∞, that is, {x : ϕ(x) ≤ M} is finite for
any M < ∞, then the chain is recurrent.

Proof. Let τ = inf{n > 0 : Xn ∈ F }. Our assumptions imply that Yn = ϕ(Xn∧τ )
is a supermartingale. Let TM = inf{n > 0 : Xn ∈ F or ϕ(Xn) > M}. Since {x :
ϕ(x) ≤ M} is finite and the chain is irreducible, TM < ∞ a.s. Using Theorem 5.7.6
now, we see that

ϕ(x) ≥ Exϕ(XTM
) ≥ MPx(TM < τ )

since ϕ(XTM
) ≥ M when TM < τ . Letting M → ∞, we see that Px(τ < ∞) = 1

for all x /∈ F . So Py(Xn ∈ F i.o.) = 1 for all y ∈ S, and since F is finite, Py(Xn =
z i.o.) = 1 for some z ∈ F. �

Exercise 6.4.7. Show that if we replace “ϕ(x) → ∞” by “ϕ(x) → 0” in the last
theorem and assume that ϕ(x) > 0 for x ∈ F , then we can conclude that the chain
is transient.

Exercise 6.4.8. Let Xn be a birth and death chain with pj − 1/2 ∼ C/j as j → ∞
and qj = 1 − pj . (i) Show that if we take C < 1/4, then we can pick α > 0 so that
ϕ(x) = xα satisfies the hypotheses of Theorem 6.4.8. (ii) Show that when C > 1/4,
we can take α < 0 and apply Exercise 6.4.7.
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Remark. An advantage of the method of Exercise 6.4.8 over that of Example 6.4.6
is that it applies if we assume Px(|X1 − x| ≤ M) = 1 and Ex(X1 − x) ∼ 2C/x.

Exercise 6.4.9. f is said to be superharmonic if f (x) ≥∑y p(x, y)f (y), or
equivalently f (Xn) is a supermartingale. Suppose p is irreducible. Show that p is
recurrent if and only if every nonnegative superharmonic function is constant.

Exercise 6.4.10. M/M/∞ queue. Consider a telephone system with an infinite
number of lines. Let Xn = the number of lines in use at time n, and suppose

Xn+1 =
Xn∑

m=1

ξn,m + Yn+1

where the ξn,m are i.i.d. with P (ξn,m = 1) = p and P (ξn,m = 0) = 1 − p, and Yn

is an independent i.i.d. sequence of Poisson mean λ r.v.’s. In words, for each
conversation we flip a coin with probability p of heads to see if it continues
for another minute. Meanwhile, a Poisson mean λ number of conversations start
between time n and n + 1. Use Theorem 6.4.8 with ϕ(x) = x to show that the chain
is recurrent for any p < 1.

6.5 Stationary Measures

A measure µ is said to be a stationary measure if∑
x

µ(x)p(x, y) = µ(y)

The last equation says Pµ(X1 = y) = µ(y). Using the Markov property and induc-
tion, it follows that Pµ(Xn = y) = µ(y) for all n ≥ 1. If µ is a probability measure,
we call µ a stationary distribution, and it represents a possible equilibrium for the
chain. That is, if X0 has distribution µ, then so does Xn for all n ≥ 1. If we stretch
our imagination a little, we can also apply this interpretation when µ is an infinite
measure. (When the total mass is finite, we can divide by µ(S) to get a stationary
distribution.) Before getting into the theory, we consider some examples.

Example 6.5.1. Random walk. S = Zd . p(x, y) = f (y − x), where f (z) ≥ 0 and∑
f (z) = 1. In this case, µ(x) ≡ 1 is a stationary measure since∑

x

p(x, y) =
∑

x

f (y − x) = 1

A transition probability that has
∑

x p(x, y) = 1 is called doubly stochastic. This
is obviously a necessary and sufficient condition for µ(x) ≡ 1 to be a stationary
measure.

Example 6.5.2. Asymmetric simple random walk. S = Z.

p(x, x + 1) = p p(x, x − 1) = q = 1 − p
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By the last example, µ(x) ≡ 1 is a stationary measure. When p �= q, µ(x) = (p/q)x

is a second one. To check this, we observe that∑
x

µ(x)p(x, y) = µ(y + 1)p(y + 1, y) + µ(y − 1)p(y − 1, y)

= (p/q)y+1q + (p/q)y−1p = (p/q)y[p + q] = (p/q)y

Example 6.5.3. The Ehrenfest chain. S = {0, 1, . . . , r}.
p(k, k + 1) = (r − k)/r p(k, k − 1) = k/r

In this case, µ(x) = 2−r
(
r

x

)
is a stationary distribution. One can check this without

pencil and paper by observing that µ corresponds to flipping r coins to determine
which urn each ball is to be placed in, and the transitions of the chain correspond
to picking a coin at random and turning it over. Alternatively, you can pick up your
pencil and check that µ(k + 1)p(k + 1, k) + µ(k − 1)p(k − 1, k) = µ(k).

Example 6.5.4. Birth and death chains. S = {0, 1, 2, . . .}
p(x, x + 1) = px p(x, x) = rx p(x, x − 1) = qx

with q0 = 0 and p(i, j ) = 0 otherwise. In this case, there is the measure

µ(x) =
x∏

k=1

pk−1

qk

which has

µ(x)p(x, x + 1) = px

x∏
k=1

pk−1

qk

= µ(x + 1)p(x + 1, x)

Since p(x, y) = 0 when |x − y| > 1, it follows that

µ(x)p(x, y) = µ(y)p(y, x) for all x, y (6.5.1)

Summing over x gives ∑
x

µ(x)p(x, y) = µ(y)

so (6.5.1) is stronger than being a stationary measure. (6.5.1) asserts that the amount
of mass that moves from x to y in one jump is exactly the same as the amount that
moves from y to x. A measure µ that satisfies (6.5.1) is said to be a reversible
measure. Since Examples 6.5.2 and 6.5.3 are birth and death chains, they have
reversible measures. In Example 6.5.1 (random walks), µ(x) ≡ 1 is a reversible
measure if and only if p(x, y) = p(y, x).

The next exercise explains the name “reversible.”
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Exercise 6.5.1. Let µ be a stationary measure and suppose X0 has “distribution”
µ. Then Ym = Xn−m, 0 ≤ m ≤ n is a Markov chain with initial measure µ and
transition probability

q(x, y) = µ(y)p(y, x)/µ(x)

q is called the dual transition probability. If µ is a reversible measure, then
q = p.

Exercise 6.5.2. Find the stationary distribution for the Bernoulli-Laplace model
of diffusion from Exercise 6.2.6.

Example 6.5.5. Random walks on graphs. A graph is described by giving a
countable set of vertices S and an adjacency matrix aij that has aij = 1 if i and
j are adjacent and 0 otherwise. To have an undirected graph with no loops, we
suppose aij = aji and aii = 0. If we suppose that

µ(i) =
∑

j

aij < ∞ and let p(i, j ) = aij /µ(i)

then p is a transition probability that corresponds to picking an edge at random and
jumping to the other end. It is clear from the definition that

µ(i)p(i, j ) = aij = aji = µ(j )p(j, i)

so µ is a reversible measure for p. A little thought reveals that if we assume only
that

aij = aji ≥ 0, µ(i) =
∑

j

aij < ∞ and p(i, j ) = aij /µ(i)

the same conclusion is valid. This is the most general example because if µ is a
reversible measure for p, we can let aij = µ(i)p(i, j ).

Reviewing the last five examples might convince you that most chains have
reversible measures. This is a false impression. The M/G/1 queue has no reversible
measures because if x > y + 1, p(x, y) = 0 but p(y, x) > 0. The renewal chain
has similar problems.

Theorem 6.5.1. Suppose p is irreducible. A necessary and sufficient condition for
the existence of a reversible measure is that (i) p(x, y) > 0 implies p(y, x) > 0,
and (ii) for any loop x0, x1, . . . , xn = x0 with

∏
1≤i≤n p(xi, xi−1) > 0,

n∏
i=1

p(xi−1, xi)

p(xi, xi−1)
= 1

Proof. To prove the necessity of this cycle condition, due to Kolmogorov, we
note that irreducibility implies that any stationary measure has µ(x) > 0 for all



6.5 Stationary Measures 299

x, so (6.5.1) implies (i) holds. To check (ii), note that (6.5.1) implies that for the
sequences considered above,

n∏
i=1

p(xi−1, xi)

p(xi, xi−1)
=

n∏
i=1

µ(xi)

µ(xi−1)
= 1

To prove sufficiency, fix a ∈ S, set µ(a) = 1, and if x0 = a, x1, . . . , xn = x is a
sequence with

∏
1≤i≤n p(xi, xi−1) > 0 (irreducibility implies such a sequence will

exist), we let

µ(x) =
n∏

i=1

p(xi−1, xi)

p(xi, xi−1)

The cycle condition guarantees that the last definition is independent of the path.
To check (6.5.1) now, observe that if p(y, x) > 0, then, adding xn+1 = y to the end
of a path to x, we have

µ(x)
p(x, y)

p(y, x)
= µ(y) �

Only special chains have reversible measures, but as the next result shows, many
Markov chains have stationary measures.

Theorem 6.5.2. Let x be a recurrent state, and let T = inf{n ≥ 1 : Xn = x}. Then

µx(y) = Ex

(
T −1∑
n=0

1{Xn=y}

)
=

∞∑
n=0

Px(Xn = y, T > n)

defines a stationary measure.

Proof. This is called the “cycle trick.” The proof in words is simple. µx(y) is the
expected number of visits to y in {0, . . . , T − 1}. µxp(y) ≡∑µx(z)p(z, y) is the
expected number of visits to y in {1, . . . , T }, which is = µx(y) since XT = X0 = x.
See Figure 6.5 for a picture.
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Figure 6.5. Picture of the cycle trick.
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To translate this intuition into a proof, let p̄n(x, y) = Px(Xn = y, T > n) and
use Fubini’s theorem to get

∑
y

µx(y)p(y, z) =
∞∑

n=0

∑
y

p̄n(x, y)p(y, z)

Case 1. z �= x.∑
y

p̄n(x, y)p(y, z) =
∑

y

Px(Xn = y, T > n, Xn+1 = z)

= Px(T > n + 1, Xn+1 = z) = p̄n+1(x, z)

so
∑∞

n=0

∑
y p̄n(x, y)p(y, z) =∑∞

n=0 p̄n+1(x, z) = µx(z) since p̄0(x, z) = 0.

Case 2. z = x.∑
y

p̄n(x, y)p(y, x) =
∑

y

Px(Xn = y, T > n, Xn+1 = x) = Px(T = n + 1)

so
∑∞

n=0

∑
y p̄n(x, y)p(y, x) =∑∞

n=0 Px(T = n + 1) = 1 = µx(x) since by defi-
nition Px(T = 0) = 0. �

Remark. If x is transient, then we have µxp(z) ≤ µx(z) with equality for all
z �= x.

Technical note. To show that we are not cheating, we should prove that µx(y) < ∞
for all y. First, observe that µxp = µx implies µxp

n = µx for all n ≥ 1, and
µx(x) = 1, so if pn(y, x) > 0, then µx(y) < ∞. Since the last result is true for
all n, we see that µx(y) < ∞ whenever ρyx > 0, but this is good enough. By
Theorem 6.4.3, when x is recurrent, ρxy > 0 implies ρyx > 0, and it follows from
the argument above that µx(y) < ∞. If ρxy = 0, then µx(y) = 0.

Exercise 6.5.3. Use the construction in the proof of Theorem 6.5.2 to show that
µ(j ) =∑k≥j fk+1 defines a stationary measure for the renewal chain (Example
6.2.3).

Theorem 6.5.2 allows us to construct a stationary measure for each closed set of
recurrent states. Conversely, we have:

Theorem 6.5.3. If p is irreducible and recurrent (i.e., all states are) then the
stationary measure is unique up to constant multiples.

Proof. Let ν be a stationary measure and let a ∈ S.

ν(z) =
∑

y

ν(y)p(y, z) = ν(a)p(a, z) +
∑
y �=a

ν(y)p(y, z)
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Using the last identity to replace ν(y) on the right-hand side,

ν(z) = ν(a)p(a, z) +
∑
y �=a

ν(a)p(a, y)p(y, z)

+
∑
x �=a

∑
y �=a

ν(x)p(x, y)p(y, z)

= ν(a)Pa(X1 = z) + ν(a)Pa(X1 �= a,X2 = z)

+ Pν(X0 �= a,X1 �= a,X2 = z)

Continuing in the obvious way, we get

ν(z) = ν(a)
n∑

m=1

Pa(Xk �= a, 1 ≤ k < m, Xm = z)

+ Pν(Xj �= a, 0 ≤ j < n, Xn = z)

The last term is ≥ 0. Letting n → ∞ gives ν(z) ≥ ν(a)µa(z), where µa is the
measure defined in Theorem 6.5.2 for x = a. It follows from Theorem 6.5.2 that
µa is a stationary distribution with µa(a) = 1. (Here we are summing from 1 to T

rather than from 0 to T − 1.) To turn the ≥ in the last equation into =, we observe

ν(a) =
∑

x

ν(x)pn(x, a) ≥ ν(a)
∑

x

µa(x)pn(x, a) = ν(a)µa(a) = ν(a)

Since ν(x) ≥ ν(a)µa(x) and the left- and right-hand sides are equal, we must have
ν(x) = ν(a)µa(x) whenever pn(x, a) > 0. Since p is irreducible, it follows that
ν(x) = ν(a)µa(x) for all x ∈ S, and the proof is complete. �

Theorems 6.5.2 and 6.5.3 make a good team. The first result gives us a formula
for a stationary distribution we call µx , and the second shows it is unique up to
constant multiples. Together they allow us to derive a lot of formulas.

Exercise 6.5.4. Let wxy = Px(Ty < Tx). Show that µx(y) = wxy/wyx .

Exercise 6.5.5. Show that if p is irreducible and recurrent, then

µx(y)µy(z) = µx(z)

Exercise 6.5.6. Use Theorems 6.5.2 and 6.5.3 to show that for simple random
walk, (i) the expected number of visits to k between successive visits to 0 is 1 for
all k, and (ii) if we start from k, the expected number of visits to k before hitting 0
is 2k.
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Exercise 6.5.7. Another proof of Theorem 6.5.3. Suppose p is irreducible and
recurrent and let µ be the stationary measure constructed in Theorem 6.5.2. µ(x) >

0 for all x, and

q(x, y) = µ(y)p(y, x)/µ(x) ≥ 0

defines a “dual” transition probability. (See Exercise 6.5.1.) (i) Show that q is
irreducible and recurrent. (ii) Suppose ν(y) ≥∑x ν(x)p(x, y) (i.e, ν is an excessive
measure) and let h(x) = ν(x)/µ(x). Verify that h(y) ≥∑ q(y, x)h(x) and use
Exercise 6.4.9 to conclude that h is constant, that is, ν = cµ.

Remark. The last result is stronger than Theorem 6.5.3 since it shows that in
the recurrent case any excessive measure is a constant multiple of one stationary
measure. The remark after the proof of Theorem 6.5.3 shows that if p is irreducible
and transient, there is an excessive measure for each x ∈ S.

Having examined the existence and uniqueness of stationary measures, we turn
our attention now to stationary distributions, that is, probability measures π with
πp = π . Stationary measures may exist for transient chains, such as, random walks
in d ≥ 3, but

Theorem 6.5.4. If there is a stationary distribution, then all states y that have
π (y) > 0 are recurrent.

Proof. Since πpn = π , Fubini’s theorem implies

∑
x

π (x)
∞∑

n=1

pn(x, y) =
∞∑

n=1

π (y) = ∞

when π (y) > 0. Using Theorem 6.4.2 now gives

∞ =
∑

x

π (x)
ρxy

1 − ρyy

≤ 1

1 − ρyy

since ρxy ≤ 1 and π is a probability measure. So ρyy = 1. �

Theorem 6.5.5. If p is irreducible and has stationary distribution π , then

π (x) = 1/ExTx

Remark. Recycling Chung’s quote regarding Theorem 5.5.8, we note that the
proof will make π (x) = 1/ExTx obvious, but it seems incredible that

∑
x

1

ExTx

p(x, y) = 1

EyTy
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Proof. Irreducibility implies π (x) > 0 so all states are recurrent by Theorem 6.5.4.
From Theorem 6.5.2,

µx(y) =
∞∑

n=0

Px(Xn = y, Tx > n)

defines a stationary measure with µx(x) = 1, and Fubini’s theorem implies

∑
y

µx(y) =
∞∑

n=0

Px(Tx > n) = ExTx

By Theorem 6.5.3, the stationary measure is unique up to constant multiples, so
π (x) = µx(x)/ExTx . Since µx(x) = 1 by definition, the desired result follows. �

Exercise 6.5.8. Compute the expected number of moves it takes a knight to return
to its initial position if it starts in a corner of the chessboard, assuming there are
no other pieces on the board, and each time it chooses a move at random from its
legal moves. (Note: A chessboard is {0, 1, . . . , 7}2. A knight’s move is L-shaped;
two steps in one direction followed by one step in a perpendicular direction.)

If a state x has ExTx < ∞, it is said to be positive recurrent. A recurrent state
with ExTx = ∞ is said to be null recurrent. Theorem 6.6.1 will explain these
names. The next result helps us identify positive recurrent states.

Theorem 6.5.6. If p is irreducible, then the following are equivalent:
(i) Some x is positive recurrent.

(ii) There is a stationary distribution.
(iii) All states are positive recurrent.

Proof. (i) implies (ii). If x is positive recurrent then

π (y) =
∞∑

n=0

Px(Xn = y, Tx > n)/ExTx

defines a stationary distribution.

(ii) implies (iii). Theorem 6.5.5 implies π (y) = 1/EyTy , and irreducibility tells us
π (y) > 0 for all y, so EyTy < ∞.

(iii) implies (i). Trivial. �

Exercise 6.5.9. Suppose p is irreducible and positive recurrent. Then ExTy < ∞
for all x, y.

Exercise 6.5.10. Suppose p is irreducible and has a stationary measure µ with∑
x µ(x) = ∞. Then p is not positive recurrent.
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Theorem 6.5.6 shows that being positive recurrent is a class property. If it holds
for one state in an irreducible set, then it is true for all. Turning to our examples,
since µ(x) ≡ 1 is a stationary measure, Exercise 6.5.10 implies that random walks
(Example 6.5.1) are never positive recurrent. Random walks on graphs (Example
6.5.5) are irreducible if and only if the graph is connected. Since µ(i) ≥ 1 in the
connected case, we have positive recurrence if and only if the graph is finite. The
Ehrenfest chain (Example 6.5.3) is positive recurrent. To see this, note that the
state space is finite, so there is a stationary distribution, and the conclusion follows
from Theorem 6.5.4. A renewal chain is irreducible if {k : fk > 0} is unbounded
(see Example 6.4.3); it is positive recurrent (i.e., all the states are) if and only if
E0T0 =∑ kfk < ∞.

Birth and death chains (Example 6.5.4) have a stationary distribution if and
only if

∑
x

x∏
k=1

pk−1

qk

< ∞

By Theorem 6.4.7, the chain is recurrent if and only if

∞∑
m=0

m∏
j=1

qj

pj

= ∞

When pj = p and qj = (1 − p) for j ≥ 1, there is a stationary distribution if and
only if p < 1/2, and the chain is transient when p > 1/2. In Section 6.4, we probed
the boundary between recurrence and transience by looking at examples with
pj = 1/2 + εj , where εj ∼ C j−α as j → ∞ and C, α ∈ (0, ∞). Since εj ≥ 0 and
hence pj−1/qj ≥ 1 for large j , none of these chains have stationary distributions.
If we look at chains with pj = 1/2 − εj , then all we have done is interchange the
roles of p and q, and results from the last section imply that the chain is positive
recurrent when α < 1, or α = 1 and C > 1/4.

Example 6.5.6. M/G/1 queue. Let µ =∑ kak be the mean number of customers
who arrive during one service time. In Example 6.4.7, we showed that the chain is
recurrent if and only if µ ≤ 1. We will now show that the chain is positive recurrent
if and only if µ < 1. First, suppose that µ < 1. When Xn > 0, the chain behaves like
a random walk that has jumps with mean µ − 1, so if N = inf{n ≥ 0 : Xn = 0},
then XN∧n − (µ − 1)(N ∧ n) is a martingale. If X0 = x > 0, then the martingale
property implies

x = ExXN∧n + (1 − µ)Ex(N ∧ n) ≥ (1 − µ)Ex(N ∧ n)

since XN∧n ≥ 0, and it follows that ExN ≤ x/(1 − µ).
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To prove that there is equality, observe that Xn decreases by at most 1 each time
and for x ≥ 1, ExTx−1 = E1T0, so ExN = cx. To identify the constant, observe
that

E1N = 1 +
∞∑

k=0

akEkN

so c = 1 + µc and c = 1/(1 − µ). If X0 = 0 then p(0, 0) = a0 + a1 and
p(0, k − 1) = ak for k ≥ 2. By considering what happens on the first jump, we
see that (the first term may look wrong, but recall k − 1 = 0 when k = 1)

E0T0 = 1 +
∞∑

k=1

ak

k − 1

1 − µ
= 1 + µ − (1 − a0)

1 − µ
= a0

1 − µ
< ∞

This shows that the chain is positive recurrent if µ < 1. To prove the converse,
observe that the arguments above show that if E0T0 < ∞ then EkN < ∞ for all
k, EkN = ck, and c = 1/(1 − µ), which is impossible if µ ≥ 1.

The last result when combined with Theorem 6.5.2 and 6.5.5 allows us to
conclude that the stationary distribution has π (0) = (1 − µ)/a0. This may not
seem like much, but the equations in πp = π are

π (0) = π (0)(a0 + a1) + π (1)a0

π (1) = π (0)a2 + π (1)a1 + π (2)a0

π (2) = π (0)a3 + π (1)a2 + π (2)a1 + π (3)a0

or, in general, for j ≥ 1,

π (j ) =
j+1∑
i=0

π (i)aj+1−i

The equations have a “triangular” form, so knowing π (0), we can solve for
π (1), π (2), . . . The first expression,

π (1) = π (0)(1 − (a0 + a1))/a0

is simple, but the formulas get progressively messier, and there is no nice
closed-form solution.

Exercise 6.5.11. Let ξ1, ξ2, . . . be i.i.d. with P (ξm = k) = ak+1 for k ≥ −1, let
Sn = x + ξ1 + · · · + ξn, where x ≥ 0, and let

Xn = Sn +
(

min
m≤n

Sm

)−

(6.2.1) shows that Xn has the same distribution as the M/G/1 queue starting
from X0 = x. Use this representation to conclude that if µ =∑ kak < 1, then as
n → ∞,

1

n
|{m ≤ n : Xm−1 = 0, ξm = −1}| → (1 − µ) a.s.

and hence π (0) = (1 − µ)/a0 as proved above.
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Example 6.5.7. M/M/∞ queue. In this chain, introduced in Exercise 6.4.10,

Xn+1 =
Xn∑

m=1

ξn,m + Yn+1

where ξn,m are i.i.d. Bernoulli with mean p and Yn+1 is an independent Poisson
mean λ. It follows from properties of the Poisson distribution that if Xn is Poisson
with mean µ, then Xn+1 is Poisson with mean µp + λ. Setting µ = µp + λ, we find
that a Poisson distribution with mean µ = λ/(1 − p) is a stationary distribution.

There is a general result that handles Examples 6.5.6 and 6.5.7 and is useful in
a number of other situations. This will be developed in the next two exercises.

Exercise 6.5.12. Let Xn ≥ 0 be a Markov chain and suppose ExX1 ≤ x − ε for
x > K , where ε > 0. Let Yn = Xn + nε and τ = inf{n : Xn ≤ K}. Yn∧τ is a posi-
tive supermartingale, and the optional stopping theorem implies Exτ ≤ x/ε.

Exercise 6.5.13. Suppose that Xn has state space {0, 1, 2, . . .}, the conditions of
the last exercise hold when K = 0, and E0X1 < ∞. Then 0 is positive recurrent.
We leave it to the reader to formulate and prove a similar result when K > 0.

To close the section, we will give a self-contained proof of

Theorem 6.5.7. If p is irreducible and has a stationary distribution π , then any
other stationary measure is a multiple of π .

Remark. This result is a consequence of Theorems 6.5.4 and Theorem 6.5.3, but
we find the method of proof amusing.

Proof. Since p is irreducible, π (x) > 0 for all x. Let ϕ be a concave function that
is bounded on (0, ∞), for example, ϕ(x) = x/(x + 1). Define the entropy of µ by

E(µ) =
∑

y

ϕ

(
µ(y)

π (y)

)
π (y)

The reason for the name will become clear during the proof.

E(µp) =
∑

y

ϕ

(∑
x

µ(x)p(x, y)

π (y)

)
π (y) =

∑
y

ϕ

(∑
x

µ(x)

π (x)
· π (x)p(x, y)

π (y)

)
π (y)

≥
∑

y

∑
x

ϕ

(
µ(x)

π (x)

)
π (x)p(x, y)

π (y)
π (y)

since ϕ is concave, and ν(x) = π (x)p(x, y)/π (y) is a probability distribution.
Since the π (y)’s cancel and

∑
y p(x, y) = 1, the last expression = E(µ), and we
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have shown E(µp) ≥ E(µ), that is, the entropy of an arbitrary initial measure µ is
increased by an application of p.

If p(x, y) > 0 for all x and y, and µp = µ, it follows that µ(x)/π (x) must
be constant, for otherwise there would be strict inequality in the application of
Jensen’s inequality. To get from the last special case to the general result, observe
that if p is irreducible,

p̄(x, y) =
∞∑

n=1

2−npn(x, y) > 0 for all x, y

and µp = µ implies µp̄ = µ. �

6.6 Asymptotic Behavior

The first topic in this section is to investigate the asymptotic behavior of pn(x, y).
If y is transient,

∑
n pn(x, y) < ∞, so pn(x, y) → 0 as n → ∞. To deal with the

recurrent states, we let

Nn(y) =
n∑

m=1

1{Xm=y}

be the number of visits to y by time n.

Theorem 6.6.1. Suppose y is recurrent. For any x ∈ S, as n → ∞
Nn(y)

n
→ 1

EyTy

1{Ty<∞} Px-a.s.

Here 1/∞ = 0.

Proof. Suppose first that we start at y. Let R(k) = min{n ≥ 1 : Nn(y) = k} = the
time of the kth return to y. Let tk = R(k) − R(k − 1), where R(0) = 0. Since we
have assumed X0 = y, t1, t2, . . . are i.i.d. and the strong law of large numbers
implies

R(k)/k → EyTy Py-a.s.

Since R(Nn(y)) ≤ n < R(Nn(y) + 1),

R(Nn(y))

Nn(y)
≤ n

Nn(y)
<

R(Nn(y) + 1)

Nn(y) + 1
· Nn(y) + 1

Nn(y)

Letting n → ∞, and recalling Nn(y) → ∞ a.s. since y is recurrent, we have

n

Nn(y)
→ EyTy Py-a.s.

To generalize now to x �= y, observe that if Ty = ∞ then Nn(y) = 0 for all n, and
hence

Nn(y)/n → 0 on {Ty = ∞}
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The strong Markov property implies that conditional on {Ty < ∞}, t2, t3, . . . are
i.i.d. and have Px(tk = n) = Py(Ty = n), so

R(k)/k = t1/k + (t2 + · · · + tk)/k → 0 + EyTy Px-a.s.

Repeating the proof for the case x = y shows

Nn(y)/n → 1/EyTy Px-a.s. on {Ty < ∞}
and combining this with the result for {Ty = ∞} completes the proof. �

Remark. Theorem 6.6.1 should help explain the terms positive and null recurrent.
If we start from x, then in the first case the asymptotic fraction of time spent at x

is positive and in the second case it is 0.

Since 0 ≤ Nn(y)/n ≤ 1, it follows from the bounded convergence theorem that
ExNn(y)/n → Ex(1{Ty<∞}/EyTy), so

1

n

n∑
m=1

pm(x, y) → ρxy/EyTy (6.6.1)

The last result was proved for recurrent y but also holds for transient y, since in
that case, EyTy = ∞, and the limit is 0, since

∑
m pm(x, y) < ∞.

(6.6.1) shows that the sequence pn(x, y) always converges in the Cesaro sense.
The next example shows that pn(x, y) need not converge.

Example 6.6.1.

p =
(

0 1
1 0

)
p2 =

(
1 0
0 1

)
p3 = p, p4 = p2, . . .

A similar problem also occurs in the Ehrenfest chain. In that case, if X0 is even, then
X1 is odd, X2 is even, . . . so pn(x, x) = 0 unless n is even. It is easy to construct
examples with pn(x, x) = 0 unless n is a multiple of 3 or 17 or . . .

Theorem 6.6.4 below will show that this “periodicity” is the only thing that
can prevent the convergence of the pn(x, y). First, we need a definition and two
preliminary results. Let x be a recurrent state, let Ix = {n ≥ 1 : pn(x, x) > 0}, and
let dx be the greatest common divisor of Ix . dx is called the period of x. The first
result says that the period is a class property.

Lemma 6.6.2. If ρxy > 0, then dy = dx.

Proof. Let K and L be such that pK (x, y) > 0 and pL(y, x) > 0. (x is recurrent,
so ρyx > 0.)

pK+L(y, y) ≥ pL(y, x)pK (x, y) > 0
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so dy divides K + L, abbreviated dy |(K + L). Let n be such that pn(x, x) > 0.

pK+n+L(y, y) ≥ pL(y, x)pn(x, x)pK (x, y) > 0

so dy |(K + n + L), and hence dy |n. Since n ∈ Ix is arbitrary, dy |dx . Interchanging
the roles of y and x gives dx |dy , and hence dx = dy. �

If a chain is irreducible and dx = 1, it is said to be aperiodic. The easiest
way to check this is to find a state with p(x, x) > 0. The M/G/1 queue has
ak > 0 for all k ≥ 0, so it has this property. The renewal chain is aperiodic if
g.c.d.{k : fk > 0} = 1.

Lemma 6.6.3. If dx = 1 then pm(x, x) > 0 for m ≥ m0.

Proof by example. Suppose 4, 7 ∈ Ix . pm+n(x, x) ≥ pm(x, x)pn(x, x), so Ix is
closed under addition, that is, if m, n ∈ Ix , then m + n ∈ Ix . A little calculation
shows that in the example

Ix ⊃ { 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, . . . }
so the result is true with m0 = 18. (Once Ix contains four consecutive integers, it
will contain all the rest.)

Proof. Our first goal is to prove that Ix contains two consecutive integers. Let n0,
n0 + k ∈ Ix . If k = 1, we are done. If not, then since the greatest common divisor
of Ix is 1, there is an n1 ∈ Ix so that k is not a divisor of n1. Write n1 = mk + r with
0 < r < k. Since Ix is closed under addition, (m + 1)(n0 + k) > (m + 1)n0 + n1

are both in Ix . Their difference is

k(m + 1) − n1 = k − r < k

Repeating the last argument (at most k times), we eventually arrive at a pair of
consecutive integers N, N + 1 ∈ Ix . It is now easy to show that the result holds
for m0 = N2. Let m ≥ N2 and write m − N2 = kN + r with 0 ≤ r < N . Then
m = r + N2 + kN = r(1 + N ) + (N − r + k)N ∈ Ix . �

Theorem 6.6.4. Convergence theorem. Suppose p is irreducible, aperiodic (i.e.,
all states have dx = 1), and has stationary distribution π . Then, as n → ∞,
pn(x, y) → π (y).

Proof. Let S2 = S × S. Define a transition probability p̄ on S × S by

p̄((x1, y1), (x2, y2)) = p(x1, x2)p(y1, y2)

that is, each coordinate moves independently. Our first step is to check that p̄

is irreducible. This may seem like a silly thing to do first, but this is the only
step that requires aperiodicity. Since p is irreducible, there are K,L, so that
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pK (x1, x2) > 0 and pL(y1, y2) > 0. From Lemma 6.6.3, it follows that if M is
large, pL+M (x2, x2) > 0 and pK+M (y2, y2) > 0, so

p̄K+L+M ((x1, y1), (x2, y2)) > 0

Our second step is to observe that since the two coordinates are independent,
π̄ (a, b) = π (a)π (b) defines a stationary distribution for p̄, and Theorem 6.5.4
implies that for p̄ all states are recurrent. Let (Xn, Yn) denote the chain on S × S,
and let T be the first time that this chain hits the diagonal {(y, y) : y ∈ S}. Let
T(x,x) be the hitting time of (x, x). Since p̄ is irreducible and recurrent, T(x,x) < ∞
a.s. and hence T < ∞ a.s. The final step is to observe that on {T ≤ n}, the two
coordinates Xn and Yn have the same distribution. By considering the time and
place of the first intersection and then using the Markov property,

P (Xn = y, T ≤ n) =
n∑

m=1

∑
x

P (T = m, Xm = x, Xn = y)

=
n∑

m=1

∑
x

P (T = m, Xm = x)P (Xn = y|Xm = x)

=
n∑

m=1

∑
x

P (T = m, Ym = x)P (Yn = y|Ym = x)

= P (Yn = y, T ≤ n)

To finish up, we observe that

P (Xn = y) = P (Yn = y, T ≤ n) + P (Xn = y, T > n)

≤ P (Yn = y) + P (Xn = y, T > n)

and similarly, P (Yn = y) ≤ P (Xn = y) + P (Yn = y, T > n). So

|P (Xn = y) − P (Yn = y)| ≤ P (Xn = y, T > n) + P (Yn = y, T > n)

and summing over y gives∑
y

|P (Xn = y) − P (Yn = y)| ≤ 2P (T > n)

If we let X0 = x and let Y0 have the stationary distribution π , then Yn has distribution
π , and it follows that∑

y

|pn(x, y) − π (y)| ≤ 2P (T > n) → 0

proving the desired result. If we recall the definition of the total variation distance
given in Section 3.6, the last conclusion can be written as

‖pn(x, ·) − π (·)‖ ≤ P (T > n) → 0 �
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At first glance, it may seem strange to prove the convergence theorem by running
independent copies of the chain. An approach that is slightly more complicated but
explains better what is happening is to define

q((x1, y1), (x2, y2)) =

⎧⎪⎨
⎪⎩

p(x1, x2)p(y1, y2) if x1 �= y1

p(x1, x2) if x1 = y1, x2 = y2

0 otherwise

In words, the two coordinates move independently until they hit and then move
together. It is easy to see from the definition that each coordinate is a copy of the
original process. If T ′ is the hitting time of the diagonal for the new chain (X′

n, Y
′
n),

then X′
n = Y ′

n on T ′ ≤ n, so it is clear that

∑
y

|P (X′
n = y) − P (Y ′

n = y)| ≤ 2 P (X′
n �= Y ′

n) = 2P (T ′ > n)

On the other hand, T and T ′ have the same distribution, so P (T ′ > n) → 0, and the
conclusion follows as before. The technique used in the last proof is called coupling.
Generally, this term refers to building two sequences Xn and Yn on the same space
to conclude that Xn converges in distribution by showing P (Xn �= Yn) → 0, or
more generally, that for some metric ρ, ρ(Xn, Yn) → 0 in probability.

Finite State Space

The convergence theorem is much easier when the state space is finite.

Exercise 6.6.1. Show that if S is finite and p is irreducible and aperiodic, then
there is an m so that pm(x, y) > 0 for all x, y.

Exercise 6.6.2. Show that if S is finite, p is irreducible and aperiodic, and T is
the coupling time defined in the proof of Theorem 6.6.4 then P (T > n) ≤ Crn for
some r < 1 and C < ∞. So the convergence to equilibrium occurs exponentially
rapidly in this case. Hint: First consider the case in which p(x, y) > 0 for all x and
y and reduce the general case to this one by looking at a power of p.

Exercise 6.6.3. For any transition matrix p, define

αn = sup
i,j

1

2

∑
k

|pn(i, k) − pn(j, k)|

The 1/2 is there because for any i and j we can define r.v.’s X and Y so that
P (X = k) = pn(i, k), P (Y = k) = pn(j, k), and

P (X �= Y ) = (1/2)
∑

k

|pn(i, k) − pn(j, k)|
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Show that αm+n ≤ αnαm. Here you may find that the coupling interpretation may
help you from getting lost in the algebra. Using Lemma 2.6.1, we can conclude
that

1

n
log αn → inf

m≥1

1

m
log αm

so if αm < 1 for some m, it approaches 0 exponentially fast.

As the last two exercises show, Markov chains on finite state spaces converge
exponentially fast to their stationary distributions. In applications, however, it is
important to have rates of convergence. The next two problems are a taste of an
exciting research area.

Example 6.6.2. Shuffling cards. The state of a deck of n cards can be represented
by a permutation, π (i) giving the location of the ith card. Consider the following
method of mixing the deck up. The top card is removed and inserted under one
of the n − 1 cards that remain. I claim that by following the bottom card of the
deck, we can see that it takes about n log n moves to mix up the deck. This card
stays at the bottom until the first time (T1) a card is inserted below it. It is easy to
see that when the kth card is inserted below the original bottom card (at time Tk),
all k! arrangements of the cards below are equally likely, so at time τn = Tn−1 + 1
all n! arrangements are equally likely. If we let T0 = 0 and tk = Tk − Tk−1 for
1 ≤ k ≤ n − 1, then these r.v.’s are independent, and tk has a geometric distribution
with success probability k/(n − 1). These waiting times are the same as the ones in
the coupon collector’s problem (Example 2.2.3), so τn/(n log n) → 1 in probability
as n → ∞. For more on card shuffling, see Aldous and Diaconis (1986).

Example 6.6.3. Random walk on the hypercube. Consider {0, 1}d as a graph
with edges connecting each pair of points that differ in only one coordinate. Let
Xn be a random walk on {0, 1}d that stays put with probability 1/2 and jumps
to one of its d neighbors with probability 1/2d each. Let Yn be another copy of
the chain in which Y0 (and hence Yn, n ≥ 1) is uniformly distributed on {0, 1}d .
We construct a coupling of Xn and Yn by letting U1, U2, . . . be i.i.d. uniform on
{1, 2, . . . , d}, and letting V1, V2, . . . be independent i.i.d. uniform on {0, 1} At time
n, the Unth coordinates of X and Y are each set equal to Vn. The other coordinates
are unchanged. Let Td = inf{m : {U1, . . . , Um} = {1, 2, . . . , d}}. When n ≥ Td ,
Xn = Yn. Results for the coupon collector’s problem (Example 2.2.3) show that
Td/(d log d) → 1 in probability as d → ∞.

Exercises

6.6.4. Strong law for additive functionals. Suppose p is irreducible and has
stationary distribution π . Let f be a function that has

∑ |f (y)|π (y) < ∞. Let T k
x
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be the time of the kth return to x. (i) Show that

V
f

k = f (X(T k
x )) + · · · + f (X(T k+1

x − 1)), k ≥ 1 are i.i.d.

with E|V f

k | < ∞. (ii) Let Kn = inf{k : T k
x ≥ n} and show that

1

n

Kn∑
m=1

V f
m → EV

f

1

ExT 1
x

=
∑

f (y)π (y) Pµ − a.s.

(iii) Show that max1≤m≤n V
|f |
m /n → 0 and conclude

1

n

n∑
m=1

f (Xm) →
∑

y

f (y)π (y) Pµ − a.s.

for any initial distribution µ.

6.6.5. Central limit theorem for additive functionals. Suppose in addition to the
conditions in the Exercise 6.6.4 that

∑
f (y)π (y) = 0, and Ex(V |f |

k )2 < ∞. (i) Use
the random index central limit theorem (Exercise 3.4.6) to conclude that for any
initial distribution µ,

1√
n

Kn∑
m=1

V f
m ⇒ cχ under Pµ

(ii) Show that max1≤m≤n V
|f |
m /

√
n → 0 in probability and conclude

1√
n

n∑
m=1

f (Xm) ⇒ cχ under Pµ

6.6.6. Ratio limit theorems. Theorem 6.6.1 does not say much in the null recurrent
case. To get a more informative limit theorem, suppose that y is recurrent and m is
the (unique up to constant multiples) stationary measure on Cy = {z : ρyz > 0}. Let
Nn(z) = |{m ≤ n : Xn = z}|. Break up the path at successive returns to y and show
that Nn(z)/Nn(y) → m(z)/m(y) Px-a.s. for all x, z ∈ Cy. Note that n → Nn(z) is
increasing, so this is much easier than the previous problem.

6.6.7. We got (6.6.1) from Theorem 6.6.1 by taking expected value. This does not
work for the ratio in the previous exercise, so we need another approach. Suppose
z �= y. (i) Let p̄n(x, z) = Px(Xn = z, Ty > n) and decompose pm(x, z) according
to the value of J = sup{j ∈ [1, m) : Xj = y} to get

n∑
m=1

pm(x, z) =
n∑

m=1

p̄m(x, z) +
n−1∑
j=1

pj (x, y)
n−j∑
k=1

p̄k(y, z)

(ii) Show that

n∑
m=1

pm(x, z)

/
n∑

m=1

pm(x, y) → m(z)

m(y)
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6.7 Periodicity, Tail σ -field*

Lemma 6.7.1. Suppose p is irreducible, recurrent, and all states have period d.
Fix x ∈ S, and for each y ∈ S, let Ky = {n ≥ 1 : pn(x, y) > 0}. (i) There is an
ry ∈ {0, 1, . . . , d − 1} so that if n ∈ Ky then n = ry mod d, that is, the difference
n − ry is a multiple of d. (ii) Let Sr = {y : ry = r} for 0 ≤ r < d. If y ∈ Si , z ∈ Sj ,
and pn(y, z) > 0, then n = (j − i) mod d. (iii) S0, S1, . . . , Sd−1 are irreducible
classes for pd , and all states have period 1.

Proof. (i) Let m(y) be such that pm(y)(y, x) > 0. If n ∈ Ky , then pn+m(y)(x, x)
is positive, so d|(n + m). Let ry = (d − m(y)) mod d. (ii) Let m, n be such that
pn(y, z), pm(x, y) > 0. Since pn+m(x, z) > 0, it follows from (i) that n + m = j

mod d . Since m = i mod d, the result follows. The irreducibility in (iii) follows
immediately from (ii). The aperiodicity follows from the definition of the period
as the g.c.d. {x : pn(x, x) > 0}. �

A partition of the state space S0, S1, . . . , Sd−1 satisfying (ii) in Lemma 6.7.1 is
called a cyclic decomposition of the state space. Except for the choice of the set
to put first, it is unique. (Pick an x ∈ S. It lies in some Sj , but once the value of j

is known, irreducibility and (ii) allow us to calculate all the sets.)

Exercise 6.7.1. Find the decomposition for the Markov chain with transition
probability

1 2 3 4 5 6 7
1 0 0 0 .5 .5 0 0
2 .3 0 0 0 0 0 .7
3 0 0 0 0 0 0 1
4 0 0 1 0 0 0 0
5 0 0 1 0 0 0 0
6 0 1 0 0 0 0 0
7 0 0 0 .4 0 .6 0

Theorem 6.7.2. Convergence theorem, periodic case. Suppose p is irreducible
and has a stationary distribution π , and all states have period d. Let x ∈ S, and
let S0, S1, . . . , Sd−1 be the cyclic decomposition of the state space with x ∈ S0. If
y ∈ Sr then

lim
m→∞ pmd+r (x, y) = π (y)d

Proof. If y ∈ S0 then using (iii) in Lemma 6.7.1 and applying Theorem 6.6.4 to pd

shows

lim
m→∞ pmd(x, y) exists
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To identify the limit, we note that (6.6.1) implies

1

n

n∑
m=1

pm(x, y) → π (y)

and (ii) of Lemma 6.7.1 implies pm(x, y) = 0 unless d|m, so the limit in the first
display must be π (y)d. If y ∈ Sr with 1 ≤ r < d, then

pmd+r (x, y) =
∑
z∈Sr

pr (x, z)pmd(z, y)

Since y, z ∈ Sr , it follows from the first case in the proof that pmd(z, y) → π (y)d
as m → ∞. pmd(z, y) ≤ 1, and

∑
z pr (x, z) = 1, so the result follows from the

dominated convergence theorem. �

Let F ′
n = σ (Xn+1, Xn+2, . . .) and T = ∩nF ′

n be the tail σ -field. The next result
is due to Orey. The proof we give is from Blackwell and Freedman (1964).

Theorem 6.7.3. Suppose p is irreducible, recurrent, and all states have period d,
T = σ ({X0 ∈ Sr} : 0 ≤ r < d).

Remark. To be precise, if µ is any initial distribution and A ∈ T , then there is an
r so that A = {X0 ∈ Sr} Pµ-a.s.

Proof. We build up to the general result in three steps.

Case 1. Suppose P (X0 = x) = 1. Let T0 = 0, and for n ≥ 1, let Tn = inf{m >

Tn−1 : Xm = x} be the time of the nth return to x. Let

Vn = (X(Tn−1), . . . , X(Tn − 1))

The vectors Vn are i.i.d. by Exercise 6.4.1, and the tail σ -field is contained in the
exchangeable field of the Vn, so the Hewitt-Savage 0-1 law (Theorem 4.1.1, proved
there for r.v’s taking values in a general measurable space) implies that T is trivial
in this case.

Case 2. Suppose that the initial distribution is concentrated on one cyclic class, say
S0. If A ∈ T , then Px(A) ∈ {0, 1} for each x by case 1. If Px(A) = 0 for all x ∈ S0,
then Pµ(A) = 0. Suppose Py(A) > 0, and hence = 1, for some y ∈ S0. Let z ∈ S0.
Since pd is irreducible and aperiodic on S0, there is an n so that pn(z, y) > 0 and
pn(y, y) > 0. If we write 1A = 1B ◦ θn, then the Markov property implies

1 = Py(A) = Ey(Ey(1B ◦ θn|Fn)) = Ey(EXn
1B)

so Py(B) = 1. Another application of the Markov property gives

Pz(A) = Ez(EXn
1B) ≥ pn(z, y) > 0

so Pz(A) = 1, and since z ∈ S0 is arbitrary, Pµ(A) = 1.
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General case. From case 2, we see that P (A|X0 = y) ≡ 1 or ≡ 0 on each cyclic
class. This implies that either {X0 ∈ Sr} ⊂ A or {X0 ∈ Sr} ∩ A = ∅ Pµ a.s. Con-
versely, it is clear that {X0 ∈ Sr} = {Xnd ∈ Sr i.o.} ∈ T , and the proof is com-
plete. �

The next result will help us identify the tail σ -field in transient examples.

Theorem 6.7.4. Suppose X0 has initial distribution µ. The equations

h(Xn, n) = Eµ(Z|Fn) and Z = lim
n→∞ h(Xn, n)

set up a 1-1 correspondence between bounded Z ∈ T and bounded space-time
harmonic functions, that is, bounded h : S × {0, 1, . . .} → R, so that h(Xn, n) is
a martingale.

Proof. Let Z ∈ T , write Z = Yn ◦ θn, and let h(x, n) = ExYn.

Eµ(Z|Fn) = Eµ(Yn ◦ θn|Fn) = h(Xn, n)

by the Markov property, so h(Xn, n) is a martingale. Conversely, if h(Xn, n) is a
bounded martingale, using Theorems 5.2.8 and 5.5.6 shows h(Xn, n) → Z ∈ T as
n → ∞, and h(Xn, n) = Eµ(Z|Fn). �

Exercise 6.7.2. A random variable Z with Z = Z ◦ θ , and hence = Z ◦ θn for all
n, is called invariant. Show that there is a 1-1 correspondence between bounded
invariant random variables and bounded harmonic functions. We will have more to
say about invariant r.v.’s in Section 7.1.

Example 6.7.1. Simple random walk in d dimensions. We begin by construct-
ing a coupling for this process. Let i1, i2, . . . be i.i.d. uniform on {1, . . . , d}. Let
ξ1, ξ2, . . . and η1, η2, . . . be i.i.d. uniform on {−1, 1}. Let ej be the j th unit vector.
Construct a coupled pair of d-dimensional simple random walks by

Xn = Xn−1 + e(in)ξn

Yn =
{

Yn−1 + e(in)ξn if X
in
n−1 = Y

in
n−1

Yn−1 + e(in)ηn if X
in
n−1 �= Y

in
n−1

In words, the coordinate that changes is always the same in the two walks, and once
they agree in one coordinate, future movements in that direction are the same. It is
easy to see that if Xi

0 − Y i
0 is even for 1 ≤ i ≤ d, then the two random walks will

hit with probability one.
Let L0 = {z ∈ Zd : z1 + · · · + zd is even } and L1 = Zd − L0. Although we

have defined the notion only for the recurrent case, it should be clear that L0, L1 is
the cyclic decomposition of the state space for simple random walk. If Sn ∈ Li , then
Sn+1 ∈ L1−i , and p2 is irreducible on each Li . To couple two random walks starting
from x, y ∈ Li , let them run independently until the first time all the coordinate
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differences are even, and then use the last coupling. In the remaining case, x ∈ L0,
y ∈ L1 coupling is impossible.

The next result should explain our interest in coupling two d-dimensional simple
random walks.

Theorem 6.7.5. For d-dimensional simple random walk,

T = σ ({X0 ∈ Li}, i = 0, 1)

Proof. Let x, y ∈ Li , and let Xn, Yn be a realization of the coupling defined above
for X0 = x and Y0 = y. Let h(x, n) be a bounded space-time harmonic function.
The martingale property implies h(x, 0) = Exh(Xn, n). If |h| ≤ C, it follows from
the coupling that

|h(x, 0) − h(y, 0)| = |Eh(Xn, n) − Eh(Yn, n)| ≤ 2CP (Xn �= Yn) → 0

so h(x, 0) is constant on L0 and L1. Applying the last result to h′(x, m) = h(x, n +
m), we see that h(x, n) = ai

n on Li . The martingale property implies ai
n = a1−i

n+1,
and the desired result follows from Theorem 6.7.4. �

Example 6.7.2. Ornstein’s coupling. Let p(x, y) = f (y − x) be the transition
probability for an irreducible aperiodic random walk on Z. To prove that the tail
σ -field is trivial, pick M large enough so that the random walk generated by the
probability distribution fM (x) with fM (x) = cMf (x) for |x| ≤ M and fM (x) = 0
for |x| > M is irreducible and aperiodic. Let Z1, Z2, . . . be i.i.d. with distribution
f , and let W1, W2, . . . be i.i.d. with distribution fM . Let Xn = Xn−1 + Zn for n ≥ 1.
If Xn−1 = Yn−1, we set Xn = Yn. Otherwise, we let

Yn =
{

Yn−1 + Zn if |Zn| > m

Yn−1 + Wn if |Zn| ≤ m

In words, the big jumps are taken in parallel and the small jumps are independent.
The recurrence of one-dimensional random walks with mean 0 implies P (Xn �=
Yn) → 0. Repeating the proof of Theorem 6.7.5, we see that T is trivial.

The tail σ -field in Theorem 6.7.5 is essentially the same as in Theorem 6.7.3. To
get a more interesting T , we look at:

Example 6.7.3. Random walk on a tree. To facilitate definitions, we will consider
the system as a random walk on a group with three generators a, b, c that have
a2 = b2 = c2 = e, the identity element. To form the random walk, let ξ1, ξ2, . . . be
i.i.d. with P (ξn = x) = 1/3 for x = a, b, c, and let Xn = Xn−1ξn. (This is equiv-
alent to a random walk on the tree in which each vertex has degree 3, but the
algebraic formulation is convenient for computations.) Let Ln be the length of the
word Xn when it has been reduced as much as possible, with Ln = 0 if Xn = e.



318 Markov Chains

The reduction can be done as we go along. If the last letter of Xn−1 is the same as
ξn, we erase it; otherwise we add the new letter. It is easy to see that Ln is a Markov
chain with a transition probability that has p(0, 1) = 1 and

p(j, j − 1) = 1/3 p(j, j + 1) = 2/3 for j ≥ 1

As n → ∞, Ln → ∞. From this, it follows easily that the word Xn has a limit in the
sense that the ith letter Xi

n stays the same for large n. Let X∞ be the limiting word,
that is, Xi

∞ = lim Xi
n. T ⊃ σ (Xi

∞, i ≥ 1), but it is easy to see that this is not all. If
S0 = the words of even length, and S1 = Sc

0, then Xn ∈ Si implies Xn+1 ∈ S1−i , so
{X0 ∈ S0} ∈ T . Can the reader prove that we have now found all of T ? As Fermat
once said, “I have a proof, but it won’t fit in the margin.”

Remark. This time the solution does not involve elliptic curves but uses “h-paths.”
See Furstenburg (1970) or decode the following: “Condition on the exit point (the
infinite word). Then the resulting RW is an h-process, which moves closer to the
boundary with probability 2/3 and farther with probability 1/3 (1/6 each to the two
possibilities). Two such random walks couple, provided they have same parity.”
The quote is from Robin Pemantle, who says he consulted Itai Benajamini and
Yuval Peres.

6.8 General State Space*

In this section, we will generalize the results from Sections 6.4–6.6 to a collection of
Markov chains with uncountable state space called Harris chains. The developments
here are motivated by three ideas. First, the proofs for countable state space if there
is one point in the state space that the chain hits with probability 1. (Think, for
example, about the construction of the stationary measure via the cycle trick.)
Second, a recurrent Harris chain can be modified to contain such a point. Third,
the collection of Harris chains is a comfortable level of generality; broad enough
to contain a large number of interesting examples, yet restrictive enough to allow
for a rich theory.

We say that a Markov chain Xn is a Harris chain if we can find sets A,B ∈ S,
a function q with q(x, y) ≥ ε > 0 for x ∈ A, y ∈ B, and a probability measure ρ

concentrated on B so that:

(i) If τA = inf{n ≥ 0 : Xn ∈ A}, then Pz(τA < ∞) > 0 for all z ∈ S.

(ii) If x ∈ A and C ⊂ B then p(x, C) ≥ ∫
C

q(x, y) ρ(dy).

To explain the definition, we turn to some examples:

Example 6.8.1. Countable state space. If S is countable and there is a point a

with ρxa > 0 for all x (a condition slightly weaker than irreducibility), then we can
take A = {a}, B = {b}, where b is any state with p(a, b) > 0, µ = δb the point
mass at b, and q(a, b) = p(a, b).
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Conversely, if S is countable and (A′, B ′) is a pair for which (i) and (ii) hold,
then we can without loss of generality reduce B ′ to a single point b. Having done
this, if we set A = {b}, pick c so that p(b, c) > 0, and set B = {c}, then (i) and (ii)
hold with A and B both singletons.

Example 6.8.2. Chains with continuous densities. Suppose Xn ∈ Rd is a Markov
chain with a transition probability that has p(x, dy) = p(x, y) dy where (x, y) →
p(x, y) is continuous. Pick (x0, y0) so that p(x0, y0) > 0. Let A and B be open sets
around x0 and y0 that are small enough so that p(x, y) ≥ ε > 0 on A × B. If we
let ρ(C) = |B ∩ C|/|B|, where |B| is the Lebesgue measure of B, then (ii) holds.
If (i) holds, then Xn is a Harris chain.

For concrete examples, consider:

(a) Diffusion processes are a large class of examples that lie outside the scope of
this book, but are too important to ignore. When things are nice, specifically,
if the generator of X has Hölder continuous coefficients satisfying suitable
growth conditions, see the Appendix of Dynkin (1965), then P (X1 ∈ dy) =
p(x, y) dy, and p satisfies the conditions above.

(b) Armaps. Let ξ1, ξ2, . . . be i.i.d. and Vn = θVn−1 + ξn. Vn is called an autore-
gressive moving average process or armap for short. We call Vn a smooth
armap if the distribution of ξn has a continuous density g. In this case
p(x, dy) = g(y − θx) dy with (x, y) → g(y − θx) continuous.

In analyzing the behavior of armaps there are a number of cases to consider
depending on the nature of the support of ξn. We call Vn a simple armap if the
density function for ξn is positive for at all points in R. In this case we can take
A = B = [−1/2, 1/2] with ρ = the restriction of Lebesgue measure.

(c) The discrete Ornstein-Uhlenbeck process is a special case of (a) and (b). Let
ξ1, ξ2, . . . be i.i.d. standard normals and let Vn = θVn−1 + ξn. The Ornstein-
Uhlenbeck (O.U.) process is a diffusion process {Vt, t ∈ [0, ∞)} that models
the velocity of a particle suspended in a liquid. See, for example, Breiman
(1968), Section 16.1. Looking at Vt at integer times (and dividing by a constant
to make the variance 1) gives a Markov chain with the indicated distributions.

Example 6.8.3. GI/G/1 queue, or storage model. Let ξ1, ξ2, . . . be i.i.d. and
define Wn inductively by Wn = (Wn−1 + ξn)+. If P (ξn < 0) > 0, then we can take
A = B = {0}, and (i) and (ii) hold. To explain the first name in the title, consider
a queueing system in which customers arrive at times of a renewal process, that
is, at times 0 = T0 < T1 < T2 . . . with ζn = Tn − Tn−1, n ≥ 1 i.i.d. Let ηn, n ≥ 0,
be the amount of service time the nth customer requires, and let ξn = ηn−1 − ζn. I
claim that Wn is the amount of time the nth customer has to wait to enter service.
To see this, notice that the (n − 1)th customer adds ηn−1 to the server’s workload,
and if the server is busy at all times in [Tn−1, Tn), he reduces his workload by ζn. If
Wn−1 + ηn−1 < ζn, then the server has enough time to finish his work and the next
arriving customer will find an empty queue.
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The second name in the title refers to the fact that Wn can be used to model the
contents of a storage facility. For an intuitive description, consider water reservoirs.
We assume that rainstorms occur at times of a renewal process {Tn : n ≥ 1}, that
the nth rainstorm contributes an amount of water ηn, and that water is consumed at
constant rate c. If we let ζn = Tn − Tn−1 as before, and ξn = ηn−1 − cζn, then Wn

gives the amount of water in the reservoir just before the nth rainstorm.

History lesson. Doeblin was the first to prove results for Markov chains on general
state space. He supposed that there was an n so that pn(x, C) ≥ ερ(C) for all x ∈ S

and C ⊂ S. See Doob (1953), Section V.5, for an account of his results. Harris
(1956) generalized Doeblin’s result by observing that it was enough to have a set
A so that (i) holds and the chain viewed on A (Yk = X(T k

A), where T k
A = inf{n >

T k−1
A : Xn ∈ A} and T 0

A = 0) satisfies Doeblin’s condition. Our formulation, as
well as most of the proofs in this section, follows Athreya and Ney (1978). For a
nice description of the “traditional approach,” see Revuz (1984).

Given a Harris chain on (S,S), we will construct a Markov chain X̄n with
transition probability p̄ on (S̄, S̄), where S̄ = S ∪ {α} and S̄ = {B, B ∪ {α} : B ∈
S}. The aim, as advertised earlier, is to manufacture a point α that the process hits
with probability 1 in the recurrent case.

If x ∈ S − A p̄(x, C) = p(x, C) for C ∈ S
If x ∈ A p̄(x, {α}) = ε

p̄(x, C) = p(x, C) − ερ(C) for C ∈ S
If x = α p̄(α, D) = ∫ ρ(dx)p̄(x,D) for D ∈ S̄

Intuitively, X̄n = α corresponds to Xn being distributed on B according to ρ. Here,
and in what follows, we will reserve A and B for the special sets that occur in
the definition and use C and D for generic elements of S. We will often simplify
notation by writing p̄(x, α) instead of p̄(x, {α}), µ(α) instead of µ({α}), and so
forth.

Our next step is to prove three technical lemmas that will help us develop the
theory below. Define a transition probability v by

v(x, {x}) = 1 if x ∈ S v(α, C) = ρ(C)

In words, V leaves mass in S alone but returns the mass at α to S and distributes it
according to ρ.

Lemma 6.8.1. vp̄ = p̄ and p̄v = p.

Proof. Before giving the proof, we would like to remind the reader that measures
multiply the transition probability on the left, that is, in the first case we want
to show µvp̄ = µp̄. If we first make a transition according to v and then one
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according to p̄, this amounts to one transition according to p̄, since only mass at α

is affected by v and

p̄(α, D) =
∫

ρ(dx)p̄(x, D)

The second equality also follows easily from the definition. In words, if p̄ acts first
and then v, then v returns the mass at α to where it came from. �

From Lemma 6.8.1, it follows easily that we have:

Lemma 6.8.2. Let Yn be an inhomogeneous Markov chain with p2k = v and
p2k+1 = p̄. Then X̄n = Y2n is a Markov chain with transition probability p̄, and
Xn = Y2n+1 is a Markov chain with transition probability p.

Lemma 6.8.2 shows that there is an intimate relationship between the asymptotic
behavior of Xn and that of X̄n. To quantify this, we need a definition. If f is a
bounded measurable function on S, let f̄ = vf , that is, f̄ (x) = f (x) for x ∈ S and
f̄ (α) = ∫ f dρ.

Lemma 6.8.3. If µ is a probability measure on (S,S), then

Eµf (Xn) = Eµf̄ (X̄n)

Proof. Observe that if Xn and X̄n are constructed as in Lemma 6.8.2, and P (X̄0 ∈
S) = 1, then X0 = X̄0, and Xn is obtained from X̄n by making a transition accord-
ing to v. �

The last three lemmas will allow us to obtain results for Xn from those for X̄n.
We turn now to the task of generalizing the results of Sections 6.4–6.6 to X̄n. To
facilitate comparison with the results for countable state space, we will break this
section into four subsections, the first three of which correspond to Sections 6.4–
6.6. In the fourth subsection, we take an in-depth look at the GI/G/1 queue. Before
developing the theory, we will give one last example that explains why some of the
statements are messy.

Example 6.8.4. Perverted O.U. process. Take the discrete O.U. process from part
(c) of Example 6.8.2 and modify the transition probability at the integers x ≥ 2 so
that

p(x, {x + 1}) = 1 − x−2

p(x, A) = x−2|A| for A ⊂ (0, 1)

p is the transition probability of a Harris chain, but

P2(Xn = n + 2 for all n) > 0
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I can sympathize with the reader who thinks that such chains will not arise “in
applications,” but it seems easier (and better) to adapt the theory to include them
than to modify the assumptions to exclude them.

6.8.1 Recurrence and Transience

We begin with the dichotomy between recurrence and transience. Let R = inf{n ≥
1 : X̄n = α}. If Pα(R < ∞) = 1, then we call the chain recurrent; otherwise we
call it transient. Let R1 = R and, for k ≥ 2, let Rk = inf{n > Rk−1 : X̄n = α} be
the time of the kth return to α. The strong Markov property implies Pα(Rk < ∞) =
Pα(R < ∞)k, so Pα(X̄n = α i.o.) = 1 in the recurrent case and = 0 in the transient
case. It is easy to generalize Theorem 6.4.2 to the current setting.

Exercise 6.8.1. X̄n is recurrent if and only if
∑∞

n=1 p̄n(α, α) = ∞.

The next result generalizes Lemma 6.4.3.

Theorem 6.8.4. Let λ(C) =∑∞
n=1 2−np̄n(α, C). In the recurrent case, if λ(C) > 0

then Pα(X̄n ∈ C i.o.) = 1. For λ-a.e. x, Px(R < ∞) = 1.

Proof. The first conclusion follows from Lemma 6.3.3. For the second, let D =
{x : Px(R < ∞) < 1} and observe that if pn(α, D) > 0 for some n, then

Pα(X̄m = α i.o.) ≤
∫

p̄n(α, dx)Px(R < ∞) < 1 �

Remark. Example 6.8.4 shows that we cannot expect to have Px(R < ∞) = 1 for
all x. To see that even when the state space is countable, we need not hit every
point starting from α, do

Exercise 6.8.2. If Xn is a recurrent Harris chain on a countable state space, then S

can only have one irreducible set of recurrent states but may have a nonempty set
of transient states. For a concrete example, consider a branching process in which
the probability of no children p0 > 0 and set A = B = {0}.

Exercise 6.8.3. Suppose Xn is a recurrent Harris chain. Show that if (A′, B ′) is
another pair satisfying the conditions of the definition, then Theorem 6.8.4 implies
Pα(X̄n ∈ A′ i.o.) = 1, so the recurrence or transience does not depend on the choice
of (A,B).

As in Section 6.4, we need special methods to determine whether an example is
recurrent or transient.
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Exercise 6.8.4. In the GI/G/1 queue, the waiting time Wn and the random walk
Sn = X0 + ξ1 + · · · + ξn agree until N = inf{n : Sn < 0}, and at this time WN = 0.
Use this observation as we did in Example 6.4.7 to show that Example 6.8.3 is
recurrent when Eξn ≤ 0 and transient when Eξn > 0.

Exercise 6.8.5. Let Vn be a simple smooth armap with E|ξi | < ∞. Show that
if θ < 1, then Ex |V1| ≤ |x| for |x| ≥ M . Use this and ideas from the proof of
Theorem 6.4.8 to show that the chain is recurrent in this case.

Exercise 6.8.6. Let Vn be an armap (not necessarily smooth or simple) and suppose
θ > 1. Let γ ∈ (1, θ ) and observe that if x > 0, then Px(V1 < γx) ≤ C/((θ −
γ )x), so if x is large, Px(Vn ≥ γ nx for all n) > 0.

Remark. In the case θ = 1, the chain Vn discussed in the last two exercises is a
random walk with mean 0 and hence recurrent.

Exercise 6.8.7. In the discrete O.U. process, Xn+1 is normal with mean θXn and
variance 1. What happens to the recurrence and transience if instead Yn+1 is normal
with mean 0 and variance β2|Yn|?

6.8.2 Stationary Measures

Theorem 6.8.5. In the recurrent case, there is a stationary measure.

Proof. Let R = inf{n ≥ 1 : X̄n = α}, and let

µ̄(C) = Eα

(
R−1∑
n=0

1{X̄n∈C}

)
=

∞∑
n=0

Pα(X̄n ∈ C, R > n)

Repeating the proof of Theorem 6.5.2 shows that µ̄p̄ = µ̄. If we let µ = µ̄v, then
it follows from Lemma 6.8.1 that µ̄v p = µ̄p̄v = µ̄v, so µp = µ. �

Exercise 6.8.8. Let Gk,δ = {x : p̄k(x, α) ≥ δ}. Show that µ̄(Gk,δ) ≤ 2k/δ and use
this to conclude that µ̄ and hence µ is σ -finite.

Exercise 6.8.9. Let λ be the measure defined in Theorem 6.8.5. Show that µ̄ << λ

and λ << µ̄.

Exercise 6.8.10. Let Vn be an armap (not necessarily smooth or simple) with
θ < 1 and E log+ |ξn| < ∞. Show that

∑
m≥0 θmξm converges a.s. and defines a

stationary distribution for Vn.

Exercise 6.8.11. In the GI/G/1 queue, the waiting time Wn and the random
walk Sn = X0 + ξ1 + · · · + ξn agree until N = inf{n : Sn < 0}, and at this time
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WN = 0. Use this observation as we did in Example 6.5.6 to show that if Eξn < 0,
EN < ∞ and hence there is a stationary distribution.

To investigate uniqueness of the stationary measure, we begin with:

Lemma 6.8.6. If ν is a σ -finite stationary measure for p, then ν(A) < ∞ and
ν̄ = νp̄ is a stationary measure for p̄ with ν̄(α) < ∞.

Proof. We will first show that ν(A) < ∞. If ν(A) = ∞, then part (ii) of the defini-
tion implies ν(C) = ∞ for all sets C with ρ(C) > 0. If B = ∪iBi with ν(Bi) < ∞,
then ρ(Bi) = 0 by the last observation and ρ(B) = 0 by countable subadditivity, a
contradiction. So ν(A) < ∞ and ν̄(α) = νp̄(α) = εν(A) < ∞. Using the fact that
ν p = ν, we find

νp̄(C) = ν(C) − εν(A)ρ(B ∩ C)

the last subtraction being well defined since ν(A) < ∞, and it follows that ν̄v = ν.
To check ν̄p̄ = ν̄, we observe that Lemma 6.8.1 and the last result imply ν̄p̄ =
ν̄vp̄ = νp̄ = ν̄. �

Theorem 6.8.7. Suppose p is recurrent. If ν is a σ -finite stationary measure then
ν = ν̄(α)µ, where µ is the measure constructed in the proof of Theorem 6.8.5.

Proof. By Lemma 6.8.6, it suffices to prove that if ν̄ is a stationary measure for
p̄ with ν̄(α) < ∞, then ν̄ = ν̄(α)µ̄. Repeating the proof of Theorem 6.5.3 with
a = α, it is easy to show that ν̄(C) ≥ ν̄(α)µ̄(C). Continuing to compute as in that
proof:

ν̄(α) =
∫

ν̄(dx)p̄n(x, α) ≥ ν̄(α)
∫

µ̄(dx)p̄n(x, α) = ν̄(α)µ̄(α) = ν̄(α)

Let Sn = {x : pn(x, α) > 0}. By assumption, ∪nSn = S. If ν̄(D) > ν̄(α)µ̄(D) for
some D, then ν̄(D ∩ Sn) > ν̄(α)µ̄(D ∩ Sn), and it follows that ν̄(α) > ν̄(α), a
contradiction. �

6.8.3 Convergence Theorem

We say that a recurrent Harris chain Xn is aperiodic if g.c.d. {n ≥ 1 : pn(α, α) >

0} = 1. This occurs, for example, if we can take A = B in the definition, for then
p(α, α) > 0.

Theorem 6.8.8. Let Xn be an aperiodic recurrent Harris chain with stationary
distribution π . If Px(R < ∞) = 1 then as n → ∞,

‖pn(x, ·) − π (·)‖ → 0
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Note. Here ‖ ‖ denotes the total variation distance between the measures.
Lemma 6.8.4 guarantees that π a.e. x satisfies the hypothesis.

Proof. In view of Lemma 6.8.3, it suffices to prove the result for p̄. We begin by
observing that the existence of a stationary probability measure and the uniqueness
result in Theorem 6.8.7 imply that the measure constructed in Theorem 6.8.5
has EαR = µ̄(S) < ∞. As in the proof of Theorem 6.6.4, we let Xn and Yn be
independent copies of the chain with initial distributions δx and π , respectively,
and let τ = inf{n ≥ 0 : Xn = Yn = α}. For m ≥ 0, let Sm (resp. Tm) be the times
at which Xn (resp. Yn) visit α for the (m + 1)th time. Sm − Tm is a random walk
with mean 0 steps, so M = inf{m ≥ 1 : Sm = Tm} < ∞ a.s., and it follows that
this is true for τ as well. The computations in the proof of Theorem 6.6.4 show
|P (Xn ∈ C) − P (Yn ∈ C)| ≤ P (τ > n). Since this is true for all C, ‖pn(x, ·) −
π (·)‖ ≤ P (τ > n), and the proof is complete. �

Exercise 6.8.12. Use Exercise 6.8.1 and imitate the proof of Theorem 6.5.4 to
show that a Harris chain with a stationary distribution must be recurrent.

Exercise 6.8.13. Show that an armap with θ < 1 and E log+ |ξn| < ∞ converges
in distribution as n → ∞. Hint: Recall the construction of π in Exercise 6.8.10.

6.8.4 GI/G/1 Queue

For the rest of the section, we will concentrate on the GI/G/1 queue. Let
ξ1, ξ2, . . . be i.i.d., let Wn = (Wn−1 + ξn)+, and let Sn = ξ1 + · · · + ξn. Recall
ξn = ηn−1 − ζn, where the η’s are service times and ζ ’s are the interarrival times,
and suppose Eξn < 0 so that Exercise 6.11 implies there is a stationary distribution.

Exercise 6.8.14. Let mn = min(S0, S1, . . . , Sn), where Sn is the random walk
defined above. (i) Show that Sn − mn =d Wn. (ii) Let ξ ′

m = ξn+1−m for 1 ≤ m ≤ n.
Show that Sn − mn = max(S ′

0, S
′
1, . . . , S

′
n). (iii) Conclude that as n → ∞ we have

Wn ⇒ M ≡ max(S ′
0, S

′
1, S

′
2, . . .).

Explicit formulas for the distribution of M are in general difficult to obtain.
However, this can be done if either the arrival or service distribution is exponential.
One reason for this is:

Exercise 6.8.15. Suppose X, Y ≥ 0 are independent and P (X > x) = e−λx . Show
that P (X − Y > x) = ae−λx , where a = P (X − Y > 0).

Example 6.8.5. Exponential service time. Suppose P (ηn > x) = e−βx and Eζn >

Eηn. Let T = inf{n : Sn > 0} and L = ST , setting L = −∞ if T = ∞. The lack of
memory property of the exponential distribution implies that P (L > x) = re−βx ,
where r = P (T < ∞). To compute the distribution of the maximum, M , let T1 = T
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and let Tk = inf{n > Tk−1 : Sn > STk−1} for k ≥ 2. Theorem 4.1.3 implies that if
Tk < ∞, then S(Tk+1) − S(Tk) =d L and is independent of S(Tk). Using this and
breaking things down according to the value of K = inf{k : Lk+1 = −∞}, we see
that for x > 0, the density function

P (M = x) =
∞∑

k=1

rk(1 − r)e−βxβkxk−1/(k − 1)! = βr(1 − r)e−βx(1−r)

To complete the calculation, we need to calculate r . To do this, let

φ(θ ) = E exp(θξn) = E exp(θηn−1)E exp(−θζn)

which is finite for 0 < θ < β since ζn ≥ 0 and ηn−1 has an exponential distribution.
It is easy to see that

φ′(0) = Eξn < 0 lim
θ↑β

φ(θ ) = ∞

so there is a θ ∈ (0, β) with φ(θ ) = 1. Exercise 5.7.4 implies that exp(θSn) is a
martingale. Theorem 5.4.1 implies 1 = E exp(θST ∧n). Letting n → ∞ and noting
that (Sn|T = n) has an exponential distribution and Sn → −∞ on {T = ∞}, we
have

1 = r

∫ ∞

0
eθxβe−βx dx = rβ

β − θ

Example 6.8.6. Poisson arrivals. Suppose P (ζn > x) = e−αx and Eζn > Eηn.
Let S̄n = −Sn. Reversing time as in (ii) of Exercise 6.8.14, we see (for n ≥ 1)

P

(
max

0≤k<n
S̄k < S̄n ∈ A

)
= P

(
min

1≤k≤n
S̄k > 0, S̄n ∈ A

)

Let ψn(A) be the common value of the last two expressions, and let ψ(A) =∑
n≥0 ψn(A). ψn(A) is the probability the random walk reaches a new maximum

(or ladder height; see Example 4.1.4) in A at time n, so ψ(A) is the number of
ladder points in A with ψ({0}) = 1. Letting the random walk take one more step

P

(
min

1≤k≤n
S̄k > 0, S̄n+1 ≤ x

)
=
∫

F (x − z) dψn(z)

The last identity is valid for n = 0 if we interpret the left-hand side as F (x). Let
τ = inf{n ≥ 1 : S̄n ≤ 0} and x ≤ 0. Integrating by parts on the right-hand side and
then summing over n ≥ 0 gives

P (S̄τ ≤ x) =
∞∑

n=0

P

(
min

1≤k≤n
S̄k > 0, S̄n+1 ≤ x

)

=
∫

y≤x

ψ[0, x − y] dF (y) (6.8.1)

The limit y ≤ x comes from the fact that ψ((−∞, 0)) = 0.
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Let ξ̄n = S̄n − S̄n−1 = −ξn. Exercise 6.8.15 implies P (ξ̄n > x) = ae−αx . Let
T̄ = inf{n : S̄n > 0}. Eξ̄n > 0, so P (T̄ < ∞) = 1. Let J = S̄T . As in the previous
example, P (J > x) = e−αx . Let Vn = J1 + · · · + Jn. Vn is a rate α Poisson process,
so ψ[0, x − y] = 1 + α(x − y) for x − y ≥ 0. Using (6.8.1) now and integrating
by parts gives

P (S̄τ ≤ x) =
∫

y≤x

(1 + α(x − y)) dF (y)

= F (x) + α

∫ x

−∞
F (y) dy for x ≤ 0 (6.8.2)

Since P (S̄n = 0) = 0 for n ≥ 1, −S̄τ has the same distribution as ST , where T =
inf{n : Sn > 0}. Combining this with part (ii) of Exercise 6.8.14 gives a “formula”
for P (M > x). Straightforward but somewhat tedious calculations show that if
B(s) = E exp(−sηn), then

E exp(−sM) = (1 − α · Eη)s

s − α + αB(s)

a result known as the Pollaczek-Khintchine formula. The computations we omit-
ted can be found in Billingsley (1979) on p. 277 or several times in Feller, Vol. II
(1971).
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Ergodic Theorems

Xn, n ≥ 0, is said to be a stationary sequence if for each k ≥ 1 it has the same dis-
tribution as the shifted sequence Xn+k, n ≥ 0. The basic fact about these sequences,
called the ergodic theorem, is that if E|f (X0)| < ∞ then

lim
n→∞

1

n

n−1∑
m=0

f (Xm) exists a.s.

If Xn is ergodic (a generalization of the notion of irreducibility for Markov chains)
then the limit is Ef (X0). Sections 7.1 and 7.2 develop the theory needed to prove
the ergodic theorem. In Section 7.3, we apply the ergodic theorem to study the
recurrence of random walks with increments that are stationary sequences finding
remarkable generalizations of the i.i.d. case. In Section 7.4, we prove a subadditive
ergodic theorem. As the examples in Sections 7.4 and 7.5 should indicate, this is a
useful generalization of the ergodic theorem.

7.1 Definitions and Examples

X0, X1, . . . is said to be a stationary sequence if for every k, the shifted sequence
{Xk+n, n ≥ 0} has the same distribution, that is, for each m, (X0, . . . , Xm) and
(Xk, . . . , Xk+m) have the same distribution. We begin by giving four examples that
will be our constant companions.

Example 7.1.1. X0, X1, . . . are i.i.d.

Example 7.1.2. Let Xn be a Markov chain with transition probability p(x, A) and
stationary distribution π , that is, π (A) = ∫ π (dx) p(x, A). If X0 has distribution
π then X0, X1, . . . is a stationary sequence. A special case to keep in mind for
counterexamples is the chain with state space S = {0, 1} and transition probability
p(x, {1 − x}) = 1. In this case, the stationary distribution has π (0) = π (1) = 1/2
and (X0, X1, . . .) = (0, 1, 0, 1, . . .) or (1, 0, 1, 0, . . .) with probability 1/2 each.

328
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Example 7.1.3. Rotation of the circle. Let � = [0, 1), F = Borel subsets, P =
Lebesgue measure. Let θ ∈ (0, 1), and for n ≥ 0, let Xn(ω) = (ω + nθ ) mod 1,
where x mod 1 = x − [x], [x] being the greatest integer ≤ x. To see the reason for
the name, map [0, 1) into C by x → exp(2πix). This example is a special case of
the last one. Let p(x, {y}) = 1 if y = (x + θ ) mod 1.

To make new examples from old, we can use:

Theorem 7.1.1. If X0, X1, . . . is a stationary sequence and g : R{0,1,...} → R is
measurable then Yk = g(Xk, Xk+1, . . .) is a stationary sequence.

Proof. If x ∈ R{0,1,...}, let gk(x) = g(xk, xk+1, . . .), and if B ∈ R{0,1,...}, let

A = {x : (g0(x), g1(x), . . .) ∈ B}
To check stationarity now, we observe

P (ω : (Y0, Y1, . . .) ∈ B) = P (ω : (X0, X1, . . .) ∈ A)

= P (ω : (Xk, Xk+1, . . .) ∈ A)

= P (ω : (Yk, Yk+1, . . .) ∈ B)

which proves the desired result. �

Example 7.1.4. Bernoulli shift. � = [0, 1), F = Borel subsets, P = Lebesgue
measure. Y0(ω) = ω and for n ≥ 1, let Yn(ω) = (2 Yn−1(ω)) mod 1. This example
is a special case of (1.1). Let X0, X1, . . . be i.i.d. with P (Xi = 0) = P (Xi = 1) =
1/2, and let g(x) =∑∞

i=0 xi2−(i+1). The name comes from the fact that multiplying
by 2 shifts the X’s to the left. This example is also a special case of Example 7.1.2.
Let p(x, {y}) = 1 if y = (2x) mod 1.

Examples 7.1.3 and 7.1.4 are special cases of the following situation.

Example 7.1.5. Let (�,F, P ) be a probability space. A measurable map ϕ : � →
� is said to be measure preserving if P (ϕ−1A) = P (A) for all A ∈ F . Let ϕn

be the nth iterate of ϕ defined inductively by ϕn = ϕ(ϕn−1) for n ≥ 1, where
ϕ0(ω) = ω. We claim that if X ∈ F , then Xn(ω) = X(ϕnω) defines a stationary
sequence. To check this, let B ∈ Rn+1 and A = {ω : (X0(ω), . . . , Xn(ω)) ∈ B}.
Then

P ((Xk, . . . , Xk+n) ∈ B) = P (ϕkω ∈ A) = P (ω ∈ A) = P ((X0, . . . , Xn) ∈ B)

The last example is more than an important example. In fact, it is the only
example! If Y0, Y1, . . . is a stationary sequence taking values in a nice space,
Kolmogorov’s extension theorem, Theorem A.3.1, allows us to construct a measure
P on sequence space (S{0,1,...}, S{0,1,...}), so that the sequence Xn(ω) = ωn has the
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same distribution as that of {Yn, n ≥ 0}. If we let ϕ be the shift operator, that is,
ϕ(ω0, ω1, . . .) = (ω1, ω2, . . .), and let X(ω) = ω0, then ϕ is measure preserving
and Xn(ω) = X(ϕnω).

In some situations, such as in the proof of Theorem 7.3.3 below, it is useful to
observe:

Theorem 7.1.2. Any stationary sequence {Xn , n ≥ 0} can be embedded in a
two-sided stationary sequence {Yn : n ∈ Z}.

Proof. We observe that

P (Y−m ∈ A0, . . . , Yn ∈ Am+n) = P (X0 ∈ A0, . . . , Xm+n ∈ Am+n)

is a consistent set of finite dimensional distributions, so a trivial generalization of
the Kolmogorov extension theorem implies there is a measure P on (SZ, SZ) so
that the variables Yn(ω) = ωn have the desired distributions. �

In view of the observations above, it suffices to give our definitions and prove
our results in the setting of Example 7.1.5. Thus, our basic setup consists of

(�,F, P ) a probability space
ϕ a map that preserves P

Xn(ω) = X(ϕnω) where X is a random variable

We will now give some important definitions. Here and in what follows we assume
ϕ is measure-preserving. A set A ∈ F is said to be invariant if ϕ−1A = A. (Here,
as usual, two sets are considered to be equal if their symmetric difference has
probability 0.) Some authors call A almost invariant if P (A
ϕ−1(A)) = 0. We
call such sets invariant and call B invariant in the strict sense if B = ϕ−1(B).

Exercise 7.1.1. Show that the class of invariant events I is a σ -field, and X ∈ I if
and only if X is invariant, that is, X ◦ ϕ = X a.s.

Exercise 7.1.2. (i) Let A be any set, let B = ∪∞
n=0ϕ

−n(A). Show ϕ−1(B) ⊂ B. (ii)
Let B be any set with ϕ−1(B) ⊂ B and let C = ∩∞

n=0ϕ
−n(B). Show that ϕ−1(C) =

C. (iii) Show that A is almost invariant if and only if there is a C invariant in the
strict sense with P (A
C) = 0.

A measure-preserving transformation on (�,F, P ) is said to be ergodic if I is
trivial, that is, for every A ∈ I, P (A) ∈ {0, 1}. If ϕ is not ergodic, then the space
can be split into two sets A and Ac, each having positive measure so that ϕ(A) = A

and ϕ(Ac) = Ac. In words, ϕ is not “irreducible.”
To investigate further the meaning of ergodicity, we return to our examples,

renumbering them because the new focus is on checking ergodicity.
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Example 7.1.6. i.i.d. sequence. We begin by observing that if � = R{0,1,...} and
ϕ is the shift operator, then an invariant set A has {ω : ω ∈ A} = {ω : ϕω ∈ A} ∈
σ (X1, X2, . . .). Iterating gives

A ∈ ∩∞
n=1σ (Xn, Xn+1, . . .) = T , the tail σ -field

so I ⊂ T . For an i.i.d. sequence, Kolmogorov’s 0-1 law implies T is trivial, so I
is trivial, and the sequence is ergodic (i.e., when the corresponding measure is put
on sequence space � = R{0,1,2,,...} the shift is).

Example 7.1.7. Markov chains. Suppose the state space S is countable and the
stationary distribution has π (x) > 0 for all x ∈ S. By Theorems 6.5.4 and 6.4.5,
all states are recurrent, and we can write S = ∪Ri , where the Ri are disjoint
irreducible closed sets. If X0 ∈ Ri , then with probability 1, Xn ∈ Ri for all n ≥ 1
so {ω : X0(ω) ∈ Ri} ∈ I . The last observation shows that if the Markov chain is
not irreducible, then the sequence is not ergodic. To prove the converse, observe
that if A ∈ I , 1A ◦ θn = 1A where θn(ω0, ω1, . . .) = (ωn, ωn+1, . . .). So if we let
Fn = σ (X0, . . . , Xn), the shift invariance of 1A and the Markov property imply

Eπ (1A|Fn) = Eπ (1A ◦ θn|Fn) = h(Xn)

where h(x) = Ex1A. Lévy’s 0-1 law implies that the left-hand side converges to
1A as n → ∞. If Xn is irreducible and recurrent, then for any y ∈ S, the right-
hand side = h(y) i.o., so either h(x) ≡ 0 or h(x) ≡ 1, and Pπ (A) ∈ {0, 1}. This
example also shows that I and T may be different. When the transition probability
p is irreducible I is trivial, but if all the states have period d > 1, T is not. In
Theorem 6.7.3, we showed that if S0, . . . , Sd−1 is the cyclic decomposition of S,
then T = σ ({X0 ∈ Sr} : 0 ≤ r < d).

Example 7.1.8. Rotation of the circle is not ergodic if θ = m/n where m < n

are positive integers. If B is a Borel subset of [0, 1/n) and

A = ∪n−1
k=0(B + k/n)

then A is invariant. Conversely, if θ is irrational, then ϕ is ergodic. To prove this,
we need a fact from Fourier analysis. If f is a measurable function on [0, 1) with∫

f 2(x) dx < ∞, then f can be written as f (x) =∑k cke
2πikx where the equality

is in the sense that as K → ∞
K∑

k=−K

cke
2πikx → f (x) in L2[0, 1)

and this is possible for only one choice of the coefficients ck = ∫ f (x)e−2πikx dx.
Now

f (ϕ(x)) =
∑

k

cke
2πik(x+θ ) =

∑
k

(cke
2πikθ )e2πikx
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The uniqueness of the coefficients ck implies that f (ϕ(x)) = f (x) if and only if
ck(e2πikθ − 1) = 0. If θ is irrational, this implies ck = 0 for k �= 0, so f is constant.
Applying the last result to f = 1A with A ∈ I shows that A = ∅ or [0, 1) a.s.

Exercise 7.1.3. A direct proof of ergodicity. (i) Show that if θ is irrational, xn =
nθ mod 1 is dense in [0,1). Hint: All the xn are distinct, so for any N < ∞,
|xn − xm| ≤ 1/N for some m < n ≤ N . (ii) Use Exercise A.2.1 to show that if A

is a Borel set with |A| > 0, then for any δ > 0 there is an interval J = [a, b) so
that |A ∩ J | > (1 − δ)|J |. (iii) Combine this with (i) to conclude P (A) = 1.

Example 7.1.9. Bernoulli shift is ergodic. To prove this, we recall that the sta-
tionary sequence Yn(ω) = ϕn(ω) can be represented as

Yn =
∞∑

m=0

2−(m+1)Xn+m

where X0, X1, . . . are i.i.d. with P (Xk = 1) = P (Xk = 0) = 1/2, and use the fol-
lowing fact:

Theorem 7.1.3. Let g : R{0,1,...} → R be measurable. If X0, X1, . . . is an ergodic
stationary sequence, then Yk = g(Xk, Xk+1, . . .) is ergodic.

Proof. Suppose X0, X1, . . . is defined on sequence space with Xn(ω) = ωn. If B has
{ω : (Y0, Y1, . . .) ∈ B} = {ω : (Y1, Y2, . . .) ∈ B} then A = {ω : (Y0, Y1, . . .) ∈ B}
is shift invariant. �

Exercise 7.1.4. Use Fourier analysis as in Example 7.1.3 to prove that Example
7.1.4 is ergodic.

Exercises

7.1.5. Continued fractions. Let ϕ(x) = 1/x − [1/x] for x ∈ (0, 1) and A(x) =
[1/x], where [1/x] = the largest integer ≤ 1/x. an = A(ϕnx), n = 0, 1, 2, . . . gives
the continued fraction representation of x, that is,

x = 1/(a0 + 1/(a1 + 1/(a2 + 1/ . . .)))

Show that ϕ preserves µ(A) = 1
log 2

∫
A

dx
1+x

for A ⊂ (0, 1).

Remark. In his 1959 monograph, Kac claimed that it was “entirely trivial” to check
that ϕ is ergodic, but retracted his claim in a later footnote. We leave it to the reader
to construct a proof or look up the answer in Ryll-Nardzewski (1951). Chapter 9
of Lévy (1937) is devoted to this topic and is still interesting reading today.

7.1.6. Independent blocks. Let X1, X2, . . . be a stationary sequence. Let n <

∞ and let Y1, Y2, . . . be a sequence so that (Ynk+1, . . . , Yn(k+1)), k ≥ 0 are
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i.i.d. and (Y1, . . . , Yn) = (X1, . . . , Xn). Finally, let ν be uniformly distributed on
{1, 2, . . . , n}, independent of Y , and let Zm = Yν+m for m ≥ 1. Show that Z is
stationary and ergodic.

7.2 Birkhoff’s Ergodic Theorem

Throughout this section, ϕ is a measure-preserving transformation on (�,F, P ).
See Example 7.1.5 for details. We begin by proving a result that is usually referred
to as:

Theorem 7.2.1. The ergodic theorem. For any X ∈ L1,

1

n

n−1∑
m=0

X(ϕmω) → E(X|I) a.s. and in L1

This result, due to Birkhoff (1931), is sometimes called the pointwise or individual
ergodic theorem because of the a.s. convergence in the conclusion. When the
sequence is ergodic, the limit is the mean EX. In this case, if we take X = 1A, it
follows that the asymptotic fraction of time ϕm ∈ A is P (A).

The proof we give is based on an odd integration inequality due to Yosida and
Kakutani (1939). We follow Garsia (1965). The proof is not intuitive, but none of
the steps are difficult.

Lemma 7.2.2. Maximal ergodic lemma. Let Xj (ω) = X(ϕjω), Sk(ω) =
X0(ω) + · · · + Xk−1(ω), and Mk(ω) = max(0, S1(ω), . . . , Sk(ω)). Then E(X;
Mk > 0) ≥ 0.

Proof. If j ≤ k, then Mk(ϕω) ≥ Sj (ϕω), so adding X(ω) gives

X(ω) + Mk(ϕω) ≥ X(ω) + Sj (ϕω) = Sj+1(ω)

and rearranging we have

X(ω) ≥ Sj+1(ω) − Mk(ϕω) for j = 1, . . . , k

Trivially, X(ω) ≥ S1(ω) − Mk(ϕω), since S1(ω) = X(ω) and Mk(ϕω) ≥ 0. There-
fore

E(X(ω); Mk > 0) ≥
∫

{Mk>0}
max(S1(ω), . . . , Sk(ω)) − Mk(ϕω) dP

=
∫

{Mk>0}
Mk(ω) − Mk(ϕω) dP

Now Mk(ω) = 0 and Mk(ϕω) ≥ 0 on {Mk > 0}c, so the last expression is

≥
∫

Mk(ω) − Mk(ϕω) dP = 0

since ϕ is measure preserving. �
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Proof of Theorem 7.2.1. E(X|I) is invariant under ϕ (see Exercise 7.1.1), so letting
X′ = X − E(X|I) we can assume without loss of generality that E(X|I) = 0. Let
X̄ = lim sup Sn/n, let ε > 0, and let D = {ω : X̄(ω) > ε}. Our goal is to prove that
P (D) = 0. X̄(ϕω) = X̄(ω), so D ∈ I . Let

X∗(ω) = (X(ω) − ε)1D(ω) S∗
n(ω) = X∗(ω) + . . . + X∗(ϕn−1ω)

M∗
n (ω) = max(0, S∗

1 (ω), . . . ,S∗
n(ω)) Fn = {M∗

n > 0}

F = ∪nFn =
{

sup
k≥1

S∗
k /k > 0

}

Since X∗(ω) = (X(ω) − ε)1D(ω) and D = {lim sup Sk/k > ε}, it follows that

F =
{

sup
k≥1

Sk/k > ε

}
∩ D = D

Lemma 7.2.2 implies that E(X∗; Fn) ≥ 0. Since E|X∗| ≤ E|X| + ε < ∞, the
dominated convergence theorem implies E(X∗; Fn) → E(X∗; F ), and it follows
that E(X∗; F ) ≥ 0. The last conclusion looks innocent, but F = D ∈ I, so it
implies

0 ≤ E(X∗; D) = E(X − ε; D) = E(E(X|I); D) − εP (D) = −εP (D)

since E(X|I) = 0. The last inequality implies that

0 = P (D) = P (lim sup Sn/n > ε)

and since ε > 0 is arbitrary, it follows that lim sup Sn/n ≤ 0. Applying the last
result to −X shows that Sn/n → 0 a.s.

The clever part of the proof is over, and the rest is routine. To prove that
convergence occurs in L1, let

X′
M (ω) = X(ω)1(|X(ω)|≤M) and X′′

M (ω) = X(ω) − X′
M (ω)

The part of the ergodic theorem we have proved implies

1

n

n−1∑
m=0

X′
M (ϕmω) → E(X′

M |I) a.s.

Since X′
M is bounded, the bounded convergence theorem implies

E

∣∣∣∣∣1n
n−1∑
m=0

X′
M (ϕmω) − E(X′

M |I)

∣∣∣∣∣→ 0

To handle X′′
M , we observe

E

∣∣∣∣∣1n
n−1∑
m=0

X′′
M (ϕmω)

∣∣∣∣∣ ≤ 1

n

n−1∑
m=0

E|X′′
M (ϕmω)| = E|X′′

M |
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and E|E(X′′
M |I)| ≤ EE(|X′′

M ||I) = E|X′′
M |. So

E

∣∣∣∣∣1n
n−1∑
m=0

X′′
M (ϕmω) − E(X′′

M |I)

∣∣∣∣∣ ≤ 2E|X′′
M |

and it follows that

lim sup
n→∞

E

∣∣∣∣∣1n
n−1∑
m=0

X(ϕmω) − E(X|I)

∣∣∣∣∣ ≤ 2E|X′′
M |

As M → ∞, E|X′′
M | → 0 by the dominated convergence theorem, which com-

pletes the proof. �

Exercise 7.2.1. Show that if X ∈ Lp with p > 1, then the convergence in Theo-
rem 7.2.1 occurs in Lp.

Exercise 7.2.2. (i) Show that if gn(ω) → g(ω) a.s. and E(supk |gk(ω)|) < ∞,
then

lim
n→∞

1

n

n−1∑
m=0

gm(ϕmω) = E(g|I) a.s.

(ii) Show that if we suppose only that gn → g in L1, we get L1 convergence.

Before turning to examples, we would like to prove a useful result that is a simple
consequence of Lemma 7.2.2:

Theorem 7.2.3. Wiener’s maximal inequality. Let Xj (ω) = X(ϕjω), Sk(ω) =
X0(ω) + · · · + Xk−1(ω), Ak(ω) = Sk(ω)/k, and Dk = max(A1, . . . , Ak). If α > 0,
then

P (Dk > α) ≤ α−1E|X|

Proof. Let B = {Dk > α}. Applying Lemma 7.2.2 to X′ = X − α, with X′
j (ω) =

X′(ϕjω), S ′
k = X′

0(ω) + · · · + X′
k−1, and M ′

k = max(0, S ′
1, . . . , S

′
k), we conclude

that E(X′; M ′
k > 0) ≥ 0. Since {M ′

k > 0} = {Dk > α} ≡ B, it follows that

E|X| ≥
∫

B

X dP ≥
∫

B

αdP = αP (B) �

Exercise 7.2.3. Use Lemma 7.2.3 and the truncation argument at the end of the
proof of Theorem 7.2.2 to conclude that if Theorem 7.2.2 holds for bounded r.v.’s,
then it holds whenever E|X| < ∞.

Our next step is to see what Theorem 7.2.2 says about our examples.
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Example 7.2.1. i.i.d. sequences. Since I is trivial, the ergodic theorem implies
that

1

n

n−1∑
m=0

Xm → EX0 a.s. and in L1

The a.s. convergence is the strong law of large numbers.

Remark. We can prove the L1 convergence in the law of large numbers without
invoking the ergodic theorem. To do this, note that

1

n

n∑
m=1

X+
m → EX+ a.s. E

(
1

n

n∑
m=1

X+
m

)
= EX+

and use Theorem 5.5.2 to conclude that 1
n

∑n
m=1 X+

m → EX+ in L1. A similar
result for the negative part and the triangle inequality now give the desired result.

Example 7.2.2. Markov chains. Let Xn be an irreducible Markov chain on a
countable state space that has a stationary distribution π . Let f be a function with∑

x

|f (x)|π (x) < ∞

In Example 7.1.7, we showed that I is trivial, so applying the ergodic theorem to
f (X0(ω)) gives

1

n

n−1∑
m=0

f (Xm) →
∑

x

f (x)π (x) a.s. and in L1

For another proof of the almost sure convergence, see Exercise 6.6.4.

Example 7.2.3. Rotation of the circle. � = [0, 1) ϕ(ω) = (ω + θ ) mod 1. Sup-
pose that θ ∈ (0, 1) is irrational, so that by a result in Section 7.1 I is trivial. If we
set X(ω) = 1A(ω), with A a Borel subset of [0,1), then the ergodic theorem implies

1

n

n−1∑
m=0

1(ϕmω∈A) → |A| a.s.

where |A| denotes the Lebesgue measure of A. The last result for ω = 0 is usually
called Weyl’s equidistribution theorem, although Bohl and Sierpinski should
also get credit. For the history and a nonprobabilistic proof, see Hardy and Wright
(1959), pp. 390–393.

To recover the number theoretic result, we will now show that:

Theorem 7.2.4. If A = [a, b) then the exceptional set is ∅.
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Proof. Let Ak = [a + 1/k, b − 1/k). If b − a > 2/k, the ergodic theorem implies

1

n

n−1∑
m=0

1Ak
(ϕmω) → b − a − 2

k

for ω ∈ �k with P (�k) = 1. Let G = ∩�k, where the intersection is over integers
k with b − a > 2/k. P (G) = 1, so G is dense in [0,1). If x ∈ [0, 1) and ωk ∈ G

with |ωk − x| < 1/k, then ϕmωk ∈ Ak implies ϕmx ∈ A, so

lim inf
n→∞

1

n

n−1∑
m=0

1A(ϕmx) ≥ b − a − 2

k

for all large enough k. Noting that k is arbitrary and applying similar reasoning to
Ac shows

1

n

n−1∑
m=0

1A(ϕmx) → b − a �

Example 7.2.4. Benford’s law. As Gelfand first observed, the equidistribution
theorem says something interesting about 2m. Let θ = log10 2, 1 ≤ k ≤ 9, and
Ak = [log10 k, log10(k + 1)), where log10 y is the logarithm of y to the base 10.
Taking x = 0 in the last result, we have

1

n

n−1∑
m=0

1A(ϕm0) → log10

(
k + 1

k

)

A little thought reveals that the first digit of 2m is k if and only if mθ mod 1 ∈ Ak.
The numerical values of the limiting probabilities are

1 2 3 4 5 6 7 8 9
.3010 .1761 .1249 .0969 .0792 .0669 .0580 .0512 .0458

The limit distribution on {1, . . . , 9} is called Benford’s (1938) law, although it
was discovered by Newcomb (1881). As Raimi (1976) explains, in many tables
the observed frequency with which k appears as a first digit is approximately
log10((k + 1)/k). Some of the many examples that are supposed to follow Benford’s
law are census populations of 3259 counties, 308 numbers from Reader’s Digest,
areas of 335 rivers, and 342 addresses of American Men of Science. The next
table compares the percentages of the observations in the first five categories to
Benford’s law:

1 2 3 4 5
Census 33.9 20.4 14.2 8.1 7.2
Reader’s Digest 33.4 18.5 12.4 7.5 7.1
Rivers 31.0 16.4 10.7 11.3 7.2
Benford’s Law 30.1 17.6 12.5 9.7 7.9
Addresses 28.9 19.2 12.6 8.8 8.5
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The fits are far from perfect, but in each case Benford’s law matches the general
shape of the observed distribution.

Example 7.2.5. Bernoulli shift. � = [0, 1), ϕ(ω) = (2ω) mod 1. Let i1, . . . , ik ∈
{0, 1}, let r = i12−1 + · · · + ik2−k, and let X(ω) = 1 if r ≤ ω < r + 2−k. In words,
X(ω) = 1 if the first k digits of the binary expansion of ω are i1, . . . , ik. The ergodic
theorem implies that

1

n

n−1∑
m=0

X(ϕmω) → 2−k a.s.

that is, in almost every ω ∈ [0, 1) the pattern i1, . . . , ik occurs with its expected
frequency. Since there are only a countable number of patterns of finite length, it
follows that almost every ω ∈ [0, 1) is normal, that is, all patterns occur with their
expected frequency. This is the binary version of Borel’s (1909) normal number
theorem.

7.3 Recurrence

In this section, we will study the recurrence properties of stationary sequences. Our
first result is an application of the ergodic theorem. Let X1, X2, . . . be a stationary
sequence taking values in Rd , let Sk = X1 + · · · + Xk, let A = {Sk �= 0 for all
k ≥ 1}, and let Rn = |{S1, . . . , Sn}| be the number of points visited at time n.
Kesten, Spitzer, and Whitman (see Spitzer, 1964, p. 40) proved the next result
when the Xi are i.i.d. In that case, I is trivial, so the limit is P (A).

Theorem 7.3.1. As n → ∞, Rn/n → E(1A|I) a.s.

Proof. Suppose X1, X2, . . . are constructed on (Rd){0,1,...} with Xn(ω) = ωn, and
let ϕ be the shift operator. It is clear that

Rn ≥
n∑

m=1

1A(ϕmω)

since the right-hand side = |{m : 1 ≤ m ≤ n, S� �= Sm for all � > m}|. Using the
ergodic theorem now gives

lim inf
n→∞ Rn/n ≥ E(1A|I) a.s.

To prove the opposite inequality, let Ak = {S1 �= 0, S2 �= 0, . . . , Sk �= 0}. It is clear
that

Rn ≤ k +
n−k∑
m=1

1Ak
(ϕmω)
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since the sum on the right-hand side = |{m : 1 ≤ m ≤ n − k, S� �= Sm for m <

� ≤ m + k}|. Using the ergodic theorem now gives

lim sup
n→∞

Rn/n ≤ E(1Ak
|I)

As k ↑ ∞, Ak ↓ A, so the monotone convergence theorem for conditional expec-
tations, (c) in Theorem 5.1.2, implies

E(1Ak
|I) ↓ E(1A|I) as k ↑ ∞

and the proof is complete. �

Exercise 7.3.1. Let gn = P (S1 �= 0, . . . , Sn �= 0) for n ≥ 1 and g0 = 1. Show that
ERn =∑n

m=1 gm−1.

From Theorem 7.3.1, we get a result about the recurrence of random walks with
stationary increments that is (for integer-valued random walks) a generalization of
the Chung-Fuchs theorem, 4.2.7.

Theorem 7.3.2. Let X1, X2, . . . be a stationary sequence taking values in Z with
E|Xi | < ∞. Let Sn = X1 + · · · + Xn, and let A = {S1 �= 0, S2 �= 0, . . .}. (i) If
E(X1|I) = 0, then P (A) = 0. (ii) If P (A) = 0, then P (Sn = 0 i.o.) = 1.

Remark. In words, mean zero implies recurrence. The condition E(X1|I) = 0
is needed to rule out trivial examples that have mean 0 but are a combination
of a sequence with positive and negative means, for example, P (Xn = 1 for all
n) = P (Xn = −1 for all n) = 1/2.

Proof. If E(X1|I) = 0, then the ergodic theorem implies Sn/n → 0 a.s. Now

lim sup
n→∞

(
max

1≤k≤n
|Sk|/n

)
= lim sup

n→∞

(
max

K≤k≤n
|Sk|/n

)
≤
(

max
k≥K

|Sk|/k

)

for any K and the right-hand side ↓ 0 as K ↑ ∞. The last conclusion leads easily
to

lim
n→∞

(
max

1≤k≤n
|Sk|
)/

n = 0

Since Rn ≤ 1 + 2 max1≤k≤n |Sk|, it follows that Rn/n → 0, and Theorem 7.3.1
implies P (A) = 0.

Let Fj = {Si �= 0 for i < j, Sj = 0} and Gj,k = {Sj+i − Sj �= 0 for i < k,
Sj+k − Sj = 0}. P (A) = 0 implies that

∑
P (Fk) = 1. Stationarity implies
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P (Gj,k) = P (Fk), and for fixed j the Gj,k are disjoint, so ∪kGj,k = � a.s. It
follows that∑

k

P (Fj ∩ Gj,k) = P (Fj ) and
∑
j,k

P (Fj ∩ Gj,k) = 1

On Fj ∩ Gj,k, Sj = 0 and Sj+k = 0, so we have shown P (Sn = 0 at least two
times) = 1. Repeating the last argument shows P (Sn = 0 at least k times) = 1 for
all k, and the proof is complete. �

Exercise 7.3.2. Imitate the proof of (i) in Theorem 7.3.2 to show that if we
assume P (Xi > 1) = 0, EXi > 0, and the sequence Xi is ergodic in addition to
the hypotheses of Theorem 7.3.2, then P (A) = EXi .

Remark. This result was proved for asymmetric simple random walk in Exer-
cise 4.1.13. It is interesting to note that we can use martingale theory to prove a
result for random walks that do not skip over integers on the way down; see
Exercise 5.7.7.

Extending the reasoning in the proof of part (ii) of Theorem 7.3.2 gives a result
of Kac (1947b). Let X0, X1, . . . be a stationary sequence taking values in (S,S).
Let A ∈ S, let T0 = 0, and for n ≥ 1, let Tn = inf{m > Tn−1 : Xm ∈ A} be the time
of the nth return to A.

Theorem 7.3.3. If P (Xn ∈ A at least once) = 1, then under P (·|X0 ∈ A), tn =
Tn − Tn−1 is a stationary sequence with E(T1|X0 ∈ A) = 1/P (X0 ∈ A).

Remark. If Xn is an irreducible Markov chain on a countable state space S starting
from its stationary distribution π , and A = {x}, then Theorem 7.3.3 says ExTx =
1/π (x), which is Theorem 6.5.5. Theorem 7.3.3 extends that result to an arbitrary
A ⊂ S and drops the assumption that Xn is a Markov chain.

Proof. We first show that under P (·|X0 ∈ A), t1, t2, . . . is stationary. To cut down
on . . .’s, we will only show that

P (t1 = m, t2 = n|X0 ∈ A) = P (t2 = m, t3 = n|X0 ∈ A)

It will be clear that the same proof works for any finite dimensional distribution. Our
first step is to extend {Xn, n ≥ 0} to a two-sided stationary sequence {Xn, n ∈ Z}
using Theorem 7.1.2. Let Ck = {X−1 /∈ A, . . . , X−k+1 /∈ A,X−k ∈ A}.(∪K

k=1Ck

)c = {Xk /∈ A for − K ≤ k ≤ −1}
The last event has the same probability as {Xk /∈ A for 1 ≤ k ≤ K}, so let-
ting K → ∞, we get P

(∪∞
k=1Ck

) = 1. To prove the desired stationarity, we let
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Ij,k = {i ∈ [j, k] : Xi ∈ A} and observe that

P (t2 = m, t3 = n,X0 ∈ A) =
∞∑

�=1

P (X0 ∈ A, t1 = �, t2 = m, t3 = n)

=
∞∑

�=1

P (I0,�+m+n = {0, �, � + m, � + m + n})

=
∞∑

�=1

P (I−�,m+n = {−�, 0, m, m + n})

=
∞∑

�=1

P (C�, X0 ∈ A, t1 = m, t2 = n)

To complete the proof, we compute

E(t1|X0 ∈ A) =
∞∑

k=1

P (t1 ≥ k|X0 ∈ A) = P (X0 ∈ A)−1
∞∑

k=1

P (t1 ≥ k,X0 ∈ A)

= P (X0 ∈ A)−1
∞∑

k=1

P (Ck) = 1/P (X0 ∈ A)

since the Ck are disjoint and their union has probability 1. �

In the next two exercises, we continue to use the notation of Theorem 7.3.3.

Exercise 7.3.3. Show that if P (Xn ∈ A at least once) = 1 and A ∩ B = ∅, then

E

( ∑
1≤m≤T1

1(Xm∈B)

∣∣∣∣X0 ∈ A

)
= P (X0 ∈ B)

P (X0 ∈ A)

When A = {x} and Xn is a Markov chain, this is the “cycle trick” for defining a
stationary measure. See Theorem 6.5.2.

Exercise 7.3.4. Consider the special case in which Xn ∈ {0, 1}, and let P̄ =
P (·|X0 = 1). Here A = {1} and so T1 = inf{m > 0 : Xm = 1}. Show P (T1 = n) =
P̄ (T1 ≥ n)/ĒT1. When t1, t2, . . . are i.i.d., this reduces to the formula for the first
waiting time in a stationary renewal process.

In checking the hypotheses of Kac’s theorem, a result Poincaré proved in 1899
is useful. First, we need a definition. Let TA = inf{n ≥ 1 : ϕn(ω) ∈ A}.

Theorem 7.3.4. Suppose ϕ : � → � preserves P , that is, P ◦ ϕ−1 = P . (i) TA <

∞ a.s. on A, that is, P (ω ∈ A, TA = ∞) = 0. (ii) {ϕn(ω) ∈ A i.o.} ⊃ A. (iii) If ϕ

is ergodic and P (A) > 0, then P (ϕn(ω) ∈ A i.o.) = 1.
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Remark. Note that in (i) and (ii) we assume only that ϕ is measure-preserving.
Extrapolating from Markov chain theory, the conclusions can be “explained” by
noting that (i) the existence of a stationary distribution implies the sequence is
recurrent, and (ii) since we start in A, we do not have to assume irreducibility.
Conclusion (iii) is, of course, a consequence of the ergodic theorem, but as the
self-contained proof below indicates, it is a much simpler fact.

Proof. Let B = {ω ∈ A, TA = ∞}. A little thought shows that if ω ∈ ϕ−mB, then
ϕm(ω) ∈ A, but ϕn(ω) /∈ A for n > m, so the ϕ−mB are pairwise disjoint. The
fact that ϕ is measure-preserving implies P (ϕ−mB) = P (B), so we must have
P (B) = 0 (or P would have infinite mass). To prove (ii), note that for any k, ϕk is
measure-preserving, so (i) implies

0 = P (ω ∈ A, ϕnk(ω) /∈ A for all n ≥ 1)

≥ P (ω ∈ A, ϕm(ω) /∈ A for all m ≥ k)

Since the last probability is 0 for all k, (ii) follows. Finally, for (iii), note that
B ≡ {ω : ϕn(ω) ∈ A i.o.} is invariant and ⊃ A by (b), so P (B) > 0, and it follows
from ergodicity that P (B) = 1. �

7.4 A Subadditive Ergodic Theorem*

In this section we will prove Liggett’s (1985) version of Kingman’s (1968)

Theorem 7.4.1. Subadditive ergodic theorem. Suppose Xm,n, 0 ≤ m < n satisfy:
(i) X0,m + Xm,n ≥ X0,n

(ii) {Xnk,(n+1)k , n ≥ 1} is a stationary sequence for each k.
(iii) The distribution of {Xm,m+k, k ≥ 1} does not depend on m.

(iv) EX+
0,1 < ∞ and for each n, EX0,n ≥ γ0n, where γ0 > −∞.

Then
(a) limn→∞ EX0,n/n = infm EX0,m/m ≡ γ

(b) X = limn→∞ X0,n/n exists a.s. and in L1, so EX = γ .
(c) If all the stationary sequences in (ii) are ergodic then X = γ a.s.

Remark. Kingman assumed (iv), but instead of (i)–(iii) he assumed that X�,m +
Xm,n ≥ X�,n for all � < m < n and that the distribution of {Xm+k,n+k, 0 ≤ m < n}
does not depend on k. In two of the four applications in the next section, these
stronger conditions do not hold.

Before giving the proof, which is somewhat lengthy, we will consider several
examples for motivation. Since the validity of (ii) and (iii) in each case is clear, we
will only check (i) and (iv). The first example shows that Theorem 7.4.1 contains
the ergodic theorem, 7.2.1, as a special case.
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Example 7.4.1. Stationary sequences. Suppose ξ1, ξ2, . . . is a stationary sequence
with E|ξk| < ∞, and let Xm,n = ξm+1 + · · · + ξn. Then X0,n = X0,m + Xm,n, and
(iv) holds.

Example 7.4.2. Range of random walk. Suppose ξ1, ξ2, . . . is a stationary
sequence and let Sn = ξ1 + · · · + ξn. Let Xm,n = |{Sm+1, . . . , Sn}|. It is clear
that X0,m + Xm,n ≥ X0,n. 0 ≤ X0,n ≤ n, so (iv) holds. Applying (6.1) now gives
X0,n/n → X a.s. and in L1, but it does not tell us what the limit is.

Example 7.4.3. Longest common subsequences. Given are ergodic stationary
sequences X1, X2, X3, . . . and Y1, Y2, Y3, . . . Let Lm,n = max{K : Xik = Yjk

for
1 ≤ k ≤ K , where m < i1 < i2 · · · < iK ≤ n and m < j1 < j2 · · · < jK ≤ n}. It
is clear that

L0,m + Lm,n ≥ L0,n

so Xm,n = −Lm,n is subadditive. 0 ≤ L0,n ≤ n so (iv) holds. Applying Theorem
7.4.1 now, we conclude that

L0,n/n → γ = sup
m≥1

E(L0,m/m)

Exercise 7.4.1. Suppose that in the last exercise X1, X2, . . . and Y1, Y2, . . . are
i.i.d. and take the values 0 and 1 with probability 1/2 each. (a) Compute EL1

and EL2/2 to get lower bounds on γ . (b) Show γ < 1 by computing the expected
number of i and j sequences of length K = an with the desired property.

Remark. Chvátal and Sankoff (1975) have shown 0.727273 ≤ γ ≤ 0.866595

Example 7.4.4. Slow convergence. Our final example shows that the convergence
in (a) of Theorem 7.4.1 may occur arbitrarily slowly. Suppose Xm,m+k = f (k) ≥ 0,
where f (k)/k is decreasing.

X0,n = f (n) = m
f (n)

n
+ (n − m)

f (n)

n

≤ m
f (m)

m
+ (n − m)

f (n − m)

n − m
= X0,m + Xm,n

The examples above should provide enough motivation for now. In the next
section, we will give four more applications of Theorem 7.4.1.

Proof of Theorem 7.4.1. There are four steps. The first, second, and fourth date
back to Kingman (1968). The half-dozen proofs of subadditive ergodic theorems
that exist all do the crucial third step in a different way. Here we use the approach of
S. Leventhal (1988), who in turn based his proof on Katznelson and Weiss (1982).
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Step 1. The first thing to check is that E|X0,n| ≤ Cn. To do this, we note that
(i) implies X+

0,m + X+
m,n ≥ X+

0,n. Repeatedly using the last inequality and invoking
(iii) gives EX+

0,n ≤ nEX+
0,1 < ∞. Since |x| = 2x+ − x, it follows from (iv) that

E|X0,n| ≤ 2EX+
0,n − EX0,n ≤ Cn < ∞

Let an = EX0,n. (i) and (iii) imply that

am + an−m ≥ an (7.4.1)

From this, it follows easily that

an/n → inf
m≥1

am/m ≡ γ (7.4.2)

To prove this, we observe that the liminf is clearly ≥ γ , so all we have to show is
that the limsup ≤ am/m for any m. The last fact is easy, for if we write n = km + �

with 0 ≤ � < m, then repeated use of (7.4.1) gives an ≤ kam + a�. Dividing by
n = km + � gives

an

n
≤ km

km + �
· am

m
+ a�

n

Letting n → ∞ and recalling 0 ≤ � < m gives 7.4.2 and proves (a) in Theorem
7.4.1.

Step 2. Making repeated use of (i), we get

X0,n ≤ X0,km + Xkm,n

X0,n ≤ X0,(k−1)m + X(k−1)m,km + Xkm,n

and so on until the first term on the right is X0,m. Dividing by n = km + � then
gives

X0,n

n
≤ k

km + �
· X0,m + · · · + X(k−1)m,km

k
+ Xkm,n

n
(7.4.3)

Using (ii) and the ergodic theorem now gives that

X0,m + · · · + X(k−1)m,km

k
→ Am a.s. and in L1

where Am = E(X0,m|Im) and the subscript indicates that Im is the shift invariant
σ -field for the sequence X(k−1)m,km, k ≥ 1. The exact formula for the limit is not
important, but we will need to know later that EAm = EX0,m.

If we fix � and let ε > 0, then (iii) implies
∞∑

k=1

P (Xkm,km+� > (km + �)ε) ≤
∞∑

k=1

P (X0,� > kε) < ∞

since EX+
0,� < ∞ by the result at the beginning of Step 1. The last two observations

imply

X ≡ lim sup
n→∞

X0,n/n ≤ Am/m (7.4.4)
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Taking expected values now gives EX ≤ E(X0,m/m), and taking the infimum over
m, we have EX ≤ γ . Note that if all the stationary sequences in (ii) are ergodic,
we have X ≤ γ.

Remark. If (i)–(iii) hold, EX+
0,1 < ∞, and inf EX0,m/m = −∞, then it follows

from the last argument that as X0,n/n → −∞ a.s. as n → ∞.

Step 3. The next step is to let

X = lim inf
n→∞ X0,n/n

and show that EX ≥ γ . Since ∞ > EX0,1 ≥ γ ≥ γ0 > −∞, and we have shown
in Step 2 that EX ≤ γ , it will follow that X = X, that is, the limit of X0,n/n exists
a.s. Let

Xm = lim inf
n→∞ Xm,m+n/n

(i) implies

X0,m+n ≤ X0,m + Xm,m+n

Dividing both sides by n and letting n → ∞ gives X ≤ Xm a.s. However, (iii)
implies that Xm and X have the same distribution so X = Xm a.s.

Let ε > 0 and let Z = ε + (X ∨ −M). Since X ≤ X and EX ≤ γ < ∞ by
Step 2, E|Z| < ∞. Let

Ym,n = Xm,n − (n − m)Z

Y satisfies (i)–(iv), since Zm,n = −(n − m)Z does, and has

Y ≡ lim inf
n→∞ Y0,n/n ≤ −ε (7.4.5)

Let Tm = min{n ≥ 1 : Ym,m+n ≤ 0}. (iii) implies Tm =d T0 and

E(Ym,m+1; Tm > N ) = E(Y0,1; T0 > N )

(7.4.5) implies that P (T0 < ∞) = 1, so we can pick N large enough so that

E(Y0,1; T0 > N ) ≤ ε

Let

Sm =
{

Tm on {Tm ≤ N}
1 on {Tm > N}

This is not a stopping time, but there is nothing special about stopping times for a
stationary sequence! Let

ξm =
{

0 on {Tm ≤ N}
Ym,m+1 on {Tm > N}

Since Y (m, m + Tm) ≤ 0 always and we have Sm = 1, Ym,m+1 > 0 on {Tm >

N}, we have Y (m, m + Sm) ≤ ξm and ξm ≥ 0. Let R0 = 0, and for k ≥ 1, let
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Rk = Rk−1 + S(Rk−1). Let K = max{k : Rk ≤ n}. From (i), it follows that

Y (0, n) ≤ Y (R0, R1) + · · · + Y (RK−1, RK ) + Y (RK, n)

Since ξm ≥ 0 and n − RK ≤ N , the last quantity is

≤
n−1∑
m=0

ξm +
N∑

j=1

|Yn−j,n−j+1|

Here we have used (i) on Y (RK, n). Dividing both sides by n, taking expected
values, and letting n → ∞ gives

lim sup
n→∞

EY0,n/n ≤ Eξ0 ≤ E(Y0,1; T0 > N ) ≤ ε

It follows from (a) and the definition of Y0,n that

γ = lim
n→∞ EX0,n/n ≤ 2ε + E(X ∨ −M)

Since ε > 0 and M are arbitrary, it follows that EX ≥ γ , and Step 3 is complete.

Step 4. It only remains to prove convergence in L1. Let �m = Am/m be the limit
in (7.4.4), recall E�m = E(X0,m/m), and let � = inf �m. Observing that |z| =
2z+ − z (consider two cases z ≥ 0 and z < 0), we can write

E|X0,n/n − �| = 2E(X0,n/n − �)+ − E(X0,n/n − �) ≤ 2E(X0,n/n − �)+

since

E(X0,n/n) ≥ γ = inf E�m ≥ E�

Using the trivial inequality (x + y)+ ≤ x+ + y+ and noticing �m ≥ � now gives

E(X0,n/n − �)+ ≤ E(X0,n/n − �m)+ + E(�m − �)

Now E�m → γ as m → ∞ and E� ≥ EX̄ ≥ EX ≥ γ by steps 2 and 3, so E� =
γ , and it follows that E(�m − �) is small if m is large. To bound the other term,
observe that (i) implies

E(X0,n/n − �m)+ ≤ E

(
X(0, m) + · · · + X((k − 1)m, km)

km + �
− �m

)+

+ E

(
X(km, n)

n

)+

The second term = E(X+
0,�/n) → 0 as n → ∞. For the first, we observe y+ ≤ |y|,

and the ergodic theorem implies

E

∣∣∣∣X(0, m) + · · · + X((k − 1)m, km)

k
− �m

∣∣∣∣→ 0

so the proof of Theorem 7.4.1 is complete. �
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7.5 Applications*

In this section, we will give four applications of our subadditive ergodic theorem,
7.4.1. These examples are independent of each other and can be read in any order.
In the last two, we encounter situations to which Liggett’s version applies but
Kingman’s version does not.

Example 7.5.1. Products of random matrices. Suppose A1, A2, . . . is a stationary
sequence of k × k matrices with positive entries, and let

αm,n(i, j ) = (Am+1 · · ·An)(i, j ),

that is, the entry in row i of column j of the product. It is clear that

α0,m(1, 1)αm,n(1, 1) ≤ α0,n(1, 1)

so if we let Xm,n = − log αm,n(1, 1), then X0,m + Xm,n ≥ X0,n. To check (iv), we
observe that

n∏
m=1

Am(1, 1) ≤ α0,n(1, 1) ≤ kn−1
n∏

m=1

(
sup
i,j

Am(i, j )

)

or taking logs

−
n∑

m=1

log Am(1, 1) ≥ X0,n ≥ −(n log k) −
n∑

m=1

log

(
sup
i,j

Am(i, j )

)

So if E log Am(1, 1) > −∞, then EX+
0,1 < ∞, and if

E log

(
sup
i,j

Am(i, j )

)
< ∞

then EX−
0,n ≤ γ0n. If we observe that

P

(
log

(
sup
i,j

Am(i, j )

)
≥ x

)
≤
∑
i,j

P (log Am(i, j ) ≥ x)

we see that it is enough to assume that

(∗) E| log Am(i, j )| < ∞ for all i, j

When (∗) holds, applying Theorem 7.4.1 gives X0,n/n → X a.s. Using the strict
positivity of the entries, it is easy to improve that result to

1

n
log α0,n(i, j ) → −X a.s. for all i, j (7.5.1)

a result first proved by Furstenberg and Kesten (1960). �
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The key to the proof above was the fact that α0,n(1, 1) was supermultiplicative.
An alternative approach is to let

‖A‖ = max
i

∑
j

|A(i, j )| = max{‖xA‖1 : ‖x‖1 = 1}

where (xA)j =∑i xiA(i, j ) and ‖x‖1 = |x1| + · · · + |xk|. From the second defi-
nition, it is clear that ‖AB‖ ≤ ‖A‖ · ‖B‖, so if we let

βm,n = ‖Am+1 · · ·An‖
and Ym,n = log βm,n, then Ym,n is subadditive. It is easy to use (7.5.1) to show that

1

n
log ‖Am+1 · · ·An‖ → −X a.s.

where X is the limit of X0,n/n. To see the advantage in having two proofs of the
same result, we observe that if A1, A2, . . . is an i.i.d. sequence, then X is constant,
and we can get upper and lower bounds by observing

sup
m≥1

(E log α0,m)/m = −X = inf
m≥1

(E log β0,m)/m

Remark. Oseledĕc (1968) proved a result which gives the asymptotic behavior of
all of the eigenvalues of A. As Ragunathan (1979) and Ruelle (1979) have observed,
this result can also be obtained from Theorem 7.4.1. See Krengel (1985) or the
papers cited for details. Furstenberg and Kesten (1960) and later Ishitani (1977)
have proved central limit theorems:

(log α0,n(1, 1) − µn)/n1/2 ⇒ σχ

where χ has the standard normal distribution. For more about products of random
matrices, see Cohen, Kesten, and Newman (1985).

Example 7.5.2. Increasing sequences in random permutations. Let π be a
permutation of {1, 2, . . . , n} and let �(π ) be the length of the longest increasing
sequence in π , that is, the largest k for which there are integers i1 < i2 · · · < ik

so that π (i1) < π (i2) < · · · < π (ik). Hammersley (1970) attacked this problem by
putting a rate one Poisson process in the plane, and for s < t ∈ [0, ∞), letting Ys,t

denote the length of the longest increasing path lying in the square Rs,t with vertices
(s, s), (s, t), (t, t), and (t, s). That is, the largest k for which there are points (xi, yi)
in the Poisson process with s < x1 < · · · < xk < t and s < y1 < · · · < yk < t . It
is clear that Y0,m + Ym,n ≤ Y0,n. Applying Theorem 7.4.1 to −Y0,n shows

Y0,n/n → γ ≡ sup
m≥1

EY0,m/m a.s.

For each k, Ynk,(n+1)k, n ≥ 0 is i.i.d., so the limit is constant. We will show that
γ < ∞ in Exercise 7.5.2.

To get from the result about the Poisson process back to the random permutation
problem, let τ (n) be the smallest value of t for which there are n points in R0,t . Let
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the n points in R0,τ (n) be written as (xi, yi) where 0 < x1 < x2 · · · < xn ≤ τ (n) and
let πn be the unique permutation of {1, 2, . . . , n} so that yπn(1) < yπn(2) · · · < yπn(n).
It is clear that Y0,τ (n) = �(πn). An easy argument shows:

Lemma 7.5.1. τ (n)/
√

n → 1 a.s.

Proof. Let Sn be the number of points in R0,
√

n. Sn − Sn−1 are independent Poisson
r.v.’s with mean 1, so the strong law of large numbers implies Sn/n → 1 a.s.
If ε > 0 then for large n, Sn(1−ε) < n < Sn(1+ε) and hence

√
(1 − ε)n ≤ τ (n) ≤√

(1 + ε)n. �

It follows from Lemma 7.5.1 and the monotonicity of m → Y0,m that

n−1/2�(πn) → γ a.s.

Hammersley (1970) has a proof that π/2 ≤ γ ≤ e, and Kingman (1973) shows
that 1.59 < γ < 2.49. See Exercises 7.5.1 and 7.5.2. Subsequent work on the
random permutation problem, see Logan and Shepp (1977) and Vershik and Kerov
(1977), has shown that γ = 2.

Exercise 7.5.1. Given a rate one Poisson process in [0, ∞) × [0, ∞), let
(X1, Y1) be the point that minimizes x + y. Let (X2, Y2) be the point in
[X1, ∞) × [Y1, ∞) that minimizes x + y, and so on. Use this construction to show
that γ ≥ (8/π )1/2 > 1.59.

Exercise 7.5.2. Let πn be a random permutation of {1, . . . , n} and let J n
k be the

number of subsets of {1, . . . n} of size k so that the associated πn(j ) form an
increasing subsequence. Compute EJn

k and take k ∼ αn1/2 to conclude γ ≤ e.

Remark. Kingman improved this by observing that �(πn) ≥ � then J n
k ≥ (�

k

)
. Using

this with the bound on EJn
k and taking � ∼ βn1/2 and k ∼ αn1/2, he showed

γ < 2.49.

Example 7.5.3. Age-dependent branching processes. This is a variation of the
branching process introduced in Subsection 5.3.4 in which each individual lives for
an amount of time with distribution F before producing k offspring with probability
pk. The description of the process is completed by supposing that the process starts
with one individual in generation 0 who is born at time 0, and when this particle
dies, its offspring start independent copies of the original process.

Suppose p0 = 0, let X0,m be the birth time of the first member of generation m,
and let Xm,n be the time lag necessary for that individual to have an offspring in
generation n. In case of ties, pick an individual at random from those in generation
m born at time X0,m. It is clear that X0,n ≤ X0,m + Xm,n. Since X0,n ≥ 0, (iv) holds
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if we assume F has finite mean. Applying Theorem 7.4.1 now, it follows that

X0,n/n → γ a.s.

The limit is constant because the sequences {Xnk,(n+1)k, n ≥ 0} are i.i.d.

Remark. The inequality X�,m + Xm,n ≥ X�,n is false when � > 0, because if we
call im the individual that determines the value of Xm,n for n > m, then im may not
be a descendant of i�.

As usual, one has to use other methods to identify the constant. Let t1, t2, . . . be
i.i.d. with distribution F , let Tn = t1 + · · · + tn, and µ =∑ kpk. Let Zn(an) be
the number of individuals in generation n born by time an. Each individual in
generation n has probability P (Tn ≤ an) to be born by time an, and the times are
independent of the offspring numbers so

EZn(an) = EE(Zn(an)|Zn) = E(ZnP (Tn ≤ an)) = µnP (Tn ≤ an)

By results in Section 2.6, n−1 log P (Tn ≤ an) → −c(a) as n → ∞. If log µ −
c(a) < 0 then Chebyshev’s inequality and the Borel-Cantelli lemma imply
P (Zn(an) ≥ 1 i.o.) = 0. Conversely, if EZn(an) > 1 for some n, then we can
define a supercritical branching process Ym that consists of the offspring in gener-
ation mn that are descendants of individuals in Ym−1 in generation (m − 1)n that
are born less than an units of time after their parents. This shows that with positive
probability, X0,mn ≤ mna for all m. Combining the last two observations with the
fact that c(a) is strictly increasing gives

γ = inf{a : log µ − c(a) > 0}

The last result is from Biggins (1977). See his 1978 and 1979 papers for exten-
sions and refinements. Kingman (1975) has an approach to the problem via mar-
tingales:

Exercise 7.5.3. Let ϕ(θ ) = E exp(−θti) and

Yn = (µϕ(θ ))−n

Zn∑
i=1

exp(−θTn(i))

where the sum is over individuals in generation n and Tn(i) is the ith person’s birth
time. Show that Yn is a nonnegative martingale and use this to conclude that if
exp(−θa)/µϕ(θ ) > 1, then P (X0,n ≤ an) → 0. A little thought reveals that this
bound is the same as the answer in the last exercise.

Example 7.5.4. First-passage percolation. Consider Zd as a graph with edges
connecting each x, y ∈ Zd with |x − y| = 1. Assign an independent nonnegative
random variable τ (e) to each edge that represents the time required to traverse the
edge going in either direction. If e is the edge connecting x and y, let τ (x, y) =
τ (y, x) = τ (e). If x0 = x, x1, . . . , xn = y is a path from x to y, that is, a sequence
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with |xm − xm−1| = 1 for 1 ≤ m ≤ n, we define the travel time for the path to
be τ (x0, x1) + · · · + τ (xn−1, xn). Define the passage time from x to y, t(x, y) =
the infimum of the travel times over all paths from x to y. Let z ∈ Zd , and let
Xm,n = t(mu, nu), where u = (1, 0, . . . , 0).

Clearly X0,m + Xm,n ≥ X0,n. X0,n ≥ 0, so if Eτ (x, y) < ∞, then (iv) holds,
and Theorem 7.4.1 implies that X0,n/n → X a.s. To see that the limit is constant,
enumerate the edges in some order e1, e2, . . . and observe that X is measurable
with respect to the tail σ -field of the i.i.d. sequence τ (e1), τ (e2), . . .

Remark. It is not hard to see that the assumption of finite first moment can be
weakened. If τ has distribution F with

(∗)
∫ ∞

0
(1 − F (x))2d dx < ∞

that is, the minimum of 2d independent copies has finite mean, then by finding 2d

disjoint paths from 0 to u = (1, 0, . . . , 0), one concludes that Eτ (0, u) < ∞ and
(6.1) can be applied. The condition (∗) is also necessary for X0,n/n to converge to
a finite limit. If (∗) fails and Yn is the minimum of t(e) over all the edges from ν,
then

lim sup
n→∞

X0,n/n ≥ lim sup
n→∞

Yn/n = ∞ a.s.

Above we considered the point-to-point passage time. A second object of
interest is the point-to-line passage time:

an = inf{t(0, x) : x1 = n}
Unfortunately, it does not seem to be possible to embed this sequence in a subad-
ditive family. To see the difficulty, let t̄(0, x) be infimum of travel times over paths
from 0 to x that lie in {y : y1 ≥ 0}, let

ām = inf{t̄(0, x) : x1 = m}
and let xm be a point at which the infimum is achieved. We leave to the reader the
highly nontrivial task of proving that such a point exists; see Smythe and Wierman
(1978) for a proof. If we let ām,n be the infimum of travel times over all paths that
start at xm, stay in {y : y1 ≥ m}, and end on {y : y1 = n}, then ām,n is independent
of ām and

ām + ām,n ≥ ān

The last inequality is true without the half-space restriction, but the independence is
not, and without the half-space restriction, we cannot get the stationarity properties
needed to apply Theorem 7.4.1.

Remark. The family ām,n is another example where ā�,m + ām,n ≥ ā�,n need not
hold for � > 0.
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A second approach to limit theorems for am is to prove a result about the set of
points that can be reached by time t : ξt = {x : t(0, x) ≤ t}. Cox and Durrett (1981)
have shown

Theorem 7.5.2. For any passage time distribution F with F (0) = 0, there is a
convex set A so that for any ε > 0 we have with probability one

ξt ⊂ (1 + ε)tA for all t sufficiently large

and |ξ ε
t ∩ (1 − ε)tA ∩ Zd |/td → 0 as t → ∞.

Ignoring the boring details of how to state things precisely, the last result says
ξt/t → A a.s. It implies that an/n → γ a.s., where γ = 1/ sup{x1 : x ∈ A}. (Use
the convexity and reflection symmetry of A.) When the distribution has finite mean
(or satisfies the weaker condition in the remark above), γ is the limit of t(0, nu)/n.
Without any assumptions, t(0, nu)/n → γ in probability. For more details, see the
paper cited above. Kesten’s 1986 and 1987 papers are good sources for more about
first-passage percolation.

Exercise 7.5.4. Oriented first-passage percolation. Consider a graph with ver-
tices {(m, n) ∈ Z2 : m + n is even and n ≤ 0}, and oriented edges connecting (m, n)
to (m + 1, n − 1) and (m, n) to (m − 1, n − 1). Assign i.i.d. exponential mean one
r.v.’s to each edge. Thinking of the number on edge e as giving the time it takes
water to travel down the edge, define t(m, n) = the time at which the fluid first
reaches (m, n), and an = inf{t(m,−n)}. Show that as n → ∞, an/n converges to
a limit γ a.s.

Exercise 7.5.5. Continuing with the setup in the last exercise: (i) Show γ ≤ 1/2
by considering a1. (ii) Get a positive lower bound on γ by looking at the expected
number of paths down to {(m, −n) : −n ≤ m ≤ n} with passage time ≤ an and
using results from Section 2.6.

Remark. If we replace the graph in Exercise 7.5.4 by a binary tree, then we
get a problem equivalent to the first birth problem (Example 7.5.3) for p2 = 2,
P (ti > x) = e−x . In that case, the lower bound obtained by the methods of part (ii)
Exercise 7.5.5 was sharp, but in this case it is not.
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Brownian Motion

Brownian motion is a process of tremendous practical and theoretical significance.
It originated (a) as a model of the phenomenon observed by Robert Brown in 1828
that “pollen grains suspended in water perform a continual swarming motion,” and
(b) in Bachelier’s (1900) work as a model of the stock market. These are just two
of many systems that Brownian motion has been used to model. On the theoretical
side, Brownian motion is a Gaussian Markov process with stationary independent
increments. It lies in the intersection of three important classes of processes and is
a fundamental example in each theory.

The first part of this chapter develops properties of Brownian motion. In Sec-
tion 8.1, we define Brownian motion and investigate continuity properties of its
paths. In Section 8.2, we prove the Markov property and a related 0-1 law. In
Section 8.3, we define stopping times and prove the strong Markov property. In
Section 8.4, we take a close look at the zero set of Brownian motion. In Section 8.5,
we introduce some martingales associated with Brownian motion and use them to
obtain information about its properties.

The second part of this chapter applies Brownian motion to some of the problems
considered in Chapters 2 and 3. In Section 8.6, we embed random walks into
Brownian motion to prove Donsker’s theorem, a far-reaching generalization of the
central limit theorem. In Section 8.7, we show that the discrepancy between the
empirical distribution and the true distribution when suitably magnified converges
to Brownian bridge. In Section 8.8, we prove laws of the iterated logarithm for
Brownian motion and random walks with finite variance.

8.1 Definition and Construction

A one-dimensional Brownian motion is a real-valued process Bt , t ≥ 0 that has
the following properties:

(a) If t0 < t1 < · · · < tn, then B(t0), B(t1) − B(t0), . . . , B(tn) − B(tn−1) are inde-
pendent.

353
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(b) If s, t ≥ 0, then

P (B(s + t) − B(s) ∈ A) =
∫

A

(2πt)−1/2 exp(−x2/2t) dx

(c) With probability 1, t → Bt is continuous.

(a) says that Bt has independent increments. (b) says that the increment B(s + t) −
B(s) has a normal distribution with mean 0 and variance t . (c) is self-explanatory.

Thinking of Brown’s pollen grain, (c) is certainly reasonable. (a) and (b) can be
justified by noting that the movement of the pollen grain is due to the net effect of
the bombardment of millions of water molecules, so by the central limit theorem,
the displacement in any one interval should have a normal distribution, and the
displacements in two disjoint intervals should be independent. Figure 8.1 shows a
simulation of two dimentional Brownian motion.

Figure 8.1. Simulation of two-dimensional Brownian motion.

Two immediate consequences of the definition that will be useful many times
are:

Translation invariance. {Bt − B0, t ≥ 0} is independent of B0 and has the same
distribution as a Brownian motion with B0 = 0.

Proof. Let A1 = σ (B0) and A2 be the events of the form

{B(t1) − B(t0) ∈ A1, . . . , B(tn) − B(tn−1) ∈ An}
The Ai are π -systems that are independent, so the desired result follows from the
π − λ theorem 2.1.2. �

The Brownian scaling relation. If B0 = 0 then for any t > 0,

{Bst , s ≥ 0} d= {t1/2Bs, s ≥ 0} (8.1.1)

To be precise, the two families of r.v.’s have the same finite dimensional distribu-
tions, that is, if s1 < · · · < sn, then

(Bs1t , . . . , Bsnt )
d= (t1/2Bs1, . . . t

1/2Bsn
)
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Proof. To check this when n = 1, we note that t1/2 times a normal with mean 0 and
variance s is a normal with mean 0 and variance st . The result for n > 1 follows
from independent increments. �

A second equivalent definition of Brownian motion starting from B0 = 0, that
we will occasionally find useful is that Bt , t ≥ 0, is a real-valued process satisfying

(a′) B(t) is a Gaussian process (i.e., all its finite dimensional distributions are
multivariate normal).

(b′) EBs = 0 and EBsBt = s ∧ t .
(c′) With probability one, t → Bt is continuous.

It is easy to see that (a) and (b) imply (a′). To get (b′) from (a) and (b), suppose
s < t and write

EBsBt = E(B2
s ) + E(Bs(Bt − Bs)) = s

The converse is even easier. (a′) and (b′) specify the finite dimensional distributions
of Bt , which by the last calculation must agree with the ones defined in (a) and (b).

The first question that must be addressed in any treatment of Brownian motion
is, “Is there a process with these properties?” The answer is “Yes,” of course, or
this chapter would not exist. For pedagogical reasons, we will pursue an approach
that leads to a dead end and then retreat a little to rectify the difficulty. Fix an x ∈ R
and for each 0 < t1 < · · · < tn, define a measure on Rn by

µx,t1,...,tn(A1 × · · · × An) =
∫

A1

dx1 · · ·
∫

An

dxn

n∏
m=1

ptm−tm−1 (xm−1, xm) (8.1.2)

where Ai ∈ R, x0 = x, t0 = 0, and

pt (a, b) = (2πt)−1/2 exp(−(b − a)2/2t)

From the formula above, it is easy to see that for fixed x the family µ is a con-
sistent set of finite dimensional distributions (f.d.d.’s), that is, if {s1, . . . , sn−1} ⊂
{t1, . . . , tn} and tj /∈ {s1, . . . , sn−1} then

µx,s1,...,sn−1 (A1 ×· · ·×An−1) = µx,t1,...,tn(A1 ×· · ·×Aj−1 ×R×Aj ×· · ·×An−1)

This is clear when j = n. To check the equality when 1 ≤ j < n, it is enough to
show that ∫

ptj −tj−1 (x, y)ptj+1−tj (y, z) dy = ptj+1−tj−1 (x, z)

By translation invariance, we can without loss of generality assume x = 0, but all
this says is that the sum of independent normals with mean 0 and variances tj − tj−1

and tj+1 − tj has a normal distribution with mean 0 and variance tj+1 − tj−1.

With the consistency of f.d.d.’s verified, we get our first construction of Brownian
motion:
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Theorem 8.1.1. Let �o = {functions ω : [0, ∞) → R} and Fo be the σ -field gen-
erated by the finite dimensional sets {ω : ω(ti) ∈ Ai for 1 ≤ i ≤ n}, where Ai ∈ R.
For each x ∈ R, there is a unique probability measure νx on (�o,Fo) so that
νx{ω : ω(0) = x} = 1 and when 0 < t1 < · · · < tn

νx{ω : ω(ti) ∈ Ai} = µx,t1,...,tn(A1 × · · · × An) (8.1.3)

This follows from a generalization of Kolmogorov’s extension theorem, (7.1) in
the Appendix. We will not bother with the details since at this point we are at the
dead end referred to above. If C = {ω : t → ω(t) is continuous}, then C /∈ Fo, that
is, C is not a measurable set. The easiest way of proving C /∈ Fo is to do:

Exercise 8.1.1. A ∈ Fo if and only if there is a sequence of times t1, t2, . . . in
[0, ∞) and a B ∈ R{1,2,...} so that A = {ω : (ω(t1), ω(t2), . . .) ∈ B}. In words, all
events in Fo depend on only countably many coordinates.

The above problem is easy to solve. Let Q2 = {m2−n : m, n ≥ 0} be the
dyadic rationals. If �q = {ω : Q2 → R} and Fq is the σ -field generated by the
finite dimensional sets, then enumerating the rationals q1, q2, . . . and applying
Kolmogorov’s extension theorem shows that we can construct a probability νx

on (�q,Fq) so that νx{ω : ω(0) = x} = 1 and (8.1.3) holds when the ti ∈ Q2. To
extend Bt to a process defined on [0, ∞), we will show:

Theorem 8.1.2. Let T < ∞ and x ∈ R. νx assigns probability one to paths ω :
Q2 → R that are uniformly continuous on Q2 ∩ [0, T ].

Remark. It will take quite a bit of work to prove Theorem 8.1.2. Before taking on
that task, we will attend to the last measure theoretic detail: We tidy things up by
moving our probability measures to (C, C), where C = {continuous ω : [0, ∞) →
R} and C is the σ -field generated by the coordinate maps t → ω(t). To do this, we
observe that the map ψ that takes a uniformly continuous point in �q to its unique
continuous extension in C is measurable, and we set

Px = νx ◦ ψ−1

Our construction guarantees that Bt (ω) = ωt has the right finite dimensional dis-
tributions for t ∈ Q2. Continuity of paths and a simple limiting argument show that
this is true when t ∈ [0, ∞). Finally, the reader should note that, as in the case of
Markov chains, we have one set of random variables Bt (ω) = ω(t), and a family
of probability measures Px , x ∈ R, so that under Px , Bt is a Brownian motion with
Px(B0 = x) = 1.

Proof. By translation invariance and scaling (8.1.1), we can without loss of gen-
erality suppose B0 = 0 and prove the result for T = 1. In this case, part (b) of the



8.1 Definition and Construction 357

definition and the scaling relation imply

E0(|Bt − Bs |)4 = E0|Bt−s |4 = C(t − s)2

where C = E0|B1|4 < ∞. From the last observation, we get the desired uniform
continuity by using the following result due to Kolmogorov. Thanks to Robin
Pemantle, the proof is now much simpler than in previous editions.

Theorem 8.1.3. Suppose E|Xs − Xt |β ≤ K|t − s|1+α where α, β > 0. If γ < α/β

then with probability 1 there is a constant C(ω) so that

|X(q) − X(r)| ≤ C|q − r|γ for all q, r ∈ Q2 ∩ [0, 1]

Proof. Let Gn = {|X(i/2n) − X((i − 1)/2n)| ≤ 2−γ n for all 0 < i ≤ 2n}. Cheby-
shev’s inequality implies P (|Y | > a) ≤ a−βE|Y |β , so if we let λ = α − βγ > 0,
then

P (Gc
n) ≤ 2n · 2nβγ · E|X(j2−n) − X(i2−n)|β = K2−nλ

Lemma 8.1.4. On HN = ∩∞
n=NGn we have

|X(q) − X(r)| ≤ 3

1 − 2−γ
|q − r|γ

for q, r ∈ Q2 ∩ [0, 1] with |q − r| < 2−N .

••
(i − 2)/2m (i − 1)/2m i/2m (i − 1)/2mq r

Proof of Lemma 8.1.4. Let q, r ∈ Q2 ∩ [0, 1] with 0 < r − q < 2−N . For some
m ≥ N we can write

r = i2−m + 2−r(1) + · · · + 2−r(�)

q = (i − 1)2−m − 2−q(1) − · · · − 2−q(k)

where m < r(1) < · · · < r(�) and m < q(1) < · · · < q(k). On HN

|X(i2−m) − X((i − 1)2−m)| ≤ 2−γm

|X(q) − X((i − 1)2−m)| ≤
k∑

h=1

(2−q(h))γ ≤
∞∑

h=m

(2−γ )h = 2−γm

1 − 2−γ

|X(r) − X(i2−m)| ≤ 2−γm

1 − 2−γ

Combining the last three inequalities with 2−m ≤ |q − r| and 1 − 2−γ > 1 com-
pletes the proof of Lemma 8.1.4. �
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To prove Theorem 8.1.3 now, we note that

P (Hc
N ) ≤

∞∑
n=N

P (Gc
n) ≤ K

∞∑
n=N

2−nλ = K2−Nλ/(1 − 2−λ)

Since
∑∞

N=1 P (Hc
N ) < ∞, the Borel-Cantelli lemma, Theorem 2.3.1, implies

|X(q) − X(r)| ≤ A|q − r|γ for q, r ∈ Q2 with |q − r| < δ(ω).

To extend this to q, r ∈ Q2 ∩ [0, 1], let s0 = q < s1 < · · · < sn = r with |si −
si−1| < δ(ω), and use the triangle inequality to conclude |X(q) − X(r)| ≤
C(ω)|q − r|γ where C(ω) = 1 + δ(ω)−1. �

The scaling relation, (8.1.1), implies

E|Bt − Bs |2m = Cm|t − s|m where Cm = E|B1|2m

so using Theorem 8.1.3 with β = 2m, α = m − 1 and letting m → ∞ gives a result
of Wiener (1923).

Theorem 8.1.5. Brownian paths are Hölder continuous for any exponent γ < 1/2.

It is easy to show:

Theorem 8.1.6. With probability one, Brownian paths are not Lipschitz continuous
(and hence not differentiable) at any point.

Remark. The nondifferentiability of Brownian paths was discovered by Paley,
Wiener, and Zygmund (1933). Paley died in 1933 at the age of 26 in a skiing
accident while the paper was in press. The proof we are about to give is due to
Dvoretsky, Erdös, and Kakutani (1961).

Proof. Fix a constant C < ∞ and let An = {ω : there is an s ∈ [0, 1] so that
|Bt − Bs | ≤ C|t − s| when |t − s| ≤ 3/n}. For 1 ≤ k ≤ n − 2, let

Yk,n = max

{∣∣∣∣B
(

k + j

n

)
− B

(
k + j − 1

n

)∣∣∣∣ : j = 0, 1, 2

}

Bn = { at least one Yk,n ≤ 5C/n}
The triangle inequality implies An ⊂ Bn. The worst case is s = 1. We pick k =
n − 2 and observe∣∣∣∣B

(
n − 3

n

)
− B

(
n − 2

n

)∣∣∣∣ ≤
∣∣∣∣B
(

n − 3

n

)
− B(1)

∣∣∣∣+
∣∣∣∣B(1) − B

(
n − 2

n

)∣∣∣∣
≤ C(3/n + 2/n)
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Using An ⊂ Bn and the scaling relation (8.1.1) now gives

P (An) ≤ P (Bn) ≤ nP (|B(1/n)| ≤ 5C/n)3 = nP (|B(1)| ≤ 5C/n1/2)3

≤ n{(10C/n1/2) · (2π )−1/2}3

since exp(−x2/2) ≤ 1. Letting n → ∞ shows P (An) → 0. Noticing n → An is
increasing shows P (An) = 0 for all n and completes the proof. �

Exercise 8.1.2. Looking at the proof of Theorem 8.1.6 carefully shows that if
γ > 5/6 then Bt is not Hölder continuous with exponent γ at any point in [0,1].
Show, by considering k increments instead of 3, that the last conclusion is true for
all γ > 1/2 + 1/k.

The next result is more evidence that the sample paths of Brownian motion
behave locally like

√
t .

Exercise 8.1.3. Fix t and let 
m,n = B(tm2−n) − B(t(m − 1)2−n). Compute

E

(∑
m≤2n


2
m,n − t

)2

and use Borel-Cantelli to conclude that
∑

m≤2n 
2
m,n → t a.s. as n → ∞.

Remark. The last result is true if we consider a sequence of partitions �1 ⊂
�2 ⊂ . . . with mesh → 0. See Freedman (1971a), pp. 42–46. However, the true
quadratic variation, defined as the sup over all partitions, is ∞.

Multidimensional Brownian motion

All of the result in this section have been for one-dimensional Brownian
motion. To define a d-dimensional Brownian motion starting at x ∈ Rd , we
let B1

t , . . . B
d
t be independent Brownian motions with Bi

0 = xi . As in the case
d = 1, these are realized as probability measures Px on (C, C) where C =
{continuous ω : [0, ∞) → Rd} and C is the σ -field generated by the coordinate
maps. Since the coordinates are independent, it is easy to see that the finite dimen-
sional distributions satisfy (8.1.2) with transition probability

pt (x, y) = (2πt)−d/2 exp(−|y − x|2/2t) (8.1.4)

8.2 Markov Property, Blumenthal’s 0-1 Law

Intuitively, the Markov property says, “If s ≥ 0 then B(t + s) − B(s), t ≥ 0 is a
Brownian motion that is independent of what happened before time s.” The first
step in making this into a precise statement is to explain what we mean by “what



360 Brownian Motion

happened before time s.” The first thing that comes to mind is

Fo
s = σ (Br : r ≤ s)

For reasons that will become clear as we go along, it is convenient to replace
Fo

s by

F+
s = ∩t>sFo

t

The fields F+
s are nicer because they are right continuous:

∩t>sF+
t = ∩t>s

(∩u>tFo
u

) = ∩u>sFo
u = F+

s

In words, the F+
s allow us an “infinitesimal peek at the future,” that is, A ∈ F+

s if
it is in Fo

s+ε for any ε > 0. If f (u) > 0 for all u > 0, then in d = 1 the random
variable

lim sup
t↓s

Bt − Bs

f (t − s)

is measurable with respect to F+
s but not Fo

s . We will see below that there are no
interesting examples, that is, F+

s and Fo
s are the same (up to null sets).

To state the Markov property, we need some notation. Recall that we have a
family of measures Px , x ∈ Rd , on (C, C) so that under Px , Bt (ω) = ω(t) is a
Brownian motion starting at x. For s ≥ 0, we define the shift transformation
θs : C → C by

(θsω)(t) = ω(s + t) for t ≥ 0

In words, we cut off the part of the path before time s and then shift the path so
that time s becomes time 0.

Theorem 8.2.1. Markov property. If s ≥ 0 and Y is bounded and C measurable,
then for all x ∈ Rd

Ex(Y ◦ θs |F+
s ) = EBs

Y

where the right-hand side is the function ϕ(x) = ExY evaluated at x = Bs .

Proof. By the definition of conditional expectation, what we need to show is that

Ex(Y ◦ θs ; A) = Ex(EBs
Y ; A) for all A ∈ F+

s (8.2.1)

We will begin by proving the result for a carefully chosen special case
and then use the monotone class theorem (MCT) to get the general case.
Suppose Y (ω) =∏1≤m≤n fm(ω(tm)), where 0 < t1 < · · · < tn and the fm are
bounded and measurable. Let 0 < h < t1, let 0 < s1 · · · < sk ≤ s + h, and
let A = {ω : ω(sj ) ∈ Aj, 1 ≤ j ≤ k}, where Aj ∈ R for 1 ≤ j ≤ k. From the
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definition of Brownian motion, it follows that

Ex(Y ◦ θs ; A) =
∫

A1

dx1 ps1 (x, x1)
∫

A2

dx2 ps2−s1 (x1, x2) · · ·
∫

Ak

dxk psk−sk−1 (xk−1, xk)
∫

dy ps+h−sk
(xk, y)ϕ(y, h)

where

ϕ(y, h) =
∫

dy1 pt1−h(y, y1)f1(y1) . . .

∫
dyn ptn−tn−1 (yn−1, yn)fn(yn)

For more details, see the proof of (6.1.3), which applies without change here. Using
that identity on the right-hand side, we have

Ex(Y ◦ θs ; A) = Ex(ϕ(Bs+h, h); A) (8.2.2)

The last equality holds for all finite dimensional sets A, so the π − λ theorem,
Theorem 2.1.2, implies that it is valid for all A ∈ Fo

s+h ⊃ F+
s .

It is easy to see by induction on n that

ψ(y1) =f1(y1)
∫

dy2 pt2−t1 (y1, y2)f2(y2)

. . .

∫
dyn ptn−tn−1 (yn−1, yn)fn(yn)

is bounded and measurable. Letting h ↓ 0 and using the dominated convergence
theorem shows that if xh → x, then

φ(xh, h) =
∫

dy1 pt1−h(xh, y1)ψ(y1) → φ(x, 0)

as h ↓ 0. Using (8.2.2) and the bounded convergence theorem now gives

Ex(Y ◦ θs ; A) = Ex(ϕ(Bs, 0); A)

for all A ∈ F+
s . This shows that (8.2.1) holds for Y =∏1≤m≤n fm(ω(tm)) and the

fm are bounded and measurable.
The desired conclusion now follows from the monotone class theorem, 6.1.3.

Let H = the collection of bounded functions for which (8.2.1) holds. H clearly has
properties (ii) and (iii). Let A be the collection of sets of the form {ω : ω(tj ) ∈ Aj },
where Aj ∈ R. The special case treated above shows (i) holds and the desired
conclusion follows. �

The next two exercises give typical applications of the Markov property. In
Section 8.4, we will use these equalities to compute the distributions of L and R.

Exercise 8.2.1. Let T0 = inf{s > 0 : Bs = 0} and let R = inf{t > 1 : Bt = 0}. R

is for right or return. Use the Markov property at time 1 to get

Px(R > 1 + t) =
∫

p1(x, y)Py(T0 > t) dy (8.2.3)
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Exercise 8.2.2. Let T0 = inf{s > 0 : Bs = 0} and let L = sup{t ≤ 1 : Bt = 0}. L

is for left or last. Use the Markov property at time 0 < t < 1 to conclude

P0(L ≤ t) =
∫

pt (0, y)Py(T0 > 1 − t) dy (8.2.4)

The reader will see many applications of the Markov property below, so we turn
our attention now to a “triviality” that has surprising consequences. Since

Ex(Y ◦ θs |F+
s ) = EB(s)Y ∈ Fo

s

it follows from Theorem 5.1.5 that

Ex(Y ◦ θs |F+
s ) = Ex(Y ◦ θs |Fo

s )

From the last equation, it is a short step to:

Theorem 8.2.2. If Z ∈ C is bounded then for all s ≥ 0 and x ∈ Rd ,

Ex(Z|F+
s ) = Ex(Z|Fo

s )

Proof. As in the proof of Theorem 8.2.1, it suffices to prove the result when

Z =
n∏

m=1

fm(B(tm))

and the fm are bounded and measurable. In this case, Z can be written as X(Y ◦ θs),
where X ∈ Fo

s and Y is C measurable, so

Ex(Z|F+
s ) = XEx(Y ◦ θs |F+

s ) = XEBs
Y ∈ Fo

s

and the proof is complete. �

If we let Z ∈ F+
s , then Theorem 8.2.2 implies Z = Ex(Z|Fo

s ) ∈ Fo
s , so the two

σ -fields are the same up to null sets. At first glance, this conclusion is not exciting.
The fun starts when we take s = 0 in Theorem 8.2.2 to get:

Theorem 8.2.3. Blumenthal’s 0-1 law. If A ∈ F+
0 then for all x ∈ Rd ,

Px(A) ∈ {0, 1}.

Proof. Using A ∈ F+
0 , Theorem 8.2.2, and Fo

0 = σ (B0) is trivial under Px gives

1A = Ex(1A|F+
0 ) = Ex(1A|Fo

0 ) = Px(A) Px a.s.

This shows that the indicator function 1A is a.s. equal to the number Px(A), and
the result follows. �

In words, the last result says that the germ field, F+
0 , is trivial. This result is

very useful in studying the local behavior of Brownian paths. For the rest of the
section we restrict our attention to d = 1.
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Theorem 8.2.4. If τ = inf{t ≥ 0 : Bt > 0} then P0(τ = 0) = 1.

Proof. P0(τ ≤ t) ≥ P0(Bt > 0) = 1/2 since the normal distribution is symmetric
about 0. Letting t ↓ 0, we conclude

P0(τ = 0) = lim
t↓0

P0(τ ≤ t) ≥ 1/2

so it follows from Theorem 8.2.3 that P0(τ = 0) = 1. �

Once Brownian motion must hit (0, ∞) immediately starting from 0, it must also
hit (−∞, 0) immediately. Since t → Bt is continuous, this forces:

Theorem 8.2.5. If T0 = inf{t > 0 : Bt = 0} then P0(T0 = 0) = 1.

A corollary of Theorem 8.2.5 is:

Exercise 8.2.3. If a < b, then with probability 1 there is a local maximum of Bt

in (a, b). So the set of local maxima of Bt is almost surely a dense set.

Another typical application of Theorem 8.2.3 is:

Exercise 8.2.4. (i) Suppose f (t) > 0 for all t > 0. Use Theorem 8.2.3 to conclude
that lim supt↓0 B(t)/f (t) = c, P0 a.s., where c ∈ [0, ∞] is a constant. (ii) Show that
if f (t) = √

t then c = ∞, so with probability 1, Brownian paths are not Hölder
continuous of order 1/2 at 0.

Remark. Let Hγ (ω) be the set of times at which the path ω ∈ C is Hölder con-
tinuous of order γ . Theorem 8.1.5 shows that P (Hγ = [0, ∞)) = 1 for γ < 1/2.
Exercise 8.1.2 shows that P (Hγ = ∅) = 1 for γ > 1/2. The last exercise shows
P (t ∈ H1/2) = 0 for each t , but B. Davis (1983) has shown P (H1/2 �= ∅) = 1.
Perkins (1983) has computed the Hausdorff dimension of{

t ∈ (0, 1) : lim sup
h↓0

|Bt+h − Bt |
h1/2

≤ c

}

Theorem 8.2.3 concerns the behavior of Bt as t → 0. By using a trick, we can
use this result to get information about the behavior as t → ∞.

Theorem 8.2.6. If Bt is a Brownian motion starting at 0, then so is the process
defined by X0 = 0 and Xt = tB(1/t) for t > 0.

Proof. Here we will check the second definition of Brownian motion. To do this,
we note: (i) If 0 < t1 < . . . < tn, then (X(t1), . . . , X(tn)) has a multivariate normal
distribution with mean 0. (ii) EXs = 0 and if s < t then

E(XsXt ) = stE(B(1/s)B(1/t)) = s

For (iii) we note that X is clearly continuous at t �= 0.
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To handle t = 0, we begin by observing that the strong law of large numbers
implies Bn/n → 0 as n → ∞ through the integers. To handle values in between
integers, we note that Kolmogorov’s inequality, Theorem 2.5.2, implies

P

(
sup

0<k≤2m

|B(n + k2−m) − Bn| > n2/3

)
≤ n−4/3E(Bn+1 − Bn)2

Letting m → ∞, we have

P

(
sup

u∈[n,n+1]
|Bu − Bn| > n2/3

)
≤ n−4/3

Since
∑

n n−4/3 < ∞, the Borel-Cantelli lemma implies Bu/u → 0 as u → ∞.
Taking u = 1/t , we have Xt → 0 as t → 0. �

Theorem 8.2.6 allows us to relate the behavior of Bt as t → ∞ and as t → 0.
Combining this idea with Blumenthal’s 0-1 law leads to a very useful result. Let

F ′
t = σ (Bs : s ≥ t) = the future at time t

T = ∩t≥0F ′
t = the tail σ -field

Theorem 8.2.7. If A ∈ T then either Px(A) ≡ 0 or Px(A) ≡ 1.

Remark. Notice that this is stronger than the conclusion of Blumenthal’s 0-1 law.
The examples A = {ω : ω(0) ∈ D} show that for A in the germ σ -field F+

0 , the
value of Px(A), 1D(x) in this case, may depend on x.

Proof. Since the tail σ -field of B is the same as the germ σ -field for X, it follows
that P0(A) ∈ {0, 1}. To improve this to the conclusion given, observe that A ∈ F ′

1,
so 1A can be written as 1D ◦ θ1. Applying the Markov property gives

Px(A) = Ex(1D ◦ θ1) = Ex(Ex(1D ◦ θ1|F1)) = Ex(EB11D)

=
∫

(2π )−1/2 exp(−(y − x)2/2)Py(D) dy

Taking x = 0, we see that if P0(A) = 0, then Py(D) = 0 for a.e. y with respect
to Lebesgue measure, and using the formula again shows Px(A) = 0 for all x. To
handle the case P0(A) = 1, observe that Ac ∈ T and P0(Ac) = 0, so the last result
implies Px(Ac) = 0 for all x. �

The next result is a typical application of Theorem 8.2.7.

Theorem 8.2.8. Let Bt be a one-dimensional Brownian motion starting at 0. Then
with probability 1,

lim sup
t→∞

Bt/
√

t = ∞ lim inf
t→∞ Bt/

√
t = −∞
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Proof. Let K < ∞. By Exercise 2.3.1 and scaling

P0(Bn/
√

n ≥ K i.o.) ≥ lim sup
n→∞

P0(Bn ≥ K
√

n) = P0(B1 ≥ K) > 0

so the 0-1 law in Theorem 8.2.7 implies that the probability is 1. Since K is
arbitrary, this proves the first result. The second one follows from symmetry. �

From Theorem 8.2.8, translation invariance, and the continuity of Brownian
paths it follows that we have:

Theorem 8.2.9. Let Bt be a one-dimensional Brownian motion and let A =
∩n{Bt = 0 for some t ≥ n}. Then Px(A) = 1 for all x.

In words, one-dimensional Brownian motion is recurrent. For any starting point x,
it will return to 0 “infinitely often,” that is, there is a sequence of times tn ↑ ∞ so
that Btn = 0. We have to be careful with the interpretation of the phrase in quotes
since, starting from 0, Bt will hit 0 infinitely many times by time ε > 0.

Last rites. With our discussion of Blumenthal’s 0-1 law complete, the distinction
between F+

s and Fo
s is no longer important, so we will make one final improvement

in our σ -fields and remove the superscripts. Let

Nx = {A : A ⊂ D with Px(D) = 0}
Fx

s = σ (F+
s ∪ Nx)

Fs = ∩xFx
s

Nx are the null sets and Fx
s are the completed σ -fields for Px . Since we do not

want the filtration to depend on the initial state, we take the intersection of all the
σ -fields. The reader should note that it follows from the definition that the Fs are
right-continuous.

8.3 Stopping Times, Strong Markov Property

Generalizing a definition in Section 4.1, we call a random variable S taking values
in [0, ∞] a stopping time if for all t ≥ 0, {S < t} ∈ Ft . In the last definition, we
have obviously made a choice between {S < t} and {S ≤ t}. This makes a big
difference in discrete time but none in continuous time (for a right continuous
filtration Ft ) :

If {S ≤ t} ∈ Ft then {S < t} = ∪n{S ≤ t − 1/n} ∈ Ft .

If {S < t} ∈ Ft then {S ≤ t} = ∩n{S < t + 1/n} ∈ Ft .

The first conclusion requires only that t → Ft is increasing. The second relies
on the fact that t → Ft is right continuous. Theorem 8.3.2 and 8.3.3 below show



366 Brownian Motion

that when checking something is a stopping time, it is nice to know that the two
definitions are equivalent.

Theorem 8.3.1. If G is an open set and T = inf{t ≥ 0 : Bt ∈ G}, then T is a
stopping time.

Proof. Since G is open and t → Bt is continuous, {T < t} = ∪q<t{Bq ∈ G}, where
the union is over all rational q, so {T < t} ∈ Ft . Here we need to use the rationals
to get a countable union, and hence a measurable set. �

Theorem 8.3.2. If Tn is a sequence of stopping times and Tn ↓ T , then T is a
stopping time.

Proof. {T < t} = ∪n{Tn < t}. �

Theorem 8.3.3. If Tn is a sequence of stopping times and Tn ↑ T , then T is a
stopping time.

Proof. {T ≤ t} = ∩n{Tn ≤ t}. �

Theorem 8.3.4. If K is a closed set and T = inf{t ≥ 0 : Bt ∈ K}, then T is a
stopping time.

Proof. Let B(x, r) = {y : |y − x| < r}, let Gn = ∪x∈KB(x, 1/n), and let Tn =
inf{t ≥ 0 : Bt ∈ Gn}. Since Gn is open, it follows from Theorem 8.3.1 that Tn is
a stopping time. I claim that as n ↑ ∞, Tn ↑ T . To prove this, notice that T ≥ Tn

for all n, so lim Tn ≤ T . To prove T ≤ lim Tn, we can suppose that Tn ↑ t < ∞.
Since B(Tn) ∈ Ḡn for all n and B(Tn) → B(t), it follows that B(t) ∈ K and T ≤ t.

�

Exercise 8.3.1. Let S be a stopping time and let Sn = ([2nS] + 1)/2n where [x] =
the largest integer ≤ x. That is,

Sn = (m + 1)2−n if m2−n ≤ S < (m + 1)2−n

In words, we stop at the first time of the form k2−n after S (i.e., > S). From the
verbal description, it should be clear that Sn is a stopping time. Prove that it is.

Exercise 8.3.2. If S and T are stopping times, then S ∧ T = min{S, T }, S ∨ T =
max{S, T }, and S + T are also stopping times. In particular, if t ≥ 0, then S ∧ t ,
S ∨ t , and S + t are stopping times.

Exercise 8.3.3. Let Tn be a sequence of stopping times. Show that

sup
n

Tn, inf
n

Tn, lim sup
n

Tn, lim inf
n

Tn

are stopping times.
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Theorems 8.3.4 and 8.3.1 will take care of all the hitting times we will consider.
Our next goal is to state and prove the strong Markov property. To do this, we
need to generalize two definitions from Section 4.1. Given a nonnegative random
variable S(ω) we define the random shift θS , which “cuts off the part of ω before
S(ω) and then shifts the path so that time S(ω) becomes time 0.” In symbols, we
set

(θSω)(t) =
{

ω(S(ω) + t) on {S < ∞}

 on {S = ∞}

where 
 is an extra point we add to C. As in Section 6.3, we will usually explicitly
restrict our attention to {S < ∞}, so the reader does not have to worry about the
second half of the definition.

The second quantity FS , “the information known at time S,” is a little more
subtle. Imitating the discrete time definition from Section 4.1, we let

FS = {A : A ∩ {S ≤ t} ∈ Ft for all t ≥ 0}
In words, this makes the reasonable demand that the part of A that lies in {S ≤ t}
should be measurable with respect to the information available at time t . Again we
have made a choice between ≤ t and < t , but as in the case of stopping times, this
makes no difference, and it is useful to know that the two definitions are equivalent.

Exercise 8.3.4. Show that when Ft is right continuous, the last definition is
unchanged if we replace {S ≤ t} by {S < t}.

For practice with the definition of FS , do:

Exercise 8.3.5. Let S be a stopping time, let A ∈ FS , and let R = S on A and
R = ∞ on Ac. Show that R is a stopping time.

Exercise 8.3.6. Let S and T be stopping times.
(i) {S < t}, {S > t}, {S = t} are in FS .

(ii) {S < T }, {S > T }, and {S = T } are in FS (and in FT ).

Most of the properties of FN derived in Section 4.1 carry over to continuous
time. The next two will be useful below. The first is intuitively obvious: at a later
time we have more information.

Theorem 8.3.5. If S ≤ T are stopping times, then FS ⊂ FT .

Proof. If A ∈ FS , then A ∩ {T ≤ t} = (A ∩ {S ≤ t}) ∩ {T ≤ t} ∈ Ft . �

Theorem 8.3.6. If Tn ↓ T are stopping times, then FT = ∩F(Tn).
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Proof. Theorem 8.3.5 implies F(Tn) ⊃ FT for all n. To prove the other inclusion,
let A ∈ ∩F(Tn). Since A ∩ {Tn < t} ∈ Ft and Tn ↓ T , it follows that A ∩ {T <

t} ∈ Ft . �

The last result allows you to prove something that is obvious from the verbal
definition.

Exercise 8.3.7. BS ∈ FS , that is, the value of BS is measurable with respect to
the information known at time S! To prove this, let Sn = ([2nS] + 1)/2n be the
stopping times defined in Exercise 8.3.1. Show B(Sn) ∈ FSn

, then let n → ∞ and
use Theorem 8.3.6.

We are now ready to state the strong Markov property, which says that the Markov
property holds at stopping times. It is interesting that the notion of Brownian
motion dates to the the very beginning of the 20th century, but the first proofs of
the strong Markov property were given independently by Hunt (1956) and Dynkin
and Yushkevich (1956). Hunt writes, “Although mathematicians use this extended
Markoff property, at least as a heuristic principle, I have nowhere found it discussed
with rigor.”

Theorem 8.3.7. Strong Markov property. Let (s, ω) → Ys(ω) be bounded and
R × C measurable. If S is a stopping time, then for all x ∈ Rd

Ex(YS ◦ θS |FS) = EB(S)YS on {S < ∞}

where the right-hand side is the function ϕ(x, t) = ExYt evaluated at x = B(S),
t = S.

Remark. The only facts about Brownian motion used here are that (i) it is a Markov
process, and (ii) if f is bounded and continuous then x → Exf (Bt ) is continuous.
In Markov process theory, (ii) is called the Feller property. While Hunt’s proof
only applies to Brownian motion, Dynkin and Yushkevich proved the result in this
generality.

Proof. We first prove the result under the assumption that there is a sequence
of times tn ↑ ∞, so that Px(S < ∞) =∑Px(S = tn). In this case, the proof is
basically the same as the proof of Theorem 6.3.4. We break things down according
to the value of S, apply the Markov property, and put the pieces back together. If
we let Zn = Ytn(ω) and A ∈ FS , then

Ex(YS ◦ θS ; A ∩ {S < ∞}) =
∞∑

n=1

Ex(Zn ◦ θtn ; A ∩ {S = tn})
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Now if A ∈ FS , A ∩ {S = tn} = (A ∩ {S ≤ tn}) − (A ∩ {S ≤ tn−1}) ∈ Ftn , so it
follows from the Markov property that the above sum is

=
∞∑

n=1

Ex(EB(tn)Zn; A ∩ {S = tn}) = Ex(EB(S)YS ; A ∩ {S < ∞})

To prove the result in general, we let Sn = ([2nS] + 1)/2n be the stopping time
defined in Exercise 8.3.1. To be able to let n → ∞, we restrict our attention to Y ’s
of the form

Ys(ω) = f0(s)
n∏

m=1

fm(ω(tm)) (8.3.1)

where 0 < t1 < · · · < tn and f0, . . . , fn are bounded and continuous. If f is
bounded and continuous then the dominated convergence theorem implies that

x →
∫

dy pt (x, y)f (y)

is continuous. From this and induction, it follows that

ϕ(x, s) = ExYs = f0(s)
∫

dy1 pt1 (x, y1)f1(y1)

. . .

∫
dyn ptn−tn−1 (yn−1, yn)fn(yn)

is bounded and continuous.
Having assembled the necessary ingredients, we can now complete the proof.

Let A ∈ FS . Since S ≤ Sn, Theorem 8.3.5 implies A ∈ F(Sn). Applying the special
case proved above to Sn and observing that {Sn < ∞} = {S < ∞} gives

Ex(YSn
◦ θSn

; A ∩ {S < ∞}) = Ex(ϕ(B(Sn), Sn); A ∩ {S < ∞})

Now, as n → ∞, Sn ↓ S, B(Sn) → B(S), ϕ(B(Sn), Sn) → ϕ(B(S), S) and

YSn
◦ θSn

→ YS ◦ θS

so the bounded convergence theorem implies that the result holds when Y has the
form given in (8.3.1).

To complete the proof now, we will apply the monotone class theorem. As in the
proof of Theorem 8.2.1, we let H be the collection of Y for which

Ex(YS ◦ θS ; A) = Ex(EB(S)YS ; A) for all A ∈ FS

and it is easy to see that (ii) and (iii) hold. This time, however, we take A to be the
sets of the form A = G0 × {ω : ω(sj ) ∈ Gj, 1 ≤ j ≤ k}, where the Gj are open
sets. To verify (i), we note that if Kj = Gc

j and f n
j (x) = 1 ∧ nρ(x, Kj ), where
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ρ(x, K) = inf{|x − y| : y ∈ K} then f n
j are continuous functions with f n

j ↑ 1Gj

as n ↑ ∞. The facts that

Yn
s (ω) = f n

0 (s)
k∏

j=1

f n
j (ω(sj )) ∈ H

and (iii) holds for H imply that 1A ∈ H. This verifies (i) in the monotone class
theorem and completes the proof. �

8.4 Path Properties

In this section, we will use the strong Markov property to derive properties of the
zero set {t : Bt = 0}, the hitting times Ta = inf{t : Bt = a}, and max0≤s≤t Bs for
one-dimensional Brownian motion.

0.8 
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−0.2 

−0.4

0 1

Figure 8.2. Simulation of one-dimensional Brownian motion.

8.4.1 Zeros of Brownian Motion

Let Rt = inf{u > t : Bu = 0} and let T0 = inf{u > 0 : Bu = 0}. Now Theorem
8.2.9 implies Px(Rt < ∞) = 1, so B(Rt ) = 0, and the strong Markov property and
Theorem 8.2.5 imply

Px(T0 ◦ θRt
> 0|FRt

) = P0(T0 > 0) = 0

Taking expected value of the last equation, we see that

Px(T0 ◦ θRt
> 0 for some rational t) = 0

From this, it follows that if a point u ∈ Z(ω) ≡ {t : Bt (ω) = 0} is isolated on
the left (i.e., there is a rational t < u so that (t, u) ∩ Z(ω) = ∅), then it is, with
probability one, a decreasing limit of points in Z(ω). This shows that the closed
set Z(ω) has no isolated points and hence must be uncountable. For the last step,
see Hewitt and Stromberg (1965), p. 72.
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If we let |Z(ω)| denote the Lebesgue measure of Z(ω), then Fubini’s theorem
implies

Ex(|Z(ω)| ∩ [0, T ]) =
∫ T

0
Px(Bt = 0) dt = 0

So Z(ω) is a set of measure zero.
The last four observations show that Z is like the Cantor set that is obtained

by removing (1/3, 2/3) from [0, 1] and then repeatedly removing the middle third
from the intervals that remain. The Cantor set is bigger however. Its Hausdorff
dimension is log 2/ log 3, whereas Z has dimension 1/2.

8.4.2 Hitting Times

Theorem 8.4.1. Under P0, {Ta , a ≥ 0} has stationary independent increments.

Proof. The first step is to notice that if 0 < a < b, then

Tb ◦ θTa
= Tb − Ta,

so if f is bounded and measurable, the strong Markov property, 8.3.7, and transla-
tion invariance imply

E0
(
f (Tb − Ta)

∣∣FTa

) = E0
(
f (Tb) ◦ θTa

∣∣FTa

)
= Eaf (Tb) = E0f (Tb−a)

To show that the increments are independent, let a0 < a1 · · · < an, let fi , 1 ≤ i ≤ n

be bounded and measurable, and let Fi = fi(Tai
− Tai−1 ). Conditioning on FTan−1

and using the preceding calculation, we have

E0

(
n∏

i=1

Fi

)
= E0

(
n−1∏
i=1

Fi · E0(Fn|FTan−1
)

)
= E0

(
n−1∏
i=1

Fi

)
E0Fn

By induction, it follows that E0
∏n

i=1 Fi =∏n
i=1 E0Fi , which implies the desired

conclusion. �

The scaling relation (8.1.1) implies

Ta
d= a2T1 (8.4.1)

Combining Theorem 8.4.1 and (8.4.1), we see that tk = Tk − Tk−1 are i.i.d. and

t1 + · · · + tn

n2
→ T1

so using Theorem 3.7.4, we see that Ta has a stable law. Since we are dividng by
n2 and Ta ≥ 0, the index α = 1/2 and the skewness parameter κ = 1; see (3.7.11).
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Without knowing the theory mentioned in the previous paragraph, it is easy to
determine the Laplace transform

ϕa(λ) = E0 exp(−λTa) for a ≥ 0

and reach the same conclusion. To do this, we start by observing that Theo-
rem 8.4.1 implies

ϕx(λ)ϕy(λ) = ϕx+y(λ).

It follows easily from this that

ϕa(λ) = exp(−ac(λ)) (8.4.2)

Proof. Let c(λ) = − log ϕ1(λ) so (8.4.2) holds when a = 1. Using the previous
identity with x = y = 2−m and induction gives the result for a = 2−m, m ≥ 1.
Then, letting x = k2−m and y = 2−m, we get the result for a = (k + 1)2−m with
k ≥ 1. Finally, to extend to a ∈ [0, ∞), note that a → φa(λ) is decreasing. �

To identify c(λ), we observe that (8.4.1) implies

E exp(−Ta) = E exp(−a2T1)

so ac(1) = c(a2), i.e., c(λ) = c(1)
√

λ. Since all of our arguments also apply to
σBt , we cannot hope to compute c(1). Theorem 8.5.7 will show

E0(exp(−λTa)) = exp(−a
√

2λ) (8.4.3)

Our next goal is to compute the distribution of the hitting times Ta . This appli-
cation of the strong Markov property shows why we want to allow the function Y

that we apply to the shifted path to depend on the stopping time S.

Example 8.4.1. Reflection principle. Let a > 0 and let Ta = inf{t : Bt = a}.
Then

P0(Ta < t) = 2P0(Bt ≥ a) (8.4.4)

Intuitive proof. We observe that if Bs hits a at some time s < t , then the strong
Markov property implies that Bt − B(Ta) is independent of what happened before
time Ta . The symmetry of the normal distribution and Pa(Bu = a) = 0 for u > 0
then imply (see Figure 8.3 for a picture)

P0(Ta < t, Bt > a) = 1

2
P0(Ta < t) (8.4.5)

Rearranging the last equation and using {Bt > a} ⊂ {Ta < t} gives

P0(Ta < t) = 2P0(Ta < t, Bt > a) = 2P0(Bt > a)
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Figure 8.3. Proof by picture of the reflection principle.

Proof. To make the intuitive proof rigorous, we only have to prove (8.4.5). To
extract this from the strong Markov property, Theorem 8.3.7, we let

Ys(ω) =
{

1 if s < t , ω(t − s) > a

0 otherwise

We do this so that if we let S = inf{s < t : Bs = a} with inf ∅ = ∞, then

YS(θSω) =
{

1 if S < t , Bt > a

0 otherwise

and the strong Markov property implies

E0(YS ◦ θS |FS) = ϕ(BS, S) on {S < ∞} = {Ta < t}
where ϕ(x, s) = ExYs . BS = a on {S < ∞} and ϕ(a, s) = 1/2 if s < t , so taking
expected values gives

P0(Ta < t, Bt ≥ a) = E0(YS ◦ θS ; S < ∞)

= E0(E0(YS ◦ θS |FS); S < ∞) = E0(1/2; Ta < t)

which proves (8.4.5). �

Exercise 8.4.1. Generalize the proof of (8.4.5) to conclude that if u < v ≤ a, then

P0(Ta < t, u < Bt < v) = P0(2a − v < Bt < 2a − u) (8.4.6)

This should be obvious from the picture in Figure 8.3. Your task is to extract this
from the strong Markov property.

Letting (u, v) shrink down to x in (8.4.6), we have for a < x

P0(Ta < t, Bt = x) = pt (0, 2a − x)

P0(Ta > t, Bt = x) = pt (0, x) − pt (0, 2a − x) (8.4.7)
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that is, the (subprobability) density for Bt on the two indicated events. Since
{Ta < t} = {Mt > a}, differentiating with respect to a gives the joint density

f(Mt,Bt )(a, x) = 2(2a − x)√
2πt3

e−(2a−x)2/2t

Using (8.4.4), we can compute the probability density of Ta . We begin by noting
that

P (Ta ≤ t) = 2 P0(Bt ≥ a) = 2
∫ ∞

a

(2πt)−1/2 exp(−x2/2t)dx

then change variables x = (t1/2a)/s1/2 to get

P0(Ta ≤ t) = 2
∫ 0

t

(2πt)−1/2 exp(−a2/2s)
(−t1/2a/2s3/2

)
ds

=
∫ t

0
(2πs3)−1/2a exp(−a2/2s) ds (8.4.8)

Using the last formula, we can compute:

Example 8.4.2. The distribution of L = sup{t ≤ 1 : Bt = 0}. By (8.2.4),

P0(L ≤ s) =
∫ ∞

−∞
ps(0, x)Px(T0 > 1 − s) dx

= 2
∫ ∞

0
(2πs)−1/2 exp(−x2/2s)

∫ ∞

1−s

(2πr3)−1/2x exp(−x2/2r) dr dx

= 1

π

∫ ∞

1−s

(sr3)−1/2
∫ ∞

0
x exp(−x2(r + s)/2rs) dx dr

= 1

π

∫ ∞

1−s

(sr3)−1/2rs/(r + s) dr

Our next step is to let t = s/(r + s) to convert the integral over r ∈ [1 − s,∞) into
one over t ∈ [0, s]. dt = −s/(r + s)2dr , so to make the calculations easier we first
rewrite the integral as

= 1

π

∫ ∞

1−s

(
(r + s)

rs

2)1/2
s

(r + s)2
dr

and then change variables to get

P0(L ≤ s) = 1

π

∫ s

0
(t(1 − t))−1/2 dt = 2

π
arcsin(

√
s) (8.4.9)

The arcsin may remind the reader of the limit theorem for L2n = sup{m ≤ 2n :
Sm = 0} given in Theorem 4.3.5. We will see in Section 8.6 that our new result is
a consequence of the old one.
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Exercise 8.4.2. Use (8.2.3) to show that R = inf{t > 1 : Bt = 0} has probability
density

P0(R = 1 + t) = 1/(πt1/2(1 + t))

8.4.3 Lévy’s Modulus of Continuity

Let osc(δ) = sup{|Bs − Bt | : s, t ∈ [0, 1], |t − s| < δ}.

Theorem 8.4.2. With probability 1,

lim sup
δ→0

osc(δ)/(δ log(1/δ))1/2 ≤ 6

Remark. The constant 6 is not the best possible because the end of the proof is
sloppy. Lévy (1937) showed

lim sup
δ→0

osc(δ)/(δ log(1/δ))1/2 =
√

2

See McKean (1969), pp. 14–16, or Itô and McKean (1965), pp. 36–38, where a
sharper result due to Chung, Erdös, and Sirao (1959) is proved. In contrast, if we
look at the behavior at a single point, Theorem 8.8.7 below shows

lim sup
t→0

|Bt |/
√

2t log log(1/t) = 1 a.s.

Proof. Let Im,n = [m2−n, (m + 1)2−n], and 
m,n = sup{|Bt − B(m2−n)| : t ∈
Im,n}. From (8.4.4) and the scaling relation, it follows that

P (
m,n ≥ a2−n/2) ≤ 4P (B(2−n) ≥ a2−n/2)

= 4P (B(1) ≥ a) ≤ 4 exp(−a2/2)

by Theorem 1.2.3 if a ≥ 1. If ε > 0, b = 2(1 + ε)(log 2), and an = (bn)1/2, then
the last result implies

P (
m,n ≥ an2−n/2 for some m ≤ 2n) ≤ 2n · 4 exp(−bn/2) = 4 · 2−nε

so the Borel-Cantelli lemma implies that if n ≥ N (ω), 
m,n ≤ (bn)1/22−n/2. Now
if s ∈ Im,n, s < t and |s − t | < 2−n, then t ∈ Im,n or Im+1,n. I claim that in either
case the triangle inequality implies

|Bt − Bs | ≤ 3(bn)1/22−n/2

To see this, note that the worst case is t ∈ Im+1,n, but even in this case

|Bt − Bs | ≤ |Bt − B((m + 1)2−n)|
+ |B((m + 1)2−n) − B(m2−n)| + |B(m2−n) − Bs |
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It follows from the last estimate that for 2−(n+1) ≤ δ < 2−n

osc(δ) ≤ 3(bn)1/22−n/2 ≤ 3(b log2(1/δ))1/2(2δ)1/2 = 6((1 + ε)δ log(1/δ))1/2

Recall b = 2(1 + ε) log 2 and observe exp((log 2)(log2 1/δ)) = 1/δ. �

8.5 Martingales

At the end of Section 5.7 we used martingales to study the hitting times of random
walks. The same methods can be used on Brownian motion, once we prove

Theorem 8.5.1. Let Xt be a right continuous martingale adapted to a right con-
tinuous filtration. If T is a bounded stopping time, then EXT = EX0.

Proof. Let n be an integer so that P (T ≤ n − 1) = 1. As in the proof of the strong
Markov property, let Tm = ([2mT ] + 1)/2m. Ym

k = X(k2−m) is a martingale with
respect to Fm

k = F(k2−m) and Sm = 2mTm is a stopping time for (Ym
k , Fm

k ), so by
Exercise 5.4.3,

X(Tm) = Ym
Sm

= E(Ym
n2m |Fm

Sm
) = E(Xn|F(Tm))

As m ↑ ∞, X(Tm) → X(T ) by right continuity and F(Tm) ↓ F(T ) by Theorem
8.3.6, so it follows from Theorem 5.6.3 that

X(T ) = E(Xn|F(T ))

Taking expected values gives EX(T ) = EXn = EX0, since Xn is a martingale.
�

Theorem 8.5.2. Bt is a martingale w.r.t. the σ -fields Ft defined in Section 8.2.

Note. We will use these σ -fields in all of the martingale results but will not mention
them explicitly in the statements.

Proof. The Markov property implies that

Ex(Bt |Fs) = EBs
(Bt−s) = Bs

since symmetry implies EyBu = y for all u ≥ 0. �

From Theorem 8.5.2, it follows immediately that we have

Theorem 8.5.3. If a < x < b, then Px(Ta < Tb) = (b − x)/(b − a).

Proof. Let T = Ta ∧ Tb. Theorem 8.2.8 implies that T < ∞ a.s. Using Theorems
8.5.1 and 8.5.2, it follows that x = ExB(T ∧ t). Letting t → ∞ and using the
bounded convergence theorem, it follows that

x = aPx(Ta < Tb) + b(1 − Px(Ta < Tb))

Solving for Px(Ta < Tb) now gives the desired result. �
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Example 8.5.1. Optimal doubling in backgammon (Keeler and Spencer, 1975).
In our idealization, backgammon is a Brownian motion starting at 1/2 run until it
hits 1 or 0, and Bt is the probability you will win given the events up to time t .
Initially, the “doubling cube” sits in the middle of the board and either player can
“double,” that is, tell the other player to play on for twice the stakes or give up and
pay the current wager. If a player accepts the double (that is, decides to play on),
she gets possession of the doubling cube and is the only one who can offer the next
double.

A doubling strategy is given by two numbers b < 1/2 < a, that is, offer a double
when Bt ≥ a and give up if the other player doubles and Bt < b. It is not hard to
see that for the optimal strategy, b∗ = 1 − a∗, and that when Bt = b∗, accepting
and giving up must have the same payoff. If you accept when your probability of
winning is b∗, then you lose 2 dollars when your probability hits 0, but you win
2 dollars when your probability of winning hits a∗, since at that moment you can
double and the other player gets the same payoff if they give up or play on. If giving
up or playing on at b∗ is to have the same payoff, we must have

−1 = b∗

a∗ · 2 + a∗ − b∗

a∗ · (−2)

Writing b∗ = c and a∗ = 1 − c and solving, we have −(1 − c) = 2c − 2(1 − 2c)
or 1 = 5c. Thus b∗ = 1/5 and a∗ = 4/5. In words you should offer a double if
your odds of winning are 80% and accept if they are ≥20%.

Theorem 8.5.4. B2
t − t is a martingale.

Proof. Writing B2
t = (Bs + Bt − B2)2 we have

Ex(B2
t |Fs) = Ex(B2

s + 2Bs(Bt − Bs) + (Bt − Bs)
2|Fs)

= B2
s + 2BsEx(Bt − Bs |Fs) + Ex((Bt − Bs)

2|Fs)

= B2
s + 0 + (t − s)

since Bt − Bs is independent of Fs and has mean 0 and variance t − s. �

Theorem 8.5.5. Let T = inf{t : Bt /∈ (a, b)}, where a < 0 < b.

E0T = −ab

Proof. Theorem 8.5.1 and 8.5.4 imply E0(B2(T ∧ t)) = E0(T ∧ t)). Letting t →
∞ and using the monotone convergence theorem gives E0(T ∧ t) ↑ E0T . Using
the bounded convergence theorem and Theorem 8.5.3, we have

E0B
2(T ∧ t) → E0B

2
T = a2 b

b − a
+ b2 −a

b − a
= ab

a − b

b − a
= −ab �

Theorem 8.5.6. exp(θBt − (θ2t/2)) is a martingale.
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Proof. Bringing exp(θBs) outside

Ex(exp(θBt )|Fs) = exp(θBs)E(exp(θ (Bt − Bs))|Fs)

= exp(θBs) exp(θ2(t − s)/2)

since Bt − Bs is independent of Fs and has a normal distribution with mean 0 and
variance t − s. �

Theorem 8.5.7. If Ta = inf{t : Bt = a} then E0 exp(−λT a) = exp(−a
√

2λ).

Proof. Theorems 8.5.1 and 8.5.6 imply that 1 = E0 exp(θB(T ∧ t) − θ2(Ta ∧
t)/2). Taking θ = √

2λ, letting t → ∞, and using the bounded convergence theo-
rem gives 1 = E0 exp(a

√
2λ − λTa). �

Exercise 8.5.1. Let T = inf{Bt �∈ (−a, a)}. Show that

E exp(−λT ) = 1/ cosh(a
√

2λ).

Exercise 8.5.2. The point of this exercise is to get information about the amount
of time it takes Brownian motion with drift −b, Xt ≡ Bt − bt to hit level a. Let
τ = inf{t : Bt = a + bt}, where a > 0. (i) Use the martingale exp(θBt − θ2t/2)
with θ = b + (b2 + 2λ)1/2 to show

E0 exp(−λτ ) = exp(−a{b + (b2 + 2λ)1/2})
Letting λ → 0 gives P0(τ < ∞) = exp(−2ab).

Exercise 8.5.3. Let σ = inf{t : Bt /∈ (a, b)} and let λ > 0. Use the strong Markov
property to show

Ex exp(−λTa) = Ex(e−λσ ; Ta < Tb) + Ex(e−λσ ; Tb < Ta)Eb exp(−λTa)

(ii) Interchange the roles of a and b to get a second equation, use Theorem 8.5.7,
and solve to get

Ex(e−λT ; Ta < Tb) = sinh(
√

2λ(b − x))/ sinh(
√

2λ(b − a))

Ex(e−λT ; Tb < Ta) = sinh(
√

2λ(x − a))/ sinh(
√

2λ(b − a))

Theorem 8.5.8. If u(t, x) is a polynomial in t and x with

∂u

∂t
+ 1

2

∂2u

∂x2
= 0 (8.5.1)

then u(t, Bt ) is a martingale.
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Proof. Let pt (x, y) = (2πt)−1/2 exp(−(y − x)2/2t). The first step is to check that
pt satisfies the heat equation: ∂pt/∂t = (1/2)∂2pt/∂y

2.

∂p

∂t
= −1

2
2π (2πt)−1/2 exp(−(y −x)2/2t)+ (2πt)−1/2 (y −x)2

2t2
exp(−(y −x)2/2t)

∂p

∂y
= −(2πt)−1/2 · y − x

2t
exp(−(y − x)2/2t)

∂2p

∂y2
= − 1

2t
(2πt)−1/2 exp(−(y − x)2/2t)+ (2πt)−1/2 (y − x)2

4t2
exp(−(y − x)2/2t)

Interchanging ∂/∂t and
∫

, and using the heat equation

∂

∂t
Exu(t, Bt ) =

∫
∂

∂t
(pt (x, y)u(t, y)) dy

=
∫

1

2

∂

∂y2
pt (x, y)u(t, y) + pt (x, y)

∂

∂t
u(t, y) dy

Integrating by parts twice the above

=
∫

pt (x, y)

(
∂

∂t
+ 1

2

∂

∂y2

)
u(t, y) dy = 0

Since u(t, y) is a polynomial, there is no question about the convergence of inte-
grals and there is no contribution from the boundary terms when we integrate by
parts. �

Examples of functions that satisfy (8.5.1) are exp(θx − θ2t/2), x, x2 − t , x3 −
3tx, x4 − 6x2t + 3t2 . . .

Theorem 8.5.9. If T = inf{t : Bt /∈ (−a, a)} then ET 2 = 5a4/3.

Proof. Theorem 8.5.1 implies

E(B(T ∧ t)4 − 6(T ∧ t)B(T ∧ t)2) = −3E(T ∧ t)2.

From Theorem 8.5.5, we know that ET = a2 < ∞. Letting t → ∞ and using the
dominated convergence theorem on the left-hand side and the monotone conver-
gence theorem on the right gives

a4 − 6a2ET = −3E(T 2)

Plugging in ET = a2 gives the desired result. �

Exercise 8.5.4. If T = inf{t : Bt /∈ (a, b)}, where a < 0 < b and a �= −b, then T

and B2
T are not independent, so we cannot calculate ET 2 as we did in the proof

of Theorem 8.5.9. Use the Cauchy-Schwarz inequality to estimate E(T B2
T ) and

conclude ET 2 ≤ C E(B4
T ), where C is independent of a and b.
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Exercise 8.5.5. Find a martingale of the form B6
t − c1tB

4
t + c2t

2B2
t − c3t

3 and
use it to compute the third moment of T = inf{t : Bt /∈ (−a, a)}.

Exercise 8.5.6. Show that (1 + t)−1/2 exp(B2
t /2(1 + t)) is a martingale and use

this to conclude that lim supt→∞ Bt/((1 + t) log(1 + t))1/2 ≤ 1/
√

2 a.s.

8.5.1 Multidimensional Brownian Motion

Let 
f =∑d
i=1 ∂2f/∂x2

i be the Laplacian of f . The starting point for our inves-
tigation is to note that repeating the calculation from the proof of Theorem 8.5.8
shows that in d > 1 dimensions,

pt (x, y) = (2πt)−d/2 exp(−|y − x|2/2t)

satisfies the heat equation ∂pt/∂t = (1/2)
ypt , where the subscript y on δ indicates
that the Laplacian acts in the y variable.

Theorem 8.5.10. Suppose v ∈ C2, that is, all first- and second-order partial
derivatives exist and are continuous, and v has compact support. Then

v(Bt ) −
∫ t

0

1

2

v(Bs) ds is a martingale.

Proof. Repeating the proof of Theorem 8.5.8,

∂

∂t
Exv(Bt ) =

∫
v(y)

∂

∂t
pt (x, y) dy

=
∫

1

2
v(y)(
ypt (x, y)) dy

=
∫

1

2
pt (x, y)
yv(y) dy

the calculus steps being justified by our assumptions. �

We will use this result for two special cases:

ϕ(x) =
{

log |x| d = 2

|x|2−d d ≥ 3

We leave it to the reader to check that in each case 
ϕ = 0. Let Sr = inf{t : |Bt | =
r}, r < R, and τ = Sr ∧ SR. The first detail is to note that Theorem 8.2.8 implies
that if |x| < R, then Px(SR < ∞). Once we know this, we can conclude

Theorem 8.5.11. If |x| < R, then ExSR = (R2 − |x|2)/d.



8.5 Martingales 381

Proof. It follows from Theorem 8.5.4 that |Bt |2 − dt =∑d
i=1(Bi

t )2 − t is a mar-
tingale. Theorem 8.5.1 implies |x|2 = E|BSR∧t |2 − dE(SR ∧ t). Letting t → ∞
gives the desired result. �

Lemma 8.5.12. ϕ(x) = Exϕ(Bτ )

Proof. Define ψ(x) = g(|x|) to be C2 and have compact support, and have ψ(x) =
φ(x) when r < |x| < R. Theorem 8.5.10 implies that ψ(x) = Exψ(Bt∧τ ). Letting
t → ∞ now gives the desired result. �

Lemma 8.5.12 implies that

ϕ(x) = ϕ(r)Px(Sr < SR) + ϕ(R)(1 − Px(Sr < SR))

where ϕ(r) is short for the value of ϕ(x) on {x : |x| = r}. Solving now gives

Px(Sr < SR) = ϕ(R) − ϕ(x)

ϕ(R) − ϕ(r)
(8.5.2)

In d = 2, the last formula says

Px(Sr < SR) = log R − log |x|
log R − log r

(8.5.3)

If we fix r and let R → ∞ in (8.5.3), the right-hand sidegoes to 1. So

Px(Sr < ∞) = 1 for any x and any r > 0

It follows that two-dimensional Brownian motion is recurrent inthe sense that if
G is any open set, then Px(Bt ∈ G i.o.) ≡ 1.

If we fix R, let r → 0 in (8.5.3), and let S0 = inf{t > 0 : Bt = 0}, then for x �= 0

Px(S0 < SR) ≤ lim
r→0

Px(Sr < SR) = 0

Since this holds for all R and since the continuity of Brownian pathsimplies SR ↑ ∞
as R ↑ ∞, we have Px(S0 < ∞) = 0 for all x �= 0. To extend the last result to
x = 0, we note that the Markov property implies

P0(Bt = 0 for some t ≥ ε) = E0[PBε
(T0 < ∞)] = 0

for all ε > 0, so P0(Bt = 0 for some t > 0) = 0, and thanks to our definition of
S0 = inf{t > 0 : Bt = 0}, we have

Px(S0 < ∞) = 0 for all x (8.5.4)

Thus, in d ≥ 2 Brownian motion will not hit 0 at a positive time even if it starts
there.

For d ≥ 3, formula (8.5.2) says

Px(Sr < SR) = R2−d − |x|2−d

R2−d − r2−d
(8.5.5)

There is no point in fixing R and letting r → 0, here. The fact that two-dimensional
Brownian motion does not hit 0 implies that three-dimensional Brownian motion
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does not hit 0 and indeed will not hit the line {x : x1 = x2 = 0}. If we fix r and let
R → ∞ in (8.5.5), we get

Px(Sr < ∞) = (r/|x|)d−2 < 1 if |x| > r (8.5.6)

From the last result it follows easily that for d ≥ 3, Brownian motionis transient,
that is, it does not return infinitely often to any bounded set.

Theorem 8.5.13. As t → ∞, |Bt | → ∞ a.s.

Proof. Let An = {|Bt | > n1−ε for all t ≥ Sn}. The strong Markov property implies

Px(Ac
n) = Ex(PB(Sn)(Sn1−ε < ∞)) = (n1−ε/n)d−2 → 0

as n → ∞. Now lim sup An = ∩∞
N=1 ∪∞

n=N An has

P (lim sup An) ≥ lim sup P (An) = 1

So infinitely often the Brownian path never returns to {x : |x| ≤ n1−ε} after time
Sn, and this implies the desired result. �

The scaling relation (8.1.1) implies that S√
t =d tS1, so the proof of Theorem

8.5.13 suggests that

|Bt |/t (1−ε)/2 → ∞
Dvoretsky and Erdös (1951) have proved the following result about how fast
Brownian motion goes to ∞ in d ≥ 3.

Theorem 8.5.14. Suppose g(t) is positive and decreasing. Then

P0(|Bt | ≤ g(t)
√

t i.o. as t ↑ ∞) = 1 or 0

according as
∫∞

g(t)d−2/t dt = ∞ or < ∞.

Here the absence of the lower limit implies that we are only concerned with the
behavior of the integral “near ∞.” A little calculus shows that∫ ∞

t−1 log−α t dt = ∞ or < ∞

according as α ≤ 1 or α > 1, so Bt goes to ∞ faster than
√

t/(log t)α/d−2 for any
α > 1. Note that in view of the Brownian scaling relationship Bt =d t1/2B1, we
could not sensibly expect escape at a faster rate than

√
t . The last result shows that

the escape rate is not much slower.

8.6 Donsker’s Theorem

Let X1, X2, . . . be i.i.d. with EX = 0 and EX2 = 1, and let Sn = X1 + · · · + Xn.
In this section, we will show that as n → ∞, S(nt)/n1/2, 0 ≤ t ≤ 1 converges in
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distribution to Bt , 0 ≤ t ≤ 1, a Brownian motion starting from B0 = 0. We will
say precisely what the last sentence means below. The key to its proof is:

Theorem 8.6.1. Skorokhod’s representation theorem. If EX = 0 and EX2 <

∞, then there is a stopping time T for Brownian motion so that BT =d X and
ET = EX2.

Remark. The Brownian motion in the statement and all the Brownian motions in
this section have B0 = 0.

Proof. Suppose first that X is supported on {a, b}, where a < 0 < b. Since EX =
0, we must have

P (X = a) = b

b − a
P (X = b) = −a

b − a

If we let T = Ta,b = inf{t : Bt /∈ (a, b)}, then Theorem 8.5.3 implies BT =d X and
Theorem 8.5.5 tells us that

ET = −ab = EB2
T

To treat the general case, we will write F (x) = P (X ≤ x) as a mixture of two
point distributions with mean 0. Let

c =
∫ 0

−∞
(−u) dF (u) =

∫ ∞

0
v dF (v)

If ϕ is bounded and ϕ(0) = 0, then using the two formulas for c,

c

∫
ϕ(x) dF (x) =

(∫ ∞

0
ϕ(v) dF (v)

)∫ 0

−∞
(−u)dF (u)

+
(∫ 0

−∞
ϕ(u) dF (u)

)∫ ∞

0
v dF (v)

=
∫ ∞

0
dF (v)

∫ 0

−∞
dF (u) (vϕ(u) − uϕ(v))

So we have∫
ϕ(x) dF (x) = c−1

∫ ∞

0
dF (v)

∫ 0

−∞
dF (u)(v − u)

{
v

v − u
ϕ(u) + −u

v − u
ϕ(v)

}

The last equation gives the desired mixture. If we let (U,V ) ∈ R2 have

P {(U,V ) = (0, 0)} = F ({0})

P ((U,V ) ∈ A) = c−1
∫∫

(u,v)∈A

dF (u) dF (v) (v − u) (8.6.1)

for A ⊂ (−∞, 0) × (0, ∞) and define probability measures by µ0,0({0}) = 1 and

µu,v({u}) = v

v − u
µu,v({v}) = −u

v − u
for u < 0 < v
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then ∫
ϕ(x) dF (x) = E

(∫
ϕ(x) µU,V (dx)

)

We proved the last formula when ϕ(0) = 0, but it is easy to see that it is true in
general. Letting ϕ ≡ 1 in the last equation shows that the measure defined in (8.6.1)
has total mass 1.

From the calculations above it follows that if we have (U,V ) with distribution
given in (8.6.1) and an independent Brownian motion defined on the same space,
then B(TU,V ) =d X. Sticklers for detail will notice that TU,V is not a stopping time
for Bt since (U,V ) is independent of the Brownian motion. This is not a serious
problem since if we condition on U = u and V = v, then Tu,v is a stopping time,
and this is good enough for all the calculations below. For instance, to compute
E(TU,V ) we observe

E(TU,V ) = E{E(TU,V |(U,V ))} = E(−UV )

by Theorem 8.5.5. (8.6.1) implies

E(−UV ) =
∫ 0

−∞
dF (u)(−u)

∫ ∞

0
dF (v)v(v − u)c−1

=
∫ 0

−∞
dF (u)(−u)

{
−u +

∫ ∞

0
dF (v)c−1v2

}

since

c =
∫ ∞

0
v dF (v) =

∫ 0

−∞
(−u) dF (u)

Using the second expression for c now gives

E(TU,V ) = E(−UV ) =
∫ 0

−∞
u2dF (u) +

∫ ∞

0
v2dF (v) = EX2 �

Exercise 8.6.1. Use Exercise 8.5.4 to conclude that E(T 2
U,V ) ≤ CEX4.

Remark. One can embed distributions in Brownian motion without adding random
variables to the probability space: see Dubins (1968), Root (1969), or Sheu (1986).

From Theorem 8.6.1, it is only a small step to:

Theorem 8.6.2. Let X1, X2, . . . be i.i.d. with a distribution F , which has mean
0 and variance 1, and let Sn = X1 + · · · + Xn. There is a sequence of stopping
times T0 = 0, T1, T2, . . . such that Sn =d B(Tn) and Tn − Tn−1 are independent and
identically distributed.
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Proof. Let (U1, V1), (U2, V2), . . . be i.i.d. and have distribution given in (8.6.1),
and let Bt be an independent Brownian motion. Let T0 = 0, and for n ≥ 1, let

Tn = inf{t ≥ Tn−1 : Bt − B(Tn−1) /∈ (Un, Vn)} �

As a corollary of Theorem 8.6.2, we get:

Theorem 8.6.3. Central limit theorem. Under the hypotheses of Theorem 8.6.2,
Sn/

√
n ⇒ χ , where χ has the standard normal distribution.

Proof. If we let Wn(t) = B(nt)/
√

n =d Bt by Brownian scaling, then

Sn/
√

n
d= B(Tn)/

√
n = Wn(Tn/n)

The weak law of large numbers implies that Tn/n → 1 in probability. It should be
clear from this that Sn/

√
n ⇒ B1. To fill in the details, let ε > 0, pick δ so that

P (|Bt − B1| > ε for some t ∈ (1 − δ, 1 + δ)) < ε/2

then pick N large enough so that for n ≥ N , P (|Tn/n − 1| > δ) < ε/2. The last
two estimates imply that for n ≥ N

P (|Wn(Tn/n) − Wn(1)| > ε) < ε

Since ε is arbitrary, it follows that Wn(Tn/n) − Wn(1) → 0 in probability. Apply-
ing the converging together lemma, Exercise 3.2.13, with Xn = Wn(1) and
Zn = Wn(Tn/n), the desired result follows. �

Our next goal is to prove a strengthening of the central limit theorem that allows
us to obtain limit theorems for functionals of {Sm : 0 ≤ m ≤ n}, for example:
max0≤m≤n Sm or |{m ≤ n : Sm > 0}|. Let C[0, 1] = {continuous ω : [0, 1] → R}.
When equipped with the norm ‖ω‖ = sup{|ω(s)| : s ∈ [0, 1]}, C[0, 1] becomes a
complete separable metric space. To fit C[0, 1] into the framework of Section 3.9,
we want our measures defined on B = the σ -field generated by the open sets.
Fortunately,

Lemma 8.6.4. B is the same as C the σ -field generated by the finite dimensional
sets {ω : ω(ti) ∈ Ai}.

Proof. Observe that if ξ is a given continuous function,

{ω : ‖ω − ξ‖ ≤ r − 1/n} = ∩q{ω : |ω(q) − ξ (q)| ≤ r − 1/n}
where the intersection is over all rationals in [0,1]. Letting n → ∞ shows {ω :
‖ω − ξ‖ < r} ∈ C and B ⊂ C. To prove the reverse inclusion, observe that if the
Ai are open, the finite dimensional set {ω : ω(ti) ∈ Ai} is open, so the π − λ

theorem implies B ⊃ C. �
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A sequence of probability measures µn on C[0, 1] is said to converge weakly
to a limit µ if for all bounded continuous functions ϕ : C[0, 1] → R,

∫
ϕ dµn →∫

ϕ dµ. Let N be the nonnegative integers and let

S(u) =
{

Sk if u = k ∈ N

linear on [k, k + 1] for k ∈ N

We will prove:

Theorem 8.6.5. Donsker’s theorem. Under the hypotheses of Theorem 8.6.3,

S(n·)/√n ⇒ B(·),
that is, the associated measures on C[0, 1] converge weakly.

To motivate ourselves for the proof, we will begin by extracting several corol-
laries. The key to each one is a consequence of the following result, which follows
from Theorem 3.9.1.

Theorem 8.6.6. If ψ : C[0, 1] → R has the property that it is continuous P0-
a.s., then

ψ(S(n·)/√n) ⇒ ψ(B(·))

Example 8.6.1. Let ψ(ω) = ω(1). In this case, ψ : C[0, 1] → R is continuous and
Theorem 8.6.6 gives the central limit theorem.

Example 8.6.2. Maxima. Let ψ(ω) = max{ω(t) : 0 ≤ t ≤ 1}. Again, ψ : C[0,

1] → R is continuous. This time Theorem 8.6.6 implies

max
0≤m≤n

Sm/
√

n ⇒ M1 ≡ max
0≤t≤1

Bt

To complete the picture, we observe that by (8.4.4), the distribution of the right-hand
side is

P0(M1 ≥ a) = P0(Ta ≤ 1) = 2P0(B1 ≥ a)

Exercise 8.6.2. Suppose Sn is one-dimensional simple random walk and let

Rn = 1 + max
m≤n

Sm − min
m≤n

Sm

be the number of points visited by time n. Show that Rn/
√

n ⇒ a limit.

Example 8.6.3. Last 0 before time n. Let ψ(ω) = sup{t ≤ 1 : ω(t) = 0}. This
time, ψ is not continuous, for if ωε with ωε(0) = 0 is piecewise linear with slope 1
on [0, 1/3 + ε], −1 on [1/3 + ε, 2/3], and slope 1 on [2/3, 1], then ψ(ω0) = 2/3
but ψ(ωε) = 0 for ε > 0.
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It is easy to see that if ψ(ω) < 1 and ω(t) has positive and negative values in each
interval (ψ(ω) − δ, ψ(ω)), then ψ is continuous at ω. By arguments in Subsection
8.4.1, the last set has P0 measure 1. (If the zero at ψ(ω) was isolated on the left, it
would not be isolated on the right.) It follows that

sup{m ≤ n : Sm−1 · Sm ≤ 0}/n ⇒ L = sup{t ≤ 1 : Bt = 0}
The distribution of L is given in (8.4.9). The last result shows that the arcsine law,
Theorem 4.3.5, proved for simple random walks holds when the mean is 0 and
variance is finite.

Example 8.6.4. Occupation times of half-lines. Let

ψ(ω) = |{t ∈ [0, 1] : ω(t) > a}|.
The point ω ≡ a shows that ψ is not continuous, but it is easy to see that ψ is
continuous at paths ω with |{t ∈ [0, 1] : ω(t) = a}| = 0. Fubini’s theorem implies
that

E0|{t ∈ [0, 1] : Bt = a}| =
∫ 1

0
P0(Bt = a) dt = 0

so ψ is continuous P0-a.s. With a little work, Theorem 8.6.6 implies

|{m ≤ n : Sm > a
√

n}|/n ⇒ |{t ∈ [0, 1] : Bt > a}|

Proof. Application of Theorem 8.6.6 gives that for any a,

|{t ∈ [0, 1] : S(nt) > a
√

n}| ⇒ |{t ∈ [0, 1] : Bt > a}|
To convert this into a result about |{m ≤ n : Sm > a

√
n}|, we note that on

{maxm≤n |Xm| ≤ ε
√

n}, which by Chebyshev’s inequality has a probability → 1,
we have

|{t ∈ [0, 1] : S(nt) > (a + ε)
√

n}| ≤ 1

n
|{m ≤ n : Sm > a

√
n}|

≤ |{t ∈ [0, 1] : S(nt) > (a − ε)
√

n}|
Combining this with the first conclusion of the proof and using the fact that
b → |{t ∈ [0, 1] : Bt > b}| is continuous at b = a with probability 1, one arrives
easily at the desired conclusion. �

To compute the distribution of |{t ∈ [0, 1] : Bt > 0}|, observe that we proved in
Theorem 4.3.7 that if Sn =d −Sn and P (Sm = 0) = 0 for all m ≥ 1, for example,
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the Xi have a symmetric continuous distribution, then the left-hand side converges
to the arcsine law, so the right-hand side has that distribution and is the limit for any
random walk with mean 0 and finite variance. The last argument uses an idea called
the “invariance principle” that originated with Erdös and Kac (1946, 1947): the
asymptotic behavior of functionals of Sn should be the same as long as the central
limit theorem applies. Our final application is from the original paper of Donsker
(1951). Erdös and Kac (1946) give the limit distribution for the case k = 2.

Example 8.6.5. Let ψ(ω) = ∫[0,1] ω(t)kdt where k > 0 is an integer. ψ is contin-
uous, so applying Theorem 8.6.6 gives∫ 1

0
(S(nt)/

√
n)k dt ⇒

∫ 1

0
Bk

t dt

To convert this into a result about the original sequence, we begin by observing
that if x < y with |x − y| ≤ ε and |x|, |y| ≤ M , then

|xk − yk| ≤
∫ y

x

|z|k+1

k + 1
dz ≤ εMk+1

k + 1

From this, it follows that on

Gn(M) =
{

max
m≤n

|Xm| ≤ M−(k+2)√n, max
m≤n

|Sm| ≤ M
√

n

}

we have ∣∣∣∣∣
∫ 1

0
(S(nt)/

√
n)k dt − n−1−(k/2)

n∑
m=1

Sk
m

∣∣∣∣∣ ≤ 1

(k + 1)M

For fixed M , it follows from Chebyshev’s inequality, Example 8.6.2, and Theo-
rem 3.2.5 that

lim inf
n→∞ P (Gn(M)) ≥ P

(
max
0≤t≤1

|Bt | < M

)

The right-hand side is close to 0 if M is large, so∫ 1

0
(S(nt)/

√
n)k dt − n−1−(k/2)

n∑
m=1

Sk
m → 0

in probability, and it follows from the converging together lemma (Exercise 3.2.13)
that

n−1−(k/2)
n∑

m=1

Sk
m ⇒

∫ 1

0
Bk

t dt

It is remarkable that the last result holds under the assumption that EXi = 0 and
EX2

i = 1, that is, we do not need to assume that E|Xk
i | < ∞.
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Exercise 8.6.3. When k = 1, the last result says that if X1, X2, . . . are i.i.d. with
EXi = 0 and EX2

i = 1, then

n−3/2
n∑

m=1

(n + 1 − m)Xm ⇒
∫ 1

0
Btdt

(i) Show that the right-hand side has a normal distribution with mean 0 and variance
1/3. (ii) Deduce this result from the Lindeberg-Feller theorem.

Proof of Theorem 8.6.5. To simplify the proof and prepare for generalizations in
the next section, let Xn,m, 1 ≤ m ≤ n, be a triangular array of random variables,
Sn,m = Xn,1 + · · · + Xn,m and suppose Sn,m = B(τn

m). Let

Sn,(u) =
{

Sn,m if u = m ∈ {0, 1, . . . , n}
linear for u ∈ [m − 1, m] when m ∈ {1, . . . , n}

Lemma 8.6.7. If τn
[ns] → s in probability for each s ∈ [0, 1] then

‖Sn,(n·) − B(·)‖ → 0 in probability

To make the connection with the original problem, let Xn,m = Xm/
√

n and
define τn

1 , . . . , τ n
n so that (Sn,1, . . . , Sn,n) =d (B(τn

1 ), . . . , B(τn
n )). If T1, T2, . . . are

the stopping times defined in the proof of Theorem 8.6.3, Brownian scaling implies
τn
m =d Tm/n, so the hypothesis of Lemma 8.6.7 is satisfied.

Proof. The fact that B has continuous paths (and hence is uniformly continuous
on [0,1]) implies that if ε > 0 then there is a δ > 0 so that 1/δ is an integer and

(a) P (|Bt − Bs | < ε for all 0 ≤ s ≤ 1, |t − s| < 2δ) > 1 − ε

The hypothesis of Lemma 8.6.7 implies that if n ≥ Nδ, then

P (|τn
[nkδ] − kδ| < δ for k = 1, 2, . . . , 1/δ) ≥ 1 − ε

Since m → τn
m is increasing, it follows that if s ∈ ((k − 1)δ, kδ),

τn
[ns] − s ≥ τn

[n(k−1)δ] − kδ

τn
[ns] − s ≤ τn

[nkδ] − (k + 1)δ

so if n ≥ Nδ,

(b) P

(
sup

0≤s≤1
|τn

[ns] − s| < 2δ

)
≥ 1 − ε

When the events in (a) and (b) occur

(c) |Sn,m − Bm/n| < ε for all m ≤ n
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To deal with t = (m + θ )/n with 0 < θ < 1, we observe that

|Sn,(nt) − Bt | ≤ (1 − θ )|Sn,m − Bm/n| + θ |Sn,m+1 − B(m+1)/n|
+ (1 − θ )|Bm/n − Bt | + θ |B(m+1)/n − Bt |

Using (c) on the first two terms and (a) on the last two, we see that if n ≥ Nδ

and 1/n < 2δ, then ‖Sn,(n·) − B(·)‖ < 2ε with probability ≥ 1 − 2ε. Since ε is
arbitrary, the proof of Lemma 8.6.7 is complete. �

To get Theorem 8.6.5 now, we have to show:

Lemma 8.6.8. If ϕ is bounded and continuous, then Eϕ(Sn,(n·)) → Eϕ(B(·)).

Proof. For fixed ε > 0, let Gδ = {ω : if ‖ω − ω′‖ < δ then |ϕ(ω) − ϕ(ω′)| < ε}.
Since ϕ is continuous, Gδ ↑ C[0, 1] as δ ↓ 0. Let 
 = ‖Sn,(n·) − B(·)‖. The desired
result now follows from Lemma 8.6.7 and the trivial inequality

|Eϕ(Sn,(n·)) − Eϕ(B(·))| ≤ ε + (2 sup |ϕ(ω)|){P (Gc
δ) + P (
 ≥ δ)} �

To accommodate our final example, we need a trivial generalization of Theorem
8.6.5. Let C[0, ∞) = {continuous ω : [0, ∞) → R} and let C[0, ∞) be the σ -
field generated by the finite dimensional sets. Given a probability measure µ

on C[0, ∞), there is a corresponding measure πMµ on C[0, M] = {continuous
ω : [0, M] → R} (with C[0, M] the σ -field generated by the finite dimensional sets)
obtained by “cutting off the paths at time M.” Let (ψMω)(t) = ω(t) for t ∈ [0, M]
and let πMµ = µ ◦ ψ−1

M . We say that a sequence of probability measures µn on
C[0, ∞) converges weakly to µ if for all M , πMµn converges weakly to πMµ on
C[0, M], the last concept being defined by a trivial extension of the definitions for
M = 1. With these definitions, it is easy to conclude:

Theorem 8.6.9. S(n·)/√n ⇒ B(·), that is, the associated measures on C[0, ∞)
converge weakly.

Proof. By definition, all we have to show is that weak convergence occurs on
C[0, M] for all M < ∞. The proof of Theorem 8.6.5 works in the same way when 1
is replaced by M. �

Example 8.6.6. Let Nn = inf{m : Sm ≥ √
n} and T1 = inf{t : Bt ≥ 1}. Since

ψ(ω) = T1(ω) ∧ 1 is continuous P0 a.s. on C[0, 1] and the distribution of T1 is
continuous, it follows from Theorem 8.6.6 that for 0 < t < 1

P (Nn ≤ nt) → P (T1 ≤ t)

Repeating the last argument with 1 replaced by M and using Theorem 8.6.9 shows
that the last conclusion holds for all t.
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8.7 Empirical Distributions, Brownian Bridge

Let X1, X2, . . . be i.i.d. with distribution F . Theorem 2.4.7 shows that with proba-
bility 1, the empirical distribution

F̂n(x) = 1

n
|{m ≤ n : Xm ≤ x}|

converges uniformly to F (x). In this section, we will investigate the rate of con-
vergence when F is continuous. We impose this restriction so we can reduce to
the case of a uniform distribution on (0,1) by setting Yn = F (Xn). (See Exercise
1.2.4.) Since x → F (x) is nondecreasing and continuous and no observations land
in intervals of constancy of F , it is easy to see that if we let

Ĝn(y) = 1

n
|{m ≤ n : Ym ≤ y}|

then

sup
x

|F̂n(x) − F (x)| = sup
0<y<1

|Ĝn(y) − y|

For the rest of the section, then, we will assume Y1, Y2, . . . is i.i.d. uniform on (0,1).
To be able to apply Donsker’s theorem, we will transform the problem. Put the
observations Y1, . . . , Yn in increasing order: Un

1 < Un
2 < · · · < Un

n . I claim that

sup
0<y<1

Ĝn(y) − y = sup
1≤m≤n

m

n
− Un

m

inf
0<y<1

Ĝn(y) − y = inf
1≤m≤n

m − 1

n
− Un

m (8.7.1)

since the sup occurs at a jump of Ĝn and the inf right before a jump. For a picture,
see Figure 8.4.
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min

Figure 8.4. Picture proof of formulas in (8.7.1).

We will show that

Dn ≡ n1/2 sup
0<y<1

|Ĝn(y) − y|

has a limit, so the extra −1/n in the inf does not make any difference.
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Our third and final maneuver is to give a special construction of the order
statistics Un

1 < Un
2 · · · < Un

n . Let W1, W2, . . . be i.i.d. with P (Wi > t) = e−t and
let Zn = W1 + · · · + Wn.

Lemma 8.7.1. {Un
k : 1 ≤ k ≤ n} d= {Zk/Zn+1 : 1 ≤ k ≤ n}

Proof. We change variables v = r(t), where vi = ti/tn+1 for i ≤ n, vn+1 = tn+1.
The inverse function is

s(v) = (v1vn+1, . . . , vnvn+1, vn+1)

which has matrix of partial derivatives ∂si/∂vj given by⎛
⎜⎜⎜⎜⎜⎝

vn+1 0 . . . 0 v1

0 vn+1 . . . 0 v2
...

...
. . .

...
...

0 0 . . . vn+1 vn

0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎠

The determinant of this matrix is vn
n+1, so if we let W = (V1, . . . , Vn+1) =

r(Z1, . . . , Zn+1), the change of variables formula implies W has joint density

fW (v1, . . . , vn, vn+1) =
(

n∏
m=1

λe−λvn+1(vm−vm−1)

)
λe−λvn+1(1−vn)vn

n+1

To find the joint density of V = (V1, . . . , Vn), we simplify the preceding formula
and integrate out the last coordinate to get

fV (v1, . . . , vn) =
∫ ∞

0
λn+1vn

n+1e
−λvn+1 dvn+1 = n!

for 0 < v1 < v2 · · · < vn < 1, which is the desired joint density. �

We turn now to the limit law for Dn. As argued above, it suffices to consider

D′
n = n1/2 max

1≤m≤n

∣∣∣∣ Zm

Zn+1
− m

n

∣∣∣∣
= n

Zn+1
max

1≤m≤n

∣∣∣∣ Zm

n1/2
− m

n
· Zn+1

n1/2

∣∣∣∣
= n

Zn+1
max

1≤m≤n

∣∣∣∣Zm − m

n1/2
− m

n
· Zn+1 − n

n1/2

∣∣∣∣ (8.7.2)

If we let

Bn(t) =
{

(Zm − m)/n1/2 if t = m/n with m ∈ {0, 1, . . . , n}
linear on [(m − 1)/n, m/n]
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then

D′
n = n

Zn+1
max
0≤t≤1

∣∣∣∣Bn(t) − t

{
Bn(1) + Zn+1 − Zn

n1/2

}∣∣∣∣
The strong law of large numbers implies Zn+1/n → 1 a.s., so the first factor will
disappear in the limit. To find the limit of the second, we observe that Donsker’s
theorem, Theorem 8.6.5, implies Bn(·) ⇒ B(·), a Brownian motion, and computing
second moments shows

(Zn+1 − Zn)/n1/2 → 0 in probability

ψ(ω) = max0≤t≤1 |ω(t) − tω(1)| is a continuous function from C[0, 1] to R, so it
follows from Donsker’s theorem that:

Theorem 8.7.2. Dn ⇒ max0≤t≤1 |Bt − tB1|, where Bt is a Brownian motion start-
ing at 0.

Remark. Doob (1949) suggested this approach to deriving results of Kolmogorov
and Smirnov, which was later justified by Donsker (1952). Our proof follows
Breiman (1968).

To identify the distribution of the limit in Theorem 8.7.2, we will first prove

{Bt − tB1, 0 ≤ t ≤ 1} d= {Bt, 0 ≤ t ≤ 1|B1 = 0} (8.7.3)

a process we will denote by B0
t and call the Brownian bridge. The event B1 = 0

has probability 0, but it is easy to see what the conditional probability should mean.
If 0 = t0 < t1 < · · · < tn < tn+1 = 1, x0 = 0, xn+1 = 0, and x1, . . . , xn ∈ R, then

P (B(t1) = x1, . . . , B(tn) = xn|B(1) = 0)

= 1

p1(0, 0)

n+1∏
m=1

ptm−tm−1 (xm−1, xm) (8.7.4)

where pt (x, y) = (2πt)−1/2 exp(−(y − x)2/2t).

Proof of (8.7.3). Formula (8.7.4) shows that the f.d.d.’s of B0
t are multivariate

normal and have mean 0. Since Bt − tB1 also has this property, it suffices to show
that the covariances are equal. We begin with the easier computation. If s < t , then

E((Bs − sB1)(Bt − tB1)) = s − st − st + st = s(1 − t) (8.7.5)

For the other process, P (B0
s = x, B0

t = y) is

exp(−x2/2s)

(2πs)1/2
· exp(−(y − x)2/2(t − s))

(2π (t − s))1/2
· exp(−y2/2(1 − t))

(2π (1 − t))1/2
· (2π )1/2

= (2π )−1(s(t − s)(1 − t))−1/2 exp(−(ax2 + 2bxy + cy2)/2)
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where

a = 1

s
+ 1

t − s
= t

s(t − s)
b = − 1

t − s

c = 1

t − s
+ 1

1 − t
= 1 − s

(t − s)(1 − t)

Recalling the discussion at the end of Section 3.9 and noticing(
t

s(t−s)
−1

(t−s)
−1

(t−s)
1−s

(t−s)(1−t)

)−1

=
(

s(1 − s) s(1 − t)
s(1 − t) t(1 − t)

)

(multiply the matrices!) shows (8.7.3) holds. �

Our final step in investigating the limit distribution of Dn is to compute the
distribution of max0≤t≤1 |B0

t |. To do this, we first prove

Theorem 8.7.3. The density function of Bt on {Ta ∧ Tb > t} is

Px(Ta ∧ Tb > t, Bt = y) =
∞∑

n=−∞
Px(Bt = y + 2n(b − a)) (8.7.6)

− Px(Bt = 2b − y + 2n(b − a))

• • • • • •
↓ ↓ ↓

−b + 2a a b 2b − a 3b − 2a

+ − + − + −

y − 2(b − a) y y + 2(b − a)

2b − y − 2(b − a) 2b − y 2b − y + 2(b − a)

Figure 8.5. Picture of the infinite series in (8.7.6). Note that the array of + and − is
antisymmetric when seen from a or b.

Proof. We begin by observing that if A ⊂ (a, b),

Px(Ta ∧ Tb > t, Bt ∈ A) = Px(Bt ∈ A) − Px(Ta < Tb, Ta < t, Bt ∈ A)

− Px(Tb < Ta, Tb < t, Bt ∈ A) (8.7.7)

If we let ρa(y) = 2a − y be reflection through a and observe that {Ta < Tb} is
F(Ta) measurable, then it follows from the proof of (8.4.5) that

Px(Ta < Tb, Ta < t, Bt ∈ A) = Px(Ta < Tb, Bt ∈ ρaA)

where ρaA = {ρa(y) : y ∈ A}. To get rid of the Ta < Tb, we observe that

Px(Ta < Tb, Bt ∈ ρaA) = Px(Bt ∈ ρaA) − Px(Tb < Ta, Bt ∈ ρaA)
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Noticing that Bt ∈ ρaA and Tb < Ta imply Tb < t and using the reflection principle
again gives

Px(Tb < Ta, Bt ∈ ρaA) = Px(Tb < Ta, Bt ∈ ρbρaA)

= Px(Bt ∈ ρbρaA) − Px(Ta < Tb, Bt ∈ ρbρaA)

Repeating the last two calculations n more times gives

Px(Ta < Tb, Bt ∈ ρaA) =
n∑

m=0

Px(Bt ∈ ρa(ρbρa)mA) − Px(Bt ∈ (ρbρa)m+1A)

+ Px(Ta < Tb, Bt ∈ (ρbρa)n+1A)

Each pair of reflections pushes A further away from 0, so letting n → ∞ shows

Px(Ta < Tb, Bt ∈ ρaA) =
∞∑

m=0

Px(Bt ∈ ρa(ρbρa)mA) − Px(Bt ∈ (ρbρa)m+1A)

Interchanging the roles of a and b gives

Px(Tb < Ta, Bt ∈ ρbA) =
∞∑

m=0

Px(Bt ∈ ρb(ρaρb)mA) − Px(Bt ∈ (ρaρb)m+1A)

Combining the last two expressions with (8.7.7) and using ρ−1
c = ρc, (ρaρb)−1 =

ρ−1
b ρ−1

a gives

Px(Ta ∧ Tb > t, Bt ∈ A) =
∞∑

m=−∞
Px(Bt ∈ (ρbρa)nA) − Px(Bt ∈ ρa(ρbρa)nA)

To prepare for applications, let A = (u, v) where a < u < v < b, notice that
ρbρa(y) = y + 2(b − a), and change variables in the second sum to get

Px(Ta ∧ Tb > t, u < Bt < v) =
∞∑

n=−∞
{Px(u + 2n(b − a) < Bt < v + 2n(b − a)) (8.7.8)

− Px(2b − v + 2n(b − a) < Bt < 2b − u + 2n(b − a))}

Letting u = y − ε, v = y + ε, dividing both sides by 2ε, and letting ε → 0 (leaving
it to the reader to check that the dominated convergence theorem applies) gives the
desired result. �
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Setting x = y = 0, t = 1, and dividing by (2π )−1/2 = P0(B1 = 0), we get a
result for the Brownian bridge B0

t :

P0

(
a < min

0≤t≤1
B0

t < max
0≤t≤1

B0
t < b

)
(8.7.9)

=
∞∑

n=−∞
e−(2n(b−a))2/2 − e−(2b+2n(b−a))2/2

Taking a = −b, we have

P0

(
max
0≤t≤1

|B0
t | < b

)
=

∞∑
m=−∞

(−1)me−2m2b2
(8.7.10)

This formula gives the distribution of the Kolmogorov-Smirnov statistic, which
can be used to test if an i.i.d. sequence X1, . . . , Xn has distribution F . To do this,
we transform the data to F (Xn) and look at the maximum discrepancy between the
empirical distribution and the uniform. (8.7.10) tells us the distribution of the error
when the Xi have distribution F .

(8.7.9) gives the joint distribution of the maximum and minimum of Brownian
bridge. In theory, one can let a → −∞ in this formula to find the distribution of
the maximum, but in practice it is easier to start over again.

Exercise 8.7.1. Use Exercise 8.4.6 and the reasoning that led to (8.7.9) to conclude

P

(
max
0≤t≤1

B0
t > b

)
= exp(−2b2)

8.8 Laws of the Iterated Logarithm*

Our first goal is to show

Theorem 8.8.1. LIL for Brownian motion.

lim sup
t→∞

Bt/(2t log log t)1/2 = 1 a.s.

Here LIL is short for “law of the iterated logarithm,” a name that refers to the
log log t in the denominator. Once Theorem 8.8.1 is established, we can use the
Skorokhod representation to prove the analogous result for random walks with
mean 0 and finite variance.

Proof. The key to the proof is (8.4.4).

P0

(
max
0≤s≤1

Bs > a

)
= P0(Ta ≤ 1) = 2 P0(B1 ≥ a) (8.8.1)
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To bound the right-hand side, we use Theorem 1.2.3.∫ ∞

x

exp(−y2/2) dy ≤ 1

x
exp(−x2/2) (8.8.2)

∫ ∞

x

exp(−y2/2) dy ∼ 1

x
exp(−x2/2) as x → ∞ (8.8.3)

where f (x) ∼ g(x) means f (x)/g(x) → 1 as x → ∞. The last result and Brown-
ian scaling imply that

P0(Bt > (tf (t))1/2) ∼ κf (t)−1/2 exp(−f (t)/2)

where κ = (2π )−1/2 is a constant that we will try to ignore below. The last result
implies that if ε > 0, then

∞∑
n=1

P0(Bn > (nf (n))1/2)

{
< ∞ when f (n) = (2 + ε) log n

= ∞ when f (n) = (2 − ε) log n

and hence by the Borel-Cantelli lemma that

lim sup
n→∞

Bn/(2n log n)1/2 ≤ 1 a.s.

To replace log n by log log n, we have to look along exponentially growing
sequences. Let tn = αn, where α > 1.

P0

(
max

tn≤s≤tn+1

Bs > (tnf (tn))1/2

)
≤ P0

(
max

0≤s≤tn+1

Bs/t
1/2
n+1 >

(
f (tn)

α

)1/2
)

≤ 2κ(f (tn)/α)−1/2 exp(−f (tn)/2α)

by (8.8.1) and (8.8.2). If f (t) = 2α2 log log t , then

log log tn = log(n log α) = log n + log log α

so exp(−f (tn)/2α) ≤ Cαn
−α, where Cα is a constant that depends only on α, and

hence
∞∑

n=1

P0

(
max

tn≤s≤tn+1

Bs > (tnf (tn))1/2

)
< ∞

Since t → (tf (t))1/2 is increasing and α > 1 is arbitrary, it follows that

lim sup Bt/(2t log log t)1/2 ≤ 1 (8.8.4)

To prove the other half of Theorem 8.8.1, again let tn = αn, but this time α will be
large, since to get independent events, we look at

P0
(
B(tn+1) − B(tn) > (tn+1f (tn+1))1/2

) = P0
(
B1 > (βf (tn+1))1/2

)
where β = tn+1/(tn+1 − tn) = α/(α − 1) > 1. The last quantity is

≥ κ

2
(βf (tn+1))−1/2 exp(−βf (tn+1)/2)
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if n is large by (8.8.3). If f (t) = (2/β2) log log t , then log log tn = log n +
log log α, so

exp(−βf (tn+1)/2) ≥ Cαn
−1/β

where Cα is a constant that depends only on α, and hence
∞∑

n=1

P0
(
B(tn+1) − B(tn) > (tn+1f (tn+1))1/2

) = ∞

Since the events in question are independent, it follows from the second Borel-
Cantelli lemma that

B(tn+1) − B(tn) > ((2/β2)tn+1 log log tn+1)1/2 i.o. (8.8.5)

From (8.8.4), we get

lim sup
n→∞

B(tn)/(2tn log log tn)1/2 ≤ 1 (8.8.6)

Since tn = tn+1/α and t → log log t is increasing, combining (8.8.5) and (8.8.6)
and recalling β = α/(α − 1) gives

lim sup
n→∞

B(tn+1)/(2tn+1 log log tn+1)1/2 ≥ α − 1

α
− 1

α1/2

Letting α → ∞ now gives the desired lower bound, and the proof of Theo-
rem 8.8.1 is complete. �

Exercise 8.8.1. Let tk = exp(ek). Show that

lim sup
k→∞

B(tk)/(2tk log log log tk)1/2 = 1 a.s.

Theorem 8.2.6 implies that Xt = tB(1/t) is a Brownian motion. Changing
variables and using Theorem 8.8.1, we conclude

lim sup
t→0

|Bt |/(2t log log(1/t))1/2 = 1 a.s. (8.8.7)

To take a closer look at the local behavior of Brownian paths, we note that
Blumenthal’s 0-1 law, Theorem 8.2.3, implies P0(Bt < h(t) for all t sufficiently
small) ∈ {0, 1}. h is said to belong to the upper class if the probability is 1, the
lower class if it is 0.

Theorem 8.8.2. Kolmogorov’s test. If h(t) ↑ and t−1/2h(t) ↓, then h is upper or
lower class according as∫ 1

0
t−3/2h(t) exp(−h2(t)/2t) dt converges or diverges

Recalling (8.4.8), we see that the integrand is the probability of hitting h(t) at
time t . To see what Theorem 8.8.2 says, define lgk(t) = log(lgk−1(t)) for k ≥ 2 and
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t > ak = exp(ak−1), where lg1(t) = log(t) and a1 = 0. A little calculus shows that
when n ≥ 4,

h(t) =
(

2t

{
lg2(1/t) + 3

2
lg3(1/t) +

n−1∑
m=4

lgm(1/t) + (1 + ε) lgn(1/t)

})1/2

is upper or lower class according as ε > 0 or ε ≤ 0.

Approximating h from above by piecewise constant functions, it is easy to show
that if the integral in Theorem 8.8.2 converges, h(t) is an upper class function. The
proof of the other direction is much more difficult; see Motoo (1959) or Section
4.12 of Itô and McKean (1965).

Turning to random walk, we will prove a result due to Hartman and Wintner
(1941):

Theorem 8.8.3. If X1, X2, . . . are i.i.d. with EXi = 0 and EX2
i = 1, then

lim sup
n→∞

Sn/(2n log log n)1/2 = 1

Proof. By Theorem 8.6.2, we can write Sn = B(Tn) with Tn/n → 1 a.s. As in the
proof of Donsker’s theorem, this is all we will use in the argument below. Theo-
rem 8.8.3 will follow from Theorem 8.8.1 once we show

(S[t] − Bt )/(t log log t)1/2 → 0 a.s. (8.8.8)

To do this, we begin by observing that if ε > 0 and t ≥ to(ω)

T[t] ∈ [t/(1 + ε), t(1 + ε)] (8.8.9)

To estimate S[t] − Bt , we let M(t) = sup{|B(s) − B(t)| : t/(1 + ε) ≤ s ≤ t(1 +
ε)}. To control the last quantity, we let tk = (1 + ε)k and notice that if tk ≤ t ≤ tk+1,

M(t) ≤ sup{|B(s) − B(t)| : tk−1 ≤ s, t ≤ tk+2}
≤ 2 sup{|B(s) − B(tk−1)| : tk−1 ≤ s ≤ tk+2}

Noticing tk+2 − tk−1 = δtk−1, where δ = (1 + ε)3 − 1, scaling implies

P

(
max

tk−1≤s≤tk+2

|B(s) − B(t)| > (3δtk−1 log log tk−1)1/2

)

= P

(
max

0≤r≤1
|B(r)| > (3 log log tk−1)1/2

)

≤ 2κ(3 log log tk−1)−1/2 exp(−3 log log tk−1/2)

by a now-familiar application of (8.8.1) and (8.8.2). Summing over k and using (b)
gives

lim sup
t→∞

(S[t] − Bt )/(t log log t)1/2 ≤ (3δ)1/2



400 Brownian Motion

If we recall δ = (1 + ε)3 − 1 and let ε ↓ 0, (a) follows and the proof is
complete. �

Exercise 8.8.2. Show that if E|Xi |α = ∞ for some α < 2, then

lim sup
n→∞

|Xn|/n1/α = ∞ a.s.

so the law of the iterated logarithm fails.

Strassen (1965) has shown an exact converse. If Theorem 8.8.3 holds then
EXi = 0 and EX2

i = 1. Another one of his contributions to this subject is

Theorem 8.8.4. Strassen’s (1964) invariance principle. Let X1, X2, . . . be
i.i.d. with EXi = 0 and EX2

i = 1, let Sn = X1 + · · · + Xn, and let S(n·) be the
usual linear interpolation. The limit set (i.e., the collection of limits of convergent
subsequences) of

Zn(·) = (2n log log n)−1/2S(n·) for n ≥ 3

is K = {f : f (x) = ∫ x

0 g(y) dy with
∫ 1

0 g(y)2 dy ≤ 1}.

Jensen’s inequality implies f (1)2 ≤ ∫ 1
0 g(y)2 dy ≤ 1 with equality if and only if

f (t) = t , so Theorem 8.8.4 contains Theorem 8.8.3 as a special case and provides
some information about how the large value of Sn came about.

Exercise 8.8.3. Give a direct proof that, under the hypotheses of Theorem 8.8.4,
the limit set of {Sn/(2n log log n)1/2} is [−1, 1].



Appendix A

Measure Theory Details

This Appendix proves the results from measure theory that were stated but not
proved in the text.

A.1 Carathéodory’s Extension Theorem

This section is devoted to the proof of:

Theorem A.1.1. Let S be a semialgebra, and let µ defined on S have µ(∅) = 0.
Suppose (i) if S ∈ S is a finite disjoint union of sets Si ∈ S, then µ(S) =∑i µ(Si),
and (ii) if Si, S ∈ S with S = +i≥1Si , then µ(S) ≤∑i µ(Si). Then µ has a unique
extension µ̄ that is a measure on S̄ the algebra generated by S. If the extension is
σ -finite, then there is a unique extension ν that is a measure on σ (S).

Proof. Lemma 1.1.3 shows that S̄ is the collection of finite disjoint unions of
sets in S. We define µ̄ on S̄ by µ̄(A) =∑i µ(Si) whenever A = +iSi . To check
that µ̄ is well defined, suppose that A = +jTj and observe Si = +j (Si ∩ Tj ) and
Tj = +i(Si ∩ Tj ), so (i) implies

∑
i

µ(Si) =
∑
i,j

µ(Si ∩ Tj ) =
∑

j

µ(Tj ) �

In Section 1.1 we proved:

Lemma A.1.2. Suppose only that (i) holds.
(a) If A,Bi ∈ S̄ with A = +n

i=1Bi then µ̄(A) =∑i µ̄(Bi).
(b) If A,Bi ∈ S̄ with A ⊂ ∪n

i=1Bi then µ̄(A) ≤∑i µ̄(Bi).

To extend the additivity property to A ∈ S̄ that are countable disjoint unions
A = +i≥1Bi , where Bi ∈ S̄, we observe that each Bi = +jSi,j with Si,j ∈ S and∑

i≥1 µ̄(Bi) =∑i≥1,j µ(Si,j ), so replacing the Bi’s by Si,j ’s, we can without loss

401
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of generality suppose that the Bi ∈ S. Now A ∈ S̄ implies A = +jTj (a finite
disjoint union) and Tj = +i≥1Tj ∩ Bi , so (ii) implies

µ(Tj ) ≤
∑
i≥1

µ(Tj ∩ Bi)

Summing over j and observing that nonnegative numbers can be summed in any
order,

µ̄(A) =
∑

j

µ(Tj ) ≤
∑
i≥1

∑
j

µ(Tj ∩ Bi) =
∑
i≥1

µ(Bi)

the last equality following from (i). To prove the opposite inequality, let An =
B1 + · · · + Bn, and Cn = A ∩ Ac

n. Cn ∈ S̄ , since S̄ is an algebra, so finite additivity
of µ̄ implies

µ̄(A) = µ̄(B1) + · · · + µ̄(Bn) + µ̄(Cn) ≥ µ̄(B1) + · · · + µ̄(Bn)

and letting n → ∞, µ̄(A) ≥∑i≥1 µ̄(Bi).
Having defined a measure on the algebra S̄ , we now complete the proof by

establishing

Theorem A.1.3. Carathéodory’s Extension Theorem. Let µ be a σ -finite mea-
sure on an algebra A. Then µ has a unique extension to σ (A) = the smallest
σ -algebra containing A.

Uniqueness. We will prove that the extension is unique before tackling the more
difficult problem of proving its existence. The key to our uniqueness proof is
Dynkin’s π − λ theorem, a result that we will use many times in the book. As
usual, we need a few definitions before we can state the result. P is said to be a
π -system if it is closed under intersection, that is, if A,B ∈ P then A ∩ B ∈ P .
For example, the collection of rectangles (a1, b1] × · · · × (ad, bd] is a π -system.
L is said to be a λ-system if it satisfies: (i) � ∈ L. (ii) If A,B ∈ L and A ⊂ B,
then B − A ∈ L . (iii) If An ∈ L and An ↑ A, then A ∈ L . The reader will see
in a moment that the next result is just what we need to prove uniqueness of the
extension.

Theorem A.1.4. π − λ Theorem. If P is a π -system and L is a λ-system that
contains P , then σ (P) ⊂ L.

Proof. We will show that

(a) if �(P) is the smallest λ-system containing P , then �(P) is a σ -field.

The desired result follows from (a). To see this, note that since σ (P) is the
smallest σ -field and �(P) is the smallest λ-system containing P , we have

σ (P) ⊂ �(P) ⊂ L
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To prove (a) we begin by noting that a λ-system that is closed under intersection
is a σ -field since

if A ∈ L then Ac = � − A ∈ L
A ∪ B = (Ac ∩ Bc)c

∪n
i=1 Ai ↑ ∪∞

i=1Ai as n ↑ ∞
Thus, it is enough to show

(b) �(P) is closed under intersection.

To prove (b), we let GA = {B : A ∩ B ∈ �(P)} and prove

(c) if A ∈ �(P), then GA is a λ-system.

To check this, we note:

(i) � ∈ GA since A ∈ �(P).
(ii) if B, C ∈ GA and B ⊃ C, then A ∩ (B − C) = (A ∩ B) − (A ∩ C) ∈ �(P)

since A ∩ B, A ∩ C ∈ �(P) and �(P) is a λ-system.
(iii) if Bn ∈ GA and Bn ↑ B, then A ∩ Bn ↑ A ∩ B ∈ �(P) since A ∩ Bn ∈ �(P)

and �(P) is a λ-system.

To get from (c) to (b), we note that since P is a π -system,

if A ∈ P then GA ⊃ P , and so (c) implies GA ⊃ �(P)

that is, if A ∈ P and B ∈ �(P), then A ∩ B ∈ �(P). Interchanging A and B in the
last sentence: if A ∈ �(P) and B ∈ P then A ∩ B ∈ �(P) but this implies

if A ∈ �(P) then GA ⊃ P and so (c) implies GA ⊃ �(P).

This conclusion implies that if A,B ∈ �(P), then A ∩ B ∈ �(P), which proves (b)
and completes the proof. �

To prove that the extension in Theorem A.1.3 is unique, we will show:

Theorem A.1.5. Let P be a π -system. If ν1 and ν2 are measures (on σ -fields
F1 and F2) that agree on P and there is a sequence An ∈ P with An ↑ � and
νi(An) < ∞, then ν1 and ν2 agree on σ (P).

Proof. Let A ∈ P have ν1(A) = ν2(A) < ∞. Let

L = {B ∈ σ (P) : ν1(A ∩ B) = ν2(A ∩ B)}
We will now show that L is a λ-system. Since A ∈ P , ν1(A) = ν2(A) and � ∈ L.
If B, C ∈ L with C ⊂ B, then

ν1(A ∩ (B − C)) = ν1(A ∩ B) − ν1(A ∩ C)

= ν2(A ∩ B) − ν2(A ∩ C) = ν2(A ∩ (B − C))
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Here we use the fact that νi(A) < ∞ to justify the subtraction. Finally, if Bn ∈ L
and Bn ↑ B, then part (iii) of Theorem 1.1.1 implies

ν1(A ∩ B) = lim
n→∞ ν1(A ∩ Bn) = lim

n→∞ ν2(A ∩ Bn) = ν2(A ∩ B)

Since P is closed under intersection by assumption, the π − λ theorem implies
L ⊃ σ (P), that is, if A ∈ P with ν1(A) = ν2(A) < ∞ and B ∈ σ (P), then ν1(A ∩
B) = ν2(A ∩ B). Letting An ∈ P with An ↑ �, ν1(An) = ν2(An) < ∞, and using
the last result and part (iii) of Theorem 1.1.1, we have the desired conclusion. �

Exercise A.1.1. Give an example of two probability measures µ �= ν on F = all
subsets of {1, 2, 3, 4} that agree on a collection of sets C with σ (C) = F , that is,
the smallest σ -algebra containing C is F .

Existence. Our next step is to show that a measure (not necessarily σ -finite) defined
on an algebra A has an extension to the σ -algebra generated by A. If E ⊂ �, we
let µ∗(E) = inf

∑
i µ(Ai) where the infimum is taken over all sequences from A

so that E ⊂ ∪iAi . Intuitively, if ν is a measure that agrees with µ on A, then it
follows from part (ii) of Theorem 1.1.1 that

ν(E) ≤ ν(∪iAi) ≤
∑

i

ν(Ai) =
∑

i

µ(Ai)

so µ∗(E) is an upper bound on the measure of E. Intuitively, the measurable sets are
the ones for which the upper bound is tight. Formally, we say that E is measurable
if

µ∗(F ) = µ∗(F ∩ E) + µ∗(F ∩ Ec) for all sets F ⊂ � (A.1.1)

The last definition is not very intuitive, but we will see in the proofs below that it
works very well.

It is immediate from the definition that µ∗ has the following properties:

(i) Monotonicity. If E ⊂ F then µ∗(E) ≤ µ∗(F ).
(ii) Subadditivity. If F ⊂ ∪iFi , a countable union, then µ∗(F ) ≤∑i µ

∗(Fi).

Any set function with µ∗(∅) = 0 that satisfies (i) and (ii) is called an outer
measure. Using (ii) with F1 = F ∩ E and F2 = F ∩ Ec (and Fi = ∅ otherwise),
we see that to prove a set is measurable, it is enough to show

µ∗(F ) ≥ µ∗(F ∩ E) + µ∗(F ∩ Ec) (A.1.2)

We begin by showing that our new definition extends the old one.

Lemma A.1.6. If A ∈ A, then µ∗(A) = µ(A) and A is measurable.
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Proof. Part (ii) of Theorem 1.1.1 implies that if A ⊂ ∪iAi , then

µ(A) ≤
∑

i

µ(Ai)

so µ(A) ≤ µ∗(A). Of course, we can always take A1 = A and the other Ai = ∅ so
µ∗(A) ≤ µ(A).

To prove that any A ∈ A is measurable, we begin by noting that the inequality
is (A.1.2) trivial when µ∗(F ) = ∞, so we can without loss of generality assume
µ∗(F ) < ∞. To prove that (A.1.2) holds when E = A, we observe that since
µ∗(F ) < ∞ there is a sequence Bi ∈ A so that ∪iBi ⊃ F and∑

i

µ(Bi) ≤ µ∗(F ) + ε

Since µ is additive on A, and µ = µ∗ on A, we have

µ(Bi) = µ∗(Bi ∩ A) + µ∗(Bi ∩ Ac)

Summing over i and using the subadditivity of µ∗ gives

µ∗(F ) + ε ≥
∑

i

µ∗(Bi ∩ A) +
∑

i

µ∗(Bi ∩ Ac) ≥ µ∗(F ∩ A) + µ∗(Fc ∩ A)

which proves the desired result since ε is arbitrary. �

Lemma A.1.7. The class A∗ of measurable sets is a σ -field, and the restriction of
µ∗ to A∗ is a measure.

Remark. This result is true for any outer measure.

Proof. It is clear from the definition that

(a) If E is measurable, then Ec is.

Our first nontrivial task is to prove

(b) If E1 and E2 are measurable, then E1 ∪ E2 and E1 ∩ E2 are.

Proof of (b). To prove the first conclusion, let G be any subset of �. Using subad-
ditivity, the measurability of E2 (let F = G ∩ Ec

1 in (A.1.1), and the measurability
of E1, we get

µ∗(G ∩ (E1 ∪ E2)) + µ∗(G ∩ (Ec
1 ∩ Ec

2))

≤ µ∗(G ∩ E1) + µ∗(G ∩ Ec
1 ∩ E2) + µ∗(G ∩ Ec

1 ∩ Ec
2)

= µ∗(G ∩ E1) + µ∗(G ∩ Ec
1) = µ∗(G)

To prove that E1 ∩ E2 is measurable, we observe E1 ∩ E2 = (Ec
1 ∪ Ec

2)c and
use (a). �
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(c) Let G ⊂ � and E1, . . . , En be disjoint measurable sets. Then

µ∗ (G ∩ ∪n
i=1Ei

) =
n∑

i=1

µ∗(G ∩ Ei)

Proof of (c). Let Fm = ∪i≤mEi . En is measurable, Fn ⊃ En, and Fn−1 ∩ En = ∅,
so

µ∗(G ∩ Fn) = µ∗(G ∩ Fn ∩ En) + µ∗(G ∩ Fn ∩ Ec
n)

= µ∗(G ∩ En) + µ∗(G ∩ Fn−1)

The desired result follows from this by induction. �

(d) If the sets Ei are measurable, then E = ∪∞
i=1Ei is measurable.

Proof of (d). Let E′
i = Ei ∩ (∩j<iE

c
j ). (a) and (b) imply E′

i is measurable, so
we can suppose without loss of generality that the Ei are pairwise disjoint. Let
Fn = E1 ∪ · · · ∪ En. Fn is measurable by (b), so using monotonicity and (c) we
have

µ∗(G) = µ∗(G ∩ Fn) + µ∗(G ∩ Fc
n ) ≥ µ∗(G ∩ Fn) + µ∗(G ∩ Ec)

=
n∑

i=1

µ∗(G ∩ Ei) + µ∗(G ∩ Ec)

Letting n → ∞ and using subadditivity

µ∗(G) ≥
∞∑
i=1

µ∗(G ∩ Ei) + µ∗(G ∩ Ec) ≥ µ∗(G ∩ E) + µ∗(G ∩ Ec)

which is (A.1.2). �

The last step in the proof of Theorem A.1.7 is

(e) If E = ∪iEi where E1, E2, . . . are disjoint and measurable, then

µ∗(E) =
∞∑
i=1

µ∗(Ei)

Proof of (e). Let Fn = E1 ∪ · · · ∪ En. By monotonicity and (c)

µ∗(E) ≥ µ∗(Fn) =
n∑

i=1

µ∗(Ei)

Letting n → ∞ now and using subadditivity gives the desired conclusion. �
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A.2 Which Sets Are Measurable?

The proof of Theorem A.1.3 given in the last section defines an extension to
A∗ ⊃ σ (A). Our next goal is to describe the relationship between these two
σ -algebras. Let Aσ denote the collection of countable unions of sets in A, and
let Aσδ denote the collection of countable intersections of sets in Aσ . Our first goal
is to show that every measurable set is almost a set in Aσδ.

Define the symetric difference by A
B = (A − B) ∪ (B − A).

Lemma A.2.1. Let E be any set with µ∗(E) < ∞.
(i) For any ε > 0, there is an A ∈ Aσ with A ⊃ E and µ∗(A) ≤ µ∗(E) + ε.

(ii) For any ε > 0, there is a B ∈ A with µ(B
E) ≤ 2ε, where
(ii) There is a C ∈ Aσδ with C ⊃ E and µ∗(C) = µ∗(E).

Proof. By the definition of µ∗, there is a sequence Ai so that A ≡ ∪iAi ⊃ E and∑
i µ(Ai) ≤ µ∗(E) + ε. The definition of µ∗ implies µ∗(A) ≤∑i µ(Ai), estab-

lishing (i).
For (ii) we note that there is a finite union B = ∪i = 1nAi so that µ(A − B) ≤ ε,

and hence µ(E − B) ≤ ε. Since µ(B − E) ≤ µ(A − E) ≤ ε the desired result
follows.

For (iii), let An ∈ Aσ with An ⊃ E and µ∗(An) ≤ µ∗(E) + 1/n, and let C =
∩nAn. Clearly, C ∈ Aσδ, B ⊃ E, and hence by monotonicity, µ∗(C) ≥ µ∗(E).
To prove the other inequality, notice that B ⊂ An and hence µ∗(C) ≤ µ∗(An) ≤
µ∗(E) + 1/n for any n. �

Theorem A.2.2. Suppose µ is σ -finite on A. B ∈ A∗ if and only if there is an
A ∈ Aσδ and a set N with µ∗(N) = 0 so that B = A − N (= A ∩ Nc).

Proof. It follows from Lemma A.1.6 and A.1.7 if A ∈ Aσδ then A ∈ A∗. A.1.2 in
Section A.1 and monotonicity imply sets with µ∗(N) = 0 are measurable, so using
Lemma A.1.7 again it follows that A ∩ Nc ∈ A∗. To prove the other direction, let
�i be a disjoint collection of sets with µ(�i) < ∞ and � = ∪i�i . Let Bi = B ∩ �i

and use Lemma A.2.1 to find An
i ∈ Aσ so that An

i ⊃ Bi and µ(An
i ) ≤ µ∗(Ei) +

1/n2i . Let An = ∪iA
n
i . B ⊂ An and

An − B ⊂
∞∑
i=1

(An
i − Bi)

so, by subadditivity,

µ∗(An − B) ≤
∞∑
i=1

µ∗(An
i − Bi) ≤ 1/n

Since An ∈ Aσ , the set A = ∩nAn ∈ Aσδ. Clearly, A ⊃ B. Since N ≡ A − B ⊂
An − B for all n, monotonicity implies µ∗(N) = 0, and the proof of is complete.

�
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A measure space (�,F, µ) is said to be complete if F contains all subsets of
sets of measure 0. In the proof of Theorem A.2.2, we showed that (�,A∗, µ∗) is
complete. Our next result shows that (�,A∗, µ∗) is the completion of (�, σ (A), µ).

Theorem A.2.3. If (�,F, µ) is a measure space, then there is a complete measure
space (�, F̄ , µ̄), called the completion of (�,F, µ), so that (i) E ∈ F̄ if and only
if E = A ∪ B, where A ∈ F and B ⊂ N ∈ F with µ(N) = 0, and (ii) µ̄ agrees
with µ on F .

Proof. The first step is to check that F̄ is a σ -algebra. If Ei = Ai ∪ Bi where
Ai ∈ F and Bi ⊂ Ni where µ(Ni) = 0, then ∪iAi ∈ F , and subadditivity implies
µ(∪iNi) ≤∑i µ(Ni) = 0, so ∪iEi ∈ F̄ . As for complements, if E = A ∪ B and
B ⊂ N , then Bc ⊃ Nc, so

Ec = Ac ∩ Bc = (Ac ∩ Nc) ∪ (Ac ∩ Bc ∩ N )

Ac ∩ Nc is in F and Ac ∩ Bc ∩ N ⊂ N , so Ec ∈ F̄ .

We define µ̄ in the obvious way: If E = A ∪ B where A ∈ F and B ⊂ N where
µ(N) = 0, then we let µ̄(E) = µ(A). The first thing to show is that µ̄ is well defined,
that is, if E = Ai ∪ Bi , i = 1, 2, are two decompositions, then µ(A1) = µ(A2).
Let A0 = A1 ∩ A2 and B0 = B1 ∪ B2. E = A0 ∪ B0 is a third decomposition with
A0 ∈ F and B0 ⊂ N1 ∪ N2, and has the pleasant property that if i = 1 or 2,

µ(A0) ≤ µ(Ai) ≤ µ(A0) + µ(N1 ∪ N2) = µ(A0)

The last detail is to check that µ̄ is measure, but that is easy. If Ei = Ai ∪ Bi are
disjoint, then ∪iEi can be decomposed as ∪iAi ∪ (∪iBi), and the Ai ⊂ Ei are
disjoint, so

µ̄(∪iEi) = µ(∪iAi) =
∑

i

µ(Ai) =
∑

i

µ̄(Ei) �

Theorem 1.1.6 allows us to construct Lebesgue measure λ on (Rd,Rd). Using
Theorem A.2.3, we can extend λ to be a measure on (R, R̄d), where R̄d is the
completion of Rd . Having done this, it is natural (if somewhat optimistic) to ask:
Are there any sets that are not in R̄d? The answer is “Yes,” and we will now give
an example of a nonmeasurable B in R.

A nonmeasurable subset of [0,1)

The key to our construction is the observation that λ is translation invariant: that is,
if A ∈ R̄ and x + A = {x + y : y ∈ A}, then x + A ∈ R̄ and λ(A) = λ(x + A).
We say that x, y ∈ [0, 1) are equivalent and write x ∼ y if x − y is a rational
number. By the axiom of choice, there is a set B that contains exactly one element
from each equivalence class. B is our nonmeasurable set, that is,

Theorem A.2.4. B /∈ R̄.
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Proof. The key is the following:

Lemma A.2.5. If E ⊂ [0, 1) is in R̄, x ∈ (0, 1), and x +′ E = {(x + y) mod 1 :
y ∈ E}, then λ(E) = λ(x +′ E).

Proof. Let A = E ∩ [0, 1 − x) and B = E ∩ [1 − x, 1). Let A′ = x + A = {x +
y : y ∈ A} and B ′ = x − 1 + B. A,B ∈ R̄, so by translation invariance A′, B ′ ∈ R̄
and λ(A) = λ(A′), λ(B) = λ(B ′). Since A′ ⊂ [x, 1) and B ′ ⊂ [0, x) are disjoint,

λ(E) = λ(A) + λ(B) = λ(A′) + λ(B ′) = λ(x +′ E) �

From Lemma A.2.5, it follows easily that B is not measurable; if it were, then
q +′ B, q ∈ Q ∩ [0, 1) would be a countable disjoint collection of measurable
subsets of [0,1), all with the same measure α and having

∪q∈Q∩[0,1) (q +′ B) = [0, 1)

If α > 0, then λ([0, 1)) = ∞, and if α = 0, then λ([0, 1)) = 0. Neither conclusion
is compatible with the fact that λ([0, 1)) = 1, so B /∈ R̄. �

Exercise A.2.1. Let B be the nonmeasurable set constructed in Theorem A.2.4.
(i) Let Bq = q +′ B and show that if Dq ⊂ Bq is measurable, then λ(Dq) = 0. (ii)
Use (i) to conclude that if A ⊂ R has λ(A) > 0, there is a nonmeasurable S ⊂ A.

Letting B ′ = B × [0, 1]d−1 where B is our nonmeasurable subset of (0,1), we get
a nonmeasurable set in d > 1. In d = 3, there is a much more interesting example,
but we need the reader to do some preliminary work. In Euclidean geometry, two
subsets of Rd are said to be congruent if one set can be mapped onto the other by
translations and rotations.

Claim. Two congruent measurable sets must have the same Lebesgue measure.

Exercise A.2.2. Prove the claim in d = 2 by showing (i) if B is a rotation of a
rectangle A then λ∗(B) = λ(A). (ii) If C is congruent to D then λ∗(C) = λ∗(D).

Banach-Tarski theorem

Banach and Tarski (1924) used the axiom of choice to show that it is possible to
partition the sphere {x : |x| ≤ 1} in R3 into a finite number of sets A1, . . . , An and
find congruent sets B1, . . . , Bn whose union is two disjoint spheres of radius 1!
Since congruent sets have the same Lebesgue measure, at least one of the sets Ai

must be nonmeasurable. The construction relies on the fact that the group generated
by rotations in R3 is not Abelian. Lindenbaum (1926) showed that this cannot be
done with any bounded set in R2. For a popular account of the Banach-Tarski
theorem, see French (1988).
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Solovay’s theorem

The axiom of choice played an important role in the last two constructions of
nonmeasurable sets. Solovay (1970) proved that its use is unavoidable. In his own
words, “We show that the existence of a non-Lebesgue measurable set cannot
be proved in Zermelo-Frankel set theory if the use of the axiom of choice is
disallowed.” This should convince the reader that all subsets of Rd that arise “in
practice” are in R̄d .

A.3 Kolmogorov’s Extension Theorem

To construct some of the basic objects of study in probability theory, we will need
an existence theorem for measures on infinite product spaces. Let N = {1, 2, . . .}
and

RN = {(ω1, ω2, . . .) : ωi ∈ R}
We equip RN with the product σ -algebra RN, which is generated by the finite
dimensional rectangles = sets of the form {ω : ωi ∈ (ai, bi] for i = 1, . . . , n},
where −∞ ≤ ai < bi ≤ ∞.

Theorem A.3.1. Kolmogorov’s extension theorem. Suppose we are given prob-
ability measures µn on (Rn,Rn) that are consistent, that is,

µn+1((a1, b1] × · · · × (an, bn] × R) = µn((a1, b1] × · · · × (an, bn])

Then there is a unique probability measure P on (RN,RN) with

(∗) P (ω : ωi ∈ (ai, bi], 1 ≤ i ≤ n) = µn((a1, b1] × · · · × (an, bn])

An important example of a consistent sequence of measures is

Example A.3.1. Let F1, F2, . . . be distribution functions, and let µn be the measure
on Rn with

µn((a1, b1] × · · · × (an, bn]) =
n∏

m=1

(Fm(bm) − Fm(am))

In this case, if we let Xn(ω) = ωn, then the Xn are independent and Xn has
distribution Fn.

Proof of Theorem A.3.1. Let S be the sets of the form {ω : ωi ∈ (ai, bi], 1 ≤ i ≤ n},
and use (∗) to define P on S. S is a semialgebra, so by Theorem A.1.1 it is enough
to show that if A ∈ S is a disjoint union of Ai ∈ S, then P (A) ≤∑i P (Ai). If the
union is finite, then all the Ai are determined by the values of a finite number of
coordinates and the conclusion follows from the proof of Theorem 1.1.6.
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Suppose now that the union is infinite. Let A = { finite disjoint unions of sets in
S} be the algebra generated by S. Since A is an algebra (by Lemma 1.1.3),

Bn ≡ A − ∪n
i=1Ai

is a finite disjoint union of rectangles, and by the result for finite unions,

P (A) =
n∑

i=1

P (Ai) + P (Bn)

It suffices then to show

Lemma A.3.2. If Bn ∈ A and Bn ↓ ∅ then P (Bn) ↓ 0.

Proof. Suppose P (Bn) ↓ δ > 0. By repeating sets in the sequence, we can suppose

Bn = ∪Kn

k=1{ω : ωi ∈ (ak
i , b

k
i ], 1 ≤ i ≤ n} where − ∞ ≤ ak

i < bk
i ≤ ∞

The strategy of the proof is to approximate the Bn from within by compact rectan-
gles with almost the same probability and then use a diagonal argument to show
that ∩nBn �= ∅. There is a set Cn ⊂ Bn of the form

Cn = ∪Kn

k=1{ω : ωi ∈ [āk
i , b̄

k
i ], 1 ≤ i ≤ n} with − ∞ < āi

k < b̄i
k < ∞

that has P (Bn − Cn) ≤ δ/2n+1. Let Dn = ∩n
m=1Cm.

P (Bn − Dn) ≤
n∑

m=1

P (Bm − Cm) ≤ δ/2

so P (Dn) ↓ a limit ≥ δ/2. Now there are sets C∗
n , D∗

n ⊂ Rn so that

Cn = {ω : (ω1, . . . , ωn) ∈ C∗
n} and Dn = {ω : (ω1, . . . , ωn) ∈ D∗

n}
Note that

Cn = C∗
n × R × R × · · · and Dn = D∗

n × R × R × · · ·
so Cn and C∗

n (and Dn and D∗
n) are closely related but Cn ⊂ � and C∗

n ⊂ Rn.
C∗

n is a finite union of closed rectangles, so

D∗
n = C∗

n ∩n−1
m=1 (C∗

m × Rn−m)

is a compact set. For each m, let ωm ∈ Dm. Dm ⊂ D1 so ωm,1 (i.e., the first coordi-
nate of ωm) is in D∗

1 Since D∗
1 is compact, we can pick a subsequence m(1, j ) ≥ j

so that as j → ∞,

ωm(1,j ),1 → a limit θ1

For m ≥ 2, Dm ⊂ D2 and hence (ωm,1, ωm,2) ∈ D∗
2 . Since D∗

2 is compact, we can
pick a subsequence of the previous subsequence (i.e., m(2, j ) = m(1, ij ) with
ij ≥ j ) so that as j → ∞

ωm(2,j ),2 → a limit θ2
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Continuing in this way, we define m(k, j ) a subsequence of m(k − 1, j ) so that as
j → ∞,

ωm(k,j ),k → a limit θk

Let ω′
i = ωm(i,i). ω′

i is a subsequence of all the subsequences so ω′
i,k → θk for all k.

Now ω′
i,1 ∈ D∗

1 for all i ≥ 1 and D∗
1 is closed so θ1 ∈ D∗

1 . Turning to the second set,
(ω′

i,1, ω
′
i,2) ∈ D∗

2 for i ≥ 2 and D∗
2 is closed, so (θ1, θ2) ∈ D∗

2 . Repeating the last
argument, we conclude that (θ1, . . . , θk) ∈ D∗

k for all k, so ω = (θ1, θ2, . . .) ∈ Dk

(no star here since we are now talking about subsets of �) for all k and

∅ �= ∩kDk ⊂ ∩kBk

a contradiction that proves the desired result. �

A.4 Radon-Nikodym Theorem

In this section, we prove the Radon-Nikodym theorem. To develop that result,
we begin with a topic that at first may appear to be unrelated. Let (�,F) be
a measurable space. α is said to be a signed measure on (�,F) if (i) α takes
values in (−∞, ∞], (ii) α(∅) = 0, and (iii) if E = +iEi is a disjoint union then
α(E) =∑i α(Ei), in the following sense:

If α(E) < ∞, the sum converges absolutely and = α(E).

If α(E) = ∞, then
∑

i α(Ei)− < ∞ and
∑

i α(Ei)+ = ∞.

Clearly, a signed measure cannot be allowed to take both the values ∞ and −∞,
since α(A) + α(B) might not make sense. In most formulations, a signed measure
is allowed to take values in either (−∞, ∞] or [−∞, ∞). We will ignore the
second possibility to simplify statements later. As usual, we turn to examples to
help explain the definition.

Example A.4.1. Let µ be a measure, f be a function with
∫

f − dµ < ∞, and let
α(A) = ∫

A
f dµ. Exercise 5.8 implies that α is a signed measure.

Example A.4.2. Let µ1 and µ2 be measures with µ2(�) < ∞, and let α(A) =
µ1(A) − µ2(A).

The Jordan decomposition, (A.4.4) below, will show that Example A.4.2 is the
general case. To derive that result, we begin with two definitions. A set A is positive
if every measurable B ⊂ A has α(B) ≥ 0. A set A is negative if every measurable
B ⊂ A has α(B) ≤ 0.

Exercise A.4.1. In Example A.4.1, A is positive if and only if µ(A ∩ {x : f (x) <

0}) = 0.
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Lemma A.4.1. (i) Every measurable subset of a positive set is positive. (ii) If the
sets An are positive, then A = ∪nAn is also positive.

Proof. (i) is trivial. To prove (ii), observe that

Bn = An ∩ (∩n−1
m=1A

c
m

) ⊂ An

are positive, disjoint, and ∪nBn = ∪nAn. Let E ⊂ A be measurable, and let En =
E ∩ Bn. α(En) ≥ 0 since Bn is positive, so α(E) =∑n α(En) ≥ 0. �

The conclusions in Lemma A.4.1 remain valid if positive is replaced by negative.
The next result is the key to the proof of Theorem A.4.3.

Lemma A.4.2. Let E be a measurable set with α(E) < 0. Then there is a negative
set F ⊂ E with α(F ) < 0.

Proof. If E is negative, this is true. If not, let n1 be the smallest positive integer so
that there is an E1 ⊂ E with α(E1) ≥ 1/n1. Let k ≥ 2. If Fk = E − (E1 ∪ · · · ∪
Ek−1) is negative, we are done. If not, we continue the construction letting nk be
the smallest positive integer so that there is an Ek ⊂ Fk with α(Ek) ≥ 1/nk. If the
construction does not stop for any k < ∞, let

F = ∩kFk = E − (∪kEk)

Since 0 > α(E) > −∞ and α(Ek) ≥ 0, it follows from the definition of signed
measure that

α(E) = α(F ) +
∞∑

k=1

α(Ek)

α(F ) ≤ α(E) < 0, and the sum is finite. From the last observation and the construc-
tion, it follows that F can have no subset G with α(G) > 0, for then α(G) ≥ 1/N

for some N and we would have a contradiction. �

Theorem A.4.3. Hahn decompositon. Let α be a signed measure. Then there is a
positive set A and a negative set B so that � = A ∪ B and A ∩ B = ∅.

Proof. Let c = inf{α(B) : B is negative} ≤ 0. Let Bi be negative sets with α(Bi) ↓
c. Let B = ∪iBi . By Lemma A.4.1, B is negative, so by the definition of c, α(B) ≥
c. To prove α(B) ≤ c, we observe that α(B) = α(Bi) + α(B − Bi) ≤ α(Bi), since
B is negative, and let i → ∞. The last two inequalities show that α(B) = c, and
it follows from our definition of a signed measure that c > −∞. Let A = Bc. To
show A is positive, observe that if A contains a set with α(E) < 0, then by Lemma
A.4.2, it contains a negative set F with α(F ) < 0, but then B ∪ F would be a
negative set that has α(B ∪ F ) = α(B) + α(F ) < c, a contradiction. �
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The Hahn decomposition is not unique. In Example A.4.1, A can be any set with

{x : f (x) > 0} ⊂ A ⊂ {x : f (x) ≥ 0} a.e.

where B ⊂ C a.e. means µ(B ∩ Cc) = 0. The last example is typical of the general
situation. Suppose � = A1 ∪ B1 = A2 ∪ B2 are two Hahn decompositions. A2 ∩
B1 is positive and negative, so it is a null set: All its subsets have measure 0.
Similarly, A1 ∩ B2 is a null set.

Two measures µ1 and µ2 are said to be mutually singular if there is a set A with
µ1(A) = 0 and µ2(Ac) = 0. In this case, we also say µ1 is singular with respect
to µ2 and write µ1 ⊥ µ2.

Exercise A.4.2. Show that the uniform distribution on the Cantor set (Example
1.2.4) is singular with respect to Lebesgue measure.

Theorem A.4.4. Jordan decomposition. Let α be a signed measure. There are
mutually singular measures α+ and α− so that α = α+ − α−. Moreover, there is
only one such pair.

Proof. Let � = A ∪ B be a Hahn decomposition. Let

α+(E) = α(E ∩ A) and α−(E) = −α(E ∩ B)

Since A is positive and B is negative, α+ and α− are measures. α+(Ac) = 0 and
α−(A) = 0, so they are mutually singular. To prove uniqueness, suppose α =
ν1 − ν2 and D is a set with ν1(D) = 0 and ν2(Dc) = 0. If we set C = Dc, then
� = C ∪ D is a Hahn decomposition, and it follows from the choice of D that

ν1(E) = α(C ∩ E) and ν2(E) = −α(D ∩ E)

Our uniqueness result for the Hahn decomposition shows that A ∩ D = A ∩ Cc

and B ∩ C = Ac ∩ C are null sets, so α(E ∩ C) = α(E ∩ (A ∪ C)) = α(E ∩ A)
and ν1 = α+. �

Exercise A.4.3. Show that α+(E) = sup{α(F ) : F ⊂ E}.

Remark. Let α be a finite signed measure (i.e., one that does not take
the value ∞ or −∞) on (R,R). Let α = α+ − α− be its Jordan decomposi-
tion. Let A(x) = α((−∞, x]), F (x) = α+((−∞, x]), and G(x) = α−((−∞, x]).
A(x) = F (x) − G(x), so the distribution function for a finite signed measure can
be written as a difference of two bounded increasing functions. It follows from
Example A.4.2 that the converse is also true. Let |α| = α+ + α−. |α| is called
the total variation of α, since in this example |α|((a, b]) is the total variation of
A over (a, b] as defined in analysis textbooks. See, for example, Royden (1988),
p. 103. We exclude the left endpoint of the interval since a jump there makes no
contribution to the total variation on [a, b], but it does appear in |α|.
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Our third and final decomposition is:

Theorem A.4.5. Lebesgue decomposition. Let µ, ν be σ -finite measures. ν can
be written as νr + νs , where νs is singular with respect to µ and

νr (E) =
∫

E

g dµ

Proof. By decomposing � = +i�i , we can suppose without loss of generality that
µ and ν are finite measures. Let G be the set of g ≥ 0 so that

∫
E

g dµ ≤ ν(E) for
all E.

(a) If g, h ∈ G then g ∨ h ∈ G.

Proof of (a). Let A = {g > h}, B = {g ≤ h}.∫
E

g ∨ h dµ =
∫

E∩A

g dµ +
∫

E∩B

h dµ ≤ ν(E ∩ A) + ν(E ∩ B) = ν(E)

Let κ = sup{∫ g dµ : g ∈ G} ≤ ν(�) < ∞. Pick gn so that
∫

gn dµ > κ − 1/n

and let hn = g1 ∨ · · · ∨ gn. By (a), hn ∈ G. As n ↑ ∞, hn ↑ h. The definition of κ ,
the monotone convergence theorem, and the choice of gn imply that

κ ≥
∫

h dµ = lim
n→∞

∫
hn dµ ≥ lim

n→∞

∫
gn dµ = κ

Let νr (E) = ∫
E

h dµ and νs(E) = ν(E) − νr (E). The last detail is to show

(b) νs is singular with respect to µ.

Proof of (b). Let ε > 0 and let � = Aε ∪ Bε be a Hahn decomposition for νs − εµ.
Using the definition of νr and then the fact that Aε is positive for νs − εµ (so
εµ(Aε ∩ E) ≤ νs(Aε ∩ E)),∫

E

(h + ε1Aε
) dµ = νr (E) + εµ(Aε ∩ E) ≤ ν(E)

This holds for all E, so k = h + ε1Aε
∈ G. It follows that µ(Aε) = 0, for if not,

then
∫

k dµ > κ a contradiction. Letting A = ∪nA1/n, we have µ(A) = 0. To see
that νs(Ac) = 0, observe that if νs(Ac) > 0, then (νs − εµ)(Ac) > 0 for small ε, a
contradiction since Ac ⊂ Bε , a negative set. �

Exercise A.4.4. Prove that the Lebesgue decomposition is unique. Note that you
can suppose without loss of generality that µ and ν are finite.

We are finally ready for the main business of the section. We say a measure ν is
absolutely continuous with respect to µ (and write ν << µ) if µ(A) = 0 implies
that ν(A) = 0.

Exercise A.4.5. If µ1 << µ2 and µ2 ⊥ ν, then µ1 ⊥ ν.
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Theorem A.4.6. Radon-Nikodym theorem. If µ, ν are σ -finite measures and ν

is absolutely continuous with respect to µ, then there is a g ≥ 0 so that ν(E) =∫
E

g dµ. If h is another such function, then g = h µ a.e.

Proof. Let ν = νr + νs be any Lebesgue decomposition. Let A be chosen so that
νs(Ac) = 0 and µ(A) = 0. Since ν << µ, 0 = ν(A) ≥ νs(A) and νs ≡ 0. To prove
uniqueness, observe that if

∫
E

g dµ = ∫
E

h dµ for all E, then letting E ⊂ {g > h,

g ≤ n} be any subset of finite measure, we conclude µ(g > h, g ≤ n) = 0 for all
n, so µ(g > h) = 0, and, similarly, µ(g < h) = 0. �

Example A.4.3. Theorem A.4.6 may fail if µ is not σ -finite. Let (�,F) = (R,R),
µ = counting measure and ν = Lebesgue measure.

The function g whose existence is proved in Theorem A.4.6 is often denoted
dν/dµ. This notation suggests the following properties, whose proofs are left to
the reader.

Exercise A.4.6. If ν1, ν2 << µ, then ν1 + ν2 << µ

d(ν1 + ν2)/dµ = dν1/dµ + dν2/dµ

Exercise A.4.7. If ν << µ and f ≥ 0, then
∫

f dν = ∫ f dν
dµ

dµ.

Exercise A.4.8. If π << ν << µ, then dπ/dµ = (dπ/dν) · (dν/dµ).

Exercise A.4.9. If ν << µ and µ << ν, then dµ/dν = (dν/dµ)−1.

A.5 Differentiating under the Integral

At several places in the text, we need to interchange differentiate inside a sum
or an integral. This section is devoted to results that can be used to justify those
computations.

Theorem A.5.1. Let (S,S, µ) be a measure space. Let f be a complex-valued
function defined on R × S. Let δ > 0, and suppose that for x ∈ (y − δ, y + δ) we
have

(i) u(x) = ∫
S
f (x, s) µ(ds) with

∫
S
|f (x, s)|µ(ds) < ∞

(ii) for fixed s, ∂f/∂x(x, s) exists and is a continuous function of x,
(iii) v(x) = ∫

S

∂f

∂x
(x, s) µ(ds) is continuous at x = y,

and (iv)
∫
S

∫ δ

−δ

∣∣∣ ∂f∂x
(y + θ, s)

∣∣∣ dθ µ(ds) < ∞
then u′(y) = v(y).
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Proof. Letting |h| ≤ δ and using (i), (ii), (iv), and Fubini’s theorem in the form
given in Exercise 1.7.4, we have

u(y + h) − u(y) =
∫

S

f (y + h, s) − f (y, s) µ(ds)

=
∫

S

∫ h

0

∂f

∂x
(y + θ, s) dθ µ(ds)

=
∫ h

0

∫
S

∂f

∂x
(y + θ, s) µ(ds) dθ

The last equation implies

u(y + h) − u(y)

h
= 1

h

∫ h

0
v(y + θ ) dθ

Since v is continuous at y by (iii), letting h → 0 gives the desired result. �

Example A.5.1. For a result in Section 3.3, we need to know that we can differen-
tiate under the integral sign in

u(x) =
∫

cos(xs)e−s2/2 ds

For convenience, we have dropped a factor (2π )−1/2 and changed variables to match
Theorem A.5.1. Clearly, (i) and (ii) hold. The dominated convergence theorem
implies (iii)

x →
∫

−s sin(sx)e−s2/2 ds

is continuous. For (iv), we note∫ ∣∣∣∣∂f∂x
(x, s)

∣∣∣∣ ds =
∫

|s|e−s2/2 ds < ∞

and the value does not depend on x, so (iv) holds.

For some examples the following form is more convenient:

Theorem A.5.2. Let (S,S, µ) be a measure space. Let f be a complex valued
function defined on R × S. Let δ > 0, and suppose that for x ∈ (y − δ, y + δ) we
have

(i) u(x) = ∫
S
f (x, s) µ(ds) with

∫
S
|f (x, s)|µ(ds) < ∞

(ii) for fixed s, ∂f/∂x(x, s) exists and is a continuous function of x,

(iii′)
∫

S

sup
θ∈[−δ,δ]

∣∣∣∣∂f∂x
(y + θ, s)

∣∣∣∣ µ(ds) < ∞

then u′(y) = v(y).
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Proof. In view of Theorem A.5.1 it is enough to show that (iii) and (iv) of that
result hold. Since∫ δ

−δ

∣∣∣∣∂f∂x
(y + θ, s)

∣∣∣∣ dθ ≤ 2δ sup
θ∈[−δ,δ]

∣∣∣∣∂f∂x
(y + θ, s)

∣∣∣∣
it is clear that (iv) holds. To check (iii), we note that

|v(x) − v(y)| ≤
∫

S

∣∣∣∣∂f∂x
(x, s) − ∂f

∂x
(y, s)

∣∣∣∣µ(ds)

(ii) implies that the integrand → 0 as x → y. The desired result follows from (iii′)
and the dominated convergence theorem. �

To indicate the usefulness of the new result, we prove:

Example A.5.2. If φ(θ ) = EeθZ < ∞ for θ ∈ [−ε, ε] then φ′(0) = EZ.

Proof. Here θ plays the role of x, and we take µ to be the distribution of Z. Let
δ = ε/2. f (x, s) = exs ≥ 0, so (i) holds by assumption. ∂f/∂x = sexs is clearly a
continuous function, so (ii) holds. To check (iii′), we note that there is a constant
C so that if x ∈ (−δ, δ), then |s|exs ≤ C

(
e−εs + eεs

)
. �

Taking S = Z with S = all subsets of S and µ = counting measure in Theorem
A.5.2 gives the following:

Theorem A.5.3. Let δ > 0. Suppose that for x ∈ (y − δ, y + δ) we have
(i) u(x) =∑∞

n=1 fn(x) with
∑∞

n=1 |fn(x)| < ∞
(ii) for each n, f ′

n(x) exists and is a continuous function of x,

and (iii)
∑∞

n=1 supθ∈(−δ,δ) |f ′
n(y + θ )| < ∞

then u′(x) = v(x).

Example A.5.3. In Section 2.6 we want to show that if p ∈ (0, 1) then( ∞∑
n=1

(1 − p)n
)′

= −
∞∑

n=1

n(1 − p)n−1

Proof. Let fn(x) = (1 − x)n, y = p, and pick δ so that [y − δ, y + δ] ⊂ (0, 1).
Clearly (i)

∑∞
n=1 |(1 − x)n| < ∞ and (ii) f ′

n(x) = n(1 − x)n−1 is continuous for x

in [y − δ, y + δ]. To check (iii), we note that if we let 2η = y − δ then there is a
constant C so that if x ∈ [y − δ, y + δ] and n ≥ 1, then

n(1 − x)n−1 = n(1 − x)n−1

(1 − η)n−1
· (1 − η)n−1 ≤ C(1 − η)n−1 �
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Saint-Flour XIV. Lecture Notes in Math 1180, Springer-Verlag, New York

H. Kesten (1987) Percolation theory and first passage percolation. Ann. Probab. 15,
1231–1271

J. F. C. Kingman (1968) The ergodic theory of subadditive processes. J. R. Statist. Soc. B.
30, 499–510

J. F. C. Kingman (1973) Subadditive ergodic theory. Ann. Probab. 1, 883–909

J. F. C. Kingman (1975) The first birth problem for age dependent branching processes.
Ann. Probab. 3, 790–801

K. Kondo and T. Hara (1987) Critical exponent of susceptibility for a general class of
ferromagnets in d > 4 dimensions. J. Math. Phys. 28, 1206–1208

U. Krengel (1985) Ergodic theorems. deGruyter, New York

S. Leventhal (1988) A proof of Liggett’s version of the subadditive ergodic theorem. Proc.
AMS. 102, 169–173
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absorbing state, 284
adapted sequence, 232
age-dependent branching process, 349
algebra, 4
almost everywhere, 17
almost sure convergence, 16
alternating renewal process, 219
aperiodic, 309
arcsine laws

Brownian motion, 374, 386
random walk, 203

arithmetic distribution, 142
asymptotic density of subset of Z, 9
asymptotic equipartition property, 77

Backgammon, 377
backwards martingale, 264
ballot theorem, 202, 265
Banach-Tarksi theorem, 409
Bayes’ formula, 224
Benford’s law, 337
Bernoulli distribution, 33
Bernoulli-Laplace model, 282
Bernoulli shift, 329, 332, 338
Bernstein polynomials, 55
Berry-Esseen theorem, 137
beta distribution, 241
birth and death chains, 280, 292, 297, 304
birthday problem, 98
Blackwell’s renewal theorem, 209
Blumenthal’s 0-1 law, 362
Bonferroni inequalities, 35
Borel-Cantelli lemmas, 65, 67, 240, 255
Borel sets, 3
Borel’s paradox, 226
bounded convergence theorem, 25, 29
branching process, 245, 253, 278, 292

age-dependent, 349
brother-sister mating, 281, 287
Brownian bridge, 393
Brownian motion, 353

continuity of paths, 356
hitting times, 371, 377
Hölder cotninuity, 358, 363
law of iterated logarithm, 396
Markov property, 360
martingales, 376
modulus of continuity, 375

nondifferentiability, 358
quadratic variation, 359
reflection principle, 372
scaling relation, 354
strong Markov property, 368
tail σ -field, 364
temporal inversion, 363
zeros, 370

Cantor set, 12
Carathéodary’s extension theorem, 402
Carleman’s condition, 122
Cauchy distribution, 62

ch.f. 112
Cauchy-Schwarz inequality, 24, 227
central limit theorem

embedding proof, 385
for i.i.d. sequences, 124
infinite variance, 131
local, 143, 144
prime divisors, 133
random indices, 128
rates of convergence, 137
in Rd176
renewal theory, 128
triangular arrays, 129

central order statistic, 98
change of variables formula, 30
Chapman-Kolmogorov equation, 284
characteristic function, 106

convergence theorem, 113, 176
inversion, 109, 175
moments and derivatives, 114
in Rd175
series expansion, 116
for stable laws, 164

Chebyshev’s inequality, 28, 34, 227
chi-square distribution, 13
Chung-Fuchs theorem, 195
class property, 304
closed set in Markov chain, 290
coin flips

central limit theorem, 95, 96, 126
ch.f. 107
large deviations, 89, 91, 96
patterns in, 220

completion, 408
conditional expection, 221

properties of, 226
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conditional variance formula, 230
continued fractions, 332
continuity theorem, 113
continuous mapping theorem, 101
convergence

almost surely, 16
in distribution, 97
in measure, 24
in probability, 53
of types, 167
weak, 97, 175

converging together lemma, 105
convolution, 47
countably generated σ -field, 9, 244
coupon collector’s problem, 51, 153
Cramér’s estimates of ruin, 215
Cramér-Wold device, 176
cycle condition for reversibility, 298
cycle trick, 299

de Finetti’s theorem, 267
delayed renewal process, 209
De Moivre-Laplace theorem, 96
density function, 11, 172
directly Riemman integrable, 217
discrete probability space, 2
distribution function, 10
dominated convergence theorem, 26, 29, 71, 263
Donsker’s theorem, 386
Doob’s decomposition, 237
Doob’s inequality, 249
double exponential distribution, 99
doubly stochastic, 296
dual transition probability, 298
Dubin’s inequality, 239

Ehrenfest chain, 280, 297
empirical distribution, 76, 391
entropy, 77, 306
equal in distribution, 11
Erdös-Kac central limit theorem, 135
ergodic sequence, 330
ergodic theorem, 333
excessive measure, 302
exchangeable sequence, 267
exchangeable σ -field, 180
expected value, 27, 60
exponential distribution, 12

bilateral, 109
ch.f. 108
large deviations, 89, 91
moments, 32
sums of, 48

extended real line, 16
extreme value distribution, 99

Fatou’s lemma, 25, 29, 71, 101
filtration, 232
finite dimensional set, 51
first entrance decomposition, 287
first passage percolation, 350
Friedman’s urn, 256
Fubini’s theorem, 37

Galton-Watson process, 245
gamma distribution, 48
Gaussian process, 355

generating function, 247
geometric distribution, 33
germ σ -field, 362
GI/G/1 queue, 319, 325
Glivenko-Cantelli theorem, 76
Gumbel distribution, 99

Hahn decomposition, 413
Hamburger moment problem, 123
Harris chain, 318
head runs, 71
Helly’s selection theorem, 103
Hewitt-Savage, 0-1 law, 180, 266
histogram correction, 127
Hölder’s inequality, 24, 28
Holtsmark distribution, 168

i.i.d. 55
inclusion-exclusion formula, 35
independence, defined, 41
index of a stable law, 164
indicator function, 9
infinitely divisible distribution, 169
integration to the limit, 101
invariant set, 330
inversion formula for ch.f. 109, 175
irreducible set in Markov chain, 290

Jensen’s inequality, 23, 28, 227
Jordan decomposition, 414

Kac’s recurrence theorem, 340
Kakutani dichotomy, 244
Kochen-Stone lemma, 73
Kolmogorov’s

continuity criterion, 357
cycle condition, 298
extension theorem, 51, 410
maximal inequality, 79
test, 398
three-series theorem, 80
zero-one law, 78

Kronecker’s lemma, 81
Ky Fan metric, 105

ladder variables, 185
large deviations, 86
lattice distribution, 141
law of the iterated logarithm, 338
Lebesgue decomposition, 413
Lebesgue measure, 3
Lévy-Khintchine theorem, 171
Lévy measure, 171
Lévy metric, 105
Lévy’s, 0-1 law, 262
Lindeberg-Feller theorem, 129
local central limit theorem, 143, 144
lognormal distribution, 13, 120
longest common subsequence, 343
Lyapunov’s theorem, 133

marginal distribution, 172
Markov chain, 274

additive functionals, 312, 313
convergence theorem, 307, 309, 314
cycle condition, 298
cycle trick, 299
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cyclic decomposition, 315
decomposition theorem, 314
finite state space, 311
reversible measure, 297
stationary distribution, 296, 302
superharmonic function, 296
tail σ -field, 314
transition probability, 274

Markov property, 283
for Brownian motion, 378

Markov’s inequality, 29
martingale

backwards, 264
convergence theorem, 236
definition, 232
Lp convergence theorem, 252
Lp maximal inequality, 250
orthogonality of increments, 252
square integrable, 254

matching, 151
maxima, limit theorem for, 99
maximal ergodic lemma, 333
mean, 27, 31
measurable map, 14
measurable space, 1
measure, 1

properties of, 2
measure preserving, 329
M/G/1 queue, 279, 294, 304
Minkowski’s inequality, 26
M/M/∞ queue, 296, 306
moment, 31
moment problem, 120
monotone class theorem, 276
monotone convergence theorem, 26, 29
Monte Carlo integration, 63
multivariate normal distribution, 177
mutually singular measures, 414

negative set, 412
nice measurable space, 51
nonarithmetic distribution, 209
nonmeasuarble set, 408
normal distribution

approx. to binomial, 126
approx. to Poisson, 127
ch.f, 107
large deviations, 89, 91
moments of, 32
sums of, 49
tail estimate, 12

normal number, 338
null recurrent, 303

occupancy problem, 59, 152, 157
optional stopping theorem, 270
Ornstein’s coupling, 317
outer measure, 404

pairwise independent, 42, 52, 68, 127
Parseval relation, 197
pedestrian delay, 214
period of a state, 308
permutable event, 179
π -λ theorem, 43, 402
Poisson distribution, 33

ch.f. 107

convergence to, 147, 154
large deviations, 96

Poisson process
defined, 155
on a measure space, 158, 159
thinning and compounding, 157

Pollaczek-Khintchine formula, 327
Polya’s criterion for ch.f. 118
Polya’s distribution, 112
Polya’s urn scheme, 241
polynomial approximation, 55
positive recurrent, 303
positive set, 412
predictable sequence, 234
probability measure, 1
probability space, 1
product space, 36

Radon-Nikodym derivative, 222, 242
Radon-Nikodym theorem, 222, 416
random index c.l.t. 128
random matrices, 347
random permutations, 57, 130

increasing sequences in, 348
longest common subsequences, 343

random variable, 9
random vector, 14
random walk

see also simple random walk
defined, 179
on graphs, 298
on hypercube, 312
on trees, 317
range of, 343
recurrence and transience, 189
stationary measure, 296
symmetric, 181

ratio limit theorems, 313
record values, 69, 130
recurrent random walk, 190
recurrent state, 289
reflection principle, 201, 285
regular conditional probability, 230
renewal chain, 278, 292
renewal equation, 213
renewal measure, 209
renewal process

alternating, 219
delayed, 209
stationary, 210
terminating, 214

renewal theorem, 216
Blackwell’s, 209
central limit theorem, 128
strong law, 75, 208

residual waiting time, 218
reversible measure, 297
Riemann-Lebesgue lemma, 23
rotation of the circle, 329, 331, 336
roulette, 125, 294

St. Petersburg paradox, 62
Scheffé’s theorem, 98
self-normalized sums, 128
semi-algebra, 3
sequence space, 275
Shannon’s theorem, 77
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shift on sequence space, 183
shuffling cards, 312
σ -algebra = σ -field, 1
σ -field generated by

collection of sets, 3
random variables, 14

σ -finite measure, 4
signed measure, 412
simple function, 17
simple random walk

exit distribution, 186, 294
exit time, 188, 272
ladder variables, 187
recurrence, 182, 294
returns to zero, 289

singular distribution, 12
Skorokhod’s representation,

383
slowly varying function, 161
Solovay’s theorem, 410
span of a lattice distribution, 142
stable laws

characterization of, 166
ch.f, 164
convergence to, 161

stationary distribution, 296, 302
stationary measure, 296
stationary renewal process, 210
stationary sequence, 328
step function, 23
Stieltjes measure function, 3
Stieltjes moment problem, 123
Stirling’s formula, 94
stopping time, 182, 235, 365
Strassen’s invariance principle, 400
strong law of large numbers, 66, 73,

81
backwards martingale proof, 265
converse, 67
infinite mean, 84
in renewal theory, 75

strong Markov property, 285
of Brownian motion, 368

subadditive ergodic theorem, 342
submartingale, 232
superharmonic, 296

supermartingale, 232
switching principle, 239

tail σ -field, 78
for Brownian motion, 364
for Markov chain, 314

terminating renewal process, 214
three series theorem, 80

converse, 130
tight sequence of distributions, 104, 174
total variation norm, 98, 148
transition probability, 274

dual, 298
transient random walk, 190
transient state, 289
triangular array, 56, 129
triangular distribution, 108

uncorrelated random variables, 47, 54
unfair “fair" game, 64
uniform distribution, 11

ch.f. 108
uniform integrability, 228
upcrossing inequality, 235

vague convergence, 103
variance, 32

Wald’s equation, 185, 187
waiting for rare events, 97
weak convergence, 97, 173

a.s. representation of, 100
equivalent conditions, 102, 173

weak law of large numbers, 60, 61
for positive random variables, 64
for triangular arrays, 59
L2 version, 55

Weyl’s equidistribution theorem, 336
Wiener’s maximal inequality, 335
Wright-Fisher model, 287

zero-one laws
Blumenthal’s, 362
Hewitt-Savage, 180, 266
Kolmogorov’s, 78
Lévy’s, 262
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