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Preface

In 1989 when the first edition of this book was completed, my sons David and
Greg were 3 and 1, and the cover picture showed the Dow Jones at 2650. The past
20 years have brought many changes, but the song remains the same. The title
of the book indicates that as we develop the theory, we will focus our attention
on examples. Hoping that the book would be a useful reference for people who
apply probability in their work, we have tried to emphasize the results that are
important for applications, and have illustrated their use with roughly 200 examples.
Probability is not a spectator sport, so the book contains almost 450 exercises to
challenge readers and to deepen their understanding.
This fourth edition has two major changes (in addition to a new publisher):

(i) The book has been converted from TeX to LaTeX. The systematic use of labels
should eventually eliminate problems with references to other points in the
text. In addition, the picture environment and graphicx package has allowed
the figures lost from the third edition to be reintroduced and a number of new
ones to be added.

(i) Four sections of the old appendix have been combined with the first three
sections of Chapter 1 to make a new first chapter on measure theory, which
should allow the book to be used by people who do not have this background
without making the text tedious for those who have.

Acknowledgments. I am always grateful to the many people who sent me com-
ments and typos. Helping to correct the first edition were David Aldous, Ken
Alexander, Daren Cline, Ted Cox, Robert Dalang, Joe Glover, David Griffeath, Phil
Griffin, Joe Horowitz, Olav Kallenberg, Jim Kuelbs, Robin Pemantle, Yuval Peres,
Ken Ross, Steve Samuels, Byron Schmuland, Jon Wellner, and Ruth Williams.
The third edition benefited from input from Manel Baucells, Eric Blair, Zhen-
Qing Chen, Finn Christensen, Ted Cox, Bradford Crain, Winston Crandall, Amir
Dembo, Neil Falkner, Changyong Feng, Brighten Godfrey, Boris Granovsky, Jan
Hannig, Andrew Hayen, Martin Hildebrand, Kyoungmun Jang, Anatole Joffe,
Daniel Kifer, Steve Krone, Greg Lawler, T. Y. Lee, Shlomo Levental, Torgny Lind-
vall, Arif Mardin, Carl Mueller, Robin Pemantle, Yuval Peres, Mark Pinsky, Ross
Pinsky, Boris Pittel, David Pokorny, Vinayak Prabhu, Brett Presnell, Jim Propp,

iX
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Yossi Schwarzfuchs, Rami Shakarchi, Lian Shen, Marc Shivers, Rich Sowers, Bob
Strain, Tsachy Weissman, and Hao Zhang.

New helpers for the fourth edition include John Angus, Phillipe Charmony, Adam
Cruz, Ricky Der, Justin Dyer, Piet Groeneboom, Vlad Island, Elena Kosygina,
Richard Laugesen, Sungchul Lee, Shlomo Levental, Ping Li, Fredddy Lépez, Lutz
Mattner, Piotr Milos, Davey Owen, Brett Presnell, Igal Sason, Alex Smith, Laurent
Tournier, Harsha Wabgaonkar, John Walsh, Tsachy Weissman, Neil Wu, Ofer
Zeitouni, Martin Zerner, and Andrei Zherebtsov. I apologize to those whose names
have been omitted or are new typos.

Family update. David graduated from Ithaca College in May 2009 with a degree
in print journalism, and like many of his peers is struggling to find work. Greg has
one semester to go at MIT and is applying to graduate schools in computer science.
He says he wants to do research in “machine learning,” so perhaps he can write a
program to find and correct the typos in my books.

After 25 years in Ithaca, we moved to Durham in June 2010 and I have taken a
position in the math department at Duke. Everyone seems to focus on the fact that
we are trading very cold winters for hotter summers and a much longer growing
season, but the real attraction is the excellent opportunities for interdisciplinary
research in the Research Triangle.

The more things change, the more they stay the same: inevitably there will be
typos in the new version. You can email me at rtd @math.duke.edu

Rick Durrett, July 2010



1

Measure Theory

In this chapter, we recall some definitions and results from measure theory. Our
purpose here is to provide an introduction for readers who have not seen these
concepts before and to review that material for those who have. Harder proofs,
especially those that do not contribute much to one’s intuition, are hidden away
in the Appendix. Readers with a solid background in measure theory can skip
Sections 1.4, 1.5, and 1.7, which were previously part of the Appendix.

1.1 Probability Spaces

Here and throughout the book, terms being defined are set in boldface. We begin
with the most basic quantity. A probability space is a triple (2, F, P) where 2 is
a set of “outcomes,” F is a set of “events,” and P : 7 — [0, 1] is a function that
assigns probabilities to events. We assume that F is a o-field (or o-algebra), that
is, a (nonempty) collection of subsets of €2 that satisfy

(i) if A € F then A€ € F, and
(i) if A; € F is a countable sequence of sets then U; A; € F.

Here and in what follows, countable means finite or countably infinite. Since
N;A; = (U; A7), it follows that a o-field is closed under countable intersections.
‘We omit the last property from the definition to make it easier to check.

Without P, (2, F) is called a measurable space, that is, it is a space on which
we can put a measure. A measure is a nonnegative countably additive set function;
that is, a function u : 7 — R with

(1) u(A) = u(@) =0forall A € F, and
(ii) if A; € F is a countable sequence of disjoint sets, then

WU A =) u(A))

If u(2) = 1, we call u a probability measure. In this book, probability mea-
sures are usually denoted by P.



2 Measure Theory

The next result gives some consequences of the definition of a measure that we
will need later. In all cases, we assume that the sets we mention are in F.

Theorem 1.1.1. Let  be a measure on (2, F)
(i) Monotonicity. If A C B then u(A) < u(B).
(ii) Subadditivity. If A C U>_| A,, then u(A) <Y | u(An).
(iii) Continuity from below. If A; 1 A (i.e., A; C Ay C...and U;A; = A) then
u(A;) 1 pn(A).
(iv) Continuity from above. I[f A; | A (i.e, A1 D Ay D ...and N;A; = A), with
M(Ay) < oo then u(A;) | u(A).

Proof.
(1) Let B— A = BN A° be the difference of the two sets. Using + to denote
disjoint union, B = A + (B — A) so

w(B) = u(A) + u(B — A) = u(A).

(ii) Let Ay, = A, N A, By = A} andforn > 1, B, = A], — UZ;II(AIM)C. Since the
B, are disjoint and have union A, we have, using (i) of the definition of
measure, B,, C A,,, and (1) of this theorem,

WA =Y " u(By) < Y 1(Ap)
m=1 m=1

(iii) Let B, = A, — A,_1. Then the B, are disjoint and have U>°_ B, = A,
u*_ B, = A, so

m=1

o0 n
u(A) = ;uwm) = lim Z_;M(Bm) = lim p(A,)
(iv) Ay — A, 1+ Ay — A so (iii) implies u(A; — A,) 1 u(A; — A). Since A; D B,

we have w(A; — B) = u(A;) — u(B) and it follows that w(A,) | w(A). N

The simplest setting, which should be familiar from undergraduate probabi-
lity, is:

Example 1.1.1. Discrete probability spaces. Let 2 = a countable set, that is,
finite or countably infinite. Let F = the set of all subsets of €2. Let

P(A) =) p(w) where p(w) = 0and ) p(w) = 1
w€eEA weR
A little thought reveals that this is the most general probability measure on this
space. In many cases when €2 is a finite set, we have p(w) = 1/|€2| where |Q2| =
the number of points in 2.
For a simple concrete example that requires this level of generality, consider the
astragali, dice used in ancient Egypt made from the ankle bones of sheep. This die
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could come to rest on the top side of the bone for four points or on the bottom for
three points. The side of the bone was slightly rounded. The die could come to rest
on a flat and narrow piece for six points or somewhere on the rest of the side for
one point. There is no reason to think that all four outcomes are equally likely, so
we need probabilities p;, p3, psa, and pg to describe P.

To prepare for our next definition, we need:

Exercise 1.1.1. (i) If F;, i € I are o-fields, then N;c;F; is. Here I # @ is an
arbitrary index set (i.e., possibly uncountable). (ii) Use the result in (i) to show that
if we are given a set €2 and a collection A of subsets of €2, then there is a smallest
o -field containing .A. We will call this the o-field generated by A and denote it

by o (A).

Let R? be the set of vectors (xj, ... x;) of real numbers and R¢ be the Borel sets,
the smallest o -field containing the open sets. When d = 1, we drop the superscript.

Example 1.1.2. Measures on the real line. Measures on (R, R) are defined by
giving probability a Stieltjes measure function with the following properties:

(i) F is nondecreasing.

(i1) F is right continuous, that is, lim, |, F(y) = F(x).

Theorem 1.1.2. Associated with each Stieltjes measure function F there is a unique
measure (. on (R, R) with u(a, b]) = F(b) — F(a)

p((a, b)) = F(b) — F(a) (1.1.1)

When F(x) = x the resulting measure is called Lebesgue measure.

The proof of Theorem 1.1.2 is a long and winding road, so we will content
ourselves with describing the main ideas involved in this section and hide the
remaining details in the Appendix in Section A.1. The choice of “closed on the
right” in (a, b] is dictated by the fact that if b,, | b then we have

mi’l(av bl’l] = (a9 b]

The next definition will explain the choice of “open on the left.”

A collection S of sets is said to be a semialgebra if (i) it is closed under
intersection, that is, S, T € § implies SNT € S, and (ii) if S € S then $¢ is a
finite disjoint union of sets in S. An important example of a semialgebra is:

Example 1.1.3. S; = the empty set plus all sets of the form

(al,bl]x---x(ad,bd]CRd where — o0 <a; <b; <

The definition in (1.1.1) gives the values of @ on the semialgebra S;. To go from
semialgebra to o-algebra we use an intermediate step. A collection A of subsets
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of Q is called an algebra (or field) if A, B € A implies A° and A U B are in A.
Since AN B = (A° U B°)", it follows that A N B € A. Obviously a o-algebra is
an algebra. An example in which the converse is false is:

Example 1.1.4. Let Q = Z = the integers. .A = the collection of A C Z so that A
or A€ is finite is an algebra.

Lemma 1.1.3. If S is a semialgebra, then S = {finite disjoint unions of sets in S}
is an algebra, called the algebra generated by S.

Proof. Suppose A = +;S; and B = +,T;, where + denotes disjoint union and
we assume the index sets are finite. Then AN B = +; ; S; N T; € S. As for com-
plements, if A = +;5; then A° = N;S¢. The definition of S implies S € S. We
have shown that S is closed under intersection, so it follows by induction that
A e S. ]

Example 1.1.5. Let @ = Rand S = S;. Then S| = the empty set plus all sets of
the form

Uf.‘:l(ai, b;] where —o00 <a; <b; <
Given a set function p on S, we can extend it to S by
(i A)) Z J(A)

By a measure on an algebra A, we mean a set function p with

1) w(A) > u@)=0forall A € A, and
(i) if A; € A are disjoint and their union is in A, then

(U A ZM(A )

W is said to be o -finite if there is a sequence of sets A, € A so that u(A,) < oo
and U, A, = Q. Letting A] = A, and forn > 2,

Al =U!_ A, or A =A,N (ﬂZQIAZ,) €A

we can without loss of generality assume that A,, 1 Q2 or the A, are disjoint.
The next result helps us to extend a measure defined on a semialgebra S to the
o -algebra it generates, o (S)

Theorem 1.1.4. Let S be a semialgebra and let ju defined on S have u(¥) =
Suppose (i) if S € S is a finite disjoint union of sets S; € S then u(S) = Y _; u(S;),
and (i) if S;, S € Swith S = +;>1S; then u(S) < Zizl W1(S;). Then u has a unique
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extension [ that is a measure on S the algebra generated by S. If ji is sigma-finite
then there is a unique extension v that is a measure on o (S).

In (i1) above, and in what follows, i > 1 indicates a countable union, while a plain
subscript i or j indicates a finite union. The proof of Theorems 1.1.4 is rather
involved, so it is given in Section A.1. To check condition (ii) in the theorem, the
following is useful.

Lemma 1.1.5. Suppose only that (i) holds.
(a) If A, B; € S with A = +_, B; then i(A) = Y_; i(B;).
(b) If A, B; € S with A C U!_, B; then ji(A) < Y, l(B;).

Proof. Observe that it follows from the definition that if A = +4;B; is a finite
disjoint union of sets in S and B; = +,S; ;, then

A(A) =" u(Sij) =Y (B
iJ i
To prove (P), we begin with the case n =1, Bj=B. B=A+ (BN A°) and
BNA°eS, so
A(A) < i(A) + (B N A®) = u(B)

To handle n > 1 now, let Fy, = B{ N ---N B;_, N By and note
UBi=Fi+ -+ F,
A=ANWUB)=ANF)+---+(ANF,)

so using (a), (b) with n = 1, and (a) again

AA) =Y AN F) <Y wF) = (U B) u
k=1 k=1

Proof of Theorem 1.1.2. Let S be the semialgebra of half-open intervals (a, b]
with —oo < a < b < oo. To define i on S, we begin by observing that

F(oo)=1lim F(x) and F(—o0)= lim F(x) exist
xtoo x|} —00

and w((a,b]) = F(b) — F(a) makes sense for all —oco <a < b < oo since
F(o00) > —o0 and F(—o0) < o0.

If (a, b] = +]_,(a;, b;] then after relabeling the intervals we must have a; = a,
b, = b, and a; = b;_; for 2 < i < n, so condition (i) in Theorem 1.1.4 holds. To
check (ii), suppose first that —oo < a < b < o0, and (a, b] C U;>(a;, b;] where
(without loss of generality) —oo < a; < b; < 00. Pick § > 0 so that F(a + §) <
F(a) + € and pick n; so that

F(bi +ni) < F(b;) + €27
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The open intervals (a;, b; + n;) cover [a + 8, b], so there is a finite subcover
(), Bj), 1 < j =< J.Since (a + 8, b] C Ujj.zl(aj, B;l, (b) in Lemma 1.1.5 implies

J 00
Fb)— Fa+8) <Y F(B)— Fla)) < Y (Fb; +m) — F(a)

j=1 i=1

So, by the choice of § and »;,

o0
F(b) - F(a) <2e+ Y (F(b) — F(a;))
i=1
and since € is arbitrary, we have proved the result in the case —0o0 < a < b < 00.To
remove the last restriction, observe that if (a, b] C U;(a;, b;] and (A, B] C (a, b]
has —o0 < A < B < 00, then we have

F(B)— F(A) < Y _(F(b)) — F(a))

i=1
Since the last result holds for any finite (A, B] C (a, b], the desired result
follows. u

Measures on R4

Our next goal is to prove a version of Theorem 1.1.2 for R?. The first step is to
introduce the assumptions on the defining function F. By analogy with the case
d =1 it is natural to assume:

(i) It is nondecreasing, that is, if x < y (meaning x; < y; for all i), then F(x) <

F(y).
(ii) F is right continuous, that is, lim, , F(y) = F(x) (here y | x means each

Vi ¥ Xi).
However this time it is not enough. Consider the following F:
1 ifx;,x>1
2/3 ifx;>1land0<x; <1
2/3 ifx,>land0<x; <1

0 otherwise

F(xi,x) =

See Figure 1.1 for a picture. A little thought shows that
p((ar, bil x (a2, b2]) = u((—00, byl x (=00, br]) — u((—00, ai] x (=00, br)
— u((—=00, b1] x (=00, a]) + u((—00, ai] x (=00, az])
= F(b1, by) — F(ay, by) — F(by, az) + F(ay, az)
Using this witha; = a; = 1 — € and b; = b, = 1 and letting ¢ — 0, we see that

w1, 1) =1-2/3-2/3+0=—1/3
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0 2/3 1
0 0 2/3
0 0 0

Figure 1.1. Picture of the counterexample.

Similar reasoning shows that u({1, 0}) = u({0, 1} = 2/3.
To formulate the third and final condition for F to define a measure, let
A =(ai,b1] x -+ x (aq, bal
V ={ay, b1} x --- x{aq, by}
where —00 < a; < b; < 0o. To emphasize that co’s are not allowed, we will call
A afinite rectangle. Then V = the vertices of the rectangle A. If v € V, let

Sgn(v) — (_1)# ofa’sinv

A F =) sgn(v)F(v)
veV

We will let £(A) = A4 F, so we must assume

(iii)) A4 F > 0 for all rectangles A.

Theorem 1.1.6. Suppose F : R — [0, 1] satisfies (i)—(iii) given above. Then there
is a unique probability measure w on (R?, R%) so that W(A) = A4 F for all finite
rectangles.

Example 1.1.6. Suppose F(x) = ]_[f:1 F;(x), where the F; satisfy (i) and (ii) of
Theorem 1.1.2. In this case,

d
ALF =[] (Fbi) — Fia)

i=1

When F;(x) = x for all i, the resulting measure is Lebesgue measure on RY.

Proof. We let u(A) = A4 F for all finite rectangles and then use monotonicity
to extend the definition to S;. To check (i) of Theorem 1.1.4, call A = +;B; a
regular subdivision of A if there are sequences a; = ;0 < o1 ... < oy, = b;
so that each rectangle B has the form

(otr j—1, 01,1 X -+ X (g, j,—1,%a,j,] where 1 < j; <n;



8 Measure Theory

Figure 1.2. Conversion of a subdivision to a regular one.

It is easy to see that for regular subdivisions A(A) = ), A(By). (First consider the
case in which all the endpoints are finite, and then take limits to get the general
case.) To extend this result to a general finite subdivision A = +;A;, subdivide
further to get a regular one see Figure 1.2.
The proof of (ii) is almost identical to that in Theorem 1.1.2. To make things

easier to write and to bring out the analogies with Theorem 1.1.2, we let

(e, y) =1, 31) X -+ X (xa, Ya)

(e, y1 = (e, il X -+ X (g, ydl

[x, yI =[x, y1] x - X [xa, yal
for x, y € RY. Suppose first that —co < a < b < 00, where the inequalities mean

that each component is finite, and suppose (a, b] C U;> (@', b'], where (without
loss of generality) —oco < a’ < b' < oo.Let1=(1,...,1),pick § > 0 so that

n(a + 81, b)) < p((a, b]) + €
and pick 7; so that
ula, o' + i1l < (@', ') + €27

The open rectangles (a’, b’ + n;1) cover [a + 81, b], so there is a finite subcover
(a/, B/),1 < j < J.Since(a + 81,b] C szl(aj, B71,(b)in Lemma 1.1.5 implies

J 00
wlla +81,bD) < Y ul@’, 7D < ) u(@, b’ +ni1))
i=1

j=1

So, by the choice of § and #;,

u((a, b)) <26+ Y ul(a', b')

i=1

and since € is arbitrary, we have proved the result in the case —o0 < a < b < 0.
The proof can now be completed exactly as before. |
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Exercises

1.1.2. Let Q = R, F = all subsets so that A or A€ is countable, P(A) = 0 in the
first case and = 1 in the second. Show that (2, F, P) is a probability space.

1.1.3. Recall the definition of S; from Example 1.1.3. Show that o(S;) = RY, the
Borel subsets of RY.

1.14. A o-field F is said to be countably generated if there is a countable
collection C C F so that 0(C) = F. Show that R? is countably generated.

1.1.5. (i) Show that if F; C F, C ... are o-algebras, then U; F; is an algebra. (ii)
Give an example to show that U; F; need not be a o -algebra.

1.1.6. Aset A C {1,2,...}is said to have asymptotic density 0 if

lim [AN{1,2,...,n}|/n=20

n—oo
Let A be the collection of sets for which the asymptotic density exists. Is A a
o-algebra? an algebra?

1.2 Distributions

Probability spaces become a little more interesting when we define random vari-
ables on them. A real-valued function X defined on €2 is said to be a random
variable if for every Borel set B C R we have X !(B) = {0 : X(w) € B} € F.
When we need to emphasize the o-field, we will say that X is 7-measurable or
write X € F. If Q is a discrete probability space (see Example 1.1.1), then any
function X : Q2 — R is a random variable. A second trivial, but useful, type of
example of a random variable is the indicator function of a set A € F:

1l weA

1 =
@) =1, wdA

The notation is supposed to remind you that this function is 1 on A. Analysts call
this object the characteristic function of A. In probability, that term is used for
something quite different. (See Section 3.3.)

If X is a random variable, then X induces a probability measure on R called
its distribution by setting u(A) = P(X € A) for Borel sets A. Using the notation
introduced above, the right-hand side can be written as P(X ~1(A)). In words, we
pull A € R back to X~!(A) € F and then take P of that set.

To check that u is a probability measure we observe that if the A; are disjoint,
then using the definition of u; the fact that X lands in the union if and only if it
lands in one of the A;; the fact that if the sets A; € R are disjoint then the events
{X € A;} are disjoint; and the definition of x again, we have:

pUA)=P(X €UiA) = P(U{X € A=) P(X€A)=) uA)
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(€2, F, P) R,R) u=Pox!

X A
X1(A) S T

Figure 1.3. Definition of the distribution of X.

The distribution of a random variable X is usually described by giving its
distribution function, F(x) = P(X < x).

Theorem 1.2.1. Any distribution function F has the following properties:
(i) F is nondecreasing.

(ii) limy_, oo F(x) =1, lim,_, _o F(x)=0.

(iii) F is right continuous, that is, lim, |, F(y) = F(x).

(iv) If F(x—) = limyy, F(y) then F(x—) = P(X < x).

(v) P(X=x)=F(x)— F(x—).

Proof. To prove (i), note that if x < y then {X < x} C {X < y}, and then use (i)
in Theorem 1.1.1 to conclude that P(X < x) < P(X < y).

To prove (ii), we observe that if x 1 oo, then {X < x} 1 Q, whileif x | —o0, then
{X < x} | @, and then use (iii) and (iv) of Theorem 1.1.1.

To prove (iii), we observe thatif y | x, then {X < y} | {X < x}.
To prove (iv), we observe that if y 1 x, then {X < y} 1 {X < x}.
For (v), note P(X = x) = P(X < x)— P(X < x) and use (iii) and (iv). [ ]

The next result shows that we have found more than enough properties to char-
acterize distribution functions.

Theorem 1.2.2. If F satisfies (i), (ii), and (iii) in Theroem 1.2.1, then it is the
distribution function of some random variable.

Proof. Let Q2 = (0, 1), F =the Borel sets, and P =Lebesgue measure. If v € (0, 1),
let

X(w) =sup{y : F(y) < »}
Once we show that
(%) {w: X(@) <x}={w:ow=< FX)}

the desired result follows immediately since P(w : @ < F(x)) = F(x). (Recall P
is Lebesgue measure.) To check (x), we observe that if ® < F(x) then X(w) < x,
since x ¢ {y : F(y) < w}. On the other hand if w > F(x), then since F is right
continuous, there is an € > 0 so that F(x + €¢) < w and X(w) > x + € > x. [ ]
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y

x :
F~'x) F7'(y)
Figure 1.4. Picture of the inverse defined in the proof of Theorem 1.2.2.

Even though F may not be 1-1 and onto, we will call X the inverse of F and
denote it by F~!. The scheme in the proof of Theorem 1.2.2 is useful in generating
random variables on a computer. Standard algorithms generate random variables
U with a uniform distribution; then one applies the inverse of the distribution func-
tion defined in Theorem 1.2.2 to get a random variable F~!(U) with distribution
function F.

If X and Y induce the same distribution i on (R, R), we say X and Y are equal
in distribution. In view of Theorem 1.1.2, this holds if and only if X and Y have
the same distribution function, that is, P(X < x) = P(Y < x) for all x. When X
and Y have the same distribution, we like to write

d
X=Y
but this is too tall to use in text, so for typographical reasons we will also use

X=,7Y.
When the distribution function F(x) = P(X < x) has the form

F(x) = f FOdy (12.1)

—00

we say that X has density function f. In remembering formulas, it is often useful
to think of f(x) as being P(X = x) although

xX+e€
P(X = x) = ung)/ F)dy =0

By popular demand we have ceased our previous practice of writing P(X = x)
for the density function. Instead we will use things like the lovely and informative

Fx(x).

We can start with f and use (1.2.1) to define a distribution function F. In order
to end up with a distribution function it is necessary and sufficient that f(x) > 0
and [ f(x)dx = 1. Three examples that will be important in what follows are:

Example 1.2.1. Uniform distribution on (0,1). f(x) =1 for x € (0, 1) and 0
otherwise. Distribution function:

0 x=<
Fx)=3x 0<x<1
1 x

> 1
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Example 1.2.2. Exponential distribution with rate 1. f(x) = e ** for x > 0
and O otherwise. Distribution function:

0 x <
F(x)=
l—e™ x>0

Example 1.2.3. Standard normal distribution.

fx) = @2n) " exp(—x*/2)

In this case, there is no closed-form expression for F'(x), but we have the following
bounds that are useful for large x:

Theorem 1.2.3. For x > 0,

(7' —xexp(—x?/2) < / ) exp(—y*/2)dy < x~'exp(—x?/2)

Proof. Changing variables y = x + z and using exp(—z2/2) < 1 gives

/ " exp(—y?/2) dy < exp(—x*/2) | " exp(—x2)dz = 1~ exp(—x?/2)
X 0

For the other direction, we observe
o0
=3y ey 2dy = 67! = x exp-x/2) .

A distribution function on R is said to be absolutely continuous if it has a density
and singular if the corresponding measure is singular w.r.t. Lebesgue measure. See
Section A.4 for more on these notions. An example of a singular distribution is:

Example 1.2.4. Uniform distribution on the Cantor set. The Cantor set C is
defined by removing (1/3,2/3) from [0,1] and then removing the middle third
of each interval that remains. We define an associated distribution function by
setting F(x) =0forx <0, F(x)=1forx > 1, F(x) =1/2 for x € [1/3,2/3],
F(x)=1/4forx €[1/9,2/9], F(x) =3/4 for x € [7/9,8/9], ... There is no f
for which (1.2.1) holds because such an f would be equal to O on a set of measure 1.
From the definition, it is immediate that the corresponding measure has u(C¢) = 0.

A probability measure P (or its associated distribution function) is said to be
discrete if there is a countable set S with P(S) = 0. The simplest example of a
discrete distribution is

Example 1.2.5. Point mass at 0. F(x) =1 forx >0, F(x) =0forx < 0.
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Figure 1.5. Cantor distribution function.

In Section 1.6, we will see the Bernoulli, Poisson, and geometric distributions.
The next example shows that the distribution function associated with a discrete
probability measure can be quite wild.

Example 1.2.6. Dense discontinuities. Let g1, g5, ...be an enumeration of the
rationals. Let o;; > O have Y ;> oy = 1 and let

o
Fx) =) ailig0
i=1

where 1y o)(x) = 1if x € [0, 00) = O otherwise.

Exercises

1.2.1. Suppose X and Y are random variables on (€2, 7, P) and let A € F. Show
that if we let Z(w) = X(w) for w € A and Z(w) = Y(w) for w € A€, then Z is a
random variable.

1.2.2. Let x have the standard normal distribution. Use Theorem 1.2.3 to get upper
and lower bounds on P(x > 4).

1.2.3. Show that a distribution function has at most countably many discontinuities.

1.2.4. Show thatif F(x) = P(X < x)is continuous then ¥ = F(X) has a uniform
distribution on (0,1), thatis, if y € [0, 1], P(Y < y) = y.

1.2.5. Suppose X has continuous density f, P(¢ < X < ) = 1 and g is a function
that is strictly increasing and differentiable on (o, 8). Then g(X) has density

fg7'(y)/g' (g7 () for y € (g(a), g(B)) and 0 otherwise. When g(x) = ax + b
witha > 0, g7'(y) = (y — b)/a, so the answer is (1/a) f((y — b)/a).

1.2.6. Suppose X has a normal distribution. Use the previous exercise to compute
the density of exp(X). (The answer is called the lognormal distribution.)

1.2.7. (i) Suppose X has density function f. Compute the distribution function
of X? and then differentiate to find its density function. (ii) Work out the answer
when X has a standard normal distribution to find the density of the chi-square
distribution.
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1.3 Random Variables

In this section, we will develop some results that will help us later to prove that
quantities we define are random variables, that is, they are measurable. Since most
of what we have to say is true for random elements of an arbitrary measurable
space (S, §) and the proofs are the same (sometimes easier), we will develop our
results in that generality. First we need a definition. A function X : Q — S is said
to be a measurable map from (2, F) to (S, S) if

X 'B)={w:X(w)eBleF forallBeS

If (S, 8) = (RY, R?) and d > 1, then X is called a random vector. Of course, if
d =1, X is called a random variable, or r.v. for short.
The next result is useful for proving that maps are measurable.

Theorem 1.3.1. If {w : X(w) € A} € F forall A € A and A generates S (i.e., S
is the smallest o -field that contains A), then X is measurable.
Proof. Writing {X € B} as shorthand for {w : X(w) € B}, we have
{X S U,’B,‘} = U,{X € B,}
{X € B°} ={X € B}
So the class of sets B={B :{X € B} € F} is a o-field. Since B D> A and A
generates S, B D S. [ |

It follows from the two equations displayed in the previous proof that if S is a
o-field, then {{X € B} : B € S} is a o-field. It is the smallest o-field on €2 that
makes X a measurable map. It is called the o-field generated by X and denoted
o (X). For future reference we note that

oc(X)={{XeB}:BeS} (1.3.1)

Example 1.3.1. If (S, S) = (R, R), then possible choices of A in Theorem 1.3.1
are {(—o0, x] : x € R} or {(—0o0, x) : x € Q} where Q = the rationals.

Example 1.3.2. If (S, S) = (R, R?), a useful choice of A is
{(a1,b1) X --+ X (ag,by) : —00 < a; < b; < o}

or occasionally the larger collection of open sets.

Theorem 1.3.2. If X : (Q, F) — (S,S)and f : (S,S) — (T, T) are measurable
maps, then f(X) is a measurable map from (2, F) to (T, T)

Proof. Let BeT. {w: f(X(w)) € B} = {w: X(w) € f~'(B)} € F, since by
assumption f~'(B) € S. [
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From Theorem 1.3.2, it follows immediately that if X is a random variable then
soiscX forall c € R, X2, sin(X), and so on. The next result shows why we wanted
to prove Theorem 1.3.2 for measurable maps.

Theorem 1.3.3. If X4, ... X, are random variables and f : (R", R") - (R, R)

is measurable, then f(Xi, ..., X,) is a random variable.

Proof. In view of Theorem 1.3.2, it suffices to show that (X1, ..., X,,) is arandom

vector. To do this, we observe that if Ay, ..., A, are Borel sets then
{(X],.,XH)EA] X X Ail}:ml{Xl eAl} ef

Since sets of the form A; x --- X A, generate R", the desired result follows from

Theorem 1.3.1. n

Theorem 1.34. If X, ..., X, are random variables then X\ + ---+ X, is a

random variable.

Proof. In view of Theorem 1.3.3, it suffices to show that f(xi,...,x,) =
X1 + - -+ 4+ x, is measurable. To do this, we use Example 1.3.1 and note that
{x : x; 4+ ---+x, < a}isanopen set and hence is in R". [ |

Theorem 1.3.5. If X1, X, ... are random variables then so are
inf X, sup X, lim sup X, liminf X,
n n n n
Proof. Since the infimum of a sequence is < a if and only if some term is < a (if
all terms are > a, then so is the infimum), we have
{infX, <a}=U,{X, <a}eF

A similar argument shows {sup, X, > a} = U,{X, > a} € F. For the last two, we
observe

liminf X,, = su (inf Xm>

n—oo n m>n

lim sup X,, = inf (sup Xm)
n

n—00 m>n

To complete the proof in the first case, note that Y, = inf,,>, X,;, is a random
variable for each n, so sup, Y, is as well. [ |
From Theorem 1.3.5, we see that

Q, ={w: lim X, exists } = {w : limsup X,, — liminf X,, = 0}
n—00 n—>00 n—00
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is a measurable set. (Here = indicates that the first equality is a definition.) If
P(2,) = 1, we say that X,, converges almost surely, or a.s. for short. This type of
convergence is called almost everywhere in measure theory. To have a limit defined
on the whole space, it is convenient to let
X = limsup X,
n—oo

but this random variable may take the value +00 or —oo. To accommodate this
and some other headaches, we will generalize the definition of random variable.

A function whose domain is a set D € F and whose range is R* = [—00, 00] is
said to be a random variable if for all B € R* we have X~ '(B) = {0 : X(0) €
B} € F. Here R* = the Borel subsets of R* with R* given the usual topology,
that is, the one generated by intervals of the form [—o0, a), (a, b) and (b, 00]
where a, b € R. The reader should note that the extended real line (R*, R*) is a
measurable space, so all the results above generalize immediately.

Exercises

1.3.1. Show that if 4 generates S, then X~ !(A) = {{X € A} : A € A} generates
o(X)={{X € B}: B € S}.

1.3.2. Prove Theorem 1.3.4 when n = 2 by checking {X; + X, < x} € F.

1.3.3. Show that if f is continuous and X,, — X almost surely, then f(X,) —
f(X) almost surely.

1.3.4. (i) Show that a continuous function from R? — R is a measurable map from
(R?, R to (R, R). (ii) Show that R? is the smallest o-field that makes all the
continuous functions measurable.

1.3.5. A function f is said to be lower semicontinuous or 1.s.c. if
liminf f(y) = f(x)
y—>x

and upper semicontinuous (u.s.c.) if —f is L.s.c. Show that f is ls.c. if and
only if {x : f(x) < a} is closed for each a € R and conclude that semicontinuous
functions are measurable.

1.3.6. Let f : R?” — R be an arbitrary function and let f%(x) = sup{f(y): |y —
x| < 8}and fs(x) = inf{f(y) : |y — x| < 8} where |z| = (3 + - - - + z2)!/?. Show
that £ is L.s.c. and f; is u.s.c. Let f9 = limg o o, fo= lims o f5, and conclude
that the set of points at which f is discontinuous = { f° # f,} is measurable.

1.3.7. A function ¢ : 2 — R is said to be simple if

n

P(@) =Y cula, (@)

m=1
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where the ¢,, are real numbers and A,, € F. Show that the class of 7 measurable
functions is the smallest class containing the simple functions and closed under
pointwise limits.

1.3.8. Use the previous exercise to conclude that Y is measurable with respect to
o(X)ifand only if ¥ = f(X) where f : R — R is measurable.

1.3.9. To get a constructive proof of the last result, note that {w : m27™" <Y <
(m+1)27"} ={X € By, ,}forsome B,, , € Randset f,(x) =m27" forx € B,
and show that as n — oo f,(x) = f(x)and Y = f(X).

1.4 Integration

Let i be a o-finite measure on (€2, F). We will be primarily interested in the
special case w is a probability measure, but we will sometimes need to integrate
with respect to infinite measure, and and it is no harder to develop the results in
general.

In this section we will define f f du for a class of measurable functions. This
is a four-step procedure:

1. Simple functions

2. Bounded functions

3. Nonnegative functions
4. General functions

This sequence of four steps is also useful in proving integration formulas. See, for
example, the proofs of Theorems 1.6.9 and 1.7.2.

Step 1. ¢ is said to be a simple function if p(w) = Y _'_, a;14, and A; are disjoint
sets with ((A;) < oo. If ¢ is a simple function, we let

&/wdu:=§:audAJ
i=1

The representation of ¢ is not unique since we have not supposed that the a;
are distinct. However, it is easy to see that the last definition does not contradict
itself.

We will prove the next three conclusions four times, but before we can state
them for the first time, we need a definition. ¢ > ¥ u-almost everywhere (or
¢ > ¥ p-a.e.) means u({w : p(w) < ¥(w)}) = 0. When there is no doubt about
what measure we are referring to, we drop the .

Lemma 1.4.1. Let ¢ and y be simple functions.
(i) If o > 0 a.e. thenftpdu > 0.

(ii) Foranya € R, [apdp =a [¢dpu.

(iii) [o+Y¥du=[odu+ [Ydpu.
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Proof. (i) and (ii) are immediate consequences of the definition. To prove (iii),
suppose

m n
=) als and =) blg
i=1 j=1

To make the supports of the two functions the same, we let Ag = U; B, — U; A;, let
By =U;A; — U; B;, and let ag = by = 0. Now

p+y = Z Z(Gi + b)) 08
i=0 j=0
and the A; N B; are pairwise disjoint, so

m

[+ wan=3"Y @+ bpucainsy
i=0 j=0

n n m

D> au(Ain B+ Y Y bju(A; N By)
i=0

=0 j=0 i=0

3

n
A+ Yo by = [gdi+ [
i=0 j=0
In the next-to-last step, we used A; =+;(A; N B;) and B; = +;(A; N B)),
where + denotes a disjoint union. [ ]

We will prove (i)—(iii) three more times as we generalize our integral. As a
consequence of (i)—(iii), we get three more useful properties. To keep from repeating
their proofs, which do not change, we will prove:

Lemma 1.4.2. If (i) and (iii) hold then we have:
(iv) If o < ¢ a.e. thenfgodu < flﬁdu.

(v) If o =y a.e. then [ @dp = [y dpu.

If; in addition, (ii) holds when a = —1 we have

i) | [¢dul < [lpldu

Proof. By (iii), [y dpn = [¢du + [(¥ — ¢)du and the second integral is > 0
by (i), so (iv) holds. ¢ = ¥ a.e. implies ¢ < ¢ a.e. and ¥ < ¢ a.e, so (v) follows
from two applications of (iv). To prove (vi) now, notice that ¢ < |¢|, so (iv) implies
Jodu < [lpldu. —p < |¢|, so (iv) and (i) imply — [ ¢ du < [ |$|d . Since
|y| = max(y, —y), the result follows. [ |

Step 2. Let E be a set with w(E) < oo and let f be a bounded function that
vanishes on E¢. To define the integral of f, we observe that if ¢, ¥ are simple
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functions that have ¢ < f < v, then we want to have

/wdufffduifwdu

/fdpe: sup/gad,u: inf /wd,u (1.4.1)
i V=

so we let

Here and for the rest of Step 2, we assume that ¢ and ¥ vanish on E€. To justify
the definition, we have to prove that the sup and inf are equal. It follows from (iv)
in Lemma 1.4.2 that

su dp < inf d
¢§1}/<p M_wzf/lﬂ 2

To prove the other inequality, suppose | f| < M and let

k — OM
=

kM
Ek={er:—Zf(X)> for —n<k<n
n

kM " (k—-1)M
ZAOED e ¢Aﬂ=§:£—;L4a

k=—n k=—n

By definition, ¥,(x) — ¢,(x) = (M /n)1g, so

M
/wnoc) —ou(x)dp = 7M(E)

Since ¢,(x) < f(x) < ¥, (x), it follows from (iii) in Lemma 1.4.1 that

M
Sur;/wduZ/qonduu:—;M(EH/wndu
<

M
> =2+ inf [ vau
n =
The last inequality holds for all , so the proof is complete. [ |

Lemma 1.4.3. Let E be a set with u(E) < oo. If f and g are bounded functions
that vanish on E° then:

(i) If f = 0a.e thenffd,u > 0.

(ii) Foranya € R, [afdp=a [ fdpu.
(ii) [ f+gdp=[fdu+ [gdu.

(iv) If g < fae then [gdu < [ fdpu.

(v)Ifg = f ae then [ gdu= [ fdpu.

vi) | [ fdul < [1fldu.
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Proof. Since we can take ¢ = 0, (i) is clear from the definition. To prove (ii), we
observe thatif a > 0, then ap < af ifandonlyif ¢ < f, so

/afd,u:sup/agodpc:supa/wd,u:asupfgod,u:a/fdu
o=f o=f o=f

For a < 0, we observe that ap < af if and only if ¢ > f, so
/afd,uzsup/agoduzsupa/wduzainf/god,uza/fdu
¢=>f ¢=f ¢=f
To prove (iii), we observe that if ¢; > f and ¥, > g, then ¥ + ¥» > f + g, so
inf /Wdu< inf /1//1+1ﬂ2du

V>f+g T Y= fan>g

Using linearity for simple functions, it follows that

+d:inf[d
[f gdw= inf vdu

< inf /wndu+/1/fzdu«=ffdu+/gdu
V= fv=g

To prove the other inequality, observe that the last conclusion applied to — f
and —g and (ii) imply

—/f+gduf—/fdu—/gdu

(iv)—(vi) follow from (i)—(iii) by Lemma 1.4.2. |

Notation. We define the integral of f over the set E:

/EfdME/f-lEdu

Step 3. If f > 0, then we let

ffd,u:sup{/hdu:th ff,hisboundedandu({x:h(x)>0})<oo}

The last definition is nice since it is clear that this is well defined. The next result
will help us compute the value of the integral.

Lemma 1.4.4. Let E,, 1+ Q2 have u(E,) < oo and let a A b = min(a, b). Then

/Enf/\nd,uT/fdu asn 1 oo

Proof. Itis clear that from (iv) in Lemma 1.4.3 that the left-hand side increases as n
does. Since h = (f A n)lg, is a possibility in the sup, each term is smaller than the
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integral on the right. To prove that the limit is | f du, observe that if 0 < h < f,
h <M, and u({x : h(x) > 0}) < oo, then forn > M using h < M, (iv), and (iii),

/f/\nd,uz/ hd,u:/hd,u—/ hdu
E, E E

Now 0 < [, . hdp < M(ES N {x 2 h(x) > 0}) - Oasn — o0, s0
liminf/ f/\nd,uthd,u
n—oo En

which proves the desired result since £ is an arbitrary member of the class that
defines the integral of f. [ |

Lemma 1.4.5. Suppose f, g > 0.
(i) [ fdu=0
(ii) Ifa > O then [af dp=a [ fdu.
(ii) [ f+gdp=[fdu+ [gdn
(iv) If0 < g < fae then [gdu < [ fdpu.
(v) If0 < g= faethen [gdn= [ fdu.

Here we have dropped (vi) because it is trivial for f > 0.

Proof. (i) is trivial from the definition. (ii) is clear, since when a > 0, ah < af if
and only if » < f and we have [ ahdp = a [ hdu for h in the defining class. For
(iii), we observe that if f > h and g > k, then f 4 g > h + k so taking the sup
over h and k in the defining classes for f and g gives

/f+gdlt2/fdu+/gdu

To prove the other direction, we observe (a + b) An < (a An)+ (b A n), so (iv)
from Lemma 1.4.3 and (iii) from Lemma 1.4.4 imply

/(f+g)A”dM§f f/\ndu+/ gAndu
E, E, E,

Letting n — oo and using Lemma 1.4.4 gives (iii). As before, (iv) and (v) follow
from (i), (iii), and Lemma 1.4.2. |

Step 4. We say f is integrable iff |fldu < oo. Let
[T =fx)vO0 and f7(x)=(=f(x)VO
where a vV b = max(a, b). Clearly,
fE)=fT@) = f~(x) and [f)l=fTx0)+ f(x)
We define the integral of f by

[rau=[rrau- [ an
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The right-hand side is well defined since f*, f~ < | f| and we have (iv) in Lemma
1.4.5. For the final time, we will prove our six properties. To do this, it is useful to
know:

Lemma 1.4.6. If f = fi — f> where fi, f» > 0and [ f; du < oo, then

[ ran= [ sidi- [ fau

Proof. fi+ f~ = fo+ f* and all four functions are >0, so by (iii) of
Lemma 1.4.5,

/fldﬂ‘i'/f_d,u:/fl+f_dM=/fz+f+d,u:/f2d,u+/f+d,u

Rearranging gives the desired conclusion. [ |

Theorem 1.4.7. Suppose [ and g are integrable.
(i) If f > O0a.e then [ fdu > 0.
(ii) Foralla € R, fafdu =affdpb.
(iii) [ f+gdu= [ fdu+ [gdpu.
(iv) If g < f a.e. thenfgdu < ffd,u.
v) Ifg = f ae. thenfgdu = ffdu.
(i) | [ fdul < [|fldp.

Proof. (i) is trivial. (ii) is clear since if a > 0, then (af)* = a(f™), and so on. To
prove (iii), observe that f + g = (fT +g") — (f~ + g7), so using Lemma 1.4.6
and Lemma 1.4.5,

/f+gdu=/f++g+du—/f‘+g_du

=/f+du+/g+du—/fdu—/gdu

As usual, (iv)—(vi) follow from (i)—(iii) and Lemma 1.4.2. [ ]

Notation for special cases

(a) When (2, F, u) = (R?, R%, 1), we write [ f(x)dx for [ fdh.

(b) When (R, F, u) = (R, R, A)and E = [a, b],wewritefab f(x)dxfor [, fdh.

(¢) When (2, F, u) = (R, R, n) with u((a, b]) = G(b) — G(a) for a < b, we
write [ f(x)dG(x) for [ fdu.

(d) When €2 is a countable set, F = all subsets of €2, and p is counting measure,
we write Y ;. f(i) for [ fdpu.

We mention example (d) primarily to indicate that results for sums follow from
those for integrals. The notation for the special case in which w is a probability
measure will be taken up in Section 1.6.
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Exercises
1.4.1. Show thatif f > Oand [ fdp =0, then f =0 a.e.
14.2. Let f >0and E, ,, = {x :m/2" < f(x) < (m+ 1)/2"}. Asn 1 oo,

oo

> 5 H(En) 1 f fdu

m=1

1.4.3. Let g be an integrable function on R and € > 0. (i) Use the definition of the
integral to conclude there is a simple function ¢ = Y, bila, with [ |g — ¢|dx <
€. (i1) Use Exercise A.2.1 to approximate the Ay by finite unions of intervals to get
a step function

k
q = Z Cj 1(aj71,tlj)
Jj=1

withay < a; < --+ < ay, so that f o — ¢q| < €. (iii) Round the corners of g to get
a continuous function r so that f lg —r|dx < e.

1.4.4. Prove the Riemann-Lebesgue lemma. If g is integrable then

lim /g(x) cosnxdx =0
n—odo

Hint: If g is a step function, this is easy. Now use the previous exercise.

1.5 Properties of the Integral

In this section, we will develop properties of the integral defined in the last section.
Our first result generalizes (vi) from Theorem 1.4.7.

Theorem 1.5.1. Jensen’s inequality. Suppose ¢ is convex, that is,

Ap(x) + (1= e(y) = ¢ x + (1 = 2)y)

forall » € (0,1)and x, y € R. If u is a probability measure, and f and ¢(f) are

integrable then
w(/fdu) wa(f)du

Proof. Let c = f fdu and let £(x) = ax + b be a linear function that has £(c) =
¢(c) and ¢(x) > £(x). To see that such a function exists, recall that convexity
implies
. ple)—@c—h) . @(c+h)—e()
lim——— <lim——~
10 h h}0 h
(The limits exist since the sequences are monotone.) If we let @ be any number
between the two limits and let £(x) = a(x — ¢) + ¢(c), then £ has the desired
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properties. With the existence of ¢ established, the rest is easy. (iv) in Theorem
1.4.7 implies

/(p(f)duZ/(af-l-b)du=a/fdu+b=£</fdu>=go(/fdu)

since ¢ = [ fdu and €(c) = ¢(c). [ ]

Let || fll, = ([ 1fI?dw)/? for 1 < p < oo, and notice |lcf I, = lc| - | fII , for
any real number c.

Theorem 1.5.2. Holder’s inequality. If p, g € (1, 00) with 1/p 4+ 1/q = 1, then

f |feldm < 11flplgllg

Proof. If || |, or |Igll, = 0, then | fg| = 0 a.e., so it suffices to prove the result
when || |, and ||g]l, > O or by dividing both sides by | £l ,llgll;, when || f]|, =
ligllq = 1. Fix y = 0 and let

p(x) =x"/p+y?/q—xy for x =0
Py =x"""—y and ¢"(x)=(p— D"
s0 ¢ has a minimum at x, = y"/?=Y. g = p/(p — 1) and x} = y?/P=D = y4, 50
o(x,) =y'(1/p+1/q)— y"? Py =0

Since x, is the minimum, it follows that xy < x?/p + y9/q. Letting x = | f|,
y = |g|, and integrating

1 1
f|fg|dus;+5=1=||f||p||g||q -

Remark. The special case p = g = 2 is called the Cauchy-Schwarz inequality.
One can give a direct proof of the result in this case by observing that for any 6,

05f(f—i—@g)zd,u:/fza’,u—l—e(2/fgd,u>+92</g2d,u>

so the quadratic af? + b6 + c on the right-hand side has at most one real root.
Recalling the formula for the roots of a quadratic

—b+ /b? —4ac
2a

we see b — 4ac < 0, which is the desired result.
Our next goal is to give conditions that guarantee

i [ = [ (s 1)

First, we need a definition. We say that f,, — f in measure, that is, for any € > 0,
ul{x | fu(x) — f(x)| > €}) - 0as n — oco. On a space of finite measure, this is
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a weaker assumption than f,, — f a.e., but the next result is easier to prove in the
greater generality.

Theorem 1.5.3. Bounded convergence theorem. Let E be a set with u(E) < oo.
Suppose f, vanishes on E€, | f,(x)| < M, and f,, — f in measure. Then

/fdu=nlin;o/fndu

Example 1.5.1. Consider the real line R equipped with the Borel sets R and
Lebesgue measure A. The functions f,(x) = 1/n on [0, n] and O otherwise on
show that the conclusion of Theorem 1.5.3 does not hold when u(E) = co.

Proof. Lete >0, G, ={x :|f,(x) — f(x)| < €} and B, = E — G,,. Using (iii)
and (vi) from Theorem 1.4.7,

'ffdu—ffndu‘z‘/(f—fn)du

=/Gn|f—fn|du+/3n|f—fn|du

S/If—fnldu

< eu(E)+2Mu(By)

f» — f in measure implies u(B,) — 0. € > 0 1is arbitrary and u(E) < 00, so the
proof is complete. u

Theorem 1.5.4. Fatou’s lemma. If f,, > O then
1iminf/ fodp > / (liminff,,> du
n—oo n— oo

Example 1.5.2. Example 1.5.1 shows that we may have strict inequality in Theorem
1.5.4. The functions f,(x) = nl,1/,(x) on (0,1) equipped with the Borel sets and
Lebesgue measure show that this can happen on a space of finite measure.

Proof. Let g,(x) = inf,>, fin(x). fu(x) > g,(x) and as n 1 oo,
8n(x) 1 g(x) = liminf f,(x)

Since [ f,du > [ gu du, it suffices then to show that
iimin [ g, > [ an

Let E,, 1 €2 be sets of finite measure. Since g, > 0 and for fixed m

(gnAm)-1lg, — (g Am)-1lg, ae.
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the bounded convergence theorem, 1.5.3, implies

liminf/gndu>/ gn/\mdu—>/ gAmdu
n—oo Em

Taking the sup over m and using Theorem 1.4.4 gives the desired result. |

Theorem 1.5.5. Monotone convergence theorem. If f,, > 0 and f, 1 f then

[ it [ ra

Proof. Fatou’s lemma, Theorem 1.5.4, implies liminf [ f, diu > [ f du. On the
other hand, f, < f implies limsup [ f, du < [ fdpu. [ |

Theorem 1.5.6. Dominated convergence theorem. If f,, — f a.e., |f,| < g for
all n, and g is integrable, then [ f,du — [ fdu.

Proof. f, + g > 0 so Fatou’s lemma implies

11m1nf/fn—|—gd,u>/f+gd,u

Subtracting [ g du from both sides gives

liminf/fnd,uz/fdu

n—oo

Applying the last result to — f,,, we get

limsup/f,,d,ufffd,u

n—oo

and the proof is complete. |

Exercises

1.5.1. Let || flloo = inf{M : u({x : | f(x)| > M}) = 0}. Prove that

/ |feldu < NI fllillglleo

1.5.2. Show that if u is a probability measure then
[ flloo = lim [[ £,
p—>00

1.5.3. Minkowski’s inequality. (i) Suppose p € (1, 00). The inequality |f +
gl? < 2P(|f1P + Ig|?) shows thatif || f| , and ||g|| , are < oo then || f + gl|, < oo.
Apply Holder’s inequality to | || f + g|?~'and |g|| f + g|P ' toshow || f + gll, <
Il f1I, + llgllp. (ii) Show that the last result remains true when p = 1 or p = oo.
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1.5.4. If f is integrable and E,, are disjoint sets with union E then

gﬁmfduzﬁfdu

Soif f >0, then v(E) = fE f du defines a measure.
1.55. If g, t gand [ g, du <oothen [ g, du 1t [gdpu.

1.5.6. If g,, > Othen [ Y >~ gndu=7 o [ gndn.

1.5.7. Let f > 0. (i) Show that [ f Andu 1 [ fdu as n — oo. (ii) Use (i) to
conclude that if g is integrable and € > 0, then we can pick § > 0 so that u(A) < &

implies [, |gldpn < €.

1.5.8. Show thatif f is integrable on [a, b], g(x) = f[a’x] f(y)dy is continuous on
(a, b).

1.5.9. Show thatif f has || ||, = (f | f1Pdw)"/P < oo, then there are simple func-
tions ¢, so that [|¢, — f1|, — 0.

1.5.10. Show thatif ", [ | fuldu < oo then Y, [ fudu = [, fudpu.

1.6 Expected Value

We now specialize to integration with respect to a probability measure P. If
X > 0 is a random variable on (€2, F, P) then we define its expected value to
be EX = [ X dP, which always makes sense, but may be co. To reduce the gen-
eral case to the nonnegative case, let x* = max{x, 0} be the positive part and
let x~ = max{—ux, 0} be the negative part of x. We declare that £ X exists and set
EX = EX' — EX~ whenever the subtraction makes sense, that is, EX* < oo or
EX™ < o0.

E X is often called the mean of X and denoted by . E X is defined by integrating
X, so it has all the properties that integrals do. From Theorems 1.4.5 and 1.4.7 and
the trivial observation that E(b) = b for any real number b, we get the following:

Theorem 1.6.1. Suppose X,Y > 0or E|X|, E|Y| < oo.
(a) EX+Y)=EX+EY.

(b) E(aX + b) = aE(X) + b for any real numbers a, b.
(c) If X > Y then EX > EY.

In this section, we will restate some properties of the integral derived in the last
section in terms of expected value and prove some new ones. To organize things,
we will divide the developments into three subsections.

1.6.1 Inequalities

For probability measures, Theorem 1.5.1 becomes:
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Eg(X)

9(EX)

0

05 1 15 2 25 3 35
Figure 1.6. Jensen’s inequality for g(x) = x> —3x +3, P(X = 1) = P(X =3) = 1/2.
Theorem 1.6.2. Jensen’s inequality. Suppose ¢ is convex, that is,
Ap(x) + (1 = e(y) = (rx + (1 = A)y)
forall » € (0,1)and x, y € R. Then
E(p(X)) = p(EX)
provided both expectations exist, that is, E|X| and E|p(X)| < oo.
To recall the direction in which the inequality goes, note that if P(X = x) = A and
P(X =y) =1— A, then (see Figure 1.6)
EP(X) = ro(x) + (1 = De(y) = (hx + (1 — 1)y) = ¢(EX)
Two useful special cases are |[EX| < E|X| and (EX)* < E(X?).

Theorem 1.6.3. Holder’s inequality. If p, g € [1,c0] with 1/p 4+ 1/q = 1, then
EIXY| < [IXIIpYllq
Here | X|, = (E|X|)V" forr € [1,00); | X|loo = inf{M : P(|X| > M) = 0}.

To state our next result, we need some notation. If we only integrate over A C €2,
we write

E(X;A) = / XdP
A
Theorem 1.6.4. Chebyshev’s inequality. Suppose ¢ : R — R has ¢ > 0, let A €
R and letis = inf{p(y):y € A}.
iaP(X € A) = E(p(X); X € A) < Egp(X)
Proof. The definition of i 4 and the fact that ¢ > 0 imply that

ialixea) < (X)) (xea < o(X)



1.6 Expected Value 29

So taking expected values and using part (c) of Theorem 1.6.1 gives the desired
result. [ |

Remark. Some authors call this result Markov’s inequality and use the name
Chebyshev’s inequality for the special case in which ¢(x) =x? and A = {x :
x| = a}:

a’P(|X| > a) < EX? (1.6.1)

1.6.2 Integration to the Limit

Our next step is to restate the three classic results from the previous section about
what happens when we interchange limits and integrals.

Theorem 1.6.5. Fatou’s lemma. If X,, > 0 then

liminf EX, > E(liminf X,,)

n—oQ n—oo

Theorem 1.6.6. Monotone convergence theorem. If 0 < X, 1 X then EX, 1
EX.

Theorem 1.6.7. Dominated convergence theorem. If X,, — X a.s., | X,,| < Y for
alln, and EY < oo, then EX,, —> EX.

The special case of Theorem 1.6.7 in which Y is constant is called the bounded
convergence theorem.

In the developments below, we will need another result on integration to the limit.
Perhaps the most important special case of this result occurs when g(x) = |x|” with
p > 1land h(x) = x.

Theorem 1.6.8. Suppose X, — X a.s. Let g, h be continuous functions with
(i) g = 0and g(x) - oo as |x| — oo,

(ii) |h(x)|/g(x) — 0 as |x| — oo, and

(iii) Eg(X,) < K < oo for all n.

Then Eh(X,) — Eh(X).

Proof. By subtracting a constant from /4, we can suppose without loss of generality
that 2(0) = 0. Pick M large so that P(|X| = M) = 0 and g(x) > O when |x| > M.
Given a random variable Y, let ¥ = Y 1(jy|<p). Since P(|1X| = M) =0, X, - X
a.s. Since h(X,) is bounded and % is continuous, it follows from the bounded
convergence theorem that

(a) Eh(X,) — Eh(X)
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To control the effect of the truncation, we use the following:
(b) |Eh(Y)— Eh(Y)| < E|n(Y)—h(Y)| < EQh(Y)[;|Y| > M) < ey Eg(Y)

where €, = sup{|h(x)|/g(x) : |x| = M}. To check the second inequality, note that
when |Y| < M, Y =Y, and we have supposed /(0) = 0. The third inequality
follows from the definition of €,;.

Taking ¥ = X,, in (b) and using (iii), it follows that

(c) |ER(X,) — ER(X,)| < Key

To estimate |Eh(X) — Eh(X)|, we observe that g > 0 and g is continuous, so
Fatou’s lemma implies

Eg(X) = liminf Eg(X,) < K
Taking Y = X in (b) gives
(d) |[ER(X) — ER(X)| < Key
The triangle inequality implies
|[ER(X,) — ER(X)| < |ER(X,) — ER(X,)]
+Eh(X,) = ER(X)| + |ER(X) — Eh(X)|
Taking limits and using (a), (c), (d), we have

limsup |EA(X,) — EhR(X)| <2Key

n— oo

which proves the desired result since K < oo and €y — 0as M — oc. [ ]

1.6.3 Computing Expected Values

Integrating over (€2, F, P) is nice in theory, but to do computations we have to
shift to a space on which we can do calculus. In most cases, we will apply the next
result with § = R¢.

Theorem 1.6.9. Change of variables formula. Let X be a random element of
(S, S) with distribution u, that is, W(A) = P(X € A). If f is a measurable function
from (S, S) to (R, R) so that f > 0or E|f(X)| < oo, then

Ef(X) = /S FO) u(dy)

Remark. To explain the name, write i for X and P o h~! for p to get

/Q F(h(@))dP = /S FOVd(P o™
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Proof. We will prove this result by verifying it in four increasingly general special
cases that parallel the way that the integral was defined in Section 1.4. The reader
should note the method employed, since it will be used several times below.

CASE 1: INDICATOR FUNCTIONS. If B € § and f = 13, then recalling the relevant
definitions shows

Elp(X) = P(X € B) = u(B) = /S 1p(y) u(dy)

CASE 2: SIMPLE FUNCTIONS. Let f(x) =Y _ ¢,lp, wherec,, € R, B, € S. The

linearity of expected value, the result of Case 1, and the linearity of integration
imply

Ef(X)=Y_ cnElp,(X)
m=1

~Y e /S 1, () u(dy) = /S () ldy)
m=1

CASE 3: NONEGATIVE FUNCTIONS. Now if f > 0 and we let

Ja() = (2" f()1/2") A

where [x] = the largest integer < x and a A b = min{a, b}, then the f, are simple
and f,, 1 f, so using the result for simple functions and the monotone convergence
theorem:

EFO0 = lim EA,CO =lim [ fioynan = [ £y

CASE 4: INTEGRABLE FUNCTIONS. The general case now follows by writing
f(x) = f(x)" — f(x)~. The condition E|f(X)| < oo guarantees that Ef(X)*
and Ef(X)~ are finite. So using the result for nonnegative functions and linearity
of expected value and integration:

Ef(X) = Ef(X)* — Ef(X)" = /S FOY u(dy) — /S FO) udy)

= /S f) u(dy)

which completes the proof. [ |

A consequence of Theorem 1.6.9 is that we can compute expected values of
functions of random variables by performing integrals on the real line. Before we
can treat some examples, we need to introduce the terminology for what we are
about to compute. If k is a positive integer, then E X* is called the kth moment of X.
The first moment EX is usually called the mean and denoted by u. If EX? < o0,
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then the variance of X is defined to be var(X) = E(X — )>. To compute the
variance the following formula is useful:

var(X) = E(X — p)?
= EX? —2uEX +p*>=EX* -2 (1.6.2)
From this it is immediate that
var (X) < EX? (1.6.3)

Here E X? is the expected value of X?. When we want the square of EX, we will
write (EX)?. Since E(aX + b) = aEX + b by (b) of Theorem 1.6.1, it follows
easily from the definition that

var(aX + b) = E(aX + b — E(aX + b))
=a’E(X — EX)?* = a* var(X) (1.6.4)

We turn now to concrete examples and leave the calculus in the first two examples
to the reader. (Integrate by parts.)

Example 1.6.1. If X has an exponential distribution with rate 1, then
oo
EX* :/ xke ™ dx = k!
0

So the mean of X is 1 and variance is EX> — (EX)> =2 — 1> = 1. If we let
Y = X/A, then by Exercise 1.2.5, Y has density xe™* for y > 0, the exponential
density with parameter 1. From (b) of Theorem 1.6.1 and (1.6.4), it follows that ¥
has mean 1/ and variance 1/%.

Example 1.6.2. If X has a standard normal distribution,
EX = / x(271)_1/2 exp(—x2/2) dx =0 (by symmetry)
var(X) = EX* = f x2Q2m) Y2 exp(—x?/2)dx = 1

Ifweleto >0, u € R,and Y = 0 X + u, then (b) of Theorem 1.6.1 and (1.6.4)
imply EY = p and var (Y) = o. By Exercise 1.2.5, Y has density
2ro?)™ 2 exp(—(y — 1)*/20?%)

the normal distribution with mean ;. and variance o2.

We will next consider some discrete distributions. The first is very simple, but
will be useful several times below, so we record it here.
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Example 1.6.3. We say that X has a Bernoulli distribution with parameter p if
P(X=1)=pand P(X =0) =1 — p. Clearly,

EX=p-1+4(1—-p)-0=p
Since X?> = X, we have EX?> = EX = p and
var (X) = EX* — (EX)’ = p— p> = p(1 - p)
Example 1.6.4. We say that X has a Poisson distribution with parameter A if
P(X =k)=e ")kl for k=0,1,2,...

To evaluate the moments of the Poisson random variable, we use a little inspiration
to observe that for k > 1
EX(X =1 (X —k+1)=>_j(j—1-(—k+De*—

j=k J!

00 yi—k
=) et k':)J‘
= U-R

where the equalities follow from (i) the fact that j(j — 1)---(j — k + 1) = O when
J < k, (ii) canceling part of the factorial, and (iii) the fact that Poisson distribution
has total mass 1. Using the last formula, it follows that £EX = A while

var(X) = EX? —(EX)’=EX(X - 1)+ EX — 2> =2

Example 1.6.5. N is said to have a geometric distribution with success probability
p € (0, 1)if

P(N =k)=p(l — p)*! fork=1,2,...

N is the number of independent trials needed to observe an event with probability
p. Differentiating the identity

o0

Y a-pF=1/p

k=0

and referring to Example A.5.3 for the justification gives

= k= pft=—1/p
k=1

> k=11 — p)?=2/p’
k=2
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From this it follows that

EN =) kp(l—p)'=1/p
k=1

EN(N —1)=Y k(k — Dp(1 — p)~" =2(1 - p)/p?
k=1

var(N) = EN> —(EN)> = EN(N — 1)+ EN — (EN)?

_2A-p,p 1 _1-p
p? p>  p?

Exercises

1.6.1. Suppose g is strictly convex, that is, > holds for A € (0, 1). Show that, under
the assumptions of Theorem 1.6.2, p(EX) = E@(X) implies X = EX a.s.

1.6.2. Suppose ¢ : R" — Riis convex. Imitate the proof of Theorem 1.5.1 to show
E¢(X]7 cety Xl’l) E ¢(EX17 ccey EXI’I)
provided E|¢p(Xy, ..., X,)| < ocoand E|X;| < oo for all i.

1.6.3. Chebyshev’s inequality is and is not sharp. (i) Show that Theorem 1.6.4
is sharp by showing that if 0 < b < a are fixed, there is an X with EX? = b? for
which P(|X| > a) = b*/a?. (ii) Show that Theorem 1.6.4 is not sharp by showing
that if X has 0 < EX? < oo, then

lim a*P(|X| > a)/EX*> =0
a—> 00

1.6.4. One-sided Chebyshev bound. (i) Leta > b > 0,0 < p < 1,andlet X have
P(X =a)=pand P(X = —-b) =1 — p. Apply Theorem 1.6.4 to ¢(x) = (x +
b)? and conclude that if Y is any random variable with EY = EX and var(Y) =
var (X), then P(Y > a) < p and equality holds when ¥ = X.

(ii) Suppose EY =0, var(Y) = o2, and a > 0. Show that P(Y > a) < o%/(a®> +
o?), and there is a Y for which equality holds.

1.6.5. Two nonexistent lower bounds.
Show that: (i) if € > O, inf{P(|X| > €¢): EX =0, var(X) =1} = 0.
() ify > 1, 0% € (0, 00), inf{P(|X| > y): EX =1, var(X) = 02} = 0.

1.6.6. A useful lower bound. Let Y > 0 with EY? < co. Apply the Cauchy-
Schwarz inequality to ¥ 1(y~) and conclude

P(Y > 0)> (EY)?/EY?

1.6.7. Let Q = (0, 1) equipped with the Borel sets and Lebesgue measure. Let
a € (1,2) and X, = n®1/p+1),1/n) — 0 a.s. Show that Theorem 1.6.8 can be
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applied with h(x) = x and g(x) = |x|>/®

integrable function.

, but the X, are not dominated by an

1.6.8. Suppose that the probability measure x has u(A) = [ A J(x)dx forall A €
‘R. Use the proof technique of Theorem 1.6.9 to show that for any g with g > O or
[ 1g(x)| u(dx) < oo, we have

[ etutan = [ swreas
1.6.9. Inclusion-exclusion formula. Let A, A,,... A, be events and A =

U?_,A;. Prove that 1, = 1 — []'_,(1 — 14,). Expand out the right-hand side, then
take expected value to conclude

P (UL, A ZP(A)—ZP(A NAj)
i<j
+ D PANA;NA) =+ (=1 PO, Ay
i<j<k

1.6.10. Bonferroni inequalities. Let A, A,... A, be events and A = U!_, A;.
Show that 14 < >""_| 14,, and so forth, and then take expected values to conclude

P (U A ZP(A)

P (UL, A; ZP(A)—ZP(A NA))

i<j

P (UL, A; ZP(A)—ZP(A NA)+ D PAINA;NAY)

i<j i<j<k

In general, if we stop the inclusion-exclusion formula after an even (odd) number
of sums, we get an lower (upper) bound.

1.6.11. If E|X|* < oo thenfor 0 < j < k, E|X|/ < oo, and furthermore

E|IX[ < (E|X|*)//*

1.6.12. Apply Jensen’s inequality with p(x) = ¢* and P(X = log y,) = p(m) to
conclude that if 22’1:1 p(m) =1and p(m), y, > 0, then

Z pm)ym = ]_[ yhm

When p(m) = 1/n, this says the arithmetic mean exceeds the geometric mean.

1.6.13. If EX] <ooand X, 1 X, then EX, 1 EX.
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1.6.14. Let X > 0 but do NOT assume E(1/X) < 0o. Show

lim yE(1/X;X > y) =0, limyE(1/X;X > y)=0.
y—>00 y¢0

1.6.15. If X, > 0, then E(Y°0, X,) = Y2, EX,,.

1.6.16. If X is integrable and A,, are disjoint sets with union A, then

D E(X;Ay) = E(X; A)
n=0

that is, the sum converges absolutely and has the value on the right.

1.7 Product Measures, Fubini’s Theorem

Let (X, A, u) and (Y, B, ;) be two o -finite measure spaces. Let
Q=XxY={x,y):xeX,yeVY}
S={AxB:AcA BechB}

Sets in S are called rectangles. It is easy to see that S is a semialgebra:

(AXxB)N(C xD)=(ANC)x (BN D)
(A x B)Y =(A° x B)U(A x B)U (A® x BY)

Let F = A x B be the o-algebra generated by S.

Theorem 1.7.1. There is a unique measure . on F with

(A x B) = pui(A)ua(B)

Notation. u is often denoted by | X w,.

Proof. By Theorem 1.1.4 it is enough to show that if A x B = +;(A; x B;)isa
finite or countable disjoint union, then

WA X B) =) u(A; x By)

Foreachx € A,let I(x) ={i : x € A;}. B = +ici(v)Bi, 50

La()a(B) =) 14, (X)pa(Bi)

Integrating with respect to (| and using Exercise 1.5.6 gives

pi(A)a(B) =Y mi(Appa(Bi)

which proves the result. u
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Using Theorem 1.7.1 and induction, it follows that if (2;, F;, u;),i = 1,...,n,
are o -finite measure spaces and Q2 = Q2 x --- x ,, there is a unique measure p
on the o-algebra F generated by sets of the form A; x --- x A,, A; € F;, that has

(A x - x Ag) = [ ] tm(An)
m=1
When (Q2;, F;, u;) = (R, R, A) for all i, the result is Lebesgue measure on the
Borel subsets of n dimensional Euclidean space R”.
Returning to the case in which (€2, F, ) is the product of two measure spaces,
(X, A, n) and (Y, B, v), our next goal is to prove:

Theorem 1.7.2. Fubini’s theorem. If f > O or [ | f|du < oo, then

*) / / Fe ) pady) i) = [ fdp = / / Fx ») p(d) pa(dy)
XJY YJX

XxY

Proof. We will prove only the first equality, since the second follows by symmetry.
Two technical things that need to be proved before we can assert that the first
integral makes sense are:

When x is fixed, y — f(x, y) is B measurable.
x = [, f(x, y)ua(dy) is A measurable.

We begin with the case f = 1g. Let E, = {y : (x, y) € E} be the cross-section
at x.

Lemma 1.7.3. If E € F then E, € B.

Proof. (E€), = (E,)‘ and (U; E;), = U;(E}),, soif £ is the collection of sets E for
which E, € B, then £ is a o-algebra. Since £ contains the rectangles, the result
follows. [ |

Lemma 1.74. If E € F, then g(x) = u2(Ey) is A measurable and

f gduy = pn(E)
b'¢

Notice that it is not obvious that the collection of sets for which the conclusion is
true is a o-algebra since w(E; U Ey) = pw(Ey) + w(E,) — w(E; N Ey). Dynkin’s
7w — A Theorem (A.1.4) was tailor-made for situations like this.

Proof. If conclusions hold for E,, and E,, 1 E, then Theorem 1.3.5 and the mono-
tone convergence theorem imply that they hold for E. Since p; and u, are o-
finite, it is enough then to prove the result for £ C F x G with p;(F) < oo and
U2(G) < oo, or taking 2 = F x G we can suppose without loss of generality that
() < co. Let L be the collection of sets E for which the conclusions hold.
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We will now check that £ is a A-system. Property (i) of a A-system is trivial.
(iii) follows from the first sentence in the proof. To check (ii) we observe that

n2((A = B)y) = pa(Ax — Bx) = u2(Ay) — pa(By)

and integrating over x gives the second conclusion. Since £ contains the rect-
angles, a w-system that generates JF, the desired result follows from the & — A
theorem. |

We are now ready to prove Theorem 1.7.2 by verifying it in four increasingly
general special cases.

Case 1. If E € F and f = 1g, then (x) follows from Lemma 1.7.4

CasE 2. Since each integral is linear in f, it follows that (%) holds for simple
functions.

Cask 3. Now if f > 0 and we let f,(x) = ([2" f(x)]/2") A n, where [x] = the
largest integer < x, then the f, are simple and f,, 1 f, so it follows from the
monotone convergence theorem that (:) holds for all f > 0.

CASE 4. The general case now follows by writing f(x) = f(x)™ — f(x)~ and
applying Case 3to f*, £, and | f|. [ |

To illustrate why the various hypotheses of Theorem 1.7.2 are needed, we will
now give some examples where the conclusion fails.

Example 1.7.1. Let X =Y = {1, 2, ...} with A = B =allsubsetsand ;| = u, =
counting measure. For m > 1, let f(m,m) =1 and f(m + 1, m) = —1, and let
f(m, n) = 0 otherwise. We claim that

ZZf(m,n):l but ZZf(m,n):O

A picture is worth several dozen words:

0 0
40 0 1 -1
n 0 1 -1 0
1 -1 0 0
m —

In words, if we sum the columns first, the first one gives us a 1 and the others 0,
while if we sum the rows each one gives us a 0.
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Example 1.7.2. Let X = (0, 1), Y = (1, c0), both equipped with the Borel sets
and Lebesgue measure. Let f(x, y) = ™™ — 2e™2*,

1 ) 1
f f f(x,y)dydx = / x e —e)dx >0
o Ji 0

00 1 [e9)
/ / Fer, y)dxdy = f Ve — ey < 0
1 0 1

The next example indicates why 1 and @, must be o -finite.

Example 1.7.3. Let X = (0, 1) with A = the Borel sets and u; = Lebesgue
measure. Let ¥ = (0, 1) with B = all subsets and @, = counting measure. Let
f(x,y)=1if x = y and 0 otherwise

/ Flr v ia(dy) = 1 forall x 0 / / £ y) pa(dy) pr(dx) = 1
Y XJY

f £y pua(dx) =0 forall y so / / £ v) i (dy) padx) = 0
X YJX

Our last example shows that measurability is important or maybe that some of
the axioms of set theory are not as innocent as they seem.

Example 1.7.4. By the axiom of choice and the continuum hypothesis one can
define an order relation <’ on (0,1) so that {x : x <’ y} is countable for each y. Let
X =Y =(0,1), let A= B = the Borel sets and u; = u, = Lebesgue measure.
Let f(x,y) = 1ifx <’ y, = 0 otherwise. Since {x : x <’ y} and {y : x <’ y}° are
countable,

/ fx,y)ui(dx) =0 forally
X

/ fx, y)ua(dy) =1 forall x
Y

Exercises

L7.1. If [, [, 1 f(x, »)lpa(dy)pi(dx) < oo, then

/X/Yf(x,y)uz(dy)m(dX)= fd(uy x Mz)=fyfxf(x,y)m(dX)uz(dy)

XxY

Corollary. Let X = (1,2, ...}, A =all subsets of X, and y; = counting measure.
Y, [1falduw <oo,thend [ fudu= [, fudp.
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1.7.2. Let g > 0 be a measurable function on (X, A, u). Use Theorem 1.7.2 to
conclude that

/X gdi = (i x D(((x. ) : 0 < y < g(0)}) = /0 wlx : () > y))dy

1.7.3. Let F, G be Stieltjes measure functions, and let i, v be the corresponding
measures on (R, R). Show that

(@) Sy py(FO) = F@)dG(y) = (u x W({(x,y) a <x <y < b))
(i) fiupy FOYAGO) + [y, GGIAF(Y)

= F())G(b) — F@)G(a)+ Y n({xhv(ix))

x€(a,b]
(iii) If F = G is continuous, then f(a b 2F(y)dF(y) = F?(b) — F*(a).

To see that the second term in (ii) is needed, let F(x) = G(x) = 1jo,00)(x) and
a<0<b.

1.7.4. Let u be a finite measure on R and F(x) = u((—o0, x]). Show that

/ (F(x +¢) — F(x)) dx = cu(R)

1.7.5. Show that e~ sin x is integrable in the strip 0 < x < @, 0 < y. Perform the
double integral in the two orders to get

X 1

a o o] —ay o] —ay
/ Smnx dx = (arctan a) — (cos a)/ ¢ 5 dy — (sina)/ Lz dy
0 0 +y o 1+y

and replace 14 y* by 1 to conclude |f; (sinx)/x dx — (arctan a)| < 2/a for
a > 1.
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Laws of Large Numbers

2.1 Independence

Measure theory ends and probability begins with the definition of independence.
We begin with what we hope is a familiar definition and then work our way up to
a definition that is appropriate for our current setting.

Two events A and B are independent if P(A N B) = P(A)P(B).

Two random variables X and Y are independent if for all C, D € R,
PXeC,YeD)=P(XeC)P(Y € D)

that is, the events A = {X € C} and B = {Y € D} are independent.

Two o-fields F and G are independent if for all A € F and B € G the events A
and B are independent.

As the next exercise shows, the second definition is a special case of the third.

Exercise 2.1.1. (i) Show that if X and Y are independent then ¢ (X) and o (Y) are.
(ii) Conversely, if F and G are independent, X € F,and Y € G, then X and Y are
independent.

The first definition is, in turn, a special case of the second.

Exercise 2.1.2. (i) Show that if A and B are independent, then so are A° and B, A
and B¢, and A° and B¢. (ii) Conclude that events A and B are independent if and
only if their indicator random variables 1,4 and 15 are independent.

In view of the fact that the first definition is a special case of the second, which
is a special case of the third, we take things in the opposite order when we say what
it means for several things to be independent. We begin by reducing to the case of
finitely many objects. An infinite collection of objects (o -fields, random variables,
or sets) is said to be independent if every finite subcollection is.

41
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o-fields Fy, F3, ..., F, are independent if whenever A; € F; fori =1,...,n,
we have

P(M_ A 1'[P<A>

Random variables Xi,..., X,, are independent if whenever B; € R for i =
1,...,n we have

P (N {X: € B))) = P(Xi € B)
i=1

Sets Ay, ..., A, are independent if whenever I C {1, ...n} we have
P (NietAj) = l_[ P(A;)
iel

At first glance, it might seem that the last definition does not match the other two.
However, if you think about it for a minute, you will see that if the indicator variables
14,, 1 <i < n are independent and we take B; = {1} for i € I, and B; = R for
i & I then the condition in the definition results. Conversely,

Exercise 2.1.3. Let Ay, A,, ..., A, be independent. Show (i) AS, A,, ..., A, are
independent; (ii) 14,, ..., 14, are independent.

One of the first things to understand about the definition of independent events is
thatitis notenoughtoassume P(A; N A;) = P(A;)P(A;)foralli # j.A sequence
of events Ay, ..., A, with the last property is called pairwise independent. It is
clear that independent events are pairwise independent. The next example shows
that the converse is not true.

Example 2.1.1. Let X;, X,, X3 be independent random variables with
PX;=0)=PX;=1)=1/2

Let Ay = {X, = X3}, A, = {X3 = X} and A3 = {X| = X;,}. These events are
pairwise independent since if i # j, then

P(AiNAj)=PX,=Xo=X3)=1/4=P(A)P(A))
but they are not independent since
P(A1N Ay N A3) =1/4#1/8 = P(A)P(A2)P(A3)

In order to show that random variables X and Y are independent, we have to
check that P(X € A, Y € B) = P(X € A)P(Y € B) for all Borel sets A and B.
Since there are a lot of Borel sets, our next topic is
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2.1.1 Sufficient Conditions for Independence

Our main result is Theorem 2.1.3. To state that result, we need a definition that
generalizes all our earlier definitions.

Collections of sets Ay, A, ..., A, C F are said to be independent if whenever
Aje Ajand I C {1,...,n} wehave P (Njc;A;) = [[;c; P(A)

If each collection is a single set, that is, .4; = {A;}, this definition reduces to the
one for sets.

Lemma 2.1.1. Without loss of generality we can suppose each A; contains Q2. In
this case the condition is equivalent to

P (ﬂ;’ZIAi) = 1_[ P(A;) whenever A; € A,
i=1

since we can set A; = Q fori & 1.

Proof. If Ay, Ay, ..., A, are independent and A; = A; U {Q} then A;, A, ...,
A, are independent, since if A; € A;and I = {j : A; = Q} N;A; = NicsA;. W

The proof of Theorem 2.1.3 is based on Dynkin’s & — A theorem. To state this
result, we need two definitions. We say that A is a w-system if it is closed under
intersection, that is, if A, B € Athen A N B € A. We say that L is a A-system if (i)
QeLl.G)fA,BeLand A C B,thenB—A e L.(iii))I[f A, € Land A, 1 A,
then A € L.

Theorem 2.1.2. 7 — A Theorem. If P is a w-system and L is a ,-system that
contains P, then o (P) C L.

The proof is hidden away in Section A.1 of the Appendix.

Theorem 2.1.3. Suppose Ay, A, ..., A, are independent and each A; is a -
system. Then o (A1), o(A»), ...,o(A,) are independent.

Proof. Let A,, ..., A, be sets with A; € A;,let F=A,N---NA, and let £ =
{A: P(ANF)= P(A)P(F)}. Since P(QNF) = P(Q)P(F), Q € L. To check
(ii) of the definition of a A-system, we note that if A, B € £ with A C B, then
(B—A)YNF=(BNF)— (AN F).So,using (i)in Theorem 1.1.1, thefact A, B €
L and then (i) in Theorem 1.1.1 again:

P(B—ANF)=PBNF)—P(ANF)= P(B)P(F)— P(A)P(F)
={P(B) — P(A)}P(F) = P(B— A)P(F)

and we have B — A € L. To check (iii), let By € £ with B; 1 B and note that
(By N F) 1 (BN F),sousing (iii) in Theorem 1.1.1, the fact that B; € £, and then
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(iii) in Theorem 1.1.1 again:

P(BNF)= li]£n P(ByNF)= li{n P(By)P(F)= P(B)P(F)

Applying the m — A theorem now gives £ D o (A,). It follows thatif A; € o(A;)
and A; € A; for2 <i < n, then

PN A) = P(ADP(N/,A) = [ | PA)
i=1
Using Lemma 2.1.1 now, we have

(x) If A, Ay, ..., A, are independent then o (A;), A,, ..., A, are independent.

Applying (x) to A,, ..., A,, 0(A;) (which are independent since the definition
is unchanged by permuting the order) shows that o (A,), As, ..., A,, 0(A;) are
independent, and after n iterations we have the desired result. |

Remark. The reader should note that it is not easy to show that if A, B € L then
ANBeL,or AUB € L, but it is easy to check that if A, B € £ with A C B
then B— A € L.

Having worked to establish Theorem 2.1.3, we get several corollaries.

Theorem 2.1.4. In order for X1, ..., X, to be independent, it is sufficient that for
all xy, ..., x, € (—00, 00]

n
P(Xi <x1,..., Xy < x) = [ P(Xi < x)
i=1
Proof. Let A; = the sets of the form {X; < x;}. Since
{Xi =x}n{X; =y} ={Xi =x Ay},

where (x A y); = x; A y; = min{x;, y;}. A; is a w-system. Since we have allowed
x; = 00, 2 € A;. Exercise 1.3.1 implies 0 (A;) = o(X;), so the result follows from
Theorem 2.1.3. [ ]

The last result expresses independence of random variables in terms of their dis-
tribution functions. The next two exercises treat density functions and discrete
random variables.

Exercise 2.1.4. Suppose (X1, ..., X,) has density f(xi, xz, ..., x,), thatis

P(X1,Xa, ..., X)) € A) = / f(x)dx for A € R”
A
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If f(x) can be written as g(x1) - - - g,(x,) where the g,, > 0 are measurable, then
X1, X», ..., X, areindependent. Note that the g, are not assumed to be probability
densities.

Exercise 2.1.5. Suppose Xy, ..., X,, are random variables that take values in
countable sets Si, ..., S,. Then in order for Xy, ..., X, to be independent, it is
sufficient that whenever x; € §;,

P(Xl=X1,---,Xn=xn)=l_[P(Xi=Xi)

i=1

Our next goal is to prove that functions of disjoint collections of independent
random variables are independent. See Theorem 2.1.6 for the precise statement.
First we will prove an analogous result for o-fields.

Theorem 2.1.5. Suppose F; j,1 <i <n,1 < j < m(i) are independent and let
Gi =0(U;F; ). Then G, ..., G, are independent.

Proof. Let A; be the collection of sets of the form N;A; ; where A; ; € F; ;. A,
is a w-system that contains 2 and contains U;F; ;, so Theorem 2.1.3 implies
o(A;) = G; are independent. [ |

Theorem 2.1.6. If for 1 <i <n, 1 < j <m(i), X;; are independent and f; :

R"™D — R are measurable, then fi(X;1, ..., Xini)) are independent.
PI”OOf. Let .Fl] = O'(Xl"j) and g,' = O—(Ujj:i,j)- Since fi(Xi,], ey Xi,m(i)) € gi,
the desired result follows from Theorem 2.1.5 and Exercise 2.1.1. [ |

A concrete special case of Theorem 2.1.6 that we will use in a minute is: if
Xi,..., X, are independent, then X = X; and ¥ = X, --- X,, are independent.
Later, when we study sums S, = X| + - - - + X,,, of independent random variables
X1, ..., X,, we will use Theorem 2.1.6 to conclude that if m < n then S, — §,, is
independent of the indicator function of the event {max;<x<, Sr > x}.

2.1.2 Independence, Distribution, and Expectation

Our next goal is to obtain formulas for the distribution and expectation of indepen-
dent random variables.

Theorem 2.1.7. Suppose X1, ..., X, are independent random variables and X;
has distribution ;. Then (X, ..., X,) has distribution (11 X - -+ X L.
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Proof. Using the definitions of (i) A; x --- x A, (ii) independence, (iii) u;, and
(Av) g X -+ X iy,

P((Xl,...,Xn)EAlX-'~XAn)=P(X1€A1,...,XHEA,,)

=[P € A) =[] miA) = w1 x - x (A x - x Ay)

i=1 i=1

The last formula shows that the distribution of (X1, ..., X,) and the measure
U1 X -+ X W, agree on sets of the form A| x --- x A,, a w-system that generates
R". So Theorem 2.1.2 implies they must agree. [ ]

Theorem 2.1.8. Suppose X and Y are independent and have distributions u and
v. If h : R> — R is a measurable function with h > 0 or E|h(X,Y)| < oo, then

Eh(X,Y) = / / h(x, y) p(dx) v(dy)

In particular, if h(x, y) = f(x)g(y) where f, g : R — R are measurable functions
with f,g > 0or E| f(X)| and E|g(Y)| < 00, then

Ef(X)g(Y)=Ef(X)- Eg(Y)
Proof. Using Theorem 1.6.9 and then Fubini’s theorem (Theorem 1.7.2), we have

Eh(X,Y) = / hd(u x v) = / f h(x, y) u(dx) vidy)
R2

To prove the second result, we start with the result when f, g > 0. In this case,
using the first result, the fact that g(y) does not depend on x, and then Theorem
1.6.9 twice, we get

Ef(X)g(Y)=/ f)g(y) uldx)v(dy) = fg(y)/f(x)u(dx)v(dy)

=/Ef(X)g(y)V(dy)=Ef(X)Eg(Y)

Applying the result for nonnegative f and g to | f| and |g| shows E| f(X)g(¥Y)| =
E|f(X)|E|g(Y)| < oo, and we can repeat the last argument to prove the desired
result. u

From Theorem 2.1.8, it is only a small step to

Theorem 2.1.9. If X1, ..., X,, are independent and have (a) X; > 0 for all i, or
(b) E|X;| < oo foralli, then

E (ﬁ Xi> = ﬁEXi
i=1 i=1

that is, the expectation on the left exists and has the value given on the right.
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Proof. X = X, and Y = X, --- X,, are independent by Theorem 2.1.6, so taking
f(x)=Ix| and g(y) = |yl, we have E|X,---X,| = E|X||E|X;---X,|, and it
follows by induction thatif 1 <m < n,

E|X, - Xo| = [ EIX:l
If the X; > 0, then | X;| = X; and the desired result follows from the special case
m = 1. To prove the result in general, note that the special case m = 2 implies
E|\Y|=E|X,---X,| < 00, so using Theorem 2.1.8 with f(x) =x and g(y) =
y shows E(X;---X,)= EX; - E(X,---X,), and the desired result follows by
induction. [ |

Example 2.1.2. It can happen that E(XY) = EX - EY without the variables being
independent. Suppose the joint distribution of X and Y is given by the following
table:

Y
1 0 -1
1 0 a O
X 0 b ¢ b
-1 0 a O

where a, b > 0,c > 0, and 2a + 2b + ¢ = 1. Things are arranged so that XY = 0.
Symmetry implies EX =0and EY =0, so E(XY) =0 = EXEY. The random
variables are not independent since

PX=1,Y=1)=0<ab=PX=1DP¥ =1)

Two random variables X and Y with EX?, EY? < oo that have EXY = EXEY
are said to be uncorrelated. The finite second moments are needed so that we
know E|XY| < oo by the Cauchy-Schwarz inequality.

2.1.3 Sums of Independent Random Variables

Theorem 2.1.10. If X and Y are independent, F(x) = P(X < x), and G(y) =
P(Y <), then

P(X+Y <2) =fF(z—y)dG(y)

The integral on the right-hand side is called the convolution of F and G and is
denoted F *x G(z). The meaning of d G(y) will be explained in the proof.

Proof. Let h(x,y) = 1(x4,<;). Let u and v be the probability measures with distri-
bution functions F and G. Since for fixed y

/h(x, y) u(dx) = / l(—o0,z—y)(X) u(dx) = F(z — y)
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using Theorem 2.1.8 gives

PO+ 20 = [[ e n@n vy

:/F(z—y)v(dy)zfF(Z—y)dG()’)

The last equality is just a change of notation. We regard d G(y) as a shorthand for
“integrate with respect to the measure v with distribution function G.” [ |

To treat concrete examples, we need a special case of Theorem 2.1.10.

Theorem 2.1.11. Suppose that X with density f and Y with distribution function
G are independent. Then X + Y has density

h(x) = / Flx — »)dG ()

When Y has density g, the last formula can be written as
hoo = [ 6= g dy

Proof. From Theorem 2.1.10, the definition of density function, and Fubini’s the-
orem (Theorem 1.7.2), which is justified since everything is nonnegative, we get

P<X+Ysz)=/F(z—y>dG<y>=/f f(x — y)dxdG(y)

= [ [ ra-naceax

The last equation says that X + Y has density A(x) = f f(x —y)dG(y). The sec-
ond formula follows from the first when we recall the meaning of dG(y) given in
the proof of Theorem 2.1.10 and use Exercise 1.6.8. [ |

Theorem 2.1.11 plus some ugly calculus allows us to treat two standard examples.
These facts should be familiar from undergraduate probability.

Example 2.1.3. The gamma density with parameters « and A is given by

Ax%le™ /T (a) forx >0
fx)=
0 forx <0

where I'(a) = [~ x*" e
Theorem 2.1.12. If X = gamma(o, \) and Y = gamma(B, A) are independent,

then X +Y is gamma(a + B, A). Consequently if Xi,...X, are independent
exponential(A) r.v.’s, then X1 + - - - + X,,, has a gamma(n, \) distribution.
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Proof. Writing fx.y(z) for the density function of X 4+ Y and using Theorem
2.1.11

_ X Aa(x _ y)ozfl CA—y) )\‘ﬁyﬂfl Ay
fX+Y(x)—/O T ¢ TG e dy
ka—&-ﬂe—kx X g
=L ¢ — ) d

F(W)F(ﬂ)/o oy

so it suffices to show the integral is x*™#~!T"()["(B)/ (e + B). To do this, we
begin by changing variables y = xu, dy = x du to get

1 X
x‘“rﬁ_l/ A —w)* P du = / (x —y)* 'y dy 2.1.1)
0 0

There are two ways to complete the proof at this point. The soft solution is to
note that we have shown that the density fxy(x) = cq, f;e_k)\"”rﬂx“ﬂs ~I where

Cap = ;/1(1 —w)* W du
' F@)r(B) Jo

There is only one norming constant ¢, g that makes this a probability distribution, so
recalling the definition of the beta distribution, we must have ¢, g = 1/ I'(a + B).

The less elegant approach for those of us who cannot remember the definition
of the beta is to prove the last equality by calculus. Rewriting (2.1.1) with the
right-hand side on the left, multiplying each side of by e™*, integrating from 0 to

00, and then using Fubini’s theorem on the right we have
1
(o + ,3)/ 1 —w)* " du
0
o X
= / / Y le ™ (x — y)* e dy dx
o Jo
0

— / yPle™ /Oo(x — ) eV dx dy = T(@)['(B)
0 x

which gives the first result. The second follows from the fact that a gamma(l, 1) is
an exponential with parameter A and induction. [ |

Example 2.1.4. Normal distribution. In Example 1.6.2, we introduced the normal
density with mean x and variance a,

Qra)™ exp(—(x — w)*/2a).

Theorem 2.1.13. If X = normal(i, a) and Y = normal(v, b) are independent,
then X + Y = normal(iu + v, a + b).
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Proof. 1t is enough to prove the result for © = v = 0. Suppose ¥Y; = normal(0, a)
and Y, = normal(0, ). Then Theorem 2.1.11 implies

1 f 2 2
—x~/2a ,—(z—x)7/2b
e e dx
2w~/ ab

Dropping the constant in front, the integral can be rewritten as

/ bx? + ax? —2axz + az>
exp| — dx
2ab

/ex a+b | , 2a n a_ 2l),
= — xX- — X X
P 2ab a+b ¢ a—l—bZ

fe a+b a 2+ ab » J
= X — X — X
P\ ™ 2ap a+b) Tarpr”

since —{a/(a + b)}*> + {a/(a + b)} = ab/(a + b)*. Factoring out the term that
does not depend on x, the last integral

=ex —L /ex _a—i—b x — a 2 dx
=P\ 2w+ b) P\™ 2ap atb’

2
— exp ( Z—> J2rab/(a + b)

fY1+Y2(Z) -

" 2a+b)

since the last integral is the normal density with parameters u© = az/(a + b) and
o2 = ab/(a + b) without its proper normalizing constant. Reintroducing the con-
stant we dropped at the beginning,

1 2
fY1+Y2(Z) = Zn\/%\/me)(p< Z—) ]

" 2a+b)

2.1.4 Constructing Independent Random Variables

The last question that we have to address before we can study independent random
variables is: do they exist? (If they don’t exist, then there is no point in studying
them!) If we are given a finite number of distribution functions F;, 1 <i <n, it
is easy to construct independent random variables X1, ..., X, with P(X; < x) =
F,(x).LetQ =R", F =R", X;(w1, ...,w,) = w; (the ith coordinate of v € R"),
and let P be the measure on R" that has

P((ar, bi] x -+ x (an, by]) = (Fi(b1) — Fi(a1)) - - - (Fy(by) — Fy(an))

If 1; is the measure with distribution function F; then P = pq X - -+ X [,.

To construct an infinite sequence X, X5, ... of independent random variables
with given distribution functions, we want to perform the last construction on the
infinite product space

RN = {(w, ws, ...) : w; € R} = {functions w : N — R}
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where N = {1, 2, ...} and N stands for natural numbers. We define X;(w) = w;
and we equip RN with the product o-field RN, which is generated by the finite
dimensional sets = sets of the form {w : w; € B;, 1 <i <n} where B, € R. Itis
clear how we want to define P for finite dimensional sets. To assert the existence
of a unique extension to RN, we use Theorem A.3.1:

Theorem 2.1.14. Kolmogorov’s extension theorem. Suppose we are given prob-
ability measures |1, on (R", R") that are consistent, that is,

Mnt1((ar, bil X -+ X (an, by] X R) = wu((ar, b1l X -+ X (an, byl)
Then there is a unique probability measure P on (RN, RN) with

P(w:wi €(ai,bi], 1 =i <n) = pua((ar, byl x - x(an, byl)

In what follows we will need to construct sequences of random variables that
take values in other measurable spaces (S, S). Unfortunately, Theorem 2.1.14 is not
valid for arbitrary measurable spaces. The first example (on an infinite product of
different spaces €2; x €2 X ...) was constructed by Andersen and Jessen (1948).
(See Halmos, 1950, p. 214, or Neveu, 1965, p. 84.) For an example in which all
the spaces €2; are the same, see Wegner (1973). Fortunately, there is a class of
spaces that is adequate for all of our results and for which the generalization of
Kolmogorov’s theorem is trivial.

(S, S) is said to be nice if there is a 1-1 map ¢ from S into R so that ¢ and ¢! are

both measurable.

Such spaces are often called standard Borel spaces, but we already have too
many things named after Borel. The next result shows that most spaces arising in
applications are nice.

Theorem 2.1.15. If S is a Borel subset of a complete separable metric space M,
and S is the collection of Borel subsets of S, then (S, S) is nice.

Proof. We begin with the special case S = [0, 1)N with metric

o0
px.y) =D |xy = yul/2"
n=1

Ifx = (x', x2, x%,...), expand each component in binary x/ = .x/xjx{ ... (taking

the expansion with an infinite number of 0’s). Let
1,1.2.1.2 3123 4
Yo(X) = X Xy X{X3X5X] X4 X3X5X] . ..
To treat the general case, we observe that by letting

d(x,y) = p(x, y)/(1 + p(x, y))
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(for more details, see Exercise 2.1.6), we can suppose that the metric has d(x, y) <
1 for all x, y. Let g1, g2, . . . be a countable dense set in S. Let

Y(x) = (dx, q1),d(x, q2), ...).

¥ : S — [0, D)V is continuous and 1-1. ¢, o ¥ gives the desired mapping. [ ]

Exercise 2.1.6. Let p(x, y) be a metric. (i) Suppose 4 is differentiable with ~2(0) =
0, 4'(x) > Ofor x > 0, and /4’'(x) decreasing on [0, o). Then h(p(x, y)) is a metric.
(i1) h(x) = x/(x + 1) satisfies the hypotheses in (i).

Caveat emptor. The proof above is somewhat light when it comes to details. For a
more comprehensive discussion, see Section 13.1 of Dudley (1989). An interesting
consequence of the analysis there is that for Borel subsets of a complete separable
metric space the continuum hypothesis is true: that is, all sets are either finite,
countably infinite, or have the cardinality of the real numbers.

Exercises

2.1.7. Let Q =(0,1), F = Borel sets, P = Lebesgue measure. X,(w) =
sin2rnw), n = 1, 2, ... are uncorrelated but not independent.

2.1.8. (i) Show that if X and Y are independent with distributions p and v, then
P(X+Y=0)=Y u({-yhv({y}
y

(i) Conclude that if X has continuous distribution, P(X = Y) = 0.

2.1.9. Prove directly from the definition that if X and Y are independent and f and
g are measurable functions, then f(X) and g(Y) are independent.

2.1.10. Let K > 3 be a prime and let X and Y be independent random variables
that are uniformly distributed on {0,1,..., K —1}. For 0 <n < K, let Z, =
X +nY mod K. Show that Zy, Z, ..., Zx_ are pairwise independent, that is,
each pair is independent. They are not independent because if we know the values
of two of the variables, then we know the values of all the variables.

2.1.11. Find four random variables taking values in {—1, 1} so that any three are
independent but all four are not. Hint: Consider products of independent random
variables.

2.1.12. Let Q ={1, 2, 3,4}, F = all subsets of 2, and P({i}) = 1/4. Give an
example of two collections of sets .4; and A, that are independent but whose
generated o-fields are not.
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2.1.13. Show that if X and Y are independent, integer-valued random variables,
then

P(X+Y:n):ZP(X:m)P(Y:n—m)

2.1.14. In Example 1.6.4, we introduced the Poisson distribution with parameter
A, which is given by P(Z = k) = e‘*)»k/k! for k =0,1,2,...Use the previous
exercise to show that if X = Poisson(A) and ¥ = Poisson(u) are independent, then
X + Y = Poisson(A + ).

2.1.15. X is said to have a Binomial(n, p) distribution if

P(X =m) = (Z)”m“ —py

(i) Show that if X = Binomial(n, p) and Y = Binomial(m, p) are independent,
then X + Y = Binomial(n + m, p). (ii) Look at Example 1.6.3 and use induc-
tion to conclude that the sum of n independent Bernoulli(p) random variables is
Binomial(n, p).

2.1.16. It should not be surprising that the distribution of X + Y can be F x G
without the random variables being independent. Suppose X, Y € {0, 1, 2} and
take each value with probability 1/3. (a) Find the distribution of X 4 Y assuming
X and Y are independent. (b) Find all the joint distributions (X, Y) so that the
distribution of X + Y is the same as the answer to (a).

2.1.17. Let X, Y > 0 be independent with distribution functions F and G. Find
the distribution function of XY.

2.1.18. If we want an infinite sequence of coin tossings, we do not have to use
Kolmogorov’s theorem. Let 2 be the unit interval (0,1) equipped with the Borel
sets F and Lebesgue measure P. Let Y,(w) = 1 if [2"w] is odd and O if [2"w] is
even. Show that Y1, Y», ... are independent with P(Y; =0) = P(Y, =1) = 1/2.

2.2 Weak Laws of Large Numbers

In this section, we will prove several “weak laws of large numbers.” The first order
of business is to define the mode of convergence that appears in the conclusions
of the theorems. We say that Y, converges to Y in probability if for all € > 0,
P(Y,—Y|>¢)—> 0asn — oo.

2.2.1 L2 Weak Laws

Our first set of weak laws come from computing variances and using Chebyshev’s
inequality. Extending a definition given in Example 2.1.2 for two random variables,
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a family of random variables X;, i € I with EX? < oo is said to be uncorrelated
if we have

E(X;X;)=EX,EX; wheneveri # j

The key to our weak law for uncorrelated random variables, Theorem 2.2.3, is:

Theorem 2.2.1. Let X, ..., X, have E(X l.2) < 00 and be uncorrelated. Then
var(Xy + -+ X,) = var(Xy) + - - + var(X,)

where var (Y) = the variance of Y.

Proof. Letpu; = EX;and S, = Y :_, X;. Since ES, = Y _"_, i;, using the defini-
tion of the variance, writing the square of the sum as the product of two copies of
the sum, and then expanding, we have

i=1

n 2
var (S,) = E(S, — ES,)* = E (Z (Xi — m))

=E (D> (Xi—u)(X; — y)

i=1 j=1

n i—1

=Y EXi— ) +2) > E(Xi — pi)(X; — 1))

i=1 i=1 j=1

where in the last equality we have separated out the diagonal terms i = j and used

the fact thatthe sumover 1 <i < j <nisthesameasthesumoverl < j <i <n.

The first sum is var(X;) + - - - + var(X,), so we want to show that the second
sum is zero. To do this, we observe

E((Xi —pui)(Xj —pj) = EXiX; — i EXj — u; EXi + i
=EXiX; —pinj =0
since X; and X ; are uncorrelated. [ ]
In words, Theorem 2.2.1 says that for uncorrelated random variables, the variance

of the sum is the sum of the variances. The second ingredient in our proof of
Theorem 2.2.3 is the following consequence of (1.6.4):

var (cY) = ¢? var (Y)

The third and final ingredient is
Lemma 2.2.2. If p > O and E|Z,|? — O then Z,, — 0 in probability.

Proof. Chebyshev’s inequality, Theorem 1.6.4, with ¢p(x) = x? and X = |Z,|
implies that if ¢ > O then P(|Z,| > €) < e PE|Z,|’ — O. |
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We can now easily prove

Theorem 2.2.3. L? weak law. Let X, X5, ... be uncorrelated random variables
with EX; = and var(X;) <C <o0. If S, = X1+ -+ X, then as n — o0,
S,/n — in L? and in probability.

Proof. To prove L? convergence, observe that E(S,/n) = u, so

5 1 Cn
E(Sy/n — )" = var(S,/n) = ;(Var(X1)+ <o+ var(X,)) < Pl 0

To conclude there is also convergence in probability, we apply the Lemma 2.2.2 to
Z, = Sy/n— . n

The most important special case of Theorem 2.2.3 occurs when X, X, ... are
independent random variables that all have the same distribution. In the jargon,
they are independent and identically distributed, or i.i.d. for short. Theorem
2.2.3 tells us in this case that if EXZ.2 < 00, then S,,/n converges to 4 = EX; in
probability as n — oo. In Theorem 2.2.9 below, we will see that E|X;| < oo is
sufficient for the last conclusion, but for the moment we will concern ourselves
with consequences of the weaker result.

Our first application is to a situation that on the surface has nothing to do with
randomness.

Example 2.2.1. Polynomial approximation. Let f be a continuous function on
[0,1], and let

n n . e n n!
L= (m)x (I =Xy fm/m)  where (m) ~ mi(n—m)!

m=0

be the Bernstein polynomial of degree n associated with f. Then as n — oo

sup | fu(x) = f(x)| = 0

x€[0,1]

Proof. First observe that if S, is the sum of n independent random variables with
PX;=1)=pand P(X; =0)=1— p,then EX; = p, var(X;) = p(1 — p)and

P(Sn = m) — (Z)p"l(l _ p)nfm

so Ef(S,/n) = f,(p). Theorem 2.2.3 tells us that as n — oo, S,/n — p in prob-
ability. The last two observations motivate the definition of f;(p), but to prove the
desired conclusion we have to use the proof of Theorem 2.2.3 rather than the result
itself.
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Combining the proof of Theorem 2.2.3 with our formula for the variance of X;
and the fact that p(1 — p) < 1/4 when p € [0, 1], we have

var(s,/m) _ p(l—p) _ 1

82 né?  ~ 4né?
To conclude now that Ef(S,/n) — f(p),let M = sup, o1 |f(x)|,lete > 0, and
pick 8 > 0 so that if |[x — y| < § then | f(x) — f(y)| < €. (This is possible since
a continuous function is uniformly continuous on each bounded interval.) Now,
using Jensen’s inequality, Theorem 1.6.2, gives

P(|Sy/n = pl > 8) <

|Ef(Su/n) — f(P)| < E|f(Su/n) — f(p)l < € +2MP(|Sy/n — p| > 8)

Letting n — oo, we have limsup,_, . |Ef(S,/n) — f(p)| < €, but € is arbitrary
so this gives the desired result. |

Our next result is for comic relief.

Example 2.2.2. A high-dimensional cube is almost the boundary of a ball.
Let X, X», ... be independent and uniformly distributed on (—1, 1). LetY; = X l.z,
which are independent since they are functions of independent random variables.
EY; = 1/3 and var(Y;) < EY? < 1, so Theorem 2.2.3 implies

(X2 +---+X>/n— 1/3 in probability as n — oo

Let Aype={x e R":(1—-e)y/n/3<|x|<(1+¢€)/n/3} where |[x|=(?+---+
x,zl)l/ 2. If we let |S| denote the Lebesgue measure of S, then the last conclu-
sion implies that for any € > 0, |A, N (—1, 1)"|/2" — 1, or, in words, most of
the volume of the cube (—1, 1)” comes from A, ., which is almost the boundary of
the ball of radius /n/3.

2.2.2 Triangular Arrays

Many classical limit theorems in probability concern arrays X, s, 1 <k <n of
random variables and investigate the limiting behavior of their row sums S, =
Xu1+ -+ X, In most cases, we assume that the random variables on each
row are independent, but for the next trivial (but useful) result, we do not need that
assumption. Indeed, here S, can be any sequence of random variables.

Theorem 2.2.4. Let ju, = ES,, 0> = var(S,). If 62/b> — 0 then

Sn — Mn
by

— 0 in probability

Proof. Our assumptions imply E((S, — in)/bn)* = b, 2var(S,) — 0, so the
desired conclusion follows from Lemma 2.2.2. [ ]
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We will now give three applications of Theorem 2.2.4. For these three examples,
the following calculation is useful:

"1 "d "1
Yo Sy
m=1 m=2

|
logn < Z — <1+logn 2.2.1)
m

m=1

Example 2.2.3. Coupon collector’s problem. Let X, X5, ...be i.i.d. uniform on
{1,2, ..., n}. Tomotivate the name, think of collecting baseball cards (or coupons).
Suppose that the ith item we collect is chosen at random from the set of possibilities
and is independent of the previous choices. Let 7}’ = inf{m : [{X1, ..., X,,}| = k}
be the first time we have k different items. In this problem, we are interested in
the asymptotic behavior of 7,, = 7", the time to collect a complete set. It is easy to
see that 7' = 1. To make later formulas work out nicely, we will set 7j = 0. For
1 <k <n, X, =1 — 1t{_, represents the time to get a choice different from our
first k — 1, so X, x has a geometric distribution with parameter 1 — (k — 1)/n and
is independent of the earlier waiting times X, ;, 1 < j < k. Example 1.6.5 tells
us that if X has a geometric distribution with parameter p, then EX = 1/p and
var (X) < 1/p?. Using the linearity of expected value, bounds on Y_" _, 1/m in
(2.2.1), and Theorem 2.2.1, we see that

n k—l —1 n
ET,,=Z(1— " ) =an_1~nlogn
m=1

k=1

n -2 n [ee]
V&lr(T,,)fZ(l—lcn;l) =n22:m_2 §n22m_2
m=1

k=1 m=1

Taking b, = nlogn and using Theorem 2.2.4, it follows that

T —n) m”!
nlogn

— 0 in probability

and hence 7,,/(nlogn) — 1 in probability.

For a concrete example, take n = 365, that is, we are interested in the number
of people we need to meet until we have seen someone with every birthday. In this
case the limit theorem says it will take about 365 log 365 = 2153.46 tries to get a
complete set. Note that the number of trials is 5.89 times the number of birthdays.

Example 2.2.4. Random permutations. Let 2, consist of the n! permutations
(i.e., one-to-one mappings from {1, ..., n} onto {1, ..., n}) and make this into a
probability space by assuming all the permutations are equally likely. This appli-
cation of the weak law concerns the cycle structure of a random permutation 7, so
we begin by describing the decompostion of a permutation into cycles. Consider
the sequence 1, (1), w(w (1)), . .. Eventually, 7%(1) = 1. When it does, we say the
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first cycle is completed and has length k. To start the second cycle, we pick the
smallest integer i not in the first cycle and look at i, (i), (7 (i)), . .. until we
come back to i. We repeat the construction until all the elements are accounted for.
For example, if the permutation is

i 1 2 3 4 5 6 7 8 9
7@) 3 9 6 8 2 1 5 4 7
then the cycle decomposition is (136) (2975) (48).

Let X, » = 1 if a right parenthesis occurs after the kth number in the decompo-
sition, X, ; = O otherwise and let S, = X,,; + - - - + X}, , = the number of cycles.

(In the example, X9 3 = X9 7 = X9 = 1, and the other Xy ,, = 0.) I claim that

Lemma 2.2.5. X, 1, ..., X, , are independent and P(X, ; = 1) = n_}H.
Intuitively, this is true since, independent of what has happened so far, there are
n — j + 1 values that have not appeared in the range, and only one of them will
complete the cycle.

Proof. To prove this, it is useful to generate the permutation in a special way. Let
iy = 1. Pick j; atrandom from {1, ...,n}and let 7w (i;) = j;. If j; # 1,leti, = jj.
If ji =1, let i; = 2. In either case, pick j, at random from {1, ...,n} — {j;}. In
general, if iy, ji, ..., ix—1, jxr—1 have been selected and we have set 7 (i;) = j, for
1 < ¢ <k, then (a) if jr_; € {i}, ..., ix—1} so a cycle has just been completed,
we let iy = inf({1,...,n} — {i;,...,ir_1}) and (b) if jr_; € {i1, ..., ix_1}, we let
ix = jx—1. In either case we pick j; at random from {1, ...,n} —{ji, ..., ji—1}
and let 7 (i) = Ji.

The construction above is tedious to write out, or to read, but now I can claim

with a clear conscience that X, 1, ..., X,., are independent and P(X,; = 1) =
1/(n — j + 1) because when we pick ji, therearen — j 4+ 1 valuesin {1, ...,n} —
{j1, ..., ji—1} and only one of them will complete the cycle. [ |

To check the conditions of Theorem 2.2.4, now note

ES,=1/n+1/(n—1)+---+1/2+1

var (S,) = Y var(X,) < > E(X; ) =Y E(X,x) = ES,

k=1 k=1 k=1
where the results on the second line follow from Theorem 2.2.1, the fact that
var(Y) < EY?, and X, , = X, 4. Now ES, ~ logn, so if b, = (logn)”*¢ with
€ > 0, the conditions of Theorem 2.2.4 are satisfied and it follows that
Sp — ZZ:] m”!
(IOg n).5+e

— 0 in probability
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Taking € = 0.5, we have that S,/ logn — 1 in probability, but (x) says more. We
will see in Example 3.4.6 that (x) is false if € = 0.

Example 2.2.5. An occupancy problem. Suppose we put » balls at random in n
boxes, that is, all n” assignments of balls to boxes have equal probability. Let A;
be the event that the ith box is empty and N, = the number of empty boxes. It is
easy to see that

P(A)=(0—1/ny  and  EN,=n(l—1/n)

A little calculus (take logarithms) shows that if r/n — ¢, EN,/n — e ¢. (For a
proof, see Lemma 3.1.1.) To compute the variance of N,,, we observe that

" 2
EN?=E (Z 1Am> = Y P(ANAp)

m=1 1<k,m<n

var(N,) = EN} = (EN,)* = ) P(AcN Ayp) — P(A)P(An)

1<k,m=<n
=nn— D{(1=2/n) =1 =1/n)*}+n{(1 = 1/n) — (1 —1/n)*}

The first term comes from k # m and the second from k = m. Since (1 —
2/n)" — e > and (1 — 1/n)" — e~¢, it follows easily from the last formula that
var (N, /n) = var(N,)/n> — 0. Taking b,, = n in Theorem 2.2.4 now we have

N,/n — e~ in probability

2.2.3 Truncation

To truncate a random variable X at level M means to consider

X if|X| <M

X = Xlgxzm = 0 if|X|>M

To extend the weak law to random variables without a finite second moment, we
will truncate and then use Chebyshev’s inequality. We begin with a very general
but also very useful result. Its proof is easy because we have assumed what we
need for the proof. Later we will have to work a little to verify the assumptions in
special cases, but the general result serves to identify the essential ingredients in
the proof.

Theorem 2.2.6. Weak law for triangular arrays. For eachn let X, , 1 <k < n,
be independent. Let b,, > 0 with b,, — 00, and let )_(,,,k = Xk l(x, |<b,)- Suppose
that as n — o0

(i) Y iz P(1 Xkl > by) — 0, and

(ii) by? Y i EX;  — 0.
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Ifwelet S, = Xu1+ -+ Xpnandput a, =Y y_y EX,, then

(S, — ay)/b, — 0 in probability

Proof. Let S, = )_(n,l + -4 }_(n,n. Clearly,

dl

To estimate the first term, we note that

Sn_an Sn_an

>e> §P(Sn7éSn)+P(

-9

P(Sy # 8,) < P (UL { Xk # Xui}) < Y P(Xuil > b,) > 0
k=1

n n

by (i). For the second term, we note that Chebyshev’s inequality, a, = ES,,
Theorem 2.2.1, and var (X) < EX? imply

2

Sn — Un Sn — Un G
P ( a > e) <e’E L) e_zbn_2 var (S,)
n n
= (ba€) > Y var(X,1) < (ba€) > Y E(X,0)* > 0
k=1 k=1
by (ii), and the proof is complete. [ |

From Theorem 2.2.6, we get the following result for a single sequence.

Theorem 2.2.7. Weak law of large numbers. Let X1, X,, ... be i.i.d. with
xP(X;|>x)—>0 asx > o

Let S, = X1+ -+ X, and let pu, = E(X11(x,<n)). Then S,/n — p, — 0 in

probability.

Remark. The assumption in the theorem is necessary for the existence of constants
a, so that S, /n — a, — 0. See Feller, Vol. I (1971), pp. 234-6, for a proof.

Proof. We will apply Theorem 2.2.6 with X, = Xy and b, = n. To check (i), we
note

> P(I Xkl > n)=nP(|X;| > n) > 0
k=1

by assumption. To check (ii), we need to show n~% - nEX; | — 0. To do this, we
need the following result, which will be useful several times below.

Lemma 2.2.8. IfY > 0 and p > 0 then E(Y?) = [~ py?"'P(Y > y)dy.
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Proof. Using the definition of expected value, Fubini’s theorem (for nonnegative
random variables), and then calculating the resulting integrals gives

o0 o0
/ py?'P(Y > y)dy = / / py? My~y dPdy
0 0 Q

o0
:// pyp_]l(Y>y)dydP
QJOo

Y
=// py”_ldydP=/Y”dP=EY”
QJ0 Q

which is the desired result. [ |

Returning to the proof of Theorem 2.2.7, we observe that Lemma 2.2.8 and the
fact that )_(,1,1 = X1¢x,|<n) imply

EX} ) =f 2yP(1 X1l > y)dy S/ 2yP(1X1] > y)dy
0 0

since P(|X,.1| > y)=0fory >nand = P(|X;| > y) — P(|X;| > n) for y < n.
We claim that y P(]X1| > y) — 0 implies

_ 1 n
E(X;)/n= ;/ 2yP(1X1| > y)dy — 0
0

as n — oo. Intuitively, this holds since the right-hand side is the average of g(y) =
2yP(]X1] > y) over [0, n] and g(y) — 0 as y — oo. To spell out the details, note
that 0 < g(y) <2y and g(y) — 0 as y — 00, so we must have M = sup g(y) <
oo. If weletex = sup{g(y) : y > K}, then by considering the integrals over [0, K]
and [K, n] separately

/ 2yP(|X| > y)dy < KM + (n — K)eg
0

Dividing by n and letting n — oo, we have

1 n
limsup;/ 2yP(|X1] > y)dy < ek
0

n—od

Since K is arbitrary and ex — 0 as K — 00, the desired result follows. [ |

Finally, we have the weak law in its most familiar form.

Theorem 2.2.9. Let Xy, X5, ...bei.id withE|X;| <oo.LetS, =X+ ---+ X,
and let w = EX,. Then S,/n — w in probability.

Remark. Applying Lemma 2.2.8 with p=1—¢€ and € >0, we see that
xP(|X;| > x) = 0 implies E|X;|'™ < oo, so the assumption in is not much
weaker than finite mean.
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Proof. Two applications of the dominated convergence theorem imply

xP( X >x) < E(|X1|1(|X1|>x)) —0 asx — o

mn = E(X11(x,1<n)) > E(X1) =pn asn — 00

Using Theorem 2.2.7, we see thatif € > 0 then P(|S,/n — u,| > €/2) — 0. Since
Un — M, it follows that P(|S,,/n — u| > €) — 0. |

Example 2.2.6. For an example where the weak law does not hold, suppose
X1, X5, ... are independent and have a Cauchy distribution:

* dt
P(X; < x) = /_OO s

As x — 00,

®©dt 2 [ ., 2
P(X|>x)=2| ——~Z | t2dt=x
X T[(l+t2) s X 4

From the necessity of the condition above, we can conclude that there is no sequence
of constants u, so that S,,/n — u, — 0. We will see later that S, /n always has the
same distribution as X ;. (See Exercise 3.3.8.)

As the next example shows, we can have a weak law in some situations in which
E|X| = oc.

Example 2.2.7. The “St. Petersburg paradox.” Let X, X», ...be independent
random variables with

P(X;i=2)=27 forj>1

In words, you win 2/ dollars if it takes j tosses to get a heads. The paradox here is
that £X; = oo, but you clearly wouldn’t pay an infinite amount to play this game.
An application of Theorem 2.2.6 will tell us how much we should pay to play the
game 7 times.

In this example, X, x = X. To apply Theorem 2.2.6, we have to pick b,. To do
this, we are guided by the principle that in checking (ii) we want to take b,, as small
as we can and have (i) hold. With this in mind, we observe that if m is an integer,

x
P(X;=2") =) 27/ =2

j=m

Let m(n) = logy,n + K(n) where K(n) — oo and is chosen so that m(n) is an
integer (and hence the displayed formula is valid). Letting b, = 2™, we have

nP(X; > b, = 2~ M+l _ o=Km+l _
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proving (i). To check (ii), we observe that if )_(,1,;( = X 1(x,/<p,) then

m(n) 00
EXy, =Y 2 .27 <2m ¥ ok =2p,
j=1 k=0

So the expression in (ii) is smaller than 2n/b,, which — 0 since
by, = 2" = n2KM and K(n) » oo

The last two steps are to evaluate a, and to apply Theorem 2.2.6.

m(n)
EX,; = Z 21271 = m(n)
j=1
so a, = nm(n). We have m(n) = logn + K(n) (here and until the end of the
example all logs are base 2), so if we pick K(n)/logn — 0, then a,/nlogn — 1
as n — oo. Using Theorem 2.2.6 now, we have

Sn — ay . .-
— K — 0 in probability

If we suppose that K(n) < loglogn for large n, then the last conclusion holds
with the denominator replaced by n log n, and it follows that S, /(nlogn) — 1 in
probability.

Returning to our original question, we see that a fair price for playing n times is
$ log, n per play. When n = 1024, this is $10 per play. Nicolas Bernoulli wrote in
1713, “There ought not to exist any even halfway sensible person who would not
sell the right of playing the game for 40 ducates (per play).” If the wager were 1
ducat, one would need 2*° & 10'? plays to start to break even.

Exercises

2.2.1. Let X4, X5, ...be uncorrelated with EX; = u; and var(X;)/i — Oasi —
oo.LetS, =X,+---+X,and v, = ES,/nthenasn — oo, S,/n —v, — 0in
L? and in probability.

2.2.2. The L? weak law generalizes immediately to certain dependent sequences.
Suppose EX,, =0 and EX, X,, < r(n —m) for m < n (no absolute value on the
left-hand side!) with r(k) — 0 as k — o0. Show that (X; +--- + X,,)/n — O in
probability.

2.2.3. Monte Carlo integration. (i) Let f be a measurable function on [0, 1] with
fol | f(x)|dx < oco. Let Uy, Uy, ... be independent and uniformly distributed on
[0, 1], and let

L =n"' (fUD+ -+ f(U)

Show that I, — I = [, f dx in probability. (ii) Suppose [, | f(x)|>dx < oo. Use
Chebyshev’s inequality to estimate P(|1, — I| > a/n'/?).
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2.24. Let X, X,, ...beiid. with P(X; = (—=1)*k) = C/k?log k fork > 2 where
C is chosen to make the sum of the probabilities = 1. Show that E|X;| = oo, but
there is a finite constant u so that S,/n — w in probability.

2.2.5. Let X1, X5, ...be i.i.d. with P(X; > x) = e¢/x logx for x > e. Show that
E|X;| = oo, but there is a sequence of constants u, — oo so that S,/n — u, — 0
in probability.

2.2.6. (i) Show that if X > 0 is integer valued EX = )
similar expression for E X2,

P(X = n). (ii) Find a

n>1

2.2.7. Generalize Lemma 2.2.8 to conclude that if H(x) = f(ioo ] h(y)dy with
h(y) = 0, then

]

E H(X) =f h()P(X = y)dy

—00

An important special case is H(x) = exp(fx) with 8 > 0.

2.2.8. An unfair “fair game.” Let p; = 1/2%k(k + 1), k =1,2,...and py =
1 - Zkzl Dk-

o0

> 2 —a-Hhed - he o
£ Pk = 2 2 3 el —

so if we let X1, X, ...bei.i.d. with P(X, = —1) = po and
P(X,=2-1)=p; fork>1

then EX,, = 0.Let S, = X| + - - - + X,,. Use (5.5) with b, = 2™ where m(n) =
min{m : 27"m3/> < n~'} to conclude that

S,/(n/log, n) — —1 in probability

2.2.9. Weak law for positive variables. Suppose X, X»,...are i.i.d.,, P(0 <
X; <o0)=1and P(X; > x) > 0 for all x. Let u(s) = f(‘;xdF(x) and v(s)
u(s)/s(1 — F(s)). It is known that there exist constants a, so that S,/a, — 1 in
probability, if and only if v(s) — oo as s — co. Pick b, > 1 so that nu(b,) = b,
(this works for large n), and use Theorem 2.2.6 to prove that the condition is
sufficient.

2.3 Borel-Cantelli Lemmas

If A, is a sequence of subsets of €2, we let
limsup A, = lim U2 A, = {w that are in infinitely many A, }
m—00
(the limit exists since the sequence is decreasing in m) and let

liminf A, = lim N2 A, = {w that are in all but finitely many A, }
m—00
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(the limit exists since the sequence is increasing in m). The names lim sup and
lim inf can be explained by noting that

lim sup lA” = l(lim sup A,) lim inf lAn = l(lim inf A,)
n— 00 n—00

Itiscommonto writelimsup A, = {w : w € A, i.0.}, wherei.o. stands for infinitely
often. An example which illustrates the use of this notation is “X,, — 0 a.s. if
and only if for all € > 0, P(|X,| > € i.0.) = 0.” The reader will see many other
examples below. The next result should be familiar from measure theory even
though its name may not be.

Theorem 2.3.1. Borel-Cantelli lemma. I Y ", P(A,) < oo then

P(A,io0.)=0.

Proof. Let N =), 14, be the number of events that occur. Fubini’s theorem
implies EN = ), P(Ay) < 00, so we must have N < 00 a.s. [ |

The next result is a typical application of the Borel-Cantelli lemma.

Theorem 2.3.2. X,, — X in probability if and only if for every subsequence X,
there is a further subsequence X, that converges almost surely to X.

Proof. Let ¢, be a sequence of positive numbers that | 0. For each k, there is an
n(my) > n(my_1) so that P(| X, m,) — X| > €x) < 2% Since

o0

> P Xy — X| > &) < 00

k=1
the Borel-Cantelli lemma implies P(| X,y — X| > €, 1.0.) = 0, thatis, X,,¢n,) —
X a.s. To prove the second conclusion, we note that if for every subsequence X,
there is a further subsequence X, ,,) that converges almost surely to X then we
can apply the next lemma to the sequence of numbers y, = P(|X,, — X| > §) for
any § > 0 to get the desired result. [

Theorem 2.3.3. Let v, be a sequence of elements of a topological space. If every
subsequence Y, has a further subsequence y.,) that converges to y, then

Yn = ).

Proof. If y, /> y, then there is an open set G containing y and a subsequence y,n)
with y,n) & G for all m, but clearly no subsequence of y,.,) convergestoy. W

Remark. Since there is a sequence of random variables that converges in proba-
bility but not a.s. (for an example, see Exercises 2.3.13 or 2.3.14), it follows from
Theorem 2.3.3 that a.s. convergence does not come from a metric, or even from
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a topology. Exercise 2.3.8 will give a metric for convergence in probability, and
Exercise 2.3.9 will show that the space of random variables is a complete space
under this metric.

Theorem 2.3.2 allows us to upgrade convergence in probability to convergence
almost surely. An example of the usefulness of this is

Theorem 2.3.4. If f is continuous and X, — X in probability then f(X,) —
f(X) in probability. If, in addition, f is bounded, then Ef(X,) — Ef(X).

Proof. If X, is a subsequence then Theorem 2.3.2 implies there is a further
subsequence X,(n,) — X almost surely. Since f is continuous, Exercise 1.3.3
implies f(X,m,) — f(X) almost surely and Theorem 2.3.2 implies f(X,) —
f(X) in probability. If f is bounded, then the bounded convergence theorem
implies Ef (X, m,)) — Ef(X), and applying Theorem 2.3.3 to y, = Ef(X,,) gives
the desired result. |

As our second application of the Borel-Cantelli lemma, we get our first strong
law of large numbers:

Theorem 2.3.5. Let X1, X5, ...be iid. with EX; = u and EX} < oo. If S, =
X+ -+ X, then S,,/n — u a.s.

Proof. By letting X; = X; — u, we can suppose without loss of generality that
u = 0. Now

n 4
ES}=E (Z X,-) =E Z XXX X,
i=1

1<i,j.k,t=<n

Terms in the sum of the form E(X?Xj), E(XiszXk), and E(X;X;X;X,) are 0
(if i, j, k, ¢ are distinct) since the expectation of the product is the product of the
expectations, and in each case one of the terms has expectation 0. The only terms
that do not vanish are those of the form EX;' and EX7 X7 = (EX})*. There are n
and 3n(n — 1) of these terms, respectively. (In the second case we can pick the two
indices in n(n — 1)/2 ways, and with the indices fixed, the term can arise in a total
of six ways.) The last observation implies

ES} =nEX} +3(n* — n)(EX?)* < Cn?
where C < co. Chebyshev’s inequality gives us
P(ISy]| > ne) < E(S,)/(ne)* < C/(n’€)
Summing on n and using the Borel-Cantelli lemma gives P(|S,| > ne i.0.) = 0.

Since € is arbitrary, the proof is complete. [ |

The converse of the Borel-Cantelli lemma is trivially false.
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Example 2.3.1. Let 2 = (0, 1), 7 = Borel sets, P = Lebesgue measure. If A,, =
(0, a,) where a,, — 0 as n — oo, then limsup A, = @, but if a, > 1/n, we have

> a, = oo.

The example just given suggests that for general sets we cannot say much more
than the next result.

Exercise 2.3.1. Prove that P(limsup A,) > limsup P(A,) and
P(liminf A,) < liminf P(A,)

For independent events, however, the necessary condition for P(limsup A,) > 0
is sufficient for P(limsup A,) = 1.

Theorem 2.3.6. The second Borel-Cantelli lemma. If the events A, are indepen-
dent, then Y P(A,) = oo implies P(A, i.0.) = 1.

Proof. Let M < N < oo. Independence and 1 — x < e imply

N N
P (M_yAs) = [T = PA) < [ exp(=P(AL)

n=M n=M
N
=exp<—ZP(A,,)> -0 asN — o
n=M

So P(U2,,A,) =1 for all M, and since U2, A, | limsup A, it follows that
P(limsup A,) = 1. |

A typical application of the second Borel-Cantelli lemma is:

Theorem 2.3.7. If X1, X5, ... arei.i.d. with E|X;| = 00, then P(|X,| > nio.) =
1.Soif S, = X1+ -+ X, then P(lim S,,/n exists € (—o0, 00)) = 0.

Proof. From Lemma 2.2.8, we get

E|X| =/ P(1X,| > x)dx < Y P(|X| > n)
0 n=0

Since E|X | = 00 and X, X»,...are i.i.d., it follows from the second Borel-
Cantelli lemma that P(|X,,| > n i.0.) = 1. To prove the second claim, observe that

Sn Sn+] . Sn Xn+1

n n+1_n(n+1)_n+l
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and on C = {w : lim,_,» S,/n exists € (—o0, 00)}, S,/(n(n + 1)) — 0. So, on
CNi{w:|X,| =ni.o.}, we have

Sn Sn+1

n n+1

>2/3 i.o.

contradicting the fact that w € C. From the last observation, we conclude that
{w:|X,|>nio}NC=0¢

and since P(|X,| > ni.0.) = 1, it follows that P(C) = 0. ]

Theorem 2.3.7 shows that E|X;| < oo is necessary for the strong law of large
numbers. The reader will have to wait until Theorem 2.4.1 to see that condition
is also sufficient. The next result extends the second Borel-Cantelli lemma and
sharpens its conclusion.

Theorem 2.3.8. If A\, A, ...are pairwise independent and - | P(A,) = 00,
then as n — o0

2": 1a, Zn: P(A,)— 1 as.
m=1

m=1

Proof. Let X,, =14, and let S, = X; +---+ X,,. Since the A,, are pairwise
independent, the X,, are uncorrelated and hence Theorem 2.2.1 implies

var (S,) = var(X;) + --- + var(X,)

var (X,,) < E(X2) = E(X,,), since X,, € {0, 1}, so var(S,) < E(S,). Cheby-
shev’s inequality implies

() P(IS, — ES,| > 8ES,) < var(S,)/(8ES,)* < 1/(8’ES,) = 0

as n — oo (since we have assumed E S,, — 00).

The last computation shows that S,/ES, — 1 in probability. To get almost
sure convergence, we have to take subsequences. Let ny = inf{n : ES,, > k2}. Let
Ty = S, and note that the definition and EX,, <1 imply kK> <ET, <k*>+1.
Replacing n by ny in (%) and using ET} > k? shows

P(|Ty — ET| > 8ETy) < 1/(8°k*)

So Z,fil P(|Ty — ET| > §ETy) < oo, and the Borel-Cantelli lemma implies
P(|Ty — ETy| > §ET; i.0.) = 0. Since § is arbitrary, it follows that 7, /ET;, — 1
a.s. Toshow S,/ES, — 1 a.s., pick an w so that Ty (w)/ ET, — 1 and observe that
if ny <n < ngyq, then

Ti(w) - Sp(w) - Ti1(w)
ETi.1 — ES, — ET;
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To show that the terms at the left and right ends — 1, we rewrite the last inequalities
as
ETy  Ti(w) - Sn(w) - Tip1(@)  ETiqy
ETi.., ET. — ES, = ETiy ET;

From this, we see it is enough to show ET;,/ET; — 1, but this follows from
k> < ETy < ETiyy < (k+ 1) + 1

and the fact that {(k + 1)> + 1}/k> =14+ 2/k +2/k* — 1. u

The moral of the proof of Theorem 2.3.8 is that if you want to show that
X, /cn — 1 a.s. for sequences c,, X, > 0 that are increasing, it is enough to prove
the result for a subsequence n(k) that has ¢,+1)/cax) — 1. For practice with this
technique, try the following.

Exercise 2.3.2. Let 0 < X;| < X, ... be random variables with E X, ~ an® with
a,a > 0, and var(X,) < Bn? with B < 2a. Show that X,,/n® — a a.s.

Exercise 2.3.3. Let X, be independent Poisson r.v.’s with EX, = A,, and let
S, = X1+ -+ X,,. Show that if Y A, = oo, then S,/ES, — 1 as.

Example 2.3.2. Record values. Let X, X5, ... be a sequence of random variables
and think of X, as the distance for an individual’s kth high jump or shot-put toss
so that Ay = {Xx > sup,_, X} is the event that a record occurs at time k. Ignoring
the fact that an athelete’s performance may get better with more experience or that
injuries may occur, we will suppose that X, X», ...are i.i.d. with a distribution
F(x) that is continuous. Even though it may seem that the occurrence of a record
at time k will make it less likely that one will occur at time k + 1, we

Claim. The A are independent with P(Ay) = 1/k.

To prove this, we start by observing that since F is continuous P(X; = X;) = 0 for
any j # k (see Exercise 2.1.8), sowe can let Y{' > Y}’ > --- > Y be the random

variables X1, ..., X,, put into decreasing order and define a random permutation
of {1,...,n}bym,(i)=jif X; = Y;’, that is, if the ith random variable has rank
Jj. Since the distribution of (X1, ..., X,) is not affected by changing the order of

the random variables, it is easy to see:
(a) The permutation 7, is uniformly distributed over the set of n! possibilities.

Proof of (a). This is “obvious” by symmetry, but if one wants to hear more, we can
argue as follows. Let m,, be the permutation induced by (X1, ..., X,), and let o,
be a randomly chosen permutation of {1, ..., n} independent of the X sequence.
Then we can say two things about the permutation induced by (X1, ..., Xo@)):
(i) itis m, o 0,, and (ii) it has the same distribution as 7,,. The desired result follows
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now by noting that if 7 is any permutation, & o oy, is uniform over the n! possibi-
lities. [ |

Once you believe (a), the rest is easy:
(b) P(Ay) = P(mu(n) =1) = 1/n.
(c)If m <nandi,.yg,...i, are distinct elements of {1, ..., n} then
PAylm,(j)=ijform+1=<j<n)=1/m

Intuitively, this is true since if we condition on the ranks of X,,.1,..., X, then
this determines the set of ranks available for X1, ..., X,,, but all possible orderings
of the ranks are equally likely and hence there is probability 1/m that the smallest
rank will end up at m.

Proof of (c). If we let 0,, be a randomly chosen permutation of {1, ..., m}, then
(i) m, o 0, has the same distribution as ,, and (ii) since the application of o,
randomly rearranges m,(1), ..., m,(m) the desired result follows. [ ]

If weletm| < m, ... < my, then it follows from (c) that
P(An |Ap,N...NA,) = P(An,)
and the claim follows by induction.

Using Theorem 2.3.8 and the by now familiar fact that ) " _, 1/m ~ logn, we
have

Theorem 2.3.9. If R, =Y _, 14, is the number of records at time n then as
n— 09,

R,/logn — 1 a.s.

The reader should note that the last result is independent of the distribution F (as
long as it is continuous).

Remark. Let X, X,,...bei.i.d. with a distribution that is continuous. Let Y; be
the number of j <i with X; > X;. It follows from (a) that ¥; are independent
random variables with P(Y; = j)=1/ifor0 < j <i — 1.

Comic relief. Let Xy, X, ...be i.i.d. and imagine they are the offers you get for
a car you are going to sell. Let N =inf{n > 1: X,, > Xo}. Symmetry implies
P(N > n) > 1/(n + 1). (When the distribution is continuous this probability is
exactly 1/(n + 1), but our distribution now is general and ties go to the first person
who calls.) Using Exercise 2.2.7 now:

o0

o0
1
EN=) P(N>n)> =
n=0 n=0
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so the expected time you have to wait until you get an offer better than the first
one is co. To avoid lawsuits, let me hasten to add that I am not suggesting that you
should take the first offer you get!

Example 2.3.3. Head runs. Let X,,, n € Z, be i.i.d. with P(X,, = 1) = P(X,, =
—1)=1/2. Let {, = max{m : X,,_,,+1 = --- = X,, = 1} be the length of the run
of 4+1’s at time n, and let L, = max;<;<, £,, be the longest run at time n. We
use a two-sided sequence so that for all n, P(¢,, = k) = (1/2)**! for k > 0. Since
{) < oo, the result we are going to prove

L,/log;n — 1 as. (2.3.1)
is also true for a one-sided sequence. To prove (2.3.1), we begin by observing
P(t, > (1 +¢€)logyn) < n 11

for any € > 0, so it follows from the Borel-Cantelli lemma that £, < (1 + €)log, n
for n > N¢. Since € is arbitrary, it follows that

limsupL,/log,n <1 as.
n—oQ

To get a result in the other direction, we break the first n trials into disjoint blocks
of length [(1 — €)log, n] + 1, on which the variables are all 1 with probability

2-l1=alogynl=1 5y =(1=€)
to conclude that if n is large enough so that [n/{[(1 — €)log, n] 4+ 1}] > n/log, n
P(L, < (1 —e€)logyn) < (1 —n 179 2y/Mo8m < exp(—n*/2log, n)
which is summable, so the Borel-Cantelli lemma implies

liminf L,/log,n > 1 as.
n—od

Exercise 2.3.4. Show that limsup,_, ., ,/log, n = 1, liminf,_, ¢, = 0 a.s.

Exercises

2.3.5. Prove the first result in Theorem 2.3.4 directly from the definition.

2.3.6. Fatou’s lemma. Suppose X, > 0 and X,, — X in probability. Show that
liminf, . EX, > EX.

2.3.7. Dominated convergence. Suppose X, — X in probability and (a) | X,| < Y
with EY < oo or (b) there is a continuous function g with g(x) > 0 for large x
with |x|/g(x) — 0 as |x| — oo so that Eg(X,) < C < oo for all n. Show that
EX, — EX.

2.3.8. Show (a)thatd(X,Y) = E(|X — Y|/(1 4+ |X — Y|)) defines a metric on the
set of random variables, that is, (i) d(X,Y) =0 if and only if X =Y a.s., (ii)
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d(X,Y)=d(Y, X), (i) d(X,Z) <d(X,Y)+d(, Z)and (b) that d(X,,, X) — O
as n — oo if and only if X,, — X in probability.

2.3.9. Show that random variables are a complete space under the metric defined in
the previous exercise, that is, if d(X,,, X,,) — 0 whenever m, n — o0, then there
isar.v. X so that X;, — X in probability.

2.3.10. If X, is any sequence of random variables, there are constants ¢, — 00 so
that X,,/c, — 0 a.s.

2.3.11. () If P(A,) > Oand Y o2 P(AS N A,y) < oo then P(A, i.0.) = 0. (ii)
Find an example of a sequence A, to which the result in (i) can be applied but the
Borel-Cantelli lemma cannot.

2.3.12. Let A, be a sequence of independent events with P(A,) < 1 for all n.
Show that P(UA,) = 1 implies P(A, i.0.) = 1.

2.3.13. Let X|, X», ... be independent. Show that sup X,, < oo a.s. if and only if
>, P(X, > A) < oo for some A.

2.3.14. Let Xy, X», ...be independent with P(X,, = 1) = p, and P(X, =0) =
1 — p,.Show that (i) X,, — Oin probability if and only if p, — 0, and (ii) X,, — 0
a.s.ifand only if ) _ p, < oc.

2.3.15. Let Yy, Y, ...bei.i.d. Find necessary and sufficient conditions for
(1) Y,/n — 0 almost surely, (i) (max,,<, ¥;»)/n — 0 almost surely,
(iii) (max,, <, Yn)/n — 0 in probability, and (iv) ¥, /n — 0O in probability.

2.3.16. The last two exercises give examples with X,, — X in probability without
X, — X a.s. There is one situation in which the two notions are equivalent.
Let X, X5, ...be a sequence of r.v.’s on (€2, F, P) where Q2 is a countable set
and F consists of all subsets of €2. Show that X, — X in probability implies
X, &> X as.

2.3.17. Show that if X, is the outcome of the nth play of the St. Petersburg
game (Example 2.2.7), then limsup,_, ., X,,/(n log,n) = oo a.s. and hence the
same result holds for S,. This shows that the convergence S, /(nlog,n) — 1 in
probability proved in Section 2.2 does not occur a.s.

2.3.18. Let X, X5, ...be i.i.d. with P(X; > x) = e, let M, = maxXj<m<y Xn.
Show that (i) limsup,_, ., X,/logn = 1 a.s. and (i) M,,/logn — 1 a.s.

2.3.19. Let X, X5, ...be ii.d. with distribution F, let A, 1 oo, and let A, =
{max<m<n Xm > An}. Show that P(A, i.0.) =0 or 1 according as anl(l —
F(A,)) < oo or = o0.
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2.3.20. Kochen-Stone lemma. Suppose ) . P(A;) = oco. Use Exercises 1.6.6 and
2.3.1 to show that if

; 2
lim sup (Z P(Ak)> / Z PA;NA) | =a>0
=0 \ k=1 1<jk<n

then P(A, i.0.) > «. The case @« = 1 contains Theorem 2.3.6.

2.4 Strong Law of Large Numbers

We are now ready to give Etemadi’s (1981) proof of

Theorem 2.4.1. Strong law of large numbers. Let X, X5, ... be pairwise inde-
pendent identically distributed random variables with E|X;| < co. Let EX; =
and S, = X1+ -+ X,,. Then S,/n — p a.s. asn — oo.

Proof. As in the proof of the weak law of large numbers, we begin by truncating.

Lemma2.4.2. Let Y, = Xilx,<iyand T, =Y, + - - - + Y,. It is sufficient to prove
that T,/n — W a.s.

Proof. Y poy P(1Xk| > k) < ;7 P(1X1| > )dt = E|Xi| <oo so P(Xy#
Y 1.0.) = 0. This shows that |S,(w) — T,,(w)| < R(w) < oo a.s. for all n, from
which the desired result follows. |

The second step is not so intuitive, but it is an important part of this proof and
the one given in Section 2.5.

Lemma 2.4.3. Y 2, var(Yy)/k* < 4E|X;| < oc.
Proof. To bound the sum, we observe

00 k
var (Y) < E(Y2) =/ 2yP(Yil > y)dy sf 2yP(X1] > y)dy
0 0

so using Fubini’s theorem (since everything is > 0 and the sum is just an integral
with respect to counting measure on {1, 2, ...})

[ele] o] o0
S EXY/K < Zk‘2/ ly<i 2y P(1X1] > y)dy
k=1 k=1 0

00 o0
:/ {Zk_zl(y<k)} 2yP(|X1| > y)dy
0

k=1

Since E|X,| = fooo P(]X1| > y)dy, we can complete the proof by showing [ |
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Lemma 2.4.4. If y > 0 then2y )", k2 <4,

Proof. We being with the observation that if m > 2 then

Zk / x2dx = (m — 1)~

k>m

When y > 1, the sum starts with k = [y] + 1 > 2, so
2y kP <2y/lyl <4

k>y

since y/[y] < 2 for y > 1 (the worst case being y close to 2). Tocover 0 < y < 1,
we note that in this case

2y > k2 <2<1+Zk )

k>y

This establishes Lemma 2.4.4 which completes the proof of Lemma 2.4.3 and of
the theorem. [ ]

The first two steps, Lemmas 2.4.2 and 2.4.3 above, are standard. Etemadi’s
inspiration was that since X ;f ,n>1,and X, ,n > 1, satisfy the assumptions of the
theorem and X, = X,;F — X/, we can without loss of generality suppose X,, > 0.
As in the proof of Theorem 2.3.8, we will prove the result first for a subsequence
and then use monotonicity to control the values in between. This time, however,
we let o > 1 and k(n) = [¢"]. Chebyshev’s inequality implies that if € > 0

Y " P(Tiwy — ETi| > €k(m)) < €Y var (Tiw)/ k(n)’

n=1 n=1

k(n)

2Zk(n) 22 var(Y,,) = € 22 var(Y,) Y k(n)™?

n:k(n)>m

where we have used Fubini’s theorem to interchange the two summations of non-

negative terms. Now k(n) = [¢"] and [«"] > «"/2 for n > 1, so summing the

geometric series and noting that the first term is < m =2

Z [an]—2 54 Z a—2n 54(1 —(X_Z)_lm 2

Combining our computations shows

o o
> P(\ Tk — ETiw| > €k(n)) <41 —a '€ > > E¥m™ < 00

n=1 m=1

by Lemma 2.4.3. Since € is arbitrary (Ti,) — ETin))/k(n) — 0 a.s. The dominated
convergence theorem implies EY; — EX; as k — 00, so ETyy)/k(n) — EX,
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and we have shown T,/ k(n) — E X, a.s. To handle the intermediate values, we
observe thatif k(n) <m < k(n +1)

Tkoy  _ T _ Tkasn)
kin+1) — m — k)

(here we use Y; > 0), so recalling k(n) = [«"], we have k(n + 1)/ k(n) — o and

1
—EX| <liminf 7,,,/m <limsup T, /m < « EX,
o n—>00 m—00

Since o > 1 is arbitrary, the proof is complete. [ |
The next result shows that the strong law holds whenever E X; exists.

Theorem 2.4.5. Let X1, X», ... be i.i.d. with EX;" = 0o and EX; < c0. If S, =
X1 +---+ X, then S,,/n — o0 a.s.

Proof. Let M > 0 and X,M = X; A M. The XlM are i.i.d. with E|XIM| < 00, so if
SM = XM+ ... 4 XM then Theorem 2.4.1 implies S /n — EXM. Since X; >
XM, it follows that

liminf S,/n > lim S¥/n = EXM

n—oo n—oo
The monotone convergence theorem implies E(X ZM Y"1 EX l+ =00 as M 1 oo,
so EXM = E(XM)* — E(X)~ 1 o0, and we have lim inf,, .~ S,/n > 0o, which
implies the desired result. [ |

The rest of this section is devoted to applications of the strong law of large
numbers.

Example 2.4.1. Renewal theory. Let X, X», ...be i.i.d. with 0 < X; < oo. Let
T, = X1 + -+ -+ X, and think of 7, as the time of nth occurrence of some event.
For a concrete situation, consider a diligent janitor who replaces a light bulb the
instant it burns out. Suppose the first bulb is put in at time O and let X; be the
lifetime of the ith light bulb. In this interpretation, 7, is the time the nth light bulb
burns out and N; = sup{n : T, <t} is the number of light bulbs that have burned
out by time 7.

Theorem 2.4.6. If EX| = u < oo, then ast — 00,

N/t — 1/ as. (1/oo =0).

Proof. By Theorems 2.4.1 and 2.4.5, T,,/n — pu a.s. From the definition of N,, it
follows that T(N;) <t < T(N, + 1), so dividing through by N, gives

T(N) _ & _T(Ni+1) N+l

N, — N~ N+1 N,
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To take the limit, we note that since 7,, < oo for all n, we have N, 1 co ast — o0.
The strong law of large numbers implies that for w € Qg with P(2g) = 1, we have
T.(w)/n — wu, N;(w) 1 oo, and hence

TN, () (@) Ni(w) + 1
—— > U _
Ni(w) Ni(w)
From this it follows that for w € Q( that ¢/ N,(w) — u a.s. [ ]

The last argument shows that if X, - X a.s. and N(n) — oo a.s. then
XnN@m) — Xoo a.s. We have written this out with care because the analogous result
for convergence in probability is false.

Exercise 2.4.1. Give an example with X, € {0, 1}, X,, — 0 in probability, N(n) 1
oo a.s., and Xy, — 1 as.

Example 2.4.2. Empirical distribution functions. Let X, X, ...be i.i.d. with
distribution F' and let

Fux)=n"Y 1u,=0

m=1

F,(x) = the observed frequency of values that are < x, hence the name given
above. The next result shows that F,, converges uniformly to F' as n — oo.

Theorem 2.4.7. The Glivenko-Cantelli theorem. As n — oo,

sup |F,(x) — F(x)| = 0 a.s.

Proof. Fix x andlet Y, = 1(x,<x). Since the ¥, arei.i.d. with £Y,, = P(X, < x) =
F(x), the strong law of large numbers implies that F,,(x) = n~! S Y — F(x)
a.s. In general, if F, is a sequence of nondecreasing functions that converges
pointwise to a bounded and continuous limit F, then sup, |F,(x) — F(x)| = 0.
However, the distribution function F(x) may have jumps, so we have to work a
little harder.

Again, fix x and let Z, = 1(x, <x). Since the Z, are i.i.d. with EZ, = P(X, <
x) = F(x—) = limy4, F(y), the strong law of large numbers implies that F;,(x—) =
n~! 221:1 Zy — F(x—)as. For1 <j<k—1letx;;=inf{y: F(y) > j/k}.
The pointwise convergence of F,(x) and F,,(x—) imply that we can pick Ny(w) so
that if n > Ny(w), then

|Fu(xj) — F(xj)l <k™' and  |F(xjx—) — Fxj—) <k

forl < j <k —1.Ifweletxg; = —ooandx; ; = 0o, then the last two inequalities
holdfor j = 0ork.If x € (x;_1 4, x;x) withl < j < kandn > Ni(w), then using
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the monotonicity of F,, and F, and F(x;x—) — F(xj_1x) < k!, we have
Fo(x) < Fu(xju=) < Forjae—) + k71 < Flxjo0 + 2k < F(o) + 2k
Fo(x) = Fy(xjo10) = Flxjoin) =k = Flrjp—) =2k = F(x) = 2k~

so sup, |F,(x) — F(x)| < 2k~', and we have proved the result. [ |

Example 2.4.3. Shannon’s theorem. Let X, X,,... € {1, ..., r} be independent
with P(X; = k) = p(k) > 0 for 1 < k <r. Here we are thinking of 1,...,r as
the letters of an alphabet, and X, X», ... are the successive letters produced by an
information source. In this i.i.d. case, it is the proverbial monkey at a typewriter. Let
m(w) = p(X1(w)) - - - p(X,(w)) be the probability of the realization we observed
in the first n trials. Since log 7, (w) is a sum of independent random variables, it
follows from the strong law of large numbers that

—n~Mogm,(w) > H == p(k)log p(k) as.
k=1
The constant H is called the entropy of the source and is a measure of how random
it is. The last result is the asymptotic equipartition property: If ¢ > 0, then as
n — 0o,

P {exp(—n(H + ¢€)) < m,(w) < exp(—n(H —e€)} - 1

Exercises

2.4.2. Lazy janitor. Suppose the ith light bulb burns for an amount of time X; and
then remains burned out for time Y; before being replaced. Suppose the X;, Y; are
positive and independent with the X’s having distribution F and the Y’s having
distribution G, both of which have finite mean. Let R, be the amount of time in
[0, ¢] that we have a working light bulb. Show that R/t — EX;/(EX; + EY;)
almost surely.

2.4.3. Let X, = (1, 0) and define X, € R? inductively by declaring that X, is
chosen at random from the ball of radius | X,,| centered at the origin, i.e., X,,+1/| X|
is uniformly distributed on the ball of radius 1 and independent of X, ..., X,,.
Prove that n=!log | X,| — c a.s. and compute c.

2.4.4. Investment problem. We assume that at the beginning of each year you can
buy bonds for $1 that are worth $ a at the end of the year or stocks that are worth a
random amount V > 0. If you always invest a fixed proportion p of your wealth in
bonds, then your wealth at the end of yearn + 1is W, 1 = (ap + (1 — p)V,)W,.
Suppose Vi, Vs, ...are iid. with EV? < co and E(V,?) < oco. (i) Show that
n~'log W, — c(p) a.s. (ii) Show that ¢(p) is concave. (Use Theorem A.5.1 in the
Appendix to justify differentiating under the expected value.) (iii) By investigating
¢'(0) and ¢/(1), give conditions on V that guarantee that the optimal choice of p
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is in (0,1). (iv) Suppose P(V = 1) = P(V = 4) = 1/2. Find the optimal p as a
function of a.

2.5 Convergence of Random Series™

In this section, we will pursue a second approach to the strong law of large numbers
based on the convergence of random series. This approach has the advantage that it
leads to estimates on the rate of convergence under moment assumptions, Theorems
2.5.7 and 2.5.8, and to a negative result for the infinite mean case, Theorem 2.5.9,
which is stronger than the one in Theorem 2.3.7. The first two results in this section
are of considerable interest in their own right, although we will see more general
versions in Lemma 3.1.1 and Theorem 3.4.2.

To state the first result, we need some notation. Let 7, = o(X,,, X,,41, ...) =the
future after time n = the smallest o -field with respect to which all the X,,,, m > n are
measurable. Let 7 = N, F, = the remote future, or tail o -field. Intuitively, A € T
if and only if changing a finite number of values does not affect the occurrence of
the event. As usual, we turn to examples to help explain the definition.

Example 2.5.1. If B, € Rthen{X, € B,i.0.} € T.Ifwelet X, = 1,4, and B, =
{1}, this example becomes {A, i.0.}.

Example 2.5.2. Let S, = X + --- + X,,. [t is easy to check that
{lim,,_, o S, exists } € 7T,
{limsup, , S, >0} &7,
{limsup,,_, . Sy/cy, > x} € T if ¢, > o0

The next result shows that all examples are trivial.

Theorem 2.5.1. Kolmogorov’s 0-1law. If X, X, ... areindependentand A € T,
then P(A) =0or 1.

Proof. We will show that A is independent of itself, that is, P(ANA) =
P(A)P(A), so P(A) = P(A)?, and hence P(A) =0 or 1. We will sneak up on
this conclusion in two steps:

(@ Aeo(Xy,...,Xy)and B € 0(Xy11, Xi42, - . .) are independent.

Proof of (a). If B € 0(Xk41, ..., Xi4;) for some j, this follows from Theorem
2.1.5. Since o (X1, ..., Xx) and U0 (Xy41, ..., Xpyj) are w-systems that contain
2 (a) follows from Theorem 2.1.3.

(b) A € 0(Xy, X5,...)and B € 7 are independent.

Proof of (b). Since T C 0 (X411, Xg42,...),if A € 0(Xy, ..., Xi) for some k, this
follows from (a). Uyo (X1, ..., Xi) and 7 are w-systems that contain €2, so (b)
follows from Theorem 2.1.3.



2.5 Convergence of Random Series 79

Since 7 C o(Xy, X5,...), (b) implies an A € 7 is independent of itself, and
Theorem 2.5.1 follows. [ |

If A, A,, ...are independent, then Theorem 2.5.1 implies P(A, i.0.) =0or 1.
Applying Theorem 2.5.1 to Example 2.5.2 gives P(lim,_, o S, exists) =0 or 1.
The next result will help us prove the probability is 1 in certain situations.

Theorem 2.5.2. Kolmogorov’s maximal inequality. Suppose Xy, ..., X,, are
independent with EX; = 0 and var(X;) < o0. If S, = X1 + --- + X,,, then

P (lmkax |Sk| > x) <x7? var (S,)

Remark. Under the same hypotheses, Chebyshev’s inequality (Theorem 1.6.4)
gives only

P(|S,] = x) < x?var(S,)

Proof. Let Ay = {|Sk| = x but |S;| < x for j < k}, that is, we break things down
according to the time that |Si| first exceeds x. Since the A, are disjoint and
(Sl’l - Sk)2 Z 09

n n
ES? > Z/A S2dp = ZfA SE+28k(Sy — Sk) + (S, — Sp)*dP
k=1 k k=1 k

EZ/A S,’fdP+Zf 2814, - (Sy — Sp)d P
k=1 k k=1

Skla, €0(Xy, ..., Xy) and S, — S € 0(Xg41, ..., X,) are independent by
Theorem 2.1.6, so using Theorem 2.1.9 and E(S,, — Si) = 0 shows

/2sk1Ak (Sp— S)dP = EQSil4) - E(Sy — S) =0

Now, using the fact that | S| > x on A; and the A, are disjoint,
ES2>Z/ S2dP >Zx2P(Ak)—x2P(max |k >x) u

Exercise 2.5.1. Suppose X, X, ...are i.i.d. with EX; = 0, var(X;) = C < o0.
Use Theorem 2.5.2 with n = m* where a(2p — 1) > 1 to conclude that if S, =
Xi+---4+ X, and p > 1/2, then S, /n? — 0 almost surely.

We turn now to our results on convergence of series. To state them, we need a
.. P N .
definition. We say that ) - | a, converges if limy_, o Y ,_; a, exists.
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Theorem 2.5.3. Suppose X1, X», . ..are independent and have EX, = 0. If

o0

Z var(X,) < oo

n=1

then with probability one ", | X,(w) converges.

Proof. Let Sy = fo:l X,. From Theorem 2.5.2, we get

N
P < max |S,, — Syl > e> <e? var (Sy — Sy) = €2 Z var (X,)
N

M<m<
n=M+1

Letting N — o0 in the last result, we get

o0
P (sup |S;, — Su| > e) <e? Z var(X,) > 0 asM — o©
m=M n=M+1

If we let wy = sup,, = [Sm — Su| then wy, | as M 1 and

P(wy >2¢)< P (sup 1S — Su| > e) — 0
m>M

as M — 00 so wy | 0 almost surely. But wy(w) | 0 implies S,(w) is a Cauchy

sequence and hence lim,_, , S, (@) exists, so the proof is complete. |

Example 2.5.3. Let X, X», ...be independent with
PX,=n%=PX,=—n"%=1/2

EX, =0and var(X,) =n"%* so if « > 1/2 it follows from Theorem 2.5.3 that
> X,, converges. Theorem 2.5.4 below shows that « > 1/2 is also necessary for
this conclusion. Notice that there is absolute convergence, that is, Y |X,,| < oo, if
and only if ¢ > 1.

Theorem 2.5.3 is sufficient for all of our applications, but our treatment would
not be complete if we did not mention the last word on convergence of random
series.

Theorem 2.5.4. Kolmogorov’s three-series theorem. Let X, X5, ... be indepen-
dent. Let A > 0 and let Y; = X;1(x,<a). In order that fo:l X, converges a.s., it
is necessary and sufficient that

o0 0 o
(i) Z P(X,| > A) < oo, (ii) ZEY,, converges, and (iii) Z var(Y,) < o0
n=1 n=1

n=1

Proof. We will prove the necessity in Example 3.4.7 as an application of the
central limit theorem. To prove the sufficiency, let u, = EY,,. (iii) and Theorem
2.5.3 imply that 3.2 (Y, — j,) converges a.s. Using (ii) now gives that ) -~ Y,
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converges a.s. (i) and the Borel-Cantelli lemma imply P(X, # Y, i.0.) =0, so
Zzozl X, converges a.s. m

The link between convergence of series and the strong law of large numbers is
provided by

Theorem 2.5.5. Kronecker’s lemma. [fa, 1 co and Y .-, X,/a, converges then

n
-1
a, E Xm — 0

m=1

Proof. Let ap =0, by =0, and for m > 1, let b, = Y |-, x¢/ax. Then x,, =
a,, (b, — by,_1) and so

n n n
—1 -1
a, E Xm =a, E ambm—g Ambm—1
m=1 m=1 m=1
n n
—1
=a, anbn + E amflbmfl - E ambmf]
m=2 m=1

— bn _ Zn: (am - am—l)bm_l

a
m=1 n

(Recall gy = 0.) By hypothesis, b, — b, as n — oo. Since a,, — a,,—1 > 0, the
last sum is an average of by, . . ., b,. Intuitively, if ¢ > 0 and M < oo are fixed and
n is large, the average assigns mass > 1 — € to the b,, withm > M, so

Z (a’”_—am_l)bm_l — by
a

m=1 n

To argue formally, let B = sup |b,|, pick M so that |b,, — bso| < €/2 form > M,
then pick N so thatay/a, < €/4B forn > N.Now if n > N, we have

“ (am — Q- ) “ (am —ap— )
D bt = boo| < 3 byt — bl

n an

m=1 m=1

ay a, —dy €
<= .2B4+1—" . -
an an

< €

proving the desired result since € is arbitrary. [ |

Theorem 2.5.6. The strong law of large numbers. Let X, X, ... bei.i.d. random
variables with E|X;| < oo. Let EX; = pwand S, = X1+ -- -+ X,,. Then S, /n —
U a.s.asn — oo.

Proof. Let Y = Xi1(x,<ky and T, = Y1 4+ --- + Y,,. By (a) in the proof of The-
orem 2.4.1 it suffices to show that 7,,/n — u. Let Z, =Y, — EY), s0 EZ;, = 0.
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Now var (Z;) = var(¥y) < EY,{2 and (b) in the proof of Theorem 2.4.1 imply

> var(Zo/k <Y EYZ/K < oo

k=1 k=1

Applying Theorem 2.5.3 now, we conclude that > ;- Z;/k converges a.s., so
Theorem 2.5.5 implies

n n
T,
n! E (Yy — EY;) — 0 and hence P n! E EY, — Oa.s.
k=1 k=1

The dominated convergence theorem implies £Y; — w as k — oo. From this, it
follows easily thatn™' Y }_, EYy — w and hence T,,/n — pu. |

2.5.1 Rates of Convergence

As mentioned earlier, one of the advantages of the random series proof is that
it provides estimates on the rate of convergence of S,/n — u. By subtracting p
from each random variable, we can and will suppose without loss of generality that
u=0.

Theorem 2.5.7. Let X, X,,...be i.id. random variables with EX; =0 and
EX?:O'Z <oo. LetS, =X+ -+ X,,. Ife > 0 then

S,/n'?(logn)/**¢ - 0 as.

Remark. Kolmogorov’s test, Theorem 8.8.2, will show that

limsup S, /n'?(loglogn)'/? = o4/2  as.

n—-oo

so the last result is not far from the best possible.

Proof. Let a, = n'?(logn)'/?>* forn > 2 and a; > 0.

>  Q— 1
Y var(Xpfa) =07 [ 5+ e
var (Xu/an) = (alz + p n(logn)1+2e> <00

n=1

so applying Theorem 2.5.3 we get > -, X, /a, converges a.s., and the indicated
result follows from Theorem 2.5.5. [ |

The next result, due to Marcinkiewicz and Zygmund, treats the situation in which
EXi2 =oobut E|X;|” <ocoforsomel < p < 2.

Theorem 2.5.8. Let X, X5, ...be i.i.d with EX; =0 and E|X|P < o0 where
l<p<2IfS,=X\+---+ X, then S,/n'/? — 0 a.s.
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PI”OOf. Let Y, = Xk](|xk|§k1/p) and T, =Y1+---+Y%,.

Y P # X)) =) P(Xil? > k) < E|X,]? < o0
k=1 k=1

so the Borel-Cantelli lemma implies P(Y; # X; i.0.) = 0, and it suffices to show
T,/n'/? — 0. Using var (Y,,) < E(Y?), Lemma 2.2.8 with p = 2, P(|Y,,| > y) <
P(]X1| > ), and Fubini’s theorem (everything is > 0), we have

o0 o0
> var (Y, /m'/?) < Z EY2/m*?
m=1 m=1

< P(X1| > y)d
»3 f ” 2 POX1| > Vdy

m=1 n=1

—Zf

(n—Dl/r

Z — 5 PUX1 > y)dy

To bound the integral, we note that for n > 2 comparing the sum with the integral
of x=2/?

p(n _ 1)(P—2)/P < Cyl’—z

o0

E m_z/[’ < 14
2

m=n

when y € [(n — 1)'/7, n'/P]. Since E|X;|? = fooo pxP7IP(1X;| > x)dx < oo, it
follows that

o
Z var (Y,,/m'/?) < oo

m=1

If we let u,, = EY,, and apply Theorem 2.5.3 and Theorem 2.5.5, it follows that

n~p Z(Ym —m) — 0 as.

m=1
To estimate t,,, we note that since EX,, = 0, u,, = —E(X;;|X;| > m'/?), so
lm] < E(X | 1X:] > m'/P) = m "PE(X|/m"7;1X;| > m'/P)
<m'PE(IX|/m""?");|X;| > m'/?)
<m TP pT E(X |75 1X| > m'/P)

Now Y r_ m~"*1/P < Cn'/P and E(|X;|7;|X;| > m'/P) - 0 as m — oo, so
nYP 3" | pm — 0, and the desired result follows. |

Exercise 2.5.2. The converse of the last result is much easier. Let p > 0. If
S,/n'? — 0as., then E|X,|” < occ.
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2.5.2 Infinite Mean

The St. Petersburg game, discussed in Example 2.2.7 and Exercise 2.3.17, is a
situation in which EX; = oo, §,,/nlog, n — 1 in probability but

limsup S, /(nlog, n) = oo a.s.
n—-oo

The next result, due to Feller (1946), shows that when E|X | = oo, §,/a, cannot
converge almost surely to a nonzero limit. In Theorem 2.3.7 we considered the
special case a,, = n.

Theorem 2.5.9. Let X, X5, ...bei.id with E|X|| =occandletS, = X; +---+
X,. Let a, be a sequence of positive numbers with a,/n increasing. Then
limsup,_, o |S,|/a, = 0 or 0o according as ), P(|1X| > a,) < 00 or = oo.

Proof. Since a,/n 1, ar, > ka, for any integer k. Using this and a,, 1,

o0 o 1 0
D PUXi Z kay) 2 Y PUX1] 2 @) = 7 3 PAXi| = an)
m=k

n=1 n=1

The last observation shows that if the sum is infinite, lim sup,,_, . |X,|/a, = oo.
Since max{|S,_1l, |Sx|} = |X,|/2, it follows that limsup,,_, ., |Sx|/a, = oc.
To prove the other half, we begin with the identity

() Y mPany < IXi| < aw) =) P(Xil = ay_1)

m=1 n=1

To see this, write m = Y _, 1 and then use Fubini’s theorem. We now let ¥, =
X, 1(x,1<a,,and T,, = Y1 + - - - + Y,,. When the sum is finite, P(Y, # X, i.0.) =0,
and it suffices to investigate the behavior of the 7,,. To do this, we let ayp = 0 and
compute

o0 o
> var(Ya/ay) <Y EY,/a;
n=1 n=1

=D a4’ f[ Y2 dF(y)
n=1 m=1

am—lsam)
o o
2 -2
=y Y AF() ) a;
m=1 [am—1,am) n=m
Since a, > na,/m, wehave > - a > < (m?/a2)Y 2> n~* < Cma,>, so
0
scym|  dro)
m=1 [am—1,am)

Using (*) now, we conclude Z:O:] var (Y, /a,) < oo.
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The last step is to show ET,/a, — 0. To begin, we note that if E|X;| = oo,
22021 P(X;| > a,) < 0o, and a,/n T we must have a,/n 1 co. To estimate
ET,/a, now, we observe that

a;! Z EY,
m=1

<ay'n Y E(Xnli 1 Xl < an)
m=1

na
< N

n
+ a—E(|Xi|;61N < |Xil <ay)

n n

where the last inequality holds for any fixed N. Since a,,/n — oo, the first term
converges to 0. Since m/a,, |, the second is

n
m
< > —E(Xilian-1 < 1Xi| < an)
m=N+1 "

o0
< Y mPan < 1Xil < ay)
m=N+1

(*) shows that the sum is finite, so it is small if N is large and the desired result
follows. [ |

Exercises

2.5.3. Let X, X», ...beii.d. standard normals. Show that for any ¢

o0 .
sin(nmt)
E X, - —— converges a.s.
n

n=1

We will see this series again at the end of Section 8.1.

2.54. Let X1, X5, ...beindependent with EX,, = 0, var(X,) = crnz. (1) Show that
if > 02/n* < oo then Y, X,/n converges a.s. and hence n= 'Y " _ X, — 0
a.s. (ii) Suppose Y o2/n? = oo and without loss of generality that o> < n? for
all n. Show that there are independent random variables X, with £X, = 0 and
var (X,) < anz so that X,,/n and hence n~! > X,» does not converge to O a.s.

m=<n

2.5.5. Let X,, > 0 be independent for n > 1. The following are equivalent:
D)X, X, <ooas. (i) Yoo [[P(X, > D+ E(X,1(x,<1)] < 00
(iii) Y02 | E(X, /(14 X)) < oo.

2.5.6. Let ¥(x)=x> when |x| <1 and = |x| when |x|> 1. Show that
if Xy, X»,...are independent with EX, =0 and Z;‘;le(Xn) < 00, then
> ™2, X, converges a.s.

2.5.7. Let X,, be independent. Suppose > o | E|X,|P™ < oo where 0 < p(n) <2
for all n and E X, = 0 when p(n) > 1. Show that 23021 X, converges a.s.
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2.5.8. Let X, X5, ...bei.i.d. and not = 0. Then the radius of convergence of the
power series D, _; X (@)z" (i.e., r(w) = sup{c: )| X,(®)|c" < o0})is 1 as. or
0 a.s., according as E log™ | X| < 0o or = oo where log™ x = max(log x, 0).

2.5.9. Let X1, X», ...be independent and let S, , = X1 + - - - + X,,. Then

(*) P ( max |S,, ;| > 20) m}in P([Sknl <a) < P(|Sy.nl > a)
m<j<n m<k=<n

2.5.10. Use (%) to prove a theorem of P. Lévy: Let X, X», . ..be independent and

letS, = X +---+ X,. If lim,_, o S, exists in probability, then it also exists a.s.

2.5.11. Let X4, X5, ...beiid. and S, = X| + --- 4+ X,,. Use (x) to conclude that
if §,/n — 0 in probability, then (max;<,,<, Sin)/n — 0 in probability.

2.5.12. Let Xy, X5, ...be i.id. and S, = X; + --- + X,,. Suppose a, 1 oo and
a(2")/a(2"")is bounded. (i) Use () to show that if S, /a(n) — 0 in probability and
Son/a(2") — 0 a.s., then §,,/a(n) — 0 a.s. (ii) Suppose in addition that EX; = 0
and EX % < 00. Use the previous exercise and Chebyshev’s inequality to conclude
that S, /n'/?(log, n)!/>*¢ — 0 a.s.

2.6 Large Deviations*

Let X;, X5,...beiid.andlet S, = X; + - -- + X,,. In this section, we will inves-
tigate the rate at which P(S, > na) — 0 for a > u = EX;. We will ultimately
conclude that if the moment-generating function ¢(0) = E exp(0 X;) < oo for
some 6 > 0, P(S, > na) — 0 exponentially rapidly and we will identify

1
y(a) = lim —log P(S, > na)
n—oon

Our first step is to prove that the limit exists. This is based on an observation
that will be useful several times below. Let 7, = P(S,, > na).

Tm4n = P(Sm = ma, Sn+m - Sm > na) = Ty Ty

since S,, and S;,+,, — S, are independent. Letting y,, = log ,, transforms multipli-
cation into addition.

Lemma 2.6.1. If Yyytn = Vi + v thenasn — 00, y, /n — sup,, Ym/m.

Proof. Clearly, limsup y,,/n < sup y,,/m. To complete the proof, it suffices to
prove that for any m liminf y,,/n > y,,/m. Writing n = km + £ with0 < € <m
and making repeated use of the hypothesis gives y, > ky,, + y,. Dividing by
n = km + £ gives

y(m _ ( km ) y(m) n y(£)

n ~— \km+1¢ m n
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Letting n — oo and recalling n = km + £ with 0 < £ < m gives the desired result.
|

Lemma 2.6.1 implies that lim,,_, o, %log P(S, = na) = y(a) exists < 0. It fol-
lows from the formula for the limit that

P(S, > na) < "' (2.6.1)

The last two observations give us some useful information about y (a).

Exercise 2.6.1. The following are equivalent: (a) y (@) = —o0, (b) P(X| > a) =0,
and (¢) P(S, > na) = 0 for all n.

Exercise 2.6.2. Use the definition to conclude that if A € [0, 1] is rational, then
y(Aa + (1 — A)b) > Ay(a) + (1 — L)y (b). Use monotonicity to conclude that the
last relationship holds for all A € [0, 1] so y is concave and hence Lipschitz con-
tinuous on compact subsets of y(a) > —oo.

The conclusions above are valid for any distribution. For the rest of this section,
we will suppose:

(H1) ¢(0) = Eexp(6X;) < oo for some 6 > 0

Let6, = sup{f : ¢p(0) < oo}, 0_ = inf{f : $(0) < oo} and note that p(6) < oo for
0 € (6_,04). (H1) implies that EX;r <oosou=FEXT—EX™ €[—o00,00). If
6 > 0 Chebyshev’s inequality implies

" P(S, > na) < Eexp(0S,) = ¢(0)"
or letting «(0) = log ¢(0)
P(S, > na) < exp(—n{ab — k(6)}) (2.6.2)

Our first goal is to show:
Lemma 2.6.2. Ifa > wand 6 > 0 is small, then a® — k(0) > 0.

Proof. k(0) =log¢(0) = 0, so it suffices to show that (i) « is continuous at 0, (ii)
differentiable on (0, 6.), and (iii) k'(§) — w as & — 0. For then

0
ad —K(@):/ a—k'(x)dx >0
0

for small 6.
Let F(x) = P(X; < x). To prove (i), we note that if 0 < 6 < 6y < 6_

P < 1 4 o (%)



88 Laws of Large Numbers

so by the dominated convergence theorem as 8 — 0

feexdF—>/1dF=1

To prove (ii) we note that if |h| < hg, then

hx
/ e’ dy
0

so an application of the dominated convergence theorem shows that

@ +h) —¢0)
h

" — 1] = < |hx|e"*

"©) =1
¢/0) = Jim
hx
= lim e’ dF (x)
h—0

— / xe?*dF(x) for@ € (0,6,)

From the last equation, it follows that x(6) = log ¢(0) has k'(6) = ¢'(0)/$(0).
Using () and the dominated convergence theorem gives (iii), and the proof is

complete.

Having found an upper bound on P(S, > na), it is natural to optimize it by

finding the maximum of fa — k(0):

d
%{961 —log @)} =a —¢'(0)/p(0)

so (assuming things are nice) the maximum occurs when a = ¢’(6)/¢(6). To turn
the parenthetical clause into a mathematical hypothesis, we begin by defining

Fy(x) = L/ e dF(y)
00) J_

whenever ¢(0) < oo. It follows from the proof of Lemma 2.6.2 thatif 6 € (6_, 6..),

Fy is a distribution function with mean

o 1 o 0x _QD/(@)
/ xdFy(x) = @/wxe dF(x) = 2@

Repeating the proof in Lemma 2.6.2, it is easy to see that if & € (6_, 6), then

¢"(0) = / h x2e?* d F(x)

o0

So we have

/ ” ’ 2 2
750 = o0 ~ () = [ 4r0= ([ sarieo) 20

since the last expression is the variance of Fy. If we assume

(H2) the distribution F is not a point mass at i
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then ¢'(0)/¢@(0) is strictly increasing and a6 — log ¢(0) is concave. Since we have
¢'(0)/9(0) = ., this shows that for each a > u there is at most one 6, > 0 that
solves a = ¢'(0,)/¢(0,), and this value of  maximizes af — log p(#). Before
discussing the existence of 6,, we will consider some examples.

Example 2.6.1. Normal distribution.

/ ¥ (2m) V2 exp(—x?/2) dx = exp(6?/2) / Q) Y2 exp(—(x — 0)*/2)dx

The integrand in the last integral is the density of a normal distribution with mean 8
and variance 1, so ¢(6) = exp(?/2), 6 € (—oo, o0). In this case, ¢'(8)/¢(0) = 6
and

Fop(x) = 602/2/ P Q2r)y e 2 ay

—0o0

is a normal distribution with mean 6 and variance 1.

Example 2.6.2. Exponential distribution with parameter 1. I[f 6 < A
o0
/ P re ™ dx = 1/(h —0)
0
@' @)p@) =1/, —0) and
)\’ X
Fox)=—— | e”re™™d
o(x) " /0 e’ e y
is an exponential distribution with parameter A — 6 and hence mean 1/(A — 0).
Example 2.6.3. Coin flips. P(X; =1)=P(X; =—-1)=1/2
@0 = (" +e7%)/2
¢'(0)/90) = (" —e )/’ + ™)
Fy({x})/ F({x}) = € /(6) s0

Fo(1h) = /(" +e7) and Fy({—1) =e /(" +e77)

Example 2.6.4. Perverted exponential. Let g(x) = Cx e " forx > 1,g(x) =0
otherwise, and choose C so that g is a probability density. In this case,

p0) = /eexg(x)dx < o0
if and only if & < 1, and when 6 < 1, we have
/9 / 1 0 o0
v )s ¢ =/ Cx_zdx// Cx3dx =2
p@) — (1) 1 1

Recall 6, = sup{f : ¢(6) < oco}. In Examples 2.6.1 and 2.6.2, we have
¢'(0)/p(0) 1 o0 as 6 1 0, so we can solve a = ¢'(0)/¢(0) for any a > u. In
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Example 2.6.3, ¢'(0)/¢(©) 1 1 as 6 — oo, but we cannot hope for much more
since F and hence Fy is supported on {—1, 1}.

Exercise 2.6.3. Let x, = sup{x : F(x) < 1}. Show thatif x, < oo then ¢(f) < oo
forall & > 0 and ¢'(0)/¢(0) — x, as 6 1 <.

Example 2.6.4 presents a problem since we cannot solve a = ¢'(6)/¢(6) when
a > 2. Theorem 2.6.5 will cover this problem case, but first we will treat the cases
in which we can solve the equation.

Theorem 2.6.3. Suppose in addition to (HI1) and (H2) that there is a 6, € (0, 0)
so that a = ¢'(0,)/9(0,). Then, as n — oo,

n! log P(S, = na) - —ab, + logp(6,)

Proof. The fact that the limsup of the left-hand side < the right-hand side follows
from (2.6.2). To prove the other inequality, pick A € (6,, 64), let X%, X%, ...be
i.i.d. with distribution F; and let S* = X+ + .. + X*. Writing d F/d F; for the
Radon-Nikodym derivative of the associated measures, it is immediate from the
definition that d F /d F; = e **@(}). If we let F}' and F" denote the distributions
of S* and S,, then

n

dF
Lemma 2.6.4. -
A

— 67Ax¢(k)n-

Proof. We will prove this by induction. The result holds when n = 1. For n > 1,
we note that

FW:F“HJ%»:fde*ulfﬂdnw

—0o0

= f dF; ' (x) / dF(y) Lixy=ne Vo)
—E(1 e ML EXD poyn
= (S*_ +X}<2)€ o(A)

=/Zd@my*w@w

e¢]

where in the last two equalities we have used Theorem 1.6.9 for (S'_,, X})
and S}. ]

If v > a, then the lemma and monotonicity imply

() P(Sy = na) = /nv e O dF} (x) = p(W)'e M (F (nv) — F'(na))

na
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F; has mean ¢'(1)/@(A), so if we have a < ¢'(L)/@(L) < v, then the weak law of
large numbers implies

F(nv) — F}'(na) - lasn — oo
From the last conclusion and (x) it follows that
liminf n='log P(S, > na) = —iv + log ¢(1)
n—oo

Since A > 6, and v > a are arbitrary, the proof is complete. [ |

To get a feel for what the answers look like, we consider our examples. To
prepare for the computations, we recall some important information:

Kk(0) =log(®) «'(0)=¢'(0)/Pp(©®) 0, solvesk'(6,) =a
y(a@)= lim (1/n)log P(S, = na) = —ab, + k(0a)

Normal distribution. (Example 2.6.1):
k0)=0%/2 KO =6 6,=a
y(a) = —ab, + k(0,) = —a’/2

Exercise 2.6.4. Check the last result by observing that S,, has a normal distribution
with mean 0 and variance n, and then using Theorem 1.2.3.

Exponential distribution. (Example 2.6.2) with A = 1:
kK@) =—logl—0) 'O =1/(1-60) O, =1-1/a
y(a) = —ab, +k(0,) = —a+1+loga

With these two examples as models, the reader should be able to do

Exercise 2.6.5. Let X, X5, ...be 1.i.d. Poisson with mean 1, and let S, =
X1+ -+ X,. Find lim,_, o (1/n)log P(S, > na) for a > 1. The answer and
another proof can be found in Exercise 3.1.4.

Coin flips. (Example 2.6.3). Here we take a different approach. To find the 8 that
makes the mean of Fy = a, we set Fy({1}) = e’ /(e’ + ¢7?) = (1 + a)/2. Letting
x = ¢ gives

2x=(4+a)x+xH a—Dx’+(0+a)=0
Sox =/(1+4+a)/(1 —a)and b, =logx = {log(1 + a) — log(1 — a)}/2.

% 4 ¢~ e 1

2 1+ad Jltol-0
y(a) = —ab, +«(6,) = —{(1 + a)log(l +a) + (1 — a)log(1 —a)}/2

¢(0a) =
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In Exercise 3.1.3, this result will be proved by a direct computation. Since the
formula for y(a) is rather ugly, the following simpler bound is useful.

Exercise 2.6.6. Show that for coin flips ¢(0) < exp(p(f) — 1) < exp(,BGz) for
6 < 1where 8 = Zzil 1/(2n)! ~ 0.586, and use (2.6.2) to conclude that P(S, >
an) < exp(—na®/4p) for all a € [0, 1]. It is customary to simplify this further by

using B <Y 2 27" =1.
Turning now to the problematic values for which we cannot solve a =
@' (0,)/9(6,), we begin by observing that if x, = sup{x : F(x) < 1} and F is not

a point mass at x,, then ¢'(6)/¢(0) 1 xo as 6 1 oo but ¢'(0)/¢(0) < xo for all
6 < oo. However, the result for a = x,, is trivial:

1
—log P(S, > nx,) =log P(X; = x,) foralln
n

Exercise 2.6.7. Show that as a 1 x,, y(a) | log P(X; = x,).

When x, = 00, ¢'(0)/¢(6) 1 coas 6 1 oo, so the only case that remains is covered
by

Theorem 2.6.5. Suppose x, = 00, 6, < 0o, and ¢'(0)/@(0) increases to a finite
limitagas 0 1 0,. If ag < a < o0

n~'log P(S, > na) - —ab, +logp(6,)

that is, y(a) is linear for a > ay.

Proof. Since (logp(0)) = ¢'(0)/¢(#), integrating from O to 6, shows that
log(p(64+)) < oo. Letting 6 = 65 in (2.6.2) shows that the limsup of the left-hand
side < the right-hand side. To get the other direction we will use the transformed
distribution F;, for A = 6. Letting 6 1 6, and using the dominated convergence
theorem for x < 0 and the monotone convergence theorem for x > 0, we see
that F; has mean ay. From (x) in the proof of Theorem 2.6.3, we see that if
ag<a<v=a-+ 3¢

P(S, > na) > go()u)”e*”“(FA”(nv) — F)'(na))
and hence

1 1
—log P(S, = na) > log (L) — Av + —log P(S! € (na, nv))
n n



2.6 Large Deviations 93
Letting X+, X%, ...bei.i.d. with distribution Fy and S» = X} + - -- + X*, we have
P(S* € (na,nv]) > P{S* | € ((ap — €)n, (ap + €)nl}
. P{X,’} € ((a—ag+¢€)n, (a—ayg+ 2e)nl}

=

P{X} e ((a—ay+em,(a—ap+e)n+ 1)}

| =

for large n by the weak law of large numbers. To get a lower bound on the right-hand
side of the last equation, we observe that

1
lim sup - log P(XlA ce(@—ap+em,(a—ay+e)n+1)])=0

n—oo

for if the lim sup was < 0, we would have E exp(nX?}) < oo for some 7 > 0 and
hence E exp((A + )X ) < oo, contradicting the definition of A = 6. To finish the
argument now, we recall that Theorem 2.6.1 implies that

1
lim —log P(S, > na) = y(a)
n—-oon

exists, so our lower bound on the lim sup is good enough. [ |

By adapting the proof of the last result, you can show that (H1) is necessary for
exponential convergence:

Exercise 2.6.8. Suppose EX; = 0 and E exp(0X;) = oo for all > 0. Then
1
—log P(S, > na) - Oforalla > 0
n
Exercise 2.6.9. Suppose EX; = 0. Show that if € > 0 then
liminf P(S, > na)/nP(X|; > n(a+e¢€)) >1
n—oo

Hint: Let F,, = {X; > n(a + ¢€) for exactly one i < n}.
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Central Limit Theorems

The first four sections of this chapter develop the central limit theorem. The last five
treat various extensions and complements. We begin this chapter by considering
special cases of these results that can be treated by elementary computations.

3.1 The De Moivre-Laplace Theorem

Let X, X5,...be iid. with P(X;=1)=P(X;=—-1)=1/2 and let S, =
Xi+---+ X,. In words, we are betting $1 on the flipping of a fair coin and
S, is our winnings at time #. If n and k are integers

P(Sy =2k = [ 2" Yo
2n — - n + k

since S, = 2k if and only if there are n + k flips that are +1 and n — k flips that
are —1 in the first 2n. The first factor gives the number of such outcomes and the
second the probability of each one. Stirling’s formula (see Feller, Vol. 1., 1968,
p. 52) tells us

n

n! ~n"e "V2rn asn — o0 (3.1.1)

where a,, ~ b, means a, /b, — 1 asn — 00, SO

2n _ (2n)!
(n + k) S (k) —k)!

N 2n)* (27 (2n))'/?
(n+ k) (n — ky=k  Qm(n + k) 2Qm(n — k))'/2

2 k —n—k k —n+k
(e =(e) - 00)
n+k n n

and we have
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The first two terms on the right are

A little calculus shows that:

Lemma 3.1.1. Ifc; — 0,a; — oo and ajc; — A then (1 + ¢;)% — e*.

Proof. Asx — 0,log(1 + x)/x — 1,s0a;log(1 + c¢;) — A, and the desired result
follows. |

Exercise 3.1.1. Generalize the last proof to conclude that if max<;<, [c; .| — O,

> i_i¢jn—> Aandsup, Y |cjal < oothen [Ti_ (1 +¢;,) — €.

Using Lemma 3.1.1 now, we see that if 2k = x+/2n, that is, k = x+/n/2, then

k —k —x/n/2
(1 + —) - (1 +x/«/2n) — N2
n

R

For this choice of k, k/n — 0, so

K\ 12 K\ 12
(1 + —) . <1 - —) — 1
n n

and putting things together gives:
Theorem 3.1.2. If2k/~/2n — x then P(S,, = 2k) ~ (rm)_l/ze_xZ/Z.

Our next step is to compute
P(av2n < S5, < b¥/2n) = Y. PGSu=m)
melay/2n,by/2n1N2Z
Changing variables m = x+/2n, we have that the above is
~ Z (27_[)71/267)#/2 . (z/n)l/2
x€la,bINQRZ/~/2n)

where 2Z,/~/2n = {2z/~/2n : z € Z}. We have multiplied and divided by +/2 since
the space between points in the sum is (2/1)!/2, so if n is large, the sum above is

b
~ f Q)2 2y
a
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The integrand is the density of the (standard) normal distribution, so, changing
notation, we can write the last quantity as P(a < x < b) where x is a random
variable with that distribution.

It is not hard to fill in the details to get:

Theorem 3.1.3. The De Moivre-Laplace Theorem. Ifa < b then as m — oo
b 2
P(a < Sy/v/m <b) —> / Qr) e dx
a

(To remove the restriction to even integers observe Sy,+1 = Sy, &= 1.) The last result
is a special case of the central limit theorem given in Section 3.4, so further details
are left to the reader.

Exercises

The next three exercises illustrate the use of Stirling’s formula. In them,
X1, X5, ...areiid.and S, = X; + -+ X,,.

3.1.2. If the X; have a Poisson distribution with mean 1, then S, has a Poisson
distribution with mean n, i.e., P(S, = k) = e "n* /k! Use Stirling’s formula to
show that if (k — n)/+/n — x then

V2xnP(S, = k) — exp(—x?/2)
As in the case of coin flips it follows that
b 2
P(a < (S, —n)//n <b) > / Qr) Ve /2 dx
but proving the last conclusion is not part of the exercise.
In the next two examples you should begin by considering P(S, = k) when

k/n — a and then relate P(S, =j+ 1) to P(S, = j) to show P(S, > k) <
CP(S, =k).

3.1.3. Suppose P(X; = 1) = P(X; = —1) = 1/2. Show thatifa € (0, 1)
1
— log P(S7, > 2na) - —y(a)
2n

where y(a) = %{(1 +a)log(1 4+ a) + (1 —a)log(l — a)}.

3.1.4. Suppose P(X; = k) = e*]/k! fork =0,1,...Showthatifa > 1

1
—log P(S, >na) >a—1—aloga
n
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3.2 Weak Convergence

In this section, we will define the type of convergence that appears in the central limit
theorem and explore some of its properties. A sequence of distribution functions
is said to converge weakly to a limit F' (written F,, = F)if F,(y) — F(y) for all
y that are continuity points of F. A sequence of random variables X, is said to
converge weakly or converge in distribution to a limit X, (written X,, = X)
if their distribution functions F,(x) = P(X, < x) converge weakly. To see that
convergence at continuity points is enough to identify the limit, observe that F
is right continuous and by Exercise 1.2.3, the discontinuities of F are at most a
countable set.

3.2.1 Examples

Two examples of weak convergence that we have seen earlier are:

Example 3.2.1. Let X, X,,...be i.id. with P(X; =1)=P(X; =-1)=1/2
and let S, = X| + - -- 4+ X,,. Then Theorem 3.1.3 implies

Fu(y) = P(Sy/v/n < y) — /y @)~ e dx

Example 3.2.2. Let X, X5, ...bei.i.d. with distribution F. The Glivenko-Cantelli
theorem (Theorem 2.4.7) implies that for almost every w,

F,(y)=n"" Z L(x,.@=<y) = F(y)forall y

m=1

In the last two examples convergence occurred for all y, even though in the
second case the distribution function could have discontinuities. The next example
shows why we restrict our attention to continuity points.

Example 3.2.3. Let X have distribution F. Then X + 1/n has distribution
FFx)=PX+1/n<x)=Fx—1/n)
Asn — o0, F,(x) — F(x—) = limy4, F(y), so convergence only occurs at con-

tinuity points.

Example 3.2.4. Waiting for rare events. Let X, be the number of trials needed to
get a success in a sequence of independent trials with success probability p. Then
P(X,>n)=(1- p)"‘1 for n=1,2,3,..., and it follows from Lemma 3.1.1
thatas p — 0,

P(pX,>x)— e " forallx >0

In words, pX, converges weakly to an exponential distribution.
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Example 3.2.5. Birthday problem. Let X, X», ...be independent and uniformly

distributed on {1, ..., N}, and let Ty = min{n : X,, = X,, for some m < n}.
P(Ty > n) ]_[ jom-l
>n)= - —
! m=2 N

When N = 365, this is the probability that two people in a group of size n do not
have the same birthday (assuming all birthdays are equally likely). Using Exercise
3.1.1, it is easy to see that

P(Ty/N'Y? > x) — exp(—x2/2) forall x >0

Taking N = 365 and noting 22/+/365 = 1.1515 and (1.1515)?/2 = 0.6630, this
says that

P(Tses > 22) ~ ¢ %9630 ~ 0.515

This answer is 2% smaller than the true probability 0.524.

Before giving our sixth example, we need a simple result called Scheffé’s
theorem. Suppose we have probability densities f,, 1 <n < oo, and f, = feo
pointwise as n — oo. Then for all Borel sets B

ffn(X)a’x—/ foo(x)dx
B B

< / ) = fool)ldx

2 / (fool®) = fu(¥) dx — 0

by the dominated convergence theorem, the equality following from the fact that
the f, > 0 and have integral = 1. Writing u,, for the corresponding measures, we
have shown that the total variation norm

lin = tooll = sup [ (B) = poo(B)] — O
B

a conclusion stronger than weak convergence. (Take B = (—oo, x].) The example
U, = a point mass at 1/n (with 1/00 = 0) shows that we may have u, = o
with |4, — el = 1 for all n.

Exercise 3.2.1. Give an example of random variables X,, with densities f,, so that
X, = a uniform distribution on (0,1) but f,(x) does not converge to 1 for any
x € [0, 1].

Example 3.2.6. Central order statistic. Put (2n + 1) points at random in (0,1),
that is, with locations that are independent and uniformly distributed. Let V,,, be
the (n 4 1)th largest point. It is easy to see that
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Lemma 3.2.1. V. has density function
2n\ , "
fra(x)=Q@2n+ 1)( . )x’ (1 —x)

Proof. There are 2n + 1 ways to pick the observation that falls at x, then we
have to pick n indices for observations < x, which can be done in (2;) ways.
Once we have decided on the indices that will land < x and > x, the probability
the corresponding random variables will do what we want is x"(1 — x)", and
the probability density that the remaining one will land at x is 1. If you don’t
like the previous sentence, compute the probability X| < x —€,..., X, < x — €,
x—e< X, 1 <x+4+e€, Xy >x+¢€,... X011 >x+¢€,thenlete — 0. |

To compute the density function of Y, =2(V,4 — 1/2)v/2n, we use
Exercise 1.2.5, or simply change variables x = 1/2 + y/2+/2n, dx = dy/2+/2n
to get

— () (L y V(1 y_y !
fr.()=Qn+ )(n)(§+2m) <§_zm> 2V2n

2 2 1
:(”)2—2".(1_),2/2”)". ntl Jn

n 2n 2

The first factor is P(S,, = 0) for a simple random walk, so Theorem 3.1.2 and
Lemma 3.1.1 imply that

fr,(») = 2r) " 2exp(—y*/2) as n — oo

Here and in what follows we write P (Y, = y) for the density function of ¥,,. Using
Scheffé’s theorem now, we conclude that Y, converges weakly to a standard normal
distribution.

Exercise 3.2.2. Convergence of maxima. Let X, X», ...be independent with
distribution F, and let M,, = max,,<, X,,. Then P(M, < x) = F(x)". Prove the
following limit laws for M,,:

(1) If F(x) =1 —x"*for x > 1 where o > 0, then for y > 0,
P(M,/n"* < y) — exp(—=y™®)
(i) If F(x) =1 — |x|? for =1 < x < 0 where 8 > 0, then for y < 0,
P(n'"" M, < y) — exp(=|y|")
@ii) If F(x) =1 — e~ for x > 0 then for all y € (—o0, 00)
P(M, —logn <y) — exp(—e™”)

The limits that appear above are called the extreme value distributions. The last
one is called the double exponential or Gumbel distribution. Necessary and
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sufficient conditions for (M,, — b,)/a, to converge to these limits were obtained
by Gnedenko (1943). For a recent treatment, see Resnick (1987).

Exercise 3.2.3. Let X, X,, ...bei.i.d. and have the standard normal distribution.

(1) From Theorem 1.2.3, we know

P(X; >x)~ —x2/2

e as x — o0

1
V27 x
Use this to conclude that for any real number 6
P(X;, >x+@/x))/P(X; > x)—> e?
(i) Show that if we define b, by P(X; > b,) = 1/n
P(by(My — by) < x) — exp(—e ™)

(iii) Show that b, ~ (2logn)'/? and conclude M, /(2logn)'/> — 1 in probability.

3.2.2 Theory

The next result is useful for proving things about weak convergence.

Theorem 3.2.2. If F,, = F, then there are random variables Y,, 1 <n < oo,
with distribution F,, so that Y, — Y a.s.

Proof. Let Q = (0, 1), 7 = Borel sets, P = Lebesgue measure, and let Y,(x) =
sup{y : F,(y) < x}. By Theorem 1.2.2, Y, has distribution F,,. We will now show
that Y,,(x) — Y, (x) for all but a countable number of x. To do this, it is convenient
to write Y,(x) as Fn_l(x) and drop the subscript when n = co. We begin by identify-
ing the exceptional set. Let a, = sup{y : F(y) < x}, b, = inf{y : F(y) > x}, and
Qo = {x : (ay, by) = ¥} where (a,, by) is the open interval with the indicated end-
points. £ — €2 is countable since the (a,, b, ) are disjoint and each nonempty inter-
val contains a different rational number. If x € Q, then F(y) < x for y < F~!(x)
and F(z) > x for z > F~!(x). To prove that Fn*](x) — F~!(x) for x € Q, there
are two things to show:

(a) liminf, o F,'(x) > F~'(x)

Proof of (a). Let y < F~!(x) be such that F is continuous at y. Since x € ,
F(y) < x and if n is sufficiently large F,(y) < x, that is, Fn_l(x) > y. Since this
holds for all y satisfying the indicated restrictions, the result follows.

(b) limsup, o F, '(x) < F~'(x)

Proof of (b). Let y > F~!(x) be such that F is continuous at y. Since x € Qq,
F(y) > x and if n is sufficiently large F,,(y) > x, that is, F,"'(x) < y. Since this
holds for all y satisfying the indicated restrictions, the result follows and we have
completed the proof. [ |
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Theorem 3.2.2 allows us to immediately generalize some of our earlier results.

Exercise 3.2.4. Fatou’s lemma. Let g > 0 be continuous. If X,, = X, then

liminf Eg(X,) > Eg(X)
n—oo

Exercise 3.2.5. Integration to the limit. Suppose g, 4 are continuous with g(x) >
0, and |h(x)|/g(x) > 0 as |x| - oo. If F,, = F and fg(x)an(x) <C < o0,
then

fh(x)dF,,(x)—>/ h(x)dF(x)

The next result illustrates the usefulness of Theorem 3.2.2 and gives an equivalent
definition of weak convergence that makes sense in any topological space.

Theorem 3.2.3. X, = X if and only if for every bounded continuous function g
we have Eg(X,) - Eg(X).

Proof. Let Y, have the same distribution as X, and converge a.s. Since g is con-
tinuous, g(Y,) — g(Y~) a.s. and the bounded convergence theorem implies

Eg(Xy) = Eg(Y,) = Eg(Yoo) = Eg(Xoo)
To prove the converse, let

1 y<x
gx,e(.y): 0 y=x-—+e¢

linear x <y<x+4e¢€
Since g, (y) = 1fory < x, g, is continuous, and g, (y) =0 for y > x + ¢,

limsup P(X, <x) <limsup Eg; (X)) = Egy (X)) < P(Xoo <X +€)

n—00 n—00
Letting € — 0 gives limsup,_, ., P(X, < x) < P(X« < x). The last conclusion
is valid for any x. To get the other direction, we observe

liminf P(X, < x) > liminf Eg, ¢ (X,) = Egy—ce(Xoo) > P(Xoo < X —€)
o0

n—o0 n—
Letting € — 0 gives liminf, o P(X,, <x) > P(Xoo <X) = P(Xoo < x)if x is
a continuity point. The results for the lim sup and the lim inf combine to give the
desired result. [ |

The next result is a trivial but useful generalization of Theorem 3.2.3.
Theorem 3.2.4. Continuous mapping theorem. Let g be a measurable function

and D, = {x : g is discontinuous at x}. If X, = X and P(X € D,) = 0 then
g(X,) = g(X). If in addition g is bounded, then Eg(X,) = Eg(Xoo).
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Remark. D, is always a Borel set. See Exercise 1.3.6.

Proof. Let Y, =4 X,, with ¥, — Yo, as. If f is continuous, then Dy, C D,,
s0 P(Yy € Dyog) =0, and it follows that f(g(Y,)) — f(g(Y) a.s. If, in addi-
tion, f is bounded, then the bounded convergence theorem implies E f(g(Y,)) —
Ef(g(Ys). Since this holds for all bounded continuous functions, it follows from
Theorem 3.2.3 that g(X,,) = g(Xo)-

The second conclusion is easier. Since P(Y € Dg) =0, g(¥,) — g(Y) as.,
and the desired result follows from the bounded convergence theorem. [ ]

The next result provides a number of useful alternative definitions of weak
convergence.

Theorem 3.2.5. The following statements are equivalent:
(i) Xn = X
(ii) For all open sets G, liminf, .., P(X, € G) > P(X» € G).
(iii) For all closed sets K, limsup,,_, ., P(X, € K) < P(X»x € K).
(iv) For all sets A with P(Xs € 0A) =0, lim,,_, oo P(X, € A) = P(X5 € A).

Remark. To help remember the directions of the inequalities in (ii) and (iii),
consider the special case in which P(X, = x,,) = 1. In this case, if x, € G and
Xy — Xoo € 3G, then P(X,, € G) = 1 forall n but P(X € G) = 0. Letting K =
G*¢ gives an example for (iii).

Proof. We will prove four things and leave it to the reader to check that we have
proved the result given above.

(i) implies (ii): Let ¥,, have the same distribution as X,, and Y,, — Y, a.s. Since G
is open,

liminf 15(Y,) > 16(Ys)
n—oo
so Fatou’s lemma implies

liminf P(Y,, € G) > P(Ys € G)

n—oo

(ii) is equivalent to (iii): This follows easily from: A is open if and only if A€ is
closed and P(A) + P(A) = 1.

(i) and (iii) imply (iv): Let K = A and G = A° be the closure and interior of A,
respectively. The boundary of A, dA = A — A° and P(X € dA) =0, s0

P Xy €K)=P( Xy €A)=PXs€G)
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Using (ii) and (iii) now

limsup P(X,, € A) <limsup P(X, € K) < P(Xoo € K) = P(Xoo € A)

n—00 n—00
liminf P(X, € A) > liminf P(X, € G) > P(Xoo € G) = P(Xo € A)
n— oo n— 0o

(iv) implies (i): Let x be such that P(X., = x) = 0, i.e., x is a continuity point of
F,andlet A = (—o0, x]. [ |

The next result is useful in studying limits of sequences of distributions.

Theorem 3.2.6. Helly’s selection theorem. For every sequence F, of distribu-
tion functions, there is a subsequence F, ), and a right continuous nondecreasing
function F so that limy_, o F,u)(y) = F(y) at all continuity points y of F.

Remark. The limit may not be a distribution function. For example, ifa + b 4+ ¢ =
I and F,(x) =a lxsn) + b 1(x>—») + ¢ G(x) where G is a distribution function,
then F,(x) — F(x) = b + cG(x),

lim F(x)=b and IlmFx)=b+c=1—a
X} —00 xtoo
In words, an amount of mass a escapes to +0o, and mass b escapes to —oo.

The type of convergence that occurs in Theorem 3.2.6 is sometimes called vague
convergence, and will be denoted here by = ,.

Proof. The first step is a diagonal argument. Let g1, ¢», ...be an enumeration
of the rationals. Since for each k, F,,(qx) € [0, 1] for all m, there is a sequence
my (i) — oo that is a subsequence of m;_1(j) (let mo(j) = j) so that

F,i)(qk) converges to G(qx) asi — 00

Let Fyx) = Fu,x)- By construction F,)(g) — G(q) for all rational g. The function
G may not be right continuous, but F(x) = inf{G(q) : ¢ € Q, g > x} is, since

1ilfl F(x,) =inf{G(q) : q € Q, g > x, for some n}
Xpdx

=inf{G(q) 1 ¢ € Q, ¢ > x} = F(x)

To complete the proof, let x be a continuity point of F. Pick rationals ry, r,, s with
ry <ry < x < s so that

F(x)—€ <F(ri) = F(n) = F(x) < F(s) < F(x) + ¢

Since F,)(r2) — G(r2) > F(r1), and Fyp)(s) — G(s) < F(s), it follows that if k
is large,

F(x) — € < Fyp)(r2) < Fupy(x) < Frpo(s) < F(x) + €

which is the desired conclusion. [ ]
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The last result raises a question: When can we conclude that no mass is lost in
the limit in Theorem 3.2.6?

Theorem 3.2.7. Every subsequential limit is the distribution function of a proba-
bility measure if and only if the sequence F, is tight, that is, for all € > O there is
an M. so that

limsup 1 — F,(M¢) + F,(—M,) <€

n— o0

Proof. Suppose the sequence is tight and F,) =, F. Letr < —M, and s > M,
be continuity points of F. Since F,(r) — F(r) and F,(s) — F(s), we have

I1-F@)+ F@r) = klggo 1 — Fug(s) + Fuuo(r)

= lim Supl - Fn(Me) + Fn(_Me) <€

n—oQ

The last result implies limsup, , ., 1 — F(x) + F(—x) < €. Since € is arbitrary, it
follows that F is the distribution function of a probability measure.

To prove the converse now suppose F,, is not tight. In this case, thereisane€ > 0
and a subsequence n(k) — oo so that

1 = Fyy(k) + Fop(—k) > €

for all k. By passing to a further subsequence F,,;) we can suppose that F ) =
F.Letr < 0 < s be continuity points of F.

L= F(s)+ F(r) = lim 1 — Fo(s) + Fue ()
Jj—00 ’
> hjn_l)gjfl — Fagj(kj) + Fuay(—kj) > €
Letting s — oo and r — —o0, we see that F is not the distribution function of a

probability measure. [ |

The following sufficient condition for tightness is often useful.

Theorem 3.2.8. [fthere is a ¢ > 0 so that ¢(x) — 0o as |x| — oo and

C = sup/ p(x)dF,(x) < o0

n

then F, is tight.

Proof. 1 — F,(M) + F,(—M) < C/inf x>y ¢(x). [ ]

The first two exercises below define metrics for convergence in distriubtion. The
fact that convergence in distribution comes from a metric immediately implies
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Theorem 3.2.9. If each subsequence of X, has a further subsequence that con-

verges to X, then X, = X.

We will prove this again at the end of the proof of Theorem 3.3.6.

Exercises
3.2.6. The Lévy Metric. Show that
Pp(F,G)=infle : Fx —€) —e < G(x) < F(x +¢€)+ € forall x}

defines a metric on the space of distributions and p(F;,, F) — 0 if and only if
F,= F.

3.2.7. The Ky Fan metric on random variables is defined by
a(X,Y)=inf{fe = 0: P(|X — Y| > ¢€) < €}

Show that if @(X, Y) = «, then the corresponding distributions have Lévy distance
p(F,G) < a.

3.2.8. Leta(X, Y) be the metric in the previous exercise and let 8(X, ¥Y) = E(|X —
Y|/(1 4+ |X — Y])) be the metric of Exercise 2.3.8. If «(X, Y) = a, then

a2/ +a)<BX,Y)<a+ (1 —aa/(l +a)

3.2.9. If F, = F and F is continuous, then sup, | F,(x) — F(x)| — 0.

3.2.10. If F is any distribution function, there is a sequence of distribution functions
of the form ) _, @y ml(y,, <x) With F, = F.Hint: Use Theorem 2.4.7.

3.2.11. Let X,;, 1 <n < oo, be integer valued. Show that X,, = X, if and only if
P(X, =m) - P(Xo = m) for all m.

3.2.12. Show thatif X,, — X in probability then X, = X, and that, conversely, if
X, = ¢, where c is a constant, then X,, — c in probability.

3.2.13. Converging together lemma. If X, = X and Y,, = ¢, where c is a con-
stant, then X,, + ¥, = X + c. A useful consequence of this resultis thatif X,, = X
and Z, — X, = 0, then Z, = X.

3.2.14. Suppose X,, = X, Y, > 0, and Y, = ¢, where ¢ > 0 is a constant. Then
X, Y, = cX. This result is true without the assumptions Y,, > 0 and ¢ > 0. We
have imposed these only to make the proof less tedious.

3.2.15. Show thatif X,, = (X ,i ..., X)) is uniformly distributed over the surface of
the sphere of radius /7 in R" then X ,1! = a standard normal. Hint: Let Yy, Y>, ...be
i.i.d. standard normals and let X!, = Y;(n/ > _, Y2)1/2.

3.2.16. Suppose Y, > 0, EYY — 1 and EY,i3 — 1forsome 0 < o < . Show that
Y, — 1 in probability.
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3.2.17. For each K < oo and y < 1 there is a ¢, x > 0 so that EX?=1 and
EX*<K implies P(|X| > y) > ¢, k.

3.3 Characteristic Functions

This long section is divided into five parts. The first three are required reading, the
last two are optional. In the first part, we show that the characteristic function () =
E exp(itX) determines F(x) = P(X < x), and we give recipes for computing F
from ¢. In the second part, we relate weak convergence of distributions to the
behavior of the corresponding characteristic functions. In the third part, we relate
the behavior of ¢(z) at O to the moments of X. In the fourth part, we prove
Polya’s criterion and use it to construct some famous and some strange examples of
characteristic functions. Finally, in the fifth part, we consider the moment problem,
that is, when is a distribution characterized by its moments.

3.3.1 Definition, Inversion Formula

If X is a random variable we define its characteristic function (ch.f.) by
@(t) = Ee"* = EcostX +iEsintX

The last formula requires taking the expected value of a complex-valued random
variable, but as the second equality may suggest, no new theory is required. If Z is
complex valued, we define EZ = E(Re Z) + i E(Im Z) where Re (a + bi) = a is
the real part and Im (a + bi) = b is the imaginary part. Some other definitions
we will need are: the modulus of the complex number z = a + bi is |a + bi| =
(a® 4+ b*)'/2, and the complex conjugate of z = a + bi, 7 = a — bi.

Theorem 3.3.1. All characteristic functions have the following properties:

(@) pO) =1,

(b) p(—1) = @(1),

(c) lp()] = |[Ee"™X| < Ele"*| =1

(d) |o(t +h) — @(t)| < E|e'™ — 1|, so ¢(t) is uniformly continuous on (—oo, 00).
(e) Eeit(aX+b) — ei’b(p(at)

Proof. (a) is obvious. For (b) we note that
o(—t) = E(cos(—tX) +isin(—tX)) = E(cos(tX) — i sin(t X))
(c) follows from Exercise 1.6.2 since ¢(x, y) = (x> + y*)'/? is convex.

l@(t + 1) — p(n)] = |E(' TV — &)

< E|ei(t+h)X _ eitX| — E|eihX _ 1|

so uniform convergence follows from the bounded convergence theorem. For (e)
we note Eeit(aX+b) — eithei(ta)X — ei’b<p(at). ]
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The main reason for introducing charactersitic functions is the following:

Theorem 3.3.2. If X, and X, are independent and have ch.f’s ¢, and ¢,, then
X1 + Xz has ch.f. ¢1(t)pa(7).

Proof.
Eelt(X1+X2) — E(eltxleltX2) — EeltXIEeltXZ

since ¢''X1 and e'’X? are independent. u

The next order of business is to give some examples.

Example 3.3.1. Coin flips. If P(X = 1) = P(X = —1) = 1/2, then

Ee'"™X = (e +¢7")/2 = cost

Example 3.3.2. Poisson distribution. If P(X = k) = e *A*/k! for k =0, 1,
2,..., then
o k itk

EéX =3 ¢ ke' — exp(u(e’ — 1))
k=0 ’

Example 3.3.3. Normal distribution

Density (27m)~ /2 exp(—x?/2)
Ch.f. exp(—t2/2)

Combining this result with (e) of Theorem 3.3.1, we see that a normal distribution
with mean g and variance o2 has ch.f. exp(iut — o2t?/2). Similar scalings can be
applied to other examples, so we will often just give the ch.f. for one member of
the family.

Physics Proof.
/eitx(zn)—l/Ze—x2/2 dx = e—ﬂ/z /(271)—1/26—():—1‘:)2/2 dx

The integral is 1 since the integrand is the normal density with mean it and
variance 1. u
Math Proof. Now that we have cheated and figured out the answer, we can verify
it by a formal calculation that gives very little insight into why it is true. Let

wle) = /eilx@ﬂ)_l/ze_xz/zdx = /COS tx (271)_1/2e_x2/2dx
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since i sintx is an odd function. Differentiating with respect to ¢ (referring to
Theorem A.5.1 for the justification) and then integrating by parts gives

¢'(1) = / —xsintx (2m) " 2e ™ Pdx

= — /tcos tx (Zn)’l/ze”‘Z/zdx = —1¢(t)

This implies j—t{(p(t) exp(t2/2)} = 0, so ¢(t) exp(t?/2) = ¢(0) = 1. [ ]

In the next three examples, the density is O outside the indicated range.

Example 3.3.4. Uniform distribution on (a, b)

Density 1/(b — a) x € (a,b)
Ch.f. (€’ — ")/ it(b — a)

In the special case a = —c, b = c, the ch.f. is (e’ — e'¢)/2cit = (sinct)/ct.

Proof. Once you recall that fab e’ dx = (e’ — ¢**) /) holds for complex A, this is
immediate. [ |

Example 3.3.5. Triangular distribution
Density 1 — |x| xe(—1,1
Ch.f. 2(1 —cost)/t?

Proof. To see this, notice that if X and Y are independent and uniform on
(=1/2,1/2), then X + Y has a triangular distribution. Using Example 3.3.4 now
and Theorem 3.3.2, it follows that the desired ch.f. is

("2 = ") iry? = {2sin(1/2)/1)?
Using the trig identity cos 20 = 1 — 2sin” § with 6 = ¢/2 converts the answer into
the form given above. [ |
Example 3.3.6. Exponential distribution
Density e x € (0, c0)

Chf.  1/(1—if)

Proof. Integrating gives

00 it—1)x |°
/ ei[xe_xdx = e(l " = !
A ir—1|, 1—ir

since exp((it — 1)x) — 0 as x — oo. |

For the next result we need the following fact, which follows from the fact that

[ fdGu+v)=[ fdu+ [ fdv.
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Lemma 3.33. If Fy, ..., F, have ch.f. ¢1,...,¢, and .; > 0 have A; + ...+
An =1, then Y"!_| M F; has chf. Y[ hig;.

Example 3.3.7. Bilateral exponential

Density %e“x‘ X € (—00, 0)
Ch.f. 1/(1 4+ 12)

Proof. This follows from Lemma 3.3.3 with F; the distribution of an exponential
random variable X, F, the distribution of —X, and A; = A, = 1/2. Then using (b)
of Theorem 3.3.1 we see the desired ch.f. is
1 1 (I+it)+ (A —ir) 1
W —in T 20+in- 20+ a+0

Exercise 3.3.1. Show that if ¢ is a ch.f., then Re ¢ and |¢|?* are also.

The first issue to be settled is that the characteristic function uniquely determines
the distribution. This and more is provided by

Theorem 3.3.4. The inversion formula. Let ¢(1) = [ ¢'"*ju(dx) where p is a
probability measure. If a < b, then

T —ita _ ,—ith

1
TILH;OQJT)_]/ —; eWdt =wa b)+ sua, b}

-T

Remark. The existence of the limit is part of the conclusion. If u = §p, a point
mass at 0, ¢(¢) = 1. In this case, if a = —1 and b = 1, the integrand is (2sint)/¢
and the integral does not converge absolutely.

Proof. Let
T ,—ita _ ,—ith T [ emita _ =it
Iy = / —  o(dt= / / —— e u(dx)dt
-T it -T 1t
The integrand may look bad near ¢ = 0, but if we observe that
—ita —ith b
e — e _ / efity dy
it a

we see that the modulus of the integrand is bounded by b — a. Since u is a prob-
ability measure and [—T7, T'] is a finite interval, it follows from Fubini’s theorem,
cos(—x) = cos x, and sin(—x) = — sin x that

T e~ ita _ e*itb )
IT = // .—eltx dt M(dx)
T 1t

B T sin(t(x — a)) T sin(t(x — b))
- J
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Introducing R0, T) = f_TT(sin 0t)/t dt, we can write the last result as
(%) It = /{R(x —a,T)— R(x — b, T)}u(dx)

Ifwelet S(T') = fOT(sin x)/x dx,thenfor 6 > 0 changing variables r = x /6 shows
that

T9 §inx
RO, T)=2 dx =25(T6)
0

X

while for 6 < 0, R(8, T) = —R(|6|, T'). Introducing the function sgnx, which is
lifx > 0, —1if x < 0,and 0 if x = 0, we can write the last two formulas together
as

R, T)=2(sgnb)S(T10])
As T — oo, S(T) — m/2 (see Exercise 1.7.5), so we have R(0, T) — m sgnf
and
2 a<x<b
Rx—a,T)—Rx—b,T)>3{nmr x=aorx=»b

0 x<aorx >hb

|[R(B,T)| <2 sup, S(y) < 00, so using the bounded convergence theorem with ()
implies

1
Qr) 'y — pla, b) + Shda, b))

proving the desired result. |

Exercise 3.3.2. (i) Imitate the proof of Theorem 3.3.4 to show that

T

: 1 —ita
plla)) = lim 5 f enr

(ii) If P(X € hZ) = 1 where h > 0, then its ch.f. has p(27/h + t) = ¢(t), so
h w/h )
P(X=x)= —/ e "ot)dt forx € hZ
2 —/h

(iii) If X = Y + b, then E exp(itX) = €'’ E exp(itY). Soif P(X e b+ hZ) =1,
the inversion formula in (ii) is valid for x € b + hZ.

Two trivial consequences of the inversion formula are:
Exercise 3.3.3. If ¢ is real then X and — X have the same distribution.
Exercise 3.3.4. If X;,i = 1, 2 are independent and have normal distributions with

mean 0 and variance al.2, then X; + X, has a normal distribution with mean 0 and
variance o} + 07
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The inversion formula is simpler when ¢ is integrable, but as the next result
shows, this only happens when the underlying measure is nice.

Theorem 3.3.5. If f lo(t)| dt < oo, then ( has bounded continuous density

1 —it
0 =5 [ememar
JT

Proof. As we observed in the proof of Theorem 3.3.4

h .
/ e 'Vdy
a

so the integral in Theorem 3.3.4 converges absolutely in this case and

e~ita _ e*ttb

it

=|b—adl

(@, b) + 2 pu(t b})-i/mM <t>dt<(b‘“)/°°| (1)ldi
mia, M o) =50 . it ¢ - 2 _oo(p

The last result implies © has no point masses and

1 e—itx _ e—it(x+h)
u(x,x+h>=—f . o(t)di
21 it

1 x+h )
=5 (f e ' a’y) (t)dt
T x
x+h 1
—it

by Fubini’s theorem, so the distribution © has density function
1 -
f =5 / e o) dt
T

The dominated convergence theorem implies f is continuous, and the proof is
complete. [ |

Exercise 3.3.5. Give an example of a measure u with a density but for which
[ le(1)|dt = oo. Hint: Two of the examples above have this property.

Exercise 3.3.6. Show thatif X, ..., X, are independent and uniformly distributed
on (—1, 1), then forn > 2, X; 4+ - - - + X,, has density

fx) = l /oo(sint/t)" costx dt
7T Jo

Although it is not obvious from the formula, f is a polynomial in each interval
(k,k + 1), k € Z and vanishes on [—n, n]°.

Theorem 3.3.5 and the next result show that the behavior of ¢ at infinity is related
to the smoothness of the underlying measure.
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Exercise 3.3.7. Suppose X and Y are independent and have ch.f. ¢ and distribution
w. Apply Exercise 3.3.2 to X — Y and use Exercise 2.1.8 to get

1 T
lim — DPFdt=P(X-Y =0)= 2
Jim o |l ar= b =St
Remark. The last result implies that if ¢(f) - 0 as t — oo, u has no point
masses. Exercise 3.3.13 gives an example to show that the converse is false. The
Riemann-Lebesgue lemma (Exercise 1.4.4) shows that if i has a density, ¢(t) — 0
ast — oo.

Applying the inversion formula Theorem 3.3.5 to the ch.f. in Examples 3.3.5 and
3.3.7 gives us two more examples of ch.f. The first one does not have an official
name, so we gave it one to honor its role in the proof of Polya’s criterion; see
Theorem 3.3.10.

Example 3.3.8. Polya’s distribution
Density (1 — cos x)/m x>

Ch.f. (1—th

Proof. Theorem 3.3.5 implies
1 / 2(1 — coss)

2 52

Now lets = x, y = —t. |

e ds = (1= |y)*

Example 3.3.9. The Cauchy distribution

Density 1/7(1 + x?)
Ch.f. exp(—|t|)

Proof. Theorem 3.3.5 implies

i ! e Y ds = le—lyl
27 ) 142 2
Now let s = x, y = —t and multiply each side by 2. [ |

Exercise 3.3.8. Use the last result to conclude that if X, X», ... are independent
and have the Cauchy distribution, then (X; + - - - + X,,)/n has the same distribution
as X;.

3.3.2 Weak Convergence

Our next step toward the central limit theorem is to relate convergence of charac-
teristic functions to weak convergence.
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Theorem 3.3.6. Continuity theorem. Lef i1, 1 < n < 0o be probability measures
with ch.f. @,. (i) If 1, = U then @, (t) — @oo(t) for all t. (ii) If ¢, (t) converges
pointwise to a limit ¢(t) that is continuous at 0, then the associated sequence of
distributions i, is tight and converges weakly to the measure p with characteristic
function .

Remark. To see why continuity of the limit at 0 is needed in (ii), let u,, have a nor-
mal distribution with mean 0 and variance n. In this case ¢, (t) = exp(—nt?/2) — 0
for t # 0, and ¢,,(0) = 1 for all n, but the measures do not converge weakly since
wn((—00, x]) — 1/2 for all x.

Proof. (i) is easy. €''* is bounded and continuous, so if i, = /Lco, then Theorem
3.2.3 implies ¢, () — @xo(t). To prove (ii), our first goal is to prove tightness. We
begin with some calculations that may look mysterious but will prove to be very
useful.

! itx ‘ .. 2sinux
1 —e""dt =2u — (costx +isintx)dt = 2u —
—u —u X
Dividing both sides by u, integrating u,(dx), and using Fubini’s theorem on the
left-hand side gives

w1 = gy dr = 2[ (1- 2 oy ax)

—u ux

To bound the right-hand side, we note that

/ ) cos(y)dy
0

so we have 1 — (sinux/ux) > 0. Discarding the integral over (—2/u,2/u) and
using | sinux| < 1 on the rest, the right-hand side is

| sinx| = < |x| forall x

> z/ (1 - i) pnldx) = pa(lx : x| > 2/u))
|x|>2/u x|

Since ¢(t) —> last — 0,

u1/ (1 —¢@)dt - 0asu — 0

u

Pick u so that the integral is < €. Since ¢, (t) — ¢(¢) for each ¢, it follows from
the bounded convergence theorem that forn > N

u
2e >u" | (1= @) dt > pulx : x| > 2/u}
—Uu
Since € is arbitrary, the sequence u, is tight.

To complete the proof now we observe that if w,x) = w, then it follows from
the first sentence of the proof that u has ch.f. ¢. The last observation and tightness
imply that every subsequence has a further subsequence that converges to w. I
claim that this implies the whole sequence converges to . To see this, observe
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that we have shown that if f is bounded and continuous then every subsequence
of [ f du, has a further subsequence that converges to [ f du, so Theorem 2.3.3
implies that the whole sequence converges to that limit. This shows [ fdu, —
f f du for all bounded continuous functions f, so the desired result follows from
Theorem 3.2.3. [ |

Exercise 3.3.9. Suppose that X,, = X and X,, has a normal distribution with mean
0 and variance o2. Prove that 0> — o2 € [0, 00).

Exercise 3.3.10. Show that if X, and Y,, are independent for 1 < n < oo, X,, =
Xoo,and Y, = Yo, then X,, + Y, = Xoo + Yoo.

Exercise 3.3.11. Let X, X5, ...be independent and let S, = X| + --- + X,,. Let
@; be the ch.f. of X; and suppose that S, — S a.s. Then Sy, has ch.f. ]—[T’:l @;(1).

Exercise 3.3.12. Using the identity sin¢ = 2 sin(¢/2) cos(t/2) repeatedly leads to
(sint)/t =[], cos(t/2™). Prove the last identity by interpreting each side as a
characteristic function.

Exercise 3.3.13. Let X, X5, ...be independent taking values 0 and 1 with prob-
ability 1/2 each. X =2 i=1 X /37 has the Cantor distribution. Compute the
ch.f. ¢ of X and notice that ¢ has the same value at t = 3k fork =0, 1,2, ...

3.3.3 Moments and Derivatives

In the proof of Theorem 3.3.6, we derived the inequality
u
w{x x| >2/u}y <u™' | (1 —¢@)dt (3.3.1)

which shows that the smoothness of the characteristic function at O is related to
the decay of the measure at co. The next result continues this theme. We leave the
proof to the reader. (Use Theorem A.5.1.)

Exercise 3.3.14. If [ |x|"ju(dx) < oo, then its characteristic function ¢ has a
continuous derivative of order n given by o™ () = [(ix)"e'"* ju(dx).

Exercise 3.3.15. Use the last exercise and the series expansion for e~/ to show
that the standard normal distribution has
EX™ =(2n)!/2"n' =Q2n —1)2n —3)---3-1=2n — D!

The result in Exercise 3.3.14 shows that if E|X|" < oo, then its characteristic
function is n times differentiable at 0, and ¢"(0) = E(i X)". Expanding ¢ in a
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Taylor series about 0 leads to

n EGitX)"
o= 3 T o

!
m=0

where o(#") indicates a quantity g(¢) that has g(¢)/t" — 0 as t — 0. For our
purposes below, it will be important to have a good estimate on the error term, so
we will now derive the last result. The starting point is a little calculus.

Lemma 3.3.7.

n+1 2 n
< min [ T 2] (3.3.2)
n+ 1! n!

noo.o\m
. ix
P

m!

m=0

The first term on the right is the usual order of magnitude we expect in the
correction term. The second is better for large |x| and will help us prove the central
limit theorem without assuming finite third moments.

Proof. Integrating by parts gives

X ) xﬂ+1 i X .
f (x—s)"e"ds = + / (x — s)"™Hei ds
0 n + 1 n + 1 0

When n = 0, this says

/ eisds=x+if (x — s)e' ds
0 0

The left-hand side is (¢'* — 1)/, so rearranging gives

e = 1+ix+i2/ (x — 5)e'*ds
0
Using the result for n = 1 now gives
_1+1x+—+—/ (x — s)*e*ds

and iterating we arrive at

m n+1
(a) - Z (ZX) / (x —s)'e'*ds

To prove the result now it only remains to estimate the “error term” on the right-hand
side. Since |e*| < 1 for all s,

l-n—i—l x )
' / (x —s)'e’ds
n: 0

(b) < IxI"*'/(n + D!
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The last estimate is good when x is small. The next is designed for large x.
Integrating by parts

l‘ X . xn X .
—f (x —8)'e’ds = —— —I—/ (x —s)"leds
nJo n 0

Noticing x"/n = [;'(x — 5)"~'ds now gives

in+1 /x( )n isd i /x( )nfl( is l)d
X —95)e s = X —3S e — N
n! 0 (l’l— 1)' 0

and since |e¢'* — 1| < 2, it follows that

l'n+1 X ) 2 x
/ (x —s)'e’ds / (x —s)"'ds
n! 0 (ﬂ — 1)' 0

Combining (a), (b), and (c) we have the desired result. [ ]

(c)

< <2[x|"/n!

Taking expected values, using Jensen’s inequality, applying Theorem 3.3.2 to
x =tX, gives

Ee'™X — i E(itX)m < E|e"* — i @ X)"
— m! - — m!
< Emin (|t X", 21t X]") (3.3.3)

where in the second step we have dropped the denominators to make the bound
simpler.
In the next section, the following special case will be useful.

Theorem 3.3.8. If E|X|*> < oo, then

o) =1+itEX —t*E(X?)/2 + o(t?)

Proof. The error term is < t*E(|t| - | X|*> A 2|X|?). The variable in parentheses is
smaller than 2| X|? and converges to 0 as t — 0, so the desired conclusion follows
from the dominated convergence theorem. [ |

Remark. The point of the estimate in (3.3.3), which involves the minimum of two
terms rather than just the first one which would result from a naive application of
Taylor series, is that we get the conclusion in Theorem 3.3.8 under the assumption
E|X|? < o0, that is, we do not have to assume E|X|* < oo.

Exercise 3.3.16. (i) Suppose that the family of measures {u;, i € 1} is tight, that
is, sup; wi([—M, M]°) — Oas M — oo. Use (d) in Theorem 3.3.1 and (3.3.3) with
n = 0 to show that their ch.f.’s ¢; are equicontinuous, that is, if € > 0 we can pick
8 > O sothatif || < 8, then |p;(t + h) — ¢; ()| < €. (il) Suppose W, = Ueo. Use
Theorem 3.3.6 and equicontinuity to conclude that the ch.f.’s ¢, — ¢ uniformly
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on compact sets. [Argue directly. You don’t need to go to AA.] (iii) Give an example
to show that the convergence need not be uniform on the whole real line.

Exercise 3.3.17. Let X, X, ...be i.i.d. with characteristic function ¢. (i) If
¢'(0)=iaand S, = X1+ ---+ X, then S,,/n — a in probability. (ii) If S,,/n —
a in probability then ¢(t/n)" — €% as n — oo through the integers. (iii) Use
(i1) and the uniform continuity established in (d) of Theorem 3.3.1 to show that
(p(h) — 1)/ h — —ia as h — 0through the positive reals. Thus the weak law holds
if and only if ¢’(0) exists. This result is due to E. J. G. Pitman (1956), with a little
help from John Walsh, who pointed out that we should prove (iii).

The last exercise in combination with Exercise 2.2.4 shows that ¢’(0) may exist
when E|X| = oo.

Exercise 3.3.18. 2 [[°(1 — Re ¢(1))/(wt*)dt = [ |y|d F(y). Hint: Change vari-
ables x = |y|t in the density function of Example 3.3.8, which integrates to 1.

The next result shows that the existence of second derivatives implies the existence
of second moments.

Theorem 3.3.9. If limsup,, o{¢(h) — 2¢(0) + ¢(—h)}/ h* > —oo, then E|X|* <
Q.

Proof. (™ — 2 4+ e7")/h* = —2(1 — coshx)/h* <0 and 2(1 — coshx)/
h? — x?as h — 0, so Fatou’s lemma and Fubini’s theorem imply

) o 1 —coshx
X dF(x)§211§11L151f TdF(x)

— @(h) — 2¢(0) + ¢(—h)
= — limsSsup < 0
h—0 h2

which proves the desired result. [ |

Exercise 3.3.19. Show that if lim, o(¢(t) — 1)/t> = ¢ > —oc then EX = 0 and
E|X|> = —2c < oo. In particular, if (1) = 1 4 o(t?), then ¢(t) = 1.

Exercise 3.3.20. If Y, are r.v.’s with ch.f.’s ¢,, then Y, = 0 if and only if there is
ad > 0sothatg,(t) — 1for |t] <.

Exercise 3.3.21. Let X, X5, ...be independent. If §, = Zm<n X, converges in
distribution, then it converges in probability (and hence a.s. b_y Exercise 2.5.10).
Hint: The last exercise implies that if m, n — oo then S, — S, — 0 in probability.
Now use Exercise 2.5.11.
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3.3.4 Polya’s Criterion*

The next result is useful for constructing examples of ch.f.’s.

Theorem 3.3.10. Polya’s criterion. Let ¢(t) be real nonnegative and have ¢(0) =
1, p(t) = o(—t), and ¢ is decreasing and convex on (0, 0o0) with

li =1 li =
im p(t) =1, lim ) =0

Then there is a probability measure v on (0, 00), so that

oo t +
() @(1) =/ (1 - ’— ) v(ds)
0 s

and hence ¢ is a characteristic function.

Remark. Before we get lost in the details of the proof, the reader should note that
(x) displays ¢ as a convex combination of ch.f.’s of the form given in Example
3.3.8, so an extension of Lemma 3.3.3 (to be proved below) implies that this
isach.f.

The assumption that lim,_o ¢(¢) = 1 is necessary because the function ¢(¢) =
Li0y(r) which is 1 at 0 and O otherwise, satisfies all the other hypotheses. We could
allow lim,_, o, ¢(t) = ¢ > 0 by having a point mass of size ¢ at 0, but we leave this
extension to the reader.

Proof. Let ¢’ be the right derivative of ¢, that is,

@t +h)— @)
h

Since ¢ is convex, this exists and is right continuous and increasing. So we can let
1 be the measure on (0, oo) with u(a, b] = ¢'(b) — ¢'(a) forall0 < a < b < o0,
and let v be the measure on (0, oo) with dv/du = s.

Now ¢'(t) — 0 as t — oo (for if ¢'(t) | —e we would have ¢(t) < 1 — et for
all ¢), so Exercise A.4.7 implies

"(t) = li
@ (1) ;}?&

—p(s) = / " o)

Integrating again and using Fubini’s theorem we have for ¢t > 0

o(t) = /00 /oor_lv(dr)ds = Oor_1 /*r ds v(dr)
00 +

:f (l—i)v(dr)=/oo(l—£) v(dr)
t r 0 r

Using ¢(—t) = ¢(¢) to extend the formula to r < 0, we have (x). Setting = 0 in
(%) shows v has total mass 1.

If ¢ is piecewise linear, v has a finite number of atoms, and the result follows
from Example 3.3.8 and Lemma 3.3.3. To prove the general result, let v, be a
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sequence of measures on (0, oo) with a finite number of atoms that converges
weakly to v (see Exercise 3.2.10) and let

+

> v, (ds)

& t
90n(t)=/ (1 - ‘—
0 S

Since s — (1 — |t/s|)" is bounded and continuous, ¢, () — ¢(t), and the desired
result follows from part (ii) of Theorem 3.3.6. [ |

A classic application of Polya’s criterion is:
Exercise 3.3.22. Show that exp(—|t|%) is a characteristic function for 0 < o < 1.

(The case o = 1 corresponds to the Cauchy distribution.) The next argument, which
we learned from Frank Spitzer, proves that this is true for 0 < o < 2. The case
o = 2 corresponds to a normal distribution, so that case can be safely ignored in
the proof.

Example 3.3.10. exp(—|z|%) is a characteristic function for 0 < o < 2.

Proof. A little calculus shows that for any 8 and |x| < 1

o]

(1-xf=)" (’j)(—x)"

n=0

where

(ﬂ)_ﬂ(ﬂ—l)---(ﬂ—nJrl)
n) 1-2---n

Let ¥(t) = 1 — (1 — cos)*? = 3" | c,(cost)" where

n=1

Cn = (“/ 2)(—1)"*1
n

cn > 0 (here we use o <2), and Y o, c, =1 (take 7 = 0 in the definition of
Yr). cost is a characteristic function (see Example 3.3.1), so an easy extension of
Lemma 3.3.3 shows that 1 is a ch.f. We have 1 — cost ~ t?/2 ast — 0, so

1 — cos(z - 212 . p=Vey ~ 21942
Using Lemma 3.1.1 and (ii) of Theorem 3.3.6 now, it follows that
exp(—[t]*) = lim {y(z - 22 - n~ /%))
n—oo
is a ch.f. |
Exercise 3.3.19 shows that exp(—|t|*) is not a ch.f. when o > 2. A reason for

interest in these characteristic functions is explained by the following generalization
of Exercise 3.3.8.
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Exercise 3.3.23. If X, X, ...are independent and have characteristic function
exp(—|t|*), then (X + - - - + X,,)/n'/* has the same distribution as X .

We will return to this topic in Section 3.7. Polya’s criterion can also be used to
construct some “pathological examples.”

Exercise 3.3.24. Let ¢; and ¢, be ch.f’s. Show that A = {t : ¢1(t) = (1)} is
closed, contains 0, and is symmetric about 0. Show that if A is a set with these
properties and ¢;(t) = e~ "I, there is a ¢, so that {r : ¢;(t) = @2 (1)} = A

Example 3.3.11. For some purposes, it is nice to have an explicit example of two
ch.f’s that agree on [—1, 1]. From Example 3.3.8, we know that (1 — |¢|)* is the
ch.f. of the density (1 — cos x)/mwx?. Define v/(¢) to be equal to ¢ on [—1, 1] and
periodic with period 2, that is, ¥ (t) = ¥ (¢ + 2). The Fourier series for i is

Y(u) = % Z 2(2 exp(z(2n — Drmu)

The right-hand side is the ch.f. of a discrete distribution with

P(X=0)=1/2 and PX=Q2n—Dn)=2n"22n—-1)"?% nel.

Exercise 3.3.25. Find independent r.v.’s X, Y, and Z so that Y and Z do not have
the same distribution but X + Y and X + Z do.

Exercise 3.3.26. Show that if X and Y are independent and X + Y and X have the
same distribution, then Y = 0 a.s.

For more curiosities, see Feller, Vol. II (1971), Section XV.2a.

3.3.5 The Moment Problem*

Suppose [ x¥d F,(x) has a limit z; for each k. Then the sequence of distributions
is tight by Theorem 3.2.8 and every subsequential limit has the moments p; by
Exercise 3.2.5, so we can conclude the sequence converges weakly if there is
only one distribution with these moments. It is easy to see that this is true if F
is concentrated on a finite interval [—M, M] since every continuous function can
be approximated uniformly on [—M, M] by polynomials. The result is false in
general.

Counterexample 1. Heyde (1963). Consider the lognormal density
fox) = @a) 2xtexp(—(logx)?/2) x>0
and for —1 <a < 1let

folr) = fo(0){1 + asin2w log x)}
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To see that f, is a density and has the same moments as fj, it suffices to show that
o
f x" fo(x)sinr logx)dx =0for r =0,1,2,...
0

Changing variables x =exp(s +r), s =logx —r, ds =dx/x the integral
becomes

(2m)~1/? / ” exp(rs + r2)exp(—(s + r)?/2) sin(27 (s + r)) ds

= 2m) 1 exp(r?/2) /oo exp(—s%/2)sinQRns)ds = 0

The two equalities holding because r is an integer and the integrand is odd. From
the proof, it should be clear that we could let

k=1

g(x) = folx) {1 + Y ag sin(k logx)} if > la] <1
k=1

to get a large family of densities having the same moments as the lognormal.

The moments of the lognormal are easy to compute. Recall that if x has the
standard normal distribution, then Exercise 1.2.6 implies exp(x ) has the lognormal
distribution.

EX" = Eexp(ny) = /e”’“(er)_l/ze_xz/2 dx

=" / Q)22 gy = exp(n?/2)

since the last integrand is the density of the normal with mean n and variance 1.
Somewhat remarkably, there is a family of discrete random variables with these
moments. Let a > 0 and

P(Y, = ae*) = a " exp(—k?/2)/c, fork e Z
where ¢, is chosen to make the total mass 1.

exp(—n?/2)EY" = exp(—n*/2) Z(aek)”a_k exp(—k?/2)/cq
k

=Y a "M exp(—(k — n)*/2)/ca =1
k

by the definition of c,.

The lognormal density decays like exp(—(logx)?>/2) as |x| — oco. The next
counterexample has more rapid decay. Since the exponential distribution, e™* for
x > 0, is determined by its moments (see Exercise 3.3.28 below), we cannot hope
to do much better than this.

Counterexample 2. Let L € (0, 1) and for —1 <a < 1let

far(x) = c; exp(—|x|"){1 + a sin(B]x|* sgn (x))}
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where 8 = tan(Awr/2) and 1/c; = [ exp(—|x|*)dx. To prove that these are density
functions and that for a fixed value of A they have the same moments, it suffices to
show

/x" exp(—|x[*) sin(B|x|* sgn (x))dx =0 forn=0,1,2,...

This is clear for even n since the integrand is odd. To prove the result for odd n, it
suffices to integrate over [0, 0o0). Using the identity

o0
/ t?~le=4dr = T'(p)/q” when Reqg > 0
0

with p = (n + 1)/A, ¢ = 1 + Bi, and changing variables t = x*, we get
L((n + D/)/(A + g D)D"

o0
= / xMOFEDA oxp(—(1 + Bi)x™)a x* L dx
0

o0

N )L./ x" exp(—x") cos(fx")dx — “‘/ x" exp(—x") sin(Bx*) dx
0 0
Since B = tan(ixr/2)
(1 + B D/ = (cos Az /2)~"*+D/ (exp(i A /2)) "D/

The right-hand side is real since A < 1 and (n + 1) is even, so

/oo x" exp(—x™) sin(Bx*)dx = 0
0

A useful sufficient condition for a distribution to be determined by its
moments is

Theorem 3.3.11. If limsup,_, ., /,L;,/fk /2k =r < 0o, then there is at most one

d.f. F with u, = kadF(x)for all positive integers k.

Remark. This is slightly stronger than Carleman’s condition

o]

1/2k
D Vnyt =00

k=1

which is also sufficient for the conclusion of Theorem 3.3.11.
Proof. Let F be any d.f. with the moments w; and let v, = f |x|*d F(x). The
Cauchy-Schwarz inequality implies v%k 41 < M2kM2k+2, SO

lim sup(v,:/k)/k =7 < o0

k—o00
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Taking x = ¢X in Lemma 3.3.2 and multiplying by ¢/**, we have

n—1
. . it X)" tX|"
ezex(enx_z(’ ) )‘S| |
m! n!

m=0

Taking expected values and using Exercise 3.3.14 gives

n—1
’ Vn

O +1)— @O —tg'©B)... — [—W“(e)‘ <
(n— 1!

Using the last result, the fact that vy < (v + €)kk* for large k, and the trivial bound
ek > k*/ k! (expand the left-hand side in its power series), we see that for any 6

|z]"
n!

(%) 00 +1)=9O)+ ) %w(’")(Q) for [t] < 1/er

m=1

Let G be another distribution with the given moments and 1/ its ch.f. Since ¢(0) =
¥(0) = 1, it follows from (x) and induction that () = 1 (¢) for |t| < k/3r for all
k, so the two ch.f.’s coincide and the distributions are equal. |

Combining Theorem 3.3.11 with the discussion that began our consideration of
the moment problem.

Theorem 3.3.12. Suppose [ x*d F,(x) has a limit p for each k and

lim sup ué,{zk/Zk < 00
k— 00

then F, converges weakly to the unique distribution with these moments.

Exercise 3.3.27. Let G(x) = P(|X| <x), A =sup{x : G(x) < 1}, and v =
E|X|. Show that v,l/k — A, so the assumption of Theorem 3.3.12 holds if A < oo.

Exercise 3.3.28. Suppose |X| has density Cx® exp(—x*) on (0, c0). Changing
variables y = x*, dy = Ax* 1 dx

0
E|X|" = / Cry ™ exp(—y)y'*~dy = CAT (n + a + 1)/1)
0

Use the identity I'(x + 1) = xI'(x) for x > 0 to conclude that the assumption of
Theorem 3.3.12 is satisfied for A > 1 but not for A < 1. This shows the normal
(A = 2) and gamma (A = 1) distributions are determined by their moments.

Our results so far have been for the so-called Hamburger moment problem.
If we assume a priori that the distribution is concentrated on [0, co0), we have
the Stieltjes moment problem. There is a 1-1 correspondence between X > 0 and
symmetric distributions on R givenby X — £ X2 where £ € {—1, 1}is independent
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of X and takes its two values with equal probability. From this we see that

lim sup v,:/Zk/Zk < 00
k— o0
is sufficient for there to be a unique distribution on [0, co) with the given moments.
The next example shows that for nonnegative random variables, the last result is
close to the best possible.

Counterexample 3. Let A € (0,1/2), 8 =tan(Arw), —1 <a <1 and
fa(x) =c exp(—xk)(l +a sin(,Bx’\)) forx >0
where 1/c; = i~ exp(—x*) dx.

By imitating the calculations in Counterexample 2, it is easy to see that the f, are
probability densities that have the same moments. This example seems to be due
to Stoyanov (1987), pp. 92-3. The special case A = 1/4 is widely known.

3.4 Central Limit Theorems

We are now ready for the main business of the chapter. We will first prove the
central limit theorem for

3.4.1 i.i.d. Sequences

Theorem 3.4.1. Let X, X», ...be i.id. with EX; = pu, var(X;) = o> € (0, 00).
IfS, =X+ -+ X, then

(S, —nwu)/on'’? = x

where x has the standard normal distribution.

This notation is non-standard but convenient. To see the logic, note that the square
of a normal has a chi-squared distribution.

Proof. By considering X! = X; — p, it suffices to prove the result when pu = 0.
From Theorem 3.3.8,

2.2

t
o(1) = Eexp(itX)) = 1 — UT +o(?)

SO

12 !
E exp(itS,/on'/?) = (1 - —+ o(n1)>
2n
From Lemma 3.1.1 it should be clear that the last quantity — exp(—t2/2) as
n — 00, which with Theorem 3.3.6 completes the proof. However, Lemma 3.1.1 is
a fact about real numbers, so we need to extend it to the complex case to complete
the proof.
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Theorem 3.4.2. Ifc, — c € Cthen (1 + c,/n)" — €.
Proof. The proof is based on two simple facts:

Lemma3.4.3. Letzy, ..., z,and wy, ..., w, be complex numbers of modulus < 6.
Then

n
-1
<6" E |Zm — W

m=1

n n
[Tan =TT wn
m=1 m=1

Proof. The result is true for n = 1. To prove it for n > 1 observe that

n n n n n n
l_[Zm_l_[wmSle_[Zm_le_[wm+Z11_[wm_wll_[wm
m=1 m=1 m=2 m=2 m=2 m=2

n n
—1
<0 Hzm—l_[wm +0" Nz —wy
m=2 m=2
and use induction. [ ]

Lemma 3.4.4. If b is a complex number with |b| < 1 then e’ — (1 + b)| < |b|*.

Proof. e® — (1 +b) = b2/2! + b3/3! + b* /41 + ..., soif |b| < 1, then

b2
le? — (1 +b)| < %(1+1/2+1/22+...): |b|? |

Proof of Theorem 3.4.2. Let z,, = (1 + ¢, /n), w,, = exp(c,/n), and y > |c|. For
large n, |c,| < y. Since 1 4+ y/n < exp(y/n), it follows from Lemmas 3.4.3 and
3.4.4 that

Cn |2 2

—| <e"——->0

(1 +c,/n)" — e < (e”/”)"f1 n
n n

asn — oQ. [ |

To get a feel for what the central limit theorem says, we will look at some
concrete cases.

Example 3.4.1. Roulette. A roulette wheel has slots numbered 1-36 (18 red and
18 black) and two slots numbered 0 and 00 that are painted green. Players can bet
$1 that the ball will land in a red (or black) slot and win $1 if it does. If we let X;
be the winnings on the ith play, then X, X», ...arei.i.d. with P(X; = 1) = 18/38
and P(X; = —1) = 20/38.

EX;=—1/19 and var(X)=EX?>—(EX)*=1—(1/19)> =0.9972
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We are interested in

S, — -
P(SnzO)=P< s ”“)

on T o./n
Taking n = 361 = 19? and replacing o by 1 to keep computations simple,
i _ 361-(1/19) _1
o/n V361
So the central limit theorem and our table of the normal distribution in the back of
the book tells us that

P(S,>0)~ P(x >1)=1-0.8413 = 0.1587

In words, after 361 spins of the roulette wheel, the casino will have won $19 of
your money on the average, but there is a probability of about 0.16 that you will be
ahead.

Example 3.4.2. Coin flips. Let X, X5, ...be i.id. with P(X; =0) = P(X; =
1) =1/2. If X; = 1 indicates that a heads occured on the ith toss, then S, =
X + --- 4+ X, is the total number of heads at time 7.

EX;=1/2 and var(X)=EX?>—(EX)’=1/2—-1/4=1/4

So the central limit theorem tells us (S, — n/2)/+/n/4 = x. Our table of the
normal distribution tells us that

P(x >2)=1-09773 = 0.0227

so P(|x] <2)=1-2(0.0227) = 0.9546, or plugging into the central limit theo-
rem

0.95 % P((S, —n/2)/yn/4 € [=2,2]) = P(S, —n/2 € [~/n, V/n])

Taking n = 10,000, this says that 95% of the time the number of heads will be
between 4900 and 5100.

Example 3.4.3. Normal approximation to the binomial. Let X, X»,...and S,

be as in the previous example. To estimate P(S;¢ = 8) using the central limit

theorem, we regard 8 as the interval [7.5, 8.5]. Since u = 1/2, and o+/n = 2 for

n=16

|Sn — nul
o/n

~ P(lx| <0.25) =2(0.5987 — 0.5) = 0.1974

P(Sic—8 <05 =P ( < 0.25)

Even though » is small, this agrees well with the exact probability

16 13-11-10-9
27—~ —(.1964.
8 65, 536
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The computations above motivate the histogram correction, which is important
in using the normal approximation for small n. For example, if we are going to
approximate P(Sij¢ < 11), then we regard this probability as P(Sjs < 11.5). One
obvious reason for doing this is to get the same answer if we regard P(Si¢ < 11) =
1 — P(Si6 = 12).

Exercise 3.4.1. Suppose you roll a die 180 times. Use the normal approximation
(with the histogram correction) to estimate the probability that you will get fewer
than 25 sixes.

Example 3.4.4. Normal approximation to the Poisson. Let Z, have a Poisson
distribution with mean A. If X, X5, ... are independent and have Poisson distribu-
tions with mean 1, then §,, = X; + - - - + X,, has a Poisson distribution with mean
n. Since var (X;) = 1, the central limit theorem implies

(S, —n)/nl/2 = X asn —> o0

To deal with values of A that are not integers, let Ny, N, N3 be independent
Poisson with means [A], A — [A], and [A] + 1 — A. If we let Sy = Ny, Z, = N, +
N, and S[)L]_;,_] = N; + N, + N3 then S[)L] <Z, < S[A]+l and using the limit theorem
for the S, it follows that

(Z, — )L)/kl/2 =X asi— o0

Example 3.4.5. Pairwise independence is good enough for the strong law of large
numbers (see Theorem 2.4.1). It is not good enough for the central limit theorem.
Let&, &, ...beiid. with P(§; = 1) = P(§ = —1) = 1/2. We will arrange things
so that forn > 1,

+2"  with prob 27!

Sn: 1+ 1+ n =
» =6 +8&) - (1 +&41) 0 with prob 1 — 27"

Todothiswelet X; = &, X, = £1&,andform =2""'+j, 0<j < 2=l >2
let X,, = X;&,11. BEach X,, is a product of a different set of &;’s, so they are
pairwise independent.

Exercises

34.2. Let Xy, X5,...be 1i1.d. with EX; =0, 0 < var(X;) < oo, and let S, =
X1+ -+ X,. (a) Use the central limit theorem and Kolmogorov’s zero-one law
to conclude that limsup S, /+/n = 0o a.s. (b) Use an argument by contradiction to
show that S, /+/n does not converge in probability. Hint: Consider n = m!.

3.4.3. Let X, X5,...be ii.d. and let S, = X; +---+ X,,. Assume that S,/
/1 = alimit and conclude that EX? < co. Sketch: Suppose EX? = co. Let X,
X}, ...be an independent copy of the original sequence. Let Y; = X; — X/,



128 Central Limit Theorems

Ui = Yily,<a), Vi = Yilqy,>a), and observe that for any K

P(Xn:YmZKﬁ> zP(iU,nzKﬁ,Xn:Vm20)

m=1 m=1

n 1
P (ZUm > Kﬁ) >z

m=1

=

| =

for large n if A is large enough. Since K is arbitrary, this is a contradiction.

344. Let X, X,,...beiid withX; >0, EX; = 1,and var(X;) = o’e (0, 00).
Show that 2(4/S,, — /n) = o x.

3.4.5. Self-normalized sums. Let X, X5, ...beiid. with EX; =0 and E Xl.2 =

o2 € (0, 0). Then
n n 1/2
ZX,,,/ (ZX;) = X
m=1 m=1

3.4.6. Random index central limit theorem. Let X, X5, ...bei.i.d. with EX; =
0 and EXl.2 =02€e(0,00),andlet S, = X; +---+ X,,. Let N, be a sequence of
nonnegative integer-valued random variables and a, a sequence of integers with
a, — oo and N, /a, — 1 in probability. Show that

Sn,/oNan = X

Hint: Use Kolmogorov’s inequality (Theorem 2.5.2) to conclude that if Y, =
Sn,/o/a, and Z,, = S, /o /a,, then Y, — Z, — 0 in probability.

3.4.7. A central limit theorem in renewal theory. Let Y}, Y5, ... bei.i.d. positive
random variables with EY; = p and var (Y;) = 0% € (0, 00). Let S, = Y, + - -- +
Y, and N, = sup{m : S,, < t}. Apply the previous exercise to X; = ¥; — u to prove
that as t — oo,

(uN: = 0/(*t/W)'* = x
3.4.8. A second proof of the renewal CLT. Let Y1, Y>, ..., S,,and N, be as in the
last exercise. Let u = [¢/u], D, = S, — t. Use Kolmogorov’s inequality to show
P(|Suim — (Sy +mp)| > t*° for some m € [—1>°,3°])) > 0 ast — oo

Conclude | N, — (t — D,)/u|/ t'/> — 0 in probability, and then obtain the result in
the previous exercise.

Our next step is to generalize the central limit theorem to:
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3.4.2 Triangular Arrays

Theorem 3.4.5. The Lindeberg-Feller theorem. Foreachn, let X,, ,,, 1| < m < n,
be independent random variables with EX, ,, = 0. Suppose
(i) Xet EX5 > 07> 0

(ii) Forall € > 0, 1im, o0 Y0 _) E( Xl [ Xom| > €) = 0.
Then S, = X,1+---+Xyp=>0xasn — oo.

Remarks. In words, the theorem says that a sum of a large number of small
independent effects has approximately a normal distribution. To see that Theorem
3.4.5 contains our first central limit theorem, let Yy, Y, ...be 1.i.d. with EY; =0
and EY? = 02 € (0, 00), and let X,, ,, = Y,,/n'/2. Then ), | EX; , = o” andif
€e>0

n
> E(Xuml’s [ Xaml > €) = nE(Y1/n' 1% [Y1/n'] > €)

m=1

= E(|Y11% Y] > en'/?) - 0

by the dominated convergence theorem since EY? < 0o.

Proof. Let ¢, ,(t) = E exp(it X, m), G,%m = EX,%)m. By Theorem 3.3.6, it suffices
to show that

[ ] enm® — exp(=1?0/2)

m=1
Let Zym = @um(t) and wy , = (1 — %077, /2). By (3.3.3)
2w — Wam| < EQtXml® A 206X m]?)
< E(tXpml’s | Xnml <€)+ EQUXpml* [ Xnm| > €)
< ePE( X% 1 Xuml <€)+ 202 E(1 Xy m|* [ Xl > €
Summing m = 1 to n, letting n — o0, and using (i) and (ii) gives

n

lim sup E |Znm — Whom| < et’o?

n—00
m=1

Since € > 0 is arbitrary, it follows that the sequence converges to 0. Our next step
is to use Lemma 3.4.3 with 6 = 1 to get

n n
[[enm® =[]0 =%} ,./2)| = 0
m=1 m=1
To check the hypotheses of Lemma 3.4.3, note that since ¢,, ,, isach.f. |@, ()| < 1
for all n, m. For the terms in the second product we note that

of <€+ E(Xuml; | Xnml > €)

n,m
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and € is arbitrary so (ii) implies sup,, arzz,m — 0 and thus if n is large 1 > 1 —
t*0?l,/2 > —1forall m.

To complete the proof now, we apply Exercise 3.1.1 with ¢, , = Onm 2 /2. We
have just shown sup,, ornz’m — 0. (1) implies
n
ZC’”’” — —021‘2/2
m=1
so[r_,(1 —1t%c} m/2) — exp(—t 262 /2) and the proof is complete. ]

Example 3.4.6. Cycles in a random permutation and record values. Continuing
the analysis of Examples 2.2.4and 2.3.2,let Yy, Y>, ... beindependent with P(Y,, =
)=1/m,and P(Y,, =0)=1—1/m.EY,, = I/mand var (Y,,) = 1/m — 1/m>.
Soif S, =Y+ -+ Y, then ES, ~ logn and var(S,) ~ logn. Let

Xn,m = (Ym - l/m)/(log n)l/2

EXym=0,%"_EX2 — 1 andforanye > 0

> E(Xuml*5 1 Xpml > €) > 0

m=1

1/2

since the sum is 0 as soon as (logn)~ "/~ < €. Applying Theorem 3.4.5 now gives

|
(logn)_l/2 ( — Z —) =X
m=1 m

Observing that

n—1

1 " "1
— “dx =logn > —
o= [Caar—togn = Y

m=1 m=2

shows |logn ->" 1/ m‘ < 1 and the conclusion can be written as

(S, —logn)/(logn)'"* = x

Example 3.4.7. The converse of the three series theorem. Recall the setup of
Theorem 2.5.4. Let X, X»,...be independent, let A > 0, and let Y, =
Xm1(x, <) In order that Y ° | X,, converges (i.e., limy_ ZQ]:I X, exists) it
is necessary that

n=1

0 0 o0
() Y P(IXul > A) < o0, (i) Y _ EY, converges, and (iii) Y  var(¥,) < oo

n=1 n=1 n=1

Proof. The necessity of the first condition is clear. For if that sum is infinite,
P(|X,| > Ai.0.) > 0 and lim,_,« » »_, X,, cannot exist. Suppose next that the
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sum in (i) is finite but the sum in (iii) is infinite. Let

co=Y var(¥,) and X, =¥, — EY,)/c)?

m=1

EXum=0,%0_EX;, =1, and forany e > 0

> E(Xuml’5 1 Xnml > €) > 0

m=1
since the sum is 0 as soon as 2A/ o <e. Applying Theorem 3.4.5 now gives that
if S, = X1 +---+ X, then S, = x. Now

(1) if limy— 00 Dy Xom eXists, limy, o0 D _; ¥ €Xists.

(ii) if we let T, = (3, Ym)/cs'* then T, = 0.

The last two results and Exercise 3.2.13 imply (S, — T,,) = x. Since

Sy — T, =— (Z EYm> Jcl?

m=<n

is not random, this is absurd.

Finally, assume the series in (i) and (iii) are finite. Theorem 2.5.3 implies
that lim,_o0 Y ,_; (Y — EY,,) exists, so if lim,ooy , _; X,, and hence
lim,, o Zﬁl:l Y,, does, taking differences shows that (ii) holds. [ |

Example 3.4.8. Infinite variance. Suppose X, X5, ...arei.i.d. and have P(X; >
x)=P(X; < —x)and P(|X;| > x) =x"2forx > 1.

o
E|Xi)? = / 2xP(|X;| > x)dx = 00
0

but it turns out that when S, = X; + - - - 4+ X,, is suitably normalized it converges
to a normal distribution. Let
Yim = Xml(x,,1<n2 1oglogn)

The truncation level ¢, = n'/?loglogn is chosen large enough to make

> P # Xu) <nP(X1| > ¢,) = 0

m=1
However, we want the variance of Y, ,, to be as small as possible, so we keep the
truncation close to the lowest possible level.
Our next step is to show E Yn%m ~ logn. For this we need upper and lower
bounds. Since P(|Y, | > x) < P(|Xi| > x) and is O for x > ¢,, we have

EY,ims/ 2yP<|X1|>y>dy=1+/ 2/ydy
0 1

=1+42logc, =1+ logn + 2logloglogn ~ logn
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In the other direction, we observe P(|Y, | > x) = P(|X1]| > x) — P(|X1| > ¢,)
and the right-hand side is > (1 — (loglogn)™2)P(|X,| > x) when x < /n so

Jn
EYZ, > (1 - (loglogn)™) /1 2/ydy ~ logn

If S, =Y,1+---+Y,, then var(S)) ~ nlogn, so we apply Theorem 3.4.5
to Xpm = Yum/(n logn)!/2. Things have been arranged so that (i) is satisfied.
Since |Y;.m| < nl/? loglogn, the sum in (ii) is O for large n, and it follows that
S’ /(nlogn)'/? = x. Since the choice of ¢, guarantees P(S, # S/) — 0, the same
result holds for S,,.

Remark. In Section 3.6, we will see that if we replace P(|X;| > x) =x"2 in

Example 3.4.8 by P(|X;| > x) =x~* where 0 < o < 2, then S,/n'/* = to a
limit which is not y . The last word on convergence to the normal distribution is the
next result, due to Lévy.

Theorem 3.4.6. Let X1, X5, ...be iid. and S, = X, + ---+ X,,. In order that
there exist constants a, and b, > 0 so that (S, — a,)/b, = x, it is necessary and
sufficient that

V2 P(1X1] > y)/E(1X11%1X1] < y) — 0.

A proof can be found in Gnedenko and Kolmogorov (1954), a reference that
contains the last word on many results about sums of independent random
variables.

Exercises

In the next five problems X, X», ...are independent and S,, = X| + --- + X,,.

3.4.9. Suppose P(X,, =m) = P(X,, = —m) = m~2/2, and for m > 2
PXp=1)=PXy=-1)=(0-m)/2

Show that var(S,)/n — 2 but S,/</n = x. The trouble here is that X, ,, =
X,n/+/n does not satisfy (ii) of Theorem 3.4.5.

3.4.10. Show thatif |[X;| < M and ), var(X,) = oo, then

(Sn - ESn)/V Var(Sn) = X

3.4.11. Suppose EX; =0, EX? = 1,and E|X;|*™ < C forsome 0 < §, C < oc.
Show that S, //n = x.
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3.4.12. Prove Lyapunov’s Theorem. Let o, = { var(S,)}!/?. If thereisa$ > 0so
that

: —(2+96) _ 248y
lim o, ZE(|Xm EX,I*) =0

m=1

then (S, — ES,)/a, = x. Note that the previous exercise is a special case of this
result.

3.4.13. Suppose P(X; = j) = P(X; =—j)=1/2jfand P(X; =0) =1 — jF
where B > 0. Show that (i) if 8 > 1 then S, - Sy a.s., (i) if B < 1 then
S, /nC=P/2 = ¢y, (iii) if 8 = 1 then S, /n = K where

1
E exp(itR) = exp (—/ x71(1 — cos x1) dx)
0

3.4.3 Prime Divisors (Erdos-Kac)*

Our aim here is to prove that an integer picked at random from {1, 2, ..., n} has
about

loglogn + x(loglogn)!'/?

prime divisors. Since exp(e*) = 5.15 x 10%3, this result does not apply to most
numbers we encounter in “everyday life.” The first step in deriving this result is to
give a

Second proof of Theorem 3.4.5. The first step is to let

n
ha(€) =Y E(X3 |1 Xyml > €)

m=1

and observe

Lemma 3.4.7. h,(¢) — O for each fixed € > 0 so we can pick €, — 0 so that
h,(e,) — 0.

Proof. Let N, be chosen so that h,(1/m) <1/m for n > N,, and m — N,
is increasing. Let €, = 1/m for N, <n < N4+, and =1 for n < N;. When
Ny <n < Nyyy, €, =1/m, so |h,(€,)| = |h,(1/m)| < 1/m, and the desired
result follows. |

Let X;l,m = X”v””l(lxn.m|>én)’ Yn’m = X”vml(lxn.m‘fen)’ and Zns’n = anm -
EYn,m~ Cleaﬂy |Zn,m| =< 2611~ USing Xn,m =X/ + Yn,ma Zn,m = Iym — EYn,m’

n,m

EY,m = —EX, the variance of the sum is the sum of the variances, and

n,m?
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var (W) < EW?, we have
n n 2 n 2
E (Z Xow — Zn,m> =E (Z Xm = EX;,m>
m=1 m=1 m=1
n n
= Z EX,, —EX,, ) < Z E(X,,)* =0
m=1 m=1

as n — 00, by the choice of ¢,.
LetS,=>"_ Xumand T, =) " _ Z, . The last computation shows S, —
T, — 0in L? and hence in probability by Lemma 2.2.2. Thus, by Exercise 3.2.13,

it suffices to show T, = o x. (i) implies ES? — o2. We have just shown that

E(S, — T,)* — 0, so the triangle inequality for the L? norm implies ET? — o2.

To compute higher moments, we observe

AL AL
e NN o Y e 7

Ly

where ) extends over all k-tuples of positive integers withry +--- +r, = r and
Z,',- extends over all k-tuples of distinct integers with 1 <i < n. If we let

Au(ri, .. ) = Z EZ). - EZ},

nlk

then

ET = erl rk,k,A(l,---)

k=1 r;

To evaluate the limit of E7, we observe:

(a) If some r; = 1, then A,(ry, ...r) = O0since EZ,;, = 0.
(b) If all r; = 2, then

n k
ZEzg,il - EZ2, < (Z EZ,f,m) — o
i_]' m:l

To argue the other inequality, we note that for any 1 <a < b <k we can
estimate the sum over all the iy, ..., iy with i, =i, by replacing £ Z,f’ia by
(2€,,)* to get (the factor (’;) giving the number of ways to pick 1 <a < b <k)

k—1
n k n
() ST = (Jear (Lea) o
m=1 m=1

(c) If all the r; > 2 but some r; > 2 then using

E|Zyi|" < Q&) ?EZ;



3.4 Central Limit Theorems 135

we have
|An(ris o)l <Y ENZui, I+ E|Zy g ™
ij
<26, *A4,2,...2) > 0

When r is odd, some r; must be =1 or > 3 so ET, — 0 by (a) and (c). If
r = 2k is even, (a)—(c) imply

o2 (2k)! .
T - Een

and the result follows from Theorem 3.3.12. [ ]

ET, —

Turning to the result for prime divisors, let P, denote the uniform distribution on
{1,...,n}. If Px(A) = lim P,(A) exists, the limit is called the density of A C Z.
Let A, be the set of integers divisible by p. Clearly, if p is a prime P,.(A,) = 1/p
and g # p is another prime

Poo(Ap N Aq) = 1/pq = Poo(Ap)Poo(Aq)

Even though P is not a probability measure (since P({i}) = O for all i), we can
interpret this as saying that the events of being divisible by p and g are independent.
Let §,(n) = 1if n is divisible by p, and = 0 otherwise, and

gn) = Z d,(n) be the number of prime divisors of n

p=n

this and future sums on p being over the primes. Intuitively, the §,(n) behave like
X, that are i.i.d. with

P(X,=1)=1/p and P(X,=0)=1—1/p

The mean and variance of ) _ X, are

p=n

> 1/p and > 1/p(—1/p)

p=n p=n

respectively. It is known that

(%) > " 1/p =loglogn + O(1)

p=n

(see Hardy and Wright, 1959, Chapter XXII), while anyone can see ) _ s 1/ p? < o0,
so applying Theorem 3.4.5 to X, and making a small leap of faith gives us:

Theorem 3.4.8. Erdos-Kac central limit theorem. As n — oo

P, (m < n:g(m)—loglogn < x(loglogn)'/*) — P(x < x)
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Proof. We begin by showing that we can ignore the primes “near” n. Let
a, = n'/loglogn

loga, =logn/loglogn
logloga, = loglogn — logloglogn

The sequence «,, has two nice properties:
(a) (Zanq,fn 1/p> /(loglogn)'/> — 0 by (x)
Proof of (a). By ()

> p=>1p-> 1/p

ap<p=n p=n p=oy
= loglogn — logloga, + O(1)
= logloglogn 4+ O(1)

(b) If € > 0, then «,, < n¢ for large n and hence o, /n — 0 for all r < oo. |

Proof of (b). 1/loglogn — 0 asn — oo.
Let g,(m) =) »<a, Op(m) and let E,, denote expected value w.r.t. P,.

E( > ap>= D Pmismy=1< Y 1/p

oy <p=n ap<p=n ap<p=n

so by (a) it is enough to prove the result for g,. Let

Si=Y_ X,

p=an

where the X, are the independent random variables introduced above. Let b, =
ES, and a,zl = var (S,). (a) tells us that b, and a,% are both

log logn + o((log log n)'/?)
so it suffices to show
P,(m : g,(m) — b, < xa,) - P(x <x)

An application of Theorem 3.4.5 shows (S, — b,)/a, = x, and since |X,| < 1it
follows from the second proof of Theorem 3.4.5 that

E (S, —by)/a,) — Ex" forallr
Using notation from that proof (and replacing i; by p;)

5= XY SR X

k=1 r;
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Since X, € {0, 1}, the summand is

E(Xp, - Xp)=1/(p1--- pr)

A little thought reveals that

1
En(Bpy---0p) = [n/(p1--- Po)]

The two moments differ by < 1/n, so

, _ B el
|E(S)) — Eq(g)| = ;;rl rk’k‘ 1
513n(21)r5%’r’—>0
pP=a,

by (b). Now

r

ESy—by) =) <;)Esr<—bn>’—m

m=0
- r
E(gn — bn)r = Z (m> Eg;r;l(_bn)rim
m=0

so subtracting and using our bound on |E(S;) — E,(g,)| withr =m

- 1
|E(S, — by) — E(gn — by)'| < Z (;) ;anmb;—m = (ap +b,) /n — 0

m=0
since b,, < a,. This is more than enough to conclude that
E ((gn - bn)/an)r - EXr

and the desired result follows from Theorem 3.3.12. [ |

3.4.4 Rates of Convergence (Berry-Esseen)*

Theorem 3.4.9. Let X1, X2, ...bei.id with EX; =0, EX? = 02, and E|X;|? =
p < oo. If F,(x) is the distribution of (X1 + ---+ X,)/o/n and N (x) is the
standard normal distribution, then

|F(x) — N(x)| <3p/o’y/n

Remarks. The reader should note that the inequality holds for all n and x, but
since p > o3, it only has nontrivial content for n > 10. It is easy to see that the rate
cannot be faster than n='/2. When P(X; = 1) = P(X; = —1) = 1/2, symmetry
and (1.4) imply

Fa(0) = %{1 + (S5 = 0)) = %(1 +(rm) ) + o(n~12)
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The constant 3 is not the best known (van Beek, 1972, gets 0.8), but as Feller brags,
“our streamlined method yields a remarkably good bound even though it avoids
the usual messy numerical calculations.” The hypothesis E|X|? is needed to get
the rate n~'/2. Heyde (1967) has shown that for 0 < § < 1

Zn‘”‘m sup | F(x) — N(x)| < o0

n=1

if and only if E|X|**® < oo. For this and more on rates of convergence, see Hall
(1982).

Proof. Since neither side of the inequality is affected by scaling, we can suppose
without loss of generality that 0> = 1. The first phase of the argument is to derive an
inequality, Lemma 3.4.11, that relates the difference between the two distributions
to the distance between their ch.f.’s. Polya’s density (see Example 3.3.8 and use (e)
of Theorem 3.3.1)

1 —cos Lx

hi(x) = s

has ch.f. w;(9) = (1 — |8/L|)* for |0] < L. We will use H; for its distribution
function. We will convolve the distributions under consideration with H; to get
ch.f. that have compact support. The first step is to show that convolution with Hy,
does not reduce the difference between the distributions too much.

Lemma 3.4.10. Let F and G be distribution functions with G'(x) < A < o0. Let
Ax)=F(x)—G(x),n=sup|Ax)|, AL = Ax Hy,andn, = sup |Ap(x)|. Then
12x 24\

n
>_-——— 9 <2 I
nL_Z Tl ron= S 7L

Proof. A goes to 0 at £o00, G is continuous, and F is a d.f., so there is an x(y with
A(xg) = n or A(xgp—) = —n. By looking at the d.f’s of (—1) times the r.v.’s in
the second case, we can suppose without loss of generality that A(xg) = 5. Since
G'(x) < A and F is nondecreasing, A(xo + s) > n — As. Letting § = n/2A, and
t = xo + 8, we have

n/2) 4+ Ax for x| <$§

—n otherwise

At —x) > [
To estimate the convolution A, we observe

2/00 hi(x)dx < 2/00 2/(m Lx¥)dx = 4/(x LS)
§ )
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Looking at (—4, §) and its complement separately and noticing that symmetry
. B
implies f—a xhp(x)dx =0, we have

4 4 n 61 n 12x
>A >~ (1 —)—p—=2_ "L _1T_ =%
Lz ALlt) 2( - ) 1 2 7Ls 2 7L

which proves the lemma. u

Lemma 3.4.11. Ler K| and K, be d.f. with mean 0 whose ch.f. k; are integrable

_ _lxKl(t)_KZ(t)
K0 = Ka) = @y [ e 020 g
Proof. Since the k; are integrable, the inversion formula, Theorem 3.3.4, implies
that the density k;(x) has

ki(y) = (2)"! / e (1) di

Subtracting the last expression with i = 2 from the one with i = 1, then integrating
from a to x and letting AK = K| — K, gives

AK(x) — AK(a) = 27)"! /x / e k1 (1) — ko(2)} dt dy

— (27_[)—1 /{e—im _ e—iIX}Kl(t) _ K2(t) d

it
the application of Fubini’s theorem being justified since the x; are integrable in ¢
and we are considering a bounded interval in y.

The factor 1/it could cause problems near zero, but we have supposed that the K;
have mean 0, so {1 — «;(¢)}/t — 0by Exercise 3.3.14, and hence (k1 (¢) — «2(t))/ it
is bounded and continuous. The factor 1/it improves the integrability for large ¢ so
(k1(¢) — ko(2))/ it isintegrable. Letting a — —oo and using the Riemann-Lebesgue
lemma (Exercise 1.4.4) proves the result. [

Letgr and ¢ be thech.f.’sof F and G. Applying Lemma3.4.11to F;, = F % Hy,
and G, = G % Hy, gives

1
|Fr(x) — GrL(x)| < 7 / lpr (D) (t) — @G(f)wL(f)l —
T |t|

L

1
< | |§0F( ) — @g(1)] n

because |w, (t)| < 1. Using Lemma 3.4.10 now, we have

L 245

1
|F(x) — G| = —/ lor(©0) — ¢G(9)I = + —
T JoL [
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where A = sup, G'(x). Plugging in F = F,, and G = N gives

24

1 L
|Fu(x) = N(x)| < ;/L 9"(0/v/n) — ¥ (O) m 7 (3.4.1)

and it remains to estimate the right-hand side. This phase of the argument is fairly
routine, but there is a fair amount of algebra. To save the reader from trying to
improve the inequalities along the way in hopes of getting a better bound, we
would like to observe that we have used the fact that C = 3 to get rid of the cases
n <9,and we use n > 10 in (e).

To estimate the second term in (3.4.1), we observe that

(a) sup G'(x) = G'(0) = 27)~ '/ = 0.39894 < 2/5

For the first, we observe that if |«|, || < ¥

n—1

(b) |an _ ,8n| S Z |Ot"_m,3m _ an_m_lﬂm+l| S n|0[ _ ﬁh/n_l
m=0

Using (3.3.3) now gives (recall we are supposing o = 1)

(©) lp(t) — 14 12/2] < plt[*/6

soif 2 <2

(d) lp() < 1—12/2+ plt[*/6

Let L = 4./n/3p.1f |#| < L, then by (d) and the fact p|0|//n < 4/3
lp©//m)| < 1—06%/2n+ plo*/6n*?
<1 —560%/18n < exp(—56%/18n)
since 1 —x < e™*. We will now apply (b) with
a=@@//n)  Pp=exp(=07/2n)  y =exp(~50°/18n)
Since we are supposing n > 10
) " < exp(—67/4)
For the other part of (b), we write
nla — Bl < nlp(0/+/n) — 1 +6%/2n| + n|1 — 67 /2n — exp(—6°/2n)|
To bound the first term on the right-hand side, observe that (c) implies
nlg(8/v/n) — 1 +6/2n] < pl6|*/6n'/

For the second term, note that if 0 < x < 1, then we have an alternating series with
decreasing terms, SO

2 )C3

o 1 X
—( =0l == +5

xZ

2

=
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Taking x = 92/211, it follows that for || < L < +/2n
n|l —60%/2n — exp(—02%/2n)| < 6*/8n

Combining this with our estimate on the first term gives

) nla — B < pl6I*/6n'* + 6% /8n
Using (f) and (e) in (b), gives
|9|3
|alfp (0//n) — exp(—6°/2)| < exp(—0 /4){6 72t ™ }

18

since p/s/n =4/3L,and 1/n =1//n-1//n <4/3L -1/3since p > landn >
10. Using the last result and (a) in Lemma 3.4.11 gives

3
< lexp( 0 /4){—+ﬂ}

2 3
aL|F,(x) — N(x)| 5[ exp(—0 /4){29 |?E|§ }d0+96

Recalling L = 4./n/3p, we see that the last result is of the form | F,,(x) — N(x)| <
Cp/+/n. To evaluate the constant, we observe

/(2na) 12x2 exp(—x?/2a)dx = a
and writing x> = 2x? - x/2 and integrating by parts
o0 o0
2 f x3exp(—x%/4)dx =2 / 4x exp(—x2/4) dx
0 0

= —16 " =16
0

This gives us

1 3 /2 0
|Fn<x>—N<x>|s;-é—L<§ ) F+§+96>7< v

For the last step, you have to get out your calculator or trust Feller. [

3.5 Local Limit Theorems®*

In Section 3.1 we saw that if X;, X,,...are i.id. with P(X; =1)= P(X; =
—1) = 1/2 and k, is a sequence of integers with 2k, /(2n)!/> — x, then

P(S>, = 2ky,) ~ (tn)~? exp(—x2/2)

In this section, we will prove two theorems that generalize the last result. We begin
with two definitions. A random variable X has alattice distribution if there are con-
stants b and i > O so that P(X € b+hZ)=1, where b+hZ ={b+ hz : z € Z}.
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The largest & for which the last statement holds is called the span of the
distribution.

Example 3.5.1. If P(X = 1) = P(X = —1) = 1/2, then X has a lattice distribu-
tion with span 2. When 4 is 2, one possible choice is b = —1.

The next result relates the last definition to the characteristic function. To check
(ii) in its statement, note that in the last example E(e'*) = cost has | cos(t)| = 1
when t = nir.

Theorem 3.5.1. Let ¢(t) = Ee''X. There are only three possibilities.
(i) lo@®)| < 1 forallt # 0.
(ii) Thereis a A > 0so that |p(A)| = 1 and |¢(t)| < 1 for 0 <t < A. In this case,
X has a lattice distribution with span 2 /A.
(iii) |@(t)| = 1 for all t. In this case, X = b a.s. for some b.

Proof. We begin with (ii). It suffices to show that |p(¢)| = 1 if and only if P(X €
b+ 2n/t)Z) = 1 for some b. First, if P(X € b+ 2n/t)Z) = 1, then

9(t) = Ee"* ="y "™ P(X =b+ 27/t)n) = ¢
nez
Conversely, if |¢(¢)| = 1, then there is equality in the inequality | Ee'*| < E|e'X|,
so by Exercise 1.6.1 the distribution of ¢//* must be concentrated at some point
e’ and P(X e b+ Q2n/t)Z) = 1.

To prove trichotomy now, we suppose that (i) and (ii) do not hold, that is, there
is a sequence f, | 0 so that |¢(#,)| = 1. The first paragraph shows that there is
a b, sothat P(X € b, + (2w /t,)Z) = 1. Without loss of generality, we can pick
b, € (—m/t,, w/t,). Asn — oo, P(X ¢ (—=/t,, /t,]) — 0, so it follows that
P(X = b,) — 1.Thisisonly possibleif b, =bforn > N,and P(X =b)=1. R

We call the three cases in Theorem 3.5.1 (i) nonlattice, (ii) lattice, and (iii)
degenerate. The reader should notice that this means that lattice random variables
are by definition nondegenerate. Before we turn to the main business of this section,
we would like to introduce one more special case. If X is a lattice distribution and
we can take b = 0, i.e., P(X € hZ) = 1, then X is said to be arithmetic. In this
case, if A = 27/ h then (L) = 1 and ¢ is periodic: p(t + 1) = (¢).

Our first local limit theorem is for the lattice case. Let X, X5, .. .be 1.i.d. with
EX;=0,EX 12 =02 € (0, 00), and having a common lattice distribution with span
h.IftS,=Xi+---+ X, and P(X; € b+ hZ) =1 then P(S, e nb+ hZ) = 1.
We put

pa(x) = P(S,/s/n =x) forx € L, ={(nb+hz)//n:z<cZ)
and

n(x) = 2ro?) 2 exp(—x%/20?%) for x € (—o0, 00)
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Theorem 3.5.2. Under the hypotheses above, as n — 00
172

n
Tpn(x) — n(x)

sup — 0

xeLl,

Remark. To explain the statement, note that if we followed the approach in Exam-
ple 3.4.3, then we would conclude that for x € £,

x+h/2n h
pn(x) = f n(y)dy ~ —n(x)
x—h/2Jn N

Proof. Let Y be a random variable with P(Y ea+60Z)=1 and v (t) =

E exp(itY). It follows from part (iii) of Exercise 3.3.2 that
/6

1 .
P(Y =x)= M/ €_ltXW(I)dt

—/6

Using this formula with 8 = h//n, ¥(t) = E exp(itS,//n) = ¢"(t//n), and
then multiplying each side by 1/6 gives

nl/2 1 nJ/h

Tpn(x): Z/ . he*’txw"(t/«/ﬁ)dz
—m/n/

Using the inversion formula, Theorem 3.3.5, for n(x), which has ch.f.

exp(—o?t?/2), gives

— L —itx 2.2
n(x) = e exp(—o“t</2)dt
2

Subtracting the last two equations gives (recall 7 > 1, |[e7/™*| < 1)

1/2

—— Pa(x) — n(x)

w/n/h
- < / 10"t/ /) — exp(—a12/2)| d

T /n/h

o0
+ / exp(—o2t?/2) dt
w/n/h
The right-hand side is independent of x, so to prove Theorem 3.5.2 it suffices to
show that it approaches 0. The second integral clearly — 0. To estimate the first
integral, we observe that ¢"(t//n) — exp(—o?t?/2), so the integrand goes to 0
and it is now just a question of “applying the dominated convergence theorem.”
To do this, we will divide the integral into three pieces. The bounded convergence
theorem implies that for any A < oo the integral over (—A, A) approaches 0. To
estimate the integral over (—A, A)°, we observe thatsince EX; = Oand EX 12 =02,
formula (3.3.3) and the triangle inequality imply that

2
u .
lp(w)| < |1 —o?u?/2| + — E(min(ju] - X[, 61X %))

The last expected value — 0 as u — 0. This means we can pick § > 0 so that if
lu| < 8, itis < 0>/2 and hence

lpuw)| < 1 —o?u?/2+0%u?/4 =1 — 0%u?/4 < exp(—c*u?/4)
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since 1 — x < e™*. Applying the last result to u = t/./n, we see that for r < §./n

() lp(t/v/n)"| < exp(=a?*/4)
So the integral over (—84/n, §i/n) — (—A, A) is smaller than

dy/n
2/ exp(—02t2/4)dt
A

which is small if A is large.

To estimate the rest of the integral we observe that since X has span /2, Theorem
3.5.1 implies |@(u)| # 1 for u € [8, w/ h]. ¢ is continuous, so there is an n < 1 so
that |p(u)| < n < 1 for |u| € [8, m/h]. Letting u = t//n again, we see that the
integral over [—m\/n/h, w\/n/h] — (—8+/n, §/n) is smaller than

. /n/h
2 / n" + exp(—o2t2/2) dt
s

which — 0 as n — oo. This completes the proof. ]

We turn now to the nonlattice case. Let Xy, X5, ...be 1.i.d. with EX; =0,
EXi2 =02 € (0,00), and having a common characteristic function ¢(¢) that
has |p(t)] <1 for all t #0. Let S, =X, +---+ X, and n(x) = Qro?)~'/?
exp(—x2/20?).

Theorem 3.5.3. Under the hypotheses above, if x,//n — x and a < b,
VnP(S, € (x, +a, x, + b)) = (b — a)n(x)
Remark. The proof of this result has to be a little devious because the assumption

above does not give us much control over the behavior of ¢. For a bad example, let
q1, q2, - . . be an enumeration of the positive rationals that has g, < n. Suppose

P(X =¢q,) = P(X = —q,) = 1/2""!

In this case EX = 0, EX? < oo, and the distribution is nonlattice. However, the
characteristic function has lim sup,_, . [¢(¢)| = 1.

Proof. To tame bad ch.f.’s, we use a trick. Let § > 0

1 1—cosédy
ho(y) = s T

be the density of the Polya’s distribution and let sg(x) = €'%*h(x). If we introduce
the Fourier transform

gu) = / e g(y)dy
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then it follows from Example 3.3.8 that

}2() 1—|u/8| if|ul <96
u) =
0 0 otherwise

and it is easy to see that ﬁg(u) = ﬁo(u + 0). We will show that for any 6

@ Vi Eha(S, = ) = o) [ oty dy
Before proving (a), we will show it implies Theorem 3.5.3. Let
fn(A) = /nP(S, — x, € A), and u(A) = n(x)|A|
where |A| = the Lebesgue measure of A. Let
=V Eho(S, ~ ) anda = nx) [ hol)dy = n(x)

Finally, define probability measures by

1 1
Vu(B) = —/ ho()un(dy), and v(B)= E/ ho(y)u(dy)
B B

n

Taking & = 0 in (a) we see o, — o and so (a) implies

) / ¢, (dy) — f v (dy)

Since this holds for all 6, it follows from Theorem 3.3.6 that v, = v. Now if
lal, |b| < 2m /8, then the function

1
k(y) = —— -1,
6)) 700y @.n)(y)

is bounded and continuous a.s. with respect to v so it follows from Theorem 3.2.4
that

[ komian — [k
Since o, — «, this implies

VnP(S, € (x, +a, x, + b)) = (b — a)n(x)

which is the conclusion of Theorem 3.5.3.
Turning now to the proof of (a), the inversion formula, Theorem 3.3.5, implies

1 N
ho(x) = E/e_”’xho(u)du

Recalling the definition of &y, using the last result, and changing variables u =
v + 6, we have

. 1 . ~
ho(x) = €' ho(x) = > / e =X h o) du

1 oA
_lUXh d
7 / e o(v)dv
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since fzg(v) = ﬁo(v + 0). Letting F,, be the distribution of S, — x, and integrating
gives

1 A
Eho(Sy — x0) = — f / = o) dut d F ()
27

— i/fe—i"xm(x)ﬁg(u)du
27

by Fubini’s theorem. (Recall that /4 (u) has compact support and F,, is a distribution
function.) Using (e) of Theorem 3.3.1, we see that the last expression

1 A
= —/(p(—u)"e‘”x”hg(u)du
21

To take the limit as n — oo of this integral, let [—M, M] be an interval with
fzg(u) =0 foru ¢ [-M, M]. By (x) above, we can pick § so that for |u| < §

() lp(u)| < exp(—o*u®/4)

Let/ =[-6,8]landJ = [—M, M] — I.Since |p(u)| < 1foru # 0and ¢ is contin-
uous, there is a constant n < 1 sothat |p(u)| < n < 1foru € J. Since |ﬁ9(u)| <1,
this implies that

J

v / o(—u)" e hy(u)du| < Y oMy = 0
27T 7 27T

as n — oo. For the integral over I, change variables u = t//n to get
1 [ivn ) .
| ety e g2/ di
21 —8/n

The central limit theorem implies ¢(—t//n)" — exp(—o?t?/2). Using (c) now
and the dominated convergence theorem gives (recall x,,/+/n — x)

A 1 oA
v / o(—u)" " ho(u)du — — / exp(—a2t2/2)e ™" hy(0) dt
27'[ 1 27T

= n(x)ﬁg(O) = n(x) / he(y)dy

by the inversion formula, Theorem 3.3.5, and the definition of ﬁg(O). This proves
(a) and completes the proof of Theorem 3.5.3. [ |

3.6 Poisson Convergence

3.6.1 The Basic Limit Theorem

Our first result is sometimes facetiously called the “weak law of small numbers” or
the “law of rare events.” These names derive from the fact that the Poisson appears
as the limit of a sum of indicators of events that have small probabilities.
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Theorem 3.6.1. Foreachn, let X, ,,, | < m < n be independent random variables
with P(Xym = 1) = ppom, P(Xpym =0) =1 — py.m. Suppose

(i) >0 _y Pum — A € (0, 00), and

(ii) maxi<m<n Pn.m — 0.

If Sy = Xu1+ -+ Xy then S, = Z where Z is Poisson()).

Here Poisson(}) is shorthand for Poisson distribution with mean A, that is,
P(Z =k)=e " */k!

Note that in the spirit of the Lindeberg-Feller theorem, no single term contributes
very much to the sum. In contrast to that theorem, the contributions, when positive,
are not small.

First proof. Let ¢, ,,(t) = E(exp(itX,m) =1 — ppm) + pn’me” and let S, =
Xn1+ -+ X, Then

n
Eexp(itS,) = [ [(1 + pum(e” — 1))
m=1
Let 0<p <1. |exp(p(e’ — 1)) =exp(pRe(ei’ —1)) <1 and |1+ p(e'" —
1)] <1 since it is on the line segment connecting 1 to e'’. Using Lemma 3.4.3

with & = 1 and then Lemma 3.4.4, which is valid when max,, p, ,» < 1/2 since
e —1] <2,

exp (Z Pam(e’ — 1>) — [T+ pam(e” = 1)}
m=1

m=1

= Z ‘exp(pn,m(eit —1))—-{1+ Pn,m(e” _ 1)}|

m=1

n
E 2 it 2
S pn’mlel - 1|
m=1

Using |e’ — 1| < 2 again, it follows that the last expression

n
<4 (12% pn,m) XE Pum — 0
o

by assumptions (i) and (ii). The last conclusion and > _| py.» — A imply
E exp(itS,) — exp(A(e'’ — 1))

To complete the proof now, we consult Example 3.3.2 for the ch.f. of the Poisson
distribution and apply Theorem 3.3.6. [ |

We will now consider some concrete situations in which Theorem 3.6.1 can be
applied. In each case we are considering a situation in which p, , = c¢/n, so we
approximate the distribution of the sum by a Poisson with mean c.
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Example 3.6.1. In a calculus class with 400 students, the number of students
who have their birthday on the day of the final exam has approximately a Poisson
distribution with mean 400/365 = 1.096. This means that the probability no one
was born on that date is about e~'"%°® = 0.334. Similar reasoning shows that the
number of babies born on a given day or the number of people who arrive at a bank
between 1:15 and 1:30 should have a Poisson distribution.

Example 3.6.2. Suppose we roll two dice 36 times. The probability of “double
ones” (one on each die) is 1/36, so the number of times this occurs should have
approximately a Poisson distribution with mean 1. Comparing the Poisson approx-
imation with exact probabilities shows that the agreement is good even though the
number of trials is small.

k 0 1 2 3

Poisson 0.3678 0.3678 0.1839  0.0613
exact 03627 0.3730 0.1865  0.0604

After we give the second proof of Theorem 3.6.1, we will discuss rates of conver-
gence. Those results will show that for large n the largest discrepancy occurs for
k = 1 and is about 1/2en ( = 0.0051 in this case).

Example 3.6.3. Let &, 1, ..., &, , be independent and uniformly distributed over
[—n,n]. Let X, ,, = 1if &, ,, € (a, b), = 0 otherwise. S, is the number of points
that land in (a, b). pym = (b —a)/2n 50 ), ppm = (b — a)/2. This shows that
(i) and (ii) in Theorem 3.6.1 hold, and we conclude that S,, = Z, a Poissonr.v. with
mean (b — a)/2. A two-dimensional version of the last theorem might explain why
the statistics of flying bomb hits in the South of London during World War II fit
a Poisson distribution. As Feller, Vol. I (1968), pp. 160-161 reports, the area was
divided into 576 areas of 1/4 square kilometers each. The total number of hits was
537 for an average of 0.9323 per cell. The following table compares Ny the number
of cells with k hits with the predictions of the Poisson approximation.

k 0 1 2 3 4 >5

Ny 229 211 93 35 7 1
Poisson 226.74 211.39 98.54 30.62 7.14 1.57

For other observations fitting a Poisson distribution, see Feller, Vol. I (1968),
Section VIL.7.

Our second proof of Theorem 3.6.1 requires a little more work but provides
information about the rate of convergence. We begin by defining the total variation
distance between two measures on a countable set S.

1
I =il = 3 3 1@ = v(@)| = sup|u(A) — v(A)]
- AcCS
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The first equality is a definition. To prove the second, note that for any A
Z l(z) = v(2)| = |(A) — v(A)| + [n(A®) — v(A)] = 2|w(A) — v(A)|
Z
and there is equality when A = {z : u(z) > v(2)}.
Exercise 3.6.1. Show that (i) d(u, v) = || — v|| defines a metric on probability
measures on Z and (ii) ||, — p|| — Oif and only if u,(x) — w(x)foreachx € Z,

which by Exercise 3.2.11 is equivalent to u,, = u.

Exercise 3.6.2. Show that || — v| < 2§ if and only if there are random variables
X and Y with distributions u and v so that P(X # Y) < 6.

The next three lemmas are the keys to our second proof.

Lemma 3.6.2. If 11 X @, denotes the product measure on 2. x Z. that has (11 x
p2)(x, y) = pi(x)ua(y), then

1 x o — vy X ol < [ — vill + |2 — w2l

Proof. 2|lpy x o —vi x nall =3 (i ()pa(y) — vix)va(y)l

< Y I pa(y) = i@+ Y i)ma(y) = viCva(y)|

X,y X,y
=Y () Y ) = i)+ Y vix) Y lua(y) — v
y x x y

=2[[ur — vill +2[l 2 — 2l

which gives the desired result. |

Lemma 3.6.3. If 1, * py denotes the convolution of 1 and ., that is,

ok pa(x) = Y px — y)pa(y)
y

then ||y * pa — vy % vaf| < [lper X 2 — vi X 13|

Proof. 2lpy x o — vix ol = 35, |30, mi(x — »ua(y) — 220, vilx = y)va(y)

<Y Dl = () = vilx =y
x oy

=2||p1 X p2 — v X 13|

which gives the desired result. |
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Lemma 3.6.4. Let u be the measure with u(1) = p and u(0) = 1 — p. Let v be a
Poisson distribution with mean p. Then | — v| < p>.

Proof. 2|l — v = [1(0) — v(0)| + [(1) — v(1)| + -, v(n)
=ll-p—e’l+lp—pe’l+1—-e"0+p)

Since 1 —x < e ™ <1 forx > 0, the above
=e?—14+p+pd—eP)+1—e?—pe?
=2p(1 —eP)<2p?

which gives the desired result. |

Second proof of Theorem 3.6.1. Let wu, , be the distribution of X, ,,. Let u, be
the distribution of S,. Let v, ,, v,, and v be Poisson distributions with means
Prms An = )< Pnm» and A, respectively. Since p, = 1 % - - - % by, and v, =
Vp g k- % vn,n,_Lemmas 3.6.3,3.6.2, and 3.6.4 imply

n n
itn = vull <Y ttnim — vl <2 P2, (3.6.1)
m=1 m=1

Using the definition of total variation distance now gives

n

Sup |1y (4) = vi(A)] < > pra

m=1

Assumptions (i) and (ii) imply that the right-hand side — 0. Since v, = v as
n — oo, the result follows. [ |

Remark. The proof above is due to Hodges and Le Cam (1960). By different
methods, C. Stein (1987) (see (43) on p. 89) has proved

Sup [y (4) = vu(A)] = GV 1! anm

m=1

Rates of convergence. When p,, ,, = 1/n, (3.6.1) becomes
sup |/Ln(A) - Vn(A)| =< 1/”
A
To assess the quality of this bound, we will compare the Poisson and binomial
probabilities for k successes.
k Poisson Binomial
U e
() (e
_ n -2 n—1
2 et (=g == /2
3 G

f
B (=T == -0 3
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Since (1 — x) < e, we have u,(0) — v,(0) < 0. Expanding

x> X3
log(1 =x——4+——...
og(l+x)=x 2+3
gives
(n—1)log (1— - nol_n-1 I+ — 4 00
n—1)lo ——)=- — — =14 — n
g n n 2n? 2n
So

n

n—1
n ((1 — l) — e—1> =ne”' (exp{l/2n+ O™} —1) —> ¢ '/)2

and it follows that

n(ia(1) — v, (1) — e7'/2
n(1n(2) — 1,(2)) — e~ /4

For k >3, using (1 —2/n) < (1 —1/n)*> and (1 —x) < e shows pu,(k) —
v, (k) <0, so

sup |un(A) — vy (A)| =~ 3/4en
ACZ

There is a large literature on Poisson approximations for dependent events. Here
we consider

3.6.2 Two Examples with Dependence

Example 3.6.4. Matching. Let 7 be a random permutation of {1, 2, ..., n}, let
Xn.m = 1if mis a fixed point (0 otherwise), and let S, = X,,; + - - - + X, , be the
number of fixed points. We want to compute P(S,, = 0). (For a more exciting story,
consider men checking hats or wives swapping husbands.) Let A, ,, = {X,,.. = 1}.
The inclusion-exclusion formula implies

P(Up_yAn) =Y P(An) — ) P(A N Ay)

l<m

+ Z P(AcNA,NA) — ...

k<tl<m

_ 1 n\ (n —2)! n\ (n — 3)!
_”'2_<2> nl +(3) nt

since the number of permutations with & specified fixed points is (n — k)! Canceling
some factorials gives

P(S,>0=)_ 0 P(S,=0)=>_ (—m1‘)m

m=1 m=0

(=1
|
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Recognizing the second sum as the first n + 1 terms in the expansion of e~! gives

_ 55 (=D
|P(S" :0)_6 1= m=n+1 m!
00 —1
< S 0 +2)*| = — -(1— ! )
(n+ D! | = n+1)! n+2

a much better rate of convergence than 1/n. To compute the other probabilities, we
observe that by considering the locations of the fixed points

n 1
PG =h= (k)n(n— Dok k=0

1
= FP(S,,_,( =0)— e '/k!

Example 3.6.5. Occupancy problem. Suppose that » balls are placed at random
into n boxes. It follows from the Poisson approximation to the binomial that if
n — oo and r/n — c, then the number of balls in a given box will approach a
Poisson distribution with mean c¢. The last observation should explain why the
fraction of empty boxes approached e in Example 2.2.5. Here we will show:

Theorem 3.6.5. Ifne™"/" — A € [0, 00) the number of empty boxes approaches a
Poisson distribution with mean .

Proof. To see where the answer comes from, notice that in the Poisson approxima-
tion the probability that a given box is empty is e /" & A /n, so if the occupancy of
the various boxes were independent, the result would follow from Theorem 3.6.1.
To prove the result, we begin by observing

k r
P(boxesiy, iy, ..., are empty ) = (1 — —>
n

If we let p,,(r, n) = the probability exactly m boxes are empty when r balls are
put in n boxes, then P( no empty box ) = 1 — P(at least one empty box). So by
inclusion-exclusion

" n kY
(a) po(r,n) = g(—l)k (k) (1 —~ ;)

By considering the locations of the empty boxes
n my

(b) Pty =) (1= =) potr,n —m)
m n

To evaluate the limit of p,,(r, n) we begin by showing that if ne="/" — A then

©) (Z) (1 _ %) = A" /m!
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One half of this is easy. Since (1 — x) < e™* and ne™"/"* — A

@ (”) (1= 22 < Zemmtn s 3 i

m n m!

For the other direction, observe (::;) > (n—m)"/m! so

()02 = (-2 e

Now (1 —m/n)™ — 1 asn — oo and 1/m! is a constant. To deal with the rest,
we note that if 0 < ¢ < 1/2 then
log(l —t)=—t—1?/2—13/3...
r? —1 4 -2 2
2—1‘—5(1—}—2 +27 4 )=—1—1
so we have
log (nm <1 — ﬂ)) > mlogn —rm/n — r(m/n)?
n
Our assumption ne™"/" — A means
r =nlogn —nlogh + o(n)
so r(m/n)*> — 0. Multiplying the last display by m/n and rearranging gives
mlogn —rm/n — mlog A. Combining the last two results shows

.. myr
liminf n™ (1 — —) > A"

n—00 n

and (c) follows. From (a), (c), and the dominated convergence theorem (using (d)
to get the domination), we get

(e) if ne™"/" — ) then po(r, n) — Zztio(_l)kz_kz =e

For fixed m, (n — m)e™"/""=™ — A soitfollows from (e) that po(r, n — m) — e~ *.

Combining this with (b) and (c) completes the proof. |

Example 3.6.6. Coupon collector’s problem. Let X;, X5, ...bei.i.d. uniform on
{1,2,...,n}and T,, = inf{m : {Xy,... X,,} ={1,2,...,n}}.Since T, < m if and
only if m balls fill up all n boxes, it follows from Theorem 3.6.5 that

P(T, —nlogn < nx) — exp(—e™™)
Proof. If r = nlogn + nx then ne™"/"* — e=*. n

Note that 7, is the sum of n independent random variables (see Example 2.2.3), but
T, does not converge to the normal distribution. The problem is that the last few
terms in the sum are of order n, so the hypotheses of the Lindeberg-Feller theorem
are not satisfied.
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For a concrete instance of the previous result consider: What is the probability
that in a village of 2190 (= 6 - 365) people all birthdays are represented? Do you
think the answer is much different for 1825 (= 5 - 365) people?

Solution. Here n = 365, so 3651og 365 = 2153, and

P (T35 < 2190) = P((T3e5 — 2153)/365 < 37/365)
~ exp(—e *101%) = exp(—0.9036) = 0.4051
P (T35 < 1825) = P((T3s — 2153)/365 < —328/365)
~ exp(—e"8%%0) = exp(—2.4562) = 0.085

As we observed in Example 2.2.3, if we let
t =inf{m : {X1, ..., Xu}| =k}

then 7' =1 and for 2 < k < n, tj' — 7;"_, are independent and have a geometric
distribution with parameter 1 — (k — 1)/n.

Exercise 3.6.3. Suppose k/n'/? — ) €[0,00) and show that 7! —k =
Poisson(A?/2). Hint: This is easy if you use Theorem 3.6.6 below.

Exercise 3.6.4. Let 11, = E1} and o, , = var(t}"). Suppose k/n — a € (0, 1),
and use the Lindeberg-Feller theorem to show (7' — 1)/ Jn=ox.

The last result is true when k/n'/?

ley (1966). Results for k = n — j can be obtained from Theorem 3.6.5, so we have
examined all the possibilities.

— oo and n — k — o0; see Baum and Billings-

3.6.3 Poisson Processes

Theorem 3.6.1 generalizes trivially to give the following result.

Theorem 3.6.6. Let X, ,,, | < m < n be independent nonnegative integer valued
random variables with P(X, , = 1) = ppm, P(Xnm = 2) = €4.m-
(l) Z:’;:] pn,m — )" € (07 oo)v
(i) maxi<m<p Pn.m — 0, and
(iii) Y _y €nm —> 0.
If Sy = Xu1+ -+ Xy then S, = Z where Z is Poisson()).

Proof. Let X, , = 1if X, ,, = 1, and O otherwise. Let S, = X;l’l +o X
(i)—(ii) and Theorem 3.6.1 imply S, = Z, (iii) tells us P(S, # S,) — 0, and the
result follows from the converging together lemma, Exercise 3.2.13. [ |
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The next result, which uses Theorem 3.6.6, explains why the Poisson distribution
comes up so frequently in applications. Let N(s, ¢) be the number of arrivals at a
bank or an ice cream parlor in the time interval (s, 7]. Suppose

(i) the numbers of arrivals in disjoint intervals are independent,
(i) the distribution of N(s, t) only depends on ¢ — s,
@iii)) P(N(0, h) =1) = Ah + o(h), and
@iv) P(N(0, h) = 2) = o(h).

Here, the two o(h) stand for functions g; (%) and g,(h) with g;(h)/h — Oash — 0.

Theorem 3.6.7. If (i)—(iv) hold, then N(0, t) has a Poisson distribution with mean
At.

Proof. Let X,,, = N((m — 1)t/n,mt/n) for 1 <m <n and apply Theo-
rem 3.6.6. |

A family of random variables N,, t > 0 satisfying

1) if0=t<t; <--- <ty, N(tx) — N(#—1), | <k < n are independent,
(i1) N(t) — N(s) is Poisson(A(t — s)),

is called a Poisson process with rate A. To understand how N, behaves, it is useful to
have another method to constructit. Let £, &, . . . be independent random variables
with P(§; >t) =e M fort >0.LetT, =& +---+&,and N, = sup{n : T, <t}
where Ty = 0. In the language of renewal theory (see Theorem 2.4.6), T, is the
time of the nth arrival and N, is the number of arrivals by time ¢. To check that N,

is a Poisson process, we begin by recalling (see Theorem 2.1.12):
)\‘nsnf]

(n—1!

e ™ for s >0

Jr,(s) =
that is, the distribution of 7;, has a density given by the right-hand side. Now
P(N,=0)=P(T; >t)=e M

and forn > 1

P(N,=n)=P(T, <1 < Tpj1) = / (T, = )P > 1 — 5)ds
0

t qnen—1 n
= / = e e M gy = e’)"—(M)
o (n—1)! n!

The last two formulas show that N; has a Poisson distribution with mean At. To
check that the number of arrivals in disjoint intervals is independent, we observe

P(Ths1 Z ulN; =n) = P(Tyy1 2 u, T, < 1)/ P(N, = n)
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To compute the numerator, we observe
t
Pz T, =0 = [ frPEm = u-s)ds
0

t -1
_ / Als” efksef)»(ufs)ds — e*)nu (An)"
o (n—1)! n!

The denominator is P(N; = n) = e (At)"/n!, so
P(T,+1 = u|N;, =n) = e*/\u/ef)\t — o Mu=0)

or, rewriting things, P(T,41 —t > s|N, =n) = e . Let T = Tyg+1 — t, and
T = Tn@y+k — Tn@y+k—1 for k > 2. The last computation shows that 7} is inde-
pendent of N,. If we observe that

P(’I;l S l7 7;1+1 Z u’ Tn+k - 7;1+k—] Z Uk,k - 2» ce ey K)

K

= P(T, <t,Top1 = w) [ [ PGara = vo)
k=2

then it follows that
(a) T{, T,, ...areii.d. and independent of N;.

The last observation shows that the arrivals after time ¢ are independent of N, and
have the same distribution as the original sequence. From this it follows easily that

b)) If0=1t <t... <t,then N(t;) — N(¢,_1),i = 1, ..., n are independent.

To see this, observe that the vector (N(#) — N(t),..., N(t,) — N(t,_1)) is
o(T/, k > 1) measurable and hence is independent of N(¢#;). Then use induction to
conclude

n ot ki
P(IN(t;)) = N(ti-) =ki,i=1,...,n)= HCXP(—)»(E' - fil)))h(tlk—_tl,l))

i=1

Remark. The key to the proof of (a) is the lack of memory property of the
exponential distribution:

(*) P(T>Z+S|T>I):P(T>s)

which implies that the location of the first arrival after ¢ is independent of what
occurred before time ¢ and has an exponential distribution.

Exercise 3.6.5. Show that if P(T > 0) = 1 and (x) holds, then there isa A > 0 so
that P(T > t) = e~* for t > 0. Hint: First show that this holds for t = m2~".

Exercise 3.6.6. Show that (iii) and (iv) in Theorem 3.6.7 can be replaced by
(v) If Ny_ = lim,4; N, then P(Ng — N,_ > 2 for some s) = 0.
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That is, if (i), (ii), and (v) hold, then there is a A > 0 so that N (0, ¢) has a Poisson
distribution with mean Af. Prove this by showing: (a) If u(s) = P(N; = 0) then
(i) and (ii) imply u(r)u(s) = u(r + s). It follows that u(s) = e=** for some A > 0,
so (ii1) holds. (b) If v(s) = P(Ns, > 2) and A,, = {Ni/» — Ng—1)/» = 2 for some
k < n} then (v) implies P(A,) — 0 asn — oo and (iv) holds.

Exercise 3.6.7. Let T, be the time of the nth arrival in a rate A Poisson pro-

cess. Let Uy, Uy, ..., U, be independent uniform on (0,1) and let V" be the
kth smallest number in {U, ..., U,}. Show that the vectors (V{',..., V") and
(T1/Ty41, - .., T,/ Ty1+1) have the same distribution.

Spacings. The last result can be used to study the spacings between the order
statistics of i.i.d. uniforms. We use notation of Exercise 3.6.7 in the next four
exercises, taking A = 1 and letting Vj = 0,and V! | = 1.

Exercise 3.6.8. Smirnov (1949) nV! = T;.
Exercise 3.6.9. Weiss (1955)n™' 3! | 1(uv2—v» )-x) = €~ in probability.
Exercise 3.6.10. (n/logn) maxi<y<,+1 V,, —V,,_, — 1 in probability.

Exercise 3.6.11. P(n’ minj<<, V' — V" | > x) —> e¢™*.

For the rest of the section, we concentrate on the Poisson process itself.

Exercise 3.6.12. Thinning. Let N have a Poisson distribution with mean A
and let X, X, ...be an independent i.i.d. sequence with P(X; = j) = p; for
Jj=0,1,...,k. Let N;=|{m < N : X,, = j}|. Show that Ny, Ny, ..., Ny are
independent and N; has a Poisson distribution with mean Ap;.

In the important special case X; € {0, 1}, the result says that if we thin a Poisson
process by flipping a coin with probability p of heads to see if we keep the arrival,
then the result is a Poisson process with rate Ap.

Exercise 3.6.13. Poissonization and the occupancy problem. If we put a Poisson
number of balls with mean » in n boxes and let N; be the number of balls in box
i, then the last exercise implies Ny, ..., N, are independent and have a Poisson
distribution with mean r/n. Use this observation to prove Theorem 3.6.5.

Hint: If r = nlogn — (logA)n 4+ o(n) and s; = nlogn — (log w;)n with u, < A <
W11, then the normal approximation to the Poisson tells us P(Poisson(s;) < r <
Poisson(s;)) — 1 as n — oo.

Example 3.6.7. Compound Poisson process. At the arrival times 77, T3, ... of
a Poisson process with rate A, groups of customers of size &, &, .. .arrive at an
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ice cream parlor. Suppose the &; are i.i.d. and independent of the ijs. This is a
compound Poisson process. The result of Exercise 3.6.12 shows that N* = the
number of groups of size k to arrive in [0, ¢] are independent Poisson’s with mean
DiAL.

Example 3.6.8. A Poisson process on a measure space (S, S, ) is a random
map m : S — {0, 1, ...} that for each w is a measure on S and has the following
property: if Ay, ..., A, are disjoint sets with (A;) < oo, then m(A;), ..., m(A,)
are independent and have Poisson distributions with means (A;). u is called the
mean measure of the process. Exercise 3.6.12 implies that if ©(S) < oo we can
construct m by the following recipe: let X, X», ...be i.i.d. elements of S with
distribution v(-) = u(-)/u(S), let N be an independent Poisson random variable
with mean u(S), and let m(A) = |[{j < N : X; € A}|. To extend the construction
to infinite measure spaces, e.g., S = R?, S = Borel sets, 1 = Lebesgue measure,
divide the space up into disjoint sets of finite measure and put independent Poisson
processes on each set.

3.7 Stable Laws*

Let Xq, X5,...beiid. and S, = X; + --- 4+ X,,. Theorem 3.4.1 showed that if
EX; = pand var (X;) = o2 € (0, 00), then

(S, —nw)/ on'? = X

In this section, we will investigate the case E X} = oo and give necessary and
sufficient conditions for the existence of constants a, and b,, so that

(S, —by)/a, = Y where Y is nondegenerate
We begin with an example. Suppose the distribution of X; has
PX| >x)=PX; <—-x)=x"%/2 forx>1 3.7.1)
where 0 < o < 2. If p(t) = E exp(it X1), then
o

1 — f) = 1_itx
"0, /1( ) s

*®1 - t
=0‘f cos(x)dx
1

xa+1

o
2|_x|01+1

—1
dx—l—/ (1 —€'™) dx

Changing variables tx = u, dx = du/t, the last integral becomes

1 —cosu du N ® 1 —cosu
=« — — =1’ Td”
t (u/ty*+t ¢ t u*

Asu — 0,1 —cosu ~ u?/2.So (1 — cosu)/u®*t' ~ u=e*+1/2 whichis integrable,
since ¢ < 2 implies —a + 1 > —1. If we let

* 1 —cosu
C=u«u —ldu<oo
0 ut
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and observe (3.7.1) implies ¢(t) = ¢(—t), then the results above show
1—¢@@)~Clt|*as t > 0 (3.7.2)

Let X, X5, ...be iid. with the distribution given in (3.7.1) and let S, =
X1+ + X,

Eexp(itS,/n'®) = ¢(t/n'*)" = (1 = {1 — p(t/n"/*)})"
Asn — oo, n(1 — @(t/n'’*)) — CJt|%, so it follows from Theorem 3.4.2 that
Eexp(itSn/nl/"‘) — exp(—C|t]|*)

From part (ii) of Theorem 3.3.6, it follows that the expression on the right is the
characteristic function of some Y and

S,/n'* =Y (3.7.3)

To prepare for our general result, we will now give another proof of (3.7.3). If

0 <a < bandan'/® > 1, then

1
P@an'™ < X, < bn'/*) = 5(07“ — b %)
so it follows from Theorem 3.6.1 that
Nu(a,b)=|{m < n: X,/n"* € (a,b)}| = N(a, b)

where N (a, b) has a Poisson distribution with mean (@~ — b~%)/2. An easy exten-
sion of the last result shows that if A C R — (=8, §) and 6n'/* > 1, then

o
2|X |Dt+1

so N,(A) = |{m <n: X, /n"% € A}| = N(A), where N(A) has a Poisson distri-
bution with mean

P(X,/n'* € A) = n_l/
A

o
;L(A):/Ade<oo

The limiting family of random variables N(A) is called a Poisson process on
(—00, 0o) with mean measure 1. (See Example 3.6.8 for more on this process.)
Notice that for any € > 0, u(e, 00) = € %/2 < 00, s0 N(€, 00) < 00.

The last paragraph describes the limiting behavior of the random set

X, = {X,/n"*: 1 <m<n)
To describe the limit of S,,/n'/*, we will “sum up the points.” Let € > 0 and

L(e)={m <n:|X,| > en'®)

S,,(E) = Z X Sn(e) =5, — Sn(e)

mely,(€)

I,(¢) = the indices of the “big terms,” that is, those > en'/* in magnitude. S,,(¢)

is the sum of the big terms, and S, (¢) is the rest of the sum. The first thing we will
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do is show that the contribution of S,(¢) is small if € is. Let
Xon(€) = X l(x, entie)

Symmetry implies EX,,(¢) = 0, so E(S,(¢€)*) = nEX,(¢)>.

00 1 enl/
EX(e)? =/ 2yP(1X1(e)| > y)dy 5/ 2ydy +/ 2y y *dy
0 0 1

2
— 14 2 (2o 2/a—1 _ 2 <2€ an2/a—1

2—-« 2—a 2—-«
where we have used ¢ < 2 in computing the integral and & > 0 in the final inequal-
ity. From this it follows that

2—a

EGu(e)/n"oy < 2%
2 —«

(3.7.4)

To compute the limit of S,(¢)/n'/%, we observe that |I,(€)| has a binomial
distribution with success probability p = € ~*/n. Given |I,,(¢€)| = m, S,(¢)/n"/* is
the sum of m independent random variables with a distribution F;; thatis symmetric

about 0 and has
1 —-F;(x)= P(Xi/n"* > x| |X,|/n"* > €) =x7%/2¢™® forx > €

The last distribution is the same as that of €X, so if ¢(t) = E exp(itXy), the
distribution F;; has characteristic function ¢(ef). Combining the observations in
this paragraph gives

Eexp(it§,(e)/n"'*) =) (;)(e—“/n>m<1 — e /)" "p(en)"
m=0

Writing

(n) 1 _Ln(n—l)---(n—m—l—l) - 1

m) n™ m! nm m!

noting (1 — e7%/n)" < exp(—e~*) and using the dominated convergence theorem

E exp(i1§,(e)/n"'*) — " exp(—e~*)(e™*)"p(et)" /m!

m=0
= exp(—e {1 — p(er)}) (3.7.5)
To get (3.7.3) now, we use the following generalization of Lemma 3.4.7.

Lemma 3.7.1. If h,(€) — g(e¢) for each € > 0 and g(e) — g(0) as € — 0, then
we can pick €, — 0 so that h,(e,) — g(0).

Proof. Let N,, be chosen so that |h,(1/m)— g(1/m)| < 1/m for n > N,, and
m — N, is increasing. Let €, = 1/m for N, <n < N,,41 and = 1 for n < Nj.
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When N,, <n < Ny41, €, = 1/m, so it follows from the triangle inequality and
the definition of ¢, that

|hn(€n) — O) < |hn(1/m) — g(1/m)| 4 [g(1/m) — g(0)|
< 1/m+|g(1/m) — g(0)]

When n — o0, we have m — oo and the result follows. |

Let h,(€) = E exp(itS,(€)/n'/*) and g(e) = exp(—e {1 — p(en)}). (3.7.2)
implies 1 — ¢(z) ~ C|t|* ast — 0, so

g(e) = exp(—Clt]*) ase >0

and Lemma 3.7.1 implies we can pick €, — 0 with h,(¢,) — exp(—C|z]|*). Intro-
ducing Y with E exp(itY) = exp(—C|t|*), it follows that S,(¢,)/n'/* = Y. If
€, — 0, then (3.7.4) implies

Su(en)/n''* =0
and (3.7.3) follows from the converging together lemma, Exercise 3.2.13. [ |

Once we give one final definition, we will state and prove the general result
alluded to above. L is said to be slowly varying, if

lim L(tx)/L(x)=1 forallt >0
X—>00
Exercise 3.7.1. Show that L(¢) = log? is slowly varying but 7€ is not if € # 0.

Theorem 3.7.2. Suppose X1, X», .. .are i.i.d. with a distribution that satisfies
(i) lim,_, o, P(X; > x)/P(|X1| > x) =0 € [0, 1]

(ii) P(I1X1| > x) =x"“L(x)

where « < 2 and L is slowly varying. Let S,, = X1+ --- + X,

a, = inf{x : P(I1X;| >x) <n"'} and b, =nEXl(x,<a,)

Asn — oo, (S, — by)/a, = Y where Y has a nondegenerate distribution.

Remark. This is not much of a generalization of the example, but the conditions
are necessary for the existence of constants a, and b, so that (S, — b,)/a, = Y,
where Y is nondegenerate. Proofs of necessity can be found in Chapter 9 of Breiman
(1968) or in Gnedenko and Kolmogorov (1954). (3.7.11) gives the ch.f. of Y. The
reader has seen the main ideas in the second proof of (3.7.3) and so can skip to that
point without much loss.

Proof. It is not hard to see that (ii) implies

nP(Xq| >a,) —> 1 (3.7.6)
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To prove this, note that n P(|X;| > a,) < 1 and let € > 0. Taking x = a, /(1 + €)
and r = 1 + 2e, (ii) implies

P(X 14+ 2¢)a, /(1 .. P(UX n
(420 = i POXIL = A £200/A+) Lo PAXi| > an)
oo P(X1| > an/(1 + ) oo 1/n

proving (3.7.6) since € is arbitrary. Combining (3.7.6) with (i) and (ii) gives
nP(X; > xa,) — 60x ¢ forx >0 3.7.7)

so [{m <n:X,, > xa,}| = Poisson(6x ). The last result leads, as before, to
the conclusion that X,, = {X,,/a, : 1 <m < n} converges to a Poisson process on
(—00, 00) with mean measure

w(A) :/ Gorlx|~@ D dx +f (1 — Oa|x|~@TV dx
AN(0,00) AN(=00,0)
To sum up the points, let I,(¢) = {m <n :|X,| > €a,}

ﬁ(é) = EXml(ea,,<|Xm|§a,,) Sn(e) = Z Xm

mel,(€)

a(e) = EXnl(x,|<ea,)

Sn(e) = (Sn - bn) - (Sn(e) - nla(e)) = Z{Xml(lxmlfea,,) - [L(G)}

m=1

If we let X,,(€) = X,u1(x,|<ca,)> then

E(S.(€)/an)* = n var (X (€)/a,) < nE(X(€)/a,)*

ER1(e)/an) < / 2yP(X1| > yan)dy
0

© PUXy] > yay)

=P(|X|>an>/ 2y PUX1] > yan)

: o 7 TP(X > an)

We would like to use (3.7.7) and (ii) to conclude

nEXi(e)/a,)* — / e 2yy“dy =
0

and hence

. S ) _ 267
limsup E(S,(¢)/a,)” < )

n—odo

(3.7.8)

To justify interchanging the limit and the integral and complete the proof of (3.7.8),
we show the following (take § < 2 — «):

Lemma 3.7.3. For any § > 0O there is C so that forallt > tyand y <1

P(IX\| > yt)/P(IX;| > 1) < Cy ™7



3.7 Stable Laws 163
Proof. (ii) implies that as t — 00
P(1X1| > 1/2)/P(1Xy] > 1) — 2%
so for t > t, we have
P(IX\| > 1/2)/P(1X,| > 1) < 2P
Iterating and stopping the first time ¢ /2" < ty, we have for alln > 1
P(1X1| > 1/2")/P(1X)| > 1) < C2@+"

where C = 1/P(|X| > fy). Applying the last result to the first n with 1/2" < y
and noticing y < 1/2"~!, we have

P(IX,| > yt)/P(IX;| > 1) < C2*Foy=?

which proves the lemma. u

To compute the limit of S,(€), we observe that |I,(¢)| = Poisson(e ). Given
|1,(€)] = m, S‘n (€¢)/ay 1s the sum of m independent random variables with distribu-
tion F; that has

1 —F;(x)=P(X /a, > x||X1l/a, > €) = 0x™ /e
Fi(—x) = P(Xi/a, < —x||Xil/ay > €) = (1 =0)|x|"* /e

for x > €. If we let ¥ (¢) denote the characteristic function of F, then Theo-
rem 3.3.6 implies

o0 €
'(//;(t) e wg(t) :/ el'lXQE()lax*(()H»])dx +/ eil‘)C(l _ e)eaa|x|7(a+])d‘x
€

—0o0

as n — o0o. So repeating the proof of (3.7.5) gives
E exp(it §,(€)/an) — exp(—e {1 = y“(1)})

o
= exp (/ (€™ — hax™ @D gy
€

+f (e”x—1)(1—9)a|x|_(“+1)dx)

where we have used € ™ = [ ax~@*1 dx. To bring in

la/(e) = EXm l(Ean<‘Xm|San)

we observe that (3.7.7) implies n P(xa, < X,, < ya,) — 0(x~% — y~%). So

—€

1
niue)/a, — / xOax =@t gy +/ x(1 = O)alx| @+ dx
€

—1
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From this it follows that E exp(it{S,(€) — nji(e)}/a,) —

o
exp (/ (@ — Dhax~ @D gy
1
1 .
+/ (@™ — 1 —itx)0ax" @tV dx
€
e
+/ (€™ — 1 —itx)(1 — O)er|x| "D dx (3.7.9)
-1

-1
+ / (€™ =11 - 9)a|x|—<“+”dx)
—00

The last expression is messy, but /> — 1 — itx ~ —t>x2/2 as t — 0, so we need
to subtract the izx to make

I
f (€™ —1—itx)x @ Vdx converge when o > 1
0

To reduce the number of integrals from four to two, we can write the limitase — 0
of the right-hand side of (3.7.9) as

; = (it itx ~(@+1)
exp|itc+ ; e _1_1+x2 Oax dx

0 ; itx |
+/ (e’”‘ —l- 2)(1 — O)ar|x|F >dx) (3.7.10)
PN X

where c is a constant. Combining (3.7.6) and (3.7.9) using Lemma 3.7.1, it follows
easily that (S, — b,)/a, = Y where Ee'’Y is given in (3.7.10). [ |

Exercise 3.7.2. Show that when o < 1, centering is unnecessary, that is, we can
let b, = 0.

By doing some calculus (see Breiman, 1968, pp. 204-206) one can rewrite
(3.7.10) as

exp(itc — b|t|*{1 + ik sgn (Hwy(1)}) (3.7.11)
where —1 <k <1, (k =26 — 1) and

tan(wo/2) ifa #1

we (1) =
2/m)log|t] fa=1

The reader should note that while we have assumed 0 < o < 2 throughout the
developments above, if we set @ = 2 then the term with « vanishes and (3.7.11)
reduces to the characteristic function of the normal distribution with mean ¢ and
variance 2b.

The distributions whose characteristic functions are given in (3.7.11) are called
stable laws. « is commonly called the index. Wheno = 1, ¢ = 0, and k = 0, we
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have the Cauchy distribution. Apart from the Cauchy and the normal, there is only
one other case in which the density is known: When « = 1/2, k = 1, ¢ = 0, and
b =1, the density is

@my’) ' exp(—1/2y) fory =0 (3.7.12)

One can calculate the ch.f. and verify our claim. However, later (see Section 7.4)
we will be able to check the claim without effort, so we leave the somewhat tedious
calculation to the reader.

We are now finally ready to treat some examples.

Example 3.7.1. Let X, X», ...be i.i.d. with a density that is symmetric about O,
and continuous and positive at 0. We claim that

1 /1 1
—| — + -4+ — ) = a Cauchy distribution (¢ = 1, x = 0)
n X1 Xn

To verify this, note that

P(I/X; > )= PO <X, <x)= / F)dy ~ FO)x
0

as x — o0o. A similar calculation shows P(1/X; < —x) ~ f(0)/x, so in (i) in
Theorem 3.7.2 holds with & = 1/2, and (ii) holds with « = 1. The scaling constant
a, ~ 2 f(0)n, whereas the centering constant vanishes because we have supposed
the distribution of X is symmetric about 0.

Remark. Readers who want a challenge should try to drop the symmetry assump-
tion, assuming for simplicity that f is differentiable at 0.

Example 3.7.2. Let X, X5, ...be iid. with P(X; =1)=P(X; =—-1)=1/2,
let S, =X;+---+X,, and let t = inf{n > 1: S, = 1}. In Chapter 4 (see the
discussion after (4.3.2)) we will show

P(t >2n) ~a "?n7V? asn — oo

Let 1, 12, ...be independent with the same distribution as 7, and let 7, =
71 + - - + 7,. Results in Section 4.1 imply that 7, has the same distribution as
the nth time S, hits 0. We claim that T,/n> converges to the stable law with
o = 1/2, k = 1 and note that this is the key to the derivation of (3.7.12). To prove
the claim, note that in (i) in Theorem 3.7.2 holds with & = 1 and (ii) holds with
o = 1/2. The scaling constant a,, ~ Cn?. Since a < 1, Exercise 3.7.2 implies the
centering constant is unnecessary.

Example 3.7.3. Assume n objects X,, 1, ..., X, , are placed independently and at
random in [—n, n]. Let

n
Fn = Z Sgn(Xn,m)/|Xn,m|p

m=1
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be the net force exerted on 0. We will now show that if p > 1/2, then
lim Eexp(itF,) = exp(—c|t|'/?)
n—oo

To do this, it is convenient to let X, ,, = nY,, where the Y; are i.i.d. on [—1, 1].
Then

F,=n"" Z sgn (Y,,)/ 1Y |?

m=1

Letting Z,, = sgn(Y,,)/|Yul|?, Z,, is symmetric about 0 with P(|Z,| > x) =
P(|Y| < x~YP), so (i) in Theorem 3.7.2 holds with # = 1/2 and (ii) holds
with o« = 1/p. The scaling constant a,, ~ Cn” and the centering constant is 0 by
symmetry.

Exercise 3.7.3. Show that (i) If p < 1/2 then F,/n'/*"7 = cyx.
(ii) If p = 1/2 then F, /(log n)!/? = cy.

Example 3.7.4. In the examples above, we have had b, = 0. To get a feel for the
centering constants, consider X, X, ...1.1.d. with

P(X;>x)=0x""¢ PX;<—x)=(0-06)x""

where 0 < o < 2. In this case a, = n'/* and
nl/e cn a>1
b, = n/ (20 — Dax™*dx ~ {cnlogn o =1
1 cn'/® a <1

When o < 1 the centering is the same size as the scaling and can be ignored. When
o > 1,b, ~nu where u = EX;.

Our next result explains the name stable laws. A random variable Y is said to
have a stable law if for every integer k > 0O there are constants a; and by so that
if Yy, ..., Y, are ii.d. and have the same distribution as Y, then (Y7 +--- + Y; —
bi)/ar =4 Y. The last definition makes half of the next result obvious.

Theorem 3.7.4. Y is the limit of (X1 + - - - + Xy — by)/ay for some i.i.d. sequence
X, if and only if Y has a stable law.

Proof. If Y has a stable law, we can take X, X», ...1i.i.d. with distribution Y. To
go the other way, let

Zrzz(xl+"'+xn_bn)/an
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and S,{ = X(j—tn+1 + -+ - + X,. A little arithmetic shows
Zuk = (Sy 4+ + Sy — bur)/an
ank Znie = (Sy = ba) + - -+ + (S — by) + (kby, — big)
ank Zuk /@ = (Sy = ba)/an + - -+ + (Sy = by)/ay + (kb — bu)/ay

The first k terms on the right-hand side = Y; +--- 4+ Y as n — oo where
Y1, ..., Y, are independent and have the same distribution as Y, and Z,; = Y.
Taking W,, = Z,; and

Ain kbn - bnk

nk —
Ay an

W =

gives the desired result. u

Theorem 3.7.5. Convergence of types theorem. If W,, = W and there are con-
stants o, > 0, B, so that W, = a, W, + B, = W' where W and W' are nondegen-
erate, then there are constants « and B so that «,, — a and B, — B.

Proof. Let ¢,(t) = E exp(itW,).

WH(I) =E exp(it(an W, + ,Bn)) = eXp(it,Bn)(Pn(Olnt)

If ¢ and v are the characteristic functions of W and W’, then

(a) on(t) = @) Yn(t) = exp(itfp)gn(ant) — V(1)

Take a subsequence o) that converges to a limit o € [0, 0o]. Our first step is to
observe o = 0 is impossible. If this happens, then using the uniform convergence
proved in Exercise 3.3.16

(b) [Vn (D] = l@n(ant)] — 1

[Y(¢)] = 1, and the limit is degenerate by Theorem 3.5.1. Letting t = u/w, and
interchanging the roles of ¢ and v shows & = 0o is impossible. If « is a subsequen-
tial limit, then arguing as in (b) gives [ (t)| = |@(at)]. If there are two subsequential
limits o’ < «, using the last equation for both limits implies |@(u)| = |p(ua’/@)|.
Iterating gives |o(u)| = |p(u(a’ /a)*)| — 1 as k — oo, contradicting our assump-
tion that W' is nondegenerate, so o, — o € [0, 00).

To conclude that 8, — B now, we observe that (ii) of Exercise 3.3.16 implies
¢n — @ uniformly on compact sets so ¢,(«,t) — @(cet). If § is small enough so
that |p(at)| > O for |¢| < 4, it follows from (a) and another use of Exercise 3.3.16
that

IR ONRRL0
= —
oaar)  glar)

uniformly on [—§, 8]. exp(itB,) is the ch.f. of a point mass at 8,. Using (3.3.1)
now as in the proof of Theorem 3.3.6, it follows that the sequence of distributions

exp(izf,)
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that are point masses at §, is tight, that is, 8, is bounded. If g8, — B, then
exp(itB) = ¥ (t)/¢(at)for |t| < §,sothere can only be one subsequential limit. W

Theorem 3.7.4 justifies calling the distributions with characteristic functions
given by (3.7.11) or (3.7.10) stable laws. To complete the story, we should mention
that these are the only stable laws. Again, see Chapter 9 of Breiman (1968) or
Gnedenko and Kolmogorov (1954). The next example shows that it is sometimes
useful to know what all the possible limits are.

Example 3.7.5. The Holtsmark distribution. (¢« = 3/2, « = 0). Suppose stars
are distributed in space according to a Poisson process with density ¢ and their
masses are i.i.d. Let X, be the x-component of the gravitational force at 0 when
the density is 7. A change of density 1 — ¢ corresponds to a change of length
1 — ¢~1/3, and gravitational attraction follows an inverse square law, so

X, £ 32x, (3.7.13)

If we imagine thinning the Poisson process by rolling an n-sided die, then Exer-
cise 3.6.12 implies

X,éXt‘/n_|_...+X"

t/n

where the random variables on the right-hand side are independent and have the
same distribution as X, ,. It follows from Theorem 3.7.4 that X, has a stable law.
The scaling property (3.7.13) implies « = 3/2. Since X; =4 —X;, k = 0.

Exercises

3.7.4. Let Y be a stable law with ¥ = 1. Use the limit theorem Theorem 3.7.2 to
conclude that Y > 0ifa < 1.

3.7.5. Let X be symmetric stable with index «. (i) Use (3.3.1) to show that E| X |? <
oo for p < «. (ii) Use the second proof of (3.7.3) to show that P(| X| > x) > Cx~¢,
so E|X|* = oc.

3.7.6. LetY, Y1, Y5, ... beindependent and have a stable law with index «. Theorem
3.7.4 implies there are constants o and Sy sothat Yy + - - - + Y, and o Y + B have
the same distribution. Use the proof of Theorem 3.7.4, Theorem 3.7.2, and Exercise
3.7.2 to conclude that (i) oy = k'/%, (ii) if & < 1 then B = 0.

3.7.7. Let Y be astable law withindex @ < 1 and ¥k = 1. Exercise 3.7.4 implies that
Y > 0, so we can define its Laplace transform (1) = E exp(—AY). The previous
exercise implies that for any integer n > 1 we have ¥(1)" = ¥ (n'/%1). Use this to
conclude E exp(—AY) = exp(—cA®).
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3.7.8. (i) Show that if X is symmetric stable with index o and Y > 0 is an inde-
pendent stable with index 8 < 1, then XY!/¢ is symmetric stable with index af.
(ii) Let W, and W, be independent standard normals. Check that 1/ W22 has the
density given in (3.7.12) and use this to conclude that W,/ W, has a Cauchy distri-
bution.

3.8 Infinitely Divisible Distributions®

In the last section, we identified the distributions that can appear as the limit of
normalized sums of i.i.d.r.v.’s. In this section, we will describe those that are limits
of sums

(*) Sn =Xn,1+"'+Xn,n

where the X, ,, are i.i.d. Note the verb “describe.” We will prove almost nothing
in this section, just state some of the most important facts to bring the reader up to
cocktail-party literacy.

A sufficient condition for Z to be a limit of sums of the form (x) is that Z has
an infinitely divisible distribution, that is, for each n there is an i.i.d. sequence
Yoi1,..., Yyn sothat

Zéyn,l"i_"'"'_yn,n
Our first result shows that this condition is also necessary.
Theorem 3.8.1. Z is a limit of sums of type (x) if and only if Z has an infinitely
divisible distribution.
Proof. As remarked above, we only have to prove necessity. Write

Son = X1+ -+ Xopn) + Xoppr1 + -+ Xopon) =Y, + 7,

The random variables Y, and Y, are independent and have the same distribution. If
S» = Z, then the distributions of Y, are a tight sequence since

P(Y, > y)* = P(Y, > y)P(Y, > y) < P(Sy, > 2y)

and similarly P(Y, < —y)> < P(Sy, < —2y). If we take a subsequence 7, so that
Y,, = Y (andhence Y, = Y’),then Z =; Y + Y’'. A similar argument shows that

ng

Z can be divided into n > 2 pieces, and the proof is complete. [ |
With Theorem 3.8.1 established, we turn now to examples. In the first three
cases, the distribution is infinitely divisible because it is a limit of sums of the form

(*). The number gives the relevant limit theorem.

Example 3.8.1. Normal distribution. Theorem 3.4.1



170 Central Limit Theorems

Example 3.8.2. Stable laws. Theorem 3.7.2
Example 3.8.3. Poisson distribution. Theorem 3.6.1

Example 3.8.4. Compound Poisson distribution. Let &, &, ...bei.i.d. and N(})
be an independent Poisson r.v. with mean A. Then Z =&, +--- 4 &y has an
infinitely divisible distribution. (Let X, j =4 & + - - - + &n(1/n).) For developments
below, we would like to observe that if ¢(¢) = E exp(it§;) then

o0

)\‘l’l
Eexp(itZ) = Ze‘kﬁgo(t)” = exp(—A(1 — ¢(2))) (3.8.1)
n=0 :

Exercise 3.8.1. Show that the gamma distribution is infinitely divisible.

The next two exercises give examples of distributions that are not infinitely
divisible.

Exercise 3.8.2. Show that the distribution of a bounded r.v. Z is infinitely divisible
if and only if Z is constant. Hint: Show var(Z) = 0.

Exercise 3.8.3. Show that if p is infinitely divisible, its ch.f. ¢ never vanishes.
Hint: Look at ¥ = |¢|?, which is also infinitely divisible; to avoid taking nth roots
of complex numbers, then use Exercise 3.3.20.

Example 2.8.4 is a son of 2.8.3 but a father of 2.8.1 and 2.8.2. To explain
this remark, we observe that if £ = ¢ and —e with probability 1/2 each then
@(t) = (' + e7")/2 = cos(et). So if A = €72, then (3.8.1) implies

E exp(itZ) = exp(—e (1 — cos(e1))) — exp(—1>/2)

as € — 0. In words, the normal distribution is a limit of compound Poisson distri-
butions. To see that stable laws are also a special case (using the notation from the
proof of Theorem 3.7.2), let

Ii(e) ={m <n:|X,|> ea}

Sue)= D Xu

mel,(€)
Sau(€) = S, — Su(e)

If €, — O then S,(¢,)/a, = 0. If € is fixed then as n — oo we have |I,(¢)| =
Poisson(e %) and S, (¢) /a, = a compound Poisson distribution:

E exp(itS,(€)/ay) — exp(—e “{1 — (1)}

Combining the last two observations and using the proof of Theorem 3.7.2
shows that stable laws are limits of compound Poisson distributions. The
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formula (3.7.10) for the limiting ch.f.

it + foo itx 1 itx 0 —(Ol-‘rl)d
(94 lic e — 1 — oax X
P 0 1+ x2

0 ) itx
+ / (e”x —1- " 2) (1 —9)a|x|<“+1>dx) (3.8.2)
X

—00

helps explain:

Theorem 3.8.2. Lévy-Khinchin theorem. Z has an infinitely divisible distribution
if and only if its characteristic function has

. o2t? it itx
logp(t) =ict — 5 —1—/ (e T—1- 7 +x2) u(dx)

where u is a measure with ({0}) = 0 and f %,u(dx) < 0.

For a proof, see Breiman (1968), Section 9.5., or Feller II (1971), Section
XVIL.2. u is called the Lévy measure of the distribution. Comparing with (3.8.2)
and recalling the proof of Theorem 3.7.2 suggests the following interpretation of
w: If 0 = 0 then Z can be built up by making a Poisson process on R with mean
measure u and then summing up the points. As in the case of stable laws, we have
to sum the points in [—e¢, €]°, subtract an appropriate constant, and let ¢ — O.

Exercise 3.8.4. What is the Lévy measure for the limit R in part (iii) of Exercise
3.4.13?

The theory of infinitely divisible distributions is simpler in the case of finite
variance. In this case, we have:

Theorem 3.8.3. Kolmogorov’s theorem. Z has an infinitely divisible distribution
with mean 0 and finite variance if and only if its ch.f. has

log (1) = / (@™ — 1 —itx)x 2 v(dx)

Here the integrand is —t* /2 at 0, v is called the canonical measure, and var (Z) =
v(R).

To explain the formula, note that if Z, has a Poisson distribution with mean A,
Eexp(itx(Z, — 1)) = exp(A(e'™ — 1 —itx))

so the measure for Z = x(Z, — A) has v({x}) = Ax>.
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3.9 Limit Theorems in R?

Let X = (X1, ..., X4) be arandom vector. We define its distribution function by
F(x)=P(X <x).Herex e R, and X < xmeans X; < x; fori =1,...,d. As
in one dimension, F has three obvious properties:

(1) It is nondecreasing, that is, if x < y then F(x) < F(y).
(i) limy oo F(x) =1, limy_ _o F(x) =0.
(iii) F is right continuous, that is, lim, |, F(y) = F(x).

Here x — 0o means each coordinate x; goes to oo, x; — —oo means we let x; —
—o0 keeping the other coordinates fixed, and y | x means each coordinate y; | x;.

As discussed in Section 1.1, an additional condition is needed to guarantee that
F is the distribution function of a probability measure. Let

A =(ay, bi] x --- x (aq, bgl
V ={ai, b1} x --- x{aq, ba}

V = the vertices of the rectangle A. If v € V, let
sgn (v) = (_1)# of a’sin v

The inclusion-exclusion formula implies

P(X€A)=)_ sgn()F(v)

veV

So if we use A4 F to denote the right-hand side, we need
(iv) A4 F > 0 for all rectangles A.

The last condition guarantees that the measure assigned to each rectangle is > 0. At
this point we have defined the measure on the semialgebra S, defined in Example
1.1.3. Theorem 1.1.6 now implies that there is a unique probability measure with
distribution F.

Exercise 3.9.1. If F is the distribution of (X1, ..., X ), then F;(x) = P(X; < x)
are its marginal distributions. How can they be obtained from F'?

Exercise 3.9.2. Let F1, ..., F;bedistributions on R. Show thatforany o € [—1, 1]

d d
F(xy,...,x5) = {1 +o]Ja- F,-(xi))} []Fixn
j=1

i=1
is a d.f. with the given marginals. The case o = 0 corresponds to independent r.v.’s.
Exercise 3.9.3. A distribution F is said to have a density f if

F(xl,...,xk)zf / fO)dyg...dy

Show that if f is continuous, 3* F/dx; ... dx; = f.
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If F, and F are distribution functions on R?, we say that F,, converges weakly
to F, and write F,, = F, if F,(x) — F(x) at all continuity points of F. Our first
task is to show that there are enough continuity points for this to be a sensible
definition. For a concrete example, consider

1 ifx>0,y>1
Fx,y)=43y ifx>0,0<y<1

0 otherwise

F is the distribution function of (0, Y) where Y is uniform on (0,1). Notice that
this distribution has no atoms, but F is discontinuous at (0, y) when y > 0.

Keeping the last example in mind, observe that if x,, < x, that is, x, ; < x; for
all coordinates i, and x,, 1 x as n — oo then

F(x)—F(x,)=PX =x)—P(X =x,) | P(X =x)— P(X <x)
In d = 2, the last expression is the probability X lies in
{(@,x2) ra <x1}U{(x1,0) : b < x2}

Let H! = {x : x; = c} be the hyperplane where the ith coordinate is c. For each i,
the H' are disjoint so D' = {c : P(X € H') > 0} is at most countable. It is easy
to see that if x has x; ¢ D' for all i then F is continuous at x. This gives us more
than enough points to reconstruct F.

As in Section 3.2, it will be useful to have several equivalent definitions of weak
convergence. In Chapter 8, we will need to know that this is valid for an arbitrary
metric space (S, p), so we will prove the result in that generality and insert another
equivalence that will be useful there. f is said to be Lipschitz continuous if there
is a constant C so that | f(x) — f(¥)| < Cp(x, y).

Theorem 3.9.1. The following statements are equivalent to X,, = Xco.
(i) Ef(X,) = Ef(X) for all bounded continuous f.
(ii) Ef(X,) = Ef(Xs) for all bounded Lipschitz continuous f.
(iii) For all closed sets K, limsup,_, ., P(X, € K) < P(Xx € K).
(iv) For all open sets G, liminf, ., P(X, € G) > P(X»x € G).
(v) For all sets A with P(Xoo € dA) =0, lim,, .o, P(X,, € A) = P(X € A).
(vi) Let Dy = the set of discontinuities of f. For all bounded functions f with
P(Xo € Dy) =0, we have Ef (X)) = Ef(Xo).

Proof. We will begin by showing that (i)—(vi) are equivalent.

(i) implies (ii): Trivial.

(ii) implies (iii): Let p(x, K) =inf{p(x,y):y € K}, ¢;j(r) =1 — jr)*, and
fix) = @j(p(x, K)). f; is Lipschitz continuous, has values in [0,1], and | 1x(x)
as j 1 oo. So

limsup P(X, € K) < lim Ef;(X,) = Ef;j(Xoo) 4 P(Xoo € K) as j 1 00

n—oo
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(iii) is equivalent to (iv): As in the proof of Theorem 3.2.5, this follows easily from
two facts: A is open if and only if A€ is closed; P(A) + P(A¢) = 1.

(iii) and (iv) imply (v): Let K = A, G = A°, and reason as in the proof of Theorem
3.2.5.

(v) implies (vi): Suppose |f(x)] < K and pick oy <o) <--- <oy so that
P(f(Xoo) =a;)) =0for0<i <{l,o0 < —K < K <ap,ando; — ;1 < €. This
is always possible since {« : P(f(X~) = o) > 0} is a countable set. Let A; = {x :
a1 < f(x) o). 0A; Cl{x: f(x) € {ai—1,a;}} U Dy, so P(Xo € 04;) =0,
and it follows from (v) that

4 12
D aiP(Xy € A) > Y aiP(Xao € A))
i=1 i=1

The definition of the «; implies
¢
0<> aiP(X,€A)—Ef(X,) <€ forl<n<oo
i=1

Since € is arbitrary, it follows that Ef(X,) = Ef(Xo).
(vi) implies (i): Trivial.
It remains to show that the six conditions are equivalent to weak convergence (= ).

(v) implies (=) : If F is continuous at x, then A = (—00, x1] X - -+ X (—00, x4]
has w(0A) =0,s0 F,(x) = P(X, € A) > P(Xy € A) = F(x).

(=) implies (iv): Let D' = {c: P(X € Hci) > 0} where HCi ={x:x' =c}. We
say a rectangle A = (ay, bi] x --- x (aq, bg] is good if a;, b; ¢ D' for all i. (=)
implies that for all good rectangles P(X, € A) = P(X« € A). This is also true
for B that are a finite disjoint union of good rectangles. Now any open set G is an
increasing limit of B;’s that are a finite disjoint union of good rectangles, so
liminf P(X, € G) > lirgior.}f P(X, € By) = P(Xx € By) t PX € G)

n—oo n

as k — oo. The proof is complete. [ |

Remark. In Section 3.2, we proved that (i)—(v) are consequences of weak conver-
gence by constructing r.v.’s with the given distributions so that X,, — X, a.s. This
can be done in R (or any complete separable metric space), but the construction
is rather messy. See Billingsley (1979), pp. 337-340, for a proof in R?.

Exercise 3.9.4. Let X, be random vectors. Show that if X,, = X, then the co-
ordinates X, ; = X;.

A sequence of probability measures 1, is said to be tight if for any € > 0, there
is an M so that liminf,_, o un([—M, M%) > 1 — €.
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Theorem 3.9.2. If w, is tight, then there is a weakly convergent subsequence.

Proof. Let F, be the associated distribution functions, and let gy, g, ...be an
enumeration of Q¢ = the points in R? with rational coordinates. By a diagonal
argument like the one in the proof of Theorem 3.2.6, we can pick a subsequence
so that F,4)(q) — G(q) for all ¢ € Q7. Let

F(x) =inf{G(g) : q € Qd, q > x}

where ¢ > x means ¢g; > x; for all i. It is easy to see that F is right continuous.
To check that it is a distribution function, we observe that if A is a rectangle with
vertices in Q¢, then A4 F, > 0 for all n, so A4G > 0, and taking limits we see
that the last conclusion holds for F for all rectangles A. Tightness implies that F
has properties (i) and (ii) of a distribution F. We leave it to the reader to check
that F,, = F. The proof of Theorem 3.2.6 works if you read inequalities such as
r1 < ry < x < s as the corresponding relations between vectors. [ |

The characteristic function of (X, ..., Xy) is ¢(t) = E exp(it - X) where ¢ -
X =1X,+ -+ t;X, is the usual dot product of two vectors.

Theorem 3.9.3. Inversion formula. If A =[aj, bi] X --- X [ag, bg] with
u(0A) = 0 then

d
TTwstpe ar

j=1

w(A) = lim 27)~¢ /
T—o00 [—T.T"

where ¥ ;(s) = (exp(—isa;) — exp(—isb;))/is.

Proof. Fubini’s theorem implies

d
/ / [ [ vt explitix;) widx) dt
e d

d T
=/]_[/ W (1) explit;x;) dt; u(dx)
=T

It follows from the proof of Theorem 3.3.4 that
T
/ Vi) exp(it;x;)dt; — 7 (1,5, x) + 1, 5,1(x))
-T

so the desired conclusion follows from the bounded convergence theorem. [ |

Exercise 3.9.5. Let ¢ be the ch.f. of a distribution F on R. What is the distribution
on R? that corresponds to the ch.f. Y (1, ..., t;) = @(t; + - - - + 17)?
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Exercise 3.9.6. Show that random variables X1, ..., X, are independent if and
only if

k
@x,..x, (1) = 1_[ ox,(t))

j=1

Theorem 3.9.4. Convergence theorem. Let X,,, 1 < n < oo be random vectors
with ch.f. ¢,. A necessary and sufficient condition for X, = X is that ¢,(t) —
Poo(?).

Proof. exp(it - x)is bounded and continuous, so if X,, = X, then ¢,,(t) = Qoo (?).
To prove the other direction it suffices, as in the proof of Theorem 3.3.6, to prove
that the sequence is tight. To do this, we observe that if we fix 6 € R?, then for all
s € R, ¢,(s8) = @pxo(s6), so it follows from Theorem 3.3.6 that the distributions
of 6 - X,, are tight. Applying the last observation to the d unit vectors ey, ..., e4
shows that the distributions of X, are tight and completes the proof. [ ]

Remark. As before, if ¢,(1) — @oo(t) With ¢ (¢) continuous at 0, then @ (¢) is
the ch.f. of some X, and X,, = X .

Theorem 3.9.4 has an important corollary.

Theorem 3.9.5. Cramér-Wold device. A sufficient condition for X,, = X is that
0-X,=0- -Xxforall6 e RY,

Proof. The indicated condition implies E exp(if - X,,) — E exp(if - X ) for all
6 € R, [

Theorem 3.9.5 leads immediately to

Theorem 3.9.6. The central limit theorem in R?. Ler X, X», ... be i.i.d. random
vectors with EX,, = u, and finite covariances

Uij = E(Xp,; — wi)(Xp,j — 1))

If S, =X+ -+ X, then (S, —nu)/n'?> = x, where x has a multivariate
normal distribution with mean 0 and covariance T, that is,

Eexp(if - x)=exp | — Zzeiejrij/z
i

Proof. By considering X, = X, — , we can suppose without loss of generality
that © = 0. Let® € R?. 0 - X, is a random variable with mean 0 and variance

E(ZOan,,-f = ZZE (QinXn’an,j) == ZZGZH}FU
i i i
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so it follows from the one-dimensional central limit theorem and Theorem 3.9.5
that S, /n'/? = x where

i

Eexp(i6 - x) =exp | =Y > 6:6,1;;/2
J
which proves the desired result. [ |

To illustrate the use of Theorem 3.9.6, we consider two examples. In each
el, ..., ey are the d unit vectors.

Example 3.9.1. Simple random walk on 7. Let X, X5, ...beiid. with
PX,=+4e)=PX,=—¢)=1/2d fori=1,...,d

EX! =0andifi # j then EX) X 7 = 0 since both components cannot be nonzero
simultaneously. So the covariance matrix is I';; = (1/2d)1.

Example 3.9.2. Let X, X,,...be iid. with P(X, =¢;)=1/6 for i =1,

2,...,6. In words, we are rolling a die and keeping track of the numbers that
come up. EX,; =1/6 and EX,; X, ; =0 fori # j, so I';; = (1/6)(5/6) when
i =j and = —(1/6)*> when i # j. In this case, the limiting distribution is con-

centrated on {x : ) . x; = 0}.

Our treatment of the central limit theorem would not be complete without some
discussion of the multivariate normal distribution. We begin by observing that
Fij = Fji, and if EXl =0and EX,'X]' = Fi,j’

2
ZZQ,‘@]FU =F (ZQZX1> >0
i J i

so I' is symmetric and nonnegative definite. A well-known result implies that there
is an orthogonal matrix U (i.e., one with U'U = I, the identity matrix) so that
' =U'"VU,where V > 0is adiagonal matrix. Let W be the nonnegative diagonal
matrix with W? = V.If welet A = WU, thenT" = A’A. Let Y be a d-dimensional
vector whose components are independent and have normal distributions with mean
0 and variance 1. If we view vectors as 1 x d matrices and let y = Y A, then x has
the desired normal distribution. To check this, observe that

0-YA=Y 0, Y;A;
i J

has a normal distribution with mean O and variance
2
j i j i k

so E(exp(if - x)) = exp(—(6T0")/2).
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If the covariance matrix has rank d, we say that the normal distribution is
nondegenerate. In this case, its density function is given by

@m)~*(det 1) exp [ =Yyl y;/2
iJ
The joint distribution in degenerate cases can be computed by using a linear
transformation to reduce to the nondegenerate case. For instance, in Example 3.9.2

we can look at the distribution of (X1, ..., X5).
Exercise 3.9.7. Suppose (X1, ..., Xy) has a multivariate normal distribution with
mean vector 6 and covariance I". Show X, ..., X, are independent if and only

if I';; = 0 for i # j. In words, uncorrelated random variables with a joint normal
distribution are independent.

Exercise 3.9.8. Show that (X, ..., X;) has a multivariate normal distribution
with mean vector 6 and covariance I' if and only if every linear combination
¢1X1 + -+ + ¢y X4 has a normal distribution with mean ¢6" and variance c¢I'c’.
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Random Walks

Let X, X», ...be i.i.d. taking values in R? and let S, =X14+--+X,. S, 1s
a random walk. In the previous chapter, we were primarily concerned with
the distribution of S,. In this one, we will look at properties of the sequence
S1(w), S>(w), .. . For example, does the last sequence return to (or near) O infinitely
often? The first section introduces stopping times, a concept that will be very
important in this and the next two chapters. After the first section is completed, the
remaining three can be read in any order or skipped without much loss. The second
section is not starred since it contains some basic facts about random walks.

4.1 Stopping Times

Most of the results in this section are valid for i.i.d. X s taking values in some nice
measurable space (S, S) and will be proved in that generality. For several reasons,
it is convenient to use the special probability space from the proof of Kolmogorov’s
extension theorem:

Q:{(wl,wz,...):a)ieS}

F=8§xSx...
P=puxupux... 1 is the distribution of X;
Xn(w):a)n

So, throughout this section, we will suppose (without loss of generality) that our
random variables are constructed on this special space.

Before taking up our main topic, we will prove a 0-1 law that, in the i.i.d. case,
generalizes Kolmogorov’s. To state the new 0-1 law, we need two definitions. A
finite permutation of N = {1, 2, ...} is a map 7 from N onto N so that 7w (i) # i
for only finitely many i. If 7 is a finite permutation of N and w € SN, we define
(mw); = wx(). In words, the coordinates of w are rearranged according to 7. Since
X;(w) = w;, this is the same as rearranging the random variables. An event A is
permutable if 7'A = {w : mw € A} is equal to A for any finite permutation 7,
or in other words, if its occurrence is not affected by rearranging finitely many of

179
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the random variables. The collection of permutable events is a o-field. It is called
the exchangeable o -field and denoted by £.

To see the reason for interest in permutable events, suppose S = R and let
Sp(@) = Xi(w) + - - - + X, (w). Two examples of permutable events are

() {w: Sy(w) € Bi.o.}
(i1) {w : limsup,_, o, Sp,(w)/c, > 1}

In each case, the event is permutable because S, (w) = S, (7w w) for large n. The list
of examples can be enlarged considerably by observing:

(iii) All events in the tail o-field 7 are permutable.

To see this, observe that if A € 0(X,,41, X, 42, ...), then the occurrence of A is
unaffected by a permutation of Xy, ..., X,. (i) shows that the converse of (iii)
is false. The next result shows that for an i.i.d. sequence, there is no difference
between £ and 7. They are both trivial.

Theorem 4.1.1. Hewitt-Savage 0-1 law. If X, X», ...are i.i.d. and A € £ then
P(A) € {0, 1}.

Proof. Let A € £. As in the proof of Kolmogorov’s 0-1 law, we will show that A
is independent of itself, thatis, P(A) = P(AN A) = P(A)P(A)so P(A) € {0, 1}.
Let A, € 0(Xy, ..., X,) so that

(a) P(A,AA) — 0

Here AAB = (A — B) U (B — A)isthe symmetric difference. The existence of the
A,’s is proved in part ii of Lemma A.2.1. A, can be written as {w : (wy, ..., ®,) €
B,} with B, € §". Let

j+n ifl<j<n
n(j)=13j—n ifn+1=<j<2n
j if j >2n+1

Observing that 72 is the identity (so we don’t have to worry about whether to write
7 or w1 and the coordinates are i.i.d. (so the permuted coordinates are) gives

(b) Plw:we A,AA)=Pw:mwe A,AA)

Now {w: mw € A} = {w : w € A}, since A is permutable, and
{w:mwe A} ={w: (wys1,...,0wm) € By}

If we use A/, to denote the last event then we have

(c) {w:nwe AyAA} ={w:w e A AA}

Combining (b) and (c) gives

(d) P(A,AA) = P(A,AA)
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It is easy to see that
|P(B) — P(C)| = |[P(BAC)|

so (d) implies P(A,), P(A]) - P(A). Now A—C C (A—B)U(B —C) and,
with a similar inequality for C — A, implies AAC C (AAB) U (BAC). The last
inequality, (d), and (a) imply

P(A,AA)) < P(A,AA)+ P(AAA)) — 0
The last result implies
0 < P(Ay) = P(A, N A})
< P(A,UA)— P(A,NA)=P(A,AA) — 0O
so P(A, N'A]) = P(A).But A, and A}, are independent, so
P(A,NA)= P(A,)P(A)) — P(A)

This shows P(A) = P(A)? and proves Theorem 4.1.1. [ |

A typical application of Theorem 4.1.1 is

Theorem 4.1.2. For a random walk on R, there are only four possibilities, one of
which has probability 1.
(i) S, =0 foralln.
(ii) S, — oo.
(iii) S, — —oo.
(iv) —oo = liminf S, < limsup S, = oo.

Proof. Theorem 4.1.1 implies limsup S, is a constant ¢ € [—00, 00]. Let S, =
Sn+1 — X1. Since S, has the same distribution as S,,, it follows that ¢ = ¢ — X.
If ¢ is finite, subtracting ¢ from both sides we conclude X; = 0 and (i) occurs.

Turning the last statement around, we see that if X; = 0, then ¢ = —o0 or o0.
The same analysis applies to the liminf. Discarding the impossible combination
limsup S, = —co and liminf §,, = 400, we have proved the result. [ |

Exercise 4.1.1. Symmetric random walk. Let X, X,,...€ R be i.i.d. with a
distribution that is symmetric about 0 and nondegenerate (i.e., P(X; = 0) < 1).
Show that we are in case (iv) of Theorem 4.1.2.

Exercise 4.1.2. Let X;, X»,...be iid. with EX; =0 and EX? = 02 € (0, 00).
Use the central limit theorem to conclude that we are in case (iv) of Theorem 4.1.2.
Later in Exercise 4.1.11 you will show that EX; =0 and P(X; =0) <1 is
sufficient.
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The special case in which P(X; = 1) = P(X; = —1) = 1/2 is called simple ran-
dom walk. Since a simple random walk cannot skip over any integers, it follows
from either exercise above that with probability 1 it visits every integer infinitely
many times.

Let 7, = o(Xy, ..., X,) = the information known at time »n. A random variable
N taking values in {1, 2, ...} U {0o0} is said to be a stopping time or an optional
random variable if for every n < oo, {N = n} € F,. If we think of S, as giving
the (logarithm of the) price of a stock at time n, and N as the time we sell it, then
the last definition says that the decision to sell at time n must be based on the
information known at that time. The last interpretation gives one explanation for
the second name. N is a time at which we can exercise an option to buy a stock.
Chung prefers the second name because N is “usually rather a momentary pause
after which the process proceeds again: time marches on!”

The canonical example of a stopping time is N = inf{n : S, € A}, the hitting
time of A. To check that this is a stopping time, we observe that

(N=n}=1{S €A%, ....S_1 €A, S, € A} e Fy

Two concrete examples of hitting times that have appeared above are
Example 4.1.1. N = inf{k : |S;| > x} from the proof of Theorem 2.5.2.

Example 4.1.2. If the X; > O and N, = sup{n : S, < ¢} is the random variable that
first appeared in Example 2.4.1, then N, + 1 = inf{n : S, > t} is a stopping time.

The next result allows us to construct new examples from the old ones.

Exercise 4.1.3. If S and T are stopping times, then S A T and S Vv T are stopping
times. Since constant times are stopping times, it follows that S A n and S V n are
stopping times.

Exercise 4.1.4. Suppose S and T are stopping times. Is S + T a stopping time?
Give a proof or a counterexample.

Associated with each stopping time N is a o-field F = the information known
at time N. Formally, Fy is the collection of sets A that have A N {N =n} € F,
for all n < oo, that is, when N = n, A must be measurable with respect to the
information known at time n. Trivial but important examples of sets in Fy are
{N < n}, thatis, N is measurable with respect to Fy.

Exercise 4.1.5. Show that if ¥, € F,, and N is a stopping time, Yy € Fy. As a
corollary of this result, we see thatif f : § — Rismeasurable, 7, = men f(Xn),
and M,, = max,,<, T,,,then Ty and My € Fy.Animportant special caseis S = R,

f(x)=x.
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Exercise 4.1.6. Show that if M < N are stopping times, then Fy; C Fy.

Exercise 4.1.7. Show thatif L < M and A € F, then

N L onA . ) ine ti
= 18 a stopping time
M on A€ pping

Our first result about Fy is

Theorem4.1.3. Let X1, X5, ...beiid., F, = o(X1, ..., X,)and N be a stopping
time with P(N < 00) > 0. Conditional on {N < oo}, {Xyyn,n > 1} is indepen-
dent of Fy and has the same distribution as the original sequence.

Proof. By Theorem A.1.5, it is enough to show that if A € Fy and B; € S for
1 <j <k, then

k
P(A,N <00, Xy €B;, 1< j<k)y=PAN{N <ooh) [ u(B))
Jj=1

where u(B) = P(X; € B). The method (“divide and conquer”) is one that we will
see many times below. We break things down according to the value of N in order
to replace N by n and reduce to the case of a fixed time.

P(AN=n,Xy,j€Bj,1<j<k)=PAN=n,X,1;€B;,1<j=<k)

k
= P(AN{N =nh ] [ (B

j=1

since A N {N = n} € F, and that o-field is independent of X,, 1, ..., X,;4r. Sum-
ming over n now gives the desired result. |

To delve further into properties of stopping times, we recall that we have sup-
posed Q = SN and define the shift 6 : Q — Q by

Bw)n) =wn +1) n=12,...

In words, we drop the first coordinate and shift the others one place to the left.
The iterates of 6 are defined by composition. Let 0! =6, and for k > 2, let 0% =
6 0 O*~1. Clearly, (9*w)(n) = w(n + k), n = 1,2, ... To extend the last definition
to stopping times, we let

oV g — 0"w on{N =n}
A on {N = o0}
Here A is an extra point that we add to 2. According to the only joke in Blumenthal

and Getoor (1968), A is a “cemetery or heaven depending upon your point of view.”
Seriously, A is a convenience in making definitions like the next one.
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Example 4.1.3. Returns to 0. For a concrete example of the use of 6, suppose
S = R? and let

T(w)=inf{n: w1+ -+ w, = 0}

where inf ) = oo, and we set T(A) = oo. If we let 7,(w) = 7(w) + 7(*w), then
on {t < oo},

t(0Tw) = inf{n : (O*w); +--- + (O w), = 0}
=inf{n : w11+ -+ + ©ryy, = 0}
() + 10 w)=inflm >7:01+ -+, =0}

So 1, is the time of the second visit to 0 (and thanks to the conventions 0w = A
and 7(A) = o0, this is true for all w). The last computation generalizes easily to
show that if we let

T(@) = Th—1(@) + 70" ' w)

then T, is the time of the nth visit to 0.

If we have any stopping time 7', we can define its iterates by 7y = 0 and
Ty() = Ty_1(0) + TOT'w) forn > 1
If we assume P = o X 0 X ...then
P(T, < o0) = P(T < o) 4.1.1)
Proof. We will prove this by induction. The result is trivial when n = 1. Suppose
now that it is valid for n — 1. Applying Theorem 4.1.3 to N =1T,_;, we see

that T(#7-1) < co is independent of 7,_; < co and has the same probability as
T < o0, so

P(T, < 00) = P(T,_; < 00, T 'w) < 00)
= P(T,_| < o0)P(T < 00) = P(T < o0)"

by the induction hypothesis. [ |
Letting t, = T(9™"-1), we can extend Theorem 4.1.3 to

Theorem 4.1.4. Suppose P(T < c0) = 1. Then the “random vectors”

Vn = (tna XT,,,1+17 DRI XT)

n

are independent and identically distributed.

Proof. 1t is clear from Theorem 4.1.3 that V,, and V| have the same distribution.
The independence follows from Theorem 4.1.3 and induction since Vi, ..., V,_| €
F(T,-1). [ ]
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Example 4.1.4. Ladder variables. Let «(w) = inf{n : w1 + - - - + w, > 0} where
inf # = 00, and set «(A) = oco. Let g = 0 and let

ap(w) = og_1(@) + a(0“ ' w)

for k > 1. At time o, the random walk is at a record high value.
The next three exercises investigate these times.

Exercise 4.1.8. (i) If P(a < 00) < 1 then P(sup S, < 00) = 1.
(i) If P(a < 00) =1, then P(sup S, = o0) = 1.

Exercise 4.1.9. Let § = inf{n : S, < 0}. Prove that the four possibilities in The-
orem 4.1.2 correspond to the four combinations of P(¢ < 0c0) < 1 or = 1, and
P(B <o0)<lor=1.
Exercise 4.1.10. Let So =0, 8 =inf{n > 1: S, <0} and

AZ ={OZ Sm»SI > Sm,---aSmfl ZSWH Sm < Sm+1’---aSm < Sn}
(i) Show 1 =Y _  P(A%) =) " _oP(e>m)P(B >n—m).

(ii) Let n — oo and conclude Ea = 1/P(B = o).

Exercise 4.1.11. (i) Combine the last exercise with the proof of (ii) in Exercise
4.1.8 to conclude that if EX; = 0, then P(8 = oo0) = 0. (ii) Show that if we assume
in addition that P(X; = 0) < 1, then P(8 = oo) = 0, and Exercise 4.1.9 implies
we are in case (iv) of Theorem 4.1.2.

A famous result about stopping times for random walks is:

Theorem 4.1.5. Wald’s equation. Let X1, X5, ...be i.i.d. with E|X;| < oo. If N
is a stopping time with EN < oo, then ESy = EX{EN.

Proof. First suppose the X; > 0.

o0 o0 n
ESy = / SydP = Z/snlwzn}dp = ZZ/XmI{N:n}dP
n=1

n=1 m=1

Since the X; > 0, we can interchange the order of summation (i.e., use Fubini’s
theorem) to conclude that the last expression

00 00 o0
= Z Z / Xml{N=n}dP = Z/ Xml{NZm}dP
m=1n=m m=1
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Now {N >m} ={N <m — 1}° € F,_1 and is independent of X,,, so the last
expression

o0
= Z EX,P(N >m)=EX,EN
m=1

To prove the result in general, we run the last argument backwards. If we have
EN < oo then

00 > iE|Xm|P(N > m) = ii/ | X |1 (m) d P

m=1 m=1n=m

The last formula shows that the double sum converges absolutely in one order, so
Fubini’s theorem gives

ZZ/Xml{N=n}dP = ZZ/Xml{NZn}dP

m=1n=m n=1 m=1

Using the independence of {N > m} € F,,_; and X,,,, and rewriting the last identity,
it follows that

> EX,P(N = m)=ESy

m=1

Since the left-hand side is EN E X, the proof is complete. [ |

Exercise 4.1.12. Let X, X,,...be i.i.d. uniform on (0,1), let S, = X; +--- +
X,, and let T = inf{n : S, > 1}. Show that P(T > n) = 1/n!, so ET = e and
ESt =e/2.

Example 4.1.5. Simple random walk. Let X;, X,, ...beii.d. with P(X; = 1) =
1/2and P(X; = —1)=1/2. Leta < 0 < b be integers and let N = inf{n : S, &
(a, b)}. To apply Theorem 4.1.5, we have to check that EN < oo. To do this, we
observe that if x € (a, b), then

P(x + Sp_y ¢ (a, b)) > 2709

since b — a steps of size +1 in a row will take us out of the interval. Iterating the
last inequality, it follows that

P(N > n(b —a)) < (1 —27¢9)"
so EN < oo. Applying Theorem 4.1.5 now gives ESy = 0 or
bP(Sy =b)+aP(Sy =a)=0
Since P(Sy = b) + P(Sy = a) = 1, it follows that (b — a) P(Sy = b) = —a, so

—da
P(SNZb)Zm P(SNZCZ):b_a
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Letting T, = inf{n : S, = a}, we can write the last conclusion as

b
P(T, <Ty) = —a fora <0 <b 4.1.2)

Setting b = M and letting M — oo gives
P(T, <o0)>P(T, <Ty) — 1
for all @ < 0. From symmetry (and the fact that 7y = 0), it follows that
P(T, <oo)=1 foralxeZ (4.1.3)

Our final fact about 7, is that ET, = oo for x # 0. To prove this, note that if
ET, < oo then Theorem 4.1.5 would imply

x=ESr, =EX,ET, =0
In Section 4.3, we will compute the distribution of 7} and show that

P(T) > 1)~ Ct /2

Exercise 4.1.13. Asymmetric simple random walk. Let X, X, ...bei.i.d. with
PXi=1)=p>1/2and P(X;=—-1)=1—p,and let S, = X; +---+ X,,.
Leta = inf{m : §,, > O} and B = inf{n : S, < O}.
(i) Use Exercise 4.1.9 to conclude that P(a¢ < o0) =1 and P(8 < o0) < 1.
(i) If Y = inf S,, then P(Y < —k) = P(B < oo)r.
(iii) Apply Wald’s equation to o« An and let n — oo to get Ea = 1/EX;| =
1/(2p — 1). Comparing with Exercise 4.1.10 shows P(B = o0) =2p — 1.

Exercise 4.1.14. An optimal stopping problem. Let X,, n > 1 be i.i.d. with
EX fr < oo and let
Y, = max X,, —cn
1<m=<n

That is, we are looking for a large value of X, but we have to pay ¢ > 0 for each
observation. (i) Let T = inf{n : X,, > a}, p = P(X, > a), and compute EYr.
(ii) Let a (possibly < 0) be the unique solution of E(X; — a)™ = ¢. Show that
EYr = « in this case and use the inequality

Yo <ot ) (Xp—a) —o)

m=1

forn > 1 toconclude thatif t > 1is a stopping time with E7 < oo, then EY, < «.
The analysis above assumes that you have to play at least once. If the optimal &« < 0,
then you shouldn’t play at all.

Theorem 4.1.6. Wald’s second equation. Let X, X5, ...be i.i.d. with EX, =0
and EX? = 0% < oco. If T is a stopping time with ET < oo, then ES> = ¢*ET.
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Proof. Using the definitions and then taking expected value
S%/\n = S%/\(n—l) + 2XnSu—1 + szz)l(TZn)
ES;

T An

= ES; 1)+ 0 P(T > n)

since E X, = 0and X, is independent of S,,_; and 1(7>,) € F,—_1. [The expectation
of S,_ X, exists since both random variables are in L2.] From the last equality and
induction we get

n
ES;,,=0>Y P(T =m)
m=1
E(Stan— Stam) =07 Y P(T =n)

k=m+1
The second equality follows from the first applied to X,,+1, X;,+2, - . .. The second
equality implies that Sy, is a Cauchy sequence in L2, so letting n — oo in the
first, it follows that ES? = o2ET. ]

Example 4.1.6. Simple random walk, II. Continuing Example 4.1.5 we investi-
gate N = inf{S, & (a, b)}. We have shown that EN < oo. Since 6> = 1, it follows
from Theorem 4.1.6 and (4.1.2) that

EN = ES? = d? b +b? = —ab
o NT" b —a b—a

Ifb=Landa=—L,EN = L*

An amusing consequence of Theorem 4.1.6 is
Theorem 4.1.7. Let X, Xa, ...be iid. with EX, =0 and EX2> =1, and let
T, =inf{n > 1:|S,| > cn'/?}.

<00 forc<1
ET.
=00 forc>1

Proof. One half of this is easy. If ET. < oo then, the previous exercise implies
ET.=F (S%C) > ¢*ET., a contradiction if ¢ > 1. To prove the other direction,
we let T = T, A n and observe Sf_l < cz(r — 1), so using the Cauchy-Schwarz
inequality

Et=ES?=ES; | +2E(S;.1X.)+ EX? <c*Et+2c(Et EX2)'* + EX?

To complete the proof now, we will show

Lemma 4.1.8. If T is a stopping time with ET = 00, then
EX%, JE(T An)— 0
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Theorem 4.1.7 follows, forife < 1 — ¢ and n is large, we will have Et < (®+e)
E 1, a contradiction.

Proof. We begin by writing

n
< E(T/\n))-l—ZE(XZ.;T/\n = j. X5 > €j)
Jj=1

E(X7,,) = E(X7,,: X7 rn

The first term is < € E(T A n). To bound the second, choose N > 1 so that for
n>N

ZE(XZ-;Xf > €j) < ne
j=1
This is possible since the dominated convergence theorem implies E(X7; X7 >
€j) — 0 as j — oo. For the first part of the sum, we use a trivial bound
N
Y E(X5:T An=j.X}>ej) < NEX]
j=1
To bound the remainder of the sum, we note (i) X f >0;(){T An > jlise F;_
and hence is independent of Xil(X§>e j)» (ii1) use some trivial arithmetic, (iv) use
Fubini’s theorem and enlarge the range of j, (v) use the choice of N and a trivial
inequality

n n

Y EX:ETAn=j.Xi>€¢)) <Y EX:TAn= j. X3 > €j)
j=N j=N
n n o0
=Y P(T Anz DEX:Xi>e))=> Y P(T An=kEX5X;>€j)
J=N J=N k=j
oo k 00
< ZZP(T/\n:k)E(XZ.;X§>ej)§ ZekP(T/\n =k) < €E(T An)
k=N j=1 k=N

Combining our estimates shows

EX?

T An

<2€E(T An)+ NEX}
Letting n — oo and noting E(T A n) — 00, we have

limsup EX2 /E(T An) < 2¢
p

T An
n—oo

where € is arbitrary. [

4.2 Recurrence

Throughout this section, S, will be a random walk, that is, S, = X; +--- 4+ X,
where X, X», ...are i.i.d., and we will investigate the question mentioned at the
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beginning of the chapter. Does the sequence Si(w), Sz(w), .. . return to (or near) 0
infinitely often? The answer to the last question is either Yes or No, and the random
walk is called recurrent or transient accordingly. We begin with some definitions
that formulate the question precisely and a result that establishes a dichotomy
between the two cases.

The number x € R is said to be a recurrent value for the random walk S,, if for
every € > 0, P(||S, — x|| < €i.0.) = 1. Here ||x]| = sup |x;|. The reader will see
the reason for this choice of norm in the proof of Lemma 4.2.5. The Hewitt-Savage
0-1 law, Theorem 4.1.1, implies that if the last probability is < 1, it is 0. Our first
result shows that to know the set of recurrent values, it is enough to check x = 0.
A number x is said to be a possible value of the random walk if for any € > 0,
there is an n so that P(||S,, — x| <€) > 0.

Theorem 4.2.1. The set V of recurrent values is either ) or a closed subgroup of
RY. In the second case, V = U, the set of possible values.

Proof. Suppose V # (. It is clear that V¢ is open, so V is closed. To prove that }V
is a group, we will first show that

(x)ifxeldandy € Vtheny —x € V.

This statement has been formulated so that once it is established, the result follows
easily. Let

DPs.m(2) = P(|IS, — z|| = 6 forall n > m)

If y—x ¢V, thereisan € > 0 and m > 1 so that py. ,,(y — x) > 0. Since x € U,
there is a k so that P(||S; — x| < €) > 0. Since

P([[Sy — Sk — (y = x)|l = 2e forall n > k + m) = prem(y — x)
and is independent of {||Sx — x|| < €}, it follows that

Pem+i(y) = P(I|Sk — x| < €)prem(y —x) >0

contradictingy € V,soy —x € V.

To conclude that V is a group when V # (J, let ¢, r € V, and observe: (i) taking
x =y =rin (x) shows 0 € V, (ii) taking x = r, y = 0 shows —r € V, and (iii)
taking x = —r, y = g shows g + r € V. To prove that V = U now, observe that if
u € U taking x = u, y = 0 shows —u € V, and since V is a group, it follows that
ue. |

If V = @, the random walk is said to be transient; otherwise it is called recur-
rent. Before plunging into the technicalities needed to treat a general random walk,
we begin by analyzing the special case Polya considered in 1921. Legend has it
that Polya thought of this problem while wandering around in a park near Ziirich
when he noticed that he kept encountering the same young couple. History does
not record what the young couple thought.
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Example 4.2.1. Simple random walk on Z¢.

for each of the d unit vectors e;. To analyze this case, we begin with a result that
is valid for any random walk. Let tp = 0 and 7,, = inf{m > t,_; : S;, = O} be the
time of the nth return to 0. From (4.1.1), it follows that

P(t, < 00) = P(1; < o0)"

a fact that leads easily to:

Theorem 4.2.2. For any random walk, the following are equivalent:
(i) P(t) < 00) =1, (ii) P(S,, =0i.0) =1, and (iii) Y "y P(Sy = 0) = oo.

Proof. If P(1; < o0) = 1, then P(t, < 00) =1 forall n and P(S,, = 0i.0.) = 1.
Let

o0 o0
V= Z Ls,=0) = Z Lz, <00)
m=0 n=0

be the number of visits to 0, counting the visit at time 0. Taking expected value and
using Fubini’s theorem to put the expected value inside the sum:

M

EV P(Sy=0)=Y_ P(t, < 00)
m=0 n=0
—iP(r < o00)! = _
- ! 1= P(1; < 00)

Il
=}

n

The second equality shows that (ii) implies (iii) and, in combination with the last
two, shows that if (i) is false, then (iii) is false (i.e., (iii) implies (i)). [ |

Theorem 4.2.3. Simple random walk is recurrent ind < 2 and transient ind > 3.

To steal a joke from Kakutani (UCLA colloquium talk): “A drunk man will even-
tually find his way home, but a drunk bird may get lost forever.”

Proof. Let py(m) = P(S,, = 0). pg(m) is 0 if m is odd. From Theorem 3.1.3, we
get py(2n) ~ (mn)~'/? as n — oo. This and Theorem 4.2.2 gives the result in one
dimension. Our next step is

Simple random walk is recurrent in two dimensions. Note that in order for S, = 0,
we must for some 0 < m < n have m up steps, m down steps, n — m to the left,
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and n — m to the right, so

n

2n!
pr2n) =473

Om!m!(n—m)!(n —m)!

LB e
B n ) = \m n—mj) n - e

To see the next-to-last equality, consider choosing n students from a class with
n boys and n girls and observe that for some 0 < m < n, you must choose m
boys and n — m girls. Using the asymptotic formula p;(2n) ~ (wn)~'/2, we get
p2(2n) ~ (rn)~!. Since > n~! = oo, the result follows from Theorem 4.2.2.

Remark. For a direct proof of py(2n) = pi(2n)?, note that if T,! and T? are
independent, one-dimensional random walks, then 7,, jumps from x to x + (1, 1),
x+(1,—-1), x + (-1, 1), and x + (—1, —1) with equal probability, so rotating 7,
by 45 degrees and dividing by +/2 gives S,.

Simple random walk is transient in three dimensions. Intuitively, this holds since
the probability of being back at 0 after 2n steps is ~ ¢n~>/2, and this is summable.
We will not compute the probability exactly but will get an upper bound of the
right order of magnitude. Again, since the number of steps in the directions +e;
must be equal fori =1, 2, 3,

p2n) =672

Jjik

_ (2 NER n! 2
- n) 4 Jlk!(n — j —k)!

Js

!
<2 2n max 37" - " _
nj) jk Jlk\(n — j —k)!

where in the last inequality we have used the fact that if a; ; are > 0 and sum to 1,
then Zj,k ajz.’k < max;; a;x. Our last step is to show

2n)!
(k!(n — j —k)!)?

'
max 37" — " . <Cn™!
.k Jlkl(n — j —k)!

To do this, we note that (a) if any of the numbers j, k orn — j — k is < [n/3],
increasing the smallest number and decreasing the largest number decreases the
denominator (since x(1 — x) is maximized at 1/2), so the maximum occurs when
all three numbers are as close as possible to n/3; (b) Stirling’s formula implies

n! n" n 1
Jkln—j =k jikkn—j =k~ \ jk(n —j —k) 27

Taking j and k within 1 of n/3 the first term on the right is < C3", and the desired
result follows.
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Simple random walk is transient in d > 3. Let T, = (S,i, Sﬁ, SS), N(@©) =0 and
N(n) =inf{m > N(n — 1) : T,, # Ty—1)}. It is easy to see that Ty is a three-
dimensional simple random walk. Since Ty, returns infinitely often to 0 with
probability O and the first three coordinates are constant in between the N (n), S, is

transient. [ |

Remark. Let 7; = P(S,, = 0 for some n > 1) be the probability that simple ran-
dom walk on Z returns to 0. The last display in the proof of Theorem 4.2.2 implies

> 1
Y P(S =0)= 4.2.1)
"0 1— g

Ind =3, P(Sy, =0)~Cn=3? 50 > %7\ P(S3, = 0) ~ C'N~1/2, and the series
converges rather slowly. For example, if we want to compute the return probability
to five decimal places, we would need 10'° terms. At the end of the section, we
will give another formula that leads very easily to accurate results.

The rest of this section is devoted to proving the following facts about random
walks:

e §,isrecurrentind = 1if S,/n — O in probability.
e S, isrecurrentind = 2 if S,/n'/? = anondegenerate normal distribution.
e S, istransientin d > 3 if it is “truly three-dimensional.”

To prove the last result, we will give a necessary and sufficient condition for
recurrence.
The first step in deriving these results is to generalize Theorem 4.2.2.

Lemma 4.2.4. If % P(||S, || < €) < oo, then P(||S,| < € i.0.) = 0.
Y2, P(|ISull < €) = oo then P(||S, | < 2€ i.0.) = 1.

Proof. The first conclusion follows from the Borel-Cantelli lemma. To prove the
second, let F' = {||S,,|| < € i.0.}. Breaking things down according to the last time
[1Sall < €,

oo
P(F) =) P(ISull <€ ISl = e foralln = m +1)
m=0
oo
= > PUISull < € 11 = Sull = 2¢ foralln = m + 1)
=0
oo

=Y P(ISull < €)p2e

m
m=0
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where ps r = P(||S,|| = é for all n > k). Since P(F) < 1, and
o0
D P(ISull < €) =00
m=0

it follows that p,.; = 0. To extend this conclusion to pyc ; with & > 2, let
A = {ISull < €, ISl = € foralln = m + k}
Since any w can be in at most k of the A,,, repeating the argument above gives

k=" P(An) = Y P(UISull < €)pex

m=0 m=0
So prer = P(||Sy|l = 2€ for all j > k) = 0, and since k is arbitrary, the desired
conclusion follows. [ ]

Our second step is to show that the convergence or divergence of the sums in
Lemma 4.2.4 is independent of €. The previous proof works for any norm. For the
next one, we need ||x|| = sup; |x;].

Lemma 4.2.5. Let m be an integer > 2.

D Pkl < me) < @m)* Y Pl < €

n=0 n=0

Proof. We begin by observing

o0 o0
D O PAIS <me) <YY" P(S, € ke +10,€))
n=0 n=0 k

where the inner sum is over k € {—m, ..., m — 1}¢. If we let

Ty =inf{ > 0: S, € ke + [0, €)%}

then breaking things down according to the value of T; and using Fubini’s theorem
gives

o0 o0 n
Z P(S, € ke + [0, €)?) = ZZ P(S, € ke + [0, €)?, T, = €)
n=0 n=0 ¢=0
o0 o0
<Y D PUS —Sill <€ Ti=10)
=0 n=¢

Since {T; = £} and {|| S, — S¢|| < €} are independent, the last sum
o0 o0 o0
=Y P(Mi=m)) P(IS;ll <e) <Y PIS;l <e)
m=0 j=0 j=0

Since there are (2m)? values of k in {—m, ..., m — 1}9, the proof is complete. MW
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Combining Lemmas 4.2.4 and 4.2.5 gives:

Theorem 4.2.6. The convergence (resp. divergence) of y_, P(||S,|l <€) for a
single value of € > 0 is sufficient for transience (resp. recurrence).

Ind = 1,if EX; = p # 0, then the strong law of large numbers implies S, /n —
i, so |S,| — oo and S, is transient. As a converse, we have

Theorem 4.2.7. Chung-Fuchs theorem. Suppose d = 1. If the weak law of large
numbers holds in the form S,,/n — 0 in probability, then S, is recurrent.

Proof. Letu,(x) = P(|S,| < x) for x > 0. Lemma 4.2.5 implies

e’} 1 e’} 1 Am
;un(l) > o gun(m) > o gun(n/A)

forany A < oosince u,(x) > Oandisincreasing in x. By hypothesis u,,(n/A) — 1,
so letting m — oo and noticing the right-hand side is A /2 times the average of the
first Am terms

D un()= A2
n=0

Since A is arbitrary, the sum must be co, and the desired conclusion follows from
Theorem 4.2.6. |

Theorem 4.2.8. If S, is a random walk in R? and S,/n'"* = a nondegenerate
normal distribution, then S, is recurrent.

Remark. The conclusion is also true if the limit is degenerate, but in that case the
random walk is essentially one- (or zero)-dimensional, and the result follows from
the Chung-Fuchs theorem.

Proof. Letu(n, m) = P(]|S,|| < m). Lemma 4.2.5 implies

> um, 1) = @m»H ™Y un.m)
n=0 n=0

If m/\/n — c, then

u(n,m) — / n(x)dx
[—c.cP?
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where n(x) is the density of the limiting normal distribution. If we use p(c) to denote
the right-hand side and let n = [6m?], it follows that u([0m?>], m) — p(@~'/?). If
we write
00 00
m=2 Zu(n, m) = / u([@mz], m)do
n=0 0

let m — oo, and use Fatou’s lemma, we get

oo

lim inf (4m2)_1 Zu(n’ m) > 41 / ,0(0_1/2) 46

m—00
n=0 0

Since the normal density is positive and continuous at 0,
p(c) = f n(x)dx ~ n(0)(2c)*
[—c.c]?

asc — 0.So p(0~/?) ~ 4n(0)/0 as  — oo, the integral diverges, and backtrack-
ing to the first inequality in the proof, it follows that Y -, u(n, 1) = oo, proving
the result. |

We come now to the promised necessary and sufficient condition for recurrence.
Here ¢ = E exp(it - X ) is the ch.f. of one step of the random walk.

Theorem 4.2.9. Let § > 0. S, is recurrent if and only if

1
/ Re ————dy =
s L—o(y)

We will prove a weaker result:

Theorem 4.2.10. Let § > 0. S, is recurrent if and only if

1
sup/ Re ———dy =0
r<l1J(=8,8)4 I —re(y)

Remark. Half of the work needed to get the first result from the second is trivial.

0 < Re ; — Re ;

1 —=re(y) 1 —o(y)
so Fatou’s lemma shows that if the integral is infinite, the walk is recurrent. The
other direction is rather difficult: the second result is in Chung and Fuchs (1951),
but a proof of the first result had to wait for Ornstein (1969) and Stone (1969)
to solve the problem independently. Their proofs use a trick to reduce to the case

asr — 1

where the increments have a density and then a second trick to deal with that case,
so we will not give the details here. The reader can consult either of the sources
cited or Port and Stone (1969), where the result is demonstrated for random walks
on Abelian groups.
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Proof. The first ingredient in the solution is the

Lemma 4.2.11. Parseval relation. Let 1 and v be probability measures on R?
with ch.f’s ¢ and .

/W(Z)M(dt)=/<ﬂ(X)V(dx)

Proof. Since e'"* is bounded, Fubini’s theorem implies

/wmmmwiﬁlmwmmwn=[/wmwmwm=/wmwm>-

Our second ingredient is a little calculus.
Lemma 4.2.12. If |x| < w/3 then 1 — cosx > x?/4.

Proof. 1t suffices to prove the result for x > 0. If z < /3, then cosz > 1/2,

Y y
siny=/ coszdz > =
0 2

X X 2
1—cosx=/ sinydyz/ Xdyzx—
0 0o 2 4
which proves the desired result. [ |
From Example 3.3.5, we see that the density
3 — |x| .
5 when |x| <6, 0 otherwise

has ch.f. 2(1 —cosét)/(8t)*>. Let u, denote the distribution of S,. Using
Lemma 4.2.12 (note 7 /3 > 1) and then Lemma 4.2.11, we have

HMWAM<M/H g%m A(d1)

_2‘1/ 41_[ |x, e"(x)dx
(—4,9)

Our next step is to sum from O to co. To be able to interchange the sum and the
integral, we first multiply by 7", where r < 1:

o0

5— 11
3PS < 1/5) <2d/ 2|x
=0 (55)(1 1) l—r(/)(x)
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Symmetry dictates that the integral on the right is real, so we can take the real part
without affecting its value. Letting r 1 1 and using (6 — |x])/§ < 1

> AN 1
E P(IS, ] < 1/6) < (—) sup/ Re ——— dx
n=0 8 500 L—rel)

r<l

and using Theorem 4.2.6 gives half of Theorem 4.2.10.

To prove the other direction, we begin by noting that Example 3.3.8 shows that
the density (1 — cos(x/8))/mx?/8 has ch.f. 1 — |8¢] when |¢t| < 1/8, O otherwise.
Using 1 > ]_[?:1(1 — |6x;]) and then Lemma 4.2.11,

d

P(IS,ll < 1/8) = / [Tt — 18xi1) atd)

(—1/8.1/8Y ;_j
41— cos(t:/9)
o T/8
Multiplying by r" and summing gives
00 d
n 1 —cos(t;/6) 1
> (IS <1/8>z/]‘[ il dr
— e wt; /8 1 —roe(t)

The last integral is real, so its value is unaffected if we integrate only the real part
of the integrand. If we do this and apply Lemma 4.2.12, we get

= 1
D P(ISIl < 1/8) = (4n8)d/ e———dt
n=0 (—sy 1 —=ro()

Letting » 1 1 and using Theorem 4.2.6 now completes the proof of Theorem
4.2.10. [ |

We will now consider some examples. Our goalind = 1andd = 2 isto convince
you that the conditions in Theorems 4.2.7 and 4.2.8 are close to the best possible.

d = 1. Consider the symmetric stable laws that have ch.f. ¢(¢) = exp(—|z¢|*). To
avoid using facts that we have not proved, we will obtain our conclusions from
Theorem 4.2.10. It is not hard to use that form of the criterion in this case since

I —ro() | 1 —exp(—|t]%) asr 11
1 —exp(—[t|*) ~ [¢]* ast — 0
From this, it follows that the corresponding random walk is transient for o < 1
and recurrent for « > 1. The case o > 1 is covered by Theorem 4.2.7 since these
random walks have mean 0. The result for « = 1 is new because the Cauchy

distribution does not satisfy S,/n — 0 in probability. The random walks with
o < 1 are interesting because Theorem 4.1.2 implies (see Exercise 4.1.1)

—oo0 = liminf §,, < limsup §,, = oo

but P(|S,| < M i.0.) = 0forany M < oo.
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Remark. The stable law examples are misleading in one respect. Shepp (1964)
proved that recurrent random walks may have arbitrarily large tails. To be precise,
given a function e(x) | Oasx 1 oo, there is a recurrent random walk with P(| X | >
x) > €(x) for large x.

d =2 Let o <2, and let ¢(t) = exp(—|t|*) where |t| = (tl2 + tzz)]/z. @ is the
characteristic function of a random vector (X, X;) that has two nice properties:

(1) the distribution of (X, X») is invariant under rotations,
(i) X; and X, have symmetric stable laws with index «.

Again, 1 —re(t) | 1 —exp(—|t|*) asr 1 1 and 1 — exp(—|¢|%) ~ [t|* as t — 0.
Changing to polar coordinates and noticing

§
271/ dxxx % < o0
0

when 1 — « > —1 shows that the random walks with ch.f. exp(—|t|%), ¢ < 2 are
transient. When p < o, we have E|X|? < oo by Exercise 3.7.5, so these examples
show that Theorem 4.2.8 is reasonably sharp.

d > 3. The integral [; dx x*~' x~2 < 00, 50 if arandom walk is recurrent ind > 3,
its ch.f. must — 1 faster than 2. In Exercise 3.3.19, we observed that (in one
dimension) if ¢(r) = 1 + o(r?), then ¢(r) = 1. By considering ¢(rf) where r is
real and 0 is a fixed vector, the last conclusion generalizes easily to R, d > 1,
and suggests that once we exclude walks that stay on a plane through 0, no three-
dimensional random walks are recurrent.

A random walk in R? is truly three-dimensional if the distribution of X; has
P(X;-6+#0)>0forall 8 # 0.

Theorem 4.2.13. No truly three-dimensional random walk is recurrent.

Proof. We will deduce the result from Theorem 4.2.10. We begin with some
arithmetic. If z is complex, the conjugate of 1 — zis 1 — Z, so
1 1-z 1 Re(l—2)

= and Re =
1l—z |1—z]2 11—z 11— z|?

If z = a + bi with a < 1, then using the previous formula and dropping the b?
from the denominator,

1 l1—a 1

Re = <
11—z (A—=-aP+b> " 1—a

Taking z = r¢(¢) and supposing for the second inequality that 0 < Re¢(¢) < 1,
we have
1 1 1

(@) Re < <
1 —re@) = Re(l —re)) — Re(l — o))
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The last calculation shows that it is enough to estimate

|x - 1]

Re (1 — (1)) = / {1 — cos(x - D}pu(dx) = / J(d)

|x-tl<m/3 4

by Lemma 4.2.12. Writing t = p6 where 8 € S = {x : |x| = 1} gives

2
0
(b) Re (1 —¢(pb)) = Z/ |x - 6]°u(dx)
|x-0l<m/3p
Fatou’s lemma implies that if we let o — 0 and 6(p) — 6, then
(c) hmmﬁ/ u-mpwumm;i/u-mﬁmu)>o
P=0 Jixo(o)<x/3p
I claim that this implies that for p < py
(d) iﬁ/1 Ix -0 udx)=C >0
0€S Jix-0|<n/3p

To get the last conclusion, observe that if it is false, then for p = 1/n there is a 6,
so that

/ - 6, 2a(dx) < 1/n
|x-6,|<nm/3

All the 6, lie in S, a compact set, so if we pick a convergent subsequence, we
contradict (¢). Combining (b) and (d) gives

Re (1 — ¢(p0)) > Cp? /4

Using the last result and (a) then changing to polar coordinates, we see that if § is
small (so Re ¢(y) > 0 on (=8, §)%)

/ Re;d </6ﬁd d—l/‘dg;
Com A—rp(y = Sy PP Re (1 — ¢(00))

1
SC’/ dp p?3 < 00
0

when d > 2, so the desired result follows from Theorem 4.2.10. [ |

Remark. The analysis becomes much simpler when we consider random walks on
Z4 . The inversion formula given in Exercise 3.3.2 implies

m&:m:@m”/ Q" (1) dt
(=)
Multiplying by r" and summing gives

o0

n _ _ —d —1
> F"P(S, = 0) = (27) /nﬂwl_rﬂndt

n=0 (
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In the case of simple random walk ind = 3, ¢(¢t) = % Z§:1 cost; is real.

1 1
1= ro®) 0 = o0) when ¢(t) > 0

0

Smfl When¢(f)§0

So, using the monotone and bounded convergence theorems

Z P(S, =0) = (271)—3[
n=0 -

This integral was first evaluated by Watson in 1939 in terms of elliptic integrals,
which could be found in tables. Glasser and Zucker (1977) showed that it was

(«/6/32713)F(1/24)F(5/24)F(7/24)F(11/24) = 1.516386059137 ...
so it follows from (4.2.1) that
w3 = 0.340537329544 . ..

For numerical results in 4 < d < 9, see Kondo and Hara (1987).

4.3 Visits to 0, Arcsine Laws™*

In the last section, we took a broad look at the recurrence of random walks. In this
section, we will take a deep look at one example: simple random walk (on Z). To
steal a line from Chung, ‘“We shall treat this by combinatorial methods as an antidote
to the analytic skulduggery above.” The developments here follow Chapter III of
Feller, vol. I. To facilitate discussion, we will think of the sequence Sy, Sz, ..., S,
as being represented by a polygonal line with segments (k — 1, Sy_1) — (k, S).
A path is a polygonal line that is a possible outcome of simple random walk.
To count the number of paths from (0,0) to (n, x), it is convenient to introduce
a and b defined as follows: a = (n + x)/2 is the number of positive steps in the
path and b = (n — x)/2 is the number of negative steps. Notice that n =a + b
and x =a —b.If —n <x <n and n — x is even, the a and b defined above are
nonnegative integers, and the number of paths from (0,0) to (n, x) is

Nox = (”) 43.1)
a

Otherwise, the number of paths is 0.

Theorem 4.3.1. Reflection principle. If x, y > 0, then the number of paths from
(0, x) to (n, y) that are 0 at some time is equal to the number of paths from (0, —x)
to (n,y).
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(n,y)

0, x)

o, —x)\/\/KW

Figure 4.1. Reflection principle.

Proof. Suppose (0, so), (1, s1), ..., (n, s,) is a path from (0, x) to (n, y). Let K =
inf{k : sy = 0}. Let s, = —s¢ for k < K, 5, = s for K <k <n. Then (k, s;),
0 < k < n,is apath from (0, —x) to (n, y). Conversely, if (0, t), (1, t1), ..., (n, t,)
is a path from (0, —x) to (n, y), then it must cross 0. Let K = inf{k : 1, = 0}. Let
t, = —trfork < K, =ty for K <k <n.Then (k,1),0 < k < n,is apath from
(0, —x) to (n, y) that is O at time K. The last two observations set up a one-to-
one correspondence between the two classes of paths, so their numbers must be
equal. [ |

From Theorem 4.3.1 we get a result first proved in 1878.

Theorem 4.3.2. Ballot theorem. Suppose that in an election candidate A gets o
votes, and candidate B gets 5 votes where B < «. The probability that throughout
the counting A always leads B is (o« — B)/(a + B).

Proof. Let x =a — B, n = a + . Clearly, there are as many such outcomes as
there are paths from (1,1) to (n, x) that are never 0. The reflection principle implies
that the number of paths from (1,1) to (n, x) that are O at some time the number of
paths from (1,—1) to (n, x), so by (4.3.1) the number of paths from (1,1) to (n, x)
that are never O is

n—1 n—1
Nn—l,x—l - Nn—l,x+1 = -
oa—1 o

_ (n—1)! (n—1)!
S (e—=Dn—o)! aln—a—1)!
_oz—(n—a) n! _a—,B
B n aln—a) a+p "
since n = « + B, this proves the desired result. [ |

Using the ballot theorem, we can compute the distribution of the time to hit O
for simple random walk.

Lemma4.3.3. P(S; £0, ..., S # 0) = P(S, = 0).
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Proof. P(§1>0,...,5,>0) = Zf‘;l P(S;>0,...,5,-1>0,5,,, =2r). From
the proof of Theorem 4.3.2, we see that the number of paths from (0,0) to (2n, 2r)
that are never 0 at positive times (= the number of paths from (1,1) to (2r, 2r) that
are never 0) is

Now_12r—1 — Nou—1,2r41

If we let p, » = P(S, = x), then this implies

1
P(S1 >0,...,8,-1>0,8,=2r) = E(p2n71,2r71 — Don—1,2r+1)

Summing from r = 1 to co gives
1 1
P(S1>0,...,85,>0)= FPm-11 = EP(Szn =0)

Symmetry implies P(S; <0, ..., S8, <0)=(1/2)P(S,, = 0), and the proof is
complete. [ |

Let R = inf{m > 1: §,, = 0}. Combining Lemma 4.3.2 with Theorem 3.1.2
gives

P(R > 2n) = P(Sy, =0) ~ = V2p~1/2 (4.3.2)

Since P(R > x)/ P(|R| > x) =1, it follows from Theorem 3.7.4 that R is in
the domain of attraction of the stable law with « = 1/2 and « = 1. This implies
that if R, is the time of the nth return to O then R, /n”> = Y, the indicated stable
law. In Example 3.7.2, we considered t = 77 where T, = inf{n : S, = x}. Since
Sie{=1,1}and Ty =4 T_1, R =4 1 + Ty, anditfollows that T}, /n> = Y, the same
stable law. In Example 8.6.6, we will use this observation to show that the limit
has the same distribution as the hitting time of 1 for Brownian motion, which has
a density given in (8.4.8).

This completes our discussion of visits to 0. We turn now to the arcsine laws.
The first one concerns

Ly, =sup{m <2n:S, =0}

It is remarkably easy to compute the distribution of L,,,.
Lemma 4.3.4. Let uy,, = P(Sy, =0). Then P(Ly, = 2k) = uxur,—o-

Proof. P(Ly, =2k) = P(Sy% =0, Soxa1 #0, ..., S, #0), so the desired result
follows from Lemma 4.3.3. [ |

Theorem 4.3.5. Arcsine law for the last visit to 0. For0 <a < b < 1,

b
P(a < Ly,/2n < b) — / a1 —x) V2 dx
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To see the reason for the name, substitute y = x'/?, dy = (1/2)x~"/?dx in the
integral to obtain

) 2
/ ;(1 — yz)_l/2 dy = ;{arcsin(«/z) — arcsin(+/a))
Ja

Since L, is the time of the last zero before 2n, it is surprising that the answer is
symmetric about 1/2. The symmetry of the limit distribution implies

P(Ly/2n <1/2) — 1)2

In gambling terms, if two people were to bet $1 on a coin flip every day of the year,
then with probability 1/2, one of the players will be ahead from July 1 to the end
of the year, an event that would undoubtedly cause the other player to complain
about his bad luck.

Proof of Theorem 4.3.5. From the asymptotic formula for u,,, it follows that if
k/n — x, then

nP(Ly, =2k) — 7 (x(1 — x))~1/?

To get from this to the desired result, we let 2na, = the smallest even integer
> 2na, let 2nb,, = the largest even integer < 2nb, and let f,(x) =nP(Ly, = k)
for 2k/2n < x < 2(k + 1)/2n, so we can write

nby, by+1/n
Pla<Loj2n<hy=Y P(ly =2k = / fu() dx

k=na,

Our first result implies that uniformly on compact sets

fu¥) = f) =77 el = )72

The uniformity of the convergence implies

sup fu(x) = sup f(x) < oo

an<x=<b,+1/n a<x<b

if 0 < a < b < 1, so the bounded convergence theorem gives

b,+1/n b
f F)dx — / Frydx .

The next result deals directly with the amount of time one player is ahead.

Theorem 4.3.6. Arcsine law for time above 0. Let 7w;,, be the number of segments
(k — 1, Sx_1) = (k, Sy) that lie above the axis (i.e., in {(x,y) :y > 0}), and let
Uy = P(S, =0).

P (2, = 2k) = uprto,—ok
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and consequently, if 0 <a < b < 1,

b
Pla < mp,/2n < b) — / a7 ' x( = x)"V?dx

Remark. Since my, =4 L;,, the second conclusion follows from the proof of
Theorem 4.3.5. The reader should note that the limiting density 7 ~'(x(1 — x))~!/?
has a minimum at x = 1/2, and — oo as x — 0 or 1. An equal division of steps
between the positive and negative side is therefore the least likely possibility, and
completely one-sided divisions have the highest probability.

Proof. Let Boro, denote the probability of interest. We will prove B2, =
UpgUo,—or by induction. When n = 1, it is clear that

Bo2 = Br2=1/2 = uou,
For a general n, first suppose k = n. From the proof of Lemma 4.3.3, we have
1
Euzn =P(5>0,...,8,>0)
=P =1,5%-5820,...,8%, -85 >0

1
=§P(Sl >0,...,8,-1>0)

1 1
= —P(S >O,...,Sn20=_ n,2n
5 S = 2 ) 2:32,2

The next-to-last equality follows from the observation that if Sp,_; > 0, then
S>,-1 > 1, and hence S,,, > 0.

The last computation proves the result for k = n. Since By 2, = Ban.2n, the result
is also true when & = 0. Suppose now that 1 < k <n — 1. In this case, if R is the
time of the first return to 0, then R = 2m with 0 < m < n. Letting f5,, = P(R =
2m) and breaking things up according to whether the first excursion was on the
positive or negative side gives

k n—k
1 1
Bokon = > E SomBok—2m,2n—2m + > E 1f2m:32k,2n—2m
m=

m=1

Using the induction hypothesis, it follows that

k n—k
1 1
Bokon = > Uon—2k E SomUok—om + U2k E SomUon—2k—2m

By considering the time of the first return to 0, we see

k n—k
Uy = E FomUok—om Uop—2k = g SomUon—2k—2om
m=1 m=1

and the desired result follows. [ ]
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Our derivation of Theorem 4.3.6 relied heavily on special properties of simple
random walk. There is a closely related result due to E. Sparre-Andersen that is
valid for very general random walks. However, notice that the hypothesis (ii) in the
next result excludes simple random walk.

Theorem 4.3.7. Letv, = |{k:1 <k <n, S; > 0}|. Then
(i) P(vy = k)= P(vx = k)P(vy— = 0)
(ii) If the distribution of X, is symmetric and P(S,, = 0) = 0 forallm > 1, then

P(v, = k) = uspitr, o1

where iy, = 27" (2’;:') is the probability simple random walk is 0 at time 2m.

(iii) Under the hypotheses of (ii),

b
P(afvn/ngb)%/‘ 7' x(1 —x)?dx for0<a<b<1

Proof. Taking things in reverse order, (iii) is an immediate consequence of (ii) and
the proof of Theorem 4.3.5. Our next step is to show that (ii) follows from (i) by
induction. When n = 1, our assumptions imply P(v; = 0) = 1/2 = ugu,.If n > 1
and 1 < k < n, then (i) and the induction hypothesis imply

P(v, = k) = uopug - uoUon—2k = UdkUn—2k

since uy = 1. To handle the cases kK = 0 and k = n, we note that Lemma 4.3.4
implies

n
E UokUop—ok = 1
k=0

We have ZZ:O P(v, =k)=1 and our assumptions imply P(v, =0) = P(v, =n),
so these probabilities must be equal to uguy,.

The proof of (i) is tricky and requires careful definitions since we are not
supposing X is symmetric or that P(S, =0)=0. Let v, =|{k: 1 <k <n,
Se =0} =n— v,

M, = max §; ly=min{j:0<j<n,S;=M,}

0<jzn -

M, = min §; ¢ =max{j:0<j<n,S; =M}

0<j=n

The first symmetry is straightforward.
Lemma 4.3.8. (¢,, S,) and (n — €,,, S,) have the same distribution.
Proof. fweletTy =S, — S,—r = X, + -+ Xy—ry1, then T, 0 < k < n has the

same distribution as Sy, 0 < k < n. Clearly,

max T, = S, — min S,_;
0<k=<n 0<k=<n

and the set of k for which the extrema are attained are the same. [ ]
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The second symmetry is much less obvious.

Lemma 4.3.9. (¢, S,) and (v,, S,) have the same distribution.
(), Sp) and (v),, S,) have the same distribution.

Remark. (i) follows from Lemma 4.3.8 and the trivial observation

P, =k) = Pty =k)P(l,—x = 0)
so, once Lemma 4.3.9 is established, the proof of Theorem 4.3.7 will be complete.
Proof. Whenn = 1,{¢; =0} = {$; <0} ={v; =0},and {¢; =0} = {5, > 0} =

{v] = 0}. We shall prove the general case by induction, supposing that both state-
ments have been proved when 7 is replaced by n — 1. Let

Gy)=Ply—1 =k, Si-1 =)
H(y)=PWy—1 =k, Si-1 =)

On{S, <0},wehavet, | =¢,,andv,_| = v,,soif F(y) = P(X; < y), then for
x <0,

P, =k,S, <x)= f F(x —y)dG(y) 4.3.3)

- f F(x —y)dH(y)= P(v, =k, S, < x)

On {S,, > 0}, we have 6,’1_1 = ¢, and v,/l_l = v, so repeating the last computation
shows that for x > 0

P, =n—k, S, >x)=PW,=n—k,S, > x)

Since (£,,, S,) has the same distribution as (n — £/, S,) and v/, = n — v,, it follows
that forx > 0

Pl,=k,S,>x)=PWv, =k, S, > x)
Setting x = 0 in the last result and (4.3.3) and adding gives
P, =k)y= P, =k)
Subtracting the last two equations and combining the result with (4.3.3) gives
PU,=k, S, <x)=Pv, =k, S, <x)

for all x. Since (¢,, S,) has the same distribution as (n — €,,, S,) and v, = n — v,
it follows that

PW,=n—k, S, >x)=P,=n—k,S, > x)

for all x. This completes the proof of Lemma 4.3.9 and hence of Theorem 4.3.7. W
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4.4 Renewal Theory*

Let &, &, ...be i.i.d. positive random variables with distribution F and define
a sequence of times by Ty =0, and T, = Ty + & for k > 1. As explained in
Section 2.4, we think of &; as the lifetime of the ith light bulb, and T is the time the
kth bulb burns out. A second interpretation from Section 3.6 is that 7} is the time
of arrival of the kth customer. To have a neutral terminology, we will refer to the
T; as renewals. The term refers to the fact that the process “starts afresh” at T,
that is, {Tx4; — T, j > 1} has the same distribution as {7}, j > 1}.

T1 T2 ! TN (1)
A d ‘ A d

0 t

Figure 4.2. Renewal sequence.

Departing slightly from the notation in Sections 2.4 and 3.6, we let N; = inf{k :
T > t}. N, is the number of renewals in [0, ¢], counting the renewal at time O (see
Figure 4.2). In Theorem 2.4.6, we showed that

Theorem 4.4.1. As t — oo, N,/t — 1/u a.s. where u = E§&; € (0,00] and
1/00 = 0.

Our first result concerns the asymptotic behavior of U(t) = EN,.
Theorem 4.4.2. Ast — oo, U(t)/t — 1/L.

Proof. We will apply Wald’s equation to the stopping time N,. The first step
is to show that P(§; > 0) > 0 implies EN, < oco. To do this, pick § > 0 so that
P(& > 8) = € > Oand pick K sothat K§ > ¢. Since K consecutive &/s that are > §
will make 7,, > ¢, we have

P(N, > mK) < (1 —€5y"
and EN, < oo. If u < oo, applying Wald’s equation now gives
WEN; = ETy, > t

so U(t) > t/u. The last inequality is trivial when u = o0, so it holds in general.
Turning to the upper bound, we observe that if P(§; < c¢) = 1, then repeating

the last argument shows uEN, = ESy, <t + ¢, and the result holds for bounded

distributions. If we let & = & A c and define 7, and N, in the obvious way then

EN, < EN, < (t +¢)/E(&)

Letting + — oo and then ¢ — oo gives limsup,_, ., EN;/t < 1/u, and the proof
is complete. u

Exercise 4.4.1. Show thatt/E(§ ANt) < U(t) <2t/E(& Nt).
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Exercise 4.4.2. Deduce Theorem 4.4.2 from Theorem 4.4.1 by showing
limsup E(N,/t)* < oo.

t—>00

Hint: Use a comparison like the one in the proof of Theorem 4.4.2.

Exercise 4.4.3. Customers arrive at times of a Poisson process with rate 1. If the
server is occupied, they leave. (Think of a public telephone or prostitute.) If not,
they enter service and require a service time with a distribution F' that has mean pu.
Show that the times at which customers enter service are a renewal process with
mean i + 1, and use Theorem 4.4.1 to conclude that the asymptotic fraction of
customers served is 1/(u + 1).

To take a closer look at when the renewals occur, we let

o0
U(A) = P(T, € A)

n=0
U is called the renewal measure. We absorb the old definition, U(t) = E N, into
the new one by regarding U(¢) as shorthand for U([0, ¢]). This should not cause
problems, since U(¢) is the distribution function for the renewal measure. The
asymptotic behavior of U (¢) depends on whether the distribution F is arithmetic,
that is, concentrated on {6, 28, 38, ...} for some § > 0, or nonarithmetic, that is,
not arithmetic. We will treat the first case in Chapter 5 as an application of Markov
chains, so we will restrict our attention to the second case here.

Theorem 4.4.3. Blackwell’s renewal theorem. If F' is nonarithmetic, then
U(t,t+h]) > h/u ast — oo.

We will prove the result in the case u < oo by “coupling” following Lindvall
(1977) and Athreya, McDonald, and Ney (1978). To set the stage for the proof,
we need a definition and some preliminary computations. If 7 > 0 is independent
of &1, &, ... and has distribution G, then T}, = Ty_; + &, kK > 1 defines a delayed
renewal process, and G is the delay distribution. If we let N, = inf{k : T} > ¢}
as before and set V(t) = E N,, then breaking things down according to the value
of Ty gives

V() = / Uit —s5)dG(s) 4.4.1)
0

The last integral, and all similar expressions below, is intended to include the
contribution of any mass G has at 0. If we let U(r) = 0 for r < 0, then the last
equation can be written as V = U * G, where * denotes convolution.

Applying similar reasoning to U gives

Uir)=1 +/ U(t —5)dF(s) (4.4.2)
0
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or, introducing convolution notation,
U =1ljp0)t)+Ux%F.
Convolving each side with G (and recalling G « U = U * G) gives
V=GxU=G+VxF (4.4.3)

We know U(t) ~ t/u. Our next step is to find a G so that V(¢) = ¢/u. Plugging
what we want into (4.4.3) gives

t/p = G(t)+/ —dF(y)

SO Gt)=t/u— /—dF(y)

The integration-by-parts formula is

fo K(y)dH(y) = HOK(t) — HOK(0) - /O H()dK (y)

Ifwelet H(y) =(y —t)/nand K(y) =1 — F(y), then

1 t—y
—/ l—F(y)dy_——/ —dF(y)
wJo

so we have
1 t
G(t) = —/ 1— F(y)dy 4.4.4)
K Jo

It is comforting to note that u = f 0. OO) — F(y)dy, so the last formula defines a
probability distribution. When the delay distribution G is the one given in (4.4.4),
we call the result the stationary renewal process. Something very special happens
when F(t) = 1 — exp(—At), t > 0 where A > 0 (i.e., the renewal process is a rate
A Poisson process). In this case, u = 1/A so G(t) = F(t).

Proof of Theorem 4.4.3 for u < oo. Let T, be a renewal process (with Ty = 0) and
T, be an independent stationary renewal process. Our first goal is to find J and K so
that |T; — T¢| < € and the increments {T;; — T;,i > 1} and {Ty , — T,i > 1}
are i.i.d. sequences independent of what has come before.
Let 11, 2, ...and n}, n5, ...be ii.d. independent of 7, and 7,, and take the
values 0 and 1 with probability 1/2 each. Let v, =n; 4+ ---+1n, and v, =1+
n +---+mn,, S =T, and S, = T,. The increments of S, — S, are 0 with prob-
ab111ty at least 1/4, and the support of their distribution is symmetric and contains
the support of the &, so if the distribution of the & is nonarithmetic, the ran-
dom walk S, — S, is irreducible. Since the increments of S, — S, have mean
0, N=inf{n:|S, — S| <€} has P(N <o00)=1, and we can let J = vy and
K = v),. Let (see Figure 4.3 for a picture)

T, ifJ>n
TJ+TI/(+(H_J)_TI/< ifJ <n

" _
n =

— T} are the same as T

In other words, the increments 7/ K4i

, .
Tt — Ty fori > 1.
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In T T, T, T/ Tip
i T, Ty Tgir Tgyo

Figure 4.3. Coupling of renewal processes.

It is easy to see from the construction that 7,, and 7, have the same distribution.
If we let

N'ls,t1=1{n:T, €ls,t]}] and N"[s,t]1=1|{n:T €l[s, 11}
be the number of renewals in [s, ¢] in the two processes, then on {T; < t}

N'[t,t +hl =Nt +T) — Tyt +h+Th —T)] {Z Nl e r4h—el
<N'[t—¢€,t+h+¢€]

To relate the expected number of renewals in the two processes, we observe
that even if we condition on the location of all the renewals in [0, s], the expected
number of renewals in [s, s 4 ¢] is at most U (¢), since the worst thing that could
happen is to have a renewal at time s. Combining the last two observations, we see
that if € < h/2 (so [t + €, t + h — €] has positive length)

U(t,t +h])=EN"[t,t +h]>EN'[t+e,t+h—€];T; <t)
h —2e¢
>

— P(T; > HU(h)

since EN'[t+¢,t+h—¢€]=(h—2¢)/u and {T; > ¢t} is determined by the
renewals of T in [0, 7] and the renewals of 7" in [0, ¢t + €]. For the other direction,
we observe

U(t,t+h]) <EN'[t —e,t+h+¢€l;T; <t)+EN"[t,t +h];T; > 1)
h + 2e¢
=<

+ P(Ty > t)U(h)

The desired result now follows from the fact that P(7T; > t) — O and € < h/2 is
arbitrary. [ |

Proof of Theorem 4.4.3 for u = oo. In this case, there is no stationary renewal
process, so we have to resort to other methods. Let
B =limsupU(t,t + 1] = lim U(t, t + 1]

—>00 k— o0
for some sequence 1, — 0o0. We want to prove that 8 = 0, for then by addition the
previous conclusion holds with 1 replaced by any integer n and, by monotonicity,
with n replaced by any & < n, and this gives us the result in Theorem 4.4.3. Fix i
and let

ak,j:/ Ulty =y, te + 1 — yldF™(y)
(—1.j1
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By considering the location of 7; we get

]

(a) kIL‘EOZI:“kJ:klinio/U“k_y’fk“_y]dFi*(”:ﬂ
J:

Since g is the lim sup, we must have

(b) limsupay; < B - P(T; € (j — 1, j])

k—o00

We want to conclude from (a) and (b) that

(©) liminfay; = p- P(T; € (j — 1. j])

To do this, we observe that by considering the location of the first renewal in
(j—LJ]

(d) O<a; =UMPT €(j—1,jD

(c) is trivial when 8 = 0, so we can suppose B8 > 0. To argue by contradiction,
suppose there exist jj and € > 0 so that

likfgggfak,jo <B-{PT; €(jo—1, jo) — €}
Pick k,, — oo so that
ar,.j, > B-{P(T; € (jo— 1, jol) — €}
Using (d), we can pick J > jj so that
o o
limsup Y a,; <U) Y P(T; €(j— 1, j]) < Be/2
=00 g+l j=J+1
Now an easy argument shows
J J J
limsupZakmj < Zlimsupakmj <8 ZP(Ti e(j—1,j)—ce€
j=l1

n—oo . n—oo .

by (b) and our assumption. Adding the last two results shows

o
limsup Y " ay, ; < Bl — €/2)
=1

n—oo
J

which contradicts (a), and proves (c).
Now, if j — 1 <y < j, we have

Utk =y, e + 1=yl < Ut — j, tx +2 — j]
so using (c), it follows that for j with P(7; € (j — 1, j]) > 0, we must have
liminfU(ty — j,tx +2— j]1 > B
k— 00

Summing over i, we see that the last conclusion is true when U(j — 1, j] > 0.
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The support of U is closed under addition. (If x is in the support of F"** and
y is in the support of F™*, then x + y is in the support of F*) We have
assumed F is nonarithmetic, so U(j — 1, j] > 0 for j > jy. Letting rp =t — Jo
and considering the location of the last renewal in [0, r¢] and the index of the T;
gives

1=Z (1= Fre —y)dF* ()= | (1= F@x—y)dU(y)
i—0 Y0 0

> Z(l — FQn)U(ry — 2n, ri +2 — 2n]

n=1
Since liminfy_, oo U(ry — 2n, 1y +2 — 2n] > B and
(o)
> (1= FQn) = /2 =00
n=0
B must be 0, and the proof is complete. [ |

Remark. Following Lindvall (1977), we have based the proof for © = co on
part of Feller’s (1961) proof of the discrete renewal theorem (i.e., for arithmetic
distributions). See Freedman (1971b), pp. 22-25, for an account of Feller’s proof.
Purists can find a proof that does everything by coupling in Thorisson (1987).

Our next topic is the renewal equation: H = h + H * F.Two cases we have
seen in (4.4.2) and (4.4.3) are:

Example4.4.1. h = 1: U(t) = 1 + [, U(t — s)dF(s)
Example 4.4.2. h(t) = G(t): V() = G@) + fot V(i —s)dF(s)

The last equation is valid for an arbitrary delay distribution. If we let G be the
distribution in (4.4.4) and subtract the last two equations, we get

Example 4.4.3. H(t) = U(t) — t/u satisfies the renewal equation with () =
Hf’" 1 — F(s)ds.

Last but not least, we have an example that is a typical application of the renewal
equation.

Example 4.4.4. Let x > 0 be fixed, and let H(t) = P(Tn¢) —t > x). By consid-
ering the value of T}, we get

H() = (1 — F(t +x) + / H(t — s)dF(s)
0
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The examples above should provide motivation for:
Theorem 4.4.4. If h is bounded then the function

H(t) = / h(t —s)dU(s)
0

is the unique solution of the renewal equation that is bounded on bounded intervals.

Proof. Let U,(A) =" _, P(T, € A) and

t
H,(t) = / h(t = $)dUy(s) = > (h* F"™) ()
0 m=0
Here, F™* is the distribution of 7,,, and we have extended the definition of / by
setting h(r) = O for r < 0. From the last expression, it should be clear that

H,w=h+H,xF
The fact that U(t) < oo implies U(¢t) — U, (t) — 0. Since A is bounded,
|Hy (1) — H(?)| < [|hlloc|U(#) — Un(2)|

and H,(t) - H(t) uniformly on bounded intervals. To estimate the convolution,
we note that

|Hy + F(t) — H * F(t)| < sup |H,(s) — H(s)|

= [[hllec|U @) = Un(0)]

since U — U, = Z;O:Hl F™ is increasing in ¢. Letting n — oo in H,41 = h +
H, x F, we see that H is a solution of the renewal equation that is bounded on
bounded intervals.

To prove uniqueness, we observe that if H; and H, are two solutions, then
K = H; — H, satisfies K = K * F.If K is bounded on bounded intervals, iterating
gives K = K % F"™* — Qasn — 00, s0 H = H,. |

The proof of Theorem 4.4.4 is valid when F(o0) = P(§ < o0) < 1. Inthis case,
we have a terminating renewal process. After a geometric number of trials with
mean 1/(1 — F(00)), T, = oo. This “trivial case” has some interesting applications.

Example 4.4.5. Pedestrian delay. A chicken wants to cross a road (we won’t ask
why) on which the traffic is a Poisson process with rate A. She needs one unit
of time with no arrival to safely cross the road. Let M = inf{r > O : there are no
arrivals in (¢, ¢ + 1]} be the waiting time until she starts to cross the street. By
considering the time of the first arrival, we see that H(t) = P(M < t) satisfies

1
Hit)=e"+ / H(t — y) e ™ dy
0
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Comparing with Example 4.4.1 and using Theorem 4.4.4, we see that

H(t)y=e™> F™1)

n=0

We could have gotten this answer without renewal theory by noting

oo
P(M<t)=Y P(T, <t, Ty = 00)
n=0

The last representation allows us to compute the mean of M. Let u be the mean of
the interarrival time given that it is < 1, and note that the lack of memory property
of the exponential distribution implies

1 00 00 1 1
M=/xke_kxdx:/ —/ =——<1+—)e_’\
0 0 1 A A

Then, by considering the number of renewals in our terminating renewal process,
oo
EM = Ze_k(l —eMYnpu = (" — Du
n=0
since if X is a geometric with success probability e=*, then EM = pnE(X — 1).

Example 4.4.6. Cramér’s estimates of ruin. Consider an insurance company that
collects money at rate ¢ and experiences i.i.d. claims at the arrival times of a Poisson
process N, with rate 1. If its initial capital is x, its wealth at time 7 is

Nt
Wx(t)zx—i-ct—ZYi

m=1

Here Y1, Y», . ..are i.i.d. with distribution G and mean . Let
R(x) = P(W,(t) > 0 for all 1)

be the probability of never going bankrupt starting with capital x. By considering
the time and size of the first claim:

00 x+tcs
(a) R(x) = / e‘“‘/ R(x +cs —y)dG(y)ds
0 0

This does not look much like a renewal equation, but with some ingenuity it can
be transformed into one. Changing variables t = x + cs,

_ < ! dt
R(x)e™*/¢ =/ e ’/6/ R(t—y)dG(y)?
X 0

x/c

Differentiating w.r.t. x and then multiplying by e*/¢,

1 x 1
R = R0 - /0 RO = 1)dGO) - -
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Integrating x from O to w,

1 w 1 w X
(b) R(w) — R(0) = ;/ R(x)dx — E/o /0 R(x —y)dG(y)dx

0
Interchanging the order of integration in the double integral, letting

S(w) = /w R(x)dx
0

using dG = —d(1 — G), and then integrating by parts,

1 w w 1 w
! / / R(x = y)dx dG(y) = —~ / S(w — ) dG(y)
CcJo Jy ¢ Jo

1 w
_ _fo Sw — y)d(1 — G)(y)

c

1 w
:Z+4WQ+A(1—G@DMw—wd4

Plugging this into (b), we finally have a renewal equation:

w 1—-G
© R(w) = R(O) + /0 Raw — ) gy

It took some cleverness to arrive at the last equation, but it is straightforward to
analyze. First, we dismiss a trivial case. If u > c,

1 Nt
—|ct — Y; - 0 as.
t(c Z >—>c n < a.s

m=1
so R(x) =0. When u < c,
T1-G
F(x)= / J dy
0 C
is a defective probability distribution with F(co) = u/c. Our renewal equation can
be written as

(d) R=R0O)+Rx*F

so comparing with Example 4.4.1 and using Theorem 4.4.4 tells us R(w) =
R(O)U(w). To complete the solution, we have to compute the constant R(0).
Letting w — oo and noticing R(w) — 1, U(w) — (1 — F(oo))™' =1 — u/c)7 !,
we have R(0) =1 — u/c.

The basic fact about solutions of the renewal equation (in the nonterminating
case) is:

Theorem 4.4.5. The renewal theorem. [f F' is nonarithmetic and h is directly
Riemann integrable then as t — 00

H(t) —> l/ooh(s)ds
“Jo
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Intuitively, this holds since Theorem 4.4.4 implies

H({t) = / t h(t — s)dU(s)
0

and Theorem 4.4.3 implies dU(s) — ds/p as s — oco. We will define directly
Riemann integrable in a minute. We will start doing the proof and then figure out
what we need to assume.

Proof. Suppose

o0
h(s) =Y axlis gr15)(s)
k=0
where Z/?io lax| < oo. Since U([t,t + 8]) < U(]0, §]) < oo, it follows easily
from Theorem 4.4.3 that

/ h(t = )dU(s) = Y a Ut — (k+ D)8, 1 — k8]) — i >
k=0

0 k=0
(Pick K sothat )« |ax| < €/2U([0, 8]) and then T so that
€
U@t —(k+1)8,t —ké8]) — 6 < —
lag| - U — (k+ 1) D /Ml_zK
fort > T and 0 < k < K.) If h is an arbitrary function on [0, c0), we let

1= 8 sup{h(x) : x € [k8, (k + 1)8)}
k=0

oo
Iy =" 8 inf{h(x): x € [k8, (k + 1)8))
k=0
be upper and lower Riemann sums approximating the integral of /& over [0, c0).
Comparing & with the obvious upper and lower bounds that are constant on [k, (k +
1)8) and using the result for the special case,

I t t 15
2 §liminf/ h(t—s)dU(s)flimsup/ h(t —s)dU(s) < —
0 1%

/’L —0o0 t—00 0

If 1° and I; both approach the same finite limit / as § — 0, then £ is said to be
directly Riemann integrable, and it follows that

/ h(t —s)dU(y) = 1I/1 |
0

Remark. The word “direct” in the name refers to the fact that although the Riemann
integral over [0, co) is usually defined as the limit of integrals over [0, a], we are
approximating the integral over [0, co) directly.

In checking the new hypothesis in Theorem 4.4.5, the following result is useful.

Lemma 4.4.6. If h(x) > 0 is decreasing with h(0) < oo and fooo h(x)dx < o0,
then h is directly Riemann integrable.
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Proof. Because h is decreasing, 1° = Y 2, 8h(k8) and Iy = Y ;- Sh((k + 1)).
So

I’ > / h(x)dx > Iy = I’ — h(0)$
0

proving the desired result. [ ]
The last result suffices for all our applications, so we leave it to the reader to do.

Exercise 4.4.4. If 1 > 0 is continuous, then # is directly Riemann integrable if and
only if I° < oo for some § > 0 (and hence for all § > 0).

Returning now to our examples, we skip the first two because, in those cases,
h(t) — 1 ast — 00, so h is not integrable in any sense.

Example 4.4.7. Continuation of Example 4.4.3. h(t) = ﬁ f[t’oo) 1—F(s)ds. h
is decreasing, £(0) = 1, and

ufwh(t)dt:/m/ml—F(s)dsdt
0 0 t

— /w/ 1 — F(s)dtds = /Oos(l — F(s))ds = E(£/2)
0 0 0

So, if v= E(Siz) < 00, it follows from Lemma 4.4.6, Theorem 4.4.5, and the
formula in Example 4.4.3 that

0<U@) —t/u— v/2u> ast — 00

When the renewal process is a rate A Poisson process, that is, P(§; > t) = e *,

N(t) — 1 has a Poisson distribution with mean Az, so U(¢) = 1 + At. According to
Feller, Vol. I1 (1971), p. 385, if the &; are uniform on (0,1), then

Ut)y=> (-Dre'™ @ —kf/k! forn<t<n+1
k=0
As he says, the exact expression “reveals little about the nature of U. The asymptotic
formula 0 < U(¢) — 2t — 2/3 is much more interesting.”

Example 4.4.8. Continuation of Example 4.4.4. h(t) = 1 — F(t 4+ x). Again, h is
decreasing, but this time £(0) < 1 and the integral of 4 is finite when u = E(§;) <
oo. Applying Lemma 4.4.6 and Theorem 4.4.5 now gives

1 [ 1 [
P(Tnw —1 > x) = —/ h(s)ds = —/ 1 — F(t)dt
K Jo M Jx

so (when u < 00) the distribution of the residual waiting time 7, — t converges
to the delay distribution that produces the stationary renewal process. This fact also
follows from our proof of 4.4.3.
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Using the method employed to study Example 4.4.4, one can analyze various
other aspects of the asymptotic behavior of renewal processes. To avoid repeating
ourselves:

We assume throughout that F is nonarithmetic, and in problems where the mean
appears we assume it is finite.

Exercise 4.4.5. Let A; =t — Ty(;)—1 be the “age” at time ¢, that is, the amount of
time since the last renewal. If we fix x > 0, then H(t) = P(A, > x) satisfies the
renewal equation

H(t) = (1 = F(1)) - Lix,00)(0) +/ H(t —5)dF(s)
0

so P(A; > x) = %L f(x’oo)(l — F(t))dt, which is the limit distribution for the resid-
ual lifetime B, = Ty —t.

Remark. The last result can be derived from Example 4.4.4 by noting that if
t > x, then P(A; > x) = P(B,_, > x) = P(norenewal in (t — x, t]). To check
the placement of the strict inequality, recall that N, = inf{k : T; > t}, so we always
have A; > 0 and By > 0.

Exercise 4.4.6. Use the renewal equation in the last problem and Theorem 4.4.4 to
conclude that if T is a rate A Poisson process A, has the same distribution as &; A t.

Exercise 4.4.7. Let A, =t — TN(t)—l and B, = TN(,) — t. Show that

1 00
PA >x,B >y)— — | (1—F@)dt
x+y

Exercise 4.4.8. Alternating renewal process. Let &, &;,... > 0 be i.i.d. with
distribution Fi, and let 5y, 12, ... > 0 be i.i.d. with distribution F,. Let T = 0,
and for k > 1, let Sy = Ty_; + & and T = Sy + 1. In words, we have a machine
that works for an amount of time &, breaks down, and then requires 7; units of
time to be repaired. Let F' = F) x F», and let H(¢) be the probability the machine
is working at time ¢. Show that if F' is nonarithmetic then, as t — oo

H(t) — p1 /(11 + p2)
where u; is the mean of F;.
Exercise 4.4.9. Write a renewal equation for H(¢) = P(number of renewals in

[0, t] is odd) and use the renewal theorem to show that H(t) — 1/2. Note: This is
a special case of the previous exercise.
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Exercise 4.4.10. Renewal densities. Show that if F(¢) has a directly Riemann
integrable density function f(¢), then the V = U — 1}9 ) has a density v that
satisfies

w(t) = (1) + / w(t — s)dF(s)
0

Use the renewal theorem to conclude that if f is directly Riemann integrable, then
v(t) > 1/past — oo.

Finally, we have an example that would have been given right after Theorem
4.4.1 but was delayed because we had not yet defined a delayed renewal process.

Example 4.4.9. Patterns in coin tossing. Let X,,, n > 1 take values H and T with
probability 1/2 each. Let 7o =0 and T,, = inf{n > T, : (Xs, ..., Xpgk-1) =
(i1, ..., 1)}, where (i1, ..., i;) is some pattern of heads and tails. It is easy to see
that the 7; form a delayed renewal process, thatis, f; = T; — T;_; are independent
for j > 1 and identically distributed for j > 2. To see that the distribution of
t; may be different, let (i1, i», i3) = (H, H, H). In this case, P(t; = 1) = 1/8,
P(t,=1)=1/2.

Exercise 4.4.11.
(i) Show that for any pattern of length k, Et; = 2 for j > 2.
(i) Compute Et; when the pattern is HH, and when it is HT. Hint: For HH, observe

Ety = P(HH)+ P(HT)E(t1 +2) + P(DEn + 1)
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Martingales

A martingale X, can be thought of as the fortune at time n of a player who is betting
on a fair game; submartingales (supermartingales) as the outcome of betting on
a favorable (unfavorable) game. There are two basic facts about martingales. The
first is that you cannot make money betting on them (see Theorem 5.2.5), and
in particular if you choose to stop playing at some bounded time N, then your
expected winnings E X y are equal to your initial fortune X,. (We are supposing
for the moment that X is not random.) Our second fact, Theorem 5.2.8, concerns
submartingales. To use a heuristic we learned from Mike Brennan, “They are the
stochastic analogues of nondecreasing sequences and so if they are bounded above
(to be precise, sup, EX;" < 0o) they converge almost surely.” As the material in
Section 5.3 shows, this result has diverse applications. Later sections give sufficient
conditions for martingales to converge in L?, p > 1 (Section 5.4) and in L' (Sec-
tion 5.5); consider martingales indexed by n < 0 (Section 5.6); and give sufficient
conditions for EXy = E X to hold for unbounded stopping times (Section 5.7).
The last result is quite useful for studying the behavior of random walks and other
systems.

5.1 Conditional Expectation

We begin with a definition that is important for this chapter and the next one. After
giving the definition, we will consider several examples to explain it. Given are
a probability space (2, F,, P), a o-field F C F,, and a random variable X € F,
with E|X| < oo. We define the conditional expectation of X given F, E(X|F),
to be any random variable Y that has

(1) Y € F, thatis, is F measurable, and
(i1) for all A ef,fAXdP =fAYdP.

Any Y satisfying (i) and (ii) is said to be a version of E(X|F). The first thing to

be settled is that the conditional expectation exists and is unique. We tackle the
second claim first, but start with a technical point.

221
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Lemma 5.1.1. If'Y satisfies (i) and (ii), then it is integrable.

Proof. Letting A = {Y > 0} € F, using (ii) twice, and then adding

deP:/XdP§f|X|dP
A A A

f—YdP:/ —XdP < | |X|dP
c C A(‘

So we have E|Y| < E|X]|. |

Uniqueness. If Y’ also satisfies (i) and (ii), then
/ YdP =/ Y'dP forall Ae F
A A
Taking A = {Y — Y’ > € > 0}, we see
0=/X—XdP=/Y—Y/szeP(A)
A A

so P(A) = 0. Since this holds for all €, we have Y < Y’ a.s., and interchanging
the roles of Y and Y’, we have Y = Y’ a.s. Technically, all equalities such as
Y = E(X|F) should be written as ¥ = E(X|F) a.s., but we have ignored this
point in previous chapters and will continue to do so.

Exercise 5.1.1. Generalize the last argument to show that if X; = X, on B € F
then E(X|F) = E(X,|F) a.s. on B.

Existence. To start, we recall v is said to be absolutely continuous with respect to
w (abbreviated v << w) if u(A) = 0 implies v(A) = 0, and we use Theorem A .4.6:

Radon-Nikodym theorem. Let i and v be o -finite measures on (2, F). If v << u,
there is a function f € F so thatforall A € F,

| £ =i
A
f is usually denoted dv/du and called the Radon-Nikodym derivative.

The last theorem easily gives the existence of conditional expectation. Suppose
first that X > 0. Let © = P and

v(A):/XdP for A e F
A

The dominated convergence theorem implies v is a measure (see Exercise 1.5.4),
and the definition of the integral implies v << w. The Radon- Nikodym derivative
dv/du € F and for any A € F has

dv
/XdP:v(A): —dP
A Adp
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Taking A = 2, we see that dv/du > 0 is integrable, and we have shown that
dv/du is a version of E(X|F).

To treat the general case now, write X = Xt — X~, let Y| = E(X"|F) and
Y, = E(X™|F).Now Y| — Y, € F is integrable, and for all A € F we have

/XdP:fX+dP—/X‘dP
A A A
=/Y1dP—/Y2dP=/(Y1—Y2)dP
A A A

This shows Y| — Y> is a version of E(X|F) and completes the proof. |

5.1.1 Examples

Intuitively, we think of F as describing the information we have at our disposal —
foreach A € F, we know whether or not A has occurred. E(X|F) is then our “best
guess” of the value of X given the information we have. Some examples should help
to clarify this and connect E (X |F) with other definitions of conditional expectation.

Example 5.1.1. If X € F,then E(X|F) = X; thatis, if we know X, then our “best
guess” is X itself. Since X always satisfies (ii), the only thing that can keep X from
being E(X|JF) is condition (i). A special case of this example is X = ¢, where c is
a constant.

Example 5.1.2. At the other extreme from perfect information is no information.
Suppose X is independent of F, that is, forall B € R and A € F,

P({X € BYN A) = P(X € B)P(A)

We claim that, in this case, E(X|F) = EX; that is, if you don’t know anything
about X, then the best guess is the mean E X. To check the definition, note that
EX € F so (i). To verify (ii), we observe that if A € F, then since X and 14, € F
are independent, Theorem 2.1.9 implies

/XdP:E(XlA)zEXE1A=/EXdP
A A

The reader should note that here and in what follows the game is “guess and verify.”
We come up with a formula for the conditional expectation and then check that it
satisfies (i) and (i1).

Example 5.1.3. In this example, we relate the new definition of conditional expec-
tation to the first one taught in an undergraduate probability course. Suppose
Q4, Q,, ...1s a finite or infinite partition of €2 into disjoint sets, each of which has
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positive probability, and let F = o (€21, 25, . ..) be the o-field generated by these
sets. Then

E _ EX; Q)
(le)—m OHQI‘

In words, the information in €2; tells us which element of the partition our outcome
lies in, and given this information, the best guess for X is the average value of
X over ;. To prove our guess is correct, observe that the proposed formula is
constant on each €2;, so it is measurable with respect to F. To verify (i), it is
enough to check the equality for A = €2;, but this is trivial:

E(X; %)
/ —dP=E(X;Qi)=/ XdP
o P(2) Q

A degenerate but important special case is F = {{J, 2}, the trivial o-field. In this
case, E(X|F) = EX.
To continue the connection with undergraduate notions, let

P(A|G) = E(14|G)
P(A|B) = P(AN B)/P(B)

and observe that in the last example P(A|F) = P(A|2;) on ;.

Exercise 5.1.2. Bayes’ formula. Let G € G and show that

P(G|A)=f P(Alg)dP/f P(A|G)dP
G Q

When G is the o-field generated by a partition, this reduces to the usual Bayes’
formula

P(Gi|A) = P(A|Gi)P(Gi)/Z P(A|G))P(G))

J

The definition of conditional expectation given a o -field contains conditioning
on a random variable as a special case. We define

E(X|Y) = E(X|o(Y))

where o (Y) is the o-field generated by Y.

Example 5.1.4. To continue making connection with definitions of conditional
expectation from undergraduate probability, suppose X and Y have joint density
f(x,y), that s,

P((X,Y) € B) :/ f(x,y)dxdy for B e R?
B
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and suppose for simplicity that [ f(x, y)dx > 0 for all y. We claim that in this
case, if E£|g(X)| < oo then E(g(X)|Y) = h(Y), where

h(y) = / g(x) f(x, y)dX// Jf(x, y)dx
To “guess” this formula, note that treating the probability densities P(Y = y) as if
they were real probabilities

PX=xY=y) _  f(r,y)
P(Y =y) S fx,y)dx

S0, integrating against the conditional probability density, we have

P(X=x|Y =y) =

E(g(X)IYZy)Z/g(X)P(XZXIYZy)dx

To “verify” the proposed formula now, observe £(Y) € o(Y) so (i) holds. To check
(i1), observe that if A € o(Y) then A = {w : Y(w) € B} for some B € R, so

i) = [ [norreenardy = [ [eeorenardy
B B
= E(g(X)15(Y)) = E(g(X); A)
Remark. To drop the assumption that [ f(x, y)dx > 0, define i by

h(y) / Flr y)dx = / () f(x, ) dx

(i.e., h can be anything where [ f(x, y)dx = 0), and observe that this is enough
for the proof.

Example 5.1.5. Suppose X and Y are independent. Let ¢ be a function with
Elo(X,Y)| < ooandlet g(x) = E(¢(x, Y)). We will now show that

E(p(X,Y)|X) = g(X)

Proof. Tt is clear that g(X) € o(X). To check (ii), note that if A € o(X), then
A = {X e C}, so using the change of variables formula (Theorem 1.6.9) and the
fact that the distribution of (X, Y) is product measure (Theorem 2.1.7), then the
definition of g, and change of variables again,

/¢(X, Y)dP = E{¢p(X, Y)lc(X)}
A
= // ¢(x, y)le(x) v(dy) p(dx)

=f1c(X)g(X)M(dX)=Lg(X)dP

which proves the desired result. [ |
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Example 5.1.6. Borel’s paradox. Let X be a randomly chosen point on the earth,
let 6 be its longitude, and ¢ be its latitude. It is customary to take 6 € [0, 2m)
and ¢ € (—m/2, 7 /2] but we can equally well take 6 € [0, 7) and ¢ € (—m, 7]. In
words, the new longitude specifies the great circle on which the point lies and then
@ gives the angle.

At first glance it might seem that if X is uniform on the globe, then 6 and the
angle ¢ on the great circle should both be uniform over their possible values. 6 is
uniform, but ¢ is not. The paradox completely evaporates once we realize that in
the new or in the traditional formulation ¢ is independent of €, so the conditional
distribution is the unconditional one, which is not uniform since there is more land
near the equator than near the North Pole.

5.1.2 Properties

Conditional expectation has many of the same properties that ordinary expectation
does.

Theorem 5.1.2. (a) Conditional expectation is linear:

E@X + Y|F) = aE(X|F) + E(Y|F) (5.1.1)
(b)If X <Y, then

E(X|F) < E(Y|F). (5.1.2)
(c)If X, > 0and X, 1 X with EX < oo, then

E(X,|F) 1 E(X|F) (5.1.3)

Remark. By applying the last result to Y| — Y, we see thatif ¥, | ¥ and we have
E|Y1|, E|Y| < oo, then E(Y,|F) | E(Y|F).

Proof. To prove (a), we need to check that the right-hand side is a version of the
left. It clearly is F-measurable. To check (ii), we observe that if A € F, then by
linearity of the integral and the defining properties of E(X|F) and E(Y|F),

/{aE(X|J’:)+E(Y|.7:)}dP:a/ E(XIJ’-")dP—i—/ EXY|F)dP
A A A

=a/XdP+/YdP=/aX+YdP
A A A

which proves (5.1.1).
Using the definition

/E(X|.7-')dP:/XdP§/YdP:/E(Y|}")dP
A A A A

Letting A = {E(X|F) — E(Y|F) > € > 0}, we see that the indicated set has prob-
ability O for all € > 0, and we have proved (5.1.2).
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Let Y, = X — X,,. It suffices to show that E(Y,|F) | 0. Since Y, |, (5.1.2)
implies Z, = E(Y,|F) | alimit Z,,. If A € F, then

fZ,,dP:/YndP
A A

Letting n — oo, noting Y,, | 0, and using the dominated convergence theorem
gives that [, ZoodP = 0forall A € F, 50 Zy, = 0. [ |
Exercise 5.1.3. Prove Chebyshev’s inequality. If ¢ > 0, then

P(IX| = a|F) < a2 E(X*|F)

Exercise 5.1.4. Suppose X > 0 and EX = oo. (There is nothing to prove when
E X < 00.) Show there is a unique F-measurable Y with 0 < Y < oo so that

/XdP:/YdP forall A e F
A A

Hint: Let Xy, = X AM, Yy = E(Xy|F), and let M — oo.

Theorem 5.1.3. If ¢ is convex and E|X|, E|o(X)| < 00, then

P(E(X|F)) < E(e(X)|F) (5.1.4)
Proof. If ¢ is linear, the result is trivial, so we will suppose ¢ is not linear. We
do this so that if we let S = {(a,b):a,b € Q, ax +b < ¢(x) for all x}, then

¢(x) = sup{ax + b : (a, b) € S}. See the proof of Theorem 1.6.2 for more details.
If o(x) > ax + b, then (5.1.2) and (5.1.1) imply

E(p(X)|F) > aE(X|F)+b as.
Taking the sup over (a, b) € § gives
E(@(X)|F) = p(E(X|F)) as.
which proves the desired result. |

Remark. Here we have written a.s. by the inequalities to stress that there is an
exceptional set for each a, b, so we have to take the sup over a countable set.

Exercise 5.1.5. Imitate the proof in the remark after Theorem 1.5.2 to prove the
conditional Cauchy-Schwarz inequality.

E(XY|G) < E(X*|G)E(Y?|G)
Theorem 5.1.4. Conditional expectation is a contraction in L?, p > 1.

Proof. (5.1.4) implies |E(X|F)|? < E(|X|?|F). Taking expected values gives
E(E(X|F)IP) < E(E(XIP|F)) = E|X]|” u
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In the last equality, we have used an identity that is an immediate consequence
of the definition (use property (ii) in the definition with A = Q).

E(E(Y|F)) = EY) (5.1.5)

Conditional expectation also has properties, like (5.1.5), that have no analogue
for “ordinary” expectation.

Theorem 5.1.5. If F C G and E(X|G) € F, then E(X|F) = E(X|G).

Proof. By assumption, E(X|G) € F. To check the other part of the definition, we
note that if A € F C G, then

/XdP:/E(X|gdP ]
A A

Theorem 5.1.6. If Fy C Fo, then (i) E(E(X|F)IF2) = E(X|F),
(ii) E(E(X|F)|F1) = E(X|F).

In words, the smaller o -field always wins. As the proof will show, the first equality
is trivial. The second is easy to prove, but in combination with Theorem 5.1.7 is a
powerful tool for computing conditional expectations. I have seen it used several
times to prove results that are false.

Proof. Once we notice that E(X|F)) € F», (i) follows from Example 5.1.1. To
prove (ii), notice that E(X|F)) € Fi,and if A € F| C F3, then

/E(X|f1)dP=fXdP=fE(X|72)dP |
A A A
Exercise 5.1.6. Give an example on Q2 = {a, b, ¢} in which

E(E(X|FDIF2) # E(E(X|F2)IF1)

The next result shows that for conditional expectation with respect to F, random
variables X € F are like constants. They can be brought outside the “integral.”

Theorem 5.1.7. If X € F and E|Y|, E|XY| < oo, then
E(XY|F)=XE(Y|F).
Proof. The right-hand side € F, so we have to check (ii). To do this, we use

the usual four-step procedure. First, suppose X = 15 with B € F. In this case, if
AeF,

/1BE<Y|f)dP=/ E(Y|.7-")dP:/ YdP:/ 1Y dP
A ANB ANB A
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so (ii) holds. The last result extends to simple X by linearity. If X, Y > 0, let X,,
be simple random variables that 1 X, and use the monotone convergence theorem
to conclude that

/XE(Ylf)sz/XYdP
A A

To prove the result in general, split X and Y into their positive and negative
parts. |

Exercise 5.1.7. Show that when E|X|, E|Y|, and E|XY| are finite, each statement
implies the next one, and give examples with X, Y € {—1, 0, 1} a.s. that show the
reverse implications are false: (i) X and Y are independent, (ii) E(Y|X) = EY,
(iii) E(XY)= EXEY.

L*(F)

T
E(X|F)
0

Figure 5.1. Conditional expectation as projection in L2.

Theorem 5.1.8. Suppose EX? < oo. E(X|F)is the variable Y € F that minimizes
the “mean square error” E(X — Y)2.

Remark. This result gives a “geometric interpretation” of E(X|F) (see Figure 5.1).
L*(F,) ={Y € F,: EY? < oo} isaHilbert space, and L>(F) is a closed subspace.
In this case, E(X|F) is the projection of X onto L?(F). That is, the point in the
subspace closest to X.
Proof. We begin by observing that if Z € L?(F), then Theorem 5.1.7 implies
ZEX|F)=E(ZX|F)
(E1XZ| < oo by the Cauchy-Schwarz inequality.) Taking expected values gives
E(ZE(X|F)) = E(E(ZX|F)) = E(ZX)
or, rearranging,
E[Z(X — E(X|F)]l =0 for Z € L*(F)
IfY € LA(F)and Z = E(X|F) — Y, then

EX—-Y?=E{X—EX|F)+ZV¥ =E{X —EX|F) +EZ?
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since the cross-product term vanishes. From the last formula, it is easy to see
E(X — Y)? is minimized when Z = 0. [ ]

Exercise 5.1.8. Show that if G € F and E X? < oo, then
E({X — EX|P) + EQE(X|F) — EXIG))) = E(X — E(XIG)})

Dropping the second term on the left, we get an inequality that says geometrically,
the larger the subspace, the closer the projection is, or statistically, more informa-
tion means a smaller mean square error. An important special case occurs when

G =19, Q}

Exercise 5.1.9. Let var (X|F) = E(X?|F) — E(X|F)>. Show that
var (X) = E(var (X|F)) + var (E(X|F))

Exercise 5.1.10. Let Y;, Y», ...be i.i.d. with mean u and variance o2, N an inde-
pendent positive integer valued r.v. with EN? < coand X = Y| + - -- + Y. Show
that var(X) = o2 EN + u? var (N). To understand and help remember the for-
mula, think about the two special cases in which N or Y is constant.

Exercise 5.1.11. Show that if X and Y are random variables with E(Y|G) = X
and EY?2 = EX? < o0o,then X = Y as.

Exercise 5.1.12. The result in the last exercise implies that if EY? < oo and
E(Y|G) has the same distribution as Y, then E(Y|G) = Y a.s. Prove this under the
assumption E|Y| < oco. Hint: The trick is to prove that sgn (X) = sgn (E(X|G))
a.s., and then take X = Y — c to get the desired result.

5.1.3 Regular Conditional Probabilities*

Let (2, F, P) be a probability space, X : (2, F) — (S, S) a measurable map,
and G a o-field C F. u: 2 xS — [0, 1] is said to be a regular conditional
distribution for X given G if

(i) For each A, w — u(w, A) is a version of P(X € A|G).
(ii) Fora.e. w, A — u(w, A) is a probability measure on (S, S).

When § = Q and X is the identity map, u is called a regular conditional
probability.

Exercise 5.1.13. Continuation of Example 1.4. Suppose X and Y have a joint
density f(x,y) > 0. Let

m»m=ﬁfmwM//ﬂnwm

Show that u(Y (w), A) is ar.c.d. for X given o(Y).
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Regular conditional distributions are useful because they allow us to simultane-
ously compute the conditional expectation of all functions of X and to generalize
properties of ordinary expectation in a more straightforward way.

Exercise 5.1.14. Let u(w, A)bear.c.d. for X given F,andlet f : (S,S5) - (R, R)
have E| f(X)| < oo. Start with simple functions and show that

E(f(X)If)=/M(w,dX)f(x) a.s.

Exercise 5.1.15. Use regular conditional probability to get the conditional Holder
inequality from the unconditional one, that is, show that if p, g € (1, co) with
1/p+1/q = 1then

E(XYIG) < E(X|PIG)PE(|Y1|G)"/1

Unfortunately, r.c.d.’s do not always exist. The first example was due to
Dieudonné (1948). See Doob (1953), p. 624, or Faden (1985) for more recent
developments. Without going into the details of the example, it is easy to see the
source of the problem. If A;, A,, ...are disjoint, then (5.1.1) and (5.1.3) imply

P(X € U,A,|G) = Z P(X € A,|G) as.

but if S contains enough countable collections of disjoint sets, the exceptional sets
may pile up. Fortunately,

Theorem 5.1.9. r.c.d.’s exist if (S, S) is nice.

Proof. By definition, there is a 1-1 map ¢ : S — R so that ¢ and ¢! are measur-
able. Using monotonicity (5.1.2) and throwing away a countable collection of null
sets, we find there is a set 2, with P(€2,) = 1 and a family of random variables
G(q, w), g € Qsothatg — G(q, ) is nondecreasing and w — G(g, w) is a ver-
sion of P(¢p(X) < ¢q|G). Let F(x, w) = inf{G (g, w) : ¢ > x}. The notation may
remind the reader of the proof of Theorem 3.2.6. The argument given there shows
F is a distribution function. Since G(g,, w) | F(x, w), the remark after Theorem
5.1.2 implies that F(x, w) is a version of P(p(X) < x|G).

Now, for each w € €2, there is a unique measure v(w, -) on (R, R) so that
v(w, (—o0, x]) = F(x, w). To check that for each B € R , v(w, B) is a version of
P(p(X) € B|G), we observe that the class of B for which this statement is true
(this includes the measurability of @ — v(w, B)) is a A-system that contains all
sets of the form (ay, b1] U --- (ay, by] where —oc0 < a; < b; < 00, so the desired
result follows from the = — A theorem. To extract the desired r.c.d., notice that if
A e Sand B = ¢(A),then B = (¢~")"!(A) € R, and set u(w, A) = v(w, B). W

The following generalization of Theorem 5.1.9 will be needed in Section 6.1.
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Exercise 5.1.16. Suppose X and Y take values in a nice space (S, S)and G = o (Y).
There is a function . : S x S — [0, 1] so that

(i) for each A, u(Y(w), A) is a version of P(X € A|G)

(ii) for a.e. w, A - u(Y(w), A) is a probability measure on (S, S).

5.2 Martingales, Almost Sure Convergence

In this section we will define martingales and their cousins supermartingales and
submartingales, and take the first steps in developing their theory. Let F, be a
filtration, that is, an increasing sequence of o-fields. A sequence X, is said to be
adapted to F, if X,, € F, for all n. If X,, is sequence with

(1) E1X,| < oo,
(i) X, is adapted to F,,,
(i) E(X,41|Fn) = X, for all n,

then X is said to be a martingale (with respect to ;). If in the last definition, =
is replaced by < or >, then X is said to be a supermartingale or submartingale,
respectively.

Example 5.2.1. Simple random walk. Consider the successive tosses of a fair
coin and let &, = 1 if the nth toss is heads and &, = —1 if the nth toss is tails. Let
X, =& +---+&andF,=0(&,...,&)forn > 1, Xg=0and Fy = {0, 2}. 1
claim that X,,, n > 0, is a martingale with respect to F,. To prove this, we observe
that X,, € F,, E|X,| < oo, and &, is independent of F,,, so using the linearity of
conditional expectation, (5.1.1), and Example 5.1.2,

E(Xn+1|fn) = E(Xn|Fn) + E(En—&-llfn) =X, + E$n+1 =X,

Note that, in this example, F,, = o(X1, ..., X,) and F, is the smallest filtration
that X, is adapted to. In what follows, when the filtration is not mentioned, we will
take F, = o(Xq, ..., X,).

Exercise 5.2.1. Suppose X, is a martingale w.r.t. G, and let F,, = o (X1, ..., X,,).
Then G, D F, and X, is a martingale w.r.t. F,.

Example 5.2.2. Superharmonic functions. If the coin tosses considered above
have P(§, = 1) < 1/2 then the computation just completed shows E(X, | F,;) <
X,, i.e., X, is a supermartingale. In this case, X, corresponds to betting on an
unfavorable game so there is nothing “super” about a supermartingale. The name
comes from the fact that if f is superharmonic (i.e., f has continuous derivatives
of order < 2 and 9% f/dx] + - - - + 9% f/dx3 < 0), then

1
_ d
T =2 50,00 Ly 7OV
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where B(x,r) = {y : [x — y| < r}istheball of radius r, and | B(0, r)| is the volume
of the ball of radius r.

Exercise 5.2.2. Suppose f is superharmonic on R?. Let £, &, ... be i.i.d. uniform
on B(0, 1), and define S, by S, = S,—1 + &, for n > 1 and Sy = x. Show that
X, = f(S,) is a supermartingale.

Our first result is an immediate consequence of the definition of a supermartin-
gale. We could take the conclusion of the result as the definition of supermartingale,
but then the definition would be harder to check.

Theorem 5.2.1. If X, is a supermartingale then forn > m, E(X,|F,) < X.

Proof. The definition gives the result for n = m 4+ 1. Suppose n = m + k with
k > 2. By Theorem 5.1.2,

E(Xm+k|]:m) = E(E(Xm+k|fm+k7])|fm) = E(Xerkfl |fm)

by the definition and (5.1.2). The desired result now follows by induction. [ |

Theorem 5.2.2. (i) If X,, is a submartingale, then for n > m, E(X,|Fn) > Xp.
(ii) If X,, is a martingale then forn > m, E(X,|Fn) = Xn.

Proof. To prove (i), note that — X, is a supermartingale and use (5.1.1). For (ii),
observe that X, is a supermartingale and a submartingale. [ |

Remark. The idea in the proof of Theorem 5.2.2 can be used many times below. To
keep from repeating ourselves, we will just state the result for either supermartin-
gales or submartingales and leave it to the reader to translate the result for the other
two.

Theorem 5.2.3. If X, is a martingale w.rt. F,, and ¢ is a convex function with
Elp(X,)| < oo for all n, then ¢(X,,) is a submartingale w.r.t. F,,. Consequently, if
p > land E|X,|P < oo forall n, then | X,|? is a submartingale w.r.t. F,.

Proof. By Jensen’s inequality and the definition,

E(@(Xnt DI Fn) = 9(E(Xp111F)) = 9(X;) u

Theorem 5.2.4. If X, is a submartingale w.r.t. JF,, and ¢ is an increasing convex
function with E|p(X,)| < oo for all n, then ¢(X,,) is a submartingale w.r.t. F,.
Consequently (i) If X,, is a submartingale, then (X,, — a)" is a submartingale. (ii)
If X, is a supermartingale, then X, A a is a supermartingale.
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Proof. By Jensen’s inequality and the assumptions,

E(p(Xnt-DIFn) = (E(Xpt1|Fn)) = 9(X;) L

Exercise 5.2.3. Give an example of a submartingale X, so that X2 is a super-
martingale. Hint: X,, does not have to be random.

Let F,, n > 0 be a filtration. H,, n > 1 is said to be a predictable sequence
if H, € F,_; for all n > 1. In words, the value of H, may be predicted (with
certainty) from the information available at time n — 1. In this section, we will be
thinking of H,, as the amount of money a gambler will bet at time n. This can be
based on the outcomes at times 1, ..., n — 1, but not on the outcome at time n!

Once we start thinking of H,, as a gambling system, it is natural to ask how
much money we would make if we used it. For concreteness, let us suppose that
the game consists of flipping a coin and that for each dollar you bet, you win one
dollar when the coin comes up heads and lose your dollar when the coin comes up
tails. Let X,, be the net amount of money you would have won at time 7 if you had
bet one dollar each time. If you bet according to a gambling system H, then your
winnings at time n would be

(H : X)n = Z Hm(Xm - mel)
m=1
since X,, — X,,—1 = +1 or —1 when the mth toss results in a win or loss, respec-
tively.

Let &, = X,, — X;u—1. A famous gambling system called the “martingale” is
definedby H; = landforn > 2, H, = 2H,_if§,_; = —land H, = 1if§,_; =
1. In words, we double our bet when we lose, so that if we lose k times and then
win, our net winnings will be —1 —2... — 2k=1 4 2k — 1. This system seems to
provide us with a “sure thing” as long as P(&§,, = 1) > 0. However, the next result
says there is no system for beating an unfavorable game.

Theorem 5.2.5. Let X,,, n > 0, be a supermartingale. If H, > 0 is predictable and
each H, is bounded then (H - X), is a supermartingale.

Proof. Using the fact that conditional expectation is linear, (H - X), € F,, H, €
Fn_1,and (5.1.7), we have

E((H - X)ny11Fn) = (H - X)n + E(Hpi1 (X1 — Xo)|Fn)
=H - X)n + Hy 1 E(Xpt1 — Xo)|Fn) = (H - X),
since E((Xn-‘rl - Xn)ljrn) = 0 and Hn+1 = 0. |

Remark. The same result is obviously true for submartingales and for martingales
(in the last case, without the restriction H, > 0).
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The notion of a stopping time, introduced in Section 4.1, is closely related to
the concept of a gambling system. Recall that a random variable N is said to be
a stopping time if {N = n} € F, for all n < oco. If you think of N as the time a
gambler stops gambling, then the condition above says that the decision to stop at
time 7 must be measurable with respect to the information he has at that time. If we
let H, = l{y>pn), then {N > n} ={N <n — 1} € F,_1, so H, is predictable, and
it follows from Theorem 5.2.5 that (H - X), = Xyan — X0 1S a supermartingale.
Since the constant sequence Y, = X is a supermartingale and the sum of two
supermartingales is also, we have:

Theorem 5.2.6. If N is a stopping time and X, is a supermartingale, then Xy,
is a supermartingale.

[ ] b A
a ‘ [) ¢ \.
Figure 5.2. Upcrossings of (a, b). Lines indicate increments that are included in (H - X),.
In Y, the points < a are moved up to a.

Although you cannot make money with gambling systems, you can prove theo-
rems with them. Suppose X,,, n > 0, is a submartingale. Let a < b, let Ny = —1,
and for k > 1 let (see Figure 5.2 for a picture)

Noj—1 = inf{m > Ny_» : X, < a}
Ny, = inf{m > Ny_; : X,, > b}

The N; are stopping times, and {Noy—1 < m < Ny} = {Nog—1 <m — 1} N{Ny <
m—1}¢ e F,_1, s0
H - 1 if Nogp_; < m < Ny for some k
"o otherwise

defines a predictable sequence. X (Ny;—1) < a and X(N,;) > b, so between times
Njp—1 and Ny, X, crosses from below a to above b. H,, is a gambling system
that tries to take advantage of these “upcrossings.” In stock market terms, we buy
when X,, < a and sell when X,, > b, so every time an upcrossing is completed,
we make a profit of > (b — a). Finally, U, = sup{k : Ny < n} is the number of
upcrossings completed by time 7.

Theorem 5.2.7. Upcrossing inequality. If X,,, m > 0, is a submartingale, then

(b—a)EU, < E(X, —a)" — E(Xo—a)"
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Proof. Let Y,, =a+ (X,, —a)". By Theorem 5.2.4, Y, is a submartingale.
Clearly, it upcrosses [a, b] the same number of times that X,, does, and we have
(b —a)U, <(H -Y),, since each upcrossing results in a profit > (b — a), and a
final incomplete upcrossing (if there is one) makes a nonnegative contribution to the
right-hand side. Let K, =1 — H,,. Cleatly, ¥, — Yo =(H - Y), + (K - Y),, and
it follows from Theorem 5.2.5 that E(K -Y), > E(K -Y)y=0,s0 E(H -Y), <
E(Y, — Yy), proving the desired inequality. |

We have proved the result in its classical form, even though this is a little
misleading. The key fact is that E(K - Y), > 0, that is, no matter how hard you try,
you can’t lose money betting on a submartingale. From the upcrossing inequality,
we easily get

Theorem 5.2.8. Martingale convergence theorem. If X,, is a submartingale with
sup EX;r < oo, then as n — oo, X,, converges a.s. to a limit X with E|X| < oo.
Proof. Since (X —a)™ < X* + |a|, Theorem 5.2.7 implies that

EU, < (lal + EX;))/(b — a)

Asn 1 0o, U, 1 U the number of upcrossings of [a, b] by the whole sequence, so
if sup EX;" < oo, then EU < oo and hence U < oo a.s. Since the last conclusion
holds for all rational a and b,

Ugpeqtliminf X, <a < b < limsup X,,}  has probability O

and hence limsup X,, = liminf X,, a.s., that is, lim X,, exists a.s. Fatou’s lemma
guarantees EXT <liminf EX < 00, so X < oo as. To see X > —o0, we
observe that

EX, =EX —EX, <EX'—EX,
(since X, is a submartingale), so another application of Fatou’s lemma shows

EX~ <liminf EX, <supEX; — EX( < 00

n—oQ

and completes the proof. |

Remark. To prepare for the proof of Theorem 5.6.1, the reader should note that
we have shown that if the number of upcrossings of (a, b) by X,, is finite for all
a, b € Q, then the limit of X, exists.

An important special case of Theorem 5.2.8 is

Theorem 5.2.9. If X,, > 0is a supermartingale, thenasn — oo, X, — X a.s. and
EX < EXy.
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Proof. Y, = —X, < 0is a submartingale with EY,” = 0. Since EX, > EX,, the
inequality follows from Fatou’s lemma. |

In the next section, we will give several applications of the last two results. We
close this one by giving two “counterexamples.”

Example 5.2.3. The first shows that the assumptions of Theorem 5.2.9 (or 5.2.8)
do not guarantee convergence in L'. Let S, be a symmetric simple random walk
with So = 1, that is, S, = S,_1 + &, where &, &, ... are i.i.d. with P(§; = 1) =
P& =—-1)=1/2. Let N =inf{n : S, =0} and let X,, = SyA,. Theorem 5.2.6
implies that X, is a nonnegative martingale. Theorem 5.2.9 implies X, converges
to a limit X, < oo that must be = 0, since convergence to k > 0 is impossible. (If
X, =k >0,then X,,;; =k =+ 1.)Since EX, = EXy = 1forall n and X, =0,
convergence cannot occur in L.

Example 5.2.3 is an important counterexample to keep in mind as you read the
rest of this chapter. The next two are not as important.

Example 5.2.4. We will now give an example of a martingale with X; — 0 in
probability but not a.s. Let X¢g = 0. When X;_; = 0, let X; = 1 or —1 with prob-
ability 1/2k and = O with probability 1 — 1/k. When X;_; # 0, let Xy = kXx—
with probability 1/k and = 0 with probability 1 — 1/k. From the construc-
tion, P(X; =0)=1—1/k, so X; — O in probability. On the other hand, the
second Borel-Cantelli lemma implies P(X; = 0 for k > K) = 0, and values in
(=1, 1) — {0} are impossible, so X; does not converge to 0 a.s.

Exercise 5.2.4. Give an example of a martingale X,, with X,, — —oo a.s. Hint: Let
X, =& + ---+§&,, where the &; are independent (but not identically distributed)
with E§; = 0.

Our final result is useful in reducing questions about submartingales to questions
about martingales.

Theorem 5.2.10. Doob’s decomposition. Any submartingale X,, n > 0, can be
written in a unique way as X, = M, + A,, where M,, is a martingale and A, is a
predictable increasing sequence with Ay = 0.

Proof. We want X, = M, + A,, E(M,|F,—1) = M,,_1, and A, € F,,_1. So we
must have

E(anfn—l) = E(Mn|‘7:;1—l) + E(An|fn—l)
=M, + An = Xn—l - An—l + An



238 Martingales

and it follows that

(a) An - An—l = E(Xi1|—7:n—l) - Xn—l

Now Ag = 0 and My = X by assumption, so we have A, and M,, defined for all
time, and we have proved uniqueness. To check that our recipe works, we observe
that A, — A,_; > O since X,, is a submartingale and induction shows A, € F,,_;.
To see that M,, is a martingale, we use (b), A, € F,,_1 and (a):

EMy|Fn-1) = E(X,, — An|Fu-1)
= E(Xn|Fn—1) - An =X,_1— An—l =M,

which completes the proof. [ |

Exercise 5.2.5. Let X, = )_
decomposition for X,,?

1, and suppose B, € F,. What is the Doob

m<n

Exercises
5.2.6. Let&y, &, ...beindependent with E&; = 0 and var (§,,) = o*nz, < 00, and let
s2=3"_ 02.Then S? — s2 is a martingale.
5.2.7. If &, &, ... are independent and have E&; = 0, then
X}(,lk) = Z gil e éik

1<i;<...<ix<n
is a martingale. Whenk =2and S, =& + -+ &,.2XP =S, — Y, _, &

5.2.8. Generalize (i) of Theorem 5.2.4 by showing that if X,, and Y,, are submartin-
gales w.r.t. F, then X,, V Y, is also.

5.2.9. Let Yy, Y, ...be nonnegative i.i.d. random variables with EY,, =1 and
P, =1) < 1. (1) Show that X,, = ]_[m<n Y,, defines a martingale. (ii) Use The-
orem 5.2.9 and an argument by contradiction to show X, — 0 a.s. (iii) Use the
strong law of large numbers to conclude (1/n)log X,, — ¢ < 0.

5.2.10. Suppose y, > —1 for all n and )_ |y,| < co. Show that ]_[:10:1(1 + Ym)
exists.

5.2.11. Let X,, and Y,, be positive integrable and adapted to F,,. Suppose
E(Xp+11Fn) = (A + X)X,

with Y Y, < oo a.s. Prove that X, converges a.s. to a finite limit by finding a
closely related supermartingale to which Theorem 5.2.9 can be applied.
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5.2.12. Use the random walks in Exercise 5.2.2 to conclude that in d < 2, non-

negative superharmonic functions must be constant. The example f(x) = |x|>~¢

shows this is false in d > 2.

5.2.13. The switching principle. Suppose X! and X2 are supermartingales with
respect to F,, and N is a stopping time so that X}, > X2, Then

Yy = X M (yon) + X21(y<n is a supermartingale.
Z, = Xi Lvsn) + Xﬁl(NQ,) is a supermartingale.

5.2.14. Dubins’ inequality. For every positive supermartingale X,, n > 0, the
number of upcrossings U of [a, b] satisfies

a k
PU > k) < (3) E min(Xo/a, 1)

To prove this, we let Ng = —1 and for j > 1, let
Nyj_1 =inf{m > Ny;_» : X, < a}
Nyj =inf{m > Nyj_; : X,, > b}
LetY, =1for0 <n < Njandforj > 1,
B {(b/a)f”(Xn/a) for Naj_1 <n < Ny
" (b/a) for Noj <n < Nyjyi

(1) Use the switching principle in the previous exercise and induction to show that
Z) = YunN, is a supermartingale. (ii) Use EY,nn, < EYj and let n — oo to get
Dubins’ inequality.

5.3 Examples

In this section, we will apply the martingale convergence theorem to generalize the
second Borel-Cantelli lemma and to study Polya’s urn scheme, Radon Nikodym
derivatives, and branching processes. The four topics are independent of each other
and are taken up in the order indicated.

5.3.1 Bounded Increments

Our first result shows that martingales with bounded increments either converge or
oscillate between 400 and —oo.
Theorem 5.3.1. Ler X1, X5, ...be amartingale with | X1 — X,| < M < o0. Let
C = {lim X,, exists and is finite}
D = {limsup X,, = +00 and liminf X,, = —o0}
Then P(C U D) = 1.
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Proof. Since X,, — X is a martingale, we can without loss of generality suppose
that Xo = 0. Let 0 < K < oo and let N = inf{n : X,, < —K}. X,y 1S a martin-
gale with X,y > —K — M a.s. so applying Theorem 5.2.9 to X,y + K + M
shows lim X, exists on {N = oo}. Letting K — oo, we see that the limit exists
on {liminf X, > —oo}. Applying the last conclusion to —X,,, we see that lim X,
exists on {limsup X, < oo} and the proof is complete. [ ]

Exercise 5.3.1. Let X,,, n > 0, be a submartingale with sup X,, < oo. Let §, =
X, — X,—1, and suppose E(sup§,”) < co. Show that X, converges a.s.

Exercise 5.3.2. Give an example of a martingale X, with sup, |X,| < oo and
P(X, =aio.)=1fora=—1,0, 1. This example shows that it is not enough to
have sup | X,,+1 — X,| < oo in Theorem 5.3.1.

Exercise 5.3.3. (Assumes familiarity with finite state Markov chains.) Fine tune the
example for the previous problem so that P(X,, =0) — 1 —2p and P(X,, = —1),
P(X, =1) — p, where p is your favorite number in (0, 1), that is, you are
asked to do this for one value of p that you may choose. This example shows
that a martingale can converge in distribution without converging a.s. (or in
probability).

Exercise 5.3.4. Let X, and Y, be positive integrable and adapted to F,,. Suppose
E(X,+1|Fn) < X, + Yy, with )" Y, < 0o a.s. Prove that X, converges a.s. to a
finite limit. Hint: Let N = infy an: 1 Yin > M, and stop your supermartingale at
time N.

Theorem 5.3.2. Second Borel-Cantelli lemma, I1. Let 7, n > 0 be a filtration
with Fy = {0, Q} and A, n > 1 a sequence of events with A, € F,. Then

{Anio) =1 P(AF,-1) = 00

n=1

Proof. If we let Xg =0 and X,, = 2221 14, — P(Ap|Fm—1) forn > 1, then X,
is a martingale with |X,, — X,,—1| < 1. Using the notation of Theorem 5.3.1, we
have

o0 oo
onC, Y 14 =00 ifandonlyif > P(A,lF,_1)=o00

n=1 n=1
o0 o0
onD, Y ls, =00 and Y P(A,]|F,_1)=00
n=1 n=1

Since P(C U D) = 1, the result follows. [ ]
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Exercise 5.3.5. Let p,, € [0, 1). Use the Borel-Cantelli lemmas to show that

o0 o0
[0 - pw) =0 ifandonlyif)  p, = oo.

m=1 m=1

Exercise 5.3.6. Show Y22, P(A,| N} A¢) = oo implies P(N°_, A ) = 0.

m

5.3.2 Polya’s Urn Scheme

An urn contains r red and g green balls. At each time we draw a ball out, then
replace it, and add ¢ more balls of the color drawn. Let X, be the fraction of green
balls after the nth draw. To check that X,, is a martingale, note that if there are i
red balls and j green balls at time n, then

(j+0)/i+j+c) withprobability j/(i + j)

X1 =
R with probability i /i + /)

and we have
jte N j b Gt
i+j+c i+j i+j+c i+j (GH+j+ol+j) i+
Since X,, > 0, Theorem 5.2.9 implies that X,, — X, a.s. To compute the dis-
tribution of the limit, we observe (a) the probability of getting green on the first m
draws then red on the next £ = n — m draws is
g gtec g+ (m—1) . r r+ ¢ —1)c
g+r g+r+c g+r+m—-1c g4+r+mec g+r+m—1I)
and (b) any other outcome of the first n draws with m green balls drawn and £ red
balls drawn has the same probability since the denominator remains the same and
the numerator is permuted. Consider the special casec =1, g =1,r = 1. Let G,

be the number of green balls after the nth draw has been completed and the new
ball has been added. It follows from (a) and (b) that

n)m!(n—m)!_ 1
m) m+1)!  n+1

P(Gn=m+1)=(

S0 X« has a uniform distribution on (0,1).

If we suppose thatc = 1, g = 2, and r = 1, then
! D!(n —m)!
PG, =m+2 =M mADe=—mb
m!(n —m)! (n+2)!/2

if n - oo and m/n — x. In general, the distribution of X, has density

I'((g +r)/c) X8/ (] — yyr/e]

I'(g/oT(r/c)
This is the beta distribution with parameters g/c and r/c. In Example 5.4.5 we
will see that the limit behavior changes drastically if, in addition to the ¢ balls of
the color chosen, we always add one ball of the opposite color.
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5.3.3 Radon-Nikodym Derivatives

Let 1 be a finite measure and v a probability measure on (2, F). Let 5, 1 F be
o-fields (i.e., o (UF,) = F). Let u,, and v, be the restrictions of i and v to F,,.

Theorem 5.3.3. Suppose w, << v, for all n. Let X,, = du,/dv, and let X =
lim sup X,,. Then

W(A) = / Xdv + u(AN{X = oo})
A

Remark. i1, (A) = fA X dvis ameasure << v. Since Theorem 5.2.9 implies v(X =
o0) =0, us(A) = n(AN{X = oo}) is singular w.r.t. v. Thus u = p, + g gives
the Lebesgue decomposition of u (see Theorem A.4.5), and X, = du,/dv, v-a.s.
Here and in the proof we need to keep track of the measure to which the a.s. refers.

Proof. As the reader can probably anticipate:
Lemma 5.3.4. X, (defined on (2, F, v)) is a martingale w.r.t. F,.

Proof. We observe that, by definition, X,, € F,,. Let A € F,. Since X,, € F, and
v, is the restriction of v to F,

/X,,dv:/Xndvn
A A

Using the definition of X,, and Exercise A.4.7

the last equality holding since A € F, and p, is the restriction of u to F,. If
A € F,—1 C Fu, using the last result forn = m and n = m — 1 gives

/dev = u(A) = / Xn_1dv
A A
SO E(Xm|‘7:m—l):Xm—l- n

Since X, is a nonnegative martingale, Theorem 5.2.9 implies that X,, — X v-
a.s. We want to check that the equality in the theorem holds. Dividing ©(A) by
w(€2), we can without loss of generality suppose w is a probability measure. Let
p=(Wu+v)/2, p, = (U, + v,)/2 = therestriction of p to F,,. Let Y,, = du,/dp,,
Z,=dv,/dp,. Y,, Z, > 0and Y, + Z, = 2 (by Exercise A.4.6),s0 Y, and Z, are
bounded martingales with limits ¥ and Z. As the reader can probably guess,

(%) Y =du/dp Z =dv/dp
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It suffices to prove the first equality. From the proof of Lemma 5.3.4, if
AeF, CFy

/,L(A)=/Yndp—>/de
A A

by the bounded convergence theorem. The last computation shows that
u(A) = f Ydp forall AeG=U,F,
A

G is a w-system, so the 7 — A theorem implies the equality is valid forall A € F =
0(G) and (%) is proved.

It follows from Exercises A.4.8 and A.4.9 that X,, = Y,,/Z,. At this point, the
reader can probably leap to the conclusion that X = Y /Z. To get there carefully,
note that Y + Z =2 p-a.s., so p(Y =0, Z = 0) = 0. Having ruled out 0/0, we
have X =Y/Z p-as. (Recall X =limsupX,.) Let W = (1/Z) - 1(z~¢). Using
(x),then 1 = ZW 4 1(z—0), we have

@ wy= [ vao= [ ywzdp+ [ 100y ap
A A A

Now (x) implies dv = Z dp, and it follows from the definitions that
YW = XI(Z>O) =X v-as.

the second equality holding since v({Z = 0}) = 0. Combining things, we have

(b) /YWL@:/X@
A A

To handle the other term, we note that (x) implies du = Y dp, and it follows from
the definitions that {X = oo} = {Z = 0} u-a.s. so

(C) /1(220)de:f 1(X:oo)d:u
A A

Combining (a), (b), and (c) gives the desired result. |

Example 5.3.1. Suppose F,, = oIy, : 0 <k < K,) where for each n, I, is a
partition of €2, and the (n + 1)th partition is a refinement of the nth. In this case, the
condition p, << v, is V(I ,) = 0 implies u(l; ,) = 0, and the martingale X, =
(L n)/v(Ik ) on Iy , is an approximation to the Radon-Nikodym derivative. For a
concrete example, consider 2 = [0, 1), Iy, = [k27", (k + 1)27") for 0 < k < 2",
and v = Lebesgue measure.

Exercise 5.3.7. Check by direct computation that the X,, in Example 5.3.1 is a
martingale. Show that if we drop the condition u, << v, and set X,, = 0 when
V(Ik,n) = 0’ then E(Xn+1 |~7:n) =< Xn-

Exercise 5.3.8. Apply Theorem 5.3.3 to Example 5.3.1 to get a “probabilistic”
proof of the Radon-Nikodym theorem. To be precise, suppose F is countably
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generated (i.e., there is a sequence of sets A, so that 7 = o(A, : n > 1)) and
show that if « and v are o-finite measures and << v, then there is a function g
so that u(A) = [, gdv.

Remark. Before you object to this as circular reasoning (the Radon-Nikodym
theorem was used to define conditional expectation!), observe that the conditional
expectations that are needed for Example 5.3.1 have elementary definitions.

Kakutani dichotomy for infinite product measures. Let @ and v be mea-
sures on sequence space (RN, RN) that make the coordinates &,(w) = w, inde-
pendent. Let F,,(x) = u(&, < x), G,(x) = v(§, < x). Suppose F, << G, and let
g, =dF,/dG,. Let F, = o(&, : m < n), let u, and v, be the restrictions of u
and v to F,, and let

_dpy
Xn an = liIIQm

Theorem 5.3.3 implies that X, — X v-a.s. Y -, log(g,) > —oo is a tail event,
so the Kolmogorov 0-1 law implies

V(X =0) e {0, 1} 5.3.1)

and it follows from Theorem 5.3.3 that either u << v or u L v. The next result
gives a concrete criterion for which of the two alternatives occurs.

Theorem 5.3.5. i << vor u 1L v, according as ]_[sf:l f JGm dG, > 0or = 0.

Proof. Jensen’s inequality and Exercise A.4.7 imply

(/mdcm)zgfqmdcn,:/dszl

so the infinite product of the integrals is well defined and < 1. Let

X, = 1_[ Qm(a)m)

m<n

as above, and recall that X,, — X v-a.s. If the infinite product is 0, then

/X}/zdu = H/a/_qdem -0
m=1

Fatou’s lemma implies

/Xl/zdv < liminf‘/X;/zdu =0
n—oo

so X = 0 v-a.s., and Theorem 5.3.3 implies i L v. To prove the other direction,
letY, =X A%, Now [ qndG,, =1, so if we use E to denote expected value with



5.3 Examples 245

respect to v, then EY2 = EX,, = 1, so

n+k
ﬂn%—nszwﬁﬁdm—uﬂﬁﬁb=zo— ﬂ:/Jﬁma>
m=n+1
Now |a — b| = |a'/? — b'/?| - (a'/? 4+ b'/?), so using Cauchy-Schwarz and the fact
(a + b)*> < 2a® + 2b? gives

ElXuik — Xul = EQYurt — Yol (Vars + Yo)
1/2
< (EWysk = Y PEQnys + Y07

1/2

< (4EWuar = Y2)))

From the last two equations, it follows that if the infinite product is > 0, then X,
converges to X in L!(v), so v(X = 0) < 1, (5.3.1) implies the probability is 0, and
the desired result follows from Theorem 5.3.3. |

Bernoulli product measures. For the next three exercises, suppose F,, G, are
concentrated on {0, 1} and have F,,(0) =1 — «,, G,(0) =1 — B,,.

Exercise 5.3.9. (i) Use Theorem 5.3.5 to find a necessary and sufficient condition
for u << v. (ii) Suppose that 0 < € < «,, 8, < 1 — € < 1. Show that in this case
the condition is simply » (&, — B.)* < oo.

Exercise 5.3.10. Show that if ) «, < coand ) B, = oo in the previous exercise
then o L v. This shows that the condition > (e, — B,)? < oo is not sufficient for
M << v in general.

Exercise 5.3.11. Suppose 0 < «,, B, < 1. Show that ) |, — B,| < o0 is suffi-
cient for © << v in general.

5.3.4 Branching Processes

Let &', i,n > 1, be i.i.d. nonnegative integer-valued random variables. Define a
sequence Z,,n > 0by Zy = 1 and

gt iz, >0

5.3.2
0 ifZ,=0 ( )

Zpt1 =
Z, is called a Galton-Watson process. The idea behind the definitions is that
Z, is the number of individuals in the nth generation, and each member of the
nth generation gives birth independently to an identically distributed number of
children. py = P(§/" = k) is called the offspring distribution.

Lemma$5.3.6. Let 7, =o0(§" :i > 1,1 <m <n)and n = E§" € (0, 00). Then
Z,/u" is a martingale w.r.t. JF,.
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Proof. Clearly, Z,, € F,.

E(Zy|F) = Y E(Zusi liz,=0| F)
k=1

by the linearity of conditional expectation, (5.1.1), and the monotone convergence
theorem, (5.1.3). On {Z, =k}, Z,41 = &/ + - + &, s0 the sum is

o0 0
SEWET 4§zl F) =D Lz EGT -+ &7 T
k=1 k=1

by Theorem 5.1.7. Since each & J’.'H is independent of JF,,, the last expression

00
= Z 1{Z,1:k}kﬂ = l‘LZn
k=1

n+1

Dividing both sides by p"™" now gives the desired result. [ ]

Remark. The reader should notice that in the proof of Lemma 5.3.6 we broke
things down according to the value of Z,, to get rid of the random index. A simpler
way of doing the last argument (that we will use in the future) is to use Exercise
5.1.1 to conclude that on {Z,, = k}

E(Zy|Fo) = EE + -+ 5T F) =k = nZ,
Z,/uK" is a nonnegative martingale, so Theorem 5.2.9 implies Z,, /" — a limit
a.s. We begin by identifying cases when the limit is trivial.

Theorem 5.3.7. If u < 1 then Z, = 0O for all n sufficiently large, so Z,,/u" — O.

Proof. E(Z,/u") = E(Zy) = 1,50 E(Z,) = u".Now Z,, > 1 on{Z, > 0} so
P(Z,>0)<E(Z,,Z,>0)=E(Z,) = Mn -0

exponentially fastif u < 1. |

The last answer should be intuitive. If each individual on the average gives birth
to less than one child, the species will die out. The next result shows that after we
exclude the trivial case in which each individual has exactly one child, the same
result holds when u = 1.

Theorem 5.3.8. If w =1 and P(§" =1) < 1 then Z,, = 0 for all n sufficiently
large.

Proof. When u =1, Z, is itself a nonnegative martingale. Since Z, is integer
valued and by Theorem 5.2.9 converges to an a.s. finite limit Z.,, we must have
Z, = Zo for large n. If P(§" =1) <1 and k > 0, then P(Z, =k for all n >
N) = 0 for any N, so we must have Z,, = 0. [ ]
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Figure 5.3. Generating function for Binomial(3,1/2).

When p < 1, the limit of Z,,/u” is 0 because the branching process dies out.
Our next step is to show thatif u > 1, then P(Z, > Oforalln) > 0. Fors € [0, 1],
let o(s) = Y_,., Pes’ where pp = P(€" = k). ¢ is the generating function for
the offspring distribution Dk See Figure 5.3 for an example.

Theorem 5.3.9. P(Z, = 0 for some n) = p the unique fixed point of ¢ in [0, 1).

Proof. Differentiating and referring to Theorem A.5.2 for the justification gives for
s <1

o0
Ps)=Y kpst'=0
k=1

o
¢"'(5) =Y k(k—Dpes*™? = 0
k=2
So ¢ is increasing and convex, and limgq; ¢'(s) = Y 02 kpr = .
Our interest in ¢ stems from the following facts.

(@) If 0,, = P(Z,, = 0) then 0, = > 22 POm—1)*.

Proof of (a). If Z; = k, an event with probability py, then Z,, = 0 if and only if
all k families die out in the remaining m — 1 units of time, an independent event
with probability 6% . Summing over the disjoint possibilities for each k gives the
desired result. |

(b) If ¢’(1) = u > 1, there is a unique p < 1 so that ¢(p) = p.

Proof of (b). (0) > 0, (1) = 1, and ¢'(1) > 1, s0 ¢(1 — €) < 1 — ¢ for small €.
The last two observations imply the existence of a fixed point. To see it is unique,
observe that i > 1 implies p; > 0 for some k > 1, so ¢”(0) > 0 for 6 > 0. Since
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Figure 5.4. Iteration as in part (c) for the Binomial (3,1/2) generating function.

@ is strictly convex, it follows that if p < 1 is a fixed point, then ¢(x) < x for
x € (p, ). [ ]

(c)Asm 1 00,6, 1 p.

Proof of (c). 60 =0, ¢(p) = p, and @ is increasing, so induction implies 6,, is
increasing and 6,, < p. Let 6 = lim8,,. Taking limits in 6,, = @(6,,—1), we see
O = @(00). Since O < p, it follows that 6., = p. [ |

Combining (a)—(c) shows P(Z, = 0 for some n) =1im#6, = p < 1 and proves
Theorem 5.3.9. n

The last result shows that when @ > 1, the limit of Z, /" has a chance of being
nonzero. The best result on this question is due to Kesten and Stigum:

Theorem 5.3.10. W =1im Z,, /" is not = 0 if and only if Y pyklogk < oo.

For a proof, see Athreya and Ney (1972), pp. 24-29. In the next section, we will
show that Y k?p; < oo is sufficient for a nontrivial limit.

Exercise 5.3.12. Show that if P(lim Z,,/u" = 0) < 1, then it is = p, and hence

{imZ,/u" > 0} ={Z, > Oforalln} a.s.

Exercise 5.3.13. Galton and Watson, who invented the process that bears their
names, were interested in the survival of family names. Suppose each family has
exactly three children but coin flips determine their sex. In the 1800s, only male
children kept the family name, so following the male offspring leads to a branching
process with pg = 1/8, p1 = 3/8, p» = 3/8, p3 = 1/8. Compute the probability
p that the family name will die out when Z, = 1.
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5.4 Doob’s Inequality, Convergence in L”
We begin by proving a consequence of Theorem 5.2.6.
Theorem 5.4.1. If X, is a submartingale and N is a stopping time with P(N <
k) =1 then
EXg < EXy < EXy
Remark. Let S, be a simple random walk with Sy = 1 andlet N = inf{n : S, = 0}.
(See Example 5.2.3 for more details.) ESy = 1 > 0 = E Sy, so the first inequality

need not hold for unbounded stopping times. In Section 5.7 we will give conditions
that guarantee £ Xy < E Xy for unbounded N.

Proof. Theorem 5.2.6 implies X y A, 1S a submartingale, so it follows that
EXo=EXNno < EXnak = EXy

To prove the other inequality, let K,, = 1(y<n} = l{y<n—1}. K, is predictable, so
Theorem 5.2.5 implies (K - X), = X,, — Xy, 1S a submartingale, and it follows
that

EX; — EXy=EK - X) > E(K-X)y=0 n

Exercise 5.4.1. Show thatif j < k,then E(X;; N = j) < E(Xy; N = j) and sum
over j to get a second proof of EXy < EXj.

Exercise 5.4.2. Generalize the proof of Theorem 5.4.1 to show that if X, is a
submartingale and M < N are stopping times with P(N < k) =1, then EX ) <
EXy.

Exercise 5.4.3. Use the stopping times from the Exercise 4.1.7 to strengthen the
conclusion of the previous exercise to E(Xy|Fp) > Xy

We will see below that Theorem 5.4.1 is very useful. The first indication of this
is:
Theorem 5.4.2. Doob’s inequality. Let X,, be a submartingale,

X, = max X
0<m=<n

A >0, and A = {X, > A}. Then

AP(A) < EX,l, < EX'

Proof. Let N = inf{m : X, > Aorm = n}. Since Xy > A on A,

AP(A) < EXnly < EX,l4
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The second inequality follows from the fact that Theorem 5.4.1 implies EXy <
EX,, and we have Xy = X, on A°. The second inequality is trivial, so the proof
is complete. [ ]

Example 5.4.1. Random walks. If we let S, = & + --- 4+ &, where the &, are
independent and have E§, =0, 0> = EE2 < oo, then Theorem 5.2.3 implies
X, = S? is a submartingale. If we let > = x? and apply Theorem 5.4.2 to X,,, we
get Kolmogorov’s maximal inequality, Theorem 2.5.2:

P ( max |S,,| > x) <x7? var (S,)

1<m<n

Using martingales, one can also prove a lower bound on the maximum that can
be used instead of the central limit theorem in our proof of the necessity of the
conditions in the three series theorem. (See Example 3.4.7.)

Exercise 5.4.4. Suppose in addition to the conditions introduced above that |£,,| <
K andlets? =Y _ o2. Exercise 5.2.6 implies that S? — s2 is a martingale. Use

m<n “m* n

this and Theorem 5.4.1 to conclude

P (lmax S| < x) < (x + K)*/ var(S,)

Exercise 5.4.5. Let X, be a martingale with Xy = 0 and EX?2 < oco. Show that
P (lrgr}f;;n X, > /\> < EX2/(EX?+ %)
Hint: Use the fact that (X,, + ¢)? is a submartingale and optimize over c.
Integrating the inequality in Theorem 5.4.2 gives:

Theorem 5.4.3. L? maximum inequality. If X, is a submartingale, then for
1 <p<oo,

— p P
Consequently, if Y,, is a martingale and Y, = maXo<p<n |V,

» \’
ElY; 1P <|— | E(Y")

Proof. The second inequality follows by applying the first to X,, = |Y,,|. To prove
the first we will, for reasons that will become clear in a moment, work with

X, A M rather than X,,. Since {X, A M > A} is always {X, > A} or @, this does
not change the application of Theorem 5.4.2. Using Lemma 2.2.8, Theorem 5.4.2,
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Fubini’s theorem, and a little calculus gives

E(X, A M)P) = f pAPIP(X, AM > ) d
0

o0
S/ p)\‘p—l< - /X 1(X AME)L)dP> dir
X, AM
/X*/ pAP=2drdP

= _1 X (X, A M 'dP
Ifweletq = p/(p — 1) be the exponent conjugate to p and apply Holder’s inequal-
ity, Theorem 1.6.3, we see that the above

< q(EIX;1")P(EIXy A M|
If we divide both sides of the last inequality by (E|X, A M|?)!/7, we get

P
E(1%, A MI7) < (L) E(X
p—1
Letting M — oo and using the monotone convergence theorem gives the desired
result. |

Example 5.4.2. Theorem 5.4.3 is false when p = 1. Again, the counterexample is

provided by Example 5.2.3. Let S, be a simple random walk starting from Sy = 1,
=inf{n : §, =0}, and X,, = Syr,. Theorem 5.4.1 implies EX,, = ESyn, =

ESo =1 for all n. Using hitting probabilities for simple random walk, (4.1.2)

a=-1,b=M — 1, we have

1

P (mame > M) = —
m M

s0 E(max,, X,,) = > y_, P(max,, X,, > M) =>_5_, 1/M = oo. The monotone
convergence theorem implies that £ max,, <, X,, 1 co asn 1 oo.

The next result gives an extension of Theorem 5.4.2 to p = 1. Since this is not
one of the most important results, the proof is left to the reader.

Theorem 5.4.4. Let X,, be a submartingale and log™ x = max(log x, 0).

EX, <(1—e HY ™1+ EX; log"(X;)))
Remark. The last result is almost the best possible condition for sup |X,| € L'.
Gundy has shown that if X, is a positive martingale that has X,.; < CX,, and

EXolog® Xo < oo, then E(sup X,,) < oo implies sup E(X, log" X,) < co. Fora
proof, see Neveu (1975), pp. 71-73.
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Exercise 5.4.6. Prove Theorem 5.4.4 by carrying out the following steps: (i) Imitate
the proof of 5.4.2 but use the trivial bound P(A) < 1 for A < 1 to show

EX,AM)<1+ / X log(X, AM)dP
(i) Use calculus to show alogh < aloga + b/e < alog™ a + b/e.
From Theorem 5.4.2, we get the following:

Theorem 5.4.5. L? convergence theorem. If X, is a martingale with
sup E|X,|? < oo where p > 1, then X, — X a.s. and in L?.

Proof. (EX")? < (E|X,|)? < E|X,|?, so it follows from the martingale conver-
gence theorem (5.2.8) that X,, — X a.s. The second conclusion in Theorem 5.4.3

implies
p ) p
(s ) = (1)
0<m=<n pP— 1

Letting n — o0 and using the monotone convergence theorem implies sup | X,,| €
L?. Since |X,, — X|? < (2sup|X,])?, it follows from the dominated convergence
theorem that E|X,, — X|” — 0. |

The most important special case of the results in this section occurs when p = 2.
To treat this case, the next two results are useful.

Theorem 5.4.6. Orthogonality of martingale increments. Let X, be a martingale
with EX,% <ooforalln. Ifm <nandY € F,, has EY? < oo, then

E(X, —Xn)Y)=0

Proof. The Cauchy-Schwarz inequality implies E|(X, — X,,)Y| < oco. Using
(5.1.5), Theorem 5.1.7, and the definition of a martingale,

E((Xn - Xm)Y) = E[E((Xn - Xm)Y|JTm)] = E[YE((Xn - Xm)|fm)] =0 ®
Theorem 5.4.7. Conditional variance formula. If X, is a martingale with EX? <
oo for all n,

E((Xy = Xu)*|Fn) = E(X31F) — X,

Remark. This is the conditional analogue of E(X — EX)?> = EX? — (EX)? and
is proved in exactly the same way.
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Proof. Using the linearity of conditional expectation and then Theorem 5.1.7, we
have

E(X? = 2X, X + X2\ Fn) = E(X2|F) = 2XmE(Xo| F) + X2,
= E(X2|Fn) — 2X2 + X2

which gives the desired result. [ |
Exercise 5.4.7. Let X,, and Y,, be martingales with £ X fl <ooand E Yn2 < 00.

EXyY, — EXoYo =Y _ E(Xn = Xp-1)(¥m = Yu_1)

m=1

The next two results generalize Theorems 2.5.3 and 2.5.7. Let X,,, n > 0, be a
martingale and let §, = X,, — X,,_; forn > 1.

Exercise 5.4.8. If EX}, Y > | E§2 < oo then X, — Xo a.s. and in L.

Exercise 5.4.9. If b,, t coand Y -,
In particular, if E&2 < K < ooand ) o

EE; /b2 < oo, then X,,/b, — 0 a.s.
2 < 0o, then X,,/b, — 0 a.s.

mlm

Example 5.4.3. Branching processes. We continue the study begun at the end of
the last section. Using the notation introduced there, we suppose u = E(§") > 1
and var (§") = 02 <oo. Let X, = Z,/u". Taking m = n — 1 in Theorem 5.4.7
and rearranging, we have

EXGIFa-0) = X;_y + E(Xy = Xp-1)*|Fz1)
To compute the second term, we observe
E((Xn = Xuo-t)*1Fa1) = E(Zn/ 1" = Zy—a /"™ P Fact)
=W E(Zy — RZu-1)* | Fam)

It follows from Exercise 5.1.1 that on {Z,_; = k},

E(Zy, — nZ,- 1) |Fno1) = E ((Zén_ﬂk )fn 1) = ko? =2 10
i=1

Combining the last three equations gives

EX?=EX? |+ E(Z,_10%/u*") = EX? | +o%/u™™!
since E(Z,_1/u" ") =EZy=1. Now EX(Z) =1, so EX% =140?%/u?, and
induction gives

n+l1
EX;=1+0>) pu™*
k=2
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This shows sup EX2 < o0, so X, — X in L%, and hence EX, — EX. EX, =1
for all n, so EX =1 and X is not = 0. It follows from Exercise 5.3.12 that
{X >0} ={Z, >0foralln}.

5.4.1 Square Integrable Martingales*

For the rest of this section, we will suppose
X, is a martingale with Xy = 0 and EXﬁ < oo foralln

Theorem 5.2.3 implies X? is a submartingale. It follows from Doob’s decomposition
Theorem 5.2.10 that we can write X fl = M, + A,, where M,, is a martingale, and
from formulas in Theorems 5.2.10 and 5.4.7 that

An=> EXp|Fn-t) = Xp i =D E(Xm = X1’ | Fn-1)
m=1

m=1

A, is called the increasing process associated with X,,. A, can be thought of as a
path by path measurement of the variance at time n, and Ao, = lim A,, as the total
variance in the path. Theorems 5.4.9 and 5.4.10 describe the behavior of the
martingale on {A, < oo} and {A,, = o0}, respectively. The key to the proof of the
first result is the following:

Theorem 5.4.8. E (sup,, |X,|*) < 4EA.
Proof. Applying the L? maximum inequality (Theorem 5.4.3) to X,, gives
E ( sup |Xm|2> <4EX? =4EA,

0<m=<n

since EX% =FEM,+ EA, and EM,, = EMy = EX% = 0. Using the monotone
convergence theorem now gives the desired result. [ ]

Theorem 5.4.9. lim,_. o, X,, exists and is finite a.s. on {As < 00}.

Proof. Leta > 0. Since A,y € F,, N =inf{n: A+ > a’} is a stopping time.
Applying Theorem 5.4.8 to Xy, and noticing Ay ., < a® gives

E <sup IXNAnlz) < 4d*

so the L? convergence theorem, 5.4.5, implies that lim Xy, exists and is finite
a.s. Since a is arbitrary, the desired result follows. [ |

The next result is a variation on the theme of Exercise 5.4.9.

Theorem 5.4.10. Let f > 1 be increasing with fooo f()~2dt < oo. Then
X./f(A,) = 0a.s. on {Ax = 00}
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Proof. H,, = f(A,,)"!is bounded and predictable, so Theorem 5.2.5 implies

n

Xm - Xm— . .
=(H-X), = Z Zm_ 2mtlsa martingale
= f(An)
If B, is the increasing process associated with Y,,, then

Bn+1 - Bn = E((Yn+1 - Yn)zlﬁl)

—E <(Xn+] - Xn)2 ) — An+1 - An
f(An1)? ! fAn1)?

since f(A,+1) € F,. Our hypotheses on f imply that
o0
n+1 - -2
f@)™"dt <0
Z f(An+1)2 Z /At1 Ant1)
so it follows from Theorem 5.4.9 that Y,, — Y., and the desired conclusion follows

from Kronecker’s lemma, Theorem 2.5.5. [ |

Example 5.4.4. Let € > 0 and f(t) = (¢ logl+e HY2v 1. Then f satisfies the
hypotheses of Theorem 5.4.10. Let &1, &, ... be independent with E&,, = 0 and
Eg2 = o2. In this case, X, = & + - - - + &, is a square integrable martingale with
A, =0l +---+02,s0if Y ;o 07 = 0o, Theorem 5.4.10 implies X,/ f(A,) — 0,
generalizing Theorem 2.5.7.

From Theorem 5.4.10 we get a result due to Dubins and Freedman (1965) that
extends our two previous versions in Theorems 2.3.6 and 5.3.2.

Theorem 5.4.11. Second Borel-Cantelli Lemma, II1. Suppose B, is adapted to
Fn and let p, = P(B,|F,—1). Then

ZlB(m) me—>1 a.s. on {ipm:OO}
m=1

Proof. Define a martingale by Xo =0 and X, — X,,_; = 15, — P(B,|F,—1) for
n > 1 so that we have

n n n
(Z 1B(m) Z pm) -1= Xn Z Pm
m=1 m=1 m=1

The increasing process associated with X, has
Ap = Apy = E(Xy = X021 Fa)
=E (g, — pu)*| Fac1) = pu— Py < Pa
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On {Ayx < 00}, X,, — a finite limit by Theorem 5.4.9, so on {A, < oo} N

{Zm pm = OO}
X, me -0
m=1

{Aw =00} = {3_,, Pu(l — pw) = 00} C {3, P = 00}, 50 on {Ax = 00} the
desired conclusion follows from Theorem 5.4.10 with f(¢) =V 1. |

Remark. The trivial example B, = 2 for all n shows we may have A,, < oo and
> pm =00 as.

Example 5.4.5. Bernard Friedman’s urn. Consider a variant of Polya’s urn (see
Section 5.3) in which we add a balls of the color drawn and b balls of the opposite
color where @ > 0 and b > 0. We will show that if we start with g green balls and
r red balls, where g, r > 0, then the fraction of green balls g, — 1/2. Let G,, and
R, be the number of green and red balls after the nth draw is completed. Let B, be
the event that the nth ball drawn is green, and let D, be the number of green balls
drawn in the first n draws. It follows from Theorem 5.4.11 that

n oo
(%) D, /Z gm_1 — 1 as.on ng—l =00
m=1 m=1

which always holds since g,, > g/(g +r + (a + b)m). At this point, the argument
breaks into three cases.

Case 1. a = b = c. In this case, the result is trivial since we always add c balls of
each color.

Case 2. a > b. We begin with the observation

Gn+1 . 8 +aDn +b(l’l - Dn)
Gpy1+ Roa g+r+n(a+b)

(*) En+1 =

If limsup,— 00 gn < x then (%) implies limsup,,—, -, D,/n < x and (since a > b)

lim su <ax+b(1—x)_b+(a—b)x
n—)oopgn+1 = a +b = a +b

The right-hand side is a linear function with slope < 1 and fixed point at 1/2,
so starting with the trivial upper bound x = 1 and iterating, we conclude that
limsup g, < 1/2. Interchanging the roles of red and green shows liminf,_, . g, >
1/2, and the result follows.

Case 3. a < b. The result is easier to believe in this case, since we are adding more
balls of the type not drawn, but is a little harder to prove. The trouble is that when
b > a and D,, < xn, the right-hand side of () is maximized by taking D, = 0, so
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we need to also use the fact that if r, is fraction of red balls, then

Ry _r+ bD, +a(n — D,)
Guy1 + Ryq g+r+n(a+Db)

Fn+1 =

Combining this with the formula for g, it follows that if lim sup, _, ., g, < x and
limsup,_, ., r» <Y, then

) all —=y)+by a4+ (b —a)y
limsup g, < =

n—»00 a+b a+b

. bx+a(l—x) a+b—a)x
limsupr, < =

n—00 a+b a+b

Starting with the trivial bounds x = 1, y = 1 and iterating (observe that the two
upper bounds are always the same), we conclude as in Case 2 that both limsups
are <1/2. [ |

Remark. B. Friedman (1949) considered a number of different urn models. The
result above is due to Freedman (1965), who proved the result by different methods.
The proof above is due to Ornstein and comes from a remark in Freedman’s paper.

Theorem 5.4.8 came from using Theorem 5.4.3. If we use Theorem 5.4.2 instead,
we get a slightly better result.

Theorem 5.4.12. E(sup, |X,|) < 3EAL.

Proof. As in the proof of Theorem 5.4.9 weleta > Oandlet N = inf{n : A, >
a?}. This time, however, our starting point is

P (suplel > a) < P(N <o0)+ P <sup|XNAm| > a)

P(N < 00) = P(As > a?). To bound the second term, we apply Theorem 5.4.2

to Xzzxmn with A = a? to get

P (sup | X Nam| > a> <a?EX%,, =a *EAym < aPE(Ax A a?)

m=<n

Letting n — oo in the last inequality, substituting the result in the first one, and
integrating gives

0 o o
/ P <sup | X, > a) da < / P(Aw > a®)da +/ a?E(Ax Aa?)da
0 m 0 0
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Since P(Ay > a?) = P(A}x/)2 > a), the first integral is EA(I,QZ. For the second, we
use Lemma 2.2.8 (in the first and fourth steps), Fubini’s theorem, and calculus to get

00 00 a?
/ a2E(Ax A a*)da = f a—2/ P(As > b)dbda
0 0 0

o0 o0 o0
= / P(As > b)/ a*dadb = f b™'2P(As > b)db =2EAL?
0 Vb 0

which completes the proof. [ |

Exercise 5.4.10. Let &, &,,...be ii.d. with E& =0 and E?;iz < o00. Let §, =
& +---+§&,. Theorem 5.4.1 implies that for any stopping time N, ESy, = 0.
Use Theorem 5.4.12 to conclude that if EN'/? < oo then ESy = 0.

Remark. Let &; in Exercise 5.4.10 take the values &1 with equal probability, and
let T = inf{n : S, = —1}. Since St = —1 does not have mean 0, it follows that
ET'? = co. If we recall from (4.3.2) that P(T > t) ~ Ct~'/2, we see that the
result in Exercise 5.4.10 is almost the best possible.

5.5 Uniform Integrability, Convergence in L!

In this section, we will give necessary and sufficient conditions for a martingale to
converge in L'. The key to this is the following definition. A collection of random
variables X;, i € I, is said to be uniformly integrable if

lim (supE(|Xi|; | X;| > M)) =0

M—o0 \ ey
If we pick M large enough so that the sup < 1, it follows that

SUpE|X;|<M+1<o00
iel
This remark will be useful several times below.

A trivial example of a uniformly integrable family is a collection of random
variables that are dominated by an integrable random variable, that is, | X;| < Y
where EY < oo. Our first result gives an interesting example that shows that
uniformly integrable families can be very large.

Theorem 5.5.1. Given a probability space (2, F,, P) and an X € L', then
{E(X|F): Fisao-field C F,} is uniformly integrable.

Proof. If A, is asequence of sets with P(A,) — 0, then the dominated convergence
theorem implies E(|X|; A,) — 0. From the last result, it follows that if € > 0, we
can pick § > 0 so that if P(A) < é then E(|X|; A) < €. (If not, there are sets A,
with P(A,) < 1/nand E(|X|; A,) > €, a contradiction.)
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Pick M large enough so that E|X|/M < §.Jensen’s inequality and the definition
of conditional expectation imply

E(|E(X|F)|; |[E(X|F)| > M) < ECE(X|IF); E(X||F) > M)
= E(|X[; E(X||F) > M)

since { E(|X||F) > M} € F. Using Chebyshev’s inequality and recalling the defi-
nition of M, we have

P{E(IX||F) > M} < E{E(IX||F)}/M = E|X|/M <
So, by the choice of §, we have
E(EX|PEX|F)| > M) <e foral F

Since € was arbitrary, the collection is uniformly integrable. |

A common way to check uniform integrability is to use:
Exercise 5.5.1. Let ¢ > 0 be any function with ¢(x)/x — 00 as x — oo, for
example, p(x) = x” with p > 1 or p(x) = xlog" x. If E¢(|X;|) < C foralli € I,
then {X; : i € I} is uniformly integrable.

The relevance of uniform integrability to convergence in L' is explained by:
Theorem 5.5.2. If X,, — X in probability, then the following are equivalent:

(i) {X, : n > 0} is uniformly integrable.

(i) X, — X in L".
(iii) E|X,| — E|X| < oc.

Proof. (i) implies (ii). Let

M fx>M
om(x) = {x if x| =M
-M ifx<-M

The triangle inequality implies
1Xn — X1 = | X0 — o (X)) + lom(Xn) — ou (X)) + [om(X) — X|
Since |py(Y) — Y)| = (|Y| — M)" < |Y|1y|>um), taking expected value gives
E|X, — X| < Elpu(Xn) — o (X)| + E(1X, 15 1X0| > M) + E(IX[; |X| > M)

Theorem 2.3.4 implies that ¢y (X,) — @ (X) in probability, so the first term — 0
by the bounded convergence theorem. (See Exercise 2.3.7.) If € > 0 and M is
large, uniform integrability implies that the second term < €. To bound the third
term, we observe that uniform integrability implies sup E|X,,| < 0o, so Fatou’s
lemma (in the form given in Exercise 2.3.6) implies E£|X| < oo, and by making
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M larger we can make the third term < €. Combining the last three facts shows
limsup E|X,, — X| < 2e. Since € is arbitrary, this proves (ii).

(ii) implies (iii). Jensen’s inequality implies
|E1X,| — EIX]|| < E||Xa] — |X]| = E|X, — X[ >0
(iii) implies (i). Let
X on[0, M — 1],

Yyx)=10 on [M, 00)
linear on[M — 1, M]

The dominated convergence theorem implies that if M is large, E|X|—
Evp(|X]) < €/2. As in the first part of the proof, the bounded convergence theo-
rem implies Evp (| X, ) = Ev(|X]), so using (iii) we get that if n > ng

E(1X,|5 [Xn|l > M) < E|X,| — Edry(1Xa])
S EIX| - Eyu(X))+e€/2 <€

By choosing M larger, we can make E(|X,|;|X,| > M) <€ for 0 < n < ny, so
X, is uniformly integrable. [ ]

We are now ready to state the main theorems of this section. We have already
done all the work, so the proofs are short.

Theorem 5.5.3. For a submartingale, the following are equivalent:
(i) It is uniformly integrable.

(ii) It converges a.s. and in L'.

(iii) It convergesin L'.

Proof. (i) implies (ii). Uniform integrability implies sup E|X,| < oo so the mar-
tingale convergence theorem implies X, — X a.s., and Theorem 5.5.2 implies
X, — X in L'. (ii) implies (iii). Trivial. (iii) implies (i). X, — X in L' implies
X, — X in probability, (see Lemma 2.2.2) so this follows from Theorem 5.5.2. MW

Before proving the analogue of Theorem 5.5.3 for martingales, we will isolate
two parts of the argument that will be useful later.

Lemma 5.5.4. If integrable random variables X, — X in L' then

E(X,; A) > E(X; A)
Proof. |[EXmls — EX14] < E|Xmla — X14] < E|X»m — X| — 0. m

Lemma 5.5.5. If a martingale X,, — X in L', then X,, = E(X|F,).
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Proof. The martingale property implies that if m > n, E(X,,|F,) = X,,s01f A €
Fus E(X,; A) = E(X,; A). Lemma 5.5.4 implies E(X,,; A) - E(X; A), so we
have E(X,; A) = E(X; A) for all A € F,,. Recalling the definition of conditional
expectation, it follows that X,, = E(X|F,). |

Theorem 5.5.6. For a martingale, the following are equivalent:
(i) It is uniformly integrable.
(ii) It converges a.s. and in L.
(iii) It converges in L'.
(iv) There is an integrable random variable X so that X, = E(X|F,).

Proof. (i) implies (ii). Since martingales are also submartingales, this follows from
Theorem 5.5.3. (ii) implies (iii). Trivial. (iii) implies (iv). Follows from Lemma
5.5.5. (iv) implies (i). This follows from Theorem 5.5.1. [ |

The next result is related to Lemma 5.5.5, but goes in the other direction.

Theorem 5.5.7. Suppose F,, + Foo, i.€., Fy, is an increasing sequence of o -fields
and Fs = o(U,F,). As n — o0,

E(X|F,) — E(X|Fx) a.s.andin L

Proof. The first step is to note that if m > n then Theorem 5.1.6 implies

so Y, = E(X|F,) is a martingale. Theorem 5.5.1 implies that Y,, is uniformly
integrable, so Theorem 5.5.6 implies that Y, converges a.s. and in L' to a limit
Y. The definition of ¥,, and Lemma 5.5.5 imply E(X|F,) = Y, = E(Ys|F), and
hence

/XdP:fYoodP forall A € F,
A A

Since X and Y., are integrable, and U,F, is a mw-system, the 7 — A theorem
implies that the last result holds for all A € F. Since Y € Fo, it follows that
Yoo = E(X|Foo). [ |

Exercise 5.5.2. Let Z,, Z,,...be i.i.d. with E|Z;| < oo, let 6 be an indepen-
dent r.v. with finite mean, and let Y; = Z;, + 6. If Z; is normal(0,1), then in
statistical terms we have a sample from a normal population with variance 1
and unknown mean. The distribution of 6 is called the prior distribution, and
PO € .Yy, ..., Y,)iscalled the posterior distribution after n observations. Show
that E@0|Y;,...,Y,) — 0 as.

In the next two exercises, Q2 =1[0,1), Iy, =[k27",(k+1)27"), and F,, =
o(lkn:0<k<?2".
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Exercise 5.5.3. f is said to be Lipschitz continuous if | f(r) — f(s)| < K|t — 5|
for 0 <s,t < 1. Show that X,, = (f((k + 1)27") — f(k27"))/27" on I} , defines
a martingale, X, — X, a.s. andin L', and

b
Fb) - fla) = / Xool(@) do

Exercise 5.5.4. Suppose f is integrable on [0,1). E(f|F,) is a step function
and — f in L'. From this it follows immediately that if € > 0, there is a step
function g on [0,1] with [ | f — g|dx < e. This approximation is much simpler
than the bare-hands approach we used in Exercise 1.4.3, but of course we are using
a lot of machinery.

An immediate consequence of Theorem 5.5.7 is:

Theorem 5.5.8. Lévy’s 0-1 law. If F, + Foo and A € Fo,, then E(14|F,) — 14
a.s.

To steal a line from Chung: “The reader is urged to ponder over the meaning of
this result and judge for himself whether it is obvious or incredible.” We will now
argue for the two points of view.

“It is obvious.” 14 € F, and F, 1 Foo, so our best guess of 14 given the infor-
mation in F,, should approach 1,4 (the best guess given F).

“It is incredible.” Let X1, X5, ...be independent and suppose A € 7, the tail
o-field. For each n, A is independent of F,,, so E(14|F,) = P(A). As n — 00,
the left-hand side converges to 14 a.s., so P(A) = 1,4 a.s., and it follows that
P(A) € {0, 1}, that is, we have proved Kolmogorov’s 0-1 law.

The last argument may not show that Theorem 5.5.8 is “too unusual or improbable
to be possible,” but this and other applications of Theorem 5.5.8 below show that
it is a very useful result.

Exercise 5.5.5. Let X, ber.v.’s taking values in [0, 0c0). Let D = {X,, = 0 for some
n > 1} and assume

P(D|Xy,...,X,) >d8(x)>0 as.on{X, <x}
Use Theorem 5.5.8 to conclude that P(D U {lim, X,, = oco}) = 1.
Exercise 5.5.6. Let Z, be a branching process with offspring distribution py (see

the end of Section 5.3 for definitions). Use the last result to show that if py > 0,
then P (lim, Z, = 0 or c0) = 1.
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Exercise 5.5.7. Let X,, € [0, 1] be adapted to F,,. Let o, 8 > O witha + 8 =1
and suppose

P(Xn—H :0‘+/3Xn|fn):Xn P(Xn—H :,Banfn): 1_Xvn

Show P(lim, X, =0or 1) =1 and if Xy = 6 then P(lim, X, = 1) = 0.
A more technical consequence of Theorem 5.5.7 is:

Theorem 5.5.9. Dominated convergence theorem for conditional expectations.
Suppose Y, — Y a.s. and |Y,| < Z for all n where EZ < oco. If F, 1 Foo then

E(Yn|fn) - E(Ylfoo) a.s.

Proof. Let Wy =sup{|Y,, — Y;u| :n,m > N}. Wy <2Z, so EWy < oo. Using
monotonicity (5.1.2) and applying Theorem 5.5.7 to Wy gives

limsup E(|Y, — Y[|F,) = lim E(Wy|F,) = E(Wy|Foo)

n—oo

The last result is true for all N and Wy | 0 as N 4 oo, so (5.1.3) implies
E(Wn|F) { 0, and Jensen’s inequality gives us

|E(Y|Fn) — EX|F) < E(Y, = Y||F,) - 0 as.asn — 00

Theorem 5.5.7 implies E(Y|F,) - E(Y|Fs) a.s. The desired result follows from
the last two conclusions and the triangle inequality. [ |

Exercise 5.5.8. Show that if F, ¢ F and Y, — Y in L', then E(Y,|F,) —
E(Y|Fs)in L.

Example 5.5.1. Suppose X, X», ...are uniformly integrable and — X a.s. The-
orem 5.5.2 implies X,, — X in L', and combining this with Exercise 5.5.8 shows
E(X,|F) — E(X|F)in L'. We will now show that E(X,|F) need not converge
as.Let Y, Y,,...and Z;, Z,, ... be independent r.v.’s with

PY,=0)=1/n P, =0=1-1/n
P(Z,=n)=1/n P(Z,=0=1—1/n

Let X, =Y,Z,. P(X, > 0) = 1/n? so the Borel-Cantelli lemma implies X, —
0 as. E(X,;|X,| =1 =n/n? so X, is uniformly integrable. Let F =
J(Y], Yz, )

E(Xn|F) = YnE(Zn|f) =Y,EZ, =Y,

Since ¥, — 0in L! but not a.s., the same is true for E(X,,|F).
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5.6 Backwards Martingales

A backwards martingale (some authors call them reversed) is a martingale
indexed by the negative integers, that is, X,, n < 0, adapted to an increasing
sequence of o-fields F, with

EX,u|F)=X, forn<-1
Because the o-fields decrease as n | —oo, the convergence theory for backwards
martingales is particularly simple.

Theorem 5.6.1. X_, = lim,_, oo X, exists a.s. and in L".

Proof. Let U, be the number of upcrossings of [a, b] by X_,,..., Xo. The
upcrossing inequality, Theorem 5.2.7, implies (b — a)EU, < E(Xo —a)*. Let-
ting n — oo and using the monotone convergence theorem, we have EU,, < 00,
so by the remark after the proof of Theorem 5.2.8, the limit exists a.s. The martin-
gale property implies X,, = E(Xy|F,), so Theorem 5.5.1 implies X,, is uniformly
integrable and Theorem 5.5.2 tells us that the convergence occurs in L'. [ |

Exercise 5.6.1. Show that if X, € L? the convergence occurs in L?.
The next result identifies the limit in Theorem 5.6.1.

Theorem 5.6.2. If X_ o =lim,_o X, and F_oc =M F,, then X_oo =
E(XolF-c0)-

Proof. Clearly, X o € F_o. X, = E(Xo|Fp),s0if A € F_o, C F, then

/XndP:/XodP
A A

Theorem 5.6.1 and Lemma 5.5.4 imply E(X,; A) - E(X_x; A), sO

/XoodP=/XodP
A A

for all A € F_, proving the desired conclusion. [ |
The next result is Theorem 5.5.7 backwards.

Theorem 5.6.3. If F,, | F_casn | —oo (i.e., F_oo = N, Fp), then

E(Y|F,) = E(Y|F_s) a.s. andin L'
Proof. X, = E(Y|F,)is abackwards martingale, so Theorem 5.6.1 and 5.6.2 imply
thatasn | —o0, X, = X_o a.s.and in L', where

X 00 = E(Xo|F-o00) = E(E(Y|F0)|F ) = E(Y|F_c0) u
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Exercise 5.6.2. Prove the backwards analogue of Theorem 5.5.9. Suppose Y, —
Y_ o as. as n — —oo and |Y,| < Z a.s. where EZ < oo. If F, | F_o, then
E(Y,|F)) = E(Y_oo|F_oo) ass.

Even though the convergence theory for backwards martingales is easy, there are
some nice applications. For the rest of the section, we return to the special space
utilized in Section 4.1, so we can utilize definitions given there. That is, we suppose

Q={(w,w,...):w €S}
F=8xS5x...
Xu(w) = w,

Let &, be the o-field generated by events that are invariant under permutations that
leaven + 1,n + 2, ... fixed and let £ = N, &, be the exchangeable o -field.

Example 5.6.1. Strong law of large numbers. Let £, &, ... bei.i.d. with E|§;| <
oo. LetS, =& +---+&,let X_, = §,/n, and let

f—n = O(Silv S}’l-‘rlv Sn+2’ .. ) = G(Sn’ $n+lv Sn-{-% .. )

To compute E(X_,|F_,_1), we observe that if j, k < n + 1, symmetry implies
Ej|F-n-1) = E(&|F-n-1), s0

n+1

1
Bl Fon) =~ 3 E@EIF )
k=1

1 Sn—H
= E(Sy1|F-n=1) =
o (Sn+11 1) P

Since X_,, = (S,+1 — &,41)/n, it follows that

EX_,|F_no) = E(Sn-‘rl/nlj:—n—l) - E($n+1/n|f—n—l)

. Sn+1 Sn+l _ Sn+1
n nn+1) n+1

—n—1

The last computation shows that X_,, is a backwards martingale, so it follows from
Theorems 5.6.1 and 5.6.2 that lim,_, S,/n = E(X_{|F_x). Since F_, C &,,
F_oo C E. The Hewitt-Savage 0-1 law (Theorem 4.1.1) says & is trivial, so we
have

lim §,/n=E(X_;) a.s.
n—oo
Example 5.6.2. Ballot theorem. Let {§;,1 < j <n} be ii.d. nonnegative

integer-valued r.v.’s, let Sy =& +---+ &, and let G = {S; < jforl < j <n}.
Then

P(G|S,) =1 —S,/n)" (5.6.1)
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Remark. To explain the name, let &1, &, ..., &, be i.i.d. and take values O or 2 with
probability 1/2 each. Interpreting 0’s and 2’s as votes for candidates A and B, we
see that G = {A leads B throughout the counting} so if n = o + 8

_ 26\" _a—p
P(G|B gets B votes) = <1 — —> =~ y

n

the result in Theorem 4.3.2.

Proof. The result is trivial when S, > n, so suppose S, < n. Computations in
Example 5.6.1 show that X_; = §;/j is a martingale w.r.t. 7_; = o (S, ..., S,).
Let T =inf{k > —n : X; > 1} and set T = —1 if the set is . We claim that
X7 =1 on G°. To check this, note that if S;;; < j+1, then §; < §;41 < j.
Since G C {T = —1} and S; < 1 implies S} = 0, we have X7 = 0 on G. Noting
F_, = 0(S,) and using Exercise 5.4.3, we see that on {S,, < n},

P(GC|S:1):E(XT|ffn):X7n =Sn/n u
Example 5.6.3. Hewitt-Savage 0-1 law. If X, X,,...are i.i.d. and A € &, then
P(A) € {0, 1}.

The key to the new proof is:

Lemma 5.6.4. Suppose X1, X», ...arei.i.d. and let
1
Au(p) = m ZQO(XI'], o X))

where the sum is over all sequences of distinct integers 1 < iy, ...,y <nand
i =nn—-1)---mn—k+1)
is the number of such sequences. If ¢ is bounded, A,(¢) - Ep(X1, ..., Xy) a.s.

Proof. A,(¢) € &,, s0

An(@) = E(An(p)|&n) = _ZE((/)(XH""’XikNgn)

= E(@(X1, ..., XOIE)

since all the terms in the sum are the same. Theorem 5.6.3 with F_,, = &, for
m > 1 implies that

E(p(X1, ..., X&) — E(e(Xy, ..., X))

We want to show that the limit is E(¢(X1, ..., Xi)). The first step is to observe
that there are k(n — 1);_; terms in A, (¢) involving X and ¢ is bounded, so if we
let 1 € i denote the sum over sequences that contain 1.

k(n — 1),_
(n)k Z%D(sz--wxik)f %Sup(ﬁ—) 0
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This shows that
E(eX1,..., X&) e 0(X7, X3,...)
Repeating the argument for 2, 3, ..., k shows
E(p(Xy, ..., X0)IE) € 0(Xit1, X2, - - 2)
Intuitively, if the conditional expectation of a r.v. is independent of the r.v. then

(a) E(p(X1, ..., XIE) = E(p(X1, ..., Xy))
To show this, we prove:

(b) If EX? < oo and E(X|G) € F with X independent of F then E(X|G) = EX.

Proof. Let Y = E(X|G) and note that Theorem 5.1.4 implies EY? < EX? < co.
Byindependence, EXY = EX EY = (EY)*since EY = E X.From the geometric
interpretation of conditional expectation, Theorem 5.1.8, E((X — Y)Y) =0, so
EY?=EXY = (EY)*and var(Y) = EY? — (EY)* = 0. u

(a) holds for all bounded ¢, so £ is independent of G, = o (X1, ..., X;). Since this
holds for all k, and UGy is a w-system that contains €2, Theorem 2.1.2 implies
that £ is independent of o (U, G;) D &, and we get the usual 0-1 law punch line. If
A € &, itis independent of itself, and hence P(A) = P(A N A) = P(A)P(A), that
is, P(A) € {0, 1}. [ |

Example 5.6.4. de Finetti’s Theorem. A sequence X, X»,...is said to be
exchangeable if for each n and permutation = of {1,...,n}, (X,..., X,) and
(Xza)s - - - » Xz(n)) have the same distribution.

Theorem 5.6.5. de Finetti’s Theorem. If X, X, . ..are exchangeable, then con-
ditional on &, X1, X», . . . are independent and identically distributed.

Proof. Repeating the first calculation in the proof of Lemma 5.6.4 and using the
notation introduced there shows that for any exchangeable sequence,

1
An(p) = EGAL@)IE) = o Y E@Xi, - Xi)IE)

= E(p(X1, ..., XpI&)
since all the terms in the sum are the same. Again, Theorem 5.6.3 implies that
An(p) = E(p(X1, ..., XIE) (5.6.2)

This time, however, £ may be nontrivial, so we cannot hope to show that the limit
is E((p(Xl, ey Xk))
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Let f and g be bounded functions on R*~! and R, respectively. If we let I, ; be

the set of all sequences of distinct integers 1 < iy, ..., iy < n, then
M1 An(InAR) = Y f(Xiyson Xi )Y 8(X)
i€l k-1 m
= Z f(Xil’ RN Xl'kq)g(xik)
l‘EInyk
k—1
+ Z Z f(Xi1’ ceey Xik—l)g(Xij)
ie]n,k—l j:1
If welet (xy, ..., xx) = f(xy, ..., xx_1)g(xx), note that
(Me—1n n (Me-1 1

= an =
(n)x (n—k+1) (my  (n—k+1)
then rearrange, we have

A,(@) = ————Au())Au(g) 1 %A()
n(p—n_k+1 n nl& I’l—k—l-lj:l ngoj
where ¢;(x1, ..., x—1) = f(x1, ..., xx-1)g(x;). Applying (5.6.2) to ¢, f, g, and
all the ¢; gives

E(f(X1, ..., Xic)8(X)IE) = E(f (X1, ..., Xi—DIE)E(Q(X)IE)

It follows by induction that

k k
E(JTr&xnle] =T]ESHENE m
j=1

Jj=1

When the X; take values in a nice space, there is a regular conditional distribution
for (X, X»,...) given &, and the sequence can be represented as a mixture of
i.i.d. sequences. Hewitt and Savage (1956) call the sequence presentable in this
case. For the usual measure theoretic problems, the last result is not valid when
the X; take values in an arbitrary measure space. See Dubins and Freedman (1979)
and Freedman (1980) for counterexamples.

The simplest special case of Theorem 5.6.5 occurs when the X; € {0, 1}. In this
case,

Theorem 5.6.6. If X, X, . ..are exchangeable and take values in {0, 1} then there
is a probability distribution on [0, 1] so that

1
PXi=1,....X%=1,X1=0,..., X, :0):/ 0*(1 — 0y % dF(®)
0

This result is useful for people concerned about the foundations of statistics (see
Section 3.7 of Savage (1972)), since from the palatable assumption of symmetry
one gets the powerful conclusion that the sequence is a mixture of i.i.d. sequences.
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Theorem 5.6.6 has been proved in a variety of different ways. See Feller, Vol. 11
(1971), pp. 228-9, for a proof that is related to the moment problem. Diaconis
and Freedman (1980) have a nice proof that starts with the trivial observation that
the distribution of a finite exchangeable sequence X,,, 1 < m < n has the form
poHon + -+ pnH, , where H,, , is “drawing without replacement from an urn
with m ones and n — m zeros.” If m — oo and m/n — p then H,, , approaches
product measure with density p. Theorem 5.6.6 follows easily from this, and one
can get bounds on the rate of convergence.

Exercises

5.6.3. Prove directly from the definition that if X, X, ... € {0, 1} are exchange-

able,
n—=k n
P(X]:l,...,Xk=1|Sn=m):( >/()
n—m m

5.6.4. If X;, X,, ... € R are exchangeable with EX? < oo then E(X;X>) > 0.

5.6.5. Use the first few lines of the proof of Lemma 5.6.4 to conclude that if
X1, X, ...areiid. with EX; = pn and var(X;) = 6> < oo then

-1
(';) Y (X - X)) - 207

I<i<j<n

5.7 Optional Stopping Theorems

In this section, we will prove a number of results that allow us to conclude that if X,
is a submartingale and M < N are stopping times, then EXy < EXy. Example
5.2.3 shows that this is not always true, but Exercise 5.4.2 shows this is true if N
is bounded, so our attention will be focused on the case of unbounded N.

Theorem 5.7.1. If X,, is a uniformly integrable submartingale, then for any stop-
ping time N, X ynn is uniformly integrable.

Proof. X, is a submartingale, so Theorem 5.4.1 implies EX};,, < EX,. Since
X is uniformly integrable, it follows from the remark after the definition that

supEX;QM <supEX < o0

Using the martingale convergence theorem (5.2.8) now gives Xy, — Xy a.s.
(here X, = lim, X,,) and E|X x| < oco. With this established, the rest is easy. We
write
E(IXNanls [ XNanl > K) = E(|XN]5 | XN| > K, N < n)
+ E(1Xu1; | Xn| > K, N > n)
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Since E|Xy| < 0o and X, is uniformly integrable, if K is large then each term
is < €/2. |

From the last computation in the proof of Theorem 5.7.1, we get:

Theorem 5.7.2. If E|Xy| < o0 and X, 1(n~n) is uniformly integrable, then X yr,
is uniformly integrable.

From Theorem 5.7.1, we immediately get:

Theorem 5.7.3. If X,, is a uniformly integrable submartingale, then for any stop-
ping time N < oo, we have EXy < EXy < EXoo, where X, = lim X,,.

Proof. Theorem 5.4.1 implies EXyg < EXya < EX,. Letting n — oo and
observing that Theorem 5.7.1 and 5.5.3 imply Xy., — Xy and X,, - X in
L' gives the desired result. [ |

From Theorem 5.7.3, we get the following useful corollary.

Theorem 5.7.4. Optional stopping theorem. If L < M are stopping times and
Yy nn is a uniformly integrable submartingale, then EY; < EYy; and

Y < EYyl|FL)

Proof. Use the inequality EXy < E X in Theorem 5.7.3 with X,, = Yy, and
N = L. To prove the second result, let A € F; and

L onA
N = )
M on A€

is a stopping time by Exercise 4.1.7. Using the first result now shows EYy < EYy,.
Since N = M on A€, it follows from the last inequality and the definition of
conditional expectation that

E(Y ;A) < E(Yy; A) = E(E(Yy|FL): A)

Taking A. = {Y;, — E(Yy|FL) > €}, we conclude P(A.) = Oforall e > 0 and the
desired result follows. |

The last result is the one we use the most (usually the first inequality with L = 0).
Theorem 5.7.2 is useful in checking the hypothesis. A typical application is the
following generalization of Wald’s equation, Theorem 4.1.5.

Theorem 5.7.5. Suppose X,, is a submartingale and E(|X,,11 — X, ||F») < B a.s.
If N is a stopping time with EN < oo, then Xya, is uniformly integrable and
hence EXy > EX,.
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Remark. As usual, using the last result twice shows that if X is a martingale,
then EXy = EXy. To recover Wald’s equation, let S, be a random walk, let
uw = E(S, — Su—1), and apply the martingale result to X,, = S, — nu.

Proof. We begin by observing that

oo
X nanl < 1Xo0l + D Xt = Xl lvom

m=0

To prove uniform integrability, it suffices to show that the right-hand side has finite
expectation for then | X y 1, | is dominated by an integrable r.v. Now, {N > m} € F,,,
SO

E(| X1 — Xuls N > m) = E(E(|X;n41 — Xl|Fm); N > m) < BP(N > m)
and EY 0 | X1 — Xl lvomy < BY oy P(N > m) = BEN < 0. [ |

Before we delve further into applications, we pause to prove one last stopping
theorem that does not require uniform integrability.

Theorem 5.7.6. If X,, is a nonnegative supermartingale and N < 0o is a stopping
time, then EXy > E Xy where X, = lim X,,, which exists by Theorem 5.2.9.

Proof. By Theorem 5.4.1, EXg > EXya,. The monotone convergence theorem
implies

E(Xy;N < 00) = nlirgo E(Xy;N <n)
and Fatou’s lemma implies

E(Xy; N =00) < linnig}fE(Xn;N > n)
Adding the last two lines and using our first observation,

EXy <liminf EXyr, < EXp |

n— oo

Exercise 5.7.1. If X,, > 0 is a supermartingale, then P(sup X, > A) < EXy/A.

Applications to random walks. For the rest of the section, including all the
exercises below, &, &, ...areiid., S, =& +---+&,,and F,, =g (&, ..., &).

Theorem 5.7.7. Asymmetric simple random walk refers to the special case in
which P(§; =1)=p and P(§;, = —1) =g = 1 — p with p # q. Without loss of
generality we assume 1/2 < p < 1.

(a) If p(x) = {(1 — p)/p}, then ©(S,) is a martingale.
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(b) If we let T, = inf{n : S, = x}, thenfora <0 < b

_ () — 0
¢() — ¢(a)

(c) Ifa < 0, then P(min, S, < a) = P(T, < o0) = {(1 — p)/p}~“.
(d) If b > 0, then P(T, < 00)=1and ET, =b/2p — 1).

P(T, < Tp)

Proof. Since S, and &, are independent, Example 5.1.5 implies that on {S,, = m},
1 — p m+1 1 — p m—1
E(@(SutDIFn) = p - (T) +d—-p) (T)

1_ m
={1—p+p}<7p) = 6(S,)

which proves (a).

Let N =T, A T,. We showed in Example 4.1.5 that N < oco. Since ¢(Syan)
is bounded, it is uniformly integrable, and Theorem 5.7.4 with L =0, M = N
implies

#(0) = E¢(Sy) = P(T, < Tp)¢p(a) + P(T, < T,)$(D)

Using P(T, < Tp) + P(T, < T,) = 1 and solving gives (b).

Letting b — oo and noting ¢(b) — 0 gives the result in (c), since T, < oo if
and only if T, < T, for some b. To start to prove (d) we note that ¢(a) — oo
as a — —o00, so P(T, < oo) = 1. For the second conclusion, we note that X,, =
S, — (p — g)n is a martingale. Since T, A n is a bounded stopping time, Theorem
5.4.1 implies

0= E (Span — (p — )T A 1))

Now b > Sy, A, > min,, S, and (c) implies E(inf,, S,,) > —o0, so the dominated
convergence theorem implies ESt, ., — ESt, as n — oo. The monotone conver-
gence theorem implies E(T, A n) 1+ ETy, so we have b = (p — q)ET}. [ |

Remark. The reader should study the technique in this proof of (d) because it is
useful in a number of situations (e.g., the exercises below). We apply Theorem
5.4.1 to the bounded stopping time 7}, A n, then let n — oo, and use appropriate
convergence theorems. Here this is an alternative to showing that X 7, »,, is uniformly
integrable.

Exercises

5.7.2. Let S, be an asymmetric simple random walk with 1/2 < p < 1, and let
o2 = pq. Use the fact that X,, = (S, — (p — g¢)n)> — o>n is a martingale to show
var (T,) = bo?/(p — q)°.

5.7.3. Let S, be a symmetric simple random walk starting at 0, and let T = inf{n :
S, ¢ (—a, a)} where a is an integer. (i) Use the fact that S,% — n is a martingale to
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show that ET = a. (ii) Find constants b and c so that Y,, = S* — 6n.S? + bn*> + cn
is a martingale, and use this to compute E7T2.

The last five exercises are devoted to the study of exponential martingales.

5.7.4. Suppose &; is not constant. Let ¢(0) = E exp(6&;) < oo for6 € (-6, §), and
let ¥ (0) = log @(0). (i) Xfl = exp(6S, — ny(0)) is a martingale. (ii) y is strictly
convex. (iii) Show E/X¢ — 0 and conclude that XZ — Oa.s.

5.7.5. Let S, be asymmetric simple random walk with p > 1/2. Let T} = inf{n :
S, = 1}. Use the martingale of Exercise 7.4 to conclude (i) if 6 > O then 1 =
e E@(#)~11, where 9(8) = pe® + ge % andg = 1 — p. (ii) Set pe? + ge™? =1/s
and then solve for x = e~ to get

Es™ = (1 — {1 —4pgs*}'/%/2qs

5.7.6. Suppose ¢(6,) = E exp(6,&;) = 1 for some 6, < 0 and &; is not constant.
It follows from the result in Exercise 5.7.4 that X,, = exp(6,S,) is a martingale.
LetT =inf{n: S, ¢ (a,b)} and Y,, = X,,»7. Use Theorem 5.7.4 to conclude that
EX7 =1and P(Sylega) < exp(—0,a).

5.7.7. Suppose the &; are integer valued with P(§; < —1) = 0 and EX; > 0. Show
that ¢(6,) = E exp(6,&,) = 1 for some 6, < 0. Use the martingale X,, = exp(6,S,,)
to conclude that P(St < a) = exp(—0,a).

5.7.8. Let S, be the total assets of an insurance company at the end of year n. In
year n, premiums totaling ¢ > 0 are received and claims ¢, are paid where ¢, is
Normal(u, 02) and 4 < c. To be precise, if &, = ¢ — ¢, then S, = S,_; + &,. The
company is ruined if its assets drop to O or less. Show that if Sy > 0 is nonrandom,
then

P(ruin) < exp(—2(c — p)So/0%)
5.7.9. Let Z, be a branching process with offspring distribution py, defined in part d

of Section4.3,and let p(8) = > py6*. Suppose p < 1 has p(p) = p.Show that p?:
is a martingale and use this to conclude P(Z, = 0 for some n > 1|Zy = x) = p*.



6
Markov Chains

The main object of study in this chapter is (temporally homogeneous) Markov
chains on a countable state space S. That is, a sequence of r.v.’s X,,, n > 0, with

P(Xus1 = jIFn) = p(Xn, J)

where F, = 0(Xo, ..., X,), p@i, j) = 0 and Zj p(i, j) = 1. The theory focuses
on the asymptotic behavior of p"(i, j) = P(X, = j|Xo = i). The basic results are
that

N U .
nlggo - 2_:1 p"(i, j) exists always
and under a mild assumption called aperiodicity:
lim p"(i, j) exists
n—oo

In nice situations, that is, X, is irreducible and positive recurrent, the limits above
are a probability distribution that is independent of the starting state i. In words,
the chain converges to equilibrium as n — oo. One of the attractions of Markov
chain theory is that these powerful conclusions come out of assumptions that are
satisfied in a large number of examples.

6.1 Definitions
Let (S, S) be a measurable space.

A function p : S x § — Ris said to be a transition probability if:

(i) Foreachx € S, A — p(x, A) is a probability measure on (S, S).
(ii) Foreach A € S, x — p(x, A) is a measurable function.

We say X, is a Markov chain (w.r.t. F;,) with transition probability p if
P(Xn+l € B|fn) = P(Xn, B)

274
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Given a transition probability p and an initial distribution y on (S, S), we can
define a consistent set of finite dimensional distributions by

P(X;€B;,0=<j=n) =/ u(dxo) [ p(xo,dx)
By B,

/ p(x,,_l,dx,,) (611)
By,

If we suppose that (S, S) is nice, Kolmogorov’s extenson theorem, Theorem
2.1.14, allows us to construct a probability measure P, on sequence space
(8§01} §l0.1.-1) 0 that the coordinate maps X, (w) = w, have the desired distri-
butions.

Notation. When . = §,, a point mass at x, we use P, as an abbreviation for P;_ .
The measures P, are the basic objects because, once they are defined, we can define
the P, (even for infinite measures () by

Pu(A) = / p(dx) Py(A)

Our next step is to show

Theorem 6.1.1. X, is a Markov chain (with respect to F, = o(Xo, X1, ..., X»))
with transition probability p.

Proof. To prove this, we let A = {Xy € By, X, € By, ..., X,, € B,}, B,+1 = B,
and observe that using the definition of the integral, the definition of A, and the
definition of P,

fl(xﬁ.eB)dPu = Pu(A, X411 € B)
A

= PM(X() € By, X1€By,...,Xp,€B,, X411 € B)
_ / pwdxo) [ pro.dx)--- / PGt dx) p(tn, Busy)
By B B,

We would like to assert that the last expression is

= / p(Xna B)dP/L
A

To do this, replace p(x,, B,) by a general function f(x,). If f is an indicator
function, the desired equality is true. Linearity implies that it is valid for simple
functions, and the bounded convergence theorem implies that it is valid for bounded
measurable f, for example, f(x) = p(x, By+1).

The collection of sets for which

/1(Xn+le3)dp :/pn(XnaB)dPu
A A
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holds is a A-system, and the collection for which it has been proved is a 7 -system,
so it follows from the w — A theorem, Theorem 2.1.2, that the equality is true for
all A € F,,. This shows that

P(Xn+1 € B|-7:n) = p(Xn, B)

and proves the desired result. [ |

At this point, we have shown that given a sequence of transition probabilities
and an initial distribution, we can construct a Markov chain. Conversely,

Theorem 6.1.2. If X,, is a Markov chain with transition probabilities p and initial
distribution [, then the finite dimensional distributions are given by (6.1.1).

Proof. Our first step is to show that if X,, has transition probability p, then for any
bounded measurable f

E(f(XnsDIFn) = /p(Xn, dy) f(y) (6.1.2)

The desired conclusion is a consequence of the next result. Let { = the collection
of bounded functions for which the identity holds.

Theorem 6.1.3. Monotone class theorem. Let A be a m-system that contains 2
and let 'H be a collection of real-valued functions that satisfies:

(i) IfA € A, then 1, € H.

(ii) If f, g € H, then f + g, and cf € 'H for any real number c.
(iii) If f, € H are nonnegative and increase to a bounded function f, then f € H.
Then 'H contains all bounded functions measurable with respect to o (A).

Proof. The assumption Q € A, (ii), and (iii) imply that G = {A: 1, € H} is a
A-system, so by (i) and the & — A theorem, Theorem 2.1.2, G D o (A). (ii) implies
that H contains all simple functions, and (iii) implies that 7 contains all bounded
measurable functions. n

Returning to our main topic, we observe that familiar properties of conditional
expectation and (6.1.2) imply
F n—l)

E (1‘[ fm(Xm)) —EE (]_[ S (Xm)
n—1
—E (]‘[ fm<Xm)E(fn(Xn)|fn1>>

m=0

n—1
=E (]_[ fm(Xm)/pn—l(Xn—l’dy)fn(y))
m=0
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The last integral is a bounded measurable function of X,_;, so it follows by
induction that if y is the distribution of X, then

E (1‘[ fm(xm)> = [ wa@xorfocao) [ poto. i)
m=0

"'/pn—l(xn—lvdxn)fn(xn) (613)

that is, the finite dimensional distributions coincide with those in (6.1.1). |

With Theorem 6.1.2 established, it follows that we can describe a Markov chain
by giving a transition probabilities p. Having done this, we can and will suppose
that the random variables X,, are the coordinate maps (X, (w) = w,) on sequence
space

(Qm ]:‘) — (S{O’l"“}, 8{0,1,...})

We choose this representation because it gives us two advantages in investigating
the Markov chain: (i) For each initial distribution ¢ we have a measure P, defined
by (6.1.1) that makes X, a Markov chain with P,(Xo € A) = u(A). (ii) We have
the shift operators 6, defined in Section 4.1: (6,,w)(m) = Wy 1y.

6.2 Examples

Having introduced on the framework in which we will investigate things, we can
finally give some more examples.

Example 6.2.1. Random walk. Let &1, &;,... € R? be independent with distribu-
tion . Let Xo = x e R? and let X, = Xo + & + - - - + &,. Then X, is a Markov
chain with transition probability.

plx, A) = u(A —x)
where A —x ={y—x:y e A}.

To prove this, we will use an extension of Example 5.1.5.

Lemma6.2.1. Let X and Y takevaluesin (S, S). Suppose F and Y are independent.
Let X € F, ¢ be a function with E|p(X, Y)| < oo and let g(x) = E(p(x, Y)).

E(p(X, V)IF) = g(X)

Proof. Suppose first that ¢(x, y) = 14(x)15(y) and let C € F.
E(pX,Y),C)=P{H{X e AlnCN{Y € B}
=P{{X e AlNC)P{Y € B})
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since {X € A} N C € F and {Y € B} are independent. g(x) = 14(x)P(Y € B), so
the above

= E(g(X);0)

We now apply the monotone class theorem, Theorem 6.1.3. Let .4 be the subsets
of § x § of the form A x B with A, B € §. A is a w-system that contains 2. Let
'H be the collection of ¢ for which the result holds. We have shown (i). Properties
(ii) and (iii) follow from the bounded convergence theorem which completes the
proof. [ |

To get the desired result from Lemma 6.2.1, we let F = F,, X = X,,, ¥ =
Eut1, and @(x, y) = l{r4yea). In this case g(x) = (A — x) and the desired result
follows.

In the next four examples, S is a countable set and S = all subsets of S. Let
p(i, j) > 0 and suppose Zj p(i, j) = 1 for all i. Intuitively, p(i, j) = P(Xp+1 =
j| X, =1i). From p(i, j) we can define a transition probability by

pli, A=Y pG, j)
JjEA
In each case, we will not be as formal in checking the Markov property, but simply

give the transition probability and leave the rest to the reader. The details are much
simpler because all we have to show is that

P(XI’H-I = .]|Xn = ia Xn—l = in—h XO = lO) = p(l7 .])

and these are elementary conditional probabilities.

Example 6.2.2. Branching processes. S = {0, 1,2, ...}

pl, j)="P (Zsm = j)
m=1

where &1, &, . ..are i.i.d. nonnegative integer-valued random variables. In words
each of the i individuals at time n (or in generation n) gives birth to an independent
and identically distributed number of offspring.

To make the connection with our earlier discussion of branching processes, do:

Exercise 6.2.1. Let Z, be the process defined in (5.3.2). Check that Z, is a Markov
chain with the indicated transition probability.
Example 6.2.3. Renewal chain. S = {0, 1,2, ...}, fr > 0, and Z,fil fi =1.
PO, )= fin for j =0
p,i—1) =1 fori > 1

p@,j)=0 otherwise
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To explain the definition, let &, &, ...be i.i.d. with P(§, = j) = f;, let To = ip
and for k > 1 let T, = T;_; + &. Ty is the time of the kth arrival in a renewal
process that has its first arrival at time iy. Let

. 1 ime{T(), Tl,Tz,...}
" lo otherwise
andlet X, = inflm —n:m >n, Y, = 1}. Y,, = 1 if a renewal occurs at time m,
and X, is the amount of time until the first renewal > n.
An example should help clarify the definition:

Yy, 0 0 O
3 2 1

1 001 1 00001
X, 0210043 210
It is clear that if X,, =i > O then X, =i — 1. When X,, = 0, we have Ty, = n,
where N, = inf{k : T; > n} is a stopping time, so Theorem 4.1.3 implies &y, 4+
is independent of o(Xo, &1, ...,&n,) D 0(Xo, ..., X,). We have p(0, j) = fi

since §y,4+1 = j + 1 implies X, = j.

Xo=0 X;=1 X, =0 X;=0

Figure 6.1. Realization of the M/G/1 queue. Black dots indicate the times at which the
customers enter service.

Example 6.2.4. M/G/1 queue. In this model, customers arrive according to a
Poisson process with rate A. (M is for Markov and refers to the fact that in a
Poisson process the number of arrivals in disjoint time intervals is independent.)
Each customer requires an independent amount of service with distribution F. (G
is for general service distribution. 1 indicates that there is one server.) Let X, be
the number of customers waiting in the queue at the time the nth customer enters
service. To be precise, when Xy = x, the chain starts with x people waiting in line
and customer O just beginning her service.

To understand the definitions that follow, Figure 6.1 is useful. To define our
Markov chain X,,, let

00 A k
ap = /0 e—“% dF(t)

be the probability that k customers arrive during a service time. Let &1, &, ...be
i.i.d. with P(§; = k — 1) = a;. We think of &; as the net number of customers to
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arrive during the ith service time, subtracting 1 for the customer who completed
service, so we define X,, by

Xpp1 = (Xp + &))" (6.2.1)

The positive part only takes effect when X,, =0 and §,.; = —1 (e.g., X» =0,
&3 = —1) and reflects the fact that when the queue has size 0 and no one arrives
during the service time, the next queue size is 0, since we do not start counting
until the next customer arrives and then the queue length will be 0.

It is easy to see that the sequence defined in (6.2.1) is a Markov chain with
transition probability

p(0,0) = ag + aj
p(j,j—1+k)=a if j>1lork > 1

The formula for gy, is rather complicated, and its exact form is not important, so we
will simplify things by assuming only that ¢; > O forallk > Oand ), o a = 1.

Figure 6.2. Physical motivation for the Ehrenfest chain.

Example 6.2.5. Ehrenfest chain. S = {0, 1,...,r}

pk,k+1)=(r—k)/r
pk,k—1)=k/r
p@,j)=0 otherwise

In words, there is a total of » balls in two urns; &k in the first and » — k in the second.
We pick one of the r balls at random and move it to the other urn. See Figure 6.2
for a picture. Ehrenfest used this to model the division of air molecules between
two chambers (of equal size and shape) that are connected by a small hole. For an
interesting account of this chain, see Kac (1947a).

Example 6.2.6. Birth and death chains. S = {0, 1,2,...} These chains are
defined by the restriction p(i, j) = 0 when |i — j| > 1. The fact that these pro-
cesses cannot jump over any integers makes it particularly easy to compute things
for them.
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That should be enough examples for the moment. We conclude this section with
some simple calculations. For a Markov chain on a countable state space, (6.1.1)
says

Pu(Xy = i, 0 < k < n) = pulio) [ | plim-t. im)

m=1

Whenn =1

Pu(Xy = j) =) u@)pl, j) = up(j)

that is, the product of the row vector pu with the matrix p. When n = 2,

P(Xa=k)=)_ pl, )p(j, k) = p(i, k)
J

that is, the second power of the matrix p. Combining the two formulas and gener-
alizing,

Pu(Xy = j) =) w@p"G, j) = up"(j)

Exercises
6.2.2. Suppose S = {1, 2, 3} and
d 0 9
p=\|7 3 0
0 4 6

Compute p*(1,2) and p*(2, 3) by considering the different ways to get from 1 to
2 in two steps and from 2 to 3 in three steps.

6.2.3. Suppose S = {0, 1} and

Use induction to show that

7 o~

P,(X, =0 = +(1—-a-p8)" 0) —

u( ) oy ( B)" 1 1(0) Yy

6.2.4. Let &, £&,...be i.i.d. € {H, T}, taking each value with probability 1/2.
Show that X, = (§,, &,+1) is a Markov chain and compute its transition probability
p. What is p?

6.2.5. Brother-sister mating. In this scheme, two animals are mated, and among
their direct descendants two individuals of opposite sex are selected at random.
These animals are mated and the process continues. Suppose each individual can
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be one of three genotypes AA, Aa, aa, and suppose that the type of the offspring
is determined by selecting a letter from each parent. With these rules, the pair of
genotypes in the nth generation is a Markov chain with six states:

AA, AA AA,Aa AA,aa Aa,Aa Aa,aa aa,aa
Compute its transition probability.

6.2.6. Bernoulli-Laplace model of diffusion. Suppose two urns, which we will
call left and right, have m balls each. b (which we will assume is < m) balls are
black, and 2m — b are white. At each time, we pick one ball from each urn and
interchange them. Let the state at time n be the number of black balls in the left
urn. Compute the transition probability.

6.2.7. Let£&,, &, ...bei.id. € {1,2,..., N}and taking each value with probability
1/N. Show that X,, = |{&1, ..., &,}| is a Markov chain and compute its transition
probability.

6.2.8. Let&, &, ...bei.id. € {—1, 1}, taking each value with probability 1/2. Let
So=0,S5,=§&4+---&, and X,, = max{S§,, : 0 < m < n}. Show that X, is not a
Markov chain.

6.2.9. Let 0, Uy, U, ... be independent and uniformon (0, 1). Let X; = 1if U; < 6,
=—1ifU; > 60,and let S, = X| + --- + X,,. In words, we first pick 6 according
to the uniform distribution and then flip a coin with probability 8 of heads to
generate a random walk. Compute P(X,+; = 1|Xy, ..., X,)) and conclude S, is
a temporally inhomogeneous Markov chain. This is due to the fact that “S,, is a
sufficient statistic for estimating 6.”

6.3 Extensions of the Markov Property
If X,, is a Markov chain with transition probability p, then by definition,

P(Xn+l € B|fn) = P(Xn, B)

In this section, we will prove two extensions of the last equality in which {X,, 1| €
B} is replaced by a bounded function of the future, A(X,,, X,+1,...), and n is
replaced by a stopping time N. These results, especially the second, will be the
keys to developing the theory of Markov chains.

As mentioned in Section 6.1, we can and will suppose that the X, are the
coordinate maps on sequence space

(Qy, F) = (§01-1 Sl0.1..0y

F. =o0(Xo, X1, ..., X,), and for each initial distribution u we have a measure
P, defined by (6.1.1) that makes X,, a Markov chain with P,(X¢ € A) = u(A).
Define the shift operators 6, : Q, — €2, by (6,w)(m) = w(m + n).
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Theorem 6.3.1. The Markov property. Let Y : Q, — R be bounded and
measurable.

E (Y 0 6,|Fy) = Ex,Y

Remark. Here the subscript u on the left-hand side indicates that the conditional
expectation is taken with respect to P,,. The right-hand side is the function ¢(x) =
E.Y evaluated at x = X,,. To make the connection with the introduction of this
section, let

Y(w) = h(wy, w1, ...)

We denote the function by Y, a letter usually used for random variables, because
that’s exactly what Y is, a measurable function defined on our probability
space €2,.

Proof. We begin by proving the result in a special case and then use the 7 — A and
monotone class theorems to get the general result. Let A = {w : wg € Ag, ..., 0n €

A, }and go, . .. g, be bounded and measurable. Applying (6.1.3) with f; = 14, for
k <m, f, =14, 80, and fy = gx_, form < k < m + n gives

E, (]_[gk<xm+k);A) = / p(dxo)
k=0 Ao

: gO(xm)/p(xm, dxm1)81(Xmy1)

p(andxl)"'/ P(Xm—1,dxp)

Al Am

e / p(xm—l-n—la dxm+n)gn(xm+n)

= E, (Exm (H gk<Xk)) ;A)
k=0

The collection of sets for which the last formula holds is a A-system, and the
collection for which it has been proved is a w-system, so using the & — A theorem,
Theorem 2.1.2, shows that the last identity holds for all A € F,,.

Fix A € F,, and let H be the collection of bounded measurable Y for which

(*) Eu(Y 06,; A) = E (Ex,Y: A)
The last computation shows that (x) holds when
Y@= [] geo
0<k=<n

To finish the proof, we will apply the monotone class theorem, Theorem 6.1.3.
Let A be the collection of sets of the form {w : wg € Ag, ..., w; € Ar}. Ais a
m-system, so taking g = 14, shows (i) holds. H clearly has properties (ii) and
(iii), so Theorem 6.1.3 implies that H contains the bounded functions measurable
w.r.t o(A), and the proof is complete. [ |
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Exercise 6.3.1. Use the Markov property to show that if A € o(Xjy, ..., X,) and
B € o(X,, Xy+t1, - - .), then for any initial distribution p

PM(A N B|Xn) = P;/.(A|Xn)P/L(B|Xn)

In words, the past and future are conditionally independent given the present.
Hint: Write the left-hand side as E,,(E, (1415|F,)[X,).

The next two results illustrate the use of Theorem 6.3.1. We will see many other
applications below.

Theorem 6.3.2. Chapman-Kolmogorov equation.

PeXmin=2)= ) Pe(Xp = y)Py(X, =2)
y

Proof. Py(Xpim=2)=E(Pe(Xy4m=2|Fm))=E(Px,(X,=2z)) by the Markov
property, Theorem 6.3.1 since 1(x,=;) 0 6, = 1(x ]

ntm=2)"

Theorem 6.3.3. Let X, be a Markov chain and suppose

P(Uy, {Xm € Bu}|X,)=86>0 oni{X, €A}

m=n+

Then P({X,, € A, i.0.} —{X, € B, i.0.}) =0.

Remark. To quote Chung, “The intuitive meaning of the preceding theorem has
been given by Doeblin as follows: if the chance of a pedestrian’s getting run over is
greater than § > 0 each time he crosses a certain street, then he will not be crossing
it indefinitely (since he will be killed first)!”

Proof. Let Ay = {X,41 € Byp1} U{Xpi2 € Bup2} U ..
A=0NA, ={X, € B, i.0.)

and I' = {X, € A,1i.0.}. Let F, = 0(Xp, X1, ..., Xp) and Fox = 0 (UF,). Using
the Markov property and the dominated convergence theorem for conditional
expectations, Theorem 5.5.9,

E(1,1X0) = E(15,1F0) = E(1x[Fo0) = 1a

On I', the left-hand side is > & i.0. This is only possible if ' C A. [ ]

Exercise 6.3.2. A statea is called absorbingif P,(X| =a) =1.LetD = {X,, = a
for some n > 1} and let h(x) = P,(D). (i) Use Theorem 6.3.3 to conclude that
h(X,) — 0 a.s. on D¢. Here a.s. means P, a.s. for any initial distribution p. (ii)
Obtain the result in Exercise 5.5.5 as a special case.
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We are now ready for our second extension of the Markov property. Recall N is
said to be a stopping time if {N = n} € F,. As in Chapter 4, let

Fy={A: AN{N =n} e F, forall n}

be the information known at time N, and let

where A is an extra point that we add to €2,. In the next result and its applications,
we will explicitly restrict our attention to {N < o0}, so the reader does not have to
worry about the second part of the definition of 6.

Theorem 6.3.4. Strong Markov property. Suppose that for eachn, Y, : 2 — R
is measurable and |Y,| < M for all n. Then

EM(YN OQN|-¢N) = EXNYN on {N < OO}

where the right-hand side is ¢(x, n) = E,Y, evaluated at x = Xy, n = N.
Proof. Let A € Fy. Breaking things down according to the value of N,

o
E (Yy o0y; AN{N < o0}) =Y E,(Y, 00,; AN{N =n})
n=0

Since A N {N = n} € F,, using Theorem 6.3.1 now converts the right side into

Y EL(Ex,Yi; AN{N =n}) = E,(Ex,Yn: AN {N < 00}) m

n=0

Remark. The reader should notice that the proof is trivial. All we do is break things
down according to the value of N, replace N by n, apply the Markov property,
and reverse the process. This is the standard technique for proving results about
stopping times.

The next example illustrates the use of Theorem 6.3.4 and explains why we want
to allow the Y that we apply to the shifted path to depend on n.

Theorem 6.3.5. Reflection principle. Let &, &, . . . be independent and identically
distributed with a distribution that is symmetric about 0. Let S,, = & + --- + &,. If
a > 0, then

P (sup S > a) <2P(S, > a)

m=<n

Remark. First, a trivial comment: The strictness of the inequality is not important.
If the result holds for >, it holds for > and vice versa.
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Figure 6.3. Proof by picture of the reflection principle.

A second more important one: We do the proof in two steps because that is how
formulas like this are derived in practice. First, one computes intuitively and then
figures out how to extract the desired formula from Theorem 6.3.4.

Proof in words. First note that if Z has a distribution that is symmetric about 0,
then

P(ZZO)ZP(Z>O)+%P(Z:0):%

Ifwelet N =inf{m <n:S, > a} (withinfd = oc0), thenon {N < oo}, S, — Sy
is independent of Sy and has P(S, — Sy > 0) > 1/2. So (see Figure 6.3 for a
picture)

1
P(Sn>a)Z§P(N§n)

Proof. Let V,,(w)=1 i1 m <n and w,_,, > a, Y,,(w) = 0 otherwise. The defi-
nition of Y,, is chosen so that (Yy o 0y)(w) =1 if w, > a (and hence N < n),
and = 0 otherwise. The strong Markov property implies

Eo(Yy 0 On|Fn) = Es Yy on{N < oo} ={N <n}
To evaluate the right-hand side, we note that if y > a, then
Eme = Py(Sn—m >a) > Py(Sn—m z y) = 1/2

So integrating over {N < n} and using the definition of conditional expectation
gives

1
EP(N <n) < Eo(Eo(Yy 0 On|FN); N <n)=Eo(YyoOy;N <n)
since {N < n} € Fy. Recalling that Yy o Oy = 15,4}, the last quantity
= Eo(I(s,>aps N < n) = Py(S, > a)

since {S,, > a} C {N < n}. |
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Exercises
The next five exercises concern the hitting times
1o =1inf{n > 0: X, € A} Ty = Ty

Ty =inf{n > 1: X, € A} Ty = T{y}

To keep the two definitions straight, note that the symbol 7 is smaller than 7. Some
of the results below are valid for a general S, but for simplicity,

We will suppose throughout that S is countable.

6.3.3. First entrance decomposition. Let 7, = inf{n > 1 : X,, = y}. Show that

Phx.y) =Y PUT, =m)p" (. y)

m=1

6.3.4. Show that 3" _, Po(X,, = x) = Y Pu(X,, = x).

6.3.5. Suppose that S — C is finite and foreachx € S — C P,(t¢ < 00) > 0. Then
there isan N < oo and € > 0 so that Py(t¢c > kN) < (1 — €.

6.3.6. Let h(x) = Py(t4 < tp). Suppose AN B =0, S — (AU B) is finite, and
P.(taup < o0) > 0forall x € § — (AU B). (i) Show that

(*) h(x) =) ple.nh(y) forx ¢ AUB
y

(i) Show that if & satisfies (x) then A(X(n A T4aup)) is a martingale. (iii) Use this
and Exercise 6.3.5 to conclude that h(x) = P,(t4 < tp) is the only solution of (x)
thatis 1 on A and O on B.

6.3.7. Let X, be a Markov chain with § = {0, 1, ..., N} and suppose that X, is a
martingale and P, (ty A Ty < 00) > Oforall x. (i) Show that 0 and N are absorbing
states, that is, p(0,0) = p(N, N) = 1. (ii) Show P,(ty < 19) = x/N.

6.3.8. Wright-Fisher model. Suppose S = {0, 1, ..., N} and consider
.. N . Jj . N—j
pG, j) = i (i/N) (1 —i/N)
Show that this chain satisfies the hypotheses of Exercise 6.3.7.

6.3.9. In brother-sister mating described in Exercise 6.2.5, AA, AA and aa, aa are
absorbing states. Show that the number of A’s in the pair is a martingale and use
this to compute the probability of getting absorbed in AA, AA starting from each
of the states.
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6.3.10. Let 74 = inf{n > 0: X,, € A} and g(x) = E,t4. Suppose that § — A is
finite and foreach x € S — A, P,(t4 < 00) > 0. (i) Show that

() gx) =1+ plx,y)g(y) forx¢A
y

(ii) Show that if g satisfies (x), g(X(n A t4)) +n A T4 is a martingale. (iii) Use
this to conclude that g(x) = E, 74 is the only solution of () that is 0 on A.

6.3.11. Let &y, &, ...be i.i.d. € {H, T}, taking each value with probability 1/2,
andlet X,, = (§,, &,41) be the Markov chain from Exercise 6.2.4. Let N| = inf{n >
0: (&, &.41) = (H, H)}. Use the results in the last exercise to compute EN;. [No,
there is no missing subscript on E, but you will need to first compute g(x).]

6.3.12. Consider simple random walk §,,, the Markov chain with p(x,x 4+ 1) =
1/2, and p(x,x — 1) =1/2. Let t = min{n : S, &€ (0, N)}. Use the result from
Exercise 6.3.10 to show that E, 7 = x(N — x).

6.4 Recurrence and Transience

In this section and the next two, we will consider only Markov chains on a countable
state space. Let TyO =0, and fork > 1, let

T} =inf{n > T}7": X, = y)

Tyk is the time of the kth return to y. The reader should note that Ty1 > 0 so any
visit at time 0 does not count. We adopt this convention so that if we let T\, = T’
and p,, = P.(T, < 00), then

Theorem 6.4.1. P (T} < 00) = pyyp5; "

Intuitively, in order to make k visits to y, we first have to go from x to y and then
return kK — 1 times to y.

Proof. When k = 1, the result is trivial, so we suppose k > 2. Let Y(w) =1 if
w, =y for some n > 1, Y(w) = 0 otherwise. If N = T)’,‘*l, then Y o0y = 1 if
Tyk < 00. The strong Markov property, Theorem 6.3.4, implies

E.(Y 00y|Fn) = Ex,Y on{N < oo}

On {N < oo}, Xy =y, so theright-hand side is P\ (T, < 00) = p,,, and it follows
that

P.(T} < 00) = Ex(Y 0 6y; N < 00)
= Ex(Ex(Y 00y|Fn); N < 00)
= Ex(pyy;N < 00) = pnyx(T;cil < 00)

The result now follows by induction. [ |
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A state y is said to be recurrent if p,, = 1 and transient if p,, < 1. If y is
recurrent, Theorem 6.4.1 implies Py(T}’,‘ < 00) = lforallk,so Py(X, =yio.)=1.

Exercise 6.4.1. Suppose y is recurrent and for £k > 0, let R, = Tyk be the time
of the kth return to y, and for k > 1 let r, = Ry — Ry_1 be the kth interarrival
time. Use the strong Markov property to conclude that under P,, the vectors
v = (g, XRk—]’ N XRk,]), k > 1arei.id.

If y is transient and we let N(y) = Y -_, 1(x,=,) be the number of visits to y at
positive times, then

ExN(y) =) PNy = k) =) P(I} < o0)
k=1 k=1

o0
_ DPxy
= Z,oxy,o;‘,y = 2 -0 (6.4.1)

Combining the last computation with our result for recurrent states gives a result
that generalizes Theorem 4.2.2.

Theorem 6.4.2. y is recurrent if and only if E,N(y) = oc.

Exercise 6.4.2. Leta € S, f, = P,(T, = n),and u, = P,(X,, = a). (i) Show that

Un = D 1 <pmen Srmltn—m. (1) Let u(s) =Y, _quns", f(s) =)_,-; fus", and show
u(s) =1/(1 — f(s)). Setting s = 1 gives (6.4.1) forx =y = a.

Exercise 6.4.3. Consider asymmetric simple random walk on Z, that is, we have
pl,i+1)=p, pi,i —1)=q =1 — p. In this case,

2m

pZm(O, 0) — < >pmqm and p2m+1(0’ O) =0

m
(i) Use the Taylor series expansion for h(x) = (1 — x)~!/2 to show u(s) = (1 —
4pgs?)~'/? and use the last exercise to conclude f(s) =1 — (1 —4pgs?)'/%. (ii)

Sets = 1 to get the probability the random walk will return to 0 and check that this
is the same as the answer given in part (c) of Theorem 5.7.7.

The next result shows that recurrence is contagious.

Theorem 6.4.3. If x is recurrent and p,, > O then y is recurrent and p,, = 1.
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Proof. We will first show p,, = 1 by showing that if p,, > 0 and p,, < 1, then
Pex < 1. Let K = inf{k : pk(x, y) > 0}. There is a sequence yy, ..., yx—1 so that

pCx, yDp(y1, y2) - p(yk-1,y) >0
Since K is minimal, y; # x for 1 <i < K — 1. If p,, < 1, we have
P (T, = 00) = p(x, ypp(y1, y2) - - - p(yk—1, Y)(I — pyx) > 0

a contradiction. So p,, = 1.
To prove that y is recurrent, observe that p,, > 0 implies there is an L so that
pE(y, x) > 0. Now

pF Ry, y) = ph(y, ) p"(x, x)pX (x, y)

Summing over 1, we see

o o
PGy = L 0p () ) P x) = 00
n=1 n=1
so Theorem 6.4.2 implies y is recurrent. [ ]

Exercise 6.4.4. Use the strong Markov property to show that p,. > pyy0y-.

The next fact will help us identify recurrent states in examples. First we need
two definitions. C is closed if x € C and p,, > 0 implies y € C. The name comes
from the fact that if C is closed and x € C then P,(X,, € C) =1 for all n. D is
irreducible if x, y € D implies p,, > 0.

Theorem 6.4.4. Let C be a finite closed set. Then C contains a recurrent state. If
C is irreducible then all states in C are recurrent.

Proof. In view of Theorem 6.4.3, it suffices to prove the first claim. Suppose it
is false. Then for all y € C, p,y, <1 and E,N(y) = p.,/(1 — py,), but this is
ridiculous since it implies

00> Y ENy=) Y pl,y=) Y plt,y=) 1
n=1

yeC yeC n=1 n=1 yeC

The first inequality follows from the fact that C is finite and the last equality from
the fact that C is closed. [ ]

To illustrate the use of the last result, consider:
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Example 6.4.1. A seven-state chain. Consider the transition probability:

1 2 3 4 5 6 7
1 3 0 0 0 7 0 O
2 1 2 3 4 0 0 O
3 0 0 5 5 O 0 O
4 0 0 O 5 O 5 O
s 6 0 0 0 4 0 O
6 0 0 O O 0 2 8
7 0 0 0 1 O O O

To identify the states that are recurrent and those that are transient, we begin by
drawing a graph that will contain an arc from i to j if p(i, j) > Oand i # j. We
do not worry about drawing the self-loops corresponding to states with p(i, i) > 0
since such transitions cannot help the chain get somewhere new.

11%%

Figure 6.4. Graph for the seven-state chain.

In the case under consideration, we draw arcs from 1 — 5, 2 —> 1, 2 — 3,
2—>43—->44—->6,4—>7,5—>1,6—>4,6— 7,7 — 4 (see Figure 6.4 for
a picture).

(1) p21 > 0 and p;» = 0, so 2 must be transient, or we would contradict Theo-
rem 6.4.3. Similarly, p43 > 0 and p34 = 0, so 4 must be transient

>i1) {1, 5} and {4, 6, 7} are irreducible closed sets, so Theorem 6.4.4 implies these
states are recurrent.

The last reasoning can be used to identify transient and recurrent states when S
is finite, since for x € § either (i) there is a y with p,, > 0 and p,, = 0 and x must
be transient, or (ii) px, > 0 implies p,, > 0. In case (ii), Exercise 6.4.4 implies
C.y ={y : pxy > 0} is an irreducible closed set. (If y, z € C, then py; > pypx; >
0.1If pyy, > 0 then pyy > Prypyw > 0, 50 w € Cy.) So Theorem 6.4.4 implies that
X is recurrent.

Exercise 6.4.5. Show that in the Ehrenfest chain (Example 6.2.5), all states are
recurrent.

Example 6.4.1 motivates the following:

Theorem 6.4.5. Decomposition theorem. Let R = {x : p,, = 1} be the recurrent
states of a Markov chain. R can be written as U; R;, where each R; is closed and
irreducible.
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Remark. This result shows that for the study of recurrent states we can, without
loss of generality, consider a single irreducible closed set.

Proof. If x € R let C, = {y : pyy > 0}. By Theorem 6.4.3, C C R, and if y €
C, then py, > 0. From this it follows easily that either C, N Cy = or C, =
C,. To prove the last claim, suppose C, N C, #@. If z € C, N C, then p,, >
Pxzpzy > 0,50if w € Cy, we have pyy > pxypyw > 0, and it follows that C, D Cy.
Interchanging the roles of x and y gives Cy D C,, and we have proved our claim.
If we let R; be a listing of the sets that appear as some C,, we have the desired
decomposition. [ |

The rest of this section is devoted to examples. Specifically, we concentrate on
the question: how do we tell whether a state is recurrent or transient? Reasoning
based on Theorem 6.4.3 works occasionally when S is infinite.

Example 6.4.2. Branching process. If the probability of no children is positive,
then pro > 0 and por = O for k > 1, so Theorem 6.4.4 implies that all states k > 1
are transient. The state O has p(0, 0) = 1 and is recurrent. It is called an absorbing
state to reflect the fact that once the chain enters 0, it remains there for all time.

If S is infinite and irreducible, all that Theorem 6.4.3 tells us is that either all
the states are recurrent or all are transient, and we are left to figure out which case
occurs.

Example 6.4.3. Renewal chain. Since p(i,i — 1) = 1 for i > 1, it is clear that
pio = 1 foralli > 1and hence also fori = 0, that is, 0 is recurrent. If we recall that
p(0, j) = fj+1 and suppose that {k : f; > 0} is unbounded, then po; > O for all i
and all states are recurrent. If K = sup{k : fr > 0} < oo, then {0, 1,..., K — 1}
is an irreducible closed set of recurrent states and all states k > K are transient.

Example 6.4.4. Birth and death chains on {0, 1, 2, .. .}. Let
p,i+1D)=p pli—-1)=q pGi)=r

where go = 0. Let N = inf{n : X,, = 0}. To analyze this example, we are going to
define a function ¢ so that (X y,) is a martingale. We start by setting ¢(0) = 0
and ¢(1) = 1. For the martingale property to hold when X,, = k > 1, we must have

k) = protk + 1) + rep(k) + grop(k — 1)

Using ry, = 1 — (pr + gx), we can rewrite the last equation as

qi(p(k) — p(k — 1) = pr(p(k + 1) — @(k))

or gk+1)—gk) = %((p(k) — gk —1)
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Here and in what follows, we suppose that p;, g > 0 for k > 1. Otherwise, the
chain is not irreducible. Since ¢(1) — ¢(0) = 1, iterating the last result gives

m
om+1) —p@m) = 45 form >1
j=t
n—1 m )
(p(n):Zl_[q—j forn > 1
m=0 j=1 Pi

if we interpret the product as 1 when m = 0. Let 7, = inf{n > 1 : X,, = c¢}. Now
I claim that:

Theorem 6.4.6. Ifa < x < b, then

_ p(b) — 9(x) PAT, < T,) = p(x) — ¢(a)

Px(Ta < Tb) -
(b) — p(a) @(b) — p(a)

Proof. If we let T = T, A T then ¢(X,,Ar) is a bounded martingale and 7 < oo
a.s. by Theorem 6.3.3, so ¢(x) = E,@(Xr) by Theorem 5.7.4. Since X7 € {a, b}
a.s.,

9(x) = p(@)P(Ty < Tp) + @)1 — P(Ty < Tp)]

and solving gives the indicated formula. [ |

Remark. The answer and the proof should remind the reader of Example 4.1.5
and Theorem 5.7.7. To help remember the formula, observe that for any « and 3,
if we let ¥ (x) = a@(x) + B then (X, A7) is also a martingale and the answer we
get using ¢ must be the same. The last observation explains why the answer is a
ratio of differences. To help remember which one, observe that the answer is 1 if
x=aandOif x = b.

Letting a = 0 and b = M in Theorem 6.4.6 gives
P (To > Ty) = ¢(x)/ (M)

Letting M — oo and observing that Ty > M — x, P, a.s. we have proved:

Theorem 6.4.7. 0 is recurrent if and only if (M) — oo as M — o0, that is,

oo m
w0 =[] =
m=0 j=1 Pj

If p(00) < 00 then P (Ty = 00) = ¢(x)/¢(00).

We will now see what Theorem 6.4.7 says about some concrete cases.
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Example 6.4.5. Asymmetric simple random walk. Suppose p; = p and g; =
1 — p for j > 1. In this case,
n—1 1 _ p m
o) = (—)

m=0 p

From Theorem 6.4.7, it follows that 0 is recurrent if and only if p < 1/2, and if
p > 1/2, then

P.(Ty < 00) = p(00) —p(x) _ <1 — p)x
@(00) p

Exercise 6.4.6. A gambler is playing roulette and betting $1 on black each time.
The probability she wins $1 is 18/38, and the probability she loses $1 is 20/38. (i)
Calculate the probability that starting with $20 she reaches $40 before losing her
money. (ii) Use the fact that X,, + 2n/38 is a martingale to calculate E(Tyy A Tp).

Example 6.4.6. To probe the boundary between recurrence and transience, suppose
pj=1/2+¢; wheree; ~Cj % as j — oo,and g; = 1 — p;. A little arithmetic
shows

qj_1/2—ej_ 26j

= =]1————=x~1-4Cj™* forlarge j
P 12+e 1/2+¢ / e

Case 1. « > 1. It is easy to show that if 0 < §; < 1, then ]_[j(l —4;) > 0if and
only if Zj d; < 0o, (see Exercise 5.3.5), soif a > 1, ngk(CIj/Pj) J a positive
limit, and O is recurrent.

CASE 2. a < 1. Using the fact that log(1 — §) ~ —§ as § — 0, we see that

k k

4C
log[[ai/pj ~ =D _4Ci™ ~ - k'™ ask
ogjﬂq,/p, 2 J - ask — o0

so, for k> K, TT_y4;/p; < exp(~2Ck'"/(1 — o)) and 332, [T\, & < oo
and hence O is transient.

Case 3. o = 1. Repeating the argument for Case 2 shows log ]_[1;:1 % ~
J

—4Clogk. So, if C > 1/4, 0 is transient, and if C < 1/4, 0 is recurrent. The
case C = 1/4 can go either way.

Example 6.4.7. M/G/1 queue. Let i = )_ ka; be the mean number of cus-
tomers who arrive during one service time. We will now show that if © > 1,
the chain is transient (i.e., all states are), but if yu < 1, it is recurrent. For the
case u > 1, we observe that if &, &,,...are i.id. with P(§, = j) =a;;; for
j>—land §, =& +---+&,, then Xy + S, and X,, behave the same until time
N=inf{n: Xo+ S, =0}, Whenpu > 1,E§, =u—1>0,s0S, - ocoa.s.,and
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inf §,, > —oo a.s. It follows from the last observation that if x is large, P,(N <
o0) < 1, and the chain is transient.

To deal with the case i < 1, we observe that it follows from arguments in the
last paragraph that X, .y is a supermartingale. Let 7 = inf{n : X, > M}. Since
XN 1S a nonnegative supermartingale, using Theorem 5.7.6 attime t =T A N,
and observing X; > M on {T < N}, X; =0on {N < T} gives

x> MP(T < N)

Letting M — oo shows P,(N < 00) = 1, so the chain is recurrent.

Remark. There is another way of seeing that the M /G /1 queue is transient when
w > 1. If we consider the customers who arrive during a person’s service time
to be her children, then we get a branching process. Results in Section 5.3 imply
that when p < 1 the branching process dies out with probability 1 (i.e., the queue
becomes empty), so the chain is recurrent. When o > 1, Theorem 5.3.9 implies
P.(Ty) < o0) = p*, where p is the unique fixed point € (0, 1) of the function
P(0) =Y oo ardr.

The next result encapsulates the techniques we used for birth and death chains
and the M /G /1 queue.

Theorem 6.4.8. Suppose S is irreducible, and ¢ > 0 with E,¢o(X;) < ¢(x) for
x ¢ F, afinite set, and p(x) — 00 as x — oo, that is, {x : p(x) < M} is finite for
any M < oo, then the chain is recurrent.

Proof. Let T = inf{n > 0 : X,, € F}. Our assumptions imply that Y, = @(X, )
is a supermartingale. Let Ty, = inf{n > 0: X,, € F or p(X,,) > M}. Since {x :
@(x) < M} is finite and the chain is irreducible, T); < oo a.s. Using Theorem 5.7.6
now, we see that

¢(x) = Exp(X7,) = MP(Ty < 1)

since (X1, ) > M when Ty, < 7. Letting M — o0, we see that P,(t < 00) =1
forallx ¢ F.So Py(X, € Fio0.)=1forall y € S, and since F is finite, Py(X, =
z1.0.) = 1 forsome z € F. |

Exercise 6.4.7. Show that if we replace “p(x) — 00” by “p(x) — 0” in the last
theorem and assume that ¢(x) > 0 for x € F, then we can conclude that the chain
is transient.

Exercise 6.4.8. Let X, be a birth and death chain with p; —1/2~ C/jas j — o0
andg; = 1 — p;. (i) Show that if we take C < 1/4, then we can pick @ > 0 so that
¢(x) = x satisfies the hypotheses of Theorem 6.4.8. (ii) Show that when C > 1/4,
we can take @ < 0 and apply Exercise 6.4.7.
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Remark. An advantage of the method of Exercise 6.4.8 over that of Example 6.4.6
is that it applies if we assume P, (|X; — x| < M) =1and E, (X — x) ~ 2C/x.

Exercise 6.4.9. f is said to be superharmonic if f(x) > Zy px, y)f(y), or
equivalently f(X,) is a supermartingale. Suppose p is irreducible. Show that p is
recurrent if and only if every nonnegative superharmonic function is constant.

Exercise 6.4.10. M/M/oco queue. Consider a telephone system with an infinite
number of lines. Let X,, = the number of lines in use at time 7, and suppose

X
Xn+1 = Zgn,m + Yn+1

m=1
where the &, , are i.i.d. with P(§,,, =1)= p and P(§,,, =0)=1— p,and ¥,
is an independent i.i.d. sequence of Poisson mean A r.v.s. In words, for each
conversation we flip a coin with probability p of heads to see if it continues
for another minute. Meanwhile, a Poisson mean A number of conversations start
between time n and n + 1. Use Theorem 6.4.8 with ¢(x) = x to show that the chain
is recurrent for any p < 1.

6.5 Stationary Measures

A measure p is said to be a stationary measure if

D u@)px, y) = pu(y)

The last equation says P,(X; = y) = u(y). Using the Markov property and induc-
tion, it follows that P, (X, = y) = u(y) foralln > 1.If u is a probability measure,
we call  a stationary distribution, and it represents a possible equilibrium for the
chain. That is, if X has distribution p, then so does X, for all n > 1. If we stretch
our imagination a little, we can also apply this interpretation when p is an infinite
measure. (When the total mass is finite, we can divide by ©(S) to get a stationary
distribution.) Before getting into the theory, we consider some examples.

Example 6.5.1. Random walk. S = Z¢. p(x, y) = f(y — x), where f(z) > Oand
> f(z) = 1. In this case, u(x) = 1 is a stationary measure since

Doty =) fr—xn=1

A transition probability that has ) * p(x, y) = 1 is called doubly stochastic. This
is obviously a necessary and sufficient condition for p(x) = 1 to be a stationary
measure.

Example 6.5.2. Asymmetric simple random walk. S = Z.

px,x+1)=p px,x —1)=g=1-p



6.5 Stationary Measures 297

By the lastexample, ;(x) = 1isastationary measure. When p # ¢q, u(x) = (p/q)*
is a second one. To check this, we observe that

D o u)ple, y) = ply + Dply+ 1,0 + @y = Dpy — 1, y)

=p/9)Y g+ (p/¢) 'p=(p/9)p+49]1=(p/q)

Example 6.5.3. The Ehrenfest chain. S = {0, 1,...,r}.
pk.k+ ) =@—-k/r  pkk—1)=k/r

In this case, u(x) = 27" (;) is a stationary distribution. One can check this without

pencil and paper by observing that p corresponds to flipping r coins to determine

which urn each ball is to be placed in, and the transitions of the chain correspond

to picking a coin at random and turning it over. Alternatively, you can pick up your

pencil and check that w(k + Dpk + 1, k) + pn(k — V) p(k — 1, k) = (k).

Example 6.5.4. Birth and death chains. S = {0, 1,2, ...}

p.x+D)=p: px,x)=rc plx,x =1 =g,

with go = 0 and p(i, j) = O otherwise. In this case, there is the measure
x
pe =] el
el 9k
which has

Pk—1
i

p@pex + D = p [ [ == = ulx + Dp(x + 1, %)

k=1

Since p(x, y) = 0 when |x — y| > 1, it follows that

wx)p(x, y) = u(y)p(y, x) forallx,y (6.5.1)

Summing over x gives

Y u@)px, y) = pu(y)

s0 (6.5.1) is stronger than being a stationary measure. (6.5.1) asserts that the amount
of mass that moves from x to y in one jump is exactly the same as the amount that
moves from y to x. A measure u that satisfies (6.5.1) is said to be a reversible
measure. Since Examples 6.5.2 and 6.5.3 are birth and death chains, they have
reversible measures. In Example 6.5.1 (random walks), u(x) = 1 is a reversible
measure if and only if p(x, y) = p(y, x).

The next exercise explains the name “reversible.”
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Exercise 6.5.1. Let u be a stationary measure and suppose X has “distribution”
u. Then Y,, = X,,_,,, 0 <m < n is a Markov chain with initial measure @ and
transition probability

q(x,y) = uy)p(y, x)/pn(x)

q is called the dual transition probability. If i is a reversible measure, then
q=7r-

Exercise 6.5.2. Find the stationary distribution for the Bernoulli-Laplace model
of diffusion from Exercise 6.2.6.

Example 6.5.5. Random walks on graphs. A graph is described by giving a
countable set of vertices S and an adjacency matrix g;; that has g;; = 1 if i and
j are adjacent and O otherwise. To have an undirected graph with no loops, we
suppose a;; = aj; and a;; = 0. If we suppose that

pli) =) aj <oo andlet pGi. j) = aij/u(i)
J
then p is a transition probability that corresponds to picking an edge at random and
jumping to the other end. It is clear from the definition that

n@p(, j) = aij = aji = p(j)p(j, i)

S0 u is a reversible measure for p. A little thought reveals that if we assume only
that

aij=aji 20, p@)=3 ay <o and pl, j)=aij/ul)
J
the same conclusion is valid. This is the most general example because if p is a
reversible measure for p, we can let a;; = u(i)p(, j).

Reviewing the last five examples might convince you that most chains have
reversible measures. This is a false impression. The M/ G /1 queue has no reversible
measures because if x > y+ 1, p(x, y) = 0 but p(y, x) > 0. The renewal chain
has similar problems.

Theorem 6.5.1. Suppose p is irreducible. A necessary and sufficient condition for
the existence of a reversible measure is that (i) p(x, y) > 0 implies p(y, x) > 0,

and (ii) for any loop xg, x1, . .., X, = X9 with ]_[lsisn p(xi, xi—1) > 0,
l—lp(x, 1 Xi) _1
p(xl7-xl 1)

Proof. To prove the necessity of this cycle condition, due to Kolmogorov, we
note that irreducibility implies that any stationary measure has u(x) > 0 for all
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X, 80 (6.5.1) implies (i) holds. To check (ii), note that (6.5.1) implies that for the
sequences considered above,

n

1—[ p(Xi—1, x;) ﬁ plxi) !

o Py xio1) B o1 p(xion) n

To prove sufficiency, fix a € S, set u(a) =1, and if xo = a, x1,...,x, =x is a
sequence with [ ], <i<n P(Xi, Xi-1) > 0 (irreducibility implies such a sequence will
exist), we let

#e) = iy PG xic)

The cycle condition guarantees that the last definition is independent of the path.
To check (6.5.1) now, observe that if p(y, x) > 0, then, adding x,,.; = y to the end
of a path to x, we have

p(x,y) _

M(x)p(y, Xx)

u(y) [

Only special chains have reversible measures, but as the next result shows, many
Markov chains have stationary measures.

Theorem 6.5.2. Let x be a recurrent state, and let T = inf{n > 1 : X,, = x}. Then

T-1 o0
Mx(y) =FE, (Z 1{Xn:y}> = Z Px(Xn =), T > I’l)
n=0

n=0

defines a stationary measure.

Proof. This is called the “cycle trick.” The proof in words is simple. u,(y) is the
expected number of visits to y in {0, ..., T — 1}. u, p(y) = > ux(2)p(z, y) is the
expected number of visitsto yin {1, ..., T}, whichis = u,(y)since X7 = Xy = x.
See Figure 6.5 for a picture.

VAN
e

Figure 6.5. Picture of the cycle trick.
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To translate this intuition into a proof, let p,(x, y) = P,(X, =y, T > n) and
use Fubini’s theorem to get

Y P =YY Palx, »)p(y, 2)
y

n=0 y
CASE 1. 7 # x.

> P )Py =Y PXy=y.T >n, Xu1 =2)
y y

=P(T >n+1,Xp11 =2) = ppt1(x,2)
S0 D020 2y Pu(x, Py, 2) = 3020 Pat1(x, 2) = px(2) since po(x, z) = 0.
CASE 2. 7z = x.

Y e, Py x) =Y PXy =y, T >n, Xy =x)= P(T =n+1)
y y

S0 Y 7, Zy Pn(x, Py, x) =Y 02y P(T =n+1) = 1= p,(x) since by defi-
nition P,(T = 0) = 0. ]

Remark. If x is transient, then we have w,p(z) < u,(z) with equality for all

7 #X.

Technical note. To show that we are not cheating, we should prove that . (y) < oo
for all y. First, observe that u,p = u, implies u,p" = u, for all n > 1, and
wx(x) =1, soif p"(y,x) > 0, then u,(y) < oo. Since the last result is true for
all n, we see that u,(y) < oo whenever p,, > 0, but this is good enough. By
Theorem 6.4.3, when x is recurrent, py, > 0 implies p,, > 0, and it follows from
the argument above that p,(y) < 00. If pyy, = 0, then p,(y) = 0.

Exercise 6.5.3. Use the construction in the proof of Theorem 6.5.2 to show that
w(j) = 4= j Jie1 defines a stationary measure for the renewal chain (Example
6.2.3).

Theorem 6.5.2 allows us to construct a stationary measure for each closed set of
recurrent states. Conversely, we have:

Theorem 6.5.3. If p is irreducible and recurrent (i.e., all states are) then the
stationary measure is unique up to constant multiples.

Proof. Let v be a stationary measure and leta € S.

v(z) =Y v(y)p(y,2) = v(@)pla,2)+ Y _ v()p(y, 2)

y y#a
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Using the last identity to replace v(y) on the right-hand side,

v(z) = v(@)p(a,2) + Y _ v(@)p(a, y)p(y. 2)
y#a

+ Y v@)px, y)p(y, 2)
xX#a y#a
=v(@)P,(X1 =2)+v(@)P,(X #a, X2 =12)
+P,(Xo#a, X1#a,X,=2)

Continuing in the obvious way, we get

V@) =1@) ) PuXp# a1 <k <m, Xy =2)

m=1

+P(X;j#a,0=<j<n X,=2)

The last term is > 0. Letting n — oo gives v(z) > v(a)u,(z), where u, is the
measure defined in Theorem 6.5.2 for x = a. It follows from Theorem 6.5.2 that
WU, 18 a stationary distribution with u,(a) = 1. (Here we are summing from 1 to T
rather than from O to 7 — 1.) To turn the > in the last equation into =, we observe

v(a) =Y v)p"x,a) = va) Y ua(0)p"(x, @) = v(@ala) = v(a)
Since v(x) > v(a)u,(x) and the left- and right-hand sides are equal, we must have
v(x) = v(a)iu,(x) whenever p”(x, a) > 0. Since p is irreducible, it follows that
v(x) = v(a)u,(x) for all x € S, and the proof is complete. [ |

Theorems 6.5.2 and 6.5.3 make a good team. The first result gives us a formula
for a stationary distribution we call u,, and the second shows it is unique up to
constant multiples. Together they allow us to derive a lot of formulas.

Exercise 6.5.4. Let w,, = P(T, < T,). Show that p,(y) = wyy/wyy.

Exercise 6.5.5. Show that if p is irreducible and recurrent, then

l/«x()’)My(Z) = ux(2)

Exercise 6.5.6. Use Theorems 6.5.2 and 6.5.3 to show that for simple random
walk, (i) the expected number of visits to k between successive visits to 0 is 1 for
all k, and (ii) if we start from k, the expected number of visits to k£ before hitting 0
is 2k.
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Exercise 6.5.7. Another proof of Theorem 6.5.3. Suppose p is irreducible and
recurrent and let i be the stationary measure constructed in Theorem 6.5.2. u(x) >
0 for all x, and

q(x,y)=pny)p(y, x)/ux) =0

defines a “dual” transition probability. (See Exercise 6.5.1.) (i) Show that g is
irreducible and recurrent. (ii) Suppose v(y) > > v(x)p(x, y) (i.e, v is an excessive
measure) and let 4(x) = v(x)/u(x). Verify that h(y) > > g(y, x)h(x) and use
Exercise 6.4.9 to conclude that 4 is constant, that is, v = cpu.

Remark. The last result is stronger than Theorem 6.5.3 since it shows that in
the recurrent case any excessive measure is a constant multiple of one stationary
measure. The remark after the proof of Theorem 6.5.3 shows that if p is irreducible
and transient, there is an excessive measure for each x € S.

Having examined the existence and uniqueness of stationary measures, we turn
our attention now to stationary distributions, that is, probability measures 7= with
7 p = m. Stationary measures may exist for transient chains, such as, random walks
ind > 3, but

Theorem 6.5.4. If there is a stationary distribution, then all states y that have
m(y) > 0 are recurrent.

Proof. Since mp" = m, Fubini’s theorem implies

Z”(X)ZP"(X» y) = ZTF(}’) =00
x n=I

n=1

when 7 (y) > 0. Using Theorem 6.4.2 now gives

Pxy 1
00 = (x) <
Xx: L=pyy = 1= py
since p,y, < I and 7 is a probability measure. So p,, = 1. [ ]

Theorem 6.5.5. If p is irreducible and has stationary distribution 1, then

n(x)=1/E,T;

Remark. Recycling Chung’s quote regarding Theorem 5.5.8, we note that the
proof will make 7 (x) = 1/E, T, obvious, but it seems incredible that

1 1
> ELPEV= T

X
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Proof. Irreducibility implies 7w (x) > 0 so all states are recurrent by Theorem 6.5.4.
From Theorem 6.5.2,

00
Mx(y)ZZPX(Xn =y, T, >n)
n=0

defines a stationary measure with pu,(x) = 1, and Fubini’s theorem implies
0
Zﬂx(y) = Z P.(T, > n) = E, T,
y n=0

By Theorem 6.5.3, the stationary measure is unique up to constant multiples, so
w(x) = ux(x)/ETy.Since u,(x) = 1 by definition, the desired result follows. B

Exercise 6.5.8. Compute the expected number of moves it takes a knight to return
to its initial position if it starts in a corner of the chessboard, assuming there are
no other pieces on the board, and each time it chooses a move at random from its
legal moves. (Note: A chessboard is {0, 1, ..., 732 A knight’s move is L-shaped;
two steps in one direction followed by one step in a perpendicular direction.)

If a state x has E, T, < 00, it is said to be positive recurrent. A recurrent state
with E, T, = oo is said to be null recurrent. Theorem 6.6.1 will explain these
names. The next result helps us identify positive recurrent states.

Theorem 6.5.6. If p is irreducible, then the following are equivalent:
(i) Some x is positive recurrent.

(ii) There is a stationary distribution.

(iii) All states are positive recurrent.

Proof. (i) implies (ii). If x is positive recurrent then

o0
w(y) = Z P.(X, =y, T, >n)/E.T;
n=0

defines a stationary distribution.

(ii) implies (iii). Theorem 6.5.5 implies 7 (y) = 1/E,T,, and irreducibility tells us
w(y) > Oforall y,so E,T, < oc.

(iii) implies (i). Trivial. [ |

Exercise 6.5.9. Suppose p is irreducible and positive recurrent. Then E, T, < 00
for all x, y.

Exercise 6.5.10. Suppose p is irreducible and has a stationary measure p with
Y. i(x) = oo. Then p is not positive recurrent.
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Theorem 6.5.6 shows that being positive recurrent is a class property. If it holds
for one state in an irreducible set, then it is true for all. Turning to our examples,
since u(x) = 1 is a stationary measure, Exercise 6.5.10 implies that random walks
(Example 6.5.1) are never positive recurrent. Random walks on graphs (Example
6.5.5) are irreducible if and only if the graph is connected. Since (i) > 1 in the
connected case, we have positive recurrence if and only if the graph is finite. The
Ehrenfest chain (Example 6.5.3) is positive recurrent. To see this, note that the
state space is finite, so there is a stationary distribution, and the conclusion follows
from Theorem 6.5.4. A renewal chain is irreducible if {k : f; > 0} is unbounded
(see Example 6.4.3); it is positive recurrent (i.e., all the states are) if and only if
E()TO = Zkfk < Q.

Birth and death chains (Example 6.5.4) have a stationary distribution if and
only if

ST <

ey Ik

By Theorem 6.4.7, the chain is recurrent if and only if

o0

Y IT =0

m=0 j=1 PJ

When p; = pand g; = (1 — p) for j > 1, there is a stationary distribution if and
only if p < 1/2, and the chain is transient when p > 1/2.In Section 6.4, we probed
the boundary between recurrence and transience by looking at examples with
pj=1/2+¢€;,wheree; ~C j7™as j — coand C, @ € (0, 00). Since €; > 0 and
hence p;_i/q; > 1 for large j, none of these chains have stationary distributions.
If we look at chains with p; = 1/2 — ¢, then all we have done is interchange the
roles of p and ¢, and results from the last section imply that the chain is positive
recurrent when o < 1,ora = 1 and C > 1/4.

Example 6.5.6. M/G/1 queue. Let © = ) ka; be the mean number of customers
who arrive during one service time. In Example 6.4.7, we showed that the chain is
recurrent if and only if u < 1. We will now show that the chain is positive recurrent
ifand only if u < 1. First, suppose that © < 1. When X,, > 0, the chain behaves like
a random walk that has jumps with mean p — 1, so if N = inf{rn > 0: X,, = 0},
then Xy, — (0 — D(N A n) is a martingale. If Xo = x > 0, then the martingale
property implies

x=EXym+ 0= wE(N An) =0 —=pE(N An)

since X yr, > 0, and it follows that ExN < x/(1 — w).
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To prove that there is equality, observe that X,, decreases by at most 1 each time
and for x > 1, E,T,_; = E Ty, so E;N = cx. To identify the constant, observe
that

o0
E\N =1+ aEN
k=0
so c=14puc and c=1/(1 —w). If Xg=0 then p(0,0)=ag+ a; and
p0,k — 1) = a; for k > 2. By considering what happens on the first jump, we
see that (the first term may look wrong, but recall k — 1 = 0 when k = 1)

o
k—1 n— (1 —ap) A
EOTO=1+Eak =1+ =

This shows that the chain is positive recurrent if © < 1. To prove the converse,
observe that the arguments above show that if Ey7y < oo then ExN < oo for all
k, ExN = ck,and ¢ = 1/(1 — w), which is impossible if © > 1.

The last result when combined with Theorem 6.5.2 and 6.5.5 allows us to
conclude that the stationary distribution has 7(0) = (1 — @)/ap. This may not
seem like much, but the equations in 7p = 7 are

< 0

7(0) = 7 (0)(ao + a1) + 7w (1)ag
(1) =r70)a; + w()a; + w(2)ay
7(2) =7(0)asz + 7 (Day, + 71(2)a; + 7 (3)ay

or, in general, for j > 1,

Jj+1

r(j) =Y wiajii

i=0
The equations have a “triangular” form, so knowing m(0), we can solve for
(1), m(2), ... The first expression,

n(1) = 7(0)(1 — (ao + a1))/ao

is simple, but the formulas get progressively messier, and there is no nice

closed-form solution.

Exercise 6.5.11. Let &, &,,...be i.i.d. with P(§,, = k) = a;4 for k > —1, let
S, =x+& +---+&,, where x > 0, and let

X, =85, + (m<in Sm)

(6.2.1) shows that X,, has the same distribution as the M/G/1 queue starting
from X, = x. Use this representation to conclude that if © = ) ka; < 1, then as
n— 00,

1
—l{m=n:Xp 1=08 =-1}| >1—-p as
n

and hence 7(0) = (1 — w)/ag as proved above.
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Example 6.5.7. M /M /oo queue. In this chain, introduced in Exercise 6.4.10,

Xn

Xn+1 = an,m + Yn+1

m=1

where &, ,, are i.i.d. Bernoulli with mean p and Y, is an independent Poisson
mean A. It follows from properties of the Poisson distribution that if X, is Poisson
with mean p, then X, is Poisson with mean up + A. Setting u = up + A, we find
that a Poisson distribution with mean u = A/(1 — p) is a stationary distribution.

There is a general result that handles Examples 6.5.6 and 6.5.7 and is useful in
a number of other situations. This will be developed in the next two exercises.

Exercise 6.5.12. Let X, > 0 be a Markov chain and suppose E, X < x — € for
x > K,wheree > 0.LetY, = X, + neand t = inf{n : X,, < K}. Yo, is a posi-
tive supermartingale, and the optional stopping theorem implies E, 7 < x/e.

Exercise 6.5.13. Suppose that X, has state space {0, 1, 2, ...}, the conditions of
the last exercise hold when K = 0, and Ey X < oco. Then 0 is positive recurrent.
We leave it to the reader to formulate and prove a similar result when K > 0.

To close the section, we will give a self-contained proof of

Theorem 6.5.7. If p is irreducible and has a stationary distribution m, then any
other stationary measure is a multiple of 7.

Remark. This result is a consequence of Theorems 6.5.4 and Theorem 6.5.3, but
we find the method of proof amusing.

Proof. Since p is irreducible, 7 (x) > 0 for all x. Let ¢ be a concave function that
is bounded on (0, 0o), for example, ¢(x) = x/(x + 1). Define the entropy of i by

gw=3¢ (@> (v

S 7(y)

The reason for the name will become clear during the proof.

=Y (Z PP, y)) o (Z gz; TP, y)) )

8 ; 7(y) S - 7(y)

u(x)\ T(x)plx,y)
> Xy:XX:w (n(x)> 7(y)

7(y)

since ¢ is concave, and v(x) = w(x)p(x, y)/m(y) is a probability distribution.
Since the 7 (y)’s cancel and Zy p(x, y) = 1, the last expression = £(u), and we
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have shown E(up) > £(u), that is, the entropy of an arbitrary initial measure w is
increased by an application of p.

If p(x,y) >0 for all x and y, and up = u, it follows that w(x)/m(x) must
be constant, for otherwise there would be strict inequality in the application of
Jensen’s inequality. To get from the last special case to the general result, observe
that if p is irreducible,

o0
plx,y) = Zanp”(x, y) >0 forallx,y
n=1

and up = p implies up = u. [ |

6.6 Asymptotic Behavior

The first topic in this section is to investigate the asymptotic behavior of p”(x, y).
If y is transient, ), p"(x, y) < 00, so p"(x,y) — 0 as n — oo. To deal with the
recurrent states, we let

n
Nn()’) = Z I{Xm:y}
m=1
be the number of visits to y by time #.

Theorem 6.6.1. Suppose y is recurrent. For any x € S, asn — 00

N, (y) N 1

n E\T,

l{Ty<oo} Px-a.s.
Here 1/00 = 0.

Proof. Suppose first that we start at y. Let R(k) = min{n > 1: N,,(y) = k} = the
time of the kth return to y. Let ; = R(k) — R(k — 1), where R(0) = 0. Since we
have assumed Xy =y, |, f3, ...are i.i.d. and the strong law of large numbers
implies

R(k)/k — E,T, Py-as.
Since R(Nn(y)) < n < R(Nu(y) + 1),

R(N.(y)) _ _n RN, (y) + 1) Nu(y) +1

= <
Nu(y) Nu(y) Na(y)+1 Nu(y)
Letting n — o0, and recalling N, (y) — o0 a.s. since y is recurrent, we have

— E, T, Py-a.s.
N, (y) A

To generalize now to x # y, observe that if 7, = oo then N,(y) = 0 for all n, and
hence

N,(y)/n — 0 on{T, = oo}
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The strong Markov property implies that conditional on {7}, < 00}, f, 13, ... are
i.i.d. and have P, (ty = n) = Py(T, = n), so

Rk)/k =ti/k+ (2 +---+1)/k - 0+ E,T, P,-as.
Repeating the proof for the case x = y shows
N,(y)/n — 1/E,T, P-as.on {T, < oo}

and combining this with the result for {7, = 0o} completes the proof. |

Remark. Theorem 6.6.1 should help explain the terms positive and null recurrent.
If we start from x, then in the first case the asymptotic fraction of time spent at x
is positive and in the second case it is O.

Since 0 < N,(y)/n < 1, it follows from the bounded convergence theorem that
E.N,(y)/n — Ex(l{Tv<oo}/EyTy)’ SO

1 n
;me(x,y)% Pxy/ EyTy (6.6.1)
m=1
The last result was proved for recurrent y but also holds for transient y, since in
that case, E,T, = 00, and the limit is 0, since Zm p"(x,y) < oo.
(6.6.1) shows that the sequence p”"(x, y) always converges in the Cesaro sense.
The next example shows that p”(x, y) need not converge.

Example 6.6.1.

_ 0 1 2 1 0 3 _ 4 2

A similar problem also occurs in the Ehrenfest chain. In that case, if X is even, then
X is odd, X, is even, ...so p"(x, x) = 0 unless n is even. It is easy to construct
examples with p”(x, x) = 0 unless n is a multiple of 3or 17 or . ..

Theorem 6.6.4 below will show that this “periodicity” is the only thing that
can prevent the convergence of the p”"(x, y). First, we need a definition and two
preliminary results. Let x be a recurrent state, let I, = {n > 1 : p"(x, x) > 0}, and
let d, be the greatest common divisor of . d, is called the period of x. The first
result says that the period is a class property.

Lemma 6.6.2. If p,, > 0, thend, = d,.

Proof. Let K and L be such that pX(x, y) > 0 and p(y, x) > 0. (x is recurrent,
S0 pyx > 0.)

pXE(y, y) = ph o, x)pF(x, y) > 0
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so d, divides K + L, abbreviated d,|(K + L). Let n be such that p"(x, x) > 0.

pXrtly vy > pl(y, x)p"(x, x)p¥(x, y) > 0

sody|(K +n + L), and hence d,|n. Since n € I, is arbitrary, d,|d,. Interchanging
the roles of y and x gives d|d,, and hence d, = d,. |

If a chain is irreducible and d, =1, it is said to be aperiodic. The easiest
way to check this is to find a state with p(x,x) > 0. The M/G/1 queue has
ay > 0 for all £k > 0, so it has this property. The renewal chain is aperiodic if
gcdlk: fr >0} =1.

Lemma 6.6.3. Ifd, = 1 then p™(x, x) > 0 for m > my.

Proof by example. Suppose 4,7 € I,. p"™(x, x) > p™(x, x)p"(x, x), so I is
closed under addition, that is, if m,n € I, then m +n € I,. A little calculation
shows that in the example

I, >{4, 7,8, 11,12, 14,15,16, 18,19,20,21, ...}

so the result is true with my = 18. (Once I, contains four consecutive integers, it
will contain all the rest.)

Proof. Our first goal is to prove that I, contains two consecutive integers. Let n,
no+ k € I,.If k = 1, we are done. If not, then since the greatest common divisor
of I,is 1, thereisann; € I, sothat k is not a divisor of n;. Write n; = mk + r with
0 < r < k. Since I, is closed under addition, (m + 1)(ng + k) > (m + 1)ng + ny
are both in I,. Their difference is

kim+1)—ni=k—r <k

Repeating the last argument (at most k times), we eventually arrive at a pair of
consecutive integers N, N + 1 € I,.. It is now easy to show that the result holds
for mo = N2. Let m > N? and write m — N> = kN +r with 0 < r < N. Then
m=r+N>+kN=r(1+N)+(N —r+k)N € I,. [

Theorem 6.6.4. Convergence theorem. Suppose p is irreducible, aperiodic (i.e.,
all states have d, = 1), and has stationary distribution w. Then, as n — oo,

p'(x,y) = w(y).

Proof. Let S> = § x S. Define a transition probability p on S x S by

P((x1, y1), (x2, ¥2)) = p(x1, x2)p(y1, ¥2)

that is, each coordinate moves independently. Our first step is to check that p
is irreducible. This may seem like a silly thing to do first, but this is the only
step that requires aperiodicity. Since p is irreducible, there are K, L, so that
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pX(x1,x2) > 0 and p(y;, y2) > 0. From Lemma 6.6.3, it follows that if M is
large, p“™™ (x5, x2) > 0 and pX ™ (y,, y,) > 0, so

PETEM(xy, y1), (x2, ¥2)) > 0

Our second step is to observe that since the two coordinates are independent,
7(a, b) = w(a)mw(b) defines a stationary distribution for p, and Theorem 6.5.4
implies that for p all states are recurrent. Let (X,,, Y,,) denote the chain on § x S,
and let T be the first time that this chain hits the diagonal {(y,y): y € §}. Let
T(+.x) be the hitting time of (x, x). Since p is irreducible and recurrent, 7, y) < 00
a.s. and hence 7' < oo a.s. The final step is to observe that on {T < n}, the two
coordinates X, and Y, have the same distribution. By considering the time and
place of the first intersection and then using the Markov property,

PX,=y.T<m=) % P(T=mXy=xX,=)
m=1 x

n

— ZZ P(T =m, X,, = x)P(X, = y| X, = x)

m=1 x

= Xn:ZP(T =m, Y, =x)P(Y, = y|¥ =x)

m=1 x

=P, =y, T <n)
To finish up, we observe that
PXy=y)=PY, =y, T <n)+PX, =y, T >n)
<PY,=y)+PX,=y,T >n)
and similarly, P(Y,, = y) < P(X, =y)+ P(Y, =y, T > n).So
IP(X, =)= P(Yy =W < P(X, =y, T >n)+ P(Y, =y, T > n)
and summing over y gives

Y IP(X, =y) = P(Y, = y)| <2P(T > n)

Ifwelet Xy = x and let Y,y have the stationary distribution iz, then Y,, has distribution
m, and it follows that

Y 1P y) = ()| < 2P(T > n) — 0
)7
proving the desired result. If we recall the definition of the total variation distance

given in Section 3.6, the last conclusion can be written as

Ip"(x, ) =7l < P(T >n)— 0 ]
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At first glance, it may seem strange to prove the convergence theorem by running
independent copies of the chain. An approach that is slightly more complicated but
explains better what is happening is to define

p(x1, x2)p(y1, y2) if x1 # y
q((x1, y1), (x2, y2)) = § p(x1, x2) ifxi=y,x2=m»m
0 otherwise

In words, the two coordinates move independently until they hit and then move
together. It is easy to see from the definition that each coordinate is a copy of the
original process. If 7" is the hitting time of the diagonal for the new chain (X, Y,),
then X, =Y, on T’ < n, so it is clear that

Y IPX, =y) = P(Y, =) <2 P(X, # Y,) =2P(T' > n)

3
On the other hand, T and T’ have the same distribution, so P(T’ > n) — 0, and the
conclusion follows as before. The technique used in the last proofis called coupling.
Generally, this term refers to building two sequences X,, and Y, on the same space
to conclude that X, converges in distribution by showing P(X, # Y,) — 0, or
more generally, that for some metric p, p(X,, ¥;;) — 0 in probability.

Finite State Space

The convergence theorem is much easier when the state space is finite.

Exercise 6.6.1. Show that if S is finite and p is irreducible and aperiodic, then
there is an m so that p™(x, y) > 0 for all x, y.

Exercise 6.6.2. Show that if S is finite, p is irreducible and aperiodic, and T is
the coupling time defined in the proof of Theorem 6.6.4 then P(T > n) < Cr" for
some r < 1 and C < oo. So the convergence to equilibrium occurs exponentially
rapidly in this case. Hint: First consider the case in which p(x, y) > 0 for all x and
y and reduce the general case to this one by looking at a power of p.

Exercise 6.6.3. For any transition matrix p, define
= —1 E |p" (i, k) — p"(j, k)l
o, = Su i,k Jk

The 1/2 is there because for any i and j we can define r.v.’s X and Y so that
P(X =k)= p"(i,k), P(Y =k) = p"(j, k), and

P(X #Y)=(1/2) Y Ip"G, k) = p"(j, k)l
k
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Show that o, 1+, < a,,,. Here you may find that the coupling interpretation may
help you from getting lost in the algebra. Using Lemma 2.6.1, we can conclude
that

1
—loga, — inf —logaoy,
n m=1m

so if o, < 1 for some m, it approaches 0 exponentially fast.

As the last two exercises show, Markov chains on finite state spaces converge
exponentially fast to their stationary distributions. In applications, however, it is
important to have rates of convergence. The next two problems are a taste of an
exciting research area.

Example 6.6.2. Shuffling cards. The state of a deck of n cards can be represented
by a permutation, 7 (i) giving the location of the ith card. Consider the following
method of mixing the deck up. The top card is removed and inserted under one
of the n — 1 cards that remain. I claim that by following the bottom card of the
deck, we can see that it takes about n logn moves to mix up the deck. This card
stays at the bottom until the first time (77) a card is inserted below it. It is easy to
see that when the kth card is inserted below the original bottom card (at time 7}),
all k! arrangements of the cards below are equally likely, so at time 7, = 7,,_; + 1
all n! arrangements are equally likely. If we let 7o = 0 and #, = Ty — T for
1 <k <n — 1, then these r.v.’s are independent, and #; has a geometric distribution
with success probability k/(n — 1). These waiting times are the same as the ones in
the coupon collector’s problem (Example 2.2.3), so 7,,/(n logn) — 1 in probability
as n — oo. For more on card shuffling, see Aldous and Diaconis (1986).

Example 6.6.3. Random walk on the hypercube. Consider {0, 1} as a graph
with edges connecting each pair of points that differ in only one coordinate. Let
X, be a random walk on {0, 1}¢ that stays put with probability 1/2 and jumps
to one of its d neighbors with probability 1/2d each. Let Y, be another copy of
the chain in which Y; (and hence Y,, n > 1) is uniformly distributed on {0, 1}¢.
We construct a coupling of X,, and Y, by letting Uy, U, ...be i.i.d. uniform on
{1,2,...,d}, and letting V;, V>, ...be independent i.i.d. uniform on {0, 1} At time
n, the U,th coordinates of X and Y are each set equal to V,,. The other coordinates
are unchanged. Let T; = inf{m : {Uy, ..., U,} ={1,2,...,d}}. When n > Ty,
X, =Y,. Results for the coupon collector’s problem (Example 2.2.3) show that
T;/(dlogd) — 1 in probability as d — oo.

Exercises

6.6.4. Strong law for additive functionals. Suppose p is irreducible and has
stationary distribution 7r. Let f be a function that has Y | f(y)|7 (y) < oo. Let T*
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be the time of the kth return to x. (i) Show that
VI = FXTE) + -+ ST~ 1), k= lareiid,

with E|V/| < oo. (ii) Let K,, = inf{k : T* > n} and show that

—ZV,,{ - =Y fO)m(y) P.—as.

(iii) Show that max; <, <p V,Lf | /n — 0 and conclude

1 n
- ; (X)) = Z fOHr(y) P, —as.

for any initial distribution u.

6.6.5. Central limit theorem for additive functionals. Suppose in addition to the
conditions in the Exercise 6.6.4 that " f(y)7(y) = 0,and E,(V”')? < co. (i) Use
the random index central limit theorem (Exercise 3.4.6) to conclude that for any
initial distribution pu,

K,

Z = cx under P,

(ii) Show that max i ,,<, V.i/'//n — 0 in probability and conclude

1 n
% Z f(Xn) = cx under P,
m=1

6.6.6. Ratio limit theorems. Theorem 6.6.1 does not say much in the null recurrent
case. To get a more informative limit theorem, suppose that y is recurrent and m is
the (unique up to constant multiples) stationary measure on C,, = {z : p,, > 0}. Let
N,(z) = |{m < n: X, = z}|. Break up the path at successive returns to y and show
that N, (z)/ N, (y) — m(z)/m(y) Py-a.s. for all x, z € C,. Note that n — N,(z) is
increasing, so this is much easier than the previous problem.

6.6.7. We got (6.6.1) from Theorem 6.6.1 by taking expected value. This does not
work for the ratio in the previous exercise, so we need another approach. Suppose
z #y. (1) Let p,(x, z2) = P.(X, =z, Ty, > n) and decompose p™(x, z) according
to the value of J = sup{j € [1,m) : X; = y} to get

n n n—1 n—j
D= P+ Y P Y)Y Py, 2)
m=1 j=1 k=1

m=1

(i1) Show that

o n mz)
n;p (x,z)/Zp (x, ()

m=1
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6.7 Periodicity, Tail o -field*

Lemma 6.7.1. Suppose p is irreducible, recurrent, and all states have period d.
Fix x € S, and for each y € S, let K, ={n >1: p"(x,y) > 0}. (i) There is an
ry€{0,1,...,d — 1} sothatifn € K, then n = ry, mod d, that is, the difference
n —ryisamultiple ofd. (ii) Let S, = {y :ry =r}forO0 <r <d.Ify € S;,z € S},
and p"(v,z) > 0, then n = (j — i) mod d. (iii) Sy, S1, ..., Sq_1 are irreducible
classes for p?, and all states have period 1.

Proof. (i) Let m(y) be such that p"(y, x) > 0. If n € K,, then P (x, x)
is positive, so d|(n +m). Let ry = (d — m(y)) mod d. (ii) Let m, n be such that
P"(y,2), p"(x,y) > 0. Since p"™"(x, z) > 0, it follows from (i) that n +m = j
mod d. Since m = i mod d, the result follows. The irreducibility in (iii) follows
immediately from (ii). The aperiodicity follows from the definition of the period
as the g.c.d. {x : p"(x, x) > O}. [ |

A partition of the state space S, Si, ..., Sg—1 satisfying (ii) in Lemma 6.7.1 is
called a cyclic decomposition of the state space. Except for the choice of the set
to put first, it is unique. (Pick an x € §. It lies in some S, but once the value of j
is known, irreducibility and (ii) allow us to calculate all the sets.)

Exercise 6.7.1. Find the decomposition for the Markov chain with transition
probability

S-SR
CO 0O O L O M
O—ocococoocowN
cCo—~r—~ oo OoWw
PO OO OO in &
C OO OO i W
Do ocoococoocoa
cCooco—~ 30

Theorem 6.7.2. Convergence theorem, periodic case. Suppose p is irreducible
and has a stationary distribution m, and all states have period d. Let x € S, and
let Sy, S1, ..., Sq—1 be the cyclic decomposition of the state space with x € Sy. If
y € S, then

lim p" ™ (x, y) = 7 (y)d
m— 00
Proof. If y € S, then using (iii) in Lemma 6.7.1 and applying Theorem 6.6.4 to p“
shows

lim p™(x, y) exists
m—0o0
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To identify the limit, we note that (6.6.1) implies

1 n
- E pr(x,y) = w(y)
n

m=1

and (ii) of Lemma 6.7.1 implies p™(x, y) = 0 unless d|m, so the limit in the first
display must be w(y)d. If y € S, with 1 <r < d, then

P ) =) p 9™z, y)

ZES,

Since y, z € S,, it follows from the first case in the proof that p”?(z, y) — m(y)d
as m — Q. pmd(z, y) <1, and ZZ p'(x,z) =1, so the result follows from the
dominated convergence theorem. [ |

Let 7, = 0(Xn+1, Xnt2, ...) and 7 = N, F, be the tail o-field. The next result
is due to Orey. The proof we give is from Blackwell and Freedman (1964).

Theorem 6.7.3. Suppose p is irreducible, recurrent, and all states have period d,
T=0({Xpe S }:0=<r <d).

Remark. To be precise, if p is any initial distribution and A € 7, then there is an
rsothat A = {X( € S,} Py-as.

Proof. We build up to the general result in three steps.

CasE 1. Suppose P(Xg=x)=1. Let To =0, and for n > 1, let T, = inf{m >
T,_1 : X,, = x} be the time of the nth return to x. Let

Vo =XT-1), ..., X(T, — 1)

The vectors V, are i.i.d. by Exercise 6.4.1, and the tail o-field is contained in the
exchangeable field of the V,;, so the Hewitt-Savage 0-1 law (Theorem 4.1.1, proved
there for r.v’s taking values in a general measurable space) implies that 7 is trivial
in this case.

CASE 2. Suppose that the initial distribution is concentrated on one cyclic class, say
So. If A € T, then P,(A) € {0, 1} for each x by case 1. If P,(A) = Oforall x € Sy,
then P, (A) = 0. Suppose P,(A) > 0, and hence = 1, for some y € Sy. Let z € Sp.
Since p? is irreducible and aperiodic on Sy, there is an n so that p”(z, y) > 0 and
p"(y,y) > 0.If we write 14 = 15 o 6,, then the Markov property implies

I = Py(A) = Ey(Ey(lB o 9n|fn)) = Ey(EX,,lB)
so Py,(B) = 1. Another application of the Markov property gives
P.(A) = E.(Ex,15) = p"(z,y) > 0

so P,(A) =1, and since z € S is arbitrary, P,(A) = 1.
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General case. From case 2, we see that P(A| Xy = y) = 1 or = 0 on each cyclic
class. This implies that either {Xg € S,} C Aor {Xo € S,}NA =0 P, as. Con-
versely, it is clear that {X( € S,} = {X,s € S, i.0.} € 7, and the proof is com-
plete. [ |

The next result will help us identify the tail o-field in transient examples.

Theorem 6.7.4. Suppose X has initial distribution u. The equations

h(X,.n) = E(Z|F,) and Z = lim h(X,,n)

n—od

set up a 1-1 correspondence between bounded Z € T and bounded space-time
harmonic functions, that is, bounded h : S x {0, 1, ...} — R, so that h(X,,, n) is
a martingale.

Proof. Let Z € T, write Z =Y, 00,,and let h(x,n) = E,Y,.

by the Markov property, so h(X,, n) is a martingale. Conversely, if 2(X,, n) is a
bounded martingale, using Theorems 5.2.8 and 5.5.6 shows h(X,,,n) — Z € T as
n — oo, and h(X,, n) = E (Z|F,). [ |

Exercise 6.7.2. A random variable Z with Z = Z o 6, and hence = Z o 6, for all
n, is called invariant. Show that there is a 1-1 correspondence between bounded
invariant random variables and bounded harmonic functions. We will have more to
say about invariant r.v.’s in Section 7.1.

Example 6.7.1. Simple random walk in d dimensions. We begin by construct-
ing a coupling for this process. Let iy, is, ...be i.i.d. uniform on {1, ..., d}. Let
1,6, ...and ny, no, ...beiid. uniform on {—1, 1}. Let ¢; be the jth unit vector.
Construct a coupled pair of d-dimensional simple random walks by

Xn = Xn—l + e(in)én

Yn—l + e(ln)%_n if Xizn—l = Yrin—l
Yn—l + e(in)nn if X,iqnfl ?é Y,i”fl

I’l:

In words, the coordinate that changes is always the same in the two walks, and once
they agree in one coordinate, future movements in that direction are the same. It is
easy to see that if Xé — Yoi is even for 1 < i < d, then the two random walks will
hit with probability one.

Let Lo={zeZ¢: 7' +---+z%iseven } and L, = Z% — L,. Although we
have defined the notion only for the recurrent case, it should be clear that L, L; is
the cyclic decomposition of the state space for simple random walk. If §,, € L;, then
Sp+1 € Li_;, and p?is irreducible on each L;. To couple two random walks starting
from x, y € L;, let them run independently until the first time all the coordinate
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differences are even, and then use the last coupling. In the remaining case, x € Ly,
y € L, coupling is impossible.

The next result should explain our interest in coupling two d-dimensional simple
random walks.

Theorem 6.7.5. For d-dimensional simple random walk,

T=0({XoeL;},i =0,1)

Proof. Letx,y € L;, and let X,,, Y, be a realization of the coupling defined above
for Xo = x and Yy = y. Let h(x, n) be a bounded space-time harmonic function.
The martingale property implies i(x, 0) = E h(X,, n).If |h| < C, it follows from
the coupling that

|h(x,0) = h(y,0)| = |[ER(Xy, n) — ER(Y,, n)| <2CP(X, #Y,) = 0

so h(x, 0) is constant on Ly and L. Applying the last result to 4'(x, m) = h(x,n +
m), we see that h(x,n) = a’ on L;. The martingale property implies a’ = a;jr’l,
and the desired result follows from Theorem 6.7.4. [ |

Example 6.7.2. Ornstein’s coupling. Let p(x, y) = f(y — x) be the transition
probability for an irreducible aperiodic random walk on Z. To prove that the tail
o-field is trivial, pick M large enough so that the random walk generated by the
probability distribution fj;(x) with fi;(x) = cp f(x) for [x| < M and fi(x) =0
for |x| > M is irreducible and aperiodic. Let Z;, Z,, ... be i.i.d. with distribution
f,andlet Wi, W,, ...bei.i.d. with distribution f3;.Let X, = X,,_1 + Z, forn > 1.
If X,_1 =Y,_1, weset X, = Y,. Otherwise, we let

Yooi+ Zn if|Zy] > m
Yooi1 4+ W, if|Z, <m

n =

In words, the big jumps are taken in parallel and the small jumps are independent.
The recurrence of one-dimensional random walks with mean O implies P(X, #
Y,) — 0. Repeating the proof of Theorem 6.7.5, we see that 7 is trivial.

The tail o-field in Theorem 6.7.5 is essentially the same as in Theorem 6.7.3. To
get a more interesting 7, we look at:

Example 6.7.3. Random walk on a tree. To facilitate definitions, we will consider
the system as a random walk on a group with three generators a, b, ¢ that have
a? =b? =c? = e, the identity element. To form the random walk, let &, &, ... be
i.id. with P(§, = x) = 1/3 for x = a, b, c, and let X,, = X,,_1&,. (This is equiv-
alent to a random walk on the tree in which each vertex has degree 3, but the
algebraic formulation is convenient for computations.) Let L, be the length of the
word X, when it has been reduced as much as possible, with L, =0 if X,, = e.
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The reduction can be done as we go along. If the last letter of X,,_; is the same as
&,, we erase it; otherwise we add the new letter. It is easy to see that L, is a Markov
chain with a transition probability that has p(0, 1) = 1 and

pG.j=D=1/3  p@(.j+1D=2/3 forj=1

Asn — o0, L,, — oo. From this, it follows easily that the word X, has a limitin the
sense that the ith letter X! stays the same for large 1. Let X, be the limiting word,
that is, Xéo = lim Xﬁl. 7> O'(Xéo, i > 1), but it is easy to see that this is not all. If
So = the words of even length, and §; = S, then X,, € §; implies X,,1| € S;_;, so
{Xo € So} € 7. Can the reader prove that we have now found all of 7? As Fermat
once said, “I have a proof, but it won’t fit in the margin.”

Remark. This time the solution does not involve elliptic curves but uses “/-paths.”
See Furstenburg (1970) or decode the following: “Condition on the exit point (the
infinite word). Then the resulting RW is an A-process, which moves closer to the
boundary with probability 2/3 and farther with probability 1/3 (1/6 each to the two
possibilities). Two such random walks couple, provided they have same parity.”
The quote is from Robin Pemantle, who says he consulted Itai Benajamini and
Yuval Peres.

6.8 General State Space*

In this section, we will generalize the results from Sections 6.4—6.6 to a collection of
Markov chains with uncountable state space called Harris chains. The developments
here are motivated by three ideas. First, the proofs for countable state space if there
is one point in the state space that the chain hits with probability 1. (Think, for
example, about the construction of the stationary measure via the cycle trick.)
Second, a recurrent Harris chain can be modified to contain such a point. Third,
the collection of Harris chains is a comfortable level of generality; broad enough
to contain a large number of interesting examples, yet restrictive enough to allow
for a rich theory.

We say that a Markov chain X, is a Harris chain if we can find sets A, B € S,
a function ¢ with g(x, y) > € > O for x € A, y € B, and a probability measure p
concentrated on B so that:

(i) fty =inf{n >0: X, € A}, then P,(t4 < 00) > 0forall z € S.
(i) If x € Aand C C B then p(x, C) > fc q(x,y) p(dy).

To explain the definition, we turn to some examples:

Example 6.8.1. Countable state space. If S is countable and there is a point a
with p,, > 0 for all x (a condition slightly weaker than irreducibility), then we can
take A = {a}, B = {b}, where b is any state with p(a, b) > 0, u = §, the point
mass at b, and g(a, b) = p(a, b).
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Conversely, if S is countable and (A’, B’) is a pair for which (i) and (ii) hold,
then we can without loss of generality reduce B’ to a single point . Having done
this, if we set A = {b}, pick c so that p(b, ¢) > 0, and set B = {c}, then (i) and (ii)
hold with A and B both singletons.

Example 6.8.2. Chains with continuous densities. Suppose X,, € R? is a Markov
chain with a transition probability that has p(x, dy) = p(x, y)dy where (x, y) —
p(x, y) is continuous. Pick (xg, yo) so that p(xg, yo) > 0. Let A and B be open sets
around xy and y, that are small enough so that p(x,y) > € > 0on A x B. If we
let p(C) = |B N C|/|B|, where | B| is the Lebesgue measure of B, then (ii) holds.
If (i) holds, then X, is a Harris chain.

For concrete examples, consider:

(a) Diffusion processes are a large class of examples that lie outside the scope of
this book, but are too important to ignore. When things are nice, specifically,
if the generator of X has Holder continuous coefficients satisfying suitable
growth conditions, see the Appendix of Dynkin (1965), then P(X; € dy) =
p(x, y)dy, and p satisfies the conditions above.

(b) Armaps. Let £, &;,...beiid. and V, =60V, +§,. V, is called an autore-
gressive moving average process or armap for short. We call V,, a smooth
armap if the distribution of &, has a continuous density g. In this case
p(x,dy) = g(y —6x)dy with (x, y) — g(y — 6x) continuous.

In analyzing the behavior of armaps there are a number of cases to consider
depending on the nature of the support of §,. We call V,, a simple armap if the
density function for &, is positive for at all points in R. In this case we can take
A = B =[—1/2,1/2] with p = the restriction of Lebesgue measure.

(c) The discrete Ornstein-Uhlenbeck process is a special case of (a) and (b). Let
&, &, ...be i.i.d. standard normals and let V, = 0V, _; 4+ &,. The Ornstein-
Uhlenbeck (O.U.) process is a diffusion process {V;, t € [0, 00)} that models
the velocity of a particle suspended in a liquid. See, for example, Breiman
(1968), Section 16.1. Looking at V; at integer times (and dividing by a constant
to make the variance 1) gives a Markov chain with the indicated distributions.

Example 6.8.3. GI/G/1 queue, or storage model. Let &, &,,...be i.i.d. and
define W, inductively by W, = (W,_; + &,)T. If P(§, < 0) > 0, then we can take
A = B = {0}, and (i) and (ii) hold. To explain the first name in the title, consider
a queueing system in which customers arrive at times of a renewal process, that
is,attimes0 =Ty < Ty < T,...with¢, =T, — T,_1,n > 1iid. Letn,,n >0,
be the amount of service time the nth customer requires, and let &, = n,_; — ¢,. 1
claim that W, is the amount of time the nth customer has to wait to enter service.
To see this, notice that the (n — 1)th customer adds n,,_; to the server’s workload,
and if the server is busy at all times in [7},_;, T,,), he reduces his workload by ¢,. If
W,—1 + nu—1 < &, then the server has enough time to finish his work and the next
arriving customer will find an empty queue.
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The second name in the title refers to the fact that W, can be used to model the
contents of a storage facility. For an intuitive description, consider water reservoirs.
We assume that rainstorms occur at times of a renewal process {7}, : n > 1}, that
the nth rainstorm contributes an amount of water 7,,, and that water is consumed at
constant rate c. If we let ¢, = T,, — T,,_; as before, and &, = n,,_; — ¢, then W,
gives the amount of water in the reservoir just before the nth rainstorm.

History lesson. Doeblin was the first to prove results for Markov chains on general
state space. He supposed that there was an n so that p*(x, C) > ep(C) forallx € §
and C C S. See Doob (1953), Section V.5, for an account of his results. Harris
(1956) generalized Doeblin’s result by observing that it was enough to have a set
A so that (i) holds and the chain viewed on A (¥, = X (T/{f), where TX = inf{n >
T/]fl : X, € A} and T? = 0) satisfies Doeblin’s condition. Our formulation, as
well as most of the proofs in this section, follows Athreya and Ney (1978). For a
nice description of the “traditional approach,” see Revuz (1984).

Given a Harris chain on (S, S), we will construct a Markov chain X, with
transition probability p on (S, S), where § = SU {a}and S = {B, BU{a} : B
S}. The aim, as advertised earlier, is to manufacture a point « that the process hits
with probability 1 in the recurrent case.

IfxeS—A px,C)=px,C)forCeS

fxed  plxfah=e
px,C) = px,C)—ep(C)forC € S
Ifx =« pla, D) = fp(dx)ﬁ(x, D)forD e S

Intuitively, X,, = o corresponds to X, being distributed on B according to p. Here,
and in what follows, we will reserve A and B for the special sets that occur in
the definition and use C and D for generic elements of S. We will often simplify
notation by writing p(x, ) instead of p(x, {«}), u(w) instead of u({«}), and so
forth.

Our next step is to prove three technical lemmas that will help us develop the
theory below. Define a transition probability v by

vix,{x})=1 if xeS v(a, C) = p(C)
In words, V leaves mass in S alone but returns the mass at « to S and distributes it
according to p.

Lemma 6.8.1. vp = p and pv = p.

Proof. Before giving the proof, we would like to remind the reader that measures
multiply the transition probability on the left, that is, in the first case we want
to show pvp = up. If we first make a transition according to v and then one
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according to p, this amounts to one transition according to p, since only mass at «
is affected by v and

pla, D) = f p(dx)p(x. D)

The second equality also follows easily from the definition. In words, if p acts first
and then v, then v returns the mass at o to where it came from. [ |

From Lemma 6.8.1, it follows easily that we have:

Lemma 6.8.2. Let Y, be an inhomogeneous Markov chain with py, = v and
Pous1 = p. Then X, = Y, is a Markov chain with transition probability p, and
X, = Youy1 is a Markov chain with transition probability p.

Lemma 6.8.2 shows that there is an intimate relationship between the asymptotic
behavior of X, and that of X,,. To quantify this, we need a definition. If f is a
bounded measurable function on S, let f = vf, thatis, f(x) = f(x)forx € S and

fla)y= [ fdp.

Lemma 6.8.3. If 1 is a probability measure on (S, S), then

E;Lf(Xn) = Ep.f_(Xn)

Proof. Observe that if X, and X,, are constructed as in Lemma 6.8.2, and P(X, €
S) = 1, then Xy = Xy, and X,, is obtained from X, by making a transition accord-
ing to v. [

The last three lemmas will allow us to obtain results for X, from those for X,,.
We turn now to the task of generalizing the results of Sections 6.4-6.6 to X,,. To
facilitate comparison with the results for countable state space, we will break this
section into four subsections, the first three of which correspond to Sections 6.4—
6.6. In the fourth subsection, we take an in-depth look at the GI/G/1 queue. Before
developing the theory, we will give one last example that explains why some of the
statements are messy.

Example 6.8.4. Perverted O.U. process. Take the discrete O.U. process from part
(c) of Example 6.8.2 and modify the transition probability at the integers x > 2 so
that

plc fx+1)=1-x7?
p(x, A)=x"2A| for A cC(0,1)
p is the transition probability of a Harris chain, but

P, (X, =n+2foralln) >0
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I can sympathize with the reader who thinks that such chains will not arise “in
applications,” but it seems easier (and better) to adapt the theory to include them
than to modify the assumptions to exclude them.

6.8.1 Recurrence and Transience

We begin with the dichotomy between recurrence and transience. Let R = inf{n >
1:X,=a).If P,(R < c0) =1, then we call the chain recurrent; otherwise we
call it transient. Let R; = R and, for k > 2, let Ry = inf{n > Ry_; : X, = o} be
the time of the kth return to «. The strong Markov property implies P, (R, < 00) =
P,(R < 0c0)¥, s0 Py(X, = a i.0.) = 1 in the recurrent case and = 0 in the transient
case. It is easy to generalize Theorem 6.4.2 to the current setting.

Exercise 6.8.1. X, is recurrent if and only if Y | p"(«, @) = oo.
The next result generalizes Lemma 6.4.3.

Theorem 6.8.4. Let AM(C) = Y o2, 27" p"(a, C). In the recurrent case, if .\(C) > 0
then Py(X, € C i.0.) = 1. For h-a.e. x, P.,(R < o0) = 1.

Proof. The first conclusion follows from Lemma 6.3.3. For the second, let D =
{x : P,(R < 00) < 1} and observe that if p"(«, D) > 0 for some n, then

P,(X,, =aio0)< /ﬁ”(oe, dx)P,(R < o0) < 1 [ |

Remark. Example 6.8.4 shows that we cannot expect to have P,(R < 0o) = 1 for
all x. To see that even when the state space is countable, we need not hit every
point starting from «, do

Exercise 6.8.2. If X, is a recurrent Harris chain on a countable state space, then S
can only have one irreducible set of recurrent states but may have a nonempty set
of transient states. For a concrete example, consider a branching process in which
the probability of no children py > 0 and set A = B = {0}.

Exercise 6.8.3. Suppose X, is a recurrent Harris chain. Show that if (A", B') is
another pair satisfying the conditions of the definition, then Theorem 6.8.4 implies
P,(X, € A’ i.0.) = 1, so the recurrence or transience does not depend on the choice
of (A, B).

As in Section 6.4, we need special methods to determine whether an example is
recurrent or transient.
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Exercise 6.8.4. In the GI/G/1 queue, the waiting time W, and the random walk
S, =Xo+ & + -+ &, agreeuntil N = inf{n : S, < 0}, and atthistime Wy = 0.
Use this observation as we did in Example 6.4.7 to show that Example 6.8.3 is
recurrent when E§,, < 0 and transient when E&, > 0.

Exercise 6.8.5. Let V, be a simple smooth armap with E|&;| < co. Show that
if 6 < 1, then E,|V;| < |x| for |x| > M. Use this and ideas from the proof of
Theorem 6.4.8 to show that the chain is recurrent in this case.

Exercise 6.8.6. Let V,, be an armap (not necessarily smooth or simple) and suppose
6 > 1. Let y € (1, 60) and observe that if x > 0, then P,(V; < yx) < C/((0 —
y)x), so if x is large, P,(V, > y"x for all n) > 0.

Remark. In the case 8 = 1, the chain V,, discussed in the last two exercises is a
random walk with mean O and hence recurrent.

Exercise 6.8.7. In the discrete O.U. process, X, 4+ is normal with mean 6 X,, and
variance 1. What happens to the recurrence and transience if instead Y, is normal
with mean 0 and variance B2|Y,|?

6.8.2 Stationary Measures

Theorem 6.8.5. In the recurrent case, there is a stationary measure.

Proof. Let R = inf{n > 1: X,, = «}, and let

R—-1 00
i(C) = E, (Z 1{)’950}) =) PuX,€C,R>n)
n=0

n=0

Repeating the proof of Theorem 6.5.2 shows that fip = fi. If we let u = jiv, then
it follows from Lemma 6.8.1 that fiv p = ipv = Av, S0 u p = U. [ |

Exercise 6.8.8. Let G, 5 = {x : p*(x, @) > 8}. Show that i(Gy.s) < 2k/8 and use
this to conclude that i and hence u is o-finite.

Exercise 6.8.9. Let A be the measure defined in Theorem 6.8.5. Show that i << A
and A << [i.

Exercise 6.8.10. Let V, be an armap (not necessarily smooth or simple) with
6 <1 and Elog" |&,| < 0co. Show that Zsz 0™§,, converges a.s. and defines a
stationary distribution for V.

Exercise 6.8.11. In the GI/G/1 queue, the waiting time W, and the random
walk S, = Xo+ & +--- 4+ &, agree until N = inf{n : S, < 0}, and at this time
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Wy = 0. Use this observation as we did in Example 6.5.6 to show that if E&, < 0,
EN < oo and hence there is a stationary distribution.

To investigate uniqueness of the stationary measure, we begin with:

Lemma 6.8.6. If v is a o-finite stationary measure for p, then v(A) < oo and
D = v p is a stationary measure for p with V() < oo.

Proof. We will first show that v(A) < oco. If v(A) = oo, then part (ii) of the defini-
tion implies v(C) = oo for all sets C with p(C) > 0.1f B = U; B; with v(B;) < oo,
then p(B;) = 0 by the last observation and p(B) = 0 by countable subadditivity, a
contradiction. So v(A) < oo and ¥(«) = vp(a) = €v(A) < oo. Using the fact that
v p = v, we find

vp(C) = v(C) —ev(A)p(BNC)

the last subtraction being well defined since v(A) < 00, and it follows that bv = v.
To check vp = ¥, we observe that Lemma 6.8.1 and the last result imply vp =
Vvp =vp =". |

Theorem 6.8.7. Suppose p is recurrent. If v is a o -finite stationary measure then
v = D(a)u, where w is the measure constructed in the proof of Theorem 6.8.5.

Proof. By Lemma 6.8.6, it suffices to prove that if ¥ is a stationary measure for
p with V(x) < oo, then b = P(«)jt. Repeating the proof of Theorem 6.5.3 with
a = «a, it is easy to show that D(C) > («)i(C). Continuing to compute as in that
proof:

B(a) = f BdnF" (x, @) = () f )P (x, &) = D()file) = ()

Let S, = {x : p"(x, @) > 0}. By assumption, U, S, = S. If (D) > v(x)ix(D) for
some D, then ¥(DNS,) > d(a)ia(D N S,), and it follows that ¥(«) > V(x), a
contradiction. ]

6.8.3 Convergence Theorem

We say that a recurrent Harris chain X, is aperiodic if g.c.d. {n > 1 : p" (¢, @) >
0} = 1. This occurs, for example, if we can take A = B in the definition, for then
pla,a) > 0.

Theorem 6.8.8. Let X, be an aperiodic recurrent Harris chain with stationary
distribution . If P.(R < 00) = 1 then as n — oo,

Ip"(x, ) =7l — 0
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Note. Here ||| denotes the total variation distance between the measures.
Lemma 6.8.4 guarantees that 77 a.e. x satisfies the hypothesis.

Proof. In view of Lemma 6.8.3, it suffices to prove the result for p. We begin by
observing that the existence of a stationary probability measure and the uniqueness
result in Theorem 6.8.7 imply that the measure constructed in Theorem 6.8.5
has E,R = ji(S) < 0o. As in the proof of Theorem 6.6.4, we let X, and Y, be
independent copies of the chain with initial distributions §, and 7, respectively,
andlett =inf{ln >0: X, =Y, = «a}. Form > 0, let S,, (resp. T,,) be the times
at which X, (resp. Y,,) visit « for the (m + 1)th time. S,, — T,, is a random walk
with mean O steps, so M = inf{m > 1:S,, = T,,} < oo a.s., and it follows that
this is true for T as well. The computations in the proof of Theorem 6.6.4 show
|P(X, € C)— P(Y, € C)| < P(tr > n). Since this is true for all C, ||p"(x, ) —
7(-)|| < P(r > n), and the proof is complete. |

Exercise 6.8.12. Use Exercise 6.8.1 and imitate the proof of Theorem 6.5.4 to
show that a Harris chain with a stationary distribution must be recurrent.

Exercise 6.8.13. Show that an armap with # < 1 and E log™ |£,| < oo converges
in distribution as n — oo. Hint: Recall the construction of 7 in Exercise 6.8.10.

6.8.4 GI/G/I Queue

For the rest of the section, we will concentrate on the GI/G/1 queue. Let
£,&,...be iid., let W, =(W,_; +&,)", and let S, =& +---+&,. Recall
&, = nu_1 — &,, where the n’s are service times and ¢’s are the interarrival times,
and suppose E&, < 0so that Exercise 6.11 implies there is a stationary distribution.

Exercise 6.8.14. Let m, = min(Sy, S, ..., S,), where S, is the random walk
defined above. (i) Show that S, —m,, =4 W,. (ii) Let§, = &,;,_,, forl <m <n.
Show that S, — m,, = max(§, S|, ..., S,). (iii) Conclude that as n — oo we have

W, = M = max(S;, Sy, S5, ...).

Explicit formulas for the distribution of M are in general difficult to obtain.
However, this can be done if either the arrival or service distribution is exponential.
One reason for this is:

Exercise 6.8.15. Suppose X, Y > 0 are independent and P(X > x) = e~**. Show
that P(X — Y > x) = ae ™", wherea = P(X — Y > 0).

Example 6.8.5. Exponential service time. Suppose P(1, > x) = e #*and E¢,, >
En,.LetT =inf{n : S, > 0}and L = Sy, setting L = —o0 if T = 00. The lack of
memory property of the exponential distribution implies that P(L > x) = re #*,
wherer = P(T < 00). To compute the distribution of the maximum, M,letT; = T
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and let Ty = inf{n > Ti_; : S, > S7,_,} for k > 2. Theorem 4.1.3 implies that if
Ty < oo, then S(Tyy1) — S(Tx) =4 L and is independent of S(7%). Using this and
breaking things down according to the value of K = inf{k : Ly = —o0}, we see
that for x > 0, the density function
o0
P(M =x)= Zrk(l — e PRk — D = Br(l — r)e P40
k=1

To complete the calculation, we need to calculate . To do this, let

#(0) = E exp(05,) = E exp(0n,—1)E exp(—0¢,)

which is finite for 0 < 8 < g since &, > 0 and n,,—; has an exponential distribution.
It is easy to see that

¢'(0)=EE, <0 lim (6) = oo

so there is a 8 € (0, B) with ¢(8) = 1. Exercise 5.7.4 implies that exp(6S,) is a
martingale. Theorem 5.4.1 implies 1 = E exp(6 St ,). Letting n — 0o and noting
that (S,|7 = n) has an exponential distribution and S, — —oo on {T = 00}, we
have

1= r/ e Be P dx = B
0 p—0

Example 6.8.6. Poisson arrivals. Suppose P(¢, > x) = e " and E¢, > En,.
Let S, = —S,,. Reversing time as in (ii) of Exercise 6.8.14, we see (for n > 1)

P(maxS‘k<S’neA>=P(min S'k>0,§n€A)
0<k<n 1<k=<n

Let ¢,(A) be the common value of the last two expressions, and let {(A) =
Y n=0 Yn(A). ¥, (A) is the probability the random walk reaches a new maximum
(or ladder height; see Example 4.1.4) in A at time n, so {¥(A) is the number of
ladder points in A with ({0}) = 1. Letting the random walk take one more step

P <min Sk >0,8,.1 < x) = / F(x —z2)dy,(z)

1<k<n

The last identity is valid for n = 0 if we interpret the left-hand side as F(x). Let
T =inf{n > 1:§, <0}and x < 0. Integrating by parts on the right-hand side and
then summing over n > 0 gives

00
P(S’fo)zzp(min Sk>0,Sn+1§x)

1<k<n
n=0

= Y[0,x — y]dF(y) (6.8.1)

y=x

The limit y < x comes from the fact that ¥ ((—o0, 0)) = 0.
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Let £, =S, — S,_1 = —&,. Exercise 6.8.15 implies P(£, > x) = ae ®*. Let
T =inf{n:S, > 0}. EE, > 0,50 P(T < o0) = 1.Let J = S7. As in the previous
example, P(J > x) = e *“*.LetV,, = J; + - - - + J,,. V,, isarate o Poisson process,
so ¥[0,x —y]l=14a(x —y) for x —y > 0. Using (6.8.1) now and integrating
by parts gives

PG, <x)= / (1 +a(x — y)dF()

y=x

X
= F(x) +oz/ F(y)dy forx <0 (6.8.2)
—00
Since P (S, = 0) = 0 for n > 1, —8§, has the same distribution as Sy, where T =
inf{n : §, > 0}. Combining this with part (ii) of Exercise 6.8.14 gives a “formula”
for P(M > x). Straightforward but somewhat tedious calculations show that if

B(s) = E exp(—sn,), then
l—a-E
Eexp(—sM) = =@ Ems
s —o+aB(s)

a result known as the Pollaczek-Khintchine formula. The computations we omit-
ted can be found in Billingsley (1979) on p. 277 or several times in Feller, Vol. 11
(1971).
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Ergodic Theorems

X,,n > 0, is said to be a stationary sequence if for each k > 1 it has the same dis-
tribution as the shifted sequence X, 14, n > 0. The basic fact about these sequences,
called the ergodic theorem, is that if E| f(X)| < oo then

n—1
1
lim — Z f(X,,) existsa.s.
m=0

n—o00 n

If X, is ergodic (a generalization of the notion of irreducibility for Markov chains)
then the limit is £f(Xy). Sections 7.1 and 7.2 develop the theory needed to prove
the ergodic theorem. In Section 7.3, we apply the ergodic theorem to study the
recurrence of random walks with increments that are stationary sequences finding
remarkable generalizations of the i.i.d. case. In Section 7.4, we prove a subadditive
ergodic theorem. As the examples in Sections 7.4 and 7.5 should indicate, this is a
useful generalization of the ergodic theorem.

7.1 Definitions and Examples

Xo, X1, ...1s said to be a stationary sequence if for every k, the shifted sequence
{X%1n,n > 0} has the same distribution, that is, for each m, (X, ..., X;;) and
(Xk, - .., Xr+m) have the same distribution. We begin by giving four examples that
will be our constant companions.

Example 7.1.1. X, X1, ...arei.i.d.

Example 7.1.2. Let X,, be a Markov chain with transition probability p(x, A) and
stationary distribution 7, that is, 7(A) = [ 7(dx) p(x, A). If X, has distribution
7w then Xy, X1, ...1is a stationary sequence. A special case to keep in mind for
counterexamples is the chain with state space S = {0, 1} and transition probability
p(x, {1 — x}) = 1. In this case, the stationary distribution has 7 (0) = 7 (1) = 1/2
and (X, X1,...)=1(0,1,0,1,...)0r (1,0, 1,0, ...) with probability 1/2 each.

328
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Example 7.1.3. Rotation of the circle. Let 2 = [0, 1), 7 = Borel subsets, P =
Lebesgue measure. Let 6 € (0, 1), and for n > 0, let X, (w) = (v + n6) mod 1,
where x mod 1 = x — [x], [x] being the greatest integer < x. To see the reason for
the name, map [0, 1) into C by x — exp(2wix). This example is a special case of
the last one. Let p(x, {y}) = 1if y = (x + 6) mod 1.

To make new examples from old, we can use:

Theorem 7.1.1. If Xy, X, ...is a stationary sequence and g : RO} — R is
measurable then Y, = g(Xy, Xi11, . ..) is a stationary sequence.

Proof. If x € RI%1L-3 et gi(x) = g(xx, Xk41, .. .), and if B € RO et

A= {x:(gox), g1(x),...) € B}
To check stationarity now, we observe
Plw: (Yo, Y1,..)eB)=Pw:(Xg, Xy,...) € A)
= P(w: (Xg, Xp41,...) € A)
= P(w: (Y, Yet1,...) € B)

which proves the desired result. |

Example 7.1.4. Bernoulli shift. Q2 = [0, 1), 7 = Borel subsets, P = Lebesgue
measure. Yo(w) = w and forn > 1, let ¥,,(w) = (2 ¥,,—_1(w)) mod 1. This example
is a special case of (1.1). Let Xo, X, ...beiid. with P(X; =0)=P(X; =1) =
1/2,and let g(x) = > ;2 x;27 1. The name comes from the fact that multiplying
by 2 shifts the X’s to the left. This example is also a special case of Example 7.1.2.
Let p(x,{y}) =1if y = (2x) mod 1.

Examples 7.1.3 and 7.1.4 are special cases of the following situation.

Example 7.1.5. Let (2, F, P) be a probability space. A measurable map ¢ : 2 —
Q is said to be measure preserving if P(¢~'A) = P(A) for all A € F. Let ¢"
be the nth iterate of ¢ defined inductively by ¢”" = @(¢"~") for n > 1, where
¢°(w) = w. We claim that if X € F, then X, (w) = X(¢" ) defines a stationary
sequence. To check this, let B € R"™! and A = {0 : (Xo(w), ..., X,(w)) € B}.
Then

P((Xy, ..., Xisn) € B) = P(0*w € A) = P(w € A) = P(Xo, ..., Xn) € B)

The last example is more than an important example. In fact, it is the only
example! If Yy, Yy, ...is a stationary sequence taking values in a nice space,
Kolmogorov’s extension theorem, Theorem A.3.1, allows us to construct a measure
P on sequence space (S 0.1,.3 " S10.1.-}) "so that the sequence X, (w) = w, has the
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same distribution as that of {Y,,, n > 0}. If we let ¢ be the shift operator, that is,
o(wg, w1, ...) = (w1, w3, ...), and let X(w) = wy, then ¢ is measure preserving
and X, (w) = X(¢"w).

In some situations, such as in the proof of Theorem 7.3.3 below, it is useful to
observe:

Theorem 7.1.2. Any stationary sequence {X, , n > 0} can be embedded in a
two-sided stationary sequence {Y, : n € Z}.

Proof. We observe that
P(Y_, €Ap,....Y, € An1+n) = P(Xo € Ao, ---»Xm-i-n € Am+n)

is a consistent set of finite dimensional distributions, so a trivial generalization of
the Kolmogorov extension theorem implies there is a measure P on (S%, S%) so
that the variables Y, (w) = w, have the desired distributions. |

In view of the observations above, it suffices to give our definitions and prove
our results in the setting of Example 7.1.5. Thus, our basic setup consists of

(Q,F,P) a probability space
0] a map that preserves P
X,(w) = X(¢"w) where X is a random variable

We will now give some important definitions. Here and in what follows we assume
@ is measure-preserving. A set A € F is said to be invariant if p~!A = A. (Here,
as usual, two sets are considered to be equal if their symmetric difference has
probability 0.) Some authors call A almost invariant if P(AA¢~'(A)) = 0. We
call such sets invariant and call B invariant in the strict sense if B = ¢~ !(B).

Exercise 7.1.1. Show that the class of invariant events 7 is a o-field, and X € 7 if
and only if X is invariant, thatis, X o ¢ = X a.s.

Exercise 7.1.2. (i) Let A be any set, let B = U2 ;90" (A). Show ¢~ (B) C B. (ii)
Let B be any set with ¢ ~'(B) C B and let C = N2°,¢0"(B). Show that ¢ ~'(C) =
C. (iii) Show that A is almost invariant if and only if there is a C invariant in the

strict sense with P(AAC) = 0.

A measure-preserving transformation on (€2, F, P) is said to be ergodic if Z is
trivial, that is, for every A € Z, P(A) € {0, 1}. If ¢ is not ergodic, then the space
can be split into two sets A and A€, each having positive measure so that 9(A) = A
and @(A°) = A°. In words, ¢ is not “irreducible.”

To investigate further the meaning of ergodicity, we return to our examples,
renumbering them because the new focus is on checking ergodicity.
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Example 7.1.6. i.i.d. sequence. We begin by observing that if & = R!%1} and

@ is the shift operator, then an invariant set A has {w : w € A} = {w : pw € A} €
o(X1, X», ...). Iterating gives

Aeny? 0(Xy, Xpt1,...)=7T, thetail o-field

so Z C 7. For an i.i.d. sequence, Kolmogorov’s 0-1 law implies 7 is trivial, so Z
is trivial, and the sequence is ergodic (i.e., when the corresponding measure is put
on sequence space 2 = R{%1:2} the shift is).

Example 7.1.7. Markov chains. Suppose the state space S is countable and the
stationary distribution has 7w (x) > 0 for all x € S. By Theorems 6.5.4 and 6.4.5,
all states are recurrent, and we can write S = UR;, where the R; are disjoint
irreducible closed sets. If Xy € R;, then with probability 1, X, € R; foralln > 1
so {w : Xo(w) € R;} € T . The last observation shows that if the Markov chain is
not irreducible, then the sequence is not ergodic. To prove the converse, observe
thatif A€ Z, 14060, =14 where 6,(wp, w1, ...) = (W, W11, ...). So if we let
Fn = o (Xo, ..., Xpn), the shift invariance of 1, and the Markov property imply

Ex(141F) = Ex(14 06,1 F,) = h(X,)

where h(x) = E,14. Lévy’s 0-1 law implies that the left-hand side converges to
14 as n — oo. If X,, is irreducible and recurrent, then for any y € S, the right-
hand side = A(y) i.0., so either h(x) =0 or h(x) = 1, and P,(A) € {0, 1}. This
example also shows that 7 and 7 may be different. When the transition probability
p is irreducible 7 is trivial, but if all the states have period d > 1, 7 is not. In
Theorem 6.7.3, we showed that if Sy, ..., Sy is the cyclic decomposition of S,
then7 =o({Xo € S,}:0<r <d).

Example 7.1.8. Rotation of the circle is not ergodic if 0 = m/n where m < n
are positive integers. If B is a Borel subset of [0, 1/n) and

A =UZ\(B +k/n)

then A is invariant. Conversely, if @ is irrational, then ¢ is ergodic. To prove this,
we need a fact from Fourier analysis. If f is a measurable function on [0, 1) with
f f2(x)dx < oo, then f can be written as f(x) = > cre” ™ where the equality
is in the sense that as K — o0

K
> ™™ - f(x)in L7[0, 1)
k=—K

and this is possible for only one choice of the coefficients ¢, = [ f (x)e27kx gy
Now

flox) = Z cpe?TikaT0) — Z(Ckezmke)ezmkx

k k
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The uniqueness of the coefficients ¢; implies that f(¢(x)) = f(x) if and only if
cp (€% _ 1) = 0.If @ is irrational, this implies ¢; = O for k # 0, so f is constant.
Applying the last result to f = 14 with A € Z shows that A = @ or [0, 1) a.s.

Exercise 7.1.3. A direct proof of ergodicity. (i) Show that if 6 is irrational, x, =
n6 mod 1 is dense in [0,1). Hint: All the x,, are distinct, so for any N < oo,
|X, — xm| < 1/N for some m < n < N. (ii) Use Exercise A.2.1 to show that if A
is a Borel set with |A| > 0, then for any § > O there is an interval J = [a, b) so
that [A N J| > (1 — §)|J|. (iii)) Combine this with (i) to conclude P(A) = 1.

Example 7.1.9. Bernoulli shift is ergodic. To prove this, we recall that the sta-
tionary sequence Y,(w) = ¢" () can be represented as

00
Y, = Z 27(m+1)Xn+m
=0

where Xg, X, ...areii.d. with P(X; = 1) = P(X; = 0) = 1/2, and use the fol-
lowing fact:

Theorem 7.1.3. Let g : RI®1} — R be measurable. If X, X1, . .. is an ergodic
stationary sequence, then Y, = g(Xy, Xiy1, .. .) is ergodic.

Proof. Suppose Xy, X1, .. .isdefined on sequence space with X, (w) = w,.If B has
{w: Yy, Y:,..)eB={w:X,Y>,...)€ B} then A ={w: (Yy,Y;,...) € B}
is shift invariant. u

Exercise 7.1.4. Use Fourier analysis as in Example 7.1.3 to prove that Example
7.1.4 is ergodic.

Exercises

7.1.5. Continued fractions. Let p(x) = 1/x — [1/x] for x € (0, 1) and A(x) =
[1/x], where [1/x] = the largestinteger < 1/x.a, = A(¢"x),n =0, 1,2, ...gives
the continued fraction representation of x, that is,

x=1/(ap+1/(a; +1/(ax+1/...)))

Show that ¢ preserves w(A) = 1o<b+2 A l‘% for A C (0, 1).

Remark. In his 1959 monograph, Kac claimed that it was “entirely trivial” to check
that ¢ is ergodic, but retracted his claim in a later footnote. We leave it to the reader
to construct a proof or look up the answer in Ryll-Nardzewski (1951). Chapter 9
of Lévy (1937) is devoted to this topic and is still interesting reading today.

7.1.6. Independent blocks. Let X, X5, ...be a stationary sequence. Let n <
oo and let Yi,Y,,...be a sequence so that (Y,it1,..., Ysu+1)), k>0 are
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iid. and (Yy,...,Y,) = (X4,..., X,,). Finally, let v be uniformly distributed on
{1,2,...,n}, independent of Y, and let Z,, = Y,,, for m > 1. Show that Z is
stationary and ergodic.

7.2 Birkhoff’s Ergodic Theorem

Throughout this section, ¢ is a measure-preserving transformation on (2, F, P).
See Example 7.1.5 for details. We begin by proving a result that is usually referred
to as:

Theorem 7.2.1. The ergodic theorem. For any X € L',

1 n—1
- Z X(¢"w) —> E(X|T) a.s.andin L'
n

m=0

This result, due to Birkhoff (1931), is sometimes called the pointwise or individual
ergodic theorem because of the a.s. convergence in the conclusion. When the
sequence is ergodic, the limit is the mean E X. In this case, if we take X = 14, it
follows that the asymptotic fraction of time ¢™ € A is P(A).

The proof we give is based on an odd integration inequality due to Yosida and
Kakutani (1939). We follow Garsia (1965). The proof is not intuitive, but none of
the steps are difficult.

Lemma 7.2.2. Maximal ergodic lemma. Ler X;(w)= X(¢’w), Si(w)=
Xo(w)+ -+ Xj—1(w), and Mi(w) = max(0, Si(w), ..., Sx(w)). Then E(X;
M; > 0)>0.
Proof. If j < k, then M(pw) > S;(pw), so adding X(w) gives

X(w) + Mi(pw) > X(w) + Sj(pw) = Sj;1(w)
and rearranging we have

X(w) = Sj11(w) — Mi(pw) for j =1,...,k

Trivially, X(w) > S1(w) — My(pw), since S;(w) = X(w) and My(pw) > 0. There-
fore

EX(w); M, > 0) > / max(Sy(w), ..., Sy(w)) — My(pw)d P
{M,:>0}

= / M (w) — Mi(pw)d P
(M >0}
Now M (w) = 0 and My(pw) > 0 on {M; > 0}¢, so the last expression is
> [ M) - Migwrdp =0

since ¢ is measure preserving. [ |



334 Ergodic Theorems

Proof of Theorem 7.2.1. E(X|Z) is invariant under ¢ (see Exercise 7.1.1), so letting
X' = X — E(X|Z) we can assume without loss of generality that E(X|Z) = 0. Let
X =limsup S, /n,lete > 0,andlet D = {w : X(w) > €}. Our goal is to prove that
P(D)=0. X(¢pw) = X(w),so D € T . Let

X ()= X(@) —)lpl)  Sio)=X"(@+...+ X (¢" 'v)

M (@) = max(0, S}(®), ....S*®)  F,={M*>0}

F=U,F, = {supS,f/k > O}
k=1

Since X*(w) = (X(w) — €)1 p(w) and D = {limsup S;/k > €}, it follows that

F = {supSk/k>e}ﬂD=D
k=1

Lemma 7.2.2 implies that E(X*; F,) > 0. Since E|X*| < E|X|+ € < 00, the
dominated convergence theorem implies E(X*; F,) — E(X™*; F), and it follows
that E(X*; F) > 0. The last conclusion looks innocent, but F = D € 7, so it
implies

0<E(X*;D)=E(X —¢;D)=E(E(X|T); D) —€P(D)=—€eP(D)
since E(X|Z) = 0. The last inequality implies that
0= P(D)= P(limsup S,,/n > €)

and since € > 0 is arbitrary, it follows that limsup S,,/n < 0. Applying the last
result to —X shows that S;,/n — 0 a.s.

The clever part of the proof is over, and the rest is routine. To prove that
convergence occurs in L', let

X;V,(a)) = X(a))l(‘x(w)EM) and X;(,,(a)) = X(a)) — X;V[(a))

The part of the ergodic theorem we have proved implies
=
- D Xy@"w) > E(X),|T) as.
m=0
Since X, is bounded, the bounded convergence theorem implies

E — 0

n—1

1

=D Xy@"w) = E(X),|T)
m=0

To handle X7,, we observe

n—1

1
E <~ D EIXj (") = EIX)]
m=0

n—1
1 ” m
- E Xy (p" o)
n

m=0
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and E|E(X},|T)| < EE(X/,|T) = E|X],|. So

n—1
1
E|=Y" Xj(@"w) — E(Xy|T)| < 2E|X}|
n =0
and it follows that
1 n—1
limsup E |- Y X(¢"w) — E(X|T)| < 2E|X}]
n—00 n =0

As M — oo, E|X};| — 0 by the dominated convergence theorem, which com-
pletes the proof. [ |

Exercise 7.2.1. Show that if X € L? with p > 1, then the convergence in Theo-
rem 7.2.1 occurs in L.

Exercise 7.2.2. (i) Show that if g,(w) — g(w) a.s. and E(sup; |gr(w)|) < oo,
then

n—-oon

' 1 n—1
lim — Z gn(@"w) = E(g|T) as.
m=0
(ii) Show that if we suppose only that g, — g in L', we get L' convergence.

Before turning to examples, we would like to prove a useful result that is a simple
consequence of Lemma 7.2.2:

Theorem 7.2.3. Wiener’s maximal inequality. Let X j(w) = X (@), Si(w) =
Xo(@) + -+ + Xp—1(@), Ap(@) = Sp(w)/k, and Dy = max(Ay, ..., Ag). Ifa > 0,
then

P(Dy > o) <o 'E|X]

Proof. Let B = {Dy > a}. Applying Lemma 7.2.2 to X' = X — o, with X}(w) =
X' (@' w), S, = Xy(w)+ -+ X,_,, and M; = max(0, S|, ..., S;), we conclude
that E(X'; M; > 0) > 0. Since {M; > 0} = {D; > a} = B, it follows that

E|X]| z/XdP z/aszaP(B) n
B B

Exercise 7.2.3. Use Lemma 7.2.3 and the truncation argument at the end of the
proof of Theorem 7.2.2 to conclude that if Theorem 7.2.2 holds for bounded r.v.’s,
then it holds whenever E|X| < oo.

Our next step is to see what Theorem 7.2.2 says about our examples.
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Example 7.2.1. i.i.d. sequences. Since 7 is trivial, the ergodic theorem implies
that

n—1
1
_ZX'” — EXo as.andin L'
n

m=0

The a.s. convergence is the strong law of large numbers.

Remark. We can prove the L! convergence in the law of large numbers without
invoking the ergodic theorem. To do this, note that

1 & 1 &
+ + +) — +
- 2_1: Xt — EXt as. E (Z 2—1Xm) = EX

and use Theorem 5.5.2 to conclude that 1 3™ Xt — EX* in L'. A similar

result for the negative part and the triangle inequality now give the desired result.

Example 7.2.2. Markov chains. Let X, be an irreducible Markov chain on a
countable state space that has a stationary distribution . Let f be a function with

D If@)Im(x) < 00

In Example 7.1.7, we showed that 7 is trivial, so applying the ergodic theorem to
f(Xo(w)) gives

n—1
1
= Z f(Xw) — Z f(x)w(x) as.andin L'
n
m=0 X
For another proof of the almost sure convergence, see Exercise 6.6.4.

Example 7.2.3. Rotation of the circle. Q2 = [0, 1) ¢(®w) = (w + 6) mod 1. Sup-
pose that 6 € (0, 1) is irrational, so that by a result in Section 7.1 Z is trivial. If we
set X(w) = 14(w), with A a Borel subset of [0,1), then the ergodic theorem implies

1 n—1
D groen) = 1Al as.

m=0

n
where |A| denotes the Lebesgue measure of A. The last result for @ = 0 is usually
called Weyl’s equidistribution theorem, although Bohl and Sierpinski should
also get credit. For the history and a nonprobabilistic proof, see Hardy and Wright

(1959), pp. 390-393.
To recover the number theoretic result, we will now show that:

Theorem 7.2.4. If A = [a, b) then the exceptional set is (.
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Proof. Let Ay =la+ 1/k,b—1/k).If b — a > 2/k, the ergodic theorem implies

1nfl1 (m ) , )
p— ﬁ pa— _—
. E A4\Q W a X

m=0

for w € Q; with P(2;) = 1. Let G = N, where the intersection is over integers
kwithb —a >2/k. P(G) =1, so G is densein [0,1). If x € [0, 1) and w; € G
with |wy — x| < 1/k, then 9" w; € Ay implies ¢"x € A, so

n—1

1 2
li 'f—E La("x)>b—a— =
iminf alg"x) = a-z

m=0

for all large enough k. Noting that & is arbitrary and applying similar reasoning to
A€ shows

n—1

1
—E 14(@"x) —> b —a [ |
n

m=0

Example 7.2.4. Benford’s law. As Gelfand first observed, the equidistribution
theorem says something interesting about 2. Let 6 =log,,2, 1 <k <9, and
Ay = [log,o k, log,y(k + 1)), where log,, y is the logarithm of y to the base 10.
Taking x = 0 in the last result, we have

n—1
1 k+1
= Z 14(¢™0) — logyg <—>
n k
m=0
A little thought reveals that the first digit of 2" is k if and only if m6 mod 1 € Ay.
The numerical values of the limiting probabilities are

1 2 3 4 5 6 7 8 9
3010 1761 1249 0969 .0792 .0669 .0580 .0512 .0458

The limit distribution on {1, ..., 9} is called Benford’s (1938) law, although it
was discovered by Newcomb (1881). As Raimi (1976) explains, in many tables
the observed frequency with which k appears as a first digit is approximately
log,,((k 4+ 1)/ k). Some of the many examples that are supposed to follow Benford’s
law are census populations of 3259 counties, 308 numbers from Reader’s Digest,
areas of 335 rivers, and 342 addresses of American Men of Science. The next
table compares the percentages of the observations in the first five categories to
Benford’s law:

1 2 3 4 5

Census 339 204 142 81 7.2
Reader’s Digest 334 185 124 75 7.1
Rivers 31.0 164 107 113 7.2

Benford’sLaw  30.1 17.6 125 97 179
Addresses 289 192 126 88 8.5



338 Ergodic Theorems

The fits are far from perfect, but in each case Benford’s law matches the general
shape of the observed distribution.

Example 7.2.5. Bernoulli shift. Q = [0, 1), ¢(w) = Cw) mod 1. Let iy, ..., i; €
{0, 1} letr =127 " 4+ - + ;27 andlet X () = lifr < w < r + 2. In words,
X(w) = 1if the first k digits of the binary expansion of w are iy, . . ., ix. The ergodic
theorem implies that

1 n—1
- Z X(p"w) > 275 as.
n

m=0

that is, in almost every w € [0, 1) the pattern iy, ..., iy occurs with its expected
frequency. Since there are only a countable number of patterns of finite length, it
follows that almost every w € [0, 1) is normal, that is, all patterns occur with their
expected frequency. This is the binary version of Borel’s (1909) normal number
theorem.

7.3 Recurrence

In this section, we will study the recurrence properties of stationary sequences. Our
first result is an application of the ergodic theorem. Let X, X5, .. .be a stationary
sequence taking values in R?, let Sy = X| 4+ --- + Xy, let A = {S; # 0 for all
k > 1}, and let R, = |{S1,..., S,}| be the number of points visited at time n.
Kesten, Spitzer, and Whitman (see Spitzer, 1964, p. 40) proved the next result
when the X; are 1.i.d. In that case, 7 is trivial, so the limit is P(A).

Theorem 7.3.1. Asn — oo, R,/n — E(14|Z) a.s.

Proof. Suppose X1, X5, ...are constructed on (R?)!%!} with X,(w) = w,, and
let ¢ be the shift operator. It is clear that

Ry =) 149" )
m=1

since the right-hand side = [{m : 1 <m <n, S¢ # S, for all £ > m}|. Using the
ergodic theorem now gives

liminf R,/n > E(14]|Z) a.s.
n—oo

To prove the opposite inequality, let Ay = {S1 # 0, S, #0, ..., S # 0}. Itisclear
that

n—k

Ry <k+) 140" w)

m=1
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since the sum on the right-hand side = |{m : 1 <m <n—k,S; # S,, for m <
¢ < m + k}|. Using the ergodic theorem now gives

limsup R,/n < E(14,17)

n—oo

As k 1 0o, A | A, so the monotone convergence theorem for conditional expec-
tations, (c) in Theorem 5.1.2, implies

E(14,12) | E(14lZ) ask 1 o0

and the proof is complete. [ |

Exercise 7.3.1. Letg, = P(S1 #0,...,S8, #0)forn > 1and gy = 1. Show that
ERn = erlnzl 8m—1-

From Theorem 7.3.1, we get a result about the recurrence of random walks with
stationary increments that is (for integer-valued random walks) a generalization of
the Chung-Fuchs theorem, 4.2.7.

Theorem 7.3.2. Let X1, X», ...be a stationary sequence taking values in Z. with
E|X;|<oo. Let S, =X+ -+ X, and let A={S, #0,5,#0,...}. (i) If
E(X|Z) =0, then P(A) = 0. (ii) If P(A) =0, then P(S, =01i.0.) = 1.

Remark. In words, mean zero implies recurrence. The condition E(X{|Z) =0
is needed to rule out trivial examples that have mean O but are a combination
of a sequence with positive and negative means, for example, P(X,, = 1 for all
n) = P(X, =—1foralln) =1/2.

Proof. If E(X1|Z) = 0, then the ergodic theorem implies S,,/n — 0 a.s. Now
. s -
hﬁgp (g@n |Sk1/ n) h,?lilip (Kngggn ISkI/n) =< (Iglag |Sk1/ k)

for any K and the right-hand side | 0 as K 1 oo. The last conclusion leads easily

to
lim <max |Sk|)/n =0
n—>o00 \ 1<k<n

Since R, < 1+ 2maxj<x<, |Sk|, it follows that R,/n — 0, and Theorem 7.3.1
implies P(A) = 0.

Let F; ={S; #0 for i <j,S;=0} and G ={S;4i —S; #0 for i <k,
Sitk —S;=0}. P(A)=0 implies that ) P(F;)=1. Stationarity implies
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P(G ) = P(Fy), and for fixed j the G;; are disjoint, so UyG;; = Q as. It
follows that

Z P(F;NG,;) = P(F;) and Z P(F;NGjp) =1
k J-k

On F;NGj, S;=0and S;;x =0, so we have shown P(S, =0 at least two
times) = 1. Repeating the last argument shows P (S, = 0 at least k times) = 1 for
all k, and the proof is complete. [ |

Exercise 7.3.2. Imitate the proof of (i) in Theorem 7.3.2 to show that if we
assume P(X; > 1) =0, EX; > 0, and the sequence X; is ergodic in addition to
the hypotheses of Theorem 7.3.2, then P(A) = EX;.

Remark. This result was proved for asymmetric simple random walk in Exer-
cise 4.1.13. It is interesting to note that we can use martingale theory to prove a
result for random walks that do not skip over integers on the way down; see
Exercise 5.7.7.

Extending the reasoning in the proof of part (ii) of Theorem 7.3.2 gives a result
of Kac (1947b). Let Xy, X1, . .. be a stationary sequence taking values in (S, S).
LetA € S,letTy = 0,and forn > 1,letT,, = inf{m > T,_; : X,, € A} be the time
of the nth return to A.

Theorem 7.3.3. If P(X,, € A at least once) = 1, then under P(-|Xy € A), t, =
T, — T,_1 is a stationary sequence with E(T1| Xy € A) = 1/P(Xy € A).

Remark. If X, is an irreducible Markov chain on a countable state space § starting
from its stationary distribution 7, and A = {x}, then Theorem 7.3.3 says E, T, =
1/m(x), which is Theorem 6.5.5. Theorem 7.3.3 extends that result to an arbitrary
A C S and drops the assumption that X,, is a Markov chain.

Proof. We first show that under P(-| Xy € A), t1, 12, . .. is stationary. To cut down
on ...’s, we will only show that

P(l] Im,IZIHIXQEA)ZP(l‘zzm,l3=n|X()€A)

It will be clear that the same proof works for any finite dimensional distribution. Our
first step is to extend {X,,, n > 0} to a two-sided stationary sequence {X,, n € Z}
using Theorem 7.1.2. Let C, = {X_1 ¢ A, ..., X 411 ¢ A, X_; € A}.

(UK C) = {Xk g Afor —K <k <1}

The last event has the same probability as {X; ¢ A for 1 <k < K}, so let-
ting K — oo, we get P (U2, Cy) = 1. To prove the desired stationarity, we let
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Iix ={i €[j,k]:X; € A} and observe that

o0
P(tzzm,tg:n,XoeA):ZP(XoeA,tl:Z,tzzm,t3:n)
=1

I
Nk

P(lo,exmin =1{0,€, £ +m, £+ m + n})

~
I
=

P(I—E,m-i-n = {_Ev Ov mv m + n})

M

&~
I
-

M

P(CKaXOEAst1:m7t2:n)

~
I

1

To complete the proof, we compute

o0 o0
E(t|Xo € A) = Z P(t; > k|Xg € A) = P(Xy € A)~! Z P(t; >k, Xo € A)
k=1 k=1

— P(Xg € )" Y P(Co) = 1/P(Xo € A)
k=1

since the C;, are disjoint and their union has probability 1. [ |

In the next two exercises, we continue to use the notation of Theorem 7.3.3.

Exercise 7.3.3. Show that if P(X, € A atleastonce) = 1and A N B = @, then

E( Z Lix,en)

1<m<T

X0€A> :w
P(Xpe A)

When A = {x} and X, is a Markov chain, this is the “cycle trick” for defining a
stationary measure. See Theorem 6.5.2.

Exercise 7.3.4. Consider the special case in which X, € {0, 1}, and let P =
P(:|X9 =1).Here A = {l1}andso T; = inf{m > 0 : X,, = 1}. Show P(T} =n) =
P(Ty > n)/ET,. When t,, t», . . . are i.i.d., this reduces to the formula for the first
waiting time in a stationary renewal process.

In checking the hypotheses of Kac’s theorem, a result Poincaré proved in 1899
is useful. First, we need a definition. Let T4 = inf{n > 1 : ¢"(w) € A}.

Theorem 7.3.4. Suppose ¢ : Q@ — Q preserves P, thatis, Po ™' = P. (i) T4 <
00 a.s. on A, that is, P(w € A, Ty = o0) = 0. (ii) {¢"(w) € Ai.o.} D A. (iii) If ¢
is ergodic and P(A) > 0, then P(¢"(w) € Aio.) = 1.



342 Ergodic Theorems

Remark. Note that in (i) and (ii) we assume only that ¢ is measure-preserving.
Extrapolating from Markov chain theory, the conclusions can be “explained” by
noting that (i) the existence of a stationary distribution implies the sequence is
recurrent, and (ii) since we start in A, we do not have to assume irreducibility.
Conclusion (i) is, of course, a consequence of the ergodic theorem, but as the
self-contained proof below indicates, it is a much simpler fact.

Proof. Let B = {w € A, T4 = o0}. A little thought shows that if ® € ¢™" B, then
o™ (w) € A, but ¢"(w) ¢ A for n > m, so the ¢~ B are pairwise disjoint. The
fact that ¢ is measure-preserving implies P(¢~" B) = P(B), so we must have
P(B) = 0 (or P would have infinite mass). To prove (ii), note that for any k, ¢* is
measure-preserving, so (i) implies

0=PweA, ¢ (w)¢ Aforalln > 1)
> Plwe A, " (w) ¢ Aforallm > k)

Since the last probability is O for all k, (ii) follows. Finally, for (iii), note that
B ={w: ¢"(w) € Ai.o.}isinvariant and D A by (b), so P(B) > 0, and it follows
from ergodicity that P(B) = 1. [ |

7.4 A Subadditive Ergodic Theorem*
In this section we will prove Liggett’s (1985) version of Kingman’s (1968)

Theorem 7.4.1. Subadditive ergodic theorem. Suppose X,, ,, 0 < m < n satisfy:
(l) XO,m + Xm,n = XO,n

(1) {Xnk,(+1)k » 1 > 1} is a stationary sequence for each k.

(iii) The distribution of { X,y m+k, k > 1} does not depend on m.

(iv) EXSF’1 < oo and for each n, EXy, > yon, where yp > —o0.

Then

(a) lim, o EXo,/n =inf,, EXopm/m=y

(b) X =1lim,_, o Xo,,/n exists a.s. and in L', so EX =y.

(c) If all the stationary sequences in (ii) are ergodic then X = y a.s.

Remark. Kingman assumed (iv), but instead of (i)—(iii) he assumed that X, ,, +
Xman = Xgpnforall £ < m < n and that the distribution of { X, 1 n4x, 0 < m < n}
does not depend on k. In two of the four applications in the next section, these
stronger conditions do not hold.

Before giving the proof, which is somewhat lengthy, we will consider several
examples for motivation. Since the validity of (ii) and (iii) in each case is clear, we
will only check (i) and (iv). The first example shows that Theorem 7.4.1 contains
the ergodic theorem, 7.2.1, as a special case.
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Example 7.4.1. Stationary sequences. Suppose &1, &,, .. .1is a stationary sequence
with E[&| < oo, and let X,, , = &,+1 +--- + &,. Then Xo,, = Xom + Xm.n, and
(iv) holds.

Example 7.4.2. Range of random walk. Suppose £, &,,...is a stationary
sequence and let S, =& 4+ ---4+&,. Let X,,, = [{Sm+1,..., Sn}l- It is clear
that Xon + Xmn = Xon. 0 < Xo.n < n, so (iv) holds. Applying (6.1) now gives
Xon/n — X as.and in L', but it does not tell us what the limit is.

Example 7.4.3. Longest common subsequences. Given are ergodic stationary
sequences X1, X5, X3,...and Y1, Y>,Y3,... Let L,,, = max{K : X;, =Y, for
l<k<K,wherem <ij<ir---<ig<nandm< jj < jp--- < jg <n} It
is clear that

LO,m + Lm,n = LO,n

s0 X,y.n = —L,,.n 18 subadditive. 0 < Ly, < n so (iv) holds. Applying Theorem
7.4.1 now, we conclude that

LO,n/n — Y =Ssup E(LO,m/m)

m>1

Exercise 7.4.1. Suppose that in the last exercise X, X»,...and Yy, Y>,...are
i.i.d. and take the values O and 1 with probability 1/2 each. (a) Compute E L,
and EL;,/2 to get lower bounds on y. (b) Show ¥ < 1 by computing the expected
number of i and j sequences of length K = an with the desired property.

Remark. Chvital and Sankoff (1975) have shown 0.727273 < y < 0.866595

Example 7.4.4. Slow convergence. Our final example shows that the convergence
in (a) of Theorem 7.4.1 may occur arbitrarily slowly. Suppose X, n+x = f(k) > 0,
where f(k)/k is decreasing.

XO,n = f(n) = m% + (l’l _ m)ffln)
= mm +(I’l - m)w == XO,m + Xm,n
m n—

The examples above should provide enough motivation for now. In the next
section, we will give four more applications of Theorem 7.4.1.

Proof of Theorem 7.4.1. There are four steps. The first, second, and fourth date
back to Kingman (1968). The half-dozen proofs of subadditive ergodic theorems
that exist all do the crucial third step in a different way. Here we use the approach of
S. Leventhal (1988), who in turn based his proof on Katznelson and Weiss (1982).
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Step 1. The first thing to check is that E|Xy ,| < Cn. To do this, we note that
(1) implies X Sf X, = X("{ .- Repeatedly using the last inequality and invoking
(iii) gives EX(J{J1 < nEX(")'f1 < o0. Since |x| = 2x* — x, it follows from (iv) that

E|Xon| <2EX{, — EXon < Cn < 00
Leta, = EXy,. (i) and (iii) imply that
am + ap—m = ay (7.4.1)
From this, it follows easily that

a,/n — inf1 am/m =y (74.2)
m>

To prove this, we observe that the liminf is clearly > y, so all we have to show is
that the limsup < a,, /m for any m. The last fact is easy, for if we write n = km + ¢
with 0 < ¢ < m, then repeated use of (7.4.1) gives a, < ka,, + a,. Dividing by

n = km + £ gives
a, km a, ap
< —

n _km+ﬁ.; n

Letting n — oo and recalling 0 < £ < m gives 7.4.2 and proves (a) in Theorem
7.4.1.

Step 2. Making repeated use of (i), we get
XO,n =< XO,km + ka,n
Xon = Xo,te—tym + Xoe—tym,kom + Xiom,n
and so on until the first term on the right is X ,,. Dividing by n = km 4 £ then
gives
Xon __k  Xowt -+ Xa—imm n Ximn
n ~ km+4 k n
Using (ii) and the ergodic theorem now gives that
Xom + -+ Xk~ Dym.km
k

where A,, = E(Xo.m|Z,) and the subscript indicates that Z,, is the shift invariant
o -field for the sequence X (x—1ym km» K > 1. The exact formula for the limit is not
important, but we will need to know later that EA,, = EXg .

If we fix £ and let € > 0, then (iii) implies

(7.4.3)

—~ A, as.andinL'

o0 o0
> PXimamre > (km +0)€) < ) P(Xo.e > ke) < 00
k=1 k=1

since E X af ; < 0o by the result at the beginning of Step 1. The last two observations
imply

X = limsup Xg,,/n < A,,/m (7.4.4)

n—oo
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Taking expected values now gives EX < E(X,,/m), and taking the infimum over
m, we have EX < y. Note that if all the stationary sequences in (ii) are ergodic,
we have X < y.

Remark. If (i)—(iii) hold, £ Xo+, | <00, and inf EXy ,,/m = —o0, then it follows
from the last argument that as X ,/n — —oo a.s. asn — 00.

Step 3. The next step is to let
X =liminf Xy ,/n

n—oo
and show that EX > y. Since 0o > EXjp| > y > y > —00, and we have shown
in Step 2 that EX < y, it will follow that X = X, that is, the limit of Xo.n/n exists
a.s. Let

X, = liminf X,,, .4, /n

n—oQ

(i) implies

XO,m+n = XO,m + Xm,m+n

Dividing both sides by n and letting n — oo gives X < X, a.s. However, (iii)
implies that X, and X have the same distribution so X = X, a.s.

Lete>0andlet Z=¢+ (X Vv —M). Since X <X and EX <y < oo by
Step 2, E|Z| < oo. Let

Ym,n = Xm,n —(n—m)Z

Y satisfies (i)—(iv), since Z,, , = —(n — m)Z does, and has
Y =liminf Yy ,/n < —e€ (7.4.5)
n—oo

Let T, = min{n > 1 : Y, u4+, < 0}. (iii) implies T, =4 Tp and
E(Ynm+1;Tn > N)=E(Xo,1;To > N)
(7.4.5) implies that P(Ty < oo) = 1, so we can pick N large enough so that
E(Yo15To > N) <¢€
Let
T, on{T, < N}
" {1 on {T,, > N}
This is not a stopping time, but there is nothing special about stopping times for a
stationary sequence! Let
0 on{7T,, < N}
Sn = {Ym’m_i'_l on {T,, > N}

Since Y(m,m + T,,) <0 always and we have S, =1, Y,y mr1 > 0 on {7, >
N}, we have Y(m,m + S,,) <&, and &, > 0. Let Ry =0, and for k > 1, let
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Ri = Ri_1 4+ S(Ri_1). Let K = max{k : R, < n}. From (i), it follows that
Y(0,n) < Y(Ro, Ry) + -+ Y(Rg-1, Rg) + Y(Rk, n)

Since &, > 0 and n — Rx < N, the last quantity is

n—1 N
=< Zém + Z |Yn—j,n—j+l|
m=0 j=1

Here we have used (i) on Y(Rg, n). Dividing both sides by n, taking expected
values, and letting n — oo gives

limsup EYy,/n < E§ < E(Yy,1;To > N) <€

n—oQ

It follows from (a) and the definition of Yy , that
y = lim EXy,/n <2+ EXV-—M)
n—oo
Since € > 0 and M are arbitrary, it follows that EX > y, and Step 3 is complete.

Step 4. It only remains to prove convergence in L'. Let I',, = A,,/m be the limit
in (7.4.4), recall ET",, = E(Xo,m/m), and let I' = inf [';,. Observing that |z| =
2z — z (consider two cases z > 0 and z < 0), we can write

E|Xon/n—T|=2EXo,/n —T)" — E(Xg./n —T) <2E(Xq,/n—T)*
since
E(Xon/n) =y =inf ET,, > ET
Using the trivial inequality (x + y)* < x* + y™ and noticing I",, > T" now gives
E(Xon/n —T)" < E(Xon/n—Tp)" + E(T, —T)

Now ET,, — yasm — ooand EI' > EX > EX > y bysteps2and 3,s0 E" =
y, and it follows that E(I",, — I') is small if m is large. To bound the other term,
observe that (i) implies

X(0,m)+ -+ X((k — D)m, km) T >+

EXon,/n—T,)" <E

L E (X(km,n)>+
n

The second term = E(X(J)f(/n) — 0asn — oo. For the first, we observe y* < |y|,
and the ergodic theorem implies

XO0,m)+ -+ X((k — m, km) _r

k

so the proof of Theorem 7.4.1 is complete. [ |
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7.5 Applications*

In this section, we will give four applications of our subadditive ergodic theorem,
7.4.1. These examples are independent of each other and can be read in any order.
In the last two, we encounter situations to which Liggett’s version applies but
Kingman’s version does not.

Example 7.5.1. Products of random matrices. Suppose A}, A,, .. .isastationary
sequence of k X k matrices with positive entries, and let

Uiy J) = (Amgr - - A, ),
that is, the entry in row i of column j of the product. It is clear that
o,m(1, Doty n(1, 1) < (1, 1)

so if we let X,, , = —loga,, (1, 1), then Xg,, + X, = Xo.,. To check (iv), we
observe that

[TA4n( D) <@, ) <k ' ] (SuP An(i, j))

m=1 m=1 i

or taking logs

= log Au(1,1) = X, = —(nlogk) — > " log <spp A, j))
L]

m=1 m=1
Soif Elog A,,(1, 1) > —o0, then EX(J{l < 00, and if
Elog (sup A, (@, j)) < 0
i,Jj
then EX, < yon. If we observe that
P | log [ sup An(i, j) | = x ) <) P(log Al j) = x)
i\j v
we see that it is enough to assume that
(%) E|log A, (i, j)| <oo foralli, j

When (x) holds, applying Theorem 7.4.1 gives Xy ,/n — X a.s. Using the strict
positivity of the entries, it is easy to improve that result to

1
—logao,(i, j) = —X as.foralli, j (7.5.1)
n

a result first proved by Furstenberg and Kesten (1960). [ |
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The key to the proof above was the fact that « ,(1, 1) was supermultiplicative.
An alternative approach is to let

|All = max } | AG. )| = max{|lx Ay « x| = 1}
J
where (xA); = ), x;A(i, j) and ||x||; = |x;| + - - - + |x¢|. From the second defi-
nition, it is clear that |AB|| < ||A] - || B||, so if we let

IBm,n = ||Am+1 e An”

and Y, , = log B,,.», then Y, ,, is subadditive. It is easy to use (7.5.1) to show that

1
;log lApar - Anll > —X  as.

where X is the limit of X ,/n. To see the advantage in having two proofs of the
same result, we observe that if Ay, A,, ...is an i.i.d. sequence, then X is constant,
and we can get upper and lower bounds by observing
sup(E log ao,n)/m = =X = inf (E log fo.n)/m

m>

m>1

Remark. Oseledéc (1968) proved a result which gives the asymptotic behavior of
all of the eigenvalues of A. As Ragunathan (1979) and Ruelle (1979) have observed,
this result can also be obtained from Theorem 7.4.1. See Krengel (1985) or the
papers cited for details. Furstenberg and Kesten (1960) and later Ishitani (1977)
have proved central limit theorems:

1/2

(logagn(l, 1) — un)/n"'* = ox

where x has the standard normal distribution. For more about products of random
matrices, see Cohen, Kesten, and Newman (1985).

Example 7.5.2. Increasing sequences in random permutations. Let = be a
permutation of {1,2,...,n} and let £() be the length of the longest increasing
sequence in 7, that is, the largest k for which there are integers i} < i« -+ < iy
sothat w (i) < w(ip) < --- < m(ix). Hammersley (1970) attacked this problem by
putting a rate one Poisson process in the plane, and for s < ¢ € [0, 00), letting Y ;
denote the length of the longest increasing path lying in the square R; ; with vertices
(s, ), (s, 1), (t,1),and (¢, s). That is, the largest k for which there are points (x;, y;)
in the Poisson process with s < x; < --- <xy <tands <y, <--- <y, <t. It
is clear that Yy ,, + Yn.n < Yo.,. Applying Theorem 7.4.1 to —Yy , shows

Yon/n — y =sup EYy,/m as.
m>1
For each k, Yt (ut1k, n > 0 is i.i.d., so the limit is constant. We will show that
y < oo in Exercise 7.5.2.
To get from the result about the Poisson process back to the random permutation
problem, let 7(n) be the smallest value of ¢ for which there are n points in Ry ,. Let
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the n points in Ry ;(,) be written as (x;, y;) where 0 < x; < x3--- < x, < t(n) and
let 7, be the unique permutation of {1, 2, ..., n} sothat y, (1) < Y2+ < Yr,(0)-
It is clear that Yy -,y = £(7r,). An easy argument shows:

Lemma 7.5.1. t(n)//n — 1 a.s.

Proof. Let S, be the number of points in Ry /. S, — S,—1 are independent Poisson
r.v.’s with mean 1, so the strong law of large numbers implies S,/n — 1 a.s.
If € > 0O then for large n, Sy1—¢) <n < Sy+e) and hence /(I —€)n < 7(n) <
JaT+eon. u

It follows from Lemma 7.5.1 and the monotonicity of m — Y ,, that

n_l/zﬁ(nn) — y a.s.

Hammersley (1970) has a proof that 7/2 < y < e, and Kingman (1973) shows
that 1.59 < y < 2.49. See Exercises 7.5.1 and 7.5.2. Subsequent work on the
random permutation problem, see Logan and Shepp (1977) and Vershik and Kerov
(1977), has shown that y = 2.

Exercise 7.5.1. Given a rate one Poisson process in [0, co) x [0, 00), let
(X1, Y)) be the point that minimizes x + y. Let (X3, Y>) be the point in
[X1, 00) x [Y1, oo) that minimizes x + y, and so on. Use this construction to show
that y > (8/m)"/? > 1.59.

Exercise 7.5.2. Let 7, be a random permutation of {1, ..., n} and let J;' be the
number of subsets of {1,...n} of size k so that the associated ,(j) form an
increasing subsequence. Compute EJ;" and take k ~ an'/? to conclude y < e.

Remark. Kingman improved this by observing that £(rr,,) > € then J;' > (}). Using
this with the bound on EJ} and taking £ ~ Bn'/? and k ~ an'/?, he showed

y < 2.49.

Example 7.5.3. Age-dependent branching processes. This is a variation of the
branching process introduced in Subsection 5.3.4 in which each individual lives for
an amount of time with distribution F before producing k offspring with probability
Pk The description of the process is completed by supposing that the process starts
with one individual in generation 0 who is born at time 0, and when this particle
dies, its offspring start independent copies of the original process.

Suppose py = 0, let Xy, be the birth time of the first member of generation m,
and let X,, , be the time lag necessary for that individual to have an offspring in
generation n. In case of ties, pick an individual at random from those in generation
m born at time X ,,. Itis clear that Xy, < Xg,, + Xy . Since X, > 0, (iv) holds
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if we assume F has finite mean. Applying Theorem 7.4.1 now, it follows that
Xon/n — y as.

The limit is constant because the sequences { X,k (n+1)k, n > 0} are i.i.d.

Remark. The inequality X, ,, + X, > Xy, is false when £ > 0, because if we
call i,,, the individual that determines the value of X, , for n > m, then i,, may not
be a descendant of i,.

As usual, one has to use other methods to identify the constant. Let ¢y, 15, .. . be
i.i.d. with distribution F, let T, =t; +--- +1,, and . = >_ kpy. Let Z,(an) be
the number of individuals in generation n born by time an. Each individual in
generation n has probability P(7,, < an) to be born by time an, and the times are
independent of the offspring numbers so

EZ,(an) = EE(Zy(an)|Zy) = E(Z, P(T, < an)) = u" P(T, < an)

By results in Section 2.6, n~!log P(T, < an) — —c(a) as n — oo. If logu —
c(a) < 0 then Chebyshev’s inequality and the Borel-Cantelli lemma imply
P(Z,(an) > 11i.0.) = 0. Conversely, if EZ,(an) > 1 for some n, then we can
define a supercritical branching process Y,, that consists of the offspring in gener-
ation mn that are descendants of individuals in Y,,_; in generation (m — 1)n that
are born less than an units of time after their parents. This shows that with positive
probability, X, < mna for all m. Combining the last two observations with the
fact that c(a) is strictly increasing gives

y = inf{a : log u — c(a) > 0}

The last result is from Biggins (1977). See his 1978 and 1979 papers for exten-
sions and refinements. Kingman (1975) has an approach to the problem via mar-
tingales:

Exercise 7.5.3. Let p(0) = E exp(—6t;) and

Zn
Y, = (up®)™" Y exp(—07T, (i)
i=1
where the sum is over individuals in generation n and 7,,(7) is the ith person’s birth
time. Show that Y, is a nonnegative martingale and use this to conclude that if
exp(—0a)/ue@) > 1, then P(Xo, < an) — 0. A little thought reveals that this
bound is the same as the answer in the last exercise.

Example 7.5.4. First-passage percolation. Consider Z¢ as a graph with edges
connecting each x, y € Z¢ with |x — y| = 1. Assign an independent nonnegative
random variable t(e) to each edge that represents the time required to traverse the
edge going in either direction. If e is the edge connecting x and y, let 7(x, y) =
(y,x) = t(e). If x9g = x, x1, ..., x, = yis a path from x to y, that is, a sequence
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with |x,, — x,,—1| = 1 for 1 < m < n, we define the travel time for the path to
be t(xg, x1) + - - - 4+ t(x,_1, x,). Define the passage time from x to y, #(x, y) =
the infimum of the travel times over all paths from x to y. Let z € Z¢, and let
Xmn = t(mu, nu), whereu = (1,0, ...,0).

Clearly Xo,m + Xm.n = Xon- Xon =0, so if Et(x, y) < oo, then (iv) holds,
and Theorem 7.4.1 implies that X, ,/n — X a.s. To see that the limit is constant,
enumerate the edges in some order ey, e, ...and observe that X is measurable
with respect to the tail o-field of the i.i.d. sequence 7(ey), t(ez), ...

Remark. It is not hard to see that the assumption of finite first moment can be
weakened. If 7 has distribution F' with

(*) /00(1 — F(x)*dx < o0
0

that is, the minimum of 2d independent copies has finite mean, then by finding 2d
disjoint paths from 0 to u = (1, 0, ..., 0), one concludes that E7(0, u) < co and
(6.1) can be applied. The condition (*) is also necessary for Xy ,/n to converge to
a finite limit. If () fails and Y, is the minimum of #(e) over all the edges from v,
then

limsup Xp,/n > limsupY,/n =00 a.s.
n—oo n—oo
Above we considered the point-to-point passage time. A second object of
interest is the point-to-line passage time:

a, = inf{r(0, x) : x; = n}

Unfortunately, it does not seem to be possible to embed this sequence in a subad-
ditive family. To see the difficulty, let 7(0, x) be infimum of travel times over paths
from O to x that lie in {y : y; > 0}, let

a, = inf{#(0, x) : x; = m}

and let x be a point at which the infimum is achieved. We leave to the reader the
highly nontrivial task of proving that such a point exists; see Smythe and Wierman
(1978) for a proof. If we let a,, , be the infimum of travel times over all paths that
start at x™, stay in {y : y; > m}, and end on {y : y; = n}, then a,, , is independent
of a,, and

C_lm + am,n = an
The last inequality is true without the half-space restriction, but the independence is
not, and without the half-space restriction, we cannot get the stationarity properties
needed to apply Theorem 7.4.1.

Remark. The family a,, , is another example where ay ,, + ay., > g, need not
hold for £ > 0.
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A second approach to limit theorems for a,, is to prove a result about the set of
points that can be reached by time 7: & = {x : #(0, x) < ¢}. Cox and Durrett (1981)
have shown

Theorem 7.5.2. For any passage time distribution F with F(0) = 0, there is a
convex set A so that for any € > 0 we have with probability one

& C (1 4+ e)tA for all t sufficiently large

and |&f N (1 —eANZA/t! - 0ast — oo.

Ignoring the boring details of how to state things precisely, the last result says
&/t — A as. It implies that a,/n — y a.s., where y = 1/sup{x; : x € A}. (Use
the convexity and reflection symmetry of A.) When the distribution has finite mean
(or satisfies the weaker condition in the remark above), y is the limit of (0, nu)/n.
Without any assumptions, #(0, nu)/n — y in probability. For more details, see the
paper cited above. Kesten’s 1986 and 1987 papers are good sources for more about
first-passage percolation.

Exercise 7.5.4. Oriented first-passage percolation. Consider a graph with ver-
tices {(m, n) € Z> : m + nisevenandn < 0}, and oriented edges connecting (m, n)
to(m+1,n—1)and (m,n)to(m — 1,n — 1). Assign i.i.d. exponential mean one
r.v.’s to each edge. Thinking of the number on edge e as giving the time it takes
water to travel down the edge, define ¢(m, n) = the time at which the fluid first
reaches (m, n), and a,, = inf{¢t(m, —n)}. Show that as n — oo, a,,/n converges to
alimit y a.s.

Exercise 7.5.5. Continuing with the setup in the last exercise: (i) Show y < 1/2
by considering a,. (ii) Get a positive lower bound on y by looking at the expected
number of paths down to {(m, —n) : —n < m < n} with passage time < an and
using results from Section 2.6.

Remark. If we replace the graph in Exercise 7.5.4 by a binary tree, then we
get a problem equivalent to the first birth problem (Example 7.5.3) for p, = 2,
P(t; > x) = e~*. In that case, the lower bound obtained by the methods of part (ii)
Exercise 7.5.5 was sharp, but in this case it is not.
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Brownian Motion

Brownian motion is a process of tremendous practical and theoretical significance.
It originated (a) as a model of the phenomenon observed by Robert Brown in 1828
that “pollen grains suspended in water perform a continual swarming motion,” and
(b) in Bachelier’s (1900) work as a model of the stock market. These are just two
of many systems that Brownian motion has been used to model. On the theoretical
side, Brownian motion is a Gaussian Markov process with stationary independent
increments. It lies in the intersection of three important classes of processes and is
a fundamental example in each theory.

The first part of this chapter develops properties of Brownian motion. In Sec-
tion 8.1, we define Brownian motion and investigate continuity properties of its
paths. In Section 8.2, we prove the Markov property and a related 0-1 law. In
Section 8.3, we define stopping times and prove the strong Markov property. In
Section 8.4, we take a close look at the zero set of Brownian motion. In Section 8.5,
we introduce some martingales associated with Brownian motion and use them to
obtain information about its properties.

The second part of this chapter applies Brownian motion to some of the problems
considered in Chapters 2 and 3. In Section 8.6, we embed random walks into
Brownian motion to prove Donsker’s theorem, a far-reaching generalization of the
central limit theorem. In Section 8.7, we show that the discrepancy between the
empirical distribution and the true distribution when suitably magnified converges
to Brownian bridge. In Section 8.8, we prove laws of the iterated logarithm for
Brownian motion and random walks with finite variance.

8.1 Definition and Construction

A one-dimensional Brownian motion is a real-valued process B;, t > 0 that has
the following properties:

(@) Ifty <ty <--- <ty,then B(ty), B(ty) — B(ty), ..., B(t,) — B(t,_1) are inde-
pendent.

353
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(b) If s, ¢ > 0, then
P(B(s +1)— B(s) € A) = /(27‘[t)1/2 exp(—x2/21) dx
A

(c) With probability 1, r — B, is continuous.

(a) says that B, has independent increments. (b) says that the increment B(s + t) —
B(s) has a normal distribution with mean 0 and variance ¢. (c) is self-explanatory.

Thinking of Brown’s pollen grain, (c) is certainly reasonable. (a) and (b) can be
justified by noting that the movement of the pollen grain is due to the net effect of
the bombardment of millions of water molecules, so by the central limit theorem,
the displacement in any one interval should have a normal distribution, and the
displacements in two disjoint intervals should be independent. Figure 8.1 shows a
simulation of two dimentional Brownian motion.

Figure 8.1. Simulation of two-dimensional Brownian motion.

Two immediate consequences of the definition that will be useful many times
are:

Translation invariance. {B, — By, t > 0} is independent of By and has the same
distribution as a Brownian motion with By = 0.
Proof. Let A; = o(By) and A; be the events of the form

{B(t1) — B(tp) € Ay, ..., B(ty) — B(ty—1) € Ay}

The A; are m-systems that are independent, so the desired result follows from the
7w — A theorem 2.1.2. [ |

The Brownian scaling relation. If By = 0 then for any ¢ > 0,
(Byi,s = 0} = {t'*By,s = 0} @.1.1)

To be precise, the two families of r.v.’s have the same finite dimensional distribu-
tions, that is, if s < --- < s, then

d
(let’ cees Bsnt) - (ll/zlev ce tl/zBsn)
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Proof. To check this when n = 1, we note that #'/? times a normal with mean 0 and
variance s is a normal with mean O and variance s¢. The result for n > 1 follows
from independent increments. |

A second equivalent definition of Brownian motion starting from By = 0, that
we will occasionally find useful is that B,, t > 0, is a real-valued process satisfying

(@) B(t) is a Gaussian process (i.e., all its finite dimensional distributions are
multivariate normal).

(b)) EB=0and EB,B, = s At.

(¢/) With probability one, t — B; is continuous.

It is easy to see that (a) and (b) imply (a’). To get (b’) from (a) and (b), suppose
s < t and write

EB,B, = E(B}) + E(B,(B, — B,)) = s

The converse is even easier. (a’) and (b’) specify the finite dimensional distributions
of B, which by the last calculation must agree with the ones defined in (a) and (b).

The first question that must be addressed in any treatment of Brownian motion
is, “Is there a process with these properties?” The answer is “Yes,” of course, or
this chapter would not exist. For pedagogical reasons, we will pursue an approach
that leads to a dead end and then retreat a little to rectify the difficulty. Fixanx € R
and foreach 0 < #; < --- < t,, define a measure on R" by

n
/Lx,tl,...,tn(Al X e X An) = / dX1 o / dxn l_[ ptm—tm_l(xm—l’ xm) (812)
Ay An m=1

where A; € R, xg = x, to = 0, and
pi(a,b) = 2nt)""? exp(—(b — a)*/2t)

From the formula above, it is easy to see that for fixed x the family u is a con-
sistent set of finite dimensional distributions (f.d.d.’s), that is, if {s{,...,s,_1} C
{t1,..., 1} andtj ¢ {s1,...,s,_1} then

,va,sl,...,s,,,l(Al XX An—l) = ,va,t],.‘.,tn(Al X X Aj—l x R x Aj XX An—l)

This is clear when j = n. To check the equality when 1 < j < n, it is enough to
show that

/ ptjftj—l(x7 J’)Ptﬁ]fzj(y, Z) dy = ptjﬁ»lflj—]('x’ Z)

By translation invariance, we can without loss of generality assume x = 0, but all
this says is that the sum of independent normals with mean 0 and variances ¢; — 7;_;
and #; | — t; has a normal distribution with mean 0 and variance #; .| — #;_;.

With the consistency of f.d.d.’s verified, we get our first construction of Brownian
motion:
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Theorem 8.1.1. Let 2, = {functions w : [0, o0) — R} and F, be the o -field gen-
erated by the finite dimensional sets {w : w(t;) € A; for 1 <i < n}, where A; € R.
For each x € R, there is a unique probability measure v, on (2,, F,) so that
ve{w:w0)=x}=1and when0 <t; <--- <t,

vefw : (t) € Ai} = pry,r, (AL X -2 X Ay) (8.1.3)

This follows from a generalization of Kolmogorov’s extension theorem, (7.1) in
the Appendix. We will not bother with the details since at this point we are at the
dead end referred to above. If C = {w : t — w(¢) is continuous}, then C ¢ F,, that
is, C is not a measurable set. The easiest way of proving C ¢ F, is to do:

Exercise 8.1.1. A € F, if and only if there is a sequence of times 1, f5, ...1in
[0, 00) and a B € R{:2+} so that A = {w : (w(t1), w(t2), ...) € B}. In words, all
events in F, depend on only countably many coordinates.

The above problem is easy to solve. Let Q, = {m2™" : m,n > 0} be the
dyadic rationals. If 2, = {w : Q; — R} and F, is the o-field generated by the
finite dimensional sets, then enumerating the rationals ¢, g2, . ..and applying
Kolmogorov’s extension theorem shows that we can construct a probability v,
on (2,, F,) so that v, {w : @(0) = x} = 1 and (8.1.3) holds when the #; € Q,. To
extend B, to a process defined on [0, c0), we will show:

Theorem 8.1.2. Let T < oo and x € R. v, assigns probability one to paths w :
Q; — R that are uniformly continuous on Q, N[0, T].

Remark. It will take quite a bit of work to prove Theorem 8.1.2. Before taking on
that task, we will attend to the last measure theoretic detail: We tidy things up by
moving our probability measures to (C, C), where C = {continuous w : [0, c0) —
R} and C is the o-field generated by the coordinate maps r — w(t). To do this, we
observe that the map  that takes a uniformly continuous point in £2, to its unique
continuous extension in C is measurable, and we set

P =veoy !

Our construction guarantees that B;(w) = w; has the right finite dimensional dis-
tributions for ¢ € Q,. Continuity of paths and a simple limiting argument show that
this is true when ¢ € [0, co). Finally, the reader should note that, as in the case of
Markov chains, we have one set of random variables B;(w) = w(t), and a family
of probability measures P,, x € R, so that under P,, B, is a Brownian motion with
PX(B() = x) =1.

Proof. By translation invariance and scaling (8.1.1), we can without loss of gen-
erality suppose By = 0 and prove the result for 7 = 1. In this case, part (b) of the
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definition and the scaling relation imply
Eo(1B: — Bi])* = Eo|Bi—|* = C(t — 5)?

where C = Ey|B;|* < co. From the last observation, we get the desired uniform
continuity by using the following result due to Kolmogorov. Thanks to Robin
Pemantle, the proof is now much simpler than in previous editions.

Theorem 8.1.3. Suppose E|X; — X;|P < K|t — s|'™ wherea, B > 0.Ify < a/B
then with probability I there is a constant C(w) so that

1X(q) = X(NI =Clg —r" forallg,r € QN0, 1]

Proof Let G, = {|X(i/2") — X((i — 1)/2")] < 277" forall 0 < i < 2"}. Cheby-
shev’s inequality implies P(|Y| > a) <a PE|Y|?,soif welet A = a — By > 0,
then

P(Gy) <2"- 2" E|X(j27") - X2 ™| = K27

Lemma 8.1.4. On Hy = N2, G, we have

_ — Y
| X(q) — X(r)| < T lg —r
forq,r € Q2N [0, 1] with |g —r| <27V,
i—-2)2m g (i—1)2" i/2" r (i—1)//2"
| ol | | | le |
1 1 1 —T® 1

Proof of Lemma 8.1.4. Let q,r € Q; N[0, 1] with 0 < r — g < 27", For some
m > N we can write

F=i2"m 4277 L 40O
g=0G—12"m =279 _..._279®
wherem <r(l) <--- <r(f)andm < q(1) < --- < q(k). On Hy
|X@27") — X((G — 1)27™") <27

k

. —m —q(h = - 27
X(q) = X(( = D27 < };(2 Wy < ];ma O
o —ym
X(r) = X2 < T

Combining the last three inequalities with 27 < |g —r| and 1 — 277 > 1 com-
pletes the proof of Lemma 8.1.4. [ |
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To prove Theorem 8.1.3 now, we note that
o0 o
P(H{) <Y PG <K Y 27" =K2V /(1 -27
n=N n=N

Since Zj’vozl P(H}) < 0o, the Borel-Cantelli lemma, Theorem 2.3.1, implies
| X(q) — X(r)| < Alg —r|” forg,r € Qy with |g — r| < §(w).

To extend this to g,y € Qo N[0, 1], let so =g <581 <--- < s, =r with |s; —
si—1| < 6(w), and use the triangle inequality to conclude |X(g) — X(r)| <
C(w)|g — r|” where C(w) =1 + 8(w)~ . [ ]

The scaling relation, (8.1.1), implies

E|B, — B{|*" = C,|t —s|™ where C,, = E|B;|*"

so using Theorem 8.1.3 with 8 = 2m,a = m — 1 and lettingm — oo gives aresult
of Wiener (1923).

Theorem 8.1.5. Brownian paths are Holder continuous for any exponenty < 1/2.
It is easy to show:

Theorem 8.1.6. With probability one, Brownian paths are not Lipschitz continuous
(and hence not differentiable) at any point.

Remark. The nondifferentiability of Brownian paths was discovered by Paley,
Wiener, and Zygmund (1933). Paley died in 1933 at the age of 26 in a skiing
accident while the paper was in press. The proof we are about to give is due to
Dvoretsky, Erdos, and Kakutani (1961).

Proof. Fix a constant C < oo and let A, = {w : there is an s € [0, 1] so that
|B; — Bg| < C|t —s|when |t —s| <3/n}.Forl <k <n-—2,let

k+j k+j—-1
n n

B, = { atleastone Y}, < 5C/n}

Yy, = max {

The triangle inequality implies A, C B,. The worst case is s = 1. We pick k =
n — 2 and observe

o (5) =2 () =l (552) - ol oo (455))

< CQ3/n+2/n)
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Using A, C B, and the scaling relation (8.1.1) now gives

P(A,) < P(B,) <nP(B(1/n)| < 5C/n)® = nP(|B(1)| < 5C/n'/?)?
< n{(10C/n"?y . Q1) 1/2)

since exp(—x2/2) < 1. Letting n — oo shows P(A,) — 0. Noticing n — A, is
increasing shows P(A,) = 0 for all n and completes the proof. |

Exercise 8.1.2. Looking at the proof of Theorem 8.1.6 carefully shows that if
y > 5/6 then B, is not Holder continuous with exponent y at any point in [0,1].
Show, by considering k increments instead of 3, that the last conclusion is true for
ally > 1/2+ 1/k.

The next result is more evidence that the sample paths of Brownian motion
behave locally like /7.

Exercise 8.1.3. Fix t and let A,, , = B(tm2™") — B(t(m — 1)27"). Compute

E(Z A2 — z)2

m<2"

and use Borel-Cantelli to conclude that ), _,. A, —>tas.asn — oo.
Remark. The last result is true if we consider a sequence of partitions I1; C
[T, C ...with mesh — 0. See Freedman (1971a), pp. 42-46. However, the true
quadratic variation, defined as the sup over all partitions, is oo.

Multidimensional Brownian motion

All of the result in this section have been for one-dimensional Brownian
motion. To define a d-dimensional Brownian motion starting at x € R?, we
let B!, ... B¢ be independent Brownian motions with B = x;. As in the case
d = 1, these are realized as probability measures P, on (C,(C) where C =
{continuous w : [0, 00) — R?} and C is the o-field generated by the coordinate
maps. Since the coordinates are independent, it is easy to see that the finite dimen-
sional distributions satisfy (8.1.2) with transition probability

pi(x, y) = Q)" exp(—|y — x[*/21) (8.1.4)

8.2 Markov Property, Blumenthal’s 0-1 Law

Intuitively, the Markov property says, “If s > 0 then B(t +s) — B(s),t > 0 is a
Brownian motion that is independent of what happened before time s.” The first
step in making this into a precise statement is to explain what we mean by “what
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happened before time s.” The first thing that comes to mind is
F)=0(B,:r <s)

For reasons that will become clear as we go along, it is convenient to replace
F§ by

F:_ = m[>sjc't0
The fields F;" are nicer because they are right continuous:
mt>S‘7:t+ = Ni>s (mu>t}—;}) = Ny=sFy = '7:s+

In words, the ;" allow us an “infinitesimal peek at the future,” that is, A € F; if
it is in F, . for any € > 0. If f(u) > O for all u > 0, then in d =1 the random
variable

li Bt - Bs

imsup ————

tls f(l - S)

is measurable with respect to F." but not F?. We will see below that there are no
interesting examples, that is, F,” and F? are the same (up to null sets).

To state the Markov property, we need some notation. Recall that we have a
family of measures P,, x € R%, on (C,C) so that under Py, B;(w) = w(t) is a
Brownian motion starting at x. For s > 0, we define the shift transformation
0, : C — C by

OGs)(t) =w(s +1t) fort >0

In words, we cut off the part of the path before time s and then shift the path so
that time s becomes time 0.

Theorem 8.2.1. Markov property. If s > 0 and Y is bounded and C measurable,
then for all x € R?

E(Y 0 6,|F) = EpY

where the right-hand side is the function ¢(x) = E,Y evaluated at x = B;.

Proof. By the definition of conditional expectation, what we need to show is that
E.(Y 06;A) = E,(EpY;A) forall Ae F (8.2.1)

We will begin by proving the result for a carefully chosen special case
and then use the monotone class theorem (MCT) to get the general case.
Suppose Y(w) = [[,-,,<, fn(@(ty)), where 0 <1, <--- <t, and the f, are
bounded and measurable. Let 0 <h <1, let 0 <s;--- <s¢ <s+h, and
let A={w:w(sj)eA;,1=<j=<k}, where A; € R for 1 < j <k. From the
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definition of Brownian motion, it follows that

E. (Y o6 A) =/ dx ps,(x, x1) dxy pg,—s, (X1, Xx2) - -
Ay A2

/ dxi Psy—si (Xk—1, Xk)/dy Ds+h—s, (X, Y)o(y, h)
Ay
where

oy, ) = / A1 Py IO .. / o P Gty 3) Fu ()

For more details, see the proof of (6.1.3), which applies without change here. Using
that identity on the right-hand side, we have

E (Y 0055 A) = Ex(@(Bsin, h); A) (8.2.2)

The last equality holds for all finite dimensional sets A, so the m — A theorem,
Theorem 2.1.2, implies that it is valid for all A € F¢,, D F'.
It is easy to see by induction on n that

Y(y1) =f1(y1) / dys pr,—,(y1, y2) f2(y2)

ce. / dyn pt,,ft,,,l(ynflv yn)fn(yn)

is bounded and measurable. Letting 2 | 0 and using the dominated convergence
theorem shows that if x;, — x, then

$n ) = [ v puaon 50U = 66,0
as h | 0. Using (8.2.2) and the bounded convergence theorem now gives
E.(Y 06, A) = Ex((p(Bs, 0); A)

for all A € F;". This shows that (8.2.1) holds for ¥ = [1,<,<n f(e(ty)) and the
fm are bounded and measurable. o

The desired conclusion now follows from the monotone class theorem, 6.1.3.
Let H = the collection of bounded functions for which (8.2.1) holds. H clearly has
properties (ii) and (iii). Let .4 be the collection of sets of the form {w : w(t;) € A},
where A; € R. The special case treated above shows (i) holds and the desired
conclusion follows. n

The next two exercises give typical applications of the Markov property. In
Section 8.4, we will use these equalities to compute the distributions of L and R.

Exercise 8.2.1. Let Ty = inf{s > 0: B, =0} andlet R =inf{r > 1: B, =0}. R
is for right or return. Use the Markov property at time 1 to get

PR >1+1) :/ p1(x, Y)Py(To > 1) dy (8.2.3)
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Exercise 8.2.2. Let Ty = inf{s > 0: By =0}andlet L =sup{r <1: B, =0}. L

is for left or last. Use the Markov property at time 0 < ¢ < 1 to conclude

Py(L <t)= / pi0, VP, (Ty > 1 —1t)dy (8.2.4)

The reader will see many applications of the Markov property below, so we turn
our attention now to a “triviality” that has surprising consequences. Since

E.(Y 06,|F) = Eg)Y € F!
it follows from Theorem 5.1.5 that
E.(Y o QSLEJF) =E((Yo eslf;g)

From the last equation, it is a short step to:

Theorem 8.2.2. If Z € C is bounded then for all s > 0 and x € R¢,
E((Z|F)) = Ex(ZIFY)

Proof. As in the proof of Theorem 8.2.1, it suffices to prove the result when

Z =[] (B

m=1

and the f,, are bounded and measurable. In this case, Z can be written as X (Y o 6),
where X € F? and Y is C measurable, so

E(Z|IFF) = XE (Y 0 0,|F.") = XEpY € F?
and the proof is complete. [ |
If we let Z € F,", then Theorem 8.2.2 implies Z = E(Z|F?) € F?, so the two
o -fields are the same up to null sets. At first glance, this conclusion is not exciting.
The fun starts when we take s = 0 in Theorem 8.2.2 to get:
Theorem 8.2.3. Blumenthal’s 0-1 law. If A € F," then for all x € RY,
P.(A) € {0, 1}.

Proof. Using A € F, Theorem 8.2.2, and F{ = o (By) is trivial under P, gives
14 = Ex(14|1 7)) = Ex(14]Fg) = P«(A) Py as.
This shows that the indicator function 1,4 is a.s. equal to the number P,(A), and

the result follows. ]

In words, the last result says that the germ field, 7", is trivial. This result is
very useful in studying the local behavior of Brownian paths. For the rest of the
section we restrict our attention to d = 1.
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Theorem 8.2.4. Ift = inf{t > 0 : B, > 0} then Py(t =0) = 1.
Proof. Py(t <t)> Py(B; > 0) = 1/2 since the normal distribution is symmetric

about 0. Letting ¢ | 0, we conclude
Py(t =0) = lifg Pyt <t)>1/2
t

so it follows from Theorem 8.2.3 that Py(t = 0) = 1. [ |

Once Brownian motion must hit (0, co) immediately starting from 0, it must also
hit (—o0, 0) immediately. Since ¢t — B; is continuous, this forces:

Theorem 8.2.5. If Ty = inf{t > 0: B, = 0} then Py(Ty = 0) = 1.
A corollary of Theorem 8.2.5 is:

Exercise 8.2.3. If ¢ < b, then with probability 1 there is a local maximum of B;
in (a, b). So the set of local maxima of B, is almost surely a dense set.

Another typical application of Theorem 8.2.3 is:

Exercise 8.2.4. (i) Suppose f(¢) > 0forall # > 0. Use Theorem 8.2.3 to conclude
that lim sup; o B(t)/f() = c, Pya.s.,where ¢ € [0, oco] is a constant. (ii) Show that
if f(t) =/t then ¢ = 00, so with probability 1, Brownian paths are not Holder
continuous of order 1/2 at 0.

Remark. Let H, (w) be the set of times at which the path w € C is Holder con-
tinuous of order y. Theorem 8.1.5 shows that P(H, =[0,00)) =1 for y < 1/2.
Exercise 8.1.2 shows that P(H, =) =1 for y > 1/2. The last exercise shows
P(t € Hij2) =0 for each ¢, but B. Davis (1983) has shown P(H;, # ) = 1.
Perkins (1983) has computed the Hausdorff dimension of
. |Bi+n — Bl
te,1):1 _—
0, 1) lrzlﬁ)up e <
Theorem 8.2.3 concerns the behavior of B, as t — 0. By using a trick, we can
use this result to get information about the behavior as t — oo.

Theorem 8.2.6. If B; is a Brownian motion starting at 0, then so is the process
defined by Xo = 0and X, = tB(1/t) fort > 0.

Proof. Here we will check the second definition of Brownian motion. To do this,
wenote: (1) If0 < < ... < t,, then (X(#)), ..., X(¢,)) has a multivariate normal
distribution with mean 0. (ii) EX; = 0 and if s < ¢ then

E(X,X,) = stE(B(1/s)B(1/1)) = s

For (iii) we note that X is clearly continuous at ¢ # 0.
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To handle ¢ = 0, we begin by observing that the strong law of large numbers
implies B,/n — 0 as n — oo through the integers. To handle values in between
integers, we note that Kolmogorov’s inequality, Theorem 2.5.2, implies

P ( sup |B(n +k27™) — B,| > n”) <n *PE(B,41 — B,
O<k=<2m

Letting m — oo, we have

P sup |B, — B,| >n?3) <pn™43
ueln,n+1]

Since Y, n~*3 < oo, the Borel-Cantelli lemma implies B,/u — 0 as u — oo.
Taking u = 1/¢, we have X; — Oast — 0. ]

Theorem 8.2.6 allows us to relate the behavior of B; as t — oo and as t — 0.
Combining this idea with Blumenthal’s 0-1 law leads to a very useful result. Let

F, =0(Bs:s >1t)= the future at time ¢

T = Ny>0F, = the tail o-field
Theorem 8.2.7. If A € T then either P,(A) =0 or P,(A) = 1.

Remark. Notice that this is stronger than the conclusion of Blumenthal’s 0-1 law.
The examples A = {w : w(0) € D} show that for A in the germ o-field ', the
value of P,(A), 1p(x) in this case, may depend on x.

Proof. Since the tail o-field of B is the same as the germ o -field for X, it follows
that Py(A) € {0, 1}. To improve this to the conclusion given, observe that A € F7,
so 14 can be written as 1p o 0;. Applying the Markov property gives

P.(A) = Ex(1p 0 0)) = Ex(Ex(1p 0 0,|F1)) = Ex(Ep,1p)

_ / @) 2 exp(—(y — x/2)P,(D) dy

Taking x = 0, we see that if Py(A) =0, then P,(D) = 0 for a.e. y with respect
to Lebesgue measure, and using the formula again shows P,(A) = 0 for all x. To
handle the case Py(A) = 1, observe that A° € 7 and Py(A¢) = 0, so the last result
implies P,(A¢) = 0 for all x. |

The next result is a typical application of Theorem 8.2.7.

Theorem 8.2.8. Let B, be a one-dimensional Brownian motion starting at 0. Then
with probability 1,

limsupB,/\/;=oo litminth/«/Z=—oo

—00
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Proof. Let K < oco. By Exercise 2.3.1 and scaling

Py(B,/+/n > K i.0.) > limsup Py(B, > K+/n) = Po(B; > K) >0
n—oo
so the 0-1 law in Theorem 8.2.7 implies that the probability is 1. Since K is
arbitrary, this proves the first result. The second one follows from symmetry. H

From Theorem 8.2.8, translation invariance, and the continuity of Brownian
paths it follows that we have:

Theorem 8.2.9. Let B, be a one-dimensional Brownian motion and let A =
N, {B; = 0 for some t > n}. Then P,(A) = 1 for all x.

In words, one-dimensional Brownian motion is recurrent. For any starting point x,
it will return to O “infinitely often,” that is, there is a sequence of times #,, 1 0o so
that B;, = 0. We have to be careful with the interpretation of the phrase in quotes
since, starting from 0, B; will hit O infinitely many times by time € > 0.

Last rites. With our discussion of Blumenthal’s 0-1 law complete, the distinction
between F.” and F? is no longer important, so we will make one final improvement
in our o-fields and remove the superscripts. Let

N, ={A: A C D with P.(D) = 0}

Fi=0o(F UN)

Fs = mx}—f
N, are the null sets and F; are the completed o-fields for P,. Since we do not
want the filtration to depend on the initial state, we take the intersection of all the

o -fields. The reader should note that it follows from the definition that the F; are
right-continuous.

8.3 Stopping Times, Strong Markov Property

Generalizing a definition in Section 4.1, we call a random variable S taking values
in [0, oo] a stopping time if for all # > 0, {S < ¢} € F;. In the last definition, we
have obviously made a choice between {S < ¢} and {S < ¢}. This makes a big
difference in discrete time but none in continuous time (for a right continuous
filtration JF;) :

If{S<tyeF then{S <t} =U,{S<t—-1/n}eF.
If{S<t}eFthen{S <t}=nN,{S<t+1/n} e F.

The first conclusion requires only that + — F, is increasing. The second relies
on the fact that t — F; is right continuous. Theorem 8.3.2 and 8.3.3 below show
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that when checking something is a stopping time, it is nice to know that the two
definitions are equivalent.

Theorem 8.3.1. If G is an open set and T = inf{t >0: B, € G}, then T is a
stopping time.

Proof. Since Gisopenandt — B, iscontinuous, {T' < t} = U, {B, € G}, where
the union is over all rational ¢, so {T < t} € F,. Here we need to use the rationals
to get a countable union, and hence a measurable set. |

Theorem 8.3.2. If T, is a sequence of stopping times and T, | T, then T is a
stopping time.

Proof. {T <1t} =U,{T, <t}. |

Theorem 8.3.3. If T, is a sequence of stopping times and T, 1 T, then T is a
stopping time.

Proof. {T <t} =n,{T, <t}. [ |

Theorem 8.3.4. If K is a closed set and T = inf{t > 0: B, € K}, then T is a
stopping time.

Proof. Let B(x,r)={y:|y—x| <r}, let G, =U,cxB(x,1/n), and let T,, =
inf{t > 0: B, € G,}. Since G,, is open, it follows from Theorem 8.3.1 that T, is
a stopping time. I claim that as n 1 oo, T,, 1+ T. To prove this, notice that T > T,
for all n, solim 7, < T.To prove T < lim T,, we can suppose that 7, 1 ¢ < oo.
Since B(T,,) € G, forall n and B(T,,) — B(t), it follows that B() € K and T < t.

|

Exercise 8.3.1. Let S be a stopping time and let S,, = ([2"S] 4 1)/2" where [x] =
the largest integer < x. That is,
S, =m+1D27"if m27""<S<@m+ 127"

In words, we stop at the first time of the form k27" after S (i.e., > S). From the
verbal description, it should be clear that S, is a stopping time. Prove that it is.

Exercise 8.3.2. If S and T are stopping times, then S AT = min{S, T}, SVv T =
max{S, T}, and S + T are also stopping times. In particular, if # > 0O, then S A ¢,
SVit,and S + ¢ are stopping times.

Exercise 8.3.3. Let T, be a sequence of stopping times. Show that

sup T, igf T,, limsupT,, limninf T,

n

are stopping times.
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Theorems 8.3.4 and 8.3.1 will take care of all the hitting times we will consider.
Our next goal is to state and prove the strong Markov property. To do this, we
need to generalize two definitions from Section 4.1. Given a nonnegative random
variable S(w) we define the random shift 65, which “cuts off the part of @ before
S(w) and then shifts the path so that time S(w) becomes time 0.” In symbols, we
set

sy = 1 PE@+D on{S < ool
on {§ = oo}

where A is an extra point we add to C. As in Section 6.3, we will usually explicitly
restrict our attention to {S < oo}, so the reader does not have to worry about the
second half of the definition.

The second quantity Fg, “the information known at time S,” is a little more
subtle. Imitating the discrete time definition from Section 4.1, we let

Fs={A:AN{S <t} e F forallt > 0}

In words, this makes the reasonable demand that the part of A that lies in {S < ¢t}
should be measurable with respect to the information available at time ¢. Again we
have made a choice between < ¢ and < ¢, but as in the case of stopping times, this
makes no difference, and it is useful to know that the two definitions are equivalent.

Exercise 8.3.4. Show that when F, is right continuous, the last definition is
unchanged if we replace {S < t} by {S < t}.

For practice with the definition of F§, do:

Exercise 8.3.5. Let S be a stopping time, let A € Fg, and let R = § on A and
R = oo on A€. Show that R is a stopping time.

Exercise 8.3.6. Let S and T be stopping times.
@) {S < t}, {S > t},{S =t} are in F;.
) {S < T}, {S > T}, and {§S = T} are in Fs (and in F7).

Most of the properties of Fy derived in Section 4.1 carry over to continuous
time. The next two will be useful below. The first is intuitively obvious: at a later
time we have more information.

Theorem 8.3.5. If S < T are stopping times, then Fs C Fr.

Proof. If A € Fg,then AN{T <t} =AN{S<thN{T <t} e F. [

Theorem 8.3.6. If T, | T are stopping times, then Fr = NF(T,).
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Proof. Theorem 8.3.5 implies F(T,,) D Fr for all n. To prove the other inclusion,
let A e NF(T,). Since AN{T, <t} e F,and T,, | T, it follows that A N{T <
t} e F;. [ ]

The last result allows you to prove something that is obvious from the verbal
definition.

Exercise 8.3.7. By € Fyg, that is, the value of By is measurable with respect to
the information known at time S! To prove this, let S, = ([2"S] + 1)/2" be the
stopping times defined in Exercise 8.3.1. Show B(S,) € Fgs,, then let n — oo and
use Theorem 8.3.6.

‘We are now ready to state the strong Markov property, which says that the Markov
property holds at stopping times. It is interesting that the notion of Brownian
motion dates to the the very beginning of the 20th century, but the first proofs of
the strong Markov property were given independently by Hunt (1956) and Dynkin
and Yushkevich (1956). Hunt writes, “Although mathematicians use this extended
Markoff property, at least as a heuristic principle, I have nowhere found it discussed
with rigor.”

Theorem 8.3.7. Strong Markov property. Let (s, w) — Y (w) be bounded and
R x C measurable. If S is a stopping time, then for all x € R?

EX(YS 0] 05|fs) = EB(S)YS on {S < OO}

where the right-hand side is the function ¢(x,t) = E.Y; evaluated at x = B(S),
t=23S.

Remark. The only facts about Brownian motion used here are that (i) itis a Markov
process, and (ii) if f is bounded and continuous then x — E, f(B,) is continuous.
In Markov process theory, (ii) is called the Feller property. While Hunt’s proof
only applies to Brownian motion, Dynkin and Yushkevich proved the result in this
generality.

Proof. We first prove the result under the assumption that there is a sequence
of times #, 1 00, so that P,(S < 00) = ) P.(S =t,). In this case, the proof is
basically the same as the proof of Theorem 6.3.4. We break things down according
to the value of S, apply the Markov property, and put the pieces back together. If
welet Z, =Y, (w) and A € Fyg, then

Ei(Yso005;AN{S < o0}) = ZEX(Zn 06, ;AN{S =1})

n=1
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Now if AeFs, AN{S=t}=(AN{S<t,})) —(AN{S<t,_1}) e F,, so it
follows from the Markov property that the above sum is

o0
= Z E(Epi)Zn; AN{S =1,}) = Ex(Eps)Ys; AN{S < o0})

n=1

To prove the result in general, we let S, = ([2"S] 4 1)/2" be the stopping time
defined in Exercise 8.3.1. To be able to let n — 00, we restrict our attention to Y’s
of the form

Y(@) = fos) [ | fu(e(tn)) (8.3.1)
m=1
where 0 <t <---<t, and fy, ..., f, are bounded and continuous. If f is

bounded and continuous then the dominated convergence theorem implies that

x — /dy pi(x, V) f(y)

is continuous. From this and induction, it follows that
p(x,s)=E. Y, = fo(S)/d)’1 P (x, y1) fi(y1)

. / dyn pt,ﬁt,H(J’nfl, Yn) fn(Yn)

is bounded and continuous.

Having assembled the necessary ingredients, we can now complete the proof.
Let A € Fs.Since S < S, Theorem 8.3.5 implies A € F(S,,). Applying the special
case proved above to S,, and observing that {S, < oo} = {§ < oo} gives

E,(Ys, 065, AN{S < 00}) = Ex(@(B(Sy), $p); AN{S < oo})
Now, asn — 00, S, | S, B(S,) = B(S), ¢(B(S,), Sn) = ¢(B(S), S) and
YS,, OQS,, — Ysoes

so the bounded convergence theorem implies that the result holds when Y has the
form given in (8.3.1).

To complete the proof now, we will apply the monotone class theorem. As in the
proof of Theorem 8.2.1, we let H be the collection of Y for which

E.(Ys005,A) = Ex(EB(S)YS;A) forall A € .7:5

and it is easy to see that (ii) and (iii) hold. This time, however, we take A to be the
sets of the form A = Gy x {0 : w(sj) € G;, 1 < j < k}, where the G are open
sets. To verify (i), we note that if K; = G‘;. and f;l(x) =1 Anp(x, K;), where
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p(x, K) =inf{|lx — y| : y € K} then f} are continuous functions with f7 1 Ig,
as n 1 oco. The facts that

k
Vi) = i ]| fl ) e

j=1

and (iii) holds for H imply that 14 € H. This verifies (i) in the monotone class
theorem and completes the proof. [ |

8.4 Path Properties

In this section, we will use the strong Markov property to derive properties of the
zero set {t : B, = 0}, the hitting times 7, = inf{t : B; = a}, and max<s<; B, for
one-dimensional Brownian motion.

0.8 7

Figure 8.2. Simulation of one-dimensional Brownian motion.

8.4.1 Zeros of Brownian Motion

Let R, =inf{u >t : B, =0} and let Ty = inf{u > 0 : B, = 0}. Now Theorem
8.2.9 implies P, (R, < o0) = 1, s0 B(R,) = 0, and the strong Markov property and
Theorem 8.2.5 imply

P.(To 0Ok, > O|Fg,) = Po(Th > 0)=0
Taking expected value of the last equation, we see that
P, (Tp o 6, > 0 for some rational ) = 0

From this, it follows that if a point u € Z(w) = {t : B;(w) = 0} is isolated on
the left (i.e., there is a rational ¢ < u so that (¢, u) N Z(w) = @), then it is, with
probability one, a decreasing limit of points in Z(w). This shows that the closed
set Z(w) has no isolated points and hence must be uncountable. For the last step,
see Hewitt and Stromberg (1965), p. 72.
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If we let | Z(w)| denote the Lebesgue measure of Z(w), then Fubini’s theorem
implies

T
E(Z(@)] N[0, T]) = / Pu(B, = 0)dr = 0
0

So Z(w) is a set of measure zero.

The last four observations show that Z is like the Cantor set that is obtained
by removing (1/3, 2/3) from [0, 1] and then repeatedly removing the middle third
from the intervals that remain. The Cantor set is bigger however. Its Hausdorff
dimension is log 2/ log 3, whereas Z has dimension 1/2.

8.4.2 Hitting Times

Theorem 8.4.1. Under Py, {T,, a > 0} has stationary independent increments.

Proof. The first step is to notice that if 0 < a < b, then
Tb O@Ta = Tb — Ta»

so if f is bounded and measurable, the strong Markov property, 8.3.7, and transla-
tion invariance imply

Eo (f(Ty — T) |Fr,) = Eo (f(Ty) o 01, | F1,)
=E,f(Ty) = Eo f(Tp—y)

To show that the increments are independent, letag < a; - -- < ay,let fi,1 <i <n
be bounded and measurable, and let F; = f;(T,, — T,,_,). Conditioning on Fr,

n—1

and using the preceding calculation, we have

n n—1 n—1
E, (]_[ F,-) = E (]_[ F; - E0<Fn|fnn_l>> = E, (H F,-> EF,
i=1

i=1 i=1

By induction, it follows that Eo [ [}_, F; = []\_, EoF;, which implies the desired
conclusion. [

The scaling relation (8.1.1) implies
T, L &*T, (8.4.1)

Combining Theorem 8.4.1 and (8.4.1), we see that ty = T — T_; are i.i.d. and

hto

5 —)Tl

n

so using Theorem 3.7.4, we see that T, has a stable law. Since we are dividng by
n?and T, > 0, the index « = 1/2 and the skewness parameter k = 1; see (3.7.11).
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Without knowing the theory mentioned in the previous paragraph, it is easy to
determine the Laplace transform

@qa(A) = Egexp(—AT,) fora >0

and reach the same conclusion. To do this, we start by observing that Theo-
rem 8.4.1 implies

Px O‘-)@y ()‘) = Qx+y ()‘)

It follows easily from this that

©q(A) = exp(—ac(r)) (8.4.2)

Proof. Let c(A) = —log¢1(A) so (8.4.2) holds when a = 1. Using the previous
identity with x = y = 27" and induction gives the result for a = 27", m > 1.
Then, letting x = k27" and y = 27", we get the result for a = (k + 1)27™ with
k > 1. Finally, to extend to a € [0, 00), note that a — ¢,(A) is decreasing. [ ]

To identify c(A), we observe that (8.4.1) implies

Eexp(—-T,)=FE exp(—ale)

s0 ac(l) = c(a?), i.e., c(A) = c¢(1)~/A. Since all of our arguments also apply to
o B,, we cannot hope to compute c¢(1). Theorem 8.5.7 will show

Eo(exp(—AT,)) = exp(—a~/21) (8.4.3)

Our next goal is to compute the distribution of the hitting times 7. This appli-
cation of the strong Markov property shows why we want to allow the function Y
that we apply to the shifted path to depend on the stopping time S.

Example 8.4.1. Reflection principle. Let a > 0 and let T, = inf{r : B, = a}.
Then

Py(T, <t)=2Py(B; > a) (8.4.4)
Intuitive proof. We observe that if By hits a at some time s < ¢, then the strong
Markov property implies that B, — B(T,) is independent of what happened before

time 7,. The symmetry of the normal distribution and P,(B, = a) =0 foru > 0
then imply (see Figure 8.3 for a picture)

1
PoTy <1, B > a)= 3 Po(Ty < 1) (8.4.5)

Rearranging the last equation and using {B, > a} C {T, < t} gives

Py(T, <t)=2Py(T, <t,B, >a)=2Py(B, > a)
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0 iA T T T T 1
\A\‘\‘j@/ 0.4 06 0.8 1
051

Figure 8.3. Proof by picture of the reflection principle.

Proof. To make the intuitive proof rigorous, we only have to prove (8.4.5). To
extract this from the strong Markov property, Theorem 8.3.7, we let

1 ifs<t,wt—s5)>a
Ys(w):

0 otherwise
We do this so that if we let S = inf{s < ¢ : B; = a} with inf § = o0, then

1 ifS<t, B >a
Ys(Osw) = .
0 otherwise
and the strong Markov property implies
Eo(Ys 0 05|Fs) = ¢(Bs, S) on{S < oo} ={T, <1}

where ¢(x,s) = E,Y;. Bs =a on {S < oo} and ¢(a,s) = 1/2if s < ¢, so taking
expected values gives

Py(T, <t, By > a) = Eo(Ys 005, S < 00)
= Eo(Eo(Ys 0 05| F5); § < 00) = Eo(1/2;T, < 1)

which proves (8.4.5). [ |

Exercise 8.4.1. Generalize the proof of (8.4.5) to conclude thatif u < v < a, then
Py(T, <t,u < B, <v)=Py2a —v < B; <2a —u) (8.4.6)
This should be obvious from the picture in Figure 8.3. Your task is to extract this
from the strong Markov property.
Letting (u, v) shrink down to x in (8.4.6), we have fora < x
Py(T, <t, B =x)= p:(0,2a — x)
Py(T, > t, B, = x) = p:(0, x) — p;(0,2a — x) (8.4.7)
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that is, the (subprobability) density for B, on the two indicated events. Since
{T, <t} ={M; > a}, differentiating with respect to a gives the joint density

2Q2a — x)e—(Zd—x)2/2T

N2mt3

Using (8.4.4), we can compute the probability density of 7,,. We begin by noting
that

S, Bya, x) =

0
P(T, <t)=2Py(B, >a)=2 / 1)~ exp(—x2/2t)dx
then change variables x = (t'/%a)/s'/? to get
0
Py(T, <t)=2 / Qrt)~'? exp(—a®/2s) (—t'?a/257%) ds
1t

t
= / Qus)V2aexp(—a®/2s)ds (8.4.8)
0
Using the last formula, we can compute:

Example 8.4.2. The distribution of L = sup{t < 1: B; = 0}. By (8.2.4),

Py(L <) = foo ps0, x)P(Ty > 1 —s)dx

= 2/ Qrs)~/? exp(—x2/2s) Qrr3)~12x exp(—x2/2r) drdx

1—s

= — (sr )~ 1/2/ xexp(—xz(r + 5)/2rs)dx dr
T J1—s 0
| B —1/2

= — (sr)“rs/(r +s)dr
T J1-s

Our next step istolett = s/(r + s) to convert the integral over r € [1 — s, 00) into
oneovert € [0, s]. dt = —s/(r + s)*dr, so to make the calculations easier we first
rewrite the integral as

1 [®[((r+s)? 2
= — dr
7 Ji_ rs (r +5)?

and then change variables to get

Py(L < s) = ! / (t(1 =)~ V2dr = ; arcsin(+/s) (8.4.9)

The arcsin may remind the reader of the limit theorem for L,, = sup{m < 2n :
S, = 0} given in Theorem 4.3.5. We will see in Section 8.6 that our new result is
a consequence of the old one.
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Exercise 8.4.2. Use (8.2.3) to show that R = inf{t > 1 : B, = 0} has probability
density

Po(R=1+1)=1/@t"*(1 +1))

8.4.3 Lévy’s Modulus of Continuity
Let osc(§) = sup{|B; — B;| : s, t € [0, 1], |t — 5| < 8}.

Theorem 8.4.2. With probability 1,

lim sup osc(8)/(8 log(1/8)/* < 6
§—0

Remark. The constant 6 is not the best possible because the end of the proof is
sloppy. Lévy (1937) showed

lim sup osc(8)/(8 log(1/8))/* = /2
§—0

See McKean (1969), pp. 14-16, or Itd and McKean (1965), pp. 36-38, where a
sharper result due to Chung, Erdos, and Sirao (1959) is proved. In contrast, if we
look at the behavior at a single point, Theorem 8.8.7 below shows

limsup | B;|/+/2t loglog(1/t) =1 a.s.

t—0

Proof. Let I, =[m27",(m+ 1)27"], and A, , =sup{|B, — B(m27™")|:t €
Iy ). From (8.4.4) and the scaling relation, it follows that

P(Apn = a27"?) < 4P(BQ™") = a27"?)
=4P(B(1) > a) < 4exp(—a’/2)

by Theorem 1.2.3ifa > 1.If € > 0, b = 2(1 + €)(log 2), and a, = (bn)'/?, then
the last result implies

P(App > a,27"% for some m < 2") < 2" - 4exp(—bn/2) =4-27"¢

so the Borel-Cantelli lemma implies that if n > N(w), Ay, < (bn)'/?27"/2. Now
ifsel,ns<tand|s—t| <27", thent € I,,,, or I,,4+1,. I claim that in either
case the triangle inequality implies

|B; — By| < 3(bn)'?27"72
To see this, note that the worst case is ¢t € 1,41 ,, but even in this case
|B; — By| < |B; — B((m + 1)27")]
+ [B((m + 1)27") — B(m2™")| + |B(m2™") — By
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It follows from the last estimate that for 2-**D < § < 27"

0sc(8) < 3(bn)'/?27"? < 3(blog,(1/8))"/%(28)1/? = 6((1 + €)8 log(1/8))"/?
Recall b = 2(1 + €) log 2 and observe exp((log 2)(log, 1/8)) = 1/6. [ ]

8.5 Martingales
At the end of Section 5.7 we used martingales to study the hitting times of random

walks. The same methods can be used on Brownian motion, once we prove

Theorem 8.5.1. Let X, be a right continuous martingale adapted to a right con-
tinuous filtration. If T is a bounded stopping time, then EX1t = E X,.

Proof. Let n be an integer so that P(T < n — 1) = 1. As in the proof of the strong
Markov property, let 7,, = ([2"T]+ 1)/2™. Y} = X(k2™™) is a martingale with
respect to F;' = F(k27™) and S, = 2"'T,, is a stopping time for (Y, F}"), so by
Exercise 5.4.3,

X(Typ) =Yg = EXY,5ulFg ) = E(Xu|F(T)

As m 1 oo, X(T,,) — X(T) by right continuity and F(7,,) | F(T) by Theorem
8.3.6, so it follows from Theorem 5.6.3 that

X(T) = E(X,|F(T))

Taking expected values gives EX(T) = EX, = E Xy, since X, is a martingale.
[ |

Theorem 8.5.2. B, is a martingale w.r.t. the o -fields F; defined in Section 8.2.

Note. We will use these o-fields in all of the martingale results but will not mention
them explicitly in the statements.
Proof. The Markov property implies that

Ex(Bt |fv) = EBA-(BI—S) = Bs

since symmetry implies E,B, = y for all u > 0. |
From Theorem 8.5.2, it follows immediately that we have
Theorem 8.5.3. Ifa < x < b, then P.(T, < T,) = (b — x)/(b — a).

Proof. Let T = T, N Tp. Theorem 8.2.8 implies that T < oo a.s. Using Theorems
8.5.1 and 8.5.2, it follows that x = E,B(T A t). Letting t — 0o and using the
bounded convergence theorem, it follows that

x=aP (T, <Ty) +b( — P(T, <Tp))

Solving for P, (T, < T,) now gives the desired result. [ ]



8.5 Martingales 377

Example 8.5.1. Optimal doubling in backgammon (Keeler and Spencer, 1975).
In our idealization, backgammon is a Brownian motion starting at 1,/2 run until it
hits 1 or 0, and B; is the probability you will win given the events up to time ¢.
Initially, the “doubling cube” sits in the middle of the board and either player can
“double,” that is, tell the other player to play on for twice the stakes or give up and
pay the current wager. If a player accepts the double (that is, decides to play on),
she gets possession of the doubling cube and is the only one who can offer the next
double.

A doubling strategy is given by two numbers b < 1/2 < a, that is, offer a double
when B, > a and give up if the other player doubles and B; < b. It is not hard to
see that for the optimal strategy, b* = 1 — a*, and that when B, = b*, accepting
and giving up must have the same payoft. If you accept when your probability of
winning is b*, then you lose 2 dollars when your probability hits 0, but you win
2 dollars when your probability of winning hits a*, since at that moment you can
double and the other player gets the same payoff if they give up or play on. If giving
up or playing on at b* is to have the same payoff, we must have

% * *
—1 = b_ 24+ a—b

a* a*

(=2

Writing b* = ¢ and a* = 1 — ¢ and solving, we have —(1 — ¢) = 2¢ — 2(1 — 2¢)
or 1 = 5¢. Thus b* = 1/5 and a* = 4/5. In words you should offer a double if
your odds of winning are 80% and accept if they are >20%.

Theorem 8.5.4. B2 — t is a martingale.

Proof. Writing B> = (B, + B, — By)* we have
E.(B}|F,) = Ex(B} + 2B,(B, — B,) + (B, — B,)*| ;)
= B + 2B,E(B, — B,|F,) + E.((B, — B,)’| Fy)
=B>+0+(t—s)

since B, — B, is independent of F; and has mean O and variance ¢ — s. |

Theorem 8.5.5. Let T = inf{z : B, ¢ (a, b)}, wherea < 0 < b.

E()T = —ab

Proof. Theorem 8.5.1 and 8.5.4 imply Eo(B*(T A t)) = Eo(T At)). Letting t —
oo and using the monotone convergence theorem gives Eo(T A t) + EoT. Using
the bounded convergence theorem and Theorem 8.5.3, we have

—a a—>b

b
+ b? =ab = —ab |

EOB2(TAz)—>EOB%=a2b_a — —

Theorem 8.5.6. exp(6 B, — (6°t/2)) is a martingale.
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Proof. Bringing exp(6 By) outside
E.(exp(0 B,)| Fs) = exp(0 By) E(exp(0(B: — By))|Fy)
= exp(6 By) exp(6°(t — 5)/2)

since B, — B, is independent of F; and has a normal distribution with mean 0 and
variance t — . [ |

Theorem 8.5.7. If T, = inf{t : B, = a} then Eyexp(—AT a) = exp(—a~/2A).

Proof. Theorems 8.5.1 and 8.5.6 imply that 1 = Egexp(@B(T At) —6X(T, A
t)/2). Taking 8 = +/2A, letting t — o0, and using the bounded convergence theo-
rem gives 1 = Egexp(av/2i — AT,). |

Exercise 8.5.1. Let T = inf{B; ¢ (—a, a)}. Show that

E exp(—AT) = 1/ cosh(av/2)).
Exercise 8.5.2. The point of this exercise is to get information about the amount
of time it takes Brownian motion with drift —b, X, = B, — bt to hit level a. Let

T = inf{t : B, = a + bt}, where a > 0. (i) Use the martingale exp(6 B, — 6°t/2)
with 6 = b + (b> + 21)'/? to show

Eoexp(—it) = exp(—a{b + (b* + 20)/?})

Letting . — 0 gives Py(t < o0) = exp(—2ab).

Exercise 8.5.3. Leto = inf{r : B, ¢ (a, b)} and let > > 0. Use the strong Markov
property to show

E,exp(—AT,) = E.(e ", T, < T) + Ex(e "7 T, < T,)Epexp(—AT,)

(ii) Interchange the roles of a and b to get a second equation, use Theorem 8.5.7,
and solve to get

E(e T, < T) = sinh(~/2A(b — x))/ sinh(v/2A(b — a))
E.(e T T, < T,) = sinh(~2A(x — a))/ sinh(v/2A(b — a))

Theorem 8.5.8. If u(t, x) is a polynomial in t and x with

ou 13%u

5—}—5@:0 (8.5.1)

then u(t, B;) is a martingale.
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Proof. Let p,(x, y) = Qut)"/2exp(—(y — x)?/2t). The first step is to check that
p; satisfies the heat equation: dp, /3t = (1/2)dp,/dy>.

2
E;—l;=—%2ﬂ(2nt)_l/zexp(—(y—x)2/2t)+(27n‘) 1/2(y2t *) exp(—(y —x)*/21)
p _ —12 YT 2
3 —(2nt) Y eXp( (y —x)7/2t)
32p i 1 -1/2 2 12V —A) (y ) 2
e —5(27”) exp(—(y — x)7/2t)+ 2nt)” 2 exp(—(y — x)7/2t)

Interchanging 9/97 and [, and using the heat equation

0 0
Bt B) = / (i, Yute, Yy

19 9
=/Ea—yzpz(x,y)u(t,y)erz(x,y)Eu(t, y)dy

Integrating by parts twice the above

I
/pt( y)( 232>”(I y)dy =0

Since u(t, y) is a polynomial, there is no question about the convergence of inte-
grals and there is no contribution from the boundary terms when we integrate by
parts. |

Examples of functions that satisfy (8.5.1) are exp(6x — 6%¢/2), x, x> —t, x> —

3tx, x* —6x%t + 3% ...
Theorem 8.5.9. If T = inf{t : B, ¢ (—a, a)} then ET? = 5a*/3.

Proof. Theorem 8.5.1 implies
EB(T At —6(T At)B(T At)?) = =3E(T A1)

From Theorem 8.5.5, we know that ET = a? < oo. Letting t — oo and using the
dominated convergence theorem on the left-hand side and the monotone conver-
gence theorem on the right gives

a* — 64a*ET = —3E(T?)

Plugging in ET = a? gives the desired result. [ |

Exercise 8.54. If T = inf{r : B, ¢ (a, b)}, wherea <0 < b anda # —b,then T
and B2 are not independent, so we cannot calculate E7? as we did in the proof
of Theorem 8.5.9. Use the Cauchy-Schwarz inequality to estimate E(T B7) and
conclude ET? < C E(B}), where C is independent of a and b.
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Exercise 8.5.5. Find a martingale of the form B® — ¢#B} + c2t>B? — c3t2 and
use it to compute the third moment of 7 = inf{r : B; ¢ (—a, a)}.

Exercise 8.5.6. Show that (1 +¢)~/2exp(B?/2(1 + 1)) is a martingale and use
this to conclude that limsup, , _ B,/((1 + 1)log(1 4+ 1))/ < 1//2 a.s.

8.5.1 Multidimensional Brownian Motion

Let Af = Z;j: | 0% f/ 8xi2 be the Laplacian of f. The starting point for our inves-
tigation is to note that repeating the calculation from the proof of Theorem 8.5.8
shows that in d > 1 dimensions,

pi(x, y) = Qut) " exp(—|y — x|*/2t)

satisfies the heat equation dp, /0t = (1/2)A p;, where the subscript y on § indicates
that the Laplacian acts in the y variable.

Theorem 8.5.10. Suppose v € C?, that is, all first- and second-order partial
derivatives exist and are continuous, and v has compact support. Then

t
1
v(Bt)—f EAv(BS)ds is a martingale.
0

Proof. Repeating the proof of Theorem 8.5.8,

0 0
BB = / o) i, ¥) dy

1
_ / SVONA, pi(x. ) dy

1
- / Ep,(x, VA u(y)dy

the calculus steps being justified by our assumptions. ]

We will use this result for two special cases:

o) — {log x| d=2

|x|>—¢ d>3

We leave it to the reader to check that in each case A = 0. Let S, = inf{z : |B;| =
r},r < R,and T = S, A Sg. The first detail is to note that Theorem 8.2.8 implies
that if |[x| < R, then P,(Sg < 00). Once we know this, we can conclude

Theorem 8.5.11. If |x| < R, then E.Sg = (R*> — |x|?)/d.
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Proof. It follows from Theorem 8.5.4 that |B,|> — dt = Zle(Bti )2 — ¢ is a mar-
tingale. Theorem 8.5.1 implies |x|*> = E|BSRN|2 —dE(Sg A t). Letting t — o0
gives the desired result. [ |

Lemma 8.5.12. ¢(x) = E,¢(B;)

Proof. Define ¥(x) = g(|x|) to be C? and have compact support, and have v/ (x) =
¢(x) when r < |x| < R. Theorem 8.5.10 implies that (x) = E, ¥ (B;sA;). Letting
t — oo now gives the desired result. |
Lemma 8.5.12 implies that
@(x) = @(r)Py(S, < Sg) + @(R)(1 — P.(S, < Sr))

where @(r) is short for the value of ¢(x) on {x : |x| = r}. Solving now gives

@(R) — p(x)
P(S < Sgp)=————— (8.5.2)
TR = ()
In d = 2, the last formula says
logR —1
PL(S, < Sp) = &R ~logl] (8.5.3)
logR —logr

If we fix r and let R — oo in (8.5.3), the right-hand sidegoes to 1. So
P.(S, <o00)=1 foranyxandanyr > 0
It follows that two-dimensional Brownian motion is recurrent inthe sense that if

G is any open set, then P,(B; € G i.0.) = 1.
If we fix R,letr — 0in (8.5.3),and let Sy = inf{r > 0 : B, = 0}, thenforx £ 0

P (So < Sg) < llIl’(l) P.(S, <Sg)=0

Since this holds for all R and since the continuity of Brownian pathsimplies Sg 1 oo
as R 1 oo, we have P,(Sy < oo) =0 for all x ## 0. To extend the last result to
x = 0, we note that the Markov property implies

Po(B; =0forsomet > €) = Eo[Pp.(Top < 00)] =0

for all € > 0, so Py(B; = 0 for some ¢t > 0) = 0, and thanks to our definition of
So = inf{t > 0 : B, = 0}, we have

P.(Sy <00)=0 forallx (8.5.4)

Thus, in d > 2 Brownian motion will not hit O at a positive time even if it starts
there.
For d > 3, formula (8.5.2) says

R2—d _ |x|2—d

Px(Sr < SR) = R2

T (8.5.5)

There is no point in fixing R and letting » — 0, here. The fact that two-dimensional
Brownian motion does not hit O implies that three-dimensional Brownian motion
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does not hit 0 and indeed will not hit the line {x : x; = x, = 0}. If we fix r and let
R — ooin (8.5.5), we get

P(S, <o0)=(r/Ix])?¥ 2 <1 if|x|>r (8.5.6)
From the last result it follows easily that for d > 3, Brownian motionis transient,
that is, it does not return infinitely often to any bounded set.

Theorem 8.5.13. Ast — 00, |B;| — 00 a.s.

Proof. Let A, = {|B;| > n'~¢ forall t > S,,}. The strong Markov property implies
Py(A}) = Ex(Pp(s,)(Sp- < 00)) = ('~ /n)!* - 0
asn — 00. Now limsup A, = NY_, U™ A, has
P(imsup A,) > limsup P(A,) =1

So infinitely often the Brownian path never returns to {x : |x| < n'~¢} after time
S,., and this implies the desired result. [ ]

The scaling relation (8.1.1) implies that S ;7 =4 1S, so the proof of Theorem
8.5.13 suggests that

1B,1/t179? - o0
Dvoretsky and Erdos (1951) have proved the following result about how fast
Brownian motion goes to co in d > 3.
Theorem 8.5.14. Suppose g(t) is positive and decreasing. Then
Po(|B:| < g(t)/ti.0.ast 1 o00)=10r0

according as foo g2/t dt = o0 or < 0.

Here the absence of the lower limit implies that we are only concerned with the
behavior of the integral “near co.” A little calculus shows that

0
/ t~'log ¥ tdt = 0o or < o0

according as o < 1 or o > 1, so B, goes to oo faster than /7 /(log t)*/“~2 for any
o > 1. Note that in view of the Brownian scaling relationship B; =4 t'2B;, we
could not sensibly expect escape at a faster rate than /7. The last result shows that
the escape rate is not much slower.

8.6 Donsker’s Theorem

Let X, X5, ...beiid. with EX =0and EX?>=1,andlet S, = X| + --- + X,,.
In this section, we will show that as n — oo, S(nt)/n'/?,0 <t < 1 converges in
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distribution to B;, 0 <t < 1, a Brownian motion starting from By = 0. We will
say precisely what the last sentence means below. The key to its proof is:

Theorem 8.6.1. Skorokhod’s representation theorem. If EX = 0 and EX* <
00, then there is a stopping time T for Brownian motion so that Br =4 X and
ET = EX?.

Remark. The Brownian motion in the statement and all the Brownian motions in
this section have By = 0.

Proof. Suppose first that X is supported on {a, b}, where a < 0 < b. Since EX =
0, we must have

—d

b
( a) P ( ) P
IfweletT =T, = inf{r : B; ¢ (a, b)}, then Theorem 8.5.3 implies Br =4 X and
Theorem 8.5.5 tells us that

ET = —ab = EB}

To treat the general case, we will write F(x) = P(X < x) as a mixture of two
point distributions with mean 0. Let

0 fe's]
c=f (—u)dF(u):/ vdF(v)
—00 0

If ¢ is bounded and ¢(0) = 0, then using the two formulas for c,

oo 0
C/w(X)dF(X)= (/0 w(v)dF(v))f (—u)d F(u)

0 oo
—I—(/ (p(u)dF(u))/ vdF(v)
—0o0 0

= /OoodF(v)/(:><> dF(u) (vp(u) — up(v))
So we have
/cp(x)dF(x) =c! /Ooo dF(v)/io dF(u)(v —u) {ﬁw(u) + %w(v)}
The last equation gives the desired mixture. If we let (U, V) € R? have
P{(U,V)=1(0,0)} = F({0})
P((U,V)e A)y=c"! f/( » dF(u)dF(v) (v — u) (8.6.1)

for A C (—00, 0) x (0, 0o) and define probability measures by (o0({0}) = 1 and

() = —— (o) = —% foru <0 <
v—u v—u
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/(ﬂ(X)dF(X) =E (f w(X)MU,v(dx)>

We proved the last formula when ¢(0) = 0, but it is easy to see that it is true in
general. Letting ¢ = 1 in the last equation shows that the measure defined in (8.6.1)
has total mass 1.

From the calculations above it follows that if we have (U, V) with distribution
given in (8.6.1) and an independent Brownian motion defined on the same space,
then B(Ty v) =4 X. Sticklers for detail will notice that 7y y is not a stopping time
for B, since (U, V) is independent of the Brownian motion. This is not a serious
problem since if we condition on U = u and V = v, then T, , is a stopping time,
and this is good enough for all the calculations below. For instance, to compute
E(Ty,v) we observe

then

E(Tyyv) = E{E(Tyy|(U,V)} = E(=UV)

by Theorem 8.5.5. (8.6.1) implies

0 oo
E(-UV)= / dF(u)(—u)/ dF)v(v —u)c™!
00 0

0 00
=/ dF(u)(—u){—u-i—/ dF(v)c_lvz}
0o 0

o0 0
c:/ vdF(v)=/ (—u)dF(u)
0 -0

since

Using the second expression for ¢ now gives

0

E(Tyy) =E(=UV) = f

—00

uzdF(u)—l—/ v2dF(v) = EX? [ ]
0

Exercise 8.6.1. Use Exercise 8.5.4 to conclude that E (T(iv) < CEX*.

Remark. One can embed distributions in Brownian motion without adding random
variables to the probability space: see Dubins (1968), Root (1969), or Sheu (1986).

From Theorem 8.6.1, it is only a small step to:

Theorem 8.6.2. Let X, X, ...be i.i.d. with a distribution F, which has mean
0 and variance 1, and let S, = X| + --- 4+ X,,. There is a sequence of stopping
times Ty =0, Ty, Tz, . . . such that S,, =4 B(T,)and T,, — T, are independent and
identically distributed.
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Proof. Let (Uy, V1), (Us, V3),...be i.i.d. and have distribution given in (8.6.1),
and let B; be an independent Brownian motion. Let 7y = 0, and for n > 1, let

T, = inf{t >T,1: B — B(Tn—l) ¢ (Un’ Vn)} u
As a corollary of Theorem 8.6.2, we get:

Theorem 8.6.3. Central limit theorem. Under the hypotheses of Theorem 8.6.2,
S.//n = x, where x has the standard normal distribution.

Proof. If we let W,(t) = B(nt)//n =, B, by Brownian scaling, then

Su//1 L B(T)//n = Wo(T,/n)

The weak law of large numbers implies that 7,,/n — 1 in probability. It should be
clear from this that S, /</n = B;. To fill in the details, let € > 0, pick § so that

P(|B; — By| > eforsome t € (1 —6,1+6)) <¢€/2

then pick N large enough so that for n > N, P(|T,,/n — 1] > §) < €/2. The last
two estimates imply that forn > N

P(IWu (T, /n) — Wy(D)] > €) < €

Since € is arbitrary, it follows that W,(7,,/n) — W,(1) — 0 in probability. Apply-
ing the converging together lemma, Exercise 3.2.13, with X, = W,(1) and
Z, = W,(T,/n), the desired result follows. [ |

Our next goal is to prove a strengthening of the central limit theorem that allows
us to obtain limit theorems for functionals of {S,, : 0 < m < n}, for example:
maxo<m<n Sm OF |{m <n : S, > 0}|. Let C[0, 1] = {continuous w : [0, 1] — R}.
When equipped with the norm ||| = sup{|w(s)| : s € [0, 1]}, C[0, 1] becomes a
complete separable metric space. To fit C[0, 1] into the framework of Section 3.9,
we want our measures defined on B = the o-field generated by the open sets.
Fortunately,

Lemma 8.6.4. B is the same as C the o-field generated by the finite dimensional
sets {w : w(t;) € A;}.

Proof. Observe that if £ is a given continuous function,
{w:llo—=§&ll =r—1/n} =Nglw:|wlg) — @) <r—1/n}

where the intersection is over all rationals in [0,1]. Letting n — oo shows {w :
lwo—&| <r}eC and B C C. To prove the reverse inclusion, observe that if the
A; are open, the finite dimensional set {w : w(t;) € A;} is open, so the m — A
theorem implies B D C. [ |
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A sequence of probability measures u,, on C[0, 1] is said to converge weakly
to a limit w if for all bounded continuous functions ¢ : C[0, 1] — R, f odu, —
[ @ dpu. Let N be the nonnegative integers and let

Sk ifu=keN
Sw) =1 .
linearon [k, k + 1] fork e N
We will prove:

Theorem 8.6.5. Donsker’s theorem. Under the hypotheses of Theorem 8.6.3,
S(n)//n = B(),

that is, the associated measures on C[0, 1] converge weakly.

To motivate ourselves for the proof, we will begin by extracting several corol-
laries. The key to each one is a consequence of the following result, which follows
from Theorem 3.9.1.

Theorem 8.6.6. If ¢ : C[0, 1] — R has the property that it is continuous Py-
a.s., then

Y (S(n)/v/n) = Y (B())

Example 8.6.1. Let ¢ (w) = w(1). Inthis case, ¥ : C[0, 1] — Ris continuous and
Theorem 8.6.6 gives the central limit theorem.

Example 8.6.2. Maxima. Let (w) = max{w(t) : 0 <t < 1}. Again, ¥ : C[0,
1] — R is continuous. This time Theorem 8.6.6 implies

max S,n/ﬁ=> M; = max B,
0<r<l1

0<m=<n
To complete the picture, we observe that by (8.4.4), the distribution of the right-hand
side is

Po(My =z a) = Py(T, = 1) =2Py(B, = a)

Exercise 8.6.2. Suppose S, is one-dimensional simple random walk and let

R, =1+ max S,, — min §,,
m=<n m=<n

be the number of points visited by time n. Show that R,//n = a limit.

Example 8.6.3. Last 0 before time n. Let (w) = sup{r < 1 : w(¢) = 0}. This
time, ¥ is not continuous, for if w, with w(0) = 0 is piecewise linear with slope 1
on[0,1/3+ €], —1on[1/3+¢€,2/3], and slope 1 on [2/3, 1], then ¥ (wp) = 2/3
but ¥ (we) = 0 for € > 0.
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Wo

It is easy to see that if ¥ (w) < 1 and w(¢) has positive and negative values in each
interval (¥ (w) — §, ¥ (w)), then ¢ is continuous at w. By arguments in Subsection
8.4.1, the last set has Py measure 1. (If the zero at ¥ (w) was isolated on the left, it
would not be isolated on the right.) It follows that

sup{im <n:S,—1-Sm <0}/n =L =sup{t <1: B, =0}

The distribution of L is given in (8.4.9). The last result shows that the arcsine law,
Theorem 4.3.5, proved for simple random walks holds when the mean is 0 and
variance is finite.

Example 8.6.4. Occupation times of half-lines. Let

V(w) = [{r € [0, 1]: (1) > a}|.

The point w = a shows that i is not continuous, but it is easy to see that v is
continuous at paths w with |{t € [0, 1] : w(¢) = a}| = 0. Fubini’s theorem implies
that

1
Eol{t € [0,1]: B, = a}| = / Po(B; =a)dt =0
0

so ¥ is continuous Py-a.s. With a little work, Theorem 8.6.6 implies

{m <n:S, >ayn}|/n=|{t €[0,1]: B, > al|

Proof. Application of Theorem 8.6.6 gives that for any a,
I{t € [0, 1]: S(nt) > a/n}| = |{t € [0,1]: B, > a}|

To convert this into a result about |{m <n :S, > a\/n}|, we note that on
{max,,<, | X,n| < €4/n}, which by Chebyshev’s inequality has a probability — 1,
we have

[{r €[0,1]: S(nt) > (a +e)/n}| < %I{m <n:S, >avnj|

|{r € [0, 112 S(ut) > (a — €)v/n}]

Combining this with the first conclusion of the proof and using the fact that
b — |{t € [0, 1] : B, > b}| is continuous at b = a with probability 1, one arrives
easily at the desired conclusion. |

IA

To compute the distribution of |{t € [0, 1] : B; > 0}|, observe that we proved in
Theorem 4.3.7 that if S, =4 —S, and P(S,, = 0) = 0 for all m > 1, for example,
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the X; have a symmetric continuous distribution, then the left-hand side converges
to the arcsine law, so the right-hand side has that distribution and is the limit for any
random walk with mean 0 and finite variance. The last argument uses an idea called
the “invariance principle” that originated with Erdos and Kac (1946, 1947): the
asymptotic behavior of functionals of S, should be the same as long as the central
limit theorem applies. Our final application is from the original paper of Donsker
(1951). Erdos and Kac (1946) give the limit distribution for the case k = 2.

Example 8.6.5. Let ¥(w) = f[O,l] w(t)kdt where k > 0 is an integer. v is contin-
uous, so applying Theorem 8.6.6 gives

1 1
/ (S(nt)//n) dt = f BFdt
0 0

To convert this into a result about the original sequence, we begin by observing
thatif x < y with |x — y| < € and |x]|, |y| < M, then

¥ k] k1
|xk—yk|</ ad iz <X
=L k+17 T ket

From this, it follows that on
G,(M) = {max|Xm| < M~*D /0, max|S,| < Mﬁ}
m<n m=n

we have

o
~(k+ DM

1 n
/ (S(nt)/ /b dt —n~' 8D X " gk
0 m=1

For fixed M, it follows from Chebyshev’s inequality, Example 8.6.2, and Theo-
rem 3.2.5 that

liminf P(G,(M)) > P (max] |B,| < M)
n—oo

0<t<

The right-hand side is close to 0 if M is large, so
1 n
/ (Samt)/mldt —n™"HD 358 0
0 m=1

in probability, and it follows from the converging together lemma (Exercise 3.2.13)
that

n 1
ey st [t
m=1 0

It is remarkable that the last result holds under the assumption that £X; = 0 and
EXi2 = 1, that is, we do not need to assume that E|Xf.‘| < 0.
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Exercise 8.6.3. When k = 1, the last result says that if X, X, ...are i.i.d. with
EX; =0and EX? = 1, then

n 1
n=3/2 Z(n +1-—m)X,, = f B,dt
m=1 0

(i) Show that the right-hand side has a normal distribution with mean O and variance
1/3. (i1) Deduce this result from the Lindeberg-Feller theorem.

Proof of Theorem 8.6.5. To simplify the proof and prepare for generalizations in
the next section, let X, ,,, 1 <m < n, be a triangular array of random variables,
Sum = Xn1 + -+ X, and suppose S, ,, = B(t,,). Let

g . Sn.m ifu=me{0,1,...,n}
= linear foru € [m — 1,m] whenm € {1,...,n}

Lemma 8.6.7. If 7, ; — s in probability for each s € [0, 1] then
|Sn, )y — Bl — O in probability
To make the connection with the original problem, let X, ,, = X,,/+/n and
define t{', ..., 7} sothat (S, 1, ..., Spn)=a (B(t{),..., B(t)).If T}, T, .. .are

the stopping times defined in the proof of Theorem 8.6.3, Brownian scaling implies
7. =4 T,u/n, so the hypothesis of Lemma 8.6.7 is satisfied.

Proof. The fact that B has continuous paths (and hence is uniformly continuous
on [0,1]) implies that if € > O then there is a § > 0 so that 1/§ is an integer and

(a) P(|B; — Bs| <eforall0<s <1,|t—s|<28)>1—¢€
The hypothesis of Lemma 8.6.7 implies that if n > N, then
P(ltps — k8l <8 fork=1,2,...,1/8)>1—¢€
Since m — 1, is increasing, it follows that if s € ((k — 1)4, k9),
Tins) =5 = Tuge—1js) ~ k0
Ting) — S < Ty — (K + 18

soif n > Ng,

(b) P(sup |r[’,’m]—s|<28>zl—e

0<s<l1

When the events in (a) and (b) occur

(c) |Sn.m — Bunl < €forall m <n
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To deal with t = (m 4+ 0)/n with 0 < 6 < 1, we observe that

|Sn,(nt) - Bt| = (1 - Q)ISn,m - Bm/n| + 9|Sn‘m+l - B(m+1)/n|
+ (1 - e)le/n - Btl + QIB(m-H)/n - Btl

Using (c) on the first two terms and (a) on the last two, we see that if n > Nj
and 1/n < 26, then ||S, () — B(-)|| < 2¢ with probability > 1 — 2e. Since € is
arbitrary, the proof of Lemma 8.6.7 is complete. [ |

To get Theorem 8.6.5 now, we have to show:
Lemma 8.6.8. If ¢ is bounded and continuous, then E@(S, n.)) = E@(B(-)).

Proof. For fixed € > 0, let G5 = {w : if [|o — &'|| < § then |p(w) — p(@')| < €}.
Since ¢ is continuous, Gs 1 C[0, 1]asé | 0.Let A = ||S, (»y — B(-)||. The desired
result now follows from Lemma 8.6.7 and the trivial inequality

|E@(Sn,m) — E@(B())| = € + (2sup [p(@)D{P(G) + P(A = 8)} u

To accommodate our final example, we need a trivial generalization of Theorem
8.6.5. Let C[0, oo0) = {continuous w : [0, c0) — R} and let C[0, co) be the o-
field generated by the finite dimensional sets. Given a probability measure u
on C[0, 00), there is a corresponding measure myu on C[0, M] = {continuous
w : [0, M] — R} (withC[0, M]the o-field generated by the finite dimensional sets)
obtained by “cutting off the paths at time M.” Let (Y yw)(t) = w(t) for t € [0, M]
and let Ty = po 1//;11. We say that a sequence of probability measures w, on
C[0, co) converges weakly to p if for all M, myu, converges weakly to myu on
C[0, M], the last concept being defined by a trivial extension of the definitions for
M = 1. With these definitions, it is easy to conclude:

Theorem 8.6.9. S(n-)//n = B(-), that is, the associated measures on C[0, c0)
converge weakly.

Proof. By definition, all we have to show is that weak convergence occurs on
C[0, M]forall M < oo. The proof of Theorem 8.6.5 works in the same way when 1
is replaced by M. [ |

Example 8.6.6. Let N, = inf{m : S,, > \/n} and T\ = inf{t : B, > 1}. Since
Y(w) = Ti(w) A 1 is continuous Py a.s. on C[0, 1] and the distribution of 7 is
continuous, it follows from Theorem 8.6.6 that for0 < ¢ < 1

P(N, =nt) — P(T\ =1)

Repeating the last argument with 1 replaced by M and using Theorem 8.6.9 shows
that the last conclusion holds for all z.
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8.7 Empirical Distributions, Brownian Bridge

Let X1, X5, ...bei.i.d. with distribution F. Theorem 2.4.7 shows that with proba-
bility 1, the empirical distribution

N 1
Fn(x): ;l{m <n:X, SX}|

converges uniformly to F(x). In this section, we will investigate the rate of con-
vergence when F' is continuous. We impose this restriction so we can reduce to
the case of a uniform distribution on (0,1) by setting ¥,, = F(X,,). (See Exercise
1.2.4.) Since x — F(x) is nondecreasing and continuous and no observations land
in intervals of constancy of F, it is easy to see that if we let

~ 1
Gn(y) = ;I{m <n:Y, <y}
then
sup |[Fy(x) — F(x)| = sup |G,(y) — |
X O<y<l1

For the rest of the section, then, we will assume Y7, Y5, .. .is1.i.d. uniform on (0,1).
To be able to apply Donsker’s theorem, we will transform the problem. Put the
observations Y1, ..., Y, inincreasing order: U] < U} < --- < U,’. I claim that
N m
sup G,(y)—y= sup ——U,
O<y<l1 1<m=<n

inf G,(y)—y = inf -ur (8.7.1)
<y<

1<m=<n n

0

since the sup occurs at a jump of G, and the inf right before a jump. For a picture,
see Figure 8.4.

Figure 8.4. Picture proof of formulas in (8.7.1).

We will show that

D, =n"? sup |G,(y) -yl

O<y<l

has a limit, so the extra —1/n in the inf does not make any difference.
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Our third and final maneuver is to give a special construction of the order
statistics U < U} --- < U,}. Let Wi, W5, ...be i.i.d. with P(W; > t) = e~ and
letZ, =W+ ---+ W,.

Lemma8.7.1. {U': 1 <k <n} L {Z/Zys1:1 <k <n}

Proof. We change variables v = r(¢), where v; = t;/t,4 fori <n, v,41 = t,11.
The inverse function is

s(V) = (V1Vnt1s -+ o5 UnVUpgd, Ungl)

which has matrix of partial derivatives ds; /0v; given by

Un+1 0 e 0 U1
0 Upa1 NN 0 1%
0 0 N
0 0 0 1

The determinant of this matrix is UZ_H, so if we let W =(Vy,..., V1) =

r(Zy, ..., Zy,11), the change of variables formula implies W has joint density

n
—AUn41 (U —Um— —Av, 1—v,),.n
Swi, oo Uy V) = (l_[ Le o ')> Ae oz

m=1

To find the joint density of V = (Vy, ..., V,), we simplify the preceding formula
and integrate out the last coordinate to get

o0
n+l,.n — AUy —
fV(vl,...,v,,)=/ ATy e duy g = n!
0

for0 < vy < vy--- < v, <1, which is the desired joint density. |

We turn now to the limit law for D,. As argued above, it suffices to consider

Zm m

D, = n'? max
1<m<n

Zy n

n Zn m  Zyi
= max |—-z5 — — - ——5
Zn+1 I<m=n nl/2 n nl/2
n Zy—m m Zyi1 —n
= max |—— — —+ ———— (8.7.2)
Zn+1 1<m<n nl/2 n nl/2

If we let

B — {(zm —m)/n'? ift =m/nwithm € {0, 1,...,n)

linear on[(m —1)/n,m/n]
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then

D, = max

Zn—H O=r=<1

Zn-H - Zn
B,(t) —t3{B,(1)+ T

The strong law of large numbers implies Z,.y;/n — 1 a.s., so the first factor will
disappear in the limit. To find the limit of the second, we observe that Donsker’s
theorem, Theorem 8.6.5, implies B,,(-) = B(-), a Brownian motion, and computing
second moments shows

(Zus1 — Zy)/n'’? — 0 in probability
Y (w) = maxp<<1 |o(t) — tw(l)| is a continuous function from C[0, 1] to R, so it

follows from Donsker’s theorem that:

Theorem 8.7.2. D, = maxo<;<; |B; — t B}|, where B, is a Brownian motion start-
ing at 0.

Remark. Doob (1949) suggested this approach to deriving results of Kolmogorov
and Smirnov, which was later justified by Donsker (1952). Our proof follows
Breiman (1968).

To identify the distribution of the limit in Theorem 8.7.2, we will first prove
{Bi—1B1,0<1 <1} < (B,0<1<1]B =0 (8.7.3)

a process we will denote by BY and call the Brownian bridge. The event B; = 0
has probability O, but it is easy to see what the conditional probability should mean.

f0=t<ti<--- <ty <tyt1=1,x=0,x,41 =0,and xy, ..., x, € R, then
P(B(t) = x1, ..., B(ty) = x,| B(1) = 0)
s
i S 8.7.4
p1(0, O)ml_[_lptm t,n_l(x s Xm) ( )

where p,(x, y) = Qmt)" 2 exp(—(y — x)?/21).

Proof of (8.7.3). Formula (8.7.4) shows that the f.d.d.’s of B,0 are multivariate
normal and have mean 0. Since B, — ¢ B; also has this property, it suffices to show
that the covariances are equal. We begin with the easier computation. If s < ¢, then

E((By —sB)(B;, —tBy)=s —st—st+st =s(1 —1) (8.7.5)
For the other process, P(B? = x, B? = y) is

exp(—x?/2s) exp(—(y —x)*/2(t —5)) exp(—y*/2(1 — 1))
(2ms)!/? Qnr(t — s)1/2 Qr(1 —1))1/2

= (2m) (st — s)(1 — 1))""? exp(—(ax® + 2bxy + cy*)/2)

- (2m)?
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where
1 1 t 1
= b
s t—s s(t—ys) t—s
1 n 1 B 1—s
t—s 1—t (—s)1—10)

Recalling the discussion at the end of Section 3.9 and noticing

—1 —1
(x(’t_s) t=s) ) _ (S(l —5)s(1— l‘))
—1 1—s - _ _
t—s) —s)d1-1) s(1—1) t(1 —1)

(multiply the matrices!) shows (8.7.3) holds. [ ]

Our final step in investigating the limit distribution of D, is to compute the
distribution of maxp<;<i |B,O |. To do this, we first prove

Theorem 8.7.3. The density function of B; on {T, A Tj, > t}is
o0
P(T, AT, >t Bi=y)= > P(B =y+2nb—a) (8.7.6)

n=—00

— Pu(B, =2b— y +2n(b — a))

2b—y—2(b—a) 2b—y 2b—y+2(b—a)
y—2b—a) ¥ y oY y420-a) Y

+ — + — + —

—b 4+ 2a a b 2b—a 3b —2a

Figure 8.5. Picture of the infinite series in (8.7.6). Note that the array of + and — is
antisymmetric when seen from a or b.

Proof. We begin by observing thatif A C (a, b),
P(TynT,>t,Be A)=P(B,e A)— P(T, <T,, T, <t,B, € A)
—P(T, <T,, T, <t, B € A) (8.7.7)

If we let p,(y) = 2a — y be reflection through a and observe that {T, < T} is
JF(T,) measurable, then it follows from the proof of (8.4.5) that

Px(Ta <T,, T, <t,B; € A) = Px(Ta <T,, B, € /OaA)
where p,A = {p,(y) : y € A}. To get rid of the T, < T}, we observe that

Py(T, < Tp, B € paA) = Pi(B; € pgA) — Pe(Ty < Ty, B € paA)
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Noticing that B; € p,A and T;, < T, imply T;, < ¢ and using the reflection principle
again gives

Px(Tb < Tav Bt € ,OaA) = Px(Tb < Tav Bt € ;ObloaA)
= Px(Bt € ,OhPaA) - Px(Ta < Tb» Bt € Pb,OaA)

Repeating the last two calculations # more times gives

n
P(Ty < Ty, B € puA) = ) Pi(B, € pa(pppa)"A) — Po(B; € (pppa)" ™' A)

m=0

+ P(T, < Ty, B; € (oppa)" " A)

Each pair of reflections pushes A further away from 0, so letting n — oo shows

oo
P(T, < Ty, Bi € paA) = ) _ P(B, € pu(pppa)" A) — Po(B; € (pppa)" ' A)

m=0

Interchanging the roles of a and b gives

o0
P(Ty < Tu, By € pyA) = Y Po(Bs € py(paps)" A) = Po(Bs € (papp)™*' A)

m=0

Combining the last two expressions with (8.7.7) and using p_ U= o, (papp)™' =
Py, 07" gives

o0

P(Tu ATy >1,B € A)= Y P(Bi € (pppa)"A) — Pe(B € pa(pppa)" A)

m=—0o0

To prepare for applications, let A = (u, v) where @ < u < v < b, notice that
PP (y) = ¥ 4+ 2(b — a), and change variables in the second sum to get

P(T,ANT, >t,u<B, <v)=

o]

Z (P.(u+2n(b—a) < B, <v+2nb—a)) (8.7.8)

n=—0oo

—P2b—v+2nb—a) < B, <2b—u+2nb—a)))

Lettingu = y — €,v = y + ¢, dividing both sides by 2¢, and letting ¢ — 0 (leaving
it to the reader to check that the dominated convergence theorem applies) gives the
desired result. [ |
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Setting x =y = 0, ¢t = 1, and dividing by 27)~'/? = Py(B; = 0), we get a
result for the Brownian bridge B:

0<t<l1 0<r<l

Py (a < min B? < max B’ < b) (8.7.9)

00
— Z ef(Zn(bfa))2/2_67(2b+2n(b7a))2/2

n=—oo

Taking a = —b, we have
o0
P, (Orga;;l 1BY| < b) = Y (=lre (8.7.10)
m=—00

This formula gives the distribution of the Kolmogorov-Smirnov statistic, which
can be used to test if an i.i.d. sequence Xy, ..., X, has distribution F. To do this,
we transform the data to F(X,) and look at the maximum discrepancy between the
empirical distribution and the uniform. (8.7.10) tells us the distribution of the error
when the X; have distribution F.

(8.7.9) gives the joint distribution of the maximum and minimum of Brownian
bridge. In theory, one can let a — —oo in this formula to find the distribution of
the maximum, but in practice it is easier to start over again.

Exercise 8.7.1. Use Exercise 8.4.6 and the reasoning that led to (8.7.9) to conclude

P <max Bto > b) = exp(—2b?)

0<t<l1

8.8 Laws of the Iterated Logarithm™*

Our first goal is to show

Theorem 8.8.1. LIL for Brownian motion.

lim sup B;/(2t log logt)l/2 =1 a.s.

—00

Here LIL is short for “law of the iterated logarithm,” a name that refers to the
loglog ¢ in the denominator. Once Theorem 8.8.1 is established, we can use the
Skorokhod representation to prove the analogous result for random walks with
mean 0 and finite variance.

Proof. The key to the proof is (8.4.4).

Py (max B, > a) = Py(T, <1)=2 Py(B; > a) (8.8.1)

0<s<I -
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To bound the right-hand side, we use Theorem 1.2.3.

/ " exp(=y2/2)dy < %exp(—xz/m (8.8.2)

o
1
/ exp(—y*/2)dy ~ —exp(—x*/2) asx — 00 (8.8.3)
X X

where f(x) ~ g(x) means f(x)/g(x) — 1asx — oo. The last result and Brown-
ian scaling imply that

Po(B, > (tf (1)) ~ k(1)1 exp(— £ (1)/2)
where k = (27)~!/? is a constant that we will try to ignore below. The last result

implies that if € > 0, then

ZP0<B > (if )" ]

n=1

<00 when f(n)=2+¢€)logn
when f(n) = (2 —€)logn

and hence by the Borel-Cantelli lemma that

limsup B, /(2nlogn)'/? <

n—-oo

a.s.

To replace logn by loglogn, we have to look along exponentially growing
sequences. Let t, = ", where o > 1.

1/2
PO( o ><rnf<rn>)“2) 5P0< max B/t > (fgn)> )

In =§=<Ipt1 0<s<tp41
< 2uc(f (tn)/ o)™ exp(— £ (1) /200)
by (8.8.1) and (8.8.2). If f(1) = 2 loglogt, then
loglogt, = log(n loga) = logn + loglog «

so exp(— f(ty)/2a) < Cun™ %, where C, is a constant that depends only on «, and
hence

ZPO ( max B, > (t,,f(tn))m) < 00
tn<S<tn+l

Since t — (¢f(t))"/? is increasing and o > 1 is arbitrary, it follows that
lim sup B, /(2t loglog1)'/? < 1 (8.8.4)

To prove the other half of Theorem 8.8.1, again let ¢, = «", but this time « will be
large, since to get independent events, we look at

Py (B(tn+1) — B(ty) > (tn+1f<tn+1))1/2) =Fh (Bl > (ﬁf(tn+l))l/2)

where 8 = t,,11/(t,+1 — t,) = o¢/(a — 1) > 1. The last quantity is

> S(Bf (ts1)) ™2 exp(— 2
= 2 n+1 CXP( ﬁf(thr])/)
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if n is large by (8.8.3). If f(r) = (2/B%) loglogt, then loglogt, =logn +
loglog «, so

exp(—Bf (ta1)/2) = Con™'/?

where C,, is a constant that depends only on «, and hence

o

> Py (Bltws1) = B(t) > (tai1 [(ta41)'?) = 00

n=1
Since the events in question are independent, it follows from the second Borel-
Cantelli lemma that

B(tys1) — B(ty) > ((2/B)tny1 loglogt,)'? i, (8.8.5)
From (8.8.4), we get

lim sup B(z,)/(2t, loglog1,)!/? < 1 (8.8.6)

n—>oo
Since t, = t,41/« and t — loglogt is increasing, combining (8.8.5) and (8.8.6)
and recalling 8 = «/(«¢ — 1) gives
oa—1 1

lim sup B(ty+1)/(2t,+1 loglog t,41)"* >
n— 00 o all?

Letting @« — 0o now gives the desired lower bound, and the proof of Theo-
rem 8.8.1 is complete. |

Exercise 8.8.1. Let 1, = exp(e¥). Show that

lim sup B(#;)/ (2t logloglog )/ =1 as.

k—o00

Theorem 8.2.6 implies that X, = tB(1/t) is a Brownian motion. Changing
variables and using Theorem 8.8.1, we conclude

limsup |B,|/(2tloglog(1/t)'/* =1 a.s. (8.8.7)

t—0

To take a closer look at the local behavior of Brownian paths, we note that
Blumenthal’s 0-1 law, Theorem 8.2.3, implies Py(B; < h(t) for all ¢ sufficiently
small) € {0, 1}. & is said to belong to the upper class if the probability is 1, the
lower class if it is O.

Theorem 8.8.2. Kolmogorov’s test. If i(t) + and t~'/>h(t) |, then h is upper or
lower class according as

1
f t732h(t)exp(—h*(1)/2t)dt  converges or diverges
0

Recalling (8.4.8), we see that the integrand is the probability of hitting A(¢) at
time 7. To see what Theorem 8.8.2 says, define 1g, () = log(lg;_,(¢)) for k > 2 and
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t > a; = exp(ax—1), where lg,(t) = log(¢) and a; = 0. A little calculus shows that
when n > 4,

172
3 n—1
h(t) = (2t {ng(l/t) + §1g3(1/t) + Zlgm(l/t) + +€)lgn(1/f)}>

m=4

is upper or lower class according as € > Q or e < 0.

Approximating / from above by piecewise constant functions, it is easy to show
that if the integral in Theorem 8.8.2 converges, /() is an upper class function. The
proof of the other direction is much more difficult; see Motoo (1959) or Section
4.12 of 1td6 and McKean (1965).

Turning to random walk, we will prove a result due to Hartman and Wintner
(1941):

Theorem 8.8.3. If X1, X», ...are i.i.d. with EX; = 0 and EX} = 1, then

limsup S, /(2n loglogn)'/? = 1

n—oo

Proof. By Theorem 8.6.2, we can write S, = B(T,) with T,/n — 1 a.s. As in the
proof of Donsker’s theorem, this is all we will use in the argument below. Theo-
rem 8.8.3 will follow from Theorem 8.8.1 once we show

(Siy — B))/(tloglogn)'? — 0 ass. (8.8.8)
To do this, we begin by observing that if € > 0 and ¢ > #,(w)
Ty elt/(+e),t(1 +€)] (8.8.9)

To estimate Sy — By, we let M(t) = sup{|B(s) — B(#)| : t/(1+¢€) <s <t(1+
€)}. To control the last quantity, we let #;, = (1 + €)F and notice thatif 7, < r < tet1,

M(t) < sup{|B(s) — B(t)| : tx—1 < 5,1 < fr42}

<2 sup{|B(s) — B(tx—1)| : k1 <5 =< lry2}

Noticing x4 — ty—1 = 8y, where § = (1 + €)* — 1, scaling implies

P( max |B(s) — B()| >(38tk_110g10gtk_1)1/2)

k-1 =S=lky2

=P <max1 |B(r)| > (3loglog tk_1)1/2>

0<r<

< 2k(3loglogty_1)~ /> exp(—3 loglog tx_1/2)

by a now-familiar application of (8.8.1) and (8.8.2). Summing over k and using (b)
gives

lim sup(Sy,; — By)/(t loglog)'/? < (38)'/2

t—>00
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If we recall § =(1+¢)>—1 and let € | 0, (a) follows and the proof is
complete. |

Exercise 8.8.2. Show that if E|X;|* = oo for some o < 2, then

l/a

limsup | X,|/n/* =00 as.

n—oo

so the law of the iterated logarithm fails.

Strassen (1965) has shown an exact converse. If Theorem 8.8.3 holds then
EX; = 0and EX}? = 1. Another one of his contributions to this subject is

Theorem 8.8.4. Strassen’s (1964) invariance principle. Ler X, X»,...be
iid. with EX; =0 and EX? =1, let S, = X1+ -+ + X,,, and let S,., be the
usual linear interpolation. The limit set (i.e., the collection of limits of convergent
subsequences) of

Z,() = 2nloglogn)~?8(n-) forn =3
is K ={f: fx)= [y g()dy with [, g(y)*dy < 1}.
Jensen’s inequality implies f(1)*> < fol g(y)*dy < 1 with equality if and only if

f(t) =t, so Theorem 8.8.4 contains Theorem 8.8.3 as a special case and provides
some information about how the large value of S, came about.

Exercise 8.8.3. Give a direct proof that, under the hypotheses of Theorem 8.8.4,
the limit set of {S,,/(2n loglogn)'/?}is [—1, 1].



Appendix A

Measure Theory Details

This Appendix proves the results from measure theory that were stated but not
proved in the text.

A.1 Carathéodory’s Extension Theorem

This section is devoted to the proof of:

Theorem A.1.1. Let S be a semialgebra, and let . defined on S have u(9) = 0.
Suppose (i) if S € S is a finite disjoint union of sets S; € S, then W(S) = Y. u(S)),
and (ii) if S;, S € S with S = +1S;, then u(S) < Y, u(S;). Then p has a unique
extension fi that is a measure on S the algebra generated by S. If the extension is
o -finite, then there is a unique extension v that is a measure on o (S).

Proof. Lemma 1.1.3 shows that S is the collection of finite disjoint unions of
sets in S. We define fi on S by ji(A) = > ;i (S;) whenever A = +;S;. To check
that fi is well defined, suppose that A = +;T; and observe S; = +;(S; N T;) and
T; = +(S; N T)), so (i) implies

Dou(S) =Y u(SiNT) = wT) u
i iJ J
In Section 1.1 we proved:
Lemma A.1.2. Suppose only that (i) holds.
(a) If A, B; € S with A = +"_, B; then i(A) = Y_, ii(By).
(b) If A, B; € S with A C U_, B; then i(A) < Y, ji(B).
To extend the additivity property to A € S that are countable disjoint unions

A = +;>1B;, where B; € S, we observe that each B; = +;S;,; with §; ; € S and
Ziz] a(B;) = Zizl,j wu(S;, j), so replacing the B;’s by S§; ;’s, we can without loss

401
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of generality suppose that the B; € S. Now A € S implies A = +;7; (a finite
disjoint union) and 7; = +;>17; N B;, so (ii) implies

u(Tp) <Y (TN By)

i>1

Summing over j and observing that nonnegative numbers can be summed in any

order,
A(A) =" wT) <Y Y wT;NB) =Y u(B)
J

i=l i>1
the last equality following from (i). To prove the opposite inequality, let A, =

Bi+---+B,,andC, =ANA;.C, € S, since S is an algebra, so finite additivity
of i implies

pa(A) = (B1) + - - - + (By) + (Cy) = f(By) + - - - + fi(By)

and letting n — oo, fi(A) > Y .- i(B)).
Having defined a measure on the algebra S, we now complete the proof by
establishing

Theorem A.1.3. Carathéodory’s Extension Theorem. Let 1 be a o -finite mea-
sure on an algebra A. Then | has a unique extension to o(A) = the smallest
o-algebra containing A.

Uniqueness. We will prove that the extension is unique before tackling the more
difficult problem of proving its existence. The key to our uniqueness proof is
Dynkin’s w — A theorem, a result that we will use many times in the book. As
usual, we need a few definitions before we can state the result. P is said to be a
m-system if it is closed under intersection, that is, if A, B € P then AN B € P.
For example, the collection of rectangles (a;, b1] X --- X (a4, by] is a w-system.
L is said to be a A-system if it satisfies: (i) 2 € L. (ii)) If A, B e L and A C B,
then B— A e L. (iii)) If A, € L and A, 1 A, then A € L . The reader will see
in a moment that the next result is just what we need to prove uniqueness of the
extension.

Theorem A.1.4. 7 — A Theorem. If P is a w-system and L is a A-system that
contains P, then o (P) C L.

Proof. We will show that

(a) if £(P) is the smallest A-system containing P, then £(P) is a o-field.

The desired result follows from (a). To see this, note that since o (P) is the
smallest o -field and £(’P) is the smallest A-system containing P, we have

oc(PyceP)cL
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To prove (a) we begin by noting that a A-system that is closed under intersection
is a o-field since

ifAeLthenA*=Q—AecLl
AUB = (A°N BY)*
U'_, Ai P UZ,A;asn 1 oo
Thus, it is enough to show
(b) £(P) is closed under intersection.
To prove (b), we let G4 = {B : AN B € £(P)} and prove
(c) if A € £(P), then G4 is a A-system.

To check this, we note:

(i) Q2 € G4 since A € £(P).
@) if B,Ce€ Gy and BDOC,then AN(B—-C)=(ANB)—(ANC) € L(P)
since AN B, ANC € {(P) and £(P) is a A-system.
(iii) if B, € G4 and B, * B, then AN B, + AN B € £(P) since AN B, € £(P)
and £(P) is a A-system.

To get from (c) to (b), we note that since P is a w-system,
if A € Pthen G4 D P, and so (¢) implies G4 D £(P)

that is, if A € P and B € £(P), then AN B € £(P). Interchanging A and B in the
last sentence: if A € £(P) and B € P then A N B € £(P) but this implies

if A € £(P) then G4 D P and so (c) implies G4 D £(P).
This conclusion implies that if A, B € £(P), then A N B € £(P), which proves (b)
and completes the proof. |

To prove that the extension in Theorem A.1.3 is unique, we will show:

Theorem A.1.5. Let P be a w-system. If vi and v, are measures (on o-fields

JF1 and JF;) that agree on P and there is a sequence A, € P with A, 1 Q2 and

vi(A,) < oo, then vy and v, agree on o (P).

Proof. Let A € P have vi(A) = 1n(A) < oo. Let
L={Beo(P):vi(ANB)=1v(ANB)}

We will now show that £ is a A-system. Since A € P, vi(A) = 1,(A) and 2 € L.
If B, C € L with C C B, then

V(ANB=C)=v(ANB)—1(ANC)
— 1 (ANB)—1(ANC) = 1(AN(B - C))
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Here we use the fact that v;(A) < oo to justify the subtraction. Finally, if B, € £
and B, 1 B, then part (iii) of Theorem 1.1.1 implies

V(AN B) = lim vi(ANB,) = lim v(AN B,) = vx(ANB)

Since P is closed under intersection by assumption, the w — A theorem implies
L D o(P), thatis, if A € P with vi(A) = v,(A) < oo and B € o(P), then v;(A N
B) =v,(AN B). Letting A, € P with A, 1 Q, vi(A,) = »(A,) < 00, and using
the last result and part (iii) of Theorem 1.1.1, we have the desired conclusion. MW

Exercise A.1.1. Give an example of two probability measures y 7% v on F = all
subsets of {1, 2, 3, 4} that agree on a collection of sets C with o(C) = F, that is,
the smallest o -algebra containing C is F.

Existence. Our next step is to show that a measure (not necessarily o -finite) defined
on an algebra A has an extension to the o-algebra generated by A. If E C Q, we
let u*(E) = inf ) ; (A;) where the infimum is taken over all sequences from A
so that E C U; A;. Intuitively, if v is a measure that agrees with p on A, then it
follows from part (ii) of Theorem 1.1.1 that

V(E) < v(UiA;) < D u(A) =) u(Ay)

1

so u*(E) is an upper bound on the measure of E. Intuitively, the measurable sets are
the ones for which the upper bound is tight. Formally, we say that E is measurable
if

W (F)=p (FNE)+ u*(FNE forallsets F C Q (A.1.1)

The last definition is not very intuitive, but we will see in the proofs below that it
works very well.
It is immediate from the definition that u* has the following properties:

(i) Monotonicity. If £ C F then u*(E) < u*(F).
(ii) Subadditivity. If F C U; F;, a countable union, then p*(F) < ), u*(Fy).

Any set function with p*(¢) = 0 that satisfies (i) and (ii) is called an outer
measure. Using (ii) with F; = F N E and F, = F N E° (and F; = { otherwise),
we see that to prove a set is measurable, it is enough to show

w*(F) > w*(F N E) + w*(F N E°) (A.1.2)

We begin by showing that our new definition extends the old one.

Lemma A.1.6. If A € A, then u*(A) = u(A) and A is measurable.



Appendix A: Measure Theory Details 405

Proof. Part (ii) of Theorem 1.1.1 implies that if A C U; A;, then

H(A) <Y (A

so w(A) < u*(A). Of course, we can always take A; = A and the other A; = ¥ so
W (A) < p(A).

To prove that any A € A is measurable, we begin by noting that the inequality
is (A.1.2) trivial when p©*(F) = oo, so we can without loss of generality assume
w*(F) < oo. To prove that (A.1.2) holds when E = A, we observe that since
w*(F) < oo there is a sequence B; € A so that U; B; D F and

> (B < pwr(F)+e

Since u is additive on A, and . = p* on A, we have
pw(Bi) = u*(B; N A) + u*(B; N A)
Summing over i and using the subadditivity of u* gives

WEF) + ez ) p(BiNA) + Y u"(B;i N AY) = 1" (F N A) + p*(F N A)
which proves the desired result since € is arbitrary. |

Lemma A.1.7. The class A* of measurable sets is a o -field, and the restriction of
w* to A* is a measure.

Remark. This result is true for any outer measure.

Proof. It is clear from the definition that

(a) If E is measurable, then E€ is.

Our first nontrivial task is to prove

(b) If E| and E, are measurable, then £ U E, and £, N E, are.

Proof of (b). To prove the first conclusion, let G be any subset of €2. Using subad-
ditivity, the measurability of E; (let F = G N E{ in (A.1.1), and the measurability
of E|, we get

WG N (Ey U Ey) + 1*(G N (ES N ES))
< (G N Ey) + u*(G N ES N Ey) + 1*(G N ES N ES)
=u (GNE)+p"(GNE]) = u(G)

To prove that Ey N E, is measurable, we observe E| N E, = (E{U E5)° and
use (a). |
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(c)Let G C Qand Ey, ..., E, be disjoint measurable sets. Then

W (GNULE) = Z w (G N E;)

i=1

Proof of (c). Let F,, = U;<,, E;. E, is measurable, F, D E,, and F,,_; N E, = §,
SO

r(GNF)=p(GNF,NE,)+u(GNF,NE)
=p(GNE,)+u(GNFy)

The desired result follows from this by induction. ]

(d) If the sets E; are measurable, then £ = U2 E; is measurable.

Proof of (d). Let E; = E; N (N, Ef). (a) and (b) imply E! is measurable, so
we can suppose without loss of generality that the E; are pairwise disjoint. Let
F,=E U---UE,. F, is measurable by (b), so using monotonicity and (c) we
have

pi(G) = pu(GNF)+p(GNE)=p(GNF,)+upn(GNE)
n
=Y W(GNE)+ 1 (GNE)
i=1
Letting n — oo and using subadditivity
o0
pH(G)z Y W (G NE)+p*(GNE) 2 p*(G N E)+p'(GNE)
i=1
which is (A.1.2). [ ]
The last step in the proof of Theorem A.1.7 is

(e)If E = U, E; where E|, E;, ... are disjoint and measurable, then
o0
WHE) =Y w(E)
i=1
Proof of (e). Let F,, = E1 U --- U E,;. By monotonicity and (c)
WHE) = p*(Fy) =) u*(E;)

i=1

Letting n — oo now and using subadditivity gives the desired conclusion. [ |
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A.2 Which Sets Are Measurable?

The proof of Theorem A.1.3 given in the last section defines an extension to
A* D o (A). Our next goal is to describe the relationship between these two
o-algebras. Let A, denote the collection of countable unions of sets in .4, and
let A, 5 denote the collection of countable intersections of sets in .4, . Our first goal
is to show that every measurable set is almost a set in A, s.

Define the symetric difference by AAB = (A — B)U (B — A).

Lemma A.2.1. Let E be any set with uw*(E) < oo.

(i) For any € > 0, thereisan A € A, with A D E and n*(A) < u*(E) + e.
(ii) For any € > 0, there is a B € A with u(BAE) < 2¢, where

(ii) Thereis a C € Ay5 with C D E and u*(C) = u*(E).

Proof. By the definition of u*, there is a sequence A; so that A = U; A; D E and
> i n(A;) < u*(E)+ €. The definition of p* implies u*(A) < ), u(A;), estab-
lishing (i).

For (ii) we note that there is a finite union B = Ui = 1" A; sothat u(A — B) < ¢,
and hence u(E — B) < €. Since u(B — E) < u(A — E) < € the desired result
follows.

For (iii), let A, € A, with A, D E and u*(A,) < u*(E)+ 1/n, and let C =
NnA,. Clearly, C € A,s, B D E, and hence by monotonicity, u*(C) > u*(E).
To prove the other inequality, notice that B C A,, and hence u*(C) < u*(A,) <
W*(E) 4+ 1/n for any n. [ |

Theorem A.2.2. Suppose u is o-finite on A. B € A* if and only if there is an
A € A,s and a set N with u*(N) = 0 so that B= A — N(= A N N°).

Proof. Tt follows from Lemma A.1.6 and A.1.7 if A € A5 then A € A*. A.1.21in
Section A.1 and monotonicity imply sets with ©*(N) = 0 are measurable, so using
Lemma A.1.7 again it follows that A N N¢ € A*. To prove the other direction, let
; be adisjoint collection of sets with ;£(£2;) < coand 2 = U;Q;.Let B; = BN Q;
and use Lemma A.2.1 to find A € A, so that A” D B; and w(A}) < u*(E;) +
1/n2. Let A, = U;A?. B C A, and

o0
Ay—BC ) (A} —B)
i=1

s0, by subadditivity,

o0
WA, — B) <Y WAl —B) < 1/n
i=1
Since A, € Ay, the set A =N, A, € Ays. Clearly, A D B. Since N=A — B C
A, — B for all n, monotonicity implies w*(N) = 0, and the proof of is complete.
|
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A measure space (€2, F, w) is said to be complete if F contains all subsets of
sets of measure 0. In the proof of Theorem A.2.2, we showed that (2, A*, u*) is
complete. Our next result shows that (€2, A*, 1*) is the completion of (2, o (A), ).

Theorem A.2.3. If (2, F, ) is a measure space, then there is a complete measure
space (2, F, ii), called the completion of (2, F, 1), so that (i) E € F if and only
if E=AUB, where A€ F and B C N € F with w(N) =0, and (ii) fi agrees
with  on F.

Proof. The first step is to check that F is a o-algebra. If E; = A; U B; where
A; € F and B; C N; where u(N;) = 0, then U; A; € F, and subadditivity implies
w(U;N;) <> u(N;) =0, s0 G E; € F . As for complements, if E = A U B and
B C N, then B¢ D N¢, so

E°=ANB °=(A“NN)YUA°NB°NN)

AN N¢isin Fand AANB° NN C N,so E€ € F.

We define fi in the obvious way: If E = A U B where A € F and B C N where
W(N) = 0,thenwelet fi(E) = £(A). The first thing to show is that & is well defined,
that is, if £ = A; U B;, i = 1,2, are two decompositions, then p(A;) = w(Ay).
Let A=A NAyand By = B U B,. E = Ag U By is a third decomposition with
Ap € F and By C Nj U N, and has the pleasant property that if i = 1 or 2,

p(Ao) < (Ai) = (Ao) + (N1 U N2) = u(Ao)

The last detail is to check that i is measure, but that is easy. If E; = A; U B; are
disjoint, then U; E; can be decomposed as U; A; U (U; B;), and the A; C E; are
disjoint, so

AUE) = U A) = Y u(A) = ) i(Ey) m

Theorem 1.1.6 allows us to construct Lebesgue measure A on (R?, R%). Using
Theorem A.2.3, we can extend A to be a measure on (R, Rd), where R is the
completion of R¢. Having done this, it is natural (if somewhat optimistic) to ask:
Are there any sets that are not in R%? The answer is “Yes,” and we will now give
an example of a nonmeasurable B in R.

A nonmeasurable subset of [0,1)

The key to our construction is the observation that A is translation invariant: that is,
if AcRandx +A={x+y:yec A}, then x + A € R and A(A) = A(x + A).
We say that x, y € [0, 1) are equivalent and write x ~ y if x — y is a rational
number. By the axiom of choice, there is a set B that contains exactly one element
from each equivalence class. B is our nonmeasurable set, that is,

Theorem A.2.4. B ¢ R.
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Proof. The key is the following:

Lemma A.2.5. IfE C[0,1)isin R, x € (0, 1), and x + E = {(x + y) mod 1 :
y € E}, then M(E) = AM(x +' E).

Proof. Let A=EN[0,1 —x)and B=EN[l —x,1).Let A’ =x+A={x+
y:ye€ A}and B’ =x — 1+ B. A, B € R,soby translationinvariance A’, B’ € R
and A(A) = A(A"), A(B) = A(B’). Since A’ C [x, 1) and B’ C [0, x) are disjoint,

From Lemma A.2.5, it follows easily that B is not measurable; if it were, then
g+ B, q €QnN[0,1) would be a countable disjoint collection of measurable
subsets of [0,1), all with the same measure « and having

Ugeonio,n (¢ + B) =10, 1)

If « > 0, then A([0, 1)) = 00, and if = 0, then A([O, 1)) = 0. Neither conclusion
is compatible with the fact that A([0, 1)) = 1,s0 B ¢ R. |

Exercise A.2.1. Let B be the nonmeasurable set constructed in Theorem A.2.4.
(i) Let B, = g +' B and show that if D, C B, is measurable, then A(D,) = 0. (ii)
Use (1) to conclude that if A C R has A(A) > 0, there is a nonmeasurable S C A.

Letting B’ = B x [0, 114~! where B is our nonmeasurable subset of (0,1), we get
anonmeasurable setind > 1. Ind = 3, there is a much more interesting example,
but we need the reader to do some preliminary work. In Euclidean geometry, two
subsets of R? are said to be congruent if one set can be mapped onto the other by
translations and rotations.

Claim. Two congruent measurable sets must have the same Lebesgue measure.

Exercise A.2.2. Prove the claim in d = 2 by showing (i) if B is a rotation of a
rectangle A then A*(B) = A(A). (ii) If C is congruent to D then A*(C) = A*(D).

Banach-Tarski theorem

Banach and Tarski (1924) used the axiom of choice to show that it is possible to
partition the sphere {x : |x| < 1} in R? into a finite number of sets A1, ..., A, and
find congruent sets By, ..., B, whose union is two disjoint spheres of radius 1!
Since congruent sets have the same Lebesgue measure, at least one of the sets A;
must be nonmeasurable. The construction relies on the fact that the group generated
by rotations in R? is not Abelian. Lindenbaum (1926) showed that this cannot be
done with any bounded set in R2. For a popular account of the Banach-Tarski
theorem, see French (1988).
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Solovay’s theorem

The axiom of choice played an important role in the last two constructions of
nonmeasurable sets. Solovay (1970) proved that its use is unavoidable. In his own
words, “We show that the existence of a non-Lebesgue measurable set cannot
be proved in Zermelo-Frankel set theory if the use of the axiom of choice is
disallowed.” This should convince the reader that all subsets of R that arise “in
practice” are in R9.

A.3 Kolmogorov’s Extension Theorem

To construct some of the basic objects of study in probability theory, we will need
an existence theorem for measures on infinite product spaces. Let N = {1, 2, ...}
and

RN = {(w1, w2, ...) : w; € R}

We equip RN with the product o-algebra RN, which is generated by the finite
dimensional rectangles = sets of the form {w : w; € (a;,b;] for i =1,...,n},
where —o00 < a; < b; < 00.

Theorem A.3.1. Kolmogorov’s extension theorem. Suppose we are given prob-
ability measures u, on (R", R") that are consistent, that is,

/'Ln+1((ala bl] X oo X (an, bn] X R) = /’Ln((al’ bl] XX (Cln, bn])
Then there is a unique probability measure P on (RN, RN) with

(%) P(w:w; €(a;,bi], 1 =i <n)=pn((ar, br] X -+ X (an, bu])
An important example of a consistent sequence of measures is

Example A.3.1. Let Fy, F5, .. .be distribution functions, and let ,, be the measure
on R" with

pn((ar, byl X -+ X (@n, by]) = [ [ (Fubm) = Fun(am))

m=1

In this case, if we let X, (w) = w,, then the X, are independent and X, has
distribution F,,.

Proof of Theorem A.3.1. Let S be the sets of the form {w : w; € (a;, b;],1 <i < n},
and use () to define P on S. S is a semialgebra, so by Theorem A.1.1 it is enough
to show that if A € S is a disjoint union of A; € S, then P(A) < ) . P(A;).If the
union is finite, then all the A; are determined by the values of a finite number of
coordinates and the conclusion follows from the proof of Theorem 1.1.6.



Appendix A: Measure Theory Details 411

Suppose now that the union is infinite. Let A = { finite disjoint unions of sets in
S} be the algebra generated by S. Since A is an algebra (by Lemma 1.1.3),

Bn =A-— Ul"lzlAi
is a finite disjoint union of rectangles, and by the result for finite unions,

P(A)=)_P(A))+ P(B,)
i=1

It suffices then to show
Lemma A.3.2. If B, € Aand B, | ¥ then P(B,) | 0.

Proof. Suppose P(B,) | § > 0. By repeating sets in the sequence, we can suppose
B, :U,ﬁ]{w:wi E(af,bl’-‘],l <i<n} where —o0 §af‘ <bl’-‘ < o0

The strategy of the proof is to approximate the B, from within by compact rectan-
gles with almost the same probability and then use a diagonal argument to show
that N, B, £ @. There is a set C,, C B, of the form

Co=UN (o o el B, 1 <i <n} with —oo <@ < b} < oo
that has P(B, — C,) < §/2""'. Let D, = N" _,C,.

P(B,—D,) <) P(B,—Cyp)<8/2

m=1

so P(D,) | alimit > §/2. Now there are sets C,;, D C R" so that
Ch={w:(w,...,0,)€C;} and D, ={w:(w,...,w,) € D;}
Note that
C,=C;xRxRx--- and D,=D; xRxRx---

so C, and C; (and D, and D;) are closely related but C,, C Q and C; C R".
Cy is a finite union of closed rectangles, so

D =Cr il (CH x R™™)

is a compact set. For each m, let w,, € D,,. D,, C Dj s0 wy, 1 (i.e., the first coordi-
nate of w,,) is in D} Since Dy is compact, we can pick a subsequence m(1, j) > j
so that as j — oo,

wm(l,j),l — a limit 91

Form > 2, D,, C D, and hence (w1, w,2) € D;. Since Dj is compact, we can
pick a subsequence of the previous subsequence (i.e., m(2, j) = m(1,i;) with
ij > j)sothatas j — oo

a)m(2,j),2 — alimit 92
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Continuing in this way, we define m(k, j) a subsequence of m(k — 1, j) so that as
j — 0o,

Ok, j),k —> A limit 6,

Let @] = wp.i)- @] is a subsequence of all the subsequences so w; , — 6 for all k.
Now w; | € Dy foralli > 1 and DY is closed so ¢; € Dy. Turning to the second set,
(a)l’.’l, ‘Uz/',z) € D; for i > 2 and Dj is closed, so (01, 6,) € D;. Repeating the last
argument, we conclude that (0, ..., 6) € D; for all k, so w = (61,65, ...) € Dy
(no star here since we are now talking about subsets of €2) for all £ and

B # N Dy C N By

a contradiction that proves the desired result. [ |

A.4 Radon-Nikodym Theorem

In this section, we prove the Radon-Nikodym theorem. To develop that result,
we begin with a topic that at first may appear to be unrelated. Let (2, F) be
a measurable space. « is said to be a signed measure on (2, F) if (i) o takes
values in (—oo, oo], (ii) a(¥) = 0, and (iii) if £ = +; E; is a disjoint union then
a(E) = Zi a(E;), in the following sense:

If «(E) < oo, the sum converges absolutely and = «(E).
If ¢(E) = oo, then ), a(E;)” < ooand ) ; a(E;)* = oo.

Clearly, a signed measure cannot be allowed to take both the values co and —oo,
since a(A) + a(B) might not make sense. In most formulations, a signed measure
is allowed to take values in either (—o00, co] or [—o0, 00). We will ignore the
second possibility to simplify statements later. As usual, we turn to examples to
help explain the definition.

Example A.4.1. Let 11 be a measure, f be a function with [ f~ du < oo, and let
a(A) = fA f du. Exercise 5.8 implies that « is a signed measure.

Example A.4.2. Let u; and @, be measures with ©,(2) < 0o, and let a(A) =
n1(A) — pn2(A).

The Jordan decomposition, (A.4.4) below, will show that Example A.4.2 is the
general case. To derive that result, we begin with two definitions. A set A is positive
if every measurable B C A has a(B) > 0. A set A is negative if every measurable
B C Ahasa(B) <0.

Exercise A.4.1. In Example A.4.1, A is positive if and only if u(A N {x : f(x) <
oph =0.



Appendix A: Measure Theory Details 413

Lemma A.4.1. (i) Every measurable subset of a positive set is positive. (ii) If the
sets A, are positive, then A = U, A,, is also positive.

Proof. (i) is trivial. To prove (ii), observe that
B, = A, N (N:LAS) C A,

are positive, disjoint, and U, B, = U, A,,. Let E C A be measurable, and let E,, =
E N B,.a(E,) > 0since B, is positive, so a(E) = ), a(E,) > 0. [ |

The conclusions in Lemma A.4.1 remain valid if positive is replaced by negative.
The next result is the key to the proof of Theorem A.4.3.

Lemma A.4.2. Let E be a measurable set with a(E) < 0. Then there is a negative
set F C E witha(F) < 0.

Proof. If E is negative, this is true. If not, let n; be the smallest positive integer so
that there is an £y C E with o(Ey) > 1/n;. Letk > 2. If F, = E —(E{U---U
E;_1) is negative, we are done. If not, we continue the construction letting n; be
the smallest positive integer so that there is an E; C Fy with «(Ey) > 1/ny. If the
construction does not stop for any £ < oo, let

F =Mk, =E — (UEp)

Since 0 > «(E) > —oo and a(Ey) > 0, it follows from the definition of signed
measure that

o0
a(E) = a(F)+ > a(Ex)
k=1
a(F) < a(E) < 0, and the sum is finite. From the last observation and the construc-
tion, it follows that F' can have no subset G with «(G) > 0, for then (G) > 1/N
for some N and we would have a contradiction. |

Theorem A.4.3. Hahn decompositon. Let o be a signed measure. Then there is a
positive set A and a negative set B so that Q = AU B and AN B = (.

Proof. Let c = inf{a(B) : B is negative} < 0. Let B; be negative sets with «(B;) |
c.Let B =U;B;. By Lemma A .4.1, B is negative, so by the definition of ¢, ¢(B) >
c. To prove a(B) < ¢, we observe that «(B) = a(B;) + a(B — B;) < a(B;), since
B is negative, and let i — oo. The last two inequalities show that «(B) = ¢, and
it follows from our definition of a signed measure that ¢ > —oo. Let A = B¢. To
show A is positive, observe that if A contains a set with «(E) < 0, then by Lemma
A.4.2, it contains a negative set F with a(F) < 0, but then B U F would be a
negative set that has «(B U F) = a(B) 4+ a(F) < c, a contradiction. [ |
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The Hahn decomposition is not unique. In Example A.4.1, A can be any set with
x: fx)>0CcAC{x: f(x)=>0} ae.

where B C C a.e. means u(B N C°) = 0. The last example is typical of the general
situation. Suppose 2 = A; U By = A, U B; are two Hahn decompositions. A, N
B; is positive and negative, so it is a null set: All its subsets have measure 0.
Similarly, A; N B, is a null set.

Two measures | and u; are said to be mutually singular if there is a set A with
u1(A) =0 and uy(A°) = 0. In this case, we also say u; is singular with respect
to o and write w; L .

Exercise A.4.2. Show that the uniform distribution on the Cantor set (Example
1.2.4) is singular with respect to Lebesgue measure.

Theorem A.4.4. Jordan decomposition. Let o be a signed measure. There are
mutually singular measures a and a_ so that « = oy — a_. Moreover, there is
only one such pair.

Proof. Let Q = A U B be a Hahn decomposition. Let
o (Ey=a(ENA) and o_(E)=—a(ENB)

Since A is positive and B is negative, o and «_ are measures. o4 (A°) = 0 and
o_(A) =0, so they are mutually singular. To prove uniqueness, suppose o =
v; — vy and D is a set with vi(D) = 0 and v,(D) = 0. If we set C = D¢, then
2 = C U D is a Hahn decomposition, and it follows from the choice of D that

VW(E)=a(CNE) and vy(E)=—-a(DNE)

Our uniqueness result for the Hahn decomposition shows that AN D = ANC¢
and BNC = A°NC are null sets, so e(ENC)=a(EN(AUC)) =a(ENA)
and v = ay. |

Exercise A.4.3. Show that o, (E) = sup{a(F) : F C E}.

Remark. Let « be a finite signed measure (i.e., one that does not take
the value oo or —o0) on (R, R). Let « = oy — @ be its Jordan decomposi-
tion. Let A(x) = a((—o0, x]), F(x) = ay((—00, x]), and G(x) = a_((—o0, x]).
A(x) = F(x) — G(x), so the distribution function for a finite signed measure can
be written as a difference of two bounded increasing functions. It follows from
Example A.4.2 that the converse is also true. Let |a| = ot + o~ || is called
the total variation of «, since in this example |«|((a, b]) is the total variation of
A over (a, b] as defined in analysis textbooks. See, for example, Royden (1988),
p. 103. We exclude the left endpoint of the interval since a jump there makes no
contribution to the total variation on [a, b], but it does appear in |¢].
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Our third and final decomposition is:

Theorem A.4.5. Lebesgue decomposition. Let i, v be o -finite measures. v can
be written as v, + vy, where vy is singular with respect to u and

Vr(E)=fgd:u
E

Proof. By decomposing 2 = +;€2;, we can suppose without loss of generality that
w and v are finite measures. Let G be the set of ¢ > 0 so that f & dun < v(E) for
all E.

(@lfg,heGthengVvhed.
Proof of (a). Let A = {g > h}, B = {g < h}.

/g\/hduz/ gd,u—i—/ hdpu <v(ENA)+v(ENB)=v(E)
E ENA ENB

Let k =sup{f gdu : g € G} < v(Q) < 0. Pick g, so that [ g,du >« —1/n
andleth, =g, v---Vv g, By(@),h, € G.Asn 1 o0, h,, 1 h. The definition of «,
the monotone convergence theorem, and the choice of g, imply that

KZ//’ld,bL=lin’l hnduzlim/g”d,uzic
n—odo n—oo
Letv,.(E) = fE hdup and vg(E) = v(E) — v,.(E). The last detail is to show

(b) vy is singular with respect to u.

Proofof (b). Lete > Oand let 2 = A, U B, be a Hahn decomposition for vy — €.
Using the definition of v, and then the fact that A, is positive for vy — ep (so
en(Ac N E) < v(Ac N E)),

/(h +elp)du =v.(E)+eu(Ac N E) < v(E)
E

This holds for all E, so k =h + €1, € G. It follows that u(Ac) = 0, for if not,
then f kdp > « a contradiction. Letting A = U, Ay/,, we have u(A) = 0. To see
that v,(A€) = 0, observe that if v,(A€) > 0, then (v, — e)(A°) > O for small €, a
contradiction since A° C B,, a negative set. [ |

Exercise A.4.4. Prove that the Lebesgue decomposition is unique. Note that you
can suppose without loss of generality that u and v are finite.

We are finally ready for the main business of the section. We say a measure v is
absolutely continuous with respect to i (and write v << p) if u(A) = 0 implies

that v(A) = 0.

Exercise A.4.5. If t; << po and pp L v, then p; L v.
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Theorem A.4.6. Radon-Nikodym theorem. If i1, v are o-finite measures and v
is absolutely continuous with respect to |, then there is a g > 0 so that v(E) =
fE gdw. If h is another such function, then g = h | a.e.

Proof. Let v = v, 4+ v, be any Lebesgue decomposition. Let A be chosen so that
Vs(A°) =0 and w(A) = 0. Since v << u, 0 = v(A) > v,(A) and v, = 0. To prove
uniqueness, observe that if [ gdu = [, hdu for all E, then letting E C {g > h,
g < n} be any subset of finite measure, we conclude u(g > h, g < n) = 0 for all
n, so u(g > h) =0, and, similarly, u(g < h) = 0. ]

Example A.4.3. Theorem A.4.6 may fail if u is not o -finite. Let (2, F) = (R, R),
© = counting measure and v = Lebesgue measure.

The function g whose existence is proved in Theorem A.4.6 is often denoted
dv/d . This notation suggests the following properties, whose proofs are left to
the reader.

Exercise A.4.6. If v, v, << u,then v + v, << i

d(vi +v)/dp = dvi/du +dvy/du

Exercise A4.7. If v << pand f > 0, then [ fdv= [ f j—;du.

Exercise A4.8. If 1 << v < u,thendn/du = (drm/dv) - (dv/d ).

Exercise A.4.9. If v << p and u << v, then dp/dv = (dv/du)~".

A.5 Differentiating under the Integral

At several places in the text, we need to interchange differentiate inside a sum
or an integral. This section is devoted to results that can be used to justify those
computations.

Theorem A.5.1. Let (S, S, i) be a measure space. Let f be a complex-valued
function defined on R x S. Let § > 0, and suppose that for x € (y — 6§,y + ) we
have

(i) u(x) = [g f(x,s)uds) with [¢|f(x, )| u(ds) < o0
(ii) for fixed s, df/0x(x, s) exists and is a continuous function of x,
(iii) v(x) = fs %(x, s) u(ds) is continuous at x =y,

and (iv) [, f_sa ‘%(y +9,s)‘ do u(ds) < oo

then u'(y) = v(y).
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Proof. Letting |h| < 6 and using (i), (ii), (iv), and Fubini’s theorem in the form
given in Exercise 1.7.4, we have

u(y +h) —u(y) = /Sf(y +h,s)— f(y,s) uds)

h
=// %(y+9,s)d9u(d5)
sJo 8x

h af
= [ [ Lo oo as
0o Jsdx

The last equation implies

h) — I
u(y +h) u(y)z_f o(y +6) do
h hJo
Since v is continuous at y by (iii), letting 4 — 0 gives the desired result. [ |

Example A.5.1. For aresult in Section 3.3, we need to know that we can differen-
tiate under the integral sign in

ulx) = /cos(xs)esz/zds

For convenience, we have dropped a factor (277)~!/? and changed variables to match

Theorem A.5.1. Clearly, (i) and (ii) hold. The dominated convergence theorem
implies (iii)

. 2
x — f—s sin(sx)e ™ /? ds
is continuous. For (iv), we note

/ ‘g—i(x,S)

and the value does not depend on x, so (iv) holds.

ds = / |s|e”2/2ds < 00

For some examples the following form is more convenient:

Theorem A.5.2. Let (S, S, ) be a measure space. Let f be a complex valued
function defined on R x S. Let § > 0, and suppose that for x € (y — 8,y + §) we
have

(i) u(x) = [ f(x,5) u(ds) with [¢|f(x,s)| p(ds) < 0o
(ii) for fixed s, 0f/0x(x, s) exists and is a continuous function of x,

d
(iit) f sup |—
S 0e[—8.8]

f (y+90,s)
then u'(y) = v(y).

u(ds) < oo
0x
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Proof. In view of Theorem A.5.1 it is enough to show that (iii) and (iv) of that
result hold. Since

s
I,
it is clear that (iv) holds. To check (iii), we note that

9 9
%(x,S) - %(y, s)

a
a—f(y +6,s5)| d6 <28 sup
X

0e[—4,6]

%(y +6,s)
0x

lv(x) = v(y)| < / n(ds)

N

(i) implies that the integrand — 0 as x — y. The desired result follows from (iii")
and the dominated convergence theorem. [ ]

To indicate the usefulness of the new result, we prove:
Example A.5.2. If p(§) = Ee®? < oo for 6 € [—¢, €] then ¢'(0) = EZ.

Proof. Here 0 plays the role of x, and we take u to be the distribution of Z. Let
8 =¢€/2. f(x,s) =€ > 0, so (i) holds by assumption. df/dx = se** is clearly a
continuous function, so (ii) holds. To check (iii"), we note that there is a constant
C so thatif x € (=8, ), then |s|e™ < C (e7° + ). [ ]

Taking S = Z with § = all subsets of S and u = counting measure in Theorem
A.5.2 gives the following:

Theorem A.5.3. Let § > 0. Suppose that for x € (y — 8, y + 8) we have
(i) u(x) =302, fux) with 307 | fu(x)] < 00

(ii) for each n, f,(x) exists and is a continuous function of x,

and (iii) Y o2, SUPge(_s.6) | F (¥ +O)| < 00

then u'(x) = v(x).

Example A.5.3. In Section 2.6 we want to show that if p € (0, 1) then

(Z(l - p)") =—> n(l—py"

n=1 n=1

Proof. Let f,(x) =1 —x)", y = p, and pick § so that [y —§, y + 6] C (0, 1).
Clearly (i) Y02, |(1 — x)"| < oo and (i) f/(x) = n(1 — x)"~! is continuous for x
in [y — 8, y + &]. To check (iii), we note that if we let 2n = y — § then there is a
constant C so thatif x € [y —§, y+ 8] and n > 1, then

n(l — xy—t = "= 2l

BT T (1—n'<ca—n! n
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almost everywhere, 17 tail o -field, 364
almost sure convergence, 16 temporal inversion, 363
alternating renewal process, 219 zeros, 370
aperiodic, 309
arcsine laws Cantor set, 12
Brownian motion, 374, 386 Carathéodary’s extension theorem, 402
random walk, 203 Carleman’s condition, 122
arithmetic distribution, 142 Cauchy distribution, 62
asymptotic density of subset of Z, 9 ch.f. 112
asymptotic equipartition property, 77 Cauchy-Schwarz inequality, 24, 227
central limit theorem
Backgammon, 377 embedding proof, 385
backwards martingale, 264 for i.i.d. sequences, 124
ballot theorem, 202, 265 infinite variance, 131
Banach-Tarksi theorem, 409 local, 143, 144
Bayes’ formula, 224 prime divisors, 133
Benford’s law, 337 random indices, 128
Bernoulli distribution, 33 rates of convergence, 137
Bernoulli-Laplace model, 282 inRY176
Bernoulli shift, 329, 332, 338 renewal theory, 128
Bernstein polynomials, 55 triangular arrays, 129
Berry-Esseen theorem, 137 central order statistic, 98
beta distribution, 241 change of variables formula, 30
birth and death chains, 280, 292, 297, 304 Chapman-Kolmogorov equation, 284
birthday problem, 98 characteristic function, 106
Blackwell’s renewal theorem, 209 convergence theorem, 113, 176
Blumenthal’s 0-1 law, 362 inversion, 109, 175
Bonferroni inequalities, 35 moments and derivatives, 114
Borel-Cantelli lemmas, 65, 67, 240, 255 inR4175
Borel sets, 3 series expansion, 116
Borel’s paradox, 226 for stable laws, 164
bounded convergence theorem, 25, 29 Chebyshev’s inequality, 28, 34, 227
branching process, 245, 253, 278, 292 chi-square distribution, 13
age-dependent, 349 Chung-Fuchs theorem, 195
brother-sister mating, 281, 287 class property, 304
Brownian bridge, 393 closed set in Markov chain, 290
Brownian motion, 353 coin flips
continuity of paths, 356 central limit theorem, 95, 96, 126
hitting times, 371, 377 ch.f. 107
Holder cotninuity, 358, 363 large deviations, 89, 91, 96
law of iterated logarithm, 396 patterns in, 220
Markov property, 360 completion, 408
martingales, 376 conditional expection, 221
modulus of continuity, 375 properties of, 226
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conditional variance formula, 230
continued fractions, 332
continuity theorem, 113
continuous mapping theorem, 101
convergence

almost surely, 16

in distribution, 97

in measure, 24

in probability, 53

of types, 167

weak, 97, 175
converging together lemma, 105
convolution, 47
countably generated o-field, 9, 244
coupon collector’s problem, 51, 153
Cramér’s estimates of ruin, 215
Cramér-Wold device, 176
cycle condition for reversibility, 298
cycle trick, 299

de Finetti’s theorem, 267
delayed renewal process, 209

De Moivre-Laplace theorem, 96
density function, 11, 172
directly Riemman integrable, 217
discrete probability space, 2
distribution function, 10

dominated convergence theorem, 26, 29, 71, 263

Donsker’s theorem, 386

Doob’s decomposition, 237
Doob’s inequality, 249

double exponential distribution, 99
doubly stochastic, 296

dual transition probability, 298
Dubin’s inequality, 239

Ehrenfest chain, 280, 297
empirical distribution, 76, 391
entropy, 77, 306
equal in distribution, 11
Erdos-Kac central limit theorem, 135
ergodic sequence, 330
ergodic theorem, 333
excessive measure, 302
exchangeable sequence, 267
exchangeable o-field, 180
expected value, 27, 60
exponential distribution, 12

bilateral, 109

ch.f. 108

large deviations, 89, 91

moments, 32

sums of, 48
extended real line, 16
extreme value distribution, 99

Fatou’s lemma, 25, 29, 71, 101
filtration, 232

finite dimensional set, 51

first entrance decomposition, 287
first passage percolation, 350
Friedman’s urn, 256

Fubini’s theorem, 37

Galton-Watson process, 245
gamma distribution, 48
Gaussian process, 355

Index

generating function, 247
geometric distribution, 33
germ o -field, 362

GI/G/1 queue, 319, 325
Glivenko-Cantelli theorem, 76
Gumbel distribution, 99

Hahn decomposition, 413
Hamburger moment problem, 123
Harris chain, 318

head runs, 71

Helly’s selection theorem, 103
Hewitt-Savage, 0-1 law, 180, 266
histogram correction, 127
Holder’s inequality, 24, 28
Holtsmark distribution, 168

ii.d. 55

inclusion-exclusion formula, 35
independence, defined, 41

index of a stable law, 164

indicator function, 9

infinitely divisible distribution, 169
integration to the limit, 101
invariant set, 330

inversion formula for ch.f. 109, 175
irreducible set in Markov chain, 290

Jensen’s inequality, 23, 28, 227
Jordan decomposition, 414

Kac’s recurrence theorem, 340
Kakutani dichotomy, 244
Kochen-Stone lemma, 73
Kolmogorov’s
continuity criterion, 357
cycle condition, 298
extension theorem, 51, 410
maximal inequality, 79
test, 398
three-series theorem, 80
zero-one law, 78
Kronecker’s lemma, 81
Ky Fan metric, 105

ladder variables, 185

large deviations, 86

lattice distribution, 141

law of the iterated logarithm, 338
Lebesgue decomposition, 413
Lebesgue measure, 3
Lévy-Khintchine theorem, 171
Lévy measure, 171

Lévy metric, 105

Lévy’s, 0-1 law, 262
Lindeberg-Feller theorem, 129
local central limit theorem, 143, 144
lognormal distribution, 13, 120
longest common subsequence, 343
Lyapunov’s theorem, 133

marginal distribution, 172

Markov chain, 274
additive functionals, 312, 313
convergence theorem, 307, 309, 314
cycle condition, 298
cycle trick, 299



cyclic decomposition, 315
decomposition theorem, 314
finite state space, 311
reversible measure, 297
stationary distribution, 296, 302
superharmonic function, 296
tail o-field, 314
transition probability, 274
Markov property, 283
for Brownian motion, 378
Markov’s inequality, 29
martingale
backwards, 264
convergence theorem, 236
definition, 232
L? convergence theorem, 252
L? maximal inequality, 250
orthogonality of increments, 252
square integrable, 254
matching, 151
maxima, limit theorem for, 99
maximal ergodic lemma, 333
mean, 27, 31
measurable map, 14
measurable space, |
measure, |
properties of, 2
measure preserving, 329
M/G/1 queue, 279, 294, 304
Minkowski’s inequality, 26
M/M/oo queue, 296, 306
moment, 31
moment problem, 120
monotone class theorem, 276
monotone convergence theorem, 26, 29
Monte Carlo integration, 63
multivariate normal distribution, 177
mutually singular measures, 414

negative set, 412
nice measurable space, 51
nonarithmetic distribution, 209
nonmeasuarble set, 408
normal distribution
approx. to binomial, 126
approx. to Poisson, 127
ch.f, 107
large deviations, 89, 91
moments of, 32
sums of, 49
tail estimate, 12
normal number, 338
null recurrent, 303

occupancy problem, 59, 152, 157
optional stopping theorem, 270
Ornstein’s coupling, 317

outer measure, 404

pairwise independent, 42, 52, 68, 127
Parseval relation, 197
pedestrian delay, 214
period of a state, 308
permutable event, 179
- theorem, 43, 402
Poisson distribution, 33
ch.f. 107

Index

convergence to, 147, 154
large deviations, 96
Poisson process
defined, 155
on a measure space, 158, 159
thinning and compounding, 157
Pollaczek-Khintchine formula, 327
Polya’s criterion for ch.f. 118
Polya’s distribution, 112
Polya’s urn scheme, 241
polynomial approximation, 55
positive recurrent, 303
positive set, 412
predictable sequence, 234
probability measure, |
probability space, |
product space, 36

Radon-Nikodym derivative, 222, 242
Radon-Nikodym theorem, 222, 416
random index c.l.t. 128
random matrices, 347
random permutations, 57, 130
increasing sequences in, 348
longest common subsequences, 343
random variable, 9
random vector, 14
random walk
see also simple random walk
defined, 179
on graphs, 298
on hypercube, 312
on trees, 317
range of, 343
recurrence and transience, 189
stationary measure, 296
symmetric, 181
ratio limit theorems, 313
record values, 69, 130
recurrent random walk, 190
recurrent state, 289
reflection principle, 201, 285
regular conditional probability, 230
renewal chain, 278, 292
renewal equation, 213
renewal measure, 209
renewal process
alternating, 219
delayed, 209
stationary, 210
terminating, 214
renewal theorem, 216
Blackwell’s, 209
central limit theorem, 128
strong law, 75, 208
residual waiting time, 218
reversible measure, 297
Riemann-Lebesgue lemma, 23
rotation of the circle, 329, 331, 336
roulette, 125, 294

St. Petersburg paradox, 62
Scheffé’s theorem, 98
self-normalized sums, 128
semi-algebra, 3

sequence space, 275
Shannon’s theorem, 77

427
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shift on sequence space, 183
shuffling cards, 312
o-algebra = o-field, |
o-field generated by

collection of sets, 3

random variables, 14
o -finite measure, 4
signed measure, 412
simple function, 17
simple random walk

exit distribution, 186, 294

exit time, 188, 272

ladder variables, 187

recurrence, 182, 294

returns to zero, 289
singular distribution, 12
Skorokhod’s representation,

383

slowly varying function, 161
Solovay’s theorem, 410
span of a lattice distribution, 142
stable laws

characterization of, 166

ch.f, 164

convergence to, 161
stationary distribution, 296, 302
stationary measure, 296
stationary renewal process, 210
stationary sequence, 328
step function, 23
Stieltjes measure function, 3
Stieltjes moment problem, 123
Stirling’s formula, 94
stopping time, 182, 235, 365
Strassen’s invariance principle, 400
strong law of large numbers, 66, 73,

81

backwards martingale proof, 265

converse, 67

infinite mean, 84

in renewal theory, 75
strong Markov property, 285

of Brownian motion, 368
subadditive ergodic theorem, 342
submartingale, 232
superharmonic, 296

Index

supermartingale, 232
switching principle, 239

tail o-field, 78

for Brownian motion, 364

for Markov chain, 314
terminating renewal process, 214
three series theorem, 80

converse, 130

tight sequence of distributions, 104, 174

total variation norm, 98, 148

transition probability, 274
dual, 298

transient random walk, 190

transient state, 289

triangular array, 56, 129

triangular distribution, 108

uncorrelated random variables, 47, 54
unfair “fair" game, 64
uniform distribution, 11
ch.f. 108
uniform integrability, 228
upcrossing inequality, 235

vague convergence, 103
variance, 32

Wald’s equation, 185, 187
waiting for rare events, 97
weak convergence, 97, 173
a.s. representation of, 100
equivalent conditions, 102, 173
weak law of large numbers, 60, 61
for positive random variables, 64
for triangular arrays, 59
L2 version, 55
Weyl’s equidistribution theorem, 336
Wiener’s maximal inequality, 335
Wright-Fisher model, 287

zero-one laws
Blumenthal’s, 362
Hewitt-Savage, 180, 266
Kolmogorov’s, 78
Lévy’s, 262
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