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Preface

Most modern set theory texts, even at the undergraduate level, introduce specific
formal axiom systems such as ZFC relatively early, perhaps because of the
(understandably real) fear of paradoxes. At the same time, most mathematicians
and students of mathematics seem to care little about special formal systems, yet
may still be interested in the part of set theory belonging to “mathematics proper,”
i.e., cardinals, order, ordinals, and the theory of the real continuum. There appears
to be a gulf between texts of mainstream mathematics and those of set theory and
logic.

This undergraduate set theory textbook regards the core material on cardinals,
ordinals, and the continuum as a subject area of classical mathematics interesting
in its own right. It separates and postpones all foundational issues (such as
paradoxes and special axioms) into an optional part at the end. The main material
is thus developed informally—not within any particular axiom system—to avoid
getting bogged down in the details of formal development and its associated
metamathematical baggage. I hope this will make this text suitable for a wide range
of students interested in any field of mathematics and not just for those specializing
in logic or foundations. At the same time, students with metamathematical interests
will find an introduction to axiomatic ZF set theory in the last part, and some
glimpses into key foundational topics in the postscript chapters at the end of each
part.

Another feature of this book is that its coverage of the real continuum is confined
exclusively to the real line R. All abstract or general concepts such as topological
spaces, metric spaces, and even the Euclidean spaces of dimension 2 or higher are
completely avoided. This may seem like a severe handicap, but even this highly
restricted framework allows the introduction of many interesting topics in the theory
of real point sets. In fact, not much substance in the theory is lost and a few deeper
intuitions are gained. As evidenced by the teaching of undergraduate real analysis,
the student who is first firmly grounded in the hard and concrete details of R will
better enjoy and handle the abstraction found in later, more advanced studies.

The book grew out of an undergraduate course in introductory set theory that
I taught at the University of Detroit Mercy. The prerequisite for the core material
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of the book is a post-calculus undergraduate US course in discrete mathematics or
linear algebra, although precalculus and some exposure to proofs should technically
suffice for Parts I and II.

The book starts with a “prerequisites” chapter on sets, relations, and functions,
including equivalence relations and partitions, and the definition of linear order. The
rest is divided into four relatively independent parts with quite distinct mathematical
flavors. Certain basic techniques are emphasized across multiple parts, such as
Cantor’s back-and-forth method, construction of perfect sets, Cantor–Bendixson
analysis, and ordinal ranks.

Part I is a problem-based short course which, starting from Peano arithmetic,
constructs the real numbers as Dedekind cuts of rationals in a routine way with
two possible uses. A student of mathematics not going into formal ZF set theory
will work out, once and for all, a detailed existence proof for a complete ordered
field. And for a student who might later get into axiomatic ZF set theory, the
redevelopment of Peano arithmetic and the theory of real numbers formally within
ZF will become largely superfluous. One may also decide to skip Part I altogether
and go directly to Part II.

Part II contains the core material of the book: The Cantor–Dedekind theory of
the transfinite, especially order, the continuum, cardinals, ordinals, and the Axiom of
Choice. The development is informal and naive (non-axiomatic), but mathematically
rigorous. While the core material is intended to be interesting in its own right, it
also forms the folklore set-theoretic prerequisite needed for graduate level topology,
analysis, algebra, and logic. Useful forms of the Axiom of Choice, such as Zorn’s
Lemma, are covered.

Part III of the book is about point sets of real numbers. It shows how the
theory of sets and orders connects intimately to the continuum and its topology.
In addition to the basic theory of R including measure and category, it presents
more advanced topics such as Brouwer’s theorem, Cantor–Bendixson analysis,
Sierpinski’s theorem, and an introduction to Borel and analytic sets—all in the
context of the real line. Thus the reader gets access to significant higher results in a
concrete manner via powerful techniques such as Cantor’s back-and-forth method.
As mentioned earlier, all development is limited to the reals, but the apparent loss
of generality is mostly illusory and the special case for real numbers captures much
of the essential ideas and the central intuitions behind these theorems.

Parts II and III of the book focus on gaining intuition rather than on formal
development. I have tried to start with specific and concrete cases of examples
and theorems before proceeding to their more general and abstract versions. As
a result, some important topics (e.g., the Cantor set) appear multiple times in the
book, generally with increasing levels of sophistication. Thus, I have sacrificed
compactness and conciseness in favor of intuition building and maintaining some
independence between the four parts.

Part IV deals with foundational issues. The paradoxes are first introduced here,
leading to formal set theory and the Zermelo–Fraenkel axiom system. Von Neumann
ordinals are also first presented in this part.
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Each part ends with a postscript chapter discussing topics beyond the scope of the
main text, ranging from philosophical remarks to glimpses into modern landmark
results of set theory such as the resolution of Lusin’s problems on projective sets
using determinacy of infinite games and large cardinals.

Problems form an integral and essential part of the book. While some of them
are routine, they are generally meant to form an extension of the text. A harder
problem will contain hints and sometimes an outline for a solution. Starred sections
and problems may be regarded as optional.

The book has enough material for a one-year course for advanced undergrad-
uates. The relative independence of the four parts allows various possibilities for
covering topics. In a typical one-semester course, I usually briefly cover Part I, spend
most of the time in Part II, and finish with a brief overview of Part IV. For students
with more foundational interests, more time can be spent on the material of Part IV
and the postscripts. On the other hand, for less foundationally inclined but more
mathematically advanced students with prior exposure to advanced calculus or real
analysis, only Parts II and III may be covered with Parts I and IV skipped altogether.

Acknowledgments. I want to thank the University of Detroit Mercy for supporting
me with a sabbatical leave during 2011–2012 which made the writing of this
book possible, and Professor László Kérchy, Editor of Acta Sci. Math. (Szeged),
for kindly giving me permission to translate a section of von Neumann’s original
German paper [80]. I also wish to thank my students, my teacher Pinaki Mitra for
introducing me to set theory and logic, and the late set theorist R. Michael Canjar,
who attended all my lectures in 2010 and provided daily feedback. Sadly, Mike
left us before this book could be finished. Professor Tarun Mukherjee, to whom my
lifelong debt is beyond measure, painstakingly read the entire manuscript, correcting
many errors and giving his invaluable suggestions for improvement. Professor
Andreas Blass was unbelievably kind and quick to give his expert comments on a
part of the book even though I (shamelessly) asked him at the last moment to check
it in an unreasonably short time. Immensely valuable were the extensive and deeply
engaging feedback on the whole manuscript that came from the anonymous referees,
which led me to drop and rewrite some sections and add the later postscripts. I am
also indebted to Professor Prasanta Bandyopadhyay and Professor Kallol Paul for
their help, and to Professor Ioannis Souldatos for his thoughtful comments on a
chapter. At Birkhäuser, I got patient help from Tom Grasso in initial planning, from
Kate Ghezzi and Mitch Moulton during writing, and above all from Dr. Allen Mann,
a logician himself, in resolving many crucial difficulties. My friend and colleague
Dr. Shuvra Das provided guidance, advice, and wisdom. Very special concern, care,
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Chapter 1
Preliminaries: Sets, Relations, and Functions

Abstract This preliminary chapter informally reviews the prerequisite material for
the rest of the book. Here we set up our notational conventions, introduce basic set-
theoretic notions including the power set, ordered pairs, Cartesian product, relations,
functions, and their properties, sequences, strings and words, indexed and unindexed
families, partitions and equivalence relations, and the basic definition of linear
order. Much of the material of this chapter can be found in introductory discrete
mathematics texts.

1.1 Introduction

Note. In this preliminary chapter, we informally use the familiar number systems N,
Z, R, and their properties to provide illustrative examples for sets, relations, and
functions. In the next three chapters all of these notions will be formally defined.
Thus all our assumptions about these number systems are temporary and will be
dropped at the end of this chapter.

We assume basic familiarity with sets and functions, e.g., as found in elementary
calculus. Some examples of sets are the real intervals: The open interval .a; b/
consists of real numbers lying strictly between a and b, and the closed interval
Œa; b� consists of real numbers x satisfying a � x � b. The interval .�1;1/ is the
entire real line and is denoted by the special symbol R:

R D .�1;1/:
In addition we will be using the special symbols N and Z, where

• N consists of the natural numbers starting from 1 (positive integers).1

• Z consists of all integers—positive, negative, or zero.

1Usage varies for the interpretation of the term “natural number” and the symbol N. Many texts
include 0 as a natural number, but we will not follow that convention.

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__1, © Springer Science+Business Media New York 2014
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The Principle of Induction

We will also assume some familiarity with the principle of induction for the positive
integers N. Let P be a property of natural numbers. We will use the notation “P.n/”
to stand for the assertion “n has the property P .” For example, P.n/ may stand for
“n.n2 C 2/ is divisible by 3.”

The Principle of Induction. Let P be a property of natural numbers such that

• P.1/ is true.
• For any natural number n, if P.n/ is true then P.nC 1/ is true.

Then P.n/ is true for all natural numbers n.

Problem 1. Show that the principle of induction is equivalent to the principle of
strong induction for N which is as follows:

Let P be a property of natural numbers such that

• For any natural number n, if P.m/ is true for all natural numbersm < n

then P.n/ is true.

Then P.n/ is true for all natural numbers n.

The natural numbers and the principle of induction will be studied in detail in
Chap. 2.

1.2 Membership, Subsets, and Naive Axioms

Naively speaking, a set A is a collection or group of objects such that membership
in A is definitely determined in the sense that given any x, exactly one of “x 2 A”
or “x 62 A” is true, where the notation

x 2 A

is used to denote that x is a member of the set A, and the notation

x 62 A

stands for x is not a member of A. For example, we have 3 2 .2;1/, 1
2
62 Z, 1 2 N,

0 62 N, etc.
We say that A is a subset of B , denoted by A � B , if every member of A is a

member of B . We write A 6� B to denote that A is not a subset of B . A � B is also
expressed by saying that A is contained in B or B contains A. Thus we have
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A � B , for all x, if x 2 A then x 2 B; and

A 6� B , there is some x 2 A such that x 62 B:

We are using the symbol “,” as a short-hand for the phrase “if and only if” (or
equivalence of statements). Similarly, the symbol “)” will stand for implication,
that is “P ) Q” means “if P thenQ” or “P implies Q.”

We will also often use the abbreviations “8x.: : : /” for “for all x, . . . ” (the
universal quantifier) and “9x.: : : /” for “there is some x such that . . . ” (the
existential quantifier). With such abbreviations, the lines displayed above can be
shortened to:

A � B , 8x .x 2 A) x 2 B/; and

A 6� B , 9x .x 2 A and x 62 B/:

The principle of extensionality says that two sets having the same members must
be identical, that is:

A D B , 8x .x 2 A, x 2 B/;

which can also be stated in terms of subsets as:

A D B , A � B and B � A (Extensionality).

The naive principle of comprehension is used to form new sets. Given any
property P , we write P.x/ for the assertion “x has property P .” Then the naive
principle of comprehension says that, given any property P , there is a set A
consisting precisely of those x for which P.x/ is true. In symbols:

9A 8x .x 2 A, P.x// (Comprehension).

We use the qualifier “naive” to indicate that the principle of comprehension uses the
vague notion of “property,” and unrestricted use of the comprehension principle can
cause problems that will be discussed later.2 For now, we follow the naive approach
of Cantor’s classical set theory, and the axioms of extensionality and comprehension
(together with a couple more axioms such as the Axiom of Choice to be introduced
in Chap. 5) will form the basis of development for our central topics of study.3

2Such difficulties lead to consideration of metamathematical issues. We will be confining ourselves
to purely mathematical aspects of set theory in the first three parts of the book.
3This is a satisfactory approach for most areas of mathematics (and for most mathematicians) since
the natural ways of forming new sets out of old ones such as taking subsets, forming the power set,
and taking unions, do not seem to lead to difficulties.
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Set Builder Notation

By extensionality, the set A whose existence is given by comprehension from a
property P is unique, so we can introduce the set builder notation

fx j P.x/g or fxWP.x/g
to denote the unique set A consisting precisely of those x for which P.x/ is true,
i.e., the set A defined by the condition: x 2 A, P.x/ (for all x). So,

A D fx j P.x/g if and only if: for all x, x 2 A, P.x/:

For example, we have:

Œa;1/ D fx j x 2 R and a � xg:
In this example the resulting set Œa;1/ is a subset of R. In general, when a new
set B is defined as a subset of an old set A as those members of A which have the
property P , that is when

B D fx j x 2 A and P.x/g;
we will often use the alternative notation

B D fx 2 A j P.x/g:

The Empty Set and Singletons

Perhaps the simplest set is the empty set Ø which has no members. (Its existence can
be proved using the naive comprehension principle by taking P.x/ to be “x 6D x.”)
The empty set is a subset of every set:

Ø � A for all sets A.

For any a, the singleton set fag is the set whose only member is a:

fag WD fx j x D ag:
We will often use the notation “WD” when definitions are introduced.

The singleton set fag should be distinguished from the element a. For example
fØg and Ø cannot be the same since the first one has a member while the second has
no members, and a set which has a member cannot be identical with a set with no
members (by extensionality).
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Problem 2 (Royden). Prove that if x 2 Ø, then x is a green-eyed lion.

Problem 3. Prove that fag D fbg if and only if a D b.

Problem 4. Prove that the sets ffffØgggg and ffØgg are distinct. For each of these
two sets, determine if it is a singleton.

The Brace-List Notation

More generally, we can denote sets consisting of multiple members using the brace-
list notation, as in:

fa; bg WD fx j x D a or x D bg;
fa; b; cg WD fx j x D a or x D b or x D cg; etc.

The set fa; bg is sometimes called an unordered pair.

Problem 5. Prove that fa; bg D fb; ag D fa; a; b; ag. Can fa; bg be a singleton?

More informally, we often use the brace-list notation together with dots “: : : ”
(ellipsis) where not all the elements are listed, but the missing elements can readily
be understood from the notation. For example,

f1; 2; : : : ; 100g stands for fx 2 N j x � 100g:
This is used for infinite sets as well, as in

N D f1; 2; 3; : : : ; n; : : : g:

If A is a set and ˛.x/ is an expression involving x which is uniquely determined for
each x 2 A, then we use the notation

f˛.x/ j x 2 Ag

as a convenient abbreviation for the set fy j y D ˛.x/ for some x 2 Ag. For
example,

f2n� 1 j n 2 Ng

denotes the set of all odd positive integers. This notation is also extended for
expressions with multiple variables. For example,

f˛.u; v/ j u 2 A; v 2 Bg
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stands for fx j x D ˛.u; v/ for some u 2 A and v 2 Bg. Thus

fm2 C n2 j m; n 2 Ng

denotes the set of integers which can be expressed as a sum of two perfect squares.

1.3 The Power Set and Set Operations

The Power Set

The power set P.A/ of a set A is defined to be the set of all subsets of A:

P.A/ WD fx j x � Ag:

Problem 6. What is P.Ø/? Find P.P.Ø// and P.P.P.Ø///. If a; b; c are distinct
elements, find P.fa; b; cg/.
Problem 7. Show that if a set A has n elements then P.A/ has 2n elements.

Problem 8. A setA is called transitive if every element ofA is also a subset ofA.

1. Among Ø, fØg, and ffØgg, which ones are transitive?
2. Find a transitive set with five elements.
3. Prove that a set is transitive if and only if its power set is transitive.
4. Can you find an example of an infinite transitive set?

Set Operations

Given sets A and B we define their

Union: A[ B WD fx j x 2 A or x 2 Bg
Intersection: A\ B WD fx j x 2 A and x 2 Bg
Difference: AXB WD fx j x 2 A and x 62 Bg:

We will assume basic familiarity with these operations which are often illustrated
by means of Venn diagrams.

Problem 9. Show that .AXB/[ .BXA/ D .A [ B/X.A\ B/.
The set .AXB/[ .BXA/ is called the symmetric difference of A andB , and denoted
by A4B .
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Universal Sets and Complementation: In many situations there will be a fixed set U
such that all sets under consideration will be subsets of U . The set U then becomes
the largest set among those being considered, and is sometimes called a universal
set, with the power set P.U / being the universe. For example, in the context of the
real line, all sets being discussed may be subsets of R. In such cases, where the fixed
largest setU does not change and can be understood from context, it is convenient to
writeUXA simply asA0, called the complement ofA, giving rise to the set operation
of complementation relative to U .

The Algebra of Subsets of a Fixed Set

In the last situation described, where all sets being considered are subsets of
a universal set U , the collection P.U /, together with the operations of union,
intersection, and complementation, is known as the Boolean Algebra of Subsets of
U , or simply the Algebra of Subsets of U . For the algebra of subsets of U , the set
operations satisfy many properties, most of which are readily derived. We list them
in the following problems.

Problem 10. Show that, for all sets A;B;C :

1. A [A D A D A\ A.
2. A [ B D B [ A and A\ B D B \A.
3. A [ .B [ C/ D .A[ B/[ C and A \ .B \ C/ D .A \ B/ \ C .
4. A \ .B [ C/ D .A\ B/[ .A \ C/ and A [ .B \ C/ D .A [ B/\ .A[ C/.
5. AX.B [ C/ D .AXB/\ .AXC/ and AX.B \ C/ D .AXB/[ .AXC/.
6. A \ B � A � A [ B .
7. A � B , A[ B D B , A \ B D A, AXB D Ø.

Problem 11. Suppose that U is a set such that all sets A;B;C; : : : under
consideration are subsets of U , and write A0 for U XA. Show that

1. A [Ø D A D A \ U .
2. Ø0 D U , U 0 D Ø, and .A0/0 D A.
3. A D B 0, B D A0, A\ B D Ø and A [ B D U .
4. A \A0 D Ø and A [A0 D U .
5. A \Ø D Ø and A[ U D U .
6. A \ B D Ø, A0 [ B 0 D U , A � B 0, B � A0
7. .A [ B/0 D A0 \ B 0 and .A \ B/0 D A0 [ B 0.
The last equalities in the list are called the DeMorgan laws.

Problem 12. 1. AXB D AX.A\ B/ and AX.AXB/ D A\ B .
2. A [ B D Ø, A D B D Ø, and A D B , A4B D Ø.
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1.4 Ordered Pairs and Relations

We will let ha; bi denote the ordered pair consisting of a and b in the order
of appearance. Its exact definition will not matter to us; any definition will be
satisfactory so long as ha; bi is uniquely defined for all a; b, and satisfies the
following property:

ha; bi D hc; d i ) a D c and b D d (for all a; b; c; d ).

We will leave the ordered pair as an undefined primitive notion satisfying this
characterizing condition.4

It is important to distinguish the unordered pair fa; bg, for which the “commuta-
tive property” fa; bg D fb; ag always holds, from the ordered pair ha; bi, for which
ha; bi D hb; ai will hold only if a D b.

Cartesian Product

The Cartesian product A�B of two sets A and B is defined as the set of all ordered
pairs ha; bi with a 2 A and b 2 B:

A � B WD fha; bi j a 2 A; b 2 Bg:

We abbreviate A�A as A2. For example, the familiar Cartesian plane R2 D R�R
is the set of all ordered pairs ha; bi where a and b are real numbers.

Relations

A relation is defined to be any set consisting only of ordered pairs. Thus:

R is a relation , for all x 2 R, x D ha; bi for some a; b.

We will use the notation xRy to denote hx; yi 2 R, and:xRy to denote hx; yi 62R.
The domain and range of a relation R, denoted by dom.R/ and ran.R/

respectively, are defined as:

dom.R/ WD fx j xRy for some yg; and ran.R/ WD fy j xRy for some xg:

4This was the standard practice until Wiener showed in 1914 that the notion of ordered pair can be
reduced to a definition in terms of sets by taking ha; bi WD ffag; fb;Øgg. This was later improved
by Kuratowski in 1921 to the current standard definition ha; bi WD ffag; fa; bgg. The interested
reader may want to verify as an exercise that both of these are satisfactory definitions for the
ordered pair.



1.4 Ordered Pairs and Relations 9

Problem 13. Find the domain and range for each of the following relations.

R1 WD fhx; yi 2 R2 j xy D 1g;
R2 WD fhx; yi 2 R2 j x2 C y2 D 1g;
R3 WD fhx; yi 2 R2 j x D sinyg;
R4 WD fhx; yi 2 R2 j x2 < yg:

If R is a relation then R � dom.R/� ran.R/ and so a relation could also have been
defined using the condition in the following problem.

Problem 14. R is a relation, R � A �B for some sets A and B .

We say that R is a relation on A if R � A � A.

Problem 15. If R is a relation, then R is a relation on some set A.

If R is a relation, then its inverse relation R�1 is defined as

R�1 WD fhu; vi j hv; ui 2 Rg:

For example, if R D fhx; yi 2 R2 j x < yg and S D fhx; yi 2 R2 j x > yg, then
R�1 D S and S�1 D R. It is easily verified that .R�1/�1 D R.

IfR and S are relations, their relative product (or composition), denoted byR �S
or by RS , is defined as R � S WD fhx; yi j For some u, xRu and uRyg.
Problem 16. Let S be the relation on R defined as

S WD fhx; yi 2 R j �1 < x � y < 1g:

What is S � S? Draw figures showing S and S � S on the Cartesian plane.

Problem 17. Show that .R � S/�1 D S�1 �R�1.

Properties of Relations

Let R be a relation on A. We say that

1. R is reflexive on A if xRx, for all x 2 A;
2. R is irreflexive on A if :xRx, for all x 2 A;
3. R is symmetric on A if xRy ) yRx, for all x; y 2 A;
4. R is asymmetric on A if xRy ) :yRx, for all x; y 2 A;
5. R is antisymmetric on A if xRy and yRx) x D y, for all x; y 2 A;
6. R is transitive on A if xRy and yRz) xRz, for all x; y; z 2 A;
7. R is connected on A if x 6D y ) xRy or yRx, for all x; y 2 A;
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Problem 18. Given a set A, put �A WD fhx; xi j x 2 A. (�A is called the diagonal
or identity on A.) If R is a relation on A, show that:

1. R is reflexive on A, �A � R;
2. R is irreflexive on A, R \�A D Ø;
3. R is symmetric on A, R � R�1, R D R�1, R�1 � R;
4. R is asymmetric on A, R \ R�1 D Ø;
5. R is antisymmetric on A, R \R�1 � �A;
6. R is transitive on A, R �R � R;
7. R is connected on A, R [ R�1 [�A D A �A.

Problem 19. Let S be the relation of non-equality on the set A, that is, xSy ,
x; y 2 A and x 6D y. Then S is irreflexive, symmetric, and connected on A.
Moreover, if R is any relation on A which is irreflexive, symmetric, and connected
on A, then R D S .

Problem 20. Given a set A with n elements, how many relations are there on A
which are both symmetric and connected? How many are reflexive? How many are
irreflexive? How many are neither?

Transitivity is an important property of relations. For transitive relations, the
properties of irreflexivity and asymmetry coincide.

Problem 21. If R is a transitive relation on A, show that R is irreflexive on A if
and only if R is asymmetric on A.

1.5 Functions

A relation F is said to be a function if xFy and xF z ) y D z, for all x; y; z. If
F is a function and x 2 dom.F /, then there is a unique y such that xFy, and we
denote this y by F.x/, the usual functional notation.

We also say that F is a function from A to B , written using the standard notation

F WA! B;

to mean that F is function with dom.F / D A and ran.F / � B . In this case, it
is common to abuse terminology and refer to the triplet hF;A;Bi as “the function
F WA ! B .” The set B is then sometimes referred to as the converse domain or
co-domain of the function F WA ! B (more precisely, B is the co-domain of the
triplet hF;A;Bi).

Functions are also called mappings. If A is a set and ˛.x/ is an expression
involving the variable x which is uniquely determined for each x 2 A, then the
relation

F WD fhx; yi j x 2 A and y D ˛.x/g
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is a function with domain A. This function F is sometimes referred to as “the
mapping x 7! ˛.x/ where x 2 A,” and can be written more simply as

F D fhx; ˛.x/i j x 2 Ag:

Function Builder Notation

It is very convenient to further simplify the notation and to denote the function F
using the function builder notation:

F D h˛.x/ j x 2 Ai :

Notice the use of angle-brackets in place of the curly braces. The function builder
notation is highly useful in defining new functions. For example, the relation

R D fhx; yi 2 R2 j x 2 Œ0; 1�; y D x2 C 1g

is a function with domain Œ0; 1� which is denoted by
˝
x2 C 1 j x 2 Œ0; 1�˛.

Two functions F and G are said to agree on a set A if A � dom.F /, A �
dom.G/, and F.x/ D G.x/ for all x 2 A.

If F WA ! B and C � A, then the restriction of F to C , denoted by F jC or
F �C , is the function with domain C defined as

F jC D fhx; yi j x 2 C and hx; yi 2 F g:

In this case we also say that F is an extension of G. Note that F jC could also be
defined as hF.x/ j x 2 C i and is the unique function with domain C which agrees
with F on A.

Let F WA ! B . For each C � A we define the (forward) image of C under F ,
denoted by F ŒC �, as the set

F ŒC � WD fF.x/ j x 2 C g:

Thus F ŒC � D ran.F jC /. Similarly, for eachD � B , we define the inverse image of
D under F , denoted by F �1ŒD�, as the set

F�1ŒD� WD fx 2 A j F.x/ 2 Dg:

Problem 22. Let F WX ! Y , A;B � X , and C;D � Y . Show that

1. F ŒA [ B� D F ŒA� [ F ŒB� and F ŒA \ B� � F ŒA� \ F ŒB�.
2. The equality F ŒA \ B� D F ŒA� \ F ŒB� may fail.
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3. F �1ŒC [D� D F�1ŒC � [ F�1ŒD� and F�1ŒC \D� D F�1ŒC � \ F�1ŒD�.
4. F �1ŒY XC � D XXF�1ŒC �.
If F WA ! B and GWB ! C are functions, then their composition G ı F is the
functionG ı F WA! C defined by

G ı F WD hG.F.x// j x 2 Ai ;

which is well defined since ran.F / � dom.G/.

Problem 23. Show that function composition is associative.

Problem 24. If F WA ! B , GWB ! C , X � A, and Y � C , then we have
.G ı F /ŒX� D GŒF ŒX�� and .G ı F /�1ŒY � D F�1ŒG�1ŒY ��.

A function F WA! B is said to be one-to-one or injective if

F.u/ D F.v/) u D v (for all u; v 2 A).

Note that a function F is one-to-one if and only if the inverse relation F �1 is a
function (in this case we will have dom.F �1/ D ran.F /).

Problem 25. Show that F WA ! B is injective if and only if for all X; Y � A we
have F ŒX \ Y � D F ŒX� \ F ŒY �.
A function F WA! B is onto or surjective if ran.F / D B , i.e., if

for each y 2 B there is x 2 A such that y D F.x/.

Note the terminological abuse mentioned earlier. The term “onto” or “surjective”
really applies to the triplet hF;A;Bi.

A function F WA ! B which is both one-to-one and onto is called a one-to-one
correspondence or a bijection from A onto B (or a bijection between A and B).
When A D B , that is if F WA! A is a bijection, we say that F is a bijection on A.

For example, if Z is the set of all integers, positive, negative, or zero,A is the set
of all odd integers in Z, and B is the set of all even integers in Z, then the function
F WD hnC 1 j n 2 Zi is a bijection on Z, while F jA is a bijection from A onto B
and F jB is a bijection from B onto A.

Problem 26. For any set A, define a bijection between the set of all reflexive
relations on A and the set of all irreflexive relations on A.

Problem 27. Show that

1. For any setA, the identity mapping onA given by hx j x 2 Ai is a bijection onA.
2. If F WA ! B is an injection, then F WA ! F ŒA� is a bijection (where F ŒA� D

ran.F /).
3. If F is a bijection from A onto B , then F�1 is a bijection from B onto A.
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Problem 28. Let F WA ! B , GWB ! C , and let G ı F WA ! C be their
composition. If F and G are injective, so is G ı F , and if F and G are surjective,
so is G ı F . Conclude that a composition of bijections is a bijection.

Problem 29. Let F WX ! Y . Show that

1. F is injective if and only if there is aGWY ! X such that the compositionG ıF
equals the identity function on X .

2. If there is a GWY ! X such that the composition F ı G equals the identity
function on Y , then F WX ! Y is surjective.

The converse of the second result in the last problem holds under the axiom of choice
which will be introduced and studied in a later chapter.

Problem 30. Prove that for any infinite subset A of the set N of positive integers,
there is bijection between N and A.

If A;B are sets, then BA denotes the collection of all functions from A to B:

BA WD ff j f WA! Bg:

Thus f 2 BA , f WA! B .

1.6 Families and Partitions

Indexed Families

A function E with domain I D dom.E/ will also be called an indexed family with
index set I . In this case it is customary to denote E.i/ by Ei for each i 2 I , and
denote the entire indexed family, that is the functionE , as:

E D hEi j i 2 I i :

IfEi is a set for each i 2 I , then we say that hEi j i 2 I i is an indexed family of sets
(with index set I ). Thus P.X/I is the collection of all indexed families of subsets
of X with index set I .

Given an indexed family of sets hEi j i 2 I i, we define its union

[

i2I
Ei WD fx j x 2 Ei for some i 2 I g;

and intersection

\

i2I
Ei WD fx j x 2 Ei for all i 2 I g:
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An indexed family of sets hEi j i 2 I i is said to be pairwise disjoint if

i 6D j ) Ei \Ej D Ø (for all i; j 2 I ).

When the index set is N, the indexed family hEn j n 2 Ni is called a sequence of
sets, and we use the following notations:

1[

nD1
En WD

[

n2N

En; and
1\

nD1
En WD

\

n2N

En:

Of course, this notation can naturally be extended to the case where the starting
index is an integer other than 1.

Problem 31 (De Morgan’s Laws). Let U be a fixed “universal” set, and for E �
U , letE 0 WD UXE denote the complement ofE . If hEi j i 2 I i is any indexed family
of subsets of U , show that

 
[

i2I
Ei

!0
D
\

i2I
E 0i and

 
\

i2I
Ei

!0
D
[

i2I
E 0i :

Problem 32. If f WX ! Y and hEi j i 2 I i is an indexed family of subsets of X ,
then

f
h[

i2I
Ei

i
D
[

i2I
f ŒEi �:

Problem 33. If f WX ! Y and
˝
Fj j j 2 J

˛
is an indexed family of subsets of Y ,

then

f �1
h[

j2J
Fj

i
D
[

j2J
f �1ŒEj � and f �1

h \

j2J
Fj

i
D
\

j2J
f �1ŒEj �:

Unindexed Families (or Collections) of Sets

If C is a set whose every member is itself a set, we say that C is a family of sets
(unindexed) or a collection of sets. For example, P.A/ is a family of sets. If each
member of C is a subset of a fixed set X , or equivalently, if C � P.X/, we say that
C is a collection of subsets ofX or a family of subsets ofX . Thus P.X/ is the largest
family of subsets of X .
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If C is any (unindexed) family of sets, we can convert C into the indexed family
hA j A 2 Ci, which is the identity function on C. Hence the notation

[

A2C
A

can be used to denote the union of members of C, but in this case we can use the
simpler notation

[C WD
[

A2C
A:

Thus [C is the set of members of members of C, that is:

x 2 [C , x 2 A for some A 2 C.

Similarly, we define:

\C WD
\

A2C
A; and so x 2 \C , x 2 A for every A 2 C.

Problem 34. Show that [C is the “smallest set containing every set in C” in the
sense that it contains every set in C and is contained in any set which contains every
set in C.

Similarly show that \C is the largest set contained in every set in C, that is, it is
contained in every set in C and contains any set which is contained in every set in C.

Problem 35*. What is \C if C is empty?

Partitions

A family C of sets is called (pairwise) disjoint if any pair of sets in C are either
identical or disjoint, i.e., if for all A;B 2 C, A D B or A \ B D Ø.

We say that a family C covers or exhausts a set X if every element of X belongs
to some set in C (i.e., if for all x 2 X there is A 2 C such that x 2 A), or
equivalently if X � [C.

We say that C is a partition of X if C is a disjoint family of nonempty subsets of
X which coversX . More precisely, C is a partition of X if

• C is a family of subsets of X (C � P.X/);
• No member of C is empty (B 2 C) B 6D Ø);
• Distinct sets in C are disjoint (A;B 2 C and A 6D B ) A \ B D Ø);
• C coversX (for all x 2 X , x 2 A for some A 2 C, or X D [C).
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Problem 36. List all possible partitions of fa; b; cg (with a; b; c distinct).

Problem 37. Let E1 WD f2k � 1 j k 2 Ng be the set of odd positive integers, and
inductively define, for each n D 1; 2; : : : ,

EnC1 WD f2k j k 2 Eng:

Show that fEn j n 2 Ng is a partition of N.

Problem 38. For each of the following, determine if C is a partition or not.

(a) C D Ø; (b) C D fØg; (c) C D ffØgg.

1.7 Finite and Infinite Sequences and Strings

The notion of ordered pair can be generalized to that of a finite sequence, which can
have any finite number of entries instead of just two. For example, ha; b; ci denotes
the ordered triple consisting of the entries a; b; c in the order of appearance. In
general, we will use the notation ha1; a2; : : : ; ani to denote the ordered n-tuple or the
finite sequence of length n consisting of the entries a1; a2; : : : ; an in the displayed
order. Its defining property is:

ha1; a2; : : : ; ani D hb1; b2; : : : ; bni ) a1 D b1; a2 D b2; : : : ; an D bn:

A finite sequence of length n can be officially defined as a function whose domain
is the set f1; 2; : : : ; ng D fk 2 N j 1 � k � ng of the first n natural numbers. So an
n-tuple a is a function aW f1; 2; : : : ; ng ! ran.a/, with k-th entry being a.k/. It is
then customary to abbreviate a.k/ as ak , and we have

a D ha.1/; a.2/; : : : ; a.n/i D ha1; a2; : : : ; ani D hak j 1 � k � ni ;

where the last expression on the right uses the function-builder notation.5

Cartesian products are also generalized by defining

A1 � A2 � � � � � An WD fha1; a2; : : : ; ani j a1 2 A1; a2 2 A2; : : : an 2 Ang:

5The case n D 2 causes a notational conflict between the ordered pair and the finite sequence
of length 2, as both are denoted by ha; bi. To be pedantic, we could use a separate notation for
n-tuples (such as Œa1; a2; : : : ; an�), but our ambiguous notation will hardly cause any real trouble
in informal set theory. A similar remark applies to the case n D 1 where we identify A1 with A by
confusing hai as a.
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If all the “factors” of a Cartesian product are equal, we use the abbreviations:

A2 WD A � A; A3 WD A � A � A; : : : ; An WD A � A � � � � � A„ ƒ‚ …
n factors

:

Thus An is the set Af1;2;:::;ng of all finite sequences of length n with entries from
A, which is consistent with the familiar notations R2 for the Cartesian plane and
R3 for the usual 3-space. We also identify A1 with A. Finally, when n D 0 the set
f1; 2; : : : ; ng is empty and the only function with empty domain is the empty set Ø
itself, so we have A0 D AØ D fØg.

The collection of all finite sequences from A of all possible lengths will be
denoted by A�:

A� WD
1[

nD0
An:

In particular, A� includes the empty sequence Ø which has length 0.
We will also consider non-terminating infinite sequences of the form

ha1; a2; : : : ; ak; : : : i D hak j k 2 Ni :

As suggested by the function-builder notation on the right above, an infinite
sequence from a set A is officially defined to be a function aWN ! A. Thus AN

is the set of all infinite sequences from A. Once again, it is customary to abbreviate
a.k/ as ak , so that a D hak j k 2 Ni for a 2 AN. Also, we will sometimes abbreviate
the set f0; 1gN of all infinite binary sequences as 2N.

To summarize, a member of a 2 A� (a finite sequence) can be written as

a D ha1; a2; : : : ; ani D hak j 1 � k � ni ;

for some n � 0 (we get the empty sequence by taking n D 0), while a member of
a 2 AN (an infinite sequence) can be written as

a D ha1; a2; : : : ; ak; : : : i D hak j k 2 Ni :

Alphabets and Strings

Sometimes it is more convenient to regard the set A as an alphabet whose elements
are symbols or letters, and write the sequence a D ha1; a2; : : : ; ani more simply as
a word or string of symbols, as in:

a D a1a2 � � �an:
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In such contexts, the empty sequence is called the empty string or the empty word,
and is denoted by " (instead of Ø); it is the unique string of length zero. The length
of a string u is denoted by len.u/.

For example, when A D f0; 1g, we say that A is the binary alphabet consisting
of the two binary digits (or bits) 0 and 1. A string from A will now be a word
composed of the symbols 0 and 1, such as “10001110” or “00101,” and we have the
set of binary strings:

f0; 1g� WD f"; 0; 1; 00; 01; 10; 11; 000; 001; 010; 011; 100; 101; 110; : : : g;

where for each n there are 2n binary words of length n.
If a D a1a2 � � �am and b D b1b2 � � �bn are finite strings of length m and n

respectively, we say that a is an initial segment or prefix of b if m � n and ak D bk
for all k � m. In this case, we also say that b is an extension of a (or b extends a).
When b extends a and len.b/ D len.a/C1, we say that b is an immediate extension
of a.

If u D u1u2 � � � um is a string of length m and v D v1v2 � � � vn is a string of length
n, we can form their concatenation, denoted by u�v, to be the string of lengthmCn
obtained by “writing u followed by v,” as in:

u � v WD u1u2 � � � umv1v2 � � � vn:

Thus u is a prefix of w if and only if w D u�v for some string v. Note that len.u�v/ D
len.u/C len.v/.

Let A be an alphabet. If u 2 A� is a finite string from A and s 2 A is a letter
in A, we use the notation uas to denote the immediate extension of u obtained by
suffixing it with the letter s, that is, if u D u1u2 � � � um with u1; u2; : : : ; um 2 A, then

uas WD u � hsi D u1u2 � � � ums:

Thus len.uas/ D len.u/C 1.
It is often useful to regard an infinite sequence a 2 AN as an infinite string

a D a1a2 � � �an � � � of letters from the alphabetA. If u D u1u2 � � � um is a finite string
and v D v1v2 � � � vk � � � is an infinite string, then we say that u is a (finite) initial
prefix of v, or that v extends u, if uk D vk for k D 1; 2; : : : ; m.

If a D a1a2 � � �ak � � � is an infinite string, we use the notation

ajn WD a1a2 � � �an;

to denote the finite initial prefix of a obtained by truncating a to its first n letters.
Thus aj0 D ", aj1 D a1, aj2 D a1a2, aj3 D a1a2a3, etc, and a extends ajn for
every n.
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Finally, given a finite string a D a1a2 � � �am and an infinite string b D
b1b2 � � �bk � � � , we can concatenate them to form the infinite string a � b as

a � b WD a1a2 � � �amb1b2 � � �bk � � � ;

or more formally as the infinite string c D c1c2 : : : ck � � � , where

ck WD
(
ak if k � m,

bk�m if k > m.

1.8 Partitions and Equivalence Relations

A relation R on a set A is said to be an equivalence relation on A if R is reflexive,
symmetric, and transitive on A. The symbols Ï and 	 are often used to denote
equivalence relations, and we say x is equivalent to y to express x Ï y. Thus Ï is
an equivalence relation on A if and only if:

1. Reflexivity: x Ï x (for all x 2 A);
2. Symmetry: x Ï y ) y Ï x (for all x; y 2 A); and
3. Transitivity: x Ï y and y Ï z) x Ï z (for all x; y; z 2 A).

The identity relationD is an equivalence relation. In fact, the notion of equivalence
relation can be viewed as a generalization of the notion of identity.

Problem 39. Let F be a function with dom.F / D A, and for x; y 2 A, define

x Ï y , F.x/ D F.y/:
Show that Ï is an equivalence relation on A.

Given any equivalence relation Ï on a set A, a function F with domain A is called
a complete invariant for the relation Ï if “F reduces Ï to the identity D” in the
following sense:

x Ï y , F.x/ D F.y/ (for all x; y 2 A).

If Ï is an equivalence relation on A and x 2 A, the Ï-equivalence class of x,
denoted by Œx�Ï, or simply by Œx� if there is no risk of confusion, is defined as:

Œx� WD Œx�Ï WD fy 2 A j x Ï yg:
Thus Œx� is the set of elements equivalent to x, and so y 2 Œx�, y Ï x.
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Problem 40. Let Ï be an equivalence relation on A. Prove that x 2 Œx� for all
x 2 A. Prove also that for any x; y 2 A, either Œx� D Œy� or Œx� \ Œy� D Ø.

Problem 41. Let Ï be an equivalence relation on A. Prove that if x; y 2 A, then
Œx� D Œy� if and only if x Ï y.

Therefore every equivalence relation has a natural complete invariant:

Theorem 42 (Principle of Abstraction). Given any equivalence relation Ï on a
set A, the mapping x 7! Œx�Ï, which assigns to every element its own equivalence
class, is a natural complete invariant for Ï, i.e.,

x Ï y , Œx�Ï D Œy�Ï (for all x; y).

The mapping x 7! Œx�Ï is called the quotient map given by Ï.

The following theorem exhibits a natural one-to-one correspondence between
equivalence relations and partitions over a given set A, thus bringing out the fact
that the two notions “equivalence relation” and “partition” in a sense represent the
same concept (i.e., each can be regarded as form of the other).

Theorem 43 (Identifying Equivalence Relations with Partitions). Given an
equivalence relation Ï on A, the family ˘ .Ï/ of all distinct Ï-equivalence classes
forms a partition of A such that

x Ï y , x and y belong to some common set in the partition ˘ .Ï/:

Conversely, given any partition C of A, the relation E.C/ on A defined by

x E.C/ y , there is some B 2 C such that x; y 2 B

is an equivalence relation on A such that C equals the family of all E.C/-
equivalence classes.

Moreover, we have

E.˘ .Ï// DÏ; for any equivalence relation Ï, and

˘ .E.C// D C; for any partition C.

Problem 44. Prove Theorem 43.

Given an equivalence relation Ï on A, the partition ˘ .Ï/ of A consisting of all
the Ï-equivalence classes is often denoted by A=Ï, and is called the quotient of A
modulo Ï. The quotient map x 7! Œx� of Theorem 42 (the natural complete invariant
for Ï) is then a surjection of A onto A=Ï.

Problem 45. Let Z be the set of all integers, positive, negative, and zero. We write
x j y to express “x divides y,” i.e., y D xz for some z 2 Z. Define two relations	
and Ï on Z by the conditions
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x 	 y , 4 j .x � y/; and x Ï y , x j y and y j x;

Show that both	 and Ï are equivalence relations on Z. In each case, what are the
equivalence classes and what is the partition?

Problem 46. Let R2 WD f.x; y/ j x; y 2 Rg be the usual plane, and define a
relation Ï on the plane by

.x1; y1/ Ï .x2; y2/, x1 C y2 D x2 C y1:

1. Show that Ï is an equivalence relation on R2.
2. Describe the equivalence classes and the partition.
3. Find a complete invariant for Ï.

Problem 47. Let N WD f1; 2; 3; : : : g be the set of natural numbers. Define an
equivalence relation	 on N by:

m 	 n , for all k 2 N: 2k j m, 2k j n:

Describe the equivalence classes and the partition given by 	. Can you find a
complete invariant for this equivalence relation?

Problem 48. Let N WD f1; 2; 3; : : : g be the set of natural numbers. Define an
equivalence relation Ï on N by:

m Ï n , for every prime p: p j m, p j n:

Describe the equivalence classes and the partition given by Ï. Can you find a
complete invariant for this equivalence relation?

Problem 49. Define an equivalence relation Ï on the set R of reals by

x Ï y , cosx D cosy:

Precisely describe the equivalence classes and the corresponding partition.

1.9 Orders (Linear Orders)

We will study orders in detail starting from Chap. 7, but a few basic notions needed
before Chap. 7 will be introduced here.
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We say that a relationR is a (linear) order on a set X , or that hX;Ri is a (linear)
order, or simply that R orders X , if R is a transitive relation on X satisfying the
trichotomy property: For all a; b 2 X , exactly one of

aRb; a D b; bRa;

holds. (Thus if R orders X and a; b 2 X are distinct (a 6D b), then either aRb or
bRa, but not both.)

Problem 50. If R orders X , then R is irreflexive and asymmetric on X . Moreover,
we have: R orders X if and only if R is a relation on X which is transitive,
asymmetric, and connected on X .

Notation and Terminology. IfR ordersX , we write x <R y to denote xRy. When
there is no chance of confusion, we even drop the subscript R and simply write
x < y for xRy, and so x � y means xRy or x D y. We will also say that “X is
order” in place of “hX;<i is an order.”

In a general order X , intervals are defined using the familiar notations for the
real number line. Subsets such as .a; b/ WD fx 2 X j a < x < bg and .a;1/ WD
fx 2 X j a < xg are open intervals, while examples of closed intervals are Œa; b� WD
fx 2 X j a � x � bg and .�1; a� WD fx 2 X j x � ag. Similarly, we could also
define half-open intervals such as Œa; b/. In a general order, the interval .�1; a/
will usually be denoted by Pred<.a/ or Pred.a/.

Let < be an order on a set X .
If A � X , then an element a 2 X is a first or least element of A if a 2 A and

for all x 2 A, x 6D a ) a < x. Similarly we define last and greatest elements.
An element a 2 X is called an endpoint of the order X if a is either a first or a last
element of the entire set X .

If x; y 2 X , we say that x is an immediate predecessor of y, or equivalently
that y is an immediate successor of x, if x < y and there is no z 2 X such that
x < z < y. It is easily seen that each element has at most one immediate successor
or immediate predecessor. We also say that two elements are consecutive elements
if one of them is an immediate successor of the other.

The order < on X is said to be a dense order if for all x; y 2 X , if x < y then
there is some z 2 X with x < z and z < y. Thus an order is a dense order if and
only if it does not have any pair of consecutive elements.

The order< onX is said to be a well-order if every nonempty subset A � X has
a least element a 2 A.

For example, let X be the set N of natural numbers with their usual order of
magnitude. Then the element 1 is the first element of X , but X does not have a last
element. If m; n 2 X , then m is an immediate predecessor of n (or equivalently n
is an immediate successor of m) if and only if n D m C 1, and pair elements are
consecutive if their difference equals 1.

Many interesting examples of orders are obtained by fixing X to be a subset of
R and taking < to be the usual order of magnitude among the elements of X . For
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example, for any a < b in R, the real interval Œa; b� with the usual order is a dense
order with first element a and last element b.

Problem 51. For each of the following, give an example of an order satisfying the
stated condition.

1. A dense order (i.e., without consecutive elements) which has a last element but
no first element.

2. An order on an infinite set which has a first and a last element and such that each
element except the last has an immediate successor and each element except the
first has an immediate predecessor.

3. An order having a unique element which has neither an immediate successor
nor an immediate predecessor while every other element has both an immediate
successor and an immediate predecessor.
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Introduction to Part I

The primary goal of Part I is to construct the real numbers starting with the natural
numbers as the only foundation.

Chapter 2 derives standard properties of naturals numbers from the Dedekind–
Peano axioms and then develops the ratios (positive rationals). The chapter ends
with an optional section on Dedekind’s general method of recursive definition
(primitive recursion).

Chapter 3 covers the definition of continuity in the context of linear orders,
leading to the notion of a linear continuum and the satisfaction of the intermediate
value theorem. It gives a construction of the real numbers using the method of
Dedekind cuts.

The philosophical postscript to this part (Chap. 4) discusses two different
approaches, namely Frege–Russell absolutism and Dedekindian structuralism,
which are applicable not only in the conception of the natural numbers, but also
more generally in the wider context of mathematics.

A great deal of the material of this part is due to Dedekind. This includes
the Dedekind–Peano axioms, definition by primitive recursion, categoricity of
Dedekind–Peano systems, definition of a linear continuum, the construction of
irrational numbers via cuts in rationals, and the structuralist approach to the natural
numbers. Most of the material of Chap. 2 correspond to Dedekind’s 1888 work [11]
(Was sind und was sollen die Zahlen?), and that of Chap. 3 to his earlier 1872
work [10] (Stetigkeit und irrationale Zahlen).

Note. In the informal preliminary Chap. 1, we temporarily assumed the existence
and properties of integers and real numbers to provide examples for sets, relation,
and functions. In this part we will drop all such assumptions and derive everything
from the Dedekind–Peano axioms. Familiar notions, like addition, are not assumed
to be known until formally introduced.
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Chapter 2
The Dedekind–Peano Axioms

Abstract This chapter develops the theory of natural numbers based on
Dedekind–Peano Axioms, also known as Peano Arithmetic. The basic theory of
ratios (positive rational numbers) is also developed. It concludes with a section on
formal definition by primitive recursion.

2.1 Introduction

With the real numbers and their properties as a starting point, a large part of classical
mathematics known as analysis can be developed deductively. This includes analytic
geometry, calculus, the theory of sequences and series of real and complex numbers
and functions, differential equations, and so on.

Mathematicians in the nineteenth century such as Weierstrass, Dedekind, and
Cantor produced further analysis and construction of the real numbers which
reduced everything down to the notion of natural numbers N.

It thus became clear that (with the aid of a certain amount of set theoretic and
logical apparatus) the entire body of traditional pure mathematics can be constructed
rigorously starting from the theory of natural numbers.1

Dedekind, in his profound work [11], and Peano, in his clear and highly
modern axiomatic development [59], showed how, in turn, the entire theory of
natural numbers could be derived from a few basic axioms and primitive notions.
The resulting deductive theory is known today as Peano Arithmetic. This chapter
develops parts of Peano Arithmetic dealing with properties of natural numbers,
fractions, and ratios.

Throughout Part I, we assume that only the primitive Dedekind–Peano notions
and axioms are given and that nothing else about any kinds of numbers or their

1“God created the natural numbers, all else is work of man,” said Kronecker.

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__2, © Springer Science+Business Media New York 2014
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30 2 The Dedekind–Peano Axioms

properties are known. All familiar notions, like addition, will be formally introduced,
and their properties will be derived from the axioms.

2.2 The Dedekind–Peano Axioms

The three primitive Dedekind–Peano notions are: “natural number,” “1,” and
“successor,” where the successor of a natural number n is denoted by S.n/.

The five axioms involving these primitive notions are the following.

The Dedekind-Peano Axioms. The natural numbers satisfy the axioms:

1. 1 is a natural number.
2. Every natural number n has a unique successor S.n/ which also is a natural

number.
3. 1 is not the successor of any natural number.
4. No two distinct natural numbers have the same successor (i.e., for all natural

numbersm; n, S.m/ D S.n/ impliesm D n).
5. Induction: If P is a property of natural numbers such that

a. 1 has property P, and
b. whenever a natural number has property P so does its successor,

then all natural numbers have property P .

Mathematicians found it remarkable that all known properties of natural numbers
can be derived from the Dedekind–Peano Axioms.

We define:

2 WD S.1/; 3 WD S.2/; 4 WD S.3/; 5 WD S.4/; 6 WD S.5/
7 WD S.6/; 8 WD S.7/; 9 WD S.8/; 10 WD S.9/; etc.,

adopting the usual decimal notation as a shorthand to replace long formal expres-
sions of the form “S.� � �S.S.1// � � � /.”

Notational convention. Natural numbers will be denoted by lowercase Roman
letters such as a; b; c;m; n; p; x; y; z, without or with subscripts and/or superscripts.
Quantifiers involving these variables will be assumed to range over natural numbers.
Thus “for everym there exists n” stands for “for every natural numberm there exists
a natural number n.”

Problem 52. 3 6D 5.

Problem 53. No natural number is its own successor: S.n/ 6D n for any n.
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Problem 54 (Converse of Axiom 3). Every natural number other than 1 is the
successor of some natural number, i.e., if n 6D 1 then n D S.m/ for some m.

At this point, expression such as 1 C 3 or .5 C 6/ � 7 or statements like 3 < 5

cannot be used; such expressions do not even make sense yet, since the operations
C and � and the relation < have not been defined.

2.3 Addition, Order, and Multiplication

Addition

Definition 55. The sum m C n of two natural numbers m and n is defined “by
induction on n” as follows (for anym):

1. mC 1 WD S.m/, and
2. mC S.n/ WD S.mC n/.
In other words, definemC 1 to be S.m/ (this is the case n D 1), and oncemC n is
defined, definemCS.n/ to be S.mCn/. This defines the sum of any two numbers.2

Problem 56. 2C 2 D 4.

Problem 57. nC 1 D 1C n for all n.

Problem 58. Addition (as defined above) is associative:

mC .nC p/ D .mC n/C p:

[Hint: Use induction on p.]

Problem 59. Addition is commutative:mC n D nCm, for all m and n.

Problem 60. Cancellation law for addition: If mC p D nC p, then m D n.

Order

Definition 61. Define m < n if and only if n D m C p for some p. Also, write
m > n for n < m.

2This can be done more rigorously using the method of definition by primitive recursion due to
Dedekind, covered in the last section of this chapter.
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The next few results can be proved without induction.

Problem 62. n < S.n/ for all n.

Problem 63. n 6< n for all n; that is, there are no n; p such that n D nC p.

Problem 64. For all n, either 1 < n or 1 D n. Also, there is no n with n < 1.

Thus 1 is “the least natural number” (less than all other natural numbers).

Problem 65. m < n if and only if either S.m/ < n or S.m/ D n.

Problem 66. mC k < nC k if and only if m < n.

Recall from the previous chapter that a relation on a set is called a linear order if
it is transitive, irreflexive, and connected on the set.

Theorem 67. <, as defined above, is a linear order on the natural numbers.

Proof. Transitivity of < is an easy consequence of the associative property of
addition: If m < n and n < p, then n D m C r and p D n C s for some r; s.
Hence p D nC s D .mC r/C s D mC .r C s/ D mC t , where t WD r C s, so
m < p.

Irreflexivity is a direct consequence of Problem 63.
Finally, to show that < is connected, define a property P as follows, writing

“P.k/” as a shorthand for “k has property P ”:

P.k/ is true if and only if for every n, either k < n; or k D n; or k > n:

We establish < is connected on the set of natural numbers by showing that P.k/ is
true for all k, which is proved by induction:

First, P.1/ is true, as 1 is less than all other natural numbers (Problem 64).
Next, suppose that P.k/ is true. Then for every n, either k < n in which case

S.k/ < n or S.k/ D n, and so P.S.k// is true; or k D n in which case S.k/ > n

so P.S.k// is true; or k > n in which case S.k/ > k > n by transitivity so again
P.S.k// is true. Thus P.S.k// is true if P.k/ is true.

Therefore, by induction P.k/ is true for every natural number k. ut
Theorem 68 (The Well-Ordering Property). Every nonempty set A of natural
numbers has a “least” element m 2 A such that for all k 2 A either m < k or
m D k.

Proof. We prove the equivalent statement that if A has no least element thenAmust
be empty. So suppose that A does not have a least element.

Let P be the property of being less than every member of A, that is, a natural
number n has property P if and only if n < k for all k 2 A.

First, since 1 is less than all other natural numbers and A has no least element, so
1 62 A. Hence 1 has property P , again since 1 is less than all other natural numbers.

Next, suppose that n has P . Then S.n/ 62 A, since otherwise S.n/ would be the
least element of A: for any k 2 A we have n < k, so by Problem 65 S.n/ < k or
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S.n/ D k. Hence S.n/ has P : for any k 2 A, n < k, so S.n/ < k or S.n/ D k (by
Problem 65), but we cannot have S.n/ D k since S.n/ 62 A, so S.n/ < k. Thus we
have shown that if n has P then S.n/ has P .

By induction, every natural number has property P , so A is empty. ut
Remark. This theorem is actually equivalent to the general induction axiom. It is
said to be phrased in the language of second order arithmetic, since, unlike most
other results of this chapter, it talks about all sets of natural numbers.

Problem 69. If m > n there is a unique k such that m D nC k.

Definition 70 (Subtraction). If m > n, define m � n to be the unique k with
m D nC k.

Multiplication

Definition 71. The product m � n of two natural numbers m and n is defined by
induction on n as follows (for any m):

1. m � 1 WD m, and
2. m � S.n/ WD .m � n/Cm.

We write mn for m � n.

Problem 72. 2 � 3 D 6.

Problem 73. Multiplication (as defined above) is distributive over addition:

m.nC p/ D mnCmp:

[Hint: Use induction on p.]

Problem 74. Multiplication is associative:

m.np/ D .mn/p:

[Hint: Use induction on p.]

Problem 75. Multiplication is commutative:mn D nm, for all m and n.

Problem 76. Cancellation law for multiplication: If mp D np thenm D n.

Problem 77. mp < np if and only if m < n.

Problem 78. m < 2m.

Notation. We write n2 for nn.

Problem 79. m2 < n2 if and only if m < n.
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Definition 80. Define n to be even if and only if n D 2m for some m. Define n to
be odd if and only if n D 1 or n D S.2m/ for some m.

Problem 81. For every n, either n is odd or n is even but not both. Moreover, n is
even if and only if S.n/ is odd, and n is odd if and only if S.n/ is even.

Problem 82. n is even if and only if n2 is even, and n is odd if and only if n2 is odd.

Theorem 83. There do not exist m; n such that m2 D 2n2.
Proof. Let A WD fm j m2 D 2n2 for some n g. The result will follow if we show
that A is empty, so we assume A is nonempty and derive a contradiction. By the
Well-Ordering Property, fix a least member m 2 A. Then we can fix p such that
m2 D 2p2. Then p2 < m2 (Problem 78), hence by Problem 79, p < m. Also,
since m2 is even, so m is even by the last result. Hence m D 2q for some q. So
2q � 2q D 2p2, or p2 D 2q2. So p 2 A. But this is impossible since p < m and m
is the least member of A. ut
Remark. In this proof, we had to avoid number theoretic properties such as reduced
fractions, gcds, relatively prime numbers, etc., which are not available to us at this
point.

2.4 Fractions and Ratios

Definition 84. A fraction is an ordered pair of natural numbers hm; ni.
Thus N � N is the set of all fractions. For a fraction hm; ni, m and n are called the
numerator and denominator, respectively.

Definition 85 (Equivalent Fractions). We say that the fractions hm; ni and hp; qi
are equivalent, and write hm; ni Ï hp; qi if and only if mq D np.

Problem 86. hmk; nki Ï hm; ni. for all m; n; k.

Problem 87. Ï is an equivalence relation on the set N � N of all fractions, and so
N � N is partitioned into Ï-equivalence classes.

Problem 88. Find the equivalence classes Œh1; 1i�, Œh3; 1i�, and Œh2; 4i�.
Definition 89.

m

n
denotes the Ï-equivalence class of the fraction hm; ni:

m

n
WD Œhm; ni� D ˚ hp; qi j hp; qi Ï hm; ni �:

Such an equivalence class of fractions is called a ratio (or positive rational):

� is a ratio if and only if � D m

n
for some m; n.
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Thus the collection of all ratios is identical to the partition determined by the
equivalence relation Ï (equivalence of fractions).

Ratios will be denoted by lowercase Greek letters such as �; �; �; ˛; ˇ; �; �; 	; and 
,
and quantifiers involving these variables will be assumed to range over ratios. Thus
“for every � there exists �” really means “for every ratio � there exists a ratio � .”

Note. The fraction hm; ni should be distinguished from the ratio m
n

. The fraction
hm; ni is simply an ordered pair, and therefore is a member of N � N. The ratio m

n

is the set of all fractions equivalent to the fraction hm; ni, so m
n

is an entire set of
fractions, and thus is a subset of N � N.

Problem 90. Explain what is wrong with the claim:

n

1
D n:

Problem 91. � D m

n
if and only if hm; ni 2 �.

Problem 92.
m

n
D p

q
if and only if hm; ni Ï hp; qi.

2.5 Order, Addition, and Multiplication of Fractions
and Ratios

Order for Fractions and Ratios

To “compare” two fractions hm; ni and hp; qi, we can (by Problem 86) find
corresponding equivalent fractions hmq; nqi Ï hm; ni and hnp; nqi Ï hp; qi with
a “common denominator” nq, and compare just the numerators.

Definition 93. Define hm; ni < hp; qi if and only if mq < np.

Problem 94. If hm; ni < hp; qi and hp; qi < hr; si, then hm; ni < hr; si.
Problem 95. Given fractions hm; ni and hp; qi, exactly one of the conditions

hm; ni < hp; qi ; hm; ni Ï hp; qi ; hm; ni > hp; qi ;

is true.

Problem 96. If hm; ni Ï hm0; n0i, hp; qi Ï hp0; q0i, and hm; ni < hp; qi, then
hm0; n0i < hp0; q0i.
Thus if a fraction in one class is less than a fraction in another class, then the same
is true for all pairs of representatives from the two classes. Hence the following is
well defined:
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Definition 97. Define � < � if and only if there are m; n; p; q with � D m

n
, � D

p

q
, and hm; ni < hp; qi.

Problem 98. <, as defined in the last definition for ratios, is a linear order on the
set of ratios (i.e., transitive, irreflexive, and connected).

Addition and Multiplication of Fractions and Ratios

To add two fractions hm; ni and hp; qi, we can as before take the corresponding
equivalent fractions hmq; nqi Ï hm; ni and hnp; nqi Ï hp; qi with the common
denominator nq, and then add the numerators. For multiplication, the numerators,
and separately the denominators, are simply multiplied together.

Definition 99 (Addition of Fractions). The sum of two fractions is defined as

hm; ni C hp; qi WD hmq C np; nqi :

Problem 100. If hm; ni Ï hm0; n0i and hp; qi Ï hp0; q0i, then

hm; ni C hp; qi Ï
˝
m0; n0

˛C ˝p0; q0˛ :

Thus the class of the sum depends only on the classes to which the summands
belong, making the following definition for addition of ratios well defined:

Definition 101 (Addition of Ratios). The sum of two ratios � D m
n

and � D p

q
is

defined as

�C � D m

n
C p

q
WD mq C np

nq
:

Definition 102 (Multiplication of Fractions). The product of two fractions is
defined as

hm; ni � hp; qi WD hmp; nqi :

Problem 103. If hm; ni Ï hm0; n0i and hp; qi Ï hp0; q0i, then

hm; ni � hp; qi Ï
˝
m0; n0

˛ � ˝p0; q0˛ :

Thus the class of the product depends only on the classes to which the factors
belong. Hence the following is well defined.
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Definition 104 (Multiplication of Ratios). The product of two ratios � D m
n

and
� D p

q
, denoted by � � � or �� , is defined as

� � � D m

n
� p
q
WD mp

nq
:

2.6 Properties of Addition and Multiplication of Ratios

Problem 105.
m

p
C n

p
D mC n

p
, and

m

p
<
n

p
if and only if m < n.

Problem 106 (Commutative Laws). �C � D � C �, and �� D ��.

Problem 107 (Associative Laws). .�C�/C� D �C.�C�/, and .��/� D �.��/.
Problem 108 (Cancellation Laws). If �C � D � C � or if �� D �� , then � D � .

Problem 109 (Distributive Law). �.� C �/ D �� C �� .

Problem 110. � < �C �.

Problem 111. If � < � , then there is a unique � such that �C � D � .

Corollary 112. � < � if and only if � D �C � for some (unique) �.

Definition 113 (Subtraction). If � < � , define � � � to be the unique � with
�C � D � .

Problem 114. � < � if and only if �C � < � C � . if and only if �� < �� .

Problem 115 (Identity and Reciprocal). � � 1
1
D � and m

n
� n
m
D 1

1
.

Problem 116. For any �; � there is a unique � such that � � � D � .

Definition 117 (Division). �=� denotes the unique � such that � � � D � .

Corollary 118. .�=�/� D � .

Problem 119. If �1 < �1 and �2 < �2, then �1 C �2 < �1 C �2 and �1�2 < �1�2.

Problem 120 (Difference of Squares). If ˛ < ˇ so that ˇ � ˛ is defined, then
ˇ2 D ˛2 C .ˇ � ˛/.ˇ C ˛/, where �2 stands for � � � .

2.7 Integral Ratios and the Embedding
of the Natural Numbers

Definition 121. A ratio � is said to be integral if � D m

1
for some m.

Problem 122. � is integral if and only if hm; 1i 2 � for some m.
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Problem 123.
m

n
is integral if and only if m D nk for some k.

We will now see that the integral ratios form a subset of the ratios which is
structurally identical, or “isomorphic,” to the natural numbers in the following sense:
There is a one-to-one correspondence between the natural numbers and the integral
ratios which preserves the operations of addition and multiplication as well as the
order relation (Problem 125). Such a bijection is called an isomorphism.

Problem 124.
m

1
D n

1
if and only if m D n. Thus the mapping n 7! n

1
is a

bijection from the set of natural numbers onto the set of integral ratios.

Problem 125 (Isomorphism of Natural Numbers with Integral Ratios). For any
m; n:

m

1
C n

1
D mC n

1
;

m

1
� n
1
D m � n

1
; and

m

1
<
n

1
if and only if m < n:

Problem 126. The integral ratios satisfy the five Dedekind–Peano axioms when

• 1 is interpreted as
1

1
, and

• S
�n
1

�
is interpreted as

S.n/

1
.

At this point, the natural numbers and the integral ratios become interchangeable
since all the properties of the natural numbers listed in the initial sections are
possessed by the integral ratios.

Therefore, we throw away the natural numbers3 and use the corresponding
integral ratios in their place. The old natural numbers are not used directly anymore,
and so we now deal with only one type of numbers, namely the ratios, which include
the “new natural numbers” (really the integral ratios) as a subset.

This process is known as embedding the natural numbers into the ratios.

Definition 127 (New Meaning for the Natural Number Symbols). With the old

natural numbers thrown out, the integral ratio
n

1
will now be denoted simply by

the letter n and called the natural number n (similarly for other lowercase Roman
letters). Not only lowercase Roman letters now denote the new natural numbers
(integral ratios) by default, but also any other symbol previously used for a natural
number will now denote the corresponding new natural number.

For example, the symbol 1 now stands for the integral ratio 1
1
, the symbol 2 for the

integral ratio 2
1
, etc. The resulting notational ambiguity is not a real problem, as the

intended interpretation can be determined from context.

3Phrase of Edmund Landau [47].
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This allows us to mix symbols that were previously assigned to different types,
and “n C �” and “n � �” now become valid terms. But we remind the reader
again that lowercase Roman letters will denote the new natural numbers (really
the integral ratios), and lowercase Greek letters will continue to denote arbitrary
ratios. Fractions will no longer be used.

Problem 128.
m

n
D m=n. Also, since � � 1 D � D 1 �� , so �=1 D � and �=� D 1.

Finally, �.1=�/ D 1.

2.8 The Archimedean and Fineness Properties

Problem 129 (The Archimedean Property for Ratios). For any �; � there is n
such that n� > � .

Problem 130. For any �, there exists � > �, and also there exists � < �.

Problem 131 (Density). If � < � , then there is � such that:

� < � < �:

The last two results express the fact that the ratios form a dense linear order without
end points.

Definition 132. We say that the pair L;U is a Dedekind partition of the ratios if L
and U are nonempty sets forming a partition of the ratios such that every ratio in L
is smaller than every ratio in U , that is, � < � for all � 2 L and � 2 U .

For example, if L WD f� j � < 1g and U WD f� j � � 1g, then L;U forms a
Dedekind partition of the ratios.

Problem 133. If L;U is a Dedekind partition of the ratios, then L is “downward
closed under <” meaning that if � 2 L and �0 < � then �0 2 L, and similarly U is
upward closed under >.

The following property, which we call the Fineness Property for ratios, is closely
related to the Archimedean property.4 It will be used in the next section and in the
next chapter when we study Dedekind partitions in detail.

Theorem 134 (Fineness Property for Ratios). If L;U is a Dedekind partition of
the ratios, then for any � there are � 2 L and � 2 U such that � � � < �, that is,
� < �C �.

4The notion can be defined for (the positive elements of) any ordered field, where it will hold
if and only if the field is Archimedean. A Dedekind partition L;U satisfying the condition of
Theorem 134 is sometimes called a Scott cut.



40 2 The Dedekind–Peano Axioms

Remark. Like Theorem 68, this is a result of second order arithmetic, since, unlike
most other results of this chapter, it quantifies over sets of ratios.

Proof. Let � be given. Fix ˛ 2 L and ˇ 2 U . By the Archimedean property fix a
natural number n with n > 1=˛ and also n > 1=�. Then 1=n < ˛, and so 1=n 2 L.
Also 1=n < �. There is k such that k=n > ˇ (by the Archimedean property again),
and so there is k with k=n 2 U , hence by the Well-Ordering property we can fix
the least natural number m such that m=n 2 U . Then m 6D 1 since 1=n 62 U .
Hence m D p C 1 for some p. Put � D p=n and � D m=n. Then � 2 U and
since m is the least natural number for which m=n 2 U , so � D p=n 2 L. Finally,
� D �C 1=n < �C �. ut

2.9 Irrationality of
p

2 and Density of Square Ratios

Definition 135. We write �2 for ��. A ratio � is said to be a square ratio if � D �2
for some �. A ratio � is said to be a nonsquare ratio if it is not a square ratio, i.e., if
there is no � such that � D �2.
For example, 1 is a square ratio since 1 D 12, but 2 is a nonsquare ratio by
Theorem 83:

Problem 136. There is no � such that �2 D 2.

Problem 137. � < � if and only if �2 < �2.

The following says that the square ratios are “dense” in the set of all ratios:

Theorem 138 (Density of Square Ratios). Given � < � , there is ˇ such that � <
ˇ2 < � .

Proof. Let � < � , and put L WD f� j �2 � �g and U WD f� j �2 > �g. Then L;U is
a Dedekind partition by Problem 137, so by the fineness property we can fix ˛ 2 L
and ˇ 2 U with ˇ � ˛ < .� � �/=.2.� C 1//. We can assume ˇ < � C 1 (since
otherwise we could have replaced ˇ by � C 1=2), and so ˇ C ˛ < 2ˇ < 2.� C 1/.
Hence by Problem 120:

� < ˇ2 D ˛2 C .ˇ � ˛/.ˇ C ˛/ < �C .ˇ � ˛/.2.� C 1// < �C .� � �/ D � .
ut

Corollary 139. If �2 < 2, then there is � > � with �2 < �2 < 2. Similarly, if
�2 > 2, then there is � < � with �2 > �2 > 2.

Corollary 140. L WD f� j �2 < 2g and U WD f� j �2 > 2g form a Dedekind
partition of the ratios with L having no largest element and U having no smallest
element.

In the last corollaries, we could obviously replace 2 by any nonsquare ratio.

Like the square ratios, the nonsquare ratios are also dense in the set of all ratios:
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Corollary 141. Given � < � , there is some nonsquare ratio � such that � < � < � .

Proof. Let � < � . Then �=2 < �=2, so �=2 < ˇ2 < �=2, or � < 2ˇ2 < � for
some ˇ. But 2ˇ2 is a nonsquare ratio, as otherwise .2ˇ2/=ˇ2 D 2 would be a square
ratio. ut

Remark. Although
p
2 does not exist (as a ratio), we do have arbitrarily close

approximations to it both from below and from above: Given any �, we can
apply the fineness property to the Dedekind partition L WD f� j �2 < 2g and
U WD f� j �2 > 2g to get � 2 L and � 2 U with � � � < �. Since we
expect

p
2 (whatever it may be) to lie between � and � , we can regard � and �

as approximations differing from the target
p
2 by an amount less than �.

Problems Using Concepts from Abstract Algebra

The following problems are meant for students with prior exposure to abstract
algebra.

Problem 142. The ratios form an abelian group under multiplication.

Problem 143. Generalize the fineness property for the positive elements of an
ordered field. Then show that the positive elements of an ordered field has the
fineness property if and only if the field is Archimedean.

Our method of going from the natural numbers to the ratios is a basic method in
algebra in which one embeds a given commutative cancellative semigroup A into
a group constructed from a pairs of elements of A and forming a quotient. The
semigroup we started with was N with the operation of multiplication, but addition
could have been incorporated as well.

Problem 144. Construct the integral domain Z of signed integers from N�N, where
hm; ni is identified with hp; qi if and only if mC q D nC p, by defining addition
and multiplication appropriately.

The following result of Dedekind shows that the Dedekind–Peano axioms charac-
terize the natural numbers with the successor function up to isomorphism:

Problem 145 (Dedekind). If S WN ! N with 1 2 N , S WN ! N with 1 2 N ,
and if both structures satisfy the Dedekind–Peano axioms, then there is a unique
bijection h from N onto N which preserves 1 and the successor functions, that is
such that h.1/ D 1 and h.S.n// D S.h.n// for all n 2 N .
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2.10 Recursive Definitions*

Recall that we had “defined” addition of natural numbers by the following recursion
equations:

mC 1 WD S.m/; and mC S.n/ WD S.mC n/:

But this is not an explicit definition! We took it for granted (as was done in the work
of Peano) that a two-place functionC (the mapping .m; n/ 7! mCn) satisfying the
above equations exists, without giving any rigorous justification for its existence.
Similarly, multiplication of natural numbers was “defined” by recursion equations
without proper justification.

Dedekind introduced a general method, known as primitive recursion, which
provides such justification. It assures the existence and uniqueness of functions
which are defined implicitly using recursion equations having forms similar to the
ones for addition and multiplication.

We will formulate and prove a general version of Dedekind’s principle of
recursive definition, from which the existence and uniqueness for the addition and
multiplication functions can be immediately derived.

Principles of Recursive Definition

The following Basic Principle of Recursive Definition is perhaps the simplest yet
very useful result for defining functions recursively.

Theorem 146 (Basic Principle of Recursive Definition). If Y is a set, a 2 Y , and
hWY ! Y , then there is a unique f WN! Y such that

f .1/ D a; and f .nC 1/ D h.f .n// for all n 2 N.

Informally, this says that given a 2 Y and hWY ! Y , we can form the infinite
sequence ha; h.a/; h.h.a//; : : : i.
Proof. First note that the uniqueness of the function f can be established by an easy
and routine induction, so let us prove existence.

Let In WD f1; 2; : : : ; ng D fk 2 N j 1 � k � ng denote the set of first n
natural numbers. The proof uses functions uW In ! Y having domain In, i.e., finite
sequences from Y of length n (with varying n).

Let us say that a function u is partially h-recursive with domain In if uW In ! Y ,
u.1/ D a, and u.k C 1/ D h.u.k// for all k with 1 � k < n.

We first prove by induction that for every n 2 N there is a unique partially
h-recursive u with domain In.
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Basis step (n D 1): Let vW f1g ! Y be defined by setting v.1/ D a. Then v
is partially h-recursive with domain I1. Moreover, if u; u0W I1 ! Y are partially
h-recursive functions with domain I1, then u.1/ D a D u0.1/, so u D u0 since 1 is
the only element in their domain I1 D f1g. So there is a unique partially h-recursive
v with domain I1, establishing the basis step.

Induction step: Suppose that n 2 N is such that there is a unique partially
h-recursive v with domain In (induction hypothesis). We fix this v for the rest
of this step, and define wW InC1 ! Y by setting w.k/ WD v.k/ for k � n and
w.k/ WD h.v.n// if k D nC1. Then w is easily seen to be partially h-recursive with
domain InC1. Moreover, if u; u0W InC1 ! Y are partially h-recursive with domain
InC1, then the restrictions u�In and u0�In are partially h-recursive with domain In,
so they must be identical by induction hypothesis, i.e., u.k/ D u0.k/ for 1 � k � n.
In particular, u.n/ D u0.n/, so u.nC 1/ D h.u.n// D h.u0.n// D u0.nC 1/, which
gives u D u0. Thus there is a unique partially h-recursive w with domain InC1, which
finishes the induction step.

Thus for each n there is a unique partially h-recursive function with domain In;
let us denote this function by un.

Now define f WN! Y by setting:

f .n/ WD un.n/:

First, f .1/ D a since u1.1/ D a. Next, the restriction of unC1 to In equals un
(by uniqueness, since the restriction is partially h-recursive), so unC1.n/ D un.n/.
Hence f .n C 1/ D unC1.n C 1/ D h.unC1.n// D h.un.n// D h.f .n//. Thus f
satisfies the recursion equations of the theorem. ut
To handle functions of multiple variables, the following theorem is used.

Theorem 147 (General Principle of Recursive Definition). For any gWX ! Y

and hWX �N� Y ! Y , there is a unique function f WX �N! Y such that for all
x 2 X and n 2 N:

f .x; 1/ D g.x/ and f .x; nC 1/ D h.x; n; f .x; n//:

Here f is being defined by recursion on the second variable n, that is, n is the
variable of recursion ranging over N, while x is a parameter ranging over the setX .
This is the most general form of recursive definition, where both the parameters
(in X ) and the values (in Y ) come from arbitrary sets.

Proof. The proof is essentially the same as that of Theorem 146, since the additional
parameter does not play any significant role in the recursion. The details are left as
an exercise for the reader. ut
Theorem 148 (Course of Values Recursion). Let Y be a nonempty set and Y �
denote the set of all finite sequences (strings) of elements from Y . Given any
GWY � ! Y there is a unique f WN! Y such that
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f .n/ D G.hf .k/ j k < ni/ for all n 2 N:

Denoting the empty string by ", this means that f .1/ D G."/, f .2/ D G.hf .1/i/,
f .3/ D G.hf .1/; f .2/i/, etc.

Proof. Let hG WY � ! Y � be the function defined by

hG.u/ WD uaG.u/; i.e. hG.hu1; : : : ; uni/ WD hu1; : : : ; un; G.u/i :
Here uay D u � hyi denotes the string obtained from the string u by appending the
element y 2 Y , so that len.uay/ D len.u/ C 1. The Basic Principle of Recursive
Definition (Theorem 146) gives a unique function �WN! Y � with

�.1/ D hG."/; and �.nC 1/ D hG.�.n// for all n 2 N.

Now note that �.n/ is a finite sequence of length n for every n, and put f .n/ WD
�.n/.n/ D the last coordinate of the finite sequence �.n/. ut
The form of recursion in the above theorem generalizes to transfinite ordinals, where
it is called transfinite recursion (see Theorem 622 and Theorem 650).

Primitive Recursion

We start with a special case, which is an immediate corollary of Theorem 147.

Theorem 149 (Primitive Recursion for Two-Place Functions). Given a one-
variable function gWN ! N and a three-variable function hWN3 ! N, there is
a unique two variable function f WN! N such that for all m; n 2 N:

f .m; 1/ D g.m/; and f .m; S.n// D h.m; n; f .m; n//:

The result of this theorem is often expressed by saying that the function f is
obtained from the function g and h by primitive recursion.

Proof. This is simply Theorem 147 with X D Y D N. ut
We can now give a full justification for our original recursive definition of addition,
by showing that the two-place function C can be obtained from the successor
function by primitive recursion as follows:

Let g D S be the successor function, and let h be the function defined by
h.m; n; p/ D S.p/. Applying the last theorem with these g and h gives a two-place
function f satisfying

f .m; 1/ D S.m/; and f .m; S.n// D S.f .m; n//:
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But these are the same as our original recursion equations for defining addition, as
is easily verified by writing mC n for f .m; n/:

mC 1 D S.m/; and mC S.n/ D S.mC n/:

Once we have justified the addition function, we can use it to obtain the multiplica-
tion function (hm; ni 7! mn) by primitive recursion.

Problem 150. Prove that the multiplication function can be obtained from the
identity function and the addition function using primitive recursion, verifying that
it gives our original recursion equations for defining multiplication.

The most general version of the primitive recursion principle, which is again an
immediate corollary of Theorem 147, is formulated as follows:

Theorem 151 (The General Principle of Primitive Recursion). Given a .k� 1/-
place function g and a .k C 1/-place function h on N, there is a unique k-place
function f on N such that for all x1; x2; : : : ; xk 2 N:

f .x1; : : : ; xk�1; 1/ D g.x1; : : : ; xk�1/; and

f .x1; : : : ; xk�1; S.xk// D h.x1; : : : ; xk; f .x1; : : : ; xk//:

Proof. This is Theorem 147 with X D Nk�1 and Y D N. ut
As before, the function f in the above theorem is said to be defined by primitive
recursion from g and h.

After obtaining the addition and multiplication functions, one can keep applying
primitive recursion repeatedly to define more and more functions on N. Essentially
all commonly used functions, such as exponentiation, the factorial function, the gcd
function, and so on, can be obtained via primitive recursion.

Problem 152. Define the factorial function (one-place) as well as the exponentia-
tion function (two-place) from the multiplication function using primitive recursion.

Problem 153. What familiar single-variable function is defined using the following
primitive recursion equations?

f .1/ D 1 and f .S.m// D h.m; f .m//; where h.m; n/ WD nS.m/.

Remark. Principles of primitive recursion, such as Theorem 151, are results of
second order arithmetic which involve quantification over functions of natural
numbers: Functions are defined implicitly by assertions of the form “there is a
unique function satisfying such and such recursion equations.” This is unavoidable
in the Dedekind–Peano system hN; 1; Si. However, if C and � are also added as
primitives to obtain the extended system hN; 1; S;C; �i, then primitive recursion is
no longer necessary and functions such as exponentiation can be explicitly defined.
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The reason for this is that C and � have sufficient power to express the notion
of finite sequences (represented in a coded form as natural numbers), and so one
can essentially replicate the process given in the proof of Theorem 146 to produce
explicit definitions.



Chapter 3
Dedekind’s Theory of the Continuum

Abstract This chapter constructs the real numbers from the rational numbers using
the method of Dedekind cuts and discusses properties of general linear continuums,
such as the Intermediate Value Theorem, in the process.

3.1 Introduction

Modern Set Theory was born in late nineteenth century primarily due to the
work of Richard Dedekind and Georg Cantor. Among many remarkable things,
they independently found two distinct methods for rigorously constructing the real
numbers from the ratios or rational numbers. Here we will follow Dedekind’s
method,1 whose central idea is the geometric intuition of a linearly ordered
continuum.2 The size of a continuum proved to be a difficult problem, and it
dominated a large part of twentieth century set theory.

3.2 Linear Continuum in Geometry

The idea of a linear continuum is embodied in geometric notions such as a line,
segment, or a ray. The points of a ray are ordered naturally if we declare that for
points P and Q on a ray that P precedes Q (symbolically P < Q) if and only if
P is between the initial point of the ray and Q (using “betweenness” as a primitive
notion), as in:

1See Stoll [76] or Suppes [77] for Cantor’s method based on Cauchy sequences of rationals. See
also the remarks on Cantor’s method at the end of this chapter.
2Also known as a linear continuum, or an ordered continuum, or simply a continuum.

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__3, © Springer Science+Business Media New York 2014
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P Q

Classical axioms of geometry ensure that the relation expressed by “P precedes
Q” on the points of the ray satisfies two properties as follows.

1. Axiom of Order. The relation “P < Q” on the points of a ray is a transitive
relation satisfying the law of trichotomy, i.e. < is an ordering of the points of the
ray.

2. Axiom of Order-Density. If P < Q then there is R such that P < R < Q.

These axioms are two necessary conditions for a linear continuum, but mathemati-
cians since Pythagoras knew (see Sect. 3.3) that they are not sufficient to ensure a
linear continuum. Until Dedekind, however, it was not clear what exactly is needed
to capture the intuitive notion of a linear continuum.

Analytic Geometry: Modeling the Ray by Ratios

Analytic Geometry uses a correspondence between points and numbers (or n-tuples
of numbers for n-dimensions, called coordinates) to transform geometric problems
into problems of algebra and analysis (and back). If the points of a line or a ray
correspond to a system of numbers, then the system of numbers in question must
satisfy the two axioms above.

Note that the ratios ordered by magnitude satisfy the two axioms above.
Moreover, ratios are used to measure lengths of line segments and for all practical
purposes suffice in this role. Thus one can think of a correspondence between the
points of an open ray and the ratios, i.e., use the ratios as the system of numbers to
assign “coordinates” to the points of the ray. This is done in such a way that if two
points P andQ on the ray correspond to the ratios � and � , respectively, then (a) P
precedes Q if and only if � < � , and moreover (b) if � D � C 
, then the length3

of the segment PQ equals the ratio 
.

3.3 Problems with the Ratios

Even though the ratios are sufficient for all direct measurements of lengths in
practice and even though the ratios appear to provide a system of numbers adequate

3This implies the important additivity property for lengths of segments: If P;Q;R are points on a
line with Q between P and R then Len.PR/ D Len.PQ/C Len.QR/. However, this does not
imply that geometric line segments are a priori associated to lengths in an invariant fashion. The
fact that physical line segments have lengths (rigidity) is essentially empirical. See Carnap [7], An
Introduction to the Philosophy of Science, especially Chaps. 6–9, for more details.
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for analytic geometry, problems arise in their theoretical use in geometry and
algebra—problems which indicate that the system of ratios is inadequate for its
purpose.

Ratios Are Inadequate for Measuring Lengths

A famous Pythagorean result states that the hypotenuse of a right-angled isosceles
triangle is incommensurable relative to its legs:

Problem 154. Use the Pythagorean theorem to show that if the length of each of
the legs of a right-angled isosceles triangle is measured by the ratio �, then there is
no ratio � measuring the length of the hypotenuse.

In particular if each of the legs has a length of 1, then there is no ratio which gives
the exact length of the hypotenuse, even though ratios can approximate the length
of the hypotenuse with arbitrarily small errors.

Ratios Are Inadequate for Analytic Geometry

A consequence of the above problem of measuring lengths is that if we use ratios as
the system of coordinates for analytic geometry, it can sometimes fail to represent
points of intersection. For example, it is a theorem of geometry that a ray originating
at the center of any circle must intersect it at a unique common point. However, in
the picture shown below,

O B

A

1

1

if both legs AB and OB of the right triangle OAB have length 1, then the point

of the ray
��!
OB intersected by the circle is not represented by any ratio.

Ratios Are Inadequate for Solving Algebraic Equations:
Failure of the Intermediate Value Theorem

We have earlier seen that the equation x2 D 2 has no rational solution, even though
approximate solutions can be found in the ratios with arbitrarily small errors. More
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general algebraic equations face similar problems, due to the lack of a standard tool
called the Intermediate Value Theorem (IVT), which guarantees existence of roots
in the case of real numbers.

To discuss the Intermediate Value Theorem, we need the notion of a continuous
function defined on an order. The reader may already be familiar with continuous
functions as encountered in elementary calculus. Roughly speaking, F is continu-
ous, or equivalently the value F.x/ depends continuously on x, if “small changes
in x produce small changes in F.x/.” This vague description will be made precise
in the context of general orders, but for simplicity, we will restrict our attention to
orders without endpoints.

If a is in the domain of the function so that F.a/ is the value of the function at the
input a, then continuity of the function at a amounts to the following: If we desire
that the values of the function should not differ from F.a/ by more than a certain
small amount, say by requiring that the values of F.x/ remain above a value p and
below a value q where p < F.a/ < q, then we can always find an interval in the
domain containing the point a, say .r; s/ with r < a < s, such that throughout this
interval .r; s/ the values of the function remain within the prescribed limits—i.e., we
have p < F.x/ < q for r < x < s. This leads to the following precise definition:

Definition 155 (Continuous Function). Let X be an order without first or last
elements. F WX ! X is called continuous if for any ! 2 X and any 	; 
 2 X
with 	 < F.!/ < 
, there are ˛; ˇ 2 X with ˛ < ! < ˇ such that for all � 2 X ,
˛ < � < ˇ) 	 < F.�/ < 
.

Problem 156. Show that the squaring function � 7! �2 defined on the set of ratios
is continuous.

[Hint: Use Problem 137 and Theorem 138.]

Definition 157 (Intermediate Value Theorem, or IVT). An orderX (without first
or last elements) is said to satisfy the IVT (Intermediate Value Theorem) if whenever
F WX ! X is continuous, ˛ < ˇ, and � lies strictly between F.˛/ and F.ˇ/ (i.e.,
either F.˛/ < � < F.ˇ/ or F.ˇ/ < � < F.˛/), then F.�/ D � for some � with
˛ < � < ˇ.

Problem 158. Show that the set of ratios with their usual ordering does not satisfy
the IVT.

The IVT is the main tool for formalizing and establishing results which claim,
roughly, that if two continuous curves “cross,” then they must have at least one
common point of intersection. It is a workhorse for guaranteeing existence of roots
in many algebraic equations.
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3.4 Irrationals: Dedekind’s Definition of the Continuum

While the geometric axioms of order and order-density (and practical use of ratios in
measurement) appear to provide an adequate correspondence between the points of a
ray and the ratios, Dedekind realized that we assume a more fundamental underlying
continuity property when we believe that “two continuous crossing curves must
intersect,” or even that a ray originating at the center of a circle must intersect it at a
unique common point.

Dedekind Cuts

Dedekind’s method of isolating this continuity property is to partition or “cut” a
given ordering into two nonempty pieces with one piece completely preceding the
other. Formally:

Definition 159. A Dedekind cut in an orderingX is a partition ofX consisting two
nonempty disjoint sets L and U such that x 2 L; y 2 U ) x < y, i.e., every
member of L precedes every member of U , as pictured below.

L
‚ …„ ƒ

U
‚ …„ ƒ

In other words, all elements of U are upper bounds for L, all elements of L are
lower bounds for U , as well as L 6D Ø 6D U , L \ U D Ø, and L [ U D X .

If L;U is a Dedekind cut, exactly one of the following four possibilities hold:

1. Both L has a largest element and U has a smallest element. In this case we call
the cut a Dedekind jump, or simply a jump.

2. L does not have a largest element but U has a smallest element. In this case the
smallest element of U is viewed as a “limit” of the elements of L, and is called
the (unique) boundary of the cut.

3. L has a largest element but U does not have a smallest element. In this case the
largest element of L is viewed as a “limit” of the elements of U and is called the
(unique) boundary of the cut.

4. Neither L has a largest element nor U has a smallest element. In this case we call
the cut a Dedekind gap, or simply a gap.

A cut as in case (2) or case (3) is called a cut with a unique limiting boundary, or
simply a boundary cut.

We now briefly discuss each type of cut.
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Jump

Case (1). This case, the possibility of a Dedekind jump, is ruled out in the presence
of order-density. In fact, order-density is equivalent to being “jumpless,” i.e., an
ordering is order-dense if and only if no Dedekind cut for it is a jump. The ratios,
e.g., are order-dense and no Dedekind cut over them will be a jump. We will
therefore not consider this case anymore, and assume that all orderings in this
chapter will be order-dense and hence will have no jumps.

Boundary Cut

Cases (2) or (3). If � is any ratio, put

L� D f� j� < �g; U� D f� j� � �g ; L0� D f� j� � �g; U 0� D f� j� > �g:
Then L�;U� form a Dedekind cut over the ratios, and so does L0� ; U 0� . The cuts
L�;U� and L0� ; U 0� are essentially equivalent, since both correspond to the ratio � :
For both these cuts the ratio � is the boundary of the cut.

Gap

Case (4). For the ratios ordered by magnitude, put

L D f� j �2 < 2g; and U D f� j �2 > 2g:
This is a Dedekind cut over the ratios which is a gap. This follows from the results
of the previous chapter; recall the density of square ratios.

Another example of a gap is provided if we remove a single fixed point on an
open ray: The remaining set of points on the ray breaks apart into two pieces L and
U , forming a gap.

Thus for an order-dense ordering, any Dedekind cut is either a boundary cut with
a unique boundary (cases (2) or (3)), or is a gap (case (4)).

Problem 160 (Density of Gaps). Prove that for the ratios ordered by magnitude,
if � < � then there is a gap between � and � , i.e., there is a Dedekind cut L;U for
the ratios such that (a) � 2 L, (b) � 2 U , and (c) L;U is a gap (L has no maximum
and U has no minimum).

Dedekind’s Definition of a Linear Continuum

As we saw earlier, Dedekind found that the root cause behind the inadequacy of the
ratios lies in the fact that the ratios have lots of gaps.
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The hypotenuse of an isosceles right triangle is incommensurable relative to its
legs because there is no ratio whose square is two, causing the gapL D f� j �2 < 2g
and U D f� j �2 > 2g.

The point of intersection between two geometric curves which appear to cross
may lack coordinate representation by ratios because the “location of the crossing”
may correspond to a gap in the ratios.

The IVT for ratios fails for the same reason.
For geometry, we thus postulate that in addition to the axioms of order and order-

density, the points of a ray or a line must satisfy:

Axiom of Continuity. The ordered set of points of a ray has no gaps. In other
words, if all the points of the ray is partitioned into two disjoint nonempty sets
L and U with all points of L preceding all the points of U , then the Dedekind
cutL;U is a boundary cut, i.e., there is a point of the ray which is the boundary
of the cut.

Finally, we have the definition for a linear continuum.

Definition 161 (Dedekind). An ordering is order-complete (or simply complete) if
it has no Dedekind gaps. A linear continuum is an ordering with at least two points
which is order-dense and order-complete.4

Thus an ordering is a linear continuum if and only if (a) it has at least two points,
and (b) every Dedekind cut is a boundary cut.

Anybody familiar with “limits and continuity of real functions” as studied in
elementary calculus will recall examples of removable discontinuity, as in the
function x 7! .x2 � 1/=.x � 1/ at x D 1.

One of Dedekind’s simple but fundamental intuition was this: For an order
to be a continuum, an order must be “continuous,” and so must not have such
discontinuities. By not allowing gaps, Dedekind’s definition of continuum precisely
avoids discontinuities of this type and achieves continuity.5

Problem 162. Prove that an ordering without first or last elements forms a linear
continuum if and only if it satisfies the IVT.

[Hint: Given a < b in a linear continuum and f .a/ < c < f .b/ with f continuous,
let L be the set of all x such that x < y for some y 2 Œa; b� with f .y/ < c, and
let U be the complement of L. Then L;U is a Dedekind cut, a 2 L, b 2 U , and if
z D maxL or z D minU then f .z/ D c.]

Once we postulate the axiom of continuity for the geometric ray, we see that
the ratios are unable to label all the points of the ray, and infinitely many points on
the ray (the “irrational points” on it) do not get labeled by any ratio at all. (This is

4Order completeness will be studied in a more general setting in Sect. 8.2, where we will see that
completeness is equivalent to the least upper bound property (see Problem 518).
5Following Dedekind, all rigorous axiomatizations of geometry, first by Hilbert and later by Tarski
and Birkhoff, postulate this property as the Axiom of Continuity.
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because the ratios, ordered by magnitude, have an abundance of Dedekind gaps.) To
see this, suppose that � $ P� is a correspondence between the ratios and certain
points of the ray preserving order, so that � < � if and only if P� precedes P�.
We then say that the point P� is labeled by or represented by the ratio � . Now if
P�0 precedes P�0 then �0 < �0, so there is a Dedekind gap L;U of the ratios with
�0 2 L and �0 2 U . Let A be the set of points on the ray which precede P� for
some � 2 L, and let B be the set of points of the ray which are preceded by P� for
some � 2 U . Since L;U form a Dedekind gap of the ratios and since � $ P� is an
order-preserving correspondence,A has no last point and B has no first point. Hence
by the Axiom of Continuity there must be a point R on the ray which is neither in
A nor in B, and so R is not represented by any ratio.

We can thus divide the points on the ray into two disjoint sets: (a) Each point
on the ray that does not correspond to any ratio is called an irrational point, while
(b) the points that correspond to ratios are called the rational points. Furthermore,
the rational and irrational points on the ray are intermixed in a dense fashion:
Between any two points on the ray, there are an infinite number of rational points
and also an infinite number of irrational points.

If a system of numbers has to serve as an adequate system of coordinates for
analytic geometry, then they will need to be in one-to-one correspondence with
all the points of the ray in an order-preserving way, and so they must satisfy the
axiom of continuity as well. While each rational point on the ray is represented by a
ratio, for each irrational point on the ray we are missing the “irrational number”
to represent it, as the ratios as a number system is full of gaps. We thus look
for “irrational numbers” to fill all these gaps—the removable discontinuities—to
extend the system of ratios to a number system satisfying the axiom of continuity
and adequate for analytic geometry.

It is now crucial to notice that the points of the ray correspond to Dedekind cuts
over the ratios: The rational points on the ray correspond to Dedekind cuts with
boundary, while each irrational point on the ray corresponds to a Dedekind gap over
the ratios. This natural one-to-one correspondence between the irrational points on
the ray and the gaps over the ratios led Dedekind to define an irrational number
simply as a Dedekind cut over the ratios which is a gap.

Our construction will be a slight variant of Dedekind’s original one. First, notice
that a Dedekind cut L;U over the ratios get determined by the lower set L alone,
since U can be found from L by taking its complement. Thus instead of a pair
L;U , we will only use L. Second, the two “rational” cuts with the same boundary
� mentioned above are essentially equivalent; we will use the cut where the lower set
L has no maximum. Thus our “numbers” will be just the lower partsL of Dedekind
cuts L;U where L has no maximum (U may or may not have a minimum).

3.5 Lengths (Magnitudes)

We now define “length” or “magnitude” in a way so that the length of a line segment
will consist of all ratios representing lengths shorter than the given line segment.
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Definition 163 (Length). We say that � is a length if and only if

1. � is a set of ratios.
2. � contains at least one ratio but does not contain all ratios.
3. � 2 � and � < �) � 2 � . (So far, the conditions say that � forms the lower

piece of a Dedekind cut over the ratios.)
4. � does not contain a largest ratio, i.e., � 2 � ) 9� 2 � .� > �/.

Lengths will in general be denoted by uppercase non-Roman Greek letters such as
�;�;˚;�;�;�;�; � , and˝ .

Definition 164. For any length � , we define Ï� WD f� j � 62 � g.
Problem 165. The pair �;Ï� forms a Dedekind cut over the ratios.

Definition 166. Given a ratio �, we define �� as

�� WD f� j � < �g:

Problem 167. For any �, �� is a length.

Definition 168. A length � is rational if and only if � D �� for some �.
Otherwise, � is irrational.

Problem 169. A length � is rational if and only if �;Ï� is a boundary cut; and
� is irrational if and only if �;Ï� is a gap.

Problem 170. There are rational and irrational lengths.

Definition 171. For lengths �;�, we write

� < � if and only if � � � and � 6D �:

Problem 172. The relation < is an ordering of the set of all lengths.

Problem 173 (Density of Rational and Irrational Lengths). If � < �, then
(a) there exists a rational˚ such that � < ˚ < �, and (b) there exists an irrational
� such that � < � < �.

Definition 174 (Addition). � C� WD f �C � j � 2 �; � 2 �g.
Theorem 175. � C� is a length.

Proof. First, we show that neither � C� nor its complement is empty: Fix � 2 � ,
� 0 2Ï � , ı 2 �, and ı0 2Ï �. Then � C ı 2 � C �, but � 0 C ı0 62 � C �,
since � 2 � and � 2 � implies � < � 0 and � < ı0 and so � C � < � 0 C ı0, so
�C � 6D � 0 C ı0 for all � 2 � and � 2 � so � 0 C ı0 62 � C�.

Next, � C � is “closed under taking lower members”: Let 
 2 � C �, so that

 D � C ı with � 2 � and ı 2 �. Given ˛ < 
, put ˛=
 D � . Then � < 1 and so
�� 2 � and ı� 2 �, so �� C ı� 2 � C�, but �� C ı� D �.� C ı/ D �
 D ˛, so
˛ 2 � C�.
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Finally, � C� has no maximum ratio: Let 
 2 � C�, so 
 D � C ı for some
� 2 � and ı 2 �. There is � 0 2 � such that � 0 > � . Then � 0 C ı 2 � C � and
� 0 C ı > � C ı D 
. ut
Problem 176. Addition of lengths is associative and commutative.

Theorem 177. For any � and � , there is � such that � 2 � but � C � 62 � .

Proof. Given � and � , as �;Ï � form a Dedekind partition, we can use the
Fineness property (previous chapter) to find � 2 � and � 2Ï� such that � < �C�.
Hence � C � 2Ï� , as Ï� is “upward closed under >.” ut
Theorem 178. � < � C�.

Proof. Let � 2 � . Fix ı 2 �. Fix � < min.�; ı/. Then � D � 0C � for some � 0 < �
and � < ı. Then � 0 2 � and � 2 �, so � 2 � C�. So � � � C�. Next fix � 2 �,
and by Theorem 177 find � 2 � such that � C � 2Ï� . Then � C � 2 � C� but
� C � 62 � . ut
Problem 179. If � < �; or � D �; or � > �; , then

� C� < �C�; or � C� D �C�; or � C� > �C�;

respectively, and conversely.

Theorem 180. If � < �, then � C� D � for a unique � .

Proof. Let� WD f˛ j .9ˇ2Ï� /.ˇC˛ 2 �/g. We show that � C� D �. It is easy
to see that � C� � �. Now let 
 2 �. If 
 2 � , then 
 2 � C� by Theorem 178.
So assume 
 2 �X� . Pick � 2 � such that 
 < � . Let � D 
C�. By Theorem 177,
find � 2 � such that � C � 2Ï� . Since � < 
, so 
 D � C˛ for some ˛. Now put
ˇ D �C�. Then ˇ 2Ï� and ˇC˛ D �C�C˛ D �C˛C� D 
C� D � 2 �,
so ˛ 2 � . So 
 D � C ˛ 2 � C� . ut
Definition 181 (Proper Subtraction). If � < �, we define � ��� to be the
unique � such that � D � C� .

Definition 182 (Multiplication). �� WD f �� j � 2 �; � 2 �g.
Definition 183 (Reciprocal). � �1 WD f � j .9� 2Ï� /.�� < 1/ g:
Problem 184. �� is a length and � �1 is a length.

Problem 185. Multiplication (of lengths) as defined above is associative and
commutative, and for any length � we have �1� D � and � � �1 D 1�. (The
lengths form a multiplicative “commutative group” with unity 1�.)

Also, multiplication is distributive over addition.

Problem 186. If � < �; or � D �; or � > �; , then

�� < ��; or �� D ��; or � � > ��;

respectively, and conversely.
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Definition 187.
p
2 WD f� j �2 < 2g.

Problem 188.
p
2 is an irrational length, and

p
2
p
2 D 2�.

Problem 189 (Existence of Square Roots). Given any length � there is a unique
length� such that �� D � .

Problem 190 (Isomorphic Embedding of Ratios). The mapping � ! �� is a
bijection from the set of ratios onto the set of rational lengths which preserves order,
addition, and multiplication, i.e.,

� < � , �� < ��I .�C �/� D �� C ��I .��/� D ����:

At this point, the ratios and the rational lengths become interchangeable since all
the properties of the ratios listed in earlier sections are possessed by the rational
lengths.

Therefore, we throw away the ratios6 and use the corresponding rational lengths
in their place. So only one type of numbers remain, namely the lengths, which
include the “ratios” (really the rational lengths), and therefore in turn also the
“natural numbers” (integral lengths), as subsets.

Definition 191 (New Meaning for Symbols for Ratios). With the old ratios
thrown out, the rational length �� will now be denoted simply by the letter � (and
similarly for other Greek letters). Not only do Greek letters now exclusively stand
for rational lengths, but also other symbols that were previously used to denote
a ratio will now denote the corresponding rational length (e.g., 2 now stands for
what was being called 2�). Similarly, lowercase Roman letters will denote integral
lengths.

This allows us to mix symbols that were previously assigned to different types, and
“nC �C � ” and “n � � � � ” now become valid terms.

Problem 192 (Dedekind’s Theorem for the Real Continuum). The collection of
lengths ordered by the relation < forms a linear continuum containing the ratios as
a subset. Thus, it is an ordering which is order-dense and order-complete (has no
Dedekind gaps), and so every Dedekind cut for the lengths is a boundary cut.

[Hint: In a Dedekind cut of the ordered collection of all lengths into two pieces, the
set-theoretic union of the lengths in the left piece is itself a length.]

We now have a system of numbers (the lengths) which can uniquely represent
every point of the geometric open ray and serve as the basis for analytic geometry.
The operations of addition, multiplication, and division are possible between an
arbitrary pair of these numbers. However, we are still missing “negative magni-
tudes,” and so “the subtraction � � �” is defined only when � > �. In the next

6Phrase of Edmund Landau [47].
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section, we extend the system of lengths to a system of “signed lengths,” or the field
of real numbers, in which the subtraction of two arbitrary real numbers produces a
well-defined real number.

3.6 The Ordered Field R of Real Numbers

To get signed real numbers, we regard a pair of lengths h�;�i as the “signed
magnitude” � ��. This means that the length-pairs h�;�i and h�;�i will define
the same signed real if � C � D � C �, which of course results in a lot of
duplication. More precisely, this condition defines an equivalence relation on the set
of pairs of lengths and we could use the approach of forming the “quotient structure”
by defining signed real numbers as equivalence classes. It is easy, however, to choose
canonical representatives by considering those pairs in which the smaller member
equals 1. Then 1 acts as a reference length and the magnitude of the signed real is
determined by how much the other length of the pair exceeds 1. Thus positive reals
are precisely the pairs of the form h�; 1iwith � > 1, and negative reals are the pairs
h1; � i with � > 1. Zero is defined as the pair h1; 1i.
Definition 193 (Real Numbers). A real number is a pair of lengths h�;�i such
that min.�;�/ D 1. The set of all real numbers is denoted by R.

Thus a real number is an ordered pair of lengths none of which is less than 1 and at
least one of which equals 1.

Definition 194 (Zero, Negative, and Positive Reals). A real number h�;�i is
called positive if � > 1 (and so � D 1), and h�;�i is negative if � > 1 (and
so � D 1). Define 0 WD h1; 1i.

The set of positive real numbers will be denoted by RC, and the set of negative
real numbers will be denoted by R�.

Thus h�;�i is positive if � > �, is negative if � < �, and is zero if � D �.

Definition 195. For any pair of lengths �;�, define:

1. h�;�i Ï h�;�i, or h�;�i is equivalent to h�;�i, if � C� D � C�.

2. �.�;�/ D

8
ˆ̂<

ˆ̂
:

h1C � �� �; 1i if � > �,

h1; 1C� �� � i if � < �,

h1; 1i D 0 if � D �.

Note that �.�;�/ is always a real number. We now have:

Problem 196. For all lengths �;�,

1. �.�;�/ is the unique real number satisfying �.�;�/ Ï h�;�i.
2. h�;�i is a real number if and only if �.�;�/ D h�;�i.
3. �.�;�/ D �.� C�;�C�/ for any length � .
4. �.�; � / D h1; 1i D 0.
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Problem 197. h�;�i Ï h�;�i if and only if �.�;�/ D �.�;�/, and so
equivalence between pairs of lengths is an equivalence relation for which the
mapping h�;�i 7! �.�;�/ is a complete invariant.

Definition 198 (Order, Addition, Multiplication). Given real numbers h�;�i
and h�;�i, define

1. Order: h�;�i < h�;�i , � C� < � C�.
2. Sum: h�;�i C h�;�i WD �.� C�;�C�/.
3. Product: h�;�i � h�;�i WD �.� � C��;� � C��/.
Uppercase Roman letters A;B;C;X; Y;Z, etc. will denote real numbers.

Problem 199. The relation < defined above is an order on R. Also, A 2 R is
positive if and only if 0 < A, and A is negative if and only if A < 0.

Problem 200. If A;B 2 R are positive, then so are ACB and A � B .

Problem 201 (Additive Inverse). For each real number A D h�;�i, define
�A WD h�;� i. Show that for any real number A,

1. �A is a real number.
2. AC .�A/ D 0, and �.�A/ D A.
3. A is positive if and only if �A is negative.
4. A D �A if and only if A D 0.

Problem 202 (Isomorphic Embedding of Lengths). For each length � , let � WD
h� C 1; 1i. The mapping � 7! � is a bijection from the set of lengths onto the
set RC of positive real numbers which preserves order, addition, and multiplication,
i.e.,

� < �, � < �I � C� D � C�I � �� D � ��:

At this point, the lengths and the positive reals RC become interchangeable since all
the properties of the lengths listed earlier are possessed by the positive real numbers.

Therefore, we throw away the lengths7 and use the corresponding positive real
numbers in their place. In other words, we identify the lengths with the positive reals
RC, and a length now means a positive real, i.e., a member of RC. So from now on
we deal with only one type of numbers, namely the real numbers, which include
the “lengths” (really the positive reals) as a subset, as well as all previously defined
types such as the ratios and the natural numbers.

Definition 203. As subsets of R, the natural numbers will be denoted by N, and the
ratios (positive rationals) by QC. Thus we have:

N 
 QC 
 RC 
 R:

7Phrase of Edmund Landau [47].
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Also put Z WD N [ f0gf�A j A 2 Ng and Q WD QC [ f0gf�A j A 2 QCg, so:

N 
 Z 
 Q 
 R; N D Z \RC; QC D Q \RC:

Problem 204. Q is order-dense in R, i.e., if A < B are in R, then there is a C 2 Q
with A < C < B .

[Hint: Use Problem 173.]
Since positive reals are identified with the lengths and since reciprocals have

already been defined for lengths, reciprocals of arbitrary nonzero reals are defined
in the following way.

Problem 205 (Multiplicative Inverse). For a positive real A D h�; 1i with � >

1, define A�1 WD .� �� 1/�1. For A < 0, define A�1 WD �..�A/�1/. If A D 0, we
leave A�1 undefined. Then, for any real number A 6D 0,

1. A�1 is a nonzero real number, and A > 0, A�1 > 0.
2. A � A�1 D 1 and .A�1/�1 D A.

We now have all the operations to develop the theory of real numbers, but the
algebraic theory of real numbers can be derived from the properties listed in the
following definition.

Definition 206 (Ordered Fields). A set with an order < containing two distinct
elements 0 and 1 and with two operations addition (C) and multiplication (�) is an
ordered field if, to each A there corresponds an element �A, and for A 6D 0 an
element A�1, such that for all elements A;B;C we have:

1. AC B D B CA and AB D BA.
2. AC .B C C/ D .ACB/C C and A.BC/ D .AB/C .
3. A.B C C/ D AB C AC .
4. AC 0 D A D A � 1.
5. AC .�A/ D 0 and if A 6D 0 then AA�1 D 1.
6. A > 0 if and only if �A < 0, and A;B > 0) AC B > 0 and AB > 0.

The ordered field is called complete if the ordering forms a linear continuum.

The following theorem is the main and central result of this chapter.

Theorem 207 (R is a Complete Ordered Field). The set R, with the ordering <
and the operations C and �, forms an ordered field in which the ordering relation
< and the operations C and � extend the corresponding relation and operations
originally defined for RC, QC, and N.

Moreover, R is a linear continuum (no Dedekind cut is a gap), and hence R
satisfies the Intermediate Value Theorem (IVT).

Problem 208. Prove Theorem 207.

[Hints: The algebraic properties listed in the definition of ordered field are all proved
by expressing real numbers in terms of lengths and exploiting the corresponding
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property for lengths, making frequent use of the construct �.�;�/. For example,
the commutative property of addition is proved as:

h�;�i C h�;�i D �.� C�;�C�/ D �.�C�;�C�/ D h�;�i C h�;�i ;

and the property AC 0 D A is proved, by taking A D h�;�i D �.�;�/, as:

h�;�i C 0 D h�;�i C h1; 1i D �.� C1;�C1/ D �.�;�/ D h�;�i :

To show that R is a linear continuum, use the corresponding fact for RC.]

Problem 209. R satisfies the Archimedean property, that is, for all x; y 2 R if
x > 0 then there is a positive integer n such that nx > y.

A bounded closed interval is a set of the form I D Œa; b� D fx 2 R j a � x � bg
(a � b), whose length is defined as len.I / WD b � a. A sequence hIn j n 2 Ni of
intervals is said to be a nested sequence if In � InC1 for all n 2 N.

Theorem 210 (The Nested Interval Property). For a nested sequence

I1 � I2 � � � � � In � � � �

of nonempty bounded closed intervals in R, we have
T
n2N In 6D Ø:

Proof. If In D Œan; bn� is a nested sequence of nonempty closed intervals, then
an � anC1 � bnC1 � bn for all n. Let L WD fx j x < an for some ng and U WD
fy j y > bn for some ng. Note that we have x < y for all x 2 L and y 2 U . Also
L has no maximum and U has no minimum. Now if \nIn were empty, then we
would have L [ U D R, and so L;U would be a Dedekind gap in R, which is a
contradiction. Hence \nIn must be nonempty. ut
This theorem is true in any linear continuum, not just R (Theorems 579 and 578).
However, the intersection \nIn here may contain multiple points. The following
version ensures that the intersection contains a unique point under the additional
restriction that the lengths of the intervals approach zero in the limit, i.e., for any
� > 0 there is n with len.In/ < �.

Theorem 211 (The Cauchy Nested Interval Property). If for a nested sequence
hIn j n 2 Ni of nonempty closed intervals in R we have len.In/ ! 0 as n ! 1,
then the intersection \nIn contains a unique point.

Proof. By Theorem 210, \nIn 6D Ø. Having p; q 2 \nIn with p < q would imply
len.In/ � q � p for all n, contrary to the assumption len.In/! 0. ut
Theorem 207 and the above results are the foundations for developing “real variable
theories” such as calculus. But such a development is beyond the scope of this text
and belongs to the subject of mathematical analysis.
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3.7 Additional Facts on Ordered Fields*

We state without proof some important results about R and ordered fields.
Examples of basic algebraic properties that can be derived from the ordered-field

axioms of Definition 206 are:

1. AC B D AC C ) B D C , A � 0 D 0, and .�A/.�B/ D AB .
2. 0 < 1. Also, A 6D 0) A2 > 0, and so there is no A such that A2 C 1 D 0 (i.e.,

the polynomial x2 C 1 has no zero in an ordered-field).
3. A < B ) A < .AC B/ � 2�1 < B , so every ordered field is order-dense.
4. Every ordered field contains a subfield isomorphic to Q.

Deriving such algebraic results from the ordered-field axioms is done in elementary
abstract algebra. The reader may wish to try to derive these results as exercises, or
find them in standard abstract algebra texts.

Unlike the purely algebraic properties which do not depend on order-
completeness, the following properties need the fact that R is a linear continuum.
Proofs use the IVT and can be found in standard real analysis texts.

1. Every positive real number has an n-th root (n 2 N).
2. Any odd degree polynomial over R has a root in R.

Theorem 212. An ordered field is order complete (a linear continuum) if and only if
it satisfies both the Archimedean Property and the Cauchy Nested Interval Property.

The qualifier “Cauchy” in the theorem may be dropped, since in Archimedean fields
the NIP (Nested Interval Property) is equivalent to the weaker property of having
the Cauchy NIP.8

Also, the conditions of being Archimedean and satisfying the NIP are indepen-
dent: There are ordered fields (such as Q) which are Archimedean but satisfies
neither of the NIPs, and there are non-Archimedean fields which satisfy both the
NIPs.9

Theorem 213 (Categoricity of R). If F is any order-complete ordered field, then
F must be “isomorphic to” R, i.e., there is a (unique) one-to-one correspondence
x $ x0 between the elements x 2 F and the elements x0 2 R such that for all
x; y 2 F :

x < y , x0 < y0; .x C y/0 D x0 C y0; and .xy/0 D x0y0:

This result says that R is essentially (“up to isomorphism”) the unique order-
complete ordered field: Two such fields will have identical structural properties and
so will be structurally indistinguishable.

8However, there are non-Archimedean fields satisfying the Cauchy NIP in which the (unrestricted)
NIP fails, such as the formal Laurent series field over R.
9Examples for the second kind are given by hyperreal fields of type 	1.
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3.8 Alternative Development Routes*

To build the field R of real numbers from the natural numbers N, three different
paths may be followed depending on which intermediate class of numbers are built
on the way, as shown in the following diagram.

N ��

��

QC ��

��

RC

��
Z �� Q �� R

In our development, we followed the topmost path N ! QC ! RC ! R, which
avoids negative numbers and zero until the last step.

Suppes [77] follows the middle route N! QC ! Q! R.
Stoll [76] uses the “algebraic” bottom route N ! Z ! Q ! R, where the

ordered integral domain Z is first built from N. One then builds Q as the field of
fractions of Z, a process applicable to any integral domain.

In the last step of building R from Q, both Suppes and Stoll use an alternative way
of building R due to Cantor, which is quite distinct from the method of Dedekind
cuts (due to Dedekind) that we used in this text.

Cantor’s method represents real numbers as “Cauchy sequences of rationals.” A
sequence h�ni of rational numbers is a Cauchy sequence if for any � > 0, there is a k
such that j�m��nj < � for allm; n � k. Two Cauchy sequences of rationals h�ni and
h�ni are called equivalent if for any � > 0, there is a k such that j�n��nj < � for all
n � k. Real numbers are then defined as equivalence classes of Cauchy sequences
of rationals, with operations on them defined by performing the operation term-wise
on the sequences.

Cantor’s method leads to a far-reaching generalization known as the metric
completion, applicable to a class of spaces called metric spaces. It captures the
intuitive idea of “filling in” the “missing spatial points”—points to which a sequence
“tries but fails” to converge. Furthermore, it is applicable to an arbitrary ordered
field, giving what is known as the Cauchy-completion of the field. To see how
Cantor’s method is carried out in the general context of ordered fields, see Hewitt
and Stromberg [30].

On the other hand, Dedekind’s method of cuts is based on order and captures
the geometric notion of a linear continuum in a highly intuitive manner. Dedekind’s
idea of continuity amounts to the condition that if the line is partitioned into two
pieces then at least one of the pieces must contain a limit point of the other. This
idea itself leads to a direct but far-reaching generalization—a concept known as
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connectedness, which is a form of continuity applicable to the most general types of
spaces called topological spaces.10

3.9 Complex Numbers*

We define a complex number to be an ordered pair of real numbers. Complex
numbers form a field (unordered) with sum and product defined as follows.

Definition 214 (Addition and Multiplication of Complex Numbers).

hA;Bi C hC;Di WD hAC C;B CDi ;
hA;Bi � hC;Di WD hAC � BD;BC CADi :

A complex number of the form hA; 0i is called a real complex number.

Problem 215. The mapping A! hA; 0i is a bijection from the set of real numbers
onto the set of real complex numbers and it preserves both the operationsC and �:

hAC B; 0i D hA; 0i C hB; 0i ; and hAB; 0i D hA; 0i hB; 0i :

At this point, the real numbers and the real complex numbers become interchange-
able since all the properties of the real numbers are possessed by the real complex
numbers.

Therefore, we throw away the real numbers11 and use the corresponding real
complex numbers in their place. In particular, the real complex number hA; 0i will
be denoted simply by A.

Definition 216. i WD h0; 1i.
Problem 217. With our convention of using A as an abbreviation for hA; 0i, prove
that

i 2 D �1 and hA;Bi D AC Bi:

One problem with the real numbers is that one cannot solve equations like
x2 C 1 D 0. Complex numbers guarantee the existence of roots for not only such
equations but also any arbitrary polynomial equation. We have the following basic
theorem.

10Dedekind’s condition can be used word for word to define the notion of connectedness: A
topological space is connected if and only if whenever it is partitioned into two pieces then at
least one of the pieces contains a limit point of the other.
11Phrase of Edmund Landau [47].
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Theorem 218 (Fundamental Theorem of Algebra). Any non-constant polyno-
mial with complex coefficients has a complex root.

The proof of this theorem is beyond the scope of this book. A proof can be found in
Birkhoff and Mac Lane [4], A Survey of Modern Algebra.



Chapter 4
Postscript I: What Exactly Are the Natural
Numbers?

Abstract This postscript to Part I consists of philosophical and historical remarks
concerning the nature of the natural numbers. It contrasts the absolutist approach
requiring absolute constructions of individual natural numbers such as those given
by Frege, Russell, Zermelo, and von Neumann, with Dedekind’s structuralist
approach in which the natural numbers can be taken as members of any Dedekind–
Peano system.

Note: In this postscript we will often use the variant convention that the natural
numbers include 0 and so start from 0 instead of 1.

4.1 Russell’s Absolutism?

In the last couple of chapters we outlined how the field of real and complex
numbers, and thus essentially the entire body of traditional pure mathematics, can
be deductively developed starting from only the natural numbers based on the
Dedekind–Peano Axioms. However, the Dedekind–Peano Axioms do not specify
what the natural numbers themselves really are, and thus leave the interpretation of
the notion of natural numbers open.

The following passage is quoted from Russell (1920) [68] to illustrate the
problem of finding an absolute interpretation for the natural numbers.

. . . Peano’s three primitive ideas—namely, “0,” “number,” and “successor”—are capable of
an infinite number of different interpretations, all of which will satisfy the five primitive
propositions. We will give some examples.

(1) Let “0” be taken to mean 100, and let “number” be taken to mean the numbers
from 100 onward in the series of natural numbers. Then all our primitive propositions are
satisfied, even the fourth, for, though 100 is the successor of 99, 99 is not a “number” in the
sense which we are now giving to the word “number.” It is obvious that any number may be
substituted for 100 in this example.

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__4, © Springer Science+Business Media New York 2014
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(2) Let “0” have its usual meaning, and let “number” mean what we usually call “even
numbers,” and let the “successor” of a number be what results from adding two to it. Then
“1” will stand for the number two, “2” will stand for the number four, and so on; the series
of “numbers” now will be

0, two, four, six, eight, . . .

All Peano’s five premisses are satisfied still.
(3) Let “0” mean the number one, let “number” mean the set

1; 1
2
; 1
4
; 1
8
; 1
16
; � � �

and let “successor” mean “half.” Then all Peano’s five axioms will be true of this set.
It is clear that such examples might be multiplied indefinitely. In fact, given any series

x0; x1; x2; x3; : : : ; xn; : : :

which is endless, contains no repetitions, has a beginning, and has no terms that cannot be
reached from the beginning in a finite number of steps, we have a set of terms verifying
Peano’s axioms.

. . .
In Peano’s system there is nothing to enable us to distinguish between these different

interpretations of his primitive ideas. It is assumed that we know what is meant by “0,” and
that we shall not suppose that this symbol means 100 or Cleopatra’s Needle or any of the
other things that it might mean.

This point, that “0” and “number” and “successor” cannot be defined by means of
Peano’s five axioms, but must be independently understood, is important. We want our
numbers not merely to verify mathematical formulas, but to apply in the right way to
common objects. We want to have ten fingers and two eyes and one nose. A system in which
“1” meant 100, and “2” meant 101, and so on, might be all right for pure mathematics, but
would not suit daily life. We want “0” and “number” and “successor” to have meanings
which will give us the right allowance of fingers and eyes and noses. We have already some
knowledge (though not sufficiently articulate or analytic) of what we mean by “1” and
“2” and so on, and our use of numbers in arithmetic must conform to this knowledge. We
cannot secure that this shall be the case by Peano’s method; all that we can do, if we adopt
his method, is to say “we know what we mean by ‘0’ and ‘number’ and ‘successor,’ though
we cannot explain what we mean in terms of other simpler concepts.” . . .

It might be suggested that, instead of setting up “0” and “number” and “successor” as
terms of which we know the meaning although we cannot define them, we might let them
stand for any three terms that verify Peano’s five axioms. They will then no longer be terms
which have a meaning that is definite though undefined: they will be “variables,” terms
concerning which we make certain hypotheses, namely, those stated in the five axioms, but
which are otherwise undetermined. If we adopt this plan, our theorems will not be proved
concerning an ascertained set of terms called “the natural numbers,” but concerning all sets
of terms having certain properties. Such a procedure is not fallacious; indeed for certain
purposes it represents a valuable generalization. But from two points of view it fails to give
an adequate basis for arithmetic. In the first place, it does not enable us to know whether
there are any sets of terms verifying Peano’s axioms; it does not even give the faintest
suggestion of any way of discovering whether there are such sets. In the second place, as
already observed, we want our numbers to be such as can be used for counting common
objects, and this requires that our numbers should have a definite meaning, not merely that
they should have certain formal properties. [68, pages 7–10]
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4.2 Interpretations for the Natural Numbers

The Frege–Russell Natural Numbers. In 1884 Frege had already built an interpre-
tation for the natural numbers satisfying Russell’s requirements above (which was
later re-invented by Russell himself). It is based on the natural principle of abstrac-
tion which defines a complete invariant for a given equivalence relation by assigning
to each object its own equivalence class. The “Frege–Russell invariant” is obtained
by applying this principle to the relation of one-to-one correspondence between sets.
Two sets are called equinumerous (i.e., they have the same “number” of elements) if
there is a one-to-one correspondence between them.1 Equinumerosity is easily seen
to be an equivalence relation, and the number of elements a set A is then defined as
the equivalence class ŒA� of A, i.e., the collection of all sets equinumerous to A.2

For example, the first few Frege–Russell numbers are

0 WD ŒØ� D fØg
1 WD Œfag� D the collection of all singletons

2 WD Œfa; bg� (a; b distinct) D the collection of all doubletons, etc.

The Zermelo Natural Numbers. In 1908, Zermelo [85] gave a definition of the
natural numbers in his framework of axiomatic set theory as follows:

0 WD Ø; 1 WD fØg; 2 WD ffØgg; 3 WD fffØggg; : : : ; nC 1 WD fng; : : :

The Von Neumann Natural Numbers. In 1923, von Neumann built another interpre-
tation for the natural numbers which has become standard in modern axiomatic set
theories. His interpretation is as follows:

0 WD Ø

1 WD f0g D fØg
2 WD f0; 1g D fØ; fØgg
3 WD f0; 1; 2g D fØ; fØg; fØ; fØggg
: : :

nC 1 WD f0; 1; 2; : : : ng D n [ fng
: : :

1Equinumerosity and cardinal numbers will be studied in Chap. 5.
2Problems arise with the naive Frege–Russell invariant (Chap. 20) which can only be addressed
by using less natural approaches such as Quine’s New Foundations or Scott’s modified invariant
(Definition 1297) in the context of ZF set theory.
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Here every natural number n is defined as a simple and canonical n-element set
consisting precisely of the smaller natural numbers, and the successor function is
defined as S.x/ WD x [ fxg. Von Neumann’s method also extends to the transfinite,
giving a canonical interpretation for the ordinal numbers (which was the original
purpose of von Neumann, see Chap. 21).

Each of the above definitions of natural numbers (Frege–Russell, Zermelo, and
Von Neumann) provides a valid interpretation for the three primitive notions of
Dedekind–Peano so that in each framework the five Dedekind–Peano axioms can
be derived as theorems.

4.3 Dedekind’s Structuralism

The view expressed by Russell’s comments above on finding an absolute interpreta-
tion for the natural numbers as the “real one” is sometimes called Frege–Russell
absolutism. This is in sharp contrast to Dedekind’s structuralism, expressed by
Dedekind in 1888, which we now discuss.

As illustrated by Russell’s comments above and by Zermelo and von Neumann’s
definition of the natural numbers, there are many possible interpretations for the
Dedekind–Peano axioms. Dedekind proved that all interpretations for the natural
numbers which satisfy the Dedekind–Peano axioms have the same structure, or are
“isomorphic.” This is known as the categoricity of the Dedekind–Peano axioms
and is given in the theorem below. It suggests that there is no reason to prefer
any interpretation over any other. Thus, according to Dedekind’s structuralism, one
cannot take any specific interpretation of the natural numbers as the real one; rather,
the true concept of natural number is given by the abstract common structure present
in all interpretations which satisfy the Dedekind–Peano axioms.

Definition 219. A Dedekind–Peano systemN; 1N ; � consists of a setN , an element
1N , and a function � which satisfy:

1. 1N 2 N
2. �WN ! N

3. 1N 62 �ŒN � D ran.�/
4. � is injective
5. If P is a subset of N such that

a. 1N 2 P , and
b. For all x 2 N , x 2 P ) �.x/ 2 P ,

then P D N .

Clearly, the five conditions above correspond precisely to the five Dedekind–Peano
axioms, with N playing the role of N, 1N that of 1, and � that of the successor
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function. The following theorem shows that any two Dedekind–Peano systems are
“isomorphic,” that is, they have the same structure:

Theorem 220 (Dedekind). If N; 1N ; � and ˝; 1˝; � are two Dedekind–Peano
systems then there is a unique bijection  WN ! ˝ such that  .1N / D 1˝ and
 .�.x// D �. .x// for all x 2 N .

The function  in the theorem is the isomorphism between the two systems. The
reader is invited to construct a proof of this categoricity theorem using the method
of recursive definition given in Sect. 2.10.

What we are calling Dedekind–Peano systems were called simply infinite systems
by Dedekind himself. For a Dedekind–Peano system N; 1N ; �, Dedekind uses the
terminology that “the simply infinite system N is set in order by this function �”
with 1N being the “base-element of N .” Dedekind wrote in 1888 [11]:

73. Definition. If in the consideration of a simply infinite system N set in order by a
function � we entirely neglect the special character of the elements, merely retaining their
distinguishability and taking into account only the relations to one another in which they
are placed by the order-setting function �, then are these elements called natural numbers
or ordinal numbers or simply numbers, and the base-element 1 is called the base-number
of the number-series N . With reference to this freeing the elements from every other
content (abstraction) we are justified in calling numbers a free creation of the human mind.
The relations or laws which are derived entirely from the conditions [. . . ], and which are
therefore always the same in all ordered simply infinite systems, whatever names may
happen to be given to the individual elements (compare 134), form the first object of the
science of numbers or arithmetic. [12, p. 68]

He continues later:

132. Theorem. All simply infinite systems are similar to the number-series N and
consequently [. . . ] also to one another.

. . .
133. Theorem. Every system that is similar to a simply infinite system and therefore [. . . ]
to the number-series N is simply infinite.

. . .
134. Remark. By the two preceding theorems (132), (133) all simply infinite systems form
a class in the sense of [an equivalence class for the isomorphism relation]. At the same time,
[. . . ] it is clear that every theorem regarding numbers, i.e., regarding the elements n of the
simply infinite system N set in order by the transformation �, and indeed every theorem
in which we leave entirely out of consideration the special character of the elements n
and discuss only such notions as arise from the arrangement �, possesses perfectly general
validity for every other simply infinite system ˝ set in order by a transformation � and its
elements �, and that the passage from N to ˝ (e.g., also the translation of an arithmetic
theorem from one language into another) is effected by the transformation  considered in
(132), (133), which changes every element n of N into an element � of ˝, i.e., into  .n/.
This element � can be called the nth element of ˝ and accordingly the number n is itself
the nth number of the number-series N . The same significance which the transformation
� possesses for the laws in the domain N , in so far as every element n is followed by a
determinate element �.n/ D n0, is found, after the change effected by  , to belong to the
transformation � for the same laws in the domain ˝, in so far as the element � D  .n/

arising from the change of n is followed by the element �.�/ D  .n0/ arising from the
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change of n0; we are therefore justified in saying that by  , � is changed into � , which
is symbolically expressed by � D  � N , � D N � . By these remarks, as I believe, the
definition of the notion of numbers given in (73) is fully justified. [12, p. 92–96]

In Dedekind’s structuralist approach, the existence of natural numbers is tantamount
to the existence of at least one Dedekind–Peano system. Dedekind observed that this
follows from the existence of an infinite set in his sense, also called a reflexive or
Dedekind infinite set, that is, a set for which there is an injective function mapping
the set into a proper subset of itself.3 Such an existence proof again has a much more
structuralist flavor than the absolutist presentations of Frege–Russell, Zermelo, or
von Neumann, where natural numbers are constructed in a unique canonical way
with every natural number having a specific absolute definition.

Most regular mathematicians (as opposed to set theorists or logicians) do not
think of natural numbers to be absolute constructs as presented in the Frege–Russell,
Zermelo, or von Neumann definitions. It is fair to say that Dedekind’s viewpoint
above had a tremendous impact on later mathematicians such as Hilbert, and has
overwhelmingly dominated the approach found in modern mathematics.4

Other Mathematical Notions. The distinction between the absolutist and the
structuralist approaches applies not only to natural numbers but also to many other
mathematical concepts. For example, the notion of ordered pair was reduced to
an absolutist definition in terms of sets first by Wiener in 1914 as ha; bi WD
ffag; fb;Øgg, and then again by Kuratowski in 1921 as ha; bi WD ffag; fa; bgg.
Both definitions satisfy the characterizing criterion for the ordered pair, namely:
ha; bi D hc; d i ) a D c and b D d . For a structuralist, it is the characterizing
criterion that matters the most.

The real numbers also can be considered either in absolutist or in structuralist
terms. The construction of the real numbers that we presented using “Dedekind cuts
of ratios” is an example of the absolutist approach. On the other hand, it is common
for modern analysis texts to take a structuralist approach to the real numbers, where
the system of real numbers is simply taken to be any complete ordered field.5 Such a
structuralist definition is sound because of the corresponding categoricity theorem:
Any two complete ordered fields are isomorphic as ordered fields (Theorem 213).
However, there is no simple “structuralist” existence proof in this case, and all
known constructions of the real numbers, either using Dedekind’s method or using
Cantor’s method, require some “hard work.”

3This existence result is related to the Axiom of Infinity and its equivalent forms. See the part of
Sect. 21.5 dealing with the Axiom of Infinity where this topic is further discussed, particularly
Theorem 1263, as well as Problem 1225.
4The literature is large on the topics of this postscript. See, e.g., [63, 71], and the chapters by
Hellman in [72] and [49], where further references can be found.
5Even in our absolute constructions of the previous chapters for extending the system of natural
numbers to larger and larger systems of numbers such as the ratios, the lengths, the real numbers,
and the complex numbers, we had already used the structuralist approach by throwing away old
entities and replacing them with “isomorphic copies” found within the new extensions.



Part II
Cantor: Cardinals, Order, and Ordinals



Introduction to Part II

This part contains the core material of the book.
Chapters 5–10 cover cardinals, finitude, countability and uncountability, cardinal

arithmetic, the theory of order types, dense and complete orders, well-orders,
transfinite induction, ordinals, and alephs—almost all of which are due to Cantor.

In addition, Chaps. 10 and 11 cover the basic facts about the Axiom of Choice
and equivalent maximal principles such as Zorn’s Lemma, as well as well-founded
relations and trees.

The postscript to this part (Chap. 12) briefly presents a selection of some of the
most elementary topics of Infinitary Combinatorics.
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Chapter 5
Cardinals: Finite, Countable, and Uncountable

Abstract This chapter introduces the basic idea of cardinal numbers, comparability,
and operations, and next covers the theory of finite sets and natural numbers, from
which the Dedekind–Peano axioms are derived as theorems. Dedekind infinite sets
and reflexive cardinals are also defined. It then presents the Axiom of Choice and
contrasts it with effective choice, using the notion of effectiveness informally. The
rest of the chapter is about countability and uncountability: It focuses on the two
specific cardinals @0 D jNj and c D jRj, and gives the first proof of @0 < c
(uncountability of R). In the process, the principles of countable and dependent
choice are encountered.

5.1 Cardinal Numbers

Recall that f is said to be a one-to-one correspondence betweenA andB if f WA!
B is a bijection (i.e., . f is a one-to-one function mapping A onto B).

Definition 221 (Similar or Equinumerous Sets). Two sets A and B are called
similar, or equinumerous, written A Ïc B (or simply A Ï B) if there is a one-to-
one correspondence between A and B .

Problem 222. We have: (a) A Ï A, (b) A Ï B ) B Ï A, and (c) A Ï
B and B Ï C ) A Ï C . Thus equinumerosity, Ï, is an equivalence relation.

We now permanently fix—once and for all—a specific complete invariant A 7! jAj
for the equivalence relation of similarity (equinumerosity). For any set A, we call
jAj the cardinal number of A.

Definition 223 (Cardinal Number, Cantor). For each set A, jAj denotes its
cardinal number and satisfies the condition:

jAj D jBj if and only if A Ï B; for all sets A and B .

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__5, © Springer Science+Business Media New York 2014
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We say that ˛ is a cardinal number if ˛ is the cardinal number of some set.

Discussion. At this point, “the cardinal number of a set” is simply a primitive notion
serving as a complete invariant for the relation of similarity of sets. The main reason
for introducing it is that the cardinal numbers form a generalization of the natural
numbers which extends into the transfinite.

Historically, cardinal numbers—first introduced by Cantor in their full
generality—were defined in two main ways, one known as the Frege–Russell
definition and the other we call the Cantor–Von Neumann definition.

The Frege–Russell definition uses the natural complete invariant associated
with the equivalence relation of similarity of sets—the quotient map given by the
Principle of Abstraction (Theorem 42)—to define cardinals: jAj is defined as the
equivalence class ŒA� ofA under the similarity relation, i.e., jAj equals the collection
of all sets similar to A. Although a natural definition, this becomes problematic as
the “collection” of all sets similar to A is so large that it is questionable whether it
is a legitimate collection at all (see Chap. 20). In certain formal set theories such
as the Zermelo–Fraenkel system (ZF), such a collection does not even exist as a
set (Problem 1296), although the definition works in some other systems such as
Quine’s New Foundations. In ZF, a modified definition by Dana Scott, called the
Frege–Russell–Scott definition, handles the problem by significantly reducing the
collection which serves as the cardinal number of a set. We will discuss the Frege–
Russell–Scott definition in Sect. 21.8 (Definition 1297).

The Cantor–Von Neumann definition is technically more complicated and needs
the notions of well-orders and ordinal numbers which will be defined later. Still, the
definition goes as follows: jAj is defined as the least (von Neumann) ordinal ˛ such
that A can be well-ordered with type ˛. So in order for jAj to exist, the set A needs
to be well-orderable, which in turn requires a special axiom called the Axiom of
Choice. Thus the Cantor–Von Neumann method cannot be used to effectively define
cardinal numbers of arbitrary sets (such as the set of real numbers R) without the
use of Axiom of Choice. It is however the one found in Cantor’s original conception
of the transfinite and still is the more common definition of cardinal number used
in formal set theory with the Axiom of Choice (such as ZFC). We will present it as
Definition 1266 in Sect. 21.4 on von Neumann ordinals.

Definition 224 (0 and 1). We define 0 to be the cardinal number of the empty set
and 1 to be the cardinal number of the singleton set f0g:

0 WD jØj; and 1 WD jf0gj:

We remind the reader that a singleton was defined as a set of the form fag, so A is
a singleton if A contains an element a and no other element, i.e., if there is some a
such that for all x, x 2 A, x D a.

Problem 225. jAj D 0 if and only if A D Ø and jAj D 1 if and only if A is a
singleton.
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Comparison of Cardinals and Sets

Definition 226 (Comparison of Cardinals and Sets). For sets A and B , we write
A 4 B if there is a one-to-one function f WA! B (which may or may not be onto).
We also write A 64 B for “not A 4 B .”

For cardinal numbers ˛ and ˇ, we write ˛ 6 ˇ if A 4 B for some sets A and B
with jAj D ˛ and jBj D ˇ.

General cardinal and set comparison, where both finite and infinite sets are allowed,
behaves quite differently from the familiar situation of finite sets.

Problem 227. If jAj D ˛, jBj D ˇ, and f WA ! B is one-to-one but not onto,
then which of the following statements must necessarily be true?

(a) A 4 B and ˛ 6 ˇI (b) ˛ 6 ˇ but ˛ 6D ˇI (c) A 4 B but not A Ï B:

So it is quite possible that for sets A and B , A is similar to some proper subset of
B , while at the same time B is similar to some proper subset of A.

Problem 228. Give examples showing that the last statement is correct.

This is very different from the case of finite sets—in fact, we will see that this is
impossible if A or B is finite, when we formally define finite sets below.

To analyze the general situation for two sets A and B with cardinal numbers
˛ D jAj and ˇ D jBj, the following four possibilities are mutually exclusive and
exhaustive (meaning that exactly one of these holds):

Definition 229. Let A and B be sets with ˛ D jAj and ˇ D jBj. Then exactly one
of the following cases holds, and in each case we give a definition:

1. Both A 4 B and B 4 A. We then say A is weakly equivalent to B , and write
this as A Ï� B , and also write ˛ D� ˇ.

2. A 4 B but not B 4 A. We then write A � B and ˛ < ˇ, and say ˛ is less
than ˇ.

3. B 4 A but not A 4 B . Here we write A 
 B and ˛ > ˇ, and say ˛ is more
than ˇ.

4. Neither A 4 B nor B 4 A. In this case we say that A is not comparable to B
and ˛ and ˇ are incomparable cardinals, writing this as ˛jjˇ.

Each of these relations is invariant over equinumerosity Ï, i.e., if A Ï A0 and
B Ï B 0, then any of the above four relations will hold between A0 and B 0 if and
only if it holds between A and B . Hence the four cardinal relations

(1) ˛ D� ˇ; (2) ˛ < ˇ; (3) ˛ > ˇ; (4) ˛jjˇ;

are well defined, exactly one of which always holds between any pair of cardinals ˛
and ˇ. It is also easy to see that ˇ > ˛ if and only if ˛ < ˇ.
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Problem 230. 0 < 1, and so 0 6D 1.

By entirely routine arguments we have:

Problem 231. The relation A 4 B for sets and the corresponding relation ˛ 6 ˇ

for cardinals are both reflexive and transitive. The relations A � B for sets and
˛ < ˇ for cardinals are asymmetric, and therefore irreflexive.

The following is only slightly more interesting.

Problem 232. If A � B and B 4 C , or if A 4 B and B � C , then A � C . So
for cardinals ˛; ˇ; � , if ˛ < ˇ and ˇ 6 � , or if ˛ 6 ˇ and ˇ < � , then ˛ < � . The
relations A � B for sets and ˛ < ˇ for cardinals are transitive.

Problem 233. Suppose that A and B are sets, a 62 A, and b 62 B . Then

1. A Ï B if and only if A[ fag Ï B [ fbg.
2. A 4 B if and only if A[ fag 4 B [ fbg.
3. A � B if and only if A[ fag � B [ fbg.

Can We Get Trichotomy?

We would like to establish that the relation < is an ordering of the cardinals, and
so we need the law of trichotomy for <. But all we have at this point is that exactly
one of

(1) ˛ D� ˇ; (2) ˛ < ˇ; (3) ˛ > ˇ; (4) ˛jjˇ;
holds, which is a long way from trichotomy.

Our goal to obtain trichotomy can be realized if, for the four conditions above,
we can

• Replace condition (1) ˛ D� ˇ by the condition ˛ D ˇ; and
• Prove that condition (4), incomparability, cannot hold.

Later, using the Axiom of Choice, we will see that condition (4) is in fact impossible.
For now, we discuss how we can replace “˛ D� ˇ” by “˛ D ˇ,” i.e., how to prove
the equivalence

˛ D� ˇ, ˛ D ˇ:

The implication ˛ D ˇ) ˛ D� ˇ holds trivially. The converse implication (˛ D�
ˇ ) ˛ D ˇ) is also true, but the proof is nontrivial. We can restate it as “weakly
equivalent sets are equinumerous” (i.e., A Ï� B ) A Ï B), a result called the
Cantor–Bernstein Theorem or Schröder–Bernstein Theorem.
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Theorem (Cantor–Bernstein). If A 4 B and B 4 A, then A Ï B . Therefore, the
relation 6 defined on the cardinals is antisymmetric.

This theorem will be established in the next chapter. However, it is instructive for
the reader to attempt a proof at this point.

Proving that < is connected requires (in fact is equivalent to) the Axiom of
Choice, and will be given much later in Theorem 719.

5.2 Sum and Product of Cardinal Numbers

Problem 234 (Disjoint Copies of sets). Given any sets A;B there exist disjoint
sets A0; B 0 with A Ï A0 and B Ï B 0.

[Hint: Take A0 D f0g � A and B 0 D f1g � B .]

Problem 235 (Uniqueness of Sum). If A Ï A0, B Ï B 0, and A \ B D Ø D
A0 \ B 0, then .A[ B/ Ï .A0 [ B 0/.
Problem 236. Given cardinals ˛ and ˇ there is a unique cardinal � such that there
are disjoint sets A and B with jAj D ˛, jBj D ˇ, and jA [ Bj D � .

Definition 237 (Sum of two Cardinal Numbers). Given cardinal numbers ˛ and
ˇ, the unique cardinal number � whose existence is guaranteed by Problem 236 is
called the sum of ˛ and ˇ and is denoted by ˛ C ˇ.

Problem 238. The sum of cardinal numbers is an associative and commutative
operation with 0 as the identity. In other words, for any cardinals ˛; ˇ; � :

˛ C .ˇ C �/ D .˛ C ˇ/C �; ˛ C ˇ D ˇ C ˛; ˛ C 0 D ˛:

Hence it follows that: ˛ C .ˇ C 1/ D .˛ C ˇ/C 1.

Problem 239. For cardinals ˛; ˇ, we have ˇ D ˛C 1 if and only if there is a set A
with jAj D ˛ and x 62 A such that ˇ D jA[ fxgj.
Problem 240. If ˛; ˇ are cardinals, then ˛ 6 ˇ if and only if ˇ D ˛ C � for some
cardinal � .

Problem 241. If ˛; ˇ are cardinals, then:

1. ˛ C 1 D ˇ C 1 if and only if ˛ D ˇ.
2. ˛ C 1 6 ˇ C 1 if and only if ˛ 6 ˇ.
3. ˛ C 1 < ˇ C 1 if and only if ˛ < ˇ.

[Hint: Use Problem 233.]
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Problem 242 (Uniqueness of Product). A Ï A0 and B Ï B 0) A�B Ï A0�B 0.
By the last Problem, given ˛ D jAj and ˇ D jBj, the product ˛ˇ WD jA�Bj is well
defined.

Definition 243 (Product of two Cardinal Numbers). Given cardinals ˛ and ˇ,
the product ˛ˇ is the unique cardinal number � such that � D jA � Bj for some
A;B with jAj D ˛ and jBj D ˇ.

Problem 244. Cardinal product is associative and commutative, with 1 as the
identity. In other words, for any cardinals ˛; ˇ; � :

˛.ˇ�/ D .˛ˇ/�; ˛ˇ D ˇ˛; 1˛ D ˛:

Note that A � B can be naturally partitioned into the pairwise disjoint family
hA � fbg j b 2 Bi indexed by B:

A � B D
[

b2B
A � fbg;

where .A � fbg/ Ï A for all b 2 B . In other words, with ˛ D jAj and ˇ D jBj,
A�B is the union of ˇ-many pairwise disjoint sets, each having cardinality ˛. Hence
˛ˇ may be regarded as the result of “repeatedly summing ˛, repeated ˇ times” (see
Definition 355 and Problem 357).

Problem 245. The distributive law for cardinals holds: ˛.ˇ C �/ D ˛ˇ C ˛� .
Hence it follows that ˛.ˇ C 1/ D ˛ˇ C ˛.

5.3 Finite Sets and Dedekind Infinite Sets

The concepts of finitude and infinity have been used in mathematics since
antiquity—recall Euclid’s proof that there are an infinity of primes—but precise
definitions were given only in relatively modern times.

First Definition: Finite Sets as Inductive Sets

Our first definition of finite sets closely matches the intuition of “being similar to
the set f1; 2; : : : ng for some natural number n,” but does not presuppose the notion
of a natural number. The key idea here is the principle of induction: The definition
will roughly be that the finite sets are precisely those sets which satisfy induction,
in a sense to be seen below.
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Definition 246 (Inductive Families). Let A be a set. We say that a collection C of
subsets of A is an inductive family over A if it satisfies

1. Ø 2 C ;
2. E 2 C and a 2 A) E [ fag 2 C ;

Informal discussion. Here are some informal examples of inductive families:

1. For any set A, the power set of A, P.A/ is an inductive family over A.
2. The family of all bounded subsets of R is inductive over R (a subset E of R is

called bounded if we have �a < x < a for some real number a). This inductive
family does not include R itself as a member.

3. The family C of subsets of N not containing any arithmetic progression is
inductive over N (E contains an arithmetic progression if there are a; b 2 N
with aC bn 2 E for all n 2 N). Here N 62 C but many infinite sets, e.g., the set
f1; 4; 9; : : : g of perfect squares, are members of C.

Informally using the word “finite,” note the following “test for finitude”:

1. IfA is finite, then any inductive family C overA containsA as a member. Reason:
Ø 2 C by the first clause of the definition, so by the second clause C contains all
singleton subsets of A, then all the doubletons, and so on, picking up every finite
subset of A, and so A itself, in the process.

2. If A is not finite, then there is an inductive family over A which does not contain
A as a member, namely the family FA of all finite subsets ofA. (FA is an inductive
family over A since Ø is finite, and for any finite set E the set E [ fxg has at
most one more member and so is finite.)

We now invert this test to get our first formal definition of finite sets.

Definition 247 (Finite Sets). A set A is finite, or inductive, if A is a member of
every inductive family over A. A is infinite if A is not finite, i.e., if there is an
inductive family over A which does not contain A as a member.

An immediate corollary of the definition is the following principle which is very
useful for establishing properties of finite sets.

Theorem 248 (The Principle of Induction over Finite Sets). Let P be a property
of sets such that (a) the empty set Ø has property P and (b) if any setE has property
P , then so does the set E [ fxg obtained from E by adjoining any single element
x. Then every finite set has property P .

Proof. Let A be any finite set. Define C to be the collection of all those subsets of
A which has property P . By the given conditions C is an inductive family over A,
and so A 2 C since A is finite. Hence A has property P . ut
Another useful fact is the following.

Theorem 249. The empty set is finite. If A is finite then so is A [ fbg for any b. In
particular, every singleton is finite.
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Proof. The empty set is a member of every inductive family, so is finite.
Suppose A is finite. Let C be an inductive family over A [ fbg. We show that

A[ fbg 2 C.
Put CA WD fE 2 C j E � Ag. Then CA is an inductive family over A, and

so A 2 CA since A is finite. Hence A 2 C. But C is inductive over A [ fbg and
b 2 A[ fbg, so A [ fbg 2 C. ut
The following results about finite sets are proved by induction over finite sets
(Theorem 248) and using Theorem 249. Let us give a typical example.

Problem 250. Any subset of a finite set is finite.

Proof. We prove the result by induction on finite sets (Theorem 248).
First, any subset of Ø, being equal to Ø itself, is finite.
Next, assume that every subset of E is finite (induction hypothesis). Then given

any x, a subset S of E [ fxg is either a subset of E and so is finite by induction
hypothesis, or S has the form S D T [ fxg for some T � E and so is finite by
Theorem 249 since T is finite by induction hypothesis. ut
Problem 251. The image of a finite set under any function is finite. IfA is finite and
B Ï A then B is finite. If A is finite and B 4 A then B is finite.

Problem 252. A set A is infinite if and only B � A for every finite set B .

Problem 253. If A and B are finite then so is A [ B .

[Hint: Use induction on B . The induction step consists of showing that if A [ B is
finite (induction hypothesis) then so is A[ .B [ fxg/ for any x.]

Problem 254. If A is finite then so is its power set P.A/. If A and B are finite then
so is the Cartesian product A � B .

Problem 255. A finite union of finite sets is finite. That is, if C is finite and every
member of C is a finite set, then [C is finite.

[Hint: In the induction step, use the fact that [.C [ fEg/ D .[C/[ E .]

Problem 256 (Transitive Closure, Frege–Russell). Let R be a relation. We say
that y is an R-successor of x if xRy. A set A is called R-hereditary if for all x; y,
x 2 A and xRy) y 2 A. Define a relation R� as follows: xR�y if and only if y
is a member of every R-hereditary set containing all R-successors of x. Then R� is
the least transitive relation containing R, i.e.,

1. R � R�, i.e., xRy ) xR�y.
2. R� is a transitive relation.
3. If T is any transitive relation with R � T , then R� � T .
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Second Definition: Dedekind Finite Sets

Galileo found that, paradoxically, a “small” part of a collection may in fact be of
the same size as the whole collection. He took the natural numbers as the whole
collection and then formed a strictly “smaller” part of the whole by taking only
the perfect squares, which are rather sparsely distributed in the natural numbers
since they become rarer among larger numbers. But, strangely enough, a one-to-
one correspondence between the whole and the strictly smaller part is established
by n $ n2, showing that the size of the part is equal to the size of the whole, not
smaller!

Dedekind turned Galileo’s paradox into a precise definition of infinity: The
Dedekind infinite sets are precisely the ones showing this “paradoxical” behavior.
This is our second definition of finite and infinite sets.

Definition 257 (Dedekind). A set A is said to be Dedekind infinite or reflexive if
A Ï B for some proper subset B ¨ A, i.e., if there is a function f WA! A which
is one-to-one but not onto. A set will be called Dedekind finite or non-reflexive if it
is not Dedekind infinite.

A reflection of a set A is a one-to-one map of A into a proper subset of A.

In our first version (Definition 247), we gave a direct natural definition of finite
sets, and infinite sets were then defined indirectly—as sets which are not finite. In
Dedekind’s definition, the opposite is done: A simple direct definition of infinite
sets is given, and finite sets are defined indirectly—as sets which are not Dedekind
infinite.

Problem 258. If A Ï B then A is Dedekind finite if and only if B is.

Problem 259. Let A � B . If A is Dedekind infinite then so is B . Equivalently, if B
is Dedekind finite then so is A.

[Hint: A reflection f WA! A can be extended to f �WB ! B by setting f �.x/ D x
for all x 2 BXA.]

Corollary 260. Let A 4 B . If A is Dedekind infinite then so is B .

Proposition 261. Suppose that x 62 A. Then A is Dedekind infinite if and only if
A[ fxg 4 A.

Proof. Suppose first that A is Dedekind infinite. Let f WA ! A be one-to-one but
not onto, fix y 2 AXf ŒA�, and extend f to f �WA[fxg ! A by setting f �.x/ D y.
Then f � is injective, so A[ fxg 4 A.

For the converse, assume that A [ fxg 4 A, and let f WA [ fxg ! A be an
injection. Then f .x/ 2 AXf ŒA� since f is injective. Hence f �AWA ! A is a
reflection, and so A is Dedekind infinite. ut
Corollary 262. If A is Dedekind finite and A ¨ B then A � B .

[Hint: B 4 A would imply A [ fbg 4 A for some b 2 BXA.]
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Proposition 263. If A is Dedekind finite then so is A [ fbg.
Proof. Let B WD A[ fbg be Dedekind infinite. We show that then so is A.

This follows from Problem 233, but let us give a direct proof.
Let f WB ! B be a reflection and fix c 2 BXf ŒB�. If b 62 ran.f / then f ŒB� � A

and we are done by Proposition 261, so let us fix a 2 B with f .a/ D b. Now
modify f to a function gWB ! B by redefining the value of f at a to be c, i.e., let
g.a/ D c and g.x/ D f .x/ for all x 6D a. Then g is one-to-one with gŒB� � A, so
A is Dedekind infinite by Proposition 261. ut
This gives the following basic result by induction over finite sets.

Theorem 264. Any finite set is Dedekind finite.

Finite Cardinals

Definition 265 (Finite Cardinals). A cardinal � is called a finite cardinal if � D
jAj for some finite set A; otherwise, � is called an infinite cardinal. The set of all
finite cardinals will be denoted by J, and for each cardinal �, J� will denote the set
of all finite cardinals less than �:

J WD fjAjWA is finite g; and J� WD f� 2 J j � < �g:

Problem 266. 0 2 J and if � 2 J then � C 1 2 J. So 1 2 J, 1 C 1 2 J, etc.
Moreover if �; � 2 J then �C � 2 J and �� 2 J.

Theorem 267 (Principle of Induction for J). Suppose that K is a set of cardinal
numbers such that 0 2 K and � 2 K ) �C 1 2 K . Then J � K .

[Hint: To get J � K , show that jAj 2 K for every finite set A by induction over
finite sets. Use the fact that if x 62 A then jA[ fxgj D jAj C 1.]

We have the following series of corollaries to Corollary 262:

Corollary 268. If �; � are cardinals with � finite, then � < � , � D � C � for
some nonzero cardinal �. In particular, � < � C 1 for all � 2 J.

Corollary 269. If �; � are cardinals with � finite, then � < � , � D � C 1 or
� > � C 1.

Corollary 270 (Strong Trichotomy for Finite Cardinals). If �; � are cardinals
with � finite, then exactly one of � < �, � D �, or � > � holds.

[Hint: Use induction on �.]

Corollary 271. If �; � are cardinals with � finite, then � < � C 1 if and only if
� < � or � D �.
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Corollary 272. If � is an finite cardinal, then the set of all cardinals smaller than
� is a finite set of cardinality �. That is, jJ� j D � for all � 2 J.

5.4 Natural Numbers and Reflexive Cardinals

In Part I, we defined real numbers in terms of ratios, and ratios in terms of
natural numbers, but the natural numbers themselves were left undefined—we only
assumed they are primitive entities satisfying the Dedekind–Peano axioms. We now
officially define the natural numbers as the nonzero finite cardinals, and, from this
definition, derive the Dedekind–Peano axioms, i.e., prove them as theorems. This
gives an interpretation for the natural numbers, or a model for the Dedekind–Peano
axioms, in terms of our current primitive of cardinal numbers.

Definition 273 (The Natural Numbers N). A natural number is a nonzero finite
cardinal. The set of all natural numbers is denoted by N:

N WD JXf0g D fjAjWA is finite, A 6D Ø g;

We also define the successor map S by S.�/ WD � C 1 (for any cardinal �).

Theorem 274. The successor function S restricted to the set J of finite cardinals
maps J bijectively onto the set N of natural numbers.

[Hint: To show that S is injective, use Problem 241.]

Corollary 275. We have N Ï J with N ¨ J and JXN D f0g. Hence J and N are
Dedekind infinite, and so infinite. So A � N for every finite A.

Proving the Dedekind–Peano Axioms

Problem 276. 1 2 N, and if � 2 N then S.�/ 2 N. Moreover if ˛; ˇ 2 N then
˛ C ˇ 2 N and ˛ˇ 2 N.

It is now routine to verify that the above interpretation of the natural numbers
satisfies the Dedekind–Peano Axioms:

Theorem 277 (hN; S; 1iModels the Dedekind–Peano Axioms). With the natural
numbers N, the successor map S , and the cardinal number 1 as defined above, all
five Dedekind–Peano axioms are satisfied.

Proof. Since 1 2 N, the first axiom holds. The second axiom holds because if �
is a nonzero finite cardinal then so is S.�/ D � C 1. To verify the third axiom,
suppose, if possible, that 1 D S.�/ for some � 2 N. Then S.0/ D S.�/, so 0 D �
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(since S is injective), which is impossible since 0 62 N. The fourth axiom again
follows from injectivity of S . Finally, the induction axiom is essentially the same as
Theorem 267. ut
Problem 278. Addition and multiplication of natural numbers as defined recur-
sively in the Dedekind–Peano system coincide with the corresponding operations
for cardinal numbers restricted to N. Similarly, the ordering relation defined for the
natural numbers via the Dedekind–Peano system coincides with the cardinal “less
than” relation restricted to N.

[Hint: Let C denote cardinal addition, and C0 denote addition as defined in the
Dedekind–Peano system via the recursion equations m C0 1 D S.m/ and m C0
S.n/ D S.m C0 n/. By the associative law, cardinal addition satisfies the same
recursion equations, and a routine induction on the second variable shows that C
andC0 coincide. Multiplication is handled similarly.

The ordering relation <0 in the Dedekind–Peano system was defined as m <0
n, n D mCk for some k 2 N. But the same criterion has been already established
for finite cardinals, so the two relations coincide.]

Now that we have proved the Dedekind–Peano axioms with the natural numbers
defined as the nonzero finite cardinals, the entire theory developed in Part I becomes
available to us as a corollary. In particular, the principles of recursive definition,
as well as the complete ordered field R of real numbers, its subsets Q (rational
numbers) and Z (integers), and their general properties can be officially used. For
example, by Theorem 68 we have:

Corollary 279 (The Well-Ordering Property). Every nonempty subset of N con-
tains a smallest element.

Dedekind Infinite Sets, Reflexive Cardinals, and @0

Theorem 280. A set A is Dedekind infinite if and only if N 4 A.

Proof. If N 4 A then A is Dedekind infinite since N is.
For the other direction, suppose there is a one-to-one reflection hWA ! A, and

fix a 2 AXhŒA�. The main idea behind the proof is this: Since h is a reflection, we
have the strictly decreasing sequence of sets

A © hŒA� © hŒhŒA�� © hŒhŒhŒA��� © � � � :

Since h is injective, from a 2 AX hŒA� we get h.a/ 2 hŒA�X hŒhŒA��, and so
h.h.a// 2 hŒhŒA��XhŒhŒhŒA���, etc. This makes the elements a; h.a/; h.h.a//; : : :
all distinct, as shown in the figure below.
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A h[A] h[h[A]]

a h(a) h(h(a))

We thus get an injective mapping f WN ! A if we set f .1/ D a, f .2/ D h.a/,
f .3/ D h.h.a//, etc. We now formalize this idea into a rigorous proof.

By the basic principle of recursive definition, there is f WN ! A such that
f .1/ D a and f .n C 1/ D h.f .n// for all n 2 N. We claim that f is injective,
i.e., f .m/ 6D f .n/ for m 6D n. By trichotomy, it suffices to show that for any n,
f .m/ 6D f .n/ for all m < n. We prove this by induction on n.

For n D 1 this is vacuously true. Assume that f .m/ 6D f .n/ for all m < n

(induction hypothesis). We show that f .m/ 6D f .n C 1/ for all m < n C 1. Let
m < n C 1. If m D 1, then f .m/ D f .1/ D a 62 ran.h/ while f .n C 1/ D
h.f .n// 2 ran.h/, so f .m/ 6D f .n C 1/. If m > 1, then m D k C 1 for some
k 2 N. Since m < n C 1, we get k C 1 < n C 1, and so k < n. By induction
hypothesis, f .k/ 6D f .n/, so h.f .k// 6D h.f .n// (since h is one-to-one), i.e.,
f .k C 1/ 6D f .nC 1/ or f .m/ 6D f .nC 1/ as desired. ut
Definition 281 (Reflexive Cardinals). A cardinal � is called a reflexive cardinal if
� D jAj for some Dedekind infinite set A.

Corollary 282. Every reflexive cardinal is an infinite cardinal.

We now define @0 to be the cardinal number of the set N of natural numbers. (@0 is
called aleph-nought, or aleph-null, or aleph-zero.)

Definition 283. @0 WD jNj.
By Corollary 275 we have:

Corollary 284. @0 D jJj, so @0 C 1 D @0. Also @0 is a reflexive cardinal and
therefore an infinite cardinal. Thus n < @0 for all finite cardinals n 2 J.

We have the following characterizations of a reflexive cardinal.

Proposition 285. For any cardinal � the following conditions are equivalent:

1. � is reflexive.
2. @0 6 �.
3. � C 1 D �.

[Hint: 1) 2 by Theorem 280. For 2) 3, note that if @0 6 � then � D ˛C@0 for
some cardinal ˛, so �C 1 D .˛C@0/C 1 D ˛C .@0C 1/ D ˛C@0 D �. Finally,
3) 1 follows from definition (or use Proposition 261).]

Corollary 286. @0 is the smallest reflexive cardinal.
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Can an Infinite Set be Dedekind Finite?

Since no Dedekind infinite set is finite, we have the following picture.

Finite Sets
(Inductive) ?

Dedekind Infinite Sets
(Reflexive)

So the question is: Is every infinite set Dedekind infinite? That would imply that
the region marked by “?” in the diagram above is empty and so the two notions of
finitude would coincide: A set will be Dedekind finite if and only if it is finite. Or:
Are there sets which are infinite but Dedekind finite?

If there were such a set A, then f1; 2; : : : ; ng 4 A for all n, i.e., A has finite
subsets fa1; a2; : : : ; angwith n distinct elements for every n, yet N 64 A, i.e., there is
no infinite sequence ha1; a2; : : : ; an; : : : i of distinct elements from A. As we do not
have a clear intuition about such sets, we can perhaps show that this is impossible—
resulting in the “clean solution” that the two notions of finitude coincide.

Let us recall the proof of this when A was Dedekind infinite (Theorem 280): The
presence of a reflection hWA! A and an element a 2 AXhŒA� allowed us to define
a sequence of distinct elements as a1 D a, a2 D h.a1/, a3 D h.a2/, etc. Notice
that this infinite sequence is specified uniquely in terms of the reflection h and the
element a.

When A is infinite but not known to be Dedekind infinite, no such reflection is
available but we can try to argue as follows. Fix a1 2 A, then pick a2 2 AXfa1g,
a3 2 AXfa1; a2g, etc, and in general choose anC1 2 AXfa1; a2; : : : ; ang. Since A is
infinite, a finite set fa1; a2; : : : ; ang cannot exhaust A, so it will always be possible
to choose anC1, and the induction seems to go through.

However, the problem here is that—unlike the Dedekind infinite case where a
reflection was available—there is no mechanism to specify anC1 uniquely in terms
of a1; a2; : : : ; an. Thus the argument requires infinitely many arbitrary choices—a
process that can only be formalized using the Axiom of Choice.

5.5 The Axiom of Choice vs Effectiveness

Recall from Sect. 1.6 that a partition is a family of pairwise-disjoint nonempty sets,
and that we say P is a partition of A if P is a partition whose union equals A.
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Definition 287 (Choice Set). A choice set for a partition P is a set containing
exactly one element from each set of the partition P. More precisely, C is a choice
set for P if C � [P and C \ E is a singleton for every E 2 P.

We now state the Axiom of Choice, henceforth referred to as “AC.”

AC (The Axiom of Choice). Every partition has a choice set.

Whether AC is a “self-evident mathematical principle” or not was initially a matter
of controversy, although many mathematicians do find it acceptable. However, the
introduction of AC as a separate explicit axiom (by Zermelo [84, 86]) eventually
helped to mitigate the debate, since now one could sharply distinguish between
mathematical results which use the AC and the ones which do not, and so
mathematicians could individually make (or postpone) the choice to accept or reject
the Axiom of Choice.

In the case where the partition P is finite,1 the validity of the principle AC can
formally be derived by induction (on the size of P), but since nobody objects to
making finitely many choices from finitely many sets, it is common to encounter
informal proof-fragments such as

. . . Since the sets A1; A2; : : : ; An are nonempty, let us choose and fix elements a1 2
A1; a2 2 A2; : : : ; an 2 An.

The use of AC therefore is necessary only when the partition P is infinite. For many
standard results of mathematics, the full general form needs AC, while special
“finite” cases can be proved without AC. For example the proof that an arbitrary
vector space has a basis requires AC, but one can prove that every finite dimensional
vector space has a basis without using AC.

Effectiveness and Effectively Defined Choice Sets

In some cases, even when the partition P is infinite one can (by exploiting some
additional structure and properties of the underlying set or partition) explicitly state
a rule which determines a unique member of E for each E in P. This is expressed
by saying that a member of E can be “effectively and uniquely determined” from
E . In this case, a choice set C can be effectively specified or effectively defined from
P, and the use of AC is not needed. Such a choice set C will be called an effective
choice set.

Example 288. If P is any partition of the set N of natural numbers (which is
naturally well-ordered), then one can effectively define a choice set C by choosing

1Note that if P is finite, the sets in P may be infinite. We should be careful to distinguish between
“a partition being finite” and “the sets in the partition being finite.” For example, the partition of
the set of integers into even and odd integers is a finite partition consisting of infinite sets, while
the partition ff2n; 2nC 1gj n 2 Zg of the integers is an infinite partition consisting of finite sets.
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the least element of each set of the partition P, i.e., by setting C D fmin.E/ j E 2
Pg. Notice how C is effectively specified from P.

Thus every partition of the set of natural numbers has an effective choice set.
The concept of effectiveness (or effective specification) will be encountered

occasionally throughout this book. We will use it as an informal intuitive notion,
without attempting to give a formal definition.2 Kuratowski [45, p. 254] explains
that effectiveness concerns ways of proving existence theorems, i.e., theorems of
the form “there exists x having property P .” Such a theorem is said to be proved
effectively if one can explicitly define a specific object a and prove that a has
property P .

We have already used effective choice sets in proving that N 4 A if one is
given a one-to-one reflection hWA ! A and a 2 AXhŒA�. The sets A © hŒA� ©
hŒhŒA�� © � � � then keep decreasing, producing pairwise disjoint sets A1 D AXhŒA�,
A2 D hŒA�XhŒhŒA��, etc. Since h.a/ 2 A2, h.h.a// 2 A3, etc, so the elements
a; h.a/; h.h.a//; : : : form an effective choice set for the family fAn j n 2 Ng,
thereby effectively proving N 4 A.

Problem 289. Let R=Z denote the partition of R consisting of all sets of the form
aCZ with a any real, where aCZ WD faC x j x 2 Zg. In other words, R=Z is the
partition given by the equivalence relation ÏZ on R, where we define x ÏZ y ,
x � y 2 Z, for x; y 2 R.3 Find an effective choice set for this partition R=Z of R.

Problem 290. Find effective choice sets for the partitions of the equivalence
relations in Problems 46 and 49 of Chap. 1.

Among the equivalence relations studied by the ancient Greek geometers (e.g.,
congruence and similarity mappings) was commensurability of length. Say that the
positive reals x; y 2 RC are commensurable if x=y is rational. We can then ask:
Can we define a choice set for the partition determined by the commensurability
relation?

Commensurability also has an essentially equivalent “additive” version where
two reals in R are defined to be equivalent if they differ by a rational number. The
question of defining a choice set for commensurability then becomes equivalent to
the following problem.

Problem 291. Let R=Q denote the partition of R consisting of all sets of the form
aCQ with a any real, where aCQ WD faCx j x 2 Qg. In other words, R=Q is the
partition given by the equivalence relation ÏQ on R, where we define x ÏQ y ,
x � y 2 Q, for x; y 2 R.4 Can you define a choice set for this partition R=Q of R?

2Effectiveness is a metamathematical notion, and degrees of effectiveness (which depends on the
complexity of the specification or rule) are studied in areas of mathematical logic such as recursion
theory.
3This is the coset decomposition of the additive group R modulo the subgroup Z.
4This is the coset decomposition of the additive group R modulo the subgroup Q, and is sometimes
called the Vitali partition.
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It is instructive for the reader to try to define a choice set for R=Q, but there is no
reason to get discouraged if such a choice set seems too elusive to define. From the
work of Feferman, it is now known that the existence of a choice set for the partition
R=Q cannot be proved without appealing to the Axiom of Choice, and even if the
use of AC is allowed, no effectively defined set can be proved (without additional
axioms) to be a choice set for R=Q.

Thus for some partitions effective choice sets can be defined without using AC,
but there are partitions which have no effective choice sets, making the use of AC
essential to obtain choice sets in such partitions.

This is illustrated by Russell’s example of the millionaire who bought @0 pairs
of socks and @0 pairs of boots. The question is: Can we make a selection of socks
with exactly one sock from each pair, and similarly for boots? Russell, who called
the Axiom of Choice the multiplicative axiom, wrote:

[I]t can be done with the boots, but not with the socks . . . The reason for the difference is
this: Among boots we can distinguish right and left, and therefore we can make a selection
of one out of each pair, namely, we can choose all the right boots or all the left boots; but
with socks no such principle of selection suggests itself, and we cannot be sure, unless we
assume the multiplicative axiom, that there is any class consisting of one sock out of each
pair. . . . [W]ith the socks we shall have to choose arbitrarily, with each pair, which to put
first; and an infinite number of arbitrary choices is an impossibility. Unless we can find a
rule for selecting, i.e., a relation which is a selector, we do not know that a selection is even
theoretically possible. [68, p. 126]

Thus AC may be needed even when every set in the partition is finite (or even of
cardinality 2), unless some additional structure can be exploited.

Problem 292. Let C be a collection of pairwise disjoint nonempty finite sets of
complex numbers. Show that C has an effective choice set.

Problem 293. For an equivalence relation Ï on a set A, a function F WA ! A is
called a selector for Ï if F is a complete invariant for Ï (i.e., x Ï y , F.x/ D
F.y/) and F.x/ Ï x for all x 2 A. Prove that

1. AC holds if and only if every equivalence relation has a selector.
2. An equivalence relation has an effective selector if and only if the corresponding

partition has an effective choice set.

Problem 294. Show that AC is equivalent to the following statement: If F WX ! Y

is surjective then there is GWY ! X such that the function F ı GWY ! Y is the
identity mapping on Y .

If R is a relation we say that F is a uniformization of R if F � R, F is a function,
and dom.F / D dom.R/.

Problem 295. Show that AC is equivalent to the statement every relation has a
uniformization.
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AC via Choice Functions

The form of AC we have been using so far is called the partition version of AC,
where the sets from which elements are chosen are required to be pairwise disjoint.
It is generally more useful to use a formulation of AC where the sets from which
elements are to be chosen are not required to be disjoint.

Definition 296 (Choice Functions). If C is any family of nonempty sets (i.e., if
E 2 C) E 6D Ø), then a choice function for C is any function F WC! [C such
that F.E/ 2 E for all E 2 C.

AC1 (Choice Function Version of AC). Every family of nonempty sets has a
choice function.

Problem 297. The principle AC1 is equivalent to the principle AC.

[Hint: If Y is any collection of nonempty sets, then ffEg � E j E 2 Yg is a closely
related collection of pairwise disjoint sets.]

A special case of AC1 is obtained by taking C D P�.A/, where A is any set and
P�.A/ WD P.A/XfØg denotes the collection of all nonempty subsets of A. In this
case a choice function F WP�.A/ ! A is also called a choice function for the set
A. Note that this special case is actually equivalent to AC1, as we can restrict any
choice function for the set A WD [C to the subfamily C. Thus AC1 is sometimes
expressed by saying every set has a choice function.

AC1 can also be restated in terms of indexed families of sets as follows.

AC1 (Indexed Family Version). If hAi j i 2 I i is an indexed family of sets with
Ai 6D Ø for all i 2 I , then there is “choice function” 'W I ! [iAi such that
'.i/ 2 Ai for all i 2 I .

Problem 298. The indexed family version above is also equivalent to AC.

[Hint: If hAi j i 2 I i is an indexed family of nonempty sets then ffig�Ai j i 2 I g is
partition, and any choice set for this partition is a function which satisfies the needed
condition.]

5.6 @0 and Countable Sets

Theorem 299. If A � N and A is infinite then A Ï N.

Proof. Using the well-ordering property of N, define f WN ! N by recursion as
follows: Let f .1/ be the least element of A and f .n C 1/ be the least element
of AXff .1/; f .2/; : : : ; f .n/g. The recursion proceeds without halting since A is
infinite. It is then easily verified that f is a bijection.
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For a more formal proof, let a be the least element of A, let hWN ! N be the
function defined by h.n/ WD the least element of A greater than n, and apply the
basic principle of recursive definition (Theorem 146). ut
Corollary 300. For a cardinal �, � 6 @0 if and only if � is finite or � D @0.
Definition 301 (Denumerable and Countable Sets). A is denumerable if A Ï N,
i.e., if jAj D @0. A set is countable if it is denumerable or finite.

Corollary 302. A is countable if and only if A 4 N if and only if jAj 6 @0. Thus a
subset of a countable set is countable.

Corollary 303. Any infinite subset of a denumerable set must have cardinality @0
and so must itself be denumerable.

Effectiveness for equinumerosity and cardinal equality. The notion of effective-
ness plays an important role in similarity (equinumerosity) of sets and equalities
between cardinals. We say that a set A is effectively equinumerous or effectively
similar to a set B if one can effectively define a bijection between A and B . Two
cardinals � and � are said to be effectively equal, expressed by saying that “� D �

effectively” if some set of cardinality � is effectively equinumerous to some set of
cardinality �. In particular, a set A is said to be effectively denumerable if there is
an effectively defined bijection between A and N.

The map n 7! nC1 establishes a bijection between J and N so J Ï N effectively.
But J is the disjoint union of N and the singleton f0g, so @0 C 1 D @0 effectively.
It follows by induction that

Problem 304. @0 C n D @0 effectively, for all n 2 J.

Problem 305. Prove that @0 C @0 D @0 effectively, and so 2@0 D @0 effectively.
Prove that n@0 D @0, for all n 2 J.

Problem 306. Prove that the range of any function with countable domain is
countable. Prove that a nonempty set is countable if and only if it is the range of
a function with domain N.

Terminology overview. Recall that an infinite sequence is a function with domain
N. The terms of an infinite sequence are the elements of its range. The terms are
said to be arranged without repetition if the sequence is one-to-one; otherwise we
say that the sequence has repeated terms.

Definition 301 and Problem 306 can then be restated as follows.

A set is denumerable if and only if its elements can be arranged in an infinite
sequence without repetition. A nonempty set is countable if and only if its
members can be arranged in an infinite sequence, with repetitions allowed.

Definition 307. An enumeration of a nonempty countable set A is a sequence
whose range equals A.
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If aWN ! A is an enumeration of A (i.e., ran.a/ D A), we informally express the
fact by putting an WD a.n/ and writing

A D fa1; a2; : : : ; an; : : : g;

or by saying that “A is enumerated as a1; a2; : : : ; an; : : : .”
Examples of denumerable sets are readily obtained. Any infinite subset of N is

denumerable. Moreover the set Z of all integers—positive, negative, or zero—is also
effectively denumerable (why?).

A more interesting example of a denumerable set is the following.

Theorem 308 (Cantor). The set of ratios is effectively denumerable.

Proof. Let the rank of ratio be defined as the sum of the numerator and denominator
when it is expressed in lowest terms (reduced form). The smallest possible rank is
2, and it is easy to show that there are at most n � 1 ratios of rank n. Now arrange
the ratios not by their order of magnitude, but so that the ratios with a smaller rank
come before the ones with a larger rank, and if two ratios have the same rank, then
put the one with a smaller numerator before the one with a larger numerator. This
arranges the ratios in the sequence

2
‚…„ƒ
1

1
;

3
‚…„ƒ
1

2
;
2

1
;

4
‚…„ƒ
1

3
;
3

1
;

5
‚ …„ ƒ
1

4
;
2

3
;
3

2
;
4

1
;

6
‚…„ƒ
1

5
;
5

1
;

7
‚ …„ ƒ
1

6
;
2

5
;
3

4
;
4

3
;
5

2
;
6

1
; : : :

where the number above the brace in a group is the rank for that group. ut
Remark. The function ' defined as '.n/ WD the number of reduced ratios of rank n
is important in number-theory and is known as Euler’s '-function.

Problem 309. Show that the set Q of all rational numbers, positive, negative, or
zero, is effectively denumerable. In particular, jQj D @0.

Effective Enumeration of N � N

One can naturally arrange the members of N � N, the set of all pairs of natural
numbers, into the following “infinite matrix,” where the ordered pair hm; ni
occupies the entry in row m column n:

h1; 1i h1; 2i h1; 3i h1; 4i : : : h1; ni : : :
h2; 1i h2; 2i h2; 3i h2; 4i : : : h2; ni : : :
h3; 1i h3; 2i h3; 3i h3; 4i : : : h3; ni : : :
:::

: : : : : :
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We can also arrange the natural numbers N into a similar infinite matrix as shown
below, in which the top row consists of the odd natural numbers, and every other
row is obtained by doubling the previous row:

1 3 5 7 : : : 2n � 1 : : :

2 6 10 14 : : : 2.2n� 1/ : : :

4 12 20 28 : : : 4.2n� 1/ : : :
:::

: : : : : :

Notice that here the entry in row m column n is 2m�1.2n� 1/.
Thus, by letting the ordered pair hm; ni in rowm and column n of the first matrix

correspond to the natural number 2m�1.2n� 1/ occurring at the same position (row
m and column n) of the second matrix, we get an effective enumeration of N � N.

Problem 310. The mapping hm; ni 7! 2m�1.2n � 1/ is an effective bijection from
N � N onto N. Thus N � N is effectively denumerable and @0@0 D @0.
Problem 311. If A and B are denumerable then so is A � B . If A and B are
effectively denumerable then so is A � B . (And similarly with “denumerable”
replaced by “countable.”)

We write @20 is an abbreviation for @0@0, so that @20 D @0. We can inductively define
@n0 for n 2 N by letting @10 WD @0 and @nC10 WD @n0@0.
Problem 312. Show that @n0 D @0 for all n 2 N.

We thus get many examples of countable sets. For example, the set of all points
.x; y/ in the Cartesian plane with rational coordinates (i.e., with both x; y 2 Q) is
countable, and similarly for n-dimensional space for n 2 N. The set of all triples of
natural numbers (or rational numbers) is countable.

The next problem gives another effective enumeration of N �N.

Problem 313. Consider the following arrangement of N �N

h1; 1i ; h1; 2i ; h2; 1i ; h1; 3i ; h2; 2i ; h3; 1i ; h1; 4i ; h2; 3i ; h3; 2i ; h4; 1i ; : : : ;

in which hm; ni precedes hm0; n0i if either mC n < m0 C n0 or mC n D m0 C n0
andm < m0. Show that in the above enumeration the pair hm; ni comes at position
1
2
.mC n/.mC n � 1/Cm, and therefore the mapping

hm; ni 7! .mC n/.mC n � 1/
2

Cm;

gives us another effective bijection from N � N onto N.
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We do not prefer any specific effective bijection from N � N onto N over any
other, but instead record their useful properties in the following form, obtained by
considering the inverse of any such effective bijection.

Problem 314 (Effective Pairing Functions). There are effective “pairing func-
tions” �WN � N ! N (bijective) and 
; �WN ! N (surjective) such that for all
m; n; k 2 N:


.�.m; n// D m; �.�.m; n// D n; and �.
.k/; �.k// D k:

In particular, for all m; n 2 N there is k 2 N with m D 
.k/ and n D �.k/.
Problem 315. Let � be the pairing function of Problem 313 and 
; � be as in
Problem 314. Show that

1. m < m0) �.m; n/ < �.m0; n/ and n < n0 ) �.m; n/ < �.m; n0/.
2. 
.n/ � n and �.n/ � n for all n.
3. For all k there are infinitely many n with 
.n/ D k (and similarly for �).

Suppose that hfm j m 2 Ni is a sequence of sequences, where each fm is a function
with domain N which enumerates the set Am WD ran.fm/. Fix effective functions � ,

, and � as in Problem 314, and define a sequence g by setting

g.k/ WD f
.k/.�.k// .k 2 N/:

Note that g effectively “combines” the sequence of sequences hfm j m 2 Ni into a
single sequence in the following sense:

1. We have fm.n/ D g.�.m; n//, and so each fm can be recovered from g as a
“subsequence of g” given by the mapping n 7! g.�.m:n//.

2. We have ran.g/ D [m ran.fm/, and so the set enumerated by g is the union of
the sets enumerated by the functions fm.

We summarize this as follows.

Proposition 316. A given sequence hfn j n 2 Ni of enumerations of sets
hAn j n 2 Ni (with ran.fn/ D An) can be effectively combined into a single
enumeration of the union A WD [nAn of the sets.

Countable Union of Countable Sets

We want to use the last result to establish the useful fact that the union of a countable
family of countable sets is countable. We can attempt to reason as follows. Let
hAn j n 2 Ni be a sequence of nonempty countable sets, and enumerate each set
Am as

Am D fam;1; am;2; : : : ; am;n; : : : g .m 2 N/:
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Then the union [m2NAm can be enumerated as

[

m2N

Am D fa
.k/;�.k/ j k 2 Ng;

and so [m2NAm is countable.

But this proof is not effective. It makes a subtle use of the Axiom of Choice,
since (unlike Proposition 316) no sequence of enumerations of the sets Am is given
beforehand. Each setAm can be enumerated in many different ways and saying “Am
is enumerated asAm D fam;1; am;2; : : : ; am;n; : : : g” involves implicitly choosing and
fixing one such enumeration. Since we have an infinite sequence of sets, this results
in an infinite number of choices, requiring AC.5

The proof given below (for Proposition 317) makes this use of AC explicit.
However, since we will be making “at most countably many” choices, the full
general version of AC will not be used in the proof. Instead, the following special
case of the Axiom of Choice, known as the Countable Axiom of Choice or CAC,
will suffice.

5.7 The Countable and Dependent Axioms of Choice

CAC (The Countable Axiom of Choice). Every countable family of nonempty
sets has a choice function: If I is countable and hAi j i 2 I i is a family of sets with
Ai 6D Ø for all i 2 I then there is a choice function 'W I ! [i2IAi such that
'.i/ 2 Ai for all i 2 I .

We then have:

Proposition 317 (CAC). A countable union of countable sets is countable: If I is
countable and Ai is countable for each i 2 I , then

[

i2I
Ai is countable.

Proof. Without loss of generality, we may assume that I and the sets Ai , for all
i 2 I , are nonempty. Fix effective pairing functions 
 and � as in Problem 314,
so that for all m; n there is k with m D 
.k/ and n D �.k/. Since I is nonempty
countable, it can be enumerated by some function hWN ! I with ran.h/ D I . For
each i 2 I , define

Ei WD ff j f is an enumeration of Aig
D ff j f WN! Ai with ran.f / D Aig:

5AC is needed even if the sets Am are all finite, as illustrated by Russell’s example: Given @0 pairs
of socks and @0 pairs of boots, how many socks do we have in total, and how many boots? With
boots, the answer is @0, but the socks may form an infinite Dedekind finite set and the answer may
be a non-reflexive cardinal.
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Each Ei is nonempty since Ai is nonempty and countable. Hence by CAC, there is
a choice function ' with dom.'/ D I such that '.i/ 2 Ei for each i 2 I . Thus
'.i/ is a function enumerating Ai and let us abbreviate '.i/ as �i (for each i 2 I ).
Finally, define g by

g.k/ WD �h.
.k//.�.k//:

Then it is routine to verify that g enumerates [i2IAi . ut
The reader may once again compare Proposition 316 with Proposition 317 and note
how the former can be proved effectively while the latter requires the use of CAC.

Problem 318. Prove that if ˙ is any nonempty countable alphabet (D set), then
the set ˙� of all words over˙ (D finite sequences from ˙) is countable. Moreover,
if ˙ is effectively countable, then so is ˙�.

Problem 319 (CAC). Let A1;A2; : : : be an infinite sequence of pairwise disjoint
sets such that Am Ï An for all m; n 2 N. Let � D jA1j. If I � N and I is infinite,
then

ˇ
ˇ
ˇ
ˇ
[

n2I
An

ˇ
ˇ
ˇ
ˇ D � � @0 D

ˇ
ˇ
ˇ
ˇ
[

n2N

An

ˇ
ˇ
ˇ
ˇ:

The problem below is relevant to the proof of the Cantor–Bernstein theorem.

Problem 320. Suppose that we have a one-to-one reflection f WC ! C , and let A
be a subset of C disjoint from f ŒC �, that is, with A � C Xf ŒC �. Define the sets
A1;A2; A3; : : : recursively as follows:

A1 WD f ŒA� and AnC1 WD f ŒAn�:

1. Show that the sets A;A1; A2; : : : are pairwise disjoint.
2. Put A� WD A1 [ A2 [ � � � D [n�1An. Prove effectively that A [A� Ï A�.

Theorem 321 (CAC). Every infinite set is Dedekind infinite.

Proof. For each n 2 N, the following set is nonempty since A is infinite:

Fn WD ff j f WN! A and jf ŒN�j > ng:

By CAC, select a sequence hfn j n 2 Ni with fn 2 Fn for all n 2 N.
As in Proposition 316, combine the fn’s into a single gWN ! A where g.n/ WD

f
.n/.�.n//. Then gŒN� D [nfnŒN� is infinite (since jfnŒN�j > n) and countable, so
gŒN� Ï N. Hence A is Dedekind infinite.

(Or, directly define an injection hWN ! A by recursion: h.1/ WD f1.1/

and h.n C 1/ WD fnC1.k/ where k is the least number such that fnC1.k/ 62
fh.1/; h.2/; : : : ; h.n/g, which is well defined since j ran.fnC1/j > nC 1.) ut
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So under countable choice, the two notions of finite sets coincide: A set A is infinite
(in either sense) if and only if N 4 A. But note that if A is Dedekind infinite, we get
N 4 A effectively (why?), while for a general infinite set A, we get N 4 A only by
appealing to choice (so non-effectively).

Problem 322. Show without using any form of AC that ifA is infinite then P.P.A//
is Dedekind infinite.

It follows that A is finite if and only if P.P.A// is Dedekind finite, giving a
characterization of (inductive) finiteness in terms of Dedekind finiteness.

The Axiom of Dependent Choice

The Axiom of Dependent Choice (DC) allows one to make a sequence of choices
where each choice may depend on the previous one. We will use it to derive later
that an order which is not well-ordered (or a relation which is not well-founded)
contains a strictly decreasing sequence of elements.

DC (The Axiom of Dependent Choice). Let R be a relation on A such that for
all x 2 A there is y 2 A with xRy, and let a 2 A. Then there is a sequence
han j n 2 Ni 2 AN such that a1 D a and anRanC1 for all n 2 N.

Proof (AC). Put P�.A/ WD P.A/XfØg and fix a choice function �WP�.A/! A such
that �.E/ 2 E for all E 2 P�.A/. Define gWA ! A by setting g.x/ WD �.fy 2
A j xRyg/. Then g is well defined by the given condition for the relation R. Hence
by the principle of recursive definition there exists a function f WN ! A such that
f .1/ D a and f .n C 1/ D g.f .n// for all n 2 N. Finally, put an WD f .n/. Then
a1 D a, and for all n we have

anC1 D g.an/ D �.fy 2 A j anRyg/ 2 fy 2 A j anRyg;

hence anRanC1 for all n. ut
DC is weaker than the full Axiom of Choice, but it is stronger than CAC.

Problem 323. Show (without using any form of AC) that DC implies CAC.

Problem 324. Use DC to formalize the argument at the end of Sect. 5.4 and give a
proof of Theorem 321 using DC instead of CAC.

5.8 @0 < c: The Cardinality of the Continuum

Definition 325. An interval in R is a subset of R having one of the forms:

.a; b/; .a; b�; Œa; b/; Œa; b� I .�1; a/; .a;1/; .�1; a�; Œa;1/ I or .�1;1/;
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The first four forms above are called bounded intervals, the next four are called
half-infinite intervals, and the last interval .�1;1/ equals R itself.

An interval is proper if it contains at least two points, while the empty set Ø D
.a; a/ and singleton sets fag D Œa; a� are improper intervals.

Problem 326. Prove that if a < b are real numbers, then the interval .a; b/ is
effectively equinumerous with .0; 1/, the interval Œa; b� is effectively equinumerous
with Œ0; 1�, and each of the intervals .a; b� and Œa; b/ is effectively equinumerous
with .0; 1�, all via suitable linear mappings.

The figure below shows the geometric view of a one-to-one correspondence between
the line segment AB and the line segment CD.

A B

DC

More interestingly, we have the following result.

Problem 327. .0; 1� Ï .0; 1/, Œ0; 1� Ï Œ0; 1/, and so Œ0; 1� Ï .0; 1/, effectively.

[Hint: For .0; 1� Ï .0; 1/, remove from .0; 1� the set f1; 1
2
; 1
4
; 1
8
; : : : g and remove

from .0; 1/ the set f 1
2
; 1
4
; 1
8
; : : : g. Note that if A\B D Ø D A\C then B Ï C )

A[ B Ï A[ C .]

Corollary 328. Any two bounded proper intervals in R, whether open, half-open,
or closed, are effectively equinumerous with each other.

Problem 329. For any a; b 2 R, Œa;1/ Ï Œ0;1/ Ï .�1; b�, effectively.

[Hint: Use the maps x 7! x C a and x 7! b � x defined on Œ0;1/.]
Problem 330. Œ0;1/ Ï .0;1/, effectively..

[Hint: Remove J and N from the intervals Œ0;1/ and .0;1/, respectively.]

Corollary 331. Any two half-infinite intervals, whether open or closed, are effec-
tively equinumerous with each other.

The following result now implies that any half-infinite interval is effectively
equinumerous with any bounded interval.

Problem 332. Show that x 7! y D x

x C 1 maps the interval .0;1/ bijectively

onto .0; 1/.
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The next figure geometrically illustrates how the ray
�!
OA 	 .0;1/ gets mapped

onto the line segmentOB 	 .0; 1/.

P
y

AO x

B

From what we have obtained so far, we see that

R D .�1; 0/[ f0g [ .0;1/ Ï .�1; 0/[ f0g [ .0; 1/ D .�1; 1/;

and so R D .�1;1/ is effectively equinumerous with any bounded interval and
so also with any half-infinite interval. We record this important result as

Corollary 333. Any two proper intervals in R, any of which may be bounded, half-
infinite, or R itself, are effectively equinumerous with each other.

[Note: The above results all hold for any ordered field, not just R.]

By the last result, all proper real intervals have the same cardinal number which
is denoted by c, and is called the cardinality of the continuum.

Definition 334. c WD j.0; 1�j D jŒ0; 1�j D j.0; 1/j D jRj.
Since N � R, it follows that

Problem 335. @0 6 c.

Problem 336. Using the earlier results of this section establish each of the
following results effectively:

1. cC c D c, i.e., 2c D c; and so by induction we also have n � c D c.
2. @0 � c D c.
3. cC 1 D c; and so by induction cC n D c.
4. cC @0 D c.

We now turn to the following remarkable result of Cantor, often expressed by the
statement “R is uncountable.” Unlike the set of rational numbers, the reals numbers
cannot be exhaustively listed as a sequence.

Theorem 337 (Uncountability of R, Cantor). No proper interval is countable.
Hence R is not countable, that is, R 64 N, and so N � R.

Proof. Since all proper intervals are equinumerous to each other and to R, it suffices
to show that Œ0; 1� is not countable, that is, Œ0; 1� cannot be the range of any function
with domain N. We will show, following Cantor, that if f WN ! R then its range
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f ŒN� D ran.f / cannot include all of Œ0; 1�, i.e., there is p 2 Œ0; 1� which is not in
the range of f , and so, in particular, f certainly cannot be a bijection between N
and Œ0; 1�.

Given a bounded closed interval I D Œa; b� with a < b, we trisect Œa; b� and
subdivide it into three equal subintervals each of length ` WD 1

3
len.I / D b�a

3
,

so that a < a C ` < a C 2` < b. By removing the middle-third open interval,
I D Œa; b� splits into two disjoint closed subintervals, called the left-third and right-
third subintervals, as

LŒI � WD Œa; aC `� D left-third of Œa; b�, and,

RŒI � WD ŒaC 2`; b� D right-third of Œa; b�.

The figure below illustrates how this is done.

I
L[I ] R[I ]

a+� ba

Trisecting the interval I =[a,b], where � :=

a+2�

b−a
3

Now let f WN ! R be an arbitrary mapping, and put an D f .n/ for each n 2 N,
which gives the sequence ha1; a2; : : : ; an; : : : i enumerating the range of f . We will
find an element p 2 Œ0; 1� which is not in the range of f , showing that f is not
onto.

We say that a set A avoids the real x if and only if x 62 A. The crucial fact used
in this proof is that for any given interval I and any real x, one of the subintervals
LŒI � or RŒI � will avoid x.

Let I D Œ0; 1�. Then a1 cannot be both in LŒI � D Œ0; 1
3
� and in RŒI � D Œ 2

3
; 1�.

We will take I1 to be one of these two subintervals, making sure that I1 avoids a1.
To be definite, let

I1 D
(
LŒI � if a1 62 LŒI �,
RŒI � otherwise.

The point is that I1 is a closed subinterval of I such that I1 avoids a1.
We continue in this fashion in stages, choosing closed intervals I1 � I2 � � � � �

In such that In avoids an. To be definite, we specify how to go from stage-n to
stage-.nC 1/. Given that In has been constructed in stage-n, put

InC1 D
(
LŒIn� if anC1 62 LŒIn�,
RŒIn� otherwise.

Then InC1 is a closed subinterval of In such that InC1 avoids anC1.
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This gives us a sequence of nested and bounded closed intervals

I1 � I2 � � � � � In � InC1 � � � � with an 62 In for all n,

and so by the Nested Interval Property there is p 2 \1nD1In. But p 6D an for any
n 2 N, since p 2 In while an 62 In. So p is not in the range of f . ut
Corollary 338. @0 < c.

The Cantor Machine

Note the effective nature of Cantor’s proof: Given any sequence of real numbers
han j n 2 Ni 2 RN, the procedure in the above proof effectively and uniquely
produces a point p 2 Œ0; 1� with p 6D an for all n. This effective mapping hani 7! p

will be denoted by M, so that MWRN ! Œ0; 1� with M.hani/ 62 fan j n 2 Ng for all
sequences hani 2 RN. The mapping M, which is pictured below, will be referred to
as the Cantor Machine.

hani
Input sequence of reals

�! M

Cantor Machine

�!M.hani/
Output real

2 Œ0; 1�Xfan j n 2 Ng

Thus the phenomenon in Cantor’s proof is summarized as follows: Given a
sequence of reals hani as input, the Cantor Machine M responds by producing
an output real p D M.hani/ 2 Œ0; 1� which differs from every term of the given
sequence. We informally express this by saying that the point p is diagonalized
away from the given list of reals a1; a2; : : : ; an; : : : .

5.9 CH: The Continuum Hypothesis

We now have the following examples of distinct cardinal numbers:

0 < 1 < 2 < � � � < n < nC 1 < � � � � � � < @0 < c:

By Corollary 300, we know that the sequence of cardinals from 0 to @0 is complete
in the sense that other than the finite cardinals and @0 there is no cardinal which can
be “placed in between them.” The question now arises if the sequence of cardinals
from 0 to c displayed above is complete in the above sense, and it reduces to the
question:

Is there a cardinal � such that @0 < � < c ?
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The Continuum Hypothesis, or CH, is the assertion that there is no such cardinal.
CH is equivalent to the statement that for every subset A of R, either A is countable
(i.e., jAj 6 @0) or A Ï R (i.e., jAj D c). If CH is false, there would exist
uncountable subsets of R not equinumerous to R.

Cantor tried to decide if CH is true or not, but failed. Other mathematicians in
early twentieth century also tried, but the question remained open. Much of research
in set theory in the twentieth century was dominated by this question. We will return
to the topic later.

5.10 More Countable Sets and Enumerations

Recall that J D f0; 1; 2; : : : g denotes the set of all finite (inductive) cardinals, N D
f1; 2; 3; : : : g is the set of all natural numbers (nonzero finite cardinals), and Z the
set of all integers (positive, negative, or zero). Given any set A, we letA� denote the
set of all finite sequences from A. The members of A� are also called the strings or
words over the alphabet A.

Problem 339. Find an effective bijection between J and the collection of all finite
subsets of J. Conclude that the collection of all finite subsets of N is effectively
denumerable, and more generally that the collection of all finite subsets of an
effectively denumerable set is effectively denumerable.

[Hint: Given m 2 J, consider the set Am of all k 2 J such that the bit at position
k in the binary representation of m is 1, where the least significant bit is defined as
position 0. In other words, Am D fk 2 J j bm=2kc is oddg, where bxc denotes the
greatest integer not greater than x.]

Problem 340. Show that the set N� of all finite sequences of natural numbers is
effectively bijective with the collection of all finite subsets of N�. Conclude that N�
is effectively denumerable.

[Hint: Consider the mapping which sends a finite sequence hn1; n2; : : : ; nki in N�
to the finite set fn1; n1 C n2; : : : ; n1 C n2 C � � � C nkg.]
Problem 341. Prove that the set of words over any nonempty effectively countable
alphabet is effectively denumerable. In particular, the set of all computer programs
in any programming language is effectively denumerable.

Problem 342. Prove that the set ZŒx� of all polynomials with integer coefficients is
effectively countable.

Definition 343. A real number is algebraic if it is a root of some nonzero polyno-
mial with integer coefficients. Otherwise, it is transcendental.

Problem 344. Every rational number is algebraic, but there are infinitely many
algebraic numbers which are not rational.
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Problem 345 (Cantor). The set of algebraic numbers is countable.

Corollary 346 (Cantor). There exist transcendental numbers.

Since every nonzero polynomial can have at most finitely many roots, one can
establish Problem 345 using the result that a countable union of finite sets is
countable (Proposition 317), but such a proof requires the use of CAC (the
Countable Axiom of Choice) and so is not effective. However, it is in fact possible
to prove that the set of algebraic numbers is effectively countable.

Problem 347. Show that given an effectively countable family of finite subsets of
R, their union is effectively countable. Conclude that the set of algebraic numbers
is effectively countable.

By the last problem, the algebraic numbers can be effectively enumerated in a
specific sequence a1; a2; : : : ; an; : : : . Since the Cantor Machine effectively “diag-
onalizes out” a real p different from all the an’s, so Cantor’s method is able to
effectively specify a particular transcendental number.

Long before Cantor, Liouville had given examples of transcendental numbers
which are even more effective. For example, he proved that the Liouville Constant

1X

nD1

1

10nŠ
D 1

10
C 1

102
C 1

106
C 1

1024
C� � � D 0:110001000000000000000001000 � � �

whose decimal expansion has the digit one at position nŠ for every n with all other
digits being zero, is a transcendental number.

Liouville’s proof method was specific to number theory. Cantor’s new method of
proof, on the other hand, is applicable to much wider contexts beyond the theory of
algebraic and transcendental numbers.

Problem 348. Show that the rules

f .1/ WD 1; f .2n/ WD f .n/C 1; and f .2nC 1/ WD 1=f .2n/ .n 2 N/

define a unique function f WN! QC which is in fact a one-to-one correspondence
between N and the set QC of positive rational numbers.



Chapter 6
Cardinal Arithmetic and the Cantor Set

Abstract We continue the basic theory of cardinals, covering the Cantor–Bernstein
Theorem, arbitrary cardinal products and cardinal arithmetic, binary trees and the
construction of the Cantor set, the identity 2@0 D c and effective bijections between
familiar sets of cardinality c, Cantor’s theorem and König’s inequality, and the
behavior of �@0 for various cardinals �.

6.1 The Cantor–Bernstein Theorem

The following basic result says that for cardinals ˛ and ˇ, if ˛ 6 ˇ and ˇ 6 ˛ then
˛ D ˇ. Among other things, it greatly facilitates cardinal arithmetic.

Theorem 349 (Cantor–Bernstein). If C � B and f WC ! B is a one-to-one
function “reflecting” C into the subset f ŒC � of B so that C � B � f ŒC �, then
B Ï C .

Discussion and proof. Figure 6.1 shows the analogy with Royce’s illustration of
map.

Put A WD C XB . The set C is then viewed as a “country” with “provinces” A
and B , and f is viewed as a “mapping” in the sense of cartography: Country C has
just two provinces A and B (Fig. 6.1a), and a perfect map C1 of Country C is made
upon the surface of Province B , so that C1 consists of a map A1 of A and a map B1
of B (Fig. 6.1b). Since the map is correct, B1 must contain a “map of the map,” C2,
consisting of A2 and B2; and B2 must contain a “map of the map of the map”; and
so on (Fig. 6.1c).

The one-to-one mapping f mapsA onto its mapA1 D f ŒA�, soA Ï A1, withA1
disjoint from A (since A1 � B). Similarly A2 D f ŒA1� is similar (equinumerous)
to both A and A1, and is disjoint from both of them. So the “iterated maps” of
Province A, shown shaded in Fig. 6.1c as A1;A2; : : : , form an infinite sequence of
pairwise disjoint “copies” of Province A:

A Ï A1 Ï A2 Ï A3 Ï � � � (all similar and pairwise disjoint).

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__6, © Springer Science+Business Media New York 2014
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BA

C

BA

C

A1 B1

C1
BA

C

A1 B1

C1

A2 B2

C2

a b c

Fig. 6.1 Royce’s illustration of map for the proof of the theorem. (a) Country C consists of two
provinces: A (shown shaded) and B (shown unshaded); (b) A map C1 of Country C is placed
within Province B , so C1 itself contains maps A1 and B1 for Provinces A and B; (c) The map C1
in turn must contain a “map of the map” C2, consisting of A2 and B2, and so on

Put A� WD A1 [ A2 [ A3 [ � � � . Now a key observation is that .A [ A�/ Ï A�,
since f “shifts” the pairwise disjoint sets A;A1; A2; : : : (shaded in the figure) to the
“next” sets A1;A2; A3; : : : . More precisely, f �A[A� WA [ A� ! A� is a bijection
from A[ A� onto A�, since f is injective and

f ŒA [A�� D f ŒA� [ f ŒA�� D f ŒA� [ f ŒA1 [A2 [ � � � �
D A1 [ f ŒA1� [ f ŒA2� [ � � �
D A1 [ A2 [ A3 [ � � � D A�:

Finally, let E WD CX.A [ A�/, the entire remaining unshaded part in Fig. 6.1c.
Then C D .A [ A�/ [ E and B D A� [ E . Since .A [ A�/ Ï A� and since E is
disjoint from both A [A� and A�, it follows that:

.A[ A�/ [E Ï A� [ E; or: C Ï B . �

It should be noted in the above proof that the final one-to-one correspondence,
say g, between C and B is described as the mapping on C which fixes every point
outside A [ A� and sends each point x in A [ A� to f .x/. Formally, the bijection
gWC ! B is the union of f restricted to A[A� with the identity map restricted to
CX.A[ A�/, that is:

g.x/ D
(
f .x/ if x 2 .A [A�/
x if x 2 CX.A[A�/ :

Therefore the Cantor–Bernstein theorem is an effective theorem: A bijection gWC !
B can be effectively specified in terms of the given function and sets.

The theorem is often stated in the following equivalent “symmetric” form.

Theorem 350 (Cantor–Bernstein, Symmetric Version). If A 4 B and B 4 A

then A Ï B . Therefore, the relation 6 defined on the cardinals is antisymmetric,
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i.e., if ˛ 6 ˇ and ˇ 6 ˛, or equivalently if ˛ D� ˇ, then ˛ D ˇ. It follows that
˛ 6 ˇ if and only if ˛ < ˇ or ˛ D ˇ.

Problem 351. Show that this symmetric version of the Cantor–Bernstein Theorem
is equivalent to the earlier version.

Problem 352. The Cantor–Bernstein Theorem is equivalent to the assertion that if
˛; ˇ; � are cardinals with ˛ C ˇ C � D ˛, then ˛ C ˇ D ˛.

Historical note. The Cantor–Bernstein Theorem was conjectured by Cantor, par-
tially proved by Schröder, and a full proof was published by Bernstein. But earlier
than all of these, Dedekind had actually proved the theorem, but he never published
his proof. The theorem is most often called the Schröder–Bernstein Theorem, and
sometimes simply Bernstein’s Theorem.

6.2 Arbitrary Sums and Products of Cardinals

Given an indexed family h˛i j i 2 I i of cardinal numbers, we wish to define the
“general sum”

P
i2I ˛i as follows. First use AC to choose representative sets Ai of

cardinality ˛i so that jAi j D ˛i for each i 2 I . Then the sets fig � Ai are pairwise
disjoint, with jfig � Ai j D ˛i (i 2 I ). So we may define:

X

i2I
˛i WD

ˇ
ˇ̌
ˇ
[

i2I
fig � Ai

ˇ
ˇ̌
ˇ:

For this definition to work properly, we need one more application of AC:

Problem 353 (Uniqueness of General Sum, AC). Let hAi j i 2 I i and
hBi j i 2 I i be indexed families of pairwise disjoint sets (i.e., for i; j 2 I ,
i 6D j ) Ai \Aj D Ø D Bi \ Bj ). If Ai Ï Bi for each i 2 I , then

[

i2I
Ai Ï

[

i2I
Bi :

Let h˛i j i 2 I i be an indexed family of cardinals. Without AC, we cannot guarantee
the existence of a representative family of sets hAi j i 2 I i with jAi j D ˛i for i 2 I .
Even if such a family exists, we cannot assume, without AC, that if jAi j D jA0i j D ˛i
for all i 2 I then [i2I fig � Ai Ï [i2I fig � A0i .
Definition 354 (Sum-Adequate Families of Cardinals). An indexed family of
cardinals h˛i j i 2 I i is sum-adequate if there is a representative family of sets
hAi j i 2 I i such that jAi j D ˛i for all i 2 I and whenever A0i Ï Ai for all i 2 I ,
we have [i2I fig � Ai Ï [i2I fig � A0i .
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Under AC, every family of cardinals is sum-adequate. If AC is not assumed,
arbitrary cardinal sums are significant only for sum-adequate families.1

Definition 355 (General Cardinal Sum). For a sum-adequate family of cardinal
numbers h˛i j i 2 I i, we define the general cardinal sum as:

X

i2I
˛i WD

ˇ
ˇ
ˇ
ˇ
[

i2I
fig �Ai

ˇ
ˇ
ˇ
ˇ;

where each Ai is a representative set of cardinality ˛i , i.e., jAi j D ˛i for i 2 I . If
h˛i j i 2 I i is not sum-adequate, we define the sum

P
i2I ˛i to be zero.

Problem 356 (AC). Assuming AC, show that the general cardinal sum of any
indexed family of cardinals is well defined and unique: For any indexed family of
cardinal numbers h˛i j i 2 I i, there is a unique cardinal number ˛ and a pairwise
disjoint family hAi j i 2 I i of sets such that

jAi j D ˛i for all i 2 I , and ˛ D
ˇ
ˇ
ˇ
ˇ
[

i2I
Ai

ˇ
ˇ
ˇ
ˇ:

Problem 357 (AC). If jAj D ˛, jBj D ˇ, and ˛b D ˛ for each b 2 B , then

˛ˇ D
X

b2B
˛b D

X

b2B
˛:

[Hint: A � B partitions as [b2BA � fbg with A Ï A � fbg for all b 2 B .]

Problem 358 (AC). Prove the distributive law for arbitrary cardinal sums:

˛
�X

i2I
ˇi

�
D
X

i2I
˛ˇi :

Definition 359. Let I be any set. We say that a is an I -tuple if a is a function
with domain dom.a/ D I . If a is an I -tuple, then the value a.i/ is called the i -th
coordinate of a and is denoted by ai , so that a D hai j i 2 I i.
Definition 360. The Cartesian product of an indexed family hAi j i 2 I i of sets is
defined as the set of all I -tuples hai j i 2 I i whose i -th coordinate ranges over the
set Ai , for each i 2 I . In notation:

1As Russell’s socks-and-boots example noted, without AC, the family h2; 2; 2; : : : i may fail to be
sum-adequate: The ambiguous infinite sum 2C 2C 2C � � � may be @0, non-reflexive, or > @0.
The failure for the sequence h@0;@0;@0; : : : i is striking too: R may be partitioned into countably
many countable sets (Feferman–Levy, see [33]). If each ˛i is well-orderable, then one may use
canonical representatives to define a “principal value” for

P
i ˛i even if h˛i i is not sum-adequate

(Whitehead, see [48]).
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Y

i2I
Ai WD

˚hai j i 2 I i j 8i 2 I; ai 2 Ai
�
:

Problem 361 (AC). If Ai Ï A0i for all i 2 I , then
Y

i2I
Ai Ï

Y

i2I
A0i .

Let h�i j i 2 I i be an indexed family of cardinals. Without AC, if jAi j D jA0i j D �i
for all i 2 I , we cannot conclude that

Q
i2I Ai Ï

Q
i2I A0i . In fact, without AC we

cannot even conclude that a representative family of sets hAi j i 2 I i with jAi j D �i
exists.

Definition 362 (Product-Adequate Families of Cardinals). An indexed family of
cardinals h�i j i 2 I i is product-adequate if there is a representative family of sets
hAi j i 2 I i such that jAi j D �i for all i 2 I and whenever A0i Ï Ai for all i 2 I ,
we have

Q
i2I Ai Ï

Q
i2I A0i .

If AC is not assumed, arbitrary cardinal products are significant only for product-
adequate families.

Definition 363 (Arbitrary Cardinal Products). For a product-adequate family
h�i j i 2 I i of cardinals, define the cardinal product of the family as:

Y

i2I
�i WD

ˇ
ˇ
ˇ
ˇ
Y

i2I
Ai

ˇ
ˇ
ˇ
ˇ;

where Ai is a set with jAi j D �i for each i 2 I . If h�i j i 2 I i is not product-
adequate, we define the product

Q
i2I �i to be zero.

Under AC, every family of cardinals is product-adequate, and every family of
nonzero cardinals has a unique nonzero cardinal as the product.

Alternative View of Products

Suppose that hBi j i 2 I i is an indexed family of pairwise disjoint nonempty sets
(i.e., Bi 6D Ø and Bi \ Bj D Ø whenever i 6D j ), so that fBi j i 2 I g forms a
partition. We would expect the number of choice sets from this partition fBi j i 2 I g
to be equal to the product of the size of the Bi ’s. The following result confirms this
formally.

Problem 364. Given an indexed family hAi j i 2 I i of nonempty sets, put Bi D
fig �Ai so that each Bi Ï Ai , but Bi \Bj D Ø for i 6D j . Let C be the collection
of all choice sets from the partition fBi j i 2 I g. Then C Ï

Q
i2I Ai . In fact,

C D Qi2I Ai .

Thus the alternative definition of product (using choice sets from a partition)
coincides with the original Cartesian product!

Here is why Russell called the Axiom of Choice the Multiplicative Axiom.
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Problem 365. The Axiom of Choice is equivalent to the assertion that an arbitrary
product of nonzero cardinals is nonzero: If h�i j i 2 I i is an indexed family of
cardinals with �i 6D 0 for all i 2 I , then

Q
i2I �i 6D 0.

6.3 Cardinal Exponentiation: jP.A/j D 2jAj

IfAi D A for all i 2 I , so that �i D jAi j D jAj D � (say) for all i , then the cardinal
product

Q
i2I �i reduces to exponentiation, as in (informally):
Y

i2I
jAi j D

Y

i2I
�i D

Y

i2I
jAj D

Y

i2I
� D jAjjI j D �jI j:

Problem 366. If Ai D A for all i 2 I , then the Cartesian product
Q
i2I Ai DQ

i2I A equals the collection of all functions from I to A, i.e.,
Q
i2I A D

fF j F WB ! Ag.
The last fact simplifies the definition of cardinal exponentiation.

Definition 367 (Exponential Sets). Given sets A and B , we define AB to be the
set of all functions from B to A, i.e.,

AB WD fF j F WB ! Ag :

The following is similar to Problem 361, but here we do not need AC.

Problem 368 (Invariance of Exponentiation). If A Ï C and B Ï D then
AB Ï CD .

The following is therefore well defined:

Definition 369 (Cardinal Exponentiation, Cantor). Given cardinals ˛ and ˇ,
define

˛ˇ WD ˇˇAB ˇˇ ; where A and B are representative sets with jAj D ˛, jBj D ˇ.

Problem 370. Let � be a cardinal. Using the last definition of exponentiation show
that �1 D �, and �nC1 D �n�� for any n 2 J. Informally: �n D � �� �� � ��� (n times).

Definition 371 (Characteristic Functions). We say that f is a characteristic
function on I if f 2 f0; 1gI , that is, if f W I ! f0; 1g.

IfE � I , we let �E denote the characteristic function on I defined by �E.i/ D 1
if i 2 E and �E.i/ D 0 if i 62 E .
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Definition 372 (Binary I -tuples). An I -tuple a D hai j i 2 I i is called a binary
I -tuple if and only if 8i 2 I; ai D 0 or ai D 1. Thus a binary I -tuple is simply a
characteristic function on I . Given a binary I -tuple a D hai j i 2 I i, the value of a
at i , i.e., a.i/ D ai , is called the i -th bit of a.

Recall the definitions of infinite sequences and strings from Sect. 1.7.

Definition 373 (Infinite Binary Sequences). When I D N, a binary N-tuple is
called an infinite binary sequence, so that f0; 1gN is the set of all infinite binary
sequences. An infinite binary sequence a D han j n 2 Ni is written by simply
writing out its bits in order, i.e., as a D a1a2a3 � � �an � � � .
For any set I , there is a very natural effective one-to-one correspondence between
its power set P.I / and the set f0; 1gI of all characteristic functions on I , making
the two collections P.I / and f0; 1gI virtually interchangeable.

Problem 374 (Cantor). P.I / Ï f0; 1gI , via an effective natural bijection.
In particular, P.N/ Ï f0; 1gN via a natural effective bijection between the set of

all subsets of N and the set of all infinite binary sequences.

[Hint: Consider the mappingE 7! �E from P.I / to f0; 1gI .]

Corollary 375. If jAj D � then jP.A/j D 2� . In other words, jP.A/j D 2jAj.
Corollary 376. If A is denumerable, then jP.A/j D 2@0 , and thus every denumer-
able set has exactly 2@0 subsets. In particular jP.N/j D jP.Q/j D 2@0 , i.e., each of
N and Q has exactly 2@0 subsets.

Problem 377. A 4 P.A/ Ï f0; 1gA for any set A, and � 6 2� for any cardinal �.

Problem 378. c 6 2@0 .

[Hint: Find an injection from R into P.Q/.]

Since we have earlier proved that @0 < c, we now get:

Corollary 379. @0 < 2@0 . Thus there are uncountably many infinite binary
sequences, and so uncountably many subsets of N.

This last fact is a special case of Cantor’s Theorem, and we will revisit this in a later
section where we will also prove the general case.

6.4 Cardinal Arithmetic

Since we have already defined sum, product, and power of cardinals, we can look
for their algebraic properties. Throughout this section we assume AC.

Definition 380 (Rearrangement or Permutation). If h�i j i 2 I i and
˝
�0i j i 2 I

˛

are two families of cardinals indexed by the same index set I , we say that
˝
�0i j i 2 I

˛



116 6 Cardinal Arithmetic and the Cantor Set

is a rearrangement (or permutation) of h�i j i 2 I i if there exists a permutation � of
I (that is � W I ! I a bijective transformation of I onto I ) such that

�0i D ��.i/ for all i 2 I :

Problem 381 (The Generalized Commutative Laws). If
˝
�0i j i 2 I

˛
is a rear-

rangement of the cardinals h�i j i 2 I i, then

X

i2I
�0i D

X

i2I
�i ; and

Y

i2I
�0i D

Y

i2I
�i :

Problem 382. Formulate and prove “Generalized Associative Laws” for arbitrary
sums and products of cardinal numbers.

Problem 383 (Monotonicity of Sum and Product). Prove that if ˛i 6 ˇi for all
i 2 I , then

X

i2I
˛i 6

X

i2I
ˇi ; and

Y

i2I
˛i 6

Y

i2I
ˇi :

Problem 384 (Laws of Exponents). Prove that if ˛, ˇ, and � are cardinals, then

�˛�ˇ D �˛Cˇ; ˛�ˇ� D .˛ˇ/�; and .�˛/
ˇ D �˛ˇ:

Problem 385 (Generalized Laws of Exponents).

Y

i2I
�˛i D �

P
i2I ˛i ; and

Y

i2I
�˛i D

�Y

i2I
�i

�˛
:

Problem 386. Are the following strict inequalities true?

˛ < ˇ) ˛� < ˇ�; and ˛ < ˇ) �˛ < �ˇ:

Here are some examples of computation using cardinal arithmetic.

Example 387. Find
P

n2N
n D 1C 2C 3C � � � .

Proof (Solution). Put � D P

n2N
n D 1C 2C 3C � � � . Since n > 1 for all n 2 N, we

get

� D
X

n2N

n D 1C 2C 3C � � � > 1C 1C 1C � � � D 1 � @0 D @0;
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but also n 6 @0 for all n 2 N, and so

� D
X

n2N

n D 1C 2C 3C � � � 6 @0 C @0 C@0 C � � � D @0 � @0 D @20 D @9;

Combining the inequalities � > @0 and � 6 @0 we get � D @0. ut
Example 388. Find

Q

n2N
n D 1 � 2 � 3 � � � .

Proof (Solution). Put � D Q

n2N
n D 1 � 2 � 3 � � � D 2 � 3 � 4 � � � D Q

n2N
.nC 1/. Since

n > 2 for all n 2 N, we get

� D
Y

n2N

.nC 1/ D 2 � 3 � 4 � � � > 2 � 2 � � �2 � � � D 2@0 ;

but also n 6 @0 for all n 2 N, and so

� D
Y

n2N

n D 1 � 2 � 3 � � � 6 2@0 � 2@0 � 2@0 � � � D �2@0�@0 D 2@20 D 2@0 :

As � > 2@0 and � 6 2@0 we get � D 2@0 . ut

6.5 The Binary Tree

Recall that a binary word (or a finite binary sequence) is a finite word made only of
0 and 1, and the set of all binary words is:

f0; 1g� WD f"; 0; 1; 00; 01; 10; 11; 000; 001; 010; 011; 100; 101; : : : g:

The unique word of length zero is the empty word, denoted by ", and for any n, there
are exactly 2n binary words of length n.

We can arrange the binary words in a tree structure by regarding prefixes of words
as “ancestors” and extensions as “descendents.” This will be called the tree of binary
words, or simply the binary tree. The binary words are also called the nodes of the
tree. For each n, there are 2n binary words of length n forming the nodes of the tree at
level n, and each node u of length n has two immediate descendents (extensions) of
length nC1, namely ua0 and ua1. Since the empty word " is a prefix of every word,
it will be an ancestor of every word, and hence will form the root node of the tree.
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A picture of the first few levels of the binary tree is shown below.

"

0

00

000

. . . . . .

001

. . . . . .

01

010

. . . . . .

011

. . . . . .

1

10

010

. . . . . .

011

. . . . . .

11

010

. . . . . .

011

. . . . . .

Problem 389. Find an effective bijection between N and the set of nodes in the
binary tree. Conclude that there are @0 nodes in the binary tree.

Starting from the root node ", one can descend down the tree to obtain an
infinite branch through the binary tree, that is an infinite set of nodes of the form
fu0; u1; u2; : : : ; un; : : : g, where u0 D " and each unC1 is one of the two possible
immediate extensions of un, so that unC1 equals either ua

n 0 or ua
n 1, and we get

len.un/ D n by induction.
There are an infinite (in fact, uncountable) number of infinite branches through

this tree, where each branch is represented uniquely by an infinite binary sequence:
For any given infinite binary sequence x 2 f0; 1gN, the set fxjn j n D 0; 1; 2; : : : g
of all prefixes of x forms a branch through the tree. E.g., the infinite binary
sequence 000000 � � � represents the leftmost branch, 111111 � � � the rightmost
branch, and the sequence 010101 � � � represents a “left-right-left-right-� � �” zigzag
branch: "; 0; 01; 010; 0101; : : : .

Problem 390. An infinite branchB through the binary tree is a set of binary words
which contains exactly one node of length n for each n D 0; 1; 2; : : : and is linearly
ordered by the “prefix” relation (i.e., for any two nodes in B , one is a prefix of the
other). Thus B D fu0; u1; u2; : : : ; un; : : : g where each un has length n and unC1
extends un by postfixing a single bit to it. Let B be the set of all branches through
the binary tree. Prove that B Ï f0; 1gN, via a very effective natural correspondence.

Problem 391. Prove that there are 2@0 branches through the binary tree.

Almost Disjoint Families of Subsets of N

Definition 392. A family D � P.N/ of sets of natural numbers is said to be an
almost disjoint family if every set in D is infinite and the intersection of any two
distinct sets in D is finite.
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While any pairwise disjoint family of subsets of N is effectively countable (why?),
there are almost disjoint families which are uncountable (of size > c).

Problem 393. Show that there is an almost disjoint family D of subsets of N with
jDj D 2@0 > c.

[Hint: Replace N by f0; 1g� and note that the intersection of two distinct infinite
branches (as defined in Problem 390) through the binary tree is finite.]

6.6 The Cantor Set K

In this section we define the important Cantor set K, a set of reals which naturally
has cardinality 2@0 . The Cantor set is constructed using a very special “binary tree
of intervals” called the Cantor system of intervals.

More precisely, we will map the nodes of the tree of binary words into a
collection of intervals, and assign a closed interval I Œu� to every binary word u
in such a way that2

For every binary word u, the two intervals I Œua0� and I Œua1� will be
disjoint subintervals contained within I Œu�.

The definition below proceeds by induction on node depth (D word length).
Recall that any closed interval I D Œa; b� (with a < b) can be trisected into three

equal subintervals each of length ` D 1
3
.b � a/, so that a < aC ` < aC 2` < b. If

we remove the middle-third open interval .a C `; a C 2`/ from I D Œa; b�, then I
splits into two closed subintervals: Œa; aC`� D the left-third of I , and ŒaC2`; b� D
the right-third of I .

Definition 394 (The Cantor System of Intervals). Let I Œ"� D Œ0; 1�, and having
defined I Œu� for all words of length n, define I Œv� for words v of length nC 1 by the
rule

I Œua0� D Left-third of I Œu�, and I Œua1� D Right-third of I Œu�:

Since each binary word v of length nC 1 has one of the forms v D ua0 or v D ua1
where u has length n, by induction this completely defines I Œu� for all binary
words u.

For example, we have I Œ0� D left-third of Œ0; 1� D Œ0; 1
3
�, and I Œ1� D right-third of

Œ0; 1� D Œ 2
3
; 1�. Also I Œ00� D left-third of I Œ0� D Œ0; 1

9
�, and I Œ01� D right-third of

I Œ0�D Œ 2
9
; 1
3
�, Similarly, I Œ10� D Œ 2

3
; 7
9
�, I Œ11� D Œ 8

9
; 1�, etc.

2In fact, we have already seen a form of this construction in the previous chapter as part of the proof
of Cantor’s theorem that R is uncountable. However, in that proof only a specific “infinite branch
of intervals” was “diagonalized out” to produce a real number distinct from the given sequence of
reals. Here we will deal with the full tree of intervals.
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This gives the following “binary tree of intervals,” which we call the Cantor
System of Intervals, or the Cantor Tree of Intervals.

I Œ"�
Œ0;1�

I Œ0�

Œ0; 13 �

I Œ00�

Œ0; 19 �

. . . . . .

I Œ01�

Œ 29 ;
1
3 �

. . . . . .

I Œ1�

Œ 23 ;1�

I Œ10�

Œ 23 ;
7
9 �

. . . . . .

I Œ11�

Œ 89 ;1�

. . . . . .

If x 2 f0; 1gN is an infinite binary sequence, say

x D x1x2x3 � � �xn � � � ; each xn equals 0 or 1.

then let xjn WD x1x2 : : : xn denote the prefix word of x of length n. Thus x
represents the infinite branch through the binary tree given by its prefix words
xj0 D ", xj1 D x1, xj2 D x1x2, xj3 D x1x2x3, etc.

Now note that given any x 2 f0; 1gN, the infinite branch of its prefix words xj0,
xj1, xj2, . . . , xjn, . . . , etc., also determines an infinite branch through the above
Cantor Tree of Intervals, giving the corresponding nested sequence

I Œ"� � I Œxj1� � I Œxj2� � I Œxj3� � � � � � I Œxjn� � � � �

of closed intervals, where the n-th interval I Œxjn� has length 1=3n. Therefore, by
the Nested Interval Property, this nested sequence of intervals must contain a unique
real number, which we denote by F.x/.

So each x 2 f0; 1gN, via the nested branch I Œxj0� � I Œxj1� � I Œxj2� � � � �
through the Cantor Tree of Intervals, determines the unique point F.x/ in their
intersection. We thus have a function FW f0; 1gN ! Œ0; 1� which maps the set of
infinite binary sequences into the interval Œ0; 1�. Officially, F is defined by setting
F.x/ WD The unique member of

T1
nD1 I Œxjn�:

Theorem 395. Let I Œu�, where u ranges over all binary words, be the Cantor
System of Intervals, so that I Œ"� D Œ0; 1�, I Œ0� D Œ0; 1

3
�, I Œ1� D Œ 2

3
; 1�, etc.

The Cantor System of Intervals then naturally determines a unique injective function
FW f0; 1gN! Œ0; 1� such that for every x 2 f0; 1gN,

F.x/ D the unique member of
1\

nD1
I Œxjn�:
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Problem 396. Prove Theorem 395 by showing that F is one-to-one.

[Hint: Distinct branches through the Cantor Tree of Intervals determine distinct
nested sequences of intervals which eventually become disjoint.]

Problem 397. For each of the following infinite binary sequences x, find the first
four of the nested intervals determined by x, and then compute F.x/. 1. x D
000000 � � � 2. x D 111111 � � � 3. x D 010101 � � � 4. x D 101010 � � �
[Hint: F.x/ is a limit of the endpoints of the nested intervals I Œxjn�, n 2 N.]

Definition 398 (The Cantor Set K). The Cantor Set K is defined as the subset of
Œ0; 1� which equals the range of the function F of Theorem 395, i.e., K WD ran.F/ D
fF.x/ j x 2 f0; 1gNg.
The bijection FW f0; 1gN ! K establishes a natural identification of infinite binary
sequences with the points of the Cantor set K.

Corollary 399. K Ï f0; 1gN, so jKj D 2@0: The Cantor Set contains exactly 2@0
elements.

Corollary 400. 2@0 6 c.

Since we have earlier established that c 6 2@0 , an application of the Cantor–
Bernstein Theorem yields the following important result.

Corollary 401 (Cantor). 2@0 D c.

In the next section we will indicate how to build an explicit effective bijection
between R and f0; 1gN.

Let Kn be the set formed by taking the union of the 2n intervals at level (depth)
n of the Cantor Tree of Intervals. So K0 D Œ0; 1�, K1 D Œ0; 1

3
� [ Œ 2

3
; 1�, K2 D

Œ0; 1
9
�[ Œ 2

9
; 1
3
�[ Œ 2

3
; 7
9
�[ Œ 8

9
; 1�, etc., and in general Kn is the union of the 2n intervals

I Œu� where u ranges over the 2n binary words of length n:

Kn WD
[
fI Œu� j u is a binary word of length ng :

Note also that the intervals of KnC1 are obtained by removing the middle-third open
intervals from each of the intervals of Kn, thus doubling the number of intervals as
we go from Kn to KnC1. The first few of the sets Kn are shown below.

The sets Kn

K0

K1

K2

K3

I[ε] 10

I[0] 1
3

I[1]2
3

I[00] I[01] I[10] I[11]

The following problem is instructive.
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Problem 402 (Alternative Characterization of the Cantor Set). Show that

K D
1\

nD1
Kn.

The Cantor set is uncountable (with cardinality c D 2@0 > @0), but note that each set
Kn consists of 2n disjoint closed intervals each of length 1=3n, so the total length or
measure of the set Kn is .2=3/n. Since K � Kn for all n, and since lim

n!1.2=3/
n D 0,

this seems to indicate that the Cantor Set K has zero measure, a notion that will be
officially defined in Chap. 15.

Problem 403. Prove that Œ0; 1�XK, the complement of the Cantor Set within Œ0; 1�,
can be partitioned into a pairwise disjoint countable sequence of open intervals
whose lengths add up to 1.

Thus one can also view the Cantor set being constructed by removing middle-third
open intervals in stages, where at each stage we have a finite disjoint union of closed
intervals, and proceed to the next stage by removing the middle-thirds of all the
closed intervals of the current stage—which splits every interval into two and in
effect doubles the number of intervals. We start at stage 0 with the unit interval
K0 D Œ0; 1�, and having the set Kn at stage n, remove the middle-thirds of each
of the 2n disjoint closed intervals of Kn to obtain the set KnC1 of stage n C 1

consisting of 2nC1 disjoint closed intervals. Once all the middle-third open intervals
are removed, what remains is the Cantor set.

While this “top-down” definition of the Cantor set is often useful, we re-
emphasize the original “bottom up” construction via the Cantor Tree of Intervals
where the points of the Cantor set are represented uniquely by infinite binary
sequences: Since each sequence of nested intervals hIni given by an infinite branch
through the binary tree produces a unique real in its intersection \nIn, we get a
natural effective one-to-one correspondence between the infinite binary sequences
in f0; 1gN and the points of the Cantor set K.

Problem 404. For any infinite binary sequence x D x1x2x3 : : : xn : : : ,

F.x/ D 2
1X

nD1

xn

3n
(where F is as in Theorem 395):

Problem 405. Does 1=4 2 K? Does 1=e 2 K?

Problem 406. Recall the Cantor Machine MWRN ! Œ0; 1� used in the proof of
Cantor’s theorem, which satisfies M.hani/ 2 Œ0; 1�Xfan j n 2 Ng for all sequences
hani 2 RN. Show that

1. The mapping M is highly non-injective in the sense that for any hani 2 RN the
set fhxni 2 RN jM.hxni/ DM.hani/g has cardinality c D 2@0 .

2. The set of all possible responses produced by the Cantor Machine M equals the
Cantor set, that is, ran.M/ D K.
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Problem 407. Exhibit a natural effective bijection between the Cartesian product
f0; 1gN � f0; 1gN and f0; 1gN.

[Hint: Intertwine two sequences x1x2 � � � and y1y2 � � � into one: x1y1x2y2 � � � .]
Problem 408. Let K � K be the “planar Cantor set.” Show that there is a natural
effective bijection between K �K and K.

6.7 The Identity 2@0 D c

The identity 2@0 D c can be used to obtain the following results.

Problem 409. Let C D R2 be the complex plane. Prove that c2 D c and so C Ï R.

By induction, this can be generalized to any dimensions.

Problem 410. cn D c, and so Rn Ï R, for any n 2 N.

Problem 411. Prove that any subset of an Euclidean space (D Rn for some n)
containing a line segment (and in particular any subset with nonempty interior)
must be equinumerous with the entire space.

Cantor’s proofs of these facts initially resulted in controversy, since they seemed to
contradict the familiar principle of “invariance of dimensions” which says that there
cannot be a continuous one-to-one correspondence between two Euclidean spaces
of different dimensions. For example, Cantor’s result R2 Ï R implies that one can
represent the points of the Cartesian plane using a single real coordinate in a one-
to-one fashion (as opposed to the usual form which uses a pair of real coordinates)!
However, it soon became clear that the confusion resulted from a failure to recognize
the requirement of continuity in invariance of dimensions. As the field of topology
developed, it was firmly established that the bijections obtained by Cantor’s method,
while being effective, cannot be continuous, and so the principle of invariance of
dimensions remains intact.

Definition 412. The mapping hW f0; 1gN ! Œ0; 1� is defined by setting, for each
x D hxn j n 2 Ni 2 f0; 1gN,

h.x/ WD
1X

nD1

xn

2n
;

so that h.x/ is the real number in Œ0; 1� having an infinite binary representation
0 � x1x2x3 � � �xn � � � .
Problem 413. The map hW f0; 1gN ! Œ0; 1� is surjective but not injective. For which
x 2 f0; 1gN can you find y 2 f0; 1gN, y 6D x, with h.y/ D h.x/?
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Definition 414. Let f0; 1gN1 be the set of infinite binary sequences which are not
eventually zero, that is those which have infinitely many entries of 1:

f0; 1gN1 WD fx 2 f0; 1gN j x.n/ D 1 for infinitely many ng:

Problem 415. Show that the restriction of h to f0; 1gN1 is injective function with
range .0; 1�. Hence there is an effective bijection from f0; 1gN1 onto .0; 1�.

Problem 416. Show that there is an effective bijection from f0; 1gN onto f0; 1gN1.

[Hint: Given x D hxni 2 f0; 1gN, put h.x/ WD h1; 1 � x1; 1 � x2; : : : i if x is
eventually zero, put h.x/ WD h0; x1; x2; : : : i if x is eventually one, and h.x/ WD x

otherwise.]

Combining the results of the last two problems, we get the following.

Corollary 417. There is an explicit effective bijection from the set f0; 1gN of all
infinite binary sequences onto the interval .0; 1�.

One could also express this explicit effective bijection in the following alternative
form.

Problem 418. Define ˚W f0; 1gN ! .0; 1� by

˚.x/ WD

8
ˆ̂<

ˆ̂
:

1 � 1
2
h.x/ if x is eventually zero,

1
2
h.x/ if x is eventually one,

x otherwise.

Then ˚ is an effective bijection from f0; 1gN onto the interval .0; 1�.

In the last chapter we had seen effective bijections between .0; 1� and .0; 1/, and
between .0; 1/ and R. Therefore we have:

Corollary 419. There is an explicit effective bijection from the set f0; 1gN onto R.
Hence we get 2@0 D c in an especially direct and effective way.

Problem 420. Find a natural effective bijection between the set NN of all infinite
sequences of natural numbers and the set f0; 1gN1 of all infinite binary sequences
which are not eventually zero.

[Hint: Given an infinite sequence hn1; n2; : : : ; nk; : : : i of natural numbers, consider
the infinite binary sequence which has a 1 at position n1, position n1 C n2, position
n1 C n2 C n3, and so on, and has a 0 at every other place.]

Problem 421. Prove that @@00 D c effectively, by exhibiting an explicit bijection H
from NN onto .0; 1�.

[Hint: Consider the mapping HWNN ! .0; 1�
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H.hn1; n2; n3; : : : ; nk; : : : i/ WD 1

2n1
C 1

2n1Cn2
C 1

2n1Cn2Cn3
C � � �

which maps NN bijectively onto .0; 1�.]

Problem 422. Show effectively that
�f0; 1gN�N Ï f0; 1gN.

[Hint: Use the method of Proposition 316 in which a sequence of sequences is
effectively combined into a single sequence.]

Corollary 423. We have c@0 D c and RN Ï R effectively. In particular, the set of
all real sequences is effectively equinumerous with the real line.

The results established so far can be summarized as follows.

Theorem 424. One can explicitly construct effective bijections between any two of
the following sets:

f0; 1gN; NN; R; R2; Rn; RN; .0; 1/; .0; 1�; Œ0; 1�; Œ0; 1�2; Œ0; 1�N:

6.8 Cantor’s Theorem: The Diagonal Method

In this section we will generalize the inequality @0 < 2@0 to arbitrary cardinals,
an important result known as Cantor’s Theorem. An even more general (but non-
effective) result called König’s Inequality will also be proved. We start with a proof
of @0 < 2@0 in terms of binary sequences which readily generalizes to arbitrary
cardinals.

Problem 425 (Cantor Diagonalization of Binary Sequences). f0; 1gN 64 N.
More specifically, given any sequence of infinite binary sequences, one can effec-
tively find another infinite binary sequences different from all the given ones.

[Hint: Write out the given sequence of infinite binary sequences as an infinite array
(matrix) of bits whose first row is the first given sequence, the second row is the
second given sequence, etc. Now let d1 be the complement of the first bit of the
first row, d2 be the complement of the second bit of the second row, etc. Notice that
d1d2 � � �dn � � � is the sequence obtained by taking the diagonal of the given array
and then inverting every one of its bits.]

The method outlined above, known as Cantor diagonalization, thus gives us a
direct proof that there are uncountably many infinite binary sequences.

Corollary 426. N � f0; 1gN, and so @0 < 2@0 .
Since f0; 1gN Ï P.N/, so we also get:

Corollary 427. N � P.N/, i.e., @0 < jP.N/j. So P.N/ is uncountable, i.e., N has
an uncountable number of subsets.
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Cantor diagonlization can be readily generalized to arbitrary cardinalities:

Theorem 428 (Cantor’s Theorem). � < 2� for any cardinal �, i.e., the cardinal
2� is strictly greater than �. It follows that P.A/ 64 A and so A � P.A/, for any set
A, i.e., jAj < jP.A/j and so the number subsets of A is strictly greater than jAj.
Problem 429. Prove Cantor’s Theorem.

[Hint: Since P.A/ Ï f0; 1gA one can work with f0; 1gA instead of P.A/.]

Problem 430. Give a direct effective proof of Cantor’s Theorem by showing that if
F WA! P.A/ then the “anti-diagonal set”

DF WD fx 2 A j x 62 F.x/g

is not in the range of F , i.e., DF 2 P.A/Xran.F /, and so F is not onto.

The following beautiful result of König generalizes Cantor’s Theorem.

Theorem 431 (König’s Inequality (AC)). Let K be any set and let ˛k and ˇk be
cardinals for each k 2 K .

If ˛k < ˇk for all k 2 K , then
X

k2K
˛k <

Y

k2K
ˇk:

Proof. Assume ˛k < ˇk for each k 2 K , and let ˛ WD P
k2K ˛k and ˇ WDQ

k2K ˇk . We will be using the Axiom of Choice several times in this proof to
choose certain sets and elements. For each k 2 K , fix a set Bk such that jBkj D ˇk .
By replacing each Bk with fkg � Bk if necessary, we can assume that the sets Bk ,
k 2 K , are pairwise disjoint. Also since ˛k < ˇk , we can fix, for each k 2 K , a
subset Ak ¨ Bk with jAkj D ˛k and an element bk 2 BkXAk. Put A WD [kAk and
B WD Qk2K Bk , so that jAj D ˛ and jBj D ˇ.

Define F WA ! B by setting, for each x 2 A, F.x/ D y, where y D
hyk j k 2 Ki is defined as:

yk D
(
x if x 2 Ak
bk otherwise

:

Then F is a one-to-one function, for if x 6D x0 are in A, y D F.x/ and y0 D F.x0/,
then either there is k such that x; x0 2 Ak , so that yk D x 6D x0 D y0k , or else there
are distinct k; k0 2 K with x 2 Ak and x0 2 Ak0 giving yk D x 6D bk D y0k , hence
y 6D y0 in both cases. It follows that F is injective, and so ˛ 6 ˇ.

Finally, let GWA ! B be an arbitrary function from A to B . We show that G
cannot be surjective. For each k 2 K , the setDk WD f�k.G.x// j x 2 Akg is a subset
ofBk of cardinality at most ˛k (where �k WB ! Bk is the k-th coordinate projection
function), and so we can fix dk 2 BkXDk . Then the element d WD hdk j k 2 Ki 2 B
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is not in the range of G, for if x 2 A, then x 2 Ak for some k 2 K , so �k.G.x// 2
Dk while �K.d/ D dk 62 Dk , hence G.x/ 6D d . Thus G is not surjective. Hence
˛ < ˇ. ut
Problem 432. Derive Cantor’s Theorem as a direct corollary of König’s Inequality.

6.9 The Cardinal f D 2c and Beyond

By Cantor’s Theorem, there is no largest cardinal number. For any cardinal �, the
cardinal 2� is still bigger.

Definition 433. f D 2c.

Thus we have: 0 < 1 < 2 < � � � < @0 < c < f.

Problem 434. Prove that cc D f. Prove also that fc D f D f@0 .

Thus it follows that the set of all functions from R to R has cardinality f.

Problem 435. Prove that

1. The collection of all bounded real-valued Riemann Integrable functions defined
on the unit interval Œ0; 1� has cardinality f.

2. On the other hand, that the set of all continuous real-valued functions with
domain R has cardinality c.

[Hint: For the first result, use the fact that any bounded function defined on the unit
interval which is constant on the complement of the Cantor set must be Riemann
integrable. For the second result, note that two continuous functions which agree on
all rational points must agree on all real numbers.]

Cantor’s theorem enables us to obtain larger and larger infinite cardinals in an
endless fashion. Starting from @0 and repeatedly applying Cantor’s theorem we get:

@0 < 2@0 < 22@0
< � � � :

We can then get a cardinal ˇ larger than all the cardinals above by taking ˇ to be
the sum of all these cardinals:

ˇ WD @0 C 2@0 C 22@0 C � � � :
Then we can start again from ˇ and keep applying Cantor’s Theorem to get

ˇ < 2ˇ < 22
ˇ

< � � �
and so on. Iterating the process endlessly into the transfinite needs the notion of
ordinals, which will be defined later.
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We have already seen that

c@0 D c and f@0 D f:

More generally, we have �@0 D � if � is any of c; 2c; 22
c
; : : : , etc.:

Problem 436. Put �1 WD 2@0 and �nC1 D 2�n for n D 1; 2; : : : . Show that for any
n � 1, �@0n D �n.

In view of these last facts, one may think that the cardinals such as c D 2@0 , f D 2c,
and 2f are “too large” to be increased by raising to the power @0, and one may
conjecture that if � is a sufficiently large cardinal, say if � � 2@0 , then �@0 D �.
But this is false, since the cardinal ˇ mentioned above is larger than all of c, 2c, 22

c
,

etc., yet we have ˇ@0 > ˇ.

Problem 437. Prove that ˇ@0 > ˇ.

[Hint: Use König’s inequality.]

Problem 438. Prove that for any cardinal � there are cardinals � > � and � > �

such that �@0 D � and �@0 > �.

The phenomenon in the last problem can be illustrated in a more general way using
the concept of cofinality. We will define cofinality in a later chapter where the
“cofinality version” of König’s result will be proved.

6.10 Additional Problems

Problem 439. Show that the set of all monotone real functions has cardinality c.
(A function f WR! R is monotone if either f .x/ � f .y/ for all x < y or f .x/ �
f .y/ for all x < y.)

Problem 440. Given a set A � N, define a real number xA as

xA WD
1X

kD1

�A.k/

10k
2
;

where we write �A.n/ WD 1 if n 2 A and �A.n/ D 0 if n 62 A (thus �A is the
characteristic function of A). Prove that

1. A \ B D Ø) xA[B D xA C xB , and
2. xA is irrational if and only if A is infinite.

Problem 441. Find a specific mapping

F WR! P.N/
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such that for all x; y, if x < y then F.x/ ¨ F.y/ with F.y/XF.x/ infinite.

[Hint: It may be easier to first obtain such a function F from R to P.Q/.]

Problem 442. Find a specific function gWR ! R such that x 6D y ) g.x/ �
g.y/ 2 RXQ. (This gives an effective one-to-one map from R into the partition
R=Q.)

Problem 443. A nonempty subset S of the set Q of rational numbers is called a
subring of Q if it is closed under addition, subtraction, and multiplication, that is,
x; y 2 S ) xC y; x � y; xy 2 S . How many subsets of Q are subrings? Describe
the subrings of Q completely, and exhibit an effective one-to-one correspondence
between the collection of all subrings of Q and a familiar set.



Chapter 7
Orders and Order Types

Abstract This chapter introduces order isomorphisms and order types, as well as
the basic operations of sums and product of order types.

7.1 Orders, Terminology, and Notation

Consider the natural numbers arranged in ascending order of magnitude:

1; 2; 3; : : : ; n; nC 1; : : :
This arrangement is determined by the binary relation < (less than), and a smaller
number is always placed to the left of any larger number: Ifm and n are two distinct
numbers, then m precedes n in the above arrangement if and only if m < n. Here,
the precedence relation< is a transitive relation on N with the additional trichotomy
property that given any two distinct natural numbers exactly one of them precedes
the other.

Another familiar linear ordering is on the “points of the real number line”—the
set of real numbers ordered by magnitude—where the precedence relation is again
a transitive relation with the trichotomy property.

Intuitively, by a linear ordering we mean a set whose members are viewed as
points arranged in a single line by a transitive relation of precedence where for any
two distinct points exactly one precedes the other. If P denotes this relation on (say)
the set X of points, “xPy” stands for “x precedes y.”

We will first review some basic definitions from Sect. 1.9.

Definition 444. We say that P is an order onA, or thatP ordersA, or equivalently,
that hA;P i is an order (or a total or linear order) if P is a transitive relation on the
set A which satisfies trichotomy on A, i.e., for all x; y 2 A exactly one of the
conditions

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__7, © Springer Science+Business Media New York 2014
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xPy; x D y; yPx

holds. If A has more than one element, the order is called nontrivial.
Recall also that a relation P is called connected on a set A if for all distinct

x; y 2 A at least one of xPy or yPx holds.

Variants of the following basic problems were given in Chap. 1.

Problem 445. Let P be a relation on a set A. If P is asymmetric on A then it is
irreflexive on A, but the converse implication may fail. If P is transitive, then P is
asymmetric on A if and only if it is irreflexive on A.

Problem 446. Let P be a transitive relation on the set A. Then each of the
following conditions is equivalent to the others:

1. P orders A.
2. P is asymmetric and connected on A.
3. P is irreflexive and connected on A.

Remark. If P is an order on A, then by trichotomy the Cartesian product A � A is
partitioned into three pairwise disjoint sets:

fhx; yi j xPyg; fhx; yi j x D yg; and fhx; yi j yPxg:

In particular for any a 2 A, the three sets

fx 2 A j xPag; fag; and fx 2 A j aPxg

are pairwise disjoint with union equal to A.

Remark. We are defining order in the strict sense, i.e., as an irreflexive relation. One
could also define an ordering relation as a reflexive relation without any essential
changes.

Terminology and Notation

If P orders A, we will write x <P y to denote xPy. When there is no chance
of confusion, we even drop the subscript P and simply write x < y for xPy, a
notation that will be used routinely. We will further abuse terminology and usually
say “A is an order” in place of “hA;<i is an order.” The informal phrase “A is an
order” is really an abbreviation for “A is a set with an associated ordering which
will be denoted by <.”

Of course, if there are multiple orderings, say P and Q, on the same set A, then
the notation x < y may be ambiguous and we may need to explicitly distinguish
between x <P y and x <Q y. Also, two orderings on two different sets X and Y
will sometimes be denoted by <X and <Y , respectively.
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In addition, the usual notational enhancements for the symbol < will be used.
For example, “x � y” stands for “x < y or x D y,” “x > y” means “y < x,”
“x < y < z” is an abbreviation for “x < y and y < z,” etc.

7.2 Some Basic Definitions: Suborders

Definition 447. Let X be an order.
Given a 2 X , the elements of the set fx 2 X j x < ag are called the predecessors

of a, and the elements of the set fx 2 X j a < xg are called the successors of a.
If x; y 2 X , x is an immediate predecessor of y in X , or equivalently y is an

immediate successor of x in X , if x < y and there is no z 2 X with x < z < y. We
also say that x and y are consecutive elements or immediate neighbors to mean that
one of them is an immediate successor of the other.

It is easily seen that each element has at most one immediate successor or
immediate predecessor.

Example 448. The sets N and R can each be equipped with the usual order of
magnitude among the elements, but these are two separate orderings. In N, the set
of predecessors of the element 4 is the finite set f1; 2; 3g, while in R the set of
predecessors of 4 is the entire open interval .�1; 4/. The set of successors of 4 in
N is the infinite but countable set f5; 6; 7; 8; : : : g, while in R the set of successors of
4 is the uncountable open interval .4;1/.

In N, 7 is an immediate successor of 6, so 6 and 7 are consecutive elements of
N, while in R the same elements 6 and 7 are not consecutive. In fact, in N, every
element has a (unique) immediate successor and every element other than 1 has an
immediate predecessor (1 has no predecessor at all in N). On the other hand, in R,
no element has an immediate successor or immediate predecessor, and so there are
no consecutive elements in R.

Definition 449. Let X be an order, A � X , and a 2 X .
a is a lower bound of A, written a � A, if a � x for all x 2 A, and a is a first

(or least) element of A if a 2 A and a � A.
Upper bounds and last or greatest elements are defined similarly.
An element a 2 X is called an endpoint of the order X if a is either a first or a

last element of the whole set X . An ordering which does not have either a first or
last element is called an ordering without endpoints.

The subset A is called bounded below if there is some a 2 X which is a lower
bound of A. Similarly we define bounded above. A is bounded if it is both bounded
above and bounded below.

If A;B � X , we write A < B to mean .8x 2 A/.8y 2 B/.x < y/.
By trichotomy, a first (or last) element of a set, if it exists, is unique, and we write
a D minA for “a is the first element ofA,” and a D maxA for “a is the last element
of A.”



134 7 Orders and Order Types

Example 450. Let each of N and R be ordered as before (by usual order of
magnitude). The ordering N has a first element, but no last element. R is an ordering
without endpoints. If A D Œ0;1/ is the subset of R consisting of the nonnegative
reals, then A has a least element, 0. Also A is bounded below in R but not bounded
above.

Problem 451. For each of the following, give an example of a set X and a
nontrivial order on X satisfying the given condition.

1. X is countable, has a first and a last element, but there are no consecutive
elements in X ,

2. X has a last element but no first element.
3. X is infinite, X has a first and a last element, and each element except the last

has an immediate successor and each element except the first has an immediate
predecessor.

4. X has a unique element which has neither an immediate successor nor an imme-
diate predecessor while every other element has both an immediate successor
and an immediate predecessor.

Problem 452. If A is a nonempty finite subset of an order X , show that minA and
maxA both exist, that is A contains a least element and a greatest element.

Suborders

The sets N, Z, Q, and R, each ordered by the natural order of magnitude among
its elements, are familiar examples of orders. One can obtain many more examples
of orders either by rearranging the elements of the set (next section), or by passing
to a subset and regarding the subset as a new order with the ordering on the subset
inherited from the original order.

More specifically, given an orderingX and a subset Y � X , Y becomes an order
on its own right by restricting the order on X to the elements of Y . The resulting
order on Y is said to be the suborder induced by (or the suborder inherited from)
the ordering of X .

For example, let X be the set of real numbers with the usual order and let Y � X
be the subset Y WD f n

nC1 j n 2 Ng. Then the suborderY has a first element (1=2), but
Y does not have any last element. In Y , the elements 2=3 and 3=4 are consecutive,
with 3=4 being the immediate successor of 2=3.

Order properties or relations for points and subsets may not be preserved
between the suborder and the original parent order. In N � R, the suborder on
N inherited from the usual order of R is same as the usual order on N, but we had
noted earlier that 6 and 7 are consecutive elements in the suborder N, while the
parent order R has no consecutive elements at all.

As another example, consider the interval Œ0; 1/ as a suborder of R, and let
AWDf n

nC1 j n 2 Ng, so that A � Œ0; 1/ � R. Then A is bounded in the parent
order R, but it is not bounded in the suborder Œ0; 1/.
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Definition 453 (Intervals, segments, cofinal sets). Let X be an order.
An open interval in X is any subset which can be expressed (for some a; b 2 X )

in one of the four forms

fx j x < ag or fx j a < xg or fx j a < x < bg or the entire order X:

A closed interval in X is a subset of X of the form fx j x � ag or fx j a � xg or
fx j a � x � bg (for some a; b 2 X ) or X or Ø. An interval is a subset which is
either an open or a closed interval.

A subset A is an initial segment of X if it is “closed under precedence,” that is,
if a 2 A and x < a ) x 2 A (any predecessor of any element of A is also in
A). Final segments are similarly defined. A subset A is a segment in X if whenever
x; y 2 A and x < z < y then z 2 A.

A subset A is cofinal in X if for all x 2 X there is some a 2 A with x � a.
Coinitial subsets are similarly defined.

Note that every initial (or final) segment is a segment, and that every interval is a
segment, but in some orders there are segments which are not intervals. For example,
the subset fx 2 Q j x2 < 2g is a segment, but not an interval, in Q (with usual order).

The complement of an initial segment is a final segment, and vice versa. For an
order without a last element a subset is cofinal if and only if it is unbounded above.
For an order with a last element a subset is cofinal if and only if it contains the last
element.

7.3 Isomorphisms, Similarity, and Rearrangements

Let A D f1; 3; 5; 7; : : : g be the set of odd positive integers and B D f2; 4; 6; 8; : : : g
be the set of even positive integers, with each of them ordered by the usual order of
magnitude. Consider the correspondence between them as displayed below:

A W 1 < 3 < 5 < 7 < � � � < 2n � 1 < � � �
l l l l l

B W 2 < 4 < 6 < 8 < � � � < 2n < � � �
If f denotes this mapping from A to B so that f .n/ D n C 1, then note that
f WA ! B not only is a bijection, but also preserves order in the sense that for
all m; n 2 A, m < n in A if and only if f .m/ < f .n/ in B . Such an order-
preserving bijection between two orders is called an order isomorphism, and two
orders are said to be similar or order isomorphic if there is an order-preserving
bijection between them.

Definition 454. Let A and B be orders. A mapping f is an order isomorphism
from A to B if f WA ! B is a bijection which also preserves order, that is, for all
x; y 2 A, x < y in A if and only if f .x/ < f .y/ in B .
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Two orders A and B are similar or order isomorphic, written A Š B , if there is
some order isomorphism between them.

Problem 455. If A and B are orders, then f WA ! B is said to be strictly
increasing if whenever x < y in A then f .x/ < f .y/ in B . Show that a mapping
from one order to another is an order isomorphism if and only if it is strictly
increasing and onto.

Example 456. LetA WD N andB WD f n
nC1 j n 2 Ng, where both sets are ordered by

the usual order of magnitude. ThenA andB are isomorphic via the order-preserving
correspondence n$ n

nC1 .

In fact, we had already seen some examples of order isomorphisms in the chapter
on cardinals, where we saw that there is a bijective order-preserving correspondence
between any two proper closed intervals of the real line. Furthermore, the mapping
x 7! x

xC1 was seen to be an order isomorphism between Œ0;1/ and Œ0; 1/.
When two orders X and Y are isomorphic they share all order properties which

do not mention actual elements or subsets of the orders:X has a first element if and
only if Y has a first element, X has consecutive elements if and only if Y does too,
and so on.

Even when specific points and subsets of the orders are mentioned, the isomor-
phism function will preserve all order properties and relations between them so
long as those points and subsets are replaced by their appropriate images under
the function when moving between the two orders: If f WX ! Y is an order
isomorphism between the orders X and Y , a 2 X , and A � X , then a is the
first element of A in X if and only if f .a/ is the first element of f ŒA� in Y , a is an
upper bound of A in X if and only if f .a/ is an upper bound of f ŒA� in Y , A is
bounded above in X if and only if f ŒA� is bounded above in Y , and so on.

Informally, two orders are isomorphic if one can be obtained from the other by
renaming or replacing its points while preserving the order.

Rearrangements

Distinct orders on the same set will be called rearrangements. For example, the
finite set fa; b; cg, where a; b; c are three distinct elements, can be ordered in six
different ways:

a < b < cI a < c < bI b < a < cI b < c < aI c < a < bI c < b < a;

where each order is a rearrangement of the others. Here all six orders are similar.

Problem 457. If A is a finite set with n elements, then show that there are exactly
nŠ distinct orders on A all of which are similar.
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If we start with the usual order of magnitude on the infinite set N,

1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < � � � ;

we can rearrange it to obtain new orders, such as the order

2 < 1 < 4 < 3 < 6 < 5 < 8 < 7 < � � �

which is distinct from the original order since in this new rearrangement of N the
first element is 2 and the immediate successor of 1 is 4. However, note that this
rearrangement is still similar to the usual order on N (under the bijection f defined
by f .n/ D nC 1 if n is odd and f .n/ D n � 1 if n is even).

We can get other rearrangements of N like P , Q, or R below

P W � � � < 8 < 7 < 6 < 5 < 4 < 3 < 2 < 1
Q W � � � < 7 < 5 < 3 < 1 < 2 < 4 < 6 < 8 < � � �
R W 1 < 3 < 5 < 7 < � � � � � � < 8 < 6 < 4 < 2;

none of which is isomorphic to any other or to the usual order on N: The order
P is the reverse order of the usual order and has a last element but no first; it is
isomorphic to the set of negative integers with the usual ordering. The ordering Q
has neither a first nor a last element, and is isomorphic to the set Z of all integers
with the usual ordering. The ordering R has both a first element and a last element.
These differences in the presence of first and last these orders show that none of the
orders P;Q;R is isomorphic to any other or to the usual order on N.

The usual method for showing that two orders are not isomorphic is to find an
order property which holds in one order but not the other. Here is one more example.
Consider the rearrangement S of N shown as

S W 2 < 3 < 4 < 5 < 6 < � � � < 1:

This rearrangementS of N has both a first element (2) and a last element (1), making
it an ordering having both endpoints. Therefore it is not similar to any of the orders
above—except possiblyR, which also has both endpoints. But note that inR the last
element has an immediate predecessor, while in S the last element has no immediate
predecessor, so S and R cannot be isomorphic. Thus S is not isomorphic to any of
other order mentioned above.

Problem 458. Show that the three rearrangements of N shown by

3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < � � � 1 < 2;
1 < 3 < 5 < 7 < � � � < 2 < 4 < 6 < 8 < � � � ;

and 3 < 5 < 7 < 9 < � � � < 2 < 4 < 6 < 8 < � � � 1
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are not isomorphic to each other or to any other rearrangement of N mentioned
earlier in this section.

7.4 Order Types and Operations

Problem 459. Similarity of orders is an equivalence relation.

We can therefore appeal to the principle of abstraction to fix a complete invariant
“OrdTyp” for the equivalence relation of similarity between orders.1

Definition 460 (Order Types, Cantor). For each order X , the order type of X is
denoted by OrdTyp.X/. It is a complete invariant for similarity of orders, so that
for all orders X and Y , X Š Y , OrdTyp.X/ D OrdTyp.Y /. We will sometimes
write OrdTyp<.X/ to make the ordering< explicit.

Problem 461. Two finite orders are isomorphic if and only if they have the same
number of elements.

Thus for each finite cardinal number n, there is a unique order type for orders on
n-element sets, and we denote this order type by n.

We now introduce special notation for important basic order types. All orders in
the definition below are assumed to be the usual order of magnitude.

Definition 462 (Notation for Standard Order Types).

1. n WD OrdTyp.f1 < 2 < � � � < ng/.
2. ! WD OrdTyp.N/.
3. 
 WD OrdTyp.Z/.
4. 	 WD OrdTyp.Q/.
5. 
 WD OrdTyp.R/.

Definition 463. If < is an order on X , its reverse order �< is the order on the same
set X defined by x �< y , y < x. When X is equipped with the reverse order �<,
we will refer to it as �X . An order is symmetric if X Š �X .

Since X Š X 0 ) �X Š �X 0, we can make the following definition.

Definition 464. Given an order type ˛, its reverse order type �˛ is defined as the
order type of the reverse order of any order of type ˛.

An order type ˛ is called symmetric if �˛ D ˛.

Problem 465. Which of the order types n, !, 
, 	, and 
, are symmetric?

1Definition 1299 gives a formal definition of order types in ZF set theory.
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Sum of Order Types

Informally, to obtain the sum ˛ C ˇ of two order types ˛ and ˇ we take disjoint
representative orders A and B of type ˛ and ˇ respectively, and then form a single
order by “placing A before B .” More precisely, given order types ˛ and ˇ, one can
construct an order X which can be partitioned into disjoint sets L and U such that
the suborderL has order type ˛, the suborderU has order type ˇ, and all elements of
L precede all elements of U (so thatL is an initial segment inX whose complement
is the final segment U ):

X D L [ U; L < U; OrdTyp.L/ D ˛; and OrdTyp.U / D ˇ:

(This is very much like a Dedekind partition except that here we are allowing L
and U to be empty.) Such an order X consists of “an order of type ˛ followed by
an order of type ˇ,” and X is easily seen to be uniquely determined up to order
isomorphism by only the order types ˛ and ˇ.

Theorem 466. Given any pair of order types ˛ and ˇ, there is a unique order type
� such that any orderX of type � consists of an initial segmentL having type ˛ and
a (complimentary) final segment U D XXL having type ˇ.

Proof. Uniqueness is routine. For the existence part, let ˛ and ˇ be given order
types. Fix ordersL and U with OrdTyp.L/ D ˛ and OrdTyp.U / D ˇ. By replacing
L with L0 WD f0g �L and U with U 0 WD f1g � U (and transferring the orders on L
and U to L0 and U 0), we may assume that L \ U D Ø. Now put X D L [ U , and
order X by the rule

x < y , Either x; y 2 L and x < y in L,

or x; y 2 U and x < y in U ,

or x 2 L and y 2 U .

Then it is easy to see that X is a well-defined order satisfying the conditions of the
theorem. ut
Definition 467 (Sum of two order types). If ˛ and ˇ are any two order types, then
˛Cˇ denotes the order type � of the preceding theorem. In other words, ˛Cˇ is the
unique order type of any orderX which can be partitioned into an initial segmentL
of type ˛ and a final segment U D XXL of type ˇ.
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Example 468. Take L D f1 < 2 < � � � < ng and U D fnC 1 < nC 2 < � � � g in N
with the usual order:

1 < 2 < � � � < n„ ƒ‚ …
L

< nC 1 < nC 2 < � � �„ ƒ‚ …
U

Since L has order type n, U has order type !, and the entire order N has order type
!, it follows that (for any n 2 N):

nC ! D !:
In particular

1C ! D !:
On the other hand, consider the rearrangement of N displayed by

2 < 3 < 4 < 5 < � � � < 1;

which has order type ! C 1 (take L D f2 < 3 < 4 < � � � g and U D f1g). This
ordering has a last element, and so is not similar to the usual order on N. Hence:

1C ! 6D ! C 1;

which shows that the commutative law fails for addition of order types.

On the other hand, the associative law holds, allowing us to write expressions such
as ˛ C ˇ C � unambiguously without using parentheses. In particular, if the order
A has order type ˛ and A is partitioned into segments A1;A2; � � � ; An with A1 <
A2 < � � � < An and ˛k D order type of Ak (k D 1; 2; : : : ; n), then we have:

˛ D ˛1 C ˛2 C � � � C ˛n:

Problem 469. Show that �.˛ C ˇ/ D �ˇ C �˛.

Problem 470. Verify which of the following equations involving order types are
correct:

1. ! C �! D 

2. �! C ! D 

3. �! C 3C ! D 

4. 
C 1C 
 D 


5. 
C 
 D 

6. 	C 1C 	 D 	
7. 	C 	 D 	
8. 
 C ! D �! C 


The cancellation laws for addition fail. For example,

1C ! D 2C !; but 1 6D 2:
However, certain special forms of cancellation work.
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Problem 471. Show that if n is a finite order type then n can be cancelled both
from the left and from the right:

nC ˛ D nC ˇ ) ˛ D ˇ; and ˛ C n D ˇ C n ) ˛ D ˇ:

Show also that if m; n are finite order types and ˛ is the order type of an order
without a first element, then

mC ˛ D nC ˛ ) m D n:

Problem 472. Show that the order type 
 of the integers can be cancelled both from
the left and from the right:


 C ˛ D 
 C ˇ ) ˛ D ˇ; and ˛ C 
 D ˇ C 
 ) ˛ D ˇ:

Ordered Sum of a Family of Order Types

We now define the ordered sum of any family of order types indexed by an
ordered set.

Definition 473 (Ordered sum of order-indexed order types (AC)). Let I be an
order (which is to be the index set) and for each i 2 I let ˛i be an order type. The
ordered sum

X

i2I
˛i

is defined as the order type of any order X which can be partitioned into pairwise
disjoint segments Xi; i 2 I such that the suborder Xi has order type ˛i for each
i 2 I and Xi < Xj in X whenever i < j in I .

The proof of existence and uniqueness of the ordered sum
P

i2I Xi is similar to
the previous proof, but the Axiom of Choice is used as needed to fix representative
orders (or order isomorphisms). We outline the proof of existence. Given a family
of order types h˛i j i 2 I i, where I is an order, first fix (using AC) an order Xi of
type ˛i for each i 2 I . By replacing Xi by X 0i WD fig � Xi (and transferring the
order on Xi to X 0i ) we may assume that the orders Xi (i 2 I ) are pairwise disjoint.
Put X WD [i2IXi , and define an order on X by

x < y , either for some i 2 I : x; y 2 Xi and x < y in Xi ,

or, for some i; j 2 I : i < j in I , x 2 Xi , and y 2 Xj .

Then X becomes an order satisfying the condition of the definition. ut
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Problem 474. For n 2 N, let ˛n D 1C �! if n is odd and ˛n D ! C 1 if n is even.
Show that

X

n2N

˛n D 1C .
 C 2/!:

For simple index sets I , it may be possible to write the ordered sum
P

i2I as an
informal expanded notation. For example if I D N (with the usual order) and for
each n 2 N, ˛n D 
C 1, then

X

n2N

˛n D ˛1 C ˛2 C ˛3 C � � �

D .
C 1/C .
C 1/C .
C 1/C � � �
D OrdTyp..0; 1�/C OrdTyp..1; 2�/C OrdTyp..2; 3�/C � � �
D OrdTyp..0; 1�[ .1; 2�[ .2; 3� [ � � � / D OrdTyp..0;1// D 
:

Similarly we can write:

1C 1C 1C � � � D !
1C 2C 3C � � � D !
� � � C 3C 2C 1 D �!;

etc.
The above informal notation assumes a generalized version of the associative

law where all groupings of the summands yield identical sums so long as the overall
order of the summands is preserved.

Problem 475. Formulate and prove the generalized associative law for ordered
sums of families of order types.

Lexicographic and Anti-lexicographic Ordering

By lexicographic order we mean the “left-to-right dictionary order” or “ordering by
first differences,” where two words x and y of same length are compared by reading
their letters from left to right until the first place where the words differ is located,
and we declare x < y if the letter of x at that position alphabetically precedes the
corresponding letter of y. Thus in lexicographic order, letters are more significant to
the left. The anti-lexicographic order is the opposite “right-to-left dictionary order”
(or “ordering by last differences”) where letters on the right are more significant.
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Definition 476 (Lexicographic and Anti-lexicographic orders). Let A and B be
orders. The lexicographic order onA�B is defined by the rule (for ha; bi ; ha0; b0i 2
A � B):

.a; b/ < .a0; b0/ , a < a0 in A or a D a0 and b < b0 in B .

The anti-lexicographic order on A � B is defined by the rule (for ha; bi ; ha0; b0i 2
A � B):

.a; b/ < .a0; b0/ , b < b0 in B or b D b0 and a < a0 in A.

Problem 477. Show that the anti-lexicographic order on A � B is similar to the
lexicographic order on B �A.

Product of Order Types

It is easily verified that if A Š A0 and B Š B 0 then under lexicographic orders,
A � B Š A0 � B 0. This allows us to define the product of two order types, but the
standard convention is to define it with the order of the factors reversed as follows.

Definition 478 (Product of two order types). If ˛ and ˇ are order types, then the
product ˛ˇ is defined to be the order type of the Cartesian product B �A under the
lexicographic order (or the order type of A � B under the anti-lexicographic order)
where A and B are orders of type ˛ and ˇ, respectively. Notice the reversal of the
order of the factors.

In particular, note that

If A has type ˛ and B has type ˇ, then the lexicographic product A � B has
type ˇ˛, not ˛ˇ.

Product as Repeated Sum

It is often more convenient to view the product defined above as a “repeated sum”
of the first factor. The following useful result, whose proof is routine, allows us to
view the product as a “repeated sum”:

Theorem 479 (Product as Repeated Sum, AC). If ˛ and ˇ are two order types,
then their product ˛ˇ equals the ordered sum of an indexed family of types where
the index set has type ˇ and where each summand is ˛:

˛ˇ WD
X

i2B
˛i ; where B has order type ˇ and ˛i D ˛ for all i 2 B .

This sum is independent of the choice of the representative order B .
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Notice that order of the factors matters heavily in the product, and ˛ˇ is viewed as
“˛ repeated ˇ times.”

Thus 2! is “2 repeated ! times” and so equals !:

2! D 2C 2C 2C � � � D !;

while !2 is “! repeated 2 times,” or:

!2 D ! C !:

But ! C ! 6D ! because an order of type ! C ! contains elements with infinitely
many predecessors, whereas any element in an order of type ! has only finitely
many predecessors. Thus

!2 6D 2!;

and so multiplication of order types is not commutative.
Also, both the right and left cancellation laws for multiplication fail, since

.1C 
/
 D .
C 1/
 D 
 but 1C 
 6D 
C 1;
and .1C 
/1 D .1C 
/2 but 1 6D 2:

On the other hand, the associative law for multiplication and the left distributive law
(but not the right) hold.

Problem 480. Prove the associative law for multiplication of order types.

Problem 481. Show that the left distributive law ˛.ˇ C �/ D ˛ˇ C ˛� holds, but
the right distributive law .˛ C ˇ/� D ˛� C ˇ� fails.

Problem 482. Show that �.˛ˇ/ D �˛�ˇ.

We write ˛2 for ˛˛, ˛3 for ˛˛˛, etc. We also define ˛0 D 1 and ˛1 D ˛.
In particular, the lexicographic ordering on N � N has order type !2, but let us

examine the following example of rearranging the natural numbers into an ordering
of type !2.

Example 483. Consider the following rearrangement of N in which we first put the
odd numbers in increasing order of magnitude, followed by “the doubles of the odd
numbers” (numbers divisible by 2 but not by 4), followed by the “doubles of the
doubles” (numbers divisible by 4 but not by 8), and so on:

1 < 3 < 5 < � � � 2 < 6 < 10 < � � � 4 < 12 < 20 < � � � 8 < 24 < 40 < � � � � � �

This order starts with an order of type !, followed by another order of type !, and
so on in an infinite sequence of successive orders each having type !. This ordering



7.4 Order Types and Operations 145

thus has order type !! D !2. We can formally define the rearrangement displayed
above in terms of the usual order by the rule that x precedes y in this order if and
only if

�2.x/ < �2.y/ or �2.x/ D �2.y/ and x < y;

where �2.x/ denotes the highest power of 2 that divides x (�2.x/ D 0 if x is odd).
Of course we could have used any other prime in place of 2 and obtained a different
rearrangement of N of order type !2.

Each segment of type ! in the above order can itself be rearranged into an order of
type !2 making the order type of the overall arrangement!3. Evidently, the process
can be iterated to generate orders of type !4, !5, etc.

Problem 484. Consider the order on N in which x precedes y if and only if either
�2.x/ < �2.y/, or �2.x/ D �2.y/ and �3.x/ < �3.y/, or �2.x/ D �2.y/, �3.x/ D
�3.y/ and x < y.

1. What is the order type of this order?
2. What is the order type of the suborder consisting of all predecessors of the

element 600 in this order?
3. What is the order type of the suborder consisting of all successors of the element
600 in this order?

Problem 485. Find a rearrangement of N of order type !4.
Find a rearrangement of N of order type

P
n !

n D ! C !2 C � � � C !n C � � � .
The left distributive law can be used to simplify expressions involving powers. For
example, ! C !2 D !.1C !/ D !! D !2. More generally, any integral power of
! can “absorb” any lower power of ! from the left, but not from the right:

Problem 486. If 0 � m < n are nonnegative integers, then !m C !n D !n but
!n C !m 6D !n.

Lexicographic Orders with Many Factors

One can readily extend the definitions of lexicographic ordering to n factors (n 2 N)
instead of just two factors. For example, the lexicographic order on N3 D N�N�N
has order type !3. In general, given u D hu1; u2; : : : ; uki and v D hv1; v2; : : : ; vki in
Nk , we say that u precedes v in the lexicographic order on Nk if and only if uj < vj
for the least index j with uj 6D vj .

It is also possible to extend this notion to infinitely many factors indexed by an
index set provided that the index set is well-ordered, an order-property that will be
studied in a later chapter. Here we introduce an important special case, namely the
lexicographic order on the “power” AN, the set of sequences from the order A.
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Definition 487. Let A be an order. For sequences a D han j n 2 Ni and b D
hbn j n 2 Ni in AN, we say that a precedes b in the lexicographic order on AN if
an < bn for the least n at which an 6D bn. That is,

a < b , for some n, an < bn but ak D bk for all k < n.

Recall that the set 2N of binary sequences is equinumerous with the Cantor set via
the bijection F given by

F.a/ D
1X

nD1

2an

3n
.a 2 2N/:

It turns out that with the lexicographic order on 2N, the bijection F is also order-
preserving:

Problem 488. Show that the map F above from 2N onto the Cantor set is an order
isomorphism, and so the Cantor set (with the usual order) is similar to the set 2N of
binary sequences ordered lexicographically.

Regarding elements of 2N as binary expansions of reals in Œ0; 1/ we get another
order-preserving map, provided that we discard duplicate binary expansions.

Problem 489. Let D be the suborder of 2N (ordered lexicographically) consisting
of binary sequences with infinitely many zeros, that is

D WD fa 2 2N j an D 0 for infinitely many ng:

Show that D is similar to the real interval Œ0; 1/ with the usual order.
[Hint: Use the map �WD ! Œ0; 1/ defined by �.a/ DP1nD1 an=2n.]

Problem 490. Show that the Cantor set has a subset of order type 
.

Problem 491. Suppose that the set NN of all sequences of positive integers is
ordered lexicographically, and let NN

" be the suborder of NN consisting of strictly
increasing sequences. Show that, under the lexicographic ordering,

1. NN is isomorphic to the suborder NN
" .

2. Each of NN and NN
" has order type 1C 
.

[Hint: For the first part, consider the mapping from NN to NN
" given by

hn1; n2; n3; : : : i 7! hn1; n1 C n2; n1 C n2 C n3; : : : i. For the second part, show
that the mapping

hn1; n2; n3; : : : i 7! 1

2n1
C 1

2n2
C 1

2n3
C � � � .n1 < n2 < n3 < � � � /

is an order-reversing bijection from NN
" onto .0; 1�.]
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The definitions of lexicographic and anti-lexicographic orderings given above
can only compare words of the same length, and the question of how to compare
two words of different length is left open. The problem below considers several
possibilities for extending the definition of lexicographic order to the collection N�
of finite sequences of positive integers of all possible lengths.

Problem 492. Let N� be the set of all finite sequences (strings) of natural numbers.
Try to find the order type for each of the following orders defined on N�, all of which
extend the lexicographic orders on Nk , k D 1; 2; : : : .
1. The order on N� defined by the rule that u D hu1; u2; : : : ; umi precedes v D
hv1; v2; : : : ; vni in N� if and only if m < n or m D n and u precedes v
lexicographically in Nm.D Nn/.

2. The order on N� defined by the rule that u D hu1; u2; : : : ; umi precedes v D
hv1; v2; : : : ; vni in N� if and only if either u is a proper initial segment of v, or
there is k � min.m; n/ with uk < vk and uj D vj for all j < k.

3. The order on N� defined by the rule that u D hu1; u2; : : : ; umi precedes v D
hv1; v2; : : : ; vni in N� if and only if either v is a proper initial segment of u, or
there is k � min.m; n/ with uk < vk and uj D vj for all j < k.

The order in the last part of the problem is known as the Kleene–Brouwer order and
will reappear as Problem 550.



Chapter 8
Dense and Complete Orders

Abstract This chapter introduces some basic topological notions in the context of
orders, and then develops the theories of dense orders and complete orders in a gen-
eral setting. We cover Cantor’s theorem on countable dense linear orders, Dedekind
completeness and completions, order characterization of R, connectedness and the
intermediate value theorems for linear continuums, and the perfect set theorem for
complete orders.

8.1 Limit Points, Derivatives, and Density

Definition 493. Let X be an order, let a 2 X , and let A � X .
We say that a is an upper limit point of A in X if a is not the first element of X ,

and for every x < a there is some p 2 A such that x < p < a. Lower limit points
of A in X are similarly defined.

We say that a is a limit point of A in X if a is a lower or an upper limit point of
A in X , and a is a two-sided limit point of A in X if a is both a lower and an upper
limit point of A in X .

If the parent orderX is clear, we simply use the phrase “limit point ofA” without
the qualifier “in X .”

The set of all limit points of A (in X ) is called the derived set of A or the
derivative of A, and will be denoted by D.A/.

Example 494. Let X be the order R, and let

A WD
	

n

nC 1 j n 2 N


[ f2g:

Then 1 is an upper limit point of A in X , and A has no other limit points (upper or
lower) in X . So D.A/ D f1g in X . Thus in general the notions of limit point and
derived set are to be understood relative to the parent order.

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__8, © Springer Science+Business Media New York 2014
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On the other hand, if we consider the suborder A as an order by itself, without
bringing back the parent order X , then 2 will be an upper limit point of A in the
order A, and so we will have D.A/ D f2g in the order A.

An order of type !, such as N, by itself has no limit points, upper or lower. The
same applies to any order of type 
. On the other hand, in an order of type 	 (such
as Q) or type 
 (such as R) every point is both an upper and a lower limit point (of
the entire order).

An upper limit point cannot have an immediate predecessor. If X is an order and
a 2 X is not the first element of X , then a is an upper limit point in X if and only
if a has no immediate predecessor in X .

Problem 495. With the lexicographic order, which points are the limit points in
Z �N? In N � Z?

Problem 496. Show that an order X is without endpoints and without any limit
point (i.e., every element ofX has both an immediate predecessor and an immediate
successor) if and only if the order type of X has the form 
˛ for some order type ˛.

Recall the orderX from Example 483 with order type !2:

1 < 3 < 5 < � � � 2 < 6 < 10 < � � � 4 < 12 < 20 < � � � 8 < 24 < 40 < � � � � � �

In X the elements 2; 4; 8; : : : are the upper limit points, but there are no lower limit
points. If A denotes the subset of X consisting of the odd numbers, then

D.A/ D f2g; while D.X/ D f2; 4; 8; 16; : : : g:

Example 497. We slightly modify the order of Example 483 by moving 1 to the
last position to get an order of type !2 C 1:

3 < 5 < 7 < � � � 2 < 6 < 10 < � � � 4 < 12 < 20 < � � � 8 < 24 < 40 < � � � 1:

If Y denotes this order, note that in Y the elements 2; 4; 8; : : : , as well as the last
element 1 are all limit points. Hence:

D.Y / D f2 < 4 < 8 < � � � 1g:
If we regard the suborderD.Y / as an order by itself (of order type !C1), then note
that the elements 2; 4; 8; : : : are no longer limit points in D.Y /, but 1 is still a limit
point in D.Y /. This is because in the original order Y , 1 was a limit point of limit
points. Thus

D.D.Y // D f1g:
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Problem 498. Let X be an order and let A � X .

1. Show that if A has a limit point in X then A must be infinite. Hence D.A/ D Ø
if A is finite.

2. If A;B � X then show that D.A [ B/ D D.A/ [D.B/.
3. Show that

D.D.A// � D.A/;

that is, “a limit point of limit points of A is a limit point of A.”

Thus the elements of D.A/ are limit points of A, elements of D.D.A// are
limit points of limit points—or second order limit points of A, the elements of
D.D.D.A/// are the third order limit points of A, and so on.

Let us write D.0/.A/ WD A, D.1/.A/ WD D.A/, D.2/.A/ WD D.D.A//, etc., so
that the elements of D.k/.A/ are the limit points of A of order k.

Problem 499. Let X D R and let

A WD
	
1

2m
C 1

2mCn
j m; n 2 N




What is the order type of the suborder A? ComputeD.k/.A/ for k D 1; 2; 3.

Problem 500. Give an example of a subset A of R such that D.3/.A/ 6D Ø but
D.4/.A/ D Ø.

Problem 501. If X is an order of type !n C 1 (where n 2 N), what are the order
types of D.k/.X/ for various k 2 N?

Consider an order of type

 
X

n2N

.!n C 1/
!

C 1 D ! C 1C !2 C 1C � � � C !n C 1C � � � C 1

D ! C !2 C � � � C !n C � � � C 1 D
 
X

n2N

!n

!

C 1

where the last element is a limit point of limit points of order k for arbitrarily large
k 2 N, and is called a limit point of order !. In fact, we can define

D.!/.A/ WD
\

k2N

D.k/.A/; D.!C1/.A/ WD D.D.!/.A//; : : : ; etc.,

and keep iterating the derivative operator D indefinitely without end—a process
that leads to the notion of ordinal numbers that will be studied later.
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Problem 502. For each k 2 N, put

Ak WD
	
1

2k
C 1

2kCn1
C � � � C 1

2kCn1C���Cnk
j n1; n2; : : : ; nk 2 N



:

In terms of fractional binary expansion, the set A1 consists of binary fractions of the
form 0�10?1, where “0?” stands for a string of zero or more 0s. Thus A1 � . 12 ; 1/.
The set A2 consists of binary fractions of the form 0:010?10?1, with A2 � . 1

4
; 1
2
/,

etc. Finally, put:

A D
[

k

Ak:

1. Show that eachAk has infinitely many limit points of order< k, exactly one limit
point of order k (namely, 1

2k
), but no limit points of order > k.

2. Show that D.!/.A/ 6D Ø but D.!C1/.A/ D Ø.

Dense Orders and Dense Subsets

Definition 503 (Order Density: Dense Orders). A nontrivial order X is said to
be a dense order or order-dense if for all x; y 2 X with x < y there is z 2 X such
that x < z < y, that is, if X does not contain any consecutive elements.

Q, R, and any nontrivial rational or real interval are familiar examples of dense
orders. Finite orders and orders of type ! or 
 are example of orders which are
not order-dense. The following problem illustrates the relationship between order
density and limit points.

Problem 504. Let X be a nontrivial order. Show that

1. Every element of X is an upper limit point if and only if X is order-dense and
has no first element.

2. Every element of X is a lower limit point if and only if X is order-dense and has
no last element.

3. Every element of X is a two-sided limit point (both an upper and a lower limit
point) if and only if X is order-dense and without endpoints.

Conclude that the following conditions are all equivalent:

1. X is order-dense.
2. Every element of X except the first element (if present) is an upper limit point.
3. Every element of X except the last element (if present) is a lower limit point.

If X has more than two points, the above conditions are also equivalent to:

4. Every element ofX except the endpoint(s) (if present) are two-sided limit points.
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Definition 505 (Relative Density: Dense Subsets). LetX be an order and suppose
that A � X . We say that A is dense in X or that A is a dense subset of X if every
element of XXA is a limit point of A, that is, if XXA � D.A/ (or equivalently, if
X D A [D.A/).
For example, Q is dense in X . This follows from the fact that between any two real
numbers there is a rational number.

Problem 506. Let X be a dense order and A � X . Then A is dense in X if and
only if for all x; y 2 X with x < y there is a 2 A with x < a < y.

Problem 507. Let A be a dense subset of a dense order X . Show that the suborder
A as an order by itself is a dense order.

Problem 508. Assume that each of the sets N, Z, Q, and R is ordered by the natural
order of magnitude among its elements.

1. Give examples of two disjoint subsets of R both of which are dense in R.
2. Prove rigorously that Q is a dense subset of R, but that Z is not dense in R.
3. Which subsets of N are dense in N?
4. If X is an order of type 
 C 1C 
, which subsets of X are dense in X?
5. If X is an order of type !2 C 1, which subsets of X are dense in X?

Problem 509. Recall that an open interval in an orderX is a subset which has one
of the following four forms:

fx 2 X j a < x < bg; fx 2 X j x < ag; fx 2 X j x > ag; or X:

Show that a subset A of X is dense in X if and only if A has nonempty intersection
with every nonempty open interval of X .

Problem 510. ForA � R if RXA is countable, show thatA is dense in R. Conclude
that the set of irrational numbers is dense in R.

Problem 511. Let X be an order. Given A;B � X , we say that A is dense in B if
BXA � D.A/. Suppose that A � B � C � X . Show that if A is dense in B and
B is dense in C then A is dense in C .

A Note on Terminology

The notion of dense order (order-density) should be carefully distinguished from
the notion dense subset (relative density), as they are of totally different category:
Order-density is a property of entire orders, while relative density is a property
of subsets of orders. Thus saying “Y is dense” may be ambiguous. To avoid this
ambiguity, we can explicitly indicate order-density by saying “Y is a dense order”
(or “Y is order-dense”), and explicitly indicate relative density by saying “Y is a
dense subset” (or “Y is dense in its parent order”).



154 8 Dense and Complete Orders

8.2 Continuums, Completeness, Sup, and Inf

Recall Dedekind’s method, in which we partition or “cut” a given order into two
nonempty pieces with one piece completely preceding the other:

Definition 512. A Dedekind partition or Dedekind cut for an orderX is a partition
of X consisting two nonempty disjoint sets L and U such that x 2 L; y 2 U )
x < y, i.e., every member of L precedes every member of U , as pictured below.

L
‚ …„ ƒ

U
‚ …„ ƒ

In other words, all elements of U are upper bounds for L, all elements of L are
lower bounds for U , as well as L 6D Ø 6D U , L \ U D Ø, and L [ U D X .

A Dedekind partition L;U in an order X can be classified as exactly one of the
following four types:

1. Jump: Both L has a largest element and U has a smallest element.
2. Upper limit point cut: L does not have a largest element, but U has a smallest

element which therefore is an upper limit point of L.
3. Lower limit point cut: U does not have a smallest element, but L has a largest

element which therefore is a lower limit point of U .
4. Gap: Neither L has a largest element nor U has a smallest element.

Note that an order is order-dense if and only if it has no jumps (i.e., if no Dedekind
partition is a jump).

In a cut of type (2) or (3), which we call a limit point cut or a boundary cut, the
two halves of the partition are “connected together” in the sense that one of them
contains a limit point of the other.

On the other hand, a cut of type (1) or (4) (a jump or a gap) is a “separation” of
the order into two “disconnected pieces” none of which contains a limit point of the
other. A continuum is an order which does not admit any such disconnection, that is
one which has no jump or gap.

Definition 513 (Dedekind Continuity). A nontrivial order is said to be a (linear)
continuum or Dedekind continuous if no Dedekind cut in it is a jump or a gap, or
equivalently if every Dedekind cut in it is a limit point cut.

A more general notion is order completeness (Dedekind completeness).

Definition 514 (Dedekind Completeness). An order X is said to be complete or
Dedekind complete if it has no gaps, i.e., if no Dedekind cut for it is a gap.

So an order is a continuum if and only if it is both order-dense and complete.
We had already seen that the real line R and all intervals in it are continuums

(being both order-dense and complete). On the other hand neither the rationals Q
nor the integers Z form a continuum: Q is order-dense but not complete, while Z is
complete but not order dense.
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Since each of the properties of being order-dense, being a continuum, and being
complete is preserved under order isomorphisms, we can meaningfully speak of an
order type being order-dense, or a continuum, or complete. Thus 	 is not complete,
and neither ! nor 
 is dense, while 
, 1C 
, 
C 1, and 1C 
C 1 are continuums
(corresponding to the various kinds of intervals). Later we will see several examples
of continuums which are essentially different from these.

Definition 515 (Supremum and Infimum). Let X be an order and let A � X .
We say that a 2 X is a least upper bound of A or a supremum of A if a is the

least element of the set of all upper bounds of A in X , that is, if a is an upper bound
of A and a � b for every upper bound b of A. Greatest lower bounds or infimums
are similarly defined.

It is easily seen that a least upper bound or supremum of a set, if it exists, must be
unique. Therefore we make the following definition.

Definition 516 (supA and infA). If a setA has a supremum, we denote it by supA,
and thus the statement “a D supA” stands for “a is the least upper bound of A.”
Similarly the infimum of A is denoted by infA.

For a set with a largest element, the supremum coincides with the maximum. For
a nonempty set without a maximum, the supremum, if it exists, is an upper bound
which is also a limit point of the set.

Problem 517. Let A be a nonempty subset of an order X and let a be an upper
bound of A in X . Prove that a is the least upper bound of A if and only if either a is
the maximum element of A, or a 62 A and a is an upper limit point of A.

Problem 518 (Completeness as the Least Upper Bound Property). Given an
order X , prove that the following conditions are equivalent.

1. X is complete.
2. X has the least-upper-bound property: Every nonempty subset of X which is

bounded above has a supremum (least upper bound)
3. X has the greatest lower bound property: Every nonempty subset of X which is

bounded below has an infimum (greatest lower bound).

Problem 519. An order is complete if and only if every segment is an interval.

Problem 520. For each of the following orders, express its order type in terms of
familiar order types, and determine if it is order dense, if it is complete, and if it is
a continuum.

1. N with usual order.
2. Z with usual order.
3. Q with usual order.
4. R with usual order.
5. The real interval .0; 1� with usual order.
6. The set f0g [ f 1

n
j n 2 Ng.
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7. The set f� 1
n
j n 2 Ng [ f0g [ f 1

n
j n 2 Ng.

8. The set f� 1
n
j n 2 Ng [ f 1

n
j n 2 Ng.

9. The closed unit square Œ0; 1� � Œ0; 1�, with lexicographic order.
10. The half-open unit square Œ0; 1/ � Œ0; 1/, with lexicographic order.
11. The subset of the plane Œ0; 1� � f0; 1g, with lexicographic order.
12. N � Z, with lexicographic order.
13. Z � N, with lexicographic order.

Problem 521. An order is called totally discrete if every Dedekind cut for it is
a jump.

1. An order is totally discrete if and only if it is complete and has no limit points.
2. Give example of an order which has no limit points yet is not totally discrete.
3. Give examples of three pairwise non-isomorphic infinite totally discrete

orderings.
4. Prove that there does not exist four pairwise non-isomorphic infinite totally

discrete orderings.
5. List the possible order types of totally discrete orders.

8.3 Embeddings and Continuity

Definition 522. Let X and Y be orders. An order isomorphism between X and a
suborder of Y is called an order embedding. If f WX ! Y is an embedding, we
say that f embeds X into Y . We say that X is embeddable in Y if there is some
embedding of X into Y .

If f embeds X into Y , then the suborder f ŒX� D ran.f / of Y is an “isomorphic
copy” of X sitting inside Y .

Any strictly increasing map from one order into another is an embedding:

Problem 523. Let X and Y be orders and let f WX ! Y be a function which is
strictly increasing: If x < y in X then f .x/ < f .y/ in Y . Then f is an embedding
of X into Y , and so X is isomorphic to the suborder f ŒX� D ran.f / of Y via f .

This makes it easy to find examples of embeddings. For example, the map n 7! n2

is an embedding of N into itself, and n 7! n=.nC 1/ is an embedding of N into R.
If X is a suborder of Y , then the identity map on X is an embedding of X into

Y , called the inclusion map. Thus every suborder is embedded in the parent order
via the inclusion map.

The analogue of the Cantor–Bernstein Theorem fails for orders:

Problem 524. Give examples of two non-isomorphic orders each of which is
isomorphic to a suborder of the other.

Unlike order isomorphisms, order embeddings fail to preserve many order
notions. In particular, limit points of subsets are not preserved. Let
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X WD
	

n

nC 1 j n 2 N


[ f1g;

so thatX has order type!C1 and the point 1 is a limit point inX . Define f WX ! R
by setting f .1/ D 2 and f .x/ D x otherwise. Then f is an embedding of X into
R, but f does not preserve limit points: If A � X is the subset

A WD
	

n

nC 1 j n 2 N


;

then 1 is a limit point of A in X but f .1/ D 2 is not a limit point of f ŒA� D A in R.
We say that the reason for this failure is the “discontinuity” of the map f , and a

map which preserves limit points is called a continuous map:

Definition 525 (Continuous Maps). Let X and Y be orders. A map f WX ! Y is
called continuous if whenever A � X and a 2 X is a limit point of A in X , then
either f .a/ 2 f ŒA� or f .a/ is a limit point of f ŒA� in Y .

When an order embedding is onto, it becomes an isomorphism and hence continuous
(an isomorphism preserves all order notions, including limit points).

Example 526. Consider the rearrangement of N

1 < 3 < 5 < � � � 2 < 6 < 10 < � � � 4 < 12 < 20 < � � � � � �
of order type !2 that we have encountered before, and define f and g by

f
�
2m�1.2n � 1/� D mC n

nC 1 ; g
�
2m�1.2n � 1/� D 2mC n

nC 1 :

Then both f and g embed the above rearrangement of N into R, but while f is
continuous, g is not.

Problem 527. Let X and Y be nontrivial orders without endpoints, and f WX !
Y . Show that f is continuous if and only if whenever p 2 X and c < f .p/ < d in
Y , there exist a; b 2 X with a < p < b such that we have c < f .x/ < d for all x
satisfying a < x < b.

Limit Points and Suborders: Continuously Embedded
Suborders

We now look at the above phenomenon (where an embedding fails to preserve limit
points) for the special case of suborders. ConsiderX WD .0; 1/[ Œ2; 3/ as a suborder
of R. When X is considered as a suborder by itself, it has order type 
 and 2 is
a limit point of .0; 1/ in the suborder X . But 2 is not a limit point of .0; 1/ in the
parent order R.
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Definition 528. Let Y be an order and X � Y be a suborder. We say that the
suborderX is continuously order embedded in the parent order Y if for any A � X
and a 2 X , if a is a limit point of A in X , then a is a limit point of A in the parent
order Y as well.

For example, both the suborders A WD fn=.n C 1/ j n 2 Ng [ f1g and B WD
fn=.nC 1/ j n 2 Ng [ f2g of R have order type ! C 1, but while A is continuously
embedded in R, B is not.

Problem 529. Let Y be an order and X � Y be a suborder. Show that X is
continuously embedded in Y if and only if the inclusion map from X to Y is
continuous, where the inclusion map �X WX ! Y is defined as �X.x/ D x (for
all x 2 X ).

Problem 530. Show that if f WX ! Y is an order embedding of the order X into
the order Y , then f is continuous if and only if f ŒX� D ran.f / is continuously
embedded in Y .

Problem 531. Let X be a suborder of the order Y . Show that X is continuously
embedded in Y if and only if for any A � X and any a 2 X , if a D supA in X then
a D supA in Y and if a D infA in X then a D infA in Y .

The following theorem, whose proof is left as an exercise, gives sufficient conditions
for a suborder to be continuously embedded in the parent order.

Theorem 532. Let X be a suborder of the order Y .

1. If every point of X is a two sided limit point of X in Y , then X is continuously
embedded in Y .

2. If every point of YXX is a two sided limit point ofX in Y , thenX is continuously
embedded in Y .

Problem 533. Let X be an order, A � X , and a 2 A.

1. Show that if a is a limit point of A in the parent orderX then a is a limit point of
A in the suborder A.

2. Give an example to show that if a is a limit point of X (in the parent order X ),
then a may not be a limit point of A either in the suborder A or in the parent
order X .

3. Give an example to show that if a is a limit point of A in the suborder A, then a
may not be a limit point of X (in the parent order X ).

Problem 534*. Give an example of an order X and a suborder Y � X such that
in the suborder Y every point of Y is a limit point, but in the original order X no
point of Y is a limit point.

Problem 535. Give an example of an order which contains a suborder of type 	,
but in which every point has an immediate successor and an immediate predecessor.

Example 536. Let X be a complete order with endpoints in which the only limit
point is the last element. Then the order type of X is ! C 1.
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Proof. Note that every element (other than the last) has an immediate successor,
while the last element (being an upper limit) is not the immediate successor of any
element. Let a1 be the first element, a2 be its immediate successor (which, being an
immediate successor, cannot be the last element), a3 be the immediate successor of
a2 (which again cannot be the last element), and so on. Put A D fa1 < a2 < : : : g,
which has order type !. A is bounded above (by the last element of X ), and so
a D supA exists and is a limit point in X . Hence a must be the last element. Hence
the order type of X must be ! C 1. ut
Problem 537. Let X be a complete order with endpoints and exactly one limit
point. What are the possible order types that X can have?

Theorem 538 (Hausdorff). There are exactly 2@0 D c distinct order types for
countable orders.

Proof. Every countable order is isomorphic to an order defined on some subset of N.
Since every order defined on a subset of N equals hA;Ri with A � N and R � N2

(so that hA;Ri 2 P.N/ � P.N2/), there are at most

ˇ
ˇP.N/ � P.N2/

ˇ
ˇ D 2@0 � 2@0 D 2@0 D c

such orders. Hence there are at most 2@0 D c distinct order types for countable
orders.

By the Cantor–Bernstein theorem, it suffices to exhibit 2@0 D c pairwise non-
isomorphic countable orders. Consider order types of the form:

X

n2N

˛n D ˛1 C ˛2 C � � � C ˛n C � � � ;

where each ˛n is either ! C 1 or 1C �!. Any order X with order type of this form
is countable and the set of limit points in X will form a suborder of X of type !,
hence the limit points of X can be listed in a sequence as “the first limit point,” “the
second limit point,” and so on.

Now note that in an order of the above type there is no two-sided limit point: The
n-th limit point will be a one-sided upper limit point if ˛n D ! C 1 and will be a
one-sided lower limit point if ˛n D 1C �!.

Thus given an infinite binary sequence hb1; b2; : : : ; bn; : : : i in 2N, we can set
˛n D 1C �! if bn D 0 and ˛n D ! C 1 if bn D 1 to get an order of the above type
in which the n-th limit point is a lower limit point if bn D 0 and is an upper limit
point if bn D 1. Distinct binary sequences will give non-isomorphic orders, since in
two isomorphic orders the n-th limit points (if they exist) will be of the same type.
This gives 2@0 D c non-isomorphic countable orders. ut
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8.4 Cantor’s Theorem on Countable Dense Orders

The rational numbers with the usual ordering form an order which is countable,
order dense, and without endpoints. A remarkable result of Cantor asserts that, up
to isomorphism, it is the only one with those properties.

Theorem (Cantor). If X and Y are orders both of which are countable, order
dense, and without endpoints, then X and Y are similar orders. Hence any order
which is countable, order dense, and without endpoints is isomorphic to the rational
numbers Q with the usual ordering, and so must have order type 	.

This gives a characterization of the order type 	 in terms of its structural properties.

Definition 539 (Finite Partial Isomorphisms). Let A and B be orders. By a finite
partial isomorphism between A and B we mean an order isomorphism (order
preserving bijection) between a finite suborder of A and a finite suborder of B .
In other words, a finite partial isomorphism between A and B is a bijection
f WE ! F where E is a finite subset of A, F is a finite subset of B , and for
all x; y 2 E , x <A y , f .x/ <B f .y/.

Problem 540 (Extension Lemma for Finite Partial Isomorphisms). Let A and
B be orders, E be a finite subset of A, F be a finite subset of B , and f WE ! F be
a finite partial isomorphism between A and B . Prove that

1. If B is order-dense without endpoints and a 2 A then there is a finite partial
isomorphism g extending f with a 2 dom.g/, i.e., there are finite subsets P �
A, Q � B , and an order-preserving bijection gWP ! Q such that g jE D f

and a 2 P .
2. Similarly, if A is order-dense without endpoints and b 2 B then there is a finite

partial isomorphism h extending f with b 2 ran.h/, i.e., there are finite subsets
P � A, Q � B , and an order-preserving bijection hWP ! Q such that h jE D
f and b 2 Q.

Theorem 541 (Cantor’s Theorem on Countable Dense Orders). Any two count-
able dense orders without endpoints are isomorphic to each other.

Proof. Let A and B be countable dense orders without endpoints, and enumerate
the elements of A and B as

A D fa1; a2; : : : ; an; : : : g; B D fb1; b2; : : : ; bn; : : : g:

We will inductively define a sequence f1 � f2 � � � � � fn � � � � of finite
partial isomorphisms between A and B with each fn extending the preceding ones,
dom.fn/ � fa1; : : : ; ang, and ran.fn/ � fb1; : : : ; bng.

Let f1 be the function with dom.f1/ D fa1g and f .a1/ D b1, so that ran.f1/ D
fb1g. Then f1 is (trivially) a finite partial isomorphism between A and B .

Suppose next that fn is defined with dom.fn/ � fa1; : : : ; ang and ran.fn/ �
fb1; : : : ; bng. Since B is dense we can apply the first part of the extension lemma
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to extend fn to a finite partial isomorphism g between A and B such that
anC1 2 dom.g/. Next, since A is dense, we apply the second part of the extension
lemma to extend g to a finite partial isomorphism g between A and B such that
bnC1 2 ran.h/. We then put fnC1 D h. Then fnC1 extends fn, with dom.fnC1/ �
fa1; : : : ; an; anC1g, and ran.fnC1/ � fb1; : : : ; bn; bnC1g, completing the inductive
construction.

Now let f D [nfn. Then f is a well-defined function: If x is in dom.fm/ \
dom.fn/ then fn.x/ D fm.x/ since either fn extends fm (form � n) or fm extends
fn (for n � m). The function f is an extension of every f . Moreover, dom.f / D A
and ran.f / D B since an 2 dom.fn/ � dom.f / and bn 2 ran.fn/ � ran.f / for
all n. Finally, if x <A y in A, then x D am and y D an for some m; n, and with
k D max.m; n/ we get fk.x/ <B fk.y/ (since fk is a finite partial isomorphism)
and so f .x/ <B f .y/. Thus f is strictly increasing map from A onto B and hence
an order isomorphism between them. ut
Corollary 542. Any countable dense order without endpoints has order type 	, and
is isomorphic to the set of rational numbers with their usual ordering.

Corollary 543. Any nontrivial countable dense order has one of the order types 	,
1C 	, 	C 1, or 1C 	C 1.

Corollary 544. 	C 	 D 	. Also, 	C 1C 	 D 	, and 		 D 	.

The last corollary follows from the observation that if ˛ is the order type of a dense
order without endpoints, then an order having any other types ˛C ˛, ˛C 1C ˛, or
˛˛ will also be a dense order without endpoints.

Both Cantor’s theorem and the “back-and-forth” method used to prove it are
very powerful and have far-reaching implications. We will illustrate this by using
Cantor’s theorem to prove (in a later chapter) two classical theorems: Brouwer’s
Theorem and Sierpinski’s Theorem.

A related result which is easier than Cantor’s theorem is that any countable order
can be order embedded in any dense order.

Theorem 545. Let A be a countable order and let B be order-dense without
endpoints. Then A can be order embedded in B , that is, A is isomorphic to some
suborder of B .

Proof. It suffices to show that there is a strictly increasing f WA! B .
Enumerate A D fa1; a2; : : : ; an; : : : g and repeatedly apply the extension lemma

(first part) to inductively get a sequence f1 � f2 � � � � � fn � : : : of finite partial
isomorphisms between A and B with dom.fn/ � fa1; : : : ; ang. Then the function
f D [nfn is a strictly increasing map from A into B . ut
Corollary 546. If X is a nontrivial and order dense, then every countable order is
order-isomorphic to some suborder of X . Hence the collection of all order types of
suborders of a nontrivial dense order includes all countable order types.
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Corollary 547. Any order X of type 	 is a universal countable order, that is, X is
a countable order in which every countable order can be embedded.

Corollary 548. There are at most 2@0 D c countable order types.

Problem 549. Let E be the set of endpoints of the open intervals removed in the
construction of the Cantor set, with the usual inherited order. Express the order type
of E as the sum and/or product of some known order types.

Problem 550 (The Kleene–Brouwer Order). Let N� be the set of all finite
sequences (strings) of natural numbers, and say that u D hu1; u2; : : : ; umi precedes
v D hv1; v2; : : : ; vni in the Kleene–Brouwer order on N� if either m > n and
uk D vk for all k � n, or there is k � min.m; n/ with uk < vk but uj D vj
for all j < k. In other words, u precedes v in the Kleene–Brouwer order on N�
if either u properly extends v, or none of them is an extension of the other and u
lexicographically precedes v. What is the order type of this order?

Theorem 551. Every countable order X can be continuously embedded in Q
and in R.

Problem 552. Prove Theorem 551.

[Hint: Between every pair of consecutive points of X , “adjoin” an additional set of
points of order type 	. The extended order is a countable dense order in which X is
continuously embedded.]

However, there are dense orders without endpoints in which no countable order
having limit points can be continuously embedded (Problem 757).

8.5 @0 < c: Another Proof of Uncountability of R

A notable consequence of Cantor’s theorem (Theorem 541) is that every nontrivial
countable dense order has Dedekind gaps. Since a linear continuum is a dense order
without gaps, it follows immediately that every continuum, and so R in particular,
must be uncountable.

Proposition 553. Any nontrivial countable dense order has Dedekind gaps.
Consequently, every linear continuum is uncountable.

Corollary 554 (Uncountability of R). R is not countable, i.e., c > @0.
Proposition 553 is easily derived from Cantor’s theorem in various ways. We give
three short proofs. LetX be a nontrivial countable dense order. We may assume that
X has no endpoints (by removing them if necessary).

Proof (First Proof). By Cantor’s theorem X is isomorphic to the ratios (positive
rationals), and we had seen that the ratios contain the gap given by f� j �2 < 2g and
f� j �2 > 2g, hence X must contain a gap too. ut
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Proof (Second Proof). By Cantor’s theorem X must have order type 	 and another
corollary of Cantor’s theorem was that 	 D 	 C 	. But any order whose type is
expressible as ˛ C ˛, where ˛ is the type of a nonempty order without endpoints,
must have a gap. ut
Proof (Third Proof). If we remove a point p from X , the resulting order XXfpg
is still countable, order dense, and without endpoints, and so by Cantor’s theorem
XXfpg is isomorphic with X . But if a point is removed from a dense order without
endpoints, the resulting order will have a gap, and soX , being isomorphic toXXfpg,
will have a gap too. ut
We thus get a very short proof of uncountability of R by exploiting the power of
Cantor’s isomorphism theorem on countable dense orders (Theorem 541).

Remark. In his very first proof of uncountability of R, Cantor directly showed that
every countable dense order has gaps, without using the isomorphism theorem on
countable dense orders. (Nor did he use the diagonal method which he invented
later). Cantor’s first proof is given in Appendix A.

The identity 	C 	 D 	 can also be proved without using Cantor’s theorem.

Problem 555. Let QC WD fr 2 Q j r > 0g, Q� WD fr 2 Q j r < 0g, and
Q� WD QXf0g D fr 2 Q j r 6D 0g. Prove the identity 	 C 	 D 	 by finding
three explicit order preserving bijections: The first between Q and QC, the second
between Q and Q�, and the third between Q and Q�.

8.6 The Order Type of R

We saw that the order property “countable, dense, and without endpoints” charac-
terizes the order type 	: An order has type 	, or is isomorphic to Q with the usual
order, if and only if it is countable, dense, and has no endpoints (Cantor’s theorem).

There is a similar characterization, also by Cantor, of the order type 
 of the real
numbers. An important property of the order on the reals is that it is a continuum
without endpoints. However, this is not sufficient to characterize the order type 

of the reals, and we will now give some examples of continuums without endpoints
which are not isomorphic to R. First, we need a definition.

Definition 556 (CCC orders). An order X is said to satisfy the countable chain
condition, or is called a CCC order, if any family of pairwise disjoint nonempty
open intervals in X is a countable family.

Clearly, a non-CCC order cannot be embedded in a CCC order.
The real line satisfies the countable chain condition, since given any family of

pairwise disjoint nonempty open intervals in R, we can pick a rational number in
each interval in the family. Distinct rationals will be picked for distinct intervals
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since the intervals are pairwise disjoint, which gives a one-to-one correspondence
between the family and some set of the rational numbers, and so the family must be
countable.

The following is an example of a non-CCC continuum.

Problem 557. Consider the subset S D .0; 1/ � Œ0; 1� of the plane ordered
lexicographically. (S is the subset obtained by removing the left and right edges
of the closed unit square.)

1. Verify that the order type of S (ordered lexicographically) is .1C 
C 1/
.
2. Prove that S is a continuum without endpoints.
3. Show that S is not a CCC order.
4. Conclude that S is not isomorphic to the real numbers with the usual ordering,

and so .1C 
C 1/
 6D 
.

Thus the non-CCC continuum S cannot be embedded in the CCC continuum R,
and any order of type .1C 
C 1/
 is a continuum without endpoints which is not
isomorphic to the real continuum. More examples can be obtained by iterating the
above procedure. For example, an order of type .1C
C1/2
 is a continuum without
endpoints which cannot be embedded even in S ; see Problem 558.

Problem 558. Let 
k denote the order type .1C 
C 1/k
 (with 
0 D 
).

1. Show that each order of type 
k is a continuum without endpoints (k D
0; 1; 2; : : : ).

2. Show that if m < n then an order of type 
n cannot be embedded in an order of
type 
m.

3. Conclude that orders having the distinct types 
0; 
1; : : : must be non-
isomorphic continuums without endpoints.

A property which is stronger than CCC is separability.

Definition 559 (Separable Orders). An order X is called separable if it contains
a countable subset dense in it (i.e., if there is a countable C � X with X D C [
D.C/).

Recall that a subset A of an order X is dense in X if and only if every nonempty
open interval in X contains a point of A. Thus every separable order is CCC (the
same proof given above showing R is CCC works).

If X is order dense, then a subset A is dense in X if between any two points of
X there is a point of A. Thus an order dense order X is separable if and only if X
contains a countable subset C such that between any two points ofX there is a point
of C . For example, the rationals Q form a countable subset of R with this property,
and so R is separable. On the other hand, S D .0; 1/ � Œ0; 1� with lexicographic
order is a non-separable continuum.

The property of “being a separable continuum without endpoints” characterizes
the ordering of the reals and the order type 
:
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Theorem 560 (Cantor’s Order Characterization of R). Every separable contin-
uum without endpoints is isomorphic to the reals with their usual ordering.

Proof. Let X be a separable continuum without endpoints and let C be a countable
dense subset of X . Then the suborder C is a countable dense order without
endpoints, and so by Cantor’s theorem there is an order isomorphism f WC ! Q.

Regarding Q as a suborder in R, we see that f extends (uniquely) to an order
isomorphism g between X and R, where for x 2 XXC , we set:

g.x/ D sup
R
ff .u/ j u 2 C and u < x in Xg:

Using the density of C in X and of Q in R, it is readily verified that g is a bijection
from X onto R which preserves order. ut
Corollary 561. An ordering has order type 
 (i.e., it is order isomorphic to the set
of real numbers with their usual ordering) if and only if it is a separable continuum
without endpoints.

Corollary 562. Any separable linear continuum has one of the order types 
, 1C
,

C 1, or 1C 
C 1.

Problem 563. For each of the following order types determine if it is separable,
dense, and/or Dedekind complete, and identify the ones which are linear continu-
ums. If any of them is identical to a familiar type, indicate so.

1. 
2

2. .1C 
/2
3. .1C 
/ 

4. .1C 
C 1/2
5. 
!
6. .1C 
/!

7. .1C 
/!3
8. .
C 1/ !2
9. 	2

10. .1C 	/ 	
11. 	 2
12. 2	

[Hint: It may be useful to represent each type as a lexicographic product of
familiar orders. For example, .1C 
/ 
 has the order type of .0; 1/� Œ0; 1/ ordered
lexicographically, and 
! has order type of N � .0; 1/ ordered lexicographically
(note reversal of order of the factors).]

Problem 564. Let us call a point in an order to be a removable point if the suborder
obtained by removing this single point is order-isomorphic to the original order.
In other words, the pointp in the orderX is removable ifXXfpg is order isomorphic
to X .

For each of the following orders, determine which points are removable. All
orderings are assumed to be their usual orders, or inherited suborder from the usual
order.

1. N.
2. Z.

3. Q.
4. R.
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5. The unit interval Œ0; 1�.
6. The set f0g [ f 1

n
j n 2 Ng.

7. The set f0g [ �[n2Nf� 1n ; 1ng
�
.

8. The set [n2Nf� 1n ; 1ng.

9. An order of type !2 C !.
10. An order of type 
	.
11. An order of type !2 C n (n 2 N).
12. An order of type !˛, ˛ arbitrary.

The Suslin Problem

Once it is established that a separable continuum without endpoints must be isomor-
phic to the real line, the question arises if the result remains true if separability is
replaced by the weaker condition of being CCC. This was first asked by Suslin.

The Suslin Problem. Is a CCC continuum without endpoints necessarily order
isomorphic to R?

The affirmative answer to Suslin’s question is known as the Suslin Hypothesis
(SH). Thus SH is the statement that every CCC continuum without endpoints has
order type 
. Like the Continuum Hypothesis, SH is independent of comprehensive
set theoretic axiom systems for developing mathematics such as ZFC (Zermelo–
Fraenkel Axioms with Choice). This means it has been proved that SH can neither be
proved nor be disproved using mathematical principles and methods of proof that are
currently accepted as standard (assuming these methods themselves are consistent).

The Suslin Problem has played an important role in the development of axioms
and principles of combinatorial set theory (such as constructibility and Jensen’s
diamond and box axioms) as well as independence proofs (Martins’s Axiom and
forcing).

8.7 Dedekind Completion

Definition 565 (Dedekind Completion). We say that an order Y is a Dedekind
Completion of an order X if X is a suborder of Y , Y is Dedekind complete, and
every element of Y XX is both an upper limit point of X and a lower limit point
of X .

Problem 566. Prove that if Y � X is a Dedekind Completion of X , then X is
dense in Y in the sense that any nonempty open interval in Y must contain a point
of X .

Theorem 567 (Existence of Dedekind Completion). Every order X has a
Dedekind completion.

Proof. The proof is a straightforward generalization of Dedekind’s construction of
the real numbers using cuts of rational numbers.
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Let X be any order. Without loss of generality, we first replace X by an
isomorphic order E.X/:

E.X/ WD fPred.a/ j a 2 Xg;

where Pred.a/ WD fx 2 X j x < ag. Let E.X/ be ordered by the proper set
inclusion relation. Then the mapping a 7! Pred.a/ is an order isomorphism fromX

onto E.X/.
Now let

H.X/ WD fL j .L; XXL/ is a Dedekind gap in Xg;

and put M.X/ WD E.X/[H.X/, ordered again by proper set inclusion.
Then M.X/ is a Dedekind Completion of E.X/: Here E.X/ plays the role of the

rationals and H.X/ plays the role of the irrationals given by Dedekind gaps. ut
Problem 568 (Uniqueness of Dedekind Completion). If the order A is isomor-
phic to the order B via the order-preserving bijection f WA! B , and if A0 and B 0
are Dedekind completions ofA and B , respectively, then there is a unique extension
f 0 � f which is an order isomorphism between A0 and B 0.

[Hint: For x 2 A0XA, define f 0.x/ WD supB0ff .u/ j u 2 A; u <A0 xg.]
The last result implies that for any order type, there exists a unique order type for
its Dedekind Completion.

Definition 569 (Dedekind Completion of Order Types). If � is an order type,
then the Dedekind Completion of � , denoted by O� , is the unique order type
determined by some (or every) Dedekind completion of an order of type � .

Problem 570. Find the Dedekind completions of each of the following types,
expressing your answer in terms of known types:

1. !
2. 

3. 	
4. ! C �!
5. �! C !
6. !2.
7. 
 C 


8. 
2

9. 
 C 	
10. 
C 	
11. 
2

12. .1C 
/2
13. .1C 
C 1/2
14. 2	

Problem 571. The Dedekind completion of any dense order is also a dense order,
and hence, being complete as well, is a continuum.

Problem 572 (Continuous Embedding in Dedekind Completion). Every order
X is continuously embedded in its Dedekind completion Y , i.e., the inclusion
(identity) map from X into Y is a continuous embedding.
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The following shows that the Dedekind completion of X is the “smallest complete
order containingX”:

Problem 573 (Minimality of Dedekind Completion). If X � Y where Y is a
complete order, then Y contains suborder (containing X ) which is isomorphic to
the Dedekind completion of X .

[Hint: Given a Dedekind completion X 0 of X , associate each x 2 X 0XX with the
element supY fu 2 X j u <X 0 xg of Y .]

Corollary 574. Every linear continuum contains a suborder isomorphic to the
real line (with the usual order). Hence every linear continuum has cardinality
� 2@0 D c.

Proof. Let X be a linear continuum. Since X is order-dense, it contains a suborder
of type 	, and being complete X contains a suborder of type O	 D 
. ut
Problem 575. Let A be the set consisting of all infinite binary sequences which are
eventually constant, except the two sequences “all zeroes” and “all ones,” ordered
lexicographically. Let B be the set of endpoints of the open intervals removed in the
construction of the Cantor set, with the order inherited from the usual order on R.

1. Show that these two orders are order isomorphic, with each having order type 2	.
2. Show that each point of A has an immediate neighbor in A, that is, show that

given any x 2 A there is a pair of consecutive elements in A with x being one of
them.

3. Show that A is dense-in-itself, that is, every element of A is a limit point of A.
4. Let C be the set of points of the Cantor set except 0 or 1. Show that C is a

Dedekind completion of B .

Problem 576. Prove that the order type of the Cantor set is 1C b2	C 1.

(In fact, from a result of Brouwer to be proved later (Theorem 1099), it follows that
any bounded perfect subset of R which does not contain any interval has order type
1C b2	C 1.)

8.8 Properties of Complete Orders and Perfect Sets

Bolzano–Weierstrass and Nested Intervals Properties

We say that an order X has the Bolzano–Weierstrass property (or BW property) if
every bounded infinite subset of X has a limit point in X .

Theorem 577 (Bolzano–Weierstrass). For an arbitrary order, completeness
implies the Bolzano–Weierstrass property.
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Proof. Let E be a bounded infinite subset of the complete order X , say a � E � b
for some a; b 2 X . Put

Ex WD fy 2 E j y < xg; and L WD fx 2 X j Ex is finiteg:

Then Ea is finite but Eb is infinite, so a 2 L and L � b, hence c WD supX L exists.
If now c 2 L, then c is a lower limit point of E: Since Ec is finite, c < b, and
for any z > c Ez is infinite and so EzXEc is infinite, so there is some p 2 E with
c < p < z.

If c 62 L, then c is an upper limit point ofE: As L < c and for any x < c there is
y 2 L with x < y < c, so EcXEy is infinite hence there is p 2 E with y < p < c,
and so x < p < c, ut
There are two nested intervals properties (“NIP”s) that we will consider.

1. We say that an order X satisfies the sequential nested intervals property if given
any nested sequence of nonempty bounded closed intervals in X

I1 � I2 � � � � � In � InC1 � � � � ;

we have \nIn 6D Ø.
2. An order is said to satisfy the strong nested intervals property if whenever a

family F of nonempty bounded closed intervals forms a chain (i.e., for any two
intervals I1; I2 2 F either I1 � I2 or I2 � I1), we have \F 6D Ø.

Trivially the strong nested intervals property implies the sequential nested intervals
property. The following two theorems show how the two nested intervals properties
are related to completeness and the Bolzano–Weierstrass property.

Theorem 578 (“BW Implies NIP”). In an arbitrary order, the Bolzano–
Weierstrass property implies the sequential nested intervals property.

Proof. Let In D Œan; bn� (n D 1; 2; : : : ) be a nested sequence of nonempty closed
intervals in a complete orderX , so that

a1 � a2 � : : : an � anC1 � : : : � � � � bnC1 � bn � : : : b2 � b1:

Now either the sequence han j n 2 Ni is eventually constant so that there exist a 2 X
and k 2 N with an D a for all n � k, in which case a 2 \nIn. Or else, the set
L WD fan j n 2 Ng of left endpoints of the intervals In is a bounded infinite set and
so L has a limit point c 2 X . Then c 2 \nIn, since if c < an or c > bn for some n
then c cannot be a limit point of L. ut
Theorem 579 (The Strong Nested Intervals Property). For an arbitrary order,
completeness implies the strong nested intervals property.

Proof. Let A be the set of left endpoints of the intervals in F. Since F is a chain, any
right endpoint of any interval in F is an upper bound of A, and so a WD supA exists.
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Then a � p for any left endpoint p of any interval in F. Also, a � q for any right
endpoint q of any interval in F. Hence a 2 \F. ut
The above results can be summarized as:

Bolzano–Weierstrass Property

% &
Completeness Sequential NIP

& %
Strong NIP

None of the implications above can be reversed and no further implications between
the above properties can be obtained. The Bolzano–Weierstrass and Nested Interval
properties are strictly weaker than completeness. In fact, there is an order which
satisfies both the Bolzano–Weierstrass and the Strong Nested Interval properties
but is not complete, and there is an order which satisfies the Sequential NIP but
satisfies neither the Bolzano–Weierstrass nor the Strong Nested Intervals properties.
Moreover, the Bolzano–Weierstrass and the strong Nested Interval properties are
independent of each other. For these counterexamples, see Problem 711 in Chap. 10.

Problem 580. Show that in a dense order which is separable, all four properties
displayed above are equivalent, and therefore completeness is characterized by any
of the other three properties.

Definition 581 (Monotone and Convergent Sequences). Let X be an order and
let hxni D hxn j n 2 Ni be a sequence of points in X . We say that the sequence
hxni is monotone increasing if xn � xnC1 for all n. Similarly one defines the notion
of monotone decreasing sequences. A monotone sequence is one which is either
monotone increasing or monotone decreasing. We also say that the sequence hxni
converges to a point p 2 X if for any a < p there exists k such that xn > a for all
n > k and for any b > p there exists k such that xn < b for all n > k.

Problem 582 (The Monotone Convergence Property). Show that in any order,
the Bolzano–Weierstrass property is equivalent to the condition that any bounded
monotone sequence converges to some point.

Dense-in-Itself Orders

Recall that an orderX is a dense order if and only if every point ofX except the first
(if present) is an upper limit point if and only if every point of X except the last (if
present) is a lower limit point. In particular, if every element of X is an upper limit
point or if every element of X is a lower limit point then X must be order-dense.
But if we are given that every element ofX is either an upper- or a lower limit point,
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then, as we will see soon, X may have consecutive points, and may in fact be quite
far from being order-dense. We thus get a wider class of orders using the condition
“every point of the order is a limit point, upper or lower”:

Definition 583 (Density-in-Itself). A subset A of an order X is called dense-in-
itself if every element of A is a limit point of A (in X ), that is if A � D.A/.
An order is called dense-in-itself if it is dense-in-itself as a subset of itself.

Every dense order is dense-in-itself, but there are dense-in-itself orders which are
not order-dense.

Consider the suborder X D .0; 1� [ Œ2; 3/ of R as an order by itself. Then X is
dense-in-itself but not order-dense as there is no element in X which is between 1
and 2. Another example of an order which is dense-in-itself but not order-dense is
the Cantor set K as an order by itself: There is no element in K between the two
elements 1=3 and 2=3.

We can get dense-in-itself orders with lots of consecutive points. The following
examples are orders in which every point is a limit point yet every point is one of
the two points of a pair of consecutive points.

Problem 584. Let X D f0; 1; 2; 3; 4; 5; 6; 7; 8; 9gN be the set of “infinite decimal
strings” ordered lexicographically, and let Y be the suborder consisting of those
members of X which are either eventually 0 or eventually 9 but not all 0 or all 9.
LetE be the suborder of R consisting of the endpoints of the open intervals removed
in the construction of the Cantor set. Show that:

1. Y and E are isomorphic orders and have order type 2	.
2. Any order of type 2	 (like Y or E) is dense-in-itself (every point is a limit point).
3. In any order of type 2	, every point has either an immediate successor or an

immediate predecessor, and consequently no point is a two-sided limit point.
4. Any countable dense-in-itself order without endpoints and without any two-sided

limit point must have order type 2	.

Problem 585. Consider the plane set T WD .0; 1/ � f0; 1g D fhx; yi j 0 < x <

1; y D 0 or 1g be ordered lexicographically, which has order type 2
. Show that
such an order is complete, separable, dense-in-itself, yet every point is one of the
two points of a pair of consecutive points.

The order of the last example cannot be embedded in R, giving us an example of a
separable complete order which cannot be embedded in R.

Problem 586. Show that the set X D f0; 1; 2; 3; 4; 5; 6; 7; 8; 9gN of “infinite
decimal strings” ordered lexicographically is order isomorphic to the Cantor set
(as a suborder of R). [Hint: Show that X is a Dedekind completion of the suborder
consisting of stings which are eventually 0 or eventually 9, which has order type
1C 2	C 1.]
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Problem 587. Let A be a subset of an order X .

1. Show that if A is a dense-in-itself subset of X , then the suborder A as an order
by itself is a dense-in-itself order.

2. Give an example to show that the converse of the above fails.

Problem 588. Let X be a nontrivial order of order type � . Show that X is not
order-dense if and only if � D ˛ C 2C ˇ for some order types ˛; ˇ, and X is not
dense-in-itself if and only if � D ˛ C 3C ˇ for some order types ˛; ˇ.

Problem 589. Let C be the set of all initial segments of the set Q of rational
numbers. Thus C includes sets of the form fx 2 Q j x � rg (r rational),
fx 2 Q j x < rg (r rational or irrational), as well as Ø and Q. Show that C
ordered by proper set-inclusion is order-isomorphic to the Cantor set with the usual
order.

Theorem 590. Let X be an order which is complete and dense-in-itself. Then R
can be order embedded in X and so the cardinality of X is at least 2@0 D c.

Proof. Let X be an order which is complete and dense-in-itself, and let A be subset
of X consisting of all lower limit points of X . Then the suborder A is order-dense,
that is between any two points of A there is another point of A: If x; y 2 A with
x < y then since x is a lower limit point of X there exist u; v 2 X with x < u <
v < y. Now either u 2 A or u is not a lower limit point, in which case u will have
an immediate successor in X , say u0, with u < u0 � v < y. Being an immediate
successor, the element u0 is not an upper limit point and so must be a lower limit
point in X . Thus either u 2 A or u0 2 A, and in either case we have a point of A
between x and y.

It follows that A and so X must contain a subset of order type 	. But X is
complete and so by minimality of Dedekind completion, X will contain a subset
of order type O	 D 
. ut
Problem 591. Give an example of a bounded subset A of R such that no point of A
is a limit point of A but the suborder A has order type 	.

Show that for such an A, D.A/ must have order type 1C b2	C 1 and A[D.A/
(called the closure of A) must have order type 1C b3	C 1.

Closed and Perfect Sets

Definition 592. Let X be an order and A � X . We say that A is closed in X if A
contains all its limit points, that is, if D.A/ � A. A subset which is both closed and
dense-in-itself is called perfect.

Theorem 593. Let X be a complete order and let A � X . Then A is closed in X if
and only if the following two conditions both hold:

1. The suborder A is continuously embedded in X .
2. A is complete (as an order by itself).
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Problem 594. Prove Theorem 593.

Problem 595. Give an example of closed suborder of a general order which is
neither continuously embedded (in the parent) nor complete (by itself).

Problem 596. Let X be a complete order. Show that F � X is closed if and only if
for any bounded nonempty subset A � F we have both supA 2 F and infA 2 F .

[Hint: Use the fact that if supE exists but supE 62 E then supE must be an upper
limit point of E .]

Problem 597. Let X and Y be orders and let f WX ! Y be continuous. Show that
for any b 2 Y , the set fx 2 X j f .x/ � bg is a closed subset of X .

Cardinalities of Perfect Sets in a Complete Order

Since a perfect subset of a complete order, taken as an order by itself, must be dense-
in-itself and complete, it follows from Theorem 590 that any nonempty perfect
subset of a complete order contains a suborder isomorphic to R, and so must have
cardinality � c.

Theorem 598. Every nonempty perfect subset of a complete order has cardinality
� 2@0 D c.

The notions of closed, dense-in-itself, and perfect sets are due to Cantor.

8.9 Connectedness and the Intermediate Value Theorem

Recall Dedekind’s basic definition of the continuum: An order is a continuum if
and only if for any Dedekind partition of the order into nonempty upper and lower
segments, at least one of the segments will contain a limit point of the other. We will
now see that for any partition of a continuum into two nonempty disjoint sets, at least
one of them will contain a limit point of the other. Thus this last stronger condition,
known as topological connectedness, also characterizes linear continuums. We can
state the result equivalently in terms of partitions into a pair of closed sets as follows.

Theorem 599. Let X be a continuum. If A and B are disjoint closed subsets of X
with A[ B D X , then either A D Ø and B D X or A D X and B D Ø.

Proof. Suppose that A and B are disjoint closed subsets of X with A [ B D X .
To get a contradiction, assume that both A and B are nonempty and fix a 2 A and
b 2 B . Without loss of generality we assume that a < b. Put

E WD fx 2 B j a < x � bg; c WD infE; and D WD fx 2 X j a � x < cg:
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Note that c D infE exists since E is a nonempty bounded set in the complete order
X , and thus E , c, and D are all well defined. Also note that E � B and D � A.
SinceE � B andB is closed, we have c D inf.E/ 2 B . Therefore a < c, and soD
must be an infinite set with no maximum (since X is a dense order). It follows that
c D supD must be a limit point of D, and hence of A, so c 2 A (as A is closed).
But this is a contradiction since A \ B D Ø. ut
Recall that a subset E of an order is called a segment if whenever u < z < v and
u; v 2 E then z 2 E .

Corollary 600 (The Intermediate Value Theorem). IfX is a continuum,Y is any
order, and f WX ! Y is continuous, then ran.f / D f ŒX� is a segment in Y .

Proof. To get a contradiction assume the conditions of the theorem and suppose that
f ŒX� is not a segment, so that there exist u < z < v in Y such that u; v 2 f ŒX� but
z 62 f ŒX�. Put A WD fx 2 X j f .x/ � zg and B WD fx 2 X j f .x/ � zg. Then A
and B are nonempty disjoint closed sets in X with A [ B D X , which contradicts
Theorem 599. ut
We summarize these results as characterizations of the continuum.

Problem 601. Let X be an order. Then the following are equivalent.

1. X is a continuum:X is a dense order without Dedekind gaps.
2. X is topologically connected: X cannot be partitioned into two disjoint

nonempty closed sets.
3. X satisfies the Intermediate Value Theorem: For any order Y and any continuous
f WX ! Y , the image f ŒX� D ran.f / is a segment in Y .



Chapter 9
Well-Orders and Ordinals

Abstract This chapter develops the classical theory of well-orders and ordinals
in a naive setting. Ordinals are defined as order types of well-orders, not as
von Neumann ordinals. We cover the basic ordinal operations of sum and product,
transfinite induction and recursion, uniqueness of isomorphisms and ranks, unique
representation of well-orders by initial sets of ordinals, the comparability theorem
for well-orders, the division algorithm, remainder ordinals, ordinal exponentiation,
and the Cantor Normal Form.

9.1 Well-Orders, Ordinals, Sum, and Product

Cantor invented two remarkable generalizations of the natural numbers extending
into the transfinite. One is the notion of cardinal numbers: Two sets have the same
cardinal number if their elements can be put in a one-to-one correspondence—
without any regard for the ordering between the elements themselves. The other
is the notion of an ordinal number, which, roughly speaking, represents the “serial
position, relative to the beginning, of an object in a que.” The number 10 can be used
either as a cardinal number (as in “there are 10 students in the room”) or as an ordinal
number (as in “I am the 10-th person waiting in line”). The distinction becomes
sharper if we imagine an ordered infinitely long endless que of people, where each
person in the line is the n-th person from the beginning (n D 0; 1; 2; : : : ). The que
has no end, but we can imagine a new person joining in at the end (with infinitely
many people ahead), occupying the “!-th position” in the que. Here the serial or
ordinal position of any person is defined as the order type of the part of the que
preceding that person. Still another person can be adjoined to the end, who is then
called the ! C 1-st person. The serial positions of these last two people, ! and
! C 1, are different ordinal numbers, but in the cardinal sense they both have @0
people ahead. The process of extending such ordered ques by adding new members
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at the end while preserving the ordering of the preceding part can be continued
indefinitely through the transfinite. The type of orders that can be generated in this
way are the well-orders.

Criteria for Well-Ordering

Given an order X and a 2 X , the set of predecessors of a in X will be denoted
by PredX.a/, or simply by Pred.a/ when the order X is clear from context. For a
subset A of X , we say that a is an immediate successor of A if A < a and there is
no b with A < b < a. Note that for a 2 X the immediate successor of Pred.a/ is
a. In particular, the immediate successor of the empty set is the first element of the
order (if the order does not have a first element then the empty set does not have an
immediate successor).

Theorem 602 (Equivalent Conditions for Well-Ordering). LetX be a nonempty
linear order. The following conditions are equivalent:

1. X is a complete order with a first element, in which every element except the last
(if present) has a next element.

2. X is a complete order with a first element but without any lower limit point.
3. X has a first element, and every Dedekind partition is either a jump or an upper

limit cut (i.e., there are no gaps or lower limit cuts).
4. Every proper initial segment in X is an initial open interval: If A ¨ X is an

initial segment then A D Pred.a/ for some a 2 X .
5. Every non-cofinal subset of X has an immediate successor.
6. Every nonempty subset of X contains a least element.
7. (DC) There is no strictly decreasing infinite sequence in X , i.e., X no suborder

of type �!.

Problem 603. Prove Theorem 602.

[Hint: The implications 1 ) 2 ) 3 ) 4 ) 5 ) 6 ) 7 are all routine. For
7 ) 6, note that if A � X is nonempty but has no minimal element, then the
relation R defined on A by xRy , x > y satisfies the condition of DC.]

Definition 604 (Well-Orders and Ordinals).

• A well-order is an order which is either empty or satisfies any (and so all) of the
conditions of the last theorem.

• If X is any order and A � X we say that A is well-ordered by the parent order
(or simply that A is a well-ordered subset of X ) if the suborder on A, inherited
from the parent order on X , is a well-order.

• An ordinal is the order type of a well-order.
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From Part 4 of Theorem 602 we immediately have

Corollary 605. LetX be a well-order with order type ˛. The set of all proper initial
segments of X , ordered by set inclusion, is isomorphic to X . The set of all initial
segments of X has order type ˛ C 1.

Theorem 606. Every subset (suborder) of a well-order is a well-order. Every finite
linear order is a well-order. Any order of type !, such as the positive integers N with
their usual ordering, is a well-order.

Corollary 607. Every finite order type n is an ordinal, and ! is an ordinal.

Problem 608. Let X be an order with X D A[B , where A < B . If each of A and
B is well-ordered by the parent order on X , then X itself is a well-order.

Corollary 609. The sum of two ordinals is an ordinal.

The above Theorem is a special case of the following more general fact.

Problem 610. LetX be an order which is expressed as the union of a finite number
of subsets, say as X D [niD1Xi . If each Xi is a well-ordered subset of X (i D
1; 2; : : : ; n) then X is a well-order.

Using the last corollary, we get more examples of ordinals, such as ! C n (n D
1; 2; : : : ), !2 D ! C !, !2C n (n D 1; 2; : : : ), !3 D !2C !, etc.

Problem 611. If A and B are well-orders then so are B � A and A � B , under
lexicographic ordering.

Corollary 612. The product of two ordinals is an ordinal.

Definition 613 (Limit and Successor Ordinals). An ordinal is called a limit
ordinal if it is the order type of some nonempty well-order without a last element.
An ordinal is called a successor ordinal if it is the order type of a well-order which
has a last element.

Note that limit and successor ordinals must be nonzero, and that ˛ is a successor
ordinal if and only if ˛ D ˇC1 for some ordinal ˇ. Examples of successor ordinals
are 2, ! C 9, and !2C 1, while ! and !3 are limit ordinals.

Problem 614. Let X be a well-order and let x 2 X . Prove that exactly one of the
following must be true:

• x is the first element of X
• x is a successor element in X , i.e., x has an immediate predecessor in X
• x is an upper limit point in X

It follows that for every ordinal ˛, either ˛ D 0 or ˛ is a successor ordinal or ˛ is a
limit ordinal (the three possibilities are mutually exclusive).

Problem 615. An order X is a well-order without any (upper) limit point if and
only if Pred.x/ is finite for all x 2 X .
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An order of type ! (such as the set N of positive integers with the usual ordering)
is a nonempty well-order without a last element and without any upper limit point,
and is characterized (up to order type) by these properties:

Problem 616. Let X be a nonempty well-order without a last element and without
any upper limit point. Prove that the order type of X must be !.

[Hint: Since every element of X must have an immediate successor, there is a
function gWX ! X such that g.x/ is the immediate successor of x in X . Hence
by the principle of recursive definition there is f WN ! X such that f .1/ D the
least element of X and f .n C 1/ D g.f .n// for all n 2 N. Show that f maps N
onto X and that f is an order isomorphism of the positive integers (under the usual
ordering) with X .]

Problem 617. Prove that any infinite well-order not containing any limit point must
be of type !.

Thus ! is the unique limit ordinal which cannot be expressed as ˛ C ˇ where ˛ is
limit and ˇ is nonzero.

One can also rearrange the elements of N to get other ordinals. Consider

1; 2; 3; 4; : : : ; n; nC1; : : : (order type !)

2; 3; 4; 5; : : : ; n; nC1; : : : 1 (order type ! C 1)

3; 4; 5; 6; : : : ; n; nC1; : : : 1; 2 (order type ! C 2)

The first order has no last element while the other two have last elements, and the last
element of the second order, 1, is an upper limit element while the last element of
the third order above, 2, is a successor element. Since order isomorphisms preserve
all structural properties, so no two of the three orders above are isomorphic and
hence the ordinals !, ! C 1, and ! C 2 are all distinct.

Suppose we put all the odd positive integers before all the even ones but
otherwise order them following their usual order. This can be formally defined as
an ordering hN; <oi wherem <o n if and only ifm is odd and n is even, orm and n
have the same parity and m < n. This ordering hN; <oi is exhibited as

1 <o 3 <o 5 <o 7 <o � � � 2 <o 4 <o 6 <o 8 <o � � � ;

and has order type ! C ! D !2.
Similarly, we see that the following are all ordinals (where n is any finite ordinal):

0; 1; 2; : : : ; n; : : : !; ! C 1; ! C 2; : : : ; ! C n; : : : ! C ! D !2;
!2C1; !2C2; : : : !2C! D !3; !3C1; !3C2; : : : !3C! D !4; : : :

Problem 618. Prove that if ˛ C ˇ D ! and ˇ 6D 0 then ˇ D !. Prove that if
˛ C ˇ D !2 and ˇ 6D 0 then ˇ D !2.
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Problem 619. Let ˛ be an order type of an ordering with a first element (so that
˛ D 1 C ˇ for some order type ˇ). Prove that .1 C 
/˛ is a Dedekind complete
order type if and only if ˛ is an ordinal.

9.2 Limit Points and Transfinite Induction

If P is a property, then we use the predicate notation “P.a/” to indicate that “the
property P is true of the element a.” Recall:

The principle of finite induction. Let A be an ordering which is either finite or is
of order type !. Let a0 be the first element of A. Suppose that P is any property
satisfying (for all a; b 2 A):

• P.a0/ is true;
• If P.a/ is true and b is an immediate successor of a then P.b/ is true.

Then P.a/ is true for all a 2 A.

We will show that a generalized version of the principle of finite induction, called
the principle of transfinite induction, holds for all well-orders. But first let us note
that the principle of finite induction, as stated above, does not hold for general well-
orders (other than orders which are finite or of type !).

Example 620. Consider again the ordering <o on N of order type ! C ! D !2,
where all the odd natural numbers come before all the even ones:

1 <o 3 <o 5 <o 7 <o � � � 2 <o 4 <o 6 <o 8 <o � � �

Note that in this ordering 3 is an immediate successor of 1, and 4 is an immediate
successor of 2, but 2 is not the immediate successor of any element. In fact for
m; n 2 N, n is an immediate successor of m in the ordering <o if n D m C 2.
Let P be the property of being an odd positive integer. Then P.a/ is true for the
first element of hN; <oi, namely 1. Also if P.a/ is true (“a is odd”) and b is an
immediate successor of a (“b D aC 2”) then P.b/ is true (“b is odd”). Hence both
conditions of the principle of finite induction are true for this ordering hN; <oi. Yet
it is false that P.a/ holds for all a.

The reason for this failure is easily found. The principle of finite induction holds for
only those orderings in which every element can be reached starting from the first
element by a “finite number of individual steps of moving to the next immediate
successor.” And the only orderings in which this last condition is satisfied are the
ones which are finite or of type !. The ordering hN; <oi, which is of type ! C !,
contains the element 2 which cannot be reached from the first element by a finite
number of steps of moving to the immediate successor. In fact 2 is an upper limit
point in the ordering hN; <oi.
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Recall that for any point x in a well-order X there are three mutually exclusive
and exhaustive possibilities:

• x is the first element of X ;
• x is a successor element (x is the immediate successor of some element);
• x is a limit element (x is an upper limit point in X ; a well-order cannot have a

lower limit point).

The principle of finite induction will hold in a well-order so long as the third
possibility above (existence of upper limit point) does not arise.

In the above example, the propertyP of being an odd positive integer was indeed
true for all numbers preceding 2 in the ordering hN; <oi, but there was nothing to
“induce” the property P to the limit element 2. For that, we will need a condition
by which whenever a property holds for certain points, it can be “transferred” or
“induced” to hold for any upper limit point of those points. Once we enhance the
principle of induction by adding such a clause, it will apply to all well-orderings:

The principle of transfinite induction. Let A be any well-order with first element
a0, and P be any property which satisfies (for all a; b):

• P.a0/ is true;
• If P.a/ is true and b is an immediate successor of a then P.b/ is true;
• If a is an upper limit point of the set fx 2 A j P.x/ is trueg then P.a/ is true.

Then P.a/ is true for all a 2 A.

The proof is straightforward: To get a contradiction, let there be a 2 A for which
P.a/ is not true, and let a be the least such element. Then a can neither be the first
element a0, nor can it be an immediate successor of some other element, and nor
can it be an upper limit point, which is a contradiction since these possibilities are
exhaustive in a well-order.

One can restate the principle of transfinite induction in terms of sets (instead of
“properties”) as follows:

The principle of transfinite induction (set version). Let A be a well-order with
first element a0, and let P � A such that for all a; b:

• a0 2 P ;
• If a 2 P and b is an immediate successor of a then b 2 P ;
• If a is an upper limit point of P then a 2 P .

Then P D A.

It is possible to combine the three clauses of transfinite induction into a single
“strong induction” clause in which we can avoid mentioning “limit point” or “first
point.” The advantage of such a form is that it covers both finite and transfinite
induction via the concise statement “Every strongly inductive subset of a well-order
equals the entire order”:
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The principle of strong induction (finite and transfinite). Let A be any well-order,
and let P � A such that for any a 2 A:

Pred.a/ � P ) a 2 P:

Then P D A.

Strong induction actually characterizes the property of being well-ordered.

Problem 621. Let X be an order. A subset P of X is called strongly inductive if
Pred.a/ � P ) a 2 P (for all a 2 X ), and the order X is said to satisfy strong
induction if every strongly inductive subset of X equals X . Show that X satisfies
strong induction if and only if it is a well-order.

We next give a version of transfinite induction where an assertion can be
established for all well-orders. In this case, P should be taken to be a property
of orders, such as being a complete order.

Transfinite induction for all well-orders. Let P be a property of orders such that
if every proper initial segment of any well-order X has property P , then X has
property P . Then all well-orders have property P .

The proof is again routine: Assume the condition of the theorem but suppose that
there is a well-order A which does not have property P . Then some proper initial
segment of A will fail to have property P , so we can fix the least a 2 A such that
Pred.a/ does not have property P . But then every proper initial segment of Pred.a/
has property P (by minimality of a) while A does not have property P , contrary to
the condition of the theorem.

The following is the corresponding principle in terms of properties of ordinals.

The principle of transfinite induction for all ordinals. Let P be a property of
ordinals such that for any ordinal ˛, if every ordinal less than ˛ has property P ,
then ˛ has it too. Then all ordinals have property P .

The Principle of Recursive Definition in Sect. 2.10 (as in Theorem 148) also
generalizes to well-orders, where it is called the principle of transfinite recursion. It
is a very useful principle in practice and is often used to define functions on well-
orders (or on initial segments of ordinals).

Theorem 622 (Transfinite Recursion). Let A be any well-order, Y be a
nonempty set, F be the collection of all functions whose domain is an initial
segment of A and whose range is contained in Y , andGWA�F ! Y . Then there
is a unique function F WA! Y satisfying, for all a 2 A, the recursion condition:

F.a/ D G.a; F�Pred.a//:
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Proof. The proof is similar to the proof of the Basic Principle of Recursive
Definition (Theorem 146 in Sect. 2.10).

Let us say that a function h is partially G-recursive if dom.h/ is an initial
segment of A, ran.h/ � Y , and h.a/ D G.a; h� Pred.a// for all a 2 dom.h/.
If h is partially G-recursive then so is h�I if I is any initial segment of dom.h/.

We first have the following uniqueness property: If h; h0 are partiallyG-recursive
functions with a 2 dom.h/\dom.h0/ then h.a/ D h0.a/. To prove this by transfinite
induction, assume that h.x/ D h0.x/ for all x 2 Pred.a/. Then h.a/ D G.a; h�
Pred.a// D G.a; h0�Pred.a// D h0.a/.

Next, define a relation F � A � Y by the condition xFy if and only if there is a
partiallyG-recursive hwith x 2 dom.h/ and h.x/ D y. The theorem will be proved
if we show that F is a function, dom.F / D A, and F is partially G-recursive.
Uniqueness of F follows from the uniqueness property that we just proved.

Assume xFy and xFy0. Then y D h.x/ and y0 D h0.x/ for some partially
G-recursive h and h0, hence by the uniqueness property that we proved, h.x/ D
h0.x/ and so y D y0. Thus F is a function. It is also easy to see that F must be
partially G-recursive. Finally, we show that dom.F / D A by transfinite induction.
Suppose that a 2 A and x 2 dom.F / for all x 2 Pred.a/. Then the function
h WD F �Pred.a/ is partially G-recursive. Put b D G.a; h/, and extend h to h WD
h [ fha; big. Then h is a partially G-recursive function with a 2 dom.h/, hence
a 2 dom.F /. ut

9.3 Well-Orders and Ordinals: Basic Facts

Recall that if A is an initial segment in a well-order X with A 6D X then A D
Pred.a/ for some (unique) a 2 X .

Theorem 623. Let X be a well-order and f WX ! X be an order preserving
(strictly increasing) injection. Then x � f .x/ for all x 2 X .

Proof. Otherwise, there would be a least a such that f .a/ < a, but then b D f .a/

is a still smaller element for which f .b/ < b, a contradiction. ut
A function f such as above need not be onto. For example the mapping n 7! n2 is
a strictly increasing mapping of N into N. However, we have:

Corollary 624. The only order-preserving isomorphism of a well-order onto itself
is the identity mapping.

Proof. If f WX ! X is an order isomorphism of the well-order X onto itself, let
gWX ! X be the inverse of f so that f .g.x// D x for all x 2 X . Then for any
x 2 X we have x � f .x/ and also x � g.x/, so f .x/ � f .g.x// D x. ut
Corollary 625 (Uniqueness of Isomorphisms). If A and B are isomorphic well-
orders, then there is a unique isomorphism from A onto B .
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Another important immediate corollary of the theorem is:

Corollary 626. A well-order is never order isomorphic to any of its proper initial
segments.

Problem 627. LetA be a subset of a well-orderX which is strictly bounded above,
that is, there is b 2 X with a < b for all a 2 A. Show that the suborder A cannot
be isomorphic to X .

The above facts limit isomorphisms between initial segments of a well-order:

Corollary 628 (“Initial Rigidity of Well-Orders”). If A and B are initial seg-
ments of a well-order X and f WA ! B is an order isomorphism from A onto B ,
then A D B and f is the identity map on A D B .

In any order X , we define the rank of an element a 2 X to be the order type of
Pred.a/. If X is not well-ordered, two different elements may have the same rank.
For example, in any order of type 
, all elements have the same rank �!; moreover,
in the set Z of integers with the usual ordering, ifm and n are any two integers, then
the mapping x 7! x C n �m is an order-automorphism of Z which sends m to n,
so that m and n are structurally indistinguishable within the order. The same is true
for orderings of type 	 or 
. The situation for well-orders is strikingly different:

Corollary 629 (Unique Ranks). In a well-order, distinct initial segments have
distinct order types, i.e., distinct elements have distinct ranks. Hence each element
in a well-order is uniquely determined by its rank.

This fact is further exemplified in Theorem 633 below, which exhibits the natural
one-to-one correspondence between the elements of a well-order and the set of
ordinals representing the ranks of those elements.

Initial rigidity allows a proper definition for comparing ordinals:

Definition 630 (Ordering of Ordinals). Given ordinals ˛ and ˇ with representa-
tive well-ordersA and B , we define ˛ < ˇ if A is order-isomorphic to some proper
initial segment of B . We write ˛ � ˇ for ˛ < ˇ or ˛ D ˇ.

Corollary 631. The relation ˛ < ˇ defined on any set of ordinals is irreflexive and
transitive (hence asymmetric).

(This situation is again specific to well-orders. An attempt to extend this definition
to all orderings will fail because asymmetry and irreflexivity will be violated,
producing oddities such as �! < �! or 	 < 	, and we would even get both 	 < 	C1
and 	C 1 < 	 holding at the same time!)

The definition immediately implies that if ˛ and ˇ are ordinals with
corresponding representative well-orders A and B , then ˛ � ˇ if and only if
there is a unique order isomorphism from A onto a unique initial segment of B . The
trichotomy property for < will be established in Theorem 636.
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9.4 Unique Representation by Initial Sets of Ordinals

Given an ordinal ˛ and a representative well-orderAwith order type ˛, we letW.˛/
denote the set of order types of proper initial segments ofA. Note that this definition
of W.˛/ is independent of the choice of the representative well-order A. Moreover,
for every ordinal ˇ, we have ˇ < ˛ if and only if ˇ is the order type of some proper
initial segment of A. So we can define:

Definition 632. Given any ordinal ˛, let W.˛/ WD fˇ j ˇ is an ordinal < ˛g.
Thus we have:

W.0/ D Ø;

W.1/ D f0g D W.0/[ f0g;
W.2/ D f0; 1g D W.1/[ f1g;
W.3/ D f0; 1; 2g D W.2/[ f2g;

: : :

W.n/ D f0; 1; 2; : : : ; n � 1g;
W.nC 1/ D f0; 1; 2; : : : ; ng D W.n/[ fng;

: : :

W.!/ D f0; 1; 2; : : : ; n; : : :g;
W.! C 1/ D f0; 1; 2; : : : ; n; : : : ; !g D W.!/ [ f!g

: : : etc.

Under the relation < on ordinals, the set W.˛/ of ordinals less than ˛ is itself a
well-order of order type ˛:

Theorem 633 (Representation Theorem for Well-Orders). Given a well-order
A with ordinal ˛, there is a unique order isomorphism between A and W.˛/: A
strictly increasing bijection f WA! W.˛/ defined by f .a/ D the rank of a in A D
the order type of Pred.a/.

The inverse of this bijection gives a strictly increasing complete enumeration of
A indexed by the ordinals less than ˛:

A D f a0 <A a1 <A a2 <A � � � <A a� <A � � � g .� < ˛/;

with a� <A a� for all � < � < ˛, where a� is the unique element in A having
rank �.

In particular,W.˛/ is well-ordered by < and its order type (ordinal) is ˛.

Proof. This is an immediate consequence of the unique rank property (Corol-
lary 629) and the definition of ˛ < ˇ for ordinals. ut



9.4 Unique Representation by Initial Sets of Ordinals 185

From the last statement in the theorem it follows that ifW.˛/ D W.ˇ/ then ˛ D ˇ.
Also, if � < ˛, then W.�/ is a proper initial segment in W.˛/ with order type � so
that W.�/ is the set of predecessors of the element � 2 W.˛/ with � itself having
rank � in W.˛/; and conversely, by uniqueness of ranks, a proper initial segment in
W.˛/ having order type � must equal W.�/.

Corollary 634. For all ordinals ˛; ˇ we have:

1. W.˛/ D W.ˇ/ if and only if ˛ D ˇ.
2. An initial segment of W.˛/ having order type � must equalW.�/.
3. A is an initial segment of W.˛/ if and only A D W.�/ for some � � ˛.
4. W.˛/ ¨ W.ˇ/ if and only if ˛ < ˇ.

Example 635. Recall the ordering<o on N having order type !C! D !2, where
all the odd natural numbers come before all the even ones, as in:

1 <o 3 <o 5 <o 7 <o � � � 2 <o 4 <o 6 <o 8 <o � � �

The set W.! C !/ D W.!2/ is

W.!2/ WD f0; 1; 2; : : : ; n; : : : ; !; ! C 1; ! C 2; : : : ; ! C n; : : : g

The natural correspondence between hN; <oi and the ordinals in W.!2/ is then
seen as:

1 <o 3 <o 5 <o 7 <o � � � 2 <o 4 <o 6 <o 8 <o � � �
l l l l l l l l
0 < 1 < 2 < 3 < � � � ! < !C1 < !C2 < !C3 < � � �

Theorem 636 (Well-Ordering and Ordinal Comparability Theorem). Given
ordinals ˛ and ˇ, exactly one of ˛ < ˇ, ˇ < ˛, and ˛ D ˇ holds (trichotomy).
Hence if A and B are well-orders, either A is isomorphic to an initial segment of B
or B is isomorphic to an initial segment of A.

Proof. Put C D W.˛/ \ W.ˇ/, so that C is an initial part of W.˛/ and also of
W.ˇ/. Hence C D W.�/ (where � D order type of C ), with both � � ˛ and � � ˇ.
But we cannot have � < ˛ and � < ˇ, as otherwise we would get � 2 C D W.�/

(contradicting irreflexivity of <). Hence either � D ˛ in which case ˛ � ˇ, or
� D ˇ, in which case ˇ � ˛. ut
Thus if A is any set of ordinals, then A must be linearly ordered. In fact, A must be
well-ordered, since otherwise we would have a nonempty B � A without a least
element, and then for any ˛ 2 B the set B \W.˛/ would be a nonempty subset of
W.˛/ without a least element, a contradiction.

Corollary 637. Any set of ordinals is linearly ordered and in fact well-ordered.
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Definition 638 (Initial Sets of Ordinals). A set A of ordinals is called an initial
set of ordinals if ˛ 2 A and ˇ < ˛) ˇ 2 A.

For every ordinal ˛, W.˛/ is an initial set of ordinals having order type ˛. In fact,
these are the only initial sets of ordinals:

Corollary 639. Every initial set A of ordinals equals W.˛/, where ˛ is the order
type of A.

This follows from comparability: If A is an initial set of ordinals with order type ˛,
we cannot have ˛ 2 A (since otherwise W.˛/ would be a proper initial segment of
A of order type ˛), and so A � W.˛/ by comparability; henceA D W.ˇ/ for some
ˇ, which implies that ˇ D order type of W.ˇ/ D order type of AD ˛.

Well-Ordered Sum of Ordinals

Recall that we needed the Axiom of Choice to define arbitrary sums of order types
(Definition 473) of the form

X

i2I
˛i (I an order, ˛i an order type for each i 2 I ).

AC was needed twice: First for choosing representative orders of type ˛i for each
i 2 I (existence), and then again for choosing isomorphisms between multiple
representatives for each type when showing that the order type of the sum does not
depend on the choice of representatives (uniqueness).

A nice consequence of the unique representation property for well-orders is that
if each ˛i is an ordinal (i 2 I ), then the above sum can be defined in an effective
canonical fashion without using AC at all: For the existence part, we can simply
let W.˛i / be the canonical representative well-order of type ˛i (for each i 2 I ).
The uniqueness part follows immediately from the uniqueness of isomorphisms for
well-orders.

Theorem 640 (Arbitrary Sum of Ordinals without AC). If I is any order and ˛i
is an ordinal for each i 2 I then the sum

X

i2I
˛i

is defined and unique even if we do not assume the Axiom of Choice.

Proof. Uniqueness follows from the fact that if Xi and X 0i are representative well-
orders of type ˛i then there is a unique order isomorphism between Xi and X 0i . For
existence, take W.˛i / as the representative well-order for ˛i and order

S
i2I fig �

W.˛i / lexicographically (by “first difference”). ut
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We will be interested in the case where I is a well-order, when the sum itself
becomes an ordinal.

Lemma 641. Suppose that X is an order with X D [i2I Si such that each Si is
well-ordered as a suborder of X (for i 2 I ), i < j ) Si < Sj (for all i; j 2 I ),
and I is itself a well-ordered set. Then X is a well-order.

Proof. Let X , I , and hSi j i 2 I i be as above, and let E be a nonempty subset of
X D [i2I Si . Let J D fi 2 I j Si \ E 6D Øg. Then J is nonempty and since I
is a well-order, J contains a smallest member i0 2 J . Then Si0 \ E is a nonempty
subset of Si0 , and since Si0 is a well-ordered subset ofX , Si0\E contains a smallest
element p 2 Si0 \ E . It is then easily verified that p is the least element of E . ut
Corollary 642 (Well-ordered sum of ordinals is an ordinal). If I is well-ordered
and ˛i is an ordinal for each i 2 I then

P
i2I ˛i is an ordinal

The product ˛ˇ of two ordinals ˛ and ˇ is conveniently viewed as “˛ repeated ˇ
times,” or equivalently as “ˇ copies of ˛.” For example, we have:

1! D 1C 1C 1C � � � D
X

n<!

1 D !; 2! D 2C 2C 2C � � � D
X

n<!

2 D !; etc.;

while

!2 D !! D
X

n<!

! D ! C ! C ! C � � �

We can keep going further using repeated sum. For example, after !3 D !2! DP
n<! !

2, and !4 D !3! DPn<! !
3, etc., we can get the following larger ordinal

which will later be denoted by !! :

X

n<!

!n D 1C ! C !2 C !3 C � � � C !n C � � �

Problem 643. 1. Simplify the sum
P

n<! n D 1C 2C 3C � � � C nC � � � .
2. Simplify the sum

P
n<! !n D !C!2C!3C� � �C!nC� � � as a single ordinal.

3. Find a re-ordering of N having the order type of the previous part.

9.5 Successor, Supremum, and Limit

Given any ordinal ˛, note thatW.˛/[f˛g is an initial set of ordinals whose greatest
element is ˛, and we define S.˛/, the successor of ˛, by
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S.˛/ WD the order type of W.˛/ [ f˛g
D the unique ˇ such that W.ˇ/ D W.˛/ [ f˛g.

The ordinal S.˛/ is the least ordinal greater than ˛ and is same as ˛ C 1, but the
above definition is independent of the notion of sum of ordinals.

If E is any set of ordinals, put:

PredŒE� WD
[

ˇ2E
W.ˇ/ D f˛ j ˛ < ˇ for some ˇ 2 Eg:

Problem 644. For any set E of ordinals, PredŒE� is an initial set of ordinals and
therefore equalsW.�/ for a unique ordinal � . The ordinal � is the least upper bound
of E , that is we have ˛ � � for all ˛ 2 E and there is no � 0 < � such that ˛ � � 0
for all ˛ 2 E .

Definition 645. For any set E of ordinals, put

supE D sup
˛2E

˛ WD the unique ordinal � such that PredŒE� D W.�/.

Problem 646. Show that for any set E of ordinals

1. If E D Ø, then supE D 0;
2. If E has a largest element ˛, then supE D ˛;
3. If E is nonempty and has no largest element, then supE is the unique limit

ordinal � such that ˛ < � for all ˛ 2 E and such that for all ˇ < � there is
˛ 2 E with ˇ < ˛ < � .

In the last case above, supE is called the limit of the elements of E , and denoted by

limE D lim
˛2E ˛ WD supE:

Problem 647. For any set E of ordinals, show that

1. E 0 WD E [
[

˛2E
W.˛/ is the smallest initial set of ordinals containing E .

2. The order type of E 0 equals sup
˛2E

S.˛/ D supfS.˛/ j ˛ 2 Eg.
3. sup

˛2E
S.˛/ is the least ordinal greater than all elements of E .

In particular, for any set E of ordinals there is an ordinal greater than all elements
of E , with sup˛2E S.˛/ being the least such ordinal.

Problem 648. For any set E of ordinals, show that

sup
˛2E

S.˛/ D
(
� C 1 if E has a largest element �;

supE otherwise.
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Problem 649. Given a set C of well-orders, effectively construct a well-order
whose order type is the supremum of the order types of the well-orders in C .

Theorem 650 (Transfinite Recursion over all Ordinals). Let G be a function
which assigns an object G.h/ to every function h whose domain is an initial set of
ordinals (i.e., with dom.h/ D W.˛/ for some ordinal ˛). Then there exists a unique
function F defined for all ordinals such that:

F.˛/ D G.F�W.˛//; for every ordinal ˛.

Proof. For each ordinal ˛, apply Theorem 622, with the well-orderA there replaced
by W.˛ C 1/, to get a unique function F˛ with domain W.˛ C 1/ and satisfying
the recursion condition F˛.ˇ/ D G.F˛ �W.ˇ// for all ˇ 2 W.˛ C 1/. Define
F.˛/ WD F˛.˛/. Note that if ˛ < ˇ then Fˇ extends F˛ (by uniqueness). Hence for
every ordinal ˛, F extends F˛ , and therefore F.˛/ D F˛.˛/ D G.F˛�W.˛// D
G.F �W.˛//. ut

9.6 Operations Defined by Transfinite Recursion

For given ordinals ˛ and ˇ, one can use transfinite recursion to define the ordinal
sum ˛ u ˇ as the ˇ-th successor of ˛, i.e., ˛ u ˇ is obtained starting from ˛ by
repeatedly applying the successor operation ˇ times. Here the recursion is done on
the second argumentˇ, which means ˛uˇ is defined assuming that ˛u� has been
defined for all � < ˇ. Breaking up into three cases, we have:

˛ u ˇ D

8
ˆ̂̂
<

ˆ̂
:̂

˛ if ˇ D 0;

S.˛ u �/ if ˇ D S.�/ is the successor of � ;

sup
�<ˇ

˛ u � if ˇ is a limit ordinal.

Here the first argument ˛ can be regarded as a parameter.

Problem 651. Show that the above informal definition by transfinite recursion can
be cast into the more formal framework of Theorem 650 by first fixing ˛ and taking
G˛ to be:

G˛.h/ WD
(
˛ if h is empty;

supfS.�/ j � 2 ran.h/ and � is an ordinalg otherwise.

That is, for any ordinal ˛, if we use this G˛ in Theorem 650 to obtain F˛ with
F˛.ˇ/ D G.F˛ �W.ˇ// for all ˇ, then F˛.ˇ/ D ˛ u ˇ for all ordinals ˇ.
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From now on, however, we will simply use the informal version of definition by
transfinite recursion, without explicitly displaying the function G needed by the
formal setup.

Problem 652. Show that ˛ u ˇ D ˛ C ˇ for all ordinals ˛; ˇ, that is the ordinal
sum as defined above by transfinite recursion coincides with the usual sum of order
types.

In a similar way, we can use transfinite recursion to define the ordinal product ˛ �ˇ:

˛ � ˇ D

8
ˆ̂
<̂

ˆ̂
:̂

0 if ˇ D 0;

.˛ � �/C ˛ if ˇ D S.�/ is the successor of � ;

sup
�<ˇ

˛ � � if ˇ is a limit ordinal.

Problem 653. Show that ˛ �ˇ D ˛ˇ for all ordinals ˛; ˇ, that is the ordinal product
as defined above by transfinite recursion coincides with the usual product of order
types.

As a result, all rules valid for sums and products of order types will apply to ordinals.
In particular, the associative law and the left distributive law hold.

In the definitions above for ordinal sum and product, the limit ordinal clauses say
that the each of these operations is “continuous” in the second variable, that is, if ˇ
is a limit ordinal so that ˇ D lim�<ˇ � , then:

lim
�<ˇ
.˛ C �/ D ˛ C lim

�<ˇ
�; and lim

�<ˇ
.˛�/ D ˛ lim

�<ˇ
�:

Problem 654. Show that neither the ordinal sum operation nor the ordinal product
operation is continuous in the first variable.

Problem 655. 1. ! is the smallest limit ordinal.
2. If ˛ is an ordinal then ˛ C ! is the smallest limit ordinal greater than ˛.
3. ˛ is a limit ordinal if and only if ˛ D !ˇ for some ordinal ˇ > 0.

Problem 656. If A is a well-order of type ˛ and ˇ is the order type of a suborder
of A, then ˇ � ˛.

Problem 657. If ˛ < ˇ then � C ˛ < � C ˇ, and conversely. This gives left-
cancellation for addition: If �C˛ D �Cˇ then ˛ D ˇ. If ˛ < ˇ then ˛C� � ˇC� .

For � > 0, if ˛ < ˇ then �˛ < �ˇ and conversely. This gives left-cancellation
for products: If �˛ D �ˇ and � > 0 then ˛ D ˇ. If ˛ < ˇ then ˛� � ˇ� .

Subtraction. If ˛ � ˇ then there is a unique � such that ˛ C � D ˇ. This � is
denoted by �˛ C ˇ and is a form of (one-sided) subtraction for ordinals, so that

ˇ D ˛ C .�˛ C ˇ/; whenever ˛ � ˇ.
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This follows immediately from the fact that given two well-orders, one of them is
isomorphic to a unique initial segment of the other. It is easy to see that we have
�˛ C .˛ C ˇ/ D ˇ for all ordinals ˛ and ˇ. Note also that if ˛ � ˇ, then �˛ C ˇ
is the order type of W.ˇ/XW.˛/.
Theorem 658 (Division Algorithm). If ˛; ˇ are ordinals with ˛ > 0 then there
are unique ordinals 	 and � such that

ˇ D ˛	C �; with � < ˛.

Proof. Note that with � D ˇ C 1 we have ˛� > ˇ. Let � be the least ordinal such
that ˛� > ˇ, so that � � ˇ C 1. Then � must be a successor ordinal since if �
were a limit ordinal, then ˇ would be an upper bound of E WD f˛� j � < �g, which
would imply that ˛� D supE (D least upper bound of E) � ˇ, which contradicts
˛� > ˇ. So we can write � D 	 C 1 for some 	. Then ˛	 � ˇ, and we can put
� D �˛	 C ˇ, giving ˇ D ˛	 C �. And we must have � < ˛, for otherwise we
would get � D ˛ C � for some � , giving ˇ D ˛	 C ˛ C � � ˛.	 C 1/ D ˛�,
contradicting ˇ < ˛�.

For uniqueness, suppose that

˛	C � D ˛	0 C � 0 with �; � 0 < ˛.

Then 	 � 	0, for otherwise 	0 D 	 C 
 with 
 > 0, so ˛	 C � D ˛	0 C � 0 D
˛	 C ˛
 C � 0, and left-cancellation would give � D ˛
 C � 0 � ˛, contradicting
� < ˛. Similarly 	0 � 	, and so 	 D 	0. Hence ˛	C � D ˛	C � 0, and so � D � 0 by
left-cancellation. ut
Problem 659 (Even and Odd Ordinals). Call an ordinal ˛ even if it can be
expressed in the form ˛ D 2� and call it odd if ˛ D 2� C 1 (for some ordinal
� ). Show that every ordinal is either even or odd but not both. Show that every limit
ordinal is even.

9.7 Remainder Ordinals and Ordinal Exponentiation

We say that an ordinal ˇ > 0 is a remainder of an ordinal � if � D ˛ C ˇ for
some ordinal ˛. Thus the finite ordinal 3 has as remainders 1, 2, and 3, and 0 has
no remainder. In general the finite ordinal n < ! has exactly n remainders, namely
1; 2; : : : ; n. The only remainder of the ordinal ! is ! itself.

Problem 660. An ordinal can have at most finitely many remainders.

[Hint: Note that the remainders of � are given by the ordinals of the form �˛ C �
for ˛ < � , and the mapping ˛ 7! .�˛ C �/ is monotonically decreasing, that is, if
˛ < ˛0 then �˛ C � � �˛0 C � .]
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Definition 661. An ordinal � > 0 is said to be a remainder ordinal if the only
remainder of � is � itself, that is, if whenever � D ˛ C ˇ with ˇ > 0, we have
ˇ D �.

In other words, � is a remainder ordinal if it is the type of a nonempty well-order A
in which every nonempty terminal segment is isomorphic to the entire order A. It is
also easily seen that � is a remainder ordinal if and only if ˛C � D � for all ˛ < �.

We have seen that 1 and ! are remainder ordinals. Other than 1, all remainder
ordinals must be limit ordinals.

Problem 662. If ˛ is a remainder ordinal, then so are ˛! and !˛, and ˛! is the
smallest remainder ordinal greater than ˛.

Thus after 1 and !, the next remainder ordinal is !2, the following one is !3, and
we get the sequence

1; !; !2; !3; : : : ; !n; : : :

of the first ! remainder ordinals. Writing 1 D !0, this sequence consisting of the
first ! remainder ordinals can be expressed as h!n j n < !i.
Problem 663. If E is any nonempty set of remainder ordinals without a largest
element, then supE is a remainder ordinal, and so is the least remainder ordinal
greater than all the ones in E .

Thus we have the ordinal

sup
n<!

!n D supf1; !; !2; !3; : : : ; !n; : : : g

as the least remainder ordinal greater than all !n, n < !. This ordinal is denoted
by !! .

More generally, for any two ordinals ˛ and ˇ, we can define the ordinal
exponentiation ˛ˇ by transfinite recursion on ˇ:

Definition 664 (Ordinal Exponentiation).

˛ˇ WD

8
ˆ̂
<̂

ˆ̂̂
:

1 if ˇ D 0;

.˛� /˛ if ˇ D S.�/ is a successor ordinal;

sup
�<ˇ

˛� if ˇ is a limit ordinal.

Note that the above definition does not create a conflict with our previous usage
of the notation ˛n as an abbreviation for ˛˛ � � �˛ (n factors). From the last clause
of the definition we have “continuity in the exponent,” i.e., ordinal exponentiation
˛; ˇ 7! ˛ˇ is continuous in the second variable ˇ:

lim
�<ˇ

˛� D ˛ˇ; where ˇ is any limit ordinal.
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Ordinal exponentiation should be carefully distinguished from cardinal
exponentiation. For example, for cardinals we had

2@0 > @0;

while with ordinal exponentiation we have:

2! D sup
n<!

2n D !:

(For finite ordinals and cardinals, the two notions coincide.)
Using transfinite induction, we can establish the main properties of ordinal

exponentiation:

Problem 665 (Properties of Ordinal Exponentiation).

1. 1˛ D 1, and 0˛ D 0 for ˛ > 0.
2. ˛ˇ˛� D ˛ˇC� .
3. .˛ˇ/� D ˛ˇ� .
4. For ˛ > 1, ˛ˇ � ˇ and ˇ < � ) ˛ˇ < ˛� .

The largest ordinal that we have seen so far is !! D supn<! !
n, but we can proceed

further as:

!! C 1 < !! C ! < !! C !2 < !! C !! D !!2 < !!! D !!C1 < !!2 : : :

on to

!!
2

< !!
3

< � � � ; and in the limit: !!
! D sup

n<!

!!
n

:

In fact, using exponentiation we get:

!! < !!
!

< !!
!!

< � � � ; and "0 WD supf!;!!! ; !!!! ; : : : g

The ordinal "0 has the property !"0 D "0. Ordinals ˛ which satisfy the equation
!˛ D ˛ are called epsilon numbers (Cantor).

Problem 666. Show that "0 is the smallest epsilon number, and that for every
ordinal there is a greater ordinal which is an epsilon number.

The next epsilon number after "0 is called "1, the next epsilon number after "1 is
called "2, and so on.

An ordinal is said to be a countable ordinal if it is the order type of some
countable well-order (i.e., a well-order defined on some countable set). Since ordinal
sum and product coincides with the ordinary sum and product of order types, we see
that sums and products of countable ordinals are countable ordinals. The countable
ordinals are also closed under forming “countable limits”:
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Problem 667 (CAC). If E is a countable set of countable ordinals without a
largest element, then their limit limE D supE is also a countable ordinal.

From these facts it follows by transfinite induction that if ˛ and ˇ are countable
ordinals then so is ˛ˇ .

The countable ordinals thus have quite strong closure properties, and all the
ordinals above including !! , "0, "1, and so on, are countable ordinals.

Definition 668 (Sum-Closed and Product-Closed Ordinals). An ordinal � is
called sum-closed if ˛; ˇ < � ) ˛ C ˇ < �, and � is called product-closed if
˛; ˇ < � ) ˛ˇ < �.

Problem 669 (Characterization of Remainder Ordinals). Let � be a nonzero
ordinal. Then the following conditions are equivalent.

1. � is a remainder ordinal.
2. � is a sum-closed ordinal.
3. � D !˛ for some ordinal ˛.

Problem 670. An ordinal � > 2 is product-closed if and only if � D !!˛ for some
ordinal ˛.

Definition 671 (Normal Functions). Suppose that F.˛/ is an ordinal for each
ordinal ˛. We say that F is a normal function if F is increasing, i.e., ˛ < ˇ )
F.˛/ < F.ˇ/, and F is continuous, i.e., F.˛/ D supˇ<˛ F.ˇ/ for every limit
ordinal ˛.

Normal functions are frequently encountered in the theory of ordinals. The sum,
product, and power functions are normal in the second variable (i.e., when the first
argument is held fixed), but not in the first variable.

Problem 672. Show that a normal function F must have arbitrarily large fixed
points, i.e., for each ordinal ˛ there is an ordinal ˇ > ˛ with F.ˇ/ D ˇ.

We can generalize the notion of iterated derived sets in orderings using ordinals as
follows. Let X be an order and A be a subset. Recall that D.A/ denotes the set of
limit points of A in X .

Definition 673 (Cantor–Bendixson Derivative). Let X be an order and let A �
X . For each ordinal ˛, define D.˛/.A/, the ˛-th iterated derived set of A, by
transfinite recursion as follows:

D.0/.A/ WD A;
D.˛C1/.A/ WD D.D.˛/.A//;

D.�/.A/ WD
\

ˇ<�

D.ˇ/.A/ if � is a limit ordinal.
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Problem 674. Let E be any initial set of ordinals, considered as an order by itself.
Show that for each ordinal ˛ > 0,

D.˛/.E/ D f� 2 E j � D !˛ˇ for some ˇg:
Conclude that if X WD f� j � � !˛g D W.!˛/[f!˛g, then in the orderX we have
D.˛/.X/ 6D Ø, but D.˛C1/.X/ D Ø.

Problem 675 (Hausdorff’s Ordinal Exponentiation). Let A and B be well-
orders with A nonempty and let a 2 A be the first element of A. Let E be the
set of all functions f from B to A such that f .x/ D a for all but finitely many
x 2 B . Thus E � AB . For f; g 2 E , define f <H g if for some b 2 B we have
f .b/ < g.b/ with f .b0/ D g.b0/ for all b0 > b.

1. Show that the relation <H linearly orders E .
2. Show that E is well-ordered by <H with order type ˛ˇ , where ˛ and ˇ are the

order types of A and B , respectively.

9.8 The Canonical Order on Pairs of Ordinals

Recall the lexicographic order on W.˛/ � W.˛/, of order type ˛2. We will now
define a different order C on pairs of ordinals called the canonical order.

We first partitionW.˛/ �W.˛/ into ˛-many sets P� , � < ˛, where

P� WD fh�; �i j max.�; �/ D �g .� < ˛/:

Note that P� D
�
W.�/ � f�g� [ �f�g �W.�/� [ fh�; �ig for each � < ˛, and

[

�<˛

P� D W.˛/ �W.˛/:

Thus the sets P� (� < ˛) are pairwise disjoint with unionW.˛/ �W.˛/.
Now each set P� gets well-ordered by the order it inherits from the lexicographic

order on W.˛/ �W.˛/, under which its order type will be �2C 1.

)

)

〈ξ,0〉 〈η,0〉

〈0,ξ〉

〈0,η〉

〈ξ,ξ〉

〈η,η〉

Pξ

Pη

Pξ

Pη
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Finally, we define a new order onW.˛/�W.˛/ by setting P� < P	 whenever � < 	,
and following the inherited lexicographic order within each set P� . Put differently,
this order is defined as follows.

Definition 676 (Canonical Order C on Pairs of Ordinals). The canonical order,
denoted by C, for pairs of ordinals is defined as:

h�; �i C h�; ıi ,max.�; �/ < max.�; ı/;

or max.�; �/ D max.�; ı/ and � < �;

or max.�; �/ D max.�; ı/ and � D � and � < ı:

Since each set P� has order type �2C 1, we immediately get:

Corollary 677. Under the canonical order C, W.˛/ �W.˛/ has order type

OrdTypC.W.˛/ �W.˛// D
X

�<˛

.�2C 1/;

and hence the canonical order is a well-order.

The canonical order on W.˛/ � W.˛/ has nicer properties than the lexicographic
order on it.

Problem 678. 1. If ˇ < ˛, thenW.ˇ/�W.ˇ/ is an initial segment ofW.˛/�W.˛/
under the canonical order. In fact, we have

W.ˇ/ �W.ˇ/ D PredC.h0; ˇi/:

2. Let ˚.˛/ WD OrdTypC.W.˛/ �W.˛// D
P

ˇ<˛.ˇ2 C 1/. Then ˚ is a normal
function.

Problem 679. Show that both the properties in Problem 678 fail if the canonical
order is replaced by the lexicographic order on W.˛/ �W.˛/. In fact:

1. If 1 < ˇ < ˛ thenW.ˇ/�W.ˇ/ is not an initial segment ofW.˛/�W.˛/ under
the lexicographic order.

2. If �.˛/ WD ˛2 D the order type of W.˛/ �W.˛/ under the lexicographic order,
then � is not a normal function.

Theorem 680. Let ˛ > 2 be a product-closed ordinal. Then the canonical order
onW.˛/�W.˛/ has order type ˛, i.e., OrdTypC.W.˛/�W.˛// D ˛. Hence there
is a unique bijection  WW.˛/ � W.˛/ ! W.˛/ which preserves order: h�; �i C
h�; 	i ,  .h�; �i/ <  .h�; 	i/.
Proof. Let ˛ > 2 be product-closed, and let � WD OrdTypC.W.˛/ �W.˛// be the
order type ofW.˛/�W.˛/ under the canonical order. The mapping � 7! h�; �i is a
strictly increasing injection (order embedding) of W.˛/ into W.˛/ � W.˛/, hence
˛ � �.
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Now let ˇ < � be given. Then there is h�; �i 2 W.˛/ � W.˛/ such that
PredC.h�; �i/ has order type ˇ. Since ˛ is a limit ordinal we can fix ı with
max.�; �/ < ı < ˛. Then PredC.h�; �i/ � W.ı/ �W.ı/, so

ˇ � OrdTypC.W.ı/ �W.ı// D
X

�<ı

.�2C 1/ � .ı2C 1/ı � .ı3/ı < ˛;

since ˛ is product-closed. Thus ˇ < ˛ for all ˇ < �, i.e., � � ˛. So ˛ D �. ut

9.9 The Cantor Normal Form

We generalize the following familiar fact about natural numbers to ordinals: Given
a base b > 1, every natural number n can be uniquely expressed as

n D d1bp1 C d2bp2 C � � � C dkbpk
(
p1 > p2 > � � � > pk � 0
0 < d1; d2; : : : ; dk < b

; k 2 N:

Theorem 681 (Expansion in Powers of a Base). Let ˇ > 1 be a fixed “base”
ordinal. Then every ordinal ˛ > 0 can be expressed as the following “polynomial”
in powers of ˇ with nonzero coefficients less than ˇ:

˛ D ˇ
1	1 C ˇ
2	2 C � � � C ˇ
k 	k
(

1 > 
2 > � � � > 
k
0 < 	1; 	2; : : : ; 	k < ˇ

; k 2 N:

Proof. Let � be the least ordinal such that ˇ� > ˛ (such a � must exist since ˇ˛C1 �
˛C1 > ˛). Then � must be a successor ordinal, since otherwise from ˇ� � ˛ for all
� < � we would get ˇ� � ˛ (by continuity in the exponent), contradicting ˇ� > ˛.
Hence � D 
1 C 1 for some 
1 satisfying ˇ
1 � ˛, with 
1 being the largest ordinal
for which ˇ
1 � ˛. By division algorithm,

˛ D ˇ
1	1 C �1; �1 < ˇ

1 :

Then we get 0 < 	1 < ˇ, as ˇ � 	1 would imply ˇ
1C1 D ˇ
1ˇ � ˇ
1	1 � ˛,
contradicting the fact that 
1 is the largest ordinal for which ˇ
1 � ˛.

If now �1 D 0, we are done. Otherwise �1 > 0 and we repeat the above procedure
with ˛ replaced by �1 to get

�1 D ˇ
2	2 C �2; �2 < ˇ

2 :

Here again we must have 0 < 	2 < ˇ, and also 
2 < 
1. We thus have:

˛ D ˇ
1	1 C ˇ
2	2 C �2; 
1 > 
2; 0 < 	1; 	2 < ˇ:
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Continuing in this fashion we see that the process must stop after a finite number
of steps since otherwise we would get an infinite strictly decreasing sequence of
ordinals 
1 > 
2 > � � � . ut
Note that when ˛ and ˇ are finite ordinals, the above theorem gives the usual
representation of ordinary integers with respect to a base, e.g., with ˇ D 10 we
have decimal representation and with ˇ D 2 we have binary representation.

The case where the base ˇ equals ! is particularly important:

Corollary 682 (Cantor Normal Form). Every ordinal ˛ > 0 can be expressed as
a “polynomial in ! with integral coefficients”:

˛ D !
1n1 C !
2n2 C � � � C !
knk
(

1 > 
2 > � � � > 
k
0 < n1; n2; : : : ; nk < !

; k 2 N:

Problem 683. Every ordinal ˛ < !! can be uniquely expressed as the “polynomial
in ! with integral exponents and coefficients”:

˛ D !m1n1 C !m2n2 C � � � C !mknk; m1 > m2 > � � � > mk;

with the exponentsmj and coefficients nj > 0 all finite for j D 1; 2; : : : ; k.

Remark. The entire basic theory of ordinals and well-orders as presented in this
chapter was created by Cantor [6].



Chapter 10
Alephs, Cofinality, and the Axiom of Choice

Abstract This chapter concludes our development of cardinals and ordinals.
We introduce the first uncountable ordinal, the alephs and their arithmetic, Har-
togs’ construction, Zermelo’s well-ordering theorem, the comparability theorem
for cardinals, cofinality and regular, singular, and inaccessible cardinals, and the
Continuum Hypothesis.

10.1 Countable Ordinals, !1, and @1

All orders we have encountered so far, including all uncountable orders such as R
and all ordinals, have been of countable cofinality. (Recall that an order is said to
have countable cofinality if it has a countable cofinal subset.) We will now define an
ordinal of uncountable cofinality.

Recall that an ordinal is a countable ordinal if it is the order type of a well-order
defined on a countable set, or equivalently if it is the order type of a well-ordered
rearrangement of a subset of N. By Cantor’s theorem on countable dense orders,
every countable order is isomorphic to a suborder of Q, hence a countable ordinal
could also be defined as an order type of a well-ordered suborder of Q. We thus
have:

Proposition 684 (Countable Ordinals). For any ordinal ˛, the following are
equivalent.

1. ˛ is a countable ordinal.
2. ˛ is the order type of a well-ordered rearrangement of a subset of N.
3. ˛ is the order type of a well-ordered suborder of Q.
4. W.˛/ is countable.

All ordinals that we have seen so far are countable ordinals, such as:

0; 1; 2; : : : ; !; ! C 1; : : : ; ! C !; : : : ; !2; : : : !!; : : : ; !!! ; : : : ; "0; : : : ; "1; : : :

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__10, © Springer Science+Business Media New York 2014
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As we will see now, the set of all countable ordinals turns out to be an uncountable
well-order. In other words, the set of ordinals of well-ordered rearrangements
of subsets of N is itself a well-order which is longer than any well-ordered
rearrangement of a subset of N.

Let C be the set of all countable ordinals. Then C is an initial set of ordinals
(Definition 638), so we have C D W.!1/, where !1 is the order type of C . Hence
˛ is a countable ordinal if and only if ˛ < !1.

Definition 685 (Cantor). !1 denotes the order type of the set of all countable
ordinals, so that ˛ 2 W.!1/ , W.˛/ is countable. Equivalently, !1 is the order
type of the set of all ordinals of well-ordered suborders of Q.

Since !1 62 W.!1/ and W.!1/ contains all countable ordinals, it follows that !1
is not a countable ordinal, while every ˛ < !1 is countable. Hence !1 is the least
uncountable ordinal. Note also that !1 must be a limit ordinal, since the successor
of a countable ordinal is a countable ordinal. W.!1/ is thus an uncountable well-
order without a greatest element, in which every proper initial segment is countable
and every nonempty terminal segment is uncountable. These facts are summarized
in the following:

Theorem 686. !1 is the smallest uncountable ordinal and is a limit ordinal. The
set W.!1/ consists of all countable ordinals, and is an uncountable well-order in
which every proper initial segment is countable.

Assuming the countable axiom of choice, the uncountable well-order W.!1/ also
has uncountable cofinality, since limits of countable sequences of countable ordinals
are countable ordinals. In other words, if we had a countable cofinal subset E of
W.!1/, then W.!1/ D [˛2EW.˛/ would be countable (being a countable union of
countable sets, a fact which uses the countable axiom of choice), contradicting the
uncountability of W.!1/. This means the limit ordinal !1 cannot be expressed as a
sequential limit of smaller ordinals:

If ˛n < !1 for all n < !, then lim
n<!

˛n < !1:

Hence every cofinal (unbounded) subset of W.!1/ is uncountable and so has order
type !1. Conversely, any uncountable subset of W.!1/ is cofinal. Thus:

Theorem 687 (CAC). The well-order W.!1/ has uncountable cofinality. A subset
of W.!1/ is cofinal (unbounded) if and only if it is uncountable if and only if it has
order type !1.

We say that a set E of ordinals is closed under internal repeated additions if
whenever � 2 E and ˇ˛ 2 E for each ˛ < � , then

P
˛<� ˇ˛ 2 E . We say that

E is closed under internal sups if whenever � 2 E and ˇ˛ 2 E for each ˛ < � ,
then sup˛<� ˇ˛ 2 E .
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Problem 688. Show that the set W.!/ D f0; 1; 2; : : : g D fn j n < !g of all
finite ordinals is closed under addition, multiplication, exponentiation, and internal
repeated additions and internal sups.

Problem 689 (CAC).

1. Show that W.!2/ D f!mC n j m; n < !g.
2. Show that the set W.!2/ D f!mC n j m; n < !g is the smallest set of ordinals

containing 0, 1, and !, and closed under addition.
3. Find the smallest set of ordinals containing 0, 1, and !, and closed under both

addition and multiplication.
4. Find the smallest set of ordinals containing 0, 1, and !, and closed under

addition, multiplication, and ordinal exponentiation.
5. Show that if a set of ordinals containing 0, 1, and ! is closed under addition and

under taking internal sups, then it is closed under internal repeated additions,
under multiplication, and under exponentiation. Find the smallest set of ordinals
containing 0, 1, and !, and closed under addition and taking internal sups.

6. Show that if a set of ordinals containing 0, 1, and ! is closed under internal
repeated additions, then it is closed under addition, multiplication, and exponen-
tiation. Find the smallest set of ordinals containing 0, 1, and !, and closed under
internal repeated additions.

7. Show that a set of ordinals which contains 0 and is closed under taking
successors and countable limits must contain all countable ordinals.

Problem 690. Suppose that ˛� > 0 is a nonzero countable ordinal for each � < !1.
Show that

P
�<!1

˛� D !1. Are you using the CAC?

Earlier we saw that orders of type .1C
C 1/k
 (k 2 N) are examples of non-CCC
continuums. We now have a different continuum which is not CCC.

Problem 691 (The Long Line). Let X be an order of type 
C .1C 
/!1, and let
Y be an order of type .1C 
C 1/
. Show that]

1. Both X and Y are non-CCC linear continuums without endpoints.
2. In X every nonempty bounded open interval has order type 
 (and so is

isomorphic to R), but this is not true in the order Y .
3. X has no countable cofinal subset.
4. None of the continuumsX and Y can be embedded in the other.

10.2 The Cardinal @1

The set W.!1/ of all countable ordinals has cardinality > @0, and this cardinal
number is denoted by @1.
Definition 692 (Cantor). @1 WD jW.!1/j.
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Problem 693. A subset of W.!1/ is either countable or has cardinality @1.
So the cardinal @1 is the next larger cardinal after @0 in the following sense:

Problem 694. @0 < @1 and there is no cardinal � such that @0 < � < @1.
Problem 695. Prove that

1. nC @1 D @1 for any finite cardinal n.
2. @0 C @1 D @1.
3. @1 C @1 D @1. [Hint: Use even and odd ordinals.]
4. @1@0 D @1.
Theorem 696. @21 D @1.
Proof. The ordinal !1 is product-closed, i.e., ˛; ˇ < !1 ) ˛ˇ < !1 (since if
W.˛/;W.ˇ/ are countable then so is W.˛/ � W.ˇ/). Hence by Theorem 680, the
canonical order C on W.!1/ �W.!1/ has order type !1, and so there is a bijection
(order isomorphism) from W.!1/ �W.!1/ onto W.!1/. ut
Note that the above is an effective proof of @21 D @1, without any use of the Axiom
of Choice. A variant proof is obtained using the following problem.

Problem 697. Show that f WW.!1/ �W.!1/! W.!1/ defined by

f .˛; ˇ/ D

8
ˆ̂
<

ˆ̂:

2˛2 if ˇ D ˛,

2.˛2 C ˇ/C 1 if ˇ < ˛,

2.ˇ2 C ˛/C 2 if ˇ > ˛.

is an injection from W.!1/ �W.!1/ into W.!1/.

One can then use the Cantor–Bernstein theorem to combine the above mapping f
with the injection ˛ ! h˛; 0i from W.!1/ to obtain an effective bijection between
W.!1/ �W.!1/ and W.!1/.

Using the above results, we get many more well-orders of cardinality @1. For
example, orders of type !1 C !, or !12, or !21 , all have cardinality @1. Note that
many of these orders (e.g., any order of type !1 C !) are uncountable but have
countable cofinal subsets.

Closed Unbounded Subsets of W.!1/

Recall that a subset A of an order is called closed if A contains all its limit points
(Definition 592). In a well-order there are no lower limit points and so A is closed if
A contains all its upper limit points, or equivalently if supE 2 A for all nonempty
bounded E � A.
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Definition 698 (Club Sets). A subset ofW.!1/ is called a club set if is both closed
and unbounded above.

Proposition 699. The intersection of countably many club sets is a club set.

Proof. Let A1, A2, . . . , be club sets and let A D \nAn. It is easy to see that A is
closed, since if x is any (upper) limit point of A then x is an upper limit point of An
for all n, and so (since An is closed) x 2 An for all n. To see that A is unbounded,
fix any countable ordinal �. Fix also a function gWN ! N such that for any n 2 N
there are infinitely manym with g.m/ D n, e.g., g may be taken to be the sequence

1; 1; 2; 1; 2; 3; 1; 2; 3; 4; 1; 2; 3; 4; 5; : : :

Since each An is unbounded, for any finite set F of countable ordinals there exists
˛ 2 An such that ˛ > � for all � 2 F . Using this we can inductively choose ordinals
˛n, for each n, such that each ˛n 2 Ag.n/ and is greater than all preceding elements:

� < ˛1 < ˛2 < ˛3 < � � � with ˛n 2 Ag.n/ for all n.

Let ˛ WD supn ˛n. Then ˛ is a limit point of An for all n, hence ˛ 2 An for all n,
and so ˛ 2 \nAn D A. ut
Problem 700. Prove that if f WW.!1/ ! R is continuous, then f must be
eventually constant, i.e., there exists ˛ < !1 such that f .ˇ/ D f .˛/ for all ˇ > ˛.

[Hint: Put EŒx� WD f˛ j f .˛/ � xg and F Œx� WD f˛ j f .˛/ � xg, which
are closed subsets of W.!1/ for x 2 R (Problem 597). Put L WD fx 2 R j
EŒx� is uncountableg, which is nonempty and bounded above since [n2ZEŒn� D
W.!1/ while \n2ZEŒn� D Ø. Finally, put p WD supL, and show that bothEŒpC 1

n
�

and F Œp � 1
n
� must be countable for all n 2 N.]

10.3 Hartogs’ Theorem, Initial Ordinals, and Alephs

The process by which we constructed !1 and @1 from ! and @0 can be iterated
further as follows. Consider the set of order types of well-orders defined on subsets
of W.!1/. This is the set of ordinals of well-orders defined on sets of cardinality
� @1 and is an initial set of ordinals (Definition 638). Hence it equalsW.!2/ for an
ordinal !2. Then !2 cannot be the ordinal of a well-order of cardinality� @1 (since
!2 62 W.!2/). Thus W.!2/ has cardinality > @1, and !2 is the type of a well-order
on a set of cardinality> @1 (and is the least such ordinal). We denote the cardinality
of the set W.!2/ by @2, which gives us a cardinal greater than @1. We can continue
this process to get !3 and @3, and so on.
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The cardinalities of the sets W.˛/, for various ordinals ˛, start as:

jW.0/j D 0 < jW.1/j D 1 < � � � < jW.!/j D @0:

After this, we have jW.˛/j D @0 for all uncountably many ˛ satisfying! � ˛ < !1,
since the ordinals in W.!1/XW.!/ are the types of infinite countable well-orders
(this is called the second number class by Cantor). The next ordinal ˛ for which we
have the jW.˛/j > jW.ˇ/j for all ˇ < ˛ is ˛ D !1.
Definition 701 (Initial Ordinals). An ordinal ˛ is an initial ordinal if the cardi-
nality of W.˛/ is greater than that of W.ˇ/ for all ˇ < ˛.

Thus all finite ordinals and the ordinal ! are initial ordinals. The next initial ordinal
is !1, the following one is !2, etc. Note also that if E is a set of initial ordinals, then
supE is also an initial ordinal. To generalize, we first define:

Definition 702. If ˛ is an ordinal and A is a set, we write ˛ � A to mean that ˛ is
the ordinal of a well-order defined on some subset of A. In other words, ˛ � A if
there is an injection fromW.˛/ into A.

For example, ˛ � N if and only if ˛ is a countable ordinal.

Definition 703 (The Hartogs Set H.A/, Ordinal !.A/, and Cardinal @.A/ of a
Set). Let A be any set. We defineH.A/, the Hartogs set of A, to be the set of order
types of well-orders defined on subsets of A, so that H.A/ D f˛ j ˛ � Ag. The
order type of H.A/, denoted by !.A/, is called the Hartogs ordinal of A, and the
cardinality of H.A/, denoted by @.A/, is called the Hartogs cardinal of A.

Theorem 704 (Hartogs’ Theorem). For any set A:

1. H.A/ is an initial set of ordinals, with H.A/ D W.	/ D f˛ j ˛ < 	g, where
	 D !.A/ is the Hartogs ordinal of A.

2. H.A/ is not equinumerous to any subset of A, and so @.A/ 6� jAj.
3. !.A/ is an initial ordinal with !.A/ 6� A, and so ifA is well-ordered with ordinal
˛ then !.A/ > ˛ and is in fact the least initial ordinal > ˛.

4. If A can be well-ordered then @.A/ is the next larger cardinal after jAj, that is
@.A/ > jAj and there is no cardinal � such that jAj < � < @.A/.

Problem 705. Prove Theorem 704.

If jAj D jBj then clearlyH.A/ D H.B/. ThusH.A/, !.A/, and @.A/ depend only
on the cardinality of A. Hence the following definition makes sense.

Definition 706 (�C and !C.˛/). For a cardinal � and an ordinal ˛, define

1. �C WD @.A/ D jH.A/j, where A is a set of cardinality �.
2. !C.˛/ WD !.W.˛// D the Hartogs ordinal of fˇ j ˇ < ˛g.
Thus for any cardinal �, we have �C 6� �, and if � is the cardinality of a set which
can be well-ordered then �C is the least cardinal greater than �. If ˛ is an ordinal
then !C.˛/ is the least initial ordinal > ˛.
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Definition 707 (!˛ and @˛). For every ordinal ˛ we define the ordinal !˛ by
transfinite recursion as:

!0 WD !;
!˛C1 WD !C.!˛/ D least initial ordinal > !˛ ,

!� WD sup
�<�

!� ; if � is a limit ordinal.

Finally, define @˛ WD jW.!˛/j D jf� j � < !˛gj.
Theorem 708. 1. Every !˛ is an initial ordinal with jW.!˛/j D @˛.
2. ˛ < ˇ) !˛ < !ˇ and so ˛ < ˇ) @˛ < @ˇ .
3. @˛C1 D @C̨, and if � is a limit ordinal then @� D sup˛<� @˛ .
4. Every infinite initial ordinal equals !˛ for some ordinal ˛.
5. If an infinite set A can be well-ordered, then jAj D @˛ for an ordinal ˛.

Problem 709. Prove Theorem 708.

We thus have the series of all initial ordinals as:

0 < 1 < 2 < � � � < ! < !1 < !2 < � � � < !˛ < � � � ;

where, after the finite ordinals, ! D !0 is the only countably infinite initial ordinal
and !˛ is the ˛-th uncountable initial ordinal for ˛ > 0.

The infinite cardinals in the series

@0 < @1 < @2 < � � � < @˛ < � � �

are called alephs. By the last part of Theorem 708, the above series of alephs gives a
well-ordered enumeration, indexed by the ordinals, of all infinite cardinals of well-
orderable sets.

We will soon see that every set can be well-ordered using the Axiom of Choice
(the well-ordering theorem). Hence, under the Axiom of Choice, every infinite set
has cardinality @˛ for some ordinal ˛ and every infinite cardinal is an aleph. Thus,
for ˛ > 0, @˛ is the ˛-th uncountable cardinal (under AC).

Earlier we had proved that @21 D @1. Essentially the same proof yields:

@2˛ D @˛; and so under AC: �2 D �

for any infinite cardinal �. From these relations and the Cantor–Bernstein theorem,
the sum and product of any two alephs are determined completely as follows:

Theorem 710. @˛ C @ˇ D @˛@ˇ D @max.˛;ˇ/ D max.@˛;@ˇ/.
We also have, by induction, @n˛ D @˛ for any nonzero finite cardinal n.



206 10 Alephs, Cofinality, and the Axiom of Choice

On the other hand, when the exponent is infinite, it is impossible to compute

cardinal powers such as @@ˇ˛ or 2@ˇ as an aleph even using AC. (Without AC, we
cannot prove that such a cardinal is an aleph.)

Problem 711. Show by examples that for arbitrary orders X :

1. The Bolzano–Weierstrass property does not imply the strong Nested Intervals
property.

2. The strong Nested Intervals property does not imply the Bolzano–Weierstrass
property.

3. The Bolzano–Weierstrass property together with the strong Nested Intervals
property does not imply completeness.

4. The sequential NIP does not imply that either the strong Nested Intervals
property or the Bolzano–Weierstrass property holds in X .

[Hint: Consider orders of type ! C �!1, !1 C �!1, !1 C �!2, etc.]

10.4 Abstract Derivatives and Ranks

Definition 712 (Derivative Operators). LetX be any set. A mappingrWP.X/!
P.X/will be called a derivative operator ifr.E/ � E for allE � X . (A derivative
may also be referred to as a contraction or reduction.)

An example of a derivative operator in the context of orders is the following: Put
r.E/ WD E \ D.E/, where D.E/ is the set of limit points of E . In other words
r.E/ is obtained from E by removing the isolated points of E . This is the Cantor–
Bendixson derivative, and gives rise to Cantor–Bendixson ranks, which will be
studied in detail later. The notion of derivative as defined here is an abstract version
of the Cantor–Bendixson derivative.

Definition 713 (Strict Derivatives). A derivative operator rWP.X/! P.X/ will
be called strict if r.E/ ¨ E wheneverE 6D Ø.

One can naturally iterate a derivative operator and define by transfinite recursion
sets X.˛/, where ˛ is any ordinal, as follows:

X.0/ WD X;
X.˛C1/ WD r�X.˛/

�
; and,

X.�/ WD
\

˛<�

X.˛/; if � is a limit ordinal.

The sets X.˛/ decrease with ˛ so that we have

X D X.0/ � X.1/ � � � � � X.˛/ � X.˛C1/ � � � � ;
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but the following theorem shows that the process must “stabilize” at an ordinal, i.e.,
there is � such that X.�C1/ D X.�/ (and so X.˛/ D X.�/ for all ˛ > �). It is a
theorem which, in an abstract setting, assigns ordinal ranks to certain elements of
the set X without using the Axiom of Choice. We will have many occasions to use
the general framework of this theorem.

Theorem 714 (Rank Decomposition for Derivative Operators). Let X be a set,
rWP.X/ ! P.X/ be a derivative operator, and 	 D !.P.X// be the Hartogs
ordinal for P.X/. For each ˛ < 	, define the set X.˛/, called the ˛-th iterated
derivative of X , by transfinite recursion as follows.

X.0/ WD X;
X.˛C1/ WD r�X.˛/

�
; and,

X.�/ WD
\

˛<�

X.˛/; if � is a limit ordinal.

Then

1. The sets X.˛/ decrease with ˛, and there exists a unique least ordinal � < 	 for
which X.�/ D X.�C1/, so that X.˛/ D X.�/ for all ˛ > �, but X.˛/ ¨ X.�/ for
˛ < �:

X D X.0/ © X.1/ © � � �X.˛/ © X.˛C1/ © � � �X.�/ D X.�C1/ D X.1/;

where X.1/ denotes the “stabilized smallest set X.�/” among the X.˛/.

2. The set XXX.1/ D XXX.�/ is partitioned as:

XXX.1/ D
[

˛<�

X.˛/XX.˛C1/; with X.˛/XX.˛C1/ 6D Ø for all ˛ < �.

3. Consequently, if for each x 2 XXX.1/ we put �.x/ D �r.x/ WD the least ˛ < �
such that x 2 X.˛/XX.˛C1/, then � D �r WX XX.1/ ! W.�/ is the unique
“ordinal rank function” such that for any x 2 XXX.1/ and any ordinal ˛:

�.x/ D ˛ , x 2 X.˛/XX.˛C1/:

If �.x/ D ˛, we say that the element x has rank ˛, and thusX.˛/XX.˛C1/ consists
precisely of the elements of rank ˛. (Put �.x/ D1 if x 2 X.1/.)

4. If r is a strict derivative then X.�/ D X.1/ D Ø, and so dom.�/ D X , i.e.,
�WX ! W.�/, and every element in X has an ordinal rank.

Proof. 1. The fact that the sets X.˛/ decrease is immediate from their definition via
a routine transfinite induction. If we had X.˛/ 6D X.˛C1/ for all ˛ < 	, then
the mapping ˛ 7! X.˛/ is easily seen to be a one-to-one mapping from W.	/
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into P.X/, which is impossible since 	 is the Hartogs ordinal for P.X/. Hence
X.˛/ D X.˛C1/ for some ordinal ˛ < 	, and we can therefore take � to be the
least such ordinal.

2. This is immediate from the definition of the sets X.˛/.
3. The function � D �r is readily defined as the relation:

�r WD fhx; ˛i 2 X �W.�/ j x 2 X.˛/XX.˛C1/g:

4. If r is strict, then X.1/ 6D Ø would contradict r.X.1// D X.1/. ut
Remarks. (1) Note that the theorem does not use the Axiom of Choice. (2) The
relation on XXX.1/ defined by �.x/ � �.y/ is called a pre-well-ordering.

Problem 715 (Monotone Operators). A mapping rWP.X/ ! P.X/ is called
monotone if A � B ) r.A/ � r.B/. Show that if r is a derivative on X which
is also monotone, then the set X.1/ is the largest fixed point of r, that is, we have
r.X.1// D X.1/, and if r.E/ D E then E � X.1/.

Problem 716. Show that if a derivative rWP.X/ ! P.X/ has the property that
jEXr.E/j � 1 for all E , then the rank function � D �r must be one-to-one on
XXX.1/. If, in addition, r is strict, then �WX ! W.�/ is a bijection from X onto
the set W.�/ of ordinals < �.

10.5 AC, Well-Ordering Theorem, Cardinal Comparability

Recall the two versions of Axiom of Choice that we have seen earlier:

• Axiom of Choice, Partition Version. Every partition has a choice set. If P is a
family of pairwise disjoint nonempty sets then there is a “choice set” C for the
partition P satisfying jC \ Ej D 1 for everyE 2 P .

• Axiom of Choice, Choice Function Version. Every family of nonempty sets has a
choice function. Equivalently, for any set A there is choice function 'WP�.A/!
A with '.E/ 2 E for all E 2 P�.A/, where P�.A/ WD P.A/XfØg is the
collection of all nonempty subsets of a set A.

We had seen that the two forms are equivalent. In the theorem below, we use the
Choice Function version to show that the Axiom of Choice implies the well-ordering
theorem, which says that every set can be well-ordered.

Theorem 717 (Zermelo’s Well-Ordering Theorem). The Axiom of Choice
implies the well-ordering theorem (that every set can be well-ordered).

Proof. Let A be an arbitrary set with a choice function 'WP�.A/! A. The idea of
the proof is to use the choice function ' to well-order A as follows: Let
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a0 D '.A/; a1 D '.AXfa0g/; a2 D '.AXfa0; a1g/; etc.,

and in general we keep putting

a˛ D '.AXfaˇ j ˇ < ˛g/;

until we exhaust A. We now formalize this using the framework of abstract iterated
derivatives and ranks (Sect. 10.4, Theorem 714).

Define a strict derivative operator rWP.A/! P.A/ by

r.E/ WD
(
EXf'.E/g if E 6D Ø,

E if E D Ø.

Let A.˛/ denote the ˛-th iterated derivative of A, and � be the least ordinal with
A.�/ D A.�C1/ D A.1/. Then A.1/ D Ø since r is strict, and so there is a rank
function � D �r WA ! W.�/ such that for all x 2 A, �.x/ D ˛ (i.e., x has rank
˛) if and only if x 2 A.˛/Xr.A.˛//. Since A.˛/Xr.A.˛// has at most one member
'.A.˛//, no two distinct elements can have the same rank, i.e., the rank function �
is injective (in fact a bijection from A ontoW.�/). So the ordering defined on A by
the relation

x < y , �.x/ < �.y/ .x; y 2 A/

is a well-ordering of A (of order type �). ut
Since the well-ordering theorem clearly implies the Axiom of Choice, we have:

Corollary 718. The Axiom of Choice is equivalent to the well-ordering theorem.

If A and B are any two sets then using the well-ordering theorem we can well-order
each of them, and consequently by comparability of well-orders one of them must
be isomorphic to an initial segment of the other; in particular, there is an injection
from one of the sets into the other. Thus we have:

Theorem 719 (Cardinal Comparability). The well-ordering theorem implies that
for any two sets one of them is equinumerous to a subset of the other, and therefore
that cardinal comparability holds: For any two cardinals � and � either � � � or
� � �, and thus exactly one of � < �, � D �, � > � is true.

Conversely, cardinal comparability implies the well-ordering theorem. To see this,
let A be any set and let H.A/ be the Hartogs set of all ordinals of well-orderings
defined on subsets of A. Then by Hartogs’ theorem H.A/ is not equinumerous
with any subset of A and so by cardinal comparability A is equinumerous with
some subset of H.A/, which is well-ordered. Hence A itself can be well-ordered.
It follows that:

Theorem 720. The well-ordering theorem is equivalent to cardinal comparability.
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The above results can be summarized as:

Theorem 721 (Equivalents of AC). Without using the Axiom of Choice, we can
prove that any of the following assertions implies the others:

1. The Axiom of Choice (either the partition or the choice function version).
2. The Well-Ordering Theorem: Any set can be well-ordered.
3. Cardinal Comparability: If �; � are cardinals then either � � � or � � �.

Note that by the well-ordering theorem, any set is equinumerous with W.˛/ for
some ˛, and hence to W.ˇ/ for some initial ordinal W.ˇ/, and so the cardinal
number of any infinite set is an aleph. Thus we have a well-ordered enumeration
of all cardinals as

0 < 1 < 2 < � � � < @0 < @1 < � � � < @! < � � � < @˛ < � � �

Since every infinite cardinal is an aleph and the alephs are well-ordered under the
relation < for comparing cardinals, it follows that any set of cardinals is well-
ordered. This allows us to use phrases like “the least cardinal with such and such
property.” Moreover, any set of cardinals has a unique cardinal as the least upper
bound (supremum) of the given set.

All the facts of the last paragraph assume the Axiom of Choice, under which the
infinite cardinals (as alephs) correspond naturally to the infinite initial ordinals !˛
in a one-to-one fashion, allowing us to informally identify the infinite cardinals with
the infinite initial ordinals !˛ .

Corollary 722 (AC). Under the Axiom of Choice, every infinite cardinal is an
aleph, and therefore for any two infinite cardinals � and �, we have � C � D
�� D max.�; �/. In particular, �2 D � for all infinite cardinals �.

Problem 723. AC holds if and only if � < �C for every infinite cardinal �.

Problem 724 (Tarski). The Axiom of Choice follows from the assumption that
�2 D � for all infinite cardinals �.

[Hint: Given any infinite set A, fix a well-ordered B with jBj D @.A/ D jAjC and
A \ B D Ø. If �2 D � for all �, then jAjjBj 6 jAj C jBj, so there is an injection
f WA�B ! A[B . Now f Œfag�B�\B 6D Ø for all a 2 A, so we get an injective
gWA! B , where g.a/ WD the least element in f Œfag�B�\ B .]

10.6 Cofinality: Regular and Inaccessible Cardinals

Proposition 725. Let X be a nonempty order without a greatest element and
suppose that jX j D @˛. Then X has a well-ordered cofinal subset whose order
type is � !˛ . In particular, any countable order without a greatest element has a
cofinal subset of type !.
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Proof. Since jX j D @˛, we can enumerate the elements of X indexed by ordinals
< !˛ as

X D fa� j � < !˛g:

Define the subset I of W.!˛/ by

I WD f� j � < !˛ and a� > a� in X for all � < �g:

I is nonempty since 0 2 I , and if � < � are in I then a� < a� in X . Hence the
suborder C of X defined by

C WD fa� j � 2 I g

has the same order type as I , and so is well-ordered with type � !˛ .
Finally, C is cofinal in X . For otherwise, we could get the least ˇ < !˛ with

aˇ > x in X for all x 2 C . Then for any � < ˇ if � 2 I then a� 2 C so we would
have a� < aˇ , and if � 62 I then there would be the least � < � such that a� > a�
and for this � we must have a� 2 C which implies a� < a� < aˇ . In either case,
we have a� < aˇ in X for any � < ˇ. Hence ˇ 2 I , so aˇ 2 C , contrary to our
assumption. ut
Corollary 726. Let X be an order without a last element. If X has countable
cofinality, then X has a cofinal subset of order type !, that is, there exists a strictly
increasing sequence x1 < x2 < � � � < xn < � � � in X such that fxn j n 2 Ng is
cofinal in X .

Corollary 727. Let X be a nonempty well-order without a largest element. Then
the least ordinal � such that X has a cofinal subset of type � is an infinite initial
ordinal � D !˛ .

Proof. Let C be a cofinal subset of X of order type � and let jC j D @˛ so that
!˛ � �. If�were not an initial ordinal, we would have!˛ < �. By the proposition,
there is E � C such that E is cofinal in C and the order type of E is � !˛ . Since
E is cofinal in C and C is cofinal in X , therefore E is cofinal in X . Hence X has a
cofinal subset of type � !˛ < �, a contradiction. ut
From the corollary it follows that for every well-order X there is a unique smallest
cardinal � such that X has a cofinal subset of cardinality �.

Definition 728 (Cofinality of Well-Orders and Ordinals). The cofinality of a
well-order X is the least cardinal � such that X has a cofinal subset of cardinality
�. The cofinality of an ordinal ˛ is the cofinality of the well-order W.˛/ D fˇ j
ˇ < ˛g.
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From the definition and the previous corollary it follows that if ˛ is the ordinal of
a nonempty well-order X without a largest element, then the cofinality of ˛ equals
@� if and only if X has a cofinal subset of type !� but of no smaller type.

The cofinality of any successor ordinal is 1. For a limit ordinal ˛, the cofinality
of ˛ equals @� if and only if the least order type of subsets cofinal in W.˛/ (which
must be an initial ordinal) equals !�. In particular, the cofinality of any countable
limit ordinal is @0, while the cofinality of !1 is @1.

For the rest of this section we will assume the Axiom of Choice so that every
cardinal � equals an aleph � D @˛.

Definition 729 (Cofinality of Cardinals (AC)). The cofinality of a cardinal � D
@˛, denoted by cf.�/, is the cofinality of the ordinal !˛ , i.e., it is the least cardinal
� such that W.!˛/ has a cofinal subset of cardinality �.

Note that the definition of cofinality for cardinals requires the Axiom of Choice.

Theorem 730 (AC). For any cardinal � > 0,

1. cf.�/ � �.
2. cf.cf.�// D cf.�/.

Proof. The first part is immediate. For the second part, suppose that � D @˛,
cf.�/ D @�, and cf.@�/ D @� , so that � � � � �. Then W.!˛/ has a cofinal
subset C of order type !�, but of no smaller type. Since cf.@�/ D @� , so W.!�/,
and hence the isomorphic order C , has a cofinal subset of order type !� . But if E is
cofinal in C of order type !� , then E will be cofinal also in W.!˛/, and so !� will
be � the order type of E which is !� . Hence !� D !� , and so @� D @� . ut
Problem 731. If ˛ is a successor ordinal, then cf.@˛/ D @˛ . If ˛ is a limit ordinal,
then cf.@˛/ equals the cofinality of ˛.

[Hint: For the first part use the fact that @2� D @� .]
Thus cf.@0/ D @0, cf.@1/ D @1, while cf.@!/ D @0.
The following definition is based on cofinalities of cardinals and therefore

assumes the Axiom of Choice.

Definition 732 (Successor, Limit, Regular and Singular Cardinals). An infinite
cardinal � is a successor cardinal if � D �C for some cardinal �; otherwise � is a
limit cardinal. � is regular cardinal if cf.�/ D �; otherwise � is a singular cardinal.

Thus @˛ is a successor cardinal if and only if ˛ is a successor ordinal, and � is a
singular cardinal if cf.�/ < �. For every ˛ < !, the cardinal@˛ is regular, and @! is
the smallest singular infinite cardinal (the next singular cardinal being @!C!). Since
every successor cardinal is regular, singular cardinals must be limit cardinals. Also,
cf.�/ must be regular for any cardinal �, since cf.cf.�// D cf.�/. We record these
facts in the following proposition.
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Proposition 733. cf.�/ is a regular cardinal for every infinite cardinal �. Every
successor cardinal is regular. Hence singular cardinals must be limit cardinals.

Let us say that an infinite ordinal � is a regular ordinal if there is no cofinal subset of
W.�/ having order type less than �. By the following problem, the regular ordinals
can be identified with the regular cardinals since they correspond to each other in a
natural one-to-one fashion.

Problem 734. Show that if � is an regular ordinal then � is an initial infinite ordinal
and so � D !˛ for some ˛. Moreover, the ordinal !˛ is regular if and only if the
cardinal @˛ is regular.

Problem 735 (AC). Let � be an infinite cardinal and A a set with jAj D �.

1. cf.�/ is the least cardinal � such that A can be expressed as the union of �
pairwise disjoint sets each of cardinality < �. This assertion remains true even
if we do drop the qualifier “pairwise disjoint.”

2. cf.�/ is the least cardinal � such that � can be expressed as

� D
X

i2I
�i ; where jI j D � and �i < � for i 2 I .

3. cf.�/ is the least cardinal � such that � can be expressed as

� D sup
i2I

�i ; where jI j D � and �i < � for i 2 I .

As mentioned before, very little can be said about cardinal exponentiation when the
exponent is infinite, but we do have:

Theorem 736 (König). If � � 2 and � � @0 are cardinals, then cf.��/ > �.

Proof. It suffices to show that if �i < �� for all i 2 I with jI j D �, then
P

i2I �i <
��. So assume that �i < �� for all i 2 I where jI j D �.

Using the original König’s Inequality and the fact that �2 D �, we get:

X

i2I
�i <

Y

i2I
�� D .��/� D ��2 D ��: ut

It follows that the cardinality of the continuum c D 2@0 has cofinality > @0, and so
R cannot be expressed as the union of countably many sets each of cardinality less
than c.

Problem 737. 2@0 D @n for some n 2 N if and only if @@0! > 2@0 , and 2@0 > @n
for all n 2 N if and only if @@0! D 2@0 .
Problem 738 (Hausdorff’s Formula). @@��C1 D @�C1@@�� .
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.!˛; �!ˇ/ Gaps in Orders

We illustrate the use of cofinalities by giving characterizations for each of the weak
completeness properties of orders introduced in Sect. 8.8, namely, the Bolzano–
Weierstrass property, the strong nested intervals property, and the sequential nested
intervals property. This is done by analyzing the cofinality and coinitiality of
Dedekind gaps in orders. By the cofinality of an order X we will mean the least
ordinal � such that X has a cofinal subset of order type �. The coinitiality of an
orderX is the cofinality of the reverse order �X . By Corollary 727, if X has no last
element, then the cofinality of X is an initial ordinal !˛ .

Definition 739 (.!˛; �!ˇ/ gaps in orderings). An .!˛; �!ˇ/ gap in an order X is
a Dedekind partition L;U of X such that L has cofinality !˛ and U has coinitiality
!ˇ , that is, !˛ is the least ordinal � such that L has a cofinal subset of type � and
!ˇ is the least ordinal � such that U has a coinitial subset of type ��.

Thus for any .!˛; �!ˇ/ gap, !˛ and !ˇ must be regular ordinals (i.e., @˛ and @ˇ
must be regular cardinals). In fact, we have the following.

Problem 740. A Dedekind partition L;U of an order X is an .!˛; �!ˇ/ gap if and
only if @˛ and @ˇ are regular cardinals and there exist L0 � L and U 0 � U such
that L0 has order type !˛ , U 0 has order type �!ˇ , for all x 2 L there is y 2 L0 with
y > x, and for all x 2 U there is y 2 U 0 with y < x.

Thus an ordinary Dedekind gap is simply an .!˛; �!ˇ/ gap for some ˛; ˇ. In a
countable order, a Dedekind gap must be an .!0; �!0/ (or .!; �!/) gap.

Problem 741 (Characterizing the Bolzano–Weierstrass Property). Show that
an order X satisfies the Bolzano–Weierstrass property if and only if it has no
.!˛;

�!ˇ/ gap with ˛ D 0 or ˇ D 0 (i.e., it has no .!˛; �!/ or .!; �!ˇ/ gaps,
or in other words, in every Dedekind gap, both the cofinality and coinitiality are
uncountable).

Problem 742 (Characterizing the Strong NIP). Show that an order X satisfies
the strong nested intervals property if and only if it has no .!˛; �!˛/ gap (i.e., has
no “symmetric” gap with identical cofinality and coinitiality).

Problem 743 (Characterizing the Sequential NIP). Show that an order X satis-
fies the sequential nested intervals property if and only if it has no .!; �!/ gaps.

Problem 744. Show that if X is an order which (a) has the Bolzano–Weierstrass
property, (b) has the strong nested intervals property, and (c) has cardinality � @1,
then X must be complete. Show that none of the three conditions in the hypothesis
of this result can be dropped.
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Inaccessible Cardinals

The uncountable initial ordinals we have seen so far,!1, !2, . . . , !! etc., all have the
property that the ˛-th uncountable initial ordinal !˛ is much larger than the ordinal
˛. For example 1 < !1, 2 < !2, ! < !! , and even !1 < !!1 . Equivalently, @˛ has
much larger cardinality than the set W.˛/ D fˇ j ˇ < ˛g for any ˛ < !1 or even
for any ˛ < !!1 . Hence any ordinal ˛ such that !˛ D ˛ (the ˛-the uncountable
initial ordinal equals ˛ itself), or equivalently any ordinal such that the cardinality
of W.˛/ D fˇ j ˇ < ˛g equals @˛, must be larger than all the above ordinals.

Problem 745. Show that if

˛ D sup f!; !!; !!! ; !!!! ; : : : g;

then !˛ D ˛ and so jfˇ j ˇ < ˛gj D @˛.

All uncountable limit cardinals we have seen so far, such as @! , @!C! , @!1 , etc.,
are singular. For the ordinal ˛ of the last problem satisfying !˛ D ˛, @˛ is a much
larger limit cardinal but is still singular, since cf.@˛/ D @0.
Problem 746. Show that ˛ 7! !˛ is a normal function, and so for every ordinal ˛
there is ˇ > ˛ with !ˇ D ˇ.

Definition 747. An uncountable cardinal is weakly inaccessible if it is a regular
limit cardinal.

Problem 748. Show that if @˛ is a weakly inaccessible cardinal then !˛ D ˛ and
so jfˇ j ˇ < ˛gj D @˛.

A weakly inaccessible must be quite large, but we also define:

Definition 749. A cardinal � is a strong limit if 2� < � for all � < �, and � is
strongly inaccessible if it is uncountable, regular, and a strong limit.

A strong limit cardinal is clearly a limit cardinal, and hence a strongly inaccessible
cardinal is weakly inaccessible. It is not possible to show that strongly inaccessible
cardinals exist,1 nor that weakly inaccessible cardinals exist.

Cardinals which cannot be shown to exist using the standard axioms of set theory
are called large cardinals. Inaccessible cardinals are the simplest examples of large
cardinals. The subject area of large cardinals studies much larger cardinals and
the consequences of adding their existence as axioms. Such axioms have resolved
some classical mathematical problems which could not be decided under the usual
axioms, although one famous problem has been stubborn in resisting resolution via
large cardinals. It is the Continuum Hypothesis, which we discuss next.

1From the standard axioms for set theory (such as ZFC), assuming they are consistent; this follows
from a result of Gödel known as the second incompleteness theorem.
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10.7 The Continuum Hypothesis

Both 2@0 and @1 are uncountable cardinals, and Cantor conjectured that

2@0 D @1;
an assertion known as the Continuum Hypothesis (CH). Cantor implicitly assumed
the Axiom of Choice, by which 2@0 is an uncountable aleph, i.e.,

2@0 D @˛ for some ˛ � 1, and so: 2@0 � @1:
Hence under AC, CH is equivalent to the statement that every set of reals is either
countable or equinumerous to R. (Without AC, we cannot prove that R can be well-
ordered, or even that R has a subset of cardinality @1.)

The CH is perhaps the most famous problem of set theory, and the problem of
settling it is known as the continuum problem.2 All attempts to settle the CH by
Cantor and by other early twentieth-century mathematicians failed, even though
for most effectively defined sets of reals, they could prove them to be either
countable or equinumerous to R. Cantor and Bendixson proved the important result
that every closed set of reals must either be countable or be equinumerous to
R, which can be informally expressed by saying that “the closed sets satisfy the
CH.” Other mathematicians extended the result to show that a larger class of sets
known as analytic sets satisfy the CH. We will prove both these results in the next
part (Corollary 1081, Theorem 1160). However, Lusin introduced other effectively
defined sets of reals which could not be proved to satisfy the CH. The magnitude of
the cardinal 2@0 turned out to be very difficult to estimate, and much of research in
set theory was driven by investigations into the continuum problem.

By König’s theorem, we have

cf
�
2@0
�
> @0;

so 2@0 cannot equal any cardinal of countable cofinality, e.g.,

2@0 6D @0; 2@0 6D @!; 2@0 6D @!2 ; 2@0 6D @!1C!; etc.

That is about as much as we can say about the magnitude of 2@0 as an aleph using
the current standard axioms of set theory. In later research, first Gödel introduced
the notion of constructible sets to show that CH cannot be disproved (assuming that
the standard axioms of set theory are consistent). Then Cohen invented the powerful
technique of forcing to show that CH cannot be proved either. Extending Cohen’s
result, Solovay showed that one can consistently assume that 2@0 equals @˛ for any
˛ so long as @˛ has uncountable cofinality.

2It was the first in Hilbert’s celebrated list of problems presented in 1900.
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Problem 750. Show without using the Axiom of Choice that

@1 � 22@0
:

[Hint: For each ˛ < !1, consider the subcollection of P.Q/ consisting of those
subsets of Q which are well-ordered and have order type ˛.]

Problem 751. Define the cardinals Æn, n D 0; 1; 2; : : : , as

Æ0 WD @0; and ÆnC1 WD 2Æn :

Thus Æ1 D c, Æ2 D f, etc. Show without using the Axiom of Choice that

@n � Æ2n; for all n D 0; 1; 2; : : : .

Under the Axiom of Choice, one can define Æ˛ for all ordinals ˛ and it readily
follows that @˛ � Æ˛ for all ˛. On the other hand, by the Cohen–Solovay result
mentioned above, no inequality of the form

2@0 � @˛;
however large ˛ may be, can be obtained using the usual axioms of set theory.

Problem 752. Show that CH holds if and only if @@01 < @@02 .

Problem 753. Show that CH implies @@0n D @n for all finite cardinals n > 0.

[Hint: Use induction, and the fact that cf.@n/ > @0 for n > 0.]

The Generalized Continuum Hypothesis

After CH, Hausdorff introduced the much stronger statement:

2@˛ D @˛C1 for every ordinal ˛;

which is known as the Generalized Continuum Hypothesis (GCH). It is a much

stronger assumption and the cardinal power @@ˇ˛ can be completely determined
using GCH. Using the notation Æ˛ as above, GCH holds if and only if @˛ D Æ˛ for
˛. Under an additional assumption called the Axiom of Foundation, GCH becomes
equivalent to the statement

2� D �C for every cardinal �;

which readily implies the Axiom of Choice.

Problem 754. Show (without using AC) that if 2� D �C for every cardinal �, then
the Axiom of Choice holds.

Problem 755. Under GCH, show that if @� � @�C1 then @@�� D @�C1.
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�1-Orderings and the CH

The 	1 orderings were introduced and studied by Hausdorff as a generalization
of the order type 	 to the next higher cardinal @1. The behavior of 	1 orderings
of cardinality @1 is similar to that of countable dense orderings without endpoints
(Problem 766, Problem 767, Corollary 768). However, as we will see, the problem
is inextricably linked to the CH, since the existence of 	1 orderings of cardinality
@1 is equivalent to the CH (Problem 764).

Definition 756 (	1 orderings). An order X is an 	1 ordering if for any countable
A;B � X , if A < B then there exists p 2 X such that A < p < B .

Problem 757. Every 	1 ordering is a nontrivial dense order without endpoints in
which every countable subset is bounded (both above and below).

In particular, every sequence is bounded, but no strictly increasing sequence is
convergent (i.e., a strictly increasing sequence does not have a supremum).

[Hint: The sets A and B in the definition are allowed to be empty.]

Problem 758. An order is an 	1 order if and only if it is a nontrivial dense
linear ordering without endpoints in which every sequence is bounded, no strictly
monotone sequence is convergent, and there are no .!; �!/ gaps.

Problem 759. In an 	1 ordering a nonempty open interval fx j a < x < bg is an
	1 ordering, but not all open segments are 	1 orderings.

Problem 760. An 	1 order X contains suborders isomorphic to Y for every order
Y with jY j 6 @1 (and so X has suborders of type ˛ for every ˛ < !2).

Definition 761 (Lexicographic Powers). If X is an order and ˛ is any ordinal, we
define an order on XW.˛/ by defining, for a; b 2 XW.˛/, a < b if and only if there is
� < ˛ such that a.�/ < b.�/ and a.	/ D b.	/ for all 	 < �.

Problem 762. Let H1 be the suborder of the lexicographic power f0; 1gW.!1/
consisting of all binary !1-sequences with a last 1, that is:

H1 WD
˚ ha�i�<!1 2 f0; 1gW.!1/ j 9ˇ < !1.aˇ D 1 and a� D 0 8� > ˇ/

�
:

1. H1 is an 	1 ordering of cardinality c.
2. Let c D hc� j � < !1i 2 f0; 1gW.!1/ be the binary !1-sequence defined by setting
c� D 1 if � is even, and c� D 0 if � is odd. Let L D fa 2 H1 j a < cg and
U D fa 2 H1 j c < ag. Show that L;U form a .!1; �!1/ gap in H1.

3. Show that H1 has exactly 2@1 many .!1; �!1/ gaps.

Problem 763. Show that every 	1 ordering contains a subset isomorphic to R and
so has cardinality at least c.

Problem 764. Show that the Continuum Hypothesis is equivalent to the statement
that there exists an 	1 ordering of cardinality @1.
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The Dedekind completion of an 	1 ordering cannot be an 	1 ordering. However, we
have the following result.

Problem 765 (.!1;
�!1/ Completion). Suppose that X is a suborder of an order

Y such that for any p 2 Y XX , p is a two-sided limit point of X and the sets
L WD fx 2 X j x < pg and U WD fx 2 X j p < xg form a .!1; �!1/ gap in X .
Show that if X is an 	1 ordering then so is Y .

Conclude that for any 	1 ordering X , the “.!1; �!1/ completion of X ,” i.e., the
ordering obtained by “filling in” all the .!1; �!1/ gaps inX , is an 	1 ordering which
has no .!1; �!1/ gap.

The following problems form the “	1 analogues” of Cantor’s theorem on countable
dense linear orders without endpoints (characterizing the order type 	) and the proof
that R is uncountable that follows from it. Note, however, that the results are vacuous
unless we assume CH since without CH there are no 	1 orderings of cardinality @1
(Problem 764).

Problem 766. Any two 	1 orderings of cardinality @1 are order isomorphic.

[Hint: Mimic Cantor’s “back-and-forth” proof.]

Problem 767. Any 	1 ordering of cardinality @1 must have .!1; �!1/ gaps.

[Hint: Removing a point from any 	1 ordering produces an 	1 ordering with a
.!1;

�!1/ gap.]

Corollary 768. Any 	1 ordering without .!1; �!1/ gaps has cardinality > @1.
If X is an 	1 ordering of cardinality @1, then by Problem 765 the “.!1; �!1/
completion” of X will be an 	1 ordering without .!1; �!1/ gaps, and so will have
cardinality> @1. Thus just as a countable dense linear order has uncountably many
irrational Dedekind gaps, similarly every 	1 ordering of cardinality @1 has more
than @1 .!1; �!1/ gaps.



Chapter 11
Posets, Zorn’s Lemma, Ranks, and Trees

Abstract This chapter covers the very basics of the following topics: Partial orders,
Zorn’s Lemma and some of its applications, well-founded relations and ranks on
them, trees, König’s Infinity Lemma, well-founded trees, and Ramsey’s theorem.

11.1 Partial Orders

A linear order < is an irreflexive transitive relation which is also connected, i.e., if
x 6D y then either x < y or y < x (any two distinct elements are comparable). By
dropping this last condition of comparability, we get the more general notion of a
partially ordered set or simply a poset.

Definition 769. A strict poset is a pair hP;�i where P is a set and � is a binary
relation on P which is irreflexive (x ˜ x for all x) and transitive (if x � y and
y � z then x � z) on the set P . (Note that “a ˜ b” means that “a � b is false.”)

It is easy to verify that if hP;�i is a strict poset, then the relation � is asymmetric
on P (for all x; y 2 P , if x � y then y ˜ x).

Posets also come in an essentially equivalent “reflexive” variety:

Definition 770. A reflexive poset is a pair hP;�i where P is a set and� is a binary
relation on P which is reflexive (x � x for all x), antisymmetric (if x � y and
y � x then x D y), and transitive (if x � y and y � z then x � z) on the set P .

It is easy to verify that if hP;�i is a strict poset, then the relation � on P defined
by x � y , x � y or x D y makes hP;�i a reflexive poset, from which the
original strict poset can be recovered by defining x � y , x � y and x 6D y.
Similarly, one can start from a reflexive poset hP;�i, then get a strict poset by
setting x � y , x � y and x 6D y, and recover back the original reflexive poset
as before. This gives, for each set P , a natural one-to-one correspondence between
the strict posets and reflexive posets over P .
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Thus the notions of reflexive and strict posets are essentially variants of the same
concept, analogous to that of inclusive set inclusion � and proper set inclusion ¨.
From now on we will use the term poset to denote either a reflexive or a strict poset,
as determined by context or notation.

Problem 771. Every linear order is a poset. Every subset (restriction) of a poset is
a poset.

Definition 772. Let hP;�i be poset, A � P , and a 2 P . We say that

1. a is lower bound ofA if a � x for all x 2 A. Upper bounds are similarly defined.
2. a is a least element of A, written as a D min.A/, if a is lower bound of A which

is also a member of A. Greatest elements are similarly defined.
3. a is a minimal element of A if a 2 A and there is no x 2 A distinct from a with
x � a. Maximal elements are similarly defined.

4. a is the least upper bound or supremum of A, written as a D _A or a D supA,
if a is an upper bound of A and a � x for every upper bound x of A. Greatest
lower bounds or infimums are similarly defined.

Note that a set A can have at most one least element, at most one greatest element,
at most one supremum (least upper bound), and at most one infimum (greatest lower
bound).

Definition 773. Let x and y be elements of a poset hP;�i. We say that:

1. x and y are comparable if either x � y or y � x; otherwise, x and y are
incomparable.

2. x and y are compatible if there is z such that z � x and z � y; otherwise, x and
y are incompatible.

In a linear order, every pair of elements are comparable and therefore compatible.
In a poset with a least element, every pair of elements are compatible.

Definition 774. Let A be a subset of poset hP;�i.
1. A is called an initial part of the poset hP;�i or a downward closed subset of P

if for all x; y 2 P , x 2 A and y � x) y 2 A.
2. A is bounded above (in P ) if there is an element of P which is an upper bound

of A.
3. A is called a chain if A is linearly ordered by �, i.e., if any two elements of A

are comparable.
4. A is called an antichain if any two elements of A are incompatible.

A most important example of a poset is obtained by taking any family of sets with
set inclusion � as the ordering relation.

Problem 775. Let X be a set, and P D P.X/. Then both hP;�i and hP;�i are
posets. What are the least and greatest elements of hP;�i? If A is the collection of
all nonempty proper subsets of X , then what are the minimal and maximal elements
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of A in the poset hP;�i? Does A have least or greatest elements? If B is an initial
part of hP;�i which is also a chain, what can you say about B?

Problem 776. Let P be the set of nonnegative integers and for x; y 2 P define
x � y , x divides y. Then hP;�i is a poset. Does P have least or greatest
elements? Let A D fn 2 P j n � 2g. What are the minimal elements of A? Give an
example of an infinite initial part of P which is a chain.

Theorem 777 (A representation theorem for posets). Let hP;�i be a reflexive
poset. Then there is a set X , a subset S � P.X/ such that hP;�i is isomorphic
to hS;�i; that is, there is a bijection F WP ! S such that 8x; y 2 P , x � y ,
F.x/ � F.y/.
Proof. Define, for x 2 P , F.x/ WD fy 2 P j y � xg. Now put X WD P , and
S WD fF.x/ j x 2 P g. ut
Problem 778. Find a chain C in the poset hP.N/;�i such that C is order
isomorphic to R under its usual ordering.

[Hint: Try using P.Q/ instead of P.N/.]

Problem 779. Consider the poset P D NXf1g with divisibility as the ordering
relation. Find a necessary and sufficient condition for a subset to be an antichain.

Definition 780 (Increasing Maps, Embeddings, and Isomorphisms). Suppose
that hP;�P i and

˝
Q;�Q

˛
are strict posets, and let f WP ! Q. We say that

1. f is strictly increasing if x �P y ) f .x/ �Q f .y/ (for all x; y 2 P ).
2. f is an embedding if x �P y , f .x/ �Q f .y/ (for all x; y 2 P ).
3. f is an isomorphism if f is a bijective embedding of P ontoQ.

Problem 781. Suppose that hS;<i is a linear order, hP;�i is a strict poset, and
f WS ! P . Show that if f is strictly increasing, then it must be an embedding.

11.2 Zorn’s Lemma

An extremely useful consequence of AC is known as Zorn’s Lemma, which asserts
that if in a poset every chain is bounded above then the poset has a maximal element.

Theorem 782 (Zorn’s Lemma). The Axiom of Choice implies that if every chain
in a poset is bounded above then the poset has a maximal element.

Proof. Let hP;�i be a poset in which every chain is bounded above, and let
'WP�.P /! P be a choice function (so that '.E/ 2 E whenever E is a nonempty
subset of P ). For each E � P , let U.E/ be the set of those elements of E which
are upper bounds of its complement P XE:

U.E/ WD fx j x 2 E and y � x for all y 2 P XEg:
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Define a derivative operator rWP.P /! P.P / by

r.E/ WD
(
EXf '.U.E// g if U.E/ is non empty,

E otherwise.

As usual, let P .˛/ denote the ˛-th iterated r-derivative of P . We then have a least
ordinal � such that P .�C1/ D P .�/, which means the set C WD P XP .�/ contains
all its upper bounds. Now C is partitioned as C D [˛<�P .˛/XP .˛C1/, and for each
˛ < �, the set P .˛/XP .˛C1/ is a singleton whose member is an upper bound of
P XP .˛/. Thus C is a chain. Let p be an upper bound of C . Since C contains all
its upper bounds, p 2 C is the greatest element of C , and so p must be a maximal
element of P . ut
The converse of the above implication is also true.

Proposition 783. Zorn’s Lemma implies the Axiom of Choice: If it is true that any
poset in which every chain is bounded above must contain a maximal element, then
the Axiom of Choice holds.

Proof. Let P be any family of pairwise disjoint nonempty sets, and consider the
collection C of those subsets A of [P such that jA \ Ej � 1 for every E 2 P .
Then C forms a poset under set inclusion in which every chain is easily verified to
have an upper bound. Hence C has a maximal element M , for which we will have
jM \ Ej D 1 for every E 2 P . Thus Zorn’s Lemma is another equivalent of AC.

ut
In many applications of AC, Zorn’s Lemma facilitates and simplifies proofs. For
example, using Zorn’s Lemma, one can readily establish the following standard
mathematical result:

Problem 784. In any vector space, every linearly independent subset is contained
in a maximal linearly independent subset (called a basis).1

The next problem gives another equivalent of AC known as the Hausdorff Maximal
Principle.

Problem 785. Show without using the Axiom of Choice that Zorn’s Lemma is
equivalent to the statement that every chain in a poset is contained in some maximal
chain.

Combining all the equivalents of AC that we have obtained, we get:

Theorem 786. The following conditions are equivalent to each other:

1. The Axiom of Choice, Partition Version. Every partition has a choice set.

1Blass has shown that this statement is actually equivalent to the Axiom of Choice.
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2. The Axiom of Choice, Choice Function Version. Every family of nonempty sets
has a choice function.

3. The Well-Ordering Theorem. Every set can be well-ordered.
4. Cardinal Comparability. If �; � are cardinals then either � � � or � � �.
5. Zorn’s Lemma. A poset in which every chain is bounded above has at least one

maximal element.
6. Hausdorff Maximal Principle. Every chain in a poset is contained in a maximal

chain.

11.3 Some Applications and Examples

We will now see some examples of applications of Zorn’s Lemma and the Hausdorff
Maximal Principle. Throughout this section, we will assume the Axiom of Choice.

Almost Disjoint Families

The following is a direct generalization of Definition 392.

Definition 787 (Almost Disjoint Family). If X is an infinite set with � D jX j, we
say that C � P.X/ is an almost disjoint family of subsets of X if

1. jEj D � for all E 2 C.
2. If E1;E2 2 C and E1 6D E2 then jE1 \E2j < �.

Let X be an infinite set, and define a relation
� on P.X/ by A 
� B , jAXBj <
� and jBXAj D �.

Problem 788. P.X/ is a poset under 
� in which the minimal elements are
precisely the subsets of X of cardinality < � D jX j.
Let us remove the minimal elements of hP.X/;
�i to obtain the “subposet”
P�.X/ WD fE j E � X and jEj D �g, which does not have any minimal element.
Now note that C is an almost disjoint family of subsets of X if and only if C is an
antichain in the poset hP�.X/;
�i.

Also, since �2 D �, P�.X/ has an antichain of size �. We will show that if � is a
regular cardinal, then antichains of size > � can be obtained.

Lemma 789. If jX j D � is a regular cardinal and C is an almost disjoint family of
subsets of X with jCj D �, then there is E � X such that E 62 C and C [ fEg is
still almost disjoint.

Proof. Assume � D jX j is regular with � D @˛ (say). Since jCj D �, we can
enumerate C as C D fEˇ j ˇ < !˛g, where jE� \ E	j < � for � 6D 	. Now for
each ˇ < !˛ , we must have EˇX[�<ˇE� D EˇX[�<ˇ.Eˇ \ E�/ nonempty, since
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jEˇj D � while j [�<ˇ .Eˇ \ E�/j < � by regularity of �. Hence by the Axiom
of Choice we can pick xˇ 2 Eˇ for each ˇ < !˛ . Let E WD fxˇ j ˇ < !˛ . Then
jEj D jW.!˛/j D � since x� 6D x	 for � 6D 	. Moreover, for any ˇ < !˛ , we have
Eˇ \E � fx� j � � ˇg, so jEˇ \Ej 6 jW.ˇ/j < �. ut
Now, since �2 D �, we may fix a pairwise disjoint family C0 of subsets of X
all having size �. Notice that the union of any chain of almost disjoint families is
itself an almost disjoint family. Hence the poset consisting of all the almost disjoint
families containing C0 and ordered by inclusion (of families) has the property that
every chain in this poset has an upper bound. By Zorn’s Lemma we may fix a
maximal almost disjoint family C containing C0. Then jCj > �, but we cannot
have jCj D � since then C would not be maximal by the above Lemma. Hence we
have:

Theorem 790. Let X be a set of regular infinite cardinality � D jX j. Then there
exists an almost disjoint family C of subsets of X with jCj > �.

For the case where � D @0, we saw in Problem 393 that one can obtain an almost
disjoint family of size 2@0 D c in a highly effective fashion. The above theorem
generalizes the result to larger cardinalities in a weaker fashion and is not effective.

Problem 791. Assuming the Continuum Hypothesis show that a set of cardinality
@1 has an almost disjoint family of size 2@1 .

[Hint: Problem 393 can help.]

Short Linear Orders

Definition 792 (Short Orders). A linear order is called short if it does not contain
any suborder of type !1 or �!1.

In other words, X is short if X does not contain a strictly increasing or strictly
decreasing !1-sequence.

Problem 793. A suborder of a short order is short. An order which is a countable
union short suborders is itself short. If X and Y are short orders, then X � Y with
the lexicographic ordering is short.

Since the usual ordering on the separable continuums R and Œ0; 1� is short, we can
get examples of many short orders, such as the (lexicographically ordered) non-CCC
continuums Œ0; 1�k , for k D 2; 3; : : : .
Problem 794. Let X be an order and Y is a short suborder such that for all x; y 2
X if there is z 2 X with x < z < y then there is a w 2 Y with x < w < y. Then X
is short.

We can manufacture more examples of short orders by taking “countable lexico-
graphic powers” as follows.
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Problem 795. If X is short and ˛ < !1, then the lexicographic power XW.˛/ is
short.

[Hint: Use transfinite induction on ˛. Note that XW.˛C1/ is order isomorphic to
XW.˛/ �X with lexicographic order. If ˛ is a limit ordinal, fix a 2 X and consider
the suborder Y of X consisting of those elements of X which take the eventually
constant value of a. Then by induction hypothesis, Y is a countable union of short
suborders, and an application of Problem 794 shows that X must be short.]

Problem 796. For any ordinal ˛, the lexicographic power f0; 1gW.!˛/ does not
contain any suborder of type !˛C1 or �!˛C1.

The following main result on short orders is proved using Zorn’s Lemma.

Theorem 797 (Hausdorff). If an order X is a union of @1-many short suborders,
then X can be embedded in any 	1 order. In particular, every short order can be
embedded in any 	1 order.

Proof. The proof is based on the following extension lemma.

Lemma 798. If A is a short linear order, B is an 	1 order, S � A, and f WS ! B

is strictly increasing, then f can be extended to a strictly increasing map from all
of A into B .

Proof (Lemma). Let F be the family of all strictly increasing functions which extend
f and map some subset of A into B . Partially order F under extension. Then by
Zorn’s Lemma, there is a maximal member g 2 F. We claim that dom.g/ D A.
Otherwise there would exist a 2 AXdom.g/. Let L WD fx 2 dom.g/ j x < ag
and R WD fx 2 dom.g/ j a < xg. Since A is short, there exist countable sets P
and Q with P cofinal in L and Q coinitial in R. Put C WD gŒP � and D WD gŒQ�.
Then C and D are countable subsets of B with C < D (in B). Since B is an
	1 order, there is b 2 B with C < fbg < D. Define an extension h of g with
dom.h/ D dom.g/ [ fag by setting h.a/ D b and h.x/ D g.x/ for x 2 dom.g/.
Then h is a strictly increasing proper extension of g, contradicting the maximality
of g. ut
To finish the proof of the theorem, letA be an order such that A DS˛<!1

A˛ where
each suborder A˛ is short. We can assume that the sets A˛ increase with ˛ (since
otherwise we could replace A˛ by

S
ˇ�˛ Aˇ). Now let B be any 	1 order. Using

the lemma and the Axiom of Choice, we can build by transfinite induction strictly
increasing functions f˛ WA˛ ! B , ˛ < !1 such that if ˛ < ˇ < !1, then fˇ extends
f˛ . Then the common extension of all the functions f˛ is a strictly increasing map
from A to B . ut
Problem 799. Any order X with jX j > c has a suborder of type !1 or �!1.

Recall that in Problem 762, we defined H1 as the suborder of the lexicographic
power f0; 1gW.!1/ consisting of all binary !1-sequences with a last 1. H1 was an 	1
order of cardinality c containing 2@1 many .!1; �!1/ gaps.
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Problem 800. H1 can be expressed as the union of @1 short suborders. Hence,
every 	1 order contains a suborder isomorphic to H1.

Some Posets Containing �1 Chains

The four related posets below all contain chains which are 	1 orders. Consequently
they contain chains of order type ˛ and �˛ for each ordinal ˛ < !2.

Problem 801 (Orders of Magnitude for Positive Sequences). Let S denote the set
.RC/N of all sequences of positive real numbers, and for any x D hxn j n 2 Ni 2 S

and y D hyn j n 2 Ni 2 S define

x � y if and only if lim
n!1

xn

yn
D 0:

(x � y is often written in the “little-oh notation” as xn D o.yn/.) Show that

1. Under the relation �, S is a poset of size c.
2. For any countable subset C of S, there exist x; y 2 S such that x � C � y.
3. If A and B are countable chains in S with A � B (i.e., x � y for all x 2 A and
y 2 B), then there is p 2 S such that A � p � B .

4. Every maximal chain in S is an 	1 ordering.

Problem 802 (Orders of Infinity for Sequences with Limit 1). Let M be the
set of all sequences of natural numbers f 2 NN which approach C1, i.e., with
limn f .n/ D C1. For f; g 2M define f � g if and only if limn.g.n/ � f .n// D
C1. Show that

1. Under the relation �, M is a poset of size c.
2. For any countable C �M, there exist f; g 2M such that f � C � g.
3. If A and B are countable chains in M with A � B (i.e., f � g for all f 2 A

and g 2 B), then there is h 2M such that A � h � B .
4. Every maximal chain in M is an 	1 ordering.

Problem 803 (Ordering on P.N/ modulo finite sets). Let P be the collection of
all subsets A of N such that both A and its complement are infinite. For A;B 2 P

define A � B if and only if AXB is finite and BXA is infinite. Assuming the Axiom
of Choice, show that:

1. Under the relation �, P is a poset of size c.
2. A and B are incompatible if and only if A\ B is finite.
3. Every antichain of size @0 is properly contained in another antichain.
4. There is an antichain of cardinality c. [Hint: See Problem 393.]
5. If X;Y � P are countable chains such thatA � B for all A 2 X andB 2 Y, then

there is M such that A �M � B for all A 2 X and B 2 Y.
6. Any maximal chain in P must be an 	1 ordering.



11.4 Well-Founded Relations and Rank Functions 229

Problem 804 (The Strict Dominating Order). For f; g 2 NN, say that g
dominates f and write f �� g if and only if there is m such that f .n/ < g.n/

for all n � m. Show that in the poset H WD ˝NN;��˛:
1. Every f 2 NN has an immediate successor, that is, there is g 2 NN such that
f �� g and there is no h with f �� h �� g.

2. Every countable subset is bounded above.
3. If f1 �� f2 �� � � � �� fn �� fnC1 �� � � � �� f , then there is g with fn ��
g �� f for all n. Thus no strictly increasing sequence has a supremum.

4. Let A and B be countable chains in this poset with A �� B (i.e., f �� g for
all f 2 A and g 2 B). If either A has no maximum or B has no minimum, then
there is h such that A �� h �� B .

5. The poset H contains a chain which is an 	1 ordering.

[Hint: Note that if f � g in M then f �� g in H (but not conversely), and so any
chain in M is a chain in H, and by Problem 802 M contains 	1 chains.]

It is a celebrated result of Hausdorff [60] that the poset H as well as the posets
S, P, and M, all contain .!1; �!1/ gaps (i.e., they contain maximal chains with
.!1;

�!1/ gaps). We will not prove the result in full generality, but it is easy to
derive it from the Continuum Hypothesis.

Proposition 805 (CH). All four posets above have .!1; �!1/ gaps.

Proof. Assume the CH. In the posets S, P, and M, any maximal chain is an 	1 chain
of size @1, and so has .!1; �!1/ gaps by Problem 767.

To get an .!1; �!1/ gap in H, start with a maximal chain C in M having a
Dedekind partition L;U , where L has a cofinal subset of type !1 and U has a
coinitial subset of type �!1. Now note that one cannot have an element f with
L �� f �� U in H, since that would imply L � f � U in M. Extending C to a
maximal chain in H thus retains the .!1; �!1/ gap of C . ut
For a proof of this result without assuming the Continuum Hypothesis, see [35] or
[34].

11.4 Well-Founded Relations and Rank Functions

Well-founded relations can be viewed as a generalization of well-orders.

Definition 806. Let R be a relation on a set A and let B � A. Given x 2 B , we
say that x is an R-minimal element of B if there is no y 2 B with yRx. We write
minRŒB� for the set of R-minimal elements of B .

Definition 807. We say that the relation R is well-founded on the set A if every
nonempty subset of A has at least one R-minimal element.
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We say that hA;Ri is a well-founded structure if R is a well-founded relation
on A.

Note that a well-founded relation must be asymmetric and hence irreflexive.

Problem 808 (DC). A relation R on a set A is not well-founded if and only if
X contains an “infinite sequence of R-descending elements,” that is, there is a
sequence of elements x1; x2; : : : ; xn; � � � 2 X such that xnC1Rxn for all n 2 N.

Clearly, every well-order is a well-founded relation.

Problem 809. Show that the strict divisibility relation on N, defined by xRy , x

divides y and x 6D y, is well-founded.

Problem 810 (Transfinite Induction on Well-Founded Structures). Let R be a
well-founded relation on the set A, and B � A. Suppose that for any a 2 A, if
fx 2 A j xRag � B then a 2 B . Then B D A.

Given a well-founded relation R on a set A, the elements of A can be classified into
distinct ordinal ranks as follows: TheR-minimal elements ofA are said to have rank
0. We then remove the elements of rank 0 from the set A to get the set A0, and the
minimal elements ofA0 are said to have rank 1. In general, using transfinite recursion
on the ordinal ˛, we can define the elements of A of rank ˛ to be the minimal
elements of the subset obtained by removing from A all elements having rank < ˛.
We can continue this process through the ordinals until the set A is exhausted. This
procedure is readily formalized using the framework of abstract iterated derivatives
and ranks (Theorem 714, Sect. 10.4), when we define the derivative operator r by
r.E/ WD EXminRŒE�.

Theorem 811 (Canonical Decomposition of Well-Founded Relation). Let R be
a well-founded relation on the set A. Then there is a unique ordinal � and a unique
partition hA˛ j ˛ < �i of A into pairwise disjoint nonempty sets such that for every
˛ < �, A˛ consists of the set of R-minimal elements of AXSˇ<˛ Aˇ , that is,

A˛ D minR

2

4AX
[

ˇ<˛

Aˇ

3

5 :

Proof. The result follows directly from Theorem 714 when we define a derivative
operator rWP.A/! P.A/ by

r.B/ WD BXminRŒB�;

and define the sets A˛ as

A˛ WD A.˛/XA.˛C1/;
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whereA.˛/ denotes the ˛-th iterated derivative ofA. In particular,A.˛C1/ D r.A.˛//
and AXA.˛/ D [ˇ<˛Aˇ . Theorem 714 guarantees the existence of a unique
least ordinal � such that A.�C1/ D A.�/. Since R is well-founded on A, the
derivative r is strict, and so we have A.�/ D Ø. It follows that hA˛ j ˛ < �i D˝
A.˛/XA.˛C1/ j ˛ < �˛ is a partition of A satisfying the condition of the theorem.

Uniqueness of the partition follows by routine transfinite induction. ut
Note that in the framework of Theorem 714, the set A˛ above consists precisely of
the elements of rank ˛. Thus rank can also be defined in terms of the sets A˛ as
follows.

Definition 812 (Ranks on Well-Founded Relations). Let R be a well-founded
relation on A, and let hA˛ j ˛ < �i be the canonical decomposition of hA;Ri as
stated in the theorem.

1. For each x 2 A, the rank of the element x, denoted by �R.x/, is defined to be the
unique ordinal � such that x 2 A� .

2. The ordinal � will be called the rank of the well-founded structure hA;Ri and
will be denoted by rankR.A/.

3. The mapping x 7! �R.x/ from A to the set W.�/ of ordinals is called the
canonical rank function for the well-founded structure hA;Ri.

Remark. With r as the derivative operator defined by

r.B/ WD BXminRŒB�;

the rank function �R in the above definition is same as the rank function � D �r of
Theorem 714 for the abstract derivative r.

Problem 813. Show that if R is a well-founded relation on a set A having rank �,
then the canonical rank function �RWA! W.�/ is surjective, and hence we have:

� D rankR.A/ D sup
x2A
.�R.x/C 1/:

Problem 814. Show that for a well-founded structure hA;Ri, the canonical rank
function �R satisfies:

xRy ) �R.x/ < �R.y/ (for all x; y 2 A).

Definition 815. Say that � is a rank function for a relation R on a set A (or � is
rank function for hA;Ri) if � mapsA to a set of ordinals and � is strictly increasing,
i.e., if for any x; y 2 A, �.x/ and �.y/ are ordinals and

xRy ) �.x/ < �.y/:
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We say that a relation R on a set A admits a rank function if there is some rank
function � for hA;Ri.
The following is an important characterization of well-founded relations.

Problem 816. A relation is well-founded if and only if it admits a rank function.

By Theorem 811, for every well-founded relation one can effectively determine a
rank function for it, namely the canonical rank function. The canonical rank function
can itself be characterized as follows.

Problem 817. Let R be a well-founded relation on a set A, and let � be any rank
function for hA;Ri. Show that � equals the canonical rank function �R if and only if

For every x 2 A: �.x/ D supf�.y/C 1 j y 2 A; yRxg;

where we take sup Ø D 0.

If �; � are rank function for hA;Ri, we write � � � to denote �.x/ � �.x/ for all
x 2 A. The following characterizes the canonical rank function as the unique “least
one.”

Problem 818. Let R be a well-founded relation on a set A, and let �R be the
canonical rank function for hA;Ri. Show that �R � � for any rank function � for
hA;Ri. Conversely, if �� is a rank function for hA;Ri such that �� � � for every
rank function � for hA;Ri, then �� D �R.

Problem 819. Let R be a relation onA, S be a well-founded relation on B , and let
f WA ! B be strictly increasing: xRy ) f .x/Sf .y/. Then R is well-founded on
A, and the rank of hA;Ri is at most the rank of hB; Si.
Definition 820. Let R be a relation on a set A, and x; y 2 A.

1. x is an R-predecessor of y if xRy.
2. B � A is downward R-closed if v 2 B; uRv) u 2 B .
3. We say that x is an R-ancestor of y, and write xR�y, if every downward
R-closed subset of A containing all R-predecessors of y also contains x.

4.
 �
RŒy� WD fx j xR�yg denotes the set of all R-ancestors of y.

Problem 821. Let R be a relation on a set A. Then xR�y if and only if there exist
n � 2 and u1; u2; : : : ; un such that u1 D x, un D y, and ukRukC1 for 1 � k < n,
and so R� is the smallest transitive relation containing R, i.e., R� is the transitive
closure of R.

Problem 822. Let R be a relation on a set A. Show that R� is well-founded on A
if and only if R is well-founded on A.

As a result we have the following strengthening of Problem 810.
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Problem 823 (Strong Induction on Well-Founded Relations). Let R be a well-
founded relation on the set A, and B � A. Suppose that for any a 2 A, if every
R-ancestor of a is in B then a 2 B . Then B D A.

Note that if R is well-founded on A, then for any a 2 A, R is well-founded on �
RŒa�, and so

 �
RŒa� by itself becomes a well-founded structure under the relation R,

which we may call the well-founded substructure consisting of the R-ancestors of
a. The following useful proposition shows how the distinct rank functions on the
parent structure and on the substructures are related.

Proposition 824. Let hA;Ri be a well-founded structure and let a 2 A. Then

1. The canonical rank function � �
R Œa�

for the well-founded substructure
 �
RŒa� is the

restriction of the canonical rank function �R for hA;Ri.
2. �R.a/ D rankR.

 �
RŒa�/, that is the canonical rank of a in hA;Ri equals the rank

of the substructure
 �
RŒa�.

3. rankR.A/ D sup
b2A

�
rankR.

 �
RŒb�/C 1�.

Proof. The first part follows from Problem 817 by transfinite induction, using the

fact that
 �
RŒa� is downwardR-closed.

Since �R.a/ D supf�R.x/ j xRag D supf� �
R Œa�

.x/ j xRag D rankR.
 �
RŒa�/, the

second part follows.
The last part follow from the second part. ut

Problem 825 (Transfinite Induction for Well-Founded Structures). Let P be a
property which satisfies the following condition: For any well-founded relation R

on any set A, if every substructure
 �
RŒa� (a 2 A) has property P , then hA;Ri itself

has property P . Then every well-founded structure has property P .

The following problem gives an example of a well-founded relation whose
inverse relation is also a nontrivial well-founded relation.

Problem 826. Let X D P�.N/ be the set of all finite subsets of N and define a
relation P on X by the condition aPb if and only a ¨ b and either a D Ø or
min a > max.bXa/. Let R D P�1 be the inverse relation of P . Show that

1. aPb holds if and only if b can be partitioned as b D c [ a (c \ a D Ø), where
c 6D Ø and x < y for all x 2 c and y 2 a.

2. Both hX;P i and hX;Ri are well-founded strict posets.
3. In hX;P i, the element Ø is the least element (hence the unique minimal

element), and every singleton is an immediate P -successor of Ø.
4. If a 2 X has n elements (jaj D n), what is the P -rank of a?
5. In hX;P i, every element has finite P -rank, and for every n 2 N there is an

element having P -rank n.
6. There is no strictly P -increasing infinite sequence.
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7. R is a well-founded relation on X , in which Ø is the R-greatest element and
every singleton is an immediate R-predecessor of Ø.

8. f1g is an R-minimal element in X .
9. What are the R-predecessors of f2g? Of f3g?

10. Draw a diagram showing the R-predecessors of f4g and how they are related
by the relation R.

11. What is the R-rank of f2g? Of f3g? Of f4g?
12. What are the R-minimal elements in X?
13. For each n 2 N find the R-rank of fng.
14. What is the R-rank of Ø?
15. What is the rank of the well-founded relation hX;Ri? Of hX;P i?
Problem 827. A positive integer is called square free if it is a product of distinct
primes. We regard 1 as square free. If a 2 N is square free with

a D q1q2 � � �qn; where q1 < q2 < � � � qn are increasing primes,

then we say that qk is the k-th prime factor of a (k D 1; 2; : : : ; n). Let A be the
set of those square free positive integers a such that, with q as the smallest prime
factor of a, the total number of prime factors of a either does not exceed q or does
not exceed the value of the q-th prime factor of a. In particular, 1 2 A. Define a
relation R on A by the condition

aRb , a; b 2 A and b is a proper divisor of a.

1. Show that hA;Ri is a well-founded structure, that is, the relation R is well-
founded on A.

2. Find the ranks of the elements 6, 10, and 21
3. Characterize the R-minimal elements of A.
4. Find the rank of the element 1 and of the structure hA;Ri.

11.5 Trees

Definition 828. A poset hT;�i is called a tree if either T D Ø, or T has a least
element root.T / (called the root of T ) and the set of predecessors of any element is
well-ordered.

The elements of a tree will often be referred to as nodes.

If hT;�i is a tree, we will often refer to the underlying set T as the tree so long as
the relation � can be understood from context.
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Evidently, every well-order is a tree, and every tree is well-founded. The poset
hX;P i from Problem 826 is tree.

Definition 829. Let T be a tree under the relation �.

1. We say that T 0 � T is a subtree of T if T 0 downward closed, i.e., if x 2 T 0 and
y � x imply y 2 T 0.

2. The height of an element x 2 T , denoted by htT .x/ or ht.x/, is the order type
(ordinal) of the set fy 2 T j y � xg of predecessors of x.

3. For any ordinal ˛, the ˛-th level of T , denoted by Lev˛.T /, is defined as the set
of all elements of T with height ˛. (So x 2 Lev˛.T /, ht.x/ D ˛.)

4. A node v 2 T is a child of a node u 2 T if v is an immediate successor of u, i.e.,
if u � v and ht.v/ D ht.u/C 1.

5. B is a branch of T if B is a chain and is downward closed, i.e., if B is linearly
ordered subtree of T .

Lev0(T)

Lev1(T)

Lev2(T)

Lev3(T)

A Tree T Drawn Growing Upward

The following facts are immediate.

Problem 830. Any subtree of a tree is a tree. If a tree has an element of height ˛,
then it has elements of every height ˇ < ˛. The levels of a tree are pairwise disjoint,
and so form a partition of the tree.

Problem 831. Show that for every tree T there is an ordinal ˛ such that no element
of T has height ˛.

[Hint: If 	 is the Hartogs ordinal for P.T /, then the levels Lev˛.T /, ˛ < 	, are
pairwise disjoint sets so all of them cannot be non empty.]

Definition 832. The height of a tree T , denoted by ht.T /, is the least ordinal ˛ such
that no element of T has height ˛.

Definition 833. A tree T is said to be finitely branching if every node has at most
finitely many children (immediate successors), i.e., if for any x 2 T , the set fy 2
T j x � y and ht.y/ D ht.x/C 1g is finite.
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Problem 834. The poset hX;P i from Problem 826 is tree. What is its height? Is it
finitely branching?

Problem 835. Let hT;�i be a tree. Regarding it as a well-founded structure, show
that the height of an element x, ht.x/, is same as ��.x/, the canonical �-rank of
x, and that the height of the tree, ht.T /, equals rank�.T /, the rank of the structure
hT;�i.
Problem 836. A tree in which every level is finite must be finitely branching. Is the
converse true?

The Tree A� of Strings over a Set A

The following example gives an especially important type of tree that will
concern us.

Example 837. Let A be a nonempty set and let A� denote the set of all strings
(finite sequences) consisting of elements of A. Then A� is a tree under the relation

, where u 
 v stands for “u is a (proper) initial prefix of v.”

Two important special cases of this example are obtained by taking A D f0; 1g,
giving us the full binary tree f0; 1g� where every node has exactly two immediate
successors, and by taking A D N which gives a tree N� in which every node has
infinitely many immediate successors.

Problem 838. Consider the tree A� of all finite strings over A (A 6D Ø). Let � D
jAj be the cardinality of A. Show that

1. A� is a tree under the relation 
 with root " and height !.
2. The height of any element is its length (as a string).
3. Every node in A� has �-many immediate successors, so A� is finitely branching

if and only if A is finite.
4. jLevn.A�/j D �n for any finite n D 0; 1; 2; : : : , so if A is finite then every level

of A� is finite.
5. A branch in the tree A� is infinite if and only if it is maximal.

Definition 839 (Trees over A). We say that T is a tree over A if T is a subtree of
the tree A� of strings from A (under the string prefix relation 
).

We now obtain a “representation theorem” for trees of height at most !.

Problem 840. Let hT;�i be a tree of height at most !. Then T is isomorphic to a
tree over A for some A. That is, there is a set A, a subtree T 0 � A�, and a bijection
f WT ! T 0 such that for all x; y 2 T , x � y, f .x/ 
 f .y/ (x precedes y in T
if and only if f .x/ is an initial prefix of f .y/).

Moreover, if T is also countable, then one can take A to be the set N.

Thus every countable tree of height � ! is isomorphic to some tree over N.
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Problem 841. Let hN; ji denote the poset of natural numbers under the (strict)
divisibility relation j. Show that every countable tree of height� ! can be embedded
(as a poset) into hN; ji.
[Hint: By the previous problem, it suffices to embed N� into hN; ji.]

Although we are primarily interested in countable trees of height !, the
representation theorem can be generalized to arbitrary trees as well.

Problem 842. Given a set A and an ordinal ˛, let A<˛ denote the set of all
functions whose domain is a proper initial segment of W.˛/ and whose range is
contained in A. For u; v 2 A<˛ , let u 
 v if and only if v extends u, that is, if there
exist ordinals ˛ < ˇ such that dom.u/ D W.˛/, dom.v/ D W.ˇ/, and for all � < ˛
we have u.�/ D v.�/. Show that

1. For any set A and any ordinal ˛, hA<˛;
i is a tree of height ˛.
2. Every tree is isomorphic to a subtree of hA<˛;
i, for some set A and some

ordinal ˛.

Remark. With the notation of the last problem, the tree A� of all finite sequences
from A can be denoted by A<! .

11.6 König’s Lemma and Well-Founded Trees

König’s Infinity Lemma

Problem 843. Show that if T is a tree of height� !, then T is finitely branching if
and only if every level of T is finite.

Give an example of a finitely-branching tree with some infinite levels.

Theorem 844 (The König Infinity Lemma). Let T be a tree of height ! in which
every level is finite. Then T has an infinite branch.

The result is often expressed by saying “every finitely branching infinite tree has an
infinite branch.”

Proof. Let hT;�i be a tree of height ! in which every level is finite.
Since T has height ! so it has elements of height n for every n < !, and so T is

infinite. For each x 2 T , let Succ.x/ WD fy j x � y or x D yg. Note that for any
x 2 T and any n < !, we have

x 2 Levn.T /) Succ.x/ D fxg [
[
fSucc.y/ j x � y; y 2 LevnC1.T /g :

Note that since every level of T is finite, so the big union above is actually a finite
union.
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Let x0 be the least element of T . Then Succ.x0/ D T , so Succ.x0/ is infinite,
with

Succ.x0/ D fx0g [
[
fSucc.y/ j x0 � y; y 2 Lev1.T /g :

Since the big union above is finite while the left side is infinite, there must be at
least one x1 2 Lev1.T / such that Succ.x1/ is infinite. Fix such an x1 (with Succ.x1/
infinite). Then

Succ.x1/ D fx1g [
[
fSucc.y/ j x1 � y; y 2 Lev2.T /g :

Again, since the big union above is finite but the left side is infinite, we can fix
x2 2 Lev2.T / such that Succ.x2/ is infinite. Continuing in this fashion, we get a
sequence

x0 � x1 � x2 � � � � � xn � xnC1 � � � �
�
xn 2 Levn.T /

�
:

Then B WD fxn j n D 0; 1; 2; : : : g is an infinite branch through T . ut

Well-Founded Trees

Since every tree is well-founded, the term “well-founded tree” seems redundant.
However, it has the following special meaning in the context of trees.

Definition 845. A well-founded tree is a tree hT;P i such that the inverse relation
R D P�1 is well-founded on T .

We saw an example of a well-founded tree in Problem 826.

Problem 846 (DC). Show that a tree is well-founded if and only if it has no infinite
branch.

Definition 847 (Ranks in Well-Founded Trees). Let hT;P i be a well-founded
tree, so that the inverse relation R D P�1 is well-founded on T , and let �R be
the canonical rank function for the well-founded structure hT;Ri.

The rank of an element x 2 T is defined as �R.x/.
The rank of the tree T , denoted by rank.T /, is defined as �R.r/ where r D

root.T / is the P -least element of T . We put rank.T / D 0 if T D Ø.

Note on terminology. If hT;P i is a well-founded tree with the inverse relation R D
P�1 well-founded on T , then the term “height” applies to the relation P and the
term “rank” applies to the relationR. E.g., the “rank of an element x” is the R-rank
of x in the well-founded structure hT;Ri, while the “height of x” is the P -height of
x in the tree hT;P i.
Problem 848. A well-founded tree has height at most !.
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By Problems 840 and 848, every well-founded tree is isomorphic to a tree over A
for some set A, so the study of well-founded trees can be limited to trees over (some
set) A, i.e., to subtrees of A�.

Problem 849. Define a subtree T of N� by

T WD fu 2 N� j u D " or u D hu1; u2; : : : ; uni ; n 2 N; and u1 � ng:

1. Show that hX;P i is a well-founded tree of rank ! C 1.
2. What is the rank of "? What is the rank of the element h7; 9; 2i?
Problem 850. Give an example of a well-founded tree over N which has rank !2

but height !.

Problem 851. A nonempty well-founded tree T has finite rank if and only if it has
finite height, and in this case ht.T / D rank.T /C 1.

Problem 852. If A is a finite set then any well-founded tree over A must be finite
and so must have rank < !.

Problem 853. If T � A� is a well-founded tree over a set A, then rank.T / equals
the rank of the well-founded structure hT Xf"g;�i.

...  ...

...

...

...  ...

...

...

Tω

Tω

Tω

Tω

Tω

Tω Tω+ω

Tω: Awell founded tree of rank ω Tω+ω: A well founded tree of rank ω+ω

Problem 854 (Truncated Ranks). For a tree T over N and u 2 N�, put

T .u/ WD fv 2 N� j u � v 2 T g .i.e., T .u/ is T truncated at u./

Then:

1. T .u/ is a tree, and .T .u//.v/ D T .u�v/. If T is well-founded then so is T .u/ with
rank.T .u// � rank.T /.

2. The rank function on well-founded trees satisfies, and is the unique function
satisfying, the recursion equation
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rank.T / D supfrank.T .hni//C 1 j hni 2 T; n 2 Ng; with sup.Ø/ WD 0.

3. If T 6� f"g, then T is well-founded of rank ˛ if and only if T .hni/ is well-founded
of rank < ˛ for all n 2 N and for each � < ˛ there is v 2 N� with len.v/ > 0

such that T .v/ has rank �.

Existence of Well-Founded Trees of Every Rank. Our remaining task is to show
that for every countable ordinal ˛ < !1 there is countable well-founded tree (over
N) having rank ˛. (Using the full Axiom of Choice, one can also show that for every
ordinal ˛ there is a well-founded tree of rank ˛.)

Definition 855. If T � A� is a tree over A and a 2 A, define:

a � T WD f"g [ fhai � u j u 2 T g
D f"g [ fha; u1; u2; : : : ; uni j hu1; u2; : : : ; uni 2 T; n � 0g

Problem 856. Show that

1. If T � N� is a nonempty well-founded tree over N and n 2 N, then n � T is
well-founded tree over N with

rank.n � T / D rank.T /C 1:
In particular, for every well-founded tree T � N� over N one can effectively find
a well-founded tree T 0 � N� such that rank.T 0/ > rank.T /.

2. If hTn j n 2 Ni is a sequence of well-founded trees over N, then

T WD f"g [
[

n2N

n � Tn

is a well-founded tree over N, and if Tn 6D Ø for some n, then

rank.T / D sup
n2N

�
rank.Tn/C 1

�
:

Notice that every countable well-founded tree must have rank < !1. Using the last
problem (and use of Choice), one obtains the following converse result.

Problem 857 (CAC). Show that for every ordinal ˛ < !1, there is a well-founded
tree over N having rank ˛.

Finally, under the full Axiom of Choice one gets the existence of well-founded trees
of every possible rank.

Problem 858 (AC). Show that for every ordinal ˛, there is a well-founded tree of
rank ˛.
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11.7 Ramsey’s Theorem

A popular puzzle says that in any group of six or more people there are three people
who are mutual acquaintances or mutual strangers. Ramsey’s Theorem, which we
prove below, says that in any infinite group of people there are infinitely many
people who are mutual strangers or mutual acquaintances.

Definition 859. For any set X and n 2 N, we let ŒX�n denote the family of n-
element subsets of X :

ŒX�n WD fE j E � X and jEj D ng:

If ŒX�n is partitioned into k sets as ŒX�n D Sk
iD1 Xi , then a subset H � X is said

to be homogeneous for the partition if ŒH �n � Xi for some i D 1; 2; : : : ; k.
Similarly, if f W ŒX�n ! f1; 2; : : : ; kg thenH � X is said to be homogeneous for

f if f is constant on ŒH �n.

The puzzle above can now be stated as follows: If jX j > 6 and if ŒX�2 is partitioned
as ŒX�2 D X1 [ X2 (with X1 \ X2 D Ø) then there is H � X with jH j D 3 and
ŒH �2 � Xi for some i 2 f1; 2g (i.e., H is homogeneous).

We could state the result equivalently using functions: If jX j > 6 and f W ŒX�2 !
f1; 2g, then there is H � X such that jH j D 3 and f is constant on ŒH �2, i.e.,
f .fx; yg/ D f .fu; vg/ for all x; y; u; v 2 H , with x 6D y and u 6D v.

Theorem 860 (Ramsey’s Theorem). If X is an infinite set and f W ŒX�2 ! f1; 2g,
then some infiniteH � X is homogeneous for f .

Proof. We will use König’s Infinity Lemma to prove the theorem.
Without loss of generality we assume X D N, so that f W ŒN�2 ! f1; 2g. Also for

each 2-element set fm; ng with m < n, we will write f .m; n/ for f .fm; ng/. For
each nonempty E � N, we put

E.1/ WD fn 2 E j n > min.E/ and f .min.E/; n/ D 1g; and

E.2/ WD fn 2 E j n > min.E/ and f .min.E/; n/ D 2g:

Then E.1/ and E.2/ are disjoint, and E D fmin.E/g [ E.1/ [ E.2/, so E.1/ [ E.2/

contains all but one member of E .
We now define a finitely branching tree T of height at most ! consisting of

nonempty subsets of N in which every node has at most two children, so that
jLevn.T /j � 2n for all n D 0; 1; 2; : : : .

Let N be the root node of T , and for each nodeE 2 T , we take each of E.1/ and
E.2/, provided that it is nonempty, to be a child ofE . Since the union of the children
of a node contains all but one member of the node and since T is finitely branching,
it follows by induction that the union of the nodes of level n contains all but finitely
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many natural numbers. Hence Levn.T / 6D Ø for all n D 0; 1; 2; : : : , and so T has
height !. By König’s Infinity Lemma, T has an infinite branch, say

E0 © E1 © E2 © � � � © En © EnC1 © � � �

where E0 D N, and EnC1 equals E.1/
n or E.2/

n for all n. Hence there is b 2 f1; 2g
such that EnC1 D E

.b/
n for infinitely many n, and so there are natural numbers

n1 < n2 < � � � < nk < � � � with EnkC1 D E.b/
nk for all k. Put ak WD min.Enk /. Then

for k < m we have am 2 Enm � EnkC1 D E
.b/
nk , hence f .ak; am/ D b. Therefore

the set H D fa1; a2; : : : g is homogeneous for f . ut
Definition 861 (Arrow Notation). If �; � are cardinals and n; k 2 N, we write

� ! .�/nk

to denote the statement “For any sets X with jX j D � and any function f W ŒX�n !
f1; 2; : : : ; kg, there is a homogeneousH � X with jH j D �.”

Thus, Ramsey’s Theorem says that @0 ! .@0/22. This is a special case of the
following more general result.

Theorem 862 (General Ramsey Theorem). For all n; k 2 N, we have:

@0 ! .@0/nk:

We will not prove this result, but the reader may try it as a challenging exercise (it
can be proved using induction on n).

A sequence hxni in an order or a partial order is monotone increasing if xm � xn
for all m < n, and it is strictly increasing if xm < xn for all m < n. Similar
definitions are given for decreasing sequences. A sequence is monotone if it is either
monotone increasing or monotone decreasing.

Problem 863. Use the General Ramsey Theorem to show that every infinite
sequence in a linear order has a subsequence which is either strictly decreasing
or strictly increasing or constant. Conclude that every infinite sequence in a linear
order has a monotone subsequence.

[Hint: For a sequence hxni in an order define f W ŒN�2 ! f1; 2; 3g by setting, for
m < n, f .m; n/ WD 1 if xm < xn, WD 2 if xm > xn, and WD 3 if xm D xn.]

Problem 864. Every infinite sequence in a partial order has a subsequence which
is either monotone or consists of pairwise incomparable elements.

Problem 865. Show that 2@0 6! .@1/22. Hence @1 6! .@1/22.
[Hint: If 2@0 ! .@1/22, argue as in Problem 863 to show that every linear order of
size 2@0 has a suborder of type !1 or of type �!1, a contradiction.]
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Problem 866. Show that 2@˛ 6! .@˛C1/22.
[Hint: Use Problem 796.]

Remark. The General Ramsey Theorem, for each n � 3, is closely related to
König’s Infinity Lemma. In a sense, each can be “easily derived” from the other
without using any other “strong” theorems. This vague statement is made precise
in an area of mathematical logic known as reverse mathematics, where strengths of
mathematical statements are studied relative to weaker base subsystems. See [75]
for more details.



Chapter 12
Postscript II: Infinitary Combinatorics

Abstract The topics of the last chapter (Chap. 11) naturally lead to the area of
Infinitary Combinatorics, which is beyond the scope of this text. This postscript to
Part II is intended to be a link for the reader to begin further study in the area. We
indicate how the obvious generalizations of three separate topics of the last chapter,
namely short orders, König’s Infinity Lemma, and Ramsey’s Theorem, converge
naturally to the notion of a weakly compact cardinal, an example of a large cardinal.
In addition, it is shown how Suslin’s Problem is equivalent to the existence of
Suslin trees. Finally, we briefly mention Martin’s Axiom and Jensen’s Diamond
principle ˙, and their implications for the Suslin Hypothesis.

Note: Throughout this postscript we will assume the Axiom of Choice without
explicitly mentioning it.

12.1 Weakly Compact Cardinals

An interesting property of (linear) orders is that any sequence in an order has a
monotone subsequence. This can be proved in various ways, e.g., Problem 863
derived it from Ramsey’s Theorem. The property can be stated equivalently as: Any
order of size @0 has a suborder of order type ! or �!.

On the other hand R is a short linear order (i.e., R has no subset of type !1 or
�!1) and @1 6 jRj, so we have the contrasting fact: There are orders of size @1
which do not have any suborder of order type !1 or �!1.

Definition 867. We will say that an infinite cardinal � D @˛ has the monotone
order property1 if every linear order of cardinality @˛ has a suborder of type !˛ or
�!˛ .

1This terminology is not a standard one.
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Thus @0 has the monotone order property but @1 does not. More generally:

Proposition 868. An infinite cardinal with the monotone order property is a strong
limit. Hence, no successor cardinal has the monotone order property.

Proof. Suppose that � D @˛ has the monotone order property. If we had 2@ˇ > � D
@˛ for some ˇ < ˛, then the lexicographic power f0; 1gW.!ˇ/ would have a suborder
of type !˛ or �!˛ and hence also a suborder of type !ˇC1 or �!ˇC1 (as ˇC 1 � ˛),
contradicting Problem 796. ut
We now have:

Theorem 869. Any uncountable cardinal � D @˛ having the monotone order
property is regular, and therefore strongly inaccessible.

Proof. Otherwise, we would get @˛ D P
�<ˇ @˛� where ˇ < ˛ and ˛� < ˛ for

all � < ˇ. For each � < ˇ fix an order X� of order type �!˛� , and let X WDS
�<ˇ.f�g�X�/ be equipped with the lexicographic order. ThenX does not contain

any subset of order type !˛ or �!˛ , but jX j D @˛. ut

A similar property of cardinals can be generalized from Ramsey’s Theorem. We saw
that @0 ! .@0/22 (Ramsey’s Theorem), while @1 6! .@1/22. (Problem 865). As in the
case for the monotone order property, this immediately implies that if � ! .�/22
then � must be a strong limit:

Proposition 870. Let � be an infinite cardinal satisfying � ! .�/22. Then � is a
strong limit. In particular, � cannot be a successor cardinal.

Proof. Essentially same as that for Proposition 868, but use Problem 866. ut
Theorem 871. If � is uncountable and � ! .�/22, then � is regular and therefore
strongly inaccessible.

Proof. If � were singular, we would get a partition of the formX DSi2I Xi where
jX j D �, jI j < �, and jXi j < � for all i 2 I . Define f W ŒX�2 ! f1; 2g by setting
f .fx; yg/ WD 1 if x; y 2 Xi for some i 2 I , and WD 2 otherwise. A homogeneous
set for the partition would then yield a contradiction. ut

The third and last property of cardinals that we will consider is generalized from
König’s Infinity Lemma.

Definition 872. A cardinal � D @˛ is said to have the tree property if any tree T
of height !˛ in which each level has cardinality < � has a branch of height !˛
(a branch of height !˛ can be equivalently described as a chain C � T such that
Lev�.T / \ C 6D for all � < !˛).

König’s Infinity Lemma is the assertion that @0 has the tree property. A result of
Aronszajn says that @1 does not have the tree property. This means there is a tree
T of height !1 in which all levels are countable yet T has no branch of height !1.
Such trees are known as Aronszajn trees.
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However, we cannot prove that a cardinal having the tree property must be
inaccessible. Still, the following important result shows how closely the three
properties just considered are related.

Theorem 873. For any uncountable cardinal �, the following are equivalent:

1. � has the monotone order property.
2. � ! .�/22.
3. � is strongly inaccessible and has the tree property.

For a proof, see [14] or [41].

Problem 874. Prove that 2 implies 1 in the above theorem.

Cardinals which satisfy any (and so all) of the conditions of Theorem 873 can also
be characterized by a metamathematical property of infinitary languages known as
“weak compactness,” and so are called weakly compact cardinals.

Definition 875 (Weakly Compact Cardinals). A cardinal is said to be weakly
compact if it satisfies any of the conditions of Theorem 873.

A lot more can be said about weakly compact cardinals. For example, they are
not only strongly inaccessible, but also preceded by an equal number of strong
inaccessibles. In fact, if � is weakly compact, then there are arbitrarily large
cardinals @˛ < � such that @˛ is the !˛-th strongly inaccessible cardinal. For more
on weakly compact cardinals, see [14, 37].

The notion of a weakly compact cardinal is thus a good example of a large
cardinal. As mentioned before, such cardinals, being at least inaccessible, cannot
be shown to exist using the standard axioms of set theory (assuming these axioms
are consistent) due to a result known as Gödel’s second incompleteness theorem.
Asserting the existence of a large cardinal is therefore known as a large cardinal
hypothesis or an axiom of strong infinity. As we will see later, certain large cardinal
hypotheses, such as that of the existence of a measurable cardinal, can have
significant implications for ordinary mathematics.

12.2 Suslin’s Problem, Martin’s Axiom, and ˙

Recall Suslin’s Problem, which asks:

The Suslin Problem. Is every CCC continuum without endpoints necessarily order
isomorphic to R?

The mechanism of trees can be used to put Suslin’s Problem in a more useful
combinatorial form. Note that a negative answer to Suslin’s Problem amounts to the
existence of a linear continuum which is CCC but not separable. Such a continuum
is called a Suslin line.
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Recall that an Aronszajn tree is a tree of height !1 in which all levels and all
chains are countable. Aronszajn proved that such trees exist. We now consider a
stronger property: A tree is called a Suslin tree if it is an Aronszajn tree in which
there are no uncountable antichains.

Definition 876 (Suslin Lines and Trees). A Suslin line is a linear continuum
which is CCC but not separable. A Suslin tree is a tree of height !1 in which all
chains and all antichains are countable.

The following result reduces Suslin’s Problem to a question about trees.

Theorem 877. There is a Suslin line if and only if there is a Suslin tree.

To outline a proof of Theorem 877, we need some definitions and lemmas. If u is a
node in a tree T , we will use the notation SuccT˛ .u/ to denote the extensions of u of
height ˛, i.e., SuccT˛ .u/ WD fv 2 Lev˛.T / j u � vg.
Definition 878. A Suslin tree T is normal if every node has extensions in all higher
levels below !1, i.e., SuccT˛ .u/ 6D Ø for every ˛ with ht.u/ < ˛ < !1.

Lemma 879. Let T be a Suslin tree and let

TC WD fu 2 T j SuccT˛ .u/ 6D Ø for every ˛ with ht.u/ < ˛ < !1g:

Then TC is a normal Suslin tree.

Proof. TC is a nonempty subtree of T , and it suffices to show that for each u 2 TC,
TC \ SuccT˛ .u/ 6D Ø for all ˛ with ht.u/ < ˛ < !1.

Suppose TC \ SuccT˛ .u/ D Ø with u 2 T C and ht.u/ < ˛ < !1. Then for
each v 2 SuccT˛ .u/, there is ˛v with ˛ < ˛v < !1 such that SuccT˛v

.v/ D Ø. As
SuccT˛ .u/ is countable, we may fix ˇ < !1 with ˇ > ˛v for all v 2 SuccT˛ .u/. But
then SuccTˇ .u/ D

S
v2SuccT˛ .u/

SuccTˇ .v/ D Ø, a contradiction. ut
For u; v 2 T , we write u Ï v, u and v have the same set of predecessors. Then Ï
is an equivalence relation on T such that each equivalence class Œu�Ï is contained in
some single level of T .

Lemma 880. If there is a Suslin tree then there is a normal Suslin tree in which
Œu�Ï is infinite for all u with ht.u/ > 0.

Proof. Let T be a Suslin tree, which we assume to be normal by the last lemma.
Note that if ht.u/ < ˛ < ˇ < !1 then 1 � j SuccT˛ .u/j � j SuccTˇ .u/j. Also, if

u 2 T then fv 2 T j u � vg cannot be a chain, and in fact j SuccT˛ .u/j � 2 for
some ˛ > ht.u/. Repeating the process infinitely many times, we see that there is
ˇ > ht.u/ such that SuccTˇ .u/ is infinite. More generally, for any countable subset

C � T , we can get ˇ such that SuccTˇ .u/ is infinite for all u 2 C . Now define
increasing ordinals h˛.�/ j � < !1i as follows: Let ˛.0/ D 0, and for � > 0 let
ı WD supf˛.	/ j 	 < �g and put ˛.�/ WD the least ˇ > ı such that SuccTˇ .u/ is
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infinite for all u 2 Levı.T /. Finally, T 0 WD S
�<!1

Lev˛.�/.T / with the inherited
order is a tree with the required property. ut
Proof (of Theorem 877, Outline). Suppose first that there is a Suslin line, i.e., a
linear continuum L without endpoints which is CCC but not separable. We define a
!1-sequence of nonempty open intervals h.a˛; b˛/ j ˛ < !1i (with a˛ < b˛) using
transfinite recursion: For each ˛ < !1, the countable set E˛ WD faˇ; bˇ j ˇ < ˛g is
not dense, so there are c < d with .c; d / \ E˛ 6D Ø, and therefore by density, we
can choose and fix a˛; b˛ such that c < a˛ < b˛ < d . Let T WD fLgSf.a˛; b˛/ j
˛ < !1g, and order T by reverse inclusion. Then T is a Suslin tree.

Conversely, suppose that T is a Suslin tree. By Lemma 880, we may assume that
T is a normal Suslin tree in which Œu�Ï is infinite for all u with ht.u/ > 0. For each
equivalence class Œu�Ï D Œu�, fix an order <Œu� on Œu� of order type 	. Now define a
linear order <� on all of T by setting x <� y if and only if either x � y in T , or
there exist u � x and v � y with u Ï v and u <Œu� v. Finally, take the Dedekind
completion of the order <� to get a Suslin line. ut

Martin’s Axiom

Recall that the affirmative answer to Suslin’s Problem is called the Suslin Hypothesis
or SH. Equivalently, SH is the statement that there is no Suslin line. SH cannot be
settled one way or the other using the standard axioms of set theory. The Continuum
Hypothesis (CH) cannot decide SH either. However, an important combinatorial
principle called Martin’s Axiom (MA) implies that if CH fails then SH must be true,
i.e., MAC not-CH) SH.

Definition 881. Let hP;�i be a poset (partial order).

1. hP;�i is said to satisfy the countable chain condition (CCC) if every antichain
in P is countable.

2. A subset D � P is called dense if for all u 2 P there is v 2 D with v � u.
3. A nonempty subset G � P is called filter if u 2 G and u � v) v 2 G (G is

upward closed), and for all u; v 2 G there is w 2 G with w � u and w � v (G is
downward directed).

Martin’s Axiom (MA). Martin’s Axiom (MA) says: “If hP;�i is a CCC partial
order and D is a family of dense subsets of P with jDj < 2@0 then there is a filter
G such that G \D 6D Ø for all D 2 D.”

Martin’s Axiom is an immediate consequence of CH, and so is of interest only when
CH fails. (If CH fails, then MA implies that cardinals strictly between @0 and 2@0
have many of the properties of @0.)
Proposition 882. CH) MA.
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[Hint: Let hP;�i be a CCC partial order and let D be a family of dense subsets of
P with jDj < 2@0 . By CH, D is countable and can be enumerated, say as D D
fD1;D2; : : : g. Fix d1 2 D1, and use density to inductively pick dnC1 2 DnC1 such
that dnC1 � dn. Then put G D fu j dn � u for some ng.]
Theorem 883. MAC not-CH) SH.

Proof. Assume MAC not-CH. To get a contradiction, suppose that there is a Suslin
tree T . By Lemma 879 we may assume that T is a normal Suslin tree.

Consider T as a poset with the reverse order of T , with the root as the largest
element. Since T is a Suslin tree, T has CCC. Now for each ˛ < !1, put D˛ WDS
ˇ�˛ Levˇ.T /. Since T is normal, each D˛ is dense. Since we are assuming that

CH is false, jfD˛ j ˛ < !1gj < 2@0 . Hence by MA, there is a filterG withG\D˛ 6D
Ø for all ˛ < !1. But thenG must be a branch of height!1 through T , contradicting
that T is a Suslin tree. ut
The condition MA C not-CH has been shown to be consistent with the standard
axioms of set theory. Therefore, by the above theorem, we can consistently assume
that there are no Suslin lines.

Jensen’s Diamond Principle ˙

Another important combinatorial principle is the Diamond Principle due to Jensen,
which is denoted by the symbol ˙.

The Diamond Principle. ˙ says: “There are sets A˛, ˛ < !1, such that for all
A;C � W.!1/ if C is a club set then A\W.˛/ D A˛ for some ˛ 2 C .”

CH is an immediate consequence of ˙. Also, ˙ has been shown to be consistent with
the standard axioms of set theory (since it follows from the axiom of constructibility
devised by Gödel). One important application of ˙ is the following result, which we
state without proof.

Theorem 884. ˙) not-SH.

It follows that the negation of the Suslin Hypothesis (not-SH) is also consistent
with the standard axioms of set theory. Combined with the consistency of SH, this
means that SH cannot be settled using the usual axioms. In other words, neither SH
nor its negation can be derived from the standard axioms: The Suslin Hypothesis is
independent of the standard axioms of set theory, assuming that these axioms are
themselves consistent.

MA and ˙ have many interesting properties and applications, but we conclude
our brief discussion of infinitary combinatorics and refer the reader to some texts
for further study.

Good introductions to infinitary combinatorics can be found in [14, 35, 41, 48].
For more advanced treatments see [34, 37, 44].



Part III
Real Point Sets



Introduction to Part III

This part focuses exclusively on the real line R. Cantor’s work not only gave birth
to the theory of transfinite, but was also instrumental in the development of point set
topology, which, roughly speaking, is the study of limits and continuity in a general
setting. Topological notions such as closed sets, dense-in-itself sets, and perfect sets
were first introduced by Cantor.

The opening chapter, much of which is very elementary, introduces base
representation via interval trees, Cantor systems, and generalized Cantor sets. The
next chapter deals with basic topology of the real line.

The material of the chapter on Heine–Borel and Baire-Category Theorems is
often called “measure and category.” It is shown that Gı sets satisfy the Continuum
Hypothesis, and that perfect sets have cardinality c.

The chapters on Cantor–Bendixson analysis and on Brouwer’s and Sierpinski’s
Theorems are somewhat more special. An application of the ordinals is illustrated
by the method of Cantor–Bendixson analysis, giving a complete enumeration of
the @1 distinct “homeomorphism types” of countable compact sets. The proofs
of Brouwer’s and Sierpinski’s Theorems given here illustrate how the Cantor–
Dedekind theory of order can be used to give somewhat elementary proofs of some
relatively advanced topological results.

The chapter on Borel and analytic sets touches on the rudiments of descriptive
set theory, and proves that the analytic sets have the perfect set property—the best
possible result that can be proved using the usual axioms of set theory. They are
also shown to be Lebesgue measurable (and having the Baire property) using the
Ulam matrix decomposition for coanalytic sets. To obtain a non-Borel analytic set,
a direct effective proof of the boundedness theorem for the set of codes of well-
founded trees is given (since with no access to product spaces, the standard method
of diagonalizing universal sets cannot be used).

The postscript chapter for this part gives a detailed account of Ulam’s analysis
of the measure problem leading to the notion of measurable cardinals, and a brief
discussion of Lusin’s problem for the projective sets.
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Chapter 13
Interval Trees and Generalized Cantor Sets

Abstract This elementary chapter applies the nested intervals theorem to obtain
base expansion of real numbers via trees of uniformly subdivided nested closed
intervals, with detailed illustrations for ternary expansions. The construction of the
Cantor set is then generalized to Cantor systems (systems of nested intervals indexed
by binary trees), to formally introduce generalized Cantor sets.

13.1 Intervals, Sup, and Inf

Definition 885. An interval is a set having one of the forms

.a; b/; Œa; b�; .a; b�; Œa; b/; .a;1/; Œa;1/; .�1; b/; .�1; b�; R; Ø:

An open interval is an interval having one of the forms

.a; b/; .a;1/; .�1; b/; R; Ø:

A closed interval is an interval having one of the forms

Œa; b�; Œa;1/; .�1; b�; R; Ø:

An interval is proper if it contains at least two points.

Note that each of Ø and R is both an open interval and a closed interval. Moreover
every singleton set fag D Œa; a� is a closed interval (improper).

Definition 886 (Bounds, Sup, and Inf). Let A � R.

1. u 2 R is an upper bound of A, written as u � A or A � u, if u � x for all x 2 A.
2. u 2 R is a strict upper bound of A, written as u > A or A < u, if u > x for all
x 2 A.

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__13, © Springer Science+Business Media New York 2014
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3. A is bounded if there exist a; b 2 R such that a � A � b.
4. p 2 R is a least upper bound or supremum of A if p is an upper bound of A and

no point q < p is an upper bound of A. If a least upper bound of A exists, it will
be unique and will be denoted by supA. We will also use the notation

sup
x2A

f .x/

to denote supf ŒA�.
5. We write u D maxA if A � u and u 2 A, that is when u is the greatest element

of A.

Lower bounds (greatest), infimum, infA, minA, etc, are similarly defined.

Recall (from our definitions of these notions for orders) that a D supA if and only
if either a D maxA or a > A and a is an upper limit point of A. Moreover, since
R is a complete order, for every nonempty set A if A is bounded above then supA
exists, and if A is bounded below then infA exists.

The Nested Intervals Theorem in R

Recall that the completeness of R implies the sequential nested interval property.
The following variant (and immediate consequence) of that result will be used
frequently in this part of the book.

Theorem 887 (Nested Intervals Theorem in R). Suppose that

I1 � I2 � � � � � In � InC1 � � � �

is a sequence of nested intervals satisfying the following conditions.

1. Each interval is nonempty and closed, where we allow the closed intervals to be
unbounded, having the form Œa;1/, or .�1; a�, or .�1;1/ D R.

2. lim
n!1 len.In/ D 0, that is for any � > 0 there is k such that len.In/ < � for

n � k.

Then the intersection of the intervals is a singleton,

\

n

In D fag for some a 2 R.

Note that while we are allowing unbounded closed intervals in the nested sequence,
the second condition implies that at most finitely many of those intervals can be
unbounded.
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Problem 888. Show that the second condition in the theorem above cannot be
dropped.

Problem 889. Show that we cannot replace “closed” by “open” in the above
theorem.

Problem 890. Show that the above theorem remains valid if we replace “closed”
by “open” and assume that inf In < inf InC1 and sup InC1 < sup In.

13.2 Interval Subdivision Trees

In this section we explain how the familiar method of decimal expansions of
numbers in the interval Œ0; 1� naturally leads to iterated subdivisions of intervals
forming a tree structure. Instead of the base 10 (decimal) system, one can use any
fixed base.

Using a Fixed Base b

Given a positive integer b � 2 (the base) and a closed interval I , we subdivide I into
b equal closed subintervals each of length 1

b
len.I / and write these subintervals as:

I Œ0�; I Œ1�; : : : ; I Œb � 1� (base b).

Thus I Œd � is the d -th subinterval in this subdivision of I into b equal subintervals,
for d D 0; 1; : : : ; b � 1.1

The process is then further iterated as follows. If d1 and d2 are two b-ary digits
(i.e., d1; d2 2 f0; 1; : : : ; b � 1g), then we let I Œd1d2� denote the d2-th subinterval
of I Œd1�,. Thus in the first stage I is subdivided into b equal subinterval I Œ0�, I Œ1�,
. . . , I Œb � 1�, and then each of these b subintervals I Œd1� is further subdivided into
b more smaller sub-subintervals I Œd10�, I Œd11�, . . . I Œd1.b� 1/�, giving a total of b2

sub-subintervals at the second stage.
We can continue iterating the process, giving bn intervals at stage n.

1Our notation is ambiguous since I Œ1� could denote the second sub interval in two, or three, or
ten (or any other numbers) equal subdivisions of I . It would be more correct, but more clumsy, to
write IbŒ0�; IbŒ1�; : : : ; IbŒb � 1� in place of I Œ0�; I Œ1�; : : : ; I Œb � 1�. Since the base b is generally
fixed throughout a situation, it is understood from context, and dropping the subscript b does not
cause any confusion.
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The Ternary Subdivision Tree

We illustrate the system and notation for the specific case where b D 3 (the ternary
system) and I D Œ0; 1�, the unit interval. The general case of any b � 2 is so similar
that we will not discuss it separately.

The initial three ternary subdivisions of I D Œ0; 1� are:

I Œ0� D Œ0; 1
3
�; I Œ1� D Œ 1

3
; 2
3
�; and I Œ2� D Œ 2

3
; 1� (base b D 3).

These three intervals each have length 1
3
. Then each of these is further subdivided

into three equal sub-subintervals, giving a total of nine sub-subintervals, each of
length 1

9
:

I Œ00�; I Œ01�; I Œ02�I I Œ10�; I Œ11�; I Œ12�I I Œ20�; I Œ21�; I Œ22�;

where I Œ00� D Œ0; 1
9
�, I Œ01� D Œ 1

9
; 2
9
�, etc, with I Œ22� D Œ 8

9
; 1�.

I D Œ0; 1�

I Œ0� I Œ1� I Œ2�0 1
3

2
3

1

1
9

2
9

4
9

5
9

7
9

8
9

I Œ00� I Œ01� I Œ02� I Œ10� I Œ11� I Œ12� I Œ20� I Œ21� I Œ22�

This process is further continued to obtain 9� 3 D 27 sub-sub-subintervals each
of length 1=27, denoted by I Œ000�, I Œ001�, I Œ002�, I Œ010�, . . . , I Œ222�.

Regarding subintervals as descendents of intervals containing them, the entire
systems can be arranged in the form of a tree:

I

Œ0; 1�

I Œ0�

Œ0; 1
3
�

I Œ00�

Œ0; 1
9
�

... ... ...

I Œ01�

Œ 1
9
; 2
9
�

... ... ...

I Œ02�

Œ 2
9
; 1
3
�

... ... ...

I Œ1�

Œ 1
3
; 2
3
�

I Œ10�

Œ 1
3
; 4
9
�

... ... ...

I Œ11�

Œ 4
9
; 5
9
�

... ... ...

I Œ12�

Œ 5
9
; 2
3
�

... ... ...

I Œ2�

Œ 2
3
; 1�

I Œ20�

Œ 2
3
; 7
9
�

... ... ...

I Œ21�

Œ 7
9
; 8
9
�

... ... ...

I Œ22�

Œ 8
9
; 1�

... ... ...

In general, at stage n, there will be 3n subintervals of the form I Œd1d2 : : : dn�.
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Ternary Strings

Notice how at stage n, the 3n intervals of the form I Œd1d2 : : : dn� are indexed by
ternary strings d1d2 : : : dn formed out of the three “letters” from the set f0; 1; 2g,
which is called the ternary alphabet. The finite ternary strings themselves are of
various lengths:

"; 0; 1; 2; 00; 01; 02; 10; 11; 12; 20; 21; 22; 000; 001; 002; 100; : : :

Here " is the empty string (of length zero), and there are 3n ternary strings of
length n.

The finite ternary strings themselves are naturally arranged in an infinite tree by
regarding string prefixes (i.e., initial segments) as ancestors:

"

0

00

... ... ...

01

... ... ...

02

... ... ...

1

10

... ... ...

11

... ... ...

12

... ... ...

2

20

... ... ...

21

... ... ...

22

... ... ...

Thus the system of ternary subdivision of intervals, when arranged by the relation
of containment of intervals, is naturally mapped by the tree of ternary words
arranged by the relation of prefixes of words. Clearly, this mapping is a one-to-
one correspondence between the nodes which transforms string prefix relations into
interval containment relations. We thus have a natural representation of the ternary
interval tree by the tree of finite ternary strings.

13.3 Infinite Branches Through Trees

An infinite branch through the above ternary tree is an infinite set of nodes (i.e.,
strings)

f "; d1; d1d2; d1d2d3; : : : ; d1d2 : : : dn; : : : g

containing exactly one node of each length n D 0; 1; 2; : : : in which the shortest
node " of length 0 is the root (“the branch starts at the root”), and each node
d1d2 : : : dn of length n is obtained from the previous node d1d2 : : : dn�1 length
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n � 1 by appending a single digit dn. Note that we usually draw trees “growing
downward,” so the branch “grows downward” in the tree as well.

Infinite Branches as Infinite Digit Strings

The infinite branch above, namely "; d1; d1d2; d1d2d3; : : : , can be identified with
the infinite ternary sequence d1d2 � � �dn � � � 2 f0; 1; 2gN, since by taking finite initial
prefixes of an infinite string, each branch through the tree is represented uniquely
by a single infinite ternary string.

For example, the initial prefixes of the constant infinite ternary string 000000 � � �
are ", 0, 00, 000, etc, so the infinite ternary string 000000 � � � represents the leftmost
branch of the ternary tree, while the infinite string 111111 � � � represents the center-
most string going straight down right through the middle of the tree. As another
example, the bold segments in the following figure illustrates a “zigzag” infinite
branch represented by the infinite string 0202020202 � � � .

"

0

00 01 02

020

0202

02020

020202

021 022

1 2

So by taking the finite initial prefixes of any given infinite ternary string, we get a
set of nodes growing down through the ternary tree forming an infinite branch. And
conversely, any infinite branch through the ternary tree produces an infinite ternary
string as its “limit.”

Thus, we have a natural one-to-one correspondence between infinite ternary
strings and the infinite branches through the ternary tree.
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Infinite Branches as Nested Intervals

Say that a sequence of bounded closed intervals is a nested ternary sequence if the
first interval in the sequence is the unit interval, and each succeeding interval equals
either the left-third, the middle-third, or the right-third closed subinterval of the
preceding interval in the sequence. Note that an infinite branch through the ternary
tree determines a nested ternary sequence of intervals.

Specifically, given an infinite ternary string d1d2d3 : : : (with dn 2 f0; 1; 2g for
all n), the intervals indexed by initial prefixes of d1d2d3 : : : form the nested ternary
sequence of intervals

Œ0; 1� D I Œ"� � I Œd1� � I Œd1d2� � � � � � I Œd1d2 � � �dn� � � � � :

We thus also have a natural one-to-one correspondence of infinite ternary strings
with nested ternary sequences of intervals, via infinite branches through the ternary
tree. This is the basis of ternary expansions.

Ternary Expansions

In the nested ternary sequence of intervals displayed above, we have len.I Œ"�/ D 1,
len.I Œd1�/ D 1

3
, len.I Œd1d2�/ D 1

9
, and so on, so that len.I Œd1d2 � � �dn�/ D 1

3n
! 0

as n ! 1. Hence by the Nested Interval Property the above sequence of nested
intervals must contain a unique real number in their intersection, i.e.,

1\

nD1
I Œd1d2 � � �dn� D fxg; for a unique x 2 R.

In this case, we say that the infinite ternary string d1d2d3 � � � represents the real
number x, or that x has a ternary expansion d1d2d3 � � � . This is also expressed as:

x D 0 � d1d2d3 � � �dn � � � in ternary expansion.

Thus every infinite ternary string determines a unique real number in Œ0; 1� via the
nested intervals associated with the initial prefixes of the infinite string. Conversely,
we have:

Theorem 891. Any real number in Œ0; 1� has a ternary expansion.

The proofs of the theorems above and below are left as exercises.

Theorem 892 (Ternary Expansion in Œ0; 1�). For each finite ternary string u 2
f0; 1; 2g� let I Œu� denote the corresponding iterated subinterval in the system of
ternary subdivision over Œ0; 1�. Let .dn/1nD1 D d1d2 � � �dn � � � be an infinite ternary
string, and put Œan; bn� WD I Œd1d2 � � �dn�.



262 13 Interval Trees and Generalized Cantor Sets

Then for any x 2 Œ0; 1�, the conditions below are equivalent to each other:

1. x D 0 � d1d2 � � �dn � � � in ternary expansion.

2.
1\

nD1
I Œd1d2 � � �dn� D fxg, i.e., x is the unique member of the intersection of the

nested intervals I Œ"� � I Œd1� � I Œd1d2� � � � � � I Œd1d2 � � �dn� � � � � .
3. x D

1X

nD1

dn

3n
(infinite series expansion).

4. x D lim
n!1an (limit of the left endpoint of the nested intervals).

5. x D lim
n!1 bn (limit of the right endpoint of the nested intervals).

A similar result is true for any fixed base b.

Problem 893. Find the values of the following infinite series expansions:

1. 0 � 111111 � � � (ternary)
2. 0 � 111111 � � � (binary)
3. 0 � 111111 � � � (decimal)
4. 0 � 1022222222 � � � (ternary)
5. 0 � 1100000000 � � � (ternary)
6. 0 � 02020202 � � � (ternary)

[Hint: Use the fact that the sum of a convergent geometric series aCarCar2C� � �
is a=.1 � r/, where jr j < 1.]

Problem 894. Let b 2 f2; 3; 4; : : : g be a fixed base. A rational number x is said to
be b-adic if x D m=bn for some m 2 Z and n 2 N. We use the terms dyadic for
2-adic and triadic for 3-adic.

1. Prove that a real number in Œ0; 1� has a ternary expansion which is eventually
constant to a digit value of 0 or 2 if and only if it is a triadic rational in Œ0; 1�.

2. Formulate and prove similar results for the binary (base b D 2) and the decimal
(base b D 10) systems.

3. Prove that 0 < x < 1 has multiple ternary expansions if and only if x is a triadic
rational. More specifically, show that every triadic rational x, 0 < x < 1, has
exactly two ternary expansions, and every other real in Œ0; 1� has a unique ternary
expansion,

Problem 895. An infinite digit sequence d1d2 � � �dn � � � is said to be repeating if
there is finite block of digits which eventually keeps repeating (formally: if there is
r 2 N and k 2 N such that dnCr D dn for all n > k).

1. Prove that 0 < x < 1 has a repeating ternary expansion if and only if x is a
rational number in Œ0; 1�

2. Prove that the same result is true for any fixed base b 2 f2; 3; 4; : : : g.
Problem 896. Show that the Cantor set consists of those reals in the unit interval
which admit a ternary expansion in which the digit 1 does not occur.
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Problem 897. Show that 1
4

is a member of the Cantor set, but 8e=7� is not. Give
an example of an irrational member of the Cantor set.

Problem 898. Show that every real number in Œ0; 2� can be expressed as a sum of
two members of the Cantor set.

[Hint: First show that every real in Œ0; 1� can be expressed as the sum of two reals in
Œ0; 1� each of which has a ternary expansion not containing the digit 2.]

13.4 Cantor Systems and Generalized Cantor Sets

The following definition is a direct generalization of the binary tree of intervals that
was used in the construction of the Cantor set.

Definition 899 (Cantor Systems). A family J D hJu j u 2 f0; 1g�i of sets indexed
by the binary tree f0; 1g� is called a Cantor System if for each binary string u 2
f0; 1g�:
1. Ju is a bounded proper closed interval, i.e., Ju D Œa; b� for some a < b;
2. Jua0; Jua1 � Ju;
3. Jua0 \ Jua1 D Ø;
4. For any infinite binary sequence b D b1b2 � � �bn � � � 2 f0; 1gN,

lim
n!1 len.Jbjn/ D lim

n!1 len.Jb1b2���bn/ D 0:

Note that the notation bjn denotes the finite initial prefix of the infinite sequence b
consisting of its first n entries, i.e., bjn WD b1b2 � � �bn. Also, recall that the notation
uad denotes the string which is obtained by appending the string u with the digit d ,
so that len.uad/ D len.u/C 1.

Let hJu j u 2 f0; 1g�i be a Cantor system. If b D b1b2 � � �bn � � � 2 f0; 1gN is an
infinite binary sequence, then Jb1 � Jb1b2 � Jb1b2b3 � � � � forms a nested sequence
of nonempty closed intervals whose lengths approach zero, and so their intersection
must be a singleton. Hence each infinite binary sequence b D b1b2 � � �bn � � � 2
f0; 1gN determines a unique real number xb such that

fxbg D
\

n

Jbjn:

Moreover, note that distinct infinite binary sequences determine distinct real
numbers: If b D b1b2 � � �bn � � � and c D c1c2 � � � cn � � � are distinct infinite binary
sequences, then there exists a least k such that bk 6D ck . Then Jb1b2���bk and
Jc1c2���ck are disjoint subintervals of Jb1b2 ���bk�1

D Jc1c2���ck�1
, so xb 6D xc . By setting

'.b/ WD xb , we get an injective mapping 'W f0; 1gN! R. Thus every Cantor system
J D hJu j u 2 f0; 1g�i effectively determines a unique one-to-one mapping ' from
f0; 1gN into the reals such that
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for all b 2 f0; 1gN: f'.b/g D
\

n

Jbjn:

The set of all real numbers xb D '.b/ as b ranges over all possible infinite binary
sequences, that is the range of the function ', is called the set generated by the
Cantor system hJu j u 2 f0; 1g�i.
Definition 900 (Set Generated by a Cantor System). The set generated by the
Cantor system J D hJu j u 2 f0; 1g�i is the set P of real numbers defined by the
condition:

x 2 P if and only if there exists b 2 f0; 1gN such that x 2
\

n

Jbjn:

Definition 901 (Generalized Cantor Sets). A set is called a generalized Cantor
set or a Cantor-like set if it is generated by some Cantor system.

We summarize the above discussion in:

Proposition 902. If P is the generalized Cantor set generated by a Cantor system
J D hJu j u 2 f0; 1g�i, then the function ' above maps f0; 1gN bijectively onto P .

Hence every generalized Cantor set is effectively bijective with f0; 1gN and so
has cardinality c D 2@0 .
The bijection in the above proposition can be viewed as a correspondence between
the infinite branches of the binary tree and the points of the generalized Cantor set P
being generated: Each infinite branch through the binary tree determines a sequence
of nested intervals, which in turn determines a point of the set P .

Problem 903. Let hJu j u 2 f0; 1g�i be a Cantor system. If Ju\Jv 6D Ø, then show
that one of the binary strings u and v must be an extension of the other (i.e., either
u is an initial prefix of v or v is an initial prefix of u).

Problem 904. Let hJu j u 2 f0; 1g�i be a Cantor system which generates the
generalized Cantor set P . Show that

1. For any x 2 P and ı > 0 there is u 2 f0; 1g� such that x 2 Ju and len.Ju/ < ı.
2. Every Ju contains some point of P .

Problem 905. Let P be the generalized Cantor set generated by a Cantor system
hJu j u 2 f0; 1g�i, and for each n D 0; 1; 2; : : : let Fn be the union of the 2n disjoint
intervals Ju where u is a binary string of length n, that is,

Fn WD
[
fJu j len.u/ D ng:

Show that

P D
\

n

Fn:



Chapter 14
Real Sets and Functions

Abstract This chapter covers the basic topology of the real line. Many of the
notions of this chapters, such as derived sets, closed sets, dense-in-itself sets, and
perfect sets, were first introduced by Cantor during his study of the real continuum.

14.1 Open Sets

Definition 906 (Open Sets). A set G � R is called open if every point of G
belongs to some open interval contained in G, that is if for every p 2 G, there
is an open interval I such that p 2 I � G.

Note that every nonempty open set contains a nonempty open interval and hence
must be uncountable. Thus no nonempty countable set can be open. Also, no
nonempty bounded closed interval is open.

Problem 907. Show that in the definition of open sets we can replace “open
interval” with “bounded open interval.”

Problem 908. Show that a set is open if and only if it can be expressed as the union
of some family of open intervals.

Problem 909. 1. The empty set Ø and R are open sets.
2. The union of any collection of open sets is open.
3. The intersection of finitely many open sets is open.

Problem 910. Show that the intersection of infinitely many open sets may not be
open.

Problem 911 (Countable Base). Let B WD f.p; q/ j p; q 2 Q; p < qg be the
collection of all nonempty bounded open intervals with rational endpoints. Then B

is a countable collection of open intervals, and every open set is a (countable) union
of members of B.

Problem 912. Show that there are exactly 2@0 D c many open sets.

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__14, © Springer Science+Business Media New York 2014
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Problem 913 (The Countable Chain Condition). Show that every family of
pairwise disjoint nonempty open sets is countable, and hence every family of
pairwise disjoint nonempty open intervals is countable.

[Hint: Every nonempty open interval contains a rational number.]

Problem 914. Let A � R and suppose that 8x; y 2 A, x < z < y ) z 2 A. Show
that A must be an interval. If in addition A is open show that A must be an open
interval.

[Hint: If A is nonempty bounded, put a D infA, b D supA, and show that A must
be one of .a; b/, Œa; b�, .a; b� or Œa; b/. If A is neither bounded above nor bounded
below, A must be R. If A is bounded below but not above, A must be one of .a;1/
or Œa;1/ where a D infA. Etc.]

Problem 915. Let C be a collection of open intervals having nonempty intersection
(so there is p such that p 2 I for every I 2 C). Show that the union [C of all the
intervals in C is itself an open interval.

In particular, the union of two open intervals having nonempty intersection is an
open interval.

Problem 916. Let C be a family of pairwise disjoint nonempty open intervals, and
let G D [C. Show that if I is a nonempty open interval contained in G, then I is
contained in a unique member of C.

Problem 917. LetG be a nonempty open set and for x; y 2 G write x � y if there
is an open interval containing both x and y. Show that� is an equivalence relation
on G which partitions G into nonempty open intervals.

From the last few problems we get a canonical decomposition of each open set into
a unique countable family of disjoint open intervals.

Theorem 918 (Canonical Decomposition of Open Sets into Disjoint Open Inter-
vals). Every open set can be expressed as the union of a unique (countable) family
of pairwise-disjoint nonempty open intervals.

14.2 Limit Points, Isolated Points, and Derived Sets

For general orders, we had defined the notions of upper and lower limit points,
derived sets, bounds, supremum, etc, and the same definitions apply for R:

Definition 919 (Limit Points and Derived Sets). Let A � R.

1. A point p 2 R is an upper limit point of A if for all x < p there is y such that
x < y < p. Lower limit points are defined similarly.
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2. A point is a limit point of A if it is either a lower or an upper limit point of A.
The set of all limit points of A is called the derivative or derived set of A and
will be denoted by D.A/.

3. A point p 2 A is an isolated point of A if p is not a limit point of A, that is if
p 2 AXD.A/.

4. A limit point of A which is both an upper and a lower limit point of A will be
called a two-sided limit point of A; otherwise it is a one-sided limit point of A.

Problem 920. For each of the following sets, find D.A/.

1. Z.
2. f1=n j n 2 Ng.
3. Q \ .0; 1/.
4. f1=2nC 1=2mCn j m; n 2 Ng.
Problem 921. Give an example of an infinite set A such thatA has arbitrarily close
points (for any p > 0 there are x; y 2 A with 0 < jx � yj < p) but A has no limit
points (D.A/ D Ø).

Problem 922. Let E be the set all points x 2 Œ0; 1� having a ternary expansion
x D P

n xn=3
n for which there is k such that xn D 0 or 2 for n < k and xn D 1

for all n � k (i.e., any point x 2 E has ternary expansion of the form x D 0 �
x1x2 � � �xk�1111111 � � � with x1; x2; : : : ; xk�1 2 f0; 2g).
1. Which points of A are limit points of A?
2. Find D.A/.

Problem 923. Show that p 2 R is a limit point of A if and only if every open
interval containing p contains a point of A other than p if and only if every open
interval containing p contains infinitely many points of A.

Show that p is an isolated point of A if and only if I \ A D fpg for some open
interval I .

Show that p is not a limit point of A if and only if I \ A � fpg for some open
interval I containing p.

Problem 924 (Properties of D.A/). For any sets A and B we have:

1. A � B ) D.A/ � D.B/.
2. D.A [ B/ D D.A/ [D.B/.
3. D.D.A// � D.A/.
Problem 925. Give an example of a set A such that

Ø ¨ D.D.A// ¨ D.A/ ¨ A

(all inclusions being proper).
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14.3 Closed, Dense-in-Itself, and Perfect Sets

Definition 926 (Cantor). A set A � R is called

1. Closed if every limit point of A is in A, i.e. if D.A/ � A.
2. Dense-in-itself if every point of A is a limit point of A, i.e. if A � D.A/.
3. Perfect if it is both closed and dense-in-itself, i.e., if D.A/ D A.

Some examples:

• Any finite set is closed. The setD.A/ of limit points of any setA is closed (recall
that D.D.A// � D.A/ in orders, and so in R too).

• The set Z of integers is closed but not dense-in-itself, while the set Q of rational
numbers is dense-in-itself but not closed.

• Every proper closed interval is perfect. The Cantor set is perfect.
• The set A WD f1; 1

2
; 1
3
; : : : ; 1

n
; : : : g is not closed since A has a (unique) limit point

0 which is not in A. But adjoining this limit point 0 to the set A gives a closed set
A [ f0g. This method is fully general, and leads to the notion of closure.

Definition 927 (Closure). The closure A of A is the set A WD A[D.A/.
Theorem 928. For any set A, its closure A D A[D.A/ is closed. In fact, A is the
smallest closed set containing A.

Proof. We have:

D.A/ D D.A [D.A// D D.A/ [D.D.A// � D.A/ [D.A/ D D.A/ � A;

and so A is closed.
Now if B is any closed set containing A, then since D.B/ � B ,

A D A [D.A/ � A[D.B/ � A[ B D B:

Thus the closed set A is contained in every closed set containing A, and hence A is
the smallest closed set containing A. ut
It follows immediately from the definitions of closure and of closed sets that:

A is closed if and only if A D A.

Problem 929. p 2 A if and only if every open interval containing p has nonempty
intersection with A. Hence p 62 A if and only if there is an open interval I
containing p such that I \A D Ø.

Problem 930. Prove that A D A and A[ B D A[ B .
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Problem 931. Let A be a closed set. If B is a nonempty bounded subset of A then
infB 2 A and supB 2 A. In particular, if A is nonempty, closed, and bounded,
then infA 2 A and supA 2 A.

Proposition 932. A set is closed if and only if its complement is open.

Proof. Let A and B be complements of each other so that A \ B D Ø and
A[ B D R. We show that A is closed if and only if B is open.

If A is closed so that A D A, then for any x 2 B we have x 62 A hence there is
an open interval I such that x 2 I and I \A D Ø, which means x 2 I � B . Thus
B is open.

If B is open then for any x 2 B there is an open interval I with x 2 I � B ,
hence x 2 I and I \A D Ø, and so x 62 A. Thus no point of B is in Awhich means
A � A, and so A is closed. ut
Corollary 933. 1. The empty set Ø and R are closed.
2. The intersection of any collection of closed sets is closed.
3. The union of finitely many closed sets is closed.

Problem 934. If A is dense-in-itself, G is open, and A \ G 6D Ø, then A \ G is a
nonempty dense-in-itself set.

Proposition 935. The Cantor set is perfect.

Proof. Let K be the Cantor set. Then K D \nKn, where Kn is the union of 2n

closed intervals obtained at stage n of the construction of the Cantor set. Now each
Kn is closed, being a finite union of closed intervals. Hence K is closed, being the
intersection of the sequence of closed sets Kn.

To see tat K is dense-in-itself: Given any x 2 K and any open interval .a; b/ with
a < x < b, pick n large enough so that 1=3n < min.x � a; b � x/. Since x 2 Kn,
so x is in one of the 2n closed intervals of length 1=3n making up Kn, say in Œc; d �.
Then Œc; d � � .a; b/ since d � c D 1=3n. Now both c and d are in K, but either
c 6D x or d 6D x, and so .a; b/ contains a point of K other than x. Thus x is a limit
point of K. Hence K is dense-in-itself.

Thus K is perfect. ut
Example 936. The complement of K is open, and therefore can be decomposed
into a unique family of disjoint open intervals. Note that this decomposition of RX
K consists of the two unbounded open intervals .�1; 0/ and .1;1/ as well as
infinitely many bounded open intervals

. 1
3
; 2
3
/; . 1

9
; 2
9
/; . 7

9
; 8
9
/; . 1

27
; 2
27
/; . 4

27
; 5
27
/; . 19

27
; 20
27
/; . 25

27
; 26
27
/; : : :

Problem 937. Show that there are exactly c many closed and perfect sets. How
many dense-in-itself sets are there?

Problem 938. If A and B are closed sets with A \ B D Ø then there exist open
sets U and V with A � U , B � V , and U \ V D Ø (any two disjoint closed sets
can be separated by disjoint open sets).
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[Hint: Let U be the union of all open intervals I D .a; b/ such that A \ I 6D Ø but
B \ .a � len.I /; b C len.I // D Ø. Similarly define V .]

Definition 939 (Eventual Containment). A sequence hxnin2N is eventually in a
set A if there is m 2 N such that xn 2 A for all n � m.

Definition 940 (Convergence and Limit). A sequence hxnin2N of real numbers
converges to a real number x, written as hxni ! x or as xn ! x as n!1, if for
any open interval I containing x, the sequence is eventually in I . If hxni ! x, we
also say that x is a limit of the sequence hxnin2N.

Problem 941 (Uniqueness of Limits of Sequences). If hxni ! x and hxni ! x0
then x D x0. (A limit of a sequence, if it exists, is unique.)

Thus the limit of a convergent sequence is also written as:

lim
n!1 xn or lim

n
xn:

Definition 942 (Cauchy Sequences). A sequence hxnin2N of real numbers is a
Cauchy Sequence if for any � > 0 there is k 2 N such that jxm � xnj < � for
all m; n � k.

Proposition 943 (The Cauchy Criterion for Convergence). A sequence hxnin2N
is convergent if and only if it is Cauchy.

Proof. If hxni ! x, then, given any � > 0 we can fix k such that jxn � xj < �
2

for
all n � k, so jxm � xnj � jxm � xj C jx � xnj < �

2
C �

2
D � for all m; n � k.

Conversely, suppose that hxnin2N is a Cauchy sequence. Then we can fix k such
that jxm � xnj < 1 for all m:n � k, and so xn 2 Œxk � 1; xk C 1� for all n � k.
Thus hxnin2N is eventually in the interval I1 WD Œxk � 1; xk C 1�. Now note that if
a sequence is eventually in an interval Œa; b� of length ` D b � a, then it is either
eventually in Œa; b � `

3
� or in ŒaC `

3
; b�. Hence, starting with I1, we can recursively

define a nested sequence of intervals I1 � I2 � � � � such that len.ImC1/ D 2
3

len.Im/
and hxnin2N is eventually in Im for all m. Let x be in

T
m Im. Since len.Im/ ! 0,

any open interval I containing x must also contain some Im, and so hxnin2N is
eventually in I . Thus hxni ! x. ut
Problem 944 (CAC). x 2 A if and only if there is a sequence hxnin2N converging
to x with xn 2 A for all n 2 N.

14.4 Dense, Discrete, and Nowhere Dense Sets

Definition 945. 1. A set A � R is called everywhere dense or simply dense (in R)
if every point of RXA is a limit point of A, that is if A D R.
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2. More generally, we say that A is dense on B if every point of BXA is a limit
point of A, that is if B � A. If in addition A � B , we say that A is a dense
subset of B or that the subset A is dense in B .

For example, Q is (everywhere) dense in R.

Problem 946. Let E be the set of end points of the open intervals removed in the
construction of the Cantor set. Show that E is a dense subset of the Cantor set.

Proposition 947 (CAC). Every set has a countable dense subset.

Proof. Let E � R be nonempty, and consider the collection

C WD fE \ .p; q/ j p; q 2 Q; E \ .p; q/ 6D Øg

of nonempty sets which are intersections of E with open intervals with rationals
endpoints. Then C is a countable collection of nonempty subsets of E , and so by
the Countable Axiom of Choice there is a function 'WC! [C such that '.A/ 2 A
for all A 2 C. Put:

D WD f'.A/ j A 2 Cg:

Then D is a countable subset of E . We claim that D is dense in E , that is E � D.
It suffices to show that for every x 2 E and any open interval I with x 2 I we have
I \D 6D Ø.

Let x 2 E , and let I D .a; b/ be an open interval with x 2 I . We can fix rational
numbers p and q such that a < p < x < q < b, so that E \ .p; q/ 6D Ø and so
E \ .p; q/ 2 C. Put y D '.E \ .p; q//. Then y 2 E \ .p; q/ � I and y 2 D, so
I \D 6D Ø. ut
Problem 948. A set A is everywhere dense if and only if every nonempty open
interval (or nonempty open set) has nonempty intersection with A.

A set A is dense on a set B if and only if every nonempty open interval which has
nonempty intersection with B also has nonempty intersection with A.

Problem 949. If A is dense on B and B is dense on C then A is dense on C .

Problem 950. Find two disjoint sets each of which is dense.

Problem 951. A dense subset of a dense-in-itself set is dense-in-itself.

Proposition 952. In any set, all but countably many points are limit points. That is,
the set AXD.A/ of isolated points of a set A is countable.

Proof. For each x 2 AXD.A/, since x is an isolated point of A, we can choose
an open interval .a; b/ with .a; b/ \A D fxg, and then fix rational numbers px; qx
such that a < px < x < qx < b. For each x 2 AXD.A/ we have

.px; qx/\ A D fxg;
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and so if x 6D y are in AXD.A/ then .px; qx/ 6D .py; qy/. Hence the mapping

x 7! .px; qx/

is a one-to-one mapping from AXD.A/ into the countable family of intervals with
rational endpoints, and so AXD.A/ must be countable. ut
Definition 953. A set A � R is called discrete if each point of A is an isolated
point of A, that is if A\D.A/ D Ø.

By the previous proposition, every discrete set is countable. Some examples of
discrete subsets of R are N, Z, and the set f 1

n
j n 2 Ng.

Problem 954. Show that the union of two closed discrete sets is discrete.

Problem 955. Show that the set A WD N [ fnp2 j n 2 Ng is discrete, but that
A has arbitrarily close points, that is for any � > 0 there exist p; q 2 A with
0 < jp � qj < �.
Definition 956 (Nowhere Dense Sets). If a set is dense on some nonempty open
interval, we call it somewhere dense; otherwise, we call it nowhere dense.

Clearly any subset of a nowhere dense is nowhere dense.

Problem 957. A set is nowhere dense if and only if its closure does not contain any
nonempty open interval. Hence a closed set is nowhere dense if and only if it does
not contain any nonempty open interval.

Since the Cantor set is closed and does not contain any nonempty open interval, we
have:

Proposition 958. The Cantor set is nowhere dense.

Problem 959. A set A is nowhere dense if and only if every nonempty open interval
contains a nonempty open subinterval which is disjoint from A.

Problem 960. Prove that a set is nowhere dense if its complement contains a dense
open set.

Problem 961. The intersection of two dense open sets is a dense open set.

Problem 962. The union of two nowhere dense sets is nowhere dense.

Problem 963. Consider the collection C of the open intervals removed in the
construction of the Cantor set. Since the open intervals in C are nonempty and
pairwise disjoint, C can be naturally ordered by the usual order on R: For I; J 2 C

we have I < J if and only if x < y for all x 2 I and all y 2 J . Show that under
this natural ordering, C becomes a dense order of type 	.

Problem 964. Give an example of a countable set disjoint from the Cantor set
which is dense on the Cantor set.
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Problem 965. Give an example of an infinite discrete set A � R such that the
suborder A is a dense order, that is, for any x < y in A there is z in A with
x < z < y.

Problem 966. Give an example of a discrete subset A � R such that D.A/ is an
uncountable perfect set.

Problem 967. Show that the closure of a discrete set is nowhere dense, and so if A
is discrete then D.A/ is nowhere dense closed.

Problem 968.� Show that if E is nowhere dense closed then E D D.A/ for some
discrete set A.

Condensation Points

Definition 969 (Condensation Points). A point p is called condensation point of
a set A if every open interval containing p contains uncountably many points of A.

Clearly, every condensation point of a set is a limit point of the set.
The following is an important generalization of Proposition 952.

Theorem 970. All but countably many points of a set are condensation points.

Proof. Let C be the set of condensation points of a set A. We show that AXC is
countable. Put

H WD fA\ .p; q/ j p; q 2 Q; jA\ .p; q/j � @0g:

Then H is a countable collection of countable subsets of A, and so E WD [H is a
countable subset of A. We claim that AXC � E: Let x 2 AXC , so that x is not a
condensation point of A, and hence there is an open interval .a; b/ with x 2 .a; b/
and jA \ .a; b/j � @0. Fix p; q 2 Q such that a < p < x < q < b, so that
A \ .p; q/ 2 H, therefore A \ .p; q/ � E , and so x 2 E . Hence AXC � E , and
so AXC is countable. ut
Clearly, if x is a condensation point of A, and B is any countable subset of A not
containing x, then AXB will still have x as a condensation point. Hence by the
theorem, if C is the set of condensation points of an uncountable set A, then C is an
uncountable set in which every point is a condensation point. Therefore we have:

Corollary 971. The set of condensation points of any uncountable set forms a
nonempty subset which is dense-in-itself.

Using a routine argument, we have the following result.

Problem 972. The set of condensation points of a closed set is closed.

The important Cantor–Bendixson Theorem is now an immediate corollary.
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Corollary 973 (The Cantor–Bendixson Theorem). Any uncountable closed set is
the union of a nonempty perfect set and a countable set.

The Cantor–Bendixson Theorem will be proved again more effectively in Chap. 16
(Theorem 1079 and Corollary 1080 in Sect. 16.2).

We had seen in Theorem 598 that every nonempty perfect subset of a complete
order has cardinality c. Hence it follows from the Cantor–Bendixson Theorem that
“the closed sets satisfy the Continuum Hypothesis” in the following sense.

Corollary 974. Every closed set is either countable or has cardinality c.

A different proof of the last result (a proof without using Theorem 598) will be given
in Chap. 15 (Corollary 1051).

Problem 975. Show that all but countably many points of a set are two-sided limit
points of the set.

Problem 976. Find an example of a nonempty dense-in-itself set in which no point
is an upper limit point of the set.

Generalized Cantor Sets Are Perfect Nowhere Dense

Theorem 977. Every generalized Cantor set is a bounded perfect nowhere dense
set which is bijective with f0; 1gN (and so has cardinality c D 2@0).
Proof. Let A be a generalized Cantor set generated by the Cantor system
hJu j u 2 f0; 1g�i. We had already seen that A is bijective with f0; 1gN and hence
has cardinality c D 2@0 .

First note that A is bounded, as A � J" D Œa; b� for some a < b. Also, A
is closed, as (by Problem 905) it is an intersection of a collection of closed sets.
To see thatA is dense-in-itself, fix p 2 A and an infinite binary string b1b2 � � �bn � � �
such that p 2 \nJb1b2���bn . Given an open interval .c; d / containing p, choose a
sufficiently large n for which len.Jb1b2���bn/ < min.p� c; d �p/, so that Jb1b2���bn ¨
.c; d /. Let u be the finite binary string b1b2 � � �bn. Then at most one of the disjoint
intervals Jua0 and Jua1 can contain p, so by taking v to be either ua0 or ua1,
we can assume that p 62 Jv. Now fix any infinite binary string extending v and let
q be the unique point in the intersection of the corresponding nested sequence of
intervals. Then q 2 Jv and so p 6D q while p 2 .c; d /\A. Thus every open interval
containing p contains a point of A distinct from p, which means p 2 D.A/. Since
p was chosen arbitrarily from A, it follows that every point of A is a limit point, so
A is dense-in-itself. Hence A is perfect.

To show that A is nowhere dense, it will suffice to show that A does not contain
any proper interval. Let .c; d / be a nonempty open interval. We show that A does
not contain all points of .c; d /. Fix p 2 .c; d /. If p 62 Awe are done, so assume that
p 2 A and let b1b2 � � �bn � � � be an infinite binary string such that p 2 \nJb1b2���bn .
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Since limn len.Jb1b2���bn/ D 0, we can choose a sufficiently large n for which
len.Jb1b2���bn/ < min.p � c; d � p/ so that Jb1b2���bn ¨ .c; d /. Let u be the finite
binary string b1b2 � � �bn. Since Jua0 and Jua1 are disjoint closed subintervals of
Ju, there must exist some q 2 Ju which does not belong to any of the intervals
Jua0 or Jua1 (since by Theorem 599 an interval cannot be the disjoint union of two
nonempty closed intervals). We now claim that q 62 A. To see this, assume that
q 2 A (to get a contradiction), and fix a finite binary string v with len.v/ > len.u/
such that q 2 Jv. Then q 2 Ju \ Jv, so Ju \ Jv 6D Ø, and so v must be an extension
of u. But since len.v/ > len.u/, v must either be an extension of Jua0 or be an
extension of Jua1, which implies that q is either in Jua0 or in Jua1, contradicting
the fact that q is not in any of these two intervals. ut
We will later prove (in the chapter on Brouwer’s theorem) that a converse of the
result also holds: Every bounded perfect nowhere dense set is a generalized Cantor
set, that is A can be generated by some Cantor system.

14.5 Continuous Functions and Homeomorphisms

We had already defined continuous functions for orders, but we now want to define
continuity for functions which are only partially defined on R, i.e., for functions
whose domain may be a proper subset of R. It is assumed that the reader is familiar
with this notion of continuity through elementary calculus.

Definition 978 (Continuous Functions). Let A � R and let f WA! R.

1. We say that f is continuous at a pointp 2 A if for any open interval J containing
f .p/ there is an open interval I containing p such that for all x, x 2 I \ A)
f .x/ 2 J .

2. We say that f is continuous (on A) if for all p 2 A f is continuous at p.

Problem 979. Enumerate the rational numbers as Q D frn j n 2 Ng where rm 6D
rn for m 6D n, and define f WR! R by:

f .x/ WD
(
1=n if x D rn and n 2 N,

0 otherwise.

Show that f is continuous at each irrational point, but is discontinuous (not
continuous) at each rational point.

Problem 980. Show that if A is a discrete set then any function defined on A is
continuous.

Problem 981. Let f WR ! R. Show that each of the following conditions is
necessary and sufficient for f to be continuous on R.
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1. For any x 2 R and any open interval J containing f .x/ there is an open interval
I containing x such that f ŒI � � J .

2. For any open interval J the inverse image f �1ŒJ � is an open set.
3. For any open set G the inverse image f �1ŒG� is an open set.
4. For any closed set F the inverse image f �1ŒF � is a closed set.

Problem 982. Show that f WA! R is continuous if and only if for any x 2 A and
any sequence hxnin2N with xn 2 A for all n, if hxni ! x then hf .xn/i ! f .x/.

Problem 983. Let f WR! R be continuous. Show that for any sequence of nested
closed intervals I1 � I2 � � � � � In � InC1 � � � � , if len.In/! 0 as n!1 then
f Œ\nIn� D \nf ŒIn�.
We had earlier proved the Intermediate Value Theorem for general linear continu-
ums (Corollary 600). Since an interval in R is a linear continuum, the IVT remains
true for this case.

Theorem 984 (IVT). Let I be an interval and f W I ! R be continuous. Then
f ŒI � is an interval. In other words, if a < b are in I and if f .a/ < y < f .b/ or if
f .a/ > y > f .b/ then there is x 2 .a; b/ such that f .x/ D y.

Let f WR ! R. For a; b 2 R, let f b
a denote the function obtained from f by

redefining its value at a to b, i.e., f b
a .x/ WD b if x D a and f b

a .x/ WD f .x/

otherwise. We say that f has a removable discontinuity at the point a if f is
discontinuous at a but f b

a is continuous at a for some b 2 R. (In terms of limits,
this means that limx!a f .x/ exists but does not equal f .a/.)

Problem 985. Let f WR ! R and let E be the set of points at which f has a
removable discontinuity. Then E is countable.

[Hint: To each a 2 E , assign rational numbers p; q; r; s such that a 2 .p; q/ and for
all x 2 .p; q/ with x 6D a we have f .x/ 2 .r; s/ but f .a/ 62 .r; s/.]

Homeomorphisms and Homeomorphic Sets

Definition 986. Let A;B � R. A homeomorphism from A to B is a bijection f
from A onto B such that both f and f �1 are continuous. The sets A and B are
homeomorphic if there is a homeomorphism from A onto B .

For example, the mapping x 7! x=.1C jxj/ is a homeomorphism from R onto the
open interval .�1; 1/.
Problem 987. Let f WR ! R be continuous and strictly increasing. Show that
f ŒR� is an open interval (which may be unbounded) and that f is a homeomorphism
from R onto f ŒR�.

Problem 988. Any two infinite discrete sets are homeomorphic.
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Problem 989. The set f0g[ f1=n j n 2 Ng is homeomorphic to the set f0g[ f1=n j
n 2 Ng [ f�1=n j n 2 Ng, but not to f0g [ f1=n j n 2 Ng [ N.

Problem 990. No two of Œ0; 1�, Œ0; 1/, and .0; 1/ are homeomorphic.

Problem 991.� The sets Œ0; 1� \Q and .0; 1/\Q are homeomorphic.

Problem 992. Let I and J be nonempty open intervals (none, one, or both of which
may be unbounded),A be a countable dense subset of I , andB be a countable dense
subset of J . Show that there is a homeomorphism of I onto J such that f ŒA� D B ,
and conclude that A and B must be homeomorphic.

[Hint: Use Cantor’s theorem on countable dense orders.]
If A and B are homeomorphic via f , then f will preserve all internal properties

of points and subsets ofA involving limit points. For example, if A has exactly three
limit points, then B the same will be true for B . If p 2 A and E � A, then p is a
limit point of E if and only if f .p/ is a limit point of f ŒE�, E is a dense subset of
A if and only if f ŒE� is dense subset of B , and so on.

Problem 993. Let A be homeomorphic to B . Show that

1. A is discrete if and only if B is discrete.
2. A contains a proper interval if and only if B contains a proper interval.
3. A is dense-in-itself if and only if B is dense-in-itself.

Internal properties of sets which are preserved by homeomorphisms are called
topological properties. Thus the properties listed in the last problem are topological.
If two sets are homeomorphic then they will share all topological properties and are
said to have identical (internal) topological structures.

Properties of a subset A of R which express how A, its points or other subsets of
A relate to the parent R (i.e., properties which express how A is situated within R)
are in general not topological. This is illustrated by the following problem.

Problem 994. None of the following properties of subsets of R is a topological
property, i.e., it is not preserved by homeomorphisms in general.

1. Being bounded.
2. Being closed.
3. Being everywhere dense.
4.* Being nowhere dense.

Problem 995. None of the properties of being closed and being nowhere dense is
a topological property, but if A and B are homeomorphic closed sets then A is
nowhere dense if and only if B is nowhere dense.

While none of the individual properties of being closed and being bounded is a
topological property, the combined property of being both closed and bounded
becomes a topological property and is known as compactness, but the proof of this
fact requires the Heine–Borel theorem which is covered in the next chapter.
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Space Filling Peano Curves

By a (parametric) continuous curve hx.t/; y.t/i, 0 � t � 1, in the plane we mean
a pair of continuous functions t 7! x.t/ and t 7! y.t/, 0 � t � 1. The classic
example is that of the unit circle x.t/ D cos 2�t , y.t/ D sin 2�t . Peano showed
the surprising result that there is a continuous curve in the plane which fills up
the entire unit square Œ0; 1� � Œ0; 1�! We can readily derive Peano’s result using the
“identification” of the Cantor set K with the set f0; 1gN of infinite binary sequences
(review Sects. 6.6 and 6.7).

For each ˛WN! N, define h˛ WK! Œ0; 1� by:

h˛.x/ WD
1X

nD1

x˛.n/

2n
.x DP1nD1 2xn3n 2 K; hxni 2 f0; 1gN/;

Problem 996. If ˛WN ! N is injective then h˛ is a continuous surjection from K
onto Œ0; 1�. If ˛; ˇWN ! N are injective with disjoint ranges, then for all ha; bi 2
Œ0; 1� � Œ0; 1� there is x 2 K with a D h˛.x/, b D hˇ.x/.

Let h WD h� where �WN! N is the identity map �.n/ D n.

Problem 997. For the function h D h�, if .a; b/ is a component open interval of the
complement of the Cantor set, then h.a/ D h.b/.

The function h

By the last problem, one can extend h to a function hW Œ0; 1� ! Œ0; 1� by “joining
h.a/ and h.b/ with a horizontal line segment” over each component open interval
of Œ0; 1�XK. The resulting function h will be a continuous function (which maps K
onto Œ0; 1�). More generally, we have:

Problem 998 (Cantor Ternary Functions). Let gWK ! Œa; b� be continuous.
Then there is a unique continuous extension gW Œ0; 1� ! Œa; b� of g such that g
is linear on each component open interval of Œ0; 1�XK.
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Now fix injective ˛; ˇWN ! N with disjoint ranges, e.g., ˛.n/ D 2n � 1 and
ˇ.n/ D 2n, and put � WD h˛, � WD hˇ . By Problem 998, h�.t/;�.t/i, 0 � t � 1, is
a continuous curve in the plane, and by Problem 996 it fills up the unit square. We
thus have:

Corollary 999 (Peano Curve). Let ˛.n/ WD 2n � 1, ˇ.n/ WD 2n, � WD h˛ , and
� WD hˇ. Then h�.t/;�.t/i, 0 � t � 1, is a continuous curve in the plane which
fills up the entire unit square.



Chapter 15
The Heine–Borel and Baire Category Theorems

Abstract This chapter starts with the Heine–Borel theorem and its characterization
of complete orders, and then uses Borel’s theorem to give a measure-theoretic
proof that R is uncountable. Other topics focus on measure and category: Lebesgue
measurable sets, Baire category, the perfect set property for Gı sets, the Banach–
Mazur game and Baire property, and the Vitali and Bernstein constructions.

15.1 The Heine–Borel Theorem

Earlier, we had encountered the Bolzano–Weierstrass and Nested Intervals prop-
erties for complete orders and saw that none of those properties characterize
complete orders. On the other hand, the Heine–Borel theorem, which has very
wide applicability, gives a stronger condition which actually characterizes complete
orders.

Definition 1000. Let A be a set and C be a collection of sets. We say that A is
covered by C or C covers A if every element of A is a member of some set in C,
that is if

A �
[

C:

We also say that A is covered by the sets A1;A2; : : : ; An if A is covered by the
collection fA1;A2; : : : ; Ang.
Theorem 1001. Let Œa; b� be a bounded closed interval and let C be a collection
of open sets which covers Œa; b�. Then Œa; b� can be covered by finitely many sets
from C.

Proof. Let a < b and let C be a collection of open sets with

Œa; b� �
[

C:

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__15, © Springer Science+Business Media New York 2014
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Let A be the set consisting of those real numbers x 2 Œa; b� such that the interval
Œa; x� can be covered by finitely many sets from C. In other words, we have x 2 A
if and only if a � x � b and there are sets G1;G2; : : : ; Gn 2 C (for some natural
number n) such that Œa; x� � [nkD1Gk . Then A � Œa; b� is bounded and nonempty
(since a 2 A), and so with

c WD supA

we have c 2 Œa; b�. Since c 2 Œa; b� there is an open set G 2 C such that c 2 G, and
so we can fix an open interval .p; q/ such that c 2 .p; q/ � G.

Since p < c and c D supA, there is r 2 A such that p < r < c. Then r 2 Œa; b�
and Œa; r� can be covered by finitely many sets from C, say

Œa:r� �
n[

kD1
Gk; Gk 2 C for k D 1; 2; : : : ; n .n 2 N/:

Putting GnC1 WD G, we see that Œr; c� � GnC1, and so

Œa; c� D Œa; r� [ Œr; c� �
nC1[

kD1
Gk;

hence Œa; c� can be covered by finitely many sets from C and so c 2 A. Moreover,
if we had c < b, we could choose s with c < s < min.b; q/ and so we would get
Œr; s� � G D GnC1. Then Œa; s� D Œa; r� [ Œr; s� would again be covered by the sets
G1;G2; : : : ; Gn;GnC1, which would imply s 2 A, which is a contradiction since
s > c D supA. Therefore c D b, hence b 2 A, and so Œa; b� can be covered by
finitely many sets from C. ut
The following generalization of Theorem 1001 is usually called the Heine–Borel
theorem. It is sometimes paraphrased as “every open cover of a bounded closed set
has a finite subcover.”

Corollary 1002 (Heine–Borel). Let E be a bounded closed set and let C be a
collection of open sets which covers E . Then E can be covered by finitely many
sets from C.

Proof. Since E is bounded there exist a; b with E � Œa; b�. Let G D RXE , so that
G is open, and put C0 D C [ fGg. Then C0 covers R, since for any x either x 2 E
in which case x 2 [C or else x 2 G. Hence C0 covers Œa; b�, so Œa; b�, and hence
E , can be covered by finitely many sets from C0, say E � [nkD1Gk with Gk 2 C0
for k D 1; 2; : : : ; n. Now from the sets Gk , k D 1; 2; : : : ; n, we can remove any
Gk which equals G, and the remaining sets will still cover E (since E \ G D Ø),
giving us finitely many sets from C which covers E . ut
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Corollary 1003. If F1; F2; : : : ; Fn; : : : are bounded closed sets, G is an open set,
and \1nD1Fn � G, then \mkD1Fk � G for some m 2 N.

Proof. Put Gn WD RXFn. Then \nFn � G means that F1 � G [
� [1nD2 Gn

�
, and

so by the Heine–Borel theorem there is m such that F1 � G [
� [mkD2 Gk

�
, that is,

\mkD1Fk � G. ut
Corollary 1004. The intersection of a nested sequence of nonempty bounded
closed sets is nonempty.

Problem 1005. Let A be a subset of R. Show that if every covering of A by a
collection of open sets has a finite subcollection which also covers A, then A is
closed and bounded.

The following is also known as the Heine–Borel Theorem (in a “necessary and
sufficient” form).

Corollary 1006 (The Heine–Borel Theorem). A subset A of R is closed and
bounded if and only if every covering of A by a collection of open sets has a finite
subcollection which also covers A.

This last and final version of the Heine–Borel theorem is a characterization of the
property of being a closed and bounded subset of R using a property involving
covering by open sets. It can be used to show that the property of being a closed and
bounded subset of R is preserved by homeomorphisms, that is, it is a topological
property. Thus even though the individual properties of being closed or being
bounded are not topological, the combined property becomes a topological property,
and is termed as compactness.

Problem 1007. Show that if A and B are homeomorphic subsets of R and one of
them is closed and bounded then so must be the other. In other words, compactness
is a topological property.

It should be noted that the proof of Theorem 1001 uses only the completeness
property of R, and hence can be generalized for orders. We will say that an orderX
satisfies the Heine–Borel condition if for any bounded closed interval I covered by
a collection of open intervals there are finitely many of those open intervals which
covers I .

Problem 1008. Let X be an order without endpoints, Show that X is complete if
and only if X satisfies the Heine–Borel condition.

Definition 1009. The length of an interval I is defined as the nonnegative quantity
len.I / WD sup I�inf I , and the total length of a sequence hIni of intervals is defined
as the nonnegative sum

P
n len.In/.

We will now apply the Heine–Borel theorem to obtain the following result known as
Borel’s Theorem which is useful in theory of Lebesgue-measure: An interval Œa; b�
cannot be covered by a sequence of open intervals having total length < b � a.

First, we need the following proposition.
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Proposition 1010. Let Œa; b� be a closed interval and suppose that .ak; bk/ is an
open interval with ak < bk for each k D 1; 2; : : : ; n. If

Œa; b� �
n[

kD1
.ak; bk/;

then we have

b � a <
nX

kD1
.bk � ak/:

Proof. The proof is done by induction on n for the statement of the proposition.
We assume that a � b.

If n D 1, then Œa; b� � .a1; b1/, so a1 < a � b < b1, hence b � a < a1 � b1 DPn
kD1.bk � ak/.
For the induction step, suppose that the proposition is true for n D m, and let

.ak; bk/ be open intervals with ak < bk for each k D 1; 2; : : : ; mC 1 such that

Œa; b� �
mC1[

kD1
.ak; bk/:

Then b is a member of one of the intervals covering Œa; b�, which we may assume
to be .amC1; bmC1/ without loss of generality. Then amC1 < b < bmC1. If now
amC1 < a, then b � a < bmC1� amC1 and we are done, so assume a � amC1. Then
since Œa; amC1� \ .amC1; bmC1/ D Ø, we must have

Œa; amC1� �
m[

kD1
.ak; bk/;

and hence by induction hypothesis we have:

amC1 � a <
mX

kD1
.bk � ak/;

and so

b � a < .amC1 � a/C .bmC1 � amC1/ <
mX

kD1
.bk � ak/C .bmC1 � amC1/

D
mC1X

kD1
.bk � ak/:

Thus the result holds for n D mC 1. ut
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An application of the Heine–Borel theorem now immediately yields Borel’s Theo-
rem that no interval I can be covered by a sequence of open intervals having total
length less than the length of I .

Theorem 1011 (Borel’s Theorem). Let Œa; b� be a closed interval and suppose
that .ak; bk/ is an open interval with ak < bk for each k 2 N. If

Œa; b� �
1[

kD1
.ak; bk/;

then we have

b � a <
1X

kD1
.bk � ak/:

Problem 1012. IfA andB are disjoint bounded closed sets then there exists p > 0
such that no interval of length > p intersects both A and B .

[Hint: All intervals I D .a; b/ with .2a � b; 2b � a/ \ B D Ø form an open cover
of A, and so has a finite subcover I1; I2; : : : ; In. Take p D mink len.Ik/.]

15.2 Sets of Lebesgue Measure Zero

Definition 1013 (Lebesgue Measure Zero). E � R is said to be a set of Lebesgue
measure zero or simply a measure zero set if E can be covered by sequences of
intervals of arbitrarily small total length, i.e., if for any positive number � > 0 there
is a sequence of open intervals h.an; bn/ j n 2 Ni with

E �
1[

nD1
.an; bn/ and

1X

nD1
.bn � an/ < �:

Clearly a subset of a set of measure zero is of measure zero. We also have:

Proposition 1014. A countable union of measure zero sets has measure zero.

Proof. Let An have measure zero for each n 2 N, and let � > 0. Then for each m,
since Am has measure zero, there is a sequence h.am;n; bm;n/ j n 2 Ni such that

Am �
1[

nD1
.am;n; bm;n/ and

1X

nD1
.bm;n � am;n/ < �

2m
:
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Then we have

1[

mD1
Am �

1[

mD1

1[

nD1
.am;n; bm;n/

with

1X

mD1

1X

nD1
.bm;n � am;n/ <

1X

mD1

�

2m
D �:

As � > 0 was arbitrary, it follows that [mAm has measure zero, ut
Since every singleton set is of measure zero, we get:

Corollary 1015. Every countable set has measure zero.

But not all measure zero sets are countable:

Problem 1016. The Cantor set has measure zero.

[Hint: The closed set Kn found at stage n of the construction of the Cantor set
consists of 2n disjoint closed intervals each of length 1=3n, and so Kn can be covered
by 2n open intervals of total length 2.2n=3n/.]

On the other hand, Borel’s Theorem (Theorem 1011) immediately gives exam-
ples of sets not having measure zero:

Corollary 1017. If a < b then the interval Œa; b� does not have measure zero.
Hence a measure zero set cannot contain a nonempty open interval.

Corollary 1018. If a < b then the interval Œa; b� is uncountable.

Thus we have another proof that R is uncountable.

Small Sets, Ideals, and � -Ideals

The above results indicate that in a sense the sets of measure zero are “small subsets”
of R. Some other examples of collections of sets which may be regarded as “small”
are:

• The finite subsets of R.
• The countable subsets of R.
• The nowhere dense subsets of R.
• The closed discrete subsets of R.
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In general, the notion of “small subsets of R” can be axiomatized as:

1. Ø is small but R is not small.
2. A subset of a small set is small.
3. The union of two (or finitely many) small sets is small.

All the above examples satisfy these properties. (In addition, they satisfy the
stronger condition that no small set contains a nonempty open interval.)

Any collection of sets which satisfies the three conditions listed above is called
an ideal of sets.

The collection of countable sets and the collection of measure zero sets satisfy
an additional fourth property:

4. The union of countably many small sets is small.

Ideals which satisfy this additional property are called �-ideals. The sets of measure
zero form an important �-ideal.

The Borel Conjecture

Definition 1019 (Strong Measure Zero). A set A is said to have strong measure
zero if for any sequence h�n j n 2 Ni of positive numbers �n > 0, there exists a
sequence h.an; bn/ j n 2 Ni of open intervals such that

bn � an < �n for all n 2 N and A �
1[

nD1
.an; bn/:

Problem 1020. Show that the collection of sets of strong measure zero is a �-ideal
containing all countable sets.

Problem 1021. Show that the Cantor set does not have strong measure zero.

The assertion that every set of strong measure zero is countable is known as the
Borel conjecture. It can neither be proved nor be disproved using the usual axioms
of set theory (provided that these axioms are consistent).

15.3 Lebesgue Measurable Sets

Definition 1022 (Lebesgue Measurable Sets). We say that A � R is Lebesgue
Measurable (or simply measurable) if for any � > 0 there is an open set G and a
closed set F with F � A � G, such that GXF can be covered by a sequence
of open intervals of total length less than �, i.e., there is a sequence hIn j n 2 Ni of
open intervals such that GXF � [nIn and

P
n len.In/ < �.
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We will let L denote the collection of all Lebesgue measurable sets.

The results in the following problem are immediate from the definition.

Problem 1023. Show that

1. The complement of a measurable set is measurable.
2. Any set of measure zero is measurable.
3. Every interval is measurable.

Proposition 1024. Let A be a Lebesgue measurable set. IfA is not of measure zero
then A contains an uncountable closed set and hence a perfect set.

Proof. Suppose that A does not contain any uncountable closed set. We show that
then A must have measure zero.

Given � > 0, fix closed F and open G with F � A � G and a sequence
hIni of open intervals covering GXF with

P
n len.In/ < �

2
. By assumption, F

must be countable, so there is a sequence hJni of open intervals covering F withP
n len.Jn/ < �

2
. The combined sequence of intervals I1; J1; I2; J2; : : : covers A

and has total length< �. Since � is arbitrary, it follows that A has measure zero. ut
Problem 1025. A is measurable if and only if A \ .a; b/ is measurable for all
a < b.

[Hint: If Fn � .n; nC 2/ is closed for all n 2 Z, then [n2ZFn is closed.]

Proposition 1026. Every open set is measurable.

Proof. By the last problem, it suffices to show that every bounded open set is
measurable. Let G be an open set contained in .a; b/, and suppose that � > 0.
Since G is open, we have G D [n.an; bn/ for some sequence of pairwise disjoint
open intervals .an; bn/, n D 1; 2; : : : .

Note that if I1; I2; : : : ; In are finitely many pairwise disjoint open subintervals of
.a; b/, then by rearranging them we can assume Ik D .ck; dk/, k D 1; 2; : : : ; n with
a � c1 < d1 � c2 < d2 � � � � � cn < dn � b, and so the total length of the intervalsPn

kD1 len.Ik/ cannot exceed b � a. In particular, we have
Pn

kD1.bk � ak/ � b � a
for any n, and so

P1
nD1.bn � an/ � b � a. Hence there exists m 2 N such thatP1

nDmC1.bn � an/ < �
2
.

Now put F D [mnD1Œa0n; b0n�, where a0n D an C �
4m

and b0n D bn � �
4m

. Then F is
a closed subset of G and moreoverGXF is covered by the open intervals .an; a0n/,
n D 1; 2; : : : ; m, .b0n; bn/, n D 1; 2; : : : ; m, and .an; bn/, n D m C 1;mC 2; : : : ,
whose total length is less than �

4
C �

4
C �

2
D �. ut

Theorem 1027. Let hAn j n 2 Ni be a sequence of measurable sets. Then A WD
[nAn is measurable.

Proof. Let a < b be arbitrary reals. It suffices to show that the set A� WD A\ .a; b/
is measurable. Let � > 0 be given.

Put A�n WD An \ .a; b/. Then A�n is measurable for each n, and so we can find
closed Fn and open Gn such that Fn � A�n � Gn and GnXFn is covered by a
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sequence of intervals of total length < �

2nC1 , where we assume that Gn � .a; b/ for
all n (by replacingGn byGn\.a; b/ if necessary). Thus the open set V WD [n.GnX
Fn/ can be covered by a sequence of open intervals of total length <

P1
nD1 �

2nC1

D �
2
.

LetG WD [nGn, so thatG is an open set contained in .a; b/, and letUn WD GXFn.
Then Un is open, hence measurable, and so there is a closed Hn � Un such that
UnXHn is covered by a sequence of intervals of total length < �

2nC1 , for each n.
Therefore the open set U WD [n.UnXHn/ can be covered by a sequence of open
intervals of total length <

P1
nD1 �

2nC1 D �
2
.

Note that we have \nHn � \nUn � V , and hence by the Heine–Borel theorem
there is m such that \mkD1Hk � V .

Now put F D [mkD1Fk . Then F is closed with F � A� � G, and

GXF D
m\

kD1
Uk �

m\

kD1
Hk [

m[

kD1
.UkXHk/ � V [ U:

Since each of V and U can be covered by a sequence of open intervals of total
length less than �

2
, it follows that GXF can be covered by a sequence of intervals

of total length less than �. ut
By the above results, the collection L of all Lebesgue measurable sets contains
all measure zero sets, intervals, open and closed sets, and is closed under taking
countable unions and complements of sets, and hence under forming countable
intersections as well. This makes L a very comprehensive collection of sets, and
in fact a sigma-algebra of sets, discussed in Sect. 18.1.

The basic result in Lebesgue measure theory is Lebesgue’s landmark theorem
that the length function for intervals can be uniquely extended to a nonnegative
countably additive function on L:

Theorem 1028 (Lebesgue). There is mWL! Œ0;1� such that

1. m is countably additive: IfA1;A2; : : : are pairwise disjoint measurable sets, then
m.
S
n An/ D

P
n m.An/.

2. m.I/ D len.I / for any interval I (thusm.Ø/ D 0).

Proof. The proof is given in Appendix B. ut
Such a function m must be uniquely defined on L. This and several other important
immediate consequences are derived in the following corollary:

Corollary 1029. Suppose that m is as in Theorem 1028, r 2 R, and A, B ,
A1;A2; : : : ; An; : : : are measurable sets. The following properties hold:

1. Monotonicity:A � B ) m.A/ � m.B/.
2. Countable Subadditivity:m.

S
n An/ �

P
n m.An/.

3. Uniqueness: If m0WL! Œ0;1� also satisfies Theorem 1028 then m0 D m.
4. Outer Regularity: For any � > 0 there is open G � A with m.GXA/ < �.
5. Translation Invariance:m.AC r/ D m.A/, where AC r WD fx C r j x 2 Ag.
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6. CCC Property: If hEi j i 2 I i is an arbitrary family of pairwise disjoint measur-
able sets, then m.Ei/ D 0 for all but countably many i 2 I .

Proof. 1. A\ .BXA/ D Ø, so m.B/ D m.A/Cm.BXA/ � m.A/.
2. The sets Bn WD AnXSk<n Ak are pairwise disjoint with

S
n Bn D

S
n An.

3. Suppose m0 also satisfies the two conditions of Theorem 1028. Let E be
measurable and � > 0. Fix closed F and open G with F � E � G and
a sequence of intervals hIni covering G XF with

P
n len.In/ < �. Since G

is open, it is a disjoint union of intervals and so m.G/ D m0.G/. Hence
m.E/Cm.GXE/ D m.G/ D m0.G/ D m0.E/Cm0.GXE/. Nowm.GXE/ �
m.
S
n In/ �

P
n len.In/ < �, and similarly, m0.GXE/ < �. Hence m.E/ and

m0.E/ cannot differ by more than �.
4. Immediate from definition of measurability and monotonicity.
5. Follows from (4), as intervals and so open sets are translation invariant.
6. For any m; n, the set fi 2 I j m.Œn; nC 1� \ Ei/ � 1

m
g is finite, and m.Ei/ > 0

if and only if m.Œn; nC 1� \Ei/ > 0 for some n. ut
Definition 1030 (Lebesgue Measure). Lebesgue Measure is the unique function
mWL ! Œ0;1� which is countably additive and satisfies m.Œa; b�/ D b � a for all
a � b.

15.4 F� and Gı Sets

Definition 1031. A is called an F� set if it can be expressed as a countable union of
closed sets, that is if A D [nAn for some sequence hAn j n 2 Ni of closed sets.
B is called a Gı set if it can be expressed as a countable intersection of open sets,

that is if B D \nBn for some sequence hBn j n 2 Ni of open sets.

Problem 1032. A set is F� if and only if its complement is Gı, and so a set is Gı if
and only if its complement is F� .

Problem 1033. 1. Every countable set is an F� set.
2. Every open interval is an F� set.
3. Every open set is an F� set, and so every closed set is a Gı set.
4. Every open set and every closed set is both an F� set and a Gı set.
5. The union of countably many F� sets is an F� set, and the intersection of

countably many Gı sets is a Gı set.
6. The intersection of two F� sets is an F� set, and the union of two Gı sets is a

Gı set.

While all open sets and closed sets are both F� and Gı , the set Q of rational numbers
is an F� set which is neither open nor closed. Thus the collection of F� sets (as well
as the collection of Gı) is strictly larger than the collection of open sets or the closed
sets. We will see later that the set of rational numbers is not a Gı.

Problem 1034. Give an example of a set which is both F� and Gı, but neither open
nor closed.
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Problem 1035. All F� sets and Gı sets are measurable.

Problem 1036. The following conditions are equivalent for any A � R.

1. A is Lebesgue measurable.
2. GXF has measure zero for some F� F and Gı G with F � A � G.
3. A D F [E for some F� set F and measure zero set E .
4. A D GXE for some Gı set G and measure zero set E .

Many important sets in the theory of real functions are F� or Gı sets.

Problem 1037. Let f WR! R and C be the set of points at which f is continuous.
Show that C is a Gı set.

[Hint: Let Gn WD S˚
.a; b/ j For all x; y 2 .a; b/, jf .x/ � f .y/j < 1

n

�
. Then C DT

n Gn.]

15.5 The Baire Category Theorem

Theorem 1038 (Baire Category, Baire 1899). The intersection of countably many
dense open sets is dense.

Proof. Let G D \nGn, where each Gn is a dense open set.
The proof will be similar to the proof of uncountability of R in that we will build

a sequence nested closed intervals I1 � I2 � � � � � In � � � � , but here at each stage
n, we will make sure that In is contained in Gn.

We will make use of the fact that every nonempty open set must contain some
closed interval I D Œa; b� with a < b.

To show that G D \nGn is dense, let .a; b/ be a nonempty open interval so that
a < b. It will show that G \ .a; b/ is nonempty.

Since G1 is a dense open set, so G1 \ .a; b/ will be nonempty open, and so
G1 \ .a; b/ will contain a closed interval I1 D Œa1; b1� with a1 < b1. Since G2 is a
dense open set, so G2 \ .a1; b1/ will be nonempty open, and so G2 \ .a1; b1/ will
contain a closed interval I2 D Œa2; b2� with a2 < b2. Continuing in this way, we get
a sequence of closed intervals In D Œan; bn�, n D 1; 2; : : : , with an < bn such that

I1 � I2 � � � � � In � � � � and In � Gn for all n.

By the nested intervals property there is p 2 \nIn. But since In � Gn for all n, we
have p 2 \nGn D G. Thus p 2 G \ .a; b/ and thus G \ .a; b/ 6D Ø. ut
Corollary 1039 (Baire Category). The union of countably many nowhere dense
sets cannot contain a nonempty open interval.

Proof. Let A1;A2; : : : ; An; : : : be nowhere dense sets. Then for each n there is a
dense open set Gn disjoint from An. If .a; b/ is any nonempty open interval, then
since \nGn is dense (by the theorem), .a; b/ contains a point p 2 \nGn Then
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p 62 [nAn, and so [nAn does not contain the interval .a; b/. Since .a; b/ was
an arbitrarily chosen interval, it follows that no nonempty open interval is contained
in [nAn. ut
Definition 1040. A set is called meager or of first category if it can be expressed
as the union of countably many nowhere dense sets. A set is called comeager or
residual if its complement is meager.

Thus the Baire category theorem says that a meager set cannot contain a nonempty
open interval, or equivalently that a comeager set must be dense.

Problem 1041. The collection of meager sets form a �-ideal. In particular, we
have

1. The subset of a meager set is meager.
2. The union of countably many meager sets is meager.
3. Every countable set is meager.
4. No interval is meager. In particular, R is not meager, and so the complement of

a meager set cannot be meager.

Recall that all the conditions of the last problem are satisfied if “meager” is replaced
by “measure zero.” But the following result shows that these two collections are very
different.

Proposition 1042. R (or more generally any interval) can be partitioned into two
disjoint sets one of which is meager and the other has measure zero.

Proof. Fix an enumeration of the set Q of rational numbers, say Q D frn j n 2 Ng.
For each m; n, let Im;n be any open interval of length 1=2mCn containing rn (e.g.,
say Im;n D .am;n; bm;n/, where am;n D rn�1=2mCnC1 and bm;n D rnC1=2mCnC1).
Now put

Gm WD
[

n

Im;n; G WD
\

m

Gm; and F WD RXG:

Then Gm � Q, so Gm is a dense open set, so by the Baire category theorem G is a
comeager dense Gı, and hence its complement F is a meager F� . Also for each m,
Q � G � Gm � [nIm;n with

1X

nD1
len.Im;n/ D

1X

nD1

1

2mCn
D 1

2m

1X

nD1

1

2m
D 1

2m
:

Thus for each m, G can be covered by a sequence of open intervals of total length
1=2m. Hence G has measure zero. Thus R D G [ F , with G having measure zero,
and F being meager. ut
Problem 1043. Every F� set whose complement is dense must be meager.
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A meager set can be dense. For example, the countable dense set Q of rational
numbers is both meager and of measure zero. The following is a consequence of the
Baire category theorem.

Proposition 1044. The set RXQ of irrational numbers is a Gı set which is not F� .
Hence, the set Q of rational numbers is an F� set which is not Gı.

Proof. If RXQ were an F� set, it would be meager since any F� set with dense
complement must be meager. But that would imply R D .RXQ/ [ Q is the union
of two meager sets and hence itself meager, a contradiction. ut
Problem 1045. Show (in contrast to the example of Problem 979) that there cannot
be any function f WR ! R such that f is continuous at each rational point and
discontinuous at each irrational point.

Problem 1046. Show that .Œ0; 1�\Q/[ .Œ2; 3�XQ/ is neither Gı nor F� .

Problem 1047. Show that the set of irrational numbers contains a translated copy
of the Cantor set.

[Hint: Consider all translates of the Cantor set by rational numbers.]

15.6 The Continuum Hypothesis for Gı Sets

In this section we will show that Gı sets satisfy continuum hypothesis in the sense
that every Gı set is either countable or has cardinality c.

Theorem 1048. Every nonempty dense-in-itself Gı set E contains a generalized
Cantor set and so there is an injective 'W f0; 1gN! E with ran.'/ a perfect set.

In particular, every nonempty dense-in-itself Gı set has cardinality c.

Proof. Let E be a nonempty dense-in-itself set with

E D
\

n

Gn;

where Gn is an open set for each n 2 N. We will say that the interior of a closed
interval Œa; b� meets a set A if .a; b/\A 6D Ø. Then we have:

Lemma. For every closed interval I whose interior meetsE and every n 2 N, there
exist disjoint closed subintervals J andK of I such that J;K � Gn, 0 < len.J / <
1=n, 0 < len.K/ < 1=n, and each of the interiors of J andK meets E .

Proof. Suppose that the interior of I D Œa; b� meets E and n 2 N. Since every
nonempty open set having nonempty intersection with E contains infinitely many
points of E and .a; b/ \ E is nonempty, we can fix u; v 2 E with a < u < v < b.
Fix also t;w such that a < u < t < w < v < b. Then u 2 Gn \ .a; t/ and since
Gn\.a; t/ is open, we can choose p; q such that u 2 .p; q/ � Gn\.a; t/. Similarly,
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we can choose r; s such that v 2 .r; s/ � Gn \ .w; b/. Finally choose p0; q0; r 0; s0
such that p < p0 < u < q0 < q, r < r 0 < v < s0 < s, and q0 � p0; s0 � r 0 < 1=n.
Now putting J D Œp0; q0� andK D Œr 0; s0� we get the conclusion of the lemma. ut
Now fix c 2 E , a; b with a < c < b, and put I" D Œa; b�. Then I" satisfies the
condition of the lemma, so there exist disjoint closed subintervals I0 and I1 of I"
such that I0; I1 � G1, 0 < len.J / < 1, 0 < len.K/ < 1, and each of the interiors of
I0 and I1 meets E . Continuing this process and using the lemma repeatedly, we can
build a family of closed intervals hIu j u 2 f0; 1g�i such that for every binary string
u of length n we have:

1. Iu � Gn and 0 < len.Iu/ < 1=n.
2. The interior of Iu meets E .
3. Iua0; Iua1 � Iu.
4. Iua0 \ Iua1 D Ø.

The family hIu j u 2 f0; 1g�i is thus a Cantor system, and hence determines an injec-
tive 'W f0; 1gN ! R such that for each infinite binary sequence z D z1z2 � � � zn � � �
we have

\

n

Iz1z2���zn D f'.z/g:

Then ran.'/ is a generalized Cantor set (hence perfect). But since Iu � Gn for
any binary string of length n, it follows that for any infinite binary sequence z D
z1z2 � � � zn � � � ,

f'.z/g D
\

n

Iz1z2���zn �
\

n

Gn D E;

and so '.z/ 2 E . Hence ran.'/ � E , so E contains the generalized Cantor set
ran.'/. ut
Since every closed set is Gı, so every perfect set is a dense-in-itself Gı, and we have
another proof of Theorem 598 for the case of R:

Corollary 1049 (Cantor). A nonempty perfect set in R has cardinality c.

Since the set of rational numbers is a countable dense-in-itself set, Theorem 1048
gives another proof of the following:

Corollary 1050. The set Q of rational numbers is not a Gı set, and hence the set
of irrational numbers is not an F� set.

We now have the result that the Gı sets, and therefore the closed sets, satisfy the
continuum hypothesis.

Corollary 1051. Every uncountable Gı set contains a generalized Cantor set and
hence has cardinality c.
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Proof. Let E be an uncountable Gı set and let C be its set of condensation points.
By Corollary 971, C is a nonempty dense-in-itself set. By Theorem 970, EXC is
countable and so is an F� set, and hence C D EX.EXC/ is Gı. By Theorem 1048,
C contains a generalized Cantor set (which is perfect and of cardinality c). ut
Corollary 1052 (Cantor). Any uncountable closed subset of R contains a gener-
alized Cantor set and hence has cardinality c.

We will later show that the continuum hypothesis is satisfied by a larger class of sets
called analytic sets.

Note that a set contains a generalized Cantor set if and only if it contains a
nonempty perfect set. Hence we make the following definition.

Definition 1053 (The Perfect Set Property). A set is said to have the perfect set
property if it is either countable or contains a perfect set (or equivalently, contains a
generalized Cantor set).

A collection of sets is said to have the perfect set property if every set in the
family has the perfect set property.

Thus Corollaries 1052 and 1051 are simply stating that the closed sets and the Gı

sets, respectively, have the perfect set property.

15.7 The Banach–Mazur Game and Baire Property

For each A � R, a two person infinite game of perfect information called the
Banach–Mazur game G��A is defined as follows:

Two players I and II alternately play an infinite sequence of bounded closed
intervals of positive length with player I going first:

The game G��A :
I I1 I3

& % & % � � �
II I2 I4

Rules:

1. Each In is a closed interval of finite positive length.
2. Each player’s move must be contained in the opponent player’s previous move,

so that we have a nested sequence of intervals:

I1 � I2 � I3 � I4 � � � � � I2n�1 � I2n � � � �

3. 0 < len.I1/ <1 and 0 < len.InC1/ � 1
2

len.In/.

Any play of the game as above therefore defines a unique real number p in the
intersection of the sequence hIni of nested intervals: p 2 Tn In.
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Winning conditions: Player I wins the above play of the game G��A if p 2 A;
otherwise, Player II wins.

Problem 1054 (Mazur). Let A � R. Show that in the game G��A above:

1. If A is meager then Player II has a “winning strategy,” i.e., Player II can force a
win no matter how Player I plays.

2. If there is a nonempty open set U such that U XA is meager then Player I has a
winning strategy.

[Hint: Mimic the proof of the Baire category theorem.]

Note. Mazur invented the game G��A and proved the above results. He then asked
if the converses are true. Banach showed that the answer is yes and won a bottle of
wine as a prize from Mazur.

Definition 1055 (Baire Property). A set E � R is said to have the Baire property
if there is an open set U such that A4U D .AXU /[ .U XA/ is meager. The class
of all sets with Baire property will be denoted by Y .

Corollary 1056. If A � R has Baire property, then either A is meager or U XA is
meager for some nonempty open set U .

Problem 1057. If A � R has Baire property, then the game G��A is “determined,”
i.e., at least one of the players has a winning strategy.

Problem 1058. Every open set and every meager set has Baire property.

Proposition 1059. Let A be a set with Baire property. If A is non-meager, then A
contains a perfect set.

Proof. By Corollary 1056, fix a nonempty open U such that U XA is meager, and
let F be a meager F� set with .U XA/ � F . Then U XF is a Gı set which must
be uncountable (if U XF were countable then U � .UXF /[ F would be meager,
but no nonempty open set is meager). Hence by the perfect set property for Gı sets,
UXF contains a perfect set. But then, A contains a perfect set, since .UXF / � A.

ut
Proposition 1060. If A has Baire property then so does RXA. If a sequence of sets
A1;A2; : : : all have Baire property, then so does their union

S
n An.

Proof. Let A have Baire property. Fix open U with A4U meager. Put V D RXU ,
so that V is open and the boundary set UXU is nowhere dense (and hence meager).
Now notice that .RXA/4V is contained in .A4U / [ .U XU / which is meager,
hence RXA has Baire property.

Next assume that An has Baire property for each n 2 N, and fix open Un such
thatAn4Un is meager. Then the countable union

S
n.An4Un/ is also meager. Now

let U WD S
n Un. Then U is open and .

S
n An/4U �

S
n.An4Un/, and so

S
n An

has Baire property. ut
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By the above results, the collection Y of all sets having Baire property contains all
meager sets, intervals, open and closed sets, and is closed under taking countable
unions and complements of sets, and hence under forming countable intersections
as well. Hence Y also contains all F� and all Gı sets as well. Thus, like the collection
L of all Lebesgue measurable sets, the collection Y of sets with Baire property is
also a large collection of sets forming a sigma-algebra (Sect. 18.1).

Problem 1061. Suppose that A and B are sets with Baire property, and U and
V are open sets with A4U and B4V both meager. If A \ B is meager, then
U \ V D Ø.

[Hint: By the Baire category theorem, no nonempty open set is meager. Now the
open set U \ V is contained in the meager set .A\ B/[ .UXA/[ .V XB/.]
Corollary 1062 (CCC Property). If hAi j i 2 I i are pairwise disjoint sets with
Baire property, then Ai is meager for all but countably many i 2 I .

Problem 1063 (Translation Invariance). If E has Baire property then so does
E C p, where E C p WD fx C p j x 2 Eg.
An infinite binary sequence hxni 2 f0; 1gN is called 1-normal if the relative
frequency of 1s among the first n bits approaches the limiting value 1

2
, i.e., if

limn!1 1
n
.
Pn

kD1 xk/ D 1
2
. It is a celebrated result of Borel that the set N1 of all

x 2 Œ0; 1� which admit a 1-normal binary representation has measure 1.

Problem 1064. Show that N1 is meager.

[Hint: “A dyadic interval
�
k�1
2n
; k
2n

�
fixes the first n bits.”]

15.8 Vitali and Bernstein Sets

Vitali Sets

Definition 1065 (Vitali). A set V � R is said to be a Vitali set if the following
conditions hold:

1. .V C r/ \ .V C s/ D Ø for all distinct rational numbers r 6D s (in Q).

2.
S
r2Q.V C r/ D R.

Theorem 1066 (AC). Vitali sets exist.

Proof. Recall the equivalence relation on R defined by x ÏQ y , x � y 2 Q. The
corresponding partition R=Q of R consists of sets of the form a C Q WD fa C r j
r 2 Qg, any two of which are either identical or disjoint. Now note that V is Vitali
set if and only if it is a choice set for the partition R=Q. Hence we obtain a Vitali
set using AC. ut
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Theorem 1067. A Vitali set cannot be Lebesgue measurable and cannot have Baire
property. Hence there are subsets of R which are neither Lebesgue measurable nor
have the Baire property.

Proof. Let V be a Vitali set.
Suppose that, if possible, V is measurable. By translation invariance we have

m.V C r/ D m.V / for all r , and R is a countable union of sets of the form V C r ,
hence V cannot have measure zero.

Hence there exist a < b such that m.Œa; b� \ V / > 0. Put W WD Œa; b� \ V .
Then hW C r j r 2 Q \ .0; 1/i is a family of pairwise disjoint measurable sets all
having the same positive measure m.W /, hence by countably additivity of m the
union

SfW C r j r 2 Q\ .0; 1/g has infinite measure. On the other hand this union
is contained in .a; b C 1/ and so has finite measure � b C 1 � a. We thus get a
contradiction.

We next show that V cannot have Baire property. Suppose, if possible, there is an
open set U such that V4U is meager. Then U is nonempty since if U were empty,
then V and so V C r would be meager for all r , and R would be a countable union
of meager sets, which is impossible.

Hence U is nonempty open, and we can fix a < b with .a; b/ � U . Put W WD
.a; b/ \ V . Then .a; b/XW is meager. Now fix any rational 0 < r < b � a. Then
W \ .W C r/ D Ø, so by Problem 1061, .a; b/ \ .a C r; b C r/ D Ø, which is a
contradiction since 1

2
.aC r C b/ 2 .a; b/\ .aC r; b C r/. ut

Feferman showed that the existence of a Vitali set cannot be proved without using
the Axiom of Choice, and even if the full use of AC is allowed, no effectively defined
set can be proved (without additional axioms) to be a Vitali set.

Note that the main property of Lebesgue measurable sets and sets having Baire
property that was used in the above proof is translation invariance. We next show a
very different method for obtaining non-measurable sets.

Bernstein Sets

Definition 1068 (Bernstein). A set B is said to be a Bernstein set if neither B nor
its complement RXB contains any nonempty perfect set.

Theorem 1069 (AC). Bernstein sets exist.

Proof. By the Axiom of Choice every infinite cardinal is an aleph, and so we can
fix ˛ such that c D @˛. Since there are exactly c nonempty perfect sets, we can
enumerate them as hP� j � < !˛i. Fix a choice function ' for the collection of all
nonempty subsets of R. Now define, by transfinite recursion, two sequences of reals
ha� j � < !˛i and hb� j � < !˛i as follows.

a� WD '
�
P�Xfa�; b� j � < �g

�
; b� WD '

�
P�X.fa�g [ fa�; b� j � < �g/

�
:
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The elements a� and b� are well defined since for each �, the perfect set P� has
cardinality c while the sets being removed from P� have cardinality < c. Also we
have a� 6D b� for all �; � < !˛ .

Finally, put A D fa� j � < !˛g and B D fb� j � < !˛g. Then A \ B D Ø, with
a� 2 P� \A and b� 2 P� \B for all � < !˛ . Thus every nonempty perfect set has
nonempty intersection with each of the disjoint sets A and B , and so both A and B
must be Bernstein sets. ut
Let B be a Bernstein set. By Propositions 1024 and 1059, both A \ B and AXB
are non-measurable for any measurable set A of nonzero measure, and both A \ B
and AXB fail to have Baire property for any non-meager set A with Baire property.
This gives a stronger result than Theorem 1067:

Corollary 1070 (AC). Every set not of measure-zero has non-measurable subsets.
Every non-meager set has subsets without the Baire property.

Consequently, there are measurable sets without Baire property and there are
sets with Baire property which are non-measurable.

Notice the highly non-effective way of obtaining Vitali and Bernstein sets. In both
cases, an uncountable number of choices were essential.

It turns out that this is unavoidable: No non-measurable set can be proved to
exist using only countably many choices. By a famous result of Solovay, one can
consistently assume that all sets are Lebesgue measurable and that the Axiom
Dependent Choices holds (assuming that the usual axioms are consistent with the
existence of an inaccessible cardinal). So any proof that non-measurable sets exist
will need uncountably many choices.

Vitali and Bernstein sets are relevant to the question if Lebesgue measure can be
extended to a measure which is defined for all sets of reals:

The Measure Extension Problem (Lebesgue). Does there exist a countably addi-
tive function �WP.R/! Œ0;1� which extends Lebesgue measure?

This question was fully analyzed by Ulam, which opened up the field of large
cardinal numbers. But this is a topic for Postscript III (Chapter 19), where we will
present a detailed account of Ulam’s work.



Chapter 16
Cantor–Bendixson Analysis of Countable
Closed Sets

Abstract We devote this chapter to the Cantor–Bendixson analysis of countable
closed sets. We first prove the effective Cantor–Bendixson theorem which decom-
poses a closed set into an effectively countable set and a perfect set. We then obtain
a full topological classification for the class of countable closed bounded subsets of
R: The Cantor–Bendixson rank is shown to be a complete invariant for the relation
of homeomorphism between these sets, and the countable ordinals!�nC1 (� < !1,
n 2 N) are shown to form an exhaustive enumeration, up to homeomorphism,
of the countable closed bounded sets into @1 many pairwise non-homeomorphic
representative sets.

Countable closed sets arose in Cantor’s study of trigonometric series. The analysis
requires iterations of derived sets (i.e., orders of limit points) into the transfinite, and
it naturally leads to the notion of transfinite ordinals. Roughly speaking, this is how
Cantor was led to his creation of ordinal numbers, and went on to eventually create
set theory. We will briefly discuss the background in Sect. 16.4.

16.1 Homeomorphisms of Orders and Sets

Homeomorphic Order Types

A bijection f from an order X onto an order Y is a homeomorphism if both
f and its inverse f �1 are continuous. Two orders are homeomorphic if there is
a homeomorphism between them. Clearly, isomorphic orders are homeomorphic.
If X and X 0 are isomorphic orders and Y and Y 0 are isomorphic orders, then X is
homeomorphic to Y if and only if X 0 is homeomorphic to Y 0. Hence we can speak
of homeomorphic order types.

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__16, © Springer Science+Business Media New York 2014
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Problem 1071. IfX and Y are orders, then f WX ! Y is a homeomorphism if and
only if f is a bijection and for every A � X and p 2 X , p 2 D.A/ in X if and
only if f .p/ 2 D.f ŒA�/ in Y .

Problem 1072. Show that

1. ! is homeomorphic to 
.
2. ! C n is homeomorphic to ! C 1 for any n 2 N.
3. ! C 1C !� is homeomorphic to ! C 1.
4. 
 C 1 not homeomorphic to ! C 1.
5. 	C 1 is homeomorphic to 	.
6. 1C 
 is homeomorphic to 
C 1.
7. 	C 	 is homeomorphic to 	, but 
C 
 is not homeomorphic to 
.

Problem 1073. If ˛, ˇ, etc are order types, then:

1. ˛ is homeomorphic to ˛�.
2. If ˛ and ˇ both are order types of orders with endpoints, then ˛ C ˇ is

homeomorphic to ˇ C ˛.
3. If I is an ordered set and if for each i 2 I ˛i and ˇi are order types

with endpoints with ˛i homeomorphic to ˇi , then
P

i2I ˛i is homeomorphic toP
i2I ˇi .

Homeomorphisms Between Subsets of R and Orders

A subset Y � R is said to be homeomorphic to an order X if there is a bijection f
from X onto Y such that for every A � X and p 2 X , p 2 D.A/ in X if and only
if f .p/ 2 D.f ŒA�/ in R. If Y � R and X and X 0 are isomorphic orders, then Y
is homeomorphic to X if and only if Y is homeomorphic to X 0. Hence we can talk
about a subset Y of R being homeomorphic to an order type ˛.

Problem 1074. Let A D f0; 1
2
; 2
3
; : : : ; n�1

n
; : : : g [ f2g, so that the order type of

A is ! C 1. Show that A is not homeomorphic to ! C 1, and in fact that A is
homeomorphic to !.

The above problem shows that if A � R has order type ˛, then A may fail to be
homeomorphic to ˛. The reason for the failure in the above is easily found: While 2
is a limit point of A when the suborderA is considered as an order by itself, 2 is not
a limit point of A as a subset of R.

Problem 1075. Show that there is a subset of R having order type 	 which is
homeomorphic to !. Conclude that for any infinite countable order type ˛ there
is a subset A of R having order type ˛ which is homeomorphic to !.

Recall that A � R is said to be continuously order-embedded if whenever p 2 A is
a limit point of E � A when A is considered as an order by itself, then p is a limit
point of A in R. Then we have
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Proposition 1076. If A � R is continuously order-embedded in R and the order
type of A is ˛, then A is homeomorphic to ˛.

Recall also that there are two important cases when A � R can be guaranteed to be
continuously order-embedded in R:

1. If A is closed, then A is continuously order-embedded in R. (Theorem 593)
2. If every point of A is a two-sided limit point of A, then A is continuously order-

embedded in R. (Theorem 532)

Problem 1077. Give an example of a subset A of R which is dense-in-itself (every
point of A is a limit point of A) but which is not continuously order-embedded in R.

Problem 1078. Let X be an order and let f WX ! R be a strictly increasing
function which continuously order-embeds X in R. Then the image f ŒX� is closed
and bounded in R if and only if X is a complete order with endpoints.

[Hint: Use Theorem 593.]

16.2 The Cantor–Bendixson Theorem and Perfect Sets

Theorem 1079 (Cantor–Bendixson). Let A be any nonempty closed subset of R
and for each ˛ < !1 define

F˛ WD D.˛/.A/ D the ˛-th iterated derived set of A.

Then

1. hF˛ j ˛ < !1i are decreasing closed sets so that

F0 � F1 � � � � � Fn � FnC1 � � �F! � F!C1 � � � �F˛ � F˛C1 � � � �

2. The set

H WD
[

˛<!1

.F˛XF˛C1/ D F0X
\

˛<!1

F˛

is countable, in an effective fashion. In particular, for each ˛ < !1, the set
F˛XF˛C1 is countable.

3. There exists a least � < !1 such that F�C1 D F�, and so F˛ D F� for all
˛ � �.

4. For the ordinal � above, F� is either empty or nonempty perfect (hence
uncountable), and so if A is countable then F� D Ø.

5. If A is countable and bounded then the ordinal � above is a successor ordinal.
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Proof. 1. This is obtained by transfinite induction as follows. F0 D A is given to be
closed. For any setE ,D.E/ is always closed and ifE is closed thenE � D.E/.
Thus if F˛ is closed, then F˛C1 D D.F˛/ is a closed subset of F˛ . Finally, since
the intersection of any family of closed sets is closed, therefore if ˛ is a limit
ordinal then F˛ D \ˇ<˛Fˇ is a closed subset of Fˇ for each ˇ < ˛.

2. Let B be the family of all open intervals with rational endpoints. Since B is
countable, we can enumerate it as

B D fVn j n 2 Ng:

For each x 2 H , fix the unique ˛ D ˛x such that x 2 F˛x XF˛xC1, and then
(noting that x 2 F˛xXD.F˛x / is an isolated point of F˛x ) choose the least n D
nx 2 N such that Vn \ F˛x D fxg. This defines a mapping x 7! nx fromH into
N. We claim that this mapping is injective. To see this, suppose that x 6D y are in
H . Now if ˛x < ˛y then Vnx \ F˛xC1 D Ø but Vny \ F˛xC1 � Vny \ F˛y 6D Ø,
and so nx 6D ny . If ˛x > ˛y then similarly nx 6D ny . Finally, if ˛x D ˛y D ˛

(say), then Vnx \F˛ D fxg 6D fyg D Vny \F˛ , so again we have nx 6D ny . Thus
the mapping x 7! nx from H into N is injective and so H is countable.

3. If we had F˛ XF˛C1 6D Ø for all ˛ < !1, the set H would be uncountable
(because it would then be the union of!1-many pairwise disjoint nonempty sets),
a contradiction. Hence F˛XF˛C1 D Ø or F˛ D F˛C1 for some ˛, and we can fix
� to be the least such ˛.

4. This is immediate since F�C1 D D.F�/ and a nonempty set E is perfect if and
only if D.E/ D E .

5. If A D F0 is nonempty, countable, and bounded, note first that � is the least
ordinal such that F� D Ø. Since F0 is nonempty, so � > 0. Finally � cannot
be a limit ordinal since if F˛ is nonempty, closed, and bounded for each ˛ < �,
then by the Heine–Borel Theorem \˛<�F˛ would be nonempty as well. Hence
� is a successor ordinal.

ut
A consequence of the proof of the theorem is that a countable closed set is effectively
countable, that is, each countable closed set A determines a unique effectively
defined injection from A into N. More generally, we have:

Corollary 1080 (The Cantor–Bendixson Theorem). Every closed set is the union
of an effectively countable set and a set E with D.E/ D E .

Corollary 1081. Every uncountable closed set contains a nonempty perfect set.
Hence closed sets “satisfy the continuum hypothesis,” that is, if A is closed then
either jAj � @0 or jAj D 2@0 .
Corollary 1082. If A is a nonempty countable closed bounded set, then there is a
unique � such that D.�/.A/ 6D Ø but D.�C1/.A/ D Ø. In this case, D.�/.A/ is a
nonempty finite set.
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Proof. The first statement follows from the last two parts of the theorem. For
the second statement, note that if D.�/ were infinite. then being bounded it
would have a limit point by the Bolzano–Weierstrass theorem, which would imply
D.�C1/.A/ 6D Ø, a contradiction. ut

Recall that a point p is said to be condensation point of a set A if every open
interval containing p contains uncountably many points of A.

Problem 1083. Let A be a nonempty closed set, and put F˛ D D.˛/.A/ and H D
[˛<!1.F˛XF˛C1/ as in Theorem 1079. Also put P D \˛<!1F˛ . Show that

1. H consists precisely of the non-condensation points of A and P consists
precisely of the condensation points of A.

2. Assuming P 6D Ø, show that P is the largest perfect set contained in A.

From the above problem it follows that in a closed set A, all except countably many
points of A are condensation points of A.

16.3 Ordinal Analysis of Countable Closed Bounded Sets

Using Corollary 1082 we can make the following definition.

Definition 1084 (CB-rank, Cantor–Bendixson rank). If A is a nonempty count-
able closed bounded set, we define its CB-rank (Cantor–Bendixson rank) to be the
pair �; n where � is the unique ordinal such that D.�/.A/ 6D Ø but D.�C1/.A/ D Ø,
and n D jD.�/.A/j.
Thus the CB-rank of a nonempty countable closed bounded set A equals �; n if and
only if D.�/.A/ is a nonempty finite set with n elements.

Problem 1085. Let A � R be a closed bounded set with exactly one limit point.
Show thatA is countable and must be homeomorphic to !C1. What are the possible
order types for A?

Proposition 1086. Let A and B be homeomorphic countable closed bounded
subsets of R. Then A and B have identical CB-ranks.

Proof. Let f WA! B be a homeomorphism ofA ontoB . SinceA andB are closed,
we have D.A/ � A, D.B/ � B . Since f is a homeomorphism, we have
f ŒD.A/� D D.B/. More generally, by a routine transfinite induction we have
f ŒD.˛/.A/� D D.˛/.B/ for all ordinals ˛, and the result follows. ut
Proposition 1087. If ˛ is an infinite successor ordinal, then ˛ is homeomorphic to
!
nC 1 for some ordinal 
 > 0 and some n 2 N.
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Proof. By Cantor Normal Form, we have

˛ D !
1n1 C !
2n2 C � � � C !
knk; k 2 N;

(

1 > 
2 > � � � > 
k;
n1; n2; : : : ; nk 2 N:

Since ˛ is an infinite successor ordinal, we must have 
k D 0 (so that !
k D 1) and
k � 2, so we can write

˛ D !
1n1 C !
2n2 C !
3n3 C � � � C !
k�1nk�1 C nk
D !
1n1 C .1C ˇ/
D .!
1n1 C 1/C ˇ;

for some ordinal ˇ < !
1 which must be either zero or a successor ordinal (since ˛
is a successor ordinal).

If ˇ D 0, then ˛ D !
1n1 C 1 and we are done. Otherwise, ˇ is a successor
ordinal, and since �C � is homeomorphic to � C� for successor ordinals � and �,
it follows that ˛ is homeomorphic to

ˇ C .!
1n1 C 1/ D !
1n1 C 1;
where the last equality holds since ˇ < !
1 , n1 > 0, and !
1 is a remainder ordinal
and so “absorbs any smaller ordinal as a summand from the left.” ut
Corollary 1088. Let X be a well-order with a last element. Then X is homeomor-
phic to the order W.!
n C 1/ D f˛ j ˛ � !
ng for some ordinal 
 and some
n 2 N.

Definition 1089. Let hIn j n 2 Ni with In D Œan; bn� be a sequence of closed
intervals, with an < bn for each n 2 N. We say that the sequence of intervals
hIn j n 2 Ni converges to a point p 2 R and write hIn j n 2 Ni ! p if for any a; b
with a < p < b there is m 2 N such that In � .a; b/ for all n � m.

Proposition 1090. Let In D Œan; bn� and Jn D Œcn; dn�, n 2 N, be closed intervals
such that an < bn and cn < dn for each n 2 N. Assume that the sequence
Let hIn j n 2 Ni and hJn j n 2 Ni each be a pairwise disjoint sequence of closed
intervals, and let An � .an; bn/ and Bn � .cn; dn/ for each n 2 N with An
homeomorphic to Bn for each n 2 N. Suppose that p; q 2 R with p 62 In and
q 62 Jn for any n, and that hIn j n 2 Ni ! p and hJn j n 2 Ni ! q. Then the sets

A WD
[

n2N

An [ fpg and B WD
[

n2N

Bn [ fqg

are homeomorphic.
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Proof. For each n, fix a homeomorphism hfni WAn ! Bn (using AC), and define
f WA ! B by setting f .p/ D q and f .x/ D fn.x/ if x 2 An. Clearly f is a
bijection from A onto B .

To show that f is continuous, suppose that hxni ! x in A.

Case 1: x 6D p. Then x 2 Am for some m. Since Am � .am; bm/, so am < x <

bm and hence there is k such that xn 2 .am; bm/ for all n � k. Then xn 2 Am
for all n � k, and thus hxn j n � ki is a sequence in Am converging to x 2 Am.
Since fmWAm ! Bm is continuous, the sequence hfm.xn/ j n � ki converges to
fm.x/ in Bm.

Case 2: x D p. In this case we show that hf .xn/ j n 2 Ni converges to f .p/ D
q. Suppose that c < q < d . Since the sequence of intervals hJni converges to
q, there is m such that Jn � .c; d / for all n � m. Since p 62 [n<mIn, we can
choose a; b with a < p < b such that Ij \ .a; b/ D Ø for j < m. Since hxni
converges to p, there is k such that xn 2 .a; b/ for n � k. Then for any n � k,
xn 62 Ij for any j < m, so for all n � k either xn D p or xn 2 Aj for some
j � m. Hence for any n � k we have f .xn/ D q or f .xn/ 2 Bj for some
j � m, which implies f .xn/ 2 .c; d /. This shows that hf .xn/i converges to
f .p/ D q.

Thus f is continuous. Similarly f �1 is continuous. ut
Proposition 1091. Let hŒan; bn� j n 2 Ni be a sequence of pairwise disjoint closed
intervals converging to p, where p 62 [nŒan; bn�, and suppose that for each n An
is a countable closed set contained in .an; bn/ with the CB-rank of An being ˛n; kn.
Let ˛ D supn ˛n, and A D [nAn [ fpg.
1. If ˛n D ˛ for infinitely many n, then the CB-rank of A is ˛ C 1; 1.
2. If ˛n < ˛ for all n so that ˛ D supn ˛n is a limit ordinal, then the CB-rank of A

is ˛; 1.

Proof. For the first part, note that we have D.˛/.An/ is finite for all n and is
nonempty for infinitely many n, hence p 2 D.˛/.A/ and so D.˛/.A/ is a closed
set of order type ! C 1 with greatest element p. ThereforeD.˛C1/.A/ D fpg.

For the second part, note that D.˛/.An/ D Ø for all n, but for every ˇ < ˛ we
haveD.ˇ/.An/ 6D Ø for infinitely many n, and so p 2 D.ˇ/.A/ for all ˇ < ˛. Hence
p 2 \ˇ<˛D.ˇ/.A/ D D.˛/.A/. It follows that D.˛/.A/ D fpg. ut
Corollary 1092. Let 0 < ˛ < !1, n 2 N, and let E be a closed and bounded
subset of R having order type !˛nC 1. Then the CB-rank of E is ˛; n.

Proof. First note that since !˛nC1 D .!˛C1/C .!˛C1/C� � �C .!˛C1/ (with
n summands), so E can be partitioned into n closed sets E1 < E2 < � � � < En with
the order type of each Ek being !˛ C 1. Since for disjoint closed sets A and B we
have D.ˇ/.A [ B/ D D.ˇ/.A/ [D.ˇ/.B/, it suffices to show that the CB-rank of
!˛C1 is ˛; 1. But this follows from the previous proposition by a routine transfinite
induction argument, since if ˛ is a successor ordinal with ˛ D ˇC1 then !˛C1 DP

n.!
ˇC 1/C 1, and if ˛ is a limit ordinal then !˛C 1 DPn.!

˛n C 1/C 1 where
˛n < ˛ for all n with supn ˛n D ˛. ut
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Proposition 1093. For all 0 < ˛ < !1 and n 2 N, there is a closed and bounded
subset of R having order type !˛nC 1 and hence having CB-rank ˛; n.

Proof. Recall that every countable order X can be continuously order-embedded
in R (Theorem 551), and that the embedded image is closed and bounded in R if
X is complete and with endpoints (Problem 1078). Since !˛n C 1 is a countable
complete order with endpoints, the result follows.

(Alternatively, one can inductively build a continuously order-embedded set A �
R of order type !˛ C 1 (˛ < !1) by taking subsets A1 < A2 < � � � < An < � � � and
ordinals ˛n, n 2 N, such thatAn is a closed set of order type!˛nC1, supn.˛nC1/ D
˛, and A D [nAn [ fpg where p D sup[nAn.) ut

Theorem 1094. Every nonempty countable closed bounded subset A of R is
homeomorphic to a countable successor ordinal.

Proof. The result is obvious if A is finite, so assume that A is infinite.
It suffices to show that every infinite countable closed bounded set is homeomor-

phic to a well-ordered countable closed set with a greatest element.
The proof will be by induction on the Cantor–Bendixson rank of A.
Let �; n (� > 0, n 2 N) be the CB-rank of A and suppose that the result is true

for all sets having CB-rank �;m with � < �. We first do the proof for the case
n D 1. Then D.�/ D fpg for some p 2 R. Since the set A is nowhere dense, for
each x < y we can choose a; b with x < a < b < y and Œa; b�\A D Ø. Hence we
can choose sequences hani, hbni, hcni, hdni and sequences of sets hAni, hCni such
that

1. a1 < b1 < � � �an < bn < � � � < p < � � � < cn < dn < � � � < c1 < d1;
2. supn an D supn bn D p and infn cn D infn dn D p;
3. An � .an; bn/ and Cn � .cn; dn/ are closed sets;
4. A D .[nAn/ [ fpg [ .[nBn/.
To do this, start with a1 < infA and d1 > supA, and choose b1; a2 such that

max.a1; p � 1/ < b1 < a2 < p and Œb1; a2� \A D Ø:

Next choose b2; a3 such that

max.a2; p � 1=2/ < b2 < a3 < p and Œb2; a3� \A D Ø;

and so on. Similarly complete the sequences hcni and hdni. Then put An D
.an; bn/\A D Œan; bn�\A, and Cn D .cn; dn/\A D Œcn; dn� \A, so that An and
Cn are closed subsets A, with A D .[nAn/ [ fpg [ .[nBn/.

Now put, for each n 2 N,

I2n�1 D Œan; bn�; I2n D Œcn; dn� and E2n�1 D An; E2n D Cn:
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Then note that the sequence hIni is a pairwise disjoint sequence of closed interval
converging to p with p 62 In for any n, and that A D [nEn [ fpg.

Now for each n, the closed countable set En has CB-rank �;m for some �;m
with � < �, since otherwise D.�/.En/ would be nonempty, and so D.�/.A/ will
contain a point distinct from p, a contradiction. Hence by induction hypothesis each
En, if nonempty, will be homeomorphic to a countable successor ordinal. Since each
countable successor ordinal can be continuously order-embedded in any interval as
closed set, we can choose a well-ordered countable closed subset F1 of Œ0; 1

2
� such

that E1 is homeomorphic to F1. Similarly, choose a well-ordered countable closed
subset F2 of Œ 2

3
; 3
4
� such that E2 is homeomorphic to F2. In general, choose a well-

ordered countable closed subset Fn of Œ 2n�2
2n�1 ;

2n�1
2n
� such that En is homeomorphic

to Fn. Being bounded and closed, each set Fn, if nonempty, must have a greatest
element. Finally put:

F WD
[

n2N

Fn [ f1g;

which is a well-ordered countable closed set with the greatest element 1. Then
by Proposition 1090, The set A is homeomorphic to the set F , and therefore to
a countable successor ordinal.

IfD.�/.A/ has n elements with n > 1, then we can order the elements ofD.�/.A/

as D.�/.A/ D fp1 < p2 < � � � < png, and then choose elements a1; a2; : : : ; an and
b1; b2; : : : ; bn such that

a1 < p1 < b1 < a2 < p2 < b2 < � � � < an < pn < bn;

a1 < infA, bn > supA, and

Œb1; a2� \ A D Ø; Œb2; a3� \ A D Ø; : : : ; Œbn�1; an� \ A D Ø:

PuttingHk D A\Œak; bk� D A\.ak; bk/ for each k D 1; 2; : : : ; n, we note that each
Hk is a countable closed set with D.�/.Hk/ D fpkg, hence Hk is homeomorphic
to a countable successor ordinal ˛k . Thus A D [nkD1Hk is homeomorphic to the
countable successor ordinal ˛1 C ˛2 C � � � C ˛n. ut

Corollary 1095. Let A be a countably infinite closed bounded set with CB-rank
�; n, with 0 < � < !1 and n 2 N. Then A is homeomorphic to the ordinal !�nC 1,
and hence to any closed subset of R having order type !�nC 1.

Proof. By the last theorem, A is homeomorphic to a countably infinite successor
ordinal ˛. By Proposition 1087, ˛ is homeomorphic to !�m C 1 for some �;m.
HenceA and!�mC1 are homeomorphic, and so they must have identical CB-ranks.
Therefore � D � and m D n. ut
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We thus arrive at our main result:

Corollary 1096 (Classification of countable closed bounded sets). Consider the
series of countably infinite successor ordinals of the form:

!�nC 1; 0 < � < !1; n 2 N:

Every countably infinite closed bounded set is homeomorphic to one and only one
of the ordinals above. Conversely, for each 0 < � < !1 and n 2 N there exists a
countably infinite closed bounded set having order type !�nC 1.

Hence the above series gives a complete enumeration, up to homeomorphism, of
all countably infinite closed bounded sets into@1 many pairwise non-homeomorphic
sets.

Remark. Although we are dealing exclusively with sets of reals, the above result
can be stated in the more general context of topological spaces. We will not define
topological spaces or the relevant related notions, but the general statement is that
every countable compact Hausdorff space X with jX j � 2 is homeomorphic to
!�n C 1 for some unique ˛ < !1 and n 2 N. This follows immediately from the
above result since every countable compact Hausdorff space is homeomorphic to a
subset of R. (An alternative proof that every countable compact Hausdorff space is
homeomorphic to a countable ordinal can be given using the Sorgenfrey topology
on the reals.)

16.4 Cantor and Uniqueness of Trigonometric Series

A trigonometric series is a series of the form

a0 C
1X

nD1
an cosnx C bn sin nx;

which may or may not converge for a given value of x 2 Œ0; 2��. If the above series
converges for all x, it defines a periodic function. A special type of trigonometric
series are the familiar Fourier series, where the coefficients an and bn are given
as an D 1

�

R 2�
0
f .t/ cosnt dt and bn D 1

�

R 2�
0
f .t/ sin nt dt (n D 1; 2; : : : ) for

some function f integrable on Œ0; 2��. However, there are everywhere convergent
trigonometric series which are not Fourier series.

Cantor’s work began with the uniqueness problem for trigonometric series,
which asks this: If two trigonometric series converge and agree everywhere then will
they necessarily have identical coefficients? More precisely, if for all x 2 Œ0; 2�� we
have

a0 C
1X

nD1
an cosnx C bn sin nx D c0 C

1X

nD1
cn cosnx C dn sin nx;

then does it follow that an D cn and bn D dn for all n?
Cantor’s first important result on the uniqueness problem was that the above is

indeed true.
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Theorem (Cantor 1870). If for all x 2 Œ0; 2�� the series on both sides of the
equation displayed above converge and are equal, then an D cn and bn D dn for
all n.

Cantor then continued to work on extending the result to the case where the
hypothesis is weakened to allow for an “exception set” E � Œ0; 2�� on which the
two series may not agree (or fail to converge). In other words, given E � Œ0; 2��,
the uniqueness problem for an exception set E asks:

If two trigonometric series agree outside E (that is, if the above equality holds for
all x 2 Œ0; 2��XE), then do they necessarily have identical coefficients?

If the answer to this question is yes, we say that the exception set E is a set of
uniqueness. Thus Cantor’s first result above says that the empty set E D Ø is a set
of uniqueness.

Cantor next established that E is a set of uniqueness if E is an arbitrary finite
set. He went on to point out that E is a set of uniqueness if E is any closed set with
a finite number of limit points (that is, D.E/ is finite), or if E is a closed set whose
set of limit points in turn have only finitely many limit points (that is, D.2/.E/ is
finite), and so on for any finite number of iterations of orders of limit points. In our
terminology, Cantor essentially established the following.

Cantor Uniqueness Theorem (Cantor 1872). If E � Œ0; 2�� is closed and of
“finite Cantor–Bendixson rank,” that is if D.n/.E/ is finite for some n 2 N, then E
is a set of uniqueness.

The next natural extension would be to consider limit points of order !, and ask
if E is a set of uniqueness when D.!/.E/ is finite; and one can proceed further
through the transfinite ordinals. This is indeed true, and in fact any countable
closed set is a set of uniqueness, but that was proved much later. When Cantor was
investigating the uniqueness problem, notions such as “transfinite ordinal number”
and “countable set” did not exist, and after establishing his theorem stated above,
Cantor created and developed such foundational concepts almost single-handedly,
giving birth to set theory. Thus Cantor’s quest for generalizing his uniqueness results
led him to consider transfinite iterations of the operation of forming the derived set
(the set of limit points of a set), and then on to far-reaching abstractions such as
countable and uncountable sets, the topology of real point sets, the theory of orders,
order types, well-ordered sets, transfinite ordinals, and cardinals.

Busy in his creation and development of the theory of the transfinite, Cantor
never returned to the problem of uniqueness of trigonometric series. Characterizing
the sets of uniqueness turned out to be an extremely difficult problem, and research
has been continuing on it for more than hundred years. Interestingly, the use of set
theory and transfinite ordinals in the investigation in the problem of uniqueness has
returned, through an area of set theory known as Descriptive Set Theory.

For more details on the connection between Cantor’s creation of set theory and
the problem of uniqueness of trigonometric series, we refer the reader to Dauben’s
book [9] and the article of Kechris [39], where further references can be found.



Chapter 17
Brouwer’s Theorem and Sierpinski’s Theorem

Abstract In this chapter we apply the theory of orders from Chap. 8, especially
Cantor’s theorem on countable dense orders, to prove two classical theorems:
Brouwer’s topological characterization of the Cantor set, and Sierpinski’s topologi-
cal characterization of the rationals.

17.1 Brouwer’s Theorem

The Cantor set is an example of a perfect bounded nowhere dense subset of R.

Problem 1097. Show that if E � R is homeomorphic to the Cantor set then E is
perfect bounded and nowhere dense.

[Hint: The Bolzano–Weierstrass theorem and the Intermediate Value Theorem may
help.]

Theorem 1098 (Brouwer). Any two perfect bounded and nowhere dense subsets
of R are homeomorphic to each other, and hence to the Cantor set.

Since two closed subsets of R having the same order type are homeomorphic,
Brouwer’s theorem follows from the following stronger result.

Theorem 1099. Let E be a perfect bounded and nowhere dense subset of R. Then
there is an order-isomorphism of R onto R which maps E onto the Cantor set.

Proof. Let G D RXE so that G is open, and hence G is the union of a unique
countable family of pairwise disjoint nonempty open intervals. Since E is bounded,
there are two unbounded open intervals in the decomposition of G, one of the form
.�1; a/ and another of the form .b;1/ where a D infE and b D supE . All other
open intervals in the decomposition ofG are bounded. Let C be the countable family
of all bounded open intervals in the decomposition of G. Since the intervals in C

are pairwise disjoint, the family C is naturally ordered, where for intervals I; J 2 C

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__17, © Springer Science+Business Media New York 2014
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we have I < J if and only if x < y for all x 2 I and y 2 J . Since E is nowhere
dense, the ordering of C is dense order without endpoints.

Similarly if D is the family of bounded open intervals removed in the construc-
tion of the Cantor set, we find that using the ordering on the intervals, D forms a
countable dense order without endpoints.

Hence, by Cantor’s theorem on countable dense orders without endpoints, there
is an order isomorphism � fromC ontoD. For each I 2 C there is unique increasing
linear function fI mapping the interval I onto the interval �.I /. Also, let f0 denote
the unique translation map x 7! x�amapping the interval .�1; a� onto the interval
.�1; 0� and let f1 denote the unique translation map x 7! x � b C 1 mapping the
interval Œb;1/ onto the interval Œ1;1/. Combining all the mappings fI (I 2 C),
f0 and f1, we get an order preserving bijection f � mapping the set G onto the
complement of the Cantor set. Now note that since E is nowhere dense, for each
x 2 E and any u; v with u < x < v, there exist s; t 2 G with u < s < x < t < v so
that f � is defined at s and t . The same is true for the Cantor set and its complement.
Moreover R is a complete order. Hence f � extends uniquely to an order preserving
bijection f mapping R onto R, which can be defined as

f .x/ WD supff �.t/ j t < x; t 2 Gg D infff �.t/ j t > x; t 2 Gg:

Clearly, f is then an order-isomorphism of R onto R which maps E onto the
Cantor set. ut
We had seen that every generalized Cantor set (i.e., any set generated by a Cantor
system) is bounded, perfect, and nowhere dense. We now have the converse result.

Corollary 1100. Let E be a bounded perfect nowhere dense set. Then E is
a generalized Cantor set, that is, there is a Cantor system of intervals which
generates E .

Proof. By the theorem, we can fix a bijective order-isomorphism f WR! R which
maps the Cantor set onto E . Let hIu j u 2 f0; 1g�i be the standard Cantor system
which generates the Cantor set. We show that hf ŒIu� j u 2 f0; 1g�i is a Cantor
system which generates E .

Since f is an order-isomorphism and Iu is a bounded proper closed interval,
so f ŒIu� is a bounded proper closed interval, for any u 2 f0; 1g�. Since f is a
bijection and Iua0 \ Iua1 D Ø, hence f ŒIua0� \ f ŒIua1� D Ø. Again, since f
is a bijection, if b 2 f0; 1gN and x is the unique member of the singleton \nIbjn,
so f .x/ is the unique member of the singleton \nf ŒIbjn�. Thus E is generated by
hf ŒIu� j u 2 f0; 1g�i. Finally, for any b 2 f0; 1gN, we have limn len.f ŒIbjn�/ D 0,
since if the intersection of a nested sequence of intervals results in a singleton,
then the lengths of the intervals in the sequence must approach zero. Hence
hf ŒIu� j u 2 f0; 1g�i is a Cantor system. ut
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Corollary 1101. A set is bounded perfect nowhere dense if and only if it is a
generalized Cantor set generated by some Cantor system of intervals.

Thus a perfect bounded nowhere dense not only is order-isomorphic and homeo-
morphic to the Cantor set, but also has the same structure in terms of definition via
interval trees. So any perfect bounded nowhere dense subset of R (equivalently any
generalized Cantor set) will be called a Cantor set.

Note the difference between the term “a Cantor set” (any perfect bounded
nowhere dense subset of R) and the term “the Cantor set” (the specific subset K
of Œ0; 1� obtained by repeatedly removing middle-third open intervals).

17.2 Homeomorphic Permutations of the Cantor Set

We will now introduce some especially nice homeomorphisms of the Cantor set
onto itself.

Recall the natural bijection F between the set 2N WD f0; 1gN of all infinite binary
sequences and the Cantor set K given by the mapping

hb1; b2; : : : ; bn; : : : i 7�! F.hbni/ D
1X

nD1

2bn

3n
:

Using this bijection, we will identify 2N with the Cantor set. This means that
elements of 2N will represent points of the Cantor set, subsets of 2N will represent
subsets of the Cantor set, and so on.

Now consider the subset K1 WD Œ0; 1
3
� [ Œ 2

3
; 1� of Œ0; 1�. The two closed intervals

of K1 are translates of each other, and using these translations we can get a
homeomorphism of F1 onto itself which interchanges these two intervals. More
precisely, this homeomorphism f1 can be defined as:

f1.x/ D
(
x C 2

3
if x 2 Œ0; 1

3
�;

x � 2
3

if x 2 Œ 2
3
; 1�:

Now, the Cantor set is a subset of K1, and note that f1 maps the Cantor set onto
itself. Restricting f1 to the Cantor set, we get a map g1 which is a homeomorphic
permutation of the Cantor set.

In view of the identification of the Cantor set with 2N, this homeomorphic
permutation g1 of the Cantor set admits a simpler definition in terms of elements
of 2N:

g1.hb1; b2; b3; : : : ; bn; : : : i/ D h1 � b1; b2; b3; : : : ; bn; : : : i ;

or more informally by saying that the permutation g1 of 2N onto 2N transforms a
binary sequence into another one by “flipping the first bit of the sequence.”
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Consider again the set K2 WD Œ0; 1
9
� [ Œ 2

9
; 1
3
� [ Œ 2

3
; 7
9
� [ Œ 8

9
; 1� found in the

second stage of the construction of the Cantor set. The intervals Œ0; 1
9
� and Œ 2

9
; 1
3
� are

translates of each other and can be interchanged via these translations, and similarly
the intervals Œ 2

3
; 7
9
� and Œ 8

9
; 1� can be interchanged via similar translations to yield a

homeomorphic permutation f2 of K2:

f2.x/ D
(
x C 2

9
if x 2 Œ0; 1

9
� [ Œ 2

3
; 7
9
�;

x � 2
9

if x 2 Œ 2
9
; 1
3
� [ Œ 8

9
; 1�:

Once again we can restrict f2 to the Cantor set to obtain a homeomorphic
permutation g2 of the Cantor set, and in view of the identification of the Cantor
set with 2N, the homeomorphic permutation g2 can be defined in terms of elements
of 2N as:

g2.hb1; b2; b3; : : : ; bn; : : : i/ D hb1; 1 � b2; b3; : : : ; bn; : : : i ;
or more informally by saying that the permutation g2 of 2N onto 2N transforms a
binary sequence into another one by “flipping the second bit of the sequence.”

In general, for each n 2 N, the operation of “flipping the n-th bit of an infinite
binary sequence” gives a a homeomorphic permutation gn of the Cantor set.

Even more generally, for each subsetA of N, we can define the map gAW 2N ! 2N

by setting

gA.hb1; b2; : : : ; bn; : : : i/ D
˝
b01; b02; : : : ; b0n; : : :

˛
;

where

b0n D
(
1 � bn if n 2 A,

bn otherwise.

Problem 1102. Prove that for each A � N the mapping gA defined above is a
homeomorphic permutation of the Cantor set.

[Hint: Using the ternary expansion representation for the elements of the Cantor set
may help. Also note that g�1A D gA, and so it suffices to show that gA is continuous.]

Endpoints and Internal Points of the Cantor Set

Consider the closed intervals obtained in the formation of the Cantor set, namely

Œ0; 1�; Œ0; 1
3
�; Œ 2

3
; 1�; Œ0; 1

9
�; Œ 2

9
; 1
3
�; Œ 2

3
; 7
9
�; Œ 8

9
; 1�; : : :

The endpoints of these intervals

0; 1; 1
3
; 2
3
; 1
9
; 2
9
; 7
9
; 8
9
; : : :
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will be called the endpoints of the Cantor set. All other points of the Cantor set will
be called the internal points of the Cantor set. Note that the internal points of the
Cantor set are precisely its two-sided limit points, while the endpoints of the Cantor
set are its one-sided limit points. (More generally, for any dense-in-itself set A, we
can define the endpoints of A to be the one-sided limit points of A, and the internal
points of A to be the two-sided limit points of A.)

Problem 1103. Show that

1. 1=4 is an internal point of the Cantor set.
2. Under the identification of the Cantor set with 2N, an infinite binary sequence is

an endpoint of the Cantor set if and only if it is eventually constant.

The following technical result will be needed in the proof of Sierpinski’s theorem:

Theorem 1104. Let E be the set of endpoints of the Cantor set K. Given any
countable subset C of K, there is a homeomorphic permutation f of K such that
f .x/ is an internal point of K for every x 2 C , that is, such that f ŒC � \E D Ø.

Proof. We use the identification of the Cantor set with 2N, and work exclusively
in 2N.

Fix a bijection kWN � N! N.
Now let C D fx.1/; x.2/; : : : ; x.n/; : : : g be a countable subset of 2N, and define

A � N by:

A WD fk.m; 2n� 1/ j m; n 2 N and x.m/.k.m; 2n � 1// D 0g
[ fk.m; 2n/ j m; n 2 N and x.m/.k.m; 2n// D 1g;

and put f D gA as above. In other words, f W 2N ! 2N is defined by setting

f .hb1; b2; : : : ; bn; : : : i/ D
˝
b01; b02; : : : ; b0n; : : :

˛
;

where

b0n D
(
1 � bn if n 2 A,

bn otherwise.

Put y.m/ D f .x.m//. Then for each m 2 N we have y.m/.k.m; 2n � 1// D 1 and
y.m/.k.m; 2n// D 0 for all n. Since k is injective, it follows that y.m/.j / D 1 for
infinitely many j and y.m/.j / D 0 for infinitely many j . Hence y.m/ D f .x.m// is
an internal point of 2N for eachm 2 N. ut
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17.3 Sierpinski’s Theorem

We begin by the following immediate consequence of Cantor’s theorem on count-
able dense orders.

Proposition 1105. Any countable dense subset of R is homeomorphic to Q.

Proof. This follows since if A is a countable dense subset of R, then by Cantor’s
theorem we can get an order isomorphism f between A and Q. But both in A and
in Q, every point is a two-sided limit point, and so both sets are continuously order-
embedded in R. Hence f is a homeomorphism. ut
Now given any countable set A � R, we can take A [ Q to get a countable dense
subset of R which contains A. Hence we have:

Corollary 1106. Any countable subset of R is homeomorphic to a subset of Q.

Proposition 1107. If A is a dense subset of the Cantor set consisting only of
internal points of the Cantor set, then every point of A is a two-sided limit point
of A (in R) and hence A is continuously order-embedded in R.

Corollary 1108. If C is a countable subset of the Cantor set consisting only of
internal points and C is dense in the Cantor set, then C is a continuously order-
embedded subset of R of order type 	, and so C is homeomorphic to Q.

Theorem 1109. If C is a countable subset of the Cantor set which is dense in it,
then C is homeomorphic to Q.

Proof. By Theorem 1104 there is a homeomorphic permutation of the Cantor set
mapping C to a subset D of the Cantor set consisting only of its internal points.
Then D is a countable dense subset of the Cantor set consisting only of its internal
points, and hence homeomorphic to Q by Corollary 1108. ut
Problem 1110. The set of endpoints of the Cantor set is a countable dense subset
of it, and hence is homeomorphic to Q.

Theorem 1111 (Sierpinski). Every countable dense-in-itself subset of R is home-
omorphic to Q.

Proof. Let A be a countable dense-in-itself subset of R. Then A is homeomorphic
to a subset of Q. Since the Cantor set has subsets homeomorphic to Q, it follows
that A is homeomorphic to a subset B of the Cantor set. B is then a dense-in-itself
subset of the Cantor set, and hence its closureB is a perfect subset of the Cantor set,
and hence B is perfect bounded nowhere dense set. By Brouwer’s Theorem, B is
homeomorphic to the Cantor set and henceB is homeomorphic to a countable dense
subset C of the Cantor set. By Theorem 1109, C is homeomorphic to Q. Therefore
B , and hence A, is homeomorphic to Q. ut
Problem 1112. Show that 1C 	, 1C 	C 1, and 	C 2C 	 are all homeomorphic
to 	.
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Problem 1113. Prove that 2	 is homeomorphic to 	.

[Hint: The set of endpoints of the Cantor set other than 0 and 1 has order type 2	
and is continuously order-embedded in R.]

17.4 Brouwer’s and Sierpinski’s Theorems in General Spaces

Although in this text we are restricting ourselves to subsets of R and will not
define topological spaces or even metric spaces, let us point out that both Brouwer’s
Theorem and Sierpinski’s Theorem can be stated in much more general settings.

The general statement of Brouwer’s Theorem for metric spaces says: Any totally
disconnected perfect compact metric space is homeomorphic to the Cantor set.
Since any compact totally disconnected metric space is a zero-dimensional sepa-
rable metric space and since any such space can be homeomorphically embedded in
R, the general version of Brouwer’s Theorem follows from our special version for
subsets of R.

Sierpinski’s Theorem for general metric spaces says: Any countable metric space
without isolated points is homeomorphic to Q. Again, since any countable metric
space is a zero-dimensional separable metric space and since any such space can
be homeomorphically embedded in R, the general version of Sierpinski’s Theorem
follows from our special version for subsets of R.



Chapter 18
Borel and Analytic Sets

Abstract This chapter covers some of the basic theory of Borel and Analytic Sets
in the context of the real line. We define analytic sets using the Suslin operation,
and show that they have all the regularity properties (measurability, Baire property,
perfect set property), and therefore satisfy the continuum hypothesis—the best result
possible without additional axioms. Along the way we obtain the Lusin Separation
Theorem, Suslin’s theorem, the boundedness theorem, and an example of a non-
Borel analytic set.

18.1 Sigma-Algebras and Borel Sets

Definition 1114. A nonempty collection S of subsets of R is called a Sigma-
Algebra if

1. S is closed under taking complements: if A 2 S then RXA 2 S; and
2. S is closed under countable unions: if An 2 S for all n 2 N then [nAn 2 S.

Trivially, the two-element family fØ;Rg and the power set P.R/ are sigma-algebras.
More importantly, we have: The collection L of Lebesgue measurable sets is a
sigma-algebra, and so is the collection Y of sets with Baire property.

Problem 1115. Show that the collection S below is a sigma algebra:

S WD fA 2 P.R/ j Either A or RXA is countableg;
and that S is the smallest sigma-algebra containing all singletons of R.

Problem 1116. Show that if S is a sigma-algebra then

1. Ø 2 S, R 2 S.
2. S is closed under countable intersections: IfAn 2 S for all n 2 N then\nAn 2 S.
3. S is closed under finite unions, finite intersections, and set differences.

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__18, © Springer Science+Business Media New York 2014
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Problem 1117. Show that the intersection of any nonempty family of sigma-
algebras is a sigma-algebra. Deduce that given any family C of subsets of R, there
is a smallest sigma-algebra containing C.

Definition 1118. Given a family C of subsets of R the smallest sigma-algebra
containing C is called the sigma-algebra generated by C.

Problem 1119. Show that

1. The sigma-algebra generated by the measure zero sets together with the open
sets equals the collection L of all measurable sets.

2. The sigma-algebra generated by the meager sets together with the open sets
equals the collection Y of all sets with Baire property.

Definition 1120 (Borel Sets). B denotes the sigma-algebra generated by the open
sets, and sets in B are called the Borel sets.

Being a sigma-algebra, B includes, along with open sets, all closed sets, F� sets, Gı

sets, and so on. Also, since L is a sigma-algebra containing all open sets, we have
B � L, that is, all Borel sets are Lebesgue measurable. Similarly, B � Y , so all
Borel sets have Baire property. Thus B � L \ Y .

Most effectively defined subsets of R normally encountered in analysis, including
all examples we have seen so far, are Borel sets.

Problem 1121. Let hAn j n 2 Ni be a sequence of Borel sets. Show that the set
fx j x 2 An for all but finitely many ng is a Borel set. Similarly, the set fx j x 2
An for infinitely many ng is a Borel set.

Problem 1122. Let fnWR! R be a continuous function for each n 2 N. Show that
each of the following sets is Borel.

1. fx 2 R j the sequence hfn.x/ j n 2 Ni is increasing but bounded g.
2. fx 2 R j limn fn.x/ D 0 g.
3. fx 2 R j limn fn.x/ exists g.
Problem 1123. If A;B 2 B and f WA! R is continuous, then f �1ŒB� 2 B.

For a collection C of sets, we let C� denote the collection of all countable unions,
and Cı the collection of all countable intersections, of sets in C. This is consistent
with our notations F� and Gı, where F is the collection of closed sets and G is the
collection of open sets. Thus from F� and Gı we can go to

F�ı WD .F� /ı and Gı� WD .Gı/� ;

and so on through F�ı� , Gı�ı, F�ı�ı , Gı�ı� , etc. Clearly all these collection of sets
consist only of Borel sets and we have

F � F� � F�ı � F�ı� � � � � � B and G � Gı � Gı� � Gı�ı � � � � � B:
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The above collections (obtained by iterating the operations of countable union and
intersection through finitely many steps) still do not exhaust the Borel sets, and the
process can be continued into the transfinite through the ordinals. It can be shown
that such iterations keep generating newer and newer Borel sets through all the
countable ordinals until when it stops at iteration !1, giving precisely the collection
of all Borel sets.

The iterative definition of Borel sets above make them a class of effectively
defined sets (Sect. 5.5). Roughly speaking, among Borel sets, we can distinguish
between degrees of effectiveness (or complexity). The open and closed sets are the
simplest and most effective kinds of Borel sets. Sets which are F� or Gı (but neither
open nor closed) are at the next degree of effectiveness, and so on.

Proposition 1124. If C is a collection of subsets of R containing the open sets and
closed under both countable unions and countable intersections, then C contains
all Borel sets.

Proof. Since C contains all open sets and is closed under countable intersections,
therefore C contains all Gı sets and hence all closed sets.

Now let A be the collection all subsets of E of R such that both E and RXE are
in C. Since C contains both all the open sets and all the closed sets, it follows that
A contains all open sets. It is readily verified that A is closed under complements
and under countable unions. Hence A is a sigma-algebra containing the open sets
and so B � A. Therefore B � C. ut
Corollary 1125. The collection of Borel sets is the smallest collection containing
the open sets and closed under both countable unions and countable intersections.

Problem 1126. An infinite sigma-algebra S contains at least c many sets.

[Hint: Fix distinctA1;A2; � � � 2 S. ForE � N, put BE WD [n2EAnn[n…E An. Then
infinitely many of the (pairwise disjoint) sets BE 2 S are non-empty.]

Problem 1127. For f WR! R, fa 2 R j lim
x!a f .x/ existsg is a Borel set.

[Hint: By Problem 1037 the set of points of continuity of f is a Gı set, and by
Problem 985 the set of points of removable discontinuity of f is countable.]

Problem 1128. Let f WR ! R be continuous. Show that the set of points H WD
fa 2 R j f 0.a/ D 0g at which the derivative of f vanishes is Borel.

[Hint: a 62 H , 9p 2 QC8ı 2 QC9r 2 Q.0 < jr � aj < ı and
ˇ
ˇ f .r/�f .a/

r�a
ˇ
ˇ � p/,

and quantifiers ranging over countable sets can be “converted into” countable unions
and intersections.]

Problem 1129. Let f WR ! R be continuous. Then the set of points D WD fx 2
R j f 0.x/ existsg at which the derivative of f exists is Borel.
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18.2 Analytic Sets

If f WR ! R is a continuous function, then by the last problem (Problem 1129),
the domain dom.f 0/ of its derivative f 0 is a Borel set. However, the range ran.f 0/
of f 0 in general may not be a Borel set. The great mathematician Lebesgue made
a famous error thinking that such sets are Borel. Suslin, a young student of Lusin,
caught Lebesgue’s error and introduced a larger class of naturally and effectively
defined sets which include sets such as ran.f 0/ (where f is continuous). This is
the class of analytic sets, and Suslin used a special operation, now called the Suslin
operation, to define such sets. In this section, we will define the Suslin operation
and analytic sets.

Review of Trees over N, Terminology and Notation

N� is the set of all strings (finite sequences) from the set N D f1; 2; 3; : : : g. Then
N� is a tree under the relation “u is a prefix of v,” in which every node branches
into infinitely many immediate extensions (Sect. 11.5). A portion of the tree N� is
shown below. To simplify notation, we will often write a finite or infinite sequence
hn1; n2; n3; : : : i simply as the string n1n2n3 � � � . For example, the string “231”
denotes the finite sequence h2; 3; 1i.

"

1

11 12 13 . . .

2

21 22 23

231 232 233 . . .

. . .

3 . . .

Let us now recall and record the following basic definitions.

If u D u1u2 � � � um 2 N� and v D v1v2 � � � vn 2 N� are finite strings of natural
numbers, and x D x1x2 � � �xn � � � 2 NN is an infinite string of natural numbers,
then:

1. The numberm is called the length of u, denoted by len.u/.
2. The empty string is denoted by ", so that len."/ D 0.
3. u is an initial segment or prefix of v, or that v is an extension of u, if m � n and

uk D vk for all k � m. If, in addition, n D mC 1, i.e., len.v/ D len.u/C 1, then
v is an immediate extension of u.
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4. Similarly, u is an initial segment or prefix of x, or that x is an extension of u, if
uk D xk for all k � m.

5. If u � v WD u1u2 � � � umv1v2 � � � vn is the concatenation of u and v.
6. For each r 2 N, we write uar to denote the “immediate extension of u obtained

by appending r ,” that is uar WD u1u2 � � � umr D u � hri.
7. xjm is the finite string x1x2 � � �xm obtained by truncating x to its first m values

(the unique finite sequence of length m which is a prefix of x).

Definitions of trees, infinite branches, well-founded trees:

1. A subset T � N� is a tree if any prefix of any string in T is in T .
2. An infinite branch B is an infinite tree � N� which is linearly ordered:

B D f"; u1; u1u2; u1u2u3; : : : g � N�:

As in Sect. 13.3, infinite branches are identified with elements of NN, with x 2
NN determining the infinite branch fxjn j n D 0; 1; 2; : : : g.

3. A tree T � N� is ill-founded if T contains an infinite branch. Otherwise T is
well-founded.

4. If T � N� and u 2 N�, then T .u/, the truncation of T at u, is defined as T .u/ WD
fv 2 N� j u � v 2 T g. Note that if T is a tree then so is T .u/.

...  ...

...

...

ε

1 2 3 4 5
21 31 41 51

311 411 511

4111 5111

51111

...  ...

...

...

Tω

Tω

Tω

Tω

Tω

Tω Tω+ω

Tω: A well founded tree of rank ω Tω+ω: A well founded tree of rank ω+ω

Facts on well-founded trees (recall from Sect. 11.5):

1. A tree T � N� is well-founded, the string extension relation� is well-founded
on T , in which case rank.T / D rank of hT Xf"g;�i. If T 6D Ø, then rank.T / D
�T ."/, where �T is the canonical rank function on hT;�i.

2. If T is a well-founded tree then so is T .u/, with rank.T .u// � rank.T /. If T .hni/
is well-founded for all n 2 N, then so is T .

3. The rank of a well-founded tree T satisfies the following recursion:

rank.T / D sup
˚

rank.T .hni//C 1 j hni 2 T; n 2 N
�

(sup Ø WD 0).
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4. For 0 < ˛ < !1, rank.T / D ˛ , rank.T .hni// < ˛ for all n 2 N and for all
� < ˛ there is u 2 N�Xf"g with rank.T .u// D � (Problem 854).

5. Let T1 and T2 be trees and f WT1 ! T2 be strictly increasing, i.e., u ¨ v )
f .u/ ¨ f .v/. If T2 is well-founded then so is T1 with rank.T1/ � rank.T2/
(Problem 819).

6. For each ˛ < !1 there is a well-founded tree T � N� with rank.T / D ˛

(Problem 857).

Problem 1130. Recall the Kleene–Brouwer ordering on N�: u <KB v , either
u lexicographically precedes v or u is a proper extension of v. Put r."/ WD 0 and
r.hn1; n2; : : : ; nki/ WD 1

2n1
C 1

2n1Cn2
C � � � C 1

2n1Cn2C���Cnk
. Then (1) r is a bijection

between N� and the dyadic rationals in Œ0; 1/. (2) u <KB v , r.u/ > r.v/.
(3) hN�; <KBi is a linear order of type 	 C 1. (4) If T � N� is a tree, then T is
well-founded, T is well-ordered under<KB.

The Suslin Operation

Recall how a Cantor set is generated from a family of closed intervals (a Cantor
system) indexed by the full binary tree: Each infinite branch through the binary tree
determines a nested sequence of closed intervals whose intersection—the “branch
intersection”—is a singleton, and then the Cantor set is obtained by taking the union
of all such branch intersections.

We now generalize the formation of the Cantor set to the case where arbitrary
sets are used in place of the special closed intervals of a Cantor system, and where
these sets are indexed by the infinitely branching tree N� (instead of the finitely
branching binary tree).

Let hEu j u 2 N�i be a family of sets indexed by N�. Then given any infinite
branch x D hxnin2N 2 NN, we can form the “branch intersection”

1\

nD1
Exjn D Ex1 \ Ex1x2 \ Ex1x2x3 \ � � � \Ex1x2:::xn \ � � �

The union of all such branch intersections (as x ranges over all possible infinite
branches through N�) will be called the result of the Suslin Operation applied to the
family hEu j u 2 N�i. More precisely, we have:

Definition 1131 (The Suslin Operation). If hEu j u 2 N�i is a family of sets
indexed by nodes in the tree N�, then the result of the Suslin operation applied
to hEu j u 2 N�i, denoted by

A.hEu j u 2 N�i/ D AuEu;
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is defined to be the set

AuEu WD
[

y2NN

1\

nD1
Eyjn

D fx 2 R j .9y 2 NN/.8n 2 N/.x 2 Eyjn/g:

Thus x 2 AuEu if and only if there is a branch y1y2 � � �yn � � � 2 NN such that

x 2
1\

nD1
Ey1y2���yn :

The figure below shows a family hEu j u 2 N�i of sets indexed by N� and the sets
corresponding to the branch 3221 � � � D f"; 3; 32; 322; 3221; : : : g:

Eε

E1

E11 E12 E13 ···

E2

E21 ···

E3

E31 E32

E321 E322

E3221

··· ··· ···

···

···

E33 ···

···

Note that the result AuEu of the Suslin operation performed on the family
hEu j u 2 N�i does not depend on the set E". The following problems show that
the Suslin operation is “more powerful” than the operations of countable union and
countable intersection of sets.

Problem 1132. Show that if C D [1nD1Cn, then C D AuEu for some family
hEu j u 2 N�i where each Eu D Cn for some n.

[Hint: Put Eu1u2���un D Cu1 .]

Problem 1133. Show that if C D \1nD1Cn, then C D AuEu for some family
hEu j u 2 N�i where each Eu D Cn for some n.

[Hint: Put Eu D Clen.u/.]
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Definition 1134 (Suslin Systems). A Suslin system is a family of closed intervals
hFu j u 2 N�i indexed by N�, satisfying the following conditions:

1. For each u 2 N�, Fu is a closed interval in R, possibly unbounded or empty.
2. Fu � Fv whenever u is prefix of v.
3. For any infinite sequence of natural numbers x 2 NN, len.Fxjn/! 0 as n!1.

Note that we regard R and Ø as closed intervals, with len.Ø/ D 0.

An analytic set is now defined to be one which can be obtained as the result of the
Suslin operation applied to a Suslin system.

Definition 1135 (Analytic Sets). A subset A of R is an analytic set if

A D AuFu

for some Suslin system hFu j u 2 N�i.
Clearly, the notion of a Suslin system is a generalization of that of a Cantor system,
but it differs from a Cantor system in two important ways: (a) The sets Fu (u 2
N�) in a Suslin system are indexed by the infinitely-branching tree N� (instead of
the finitely branching binary tree f0; 1g�), and (b) the sets Fu are arbitrary closed
intervals (possibly unbounded or empty), and Fuam and Fuan,m 6D n, are no longer
required to be disjoint. (Problem 1145 below shows that both these requirements are
necessary if the collection of analytic sets is going to be sufficiently comprehensive.)

Problem 1136. Let hFu j u 2 N�i be a Suslin system. Show that

1. The set fu 2 N� j Fu 6D Øg is tree over N (subtree of N�).
2. For each x 2 R, the set fu 2 N� j x 2 Fug is also a tree over N.
3. x 2 AuFu , the tree fu 2 N� j x 2 Fug is not well-founded.

Problem 1137. Every closed interval, possibly unbounded, is an analytic set.

Problem 1138. Any countable set is analytic.

Problem 1139. All closed sets and all open sets are analytic.

Theorem 1140. The collection of analytic sets is closed under the Suslin operation:
If Eu is analytic for each u 2 N�, then AuEu is analytic.

Proof. Fix a bijection �WN2 ! N satisfying

m < m0) �.m; n/ < �.m0; n/ and n < n0 ) �.m; n/ < �.m; n0/:

Fix a function gWN! N such that for all n, g.n/ � n and there exist infinitely many
m with g.m/ D n. (The sequence 1; 1; 2; 1; 2; 3; 1; 2; 3; 4; : : : is such a function.)

Let h.n/ WD ˇ̌fk j k � n and g.k/ D g.n/gˇ̌.
Define k � n, k � n, �.1; g.k// � n, and �.g.k/C 1; h.k// � n.
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Given w D w1w2 � � �wn 2 N�, define

˛.w; k/ D
(

w�.1;1/w�.1;2/ � � �w�.1;g.k// if k � n,

" otherwise,

and

ˇ.w; k/ D
(

w�.g.k/C1;1/w�.g.k/C1;2/ � � �w�.g.k/C1;h.k// if k � n,

" otherwise.

Now let Eu be analytic for each u 2 N�. We need to show that the set AuEu is
analytic. For each u 2 N� there is a Suslin system

˝
F u

v j v 2 N�
˛

such that

Eu D AvF
u
v :

Define a Suslin system hDw j w 2 N�i as:

Dw D
\

k�len.w/

F
˛.w;k/
ˇ.w;k/ :

It is routine to verify that this is indeed a Suslin system (details left for the reader.)
We claim that

AuEu D AwDw:

Suppose first that a 2 AuEu. Then there is x D x1x2 � � �xn � � � 2 NN such that
a 2 Ex1x2���xn for all n. Since Exjn D AvF

xjn
v , so for each n there is an infinite

sequence y.n/ D yn;1yn;2 � � �yn;k � � � of natural numbers such that

a 2
1\

kD1
F
xjn
y.n/jk D

1\

kD1
F x1x2���xn
yn;1yn;2���yn;k :

Now consider the infinite matrix

x1 x2 � � � xn � � �
y1;1 y1;2 � � � y1;n � � �
y2;1 y2;2 � � � y2;n � � �
� � � � � � � � � � � � � � � ;

and combine it into a single infinite sequence z1z2 � � � zn � � � using the pairing
function � as follows:

z�.1;n/ WD xn and z�.mC1;n/ WD ym;n:

Then it is readily verified that a 2 Dzjn for any n, and so a 2 AwDw.
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Conversely, suppose that a 2 AwDw. Fix an infinite sequence z1z2 � � � zn � � � such
that a 2 Dzjn for all n. Define infinite sequences x D x1x2 � � �xn � � � and y.n/ D
yn;1yn;2 � � � (for each n) by setting

xn WD z�.1;n/:yn;m WD z�.nC1;m/:

We claim that a 2 Exjn for all n. Fix any n. Since Exjn D AvF
xjn
v , so it suffices to

show that for all m,

a 2 F xjn
yn;1yn;2���yn;m

Enumerate fk j g.k/ D ng as fk1 < k2 < � � � g, so that g.km/ D n and h.k1/ D 1,
h.k2/ D 2, etc. For each m, fix any nm such that km � nm. Hence ˛.zjnm; km/ D
x1x2 � � �xn D xjn for all m, and ˇ.zjnm; km/ D yn;1yn;2 � � �yn;m. Since a 2 Dzjnm
and km � nm, it follows that

a 2 F ˛.zjnm;km/
ˇ.zjnm;km/ D F xjn

yn;1yn;2���yn;m:

Thus a 2 AuEu. ut

Corollary 1141. The collection of analytic sets is closed under countable unions
and countable intersections.

A set is called coanalytic if its complement is analytic.

Corollary 1142. Every Borel set is both analytic and coanalytic.

Proof. Since every closed interval is analytic and every open interval is a countable
union of closed intervals, therefore every open interval is analytic. Since every open
set is a countable union of open intervals, therefore every open set is analytic. Thus
the collection of all analytic sets contains all open sets and is closed under countable
unions and countable intersections. Hence by Proposition 1124 the collection of
analytic sets contains all Borel sets.

Now the complement of any Borel set is still Borel, and hence analytic. Therefore
every Borel set is coanalytic as well. ut
In the next section, we will prove the converse of the above result.

Problem 1143. There are exactly c D 2@0 analytic sets. Hence each of the
following families of sets has cardinality c D 2@0: The coanalytic sets, the Borel
sets, the F� sets, the Gı sets, the closed sets, and the open sets.

Problem 1144. There is a set which is both meager and of measure zero but neither
analytic nor coanalytic. Conclude that there measurable sets and sets with Baire
property which are not Borel, i.e., B ¨ L and B ¨ Y .

Problem 1145. Let us say that a Suslin system hFu j u 2 N�i is finitely branching
if the tree fu 2 N� j Fu 6D Øg is finitely branching, and that it is disjointed if
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Fuam \ Fuam D Ø whenever m 6D n. Show that if hFu j u 2 N�i is either a finitely
branching or a disjointed Suslin system, then

AuFu D
1\

nD1

[

len.u/Dn
Fu;

and hence the set AuFu must be an F�ı set.

[Hint: For the finitely branching case, use König’s Infinity Lemma.]

Problem 1146. Show that if A is analytic and f WR ! R is continuous, then
f �1ŒA� and f ŒA� are analytic sets.

[Hint: Problem 983 may help.]

Remark. There are many characterizations of analytic sets that we will not cover.
For example, it can be shown that A is analytic if and only if A D f ŒB� for some
continuous f and BorelB (in fact B can be taken to be a Gı). Earlier we mentioned
that ran.f 0/ may not be Borel for a continuous f . A result of Poprougenko says
that A is analytic, A D ran.f 0/ for some continuous f . See [38, 45, 46, 55, 64]
for many other characterizations.

18.3 The Lusin Separation Theorem

Definition 1147. To each Suslin system hFu j u 2 N�i, we associate a family˝
F .�/

u j u 2 N�
˛

of sets indexed by N� by setting, for each v 2 N�:

F .�/
v WD fx 2 R j There is y 2 NN extending v such that x 2 \nFyjng:

Thus x 2 F .�/
u1u2���um if and only if there is y1y2 � � �yn � � � 2 NN such that

uk D yk for all k � m and x 2
1\

nD0
Fy1y2 ���yn :

Note that we have F .�/
" D AuFu, and writing v � u for the concatenation of v and u,

we can express F .�/
v as F .�/

v D AuFv�u.

Problem 1148. If hFu j u 2 N�i is a Suslin system and v 2 N�, then:

1. F .�/
v is analytic.

2. F .�/
v D

1[

nD1
F

.�/
van.
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Definition 1149. We say that C separates A from B if A � C and C \ B D Ø.
The sets A and B are called Borel separable if there exists a Borel set C separating
A from B .

Proposition 1150. IfA D [mAm, B D [nBn, andAm andBn are Borel separable
for all m; n 2 N, then A and B are Borel separable.

Proof. For each m; n fix a Borel set Cm;n separating Am from Bn. Put

Dm WD
\

n

Cm;n (for eachm), and E WD
[

m

Dm:

Then the set E is Borel. Now note that for each m we have Am � Dm and Dm \
BDØ. Hence A � E and E \ B D Ø, so E separates A from B . ut
The following result is called the Lusin Separation Theorem.

Theorem 1151 (Lusin). If A and B are analytic sets which are not Borel separa-
ble, then A\ B 6D Ø. Hence disjoint analytic sets are Borel separable.

Proof. Suppose that A D AuEu and B D AvFv are analytic sets which are not
Borel separable, where hEu j u 2 N�i and hFv j v 2 N�i are Suslin systems. Since

A D E.�/
" D

[

m

E
.�/
hmi and B D F .�/

" D
[

n

F
.�/
hni ;

by the last proposition there must exist m1 and n1 such that E.�/
hm1i and F .�/

hn1i are not
Borel separable. Again, since

E
.�/
hm1i D

[

m

E
.�/
hm1;mi and F

.�/
hn1i D

[

n

F
.�/
hn1;ni;

there are m2 and n2 such that E.�/
hm1;m2i and F .�/

hn1;n2i are not Borel separable.
Continuing the process, we get two infinite sequences hm1;m2; : : : ; mk; : : : i and

hn1; n2; : : : ; nk; : : : i such that for every k,

E
.�/
hm1;m2;:::;mki and F .�/

hn1;n2;:::;nki are not Borel separable.

But if the above two sets are not Borel separable, then for every k, the closed
intervals Ik WD Ehm1;m2;:::;mki and Jk WD Fhn1;n2;:::;nki cannot be disjoint, since
if we had Ik \ Jk D Ø then the Borel set Ik would separate E.�/

hm1;m2;:::;mki
from F

.�/
hn1;n2;:::;nki. Thus Ik and Jk are nested sequences of closed intervals with

Ik \ Jk 6D Ø and len.Ik/! 0 and len.Jk/! 0 as n!1, and so

\

k

Ik D fpg and
\

k

Jk D fqg
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with p 2 A and q 2 B . Now if we had p 6D q, we could choose k sufficiently large
so that len.Ik/; len.Jk/ < jp�qj=2, implying Ik\Jk D Ø, which is a contradiction.
Hence p D q and so A \ B 6D Ø. ut
Corollary 1152 (Suslin’s Theorem). A set is Borel if and only if it is both analytic
and coanalytic.

In Sect. 18.6 we will explicitly define a non-Borel analytic set.

18.4 Measurability and Baire Property of Analytic Sets

Definition 1153. An Ulam matrix is a family of sets hEn
˛ j n 2 N; ˛ < !1i with @0

rows and @1 columns as shown below such that:

1. The sets in each row are pairwise disjoint: En
˛ \ En

ˇ D Ø for ˛ 6D ˇ.
2. The union of the sets in each column contains any set to its right in the first row:S

n2NE
n
˛ � E1

ˇ for any ˇ > ˛.

An Ulam Matrix:

En
˛; n 2 N; ˛ < !1

n

?
?
?
?
??
?
?
?
??
?
?
y

˛������������������!
E1
0 E

1
1 � � � E1

˛ � � � � � �
E2
0 E

2
1 � � � E2

˛ � � � � � �
:::

:::
:::

En
0 E

n
1 � � � En

˛ � � � � � �
:::

:::
:::

Note. The ordering of the rows really does not matter, so the rows could be indexed
by any countable set instead of N so long as one fixed row is designated as “the
first row.”

To prove that analytic sets are Lebesgue measurable and have the Baire property,
we will use the following result, which is also of considerable interest in itself as it
provides coanalytic sets with “nice ordinal ranks.”

Theorem 1154 (Ulam Matrix Decomposition of Coanalytic Sets). For any coan-
alytic set C there is an Ulam matrix of Borel sets whose first row has union C .

More specifically, there is a family of Borel sets hC u
˛ j u 2 N�; ˛ < !1i satisfying

the following, where we use the abbreviation C˛ WD C"
˛ :

1. For each u 2 N� and all ordinals ˛; ˇ < !1, C u
˛ \ C u

ˇ D Ø if ˛ 6D ˇ.
2. If ˇ > ˛ and x 2 Cˇ then x 2 C u

˛ for some u 2 N�.
3. C D S˛<!1

C˛, where by (1) the sets C˛; ˛ < !1, are pairwise disjoint.

Proof. Let hFu j u 2 N�i be a Suslin system with RXC D AuFu. For each x 2 R
and u 2 N�, let
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Tx WD fv 2 N� j x 2 Fvg; and T .u/x WD fv 2 N� j x 2 Fu�vg;

From the definition of a Suslin system, Tx and T .u/x are trees over N with Tx D T ."/x .
Also, we have x 2 RXC , x 2 AuFu, there is an infinite branch through Tx,
Tx is not well-founded. Thus we have:

For all x 2 R, x 2 C , Tx is well-founded.

By Problem 854 (Fact 2 on page 325), it follows that:

If x 2 C , then T .u/x is well-founded and rank.T .u/x / � rank.Tx/.

Now define the set C u
˛ , for each u 2 N� and ordinal ˛ < !1, by the condition:

x 2 C u
˛ , T .u/x is well-founded of rank ˛ .x 2 R/;

and put, as in the statement of the theorem, C˛ WD C"
˛ .

Condition (1) of the theorem is now immediate.
Condition (2) follows from Problem 854 (Fact 4, page 325).
Now, note that x 2 C˛, Tx is well-founded of rank ˛, so x 2S˛<!1

C˛, Tx
is well-founded, hence condition (3) of the theorem follows.

It remains to show that C u
˛ is Borel. We prove this by transfinite induction on ˛

for the statement “C u
˛ is Borel for all u 2 N�.” Recall that the only trees of rank 0

are the empty tree and the singleton tree f"g consisting of the root node " alone, i.e.,
T has rank 0, T � f"g.

For ˛ D 0, note that x 2 C u
0 , T

.u/
x has rank 0, T

.u/
x � f"g , x 62 Fu or

x 2 FuXSn Fuan, so C u
0 D .RXFu/[

�
FuXSn Fuan

�
, which is Borel.

For ˛ > 0, assume that for every � < ˛, C u
� is Borel for all u 2 N� (induction

hypothesis). Then, by Problem 854 again (Fact 4, page 325):

x 2 C u
˛ , T .u/x has rank ˛

, 8n 2 N, rank.T .u
an/

x / < ˛, and 8� < ˛ 9v 2 N� rank.T .u�v/
x / D �

, 8n 2 N 9� < ˛ rank.T .u
an/

x / D �, and

8� < ˛ 9v 2 N� rank.T .u�v/
x / D �.

Writing the above in terms of set unions and intersections:

C u
˛ D

h\

n2N

[

�<˛

C uan
�

i T h\

�<˛

[

v2N�

C u�v
�

i
;

which by induction hypothesis is Borel since all the unions and intersections
involved are countable unions and intersections. ut
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Corollary 1155. Every coanalytic set is the union @1-many Borel sets.

Definition 1156. A sigma algebra S containing a �-ideal Z is said to be CCC
moduloZ if for any family hAi j i 2 I i of pairwise disjoint sets in S, we haveAi 2 Z

for all but countably many i 2 I .

Natural examples of sigma algebras which are CCC (modulo a �-ideal) are:

1. The sigma algebra L of Lebesgue measurable sets is CCC modulo the �-ideal of
measure zero sets (Corollary 1029.6).

2. The sigma algebra Y of sets with Baire property is CCC modulo the �-ideal of
meager sets (Corollary 1062).

Theorem 1157. Let S be a sigma algebra containing all Borel sets and Z be a �-
ideal contained in S such that S is CCC modulo Z. Then every coanalytic set (and
so every analytic set) is in S.

Proof. Let C be a coanalytic set. By Theorem 1154, fix an “Ulam matrix” of Borel
sets hC u

˛ j u 2 N�; ˛ < !1i such that, using the abbreviation C˛ WD C"
˛ ,

1. For each u 2 N� and all ordinals ˛; ˇ < !1, C u
˛ \ C u

ˇ D Ø if ˛ 6D ˇ.
2. If ˇ > ˛ and x 2 Cˇ then x 2 C u

˛ for some u 2 N�.
3. C D S˛<!1

C˛.

Since each C u
˛ is Borel, so C u

˛ 2 S. For each u 2 N�, the family hC u
˛ j ˛ < !1i is

pairwise disjoint by condition (1), and since S is CCC modulo Z, so there exists
˛u < !1 such that C u

ˇ 2 Z for all ˇ � ˛u. Since there are only countably many
u 2 N�, we can fix some N̨ < !1 with N̨ > ˛u for all u 2 N�. Then C u

N̨ 2 Z for
all u 2 N�, and so the countable union

S
u2N� C u

N̨ is in Z. By (2),
S

u2N� C u
N̨ �S

ˇ> N̨ Cˇ, so
S
ˇ> N̨ Cˇ is in Z � S. Also,

S
ˇ�N̨ Cˇ is Borel and so is in S. Hence

C D �Sˇ�N̨ Cˇ
� [ �Sˇ> N̨ Cˇ

�
is in S. ut

Corollary 1158. All analytic sets and all coanalytic sets are Lebesgue measurable
and have Baire property.

Corollary 1159. No Vitali or Bernstein set is analytic or coanalytic.

Remark. Ulam matrices are useful in showing that certain uncountable unions of
measure zero sets can still have measure zero. Ulam used them to show that no
nontrivial measure can be defined on a set whose cardinality is a successor cardinal
(like @1, @2, etc). Ulam’s proof is given in Theorem 1196, and it may be instructive
to compare it with the above proof.

18.5 The Perfect Set Property for Analytic Sets

Theorem 1160. Every uncountable analytic set contains a perfect set and hence
has cardinality c.
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Proof. The proof of the theorem will be a variant of the proof of the corresponding
theorem for dense-in-itself Gı sets, but note that we cannot directly copy that proof
since a dense-in-itself analytic set may be countable. Let

A D AuFu

be an uncountable analytic set, where hFu j u 2 N�i is a Suslin system. The heart of
the proof of the theorem is in the following lemma.

Lemma 1161. For each u 2 N� and ı > 0, if F .�/
u is uncountable then there exist v

and w in N� extending u such that Fv and Fw are disjoint nonempty closed intervals
of length < ı with both F .�/

v and F .�/
w uncountable.

Proof (of Lemma). SinceF .�/
u is uncountable, and by Theorem 970 all but countably

points of F .�/
u are condensation points, we can pick two distinct condensation points

p < q in F .�/
u . Let r D min

�
1
4
.q � p/; ı�, and put

L WD F .�/
u \ .p � r; p C r/ and U WD F .�/

u \ .q � r; q C r/

so that L and U are disjoint uncountable subsets of F .�/
u . Finally, put

S WD fv j v extends u, len.F.v// < r; F.v/\ L 6D Øg; and

T WD fw j w extends u, len.F.w// < r; F.w/ \ U 6D Øg:

We claim that

L �
[

v2S
F .�/

v :

To see this, let x 2 L and pick z 2 NN extending u such that x 2 \mF.zjm/. Fix a
large enough m to make len.F.zjm// < r and m > len.u/, and put v D zjm. Then
x 2 F.v/\L, len.F.v// < r , and v extends u, so v 2 S , and hence x 2 F .�/

v . Thus
the claim is established.

Since L is uncountable, it follows that F .�/
v is uncountable for some v 2 S .

Similarly, F .�/
w is uncountable for some w 2 T .

For such v and w, F.v/ and F.r/ are closed intervals of length < r . But since
infU � supL � 2r and F.v/\L and F.w/\U are both nonempty, it follows that
F.v/ and F.w/ must be disjoint. ut
Note that the v and w of the lemma must be proper extensions of u.

To continue with the proof of the theorem, we repeatedly apply the lemma to
build a Cantor system by associating with each binary string u 2 f0; 1g� a string
t.u/ 2 N� such that for all u; u0 2 f0; 1g�:
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1. F .�/
t .u/ is uncountable and len.Ft.u// < 1

len.u/C1 .
2. If u0 properly extends u then t.u0/ properly extends t.u/.
3. Ft.ua0/ \ Ft.ua1/ D Ø.

To do this, note that since A D F .�/
" is uncountable we can use the lemma to choose

v0 with len.Fv0 / < 1 and F .�/
v0 uncountable, and define t."/ WD v0. Then, having

defined t.u/ for u 2 f0; 1g� with F .�/
t .u/ uncountable, we can use the lemma to choose

v and w properly extending t.u/ such that Fv and Fw are disjoint intervals of length
< 1=.len.u/C 2/ with both F .�/

v and F .�/
w uncountable, and define t.ua0/ WD v and

t.ua1/ WD w.
This makes the family

˝
Ft.u/ j u 2 f0; 1g�

˛
a Cantor system. Hence if '.z/

denotes the unique member of \nFt.zjn/, then 'W f0; 1gN ! R is an injective
mapping whose range ran.'/ is a generalized Cantor set. Also if z 2 f0; 1gN, then
t.zj1/; t.zj2/; t.zj3/; : : : form an infinite sequence of members of N� where each
term properly extends all the preceding ones, and so they define a unique y 2 NN

such that yjn is a prefix of t.zjn/ for each n. Hence '.z/ 2 \nFt.zjn/ � \nFyjn � A.
Thus ran.'/ � A, and thereforeA contains the generalized Cantor set ran.'/ (which
is perfect and of cardinality c). ut
This theorem was the final achievement in the classical program of showing that
a class of effectively defined sets has the perfect set property and therefore the
Continuum Hypothesis holds when restricted to that class of sets. There were early
attempts to incrementally extend such restricted forms of CH to larger and larger
collections of sets of reals—by showing that the collection in question has the
perfect set property. Of course, Bernstein showed that there are sets which do not
have the perfect set property, but such sets are not effectively defined, and so one
could still hope for larger collections of effectively defined sets to possess the perfect
set property.

The earliest major result along this line was the Cantor–Bendixson theorem
(Corollary 973): The class of closed sets has the perfect set property. Alexandrov
and Hausdorff extended the result to the class of Borel sets.

The last theorem says that the collection of analytic sets (which includes the
Borel sets) has the perfect set property. This is essentially the best result that can be
proved using the usual axioms of set theory, since without additional set-theoretic
assumptions it cannot be proved that the coanalytic sets have the perfect set property.
The classical program of extending the perfect set property for effectively defined
sets thus came to a stall, and mathematicians such as Lusin realized that a limit has
been reached.

Regularity Properties of Analytic Sets

The perfect set property is a regularity property of a set. Combining Corollary 1158
and Theorem 1160, we get the following classical result.
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Theorem 1162 (Regularity Properties of Analytic Sets). Every analytic set is
measurable, has the Baire property, and the perfect set property.

18.6 A Non-Borel Analytic Set

Coding Subsets of N� by Elements of the Cantor Set

We first need a special effective one-to-one enumeration of the set N� of all finite
strings of natural numbers.

Proposition 1163. There is an enumeration of N� without repetitions

N� D fu1;u2; : : : ;un;unC1; : : : g;

such that if um is a proper initial segment of un then m < n.

Proof. Let pn denote the n-th prime, so that p1 D 2, p2 D 3, etc.
First take u1 to be the empty sequence, i.e., put u1 WD ".
Next, for each n > 1 let k be the largest integer such that pk j n. Then n can be

written as

n D pn1�11 p
n2�1
2 � � �pnk�1�1

k�1 p
nk
k

for a unique sequence of k positive integers n1; n2; : : : ; nk 2 N. Now define un WD
n1n2 � � �nk .

It is now readily verified that the strings u1;u2; : : : form a one-to-one enumera-
tion of N� and satisfy the condition of the proposition. ut
We now fix, once and for all, an enumeration u1;u2; : : : ;un; : : : of N� as in the
above proposition:

Definition 1164. u1;u2; : : : ;un; : : : will denote the specific sequence of strings of
Proposition 1163 which enumerate N� without repetitions and satisfy the condition:
If um is a proper initial segment of un, thenm < n.

As usual (review Sect. 6.6), we identify each point x in the Cantor set K � R
with the (unique) infinite binary sequences hxni in f0; 1gN such that x DP1nD1 2xn3n .
Conversely, any hxni 2 f0; 1gN is mapped to x D P1

nD1
2xn
3n

. For x 2 K and
hxni 2 f0; 1gN, we will use the notation “x Ï hxni” to express this identification,
i.e., as an abbreviation for “x DP1nD1 2xn3n ”.

Definition 1165. For hxni 2 f0; 1gN and x 2 K, we write
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x Ï hxni , x D
1X

nD1

2xn

3n
.x 2 K; hxni 2 f0; 1gN/:

Definition 1166 (Coding subsets of N� by points of the Cantor set). For each x
in the Cantor set K with x Ï hxni 2 f0; 1gN, define the subset U.x/ � N� by:

U.x/ WD fun j xn D 1g:

We say that U.x/ is the subset of N� coded by x. More generally, if x is a member
of the Cantor set K and A � N� then we say that x codes A (or x is a code for A)
if A D U.x/.

So for x 2 K and A � N�, we have: x codes A, U.x/ D A, and thus we have a
natural bijection between the Cantor set K and P.N�/, the power set of N�, via the
one-to-one correspondence:

x  ! U.x/ .x 2 K; U.x/ � N�/:

Now consider the set of x 2 K for which U.x/ � N� is a tree over N:

Problem 1167. Show that the set fx 2 K j U.x/ is a treeg is closed, i.e., the set of
those members of the Cantor set which code trees is a closed set.

Problem 1168. Show that the following subsets of the Cantor set are Borel:

1. The set of codes for trees in which every node has a proper extension.
2. The set of codes for trees in which every node has at least two immediate

extensions.
3. The set of codes for well-founded trees having rank < 2.
4. The set of codes for well-founded trees of finite rank.
5. The set of codes for well-founded trees of rank < ˛, where ˛ < !1.

[Hint: Reviewing the proof of Theorem 1154 may help.]

Definition 1169. WF denotes the set of codes for well-founded trees, IF denotes
the set of codes for ill-founded (non-well-founded) trees, and WF˛ denotes the set
of codes of well-founded trees having rank < ˛.

In other words, if K denotes the Cantor set then

WF D fx 2 K j U.x/ is a well-founded treeg;
IF D fx 2 K j U.x/ is an ill-founded treeg; and

WF˛ D fx 2WF j rank.U.x// < ˛g:
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Recall that every countable well-founded tree has countable rank, so that

WF D
[

˛<!1

WF˛ :

Moreover, since for each countable ordinal ˛ there is a countable tree of rank > ˛,
it follows that WFXWF˛ is nonempty for all ˛ < !1. Also, we saw in the previous
problem that WF˛ is a Borel set for each countable ordinal ˛.

Definition 1170. We say that a Suslin system hSu j u 2 N�i dominates WF if for
all x 2WF, the set fu 2 N� j x 2 Sug is a well-founded tree of rank � rank.U.x//.
In other words, hSu j u 2 N�i dominates WF if for any x 2 WF˛C1XWF˛ , fu 2
N� j x 2 Sug is a well-founded tree of rank � ˛.

Note that if a Suslin system hSu j u 2 N�i dominates WF, then the analytic set AuSu

generated by it must be a subset of IF (where IF D the set of codes for ill-founded
trees). We now show that AuSu can actually be equal to IF for a suitably chosen
Suslin system hSu j u 2 N�i dominating WF, i.e., we can have IF D AuSu for some
hSu j u 2 N�i which dominates WF.

Proposition 1171. The set IF of codes for ill-founded trees is an analytic set.
Moreover, there is a Suslin system hSu j u 2 N�iwhich dominates WF and generates
IF (so that IF D AuSu).

Proof. To simplify notation, a finite sequence hn1; n2; : : : ; nki will be denoted
simply by the string n1n2 � � �nk . Note the mapping

hi; j i 7! 2j � i

is a natural effective bijection from f0; 1g�N onto N, and its inverse is the mapping

n 7! h Nn; Oni ;

where we are writing, for any n 2 N:

On WD b.nC 1/=2c; and Nn WD 2 On � n:

The above bijection also induces other bijections. For example, the mapping

n1n2 � � �nk 7! h Nn1 Nn2 � � � Nnk; On1 On2 � � � Onki

is an effective bijection from N� onto fhu; vi 2 f0; 1g� � N� j len.u/ D len.v/g.
Similarly, it also induces a natural effective bijection between NN and f0; 1gN�NN.
In this last bijection, an element of hyni 2 NN can be thought to be coding the pair
of sequences hh Nyni ; h Oynii, where the “left sequence” h Nyni 2 f0; 1gN is an infinite
binary sequence which can be used to code a tree, while the “right sequence” h Oyni 2
NN can be used code an infinite branch through that tree.
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Let hI Œu� j u 2 f0; 1g�i be the classical Cantor system that was defined in
Sect. 6.6 as:

I Œ"� WD Œ0; 1�; and for all u 2 f0; 1g�:
(
I Œua0� D left-third of I Œu�,

I Œua1� D right-third of I Œu�.

Thus for a real x in the Cantor set K with x Ï hxni, we have x 2 I Œn1n2 � � �nk� if
and only if xj D nj for j D 1; 2; : : : ; k.

Now define the required Suslin system S D hSu j u 2 N�i as follows:

Sn1n2���nk D

8
ˆ̂
<

ˆ̂
:

Ø if 9i; j � k .ui � uj ^ Nni D 0 ^ Nnj D 1/;
Ø if 9i; j � k .ui D On1 On2 � � � Onj ^ Nni D 0/;
I Œ Nn1 Nn2 � � � Nnk� otherwise,

where un, n D 1; 2; 3; : : : , is the enumeration of N� as in Definition 1164.

Note that if hnkik2N 2 NN and x 2 Tk Sn1n2���nk , then x is a member of the
Cantor set with x Ï h Nnkik2N, so x codes a tree (by the first clause of the definition
of S ), and On1 On2 � � � Onk � � � is an infinite branch through the tree U.x/ coded by x (by
the second clause). Conversely, if x Ï hxkik2N is in IF then the set U.x/ coded
by x is a tree containing some infinite branch, say m1m2 � � �mk � � � , which implies
x 2 Tk Sn1n2���nk where nk WD 2mk � xk . It follows that IF D AuSu.

Next, suppose that x Ï hxni codes a well-founded tree, i.e., x 2 WF. For each
u D m1m2 � � �mk 2 U.x/, define f .u/ WD n1n2 � � �nk where

nj D 2mj � xj ; j D 1; 2; : : : ; k:

For each u 2 U.x/, we have x 2 Sf.u/, and so f is a function from U.x/ to
fv j x 2 Svg, i.e., f WU.x/ ! fv j x 2 Svg. Also f is strictly increasing (i.e., if
u0 is a proper extension of u then f .u0/ is a proper extension of f .u/), and so by
Problem 819 the rank of U.x/ is at most the rank of fv j x 2 Svg. ut
Corollary 1172. WF is a coanalytic set.

The Boundedness Theorem

Theorem 1173. If B �WF is analytic then B �WF˛ for some ˛ < !1.

Proof. Let B � WF be analytic, and let hBu j u 2 N�i be a Suslin system with
B D AuBu. Let hSu j u 2 N�i be a Suslin system as in above proposition: That is,
hSu j u 2 N�i generates IF and dominates WF, so that for each x 2 WF, the rank
of U.x/ is at most that of the well-founded tree fu j x 2 Sug. Define a tree S˝B on
.N � N/� by the condition that
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hm1; n1i hm2; n2i � � � hmk; nki 2 S˝B , Sm1m2���mk \ Bn1n2���nk 6D Ø:

Then S˝B is well-founded since IF\B D Ø. Let ˛ be the rank of S˝B . Now for
each x 2 B , we can fix an element hnki 2 NN such that x 2 Bn1n2���nk for all k 2 N,
and then define fx W fu j x 2 Sug ! S˝B by setting

fx.m1m2 � � �mk/ D hm1; n1i hm2; n2i � � � hmk; nki :

Then fx is strictly increasing, so by Problem 819, rank.fu j x 2 Sug/ � ˛. But
then rank.U.x// � rank.fu j x 2 Sug/ � ˛, so x 2WF˛ . ut
If ˛ < !1 then WF˛ must be a proper subset of WF, since by Problem 857 there
are well-founded trees T � N� with rank.T / > ˛. Hence no analytic subset of WF
can equal WF, and we have the following immediate corollary.

Corollary 1174. WF is not analytic, and hence not Borel. Consequently, IF is an
analytic set which is not Borel.

Notice the effective nature of the proof that WF is not analytic: Each Suslin
system hBu j u 2 N�i effectively determines the tree S ˝B of the proof above,
which we regard as a subset of N� (by identifying .N � N/� with N� via any
fixed bijection between N � N and N). Moreover, for each tree T � N� let
TC WD f"g [ fh1; n1; n2; : : : ; nki j hn1; n2; : : : ; nki 2 T g, so that TC is well-
founded whenever T is well-founded, with rank.TC/ D rank.T / C 1. Finally, let
h.hBu j u 2 N�i/ be the code for the tree .S ˝B/C. We thus have an effective
function h which assigns to each Suslin system hBu j u 2 N�i the real number
h.hBu j u 2 N�i/ satisfying the following property:

For every Suslin system hBu j u 2 N�i,
if AuBu �WF then h.hBu j u 2 N�i/ 2WFXAuBu:

Note also that the set WF, being a subset of the Cantor set, has measure zero and is
nowhere dense, and therefore is Lebesgue measurable and has Baire property. Thus
WF is an explicitly defined example of a Lebesgue measurable set which is not a
Borel set.

Corollary 1174 is a modern version of a result of Lusin. It was originally stated
in terms of continued fractions, but can be reformulated as follows.

Theorem 1175 (Lusin). Let L be the set of all x Ï hxni in the Cantor set for
which there are positive integers n1 < n2 < � � � < nk < � � � such that for all k 2 N,
xnk D 1 and nk divides nkC1. Then L is analytic but not Borel.

Problem 1176. Prove Theorem 1175.

[Hint: First find an injection f WN� ! N such that u is an initial prefix of v, f .u/
divides f .v/. Problems 996, 1102, and 1123 can then help.]
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Problem 1177 (Borel Codes). Fix an enumeration hIn j n 2 Ni of all open inter-
vals with rational endpoints. For each well-founded tree T � N�, define the set
B.T / � R by recursion on rank.T / as follows:

B.T / WD
(S fIn j hni 2 T; n 2 Ng if rank.T / � 1,

RXT fB.T .hni// j n 2 Ng if rank.T / > 1.

Then E is Borel if and only if E D B.T / for some well-founded tree T � N�.

Problem 1178 (†0
˛ and …0

˛). Let B.T / be as above. For each ˛ < !1, put:

†0
˛ WD fB.T / j rank.T / � ˛g; and …0

˛ WD fRXE j E 2 †0
˛g:

Then †0
1 is the class of open sets, †0

2 the F� sets, †0
3 the Gı� sets, and so on.

Similarly, …0
1 D closed, …0

2 D Gı, …0
3 D F�ı , etc. Furthermore, we have: B D

fB.T / j T � N� is a well-founded tree g D S
˛<!1

†0
˛ D

S
˛<!1

…0
˛ .

One also defines †1
1 WD the class of analytic sets, …1

1 WD the coanalytic sets, and
�1
1 WD †1

1 \ …1
1 D sets which are both analytic and coanalytic. In this notation,

Suslin’s theorem is expressed by the equation �1
1 D B.

Borel and Analytic Sets in More General Spaces*

We have limited ourselves to R, but the concepts of Borel and analytic sets can
be readily extended to the higher dimensional spaces Rn. One can then show that
A � R is analytic if and only if A is the projection of a Borel set B � R2, i.e.,
A D fx 2 R j hx; yi 2 B for some yg for some Borel B .

In the higher dimensional spaces, one can obtain universal sets. For example,
there is a universal open G � R2 such that every open subset U � R is a section
of G, i.e., U D fx j hx; yi 2 Gg for some y. Such universal sets are available for
every level †0

˛, ˛ < !1, of the Borel hierarchy. A simple Cantor diagonalization
then shows that the Borel hierarchy “keeps producing new sets”: There are sets in
each level which do not belong to any lower level.

Similarly, there are universal analytic sets which easily produce non-Borel
analytic sets. Our proof to produce such sets was much harder, but had the benefit
of obtaining a highly effective form of the boundedness theorem.

Separable complete metric spaces (Polish spaces) provide an even more general
and natural setting for studying Borel and analytic sets. Some examples are the
Baire space NN, the Cantor space f0; 1gN, and the space C Œ0; 1� of continuous
functions on Œ0; 1� under uniform convergence. For example, in C Œ0; 1�, the set
of everywhere differentiable functions is coanalytic but not Borel (Mazurkiewicz),
and the set of functions which satisfy Rolle’s theorem is non-Borel analytic
(Woodin). More examples occur in various areas such as analysis and topology.
See [38, 45, 46, 55, 64].



Chapter 19
Postscript III: Measurability and Projective Sets

Abstract In this postscript, we describe two important classical problems of real
analysis that could not be settled using the usual axioms of set theory: (1) The
Measure Problem on extending Lebesgue measure to all of P.R/, and (2) Lusin’s
Problem on properties of PCA sets and projective sets. Ulam’s analysis of Problem 1
(Measure Problem) led to large cardinals known as measurable cardinals, which,
surprisingly enough, was shown by Solovay to have remarkable implications for
Problem 2 (Lusin’s Problem) as well. The independence results mentioned here
illustrate the prophetic nature of Lusin’s conviction that the problems of PCA and
projective sets are unsolvable. This also sets up the background for Postscript IV
which will describe how larger cardinals and determinacy essentially “solve” (!)
Lusin’s Problem.

19.1 The Measure Problem and Measurable Cardinals

Banach and other Polish mathematicians investigated the question whether there is
an extension of Lebesgue measure defined on all sets of reals. It is clear that the
question remains equivalent if we replace R by Œ0; 1�, so the problem can be stated
as follows.

The Measure Extension Problem (Lebesgue). Does there exist a countably
additive set function �WP.Œ0; 1� ! Œ0; 1� defined on all of P.Œ0; 1�/ which extends
Lebesgue measure?

Banach and Kuratowski showed that if the Continuum Hypothesis (CH) holds, then
the above measure extension problem has a negative answer.

Problem 1179. Let �WP.R/ ! Œ0;1� be set function which is countably additive
and such that for any bounded interval I , the measure �.I / equals the length of the
interval I . Then show that � extends Lebesgue measure.

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__19, © Springer Science+Business Media New York 2014
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We saw that Vitali sets and Bernstein sets cannot be Lebesgue measurable. The
crucial property of measure used in the Vitali proof is translation invariance, and
that in the Bernstein proof is outer regularity. Indeed:

Theorem 1180 (Vitali and Bernstein). Let � be any countably additive nonnega-
tive set function defined on a sigma algebra S � P.R/ containing all intervals and
with �.R/ > 0. Then the following hold.

1. If � is translation invariant and bounded on the intervals (�.Œa; b�/ <1 for all
a < b), then no Vitali set is in S.

2. If �.fxg/ D 0 for all x and � is outer regular (for all E 2 S and � > 0 there is
open G � E with �.GXE/ < �), then any E 2 S with �.E/ > 0 contains an
uncountable closed set, and so no Bernstein set is in S.

Proof. The proof of (1) is exactly same as the original proof for Lebesgue measure:
Let V be a Vitali set, so that .V C r/ \ .V C s/ D Ø for all rational r 6D s,
and

S
r2Q.V C r/ D R. If V were �-measurable (i.e., V 2 S) then we have

�.V / > 0, so there are a < b with �.V \ Œa; b�/ > 0. Put W WD V \ Œa; b�.
Then the hW C r j r 2 Q \ Œ0; 1�i is a family of pairwise disjoint �-measurable
sets all having constant measure �.W / > 0 and all contained in Œa; bC 1�, which is
impossible since �.Œa; b C 1�/ <1.

For (2), let E be �-measurable (i.e., E 2 S) with �.E/ > 0. Fix a < b such
that �.Œa; b� \ E/ > 0, and put A WD Œa; b� \ E , B WD Œa; b�XE so that �.A/C
�.B/ D �.Œa; b�/. Since �.A/ > 0 and � is outer regular, there is open G � B

with �.GXA/ < �.A/. Put F WD Œa; b�XG. Then F is closed with F � A.
Now Œa; b� � F [ .GXB/ [ B , so �.Œa; b�/ � �.F / C �.GXB/ C �.B/ <
�.F / C �.A/C �.B/ D �.F /C �.Œa; b�/, hence �.F / > 0. Since �.fxg/ D 0

for all x, so F must be uncountable. ut
By the Vitali–Bernstein results above, if there is an extension of Lebesgue measure
defined on all sets of reals, then such an extension can neither be translation invariant
nor be outer regular. But if we drop these two requirements then the measure
extension problem remains valid.

Banach generalized the problem further for measures defined on arbitrary sets
(instead of Œ0; 1�) which satisfy the continuity condition �.fpg/ D 0 for all p and
have a normalized value for the measure of the whole set:

The Measure Problem (Banach). Is there a nonempty set X and a countably
additive set function �WP.X/ ! Œ0; 1� defined on all of P.X/ such that �.X/ D 1

and �.fpg/ D 0 for all p 2 X?

We will refer to this problem of Banach as the (general) measure problem.
The Banach–Kuratowski result was vastly improved by Ulam who did a full

analysis of the measure problem. Among other things, Ulam showed that if the
size of the continuum is less than the first weakly inaccessible cardinal then there
is no extension of Lebesgue measure define on all sets of reals. Ulam’s work had
significant implications for future research in set theory, and we will now describe
his work in detail.
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Let us begin with some official definitions.

Definition 1181. By a total measure on a setX we mean a set function�WP.X/!
Œ0;1� defined on all subsets of X which is countably additive: If hEn j n 2 Ni is a
pairwise disjoint family of subsets of X then �

�S
n En

� DPn �.En/. We also say
that

1. � is nontrivial if �.X/ > 0 and �.Ø/ D 0.
2. � is finite if �.X/ <1.
3. � is continuous if �.fpg/ D 0 for all p 2 X .
4. � is a probability measure if �.X/ D 1.

We will focus our attention to nontrivial finite continuous total measures. Note that
by normalizing if necessary, the existence of such a measure is equivalent to the
existence of a continuous total probability measure—which is exactly what the
measure problem is asking.

Problem 1182. Let � be a finite total measure. If n 2 N then any family of pairwise
disjoint sets each of measure � 1

n
is finite. Any family of pairwise disjoint sets of

positive measure is countable.

Definition 1183 (Atomless and Two-Valued Measures). Let � be a total measure
on X . A � X is an atom for � if �.A/ > 0 and for all E � A either �.E/ D 0 or
�.AXE/ D 0. The measure � is atomless if there is no atom for �, and � is called
a two-valued measure if X itself is an atom for �.

An atomless measure is continuous and a two-valued measure is nontrivial.

Problem 1184. Let � be a finite atomless total measure onX . Show that for anyE
with �.E/ > 0 and any � > 0 there is S � E such that 0 < �.S/ < �.

[Hint: If �.E/ > 0, then there is E 0 � E with 0 < �.E 0/ � 1
2
�.E/. Repeat.]

Definition 1185 (Separating Families). If Ei � X for all i 2 I then hEi j i 2 I i
is called a separating family of subsets of X if for all p 6D q in X , there is i 2 I
such that x 2 Ei and y 62 Ei , or y 2 Ei and x 62 Ei .
For example the family of intervals h.�1; r� j r 2 Qi is a countable separating
family for R. This can be generalized as follows.

Problem 1186. For any cardinal �, any set of cardinality at most 2� has a
separating family of size at most �.

[Hint: A set X of size at most 2� can be regarded as a subset of f0; 1gA for some
A with jAj D �. Then hEa j a 2 Ai is a separating family for f0; 1gA where Ea WD
ff 2 f0; 1gA j f .a/ D 1g (a 2 A).]

Definition 1187 (�-complete measures). Let� be a total measure onX and � be a
cardinal.� is �-complete if for any family hEi j i 2 I i of subsets of X with jI j < �
and �.Ei / D 0 for all i 2 I we have �

�S
i2I Ei

� D 0.

Note that by definition (countable additivity), every measure is @1-complete.
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Proposition 1188. Let � be a continuous �-complete total measure on a set X . If
X has a separating family of size less than �, then � is atomless.

Proof. Suppose A � X is an atom for �, and fix a separating family hEi j i 2 I i
with jI j < �. Since A is an atom, for each i 2 I we have either �.A \ Ei/ D 0 or
�.AXEi/ D 0. Define:

Ai WD
(
A\ Ei if �.A\Ei/ D 0
AXEi otherwise.

Since �.Ai / D 0 for all i and � is �-complete, �
�S

i2I Ai
� D 0. The set AX�S

i2I Ai
�

has at most one element, so it has �-measure zero by continuity of �.
But then �.A/ D 0, contradicting the fact that A is an atom. ut
Since R has a countable separating family, this immediately gives:

Corollary 1189. Any continuous total measure on a set of size at most 2@0 is
atomless.

Thus if a continuous two-valued total measure exists, it can only be defined on
a set of cardinality larger than that of the continuum. We will see below that
the cardinality of such a set must actually be greater than or equal to a strongly
inaccessible cardinal!

A useful result about atomless measures is the following.

Proposition 1190. Let � be an atomless total measure on X . Then there is a
family hBu j u 2 f0; 1g�i of subsets of X indexed by nodes u of the binary tree
f0; 1g� satisfying: Bhi D X , Bu D Bua0 [ Bua1, Bua0 \ Bua1 D Ø, and
�.Bua0/ D �.Bua1/ D 1

2
�.Bu/.

Proof. The result easily follows from the following lemma.

Lemma. For any E � X there is S � E such that �.S/ D 1
2
�.E/.

Proof (Lemma). Call a family C of subsets of E to be adequate if each set in C

has positive measure, distinct sets in C are disjoint, and wheneverE1;E2; : : : ; En 2
C, we have �

�Sn
kD1 Ek

� � 1
2
�.E/. By Problem 1182, each adequate family is

countable. Now consider the collection of all adequate families partially ordered by
inclusion, and apply Zorn’s lemma to get a maximal adequate family C. Put S WDS

C. Then �.S/ � 1
2
�.E/ (this is easily seen by enumerating C without repetition

and applying countable additivity of �). We claim �.S/ D 1
2
�.E/. Otherwise we

could use Problem 1184 to choose A � .EXS/ with 0 < �.A/ < 1
2
�.E/� �.S/.

Then C[fAg would be an adequate family properly extending C, contradicting the
maximality of C and finishing the proof of the lemma. ut
Now construct the family hBu j u 2 f0; 1g�i as follows: Let Bhi WD X , and having
defined Bu for u 2 f0; 1g� use the lemma to choose S � Bu with �.S/ D 1

2
�.Bu/,

and then put Bua0 WD S and Bua1 WD BuXS . ut
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We now have a “converse” to Corollary 1189.

Corollary 1191. If there is a �-complete atomless total probability measure � on
a set X of cardinality �, then � 6 2@0 .

Proof. Fix hBu j u 2 f0; 1g�i as in Proposition 1190. For each a 2 f0; 1gN, letXa WDT
n2NBajn, so that �.Xa/ D 0, and X D SfXa j a 2 f0; 1gNg. If we had 2@0 < �,

then �-completeness would give �.X/ D 0, a contradiction. ut
Corollary 1192. Let � be a �-complete continuous total probability measure on a
set of cardinality �. Then � is atomless if and only if � 6 2@0 .

The following theorem shows that the original measure extension problem for
Lebesgue measure has little to do with the real numbers themselves, but is really
a problem of abstract set theory that depends only on the cardinal number of the
underlying set.

Theorem 1193 (Banach–Ulam). The following are equivalent:

1. There is a total measure �WP.Œ0; 1�/! Œ0; 1� extending Lebesgue measure.
2. There is a total measure �WP.R/! Œ0;1� extending Lebesgue measure.
3. There is a continuous total probability measure on a set of size 6 2@0 .
4. There is an atomless total probability measure on some set.

Proof. 1 ) 2: Assume that �WP.Œ0; 1�/ ! Œ0; 1� is a total measure which extends
Lebesgue measure on Œ0; 1�. Then �WP.R/ ! Œ0;1� is a total measure extending
Lebesgue measure on R, where, for each E � R, we define:

�.E/ WD
1X

nD�1
�.Œ0; 1� \ .E C n//:

2) 3: This is immediate: Restrict � to the unit interval.

3) 4: Immediate by Corollary 1189.

4) 1: Let�WP.X/! Œ0; 1� be an atomless total probability measure onX , and fix
hBu j u 2 f0; 1g�i as in Proposition 1190. Each x 2 X determines a unique infinite
branch fu 2 f0; 1g� j x 2 Bug through the binary tree f0; 1g� which can be identified
with an element bx D hbx.1/; bx.2/; : : : i 2 f0; 1gN. Now define hWX ! Œ0; 1� and
a total measure � on Œ0; 1� by:

h.x/ D
1X

nD1

bx.n/

2n
; �.E/ WD � �h�1ŒE�� :

� is easily verified to be a total measure on Œ0; 1� such that �
�
Œ k�1
2n
; k
2n
�
� D 1

2n
for

1 � k � 2n. Thus the total measure � agrees with Lebesgue measure at all dyadic
intervals, and so is an extension of Lebesgue measure on Œ0; 1�. ut
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We now show that if the measure problem has a solution, then such a solution
defined on a set of least possible cardinality � must be �-complete:

Proposition 1194. Let � be a continuous total probability measure on a setX with
least possible cardinality � (i.e., there is no continuous total probability measure on
any set of cardinality < �). Then � is �-complete.

Proof. Otherwise, we can get a well-ordered set I with jI j < � and a family
hEi j i 2 I i such that �.Ei/ D 0 for all i 2 I yet �.E/ > 0 where E WD S

i2I Ei .
Define f WE ! I by setting f .x/ WD the least i 2 I such that x 2 Ei . Define a
total probability measure � on I by

�.A/ WD �.f �1ŒA�/
�.E/

.A � I /:

� is continuous since for any i 2 I we have f �1Œfig� � Ei , and so �.fig/ D
�.f �1Œfig�/=�.E/ � �.Ei /=�.E/ D 0. So � is a continuous total probability
measure on the set I with jI j < �, contradicting the minimality of �. ut
Thus, as far as the existence of a solution to the measure problem is concerned,
without loss of generality we can and will assume that a continuous total probability
measure defined on set of cardinality � is �-complete.

Note that if � is continuous and �-complete, then �.S/ D 0 for any set S with
jS j < �. As an immediate corollary we have:

Corollary 1195. Let � be a continuous �-complete total probability measure on a
set X of cardinality �. Then � is a regular cardinal.

Proof. If X D S
i2I Xi with jI j < � and jXi j < � for all i 2 I , continuity and

�-completeness would give �.Xi / D 0 and so �.X/ D 0, a contradiction. ut
Theorem 1196 (Ulam). Let � be a continuous �-complete total probability mea-
sure on a set X of cardinality �. Then � is a limit cardinal. Consequently, � must be
weakly inaccessible.

Proof. (Cf. Theorem 1157.) If possible, let � D @˛C1 be a successor cardinal. Well-
order X with order type !˛C1, and fix a set Y with jY j D @˛. For each a 2 X , the
set PredX.a/ D fx 2 X j x < ag has cardinality 6 @˛ , so we can fix an injection
faWPredX.a/! Y . For each x 2 X and y 2 Y , put:

Ey
x WD fa 2 X j x < a and fa.x/ D yg (Ulam matrix).

Then for each y 2 Y , the sets
˝
E
y
x j x 2 X

˛
form a family of pairwise disjoint

subsets of X , so only countably many of these sets can have positive measure, and
hence (as X has uncountable cofinality) we can fix xy 2 X such that �

�
E
y
x

� D 0

for all x > xy . Since !�C1 is regular and jfxy j y 2 Y gj 6 @˛ , there is p 2 X with
p > xy for all y 2 Y . Then �

�
E
y
p

� D 0 for all y 2 Y , so by �-completeness of �,

�
�S

y2Y E
y
p

�
D 0. Hence the set fa 2 X j a > pg (being � S

y2Y E
y
p ) also has



19.1 The Measure Problem and Measurable Cardinals 351

�-measure 0. But by �-completeness of � again, the set fa 2 X j a � pg also has
�-measure 0, which is a contradiction since X cannot be the union of two sets of
�-measure 0. ut
Corollary 1197 (Ulam). If there is a total measure extending Lebesgue measure,
then there is a weakly inaccessible cardinal 6 2@0 .

Thus if Lebesgue measure has a total extension, then 2@0 > @1, 2@0 > @2, . . . ,
2@0 > @!1 , etc, and so the Continuum Hypothesis is severely violated.

Conversely, if no cardinal 6 2@0 is weakly inaccessible, e.g., if 2@0 6 @!1 , then
Lebesgue measure cannot have a total extension. Observe how this dramatically
improves the Banach–Kuratowski result, which derived the same conclusion assum-
ing the hypothesis 2@0 D @1.

Finally, we consider the case of two-valued measures. The following result
implies that a two-valued continuous total measure must be defined on a set of
cardinality greater than or equal to some strongly inaccessible cardinal:

Corollary 1198 (Tarski–Ulam). If a �-complete continuous total measure � on a
set X of cardinality � has an atom, then � is strongly inaccessible.

Proof. By Corollary 1195 � is regular, so it suffices to show that � is a strong limit:
If � < � 6 2� , then by Problem 1186 X has a separating family of size at most
� < �, so by Proposition 1188, � must be atomless, a contradiction. ut
Combining this with Corollary 1192 culminates in Ulam’s major result:

Corollary 1199 (Ulam). Let � be a continuous �-complete total probability mea-
sure on some set of cardinality �. Then we have:

(A) � 6 2@0 , � is atomless , � is not strongly inaccessible.

(B) � > 2@0 , � has an atom , � is strongly inaccessible.

Moreover, if any (and so all) of the conditions in (A) holds, then Lebesgue measure
has a total extension, and if any (and so all) of the conditions in (B) holds, then a
two-valued continuous total measure exists.

Note the dichotomy involved here: If � is as above, then either � 6 2@0 or � > 2@0
but not both; hence either all of the equivalent conditions in (A) hold, or else all of
the equivalent conditions in (B) hold, but not both.

Definition 1200 (Real Valued Measurable Cardinals). A cardinal � is called a
real valued measurable cardinal if there is a continuous �-complete total probability
measure on some set of cardinality �.

Thus a real valued measurable cardinal exists if and only if the measure problem has
a positive solution. Every real valued measurable cardinal is weakly inaccessible
(and so cannot be shown to exist using usual axioms).



352 19 Postscript III: Measurability and Projective Sets

Definition 1201 (Measurable Cardinals). A cardinal � is called a measurable
cardinal if there is a two-valued continuous �-complete total measure on some set
of cardinality �.

It follows that a cardinal is measurable if and only if it is real valued measurable and
strongly inaccessible. Measurable cardinals turn out to be “very large.” For example,
it can be shown that if � is measurable then � is not only weakly compact, but is
also preceded by �-many weakly compact cardinals.

Problem 1202. Every measurable cardinal has the tree property.

Ulam’s results can now be stated in terms of measurable cardinals as follows.

Corollary 1203 (Ulam).

(A) A total extension of Lebesgue measure exists
, there is a cardinal which is real valued measurable but not measurable
, there is a real valued measurable cardinal 6 2@0 .

(B) If Lebesgue measure has no total extension, then a nontrivial continuous total
measure on some set exists , there is a measurable cardinal.1

Ulam’s definitive work above was the first example of a natural problem of
classical mathematics whose solution is equivalent to a large cardinal hypothesis.
Measurable cardinals gave birth to the field of large cardinals, and have considerable
implications for several areas of mathematics. Theorem 1206 below is one such
application. Postscript IV (Chapter 22) describes surprising connections between
measurable cardinals and infinite games (Theorem 1316).

19.2 Projective Sets and Lusin’s Problem

In Chap. 18, we studied Borel and analytic sets. These sets are quite effectively
defined, and we saw that they enjoy many regularity properties, such as being
Lebesgue measurable, having the Baire property, and the perfect set property. The
subject area dealing with the study of such effectively defined sets is known as
descriptive set theory, which originated in the work of Borel, Baire, Lebesgue,
Lusin, Sierpinski, Suslin, Hausdorff, etc.

It can be shown that analytic sets are precisely the continuous images of Borel
sets. Using this idea, Lusin defined larger classes of sets called projective sets
as follows. The analytic sets were called A sets and the coanalytic sets CA sets.
Continuous images of coanalytic sets were called PCA sets, and complements of
PCA sets CPCA sets, and so on.

1Solovay proved that the relative consistency (with the usual axioms) of each of the alternatives of
Corollary 1203 implies the relative consistency of the other.



19.2 Projective Sets and Lusin’s Problem 353

In modern notation, introduced by Addison, the projective hierarchy is defined
recursively as follows.

Definition 1204 (The Projective Hierarchy). E is a †1
1 set if E is an analytic set,

and for each n 2 N,E is a †1
nC1 set ifE is the continuous image of the complement

of some †1
n set.

A …1
n set is one whose complement is a †1

n set, and a �1
n set is one which is both

†1
n and …1

n.
A set is projective if it is †1

n (or equivalently …1
n or �1

n) for some n.

Thus a †1
1 set is simply an analytic set, a …1

1 set is nothing but a coanalytic
set, and �1

1 sets are those which are both analytic and coanalytic. By Suslin’s
theorem, therefore, the �1

1 sets coincide with the class B of Borel sets. Also, we
have †1

n [ …1
n � �1

nC1 � †1
nC1 \ …1

nC1, so we have a hierarchy of ever more
comprehensive collection of sets. It can be shown that this hierarchy increases
properly as n increases, and so we get the following picture:

†1
1

¨ ¨
B D �1

1 ¨ ¨
…1
1

†1
2

¨ ¨
�1
2 ¨ ¨

…1
2

�1
3 : : : : : :

†1
n

¨ ¨
�1
n ¨ ¨

…1
n

�1
nC1 : : :

Thus †1
2 sets are precisely the PCA sets and …1

2 sets the CPCA sets, etc. The
projective sets are thus example of effectively defined sets and the total number
of projective sets is 2@0 . (The reason they are called “projective” is that they can
alternatively defined by taking projections, instead of continuous images, of sets in
higher dimensional Euclidean spaces.)

Classical descriptive set theory obtained the following major results, some of
which we proved in Chap. 18:

Theorem 1205 (Lusin–Sierpinski–Suslin).

1. Every †1
1 (analytic) set has the perfect set property, is Lebesgue measurable, and

have the Baire property.
2. Any two disjoint †1

1 sets can be separated by a �1
1 set, and any two disjoint …1

2

sets can be separated by a �1
2 set.

3. Any †1
2 set (PCA set) can expressed as a union of @1 Borel sets.

There were some other structural properties that were established about …1
1 and †1

2

sets (called reduction and uniformization that we have not covered), but little else
was known about the higher projective classes.

Lusin and other mathematicians tried to obtain similar properties for the next
levels of the projective hierarchy. They asked the following questions, which we
will collectively refer to as Lusin’s Problem:

Lusin’s Problem. What are the regularity and structural properties for the higher
level projective classes? In particular:
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1. Does every uncountable …1
1 (coanalytic) set contain a perfect subset?

2. Is every †1
2 set Lebesgue measurable?

3. Does every †1
2 set have Baire property?

Despite major efforts by all the leading descriptive set theorists of that period, none
of the above questions could be answered, and essentially nothing about the higher
level projective classes could be said.

This caused Lusin to remark that “one does not know and one will never know”
the answer to the above questions about projective sets, even though projective sets
are effectively defined and form an infinitesimally small part of P.R/. As we will
see, Lusin’s remark turned out to be prophetic.

Independence Results for Lusin’s Problem

The first results that partially explained why Lusin’s Problems could not be solved
came from Gödel, who showed [22] that one cannot prove that PCA (†1

2) sets are
Lebesgue measurable or that coanalytic sets have the perfect set property using the
usual axioms of set theory (provided these axioms are consistent). Gödel’s work
will be briefly discussed in Postscript IV. Much later, Solovay and Martin showed,
by extending Cohen’s technique of forcing, that one cannot disprove that PCA
sets Lebesgue measurable (or that they have Baire property). What they showed is
that MA+not-CH is relatively consistent with the usual axioms of set theory. Since
MA+not-CH combined with Sierpinski’s result Theorem 1205(3) implies that every
†1
2 set is Lebesgue measurable and has Baire property, the relatively consistency of

the latter also follows. Moreover, Solovay also showed, assuming the consistency
of existence of an inaccessible cardinal, that one can consistently assume that every
projective set is Lebesgue measurable, has the Baire property, and has the perfect
set property (see Theorem 1308).

The Gödel–Martin–Solovay independence results showed that all of Lusin’s
Problems are essentially unsolvable using the standard axioms of mathematics, thus
fully confirming Lusin’s prediction.

19.3 Measurable Cardinals and PCA (†1
2) Sets

Surprisingly, Solovay also showed that the existence of measurable cardinals does
resolve Lusin’s Problem, and in a desirable positive way:

Theorem 1206 (Solovay). If there is a measurable cardinal, then all †1
2 sets have

the perfect set property, are measurable, and have the Baire property.

After Ulam’s settlement of the measure problem, this was another remarkable
example of a large cardinal axiom resolving an unsolvable problem of classical
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mathematics, and raised the hopes of discovering large cardinal axioms which may
be added as new axioms of mathematics. At the same time, Silver showed that
Lusin’s Problems for projective classes of levels higher than †1

2 cannot be resolved
using measurable cardinals alone.

Solovay, however, conjectured that stronger large cardinal axioms might resolve
the problems for the projective sets, and the search for such large cardinals—or
other possible axioms—became one of the greatest problems of modern descriptive
set theory. Outstanding work by many people culminated in a truly remarkable
resolution of the problem. But this is a topic for Postscript IV, where we will discuss
connections between large cardinals and determinacy of infinite games.

Goldring [25] is a very accessible survey of the topics of this postscript.



Part IV
Paradoxes and Axioms



Introduction to Part IV

In Parts I–III of this book we developed cardinals, order, ordinals, and real point set
theory, and also indicated how these relate to some classical areas of mathematics.
We carried out that development in an informal and naive way as we would do for
any standard area of mathematics such as geometry, exploring structural details and
obtaining views and intuitions about the subject matter. In this sense, Parts I–III of
the book were purely mathematical.

The naive theory of sets, however, can lead to contradictions unless suitable
restrictions are placed on the simple principles forming the basis of the theory. This
requires a careful scrutiny of the logical foundations of set theory. To stay focused
on the mathematical aspects of our topics, we had so far avoided getting into this
metamathematical problem.

In this part, we will give an overview of such logical and foundational matters,
starting with some famous contradictions of naive set theory and two early responses
to them (Chapter 20). Our coverage will necessarily be very elementary and
introductory, and we will refer the reader to more comprehensive works for further
details.

In Chap. 21, we briefly present Zermelo–Fraenkel set theory (ZF) and the
von Neumann ordinals, providing only bare outlines for the formal development
of some of the basic notions of set theory such as order and cardinals. However, the
reader who has mastered the theories of numbers, cardinals, ordinals, and the real
continuum developed in Parts I–III, will find the re-development of all these theories
within the formal framework of ZF a relatively routine matter, and we encourage the
reader to take up this project of replicating the results of Parts I–III formally in ZF.

Finally, the postscript to this part (Chapter 22) provides glimpses into some
landmark results of set theory of the past 75 years.
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Chapter 20
Paradoxes and Resolutions

Abstract Unless carefully restricted, the informal naive set theory that we have so
far been using can produce certain contradictions, known as set theoretic paradoxes.
These contradictions generally result from consideration of certain very large sets
whose existence can be derived from the unrestricted comprehension principle.
This chapter discusses three such classical paradoxes due to Burali-Forti, Cantor,
and Russell, which showed the untenability of naive set theory and the need for
more careful formalizations. The two earliest responses to the paradoxes, namely
Russell’s theory of types and Zermelo’s axiomatization of set theory, are discussed.

20.1 Some Set Theoretic Paradoxes

The Burali-Forti Paradox

One of the oldest paradoxes of set theory is the Burali-Forti paradox. It shows that
a contradiction can be derived from the assumption that there is a set containing all
ordinals.

Proposition 1207 (Burali-Forti’s Paradox). The assumption that there is a set of
all ordinals leads to a contradiction.

Proof. If there were a set ˝ consisting of all ordinals, it will be an initial set of
ordinals, so we will have ˝ D fˇ j ˇ < ˛g where ˛ is the order type of ˝ (recall
that any set of ordinals is well-ordered). Since ˝ contains all ordinals, we will have
˛ 2 ˝ D fˇ jˇ < ˛g, whence ˛ < ˛, a contradiction. ut
When viewed as a proof by contradiction, this result can be put in the following
form: The set of all ordinals does not exist.

The above proof is so simple and clear that it already forces us to doubt
unrestricted comprehension. By unrestricted comprehension there is a set of all

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
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ordinals, and by Burali-Forti’s theorem, there is no set of all ordinals. Since the proof
of Burali-Forti’s theorem is highly rigorous while the unrestricted comprehension
axiom of uses the vague notion of “arbitrary property applicable to any object
whatsoever,” this causes us to question the axiom.

The Cantor–Russell Paradoxes

Cantor’s paradox result from the assumption that there is a set containing all sets:
By Cantor’s theorem there is no largest cardinal since 2� > � for any cardinal �, but
on the other hand the cardinality of the set of all sets must be the largest cardinal.

Proposition 1208 (Cantor’s Paradox). The assumption that there is set contain-
ing all sets leads to a contradiction.

Proof. If there were a set V containing all sets, we would have P.V / � V , hence
jP.V /j � jV j, contradicting Cantor’s theorem that jP.V /j > jV j. ut
When viewed as a proof by contradiction, Cantor’s paradox can be put in the
following form: There is no set containing all sets, or, as famously paraphrased
by Halmos: “Nothing contains everything.”

The following problem gives a result closely related to Cantor’s paradox.

Problem 1209. The assumption that there is a set containing all cardinal numbers
leads to a contradiction.

[Hint: Use Hartogs’ theorem and the fact that for any ordinal ˛ there is ˇ > ˛ with
!ˇ D ˇ.]

Cantor’s paradox is based on Cantor’s theorem, which we present again in the
following “diagonalization” form: For any function F with domain X , there is a
member of P.X/ which is not in ran.F /.

Theorem 1210 (Cantor Diagonalization). If X is any set and F is any function
with domainX , then there is a subset of X not in the range of F .

Proof. Take the Cantor diagonal set for the function F , namely:

D WD fx 2 X j x … F.x/g:

If we had D D F.a/ for some a 2 X , then we get a 2 D , a 62 F.a/, a 62 D,
which is a contradiction. ut
The famous Russell’s paradox is closely related to Cantor’s theorem above. In fact,
as Russell comments in [69, p. 58], and as we will see now, it is obtained as a special
case when the function F is taken to be the identity function on the set of all sets.
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Given any set X , the Russell set RX for X is defined to be the Cantor diagonal
set for the identity function on X :

RX WD fx 2 X j x … xg:

Hence, by Cantor’s theorem in the form stated above, for any set X , its Russell set
RX cannot be in the range of the identity function on X , i.e., RX is not a member
of X .1

Proposition 1211 (Property of the Russell Set). For any set X , its Russell set
RX WD fx 2 X j x 62 xg is not a member of X .

Call a set x to be normal if x … x (most sets encountered in practice are normal).
Thus the Russell set RX of X consists of all normal members of X . Russell’s
paradox is obtained by taking the set R of all normal sets; in other words, R is
the Russell set of the set of all sets, i.e., R D RV , where V is the set of all sets.

Proposition 1212 (Russell’s Paradox). The assumption that there is a set R
consisting of all normal sets leads to a contradiction.2

Proof. We have R 2 R, R is normal, R … R. ut
Thus Russell’s Paradox, obtained by applying Cantor’s theorem to the identify
function defined on the set of all sets, results in a contradiction of a strikingly
simple form. A popular version of Russell’s paradox talks of a certain barber in
a certain town who shaves those and only those who do not shave themselves. We
then get a contradiction since the assumption that the barber shaves himself leads to
its negation and vice versa. Viewed as a proof by contradiction, this means that such
a barber cannot exist.

Impact on the Frege–Russell Logicist Program

The goal of the original logicist program—pioneered by Frege during 1879–1903
and championed by Russell—was to develop mathematics purely from logic using
the central notion of the extension of a property (or of a concept). Roughly speaking,
the extension of a propertyP is what we would now call the set of all objects having
the property P , embodied in the axiom of extensionality: If two properties P and
Q satisfy the condition that x has property P if and only if x has property Q for
all objects x, then P and Q have the same extension (i.e., they determine the same
set). In addition to the axiom of extensionality, the logicist system used the axiom of

1This is equivalent to saying X[fRXg is a proper superset ofX . Under the Axiom of Foundation,
RX equals X itself, and so the Axiom of Foundation implies that the set X [ fXg, called the
successor set of X , is a strictly larger set.
2The paradox was also discovered independently by Zermelo (unpublished).
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unlimited comprehension, which says that every property P has an extension (i.e.,
the set of all objects satisfying P exists). The logical deductive system based on
these two axioms—which we will call the naive Frege–Russell logicist system—
was used to develop significant bodies of mathematics (such as arithmetic and the
theory of cardinals), until Russell discovered his paradox in 1901 showing that the
naive Frege–Russell logicist system was inconsistent and therefore must be modified
in some way or other. Remarkably, Russell reported his paradox in a famous letter
to Frege in 1902, precisely when the second and final volume of Frege’s completed
development of the system was in press for publication.

Russell’s paradox is perhaps the simplest one among all set-theoretic para-
doxes. It can be quickly derived from unrestricted comprehension using the
set-membership relation alone, without any need for using more advanced defined
notions such as ordinals, cardinals, or the power set. In addition to the abandonment
of the original naive Frege–Russell logicist system, it led to the permanent prohibi-
tion of the use of the unrestricted comprehension principle, and thus to revisions of
the methods for new set formation.

Resolution of the Paradoxes

The set theoretic paradoxes almost invariably resulted from consideration of very
large collections such as the collection of all sets or the collection of all ordinal
numbers. The axiom of extensionality was uncontroversial, but as pointed out above,
unlimited comprehension was highly suspect, and it soon became clear that this
axiom had to be modified.

It was also clear that the informal nature of the naive set theory of Cantor and
Frege carried risk of generating contradictions, and if contradictions were to be
avoided then a more careful formalization of the principles of set theory was needed.
Several such formal approaches developed over the years, and we now discuss the
two earliest responses to the paradoxes, the first by Russell himself, and the second
by Zermelo, the other mathematician who had independently encountered Russell’s
paradox.

20.2 Russell’s Theory of Types

The first proposed way to address the paradoxes was introduced by Russell himself
in his 1903 book The Principles of Mathematics [66]. Russell called his solution the
Theory of Types, and developed and extended it fully in 1908 [67] and 1910 [81].
The theory of types was later modified and considerably simplified by Ramsey,
Carnap, Tarski, Gödel, Church, and Quine. We will give a very rough description of
type theory in its simplest form.
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The theory of types classifies objects into a hierarchy according to their logical
type. Objects which are not sets, called individuals, or atoms, have type 0. Sets
consisting of individuals alone are of type 1. Sets consisting of sets of type 1, i.e.,
sets of sets of individuals, are of type 2, and so on. In general, the set of objects of
type nC1 is simply the “power set” of the set of objects of type n. The main principle
of type theory is that the expression “x 2 y” cannot be meaningful unless we have
type of y D 1C type of x. Thus the expression “x 2 x,” required in formulating
Russell’s paradox, is simply meaningless. Moreover, a set of type n C 1 can only
contain objects of type n, and so objects of distinct types cannot be mixed. It follows
that the collection of all sets is also meaningless. This results in a resolution of
Russell’s paradox and other paradoxes involving the set of all sets such as Cantor’s
paradox. One immediate oddity of this theory, however, is the “duplication of the
empty set” across various types: There is an empty set of type 1, an empty set of
type 2, etc. This may appear to be a violation of the axiom of extensionality, but
note that in type theory there is a separate axiom of extensionality for each type!

Principia Mathematica

Russell and Whitehead’s Principia Mathematica (or PM), published in three
volumes [81], was a revival of the original naive Frege–Russell logicist program
of developing mathematics deductively from a few “logical” axioms. Using a more
careful revision (based now on type theory) of the axioms of the naive system, it
made a heroic attempt to demonstrate that mathematics is an extension of logic.
More specifically, it deductively developed portions of mathematics starting from
axioms which they claimed to be principles of logic itself.

Principia Mathematica served as a reference point for the fact that mathematics
can be deductively developed from a few axioms, logical or not, and had a
tremendous impact on the development of set theory and logic in the subsequent
years. However, while it succeeded in demonstrating that portions of mathematics
can be developed from a few axioms, criticisms were raised that it failed in its
logicist program. Some of the axioms used did not appear to be logical. The axiom
of infinity, which states that there is an infinite set, appears more quantitative
than logical. Most significantly, PM needed a special axiom called the axiom of
reducibility, which did not appear to have any logical or intuitive justification at all,
and was rejected even by other supporters of the logicist program.

Because of the complexities involved and the resulting need for the axiom of
reducibility which had little justification, the form of type theory in PM, known as
ramified type theory, never gained acceptability. Later work by Ramsey, Carnap,
Tarski, Gödel, Church, Quine,3 etc., resulted in a more satisfactory simple theory

3Type theory also lurks behind Quine’s New Foundations (discussed in Sect. 21.9), where type-
distinction plays a basic role in forming sets via comprehension.
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of types, but type theory itself is not popular for the deductive development of
mathematics. Far more successful has been Zermelo’s axiomatic formulation of
1908, where all kinds of sets, including those having distinct hierarchical ranks,
can be freely mixed.

Although not popular in axiomatic developments of mathematics, type theory,
nevertheless, has had far reaching implications for other areas such as logic,
philosophy, and computability. For example, with its close relation with Church’s
lambda-calculus, type theory today finds significant applications in modern com-
puter science.

20.3 Zermelo’s Axiomatization

In 1908, Zermelo [85] introduced a completely different set of axioms in which the
objects of the theory form a single domain consisting of all sets (and possibly also
individuals, or atoms, which are not sets). Unlike type theory, there is no longer
an a priori classification of objects into individuals, sets, sets of sets, etc. Instead,
all these objects (having “mixed types”) are put together in the single domain and
are regarded to be of the same sort to start with. Along with this domain of all
sets the only other primitive notion used in Zermelo’s system is the relation of set
membership, where x has this relation to y if and only if x 2 y.

Zermelo’s system was the first formulation of axiomatic set theory in the modern
sense of the term. With its single domain of objects containing sets of different types
freely mixed together, it has a considerably simpler setup than Russell’s type theory.

A most important feature of Zermelo’s system is the removal of the unrestricted
comprehension principle. Instead of forming sets defined by arbitrary properties,
Zermelo’s system limits comprehension by only allowing formation of subsets of
a set which is already known to exist. This restricted axiom of comprehension
says that given a set A and a property P , we can form the subset fx j x 2
A and P.x/g of A. This subset is said to be separated out of A via the property P .
Thus Zermelo’s axiom of restricted comprehension is also known as the axiom of
separation (Aussonderungsaxiom) or as the axiom of subsets. This limited principle
of comprehension prevents the entire domain of all sets from being a set itself,
avoiding contradictions involving “the set of all sets.”

Of course, with such a limited form of comprehension, additional axioms are
needed to form new sets. One such axiom allows to form the power set of any
given set. Even from assuming only the existence of the empty set, one can iterate
the formation of power sets to get more and more sets, giving us a rich supply of
finite sets. Thus, another important feature of Zermelo’s system is that it forms new
sets by building them from ground up in stages, rather than by sweeping uses of
comprehension. There are other axioms for forming new sets, such as the axiom of
union, which states that we can form the union of the members of any given set
(of sets). Since we will discuss these and other axioms in more detail in Chap. 21,
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we finish this short discussion of Zermelo’s axiomatization with some comments on
subsequent modifications of Zermelo’s system.

Zermelo’s system was later improved by Skolem (who made the vague notion of
“definite property” precise by replacing it with the formal syntactic notion of “first-
order formula”), and was made more comprehensive by Fraenkel (who introduced
the axiom of replacement necessary for the development of the theory of the
transfinite). The enlarged system which is now standard is sometimes called the
Zermelo–Skolem–Fraenkel system, but we will follow current usage and call it the
Zermelo–Fraenkel system, abbreviated as ZF set theory. This notation assumes that
the axiom of choice is not included in ZF, and ZF augmented with the axiom of
choice is called ZFC, or Zermelo–Fraenkel set theory with Choice.

ZFC has turned out to be the most popular formulation of axiomatic set theory,
and has become the standard axiomatization of set theory today. It is a very powerful
(perhaps too powerful) system certainly capable of providing a framework for all of
mathematics: All mathematical statements can be expressed in its language and all
theorems of classical mathematics can be proved in ZFC.

Van Heijenoort [78, p. 199] illustrates the striking difference between the two
early responses to the paradoxes by contrasting the pragmatic foundation for math-
ematics provided by Zermelo’s axiomatization with the wide logico-philosophical
ramifications of Russell’s type theory.



Chapter 21
Zermelo–Fraenkel System and von Neumann
Ordinals

Abstract In this chapter we present the Zermelo–Fraenkel axiom system which is
an enhancement of Zermelo’s 1908 system by Fraenkel, Skolem and others, as well
as the von Neumann ordinals, which assigns, in a remarkably simple, constructive,
and canonical fashion, a unique representative well-order to each ordinal number.

21.1 The Formal Language of ZF

For a precise formulation of the ZF axioms we first need to formalize its language,
which we call the language of ZF set theory.

Expressions in the language of ZF set theory will be certain strings of a specific
group of symbols.

First we will need symbols for variables, for which we will use letters such as
a; b; c; : : : ; u; v;w; x; y; z, etc. Next we need logical connectives, namely: (not),_
(or), ^ (and),! (implies), and$ (if and only if). The other type of logical symbol
we will need are the quantifiers, namely8 (for all) and 9 (there exists). For grouping
expressions, we will also use the two special symbols “.” and “/” (parentheses).

The above types of symbols are called logical symbols, and widely used in
mathematical contexts.

The most important symbol—the only nonlogical primitive symbol in the
language of ZF set theory—will be the symbol “2,” representing set membership.

Using “2,” we can form atomic formulas such as x 2 y, u 2 u, etc, where
the letters are used for variables ranging over sets. By combining atomic formulas
using connectives and using quantifiers over them, we can form general formulas of
arbitrary complexity such as:

u 62 u; 8y.y 62 x/; 8z.z 2 x ! z 2 y/; etc.

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
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Formally, a ZF formula is any expression (i.e., a string consisting of the above types
of symbols ) that can be built starting from the atomic formulas using a finite number
of applications of the following formation rules:

1. Any expression of the form “u 2 v” is a ZF-formula, where u and v are variable
letters (any atomic formula is a ZF-formula)

2. If ˛; ˇ are ZF formulas and v is a variable letter, then each of the following is a
ZF formula:

:.˛/; .˛/ ^ .ˇ/; .˛/ _ .ˇ/; .˛/! .ˇ/; .˛/$ .ˇ/; 8v.˛/; 9v.˛/:

The occurrence of a variable within a formula becomes bound if it is quantified
by some quantifier (more precisely if it falls under the scope of a quantifier). The
occurrence of a variable which is not quantified by some quantifier of the formula
is called free. For example, in the formula below (which says “x is a subset of y”):

8z.z 2 x ! z 2 y/;

all occurrences of the variable z are bound, while the variables x and y are free. In
the formula

9y.y 2 x/ ^ 8x.x 62 x/;

the first occurrence of x is free, but all other occurrences are bound. Thus a variable
may be both free and bound in a formula.

This language is used to formulate ZF set theory as a first order theory, in which
all variables range over—and so all quantification are limited to—a single domain
of objects consisting of pure sets. Thus in ZF, ‘8x.: : : /’ is interpreted as “for all
sets x, . . . ,” ‘9x.: : : /’ as “for some set x, . . . ,” and ‘x 2 y’ as “set x is a member of
set y.”

With this overview of the language of ZF set theory, we now turn to the ZF
axioms.

21.2 The First Six ZF Axioms

ZF 1 (Axiom of Extensionality). 8x8y.8z.z 2 x $ z 2 y/! x D y/.
ZF 2 (Axiom of Empty Set). There exists a set which has no members:
9x8y.y 62x/.
By extensionality, there is a unique set which has no members, and this set (the
empty set) is denoted as usual by Ø.
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At this point, we can define in ZF the subset relation as:

x � y $ 8z.z 2 x ! z 2 y/;

and basic properties of the subset relation can be established in ZF: For all a; b; c
we have Ø � a, a � a, and a � b and b � c ) a � c.

One crucial axiom of ZF is the axiom of separation or the axiom of restricted
comprehension (Zermelo’s Aussonderungsaxiom). It is sometimes called the axiom
of subsets since the axiom states that, given a set a and a “definite property” P , we
can form the subset of a defined by

fx j x 2 a and P.x/g (Restricted Comprehension):

This is thus an axiom scheme, that, is an infinite list of axioms, one for each definite
property P .

Contrast this with the old naive unrestricted comprehension which allows
forming a set

fx j P.x/g (Unrestricted Comprehension)

for any property P , without requiring that the elements of the set being formed be
restricted within some set a already known to exist. This allowed the formation of
sets like “the set of all sets” by taking P.x/ to be ‘x D x’, or “Russell’s set of
all sets not containing themselves” by taking P.x/ to be ‘x 62 x’, which lead to
paradoxes. Separation (restricted comprehension) is designed to avoid such large
problematic sets, see Theorem 1213 below.

The term “definite property” was used in Zermelo’s original paper of 1908, but
it was not precisely defined. One of Skolem’s many important contributions to
axiomatic set theory was to make the vague notion of “property” precise: In each
instance of the separation scheme, the expression “P.x/” is taken to be any formal
ZF formula of set theory in which x occurs free.

We will say that P is a ZF property if P is a ZF formula with a specified free
variable, and we use the notation P D P.x/ to indicated that the specified free
variable is x. If P is a ZF property, then we will also use the notationP.a/ to denote
the formula which results from P when the specified free variable is replaced by a.

More generally, other variables may occur free as well in the defining property
P , and these variables are then called parameters, as indicated in the notation P D
P.x; y1; y2; : : : ; yn/. For example,

fx j x 2 a and P.x; y1; y2; : : : ; yn/g
is the subset of a defined by the property P D P.x; y1; y2; : : : ; yn/ with the
parameters y1; y2; : : : ; yn. Thus we have the following precise formulation of the
separation axiom scheme due to Skolem.
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ZF 3 (Axiom Scheme of Separation). If '.x; y1; y2; : : : ; yn/ is a ZF formula in
which the free variables are among x; y1; y2; : : : ; yn, then the following is an
instance of the separation scheme:

8y18y2 � � � 8yn8a9b8x.x 2 b $ x 2 a ^ '.x; y1; y2; : : : ; yn//:

With just these three axioms, we can now turn Russell’s paradox into a theorem of
ZF which says that there is no set containing all sets:

Theorem 1213 (ZF). :9x8y.y 2 x/.
The proof is left as an exercise.

The only set whose existence can be proved with these three axioms is the empty
set, and so we clearly need more axioms for building new sets. Two more axioms
are:

ZF 4 (Axiom of Power Set). 8x9y8z.z 2 y $ z � x/: For any set X , there is a
set y consisting precisely of the subsets of x.

ZF 5 (Axiom of Union). 8x9y8z.z 2 y $ 9w.w 2 x ^ z 2 w//: For any set x,
there is a set y consisting precisely of the members of members of x.

By extensionality, the set y in the power set axiom is uniquely determined by x, and
so we can define the usual notion of power set. We let, as usual, P.x/ denote the
power set of x. Similarly the set y in the union axiom is uniquely determined by x,
and will be denoted using the usual notation [x.

We will freely use the notations P.x/ and [x, but note that these defined notions
are not part of the ZF language and can be formally eliminated. Thus ‘y D P.x/’ is
expressed in the language of ZF set theory as ‘8z.z 2 y $ 8u.u 2 z ! u 2 x/)’,
and ‘y D [x’ as ‘8z.z 2 y $ 9u.z 2 u ^ u 2 x//’.

Another defined notion is that of the singleton fxg of x, which is defined formally
as y D fxg $ 8z.z 2 y $ z D x/.
Problem 1214. Formulate and prove in ZF the assertion that for any a, the
singleton set fag exists and is unique.

[Hint: Note that fag � P.a/, and then use separation.]
Starting from the empty set, we can iterate the power set operation to get larger

and larger sets, as in

Ø � P.Ø/ � P.P.Ø// � � � �

Let us put:

V0 WD Ø; and VnC1 WD P.Vn/:

Note that if Vn has m elements then VnC1 has 2m elements.
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Problem 1215. List all elements of V4.

From the axioms introduced so far, one can derive that each set Vn (and in fact every
member of Vn) exists, but the infinite collection[nVn itself cannot be shown to exist
without using the axioms of Replacement and Infinity to be introduced later.

Another useful axiom is the Axiom of Unordered Pairs also called the Axiom of
Pairing, which says that for any x; y we can form the unordered pair fx; yg. This
amounts to 8x8y9z.z D fx; yg/, which in turn can be expressed as a ZF formula
by replacing z D fx; yg with ‘8w.w 2 z$ w D x _ w D y/’:
ZF 6 (Axiom of Unordered Pairs). 8x8y9z8w.w 2 z$ w D x _ w D y/.
Problem 1216. Using the ZF axioms introduced so far, show that for any a; b; c
the unordered triple fa; b; cg exists. That is, it is a theorem of ZF that

8a8b8c9z8w.w 2 z$ w D a _ w D b _ w D c/:

We now have enough axioms to develop most of the important notions of set theory,
although infinite sets cannot yet be shown to exist. Using Pairing and Union, we can
define a [ b simply as [fa; bg, while a \ b and aXb can be defined more simply
using Separation (once again, these defined notions can be formally eliminated).

Definition 1217. We define in ZF:

a [ b WD [fa; bg; a \ b WD fx 2 a j x 2 bg; aXb WD fx 2 a j x 62 bg;

Repeatedly using Pairing shows that for each a; b the set ffag; fa; bgg exists and is
unique, which gives the definition of ordered pair due to Kuratowski:

Definition 1218 (Ordered Pair). hu; vi WD ffug; fu; vgg.
Problem 1219. Prove that this is an acceptable definition of ordered pair, i.e., show
in ZF that ha; bi D hc; d i ! .a D c ^ b D d/.
As in the case of the singleton and the unordered pair, the defined notion of ordered
pair can be eliminated in the sense that “x D hu; vi” can be replaced by a pure ZF
formula.

Note that ha; bi 2 P.P.fa; bg//, so we can use Separation to define the Cartesian
product of two sets.

Definition 1220. a � b WD fx 2 P.P.a [ b// j 9u; v.u 2 a ^ v 2 b ^ x D hu; vi/g.
Now we can define relations, functions, domains, ranges, equinumerosity between
sets, equivalence relations and partitions, order relations, order-isomorphisms, well-
orders, etc., using the ZF axioms we have so far.

Definition 1221. The following notions can be formally defined in ZF:

1. R is a relation$ 9a9b.R � a � b/
2. R�1 WD fhy; xi 2 P.P.[ [R// j hx; yi 2 Rg.
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3. R ıR WD fhx; zi 2 P.P.[[ R// j 9y.hx; yi 2 R ^ hy; zi 2 R/g.
4. dom.R/ WD fx 2 [ [R j 9y.hx; yi 2 R/g.
5. ran.R/ WD dom.R�1/.
6. R is symmetric$ R�1 � R.
7. R is asymmetric$ R�1 \R D Ø.
8. R is transitive$ R ıR � R.
9. �A WD fz 2 A � A j 9x 2 A.z D hx; xi/g.

10. R is a relation on A$ R � A � A.
11. R is reflexive on A$ R is a relation on A ^ �A � R.
12. R is irreflexive on A$ R is a relation on A ^ �A \R D Ø.
13. R is connected on A$ A � A � R [R�1 [�A.
14. E is an equivalence relation on A$ E is symmetric, transitive, and reflexive

on A.
15. R orders A$ R is asymmetric, transitive, and connected on A.
16. R well-orders A $ R orders A and 8B � A.B 6D Ø ! 9b 2 B.:9c 2

B.hc; bi 2 R///.
17. f is a function$ f is a relation ^8x; y; z.hx; yi 2 f ^hx; zi 2 f ! y D z/.
18. f is one-one$ both f and f �1 are functions.
19. A � B $ 9f .f is one-one^ dom.f / D A ^ ran.f / D B/.
20. hA;Ri Š hB; Si $ R � A�A ^ S � B�B ^ 9f .f is one-one^ dom.f / D

A ^ ran.f / D B ^ 8 hu; vi ; hx; yi 2 f .hu; xi 2 R$ hv; yi 2 S//.
Problem 1222. Using the axioms of ZF introduced so far, prove in ZF the principle
of transfinite induction for well-orders formalized as follows: If R well-orders A,
B � A, and

8x 2 A..8y 2 A.hy; xi 2 R! y 2 B//! x 2 B/;
then B D A.

Problem 1223. Formulate and prove in ZF the comparability theorem for well-
orders that was proved informally in Theorem 636: For any two well-orders one
must be isomorphic to an initial segment of the other. Use only the axioms of ZF
that have already been introduced,

More basic results as above about sets and orders that were proved informally in
the initial parts of this book can be replicated formally in ZF using the axioms we
have so far. We leave it to the reader to pursue this project: Find and prove (in ZF)
as many basic results as possible from the axioms of ZF we have introduced so far,
while defining and developing (formally in ZF) appropriate notions necessary for
those results.

Define a well-order X to be an infinite well-order if either X or some initial
segment of X is a nonempty order without a greatest element. Recall that a set is
Dedekind infinite (or reflexive) if there is a one-to-one mapping of the set into one
of its proper subsets. Here are the formal versions of these notions in ZF.
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Definition 1224 (ZF). hA;Ri is an infinite well-order if and only if

R well-orders A ^ A 6D Ø ^ �
Œ8x 2 A 9y 2 A.hx; yi 2 R/�

_ Œ9z 2 A.8x 2 A.hx:zi 2 R! 9y 2 A.hx; yi 2 R ^ hy; zi 2 R///��:

A is Dedekind infinite (or reflexive) if and only if

9f .f is a bijection ^ dom.f / D A ^ ran.f / � A ^ AXran.f / 6D Ø/:

Problem 1225. From the ZF axioms introduced so far, show that there is an infinite
well-order if and only if there is a Dedekind infinite (reflexive) set.

The development of ZF so far should already illustrate the ZF-paradigm “every-
thing is a set”: In ZF, the only type of objects that exist are sets. Ordered pairs,
functions, and well-orders have all been shown to be sets in ZF, and all theorems of
ZF are, in the end, results about sets and membership.

However, not everything that were done informally in Parts I–III can be formally
developed in ZF yet. Numbers, in particular cardinals and ordinals, cannot be
formed yet in full generality, and existence of infinite sets cannot be established. For
these we will need the axioms of replacement and infinity which will be introduced
in the next sections. But once those axioms are available, the formal development of
ZF becomes capable of realizing the ZF-paradigm “everything is a set” to its fullest
extent: Not only all types of numbers, such as natural, rational, real, and complex
numbers, but also all objects of higher mathematics such as algebraic structures
and spaces, can be constructed as sets. In fact, all mathematical statements can be
expressed in the language of ZF set theory, and all theorems of classical mathematics
can be proved in ZFC (ZFCD ZF augmented with the Axiom of Choice).

Classes, Relationals, and Functionals

We have seen that in ZF there is no set containing all sets. However, it is convenient
to informally refer to such large collections as classes. For example, we will let V
denote the collection of all sets,

V WD fx j x D xg;

so that V is a class which is not a set. Another example is the class of all ordered
pairs, conveniently denoted by V � V , which cannot be a set in ZF either (why?).
A class such as V does not formally exist in ZF, and the term “class” really refers
to a ZF property (i.e., a ZF formula with a specified free variable and possibly with
additional parameters). For example, with x as the defining free variable, the class V
above stands for the ZF property V D V.x/ where V.x/ is the ZF formula ‘x D x’,
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and the class V � V can be replaced by the ZF formula ‘9y9z.x D hy; zi/’. Of
course some ZF-formulas do define sets, such as the formula ‘x 6D x’ which defines
the empty set Ø and the formula ‘8z.z 62 x/’ which defines the set fØg. So some
classes are sets. In fact, every set is a class since for any set a, the formula ‘x 2 a’
defines a. A class which is not a set, such as V or V � V , is called a proper class.

As another example, the membership relation ‘2’, which is a subclass of V � V ,
is a relation which is not a set:

2 D fhx; yi j x 2 yg � V � V:
A relation which may or may not be set, i.e., a class consisting of ordered pairs
alone, will be called a relational. Informally, a relational is simply any subclass
of V � V . Formally, a relational refers to a ZF formula of the form '.x; y/

with two specified free variables. Another familiar relational which is not a set is
equinumerosity,�, given by

� WD ˚ hx; yi j jxj D jyj�;
and it corresponds to the ZF formula “9f .f is a bijection from x onto y/.” The
domain and range of a relational are classes which may not in general be sets. For
example, we have dom.2/ D V and ran.2/ D V XfØg.

A relational F will be called a functional if xFy ^ xFy0 ) y D y0. For a
functional F , we will use the functional notation F.x/ to denote the unique y such
that xFy. Formally, a functional expression ‘y D F.x/’ is really a ZF formula of
the form '.x; y/ for which it can be proved in ZF that

8x8y8y0 .'.x; y/ ^ '.x; y0/ ! y D y0/ (“� is many-one”).

In fact, we have already been using functionals and functional notation in expres-
sions like fxg, P.x/, and [x, which assign a unique set to every set x. These
functionals all have domain V , but some functionals are not defined for all sets. For
example, the functional�2 which assigns to every ordered pair its second coordinate
(�2.ha; bi/ D b for all a; b) has domain dom.�2/ D V � V .

21.3 The Replacement Axiom

The Axiom of Replacement (due to Fraenkel) says that if A is a set and F is any
functional whose domain includesA, then the image F ŒA� is also a set. In a slightly
variant but equivalent form it says that for any set A and functional F we can form
the set

fF.x/ j x 2 A \ dom.F /g:
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Formally, it is an axiom scheme (like separation):

ZF 7 (Axiom Scheme of Replacement). For every ZF formula ' D '.x; y/, we
have the axiom:

8x8y8z.'.x; y/ ^ '.x; z/! y D z/! 8a9b8u8v.u 2 a ^ '.u; v/! v 2 b/:

We had already implicitly used the Axiom of Replacement in some constructions
such as the Hartogs’ ordinal. Assume for the moment that we have defined ordinals
and that every well-order X has a unique ordinal Ord.X/. (This will be done in
detail in the next section.) For any set A, we want to form the “Hartogs’ set” H.A/
of ordinals as

H.A/ WD f˛ j There is an injection fromW.˛/ into Ag;

but in the above form it is not clear that this collection of ordinals will form a set.
To address this issue, consider the set WA of all well-orders defined on subsets of
A. Then since WA � P.P.P.A///, so WA can be shown to be a set by the power set
and separation axioms. Since WA is a set, we can use Replacement to derive that

H.A/ D fOrd.R/ j R 2 WAg

is a set too.
However, in most of ordinary mathematics, replacement is scarcely used.

21.4 The von Neumann Ordinals

In 1923, von Neumann [80] gave a remarkably simple, natural, absolute definition
for ordinal numbers:

The aim of this work is to present Cantor’s notion of ordinal numbers in a clear and concrete
form. : : :

We actually take the proposition “Every ordinal is the type of the set of all ordinals
preceding it” as the basis of our considerations. But we avoid the vague notion of
“type” by expressing it as follows: “Every ordinal is the set of all ordinals preceding it.”
. . . Accordingly (O is the empty set, (a; b; c; : : :) is the set with the elements a; b; c; : : :):

0 D O;

1 D .O/;

2 D .O; .O//;

3 D .O; .O/; .O; .O///;

: : : : : : : : :

! D .O; .O/; .O; .O//; .O; .O/; .O; .O///; : : : /

: : : : : : : : :
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[Author’s translation of a part of [80, p. 199], done with permission from Acta Sci. Math.
(Szeged).]

We now present von Neumann’s results.

Definition 1226 (Von Neumann Well-Orders). A well-order X is said to be a
von Neumann well-order if for every x 2 X , we have x D fy 2 X j y < xg (that is
x is equal to the set Pred.x/ consisting of its predecessors).

Clearly the examples listed by von Neumann above, namely

Ø; fØg; fØ; fØgg; fØ; fØg; fØ; fØggg; : : :

are all von Neumann well-orders if ordered by the membership relation “2,” and
the process can be iterated through the transfinite. Our immediate goal is to show
that these and only these are the von Neumann well-orders, with exactly one
von Neumann well-order for each ordinal (order type of a well-order). This is called
the existence and uniqueness result for the von Neumann well-orders.

An immediate consequence of the definition of a von Neumann well-order is:

Proposition 1227. Let X be a well-order. If X is a von Neumann well-order then
the ordering relation on X coincides with the membership relation “2” restricted
to X , that is, for all x; y 2 X we have x < y $ x 2 y.

Problem 1228. Show that the converse of the above proposition fails.

It is also immediate that every proper initial segment of a von Neumann well-order
X is a member of X and vice versa:

Proposition 1229. For a von Neumann well-order X , the proper initial segments
of X coincide with the members of X ; that is, Y is a proper initial segment of X if
and only if Y 2 X . Thus, the set of proper initial segments of X equals X itself.

Since a set cannot be equal to any of its proper subsets, we get:

Corollary 1230. If X is a von Neumann well-order then X … X .

Corollary 1231. Every member of a von Neumann well-order is a von Neumann
well-order (under the membership relation).

Corollary 1232. If X is a von Neumann well-order, then the ordering relation the
relation on X coincides with relation of proper set containment for the members of
X , that is, for all x; y 2 X we have x < y $ x ¨ y.

Problem 1233. Show that the converse of the above result fails.

We now proceed to prove the existence and uniqueness results for von Neumann
well-orders.
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Uniqueness

First, we have the following uniqueness theorem, which says that isomorphic
von Neumann well-orders are identical:

Theorem 1234. If X and Y are isomorphic von Neumann well-orders, thenXDY .

Proof. Let f be an order isomorphism from X onto Y . We show by transfinite
induction that f .x/ D x for all x, thereby establishing the result. Suppose that
x 2 X and that f .u/ D u for all u < x. Then since f is an order isomorphism, we
have

f .x/ D fv j v 2 Y ^ v < f .x/g D ff .u/ j u 2 X ^ f .u/ < f .x/g
D ff .u/ j u 2 X ^ u < xg
D fu j u 2 X ^ u < xg D x: ut

In other words, the uniqueness theorem says that every well-order is isomorphic to
at most one von Neumann well-order.

Uniqueness has some immediate consequences.

Corollary 1235. If a von Neumann well-order X is isomorphic to a proper initial
segment of a von Neumann well-order Y , then X 2 Y .

Hence, using the comparability theorem for well-orders, we get:

Corollary 1236 (Comparability). For any two von Neumann well-orders one
must be an initial segment of the other. For any two distinct von Neumann well-
orders one must be a member of the other. Thus if X and Y are von Neumann
well-orders, then exactly one of X 2 Y , X D Y , and Y 2 X holds.

Corollary 1237. If X and Y are von Neumann well-orders, then the order-type of
X is less than the order type of Y if and only if X 2 Y .

Corollary 1238. Every von Neumann well-order X consists of all von Neumann
well-orders having order type less than that of X .

Corollary 1239. If X is a set of von Neumann well-orders and if for every member
u of X any von Neumann well-order having order type less than that of u is also in
X , then X is itself a von Neumann well-order.

Definition 1240 (Successor of a Set). For any set X , we define the successor of
X , denoted by XC, as XC WD X [ fXg.
Proposition 1241. If X is a von Neumann well-order of order type ˛, then XC is
a von Neumann well-order of order type ˛ C 1.

Proof. Since X … X , so with 2 as the ordering relation X [ fXg becomes a strict
linear order with greatest element X in which the set of 2-predecessors of X is X
itself. ut
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Corollary 1242. The union of any set C of von Neumann well-orders is a von Neu-
mann well-order whose order type is the supremum of the order types of members
of C .

Proof. C is a chain by comparability. Hence[C is linearly ordered by2. Regarding
[C to be a linear order with 2 as the ordering relation, we see that each member
of C is an initial segment of [C , and also each proper initial segment of [C is
contained in a member of C . Hence [C is well-ordered by 2, and its order type is
the supremum of the order types of members of C . ut

Existence

We now prove the existence theorem, whose proof uses Replacement in an essential
way.1

Theorem 1243. For each well-order X there is a (unique) von Neumman well-
order which is isomorphic to X .

Proof. The proof is by transfinite induction on well-orders. Suppose that X is
well-order such that every proper initial segment of X is isomorphic to some
von Neumann well-order. We show that then X itself is isomorphic to some
von Neumann well-order.

For every x 2 X there is a unique von Neumann well-order Yx isomorphic to
PredX.x/ (by induction hypothesis and by uniqueness). By Replacement, we can
form the set

C WD fYx j x 2 Xg:

Note that for any x; y 2 X we have x < y if and only if order type of Yx is less
than the order type of Yy , which holds if and only if Yx 2 Yy . Hence the mapping
x 7! Yx is an order-isomorphism from X onto hC;2i. Therefore C is well-ordered
by 2 with every member of C equal to the set of its predecessors, and henceC must
be a von Neumann well-order isomorphic to X . ut

New Definition of Ordinal Number

By the existence and uniqueness theorems, for every well-orderX there is a unique
von Neumann well-order isomorphic to it, and two well-orders are isomorphic if

1Earlier than von Neumann, others (Zermelo, Mirimanoff, etc) had partially developed similar
ideas, but the results were limited as the general existence theorem could not be proved due to the
lack of the Replacement axiom.
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and only their associated von Neumann well-orders are identical. We thus have a
complete invariant for the equivalence relation of order-isomorphism between well-
orders, which provides a remarkably simple, elegant, and concrete definition for
ordinal numbers:

Definition 1244 (Von Neumann Ordinals). For each well-order X , we define the
von Neumann ordinal of X , or simply the ordinal of X , denoted by Ord.X/, to be
the unique von Neumann well-order isomorphic to X .
˛ is called an ordinal if ˛ is the ordinal of some well-order, i.e. if ˛ is a

von Neumann well-order. The class of all ordinals will be denoted by On.

Von Neumann’s definition of ordinal numbers has become the standard in axiomatic
set theory, and forms the backbone of the universe of sets and the theory of the
transfinite. From now on we will follow the above definition and use the term
“ordinal” to mean a von Neumann well-order.

Since any ordinal is equal to the set of smaller ordinals, the older set W.˛/ D
fˇ j ˇ < ˛g becomes identical to ˛ itself:

W.˛/ D fˇ j ˇ < ˛g D fˇ j ˇ 2 ˛g D ˛:

We can therefore dispense with the notation “W.˛/,” replacing it with the simpler ˛.
By the Burali-Forti paradox, the class On is not a set and does not exist formally

in ZF, and the expression “x 2 On” really stands for the ZF formula “x is an
ordinal.” However, if a subclass A of On is a proper initial segment of On then
A is a set, since A then equals the least ordinal not in A.

Definition 1245 (Zero, Successor, and Limit Ordinals). We define the smallest
ordinal zero as 0 WD Ø. An ordinal ˛ is a successor ordinal if ˛ D ˇC for some
ordinal ˇ. An ordinal which is neither zero nor a successor is a limit ordinal.

Definition 1246. We say that x is an initial set of ordinals if every member of x is
an ordinal and for all y 2 x, if z < y then z 2 x.

Problem 1247. x is an ordinal if and only if x is an initial set of ordinals.

Theorem 1248 (The Principle of Transfinite Recursion). For each functionalG
with domain V , there exists a unique functional F with domain On such that for
every ˛ 2 On,

F.˛/ D G.hF.ˇ/ j ˇ < ˛i/ (i.e., F.˛/ D G.F �˛/):

Problem 1249. Prove Theorem 1248 in ZF.

[Hint: The proof is the same as that of Theorem 622, but note the following.
Formally, one cannot quantify over classes in ZF, so phrases like “for each functional
G” and “there exists a functional F ” are not officially allowed. So Theorem 1248 is
really a theorem scheme: For each classG (really a formula), another class (formula)
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F can be formed (in terms of G) for which the corresponding instance of the
theorem can be proved in ZF.

However, there is little danger in informally treating relationals and functionals
as ordinary sets as long as one is careful about them. (Functionals defined on proper
initial segments of On are really sets, so they can be quantified over at will.) Thus it
is alright to pattern the proof as follows:

Given GWV ! V , define F to be the class of those ordered pairs hx; yi such that there
is an ordinal ˛ and a function h with dom.h/ D ˛, x 2 dom.h/, h.x/ D y, and which
satisfies h.ˇ/D G.h�ˇ/ for all ˇ < ˛. . . .

The rest of the proof, which consists of showing that F is a functional satisfying the
theorem, is identical to that of Theorem 622.]

Transitive Sets

Definition 1250. A set x is called transitive if for all y; z, z 2 y ^ y 2 x ! z 2 x.

Problem 1251. Show that a set x is transitive if and only if every element of x is a
subset of x if and only if [x � x.

Problem 1252. Show that the empty set is transitive and that for any set x, if x is
transitive then so are xC D x [ fxg, P.x/, and [x.

Problem 1253. Show that every ordinal is transitive.

The following problem characterizes von Neumann ordinals as transitive sets well-
ordered by the membership relation 2, and thus in some treatments it is taken as the
definition for von Neumann ordinals.

Problem 1254 (Characterization of Von Neumann Ordinals). Show that x is
an ordinal if and only if x is transitive and x is well-ordered by the membership
relation 2.

21.5 Finite Ordinals and the Axiom of Infinity

Finite Ordinals

The smallest von Neumann well-order is 0 D Ø, and repeatedly applying the
successor operation we get:

0 WD Ø

1 WD 0 [ f0g D fØg
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2 WD 1 [ f1g D f0; 1g D fØ; fØgg;
3 WD 2 [ f2g D f0; 1; 2g D fØ; fØg; fØ; fØggg; etc.

The above are the finite von Neumann well-orders. Formally, we have

Definition 1255 (Finite and Infinite Ordinals). n is a finite ordinal if either n D 0
or n is a successor ordinal and every nonzero element of n is a successor ordinal.

An infinite ordinal is an ordinal which is not finite.

Problem 1256. 0 is a finite ordinal. If x is a finite ordinal then so is xC.

Problem 1257. If n is a finite ordinal and m 2 n then m is a finite ordinal. Thus
any initial segment of a finite ordinal is a finite ordinal.

Problem 1258. If n is a nonzero finite ordinal then n D mC for some finite ordinal
m 2 n.

The existence of infinite ordinals cannot be proved yet, since the collection of all
finite ordinals is not known to be a set—at this point it is only a class. But we still
have:

Problem 1259. Any infinite ordinal contains all finite ordinals as members.

The class of finite ordinals together with the successor operation can now be verified
to satisfy the Dedekind–Peano axioms, including the principle of finite induction.

Theorem 1260 (The Principle of Finite Induction). Let P be a ZF prop-
erty for which we have P.0/ and 8n.P.n/ ! P.nC//. Then we have
8n.n is a finite ordinal! P.n//.

Proof. Assume the hypothesis, and to derive a contradiction, suppose that n is a
finite ordinal for which we have :P.n/. Then n 6D 0 by hypothesis, and so n D
mC for some finite ordinal m 2 n. Now we must have :P.m/ since otherwise by
hypothesis we would have P.n/. Hence the set fk 2 n j :P.k/g is nonempty and
must have a least element q. Since P.0/ is true, we have q 6D 0, and so, since q is
a nonzero finite ordinal, q D rC for some finite ordinal r 2 q. We now must have
P.r/ by minimality of q, which implies P.q/ is true, a contradiction. ut
Therefore, we can define operations on the finite ordinals such as addition and
multiplication, and the entire theory of “Peano Arithmetic” can be developed based
on the finite ordinals.

We kept our development of finitude in ZF independent of the one given in
Sect. 5.3, but they are really equivalent in the following sense.

Problem 1261. Call a set x inductive if for any y 2 P.P.x// the two conditions
Ø 2 y and 8z 2 y 8u 2 x.z[ fug 2 y/ imply x 2 y. Show that a set x is inductive
if and only if x � n for some (unique) finite ordinal n.
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The Axiom of Infinity

We now want to get !, the supremum of all the finite ordinals, which, as an ordinal,
must equal to the set of all smaller ordinals. In other words, ! must consist of all
finite ordinals, as in:

! WD f0; 1; 2; : : : g:

But how can we justify that this exists as a set and is not a proper class? More
precisely, how can it be proved that there is a set consisting precisely of the finite
ordinals?

To discuss this question, let “x D !” stand for “x is the set of all finite ordinals,”
or more precisely for the ZF formula ‘8y.y 2 x $ y is a finite ordinal/’, and let
“! exists” stand for the ZF formula ‘9x.x D !/’.

Note that to show that ! exists, it suffices to show that there is some set b
containing all finite ordinals, since then by Separation we can get ! D fy 2
b j y is a finite ordinalg. By the principle of finite induction, any set b satisfying
0 2 b ^ 8n.n 2 b ! nC 2 b/ will contain all finite ordinals. Moreover, since
every infinite ordinal contains all finite ordinals, the existence of ! can be seen to
be equivalent to the existence of an infinite ordinal. These equivalences do not need
the replacement axiom, and so we have:

Proposition 1262. From the ZF axioms introduced so far one can derive, without
using the replacement axiom, that the following conditions are equivalent to each
other:

1. ! exists.
2. There is a set b such that 0 2 b ^ 8n.n 2 b ! nC 2 b/.
3. There is an infinite ordinal.

It turns out that none of the statements above (in particular the existence of !)
can be derived from the axioms introduced so far. Zermelo, in his 1908 paper [85]
introduced the Axiom of Infinity precisely for this purpose.2

ZF 8 (Axiom of Infinity). ! exists, or equivalently, there is an infinite ordinal, or
equivalently 9b.0 2 b ^ 8n.n 2 b ! nC 2 b//.
We will now show, using Replacement, that the Axiom of Infinity is equivalent to
the existence of an infinite set, where by an infinite set we mean a Dedekind infinite
(reflexive) set.

First, since the mapping n 7! nC maps ! into a proper subset of !, so the
Axiom of Infinity implies (even without Replacement) that there is a Dedekind
infinite (reflexive) set.

2Zermelo used the operation x 7! fxg instead of the successor operation, and his version of the
axiom stated that there is a set b such that Ø 2 b, and fxg 2 b for every x 2 b.
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To get the converse, we will use Replacement. If we carefully examine the proof
of the existence theorem, we see that the existence of an ordinal ˛ was obtained
from the existence of some well-order of type ˛, through the use of the replacement
axiom. Thus the existence of ! will follow from the existence of a well-order of
type !, and the existence of an infinite ordinal will follow from the existence of
an infinite well-order. Now, earlier we had seen that the existence of a Dedekind
infinite (reflexive) set is equivalent to the existence of an infinite well-order, hence
under replacement all our conditions become equivalent.

Theorem 1263. From the ZF axioms introduced prior to Infinity (thus including
Replacement), one can derive that the following are equivalent:

1. The Axiom of Infinity, that is ! exists, or equivalently that there is an infinite
ordinal.

2. There is an infinite well-order.
3. There is a Dedekind infinite (reflexive) set.

Problem 1264. Prove, based on the ZF axioms introduced so far, that the ordinal
! C ! exists.

The Replacement axiom, together with the Axiom of Infinity, guarantees access to
the transfinite. All the infinite cardinals and ordinals that we had studied earlier can
be shown to exist using Replacement.

21.6 Cardinal Numbers and the Transfinite

In addition to providing a canonical representative for every well-order, the
von Neumann ordinals can give a complete invariant for the equivalence relation of
equinumerosity so long as the Axiom of Choice is assumed.

Definition 1265 (Equinumerosity, Initial Ordinals). We write a � b to denote a
is equinumerous (bijective) with b. An ordinal ˛ is said to be an initial ordinal if
there is no ˇ < ˛ such that ˇ � ˛.

All finite ordinals are initial ordinals. The first few transfinite initial ordinals are
!;!1; !2; : : : .

By AC, every set can be well-ordered, and so must be equinumerous to some
ordinal, and therefore also to some initial ordinal. Also, in Cantor’s original
conception of the transfinite (which implicitly assumed AC so that every infinite
cardinal was an aleph), cardinals correspond naturally and uniquely with the initial
ordinals. We thus obtain the classic Cantor–Von Neumann definition of cardinal
numbers.

Definition 1266 (Cantor–Von Neumann Cardinals (AC)). For any set x, define
jxj, the cardinality of x, to be the least ordinal ˛ such that ˛ � x.
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We say that � is a cardinal if � D jxj for some set x.

Thus in the Cantor–Von Neumann definition, every cardinal is an ordinal.

Problem 1267. ˛ is an initial ordinal if and only if ˛ is a cardinal.

The Cantor–Von Neumann definition is readily seen to satisfy the condition

jxj D jyj $ x � y;

and so we have an adequate definition of cardinal numbers under AC. In particular,
we have @0 D !, @1 D !1, etc., but the ordinal jRj cannot be effectively determined
because of the independence of the continuum hypothesis even under AC.

The Cumulative Hierarchy

We had earlier defined the sets Vn for finite ordinals n, where

V0 D Ø and VnC D P.Vn/:

Now, by Infinity, ! exists, and so by Replacement and Union, we can define

V! WD
[

n<!

Vn:

Since each Vn is finite for n 2 !, so V! is countably infinite. We can next define

V!C1 WD P.V!/;

V!C2 WD P.V!C1/

:::

so that V!C1 has cardinality c D 2@0 , V!C2 has cardinality 2c, and so on.

Definition 1268 (The Cumulative Hierarchy). Define the cumulative hierarchy
of sets V˛; ˛ 2 On, by transfinite recursion on ˛ as:

V0 WD Ø;

V˛C1 WD P.V˛/; and

V˛ WD
[

ˇ<˛

Vˇ if ˛ is a limit ordinal.

The sets V˛ increase with the ordinal ˛, that is,

V0 � V1 � � � � � V˛ � V˛C1 � � � � :



21.6 Cardinal Numbers and the Transfinite 387

In fact, we have:

Problem 1269. For any ordinal ˛, V˛ ¨ V˛C1, and

V˛ D
[

ˇ<˛

VˇC1:

Problem 1270. x 2 V˛ if and only if x � Vˇ for some ˇ < ˛.

Problem 1271. If ˛ is an ordinal, then ˛ 2 V˛C1XV˛.

Problem 1272. Show that V˛ is transitive for each ordinal ˛.

Set Theory Without Replacement

Definition 1273 (Zermelo Set Theory, Z). The axiom system consisting of all the
ZF axioms mentioned so far, including Infinity, but without Replacement, is known
as Zermelo Set Theory and is denoted by Z.

The axiom system Z, introduced by Zermelo3 in 1908 [85], was the first formulation
of axiomatic set theory in the modern sense. As we will indicate below, Z has
sufficient power for the development of almost all of the ordinary mathematics.

Problem 1274. Prove the following in Z. Given any sets A and B , the set A � B
(cartesian product) and the set BA of all functions from A to B both exist. Also,
given any set A, the set A<! of all finite sequences from A exists. (A finite sequence
from A is a function whose domain is a finite ordinal and whose range is contained
in A.)

[Hint: By Union, Power Set, and Separation, note that A � B � P.P.A [ B//,
BA � P.A � B/, and A<! � P.! � A/.]

Developing Mathematics in Z

By the Axiom of Infinity, the von Neumann ordinal ! exists in Z. So we can iterate
the power set operation and get the existence of each of the following sets in Z:
P.!/, P.P.!//, . . . , Pn.!/, . . . , where we define P0.!/ D ! and PnC1.!/ WD
P.Pn.!//. Also the sets !�!, P.!�!/, !! , all exist as well (with !�! � P2.!/,
!! � P3.!/, etc.). This allows the construction of the positive rationals (ratios) as

3As mentioned earlier, Zermelo’s original system used the mapping x 7! fxg instead of the
successor operation in its formulation of the Axiom of Infinity, and the infinite set whose existence
was asserted was fØ; fØg; ffØgg; : : : g. In this respect our system Z is strictly distinct from
Zermelo’s original; see Kunen [44, p.125], Exercise II.4.21.



388 21 Zermelo–Fraenkel System and von Neumann Ordinals

ordered pairs from !, so the set of rational numbers Q is in Pn.!/ for some finite n.
Therefore the set R of real numbers (defined as Dedekind cuts of rationals numbers
so that R � P.Q/) is also in Pn.!/ for some finite n. So P.R � R/, i.e., the set of
all relations on R is a set in Z. Hence also the set of all real functions is a set whose
existence can be established in Z. Complex numbers and functions can evidently be
constructed too. In this way, all common mathematical objects can be seen to be
present in Pn.!/ for some finite n, and almost all of ordinary mathematics can be
carried out in Z.

Limitations on the Ordinals and the Transfinite in Z

Since the ordinal ! exists in Z, so do the ordinals ! C 1; ! C 2; : : : ; ! C n; : : : ,
by repeatedly applying the successor operation. But, due to lack of Replacement,
we cannot prove in Z that the ordinal ! C ! exists. In Z, the sum of two ordinals
may fail to exist! On the other hand, the “sum of well-orders” exists in the following
sense.

Problem 1275. Prove in Z that if a and b are well-orders then there is a well-order
c which can be partitioned into an initial segment u and a final segment v such that
a is order isomorphic to u and b is isomorphic to v.

Thus in Z one can prove that there exist well-orders of type ! C !, although the
von Neumann ordinal ! C ! does not exist and in fact the only ordinals which can
be shown to exist in Z are the ones less than ! C !. This means that the existence
theorem (that every well-order is isomorphic to some von Neumann ordinal) fails
in Z: Although the definition of von Neumann ordinals does not need Replacement,
the proof the existence theorem needs Replacement in an essential way.

Note that uncountable well-orders can be shown to exist in Z.

Problem 1276. Construct a well-order of type !1 in Z.

Thus even though most countable ordinals (those � ! C !) are not available
in Z, we can fix a well-order of type !1 and take its proper initial segments to
serve as representatives for the countable ordinals in Z. Unless we insist on the
“absolutist” approach of von Neumann ordinals, all countable ordinals exist in Z in
this “structuralist” sense used in ordinary mathematics.

More generally, the Hartogs construction can be done in Z:

Problem 1277. For any setA, there is a well-orderX such that every proper initial
segment of X , but not X itself, is equinumerous to some subset of A.

By induction, well-orders of type !n (and so sets of cardinality @n) exist for all
n 2 !. Thus, in spite of the lack of von Neumann ordinals� ! C !, representative
well-orders for every ordinal ˛ < !! are available in Z. For cardinals, put Æn WD
jPn.!/j, and note that for any cardinal � 6 Æn (n 2 !), sets of cardinality � exist
in Z.
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However, this is where the development of the transfinite stops in Z. No well-
order of type !! or set of cardinality @! can be shown to exist in Z. In fact, it can
be shown that V!C! works as a “set-theoretic universe” or “model” for Z.

Other Limitations in Mathematics Without Replacement

Another problem due to lack of Replacement appears when defining functions on
! (or on N) by recursion, i.e., where one defines a term F.n/ for n 2 !. If all the
values F.n/ of the function F belong to a set B which already exists in Z, then
F becomes a subset of ! � B , and so by separation F exists in Z as an ordinary
function (i.e., a set whose existence can be established in Z). If, however, the values
of F are not restricted to be within such a predetermined set, then in general F will
only be a functional, not necessarily a function; and its range will be a class, not
necessarily a set. For example, the functional n 7! !C n (n 2 !) cannot be proved
to be a function in Z. (More generally, this problem affects definition by transfinite
recursion.)

Such constructions are common in ordinary mathematics (e.g., forming algebraic
closures of fields, infinite direct products of groups, etc.) where one defines
(recursively) sets A0;A1; A2; : : : , and in the end needs to combine them somehow,
e.g., form the union [nAn. In general, this cannot be done in Z, unless the sets An
are all subsets of a fixed set already known to exist in Z. For example, if we let
An D ! C n, then, as mentioned before, the union [nAn D ! C ! is a class in Z
which cannot be shown to exist as a set in Z.

However, in most ordinary cases, this problem can be addressed as follows:
It is usually possible to find suitable isomorphic copies of the sets An within a
predetermined set known to exist in Z, and work with these copies instead. In the
structuralist approach of ordinary mathematics, such isomorphic replacements for
the sets An are acceptable. For example, in Z one can find well-ordered subsets Xn
of Q where each Xn is an initial segment of XnC1 and Xn is order isomorphic to
! C n, so that their union [nXn has type ! C !.

There is one scenario in which this approach does not work: When the sets An
grow bigger in cardinality without bounds, there may be no set in Z which has room
to fit them (or their copies) all in. This is the case, e.g., if we put An D Pn.!/,
since for any set E which contains copies of An we must have jEj > Æn for all
n, and such an E cannot be guaranteed to exist in Z. But such situations are rare4

in ordinary mathematics. For most of ordinary mathematics, one does not need the
Axiom of Replacement and Zermelo’s system Z turns out to be quite adequate.

4There are a few theorems of mathematics, such as the determinacy of Borel games (proved by
Martin), where such situations are indeed encountered and the use of the Axiom of Replacement
becomes necessary.



390 21 Zermelo–Fraenkel System and von Neumann Ordinals

21.7 Regular Sets and Ranks

Definition 1278. For a relation R on X , we say that hX;Ri has the von Neumann
property if the set of R-predecessors in X of any element of x 2 X coincides with
x, that is if for any x 2 X , we have .8y/.y 2 x, y 2 X ^ yRx/.
Problem 1279. Let R be a relation on X . Then hX;Ri has the von Neumann
property if and only if X is a transitive set and R is the membership relation
restricted to X .

Thus the membership relation restricted to a set X has the von Neumann property if
and only if X is transitive.

Extensional Well-Founded Relations

A relation R on a set X is called extensional if distinct elements of X have
distinct sets of R-predecessor, that is if for all a; b 2 X , .8x/.xRa , xRb/ !
a D b/. (Thus the axiom of extensionality says that the set membership relation
2 defined on the class of all sets is extensional.) For well-founded extensional
relations, a generalization of the existence theorem for well-orders (representation
by von Neumann ordinals) holds. This result, due to Mostowski, states: If R is a
relation onX which is well-founded and extensional onX , then there exists a unique
transitive set M such that hX;Ri is isomorphic to hM;2M i, where 2M is the set
membership relation restricted to M .

Problem 1280. Prove Mostowski’s Theorem as stated above.

[Hint: Recall the uniqueness-existence proofs for von Neumann well-orders.]

Transitive Closures

Given any set x, its transitive closure is formed by collecting together the members
of x along with the members of members of x, the members of members of members
of x, and so on. In the language of Chap. 10 Sect. 11.4, the transitive closure of x is
the “2-ancestry” of x. In other words, y is in the transitive closure of x if there is a
positive integer n and y0; y1; : : : ; yn such that y0 D y, yn D x, and yk 2 ykC1 for
k D 0; 1; : : : ; n � 1. This can be formalized in ZF as follows.

Definition 1281 (Transitive Closure).

y 2 tc.x/$ 9f 9n.n 2 ! ^ n 6D 0 ^ f is a function^ dom.f / D nC
^ f .0/ D y ^ f .n/ D x ^ 8k.k < n! f .k/ 2 f .k C 1//:
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We then have

Proposition 1282. One can deduce the following results using the ZF axioms
introduced so far

1. tc.x/ is transitive and is the smallest transitive set containing x as a subset.
2. tc.tc.x// D tc.x/.
3. tc.x/ [ fxg D tc.xC/ is transitive and is the least transitive set containing x as

a member.
4. tc.x/ D x [ .[x/ [ .[[ x/ [ � � � .
5. tc.x/ D [y2x tc.yC/.

Regular Sets

Recall that we saw that under AC, a relation R is well-founded if and only if there
is no descending infinite R-chain, that is there is no infinite sequence hxni such that
xnC1Rxn for all n. In particular, if R is well-founded then R is irreflexive and there
are no R-cycles such as xRy and yRx, or xRy, yRz, and zRx.

In the context of sets, we will say that x contains a descending 2-chain if there
is an infinite sequence hxni such that

� � � 2 xnC1 2 xn 2 � � � 2 x3 2 x2 2 x1 2 x:

If x contained a descending chain as above, then all the elements xn are in
the transitive closure of x, and so tc.x/ would not be well-founded under the
membership relation 2.

Definition 1283 (Regular Sets). x is regular if tc.x/ is well-founded under the
membership relation 2.

A regular set is often called a well-founded set.
Under AC, a set is regular if and only if it does not contain a descending 2-chain,

but even without AC a regular set cannot contain a descending 2-chain.

Problem 1284. Every ordinal is regular.

In addition to the ordinals, all sets we have encountered so far were regular.5

Regularity of a set prevents it from satisfying unusual conditions such as self-
membership. In particular, if x is regular then the singleton fxg will be distinct
from x. Similarly, we cannot have “2-cycles” such as x 2 y ^ y 2 x, or
x 2 y ^ y 2 z ^ z 2 x, if any of the sets in the cycle is regular.

5It can be shown that the existence of non-regular sets cannot be demonstrated on the basis of the
ZF axioms introduced so far, unless those axioms are contradictory.
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Since tc.tc.x// D tc.x/, we see that x is regular if and only if tc.x/ is regular.
Moreover, we have:

Problem 1285. For any set x,

1. x is regular if and only if every member y 2 x is regular.
2. If x is regular then any subset of x is regular.
3. If x is regular then P.x/ is regular.

Problem 1286. If x 2 V˛ for some ordinal ˛ then x is regular.

Ranks

Recall that every well-founded relation R on a set A has a unique rank. If x is
regular, so that tc.x/ is well-founded under 2, we define the rank of x to be the
rank of the well-founded structure htc.x/;2i (we can think of tc.x/ providing the
structure by which x is “built up” from Ø).

Definition 1287 (Rank of Sets). For any regular x, the rank of x, denoted by
rnk.x/, is the rank of the well-founded structure htc.x/;2i.
From the results of Chap. 10 Sect. 11.4, we have the following result.

Problem 1288. If x be regular, then

rnk.x/ D supfrnk.y/C 1 j y 2 xg:

Corollary 1289. If x is regular and y 2 x then rnk.y/ < rnk.x/.

The following theorem establishes the link between ranks and the levels of the
cumulative hierarchy.

Theorem 1290. x 2 V˛ if and only if x is regular and rnk.x/ < ˛.

Proof. We use transfinite induction on ˛. Suppose that the result holds for all ˇ < ˛.
First, let x 2 V˛. Then x � Vˇ for some ˇ < ˛, so y 2 Vˇ for all y 2 x, so by

induction hypothesis we get: y is regular and rnk.y/ < ˇ for all y 2 x. Since every
member of x is regular, so x is regular, and since rnk.y/ < ˇ for all y 2 x, we get

rnk.x/ D sup
y2x

rnk.y/C 1 � ˇ < ˛:

Conversely, suppose that x is regular and rnk.x/ D ˇ < ˛. Hence for every
y 2 x, y is regular and rnk.y/ < rnk.x/ D ˇ, so by induction hypothesis y 2 Vˇ
for all y 2 x, which implies x � Vˇ , and so x 2 P.Vˇ/ D VˇC1 � V˛. ut
By the following, the regular sets are exactly the ones that can be obtained through
the progression of the cumulative hierarchy.
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Corollary 1291. x is regular with rnk.x/ D ˛ if and only if x 2 V˛C1XV˛.
Hence for regular x, rnk.x/ is the least ordinal � such that x 2 V�C1.
Moreover, x is regular if and only if x 2 V˛ for some ordinal ˛.

21.8 Foundation and the Set Theoretic Universe V

As we have mentioned before, non-regular sets (sets with descending 2-chain) not
only are unnecessary for the development of mathematics, but such sets also are not
naturally encountered since the existence of non-regular sets cannot be derived from
the ZF axioms we have mentioned so far. The last axiom of ZF is used to explicitly
rule out such extraneous sets.

ZF 9 (Axiom of Foundation). Every set is regular, or equivalently every set
belongs to V˛ for some ordinal ˛.

Problem 1292. The Axiom of Foundation is equivalent to the statement that every
nonempty set x has a member which is disjoint from x.

The following problems need the Axiom of Foundation.

Problem 1293. x is an ordinal if and only if x is transitive and linearly ordered by
the membership relation 2.

Problem 1294. A set x is said to hereditarily have a property P if x and all
members of tc.x/ have property P . Show that x is hereditarily transitive if and
only if x is an ordinal and x is hereditarily finite if and only if x 2 V! .

Recall that V WD fx j x D xg denotes the class of all sets, also called the
set theoretic universe (we had seen that V cannot be a set). Then the Axiom of
Foundation can be stated in the following suggestive form:

V D
[

˛2On

V˛:

Since the sets V˛ increase with ˛, the above equation shows that the universe V of
all sets is arranged in a hierarchy of sets of ever increasing ranks. Foundation thus
enables us to prove that a property is true of all sets using the convenient method of
transfinite induction on the rank of a set.

Note that the complement of any set is a class which will contain all sets of
sufficiently large rank. Thus in ZF set theory each set is a miniscule infinitesimal
part of the universe, and the universe V of all sets is truly large compared to any
particular set.
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On

The Universe V

α Vα

Problem 1295 (ZFC). For each cardinal �, putH.�/ WD fx j j tc.x/j < �g.
1. H.@0/ D V! (which is countable).
2. H.@˛/ � V!˛ , so H.�/ is a set.
3. The set of hereditarily countable sets has cardinality c: jH.@1/j D 2@0 .
4. There is a natural surjection from the set W of well-founded trees over ! onto
H.@1/ preserving rank (between trees and sets).

Defining Cardinals Without Choice

Although V is not a set in ZF, V˛ is a set for each ordinal ˛. This is useful in
effectively extracting a nonempty subset from any large collection which may not be
a set. In particular, we have the method of Scott, in which the Axiom of Foundation
is used to define the notion of cardinal number for arbitrary sets without using the
Axiom of Choice. In the Frege–Russell definition, the cardinal number jaj of a set a
is the equivalence class of a under the equinumerosity relation. Thus jaj, consisting
of all sets equinumerous to a, is a problematic large collection which is not a set.

Problem 1296 (ZF). For any nonempty set a, there is no set which contains all sets
equinumerous with a.

Scott’s method allows us to effectively select a nonempty subcollection of the
equivalence class which is small enough to be a set.

Definition 1297 (The Frege–Russell–Scott Cardinal). For any set x, let jxj� be
the collection of all sets of least rank which are equinumerous to x:

jxj� WD fy j y � x ^ 8z.z � x ! rnk.y/ � rnk.z//g:

Problem 1298. For any x, jxj� � Vrnk.x/C1 and so jxj� is a set.
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Moreover, the functional x 7! jxj� is a complete invariant for equinumerosity
(jxj� D jyj� $ x � y for all sets x; y), and therefore is a satisfactory definition
of “cardinal number.”6

More generally, for any relational R, one can define the Frege–Russell–Scott
invariant for R as follows.

Definition 1299 (The Frege–Russell–Scott Invariant). If R is a relational and x
is any set, let Œx��R be the collection of all sets y of least rank for which yRx holds:

Œx��R WD fy j yRx ^ 8z.zRx ! rnk.y/ � rnk.z//g:

Problem 1300. Let	 be an equivalence relational on a class C . Then Œx��	 is a set
for all x, and the Frege–Russell–Scott invariant mapping

x 7! Œx��	 .x 2 C/

acts as a complete invariant for the equivalence relational	, that is, for all x; y 2
C we have x 	 y if and only if Œx��	 D Œy��	.

The above Frege–Russell–Scott method works for any equivalence relational
whatsoever, but is of particular relevance when some of the equivalence classes
are too large to be sets. For example, we can conveniently define the order type
OrdTyp.X/ of an arbitrary order X using the Frege–Russell–Scott invariant by
taking OrdTyp.X/ WD ŒX��Š, whereŠ denotes similarity (isomorphism) of orders.

21.9 Other Formalizations of Set Theory

Other than the Zermelo–Fraenkel system, there have been several other major
axiomatizations of set theory which use the formal framework of first order logic.
We briefly discuss a few of them.

Von Neumann–Bernays Set Theory

This popular axiomatization of set theory was initiated by von Neumann in 1925
[78, pp. 393–413], and later developed extensively by Bernays (see [3]). We will
abbreviate the name “Von Neumann–Bernays Set Theory” as VNB. Further work on

6One can even use a “hybrid method” to define cardinal numbers without Choice, where
jxj is defined as the least ordinal equinumerous to x if x can be well-ordered, and as the
Frege–Russell–Scott cardinal of x otherwise [48]. Under Choice, this definition reduces to the
Cantor-von Neumann definition.
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VNB was done by Robinson and Gödel, and VNB is often called the Von Neumann–
Bernays–Gödel Set Theory (abbreviated as NBG).

In ZF, we had used the term “class” to informally talk about large collections
which were not sets, but classes did not exist as formal objects in ZF. A key
feature of VNB is that it formally allows talking about large collections such as
the collection V of all sets—which are now allowed as objects that formally exist.
Since such collections cannot be sets, VNB uses the formal term class for general
collections, and the system is developed as a theory of classes (subcollections are
called subclasses, e.g.). In VNB, every object is a class, and so all sets are classes,
but there are classes which are too large to be sets, such as the class V of all sets
and the class On of all ordinals, which are called proper classes. A proper class
cannot be a member of any class. A set is defined as a class which can be member
of some class. Thus VNB divides classes into two distinct and exclusive sorts, sets
and proper classes.

The notion of class in VNB is a formal way of representing Zermelo’s vague
notion of “definite property,” and is similar to Skolem’s use of the formal notion
of a first-order formula in place of a “property.” VNB has a “class comprehension
scheme” for forming new classes, but the quantifiers in the formulas used in the
formation of classes cannot range over arbitrary classes—they are limited to range
over sets. Using classes, the axiom of replacement can be stated simply as follows:
If F is a class which is a function and A is a set then the image F ŒA� is a set.
Note that in ZF, replacement was an axiom scheme—an infinite list of individual
axioms (instances of the scheme), but in VNB it is a single axiom. This brings us
to another important aspect of VNB: It is an axiom system which turns out to be
finitely axiomatizable, that is, it is possible to find a finite list of individual axioms
(not schemes) which will axiomatize VNB. ZF cannot be axiomatized with a finite
set of axioms (unless ZF turns out to be inconsistent).

In spite of its appearance to be a more extensive theory than ZF —allowing a
larger collection of objects that it can formally talk about—VNB turns out to be
essentially equivalent to ZF in the following sense: Any statement mentioning only
sets (no classes) that can be proved in VNB can be proved in ZF, and vice versa.
In other words, VNB cannot prove any new fact about sets that ZF cannot already
prove (which is technically stated by saying that VNB is a conservative extension of
ZF). In particular, this implies that ZF and VNB are equiconsistent theories: if one
of them is consistent, then so must be the other.

More on VNB can be found in the references, such as Bernays [3], which has a
detailed presentation of VNB.

Another system due to Morse and Kelley, known as Morse–Kelley Set Theory or
MK, was first introduced in 1955 as an appendix to Kelley’s book on topology [40].
MK is closely related to VNB, but it allows quantification over arbitrary classes in
its class comprehension scheme, resulting in a system which is strictly stronger than
ZF and VNB (assuming ZF is consistent).
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Quine’s New Foundations

From the systems of set theory discussed so far (Type-Theory/PM, ZF, VNB, MK),
one may think that in order to avoid contradictions, a formal system should never
allow the collection of all sets to be a set itself—an idea expressed by Russell
as the vicious circle principle and famously paraphrased by Halmos as “nothing
contains everything.” Yet, in 1937, Quine [61] introduced an axiomatization of set
theory called New Foundations, or NF, which has a set containing all sets (and thus
containing itself)! In this and several other respects, NF is a formal system strikingly
different from ZF and VNB.

NF allows the set of all sets (or the class of all classes): The entire universe
V WD fx j x D xg is itself a set, and we have V 2 V in NF. Every set A has a global
complement VXA WD fx j x 62 Ag, and so with V as the universal set, the collection
P.V / of all subsets of V becomes a Boolean algebra of sets.

Like Frege’s original system NF has only two axioms: Extensionality and
Comprehension. The language of NF is identical to that of ZF—any NF formula
is a ZF-formula and vice versa. Also, The axiom of extensionality says, as usual,
x D y , 8z.z 2 x , z 2 y/.

Instead of building sets from bottom up via mechanisms such as the power set
operation, NF forms sets only via applications of the comprehension scheme, just
as in Frege’s original (inconsistent) system. For example, for any set A, its power
set is formed as P.A/ WD fx j 8y.y 2 x ) y 2 A/g, which exists by NF-
comprehension—no special power set axiom is needed.

However, to avoid contradictions, NF puts a restriction on the syntax of the
formulas that can be used in its comprehension scheme: In order to form the set
fx j �.x/g via comprehension, the formula � D �.x/ must be “stratified.” An
NF-formula � is said to be stratified if there is a mapping f from the instances of
variable letters occurring in � to N such that for any substring of � having the form
“x 2 y” we have f .y/ D f .x/ C 1 and for any substring of � having the form
“x D y” we have f .x/ D f .y/. This avoids forming sets such as Russell’s set
fx j :.x 2 x/g, since the formula “x 2 x” is not stratified.

In NF, cardinal and ordinal numbers are defined using the original Frege–Russell
global invariant: The cardinal number of a set A is the set of all sets equinumerous
to A, and the order-type number of an order X is the set of all orders isomorphic
to X . Unlike ZF, there is no problem in NF of these notions being “too large to be
sets.”

On the other hand, NF sharply deviates from classical “Cantorian” set theory in
several ways. For example, Cantor’s Theorem jX j < jP.X/j cannot be proved in
NF in full generality, and NF refutes the axiom of choice. Some of NF’s oddities
are addressed in a newer theory due to Jensen known as NFU, which allows non-set
atoms (individuals).

For more on NF and NFU, see Quine [61], Fraenkel, Bar-Hillel, and Levy [21],
Forster [19], and Holmes [31].
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21.10 Further Reading

Part IV was a rather brief and sketchy introduction to axiomatic set theory, so the
reader is encouraged to consult the excellent works given below.

Alternative treatments of some or all of the topics covered in the first parts
of our book, following a naive informal approach (and with little or no coverage
of axiomatic systems at all), can be found in the following older classic works:
Hausdorff [29], Kamke [36], Sierpinski [73], Russell [68], Fraenkel [20], and
Kuratowski and Mostowski [46].

For more coverage on the formal systems of ZF or VNB, see Stoll [76],
Suppes [77], Bernays [3], Devlin [13], Levy [48], Hrbacek and Jech [32], Fraenkel,
Bar-Hillel, and Levy [21], Rotman and Kneebone [65], Halmos [27], Enderton [15],
Vaught [79], Moschovakis [54], Kunen [43], Just and Weese [35], Bourbaki [5],
Hajnal and Hamburger [26], Hamilton [28], Schimmerling [70], and Goldrei [24].

The original work of Cantor and Dedekind can be found in Cantor [6] and
Dedekind [12]. An excellent collection of primary sources on the historical devel-
opment of axiomatic set theory and logic is van Heijenoort’s From Frege to
Gödel: A Source Book in Mathematical Logic, 1879–1931 [78], where one can find
English translations of Zermelo’s and von Neumann’s original papers introducing
their axiomatic set theories, as well as subsequent enhancements of their systems
by Skolem, Fraenkel, and Bernays. Zermelo’s 1908 paper [85] still serves as an
excellent introduction to his system.

For Part III, the introductory topics on the basic topology of R can be found in any
standard real analysis text. An excellent review of the analogies between Lebesgue
measure and Baire category is Oxtoby [58]. The topic of Borel and Analytic sets
belongs to the area of Descriptive Set Theory, for which two standard modern
references are Kechris [38] and Moschovakis [55]. Some of these topics are also
covered in the older texts of Hausdorff [29], Sierpinski [74], Kuratowski [45], and
Kuratowski and Mostowski [46]. See also Rogers [64].

More advanced treatments of set theory covering topics such as Gödel’s con-
structible universe L and Cohen’s 1963 technique of forcing for obtaining inde-
pendence proofs (which revolutionized modern set theory and has been in constant
use since then) require some background in mathematical logic. A basic early text
on this topic is Cohen [8], while two highly standard references with expositions
of constructibility and forcing are Kunen [42] and Jech [34]. Bell [2] focuses on
Boolean-valued models. In 2011, a new rewritten version [44] of Kunen’s 1980
book has been published.

For the topic of large cardinals, Kanamori [37] is a current standard reference
(more forthcoming volumes expected), but the encyclopaedic Jech [34] and the older
Drake [14] are also helpful.

A volume containing many interesting articles by set theorists is Link [49]. A
recent handbook containing highly advanced technical surveys of current research
in set theory is [18].



Chapter 22
Postscript IV: Landmarks of Modern Set Theory

Abstract This part contains brief informal discussions (with proofs and most
details omitted) of some of the landmark results of set theory of the past 75
years. Topics discussed are constructibility, forcing and independence results, large
cardinal axioms, infinite games and determinacy, projective determinacy, and the
status of the Continuum Hypothesis.

Note: Many of the topics discussed below are metamathematical in nature and
so their precise and rigorous definitions depend on mathematical logic, which is
beyond the scope of this text. Therefore the descriptions below are necessarily
sketchy and incomplete. Most of the details can be found in Jech [34], Kunen [42,
44], and Kanamori [37].

22.1 Gödel’s Axiom of Constructibility

All efforts to settle the Continuum Hypothesis by late nineteenth and early twentieth
century mathematicians failed. Then, in the late 1930s, Gödel made a major
breakthrough by introducing the notion of constructible sets and the axiom of
constructibility. We now briefly describe Gödel’s results [22].

Relativization

Let C be a given class (which can be a set or a proper class). Then for each ZF-
formula � D �.x1; x2; : : : ; xn/, the relativization of � to C , denoted by �C D
�C .x1; x2; : : : ; xn/, is obtained by restricting all the quantifiers in � to range over
C . For example if � is ‘8x9y.x 2 y/’ then �C is ‘8x 2 C 9y 2 C .x 2 y/’. This
can be formally defined by recursion on formulas by taking �C D � if � is an atomic
formula, .� ^ /C D �C ^ C , .:�/C D :.�C /, and .9v�/C D 9v.v 2 C ^�C /.

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
DOI 10.1007/978-1-4614-8854-5__22, © Springer Science+Business Media New York 2014
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Definition 1301. Let A be a set. We say that a subset E � A is definable from
parameters in A if there exist a ZF-formula �.x; x1; x2; : : : ; xn/ and elements
a1; a2; : : : ; an 2 A such that

E D fx 2 A j �A.x; a1; a2; : : : ; an/g:

Note: This notion can actually be defined formally in ZF (Tarski–Gödel).

Definition 1302. Def.A/ denotes the collection of all subsets of A which are
definable from parameters in A.

It is clear that Def.A/ � P.A/, and Ø, A itself, and all finite subsets of A are
members of Def.A/. Thus ifA is finite then Def.A/ D P.A/. On the other hand, ifA
is infinite then jDef.A/j D jAj but jP.A/j > jAj so Def.A/ is a relatively small part
of P.A/ when A is infinite. In addition, if A is transitive, thenA � Def.A/ � P.A/,
and so Def.A/ is itself transitive.

We now define the hierarchy of constructible sets by transfinite recursion.

Definition 1303 (The Constructible Hierarchy). Define

L0 WD Ø; L˛C1 WD Def.L˛/; L˛ WD
[

ˇ<˛

Lˇ if ˛ is limit.

A set A is said to be constructible if A 2 L˛ for some ordinal ˛. The class of all
constructible sets is denoted by L.

The axiom of constructibility says that every set is constructible. Since the class of
all sets is denoted by V and the class of constructible sets by L, so the axiom of
constructibility can be stated as “V=L.”

Note that each L˛ is transitive, and L˛ � V˛ for all ˛. Also, since Def.A/ D P.A/
whenever A is a finite set, so we have L˛ D V˛ for ˛ < !. It follows that L! D V! .

However, L!C1 is much smaller than V!C1, since L!C1 D Def.L!/ is countable
while jV!C1j D jP.V!/j D 2@0 . Next, L!C2 is still countable but jV!C2j D 22@0 . In
fact, L˛ stays countable for all ˛ < !1, while the sets V˛ grow enormously in size!
On the other hand, for every ordinal ˛ we have ˛ 2 L˛C1XL˛ and ˛ 2 V˛C1XV˛ , so
L˛ and V˛ have the same rank or “height,” i.e., L˛ is as “tall” as V˛ . This gives the
following picture.
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Gödel proved two major facts about constructibility:

1. Both the Axiom of Choice (AC) and the Generalized Continuum Hypothesis
(GCH) can be derived from ZF augmented with the axiom of constructibility,
i.e.,

ZF ` V=L! ACCGCH;

where we write “ZF ` �” to mean that � can be formally derived in ZF.
2. The axiom of constructibility is relatively consistent with ZF, i.e., if ZF is

consistent then so is ZFC V=L.

As an immediate consequence, we have the following:

Theorem 1304 (Gödel). If ZF is consistent then so is ZFC ACC GCH.
In particular, the Continuum Hypothesis cannot be disproved from ZFC, unless

ZF itself is inconsistent.

We now sketch how Gödel’s results can be derived.
First note that if a transitive set A can be well-ordered, then we can also

well-order Def.A/ effectively from the well-order on A. This is because the ZF-
formulas, countable in number, can be effectively enumerated and the set A� of
finite sequences of parameters from A can also be effectively well-ordered (from
the well-order on A). This way, all the sets L˛ can be well-ordered in a uniform and
effective fashion such that if ˛ < ˇ then L˛ is an initial segment of Lˇ , which gives
an effective global well-order on all of L. Hence if V=L, then the class of all sets gets
equipped with a global well-order and the axiom of choice immediately follows.

To get an idea on how V=L implies the Continuum Hypothesis, note that we have
j L!1 j D @1 effectively using the nice well-order of L described above. Gödel also
proved that P.!/ \ L � L!1 (we will not prove this fact here). Hence, if V=L, then
P.!/ � L!1 , so jP.!/j 6 @1, and CH follows.

GCH is derived from V=L in an exactly similar fashion.
Finally, to prove the second part (relative consistency of V=L with ZF), Gödel

first established that for every ZF-sentence � :

If ZF ` � then ZF ` �L:

This is expressed by saying that “L is a model of ZF.” Gödel then showed:

ZF ` .V=L/L;

which is expressed by saying “L is a model of V=L.” From these two facts, it easily
follows that if ZF is consistent then so is ZFCV=L, or equivalently that V 6DL cannot
be derived from ZF unless ZF itself is inconsistent. To see this, suppose that ZF `
:.V=L/. Then, since L is a model of ZF, we would get ZF ` :.V=L/L. But we saw
above that ZF ` .V=L/L, so ZF is inconsistent.
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For the details that our proof-sketch has left out, see [34, 42], or [44].

The axiom of constructibility (V=L) is a very strong axiom which settles many
unsolved problems of set theory. For example, V=L implies ˙, and so the Suslin
Hypothesis is false under V=L.

The axiom of constructibility also decides Lusin’s important unsolved questions
about regularity properties of the projective sets, but the answers are rather negative
(for a class of effectively defined sets). Essentially, the highly effective well-ordering
present under V=L can be used to produce “pathological” Bernstein sets in the low
levels of the projective hierarchy, giving:

Theorem 1305 (Gödel). If V=L, then there exist PCA (†1
2) sets which are not

measurable and do not have the Baire property, and there exist uncountable
coanalytic (…1

1) sets which do not have any perfect subset.

22.2 Cohen’s Method of Forcing

After Gödel proved his relative consistency result, the problem of independence of
CH remained open1 until 1963, when Paul Cohen showed that ZFC cannot prove
CH either (assuming ZF is consistent). The Gödel–Cohen results are known as
the independence of the Continuum Hypothesis. Cohen’s proof introduced a new
method called forcing, which immediately flourished as an extremely powerful
and versatile technique for obtaining general independence results. Since then, the
method of forcing has been extended in many ways, and a vast body of independence
results have been obtained. Forcing remains the most fruitful tool for building
models of set theory.

Forcing is best understood in the context of models of set theory, where it is
viewed as a method for extending a given model. This is beyond the scope of this
text, and we will only give a bare bones sketch of forcing in purely syntactic terms
with most of the details left out. Modern expositions of forcing are [2, 34, 42], and
[44]. Cohen’s original text is [8].

A forcing poset hP;�;1i is a partial order with a largest element 1. Given such
a poset, define the (ranked) class V P of P-names as

S
˛2On V

P

˛ , where

V P

0 WD Ø; V P

˛C1 WD P.V P

˛ � P/; V P

˛ WD
[

�<˛

V P

� for limit ˛.

A P-sentence is a ZF-formula in which all free variables have been replaced by
P-names. In particular, each ZF-sentence is a P-sentence. One can then define, for
each P-sentence � , the forcing relation (read “p forces �”):

1Gödel’s method of showing relative consistency, known as the method of inner models, cannot be
used to show the relative consistency of the negation of CH (or of the negation of any statement
provable from V=L). The reason is that the only inner model of L containing the ordinals is L itself.
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p �P � .p 2 P/;

first for atomic P-sentences by a suitable recursion on the P-names �; � as:

• p �P � D � , 8� 2 dom.�/ [ dom.�/8q � p .q �P � 2 � $ q �P

� 2 �/,
• p �P � 2 �, 8q � p 9r � q 9 h�; si 2 � .r � s ^ r �P � D �/,
and then for more complex P-sentences by:

• p �P � ^ � , p �P � ^ p �P � ,
• p �P :� , :9q � p .q �P �/,
• p �P 9x�.x/, 8q � p 9r � q 9� 2 V P.r �P �.�//.

Let us note that this really is a definition scheme—an infinite list of definitions, one
for each P-sentence � .

We can see that p �P :� ): .p �P �/, and q � p and p �P � ) q �P � ,
but it takes a lot of work to establish the following theorem-scheme of ZFC:

.�/ If ZFC ` � , then ZFC ` 1 �P � .

The P-names are thought of as “labels” for a “virtual extension” of the universe
V . There are a lot of duplications in the P-names, but one can identify duplicate
P-names using the equivalence � ÏP � , 1 �P � D � (for �; � 2 V P). For
each x 2 V , one can define a canonical P-name Lx 2 V P for x by the recursion
Lx WD fh Ly;1i j y 2 xg. Then it can be verified that the mapping x 7! Œ Lx�ÏP

“embeds”
the universe V into the “virtual extension” V P=ÏP. Here it is convenient to think of
the set fp 2 P j p �P �g as the “generalized truth value” for the P-sentence � , so
that by .�/ above, the generalized truth value of � equals P (“true”) if ZFC ` � ,
and equals Ø (“false”) if ZFC ` :� .

Let Fn.I; J / denote the poset consisting of all functions with domain a finite
subset of I and range contained in J , ordered by reverse inclusion so that f �
g , f � g and Ø is the greatest element. Let P WD Fn.! � !2; f0; 1g/. Cohen
showed that, for this poset P,

1 �P 2
@0 > !2; i.e., 1 �P :CH:

In other words, the generalized truth value of CH is “false” (Ø) under the poset
hFn.! � !2; 2/;�;Øi. It follows that CH is not a theorem of ZFC, since otherwise
we would have both 1 �P CH and : .1 �P CH/ (since 1 �P :CH gives: .1 �P

CH/), implying that ZFC is inconsistent. This gives:

Theorem 1306 (Cohen). If ZFC is consistent then so is ZFCC:CH.
In particular, the Continuum Hypothesis cannot be proved from ZFC, unless ZFC

itself (and so ZF as well) is inconsistent.

The combinatorial properties of a forcing poset hP;�;1i are crucial in determining
which statements will be forced, and a great variety of independence results have
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been obtained using various kinds of forcing posets. Forcing can also be used to
show the independence of AC, and the relative consistency of “2@0 D @˛” for any
˛ so long as @˛ has uncountable cofinality.

The forcing method has been extended considerably, using which, e.g., the rela-
tive consistency of MA+not-CH was obtained. This shows that Suslin’s Hypothesis
(SH) is relatively consistent with ZFC. Combined with the fact that SH is false under
V=L, we see that SH is independent of the ZFC axioms.

In Postscript III, we mentioned that MA+not-CH implies that all †1
2 (PCA) sets

are measurable and have the Baire property. Combined with Gödel’s Theorem 1305,
it follows that the measurability (and Baire property) of †1

2 sets is independent of
ZFC. This shows that Lusin’s conviction that these problems are unsolvable was
correct, and that Lusin and the mathematicians of his time had reached the limits of
what could be proved about projective sets using the usual axioms of set theory. See
also Theorem 1308 below.

We conclude our brief discussion of forcing by stating a landmark result obtained
by Solovay using the method of forcing. Let I denote the assertion that there is an
inaccessible cardinal.

Theorem 1307 (Solovay). If ZFC+I is consistent, then so is ZF+DC together with
all of the following assertions:

1. All subsets of R have the perfect set property.
2. All subsets of R are Lebesgue measurable.
3. All subsets of R have the Baire property.

Solovay also proved the following consistency result about the projective sets:

Theorem 1308 (Solovay). If ZFC+I is consistent, then so is ZFC+GCH together
with all of the following assertions:

1. All projective sets have the perfect set property.
2. All projective sets are Lebesgue measurable.
3. All projective sets have the Baire property.

Theorems 1307 and 1308 raised the question whether the assumption of the
existence of an inaccessible cardinal in the hypothesis of the theorems was really
necessary. It was already known that conclusion (1) does need the assumption
of an inaccessible (since the perfect set property for coanalytic sets implies the
relative consistency of inaccessible cardinals with ZFC, see Theorem 1310 below).
Surprisingly, Shelah later proved that in both theorems (2) needs the inaccessible
assumption, but (3) does not!

22.3 Gödel’s Program and New Axioms

Extending Cohen’s results, Solovay showed that any assertion of the form 2@0 D @˛
is consistent relative to ZFC, so long as ˛ is a successor ordinal or has uncountable
cofinality. Thus any one of these statements can be taken as an additional axiom to
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get a formal extension of set theory. This suggests the consideration of two possible
approaches to the Continuum Problem.

The first view, sometimes called pluralism or formalism, is that there is no
pre-existing intrinsic reason to prefer any of these assertions over another. Cohen
himself expressed support for this view. Pluralism is applicable not only to the
Continuum Problem, but also to any of the many problems known to be independent
of the ZFC axioms. Formalists may regard the study of the multitude of possible
axiomatic set theories as new human constructions or inventions that had never
existed before.

The other view, supported by Gödel himself, is that the ideal universe of sets
exists in a reality which is independent of axioms. Gödel believed that “in this
reality, Cantor’s conjecture must be either true or false, and its undecidability
from the axioms as known today can only mean that these axioms do not contain
a complete description of this reality” [23]. This view is thus sometimes called
platonism or realism. Gödel suggested a search for the discovery of new natural
axioms of set theory2 which will be powerful enough to determine the “correct truth
value” of problems currently known to be independent of ZFC. This is known as
Gödel’s Program.3

22.4 Large Cardinal Axioms

One possible candidate for a new axiom could be the axiom of constructibility
(V=L). We saw that V=L is powerful enough to settle many of the major undecidable
problems of set theory such as CH and SH, and, as Jensen points out, is a form of
Occam’s razor since it denies the existence of any set other than the constructible
ones. It gives a very “narrow” universe of sets.

Very different from the axiom of constructibility are large cardinal axioms or
axioms of strong infinity. Existence of a large cardinal implies the consistency of
ZF. For example, let I denote the assertion that there is an inaccessible cardinal.
Then it can be shown that

ZFC+I! Con.ZFC/;

where “Con(ZFC)” stands for “ZFC is consistent.” By a result known as Gödel’s
second incompleteness theorem on unprovability of consistency, existence of such
cardinals (or even the relative consistency of their existence) cannot be proved in
ZFC.

2Similar to the search for discovering true principles in physics.
3Set theorists differ widely on these matters, and pluralists and believers of Gödel’s program
represent only two of many possible viewpoints. Feferman has expressed that the Continuum
Hypothesis is not even a definite mathematical problem. See [16] for a panoramic debate, [50]
for some background, and [51] for more references. See also the EFI project web site http://logic.
harvard.edu/efi.php.

http://logic.harvard.edu/efi.php
http://logic.harvard.edu/efi.php
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The smallest large cardinals are the inaccessible cardinals, but we have also met
two other types in the earlier postscripts, namely the weakly compact cardinals
encountered in infinitary combinatorics, and the measurable cardinals that arose
in Ulam’s work on extensions of Lebesgue measure. One can use Gödel’s second
incompleteness theorem again to distinguish between “strengths” of large cardinal
axioms. For example, let M denote “there is a measurable cardinal” and W denote
“there is a weakly compact cardinal.” It can be shown that ZFC+M!Con(ZFC+W)
and ZFC+W ! Con(ZFC+I). Hence (the existence of) a measurable cardinal is
strictly stronger in consistency strength than (the existence of) a weakly compact
cardinal, which in turn is strictly stronger than (the existence of) an inaccessible.

Now let PP denote “every projective set has the perfect set property.” Then from
Solovay’s results it follows that Con(ZFC+I) is equivalent to Con(ZFC+PP), and so
the perfect set property for projective sets is equiconsistent, relative to ZFC, with
(the existence of) an inaccessible.

Most set theorists, starting from the inventor Gödel himself, find the axiom of
constructibility to be highly unacceptable as an axiom. Gödel’s results showed
that the axiom of constructibility does answer Lusin’s question about regularity
properties of †1

2 (PCA) sets, but in a “negative” way: If V=L then there are †1
2

sets which are not Lebesgue measurable, there are uncountable …1
1 (coanalytic) sets

without perfect subsets, etc. More generally, most set theorists find the restriction on
set existence placed by the axiom of constructibility as too severe to be acceptable.

On the other hand, large cardinal axioms in general have been far more attractive
to set theorists. They often resolve problems of ordinary mathematics in more
“pleasant” ways. For example, recall Solovay’s result:

Theorem 1309 (Solovay). If there is a measurable cardinal, then all †1
2 sets have

the perfect set property, are measurable, and have the Baire property.

Thus constructibility and large cardinals seem to be naturally opposed to each
other:4 In the low levels of the projective hierarchy, the former implies some
pathological phenomena, while the latter is intimately connected with regularity
properties. In fact, we have the following partial reversal:

Theorem 1310 (Solovay). If all uncountable …1
1 (coanalytic) sets have perfect

subsets, then at most countably many real numbers are constructible and the
existence of inaccessible cardinals is relatively consistent with ZFC.

This indicates that large cardinals beyond ZFC are necessary for establishing the
perfect set property for the higher projective classes, further vindicating Lusin’s
conviction that the regularity properties enjoyed by the analytic sets would be
impossible to extend to the higher projective classes (using the usual axioms of set

4An earlier result of Scott had shown that the axiom of constructibility contradicts the existence
of measurable cardinals. Gaifman, Rowbottom and Silver dramatically improved Scott’s result to
show that if a measurable cardinal exists then in a certain sense the vast majority of sets must be
non-constructible.
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theory). It led Solovay to conjecture that stronger large cardinal axioms will imply
regularity properties for all projective sets—a conjecture that was spectacularly
confirmed through later works of set theorists such as Martin, Steel, and Woodin.

22.5 Infinite Games and Determinacy

Closely related to large cardinal axioms in this regard are the axioms or principles
of determinacy. Determinacy provides the key to understanding why large cardinals
imply regularity properties for projective sets.

Given A � NN, consider the game G.A/ played by two players I and II
alternately choosing natural numbers x1; x2; x3; : : : as follows, with Player I going
first:

I x1 x3 x5 x7 . . .
II x2 x4 x6 x8 . . .

The resulting sequence x D hx1; x2; x3; : : : i 2 NN is called a play or run of the
game, and we declare this play x to be a win for Player I if x 2 A; otherwise we
say that the play x is a win for Player II.

A strategy for Player I is a function � W fu 2 N� j len.u/ is eveng ! N, and given
a play x D hx1; x2; : : : i 2 NN we say that I plays according to � or follows � if for
all even n, xnC1 D �.hx1; x2; : : : ; xni/. We say that � is a winning strategy for I if
every play following � is a win for Player I, i.e., I always wins by playing according
to � , no matter what II plays.

The corresponding notions for Player II (strategy � for Player II etc) are similarly
defined.

A gameG.A/ (or the set A) is said to be determined if either I or II has a winning
strategy, i.e., if one of the players can force a win no matter how the opponent plays.

It can be shown that games with only finitely long plays are always determined;
but for an arbitrary (infinite) game it is not at all clear that it will necessarily be
determined.

We will now make two identifications:

• We will identify NN with the real interval .0; 1� using the bijective mapping
HWNN ! .0; 1� (Problem 421) given by:

H.hn1; n2; n3; : : : i/ WD 1

2n1
C 1

2n1Cn2
C 1

2n1Cn2Cn3
C � � �

• The reals R can be identified with the open interval .0; 1/ via some very effective
homeomorphism such as x 7! 1

2
C x

2.jxjC1/ .

We can therefore talk about games G.E/ where E is a subset of .0; 1� or of R (by
“transferring” the set E to a subset of NN via the above identifications).
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Problem 1311. If A is countable then II has a winning strategy in G.A/.

The axiom of determinacy (AD), first introduced by Mycielski and Steinhaus
in 1962, says that every set of reals is determined. Properties of the axiom of
determinacy were studied by Mycielski [56]. It is a very powerful axiom which
implies regularity properties for all sets: Under AD, all sets of reals have the perfect
set property, are measurable, and have the Baire property. Thus, AD is incompatible
with the Axiom of Choice, but as an alternative to AC it is an extremely interesting
axiom with some surprising implications. For example, Solovay proved that under
AD, @1 is a measurable cardinal!

Problem 1312. Let A � .0; 1�. If I has a winning strategy in G.A/, then A has a
perfect subset. If II has a winning strategy in G.A/, then the complement of A has a
perfect subset.

[Hint: If I has a winning strategy � in G.A/, let P � .0; 1� be the set of reals
corresponding to all plays according to � in which II always plays 1 or 2:

P WD fH.x/ j For all n, x2n�1 D �.hx1; x2; : : : ; x2n�2i/ and x2n 2 f1; 2gg:

Then P is a perfect subset of A.]

Corollary 1313. If B is a Bernstein set then G.B/ is not determined.

Recall, however, that the construction of a Bernstein set is highly non-effective and
requires heavy use of the full axiom of choice. We therefore consider games G.A/
with A restricted to some natural class of effectively defined sets—such as open,
Borel, analytic, projective, etc—and ask if such games are necessarily determined.
A very basic and early result in such restricted definable determinacy principles is
the Gale–Stewart Theorem:

Theorem 1314 (Gale–Stewart 1953). Every open game is determined. Every
closed game is determined.

Roughly speaking, the more effectively a set is defined, the easier it is to establish
that it is determined. Thus, it is somewhat harder to prove that F� and Gı games
are determined, and still harder to prove that F�ı and Gı� games are determined.
Work of Harvey Friedman indicated the reason behind such increasing levels of
difficulty: To establish determinacy for each additional level of the Borel hierarchy
one needs the existence of an additional level of the cumulative hierarchy of sets
V˛ for ˛ > !. Gale and Stewart had asked if all Borel games are determined, and
by Friedman’s result establishing Borel determinacy would require an uncountable
number of iterations of the power set operation all the way through V!1 . This means
Borel determinacy is a result that cannot be established in Zermelo set theory Z with
choice (i.e., ZFC minus the replacement axiom). Martin established the celebrated
result:

Theorem 1315 (Martin 1975). Every Borel game is determined.
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Borel determinacy is the first major mathematical result provable in ZFC that
requires the full strength of ZFC via essential use of the replacement axiom. It is
the strongest determinacy principle for a natural class of definable sets that can be
proved in ZFC. Determinacy of analytic (†1

1) games, as we will see now, requires
stronger (large cardinal) assumptions.

Even before Borel determinacy was proved, work of Martin, Kechris, and
Solovay had established fundamental connections between determinacy and large
cardinals. We already mentioned Solovay’s result that full AD implies that @1 is a
measurable cardinal. The following two theorems show that determinacy of analytic
games interpolates in between the hypothesis and conclusion of Solovay’s earlier
theorem Theorem 1309.

Theorem 1316 (Martin). If a measurable cardinal exists, then all analytic games
are determined.

Theorem 1317. If all analytic games are determined, then all †1
2 sets are measur-

able, have the perfect set property, and the Baire property.

By Theorem 1310, the perfect set property for †1
2 sets implies relative consistency

of inaccessible cardinals; hence, by Theorem 1317, analytic determinacy implies
the consistency of inaccessibles as well, and so cannot be proved in ZFC. We have
thus encountered a definable determinacy principle for a naturally arising class of
effectively defined sets which is inextricably linked to large cardinals.

Actually, analytic determinacy implies relative consistency of much larger
cardinals, in fact, larger than weakly compact cardinals. On the other hand, the
hypothesis of measurable cardinals in Theorem 1316 is too strong, and analytic
determinacy can be derived from smaller cardinals (see [57] for such a proof). By
an exact characterization due to Martin and Harrington (in terms of so called sharps
or Silver indiscernibles) analytic determinacy has consistency strength lying strictly
between weakly compact and measurable cardinals.(Going further, determinacy of
†1
2 sets implies regularity properties for †1

3 sets and has much stronger consistency
strength, entailing the relative consistency of many measurable cardinals.)

These results indicate that determinacy principles provide the key for obtaining
regularity properties for projective classes, and they themselves represent a form of
large cardinal axioms. In fact, it turns out, beautifully, that determinacy principles
establish a correlation between the projective hierarchy and large cardinal axioms
such that determinacy for larger projective classes corresponds to stronger large
cardinal axioms.

22.6 Projective Determinacy

Using determinacy principles, Theorem 1317 can be generalized through the entire
projective hierarchy:
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Theorem 1318 (Kechris–Martin, after Mazur, Banach, Mycielski, Swier-
czkowski, Davis). If all †1

n games are determined then all †1
nC1 sets are

measurable, have the perfect set property, and have the Baire property.

The assumption that all projective games are determined is known as Projective
Determinacy (PD). Thus under PD, the regularity properties of analytic sets extend
to all the higher projective classes—a result that Lusin believed (correctly) would
be impossible to obtain using the ordinary axioms of mathematics.

Corollary 1319. If all projective games are determined, then all projective sets are
measurable, have the perfect set property, and have the Baire property.

Another line of development which uses projective determinacy concerns structural
properties of the projective classes. We had proved the Lusin separation theorem
(Theorem 1151) for the class of analytic sets, or †1

1. The strongest classical
separation theorem was for the class …1

2. In 1967, Blackwell found a proof of the †1
1

separation theorem using determinacy of closed games. Assuming determinacy of
projective sets, Addison, Martin, and Moschovakis generalized Blackwell’s result
through the entire projective hierarchy, and the separation property was found
precisely in the classes †1

2n�1 and …1
2n (n D 1; 2; : : : ).5

Thus PD gives a complete structure theory for the projective classes, i.e., the
entire theory of projective classes takes a remarkably canonical and coherent form
under PD, with all questions about regularity and structural properties settled in an
intuitively desirable and natural fashion. We can speculate that, perhaps, this is the
best that Lusin could have hoped for.

The optimal large cardinal notion that implies determinacy for the projective
classes is that of a Woodin cardinal. We will not define Woodin cardinals here
(see [37] or [34] for a definition), but state the following seminal result:6

Theorem 1320 (Martin–Steel 1985). If there are n Woodin cardinals and a
measurable cardinal above them all, then all †1

nC1 games are determined.
If there are infinitely many Woodin cardinals, then all projective games are

determined.7

In the other direction, we have the following results.

Theorem 1321. †1
nC1-determinacy implies the relative consistency of the existence

n Woodin cardinals. Therefore, projective determinacy implies, for each n 2 N, the
consistency of the existence of n Woodin cardinals.

5Other stronger structural properties that we have not defined (such as reduction, pre-well ordering,
uniformization, and scale) hold in the dual (opposite) classes.
6Deep research by several set theorists including Martin, Steel, Kechris, Foreman, Magidor,
Shelah, and Woodin, culminated in the final ideas and results.
7Woodin showed that with a marginally stronger hypothesis (existence of a measurable cardinal
above infinitely many Woodin cardinals) the determinacy of a much larger class of sets (than the
projective sets) called L.R/ can be established.
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Theorem 1322 (Woodin). The full Axiom of Determinacy (AD) is consistent with
ZF (without Choice) if and only if the existence of infinitely many Woodin cardinals
is consistent with ZFC.

These results further confirm our earlier statement that determinacy is a form of
large cardinal axiom, via an almost perfect “correlation of strength” through the
projective classes.

The remarkable results above (and many others that were not mentioned) indicate
why most set theorists find that the axiom of projective determinacy (as opposed to
V=L) gives the “true and correct” picture for the projective sets, and therefore can
be regarded as a truly natural strong axiom vindicating Gödel’s program—as far as
the theory of projective sets is concerned.

The situation for CH is far more complex.

22.7 Does the Continuum Hypothesis Have a Truth Value?

As mentioned earlier, the Continuum Problem, which was first on Hilbert’s famous
list, is widely regarded as the greatest problem of set theory. It has remained
unsettled after more than a hundred years of attack. Moreover, unlike Lebesgue
and Banach’s Measure Problem or Lusin’s Problem involving the projective sets,
the Continuum Problem cannot be resolved using the usual type of large cardinal
hypotheses.8

Of course, pluralists (formalists) may not think that CH can ever be decided, and
some of them may think that the Gödel–Cohen independence results have settled
the matter for ever. For many pluralists, CH does not have an absolute or intrinsic
truth value. For some, it may not even be a well-defined mathematical problem.

Supporters of Gödel’s program, on the other hand, keep searching for strong
natural axioms which might decide CH. Most of the known axioms which decide
CH (such as V=L and Martin’s Maximum) are not considered sufficiently natural
to be acceptable. Thus the Continuum Problem, unlike the theory of projective
sets, remains open from the perspective of Gödel’s program. However, some highly
sophisticated recent work of Woodin and others has made the problem more
tantalizing than ever by arguing that natural axioms settling the Continuum Problem
may be around the corner. This has been a topic of much discussion (and debate)
among set theorists, who differ widely in their mathematical and philosophical
approaches to CH. For a general survey of this large subject, see Koellner’s article
[87] on CH in the online Stanford Encyclopedia of Philosophy.

The recent EFI project (Exploring the Frontiers of Incompleteness) of Koellner
brought together major thinkers in a workshop on this foundational debate.9

8This was shown by Cohen, Levy, and Solovay.
9The web site http://logic.harvard.edu/efi.php has more information and resources. The project is
funded by a grant from the John Templeton Foundation.

http://logic.harvard.edu/efi.php
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22.8 Further References

Introductory accounts of constructibility can be found in [14, 34, 42, 55], while
Gödel’s original presentation is [22].

Standard references for learning forcing are [2, 34, 42, 44], but Cohen’s original
text [8] is still in print.

For large cardinals, the definitive reference is [37] (see also [34]), but the older
[14] is helpful as well.

The theory of determinacy of infinite games is covered in [34, 37, 55]. Inviting
introductions to this area can be found in [53, 57].

In addition to Koellner [87] mentioned above, discussions on some of the recent
approaches to the Continuum Problem are in [1, 17, 52], and in Woodin’s own
expository articles [82, 83].

A handbook containing highly advanced up to date surveys of current research
in set theory is [18].



Appendix A
Proofs of Uncountability of the Reals

In this appendix, we summarize and review the proofs of uncountability of the reals
given in the main text, and indicate how the methods of these proofs generalize and
connect to other areas of mathematics. (This appendix is not an exhaustive list of
such proofs.)

There were essentially three distinct proofs of uncountability of the reals given
in the text. All proofs depend, in the end, on some form of order completeness of
R, but they take very different forms and generalize in different ways to give other
significant results in mathematics.

A.1 Order-Theoretic Proofs

Section 8.5 presented a proof of uncountability of the reals which follows imme-
diately from Cantor’s powerful theorem characterizing the order type 	 (which
says any countable dense order without endpoints has order type 	). That theorem
also implies 	 C 	 D 	, and so any countable dense order must have Dedekind
gaps. Hence any dense linear order without Dedekind gaps, such as R, must be
uncountable.

This proof is so short because it exploits a very powerful result of order theory.
It is related to Cantor’s first proof of uncountability of R, which directly shows that
a countable dense order cannot be complete:

Proof (Cantor’s first proof of uncountability of R). To get a contradiction, suppose
that the set of real numbers can be enumerated as p1; p2; : : : (without repetition).
Recursively define two sequences of reals hani and hbni with

a1 < a2 < � � � < an < � � � � � � < bn < � � � < b2 < b1;

in the following manner. Let a1 D p1, and b1 D pm wherem is the least index such
that a1 < pm. Having defined a1; a2; : : : ; an and b1; b2; : : : ; bn with an < bn, define

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets,
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anC1 D pj where j is the least index such that an < pj < bn and bnC1 D pk
where k is the least index such that anC1 < pk < bn. Then we have an < anC1 <
bnC1 < bn, and the recursive definition is complete. In particular, for each n we
have an D pjn and bn D pkn for some indices jn and kn. Now, by completeness of
R, there must be a real number p such that an < p < bn for all n, and so p D pi for
some i . Since the indices jn are all distinct, we can fix n with jnC1 > i . Note that
an < pi < bn and by definition of anC1 D pjnC1

, we see that jnC1 equals the least
index j such that pj lies between an and bn, and so jnC1 � i , a contradiction. ut
This was Cantor’s first published proof of the uncountability of R. Given any
enumeration of a countable dense order, it effectively produces a gap in it.

Both the proof of Sect. 8.5 based on Cantor’s theorem characterizing the order
type 	 and Cantor’s first proof given above appeal to order completeness, but note
that full completeness is not necessary. For both proofs, it suffices to assume that
there are no .!; �!/ gap in the ordering.

Proposition 1323. A dense order without .!; �!/ gaps has cardinality > @0.
In this form, the proof generalizes to 	1 orders without .!1; �!1/ gaps:

Proposition 1324. Any 	1 order without .!1; �!1/ gaps has cardinality > @1.
Proof. Recall that any two 	1 orders of cardinality @1 must be isomorphic to each
other. If there were an 	1 orderX of cardinality @1 without .!1; �!1/ gaps, then any
suborder Y of X obtained by removing a single point of X would also be an 	1
order of cardinality @1 and so must be isomorphic to X . But Y has a .!1; �!1/ gap,
and so X has such a gap, a contradiction. ut
Another related generalization is this: Any dense-in-itself complete order contains
an isomorphic copy of the real line and so has cardinality > c.

Connected spaces and their uncountability. As mentioned in the text, the notion
of connectedness in topology is a direct generalization of Dedekind’s definition of
linear continuum: An order is a continuum if and only if in any Dedekind partition
of the order at least one of the sets contains a point which is a limit point of the
other. A metric or topological space is connected if and only if for any partition of
the space into two nonempty sets, at least one set contains a limit point of the other.
Under certain regularity conditions, the uncountability of linear continuums carries
over to connected spaces. To see this, note that the Intermediate Value Theorem
generalizes: The range of any continuous function from a connected space to an
order must be a linear continuum. Since the distance function on a metric space is
continuous, any connected metric space with at least two points is uncountable.1

1By a basic topological result known as Urysohn’s Lemma, this generalizes to any T4 (normal
Hausdorff) topological space, and in fact to any T3 (regular Hausdorff) space: Any connected T3
space with at least two points must be uncountable. All these generalizations are thus related to the
order-based proof of uncountability of R.
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A.2 Proof Using Cantor’s Diagonal Method

Cantor discovered his “diagonal method” for proving uncountability several years
after he obtained his order-based proof given above where he first discovered that R
is uncountable. Unlike the order-theoretic proofs, the diagonal method is applicable
in much more general situations where no order may be present.

In a sense, diagonalization means that given an infinite list of conditions, we
construct a “counterexample” real number which refutes all those conditions. The
nested intervals theorem gives a direct version of this form of diagonalization: Given
a sequence of reals hx1; x2; : : : i, one builds nested closed intervals of shrinking
length I1 � I2 � � � � such that x1 62 I1 (“I1 avoids x1”), x2 62 I2, and so on. The
unique real x in their intersection then differs from all the given reals x1; x2; : : : .
Here the n-th given condition is “x D xn,” and the above method of diagonalization
via nested intervals produces the real x which satisfies x 6D xn for all n. Therefore,
we call x the diagonal counterexample for the given sequence hx1; x2; : : : i of reals.

In this proof, we could, for definiteness, use the specific scheme for building
nested closed intervals where the initial interval I0 is the unit interval I0 D Œ0; 1�,
and each In is either the left-third or the right-third subinterval of In�1 (whichever
avoids the real xn first). The diagonal counterexample will then always be a member
of the Cantor set, and conversely, any member of the Cantor set can be seen to be
a diagonal counterexample for a suitably given sequence of reals hx1; x2; : : : i. It
follows that with this scheme of building nested intervals, the Cantor set is the set of
all possible diagonal counterexamples to various given sequences of real numbers.

With a little modification, the above proof of uncountability of R yields the Baire
Category Theorem, where the n-th condition to be met is to be inside an arbitrary
given dense open set Gn (instead of the special dense open set of the form fx j
x 6D xng). The Baire category theorem holds in complete metric spaces as well
as in locally compact Hausdorff spaces, and thus any such space without isolated
points must be uncountable (and in fact of cardinality at least c). This illustrates
how Cantor’s diagonal method leads to a powerful general theorem of very wide
applicability.

In a more literal form of diagonalization we regard a family hEi j i 2 Ei of
subsets of a set E indexed by E itself as the following relation on E:

fhi; j i 2 E � E j j 2 Ei g;

(or, using the identification via characteristic functions, as a binary array˝
ai;j j i; j 2 E

˛
where each ai;j is 0 or 1). We then form the diagonal set

D WD fi 2 E j i 2 Eig, and finally take its complement to get the “anti-diagonal”
set A WD EXD D fi 2 E j i 62 Ei g, which must differ from all the sets Ei . In
other words, it shows that P.E/ cannot be listed as a family of sets indexed by E .
This is Cantor’s theorem that jEj < jP.E/j, another far reaching generalization (of
the uncountability of R) which ensures existence of sets of arbitrarily large infinite
cardinality.
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This last version is a more abstract form of diagonalization which is usually
referred to as the Cantor diagonal method.

The Cantor set establishes a close connection between these two forms of the
diagonal method: It is constructed by a “binary tree of nested intervals” in which
infinite branches (of nested intervals) through the tree correspond, on the one hand,
to the points of the Cantor set, and, on the other hand, to infinite binary sequences,
i.e., to members of f0; 1gN or to subsets of N.

One thus obtains a variant of the diagonal proof of uncountability of R by
identifying the Cantor set with P.N/ (or with f0; 1gN) and then appealing to the
abstract Cantor diagonal theorem that jP.N/j > jNj.

The more abstract version of the Cantor diagonal method has quite wide
ramifications. It not only gives (via Cantor’s theorem that jP.X/j > jX j) sets of
larger and larger infinite cardinalities by iterating the power set operation, but also is
a method used in the proofs of many important theorems of logic and computability,
such as Gödel’s incompleteness theorem, the unsolvability of the Halting problem,
and Tarski’s undefinability theorem.

A.3 Proof Using Borel’s Theorem on Interval Lengths

In Corollary 1018 it was shown that the interval Œa; b� is uncountable using
properties of lengths of intervals. The length of a bounded interval in R is defined
by

len.Œa; b�/ D len..a; b�/ D len.Œa; b// D len..a; b// D b � a .a � b/:

The length function thus defined on the intervals has several natural properties
(which are essential in obtaining the Lebesgue measure on R). For example, the
lengths of intervals are easily seen to satisfy the condition of finite additivity, which
says that if an interval I is partitioned into finitely many pairwise disjoint intervals
I1; I2; : : : ; In, then

len.I / D len.I1/C len.I2/C � � � len.In/:

However, the key fact about lengths of intervals used in the uncountability proof
mentioned above was Borel’s theorem, which says that the interval Œa; b�, which has
length b�a, cannot be covered by countably many intervals of smaller total length.
This important condition is known as countable subadditivity of length, which was
established (in Borel’s theorem) using the powerful Heine–Borel theorem. Since any
countable set of reals can be covered by countably many intervals having arbitrarily
small total length, countable subadditivity immediately implies that a proper interval
must be uncountable.

The proof also readily generalizes to more abstract setups as follows. Let X be a
fixed set. A nonempty collection S of subsets of X is called a semiring on X if for
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anyA;B 2 S the intersectionA\B is in S and the differenceAXB can be expressed
as the union of finitely many pairwise disjoint sets from S. By a set-function on a
semiring S we mean a function � defined on S which takes nonnegative extended
real values (i.e., we allow �.A/ to be C1). A set-function � on a semiring S on
X is said to be continuous if for every p 2 X and every � > 0 there is a set
E 2 S with p 2 E and �.E/ < �, and � is said to be countably subadditive on
S if whenever E 2 S is covered by countably many sets E1;E2; � � � 2 S, we have
�.E/ � P1nD1 �.En/. Essentially the same proof that a countable set has measure
zero now immediately gives:

Proposition 1325. Suppose that � is a nonnegative continuous set function on a
semiring S of subsets of a fixed set X . If � is countably subadditive on S, then E is
uncountable for any E 2 S for which �.E/ 6D 0.

Countable subadditivity is necessary here. For example, letX be the set Q of rational
numbers. By a rational half-open interval we mean a set of the form Œa; b/\Q with
a; b 2 Q. The set of half-open rational intervals forms a semiring on Q on which the
length function (defined as before) is continuous and finitely additive. But countable
subadditivity fails and every rational interval is countable.

We conclude by noting that under finite additivity, the condition of countable
subadditivity (as in Borel’s theorem) actually entails a much stronger and important
result known as the measure extension theorem, whose proof can be found in
any standard textbook of measure theory. By a measure we mean a nonnegative
extended real valued set-function � defined on a sigma-algebra which vanishes on
the empty set (�.Ø/ D 0) and which satisfies the condition that if hAni is a pairwise
disjoint sequence of sets from the sigma-algebra then �.[1nD1An/ D

P1
nD1 �.An/

(countable additivity).

Theorem 1326 (The Measure Extension Theorem). Let � be a finitely additive
nonnegative extended real valued set-function on a semiring S of subsets of a fixed
set X . Assume that X D [nAn for some sets An 2 S with �.An/ < 1 for all n.
If � is countably subadditive on S, then there is a unique measure defined on the
sigma-algebra generated by S which extends �.

Taking S to be the semiring of all real intervals of the form Œa; b/ and � to be the
length function on such intervals, we get the following immediate corollary of the
theorem: There is a unique measure defined on the Borel subsets of R for which
the measure of any interval is its length. This measure is known as the Lebesgue
measure, and it also uniquely extends as a measure to the collection of all Lebesgue
measurable sets (the sigma-algebra generated by the Borel sets together with the
measure zero sets).
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Existence of Lebesgue Measure

This appendix gives a proof of the existence of Lebesgue measure. That is, we prove
Theorem 1028 whose statement is as below. Recall that E 2 L, or E is measurable,
if for all � > 0 there exist closed F and open G with F � E � G and intervals
I1; I2; : : : coveringGXF with

P

n

len.In/ < �.

Theorem (Lebesgue). There is mWL! Œ0;1� such that

1. m is countably additive: If A1;A2; : : : are pairwise disjoint measurable sets, then
m.
S
n An/ D

P
n m.An/.

2. m.I/ D len.I / for any interval I (thusm.Ø/ D 0).

To prove the theorem, we first define the outer measure m�.E/ of any set E � R
(not necessarily measurable), and then restrict m� to L to get m.

Definition 1327 (Outer Measure). For any E � R, we define:

m�.E/ WD inf
˚P1

nD1 len.In/ j hIni is a sequence of intervals coveringE
�
:

m is m� restricted to L, so if E 2 L, thenm�.E/ is denoted by m.E/.

Recall Borel’s theorem (Theorem 1011) which says len.I / � m�.I / for any interval
I . The following facts are now immediate.

Problem 1328 (Monotonicity). If A � B then m�.A/ � m�.B/.
Proposition 1329. For any interval I , m�.I / D len.I /.

Proof. m�.I / � len.I / is trivial and Borel’s theorem says m�.I / � len.I /. ut
Proposition 1330 (Countable Subadditivity of Outer Measure). For any
sequence E1, E2, . . . of sets, m�.

S
n En/ �

P
n m
�.En/.

Proof. Given � > 0, choose, for each n, a sequence of intervals hIn;k j k 2 Ni
coveringEn and with

P
k len.In;k/ � m�.En/C �

2n
. Combining all these sequences
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of intervals into a single sequence, we get a covering of
S
n En with total length

�Pn.m
�.En/C �

2n
/ DPn m

�.En/C �. ut
So we can (and will) prove equalities of the form m�.

S
n En/ D

P
n m
�.En/ by

only showingm�.
S
n En/ �

P
n m
�.En/ (by countable subadditivity).

Corollary 1331. If A is measurable and � > 0 then there are closed F and open
G such that F � A � G, m�.A/ � m�.G/ � �, and m�.F / � m�.A/� �.
Proof. Let � > 0. Fix closed F and openG such that F � A � G andm�.GXF / <
�. Then by countable subadditivity and monotonicity,m�.G/ � m�.A/Cm�.GX
A/ � m�.A/ C m�.GXF / � m�.A/ C �, so m�.A/ � m�.G/ � �. Similarly
m�.F / � m�.A/ � �. ut
Proposition 1332. Let G be an open set expressed as a disjoint union of open
intervals [nJn D G. Then m�.G/ DPn len.Jn/.

Proof. Easily m�.G/ �Pn len.Jn/ (since the Jn’s cover G).
For the other direction, let hIni be any sequence of open intervals covering G.

Then for each n, hIn \ Jm j m 2 Ni is a sequence of pairwise disjoint intervals all
contained in In and so len.In/ �Pm len.In \ Jm/. Hence

X

n

len.In/ �
X

n

X

m

len.In \ Jm/ D
X

m

X

n

len.In \ Jm/ �
X

m

len.Jm/;

where the last inequality follows by Borel’s theorem since for each m, the intervals
hIn \ Jm j n 2 Ni cover Jm. ut
Corollary 1333. If G1 and G2 are disjoint open sets then m�.G1 [ G2/ D
m�.G1/Cm�.G2/.
Proposition 1334. If F1 and F2 are disjoint closed sets then m�.F1 [ F2/ D
m�.F1/Cm�.F2/.
Proof. Let � > 0. Fix open G with F1 [ F2 � G and m�.F1 [ F2/ � m�.G/ � �.
Fix disjoint openG1 andG2 containingF1 and F2 respectively (Problem 938). Then
we havem�.F1 [ F2/ � m�.G/� � � m�..G \G1/[ .G \G2//� � D m�.G \
G1/Cm�.G \G2/� � � m�.F1/Cm�.F2/ � �. ut
Proposition 1335 (Finite Additivity). Let A and B be disjoint measurable sets.
Then m�.A [ B/ D m�.A/Cm�.B/.
Proof. Let � > 0. Fix closed sets FA � A and FB � B with m�.FA/ � m�.A/� �

2

and m�.FB/ � m�.B/ � �
2
. Then m�.A [ B/ � m�.FA [ FB/ D m�.FA/ C

m�.FB/ � m�.A/Cm�.B/. ut
Proposition 1336 (Countable Additivity of Lebesgue Measure). If A1, A2,
. . . are disjoint measurable sets then m�.

S
n An/ D

P
n m
�.An/.

Proof.
P

n

m�.An/ D sup
n

nP

kD1
m�.Ak/ D sup

n
m�.

Sn
kD1 Ak/ � m�.

S
n An/. ut

The main theorem now follows from and Propositions 1329 and 1336.



Appendix C
List of ZF Axioms

ZF 1 (Extensionality). 8x8y.8z.z 2 x $ z 2 y/! x D y/.
ZF 2 (Empty Set). 9x8y.y 62 x/.
ZF 3 (Separation Scheme). If '.x; t1; t2; : : : ; tn/ is a ZF formula in which the free
variables are among x; t1; t2; : : : ; tn, then the following is an axiom:

8t18t2 � � � 8tn8a9b8x.x 2 b $ x 2 a ^ '.x; t1; t2; : : : ; tn//:

ZF 4 (Power Set). 8x9y8z.z 2 y $ 8w.w 2 z! w 2 x//.
ZF 5 (Union). 8x9y8z.z 2 y $ 9w.w 2 x ^ z 2 w//.

ZF 6 (Unordered Pairs). 8x8y9z8w.w 2 z$ w D x _ w D y/.
ZF 7 (Replacement Scheme). If '.x; y; t1; t2; : : : ; tn/ is a ZF formula with free
variables among the ones shown, then we have the axiom:

8t18t2 � � � 8tn
�8x8y8z.'.x; y; t1; : : : ; tn/ ^ '.x; z; t1; : : : ; tn/! y D z/

! 8a9b8u8v.u 2 a ^ '.u; v; t1; : : : ; tn/! v 2 b/�:

ZF 8 (Infinity). 9b�9y.y 2 b ^ 8z.z 62 y//^
8x.x 2 b ! 9y.y 2 b ^ 8z.z 2 y $ z 2 x _ z D x///�.

ZF 9 (Foundation). 8x.9y.y 2 x/! 9y.y 2 x ^ :9z.z 2 y ^ z 2 x///.
ZFC is obtained by adding to ZF the Axiom of Choice, which says:

8x..8y.y 2 x ! 9z.z 2 y//^
8u8v.u 2 x ^ v 2 x ^ u 6D v! :9y.y 2 u ^ y 2 v///

! 9w8y.y 2 x ! 9Šz.z 2 y ^ z 2 w///:
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trichotomy, 80
weakly compact, 245–247, 406
Woodin, 410–411

cardinality, see cardinal numbers
c, cardinality of the continuum, see cardinal

numbers
Carnap, R., 48n, 365
Cartesian product, 8, 373
Cauchy

completion, 63
criterion for convergence, 270
nested interval property, 61
sequence, 270

of rational numbers, 63
CB-rank, see Cantor–Bendixson rank
CCC (countable chain condition)

continuum, 164, 166, 201, 226, 247
for Baire property, 297
modulo a � -ideal, 335
orders, 163–164, 247
posets (partial orders), 249
property of Lebesgue measure, 290
sigma-algebra modulo a � -ideal, 335

CH, see continuum hypothesis
characteristic functions, 114
choice

axiom of, see axiom of choice
choice function, 94
choice set, 91

effective, 91
Church, A., 365, 366
classes, 375–376

proper, 396
closed sets

continuum hypothesis for, 274, 294, 304
in orders, 172
of real numbers, 268–270

countable and bounded, classification
of, 310

separation by open sets, 269
closed unbounded sets in W.!1/, see ordinal

numbers (ordinals), club sets
closure of a set, 268
club sets, see ordinal numbers (ordinals), club

sets
coanalytic sets, 330

boundedness theorem for analytic subsets
of WF, 341

WF, WF˛ , 339
perfect set property for, 353, 354, 402
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coding, codes for
ill-founded trees, 339
IF, 339
U.x/, subset of N� coded by x, 339
subsets of N� by elements of the Cantor

set, 338
well-founded trees, 339
WF, WF˛ , 339

cofinal subset, see orders (linear), cofinal
subset

cofinality, 128, 210–215
of cardinals, 212
cf.�/, 212
of ordinals, 211
of well-orders, 211

Cohen, P. J., 216, 354, 398, 402
comeager sets, 292
commensurability, 92–93
compactness, 277, 283
complete invariant, 19

Frege–Russell–Scott, 395
complete orders, 154

and the Bolzano–Weierstrass property,
168–170, 206, 214

and the Nested Intervals property, 168–170,
206, 214

sequential, 169, 206, 214
strong, 169, 206, 214

cardinality of perfect subsets in, 173
completion, Dedekind, 166–168

complex numbers, 64
comprehension

naive principle of, 3, 363–364
condensation points, 273–274, 305
connectedness, 64, 173–174, 414

and the intermediate value theorem,
173–174

as characterization of the continuum, 174
consistency strength, 406
constructible sets, 216, 399–402
continuity, continuous maps

continuous curve, 278
on orders, 50, 157

embedding, continuous, 158
on sets of real numbers, 275–276

continuity at a point, 275
removable discontinuity, 276

continuous order embedding, 158
Continuum Hypothesis, the (CH), 105–106,

216–217, 399
consistency of, 401
for Gı sets, 293–294
for analytic sets, 337–338
for closed sets, 274, 294, 304

Generalized (GCH), 217
consistency of, 401

independence of, 402–404
truth value of, 411

Continuum Problem, the, 216
continuum, linear, 47, 154

CCC, 164, 166, 201, 226, 247
characterization of, 174
Dedekind’ definition of, 51–54
Dedekind’s theorem on the real continuum,

57
countability, countable sets, 94–100
countable axiom of choice (CAC), 77, 99–101
countable chain condition, see CCC
countable closed bounded sets

classification of, 310
cover, covering (of a set by a collection of

sets), 281
cumulative hierarchy of sets (V˛), 386–387,

392

D
Davis, M., 410
DC, see axiom of dependent choice
Dedekind complete orders, see complete orders
Dedekind completion, 166–168
Dedekind continuity, 154
Dedekind cuts, 51–52, 154

boundary cut, 52, 154
gap, 51, 52, 154

.!˛;
�!ˇ/, .!1; �!1/, .!; �!/ gaps,

214, 218–219, 414
jump, 51, 52, 154
limit point cut, 154

Dedekind finite, 85–86
Dedekind infinite, 72, 85–86, 88–90, 100–101,

374–375
Dedekind partition, 154

of ratios, 39
Scott cut, 39n

Dedekind, R., 27, 29, 31n, 42, 47–48, 51–54,
57, 63–64, 67, 70–72, 85–89, 111,
154, 166–168, 173, 398

Dedekind–Peano axioms, 29–31, 67, 70, 383
categoricity of, 41, 70–72
model for, 87–88

Dedekind–Peano systems, 70–72
Dedekind’s theorem on, 41, 71

dense
order, 22, 152–153

	1-orderings, 218–219
dense orders vs dense subsets, 153
relative density, 153
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sets of real numbers, 270–271
subset of posets, 249
subsets of orders, 153

dense-in-itself
Gı sets, 293
orders, 170–172
sets of real numbers, 268–270
subsets of orders, 171

denumerable set, 95
derivative, derived set, see also Cantor–

Bendixson derivative
in orders, 149–152
iterated, 151
of real sets, 267

D.A/, 149–152, 267
descriptive set theory, 311
determinacy, 407–409

analytic, 409
Borel, 408–409
definable, 408
open and closed, 408
projective, 409–411

˙, (Jensen’s Diamond Principle), see Diamond
Principle

Diamond Principle (˙), 166, 250, 402
discrete set of real numbers, 272
domain, see relations, domain of

E
effective

choice, 77
choice set, 91
definition, 91–93
enumeration

of N � N, 96
of Q, 96

equality of cardinals, 95
equinumerosity and similarity, 95
pairing functions, 98
specification, 92

effectiveness, 77, 90–93
embedding

continuous, of orders, 158
order, 156

continuous, 158
empty

set (Ø), 4–5
string or word ("), 18

Ø, see empty set
", see empty string or word
endpoint, see orders (linear), endpoint
enumeration, 95
equiconsistent, 406

equinumerosity, 77
effective, 95

equivalence class, 19
equivalence relations, 19–21

and partitions, 20–21
eventual containment, 270
everywhere dense, see dense
extensionality

principle of, 3, 370, 421

F
F� sets, 290–291
families, 13–15

almost disjoint, 118–119, 225–226
indexed, 13
inductive, 83
unindexed, 14

Feferman, S., 93, 298, 405n
field, ordered, see ordered field
filter

in posets, 249
fineness property of the ratios, 39
finite

cardinals, 86–87
Dedekind, see Dedekind finite
induction, see induction, principle of

(finite)
ordinals, 382–383
sequence, see sequences
sets, 82–84

Dedekind, see Dedekind finite
first category sets, 292
forcing

method of, 166, 216, 354, 402–404
poset, 402
relation, 402

formalism, 405
fractions, 34–37
Fraenkel, A., 367, 369, 376, 398
Frege, G., 67, 69, 363–364, 397
Frege–Russell–Scott invariant, 395
Friedman, H., 408
function builder notation, 11
functionals, 375–376
functions, 10–13

bijection, 12
Cantor ternary, 278
characteristic, 114
choice, 94
composition of, 12
continuous, see continuity, continuous

maps
extension, 11
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functions (cont.)
homogeneous set for, 241
image of

forward, 11
inverse, 11

injective, 12
notation

function-builder, 11
one-to-one, 12
one-to-one correspondence, 12
onto, 12
pairing (effective), 98
restriction, 11
surjective, 12

fundamental theorem of algebra, 65

G
Gı sets, 290–291

continuum hypothesis for, 294
dense-in-itself, 293

Gödel incompleteness theorem, 416
Gödel’s Program, 404–405, 411
Gödel, K., 215n, 216, 354, 365, 396, 398, 399,

401–402, 404–406
Gaifman, H., 406n
Gale–Stewart theorem, 408
Galileo, 85
games

Banach–Mazur, see Banach–Mazur game
infinite, see infinite games

generalized Cantor sets, see Cantor sets,
generalized

Generalized Continuum Hypothesis (GCH),
see Continuum Hypothesis,
Generalized

greatest lower bound, 155, 256

H
Harrington, L., 409
Hartogs’

cardinal, 203–205
ordinal, 203–205
set, 203–205, 377
theorem, 203–205

Hausdorff maximal principle, the, 224
Hausdorff, F., 159, 195, 217, 218, 224, 229
Heine–Borel

condition, 283
theorem, 281–285

Hilbert, D., 53n, 72, 216n

homeomorphic, homeomorphism of
order types, 301
orders, 301–303
sets of reals, 276–277
subsets of R with orders and order types,

302–303
homogeneous set (for partitions, for functions),

241

I
ideal, � -ideal (of sets), 286–287
inclusion map, 156
induction

principle of (finite), 2, 179, 383
principle of (over finite sets), 83
transfinite, see transfinite induction

inductive
family, 83

inductive set, 83
infimum, 155
infinitary combinatorics, 245
infinite

branch, see tree, infinite branch
cardinals, 86
Dedekind, see Dedekind infinite
sequence, 95

binary, 115
sets, 83, 84

Dedekind, see Dedekind infinite
infinite games, 407–409
inner models, 402n
intermediate value theorem, 50, 173–174, 276

as characterization of the continuum, 53,
174

failure of, 49–50
intervals

in orders, see orders (linear), intervals
of real numbers, see real numbers and sets,

intervals
invariant, see complete invariant

Frege–Russell–Scott, 395
irrationals

Dedekind’ definition of, 51
isomorphism

finite partial, 160
of orders, 135–136

J
Jensen’s Diamond Principle (˙), 166, 250, 402
Jensen, R., 166, 250, 397



Index 437

K
König’s

inequality, 125, 126
cofinality version, 213

Infinity Lemma, 237–238, 246
König, J., 126
Kechris, A. S., 409, 410
Kelley, J. L., 396
Kleene–Brouwer order, 147, 162, 326
Kuratowski, K., 8n, 92, 345, 373

L
L, see constructible sets
lambda-calculus, 366
Landau, E., 38n, 57n, 59n, 64n
large cardinals, see cardinal numbers, large

cardinals
least upper bound, 155, 256

Least Upper Bound property, 155
Lebesgue measurability

of all sets of reals, 404, 408
of analytic sets, 333–335
of PCA (†1

2) sets, 354–355, 402, 404, 406,
409

of projective sets, 404, 409–410
Lebesgue measurable sets, 287–290, 419

non-measurable sets, 297, 299
Lebesgue measure on R, 289–290, 417

CCC property, 290
existence, 419–420
monotonicity, 289
outer regularity, 289
translation invariance, 289
uniqueness, 289

Lebesgue measure zero, 285–287
Lebesgue, H., 285–290, 324, 419
lengths (magnitudes), 54–58
lexicographic

see orders (linear), 218
limit points (lower, upper)

in orders, 149–152
of order !, 151
second and higher order, 151
two-sided, 149

of real sets, 266–267
two-sided, 267

Liouville
constant, 107

Liouville, J., 107
logicism

logicist program, 363–365
long line, the, 201
Lusin separation theorem, 331–333

Lusin’s problem, 352–355, 402
Lusin, N., 216, 332, 342, 352–355, 406

M
magnitudes (lengths), 54–58

signed, 58
Martin’s Axiom (MA), 249–250, 354
Martin, D. A., 354, 389n, 407–410
Mazur, S., 410
Mazurkiewicz, S., 343
meager sets, 292
measurable

cardinal, see cardinal numbers
sets, see Lebesgue measurable sets

measure problem, 299, 345–352
measure zero, see Lebesgue measure zero
measures

�-complete, 347
atomless, 347
continuous, 347
finite, 347
non-trivial, 347
probability, 347
total, 347
two-valued, 347

monotone
convergence property, the, 170
real functions, 128
sequences (increasing, decreasing), 170

monotone order property, 245
Morse, A. P., 396
Morse–Kelley set theory (MK), 396
Moschovakis, Y., 410
Mostowski, A., 390
Mycielski, J., 408, 410

N
natural numbers

defined, 87
nested interval property, the, 61, 256

and complete orders, 168–170, 206, 214
Cauchy, 61
in R, 256
sequential, 169, 206, 214
strong, 169, 206, 214

Neumann, J. von, 69–70, 72, 377–378, 381,
385–386, 395, 398

New Foundations, see NF set theory
NF set theory (of Quine), 397

stratified formula, 397
non-measurable sets, 297, 299
nowhere dense sets of real numbers, 272–275
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numbers
algebraic, 106
cardinal, see cardinal numbers
ordinal, see ordinal numbers
transcendental, 106

O
open sets, see real numbers and sets
order types, 138–145
!, 
, 	, 
, 138
characterization of

order type 	 of the rationals, 161
order type 
 of the reals, 165

defined as Frege–Russell–Scott invariant,
395

operations of, 138–145
product, 143–145
sum, 139–142

reverse, 138
symmetric, 138

ordered
n-tuple, 16
field, 58–62

definition of, 60
of the real numbers, 58–61
properties of, 62

pair, 8, 373
Kuratowski’s definition, 8n, 373

orders (linear), 21–23, 131–133
	1-orderings, 218–219, 414
anti-lexicographic, 142
bounded sets (below, above), 133
bounds (lower, upper), 133

greatest lower bound, 155
infimum, 155
least upper bound, 155
supremum, 155

CCC (countable chain condition), 163–164,
247

closed subsets, 172
cofinal subset, 135
coinitial subset, 135
complete (Dedekind), see complete orders
completion (Dedekind), 166–168
continuity, continuous maps, 50, 157
continuous (Dedekind continuity), 154
continuous embedding, 158
continuum, 154
dense, 22, 152–153

	1-orderings, 218–219
dense orders vs dense subsets, 153
relative density, 153
subsets, 153

dense-in-itself, 170–172
derived set, derivative, 149–152
D.A/, 149–152
embedding, 156

continuous, 158
endpoint, 22, 133
gaps, .!˛; �!ˇ/, .!1; �!1/, .!; �!/, 214,

218–219, 414
intervals, open and closed, 135
isomorphism, 135–136
Kleene–Brouwer order, 147, 162, 326
lexicographic, 142

powers, 218
limit points (lower, upper), 149–152

of order !, 151
second and higher order, 151
two-sided, 149

monotone order property, 245
ordinal, see ordinal numbers
perfect subsets, 172
predecessors, 133

immediate, 22, 133
rearrangements, 136–138
reverse, 137, 138
segments, initial and final, 135
separable, 164
short, 226–228
similar, similarity of, 135–136
suborders, 134
successors, 133

immediate, 22, 133
symmetric, 138
types, see order types
well-orders, see well-ordering

orders (partial), see posets
ordinal numbers (ordinals), 175–179

canonical order, 195–197
Cantor normal form, 198
club (closed unbounded) sets in W.!1/,

202–203
cofinality, see cofinality
comparability theorem for, 185
countable ordinals, 193, 199–201
division algorithm, 191
epsilon numbers, 193
"0, 193
even (and odd), 191
expansion in powers of a base, 197
exponentiation, 191–195

Hausdorff’s definition of, 195
finite, 382–383
Hartogs’, see Hartogs’ ordinal
initial ordinals, 204
!˛ , 205
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initial set of, 186, 381
W.˛/, 184–186
least uncountable ordinal !1, 200
!1 , 200
limit, 177, 381
limit of a set of, 188
normal functions on, 194
odd (and even), 191
operations defined by transfinite recursion,

189–191
ordering of (comparing), 183
product (multiplication), 177, 187

defined by transfinite recursion, 190
product-closed, 194
rank, rank function, see rank
remainder ordinals, 191–195

characterization of, 194
second number class, 204
subtraction, 190
successor, 177, 381
successor of, 187
sum (addition), 177

defined by transfinite recursion, 189
sum-closed, 194
supremum of a set of, 188
transfinite induction, 179–181
transfinite recursion over, 189, 381
Von Neumann ordinals, 377–389

comparability theorem for, 379
definition of, 380–381
existence, 380
uniqueness, 379–380

well-ordered sum of, 186–187
outer measure, 419

P
pairing functions (effective), 98
paradoxes, set-theoretic, 361–363

Burali-Forti paradox, the, 361, 381
Cantor’s paradox, 362
impact on the logicist program, 363–364
resolutions of, 364–367
Russell’s paradox, 362–363

partial orders, see posets
partitions, 15–16

and choice (axiom of), 90–93
and equivalence relations, 20–21
homogeneous set for, 241

PCA sets (†1
2 sets), 352

Baire property of, 354–355, 402, 404, 406,
409

Lebesgue measurability of, 354–355, 402,
404, 406, 409

perfect set property for, 354, 406, 409
regularity properties of, 352–355, 406,

409
Peano Arithmetic, 29
Peano curves, 278–279
Peano, G., 29
perfect set property, 295

for all sets of reals, 404, 408
for analytic sets, 335–337
for coanalytic sets, 353, 354, 402
for PCA (†1

2) sets, 354, 406, 409
for projective sets, 404, 409–410

perfect sets, 303–305, 335–337
cardinality of

in R, 294
in complete orders, 173

in orders, 172
of real numbers, 268–270, 274–275, 294
property, see perfect set property

platonism, 405
pluralism, 405
Polish spaces, 343
posets (partial orders), 221–229

antichain, 222
bounded set (below, above), 222
bounds (lower, upper), 222
CCC (countable chain condition), 249
chain, 222
comparable and incomparable elements,

222
containing 	1 chains, 228

P.N/ modulo finite sets, 228
order of magnitude for positive

sequences, 228
orders of infinity for sequences, 228
strict dominating order, 229

dense subset, 249
downward closed subset, 222
embedding of, 223
filters in, 249
greatest and least element, 222
initial part, 222
isomorphisms of, 223
maximal and minimal element, 222
reflexive, 221
representation theorem for, 223
strict, 221
strictly increasing maps on, 223

power set, 6
pre-well-ordering, 208
primitive recursion, 42–45

definition by, 44–45
principle of definition by, 45

Principia Mathematica (PM), 365–366
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principle of
abstraction, 20
comprehension, naive, 3, 363–364
definition by primitive recursion, 45
extensionality, 3, 370, 421
finite induction, see induction, principle of

(finite)
induction (finite), see induction, principle

of (finite)
recursive definition, 42–44
transfinite induction, recursion, see

transfinite induction, recursion
projective determinacy, 409–411
projective sets, 352–355

Baire property of, 404, 409–410
Lebesgue measurability of, 404, 409–410
perfect set property for, 404, 409–410
regularity properties of, 352–355, 409–410

property of Baire, see Baire property

Q
Quine, W. V. O., 78, 365, 365n, 397
quotient map, 20

R
Ramsey’s theorem, 241–243, 245–246

general, 242
Ramsey, F. P., 365
range, see relations, range of
rank (ordinal)

Cantor–Bendixson (CB-rank), see
Cantor–Bendixson rank

for well-founded trees, 238
of regular sets, 392–393
on well-founded structures, 230–232

of elements, 231
of structure, 231

rank function (ordinal)
for abstract derivatives, 207
for well-founded relations, 231

canonical, 231
rational numbers
b-adic, dyadic, triadic, 262
repeating infinite digit expansions of, 262

ratios, 34–41
Archimedean property of, 39
Dedekind partition of, 39
fineness property of, 39
inadequacy of (in geometry and algebra),

49–50
integral, 37

nonsquare, 40
square, 40

density of, 40
R, the set of all real numbers, see real numbers

and sets
real numbers and sets

analytic, see analytic sets
Baire property, see Baire property
Bernstein sets, see Bernstein sets
Borel, see Borel sets
bounded set, 256
bounds (lower, upper), 255–256

greatest lower bound, 256
infimum, 256
least upper bound, 256
supremum, 256

closed sets, 268–270
closure, 268
comeager set, 292
compactness, 277
condensation points, 273–274, 305
continuity of a function at a point, 275
continuous functions on, 275–276
convergent sequence, 270
countable closed bounded sets

classification of, 310
definition of real numbers and R, 58
dense (everywhere dense) sets, 270–271
dense-in-itself sets, 268–270
derived set, derivative, 267
D.A/, 267
discrete sets, 272
everywhere dense sets, 270–271
F� sets, 290–291
first category set, 292
Gı sets, 290–291
homeomorphisms, homeomorphic sets,

276–277
intervals, 1, 101, 255

bounded, 102
closed, 255
half-infinite, 102
nested ternary sequence of, 261
open, 255
proper and improper, 102, 255
subdivision trees of, 257
ternary subdivisions of, 258

isolated point, 267
limit points (lower, upper), 266–267

two-sided, 267
meager set, 292
measurable, see Lebesgue measurable sets
measure zero, see Lebesgue measure zero
nested intervals theorem, 256
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nowhere dense sets, 272–275
open sets, 265–266

canonical decomposition into intervals,
266

countable base for, 265
countable chain condition, 266

PCA (†1
2) sets, see PCA sets

perfect set property, see perfect set property
perfect sets, 268–270, 274–275, 294,

303–305, 335–337
regularity properties, see regularity

properties
residual set, 292
somewhere dense sets, 272
strong measure zero, 287
ternary expansions of, 261
Vitali sets, see Vitali sets

realism, 405
recursive definition, 42–45

basic principle of, 42
principle of, 42–44

reflection, 85
reflexive

cardinals, 89
sets, 72, 85, 374–375

regular sets, 391–393
rank of, 392–393

regularity properties
of analytic sets, 337–338
of PCA (†1

2) and projective sets, 352–355
relationals, 375–376
relations, 8–10

antisymmetric, 9
asymmetric, 9
composition of, 9
connected, 9
domain of, 8
equivalence, see equivalence relations
inverse, 9
irreflexive, 9
product of (relative), 9
properties of, 9
range of, 8
reflexive, 9
symmetric, 9
transitive, 9
transitive closure of, 84, 232
well-founded, see well-founded relations

relativization, 399
residual sets, 292
reverse mathematics, 243
Robinson, R. M., 396
Rowbottom, F., 406n
Russell set, 363

Russell’s paradox, 362–363
Russell, B., 67, 69–70, 93, 113, 361–365, 367,

397

S
Schröder, E., 111
Schröder–Bernstein theorem, see Cantor–

Bernstein theorem
Scott, D., 78, 394–395, 406n
second number class, 204
segments

in orders, see orders (linear)
of sequences, strings, see sequences, strings

selector, 93
separable orders, 164
separating family, 347
sequences, 16–19

binary
finite, 117
infinite, 115

Cauchy, 270
concatenation of, 18
convergent, 170, 270
extension of, 18
finite, 16
infinite, 95
limits of, 270
monotone (increasing, decreasing), 170
prefix (initial), 18
segment (initial), 18
uniqueness of limits of, 270

set builder notation, 4
set, sets

(Boolean) algebra of, 7
analytic, see analytic sets
Bernstein, see Bernstein sets
Borel, see Borel sets
choice, 91
comeager, 292
constructible, see constructible sets
countable, 94–100
cumulative hierarchy of (V˛), 386–387
Dedekind finite, 85–86
Dedekind infinite, 72, 85–86, 88–90,

100–101, 374–375
denumerable, 95
empty (Ø), 4–5
equinumerous, 77

effectively, 95
F� , 290–291
finite, 82–84

Dedekind, see Dedekind finite
first category, 292
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set, sets (cont.)
Gı , 290–291
Hartogs’, see Hartogs’ set
ideal, � -ideal (of sets), 286–287
inductive, 83
infinite, 83, 84

Dedekind, see Dedekind infinite
meager, 292
measurable, see Lebesgue measurable sets
measure zero, see Lebesgue measure zero
membership, 2
notation

brace-list, 5–6
set builder, 4

of uniqueness, 311
operations, 6–7
power, 6
reflexive, 72, 85, 374–375
regular, 391–393

rank of, 392–393
residual, 292
similar, similarity of, 77

effective, 95
singleton, 4–5, 78
strong measure zero, 287
successor of, XC, 379
transitive, see transitive sets
Vitali, see Vitali sets
well-founded, see regular sets

set-theoretic paradoxes, see paradoxes,
set-theoretic

SH, see Suslin hypothesis
Shelah, S., 404
short linear orders, 226–228
Sierpinski’s theorem, 318–319
Sierpinski, W., 313, 318–319
†1
2 sets, see PCA sets

� -ideal (sigma ideal) of sets, 286–287
sigma-algebra (� -algebra), 321–322

CCC modulo a � -ideal, 335
Silver indiscernibles (sharps), 409
Silver, J., 355, 406n
similarity

of orders, 135–136
of sets, 77

effective, 95
singleton, see set, singleton, see set, singleton
Skolem, T., 367, 369, 371, 398
Solovay, R. M., 216, 299, 352n, 354–355, 404,

406–409
space filling curves, 278–279
Steel, J., 407, 410
Steinhaus, H., 408

string, 16–19
concatenation, 18
empty ("), 18
extension, 18
prefix (initial), 18
segment (initial), 18
ternary strings, 259

strong measure zero, 287
structuralism, 67, 70–72
successor of a set, XC, 379
supremum, 155
Suslin

Hypothesis, the (SH), 166, 249, 402
independence of, 404

line, 247–248
operation A, 326–330
Problem, the, 166, 247
Suslin’s theorem, 333
systems, 328
tree, 248

normal, 248
Suslin, M. Y., 166, 324, 333
Swierczkowski, S., 410

T
Tarski, A., 53n, 365
theory of types, 364–366

simple, 365
topological properties, 277
transfinite induction, see well-ordering, ordinal

numbers, well-founded relations
transfinite recursion, see well-ordering, ordinal

numbers
transitive sets, 382

transitive closure of a set, 390–391
tree, trees, 234–240, 324–326

Aronszajn, 246, 248
binary, 117–119

full, 236
branch, 235
finitely-branching, 235
height

of a tree, 235
of an element htT .x/, 235

infinite branch
as digit string, 260
as nested intervals, 261
through finitely branching trees, see

König Infinity Lemma
through the binary tree, 118
through trees, 259

König Infinity Lemma, 237–238
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levels of, Lev˛.T /, 235
nodes, 234
of strings over a set, 236
over a set, 236
representation theorems for, 236–237
subtree, 235
Suslin, 248

normal, 248
tree property of cardinals, 246
well-founded, 238–240, 325–326, 339–342

existence of (all ranks), 240
ranks for, 238
truncated ranks for, 239

types
order, see order types
theory of, see theory of types

U
Ulam matrix, 333, 335
Ulam, S., 299, 346, 349–351
uniformization, 93
uniqueness problem for trigonometric series,

310
universal sets, 343
universe, set theoretic, 393

V
V , the set theoretic universe, 375, 393
V˛ , the cumulative hierarchy of sets, 386–387,

392–394
V=L, see axiom of constructibility, see axiom

of constructibility, see axiom
of constructibility, see axiom of
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Von Neumann
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comparability theorem for, 379
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well-founded relations and structures,
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canonical rank decomposition, 230
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Mostowski’s theorem, 390
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of elements, 231
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rank functions for, 231
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transfinite induction, 230, 233
well-founded sets, see regular sets
well-founded trees, 238–240, 325, 326,

339–342
existence of (all ranks), 240
ranks for, 238

well-ordering, 22, 175–179
basic facts, 182–183
cofinality of, see cofinality
comparability theorem for, 185
equivalent conditions for, 176
initial rigidity, 183
pre-well-ordering, 208
property, the, 32
representation by initial sets of ordinals,

184–186
theorem, 208–210

Zermelo’s, 208
transfinite induction, 179–181
transfinite recursion, 181–182

over ordinals, 189
unique ranks for elements, 183
uniqueness of isomorphisms, 182
Von Neumann, 378–381

comparability theorem for, 379
existence, 380
uniqueness, 379–380

Whitehead, A. N., 365
winning strategy, 407
Woodin, W. H., 343, 407, 410–411
word, 17

binary, 117
empty ("), 18

Z
Zermelo set theory (Z), 387–389
Zermelo’s
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Z, see Zermelo set theory

well-ordering theorem, 208
Zermelo, E., 67, 70, 361, 364, 366–367, 369,
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ZF set theory, 367, 369–385
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ZF formula, 370
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Choice, 367

Zorn’s Lemma, 223–224
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