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Preface

Every mathematician uses the real number system, but mathematics students are
seldom told what it is. The typical undergraduate real analysis course, which is
supposed to explain the foundations of calculus, usually assumes a definition of
R, or else relegates it to an appendix. By failing to reach the real foundation (pun
intended), real analysis runs the risk of looking like a mere rerun of calculus, but
with more tedious proofs. A serious look at the real numbers, on the other hand,
opens the eyes of students to a new world—a world of infinite sets, where the need
for new ideas and new methods of proof is obvious. Not only are theorems about
the real numbers interesting in themselves, they fit into the fundamental concepts of
real analysis—limits, continuity, and measure—like a hand in a glove.

However, any book that revisits the foundations of analysis has to reckon with the
formidable precedent of Edmund Landau’s Grundlagen der Analysis (Foundations
of Analysis) of 1930. Indeed, the influence of Landau’s book is probably the reason
that so few books since 1930 have even attempted to include the construction of the
real numbers in an introduction to analysis. On the one hand, Landau’s account is
virtually the last word in rigor. The only way to be more rigorous would be to rewrite
Landau’s proofs in computer-checkable form—which has in fact been done recently.
On the other hand, Landau’s book is almost pathologically reader-unfriendly. In his
Preface for the Student he says “Please forget everything you have learned in school;
for you haven’t learned it,” and in his Preface for the Teacher “My book is written,
as befits such easy material, in merciless telegram style.” While memories of Landau
still linger, so too does fear of the real numbers.

In my opinion, the problem with Landau’s book is not so much the rigor (though
it is excessive), but the lack of background, history, examples, and explanatory
remarks. Also, the fact that he does nothing with the real numbers except construct
them. In short, it could be an entirely different story if it were explained that the real
numbers are interesting! This is what I have tried to do in the present book.

In fact the real numbers perfectly exemplify the saying of Carl Ludwig Siegel
that the mathematical universe is inhabited not only by important species but also by
interesting individuals. There are interesting individual numbers (such as

√
2, e, and

π), interesting sets of real numbers (such as the Cantor set, Vitali’s nonmeasurable
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set), and even interesting sets of which no interesting member is known (such as the
set of normal numbers). All of these examples were known in 1930, but in recent
decades they have been joined by many new exotic sets arising from the study of
fractals, chaos, and dynamical systems.

The exotic sets arising from dynamical systems are one reason, I believe, to shift
the emphasis of analysis somewhat from functions to sets. Of course, we are still
interested in sequences of numbers and sequences of functions, and their limits. But
now it seems equally reasonable to study sequences of sets, since many interesting
sets, such as the Cantor set, arise as their limits. Another reason is simply the great
advances made by set theory itself in recent decades, many of them motivated by
the desire to better understand the real numbers. These advances are too technical
for us to discuss in detail, but they result from the fundamental fact that analysis is
based on uncountable sets and the struggle to understand this fact.

The set of real numbers is the first, and still the most interesting, example of
an uncountable set. The second example is the set of countable ordinals. It is less
familiar to most mathematicians, but also of great importance in analysis. If analysis
is taken to be the study of limit processes, then countable ordinals are the numbers
that measure the complexity of functions and sets defined as limits of sequences.
In particular, we assign the lowest level of complexity (zero) to the continuous
functions, the next level of complexity (one) to the functions that are not continuous
but are limits of continuous functions, complexity level two to functions that are not
of level one but are limits of functions of level one, and so on. It turns out that there
are functions of all levels 0, 1, 2, 3, . . . and beyond, because one can find a sequence
of functions f0, f1, f2, . . ., respectively of levels 0, 1, 2, . . ., whose limit is not at any
of these levels. This calls for a transfinite number, called ω, to label the first level
beyond 0, 1, 2, . . ..

The transfinite numbers needed to label the levels of complexity obtainable by
limit processes not only make up an uncountable set: in fact they make up the
smallest uncountable set. Thus, the raw materials of analysis—real numbers and
limits—lead us to two uncountable sets that are seemingly very different. Whether
these two sets are actually related—specifically, whether there is a bijection between
the two—is the fundamental problem about real numbers: the continuum problem.
The continuum problem was number one on Hilbert’s famous list of mathematical
problems of 1900, and it still has not been solved. However, it has had enormous
influence on the development of set theory and analysis.

The above train of thought explains, I hope, why the present book is about set
theory and analysis. The two subjects are too closely related to be treated separately,
even though the usual undergraduate curriculum tries to do so. The typical set theory
course fails to explain how set concepts are relevant to analysis—even seemingly
abstruse ones such as different axioms of choice and large cardinals. And the typical
real analysis course fails to address the set issues that arise inevitably from the real
numbers, and from measure theory in particular. When the two subjects are treated
together one gets (almost) two courses for the price of one.

The book expands some of the material in my semi-popular book Roads to
Infinity (Stillwell 2010) in textbook format, with more complete proofs, exercises to
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reinforce them, and strengthened connections with analysis. The historical remarks,
in particular, explain how the concepts of real number and infinity developed to meet
the needs of analysis from ancient times to the late twentieth century.

In writing the book, I had in mind an audience of senior undergraduates who have
studied calculus and other basic mathematics. But I expect it will also be useful to
graduate students and professional mathematicians who until now have been content
to “assume” the real numbers. I would not go as far as Landau (“please forget
everything you have learned in school; for you haven’t learned it”) but I believe
it is enlightening, and fun, to learn something new about the real numbers.

My thanks go to José Ferreiros and anonymous reviewers at Springer for
corrections and helpful comments, and to my wife Elaine for her usual tireless
proofreading. I also thank the University of San Francisco and Monash University
for their support while I was researching and writing the book.

San Francisco, CA, USA John Stillwell
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Chapter 1
The Fundamental Questions

PREVIEW

On the historical scale, analysis is a modern discipline with ancient roots. The
machinery of analysis—the calculus—is a fusion of arithmetic with geometry that
has been in existence for only a few hundred years, but the problem of achieving
such a fusion is much older. The problem of combining arithmetic and geometry
occurs in Euclid’s Elements, around 300 BCE, and indeed Euclid includes several of
the ideas that we use to solve this problem today.

In this preliminary chapter we introduce the basic problems arising from attempts
to reconcile arithmetic with geometry, by discussing certain fundamental questions
such as:

• What are numbers?
• What is the line?
• What is geometry?

The ancient Greeks discovered the basic difficulty in reconciling arithmetic with
geometry, namely, the existence of irrationals. Irrationals are needed to fill gaps in
the naive concept of number, and these gaps can only be filled by admitting infinite
processes into mathematics. Thus, to develop a number concept complete enough
for calculus, we need a theory of infinity. The development of such a theory will be
the subject of later chapters.

1.1 A Specific Question: Why Does ab = ba?

This question is not as trivial as it looks. Even if we agree that a and b are numbers,
and ab is the product of a and b, we still have to agree on the meaning of numbers
and the meaning of product—and these turn out to be deep and fascinating issues.
To see why, consider how ab was understood from the time of ancient Greece until
about 1860.

J. Stillwell, The Real Numbers: An Introduction to Set Theory and Analysis,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-01577-4__1,
© Springer International Publishing Switzerland 2013
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ab

a

b

Fig. 1.1 The product ab of lengths a and b

a2 ab

b2ab

a b

a

b

Fig. 1.2 The rectangle picture of (a + b)2

In Greek mathematics, and in Euclid’s Elements in particular, quantities a and
b were viewed as lengths, and their product ab was taken to be the rectangle with
perpendicular sides a and b (Fig. 1.1.)

Then it is completely obvious that ab = ba, because the rectangle with
perpendicular sides b and a is the same as the rectangle with perpendicular sides
a and b. It was so obvious that Euclid did not bother to point it out and, to the
Greeks, ab = ba was probably not an interesting fact, because it was true virtually
by definition.

This could be considered a virtue of the rectangle definition; it makes the basic
algebraic properties of the product available at a glance, so that one does not need
to think about them. One such property, which Euclid did point out, is the formula
that we write as

(a + b)2 = a2 + 2ab + b2.

Many a beginning algebra student thinks that (a + b)2 = a2 + b2, but this mistake
will not be made by anyone who looks at the rectangle picture of (a+ b)2 (Fig. 1.2).
Clearly, the square with side a + b consists of a square a2 with side a, a square b2

with side b, but also two rectangles ab. Hence (a+ b)2 = a2 + 2ab+ b2. The Greeks
were so fond of this picture that they even stamped it on coins! Figure 1.3 shows an
example from the Greek island of Aegina, from around 400 BCE, even before the
time of Euclid.

This is “algebra,” but not as we know it. It runs alongside our algebra up to
products of three lengths, but refuses to go further. The product of lengths a, b, and
c was interpreted by the Greeks as a box with perpendicular sides a, b, and c. This
interpretation agrees with ours—and makes it possible to visualize results such as
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Fig. 1.3 Aegina coin

(a + b)3 = a3 + 3a2b + 3ab2 + b3—but what is the product of four lengths a, b, c,
and d? To the Greek way of thinking there was no such thing, because we cannot
imagine four lines in mutually perpendicular directions.

Thus, the Greek interpretation of numbers as lengths and products as rectangles
or boxes has its limitations. Nevertheless, it remained as the mental picture of
products long after the Greek concept of length was replaced by a general concept
of number (see the next section for more on this development). For example, here
is a passage from Newton (1665) in which even the product of whole numbers is
described as their “rectangle”:

For ye number of points in wch two lines may intersect can never bee greater yn ye rectangle
of ye number of their dimensions.

Here the “lines” are what we would call algebraic curves, and their “dimensions”
are their degrees, which are whole numbers. (Also, it should probably be pointed out
that the “y” in Newton’s time is “th” in modern English.) Finally, as late as 1863, the
great number theorist Dirichlet appealed to the rectangle picture in order to explain
why ab = ba for whole numbers a and b. On page 1 of his Lectures on Number
Theory he asks the reader to imagine objects arranged in a rows of b objects, or in b
rows of a objects, and to realize that the number of objects is the same in each case.

Surely, nothing could be clearer. Nevertheless, it is surprising that the same idea
applies to two vastly different kinds of quantity: lengths, which vary continuously,
and whole numbers, which vary discretely, or in jumps. Finding a concept of
number that embraces these two extremes is a long journey, which results in a new
understanding and appreciation of the law ab = ba. It will take two chapters to
complete, and the remainder of this chapter outlines the obstacles that have to be
overcome.

Exercises

1.1.1 Give pictorial versions of the distributive law a(b+ c) = ab+ac, and the identity a2 −b2 =

(a − b)(a + b).
1.1.2 Also explain why (a + b)3 = a3 + 3a2b + 3ab2 + b3, with a picture of a suitable cube.
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1.2 What Are Numbers?

Numbers answer two subtly different questions: how many and how much? the first
is the simpler question, answered by the natural numbers

0, 1, 2, 3, 4, 5, 6, 7, . . . .

The natural numbers originated for the simple purpose of counting, but they
somehow developed an intricate structure, with operations of addition and multi-
plication and (partially) subtraction and division. The subtraction operation invites
an extension of the natural numbers to the integers,

. . . , −3, −2, −1, 0, 1, 2, 3, . . .

so that subtraction becomes fully defined. And the division operation invites an
extension of the integers to the rational numbers m/n for all integers m and n � 0,
so that division is defined for all nonzero rational numbers.

You will know the rules for operating on natural numbers, integers and rational
numbers from elementary school but, almost certainly, no underlying reason for
the rules will have been given. In Sect. 2.2 we will show that all the rules for
operating on numbers stem from their original purpose of counting, whereby all
natural numbers originate from 0 by repeatedly adding 1.

You will also know from school that the rational numbers give an approximate
answer to the second question: how much? This is because quantities such as
length, area, mass, and so on, can be measured to arbitrary precision by rational
numbers. Indeed, we can measure to arbitrary precision by finite decimals, or
decimal fractions, which are rational numbers of the form m/10n, where m and n are
integers. (For example, 3.14 = 314/102.) But arbitrary precision is not exactness,
and some quantities are not exactly equal to any rational number.

The most famous example is the length,
√

2, of the diagonal of the unit square.
The best-known proof goes as follows.

Irrationality of
√

2. There is no rational number whose square equals 2.

Proof. Suppose on the contrary that 2 = m2/n2 for some positive integers m and n.
Then we have the following series of implications.

2 = m2/n2 ⇒ 2n2 = m2 (multiplying both sides by n2)

⇒ m2 is even

⇒ m is even (because the square of an odd number is odd)

⇒ m = 2m′ (for some natural number m′)

⇒ 2n2 = (2m′)2 (substituting 2m′ for m in second line)
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⇒ n2 = 2m′2 (dividing both sides by 2)

⇒ n is even (by same argument as used above for m)

⇒ n = 2n′ (for some natural number n′)

⇒ 2 = m′2/n′2 (where m′ < m and n′ < n).

So, for any pair m, n of natural numbers with 2 = m2/n2 there is a smaller pair
m′, n′ with the same property, and we therefore have an infinite descending sequence
of natural numbers, which is impossible. �

Thus, geometry demands irrational numbers. This discovery threw arithmetic
into confusion, because it is not clear how to add and multiply irrational numbers.
For example, is it true that

√
2×
√

3 =
√

6? Also, is there an arithmetic definition of
multiplication compatible with geometry, where

√
2 ×
√

3 measures the area of the
rectangle with adjacent sides

√
2 and

√
3? We take up these questions in Sect. 2.4.

Exercises

If one attempts to prove that
√

3 is irrational by supposing that
√

3 = m/n and reasoning as above,
one reaches the equation n2 = 3m2. It no longer follows that n2 is even.

1.2.1 What property of n2 does follow from the equation n2 = 3m2?
1.2.2 Use this property to devise a proof that

√
3 is irrational.

1.2.3 Also give a proof that
√

5 is irrational.

1.3 What Is the Line?

More precisely, what are points, and how do they fill the line? Or, how do we make
a continuum from points? We would like to say that points on the line are numbers,
but it is hard to recreate the uniform and unbroken quality of the line from our
fragmentary perception of individual numbers. It is possible, certainly, to visualize
the integer points on the line (Fig. 1.4)

Extending this vision to all the rational points is already a challenging task,
because the rational points are dense—i.e., there are infinitely many of them in
any interval of the line, no matter how small. One way to cope with density is to
consider the integer points 〈m, n〉 of the plane, and to view the rational numbers

0 1−1 2−2 3−3 4−4
. . .. . .

Fig. 1.4 Integer points on the line
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Fig. 1.5 Slopes to integer points on the plane

as the (slopes n/m of) lines from 〈0, 0〉 to other integer points 〈m, n〉 with m � 0.1

(Figure 1.5 shows some of the positive rational numbers as slopes of lines from the
origin to integer points in the first quadrant.)

This view also includes the irrational numbers in the form of lines through 〈0, 0〉
that miss all other integer points in the plane.

However, while it is nice to visualize the density of the rationals, and the gaps in
them that correspond to irrationals, this picture brings us no closer to an arithmetic
definition of the points on the line. For this, we need infinite concepts of some
kind, so as to approach the irrational points via the rationals. The most familiar
is probably the concept of the infinite decimal, which embraces both rational and
irrational points in a uniform way. Infinite decimals extend finite decimals in a
natural way and, like the finite decimals, they have a clear ordering corresponding
to the ordering of points on the line.

As we said in Sect. 1.2, a finite decimal is a rational number of the form m/10n,
which we write by inserting a decimal point before the last n digits of the decimal
numeral for m. Thus, 3.14 is the decimal form of 314/102. An infinite decimal,
such as

1.414213 . . . ,

1In this book we use 〈 and 〉 to bracket ordered pairs, triples, and so on. This is to avoid confusion
with the notation (a, b), which will later be used for the open interval of points x such that
a < x < b.
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represents the limit of the finite decimals

1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, . . .

that is, the number “approached” by these finite decimals as the number of decimal
places increases. We will define the concept of limit formally in Sect. 2.6, and simply
assume some familiarity with infinite decimals for the present.

It is intuitively plausible that each point on the line corresponds to an infinite
decimal, because we can find the successive decimal places of any point P by
starting with the integer interval containing P, dividing the interval into 10 equal
parts to find the first decimal place of P, dividing that subinterval into 10 equal parts
to find the second decimal place, and so on. It is also plausible that different points
P and Q will have different decimals, because repeated subdivision will eventually
“separate” P from Q—they will eventually fall within different parts of the nth
subdivision, and hence differ in the nth decimal place. Moreover, we can decide
which of P, Q is less from their decimals—the lesser point is the one with the lesser
digit in the first decimal place where they differ.

Thus, infinite decimals give a simple numerical representation of points on the
line, which is particularly convenient for describing the ordering of points. However,
infinite decimals are not convenient for describing addition and multiplication,
so they are not a useful solution of the problem of defining addition and mul-
tiplication of irrational numbers. We will solve the latter problem differently in
Sect. 2.4.

Exercises

Infinite decimals are also good for distinguishing (theoretically) between rational and irrational
numbers: the rational numbers are those with ultimately periodic decimals. To see why any
ultimately periodic decimal represents a rational number one uses an easy computation with
decimals; namely, multiplication by 10 (possibly repeated), which shifts all digits one place to
the left, and subtraction.

1.3.1 If x = 0.37373737 . . ., express x as a ratio of integers.
1.3.2 If y = 0.519191919 . . ., express y as a ratio of integers.
1.3.3 By generalizing the idea of the previous exercises, explain why each ultimately periodic

decimal represents a rational number.
1.3.4 Find the decimals for 1/6 and 1/7.
1.3.5 By means of the division process, or otherwise, explain why each rational number has an

ultimately periodic decimal.

The picture of integer points in the plane, used above to visualize rational numbers, has an
interesting extension.

1.3.6 If each rational point in the plane is surrounded by a disk of fixed size ε, show that there is
no line from 〈0, 0〉 that misses all other disks.

1.3.7 Conclude that, if space were filled uniformly with stars of uniform size, the whole sky would
be filled with light (the Olbers paradox).
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1.4 What Is Geometry?

In a trivial sense, numbers are related to geometry because the real numbers are
motivated by our mental image of the line. However, the geometry of the line is
not very interesting, compared with the geometry of the plane. What properties of
numbers, if any, are relevant to the geometry of the plane? The short answer is:
Pythagorean triples.

These are whole number triples 〈a, b, c〉 such that a2 + b2 = c2 or, equivalently,
pairs of whole numbers 〈b, c〉 such that c2−b2 is a perfect square. A list of such pairs
occurs in clay tablet known as Plimpton 322, which was inscribed around 1800 BCE

in ancient Mesopotamia. Table 1.1 shows these pairs in modern notation, together
with the number a =

√
c2 − b2, and a fraction x that will be explained later.

The original tablet lists the pairs 〈b, c〉 in the order given above (part of it
is broken off) but not the numbers a, without which the numbers b and c look
almost random and meaningless. The first person to realize that the pairs 〈b, c〉 are
mathematically significant was the mathematics historian Otto Neugebauer, who in
1945 noticed that

√
c2 − b2 is a whole number in each case. [See Neugebauer and

Sachs (1945).] This led him to suspect that Plimpton 322 was really a table of triples
〈a, b, c〉 with the property

a2 + b2 = c2.

Such triples are called Pythagorean because of the famous Pythagorean theorem
asserting that a2 + b2 = c2 holds in any right-angled triangle with sides a, b and
hypotenuse c. It can hardly be a coincidence that the numbers b, c have the numerical
property that

√
c2 − b2 is a whole number, but was the compiler of Plimpton 322

Table 1.1 Numbers in
Plimpton 322, and related
numbers

a b c x

120 119 169 12/5
3,456 3,367 4,825 64/27
4,800 4,601 6,649 75/32
13,500 12,709 18,541 125/54
72 65 97 9/4
360 319 481 20/9
2,700 2,291 3,541 54/25
960 799 1,249 32/15
600 481 769 25/12
6,480 4,961 8,161 81/40
60 45 75 2
2,400 1,679 2,929 48/25
240 161 289 15/8
2,700 1,771 3,229 50/27
90 56 106 9/5
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Fig. 1.6 Triangle shapes from Plimpton 322

thinking about triangles? What makes this virtually certain is that the ratio b/a (the
“slope of the hypotenuse”) decreases steadily, and in roughly equal steps from just
below the 45◦ slope to just above the 30◦ slope. Thus, the triples are geometrically
ordered, and geometrically bounded, in a natural way. Moreover, it has been pointed
out by Christopher Zeeman (see exercises below) that there are just 16 triangles
between these bounds, subject to a certain “simplicity” condition, and Plimpton 322
contains the first 15 of them. Figure 1.6 shows the shapes of the 15 triangles in
question.

Thus, Neugebauer’s discovery suggests that the numbers in Plimpton 322 have
a geometric meaning, and that the Pythagorean theorem was known long before
Pythagoras, who lived around 500 BCE.

The ordering of triples 〈a, b, c〉 by the ratios b/a makes it clear that positive
rational numbers (ratios of positive integers) were also part of ancient mathematical
thinking. So it is reasonable to suppose that rational numbers may have been
involved in the generation of the pairs 〈b, c〉 in Plimpton 322, and that may explain
how huge pairs such as 〈12709, 18541〉 could be discovered. One way to do this is
via the fractions x appended in the last column of the table. The fractions x “explain”
the triples 〈a, b, c〉 in the sense that they yield each a, b and c by the formulas

b
a
=

1
2

(
x −

1
x

)
,

c
a
=

1
2

(
x +

1
x

)

and each x is considerably shorter than the triple it generates. Moreover, the fractions
x and 1/x are noteworthy because each has a finite expansion in base 60, the
number system used in ancient Mesopotamia. This is because the numerator and
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denominator of each factorizes into powers of 2, 3, or 5. These properties are
explored more thoroughly in the exercises below.

Like the Mesopotamians, the Pythagoreans were struck by the presence of
whole numbers, and their ratios, in geometry (and elsewhere, particularly music).
However, as we saw in Sect. 1.2, they discovered gaps in the rational numbers,
which makes the whole program of using numbers in geometry problematic. The
gap at

√
2 is also conspicuous by its absence from Plimpton 322: the hypotenuse

lines of slope b/a stop just short of the line of slope 1 corresponding to the diagonal
of a square.

Exercises

We now explore how each Pythagorean triple 〈a, b, c〉 in Plimpton 322 is “explained” by the
fraction x in the last column of Table 1.1. Notice that x generally has the same number of digits as
each of the numbers a, b, c, so all three of these numbers can be encoded by a number of the same
“length” as any one of them. Also, we will see that in each case x is “simple” in a certain sense.

For each line in the table,

b
a
=

1
2

(
x −

1
x

)
.

1.4.1 Check that 1
2

(
x − 1

x

)
= 119

120 when x = 12/5.
1.4.2 Also check, for three other lines in the table, that

b
a
=

1
2

(
x −

1
x

)
.

The numbers x are not only “shorter” than the numbers b/a, they are “simple” in the sense that
they are built from the numbers 2, 3, and 5. For example

12
5
=

22 × 3
5

and
125
54
=

53

2 × 33
.

1.4.3 Check that every other fraction x in the table can be written with both numerator and
denominator as a product of powers of 2, 3, or 5.

The formula 1
2

(
x − 1

x

)
= b

a gives us whole numbers a and b from a number x. Why should

there be a whole number c such that a2 + b2 = c2?

1.4.4 Verify by algebra that
[

1
2

(
x − 1

x

)]2
+ 1 =

[
1
2

(
x + 1

x

)]2
.

1.4.5 Deduce from Exercise 1.4.4 that a2 + b2 = c2, where 1
2

(
x + 1

x

)
= c

a .
1.4.6 Check that the formula in Exercise 1.4.5 gives c = 169 when x = 12/5 (the first line of the

table), and also check three other lines in the table.

In a 1995 talk at the University of Texas at San Antonio, Christopher Zeeman showed that
there are exactly 16 fractions x with denominator less than 60 and numerator and denominator
composed of factors 2, 3, and 5 that give slope b/a corresponding to an angle between 30◦ and
45◦. The Pythagorean triples in Plimpton 322 correspond to the first 15 slopes (in decreasing order)
obtainable from these values of x.
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1.4.7 The slope not included in Plimpton 322 comes from the value x = 16/9. Show that the
corresponding slope is 175/288, and that the corresponding angle is a little more than 30◦.

1.5 What Are Functions?

Having seen how the rational numbers can be “completed” to the line of all real
numbers, we might hope that there are similar “rational functions” among all the
real functions. There are indeed rational functions. They are the functions that are
quotients of polynomials

p(x) = a0 + a1x + a2x2 + · · · + anxn, where a0, a1, a2, . . . , an are real numbers.

The polynomial functions play the role of integers, and they are sometimes called
“integral rational functions.”

Just as rational numbers fail to exhaust all numbers, rational functions fail to
exhaust all functions, and indeed there are many naturally occurring functions
that are not rational, such as sin x and cos x. We can see that the function sin x
is not rational, because it is zero for infinitely many values of x—namely, x =
0,±π,±2π,±3π, . . . . A rational function, on the other hand, is zero only when its
numerator is zero. This happens for at most n values of x, where n is the degree of
the numerator, by the fundamental theorem of algebra.

The functions sin x and cos x are nevertheless limits of rational functions, and
indeed of polynomials, because

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+ · · · ,

cos x = 1 − x2

2!
+

x4

4!
− x6

6!
+ · · · .

Thus, sin x is the limit of the sequence of polynomials

x, x − x3

3!
, x − x3

3!
+

x5

5!
, . . . ,

just as
√

2 is the limit of the sequence of rationals 1, 1.4, 1.41, 1.414, . . .. The infinite
series that occur as limits of polynomials are called power series, and they form an
important class of functions. It is tempting to think that power series “complete”
the rational functions in the same way that the real numbers complete the rational
numbers, and indeed Newton was extremely impressed by the analogy:

I am amazed that it has occurred to no one . . . to fit the doctrine recently established for
decimal numbers in similar fashion to variables, especially since the way is then open to
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Fig. 1.7 Modes of vibration

more striking consequences. For since this doctrine in species has the same relationship
to Algebra that the doctrine in decimal numbers has to common Arithmetic, its operations
of Addition, Subtraction, Multiplication, Division and Root extraction may be easily learnt
from the latter’s.

Newton (1671), p. 35.

Power series do indeed vastly increase the range of functions to which algebraic
operations apply, and they are also subject to the calculus operations of differen-
tiation and integration, as Newton was well aware. Nevertheless, power series by
no means exhaust all possible functions. A much wider class of functions came to
light in the eighteenth century when mathematicians investigated the problem of the
vibrating string.

A taut string with two fixed ends has many simple modes of vibration, the first
few of which are shown in Fig. 1.7.

The shape of the first mode is one-half of the sine curve y = sin x (scaled down
in the y dimension), the shape of the second is y = sin 2x, and so on. These simple
modes correspond to simple tones, of higher and higher pitch as the number of
waves increases, and they may be summed to form compound tones corresponding
to (possibly infinite) sums

b1 sin x + b2 sin 2x + b3 sin 3x + · · ·
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Fig. 1.8 Triangular wave

Fig. 1.9 Approximations to the triangle wave

It seems, conversely, that an arbitrary continuous wave form may be realized by
such a sum. This was first conjectured by Bernoulli (1753), and his remark led to
the realization that trigonometric series were even more arbitrary than power series.
For example, a power series may be differentiated at any point, so the corresponding
curve has a tangent at any point. This is not the case for the “triangular wave” shown
in Fig. 1.8, which has no tangent at its highest points.

However, the triangular wave is the sum of the infinite series

sin x − sin 3x
9
+

sin 5x
25

− sin 7x
49

+ · · ·

Figure 1.9 shows the sums of the first one, two, three, and four terms of this series,
and how they approach the triangular wave shape. This discovery made it acceptable
to consider any continuous graph (on a finite interval) as the graph of a function,
because one could express any such graph by a trigonometric series.

Indeed, why insist that “functions” be continuous? Why not allow the following
rule to define a function? (It is known as the Dirichlet function.)
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d(x) =

{
1 if x is rational
0 if x is irrational.

This rule defines a unique value of d(x) for each x, which is perhaps all we need
ask of a function. Interesting though it may be to find formulas for functions (and
indeed it is especially interesting for d(x), as we will see later), the essence of a
function f is the mere existence of a unique value f (x) for each x. We can even
strip the concept of “rule” off the concept of function by making the following
definition.

Definition. A function f is a set of ordered pairs 〈x, y〉 that includes at most one
pair 〈x, y〉 for each x, in which case we say y = f (x). The set of x values occurring
in the ordered pairs form the domain of f , and the set of y values form its range.

Reducing the concept of function to that of set, as we have done here, is part of a
view of mathematics that we will generally follow in this book—that everything is a
set. We will see later that mathematics can be built from the ground up according to
this view, starting with the natural numbers. Of course, it is not practical constantly
to think in terms of sets, but the set concept gives a simple and uniform answer if
anyone asks what we are “really” talking about.

Exercises

The rational functions are similar to numbers in several respects: they can be added, subtracted,
multiplied, and divided (except by 0), and they satisfy the same rules of algebra, such as a+b = b+a
and ab = ba. More surprisingly, they can be ordered. If f and g are rational functions, and f � g,
we say that f < g or g > f if g(x) is ultimately greater than f (x); that is, if g(x) > f (x) for
all sufficiently large x. Then, if f and g are any rational functions, either f ≤ g or g ≤ f . The
following exercises explain why.

1.5.1 If f (x) = x2, g(x) = x2 + 100, h(x) = x3, show that f < g < h.
1.5.2 If f and g are polynomials, explain how to tell which of f , g is the greater.
1.5.3 Show that x+1

x−1 >
x−1
x+1 for x sufficiently large.

1.5.4 If f and g are rational functions, explain how to tell which of f , g is greater by reducing to
the same question about polynomials.

Notice also that the rational functions include a copy of the real numbers, if we associate each real
number a with the constant function f (x) = a. Thus, the ordered set of rational functions is a kind
of “expanded line,” with new points corresponding to the nonconstant functions.

The new points, however, make the set of rational functions less suitable, as a model of the
intuitive line, than the set of real numbers. One reason is that the rational function “line” includes
infinitesimals—positive functions that are smaller than any positive real number.

1.5.5 Show that the rational function ι(x) = 1/x is greater than zero but less than any constant
function. (The symbol ι is the Greek letter iota, which seems appropriate for an infinitesimal
function.)
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1.6 What Is Continuity?

In the previous section we observed the concept of continuous function on our way
to the general concept of function. But the concept of continuous function, though
it arose earlier than the general concept, turns out to be much harder to define
precisely.

Our intuitive concept of a continuous function is one whose graph is an unbroken
curve. We note in passing that the concept of a “curve” is thereby linked to the
concept of a continuous function, and we later (Sect. 4.4) take up what this says
about the concept of curve. But for now we will concentrate on the meaning of
“unbrokenness,” or the absence of gaps, which is a concept called connectedness.
We have already noted that connectedness is an attribute of the line. But the concept
of continuous function is more general, because it has meaning whether or not the
domain of the function is connected.

We will eventually want to study continuous functions on disconnected domains,
but for the present we restrict ourselves to functions on R or on intervals of R such
as [0, 1] = {x : 0 ≤ x ≤ 1} or (0,∞) = {x : x > 0}. In this case we can define a
function f to be continuous on the interval if, for any number a in the interval, f (x)
approaches f (a) as x approaches a. There are various ways to formalize the idea of
“approaching,” which we will discuss in later chapters. For now, we just illustrate
the idea with two examples of functions that visibly fail to be continuous at a point
x = a. The first example is the function

g(x) =

{
−1 for x < 0
1 for x ≥ 0.

This function fails to be continuous at x = 0 because g(x) approaches −1 (in fact
stays constantly equal to −1) as x approaches 0 from below, yet g(0) = 1. The
second example is the function

h(x) =

{
0 for x ≤ 0
sin 1

x for x > 0,

which fails to approach any value as x approaches 0 from above, because it oscillates
between −1 and 1 no matter how close x comes to 0. The graphs of g and h in
Fig. 1.10 clearly show the points of discontinuity.

y = g(x)

y = h(x)

Fig. 1.10 Graphs of the functions g and h
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A continuous function on a closed interval [a, b] = {x : a ≤ x ≤ b} has properties
that one would expect from the intuition that its graph is an unbroken curve from
the point 〈a, f (a)〉 to the point 〈b, f (b)〉. Notably, the following:

Intermediate Value Property. If f is a continuous function on the closed interval
[a, b], then f takes each value between f (a) and f (b).

Extreme Value Property. If f is a continuous function on the closed interval [a, b],
then f takes a maximum and a minimum value on [a, b].

As obvious as these properties appear, they are far from trivial to prove, and they
depend on the connectedness property of R. Indeed these properties are logically
and historically the reason why we need to study the real numbers in the first
place. The need to prove the intermediate value property became pressing after
Gauss (1816) used it in a proof of the fundamental theorem of algebra, which states
that each polynomial equation has a solution in the complex numbers. The first
attempt to prove the intermediate value property was made by Bolzano (1817), but
Bolzano’s proof rests on another assumption that one would like to be provable—
the least upper bound property of R, according to which any bounded set of real
numbers has a least upper bound. In 1858, Dedekind first realized that the least
upper bound property is rigorously provable from a suitable definition of R, thus
providing a sound foundation for all the basic theorems of calculus. This is why
whole books have been written about R, such as Dedekind (1872), Huntington
(1917), and Landau (1951). We explain the construction of R, and prove its basic
properties, in Chap. 2.

But the study of functions also demands that we study sets of real numbers. For
example, when a function is discontinuous we may wish to understand how far
it departs from continuity, and this involves studying the set of points where it is
discontinuous. A basic question then is how large (or small) a set of points may be,
and hence: how can we measure a set of real numbers? We expand on this question
in the next section.

Exercises

1.6.1 Show that xk − ak = (x − a)(xk−1 + axk−2 + a2 xk−3 + · · · + ak−1).
1.6.2 Deduce from Exercise 1.6.1 that, x − a divides p(x) − p(a) for any polynomial p(x).
1.6.3 Deduce from Exercise 1.6.2 that each root x = a of a polynomial equation p(x) = 0

corresponds to a factor (x − a) of p(x), and hence that the equation p(x) = 0 has at most n
roots when p has degree n.

1.6.4 Show, using the intermediate value property, that x5 + x + 1 = 0 has at least one real root.
1.6.5 More generally, show that a polynomial equation p(x) = 0 has a real root for any polynomial

p of odd degree.
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1.7 What Is Measure?

It is intuitively plausible that every set S of real numbers, say in [0,1], should have
a measure, because it seems meaningful to ask: if we choose a point x at random
in [0,1], what is the probability that x lies in S ? This probability, if it exists, can be
taken as the measure of S . Certain simple sets certainly have a measure in the sense
of this thought experiment. The measure of the interval [a, b] should be b − a, and
this should also be the measure of (a, b), because the measure of the point a or b
should be zero.

A more interesting set is the set of rationals in [0,1]. If we ask what is the
probability that a random point is rational, the surprising answer is zero! This is
because we can cover all the rational numbers in [0,1] by intervals of total length
≤ ε, for any number ε > 0. To see why, notice that we can arrange all the rationals
in [0,1] in the following list (according to increasing denominator):

0 , 1 ,
1
2
,

1
3
,

2
3
,

1
4
,

3
4
,

1
5
,

2
5
,

3
5
,

4
5
,

1
6
,

5
6
, . . .

So if we cover the nth rational on the list by an interval of length ε/2n+1 then

total length covered ≤ ε
2
+
ε

4
+
ε

8
+ · · · = ε.

Since ε can be made as small as we please, the total measure of the rational numbers
can only be zero. This is surely surprising! In fact, we have exposed two surprising
facts:

1. The rational numbers in [0,1] can be arranged in a list.
2. Any listable set has measure zero, and hence it is not the interval [0,1].

These two facts together give another proof that irrational numbers exist; in fact
they show that “almost all” numbers are irrational, because the probability that a
randomly chosen number is rational is zero.

Thus, the concept of measurability leads to unexpected discoveries about sets of
real numbers. Even more surprising results come to light as we pursue the concept
further, as we will do in later chapters.

1.7.1 Area and Volume

The idea of determining measure by adding infinitely many items actually goes back
to ancient Greece, where the method was used by Euclid and Archimedes to find
certain areas and volumes. A spectacular example was Archimedes’ determination
of the area of a parabolic segment, which he found by filling the parabolic segment
by infinitely many triangles. His method is illustrated in Fig. 1.12. For simplicity
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Fig. 1.11 The parabolic segment

Fig. 1.12 Filling the parabolic segment with triangles

we take the parabola y = x2, and cut off the segment shown in Fig. 1.11, between
x = −1 and x = 1.

The first triangle has vertices at the ends and midpoint of the parabola. Between
each of its lower edges and the parabola we insert a new triangle whose third
vertex is also on the parabola, halfway (in x value) between the other two. Then we
repeat the process with the lower edges of the new triangles. This creates successive
“generations” of triangles, with each triangle in generation n+1 having two vertices
from a triangle in generation n and its third vertex also on the parabola halfway (in x
value) between them. The first three generations are shown in black, gray, and light
gray in Fig. 1.12.

It is easy to check (see exercises) that the area of generation n + 1 is 1/4 of the
area of generation n, so we can find the area by summing a geometric series:

area of parabolic segment

=

(
1 +

1
4
+

1
42
+

1
43
+ · · ·

)
× area of the first triangle =

4
3
× 1 =

4
3
.
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Exercises

The following exercises verify the areas of the triangles in Archimedes’ construction.

1.7.1 Show that the triangle with vertices (which lie on the parabola y = x2)

〈a, a2〉,
〈

a + b
2
,

(
a + b

2

)2〉
, 〈b, b2〉 has area

(
b − a

2

)3
.

1.7.2 Deduce from Question 1.7.1 that each triangle in generation n has area 23−3n, and hence that
the total area of generation n is 22−2n.

1.7.3 Deduce from Question 1.7.2 that the total area of all triangles inside the parabolic segment
is 4/3.

Virtually the same geometric series occurs in Euclid’s determination of the volume of the
tetrahedron, in the Elements, Book XII, Proposition 4. Euclid uses two prisms whose edges join
the midpoints of the tetrahedron edges (Fig. 1.13).

1.7.4 Assuming that the volume of a prism is triangular base area × height, show that the prisms
in Fig. 1.13 have volume equal to 1/4 (tetrahedron base area) × (tetrahedron height).

Now remove these two prisms, and repeat the process in the two tetrahedra that remain, as in
Fig. 1.14.

1.7.5 By repeating the argument of Exercise 1.7.4, show that

volume of tetrahedron =

(
1
4
+

1
42
+

1
43
+ · · ·

)
base area × height

= 1/3 base area × height.

Fig. 1.13 Euclid’s prisms inside a tetrahedron

Fig. 1.14 Repeated dissection of the tetrahedron
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1.8 What Does Analysis Want from R?

From the discussions in the preceding sections, we expect that answers to several
fundamental questions about numbers, functions, and curves will emerge from a
better understanding of the system R of real numbers. To obtain good answers, we
seem to want R to have the following (as yet only vaguely defined) properties.

1. Algebraic structure.
Since the members of R are supposed to be numbers, they should admit sum,

difference, product, and quotient operations, subject to the usual rules of algebra.
For example, it should be true that ab = ba and that (

√
2)2 = 2.

2. Completeness.
R should be arithmetically complete, in the sense that certain infinite oper-

ations on R have results in R. For example, the infinite sum represented by an
infinite decimal, such as

3.14159 · · · = 3 +
1

10
+

4
102
+

1
103
+

5
104
+

9
105
+ · · ·

should be a member of R.
R should also be geometrically complete, in the sense of having no gaps, like

a continuous line. From this property we hope to derive a concept of continuous
function with the expected properties, such as the intermediate value property.

Hopefully, arithmetic and geometric completeness will be equivalent, so both
can be achieved simultaneously. Also, if R behaves like a line, then R2 should
behave like a plane.

3. Measurability of subsets (of both R and R2).
We hope for a definition of measure that gives a definite measure to each

subset of R, or at least to each “clearly defined” subset of R. We hope the same
for subsets of R2, because the subsets of the plane R2 include the “regions under
curves y = f (x),” the measure of which should represent the integral of f .

Thus, the problem of finding the measure of plane sets includes the problem
of finding integrals—one of the fundamental problems of analysis.

Exercises

Large parts of analysis also depend on the complex numbers, which are numbers of the form a+bi,
where a and b are real and i2 = −1. To avoid a separate discussion of complex numbers in this
book we show that their properties reduce to those of the real numbers. An elegant way to do this
is to represent each complex number a + bi by the 2 × 2 matrix

(
a b
−b a

)
where a and b are real.
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Then the sum and product of complex numbers are the sum and product of matrices, which are
defined in terms of the sum and product of real numbers, so they inherit their algebraic properties
from those of the real numbers.

1.8.1 Writing

(
a b
−b a

)
= a

(
1 0
0 1

)
+ b

(
0 1
−1 0

)
= a1 + bi,

show that i2 = −1.

1.8.2 If 0 =
(
0 0
0 0

)
, and a1 + bi � 0, show that (a1 + bi)−1 exists, and

(a1 + bi)−1 =
1

a2 + b2
(a1 − bi).

1.8.3 Show, using the properties of matrix addition and multiplication, that for any complex
numbers u, v, w:

u + v = v + u, uv = vu,

u + (v + w) = (u + v) + w, u(vw) = (uv)w,

u + 0 = u, u · 1 = u,

u + (−u) = 0, u · u−1 = 1 for u � 0

u(v + w) =uv + uw.

1.9 Historical Remarks

As can be seen from the early sections of this chapter, some fundamental problems
of analysis arose long before the development of calculus, and they were not solved
until long after. It is fair to say, however, that calculus focused the attention of
mathematicians on infinite processes, and it drove the search for answers to the
fundamental questions. It turned out that the ancients themselves were close to
answers—or so it seems with the advantage of hindsight—but they were held back
by fear of infinity.

Much of what we know about the ancient Greek understanding of numbers
and geometry comes from Euclid’s Elements, written around 300 BCE. We know
that Euclid collected ideas from earlier mathematicians, such as Eudoxus, but the
Elements is the first known systematic presentation of mathematics. It covers both
geometry and number theory, and it struggles with the problem that divides them:
the existence of irrational quantities. The longest book in the Elements, Book X,
is devoted to the classification of irrational quantities arising in geometry. And
the most subtle book in the Elements, Book V, is devoted to Eudoxus’ “theory of
proportions,” which seeks to deal with irrational quantities by comparing them with
the rationals.
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In the next chapter we will see how that idea of comparing an irrational quantity
with rationals was revived by Dedekind in the nineteenth century to provide a
concept of real numbers making up a number line, thus providing an arithmetical
foundation for geometry. The novel part of Dedekind’s idea is its acceptance of
infinite sets—an idea that the Greeks rejected.

Another idea of Eudoxus, the “method of exhaustion,” was also pushed further
in the late nineteenth century theory of measure. Just as the theory of proportions
compares a complicated (irrational) number with simple ones (rationals), the
method of exhaustion compares a complicated geometric object with simple (and
measurable) ones, such as triangles or rectangles. A typical example of exhaustion
is Archimedes’ determination of the area of a parabolic segment by comparing it
with collections of triangles (Sect. 1.7). Although there are infinitely many triangles
in the construction, the Greeks avoided considering their infinite totality by showing
that the area of the parabolic segment can be approximated arbitrarily closely by
finitely many of them.

Thus, by summing a finite geometric series, one can show that any area less
than 4/3 may be exceeded by a finite collection of triangles inside the parabolic
segment. The possibility that the segment has area less than 4/3 is thereby ruled
out, and the only remaining possibility is that its area equals 4/3. This is what the
word “exhaustion” means in this context: one finds the exact value of the area by
exhausting all other possible values. In the late nineteenth century it was found
that extremely complicated geometric objects, called measurable sets, could be
measured by a similar method. The objects in question are again approximated by
finite collections of simple objects (line intervals or rectangles), but showing that
the approximation is arbitrarily close may require the use of infinite collections.
This will be explained in Chap. 9.

In this sense, we can say that the ancient Greeks came close to answering
the basic questions about number, geometry, and measure. The questions about
functions and continuity are another story, very much a product of the development
of calculus in the seventeenth and eighteenth centuries.

As mentioned in Sect. 1.5, “functions” were originally things described by
“formulas,” though formulas could be infinite power series or trigonometric series.
But when Bernoulli (1753) conjectured that the shape of an arbitrary string could
be expressed by a trigonometric series it was still thought that such a function must
be continuous. This was disproved by the general theory of trigonometric series
developed by Fourier (1807). Among other examples, Fourier exhibited the “square
wave” function

cos x −
cos 3x

3
+

cos 5x
5
−

cos 7x
7
+ · · ·

which jumps from the value π/4 on the interval (−π/2, π/2) to the value −π/4 on
the interval (π/2, 3π/2).

Despite such examples, Fourier tended to assume that functions defined by
trigonometric series are continuous. Dirichlet (1837) was the first to insist that
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Fig. 1.15 Daniel Bernoulli and Joseph Fourier

arbitrary functions really can have arbitrary values, and any general argument about
functions should cover discontinuous functions. As an example, he introduced the
function we call the Dirichlet function,

d(x) =

{
1 if x is rational
0 if x is irrational.

In fact, by the end of the nineteenth century, the Dirichlet function did not seem
especially pathological. It is a limit of limits of continuous functions, and can be
expressed by the formula

d(x) = lim
m→∞

lim
n→∞

(cos(m!πx))n

of Pringsheim (1899), p. 7.
Thus, the seventeenth-century idea of representing functions by formulas extends

much further than was first thought. “Formulas” may not be available for all
functions, but they extend far beyond the continuous functions—certainly to all
functions obtainable from continuous functions by taking limits. These functions
are called the Baire functions after René Baire, who first studied them in 1898.
Baire functions, and their close relatives the Borel sets, will be discussed in Chap. 8.

The need to clarify the concept of continuity arose, as mentioned in Sect. 1.6,
from attempts to prove the fundamental theorem of algebra, particularly the one
by Gauss (1816). It should be added that not only did the solution come from
outside algebra, via the intermediate value theorem of Bolzano (1817), so too did
the problem itself. Originally, the motivation for a fundamental theorem of algebra
was to integrate rational functions. The method of partial fractions makes it possible
to integrate any quotient p(x)/q(x) of polynomials, provided we can split q(x) into
real linear and quadratic factors. Such a factorization follows from the fundamental
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Fig. 1.16 Carl Friedrich Gauss and Bernard Bolzano

theorem of algebra. The novel contribution of Gauss was to see that one should not
attempt to find formulas for the roots of polynomial equations, but rather to deduce
the existence of roots from general properties of continuous functions.

Thus, a problem about the most concrete kind of formulas, polynomials, was
eventually solved by abstract reasoning about the general class of continuous
functions. And, as Bolzano discovered, reasoning about continuous functions
depends in turn on an abstract property of real numbers, the least upper bound
property. It was to establish this property that Dedekind proposed his definition of
the real numbers, which draws its inspiration from the ancient theory of proportions.
Dedekind’s remarkable fusion of ancient and modern ideas will be developed in the
next chapter.



Chapter 2
From Discrete to Continuous

PREVIEW

The questions raised in the introductory chapter stem from a single problem: bridg-
ing the gap between the discrete and the continuous. Discreteness is exemplified
by the positive integers 1, 2, 3, 4, . . ., which arise from counting but also admit
addition and multiplication. Continuity is exemplified by the concept of distance on
a line, which arises from measurement but also admits addition and multiplication.
The problem is to find a concept of real number that embraces both counting and
measurement, and satisfies the expected laws of addition and multiplication.

We begin by laying the simplest possible foundation for arithmetic on the positive
integers, the principle of induction, which expresses the idea that every positive
integer can be reached by starting at 1 and repeatedly adding 1. The corresponding
method of proof by induction then allows us to prove the basic laws of arithmetic.
From here it is only a short step to the arithmetic of positive rational numbers—the
ratios m/n of positive integers m and n.

With the laws of arithmetic established on the foundation of induction we can
concentrate on constructing the real numbers by filling the gaps in the rationals. This
is the step that completes the transition from discrete to continuous, and to carry it
out we need an infinite process of some kind. The Dedekind cut process is the one
favored in this book, since it extends the laws of arithmetic from rational to real
numbers in a natural way. However, we also discuss some other infinite processes
commonly used to describe real numbers, such as infinite decimals and continued
fractions.

2.1 Counting and Induction

The origins of mathematics are lost in prehistory, but it seems reasonable to suppose
that mathematics began with counting, so the first mathematical objects encountered
were the positive integers 1, 2, 3, 4, 5, . . .. These objects, generated by the seemingly
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simple process of starting with 1 and then going from each number to its successor,
are not only infinitely numerous, but also infinitely rich in beauty and complexity.
Evidence from Mesopotamia (Sect. 1.4) suggests that it was known as early as
1800 BCE that positive integers have remarkable properties involving addition and
multiplication, and by 300 BCE systematic proofs of such properties were given in
Euclid’s Elements.

Among the methods of proof in Euclid, one sees an early form of what we now
call induction. Induction reflects the fact that each positive integer n can be reached
from 1 by repeatedly adding 1. So if we start with the number n we can take only
a finite number of downward steps. We have seen one such “descent” argument
already: the proof that

√
2 is irrational given in Sect. 1.2. Euclid uses the “descent”

form of induction to prove two important results.

1. Each integer n > 1 has a prime divisor.
Because if n is not itself prime, it factorizes into smaller positive integers,

m1 and n1, to which the same argument applies. Since each step of the
process produces smaller numbers, it must terminate—necessarily on a prime
divisor of n.

2. The Euclidean algorithm terminates on any pair of positive integers a, b.
The Euclidean algorithm, as Euclid himself described it, “repeatedly subtracts

the lesser number from the greater.” That is, we start with the pair 〈a1, b1〉 =
〈a, b〉, for which we can assume a > b, and successively form the pairs

〈a2, b2〉 = 〈max(b1, a1 − b1),min(b1, a1 − b1)〉,

〈a3, b3〉 = 〈max(b2, a2 − b2),min(b2, a2 − b2)〉, . . .

until we get an = bn. Since the algorithm produces a decreasing sequence of
numbers, termination necessarily occurs.

These two results are foundation stones of number theory. The first shows the
existence of prime factorization for any integer > 1, and the second shows (after
some other steps we omit here) the uniqueness of prime factorization. So induction
is evidently a fundamental principle of proof in number theory.

Today, we know that virtually all of number theory can be encapsulated by a
small set of axioms—the Peano axioms—that state the basic properties of the
successor function, definitions of addition and multiplication, and induction. In fact,
induction is implicit in the definitions of addition and multiplication, and in Sect. 2.2
we will see how their properties unfold when induction is applied. However, this was
quite a late development in the history of mathematics. It took a long time for the
idea of induction to evolve from the “descent” form used by Euclid to the “ascent”
form present in the Peano axioms.
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Exercises

One of the oldest problems about numbers that is still not completely understood is the problem of
Egyptian fractions. In ancient Egypt, fractions were always expressed as sums of reciprocals, for
example

2
3
=

1
2
+

1
6
.

It is not obvious that any fraction between 0 and 1 can be expressed in this form and, indeed, the
Egyptians probably did not know this for a fact. But it turns out that the following naive method
always works: given a fraction a/b between 0 and 1, subtract from a/b the largest reciprocal 1/c
that is less than a/b, then repeat the process with the fraction a/b − 1/c = a′/bc. This method,
which was used by Fibonacci (1202), always works because a′ < a. So the process terminates in a
finite number of steps (and it expresses m/n as a sum of distinct reciprocals).

2.1.1 Use the Fibonacci method to express 3/7 as a sum of distinct reciprocals.
2.1.2 If 0 < a/b < 1 and 1/c is the largest reciprocal less than a/b, show that ac > b > a(c − 1).
2.1.3 Deduce from Exercise 2.1.2 that 0 < a′ < a, where

a
b
−

1
c
=

ac − b
bc

=
a′

bc
.

Thus it is always possible to express a fraction as a sum of reciprocals, as the Egyptians wanted.
However, not much is known about the number of reciprocals required, or how large their
denominators may become.

The book (Fibonacci 1202) is also the source of the sequence of Fibonacci numbers,

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . . ,

in which each number (after the first two) is the sum of the preceding two.

2.1.4 Show that the Euclidean algorithm, applied to the pair of Fibonacci numbers 〈13, 8〉,
terminates at the pair 〈1, 1〉.

2.1.5 Explain why the Euclidean algorithm, applied to any pair of consecutive Fibonacci numbers,
terminates at the pair 〈1, 1〉.

2.1.6 Deduce that the greatest common divisor of any pair of consecutive Fibonacci numbers is 1.

Another descent process that necessarily terminates is that of subtracting from n the largest power
of 2 less than or equal to n.

2.1.7 Use subtraction of the largest power of 2 to prove that each positive integer n can be
expressed uniquely as a sum of distinct powers of 2.

2.1.8 What does Question 2.1.7 have to do with binary notation?

2.2 Induction and Arithmetic

Although induction has been present in mathematics at least since the time of
Euclid, the realization that it underlies even “trivial” properties of addition and
multiplication is quite recent. Even more remarkable, this discovery was published
in a book intended for high school students, the Lehrbuch der Arithmetik (Textbook
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of Arithmetic) of Hermann Grassmann, in 1861. Grassmann’s “new math” was
far ahead of its time and it went unnoticed, even by mathematicians, until it was
rediscovered by Dedekind (1888) and Peano (1889). It is still surprising to see how
tightly induction is bound up with the properties of addition and multiplication that
seem obvious from a visual point of view, such as a + b = b + a and ab = ba.

We follow Grassmann by using the natural numbers 0, 1, 2, 3, . . ., rather than the
positive integers 1, 2, 3, . . ., as it is more convenient to start with 0 when defining
addition and multiplication. We also use S (n), rather than n + 1, to denote the
successor of n, in order to avoid any suspicion of circularity in defining addition.
Thus we initially denote the natural numbers by 0, S (0), S S (0), S S S (0), . . ., and the
successor function S is the only function we know.

A proof by induction that property P for all natural numbers n proceeds by
proving the base step, that P holds for 0, and the induction step, that if P holds
for n = k then P holds for n = S (k).

2.2.1 Addition

On this slender foundation we now build the addition function + by the following
inductive definition:

m + 0 = m,

m + S (n) = S (m + n).

The first line defines m + 0 for all natural numbers m, while the second defines
m+S (n) for all m, assuming that m+n has already been defined for all m. It follows,
by induction, that m + n is defined for natural numbers m and n. The first thing to
notice about this definition of addition is that it implies n + 1 = S (n), as it should,
because 1 is defined to be S (0) and so

n + 1 = n + S (0)

= S (n + 0) by definition of addition,

= S (n) because n + 0 = n by definition of addition.

Next, S (n) = 1 + n, by the following induction on n. For n = 0 we have

S (0) = 1 = 1 + 0, by definition of addition.
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And assuming that S (n) = 1 + n holds for n = k we have

1 + S (k) = S (1 + k) by definition of addition,

= S S (k) by induction hypothesis,

= S (k) + 1 because S (n) = n + 1.

So S (n) = n + 1 = 1 + n for all natural numbers n, by induction.
Now we can use the definition to prove the algebraic properties of addition.

A good illustration is the associative law,

l + (m + n) = (l + m) + n for all natural numbers l,m, n.

We prove this for all l and m by induction on n. First, the base step n = 0. In this
case, the left side is l+(m+0), which equals l+m by definition of m+0. And the right
side (l+m)+ 0 also equals l+m, for the same reason. Thus l+ (m+ n) = (l+m)+ n
holds for all l and m when n = 0.

Now for the induction step: we suppose that l + (m + n) = (l + m) + n holds for
n = k, and prove that it also holds for n = S (k). Well,

l + (m + S (k)) = l + S (m + k) by definition of addition,

= S (l + (m + k)) by definition of addition,

= S ((l + m) + k) by induction hypothesis,

= (l + m) + S (k) by definition of addition.

This completes the induction.
With the help of the associative law we can prove other algebraic properties of

addition, such as the commutative law, m + n = n + m. The steps are outlined in the
exercises below.

2.2.2 Multiplication

Now that we have the addition function, we can define multiplication, written m · n
or simply mn, by the following induction:

m · 0 = 0,

m · S (n) = m · n + m.

The usual algebraic properties of multiplication follow from this definition. For
example, we can prove the identity property, that 1 · m = m by induction on m
as follows.
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The base step 1 · 0 = 0 follows from the definition of multiplication. For the
inductive step, we suppose that 1 · m = m holds for m = k. Then

1 · S (k) = 1 · k + 1 by definition of multiplication,

= k + 1 by induction hypothesis,

= S (k) by the proof above that k + 1 = S (k).

This completes the induction, so 1 · m = m for all natural numbers m.

2.2.3 The Law ab = ba Revisited

Other familiar algebraic properties of multiplication follow by induction, as outlined
in the exercises below. The main difficulty in these proofs is the absence of algebraic
assumptions in the definitions of addition and multiplication. So all algebraic
properties must be proved from scratch, and it is not obvious which ones to prove
first. It turns out, for example, that one needs to prove associativity before proving
commutativity.

This may be surprising, because we saw in Sect. 1.1 that ab = ba is obvious
when we view numbers as lengths and take the product of lengths a and b to be
their “rectangle.” But in Sect. 1.2 we saw that the concept of “length” is not as
simple as it looks. In particular, it is not clear how to represent irrational lengths by
numbers. If we wish to put the number concept on a sound foundation, we should
presumably begin with the natural numbers, where Grassmann’s approach allows
us to prove ab = ba without appeal to geometric intuition. Hopefully, we can then
extend the number concept far enough to capture the concept of irrational length,
while at the same time extending the proof that ab = ba without appeal to geometric
interpretations of a, b, and ab.

In the remainder of this chapter we explain how this program may be carried
out. The number concept is extended in two stages; from natural numbers to
rational numbers, and from rational numbers to real numbers. The first stage is
fairly straightforward, and purely algebraic. The second stage is where we make
the leap from the discrete to continuous, avoiding the use of geometric concepts by
introducing a concept that is more universal: the set concept.

Exercises

Our first goal is to prove the commutativity of addition, m + n = n + m, by induction on n. This
depends on some of the properties of addition already proved above.

2.2.1 Show that the base step, for n = 0, depends on proving that 0 + m = m, and prove this by
induction on m.
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2.2.2 The induction step is that if m+ k = k+m then m+ S (k) = S (k)+m. Prove this implication,
using the results m + 1 = 1 +m, S (k) = k + 1 and associativity proved above.

Next, in order to deal with combinations of addition and multiplication, it will be useful to have
the left distributive law, l(m + n) = lm + ln, and the right distributive law, (l + m)n = ln + mn.

2.2.3 Prove the left distributive law by induction on n, using the definition of multiplication and
the associativity of addition.

2.2.4 Prove the associative law of multiplication, l(mn) = (lm)n, by induction on n. For the
induction step use the definition of multiplication and the left distributive law.

2.2.5 Prove the right distributive law by induction on n, using the definition of multiplication and
the associative and commutative laws for addition.

Finally we are ready to prove the commutative law of multiplication, mn = nm by induction
on n. (One wonders why this result is so hard to reach by induction, when it seemed so easy in
Sect. 1.1. Apparently, mn = nm can be true for reasons quite different from those that first come to
mind. See also Sect. 2.9.)

2.2.6 Show that the base step, n = 0, follows from 0 · m = 0, and prove the latter by induction
on m.

2.2.7 Show that the induction step, mk = km implies m·S (k) = S (k)·m, follows from the definition
of multiplication, identity property, and right distributive law.

2.3 From Rational to Real Numbers

The arithmetic of natural numbers in the previous section is easily extended to the
arithmetic of non-negative rational numbers m/n, where m and n are any natural
numbers with n � 0. Admittedly, the definition of sum for rational numbers

a
b
+

c
d
=

ad + bc
bd

is quite sophisticated, and it causes a lot of grief in elementary school. But once
this concept is mastered, it is not hard to see that the commutative, associative laws,
and so on, extend from the natural numbers to the rational numbers m/n. Moreover,
the rational numbers have a convenient property that the natural numbers lack: each
rational number r � 0 has a multiplicative inverse r−1 such that rr−1 = 1. Namely,
if r = m/n then r−1 = n/m.

Thus there is not much difference between the arithmetic of natural numbers and
that of the rational numbers. To extend arithmetic to irrational numbers we need to
understand where the irrational numbers lie relative to the set of rational numbers,
and we really have to start thinking of the rational numbers as a set, which we denote
by Q. (The symbol Q apparently stands for “quotients.”)

In Sects. 1.2 and 1.3 we observed the difficulties raised by the existence of
irrational numbers, such as

√
2, for geometry and arithmetic. On the one hand, we

want enough numbers to fill the line. On the other hand, we want to be able to add
and multiply the points on the line in a way that is consistent with addition and
multiplication of rational numbers.



32 2 From Discrete to Continuous

In Sect. 1.3 we floated the idea of using infinite decimals to represent irrational
numbers, but immediately cast doubts on its practicality, due to the difficulty of
adding and multiplying infinite decimals. This makes it hard to tell whether their
arithmetic is even compatible with the arithmetic of rational numbers. For example,
how would you like to verify that

1
6
× 1

7
=

1
42
,

using the infinite decimals

1
6
= 0.166666666666 . . .

1
7
= 0.142857142857 . . . ?

Nevertheless, infinite decimals do solve the problem of representing all points
of the line, so it is worth exploring them a little further. We will see that infinite
decimals can serve as a stepping-stone to a concept of real numbers that is not only
faithful to the image of points on a line, but also compatible with the arithmetic
of rational numbers. Moreover, the new real number concept comfortably includes
numbers such as

√
2, and allows us to prove results as

√
2 ×
√

3 =
√

6.
First, let us revisit the infinite decimal for

√
2, as it will help to explain why there

are enough infinite decimals to fill a line. The infinite decimal

√
2 = 1.414213 . . .

is what we call the least upper bound (lub) of the following set of finite decimal
fractions:

1

1.4

1.41

1.414

1.4142

1.41421

1.414213

...

It is an upper bound because it is greater than each of them, and it is least because
any number less than 1.414213 . . . must be less in some decimal place, and hence
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less than some member of the set. Thus any number less than 1.414213 . . . is not an
upper bound at all.

The number 1.414213 . . . is also the greatest lower bound (glb) of the set

2

1.5

1.42

1.415

1.4143

1.41422

1.414214

...

—by a similar argument. Thus the irrational number
√

2 fills a “point-sized hole,”
or gap, between the two sets of finite decimals

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, . . .

and

. . . , 1.414214, 1.41422, 1.4143, 1.415, 1.42, 1.5, 2.

There are of course many holes in the set of finite decimal fractions (a simpler
example is 1/3), but each of them is a “point-sized hole” for the same reason that√

2 is: we can approach it arbitrarily closely, from below or above, by finite decimal
fractions. Thus the infinite decimals complete the number line by filling all the gaps.

Looking back over this explanation, one sees that there is nothing special about
the set of finite decimal fractions. We could use any fractions that are plentiful
enough to approach each point arbitrarily closely. For example, the binary fractions
m/2n (for integers m, n) suffice. At the other extreme, one could use all the rational
numbers m/n. This gives the advantage of a simple approach to addition and
multiplication, as we will see in the next section. So let us see what gaps look
like in the set of rational numbers. It is convenient to consider just the set Q+ of
non-negative rationals for now.

A gap occurs wherever the set Q+ breaks into two sets, L and U, with the
following properties.

1. Each member of L is less than every member of U.
2. L has no greatest member and U has no least member.
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Under these circumstances, the gap between L and U represents a single irrational
number, equal to lub L and glb U. An example is where

U = {r ∈ Q+ : r2 > 2},

in which case the gap represents the number
√

2 = glb U.
A separation of Q+ into two sets L and U with the above properties is called a

Dedekind cut after Richard Dedekind, who first thought of representing irrational
numbers in this way. His cuts occur exactly where the gaps are. You could even say
that the cut is the gap, so we are filling the gaps simply by recognizing the gaps as
new mathematical objects!

This is not a joke, but actually a deep idea. Since L and U completely
determine an irrational number, we can take this pair of sets to be an irrational
number. We create a new mathematical object by comprehending a collection of
existing mathematical objects as a set. Dedekind was the first to notice the power
of set comprehension, and in doing so he launched the program of arithmeti-
zation—building all of mathematics on the foundation of natural numbers and
sets.

Since either L or U completely determines the cut, it suffices to represent the
corresponding irrational number simply by L. This is convenient because then the
ordering of real numbers corresponds to set containment. That is,

lub L ≤ lub L′ ⇔ L ⊆ L′.

Pursuing this idea a little further, we note that each rational number s is the lub
of a set L of rational numbers, namely

L = {r ∈ Q+ : r < s},

and L has the following properties of the lower part of a Dedekind cut:

1′. L is a bounded set of positive rationals with no greatest member.
2′. L is “closed downward,” that is, if p ∈ L and 0 < q < p, then q ∈ L.

Thus, if we define a lower Dedekind cut to be any set L with properties 1′ and 2′,
then every positive real number, rational or irrational, can be represented by a lower
Dedekind cut. We thereby obtain a uniform representation of positive real numbers
as certain sets of rational numbers, and set containment gives the usual ordering of
numbers. In the next section we will see how lower Dedekind cuts may also be used
to define sums, products, and square roots of positive numbers.



2.3 From Rational to Real Numbers 35

Fig. 2.1 The lower Dedekind cuts for 1 and 2/3

Fig. 2.2 The lower Dedekind cut for
√

2

2.3.1 Visualizing Dedekind Cuts

To visualize Dedekind cuts we first “spread out” the rationals as we did in Sect. 1.3.
That is, we view n/m as the integer point 〈m, n〉 in the plane (the point at slope n/m
from 〈0, 0〉). Then the lower Dedekind cut corresponding to a real number r is seen
as the set of integer points below the line through 〈0, 0〉 with slope r. Figure 2.1
shows the lower Dedekind cuts for 1 and 2/3 in this fashion.

Figure 2.2 shows the cut for
√

2. Since points are shown as small disks, “points”
may appear to fall on the line though they are actually below it. [It is a good exercise
to check this for some points, such as 〈7, 5〉.]

Exercises

As we remarked earlier, an advantage of decimals is that they instantly tell us which is the larger
of two numbers; we have only to look at the first decimal place (from the left) where the two
decimals differ. This advantage extends to describing the least upper bound of a set of numbers
given by infinite decimals.

2.3.1 Suppose that S is a set of real numbers between 0 and 1, and l is the least upper bound of
S . How is the first decimal place of l determined by the first decimal places of the members
of S ?

2.3.2 How is the second decimal place of l determined?
2.3.3 Using Questions 2.3.1 and 2.3.2, give a description of the decimal expansion of l.
2.3.4 Does a similar idea work to find the glb of S ?
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2.4 Arithmetic of Real Numbers

Thanks to the representation of positive real numbers by lower Dedekind cuts,
all properties of real numbers reduce to properties of rational numbers, which
we already understand. For example, we can explain the addition of positive real
numbers in terms of addition of rational numbers by means of the following
definition.

Definition. If L and L′ are lower Dedekind cuts, then L + L′ is defined by

L + L′ = {r + r′ : r ∈ L and r′ ∈ L′}.

In other words, the sum of two lower cuts is the set of sums of their respective
members. Notice that we immediately have L+L′ = L′+L, because r+r′ = r′+r for
rational numbers. Other algebraic properties of cuts are similarly “inherited” from
those of rational numbers. Admittedly, we have to prove that the sets obtained in this
way are themselves lower Dedekind cuts. This turns out to be fairly straightforward
and, as promised, it depends only on properties of rational numbers.

Sum theorem for Dedekind cuts. If L and L′ are lower Dedekind cuts, then so is
L + L′, and it agrees with the ordinary sum on the rational numbers.

Proof. The sum: L + L′ = {r + r′ : r ∈ L and r′ ∈ L′} is certainly a set of rational
numbers, bounded above by the sum of bounds on L and L′. Now suppose that
r + r′ ∈ L+ L′ and that t is a rational number less than r + r′. We have to show that t
is also in L + L′, in other words that t = s + s′, for some s ∈ L and s′ ∈ L′. One way
to do this is to divide t into two pieces in the ratio of r to r′: that is, let

s =
tr

r + r′
, s′ =

tr′

r + r′
.

Then s is rational and s < r, so s ∈ L; similarly s′ ∈ L′; and clearly s + s′ = t.
In the special case where L and L′ represent rational numbers, l and l′ say,

L = {r ∈ Q+ : r < l}, L′ = {r′ ∈ Q+ : r′ < l′}.

Then, for any r ∈ L and r′ ∈ L′ we have r + r′ < l + l′. Conversely, for any t < l + l′

we have t = r + r′ with r < l and r′ < l′; namely, let r = l
l+l′ t and r′ = l′

l+l′ t. �

We similarly would say that the product of two lower cuts is the set of products
of their members.

Definition. If L and L′ are lower Dedekind cuts, then LL′ is defined by

LL′ = {rr′ : r ∈ L and r′ ∈ L′}.

Product of Dedekind cuts. If L and L′ are lower Dedekind cuts, then so is LL′,
and it agrees with the ordinary product on the rational numbers.
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Proof. The product LL′ = {rr′ : r ∈ L and r′ ∈ L′} is a set of rationals, bounded
above by the product of the bounds on L and L′. Now suppose that rr′ ∈ LL′ and
that t is a rational less than rr′. To show that t is also in LL′ we have to find s ∈ L
and s′ ∈ L′ such that t = ss′. Since t

rr′ < 1, there is a rational q such that

t
rr′
< q < 1,

so we can take

s = rq, which is less than r because q < 1,

s′ =
t

rq
, which is less than r′ because

t
rr′
< q,

and this obviously gives t = ss′.
In the special case where L and L′ represent rational numbers, l and l′ say,

L = {r ∈ Q+ : r < l}, L′ = {r ∈ Q+ : r < l′}.

Then, for any r ∈ L and r′ ∈ L′ we have rr′ < ll′. Conversely, for any t < ll′ we
have t = rr′ with r < l and r′ < l′. Namely, choose a rational q with

t
ll′
< q < 1,

and let

r = lq, which is less than l because q < 1,

r′ =
t
lq
, which is less than l′ because

t
ll′
< q.

This gives t = rr′ as required. �

2.4.1 The Square Root of 2

We have already seen one valid way to describe
√

2: by an infinite decimal. In
Sect. 2.7 we will see another way, by a continued fraction. But neither fits easily into
an arithmetic theory of real numbers, because it is hard to describe multiplication
of infinite decimals (and even harder for continued fractions). Dedekind cuts, on
the other hand, are easily multiplied, and this leads to a relatively easy treatment of
square roots. We show how in the case of

√
2.
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Existence of
√

2. The lower Dedekind cut K = {s ∈ Q+ : s2 < 2} represents
√

2,
because

K2 = {r ∈ Q+ : r < 2},

which is the lower Dedekind cut representing 2.

Proof. By the definition of product of lower Dedekind cuts,

K2 = {ss′ : s, s′ ∈ K} = {ss′ : s2, s′2 < 2}.

We know, from the product theorem above, that K2 is a lower Dedekind cut, so it
suffices to prove that lub(K2) = 2.

Well, if s2, s′2 < 2, then ss′ ≤ one of s2, s′2 < 2, so lub(K2) is at most 2. To show
that lub(K2) is at least 2 it suffices to show the following: for each rational r < 2
there is a rational s with r < s2 < 2 (because in that case s ∈ K and s2 ∈ K2).

Such an s2 can always be found1 by choosing s ∈ K sufficiently close to lub(K),
which is possible because there are rational numbers arbitrarily close to lub(K). �

2.4.2 The Equation
√

2
√

3 =
√

6

Dedekind (1872) wrote (in the 1901 English translation, p. 22)

Just as addition is defined, so can the other operations of the so-called elementary arithmetic
be defined . . . differences, products, quotients, powers, roots, logarithms, and in this way
we arrive at proofs of theorems (as, e.g.,

√
2 ·
√

3 =
√

6, which to the best of my knowledge
have never been established before).

However, Dedekind did not go beyond defining the sum of cuts, so the proof that√
2
√

3 =
√

6 is not in his book either. Now that we have defined the product of cuts,
and found the cut for

√
2, we are very close to such a proof. It remains to define

√
3,

by the cut

K′ = {s ∈ Q+ : s2 < 3},

1A specific way to do this is to choose rational s and t that are close together on either side of
lub(K). For example, find s ∈ K, t � K with t < 2 and t − s < 2−r

4 . Then we have

t2 − s2 = (t + s)(t − s) < 4 ·
2 − r

4
= 2 − r,

and hence r < s2 < 2 < t2.
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and to prove that

K′2 = L′ = {r ∈ Q+ : r < 3}

(the cut representing 3). This is very similar to the proof K2 = L above, and we
leave it as an exercise.

Then
√

2
√

3 is represented by the cut KK′, with the square

(KK′)2 = K2K′2 = LL′,

which represents 2 · 3 = 6. So KK′, which represents
√

2
√

3, also represents
√

6.

Exercises

The following two exercises verify that 3 is the square of the lower Dedekind cut K′ = {s ∈ Q+ :
s2 < 3}, as assumed in the proof above.

2.4.1 Show that, for each rational r < 3, there is a rational s with r < s2 < 3. (Hint: Consider
s ∈ K′ and t � K′ with t < 2 and t − s < 3−r

4 .)

2.4.2 Deduce that K′2 = {r ∈ Q+ : r < 3}, so K′ represents
√

3.

By generalizing this argument we can show the existence of roots of all real numbers, and other
algebraic properties.

2.4.3 Explain why each positive real number has a square root.
2.4.4 Explain why each positive real number has a cube root.
2.4.5 Show that properties such as ab = ba (used in the proof that

√
2
√

3 =
√

6) are inherited
from the rational numbers.

2.5 Order and Algebraic Properties

Now we come back to the question asked in Sect. 1.3: what are points, and how do
they fill the line? For simplicity we will consider just the positive real numbers that
we have defined so far. These are the “points” (members) of a set R+ we will call the
positive number line. (It is no secret that we are going to introduce negative numbers
shortly, so as to obtain the full number line R.)

The properties of R+ that make it a “line” are called order properties and they
can be expressed in terms of the ≤ relation (which corresponds to the containment
relation ⊆ between lower Dedekind cuts). The following properties of ≤ define what
we call a linear order. For any a, b, c ∈ R:

a ≤ a,

either a ≤ b or b ≤ a,

if a ≤ b and b ≤ c then a ≤ c.
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All of these properties are obvious for positive numbers because ≤ means ⊆.
However, a linearly ordered set of points is not necessarily what we would call a
“line.”

The natural numbers are linearly ordered, but they are isolated in the sense that
for each natural number n there is an empty space before the next natural number
n + 1, so the natural numbers come nowhere close to filling the line. The rational
numbers come closer, because they lie densely on the line. That is, between any two
rational numbers there is another. But, as we know, even this dense set has gaps.
In particular, there is a gap in the rational numbers at the position

√
2. What this

means, precisely, is that the set {r ∈ Q+ : r2 < 2} has no least upper bound in Q+,
because the rationals r with r2 ≥ 2 have no least member.
R
+ qualifies as a “line” because it is dense and has no gaps, because any bounded

set of real numbers has a least upper bound.
This property follows from the fact that real numbers are (or are represented by)

certain subsets of Q+, namely, lower Dedekind cuts. A bounded set of real numbers
x is therefore a set of lower Dedekind cuts Lx that all lie below some bound r. But
then the union L of all the cuts Lx is itself a lower Dedekind cut, and it is obviously
the least cut that contains (which means ≥, remember) all the cuts Lx. Thus the
union L of the cuts Lx is their least upper bound.2

The least upper bound property has important consequences in analysis, such as
the intermediate value theorem and the integrability of continuous functions. We
will study these results in Chap. 4. They depend on the fact that R has no gaps,
which we call the completeness of R.

The final definitive property of the order of R is called the Archimedean property.
It says that, if a and b are numbers with 0 < a < b, then na > b for some natural
number n. The property holds because

in the lower Dedekind cut for a there is a rational p/q < a,

in the upper Dedekind cut for b there is a rational r/s > b,

and we can certainly find a natural number n such that

np/q > r/s.

For example, n = rq will do.

The Archimedean property implies that there are no infinitesimal numbers; that
is, numbers a > 0 with a < 1/n for all natural numbers n. If a is infinitesimal, then
na < 1 for all natural numbers n, which contradicts the Archimedean property with
b = 1.

To summarize: the order of the positive real numbers is linear, dense,
Archimedean, and complete.

2In particular, when the bounded set consists of the cuts Lr where r2 < 2, its least upper bound L
is the cut representing

√
2.
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2.5.1 Algebraic Properties of R

Until now we have worked only with non-negative numbers, so as to take the
shortest route to Dedekind cuts and their multiplication. Looking back at the route
taken, it is easy to see how negative numbers can be carried along as well.

We began with the natural numbers, 0, 1, 2, 3, . . ., showing that they have the
following algebraic properties (all provable by induction):

a + b = b + a ab = ba (commutative laws)

a + (b + c) = (a + b) + c a(bc) = (ab)c (associative laws)

a + 0 = a a · 1 = a (identity laws)

a(b + c) = ab + ac (distributive law)

When we adjoin the negative integer −m for each positive m the above laws are
preserved if we let (−m)n = −mn, and we gain the additive inverse law:

a + (−a) = 0.

These eight algebraic laws define what is called a ring (or more precisely, a
commutative ring with unit). We call the natural numbers and their negatives the
integers, and denote the ring of integers by Z. The symbol comes from the German
word “Zahlen” for “numbers.”

The quotients m/n of integers m, n with n � 0 form the set Q of (positive
and negative) rational numbers, and they satisfy all the laws of a ring, plus the
multiplicative inverse law:

a · a−1 = 1 for a � 0,

where a−1 = n/m if a = m/n. A structure satisfying these nine laws is called a field.
Our final objective is to introduce negative real numbers so that the resulting set

R of real numbers is a field. If we continue to define positive real numbers r as
subsets of the set Q+ of positive rationals, we need to adjoin 0 and a negative real
−a for each positive a. Then the rule (−a)b = −ab ensures that all the field laws
continue to hold.

Now let us observe how the order of R interacts with sums and products. Clearly,
we have

0 < 1,

if a < b then a + c < b + c,

if a < b and c > 0 then ac < bc.
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Given that ≤ is a linear order, as defined above, a field with the latter three properties
is called an ordered field. Since the order of real numbers is complete we have: R is
a complete ordered field.

It is not necessary to add that R is Archimedean, because this property actually
follows from completeness in an ordered field.

Archimedean property of a complete ordered field. If F is a complete ordered
field and a, b ∈ F with 0 < a < b, then na > b for some natural number n.

Proof. Suppose, on the contrary, that na ≤ b for each natural number n. Then the
set {a, 2a, 3a, . . .} is bounded and hence has a least upper bound c, by completeness.

Since c − a < c it follows that c − a < na for some natural number n. But then
c < (n + 1)a contrary to the definition of c. �

Exercises

When one first meets infinite decimals, it seems hard to believe that 0.9999 . . . = 1, because it
seems that there should be an “infinitesimal” difference between 1 and 0.9999 . . ..

2.5.1 Show, on the contrary, how this is a good illustration of the Archimedean property of real
numbers.

We saw an example of a non-Archimedean linearly ordered set in the exercises to Sect. 1.5,
namely the set R of rational functions with real coefficients, in which the constant functions
represent the real numbers and the function ι(x) = 1/x is an infinitesimal.

2.5.2 Show that R is not complete, because the set of infinitesimal functions is bounded but has
no least upper bound.

R is in fact the only complete ordered field (“up to isomorphism”), as the following exercises
show. Suppose F is such a field.

2.5.3 Deduce from the properties 0 < 1 and a + c < b + c when a < b that F contains elements

· · · < −2 < −1 < 0 < 1 < 2 < · · · ,

and hence is a copy of the integers.
2.5.4 Deduce, by forming quotients, that F contains a copy of the rationals.
2.5.5 For each x ∈ F, consider the lower Dedekind cut Lx consisting of the rationals in F that

are < x. Deduce from completeness that lub Lx = x, so the elements of F are in bijective
correspondence with the real numbers.

2.6 Other Completeness Properties

Absence of gaps may be the most intuitive way to think of completeness, but often
it is better to think of completeness as a guarantee that certain infinite processes lead
to a result. Forming an infinite decimal is one such example. We now discuss two
others, which often arise in analysis.
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The first concerns closed intervals, the sets of the form

[a, b] = {x ∈ R : a ≤ x ≤ b},

and the second (which follows from the first) concerns convergence of sequences.
We will show only that these two results follow from the lub (and glb) property;
however, it can also be shown that they imply it.

Nested Interval Property. If I1 ⊇ I2 ⊇ I3 ⊇ · · · are closed intervals with lengths
that become arbitrarily small, then I1, I2, I3, . . . have a single common point.

Proof. Let I1 = [a1, b1], I2 = [a2, b2], . . ., so we have

a1 ≤ a2 ≤ a3 ≤ · · · ≤ b3 ≤ b2 ≤ b1.

It follows, by completeness, that lub{a1, a2, a3, . . .} and glb{b1, b2, b3, . . .} both exist.
We therefore have

a1 ≤ a2 ≤ a3 ≤ · · · ≤ lub{a1, a2, a3, . . .}

≤ glb{b1, b2, b3, . . .} ≤ · · · ≤ b3 ≤ b2 ≤ b1.

Thus any x in the interval from lub{a1, a2, a3, . . .} to glb{b1, b2, b3, . . .} is common to
all of I1, I2, . . . .

If the length of the intervals I1, I2, . . . becomes arbitrarily small, then

x = lub{a1, a2, a3, . . .} = glb{b1, b2, b3, . . .}

is the only common point. �

We now use nested intervals to study limit points of sequences.

Definition. A sequence of numbers c1, c2, c3, . . . converges if it has a limit c, that
is, if cn becomes arbitrarily close to c as n increases. More precisely, c is the limit
of the sequence c1, c2, c3, . . . if, for each number ε > 0, there is a natural number N
such that

n > N ⇒ |c − cn| < ε.

We would like to be able to tell whether a sequence converges without knowing in
advance what its limit is. The Cauchy convergence criterion makes this possible.

Cauchy convergence criterion. Sequence c1, c2, c3, . . . converges if, for each ε > 0,
there is an N such that

m, n > N ⇒ |cm − cn| < ε.
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Proof. If the sequence c1, c2, c3, . . . satisfies the Cauchy convergence criterion there
is a sequence of natural numbers N1 < N2 < N3 < · · · such that

m, n > N1 ⇒ |cm − cn| < 1/2,

m, n > N2 ⇒ |cm − cn| < 1/4,

m, n > N3 ⇒ |cm − cn| < 1/6,

and so on. Now if |cm − cn| < 1/2 for all m, n > N1 this means in particular that
all cn stay within distance 1/2 of cN1+1 for n > N1, and hence within an interval of
length 1. Similarly for N2,N3, . . . ; so we get nested closed intervals

I1, of length 1, with cn ∈ I1 for all n > N1,

⊇ I2, of length 1/2, with cn ∈ I2 for all n > N2,

⊇ I3, of length 1/3, with cn ∈ I3 for all n > N3,

...

the length of which becomes arbitrarily small. By the nested interval property, there
is a single point c common to these intervals, and c is clearly the limit of the
sequence c1, c2, c3, . . . . �

We see from this proof that the Cauchy convergence criterion guarantees a
limit because of the nested interval property, and hence ultimately because of the
completeness of R. Conversely, as mentioned above, if each sequence satisfying
the Cauchy criterion has a limit then R is complete. Indeed the completeness of R
is often expressed this way: every Cauchy sequence has a limit, where a Cauchy
sequence is one satisfying the Cauchy convergence criterion. This may seem more
longwinded than, say, the least upper bound property, but it is important for several
reasons.

One is that sequences of numbers are very common—we have already seen
several examples—so we need to understand the concept of convergence. Moreover,
numbers can very well be complex, and hence not ordered, so the concept of
Dedekind cut may not apply. Another reason is that sequences of functions are also
common, and we can use the Cauchy convergence criterion for functions, where the
concept of Dedekind cut also does not generally apply.

Exercises

2.6.1 Define a sequence of nested open intervals with no common point.

The nested interval property and the Cauchy convergence criterion are both nicely illustrated by
infinite decimals.
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2.6.2 Interpret the infinite decimal for
√

2 as the common point of a sequence of nested intervals.
2.6.3 Show that the sequence 1, 1.4, 1.414, 1.4142, 1.41421, . . ., which defines the infinite decimal

for
√

2, satisfies the Cauchy convergence criterion.

Consider nested sequences of intervals I1 ⊇ I2 ⊇ I3 ⊇ · · · with lengths that converge to zero, where
In = [an , bn] and an, bn are rational.

2.6.4 Show that each such sequence corresponds to a Dedekind cut.
2.6.5 Show that two such sequences have the same common point if and only if they correspond

to the same Dedekind cut.
2.6.6 Deduce that if real numbers are defined by such sequences, then we get real numbers with

the same properties as those defined by Dedekind cuts.
2.6.7 Deduce in turn that real numbers can be defined by Cauchy sequences.

2.7 Continued Fractions

The Euclidean algorithm from Sect. 2.1, which operates on a pair 〈a, b〉 of positive
integers, can also be viewed as a procedure for expressing each positive rational a/b
as a continued fraction. Indeed, the continued fraction elegantly encodes the main
steps in the algorithm.

Here is an example. We operate on the numbers 19 and 7, by first encoding them
in the fraction 19/7.

19
7
= 2 +

5
7

subtracting 7 twice from 19,

= 2 +
1

7/5
= 2 +

1

1 +
2

5

subtracting 5 once from 7,

= 2 +
1

1 +
1

5/2

= 2 +
1

1 +
1

2 +
1

2

subtracting 2 twice from 5.

The numbers 2, 1, 2, 2 occurring in the continued fraction for 19/7 record the number
of times the smaller number can be subtracted from the larger at each stage. In other
words, they record the quotient when the larger number is divided by the smaller.

Given any number m/n, where m and n are positive integers, we can similarly
show that
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m
n
= n1 +

1

n2 +
1

. . . 1

nk−1 +
1

nk

where n1, n2, . . . , nk are positive integers. A fraction of this form is called a
finite continued fraction. The fraction terminates because the Euclidean algorithm
terminates.

To prove that
√

2 is irrational it therefore suffices to show that the Euclidean
algorithm does not terminate on the pair of numbers

√
2, 1. Surprisingly, this is not

hard to do. Here is what happens. The secret is to use the fact that (
√

2+1)(
√

2−1) =
1. As above, whenever we get a number less than 1 we rewrite it as 1/(number greater
than 1), in order to continue the fraction.

√
2 = 1 +

√
2 − 1 subtracting 1 once from

√
2,

= 1 +
1

√
2 + 1

because (
√

2 + 1)(
√

2 − 1) = 1,

= 1 +
1

2 +
√

2 − 1
subtracting 1 twice from

√
2 + 1,

= 1 +
1

2 +
1

√
2 + 1

because (
√

2 + 1)(
√

2 − 1) = 1.

At this point it is clear that the Euclidean algorithm will not terminate, because the
denominator

√
2 + 1 has occurred previously.

It follows that
√

2 is not equal to any ratio m/n of positive integers. So we
have again proved that

√
2 is irrational—and this time without using proof by

contradiction.
Moreover, we now have a clearer view of the irrational number

√
2. It can be

described by a simple repetitive process, the Euclidean algorithm on
√

2 and 1. And
this gives a simple repetitive formula for

√
2, namely its infinite continued fraction:

√
2 = 1 +

1

2 +
1

2 +
1

2 +
1

2 +
1

. . .
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If the fraction x makes sense (which it does, as we will prove rigorously below) then
it is much more transparent than the infinite decimal for

√
2, because we can survey

its totality: a 1 followed by infinitely many 2s. In this sense, it is as transparent as
an ultimately periodic decimal, such as the decimal 0.166666 . . . that represents 1/6.
For more on ultimate periodicity in continued fractions, see the exercises below.

Exercises

The simplest infinite continued fraction represents the famous number 1+
√

5
2 known as the golden

ratio. The golden ratio is the ratio of the sides of the golden rectangle, shown in Fig. 2.3. Its
defining property is that the rectangle obtained by cutting off a square has the same shape as the
original.

When a square is cut off as shown in Fig. 2.3, the width of the rectangle that remains is of
course the greater side minus the lesser. So, by repeating the process of cutting off squares, we can
implement the Euclidean algorithm.

2.7.1 Prove, from the defining property of the golden rectangle, that the golden ratio equals
1+
√

5
2 .

2.7.2 Prove that the Euclidean algorithm does not terminate on the pair 〈 1+
√

5
2 , 1〉 by considering

the golden rectangle.

2.7.3 Deduce that 1+
√

5
2 is irrational.

2.7.4 What is the continued fraction for 1+
√

5
2 ?

Periodic continued fractions, such as the one for 1+
√

5
2 , can be evaluated by showing that they

satisfy quadratic equations. Here is another example. Let

x = 3 +
1

3 +
1

3 +
1

3 +
1

. . .

.

2.7.5 Show that x satisfies the equation x2 = 3x + 1, and hence find x.

Fig. 2.3 The golden rectangle
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2.8 Convergence of Continued Fractions

The nested interval property from Sect. 2.6 may be used to clarify the nature of
infinite continued fractions, which we introduced in the previous section without
investigating exactly what they mean. We define the infinite continued fraction

a0 +
1

a1 +
1

a2 +
1

. . .

for any positive integers a0, a1, a2, . . . ,

to be the limit of the sequence of finite continued fractions

c0 = a0, c1 = a0 +
1
a1
, c2 = a0 +

1

a1 +
1

a2

, . . . ,

which are known as the convergents of the infinite continued fraction. We are going
to show that this sequence does indeed converge, by capturing its limit in a nested
sequence of closed intervals with a size that tends to zero.

We let Pn,Qn be the relatively prime integers with the ratio cn; that is

Pn

Qn
= a0 +

1

a1 +
1

. . .
+

1

an

for positive integers a0, a1, . . . , an.

In particular, P0 = a0, Q0 = 1 and P1 = a0a1 + 1, Q1 = a1. For n > 2 we will
express Pn in terms of Pn−1 and Pn−2, and Qn in terms of Qn−1 and Qn−2, by simple
recurrence relations which we prove by induction on n.

These relations will enable us to inductively prove various properties of the
fractions Pn/Qn, and thereby explain their convergence.

Recurrence relations for the convergents. If Pn and Qn are the relatively prime
integers such that

Pn

Qn
= a0 +

1

a1 +
1

. . .
+

1

an

for positive integers a0, a1, a2, . . . ,
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then

P0 = a0, P1 = a0a1 + 1, and Pn = anPn−1 + Pn−2 for n > 2;

Q0 = 1, Q1 = a1, and Qn = anQn−1 + Qn−2 for n > 2.

Proof. The values of P0, P1, Q0, Q1 are easy to check, and it is almost as easy to
check the recurrence relations for n = 2 (exercise). Now suppose that the relations
hold for n = m − 1, that is, for any sequence of m positive integers a0, a1, . . . , am−1.
To prove them for all n, by induction, it suffices to show that they hold for n = m.

To do this we first define relatively prime integers P′j, Q′j by

P′j
Q′j
= a1 +

1

a2 +
1

. . .
+

1

a j+1

for j = 0, 1, 2, · · · .

Since the recurrences are supposed to hold for any sequence of m positive integers,
including a1, a2, . . . , am, we have

P′m = amP′m−1 + P′m−2 and Q′m = amQ′m−1 + Q′m−2. (*)

Now the relation between the P/Q fractions and the P′/Q′ fractions is

P j

Q j
= a0 +

1
P′j/Q

′
j

= a0 +
Q′j
P′j
=

a0P′j + Q′j
P′j

,

and we notice (using the Euclidean algorithm) that

gcd(a0P′j + Q′j, P
′
j) = gcd(P′j,Q

′
j) = 1,

so

P j = a0P′j + Q′j and Q j = P′j. (**)

Taking j = m in (**), then applying (*), gives

Pm = a0P′m + Q′m

= a0(amP′m−1 + P′m−2) + amQ′m−1 + Q′m−2

= am(a0P′m−1 + Q′m−1) + a0P′m−2 + Q′m−2,
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Qm = P′m

= amP′m−1 + P′m−2. (***)

Also, taking j = m − 1 and j = m − 2 in (**) gives

Pm−1 = a0P′m−1 + Q′m−1 and Qm−1 = P′m−1

Pm−2 = a0P′m−2 + Q′m−2 and Qm−2 = P′m−2.

The latter equations allow us to replace all the primed terms in (***) and they
become the required recurrence relations for n = m:

Pm = amPm−1 + Pm−2 and Qm = amQm−1 + Qm−2. �

From the recurrence relations we quickly obtain some properties of the integers
Pn, Qn that enable us to prove that the convergents Pn/Qn indeed converge.

1. Since Q0 = 1, Q1 = a1, Qn = anQn−1 + Qn−2, and a0, a1, a2, . . . are positive
integers, it follows by an easy induction that Qn grows with n and hence Qn ≥ n.

2. Another induction (exercise) shows that PnQn−1 − QnPn−1 = (−1)n−1, whence it
follows that

Pn

Qn
− Pn−1

Qn−1
=

(−1)n−1

QnQn−1
.

3. This implies that a0 <
P2
Q2
< P4

Q4
< P6

Q6
< · · · < P5

Q5
< P3

Q3
< P1

Q1
≤ a0 + 1 and

(because of 1)

∣∣∣∣∣ Pn

Qn
− Pn−1

Qn−1

∣∣∣∣∣ ≤ 1
n(n − 1)

.

The last of these results shows that the closed intervals bounded by Pn/Qn and
Pn−1/Qn−1 are nested and of length tending to 0. Thus they have a unique common
point, limn→∞ Pn/Qn, which is the value of the infinite continued fraction

a0 +
1

a1 +
1

a2 +
1

. . .

.
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Exercises

2.8.1 Show that

a0 +
1

a1 +
1

a2

=
a0(a1a2 + 1) + a2

a1a2 + 1
,

and use the Euclidean algorithm to show that the numerator and denominator on the right
are relatively prime.

2.8.2 Conclude from Exercise 2.8.1 that P2 = a0(a1a2 + 1) + a2 and Q2 = a1a2 + 1, and deduce
that

P2 = a2P1 + P0 and Q2 = a2Q1 + Q0.

2.8.3 Prove PnQn−1 − QnPn−1 = (−1)n−1 by induction on n.

Two interesting special cases are the continued fractions

1

1 +
1

1 +
1

1 +
1

. . .

and
1

2 +
1

2 +
1

2 +
1

. . .

,

which represent the numbers
√

5−1
2 and

√
2 − 1, respectively.

2.8.4 Use the recurrence relations to show that the convergents for
√

5−1
2 are ratios of successive

Fibonacci numbers.
2.8.5 Show that the convergents for

√
2 − 1 are ratios of successive terms of the sequence

1, 2, 5, 12, 29, 70, 169, . . ., in which each term is twice the previous term plus the term before
that.

2.8.6 From Exercise 2.8.5 deduce a result about successive convergents for
√

2.

2.9 Historical Remarks

A slogan to sum up this chapter might be: the basic theory of R equals Greek
mathematics + Infinity (or even Euclid + Infinity). The ancient Greeks gave
us integral and rational numbers and the principle of induction by which their
properties may be proved. They also gave us infinite processes for approaching
irrational numbers, though they did not dare to complete them or “take them to the
limit.” Thus Euclid, in his Elements, Book X, Proposition 2, gave nontermination
of the Euclidean algorithm as a criterion for irrationality. He gave no example at
this point, but his Proposition 5 of Book XIII immediately implies periodicity, and

hence nontermination, of the Euclidean algorithm on the pair 1+
√

5
2 , 1. This leads us

to the continued fraction representation
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1 +
√

5
2

= 1 +
1

1 +
1

1 +
1

. . .

but it would not have been accepted by the Greeks, since it implies “completing” a
process that does not end. The Greeks accepted the “potential” infinity of a process,
but not the “actual” infinity of its completion.

Our use of the word “completion” to describe the creation of R from Q is
appropriate, because it involves the simultaneous completion of infinitely many
infinite processes. R turns out to be a perfect example of an actual infinity, because
there is in fact no way to view it as a “potential infinity.” R must be comprehended
in its totality or not at all. This remarkable discovery will be explained in Chap. 3,
along with the contrasting discovery that Q can be viewed as a “potential infinity.”

This was not known when Dedekind discovered the completion of Q by means
of his cuts in 1858, but he was aware of the revolutionary nature of his discovery. In
the first publication of his theory, he described the circumstances as follows.

As a professor at the Polytechnic School in Zürich I found myself for the first time obliged
to lecture upon the elements of the differential calculus and felt more keenly than ever the
lack of a really scientific foundation for arithmetic. In discussing the notion of the approach
of a variable magnitude to a fixed limiting value, and especially in proving the theorem that
every magnitude that grows continually, but not beyond all limits, must certainly approach a
limiting value, I had recourse to geometric evidences. . . . that this form of introduction into
the differential calculus can make no claim to being scientific, no one will deny. For myself
this feeling of dissatisfaction was so overpowering that I made the fixed resolve to keep
meditating on the question till I should find a purely arithmetic and perfectly rigorous
foundation . . . I succeeded Nov. 24, 1858

Dedekind (1872), pp. 1–2

Dedekind’s desire to avoid “recourse to geometric evidences” in favor of a
“purely arithmetic” foundation was part of a nineteenth century movement away
from geometric foundations in mathematics. As we saw in Chap. 1, the Greeks took
the discovery of irrational quantities to mean that geometric magnitudes are more
extensive than numbers, and for that reason they favored geometry as the foundation
of mathematics. This attitude prevailed until the nineteenth century, partly because
there was as yet no arithmetic model of the line. However, confidence in geometry
was weakened by the discovery of non-Euclidean geometry in the 1820s, and the
desire for arithmetic foundations was correspondingly strengthened.

The creation of the number line by completion of Q was a big step towards an
arithmetic foundation for analysis, but further digging was required.Q itself lacked a
proper foundation as long as basic results, such as ab = ba, were justified by appeal
to geometric intuition. Truly arithmetic proofs of the basic results had to wait for the
method of induction to mature beyond the sporadic descent arguments that occur in
Euclid.
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Fig. 2.4 Hermann Grassmann and Richard Dedekind

The first, rough, idea of proving properties of numbers by establishing them for
1 and working upwards seems to occur in the work of Levi ben Gershon (1321). He
used the idea to prove the basic formulas for permutations and combinations, such
as the fact that there are n! permutations of n things. Induction proofs in almost the
modern ascent format—a base step that establishes a property for n = 1 (or some
other initial value), and an induction step showing that the property propagates from
n to n + 1—occur in Pascal (1654), a book that introduced the so-called “Pascal’s
triangle” to European readers.

By the nineteenth century, this form of induction was in common use, but it took
a brilliant mathematical outsider to see that induction was the absolute foundation
of arithmetic. This was the message of the Grassmann (1861) inductive proof of the
ring properties of the integers, though it went unnoticed by most mathematicians.
The rediscovery of Grassmann’s results by Dedekind (1888) and Peano (1889)
confirmed the importance and naturalness of his idea. The subsequent development
of set theory, as we will see in Chap. 6, not only reaffirmed the importance of
induction, but also showed that it extends to all kinds of infinity.

2.9.1 R as a Complete Ordered Field

The concept of a complete Archimedean ordered set is motivated by our geometric
intuition of the line, which was also the ancient Greek intuition. The Archimedean
property, as its name suggests, was mentioned by Archimedes. But before him it
was stated by Euclid:
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Two unequal magnitudes being set out, if from the greater there be subtracted a magnitude
greater than its half, and from that which is left a magnitude greater than its half, and if this
process be repeated continually, there will be left some magnitude which will be less than
the lesser magnitude set out.

Elements, Book X, Proposition 1.

The concept of field is more modern and of algebraic origin. Although the
Greeks essentially knew the field Q, their geometric concept of product did not
allow unlimited multiplication of magnitudes, so there was no “field of magnitudes.”
The concept of field developed in parallel with the development of algebra from
the sixteenth century onwards, as mathematicians gradually became conscious of
the rules for adding and multiplying numbers and symbolic expressions.

The concept of an ordered field, and its specialization to the complete case, was
considered by Dedekind (1872). However, it emerged more dramatically from a
surprising development of the 1890s: the geometrization of algebra. Against the
general tide of arithmetization, Hilbert (1899) showed that the nine properties
defining a field,

a + b = b + a ab = ba

a + (b + c) = (a + b) + c a(bc) = (ab)c

a + 0 = a a · 1 = a

a + (−a) = 0 a · a−1 = 1 for a � 0

a(b + c) = ab + ac,

are equivalent to four geometric axioms. Updating the approach of Euclid, Hilbert
introduced undefined objects called “points” and “lines,” subject to the following
axioms:

1. Through any two points there is a unique line.
2. Any two lines meet in a unique point.
3. There are four points, no three of which lie on the same line.
4. If points A, B,C,D, E, F lie alternately on two lines, then the intersections of

the lines AB and DE, BC and EF, CD and FA, lie on a line (shown dashed in
Fig. 2.5).

The first three axioms define what is called a projective plane, one line of which
(chosen arbitrarily) is called the line at infinity. The intuition for these three axioms
is that the line at infinity is the horizon and that lines meeting on the horizon are
parallel. The fourth axiom is the theorem of Pappus, so-called because it becomes
a theorem when the projective plane is supplied with coordinates. To be precise:
in a plane with coordinates, lines have linear equations, and we can compute the
intersections of the above lines and show that they lie on a line using the field
properties. This is essentially the theorem proved by Pappus of Alexandria around
300 CE.
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A

B

C

D

E

F

Fig. 2.5 The theorem of Pappus

Conversely, if a projective plane satisfies Axiom 4 we can define coordinates,
with sum and product operations, and show that the nine field axioms are satisfied.
Thus the part of the complete ordered field concept not originating in geometry turns
out to have a geometric interpretation: the field concept is captured by the structure
of a projective plane satisfying the Pappus theorem. Even more remarkably, the
Pappus theorem can be held responsible specifically for ab = ba. This is because
there is a weaker geometric theorem (implied by Pappus), called the Desargues
theorem, which implies all of the field properties except ab = ba.

So, to return to the question raised in Sect. 1.1, it is not unreasonable to seek a
geometric explanation of ab = ba. But if you want the other field properties, Pappus
is a better explanation than Euclid!



Chapter 3
Infinite Sets

PREVIEW

The construction of the continuous set R by “filling the gaps” in the setQ of rational
numbers seems completely natural and simple, in hindsight. However, there is a
huge difference between Q and R. While both are infinite sets, R is “more infinite”
than Q. The purpose of the present chapter is to explain precisely what this means,
and to compare some other important infinite sets with Q and R.

The “smallest” infinite sets are those called countably infinite. The definitive
example is the set of positive integers N = {1, 2, 3, 4, . . .}. A set is called countable
if its members can be arranged in a (possibly infinite) list: 1st member, 2nd member,
3rd member, . . . , so that each member occurs at some positive integer position.
Perhaps surprisingly, the rational numbers can be arranged in such a list, so Q is
countably infinite. In fact, any set with members that have “finite descriptions” in
some reasonable sense turns out to be countable.

This is not the case for the real numbers, many of which require infinite
descriptions, such as infinite decimals. Indeed, there are some dramatic proofs that
R is not countable. We give a couple of these uncountability proofs, and also find
several sets that are “equinumerous” with R, and hence also uncountable.

The uncountability of R leads us to expect some difficulties and surprises when
we come to investigate sets of real numbers. To prepare for what is in store, we
prove some classical theorems about sets of real numbers and introduce a notable
example—the so-called Cantor set.

3.1 Countably Infinite Sets

A set is said to be countable if its members can be enumerated—first member,
second member, third member, and so on—and each member eventually appears
in the enumeration. Notice that we do not assume that the enumeration ever comes
to an end. If it does not, the set is called countably infinite.

J. Stillwell, The Real Numbers: An Introduction to Set Theory and Analysis,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-01577-4__3,
© Springer International Publishing Switzerland 2013
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The definitive example of a countably infinite set is the set of positive integers

N = {1, 2, 3, 4, 5, . . .}.

Another way to say that a set S is countably infinite is to say that the members of S
can be put in one-to-one correspondence with the members of N: the first member
of S corresponds to 1, the second member to 2, and so on. A little less formally, a
set is countably infinite if its members can be arranged in an infinite list:

first member, second member, third member, . . . .

There are many examples of countably infinite sets, the most important of which
are the following

1. Any infinite subset of N, because (by induction) any such subset has a least
member, second least member, third least member, and so on indefinitely.
Examples are {even numbers}, {squares}, and {primes}.

2. The set of integers, Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. Z is countable because its
members can be listed as follows:

0, 1, −1 , 2, −2, 3, −3, . . .

(That is, begin with 0 and then alternate members of N with their negatives.)
3. The set of rational numbers between 0 and 1. These numbers can be arranged in

the following list:

1
2

;
1
3
,

2
3

;
1
4
,

3
4

;
1
5
,

2
5
,

3
5
,

4
5

;
1
6
,

5
6

; . . .

(That is, we first list the fractions with denominator 2, then those with denomi-
nator 3, then those with denominator 4, and so on, including only those fractions
that are in lowest terms.)

4. The set Q+ of positive rational numbers. To list the members of this set we group
positive fractions according to the sum of their numerator and denominator: first
those with sum equal to 2, then those with sum equal to 3, and so on. Within
each group we list the fractions in increasing order of their numerators, again
including only fractions in lowest terms. Then the list begins

1
1

;
1
2
,

2
1

;
1
3
,

3
1

;
1
4
,

2
3
,

3
2
,

4
1

;
1
5
,

5
1

;
1
6
,

2
5
,

3
4
,

4
3
,

5
2
,

6
1

; . . .

5. The set Q of all rational numbers. To list the members of Q we first list 0, then
alternate members ofQwith their negatives (the same trick we used to enumerate
Z, given the enumeration of N):

0;
1
1
,−1

1
;

1
2
,−1

2
,

2
1
,−2

1
;

1
3
,−1

3
,

3
1
,−3

1
; . . .
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6. The set Q of all algebraic numbers, where an algebraic number is a root of a
polynomial equation with integer coefficients. A polynomial of degree n,

anxn + an−1xn−1 + · · · + a1x + a0 = 0, (*)

has at most n distinct roots, so the main problem in enumerating algebraic
numbers is to enumerate all the polynomial equations (*), where a0, a1, . . . , an

are integers.
To do this we consider the number

h = n + |an| + |an−1| + · · · + |a1| + |a0|,

which is called the height of the equation (*). There are only a finite number of
equations of height ≤ h, so we can make a list of all equations (*) with integer
coefficients by first listing those of height 1, then those of height 2, and so on.

Then if we list, along with each equation, its finitely many roots, we obtain a
list of all algebraic numbers.

7. The set of all finite subsets of N. A list of finite subsets may be constructed
inductively as follows. At stage zero, list the empty set, ∅. Then, assuming all
subsets of {1, 2, . . . , n} have been listed by stage n, at stage n + 1 list all sets
obtained by inserting the number n + 1 in previous sets. Then all subsets of
{1, 2, . . . , n, n + 1} have been listed by the end of stage n + 1. The list therefore
looks like this:

∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, . . .

8. The set N<ω of all finite sequences of positive integers. This seems like listing
finite subsets, except that order is important and elements may be repeated. So
it is more like the listing of polynomials above, and indeed we can use a similar
concept of “height.” We assign the n-element sequence 〈a1, a2, . . . , an〉 the height

n + a1 + · · · + an.

Then there are only a finite number of sequences of given height, so we can list
all sequences by listing those of height 1, then those of height 2, and so on.

As special cases, the sets of all ordered pairs, ordered triples, and so on, of
members of a countable set are themselves countable.

3.1.1 The Universal Library

The last example of a countable set above can be interpreted more dramatically.
A word, a sentence, even a whole book is nothing but a finite sequence of symbols,
which we could encode by natural numbers (indeed we need only finitely many
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symbols if we include all the letters of the alphabet, punctuation symbols, and the
blank space). Therefore, the list of finite sequences of natural numbers in principle
includes every book that has been, or will ever be, written. This leads to the idea of
a universal library, which has been a plaything for several writers. One of the most
eloquent was the set theorist (and sometime dramatist) Felix Hausdorff, who wrote
in his Grundzüge der Mengenlehre of 1914, pp. 61–62 (my translation):

If one adds to the letters further elements such as punctuation marks, spaces, numerals,
notes, etc., then one sees that the set of all books, catalogs, symphonies, and operas is
countable, and it remains countable when one allows countably many symbols (but only
finitely many for each work). On the other hand, if one confines oneself to a finite number
of symbols, and to works of a bounded length, say by allowing words no longer than one
hundred letters and books of no more than one million words, then the set is finite. And if
one supposes, with Giordano Bruno, an infinite numbers of worlds with speaking, writing,
and music-making inhabitants, then it follows with mathematical certainty that in infinitely
many of these worlds the same opera, with the same libretto, by a composer, librettist,
conductor, and singers with the same names, will be performed.

One might add that, if music is digitized, so that each performance becomes
a finite sequence of bits, then the set of performances is countable and there is a
universal music library. However, a more interesting question is: how big must the
universal music library be if music is not digitized? A similar question is: how big
must a library be to hold all possible handwritten manuscripts? We take up these
questions in Sect. 3.4.

Exercises

An amusing model of countability, which apparently first appeared in the book One, Two, Three,
. . . Infinity of Gamow (1947), is called Hilbert’s hotel. Hilbert’s hotel has a countable infinity of
rooms—room 1, room 2, room 3, and so on—and sets are counted by packing them into Hilbert’s
hotel, one member per room. Thus, the set N fills Hilbert’s hotel as shown in Fig. 3.1.

Even though the hotel is full, it can make room for a new guest, say 0, by having each occupant
move into the next room, as shown in Fig. 3.2.

3.1.1 Explain how to make room for a countable infinity of new guests, such as −1,−2,−3,−4, . . ..

. . .

. . .

1 2 3 4 5 6 7 8 9 10

Fig. 3.1 Hilbert’s hotel occupied by the members of N

. . .

. . .

1 2 3 4 5 6 7 8 9

Fig. 3.2 Making room for one more
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. . .

. . .
b1 b2 b3 b4

Fig. 3.3 Rooms for the first busload

Now suppose that infinitely many buses arrive at the hotel, each carrying a countable infinity
of passengers. Suppose that the passengers b1, b2, b3, . . . of the first bus are given rooms as shown
in Fig. 3.3.

That is, skip one room after the first passenger, skip two rooms after the second passenger, and
so on.

3.1.2 Find rooms for the second busload, in such a way that there remain blocks of 1, 2, 3, . . .
empty rooms.

3.1.3 Deduce that it is possible to accommodate all passengers from all buses, so as to exactly fill
Hilbert’s hotel.

3.2 An Explicit Bijection Between N and N2

In the flurry of results in the previous section, we skimmed over one that is important
enough to study in some detail: a bijection between the setN of positive integers and
the set N2 of ordered pairs of positive integers. This bijection is crucial to several
other bijections that we construct later, so it is important to be aware of it. And,
indeed, the bijection between N and N2 can be made very clear, both pictorially and
by means of a simple quadratic function. We begin with a picture.

Figure 3.4 shows the points 〈m, n〉 ofN2 in their usual grid arrangement, for small
values of m and n. Also shown on the grid is a series of diagonal dotted lines that
show how to enumerate all the points in N2.

We take 〈1, 1〉 as point number 1 on the list, then continue numbering points as
2, 3 on the first diagonal, then 4, 5, 6 on the next diagonal, and so on. The numbers
of the points are shown in gray. It is clear that each point eventually gets a number
with this scheme, so we have established a bijection between N and N2.

Moreover, we can obtain a formula for the number of point 〈m, n〉 as follows. The
point 〈k − 1, 1〉 at the end of the (k − 2)nd diagonal obviously has number

1 + 2 + 3 + · · · + (k − 1) = k(k − 1)/2.

One more step brings us to the point 〈1, k〉 at the beginning of the (k− 1)st diagonal,
and another m − 1 steps along this diagonal brings us to the point 〈m, k − m + 1〉.
Thus,

number of point 〈m, k − m + 1〉 = m + k(k − 1)/2.
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...

. . .

〈1, 1〉

〈1, 2〉

〈1, 3〉

〈1, 4〉

〈2, 1〉 〈3, 1〉 〈4, 1〉

1

2

3

4

5

6

7

8

9

10

Fig. 3.4 Enumerating the points in N2

Rewriting this formula in terms of n = k − m + 1, so k = m + n − 1, we get

number of point 〈m, n〉 = m + (m + n − 1)(m + n − 2)/2.

We will denote the number of point 〈m, n〉 by p(m, n) (so you can think of p standing
for “pairing”).

Exercises

3.2.1 Find a polynomial bijection from N3 to N. What is its degree?
3.2.2 Explain why there are countably many points in R2 with rational coordinates.
3.2.3 Show that there are countably many circles in R2 with rational center and rational radius.
3.2.4 Also, show that there are countably many circles with three rational points.

3.3 Sets Equinumerous with R

The countable sets studied in Sect. 3.1—Z, Q, and Q—lie more and more densely
on the number line R, yet no method is apparent for listing all the members of R.
The problem appears to be that the description of a real number is generally infinite,
and the methods above are good only for listing objects with finite descriptions.
Before attempting to prove that R is not countable, however, we will look at some
interesting sets that are equinumerous with R.
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−1 1

O

Fig. 3.5 Bijection between an interval and the line

Definition. Sets are equinumerous, or of the same cardinality, if there is a one-to-
one correspondence (bijection) between their elements.

Thus, the countably infinite sets in the previous section are equinumerous with
N, or of the same cardinality as N. The sets equinumerous with R include some
subsets of R, some sets that contain R, and also some sets consisting of infinite
objects derived from the countable set N. We sometimes say that such sets have
continuum-many elements.

1. The first example of a subset equinumerous with R is the open interval

(−1, 1) = {x ∈ R : −1 < x < 1}.

An easy way to see a bijection between (−1, 1) and R is to imagine (−1, 1) bent
into a semicircle that rests on the number line at O, as shown in Fig. 3.5. Rays
from the center of the semicircle establish a one-to-one correspondence between
points of (−1, 1) and points of the line.

A similar picture shows that any open interval

(a, b) = {x ∈ R : a < x < b},

where a < b, is equinumerous with the whole number line. An interesting case,
not needing the picture, is the interval (−π/2, π/2). The tan function maps this
interval one-to-one onto R, as one can see from the graph of the tan function.

2. The closed interval [0, 1] = {x ∈ R : 0 ≤ x ≤ 1} is equinumerous with the open
interval (0, 1), and hence with R. We show this by constructing a bijection of
[0, 1] onto (0, 1). Consider the numbers

r1 =
1
2
, r2 =

3
4
, r3 =

7
8
, r4 =

15
16
, . . . ,

which belong to both [0, 1] and (0, 1). To map [0, 1] one-to-one onto (0, 1) we
send

0, 1, r1, r2, r3, . . . in [0, 1]
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respectively to

r1, r2, r3, r4, r5, . . . in (0, 1),

and send every other member of [0, 1] to itself.
Similarly, R is equinumerous with any closed interval [a, b] with a < b.

3. Another subset equinumerous with R is the set1 R − Q of irrational numbers.
As we saw in the previous section, the rational numbers can be enumerated
r1, r2, r3, . . . . From this list we can construct a countable infinity of irrational
numbers, for example

s1 =
√

2r1, s2 =
√

2r2, s3 =
√

2r3, . . .

We can now define a one-to-one function from R onto R − Q by sending

r1, s1 , r2, s2, r3, s3, . . . in R

respectively to

s1, s2, s3, s4, s5, s6, . . . in R − Q

and sending each other member of R to itself.
4. The set P(N) of subsets of N. (The letter P stands for “power set” and means “all

subsets of.” We say more about this operation in Chap. 6.)
A subset S of N can be described by an infinite sequence of 0s and 1s, with 1

in the nth place if and only if n ∈ S . Such a sequence can be interpreted as the
binary expansion of a number in [0, 1]. The only problem is that different subsets
can give the same number, for example

{1} is described by 10000 . . ., which gives the number 0.10000 . . . = 1
2 .

{2, 3, 4, . . .} is described by 01111 . . ., which gives the number 0.01111 . . . = 1
2 .

The numbers that correspond to different sets are the binary fractions m/2n, and
the corresponding subsets ofN are the finite sets and their complements. Leaving
these exceptional numbers and sets aside for the moment, we have a bijection
from

[0, 1] − {binary fractions} onto

P(N) − {finite sets and their complements}.

1In this book we use an ordinary minus sign to denote set difference. This is convenient later to
show the parallel between set difference and number difference in measure theory. In any case, it
will always be clear what kind of objects we are taking the difference of.



3.4 The Cantor–Schröder–Bernstein Theorem 65

Finally, by a bijection between the countable sets

{binary fractions} and {finite sets and their complements}

gives a bijection of [0, 1] onto P(N). So P(N) is equinumerous with [0, 1], and
hence with R.

5. The set N × N × N × · · · = NN of infinite sequences of positive integers.
Each infinite sequence2 〈n1, n2, n3, . . .〉 of positive integers gives an irrational

number

x =
1

n1 +
1

n2 +
1

n3 +
1

. . .

between 0 and 1, because each rational has a finite continued fraction, as we
saw in Sect. 2.7. Conversely, each irrational number between 0 and 1 has a
continued fraction of the above form, and hence gives an infinite sequence of
positive integers.

Thus, we immediately have a bijection betweenNN and the irrational numbers
in (0, 1). The latter set is equinumerous with (0, 1), and hence with R, by an
argument like that used to show that R − Q is equinumerous with R.

Exercises

3.3.1 Show that (0, 1) ∪ {1}, (0, 1) ∪ {1, 2}, and (0, 1) ∪ {1, 2, 3} are equinumerous with R. (Hint:
Build a copy of “Hilbert’s Hotel” inside (0, 1).)

3.3.2 Show that (0, 1) ∪ {1, 2, 3, . . .} is equinumerous with R.
3.3.3 Show that (0, 1) ∪ (2, 3) is equinumerous with R.
3.3.4 Encode each 〈n1, n2, n3, . . .〉 ∈ NN by an infinite sequence of 0s and 1s with infinitely many

0s, and hence give another proof that NN is equinumerous with R.

3.4 The Cantor–Schröder–Bernstein Theorem

The bijections in the previous section call for a certain amount of ingenuity, in
order to construct bijections from maps that are not quite bijections. To avoid

2We use the notation 〈a, b, c, . . .〉 for the infinite sequence in conformity with the notations 〈a, b〉
and 〈a, b, c〉 for ordered pairs and triples.
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ever-increasing demands on our ingenuity in the future, we now prove a theorem
that guarantees a bijection when we “almost” have one, namely, when we have a
bijection from A to a subset of B, and one from B to a subset of A (or, equivalently,
an injection from A into B, and one from B into A).

Cantor-Schröder-Bernstein Theorem. If there are injections f : A → B and
g : B→ A then there is a bijection h : A→ B.

Proof. Consider chains of elements, alternately in A and B, that are connected by
alternate applications of f and g. A portion of a chain looks like this,

· · ·
g
�→ a0

f
�→ b0

g
�→ a1

f
�→ b1

g
�→ a2

f
�→ b2

g
�→ · · ·

where . . . , a0, a1, a2, . . . ∈ A and . . . , b0, b1, b2, . . . ∈ B and f (ak) = bk, g(bk) = ak+1.
Since f and g are functions on A and B, respectively, each chain extends indefinitely
(and uniquely) to the right, possibly repeating the same finite sequence over and
over. Since f and g are injective, each chain extends uniquely to the left too, though
it may terminate—either at an a that is not in the range of g or at a b that is not in
the range of f .

The injectiveness of f and g also implies that any two chains with a common
element ak (or bk) are identical. Hence distinct chains contain disjoint subsets of A
and disjoint subsets of B. This enables us to set up a bijection h : A→ B by piecing
together the obvious bijections within each chain.

1. For any ak in a chain without an initial element, let h(ak) = bk, in which case
h−1(bk) = ak.

2. For any ak in a chain with initial element in A, again let h(ak) = bk, in which case
h−1(bk) = ak.

3. For any chain with initial element in B, let h(ak) = bk−1, in which case
h−1(bk−1) = ak.

It follows, from the partitioning of elements of A and B among the chains, that
each a ∈ A is now paired with a unique h(a) ∈ B, and each b ∈ B is paired with a
unique h−1(b) ∈ A. �

3.4.1 More Sets Equinumerous with R

Armed with the Cantor–Schröder–Bernstein theorem, we can now exhibit some
spectacular examples of sets equinumerous with R. The main problem that
Cantor-Schröder-Bernstein has to overcome is the ambiguity of decimal expansions.
That is, the same number is sometimes represented by two different decimal
expansions; for example, 1/2 is represented by both 0.5 and 0.49999 . . .. It will
be seen below that we can get around this problem by constructing injections and
applying Cantor–Schröder–Bernstein, rather than attempting to construct bijections
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directly. However, the ambiguity of decimal expansions continues to cause trouble
in the future, and we will eventually work with a different set of continuum
cardinality—the set NN introduced in Sect. 3.3—to avoid such difficulties.

The first example is the plane R2. When this example was discovered by Cantor
in 1877 he wrote to Dedekind: “I see it but I don’t believe it,” apparently astonished
that a two-dimensional continuum of points could be equinumerous with the one-
dimensional continuum. (See Gouvêa 2011 for an engaging account of this episode.)
We continue the numbering of examples from the previous section.

6. The set R2 of ordered pairs 〈x, y〉 of real numbers.
We have an obvious injection of R into R2—namely, send each x ∈ R to the

ordered pair 〈x, 0〉—so it remains to find an injection of R2 into R. We inject R2

in two stages.
First, map R2 bijectively onto the “open unit square” (0, 1)2 by mapping each

R bijectively onto the open interval (0, 1) as in example 1 of the previous section.
Now take any 〈x, y〉 ∈ (0, 1)2 and consider the decimal expansions of x and y:

x = 0.a1a2a3 . . . , y = 0.b1b2b3 . . .

We can choose these decimal expansions uniquely by not allowing expansions
ending with 999 . . .. Hence we can send each pair to the well-defined decimal
number

z = 0.a1b1a2b2a3b3 . . . .

Moreover, since z cannot end with 999 . . . and hence equal another decimal
expansion (because neither x nor y do), different pairs 〈x, y〉 give different
numbers z. Thus, the map 〈x, y〉 �→ z is an injection of (0, 1)2 into R. Combining
this injection with the bijection R2 → (0, 1)2 gives an injection R2 → R, as
required.

7. The set R × R × R × · · · = RN of sequences 〈x1, x2, x3, . . .〉 of real numbers.
Again we have an obvious injection ofR into RN, by sending x to 〈x, 0, 0, . . . 〉,

and it remains to find an injection of RN into R.
The first step is to map RN bijectively onto the “infinite-dimensional open unit

cube,” (0, 1)N, consisting of the sequences 〈x1, x2, x3, . . .〉 where each xi ∈ (0, 1).
As in the previous example, this is done by mapping each R bijectively onto (0, 1)
as in example 1 from the previous section.

Now take any 〈x1, x2, x3, . . .〉 ∈ (0, 1)N and consider the decimal expansions
of x1, x2, x3, . . . :

x1 = 0.a11a12a13 · · ·

x2 = 0.a21a22a23 · · ·

x3 = 0.a31a32a33 · · ·

...
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We choose these expansions uniquely by not allowing any expansion to end with
999 . . . . We can pack all the decimal digits amn in this array into the decimal
expansion of a single number x by rearranging the array of digits into a list, just
as we enumerated the ordered pairs 〈m, n〉 of natural numbers in Sect. 3.2. The
resulting decimal expansion begins

x = 0.a11a21a12a31a22a13a41a32a23a14 . . .

and in general amn is in place number p(m, n), where p is the quadratic function
of m and n defined in Sect. 3.2.

Each decimal place of x gets filled, so the sequence 〈x1, x2, x3, . . .〉 is sent
to a well-defined x ∈ R. Moreover, x cannot end with 999 . . ., because none of
x1, x2, x3, . . . do, so different sequences give different numbers x.

Thus, the map 〈x1, x2, x3, . . .〉 �→ x is an injection from (0, 1)N into R.
Combining it with the bijection from RN to (0, 1)N gives an injection RN → R,
as required.

8. The set of all continuous functions f : R→ R.
We will define and study continuous functions carefully in Chap. 4. But for

now it is sufficient to know that a continuous function f : R → R is completely
determined by its values on the set Q of rational numbers. It follows, since we
can list Q as a sequence r1, r2, r3, . . ., that f is completely determined by the
sequence

〈 f (r1), f (r2), f (r3), . . .〉 ∈ RN.

We can therefore inject the set of real continuous functions f intoR by combining
the map f �→ 〈 f (r1), f (r2), f (r3), . . .〉 into RN with the injection RN → R found
in the previous example.

Conversely, we certainly have an injection of R into the set of continuous
functions. Just send the real number c ∈ R to the constant function f (x) = c.
Thus, it follows from the Cantor–Schröder–Bernstein theorem that the set of
continuous functions f : R→ R is equinumerous with R.

3.4.2 The Universal Jukebox

Let me begin with a quote from The Six Gateways of Knowledge, by Lord Kelvin,
an address to the Birmingham and Midland Institute, delivered in the Town Hall,
Birmingham, on October 3rd, 1883. It was later published in his Popular Lectures
and Addresses, Kelvin (1889), volume 1, pp. 274–275.

But now for what really to me seems a marvel of marvels: think what a complicated
thing is the result of an orchestra playing . . . . Think of the condition of the air, how it
is lacerated sometimes in a complicated effect. Think of the smooth gradual increase and
diminution of pressure—smooth and gradual though taking place several hundred times in
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Heartbreak Hotel

Goldberg Variations

Fig. 3.6 The universal jukebox

a second—when a piece of beautiful harmony is heard! Whether, however, it be the single
note of the most delicate sound of a flute, or the purest piece of harmony of two voices
singing perfectly in tune; or whether it be the crash of an orchestra, and the high notes,
sometimes even screechings and tearings of the air, which you may hear fluttering above
the sound of the chorus—think of all that, and yet . . . . A single curve, drawn in the manner
of the curve of prices of cotton, describes all that the ear can possibly hear, as the result of
the most complicated musical performance.

The phenomenon described by Kelvin—the superposition of sound waves into a
single wave—had already been exploited by Edison when he first recorded sound in
1877. By using the single sound wave to drive a vibrating needle, Edison transferred
the wave onto a wax cylinder, from which the sound could be replayed by reversing
the process. Even today, when digitized music is everywhere, many audiophiles
prefer the analog sound captured by the continuous wave on the grooves of a vinyl
disk. And vinyl disks are still played in old-style jukeboxes.

If we accept that a perfectly faithful sound recording needs to be a continuous
function, then the universal jukebox needs to be a repository of all continuous
functions. The last example of the previous section shows, amazingly, that each
continuous function may be encoded by a single real number. Thus, we can take the
universal jukebox to be the number line, with each musical performance represented
by a single point (Fig. 3.6). This is really the marvel of marvels!

Exercises

Many of our previous results on countable sets and sets equinumerous with R can be proved more
simply with the help of the Cantor–Schröder–Bernstein theorem.

3.4.1 Show that 〈m, n〉 �→ 2m3n gives an injection N2 → N, and hence show that N2 is
equinumerous with N.

3.4.2 If p1, p2, p3, . . . are the prime numbers, show that the map

〈n1, n2, . . . , nk〉 �→ 2n1 3n2 · · · pnk

k

is an injection of {finite sequences of positive integers} into N. Hence show that
{finite sequences of positive integers} is equinumerous with N.

3.4.3 Prove that [0,1] is equinumerous with (0,1) by finding suitable injections from one to the
other.

Moreover, many results we previously had not contemplated become easy with the Cantor–
Schröder–Bernstein theorem. For example:
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3.4.4 For an arbitrary S ⊆ R, show that (0, 1) ∪ S is equinumerous with R.

An interesting application of the fact that continuous functions are determined by their values
on Q is the following theorem of Cauchy (1821), pp. 104–106. If f : R → R is continuous and
additive—that is, f (x + y) = f (x) + f (y) for all x, y ∈ R—then f (x) = ax for some constant a.

3.4.5 If f (x + y) = f (x) + f (y) and f (1) = a, deduce that f (r) = ra for each rational number r.
3.4.6 Deduce from Exercise 3.4.5 that, if f is continuous, then f (x) = ax.

3.5 The Uncountability of R

The set R of real numbers is not a countable set, because we can show that any
countable set of real numbers is not all of R. This result shows the need for set
theory as a theory of infinity, since different kinds of infinity exist. Here are two
different (though distantly related) arguments for this famous result.

3.5.1 The Diagonal Argument

The first argument, due to Cantor (1891), takes any countable set of real numbers
and explicitly finds a number different from each member of S .

Countable sets do not include all real numbers. If S is a countable set of real
numbers, then there is a member of [0, 1] not in S .

Proof. Suppose that S = {x1, x2, x3, . . .} is a countable set of real numbers. Each
number xn can be written as an infinite decimal, and we imagine all of these decimal
expansions listed in an infinite table, such as the following:

x1 0.11111 . . .
x2 3.14159 . . .
x3 1.23456 . . .
x4 0.21212 . . .
x5 1.41423 . . .

...

Ignoring the parts of each number before the decimal point, we construct a
number x that differs from each xn by the simple expedient of making x different
from xn in the nth decimal place. To be specific, let

nth decimal place of x =

{
2 if nth decimal place of xn is 1
1 if nth decimal place of xn is not 1

This makes sure that x not only has a different decimal expansion from xn; x is
also a different number, because we have avoided the ambiguous numbers such as
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0.999 . . . = 1.000 . . . by using only the digits 1 and 2. For the numbers x1, x2, x3, . . .
tabulated above, we have

x = 0.21121 . . .

Thus, the countable set S does not include all members of R. Specifically, it does
not include the number x in [0, 1]. �

The argument above is known as the diagonal argument because it uses the
digits on the diagonal of the table of decimal expansions (underlined in the example
above). There are many variations of the diagonal argument; indeed, it is hard to get
away from it when proving that R is uncountable.

3.5.2 The Measure Argument

Again we show that a countable set of real numbers cannot fill the interval [0, 1],
but this time the argument shows that a countable set falls far short of filling [0, 1].

Countable sets have small measure. If S is a countable set of real numbers, then
a large fraction of the members of [0, 1] are not in S .

Proof. Suppose that S = {x1, x2, x3, . . .}. Suppose that we enclose each number xn

by an open interval Un of width 1/10n. Then the amount of any interval, say [0, 1],
covered by U1,U2,U3, . . . is at most

1
10
+

1
102
+

1
103
+ · · · = 1

9
.

Thus, not all of [0, 1] is covered, so there are real numbers in [0, 1] that are not in S .
In fact, at least 9/10 of the interval is not in S . Moreover, we could rerun the

argument with 1/100 (or 1/1000, 1/10000, and so on) in place of 1/10 to conclude
that the fraction of [0, 1] not in S is arbitrarily close to 1. �

When the argument above is applied to the countable set of rational numbers
between 0 and 1,

S =

{
1
2

;
1
3
,

2
3

;
1
4
,

3
4

;
1
5
,

2
5
,

3
5
,

4
5

;
1
6
,

5
6

;
1
7
,

2
7
,

3
7
,

4
7
,

5
7
,

6
7

; . . .

}
,

we conclude that irrational numbers exist in [0, 1]. Of course, we already knew this,
but it is surprising that any number can escape being covered by any of the intervals
Un. After all, the rational numbers lie densely on the line, so intuition may suggest
that covering each rational with an interval will cover all of [0, 1].

Summing the infinite series 1
10 +

1
102 +

1
103 +· · · seems to refute this naive intuition,

and there are two ways to obtain a clearer view.
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1. If the intervals U1,U2,U3, . . . cover all of [0, 1] (somehow, despite their small
total length), then we can show that finitely many of these intervals, say
U1,U2, . . . ,Um, also cover [0, 1]. A theorem to this effect is proved in the next
section. Since the total length of U1,U2, . . . ,Um is less than 1/9, this is clearly
absurd.

2. Since U1 has length 1/10, one of the decimal fractions

0.0, 0.1, 0.2, . . . , 0.9,

does not lie in U1. Choose one of these fractions, say 0.2. Then, since U2 has
length 1/100, one of the decimal fractions

0.20, 0.21, 0.22, . . . , 0.29

does not lie in U2. Choose one of these fractions, and continue. At stage n we
add an nth decimal place that keeps our number out of Un. The infinite decimal
thus obtained (with due precautions to avoid ambiguous decimals) therefore lies
outside all of the intervals U1,U2,U3, . . . .

The second way of clarifying the measure argument is a strong hint at the diagonal
argument. Indeed, the diagonal argument is precisely what comes to mind when one
tries to find a specific number not covered by the intervals U1,U2,U3, . . . .

Exercises

Cantor first applied the uncountability of R to prove the existence of transcendental numbers; that
is, nonalgebraic numbers.

3.5.1 Explain how the existence of transcendental numbers follows from the uncountability of R.
3.5.2 Show, in fact, that “almost all” real numbers are transcendental.

The key idea of the diagonal argument—making a new object x that differs from the nth given
object xn in the nth place—works even better with subsets of N and sequences in NN than it does
with real numbers (because the problem of “ambiguous objects” does not arise).

3.5.3 Given S 1, S 2, S 3, . . . ⊆ N, explain how to define an S ⊆ N such that S � each S n.
3.5.4 Given f1, f2, f3, . . . ∈ NN, explain how to define an f ∈ NN such that f � each fn.

The uncountability of R, and hence of P(N), leads to some surprising results about subsets of N.
Here are two such results, based on associating real numbers with sets or sequences of rationals,
and exploiting the countability of Q.

3.5.5 Show that there are uncountably many sets S x ⊆ N such that, for any S x, S y, either S x ⊆ S y
or S y ⊆ S x.

3.5.6 Show that there are uncountably many sets Tx ⊆ N, any two of which have only a finite
intersection.

Cantor’s first uncountability proof (in 1874) relied on the nested interval property from
Sect. 2.6. Given countably many real numbers x1, x2, x3, . . ., he found an x � x1, x2, x3, . . . in
nested intervals defined as follows. Let a1 = x1,
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b1 = first xi beyond a1 such that xi > a1,

a2 = first xj beyond b1 such that a1 < xj < b1,

b2 = first xk beyond a2 such that a1 < a2 < xk < b1,

and so on. Thus, [a1 , b1] ⊃ [a2, b2] ⊃ · · · .

3.5.7 If the sequence of intervals is finite, conclude that there is an x � x1, x2, . . ..
3.5.8 If the sequence of nested intervals is infinite, conclude that any of its common points x �

x1, x2, . . ..

3.6 Two Classical Theorems About Infinite Sets

The concept of a limit point, introduced in Sect. 2.6 in the case of infinite sequences,
has an important generalization to infinite sets.

Definition. A point x is a limit point of a set S if, for any ε > 0, there is a point of
S other than x within distance ε of x.

Limit points play an important role in mathematics, particularly in the two
theorems below, which are crucial to later developments. These theorems illustrate
how the concept of limit point is intimately related to the concept of infinite set,
which we now know includes uncountable sets. For the sake of definiteness, we
state the theorems as properties of the interval [0,1], but they apply to any closed
interval.

Bolzano–Weierstrass Theorem. Any infinite set S of points in [0, 1] has a limit
point in [0, 1].

Proof. Since I = [0, 1] contains infinitely many points of S , so does (at least) one
half of I, either [0, 1/2] or [1/2, 1]. To be specific, let

I1 = leftmost half of I that contains infinitely many points of S .

Similarly, let

I2 = leftmost half of I1 that contains infinitely many points of S ,

I3 = leftmost half of I2 that contains infinitely many points of S ,

and so on. Then I, I1, I2, . . . is a nested sequence of closed intervals, with lengths that
become arbitrarily small, and hence with a common point x by the nested interval
property of Sect. 2.6.

The point x is a limit point of S because in each In there are points of S other
than x, and hence such points are arbitrarily close to x. �
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The next theorem concerns open intervals (a, b), exploiting the property that
(a, b) contains, along with any member x, any sufficiently small interval contain-
ing x.

A set of open intervals may be uncountable, so when we denote a member of the
set by Ui we allow the index i to range over a possibly uncountable set. We say that
intervals Ui cover [0, 1] if [0, 1] is contained in the union of the Ui.

Heine-Borel Theorem. If [0, 1] is covered by infinitely many open intervals Ui,
then [0, 1] is covered by finitely many of the Ui.

Proof. Suppose on the contrary that I = [0, 1] can be covered only by infinitely
many of the intervals Ui. Then it follows that some half of I, either [0, 1/2] or
[1/2, 1], also can be covered only by infinitely many of the Ui. As in the previous
proof, we make specific choice:

I1 = leftmost half of I that can be covered only by infinitely many Ui.

And similarly:

I2 = leftmost half of I1 that can be covered only by infinitely many Ui,

I3 = leftmost half of I2 that can be covered only by infinitely many Ui,

and so on. In this way we obtain a nested sequence of closed intervals I, I1, I2, . . .,
none of which can be covered by finitely many of the Ui. Since I, I1, I2, . . . become
arbitrarily small, there is one point x common to them all, as in the previous proof.

But x belongs to some Ui (since the Ui cover all points of [0, 1]); call it U j. Since
U j is open, it covers any sufficiently small Ik along with x. This contradicts the
assumption that each Ik can not be covered by finitely many of the Ui.

Therefore, our original assumption, that [0, 1] cannot be covered by finitely many
of the Ui, is false. �

The properties of [0, 1] proved in the two theorems above reflect what is called
its compactness. This property does not hold for the open interval (0, 1), or for the
whole line R.

Definition. A set K is called compact if any cover of K by open intervals has a
finite subcover.

The Heine–Borel theorem also enables us to clear up the problem raised in the
second proof of uncountability in the previous section: whether the interval [0, 1]
can be covered by open intervals of total length < 1. If we have such a set of open
intervals Ui covering [0, 1], then finitely many of the Ui cover [0, 1] , and their total
length is also < 1. Then, if we merge any overlapping members of this finite set into
single open intervals, we obtain a finite set {V1,V2, . . . ,Vm} of disjoint open intervals
covering [0, 1], with total length < 1. This is clearly impossible.

It was precisely to clear up this point that Borel (1895) introduced what we now
call the Heine–Borel theorem. On page 51 of that paper he commented as follows
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Fig. 3.7 Example of a tree

on the lemma that a closed interval I cannot be covered by open intervals with a
total length less than that of I:

One may regard this lemma as obvious; nonetheless, because of its importance, I wish to
give a proof based on a theorem of interest in itself . . .. If on a line [interval] there are an
infinity of [open] intervals, so that each point of the line lies in at least one of the intervals,
then one can effectively determine a FINITE NUMBER of intervals among the given intervals
with the same property (that each point of the line is in the interior of at least one of them).

Exercises

3.6.1 Give examples showing that the Bolzano–Weierstrass and Heine–Borel theorems do not
hold with (0,1) or R in place of [0,1].

3.6.2 Use the Bolzano–Weierstrass theorem to show that nested interval property implies the least
upper bound property, as claimed at the beginning of Sect. 2.6.

3.6.3 Prove that an infinite sequence of real numbers x1, x2, x3, . . . (say, in [0,1]) contains either
an infinite subsequence y1 < y2 < y3 < · · · or an infinite subsequence z1 > z2 > z3 > · · · .
(Hint: Look at a limit point of x1, x2, x3, . . ..)

The proofs of the Bolzano–Weierstrass and Heine–Borel theorems (and also Exercise 3.6.3) are
based on the so-called “infinite pigeonhole principle.” This principle says that, if an infinite set is
divided into finitely many parts, then one of the parts is infinite.

Another theorem that begs to be proved by the infinite pigeonhole principle is the Kőnig infinity
lemma, which states that an infinite tree whose vertices have finite degree has an infinite branch.

A tree is a structure like that shown in Fig. 3.7, in which there is a top vertex, connected to
other vertices by edges, which are connected to other vertices in turn, in such a way that any two
vertices are connected by a unique sequence of edges. The degree of any vertex is the number of
edges connecting it to other vertices.

3.6.4 Prove that an infinite tree whose vertices have finite degree has an infinite branch, that is, an
infinite sequence of vertices each connected by an edge to the one before.

3.6.5 Reinterpret the proof of the Bolzano–Weierstrass theorem as the construction of an infinite
tree, whose infinite branches correspond to limit points.

3.7 The Cantor Set

A surprising and important uncountable set is one known as the Cantor set. This
set, which we will call C for short, is also known as the “middle third” set because
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Fig. 3.8 Early stages in the construction of the Cantor set

Fig. 3.9 Constructing the Cantor set via a tree

of the process that constructs it—removal of an infinite sequence of open intervals
from the unit interval [0,1].

The first stage removes the middle third, (1/3,2/3), leaving the two closed
intervals [0,1/3] and [2/3,1]. The second stage removes their middle thirds, leaving
the four closed intervals [0,1/9], [2/9,1/3], [2/3,7/9], and [8/9,1]. The third stage
removes their middle thirds, and so on. The results of the first six stages are shown
in Fig. 3.8.

Each stage produces a finite union of closed intervals, each of which is 1/3
of an interval produced at the previous stage. Each nested sequence of intervals
from successive stages produces exactly one point in C, because the lengths of the
intervals tend to 0. Conversely, each point of C arises in this way, so the points of C
correspond to the infinite paths down the tree shown in Fig. 3.9.

Each infinite path down the tree passes through a sequence of vertices, at each
of which there is a choice to go left or right, corresponding to the choice of the
left or right third of an interval. Thus, the points of C can be described by infinite
sequences of the letters L and R. For example, the sequence LLLL . . . gives the point
0, and RRRR . . . gives the point 1.

An obvious diagonal argument shows that there are uncountably many infinite
sequences of Ls and Rs, so C is an uncountable set. Indeed, it is clear that C is
equinumerous with the set of infinite sequences of 0s and 1s, which was shown in
Sect. 3.3 to be equinumerous with R. Thus, C is equinumerous with R, which is
surprising, since C has measure zero!
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3.7.1 Measure of the Cantor Set

We can find the measure of C by adding up the lengths of the intervals removed
from [0,1] in the construction of C.

In stage 1, the length removed = 1/3;

in stage 2, the length removed = 2 × 1/9 = 2/9 = 2/32;

in stage 3, the length removed = 4 × 1/27 = 4/27 = 22/33;

in stage 4, the length removed = 8 × 1/81 = 8/81 = 23/34;

and in general

in stage n + 1, the length removed = 2n/3n+1.

So,

total length removed =
1
3

⎡⎢⎢⎢⎢⎢⎣1 + 2
3
+

(
2
3

)2
+

(
2
3

)3
+ · · ·

⎤⎥⎥⎥⎥⎥⎦ .
This is an instance of the general geometric series a+ar+ar2+· · · (with a = 1/3 and
r = 2/3), which has sum a

1−r . Therefore, the total length of the intervals removed in
the construction of C is

1/3
1 − 2/3

=
1/3
1/3
= 1,

and hence the measure of C itself is zero.

Exercises

The removal process that creates C has a nice interpretation in terms of base 3 (“ternary”)
expansions of real numbers in [0,1].

3.7.1 Explain why removing the middle third of [0,1] leaves the numbers whose first ternary digit
is 0 or 2.

3.7.2 Explain why removing the middle thirds of [0,1/3] and [2/3,1] leaves the numbers whose
first and second digits are 0 or 2.

3.7.3 By continuing this argument, show that the numbers in C are those with ternary expansions
that can be written entirely with 0s and 2s.

3.7.4 Use this ternary representation to give another proof that C is uncountable.

The Sierpiński carpet is a two-dimensional variant of the Cantor set, obtained by successively
removing “middle thirds” from squares. Figure 3.10 shows the first three approximations to the
Sierpinski carpet.

3.7.5 Show that the area of the Sierpinski carpet is zero.
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Fig. 3.10 First three approximations to the Sierpinski carpet

3.8 Higher Cardinalities

So far we have seen infinite sets of two different cardinalities: those with the
cardinality of N and those with the cardinality of R. Moreover, R is of higher
cardinality than N in the sense that there is an injection from N into R, but no
bijection, because of the diagonal argument. Cantor (1891) noticed that the diagonal
argument may be applied to any set X to produce a set of higher cardinality than X;
namely, the power set P(X) whose members are the subsets of X. So in fact there
are infinite sets of infinitely many different cardinalities.

Cantor’s Theorem on the Power Set. For any set X, there are more subsets of X
than there are elements.

Proof. Consider any pairing xi ↔ Xi between the elements xi of X and certain
subsets Xi of X. No matter how the pairing is made, the sets Xi do not include all
the subsets of X because they do not include the diagonal set D defined by the
property

xi ∈ D⇔ xi � Xi.

Indeed D differs from each Xi with respect to the element xi; if xi is Xi then xi is not
in D, and if xi is not in Xi then xi is in D.

Thus, there are more subsets of X than there are elements of X. In other words,
the set P(X) has higher cardinality than X. �

It follows in particular that subsets of R are more numerous than the real
numbers. It happens that the subsets of R that come most naturally to mind (the
Borel sets, see Chap. 8) form a collection with only as many members as R. Thus,
we have the opportunity to use the diagonal argument to find new sets of real
numbers beyond the obvious ones—much as we used the diagonal argument, in
Exercise 3.5.1, to find new real numbers beyond the algebraic numbers.
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3.8.1 The Continuum Hypothesis

With the discovery that there are different kinds of infinity, two questions arise:

1. Does R represent the smallest uncountable infinity? In particular, is there an
uncountable set of real numbers not equinumerous with R?

2. Is the diagonal method essentially the only way to prove the existence of
uncountable sets?

The conjecture that any uncountable set of real numbers is equinumerous with
R was first posed by Cantor (1878), and it is the first version of what is called
the continuum hypothesis. We will discuss this hypothesis, which is not yet settled,
further in Chap. 5. There we will also show that the diagonal method is not the
only way to prove the existence of uncountable sets. There is another method,
also discovered by Cantor, involving the so-called ordinal numbers. The concept of
ordinal number also leads to a sharper statement of the continuum hypothesis, and
to the clarification of axioms for set theory, which will be the subject of Chap. 6.

3.8.2 Extremely High Cardinalities

It will become clear when we discuss axioms for set theory in Chap. 6 that iteration
of the power set operation P can produce sets of extraordinarily high cardinality.
Just to give a taste of what is possible, consider the sequence

N, P(N), P(P(N)), . . . .

Each set in the sequence has cardinality greater than the one before, so the union of
all these sets,

Y = N ∪ P(N) ∪ P(P(N)) ∪ · · · ,

has cardinality greater than any of N,P(N),P(P(N)), . . .. Then, of course, P(Y) has
cardinality greater than Y, and so on. One wants to say “ad infinitum,” but it is no
longer clear what that means—infinity is certainly bigger than we first thought.

Despite the immense power of set theory to produce sets of high cardinality,
there are “largeness” properties so exorbitant that sets with such properties cannot
be proved to exist. For example, a set Z is called inaccessible if

1. Z has infinite members,
2. X ∈ Z implies P(X) ∈ Z, and
3. X ∈ Z implies that the range of any function with domain X and values in Z is a

member of Z.
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The existence of inaccessible sets is not provable from the standard axioms of
set theory, for reasons that will emerge in Chap. 6. Here is a clue (though it will
probably not help at this point): if an inaccessible set exists, then its existence is not
provable!

Exercises

3.8.1 Show that P(P(N)) is equinumerous with the set of real functions.

The power set operation is also interesting when applied to finite sets, starting with the empty
set (denoted by { } or ∅).

3.8.2 If F = {x1, . . . , xn} is a set with n elements, show that P(F) has 2n elements.
3.8.3 According to Exercise 3.8.2, P(∅) has one element and P(P(∅)) has two. Write down these

elements.

Iterating the power set operation P any finite number of times, starting with the empty set, gives
an important series of sets Vn, defined inductively as follows.

V0 = ∅,

Vn+1 = Vn ∪ P(Vn).

3.8.4 Prove that any subset of Vn is a member of Vn+1, and that if X ∈ Vn then P(X) ∈ Vn+1.

We now define Vω to the union of all the Vn.

3.8.5 Show that Vω satisfies the last two conditions for inaccessibility, but not the first.
3.8.6 Give an example of a set that satisfies the first two conditions for inaccessibility, but not the

last.

3.9 Historical Remarks

When Cantor discovered, in 1874, that infinite sets can be countable or uncountable,
almost all previous thinking about infinity was superseded. For example, the vague
and contentious distinction between “potential” and “actual” infinity was replaced
by the clear and dramatic distinction between countable and uncountable. It seems
academic to debate whether the positive integers 1, 2, 3, . . . should be viewed as
a collection that grows, one member at a time, or as a completed whole N =
{1, 2, 3, . . .}, once it is known that R cannot be viewed as a collection that grows
one member at a time, because it is uncountable.

The discovery of uncountability also brought new clarity to the concept of
countability. Before 1874, few examples of countably infinite sets were actually
known, apart from N and some of its subsets. It is thought that Cantor noticed
the countability of Q some time before he proved the uncountability of R. In
the intervening period, Cantor asked Dedekind whether he could prove that R is
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Fig. 3.11 Georg Cantor

countable. Dedekind was unable to do so, but he offered a proof that the algebraic
numbers are countable (example 6 of Sect. 3.1). Ironically, Dedekind’s result
became the centerpiece of Cantor’s paper on the uncountability of R.

Just how this came about is explained by Ferreirós (1999), pp. 175–180.
Apparently, Weierstrass persuaded Cantor to play down his uncountability proof
in favor of its more topical corollary: the existence of transcendental numbers. Such
numbers were first exhibited by Liouville (1851) and, just one year before Cantor’s
discovery, Hermite (1873) had proved that e is transcendental. Compared with these,
Cantor’s transcendence proof was remarkably simple—and to this day it is the most
elementary proof known. This is why Cantor (1874) bears the (to us) unenlightening
title “On a property of the collection of all real algebraic numbers.”

Another theorem for which Dedekind deserves the credit is the so-called Cantor–
Schröder–Bernstein theorem. Before any of these three had a proof, Dedekind found
one in 1887, but omitted it (except for a key lemma) from the book, Dedekind
(1888), he was then writing (see Ferreirós 1999, Chap. VII). For a long time,
Dedekind had been interested in mappings between infinite sets, and in 1882 he
proposed to define an infinite set as one that admits a bijection with a proper subset
of itself (see Dedekind 1888, Sect. 64). It is indeed clear that a set admitting such a
bijection must be infinite, but it is a more subtle question whether every infinite set
admits such a bijection. We take up this issue in Sect. 7.1.

The Bolzano–Weierstrass theorem of Sect. 3.6 gets its name because Bolzano
(1817) used the bisection argument, and a sequence of nested intervals, in his
attempt to prove the intermediate value theorem for continuous functions. As
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Fig. 3.12 Henry John Stephen Smith

we mentioned in Sect. 1.6, Bolzano’s proof lacked a definition of R that could
justify any assumption of completeness, such as the nested interval principle.
Weierstrass (1874) revisited the theorem after definitions of R had been proposed—
by Dedekind, Cantor, and himself—at which time the nested interval argument was
justifiable.

The related Heine–Borel theorem likewise began with an argument, due to Heine
(1872), aimed at a different theorem: in this case the theorem that a continuous
function on a closed interval is uniformly continuous. (See Sects. 4.6 and 4.7 for
this theorem and a discussion of uniform continuity.) Borel (1895) was the first to
prove the theorem in its present form, and also the first to recognize its importance
in measure theory. In particular, Borel saw that the Heine–Borel theorem justifies
the measure argument that R is uncountable.

Harnack (1885) had observed, as we did in Sect. 3.5, that any countable set could
be covered by intervals of arbitrarily small total measure. But Harnack was puzzled
by the example of the countable set Q. Thinking that a covering of Q by intervals
would cover all points, he jumped to the conclusion that the whole interval [0,1]
could be covered by open intervals of total length ε. This of course plays havoc
with the concept of measure, and fortunately the Heine–Borel theorem showed that
Harnack was wrong. For this reason, Borel (1895) called the Heine–Borel theorem
the “first fundamental theorem of measure theory.” (For more details on Harnack’s
mistake, see Bressoud 2008, p. 63.)

The so-called Cantor set is actually due to Smith (1875), shown in Fig. 3.12.
However, the set plays so many important roles—in the theory of R, continuous
functions, and measure theory—that credit for it can be shared among several
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Fig. 3.13 Dali’s Face of War

mathematicians. There are also higher-dimensional variations, such as the Sierpiński
carpet, and even artists have hit upon a similar idea.

Figure 3.13 shows a Cantor-style set in the work of Salvador Dali.
The Cantor (1874) argument for the uncountability of R constructs a real number

x unequal to each member of a given sequence x1, x2, x3, . . .. But it is not a
“diagonal” argument in the sense of making x unequal to xn at a predetermined
decimal place. An argument closer to diagonalization occurs in du Bois-Reymond
(1875), but Cantor does not seem to have been influenced by it. In any case, the
diagonal argument in Cantor (1891) is clearly simpler and more general. Even
Cantor may have been surprised that it was so easy to prove that there was no largest
set—a result that he had conjectured before but only on vague grounds.

But with the proof came other concerns. If there is no largest set, there is no set of
all sets. This may be a problem—but it also may be a useful clarification. Certainly,
one can no longer suppose that, for each property P, there is the set of all objects
with property P (let P be the property of being a set). For some, this was a “crisis
of foundations”; for others (who ultimately prevailed) it was an argument for the
cumulative or hierarchical concept of set. In the cumulative concept, all sets arise
from the empty set ∅ by certain operations, just as natural numbers arise from 0 by
the successor operation. From the cumulative viewpoint, it makes no more sense to
have the “set of all sets” than it does to have the “number of all numbers.”

In Chap. 6 we will see exactly how the cumulative concept of set unfolds, and in
Chaps. 6 and 9 we will touch on the question of sets so large that their existence is
not provable.



Chapter 4
Functions and Limits

PREVIEW

Now that we are familiar with the real numbers, we can better understand some basic
concepts of analysis: limits, convergence, and continuity. In particular, the absence
of gaps in R explains the absence of gaps in the graph of any continuous function.
This, and other “obvious” properties of continuous functions, depends directly on
the completeness of R.

On the other hand, continuous functions sometimes have extremely surprising
properties. We construct three examples:

• A continuous function that increases from 0 to 1 while remaining “constant
almost everywhere.”

• A curve with no tangents.
• A curve that fills a square.

The last example raises the question: is there a continuous bijection between the line
interval [0,1] and the square [0, 1] × [0, 1]? We show that the answer is no, as one
would hope if the concept of dimension is to be meaningful. The key to the proof is
the so-called intermediate value theorem about the absence of gaps in the graph of
a continuous function.

Finally, we explain why continuity ensures that a function has an integral. In fact,
to integrate a continuous function one needs only the simplest concept of integral:
the Riemann integral familiar from basic calculus.

4.1 Convergence of Sequences and Series

In Sect. 2.6 we touched on the concepts of convergence and limit for sequences;
namely, a sequence c1, c2, c3, . . . has limit c if, for each number ε > 0, there is a
natural number N such that

n > N ⇒ |cn − c| < ε.

J. Stillwell, The Real Numbers: An Introduction to Set Theory and Analysis,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-01577-4__4,
© Springer International Publishing Switzerland 2013
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This relation is written limn→∞ cn = c for short. One of the most important uses of
the limit concept for sequences is in defining the sum of an infinite series:

Definition. An infinite series a1 + a2 + a3 + · · · is said to converge to sum s if the
sequence of partial sums

a1, a1 + a2, a1 + a2 + a3, . . .

has limit s.

A familiar example of a convergent infinite series is the geometric series

1 + a + a2 + a3 + · · · for |a| < 1.

This series converges because the nth partial sum is

sn = 1 + a + a2 + · · · + an−1,

for which we find

asn = a + a2 + a3 + · · · + an−1 + an.

Subtraction then gives sn =
1−an

1−a , which has limit 1
1−a when |a| < 1.

Infinite decimals can also be viewed as infinite series, comparable with geometric
series. For example

√
2 = 1.4142135 · · ·

= 1 +
4
10
+

1
102
+

4
103
+

2
104
+

1
105
+

3
106
+

5
107
+ · · ·

Since all terms of this series are ≥ 0, the partial sums sn increase with n. Also, they
are bounded above by the geometric series

9 +
9

10
+

9
102
+

9
103
+

9
104
+ · · · = 9

1 − 1/10
= 10.

Thus, the series converges, to the lub of the set of its partial sums.

4.1.1 Divergent and Conditionally Convergent Series

For a series a1+a2+a3+· · · to converge it is necessary that the nth term an have limit
zero, otherwise the partial sums will not become arbitrarily close to any limit value.
However, it is not sufficient for an to have limit zero, as is shown by the famous
example of the harmonic series:
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1
2
+

1
3
+

1
4
+

1
5
+ · · · .

This series is said to diverge, because its partial sums grow in size indefinitely, as
one can see by grouping terms as follows:

1
2
+

(
1
3
+

1
4

)
+

(
1
5
+

1
6
+

1
7
+

1
8

)
+

(
1
9
+

1
10
+ · · · + 1

16

)
+ · · · .

Each group has sum at least 1/2, so by taking enough groups we can make the partial
sum as large as we please.

Similar arguments lead to the conclusion that the series

1 +
1
3
+

1
5
+

1
7
+ · · · and

1
2
+

1
4
+

1
6
+

1
8
+ · · ·

both diverge. This leads to an interesting property of the series

1 −
1
2
+

1
3
−

1
4
+

1
5
−

1
6
+

1
7
−

1
8
+ · · · ,

called conditional convergence.
The partial sums obtained by taking terms in the order shown above, namely,

1, 1 − 1
2
, 1 − 1

2
+

1
3
, 1 − 1

2
+

1
3
− 1

4
, . . .

fall inside a sequence of nested intervals

[
1 − 1

2
, 1

]
,

[
1 − 1

2
, 1 − 1

2
+

1
3

]
,

[
1 − 1

2
+

1
3
− 1

4
, 1 − 1

2
+

1
3

]
, . . .

the length of which becomes arbitrarily small (because the nth interval has length
1/(n + 1)). The partial sums therefore have a limit by the nested interval property of
Sect. 2.6, when summed in the above order.1

But if we allow the terms to be rearranged, then the series can converge to any
number we please! This comes about because we can collect enough of the positive
terms

1,
1
3
,

1
5
,

1
7
, . . .

1In fact, the sum is log 2, the natural logarithm of 2, as you may recall from calculus.
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to exceed any number we please, and the same is true of the negative terms

−
1
2
, −

1
4
, −

1
6
, −

1
8
, . . . .

Thus, if we want the series to have the sum 3/2, for example, we do the following:

• Collect terms 1, 1
3 ,

1
5 , . . . until their sum exceeds 3/2. This happens when we get

to 1 + 1
3 +

1
5 .

• Then add negative terms until the sum falls below 3/2. This happens as soon as
− 1

2 is added.
• Resume adding positive terms until the sum exceeds 3/2 again. This happens with

1 + 1
3 +

1
5 −

1
2 +

1
7 + · · · +

1
15 .

• Then resume adding negative terms (in this case just − 1
4 ) until the sum falls below

3/2 again, and so on.

The partial sums thereby oscillate on either side of 3/2, but they approach it ever
more closely, since the terms of the series become ever closer to 0. Therefore, the
sum of the series is precisely 3/2. By a similar argument we can arrange terms so
that the sum is any number we please.

Exercises

The proof that the harmonic series diverges relies on collecting groups of terms that sum to at least
1/2. Each group of terms contains twice as many terms as the preceding group, so to exceed the
sum k one needs around 2k terms. This estimate suggests that the sum of the first n terms is around
the size of log n. We can show that this estimate is remarkably accurate by comparing the sum
1 + 1

2 +
1
3 + · · · +

1
n with the geometric interpretation of log n as an area under the curve y = 1/x.

We compare the two as shown in Fig. 4.1. The natural logarithm log n is the area under y = 1/x
from 1 to n, while 1 + 1

2 +
1
3 + · · ·+

1
n is the total area of a collection of rectangles. Each rectangle

has width 1, and their heights are 1, 1
2 , 1

3 ,. . ., 1
n respectively.

4.1.1 By referring to Fig. 4.1, explain why log n < 1 + 1
2 +

1
3 + · · · +

1
n .

4.1.2 With the help of a similar figure, explain why log n > 1
2 +

1
3 + · · · +

1
n .

x

y

O 1 2 3 4 n n + 1

Fig. 4.1 Comparing the logarithm with the harmonic series
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4.1.3 Deduce from the figures in Exercises 4.1.1 and 4.1.2 that the terms

cn = 1 +
1
2
+

1
3
+ · · · +

1
n
− log n

form a bounded increasing sequence, with limit ≤ 1.

The limit of the sequence c1, c2, c3, . . . is known as Euler’s constant γ, and it is approximately
0.57721. Although γ has been much studied—Havil (2003) is a whole book about it—we do not
yet know whether γ is irrational.

The ability of a conditionally convergent series to represent any real number gives an interesting
proof that R is equinumerous with the set of permutations of N. (A permutation of N is bijection:
N→ N. Informally, a permutation is a “rearrangement.”)

4.1.4 Use a conditionally convergent series to define an injection from R into {permutations of N}.
4.1.5 Using binary sequences, say, define an injection from {permutations of N} into R.
4.1.6 Hence prove that the set {permutations of N} is equinumerous with R.

4.2 Limits and Continuity

When we try to capture the notion of continuity—for example, to say what it means
for a graph or a curve to be “unbroken”—we know that we have to fall back on the
completeness of R. Completeness is related to limits, by Sect. 2.6, so it is no surprise
that continuity involves the limit concept. The limit of a real function is defined as
follows.

Definition. A real function f is said to have limit l as x tends to a if, for each ε > 0,
there is a δ > 0 such that

0 < |x − a| < δ⇒ | f (x) − l| < ε.

This relationship can be expressed informally by saying that “ f (x) approaches
l as x approaches a,” and the notation for it is limx→a f (x) = l. The reason for the
condition 0 < |x − a| is that we really want to express the behavior as x approaches
a—not what happens when x = a. For example, the function

f (x) =

{
0 for x � 0
1 for x = 0.

has limit 0 as x approaches 0, even though f (0) � 0. We would not want to say,
however, that this function is continuous at 0, since its graph has a clear break there.
The definition of continuity says that the limit exists and that it equals the function
value:

Definition. A real function f is continuous at x = a if limx→a f (x) = f (a), and f is
continuous on a set S (typically S = R or some interval) if f is continuous at each
point of S .
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These definitions seem to capture our intuitive concept of continuity, inasmuch
as the continuous functions include the functions that obviously have “unbroken”
graphs, and they exclude functions with graphs that are obviously “broken” in some
way. Here are some examples.

1. Constant functions f (x) = c are continuous, as is the identity function f (x) = x.
For a constant function f (x) = c we have

|x − a| < δ⇒ | f (x) − f (a)| < ε

for any δ whatever, because in fact | f (x) − f (a)| = |c − c| = 0.
For the identity function f (x) = x it suffices to choose δ = ε, because then

|x − a| < δ⇒ |x − a| < ε⇒ | f (x) − f (a)| < ε,

since f (x) = x and hence f (a) = a.
2. If f1 and f2 are continuous functions, then so are f1 + f2, f1 − f2, f1 · f2 and (at

points where f2 � 0) f1/ f2. Thus, it follows, from the previous example, that all
rational functions are continuous at the points where they are defined.

Here we will explain why f1 + f2 is continuous; the proofs for the other cases
are indicated in the exercises. Suppose that f1 and f2 are both continuous at x = a.
We want to prove that f1 + f2 is also continuous there. This means proving, given
ε > 0, that there is a δ > 0 such that

0 < |x − a| < δ⇒ | f1(x) + f2(x) − f1(a) − f2(a)| < ε.

Now the continuity of f1 gives us a δ1 such that

0 < |x − a| < δ1 ⇒ | f1(x) − f1(a)| < ε/2,

and the continuity of f2 gives us a δ2 such that

0 < |x − a| < δ2 ⇒ | f2(x) − f2(a)| < ε/2.

So if we take δ = min(δ1, δ2) we have

0 < |x − a| < δ⇒ | f1(x) − f1(a)| < ε/2 and | f2(x) − f2(a)| < ε/2

⇒ | f1(x) + f2(x) − f1(a) − f2(a)| < ε/2 + ε/2 = ε,

as required.
3. The function f (x) = 1/x is not continuous at x = 0.

No matter what value we give to f (0), f (x) has no limit at all as x
approaches 0. When x approaches 0 from the right 1/x grows beyond all positive
bounds, and from the left 1/x grows beyond all negative bounds.
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4. The Dirichlet function

f (x) =

{
1 if x is rational
0 if x is irrational.

is not continuous at any point.
This is because limx→a f (x) does not exist at any point x = a. Any interval on

the line contains both rational and irrational points, so | f (x)− f (a)| varies by 1 in
any interval, and hence cannot be made smaller than every ε > 0.

It may seem that this function is as discontinuous as it can possibly be, but we
will see in Chap. 8 that the Dirichlet function is, in a sense, not far removed from
continuous functions.

In some sense, continuous functions are the simplest functions, and discontinu-
ous functions can indeed be very complicated. However, continuous functions can
also have interesting complications, as we will see in the next section.

To conclude this section we observe a consequence of continuity that involves
limits of sequences rather than limits of functions.

Sequential Continuity. If f is continuous at a and a1, a2, a3, . . . is any sequence
with limit a, then the sequence f (a1), f (a2), f (a3), . . . has limit f (a).

Proof. Since f is continuous at x = a, for each ε > 0 there is a δ > 0 such that

0 < |x − a| < δ⇒ | f (x) − f (a)| < ε.

Now, since a1, a2, a3, . . . has limit a, for this δ > 0 there is an N such that

n > N ⇒ |an − a| < δ⇒ | f (an) − f (a)| < ε,

and this means that the sequence f (a1), f (a2), f (a3), . . . has limit f (a). �

This result has, as a corollary, the property of continuous functions that we used
in Sect. 3.4:

Corollary 1. Any continuous function on R is determined by its values on the
rational numbers.

Proof. Any irrational number a is the limit of a sequence of rational numbers
a1, a2, a3, . . . . But then f (a) is determined by the values of f on the rational
numbers, namely, f (a) = limn→∞ f (an). �

Exercises

4.2.1 By an argument like that used above to prove that f1 + f2 is continuous at x = a if f1 and f2

are, prove that f1 − f2 is also continuous at x = a.
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Fig. 4.2 Graph of the Thomae function

4.2.2 Use the identity

f1(x) f2(x) − f1(a) f2(a) = f1(x)[ f2(x) − f2(a)] + f2(a)[ f1(x) − f1(a)]

to prove that, if f1 and f2 are continuous at x = a, then so is f1 f2.
4.2.3 Prove that, if f is continuous at x = a and f (a) � 0, then 1/ f is continuous at x = a.
4.2.4 Deduce from the previous exercises that if f1 and f2 are continuous at x = a, and if f2(a) � 0,

then f1/ f2 is continuous at x = a.
4.2.5 Use sequential continuity to prove that f (g(x)) is continuous at x = a if f and g are. (The

question whether sequential continuity implies continuity will be taken up in Sect. 7.1.)
Also prove this assuming only ordinary continuity.

Another interesting discontinuous function is the Thomae function (also known as the “popcorn
function”), due to Thomae (1879) and defined by

t(x) =

{
1/q if x is rational and x = p/q in lowest terms
0 if x is irrational.

Figure 4.2 shows an approximation to its graph.
Despite its similarity to the Dirichlet function, the Thomae function is not discontinuous

everywhere.

4.2.6 Show that t(x) discontinuous at x = p/q but continuous elsewhere.

4.3 Two Properties of Continuous Functions

The suitability of our definition of continuous functions is confirmed by the
following two theorems, which express properties of continuous functions that our
intuition expects.

Intermediate Value Theorem. If f is continuous on interval [a, b], with f (a) < 0
and f (b) > 0, then there is a value c ∈ [a, b] with f (c) = 0.
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Proof. Consider the set of points x for which f is negative “all the way up to x”:

S = {x ∈ [a, b] : f (y) < 0 for all y ≤ x}.

S is nonempty, because a is a member, and bounded above by b, so S has a least
upper bound c. Now consider whether f (c) can be nonzero.

If f (c) = ε > 0 then, by continuity, there is a δ > 0 with f (c − δ) > 0. Since
c−δ ∈ S , this contradicts the definition of S . If f (c) = −ε < 0 then there is similarly
a δ > 0 with f (y) < 0 for y < c + δ, which again contradicts the definition of S .

Thus, the only possibility is f (c) = 0. �

The first to realize that the intermediate value property was provable was Bolzano
(1817), and he also realized that the least upper bound property was the key to the
proof. However, the least upper bound property was not available until Dedekind
gave a precise definition of real numbers, by Dedekind cuts, in 1858. Once the
least upper bound property was established, all the basic theorems about continuous
functions became provable. The next theorem is another example.

Extreme Value Theorem. A continuous function on a closed interval takes a
maximum value (and, similarly, a minimum value).

Proof. To create an opportunity to use the least upper bound property, we first prove
that a continuous function f has a bounded set of values on the closed interval [a, b].

If not, repeatedly bisect the interval [a, b], each time choosing the leftmost half
in which f has arbitrarily large values. In this way we obtain a sequence of closed
intervals I1, I2, I3, . . ., in each of which f is unbounded, yet the length of the intervals
tends to zero. It follows that the intervals have a single common point, c ∈ [a, b].
Then, by continuity, in a sufficiently small interval In containing c, the value of f
remains within distance ε of f (c)—so f is not unbounded on In.

This contradiction shows that the set { f (x) : x ∈ [a, b]} is bounded, and so it has
a least upper bound l. If f does not take the value l, then the function 1/(l − f (x))
is continuous on [a, b]. But then 1/(l − f (x)) is bounded, by the argument above,
which contradicts the assumption that l − f (x) becomes arbitrarily small.

The latter contradiction shows that f (x) takes the value l, which is necessarily its
maximum value. Similarly, the continuous function − f (x) takes a maximum value
m, in which case −m is the minimum value of f (x). �

4.3.1 The Devil’s Staircase

In this subsection we discuss a function that throws new light on the intermediate
value theorem. It is a function that takes all values between 0 and 1, while “almost
never” changing value. For this function, both continuity and the intermediate value
property verge on the miraculous.
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0
x

y

1

1

Fig. 4.3 Stage 5 in the construction of the Devil’s staircase

The Devil’s staircase is the graph of a continuous function F that is constant
on each interval in the complement of the Cantor set. F is constructed in stages as
follows:

Stage 1. Let F(0) = 0, F(1) = 1, and F(x) = 1/2 on the interval (1/3, 2/3).
Stage 2. Let F(x) = 1/4 on the interval (1/9, 2/9), and let F(x) = 3/4 on the

interval (7/9, 8/9).
Stage n. On the middle third of each interval (a, b) on which F is still undefined,

but such that F(a) and F(b) are defined, let F take the value halfway between
F(a) and F(b).

Figure 4.3 shows the graph of the function F at Stage 5.
After all finite stages are completed (so F is defined on all intervals in the

complement of the Cantor set), any x for which F(x) is still undefined will be
arbitrarily close to points for which F(x) is defined. Moreover, the difference
between defined values F(a), F(b) for a < x < b becomes arbitrarily small as a
and b approach x, so we can define F(x) uniquely as the limit of the values F(a) as
a→ x.

It follows that F is a continuous function with values including all the binary
fractions m/2n between 0 and 1, and all the limit points of these fractions—that is,
all the real numbers between 0 and 1. In fact, the values of F on the Cantor set
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itself include all the binary fractions (as values at the endpoints of intervals in the
complement) and their limit points, so F even maps the Cantor set continuously
onto [0,1].

Exercises

A simple consequence of the intermediate value theorem is the following special case (the one-
dimensional case) of the famous Brouwer fixed-point theorem: Any continuous map f : [0, 1] →
[0, 1] has a fixed point; that is, a value c ∈ [0, 1] such that f (c) = c.

4.3.1 Show that any continuous f : [0, 1] → [0, 1] has a fixed point, by considering intermediate
values of a suitable function.

4.3.2 Give an example to show that a continuous function on an open interval need not have
extreme values.

An explicit continuous map f of C onto [0, 1] may be described as follows. Recall from the
exercises to Sect. 3.7 that each x ∈ C has a unique ternary expansion using only the digits 0 and
2. Let f send this x to the number whose binary expansion has 1 in each place where the ternary
expansion of x has a 2.

4.3.3 Explain why f is onto [0,1].
4.3.4 Show that f (x) and f (x′) differ by less than 2−n if x and x′ differ by less than 3−n , so that f

is continuous.

4.4 Curves

We define a curve (strictly, a curve with endpoints, which may be identical), in the
plane R2 say, to be a continuous function f : [0, 1] → R2. This formalizes the idea
of tracing the curve by moving a point along it in a unit time interval: f (t) is the
position of the point at time t. It might be thought sufficient to take the range of the
function f to be the curve. An example that explains why this is not sufficient is the
second one in this section: a continuous curve that fills a square.

Our first example is another that debunks a long-held belief about curves: that
they always have tangents.

4.4.1 A Curve Without Tangents

Helge von Koch (1904) gave a lovely example of a curve without tangents, obtained
as the limit of the sequence of polygons shown in Fig. 4.4.

We will not give a rigorous proof that the Koch curve has no tangents, but
rather encourage the reader to visualize a process of repeated magnification of
the curve. Unlike a smooth curve, which looks more and more like a straight
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Fig. 4.4 The Koch polygon sequence

line under magnification, any portion of the Koch curve looks exactly the same
when magnified by 3. If the Koch curve had tangents, magnification would
show it becoming straighter in the neighborhood of any point where a tangent
exists.

4.4.2 A Space-Filling Curve

Following Peano (1890), we prove that such a curve exists by describing how to
move a point continuously through the square in a unit time interval, so that each
point in the square is visited at some time between 0 and 1.

Peano’s space-filling curve. There is a continuous surjection f of the unit interval
[0, 1] onto the unit square [0, 1] × [0, 1].

Proof. Intuitively speaking, f (t) is the position at time t of a continuously moving
point, beginning at the bottom left corner 〈0, 0〉 of the square at time 0, and ending
at the top right corner 〈1, 1〉 at time 1. Thus, a first approximation to the curve is a
line segment from 〈0, 0〉 to 〈1, 1〉.

We refine the approximation by dividing the square into nine equal subsquares,
constraining the moving point to spend 1/9 of the unit time interval in each, and
traveling from one corner to its opposite in the order shown in Fig. 4.5. Inside the
corners in question we show the time at which the moving point arrives. (Notice that
certain corners are visited more than once—this is unavoidable.)

We repeat this process in each subsquare, dividing it into nine equal squares and
visiting them in zigzag order in nine equal time intervals, and so on. It follows
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Fig. 4.5 Refining an approximation to the Peano curve

that, for any point P in the square, the moving point visits P at some time t. If
P is the limit point of a nested sequence of subsquares, then t is the limit of the
corresponding nested sequence of time intervals.

The function

f (t) = position of the moving point at time t

is therefore a surjection of [0, 1] onto the unit square. It is also clear that f is
continuous for each t ∈ [0, 1]. Given any ε > 0, we can ensure that f (t′) is within
ε of f (t) = P by finding a subsquare that contains P and is small enough that all its
points are within distance ε of P. Then if t′ lies within the corresponding subinterval
of [0, 1] we have

| f (t) − f (t′)| < ε.

If t is not on the boundary of the subinterval, call it I, we take

δ = distance from t to the nearest end of I

to ensure that

|t − t′| < δ⇒ | f (t) − f (t′)| < ε.

If t lies on the boundary of two subintervals I1, I2 we take δ to be the minimum of
their lengths, and it is again true that

|t − t′| < δ⇒ | f (t) − f (t′)| < ε,

because the moving point travels through subsquares of equal size in equal
subintervals of time, and we have already arranged that f (t) moves distance less
than ε from P in the time intervals in question. �
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Exercises

4.4.1 Prove that the Koch curve has infinite length, by showing that the lengths of the polygons
tending to it grow without bound.

4.4.2 Show in fact that the Koch curve has infinite length between any two of its points.
4.4.3 Similarly prove that the Peano curve has infinite length between any two of its points.
4.4.4 Give an example of a function f whose graph y = f (x) for 0 < x < 1 has a tangent at every

point and infinite length.
4.4.5 Show, however, that the curve y = f (x) in Exercise 4.4.4 has finite length between any two

of its points.

4.5 Homeomorphisms

In Sect. 3.4.1 we constructed a bijection between the line R and the plane R×R, and
it is not hard to modify it so as to obtain a bijection between the line segment [0, 1]
and the square [0, 1] × [0, 1]. These bijections are not continuous, but in Sect. 4.4
we have seen a continuous map of [0, 1] onto [0, 1]× [0, 1]. This raises the question
whether there is a continuous bijection between [0, 1] and [0, 1]× [0, 1], or between
the line and the plane. Such a bijection would be truly disturbing, because it would
say that there is essentially no difference between one dimension and two, so the
concept of dimension would have no meaning.

The concept of dimension was saved when Brouwer (1911) proved the following
theorem on invariance of dimension: when m � n there is no bijection between Rm

and Rn that is continuous in both directions. A bijection that is continuous in both
directions is called a homeomorphism, and the study of properties that are invariant
under homeomorphisms is the subject of topology. Obviously, topology overlaps
with the study of real numbers and continuous functions. But it is a big subject,
and we cannot go far into it here. We will be content to prove the simplest case of
invariance of dimension:

Distinctness of dimensions one and two. There is no continuous bijection between
R and R2.

Proof. We use a property of R that it does not share with R × R; namely, R can be
separated by a point. To be precise, if we remove the point 0, the points 1 and −1 in
the resulting set R− {0} cannot be joined by a continuous path. Indeed, a continuous
path from −1 to 1 is a continuous function f : [0, 1]→ R − {0} with f (0) = −1 and
f (1) = 1. Such a function fails to satisfy the intermediate value theorem, because it
does not take the value 0.

Now if there is a bijection g : R → R2, continuous in both directions, consider
the points g(−1), g(0), and g(1). These are three distinct points in the plane, so there
is a continuous path from g(−1) to g(1) that does not meet g(0). If we transport this
path back to R by the continuous bijection g−1 we get a continuous path from −1 to
1 not meeting 0.
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As we have just seen, such a path is impossible in R, so the continuous bijection
g does not exist. �

Exercises

In a striking contrast to the topological distinctness of R and R × R, there is no such distinction
between C and C × C, where C is the Cantor set. Given any x ∈ C, we separate its ternary
expansion into the sequence x1 of odd-position digits and the sequence x2 of even-position digits.
For example, if

x = (0.022022022022 . . .)3

then

x1 = (0.0 2 2 0 2 2 . . .)3

and

x2 = (0. 2 0 2 2 0 2 . . .)3

4.5.1 Explain why the map x �→ 〈x1, x2〉 is a bijection of C onto C × C.
4.5.2 Also explain why the map x �→ 〈x1, x2〉 is continuous and has a continuous inverse.

It is not always the case that a continuous bijection has a continuous inverse.

4.5.3 Give an example of a bijection between [0,1) and the circle that is continuous in one
direction but not in the other.

4.6 Uniform Convergence

The continuous Peano function f of Sect. 4.4 can be viewed as the limit of a
sequence of very simple continuous functions f1, f2, f3, . . .. Each fi maps the unit
interval into a polygonal path through the unit square, zigzagging through the
diagonals of subsquares of width 1/3i.

The sequence f1, f2, f3, . . . not only converges to f , it converges uniformly in the
following sense:

Definition. Functions fn converge uniformly to f if, for any ε > 0, we can find an
N such that

n > N ⇒ | fn(t) − f (t)| < ε for all t.

In other words, fn(t) and f (t) differ by less than ε at all points t.

This property is clear for the functions fn that converge to the Peano curve. If
n > N, then the polygonal path defined by fn is a refinement of the path defined
by fN , and it falls within the same zigzag sequence of squares traversed by fN .
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−1/n 1/n

Fig. 4.6 The spike function

Therefore, fn and f differ from each other by at most the diameter of these squares,
which can be made as small as we please by choosing N sufficiently large.

This idea gives the following criterion for the limit of a sequence of continuous
functions to be continuous.

Uniform Convergence Criterion. If f1, f2, f3, . . . is a uniformly convergent
sequence of continuous functions on an interval [a, b], then

f (x) = lim
n→∞

fn(x)

is also continuous.

Proof. For each c ∈ [a, b] we wish to show that limx→c f (x) = f (c). That is, for each
ε > 0 we seek a δ > 0 such that

|x − c| < δ⇒ | f (x) − f (c)| < ε.

We can do this by finding an N and a δ for which the following three conditions
hold simultaneously:

1. | f (x) − fn(x)| < ε/3 for n > N,

2. | fn(x) − fn(c)| < ε/3 for |x − c| < δ,
3. | fn(c) − f (c)| < ε/3 for n > N.

Conditions 1 and 3 can be met simultaneously by uniform convergence of the
sequence f1, f2, f3, . . .. Condition 2 can be met, by the continuity of fn, for some
δ depending on N and c.

So, if we first choose N to meet conditions 1 and 3, then choose δ to meet
condition 2, we have a δ such that |x − c| < δ⇒ | f (x) − f (c)| < ε, as required. �

Without the condition of uniform convergence a convergent sequence of continu-
ous functions may have a discontinuous limit. For example, let fn(x) be the function
with the spike-shaped graph shown in Fig. 4.6.
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That is,

fn(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ −1/n

nx + 1 if − 1/n ≤ x ≤ 0

−nx + 1 if 0 ≤ x ≤ 1/n

0 if x ≥ 1/n.

It is clear, since the spike becomes arbitrarily thin as n increases, that

f (x) = lim
n→∞

fn(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x < 0
1 if x = 0
0 if x > 0,

which is discontinuous at x = 0. The discontinuity arises from the nonuniform
convergence of the fn to f . In particular, there is no N for which

n > N ⇒ | fn(x) − f (x)| < 1/2 for all x,

because we always have | fn(1/2n) − f (1/2n)| = 1/2.

Exercises

4.6.1 If g1, g2, g3, . . . are the continuous functions defining the first, second, third, . . . polygonal
approximations to the Koch curve given in Sect. 4.4, show that the sequence g1, g2, g3, . . .
converges uniformly.

4.6.2 Give an example of a function with infinitely many discontinuities that is the (nonuniform)
limit of a sequence of continuous functions.

4.7 Uniform Continuity

Any continuous function on a closed interval [a, b] is actually continuous in the
“uniform” sense exhibited by the Peano curve: the variation of f (x) can be kept
within ε by keeping the variation of x within some δ which does not depend on x.
The formal definition of uniform continuity can be stated as follows.

Definition. A function f is uniformly continuous on a set S if, for any ε > 0 and
any x, y ∈ S , there is a δ > 0 such that

|x − y| < δ⇒ | f (x) − f (y)| < ε.
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We notice that a uniformly continuous function is continuous at each point of
c ∈ S . Because, if we fix y = c, we have

|x − c| < δ⇒ | f (x) − f (c)| < ε,

so limx→c f (x) = f (c).
However, continuity does not always imply uniform continuity. The function

f (x) = 1/x is continuous on the set S = (0, 1) but not uniformly continuous, because
we can have | f (x) − f (y)| ≥ 1 while |x − y| is as small as we please, by choosing x
and y sufficiently small.

The concepts of continuity and uniform continuity agree on closed intervals S ,
thanks to the following theorem.

Uniform continuity on closed intervals. A continuous function on a closed
interval is uniformly continuous.

Proof. Suppose f is continuous on [a, b]. Since f is continuous at each c ∈ [a, b],
for each ε > 0 there is a δ(c) such that

|x − c| < δ(c)⇒ | f (x) − f (c)| < ε/2.

It follows that

x, y ∈ (c − δ(c), c + δ(c))⇒ | f (x) − f (y)| < ε,

because | f (x) − f (c)| < ε/2 and | f (y) − f (c)| < ε/2. Thus, each c ∈ [a, b] lies in an
open interval U with the property that

x, y ∈ U ⇒ | f (x) − f (y)| < ε. (*)

The set of all open intervals U with property (*) therefore covers [a, b]. It follows,
by the Heine–Borel theorem of Sect. 3.6, that [a, b] is covered by finitely many open
intervals U1,U2, . . . ,Un, each with property (*).

Let c1 < c2 < · · · < cm be the endpoints of U1,U2, . . . ,Un lying between a and b.
Also let a = c0 and b = cm+1. Since each ci ∈ some Uk, the open intervals on either
side of ci, (ci−1, ci) and (ci, ci+1), are contained in Uk. So if we let

δ = minimum length among the intervals (ci, ci+1),

we have

|x − y| < δ⇒ x, y ∈ same Uk ⇒ | f (x) − f (y)| < ε,

as required to show that f is uniformly continuous on [a, b]. �
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This proof also has the following more general consequence, for the compact
sets introduced in Sect. 3.6. The consequence will become useful when we obtain a
clearer view of compact sets in Sect. 5.4.

Corollary 2. A continuous function on a compact set is uniformly continuous.

Proof. Suppose f is continuous on a compact set K. For each x0 ∈ K and each ε > 0
continuity implies there is a δ such that

|x − x0| < δ⇒ | f (x) − f (x0)| < ε/2.

Taking all such x0 and δ, we get a covering of K by the open intervals (x0−δ, x0+δ).
By compactness, finitely many of these intervals also cover K. We can then argue as
in the proof above. �

Exercises

Since a curve with endpoints is a continuous function on a compact set, namely [0,1], we can
deduce some general properties of such curves from uniform continuity.

4.7.1 For any curve in the plane f : [0.1] → R2 and any ε > 0 show that there are values
t1, t2, . . . , tk ∈ [0, 1] such that the section of the curve between f (ti) and f (ti+1) lies within a
circle of radius ε.

4.7.2 Deduce from Exercise 4.7.1 that any curve with endpoints is the uniform limit of a sequence
of polygons.

Suppose we want to define curves without endpoints, in order to cover curves such as the
parabola.

4.7.3 Propose a suitable definition, involving the concept of a continuous function.
4.7.4 Illustrate your definition in the case of the parabola.

4.8 The Riemann Integral

The concept of uniform continuity fits like a glove onto the concept of Riemann

integral used in basic calculus. Recall that the definition of
∫ b

a
f (x) dx involves the

following setup, as shown in Fig. 4.7:

1. A closed interval [a, b] on which f (x) is defined.
2. A division of [a, b] by finitely many points ci with a < c1 < c2 < · · · < cm < b.
3. Lower and upper approximations to f by step functions, constant on each interval

(ci, ci+1). The lower approximation equals the minimum mi of f on each interval,
and the upper approximation equals the maximum, Mi.

4. Lower and upper approximations to the integral,
∑

i mi(ci+1−ci) and
∑

i Mi(ci+1−
ci), called Riemann sums.
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5. The integral exists if the difference between the two Riemann sums (made of
rectangles like the one shown shaded in Fig. 4.7) can be made arbitrarily small.

A uniformly continuous f is tailor-made for this setup, because we can obtain
finitely many intervals on which the difference between the minimum and maximum
of f is less then ε. Consequently the difference in area between the upper and lower
approximations, is less than (b−a)ε, which can be made arbitrarily small. Therefore,
since a continuous function on a closed interval is uniformly continuous, we have
the theorem:

Integrability of continuous functions. If f is continuous on [a, b] then
∫ b

a
f (x) dx

exists. �

However, there is not a perfect match between continuous functions and Riemann
integrable functions, because certain discontinuous functions are also Riemann
integrable. An easy example is the function

f (x) =

{
1 if x = 0
0 if x � 0,

the integral of which equals 0 on any interval. This is because the lower approxima-
tion is the constant zero function, and the upper approximation can be taken to be
zero everywhere except on an arbitrarily small interval (−ε, ε).

In fact, a function with a dense set of discontinuities can be Riemann integrable
(see exercises), though not all such functions are. The Dirichlet function mentioned
in Sect. 4.2 is not Riemann integrable. Because of this, a more general concept of
integrability is desirable. The best-known general integral, the Lebesgue integral, is
based on a general concept of measure, which will be discussed in Chap. 9. One of

x

y

O a bci ci+1

m

M

Fig. 4.7 Setup for the Riemann integral
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the beauties of Lebesgue measure, besides its generality, is that it gives a precise
criterion for a bounded function to be Riemann integrable. Namely, a bounded f
is Riemann integrable if and only if f is continuous everywhere except on a set of
measure zero. We prove this result in Sect. 9.5.

4.8.1 The Fundamental Theorem of Calculus

The fundamental theorem of calculus, roughly speaking, states that the derivative
of the integral of a function f equals f . Various versions of the theorem exist,
depending on the nature of the integral and the functions f . The simplest version,
which we will now prove, concerns the Riemann integral of a continuous function f .

Fundamental theorem of calculus. If f is continuous and F(x) is the Riemann
integral

∫ x

a
f (t) dt, then F′(x) = f (x).

Proof. By the definition of derivative,

F′(x) = lim
n→0

F(x + h) − F(x)
h

= lim
h→0

∫ x+h

a
f (t) dt −

∫ x

a
f (t) dt

h

= lim
h→0

1
h

∫ x+h

x
f (t) dt.

Now it follows from the definition of Riemann integral that

hm ≤
∫ x+h

x
f (t) dt ≤ hM,

where m and M are the minimum and maximum of f (t) for h ∈ [x, x + h].
Consequently,

m ≤ 1
h

∫ x+h

x
f (t) dt ≤ M,

and as h→ 0 both m,M → f (x) by the continuity of f . Thus,

F′(x) = lim
h→0

1
h

∫ x+h

x
f (t) dt = f (x). �
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x

y

O 1 a b ab

Fig. 4.8 Riemann sums from 1 to a and from b to ab

Exercises

The defining property of the logarithm, log ab = log a + log b, can be proved directly from the
definition of log c as a Riemannn integral. We define

log c =
∫ c

1

dx
x

and consider the integral of 1/x from 1 to a and from b to ab. This amounts to comparing Riemann
sums for the two areas shown under the curve in Fig. 4.8. We use Riemann sums obtained by
dividing both [0, a] and [b, ab] into n equal parts (Fig. 4.8 shows the case n = 4).

4.8.1 Show that the rectangles in the Riemann sums from 1 to a have exactly the same areas as
their counterparts in the Riemann sums from b to ab.

4.8.2 Deduce from Exercise 4.8.1 that
∫ a

1
dx
x =

∫ ab

b
dx
x .

4.8.3 Deduce from Exercise 4.8.2 that log ab = log a + log b.

Now we show that the Thomae function t(x) defined in the exercises to Sect. 4.2, despite its
many discontinuities, is Riemann integrable. The proof depends on the fact that unequal intervals
are allowed.

4.8.4 By subdividing [0,1] into unequal subintervals in such a way that “large” values of t(x)
are enclosed in “narrow” subintervals, show that the Riemann sums for t(x) can be made
arbitrarily small.

4.8.5 Deduce that
∫ 1

0
t(x) dx = 0.

4.8.6 Show, on the other hand, that t(x) does not satisfy the fundamental theorem of calculus.
Namely, if F(x) =

∫ x

0
t(x) dx then F′(x) = t(x) only for irrational x.

4.9 Historical Remarks

From its beginnings in the seventeenth century, calculus was supposed to deal
with continuous phenomena. For Newton, in particular, the basic phenomenon was
continuous motion, and the basic problems were the following two:
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1. Given the length of space continuously (that is, at every time), to find the speed of motion
at any time proposed.

2. Given the speed of motion continuously, to find the length of space described at any time
proposed.

Newton (1671), p. 71.

In our language, these are the problems of differentiating and integrating continuous
functions. In Problem 1 we are given distance d(t) and have to find the speed d′(t).
In Problem 2 we are given the speed v(t) and have to find the distance traveled by

time T ,
∫ T

0
v(t) dt. The mental picture of continuous motion makes it plausible that

d′(t) exists for any continuous distance function d(t), and that
∫ T

0
v(t) dt exists for

any continuous speed function v(t). But, as we now know, only the second of these
statements is true.

In fact, as calculus evolved, the notion of continuous function expanded, from
being identical with the notion of differentiable function until it included functions
that are nowhere differentiable. The shift in meaning was partly due to expansion of
the function concept, and partly due to the tardy development of the limit concept,
without which a precise definition of continuity was not possible.

As we saw in Sects. 1.5 and 1.9, functions were originally dependent on
formulas, and the first formulas considered were indeed differentiable. The concept
of “formula” expanded with the discovery of Fourier series, which could express
functions that were clearly not differentiable at all points. Take the triangular wave
function of Sect. 1.5, for example, which clearly has infinitely many “corners” at
which no tangent exists.

Bolzano (1817) first gave a definition via continuity at a point, essentially as we
do today, and Cauchy (1821) rediscovered the concept in the first comprehensive
and rigorous course on analysis. Cauchy’s course included precise concepts of limit,
convergence of series, and continuity, and also a concept of integral that enabled
him to prove that every continuous function (on a closed interval) is integrable. At
this time it was still believed that continuous functions are differentiable, except
perhaps at a “few” exceptional points. The incentive to study more “pathological”
continuous functions came from the theory of Fourier series.

Fourier (1822) discovered that, under certain conditions, a function f could be
expressed in the form

f (x) =
1
2
+

∞∑
n=1

(an cos nx + bn sin nx),

where the coefficients are the integrals

an =
1
π

∫ π
−π

f (x) cos nx dx and bn =
1
π

∫ π
−π

f (x) sin nx dx.

The conditions for these formulas to be valid were not clear, and Dirichlet (1829)
was the first to prove a general theorem. He showed that the formulas for an and
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Fig. 4.9 Augustin-Louis Cauchy and Peter Gustav Lejeune Dirichlet

Fig. 4.10 A continuous function with infinitely many oscillations

bn are valid provided that f on (−π, π) is continuous and piecewise monotonic. The
latter condition means that (−π, π) can be divided into finitely many subintervals, on
each of which f is either nondecreasing or nonincreasing.

Thus, the validity of Fourier series was not yet proved for continuous functions
with infinitely many oscillations, such as f (x) = x sin 1

x for x > 0 and f (x) = 0 for
x = 0. (Fig. 4.10).

This led to the investigation of wildly oscillating continuous functions, and
eventually to continuous counterexamples to Fourier’s formulas. More importantly,
it led to the discovery of nowhere differentiable functions by Weierstrass (1872).
The first examples were based on infinite sums of trigonometric functions and
were hard to visualize [though see Hairer and Wanner (1996), p. 265, for an
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Fig. 4.11 Giuseppe Peano and Helge von Koch

Fig. 4.12 Example of a simple closed curve
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understandable example]. The von Koch (1904) example became famous because
of its visual appeal.

The Koch curve and the Peano curve showed how far the notion of continuous
curve had evolved since the seventeenth century. By the end of the nineteenth
century one had a simple and general definition of a continuous curve, but the
definition covered examples more pathological (and interesting?) than originally
intended. Still, the definition passed one important test for continuous curves: the
Jordan curve theorem. This theorem, formulated by Jordan (1887) states that a
simple (that is, not self-intersecting) closed curve separates the plane into two
regions (the “inside” and “outside” of the curve). The Jordan curve theorem is
correct, but hard to prove. The proof by Jordan was considered suspect by his
successors, but was declared essentially correct by Hales (2007), who produced the
first computer-checkable proof of the theorem.

Some beautiful examples of simple closed curves (which hint at why the Jordan
curve theorem may be hard to prove) have recently been given in the field of TSP
art. See, for example, the web site of Robert Bosch

www.oberlin.edu/math/faculty/bosch/tspart-page.html

Figure 4.12 is one of his images.

www.oberlin.edu/math/faculty/bosch/tspart-page.html


Chapter 5
Open Sets and Continuity

PREVIEW

In this chapter we shift our attention from functions back to sets. The shift is
prompted by the fact that continuous functions have a natural description in terms
of sets: the so-called open sets. Just as continuous functions may be viewed as
the simplest functions, open sets may be viewed as the simplest sets. And just as
complicated functions arise from continuous functions by the limit process, compli-
cated sets arise from open sets by certain operations, namely, complementation and
countable union.

There are in fact parallel classifications of functions and sets into levels of
complexity, called the Baire hierarchy of functions and the Borel hierarchy of sets.
Both are useful, and they interact usefully with each other, but sets are a little easier
to work with. We study the classification of Borel sets in depth in Chap. 8.

Here we begin studying the classification by looking at open sets and their
complements, the closed sets. After describing open sets and their relationship with
continuous functions, we introduce closed sets and focus on a particular type, the
perfect sets. An example of a perfect set is the Cantor set C, and we show that every
perfect set resembles C in a certain sense.

Finally, we lay the foundation for an orderly construction of the Borel sets by
constructing a universal open set—an open set in R2 whose horizontal sections
are precisely the open sets in R. More precisely, we do this with a convenient
replacement for R, the set N of all functions f : N → N. N can be viewed as
the set of irrational numbers in (0,1), and it avoids problems of ambiguity caused by
the rational numbers.

5.1 Open Sets

An open interval on the line R is a special case of the concept of open set. The
concept of open set is actually very general but for our purposes a set U is open if,

J. Stillwell, The Real Numbers: An Introduction to Set Theory and Analysis,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-01577-4__5,
© Springer International Publishing Switzerland 2013
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u1 = (x1, y1)

(x2, y2) = u2

x2 − x1

y2 − y1

Fig. 5.1 Distance in R2

ε
u

Fig. 5.2 An ε-neighborhood in R2

for each point u ∈ U, the points within some positive distance ε of u also belong
to U. Thus, our concept of open set applies to spaces with a concept of distance;
typically the n-dimensional Euclidean spaces Rn.

For example, in the plane R2, the distance from point u1 = (x1, y1) to point
u2 = (x2, y2) is given by

|u2 − u1| =
√

(x2 − x1)2 + (y2 − y1)2,

thanks to the Pythagorean theorem; see Fig. 5.1. The set of points at distance less
than ε from u ∈ R2 is an open disk of radius ε and center u, shown in Fig. 5.2.
(The boundary circle is drawn dashed to indicate that it does not belong to the
neighborhood.)

This concept of distance easily generalizes to Rn, where the set of points at
distance less than ε from a point u, Nε(u) = {v ∈ Rn : |v − u| < ε}, is called an
open n-ball of radius ε or the ε-neighborhood of u.

Given the concept of ε-neighborhood, we can define the concept of an open set
as follows.

Definition. A set U ⊆ Rn is called open if, for each point u ∈ U, there is an ε > 0
for which Nε(u) is contained in U.
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The basic properties of open sets follow easily from this definition.

1. The empty set (trivially) and the whole space Rn are open sets.
2. The union of any collection of open sets is open.
3. The intersection U1 ∩ U2 of two open sets U1 and U2 is open.

Because, if u ∈ U1 ∩ U2 there is an ε1 for which Nε1 (u) ⊆ U1 and an ε2

for which Nε2 (u) ⊆ U2. So if we take ε = min(ε1, ε2) we have ε for which
Nε(u) ⊆ U1 ∩ U2, as required.

4. Each open U set is the union of open n-balls.
In particular, U is the union of the set of n-balls Nε(u) for the u ∈ U and the ε

(depending on u) for which Nε(u) ⊆ U.
5. In fact, each open set U is the union of countably many n-balls.

It suffices to take n-balls of rational radius centered on points u with rational
coordinates. Any point v ∈ U has a neighborhood Nε(v) ⊆ U, and inside Nε(v)
we can take u with rational coordinates 〈r1, r2, . . . , rn〉 so close to v that v ∈ Nr(u)
for a rational r small enough to ensure that Nr(u) ⊆ Nε(v) ⊆ U.

Then, as we know from Sect. 3.1, the set of all (n + 1)-tuples 〈r, r1, r2, . . . , rn〉
of members of a countable set is countable.

6. It follows from property 5 that the set of open sets U ⊆ Rn is equinumerous
with R.

This follows from the result of Sect. 3.3 that the set of subsets of a countable
set (which we took to be subsets of N in that section) is equinumerous with R.

Even in R, open sets can be quite complex and interesting. An example is the
complement1 [0, 1]−C of the Cantor set in the unit interval, introduced in Sect. 3.7.
In this case we can explicitly list countably many open intervals whose union is
[0, 1] − C, namely: (

1
3 ,

2
3

)
(

1
9 ,

2
9

) (
7
9 ,

8
9

)
(

1
27 ,

2
27

) (
7
27 ,

8
27

) (
19
27 ,

20
27

) (
25
27 ,

26
27

)
and so on.

Exercises

The open disks or balls are often called basic open sets because all open sets are obtainable from
them as unions. In Rn for n > 1 another useful family of basic open sets are the cartesian products
of n intervals. For example, in R2 these cartesian products are open rectangles

(a, b) × (c, d) = {〈x, y〉 : a < x < b and c < y < d}.

1Remember that in this book we use the ordinary minus sign to denote set difference.
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These basic sets are sometimes more convenient (e.g., in measure theory—see Chap. 9), so it is
worth checking that they give the same open sets as the open disks.

5.1.1 Explain why any open rectangle is a union of open disks.
5.1.2 Explain why any open disk is a union of open rectangles.
5.1.3 Explain why any open set U ⊆ R2 is a countable union of open rectangles.

The complement of an open set is generally not open.

5.1.4 Explain why C is not open.
5.1.5 Show that R and the empty set are the only open subsets of R with open complements.

5.2 Continuity via Open Sets

When open sets are defined by ε-neighborhoods, as in the previous section, they are
very naturally aligned with the concept of continuous function. In fact, they enable
us to define the concept of a continuous function globally, without recourse to the
preliminary definition of “continuity at a point.”

Continuity in terms of open sets. A function f : R → R is continuous if and only
if f −1(U) is open for each open set U, where

f −1(U) = {x ∈ R : f (x) ∈ U}.

Proof. By the ε-δ definition of continuity, for each a ∈ R and each ε > 0 there is a
δ > 0 such that

|x − a| < δ⇒ | f (x) − f (a)| < ε.

In terms of neighborhoods, this says

x ∈ Nδ(a)⇒ f (x) ∈ Nε( f (a)).

And in terms of f −1: for each a ∈ R and ε > 0 there is a δ with

Nδ(a) ⊆ f −1(Nε( f (a))). (*)

Now if U is any open set, and if a ∈ f −1(U), then f (a) ∈ U. Since U is open,
it contains some Nε( f (a)), and so f −1(Nε( f (a)) contains Nδ(a). In other words, if
a ∈ f −1(U), then f −1(U) also contains some Nδ(a). That is, f −1(U) is open.

Conversely, if any f −1(open) is open, then f −1(Nε( f (a)) is an open set that
includes a, and hence some Nδ(a). This gives us a δ for each ε. �

The ε-δ definition of continuity applies to functions f : Rm → Rn, if we interpret
|x−a| as the distance between x and a in Rm, and | f (x)− f (a)| as the distance between
f (x) and f (a) in Rn. Then the argument given above shows that f : Rm → Rn is
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continuous if and only if f −1(U) is open (as a subset of Rm) for each open set U
in Rn.

5.2.1 The General Concept of Open Set

In this book we are concerned only with spaces in which a concept of distance may
be defined, and hence with open sets and continuous functions defined by means of
ε-neighborhoods. However, now that we have seen continuity defined in terms of
open sets, it is worth mentioning that open sets can be defined without use of the
concept of distance. The trick is to use the first three properties of open sets, given
in Sect. 5.1, as a definition.

Suppose that we have a set X and a collectionT of sets U ⊆ X with the following
properties.

1. The empty set and X itself are members of T .
2. The union of any members of T is a member of T .
3. The intersection of any two members of T is a member of T .

Then the sets U ∈ T are called open subsets of X, and T is called a topology
on X. Using this concept of an open set, we can talk about continuous functions,
homeomorphisms, and so on, without depending on a concept of distance. Any other
concepts that can be defined in terms of open sets (such as closed sets and compact
sets—see below) are also meaningful in this general theory of open sets, which is
called general topology.

Exercises

The open set definition of continuity avoids having to define continuity at a point, but it is also easy
to define continuity at a point in terms of open sets.

5.2.1 Express the continuity of f at point a in terms of open sets containing the point f (a).

Any set S ⊆ R has an obvious topology, called the relative topology, whose open sets are
precisely the sets S ∩ U, where U is an open subset of R.

5.2.2 Check that the sets S ∩ U satisfy the three conditions for a topology.
5.2.3 Show that the relative topology on [0,1] has basic open sets of the form [0, b), (a, b), and

(a, 1], for a, b ∈ (0, 1).

In the case where S = C, the relative topology is particularly interesting, because it has a countable
collection of basic open sets that arise naturally from inside C. We recall from Sect. 3.7 that the
elements of C are those numbers in C with ternary expansions that can be written using only the
digits 0 and 2.

5.2.4 Consider ternary expansions of the form

x = 0.02a1a2a3 . . . where a1, a2, a3, . . . = 0 or 2.
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Show that the numbers of this form make up the intersection of C with the interval
[2/9, 1/3], which is also the intersection of C with the open interval (2/9 − ε, 1/3 + ε)
for ε sufficiently small.

5.2.5 By generalizing the idea of Exercise 5.2.4, show that, for any sequence b1b2 · · · bk of digits
bi = 0 or 2, the set

F(b1, . . . , bk) = {x : x = b1 . . .bka1a2a3 . . . for some a1, a2, a3, . . . = 0 or 2}

is an open set in the relative topology of C.
5.2.6 Show also that the sets F(b1 , . . . , bk) are basic open sets in the relative topology for C.

It is a similar story for the set N of irrational numbers in [0,1]. We know from Sects. 2.7
and 2.8 that N can be identified (via continued fractions) with the infinite sequences
〈a1, a2, a3, . . .〉 ∈ NN.

5.2.7 Show that the set

G(b1 , . . . , bk) = {x : x = 〈b1, . . . , bk, a1, a2, . . .〉 for some a1, a2, . . . ∈ N}

is an open set in the relative topology on N .
5.2.8 Show also that the sets G(b1, . . . , bk) are basic open sets in the relative topology for N .

5.3 Closed Sets

The complement Rn − U of an open set U in Rn is called closed. For example, a
closed interval [a, b] in R is a closed set because its complement (−∞, a)∪ (b,∞) is
open. The basic properties of closed sets follow from those of open sets, enumerated
in Sect. 5.1, by taking complements. In particular:

1. The empty set and the whole space Rn are closed.
2. An arbitrary intersection of closed sets is closed.

If the closed sets Fi in question are the complements of open sets Ui, then

intersection of the Fi = complement(union of the Ui)

= complement of an open set

= closed set.

3. The union of two closed sets is closed.
If the closed sets F1 and F2 are the complements of U1 and U2, respectively,

then

F1 ∪ F2 = complement(U1 ∩ U2)

= complement of an open set

= closed set.
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4. The set of closed sets is equinumerous with R.
Because the complement operation gives a bijection between the set of closed

sets and the sets of open sets, which we know is equinumerous with R.

F is traditionally used to denote closed sets because it is the initial letter of the
French word fermé, meaning closed. On the same grounds, one might expect O to be
used to denote open sets, because the French word for open is ouvert. However, the
letter O is likely to be confused with 0, which is probably why one uses the second
letter, U, instead.

Note that “closed” does not mean “not open,” because there are many sets that
are neither open nor closed. A closed set is “closed” in the sense that it includes all
its limit points.

Closure of Closed Sets. If F is a closed set and x is a limit point of F, then x ∈ F.
Conversely, any set that includes all its limit points is closed.

Proof. Recall from Sect. 3.6 that x is a limit point of F if every ε-neighborhood of
x includes points of F other than x.

It follows that x is not in the complement of F, because the complement of F is
open and hence contains an ε-neighborhood of each of its points.

Conversely, suppose F is a set that includes all of its limit points. Then each
point y � F is not a limit point of F, so y has an open neighborhood disjoint from
F. In other words, the complement of F contains an open neighborhood of each of
its points, and hence is open, so F is closed. �

Exercises

5.3.1 Show that Q is neither open nor closed in R.
5.3.2 Show that, for a < b, the half-open interval [a, b) = {x : a ≤ x < b} is neither open nor

closed.
5.3.3 Show that the examples in Exercises 5.3.1 and 5.3.2 are countable unions of closed sets.

On the other hand, in certain topologies many sets are both open and closed.

5.3.4 Show that the complement of the basic open set F(0, 2) in C equals the open set F(0, 0) ∪
F(2), so F(0, 2) is closed.

5.3.5 More generally, show that the complement of any basic open set in C is a finite union of
basic open sets.

5.3.6 Show similarly that the complement of any basic open set inN is a countable union of basic
open sets.

5.4 Compact Sets

In Sect. 3.6 we proved the Heine–Borel theorem about covering [0,1] by open
intervals. We remarked that the Heine–Borel property (“arbitrary cover contains a
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finite subcover”) is the defining property of what we now call compact sets. We now
replay the proof of the Heine–Borel theorem to prove the following:

Characterization of compact sets in R. A set K ⊆ R is compact if and only if it is
closed and bounded.

Proof. First suppose that K is closed and bounded.
Since K is bounded, we can “bisect” it by bisecting the interval between an upper

and lower bound of K, and then we can proceed as in the proof of the Heine–Borel
theorem. That is, we suppose K is covered by an infinite set of intervals Ui, with
no finite subcover, and repeatedly choose a “half” with no finite subcover. In this
way we obtain a nested sequence of intervals I1 ⊃ I2 ⊃ I3 ⊃ · · · with the following
properties.

1. Each In+1 is half the length of In.
2. Each In contains points of K.
3. The set In∩K is covered by infinitely many of the intervals Ui, but not by finitely

many of them.

This implies that
⋂∞

n=1 In is a single point x, which belongs to the closed set K
because it is a limit point of K. It follows that x ∈ U j for some open interval U j in
the collection covering K. But then Ik ⊂ U j for sufficiently large k, contradicting the
assumption that Ik ∩ K cannot be covered by finitely many of the intervals Ui.

This contradiction establishes that a closed bounded set is compact.
Conversely, suppose that K is compact.
If K is unbounded then we can cover it by the intervals Un = (−n, n), but not by

finitely many of these Un; hence K must be bounded. If x is a limit point of K but
x � K then we can cover K by the intervals

Vn =

(
−∞, x − 1

n

)
and Wn =

(
x +

1
n
,∞
)
,

but not by finitely many of these. Thus, K contains all its limit points, and hence K
is closed. �

Typical examples of compact sets are the closed intervals [a, b] in R. Indeed, the
nested interval property of Sect. 2.6 has the following generalization to compact
sets.

Nested compact sets. If K1 ⊇ K2 ⊇ K3 ⊇ · · · are compact sets, then K1,K2,K3, . . .
have a point in common (and the point is unique if the size of Kn tends to zero).

Proof. The sets R − Kn are complements of closed sets, hence open. Their union⋃
n(R−Kn) covers the complement of

⋂
n Kn, so if

⋂
n Kn is empty then

⋃
n(R−Kn)

covers R. In particular, it covers the interval that contains K1, which we can take to
be [0,1], without loss of generality.

Thus, we have a covering of [0,1] by the open sets R−Kn. By compactness, [0,1]
is also covered by finitely many of them, which we can assume to be R − K1,R −
K2, . . . ,R − Km. But
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R − K1 ⊆ R − K2 ⊆ · · · ⊆ R − Km because K1 ⊇ K2 ⊇ · · · ⊇ Km,

so Km ⊆ [0, 1] is not covered, which is a contradiction.
Our assumption that

⋂
n Kn is empty is therefore false; there are points in

⋂
n Kn,

and clearly just one point if the size of Kn tends to zero. �

Exercises

Compact sets are generally “better behaved” than sets that are merely closed, as the nested compact
sets property shows.

5.4.1 Give an example to show this is not generally true for closed sets.
5.4.2 Prove that a continuous f maps a compact K onto a compact K′.
5.4.3 Give an example to show that this is not generally true for closed sets.

The following exercises give a proof of the Bolzano–Weierstrass theorem (Sect. 3.6) using the
compactness of [0,1] instead of the bisection argument.

5.4.4 Suppose that S ⊂ [0, 1] is infinite but has no limit point in [0,1]. Deduce that each x ∈ [0, 1]
lies in an open interval with no points of S other than (possibly) itself.

5.4.5 From the covering of [0,1] given by Exercise 5.4.4, derive a contradiction by compactness.

5.5 Perfect Sets

The concept of a perfect set goes hand-in-hand with the concept of an isolated point,
as we see from the following:

Definition. A point P of a closed set F is isolated if there is an ε-neighborhood of
P containing no other points of F. A nonempty closed set with no isolated points is
said to be perfect.

For example, N is a closed set consisting entirely of isolated points, whereas
[0, 1] is a closed set with no isolated points. Other examples of closed sets without
isolated points are R and the Cantor set of Sect. 3.7. We have seen that the last three
have continuum cardinality, and in fact Cantor proved that this is true of all perfect
sets.

Cardinality of Perfect Sets. Every perfect set has continuum cardinality.

Proof. The bijection from R to (0, 1) introduced in Sect. 3.3 clearly sends perfect
sets to perfect sets (no isolated points in the image), hence it suffices to find the
cardinality of a perfect set F ⊆ (0, 1). We do this by imitating the proof from
Sect. 3.7 that the Cantor set has continuum cardinality.

We construct an infinite binary tree of sets as shown in Fig. 5.3, where each set
is perfect and the two sets Fα0 and Fα1 immediately below each set Fα in the tree
are subsets of Fα that we can view as its “lower third” and “upper third.”
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F

F0 F1

F00 F01 F11F10

Fig. 5.3 The tree of perfect sets

These “thirds” are found as follows for F, and it is similar for other sets in the
tree. First note that F has a minimum member x0 and a maximum member x1.
Namely,

x0 = lub of x for open intervals (−1, x) in the complement of F,

and the existence of x1 is shown similarly. Now consider the set

F ∩ [x0, x0 + (x1 − x0)/3].

It is the intersection of closed sets, hence closed, and it has no isolated points except
possibly the upper endpoint x0+(x1− x0)/3. If this point is in F and isolated, remove
it, and in any case call the resulting perfect set F0 the “lower third of F.”

We similarly construct a perfect set F1, the “upper third of F,” by removing the
one possible isolated point (if it is isolated) from the lower end of the closed set

F ∩ [x1 − (x1 − x0)/3, x1].

We can then repeat the construction, finding perfect sets F00 and F01 that are
“lower third” and “upper third” of F0, and perfect sets F10 and F11 that are “lower
third” and “upper third” of F1; and so on, obtaining the tree of perfect sets shown in
Fig. 5.3.

Moreover, the length of the intervals housing the sets tends to zero as one moves
down any branch of the tree—each interval being at most 1/3 of the one before—so
there is exactly one point common to all the sets on a branch, by the nested compact
sets property from the previous section. This point is in F, since all sets in the tree
are subsets of F. Finally, the points belonging to different branches are different,
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since they belong to disjoint intervals. So there are continuum-many points in F,
because there are continuum-many branches in the infinite binary tree. �

It follows from this theorem that any set of real numbers containing a perfect set
has the cardinality of the continuum. So if every set S of real numbers has the perfect
set property—if uncountable, S contains a perfect set—the continuum hypothesis
will follow. Indeed, Cantor set out to prove the continuum hypothesis by proving
the perfect set property for larger and larger classes of sets. In Chap. 6 we will
discuss the first step in his program: the so-called Cantor–Bendixson theorem that
says any uncountable closed set contains a perfect set.

5.5.1 Beyond Open and Closed Sets

There are many sets in Rn that are neither open nor closed. For example, the set Q
of rational numbers is neither open nor closed in R. It is not open because it does
not contain ε-neighborhoods of its members, and it is not closed because it does not
contain some of its limit points (e.g.,

√
2). Since Q is an important set, it is desirable

to find a classification of sets that goes beyond the open and closed sets. Since we
are interested in sets likely to arise in analysis, we might expect the limit operation
to generate the sets we want in some systematic manner.

However, since we have already used the complement operation, it turns out to be
simpler to use a native set operation, countable union, which can generate sets very
easily in conjunction with the complement operation. For example,Q is a countable
union of closed sets, namely

Q =

∞⋃
i=1

{ri},

where r1, r2, r3, . . . is an enumeration of the rational numbers. Each singleton set {ri}
is closed because it is the complement of the open set (−∞, ri) ∪ (ri,∞).

Countable union is also a natural operation in the theory of measure that we
touched on in Sects. 1.7 and 3.5. The measure of a countable union of disjoint sets
corresponds to the countable sum of their measures, which are real numbers. It
follows, as we will show in Chap. 9, that we can measure any set built from an
open set by complementation and countable unions. But we cannot expect to extend
the concept of measure much further than this, because only countable sets of real
numbers can be summed.

The sets generated from open sets by complementation and countable union are
called the Borel sets. The complexity of a Borel set may be measured by the “number
of operations” required to build it, but this “number” may well be infinite. In the next
chapter we will study the appropriate “numbers” (the ordinal numbers) for counting
the number of steps in infinite processes such as the generation of Borel sets.
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Exercises

The “middle third” set constructed in F not only has the same cardinality as the Cantor set C but
is also actually homeomorphic to it.

5.5.1 Use the common tree structure to define a bijection f between C and the “middle third”
subset of F.

5.5.2 Show that the bijection f is continuous in both directions.

5.6 Open Subsets of the Irrationals

The foundation for the study of Borel sets is the existence of a universal open
set U—a two-dimensional open set with horizontal sections that are all the one-
dimensional sets. For technical reasons, it is easier to construct such a set using the
set N of irrational numbers in (0,1), rather than the whole closed interval [0,1]. In
this section we carry out the construction ofU in N2.

We viewN as the setNN of all functions f : N→ N; that is, all infinite sequences
〈a1, a2, a3, . . .〉 of positive integers. For each such sequence we have a real number
given by the infinite continued fraction

1

a1 +
1

a2 +
1

a3 +
1

. . .

which is between 0 and 1 and irrational because any rational number has a finite
continued fraction. (See Sects. 2.7 and 2.8 to refresh your memory of continued
fractions.) Conversely, any irrational number in (0,1) has an infinite continued
fraction of the above form, and hence corresponds to a sequence 〈a1, a2, a3, . . .〉
in N . Thus, we can viewN as the set of all irrational numbers in (0, 1).

We can likewise view the open subsets of N as its intersections with the open
sunsets of (0, 1), which we know are unions of rational intervals. However, there is
a more natural way to generate the open subsets ofN , from open sets corresponding
to the finite sequences 〈a1, . . . , ak〉. For each such sequence, let

G(a1, . . . , ak) = { f ∈ N : f (1) = a1, . . . , f (k) = ak}.

Then G(a1, . . . , ak) corresponds to all the continued fractions of the form
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1

a1 +
1

a2 +
1

. . .
+

1

ak + x

where x is 1/(an arbitrary infinite continued fraction) and hence x is an arbitrary
irrational number in (0, 1). This means that G(a1, . . . , ak) is the intersection of N
with the open interval in (0,1) whose endpoints are the rational numbers obtained
by substituting x = 0 and x = 1 in the continued fraction above.

It is clear that any 〈a1, a2, a3, . . .〉 ∈ N belongs to all the open sets G(a1),
G(a1, a2), G(a1, a2, a3), . . . and the size of G(a1, . . . , ak) tends to zero as k increases,
by the convergence of continued fractions proved in Sect. 2.8. So, if O is an open
subset ofN and if 〈a1, a2, a3, . . .〉 ∈ O then G(a1, . . . , ak) ⊆ O for k sufficiently large.
It follows that any open set O ⊆ N is a union of sets of the form G(a1, . . . , ak). For
this reason, the open sets G(a1, . . . , ak) are called basic.

5.6.1 Encoding Open Subsets ofN by Elements ofN

We know from example 8 in Sect. 3.1 that there is an enumeration of all finite
sequences 〈a1, . . . , ak〉 of natural numbers. If 〈a1, . . . , ak〉 is the nth sequence in some
fixed enumeration, we let Gn = G(a1, . . . , ak). Then any open set O ⊆ N is a union
of certain Gn, and hence

O =
∞⋃

n=1

G f (n) for some f : N→ N.

In this way, each f ∈ N encodes an open subset of N , and if we imagine the
elements of N as irrationals on the y-axis, we can envisage the set encoded by
y displayed on the horizontal line at height y. Remarkably, the subset of the plane
defined in this way is an open subset ofN2 = N×N . We call it a universal open set.

Universal open set. There is an open subsetU ofN2 whose sections

U(y) = {x : 〈x, y〉 ∈ U}

are all the open subsets ofN .

Proof. To define U we interpret each y ∈ N as a function y : N → N via the
continued fraction for y. Then let

〈x, y〉 ∈ U ⇔ x ∈ Gy(n) for some n.
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Thus,

U(y) = {x : x ∈ Gy(n) for some n} =
∞⋃

n=1

Gy(n)

is the open subset ofN encoded by y, as described above. As y runs through all the
elements ofN , the unions

⋃∞
n=1 Gy(n) run through all the open subsets of N .

To see whyU is an open subset ofN2, observe that

U =
∞⋃

n=1

Hn, where Hn = {〈x, y〉 : x ∈ Gy(n)}.

SinceU is the union of the sets Hn, it suffices to prove that each Hn is open. We do
this by showing

〈x0, y0〉 ∈ Hn ⇒ 〈x, y〉 ∈ Hn for all 〈x, y〉 sufficiently close to 〈x0, y0〉.

Well, if y is sufficiently close to y0, the continued fractions for y and y0 agree to a
given depth n, so y and y0 agree as functions up to a given argument n, which means
Gy(n) = Gy0(n) for y sufficiently close to y0.

Also, since Gy(n) = Gy0(n) is an open set,

x0 ∈ Gy0(n) ⇒ x ∈ Gy0(n) for x sufficiently close to x0.

Putting these two facts together, we get

〈x0, y0〉 ∈ Hn ⇒ x0 ∈ Gy0(n)

⇒ x ∈ Gy(n) for 〈x, y〉 sufficiently close to 〈x0, y0〉

⇒ 〈x, y〉 ∈ Hn for 〈x, y〉 sufficiently close to 〈x0, y0〉,

as required. �

Exercises

The above result may be used to construct a universal open set in [0, 1] × [0, 1].

5.6.1 Show that the closed set F = N2 −U ⊂ N2 is universal in the sense that its sections

F (y) = {x : 〈x, y〉 ∈ F }

are all the closed subsets of N .
5.6.2 Now consider the closure F of F in [0, 1] × [0, 1], obtained by adding all the limit points

of F in [0, 1] × [0, 1]. Show that the sections
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Fig. 5.4 Felix Hausdorff

F (y) = {x : 〈x, y〉 ∈ F }

are all the closed subsets of [0,1], and hence that F is a universal closed set for [0,1].
5.6.3 Deduce from Exercise 5.6.2 that [0, 1] × [0, 1] − F is a universal open set.

5.7 Historical Remarks

According to Ferreirós (1999), p. 139, Dedekind around 1870 developed the ideas
of open and closed sets in analysis, but did not publish them. Later they were
rediscovered by Peano (1887) and Jordan (1893). Cantor (1884) took up the study
of closed sets, as the first stage in his program to prove the continuum hypothesis by
showing that each uncountable set of reals contains a perfect subset, and hence has
continuum cardinality. He took no interest in open sets, presumably because their
cardinality is obvious.

The idea of characterizing continuous functions f as those such that f −1 of
any open set is open is due to Hausdorff (1914). In the same book, Hausdorff
also introduced the concept of a topological space, as one with a system of “open
sets” with the three characteristic properties listed in Sect. 5.2. Actually, Hausdorff
included a fourth property, stating that any two points lie in disjoint open sets.
Topological spaces with the fourth property are now called Hausdorff spaces.
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Hausdorff also investigated the Borel sets, which arise from the open sets by
the operations of complement and countable union. In Hausdorff (1916) he showed
that the Borel sets have the perfect set property, thus carrying Cantor’s program
to a much higher level. The same result was proved independently by Alexandrov
(1916). Cantor’s program has since been pushed further, but not to all subsets of R.
Nevertheless, it remains viable in the sense that it is consistent with the usual axioms
of set theory for each uncountable set of reals to have a perfect subset. Just what the
“usual axioms” are will be explained in the next chapter. Suffice to say, at this point,
that there is a “model” of the set theory axioms in which every uncountable set of
reals has a perfect subset. The model is due to Solovay (1970), and we say more
about it in Sect. 6.8.



Chapter 6
Ordinals

PREVIEW

To formalize the idea of “counting past infinity,” we first need a clear idea of the
numbers 0, 1, 2, 3, . . . involved in ordinary counting. It appears that the set concept
is the simplest idea that can serve as a foundation for counting through, and beyond,
the finite numbers. The sets involved in the infinite counting process are called
ordinal numbers or simply ordinals, and the natural numbers are represented by
sets called the finite ordinals.

The finite ordinals can be defined with almost ridiculous ease as follows, using
just the concepts of set and membership:

0 = empty set,

1 = {0} (the set with member 0),

2 = {0, 1} (the set with members 0 and 1),

and so on. With this definition, each finite ordinal is the set of all its predecessors,
and m < n if and only if m ∈ n. Thus, the < relation is simply membership. It is then
natural to take the first infinite ordinal to be

ω = {0, 1, 2, 3, . . .},

since its members are precisely the finite ordinals.
This is the right idea, but it involves the assumption that infinite sets exist. Further

assumptions about sets are required to push the idea further, to ordinal numbers
that are not merely infinite but uncountable. In fact, we end up with a collection of
assumptions for sets in general, called the Zermelo–Fraenkel (ZF) axioms.

J. Stillwell, The Real Numbers: An Introduction to Set Theory and Analysis,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-01577-4__6,
© Springer International Publishing Switzerland 2013
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6.1 Counting Past Infinity

Recall from Sect. 5.5 that an isolated point of a closed set F is a point P ∈ F with an
ε-neighborhood containing no other points of F, and that a closed set F is perfect
if it contains no isolated points. These concepts suggest the possibility of finding
a perfect subset (if it exists) of a closed set F by repeatedly removing all isolated
points. Before we state a theorem to this effect (the Cantor–Bendixson theorem of
Sect. 6.4), it is well to be aware of what can happen when we “repeatedly” remove
isolated points from a closed set.

Cantor (1872) called the result of removing the isolated points from a closed
set F the derived set F′ of F, and he noticed that there are closed sets on which
the derived set operation ′ may be repeated many times. In fact, the operation ′

may be repeated an infinite number of times, and more. That is, after an infinite
sequence of applications of the operation ′, some members of F can remain, so ′ can
be applied again, perhaps infinitely often. To cope with this unprecedented situation
Cantor developed set theory, and particularly the theory of ordinal numbers, in order
to describe situations in which it is natural to count “past the finite numbers” or
transfinitely.

Granted that the sequence of operations ′ may be infinitely long, one still feels
that it must eventually be completed, leaving a closed set F(α) with no isolated
points. The problem is to describe the number α of times the operation ′ must be
applied and, hopefully, to show that α is countable (so as to show that the set of
points removed from F is countable).

To give an idea why the ′ operation may be applied many times, we show how to
build more and more complicated closed sets F ⊆ R. We start with

F1 =

{
1
2
,

3
4
,

7
8
,

15
16
, . . . , 1

}
.

F1 is rather easy to visualize, but we also include a picture (Fig. 6.1) in order to
introduce a graphic device that will be useful for more complicated sets. Each point
of F1 lies in the middle of a vertical line—which is easier to see than the point
itself—and we make the lines shorter as the points get closer together.

The operation ′ can be applied exactly twice to F1, because each of its points
except 1 is isolated. But if we make each isolated point of F1 the limit point of a
new sequence of isolated points, as in the set F2 shown in Fig. 6.2, then F′2 = F1, so
the ′ operation can be applied to F2 exactly three times.

Fig. 6.1 The set F1 with derived set {1}
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Fig. 6.2 The set F2 with derived set F1

Similarly, we can make each isolated point of F2 the limit point of a sequence of
isolated points of a set F3, so that the operation ′ applies exactly four times to F3,
and so on. For each natural number n we can construct a closed set Fn to which the
operation ′ applies exactly n + 1 times.

This is only the beginning. We now construct a set Fω to which the operation ′

applies infinitely often, by arranging that, in Fω,

1
2

is the limit of a set like F1 lying between 0 and
1
2

,

3
4

is the limit of a set like F2 lying between
1
2

and
3
4

,

7
8

is the limit of a set like F3 lying between
3
4

and
7
8

,

...

This can obviously be done by suitably scaling and translating the sets
F1, F2, F3, . . .. Then

One application of ′ removes all points in Fω that are <
1
2

Two applications of ′ remove all points in Fω that are <
3
4

Three applications of ′ remove all points in Fω that are <
7
8

...

so we can say that the operation ′ applies to Fω as many times as there are natural
numbers. This number of applications is denoted by ω (and this is why we have
already used ω for the subscript of the corresponding closed set). And, in fact to
remove the limit point 1 of Fω we need to apply the operation ′ once more after
as many steps as there are natural numbers. Naturally, we denote this number of
applications by ω + 1.

The numbersω and ω+ 1 are the first members of what Cantor called the second
number class. Today, we call these numbers (infinite) countable ordinals. (The first
number class consists of the finite ordinals 0, 1, 2, . . . .)
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Exercises

Several operations we have already seen in this book invite “transfinite continuation” like that we
have just seen for the ′ operation.

6.1.1 Diagonalization of real numbers. Given real numbers x1, x2, x3, . . ., we can use the diagonal
argument to get a new number, which we might call xω. Then we can also diagonalize the
sequence xω, x1, x2, x3, . . . to get xω+1. See how far you can continue.

6.1.2 Diagonalization of integer functions. Suppose we have a sequence of increasing functions
fi : N → N, each of which grows faster than the one before. That is fi+1(n)/ fi(n) → ∞ as
n→ ∞. Define a function fω that grows faster than each fi.

6.1.3 Classes of functions obtained as limits. Let B0 = {continuous real functions} and Bn+1 =

{limits of functions in Bn}. Supposing that each Bn+1 has members not in Bn, how might Bω
be defined?

6.2 What Are Ordinals?

In the previous section and its exercises we have seen several kinds of operation that
can be applied infinitely often. The sequence of applications may be not merely
infinite, but “longer than the sequence of natural numbers.” We can introduce
symbols ω,ω + 1, ω + 2, . . . for the numbers (“ordinals”) that measure the length of
these infinite sequences, but the meaning of the symbols will remain hazy until we
have a precise definition of what ordinals are. Cantor used set theory in an informal
way to study ordinals, but von Neumann (1923) was the first to provide a definition
of ordinal numbers as a particular kind of set. Von Neumann’s definition is so elegant
that it throws new light on the natural numbers—the finite ordinals—as well.

6.2.1 Finite Ordinals

The number 0 is defined to be the empty set, denoted by { } or ∅. Then 1, 2, 3, . . . are
defined successively as follows:

0 = { },

1 = {0},

2 = {0, 1},

3 = {0, 1, 2},

...

In a nutshell, n + 1 is the set with members 0, 1, 2, . . . , n, so each nonzero
natural number is the set of its predecessors. This magical definition, which
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seems to make numbers out of nothing, also connects the native concepts of set
theory—membership and union—with the native concepts of number theory—order
and successor. Indeed, we have:

• For any natural numbers m and n, m < n⇔ m ∈ n.
• The successor function S (n) = n ∪ {n}.

As we saw in Sect. 2.2, Grassmann discovered that number theory can be based
on the successor function, by using successor to define addition and multiplication.
By combining Grassmann’s conception of number theory with von Neumann’s
concept of natural number, we see that number theory is part of set theory. In fact,
Ackermann (1937) showed that number theory is essentially identical to finite set
theory. We will return to this surprising view of number theory in Sect. 6.6, when
we have developed a clearer picture of what set theory actually is.

Our immediate task is to explain the concept of infinite ordinals, which will force
us to examine the set concept more closely.

6.2.2 Infinite Ordinals: Successor and Least Upper Bound

To define infinite ordinals, we develop one of the key ideas of the previous section:
an ordinal is the set of all its predecessors. Given that the infinite set

ω = {0, 1, 2, 3, . . .}

of all natural numbers exists, we can say that ω is the least infinite ordinal because
its predecessors (i.e., members) are all the finite ordinals. We can also say that ω
is the least upper bound of the finite ordinals, because it is greater than them all,
but no smaller ordinal is. Thus, the step from finite to infinite ordinals demands
the existence of the infinite set ω. This set is in fact the foundation of all infinite
set theory, but for now we will be content to show how ω is the foundation of the
infinite ordinal numbers.

The successor operation S (x) = x∪{x} applies to any set. So, starting with ω, we
can generate an infinite sequence of infinite ordinals:

ω + 1 = {0, 1, 2, 3, . . . , ω},

ω + 2 = {0, 1, 2, . . . , ω, ω + 1},

ω + 3 = {0, 1, 2, . . . , ω, ω + 1, ω + 2},

...

Then, by embracing1 all the sets created so far in a single set, we obtain their least
upper bound

1Happily, set theory literally uses the braces { and } to comprehend a collection of objects as a set.
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ω · 2 = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . .}.

Another sequence of successors then leads to

ω · 3 = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω · 2, ω · 2 + 1, ω · 2 + 2, . . .},

and we similarly obtain ω · 4, ω · 5, . . ..
The sequence of ordinals ω,ω · 2, ω · 3, . . . also has a least upper bound, which

we obtain by collecting all of these sets, and all their predecessors, into a single set
ω2. Since predecessors are members, this least upper bound is simply the union of
the sets ω,ω · 2, ω · 3, . . .. That is

ω2 = ω ∪ ω · 2 ∪ ω · 3 ∪ · · · .

As we ascend to larger ordinals, it becomes more and more convenient to take unions
of infinitely many sets to obtain least upper bounds. Indeed, the union of any set of
ordinals is the least upper bound of the set.

In this way we can grasp ordinals ω3, ω4, ω5, . . . and their least upper bound ωω;
then ordinals ωω

2
, ωω

3
, ωω

4
, . . . and their least upper bound ωω

ω

; and so on, to ever
more dizzying heights.

Yet, mind-boggling as these ordinals may be, they are all countable. That is, they
are sets with countably many members, because every least upper bound operation
applied so far involves a countable union of countable sets.

6.2.3 Uncountable Ordinals

Most of the ordinals encountered in this book are countable, but it should be no
surprise that uncountable ordinals exist. In fact, the least uncountable ordinal, ω1

should be the set of all countable ordinals. However, to make this definition of ω1

precise we need a precise definition of ordinal and <. Here it is.

Definition. An ordinal α is a set that is

• ∈-transitive: that is, if β ∈ α and γ ∈ β, then γ ∈ α,
• ∈-linear: that is, if β, γ ∈ α, then either β ∈ γ or γ ∈ β.

Also β < α if and only if β ∈ α.

It is not hard to check that this definition is satisfied by all the ordinals mentioned
so far. However, the nature of the sets that satisfy the definition depends on the nature
of the membership relation ∈, and hence ultimately on the axioms of set theory. We
discuss these axioms more fully later, but one should be mentioned here because it
is motivated by the properties of ordinals. This is the axiom of foundation, which
says that there is no infinite descending membership sequence · · · ∈ α3 ∈ α2 ∈ α1.
Among other things, the axiom of foundation ensures that each set of ordinals has a
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least member, and hence it enables definitions and proofs by induction on ordinals.
This extended form of induction is called transfinite induction.

Exercises

Use the definition of ordinal to verify the following.

6.2.1 If β is an ordinal and α ∈ β, then α is an ordinal.
6.2.2 If α and β are ordinals and α ⊆ β, then α ≤ β.
6.2.3 If α is an ordinal, then so is α + 1 = α ∪ {α}.
6.2.4 If α1 < α2 < · · · are ordinals, so is their lub,

⋃
i αi.

6.2.5 Also verify that
⋃

i α is indeed the lub of the αi, because any ordinal less than
⋃

i α is less
than some αi.

6.3 Well-Ordering and Transfinite Induction

The usual way to state the axiom of foundation, which obviously implies the
nonexistence of infinite descending membership sequences, is the following:

Axiom of Foundation. Each nonempty set S has an ∈-least member; that is, an
element x ∈ S such that y � x for any y ∈ S .

It follows, in particular, that x � x for any set x, and the definition of ordinal
implies that any ordinal σ is linearly ordered2 by the membership relation ∈. That
is, if we write the usual order symbol < in place of ∈, then any α, β, γ in σ satisfy:

1. α ≮ α (Irreflexivity)
2. If α � β then either α < β or β < α (but not both). (Linearity)
3. If α < β and β < γ then α < γ. (Transitivity)

The axiom of foundation gives a fourth property that makes the linear ordering a
well-ordering:

4. Any subset of σ has least member. (Well-foundedness)

It follows that σ has a least member, which can only be the empty set 0. Because
if the least α ∈ σ were not empty, any β ∈ α would be a lesser member of σ,
contradicting the definition of α. It similarly follows that the least member of σ−{0}
is {0} = 1, and so on. Indeed, it is easy to see that σ is the set of all ordinals less
than σ.

2We wrote down the defining properties of a linear ordering once before, in Sect. 2.5. There we
stated them as properties of ≤, because they were motivated by the ⊆ relation between lower
Dedekind cuts. Here we are motivated by the ∈ relation, so we write them as properties of <.
However, it is easy to see that the two sets of properties are equivalent.
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Ordinals are not the only examples of well-ordered sets, but they include the
order types of all well-ordered sets, in the following sense.

Ordinal Representation of Well-orderings. If < is a well-ordering relation on a
set W, then 〈W, <〉 is order-isomorphic to some ordinal σ under the ∈ relation. That
is, there is a bijection f : σ→ W such that

α ∈ β⇔ f (α) < f (β).

Proof. We would like to define f “inductively” by saying

f (0) = least member of W,

f (α) = least member of W − { f (β) : β < α},

until we reach an ordinal σ such that { f (β) : β < σ} = W. However, we have not
yet proved that such a transfinite induction is valid, so we take the following more
cautious approach.

Consider all the bijections fα (between ordinals α and subsets of W) satisfying
the following conditions:

1. fα(β) is defined for all β < α.
2. fα(0) = least member of W.
3. For any γ < α, fα(γ) = least member of W − { fα(β) : β < γ}.

The set of such functions is not empty, since it includes the function f1 consisting
of the single ordered pair 〈0, least member of W〉.

Also, any two such functions, say fα and gδ, are compatible in the sense that
fα(γ) = gδ(γ) on any γ on which they are both defined. Because if fα(γ) � gδ(γ) then
there is a least γ for which this happens, and one sees that this least γ contradicts
conditions 2 and 3 above. Compatibility implies that, for each α, there is at most
one function fα satisfying conditions 1, 2, and 3.

Now let σ be the least ordinal greater than all the α for which fα exists. By
compatibility, the union f of { fα : α < σ} is an injection f : σ→ W. If f is not onto
W then W − { f (α) : α < σ} is not empty, and we can define

f (σ) = least member of W − { f (α) : α < σ},

which contradicts the definition of σ.
Thus, f is a bijection σ → W, and it easily follows from conditions 2 and 3 that

f is order-preserving. (If not, take the least α and β such that α ∈ β but f (α) > f (β),
and derive a contradiction.) �

This theorem shows why any well-ordered set is isomorphic to an ordinal. The
proof also shows how one may justify defining a function by transfinite induction—
that is, by taking the union of all functions that satisfy the induction up to a certain
ordinal. From now on we will use inductive definitions without detailed justification.
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Another important corollary of this proof is the following.

Corollary 3. For any two ordinals μ and ν, either μ ∈ ν or ν ∈ μ.

Proof. As above, take the union of all bijections fα from some α < μ to α < ν. The
set is not empty because it includes the function f1 consisting of the single ordered
pair 〈0, 0〉. If we now take σ to be the least ordinal greater than the α for which fα
exists, then we find σ = μ or σ = ν. It follows that μ ∈ ν or ν ∈ μ. �

Exercises

In Sect. 6.1 we gave an example of a well-ordered set of rationals with the order type ω; namely,{
1
2 ,

3
4 ,

7
8 , . . .

}
. We also indicated, by a picture, how to construct a set of numbers with order

type ω2.

6.3.1 Give an explicit set of rational numbers with order type ω2.
6.3.2 Given a well-ordered set of rationals with order type α, explain how to obtain a set of

rational with order type α + 1.
6.3.3 Given well-ordered sets of rationals with order types α1, α2, α3, . . ., explain how to construct

a set of rationals with order type at least
⋃

i αi.
6.3.4 Deduce, from Exercises 6.3.2 and 6.3.3 that there are sets of rationals with the order types

of all countable ordinals.

The inductive definitions of sum and product from Sect. 2.2 are easily extended to all ordinals
by transfinite induction. The “induction step” must now be supplemented by a step for ordinals
that are not successors, the so-called limit ordinals. Here is the definition of α + β by induction
on β:

α + 0 = α

α + (β + 1) = (α + β) + 1

α + γ = lub
β<γ

(α + β) for a limit ordinal γ.

6.3.5 Using the definition of sum, prove by induction on γ that the associative law holds for
ordinal addition: α + (β + γ) = (α + β) + γ.

6.3.6 Give an example to show that the commutative law does not hold for ordinal addition.
6.3.7 Give an inductive definition of ordinal multiplication, and show that it satisfies the

associative law.

6.4 The Cantor–Bendixson Theorem

The first definition by transfinite induction that we will use is that of the sequence
of derived sets of a closed set, which we began to discuss in Sect. 6.1. As in the
exercises above, we use the term limit for an ordinal that is not a successor.

Definition. If F is a closed set, then F(α) is defined for all countable ordinals α as
follows:
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F(1) = F − {all isolated points of F}.

F(α+1) = F(α) − {all isolated points of F(α)}.

F(λ) =
⋂
α<λ

F(α) when λ is a limit ordinal.

In a construction like this one, where points are removed at successor stages α+1,
taking the intersection is the natural thing to do at a limit stage λ, because

⋂
α<λ F(α)

omits all the points removed from F(α) at stages α + 1 < λ.
The above definition makes sense even for uncountable λ, but we are about to

show that the sequence F(α) becomes constant at some countable α, so it is pointless
to go to uncountable stages. On the other hand, it should be clear from Sect. 6.1
and its exercises that F(α) can continue to change up to an arbitrarily high countable
ordinalα. Thus, the theorem on the eventual constancy of F(α)—the famous Cantor–
Bendixson theorem—is a subtle one depending on the general concept of countable
ordinal.

The key to the proof of the Cantor–Bendixson theorem is the following theorem,
which limits the length of a well-ordered nested sequence of open sets.

Length of a well-ordered nested sequence of open sets. If we have open sets Uα
for α ≤ some ordinal γ, and if α < β ≤ γ⇒ Uα � Uβ, then γ is countable.

Proof. Since Uα � Uα+1, for each α < γ we have a point xα ∈ Uα+1 − Uα and
hence a rational open interval Iα such that xα ∈ Iα ⊂ Uα+1. Indeed, we can define Iα
explicitly as the first interval I (in some fixed enumeration of the rational intervals)
such that I ⊂ Uα+1 but I � Uα.

The intervals Iα, Iβ are necessarily different for α < β, since Iα ⊂ Uβ but Iβ � Uβ,
hence there are only countable many ordinals < γ, because there are only countably
many rational intervals. �

Cantor-Bendixson Theorem. If F is a closed subset of R and F(α) denotes the αth
derived set of F, then F(α) = F(α+1) for some countable α, and hence F(α) is either
empty or perfect.

Proof. It follows from the definition of the sets F(α) that they are all closed and
that Fα ⊇ Fβ for α < β. Hence the open complements Uα of the F(α) are such that
Uα ⊆ Uβ for α < β.

Then, since a nested well-ordered sequence of open sets has countable length, it
follows that Uα = Uα+1 for some countable ordinal α, and hence F(α) = F(α+1). �

Exercises

The following exercises explain why we cannot simply find the interval Iα inside Uα+1 −Uα in the
proof of the theorem on the length of a sequence of nested open sets.
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6.4.1 Give an example of open sets U, V with U ⊂ V but with no open interval I ⊂ V − U.
6.4.2 For your example of open sets U, V above, find an open interval I such that I ⊂ V but I � U.

There is an easier theorem about sequences of disjoint open sets.

6.4.3 Show that any collection of disjoint open intervals in R is countable.
6.4.4 Use Exercise 6.3.4 to construct, for any countable ordinal γ, disjoint half-open intervals

[aα, aα+1) for all α < γ with the properties

aα < aβ ⇔ α < β and
⋃
α<γ

[aα, aα+1) = [0, 1).

Since each [aα, aα+1) is homeomorphic to [0,1), it follows that
⋃
α<γ[aα, aα+1) is homeomorphic to

a structure we may call the γ-line [0, 1)×γ. The γ-line contains a copy [0, 1)×{α} of [0,1) for each
α < γ, with copy α to the left of copy β when α < β, and the point 0 in copy β is the least upper
bound of all points in the copies α for α < β.

6.4.5 Deduce from Exercise 6.4.4 that the γ-line is homeomorphic (and order isomorphic) to [0,1)
for each countable ordinal γ.

6.4.6 Similarly define the ω1-line, and explain why the ω1-line is not homeomorphic (or order
isomorphic) to [0,1).

The ω1-line is also known as the long line.

6.5 The ZF Axioms for Set Theory

It should now be clear that the set concept is practically indispensable for the study
of analysis in general and the real numbers in particular. Moreover, we have seen that
even the most basic mathematical objects—the natural numbers—can be naturally
defined as certain sets. Certain axioms for sets also appear to be indispensable.
For example, we need to assume the existence of the empty set and an infinite set
(most conveniently, the set of natural numbers). In this section we list the most
commonly used axioms for set theory, with comments on their role as a foundation
for mathematics. They are called the Zermelo–Fraenkel axioms, after Ernst Zermelo
who proposed most of them in Zermelo (1908), and Abraham Fraenkel who made an
important amendment in Fraenkel (1922). For short, they are called the ZF axioms.

The underlying idea of the ZF axioms is that “everything is a set”; in particular,
natural numbers, real numbers, and functions are certain kinds of sets. In line with
this conceptual economy, all relations between sets are based on membership ∈ and
equality =. Thus, the language of ZF set theory is very simple: it has variables
x, y, z, . . . to denote sets, the relation symbols ∈ and =, and symbols for the basic
concepts of logic—“and,” “or,” “not,” “for all,” and “there exists.” We are not going
to use formal logic symbols in this book, but it is necessary to know that they exist,
and hence that there is a mathematical precise concept of “formula in the language
of ZF set theory.” This is because the ZF axioms include an infinite list of formulas,
called the replacement schema.

Most ZF axioms describe operations for producing new sets from old, by clearly
defined processes. Implicitly, they describe the cumulative concept of set, according
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to which each set is constructed from previously defined sets (starting with the
empty set). Thus, sets arise in stages, which turn out to be ordinal number stages.
At no stage does one have a “set of all sets,” because there is always a next stage, at
which new sets arise. In this way we avoid paradoxes that arose in the early history
of set theory.

Extensionality. Two sets are equal if and only if they have the same members.
It follows, for example, that

{0, 1} = {1, 0} = {1, 1, 0},

because each of these sets has the same members, namely, 0 and 1.
Empty Set. There is a set with no members.

It follows from Extensionality that the empty set (which we call 0 from now
on) is unique. In the cumulative hierarchy of sets, 0 is at the bottom level.

Pairing. For any sets X and Y there is a set {X, Y}whose only members are X and Y.
From the empty set 0 that we have from the previous axiom, we can now

construct the set {0, 0}, which equals {0} by Extensionality. Thus, 1 = {0} occurs
at the next level of the cumulative hierarchy.
By further use of pairing we can construct 2 = {0, 1}, but how do we construct
3 = {0, 1, 2}? See the next axiom.

The pairing axiom gives us the unordered pair {X, Y}, but there is a trick (due
to Kuratowski 1921) which also gives the ordered pair 〈X, Y〉. Namely, let

〈X, Y〉 = {{X}, {X, Y}}.

This definition, clumsy though it may be, has the essential property that

〈X1, Y1〉 = 〈X2, Y2〉 ⇔ X1 = X2 and Y1 = Y2.

Union. For any set X there is a set whose members are the members of members of
X.

In the case where X = {Y, Z}, the members of the members of X form what we
call the union of Y and Z, Y ∪ Z. This special case of union suffices to form

3 = {0, 1, 2} = {0} ∪ {1, 2}

from sets previously defined by pairing, and more generally we get

n + 1 = n ∪ {n}

An important application of union for infinite sets X is where X is a set of
ordinals. In this case the set of members of the members αi of X,

⋃
i αi, is the

least upper bound of the ordinals αi.
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Infinity. There is an infinite set; in fact a set that includes 0 and, along with any
member X, also the member X ∪ {X}.

Thus, the members of this set include all the finite ordinals. However, we do
not yet have the set ω whose members are exactly the finite ordinals. To obtain it,
we would like an axiom that guarantees the existence of “definable subsets,”
because we can write down a definition of finite ordinal. Zermelo proposed
such an axiom, and Fraenkel proposed something stronger, involving definable
functions.

Replacement. For any function definition f , the values f (x), where x is a member
of a set X (the domain of f ), form a set f (X) (the range of f ).

Replacement is actually an infinite schema of axioms, one for each two-
variable formula ϕ(x, y) written in the language of ZF. Such a formula defines
a function f if, for each x ∈ X, ϕ(x, y) holds for exactly one y [called the function
value f (x)].

The “definable subset” axiom used by Zermelo is the special case of
Replacement where f maps the set X onto a subset of itself. For example, if
we want to obtain the subset ω = {0, 1, 2, . . .} from a set Y whose members y
include 0, 1, 2, . . .we define f on Y by letting f (y) = 0 if y is not a finite ordinal,
and let f (y) = y otherwise.

Power Set. For any set X there is a set P(X) whose members are the subsets of X.
P(X) is called the power set of X, and we have already seen one way in which

Power Set is a “powerful” axiom, in Sect. 3.8. By the diagonal argument, P(X)
is a set of higher cardinality than X. In particular, P(ω) is an uncountable set.

The power set axiom is also needed to prove the existence of the least
uncountable ordinal ω1. In fact, any proof that uncountable sets exist needs the
power set axiom, because the other ZF axioms can be satisfied by a collection
of countable sets. (Similarly, Infinity is needed to prove the existence of infinite
sets, because the other ZF axioms can be satisfied by a collection of finite sets;
see the exercises).

Foundation. Every set X has a ∈-minimal member; that is, an x ∈ X such that
y ∈ x for no y ∈ X.

As we have already seen, Foundation guarantees that any set that is linearly
ordered by the membership relation ∈ is in fact well-ordered by ∈, which
simplifies the definition of ordinal.

Foundation also guarantees the cumulative set concept, by ensuring that each
set X has a rank α—an ordinal number that counts the number of applications of
the power set axiom needed to build X, starting from the empty set. We elaborate
on the concept of rank in the exercises and the next two sections.

Exercises

A collection of sets called the hereditarily finite sets is obtained by the following inductive
construction, already mentioned in the exercises to Sect. 3.8.
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V0 = 0, the empty set,

Vn+1 = Vn ∪ P(Vn).

The union Vω =
⋃

n Vn is the set of hereditarily finite sets.

6.5.1 Prove by induction on n that Vn+1 = P(Vn).
6.5.2 Prove by induction on n that each member of Vn is finite, and hence that members of

members, members of members of members, and so on, are all finite.
6.5.3 Explain why Vω satisfies all ZF axioms except Infinity.

The following exercises explore the idea of a “set of all sets” and the contradictions to which it
leads.

6.5.4 If X is the set of all sets, why is P(X) contradictory?
6.5.5 In particular, what about Y = {Z ∈ X : Z � Z}?

6.6 Finite Set Theory and Arithmetic

As we saw in Sect. 6.2, the numbers 0, 1, 2, 3, . . . can be taken to be the sets

0 = {}, 1 = {0}, 2 = {0, 1}, . . . ,

with the successor function S (n) = n ∪ {n}. Thus, ZF can prove the existence of
the basic objects of arithmetic. In fact, if we omit Infinity from the ZF axioms, the
remaining axiom set ZF−Infinity is equivalent to the Grassmann–Dedekind–Peano
axioms mentioned in Sect. 2.2. This is because we do not need Infinity to obtain the
individual sets 0, 1, 2, 3, . . . and the successor function, and the axiom of foundation
gives us definition and proof by induction.

In a little more detail, here is how the foundations of arithmetic can be established
in ZF−Infinity.

1. The natural numbers 0, 1, 2, 3, . . . are the finite ordinals. We gave the definition
of “α is an ordinal” in Sect. 6.2. An ordinal α is finite if α and all of its members
each have a greatest member, where γ is the greatest member of β if γ ∈ β and
γ � δ for any δ ∈ β.

2. Induction amounts to the principle that, if some natural number n has property P,
then there is a least natural number with property P (for properties P definable in
the language of ZF). Since n is a finite ordinal, the numbers ≤ n are the members
of S (n) = n ∪ {n}, so the least number with property P is the least member of
the set

{m : m ∈ n ∪ {n} and m has property P}.

This least member exists by the foundation axiom.
3. Since induction is available, we can define sum and product by induction, as in

Sect. 2.2. All other functions and theorems of arithmetic are then obtainable by
induction.
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Of course, the subject matter of ZF−Infinity is more than just the finite ordinals
0, 1, 2, 3, . . .—but not much more, as it happens. The only sets that ZF−Infinity can
prove to exist are those obtained from the empty set 0 by iterating the power set
operation a finite number of times. (These are the members of the sets Vn discussed
in the exercises to the previous section, where it was shown that they satisfy all the
axioms of ZF−Infinity. Consequently, the sentence “every set belongs to some Vn”
is consistent with ZF−Infinity.)

These finite sets can be encoded by natural numbers, and set operations such
as pairing and union can then be interpreted as operations on numbers. This
“arithmetization” of finite set theory is based on the ideas of Gödel (1931), who
arithmetized formal logic to prove his famous theorem on the incompleteness of
formal systems for arithmetic. The details of arithmetization are tedious and do not
concern us, but it is useful to know that arithmetic is strong enough to interpret other
systems for operating on finite objects. Its ability to interpret finite set theory is the
reason we say that arithmetic is equivalent to ZF−Infinity.

Exercises

A typical example of arithmetization is the encoding of an ordered pair 〈m, n〉 of natural numbers
by a single natural number.

6.6.1 Give ways to encode 〈m, n〉 by a natural number; (i) using only addition and multiplication,
and (ii) using exponentiation.

6.6.2 Also give an inductive definition of exponentiation, assuming definitions of addition and
multiplication.

Ordered pairs are useful for extending the arithmetic of natural numbers to integers and rational
numbers.

6.6.3 Suppose we want the pair 〈a, b〉 to behave like a − b. Under what conditions do 〈a, b〉 and
〈a′, b′〉 represent the same integer?

6.6.4 Also define addition and multiplication of pairs so as to reflect addition and multiplication
of integers.

6.6.5 Suppose we want the pair 〈a, b〉 to behave like a/b. Under what conditions do 〈a, b〉 and
〈a′, b′〉 represent the same rational number?

6.6.6 Also define addition and multiplication of pairs so as to reflect addition and multiplication
of rationals.

6.7 The Rank Hierarchy

The claim that ZF captures the idea of building the universe of sets in ordinal-
numbered stages is formalized by a hierarchy of sets Vα, and the associated concept
of rank, which are defined by an induction of all the ordinal numbers α.
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Definition. Sets Vα are defined as follows:

• V0 = 0 (the empty set),
• Vα+1 = P(Vα),
• Vλ =

⋃
β<λ Vβ for each limit ordinal λ.

The rank of a set X is defined inductively as the least α such that each member of X
has rank less than α.

Thus, Vα may be viewed as the set of all sets built using < α applications of the
power set operation P, and the claim that every set is built at some stage is:

Existence of Rank. Each set X has a rank.

Proof. Suppose X is a set that does not have a rank. Then some member X1 of X
also does not have a rank. Because if each x ∈ X has a rank, rank(x), the replacement
axiom tells us that the range of the rank function on X is a set of ordinals, with union
α say. This means that X has a rank (≤ α + 1), contrary to assumption.

Thus, there are members X1 with no rank, and similarly members X2 of these X1

with no rank, and so on. With the help of the replacement and union axioms we can
collect these

members X1 of X with no rank,
members X2 of members of X with no rank,

. . . . . . . . . . . . . . . . . . . .

into a single set N. But then N is a set with no ∈-minimal member, contrary to the
foundation axiom. �

The universe of all sets can therefore be viewed as the union of the sets Vα, as α
ranges over all the ordinals. It is natural to use the symbol V to denote the universe
of all sets, though one should always remember that V is not a set. [If it were, P(V)
would have cardinality greater than the universe, which is absurd.]

6.7.1 Cardinality

In Sect. 3.3 we defined sets to be of the same cardinality if there is a bijection
between them. This suggests that such sets share a common property, called
cardinality or cardinal number, which we have not yet defined. Up until now, the
problem in defining “cardinality” is that the collection of all sets with the same
cardinality is not a set (for much the same reason that the union V of all Vα is not
a set). But with the help of the concept of rank we can get around this problem as
follows.

Definition. For any set X, let α be the minimal rank of a set with the same
cardinality as X. Then the cardinality of X is the set

{Y ∈ Vα : Y has the same cardinality as X}.



6.8 Large Sets 143

It still does not seem right to call this set a cardinal number, because it is not
clear that cardinalities can be ordered. It would be simpler if each set X had the
same cardinality as an ordinal, in which case we could take the least such ordinal
as the cardinal number of X. This can in fact be achieved with an extra axiom, the
axiom of choice, which is commonly added to ZF for this reason. There are in fact
many advantages to the axiom of choice, and some disadvantages, which we discuss
in the next chapter.

Exercises

6.7.1 Show that the rank of an ordinal α is α.
6.7.2 Show that the collection of all ordinals is also not a set.
6.7.3 By making suitable definitions of rational numbers and real numbers, find the ranks of Q

and R.

Also locate the following sets in the rank hierarchy.

6.7.4 The set N × N of all ordered pairs from N.
6.7.5 The set of all functions: N→ N.

6.8 Large Sets

In Sect. 3.8 we claimed that there are “largeness” properties so extreme that sets with
those properties cannot be proved to exist. We suggested that one such “largeness”
property is inaccessibility, where an inaccessible set is one that has infinite members
and is closed under the operations of power set and taking ranges of functions. It
should now be apparent that if Vα is an inaccessible set, then Vα satisfies the ZF
axioms.

Certainly, if Vα is large enough to have an infinite member, then it satisfies
the empty set and infinity axioms. It satisfies power set and replacement by the
hypothesis of closure under power set and taking ranges of functions. Closure under
power set also guarantees that α is a limit ordinal, in which case Vα is also closed
under pairing and union, so Vα satisfies the pairing and union axioms. Finally, any
Vα satisfies foundation, so Vα satisfies all the ZF axioms.

It follows that Vα also satisfies any logical consequence of the ZF axioms; that
is, any proposition provable in ZF set theory. But now suppose we take the least α
such that Vα is inaccessible. It follows that any Vβ in Vα is not inaccessible, so Vα
satisfies the sentence “there is no inaccessible Vβ.” Existence of an inaccessible set
is therefore not provable in ZF.

This explains the surprising claim made at the end of Sect. 3.8: if inaccessible
sets exist, then their existence is not provable in ZF.

It is actually in the nature of strong axiom systems like ZF that there are
many sentences they can state, but neither prove nor disprove. Such sentences
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are said to be independent of the system in question. The famous incompleteness
theorem of Gödel (1931), mentioned in Sect. 6.6, gives a general explanation for
this phenomenon of independent sentences. ZF is particularly remarkable because
its independent sentences include very natural ones for which independence can
be established without appealing to the Gödel incompleteness machinery. They
include the existence of “large” sets, such as inaccessibles—as was first noticed by
Kuratowski (1924)—but also the axiom of choice (AC) and the continuum hypoth-
esis (CH). The independence of AC and CH was established by a combination of
the works of Gödel (1939) and Cohen (1963).

It should also be mentioned that for any “sufficiently strong” axiom system Σ
there is a sentence Con(Σ), expressing the consistency of Σ, which is independent of
Σ if Σ is consistent. This result is known as Gödel’s second incompleteness theorem.
It means that when we use the axioms of a strong system, such as ZF, we not only
assume the axioms but also their consistency. This is natural enough, I suppose. But
it means that when we claim that a sentence of ZF is independent we really should
add “assuming that ZF is consistent.” Because of this, statements about consistency
of strong systems take a relative form: “if Σ is consistent then so is Σ′.”

For example, the results of Gödel (1939) have the form:

If ZF is consistent, then so is ZF+AC+CH.

This is enough to guarantee that there is no harm in using AC or CH on top of ZF.
No contradiction will result, unless there is already a contradiction in ZF.

Another relative consistency result, due to Solovay (1970), shows that inacces-
sibles affect the fundamental problem of measuring sets of real numbers, raised in
Sect. 1.7:

If ZF+AC+“an inaccessible set exists” is consistent,
then so is ZF+“all sets of real numbers are measurable.”

Surprisingly, it is not possible to prove the consistency of the latter theory from
Con(ZF) alone; one really needs the extra strength derived from the assumption of
an inaccessible set. Under this assumption, Solovay constructs a model of ZF+“all
sets of real numbers are measurable”; that is, a collection of sets satisfying all the
ZF axioms and in which all sets of reals are measurable. Another remarkable feature
of Solovay’s model (already mentioned in Sect. 5.7) is that it has the perfect set
property for all sets of reals. The concept of measurability in Solovay’s model is a
very broad one—known as the Lebesgue measure—which we will study in Chap. 9.

6.9 Historical Remarks

The ordinal numbers were introduced by Cantor (1883) as a natural extension of
the positive integers 1, 2, 3, . . . . At first Cantor was interested in the ordinals with
countably many predecessors, such as
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ω,ω + 1, . . . , ω · 2, . . . , ω2, . . . ,

which he needed to count the iterations of his derived set operation. To create these
numbers he appealed to two “generating principles”:

1. Forming the successor of any ordinal.
2. Forming the “limit,” or least upper bound, of any set of ordinals with no greatest

member.

Cantor was unclear about how a set of ordinals might be specified. But, applied
to the “set of ordinals with countably many predecessors,” his second generating
principle produces a spectacular result: the least uncountable ordinal.

In this way, Cantor discovered a new path to uncountable sets. Indeed, he
believed that his second generating principle would produce ordinals of higher and
higher cardinality—giving a “scale” by which it might be possible to measure the
cardinality of other uncountable sets, such as R.

This was how Cantor arrived at his second, and stronger, form of the continuum
hypothesis: R has the same cardinality as the first uncountable ordinal. He was at
first optimistic that his theory of ordinal numbers would enable him to prove the
continuum hypothesis, but the problem was harder than he expected, and there was
a hiatus in his set theory research until the 1890s.

In the meantime, Dedekind (1888) published his theory of natural numbers in
a small book Was sind und was sollen die Zahlen? (What are numbers and what
are they for?). As mentioned in Sect. 2.2, his book was in part a rediscovery
of Grassmann’s inductive foundations for arithmetic, but Dedekind went further
by establishing a set-theoretic foundation for induction itself. In particular, in his
Theorem 126, Dedekind proved the first theorem asserting the existence of functions
defined by induction. His proof, by piecing together partial functions, is the ancestor
of many similar arguments, such as the one used in Sect. 6.3 to prove that well-
ordered sets are isomorphic to ordinals.

With these results, Dedekind went further than any of his contemporaries in
building set-theoretic foundations for mathematics. But in one respect he went too
far—in his Theorem 66: There exist infinite systems. Dedekind argued that the realm
S of his own thoughts is infinite, because for any thought s there is the thought

ϕ(s) = “s can be thought”.

Since not every thought is of the form ϕ(s), ϕ is a bijection between S and a proper
subset of itself. Hence S is infinite. QED.

One problem with this argument, of course, is that S is not well-defined by
mathematical standards. A deeper problem, which Dedekind did not foresee, is that
even well-defined properties may not define sets, as mathematicians were about to
learn in the 1890s.

As we saw in Sect. 3.8, in 1891 Cantor discovered that any set has more subsets
than elements, so there is no largest set. Cantor was pleased with this discovery,
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because it put his 1883 belief in the ever-growing scale of ordinal numbers on
a sound basis. But it was bad news for mathematicians who thought that every
property determines a set. With no largest set, there is no “set of all sets,” and hence
there is no set corresponding to the property of being a set. Dedekind was disturbed
by Cantor’s discovery, to the extent that he withdrew a new edition of Was sind und
was sollen die Zahlen? that was due to be published in 1903. (See Ferreirós 1999,
p. 296.)

Cantor was not disturbed; in fact he tried to profit from the related result
that there is no set Ω of all ordinals. He hoped to use this fact to prove the
well-ordering theorem that every set can be well-ordered. His erroneous (and
unpublished) argument is described in Ferreirós (1999), p. 295. Suppose, for the
sake of contradiction, that V is a set with no well-ordering. It seemed to Cantor that
V must then be so large that any ordinal, and hence Ω itself, can be mapped into V .
But in that case V is a contradictory set like Ω.

Zermelo was the first to notice a flaw in the details of Cantor’s argument: an
unconscious use of what we now call the axiom of choice when mapping ordinals
into V . The axiom of choice had been used several times in set theory and analysis
before this, as we will see in the next chapter. Zermelo was the first to bring it to
light, and in Zermelo (1904) he proved that the well-ordering theorem is actually
equivalent to the axiom of choice. Since 1904 the axiom has played an important
role in set theory, as the principle underlying many results not provable from the ZF
axioms alone.

As mentioned in Sect. 6.5, most of the ZF axioms were proposed by Zermelo
(1908). It is thought by some historians that Zermelo’s motive was to establish
foundations for his proof of the well-ordering theorem, but his declared intention
was to avoid paradoxes, such as the “set of all sets.” The Zermelo axioms do this
in a natural way by building sets cumulatively from the bottom up: starting from
the empty set and generating all other sets by pairing, union, power set, and the
“definable subset” axiom, which Zermelo called Ausseronderung (“cutting out”).
Aussonderung asserts that, for any set X and any well-defined property P, the
members of X with property P form a set. Thus, properties can define sets, but
only as subsets of sets already defined. Because of this, the existence of an infinite
set has to be an axiom—not a theorem as Dedekind had hoped.

Zermelo set theory cannot prove the existence of sets of high rank. As Fraenkel
(1922) observed, it cannot prove the existence of the set

{N,P(N),P(P(N)), . . .},

which is the range of the function f defined on N by

f (1) = N, f (n + 1) = P( f (n)).

This is one of the reasons why Fraenkel strengthened the Zermelo axioms with
the replacement axiom. The schema of the replacement axiom generalizes Aus-
sonderung, while still being in the spirit of building all sets from those previously
constructed.
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Fig. 6.3 Ernst Zermelo, Abraham Fraenkel, and John von Neumann

The paper of von Neumann (1923) helped to popularize the ZF system with his
elegant definition of ordinals, and proofs of the basic results about them. These
included the theorem that every well-ordered set is isomorphic to an ordinal and the
transfinite generalization of Dedekind’s theorem on definition by induction. Finally,
von Neumann (1929) cemented the relationship between ZF and the cumulative set
concept by using the foundation axiom to prove that every set belongs to some Vα.

The picture of John von Neumann in Fig. 6.3 is a 1925 photograph from the
John von Neumann Collection, Archives of American Mathematics at SRH (item
e_math_00134 from Box 4RM51). It is at the Dolph Briscoe Center for American
History in Austin, Texas, and is used with their permission.



Chapter 7
The Axiom of Choice

PREVIEW

The ZF axioms allow us to assert the existence of any set whose members
are selected according to some definable “rule”—this is essentially what the
replacement schema says. However, we often want to assert the existence of a
set without knowing a rule for selecting its members. Typically, the members are
simply “chosen” from other sets, but not according to any “rule.” When infinitely
many choices are required, we may not be able to guarantee the existence of the set
without some axiom of choice.

The full axiom of choice (AC), described in Sect. 7.1, is a powerful axiom that
greatly simplifies set theory. In particular, it implies that any set can be well-ordered,
so that methods such as induction—previously applicable only to countable sets—
apply to all sets.

On the other hand, AC also has some negative consequences, inasmuch as it
implies the existence of sets with irregular or even bizarre properties. We give one
example of an irregular property (an undetermined set) in Sect. 7.6, and further
examples occur in Chap. 9.

For this reason it is also of interest to consider weaker axioms of choice,
with consequences that are entirely positive. One of these, the countable axiom
of choice (countable AC), is of particular value in analysis, because it is strong
enough to prove some desirable properties of sets and functions, but too weak
to admit the bizarre consequences of full AC. To illustrate what we mean by
“positive” consequences of choice, we begin this chapter with some applications
of countable AC.

7.1 Some Naive Questions About Infinity

In the early days of set theory the following questions arose and, seemingly, were
easily answered.

J. Stillwell, The Real Numbers: An Introduction to Set Theory and Analysis,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-01577-4__7,
© Springer International Publishing Switzerland 2013
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1. Does every infinite set have a countably infinite subset?
The naive answer is yes, because if S is infinite we can remove an element

s1 from S , and S − {s1} is still infinite. Then we can remove an element s2 from
S − {s1} and S − {s1, s2} is still infinite; and so on. Proceeding in this way, we can
remove an infinite sequence s1, s2, s3, . . . from S , so {s1, s2, s3, . . .} is a countably
infinite subset of S .

2. Is a countable union of countable sets countable?
Again, the naive answer is yes. If {S 1, S 2, S 3, . . .} is a countable set of

countable sets, let

S 1 = {s11, s12, s13, . . .}

S 2 = {s21, s22, s23, . . .}

S 3 = {s31, s32, s33, . . .}

...

Then we can enumerate the members si j of the union of these sets S k in the same
way that we enumerate the members (i, j) of N × N, namely:

S 1 ∪ S 2 ∪ S 3 ∪ · · · = {s11, s21, s12, s31, s22, s13, . . .}.

Hence S 1 ∪ S 2 ∪ S 3 ∪ · · · is countable.
3. If a function f is sequentially continuous at x, is f continuous at x?

We call a function f sequentially continuous at x if f (xi) → f (x) for every
sequence 〈x1, x2, x3, . . .〉 such that xi → x. As we know from Sect. 4.2, f is
continuous at x if, for each ε > 0 there is a δ > 0 such that

|x′ − x| < δ⇒ | f (x′) − f (x)| < ε.

So, given ε, we want to use sequential continuity to find a δ. Well, the alternative
is that, for some ε0, there is no δ. In this case we can find an x′1 with

|x′1 − x| < 1/2 and | f (x′1) − f (x)| ≥ ε0

then an x′2 with

|x′2 − x| < 1/4 and | f (x′2) − f (x)| ≥ ε0,

then an x′3 with

|x′3 − x| < 1/8 and | f (x′3) − f (x)| ≥ ε0,

and so on. We therefore have a sequence 〈x′1, x
′
2, x
′
3, . . .〉 with x′i → x but with

f (x′i )� f (x), contrary to sequential continuity.
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What these examples have in common is an infinite sequence of choices: in the
first example we infinitely often choose a new member from the set S , in the second
we choose an enumeration of each set S i, and in the third we choose infinitely many
real numbers x′i . This may seem like the proof of the Bolzano–Weierstrass theorem
in Sect. 3.6, where we chose an infinite sequence of intervals In ⊆ [0, 1], but there is
an important difference. In the proof of the Bolzano–Weierstrass theorem we were
able to define the sequence 〈I1, I2, I3, . . .〉, by taking In to be the leftmost half of In−1

that contains infinitely many points of the given set S ⊆ [0, 1].
In the three examples above the sequence of choices comes with no apparent

definition—one just has to believe that it exists. Around 1900, it gradually became
clear that an axiom of choice should be built into set theory to support all cases
where a set is claimed to exist by virtue of an infinite sequence of choices. This
was done by Zermelo (1904), who in fact proposed a stronger axiom allowing any
infinite set of choices. There are many ways to state Zermelo’s axiom of choice
(AC), some of which we study later, but the most convenient to begin with is the
following:

Axiom of Choice. If X is any set whose members are nonempty, then there exists a
function F, called a choice function for X, such that F(x) ∈ x for each x ∈ X.

Thus, the function F “chooses” a member F(x) from each member x of X. Here
is how the axiom of choice is deployed in the three examples above.

1. Let X be the set of all nonempty subsets of the given infinite set S , and let F be a
choice function for X. Then we can define the sequence 〈s1, s2, s3, . . .〉 inductively
in terms of F:

s1 = F(S ), sn = F(S − {s1, s2, . . . , sn−1}).

2. Let E(S i) be the set of all enumerations of the countably infinite set S i, let

X = {E(S 1), E(S 2), E(S 3), . . .},

and let F be a choice function for X. Then we can define the enumeration
{si1, si2, si3, . . .} of S i as F(E(S i)) and complete the proof as before.

3. Our assumption is that, in any open interval I that contains x there exists an x′

with | f (x′) − f (x)| ≥ ε0. We therefore have, for each n, a nonempty set

Jn = {x′ : |x′ − x| < 1/2n and | f (x′) − f (x)| ≥ ε0}.

We define

X = {J1, J2, J3, . . .}

and let F be a choice function for X. Then x′n = F(Jn) has the property
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|x′n − x| < 1/2n and | f (x′n) − f (x)| ≥ ε0,

as required for the proof.

In the latter two cases we are using the so-called countable choice axiom, where
choices are made from each member of a countable set. In the first case we use
the so-called dependent choice axiom, where a sequence of choices is made, each
dependent on the one before. Countable choice and dependent choice are the most
common choice principles used in analysis. As is clear from the examples above, it
is hard to do without these principles, and they seem natural and harmless.

The full axiom of choice has some useful consequences, as we will see in the
next section, but also some consequences that are not convenient for analysis, as
we will see in the next chapter. For this reason, we will be careful to distinguish
between the full axiom and weaker forms (such as dependent and countable choice)
in this book. Our understanding of the real numbers turns out to depend very much
upon the strength of choice principles we assume.

Exercises

Recall, from Sect. 3.9, Dedekind’s definition of an infinite set: S is infinite if there is a bijection
f : S → T , where T is a proper subset of S . The following exercises show that this property is
equivalent to the existence of a countably infinite subset of S .

7.1.1 Show that, if s ∈ S − T , then {s, f (s), f ( f (s)), . . .} is a countably infinite subset of S .
7.1.2 Show, conversely, that a countably infinite subset of S gives a bijection f : S → T , where

T is a proper subset of S .

In ZF set theory it is not provable that every infinite subset of R contains a countable subset. We
are therefore free to explore the possibility of infinite subsets of R without countable subsets. This
turns out to throw light on the difference between sequential continuity and ordinary continuity.

7.1.3 Suppose that S ⊂ R is infinite but with no countable subset. Explain why this gives an
infinite T ⊂ [0, 1] with no countable subset.

7.1.4 Let T ⊂ [0, 1] be the set mentioned in Exercise 7.1.3, and let t be a limit point of T , given
by the Bolzano–Weierstrass theorem. Explain why we can assume t � T , without loss of
generality.

7.1.5 If t and T are as in Exercise 7.1.4, show that t is not the limit of any sequence
t1, t2, t3, . . . ∈ T .

7.1.6 Show the characteristic function of T is sequentially continuous at x = t, but not continuous
there.

7.2 The Full Axiom of Choice and Well-Ordering

As we saw in the previous section, the axiom of choice allows us to make inductive
constructions involving an infinite sequence of choices. So far, we have done this
only for countable sequences, but there is nothing to stop us continuing through
ordinal number stages until the task is complete. The most famous application of
this idea is the following theorem of Zermelo (1904).



7.2 The Full Axiom of Choice and Well-Ordering 153

Well-ordering Theorem. Assuming the full axiom of choice, there is a bijection
between any set X and an ordinal.

Informal proof. The basic idea could not be simpler: repeatedly choose elements
x0, x1, x2, . . . from X, assigning them ordinal numbers as subscripts. When all the
ordinals less than α have been assigned, the next element chosen is assigned
subscript α. For example, once we have chosen elements xn for all natural numbers
n, the next element chosen (if any remain) is called xω.

Since any set of ordinals has a least upper bound α, we can continue assigning
ordinals to members of X until X is exhausted. This gives a bijection between X
and some ordinal α (the least upper bound of the ordinals assigned to members
of X).

Proof. Now we formalize the above idea with the help of a choice function F for
the nonempty subsets of X. F enables us to define the following function g, mapping
ordinals into X, by induction:

g(0) = x0 = F(X),

and if g(β) has been defined for β < α, let

g(α) = xα = F(X − {xβ : β < α}).

To see that each member of X equals xβ for some ordinal β, consider the
members of X that are of the form g(β) = xβ. These form a subset S of X (by
the “Aussonderung” axiom), and hence

{β : g(β) is defined} = g−1(S )

is a set of ordinals, by the replacement schema. But this set has an upper bound α,
since any set of ordinals has a least upper bound. Hence g(α) = xα is defined, unless
the elements xβ, for β < α, include all elements of X.

Since g(α) is not defined, by definition, it follows that S = X, and that g is a
bijection between X and the ordinal α. �

This theorem is called the well-ordering theorem because it says that any set can
be ordered like the ordinal numbers, which are well-ordered by the < relation as
defined in Sect. 6.3:

1. The relation < is a linear order: that is,

for any ordinal α, α ≮ α,

for any two ordinals α and β, either α < β or β < α,

for any three ordinals α, β, and γ, if α < β and β < γ then α < γ.

2. Any set of ordinals has a least member in the ordering by <.
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Well-ordering carries over to any set X if we label its elements with ordinal number
subscripts as in the above proof, and then order its elements by the relation ≺
defined by

xα ≺ xβ ⇔ α < β.

The relation ≺ on X then inherits the well-ordering properties from the relation < on
ordinal numbers. We have to use the new symbol ≺ because the relation ≺ may be
entirely different from the ordinary < relation on X (if < makes sense on X at all).

Indeed, the enormity of the well-ordering theorem first becomes apparent when
we consider the case where X = R, the set of real numbers. The ordinary < relation
on R is certainly a linear ordering, but it is definitely not a well-ordering, because
many sets of real numbers do not have a least member under the relation <; for
example, the set of real numbers > 0. Thus, the well-ordering ≺ of R given by
the well-ordering theorem, and ultimately by the axiom of choice, must be utterly
different from the ordinary ordering <. Indeed it turns out that, unless we assume
new axioms of set theory, it is impossible to define a well-ordering of R in the
language of ZF set theory. The well-ordering of R given by the axiom of choice
“just exists”—we cannot describe it.

The elusiveness of well-ordering is symptomatic of the elusiveness of sets
obtained from the axiom of choice. It cannot be less elusive, because well-ordering
of every set in fact implies the axiom of choice. Thus, well-ordering of all sets is
equivalent to the full axiom of choice.

Well-ordering implies the axiom of choice. If every set has a well-ordering, then
every set has a choice function.

Proof. Given a set X whose members are nonempty sets, we find a choice function
for X as follows. Let Y be the union of all members x of X, and take a well-ordering
≺ of Y. Then each x is a subset of Y, well-ordered by the relation ≺. So the function
defined by

F(x) = ≺ -least member of x

is a choice function for X. �

From now on we will often abbreviate the axiom of choice by AC.

7.2.1 Cardinal Numbers

The well-ordering theorem gives a simple way to define the cardinal number of
each set, solving the problem we raised in Sect. 6.7. Assuming AC, each set is
equinumerous with an ordinal by the well-ordering theorem, so we can make the
definition
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|X| = cardinal number of X = least ordinal equinumerous with X.

For example, |N| = ω and |{countable ordinals}| = ω1. When talking about cardinal
numbers, it is usual, following Cantor, to use the symbolism of alephs: ℵ0 = ω,
ℵ1 = ω1, and so on. The aleph symbol ℵ is the first letter of the Hebrew alphabet.

This seemingly redundant notation is useful because there is a cardinal arith-
metic (reflecting size) which is different from ordinal arithmetic (reflecting order).
We can use the same symbols for arithmetic operations in both if we adopt the
convention of using ℵ0,ℵ1, . . . in cardinal arithmetic and ω,ω1, . . . in ordinal
arithmetic. Here is an example that illustrates this usage. In ordinal arithmetic we
have

ω + ω = ω · 2 � ω.

But in cardinal arithmetic we want

ℵ0 + ℵ0 = ℵ0,

to reflect the fact that the union of two disjoint countably infinite sets is countably
infinite. Another example is

ω · ω = ω2 � ω but ℵ0 · ℵ0 = ℵ0,

the latter reflecting the fact that N2 is equinumerous with N.
We are not particularly interested in cardinal arithmetic in this book, although

many of the equinumerosity results in Sects. 3.1 and 3.3 can be interpreted as
equations in cardinal arithmetic (see exercises). However, we occasionally take
advantage of aleph notation to state results about cardinality more concisely. In
particular, we use the symbol 2ℵ0 to denote the cardinal number of R and of
P(N). This symbol is in keeping with the result from finite mathematics that an
n-element set has 2n subsets. Using this symbol, we can express the uncountability
of R by

ℵ0 < 2ℵ0 .

Exercises

R is probably the simplest example of a set for which well-ordering is not provable in ZF.
Consequently, many interesting properties of R are provable only by assuming some form of the
axiom of choice. One such property is the existence of a Hamel basis—a basis for R as vector
space over Q. In other words, a Hamel basis is a set H ⊂ R such that:

1. Each x ∈ R has the form x = r1 x1 + · · · + rk xk for some x1, . . . , xk ∈ H and r1, . . . , rk ∈ Q.
2. For distinct xi ∈ H and ri ∈ Q, r1 x1 + · · · + rk xk = 0 only if r1 = · · · = rk = 0.
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7.2.1 Deduce from the above properties that each x ∈ R is uniquely expressible in the form
x = r1 x1 + · · · + rk xk for some x1, . . . , xk ∈ H. (*)

7.2.2 Assuming a well-ordering y0, y1, . . . , yα, . . . of R, define a Hamel basis of R by transfinite
induction.

7.2.3 Given a Hamel basis h0, h1, . . . , hα, . . . of R, let

h(x) = coefficient of h0 in the unique expression (*) for x.

Show that h(a + b) = h(a) + h(b) for each a, b ∈ R, so h is an additive function, but h is
discontinuous.

Find examples from Sects. 3.1 and 3.3 that illustrate the following equations of cardinal
arithmetic.

7.2.4 ℵ0 + 1 = ℵ0.
7.2.5 2ℵ0 + ℵ0 = 2ℵ0 .
7.2.6 ℵ0

ℵ0 = 2ℵ0 .

7.3 The Continuum Hypothesis

After Cantor discovered that R is uncountable, in the 1870s, he began to investigate
other uncountable sets of real numbers, such as the Cantor set. All of the examples
he found were actually of the same cardinality as R, which led him to formulate
the so-called continuum hypothesis. His first version of the continuum hypothesis,
formulated in Cantor (1878), simply states that every uncountable set of real
numbers has the same cardinality as R.

Then in the 1880s he further developed his theory of ordinal numbers and well-
ordered sets, and became convinced that every set can be well-ordered. In other
words, he believed in the well-ordering theorem. He was not yet aware of any axiom
(such as AC) that implies the well-ordering theorem; it is more likely that he simply
wanted an orderly universe of sets, and this is hardly possible without the well-
ordering theorem.

Pursuing this train of thought further, it would be convenient if R could be well-
ordered, and best of all if R had the smallest uncountable cardinality, ℵ1. This was
Cantor’s second version of the continuum hypothesis, formulated in Cantor (1883),
and it is what is meant by the continuum hypothesis today. In terms of ordinal
numbers, it is stated as follows:

Continuum Hypothesis. There is a bijection between R and the least uncountable
ordinal, ω1.

In the language of cardinal arithmetic: 2ℵ0 = ℵ1.
This form of the continuum hypothesis has the advantage of making the

cardinality of R as simple as possible, but how plausible is it? We reiterate what
we said in the previous section: unless we assume new axioms of set theory, it is
impossible to define a well-ordering of R in the language of ZF set theory. In the
absence of plausible new axioms, AC can only guarantee the existence of a well-
ordering of R; it cannot name any such ordering.
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It so happens that there is an axiom, called the axiom of constructibility, which
provides a definable well-ordering of every set and is consistent with the ZF axioms.
This remarkable new axiom was introduced by Gödel (1939) and it gives a definition
of each set in a language L that includes the symbols of the ZF language plus
symbols for all the ordinals. The sets named by L are called the constructible sets.
The axiom of constructibility states that every set is constructible, and this axiom
is consistent with ZF (roughly) because L gives names for enough sets to satisfy
the ZF axioms. Moreover, it is possible to define a well-ordering of all the formulas
in L, and hence of all the constructible sets. It follows that each constructible set
gets a well-ordering, since all of its members are constructible sets. This means that
the universe L of constructible sets satisfies not only the ZF axioms but also the
well-ordering theorem, and hence the axiom of choice.

Moreover, it turns out (by no means obviously), that each real number in L is
defined by a formula in L involving only symbols for countable ordinals. It follows
from this that the real numbers in L can be ordered in a sequence of length ω1, and
hence that L satisfies the continuum hypothesis. Thus, L is a model of the ZF axioms,
plus the axiom of choice and the continuum hypothesis. It follows that the latter two
propositions are consistent with the axioms of ZF. This is how Gödel (1939) showed
that the axiom of choice and the continuum hypothesis could not be disproved from
the ZF axioms, though it remained to be seen whether they could be proved.1

In any case, while a definable well-ordering may be good for the universe, it is not
necessarily good for R. The definable well-ordering of R implied by the axiom of
constructibility implies that there are definable subsets of R with bizarre properties,
as we will see in this chapter and in Chap. 9. Also, the axiom of constructibility
limits the size of sets that can exist, and modern set theory often requires sets larger
than the axiom of constructibility will allow. For these reasons, mathematicians have
not rushed to add the axiom of constructibility to the ZF axioms. It remains a delicate
matter to decide how ZF should be strengthened to provide the clearest possible
picture of R. In the remainder of this book we will study how our view of R depends
upon which axioms are adopted.

Exercises

The following exercises explore part of Gödel’s proof that the continuum hypothesis is consistent
with ZF: the cardinality of sets of names in the language L.

7.4.1 Given an infinite countable ordinal γ, and assuming that there are countably many symbols
in the language of ZF, explain how to use the ordinals < γ to encode the symbols of ZF plus
symbols for all the ordinals < γ.

1As mentioned in Sect. 6.8, Cohen (1963) showed that the axiom of choice and the continuum
hypothesis cannot be proved from the ZF axioms. It follows that the axiom of constructibility is
not provable in ZF either.
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7.4.2 Assuming the encoding of symbols from Exercise 7.4.1, formulas in the language of ZF
plus symbols for the ordinals < γ become finite sequences 〈α1, . . . , αn〉 of ordinals less than
γ. Describe a well-ordering of such sequences and explain why its order type is countable.

7.4.3 Now consider formulas in the language of ZF plus symbols for all countable ordinals. (As
mentioned above, Gödel proved that each constructible real number can be defined by such
a formula.) Deduce from Exercise 7.4.2 that the set of all such formulas can be well-ordered,
with order type ω1.

7.4 Filters and Ultrafilters

No axiom of choice is needed to prove results about natural numbers, since the
induction axiom ensures thatN is well-ordered. The lowest level theorems for which
an axiom of choice may be required are those about sets of natural numbers. In this
section we will give an example—the existence of a nonprincipal ultrafilter over
N—which also turns out to be interesting in analysis (see Chap. 9). The ultrafilter
example is also interesting because it involves an uncountable infinity of choices.
Such uses of AC can lead to strange results, and we will see in Chap. 9 that this is
one of them.

We will take filters and ultrafilters to be certain collections of subsets of N,
though the definition applies to subsets of any set.

Definition. A collection F of subsets is called a filter if

1. ∅ � F .
2. If A ∈ F and A ⊆ B then B ∈ F .
3. If A, B ∈ F then A ∩ B ∈ F .

In other words, a filter is a collection of subsets that does not include the empty set
and is closed under supersets and intersections.

The reason for the name “filter” is that if a set A is “caught” in F , then so is any
set B larger than A. Two important examples of filters on N are the following:

• For any a ∈ N, Fa = {A ⊆ N : a ∈ A} is a filter. Fa is called the principal filter
generated by a.

• The set of cofinite subsets of N, {X ⊆ N : N − X is finite}, is a filter.

In both of these examples it is easy to check that conditions 1, 2, 3 for a filter are
satisfied. The principal filter satisfies an additional condition that makes it what we
call an ultrafilter:

4. For each B ⊆ N, either B ∈ F or N − B ∈ F .

This raises the question: are there any nonprincipal ultrafilters over N? One way
to answer this question would be to extend the filter of cofinite sets to an ultrafilter:
there is obviously no a ∈ N that belongs to all cofinite sets, so any ultrafilter
containing the cofinite sets is not principal. In fact, we will show that any filter
can be extended to an ultrafilter, by making uncountably many applications of the
following result.
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Filter Extension. If F is a filter over N that is not an ultrafilter—so both A � F
and N − A � F for some A—then there is a filterH ⊃ F with A ∈ H .

Proof. We extend the set F to a set H in two stages that ensure closure ofH under
intersections and supersets.

Stage 1. Add to F all sets of the form A ∩ F, where F ∈ F . The resulting set

G = F ∪ {A ∩ F : F ∈ F }

is closed under intersections, as one sees by forming the intersections of different
kinds of members: if F1, F2 ∈ F then F1 ∩ F2 = F ∈ F by closure of F ,
(A ∩ F1) ∩ F2 = A ∩ (F1 ∩ F2) = A ∩ F ∈ G, and (A ∩ F1) ∩ (A ∩ F2) =
A ∩ (F1 ∩ F2) ∈ G likewise.

Stage 2. Add all supersets B ⊇ A ∩ F of the sets added at Stage 1. Since the
supersets of each F ∈ F were already in F , the resulting set

H = F ∪ {B ⊇ A ∩ F : F ∈ F }

is closed under supersets. It is also closed under intersections, as we again see by
cases. For example, if B1 ⊇ A ∩ F1 and B2 ⊇ F2, then B1 ∩ B2 ⊇ A ∩ (F1 ∩ F2),
so B1 ∩ B2 is one of the supersets of an A ∩ F, already included.

Finally, we observe that the empty set ∅ � H because the elements of H are
supersets of sets of the form F or A ∩ F, where F ∈ F . We know that each F � ∅,
because F is a filter. And if A ∩ F = ∅ then F ⊆ N − A, which implies N − A ∈ F
(by closure under supersets), contrary to assumption. �

Filter extension leads us to believe that any filter F that is not an ultrafilter can
be extended to an ultrafilter U by finding a set A such that A � F and N − A � F
and extendingF to include it, then iterating this process “until no such sets remain.”
This is the kind of infinite process that AC enables us to carry out. Each single step
of extending F to include A will be called extension of F by A.

Extension to an Ultrafilter. Any filter over N is contained in an ultrafilter over N.

Proof. Given a filter F over N we build an increasing sequence of filters Fα
whose union is an ultrafilter. To define the Fα we use AC to obtain a well-ordering
A0, A1, . . . , Aα, . . . , for α < λ, of all the subsets of N. Then we let

F0 = F

Fα+1 =

{
Fα if Aα ∈ Fα or N − Aα ∈ Fα
extension of Fα by Aα otherwise

Fβ =
⋃
γ<β

Fγ for each limit ordinal β.
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It follows by filter extension that Fα+1 is a filter when Fα is. It is also clear that⋃
γ<β Fγ is a filter when each Fγ is:

⋃
γ<β Fγ is closed under intersection and

supersets because each Fγ is, and ∅ �
⋃
γ<β Fγ because ∅ � each Fγ.

Thus, it follows by transfinite induction that Fα is a filter for each α, and Fλ is
also a filter by the argument for limit ordinals. Finally, either Aα ∈ Fλ orN−Aα ∈ Fλ
for each α, by construction, so Fλ is an ultrafilter that extends F . �

In Sect. 7.8 below we will give another proof that each filter extends to an
ultrafilter, again using filter extension, but replacing the transfinite induction by
another form of AC.

Exercises

7.4.1 Explain why F = {A ⊆ N : 0 ∈ A and 1 ∈ A} is a filter but not an ultrafilter.
7.4.2 Show that the filter of cofinite subsets of N is countable.
7.4.3 Show that the complements N − F of the sets F in a filter F form a Boolean algebra ideal;

that is, a set I that is closed under unions and under intersections with arbitrary sets ⊆ N. If
F is an ultrafilter, show that I is a maximal ideal.

7.4.4 Interpret a nonprincipal ultrafilter F over N as a 0–1 measure μ on P(N). That is, if we set
μ(a) =1 for A ∈ F and μ(A) = 0 for A � F , show that we have a measure on all sets A ⊆ N
which is additive in the sense that μ(A1 ∪ A2) = μ(A1) + μ(A2) for disjoint A1, A2.

7.5 Games and Winning Strategies

Our next application of AC is in the theory of infinite games. To put this result in
context we should first say something about finite games with perfect information.
We consider two-person games, in which players I and II move alternately and
there is a bound on the length of complete sequences of moves (“plays” of the
game). Such a game is called finite, and it is said to be with perfect information
if each player knows all previous moves. Typical games without perfect information
are card games, where a player does not initially know the cards another player
has been dealt, and typical games with perfect information are tic-tac-toe and
chess.

In a two-person game with perfect information one of the players may have a
winning strategy; that is, a rule for making moves that always leads to a win. In tic-
tac-toe, neither player has a winning strategy, because the game can end in a draw.
But if we change the rules so that (for example) a draw counts as a win for player I,
then one of the players does have a winning strategy. This is just one instance of a
remarkably general, yet simple, theorem:

Winning strategy theorem. If G is a finite two-person game with perfect informa-
tion, in which every play ends in a win for one of the players, then either player I or
player II has a winning strategy.

Proof. Since the game G is finite, all possible plays of G can be captured as paths
in a tree like that shown in Fig. 7.1.
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Fig. 7.1 The tree of plays of a game

The vertex Start represents the starting position of the game, the vertices 1, 2,
. . . below it represent the positions that can reached by the first move (which is by I),
the vertices 11, 12, . . . and 21, 22, . . . below these represent the positions that can
be reached by the second move (which is by II), and so on. Since G is finite, there
is a maximum value N for the length of downward branches from the Start vertex.

We now prove the existence of a winning strategy for all such games G, by
induction on N. If N = 1 then the game ends in one move and, by the hypothesis of
the theorem, every move leads to a win for either I or II. If any move leads to a win
for I, then choosing that move is a winning strategy for I. If every move leads to a
win for II, then letting I make any move is a winning strategy for II. This completes
the base step of the induction.

Now, for the induction step, suppose that either I or II has a winning strategy for
any game of length < N. Among such games are the subgames of G whose starting
positions are the vertices 1, 2, . . . in the tree of plays of G. Thus, each of the latter
games has a winning strategy for either I or II.

But then I or II has a winning strategy for G itself. If any of the games with
starting position 1, 2, . . . has a winning strategy for I, then I has winning strategy
for G. It consists of making his first move into such a subgame, n say, and thereafter
playing a winning strategy for the game n. If none of the games 1, 2, . . . has a
winning strategy for I, then they all have winning strategies for II, in which case
II has a winning strategy for G. Namely, II plays a winning strategy for whichever
game n that player I moves into.

This completes the induction, and the proof of the theorem. �

Exercises

A very short proof of the winning strategy theorem may be written down using quantifiers: ∀x,
meaning “for all x,” and ∃x, meaning “there exists an x.”
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7.5.1 If a1, b1, a2, b2, . . . , an, bn denote the moves made alternately by players I and II in a game
of length at most 2n, explain why the existence of a winning strategy for II is expressed by
the formula.

∀a1∃b1 · · · ∀an∃bn(a1, b1, . . . , an, bn is a win for II)

7.5.2 Explain why ¬∀xP(x) is equivalent to ∃x¬P(x), where P(x) is any proposition about x and
¬ means “‘not.” Similarly explain why ¬∃xP(x) is equivalent to ∀x¬P(x).

7.5.3 Deduce from Exercise 7.5.2 that the formula saying that II does not have a winning strategy,

¬∀a1∃b1 · · · ∀an∃bn(a1, b1, . . . , an, bn is a win for II),

is equivalent to a formula saying that I has a winning strategy.

7.6 Infinite Games

If we remove the restriction that all plays in a game have length bounded by some
integer N, and if we allow each move to be chosen from some countable set, then
the tree in Fig. 7.1 now represents all possible plays in a countably infinite game
with perfect information. Each play in such a game is represented by an infinite
sequence 〈a1, b1, a2, b2, . . .〉, where a1, a2, a3, . . . represent the successive moves by
player I and b1, b2, b3, . . . represent the successive moves by player II. The game
itself is defined by a set X of such sequences; namely, those that represent a win for
player I. We call this gameGX . Thus, in GX player I tries to ensure that the sequence
〈a1, b1, a2, b2, . . .〉 ∈ X, while II tries to ensure that 〈a1, b1, a2, b2, . . .〉 � X.

Such games were first considered by Hugo Steinhaus in 1925 and he conjectured
that, by analogy with finite games, for any set X one player has a winning strategy
forGX . A short while later, Banach and Mazur showed that the Steinhaus conjecture
is false if we assume the axiom of choice. AC makes it possible to define a set X for
which neither player has a winning strategy for the game GX . Such a set X is called
undetermined.

The Banach–Mazur proof actually uses a set X ⊆ [0, 1], and players I and II
choose successive digits of a real number in [0,1]. It is similar, but slightly more
convenient, to use N = NN in place of [0,1], as we do here. In fact, any ultrafilter
U ⊂ P(N) containing the cofinite filter gives a natural example of an undetermined
set X ⊂ N , as we will see in the exercises.

7.6.1 Strategies

Before showing how AC gives an undetermined set, we need to define what a
strategy is. In any game GX , a play is a sequence 〈a1, b1, a2, b2, a3, b3, . . .〉, where
〈a1, a2, a3, . . .〉 is the sequence played by I and 〈b1, b2, b3, . . .〉 is the sequence
played by II. A strategy σ is a positive integer-valued function defined on all finite
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sequences of positive integers, including the empty sequence 〈〉. Player I plays
strategy σ by making the moves

a1 = σ(〈〉),

a2 = σ(〈b1〉),

a3 = σ(〈b1, b2〉),

...

in response to the moves b1, b2, . . . made by player II. Player II plays strategy σ by
making the moves

b1 = σ(〈a1〉),

b2 = σ(〈a1, a2〉),

b3 = σ(〈a1, a2, a3〉),

...

in response to the moves a1, a2, a3, . . . made by player I.
We let σ ∗ b denote the sequence 〈a1, b1, a2, b2, . . .〉 that results when I plays

strategy σ on the sequence b of moves made by player II. And we say that σ is a
winning strategy for I in the game GA if σ ∗ b ∈ A for all b ∈ N . Similarly, we let
a ∗σ denote the sequence that results when II plays strategy σ on the sequence a of
moves made by player I. And we say that σ is a winning strategy for II in game GA

if a ∗ σ � A for all a ∈ N .2

It is an easy exercise to show that the set of strategies σ has the same cardinality
as the set N , namely 2ℵ0 . We use this fact in the proof below to define a set X ⊂ N
in ordinal-numbered stages α < 2ℵ0 , alongside an enumeration of strategies σα for
α < 2ℵ0 . This, of course, assumes AC to obtain a well-ordering of 2ℵ0 . Also, by
taking smallest ordinal equinumerous with 2ℵ0 , we can assume that the set of σβ for
β < α has cardinality less than 2ℵ0 . It will also be convenient to use AC to make
choices at each of the infinitely many stages α.

An undetermined set. There exists a set X ⊂ N for which neither player has a
winning strategy for the game GX.

Proof. Let {σα : α < 2ℵ0 } be an enumeration of all strategies. Using this
enumeration, we will inductively choose the members of disjoint subsets
ofN ,

2A reason for writing σ on different sides in the two notations is that in σ ∗ b we use σ before
seeing b, namely, on the empty sequence; and in a ∗ σ we use σ after seeing (the first member
of) a.
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X = {xα : α < 2ℵ0 } and Y = {yα : α < 2ℵ0 },

as explained below. Each xα will witness the fact that σα is not a winning strategy
for II in the gameGX , because we will arrange that a∗σα = xα ∈ X for some a ∈ N .
Each yα will witness the fact that σα is not a winning strategy for I either, because
we will arrange that σα ∗ b = yα � X for some b ∈ N .

At stage 0 we make these arrangements, and keep x0 and y0 in disjoint sets, by
letting

x0 = any value of a ∗ σ0,

y0 = any value of σ0 ∗ b unequal to x0.

Such a value y0 exists because σ0 ∗ b takes 2ℵ0 values as b runs throughN , since b
consists of all the even-numbered places in σ0 ∗b. (Indeed, both σ∗b and a ∗σ take
2ℵ0 values for any fixed σ, a fact we will rely on at stage α.)

At stage α less than 2ℵ0 values xβ, yβ have yet been chosen, so enough values
a ∗ σα and σα ∗ b remain to let

xα = any value of a ∗ σα not in {yβ : β < α},

yα = any value of σα ∗ b not in {xβ : β ≤ α}.

It follows by induction on α that X and Y have no common member, and for each
α < 2ℵ0 we have witnesses to the fact that σα is not a winning strategy for either II
or I in the game GX . Since the σα exhaust all strategies, it follows that the set X is
undetermined. �

Exercises

7.6.1 Using the Cantor–Schröder–Bernstein theorem, or otherwise, show that the set of strategies
has the same cardinality as N .

7.6.2 Supposing we take A ⊆ [0, 1] and let I and II alternately choose decimal digits of a number
in [0,1]. Show that II has a winning strategy for the game with A = Q.

7.6.3 Find a similar example A ⊂ N .
7.6.4 By imitating the above construction of an undetermined set above, or otherwise, show that

there is an undetermined set X ⊂ [0, 1] for the game where I and II alternately choose
decimal digits of a number.

The next group of exercises show that an undetermined set X is also obtainable from the
theorem on ultrafilters in Sect. 7.4. Specifically, we use an ultrafilter U that extends the cofinite
filter, the set of cofinite subsets of N. The set X is defined to be the set of sequences

〈x1, x2, x3, x4, . . .〉 ∈ N

such that

x1 < x2 < x3 < x4 < · · · and [1, x1) ∪ [x2, x3) ∪ [x4, x5) ∪ · · · ∈ U.
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[ ) [ ) [ ) . . . A1

[ ) [ ) [ ) . . . A2

1 a1 b1 a2 b2 a3 b3

Fig. 7.2 Two members of the ultrafilter U

We suppose, for the sake of contradiction, that player I has a winning strategy σ for GX . That is,
whatever increasing sequence 〈b1, b2, b3, . . .〉 is played by II, the sequence

〈a1, b1, a2, b2, a3, b3, . . .〉 ∈ X,

when I plays strategy σ.

7.6.5 Deduce that the set A1 = [1, a1) ∪ [b1, a2) ∪ [b2 , a3) ∪ · · · ∈ U when I plays strategy σ.

Now consider the following sequence of numbers, also chosen with the help of the function σ:

b2 = σ(〈a2〉),

b3 = σ(〈a2, a3〉),

b4 = σ(〈a2, a3, a4〉),

...

7.6.6 Show that the play

〈a1, a2, b2, a3, b3, a4, b4, . . .〉 is also a win for I,

and hence that the set A2 = [1, a1) ∪ [a2 , b2) ∪ [a3, b3) ∪ · · · ∈ U.

Thus, we have engineered sets A1, A2 ∈ U that look like Fig. 7.2.

7.6.7 Use the fact that U is an ultrafilter to deduce that

A1 ∩ A2 = [1, a1) ∈ U,

and hence that the complement of A1 ∩ A2 is a cofinite set not in U.

This contradicts the assumption that U is an extension of the cofinite filter, so I does not have a

winning strategy. We find a similar contradiction if player II has a winning strategy, hence neither

player has a winning strategy for the game GX .

7.7 The Countable Axiom of Choice

The three questions raised in Sect. 7.1 can all be answered by the following special
case of the axiom of choice—the countable axiom of choice. We call it countable
AC for short, since we denote the full axiom of choice by AC.
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Countable AC. Any countable set {S1,S2,S3, . . .} of nonempty setsSn has a choice
function; that is, a function f such that f (Sn) ∈ Sn for each n.

In question 2 we have to choose an enumeration of each set S n, so we want a
choice function for the set {S1,S2,S3, . . .}, where

Sn = {enumerations of S n}.

In question 3 we choose a real number x′n with |x′n−x| < 1/2n and | f (x′n)− f (x)| ≥ ε0,
so we want a choice function for the set {S1,S2,S3, . . .} where

Sn = {x′ : |x′ − x| < 1/2n and | f (x′n) − f (x)| ≥ ε0}.

For question 1 it is not so clear what to do, because in the “obvious” solution each
choice depends on the previous one. However, we can prescribe a suitable countable
set {S1,S2,S3, . . .} in advance by defining

Sn = {n-element subsets of S }.

Since S is infinite, each Sn is nonempty, so by countable AC we choose a set
f (Sn) = S n from each Sn. Then the union of sets S n is infinite, and countable
by question 2.

Thus, countable AC is useful (and in fact necessary) to prove some basic
theorems of analysis. However, the full axiom of choice, AC, is not necessary to
prove the above theorems, and in fact AC causes some irregularities in the theory
of R, as we will see in the next chapter. Therefore, it is of interest to explore other
axioms, strong enough to imply countable AC for subsets of R, but less disruptive
to the theory of R than AC.

An interesting candidate for such an axiom is the following axiom of determi-
nacy, AD. We state AD for subsets of N , or the set of irrationals in [0,1], but the
corresponding statement for [0,1] or for R is equivalent.

Axiom of determinacy. For any set X ⊂ N , either player I or player II has a
winning strategy for the game GX.

AD implies countable AC for subsets of N . Given a countable set S =

{S 1, S 2, S 3, . . .}, where each S n ⊂ N , AD gives a choice function for S.

Proof. Given a countable set {S 1, S 2, S 3, . . .} of sets S n ⊂ N , consider the following
game. If

I plays 〈a1, a2, a3, . . . , 〉 ∈ N

and II plays 〈b1, b2, b3, . . . , 〉 ∈ N

then II wins if and only if 〈b1, b2, b3, . . .〉 ∈ S a1 . This game can be formulated as GX

for a certain X ⊂ N , namely
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X = {〈a1, b1, a2, b2, . . .〉 : 〈b1, b2, b3, . . .〉 � S a1 }.

Therefore, AD says that either I or II has a winning strategy.
Now player I does not have a winning strategy for this game, because after I

plays a1 player II can always win by playing some 〈b1, b2, b3, . . .〉 in the nonempty
set S a1 . So player II has a winning strategy; that is, a function f which (among other
things) for each a1 gives a 〈b1, b2, b3, . . .〉 ∈ S a1 . In other words, a winning strategy
for II gives a choice function for the sets S 1, S 2, S 3, . . .. �

This surprising theorem tells us that, although AD is incompatible with full AC
(by the previous section), it actually implies enough choice for some important
applications to analysis.

Exercises

The countable AC is not provable in ZF. In fact ZF cannot prove its consequence that a countable
union of countable sets is countable, or even the extreme special case that R is not a countable union
of countable sets. Amazingly, it is consistent with ZF for R to be a countable union of countable
sets. The need for at least countable AC in analysis is underlined by the bizarre consequences of
assuming that R is a countable union of countable sets, which include:

7.7.1 There are countably many sets of measure 0 whose union has measure 1.
7.7.2 Every set S ⊆ R is a countable union of countable sets.
7.7.3 Every real function is a limit of limits of continuous functions. (Hint: First prove that any

function with countably many nonzero values is a limit of continuous functions.)

7.8 Zorn’s Lemma

We constructed an ultrafilter by transfinite induction in Sect. 7.4 because induction
and ordinals are a major theme in this book, and the ultrafilter construction is a
natural application of them. However, it should be pointed out that many books
construct ultrafilters by a different method, called Zorn’s lemma, which is useful
for constructing many types of “maximal” objects. Briefly put, Zorn’s lemma is an
axiom of choice for people who dislike ordinals.

Zorn’s Lemma. Suppose that T is a set such that each linearly ordered subset S
(under the relation of set inclusion)3 has an upper bound: that is, an X ∈ T such
that Y ⊆ X for each Y ⊆ S. Then T has a maximal element: that is, a Z ∈ T such
that Z is not properly contained in any other member of T .

3The usual statement of Zorn’s lemma does not restrict the ordering to be set inclusion. However,
this is the only case we need, and there is really no loss of generality.
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Before proving that Zorn’s lemma is equivalent to AC (or to the well-ordering
theorem), we illustrate the use of Zorn’s lemma by a new proof that every filter
extends to an ultrafilter.

Extension to an Ultrafilter. Any filter over N is contained in an ultrafilter over N.

Proof. Let T be the set of all filters over N. If S is a set of filters that is linearly
ordered by set inclusion, then the union X of all filters in S is itself a filter: X is
closed under intersection and superset because any members of X belong to some
filter in S (this is where the linear ordering is important—we cannot have a pair of
members of X that do not belong to a single filter in S), and ∅ is not in X because ∅
is not in any member of S.

Thus, T satisfies the condition of Zorn’s lemma, and hence T has a maximal
element Z. In other words, Z is a filter over N that is not properly contained in any
other filter overN. This implies that Z is an ultrafilter, otherwise it could be extended
by the filter extension theorem. �

The main difference between this proof and the one given in the previous section
is replacement of a transfinite repetition of the extension process by the single
step of selecting a maximal element. This is typical of the way Zorn’s lemma
works: it is able to hide a transfinite extension process and, not surprisingly, this
is because a transfinite extension process is built into the proof of Zorn’s lemma
itself.

Equivalence Theorem. In ZF, Zorn’s lemma is equivalent to AC.

Proof. We first use AC to prove Zorn’s lemma. Suppose we are given a set T in
which each linearly ordered subset S has an upper bound. AC gives a function f
such that

f (S) = an upper bound of S

for each S ⊆ T that is linearly ordered by ⊆. Moreover, we can stipulate that

f (S) � each element of S

if such an element exists. Using the function f , and transfinite induction, we define
a linearly ordered sequence of sets Aα ∈ T whose upper bound is necessarily
maximal, namely, let

A0 = any element of T ,

Aα = f (T − { f (β) : β < α}).

The Aα form a set, by the replacement axiom, since α cannot exceed the cardinality
of T . The set of Aα is linearly ordered, by transfinite induction. And its upper bound
is maximal by definition of f , since f always chooses an element greater than any
chosen earlier, if it can.
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Conversely, if Zorn’s lemma holds, we can obtain a well-ordering of any set X
(and hence AC) as follows. Consider the set T of all bijections between subsets of
X and ordinals. Such a bijection,

g : Y → α,

is of course a set (of ordered pairs), and if g1 ⊂ g2 then g2 extends g1, from a subset
Y1 ⊆ X to a larger subset Y2 ⊆ X, by agreeing with g1 on Y1 and mapping the
members of Y2 − Y1 to larger ordinals.

So if we have a set S of these bijections, linearly ordered by inclusion, its union
will itself be such a bijection, and hence an upper bound of S in T . Thus, T satisfies
the conditions of Zorn’s lemma.

Zorn’s lemma then gives a maximal element of T ; that is, a bijection g between
a subset Y ⊆ X and an ordinal α that cannot be extended. It follows that Y = X
(because if x ∈ X−Y we can extend g : Y → α by the ordered pair 〈x, α〉) and hence
g gives a well-ordering of X. �

Exercises

Zorn’s lemma is often used to prove the existence of maximal objects in algebra. In the following
exercises we assume that the reader is familiar with the concepts of vector space, ring, ideal, and
algebraically closed field.

7.8.1 Give another proof of the existence of a Hamel basis for R (Exercise 7.2.2) using Zorn’s
lemma.

7.8.2 More generally, use Zorn’s lemma to prove that each vector space has a basis.
7.8.3 Use Zorn’s lemma to prove that each ideal in a ring has an extension to a maximal ideal.
7.8.4 Use Zorn’s lemma to prove that each field has an algebraic closure.

7.9 Historical Remarks

AC was used unconsciously for about 30 years before its explicit statement by
Zermelo (1904). Many such instances are described in the book Moore (1982). The
first was the proof by Cantor in 1871 that sequential continuity at a point implies
ordinary continuity, a result we saw in Sect. 7.1 to depend on countable AC. This
theorem is attributed to Cantor by Heine (1872), p. 182. The second unconscious
use of AC was an algebraic theorem of Dedekind (1877) about modules.

In § 1 of his paper, Dedekind defines a module M to be a set of numbers
(generally complex numbers) that is closed under addition and subtraction. He calls
M a module because it leads to a notion of congruence modulo M; namely, for any
numbers a and b,

a ≡ b (mod M) ⇔ a − b ∈ M.
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It follows easily from this definition that the numbers are partitioned into disjoint
congruence classes, where a and b belong to the same class if and only if a ≡ b
(mod M). In §2 of his paper, Dedekind claimed that there is a set S that includes
exactly one member of each equivalence class. This seemingly obvious result, which
is routine in algebra classes today, depends heavily on AC.

To appreciate why, considerQ as a module in R. Then a and b belong to the same
equivalence class if and only if a − b is rational, so the congruence classes are very
easy to understand. But a set S with exactly one member from each equivalence
class is obtainable only with the help of AC—countable AC does not suffice—and
no explicit definition of S can be given. S even has the bizarre property of being
nonmeasurable, as we will see in Sect. 9.6. Thus, there are hidden depths in the
seemingly elementary idea of congruence classes.

Dedekind’s definition of an infinite set also involves countable AC, as we saw in
the exercises to Sect. 7.1, since it involves choosing a countable infinity of members
from an infinite set. Bettazzi (1896) was perhaps the first to question whether it is
valid to make an infinite sequence of choices, but his objection was forgotten. It
was not raised again until Zermelo (1904) made AC explicit and cited Dedekind’s
definition of infinite sets as an application.

AC crystallized in Zermelo’s mind after an incident at the 1904 International
Congress of Mathematicians in Heidelberg. At the Congress, in August, Julius
König presented an argument that there is no well-ordering of R. The next day,
Zermelo found a mistake in König’s reasoning, and began to work on the well-
ordering problem himself. It became clear to him that AC was the key idea, and
with it he obtained a proof of the well-ordering theorem on September 24, 1904. He
sent it to Hilbert, who quickly arranged for its publication.

The reaction to Zermelo’s proof was mostly hostile, even from mathematicians
who had unconsciously used AC in their previous work. For example, Borel (1905)
(writing on December 1, 1904) correctly identified the essence of Zermelo’s proof,
but denied that his argument could be part of mathematics:

Such reasoning seems to me to be no more justified than the following: “To well order a set
M, it suffices to choose arbitrarily an element to which one assigns rank 1, then another to
which one assigns rank 2, and so on transfinitely; that is, until all elements of M have been
exhausted . . .” But no mathematician would regard this reasoning as valid.

Borel (1905), p. 195.

Supporters of AC were fewer, and less eminent, yet they produced the two most
lasting results of the immediate post-Zermelo years: the basis of R over Q due to
Hamel (1905), and the nonmeasurable set of Vitali (1905).

As mentioned in the exercises to Sect. 7.2, Hamel used his basis to produce a
discontinuous real function f with the additive property:

f (x + y) = f (x) + f (y).

The existence of such a function had been an open problem ever since Cauchy
(1821), pp. 104–106, showed that the only continuous additive functions are those of
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the form f (x) = ax for constant a. (Cauchy’s proof was outlined in Exercises 3.4.5
and 3.4.6.) Cauchy’s theorem has implications for the theory of measure on the line
or the plane, where the measure μ(A ∪ B) of disjoint sets A and B is supposed to be
μ(A) + μ(B). If μ varies continuously with the endpoints c and d of an interval on
the line, then μ is necessarily a constant multiple of the usual length function |d − c|
on intervals. Similarly, a continuous measure on subsets of the plane is a constant
multiple of the usual area function on rectangles.

Vitali (1905), as mentioned above, used the congruence classes of R to obtain a
nonmeasurable set. We defer a full explanation of measurability until Chap. 9, but it
is worth mentioning here that the founders of measure theory, Borel and Lebesgue,
rejected AC. They tended to accept countable AC (or to use it unconsciously),
however, because measure theory is not really possible without it.

After a few years of hostility, support for AC began to grow. Steinitz (1910) used
AC to prove that every field F has an algebraic closure F; that is, F ⊇ F and every
polynomial equation with coefficients in F has a solution in F. This was the first
of many results about “closed” or “maximal” algebraic structures that depend on
AC, so algebraists became strong supporters of AC. Indeed, by the 1930s algebra
was influencing the presentation of set theory by favoring maximal principles like
Zorn’s lemma4 over the equivalent principles of AC and the well-ordering theorem.
One can see this in the book of Bourbaki (1939) which does not use ordinals at all,
and mentions them only in an exercise.

At the same time, set theorists investigated AC and discovered that it had
many interesting and/or bizarre consequences. Some of the most interesting are
nonmeasurable sets, but the undetermined sets of Sect. 7.6 are also of interest. The
theorem on winning strategies for finite games that instigated this line of research is
due to Zermelo (1913). The generalization to infinite games was entertained by the
Polish mathematicians Steinhaus, Banach, and Mazur in the 1920s, as Steinhaus
(1965) reported. But they dropped the idea after Banach and Mazur found that
winning strategies do not always exist, if AC holds. The subject was revived in
the 1960s by Steinhaus and Mycielski, who thought that AD could be a useful
alternative to AC in analysis. Their confidence was borne out by Mycielski and
Świerczkowski (1964), who proved that AD implies countable AC for sets of reals
and that all subsets of R are measurable.

The consequences of AC were sometimes bizarre, but they were never contra-
dictory, and Gödel (1938) explained why. As described in Sect. 7.3, he defined the
class of constructible sets, which satisfies all the axioms of ZF plus AC. It follows
that no contradiction can arise from AC unless ZF itself is contradictory.

So, the consequences of AC are not contradictory—but Gödel did not show that
they are true. He could not, because Cohen (1963) showed that it is also consistent
with ZF to assume that AC is false, even in some very specific instances. For
example, Cohen showed that one can consistently assume that there is an infinite

4Zorn’s lemma gets its name from Zorn (1935), but it is actually due to Kuratowski (1922). The
name stuck after Bourbaki (1939) called it “Zorn’s theorem.”
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Fig. 7.3 Kurt Gödel and Paul Cohen

set of real numbers with no countably infinite subset. Using Cohen’s methods,
Feferman and Levy (1963) showed that it is even consistent to assume that R is
a countable union of countable sets.

The message of Gödel and Cohen’s results is that the ZF axioms are very far from
complete. They fail to settle many questions about the real numbers that are settled
(often in contrary ways) by AC and AD. Thus, new axioms are called for, but so far
none as compelling as the ZF axioms have been proposed. AC has been the most
popular new axiom, because it makes the universe more orderly from at least two
points of view. For algebraists, AC brings complete or maximal structures, such as
the algebraic closure of any field; for set theorists, AC makes every set well-ordered,
hence any two sets are comparable in cardinality. However, AC is disruptive at the
level of R, where it creates nonmeasurable and undetermined sets. At this level, AD
has some advantages: it blocks nonmeasurable and undetermined sets, yet allows
countable AC for sets of reals, which is enough AC for most of analysis.

7.9.1 AC, AD, and the Natural Numbers

Since AC and AD have a profound influence on the properties of the real numbers,
one wonders whether they also affect theorems about the natural numbers. Could it
be, for example, that every even number > 2 is the sum of two primes if AC holds,
but not otherwise? Fortunately, no. If a theorem about natural numbers (involving
only elementary concepts such as addition and multiplication) is provable with the
help of AC, then it is also provable without AC.
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The explanation of this fact lies in Gödel’s class L of constructible sets,
mentioned in Sect. 7.3. The natural numbers (and other elementary concepts) have
the same meaning in L as they do in the universe of all sets, so proving that a
theorem T about natural numbers holds in L amounts to proving T outright. But,
as mentioned in Sect. 7.3, AC is provable in L, so by proving T in L we can avoid
assuming AC. (In contrast, the real numbers do not have the same meaning in
L as in the universe of all sets, because it is possible that nonconstructible reals
exist. Indeed, the existence of nonconstructible reals follows from the presence of
certain large sets, which are generally believed to exist though admittedly that is not
provable in ZF.)

It is a similar, though more complicated, story for AD. If one applies Gödel’s set
construction operations to the set R, one obtains the class L(R) of sets “constructible
fromR.” L(R) is again a model of the ZF axioms, and proving that a theorem T about
natural numbers holds in L(R) amounts to proving T outright. Indeed, L(R) is just
the same as L unless we assume the existence of sets large enough to imply the
existence of nonconstructible reals. But if we assume the existence of sufficiently
large sets a wonderful thing happens: AD can be proved to hold in L(R). It then
follows that AD can be eliminated from the proof of any theorem about the natural
numbers.

The proof that AD holds in L(R) is a very difficult one due to Woodin in
1985. Woodin’s proof was never published, but a proof was included in Martin and
Steel (1989), along with other deep results on determinacy. Neeman (2010) is a
recent paper entirely dedicated to the proof that AD holds in L(R), assuming that
sufficiently large sets exist.



Chapter 8
Borel Sets

PREVIEW

The Borel sets may be described simply as those generated from the open sets by
the operations of complementation and countable union. But one gains a clearer
understanding of Borel sets by dividing their generation into stages numbered by
countable ordinals, with Σα denoting the class of Borel sets generated by stage α.

The foundation for the classification of Borel sets is the universal open set
constructed in Sect. 5.6. In this chapter we work with subsets of N , the set of
irrational numbers in [0,1], as we did in there.

It turns out that the construction of a universal open set “propagates” through
the Borel sets to give a universal Σα set for each α, and the diagonal argument then
shows that Σα includes Borel sets not in Σβ for any β < α. Thus, the Borel sets are
arranged in a hierarchy, with new sets appearing continually as α increases.

The Borel sets do not exhaust all subsets of N , since we can show that there are
only 2ℵ0 Borel sets—as many as there are members of N or R. But they do show
the scope of the countable union operation (important for the concept of measure
explored in the next chapter), and the related operation of forming the limit of a
sequence of functions. Indeed, the functions generated from continuous functions
by taking limits also form a hierarchy, closely related to the Borel hierarchy, called
the Baire hierarchy.

8.1 Borel Sets

The class B of Borel sets may be defined in two rather different ways: as the closure
of the class of open sets under the operations of complement and countable union,
or as the union of a sequence of classes (the first of which is the class of open sets)
defined by transfinite induction. The “closure” definition is easier to state, so we
consider it first.

J. Stillwell, The Real Numbers: An Introduction to Set Theory and Analysis,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-01577-4__8,
© Springer International Publishing Switzerland 2013
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Definition 1. B is the least set that includes all open sets and is closed under
complement and union. That is, B is the intersection of all sets ⊆ P(N) that include
all open sets and are closed under complement and countable union.

To be more precise, B is the intersection of all sets S ⊆ P(N) with the
properties

(i) Each open subset ofN belongs to S.
(ii) If X ∈ S then N − X ∈ S.

(iii) If X1, X2, X3, . . . ∈ S then (X1 ∪ X2 ∪ X3 ∪ · · · ) ∈ S.

Defining a set by closure properties, as here, is typical in modern mathematics.
However, the glibness of this definition hides a property of Borel sets we would
like to see: their levels of complexity. Open sets are naturally viewed as the simplest
Borel sets, and other Borel sets have a complexity that can be measured by the
number of complements and countable unions needed to construct them. This
number can be an arbitrary countable ordinal, as we will see in Sect. 8.4. This brings
us to the second definition of the class B of Borel sets, where ordinals make their
appearance.

Definition 2. B is the union of the classes Σα defined inductively as follows (along
with classes Πα) for all countable ordinals α.

Σ1 = {open subsets ofN}

Π1 = {N − X : X ∈ Σ1}

Σα =

⎧⎪⎪⎪⎨⎪⎪⎪⎩countable unions of sets in
⋃
β<α

Πβ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Πα = {N − X : X ∈ Σα}.

It is not clear that all the countable ordinals are really needed in this definition,
because it is not clear that each Σα includes sets not in any Σβ for β < α. This will
be proved in Sect. 8.4.

Notice that Σα is defined in a way that avoids distinguishing between successor
and limit ordinals α. This greatly assists some later constructions, though it makes
the successor ordinal case look more complicated than necessary. In fact (see
exercises below)

Σβ+1 = {countable unions of sets in Πβ}.

It is not particularly hard to show that Definition 1 and Definition 2 are
equivalent, but the proof depends on countable AC. More specifically, it depends
on the consequence of countable AC that a countable union of countable sets is
countable.

Equivalent definitions of Borel sets. Definitions 1 and 2 define the same class
of sets.
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Proof. The class
⋃
α<ω1
Σα from Definition 2 certainly includes the open sets,

because they comprise the subset Σ1. Next we show that
⋃
α<ω1
Σα is closed under

complementation and countable unions. First,

X ∈ Σβ ⇒ N − X ∈ Πβ by definition of Πβ

⇒ N − X ∈ Σα for any α > β,

since N − X is (trivially) a countable union of copies of itself. Thus,
⋃
α<ω1
Σα is

closed under complements.
Observe, as a by-product of this argument, that X ∈ Σβ implies X ∈ Πα for any

α > β. Applying this observation to any X1, X2, X3, . . . ∈
⋃
α<ω1
Σα, we find that each

Xi ∈ some Παi . By countable AC, the union γ of the countably many countable sets
α1, α2, α3, . . . is a countable ordinal, so

X1 ∪ X2 ∪ X3 ∪ · · · ∈ Σγ+1

by definition of Σγ+1. This shows that
⋃
α<ω1
Σα is closed under countable

unions, and completes the proof that
⋃
α<ω1
Σα has the closure properties stated

in Definition 1.
To show that

⋃
α<ω1
Σα is the least such set, it suffices to show that any set with

these closure properties contains each Σα. This is immediate from the inductive
Definition 2, since the operations used in the definition are complementation and
countable union. �

Exercises

8.1.1 Show that any countable subset ofN is in Σ2. Why does this show that Σ2 has members not
in Σ1?

8.1.2 Prove by induction on α that Σα ⊆ Σα+1, Πα ⊆ Πα+1, Πα ⊆ Σα+1, and Σα ⊆ Πα+1.
8.1.3 Deduce that Σα+1 = {countable unions of sets in Πα}.
8.1.4 Prove that a countable union of Πα sets is Σα+1, and a countable intersection of Σα sets is

Πα+1.
8.1.5 Let α1 < α2 < α3 < · · · be a fixed sequence of countable ordinals with limit λ. Show that

any X ∈ Σλ is of the form

X = X1 ∪ X2 ∪ X3 ∪ · · · where Xi ∈ Παi .

(Hint: Insert empty sets Xj in the sequence X1, X2, X3, . . . where necessary.)

8.2 Borel Sets and Continuous Functions

In the previous section we defined the Borel subsets of N . There are similar
definitions for the Borel subsets of N2,N3, . . . and so on. The bottom level Σ1

consists of the open subsets of Nk, and these are again countable unions of basic



178 8 Borel Sets

open sets. The only difference is that a basic open set inNk is the cartesian product
of basic open sets in each factorN . For example, a basic open subset ofN2 is of the
form I × J, where I and J are basic open subsets of N . I × J is a rectangle minus
each point with a rational coordinate.

We are particularly interested in the Borel subsets of N2, because we wish to
generalize the universal open set U ⊂ N2 of Sect. 5.6 to a set Uα ⊂ N2 which is
“universal Σα” in the same sense. That is,Uα is a Σα subset ofN2, and its sections

Uα(y) = {x : 〈x, y〉 ∈ Uα}

are all the Σα subsets ofN .
To make this possible we generalize the basic property of continuous functions

from open sets to Σα sets:

Inverse images of Borel sets under continuous functions. For each countable
ordinal α, and each continuous function f fromN j ontoNk, f −1 of a Σα set X ⊆ Nk

is Σα, and f −1 of a Πα set X ⊆ Nk is Πα.

Proof. We argue by induction on α. For α = 1, f −1 of a Σα set is f −1 of an open set,
hence open; that is, Σ1. It follows that f −1 of a Π1 set is Π1 by taking complements.

For the induction step, suppose f −1 of a Σβ set is Σβ, and f −1 of a Πβ set is Πβ,
for all β < α. By Definition 2 of Borel sets, X ∈ Σα is of the form

X = X1 ∪ X2 ∪ X3 ∪ · · · ,

where each of X1, X2, X3, . . . belongs to some Πβ with β < α. Therefore

f −1(X) = f −1(X1) ∪ f −1(X2) ∪ f −1(X3) ∪ · · · ,

and each term in the union is in some Πβ, with β < α, by the induction hypothesis.
This implies

f −1(X) ∈ Σα by Definition 2.

It then follows, by taking complements again, that f −1 of a Πα set is Πα, and the
induction is complete. �

The second tool for the construction of a universal Σα set is a “continuous
encoding” of each sequence of irrational numbers (members of N) by a single
irrational number. Given this tool, if we can encodeΠβ sets, for β < α, by members
of N , then we can also encode their countable unions (the Σα sets) by members of
N , in a continuous fashion.

Continuous bijection g : N → NN. There is a function g, sending each y ∈ N to
a unique sequence 〈y1, y2, y3, . . .〉 ∈ NN, such that each member of NN is a value
g(y), and each of the coordinate functions gk(y) = yk is continuous.
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Proof. If y = 〈a1, a2, a3, a4, a5, . . .〉, then one way to define g1, g2, g3, . . . is the
following:

g1(y) = 〈a1, a3, a5, a7, . . .〉,

g2(y) = 〈a2, a6, a10, a14, . . .〉,

g3(y) = 〈a4, a12, a20, a28, . . .〉,

...

In other words, g1(y) omits every other term of the sequence y; g2(y) omits every
other term of the sequence omitted by g1; g3(y) omits every other term of the
sequence omitted by g1 and g2; and so on.

It is clear that the sequence

g(y) = 〈y1, y2, y3, . . .〉 = 〈g1(y), g2(y), g3(y) . . .〉

is uniquely determined by y. Also, any sequence 〈y1, y2, y3, . . .〉 in NN is obtainable
for suitable choice of y, because y can in fact be assembled from 〈y1, y2, y3, . . .〉.
Thus, g : N → NN is a bijection.

Finally, each gk is continuous. Because we can make gk(y′) arbitrarily close to
gk(y) by choosing y′ sufficiently close to y; that is, by making y′ agree with y on a
sufficiently long initial segment 〈a1, a2, a3, . . . , ak〉. �

This proof works because y is separated (or partitioned) into infinitely many
disjoint subsequences. Any other partition of y works equally well: we still get a
bijection y↔ 〈y1, y2, y3, . . .〉, and gk(y′) is arbitrarily close to gk(y) if y′ and y agree
on a sufficiently long initial segment. Thus, y in a reasonable sense encodes the
sequence 〈y1, y2, y3, . . .〉, and the encoding is continuous.

Exercises

8.2.1 Use the bijection p : N2 → N from Sect. 3.2 to obtain another bijection N → NN .
8.2.2 Show that the function g : N → NN has a unique continuous extension g : [0, 1] → [0, 1]N .
8.2.3 Is g a surjection? A bijection?

8.3 Universal Σα Sets

With the two theorems of the previous section—preservation of the Σα and Πα
properties by (inverses of) continuous functions, and the continuous encoding of
sequences by single elements of N—we are now ready to extend the construction
of a universal set from Σ1 to all levels of the Borel hierarchy.
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Universal Σα set. For each countable ordinal α there is a Σα set Uα ⊂ N2 whose
sections

Uα(y) = {x : 〈x, y〉 ∈ Uα}

are all the Σα subsets ofN .

Proof. We argue by induction on α. For α = 1 we can take U1 to be the universal
open set constructed in Sect. 5.6, since open sets are Σ1.

For the induction step we suppose that for each β < α there is a Σβ setUβ whose
sections

Uβ(y) = {x : 〈x, y〉 ∈ Uβ}

are all the Σβ subsets of N . (More precisely, we have to choose a universal Σβ set
Uβ for each of the countably many β < α, using countable AC.) It follows that
N2 − Uβ is a universal Πβ set, because its sections are precisely the complements
of the sectionsUβ(y); that is, the Πβ subsets ofN .

Now to form Σα sets we need to form countable unions of Πβ sets for (possibly
various) β < α. To do this uniformly we first choose a sequence β1 ≤ β2 ≤ β3 ≤ · · ·
with limit α if α is a limit ordinal and limit γ if α = γ+1. In either case, each X ∈ Σα
is of the form

X = X1 ∪ X2 ∪ X3 ∪ · · · where each Xn ∈ Πβn .

By our induction hypothesis we have a universalΣβn setUβn for each βn, of which
Xn is the complement of a sectionUβn (yn). That is,

x ∈ Xn ⇔ 〈x, yn〉 � Uβn .

And therefore

x ∈ X ⇔ 〈x, yn〉 � Uβn for some n.

We also know, from the previous section, that each sequence 〈y1, y2, y3, . . .〉 occurs
as 〈g1(y), g2(y), g3(y), . . .〉 for some y ∈ N . For this y we therefore have

x ∈ X ⇔ 〈x, gn(y)〉 � Uβn for some n.

In this sense y “encodes” the Σα set X, and we have a “universal” set Uα
defined by

〈x, y〉 ∈ Uα ⇔ 〈x, gn(y)〉 � Uβn for some n,

because all of its sections Uα(y) = {x : 〈x, gn(y)〉 � Uβn for some n} are Σα, and
they include all the Σα sets X. Thus, it remains only to prove that Uα is itself a
Σα set.
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It suffices to show thatUα is a countable union of Πβn sets, and indeed that, for
each n,

{〈x, y〉 : 〈x, gn(y)〉 � Uβn } is Πβn .

We show, equivalently, that its complement

Vn = {〈x, y〉 : 〈x, gn(y)〉 ∈ Uβn } is Σβn .

To do this we recall that gn is continuous, and hence so is the function 〈x, y〉 �→
〈x, gn(y)〉. Vn is the inverse image of the Σβn set Uβn under the latter function. So
Vn is also Σβn , as required, by the first theorem of the previous section. �

Exercises

8.3.1 Explain why the setsUα(y) = {x : 〈x, gn(y)〉 � Uβn for some n} are Σα.
8.3.2 Re-prove the induction step in the special case where α = γ+1. (In this case we can assume

that X ∈ Σγ+1 has the form X = X1 ∪ X2 ∪ X3 ∪ · · · where each Xn ∈ Πγ, so there is no need
to use a sequence β1 ≤ β2 ≤ β3 ≤ · · · .)

As noted in the second paragraph of the proof, we are using countable AC. Indeed we cannot prove
that the Borel hierarchy extends beyond Σ3 without using countable AC. This is due to the result,
mentioned in the exercises to Sect. 7.7, that it is consistent with ZF to assume that R is a countable
union of countable sets.

8.3.3 Under this assumption, show that all sets of real numbers are in Σ3.

8.4 The Borel Hierarchy

We are now ready to show that each level Σα of the Borel hierarchy has members
not in Σβ for any β < α. We know that

1. Σα includes each member X ofΠβ for any β < α (as the union of countably many
copies of X).

So if we can prove that

2. Πα has a member Y not in Σα,

then it will follow that

3. Πα has a member Y not in Πβ for any β < α.

Therefore (taking complements),

4. Σα has a memberN − Y not in Σβ for any β < α.
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Borel hierarchy theorem. Πα has a member not in Σα (and therefore, as explained
above, Σα has a member not in Σβ for any β < α).

Proof. We apply the diagonal argument to the universalΣα setUα from the previous
section. By construction, the sections ofUα,Uα(y) = {x : 〈x, y〉 ∈ Uα}, are all the
Σα subsets of N . But the “complementary diagonal set” Dα = {x : 〈x, x〉 � Uα} is
unequal to each sectionUα(y). In fact,

y ∈ Dα ⇔ 〈y, y〉 � Uα ⇔ y � Uα(y),

soDα differs fromUα(y) regarding the element y. Thus,Dα is not in Σα.
ButDα = {x : 〈x, x〉 � Uα} is in Πα, as we prove by induction on α.
For the base step, α = 1, we observe that the open set U1 is a countable union

of open rectangles, so it meets the diagonal {〈x, x〉 : x ∈ N} in a countable union of
open intervals. Then its projection {x : 〈x, x〉 ∈ U1} on the x-axis is also a countable
union of intervals, hence Σ1. The complementD1 of this projection is thereforeΠ1.

Notice that this argument applies with any Σ1 setV1 in place ofU1.
For the induction step our hypothesis is that, for each β < α,

{x : 〈x, x〉 � Vβ} is Πβ for any Σβ setVβ, or equivalently

{x : 〈x, x〉 ∈ Wβ} is Πβ for any Πβ setWβ.

Now considerDα = {x : 〈x, x〉 � Uα}. We knowUα =W1∪W2∪· · · , where each
Wi ∈ Πβi for some βi < α, by definition of Σα. So

Dα = {x : 〈x, x〉 � Uα} = N − {x : 〈x, x〉 ∈ Uα}

= N − {x : 〈x, x〉 ∈
∞⋃

i=1

Wi}

= N −
∞⋃

i=1

{x : 〈x, x〉 ∈ Wi}

= N −
∞⋃

i=1

(some Πβi set) by induction

= N − (some Σα set) since βi < α,

which is in Πα. This completes the induction, so Dα = {x : 〈x, x〉 � Uα} is a Πα set
not in Σα, as required. �

The Borel hierarchy theorem gives content to the following definition, which
captures the concept of “complexity” of Borel sets S .

Definition. The least α such that S ∈ Σα is called the Borel rank of S .

By the hierarchy theorem, all countable ordinals occur as Borel ranks.
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Exercises

Most “natural” examples of Borel sets occur at quite low levels of the hierarchy. An example is the
set of normal numbers, where a number x is called normal (in base 2) if the digits 0 and 1 occur
with equal frequency in the binary expansion of x. In other words: if there are m occurrences of the
digit 1 in the first n binary digits of x, then m/n→ 1/2 as n→ ∞.

8.4.1 By formalizing the above statement about limits, show that

x is normal⇔ for all ε > 0 there is an N such that

1
2
− ε ≤

m
n
≤

1
2
+ ε for all n > N,

where m = number of occurrences of 1 in the first n digits of x.

Now we translate this statement about digits into a statement about sets.

8.4.2 Explain why, if [0,1] is divided into 2n equal subintervals Ik, the numbers x in Ik ∩N agree
in their first n binary digits. (So it makes sense to speak of “the number of occurrences, m,
of 1 in the first n digits” in Ik.)

8.4.3 For each ε > 0 and positive integer n let Uε,n be the union of the intervals Ik for which

1
2
− ε ≤

m
n
≤

1
2
+ ε.

Explain why Uε,n is a Σ1 set.
8.4.4 Explain why

x is normal⇔ for all ε, x ∈
⋃

N

⋂
n>N

Uε,n.

Finally, we restrict the values of ε to ε = 1/M, for positive integers M.

8.4.5 Explain why

x is normal ⇔ x ∈
⋂
M

⋃
N

⋂
n>N

U1/M,n ,

and deduce that the set of normal numbers is Π4. (A more refined argument actually shows
that the set is Π3.)

8.5 Baire Functions

After this long trek into the wilderness of Borel sets, we are in a better position
to understand the interaction between two basic concepts of analysis: continuity
and limits. We know from Sect. 4.6 that a uniformly convergent sequence of
continuous functions has a continuous limit, so uniformly convergent sequences
lead to nothing new. But, as we also saw in Sect. 4.6, a merely convergent
sequence of continuous functions may have a discontinuous limit. An example is the
function
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f (x) =

{
1 if x = 0
0 if x � 0,

which is the limit of continuous functions with a “spike” at x = 0 (see the picture in
Sect. 4.6).

By repeatedly taking limits of previously defined functions we obtain an
increasing sequence of function classes Bα called the Baire hierarchy. The classes
Bα are defined for all countable ordinals α as follows.

B0 = {continuous functions R→ R}

Bα = {limits of convergent sequences of functions from the Bβ with β < α.}

In this section we will only sketch some basic results on Baire functions, since we
do not need the results later. For this purpose we can stick with the domain R, since
the domain N becomes convenient (as with Borel sets) only when more technical
details are required. In R we have the rational numbers, which are involved in some
of the most interesting Baire functions in the low levels of the hierarchy.

For example, the discontinuous function f (x) defined above is a member of B1,
and so is the function f (x, r) defined for each rational number r by

f (x, r) =

{
1 if x = r
0 if x � r.

If we then take an enumeration r1, r2, r3, . . . of the rational numbers the functions

gn(x) = f (x, r1) + · · · + f (x, rn)

are also in B1, because each gn is the limit of a sequence of continuous functions
with “spikes” at r1, . . . , rn. The limit of the sequence g1, g2, g3, . . . exists and equals

g(x) =

{
1 if x is rational
0 if x is irrational.

Thus, the highly discontinuous Dirichlet function of Sect. 1.5 is in B2. This is
what we meant when we said that the Dirichlet function is “not far removed” from
continuity.

It is easy to guess that there is a connection between Baire functions and Borel
sets, and the connection becomes clearer when continuity and limits are expressed
in terms of sets. The key facts are the following.

1. As we already know from Sect. 5.2, a function f is continuous if and only if
f −1(U) is open for any open set U. Thus, f −1 of a Σ1 set is Σ1, when f is
continuous.

2. If f (x) = limn→∞ fn(x) and U is open, then
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x ∈ f −1(U)⇔ f (x) ∈ U

⇔ fn(x) ∈ U for all sufficiently large n

⇔ there is an m such that fn(x) ∈ U for all n > m

⇔ there is an m such that x ∈ f −1
n (U) for all n > m

⇔ there is an m such that x ∈
⋂
n>m

f −1
n (U)

⇔ x ∈
⋃

m

⋂
n>m

f −1
n (U).

Thus, f −1(U) is a countable union of countable intersections of the sets f −1
n (U).

These two facts enable an inductive proof that for any Baire function f , f −1 of
an open set is in Σβ, for some β. A more careful proof (see, e.g., Kechris (1995),
p. 190) shows in fact that f −1 of an open set is in Σα+1 when f is in Bα.

Conversely, one can show that every Borel set arises as f −1 of an open set for
some Baire function f . In fact, one can show that the characteristic function χA of
each Borel set A is Baire, where

χA(x) =

{
1 if x ∈ A
0 if x � A.

For example, the characteristic function of the Σ2 set Q is the Dirichlet function,
which we have shown to be in B2. To prove that the characteristic function of any
Borel set is Baire, we use induction on the construction of Borel sets. The base
step is to show that the characteristic function of any open interval (a, b) is in B1

(exercise).
For the induction step, we use two closure properties of Baire functions that are

easy to prove (see exercises):

Closure Under Sums. If f and g are Baire then so is f + g.
Closure Under Composites. If f and g are Baire, then so is f ◦ g, defined by

( f ◦ g)(x) = f (g(x)).

Assuming that these closure properties hold, first suppose that A is a Borel set whose
complementN − A has a Baire characteristic function. Then χA is the composite of
χN−A with the continuous function

g(x) = 1 − x,

which exchanges the values 0 and 1. The function g is certainly Baire, hence so is
χA.

Finally, suppose that A is the union

A = A1 ∪ A2 ∪ A3 ∪ · · · ,
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where each of the characteristic functionsχA1 , χA2 , χA3 , . . . is Baire. By closure under
sums, each of the functions

fn(x) = χA1 (x) + · · · + χAn (x)

is also Baire. Clearly,

fn(x) =

{
some positive integer if x ∈ A1 ∪ · · · ∪ An

0 otherwise.

So if we compose fn with the Baire function

h(x) =

{
1 if x > 0
0 otherwise,

then we get χA1∪···∪An . Finally, χA is Baire, as the limit of the Baire functions
χA1∪···∪An .

Thus, we have an inductive proof that χA is Baire for any Borel set A, and hence
that every Borel set has the form f −1(U) for some open set U and Baire function f
(taking U to be a small open set that includes 1).

Combining this result with the previous result that f ∈ Bα gives Borel sets f −1(U)
of bounded Borel rank (in fact, in Σα+1), we conclude that no Bα includes all Baire
functions. Thus, new Baire functions occur in Bα for arbitrarily large values of α,
which means that the Baire classes Bα form a true hierarchy, like the Borel hierarchy.

Exercises

8.5.1 Show that
⋃
α<ω1

Bα is the least class of functions that includes the continuous functions
and is closed under limits.

8.5.2 Show by induction on α that if f , g ∈ Bα then f + g ∈ Bα and f ◦ g ∈ Bα.
8.5.3 Show that the characteristic function of an interval (a, b) is the limit of continuous functions.
8.5.4 Show that any open set is a countable union of disjoint intervals, so that its characteristic

function is also a limit of continuous functions.
8.5.5 Explain why the following formula defines the Dirichlet function

lim
m→∞

lim
n→∞

((cos m!πx)2n).

8.5.6 Use Exercise 8.5.5 to give an immediate proof that the Dirichlet function is in Baire class 2.
8.5.7 The formula of Pringsheim (1899), p. 7, has n in place of 2n. Why is his formula also valid?

8.6 The Number of Borel Sets

There are at least 2ℵ0 Borel sets, because there are that many irrational numbers in
N , and hence that many open intervals in N . It follows that there are 2ℵ0 sets in
each Σα, because these are the sets Uα(y), as y varies over N . The encoding of Σα
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X

X1 X2 X3 · · ·

Fig. 8.1 Top portion of the tree for a Borel set X

sets by y values shows that there are at most 2ℵ0 sets in Σα, and there are exactly
this many because Σα includes all the open intervals. However, there are ω1 values
of α, so it remains unclear how many sets there are in

⋃
α<ω1
Σα.

There are in fact 2ℵ0 Borel sets in total, and to show this we consider all Borel
sets at once, encoding each of them by a tree.

A Borel set X ∈ Σα is naturally described by a tree, the top vertex of which
represents X. Connected to this top vertex are vertices representing the sets Xi ∈ Πβi ,
where βi < α, such that

X = X1 ∪ X2 ∪ X3 ∪ · · · .

Thus, the top two levels of the tree are as shown in Fig. 8.1. We then connect the
vertex for Xi ∈ Πβi to a vertex below it for N − Xi ∈ Σβi , and the latter vertex
to vertices for the countable many sets (from Πγ j with γ j < βi) whose union is
N − Xi, and so on. Each branch of the tree corresponds to a descending sequence of
ordinals α > βi > γ j > · · · , and hence each branch is finite. Moreover, each branch
terminates in a basic open set Gn, which we can encode by the natural number n.

The set X is determined by the shape of its tree and the natural numbers
n associated with its terminal vertices. Thus, the problem of encoding Borel
sets amounts to describing the shapes of trees with finite branches and at most
countably many descendants of each vertex, and labelling their terminal vertices
with natural numbers. The means to do this are close at hand; namely, finite
sequences 〈a1, a2, . . . , ak〉 of natural numbers.

We simply interpret 〈a1, a2, . . . , ak〉 as the branch with successive vertices
a1, a2, . . . , ak, where ak is the label on the terminal vertex and the other vertices
are labelled in any way that correctly describes the shape of the tree. For example,
it would be natural to label the top vertex by 1, and the vertices immediately below
it by 1, 2, 3, . . . (if these vertices are not terminal). It follows that any Borel set can
be encoded by a subset of the set N<ω of all finite sequences of natural numbers. We
saw in Sect. 3.1 (Example 8) that N<ω is countable, so there are as many Borel sets
as there are subsets of a countable set, namely 2ℵ0 .

Exercises

8.6.1 Draw the tree for the open set G2 ∪G4 ∪G6 ∪ · · · and describe it by a set of ordered pairs
of natural numbers.
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ω + 1

ω

1 2 3 · · ·

Fig. 8.2 Tree representing ω + 1

Trees with branches of finite length and vertices of countable degree are also a useful way to
encode countable ordinals. Each vertex is labelled by a countable ordinal α which (if the vertex
is not terminal) is the least ordinal greater than the labels on the vertices below it. The terminal
vertices are labelled by finite ordinals.

For example, Fig. 8.2 shows a tree representing the ordinal ω + 1.

8.6.2 Draw a tree representing the ordinal ω · 2.
8.6.3 Prove by induction that every countable ordinal is representable by a tree with branches of

finite length and vertices of countable degree.

8.7 Historical Remarks

The Borel sets get their name because of Borel (1898), where they are sketchily
introduced on pp. 46–47 as a class of sets for which the concept of measure is
meaningful. Given that the values of a measure are non-negative real numbers, and
because we can form differences and infinite sums of real numbers, there are two
arithmetic conditions that measurable subsets of [0,1] should satisfy:

Subtractivity. If E and E′ are measurable, with measures μ(E) and μ(E′), and if
E′ ⊆ E, then

μ(E − E′) = μ(E) − μ(E′).

Countable Additivity. If S 1, S 2, S 3, . . . are disjoint sets with the measures μ(S 1),
μ(S 2), μ(S 3), . . . , then

μ(S 1 ∪ S 2 ∪ S 3 ∪ · · · ) = μ(S 1) + μ(S 2) + μ(S 3) + · · · .

Thus, implicitly, Borel is considering a class of sets S ⊆ [0, 1] that is closed under
the operations of difference and countable disjoint union. He does not mention the
“base” sets of this class, but presumably they are sets whose measure is obvious,
such as open or closed intervals.

It so happens that the Borel sets in [0,1] can be generated from intervals by
differences and countable disjoint unions. However, this result is not obvious and
was apparently first published by Sierpiński (1927). The present definition of Borel
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Fig. 8.3 Henri Lebesgue

Fig. 8.4 René Baire and
Emile Borel

sets, using unrestricted countable unions, seems to have been used since 1902. This
was when the concept of measure reached its mature form, in the thesis of Lebesgue
(1902). Here Lebesgue introduced the concept of Lebesgue measure and proved its
basic properties, including countable additivity. We will say more about Lebesgue
measure, and why its scope includes all Borel sets, in Chap. 9.

The Baire classes of functions were introduced by Baire (1899), who observed
that the Dirichlet function is in Baire class 2. He did not investigate higher levels
of the Baire hierarchy, let alone prove that new functions appear at each level. This
was first done by Lebesgue (1905), who also proved that new sets appear at each
level of the Borel hierarchy.

It is noteworthy that Borel, Baire, and Lebesgue were all skeptical about AC,
even though they unconsciously used it (or at least countable AC) in their work.
They were among a large group of mathematicians who became painfully aware
of AC in 1904, after Zermelo published his proof of the well-ordering theorem.
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Moore (1982) has an interesting account of this episode, including translations of
1905 correspondence between Borel, Baire, Lebesgue, and Hadamard (the “elder
statesman” of the group and the only one to support AC).

Borel, Baire, and Lebesgue were interested in Borel sets and Baire functions
because these objects are “definable by formulas” in some sense, and hence linked to
classical analysis. We have seen for example, that the Dirichlet function is definable
by the formula

lim
m→∞

lim
n→∞

((cos m!πx)2n).

They were opposed to AC because it produces sets and functions with no apparent
definitions. But with the realization that many results about Borel sets and Baire
functions depend on countable AC came the realization that “definability” is not
an absolutely clear concept. In retrospect, this was not surprising, because their
“definitions” included series with infinitely many real number coefficients. In fact,
“definability” is best confined to finite formulas and it is always a relative notion:
one can speak of definability only in a given language, the symbols and syntax
of which must be completely specified. Such formal languages were not used in
mathematics until the 1920s. One such language is for ZF, where all definitions of
functions must be available in order to state the replacement schema.

The discovery of the hierarchical properties of Borel sets by Lebesgue (1905)
revealed, for the first time, a well-defined notion of complexity for sets of reals;
namely, Borel rank. Set theorists could think about extending results known for
open or closed sets to more complex sets in a systematic way. One such result was
Cantor’s theorem that every closed set F has the perfect set property: if uncountable,
F contains a perfect subset (in which case F has the same cardinality as R).

Hausdorff (1914), p. 466, mentioned that the perfect set property holds for sets
with Borel rank ≤ 4, and remarked that there seemed hope of proving it for all Borel
sets. As mentioned in Sect. 5.7, he did exactly that in Hausdorff (1916), and the
same result was proved independently by Alexandrov (1916). From this theorem
of Hausdorff and Alexandrov it follows that the continuum hypothesis holds for all
Borel sets: if uncountable, a Borel set has the same cardinality as R.

A rather similar story unfolded between the 1950s and the 1970s, with the
concept of determinacy (the existence of a winning strategy) in place of the perfect
set property. Gale and Stewart (1953) proved that open sets are determined, and
determinacy for sets of Borel rank 2, 3, 4 was laboriously established over the
next two decades. Then Martin (1975) proved that all Borel sets are determined.
His proof was a tour de force, using the full resources of ZF+AC. In fact, Borel
determinacy was known to be difficult before Martin proved it, because Friedman
(1971) had shown that it is not provable in Zermelo set theory (which has AC
but not the replacement schema). To this day, Borel determinacy is probably the
best example of a theorem about the real numbers that depends on the replacement
schema.
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Nevertheless, Borel, Baire, and Lebesgue were right, in some sense, that the
Borel sets are the sets most accessible to the human mind. They are the largest class
of sets for which we can prove in ZF+AC all the “nice” properties: measurability,
continuum hypothesis, and determinacy. In particular, determinacy is not provable in
ZF+AC for the simplest natural extension of the Borel sets—the so-called analytic
sets, which are the projections on R of Borel subsets of R2.



Chapter 9
Measure Theory

PREVIEW

In Sect. 1.7 we observed that any countable set has measure zero, because we can
cover its first, second, third, . . . points by intervals of lengths ε/2, ε/4, ε/8, . . . . So
the whole set can be covered by intervals of total length at most ε, which can be as
small as we please.

This tells us that countable sets can be ignored in measure theory, but also that
countable union is a useful operation for finding the measure of sets. In this chapter
we will exploit countable unions of intervals to simultaneously define measure and
to show that any measurable set can be approximated, within measure ε, by a finite
union of intervals.

The concept of measure thus obtained is called Lebesgue measure, and it may
be used to define a new concept of integral—the Lebesgue integral—that greatly
extends the reach of classical calculus. Moreover, Lebesgue measure also clarifies
the nature of the classical Riemann integral, by giving an exact description of the
Riemann-integrable functions.

The scope of Lebesgue measure is so wide that the nonmeasurable sets can be
proved to exist only with the help of fairly strong forms of the axiom of choice.
We give two examples. Because measurability of all sets of reals is incompatible
with the full axiom of choice, it is not clear what set theory axioms are “ideal” for
analysis. However, there are some interesting options, and in the Historical Remarks
we discuss the set theory issues that they raise.

9.1 Measure of Open Sets

Since countable sets can be ignored in measure theory, it makes no difference
whether we work with [0,1] (as contemplated in Sect. 1.7) or with the set of
irrational numbers in [0,1]. The latter set can be identified with the set N = NN
of sequences of natural numbers, as we saw in Sect. 5.6. In the present chapter we
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will work with [0,1], because it and its subintervals are the simplest imaginable
measurable sets, yet they suffice as a foundation for measuring highly complex sets,
including all Borel sets.

The theory of Borel subsets ofN , developed in Chap. 8, transfers easily to [0,1].
The open subsets of [0,1] are the unions of open intervals, which now include the
half-open “end intervals” of the form [0, b) and (a, 1]. The Borel subsets of [0,1]
are those subsets obtainable from open subsets by complementation and countable
union. They are very similar to the Borel subsets ofN , from which they differ only
by the possible presence of rational members.

In this section we show that each open set U ⊆ [0, 1] has a measure μ(U)
compatible with the usual length measure of closed intervals defined by

μ([a, b]) = b − a.

We extend this measure μ to other intervals (open or half-open) and to countable
unions of intervals by the following two rules:

Subtractivity If T ⊆ S , and the sets S , T have measures μ(S ), μ(T ) respectively,
then μ(S − T ) = μ(S ) − μ(T ).

Countable Additivity. If S 1, S 2, S 3, . . . are disjoint sets with measures
μ(S 1), μ(S 2), μ(S 3), . . ., then

μ(S 1 ∪ S 2 ∪ S 3 ∪ · · · ) = μ(S 1) + μ(S 2) + μ(S 3) + · · · .

The extension of μ proceeds as follows, from closed intervals to open sets, and it
leads to an approximation property that will be the key to further extensions of μ.

1. From the definition μ([a, b]) = b − a it follows that

μ({a}) = μ([a, a]) = a − a = 0.

Thus, the measure of any singleton set is 0.
2. It follows, assuming subtractivity for intervals, that

μ([a, b)) = μ([a, b] − {b}) = μ([a, b]) − μ({a}) = b − a = 0 = b − a,

and similarly μ((a, b]) = μ((a, b)) = b − a. Thus, open, closed, and half-open
intervals with the same endpoints have the same measure.

3. Assuming additivity for intervals, any finite disjoint union of intervals, with
endpoints ai, bi such that

a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ an ≤ bn,

has measure (b1 − a1) + (b2 − a2) + · · · + (bn − an) ≤ 1.
4. An open set U is the union of countably many intervals (namely, intervals with

rational endpoints), hence of countably many disjoint intervals by merging any
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that overlap. If the nth interval has endpoints an, bn then, assuming countable
additivity for intervals,

μ(U) = (b1 − a1) + (b2 − a2) + (b3 − a3) + · · ·

= lim
n→∞

[(b1 − a1) + (b2 − a2) + · · · + (bn − an)].

Since (b1 − a1) + (b2 − a2) + · · · + (bn − an) ≤ 1 by the previous example, μ(U)
exists as the limit of a bounded increasing sequence. (This example shows that
the completeness of R is crucial to the theory of measure.)

5. It also follows, since limn→∞[(b1 − a1) + (b2 − a2) + · · · + (bn − an)] exists, that
(b1 − a1)+ (b2 − a2)+ · · ·+ (bn − an) is arbitrarily close to μ(U) for n sufficiently
large. That is, any open set can be approximated within measure ε by a finite
union of intervals.

Exercises

9.1.1 Prove by induction that Borel sets S ⊆ [0, 1] differ from Borel subsets of N only by the
presence of rational numbers.

9.1.2 Show that any closed set F is contained in a finite union F′ of intervals that approximates
F within measure ε.

9.2.3 Illustrate this result in the case of the Cantor set.

9.2 Approximation and Measure

The approximation property of open sets revealed in the last example—that any
open set differs from a finite union of intervals by a union of intervals of total length
≤ ε—is generalized in the following:

Definition. A set S ⊆ [0, 1] is said to be approximated within measure ε by a finite
union F of intervals if (S − F) ∪ (F − S ) can be covered by intervals of total length
≤ ε.

Thus, example 5 in the previous section shows that any open subset U of [0, 1]
can be approximated within measure ε by a finite union of intervals.

We now show that, for any ε ≥ 0, each Borel set S ⊆ [0, 1] can be approximated
within measure ε by a finite union of intervals. The argument involves summing
series like the series ε2 +

ε
4 +

ε
8 + · · · used at the beginning of this chapter. As usual,

we argue by induction, proving that the property extends to Σα from the Σβ with
β < α via the operations of complementation and countable union. However, the
ordinals are only incidental to the proof, so we will call this argument “induction on
the construction of Borel sets.”
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In the proof that follows we take the word “interval” to mean any kind of
interval: open, closed, or half-open. As we have seen, this makes no difference as
far as measure is concerned. And it has the advantage that complement, union, and
intersection of finite unions of intervals are again finite unions of intervals.

Borel approximation theorem. For any ε > 0, each Borel set S ⊆ [0, 1] can be
approximated within measure ε by a finite union of intervals.

Proof. We argue by induction on the construction of Borel sets, from open sets
via complements and countable unions. The base step, where S is an open set, has
already been done in example 5 of the previous section.

For the induction step, first suppose that S is the complement of an approximable
Borel set [0, 1] − S . That is, [0, 1] − S can be approximated within measure ε by a
finite union F of intervals. It follows immediately (thanks to the symmetry of the
definition) that S is approximated within measure ε by [0, 1] − F, which is also a
finite union of intervals.

Finally, suppose that S = S 1 ∪ S 2 ∪ S 3 ∪ · · · , where each S i is an approximable
Borel set. In particular, we have finite unions of intervals

F1 =
⋃

k

I1k, which approximates S 1 within measure ε/4,

F2 =
⋃

k

I2k, which approximates S 2 within measure ε/8,

F3 =
⋃

k

I3k, which approximates S 3 within measure ε/16,

and so on. It follows that the union of all the intervals,

F =
⋃
j,k

I jk,

approximates S within measure ε/2, because

ε

4
+
ε

8
+
ε

16
+ · · · = ε

2
.

Of course, F =
⋃

j,k I jk may be an infinite union of intervals. But some finite
subset of these intervals has a union F′ that approximates F within measure ε/2
(by the argument used for open sets in the previous section), so F′ approximates S
within measure ε.

This completes the induction. �

Exercises

9.2.1 Verify that complement, union, and intersection of finite unions of intervals are again finite
unions of intervals.
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The set (S − F) ∪ (F − S ) is called the symmetric difference of S and F, sometimes written
SΔF. The proof above takes it for granted that if each S jΔF j can be covered by intervals of total
length at most ε/2 j+1 then

⋃
j

S j Δ
⋃

j

F j can be covered by intervals of total length at most
∑

j

ε

2 j+1
=
ε

2
.

A more nitpicking proof may include the following details.

9.2.2 Observing that
(⋃

j S j

)
−F =

⋃
j(S j−F) and S j−F ⊆ S j−F j, deduce that

⋃
j S j−

⋃
j F j ⊆⋃

j(S j − F j).
9.2.3 Observing similarly that

⋃
j F j −

⋃
j S j ⊆

⋃
j(F j − S j),

deduce that
⋃

j S j Δ
⋃

j F j ⊆
⋃

j(S jΔF j).

9.3 Lebesgue Measure

The Borel approximation theorem prompts us to define measurability and measure
of sets S ⊆ [0, 1] as follows.

Definition. 1. A set S ⊆ [0, 1] is Lebesgue measurable if, for any ε > 0, there is a
finite union F of intervals that approximates S within measure ε.

2. The Lebesgue measure μ(S ) of a Lebesgue measurable set S equals
limn→∞ μ(Fn), where Fn is a finite union of intervals that approximates S within
measure 1/n.

Thus, Lebesgue measure extends the measure μ on intervals to all sets that can
be approximated arbitrarily closely by finite unions of intervals. This definition
of measure resembles the Greek “method of exhaustion” for measuring lengths
and areas of curved figures—by approximating them with known figures, such as
polygons.

It follows immediately from this definition and the Borel approximation theorem
that all Borel subsets of [0, 1] are Lebesgue measurable.

However, the Borel sets are far from being all subsets of [0,1]. We saw in Sect. 8.6
that there are only 2ℵ0 Borel sets; that is, as many as there are points in [0,1]. And
we know from Sect. 3.8 that [0,1] has more subsets than elements. To find more
measurable sets we take subsets of the Cantor set C, which is equinumerous with
[0,1] and of measure 0, by Sect. 3.7. It follows that C has as many subsets as [0,1],
and all of them are measurable, as subsets of a measure 0 set.

Thus, there are as many measurable sets as there are subsets of [0,1]. To decide
whether nonmeasurable sets exist we therefore need to know more about Lebesgue
measure than just the number of measurable sets. The properties of Lebesgue
measure with the most bearing on this question are countable additivity, mentioned
in Sect. 9.1, and translation invariance. The latter says that any measurable set S has
the same measure as S + r = {x+ r : x ∈ S } (the “translate of S through distance r”).
We now show why these properties hold for all measurable sets.
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Properties of Lebesgue measure. Lebesgue measure μ on [0, 1] is countably
additive and translation invariant. That is:

1. If S 1, S 2, S 3, . . . are disjoint measurable sets then

μ(S 1 ∪ S 2 ∪ S 3 ∪ · · · ) = μ(S 1) + μ(S 2) + μ(S 3) + · · · .

2. If S is Lebesgue measurable and S + r = {x + r : x ∈ S } then μ(S + r) = μ(S ).

Proof. 1. As we showed in the proof of the approximation theorem, by approximat-
ing each S n within ε/2n+1 by a finite union of intervals Ink we can approximate
S 1 ∪ S 2 ∪ S 3 ∪ · · · within ε by a finite union of intervals I jk. Thus, the measure
μ(S 1∪S 2∪S 3∪· · · ) can differ from the sum of measures μ(S 1)+μ(S 2)+μ(S 3)+· · ·
by at most 2ε. Letting ε→ 0 we get

μ(S 1 ∪ S 2 ∪ S 3 ∪ · · · ) = μ(S 1) + μ(S 2) + μ(S 3) + · · · .

2. It is immediate from the definition μ([a, b]) = b − a that μ([a + r, b + r]) = b − a.
Hence, if I1, . . . , Ik are intervals whose union approximates S within measure ε,
then I1 + r, . . . , Ik + r are intervals whose union approximates S + r within ε.
Consequently, μ(S + r) = μ(S ). �

We have defined measurability only for subsets of [0,1] for the sake of conve-
nience: it ensures that measurability is the same as “having finite measure.” We
can also define measurability for subsets of R; for example, by saying that S is
measurable if and only if each set S ∩ [n, n + 1] is of finite measure.

Exercises

Without loss of generality we can take all the intervals whose finite unions approximate measurable
sets S to be closed. Thus, the finite union Fn that approximates S within measure 1/n is a closed
set.

9.3.1 If we define limn→∞ Fn to be {x : x ∈ Fn for all sufficiently large n}, explain why limn→∞ Fn

differs from S by a set of measure 0.
9.3.2 Show that limn→∞ Fn =

⋃
m
⋂

n>m Fn Hence, show that limn→∞ Fn is a Σ2 set.
9.3.3 Deduce that any measurable set differs by measure 0 from a Σ2 set.

Other closure properties of the measurable sets may be established as countable union was.

9.3.4 Show closure under complement and that μ([0, 1] − S ) = 1 − μ(S ). Deduce closure under
countable intersection.

Approximation by finite unions of intervals implies the following “0–1 law.”

9.3.5 Suppose that a set S ⊆ [0, 1] has uniform density d in the sense that μ(S ∩ I)/μ(I) = d for
each interval I. Show that d = 0 or d = 1.
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9.4 Functions Continuous Almost Everywhere

One of the most important insights afforded by Lebesgue measure is that it is
more important for properties to hold “almost everywhere” (i.e., everywhere but
for a set of zero Lebesgue measure) than everywhere. For example, we have the
theorem that any continuous function on a closed interval is Riemann integrable
(Sect. 4.8). However, this does not completely characterize Riemann integrability
because certain discontinuous functions are also Riemann integrable. Some of them
look extremely discontinuous from a nineteenth-century point of view; for example,
the Thomae function on [0,1]:

t(x) =

{
1
n if x = m

n for integers m, n
0 if x is irrational.

As we saw in the exercises to Sect. 4.2, t(x) is discontinuous at every rational point,
so it has a dense set of discontinuities. However, t(x) is continuous at all irrational
points, which we now realize is almost everywhere. And, as we also saw in the
exercises to Sect. 4.8, t(x) is Riemann integrable.

This is no accident. The bounded Riemann integrable functions on [a, b]
are precisely those that are continuous almost everywhere. Thus, by relaxing
“continuous” to “continuous almost everywhere” (together with the more
trivial boundedness condition) we can exactly capture the concept of Riemann
integrability.

To prepare for a proof of this characterization of Riemann integrability, in this
section we explore the properties of almost everywhere continuous functions. This
involves a loosening of the concept of continuity called α-continuity.

Definition. The function f is α-continuous at x = c if there is a δ > 0 such that

y, z ∈ (c − δ, c + δ)⇒ | f (y) − f (z)| < α.

Thus, there is a neighborhood of x = c in which f (x) varies by less than α. A few
results follow immediately from this definition.

1. If f is continuous at x = c, then for every natural number n, there is a
neighborhood of x = c in which f (x) varies by less than 1/n. In other words,
for every n, f is 1/n-continuous at x = c.

2. Therefore, if f is not continuous at x = c, then for some n, f is not 1/n-
continuous at x = c.

3. So, if we let

D = {x ∈ R : f is not continuous at x},

Dα = {x ∈ R : f is not α-continuous at x},
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then

D =
∞⋃

n=1

D1/n.

4. Also, each set Dα is closed, because it contains all its limit points. Namely, if
c1, c2, c3, . . . ∈ Dα, then f (x) varies by at least α in each neighborhood of each
ci. Consequently, if c is the limit of the ci, then each neighborhood of c contains
points ci, and hence neighborhoods in which f (x) varies by at least α. Thus,
c ∈ Dα also.

Note that the set D of points of discontinuity may not be closed. The Thomae
function, for example, is discontinuous at precisely the rational points. The sets Dα
are easier to work with in this respect, and in the next section we will take advantage
of the fact that D is a countable union of the closed sets D1/n.

9.4.1 Uniform α-Continuity

Another ingredient we will need in the next section is an analogue of the theorem
from Sect. 4.7—that continuity on a compact set implies uniform continuity. The
analogue is that α-continuity on a compact set K implies uniform α-continuity on
K, defined as follows.

Definition. A function f is uniformly α-continuous on the set S if there is a δ such
that, for any y, z ∈ S ,

|y − z| < δ⇒ | f (y) − f (z)| < α.

The theorem then reads:

Compactness and uniform α-continuity. An α-continuous function on a compact
set is uniformly α-continuous. �

The proof is completely analogous to the proof for ordinary continuity.

Exercises

9.4.1 Find D1/n for the Thomae function t(x).
9.4.2 Hence show that each D1/n is finite for t(x).
9.4.3 Use D =

⋃∞
n=1 D1/n to give a new proof that the rationals in [0,1] form a countable set.

An important class of functions that are continuous almost everywhere are the monotonic
functions.

9.4.4 If M(x) is monotonic, prove that D1/n has measure 0, hence that D has measure 0.
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9.5 Riemann Integrable Functions

Now we are ready to prove Lebesgue’s theorem that a bounded function f on [a, b]
is Riemann integrable⇔ f is continuous almost everywhere. We use the concept of
α-continuity and the discontinuity sets Dα and D from the previous section. Thus,
to say that f is continuous almost everywhere is to say that μ(D) = 0 and, since
D =

⋃∞
n=1 D1/n, the latter condition is equivalent to μ(D1/n) = 0 for all n.

Without loss of generality we can replace [a, b] by [0, 1], because translating and
rescaling the domain of a function does not affect its Riemann integrability. We also
split the theorem into its two directions. The harder direction is:

Almost continuity implies Riemann integrability. If f is bounded on [0, 1] and
μ(D) = 0, then f is Riemann integrable.

Proof. Suppose we have the bound M ≥ | f (x)| for f on [0,1]. We set

α = ε/2

and first show that there are disjoint open intervals I1, I2, . . . , Ik of total length less
than ε/4M such that

Dα ⊆ I1 ∪ I2 ∪ · · · ∪ Ik.

This is because Dα is compact and of measure 0. Since Dα is of measure 0, we can
cover it by an open set (i.e., a union of open intervals I) of arbitrarily small measure,
namely, the finite union F of intervals that approximate Dα within measure ε, plus
the union of intervals of total length ≤ ε that cover Dα−F. And since Dα is compact,
finitely many of the intervals I also cover Dα, and the union of these is a disjoint
union of certain open intervals I1, I2, . . . , Ik. By choosing the open set covering Dα
to have measure less than ε/4M we then have

μ(I1 ∪ I2 ∪ · · · ∪ Ik) < ε/4M.

Now let K = [0, 1] − (I1 ∪ I2 ∪ · · · ∪ Ik). Since all points of K are outside the set
Dα where f is not α-continuous, f is α-continuous on K. Also, K is closed (being
the complement of the open set I1 ∪ I2 ∪ · · · ∪ Ik) and bounded, hence compact, so
f is in fact uniformly α-continuous on K, by the theorem in the previous section.

Recall that uniform α-continuity means that there is a δ > 0 such that, for any
y, z ∈ K

|y − z| < δ⇒ | f (y) − f (z)| < α = ε/2.

Thus, if we divide K into finitely many subintervals of length less than δ, the
difference between the lub and glb of f (x) in each is less than ε/2. Consequently,
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the difference between the upper and lower Riemann sums for f on K is also less
than ε (since the length of K is at most 1).

Finally, consider upper and lower Riemann sums on I1 ∪ I2 ∪ · · · ∪ Ik. Since this
set has length at most ε/4M and | f (x)| ≤ M, the difference between lub and glb of
f on I1 ∪ I2 ∪ · · · ∪ Ik is at most 2M, hence the difference between upper and lower
Riemann sums is at most

2M · ε/4M = ε/2.

Adding the contributions from K and I1 ∪ I2 ∪ · · · ∪ Ik, we find that the difference
between upper and lower Riemann sums for f over [0,1] is at most ε. Since ε is
arbitrary, this means f is Riemann integrable. �

The easier direction is:

Riemann integrability implies almost continuity. If f is Riemann integrable on
[0, 1], then the set D of discontinuities of f has measure 0.

Proof. Since D =
⋃∞

n=1 D1/n, it suffices to show that each Dα has measure 0. Given
α and any ε > 0 we choose a partition of [0,1] for which the difference between
upper and lower Riemann sums for f is less than αε.

It follows that the intervals of the partition on which f varies by α or more have
total length less than ε. These intervals cover the set Dα, so Dα is contained in a
finite union of intervals with arbitrarily small total length. Thus, Dα has measure 0,
as required. �

Exercises

If f is continuous almost everywhere on [a, b] then the same is true on any subinterval of the form
[a, x], hence the Riemann integral

F(x) =
∫ x

a
f (t) dt

exists for any x in [a, b]. We now investigate the extent to which the fundamental theorem of
calculus holds for the almost continuous functions f . (We showed that it holds at all points x for
continuous f in Sect. 4.8.)

9.5.1 Show that F′(x) = limh→0

∫ x+h

x
f (t) dt if the limit exists.

9.5.2 Show that the limit equals f (x) almost everywhere.

9.6 Vitali’s Nonmeasurable Set

The first example of a nonmeasurable set was discovered by Vitali (1905). Its
existence depends on a fairly strong form of AC—a well-ordering ofR—but, in fact,
all examples of nonmeasurable sets depend on rather strong forms of AC. We give
another interesting example in the next section.
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The Vitali nonmeasurable set. Assuming that there is a well-ordering of R, there
is a set V ⊂ [0, 1] that is not Lebesgue measurable.

Proof. The set V is most naturally viewed as a subset of the circle (of circumfer-
ence 1), rather than as a subset of [0,1]. For this reason, we imagine [0,1] turned
into a circle C by joining 0 to 1, so each x ∈ [0, 1) is associated with the point on
the circle C at angle 2πx.

In particular, each rational q ∈ [0, 1) corresponds to the point at angle 2πq. We
now call points x1 and x2 equivalent if x1 − x2 is rational. This equivalence relation
partitions the circle C into equivalence classes, where

x1, x2 belong to the same class ⇔ x1 − x2 is rational.

For example, the rational points in [0, 1) form one such class. If x1−x2 is not rational
then x1 and x2 belong to distinct classes, with no common point x (otherwise x1 − x
and x2 − x would both be rational, in which case x1 − x2 would be rational too).

It follows from AC for subsets of R (and hence also from a well-ordering of R)
that there is a set V that includes exactly one member from each equivalence class E.
In particular, V includes exactly one rational point. Now, for each rational q we let

V + q = {x + q : x ∈ V}.

Here x+q denotes addition “on the circle,” or mod 1, so that x+q corresponds to the
point on the circle obtained from the point at angle 2πx by rotating through angle
2πq. Thus, V + q is simply the result of rotating the set V through angle 2πq.

We now observe that the sets V + q, for rational q ∈ [0, 1), have the following
properties.

1. The sets V + q1 and V + q2 are disjoint if q1 � q2.
If x ∈ V + q1 and x ∈ V + q2 then x − q1, x − q2 ∈ V , so x − q1 and x − q2 are

either identical or inequivalent, because distinct members of V belong to distinct
equivalence classes. It follows that q1 and q2 are identical or inequivalent. But q1

and q2 cannot be inequivalent, since their difference is rational, so we must have
q1 = q2.

2. The union of the sets V + q, over rational q ∈ [0, 1), is the whole circle C.
Any x ∈ [0, 1) is equivalent to some x′ ∈ V , since V includes a member of

each equivalence class. But then x = x′ + q for some rational q, in which case
x ∈ V + q.

3. If V is Lebesgue measurable, then so is each V + q, and μ(V + q) = μ(V).
Because V + q is a translate of V , and μ is translation invariant.

Now suppose that V is Lebesgue measurable, in which case we have either
μ(V) = 0 or μ(V) = ε > 0.
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If μ(V) = 0, then the union of the sets V + q, for rational q, is a countable union
of measure 0 sets by property 3, and hence also of measure 0. This is impossible,
by property 2, since C has measure 1. If μ(V) = ε > 0 then C is a countable disjoint
union (by property 1) of sets of measure ε, so C has infinite measure, which is also
impossible.

Thus, the necessary conclusion is that V is not Lebesgue measurable. �

Exercises

A somewhat similar nonmeasurable set, again in the circle of circumference 1, may be obtained
from an irrational rotation in place of the rational rotations in Vitali’s example.

We let s be an irrational number, so adding s mod 1 amounts to rotation through 2πs. Now
prove the following.

9.6.1 For any point x, the points in

orbit of x = {x, x ± s, x ± 2s, . . .}

are all different.
9.6.2 For any points x and y, the orbits of x and y are disjoint or identical.
9.6.3 If X (obtained by AC) includes exactly one point from each orbit, show that

X, X ± s, X ± 2s, . . .

are disjoint sets that fill the circle.
9.6.4 Conclude, as in Vitali’s example, that X is nonmeasurable.

9.7 Ultrafilters and Nonmeasurable Sets

A new kind of nonmeasurable set was introduced by Sierpiński (1938), based on
the existence of nonprincipal ultrafilters, which had been proved by Tarski (1930).
Sierpinski used an ultrafilter to construct a set W ⊂ [0, 1] with the following two
properties.

1. For each x ∈ [0, 1], x ∈ W ⇔ 1 − x � W.
Thus, in some sense, W includes half the points in [0, 1], so we should have

μ(W) = 1
2 , if W is measurable at all.

2. If [0, 1] is divided into 2m equal intervals Ik, then each W ∩ Ik is a translate of
W ∩ I1, so μ(W ∩ Ik) = μ(W ∩ I1).

Thus, we should also have μ(W ∩ Ik) = 1
2μ(Ik). This conflicts with the

definition of measurable sets in Sect. 9.3, according to which they can be
approximated within measure ε by finite unions of intervals.

The proof associates each set X ∈ U with a number x ∈ [0, 1], namely,
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x =
∑
n∈X

2−n.

However, in a countable number of cases, two sets X are associated with the same
x. For example,

1
2
= 2−1 = 2−2 + 2−3 + 2−4 + · · · ,

so the sets {1} and {2, 3, 4, . . .} both give x = 1
2 . This situation occurs only for

numbers x expressible as a finite sum of powers 2−n (equivalently, numbers with
a finite binary expansion). Since there are only countably many such x, the set of
them has measure 0 and may be ignored. We do so in the proof below, where [0, 1]∗

denotes the interval [0,1] minus the points with finite binary expansions.
The omitted points x may also be described as those with binary expansions

that terminate in an infinite sequence of 1s. Thus, they correspond precisely to the
cofinite sets X, which form the filter we extend to get U. The points x ∈ [0, 1]∗ that
we consider are therefore those corresponding to the X in U that are added to the
cofinite filter to make an ultrafilter.

Ultrafilter-based nonmeasurable set. If U is an ultrafilter over N extending the
cofinite ultrafilter, and if x =

∑
n∈X 2−n, then the x ∈ [0, 1]∗ for X ∈ U comprise a

nonmeasurable set W.

Proof. Since [0, 1]∗ omits all numbers that are finite sums of terms 2−n, each x ∈ W
includes infinitely many terms. Each x ∈ W also omits infinitely many terms 2−n,
since any x that omits only finitely many terms 2−n can be rewritten as a finite sum
of such terms.

Now
∑

n∈N 2−n = 1, so it follows for each x ∈ W that

1 − x = 1 −
∑
n∈X

2−n =
∑
n�X

2−n � W,

since U is an ultrafilter and hence X ∈ U ⇔ N − X � U. Thus,

x ∈ W ⇔ 1 − x ∈ [0, 1]∗ −W,

which means that [0, 1]∗ −W is the reflection of W in x = 1
2 . So both sets have the

same measure, if they are measurable at all.
We now prove the second property that follows from the measurability of W: for

any subdivision of [0, 1] into 2m equal subintervals Ik, W ∩ Ik has the same measure
for each k. In fact, we show that each W ∩ Ik is a translate of W ∩ I1. This follows
by induction when we prove that each W ∩ Ik+1 is the translate of W ∩ Ik through
distance 2−m, which amounts to proving

x ∈ W ⇔ x ± 2−m ∈ W. (*)
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To prove the latter claim, we go back to the definition of U, in order to show that

X ∈ U ⇔ X′ ∈ U for any sets X, X′ that differ by a finite set.

Certainly

X ∈ U ⇒ X ∪ F ∈ U for any finite set F,

because any filter is closed under supersets. But also

X ∈ U ⇒ X − F ∈ U for any finite set F,

because

X − F = X ∩ (N − F) = X ∩ (cofinite set) ∈ U,

since U includes all cofinite sets and is closed under intersections.
The consequent property of the numbers x is that

x ∈ W ⇔ x′ ∈ W

for any x, x′ whose expressions as
∑

2−n differ in finitely many terms. Thus, to prove
(*) it suffices to prove that x ± 2−m differs from x in only finitely many terms. This
is easy to check (see exercises).

Now we are ready to decide whether W is measurable. If it is, we know that
μ(W) = 1

2 . In that case, since μ(W ∩ Ik) is the same for each k, we have μ(W ∩ Ik) =
1
2μ(Ik). This contradicts the definition of Sect. 9.3, that any measurable set can be
approximated by a finite union of intervals. (In more detail: if W is measurable,
approximate it within ε/2 by a finite union of intervals I. Then, by choosing m
sufficiently large, approximate the union of the intervals I within ε/2 by a suitable
union of intervals among the 2m intervals Ik. This contradicts the second property of
W, according to which only half the measure of the intervals Ik belongs to W.) �

Exercises

Given x = 2−n1 + 2−n2 + 2−n3 + · · · with n1 < n2 < n3 < · · · , we wish to show that x′ = x ± 2−m

is a sum of distinct powers 2−n, differing from the sum for x in only finitely many terms. This is
obviously true for x′ = x + 2−m when x does not include the term 2−m, and for x′ = x − 2−m when
x does include the term 2−m. We now consider the remaining cases.

9.8.1 Suppose that x = 2−n1 + 2−n2 + 2−n3 + · · · , with n1 < n2 < n3 < · · · , includes the term 2−m .
Explain why x′ = x + 2−m can be written as a sum of distinct powers 2−n that differs from
the sum for x only in terms 2−n with n ≤ m.

9.8.2 Explain why 2−1 − 2−4 = 2−2 + 2−3 + 2−4.
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9.8.3 If n < m, show that

2−n − 2−m = 2−(n+1) + 2−(n+2) + · · · + 2−m

9.8.4 Suppose that x = 2−n1 +2−n2 +2−n3 + · · · with n1 < n2 < n3 < · · · and that x does not include
the term 2−m . Show, using Exercise 9.8.3 or otherwise, that x′ = x − 2−m can be written as a
sum of distinct powers 2−n that differs from the sum for x in only the terms with n ≤ m.

The proof above—that W is not measurable—assumes “reflection invariance” of Lebesgue
measure in claiming that W has the same measure as [0, 1]∗ −W.

9.8.5 Formulate “reflection invariance” precisely, and explain why it holds for the Lebesgue
measure.

9.8 Historical Remarks

The two founders of measure theory, as we know it today, were Borel and Lebesgue.
As mentioned in Sect. 7.9, Borel (1898) saw that it is natural to expect countable
additivity for any concept of measure, and that this implies the measurability
of all Borel sets. He also emphasized the immediate consequence of countable
additivity, that countable sets have measure 0; in other words, that all sets of positive
measure are uncountable. Finally, he was aware of the potential inconsistency of the
measure concept—in the sense that different constructions of the same set could
give different values of its measure—and he saw that inconsistency is averted by
the Heine–Borel theorem. An interval of positive measure, such as [0,1], cannot be
covered by intervals In of total measure ε, since the Heine–Borel theorem then gives
a covering of [0,1] by finitely many In of total measure at most ε, which is clearly
impossible.

This is why Borel called the Heine–Borel theorem the “first fundamental theorem
of measure theory.” Borel (1950) also spoke of the “second fundamental theorem of
measure theory,” meaning the fact that every measurable set can be approximated
within ε by a finite union of intervals. Lebesgue (1902) took this property as the
definition of a measurable set in [0,1], much as we did in Sect. 9.3, and used it to
prove the fundamental properties of measure, such as countable additivity.

Lebesgue extended Borel’s ideas on measure in two ways. First, he extended the
concept of measure beyond the Borel sets by including all subsets of measure 0 sets
among the measure 0 sets. As we now know, this extends measure to all subsets of
[0,1], except for sets called into being by AC. Second, Lebesgue applied the concept
of measure to analysis, particularly to the theory of integration. Lebesgue’s concept
of integral, now called the Lebesgue integral, is an extension of the Riemann integral
to a much larger class of functions. Just as Lebesgue measure covers all Borel sets
plus sets that are “almost Borel,” the Lebesgue integral covers all bounded Baire
functions plus such functions that are “almost Baire.” This includes the Dirichlet
function, and many other functions that are not Riemann integrable. Moreover, the
Lebesgue integral has various limit properties that fail for the Riemann integral.
Among them are:
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Monotone Convergence Theorem. If f1 ≤ f2 ≤ f3 ≤ · · · is a sequence of
Lebesgue integrable functions that converge almost everywhere on [a, b] to f ,

and if
∫ b

a
fn(x) dx < A for each n, then

∫ b

a
f (x) dx = lim

n→∞

∫ b

a
fn(x) dx.

Dominated Convergence Theorem. If f1, f2, f3, . . . are Lebesgue integrable
functions that converge almost everywhere on [a, b] to f , and if there is a
Lebesgue integrable g with | fn| ≤ g almost everywhere in [a, b], then f is
Lebesgue integrable and

∫ b

a
f (x) dx = lim

n→∞

∫ b

a
fn(x) dx.

Both of these theorems fail for the Riemann integral if we take

fn(x) =

{
1 on the first n rational points x
0 elsewhere,

so limn→∞ fn is the Dirichlet function, which is not Riemann integrable, even though

each Riemann integral
∫ b

a
fn(x) dx = 0.

Lebesgue’s concept of “almost everywhere” corrects many cases of bad behavior
previously thought to be incorrigible. We have already seen the example of the
Thomae function, which looks badly discontinuous, but is actually continuous
almost everywhere. Other cases of badness shown to be “good almost everywhere”
by Lebesgue concern the differentiability of continuous functions and the funda-
mental theorem of calculus:

• Any monotonic continuous function is differentiable almost everywhere.
• If f is integrable and F(x) =

∫ x

a
f (t) dt then F is differentiable almost everywhere

and F′(x) = f (x) almost everywhere.

Lebesgue’s results changed the face of analysis by greatly expanding the scope
of the operations of integration and differentiation. They also drew attention to the
underlying concept of measure, and raised the question of nonmeasurable sets. The
example of Vitali (1905) was challenging in its simplicity, despite its reliance on
AC, which Lebesgue did not accept. More challenging examples were to come.

Hausdorff (1914), p. 469, gave a decomposition of the sphere into three pieces
A, B, and C such that:

• A is congruent to B (by a rotation of the sphere),
• A is congruent to C (by a rotation of the sphere),
• A is congruent to B ∪ C (by a rotation of the sphere).
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Fig. 9.1 Giuseppe Vitali

It follows that subsets of the sphere cannot even be given a finitely additive measure
μ, if measure is assumed to be rotation-invariant.1 If they could, we should have
nonzero numbers satisfying the contradictory equations

μ(A) = μ(B) = μ(C) = μ(B) + μ(C).

Hausdorff’s sets A, B, and C are determined with the help of AC. Also using AC,
Banach and Tarski (1924) used Hausdorff’s idea to devise the ultimate affront to
common sense: a decomposition of the three-dimensional unit ball into a finite
number of subsets, which can be rigidly moved to form two unit balls. Accounts of
this “Banach–Tarski paradox” may be found in Wagon (1993) and Wapner (2005).
Figure 9.2 shows Banach and Tarski around the year 1919, five years before the
Banach–Tarski theorem.

As mentioned in Chap. 6, Gödel (1938) proved that AC is consistent with the ZF
axioms, so the Banach–Tarski paradox is not a contradiction (unless the ZF axioms
are themselves contradictory). Nevertheless, one might hope that there are other
axioms with some of the benefits of AC without its counterintuitive consequences.
The most deeply studied candidate so far is the axiom of determinacy, AD, which
we introduced in Chap. 7.

There we mentioned that AD has some benefits for the theory of R, because
it implies that all subsets of R are Lebesgue measurable and that countable AC
holds for sets of reals. What distinguishes AD from AC is its “higher consistency
strength,” meaning that we have to assume the existence of very large sets to prove
the consistency of ZF+AD. Since AC is normally assumed in these consistency

1More generally, we would like measure to be invariant under any rigid motions, such as
translations, reflections, and rotations. This is the case for Lebesgue measure in all dimensions.
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Fig. 9.2 Stefan Banach and Alfred Tarski

proofs, one can measure large sets by their cardinal numbers, which means we
assume the existence of large cardinals.

Recall from Sect. 7.9 that the Gödel (1938) theorem about AC is that ZF+AC
is consistent provided only that ZF is consistent. This means that ZF+AC has the
same consistency strength as ZF. A proposition of somewhat higher consistency
strength is “all subsets of R are Lebesgue measurable.” As mentioned in Sect. 6.8,
to prove the consistency of this proposition one needs to assume the existence of an
inaccessible cardinal—something not provable in ZF alone. Inaccessible cardinals
are merely the smallest of the large sets whose existence cannot be proved in ZF.
We have to assume the existence of much larger sets, called Woodin cardinals, to
prove the consistency of ZF+AD (again, assuming that ZF is consistent). This result
follows from the theorem of Woodin, mentioned in Sect. 7.9, that AD holds in L(R).

Another way to deal with the paradoxical sets is to allow them to exist (by
assuming AC), but to keep them as far as possible from sets we can define, such as
the Borel sets and those obtained from them by projection and complementation:
the projective sets. Woodin cardinals also solve this problem. If we assume the
consistency of

ZF+AC+“there are infinitely many Woodin cardinals,”

then we get the consistency of

ZF+AC+“all projective sets are determined.”

This was proved by Martin and Steel (1989). As mentioned in Sect. 7.9, Mycielski
and Świerczkowski (1964) proved that all determined sets are measurable, so Martin
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and Steel’s result keeps the nonmeasurable sets outside the projective sets, provided
those infinitely many Woodin cardinals exist.

It is perhaps frustrating to be unable to answer basic questions about the real
numbers without assuming the existence of astoundingly large sets. But it is surely
inspiring to know that the human mind can find such a remarkable explanation for
the gaps in our understanding of R.



Chapter 10
Reflections

PREVIEW

In this chapter we revisit the fundamental questions raised in the first chapter. We
review the answers obtained, and reflect on the insights and new questions to which
they lead.

The fundamental questions were already implicit in ancient Greek mathematics,
and the Greeks saw that their difficulties were entangled with the concept of
infinity—which worried them. On the other hand, they also saw that infinity could
be used to solve otherwise unapproachable problems, such as finding the area of
a parabolic segment. But their qualms about infinity prevented them from using
infinite processes systematically (i.e., from developing calculus).

We now realize that the difficulties of Greek mathematics are concentrated in the
concept of a real number: a concept that has to meet the needs of both arithmetic
(counting, adding, multiplying) and geometry (measuring quantities such as length
and area, modeling continua such as lines and curves).

To reconcile these demands requires acceptance of infinity, and with it the general
concepts of set, function, and limit—none of which were known to the Greeks.
Set theory is a setting where questions about infinity, functions, and limits can be
answered to a large extent. In particular, ZF set theory (plus certain axioms of
choice) has given good answers to most of the fundamental questions. But it has
also shown the questions to be more complicated than first thought. In particular,
the problem of measuring sets of real numbers is entangled with questions about the
entire universe of infinite sets.

J. Stillwell, The Real Numbers: An Introduction to Set Theory and Analysis,
Undergraduate Texts in Mathematics, DOI 10.1007/978-3-319-01577-4__10,
© Springer International Publishing Switzerland 2013
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10.1 What Are Numbers?

The answer to this question turns out to have two parts:

1. The laws of arithmetic, which govern the behavior of addition, subtraction,
multiplication, and division, arise from the positive integers 1, 2, 3, 4, 5, . . ., and
the accompanying principle of induction. These laws extend quite easily to the
integers . . . − 2,−1, 0, 1, 2, 3, . . . and the rational numbers m/n (where m and n
are integers and n � 0).

2. Since irrational numbers exist—for example,
√

2 and π—we need to define
irrational numbers and to extend the laws of arithmetic to them. A convenient
way to do this is to define each positive real number as a cut in the set of
positive rational numbers; that is, a partition of the set Q+ of rational numbers
≥ 0 into sets L and U, where each member of L is less than each member
of U.

Each rational number r is thereby represented by the cut 〈L,U〉, where

L = {q ∈ Q+ : q ≤ r}, U = {q ∈ Q+ : q > r},

or by the cut 〈L′,U ′〉, where

L′ = {q ∈ Q+ : q < r}, U = {q ∈ Q+ : q ≥ r}.

A cut 〈L,U〉 in which L has no maximum member and U has no minimum mem-
ber therefore represents an irrational number. For example,

√
2 is represented by

the cut

L√2 = {q ∈ Q
+ : q2 < 2}, U√2 = {q ∈ Q

+ : q2 > 2}.

Thus, the rational numbers are reinvented, and the irrational numbers are brought
into being, as (pairs of) infinite sets of positive rational numbers. The laws of
arithmetic are then inherited, as it were, from the rational numbers. It suffices to
define the sum of cuts 〈L,U〉 and 〈L′,U ′〉 as the cut with lower set

L + L′ = {q + q′ : q ∈ L and q′ ∈ L′},

and the product of cuts is the cut with lower set

LL′ = {qq′ : q ∈ L and q′ ∈ L′}.

The laws of arithmetic for positive real numbers extend to zero and negative real
numbers without difficulty. One can also prove properties of algebraic numbers,
such as (

√
2)2 = 2 and

√
2
√

3 =
√

6.
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The step from the rational to the real numbers is accomplished by a single axiom of
ZF set theory: the axiom of infinity. More precisely, the theory of rational numbers
under addition and multiplication is essentially the same as ZF–Infinity, the theory
of finite sets. As we explained in Sect. 6.6, the natural numbers can be taken to be
the finite sets

0 = {}, 1 = {0}, 2 = {0, 1}, . . . .

The successor function is then S (n) = n ∪ {n}, and + and × can be defined by
induction as explained in Sect. 2.2. This embeds the arithmetic of natural numbers
in the theory of finite sets, and one can extend the theory to integers and rational
numbers by using ordered pairs, as was also explained in Sect. 6.6. Conversely, all
finite sets can be encoded as natural numbers, and operations on finite sets, such as
pairing and union, can be simulated by arithmetic operations.

The axiom of infinity takes us from Q to R and of course much more. ZF
set theory includes objects far beyond individual real numbers, or the set R, or
the subsets of R, or the real functions that form the subject matter of analysis.
Nevertheless, in passing from ZF–Infinity to ZF we do not necessarily overstep
the bounds of analysis. If anything, we need more axioms of set theory, not less, to
answer questions about R. As we have seen, some form of choice axiom is needed
to establish the equivalence of ordinary continuity and sequential continuity. And
some questions about measure and determinacy of subsets of R cannot be settled
without appealing to large cardinal axioms, that is, assumptions about the size of
sets that are able to exist.

10.2 What Is the Line?

While Dedekind’s concept of cut provides an immediate extension of the laws of
arithmetic from rational to irrational numbers, that was not his main reason for
introducing it. What he really wanted to do was provide a numerical model of
the line, and particularly its “continuity,” or what we now call its completeness.
The rational numbers do not provide a convincing model of the line because they
have gaps at places such as

√
2. Gaps in the line stymie any attempt to prove basic

theorems about continuous functions, such as the intermediate value theorem.
For example, the function f (x) = x2 − 2 continuously passes from a negative

value (−2) at x = 0 to a positive value (+2) at x = 2, without taking the value 0 at
any rational value of x. Thus, even a quadratic function on Q may fail to have the
intermediate value property.

Dedekind’s way of creating a line without gaps is almost absurdly simple: fill
each gap in the rational numbers by the gap itself ! And what better way to realize
a gap in the rationals than as the pair 〈L,U〉 of sets of rationals, respectively, to
the left, and to the right, of the gap? What made Dedekind’s idea so revolutionary
was its introduction of sets as bona fide mathematical objects. This was too radical
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for Dedekind’s contemporaries, and perhaps even for Dedekind himself, because he
claimed the right to create a new number corresponding to each pair 〈L,U〉. Today
however, we are used to defining mathematical objects as sets, so a pair 〈L,U〉 is as
good a mathematical object as any other.

Realization of gaps by sets of rational numbers may be the simplest way to
construct a line without gaps, but the set R of real numbers is not as simple as
the set Q of rational numbers. As we saw in Chap. 3, Q is countable, like the set
of natural numbers, but R is not. This makes a sharp distinction between rational
and real numbers, which was not clear when we casually made the step from
rational numbers to sets of rational numbers. The uncountability of R exposes the
enormity of this step, and more generally of the step from any set S to its power set
P(S ) = {all subsets of S }. As we saw in Sect. 3.8, this step always leads to a set of
higher cardinality, so the power set axiom of ZF—which allows us to view sets as
objects, and hence as members of another set—is not to be taken lightly.

10.3 What Is Geometry?

Since ancient times, geometry has been based on the idea of a continuous space
(originally the line, the plane, or three-dimensional space) with a distance function.
Distance is the fundamental geometric quantity, since it determines all other
geometric quantities, such as angle, area, and volume. We now know that the idea
of a continuous line can be modeled by R, the set of real numbers, and R also gives
a distance between any two points x and y in R; namely, |y − x|.

The plane can then be modeled by the cartesian product of the line with itself,

R
2 = {〈x1, x2〉 : x1, x2 ∈ R},

which goes back to the idea (as you can see from the word “cartesian”) of Descartes
(1637) of using coordinates x1, x2 to describe points in the plane. As we saw in
Sect. 5.1, the Pythagorean theorem motivates the definition of distance between
points 〈x1, x2〉 and 〈y1, y2〉, namely,

√
(y1 − x1)2 + (y2 − x2)2.

More generally, we define the distance between points 〈x1, x2, . . . , xn〉 and
〈y1, y2, . . . , yn〉 in Rn to be

√
(y1 − x1)2 + (y2 − x2)2 + · · · + (yn − xn)2,

motivated by the idea of iterating the Pythagorean theorem (using a triangle with
one side in Rn−1 and a perpendicular side into Rn). The generalization of distance to
n dimensions is elegantly subsumed by the concept of inner product on Rn:
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〈x1, x2, . . . , xn〉 · 〈y1, y2, . . . , yn〉 = x1y1 + x2y2 + · · · + xnyn.

We abbreviate the points 〈x1, x2, . . . , xn〉 and 〈y1, y2, . . . , yn〉 by x and y, the distance
between x and y by |y − x|, and we further abbreviate the distance |x− 0| between x
and the origin 0 by |x|.

Then we notice that |x|2 = x · x and, more generally,

|y − x|2 = (y − x) · (y − x).

Thus, distance is expressible in terms of the inner product. So too is angle, because
it happens that

x · y = |x||y| cos θ,

where θ is the angle between the lines from the origin to x and y. The inner
product thereby gives the basic concepts of geometry on Rn. In this geometry
the Pythagorean theorem holds—because it is built into the definition of inner
product—and also the other fundamentals of geometry laid down by Euclid. For
this reason, Rn with its inner product is called Euclidean space.

It is noteworthy how much of this realization (no pun intended) of Euclid’s vision
builds on ideas already present in Euclid. The Pythagorean theorem is the main
theorem of Euclid’s Elements, Book I, and the struggle to incorporate irrationals into
the line is the subject of Euclid’s Book V. What Euclid lacked, as we have seen, was
sufficient acceptance of infinity to obtain a complete number line R, and sufficient
acceptance of algebra to admit products of any number of lengths. [Incidentally, it
was Grassmann (1847) who first proposed algebraic foundations for n-dimensional
geometry. Thus, Grassmann was a pioneer in the foundations of both arithmetic and
geometry.]

The linear algebra courses of today, which often present the definition of
Euclidean space without comment, stand upon the shoulders of giants: Euclid,
Descartes, Grassmann, Dedekind, Cantor, . . .. And this is just Euclidean geometry.
Since the early nineteenth century, there have also been non-Euclidean geometries,
typically based on R as well.

Historically, Euclidean geometry was first generalized by considering surfaces in
R

3, and measuring distance between two points on the surface in the natural way.
For example, if one has the unit sphere S2 in R3 one wants to measure the distance
between points P and Q on S2 by taking the plane through P, Q and the center O of
S

2, which meets S2 in a circle of radius 1, and measuring the length of the arc from
P to Q on this circle.

More generally, on a smooth surface S in R3 one hopes that for any two points P
and Q on S there will be a geodesic (curve of shortest length) connecting P and Q,
the length of which can be found by calculus.

More generally still, one can dispense with the ambient space R3 or Rn

altogether and simply define a length function d(P,Q) on any space S to be a real-
valued function with reasonable properties. The most general properties that are
geometrically reasonable are the following: for all P,Q ∈ S
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1. d(P,Q) ≥ 0 (distance is positive),
2. d(P,Q) = 0⇔ P = Q (points at zero distance are identical),
3. d(P,Q) = d(Q, P) (symmetry), and
4. d(P,R) ≤ d(P,Q) + d(Q,R) (the triangle inequality).

These properties define what is called a metric space, which is a general setting for
geometry based on a real-valued length function.

10.4 What Are Functions?

The simplest answer is based on the concept of a set, as we already saw in Sect. 1.5.
However, we now know that the simplicity of this general definition has a cost. Real
functions become as complicated as sets of real numbers, so their properties depend
to some extent on which axioms of set theory we accept.

For example, with a well-ordering of R we have a nonmeasurable set V ⊆ [0, 1]
(the Vitali set), and the characteristic function of V is not Lebesgue integrable. If,
on the other hand, we accept the axiom of determinacy (AD), then all subsets of
[0,1] are Lebesgue measurable and all (bounded) functions on [0,1] are Lebesgue
integrable.

There are also options between these two extremes, concerning the complexity
possible for nonmeasurable functions. To explain them we recall the concepts of
Baire function and Borel set from Chap. 8.

The Baire functions are those obtainable from continuous functions by the limit
operation, and they include the characteristic functions of all sets in the Borel
hierarchy. The Borel sets are all Lebesgue measurable, as we saw in Sect. 9.3,
and this enables us to prove that all (bounded) Baire functions on [0,1] are
Lebesgue integrable. Thus, nonintegrable functions have greater complexity than
Baire functions. But we can go a little further.

We can also prove (in ZF+AC) that all projections of two-dimensional Borel
sets are measurable. It turns out that this class of sets (called analytic sets) includes
sets that are not Borel, so Lebesgue measurability extends beyond the Borel sets,
to the analytic sets and their complements. These sets form the first level of what
is called the projective hierarchy, whose higher levels arise by taking finitely many
complements and further projections.

It follows from the measurability of analytic sets and their complements that the
corresponding functions are Lebesgue integrable. However, in ZF+AC we cannot
prove measurability of all sets at higher levels of the projective hierarchy, so
Lebesgue integrability of the corresponding functions is also not provable. Thus,
the question of how complex a nonintegrable function must be is essentially the
question of how complex a nonmeasurable set must be. We pursue this question
further in Sect. 10.6.

Suppose, however, that one gives up this pursuit and decides to confine attention
to the Baire functions. Even here we cannot avoid set theory issues. Just as the
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concept of natural number is naturally linked to induction over the finite ordinals,
the Baire functions (and the related Borel sets) are naturally linked to the countable
ordinals and transfinite induction. And in this domain we cannot avoid using
countable AC; for example, to prove that a countable union of countable sets is
countable.

10.5 What Is Continuity?

In ordinary speech, the word “continuous” means “unbroken” or “without gaps,”
as in “a continuous curve” or “continuous progress.” In mathematics we now
use the term “connected” for this property, and reserve the term “continuous” for
functions—though the two concepts are certainly related. A continuous function f
onR has a connected graph, for example, but this is due as much to the completeness
of R as to the continuity of f .

Analysis suggests two definitions of continuity: the ε-δ definition and the
definition via sequences (“sequential continuity”). The two are equivalent only by
virtue of an axiom of choice, namely countable AC, which is needed to prove that
sequential continuity at a point implies ε-δ continuity at a point. The latter result
was one of the first to raise issues of set theory in analysis.

However, neither of these definitions was as consequential as the third definition,
in terms of open sets. Hausdorff’s discovery that a function f is continuous if and
only if f −1 of any open set is open, became the foundation of the whole discipline
of topology. One begins with the concept of a topological space S , which is a set
together with a collection T of subsets U that are called open. The sets in T are
open purely by virtue of the following closure properties:

1. The empty set and the whole space S are open.
2. If U and V are open, then U ∩ V is open.
3. If {Ui} is a collection of open sets, then

⋃
i Ui is open.

In this setting, one can now talk about continuous functions, homeomorphisms,
closed sets, compact sets, and so on, because all are definable in terms of open
sets. T is called a topology on the set S .

The generality of the continuity concept means that problems about the existence
of continuous maps can be quite difficult. An example is the problem of invariance
of dimension (nonexistence of a continuous bijection Rm → Rn for m � n), which
is nontrivial even for m = 1 and n = 2.

10.6 What Is Measure?

As already mentioned in Sect. 10.4, the concept of measure leads to questions about
functions (such as integrability) which have answers that depend on which axioms
of set theory we accept. Thus, the concept of measure has been decisive in exposing
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the role of set theory in analysis. Our original question (What is measure?) can be
answered fairly simply: it is what you get by approximating a set by finite unions of
intervals (as explained in Sect. 9.3).

The real question is: What is a measurable set? In other words, which sets can be
approximated by finite unions of intervals? The answer depends on our axioms for
set theory, and there are conflicting answers for AC versus AD.

With full AC, there are nonmeasurable sets, as we saw in Sects. 9.6 and 9.7.
However, we cannot establish the complexity of these nonmeasurable sets without
axioms that go beyond ZF+AC. The lowest possible complexity of nonmeasurable
sets results from adding the axiom of constructibility due to Gödel (1939). As
mentioned in Sect. 7.3, this axiom says that each set has a definition in a language
that includes symbols for ordinals (in addition to the symbols in the usual language
for set theory). It follows that the definitions of sets can be well-ordered, which
leads to an explicitly defined well-ordering of R. From this definition one can obtain
definitions of nonmeasurable sets at the second level of the projective hierarchy. This
is as low as we can go because sets at the first level can be proved measurable in
ZF+AC, as we mentioned in Sect. 10.4.

It is not known how high one can push the nonmeasurable sets while still
retaining AC. The strongest result so far is that all projective sets can be proved
measurable if we add to ZF+AC an axiom stating the existence of very “large”
sets. This was proved by Martin and Steel (1989). As mentioned in Sect. 9.8,
they actually proved determinacy of projective sets from the assumption that these
“large” sets exist, whence measurability follows from the theorem of Mycielski and
Świerczkowski (1964) that determinate sets are measurable.

Thus, the theorem of Martin and Steel (1989) is also a theorem about the extent
to which AD conflicts with AC: it says that AC is compatible with projective AD.
In that respect it complements the much easier theorem proved in Sect. 7.7, which
says that full AD is compatible with countable AC for sets of reals.

10.7 What Does Analysis Want from R?

Analysis wants to apply the limit concept to numbers and functions, so it wants
limits to exist among the real numbers wherever possible. That is, it wants R to
be complete. As we have seen, this is equivalent to the geometrical demand of
having “no gaps” in the line, so in this respect geometry and analysis make the
same demands on R. However, analysis has additional demands, such as having real
numbers as the values of measures and integrals. As we saw in the previous section,
this leads to the delicate question of deciding which sets are measurable. Deciding
which functions are integrable is essentially the same question.

A related, though less delicate, role for the real numbers is to serve as values of
the distance function in a metric space. The completeness of R is also important in
a metric space S , for example, in defining the lengths of curves in S . If C is a curve
in S given by a continuous function f : [0, 1]→ S it is natural to approximate C by
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a polygon with vertices P0 = f (0), P1 = f (x1), P2 = f (x2), . . . , Pn = f (1) that lie
on C (with 0 < x1 < x2 < · · · < 1), and to find the length of C by finding a limiting
value of the polygon length

d(P0, P1) + d(P1, P2) + · · · + d(Pn−1, Pn)

as the minimum side length tends to zero. If the limiting value exists, then the curve
C is said to be rectifiable.

As the latter example shows, analysis (and topology) also wants R to serve as
a model for continuous curves. That is, R (or [0,1]) is supposed to serve as the
domain of the continuous function that defines the curve. Due to the generality of
the concept of a continuous function, some “pathological” curves are admitted by
this definition, such as space-filling curves and curves with no tangents. The latter
curves also do not have finite length—if they have “length” at all, it is infinite.

The concept of differentiability is one way to restrict the class of curves to
more “natural” examples, since a differentiable curve has a tangent at each point
by definition. (Indeed, differentiability can be viewed as the property of a curve
approximating its tangent under indefinite magnification.) One also finds that
differentiable curves are rectifiable, and there is a natural formula for their length.
But here, too, the completeness of R is crucial. Length is the limit of a sequence of
real numbers, and one needs completeness to be sure that the limit exists.

10.8 Further Reading

The following, mostly modern, books are suggested for further exploration of the
ideas in this book. I believe that it will also help to dip into the classics, most
of which are available in English translation. Many translations are listed in the
bibliography, and a particularly good anthology of them is Ewald (1996).

10.8.1 Greek Mathematics

The works of Euclid and Archimedes contain the most important mathematics that
survives from ancient Greece, and they may be read in several different editions.
There are also some important works inspired by Euclid, such as the Hilbert (1899)
Foundations of Geometry, which analyzes the logic of Euclid’s geometry and fills
its gaps.

Heath’s 1925 edition of Euclid’s Elements, reprinted as Euclid (1956), is
beginning to show its age, but it is still widely available and worth reading, if only
for Heath’s rich and extensive commentary.

Two valuable supplements to Euclid are the books of Artmann (1999) and
Hartshorne (2000). Artmann, like Heath, is well versed in the history of Greek
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mathematics, but with a more modern perspective. Hartshorne focuses on the
transformation of Euclid’s ideas by Hilbert, giving a rigorous, modern approach
to geometry and its algebraic foundations.

As far as Archimedes is concerned, the most complete edition is still that of
Heath (1897). Like Heath’s Euclid, it is still worth reading, though it may soon be
replaced as a result of recent scholarship. Reviel Netz is preparing a new three-
volume edition, and one volume has appeared so far: Archimedes (2004).

10.8.2 The Number Concept

An excellent book devoted entirely to the number concept (and its higher-
dimensional generalizations) is Numbers by Ebbinghaus et al. (1991). The first
two chapters, in particular, give an expanded account of what was covered in
Chap. 1 of this book.

After that, you may dare to read Landau (1951). Although entitled Foundations
of Analysis, the book is really about foundations for the real and complex numbers
(though I agree that this is an important part of the foundations of analysis).

10.8.3 Analysis

Understanding Analysis by Abbott (2001) is a pleasant undergraduate text that
makes good use of the sequential continuity concept, though without discussing the
related issues of set theory. Abbott also has a nice treatment of functions continuous
almost everywhere and the Riemann integral, which I have drawn on in Chap. 9 of
this book.

At a more advanced level is the recently reissued classic Pure Mathematics of
Hardy (2008), which I used as an undergraduate. It involves more manipulation of
formulas than is usually required these days, but it also insists on sound foundations,
with Dedekind cuts in Chap. 2.

Still at an advanced undergraduate level, but aimed at Lebesgue integration, is
Bressoud (2008). This book also includes a very attractive history of the subject,
woven into the mathematical development.

In addition to the book of Bressoud just mentioned, for the history of analysis
I recommend Hairer and Wanner (1996) and Jahnke (2003). Hairer and Wanner is
an extremely well-illustrated book, covering mainly the sixteenth to the nineteenth
century. The book edited by Jahnke is a collection of articles, of which those on the
nineteenth century are particularly relevant.
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10.8.4 Set Theory

Set theory is, alas, not a standard undergraduate subject, so one does not find
many introductory books on it. For a very entertaining introduction see In Search
of Infinity by Vilenkin (1995), then try the Naive Set Theory of Halmos (1960).
Although suitable for beginners, Naive Set Theory is nevertheless a rigorous
introduction to the ZF axioms. I might also mention Stillwell (2010), for connections
between set theory and logic.

It is a huge step from this level to, say, Solovay’s theorem that it is consistent
with ZF to assume that all sets of real numbers are Lebesgue measurable. But there
is a book that will enable you to take this step when you are ready: Jech (2003).
Before doing that, a good intermediate step may be reading Cohen (1966), which
introduces the forcing method that made modern set theory possible.

The history of set theory has been well served by Ferreirós (1999) and Kanamori
(2003). Ferreirós is a very rich and detailed history from the beginnings to the ZF
axioms; Kanamori (2003) is an advanced book on large cardinals interwoven with a
history of the subject. Kanamori has also written excellent historical articles on set
theory, such as Kanamori (1996).

10.8.5 Axiom of Choice

It is probably best to begin studying AC through its history in Zermelo’s Axiom
of Choice by Moore (1982). Only then can one appreciate the difficulty of even
noticing AC in the early days of set theory. After that, try the comprehensive books
of Jech (1973) and Herrlich (2006).
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of determinacy, 166
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of set theory, 79, 127
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Zermelo–Fraenkel, 127

axiom of choice, 149
and congruence classes, 170
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equivalent to well-ordering theorem, 146
equivalent to Zorn’s lemma, 168
makes cardinals comparable, 172
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independent of ZF, 157
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axiom of determinacy, 166, 209
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higher consistency strength than AC, 209
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Baire function, 23, 183
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is Lebesgue integrable, 207

Baire hierarchy, 111, 175, 184, 186
Baire, René, 23, 189
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Banach, Stefan, 162, 210
Banach-Tarski paradox, 209
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in Cantor set, 115
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in Nk, 178

Bernoulli, Daniel, 13, 22, 23
Bettazzi, Rodolfo, 170
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binary notation, 27
Bolzano, Bernard, 24

and intermediate value property, 16
and lub property, 16, 24
defined continuity, 107

Bolzano–Weierstrass theorem, 73
and Kőnig infinity lemma, 75
reason for name, 81
via compactness, 119

Bolzano-Weierstrass theorem
does not need AC, 151

Boolean algebra ideal, 160
Borel approximation theorem, 196
Borel hierarchy, 111, 175, 181
Borel rank, 182

measures complexity, 190
Borel set, 23, 78, 175

approximation, 196
cardinality of, 190
characteristic function, 185
closure definition, 175
complexity, 121, 176, 190
described by tree, 187
determinacy, 190
encoded by finite sequences, 187
inductive definition, 176
is Lebesgue measurable, 197
measurability, 188
perfect set property, 126, 190

Borel, Émile, 189
and the Heine–Borel theorem, 74, 82
concept of Borel set, 188
skeptical about AC, 189

Bourbaki, Nicolas, 171
Bressoud, David, 222
Brouwer, L. E. J.

fixed-point theorem, 95
invariance of dimension, 98

Bruno, Giordano, 60

C
calculus, 1

and continuous motion, 107
fundamental theorem, 105

Lebesgue version, 208
in the seventeenth and eighteenth century,

22
of power series, 12

Cantor set, vii, 57, 111
and Devil’s staircase, 94
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construction, 76
due to Smith, 82
has measure zero, 76
homeomorphic with its square, 99
is equinumerous with R, 76
subsets are Lebesgue measurable, 197
topology on, 115

Cantor, Georg, 81
and countability of Q, 80
and perfect set property, 121
attempted well-ordering proof, 146
believed in well-ordering, 156
continuum hypothesis, 79, 145
derived set, 128
diagonal argument, 70, 83
discovered uncountability, 80
first uncountability proof, 72
introduced ordinals, 144
set, 57
theorem on the power set, 78
uncountable ordinal, 145
used AC in 1871, 169

Cantor–Bendixson theorem, 121
proof, 136

Cantor-Bendixson theorem, 135
Cantor-Schröder-Bernstein theorem, 65

proved by Dedekind, 81
cardinal arithmetic, 155

examples, 156
cardinal number, 143, 154

definition, 154
cardinality, 63

comparability under AC, 172
definition via rank, 142
higher, 78
of Borel set, 190
of Cantor set, 76
of N, 63
of perfect set, 119, 121
of R, 63
of R2, 67
of set of Borel sets, 78, 187
of set of continuous functions, 68
of set of irrationals, 64
of set of strategies, 164
of the power set, 78

Cauchy, Augustin-Louis, 108
analysis course, 107
convergence criterion, 43
sequence, 44
theorem on additive functions, 70, 171

CH see continuum hypothesis 144
closed interval, 16, 43

is equinumerous with R, 63
closed set, 111, 116

approximation, 195
includes limit points, 117
properties, 116

cofinite, 158
Cohen, Paul, 172

independence of AC and CH, 144
independence of countable AC, 171

commutative law
for addition, 29
for multiplication, 31

compact set, 74, 117
as closed and bounded, 118
nesting, 118

compactness, 74
and Bolzano–Weierstrass theorem, 119
and uniform α-continuity, 200
and uniform continuity, 103
via Heine–Borel property, 117

complete ordered field, 42
is Archimedean, 42
is unique, 42

completeness, 20
and continuity, 20, 85
and intermediate value property, 20
and measure theory, 195
arithmetic, 20
as absence of gaps, 40, 42
as nested interval property, 43
by gap-filling, 33
geometric, 20
via Cauchy sequences, 44

connectedness, 15
consistency, 144

relative, 144
strength, 209
unprovability of, 144

continued fraction, 25
and Euclidean algorithm, 45
convergence, 48
convergents of, 48
finite, 46
for golden ratio, 47, 51
for
√

2, 46
infinite, 25

and irrationality, 46
ultimately periodic, 47

continuity, 3, 15
almost everywhere, 105, 199, 201
and algebra, 24
and Borel sets, 178
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and completeness, 20
and connectedness, 15
and curves, 15
and limits, 89
and open sets, 111
and trigonometric series, 13
at a point, 89
defined by Bolzano, 107
of limit function, 100
of motion, 106
on a set, 89
sequential, 91
uniform, 82

definition, 101
versus discreteness, 3, 25
via open sets, 114

continuous function, 15
additive, 70
constant almost everywhere, 85
is given by its values on Q, 68, 91
on closed interval

has max and min, 93
is Riemann integrable, 104

continuous motion, 106
and calculus, 107

continuum, 5
two-dimensional, 67

continuum hypothesis, 79
and perfect set property, 121
consistent with ZF, 157
first version, 79, 156
for Borel sets, 190
second version, 145, 156

continuum problem, viii
continuum-many, 63
convergence

Cauchy criterion, 43
conditional

of infinite series, 87
of continued fraction, 48
of infinite series, 86
of sequence, 43, 85
of sequence of numbers, 43
uniform, 99

convergents
of a continued fraction, 48
recurrence relation for, 48

countability, 57
and measure, 17, 71, 82, 193
of algebraic numbers, 59

proved by Dedekind, 81
of Q, 57, 58, 80
of rationals, 17

of Z, 58
countable AC, 149, 152, 165

is independent of ZF, 171
and axiom of determinacy, 166
and Borel hierarchy, 181
and Borel sets, 176
and countable subsets, 150
and countable unions, 150
and sequential continuity, 150
and universal Σα set, 180

countable additivity, 194, 197
of Lebesgue measure, 198

countable ordinal, 129, 132
encoded by tree, 188

countable union, 121
and measure theory, 121, 193

cumulative set concept, 83, 137
guaranteed by Foundation, 139

curve
algebraic, 3
and continuity concept, 15
as uniform limit of polygons, 103
definition, 95
differentiable, 221
Jordan, 109
Koch, 95
Mona Lisa, 109
Peano, 96
rectifiable, 221
simple closed, 109
space-filling, 96
that fills a square, 85
with endpoints, 95
with no tangents, 85, 95
without endpoints, 103

D
Dali, Salvador, 83
decimal

arithmetic, 11
finite, 4, 6
fraction, 4
infinite, 6, 25
point, 6
ultimately periodic, 7

is rational, 7
Dedekind cut, 25, 34

addition, 36
for
√

2, 38
lower, 34
lub property, 40
multiplication, 36
product, 36
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sum, 36
visualization, 35

Dedekind, Richard, 53
and
√

2 ·
√

3 =
√

6, 38
and induction, 28, 145
and lub property, 16, 24
and mathematical creation, 216
cut, 25
defined R, 16
definition of infinite set, 81, 152
proved Cantor-Schröder-Bernstein

theorem, 81
proved countability of Q, 81
sought arithmetic foundations, 52
“theorem” on infinity, 145
used AC in 1877, 169
Was sind ... die Zahlen?, 145

definability, 190
degree, 3
dense order, 40
density, 5
dependent choice axiom, 152
derived set, 128

operation, 128
infinitely often, 129

Desargues theorem, 55
Descartes, René, 216
determinacy, 190

implies measurability, 171, 210
of Borel sets, 190
of projective sets, 210

Devil’s staircase, 93
and Cantor set, 94
maps Cantor set onto [0,1], 95

diagonal argument, 70
for Borel sets, 175, 182
of Cantor, 70, 83
of du Bois–Reymond, 83
reason for name, 71

diagonalization, 130
differentiation

and continuous motion, 107
of an integral, 105

dimension, 85, 98
invariance of, 98, 219
one and two, 98, 219

Dirichlet function, 13
formula for, 23, 186, 190
in Baire class 2, 184, 186
is discontinuous everywhere, 91
is not Riemann integrable, 104
limit of Riemann-integrable functions, 208

Dirichlet, P. G. L., 3, 108
function, 13

theorem on Fourier series, 107
discontinuity, 15

from non-uniform convergence, 100
point of, 15
set, 16

discreteness, 3, 25
transition to continuity, 25

distance, 216
distance function, 220
distributive law, 3, 31
divergence

of harmonic series, 87
of infinite series, 87

domain, 14
dominated convergence theorem, 208
du Bois–Reymond, Paul, 83

E
Edison, Thomas, 69
Egyptian fractions, 27
empty set, 59, 127

as zero, 130
Empty Set axiom, 138
equinumerous, 62
Euclid, 1, 17

Elements, 1, 21
Heath edition, 221

plus infinity, 51
stated Archimedean property, 53
used induction, 26
volume of tetrahedron, 19

Euclidean algorithm, 26
and continued fractions, 45
and irrationality, 46, 51
on golden rectangle, 47

Euclidean space, 217
Eudoxus, 21

method of exhaustion, 22
theory of proportions, 21

Euler’s constant, 89
Extensionality axiom, 138
extreme value

property, 16
theorem, 93

F
Ferreirós, José, 223
Fibonacci, 27

and Egyptian fractions, 27
Fibonacci numbers, 27

in continued fraction, 51
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field, 41, 54
ordered, 42

complete, 42
filter, 158

extension, 158
extension to an ultrafilter, 159
of cofinite subsets, 158, 164
principal, 158
reason for name, 158

finite
continued fraction, 46
decimal, 4, 6
game, 160
set theory, 140

arithmetization of, 141
first number class, 129
Foundation axiom, 133, 139

and cumulative set concept, 139
and induction, 140

Fourier, Joseph, 22, 23
coefficients, 107
series, 107

fraction
binary, 33
decimal, 4

Fraenkel, Abraham, 137, 147
proposed Replacement, 139
strengthened Zermelo axioms, 146

function, 11
additive, 70
α-continuous, 199
arbitrary, 23
as a formula, 14, 22, 107, 190
as a set, 14
Baire, 23, 183
characteristic, 185
constant, 14
continuous, 13, 15

and completeness, 20
continuous almost everywhere, 199
continuous real, 68
definition of, 14
differentiable nowhere, 107
Dirichlet, 13, 23
discontinuous, 15
domain of, 14
infinitesimal, 14
integral rational, 11
not rational, 11
polynomial, 11
range of, 14
rational, 11
Riemann integrable, 199
successor, 28

Thomae, 92
fundamental theorem

of algebra, 11, 16, 23
of calculus, 105

Lebesgue version, 208
of measure theory

first, 82
second, 207

G
game, 160

infinite, 162
without winning strategy, 163

gap, 1
filling, 25

by Dedekind cuts, 34
by infinite decimals, 33

in rational numbers, 10, 40
point-sized, 33

Gauss, Carl Friedrich, 24
and fundamental theorem of algebra, 23

geodesic, 217
geometric series, 18, 86

and Cantor set, 77
finite, 22

geometry
and Pythagorean triples, 8
and the distance concept, 216
arithmetic foundation, 22
demands irrationals, 5
non-Euclidean, 52, 217
projective, 54

glb see greatest lower bound 33
Gödel, Kurt, 172

arithmetization, 141
axiom of constructibility, 157
consistency of AC and CH, 144
constructible sets, 157, 173
incompleteness theorem, 141, 144
second incompleteness theorem, 144

golden ratio, 47
continued fraction, 47, 51
irrationality, 47

golden rectangle, 47
Grassmann, Hermann, 28, 53

conception of arithmetic, 131
foundations of arithmetic, 145
n-dimensional geometry, 217
proved ab = ba, 30

H
Hadamard, Jacques, 190
Hales, Thomas, 109
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Hamel, Georg, 170
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Hardy, G. H.

Pure Mathematics, 222
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Harnack, Axel, 82
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Hausdorff, Felix, 60, 125
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Heine, Eduard, 82
Heine–Borel theorem, 74

and compactness, 117
and measure theory, 74, 82

Heine-Borel theorem
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Hermite, Charles, 81
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Baire, 175, 184, 186
Borel, 175, 181
projective, 218
rank, 141

Hilbert, David, 54
geometrized field concept, 54
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mathematical problems, viii
published Zermelo’s proof, 170
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definition, 98
of Cantor set, 99
of perfect sets, 122

I
identity property

for multiplication, 29
identity property of 1, 29
inaccessible set, 79, 143
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existence not provable, 143
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open n-ball, 112
open rectangle, 113
open set, 111

approximation, 195
as countable union, 113
basic, 113

in Cantor set, 115
defined by Hausdorff, 125
defining properties, 115
definition of continuity, 114
general concept, 115
in N , 123
in Rn, 111

definition, 112
measure, 193
properties, 112
universal, 111

orbit, 204
order, 39

Archimedean, 40
dense, 40

isomorphism, 134
linear, 39, 133
properties of real numbers, 40
type, 134, 135
well-, 133

ordered field, 42, 54
complete, 42

ordered pair
definition of integer, 141
definition of rational number, 141
enumeration, 61
Kuratowski definition of, 138
notation, 6

ordering
of finite decimals, 6
of infinite decimals, 7
of ordinals, 127
of points

via decimals, 7
of rational functions, 14
of real numbers, 34
well-, 133

ordinal, 79, 121, 127, 135
addition, 135
as set of predecessors, 131
comparability, 135
countable, 129
defined by von Neumann, 130
definition of, 132

and Foundation, 139
finite, 127
first infinite, 127
generating principles, 145
infinite, 127, 131
least uncountable, 132
limit, 135
multiplication, 135
successor function, 131
uncountable, 127, 132

ordinal arithmetic, 155

P
Pairing axiom, 138
Pappus, 54

theorem, 54
Peano axioms, 26
Peano curve, 96, 109

has infinite length, 98
uniform convergence to, 99

Peano, Giuseppe, 26, 53, 109
and induction, 28
space-filling curve, 96



Index 241

perfect set, 111, 119, 128
has continuum cardinality, 119, 121
property, 121

and continuum hypothesis, 121
in Solovay’s model, 126, 144
of Borel sets, 126, 190
of closed sets, 121

Πα set, 176
pigeonhole principle, 75
Plimpton 322, 8

and rational numbers, 9, 10
geometric meaning, 9

point, 5
as an infinite decimal, 7
integer, 5, 6
rational, 5

polynomial, 11
equation, 16, 59

power series, 11, 22
algebra, 12
calculus of, 12
is differentiable, 13

power set, 64
Cantor’s theorem on, 78
cardinality, 78

Power Set axiom, 139
prime factorization, 26
Pringsheim formula, 23, 186
probability, 17

of irrationality, 17
product

as a rectangle, 2, 3
of Dedekind cuts, 36
of lengths, 2
of ordinals, 135
of whole numbers, 3

projective determinacy, 210
consistency strength, 210

projective hierarchy, 218
projective plane, 54
projective sets, 210
Pythagorean theorem, 8

and definition of distance, 216
Pythagorean triples, 8

in Plimpton 322, 8, 10

Q
Q, 31

as potential infinity, 52
is countable, 57, 58
neither open nor closed, 121

R
R, 39

algebraic properties, 41
as actual infinity, 52, 80
as completion of Q, 52
cardinality of, 63
defined by Dedekind, 16, 34
is uncountable, 57

by diagonal argument, 70
by measure argument, 71

order properties, 40
ordered pairs from, 67
sequences from, 67
sets equinumerous with, 57, 62, 66
via Cauchy sequences, 45
via nested intervals, 45

range, 14
rank, 139

Borel, 182
hierarchy, 141

rational
function, 11
point, 5

rational function, 11
has finitely many zeros, 11
infinitesimal, 14
integral of, 23
limit, 11
ordering, 14

is not complete, 42
rational number, 4

addition, 31
arithmetic, 25
as ordered pair, 141
enumeration, 17
has ultimately periodic decimal, 7
probability, 17

real number, 16
arithmetic

via Dedekind cuts, 36
as an infinite decimal, 32
for counting and measurement, 25
ordering, 34

rectifiable curve, 221
relative consistency, 144

of “all sets are measurable”, 144
of AC and CH, 144
of AD, 210

Replacement schema, 137, 139
and Borel determinacy, 190
and definable functions, 190
generalizes Aussonderung, 146



242 Index

replacement schema
and definable functions, 149

Riemann integrable, 199
function, 201

Riemann integral, 85
and continuity almost everywhere, 105
and measure, 105, 193
and uniform continuity, 103
definition, 103
of continuous function, 104

Riemann sums, 103
and the logarithm, 106
for Thomae function, 106

ring, 41

S
second number class, 129
sequence

Cauchy, 44
convergence of, 43
uniformly convergent, 100

sequential continuity, 91
and countable AC, 150
without AC, 152

series
Fourier, 107
geometric, 18
harmonic, 86
power, 11
trigonometric, 13

and continuous functions, 13
for triangular wave, 13

set, 14
analytic, 191
Borel, 23
Cantor, 57
closed, 111, 116
compact, 74, 117
comprehension, 34
containment, 34
countable, 57
derived, 128
difference, 64, 113
empty, 59, 127
hereditarily finite, 139
inaccessible, 79
infinite, 22
large, 143
nonmeasurable, 193, 197
of discontinuities, 16
of real numbers, 16
open, 111
perfect, 111, 119

projective, 210
singleton, 121
uncountable, 57
undetermined, 163

“set of all sets”, 83, 138, 142, 146
set theory, 53

axioms, 79, 126
crisis of foundations, 83
finite, 140

as arithmetic, 131
Zermelo axioms, 146
ZF, 127, 137

Siegel, Carl Ludwig, vii
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