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Preface

The study of strongly interacting matter has over the past 30 years become one of the
major areas of high-energy physics. Pioneering theoretical work in statistical quan-
tum chromodynamics leads to the advent of a vigorous experimental program, using
heavy-ion collisions to create small droplets of a medium whose energy density sur-
passes all previously investigated ranges. This in turn triggered new approaches in
theory, addressing innovative aspects from hydrodynamics to parton saturation and
gravity models. Never before have creative theoretical ideas and ingenious exper-
iments worked so well in a complimentary and tandem mode. The exciting per-
spectives of all these developments have brought numerous young research workers
into the game. The future of the field clearly depends on the competence and the
enthusiasm of these young experimentalists and theorists beginning their research
on high-energy nuclear collisions.

This was the justification for organizing in February of 2008 a large-scale school
on the topic in Jaipur, India, a charming Rajasthan city filled with cultural heritage.
The fact that the Quark Matter conference was going to be held here soon afterward
provided good opportunity to convene a school introducing to young physicists
in particular the more recent developments in the field, those not yet covered by
excellent textbooks available on this topic. The lectures at the school were to be
held by leading international experts on the different topics, and as can be seen, we
indeed succeeded in attracting scientists who combine expertise with pedagogical
capabilities.

The essential aspects and concepts of high-energy heavy-ion collisions to be
addressed at the school were

• QCD Thermodynamics
• Global Features
• Hydrodynamics and Flow
• Electromagnetic Probes
• Jet Production
• Quarkonium Production
• Saturation and Color Glass Condensate
• Gravity–QCD Relations

v



vi Preface

For each of these topics, general survey lectures introduced the main ideas, pre-
sented the current state of the theoretical understanding, and summarized the basic
experimental results obtained so far.

The planning of the school met with excellent resonance among young physi-
cists worldwide. Almost 100 students from many countries attended, listened, and,
as these lecture notes bear witness of, participated. We had decided the written
version of the lectures would be prepared by each lecturer together with two to
three students, who volunteered for this task. Furthermore, this idea fell on fruitful
ground, and both students and lecturers profited from the collaboration in preparing
the different chapters.

It is a particular pleasure to one of us (B.S.) that these lectures are published by
Springer Verlag, who had already published the lectures at the first school on the
QGP in India. That was held many years ago, 1989 in Puri, and it was to a large
extent responsible for creating the great and active present community of research
workers in India.

We have received generous funding from the Variable Energy Cyclotron Cen-
tre, Kolkata, the Centre for Advanced Research and Education of the Saha Insti-
tute of Nuclear Physics, Kolkata, the Board of Research in Nuclear Science, the
Department of Atomic Energy, Government of India, and the Institute of Physics,
Bhubaneswar. For all this support, we are very grateful.

Bielefeld, Kolkata Sourav Sarkar
February 2009 Helmut Satz

Bikash Sinha
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Theodor Braşoveanu, Dmitri Kharzeev, and Mauricio Martinez
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
2 QCD and Its Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
3 Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
4 Using Black Holes to Understand Gauge Theories . . . . . . . . . . . . . . . . . . . . . 351
5 Applications: Shear and Bulk Viscosities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
6 Limitations of the Present Approaches and Outlook . . . . . . . . . . . . . . . . . . . . 366
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367



The Thermodynamics of Quarks and Gluons

Helmut Satz

Abstract This is an introduction to the study of strongly interacting matter. We
survey its different possible states and discuss the transition from hadronic matter
to a plasma of deconfined quarks and gluons. Following this, we summarize the
results provided by lattice QCD finite temperature and density and then investigate
the nature of the deconfinement transition. Finally we give a schematic overview of
possible ways to study the properties of the quark–gluon plasma.

1 Prelude

The fundamental questions of physics appear on two levels, the microscopic and
macroscopic. We begin by asking the following questions:

• What are the ultimate constituents of matter?
• What are the basic forces between these constituents?

Given the basic building blocks and their interactions, we want to know
• What are the possible states of matter?
• How do transitions between these states take place?

How far have we advanced today in our understanding of these different aspects?
According to our present state of knowledge, the ultimate constituents are quarks,

leptons, gluons, photons, intermediate vector bosons (Z/W ±) and Higgs bosons – in
a conservative count (no antiparticles, etc.), 16 in all, with gravitation not yet in the
game.

Their interactions were originally classified as strong, electromagnetic, weak and
gravitation, leaving a more general scheme as a challenge. The first unification
brought electroweak theory, the second combined this with strong interactions to
the standard model. The origin of all the different basic constituents, as well as the
role of gravitation, is still open, waiting for the theory of everything (TOE).

H. Satz (B)
Fakultät für Physik, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany,
satz@physik.uni-bielefeld.de

Satz, H.: The Thermodynamics of Quarks and Gluons. Lect. Notes Phys. 785, 1–21 (2010)
DOI 10.1007/978-3-642-02286-9 1 c© Springer-Verlag Berlin Heidelberg 2010



2 H. Satz

In ancient times, the basic states of matter were earth, water, air and fire; today
we have solids, liquids, gases and plasmas. In addition, now there is a multitude
of others: insulators, conductors and superconductors, fluids and superfluids, ferro-
magnets, spin glasses, gelatines and many more. And the question of the possible
states of matter brings us a new kind of physics; the knowledge of the elementary
constituents and their interactions in general does not predict the structure of the
possible complex states of many constituents.

The study of complex systems becomes even more general, less dependent on
the microstructure, when we ask for the transitions between the different states. We
have phase transitions, depending on the singular behaviour of the partition func-
tion determined by the respective dynamics, as well as clustering and percolation
transitions, determined by the connectivity aspects of the system. But we then find
that scaling and renormalization concepts lead to a universal description of critical
phenomena, and critical exponents define universality classes which contain quite
different interaction forms.

When we study strongly interacting matter, we are therefore led to aspects which
are relevant not only to QCD but also to the understanding of complex systems in
general.

2 States of Strongly Interacting Matter

What happens to strongly interacting matter in the limit of high temperatures and
densities? This question has fascinated physicists ever since the discovery of the
strong force and the multiple hadron production it leads to. Let us look at some of
the features that have emerged over the years.

• Hadrons have an intrinsic size, with a radius rh � 1 fm, and hence a hadron needs
a space of volume Vh � (4π/3)r3

h in order to exist. This suggests a limiting den-
sity nc of hadronic matter [1], with nc = 1/Vh � 1.5 n0, where n0 � 0.17 fm−3

denotes the density of normal nuclear matter.
• Hadronic interactions provide abundant resonance production, and the result-

ing number ρ(m) of hadron species increases exponentially as a function of
the resonance mass m, ρ(m) ∼ exp (bm). Such a form for ρ(m) appeared first
in the statistical bootstrap model, based on self-similar resonance formation or
decay [2, 3]. It was then also obtained in the more dynamical dual resonance
approach [3, 4]. In hadron thermodynamics, the exponential increase in the reso-
nance degeneracy results in an upper limit for the temperature of hadronic matter,
Tc = 1/b � 150–200 MeV [2, 3].

• What happens beyond Tc? In QCD, hadrons are dimensionful colour-neutral
bound states of more basic pointlike coloured quarks and gluons. Hadronic
matter, consisting of colourless constituents of hadronic dimensions, can there-
fore turn at high temperatures and/or densities into a quark–gluon plasma of
pointlike coloured quarks and gluons as constituents [6]. This deconfinement
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transition leads to a colour-conducting state and thus is the QCD counterpart
of the insulator–conductor transition in atomic matter [7].

• A shift in the effective constituent mass is a second transition phenomenon
expected from the behaviour of atomic matter. At T = 0, in vacuum, quarks dress
themselves with gluons to form the constituent quarks that make up hadrons. As
a result, the bare quark mass mq ∼ 0 is replaced by a constituent quark mass
Mq ∼ 300 MeV. In a hot medium, this dressing melts and Mq → 0. Since the
QCD Lagrangian for mq = 0 is chirally symmetric, Mq �= 0 implies spontaneous
chiral symmetry breaking. The melting Mq → 0 thus corresponds to chiral sym-
metry restoration. We shall see later on that in QCD, as in atomic physics, the
shift of the constituent mass coincides with the onset of conductivity.

• A third type of transition would set in if the attractive interaction between quarks
leads in the deconfined phase to the formation of coloured bosonic diquark pairs,
the Cooper pairs of QCD. These diquarks can then condense at low temperature
to form a colour superconductor. Heating will dissociate the diquark pairs and
turn the colour superconductor into a normal colour conductor.

Using the baryochemical potential μ as a measure for the baryon density of the
system, we thus expect the phase diagram of QCD to have the schematic form shown
in Fig. 1. Given QCD as the fundamental theory of strong interactions, we can use
the QCD Lagrangian as dynamics input to derive the resulting thermodynamics of
strongly interacting matter. For vanishing baryochemical potential, μ = 0, this can
be evaluated with the help of the lattice regularization, leading to finite-temperature
lattice QCD.

Tc

T

quark-gluon plasma

μc μ

diquark matter

hadronic matter

Fig. 1 The phase diagram of QCD

3 From Hadrons to Quarks and Gluons

Before turning to the results from lattice QCD, we illustrate the transition from
hadronic matter to quark–gluon plasma by a very simple model. For an ideal gas
of massless pions, the pressure as a function of the temperature is given by the
Stefan–Boltzmann form
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Pπ = 3
π2

90
T 4, (1)

where the factor 3 accounts for the three charge states of the pion. The corresponding
form for an ideal quark–gluon plasma with two flavours and three colours is

Pqg =
{

2 × 8 + 7

8
(3 × 2 × 2 × 2)

}
π2

90
T 4 − B = 37

π2

90
T 4 − B. (2)

In Eq. (2), the first temperature term in the curly brackets accounts for the two spin
and eight colour degrees of freedom of the gluons, the second for the three colour,
two flavour, two spin and two particle–antiparticle degrees of freedom of the quarks,
with 7/8 to obtain the correct statistics. The bag pressure B takes into account the
difference between the physical vacuum and the ground state for quarks and gluons
in a medium.

Since in thermodynamics, a system chooses the state of lowest free energy and
hence highest pressure, we compare in Fig. 2a the temperature behaviour of Eqs. (1)
and (2). Our simple model thus leads to a two-phase picture of strongly interacting
matter, with a hadronic phase up to

Tc =
(

45

17π2

)1/4

B1/4 � 0.72 B1/4 (3)

and a quark gluon plasma above this critical temperature. From hadron spec-
troscopy, the bag pressure is given by B1/4 � 0.2 GeV, so that we obtain

Tc � 150 MeV (4)

as the deconfinement temperature. In the next section we shall find this simple esti-
mate to be remarkably close to the value obtained in lattice QCD.

P

−B

T4Tc
4

π

QGP

4Tc T4

π

QGP

deconfinement
latent heat of

T 4ε

(a) (b)

Fig. 2 Pressure and energy density in a two-phase ideal gas model
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The energy densities of the two phases of our model are given by

επ = π2

10
T 4 (5)

and

εqg = 37
π2

30
T 4 + B. (6)

By construction, the transition is first order, and the resulting temperature depen-
dence is shown in Fig. 2b. At Tc, the energy density increases abruptly by the latent
heat of deconfinement. We note that even though both phases consist of massless
non-interacting constituents, the dimensionless “interaction measure”

ε − 3P

T 4
= 4 B

T 4
(7)

does not vanish in the quark–gluon plasma, due to the (non-perturbative) difference
between physical vacuum and in-medium QCD ground state [8].

4 Finite-Temperature Lattice QCD

We now want to show that the conceptual considerations of the last section indeed
follow from strong interaction thermodynamics as based on QCD as the input
dynamics. QCD is defined by the Lagrangian

L = − 1

4
Fa
μνFμνa −

∑
f

ψ̄ f
α (iγ μ∂μ + m f − gγ μAμ)αβψ f

β , (8)

with

Fa
μν = ∂μAa

ν − ∂ν Aa
μ − g f a

bc Ab
μAc

ν . (9)

Here Aa
μ denotes the gluon field of colour a (a = 1, 2, . . . , 8) and ψ f

α the quark
field of colour α (α = 1, 2, 3) and flavour f ; the input (‘bare’) quark masses are
given by mf . With the dynamics thus determined, the corresponding thermodynam-
ics is obtained from the partition function, which is most suitably expressed as a
functional path integral,

Z (T, V ) =
∫

d A dψ dψ̄ exp

(
−

∫
V

d3x
∫ 1/T

0
dτ L(A, ψ, ψ̄)

)
, (10)
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since this form involves directly the Lagrangian density defining the theory. The
spatial integration in the exponent of Eq. (10) is performed over the entire spatial
volume V of the system; in the thermodynamic limit it becomes infinite. The time
component x0 is “rotated” to become purely imaginary, τ = i x0, thus turning the
Minkowski manifold, on which the fields A and ψ are originally defined, into a
Euclidean space. The integration over τ in Eq. (10) runs over a finite slice whose
thickness is determined by the temperature of the system.

¿From Z (T, V ), all thermodynamical observables can be calculated in the usual
fashion. Thus

ε = (T 2/V )

(
∂ ln Z

∂T

)
V

(11)

gives the energy density, and

P = T

(
∂ ln Z

∂V

)
T

(12)

the pressure. For the study of critical behaviour, long-range correlations and
multi-particle interactions are of crucial importance; hence perturbation theory can-
not be used. The necessary non-perturbative regularization scheme is provided by
the lattice formulation of QCD [9]; it leads to a form which can be evaluated numer-
ically by computer simulation [10].

The calculational methods and techniques of finite-temperature lattice QCD form
a challenging subject on its own, which certainly surpasses the scope of this survey.
We therefore restrict ourselves here to a summary of the main results obtained so
far; for more details, we refer to excellent recent surveys and reviews [11–15].

The first variable considered in finite-temperature lattice QCD is the deconfine-
ment measure provided by the Polyakov loop [16–18]

L(T ) ∼ lim
r→∞ exp{−V (r )/T }, (13)

where V (r ) is the potential between a static quark–antiquark pair separated by a
distance r . In pure gauge theory, without light quarks, V (r ) ∼ σr , where σ is the
string tension; hence here V (∞) = ∞ , so that L = 0. In a deconfined medium,
colour screening among the gluons leads to a melting of the string, which makes
V (r ) finite at large r ; hence now L does not vanish. It thus becomes an “order
parameter” like the magnetization in the Ising model: for the temperature range
0 ≤ T ≤ Tc, we have L = 0 and hence confinement, while for Tc < T we have
L > 0 and deconfinement. The temperature Tc at which L becomes finite thus
defines the onset of deconfinement.

In the large quark mass limit, QCD reduces to pure SU (3) gauge theory, which
is invariant under a global Z3 symmetry. The Polyakov loop provides a measure of
the state of the system under this symmetry: it vanishes for Z3 symmetric states and
becomes finite when Z3 is spontaneously broken. Hence the critical behaviour of
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SU (3) gauge theory is in the same universality class as that of Z3 spin theory (the
three-state Potts model): both are due to the spontaneous symmetry breaking of a
global Z3 symmetry [19].

For finite quark mass mq , V (r ) remains finite for r → ∞, since the “string”
between the two colour charges “breaks” when the corresponding potential energy
becomes equal to the mass Mh of the lowest hadron; beyond this point, it becomes
energetically more favourable to produce an additional hadron. Hence now L no
longer vanishes in the confined phase but only becomes exponentially small there,

L(T ) ∼ exp{−Mh/T }; (14)

here Mh is of the order of the ρ-mass, so that L ∼ 10−2, rather than zero. Decon-
finement is thus indeed much like the insulator–conductor transition, for which the
order parameter, the conductivity σ (T ), also does not really vanish for T > 0, but
with σ (T ) ∼ exp{−ΔE/T } is only exponentially small, since thermal ionization
(with ionization energyΔE) produces a small number of unbound electrons even in
the insulator phase.

Figure 3a shows recent lattice results for L(T ) and the corresponding suscepti-
bility χL (T ) ∼ 〈L2〉 − 〈L〉2 [20]. The calculations were performed for the case of
two flavours of light quarks, using a current quark mass about four times larger than
that needed for the physical pion mass. We note that L(T ) undergoes the expected
sudden increase from a small confinement to a much larger deconfinement value.
The sharp peak of χL (T ) defines quite well the transition temperature Tc, which we
shall shortly specify in physical units.

The next quantity to consider is the effective quark mass; it is measured by the
expectation value of the corresponding term in the Lagrangian, 〈ψ̄ψ〉(T ). In the
limit of vanishing current quark mass, the Lagrangian becomes chirally symmetric

(b)(a)

Fig. 3 Polyakov loop and chiral condensate in two-flavour QCD [20]
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and 〈ψ̄ψ〉(T ) the corresponding order parameter. In the confined phase, with effec-
tive constituent quark masses Mq � 0.3 GeV, this chiral symmetry is spontaneously
broken, while in the deconfined phase, at high enough temperature, we expect its
restoration. In the real world, with finite pion and hence finite current quark mass,
this symmetry is also only approximate, since 〈ψ̄ψ〉(T ) now never vanishes at
finite T .

The behaviour of 〈ψ̄ψ〉(T ) and the corresponding susceptibilityχm ∼ ∂〈ψ̄ψ〉/∂mq

are shown in Fig. 3b [20], calculated for the same case as above in Fig. 3a. We note
here the expected sudden drop of the effective quark mass and the associated sharp
peak in the susceptibility. The temperature at which this occurs coincides with that
obtained through the deconfinement measure. We therefore conclude that at vanish-
ing baryon number density, quark deconfinement and the shift from constituent to
current quark mass coincide.

We thus obtain for μB = 0 a rather well-defined phase structure, consisting of
a confined phase for T < Tc, with L(T ) � 0 and 〈ψ̄ψ〉(T ) �= 0, and a deconfined
phase for T > Tc with L(T ) �= 0 and 〈ψ̄ψ〉(T ) � 0. The underlying symmetries
associated to the critical behaviour at T = Tc, the Z3 symmetry of deconfine-
ment and the chiral symmetry of the quark mass shift, become exact in the limits
mq → ∞ and mq → 0, respectively. In the real world, both symmetries are only
approximate; nevertheless, we see from Fig. 3 that both associated measures retain
an almost critical behaviour.

Next we come to the behaviour of energy density ε and pressure P at deconfine-
ment [21, 22]. In Fig. 4, it is seen that ε/T 4 changes quite abruptly at the above
critical temperature Tc, increasing from a low hadronic value to the one slightly
below that expected for an ideal gas of massless quarks and gluons [23].

Besides the sudden increase at deconfinement, there are two further points to
note. In the region Tc < T < 2 Tc, there still remain strong interaction effects. As
seen in Fig. 5, the “interaction measure” Δ = (ε − 3P)/T 4 remains sizeable and
does not vanish, as it would for an ideal gas of massless constituents. In the simple

0.0
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4.0

6.0

8.0

10.0
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14.0

16.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

T/Tc

ε/T4 εSB/T4

3 flavour
2+1 flavour

2 flavour

Fig. 4 Energy density vs. temperature [23]
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Fig. 5 Interaction measure vs. temperature [23]

model of the previous section, such an effect arose due to the bag pressure, and in
actual QCD, one can also interpret it in such a fashion [8]. It has also been consid-
ered in terms of a gradual onset of deconfinement starting from high momenta [24],
and most recently as a possible consequence of coloured “resonance” states [25].
The second point to note is that the thermodynamic observables remain about 10%
below their Stefan–Boltzmann values (marked “SB” in Fig. 4) even at very high tem-
peratures, where the interaction measure becomes very small. Such deviations from
ideal gas behaviour can be expressed to a large extent in terms of effective “thermal”
masses m th of quarks and gluons, with m th � g(T ) T [26–28]. Maintaining the
next-to-leading order term in mass in the Stefan–Boltzmann form gives for the
pressure

P = c T 4

[
1 − a

(m th

T

)2
]

= c T 4[1 − a g2(T )] (15)

and for the energy density

ε = 3c T 4

[
1 − a

3

(m th

T

)2
− 2a

3

(m th

T

)(
dm th

dT

)]

= 3c T 4

[
1 − a g2(T ) − 2a m th

3

(
dg

dT

)]
, (16)

where c and a are colour- and flavour-dependent positive constants. Since
g(T ) ∼ 1/ log T , the deviations of P and ε from the massless Stefan–Boltzmann
form vanish as (log T )−2, while the interaction measure

Δ ∼ 1

(log T )3
(17)

decreases more rapidly by one power of log T .



10 H. Satz

Finally we turn to the value of the transition temperature. Since QCD (in the
limit of massless quarks) does not contain any dimensional parameters, Tc can only
be obtained in physical units by expressing it in terms of some other known observ-
ables which can also be calculated on the lattice, such as the ρ-mass, the proton
mass or the string tension. In the continuum limit, all different ways should lead
to the same result. Within the present accuracy, they define the uncertainty so far
still inherent in the lattice evaluation of QCD. Using the ρ-mass to fix the scale
leads to Tc � 0.15 GeV, while the string tension still allows values as large as
Tc � 0.20 GeV. Very recently, fine structure charmonium calculations (the mass
splitting between J/ψ , χc and ψ ′) have been used to fix the dimensional scale,
leading to [29–31] Tc � 190 ± 10 MeV. In any case, energy densities of some
1–2 GeV/fm3 are needed in order to produce a medium of deconfined quarks and
gluons.

In summary, finite-temperature lattice QCD at vanishing baryon density shows

• that there is a transition leading to colour deconfinement coincident with chiral
symmetry restoration at Tc � 0.15–0.20 GeV;

• that this transition is accompanied by a sudden increase in the energy density
(the “latent heat of deconfinement”) from a small hadronic value to a much larger
value, about 10% below that of an ideal quark–gluon plasma.

In the following section, we want to address in more detail the nature of the critical
behaviour encountered at the transition.

5 The Nature of the Transition

We begin with the behaviour for vanishing baryon density (μ = 0) and come to
μ �= 0 at the end. Consider the case of three quark species, u, d, s.

• In the limit mq → ∞ for all quark species, we recover pure SU (3) gauge theory,
with a deconfinement phase transition provided by spontaneous Z3 breaking. It is
first order, as is the case for the corresponding spin system, the three-state Potts
model.

• For mq → 0 for all quark masses, the Lagrangian becomes chirally symmetric,
so that we have a phase transition corresponding to chiral symmetry restoration.
In the case of three massless quarks, the transition is also of first order.

• For 0 < mq <∞, there is neither spontaneous Z3 breaking nor chiral symme-
try restoration. Hence in general, there is no singular behaviour, apart from the
transient disappearance of the first-order discontinuities on a line of second-order
transitions. Beyond this, there is no genuine phase transition, but only a “rapid
cross-over” from confinement to deconfinement. The overall behaviour is sum-
marized in Fig. 6.

• As already implicitly noted above, both “order parameters” L(T ) and χ (T ) nev-
ertheless show a sharp temperature variation for all values of mq , so that it is in
fact possible to define quite well a common cross-over point Tc.
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mu,d
0

ms

first ordersecond order

first order

cross−over region

physical point

Fig. 6 The nature of thermal critical behaviour in QCD

• The nature of the transition thus depends quite sensitively on the number of
flavours N f and the quark mass values: it can be a genuine phase transition (first
order or continuous), or just a rapid cross-over. The case realized in nature, the
“physical point”, corresponds to small u, d masses and a larger s-quark mass. It
is fairly certain today that this point falls into the cross-over region.

• Finally we consider briefly the case of finite baryon density, μ �= 0, so that
the number of baryons exceeds that of antibaryons. Here the conventional com-
puter algorithms of lattice QCD break down, and hence new calculation methods
have to be developed. First such attempts (reweighting [32], analytic continuation
[33], power series [34]) suggest for two light quark flavours the phase diagram
shown in Fig. 7. It shows non-singularity in a region between 0 ≤ μ < μt , a
tricritical point at μt and beyond this a first-order transition. Recent lattice calcu-
lations provide some support for such behaviour; as shown in Fig. 8, the baryon
density fluctuations appear to diverge for some critical value of the baryochemi-
cal potential [34].

μc

Tc
deconfinement

first order

T

μ

confinement

critical point

cross−over

Fig. 7 Phase structure in terms of the baryon density
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Fig. 8 Baryon number susceptibility χq vs. temperature

The critical behaviour for strongly interacting matter at low or vanishing baryon
density, describing the onset of confinement in the early universe and in high-energy
nuclear collisions, thus occurs in the rather enigmatic form of a “rapid cross-over”.
There is no thermal singularity and hence, in a strict sense, there are neither distinct
states of matter nor phase transitions between them. So what does the often men-
tioned experimental search for a “new state of matter” really mean? How can a new
state appear without a phase transition? Is there a more general way to define and
distinguish different states of bulk media? After all, in statistical QCD one does find
that thermodynamic observables – energy and entropy densities, pressure as well as
the “order parameters” L(T ) and χ (T ) – continue to change rapidly and thus define
a rather clear transition line in the entire cross-over region. Why is this so, what is
the mechanism which causes such a transition?

In closing this section, we consider a speculative answer to this rather funda-
mental question [35–37]. The traditional phase transitions, such as the freezing of
water or the magnetization of iron, are due to symmetry breaking and the resulting
singularities of the partition function. But there are other “transitions”, such as mak-
ing pudding or boiling an egg, where one also has two clearly different states but
no singularities in the partition function. Such “liquid–gel” transitions are generally
treated in terms of cluster formation and percolation [38]. They also correspond to
critical behaviour, but the quantities that diverge are geometric (cluster size) and
cannot be obtained from the partition function.

The simplest example of this phenomenon is provided by two-dimensional disk
percolation, something poetically called “lilies on a pond” (see Fig. 9). More for-
mally, One distributes small disks of area a = πr2 randomly on a large surface
A = πR2, R � r , with overlap allowed. With an increasing number of disks,
clusters begin to form. If the large surface were water and the small disks floating
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isolated disks clusters percolation

Fig. 9 Lilies on a pond

water lilies, how many lilies are needed for a cluster to connect the opposite sides, so
that an ant could walk across the pond without getting its feet wet? Given N disks,
the disk density is n = N/A. Clearly, the average cluster S(n) size will increase
with n. The striking feature is that it does so in a very sudden way (see Fig. 10); as
n approaches some “critical value” nc, S(n) suddenly becomes large enough to span
the pond. In fact, in the limit N → ∞ and A → ∞ at constant n, both S(n) and
d S(n)/dn diverge for n → nc: we have percolation as a geometric form of critical
behaviour.

The critical density for the onset of percolation has been determined (numer-
ically) for a variety of different systems. In two dimensions, disks percolate at
nc � 1.13/(πr2), i.e. when we have a little more than one disk per unit area.
Because of overlap, at this point only 68% of space is covered by disks, 32% remain
empty. Nevertheless, when our ant can walk across, a ship can no longer cross the
pond, and vice versa. This is a special feature of two dimensions (the “fence effect”),
and no longer holds for d > 2.

In three dimensions, the corresponding problem is one of overlapping spheres
in a large volume. Here the critical density for the percolating spheres becomes
nc � 0.34/[(4π/3)r3], with r denoting the radius of the little spheres now taking
the place of the small disks we had in two dimensions. At the critical point in three
dimensions, however, only 29% of space is covered by overlapping spheres, while
71% remains empty, and here both spheres and empty space form infinite connected
networks. If we continue to increase the density of spheres, we reach a second
critical point at n̄c � 1.24/[(4π/3)r3], at which the vacuum stops to form an infinite

S(n)

nnc

A

Fig. 10 Cluster size S(n) vs. density n
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network: Now 71% of space is covered by spheres, and for n > n̄c, only isolated
vacuum bubbles remain.

Let us then consider hadrons of intrinsic size Vh = (4π/3)r3
h , with rh � 0.8 fm.

In three-dimensional space, the formation of a connected large-scale cluster first
occurs at the density

nc = 0.34

Vh
� 0.16 fm−3. (18)

This point specifies the onset of hadronic matter, in contrast to a gas of hadrons, and
it indeed correctly reproduces the density of normal nuclear matter. However, at this
density the vacuum as connected medium also still exists (see Fig. 11a).

To prevent infinite connecting vacuum clusters, a much higher hadron density
is needed, as we saw above. Measured in hadronic size units, the vacuum disap-
pears for

n̄c = 1.24

Vh
� 0.56 fm−3, (19)

schematically illustrated in Fig. 11b. If we assume that at this point, the medium is
of an ideal gas of all known hadrons and hadronic resonances, then we can calculate
the temperature of the gas at the density n̄c: nres(Tc) = n̄c implies Tc � 170 MeV,
which agrees quite well with the value of the deconfinement temperature found in
lattice QCD for μ = 0.

We can thus use percolation to define the states of hadronic matter. At low den-
sity, we have a hadron gas, which at the percolation point nc turns into connected
hadronic matter. When this becomes so dense that only isolated vacuum bubbles
survive, at n̄c, it turns into a quark–gluon plasma. This approach provides the cor-
rect values both for the density of standard nuclear matter and for the deconfinement
transition temperature.

Such considerations may in fact well be of a more general nature than the
problem of states and transitions in strong interaction physics. The question of

(a) (b)

Fig. 11 Hadron and vacuum percolation thresholds
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whether symmetry or connectivity (cluster formation) determines the different states
of many-body systems has intrigued theorists in statistical physics for a long time
[39, 40]. The lesson learned from spin systems appears to be that cluster formation
and the associated critical behaviour are the more general features, which under
certain conditions can also lead to thermal criticality, i.e. singular behaviour of the
partition function.

6 Probing the Quark–Gluon Plasma

We thus find that at sufficiently high temperatures and/or densities, strongly interact-
ing matter will be in a new state, consisting of deconfined quarks and gluons. How
can we probe the properties of this state, how can we study its features as a function
of temperature and density? We want to address this question here in the sense of
Einstein, who told us to make things as simple as possible, but not simpler. So let
us start with a theorist’s experimental set-up, consisting of a volume of unknown
strongly interacting matter and a Bunsen burner to heat it up and thus increase its
energy density.

There are a number of methods we can use to study the unknown matter in our
container:

• hadron radiation,
• electromagnetic radiation,
• dissociation of a passing quarkonium beam,
• energy loss of a passing hard jet.

All methods will be dealt with in detail during the course of this school. Here we
just want to have a brief first look.

?

First of all, we note that the unknown medium radiates, since its temperature is
(by assumption) much higher than that of its environment. Hadron radiation means
that we study the emission of hadrons consisting of light (u, d, s) quarks; their size is
given by the typical hadronic scale of about 1 fm � 1/(200 MeV). Since they cannot
exist inside a deconfined medium, they are formed at the transition surface between
the QGP and the physical vacuum. The physics of this surface is independent of the



16 H. Satz

K+

K
_

π_

π+

ρo

Fig. 12 Hadron radiation

interior – the transition from deconfinement to confinement occurs at a temperature
T � 160–180 MeV, no matter how hot the QGP initially was or still is in the interior
of our volume. This is similar to having hot water vapour inside a glass container
kept in a cool outside environment: at the surface, the vapour will condense into
liquid, at a temperature of 100◦C – no matter how hot it is in the middle. As a
result, studying soft hadron production in high-energy collisions will provide us
with information about the hadronization transition, but not about the hot QGP. The
striking observation that the relative hadron abundances in all high-energy collisions
are the same, from e+e− annihilation to hadron–hadron and heavy-ion interactions,
and that they correspond to those of an ideal resonance gas at T � 170 MeV, is a
direct consequence of this fact [2, 3, 41–45].

Hadron radiation, as we have pictured it here, is oversimplified from the point of
view of heavy-ion interactions. In the case of static thermal radiation, at the point of
hadronization all information about the earlier stages of the medium is lost, as we
had noted above. If, however, the early medium has a very high energy density and
can expand freely, i.e. is not constrained by the walls of a container, then this expan-
sion will lead to a global hydrodynamic flow [46–48], giving an additional overall
boost in momentum to the produced hadrons: they will experience a “radial flow”
depending on the initial energy density (see Fig. 13). Moreover, if the initial condi-
tions were not spherically symmetric, as is in fact the cases in peripheral heavy-ion
collisions, the difference in pressure in different spatial directions will lead to a
further “directed” or “elliptic” flow. Since both forms of flow thus do depend on the
initial conditions, flow studies of hadron spectra can, at least in principle, provide
information about the earlier, pre-hadronic stages.

The unknown hot medium also radiates electromagnetically, i.e. it emits photons
and dileptons (e+e− or μ+μ− pairs) [49, 50]. These are formed either by the inter-
action of quarks and/or gluons, or by quark–antiquark annihilation. Since the pho-
tons and leptons interact only electromagnetically, they will, once they are formed,
leave the medium without any further modification. Hence their spectra provide
information about the state of the medium at the place or the time they were formed,
and this can be in its deep interior or at very early stages of its evolution. Photons
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Fig. 13 Radial flow and hadron radiation

and dileptons thus do provide a possible probe of the hot QGP. The only problem is
that they can be formed anywhere and at any time, even at the cool surface or by the
emitted hadrons. The task in making them a viable tool is therefore the identification
of the hot “thermal” radiation indeed emitted by the QGP.

Both electromagnetic and hadronic radiations are emitted by the medium itself,
and they provide some information about the state of the medium at the time of
emission. Another possible approach is to test the medium with an outside probe,
and here we have two so far quite successful examples, quarkonia and jets.

Quarkonia are a special kind of hadrons, bound states of a heavy (c or b) quark
and its antiquark. For the ground states J/ψ and Υ the binding energies are around
0.6 and 1.2 GeV, respectively, and thus much larger than the typical hadronic scale
Λ ∼ 0.2 GeV; as a consequence, they are also much smaller, with radii of about 0.1
and 0.2 fm. It is therefore expected that they can survive in a quark–gluon plasma
through some range of temperatures above Tc, and this is in fact confirmed by lattice
studies [51, 52].

The higher excited quarkonium states are less tightly bound and hence larger,
although their binding energies are in general still larger, their radii still smaller, than
those of the usual light quark hadrons. Take the charmonium spectrum as example:

q

e
_

e+

q

q

g

γ _
q

Fig. 14 Electromagnetic radiation
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Fig. 15 Charmonium suppression

the radius of the J/ψ(1S) is about 0.2 fm, that of the χc(1P) about 0.3 fm, and
that of the ψ ′(2S) 0.4 fm. Since deconfinement is related to colour screening, the
crucial quantity for dissociation of a bound state is the relation of binding to screen-
ing radius. We therefore expect that the different charmonium states have different
“melting temperatures” in a quark–gluon plasma. Hence the spectral analysis of
in-medium quarkonium dissociation should provide a QGP thermometer [53].

As probe, we then shoot beams of specific charmonia (J/ψ , χc, ψ ′) into our
medium sample and check which comes out on the other side (Fig. 15). If all three
survive, we have an upper limit on the temperature, and by checking at just what
temperature the ψ ′, the χc and the J/ψ are dissociated, we have a way of specifying
the temperature of the medium [54], as illustrated in Fig. 16.

Another possible probe is to shoot an energetic parton, quark or gluon, into our
medium to be tested. How much energy it loses when it comes out on the other
side will tell us something about the density of the medium [55–58]. In particu-
lar, the density increases by an order of magnitude or more in the course of the
deconfinement transition, and so the energy loss of a fast passing colour charge is
expected to increase correspondingly (Fig. 17). Moreover, for quarks, the amount of
jet quenching is predicted to depend on the mass of the quarks.

In using quarkonia and jets as tools, we have so far considered a simplified situ-
ation, in which we test a given medium with distinct external probes. In heavy-ion
collisions, we have to create the probe in the same collision in which we create
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Fig. 16 Charmonia as thermometer
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Fig. 17 Jet quenching

the medium. Quarkonia and jets (as well as open charm/beauty and very energetic
dileptons and photons) constitute so-called hard probes, whose production occurs
at the very early stages of the collision, before the medium is formed; they are
therefore indeed present when it appears. Moreover, their production involves large
energy/momentum scales and can be calculated by perturbative QCD techniques and
tested in pp/p A collisions, so that behaviour and strength of such outside “beams”
or “colour charges” are indeed quite well known.

7 Summary

We have shown that strong interaction thermodynamics leads to a well-defined tran-
sition from hadronic matter to a plasma of deconfined quarks and gluons. For vanish-
ing baryon number density, the transition leads to simultaneous deconfinement and
chiral symmetry restoration at Tc � 160–190 MeV. At this point, the energy density
increases by an order of magnitude through the latent heat of deconfinement.

The properties of the new medium above Tc, the quark–gluon plasma, can
be studied through hard probes (quarkonium and open charm/beauty production,
jet quenching) and electromagnetic radiation (photons and dileptons). Information
about transition aspects is provided by light hadron radiation; through hydrody-
namic flow, this can also shed light on pre-hadronic features.
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19. B. Svetitsky and L.G. Yaffe: Nucl. Phys. B 210 [FS6], 423 (1982) 7
20. F. Karsch and E. Laermann: Phys. Rev. D 50, 6954 (1994) 7, 8
21. J. Engels et al.: Phys. Lett. 101B, 89 (1981) 8
22. J. Engels et al.: Nucl. Phys. B 205, 545 (1982) 8
23. F. Karsch, E. Laermann and A. Peikert: Phys. Lett. B 478, 447 (2000) 8, 9
24. J. Engels et al.: Z. Phys. C 42, 341 (1989) 9
25. E. Shuryak and I. Zahed: Phys. Rev. C 70, 021901 (2004) 9
26. J. Engels et al.: Z. Phys. C 42, 341 (1989) 9
27. V. Goloviznin and H. Satz: Z. Phys. C 57, 671 (1993)
28. F. Karsch, A. Patkos and P. Petreczky: Phys. Lett. B 401, 69 (1997) 9
29. C. Aubin et al. [MILC Collaboration]: Phys. Rev. D 70, 094505 (2004) 10
30. A. Gray et al.: Phys. Rev. D 72, 0894507 (2005)
31. M. Cheng et al.: arXiv:hep-lat/0608013 10
32. Z. Fodor and S. Katz: JHEP 0203, 014 (2002) 11
33. M.-P. Lombardo: Phys. Rev. D 67, 014505 (2003) 11
34. C.R. Allton et al.: Phys. Rev. D 68, 014507 (2003) 11
35. G. Baym: Physica 96A, 131 (1979) 12
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Global Properties of Nucleus–Nucleus Collisions

Michael Kliemant, Raghunath Sahoo, Tim Schuster, and Reinhard Stock

1 Introduction

QCD as a theory of extended, strongly interacting matter is familiar from big bang
evolution which, within the time interval from electro-weak decoupling (10−12 s)
to hadron formation (5 × 10−6 s), is dominated by the expansion of quark–gluon
matter, a color conducting plasma that is deconfined. In the 1970s deconfinement
was predicted [1–5] to arise from the newly discovered “asymptotic freedom” prop-
erty of QCD; i.e., the plasma was expected to be a solution of perturbative QCD
at asymptotically high square momentum transfer Q2, or temperature T . Thus the
quark–gluon plasma (QGP) was seen as a dilute gas of weakly coupled partons.
This picture may well hold true at temperatures in the GeV to TeV range. However,
it was also known since R. Hagedorns work [6] that hadronic matter features a
phase boundary at a very much lower temperature, T (H ) = 170 MeV. As it was
tempting to identify this temperature with that of the cosmological hadronization
transition, thus suggesting T (H ) = T (crit), the QGP state must extend downward
to such a low temperature, with Q2  1 GeV2, and far into the non-perturbative
sector of QCD, and very far from asymptotic freedom. The fact that, therefore, the
confinement–deconfinement physics of QCD, occurring at the parton–hadron phase
boundary, had to be explained in terms other than a dilute perturbative parton gas
was largely ignored until rather recently, when laboratory experiments concerning
the QGP had reached maturity.

In order to recreate matter at the corresponding high energy density in the
terrestrial laboratory, one collides heavy nuclei (also called “heavy ions”) at ultra-
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relativistic energies. Quantum chromodynamics predicts [2–4, 7–10] a phase trans-
formation to occur between deconfined quarks and confined hadrons. At near-zero
net baryon density (corresponding to big bang conditions) non-perturbative Lattice
QCD places this transition at an energy density of about 1 GeV/fm3, and at a critical
temperature, Tcrit ≈ 170 MeV [10–15]. The ultimate goal of the physics with ultra-
relativistic heavy ions is to locate this transition, elaborate its properties, and gain
insight into the detailed nature of the deconfined QGP phase that should exist above.
What is meant by the term “ultrarelativistic” is defined by the requirement that the
reaction dynamics reaches or exceeds the critical density ε ≈ 1 GeV/fm3. Required
beam energies turn out [14, 15] to be

√
s ≥ 10 GeV, and various experimental

programs have been carried out or are being prepared at the CERN SPS (up to about
20 GeV), at the BNL RHIC collider (up to 200 GeV) and finally reaching up to
5.5 TeV at the LHC of CERN.

QCD confinement–deconfinement is of course not limited to the domain that is
relevant to cosmological expansion dynamics, at very small excess of baryon over
anti-baryon number density and, thus, near zero baryo-chemical potential μB . In
fact, modern QCD suggests [16–19] a detailed phase diagram of QCD matter and
its states, in the plane of T and baryo-chemical potential μB . For a map of the QCD
matter phase diagram we are thus employing the terminology of the grand canonical
Gibbs ensemble that describes an extended volume V of partonic or hadronic matter
at temperature T . In it, total particle number is not conserved at relativistic energy,
due to particle production–annihilation processes occurring at the microscopic level.
However, the probability distributions (partition functions) describing the particle
species abundances have to respect the presence of certain, to be conserved net quan-
tum numbers (i), notably nonzero net baryon number and zero net strangeness and
charm. Their global conservation is achieved by a thermodynamic trick, adding to
the system Lagrangian a so-called Lagrange multiplier term, for each of such quan-
tum number conservation tasks. This procedure enters a “chemical potential” μi

that modifies the partition function via an extra term exp (−μi/T ) occurring in the
phase space integral (see Section 4 for detail). It modifies the canonical “punishment
factor” exp (−E/T ), where E is the total particle energy in vacuum, to arrive at an
analogous grand canonical factor for the extended medium of exp (−E/T − μi/T ).
This concept is of prime importance for a description of the state of matter created
in heavy ion collisions, where net-baryon number (valence quarks) carrying objects
are considered – extended “fireballs” of QCD matter. The same applies to the matter
in the interior of neutron stars. The corresponding conservation of net baryon num-
ber is introduced into the grand canonical statistical model of QCD matter via the
“baryo-chemical potential” μB .

We employ this terminology to draw a phase diagram of QCD matter in Fig. 1, in
the variables T and μB . Note that μB is high at low energies of collisions creating
a matter fireball. In a head-on collision of two mass 200 nuclei at

√
s = 15 GeV the

fireball contains about equal numbers of newly created quark–antiquark pairs (of
zero net baryon number) and of initial valence quarks. The accommodation of the
latter, into created hadronic species, thus requires a formidable redistribution task
of net baryon number, reflecting a high value of μB . Conversely, at LHC energy
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Fig. 1 Sketch of the QCD matter phase diagram in the plane of temperature T and baryo-chemical
potential μB . The parton–hadron phase transition line from lattice QCD [14–19] ends in a critical
point E . A cross over transition occurs at smaller μB . Also shown are the points of hadrochemical
freeze-out from the grand canonical statistical model

(
√

s = 5.5 TeV in Pb+Pb collisions), the initial valence quarks constitute a mere 5%
fraction of the total quark density, correspondingly requiring a small value of μB .
In the extreme, big bang matter evolves toward hadronization (at T = 170 MeV)
featuring a quark over antiquark density excess of 10−9 only, resulting in μB ≈ 0.

Note that the limits of existence of the hadronic phase are reached not only by
temperature increase, to the so-called Hagedorn value TH (which coincides with Tcrit

at μB → 0), but also by density increase to � > (5−10) �0: “cold compression”
beyond the nuclear matter ground state baryon density �0 of about 0.16 B/fm3. We
are talking about the deep interior sections of neutron stars or about neutron star
mergers [20–22]. A sketch of the present view of the QCD phase diagram [16–19] is
given in Fig. 1. It is dominated by the parton–hadron phase transition line that inter-
polates smoothly between the extremes of predominant matter heating (high T , low
μB) and predominant matter compression (T → 0, μB > 1 GeV). Onward from the
latter conditions, the transition is expected to be of first order [23] until the critical
point of QCD matter is reached at 200 ≤ μB(E) ≤ 500 MeV. The relatively large
position uncertainty reflects the preliminary character of Lattice QCD calculations
at finite μB [16–19]. Onward from the critical point, E, the phase transformation at
lower μB is a cross over [19]. However, the position of the critical point in the phase
diagram is still hypothetical in nature.

We note, however, that these estimates represent a major recent advance of QCD
lattice theory which was, for two decades, believed to be restricted to the μB = 0
situation. Onward from the critical point, toward lower μB , the phase transformation
should acquire the properties of a rapid cross over [24], thus also including the case
of primordial cosmological expansion. This would finally rule out former ideas,
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based on the picture of a violent first-order “explosive” cosmological hadronization
phase transition, that might have caused nonhomogeneous conditions, prevailing
during early nucleo-synthesis [25, 26], and fluctuations of global matter distribu-
tion density that could have served as seedlings of galactic cluster formation [27].
However, it needs to be stressed that the conjectured order of phase transformation,
occurring along the parton–hadron phase boundary line, has not been unambigu-
ously confirmed by experiment, as of now.

On the other hand, the position of the QCD phase boundary at low μB has, in
fact, been located by the hadronization points in the T, μB planes that are also
illustrated in Fig. 1. They are obtained from statistical model analysis [28] of the
various hadron multiplicities created in nucleus–nucleus collisions, which results
in a [T, μB] determination at each incident energy, which ranges from SIS via
AGS and SPS to RHIC energies, i.e., 3 ≤ √

s ≤ 200 GeV. Toward low μB these
hadronic freeze-out points merge with the lattice QCD parton–hadron coexistence
line: hadron formation coincides with hadronic species freeze-out. These points also
indicate the μB domain of the phase diagram which is accessible to relativistic
nuclear collisions. The domain at μB ≥ 1.5 GeV which is predicted to be in a fur-
ther new phase of QCD featuring color-flavor locking and color superconductivity
[29, 30] will probably be accessible only to astrophysical observation.

One may wonder how states and phases of matter in thermodynamical equilib-
rium – as implied by a description in grand canonical variables – can be sampled via
the dynamical evolution of relativistic nuclear collisions. Employing heavy nuclei,
A ≈ 200, as projectiles/targets or in colliding beams (RHIC, LHC), transverse
dimensions of the primordial interaction volume do not exceed about 8 f m, and
strong interaction ceases after about 20 f m/c. We note, for now, that the time
and dimension scale of primordial perturbative QCD interaction at the microscopic
partonic level amounts to subfractions of 1 f m/c, the latter scale, however, being
representative of non-perturbative processes (confinement, “string” formation, etc.).
The A+A fireball size thus exceeds, by far, the elementary non-perturbative scale.
An equilibrium quark–gluon plasma represents an extended non-perturbative QCD
object, and the question whether its relaxation time scale can be provided by the
expansion time scale of an A+A collision needs careful examination. Reassur-
ingly, however, the hadrons that are supposedly created from such a preceding
non-perturbative QGP phase at top SPS and RHIC energies do in fact exhibit perfect
hydrodynamic and hadrochemical equilibrium, the derived [T, μB] values [28] thus
legitimately appearing in the phase diagram, Fig. 1.

In the present book we will order the physics observables to be treated, with
regard to their origin from successive stages that characterize the overall dynamical
evolution of a relativistic nucleus–nucleus collision. In rough outline this evolution
can be seen to proceed in three major steps. An initial period of matter compres-
sion and heating occurs in the course of interpenetration of the projectile and target
baryon density distributions. Inelastic processes occurring at the microscopic level
convert initial beam longitudinal energy to new internal and transverse degrees of
freedom, by breaking up the initial baryon structure functions. Their partons thus
acquire virtual mass, populating transverse phase space in the course of inelastic
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perturbative QCD shower multiplication. This stage should be far from thermal
equilibrium, initially. However, in step 2, inelastic interaction between the two
arising parton fields (opposing each other in longitudinal phase space) should lead
to a pile-up of partonic energy density centered at mid-rapidity (the longitudinal
coordinate of the overall center of mass). Due to this mutual stopping down of the
initial target and projectile parton fragmentation showers, and from the concurrent
decrease of parton virtuality (with decreasing average square momentum transfer
Q2), there results a slowdown of the time scales governing the dynamical evolution.
Equilibrium could be approached here, the system “lands” on the T, μ plane of
Fig. 1, at temperatures of about 300 and 200 MeV at top RHIC and top SPS energies,
respectively. The third step, system expansion and decay, thus occurs from well
above the QCD parton–hadron boundary line. Hadrons and hadronic resonances
then form, which decouple swiftly from further inelastic transmutation so that their
yield ratios become stationary (“frozen-out”). A final expansion period dilutes the
system to a degree such that strong interaction ceases all together.

It is important to note that the above description, in terms of successive global
stages of evolution, is only valid at very high energy, e.g., at and above top RHIC
energy of

√
s = 200 GeV. At this energy the target–projectile interpenetration time

2R/γ = 0.12 fm/c, and thus the interpenetration phase is over when the supposed
next phase (perturbative QCD shower formation at the partonic level by primordial,
“hard” parton scattering) settles, at about 0.25 fm/c. “Hard” observables (heavy
flavor production, jets, high-pT hadrons) all originate from this primordial inter-
action phase. On the other hand it is important to realize that at top SPS energy,√

s = 17.3 GeV, global interpenetration takes as long as 1.5 fm/c, much longer than
microscopic shower formation time. There is thus no global, distinguishable phase
of hard QCD mechanisms: they are convoluted with the much longer interpene-
tration time. During that it is thus impossible to consider a global physics of the
interaction volume, or any equilibrium. Thus we can think of the dynamical evolu-
tion in terms of global “states” of the system’s dynamical evolution (such as local or
global equilibrium) only after about 2–3 fm/c, just before bulk hadronization sets in.
Whereas at RHIC, and even more ideally so at the LHC, the total interaction volume
is “synchronized” at times below 0.5 fm/c, such that a hydrodynamic description
becomes possible: we can expect that “flow” of partons sets in at this time, charac-
terized by extremely high parton density. The dynamics at such early time can thus
be accessed in well-defined variables (e.g., elliptic flow or jet quenching).

In order to verify in detail this qualitative overall model, and to ascertain the
existence (and to study the properties) of the different states of QCD that are pop-
ulated in sequence, one seeks observable physics quantities that convey informa-
tion imprinted during distinct stages of the dynamical evolution and “freezing-out”
without significant obliteration by subsequent stages. Ordered in sequence of their
formation in the course of the dynamics, the most relevant such observables are
briefly characterized below:

1. Suppression of J/Ψ and Y production by Debye screening in the QGP. These
vector mesons result from primordial, pQCD production of cc and bb pairs
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that would hadronize unimpeded in elementary collisions but are broken up if
immersed into a npQCD deconfined QGP, at certain characteristic temperature
thresholds.

2. Suppression of di-jets which arise from primordial qq pair production fragment-
ing into partonic showers (jets) in vacuum but being attenuated by QGP-medium-
induced gluonic bremsstrahlung: jet quenching in A+A collisions.

a) A variant of this: any primordial hard parton suffers a high, specific loss of
energy when traversing a deconfined medium: high pT suppression in A+A
collisions.

3. Hydrodynamic collective motion develops with the onset of (local) thermal equi-
librium. It is created by partonic pressure gradients that reflect the initial colli-
sional impact geometry via non-isotropies in particle emission called “directed”
and “elliptic” flow. The latter reveals properties of the QGP, seen here as an ideal
partonic fluid.

a) Radial hydrodynamical expansion flow (“Hubble expansion”) is a variant of
the above that occurs in central, head-on collisions with cylinder symmetry,
as a consequence of an isentropic expansion. It should be sensitive to the
mixed-phase conditions characteristic of a first-order parton–hadron phase
transition.

4. Hadronic “chemical” freeze-out fixes the abundance ratios of the hadronic species
into an equilibrium distribution. Occuring very close to, or at hadronization,
it reveals the dynamical evolution path in the [T, μB] plane and determines
the critical temperature and density of QCD. The yield distributions in A+A
collisions show a dramatic strangeness enhancement effect, characteristic of an
extended QCD medium.

5. Fluctuations, from one collision event to another (and even within a single given
event), can be quantified in A+A collisions due to the high charged hadron
multiplicity density (of up to 600 per rapidity unit at top RHIC energy). Such
event-by-event (ebye) fluctuations of pion rapidity density and mean transverse
momentum (event “temperature”), as well as event-wise fluctuations of the
strange to non-strange hadron abundance ratio (may) reflect the existence and
position of the conjectured critical point of QCD (Fig. 1).

6. Two particle Bose–Einstein correlations are the analog of the Hanbury-Brown,
Twiss (HBT) effect of quantum optics. They result from the last interaction
experienced by mesons, i.e., from the global decoupling stage. Owing to a
near-isentropic hadronic expansion they reveal information on the overall space–
time development of the “fireball” evolution.

In an overall view the first group of observables (1–2a) is anchored in established
pQCD physics that is well known from theoretical and experimental analysis of
elementary collisions (e+e− annihilation, pp and p p data). In fact, the first gen-
eration of high Q2 baryon collisions, occurring at the microscopic level in A+A
collisions, should closely resemble such processes. However, their primary partonic
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products do not escape into pQCD vacuum but get attenuated by interaction with
the concurrently developing extended high-density medium , thus serving as diag-
nostic tracer probes of that state. The remaining observables capture snapshots of
the bulk matter medium itself. After initial equilibration we may confront ellip-
tic flow data with QCD during the corresponding partonic phase of the dynamical
evolution employing thermodynamic [31] and hydrodynamic [32–35] models of a
high-temperature parton plasma. The hydro-model stays applicable well into the
hadronic phase. Hadron formation (confinement) occurs in between these phases
(at about 5 microseconds time in the cosmological evolution). In fact relativistic
nuclear collision data may help to finally pin down the mechanism(s) of this fas-
cinating QCD process [36–40] as we can vary the conditions of its occurrence,
along the parton–hadron phase separation line of Fig. 1, by proper choice of col-
lisional energy

√
s, and system size A, while maintaining the overall conditions

of an extended imbedding medium of high energy density within which various
patterns [16–19, 23, 24] of the hadronization phase transition may establish. The
remaining physics observables (3a, 5, and 6 above) essentially provide for auxiliary
information about the bulk matter system as it traverses (and emerges from) the
hadronization stage, with special emphasis placed on manifestations of the conjec-
tured critical point.

The observables from 1 to 4 above will all be treated, in detail, in this book. We
shall focus here on the bulk matter expansion processes of the primordially formed
collisional volume, as reflected globally in the population patterns of transverse and
longitudinal (rapidity) phase space (Sect. 3), and on the transition from partons
to hadrons and on hadronic hadro-chemical decoupling, resulting in the observed
abundance systematics of the hadronic species (Section 4). These Sections will be
preceded by a detailed recapitulation of relativistic kinematics, notably rapidity, to
which we shall turn now.

2 Relativistic Kinematics

2.1 Description of Nucleus–Nucleus Collisions in Terms
of Light-Cone Variables

In relativistic nucleus–nucleus collisions, it is convenient to use kinematic vari-
ables which take simple forms under Lorentz transformations for the change of
frame of reference. A few of them are the light-cone variables x+ and x−, the
rapidity and pseudorapidity variables, y and η. A particle is characterized by its
4-momentum, pμ = (E,p). In fixed-target and collider experiments where the
beam(s) define reference frames, boosted along their direction, it is important to
express the 4-momentum in terms of more practical kinematic variables.

Figure 2 shows the collision of two Lorentz contracted nuclei approaching each
other with velocities nearly equal to the velocity of light. The vertical axis represents
the time direction with the lower half representing time before the collision and
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Fig. 2 Description of heavy-ion collisions in one space (z) and one time (t) dimension

the upper half time after the collision. The horizontal axis represents the spatial
direction. Both the nuclei collide at (t, z) = (0, 0) and then the created fireball
expands in time going through various processes till the created particles freeze-out
and reach the detectors. The lines where t2 − z2 = 0 (note that

√
t2 − z2 ≡ τ ,

τ being the proper time of the particle) along the path of the colliding nuclei define
the light-cone. The upper part of the light cone, where t2 − z2 > 0, is the time-like
region. In nucleus–nucleus collisions, particle production occurs in the upper half
of the (t, z)-plane within the light cone. The region outside the light-cone for which
t2 − z2 < 0 is called space-like region. The space-time rapidity is defined as

ηs = 1

2
ln

(
t + z

t − z

)
. (1)

It could be seen that ηs is not defined in the space-like region. It takes the value
of positive and negative infinities along the beam directions for which t = ± z,
respectively. A particle is “light like” along the beam direction. Inside the light cone
which is time like, ηs is properly defined.

For a particle with 4-momentum p (p0,pT , pz), the light-cone momenta are
defined by

p+ = p0 + pz, (2)

p− = p0 − pz, (3)

p+ is called “forward light-cone momentum” and p− is called “backward light-cone
momentum.”

For a particle traveling along the beam direction has higher value of forward
light-cone momentum and that traveling opposite to the beam direction has lower
value of forward light-cone momentum. The advantages of using light-cone vari-
ables to study particle production are the following.
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1. The forward light-cone momentum of any particle in one frame is related to the
forward light-cone momentum of the same particle in another boosted Lorentz
frame by a constant factor.

2. Hence, if a daughter particle c is fragmenting from a parent particle b, then the
ratio of the forward light-cone momentum of c relative to that of b is independent
of the Lorentz frame.
Define

x+ = pc
0 + pc

z

pb
0 + pb

z

= c+
b+
. (4)

The forward light-cone variable x+ is always positive because c+ cannot be
greater than b+. Hence the upper limit of x+ is 1. x+ is Lorentz invariant.

3. The Lorentz invariance of x+ provides a tool to measure the momentum of any
particle in the scale of the momentum of any reference particle.

2.2 The Rapidity Variable

The coordinates along the beam line (conventionally along the z-axis) is called lon-
gitudinal and perpendicular to it is called transverse (x–y). The 3-momentum can
be decomposed into the longitudinal (pz) and the transverse (pT ), pT being a vector
quantity which is invariant under a Lorentz boost along the longitudinal direction.
The variable rapidity “y” is defined by

y = 1

2
ln

(
E + pz

E − pz

)
. (5)

It is a dimensionless quantity related to the ratio of forward light cone to backward
light-cone momentum. The rapidity changes by an additive constant under longitu-
dinal Lorentz boosts.

For a free particle which is on the mass shell (for which E2 = p2 + m2), the
4-momentum has only three degrees of freedom and can be represented by (y,pT ).
(E,pT ) could be expressed in terms of (y,pT ) as

E = mT cosh y, (6)

pz = mT sinh y, (7)

mT being the transverse mass which is defined as

m2
T = m2 + p2

T . (8)

The advantage of rapidity variable is that the shape of the rapidity distribution
remains unchanged under a longitudinal Lorentz boost. When we go from CMS
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to LS, the rapidity distribution is the same, with the y-scale shifted by an amount
equal to ycm. This is shown below.

2.2.1 Rapidity of Center of Mass in the Laboratory System

The total energy in the CMS system is Ecm = √
s. The energy and momentum of

the CMS in the LS are γcm
√

s and βcmγcm
√

s, respectively. The rapidity of the CMS
in the LS is

ycm = 1

2
ln

[
γcm

√
s + βcmγcm

√
s

γcm
√

s − βcmγcm
√

s

]

= 1

2
ln

[
1 + βcm

1 − βcm

]
. (9)

It is a constant for a particular Lorentz transformation.

2.2.2 Relationship Between Rapidity of a Particle in LS and Rapidity in CMS

The rapidities of a particle in the LS and CMS of the collision are, respectively,

y = 1
2 ln

(
E+pz

E−pz

)
and y∗ = 1

2 ln
(

E∗+p∗
z

E∗−p∗
z

)
. Inverse Lorentz transformations on E

and pz give

y = 1

2
ln

[
γ

(
E∗ + βp∗

z

) + γ (
βE∗ + p∗

z

)
γ

(
E∗ + βp∗

z

) − γ (
βE∗ + p∗

z

)
]

= 1

2
ln

[
E∗ + p∗

z

E∗ − p∗
z

]
+ 1

2
ln

[
1 + β
1 − β

]
, (10)

⇒ y = y∗ + ycm. (11)

Hence the rapidity of a particle in the laboratory system is equal to the sum of the
rapidity of the particle in the center of mass system and the rapidity of the center
of mass in the laboratory system. It can also be stated that the rapidity of a particle
in a moving (boosted) frame is equal to the rapidity in its own rest frame minus the
rapidity of the moving frame. In the nonrelativistic limit, this is like the subtraction
of velocity of the moving frame. However, this is not surprising because, nonrela-
tivistically, the rapidity y is equal to longitudinal velocity β. Rapidity is a relativistic
measure of the velocity. This simple property of the rapidity variable under Lorentz
transformation makes it a suitable choice to describe the dynamics of relativistic
particles.

2.2.3 Relationship Between Rapidity and Velocity

Consider a particle traveling in z-direction with a longitudinal velocity β. The
energy E and the longitudinal momentum pz of the particle are
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E = γm, (12)

pz = γβm, (13)

where m is the rest mass of the particle. Hence the rapidity of the particle traveling
in z-direction with velocity β is

yβ = 1

2
ln

[
E + pz

E − pz

]
= 1

2
ln

[
γm + γβm

γm − γβm

]

= 1

2
ln

[
1 + β
1 − β

]
. (14)

Note here that yβ is independent of particle mass. In the nonrelativistic limit when
β is small, expanding yβ in terms of β leads to

yβ = β + O(β3). (15)

Thus the rapidity of the particle is the relativistic realization of its velocity.

2.2.4 Beam Rapidity

We know,
E = mT cosh y, pz = mT sinh y, and m2

T = m2 + p2
T .

For the beam particles, pT = 0.
Hence, E = mb cosh yb and pz = mb sinh yb,
where mb and yb are the rest mass and rapidity of the beam particles.

yb = cosh−1 (E/mb)

= cosh−1

[√
sN N

2 mn

]
, (16)

and

yb = sinh−1 (pz/mb). (17)

Here mn is the mass of the nucleon. Note that the beam energy E = √
sN N/2.

Example 1. For the nucleon–nucleon center of mass energy
√

sN N = 9.1 GeV, the
beam rapidity yb = cosh−1

(
9.1

2×0.938

) = 2.26.
For p+p collisions with lab momentum 100 GeV/c,

yb = sinh−1
(

pz

mb

)
= sinh−1

(
100

0.938

) = 5.36

and for Pb+Pb collisions at SPS with lab energy 158 AGeV, yb = 2.92.
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2.2.5 Rapidity of the CMS in Terms of Projectile and Target Rapidities

Let us consider the beam particle “b” and the target particle “a.” bz = mT

sinh yb = mb sinh yb. This is because pT of beam particles is zero. Hence

yb = sinh−1 (bz/mb). (18)

The energy of the beam particle in the laboratory frame is
b0 = mT cosh yb = mb cosh yb.
Assuming target particle a has longitudinal momentum az , its rapidity in the labo-
ratory frame is given by

ya = sinh−1 (az/ma) (19)

and its energy

a0 = ma cosh ya . (20)

The CMS is obtained by boosting the LS by a velocity of the center of mass frame
βcm such that the longitudinal momenta of the beam particle b∗

z and of the target
particle a∗

z are equal and opposite. Hence βcm satisfies the condition,
a∗

z = γcm(az − βcma0) = − b∗
z = − γcm(bz − βcmb0), where γcm = 1√

1−β2
cm

.

Hence,

βcm = az + bz

a0 + b0
. (21)

We know the rapidity of the center of mass is

ycm = 1

2
ln

[
1 + βcm

1 − βcm

]
. (22)

Using Eqs. (21) and (22), we get

ycm = 1

2
ln

[
a0 + az + b0 + bz

a0 − az + b0 − bz

]
. (23)

Writing energies and momenta in terms of rapidity variables in the LS,

ycm = 1

2
ln

[
ma cosh ya + ma sinh ya + mb cosh yb + mb sinh yb

ma cosh ya − ma sinh ya + mb cosh yb − mb sinh yb

]

= 1

2
(ya + yb) + 1

2
ln

[
ma eya + mb eyb

ma eyb + mb eya

]
. (24)
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For a symmetric collision (for ma = mb),

ycm = 1

2
(ya + yb) . (25)

Rapidities of a and b in the CMS are

y∗
a = ya − ycm = − 1

2
(yb − ya) , (26)

y∗
b = yb − ycm = 1

2
(yb − ya) . (27)

Given the incident energy, the rapidity of projectile particles and the rapidity of the
target particles can thus be determined. The greater is the incident energy, the greater
is the separation between the projectile and the target rapidity.
Central Rapidity The region of rapidity mid-way between the projectile and target
rapidities is called central rapidity.

Example 2. In p+p collisions at a laboratory momentum of 100 GeV/c, beam rapid-
ity yb = 5.36, target rapidity ya = 0, and the central rapidity ≈ 2.7.

2.2.6 Mid-rapidity in Fixed-Target and Collider Experiments

In fixed-target experiments (LS), ytarget = 0.
ylab = ytarget + yprojectile = ybeam. Hence mid-rapidity in fixed-target experiment
is given by,

yLS
mid = ybeam/2. (28)

In collider experiments (center of mass system),
yprojectile = − ytarget = yCMS = ybeam/2.
Hence, mid-rapidity in CMS system is given by

yCMS
mid = (yprojectile + ytarget)/2 = 0. (29)

This is valid for a symmetric energy collider. The rapidity difference is given by
yprojectile − ytarget = 2yCMS and this increases with energy for a collider as y increases
with energy.

2.2.7 Light-Cone Variables and Rapidity

Consider a particle having rapidity y and the beam rapidity yb. The particle has
forward light-cone variable x+ with respect to the beam particle,
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x+ = pc
0 + pc

z

pb
0 + pb

z

= mc
T

mb
ey−yb , (30)

where mc
T is the transverse mass of c. Note that the transverse momentum of the

beam particle is zero. Hence,

y = yb + ln x+ + ln

(
mb

mc
T

)
. (31)

Similarly, relative to the target particle a with a target rapidity ya , the backward
light-cone variable of the detected particle c is x−. x− is related to y by

x− = mc
T

mb
eya−y (32)

and conversely

y = ya − ln x− − ln

(
ma

mc
T

)
. (33)

In general, the rapidity of a particle is related to its light-cone momenta by

y = 1

2
ln

(
p+
p−

)
. (34)

Note that in situations where there is a frequent need to work with boosts along
z-direction, it is better to use (y,pT ) for a particle rather than using it is 3-momentum
because of the simple transformation rules for y and pT under Lorentz boosts.

2.3 The Pseudorapidity Variable

Let us assume that a particle is emitted at an angle θ relative to the beam axis. Then
its rapidity can be written as

y = 1
2 ln

(
E+PL
E−PL

)
= 1

2 ln

[√
m2+p2+p cos θ√
m2+p2−p cos θ

]
. At very high energy, p � m and

hence

y = 1

2
ln

[
p + p cos θ

p − p cos θ

]

= − ln tan θ/2 ≡ η, (35)

η is called the pseudorapidity. Hence at very high energy,
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y ≈ η = − ln tan θ/2. (36)

In terms of the momentum, η can be rewritten as

η = 1

2
ln

[ |p| + pz

|p| − pz

]
. (37)

θ is the only quantity to be measured for the determination of pseudorapidity, inde-
pendent of any particle identification mechanism. Pseudorapidity is defined for any
value of mass, momentum, and energy of the collision. This also could be measured
with or without momentum information which needs a magnetic field.

2.3.1 Change of Variables from ( y,pT ) to (η,pT )

By Eq. (37),

eη =
√

|p| + pz

|p| − pz
, (38)

e−η =
√

|p| − pz

|p| + pz
. (39)

Adding both of the equations, we get

|p| = pT cosh η. (40)

pT =
√

|p|2 − p2
z . By subtracting the above equations, we get

pz = pT sinh η. (41)

Using these equations in the definition of rapidity, we get

y = 1

2
ln

⎡
⎣

√
p2

T cosh2 η + m2 + pT sinh η√
p2

T cosh2 η + m2 − pT sinh η

⎤
⎦ . (42)

Similarly η could be expressed in terms of y as

η = 1

2
ln

⎡
⎣

√
m2

T cosh2 y − m2 + mT sinh y√
m2

T cosh2 y − m2 − mT sinh y

⎤
⎦ . (43)

The distribution of particles as a function of rapidity is related to the distribution as
a function of pseudorapidity by the formula
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d N

dηdpT
=

√
1 − m2

m2
T cosh2 y

d N

dydpT
. (44)

In the region y � 0, the pseudorapidity distribution (d N/dη) and the rapid-
ity distribution (d N/dy) which are essentially the pT -integrated values of d N

dηdpT

and d N
dydpT

, respectively, are approximately the same. In the region y ≈ 0, there
is a small “depression” in d N/dη distribution compared to d N/dy distribution
due to the above transformation. At very high energies where d N/dy has a mid-
rapidity plateau, this transformation gives a small dip in d N/dη around η ≈ 0
(see Fig. 3). However, for a massless particle like photon, the dip in d N/dη is
not expected (which is clear from the above equation). Independent of the frame
of reference where η is measured, the difference in the maximum magnitude of
d N/dη appears due to the above transformation. In the CMS, the maximum of
the distribution is located at y ≈ η ≈ 0 and the η-distribution is suppressed by

a factor
√

1 − m2/ < m2
T > with reference to the rapidity distribution. In the lab-

oratory frame, however, the maximum is located around half of the beam rapidity

η ≈ yb/2 and the suppression factor is
√

1 − m2/ < m2
T > cosh2 (yb/2), which

is about unity. Given the fact that the shape of the rapidity distribution is indepen-
dent of frame of reference, the peak value of the pseudorapidity distribution in the
CMS frame is lower than its value in LS. This suppression factor at SPS energies is
∼ 0.8−0.9.
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Fig. 3 The mid-rapidity d Nch/dη for Au+Au collisions at
√

sN N = 200 GeV [41]
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2.4 The Invariant Yield

First we show d3 p
E is Lorentz invariant. The differential of Lorentz boost in longitu-

dinal direction is given by

dp∗
z = γ (dpz − βd E) . (45)

Taking the derivative of the equation E2 = p2 + m2, we get

Ed E = pzdpz . (46)

Using Eqs. (45) and (46) we get

dp∗
z = γ

(
dpz − β pzdpz

E

)

= dpz

E
E∗. (47)

As pT is Lorentz invariant, multiplying pT on both the sides and rearranging gives

d3 p∗

E∗ = d2pT dpz

E
= d3 p

E
. (48)

In terms of experimentally measurable quantities, d3 p
E could be expressed as

d3 p

E
= dpT dy

= pT dpT dφdy (49)

= mT dmT dφdy. (50)

The Lorentz invariant differential cross-section Ed3σ
dp3 = Ed3 N

dp3 is the invariant yield.
In terms of experimentally measurable quantities this could be expressed as

Ed3σ

dp3
= 1

mT

d3 N

dmT dφdy

= 1

2π mT

d2 N

dmT dy

= 1

2π pT

d2 N

dpT dy
. (51)

To measure the invariant yields of identified particles Eq. (51) is used
experimentally.
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2.5 Inclusive Production of Particles and the Feynman Scaling
Variable xF

A reaction of type
beam + target −→ A + anything,
where A is called an “inclusive reaction.” The cross-section for particle production
could be written separately as functions of pT and pL as follows:

σ = f (pT )g(pL ). (52)

This factorization is empirical and convenient because each of these factors has
simple parameterizations which fit well to experimental data.

Similarly the differential cross-section could be expressed by

d3σ

dp3
= d2σ

p2
T

dσ

dpL
. (53)

Define the variable

xF = p∗
L

p∗
L (max)

(54)

= 2p∗
L√
s
. (55)

xF is called the Feynman scaling variable: longitudinal component of the cross-
section when measured in CMS of the collision, would scale, i.e., would not depend
on the energy

√
s. Instead of dσ

dp∗
L
, dσ

dxF
is measured which would not depend on

energy of the reaction,
√

s. This Feynman’s assumption is valid approximately.
The differential cross-section for the inclusive production of a particle is then

written as

d3σ

dxF d2pT
= F(s, xF , pT ). (56)

Feynman’s assumption that at high energies the function F(s, xF , pT ) becomes
asymptotically independent of the energy means
lims→∞ F(s, xF , pT ) = F(xF , pT ) = f (pT ) g(xF ).

2.6 The pT -Distribution

The distribution of particles as a function of pT is called pT -distribution. Mathemat-
ically,
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d N

dpT
= d N

2π |pT |d|pT | , (57)

where d N is the number of particles in a particular pT -bin. People usually plot
d N

pT dpT
as a function of pT taking out the factor 1/2π which is a constant. Here

pT is a scalar quantity. The low-pT part of the pT -spectrum is well described by an
exponential function having thermal origin. However, to describe the whole range of
the pT , one uses the Levy function which has an exponential part to describe low-pT

and a power law function to describe the high-pT part which is dominated by hard
scatterings (high momentum transfer at early times of the collision). The inverse
slope parameter of pT -spectra is called the effective temperature (Teff), which has a
thermal contribution because of the random kinetic motion of the produced particles
and a contribution from the collective motion of the particles. This will be described
in detail in the section of freeze-out properties and how to determine the chemical
and kinetic freeze-out temperatures experimentally.

The most important parameter is then the mean pT which carries the informa-
tion of the effective temperature of the system. Experimentally, 〈pT 〉 is studied as
a function of d Nch

dη which is the measure of the entropy density of the system. This
is like studying the temperature as a function of entropy to see the signal of phase
transition. The phase transition is of first order if a plateau is observed in the spec-
trum signaling the existence of latent heat of the system. This was first proposed by
Van Hove [42].

The average of any quantity A following a particular probability distribution
f (A) can be written as

〈A〉 =
∫

A f (A) d A∫
f (A) d A

. (58)

Similarly,

〈pT 〉 =
∫ ∞

0 pT ( d N
dpT

) dpT∫ ∞
0 ( d N

dpT
) dpT

=
∫ ∞

0 pT dpT pT ( d N
pT dpT

)∫ ∞
0 pT dpT ( d N

pT dpT
)

=
∫ ∞

0 pT dpT pT f (pT )∫ ∞
0 pT dpT f (pT )

, (59)

where 2π pT dpT is the phase space factor and the pT -distribution function is
given by

f (pT ) = d N

dpT
= d N

pT dpT
. (60)
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Example 3. Experimental data on pT -spectra are sometimes fitted to the exponential
Boltzmann-type function given by

f (pT ) = 1

pT

d N

dpT
� C e−mT /Teff . (61)

The 〈mT 〉 could be obtained by

〈mT 〉 =
∫ ∞

0 pT dpT mT exp(−mT /Teff)∫ ∞
0 pT dpT exp(−mT /Teff)

= 2T 2
eff + 2m0Teff + m2

0

m0 + Teff
, (62)

where m0 is the rest mass of the particle. It can be seen from the above expression
that for a massless particle

〈mT 〉 = 〈pT 〉 = 2Teff. (63)

This also satisfies the principle of equipartition of energy which is expected for a
massless Boltzmann gas in equilibrium.

However, in experiments the higher limit of pT is a finite quantity. In that case
the integration will involve an incomplete gamma function.

2.7 Energy in CMS and LS

2.7.1 For Symmetric Collisions (A + A)

Consider the collision of two particles. In LS, the projectile with momentum p1,
energy E1, and mass m1 collides with a particle of mass m2 at rest. The 4-momenta
of the particles are
p1 = (E1,p1), p2 = (m2, 0).
In CMS, the momenta of both the particles are equal and opposite, the
4-momenta are
p∗

1 = (E∗
1 ,p

∗
1), p∗

2 = (E∗
2 ,−p∗

1).
The total 4-momentum of the system is a conserved quantity in the collision.
In CMS,
(p1 + p2)2 = (E1 + E2)2 − (p1 + p2)2

= (E1 + E2)2 = E2
cm ≡ s .√

s is the total energy in the CMS which is the invariant mass of the CMS.
In LS,
(p1 + p2)2 = m2

1 + m2
2 + 2E1m2.

Hence

Ecm = √
s =

√
m2

1 + m2
2 + 2Eprojm2, (64)
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where E1 = Eproj, the projectile energy in LS. Hence it is evident here that the CM
frame with an invariant mass

√
s moves in the laboratory in the direction of p1 with

a velocity corresponding to
Lorentz factor,

γcm = E1 + m2√
s

(65)

⇒ √
s = Elab

γcm
, (66)

this is because E = γm and

ycm = cosh−1 γcm. (67)

Note 1. We know

s = E2
cm = m2

1 + m2
2 + 2(E1 + E2 + p1.p2). (68)

For a head-on collision with m1, m2  E1, E2,

E2
cm � 4E1 E2. (69)

For two beams crossing at an angle θ ,

E2
cm = 2E1 E2(1 + cos θ ). (70)

The CM energy available in a collider with equal energies (E) for new particle
production rises linearly with E , i.e.,

Ecm � 2E . (71)

For a fixed-target experiment the CM energy rises as the square root of the incident
energy

Ecm �
√

2m2 E1. (72)

Hence the highest energy available for new particle production is achieved at col-
lider experiments. For example, at SPS fixed-target experiment to achieve a CM
energy of 17.3 AGeV the required incident beam energy is 158 AGeV.

Note 2. Most of the times the energy of the collision is expressed in terms of
nucleon–nucleon center of mass energy. In the nucleon–nucleon CM frame, two
nuclei approach each other with the same boost factor γ . The nucleon–nucleon CM
is denoted by

√
sN N and is related to the total CM energy by
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√
s = A

√
sN N . (73)

This is for a symmetric collision with number of nucleons in each nuclei as A. The
colliding nucleons approach each other with energy

√
sN N/2 and with equal and

opposite momenta. The rapidity of the nucleon–nucleon center of mass is
yN N = 0 and taking m1 = m2 = m N , the projectile and target nucleons are at equal
and opposite rapidities.

yproj = − ytarget = cosh−1
√

sN N

2m N
= ybeam. (74)

Note 3. Lorentz factor

γ = E

M
=

√
s

2A m N

= A
√

sN N

2A m N
=

√
sN N

2 m N

= ECMS
beam

m N
, (75)

where E and M are energy and mass in CMS, respectively. Assuming mass of the
nucleon m N ∼ 1 GeV, the Lorentz factor is of the order of beam energy in CMS for
a symmetric collision.

2.7.2 For Asymmetric Collisions (A + B)

During the early phase of relativistic nuclear collision research, the projectile mass
was limited by accelerator-technical conditions (38Ar at the Bevalac, 28Si at the
AGS, 32S at the SPS). Nevertheless, collisions with mass ≈ 200 nuclear targets were
investigated. Analysis of such collisions is faced with the problem of determining
an “effective” center of mass frame, to be evaluated from the numbers of projectile
and target participant nucleons, respectively. Their ratio – and thus the effective CM
rapidity – depends on impact parameter. Moreover, this effective CM frame refers
to soft hadron production only whereas hard processes are still referred to the frame
of nucleon–nucleon collisions. The light projectile on heavy target kinematics is
described in [43].

2.8 Luminosity

The luminosity is an important parameter in collision experiments. The reaction rate
in a collider is given by

R = σ L , (76)

where
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σ ≡ interaction cross-section,
L ≡ luminosity (in cm−2s−1)

L = f n
N1 N2

A
, (77)

where

f ≡ revolution frequency,
N1, N2 ≡ number of particles in each bunch,
n ≡ number of bunches in one beam in the storage ring,
A ≡ cross-sectional area of the beams,
L is larger if the beams have small cross-sectional area.

2.9 Collision Centrality

In a collision of two nuclei, the impact parameter (b) can carry values from 0 to
R1 + R2, where R1 and R2 are the diameters of the two nuclei. When b = 0,
it is called head-on collision. When collisions with 0 ≤ b ≤ (R1 + R2) are
allowed, it is called minimum-bias collision. In heavy-ion collisions, initial geomet-
ric quantities such as impact parameter and the collision geometry cannot be directly
measured experimentally. Contrarily, it is however possible to relate the particle
multiplicity, transverse energy, and the number of spectactor nucleons (measured
by a “zero-degree calorimeter” ZDC) to the centrality of the collisions.

It is straightforward to assume that on the average,

1) the energy released in a collision is proportional to the number of nucleons par-
ticipating in the collisions,

2) the particle multiplicity is proportional to the participating nucleon number.

Hence the particle multiplicity is proportional to the energy released in the collision.
One can measure the particle multiplicity distribution or the transverse energy (ET )
distribution for minimum-bias collisions. Here the high values of particle multi-
plicity or ET correspond to central collisions and lower values correspond to more
peripheral collisions. Hence the minimum-bias ET or multiplicity distribution could
be used for centrality determination in a collision experiment. Figure 4 shows the
minimum-bias multiplicity (Nch) distribution used for the selection of collision cen-
trality. The minimum-bias yield has been cut into successive intervals starting from
the maximum value of Nch . The first 5% of the high Nch events correspond to
top 5% central collisions. The correlation of centrality and the impact parameter
with the number of participating nucleons has also been elaborated, in detail, by
Glauber-type Monte Carlo calculations employing Woods–Saxon nuclear density
distributions.
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Fig. 4 A cartoon showing the centrality definition from the final-state particle multiplicity and its
correlation with the impact parameter (b) and the number of participating nucleons (Npart) in the
collisions

2.10 Number of Participants and Number of Binary Collisions

Experimentally there is no direct way to estimate the number of participating
nucleons (Npart) and the number of binary collisions (Nbin) in any event, for a
given impact parameter. The Glauber model calculation is performed to estimate
the above two quantities as a function of the impact parameter. The Glauber
model treats a nucleus–nucleus collision as a superposition of many independent
nucleon–nucleon (N−N ) collisions. This model depends on the nuclear density
profile(Woods–Saxon) and the non-diffractive inelastic N + N cross-sections. The
Woods–Saxon distribution is given by

ρ(r ) = ρ0

1 + exp( r−r0
c )
, (78)

where r is the radial distance from the center of the nucleus, r0 is the mean radius of
the nucleus, c is the skin depth of the nucleus and ρ0 is the nuclear density constant.
The parameters r0 and c are measured in electron–nucleus scattering experiments.
ρ0 is determined from the overall normalization condition

∫
ρ(r ) d3r = A, (79)
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where A is the mass number of the nucleus.
There are two separate implementations of Glauber approach: optical and Monte

Carlo (MC). In the optical Glauber approach, Npart and Nbin are estimated by an
analytic integration of overlapping Woods–Saxon distributions.

The MC Glauber calculation proceeds in two steps. First the nucleon position
in each nucleus is determined stochastically. Then the two nuclei are “collided,”
assuming the nucleons travel in a straight line along the beam axis (this is called
eikonal approximation). The position of each nucleon in the nucleus is determined
according to a probability density function which is typically taken to be uniform
in azimuth and polar angles. The radial probability function is modeled from the
nuclear charge densities extracted from electron scattering experiments. A minimum
inter-nucleon separation is assumed between the positions of nucleons in a nucleus,
which is the characteristic length of the repulsive nucleon–nucleon force. Two col-
liding nuclei are simulated by distributing A nucleons of nucleus A and B nucle-
ons of nucleus B in three-dimensional coordinate system according to their nuclear
density distribution. A random impact parameter b is chosen from the distribution
dσ/db = 2πb. A nucleus–nucleus collision is treated as a sequence of independent
nucleon–nucleon collisions with a collision taking place if their distance D in the
transverse plane satisfies

D <
√
σ N N

inel /π, (80)

where σ N N
inel is the total inelastic nucleon–nucleon cross-section. An arbitrary num-

ber of such nucleus–nucleus collisions are performed by the Monte Carlo and the
resulting distributions of dσ/Npart and dσ/Nbin, dσ/db are determined. Here Npart

is defined as the total number of nucleons that underwent at least one interaction
and Nbin is the total number of interactions in an event. These histograms are binned
according to fractions of the total cross-sections. This determines the mean values of
Npart and Nbin for each centrality class. The systematic uncertainties in these values
are estimated by varying the Wood–Saxon parameters, by varying the value of σ N N

inel ,
and from the uncertainty in the determination of total nucleus–nucleus cross-section.
These sources of uncertainties are treated as fully correlated in the final systematic
uncertainty in the above measured variables.

When certain cross-sections scale with number of participants, those are said
to be associated with “soft” processes: small momentum transfer processes. The
low-pT hadron production which accounts for almost 95% of the bulk hadron mul-
tiplicity comes in the “soft processes.” These soft processes are described by phe-
nomenological non-perturbative models. Whereas, in “hard” QCD processes like
jets, charmonia, other heavy flavor and processes associated with high-pT phenom-
ena, the cross-section scales with the number of primordial target/projectile parton
collisions. This is estimated in the above Glauber formalism as the total number of
inelastic participant–participant collisions. For the hard processes the interaction is
at partonic level with large momentum transfer and is governed by pQCD. Ncoll is
always higher than Npart: When Npart grows like A, Ncoll grows like A4/3.
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Sometimes, to study the contribution of soft and hard processes to any cross
section, one takes a two-component model like

cross section = (1 − f ) Npart + f Ncoll, (81)

where f is the fractional contribution from hard processes.

3 Bulk Hadron Production in A+A Collisions

We will now take an overall look at bulk hadron production in nucleus–nucleus
collisions. In view of the high total cm energies involved at, e.g., top SPS (Etot

cm ≈
3.3 TeV) and top RHIC (38 TeV) energies, in central Pb+Pb (SPS) and Au+Au
(RHIC) collisions, one can expect an extraordinarily high spatial density of pro-
duced particles. The average number of produced particles at SPS energies is ≈
1600 while at RHIC multiplicities of ≈ 4000 are reached. Thus, as an overall idea
of analysis, one will try to relate the observed flow of energy into transverse and
longitudinal phase space and particle species to the high energy density contained
in the primordial interaction volume, thus to infer about its contained matter.

Most of the particles under investigation correspond to “thermal” pions (pT up
to 2 GeV) and, in general, such thermal hadrons make up for about 95% of the
observed multiplicity: the bulk of hadron production. Their distributions in phase
space will be illustrated in the subsections below. This will lead to a first insight
into the overall reaction dynamics, and also set the stage for consideration of the
rare signals, imbedded in this thermal bulk production: direct photons, jets, heavy
flavors, which are the subject of later chapters in this volume.

3.1 Particle Multiplicity and Transverse Energy Density

Particle production can be assessed globally by the total created transverse energy,
the overall result of the collisional creation of transverse momentum pT , or trans-

verse mass
(

mT =
√

p2
T + m2

0

)
, at the microscopic level. Figure 5 shows the distri-

bution of total transverse energy ET = ∑
i

E(θi ) · sin θ resulting from a calorimetric

measurement of energy flow into calorimeter cells centered at angle θi relative to
the beam [44], for 32S+197Au collisions at

√
s = 20 GeV, and for 208Pb+208Pb

collisions at
√

s = 17.3 GeV.
The shape is characteristic of the impact parameter probability distribution (for

equal size spheres in the Pb+Pb case). The turnoff at ET = 520 GeV indicates
the point where geometry runs out of steam, i.e., where b → 0, a configuration
generally referred to as a “central collision.” The adjacent shoulder results from
genuine event-by-event fluctuations of the actual number of participant nucleons
from target and projectile (recall the diffuse Woods–Saxon nuclear density profiles),
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Fig. 5 Minimum bias distribution of total transverse energy in Pb+Pb collisions at
√

s =
17.3 GeV, and S+Au collisions at

√
s = 20 GeV, in the rapidity interval 2.1 < y < 3.4,

from [44]

and from experimental factors like calorimeter resolution and limited acceptance.
The latter covers 1.3 units of pseudorapidity and contains mid-rapidity ηmid = 2.9.
Re-normalizing [44] to Δ η = 1 leads to d ET /dη(mid) = 400 GeV, in agreement
with the corresponding WA80 result [45]. Also, the total transverse energy of central
Pb+Pb collisions at

√
s = 17.3 GeV turns out to be about 1.2 TeV. As the definition

of a central collision, indicated in Fig. 5, can be shown [46] to correspond to an aver-
age nucleon participant number of Npart = 370 one finds an average total transverse
energy per nucleon pair, of ET /

〈
0.5 Npart

〉 = 6.5 GeV. After proper consideration
of the baryon pair rest mass (not contained in the calorimetric ET response but in
the corresponding

√
s) one concludes [44] that the observed total ET corresponds

to about 0.6 Emax
T , the maximal ET derived from a situation of “complete stopping”

in which the incident
√

s gets fully transformed into internal excitation of a single,
ideal isotropic fireball located at mid-rapidity. The remaining fraction of Emax

T thus
stays in longitudinal motion, reflecting the onset, at SPS energy, of a transition from
a central fireball to a longitudinally extended “fire-tube,” i.e., a cylindrical volume of
high primordial energy density. In the limit of much higher

√
s one may extrapolate

to the idealization of a boost-invariant primordial interaction volume, introduced by
Bjorken [47].

We shall show below (Sect. 3.2) that the charged particle rapidity distributions,
from top SPS to top RHIC energies, do in fact substantiate a development toward a
boost-invariant situation. One may thus employ the Bjorken model for an estimate
of the primordial spatial energy density ε, related to the energy density in rapidity
space via the relation [47]

ε(τ0) = 1

πR2

1

τ0

d ET

dy
, (82)
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where the initially produced collision volume is considered as a cylinder of length
dz = τ0dy and transverse radius R ∝ A1/3. Inserting for πR2 the longitudi-
nally projected overlap area of Pb nuclei colliding near head-on (“centrally”), and
assuming that the evolution of primordial pQCD shower multiplication (i.e., the
energy transformation into internal degrees of freedom) proceeds at a time scale
τ0 ≤ 1 fm/c, the above average transverse energy density of d ET /dy = 400 GeV
at top SPS energy [44, 45] leads to the estimate

ε(τ0 = 1 fm) = 3.0 ± 0.6 GeV/fm3, (83)

thus exceeding, by far, the estimate of the critical energy density ε0 obtained from
lattice QCD (see below), of about 1.0 GeV/fm3. Increasing the collision energy
to

√
s = 200 GeV for Au+Au at RHIC, and keeping the same formation time,

τ0 = 1 fm/c (a conservative estimate as we shall show in Sect. 3.4), the Bjorken
estimate grows to ε ≈ 6.0 ± 1 GeV/fm3. This statement is based on the increase
in charged particle multiplicity density at mid-rapidity with

√
s, as illustrated in

Fig. 6. From top SPS to top RHIC energy [48] the density per participant nucleon
pair almost doubles. However, at

√
s = 200 GeV the formation or thermalization

time τ0, employed in the Bjorken model [47], was argued [49, 50] to be shorter by
a factor of about 4. We will return to such estimates of τ0 in Sect. 3.5 but note, for
now, that the above choice of τ0 = 1 fm/c represents a conservative upper limit at
RHIC energy.

These Bjorken-estimates of spatial transverse energy density are confronted in
Fig. 7 with lattice QCD results obtained for three dynamical light quark flavors
[53, 54], and for zero baryo-chemical potential (as is realistic for RHIC energy
and beyond but still remains a fair approximation at top SPS energy where μB ≈
250 MeV). The energy density of an ideal, relativistic parton gas scales with the
fourth power of the temperature,
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Fig. 6 Charged hadron rapidity density at mid-rapidity vs.
√

s, compiled from e+e−, pp, p p, and
A+A collisions [51, 52]
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Fig. 7 Lattice QCD results at zero baryon potential for energy density ε/T 4 vs. T/Tc with
three light quark flavors, compared to the Stefan–Boltzmann limit εSB of an ideal quark–gluon
gas [53, 54]

ε = gT 4, (84)

where g is related to the number of degrees of freedom. For an ideal gluon
gas, g = 16 π2/30; in an interacting system the effective g is smaller. The
results of Fig. 7 show, in fact, that the Stefan–Boltzmann limit εSB is not reached,
due to non-perturbative effects, even at four times the critical temperature Tc =
170 MeV. The density ε/T 4 = g is seen to ascend steeply, within the interval
Tc ± 25 MeV. At Tc the critical QCD energy density ε = 0.6 − 1.0 GeV/fm3.
Relating the thermal energy density with the Bjorken estimates discussed above,
one arrives at an estimate of the initial temperatures reached in nucleus–nucleus
collisions, thus implying thermal partonic equilibrium to be accomplished at time
scale τ0 (see Sect. 3.5). For the SPS, RHIC and LHC energy domains this gives an
initial temperature in the range 190 ≤ T SPS ≤ 220 MeV, 220 ≤ T RHIC ≤ 400 MeV
(assuming [49, 50] that τ0 decreases to about 0.3 fm/c here), and T LHC ≥ 600 MeV,
respectively. From such estimates one tends to conclude that the immediate vicin-
ity of the phase transformation is sampled at SPS energy, whereas the dynamical
evolution at RHIC and LHC energies dives deeply into the “quark–gluon plasma”
domain of QCD. We shall return to a more critical discussion of such assertions in
Sect. 3.5.

One further aspect of the mid-rapidity charged particle densities per participant
pair requires attention: the comparison with data from elementary collisions. Fig-
ure 6 shows a compilation of pp, p p, and e+e− data covering the range from ISR
to LEP and Tevatron energies.

The data from e+e− represent d Nch/dy, the rapidity density along the event
thrust axis, calculated assuming the pion mass [55] (the difference between d N/dy
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and d N/dη can be ignored here). Remarkably, they superimpose with the central
A+A collision data, whereas pp and p p show similar slope but amount to only
about 60% of the AA and e+e− values. This difference between e+e− annihilation
to hadrons, and pp or p p hadro-production has been ascribed [56, 57] to the char-
acteristic leading particle effect of minimum-bias hadron–hadron collisions which
is absent in e+e−. It thus appears to be reduced in AA collisions due to subsequent
interaction of the leading parton with the oncoming thickness of the remaining tar-
get/projectile density distribution. This naturally leads to the scaling of total parti-
cle production with Npart that is illustrated in Fig. 8, for three RHIC energies and
minimum-bias Au+Au collisions; the close agreement with e+e− annihilation data
is obvious again. One might conclude that, analogously, the participating nucleons
get “annihilated” at high

√
s, their net quantum number content being spread out

over phase space (as we shall show in the next section).
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Fig. 8 The total number of charged hadrons per participant pair shown as a function of Npart in
Au+Au collisions at three RHIC energies [37]

3.2 Rapidity Distributions

Particle production number in A+A collisions depends globally on
√

s and col-
lision centrality, and differentially on pT and rapidity y, for each particle species
i . Integrating over pT results in the rapidity distribution d Ni/dy. Particle rapidity

y = sinh−1 pL/MT (where MT =
√

m2 + p2
T ) requires mass identification. If

that is unknown one employs pseudorapidity (η = −ln [tan(θ/2)]) instead. This is
also chosen if the joint rapidity distribution of several unresolved particle species
is considered: notably the charged hadron distribution. We show two examples in
Fig. 9. The left panel illustrates charged particle production in p p collisions studied
by UA1 at

√
s = 540 GeV [58]. Whereas the minimum-bias distribution (dots)
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exhibits the required symmetry about the center of mass coordinate, η = 0, the
rapidity distribution corresponding to events in which a W boson was produced
(histogram) features, both, a higher average charged particle yield and an asym-
metric shape. The former effect can be seen to reflect the expectation that the W
production rate increases with the “centrality” of p p collisions, involving more
primordial partons as the collisional overlap of the partonic density profiles gets
larger, thus also increasing the overall, softer hadro-production rate. The asymme-
try should result from a detector bias favoring W identification at negative rapidity:
The transverse W energy of about 100 GeV would locally deplete the energy store
available for associated soft production. If correct, this interpretation suggests that
the wide rapidity gap between target and projectile, arising at such high

√
s, of width

Δy ≈ 2 ln (2γCM), makes it possible to define local sub-intervals of rapidity within
which the species composition of produced particles varies.

The right panel of Fig. 9 shows charged particle pseudorapidity density distri-
butions for Au+Au collisions at

√
s = 130 GeV measured by RHIC experiment

PHOBOS [42] at three different collision centralities, from “central” (the 6% highest
charged particle multiplicity events) to semi-peripheral (the corresponding 35–45%
cut). We will turn to centrality selection in more detail below. Let us first remark
that the slight dip at mid-rapidity and, moreover, the distribution shape in general
are common to p p and Au+Au. This is also the case for e+e− annihilation as is
shown in Fig. 10 which compares the ALEPH rapidity distribution along the mean
pT (“thrust”) axis of jet production in e+e− at

√
s = 200 GeV [55] with the scaled

PHOBOS–RHIC distribution of central Au+Au at the same
√

s [51, 52]. Note that

dNch/dη W = 130 GeV
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Fig. 9 Left panel: charged particle pseudorapidity distribution in p p collisions at
√

s = 540 GeV
[58]. Right panel: same in RHIC Au+Au collisions at

√
s = 130 GeV at different centralities [59].

Closed lines represent fits with the color glass condensate model [60]
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From ref. [51, 52]

the mid-rapidity values contained in Figs. 9 and 10 have been employed already in
Fig. 6, which showed the overall

√
s dependence of mid-rapidity charged particle

production. What we concluded there was a perfect scaling of A+A with e+e− data
at

√
s ≥ 20 GeV and a 40% suppression of the corresponding pp, p p yields. We

see here that this observation holds, semi-quantitatively, for the entire rapidity dis-
tributions. These are not ideally boost invariant at the energies considered here, but
one sees in d Nch/dη a relatively smooth “plateau” region extending over | η |≤ 2.0.

The production spectrum of charged hadrons is, by far, dominated by soft pions
(pT ≤ 1 GeV/c) which contribute about 85% of the total yield, in both elementary
and nuclear collisions. The evolution of the π− rapidity distribution with

√
s is

illustrated in Fig. 11 for central Au+Au and Pb+Pb collisions from AGS via SPS
to RHIC energy, 2.7 ≤ √

s ≤ 200 GeV [61].
At lower

√
s the distributions are well described by single Gaussian fits [61] with

σ (y) nearly linearly proportional to the total rapidity gap Δy ∝ ln
√

s as shown in
the right-hand panel of Fig. 11. Also illustrated is the prediction of the schematic
hydrodynamical model proposed by Landau [62, 63],

σ 2 ∝ ln

( √
s

2m p

)
(85)

which pictures hadron production in high
√

s pp collisions to proceed via a dynam-
ics of initial complete “stopping down” of the reactants matter/energy content in a
mid-rapidity fireball that would then expand via one-dimensional ideal hydrody-
namics. Remarkably, this model that has always been considered a wildly extremal
proposal falls rather close to the lower

√
s data for central A+A collisions, but as

longitudinal phase space widens approaching boost invariance we expect that the
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s, confronted by Landau model predictions (solid line) [61]

(non-Gaussian) width of the rapidity distribution grows linearly with the rapidity
gap Δy. LHC data will finally confirm this expectation, but Figs. 9–11 clearly show
the advent of boost invariance, already at

√
s = 200 GeV.

A short didactic aside: At low
√

s the total rapidity gap Δy = 2−3 does closely
resemble the total rapidity width obtained for a thermal pion velocity distribution at
temperature T = 120−150 MeV, of a single mid-rapidity fireball, the y-distribution
of which represents the longitudinal component according to the relation [28]

d N

dy
∝ (m2T + 2mT 2

coshy
+ 2T 2

cosh2 y
) exp [−m · coshy/T ], (86)

where m is the pion mass. Any model of preferentially longitudinal expansion of
the pion-emitting source, away from a trivial single central “completely stopped”
fireball, can be significantly tested only once Δy > 3 which occurs upward from
SPS energy. The agreement of the Landau model prediction with the data in Fig. 11
is thus fortuitous, below

√
s ≈ 10 GeV, as any created fireball occupies the entire

rapidity gap with pions.
The Landau model offers an extreme view of the mechanism of “stopping,”

by which the initial longitudinal energy of the projectile partons or nucleons is
inelastically transferred to produced particles and redistributed in transverse and
longitudinal phase space, of which we saw the total transverse fraction in Fig. 5.
Obviously e+e− annihilation to hadrons represents the extreme stopping situation.
Hadronic and nuclear collisions offer the possibility to analyze the final distribution
in phase space of their nonzero net quantum numbers, notably net baryon number.
Figure 12 shows the net-proton rapidity distribution (i.e., the proton rapidity distri-
bution subtracted by the antiproton distribution) for central Pb+Pb/Au+Au colli-
sions at AGS (

√
s = 5.5 GeV), SPS (

√
s ≤ 17.3 GeV), and RHIC (

√
s = 200 GeV)
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Fig. 12 Net proton rapidity distributions in central Au+Au/Pb+Pb collisions at AGS, SPS, and
RHIC energies [64, 65]

[64]. With increasing energy we see a central (but non-Gaussian) peak developing
into a double-hump structure that widens toward RHIC leaving a plateau about mid-
rapidity. The RHIC-BRAHMS experiment acceptance for p, p identification does
unfortunately not reach up to the beam fragmentation domain at yp = 5.4 (nor does
any other RHIC experiment) but only to y ≈ 3.2, with the consequence that the
major fraction of pnet is not accounted for. However, the mid-rapidity region is by
no means net baryon free. At SPS energy the NA49 acceptance covers the major
part of the total rapidity gap, and we observe in detail a net p distribution shifted
down from yp = 2.9 by an average rapidity shift [64] of 〈δy〉 = 1.7. From Fig. 12
we infer that 〈δy〉 cannot scale linearly with yp ≈ ln(2γCM) ≈ ln

√
s forever – as

it does up to top SPS energy where 〈δy〉 = 0.58 yp [64]. Because extrapolating
this relation to

√
s = 200 GeV would result in 〈δy〉 = 3.1 and with yp ≈ 5.4, at

this energy we would expect to observe a major fraction of net proton yield in the
vicinity of y = 2.3 which is not the case. A saturation must thus occur in the 〈δy〉
vs.

√
s dependence.

The redistribution of net baryon density over longitudinal phase space is, of
course, only partially captured by the net proton yield, but a recent study [65] has
shown that proper inclusion of neutron1 and hyperon production data at SPS and
RHIC energies scales up, of course, the d N/dy distributions of Fig. 12 but leaves
the peculiarities of their shapes essentially unchanged. As the net baryon rapidity

1 Neutrons are not directly measured in the SPS and RHIC experiments, but their production rate,
relative to protons, reflects in the ratio of tritium to 3He production measured by NA49 [65], apply-
ing the isospin mirror symmetry of the corresponding nuclear wave functions.
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density distribution should resemble the final valence quark distribution, the Landau
model is ruled out as the valence quarks are seen to be streaming from their initial
position at beam rapidity toward mid-rapidity (not vice versa). It is remarkable,
however, to see that some fraction gets transported very far, during the primor-
dial partonic nonequilibrium phase. We shall turn to its theoretical description in
Sect. 3.4 but note, for now, that pp collisions studied at the CERN ISR [66] lead
to a qualitatively similar net baryon rapidity distribution, albeit characterized by a
smaller 〈δy〉.

The data described above suggest that the stopping mechanism universally
resides in the primordial, first generation of collisions at the microscopic level. The
rapidity distributions of charged particle multiplicity, transverse energy, and valence
quarks exhibit qualitatively similar shapes (which also evolve similarly with

√
s) in

pp, p p, e+e− reactions, on the one hand, and in central or semi-peripheral colli-
sions of A ≈ 200 nuclei, on the other. Comparing in detail we formulate a nuclear
modification factor for the bulk hadron rapidity distributions,

RAA
y ≡ d N ch/dy (y) in A + A

0.5 Npart d N ch/dy in pp
, (87)

where Npart < 2A is the mean number of “participating nucleons” (which undergo
at least one inelastic collision with another nucleon) which increases with collision

centrality. For identical nuclei colliding
〈
N proj

part

〉
�

〈
N targ

part

〉
and thus 0.5 Npart gives

the number of opposing nucleon pairs. RAA = 1 if each such “opposing” pair con-
tributes the same fraction to the total A+A yield as is produced in minimum-bias pp
at similar

√
s. From Figs. 6 to 8 we infer that for | η |< 1, RAA = 1.5 at top RHIC

energy, and for the pseudorapidity-integrated total N ch we find RAA = 1.36, in
central Au+Au collisions. AA collisions thus provide for a higher stopping power
than pp (which is also reflected in the higher rapidity shift 〈δy〉 of Fig. 12). The
observation that their stopping power resembles the e+e− inelasticity suggests a sub-
stantially reduced leading particle effect in central collisions of heavy nuclei. This
might not be surprising. In a Glauber view of successive minimum-bias nucleon
collisions occurring during interpenetration, each participating nucleon is struck
ν > 3 times on average, which might saturate the possible inelasticity, removing
the leading fragment.

This view naturally leads to the scaling of the total particle production in nuclear
collisions with Npart, as seen clearly in Fig. 8, reminiscent of the “wounded nucleon
model” [67] but with the scaling factor determined by e+e− rather than pp [68].
Overall we conclude from the still rather close similarity between nuclear and
elementary collisions that the mechanisms of longitudinal phase space population
occur primordially, during interpenetration which is over after 0.15 fm/c at RHIC
and after 1.5 fm/c at SPS energy. That is, it is the primordial nonequilibrium pQCD
shower evolution that accounts for stopping, and its time extent should be a lower
limit to the formation time τ0 employed in the Bjorken model [47], Eq. (82). Equi-
libration at the partonic level might begin at t > τ0 only (the development toward
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a quark–gluon–plasma phase) but the primordial parton redistribution processes set
the stage for this phase, and control the relaxation time scales involved in equili-
bration [69] (more about this in Sect. 3.5). We infer the existence of a saturation
scale [70] controlling the total inelasticity: With ever higher reactant thickness, pro-
portional to A1/3, one does not get a total rapidity or energy density proportional to
A4/3 (the number of “successive binary collisions”) but to A1.08 only [71]. Note that
the lines shown in Fig. 9 (right panel) refer to such a saturation theory: the color
glass condensate (CGC) model [60] developed by McLerran and Venugopalan. The
success of these models demonstrates that “successive binary baryon scattering” is
not an appropriate picture at high

√
s. One can free the partons from the nucleonic

parton density distributions only once, and their corresponding transverse areal den-
sity sets the stage for the ensuing QCD parton shower evolution [70]. Moreover, an
additional saturation effect appears to modify this evolution at high transverse areal
parton density (see Sect. 3.4).

3.3 Dependence on System Size

We have discussed above a first attempt toward a variable (Npart) that scales the
system size dependence in A+A collisions. Note that one can vary the size either
by centrally colliding a sequence of nuclei, A1 + A1, A2 + A2, etc., or by selecting
different windows in Npart out of minimum-bias collision ensembles obtained for
heavy nuclei for which BNL employs 197Au and CERN 208Pb. The third alternative,
scattering a relatively light projectile, such as 32S, from increasing A nuclear targets
has been employed initially both at the AGS and at the SPS but got disfavored in
view of numerous disadvantages, of both experimental (the need to measure the
entire rapidity distribution, i.e., lab momenta from about 0.3 to 100 GeV/c, with
uniform efficiency) and theoretical nature (different density distributions of projec-
tile and target; occurrence of an “effective” center of mass, different for hard and
soft collisions, and depending on impact parameter).

The determination of Npart is of central interest, and thus we need to look at
technicalities, briefly. The approximate linear scaling with Npart that we observed
in the total transverse energy and the total charged particle number (Figs. 5 and 8)
is a reflection of the primordial redistribution of partons and energy. Whereas all
observable properties that refer to the system evolution at later times, which are of
interest as potential signals from the equilibrium, QCD plasma “matter” phase, have
different specific dependences on Npart, be it suppressions (high-pT signals, jets,
quarkonia production) or enhancements (collective hydrodynamic flow, strangeness
production). Npart thus emerges as a suitable common reference scale.

Npart captures the number of potentially directly hit nucleons. It is estimated from
an eikonal straight trajectory Glauber model as applied to the overlap region arising,
in dependence of impact parameter b, from the superposition along beam direction
of the two initial Woods–Saxon density distributions of the interacting nuclei. To
account for the dilute surfaces of these distributions (within which the intersect-
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ing nucleons might not find an interaction partner) each incident nucleon trajectory
gets equipped with a transverse radius that represents the total inelastic NN cross
section at the corresponding

√
s. The formalism is imbedded into a Monte Carlo

simulation (for detail see [72]) starting from random microscopic nucleon positions
within the transversely projected initial Woods–Saxon density profiles. Overlapping
cross-sectional tubes of target and projectile nucleons are counted as a partici-
pant nucleon pair. Owing to the statistics of nucleon initial position sampling each
considered impact parameter geometry thus results in a probability distribution of
derived Npart. Its width σ defines the resolution Δ(b) of impact parameter b deter-
mination within this scheme via the relation

1

Δ (b)
σ (b) ≈ d

〈
Npart (b)

〉
db

(88)

which, at A=200, leads to the expectation to determine b with about 1.5 fm resolu-
tion [72], by measuring Npart.

How to measure Npart? In fixed-target experiments one can calorimetrically count
all particles with beam momentum per nucleon and superimposed Fermi momentum
distributions of nucleons, i.e., one looks for particles in the beam fragmentation
domain ybeam ± 0.5, pT ≤ 0.25 GeV/c. These are identified as spectator nucleons,

and N proj
part = A−N proj

spec. For identical nuclear collision systems
〈
N proj

part

〉
=

〈
N targ

part

〉
, and

thus Npart gets approximated by 2 N proj
part . This scheme was employed in the CERN

experiments NA49 and WA80 and generalized [73] in a way that is illustrated in
Fig. 13.

The top panel shows the minimum-bias distribution of total energy registered in
a forward calorimeter that covers the beam fragment domain in Pb+Pb collisions at
lab energy of 158 GeV per projectile nucleon,

√
s = 17.3 GeV. The energy spec-

trum extends from about 3 TeV which corresponds to about 20 projectile spectators
(indicating a “central” collision), to about 32 TeV which is close to the total beam
energy and thus corresponds to extremely peripheral collisions. Note that the shape
of this forward energy spectrum is the mirror image of the minimum-bias transverse
energy distribution of Fig. 5, both recorded by NA49. From both figures we see that
the ideal head-on, b → 0 collision cannot be selected from these (or any other)
data, owing to the facts that b = 0 carries zero geometrical weight and the diffuse
Woods–Saxon nuclear density profiles lead to a fluctuation of participant nucleon
number at given finite b. Thus the Npart fluctuation at finite-weight impact parame-
ters overshadows the genuinely small contribution of near-zero impact parameters.
Selecting “central” collisions, either by an online trigger cut on minimal forward
energy or maximal total transverse energy or charged particle rapidity density, or
by corresponding off-line selection, one thus faces a compromise between event
statistics and selectivity for impact parameters near zero. In the example of Fig. 13
these considerations suggest a cut at about 8 TeV which selects the 5% most inelastic
events, from among the overall minimum-bias distribution, then to be labeled as
“central” collisions. This selection corresponds to a soft cutoff at b ≤ 3 fm.
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Fig. 13 (a) Energy spectrum of the forward calorimeter in Pb+Pb collisions at 158A GeV;
(b) impact parameter and fraction of total inelastic cross section related to forward energy from
the VENUS model [73, 74]

The selectivity of this, or of other less stringent cuts on collision centrality, is
then established by comparison to a Glauber or cascade model. The bottom panel of
Fig. 13 employs the VENUS hadron/string cascade model [74] which starts from a
Monte Carlo position sampling of the nucleons imbedded in Woods–Saxon nuclear
density profiles but (unlike in a Glauber scheme with straight trajectory overlap
projection) following the cascade of inelastic hadron/string multiplication, again by
Monte Carlo sampling. It reproduces the forward energy data reasonably well and
one can thus read off the average impact parameter and participant nucleon number
corresponding to any desired cut on the percent fraction of the total minimum-bias
cross section. Moreover, it is clear that this procedure can also be based on the
total minimum-bias transverse energy distribution, Fig. 5, which is the mirror image
of the forward energy distribution in Fig. 13, or on the total, and even the mid-
rapidity charged particle density (Fig. 8). The latter method is employed by the
RHIC experiments STAR and PHENIX.
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Fig. 14 Charged hadron pseudorapidity distributions in Cu+Cu and Au+Au collisions at
√

s =
200 GeV, with similar Npart ≈ 100 [59]

How well this machinery works is illustrated in Fig. 14 by RHIC–PHOBOS
results at

√
s = 200 GeV [59]. The charged particle pseudorapidity density dis-

tributions are shown for central (3–6% highest Nch cut) Cu+Cu collisions, with〈
Npart

〉 = 100, and semi-peripheral Au+Au collisions selecting the cut window
(35–40%) such that the same

〈
Npart

〉
emerges. The distributions are nearly identical.

In extrapolation to Npart = 2 one would expect to find agreement between min.
bias p+p, and “super-peripheral” A+A collisions, at least at high energy where the
nuclear Fermi momentum plays no large role. Figure 15 shows that this expectation
is correct [75]. As it is technically difficult to select Npart = 2 from A=200 nuclei
colliding, NA49 fragmented the incident SPS Pb beam to study 12C +12 C and
28Si +28Si collisions [73]. These systems are isospin symmetric, and Fig. 15 thus

plots 0.5
( 〈
π+〉+ 〈

π−〉 )
/ 〈NW 〉 including p+p where NW = 2 by definition. We see

that the pion multiplicity of A+A collisions interpolates to the p+p data point.
Note that NA49 employs the term “wounded nucleon” number (NW ) to count

the nucleons that underwent at least one inelastic nucleon–nucleon collision. This
is what the RHIC experiments (that follow a Glauber model) call Npart whereas
NA49 reserves this term for nucleons that underwent any inelastic collision. Thus
NW in Fig. 15 has the same definition as Npart in Figs. 6, 8, 10, and 14. We see
that a smooth increase joins the p+p data, via the light A+A central collisions, to
a saturation setting in with semi-peripheral Pb+Pb collisions, the overall, relative
increase amounting to about 40% (as we saw in Fig. 6).

There is nothing like an N 1/3
part increase (the thickness of the reactants) observed

here, pointing to the saturation mechanism(s) mentioned in the previous section,
which are seen from Fig. 15 to dampen the initial, fast increase once the primor-
dial interaction volume contains about 80 nucleons. In the Glauber model view of
successive collisions (to which we attach only symbolical significance at high

√
s)
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Fig. 15 Charged pion multiplicity normalized by NW vs. centrality in p+p, C+C, Si+Si, and
Pb+Pb collisions at

√
s = 17.3 GeV [73, 75]

this volume corresponds to 〈ν〉 ≈ 3, and within the terminology of such models we
might thus argue, intuitively, that the initial geometrical cross section, attached to
the nucleon structure function as a whole, has disappeared at 〈ν〉 ≈ 3, all constituent
partons being freed.

3.4 Gluon Saturation in A+A Collisions

We will now take a closer look at the saturation phenomena of high-energy QCD
scattering and apply results obtained for deep inelastic electron–proton reactions to
nuclear collisions, a procedure that relies on a universality of high energy scattering.
This arises at high

√
s, and at relatively low momentum transfer squared Q2 (the

condition governing bulk charged particle production near mid-rapidity at RHIC,
where Feynman x ≈ 0.01 and Q2 ≤ 5 GeV2). Universality comes about as the
transverse resolution becomes higher and higher, with Q2, so that within the small
area tested by the collision there is no difference whether the partons sampled there
belong to the transverse gluon and quark density projection of any hadron species,
or even of a nucleus. And saturation arises once the areal transverse parton density
exceeds the resolution, leading to interfering QCD sub-amplitudes that do not reflect
in the total cross section in a manner similar to the mere summation of separate2,
resolved color charges [60, 69–71, 76–80].

The ideas of saturation and universality are motivated by HERA deep inelastic
scattering (DIS) data [81] on the gluon distribution function shown in Fig. 16 (left
side). The gluon rapidity density, xG(x, Q2) = d N gluon

dy , rises rapidly as a function of

2 Note that QCD considers interactions only of single charges or charge–anticharge pairs.
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Fig. 16 (left) The HERA data for the gluon distribution function as a function of fractional momen-
tum x and square momentum transfer Q2 [81]. (right) Saturation of gluons in a hadron; a head on
view as x decreases [84]

decreasing fractional momentum, x , or increasing resolution, Q2. The origin of this
rise in the gluon density is, ultimately, the non-abelian nature of QCD. Due to the
intrinsic nonlinearity of QCD [78–80], gluon showers generate more gluon show-
ers, producing an avalanche toward small x . As a consequence of this exponential
growth, the spatial density of gluons (per unit transverse area per unit rapidity) of
any hadron or nucleus must increase as x decreases [76, 77]. This follows because
the transverse size, as seen via the total cross section, rises more slowly toward
higher energy than the number of gluons. This is illustrated in Fig. 16 (right side).
In a head-on view of a hadronic projectile more and more partons (mostly gluons)
appear as x decreases. This picture reflects a representation of the hadron in the
“infinite momentum frame” where it has a large light-cone longitudinal momentum
P+ � M . In this frame one can describe the hadron wave function as a collection
of constituents carrying a fraction p+ = x P+, 0 ≤ x < 1, of the total longitudinal
momentum [82] (“light-cone quantization” method [83]). In DIS at large

√
s and

Q2 one measures the quark distributions d Nq/dx at small x , deriving from this the
gluon distributions xG(x, Q2) of Fig. 16.

It is useful [84] to consider the rapidity distribution implied by the parton dis-
tributions in this picture. Defining y = yhadron − ln(1/x) as the rapidity of the
potentially struck parton, the invariant rapidity distribution results as

d N/dy = x d N/dx = xG(x, Q2). (89)

At high Q2 the measured quark and gluon structure functions are thus simply related
to the number of partons per unit rapidity, resolved in the hadronic wave function.

The above textbook-level [83, 84] recapitulation leads, however, to an important
application: the d N/dy distribution of constituent partons of a hadron (or nucleus),
determined by the DIS experiments, is similar to the rapidity distribution of pro-
duced particles in hadron–hadron or A+A collisions as we expect the initial gluon
rapidity density to be represented in the finally observed, produced hadrons, at high
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√
s. Due to the longitudinal boost invariance of the rapidity distribution, we can

apply the above conclusions to hadron–hadron or A+A collisions at high
√

s, by
replacing the infinite momentum frame hadron rapidity by the center of mass frame
projectile rapidity, yproj, while retaining the result that the rapidity density of poten-
tially interacting partons grows with increasing distance from yproj like

Δy ≡ yproj − y = ln(1/x). (90)

At RHIC energy,
√

s = 200 GeV, Δy at mid-rapidity thus corresponds to x < 10−2

(well into the domain of growing structure function gluon density, Fig. 16), and
the two intersecting partonic transverse density distributions thus attempt to resolve
each other given the densely packed situation that is depicted in the lower circle of
Fig. 16 (right panel). At given Q2 (which is modest, Q2 ≤ 5 GeV2, for bulk hadron
production at mid-rapidity) the packing density at mid-rapidity will increase toward
higher

√
s as

Δymid-rap ≈ ln(
√

s/M), i.e., 1/x ≈ √
s/M, (91)

thus sampling smaller x domains in Fig. 16 according to Eq. (90). It will further
increase in proceeding from hadronic to nuclear reaction partners A+A. Will it be
in proportion to A4/3? We know from the previous sections (3.2 and 3.3) that this is
not the case, the data indicating an increase with A1.08. This observation is, in fact
caused by the parton saturation effect, to which we turn now.

For given transverse resolution Q2 and increasing 1/x , the parton density of
Fig. 16 becomes so large that one cannot neglect their mutual interactions any
longer. One expects such interactions to produce “shadowing,” a decrease of the
scattering cross section relative to incoherent independent scattering [78–80]. As an
effect of such shadowed interactions there occurs [84] a saturation [60, 69–71, 76–
80, 84] of the cross section at each given Q2, slowing the increase with 1/x to
become logarithmic once 1/x exceeds a certain critical value xs(Q2). Conversely,
for fixed x , saturation occurs for transverse momenta below some critical Q2(x),

Q2
s (x) = αs Nc

1

πR2

d N

dy
, (92)

where d N/dy is the x-dependent gluon density (at y = yproj − ln(1/x)). Q2
s is called

the saturation scale. In Eq. (92) πR2 is the hadron area (in transverse projection),
and αs Nc is the color charge squared of a single gluon. More intuitively, Q2

s (x)
defines an inversely proportional resolution area Fs(x) and at each x we have to
choose Fs(x) such that the ratio of total area πR2 to Fs(x) (the number of resolved
areal pixels) equals the number of single gluon charge sources featured by the total
hadron area. As a consequence the saturation scale Q2

s (x) defines a critical areal
resolution, with two different types of QCD scattering theory defined, at each x , for
Q2 > Q2

s and Q2 < Q2
s , respectively [70, 76, 77, 84].
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As one expects a soft transition between such theories, to occur along the tran-
sition line implied by Q2

s (x), the two types of QCD scattering are best studied
with processes featuring typical Q2 well above, or below Q2

s (x). Jet production at√
s ≥ 200 GeV in p p or AA collisions with typical Q2 above about 103 GeV2

clearly falls into the former class, to be described, e.g., by perturbative QCD
DGLAP evolution of partonic showers [85, 86]. The acronym DGLAP refers to
the inventors of the perturbative QCD evolution of parton scattering with the “run-
ning” strong coupling constant αs(Q2), Dokshitzer, Gribov, Levine, Altarelli, and
Parisi. On the other hand, mid-rapidity bulk hadron production at the upcoming
CERN LHC facility (

√
s = 14 TeV for pp, and 5.5 TeV for A+A), with typical

Q2 ≤ 5 GeV2 at x ≤ 10−3, will present a clear case for QCD saturation physics,
as formulated, e.g., in the “color glass condensate (CGC)” formalism developed by
McLerran, Venugopalan, and collaborators [60, 76, 77, 84, 87]. This model develops
a classical gluon field theory for the limiting case of a high areal occupation number
density, i.e., for the conceivable limit of the situation depicted in Fig. 16 (right-hand
panel) where the amalgamating small x gluons would overlap completely, within
any finite resolution area at modest Q2. Classical field theory captures, by con-
struction, the effects of color charge coherence, absent in DGLAP parton cascade
evolution theories [84]. This model appears to work well already at

√
s as “low” as

at RHIC, as far as small Q2 bulk charged particle production is concerned. We have
illustrated this by the CGC model fits [60] to the PHOBOS charged particle rapidity
distributions, shown in Fig. 9.

Conversely, QCD processes falling in the transition region between such limit-
ing conditions, such that typical Q2 ≈ Q2

s (x), should present observables that are
functions of the ratio between the transferred momentum Q2 and the appropriate
saturation scale, expressed by Q2

s (x). As Q2 defines the effective transverse sam-
pling area, and Q2

s (x) the characteristic areal size at which saturation is expected
to set in, a characteristic behavior of cross sections, namely that they are universal
functions of Q2/Q2

s , is called “geometric scaling.” The HERA ep scattering data
obey this scaling law closely [88, 89], and the idea arises to apply the universality
principle that we mentioned above: at small enough x , all hadrons or nuclei are
similar, their specific properties only coming in via the appropriate saturation scales
Q2

s (x, h) or Q2
s (x, A). Knowing the latter for RHIC conditions we will understand

the systematics of charged particle production illustrated in the previous section and
thus also be able to extrapolate toward LHC conditions in pp and AA collisions.

All data for the virtual photo-absorption cross section σγ p(x, Q2) in deep inelas-
tic ep scattering with x ≤ 0.01 (which is also the RHIC mid-rapidity x-domain)
have been found [88, 89] to lie on a single curve when plotted against Q2/Q2

s , with

Q2
s (x) ∼

( x0

x

)λ
1 GeV2 (93)

with λ � 0.3 and x0 � 10−4. This scaling [90, 91] with τ = Q2/Q2
s is shown

in Fig. 17 (top panel) to interpolate all data. A chain of arguments, proposed by
Armesto, Salgado, and Wiedemann [71], connect a fit to these data with photo-
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absorption data for (virtual) photon–A interactions [92, 93] via the geometrical
scaling ansatz

σγ A(τA)

πR2
A

= σγ p(τp = τA)

πR2
p

, (94)

assuming that the scale in the nucleus grows with the ratio of the transverse parton
densities, raised to the power 1/δ (a free parameter),

Q2
s,A = Q2

s,p

(
AπR2

p

πR2
A

)1/δ

, τA = τh

(
πR2

A

AπR2
h

)1/δ

. (95)

Figure 17 (middle and bottom panels) shows their fit to the nuclear photo-absorption
data which fixes δ = 0.79 and πR2

p = 1.57 fm2 (see ref. [71] for detail). The
essential step in transforming these findings to the case of A+A collisions is then
taken by the empirical ansatz

d N AA

dy
(at y � 0) ∝ Q2

s,A(x)πR2
A (96)
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by which the mid-rapidity parton (gluon) density d N/dy in Eq. (92) gets related
to the charged particle mid-rapidity density at y ≈ 0 [78, 94], measured in
nucleus–nucleus collisions. Replacing, further, the total nucleon number 2A in a
collision of identical nuclei of mass A by the number Npart of participating nucle-
ons, the final result is [71]

1

Npart

d N AA

dy
(at y ≈ 0) = N0

(√
s
)λ

Nα
part, (97)

where the exponent α ≡ (1 − δ)/3δ = 0.089 and N0 = 0.47. The exponent α
is far smaller than 1/3, a value that represents the thickness of the reactants, and
would be our naive guess in a picture of “successive” independent nucleon par-
ticipant collisions, whose average number 〈ν〉 ∝ (Npart/2)1/3. The observational
fact (see Fig. 15) that α < 1/3 for mid-rapidity low Q2 bulk hadron production
in A+A collisions illustrates the importance of the QCD saturation effect. This
is shown [71] in Fig. 18 where Eq. (97) is applied to the RHIC–PHOBOS data
for mid-rapidity charged particle rapidity density per participant pair, in Au+Au
collisions at

√
s = 19.6, 130, and 200 GeV [95, 96], also including a prediction

for LHC energy. Note that the factorization of energy and centrality dependence,

Fig. 18 Saturation model fit [71] applied to RHIC charged hadron multiplicity data at
mid-rapidity normalized by number of participant pairs, at various energies [95, 96]. Also shown
is an extrapolation to p p data and a prediction for minimum-bias Pb+Pb collisions at LHC energy,√

s = 5500 GeV
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implied by the RHIC data [59], is well captured by Eq. (92) and the resulting fits in
Fig. 18. Furthermore, the steeper slope, predicted for Npart ≤ 60 (not covered by the
employed data set), interpolates to the corresponding pp and p p data, at Npart = 2.
It resembles the pattern observed in the NA49 data (Fig. 15) for small Npart colli-
sions of light A+A systems, at

√
s = 17−20 GeV, and may be seen to reflect the

onset of QCD saturation. Finally we note that the conclusions of the above, partially
heuristic approach [71], represented by Eqs. (94–97), have been backed up by the
CGC theory of McLerran and Venugopalan [60, 76, 77, 84], predictions of which
we have illustrated in Fig. 9.

Bulk hadron production in AA collisions at high
√

s can be related, via the
assumption of universality of high-energy QCD scattering, to the phenomenon of
geometric scaling first observed in HERA deep inelastic ep cross sections. The
underlying feature is a QCD saturation effect arising from the diverging areal parton
density, as confronted with the limited areal resolution Q2, inherent in the consid-
ered scattering process. The “saturation scale” Q2

s (x, A) captures the condition that
a single partonic charge source within the transverse partonic density profile can just
be resolved by a sufficiently high Q2. Bulk hadron production in A+A collisions
falls below this scale.

3.5 Transverse Phase Space: Equilibrium and the QGP State

At RHIC energy,
√

s = 200 GeV, the Au+Au collision reactants are longitudinally
contracted discs. At a nuclear radius R ≈ A1/3 fm and Lorentz γ ≈ 100 their
primordial interpenetration phase ends at time τ0 ≤ 0.15 fm/c. This time scale
is absent in e+e− annihilation at similar

√
s where τ0 ≈ 0.1 fm/c marks the end

of the primordial pQCD partonic shower evolution [97] during which the initially
created qq pair, of “virtually” Q = √

s/2 each, multiplies in the course of the QCD
DGLAP evolution in perturbative vacuum, giving rise to daughter partons of far
lower virtuality, of a few GeV. In A+A collisions this shower era should last longer,
due to the interpenetrational spread of primordial collision time. It should be over
by about 0.25 fm/c. The shower partons in e+e− annihilation stay localized within
back-to-back cone geometry reflecting the directions of the primordial quark pair.
The eventually observed “jet” signal, created by an initial Q2 of order 104 GeV2,
is established by then. Upon a slow-down of the dynamical evolution time scale
to τ ≈ 1 fm/c the shower partons fragment further, acquiring transverse momen-
tum and yet lower virtuality, then to enter a non-perturbative QCD phase of color
neutralization during which hadron-like singlet parton clusters are formed. Their
net initial pQCD virtuality, in pQCD vacuum, is recast in terms of non-perturbative
vacuum hadron mass. The evolution ends with on-shell, observed jet hadrons after
about 3 fm/c of overall reaction time.

Remarkably, even in this somehow most elementary process of QCD evolution,
an aspect of equilibrium formation is observed, not in the narrowly focussed final
di-jet momentum topology but in the relative production rates of the various created
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Fig. 19 Hadron multiplicities in LEP e+e− annihilation at
√

s = 91.2 GeV confronted with the
predictions of the canonical statistical hadronization model [98]

hadronic species. This so-called hadrochemical equilibrium among the hadronic
species is documented in Fig. 19. The hadron multiplicities per e+e− annihilation
event at

√
s = 91.2 GeV [6] are confronted with a Hagedorn [6] canonical statistical

Gibbs ensemble prediction [98] which reveals that the apparent species equilibrium
was fixed at a temperature of T = 165 MeV, which turns out to be the univer-
sal hadronization temperature of all elementary and nuclear collisions at high

√
s

(Hagedorns limiting temperature of the hadronic phase of matter). We shall return
to this topic in Sect. 4 but note, for now, that reactions with as few as 20 charged
particles exhibit such statistical equilibrium properties.

What happens with parton (and hadron) dynamics in A+A collisions after τ0?
There will not be a QCD evolution in vacuum as the transverse radius of the interact-
ing system is large. It may grow to about twice the nuclear radius, i.e., to about 15 fm
before interactions cease; i.e., the system needs about 15 fm/c to decouple. This sim-
ple fact is the key to our expectation that the expansive evolution of the initial high
energy density deposited in a cylinder of considerable diameter (about 10 fm) may
create certain equilibrium properties that allow us to treat the contained particles
and energy in terms of thermodynamic phases of matter, such as a partonic QGP
liquid, or a hadronic liquid or gas. Such that the expansion dynamics makes contact
to the phase diagram illustrated in Fig. 1. This expectation turns out to be justified as
we shall describe in Sect. 4. What results for the evolution after τ0 in a central A+A
collision is sketched in Fig. 2 by means of a schematic two-dimensional light-cone
diagram, which is entered by the two reactant nuclei along ±z = t trajectories
where z is the beam direction and Lorentz contraction has been taken to an extreme,
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such that there occurs an idealized t = z = 0 interaction “point.” Toward positive
t the light-cone proper time profiles of progressing parton–hadron matter evolution
are illustrated. The first profile illustrated here corresponds to the end of shower
formation time τ0. From our above discussion of the e+e− annihilation process one
obtains a first estimate, τ0 ≥ 0.25 fm/c (including interpenetration time of 0.15 fm/c
at RHIC) which refers to processes of very high Q2 ≥ 103 GeV2, far above the
saturation scale Q2

s discussed in the previous section. The latter scale has to be
taken into account for low pT hadron production.

It is the specific resolution scale Q2 of a QCD subprocess, as enveloped in
the overall collision dynamics of two slabs of given transverse partonic structure
function density, that determines which fraction of the constituent partons enters
interaction. In the simple case of extremely high Q2 processes the answer is that all
constituents are resolved. However, at modest Q2 (dominating bulk hadron produc-
tion) the characteristic QCD saturation scale Q2

s (x) gains prominence, defined such
that processes with Q2 < Q2

s do not exploit the initial transverse parton densities
at the level of independent single constituent color field sources (see Eq. 92). For
such processes the proper formation time scale, τ0, is of the order of the inverse
saturation momentum [69], 1/Qs ∼ 0.2 fm/c at

√
s = 200 GeV. The first pro-

file of the time evolution, sketched in Fig. 2, should correspond to proper time
t = τ0 = 0.25 fm/c at RHIC energy. At top SPS energy,

√
s = 17.3 GeV, we

cannot refer to such detailed QCD considerations. A pragmatic approach suggests
to take the interpenetration time, at γ ≈ 8.5, for guidance concerning the formation
time, which thus results as τ0 ≈ 1.5 fm/c.

In summary of the above considerations we assume that the initial partonic color
sources, as contained in the structure functions (Fig. 16), are spread out in lon-
gitudinal phase space after light-cone proper time t = τ0 ≈ 0.25 fm/c, at top
RHIC energy, and after τ0 ≈ 1.4 fm/c at top SPS energy. No significant transverse
expansion has occurred at this early stage, in a central collision of A ≈ 200 nuclei
with transverse diameter of about 12 fm. The Bjorken estimate [47] of initial energy
density ε (Eq. 82) refers to exactly this condition, after formation time τ0. In order to
account for the finite longitudinal source size and interpenetration time, at RHIC, we
finally put the average τ0 ≈ 0.3 fm, at

√
s = 200 GeV, indicating the “initialization

time” after which all partons that have been resolved from the structure functions
are engaged in shower multiplication. As is apparent from Fig. 2, this time scale is
Lorentz dilated for partons with a large longitudinal momentum, or rapidity. This
means that the slow particles are produced first toward the center of the collision
region and the fast (large rapidity) particles are produced later, away from the col-
lision region. This Bjorken “inside-out” correlation [47] between coordinate and
momentum space is similar to the Hubble expansion pattern in cosmology: more
distant galaxies have higher outward velocities. Analogously, the matter created in
A+A collisions at high

√
s is born expanding, however, with the difference that the

Hubble flow is initially one dimensional along the collision axis. This pattern will
continue, at

√
s = 200 GeV, until the system begins to feel the effects of finite size

in the transverse direction which will occur at some time t0 in the vicinity of 1 fm/c.
However, the tight correlation between position and momentum initially imprinted
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on the system will survive all further expansive evolution of the initial “fire-tube”,
and is well recovered in the expansion pattern of the finally released hadrons of
modest pT as we shall show when discussing radial flow (see Sect. 3.6).

In order to proceed to a more quantitative description of the primordial dynamics
(that occurs onward from τ0 for as long the time period of predominantly longitu-
dinal expansion might extend), we return to the Bjorken estimate of energy density,
corresponding to this picture [47], as implied by Eq. (82), which we now recast as

ε =
(

d Nh

dy

) 〈
E T

h

〉
(π R2

A t0)−1, (98)

where the first term is the (average) total hadron multiplicity per unit rapidity which,
multiplied with the average hadron transverse energy, equals the total transverse
energy recorded in the calorimetric study shown in Fig. 5, as employed in Eq. (82).
The quantity RA is, strictly speaking, not the radius parameter of the spherical
Woods–Saxon nuclear density profile but the rms of the reactant overlap profiles as
projected onto the transverse plane (and thus slightly smaller than RA ≈ A1/3 fm).
Employing A1/3 here (as is done throughout) leads to a conservative estimate of ε, a
minor concern. However, the basic assumption in Eq. (98) is to identify the primor-
dial transverse energy “radiation,” of an interactional cylindric source of radius RA

and length t0 (where τ0 ≤ t0 ≤ 1 fm/c, not Lorentz dilated at mid-rapidity), with
the finally emerging bulk hadronic transverse energy. We justify this assumption by
the two observations, made above, that

1. the bulk hadron multiplicity density per unit rapidity d Nh
dy resembles the parton

density, primordially released at saturation scale τ0 (Figs. 9 and 18) at
√

s =
200 GeV, and that

2. the global emission pattern of bulk hadrons (in rapidity and pT ) closely reflects
the initial correlation between coordinate and momentum space, characteristic of
a primordial period of a predominantly longitudinal expansion, as implied in the
Bjorken model.

Both these observations are surprising, at first sight. The Bjorken model was con-
ceived for elementary hadron collisions where the expansion proceeds into vacuum,
i.e., directly toward observation. Figure 2 proposes that, to the contrary, primor-
dially produced partons have to transform through further, successive stages of
partonic and hadronic matter, at decreasing but still substantial energy density, in
central A+A collisions. The very fact of high energy density, with implied short
mean free path of the constituent particles, invites a hydrodynamic description of
the expansive evolution. With initial conditions fixed between τ0 and t0, an ensuing
three-dimensional hydrodynamic expansion would preserve the primordial Bjorken-
type correlation between position and momentum space, up to lower density condi-
tions and, thus, close to the emission of the eventually observed hadrons. We thus
feel justified to employ Eq. (82) or 98 for the initial conditions at RHIC, obtaining
[69, 98]

6 GeV/fm3 ≤ ε ≤ 20 GeV/fm3 (99)
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for the interval 0.3 fm/c ≤ t0 ≤ 1 fm/c, in central Au+Au collisions at y ≈ 0
and

√
s = 200 GeV. The energy density at top SPS energy,

√
s = 17.3 GeV, can

similarly be estimated [44, 45] to amount to about 3 GeV/fm3 at a t0 of 1 fm/c but
we cannot identify conditions at τ0 < t0 in this case as the mere interpenetration of
two Pb nuclei takes 1.4 fm/c. Thus the commonly accepted t0 = 1 fm/c may lead
to a high estimate. An application of the parton–hadron transport model of Ellis
and Geiger [99–101] to this collision finds ε = 3.3 GeV/fm3 at t = 1 fm/c. A
primordial energy density of about 3 GeV/fm3 is 20 times ρ0 ≈ 0.15 GeV/fm3, the
average energy density of ground state nuclear matter, and it also exceeds, by far,
the critical QCD energy density of 0.6 ≤ εc ≤ 1 GeV/fm3 according to lattice QCD
[53, 54]. The initial dynamics thus clearly proceeds in a deconfined QCD system
also at top SPS energy, and similarly so with strikingly higher energy density, at
RHIC, where time scales below 1 fm/c can be resolved.

However, now in order to clarify the key question as to whether and when con-
ditions of partonic dynamical equilibrium may arise under such initial conditions,
we need estimates both of the proper relaxation time scale (which will, obviously,
depend on energy density and related collision frequency) and of the expansion
time scale as governed by the overall evolution of the collision volume. Only if
τ (relax .) < τ (expans.) one may conclude that the “deconfined partonic system”
can be identified with a “deconfined QGP state of QCD matter” as described, e.g.,
by lattice QCD and implied in the phase diagram of QCD matter suggested in Fig. 1.

For guidance concerning the overall time order of the system evolution we con-
sider information [102] obtained from Bose–Einstein correlation analysis of pion
pair emission in momentum space. Note that pions should be emitted at any stage
of the evolution, after formation time, from the surface regions of the evolving
“fire-tube.” Bulk emission of pions occurs, of course, after hadronization (the latest
stages illustrated in the evolution sketch given in Fig. 2). The dynamical pion source
expansion models by Heinz [103] and Sinyukov [104] elaborate a Gaussian emis-
sion time profile, with mean τ f (the decoupling time) and widthΔτ (the duration of
emission).

Figure 20 shows an application of this analysis to central Pb+Pb collision nega-
tive pion pair correlation data obtained by NA49 at top SPS energy,

√
s = 17.3 GeV

[105], where τ f ≈ 8 fm/c andΔτ ≈ 4 fm/c (note that τ = 0 in Fig. 20 corresponds,
not to interaction time t = 0 but to t ≈ 1.4 fm/c, the end of the interpenetration
phase). We see, first of all, that the overall dynamical evolution of a central Pb+Pb
collision at

√
s = 17.3 GeV is ending at about 15 fm/c; the proper time defines the

position of the last, decoupling profile illustrated in Fig. 2, for the SPS collisions
considered here. While the details of Fig. 20 will turn out to be relevant to our later
discussion of hadronization (Sect. 4) and hadronic expansion, we are concerned here
with the average proper time at which the partonic phase ends. After consideration
of the duration widths of these latter expansion phases [100–102] one arrives at
an estimate for the average time, spent before hadronization, of Δt = 3−4 fm/c,
again in agreement with the parton cascade model mentioned above [100, 101].
This model also leads to the conclusion that parton thermal equilibrium is, at least,
closely approached locally in these central Pb+Pb collisions as far as mid-rapidity
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Fig. 20 Time profile of pion decoupling rate from the fireball in a central Pb+Pb collision with
τ = 0, the end of the formation phase. Bose–Einstein correlation of π−π−pairs yields an average
Gaussian decoupling profile with τ f = 8 fm/c and duration of emission parameter Δτ = 4 fm/c
[102, 103]

hadron production is concerned (at forward–backward rapidity the cascade rescat-
tering processes do not suffice, however).

This finding agrees with earlier predictions of τrelax = 1−2 fm/c at top SPS
energy [106]. However, we note that all such calculations employ perturbative
QCD methods, implying the paradoxical consequence that equilibrium is closely
approached toward the end of the partonic phase, at such low

√
s, i.e., in a QGP

state at about T = 200 MeV which is, by definition, of non-perturbative nature. We
shall return to the question of partonic equilibrium attainment at SPS energy in the
discussion of the hadronization process in nuclear collisions (Sect. 4).

Equilibrium conditions should set in earlier at top RHIC energy. As transverse
partonic expansion should set in after the proper time interval 0.3 fm/c ≤ t0 ≤
1 fm/c (which is now resolved by the early dynamics, unlike at top SPS energy),
we take guidance from the Bjorken estimate of primordial energy density which is
based on transverse energy production data. Conservatively interpreting the result in
Eq. (99) we conclude that ε is about four times higher than that at

√
s = 17.3 GeV

in the above proper time interval. As the binary partonic collision frequency scales
with the square of the density ρ (related to the energy density ε via the relation ε =
〈E〉 ρ = Tρ), and is inversely proportional to the relaxation time τrelax, we expect

τrelax ∝ (1/ρ)2 ≈ (T/ε)2 (100)

which implies that τrelax(RHIC) ≈ 0.25 τrelax(SPS) ≈ 0.5 fm/c if we employ the
estimate T (RHIC) = 2T (SPS). This crude estimate is, however, confirmed by the
parton transport model of Molar and Gyulassy [107, 108].

Partonic equilibration at
√

s = 200 GeV should thus set in at a time scale
commensurate to the (slightly smaller) formation time scale, at which the to-be
participant partons are resolved from the initial nucleon structure functions and
enter shower multiplication. Extrapolating to the conditions expected at LHC energy
(
√

s = 5.5 TeV for A+A collisions), where the initial parton density of the structure
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functions in Fig. 16 is even higher (x ≈ 10−3 at mid-rapidity), and so is the initial
energy density, we may expect conditions at which the resolved partons are almost
“born into equilibrium.”

Early dynamical local equilibrium at RHIC is required to understand the observa-
tions concerning elliptic flow. This term refers to a collective anisotropic azimuthal
emission pattern of bulk hadrons in semi-peripheral collisions, a hydrodynamical
phenomenon that originates from the initial geometrical non-isotropy of the pri-
mordial interaction zone [109–111]. A detailed hydrodynamic model analysis of
the corresponding elliptic flow signal at RHIC [112, 113] leads to the conclusion
that local equilibrium (a prerequisite to the hydrodynamic description) sets in at
t0 ≈ 0.5 fm/c. This conclusion agrees with the estimate via Eq. (100) above, based
on Bjorken energy density and corresponding parton collision frequency.

We note that the concept of a hydrodynamic evolution appears to be, almost nec-
essarily ingrained in the physics of a system born into (Hubble-type) expansion, with
a primordial correlation between coordinate and momentum space, and at extreme
initial parton density at which the partonic mean free path length λ is close to the
overall spatial resolution resulting from the saturation scale, i.e., λ ≈ 1/Qs .

The above considerations suggest that a quark–gluon plasma state should be cre-
ated early in the expansion dynamics at

√
s = 200 GeV, at about T = 300 MeV, that

expands hydrodynamically until hadronization is reached, at T ≈ 165−170 MeV.
Its manifestations will be considered in Sect. 4. At the lower SPS energy, up to
17.3 GeV, we can conclude, with some caution, that a deconfined hadronic matter
system should exist at T ≈ 200 MeV, in the closer vicinity of the hadronization
transition. It may closely resemble the QGP state of lattice QCD, near Tc.

3.6 Bulk Hadron Transverse Spectra and Radial Expansion Flow

In this section we analyze bulk hadron transverse momentum spectra obtained at
SPS and RHIC energies, confronting the data with predictions of the hydrodynam-
ical model of collective expansion matter flow that we have suggested in the previ-
ous section, to arise, almost necessarily, from the primordial Hubble-type coupling
between coordinate and momentum space that prevails at the onset of the dynami-
cal evolution in A+A collisions at high

√
s. As all hadronic transverse momentum

spectra initially follow an approximately exponential fall-off (see below), the bulk
hadronic output is represented by thermal transverse spectra at pT ≤ 2 GeV/c.

Furthermore, we shall focus here on mid-rapidity production in near-central
A+A collisions, because hydrodynamic models refer to an initialization period
characterized by Bjorken-type longitudinal boost invariance, which we have seen in
Figs. 9 and 11 to be restricted to a relatively narrow interval centered at mid-rapidity.
Central collisions are selected to exploit the azimuthal symmetry of emission, in an
ideal impact parameter b → 0 geometry. We thus select the predominant, relevant
hydrodynamic “radial flow” expansion mode from, among other, azimuthally ori-
ented (directed) flow patterns that arise once this cylindrical symmetry (with respect
to the beam direction) is broken in finite impact parameter geometries.
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In order to define, quantitatively, the flow phenomena mentioned above, we
rewrite the invariant cross section for production of hadron species i in terms of
transverse momentum, rapidity, impact parameter b, and azimuthal emission angle
ϕp (relative to the reaction plane),

d Ni (b)

pT dpT dydϕp
= 1

2 π

d Ni (b)

pT dpT dy

[
1 + 2vi

1 (pT , b) cosϕp

+2vi
2 (pT , b) cos(2ϕp) + . . .] , (101)

where we have expanded the dependence on ϕp into a Fourier series. Due to reflec-
tion symmetry with respect to the reaction plane in collisions of identical nuclei,
only cosine terms appear. Restricting to mid-rapidity production all odd harmonics
vanish, in particular the “directed flow” coefficient vi

1, and we have dropped the
y-dependence in the flow coefficients vi

1 and vi
2. The latter quantifies the amount of

“elliptic flow” as discussed above. In the following, we will restrict to central colli-
sions which we shall idealize as near-zero impact parameter processes governed by
cylinder symmetry, whence all azimuthal dependence (expressed by the vi

1, v
i
2, . . .

terms) vanishes, and the invariant cross section reduces to the first term in Eq. (101),
which by definition also corresponds to all measurements in which the orientation
of the reaction plane is not observed.

Typical transverse momentum spectra of the latter type are shown in Fig. 21,
for charged hadron production in Au+Au collisions at

√
s = 200 GeV, exhibiting
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Fig. 21 Transverse momentum spectra of charged hadrons in Au+Au collisions at
√

s = 200 GeV,
in dependence of collision centrality [114] (offset as indicated), featuring transition from exponen-
tial to power law shape
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mid-rapidity data at various collision centralities [114]. We observe a clear-cut tran-
sition, from bulk hadron emission at pT ≤ 2 GeV/c featuring a near-exponential
cross section (i.e., a thermal spectrum), to a high-pT power law spectral pattern.
Within the context of our previous discussion (Sect. 3.4) we tentatively identify
the low pT region with the QCD physics near saturation scale. Hadron production
at pT → 10 GeV/c should, on the other hand, be the consequence of primordial
leading parton fragmentation originating from “hard,” high-Q2 perturbative QCD
processes.

We thus identify bulk hadron production at low pT as the emergence of the
initial parton saturation conditions that give rise to high energy density and small
equilibration time scale, leading to a hydrodynamical bulk matter expansion evo-
lution. Conversely, the initially produced hard partons, from high-Q2 processes,
are not thermalized into the bulk but traverse it, as tracers, while being attenuated
by medium-induced rescattering and gluon radiation, the combined effects being
reflected in the high pT inclusive hadron yield, and in jet correlations of hadron
emission. We cannot treat the latter physics observables in detail here, but will
remain in the field of low pT physics, related to hydrodynamical expansion modes,
focussing on radially symmetric expansion.

In order to infer from the spectral shapes of the hadronic species about the
expansion mechanism, we first transform to the transverse mass variable, mT =
(p2

T + m2)1/2, via

1

2π

d Ni

pT dpT dy
= 1

2π

d Ni

mT dmT dy
(102)

because it has been shown in p+p collisions [115] near RHIC energy that the mT

distributions of various hadronic species exhibit a universal pattern (“mT scaling”)
at low mT

1

2π

d Ni

mT dmT dy
= Ai exp(−mi

T /T ) (103)

with a universal inverse slope parameter T and a species-dependent normalization
factor A. Hagedorn showed [116] that this scaling is characteristic of an adiabatic
expansion of a fireball at temperature T . We recall that, on the other hand, an ideal
hydrodynamical expansion is isentropic.

Figure 22 shows the
√

s dependence of the average transverse kinetic energy〈
mi

T

〉 − mi for pions, kaons, and protons observed at mid-rapidity in central Au+
Au/Pb+Pb collisions [61]. Similarly, the inverse slope parameter T resulting from
a fit of Eq. (103) to K + and K − transverse mass spectra (at pT ≤ 2 GeV/c) is
shown in Fig. 23, both for nuclear and p+p collisions [117, 118]. We see, first of
all, that mT scaling does not apply in A+A collisions, and that the kaon inverse
slope parameter, T ≈ 230 MeV over the SPS energy regime, can not be identified
with the fireball temperature at hadron formation which is Th ≈ 165 MeV from
Fig. 1. The latter is seen, however, to be well represented by the p+p spectral data
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Fig. 22 The average transverse kinetic energy 〈mT 〉 − m0 for pions, kaons, and protons vs.
√

s in
central Au+Au/Pb+Pb collisions [61]. Open symbols represent negative hadrons

exhibited in the left panel of Fig. 23. There is, thus, not only thermal energy present
in A+A transverse expansion but also hydrodynamical radial flow.

We note that the indications in Figs. 22 and 23, of a plateau in both 〈mT 〉 and T ,
extending over the domain of SPS energies, 6 ≤ √

s ≤ 17 GeV, have not yet been
explained by any fundamental expansive evolution model, including hydrodynam-
ics. Within the framework of the latter model, this is a consequence of the initializa-
tion problem [119] which requires a detailed modeling, both of primordial energy
density vs. equilibration time scale, and of the appropriate partonic matter equation
of state (EOS) which relates expansion pressure to energy density. At top RHIC
energy, this initialization of hydro-flow occurs, both, at a time scale t0 ≈ 0.5 fm/c
which is far smaller than the time scale of eventual bulk hadronization (t ≈ 3 fm/c)
and at a primordial energy density far in excess of the critical QCD confinement
density. After initialization, the partonic plasma phase thus dominates the overall
expansive evolution, over a time interval far exceeding the formation and relaxation
time scales.

Thus, at RHIC energy, parton transport [107, 108] and relativistic hydrodynamic
[112, 113, 119] models establish a well-developed expansion mode that survives
the subsequent stages of hadronization and hadronic expansion. This is reflected
in their success in describing elliptic flow. On the other hand, the hydrodynamical
model far overestimates elliptic flow at SPS energy [119] at which, as we have
shown in Sect. 3.5, the initialization period may not be well separated from the
confinement (hadronization) stage. Thus, whereas the expansion evolution at

√
s =

200 GeV (occurring at near-zero baryo-chemical potential in Fig. 1) “races” across
the parton–hadron phase boundary with fully established flow patterns, near μB = 0
where lattice QCD predicts the phase transformation to be merely a soft cross over
[24], the dynamics at

√
s = 10−20 GeV may originate from only slightly above,
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Fig. 23 The inverse slope parameter T of Eq. (103) for K + and K − transverse mass spec-
tra at pT < 2 GeV/c and mid-rapidity in central A+A, and in minimum-bias p+p collisions
[117, 118, 120]

or even at the phase boundary, thus sampling the domain 200 ≤ μB ≤ 500 MeV
where the equation of state might exhibit a “softest point” [119]. The hydrodynamic
model thus faces formidable uncertainties regarding initialization at SPS energy.

The plateau in Figs. 22 and 23 may be the consequence of the fact that not much
flow is generated in, or transmitted from the partonic phase, at SPS energies, because
it is initialized close to the phase boundary [117, 118] where the expected critical
point [117, 118] (Fig. 1) and the corresponding adjacent first-order phase transition
might focus [121] or stall [119] the expansion trajectory, such that the observed
radial flow stems almost exclusively from the hadronic expansion phase. The SPS
plateau, which we shall subsequently encounter in other bulk hadron variables (ellip-
tic flow, HBT radii), might thus emerge as a consequence of the critical point or, in
general, of the flatness of the parton–hadron coexistence line. RHIC dynamics, on
the other hand, originates from far above this line.

Hadronic expansion is known to proceed isentropically [122]: commensurate to
expansive volume increase the momentum space volume must decrease, from a ran-
dom isotropic thermal distribution to a restricted momentum orientation preferen-
tially perpendicular to the fireball surface, i.e., radial. The initial thermal energy,
implied by the hadron formation temperature TH = 165 MeV, will thus fall down
to a residual TF at hadronic decoupling from the flow field (“thermal freeze-out”)
plus a radial transverse kinetic energy term mi 〈βT 〉2 where mi is the mass of the
considered hadron species and 〈βT 〉 the average radial velocity. We thus expect [123]
for the slope of Eq. (103)

T = TF + mi 〈βT 〉2 , pT ≤ 2 GeV/c (104)

and
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T = TF

(
1 + 〈vT 〉
1 − 〈vT 〉

)1/2

, pT � mi , (105)

the latter expression valid at pT larger than hadron mass scale (T then is the “blue-
shifted temperature” at decoupling [124] and 〈vT 〉 the average transverse veloc-
ity). The assumption that radial flow mostly originates from the hadronic expansion
phase is underlined by the proportionality of flow energy to hadron mass (Eq. 104).

Figure 24 illustrates this proportionality, by a recent compilation [123] of RHIC
results for central Au+Au collisions at

√
s = 200 GeV, and SPS results for central

Pb+Pb collisions at top SPS energy,
√

s = 17.3 GeV. At the latter energy the slope
parameter of the Φ meson is seen to be close to that of the similar mass baryons p
andΛ, emphasizing the occurrence of mi scaling as opposed to valence quark num-
ber scaling that we will encounter in RHIC elliptic flow data [111]. As is obvious
from Fig. 24 the multi-strange hyperons and charmonia exhibit a slope saturation
which is usually explained [123] as a consequence of their small total cross sections
of rescattering from other hadrons, leading to an early decoupling from the bulk
hadron radial flow field, such that 〈βT 〉Ω < 〈βT 〉p.

Fig. 24 Hadron slope parameters T at mid-rapidity as a function of mass. For Pb+Pb at
√

s =
17.3 GeV (triangles) and Au+Au at

√
s = 200 GeV (circles); from [123]

According to our observations with Eq. (104) a hydrodynamical ansatz for the
transverse mass spectrum of hadrons should thus contain the variables “true tem-
perature” TF at decoupling from the flow field, and its average velocity 〈βT 〉, com-
mon to all hadrons. This is the case for the blast wave model [124] developed as
an approximation to the full hydrodynamic formalism [119], assuming a common
decoupling or “freeze-out” from flow, for all hadronic species, and a boost-invariant
longitudinal expansion
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d Ni

mT dmT dy
= Ai mT K1

(
mT cosh ρ

TF

)
I0

(
pT sinh ρ

TF

)
, (106)

where ρ = tanh−1 βT . In an extended version of this model a function is included
that describes the radial profile of the transverse velocity field, βT (r ) = βmax

T r/R,
instead of employing a fixed βT at decoupling [125]. Figure 25 shows [61] the
resulting energy dependence of TF and 〈βT 〉, for the same set of data as implied
already in Figs. 22 and 23. The “true” decoupling temperature rises steeply at the
AGS and less so at SPS energy (as does 〈βT 〉), to a value of about 95 MeV at top
SPS energy, which is considerably lower than the chemical freeze-out temperature,
TH = 165 MeV, at which the hadronic species relative yield composition of the
hadronic phase becomes stationary (see Sect. 4 and Fig. 1). Chemical decoupling
thus occurs early, near the parton–hadron phase boundary, whereas hadronic radial
flow ceases after significant further expansion and cooling, whence the surface radial
velocity (its average value given by 〈βT 〉 in Fig. 25) approaches βT ≈ 0.65. Both
data sets again exhibit an indication of saturation, over the interval toward top SPS
energy: the SPS plateau. This supports our above conjecture that radial flow is,
predominantly, a consequence of isentropic bulk hadronic expansion in this energy
domain, which sets in at TH . At RHIC energy, both parameters exhibit a further rise,
suggesting that primordial partonic flow begins to contribute significantly to radial
flow.

Fig. 25 Hadron decoupling temperature T f , and average radial flow velocity 〈βT 〉 extracted from
blast wave model (see Eq. 106) fits of mT spectra vs.

√
s [61]
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In summary we conclude that hadronic hadrochemical freeze-out occurs near
the parton–hadron boundary line of Fig. 1, at high

√
s. This fixes the hadronic

species equilibrium distribution at T = TH . Onward from hadronic freeze-out, the
expanding system is out of equilibrium as far as its hadronic species composition
is concerned. However, the momentum space distributions are subject to further
change during the hadronic expansion phase, predominantly due to elastic scattering
and development of radial flow. This process ends in final decoupling from strong
interaction, at T f < TH . Analysis of pT spectra exhibits a collective radial flow
pattern at T f , as characterized by a radial flow velocity βT .

4 Hadronization and Hadronic Freeze-Out in A+A Collisions

Within the course of the global expansion of the primordial reaction volume, the
local flow “cells” will hit the parton–hadron phase boundary as their energy density
approaches εcrit ≈ 1 GeV/fm3. Hadronization will thus occur, not at an instant over
the entire interaction volume, but within a finite overall time interval [100, 101]
that results from the spread of proper time at which individual cells or coherent
clusters of such cells (as developed during expansion) arrive at the phase boundary.
However, irrespective of such a local–temporal occurrence, the hadronization pro-
cess (which is governed by non-perturbative QCD at the low Q2 corresponding to
bulk hadronization) universally results in a novel, global equilibrium property that
concerns the relative abundance of produced hadrons and resonances. This so-called
hadrochemical equilibrium state is directly observable, in contrast to the stages
of primordial parton equilibration that are only indirectly assessed, via dynamical
model studies.

This equilibrium population of species occurs in both elementary and nuclear
collisions [126, 127]. We have seen in Fig. 19 a first illustration, by e+e− annihila-
tion data at

√
s = 91.2 GeV LEP energy, that are well reproduced by the partition

functions of the statistical hadronization model (SHM) in its canonical form [98].
The derived hadronization temperature, TH = 165 MeV, turns out to be universal to
all elementary and nuclear collision processes at

√
s ≥ 20 GeV, and it agrees with

the limiting temperature predicted by Hagedorn [6] to occur in any multi-hadronic
equilibrium system once the energy density approaches about 0.6 GeV/fm3. Thus,
the upper limit of hadronic equilibrium density corresponds, closely, to the lower
limit, εcrit = 0.6−1.0 GeV/fm3 of partonic equilibrium matter, according to lattice
QCD [53, 54]. In elementary collisions only about 20 partons or hadrons participate:
there should be no chance to approach thermodynamic equilibrium of species by
rescattering cascades, neither in the partonic nor in the hadronic phase. The fact that,
nevertheless, the hadron formation temperature TH coincides with the Hagedorn
limiting temperature and with the QCD confinement temperature is a consequence
of the non-perturbative QCD hadronization process itself [99], which “gives birth”
to hadrons/resonances in canonical equilibrium, at high

√
s, as we shall see below.

This process also governs A+A collisions, but as it occurs here under conditions of
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high energy density extended over considerable volume, the SHM description now
requires a grand canonical ensemble, with important consequences for production
of strange hadrons (strangeness enhancement).

The grand canonical order of hadron/resonance production in central A+A
collisions, and its characteristic strangeness enhancement, shows that a state of
extended matter that is quantum mechanically coherent must exist at hadronization
[102, 103, 126, 127]. Whether or not it also reflects partonic equilibrium properties
(including flavor equilibrium), that would allow us to claim the direct observation of
a quark–gluon plasma state near Tc, cannot be decided on the basis of this observa-
tion alone, as the hadronization process somehow generates, by itself, the observed
hadronic equilibrium. This conclusion, however, is still the subject of controversy
[126, 127].

Two typical examples of grand canonical SHM application are illustrated in
Figs. 26 and 27, the first showing total hadron multiplicities in central Pb+Pb
collisions at

√
s = 17.3 GeV by NA49 [117, 118] confronted with SHM pre-

dictions by Becattini et al. [28]. This plot is similar to Fig. 19 in which e+e−

annihilation to hadrons is confronted with an SHM prediction derived from the
canonical ensemble [98]. Central Au+Au collision data at

√
s = 200 GeV from

several RHIC experiments are compared to grand canonical model predictions by
Braun-Munzinger et al. [128] in Fig. 27. The key model parameters TH and the
baryo-chemical potential μB result as 159 MeV (160 MeV) and 247 MeV (20 MeV)
at

√
s = 17.3 (200) GeV, respectively. The universality of the hadronization tem-

perature is obvious from comparison of the present values with the results of the
canonical procedure employed in e+e− annihilation to hadrons at

√
s = 91.2 GeV

(Fig. 19), and in canonical SHM fits [129] to p+p collision data at
√

s = 27.4 GeV
where TH = 159 and 169 MeV, respectively.

Figures 26 and 27 illustrate two different approaches employed in grand canoni-
cal SHM application, the former addressing the values of the hadronic multiplicities
as obtained in approximate full 4π acceptance (within limitations implied by detec-
tor performance), the latter employing a set of multiplicity ratios obtained in the
vicinity of mid-rapidity as invited, at RHIC energy, by the limited acceptance of
the STAR and PHENIX experiments. The latter approach is appropriate, clearly, in
the limit of boost-invariant rapidity distributions where hadron production ratios
would not depend on the choice of the observational rapidity interval. We have
shown in Sect. 3.2 that such conditions do, in fact, set in at top RHIC energy, as
referred to in Fig. 27. However, at low

√
s the y-distributions are far from boost

invariant, and the total rapidity gap Δy may become comparable, in the extreme
case, to the natural rapidity widths of hadrons emitted in the idealized situation
of a single, isotropically decaying fireball positioned at mid-rapidity. Its rapidity
spectra, Eq. (86), resemble Gaussians with widths Γi ≈ 2.35 (T/mi )1/2 for hadron
masses mi . Clearly, the particle ratios (d Ni/dy)/(d N j/dy) then depend strongly on
the position of the rapidity interval dy: away from y = 0 heavy hadrons will be
strongly suppressed, and particle yields in narrow rapidity intervals are useless for
a statistical model analysis unless it is known a priori that the radiator is a single
stationary spherical fireball [130]. This is not the case toward top SPS energy (see
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Fig. 12), due to significant primordial longitudinal expansion of the hadron-emitting
source. Given such conditions, the total multiplicity per collision event (the invariant
yield divided by the total overall inelastic cross section) should be employed in the
SHM analysis, as is exemplified in Fig. 26.
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4.1 Hadronic Freeze-Out from Expansion Flow

The hadronic multiplicities result from integration of the invariant triple differential
cross section over pT and y. Instrumental, experiment-specific conditions tend to
result in incomplete pT and/or y acceptances. It is important to ascertain that the
effects of hydrodynamic transverse and longitudinal flow do not blast a significant
part of the total hadron yield to outside the acceptance, and that they, more generally,
do not change the relative hadron yield composition, thus basically affecting the
SHM analysis. To see that hadronization incorporates only the internal energy in the
co-moving frame [130], we first assume that hadrochemical freeze-out occurs on a
sharp hypersurface Σ and write the total yield of particle species i as

Ni =
∫

d3 p

E

∫
Σ

pμd3σμ(x) fi (x, p) =
∫
Σ

d3σμ(x) jμi (x), (107)

where d3σ is the outward normal vector on the surface, and

jμi (x) = gi

∫
d4 p2Θ(p0)δ(p2 − m2

i ) pμ(exp [p · u(x) − μi ]/T ± 1)−1 (108)

is the grand canonical number current density of species i ,μi the chemical potential,
u(x) the local flow velocity, and gi the degeneracy factor. In thermal equilibrium it
is given by

jμi (x) = ρi (x)uμ(x) with

ρi (x) = uμ(x) jμi (x) =
∫

d4 p2Θ(p0)δ(p2 − m2
i ) p · u(x) fi (p · u(x); T ;μi )

=
∫

d3 p′ fi (E p′ ; T, μi ) = ρi (T, μi ). (109)

Here E p′ is the energy in the local rest frame at point x . The total particle yield of
species i is therefore

Ni = ρi (T, μi )
∫
Σ

d3σμ(x)uμ(x) = ρi (T, μi ) VΣ (uμ), (110)

where only the total co-moving volume VΣ of the freeze-out hypersurface Σ
depends on the flow profile uμ. V is thus a common total volume factor at hadroniza-
tion (to be determined separately), and the flow pattern drops out from the yield
distribution over species in 4π acceptance [130]. For nuclear collisions at SPS ener-
gies and below one thus should perform an SHM analysis of the total, 4π -integrated
hadronic multiplicities, as was done in Fig. 26.

We note that the derivation above illustrates the termination problem of the
hydrodynamic description of A+A collisions, the validity of which depends on
conditions of a short mean free path, λ < 1 fm. A precise argumentation suggests
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that two different free paths are relevant here, concerning hadron occupation number
and hadron spectral freeze-out, respectively. As hadrochemical freeze-out occurs in
the immediate vicinity of Tc (and TH ≈ 160–165 MeV from Figs. 26 and 27), the
hadron species distribution stays constant throughout the ensuing hadronic phase,
i.e., the “chemical” mean free path abruptly becomes infinite at TH , whereas elas-
tic and resonant rescattering may well extend far into the hadronic phase, and so
does collective pressure and flow. In fact we have seen in Sect. 3.6 that the decou-
pling from flow occurs at TF as low as 90–100 MeV (Fig. 25). Thus the hydro-
dynamic evolution of high

√
s collisions has to be, somehow artificially, stopped

at the parton–hadron boundary in order to get the correct hadron multiplicities
Ni , of Eqs. (107–110), which then stay frozen-out during the subsequent hadronic
expansion.

The Eqs. (107–110) demonstrate the application of the Cooper–Frye prescrip-
tion [131] for termination of the hydrodynamic evolution. The hyper-surface Σ
describes the space–time location at which individual flow cells arrive at the freeze-
out conditions, ε = εc and T = Tc, of hadronization. At this point, the resulting
hadron/resonance spectra (for species i) are then given by the Cooper–Frye formula

E
d Ni

d3 p
= d Ni

dypT dpT
= gi

(2π )3

∫
Σ

fi (p · u(x), x)p · d3σ (x), (111)

where pμ fi d3σμ is the local flux of particle i with momentum p through the surface
Σ . For the phase space distribution f in this formula one takes the local equilibrium
distribution at hadronic species freeze-out from the grand canonical SHM

fi (E, x) = [exp{(Ei − μi (x))/T } ± 1]−1 (112)

boosted with the local flow velocity uμ(x) to the global reference frame by the
substitution E → p ·u(x). Fixing T = Tc (taken, e.g., from lattice QCD) the hadron
multiplicities Ni then follow from Eq. (110), and one compares to experiment, as
in Figs. 26 and 27. Now in order to follow the further evolution, throughout the
hadronic rescattering phase, and to finally compare predictions of Eq. (111) to the
observed flow data as represented by the various Fourier terms of Eq. (101) one has
to re-initialize (with hadronic EOS) the expansion from Σ(Tc = 165 MeV) until
final decoupling [119], at T ≈ 100 MeV, thus describing e.g., radial and elliptic
flows.

Alternatively, one might end the hydrodynamic description at T = Tc and match
the thus obtained phase space distribution of Eq. (111) to a microscopic hadron
transport model of the hadronic expansion phase [112, 113, 132]. This procedure is
illustrated in Fig. 28 by a UrQMD [133] calculation of Bass and Dumitru [134] for
central Au+Au collisions at top RHIC energy. We select here the results concern-
ing the survival of the hadronic multiplicities Ni throughout the dynamics of the
hadronic expansion phase, which we have postulated above, based on the equality
of the hadronization temperatures, TH ≈ 160 MeV, observed in e+e− annihilation
(Fig. 19), where no hadronic expansion phase exists, and in central collisions of
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Fig. 28 Modification of mid-rapidity hadron multiplicities in central Au+Au collisions at
√

s =
200 GeV after chemical freeze-out at T = Tc. Squares show a hydrodynamic model prediction
at T = Tc (without further interaction); circles show the result of an attached UrQMD hadronic
cascade expansion calculation [103]

A ≈ 200 nuclei (Figs. 26 and 27). In fact, Fig. 28 shows that the {Ni } observed
at the end of the hadronic cascade evolution agree, closely, with the initial {Ni } as
derived from a Cooper–Frye procedure (Eq. 110) directly at hadronization. On the
other hand, pT spectra and radial flow observables change, drastically, during the
hadronic cascade expansion phase.

The hadronic multiplicity distribution {Ni }, arising from the hadronization pro-
cess at high

√
s, freezes out instantaneously also in A+A collisions and is thus

preserved throughout the (isentropic) hadronic expansion phase. It is thus directly
measurable and, moreover, its hadrochemical equilibrium features lend themselves
to an analysis within the framework of Hagedorn-type statistical, grand canonical
models. As we shall show below, the outcome of this analysis is contained in a
[TH , μB] parameter pair that reflects the conditions of QCD matter prevailing at
hadronization, at each considered

√
s. In fact, the [T, μ] points resulting from the

SHM analysis exhibited in Figs. 26 and 27 (at
√

s = 17.3 and 200 GeV, respec-
tively) have been shown in the QCD matter phase diagram of Fig. 1 to approach,
closely, the parton–hadron phase coexistence line predicted by lattice QCD. Thus,
TH ≈ Tc at high

√
s: hadrochemical freeze-out occurs in the immediate vicinity of

QCD hadronization, thus providing for a location of the QCD phase boundary.

4.2 Grand Canonical Strangeness Enhancement

The statistical model analysis [28, 126–128] of the hadronization species distribu-
tion Ni in A+A collisions is based on the grand canonical partition function for
species i ,
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ln Zi = gi V

6π2T

∫ ∞

0

k4dk

Ei (k) exp {(Ei (k) − μi )/T } ± 1
, (113)

where E2
i = k2 + m2

i , and μi ≡ μB Bi + μs Si + μI I i
3 is the total chemical poten-

tial for baryon number B, strangeness S, and isospin three-component I3. Its role
in Eq. (113) is to enforce, on average over the entire hadron source volume, the
conservation of these quantum numbers. In fact, making use of overall strangeness
neutrality (

∑
i Ni Si = 0) as well as of conserved baryon number (participant Z+N)

and isospin (participant (N–Z)/Z) one can reduce μi to a single effective potential
μb. Hadronic freeze-out is thus captured in three parameters, T, V , and μb. The
density of hadron/resonance species i then results as

ni = T

V

δ

δμ
ln Zi (114)

which gives

Ni = V ni = gi V

(2π )2

∫ ∞

0

k2dk

exp {(Ei (k) − μi )/T } ± 1
. (115)

We see that the common freeze-out volume parameter is canceled if one con-
siders hadron multiplicity ratios, Ni/N j , as was done in Fig. 27. Integration over
momentum yields the one-particle function

Ni = V T gi

2π2
m2

i

∞∑
n=1

(±1)n+1

n
K2

(nmi

T

)
exp

(nμi

T

)
, (116)

where K2 is the modified Bessel function. At high T the effects of Bose or Fermi
statistics (represented by the ±1 term in the denominators of Eqs. (113 and 115)
may be ignored , finally leading to the Boltzmann approximation

Ni = V T gi

2π2
m2

i K2

(mi

T

)
exp

(μi

T

)
(117)

which is the first term of Eq. (116). This approximation is employed throughout
the SHM analysis. It describes the primary yield of hadron species i , directly at
hadronization. The abundance of hadronic resonance states is obtained convolut-
ing Eq. (115) with a relativistic Breit–Wigner distribution [28]. Finally, the overall
multiplicity, to be compared to the data, is determined as the sum of the primary
multiplicity (cf. Eq. 117) and the contributions arising from the unresolved decay of
heavier hadrons and resonances

N observed
i = N primary

i +
∑

j

Br ( j → i) N j . (118)
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After having exposed the formal gear of grand canonical ensemble analysis we
note that Eq. (117) permits a simple, first orientation concerning the relation of T
to μB in A+A collisions by considering, e.g., the antiproton to proton production
ratio. From Eq. (117) we infer the simple expression

N (p)/N (p) = exp(−2μB/T ). (119)

Taking the mid-rapidity value 0.8 for p/p (from Fig. 27) at top RHIC energy, and
assuming that hadronization occurs directly at the QCD phase boundary, and hence
T ≈ Tc ≈ 165 MeV, we get μB � 18 MeV from Eq. (119), in close agreement
with the result, μB = 20 MeV, obtained [128] from the full SHM analysis. Equa-
tion (119) illustrates the role played by μB in the grand canonical ensemble. It
logarithmically depends on the ratio of newly created quark–antiquark pairs (the
latter represented by the p̄ yield), to the total number of quarks including the net
baryon number-carrying valence quarks (represented by the p yield).

The most outstanding property of the hadronic multiplicities observed in central
A+A collisions is the enhancement of all strange hadron species, by factors ranging
from about 2 to 20, as compared to the corresponding production rates in elemen-
tary hadron–hadron (and e+e− annihilation) reactions at the same

√
s. That is, the

nuclear collision modifies the relative strangeness output by a “nuclear modification
factor,” RAA

s = N AA
s /0.5 Npart · N pp

s , which depends on
√

s and Npart and features a
hierarchy with regard to the strangeness number s = 1–3 of the considered species,
RAA

s=1 < RAA
s=2 < RAA

s=3. These properties are illustrated in Figs. 29 and 30. The former
shows the ratio of total K + to positive pion multiplicities in central Au+Au/Pb+Pb
collisions, from lower AGS to top RHIC energies, in comparison to corresponding
ratios from minimum-bias p+p collisions [117, 118]. We have chosen this ratio,
instead of

〈
K +〉

/Npart, because it reflects, rather directly, the “Wroblewski ratio”
of produced strange to nonstrange quarks [126, 127], contained in the produced
hadrons,

λs ≡ 2(〈s〉 + 〈s〉)
〈u〉 + 〈d〉 + 〈u〉 + 〈

d
〉 ≈

{
0.2 in pp

0.45 in AA.
(120)

The low value of λs in pp (and all other elementary) collisions reflects a quark pop-
ulation far away from u, d, s flavor equilibrium, indicating strangeness suppression
[129].

The so-called strangeness enhancement property of A+A collisions (obvious
from Figs. 29 and 30) is, thus, seen as the removal of strangeness suppression;
it is also referred to as a strangeness saturation, in SHM analysis [126–128], for
the reason that λs ≈ 0.45 corresponds to the grand canonical limit of strangeness
production, implicit in the analysis illustrated in Figs. 26 and 27. The average RAA

s=1
at

√
s ≥ 10 GeV thus is about 2.2, both in the data of Fig. 29 and in the statistical

model. It increases (Fig. 30) toward about 10 in s = 3 production of Ω hyperons.
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In order to provide for a first guidance concerning the above facts and termi-
nology regarding strangeness production, we propose an extremely naive argument,
based on the empirical fact of a universal hadronization temperature (Figs. 19, 26,
and 27) at high

√
s. Noting that 〈s〉 = 〈s〉 and 〈u〉 ≈ 〈u〉 ≈ 〈d〉 ≈ 〈

d
〉

in a
QGP system at μb near zero, and T = 165 MeV, just prior to hadronization, λs ≈
〈s〉 / 〈u〉 ≈ exp{(mu − ms)/T } = 0.45 at pT → 0 if we take current quark masses,
ms − mu ≈ 130 MeV. That is, the value of λs in A+A collisions at high

√
s resem-

bles that of a grand canonical QGP at μb → 0, as was indeed shown in a three-flavor
lattice QCD calculation [137] at T ≈ Tc. On the contrary, a p+p collision features
no QGP but a small fireball volume, at T ≈ Tc, within which local strangeness neu-
trality, 〈s〉 = 〈s〉 has to be strictly enforced, implying a canonical treatment [129]. In
our naive model the exponential penalty factor thus contains twice the strangeness
quark mass in the exponent, λs in pp collisions ≈ exp{2(mu − ms)/T } ≈ 0.2, in
agreement with the observations concerning strangeness suppression, which are thus
referred to as canonical suppression. In a further extension of our toy model, now
ignoring the u, d masses in comparison to ms ≈ 135 MeV, we can estimate the
hierarchy of hyperon enhancement in A+A collisions,

RAA
s ∝ N AA

s /N pp
s · 0.5 Npart ≈ exp{(−sms + 2sms)/T } = 2.2, 5.1, 11.6 (121)

for s = 1–3, respectively. Figure 30 shows that these estimates correspond well with
the data [135] for RAA derived in 4π acceptance forΛ, Ξ, andΩ as well as for their
antiparticles, from central Pb+Pb collisions at

√
s = 17.3 GeV. The p+p reference

data and C+C, Si+Si central collisions (obtained by fragmentation of the SPS Pb
beam) refer to separate NA49 measurements at the same energy.

The above qualitative considerations suggest that the relative strangeness yields
reflect a transition concerning the fireball volume (that is formed in the course of
a preceding dynamical evolution) once it enters hadronization. Within the small
volumes, featured by elementary collisions (see Sect. 4.3), phase space is severely
reduced by the requirement of local quantum number conservation [129, 138]
including, in particular, local strangeness neutrality. These constraints are seen to be
removed in A+A collisions, in which extended volumes of high primordial energy
density are formed. Entering the hadronization stage, after an evolution of expansive
cooling, these extended volumes will decay to hadrons under conditions of global
quantum mechanical coherence, resulting in quantum number conservation occur-
ring, nonlocally, and on average over the entire decaying volume. This large coher-
ent volume decay mode removes the restrictions, implied by local quantum number
balancing. In the above naive model we have thus assumed that the hadronization
of an omega hyperon in A+A collisions faces the phase space penalty factor of
only three s quarks to be gathered, the corresponding three s quarks being taken
care of elsewhere in the extended volume by global strangeness conservation. In the
framework of the SHM this situation is represented by the grand canonical ensemble
(Eqs. 115 and 117); the global chemical potential μb expresses quantum number
conservation on average. Strict local conservation is represented by the canonical
ensemble.
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The grand canonical (GC) situation can be shown to be the large collision volume
limit (with high multiplicities {Ni }) of the canonical (C) formulation [136, 139],
with a continuous transition concerning the degree of canonical strangeness suppres-
sion [136]. To see this one starts from a system that is already in the GC limit with
respect to baryon number and charge conservation whereas strangeness is treated
canonically. Restricting to s = 1 and −1 the GC strange particle densities can be
written (from Eq. (117) as

nGC
s=±1 = Zs=±1

V
λ±1

s (122)

with

Zs=±1 = V gs

2π2
m2

s K2

(ms

T

)
exp

{
(BsμB + QsμQ)/T

}
(123)

and a “fugacity factor” λ±1
s = exp (μs/T ). The canonical strange particle density

can be written as [136]

nC
s = nGC

s · (λ̃s) (124)

with an effective fugacity factor

λ̃s = S±1√
S1S−1

I1(x)

I0(x)
, (125)

where S±1 = ∑
s=±1 Zs=±1 is the sum over all created hadrons and resonances with

s = ±1, the In(x) are modified Bessel functions, and x = 2
√

S1S−1 is proportional
to the total fireball volume V . In the limit x ≈ V → ∞ the suppression factor
I1(x)/I0(x) → 1, and the ratio S±1/

√
S1S−1 corresponds exactly to the fugacity λs

in the GC formulation (see Eq. 122). Thus the C and GC formulations are equiva-
lent in this limit, and the canonical strangeness suppression effect disappears. Upon
generalization to the complete strange hadron spectrum, with s = ±1,±2,±3, the
strangeness suppression factor results [136] as

η(s) = Is(x)/I0(x). (126)

In particular for small x (volume), η(s) → (x/2)s , and one expects that the larger
the strangeness content of the particle the smaller the suppression factor, and hence
the larger the enhancement in going from elementary to central A+A collisions.
This explains the hierarchy addressed in Eq. (121) and apparent from the data shown
in Fig. 30. In fact, the curves shown in this figure represent the results obtained from
Eq. (126), for s = 1–3 hyperon production at

√
s = 17.3 GeV [136]. They are seen

to be in qualitative agreement with the data. However, the scarcity of data, existing
at top SPS energy for total hyperon yields, obtained in 4π acceptance (recall the
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arguments in Sect. 4.1) both for A+A and p+p collisions does not yet permit to
cover the SHM strangeness saturation curves in detail, for s > 1.

This saturation is seen in Fig. 30, to set in already at modest system sizes, but
sequentially so, for ascending hyperon strangeness. Note that SHM saturation is
sequentially approached, from Eq. (126), with increasing fireball volume V . In
order to make contact to the experimental size scaling with centrality, e.g., Npart,
the model of ref. [136], which is illustrated in Fig. 30, has converted the genuine
volume scale to the Npart scale by assuming a universal eigenvolume of 7 fm3 per
participant nucleon, i.e., Npart = 10 really means a coherent fireball volume of
70 fm3, in Fig. 30. Within this definition, saturation of s = 1–3 sets in at fireball
volumes at hadronization of about 60, 240, and 600 fm3, respectively: this is the
real message of the SHM curves in Fig. 30.

The above direct translation of coherent fireball volume to participant number is
problematic [140] as it assumes that all participating nucleons enter into a single
primordially coherent fireball. This is, however, not the case [140] particularly in
the relative small scattering systems that cover the initial steep increase in η(s),
where several local high-density clusters are formed, each containing a fraction of
Npart. This is revealed by a percolation model [140] of cluster overlap attached to a
Glauber calculation of the collision/energy density. At each Npart an average cluster
volume distribution results which can be transformed by Eq. (126) to an average
{η(s, V )} distribution whose weighted mean is the appropriate effective canonical
suppression factor corresponding to Npart. On the latter scale, the SHM suppression
curve thus shifts to higher Npart, as is shown in Fig. 31 for the K +/π+ ratio vs. Npart,
measured at mid-rapidity by PHENIX in Au+Au collisions at

√
s = 200 GeV,

which is reproduced by the percolation model [140]. Also included is a prediction
for Cu+Cu at this energy which rises more steeply on the common Npart scale
because the collision and energy density reached in central Cu+Cu collisions, at
Npart ≈ 100, exceed that in peripheral Au+Au collisions (at the same Npart) which
share a more prominent contribution from the dilute surface regions of the nuclear
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Fig. 31 The mid-rapidity K + to π+ ratio vs. Npart in minimum-bias Au+Au collisions at
√

s =
200 GeV, compared to the percolation model [140] (solid line); a prediction of which for Cu+Cu
at similar energy is given by the long dashed line (see text for detail)
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density profile. We note, finally, that this deviation from universal Npart scaling does
not contradict the observations of a perfect such scaling as far as overall charged
particle multiplicity densities are concerned (recall Fig. 14) which are dominated by
pions, not subject to size-dependent canonical suppression.

4.3 Origin of Hadrochemical Equilibrium

The statistical hadronization model (SHM) is not a model of the QCD confine-
ment process leading to hadrons, which occurs once the dynamical cooling evolu-
tion of the system arrives at Tc. At this stage the partonic reaction volume, small
in elementary collisions but extended in A+A collisions, will decay (by whatever
elementary QCD process) to on-shell hadrons and resonances. This coherent quan-
tum mechanical decay results in a de-coherent quasi-classical, primordial on-shell
hadron–resonance population which, at the instant of its formation, lends itself
to a quasi-classical Gibbs ensemble description. Its detailed modalities (canonical
for small decaying systems, grand canonical for extended fireballs in A+A colli-
sions), and its derived parameters [T, μB] merely recast the conditions, prevailing
at hadronization. The success of SHM analysis thus implies that the QCD hadroniza-
tion process ends in statistical equilibrium concerning the hadron–resonance species
population.

In order to identify mechanisms in QCD hadronization that introduce the
hadrochemical equilibrium we refer to jet hadronization in e+e− annihilation reac-
tions, which we showed in Fig. 19 to be well described by the canonical SHM. In
dijet formation at LEP energy,

√
s = 92 GeV, we find a charged particle multiplicity

of about 10 per jet, and we estimate that, likewise, about 10 primordial partons
participate on either side of the back-to-back dijet [99]. There is thus no chance for
either a partonic or hadronic, extensive rescattering toward chemical equilibrium.
However, in the jet hadronization models developed by Amati and Veneziano [97],
Webber [141], and Ellis and Geiger [99] the period of QCD DGLAP parton shower
evolution (and of perturbative QCD, in general) ends with local color neutralization,
by formation of spatial partonic singlet clusters. This QCD “color pre-confinement”
[97] process reminds of a coalescence mechanism, in which the momenta and the
initial virtual masses of the individual clustering partons get converted to internal,
invariant virtual mass of color neutral, spatially extended objects. Their mass spec-
trum [141] extends from about 0.5 to 10 GeV. This cluster mass distribution, shown
in Fig. 32, represents the first stochastic element in this hadronization model.

The clusters are then reinterpreted within non-perturbative QCD: their inter-
nal, initially perturbative QCD vacuum energy gets replaced by non-perturbative
quark and gluon condensates, making the clusters appear like hadronic resonances.
Their subsequent quantum mechanical decay to on-shell hadrons is governed by the
phase space weights given by the hadron and resonance spectrum [99, 141]. That
is, the clusters decay under “phase space dominance” [99], the outcome being a
micro-canonical or a canonical hadron and resonance ensemble [98, 126, 127]. The
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Fig. 32 Invariant mass spectrum of color neutralization clusters in the Veneziano–Webber
hadronization model [97, 141]

apparent hadrochemical equilibrium thus is the consequence of QCD color neutral-
ization to clusters, and their quantum mechanical decay under local quantum num-
ber conservation and phase space weights. We note that the alternative description
of hadronization, by string decay [142], contains a quantum mechanical tunneling
mechanism, leading to a similar phase space dominance [143, 144].

Hadronization in e+e− annihilation thus occurs from local clusters (or strings),
isolated in vacuum, of different mass but similar energy density corresponding to
QCD confinement. These clusters are boosted with respect to each other, but it was
shown [145] that for a Lorentz invariant scalar, such as multiplicity, the contributions
of each cluster (at similar T ) can be represented by a single canonical system with
volume equal to the sum of clusters. In the fit of Fig. 19 this volume sum amounts to
about 25 fm3 [98]; the individual cluster volumes are thus quite small, of magnitude
a few fm3 [99]. This implies maximum canonical strangeness suppression but may,
in fact, require a micro-canonical treatment of strangeness [129], implying a further
suppression. These MC effects are oftentimes included [146] in the canonical parti-
tion functions by an extra strangeness fugacity parameter γs < 1 which suppresses
s = 1–3 in a hierarchical manner, 〈Ni (s)〉 ≈ (γs)si . The fit of Fig. 19 requires
γs = 0.66, a value typical of canonical multiplicity analysis in p + p, p + p, and
e+e− annihilation collisions [129] at

√
s ≥ 30 GeV.

The above picture of hadrochemical equilibrium resulting from the combined
stochastic features of QCD color neutralization by cluster formation and subse-
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quent quantum mechanical decay to the on-shell hadron and resonance spectrum
(under phase space governance) lends itself to a straightforward extension to A+A
collisions. The essential new features, of grand canonical hadronization including
strangeness enhancement, should result from the fact that extended space–time vol-
umes of ε > εcrit are formed in the course of primordial partonic shower evolution,
an overlap effect increasing both with

√
s and with the size of the primordial inter-

action volume. As the volume of the elementary hadronization clusters amounts
to several fm3 it is inevitable that the clusters coalesce, to form extended “super-
cluster” volumes prior to hadronization [140]. As these super-clusters develop
toward hadronization via non-perturbative QCD dynamics, it is plausible to assume
an overall quantum mechanical coherence to arise over the entire extended volume,
which will thus decay to hadrons under global quantum number conservation, the
decay products thus modeled by the GC ensemble.

Our expectation that space–time coalescence of individual hadronization clus-
ters will lead to a global, quantum mechanically coherent, extended super-cluster
volume, which decays under phase space dominance, appears as an analogy to the
dynamics and quantum mechanics governing low-energy nuclear fission from a pre-
ceding “compound nucleus” [147]. Note that the observation of a smooth transition
from canonical strangeness suppression to grand canonical saturation (Figs. 30 and
31) lends further support to the above picture of a percolative growth [140] of the
volume that is about to undergo hadronization.

An extended, coherent quark–gluon plasma state would, of course, represent an
ideal example of such a volume [148] and, in fact, we could imagine that the spa-
tial extension of the plasma state results from a percolative overlap of primordial
zones of high energy density, which becomes more prominent with increasing

√
s

and Npart. A QGP state preceding hadronization will thus lead to all the observed
features. However, to be precise: The hadronizing QCD system of extended matter
decaying quantum coherently could still be a nonequilibrium precursor of the ideal
equilibrium QGP, because we have seen above that hadrochemical equilibrium also
occurs in e+e− annihilation where no partonic equilibrium exists. It gets established
in the course of hadronization, irrespective of the degree of equilibrium prevailing
in the preceding partonic phase.

4.4 Hadronization vs. Rapidity and
√

s

We have argued in Sect. 4.1 that, at relatively low
√

s, the total rapidity gap Δy
does not significantly exceed the natural thermal rapidity spreading width Γi ≈
2.35 (T/mi )1/2 of a single, isotropically decaying fireball, centered at mid-rapidity
and emitting hadrons of mass mi [130]. However, this procedure involves an ideal-
ization because in the real Pb+Pb collision the intersecting dilute surface sections of
the nuclear density profiles will lead to a significant contribution of single-scattering
NN collisions, outside the central high-density fireball. The leading hadron proper-
ties of such “corona collisions” result in wider proper rapidity distributions, quite
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different from those of the central fireball decay hadrons. Their contribution will
thus be prominent near target/projectile rapidity and will feature a canonically sup-
pressed strangeness. The one-fireball assumption, although inevitable at small Δy,
does not quite resemble the physical reality. This may explain the need for an
additional strangeness suppression factor in the GC one-particle partition function
(Eq. 113) that has, unfortunately, also been labeled γs but expresses physics reasons
quite different from the extra suppression factor that reflects micro-canonical phase
space constraints in elementary collisions. It turns out that all GC analysis of central
A+A collisions at low

√
s, and addressed to total 4π multiplicities, requires a γs of

0.7–0.85 [28]; in the fit of Fig. 26 γs = 0.84.
At RHIC, Δy ≈ 11 � Γi , and such difficulties disappear: γs ≈ 1 at

mid-rapidity and, moreover, the wide gap permits an SHM analysis which is differ-
ential in y. Figure 33 shows the y-dependence of the ratios π−/π+, K −/K +, and
p/p as obtained by BRAHMS [149] in central Au+Au collisions at

√
s = 200 GeV.

The figure shows a dramatic dependence of the p/p ratio, which reflects the local
baryo-chemical potential according to Eq. (119). At yC M > 1 the p/p ratio drops
down steeply, to about 0.2 at y ≈ 3.5, thus making close contact to the top SPS
energy value obtained by NA49 [150]. The K −/K + ratio follows a similar but
weaker drop-off pattern, to about 0.65 again matching with the top SPS energy value
of about 0.6 [151]. The deviation from unity of these ratios reflects the rapidity
densities of initial valence u, d quarks, relative to the densities of newly created
light, and strange quark–antiquark pairs, i.e., the y-distribution of the net baryon
number density and of the related baryo-chemical potential of the GC ensemble.
Thus, in analyzing successive bins of the rapidity distributions in Fig. 33, the major
variation in the GC fit concerns the baryo-chemical potential μB(y) which increases
from about 20 MeV (Fig. 27) at mid-rapidity to about 150 MeV at y ≥ 3 while the
hadronization temperature stays constant, at T = 160 MeV. This interplay between

Fig. 33 (left) Anti-hadron to hadron ratios as a function of rapidity in central Au+Au collisions
at

√
s = 200 GeV. The right panel shows an interpretation of the correlation between p/p and

K −/K + in terms of baryo-chemical potential μB variation in the grand canonical statistical model.
From [149]



Global Properties of Nucleus–Nucleus Collisions 97

K −/K +, p/p, and μB is illustrated [149] in the right-hand panel of Fig. 33 and
shown to be well accounted for by the GC statistical model [152].

These considerations imply that hadronization at RHIC (and LHC) energy occurs
local in y-space and late in time. The density distribution of net baryon number
results from the primordial pQCD shower evolution (c.f. Sect. 3.4) and is thus fixed
at formation time, t0 ≤ 0.5 fm/c at RHIC. Hadronization of the bulk partonic matter
occurs later, at t ≥ 3 fm/c [100, 101, 112, 113], and transmits the local conditions
in rapidity space by preserving the local net baryon quantum number density. Most
importantly we conclude that hadronization occurs, not from a single longitudinally
boosted fireball but from a succession of “super-clusters,” of different partonic com-
position depending on y, and decaying at different time due to the Lorentz boost that
increases with y, in an “inside–outside” pattern (c.f. Fig. 2). We are thus witnessing
at hadronization a Hubble expanding system of local fireballs. The detailed implica-
tions of this picture have not been analyzed yet. Note that a central RHIC collision
thus does not correspond to a single hadronization “point” in the [T, μ] plane of
Fig. 1 but samples {T, μ} along the QCD parton–hadron coexistence line [153].

Throughout this section we have discussed hadronic freeze-out at high
√

s only
(top SPS to RHIC energy) because of the proximity of the chemical freeze-out
parameters [T, μb] to the QCD phase boundary from lattice QCD, which suggests
an overall picture of hadronization, to occur directly from a partonic cluster or
super-cluster. Our discussion of the GC statistical hadronization model has been
explicitly or implicitly based on the assumption that hadronic freeze-out coincides
with hadronization. However, the GC model has also been applied successfully to
hadrochemical freeze-out at

√
s down to a few GeV [28, 126–128] where it is not

expected that the dynamical evolution traverses the phase boundary at all, but grand
canonical multiplicity distributions, and their characteristic strangeness enhance-
ment pattern, are observed throughout. Toward lower

√
s, T decreases while μb

increases, as is shown in Fig. 34 which presents a compilation of all reported freeze-
out parameters [128].

These points have also been included in the phase diagram of Fig. 1 which shows
that they are gradually branching away from the phase separation boundary line that
could recently be predicted by lattice QCD once new methods had been developed
to extend the theory to finite μB [16–18]. At

√
s ≥ 20 GeV we see that

εc(QC D) ≈ εH ≈ εGC , (127)

where εGC is the freeze-out density inferred from GC analysis [28, 126–128].
In turn, the GC hadronic freeze-out points drop below the lattice QCD coex-

istence line at lower
√

s, implying that chemical freeze-out now occurs within the
hadronic expansion phase. This requires a model of freeze-out, now governed by the
properties of a high-density hadronic medium, upon expansive cooling and dilution.
Holding on to the model of a quantum mechanical de-coherence decay to on-shell
hadrons that we discussed in Sect. 4.3, we argue that an initial extended high-density
hadronic fireball, given sufficient life-time at T smaller, but not far below Tc, could
also be seen as a quantum mechanically coherent super-cluster, as governed by
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Fig. 34 Energy dependence of the hadrochemical freeze-out points obtained by grand canonical
statistical model analysis in the plane [T, μB ], with interpolating curve at fixed energy per particle
of about 1 GeV [126, 127, 154]

effective mean fields [155]. In such a medium hadrons, at T near Tc, acquire effec-
tive masses and/or decay widths far off their corresponding properties in vacuum:
they are off-shell, approaching conditions of QCD chiral symmetry restoration as
T → Tc [156]. This symmetry is inherent in the elementary QCD Lagrangian, and
“softly” broken within the light quark sector by the small nonzero current quark
masses, but severely broken at T → 0 by the high effective constituent quark
masses that get dressed by non-perturbative QCD vacuum condensates. Pictorially
speaking, hadrons gradually loose this dressing as T → Tc [157], introducing a
change, away from in vacuum properties, in the hadronic mass and width spectrum.
Such in-medium chiral restoration effects have, in fact, been observed in relativistic
A+A collisions, by means of reconstructing the in-medium decay of the ρ vector
meson to an observed e+e− pair [158].

A dense, high-T hadronic system, with mean-field-induced off-shell constituents
is also, clearly, quantum mechanically coherent. At a certain characteristic density,
ε < εc, and temperature T < Tc, as reached in the course of overall hadronic
expansion, this extended medium will undergo a decoherence transition to classical
on-shell hadrons. Its frozen-out hadronic multiplicity distribution should be, again,
characterized by the phase space weights of a grand canonical ensemble at T < Tc.
Theoretical studies of such a mean field hadronic expansion mode [159] have also
shown that such mechanisms play essentially no role at

√
s ≥ 20 GeV because

the expanding system is already in rapid flow once it traverses the phase boundary,
with an expansion time scale shorter than the formation time scale of mean field
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phenomena. At lower energies, on the other hand, the system might not even dive
into the deconfined phase but spend a comparatively long time in its direct vicinity,
at the turning point between compression and re-expansion where all dynamical
time constants are large, and the hadron density is high, such that the inelastic
hadronic transmutation rate becomes high (particularly in collisions of more than
two hadronic reactants, with reaction rates [160] proportional to εn), and sufficiently
so for maintaining hadronic chemical equilibrium after it is first established at max-
imum hadron density, in low

√
s systems that do not cross the phase boundary at

all.
The GC freeze-out parameters [T, μ] at various

√
s in Fig. 34 permit a smooth

interpolation in the T, μ plane [153], which, in turn, allows for GC model pre-
dictions which are continuous in

√
s. Such a curve is shown in Fig. 29 com-

pared to the 4π data points for the K +/π+ multiplicity ratio in central collisions
Au+Au/Pb+Pb, at all

√
s investigated thus far. It exhibits a smooth maximum, due

to the interplay of T saturation and μB fall-off to zero but does not account for
the sharp peak structure seen in the data at

√
s ≈ 7 GeV and μB ≈ 480 MeV.

This behavior is not a peculiarity of the K + channel only; it also is reflected in
an unusually high Wroblewski ratio (see Eq. 120) obtained at

√
s = 7.6 GeV, of

λs = 0.60 [28]. This sharp strangeness maximum is unexplained as of yet. It implies
that hadron formation at this

√
s reflects influences that are less prominent above

and below, and most attempts to understand the effect [161–163] are centered at the
assumption that at this particular

√
s the overall bulk dynamics will settle directly

at the phase boundary where, moreover, finite μB lattice theory also expects a QCD
critical point [16–19]. This would cause a softest point to occur in the equation of
state, i.e., a minimum in the relation of expansion pressure vs. energy density, slow-
ing down the dynamical evolution [164–166] and thus increasing the sensitivity to
expansion modes characteristic of a first-order phase transition [163], which occurs
at μb ≥ μcrit

b . Such conditions may modify the K/π ratio (Fig. 29) [163].
It thus appears that the interval from top AGS to lower SPS energy, 5 ≤ √

s ≤
10 GeV, promises highly interesting information regarding the QCD phase diagram
(Fig. 1) in the direct vicinity of the parton–hadron coexistence line. In particular,
the physics of a critical point of QCD matter deserves further study. Observable
consequences also comprise so-called critical fluctuations [167, 168] of multiplicity
density, mean transverse momentum, and hadron-chemical composition [169], the
latter in fact being observed near

√
s = 7 GeV in an event-by-event study of the

K/π ratio in central Pb+Pb collisions [170].
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Two Introductory Lectures on High-Energy
QCD and Heavy-Ion Collisions

Debasish Banerjee, Jajati K. Nayak, and Raju Venugopalan

Abstract These introductory lectures present a broad overview of the physics of
high parton densities in QCD and its application to our understanding of the early
time dynamics in heavy-ion collisions.

1 Introduction

Quantum chromodynamics (QCD) is widely accepted as the fundamental theory
describing the behavior of hadrons. In QCD, hadrons are composed of elementary
quarks and gluons which are often together labeled partons. Quarks and gluons are
never directly measured due to the confining property of the theory. However, their
distributions inside a hadron can be probed precisely in deep inelastic scattering
(DIS) experiments. It is seen from the H1 and ZEUS experiments at HERA that the
structure functions of the gluons and the sea quarks, which to leading order in QCD
are related to their number densities, grow very rapidly [1, 2] with decreasing values
of a Lorentz invariant kinematic variable xBj introduced by Bjorken. Again, to the
lowest order, this variable corresponds to the momentum fraction of the hadron’s
momentum carried by a parton. Small x physics is the regime of high energies in
QCD and the physics of this regime exhibits many novel features that are not fully
understood.

Small x physics is interesting for a variety of reasons. Even if the momentum
transfer squared Q2 are large such that, from asymptotic freedom, the QCD coupling
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constant αs is small, the explosive growth in the number of partons with increasing
energy makes the physics non-perturbative. The strongest electric and magnetic
fields found in nature occur in this situation. The answer to a fundamental ques-
tion in QCD – can we calculate the total number of particles produced in a strong
interaction at asymptotically high energies – therefore requires that we understand
the processes of particle creation in the presence of such strong color fields. Par-
ticle production in this context is important for understanding a variety of strik-
ing but little understood phenomena at high energies. These include, for instance,
(i) limiting fragmentation [3–10], where the rapidity distributions of the produced
hadrons turn out to be independent of energy around the fragmentation region but
possess nontrivial features in the central rapidity region, (ii) the unusually large
fraction of diffractive final states in DIS where no particles are produced in angular
regions relative to the scattering plane called “rapidity gaps” [11, 12], and (iii) the
phenomenon of “geometrical scaling,” where cross sections appear to scale as a
dimensionless function of the momentum transfer squared of the probe relative to
a dimensionful dynamical scale in the hadron [13]. Small x physics is also of cru-
cial importance in understanding the formation of bulk QCD matter in high-energy
heavy-ion collisions and its possible thermalization to form a quark–gluon plasma
(QGP). Finally, the hope is that understanding the properties of strong fields at small
x will provide some insight into confinement in QCD and its role in high-energy
scattering.

These questions can be addressed in a weak coupling effective field theory for-
malism [14, 15] which describes the properties of high-energy wavefunctions as
a color glass condensate (CGC). In this approach, the degrees of freedom in the
high-energy nuclear wavefunction are divided into static light cone color sources
at large x and dynamical gauge fields at small x which are coupled to these static
color sources. Because the scale between the two sorts of degrees of freedom is
arbitrary, and because physics cannot depend on this scale, one obtains a renor-
malization group description in rapidity which arises from successively integrat-
ing out dynamical fields at one scale and absorbing them into color sources at the
next.

Efforts to understand the rich non-perturbative phenomena of high-energy QCD
are the subject of these lectures. The first lecture begins with DIS and describes
high-energy scattering in DIS in the well-understood Bjorken limit and the much
less understood Regge–Gribov limit of QCD. We show that parton saturation arises
naturally in the latter limit. The effective field theory formalism of CGC, which
incorporates the physics of parton saturation, is described next. We then discuss
color dipole models that incorporate simply both the nonlinear dynamics of satura-
tion and the linear dynamics of perturbative QCD in DIS and hadron scattering. In
the second lecture, we apply the CGC approach to treat ab initio heavy-ion collisions
at high energies. When two sheets of colored glass collide, they form bulk QCD
matter called the glasma in heavy-ion collisions. We describe the properties of the
glasma, probes of its dynamics and the possible fast thermalization of the glasma
into a quark–gluon plasma.
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2 Deep Inelastic Scattering

Deep inelastic scattering (DIS) involves the scattering of a high-energy lepton off a
hadronic target in which the energy and momentum transfer of the lepton is mea-
sured experimentally. DIS is essentially a two-step process where the lepton emits
a virtual photon in the first step which then interacts with the hadron in the sec-
ond step. Depending on the energy transferred, the proton can break up and new
particles are created. This provides a clean environment to study the structure of
hadrons at high energies since one of the interaction vertices in the two-step process
is completely known. The DIS process is schematically illustrated in Fig. 1. The
cross section of the process is

d2σ eh→eX

dxd Q2
= 4πα2

em

x Q4

[
(1 − y + y2

2
)F2(x, Q2) − y2

2
FL (x, Q2)

]
. (1)

Ee
θe

e (kμ)

X(pμ)

P(Pμ)

γ∗(qμ)

e(kμ)

q

q

g

g q

γ∗(Q2)

Fig. 1 Left. The general setup of DIS. Right. Inside the hadron via the parton model. In the impulse
approximation the partons inside are non interacting on the interaction timescale of the virtual
photon probe

Light cone coordinates : It is useful at this point to introduce light cone
(LC) coordinates which are very useful to discuss high-energy scattering. Let
z denote the longitudinal axis of collision. For an arbitrary four-vector aμ =
(at , ax , ay, az), the LC coordinates are defined as

a+ ≡ at + az

√
2
, a− ≡ at − az

√
2
, a⊥ ≡ (ax , ay). (2)

In particular x+ = (t + z)/
√

2 is the LC “time” and x− = (t − z)/
√

2 is known
as the LC “longitudinal coordinate.”

Here e and h denote the initial electron and hadron state and X the final hadronic
state. αem is the usual QED coupling constant. The four vectors of the electron
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and proton are shown in Fig. 1. If qμ denotes the (space-like) four-momenta of the
exchanged photon, then the energy transferred to the hadron is

Q2 = −qμqμ = −(kμ − k ′
μ)2 = 4Ee E ′

e sin2

(
θ ′

e

2

)
. (3)

The Q2 is a measure of the resolution power of the probe. Ee and E ′
e are the initial

and final energies of the lepton and θ ′
e is the lepton scattering angle in the center-

of-mass (COM) frame. The variable y provides a measure of the inelasticity of the
collision and is defined in the following frame-invariant way:

y = P.q

P.k
= 1 − E ′

e

Ee
cos2 θ

′
e

2
. (4)

The x here is the Bjorken variable xBj whose frame-invariant definition is

xBj = Q2

2P.q
. (5)

Fig. 2 Bjorken scaling: independence of structure functions vs Q2 in proton. Courtesy PDG
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At very high energies, we obtain xBj ∼ Q2/s for a fixed y. This clarifies why, for a
fixed Q2, small x physics is the physics of high energies in QCD. As we shall see
shortly, xBj is related to the momentum fraction of the struck quark.

F2 is the structure function that, at leading order in QCD, gives the quark +
antiquark distributions in a proton, while the longitudinal structure function FL is
a measure of the gluon momentum distribution. These quantities can be indepen-
dently extracted from the DIS cross section by varying x , Q2, and the center of
mass energy of the collision. The most striking feature observed in early DIS exper-
iments was the flatness of the structure function F2 over a wide range of Q2 at which
the experiments were first performed (see Fig. 2). The apparent scale invariance of
the structure function gave the needed experimental support for the hypothesis of
point-like, weakly interacting partons inside hadrons. The dynamical model that
was formulated by Feynman [16–18] to understand these phenomena is called the
parton model.

2.1 The Bjorken Limit, the Parton Model and pQCD

The Bjorken limit, in which the results of the DIS experiments were correctly inter-
preted, is attained when the center of mass energy s → ∞ and the energy transferred
in the collision Q2 → ∞ keeping the ratio xBj = Q2/s = fixed. At these very high
energies, the rest mass energy of the hadronic target M can be neglected compared
to its longitudinal momentum P+. In the parton model, formulated in the “infinite-
momentum” frame, the hadron can be thought of as a collection of “quasi-free”
partons which are nearly on-shell excitations carrying some fraction xF of the total
hadron momentum. Moreover the entire momentum of the hadron can be thought
to be longitudinal. This picture is essentially true since the interactions between the
partons are highly time dilated. In the “impulse approximation” when the virtual
photon strikes a parton, the other partons form the spectators without interacting
with the struck quark or among themselves (see Fig. 1). This demands

(xF P + q)2 = m2
q � 0; xF � Q2

2P.q
≡ xBj , (6)

which confirms our interpretation of xBj.
The naive parton model also predicts FL to be zero. This result is called the

Callan–Gross relation and it provides strong evidence that the partons probed by the
virtual photon are spin-1/2 objects. It was also realized that the hadron might also
contain an infinite sea of light qq pairs, called appropriately sea quarks, as opposed
to the valence quarks that carry the net baryon number of a hadron. However, it
was experimentally found that, at a scale of O(1 GeV), the proposed valence and
sea quark distributions could only account for about 50% of the total momentum
in a proton. This necessitated the existence of other partons (gluons) which in turn
explained the puzzle that FL was not zero experimentally. With further experiments,
it was also demonstrated that the Bjorken scaling was only approximately true and
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there were scaling violations at lower x . This did not have an explanation within the
naive parton model at all.

These experimental results set the stage for the formulation of the theory of
strong interactions in terms of QCD which had quarks and gluons. Most important
though, in tying all the pieces together, was the (Nobel) discovery of Gross, Wilczek,
and Politzer that the theory had a β-function with negative sign – thereby indicating
that the coupling asymptotically goes to zero at high Q2. Perturbative QCD (pQCD)
therefore showed that in the Bjorken limit the naive parton model is indeed a good
approximation. It went further to give a quantitative explanation of the log scaling
violations that were observed in the experiments. The key idea to the solution of this
puzzle lay in the assumption of neglecting the transverse momentum of a quark. In
fact, a quark can emit a gluon and acquire a large transverse momentum pT , on
timescales comparable with that of the probe, with a probability proportional to
αsdp2

T /p2
T at large pT where αs is the strong coupling constant. On integrating

this till the kinematic limit of p2
T ∼ Q2, contributions proportional to αs ln Q2 are

obtained which are precisely the scaling violations.
pQCD now has a host of machinery dedicated to precision physics. Tools such

as the operator product expansion (OPE) are used to calculate many observables
up to high orders in perturbation theory. Factorization theorems have been derived
to separate out soft and hard dynamics in a systematic way; the former are param-
eterized as non-perturbative parton distribution functions while the latter can be
computed order by order in perturbation theory. The factorization of hard and soft
scales is manifest in a renormalization group treatment that requires that physics be
independent of this scale. An important result is the Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) [19–22] equation for the evolution of quark and gluon
distribution functions as a function of Q2 which made earlier work on the OPE
accessible to straightforward experimental analysis. A consequence of DGLAP evo-
lution is that, as shown in Fig. 3, the parton distributions increase rapidly at small-x
as Q2 increases. This means that as one probes finer and finer transverse resolution
scales, more and more partons (which share the total hadron momentum) can be
resolved within the hadron. However, albeit the number of partons increases with
increasing Q2, the phase space density – the number of partons/area/Q2 – decreases
and the proton becomes more and more dilute.

2.2 The Regge–Gribov Limit in QCD and Saturation

The DGLAP framework in pQCD has worked very well and explains many features
of the HERA data very well. However, when pushed to lower Q2, one begins to
note increasingly unpleasant results. As shown in the right plot of Fig. 3, fits to data
push the gluon distributions into negative territory. This also seems to afflict FL ,
which must be a positive definite quantity as it is directly proportional to a cross
section. Another feature of HERA data that the conventional pQCD approach needs
further parameters to explain is the high fraction of diffractive events and the fact
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that these diffractive events have the same dependence as the total cross section on
the energy of the photon–hadron system. Within pQCD itself, it is expected that
DGLAP should be supplemented by power corrections in Q2 called “higher twist”
effects, which become increasingly important as Q2 is decreased and as one goes
to smaller values of x . The higher twist formalism is however very cumbersome
and not under theoretical control. It is therefore useful to take stock of the physics
underlying the dynamics of partons in this kinematic region and approach the prob-
lem anew.

The physics of the small x regime is best understood in a very different asymp-
totic limit from the better known (and understood) Bjorken limit and goes by the
name of Regge–Gribov limit in QCD. This limit corresponds to xBj → 0 and
s → ∞ with Q2(� Λ2

QCD) = fixed. The Regge–Gribov limit corresponds to the
regime of strong color fields in QCD. It is responsible for the bulk of multi-particle
production in QCD. At sufficiently large Q2 � Λ2

QCD, the physics of this regime,
albeit non-perturbative, should be accessible in weak coupling.

In the Regge–Gribov limit, the leading logarithms in x , αS ln(1/x) dominate over
the leading logs αS ln(Q2/Λ2

QCD) – the converse is true of course in the Bjorken
limit. The renormalization group equation that resum these leading logs of x is
called the Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation [23–25]. The BFKL
equation leads to a rapid power law growth in the gluon distribution with decreasing
x . A schematic diagram of the parton content of the hadron in the two asymptotic
limits is shown in Fig. 4. The physics issues at small x have a simple intuition. Both
theory and experiments show that the gluon and the sea quark densities grow very
rapidly in low x . As parton distributions grow, for fixed Q2, the occupation number
of gluons in the hadron wavefunction becomes increasingly large and it is no longer
possible to neglect their mutual interactions. In terms of Feynman diagrams, these

log(Q 2)

log(x–1)

Λ
QCD

DGLAP

SA
T

U
R

A
T

IO
N

Fig. 4 The horizontal and vertical directions correspond, respectively, to the DGLAP and BFKL
regimes of QCD. The diagonal line corresponds to the saturation boundary. The thin vertical region
to the left is the non-perturbative region
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interactions involve gluon recombination and screening which deplete the gluon
density relative to the bremsstrahlung diagrams that are responsible for the rapid
growth of the parton distributions. The net effect of the competition between these
two effects is that the occupation number of partons “saturates” at the maximum
possible value of 1/αs in QCD. The dynamics of QCD in this regime is fully nonlin-
ear corresponding to the strongest electric and magnetic fields in nature. Each mode
in the wavefunction, because it has a different occupation number, will saturate at
a different value of x – the momentum scale Qs at which it saturates is called the
saturation scale [26, 27]. In terms of the gluon distribution, the maximal phase space
density is reached when

1

2(N 2
c − 1)

xG(x, Q2
s )

πR2 Q2
s

= 1

αS(Q2
s )
, (7)

where πR2 is the hadron area in the impact parameter space which is only well
defined if the wavelength of the probe is small compared to R, which we will assume
throughout in the future discussions. As suggested by Eq. (7), the growth of the
gluon distribution functions with decreasing x implies a growth of the saturation
scale as well. The saturation scale is the typical momentum of gluons in the high-
energy hadron wavefunction, and when x is small, Q2

s � Λ2
QCD is a semi-hard

scale in QCD. Thus αs(Q2
s )  1, suggesting that weak coupling techniques can be

applied to study the saturation regime in the Regge–Gribov limit of QCD. The use of
weak coupling techniques does not necessarily mean that the physics is perturbative;
in this case, the many-particle interactions are responsible for the non-perturbative
nature of saturation, because, although individual interactions are small, the large
number of gluons amplifies the effect necessitating a resummation of high parton
density effects.

To summarize, saturation is a natural consequence of QCD in the Regge–Gribov
limit of the theory because gluon occupation numbers cannot be arbitrarily large
in the theory. Because saturation is achieved for different modes at different values
of x , this also naturally suggests a dynamical scale that characterizes the onset of
the nonlinear saturation dynamics in QCD. If this scale is large compared to the
QCD confining scale ∼ ΛQCD, the physics of saturation can be described using a
weak coupling formalism. Because occupation numbers are large in this regime, the
appropriate degrees of freedom here are classical fields. One is therefore, on very
general grounds, led to postulate the existence of a weak coupling effective theory
that captures the physics of this intensely nonlinear regime of QCD. This is the color
glass condensate (CGC), and as we shall discuss, its name captures the properties
of the matter in the hadron wavefunctions at high energies.

2.3 The Color Glass Condensate

One way to approach the small-x problem is to appreciate that there is a for-
mal Born–Oppenheimer separation between large-x and small-x modes [28] for
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quantum field theories on the light cone. These are, respectively, the slow and fast
modes in the effective theory. Thus on the timescale of the “wee” parton small-x
fields, the large-x partons can be viewed as static charges. Since these are color
charges, they cannot be integrated out of the theory but must be viewed as sources
of color charge for the dynamical wee fields. With this dynamical principle in mind,
one can write down an effective action for wee partons in QCD at high energies
[29–34]. The generating functional of wee partons has the form

Z[ j] =
∫

[dρ] WΛ+ [ρ]

{∫ Λ+
[d A]δ(A+)ei S[A,ρ]− j ·A

∫ Λ+
[d A]δ(A+)ei S[A,ρ]

}
, (8)

where the wee parton action has the form

S[A, ρ] = −1

4

∫
d4x F2

μν + i

Nc

∫
d2x⊥dx−δ(x−) × Tr

(
ρ(x⊥)U−∞,∞[A−]

)
. (9)

In Eqs. (8 and 9), we have the time-ordered exponential U−∞,∞[A−] = T exp(∫ ∞
−∞ dz+ A−(z+)

)
, ρ is a classical color charge density of the static sources and

W [ρ] is a weight functional of sources (which sit at momenta k+ > Λ+: note,
x = k+/P+

hadron). The sources are coupled to the dynamical wee gluon fields (which
in turn sit at k+ < Λ+) via the gauge-invariant term1 which is the second term on
the RHS of Eq. 9. The first term in Eq. 9 is the QCD field strength tensor squared –
the wee gluons are treated in full generality in this effective theory, formulated in
the light cone gauge A+ = 0. The source j is an external source – derivatives taken
with respect to this source (with this source then put to zero) generate correlation
functions in the effective theory.

The argument for why the sources are classical is subtle and follows from a
coarse graining of the effective action to only include modes of interest. For large
nuclei, or at small x , wee partons couple to a large number of sources. For a large
nucleus, it can be shown explicitly that this source density is classical [36, 37]. Fur-
ther, it was conjectured that the weight functional for a large nucleus was a Gaussian
in the source density (corresponding to the quadratic Casimir operator) [29–34, 38].
This was shown explicitly later to be correct – albeit with a small but interesting
correction, proportional to the cubic Casimir operator, that generates Odderon exci-
tations in the effective theory [36, 37]. For a large nucleus, the variance of the Gaus-
sian distribution, the color charge squared per unit area μ2

A, proportional to A1/3, is
a large scale and is the only scale in the effective action.2 Thus for Q2

s � Λ2
QCD,

αS(μ2
A)  1, and one can compute the properties of the theory in Eq. (8) in weak

coupling.

1 An alternative gauge-invariant form of the coupling of sources and fields is obtained in [35] – it
reproduces the BFKL equation more efficiently.
2 μA is simply related to Qs : Qs ∼ 0.6μA . For a detailed discussion, see [39].
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The Yang–Mills equations can be solved analytically to obtain the classical field
of the nucleus as a function of ρ: Acl.(ρ) [29–34]. From the generating functional in
Eq. (8), one obtains for the two-point correlator,

< AA >=
∫

[dρ] WΛ+ [ρ] Acl.(ρ) Acl.(ρ) . (10)

From this expression, one can determine (for Gaussian sources) the occupation
number φ = d N/πR2/dk2

⊥dy of wee partons in the classical field of the nucleus.
For k⊥ � Q2

s , one has the Weizsäcker–Williams spectrum φ ∼ Q2
s/k2

⊥, while for
k⊥ ≤ Qs , one has a resummation to all orders in k⊥, which gives φ ∼ 1

αS
ln(Qs/k⊥).

(The behavior at low k⊥ can, more accurately, be represented as 1
αS
Γ (0, z) where

Γ is the incomplete gamma function and z = k2
⊥/Q2

s .) A nice expression for the
classical field of the nucleus containing these two limits is given in [40].

We are now in a position to discuss why a high-energy hadron behaves like
a color glass condensate [14]. The “color” is obvious since the degrees of free-
dom, the partons, are colored. It is a glass because the stochastic sources (frozen
on timescales much larger than the wee parton timescales) induce a stochastic
(space–time-dependent) coupling between the partons under quantum evolution (to
be discussed in the next section) – this is analogous to a spin glass in condensed
matter physics. Finally, the matter is a condensate since the wee partons have large
occupation numbers (of order 1/αS) and have momenta peaked about Qs . Just as in
actual condensates, the number of gluons, for a fixed configuration of sources, has a
non-zero value and has a magnitude of order 1/αS . Gauge-invariant observables are
computed by averaging over all possible configurations. As we will discuss, these
properties are enhanced by quantum evolution in x . The classical field retains its
structure while the saturation scale grows: Qs(x ′) > Qs(x) for x ′ < x .

The problem of small fluctuations about the effective action in Eq. (9) was first
addressed in [41, 42] and it was noted that these gave large corrections of order
αS ln(1/x) to the classical action; this implies that the Gaussian weight functional is
fragile under quantum evolution of the sources. A Wilsonian renormalization group
(RG) approach was later developed that systematically treated these corrections
[43–48]. The basic recipe is as follows. Begin with the generating functional in
Eq. (8) at some Λ+, with an initial source distribution W [ρ]. Perform small fluc-
tuations about the classical saddle point of the effective action, integrating out
momentum modes in the region Λ′+ < k+ < Λ+, ensuring that Λ′+ is such
that αS ln(Λ+/Λ′+)  1. The action reproduces itself at the new scale Λ′+, albeit
with a charge density ρ ′ = ρ + δρ, where δρ has support only in the window
Λ′+ < k+ < Λ+, and WΛ+[ρ] −→ WΛ′+[ρ ′]. The change of the weight functional
W [ρ] with x is described by the JIMWLK- nonlinear RG equation [43–47] which
we shall not write explicitly here – it can be found for instance in [14, 15]. The
JIMWLK equation has been re-derived subsequently by several authors. We will
discuss briefly in the next lecture, one such derivation by one of us and collaborators,
in the context of nucleus–nucleus collisions.
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The JIMWLK equations form an infinite hierarchy (analogous to the BBGKY
hierarchy in statistical mechanics) of ordinary differential equations for the gluon
correlators < A1 A2 · · · An >Y , where Y = ln(1/x) is the rapidity. The expectation
value of such an operator O is defined to be

〈O〉Y =
∫

[dα]O[α]WY [α] , (11)

where α = 1
∇2

⊥
ρ. The corresponding JIMWLK equation for this operator is

∂〈O[α]〉Y

∂Y
= 〈1

2

∫
x⊥,y⊥

δ

δαa
Y (x⊥)

χab
x⊥,y⊥ [α]

δ

δαb
Y (y⊥)

O[α]〉Y . (12)

Here χ here is a nonlocal object expressed in terms of path-ordered (in rapidity)
Wilson lines of α [14]. This equation is analogous to a (generalized) functional
Fokker–Planck equation, where Y is the “time” and χ is a generalized diffusion
coefficient. This equation illustrates the stochastic properties of operators in the
space of gauge fields at high energies. For the gluon density, which is proportional
to a two-point function < αa(x⊥)αb(y⊥) >, one recovers the BFKL equation in the
limit of low parton densities.

For large Nc and large A (α2
S A1/3 � 1), the expectation value of the product of

traces of Wilson lines factorizes into the product of the expectation values of the
traces:

< Tr(Vx V †
z )Tr(Vz V †

y ) >−→< Tr(Vx V †
z ) >< Tr(Vz V †

y ) >, (13)

where Vx = P exp
(∫

dz−αa(z−, x⊥)T a
)
. Here P denotes path ordering in x− and

T a is the SU(3) generator in the adjoint representation. In the dipole picture, the
cross section for a dipole scattering off a target P can be expressed in terms of these
two-point dipole operators as [77–79]

σqq̄ P (x, r⊥) = 2
∫

d2b NY (x, r⊥, b) , (14)

where NY , the imaginary part of the forward scattering amplitude, is defined to be
NY = 1 − 1

Nc
〈Tr(Vx V †

y )〉Y . Note that the size of the dipole, r⊥ = x⊥ − y⊥ and b =
(x⊥+ y⊥)/2. The JIMWLK equation for the two-point Wilson correlator is identical
in this large A, large Nc mean field limit to an equation derived independently by
Balitsky and Kovchegov – the BK equation [49–51], which has the operator form

∂NY

∂Y
= ᾱS KBFKL ⊗ {NY − N 2

Y

}
. (15)

Here KBFKL is the well-known BFKL kernel. When N  1, the quadratic term
is small and one has BFKL growth of the number of dipoles; when N is close to
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Fig. 5 Interaction of the color dipole with the nuclei

unity, the growth saturates. The approach to unity can be computed analytically [52,
53]. The BK equation is the simplest equation including both the Bremsstrahlung
responsible for the rapid growth of amplitudes at small x as well as the repulsive
many-body effects that lead to a saturation of this growth.

In this framework, a saturation condition, say N = 1/2, determines the satu-
ration scale. One obtains Q2

s = Q2
0 exp(λY ), where λ = cαS with c ≈ 4.8. As

we shall discuss further in the next subsection, the (arbitrary) choice of this satura-
tion condition affects the overall normalization of this scale but does not affect the
power λ. In fixed coupling, the power λ is large and there are large pre-asymptotic
corrections to this relation which die off only slowly as a function of Y . BFKL
running coupling effects change the behavior of the saturation scale completely –
one goes smoothly at large Y to Q2

s = Q2
0 exp(

√
2b0c(Y + Y0)) where b0 is the

coefficient of the one-loop QCD β-function. An impressive computation of Qs is
the work of Triantafyllopoulos, who obtained Qs by solving NLO-resummed BFKL
in the presence of an absorptive boundary (which approximates the CGC) [54]. The
pre-asymptotic effects are much smaller in this case and the coefficient λ ≈ 0.25 is
very close to the value extracted from saturation model fits to the HERA data. There
is currently an intense, ongoing effort to directly compute the NLO corrections to
the leading order kernels of the BK equation [55–60]. No analytical solution of the
leading order BK equation exists in the entire kinematic region but there have been
several numerical studies at both fixed and running coupling [61–65]. These studies
suggest that the solutions have a soliton-like structure and that the saturation scale
has the behavior discussed here.

The soliton-like structure of the numerical solutions is not accidental, as was
discovered by Munier and Peschanski [66–68]. They noticed that the BK equation,
in a diffusion approximation, bore a formal analogy to the FKPP equation describing
the propagation of unstable nonlinear wavefronts in statistical mechanics [69, 70].
In addition, the full BK equation lies in the universality class of the FKPP equa-
tion. This enables one to extract the universal properties such as the leading pre-
asymptotic terms in the expression for the saturation scale. It was realized [71] that
a stochastic generalization of the FKPP equation – the sFKPP equation – could
provide insights into impact parameter-dependent fluctuations [72] in high-energy
QCD beyond the BK – equation. We shall not discuss further efforts in that direction
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here except to note that there are many open ends (and opportunities) here which
are still not satisfactorily resolved and require new ideas.

2.4 Color Dipole CGC Models in DIS and Hadronic Scattering

In the previous subsection, we discussed the formalism of the CGC and the JIMWL
K/BK RG equations. We will discuss here phenomenological applications of these
ideas to DIS and (more briefly) to hadronic collisions. The next lecture will discuss
more at length the application of these ideas to heavy-ion collisions. A strong hint
that semi-hard scales may play a role in small-x dynamics came from “geometrical
scaling” of the HERA data [13]. The inclusive virtual photon+proton cross section
for x ≤ 0.01 and all available Q2 scales3 as a function of τ ≡ Q2/Q2

s , where
Q2

s (x) = exp(λY ) GeV2. Here Y = ln(x0/x) is the rapidity; x0 = 3 · 10−4 and
λ = 0.288 are parameters fit to the data [13, 73]. Geometrical scaling of the e+p data
is shown in Fig. 6, which demonstrates that the inclusive diffractive, vector meson,
and DVCS cross sections at HERA, with a slight modification4 in the definition of
τ , also appear to show geometrical scaling [73]. A recent “quality factor” statistical
analysis [74] indicates that this scaling is robust; it is however unable to distinguish
between the above fixed coupling energy dependence of Qs and the running cou-
pling Qs(x) ∝ exp(

√
Y ) dependence of the saturation scale. Geometrical scaling is

only asymptotic in both fixed and running coupling evolution equations. However,
recent analyses [75, 76] suggest that the onset of the scaling asymptotics may be
precocious. Geometrical scaling alone is not sufficient evidence of saturation effects
and it is important to look at the data in greater detail in saturation/CGC models.

All saturation models [77–79] express the inclusive virtual photon+proton cross
section as

σ
γ ∗ p
L ,T =

∫
d2r⊥

∫ 1

0
dz

∣∣∣Ψ γ ∗
L ,T (r⊥, Q, z) .

∣∣∣2
σqq̄ P (r⊥, xBj, b⊥). (16)

Here
∣∣∣Ψ γ ∗

L ,T (r⊥, z, Q)
∣∣∣2

represents the probability for a virtual photon to produce

a quark–anti-quark pair of size r = |r⊥| (Fig. 5) and σ̂ (r⊥, xBj, b⊥) denotes the
dipole cross section for this pair to scatter off the target at an impact parameter
b⊥. The former is well known from QED, while the latter represents the dynamics
of QCD scattering at small x – see Eq. (14). A simple saturation model (known
as the GBW model [80, 81]) of the dipole cross section, parameterized as σqq̄ P =
2(1 − e−r2 Qs,p(x)/4) where Qs,p(x) = (x0/x)λ GeV2, gives a good qualitative fit to
the HERA inclusive cross-section data for x0 = 3 · 10−4 and λ = 0.288. Though
this model captures the qualitative features of saturation, it does not contain the

3 The E665 data are a notable exception.
4 τD,V M = (Q2 + M2)/Q2

s , where M denotes the mass of the diffractive/vector meson final state.
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Fig. 6 The top plot shows the total DIS cross section at different Q2. One observes that the cross
section scales as a function of a single variable τ = Q2/Q2

s (x). The lower figures demonstrate that
a nearly identical scaling holds for other less inclusive observables such as (i) inclusive diffractive
cross section for different invariant masses, (ii) deeply virtual compton scattering (DVCS), and
(iii) exclusive vector meson production (ρ, J/ψ , and φ mesons). In all cases, the saturation scale
is identical. From [73]

bremsstrahlung limit of perturbative QCD (pQCD) that applies to small dipoles of
size r  1/Qs,p(x).

In the classical effective theory of the CGC, one can derive, to leading logarith-
mic accuracy, the dipole cross section [82, 83] containing the right small r limit.
This dipole cross section can be represented as [84]

σqq̄ P (r⊥, xBj, b⊥) = 2
[
1 − exp

(−r2 F(xBj, r⊥)Tp(b⊥)
)]
, (17)
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where Tp(b⊥) is the impact parameter profile function in the proton, normalized as∫
d2b Tp(b⊥) = 1 and F is proportional to the gluon distribution [85]:

F(xBj, r
2
⊥) = π2αS

(
μ2

0 + 4/r2
⊥
)

xBjg
(
xBj, μ

2
0 + 4/r2

⊥
)
/(2Nc) , (18)

evolved from the initial scale μ0 by the DGLAP equations. The dipole cross section
in Eq. (17) was implemented in the impact parameter saturation model (IPsat) [84]
where the parameters are fit to reproduce the HERA data on the inclusive struc-
ture function F2. Here Qs,p is defined5 as the solution of σqq̄ P (r⊥, xBj, b⊥) =
1/Qs,p(xBj, b⊥)) = 2(1 − e−1/4).

The IPsat dipole cross section in Eq. (17) is valid when leading logarithms in x
in pQCD are not dominant over leading logs in Q2. At very small x , where logs in
x dominate, quantum evolution in the CGC describes both the BFKL limit of linear
small x evolution as well as the nonlinear JIMWLK/BK evolution at high parton
densities [43–47, 49–51]. These asymptotics are combined with a more realistic
b-dependence in the b-CGC model [86, 87]. Both the IPsat model and the b-CGC
model provide excellent fits to HERA data for x ≤ 0.01 [87, 88]. The saturation
scale extracted from the fit in the IPsat model is shown in Fig. 7. The important
point to note is that the energy dependence of the extracted Qs,p is significantly
stronger than those predicted in non-perturbative models [89].

The strong field dynamics of small x partons is universal and should be man-
ifest in large nuclei at lower energies than that in the proton. In Fig. 8 (left),
we show the well-known shadowing of F A

2 in the fixed target e+A E665 and
NMC experiments. Expressed in terms of τ ≡ Q2/Q2

s (Fig. 8 (right)), the data

b-Sat
b-CGC

1/x

Q
S 

2  (
G

eV
2 )

10–1

1

102 103 104 105 106

Fig. 7 The saturation scale vs. 1/x in the IPsat and b-CGC models [87]

5 This choice of is equivalent to the saturation scale in the GBW model for the case of a Gaussian
dipole cross section.



Two Introductory Lectures on High-Energy QCD and Heavy-Ion Collisions 121

10–5 10–4 10–3 10–2 10–1 100

x

0.4

0.6

0.8

1

2 F
2

A
/AF

2

D

He (NMC)
Li (NMC)
C (NMC)
Ca (NMC)
Ca (E665)
Xe (E665)
Pb (E665)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

τ

0.01

0.1

1

10

He (NMC)
Li (NMC)
C (NMC)
Ca (NMC)
Ca (E665)
Xe (E665)
Pb (E665)

5 × proton

F
2

A
/A  scaled

Fig. 8 Left: Shadowing of F2 from the NMC and E665 fixed target experiments. Right: The data
scaled as a function of τ ≡ Q2/Q2

s,A [90]

show geometrical scaling [90]. A careful study of nuclear DIS in the IPsat CGC
framework was performed in [84, 91, 92]. The average differential dipole cross

section is well approximated by

〈
dσA
d2b⊥

〉
N

≈ 2

[
1 −

(
1 − TA(b⊥)

2 σp

)A
]

, where

TA(b⊥) is the well-known Woods Saxon distribution. The average is defined as
〈O〉N ≡ ∫ ∏A

i=1 d2b⊥,i TA(b⊥,i )O(
{
b⊥,i

}
). Here σp is determined from the IPsat

fits to the e+p data; no additional parameters are introduced for eA collisions. In
Fig. 9 (left), the model is compared to NMC data on carbon and calcium nuclei –
the agreement is reasonably good. The fit for calcium data is not as good as that for
the carbon data. This may be because the calcium data shown are for larger values
of x where one expects to see a breakdown in the formalism. Indeed, one sees a
systematic deviation with increasing x . We note however that the largest deviation
is of the order of 5% – the theoretical uncertainties, especially at larger x values, are
likely significantly larger.

In Fig. 9 (right), we show the extracted saturation scale in nuclei for both central
and median impact parameters. To a good approximation, the saturation scale in
nuclei scales as Q2

s,A(x, bmed.) ≈ Q2
s,p(x, bmed.) · (A/x)1/3. The factor of 2001/3 ≈ 6

gives a huge “oomph” in the parton density of a nucleus relative to that of a proton
at the same x . Indeed, one would require a center of mass energy ∼ 14 times larger
in the proton case. At extremely high energies, this statement must be qualified to
account for the effects of QCD evolution [93].

We now turn to a discussion of CGC effects in hadronic collisions. A systematic
treatment of the scattering of two strong color sources (such as two high-energy
nuclei) is discussed in the next lecture. To leading order, the problem reduces to the
solution of the classical Yang–Mills (CYM) equations averaged over color sources
for each nucleus [94–99]; the variance of this distribution of sources is propor-
tional to Q2

s,A. Besides the nuclear radius, it is the only scale in the problem, and
the Q2

s,A ∼ Q2
s, · (A/x)0.3 expression for the saturation scale was used in CGC
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models of nuclear collisions to successfully predict the multiplicity [97–99] and
the centrality dependence of the multiplicity [139, 140] dependence in gold+gold
collisions at RHIC. The universality of the saturation scale also has a bearing on
the hydrodynamics of the quark–gluon plasma (QGP); the universal form leads to
a lower eccentricity [100] (and therefore lower viscosity) than a nonuniversal form
that generates a larger eccentricity [101, 102] (leaving room for a larger viscosity)
of the QGP6

For asymmetric (off-central rapidity) nuclear collisions, or proton/deuteron +
heavy nucleus collisions, k⊥ factorization can be derived systematically for gluon
production, at leading order, in the CGC framework [103–106]. Limiting fragmen-
tation [107] and deviations thereof are described by solutions of the BK-equation.
Predictions for the multiplicity distribution in A+A collisions at the LHC [108]
for both Golec–Biernat–Wusthoff (GBW) and classical CGC (MV) dipole initial
conditions7 give a charged particle multiplicity of 1000–1400 in central lead+lead
collisions at the LHC.8 The results are shown in Fig. 10.

In deuteron + gold collisions at RHIC, data on the inclusive hadron spectra9 can
be directly compared to model predictions [111]. The result is shown in Fig. 11. For
a comprehensive review of applications of CGC picture to RHIC phenomenology,
we refer the reader to [112]. There are a couple of caveats to this picture. Firstly, k⊥
factorization is very fragile. It does not hold for quark production even at leading
order in the parton density [113–118], albeit it may be a good approximation for
large masses and transverse momenta [119]. For gluon production, it does not hold
beyond leading order in the parton density [120–122, 97–99]. Secondly, a combined
comprehensive analysis of HERA and RHIC data is still lacking though there have
been first attempts in this direction [123].

6 We shall present yet another take on this issue in lecture II.
7 The MV initial condition has the same form as the IPsat dipole cross section discussed earlier.
8 See [109] for other model predictions.
9 The same analysis also gives good agreement for the forward p+p spectrum at RHIC [110].
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2.5 The Future of Small x Physics at Hadron Colliders and DIS

The LHC is the ultimate small x machine in terms of reach in x for large Q2. A
plot from [124] illustrating this reach is shown in Fig. 12 (left). For a recent review
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of the small x opportunities at the LHC, see [125]. The LHC will provide further,
more extensive tests of the hints for the CGC seen at RHIC. The universality of
parton distributions is often taken for granted but factorization theorems proving
this universality have been proven only for a limited number of inclusive final states.
However, as we have discussed, small x is the domain of rich multi-parton correla-
tions. These are more sensitive to more exclusive final states for which universality
is not proven [126]. Therefore, while the LHC will have unprecedented reach in x ,
precision studies of high-energy QCD and clean theoretical interpretations of these
motivate future DIS projects. Two such projects are the EIC project in the United
States [127] and the LHeC project in Europe [128]. As we discussed previously,
strong color fields may be more easily accessible in DIS off nuclei relative to the
proton due to the “oomph” factor. In Fig. 12 (right), we show the saturation scale
Qs,A(x) overlaid on the x–Q2 kinematic domain spanned by the EIC. As suggested
by the figure, the EIC (and clearly the higher energy LHeC) will cleanly probe the
crossover regime from linear to nonlinear dynamics in QCD. For further discussion
of the physics of an electron ion collider, see [129, 130].

3 Heavy-Ion Collisions

In the first lecture, we discussed the physics of high parton densities in QCD. We
motivated a description of the high-energy structure of hadrons and nuclei as a color
glass condensate. We discussed the phenomenological application of CGC-based
models to describe data on DIS and hadronic collisions. In this lecture, we will focus
our attention on heavy-ion collisions and try and understand ab initio the properties
of the QCD matter that is formed when two high-energy nuclear wavefunctions –
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Fig. 13 The various stages of a heavy-ion collision

sheets of colored glass – collide. A schematic space–time picture of the evolution of
a heavy-ion collision is shown in Fig. 13.

We shall not attempt to describe all features of a heavy-ion collision but merely
focus on the very early initial dynamics for its intrinsic interest but also because
it is important to understand to determine whether the matter thermalizes and can
be subsequently described by hydrodynamics. The QCD matter that is formed at
very early times is a coherent classical field, which expands, decays into nearly
on-shell partons, and may eventually thermalize to form a quark–gluon plasma
(QGP). Because it is formed by melting the frozen CGC degrees of freedom, and
because it is the non-equilibrium matter preceding the QGP, this matter is called the
glasma [131, 132].

4 From CGC to Glasma

We will first discuss the classical picture of the glasma that emerges from solutions
of classical Yang–Mills equations. We will then discuss the role of quantum correc-
tions in the glasma.

4.1 The Classical Solution

Let us begin by setting up the kinematics involved for the problem of two ultra-
relativistic nuclei approaching each other. They are highly Lorentz contracted and
can be considered to be sitting at x± = 0 for t < 0 in the light cone coordinates.
They collide at x = t = 0. At t ≥ 0 it is convenient to introduce the proper time
τ = √

t2 − z2 which is invariant under Lorentz boosts and the space–time rapidity

η = 1

2
ln

(
t + z

t − z

)
. (19)
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Fig. 14 The space–time distribution of gauge fields before and after the collision

For free streaming particles z = vt = pzt/E and the space–time rapidity equals the
momentum space rapidity y, namely η = y.

Let us make some approximations to get to the solutions without sacrificing any
essential physics. The collisions are considered to be at very high energy so that
the nuclei are static light cone currents that are delta functions in x∓, respectively,
for nuclei whose large momentum component is given by P±. A consequence is
that the solutions of the classical Yang–Mills equations, for this source distribution,
are boost invariant. This leads to a considerable simplification since the equations
now depend only on the two transverse directions and the proper time. The initial
conditions for the evolution of the classical gauge fields in the forward light cone is
illustrated in Fig. 14. The fields of the nuclei before the collision are the Liénard–
Wiechert potentials associated with the respective color charge densities. Both the
charge densities and the fields exist only on the sheets, and for each source of charge
the electric field E and the magnetic field B are orthogonal to each other and to the
beam direction. The situation before the collision is depicted in Fig 15. However the
vector potentials lie outside the sheets but possess a discontinuity across the sheet
according to Gauss law. This is where the small x gluons are located having a large
longitudinal extent and coupling with a host of color sources. As has been argued
before they are represented by the classical color fields, have very small lifetime,
and see the color sources to be static during their lifetime. As noted previously, the
infinitesimal nature of the sheets is intended to simplify the problem. A finite size
can be taken care of using RG arguments. Figure 14 shows that the fields vanish in
the backward light cone and are two-dimensional pure gauge transforms of vacuum
in both nuclei before the collision.

In the forward light cone, a pure gauge solution of the Yang–Mills (YM) equa-
tions of motion cannot be found – the sum of two pure gauges in QCD is not a pure
gauge. Solving the YM equations near the light cone [97–99, 136–138, 133, 134],
with the pure gauge initial conditions from the two nuclei before the collision, one
finds that the transverse color E and B fields vanish as τ → 0 but the longitudinal
fields are non-vanishing. The results of a numerical simulation [133, 134] are shown
in Fig. 16. We note that the nonzero E and B fields imply that the initial condi-
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Fig. 15 The color electric and magnetic fields lying on the sheets of the charge distribution. They
are perpendicular to each other and to the beam direction

tions [135] may have a large density of topological charge Fμν F̃μν . The LO picture
of the glasma that emerges is one of color flux tubes carrying nontrivial topological
charge, localized in the transverse plane and of transverse size 1/Q2

s , stretching
between the valence color degrees of freedom. As we shall soon see, this picture
provides a plausible explanation of the near side ridge in heavy-ion collisions.

For the inclusive gluon distribution, the leading-order (LO) classical contribu-
tion is of order O( 1

g2 ) but all orders in gρ1,2, where ρ1,2 are the local color charge
densities of the two nuclei. It can be expressed as

E p
d N

d3 p
= 1

16π3
lim

x0,y0→+∞

∫
d3xd3 y eip·(x−y) (∂0

x − i E p)(∂0
y + i E p)

×
∑
λ

ε
μ
λ (p)ενλ(p)

〈
Aμ(x)Aν(y)

〉
. (20)
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fields computed numerically on a 5122 lattice with g2μRA = 67.7
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The gauge fields on the right-hand side are computed numerically for proper times
τ ≥ 0 [136–138, 133, 134] by solving the classical Yang–Mills (CYM) equations in
the presence of the light cone current Jμ,a = δμ+δ(x−)ρ1(x⊥) + δμ−δ(x+)ρ2(x⊥).
The expectation value 〈· · · 〉 for any inclusive operator O denotes10

〈O〉 =
∫

[Dρ̃1][Dρ̃2] WYbeam−Y [̃ρ1] WYbeam+Y [̃ρ2] O [̃ρ1, ρ̃2] . (21)

We will justify the validity of this formula shortly. For central rapidity RHIC
heavy-ion collisions, as discussed in the previous lecture, evolution effects are not
important, and W [̃ρ] is a Gaussian functional in ρ̃ with the variance μ2

A. Recall
that Qs ∼ 0.6μA. So, for these Gaussian distributions, performing the average
in Eq. (21) over the solutions to the Yang–Mills equations in Eq. (20), one can
compute the number (and energy distributions) of produced gluons in terms of Qs .
For the energy density, one obtains ε ∼ 20–40 GeV/fm3 for the values of Qs we
mentioned – obtained by extrapolating from fits to the HERA and fixed target e+A
data.

This LO formalism was applied to successfully predict the RHIC multiplicity at
y ∼ 0 [136–138, 133, 134] as well as the rapidity and centrality distribution of the
multiplicities [139, 140]. At LO, the initial transverse energy is ET ∼ QS , which is
about three times larger than the final measured ET , while (assuming parton hadron
duality) NCGC ∼ Nhad.. The two conditions are consistent if one assumes nearly
isentropic flow which reduces ET due to PdV work while conserving entropy. This
assumption has been implemented directly in ideal hydrodynamic simulations [141].

As discussed previously, CGC-based models give values for the initial eccentric-
ity ε that are large than those in Glauber model because the energy and number
density locally are sensitive to the lower of the two saturation scales (or local par-
ticipant density) in the former and the average of the two in the latter. Naively, CGC
initial conditions would have more flow then and have more room for dissipative
effects relative to Glauber. This conclusion is turned on its head in a simple param-

eterization of incompletely thermalized flow [142]: v2/ε = (v2/ε)hydro

(1 + K/K0)
, where

K = 1
S⊥
σ d N

dy cs the Knudsen number, σ the cross section, cs the sound speed, and
S⊥ the transverse overlap area. K0 is a number of order unity. If thermalization were
complete, K → 0 and one approaches the hydro bound. Computing ε with different
initial conditions, and plotting the LHS ratio vs 1

S⊥
d N
dy , one has a two-parameter fit

to σ and cs . The greater CGC eccentricity forces v2/ε to be lower for more central
collisions thereby leading to lower cs ; quicker saturation of v2/ε forces larger σ
and therefore lower η in the CGC relative to Glauber [143]. While it is conceivable,

10 Here ρ̃ is the local color charge density in Lorentz gauge, which is related by a simple gauge
transformation to the corresponding color charge density ρ in light cone gauge. We note that W [ρ]
is gauge invariant. The light cone gauge classical fields are expressed most simply in terms of color
charge densities in Lorentz gauge.
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however, that this result may not prove robust against more detailed modeling, it is
clear that the results are very sensitive to the initial conditions.

How much flow is generated in the glasma before thermalization? The primordial
glasma has occupation numbers f ∼ 1

αS
and can be described as a classical field.

As the glasma expands, higher momentum modes increasingly become particle like
and eventually the modes have occupation numbers f < 1, which may be described
by a thermal spectrum. A first computation of elliptic flow of the glasma found only
about half the observed elliptic flow [144] albeit the computation did not properly
treat the interaction between hard and soft modes in the glasma. Formulating a
kinetic theory that describes this evolution is a challenging problem in heavy-ion
collisions – for a preliminary discussion, see [145–148].

The LO field configurations are unstable and lead to very anisotropic momen-
tum distributions at later times. Such distributions can trigger an instability anal-
ogous to the Weibel instability in QED plasmas [149]. It is observed in 3+1-D
numerical solutions of CYM equations [150–152] that small rapidity-dependent
quantum fluctuations in the initial conditions generate transverse E and B fields
that grow rapidly as exp(

√
QSτ ). They are the same size as the rapidly diluting

longitudinal E and B fields on timescales of order 1
QS

ln2( C
αS

). The transverse E
and B fields may cause large angle deflections of colored particles leading to p⊥
broadening and energy loss of jets – recent numerical simulations by the Frankfurt
group appear to confirm this picture [153, 154]. These interactions of colored high
momentum particle like modes with the soft coherent classical field modes may also
generate a small “anomalous viscosity” whose effects on transport in the glasma
may mask a larger kinetic viscosity [155]. The same underlying physics may cause
“turbulent isotropization” by rapidly transferring momentum from soft “infrared”
longitudinal modes to ultraviolet modes [156–158]. Finally, albeit the LO result
demonstrated that one could have nontrivial Chern–Simons charge in heavy-ion col-
lisions, the boost invariance of CYM equations disallows sphaleron transitions that
permit large changes in the Chern–Simons number [135].11 With rapidity-dependent
quantum fluctuations, sphaleron transitions can go. These may have important con-
sequences – in particular P and C P odd metastable transitions that cause a novel
“chiral magnetic effect” [159, 160] in heavy-ion collisions. Numerical CYM results
for Chern–Simons charge and (square root) exponential growth of instabilities are
shown in Fig. 17.

4.2 QCD Factorization and the Glasma Instability

The discussion at the end of the last subsection strongly suggests that next-to-
leading order (NLO) quantum fluctuations in the glasma, while parametrically sup-
pressed, may alter our understanding of heavy-ion collisions in a fundamental way.

11 Sphaleron transitions are dynamical real-time processes corresponding to non-trivial large gauge
transformations.
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Fig. 17 Left: Chern–Simons mean squared charge as a function of proper time (in units of
Λs ∼ 0.6QS), generated in the LO boost-invariant 2+1-D glasma [135]. Red, green, and blue
points denote the results for Λs L = 74.2, 148.4, and 297, respectively. Λs L is the key dimen-
sionless parameter for this observable; the latter two values correspond to RHIC and LHC energies,
respectively. Right: Quantum fluctuations, albeit suppressed by αS , grow as αS exp(

√
QSτ ). The

figure plots the amplitude of the maximal Fourier mode of the longitudinal pressure with proper
time (τ ). Functional forms of exp τ and exp

√
τ are also plotted. The former is ruled out by the

numerical data. [150–152]

To cosmologists, this will not come as a surprise – quantum fluctuations play a cen-
tral role there as well. In recent papers, it was shown for a scalar theory that moments
of the multiplicity distribution at NLO in A+A collisions could be computed as an
initial value problem with retarded boundary conditions [161–163]; this framework
has now been extended to QCD [164, 165]. In QCD, the problem is subtle because
some quantum fluctuations occur in the nuclear wavefunctions and are responsible
for how the wavefunctions evolve with energy; others contribute to particle produc-
tion at NLO. Figure 18 illustrates particle production in field theories with strong
sources and the non-factorizable quantum fluctuations that are suppressed in the
leading log framework.

In writing Eq. (21), its scope of validity was not specified. A factorization
theorem organizing quantum fluctuations shows that all order leading logarithmic
contributions to an inclusive gluon operator O in the glasma can be expressed
as [164, 165]

〈O〉LLog =
∫

[Dρ̃1][Dρ̃2] WYbeam−Y [̃ρ1] WYbeam+Y [̃ρ2] OLO [̃ρ1, ρ̃2] , (22)

where OLO is the same operator evaluated at LO by solving classical Yang–Mills
equations and WYbeam∓Y [̃ρ1,2] are the weight functionals that obey the JIMWLK
Hamiltonians describing the rapidity evolution of the projectile and target wave-
functions, respectively. This theorem is valid12 if the rapidity interval corresponding

12 Recent work suggests that this factorization theorem is valid even when the rapidity restriction
is relaxed.
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Fig. 18 Left: Illustration of particle production in a field theory with strong time-dependent
sources. Right: Quantum fluctuations, where the nuclei talk to each other before the collision,
are suppressed; this is responsible for high-energy factorization of inclusive gluon operators O in
A+A collisions [164, 165]

to the production of the final state, ΔY ≤ 1
αS

. The W ’s are analogous to the parton
distribution functions in collinear factorization; determined non-perturbatively at
some initial scale Y0, their evolution with Y is given by the JIMWLK Hamiltonian.

This factorization theorem is a necessary first step before a full NLO computation
of gluon production in the glasma. Equation (22) includes only the NLO terms that
are enhanced by a large logarithm of 1/x1,2, while the complete NLO calculation
would also include non-enhanced terms. These would be of the same order in αS as
the production of quark–antiquark pairs [166, 167] from the classical field. To be
really useful, this complete NLO calculation likely has to be promoted to a next-
to-leading log (NLL) result by resumming all the terms in αS(αS ln(1/x1,2))n . Now
that evolution equations in the dense regime are becoming available at NLO, work in
this direction is a promising prospect. In addressing the role of instabilities at NLO,
note that small field fluctuations fall into three classes: (i) Zero modes (pη = 0) that
generate the leading logs resummed in Eq. (22); the coefficients of the leading logs
do not depend on x±. (ii) Zero modes that do not contribute at leading log because
they are less singular than the leading log contributions. These become relevant
in resumming NLL corrections to the factorization result. Because they are zero
modes, they do not trigger plasma instabilities. (iii) Nonzero modes (pη �= 0) that
do not contribute large logarithms of 1/x1,2, but grow exponentially as exp(

√
QSτ ).

While these boost non-invariant terms are suppressed by αS , they are enhanced by
exponentials of the proper time after the collision. These leading temporal diver-
gences can be resummed and the expression for inclusive gluon operators in the
glasma revised to read

〈O〉LLog+LInst =
∫

[Dρ̃1][Dρ̃2] WYbeam−Y [̃ρ1] WYbeam+Y [̃ρ2]

×
∫ [

Da(u)
]

Z̃ [a(u)] OLO [Ã+
1 + a, Ã−

2 + a], (23)
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where Ã+
1 (x) = − 1

∂2
⊥
ρ̃1(x⊥, x−) and Ã−

2 (x) = − 1
∂2
⊥
ρ̃2(x⊥, x+). The effect of the

resummation of instabilities is therefore to add fluctuations to the initial conditions
of the classical field, with a distribution that depends on the outcome of the resum-
mation. This spectrum Z̃ [a(u)] is the final incomplete step in determining all the
leading singular contributions to particle production in the glasma – see however
[168]. The stress-energy tensor T μν can then be determined ab initio and matched
smoothly to kinetic theory or hydrodynamics at late times.

4.3 Two-Particle Correlations in the Glasma and the Ridge

Striking “ridge” events were revealed in studies of the near side spectrum of cor-
related pairs of hadrons at RHIC [169–173]. One observes that the spectrum of
correlated pairs on the near side of the STAR detector extends across the entire
detector acceptance in pseudo-rapidity of order Δη ∼ 2 units but is strongly col-
limated in the relative azimuthal angle between the pairs. These events are called
“ridge” events because the particle correlations have the visual appearance of a
mountain ridge when plotted in the η–φ plane for the specified Δη and Δφ ranges.
Preliminary analysis of measurements by the PHENIX and PHOBOS collaborations
corroborates the STAR results. In the latter case, the ridge is observed to span the
PHOBOS acceptance in pseudo-rapidity of Δη ∼ 4 units.

Causality dictates (in strong analogy to CMB superhorizon fluctuations) that
long-range rapidity correlations causing the ridge must have occurred at proper
times τ ≤ τfreezeout e− 1

2 |yA −yB |, where yA and yB are the rapidities of the correlated
particles. If the ridge span in psuedo-rapidity is large, these correlations must have
originated in the glasma. The PHOBOS data suggest correlations at times as early
as a fermi. As noted previously, particles produced from glasma flux tubes are boost
invariant. See Fig. 19. The correlated two gluon production in the glasma flux tube
is independent of rapidity [174, 175] – thereby allowing long-range correlations.
Remarkably, the result shown in Fig. 19 (right), that “classical” disconnected graphs
give the leading contribution to two-particle correlations, holds true even when one
includes leading logarithmic contributions to all orders in perturbation theory [165].
When the separation in rapidity between pairs Δy � 1/αS , particle emission
between the triggered pairs will modify this result. This rapidity dependence can
be computed and tested at the LHC.

Ours is the only dynamical model with this feature-for other models, see [176].
The particles produced in a flux tube are isotropic locally in the rest frame but are
collimated in azimuthal angle when boosted by transverse flow [177–179]. Com-
bining our dynamical calculation of two-particle correlations with a simple “blast
wave” model of transverse flow, we obtained reasonable agreement with 200 GeV
STAR data on the amplitude of the correlated two-particle spectrum relative to the
number of binary collisions per participant pair. A more sophisticated recent treat-
ment of the flow of glasma flux tubes shows excellent agreement of the amplitude
of the ridge with centrality and energy, and likewise of the angular width of the
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p

q

Fig. 19 Left:Glasma flux tubes of transverse size 1
QS
< 1

ΛQCD
. The field lines correspond to paral-

lel E and B fields, which carry topological charge. Right: The leading two-particle contribution.
Superficially disconnected, they are connected by averaging over the large-x color sources. Sys-
tematic power counting shows these graphs dominate over usual “pQCD” graphs at high energies

ridge with centrality and energy [180]. Three-particle correlations can further help
distinguish the glasma explanation for the ridge from other mechanisms.
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1 Introduction and Disclaimer

The main purpose of the lecture was to lead students and young postdocs to the
frontier of the hydrodynamic description of relativistic heavy-ion collisions (H.I.C.)
in order for them to understand talks and posters presented in the Quark Matter
2008 (QM08) conference in Jaipur, India [1]. So the most recent studies were not
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want to study relativistic hydrodynamics and its application to H.I.C. as an advanced
course, we strongly recommend them to consult the references.

This lecture note is divided into three parts. In the first part we give a brief
introduction to relativistic hydrodynamics in the context of H.I.C. In the second
part we present the formalism and some fundamental aspects of relativistic ideal
and viscous hydrodynamics. In the third part, we start with some basic checks of
the fundamental observables followed by discussion of collective flow, in particular
elliptic flow, which is one of the most exciting phenomena in H.I.C. at relativistic
energies. Next we discuss how to formulate the hydrodynamic model to describe
dynamics of H.I.C. Finally, we conclude the third part of the lecture note by showing
some results from ideal hydrodynamic calculations and by comparing them with the
experimental data.
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2 Introduction to Hydrodynamics in Relativistic
Heavy-Ion Collisions

The excitement raised by the announcement of the discovery of the “perfect” liq-
uid at Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Laboratory
(BNL) [2] is based on an agreement between predictions from ideal hydrodynamic
models with the experimental data. While this agreement was certainly a large
boost for various groups around the world doing research in hydrodynamics (and
even in string theory!), there are also other reasons why the usage of hydrodynam-
ics is strongly needed in H.I.C. Needless to say, the main goals of the physics of
H.I.C. are to discover the deconfined nuclear matter under equilibrium, namely the
Quark–gluon plasma (QGP), and to understand its properties such as equation of
state (EoS), temperature and order of phase transition, transport coefficients, and so
on. However, the system produced in H.I.C. dynamically evolves within time dura-
tion of the order of 10–100 fm/c. Hence one has to describe space–time evolution
of thermodynamic variables to fill a large gap between the static aspects of QGP
properties and dynamical aspects of H.I.C. It is the hydrodynamics that plays an
important role in connecting them. Various stages of H.I.C. are depicted in Fig. 1.
Two energetic nuclei are coming along light cone and collide with each other to
create a multi-parton system. Through secondary collisions the system may reach
thermal equilibrium and the QGP can be formed. This is a transient state: After
further expansion and cooling the system hadronizes again. Eventually, expansion
leads to a free-streaming stage through freezeout and particle spectra at this moment
are seen by the detector. Hydrodynamics is applied to matter under local equilibrium
in the intermediate stage. Of course, it is nontrivial a priori whether one can always
apply hydrodynamics to the dynamics of H.I.C. Nevertheless it is not a bad idea to

t

z

QGP QGP

hadron gas

 1 fm/c≤0τ

freeze out

heavy−ions heavy−ions

Fig. 1 A schematic view of dynamics of a heavy-ion collision along the collision axis
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dare to apply it since we are eager to understand the matter under equilibrium in
terms of H.I.C.

There is also another good reason to apply hydrodynamics to H.I.C. A lot of
experimental data have been published so far at various collision energies. Ideally,
one may want to describe these data from the first principle, i.e., quantum chromo-
dynamics (QCD). The QCD Lagrangian density reads

L = ψ̄i

(
iγμDμi j − mδi j

)
ψ j − 1

4
FμναFμνα, (1)

where ψi is a quark field, i(= 1–3) is a color index for quarks, Dμ is a covariant
derivative, m is a quark mass, Fμνα is a field strength of gluons, and α(= 1, . . . , 8)
is a color index for gluons. However, in spite of its simple-looking Lagrangian, it
is very difficult to make any predictions directly from QCD in H.I.C. due to its
complexity which mainly arises from nonlinearity of interactions of gluons, strong
coupling, dynamical many body system, and color confinement. One promising
strategy to connect the first principle with phenomena is to introduce hydrodynamics
as a phenomenological theory. We call this strategy a bottom-up approach to H.I.C.
An input to this phenomenological theory comprises the equation of state,

P = P(e, n), (2)

which expresses the pressure P as a function of energy density e and baryon density
n. This can be obtained by exploiting lattice numerical simulations of QCD.1 In the
case of viscous hydrodynamics we need additionally the transport coefficients such
as shear viscosity η, bulk viscosity ζ , heat conductivity λ.2

Once hydrodynamics turns out to work quite well in the description of dynamics,
one can utilize its outputs such as local temperature or energy density for other
observables. In the current formalism of jet quenching, one needs an information
of parton density or energy density along a trajectory of an energetic parton [3,
4]. If one assumes J/ψ melts away above some temperature [5], one needs local
temperature at the position of J/ψ . In the case of electromagnetic probes [6, 7],
one convolutes emission rate (the number of produced particles per unit space–time
volume at temperature T ) of thermal photons and dileptons over the space–time
volume under equilibrium. Hydrodynamics provides us with the information of the
bulk matter. Therefore we can say that, in the context of H.I.C., hydrodynamics is
the heart of the dynamical modeling: It not only describes expansion and collective
flow of matter but also provides important information in the intermediate stage for
other phenomena.

1 From lattice calculations, pressure as a function of temperature rather than energy density is
obtained. Note also that, due to sign problem, thermodynamic variables are available only near the
region of vanishing chemical potential.
2 In principle, the information about these quantities can be obtained also from the lattice QCD
simulations although it is much harder than the EoS.
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3 Formalism of the Relativistic Ideal/Viscous Hydrodynamics

The second part of the lecture note is more formal with many equations, but we
try as much as possible to provide the intuitive picture behind the equations. The
following references might be very helpful to complement this section [8–24].

3.1 The Basic Equations

The basic hydrodynamical equations are energy–momentum conservation

∂μT μν = 0 , (3)

where T μν is the energy–momentum tensor and the current conservation

∂μNμ

i = 0 , (4)

where Nμ

i is the i th conserved current. In H.I.C., there are some conserved charges
such as baryon number, strangeness, electric charges, and so on. We mainly assume
the net baryon current Nμ

B as an example of Nμ

i in the following. In the first step we
decompose the energy–momentum tensor and the conserved current as follows:

T μν = euμuν − PΔμν + Wμuν + W νuμ + πμν , (5)

Nμ

i = ni u
μ + V μi . (6)

All the terms in the above expansion will be discussed one by one later. Now we
indicate that uμ is the time-like, normalized four-vector

uμuμ = 1 , (7)

while the tensor Δμν is defined in the following way:

Δμν = gμν − uμuν , (8)

where gμν is the Minkowski metric. We refer to uμ and Δμν as the “projection”
vector and tensor operators, respectively. In particular, uμ is the local flow four-
velocity, but a more precise meaning will be given later. uμ is perpendicular toΔμν ,
as can easily be seen from the definition of Δμν given in Eq. (8) and from the fact
that uμ is normalized,

uμΔ
μν = uμ(gμν − uμuν) = uν − 1 · uν = 0 . (9)
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Next we define the local rest frame (LRF) as the frame in which uμ has only the
time-like component nonvanishing and in which Δμν has only the space-like com-
ponents nonvanishing, i.e.,

uμLRF = (1, 0, 0, 0) , (10)

Δ
μν

LRF = diag(0,−1,−1,−1) . (11)

As is easily understood from the above equations, one can say that uμ(Δμν) picks
up the time-(space-)like component(s) when acting on some Lorentz vector/tensor.

We now discuss the physical meaning of each term in the expansion of the
energy–momentum tensor (5) and the conserved current (6).

3.1.1 Decomposition of Tμν

The new quantities which appear on the RHS in the decomposition (5) are defined
in the following way:

e = uμT μνuν (energy density) , (12)

P = Ps +Π = −1

3
ΔμνT

μν (hydrostatic + bulk pressure) , (13)

Wμ = ΔμαT αβuβ (energy (or heat) current) , (14)

πμν = 〈T μν〉 (shear stress tensor) . (15)

Each term corresponds to projection of the energy–momentum tensor by one or two
projection operator(s), uμ and Δμν . The first two equalities imply that the energy
density e can be obtained from the time-like components of the energy–momentum
tensor, while the pressure P is obtained from the space-like components. Contract-
ing the energy–momentum tensor simultaneously with uμ andΔμν gives the energy
(heat) current Wμ. Finally, the angular brackets in the definition of the shear stress
tensor πμν stand for the following operation:

〈Aμν〉 =
[

1

2
(ΔμαΔ

ν
β +ΔμβΔνα) − 1

3
ΔμνΔαβ

]
Aαβ . (16)

This means that 〈Aμν〉 is a symmetric and traceless tensor which is transverse to uμ

and uν . More concretely, one can first decompose the energy–momentum tensor by
two projection tensors symmetrically

π̃μν = 1

2
(ΔμαT αβΔ ν

β +ΔναT αβΔ μ
β ) (17)
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and then decompose it once more into the shear stress tensor (traceless) and the
pressure (non-traceless)

π̃μν = πμν − PΔμν. (18)

3.1.2 Decomposition of Nμ

In the decomposition (6) we have introduced the following quantities:

ni = uμNμ

i (charge density) , (19)

V μi = Δμν N ν
i (charge current) . (20)

The physical meaning of ni and V μi is self-evident from the properties of projection
operators.

QUESTION 1: Count the number of unknowns in the above decompositions and
confirm that it is 10(T μν) + 4k(Nμ

i ). Here k is the number of independent currents.3

The various terms appearing in the decompositions (5) and (6) can be grouped
into two distinctive parts, which we call ideal and dissipative. In particular, for the
energy–momentum tensor we have

T μν = T μν0 + δT μν , (21)

T μν0 = euμuν − PsΔ
μν , (22)

δT μν = −ΠΔμν + Wμuν + W νuμ + πμν , (23)

while for one charge current we have,

Nμ = Nμ

0 + δNμ , (24)

Nμ

0 = nuμ , (25)

δNμ = V μ . (26)

In the above relations T μν0 (Nμ

0 ) denote the ideal part, while the δT μν(δNμ) denote
the dissipative part of the T μν(Nμ).

3.2 The Meaning of uμ

As we have already mentioned in Sect. 3.1, uμ is the four-velocity of “flow.” Now
we would like to clarify what kind of flow we have in mind in this description. In
literature two definitions of flow can be found

3 If you consider uμ as independent variables, you need additional constraint for them since these
are redundant ones. If you also consider Ps as an independent variable, you need the equation of
state Ps = Ps(e, n).
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1. flow of energy (Landau) [10]:

uμL = T μν uνL√
uαL T β

α Tβγ uγL

= 1

e
T μν uνL , (27)

2. flow of conserved charge (Eckart) [8]:

uμE = Nμ

√
NνN ν

(28)

(see Fig. 2).4 In the first definition, uμL also appears on the RHS of Eq. (27). So it
should be understood as an equation with respect to uμL . One may solve an eigen-
value problem for a given energy–momentum tensor T μν . uμL is a normalized time-
like eigenvector and the corresponding positive eigenvalue is energy density e. If the
dissipative currents are small enough, one can show the following relation between
these two definitions of flow:

uμL ≈ uμE + Wμ

e + Ps
, uμE ≈ uμL + V μ

n
. (29)

Equation (29) can be shown by assuming that both two definitions of flow can be
connected by infinitesimal proper Lorentz transformation

uμE = aμνu
ν
L (30)

≈ (δμν + εμν)uνL , (31)

where εμν is infinitesimal anti-symmetric tensor, and by neglecting the higher orders
of dissipative currents. Obviously, Wμ = 0 (V μ = 0) in the Landau (Eckart) frame.
In the case of vanishing dissipative currents, both definitions represent a common

uL
μ

Vμ

uE
μ

Wμ

Fig. 2 A sketch of Landau and Eckart definitions of flow. Two boxes are fluid elements. There is a
“leak” current Wμ or V μ according to the definition of flow

4 Other definitions can be made. The situation here is quite similar to the gauge fixing condition in
gauge theories to eliminate the redundant variables. An essential point is to choose some “gauge”
for later convenience.
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flow. In other words, flow is uniquely determined in the case of ideal hydrodynam-
ics. We should emphasize that Landau definition is more relevant in the context of
H.I.C. at ultrarelativistic energies since we expect that a small baryon number is
deposited near the midrapidity region.

3.3 Entropy

We start this subsection by briefly discussing the entropy conservation in “ideal
hydrodynamics.” By “ideal hydrodynamics” we mean the case when entropy is
not produced during the evolution.5 Neglecting the dissipative parts, the energy–
momentum conservation (3) and the current conservation (4) reduce to

∂μT μν0 = 0 , (32)

∂μNμ

0 = 0 , (33)

where T μν0 and Nμ

0 are the ideal parts introduced in Eqs. (22) and (25). Equations
(32) and (33) are the basic equations of “ideal hydrodynamics.”

By contracting Eq. (32) with uν it follows

0 = uν∂μT μν0

= . . .
= T (uμ∂μs + s∂μuμ) + μ(uμ∂μn + n∂μuμ) . (34)

We have introduced here the temperature T , entropy density s, and chemical poten-
tial μ through the first law of thermodynamics de = T ds +μdn. Here it is assumed
that thermalization is maintained locally. The second term on the RHS in Eq. (34)
vanishes due to Eq. (33). If we now introduce the entropy current as

Sμ = suμ , (35)

it follows from Eq. (34) that

∂μSμ = ∂μ(suμ) = uμ∂μs + s∂μuμ = 0 . (36)

Hence the entropy is conserved in ideal hydrodynamics.

QUESTION 2: Go through all steps in the above derivations.

Now we go back to viscous hydrodynamics. Hereafter we consider only the Landau
frame and omit the subscript L . For simplicity, we further assume that there is no
charge in the system although in the realistic case a small amount of charge might

5 Note that, if discontinuities exist in the solution, entropy is produced even in ideal hydrodynam-
ics.
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exist in the system. What we are constructing here is the so-called first-order theory
of viscous hydrodynamics. The main assumption is that the nonequilibrium entropy
current vector Sμ has linear dissipative term(s) constructed from V μ, Π , and πμν

and can be written as

Sμ = suμ + αV μ . (37)

The first term on the RHS is the ideal part and the second term is the correction
due to the dissipative part. It is impossible to construct a term which would form a
Lorentz vector from πμν on the RHS in the above equation because πμν is perpen-
dicular to uμ by definition.6 Since we have also assumed that there is no charge in
the system, i.e., Nμ = 0, it follows that αV μ vanishes.

We now calculate the product of the temperature T and the divergence of the
entropy current (37). It follows

T ∂μSμ = T (uμ∂μs + s∂μuμ)

= uν∂μT μν0

= −uν∂μδT
μν

= . . .
= πμν 〈∇μuν〉 −Π∂μuμ , (38)

where ∇μ = Δμν∂ν . In transferring from the second to third line in the above cal-
culation we have used the energy–momentum conservation, ∂μT μν = 0. It is very
important to note that due to the assumption that there is no charge in the system we
could neglect the dissipative part of entropy current (37), but the dissipative part of
energy–momentum tensor (23) does not vanish. The nonvanishing dissipative part
of energy–momentum tensor gives a contribution which yields a difference between
the equations characterizing the first-order theory of viscous hydrodynamics and the
equations of ideal hydrodynamics derived before.

QUESTION 3: Check the above calculation.

In order to solve the hydrodynamic equations we must first define the dissipative
current. We introduce the following two phenomenological definitions, so-called
constitutive equations, for the shear stress tensor πμν and the bulk pressure Π :

πμν = 2η 〈∇μuν〉 , (39)

Π = −ζ∂μuμ = −ζ∇μuμ . (40)

6 Also remember Wμ = 0 in the Landau definition. One may think thatΠuμ is a possible candidate
in the entropy current Sμ. However, the second law of thermodynamics is not ensured in this case.
See also discussion in [21].
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In Table 1 we outline the new variables and terminology used in the above equations.
Notice that, within our approximation Nμ = 0, there is no vector component of
thermodynamic force.

Table 1 New variables and terminology

Thermodynamic force Transport coefficient Current

Xμν = 〈∇μuν〉 η πμν
tensor shear viscosity
X = −∂μuμ ζ Π

scalar bulk viscosity

After inserting the definitions (39) and (40) in the last line of (38), we arrive at, for
positive transport coefficients,

T ∂μSμ = πμνπ
μν

2η
+ Π2

ζ

= 2η 〈∇μuν〉2 + ζ (−∂μuμ
)2 ≥ 0 . (41)

This ensures the second law of thermodynamics

∂μSμ ≥ 0 . (42)

In the case of viscous hydrodynamics, entropy is not decreasing.

3.4 The Equations of Motion

In order to derive the equations of motion, we use again energy–momentum conser-
vation (3). After contracting Eq. (3) with uν we have

uν∂μT μν = 0 , (43)

from which one can obtain the first equation of motion,

ė = −(e + Ps +Π )θ + πμν 〈∇μuν〉 . (44)

On the other hand, after contracting Eq. (3) with Δμα it follows

Δμα∂βT αβ = 0 , (45)

from which one can obtain the second equation of motion,

(e + Ps +Π )u̇μ = ∇μ(Ps +Π ) −Δμα∇βπαβ + πμα u̇α . (46)
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This is exactly the relativistic extension of the Navier–Stokes equation. In writing
the above equations we have introduced

θ = ∂μuμ expansion scalar (divergence of flow), (47)

“dot” = D = uμ∂
μ substantial time derivative . (48)

QUESTION 4: Starting from the energy–momentum conservation (3) derive Eqs.
(44) and (46).

To get some intuitive interpretation of the first equation of motion, we insert expres-
sions (39) and (40) for the shear stress tensor and bulk pressure into Eq. (44):

ė = −eθ − Psθ + Π2

ζ
+ πμνπ

μν

2η

= −eθ − Psθ + ζ (−θ )2 + 2η 〈∇μuν〉2
. (49)

The above equation determines the time evolution of energy density e in the co-
moving system. The first term on the RHS describes dilution/compression of energy
density due to the change of volume because θ can be expressed in terms of volume
of a fluid element V as

θ ≈ V̇

V
. (50)

In ideal hydrodynamics, this relation holds exactly. If the system expands (θ > 0),
the energy density is diluted. So the effect of expansion appears as negative source
term −eθ in Eq. (49). If we move along with a fluid element, the internal energy
in the fluid element is not conserved due to the work done by pressure, which is
described by the second term on the RHS in (49). Finally, the last two positive
definite terms in (49) represent the production of entropy which heats up the system.

Now we comment on the second equation of motion (46). But before doing that,
we recall the nonrelativistic Navier–Stokes equation,

Dv = − 1

ρ
∇Ps + η

ρ
∇2v . (51)

Here ρ is the mass density, η is shear viscosity, and D = ∂
∂t + v · ∇ is the non-

relativistic version of substantial time derivative. The above version of the nonrel-
ativistic Navier–Stokes equation applies to the case of incompressible fluids such
that ∇ · v = 0 is valid. On the LHS we have the time derivative of velocity, which
is nothing but acceleration. The first term on the RHS is the source of the flow
and it is solely due to the pressure gradient ∇Ps , while the second term represents
the diffusion of the flow. The final flow velocity comes from the interplay between
these two terms: The first term generates the flow while the second term dilutes
it. The ratio η/ρ is called kinetic viscosity and plays a role of diffusion constant
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in the Navier–Stokes equation (51). The diffusion term in Eq. (51) requires more
detailed treatment. For an illustrative purpose, consider first the heat equation in
(N+1)-dimensional space–time

∂T (t, {xi })
∂t

= κ
N∑
i

∂2

∂x2
i

T (t, {xi }) , (52)

where T is temperature and constant κ is heat conductivity in some unit. One can
discretize the heat equation (52) in (2 + 1)-dimensional space–time as follows:

T n+1
i, j = T n

i, j + 4κΔt

(Δx)2

[
T n

i−1, j + T n
i, j−1 + T n

i+1, j + T n
i, j+1

4
− T n

i, j

]

= T n
i, j + 4κΔt

(Δx)2

(
T̄ n

i, j − T n
i, j

)
, (53)

where i and j are indices of the site and n is the time step. The first term in
the brackets in Eq. (53), T̄i, j , indicates an average of temperature around the cell
under consideration. If temperature at (i , j) is smaller (larger) than the averaged
one T̄i, j > Ti, j (T̄i, j < Ti, j ), the second term in Eq. (53) becomes positive (neg-
ative) and, consequently, temperature increases (decreases) in the next time step.
Repeating this procedure, temperature becomes flat even if starting from a bumpy
initial condition. Thus, generally speaking, the second derivative with respect to
coordinates describes averaging/smoothening/diffusion of given distributions and a
coefficient in front of it describes how quick the distribution diffuses. Now going
back to the Navier–Stokes equation (51), it is obvious from the above discussion
that the second term describes diffusion of flow and that kinetic viscosity η/ρ plays
a role of a diffusion constant. The relativistic version of the Navier–Stokes equation
(46) has a similar form to Eq. (51) if one plugs in constitutive equations (39) and
(40) and assumes the fluid is incompressible, θ = 0.

3.4.1 Bjorken’s Equation in the First-Order Theory

Now we rewrite again the first equation of motion by making use of Bjorken’s
ansatz [16]

uμBj = x̃μ

τ
= t

τ

(
1, 0, 0,

z

t

)
, (54)

where τ = √
t2 − z2 is the proper time. This is a boost-invariant Bjorken’s solution

which is also called one-dimensional Hubble flow since velocity in the z-direction,
vz , is proportional to z, which is an analogy to three-dimensional Hubble flow of the
universe. After inserting this solution into the constitutive equations (39) and (40)
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πμν = 2η

τ

(
Δ̃μν − 1

3
Δμν

)
, (55)

Δ̃μν = g̃μν − uμBju
ν
Bj , g̃μν = diag(1, 0, 0,−1) , (56)

Π = −ζ
τ
, (57)

we arrive at the following equation of motion:

de

dτ
= −e + Ps

τ

(
1 − 4

3τT

η

s
− 1

τT

ζ

s

)
. (58)

This equation determines the time evolution of energy density in the first-order the-
ory in one-dimensional expansion.

QUESTION 5: Derive Eq. (58).

On the RHS of (58) we have three terms in the bracket. If we neglect the last two
terms this equation reduces to the famous Bjorken equation [16] which states that
in ideal hydrodynamics the energy density evolution is determined by the sum of
energy density e and the hydrostatic pressure Ps , divided by the proper time τ .
The last two terms on the RHS in (58) represent the viscous correction to ideal
hydrodynamics. The first one is the viscous correction originating from the shear
viscosity in compressible fluids while the second one comes from the bulk viscosity.
We remark that both terms are proportional to 1/τ which is due to the fact that the
expansion scalar θ in the Bjorken scaling solution can be written as

θ = 1

τ
. (59)

Two transport coefficients in the viscous correction, η/s and ζ/s, turn out to be
very important. They are the dimensionless quantities in natural units and reflect the
intrinsic properties of the fluids.7

Recently progress has been made in obtaining the values of the transport coef-
ficients from microscopic theories. Here we summarize the most important results
and conclusions as follows:

• η/s = 1/4π and ζ/s = 0 are obtained from N = 4 SUSY Yang–Mills the-
ory [25]. The latter one is automatically obtained from the conformal nature of
the theory;

• η/s = O(0.1 − 1) for gluonic matter is obtained from the lattice calculations of
pure SU(3) gauge theory [26];

7 We stress that in the context of H.I.C. the statement which is often used, “viscosity is small,”
is not precise. From the equations we have derived, we see that the correct statement should be
“viscous coefficients are small in comparison with entropy density.”
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• bulk viscosity has a prominent peak around Tc resulting from trace anomaly of
QCD [27, 28] (see also a phenomenological approach in [29]).

3.5 The Second-Order Theory and Its Application to Bjorken’s
Equation

There is an important issue in the first-order theory which is the violation of causal-
ity. We can trace back the origin of the violation of causality to our phenomeno-
logical definitions (39) and (40) for the shear stress tensor and the bulk pressure,
respectively, and to the fact that the Navier–Stokes equation is a parabolic equation,
namely the time derivative is of first order while the space derivative is of second
order. The same arguments hold also for the violation of causality in relativistic
hydrodynamics: It is known that, under linear perturbations on the moving back-
ground equilibrium state, the solutions are unstable and acausal [30] (for a more
detailed discussion, see also a recent study in [31]). For an illustrative purpose,
we continue this discussion by analyzing the heat equation as an example of the
parabolic equation in three-dimensional space,8

∂T

∂t
= κ

3∑
i

∂2

∂x2
i

T . (60)

The heat equation can be easily derived by combining the balance equation,

∂T

∂t
= −∂qi

∂xi
, (61)

together with the constitutive equation,

qi = −κ ∂T

∂xi
Fourier’s law. (62)

In the above equations T is the temperature, qi is the heat current, and κ is the
heat conductivity. The above constitutive equation is purely phenomenological.
Although here we are considering the nonrelativistic equations, the general argu-
ments and conclusions we write down are valid in the relativistic case as well. The
heat equation (60) violates causality. It can be easily confirmed that Green’s function
of the heat equation (60), sometimes called heat kernel, is Gaussian

G(xi , t ; xi
0, t0) = 1

[4πκ(t − t0)]
3
2

exp

[
− (xi − xi

0)2

4κ(t − t0)

]
(63)

8 Again, we choose some units to simplify the following equations:
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and the “long tail” of this Gauss function causes the violation of causality in the
heat equation. This issue was heuristically resolved by Cattaneo in 1948 [9] after
an additional term on the LHS of the constitutive equation (62) was introduced “by
hand,”

τr
∂qi

∂t
+ qi = −κ ∂T

∂xi
. (64)

In the modified constitutive equation we have a new constant τr which is often called
the “relaxation time.” Correspondingly, the heat equation (60) is also modified,

τr
∂2T

∂t2
+ ∂T

∂t
= κ ∂

2T

∂x2
i

, cs =
√
κ/τr . (65)

In the literature the above equation is known as a telegraph equation. While the orig-
inal heat equation can be classified as a parabolic equation, the telegraph equation
belongs to the family of hyperbolic equations. Causality is not violated in Eq. (65)
simply because we can now, by choosing the relaxation time τr to be large, reduce
the signal velocity cs to values smaller than the speed of light c.

In relativistic hydrodynamics the relaxation terms introduced above can be
obtained by modifying the entropy current in the following way:

Sμ = suμ + O(δT μν) + O (
(δT μν)2

)
. (66)

By including the quadratic dissipative terms we are starting to work within the
framework of second-order theory. The nonequilibrium entropy current vector Sμ in
the second-order theory has linear + quadratic dissipative term(s) constructed from
(V μ,Π, πμν). Again, we demand the second law of thermodynamics, ∂μSμ > 0.
Thus, quadratic dissipative terms modify the constitutive equations which now read
as

τπΔ
μαΔνβπ̇αβ + πμν = 2η 〈∇μuν〉 + · · · , (67)

τΠΠ̇ +Π = −ζ∂μuμ + · · · . (68)

When compared to the constitutive equations of the first-order theory, (39) and (40),
we see that in the second-order theory in each constitutive equation a relaxation
term appears. Relaxation terms include τπ and τΠ , which are the relaxation times.
It is important to note that in the second-order theory the constitutive equations
are no longer algebraic equations. As a consequence, dissipative currents become
dynamical quantities like thermodynamic variables. The constitutive equations with
relaxation terms have been employed in recent viscous fluid simulations [32–45].9

9 Some of the references here do not employ the same equations as mentioned here. There are still
some hot debates how to formulate the correct relativistic equation of viscous fluids or which terms
in the constitutive equations of the second-order theory should be kept in the simulations.
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Finally, we outline Bjorken’s equation in the second-order theory,

de

dτ
= −e + Ps

τ

(
1 − π

sT
+ Π

sT

)
, (69)

τπ
dπ

dτ
+ π = 4η

3τ
− πτπ

2τ
− πηT

2

d

dτ

τπ

ηT
, (70)

τΠ
dΠ

dτ
+Π = −ζ

τ
− ΠτΠ

τ
− ΠζT

2

d

dτ

τΠ

ζT
, (71)

where

π = π00 − π zz . (72)

It is easy to show that the above formulas reduce to the ones in the first-order theory
if one takes τπ → 0 and τΠ → 0. We remark here that, contrary to the first-order
theory, one needs to specify initial conditions for dissipative currents in the second-
order theory.

3.6 Summary

Let us summarize the main points so far as follows:

• hydrodynamics is a framework to describe the space–time evolution of matter
under local thermal equilibrium;

• a naı̈ve extension of the Navier–Stokes equation to its relativistic version, which
is called the first-order theory, has problems on instabilities and causality;

• relaxation terms are needed in the constitutive equations to resolve the above
issues;

• these terms naturally arise in the constitutive equations when the second-order
corrections of dissipative currents are considered in the entropy current.

4 Applications

In this section we apply the formalism of hydrodynamics to heavy-ion collisions. As
already noted in Sect. 1, we do not argue recent analyses in terms of viscous hydro-
dynamics. We show only results from ideal hydrodynamic models. One can also
consult recent other reviews of hydrodynamic models at RHIC which complement
the present lecture note [46–53]. We start by discussing some basic tests of whether
the system produced in H.I.C. can be described by thermodynamic quantities. Then
we discuss collective flow and introduce ideal hydrodynamic models to describe the
flow phenomena in H.I.C. Finally we show results from ideal hydrodynamic models
and compare them with experimental data.
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4.1 Basic Checks of Observables at RHIC

Recent lattice QCD results show [54] that the energy density as a function of the
temperature suddenly increases by ∼ 1 GeV/fm3 at the (pseudo-)critical tempera-
ture Tc ∼ 190 MeV.10 Above this temperature, the system is supposed to be in the
deconfined QGP. The first check is whether the energy density produced in H.I.C. is
sufficient to form a QGP. Phenomenologically, the energy density in H.I.C. can be
estimated through Bjorken’s formula [16]11

εBj(τ ) = 〈mT 〉
τπR2

d N

dy
. (73)

Here 〈mT 〉 is the mean transverse mass, y = 1
2 ln E+pz

E−pz
is the rapidity, d N

dy is the

number of particles per unit rapidity, τ = √
t2 − z2 is the proper time, and R is

an effective transverse radius. The energy density obtained above depends on the
proper time since the system is supposed to expand in the longitudinal direction
with the expansion scalar θ = 1/τ . One can compare Bjorken’s energy density
to the energy density from lattice QCD simulations to see whether it is sufficient
energy density to form a QGP. Figure 3 shows the PHENIX data on εBjτ versus
the number of participants at three collision energies [57, 58]. If τ is taken to be
1 fm/c, Bjorken’s energy densities at

√
sN N = 130 and 200 GeV are well above the

energy density at the transition region ∼ 1 GeV/fm3. Therefore, sufficient energy
is deposited in the central rapidity region in H.I.C. at RHIC. However, attention
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Fig. 3 εBjτ versus the number of participants at three collision energies [57, 58]

10 Energy density increases with temperature rapidly but smoothly. So this is not a phase transition
but a crossover in a thermodynamically strict sense. This is the reason why we call it pseudo-critical
temperature here.
11 This formula neglects the effect of pdV work. If the system is kinetically equilibrated, the
energy density should be larger than the value obtained by this formula [55, 56].
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should be paid to the interpretation. The above formula just counts the total mea-
sured energy divided by the volume of a cylinder. So the system is not necessarily
thermalized. In this sense, this is a necessary condition, not a sufficient condition,
to form a QGP.

The next basic check is whether the matter in H.I.C. reaches chemical equi-
librium. Assuming thermal and chemical equilibria, we can calculate the number
density of a certain particle species

ni (T, μ) = g

2π2

∫ ∞

0

p2dp

exp [(Ei − μi )/T ] ± 1
. (74)

ni gives the number density of particle species i as a function of the temperature T
and chemical potential μi . g is the degeneracy of the particle, p is the momentum,
and E is the energy. We further assume that the measured particle number is fixed
at a certain temperature and chemical potential, which is called chemical freezeout.
Then the average number of particles, 〈Ni 〉, can be estimated by summing contribu-
tion from particles directly emitted from the system with volume V and contribution
from resonance decays

〈Ni 〉 = V

[
nth

i (T, μ) +
∑

R

ΓR→i nR(T, μ)

]
. (75)

Here nth
i and nR are the number density of directly emitted particle i and resonance

R, respectively. ΓR→i is the branching ratio of the resonance R decaying into species
i . When one looks at ratios of two particle numbers, the volume V is canceled out.
Thus the particle ratios depend only on two parameters: the temperature T and the
baryonic chemical potential μB . In Fig. 4, various combinations of the particle ratio
observed at RHIC are fitted by two parameters [59]. We find a remarkably good fit

Fig. 4 Ratios of particle numbers produced at RHIC [59]
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to data with only these two parameters.12 At
√

sN N = 130 GeV, the temperature
is fitted to be 176 MeV which is close to the critical temperature from lattice QCD
calculations. At the temperature, which we call chemical freezeout temperature T ch,
the system ceases to be in chemical equilibrium. So we expect that the system
reaches chemical equilibrium above T ch. Again, one has to keep in mind that this is
a necessary condition since even in e+e− or pp collisions observed particle ratios are
fitted reasonably well by using statistical models [60, 61]. See also discussions in,
e.g., [62, 63]. The last basic check is whether the matter reaches kinetic equilibrium.
If we suppose a system in H.I.C. is in kinetic equilibrium, the pressure is built inside
the system. The matter is surrounded by vacuum, so pressure gradient in outward
directions generates collective flow and, in turn, the system expands radially. The
momentum distribution in kinetically equilibrated matter is isotropic. On the other
hand, when the matter is moving at a finite velocity the momentum distribution is
Lorentz boosted. This is illustrated in Fig. 5. If this kind of distortion in momentum
distribution can be observed experimentally, one can obtain some information about
kinetic equilibrium. Assuming each fluid element expands radially at radial flow
velocity vT , the pT spectra for pions and protons can be calculated by convoluting
these distorted momentum distributions over azimuthal direction (blast wave model
[64, 65]). Here pT is the transverse momentum which is perpendicular to the colli-
sion axis. The green curves are results with T = 100 MeV and radial flow velocity
vT = 0.5. On the other hand, the red curves are results with T = 160 MeV and
vanishing flow vT = 0. For light particles like pions, there is almost no sensitivity to

px

py

uμ

px

py

(a) Isotropic case (b) Lorentz boosted in positive x direction

Fig. 5 Fluid elements at rest and at a finite velocity in x-direction. Momentum distribution in the
latter case is distorted by Lorentz boost along x-axis

12 There are some additional parameters in the recent statistical models such as excluded volume
correction, strangeness suppression factor, and so on for a better description of the data.
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Fig. 6 pT spectra for pions and protons from a thermal plus boost picture. See text for details

distinguish the two cases: Reduction of temperature is almost compensated by radial
flow. However, in the case of heavier particles like protons, a clear difference can
be seen between these two cases: There is a shoulder structure at low pT resulting
from radial flow. This kind of spectral change is observed in H.I.C., as can be seen
in Fig. 7. It shows the proton pT spectra for p+p (black), d+Au (pink), and Au+Au
(red) collisions obtained by STAR Collaboration [66]. For p+p and d+Au collisions
the spectra have just a power law shape. However, in Au+Au collisions, one sees
a shoulder structure at low pT (< 1 GeV/c). This is consistent with a thermal plus
boost picture and suggests that a large pressure could be built up in Au+Au colli-
sions. One can fit the pT spectrum using a blast wave parametrization [64, 65] and
obtains decoupling temperature T dec and the mean collective flow velocity as a func-
tion of the centrality. Even for pp collisions these parameters are finite (see Fig. 8)
[67], which indicates that a more sophisticated model would be needed to inter-
pret the data. This kind of spectral change can also be seen in results from kinetic
theories in which kinetic equilibrium is not fully achieved. Therefore it is indis-
pensable to perform a systematic study based on a more sophisticated dynamical
framework.

We have obtained the necessary conditions for studying the QGP: (1) The energy
density can be well above the critical value which is predicted from lattice QCD
simulations; (2) A chemical freezeout temperature extracted from particle ratios is
close to pseudo-critical temperature which is again from lattice QCD simulations;
(3) High pressure can be built up in H.I.C., which suggests the system reaches
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Fig. 7 Proton spectrum for pp (black), dAu (pink), and Au+Au (red) collisions. Adopted from a
presentation file by O. Barannikova at Quark Matter 2005, Budapest, Hungary [66]

Fig. 8 Fitted parameters in blast wave model calculations [67]
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kinetic equilibrium. If one of them was not confirmed through these basic checks,
one would not need to go to the next steps toward detailed studies of the QGP in
H.I.C.

4.2 Elliptic Flow

Before going to a detailed discussion on the hydrodynamic models, we discuss
collective flow, in particular, anisotropic transverse flow. Here “collective flow” is
meant by the correlation between position of matter and direction of flow, which is
not necessary to be hydrodynamically evolving matter. A good example has already
appeared in the previous subsection. In the case of radial flow, velocity of expanding
matter has a component parallel to the radial coordinate. Figure 9 shows a heavy-ion
collision in the reaction plane (left) and transverse plane (right). In such a collision
a region of the locally equilibrated state can be created. In the transverse plane the
overlap region has an almond-like shape, so the region is anisotropic with respect to
the azimuthal angle. The azimuthal momentum distribution can be expanded into a
Fourier series13

d N

dφ
= N

2π
[1 + 2v1 cos(φ) + 2v2 cos(2φ) + · · · ] , (76)

vn =
∫

dφ cos(nφ) d N
dφ∫

dφ d N
dφ

= 〈cos(nφ)〉 , (77)

where φ is the azimuthal angle of momentum and vn are the Fourier coefficients of
nth harmonics [68]. Because of the symmetry around the y-axis the sine terms van-
ish. The first and second harmonics, v1 and v2, are called directed and elliptic flow
parameters, respectively. The first harmonic, v1, is illustrated in Fig. 10a. Particles
are emitted preferably, e.g., in the direction of the large arrows in the reaction plane.

z

x

(a) In the reaction plane

x

y

φ

(b) In the transverse plane

Fig. 9 Illustration of a H.I.C.

13 Here we suppose azimuthal angle is measured from reaction plane. Of course, in the experimen-
tal situations, the reaction plane is not known a priori. We will not go into details of how to find
reaction plane experimentally.
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Fig. 10 Anisotropic transverse flow

Directed flow is significantly seen near the beam rapidity region but vanishes near
midrapidity due to symmetry of the collision geometry. The second harmonic, v2, is
much more relevant for studying matter around midrapidity in H.I.C. at relativistic
energies since spectators already fly away [69], therefore a lot of efforts to measure
v2 have been made at RHIC so far. One of the first observables was actually v2

measured by STAR Collaboration [70]. It is illustrated in Fig. 10b.
Elliptic flow is how the system responds to the initial spatial anisotropy [69,

71–73]. Suppose two extreme situations illustrated in Fig. 11. In the first case (see
Fig. 11a) the mean free path among the produced particles is much larger than the
typical size of the system. In this case the azimuthal distribution of particles does
not depend on azimuthal angle on average due to the symmetry of the production
process. The other extreme case is when the mean free path is very small compared
to the typical system size (see Fig. 11b). In this case hydrodynamics can be applied
to describe the space–time evolution of the system. The pressure gradient along the
horizontal axis is much larger than that along the vertical axis due to the geometry.

dN
/d

 φ

dN
/d

 φ

φ0 2π

(a) Large mean free path

φ0 2π

2v2

(b) Small mean free path

Fig. 11 Normalized azimuthal distribution d N/dφ of a noncentral H.I.C.
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So the collective flow is enhanced along the horizontal axis rather than along the
vertical axis and, in turn, the azimuthal distribution gets oscillated. The amplitude of
this oscillation in the normalized azimuthal distribution describes exactly the elliptic
flow parameter. In this way, the elliptic flow is generated by the spatial anisotropy
of the almond shape due to multiple interactions among the produced particles. We
have good opportunities to extract some information about the mean free path from
the elliptic flow analysis.

The eccentricity is a very important quantity to interpret elliptic flow phenomena.
To quantify the initial almond shape, the following formula can be used:

ε =
〈
y2 − x2

〉
〈
y2 + x2

〉 . (78)

The brackets denote an average over the transverse plane with the number density
of participants as a weighting function

〈· · · 〉 =
∫

dxdy · · · npart(x, y) . (79)

This is sometimes called the standard eccentricity. If the system is elongated along
the y-axis, the eccentricity is positive. In more realistic situations, the eccentricity
fluctuates from event to event. This fluctuation of the initial eccentricity [74–79]
is important to understand the elliptic flow in the small system such as Cu+Cu
collisions or peripheral Au+Au collisions. Figure 12 shows a sample event pro-
jected into the transverse plane from a Monte Carlo Glauber model. Participants
are shown in magenta and spectators are in yellow and orange. In this case one
could misidentify the tilted line as the reaction plane, while the true reaction plane
is the horizontal axis (dashed line). The angle of the tilted plane with respect to
the true reaction plane fluctuates event by event. Of course we cannot observe the
true reaction plane from experimental data. On the other hand, an apparent reaction

Fig. 12 An example of participants (magenta) and spectators (yellow and orange) in a H.I.C. from
a Monte Carlo Glauber model. Adopted from a presentation file by D. Hofman at Quark Matter
2006, Shanghai, China
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plane (tilted line in Fig. 12) is determined also by elliptic flow signal itself. Another
definition, called the participant eccentricity, is much more relevant for quantifying
the almond shape in the event-by-event basis

εpart =
√

(σ 2
y − σ 2

x )2 + 4σ 2
xy

σ 2
x + σ 2

y

, (80)

σ 2
x = {

x2} − {x}2 , (81)

σ 2
y = {

y2
} − {y}2 , (82)

σxy = {xy} − {x} {y} . (83)

Now the average {· · · } is taken over in a single event generated by a Monte Carlo
Glauber model.

In the following, the important properties of elliptic flow are demonstrated
through hydrodynamic/transport simulations of H.I.C. In hydrodynamic simula-
tions, the eccentricity is usually defined by weighting local energy density e(x, y) or
local entropy density s(x, y) in the transverse plane rather than the number density
of participants npart(x, y). Figure 13 shows the eccentricity εx and the momentum
eccentricity

εp =
∫

dxdy(T xx
0 − T yy

0 )∫
dxdy(T xx

0 + T yy
0 )

(84)

as a function of the proper time from a hydrodynamic simulation assuming Bjorken
scaling solution in the longitudinal direction and two different sets of the EoS [46].
Details of hydrodynamic models will be discussed later. The spatial eccentricity εx

decreases as the system expands and the momentum anisotropy rapidly increases at
the same time. So the spatial anisotropy turns into the momentum anisotropy. The
momentum anisotropy εp is created and saturates in the first several femtometers,
so the observed v2 is expected to be sensitive to the initial stage of the collision.
Figure 14 shows the impact parameter dependence of the ratio of output (v2) to input

Fig. 13 The spatial eccentricity εx and the momentum eccentricity εp as a function of the proper
time τ in Au+Au collisions at b = 7 fm [46]. Solid and dashed curves correspond to two different
sets of the EoS
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Fig. 14 v2/εx as a function of impact parameter b [80]

(εx ) [80] which can be understood as a response of the system. Ideal hydrodynamics
predicts that v2 is roughly proportional to the eccentricity

v2 ≈ 0.2ε . (85)

Figure 15 shows a result from a kinetic approach based on the Boltzmann equa-
tion for gluons undergoing elastic scattering only [81].14 Starting with a uniform
distribution in an almond shape in coordinate space and thermal distribution in

0 1 2 3 4 5 6 7

t (fm/c)

−0.05

0

0.05

0.1

0.15

0.2

v 2

σ = 10 mb

3 mb

1 mb

free streaming

Fig. 15 v2 as a function of proper time from Boltzmann calculations for different gluon cross
sections [81]. Curves are guide to eyes

14 Inelastic scattering (gg ↔ ggg) is implemented in a kinetic approach only recently. Although
this is a higher-order process in perturbative expansion, it turns out to affect elliptic flow signifi-
cantly. See [82–84]



Hydrodynamics and Flow 165

momentum space, the multi-gluon system expands according to the Boltzmann
equation with various transport cross sections.15 From this figure we can understand
several important features of the elliptic flow:

1. v2 is not generated in the free-streaming case, so elliptic flow is generated indeed
through secondary collisions;

2. elliptic flow is generated in the early stage of the collision and saturates after the
first 2 to 3 fm/c;

3. the saturated value of v2 is sensitive to the cross section among the particles

σtr ∝ 1

λ
∝ 1

η
, (86)

where λ is the mean free path and η is the shear viscosity calculated in the kinetic
theory of gases;

4. in the limit of large transport cross sections (strongly interacting limit), the sys-
tem is expected to reach the ideal hydrodynamic result16 since η → 0.

Through measurement of v2 and its analysis in terms of hydrodynamic/transport
models, one can extract the transport properties of the matter produced in H.I.C. In
the next subsection, we discuss hydrodynamic modeling of H.I.C.

4.3 Ideal Hydrodynamic Model

Hydrodynamics introduced in Sect. 3 is a general framework to describe the space–
time evolution of locally thermalized matter for a given equation of state (EoS). This
framework has been applied to the intermediate stage in H.I.C. In this section, we
neglect the effects of dissipation and concentrate on discussion about ideal hydro-
dynamic models. The main ingredient in ideal hydrodynamic models in H.I.C. is the
EoS of hot and dense matter governed by QCD. In addition, one also needs to assign
initial conditions to the hydrodynamic equations. Hydrodynamics can be applied to
a system in which local thermalization is maintained. However, in the final state of
H.I.C. the particles are freely streaming toward the detectors and their mean free
path is almost infinite. This is obviously beyond the applicability of hydrodynam-
ics. Hence we also need a description to decouple the particles from the rest of
the system. To summarize, the hydrodynamic modeling of H.I.C. needs an EoS,
initial conditions, and a decoupling prescription. Modeling of these ingredients in
hydrodynamic simulations has been sophisticated for these years and tested against
a vast body of RHIC data.

15 In kinetic theories, momentum exchanges among particles are responsible for equilibration.
However, forward scattering with very small scattering angle is insufficient for the system to equi-
librate. So the effective (transport) cross section can be defined as σtr = ∫

dθcm sin2 θcm
dσ

dθcm
, where

θcm is scattering angle in the center of mass system between two scattering particles.
16 The Boltzmann equation is applied to dilute gases where two-particle correlation can be ignored.
So one should keep in mind the applicability condition of the kinetic theory in this case.
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We first look at the EoS in more detail. The EoS is in principle calculated from
lattice QCD simulations. The realistic results with (almost) physical quark masses
are obtained recently [54]. However, if one wants to utilize the EoS from lattice
simulations, one needs to interpret the EoS in terms of a hadron picture [85] since
one calculates momentum distributions of hadrons in the final decoupling stage. For
this purpose, the lattice EoS is compared with the resonance gas model below Tc. If
there exists a deviation between them, it prevents one from utilizing the lattice EoS
directly in hydrodynamic simulations. Instead, in hydrodynamic simulations, the
models of EoS depicted in Fig. 16 are conventionally used [46]. The most simple
EoS (EOS I) is P = e/3 for an ideal gas of relativistic massless particles.17 A more
realistic EoS (EOS Q) includes the effect of hadron masses and phase transition
between hadronic matter and the QGP. At low energy density the EoS is described
by a hadron resonance gas model (EOS H). This particular model includes almost all
the hadrons in the Particle Data Table [86], while some models include only ground
states of hadron multiplets or several low mass resonances. At high energy density,
the EoS can be described by a bag model

P = 1

3
(e − 4B) . (87)

The bag constant B is tuned to match pressure of the QGP phase to that of
a hadron resonance gas at critical temperature Tc: PQGP(Tc) = Phadron(Tc). As
discussed in Sect. 4.1, a hadron gas in H.I.C. is not in chemical equilibrium below
the chemical freezeout temperature. T ch is closed to Tc, so the hadron phase may
not be chemically equilibrated in H.I.C. A chemically frozen hadron resonance gas
can be described by introducing the chemical potential for each hadron [87–93].
The numbers Ñi including all decay contributions from higher-lying resonances,
Ñi = Ni + ∑

R bR→i X NR , are conserved during the evolution in co-moving frame

Fig. 16 Some typical EoS in hydrodynamic models [46]

17 This EoS is always obtained in relativistic conformal field theories in which the trace of energy–
momentum tensor is vanishing T μμ = e − 3P = 0. So the particles are not necessarily “free.”
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of fluid elements. Here Ni is the number of the i th hadronic species in a fluid ele-
ment and bR→i X is the effective branching ratio (a product of branching ratio and
degeneracy) of a decay process R → i+X . One can calculate the chemical potential
as a function of temperature from the following conditions:

ñi (T, μi )

s(T, {μi }) = ñi (Tc, μi = 0)

s(Tc, {μi } = 0)
. (88)

Instead of solving continuity equations for each hadron, the effect of hadron number
conservation can be embedded in the EoS of resonance gas through μi (T ) obtained
above. For a decoupling prescription, the Cooper–Frye formula [94] is almost a
unique choice to convert the hydrodynamic picture to the particle picture

E
d N

d3 p
=

∫
Σ

f (x, p, t)p · dσ (x) (89)

= d

(2π )3

∫
Σ

p · dσ (x)

exp [(p · u(x) − μ(x))/T (x)] ± 1
, (90)

where E is the energy, f is the phase space distribution, d the degeneracy of the
particle under consideration (e.g., d = 3 for pions), p is the momentum, dσ is the
normal vector to the freezeout surface element, u is the four-velocity, μ is the chem-
ical potential, and T is the decoupling temperature assuming isothermal freezeout
hypersurface Σ . Contribution from resonance decays should be taken into account
by applying some decay kinematics to the outcome of the Cooper–Frye formula.
The decoupling temperature T dec is fixed through simultaneous fitting of pT spec-
tra for various hadrons in the low pT region. In the blast wave model, decoupling
temperature and radial flow velocity are independent parameters to fit pT spectra.
On the other hand, there is a negative correlation between T dec and average radial
flow velocity in the hydrodynamic model: the lower decoupling temperature, the
larger average radial flow velocity. This formula ensures the energy–momentum
conservation on freezeout hypersurface Σ as long as the EoS is calculated using
the same distribution function. If one puts resonances up to the mass of 2 GeV
in the resonance gas model, one should calculate all the contribution of hadrons
in the EoS. Otherwise, neglect of the contribution leads to violation of the energy
momentum conservation.18 It should be noted that p · dσ term in Eq. (90) can be
negative. This means the incoming particles through Σ are counted as a negative
number. Although this seems peculiar, this negative contribution is needed for global
energy–momentum conservation.

The prescription to calculate the momentum distribution as above is sometimes
called the sudden freezeout model since the mean free path of the particles changes
from zero (ideal fluid) to infinity (free streaming) within a thin layer Σ . Although
this model is too simple, it has been used in hydrodynamic calculations for a long

18 If the lattice EoS below Tc cannot be described by a resonance gas model, the Cooper–Frye
formula violates the energy–momentum conservation on Σ . This is the reason why there are only
few serious attempts of lattice EoS to hydrodynamic simulations.
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Fig. 17 Two freezeout pictures in H.I.C.

time. It is illustrated in Fig. 17a. Recently one utilizes hadronic cascade models to
describe the gradual freezeout [95–99]. As will be shown, this hadronic afterburner
is mandatory in understanding v2 data. Phase space distributions for hadrons are
initialized below Tc by using the Cooper–Frye formula. The hadronic cascade mod-
els describe the space–time evolution of the hadron gas. This model is illustrated in
Fig. 17b. This kind of hybrid approaches in which the QGP fluids are followed by
hadronic cascade models automatically describes both the chemical and the thermal
freezeout and is much more realistic especially for the late stage.

Initial conditions in hydrodynamic simulations are so chosen as to reproduce the
centrality and rapidity dependences of multiplicity d Nch/dη. Initial conditions here
mean energy density distribution e(x, y, ηs) and flow velocity uμ(x, y, ηs) at the
initial time τ0. Again baryon density is neglected since, at midrapidity at RHIC, the
net baryon density is quite small. The pressure distribution can be obtained from the
energy density distribution through the EoS. Space–time rapidity ηs , independent
initial energy density distribution e(x, y, ηs) = e(x, y), and Bjorken scaling solution
uμBj are assumed in (2 + 1)-dimensional hydrodynamic simulations. In this case, one
discuss as the observables only at midrapidity. At ηs = 0, one can parametrize [100]
the initial entropy density based on the Glauber model

s(x, y) = d S

τ0dηsd2x⊥
∝ αnpart(x, y; b) + (1−α)ncoll(x, y; b). (91)

The soft/hard fraction α is adjusted to reproduce the measured centrality depen-
dence [101] of the charged hadron multiplicity at midrapidity. By using the EoS,
one can calculate the initial energy density distribution from Eq. (91). For fully
three-dimensional initial conditions, see [87, 97, 102]. A novel initial condition is
based on the color glass condensate (CGC) picture [103]. One can calculate the
local energy density of produced gluons within the CGC framework [104–106]
and utilize it as an initial condition of hydrodynamic simulations. In Fig. 18, an
example of the CGC initial energy density distribution for a noncentral H.I.C. in a
full (3 + 1)-dimensional hydrodynamic simulation [107] is shown in the transverse
plane (left) and in the reaction plane (right). In the right side panel the horizon-
tal axis corresponds to the impact parameter direction and the vertical axis to the
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Fig. 18 Energy density distribution in a noncentral H.I.C. within a CGC initial condition in the
transverse plane (left panel) and in the reaction plane (right panel). The two horizontal thick black
lines in the right panel are the Lorentz contracted nuclei. The color gradation in the right side of
each panel indicates the energy density scale in unit of GeV/fm3

space–time rapidity ηs . Figures 19 and 20 show charged particle multiplicity from
hydrodynamic simulations that are compared with the PHOBOS data [101, 108].
Figure 19 shows d Nch/dη as a function of the number of participants (Npart) [101].
These data are fitted by using two kinds of initial conditions: from Glauber model
calculations and from color glass condensate (CGC) model calculations [97]. Both
models reproduce the centrality dependence of the data. Figure 20 shows the rapidity
distribution of d Nch/dη for each centrality [108]. The fitting of multiplicity is the
starting point of further analysis based on hydrodynamic simulations.
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Fig. 19 Centrality dependence of multiplicity from PHOBOS [108] are fitted by hydrodynamic
calculations with two different initial conditions [97, 107]
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Fig. 20 Pseudorapidity dependence of multiplicity from PHOBOS [108] is fitted by hydrodynamic
calculations with two different initial conditions [97, 107]

In the hydrodynamic models, various combinations of initial conditions, EoS and
decoupling prescriptions, are available to analyze the experimental data in H.I.C. Of
course, final results largely depend on modeling of each ingredient. So it is quite
important to constrain each model and its inherent parameters through systematic
analyses of the data toward a comprehensive understanding of the QGP.

4.4 Application of the Ideal Hydrodynamic Model to H.I.C.

In this subsection we analyze H.I.C. at RHIC in terms of ideal hydrodynamic models
discussed in the previous subsection.

Before we start our main discussion on elliptic flow parameter v2, we mention
here that the transverse momentum distributions for pions, kaons, and protons are
also important since these reflect dominant transverse flow, namely radial flow. Cur-
rently, among hydrodynamic models, yields and slopes of pT spectra are repro-
duced in pure hydrodynamic calculations with early chemical freezeout or in grad-
ual freezeout approaches. It should be noted here that simultaneous reproduction
of the yields and the slopes is important. Sometimes, one only compares the slope
of the pT spectra by scaling the yields “by hand” within hydrodynamic approaches.
However, chemical composition of hadronic matter does affect the transverse expan-
sion [87]. Therefore, it does not make any sense if one compares only the slopes by
keeping chemical equilibrium of hadrons.

As discussed in Sect. 4.2, v2/ε can be interpreted as a response of the system
to initial spatial eccentricity. Figure 21 shows v2/ε as a function of the transverse
multiplicity density (1/S)d Nch/dy from AGS to RHIC energies. Hydrodynamic
results in Fig. 14 are shown symbolically as horizontal lines. The experimental data
monotonically increase with particle density, while ideal hydrodynamic response is
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Fig. 21 v2/ε as a function of transverse multiplicity density compiled by NA49 Collaboration
[109]

Fig. 22 Differential v2 for pions, kaons, protons, and lambdas [67]

almost flat [80]. Ideal hydrodynamics is expected to generate the maximum response
among the transport models.19 The experimental data reach this limit for the first
time at RHIC. Figure 22 shows the differential elliptic flow v2 as a function of trans-
verse momentum for pions, kaons, protons, and lambdas. A mass ordering pattern
is seen in v2 data, which was predicted by ideal hydrodynamic calculations [110].20

The pseudorapidity dependence of v2 observed by PHOBOS [111] has a triangular

19 It should be emphasized again that the hydrodynamic results above are obtained by a particular
combination of modeling, i.e., Glauber-type initial conditions, EOS Q with chemical equilibrium
in the hadron phase and sudden freezeout at fixed decoupling temperature.
20 There is a caveat to interpret the agreement since this particular hydrodynamic calculation
does not reproduce particle ratios due to a lack of early chemical freezeout. The importance of
hadronic viscosity and chemical freezeout in hydrodynamic calculations is recognized [112] after
the announcement of the discovery of perfect fluid QGP [2].
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Fig. 23 Pseudorapidity dependence of v2. PHOBOS data [111] compared to different model cal-
culations [97]

shape as is seen in Fig. 23. In the pure ideal hydrodynamic result, hydrodynamic
equations are initialized by the Glauber model and are solved all the way down to
T dec = 100 MeV. The pure hydrodynamic model gives a comparable result with the
data only at midrapidity. However, at forward and backward rapidities, it overshoots
the data significantly. If we replace the hadron fluid with a hadron gas utilizing a
hadron cascade, v2 is significantly reduced in the forward and backward regions.
In this hybrid model the hadrons have a finite mean free path, which results in
an effective shear viscosity in the hadron phase. So dissipative hadronic “corona”
effects turn out to be important in understanding the v2 data. The model also repro-
duces a mass ordering pattern of v2 for identified hadrons as a function of pT near
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Fig. 24 Differential v2. STAR data [67] compared to model calculations [98]
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Fig. 25 v2 as a function of centrality. PHOBOS data [111] compared to different model calcula-
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midrapidity in Fig. 24. Figure 25 shows the centrality dependence of v2. The solid
line is the result from ideal hydrodynamic calculations while the dotted line is from
the hybrid model. It is clear that for peripheral collisions, where the multiplicity is
small, the hadronic viscosity plays an important role. One may notice that the result
from the hybrid model is systematically and slightly smaller than the data. However,
there could exist the effect of initial eccentricity fluctuations which is absent in this
hydrodynamic calculations. The deviation between the results and the data can be
interpreted quantitatively by this effect. Figure 26 shows v2(pT ) for pions, kaons,
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Fig. 26 Differential v2 for pions, kaons, and protons for η = 0 (left), η = 1 (middle), and η = 3
(right) [113]
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Fig. 27 Differential v2 with and without hadronic rescattering [98]

and protons in 10–50% centrality at η = 0 (left), η = 1 (middle), and η = 3 (right)
observed by BRAHMS [113]. Also here the hybrid model reproduces the pT slope
of these differential elliptic flow parameters.

We would like to point out here that the mass ordering, clearly visible in Fig. 24,
is there in the final result. If one would look at the result just after the QGP phase
transition, the difference between the pions and the protons would be quite small.
So it turns out that the splitting patterns are caused by hadronic rescattering. This is
illustrated in Fig. 27. One can conclude that the large magnitude of the integrated
v2 and the strong mass ordering of the differential v2(pT ) observed at RHIC result
from a subtle interplay between perfect fluid dynamics of the early QGP stage and
dissipative dynamics of the late hadronic stage: The large magnitude of v2 is due
to the large overall momentum anisotropy, generated predominantly in the early
QGP stage, whereas the strong mass splitting behavior at low pT reflects the redis-
tribution of this momentum anisotropy among the different hadron species, driven
by the continuing radial acceleration and cooling of the matter during the hadronic
rescattering phase.

We have seen so far that the hydrodynamic model which includes Glauber-type
initial conditions followed by a perfect fluid QGP and a dissipative hadronic gas
evolution is the most successful combination for describing the RHIC data. We now
go to the discussion on the initialization dependence of v2. Two types of initial con-
ditions, namely the Glauber-type initial conditions and the CGC initial conditions,
are discussed in the previous subsection. v2 as a function of centrality is shown
again for these two initial conditions in Fig. 28. In the case of the Glauber initial
conditions we can conclude early thermalization and the discovery for the perfect
fluid QGP. In the case of the CGC initial conditions, we cannot, however, claim
the discovery since the model initialized by CGC overshoots the data in almost the
whole range. Since the hydrodynamic model calculations depend on the initial con-
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Fig. 28 v2 as a function of centrality. PHOBOS data [111] are compared to hydrodynamic results
with two different sets of initial conditions [97]

ditions, it is very important to understand them before making final conclusions. In
the case of CGC initial conditions viscosity might be needed even in the QGP phase
to get the model down to the data points. The effect of viscosity could therefore be
quite important. The high v2 values from the CGC initial conditions are traced back
to the initial eccentricity. In Fig. 29a the energy density distribution in the impact
parameter direction is plotted for different conditions. If the energy density profile
has a sharp edge (no diffuseness), an integral in Eq. (78) is relatively weighted in
the edge region and, consequently, eccentricity becomes maximum at a given impact
parameter. If one compares the energy density profile of the CGC with the one of the
Glauber model, one sees that the CGC profile has a sharper edge than the Glauber
model does. The resultant eccentricity as a function of impact parameter is shown
in Fig. 29b. Eccentricity from the CGC is about 20–30% larger than that from the
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Fig. 29 The difference eccentricity between Glauber and CGC initial conditions
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Glauber model. This is the reason why hydro + hadronic cascade approach which
even includes hadronic viscosity overshoots the v2 data.21

4.5 Summary

Hydrodynamics is a framework to describe the space–time evolution of matter under
local equilibrium. It is applied to the intermediate stage in H.I.C. to extract the
transport properties of the QGP from RHIC data. Hydrodynamic modeling includes
initial conditions, EoS, and decoupling prescriptions. Final results certainly depend
on combination of each modeling. So much attention should be paid to these ingre-
dients before drawing robust conclusions from hydrodynamic analyses. Elliptic
flow has played a major role in understanding the transport properties of the QGP.
Glauber initial conditions, ideal hydrodynamics in the QGP phase, and dissipative
gas for the hadron phase are three pillars for agreement between the model and
the elliptic flow data. Whereas, if CGC initial conditions are employed, the initial
eccentricity gets increased by 20–30%. If the nature chooses this kind of initial
condition, viscosity might be needed even in the QGP phase.
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An Introduction to the Spectral Analysis
of the QGP

P. P. Bhaduri, P. Hegde, H. Satz, and P. Tribedy

Abstract This is an introduction to the study of the in-medium behavior of quarko-
nia and its application to the quark–gluon plasma search in high-energy nuclear
collisions.

1 What Are Quarkonia?

The bound states of a heavy quark and its antiquark which are stable with respect
to strong decay into open charm or bottom are collectively called quarkonia. We
denote by Q either of the heavy quarks, charm (c) or bottom (b); the corresponding
bound states are known as charmonia or bottomonia, respectively.

Among the vector (spin-one) charmonium states, the lightest (ground state) is
the famous J/ψ ; the excited states are the χc and the ψ ′. For the bottom quark, the
lightest quarkonium is the Υ , while the excited states include the χb, Υ ′, χ ′

b, and the
Υ ′′. The stability of the cc̄/bb̄ quarkonium states implies that their masses satisfy
Mcc̄ < 2MD and Mbb̄ < 2MB , where D = cū and B = bū are the corresponding
“open” mesons. A specific characteristic of quarkonia is their small size. While the
typical hadron radius is ∼1 fm, the radii of charmonia and bottomonia range from
0.1 to 0.3 fm, as we shall see.
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Since c and b quarks are very heavy (m Q  ΛQC D ∼ 200 MeV), the binding
of the Q Q̄ system may be treated non-relativistically. The governing equation is the
non-relativistic Schrödinger equation,

− 1

m

{∇2(r ) + V (r )
}
Ψi (r ) = (Mi − 2m)Ψi (r ), (1)

where Ψ (r ) denotes the wavefunction of the system, r the quark–antiquark separa-
tion, and m the quark mass.1 Since Eq. (1) is a non-relativistic description of the
binding, the total rest mass must be subtracted from the masses Mi of the bound
states. Once we find the eigenvalues Mi of the system, we can also define the “bind-
ing energy” ΔE of each quarkonium state, ΔE = 2MD,B − Mi .

Lattice and spectroscopic studies suggest for the potential V (r ) the form [1, 2]

V (r ) = σr − α

r
, (2)

generally known as the “Cornell potential.” It is spherically symmetric and consists
of two parts. The linearly rising part represents the confining force, given in terms
of the string tension σ ; lattice studies put its value at around 0.2 (GeV)2. The second
part is an effective Coulomb potential, including transverse string oscillations; string
theory suggests α = π/12.

Having solved the Schrödinger equation, we may determine the bound-state radii
through

〈r2
i 〉 =

∫
d3rr2|Ψi (r )|2∫
d3r |Ψi (r )|2 . (3)

A fair estimate can already be obtained by means of a semi-classical formulation.
The energy of the system is then given by

E = p2

m
+ V (r ), (4)

and from the uncertainty relation, we have pr � c; the constant c can be fixed by
requiring the correct J/ψ mass, giving c � 1.25. Minimizing the energy determines
the lowest bound-state radius r0,

σ + α

r2
0

= 3

mr3
0

. (5)

With σ � 0.2(GeV)2 and α � π/12, together with mc � 1.3 GeV, we obtain a
J/ψ size (Q Q̄ separation, i.e., twice the radius) of about 0.5 fm. For the α′ = 0

1 We work in the center-of-mass system, with a reduced mass m/2, so that we have −∇2/m instead
of the usual −∇2/2m.
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Table 1 Masses, binding energies, and radii of the lowest cc̄ and bb̄ bound states [3]; the listed

radii are 1/2
√

〈r2
i 〉, given by Eq. (3)

State J/ψ χc ψ ′ Υ χb Υ ′ χ ′
b Υ ′′

Mass (GeV) 3.10 3.53 3.68 9.46 9.99 10.02 10.36 10.36
ΔE (GeV) 0.64 0.20 0.05 1.10 0.67 0.54 0.31 0.20
Radius (fm) 0.25 0.36 0.45 0.14 0.22 0.28 0.34 0.39

value, we have r0 ∼ (1/mσ )1/3 ≈ 0.3 fm; on the other hand, for σ = 0, we get
r0 ∼ (1/mα) ≈ 0.6 fm. We thus see that a major contribution to the radius comes
from the string tension. At T = 0, the radius of the J/ψ is thus to a considerable
extent still determined by the confining part of the potential. We summarize some
of the characteristics of the spin-averaged quarkonia in Table 1 [3].

Next, we turn to the question of the dissociation and decay of quarkonia. We
have already noted that these mesons cannot decay via strong channels because
their masses are smaller than the open thresholds. It is also known that quarkonia
do not dissociate significantly in nuclear collisions; we shall discuss this in greater
detail in Sect. 3.

How then do quarkonia dissociate? Three mechanisms have been identified, cor-
responding to the behavior for T = 0, 0 < T < Tc, and T ≥ Tc, where Tc is the
critical temperature of deconfinement. We shall consider each of them in turn.

1.1 String Breaking

The potential in Eq. (2) is correct only in the limit MQ → ∞. If light quarks exist
in the theory, then the string connecting the heavy quarks can break as soon as the
overall energy in the system is greater than 2MD or 2MB , depending on whether
Q = c or b (Fig. 1). Light quark–antiquark pairs appear at the broken ends of the
string, and new “heavy-light” Qq̄ or q Q̄ mesons are formed. This behavior of the
quark potential has been observed in lattice studies with dynamical quarks, as we
shall show below.

We may estimate the string-breaking energy F0. For the charm quark, F0 =
2(MD − mc) � 1.2 GeV, while for the bottom quark, F0 = 2(MB − mb) � 1.2 GeV.

Q QQQ
r

Fig. 1 Cartoon of string-breaking
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T=0
F(r,T)

F0

r
r0

Fig. 2 String-breaking energy as a function of Q Q̄ separation

From this, we deduce r0 = (1.2 GeV)/σ � 1.5 fm. That this value is the same for
both quark species leads us to conclude that the energy required for string breaking
is a property of the vacuum itself, as a medium at T = 0, containing virtual qq̄
pairs which are brought on-shell by the field between the heavy quarks. The effect
of string-breaking on the Cornell potential is shown in Fig. 2.

1.2 Recombination

In nuclear collisions not sufficiently energetic to create a quark–gluon plasma, there
will nevertheless be abundant hadron production. These newly formed light hadrons
can through a switch in bonding (recombination) turn a Q Q̄ meson into two heavy-
light mesons. This mechanism is schematically depicted in Fig. 3: when two or more
hadrons overlap, their quarks can recouple to form new pairs.

If the temperature is increased, the hadron density also increases, and this in turn
increases the recombination probability. As a consequence, the distance up to which
the heavy quarks still bind also becomes shorter and the potential will break earlier
(see Fig. 4). We thus have something like “effective screening,” even though all
color charges are still bound.

What happens as we get close to Tc? The density of produced hadrons will then
increase strongly, and lattice studies show that in accord with our picture, both the
free energy and the string-breaking radius rT decrease rapidly near Tc, as shown in
Fig. 5.

Fig. 3 A schematic view of recombination
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Fig. 4 Schematic dependence of the string-breaking radius with temperature
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Fig. 5 Lattice results for free energy and screening radius as a function of T

1.3 Color Screening

Above T = Tc, we have a medium of unbound color charges and an entirely differ-
ent mechanism takes over. At all temperatures T above zero, quarks and gluons are
screened, just as electric charges experience Debye screening in an electromagnetic
plasma. This screening occurs with a characteristic radius, which we denote by rD . It
decreases with increasing temperature, as the medium increases in density. Decon-
finement is expected to occur when this radius becomes comparable to the average
hadron size of 1 fm. Then a given quark can no longer see its former partner in a
hadron; instead, it sees many other quarks and antiquarks and therefore can move
around freely, without encountering any confinement limit, since it is never 1 fm
away from an antiquark.

We would like to use the behavior of the J/ψ to probe if a quark–gluon plasma
was formed in the collision [4]. However, as we have seen, the J/ψ and its heavier
counterparts have smaller radii than the usual hadrons. Thus, charmonia and bot-
tomonia may be expected to survive beyond the QGP phase transition up to some
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higher temperature, at which they will become dissociated. Thus, if we know their
sizes as well as the behavior of rD as a function of T , we can use their dissociation
points to determine the temperature and the energy density ε of the QGP medium
[5], as illustrated in Fig. 6.

0.5 1.0 1.5 T/Tc

1.0

2.0

4

6

8

2

ε/T4

ψ

χ
c

J/ ψ
r χ

r  (T)D σ

σ

rψ σ

rψ σ

Fig. 6 Quarkonium dissociation as “thermometer” for the quark–gluon plasma

2 Studying Charmonium Dissociation

We now turn to the question of how to determine quantitatively the quarkonium
dissociation points in a quark–gluon plasma. Two different approaches were used to
address this problem.

• Solve the Schrödinger equation with a temperature-dependent potential V (r, T )
or

• calculate the quarkonium spectrum directly in finite temperature lattice QCD.

We shall look at each of these approaches in turn.

2.1 Potential Models for Quarkonium Dissociation

2.1.1 The Schwinger Model

One generalizes the Cornell potential, Eq. (2), to non-zero temperature in the form

V (r, T ) = σr

{
1 − e−μr

μr

}
− α

r
e−μr . (6)
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The T -dependence of the above equation is in the “screening mass” μ(T ) =
1/rD(T )[6]. Equation (6) gives the correct zero-temperature limit, Eq. (2), for
μ(T ) → 0 as T → 0.

To determine the dissociation points, one solves the Schrödinger equation and
determines the bound-state energies Mi (μ). With increasing temperature, the bound
state i disappears at some μ = μi . One then uses the temperature dependence of the
screening mass from lattice estimates, μ(T ) � 4 T , to determine the Ti . The result
of this model is

• the ψ ′ and χc become dissociated around T � Tc,
• the J/ψ survives up to about T � 1.2Tc.

In both cases, at the dissociation point the binding energy vanishes, while the
binding radius diverges.

2.1.2 Lattice Potential Models

Alternatively, one may use lattice results for the temperature dependence of the
potential felt by a static quark–antiquark pair to determine the needed potential [7–
13]. The static Q Q̄ studies start from the partition function Z , which is related to
the free energy by Z = exp(−βF); this in turn gives the thermodynamic potentials

F = U − T S

S = −
(
∂F

∂T

)
V

U (r, T ) = F(r, T ) − T

(
∂F(r, T )

∂T

)
V

. (7)

Assuming that the internal energy U (r, T ) provides the temperature dependence of
the heavy quark potential, we use results from N f = 2 lattice QCD and solve the
Schrödinger equation. The results obtained from such studies indicate that

• the ψ ′ and χc are dissociated around a temperature T � 1.1Tc,
• J/ψ survives up to a temperature T � 2 Tc.

Comparing these results to the ones from the Schwinger model, we see that while
there is agreement in the case of the higher excited states, lattice potential mod-
els predict a considerably higher dissociation temperature for the J/ψ . The reason
for this is that the internal energy U (r, T ) leads to much stronger binding than the
Schwinger model potential.

It should be noted here that there still is some ambiguity as to whether U or F
is the correct potential to be used in the Schrödinger equation. Hence there exist
approaches with potentials of the form aU + (1 − a)F , with 0 ≤ a ≤ 1. Such
potentials tend to reduce binding and lower the dissociation temperature as a is
decreased.
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2.2 Lattice Studies of Charmonium Survival

The ideal way to resolve the above ambiguity would be to calculate the cc̄ spectrum
directly on the lattice, and this is indeed what lattice studies aim to do [14–20].
More specifically, they calculate the cc̄ spectrum σ (ω, T ) in the appropriate quan-
tum channel, as a function of the temperature T and the cc̄ energy ω. Bound states
show up as resonances in a plot of σ versus ω. By performing simulations at dif-
ferent temperatures, one can determine the temperature at which a particular peak
disappears, i.e., a bound state dissolves. A schematic illustration is shown in Fig. 7.
The results presently indicate that

• χc is dissociated for T ≥ 1.1Tc.
• J/ψ persists upto 1.5 < T/Tc < 2.3.

Thus, on the basis of lattice studies, the following picture emerges: The higher
excited states dissociate around T = Tc, while the J/ψ survives up to much higher
temperature, in accord with the potential model studies based on the internal energy
U (r, T ).
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σ  χ(M,T)σ  ψ(M,T)
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Fig. 7 Schematic view of lattice results for charmonium dissociation

There is, however, a caveat to these calculations. The discretization introduced
by the lattice limits the resolution of the peak. Lattice methods are thus useful in
determining the position and to some extent the amplitude of the peaks, but deter-
mining the peak widths remains a challenge, nor is it easy to study the spectrum in
the continuum region (ω > 4 GeV).

3 Dynamics of Quarkonium Dissociation

We have seen in the previous discussion that the J/ψ , the vector ground state of
charmonium family, is very tightly bound. Its binding energy, i.e., the energy differ-
ence between J/ψ mass and open charm threshold, ΔEJ/ψ , is considerably larger
than the typical non-perturbative hadronic scale ΛQC D ,
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ΔE J/ψ = 2MD − MJ/ψ = 0.6 GeV � ΛQC D. ∼ 0.2 GeV. (8)

Consequently the size of J/ψ is much smaller than that of typical hadron,

rJ/ψ ∼ 0.25 fm  Λ−1
QC D ∼ 1 fm. (9)

We now want to consider by what kind of dynamical interaction such a state can
be dissociated. Because of the small spatial size, the J/ψ can only be resolved
by a sufficiently hard probe. Moreover, because of its high binding energy, only a
sufficiently energetic projectile can break the binding. The previous study of global
medium effects had led to the conclusion that only a hot deconfined medium, con-
sisting of colored quarks and gluons, is capable of dissociating the charmonium
vector ground state. We now want to study this on a microscopic level.

In a deconfined medium, the constituents are unbound partons, whereas in a con-
fined medium the constituents are hadrons. Such thermal hadrons are incapable of
causing collisional dissociation of J/ψ . Let us illustrate this point.

Consider the collision of a J/ψ with a normal hadron. Because of the small
characteristic J/ψ size, only a hard partonic constituent of the hadron can see the
J/ψ and interact with it. In other words, J/ψ collisions with ordinary hadrons
probe the local partonic structure of these “light” hadrons, not their global aspects
such as mass, size, or overall momentum. The parton nature of the interaction is
illustrated in Fig. 8.

J/ψ

h

Fig. 8 Schematic view of the interaction of a normal hadron with a J/ψ

To see the effect of this more quantitatively [21], we take an ideal pion gas as
the confined medium. The momentum distribution of the pions at a temperature
T follows f (p) ∼ exp(−|p|/T ), giving the pions an average momentum 〈p〉 ∼
3 T . Now the gluon momentum distribution inside a hadron as determined by deep
inelastic lepton–hadron scattering is given by the parton distribution function g(x);
here x = 2kg/

√
s, with kg for the gluon momentum, so that x may be thought of as

the fraction of the incident hadron’s momentum carried by the gluon. For the pionic
gluon it takes the form

g(x) ∼ (1 − x)3. (10)

The resulting average gluon momentum in the hadron thus becomes
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〈kg〉 = ph ·
∫ 1

0 dx x g(x)∫ 1
0 dx g(x)

. (11)

With Eq. (10) and ph = 3T for the momentum of the incident hadron, we obtain

〈kg〉h = ph

5
= 3T

5
≤ 0.1 GeV, (12)

where we have assumed T < 175 MeV for the temperature of the hadronic medium.
Thus gluons bound inside the hadronic constituents of confined matter are much too
soft to cause the dissociation of a J/ψ .

On the other hand, in a deconfined medium, such as an ideal QGP, the gluons
are free and distributed according to a thermal distribution f (kg) ∼ exp(−kg/T ),
which gives

〈kg〉 ∼ 3T, (13)

so that for T ≥ 1.2 Tc � 0.63 GeV, the gluons are hard enough to overcome the
J/ψ binding.

We have thus noticed that deconfinement results in a hardening of the relevant
gluon momentum distributions. More generally speaking, the onset of deconfine-
ment will lead to parton distribution functions which are different from those for free
hadrons, as determined by DIS experiments. Since hard gluons are needed to resolve
and dissociate J/ψs, one can use J/ψs to probe the in-medium gluon hardness and
hence the confinement status of the medium.

This qualitative picture can be made quantitative by short distance QCD calcula-
tions [21–23]. One has to calculate first the cross section for gluon dissociation of
J/ψ , a QCD analogue of the photo-effect. This can be carried out using the operator
product expansion, which is essentially a multipole expansion for the charmonium
quark–antiquark system. Figure 8 shows the relevant diagram for the calculation
of inelastic J/ψ–hadron cross section. The upper part of the figure corresponds to
J/ψ dissociation by gluon interaction. The cross section for this process has the
form

σg−J/ψ ∼ 1

m2
c

(k/ΔEψ − 1)3/2

(k/ΔEψ )5
, (14)

with ΔE J/ψ = 2MD − MJ/ψ . The corresponding cross section for the hadron dis-
sociation is obtained by convoluting this gluon dissociation cross section with the
gluon distribution function g(x) of the incident hadron. For J/ψ–meson interac-
tions, this leads to the form

σh−J/ψ � σgeom

(
1 − λ0

λ

)5.5

, (15)
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with λ � (s − M2
ψ )/Mψ and λ0 � (Mh + ΔEψ ), where

√
s is the CMS energy

of the J/ψ–hadron system. Here σgeom � πr2
J/ψ � 2 mb is the geometric J/ψ

cross section and Mh denotes the mass of the incident meson. Figure 9 compares
the two dissociation cross sections, J/ψ dissociation by gluons (gluo-effect) and by
pions, as a function of projectile momentum k incident on stationary J/ψ , as given
by Eqs. (14) and (15). The gluon cross section shows the typical photo-effect form,
vanishing until the gluon momentum kg reaches the binding energyΔEJ/ψ ; it peaks
just a little later (λg ∼ rJ/ψ ) and then vanishes again when sufficiently hard gluons
just pass through the (comparatively larger) charmonium bound states (λg  rJ/ψ ).
In contrast, the J/ψ–hadron inelastic cross section remains negligibly small until
rather high hadron momenta (3–4 GeV). In a thermal medium such momenta corre-
spond to temperatures of more than 1 GeV. In other words, in a confined medium in
the temperature range of the order of a few hundred MeV the J/ψ should survive,
but it should become dissociated in a hot deconfined medium. Confined media in the
temperature range of few hundred MeV are thus essentially transparent to a J/ψ ,
while a deconfined medium of the same temperature is opaque to J/ψ’s and very
efficiently dissociates them.

1e-02

1e-01

1e+00

1 10

σ 
[m

b]

k [GeV]

g - ψ

π − ψ

Fig. 9 Cross sections for J/ψ dissociation by gluons versus pions

4 Quarkonium Production in Nuclear Collisions

The aim of ultra-relativistic nuclear collisions is to study color deconfinement and
the resulting quark–gluon plasma in the laboratory. We want to use quarkonia pro-
duced in the collision as a probe to study the medium produced in the collision.
Both the quarkonium states and the medium to be probed require a “finite formation
time,” so we have to look at the evolution aspects in both cases. Let us first consider
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the issue of charmonium production in hadron–hadron collisions and then turn to
nuclear targets.

4.1 Quarkonium Production in Hadronic Collisions

Quarkonium production in hadron–hadron collisions occurs in three stages. The first
stage is the production of cc pair. Because of the large quark mass (mc ∼ 1.3 GeV)
this process can be treated as a hard process and is well described by perturbative
QCD. A parton from the projectile interacts with one from the target; the (non-
perturbative) parton distributions within the hadrons are determined empirically in
other reactions, e.g., by deep inelastic lepton–hadron scattering. At high energy the
process of cc production dominantly occurs by gluon fusion, gg → cc̄ (see Fig. 10).

p

p

g

g

c

c

PDF

PDF

Fig. 10 Lowest order Feynman diagram for cc̄ production through gluon fusion

The cc in general is in a color-octet state. It has to neutralize its color in order
to leave the interaction zone and form a physical resonance like J/ψ or ψ ′. In the
second stage, color neutralization occurs by interaction with the surrounding color
field. This results finally in the third stage of a physical bound state. Both the second
and third stages are non-perturbative in nature.

On a fundamental theoretical level, color neutralization is not yet fully under-
stood, but there are several models, color singlet [24], color octet [25, 26], and color
evaporation [27–30]. The color evaporation model provides a particularly simple
and experimentally well-supported phenomenological approach. In the evaporation
process, the cc̄ can either combine with light quarks to form open charm mesons
(D and D̄) or bind with each other to form a hidden charm (charmonium) state. A
fixed fraction of the subthreshold cc̄ production is used in charmonium production.
The basic quantity in this picture is the total subthreshold charm cross section Scc̄,
obtained by integrating the perturbative cc̄ production cross section σ over the mass
window from 2mc to 2m D . Since at high energy, the dominant part of Scc̄ comes
from gluon fusion (Fig. 10), we can write

Scc(s) �
∫ 2m D

2mc

dŝ
∫

dx1 dx2 gp(x1) gt (x2) σ (ŝ) δ(ŝ − x1x2s), (16)
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with gp(x) and gt (x) denoting the gluon densities and x1 and x2 the fractional
momenta of the gluons from projectile and target, respectively; σ is the gg → cc̄
cross section.

As mentioned, the basic assumption of the color evaporation model is that the
production cross section for any particular charmonium state is a fixed fraction of
the subthreshold charm cross section,

σi (s) = fi Scc̄(s), (17)

where fi is an energy-independent constant to be determined empirically. It follows
that the energy dependence of the production cross section for any charmonium state
is predicted to be that of the perturbatively calculated subthreshold charm cross
section. As a further consequence the production ratios of different charmonium
states

σi (s)

σ j (s)
= fi

f j
= constant (18)

must be energy independent. Both these predictions have been compared in detail
to charmonium hadroproduction data over a wide range of energies [31, 32]. They
are found to be well supported, both in the energy dependence of the cross sections
and in the constancy of the relative species abundances.

Before turning to the topic of quarkonium production in hadron–nucleus colli-
sions, let us consider the relevant timescales for the J/ψ formation.

The formation of a cc̄ pair requires a time τcc = 1/2mc = 0.05 fm. The pro-
duced cc̄ pair is in a color-octet state. To form a physical resonance state, it has to
neutralize its color. The color-octet model [25, 26] proposes that the color-octet cc̄
combines with a soft collinear gluon to from a color-singlet (cc̄ − g) state. After a
short relaxation time τ8 this pre-resonance (cc̄ − g) turns into physical resonance by
absorbing the accompanying gluon, with similar formation processes for the other
resonances, such as χc and ψ ′ production. The color-octet model encounters diffi-
culties if the collinear gluons are treated perturbatively, indicating once more that
color neutralization seems to require non-perturbative elements. However it does
provide a conceptual basis for the evolution of the formation process.

The color neutralization time τ8 of the pre-resonant state can be estimated by
the lowest momentum possible for the confined gluons τ8 � (

2mcΛQC D
)−1/2 �

0.25 fm. The resulting scales of J/ψ formation are illustrated in Fig. 11. The for-
mation time for the actual physical ground state J/ψ is presumably somewhat larger

resonancepre−resonance
0.05 fm 0.25 fm

hard

= 1/2mc τ8 = 1τ cc 2mc  Λqcd

Fig. 11 Evolution of J/ψ formation in a hadron–hadron collision
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than τ8, although rJ/ψ � τ8 , the heavy c quarks move non-relativistically. For the
larger higher excited states, the formation time will then be correspondingly still
larger.

4.2 Quarkonium Production in p–A and A–A Collisions

Let us now turn to nuclear collisions. Both in p–A and A–A interactions there will be
pre-resonant absorption in nuclear matter. In nucleus–nucleus collisions, however,
there can be in addition a substantial amount of a produced “secondary medium,”
and testing this medium is in fact our main objective.

The creation of the medium and production of the probe lead to two distinct
formation scales. In p–A collision there is no formation time for the medium, so
that such collisions provide a tool to probe charmonium production, evolution, and
absorption in confined matter.

Nuclear effects can arise in all the evolution stages of J/ψ production, and a
number of different phenomena have to be taken into account.

• The presence of other nucleons in the nucleus can modify the initial state par-
ton distribution functions, which enter in the perturbative cc̄ production process,
as shown in Fig. 10. This can lead to a decrease (shadowing) or to an increase
(antishadowing) of the production rate.

• Once it is produced, the cc̄ pair in its evolution will traverse the nuclear matter; it
can suffer absorption both in the pre-resonance and in the resonance stage caused
by successive interactions with the target nucleons.

g

g

c

c

pre−resonance J/ Ψ

f   (g)

f   (g)
A

A

A

A

Fig. 12 J/ψ production in a nuclear medium

Hence J/ψ production in a nuclear medium is modified as compared to hadronic
collisions. The modification occurs before any QGP formation and is thus inde-
pendent of the effects due to a deconfined medium having free quarks and gluons.
If we want to use J/ψ production and its suppression in a nuclear collision as a
potential signature of the QGP formation, all normal nuclear effects must first be
taken into account. Only then can charmonium suppression serve as a probe to test
the confining status of the produced “secondary medium” in nuclear collisions.
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So an essential question is how to account for the effects of the nuclear medium
initially present on the production. The basis for this, both in theory and in experi-
ment, is the measurement of dilepton, open charm, and charmonium production in
p–A or d–A collisions. These collisions thus provide a crucial tool to understand
quarkonium production in nuclear collisions.

The procedure to be used for such studies is the following:

• The initial state parton distribution functions in nuclear matter are determined
by open charm and dilepton production in p–A/d–A collisions in the relevant
kinematic region.

• The Glauber model then is used to determine the pre-resonance absorption of the
J/ψ and ψ ′ by the target nucleon in p–A/d–A in the relevant kinematic region.

It is thus clear that p–A or d–A collision experiments are an absolutely essential tool
for the analyis of quarkonium production in nuclear collisions.

4.3 Sequential Quarkonium Suppression

There is a further important and, as it turns out, crucial feature observed in J/ψ
hadroproduction. The J/ψ actually measured in hadron–hadron collisions are not
all directly produced 1S charmonium states; rather, they have three distinct origins.
About 60% of them are indeed directly produced 1S charmonium states, but the
rest are feed-down from higher excited states. About 30% come from the decay
χc(1P) → J/ψ + anything and the remaining 10% from ψ ′(2S) → J/ψ +
anything. In both cases, the decay widths of the involved higher excited states are
extremely small (< 1 MeV), so that their lifetimes are very long and the decay
occurs long after the interaction. The presence of any medium in nuclear collisions
would therefore affect these excited states themselves and not their products, and
we had seen above that excited states are dissociated before the ground state. This
has a direct consequence on the nature of J/ψ suppression by deconfinement. In a
thermal QCD medium, we should expect that with increasing temperature or energy
density, first the J/ψ originating from ψ ′ decay and then those from χc decay
will disappear. Only a considerably higher temperature would be able to remove
the directly produced J/ψs. Such a stepwise onset of suppression with specified
threshold temperatures is perhaps the most characteristic feature predicted for char-
monium production in nuclear collisions. It is illustrated schematically in Fig. 13,
where we have defined the J/ψ survival probability to be unity if the production
rate suffers only the estimated normal nuclear suppression. The generic suppression
pattern shown here will of course be softened by nuclear profile effects, impact
parameter uncertainties, etc. On the other hand, this could be partially compensated
if there is a discontinuous onset of deconfinement as a function of energy density of
the medium.

We had seen above how to calculate the quarkonium dissociation points which
specify the temperature and thus also the energy density of the medium, thereby
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Fig. 13 Sequential J/ψ suppression

serving as a QGP thermometer. Potential model studies based on the heavy quark
internal energy, as well as direct lattice QCD calculations gave as dissociation tem-
peratures T � 1.1 Tc forψ ′ and χc and T ≥ 1.5–2 Tc for J/ψ . If this is correct, then
the direct J/ψ(1S) survives up to about ε ≥ 10 − 20 GeV/fm3. Consequently, all
anomalous suppression observed at SPS and RHIC must be due to the dissociation
of higher excited states χc and ψ ′ [33]. The suppression onset for this is predicted
to lie around ε � 1 GeV/fm3, and once these are gone, only the unaffected J/ψ
(1S) production remains. Hence the J/ψ survival probability (once normal nuclear
effects are taken into account) should be same for central Au–Au at RHIC as for
central Pb–Pb collisions at SPS.

4.4 Charmonium Regeneration

In this section we want to investigate the possibility that the medium produced in
high-energy nuclear collision differs from the deconfined state of matter studied
in finite temperature QCD. The basic idea here is that nuclear collisions initially
produce more than the thermally expected charm and this excess, if it survives,
may lead to a new form of combinatorial charmonium production at hadronization
[34–36].

In the QGP argumentation, a crucial aspect was that the charmonia, once disso-
ciated, cannot be recreated at the hadronization stage, because of the extremely low
thermal abundance of charm quarks in an equilibrium QGP. The thermal production
rate for a cc̄ pair relative to a pair of light quarks is

ncc̄

nqq̄
� exp −(2mc − 2mq/Tc ) (19)

� exp(−2mc/Tc) � 3.5 × 10−7,
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with mc = 1.3 GeV for charm quark mass and Tc = 175 MeV for the transition tem-
perature. The initial charm production in high-energy hadronic collisions is, how-
ever, a hard non-thermal process, and the resulting rates calculated from perturbative
QCD are considerably larger than the thermal rate. Moreover, in A–A interactions
the resulting c/c̄ production rate grows with the number of binary collision Ncoll,
while the light quark production rate, being a soft process, grows as the number of
participant nucleons, i.e., much slower. At high collision energies, the initial charm
abundance in A–A collisions is thus very much higher than the thermal value. Now
the question is, what happens to this in course of the collision evolution?

The basic assumption of the regeneration approach is that the initial charm
excess is maintained throughout subsequent evolution, i.e., the initial chemical non-
equilibrium will persist up to the hadronization point. In charmonium hadroproduc-
tion, J/ψ are formed because some of the cc̄ pairs produced in a given collision
form the corresponding bound state. In a collective medium formed through the
superposition of many nucleon–nucleon (N–N) collisions, such as a quark–gluon
plasma, a c quark from one N–N collision can in principle also bind with a c̄
from another N–N collision (“new” pairs) to create a J/ψ . This pairing provides
an “exogamous” charmonium production mechanism, in which the c and c̄ in a
charmonium state have different parents, in contrast to “endogamous” production in
p–p collision. At sufficiently high energies this can lead to an enhancement in J/ψ
production in A–A collisions compared to scaled p–p rates [34–36], provided the
overall charm density is sufficiently high at hadronization and provided the binding
probability between charm quarks from different sources is large enough.

Whether or not such enhancement becomes significant depends on two factors.
On one hand, the initial charm oversaturation must be preserved so that the total
charm abundance is non-thermal. On the other hand, it is necessary that the recombi-
nation between charm quarks from different parents to charmonium (J/ψ) is strong
enough. Here it is generally assumed that the final hadronization occurs according to
the available phase space. Thus the number of statistically recombined J/ψ has the
form NJ/ψ ∼ N 2

cc̄, growing quadratically in the number of cc̄ pairs. This implies
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Fig. 14 Statistical J/ψ regeneration versus sequential J/ψ suppression



196 P. P. Bhaduri et al.

that the hidden to open charm ratio, e.g., NJ/ψ/ND ∼ Ncc̄/Nh , increases with
energy, in contrast to the energy-independent form obtained for the fully equilibrated
QGP, or to the decrease predicted by color screening. The prediction for J/ψ pro-
duction by regeneration is compared in Fig. 14 to that from sequential suppression.

5 Conclusion

Statistical QCD predicts the existence of a new state of nuclear matter, the quark–
gluon plasma (QGP), at very high temperatures and/or densities. This medium, in
contrast to hadronic matter, is capable of dissociating quarkonia, so that quarkonium
suppression may be taken as a sign of QGP formation in nuclear collisions [4]. Fur-
thermore, different quarkonia dissociate at different temperatures; the dissociation
pattern thus serves as a “thermometer” for the QGP. It is therefore important to
obtain precise predictions for these dissociation points, and for this, one can turn to
either of two approaches: potential models or lattice studies. The former have the
problem that the results are dependent on the type of potential chosen, while the
latter so far suffer from the fact that lattice spacing and statistics limit the resolution
of peak widths in the spectrum. It is also not easy to identify the continuum region
of the spectrum on the lattice.

But what happens in case of relativistic nuclear collisions in the laboratory? If
there is no regeneration of the dissociated charmonia, J/ψ remains as an exter-
nal probe, and the sequential suppression pattern of the J/ψ can then serve as a
tool to determine the energy density and the temperature of the produced medium.
On the other hand, if there is J/ψ production through statistical combination of c
and c from different collisions, leading to an overall J/ψ enhancement, this would
clearly indicate the thermalization of the produced medium on a pre-hadronic level.
However, charmonia could then no longer serve as a thermometer to charaterize the
primordial medium. Data from LHC, soon to come, will certainly play a decisive
role in settling the issue.
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Quarkonium Production and Absorption
in Proton–Nucleus Collisions

Carlos Lourenço, Pietro Faccioli and Hermine K. Wöhri

1 Introduction

Lattice QCD calculations [1] predict that, at sufficiently large energy densities,
hadronic matter undergoes a phase transition to a “plasma” of deconfined quarks
and gluons (QGP). Considerable efforts have been invested since 1986 in the study
of high-energy heavy-ion collisions to reveal the existence of this phase transition
and to study the properties of strongly interacting matter in the new phase, in
view of improving our understanding of confinement, a crucial feature of QCD.
The study of quarkonium production and suppression is among the most inter-
esting investigations in this field, because the calculations indicate that the QCD
binding potential is screened in the QGP phase, the screening level increasing
with the energy density of the system. Given the existence of several quarkonium
states, of different binding energies, it is expected that they will be consecutively
“dissolved” (into open charm or beauty mesons) above certain energy density
thresholds [2, 3]. The experimental observation of such successive “thresholds” in
quarkonium melting, with the ψ ′ and χc states being suppressed more easily than
the more strongly bound J/ψ state, is considered a “smoking gun” signature of
deconfinement.

Until now, such a “spectral analysis” of the quarkonium production yields has
been performed in several collision systems (from light to heavy nuclei) and in
several collision centralities (from peripheral to central), but has been limited to
the J/ψ and ψ ′ states. The Upsilon states have too small production cross sections
to be studied at the relatively low energies currently available (this situation will
change once the LHC will start providing Pb–Pb collisions). On the other hand,
the experimental detection of the χc meson has not been feasible in heavy-ion
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collisions, in particular given the difficulty in detecting the photon emitted in the
χc → J/ψ + γ radiative decay, among the large yield of photons from πO

decays.
Most of the experimental information on quarkonium production and suppression

in heavy-ion collisions has been provided, so far, by NA38, NA50, and NA60 at the
SPS (J/ψ and ψ ′), and by PHENIX at RHIC (only J/ψ). For the purpose of this
chapter, let us mention two of the observations made so far. First, it has been seen [4]
that the J/ψ production yield, relative to the yield of high-mass Drell–Yan dimuons,
is significantly suppressed in central Pb–Pb collisions, with respect to the “normal
nuclear absorption reference”, established on the basis of proton–nucleus measure-
ments, which successfully describes the most peripheral Pb–Pb measurements and
the S-U J/ψ suppression pattern. Second, it has been observed [5] that the sup-
pression happens mostly at low transverse momentum, pT; the high-pT J/ψ’s (per
Drell–Yan dimuon) do not show any clear drop from peripheral to central Pb–Pb
collisions.

In the remaining of this chapter, we will discuss three issues that should be seri-
ously taken into consideration before we can consider the aforementioned observa-
tions as convincing evidence showing, beyond reasonable doubt, that a quark–gluon
plasma is formed in heavy-ion collisions at SPS energies. We will start by reminding
that the observed J/ψ yield, and its suppression, cannot be immediately interpreted
as due to the production or absorption of J/ψ mesons in the nucleus–nucleus col-
lisions; a large fraction of the production yield results from decays of ψ ′ and (more
importantly) χc mesons, which are surely affected by the nuclear medium in dif-
ferent ways than the directly produced J/ψ . We will then show evidence that the
J/ψ is not unpolarized, as currently assumed in the studies of J/ψ suppression.
This is an important issue because the polarization seems to significantly change
with pT, from longitudinal at low pT to transverse at high pT. This means that the
previously reported pT distributions, the average pT vs. nuclear target in p-nucleus
collisions, and the pT dependence of the J/ψ suppression in heavy-ion collisions,
might be biased by an incorrect pT-dependent acceptance correction and would
change if the analysis would be redone with acceptances derived from a Monte
Carlo simulation based on a more realistic polarization scenario. Finally, we will
address the question of the energy dependence of the J/ψ break-up cross section,
by analysing proton–nucleus measurements provided by several experiments, using
the Glauber formalism and incorporating nuclear modifications in the parton den-
sities. We will show that there is no reason to assume that the “J/ψ absorption
cross section” derived from p-nucleus data collected at 450 GeV is suitable to cal-
culate the normal nuclear absorption baseline in the studies of the heavy-ion data
collected at 158 GeV. Several other issues could and should be studied in detail;
we only selected these three specific topics because there has been recent progress
in their study. They are examples of the kind of work we must perform to place
on more solid ground the “anomalous observations” derived from the heavy-ion
measurements.
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2 J/ψ Feed-Down Fractions

It is known since long that a significant fraction of the J/ψ mesons observed in
elementary collisions are, in fact, produced by χc radiative decays and ψ ′ hadronic
decays. Given the larger sizes of the χc and ψ ′ charmonium states, it is natural
to expect that they suffer a stronger absorption than the 1S state when traversing
nuclear matter, as indeed has been experimentally observed in theψ ′ case. However,
the detailed implications of these feed-down contributions in the understanding of
the “normal nuclear absorption” of the J/ψ have not really been studied until now.
Furthermore, it has been predicted that the ψ ′ and χc states are easier to “melt” than
the more strongly bound J/ψ state, when immersed in a QGP of a certain energy
density. Then, it is quite conceivable that the J/ψ production yield measured in
heavy-ion collisions shows a significant level of suppression even if the produced
matter under scrutiny has not reached high enough energy densities to melt the
directly produced J/ψ state. In particular, the J/ψ suppression pattern measured
at the SPS and at RHIC might be exclusively due to the melting of the ψ ′ and χc

states [6].
While the existence of these elements and the recognition of their crucial impor-

tance has been frequently mentioned in the relevant literature, until very recently
there were no solid numbers concerning the J/ψ feed-down fractions, often assumed
to be 10 % for the ψ ′ and 30 or 40 % for the χc, usually without mentioning exper-
imental measurements or their uncertainties. The situation became even less clear
when the HERA-B collaboration reported a J/ψ feed-down fraction from χc decays
of around 20 %, considerably lower than the previously assumed values. A signif-
icant clarification has been provided by a recent study of all available measure-
ments [7], which we briefly summarize here. This should not be seen as “the final
word” but represents a major step forward with respect to the previous confusing
status.

We start by defining the “feed-down fractions”. The fraction of indirectly pro-
duced J/ψ’s from ψ ′ decays is defined with respect to the total (inclusive) J/ψ
yield as follows:

R(ψ ′) = N (J/ψ from ψ ′)
Nincl(J/ψ)

= σ (ψ ′) · B(ψ ′ → J/ψX )

σ (J/ψ)
. (1)

Most experiments measure the J/ψ and ψ ′ dilepton decays, reporting results for
the yield ratio

ρ(ψ ′) = σ (ψ ′) · B(ψ ′ → l+l−)

σ (J/ψ) · B(J/ψ → l+l−)
. (2)

This quantity is directly related to theψ ′-to-J/ψ feed-down fraction, R(ψ ′), through
a simple combination of branching ratios,
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R(ψ ′) =
[

B(J/ψ → l+l−)

B(ψ ′ → l+l−)
B(ψ ′ → J/ψ X )

]
ρ(ψ ′) , (3)

the value in parentheses being 4.53 ± 0.13 [8].
R(χc) is defined analogously to Eq. (1), dividing the number of J/ψ’s resulting

from the χc → J/ψ γ radiative decays by the total J/ψ yield.

2.1 Selected Measurements

The experiments mentioned in Table 1 provided the ψ ′ and χc hadroproduction
measurements we used to evaluate the corresponding fractions of indirectly pro-
duced J/ψ’s. More measurements exist but we decided to restrict our analysis to
a sub-sample of results, for reasons explained in detail in [7]. Essentially, we only
analysed measurements performed “at midrapidity”, given that the forward data,
collected with nuclear targets, exhibit a much stronger nuclear absorption than the
corresponding midrapidity values. This means, in particular, that the data obtained in
pion–nucleus collisions, mostly collected at high xF, were excluded from our anal-
ysis. A broader analysis of the existing measurements, taking into account possible
kinematic dependences induced by nuclear effects, remains to be done.

The current experimental knowledge concerning the ψ ′-to-J/ψ cross-section
ratio and its nuclear dependence in proton–nucleus collisions is essentially deter-
mined by the measurements performed by NA50 and NA51 at the CERN-SPS, and
by E866 at Fermilab, using several target nuclei. The J/ψ and ψ ′ results of E866
were reported as ratios between the yields obtained with heavy and light targets
(W/Be and Fe/Be), as a function of xF. These measurements provide heavy-over-
light ratios of ρ(ψ ′), which do not help determining the feed-down fraction value
but constrain the difference between the nuclear absorption rates of the two char-
monium states, a factor that has to be taken into account when using data collected
with nuclear targets. The HERA-B 2003 R(χc) results [15] include a systematic
uncertainty (of around 10 %) due to the dependence of the detector’s acceptance
on the assumed J/ψ polarization, taking into account that J/ψ’s from χc decays

Table 1 Global features of the measurements we considered in our study of the R(ψ ′) and R(χc)
feed-down fractions
Experiment Collision system Ebeam [GeV] Phase space 〈xF〉
NA51 [9] p-H/D 450 −0.4 < ycm < 0.6 � 0
NA50 96/98 [10] p-(5 nuclei) 450 −0.5 < ycm < 0.5 � 0
NA50 2000 [11] p-(6 nuclei) 400 −0.425 < ycm < 0.575 � 0
E866 [12] p-Be/Fe/W 800 −0.1 < xF < 0.8 � 0.3
E705 [13] p-Li 300 −0.1 < xF < 0.5 � 0.2
HERA-B 2000 [14] p-C/Ti 920 −0.25 < xF < 0.15 −0.035
HERA-B 2003 [15] p-C/W 920 −0.35 < xF < 0.15 −0.065
ISR [16–18] pp

√
s ≈ 58 (avg.) ycm � 0 0

CDF [19] pp̄
√

s = 1800 |ycm| < 0.6 0
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should have a polarization different from the directly produced ones. This effect was
not considered by the previous experiments, given the poor statistical accuracy of
their measurements.

2.2 J/ψ Feed-Down from ψ ′ Decays

The experimental points selected for the determination of the J/ψ feed-down con-
tribution from ψ ′ decays are shown in Fig. 1. It is worth remarking that the ψ ′ is
much more strongly absorbed by the nuclear medium than the J/ψ .

In order to determine the ψ ′-to-J/ψ feed-down fraction in pp collisions, R0(ψ ′),
all measurements were simultaneously fitted within the framework of the Glauber
formalism [20], using the so-called ρL parametrization:

σ (p A → ψ) / A σ (pN → ψ) = exp(−σabs ρ L) ,

where ρ is the nuclear density and L is the nuclear path length traversed by the
charmonium state of absorption cross section σabs. The ρ L values were determined
through a Glauber calculation, for each nuclear target, taking into account the appro-
priate nuclear density profiles, as described in [11], corresponding to an average
nuclear density of 0.17 fm−3. The fit provides two parameters: the R0(ψ ′) “refer-
ence” feed-down fraction (corresponding to L = 0) and the difference between
the ψ ′ and J/ψ absorption cross sections, where the J/ψ term does not include
the ψ ′ decay contribution (to remove auto-correlation effects). A global fit to all
data points leads to the dashed lines in Fig. 1, with a chi-square probability of only
1 %, clearly indicating that the model is unable to properly reproduce the NA51
measurements, performed with hydrogen and deuterium targets (the two leftmost
points in Fig. 1-left). Maybe the fact that protons and deuterons are exceptionally
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Fig. 1 ρ(ψ ′) vs. L as measured by NA50/51 at 400 and 450 GeV (left), and ρ(ψ ′)W / ρ(ψ ′)Be vs.
xF as measured by E866 (right). The curves are the result of the global fit described in the text,
including (dashed lines) or excluding (solid lines) the NA51 points
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light nuclei places them out of the domain of applicability of the model we are
using because they are not large enough to be traversed by fully formed charmo-
nium states. It should also be noted that the use of “nuclear density profiles” in the
Glauber calculation of the proton and deuteron ρ L values is not as reliable as in
the case of the heavier nuclei. Without the pp and p-D points, the best description
of the data is represented by the solid lines, with a chi-square probability of 27 %,
reflecting a much better compatibility between the data and the model used in the
fit. The corresponding feed-down fraction is

R0(ψ ′) = (8.1 ± 0.3) % . (4)

Including the NA51 points leads to (7.9 ± 0.3) %, a negligible change despite the
visible degradation of the fit quality.

2.3 J/ψ Feed-Down from χc Decays

The R(χc) values are shown in Fig. 2-left as a function of L . The curve is the
result of a fit analogous to the one explained in the previous section, using the “ρL
parametrization” and leaving free the difference between the effective absorption
cross sections of the χc mesons and of the J/ψ mesons not coming from χc decays.
Given the conjecture, suggested by the ψ ′ analysis, that measurements performed
with very light nuclei are not accountable within the simple absorption model we
adopted, the pp point is excluded from the fit. The resulting feed-down fraction (for
L = 0) is

R0(χc) = (25 ± 5) % , (5)

with a fit χ2 probability of 25%.
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Fig. 2 Left: R(χc) versus L; the curve is the result of the fit described in the text (excluding the first
point). Right: 68 and 99 % confidence-level contours for the bi-dimensional probability distribution
of the fit parameters R0(χc) and σabs(χc) − σabs(J/ψ), where the J/ψ term does not include the
χc decay contribution



Quarkonium Production and Absorption in Proton–Nucleus Collisions 205

The R0(χc) value considerably depends on the difference between the absorption
cross sections of the two charmonium states (see Fig. 2-right). Therefore, a more
precise R0(χc) value can be obtained if an improved understanding of charmonium
absorption in nuclear targets significantly reduces the allowed range of σabs(χc) −
σabs(J/ψ).

3 J/ψ Polarization Revisited

It is well known that the pT distribution of the J/ψ broadens from light to heavy
nuclear targets in p–nucleus collisions. In particular, describing the nuclear depen-
dence of the pT distributions using the “α parametrization”, we know that α sig-
nificantly increases with pT (“Cronin effect”), especially at low pT, seemingly
saturating at high pT. However, the exact functional dependence of the observed
behaviour depends on the J/ψ polarization scenario assumed in the analysis of the
experimental data. For instance, the dimuon spectrometer used in the NA38, NA50,
NA51 and NA60 experiments has essentially no acceptance for J/ψ dimuons
outside of the window | cos θCS| < 0.5, where θCS is the Collins–Soper decay
angle. All the results reported by these experiments are integrated in this window,
assuming that the J/ψ is unpolarized. In other words, the J/ψ is assumed to
have a flat cos θCS distribution, the window | cos θCS| < 0.5 covering 50 % of the
phase space.

A recent global analysis of the available J/ψ polarization measurements [21]
indicates, however, that the J/ψ is significantly polarized, changing from longitu-
dinal to transverse polarization from low to high momentum. This means that the
window | cos θCS| < 0.5 should cover more than 50 % of the phase space at low
pT and less at high pT, unlike the assumption made in the NA50 data analyses, and
others. If the acceptance function were recalculated with this non-uniform polar-
ization scenario, the acceptance-corrected pT distributions should look flatter, with
a smaller low-pT J/ψ cross section than currently assumed. The importance of
this effect should be stronger in collision systems leading mostly to low-pT J/ψ’s,
where the nuclear dependence effects are more strongly pT dependent. In particu-
lar, a reanalysis of the data might lead to flatter J/ψ pT distributions in peripheral
heavy-ion collisions, resulting in a weaker low-pT J/ψ suppression, as compared
to what is currently assumed.

3.1 Definition of Polarization Frames

There is a widespread misjudgement about the influence that the choice of the
system of axes in the quarkonium rest frame has on the measurement of the angular
distribution of the decay leptons. In fact, different analyses of the same two-body
angular decay distribution may give qualitatively and quantitatively different results
depending on the definition of the axes.
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h1 h2
h1

h2

zHX

zCS

zGJ

J/ψ

J/ψ rest frame

hadron collision
centre of mass system

Fig. 3 Illustration of the definitions of the polarization axis, z, in the Collins–Soper (CS),
Gottfried–Jackson (GJ) and helicity (HX) reference frames, with respect to the directions of motion
of the colliding hadrons (h1 and h2) and of the J/ψ

The dilepton decay of a J/ψ with a given momentum is a two-degrees-of-
freedom process, fully characterized by the angular distribution of one decay lepton
in the rest frame of the mother particle. The lepton direction is expressed in a coordi-
nate system built taking as a reference the flight lines of the two colliding hadrons,
which are not collinear in the J/ψ rest frame. The actual definition of the axes
of this system requires the adoption of a convention. Figure 3 gives a pedagogical
illustration of how the orientation of the polar axis, z, is defined in the three different
conventions we will consider.

In the helicity reference frame the polar axis is calculated as the direction of the
vector −( ph1 + ph2 ), where ph1 and ph2 are the momenta of the two hadrons in
the J/ψ rest frame. This direction coincides with the flight direction of the J/ψ
itself as seen in the centre-of-mass frame of the colliding hadrons. The choice of
the helicity frame corresponds to the assumption that the polarization is acquired
by the produced particle as an effectively intrinsic kinematic property. An opposite
physical approach to the description of the polarization process is implicit in the
definitions of the Gottfried–Jackson [22] and Collins–Soper [23] frames, where the
polar axis reflects a direction established by the hard-scattering interaction. The
Gottfried–Jackson frame, in particular, is defined by having the polar axis along the
direction of the momentum of one of the two colliding hadrons ( ph1 or ph2 ), while
the Collins–Soper frame takes the bisector of the two ( ph1/| ph1 | − ph2/| ph2 |). In
general, the z-axis of the Collins–Soper frame is closely aligned with the direction
of the relative velocity of the colliding partons, the approximation being especially
good if we can neglect the parton intrinsic transverse momentum (and corresponding
“smearing” effects). The Collins–Soper and helicity frames are orthogonal to each
other at midrapidity (and pT > pL). All definitions become equivalent in the limit
of zero J/ψ pT, when ph1 and ph2 tend to be collinear.

We denote by ϑ the angle between the direction of the positive lepton and the
chosen polar axis, and by ϕ the azimuthal angle, measured with respect to the plane
formed by the vectors ph1 and ph2 (“production plane”). The angular distribution
contains three possible terms of angular dependence [22]:

d N

d(cosϑ) dϕ
∝ 1 + λϑ cos2 ϑ + λϑϕ sin 2ϑ cosϕ + λϕ sin2 ϑ cos 2ϕ . (6)



Quarkonium Production and Absorption in Proton–Nucleus Collisions 207

Non-zero values of the coefficients λϑ , λϑϕ and λϕ indicate an anisotropic emission
of the decay leptons, meaning that the J/ψ is polarized.

If the J/ψ is observed in a fixed kinematic configuration, any two definitions
of the polarization frame only differ by a rotation around the axis perpendicular to
the production plane (the “y-axis”). The functional dependence of the decay distri-
bution on the angles ϑ and ϕ is invariant with respect to such a rotation, while the
numerical values of the parameters λϑ , λϑϕ and λϕ change in a correlated way. Indi-
cating by δ a generic clockwise rotation angle around the y-axis, those changes are
described by

λ′
ϑ = λϑ − 3Λ

1 +Λ , λ′
ϕ = λϕ +Λ

1 +Λ
and

λ′
ϑϕ = λϑϕ cos 2δ + 1

2 (λϑ − λϕ) sin 2δ

1 +Λ , (7)

with

Λ = 1

2
λϑϕ sin 2δ + 1

2
(λϑ − λϕ) sin2 δ .

In particular, the coefficient λϑϕ can always be set to zero through a suitable rotation
of the reference frame around the y-axis by an angle

δtilt = 1

2
arctan

(
2 λϑϕ
λϕ − λϑ

)
. (8)

Having λϑϕ = 0 means that the frame being used has its axes along the principal
axes of symmetry of the polarized angular distribution. The measurement of λϑϕ ,
therefore, provides a criterium for the choice of a particularly convenient reference
frame for the description of the angular distribution.

It should now be clear that all three coefficients provide interesting and indepen-
dent information, whatever the frame chosen for the analysis of the experimental
data. Unfortunately, the majority of the available measurements of J/ψ polariza-
tion are limited to the coefficient λϑ . The lack of an important part of the physical
information contained in the data drastically limits the possible interpretations of
the results and, furthermore, forces us to rely on model-dependent assumptions in
order to compare results obtained by experiments using different reference frames.
Even the seemingly simple classification of “transverse” or “longitudinal” polariza-
tion is, in fact, dependent on the reference frame. This is particularly evident when
the decaying particle is produced with small longitudinal momentum (xF ≈ 0 or
ycm ≈ 0), in which case the Collins–Soper and helicity polar axes are perpendicular
to each other (δ = 90◦ in Eq. 7). Assuming, for simplicity, λϕ = λϑϕ = 0, if in one
of the two frames a polarization λϑ is observed, in the second frame the polarization



208 C. Lourenço et al.

has smaller magnitude and opposite sign, while an azimuthal anisotropy appears:

λ′
ϑ = −λϑ

2

1

1 + λϑ/2 , λ′
ϕ = λϑ

2

1

1 + λϑ/2 , λ′
ϑϕ = 0 . (9)

There is another reason justifying that the experimental analyses should be per-
formed in more than one reference frame. The J/ψ acquires its polarization with
respect to a “natural” polarization axis which is, a priori, unknown and not nec-
essarily definable event by event in terms of observable quantities. In practice, a
fine-grained scan of the multidimensional phase space of the J/ψ production pro-
cess is made impossible by the limited sample of collected events, forcing the decay
distribution to be measured as an average over a wide spectrum of kinematic con-
figurations. This means that the orientation of the polar axis of the chosen frame
with respect to the “natural axis” changes from event to event, depending on the
momentum of the produced J/ψ . Therefore, the decay distribution measured in a
given kinematic interval is the superposition of many distributions, equal in shape
but randomly rotated with respect to one another. The resulting distribution is still
described by the rotation-invariant Eq. 6, but has been “smeared” into a more spher-
ically symmetric shape and the measured absolute values of λϑ and λϕ are some-
what smaller than if measured in a fixed kinematic configuration and in the “natural
frame”. This shows that the reference frame providing the largest value of |λϑ | is
the one closest to the natural frame.

In summary, we have criteria that allow us to judge the quality of the reference
frames used in the measurement of the angular distribution, independently of any
prior theoretical expectation. The best frame is the one providing the smallest δtilt

angle and the largest significance of |λϑ |. Since the direction of the polarization axis
in the Gottfried–Jackson frame is always intermediate with respect to the other two
cases, the Collins–Soper and helicity definitions represent a good minimal set of
frames to be adopted in a measurement. It should be clear that a data-driven choice
of the best reference frame is crucial not only to measure the polarization with a
better significance but also to understand its origin.

3.2 Hierarchy of Polarization Frames

The HERA-B experiment reported [24] all the three parameters determining the
angular distribution and in three reference frames (Collins–Soper, Gottfried–Jackson
and helicity), providing a clear picture of how the shape of the distribution changes
from frame to frame. As seen in Fig. 4, the λϑ , λϕ and δtilt results (integrated in the
phase space covered by HERA-B) show a clear frame hierarchy, better judged from
the differences in the central values since the errors are strongly correlated from one
frame to another.

Giving the largest magnitude of the polarization parameter, |λϑ |, and the smallest
|λϕ| and δtilt, the Collins–Soper frame clearly provides the simplest angular distri-
bution. In the helicity frame, λϑ has a smaller magnitude, λϕ becomes significantly
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Fig. 4 The average values of λϑ , λϕ and δtilt measured by HERA-B (
√

s = 41.6 GeV, −0.34
< xF < 0.14) in three reference frames [24]. The errors include statistical and systematic uncer-
tainties, combined in quadrature

different from zero and, furthermore, δtilt acquires a very large error, reflecting the
poor precision with which the “tilt” of an almost spherically symmetric shape can be
determined. The much lower significance of the polarization measurement indicates
that the helicity axis is not aligned event after event with the “natural” polariza-
tion axis, the decay distribution being smeared by the varying J/ψ kinematics. The
Gottfried–Jackson results are intermediate and the distribution is significantly tilted.
In summary, the HERA-B measurements clearly indicate that the Collins–Soper
frame is the closest to the natural polarization frame, meaning that the interac-
tion which produces the J/ψ establishes a more correct reference direction for the
description of the polarization process than the J/ψ direction itself.

3.3 Kinematical Dependence of J/ψ Polarization

We will now turn to the kinematical dependence of the J/ψ polarization mea-
surements as reported, in the Collins–Soper frame, by the HERA-B [24] and
E866 [25, 26] fixed-target experiments. As seen in Fig. 5 left, E866 observed a small
J/ψ transverse1 polarization (λϑ ≈ 0.1) while the HERA-B pattern indicates a lon-
gitudinal polarization of decreasing magnitude with increasing pT. These measure-
ments are not necessarily in mutual contradiction given that they cover significantly
different xF windows, as illustrated in Fig. 5 right. The average J/ψ longitudinal
momentum, in the centre of mass of the collision system, is 7 and −1.4 GeV/c for
E866 and HERA-B, respectively.

A consistent description of these measurements can be obtained assuming that
the natural polarization frame (λϕ = 0, λϑϕ = 0) coincides with the Collins–Soper
frame and that λϑ is a monotonically increasing function of the total J/ψ momen-
tum, p, being −1 at zero momentum and +1 at asymptotically high momentum. We

1 Following a common (even if misleading) practice, we qualify the polarization as transverse
(longitudinal) when λϑ > 0 (λϑ < 0).
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have chosen the simple parametrization

λϑ = 1 − 21−(p/p0)κ , (10)

with p0 and κ determined by the (Collins–Soper) E866 and HERA-B patterns.
As discussed in Sect. 2, the J/ψ polarization measurements integrate a signif-

icant fraction, 0.33 ± 0.05, of J/ψ events resulting from χc and ψ ′ decays. Irre-
spectively of the possible χc and ψ ′ polarizations, the strong kinematical smearing
induced by the varying kinematics of their decays results in a negligible observable
polarization of the resulting J/ψ’s. Also the feed-down contribution from b-hadron
decays can be neglected (very small at fixed-target energies and experimentally sub-
tracted in the CDF analysis). Therefore, we can assume that all the observed polar-
ization stems from the directly produced J/ψ’s. In this framework, and accounting
for the specific kinematical and acceptance conditions of the experiments, the E866
and HERA-B data sets lead to p0 = 5.0 ± 0.3 GeV/c and κ = 0.60 ± 0.06. The
quality of the data description can be judged from Fig. 5, where the width of the
bands correspond to ±1σ variations in these parameters, as well as in the J/ψ
feed-down fraction.

Fixing the p0 and κ parameters from the E866 and HERA-B data, as reported
in the Collins–Soper frame, we can derive the λϑ and λϕ coefficients in the helic-
ity frame. We do such calculations using a Monte Carlo procedure, so as to easily
incorporate the “kinematical smearing” induced by the decays. Figure 6 shows the
calculated λϑ and λϕ bands, in the helicity frame and as a function of pT, for the
HERA-B [24] and CDF [27] kinematical conditions, compared to the corresponding
data points. The significant decrease of λϑ with pT reported by CDF in the helicity
frame is remarkably well reproduced by our assumption that, in the Collins–Soper
frame, λϑ grows monotonically with pT. We remind that the CDF data do not con-
tribute to the fit of the p0 and κ parameters.
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It is important to note that, so far, CDF has not reported any results in the Collins–
Soper frame and, furthermore, no information has been made available regarding
the azimuthal part of the decay angular distribution. In the narrow rapidity win-
dow of CDF, where the maximum J/ψ longitudinal momentum (∼ 4 GeV/c) is
always smaller than the minimum pT (5 GeV/c), the helicity and Collins–Soper
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Fig. 7 pT dependence of λϑ , in the Collins–Soper frame, as calculated for the energy and rapidity
windows of the PHENIX, CDF and CMS experiments
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frames are essentially orthogonal to each other. The hypothesis (emerging from the
E866 and HERA-B data) that the decay distribution has a purely polar anisotropy
in the Collins–Soper frame implies that, in this frame, CDF should observe λϑ
increasing from zero to about +0.4, as illustrated in Fig. 7. This figure also
shows the corresponding calculations for the kinematical conditions of the PHENIX
(
√

s = 200 GeV, |η| < 0.35) and CMS (
√

s = 14 TeV, |η| < 2.4) experi-
ments. If our model, inspired on the fixed-target data, holds up to the much higher
energies of the LHC, we should see λϑ saturating for pT values higher than those
probed by CDF, with a magnitude determined by the fraction of directly produced
J/ψ mesons.

4 Energy Dependence of the J/ψ Break-Up Cross Section

We will now briefly address some “cold nuclear matter effects” affecting charmo-
nium production in proton–nucleus collisions and their dependence on the collision
energy. A detailed study of J/ψ and ψ ′ production in proton–nucleus collisions
was made by NA50, with proton beams of 400 and 450 GeV, and up to six
different nuclear targets (Be, Al, Cu, Ag, W and Pb), in the rapidity window
|ycms| < 0.5 [10, 11]. Comparing the 400 and 450 GeV J/ψ / DY cross-section
ratios, where Drell–Yan dimuons are used as reference, to calculations based on the
Glauber formalism (neglecting nuclear modifications of the parton densities), the
J/ψ “absorption cross section” was determined to be σ J/ψ

abs = 4.2 ± 0.5 mb [11].
This value has been used by NA50 [4] and NA60 [28] in the studies of the SPS
heavy-ion data, collected at 158 GeV in the rapidity window 0 < ycms < 1, assum-
ing that the initial and final state “normal nuclear effects” do not change between
the two energies and rapidity windows. This assumption, however, lacks supportive
experimental evidence. As can be seen in Fig. 8, where the J/ψ nuclear dependence
is expressed in terms of the “α parametrization”, E866 [12] and HERA-B [29]
observed a very strong dependence of α with xF, and a smaller midrapidity J/ψ
absorption at 800–920 GeV than NA50 saw at 450 GeV.

Recognizing the crucial importance of the normal nuclear absorption baseline
in the interpretation of the J/ψ suppression seen in the heavy-ion data and know-
ing that the charmonium absorption processes may very well depend on collision
energy [30], the NA60 experiment collected (in 2004) proton–nucleus data (with
seven different nuclear targets: Be, Al, Cu, In, W, Pb and U) in the energy and kine-
matical conditions of the NA50 and NA60 heavy-ion data. The forthcoming results
should significantly contribute to improve our understanding of the mechanisms
causing the observed nuclear effects in charmonium production. In this section we
analyse the J/ψ production cross sections measured in proton–nucleus collisions in
several fixed-target experiments, with proton beam energies from 200 to 920 GeV.
We evaluate the corresponding J/ψ break-up cross section, σ J/ψ

abs , by comparing the
data to calculations of the charmonium production cross sections. The calculations
are performed with the colour evaporation model [31], using “free proton” PDFs
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Fig. 8 Nuclear dependence of the J/ψ production cross sections, expressed in terms of α, as
derived from NA50, E866 and HERA-B data

and also PDFs modified by the nuclear environment, following several parametriza-
tions of the nuclear modifications: EKS98, nDSg and EPS08 [32–34]. The survival
probability of the charmonium states traversing the nuclear matter is evaluated in
the framework of the Glauber model [20], with Woods–Saxon nuclear density pro-
files [35, 36]. More details are given in [37]. We concentrate on the “midrapidity
region” and neglect nuclear effects other than initial-state modifications of the par-
ton densities and final-state charmonium absorption. As in most previous studies
of charmonium absorption in nuclear matter, we treat the J/ψ as a single meson
passing through the nuclear medium, without trying to disentangle contributions
due to ψ ′ and χc decays.

Figure 9 left shows the xF dependence of the J/ψ break-up cross section, σ J/ψ
abs ,

determined from the ratio between the p-W and the p-Be J/ψ cross sections mea-
sured by E866 at 800 GeV [12]. We clearly see that the extracted σ J/ψ

abs values are
very sensitive to the assumed initial-state nuclear effects on the PDFs. In particu-
lar, the use of nuclear parton distributions with strong antishadowing leads to σ J/ψ

abs
values significantly larger at xF = −0.1 than at +0.2. Another observation can be
made from the xF dependence of the E866 data. If we assume that nuclear absorption
effects on the J/ψ can be effectively described by the Glauber formalism with a
single σ J/ψ

abs (ignoring formation times, feed-down contributions, energy loss, etc),
we see a rather striking increase of σ J/ψ

abs at forward xF, explicitly shown in Fig. 9
right for the EKS98 N-PDFs (this behaviour is equally seen with other N-PDFs).

These observations show that it is not straightforward to probe the existence of
changes of the “midrapidity J/ψ break-up cross section” as a function of collision
energy. In reality, there is no single “midrapidity” σ J/ψ

abs value. The E866 data, in
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particular, indicate that σ J/ψ
abs drops by a factor of 2 or 3 in the range 0 < xF < 0.25,

corresponding to the centre-of-mass rapidity range 0 < ycms < 1. Therefore, when
comparing measurements made at different energies, we must carefully consider the
covered xF or rapidity ranges.

Figure 10 shows σ J/ψ
abs as a function of ycms, as obtained from the p-A data of

NA3 [38, 39], NA50 [10, 11], E866 [12] and HERA-B [15, 29], with free proton
PDFs (“NONE”, left) and PDFs modified by the nuclear medium according to the
EKS98 model (right). While the patterns derived neglecting nuclear effects on the
PDFs can be considered flat in the midrapidity range −0.3 < ycms < 1.0, the nuclear
modifications of the PDFs considerably affect the σ J/ψ

abs (ycms) dependence and a
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non-trivial function is needed to evaluate the σ J/ψ
abs (ycms=0) values for the various

data sets. In the EKS98 case, for example, the E866 and HERA-B data sets suggest
the use of an asymmetric Gaussian function with μ ≈ −0.21 mb, σL ≈ 0.37 mb
and σR ≈ 1.1 mb.

The change of σ J/ψ
abs (ycms=0) with collision energy,

√
sN N , can be observed in

Fig. 11, for free proton PDFs and three nuclear PDFs. The corresponding numerical
values are collected in Table 2.

To determine the σ J/ψ
abs relevant for the analysis of the SPS heavy-ion results, we

must extrapolate σ J/ψ
abs (ycms=0) down to

√
sN N = 17.2 GeV (dotted vertical line

in Fig. 11). We can do the extrapolation using simple functions, like an exponen-
tial or a power law. A linear function is not suitable because it leads to negative
σ

J/ψ
abs (ycms=0) values for energies not much higher than those probed by the data

sets we analysed. The σ J/ψ
abs (ycms=0) values extrapolated to 158 GeV with the expo-

nential function are collected in Table 3, which also gives the corresponding values
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Table 2 σ J/ψ
abs (ycms = 0) values extracted from the five analysed data sets and for the nuclear PDFs

we have considered, including the free protons case

Exp. σ
J/ψ

abs (ycms = 0) [mb]

NONE nDSg EKS98 EPS08

NA3 4.71 ± 0.66 6.78 + 1.01
− 0.91 7.82 + 0.90

− 0.84 10.55 + 1.24
− 1.10

NA50-400 4.82 ± 0.63 5.02 ± 0.67 7.24 ± 0.73 8.48 ± 0.79
NA50-450 4.72 ± 0.90 4.82 ± 0.95 7.25 ± 1.03 8.36 ± 1.08
E866 2.82 + 0.76

− 0.59 3.43 + 0.77
− 0.64 5.13 + 0.79

− 0.72 5.68 + 0.84
− 0.77

HERA-B 2.13 + 1.19
− 0.96 2.66 + 1.28

− 1.05 4.35 + 1.37
− 1.03 4.67 + 1.24

− 1.05

integrated in the NA50 heavy-ion rapidity window, 0 < ycms < 1, weighted by
the rapidity distribution of the J/ψ dimuons measured in Pb–Pb collisions (before
acceptance corrections) [40]. The dependence of σ J/ψ

abs on ycms at
√

sN N = 17.2 GeV
is shown in Fig. 12-left, for several nuclear PDFs.

As shown in Table 3, if we neglect nuclear modifications on the PDFs we derive
σ

J/ψ
abs (0 < ycms < 1) = 5.5±0.8 mb, higher than the value used so far in the analyses

of the SPS heavy-ion measurements (4.2 ± 0.5 mb, also using free-proton PDFs). If
we use the EKS98 parametrization to model the nuclear modifications of the PDFs,
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Table 3 The σ J/ψ
abs (ycms = 0) and σ J/ψ

abs (0 < ycms < 1) values evaluated at 158 GeV by extrapo-
lating with an exponential function the values derived from measurements made at higher energies
by NA3, NA50, E866 and HERA-B

N-PDFs σ
J/ψ

abs (ycms=0) [mb] σ
J/ψ

abs (0 < ycms < 1) [mb]

NONE 5.5 ± 0.8 5.5 ± 0.8
nDSg 7.3 ± 0.2 5.2 ± 0.2
EKS98 8.7 ± 0.7 7.2 ± 0.5
EPS08 11.8 ± 0.6 7.5 ± 0.4
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we obtain σ J/ψ
abs (0 < ycms < 1) = 7.2 ± 0.5 mb. It is interesting to notice that this

is essentially equal to the values obtained by NA50 at 400–450 GeV, in rapidity
windows centred at midrapidity. The drop of σ J/ψ

abs from ycms = 0 to ycms = 1, in the
EKS98 case, compensates the increase in σ J/ψ

abs from Elab = 400–450 to 158 GeV,
as is illustrated in Fig. 12-right.

5 Summary

One of the most important “discoveries” in the field of “heavy-ion physics” is that
it is extremely important, indeed crucial, to have very robust data collected in more
elementary collision systems, such as proton–proton and proton–nucleus interac-
tions, by the same experiments, at the same collision energies, and in the same
phase–space acceptance windows as the heavy-ion measurements. Only after hav-
ing a solid “expected baseline”, provided by a good understanding of the relevant
physics processes and based, in particular, on detailed analyses of p-A data, we
can realistically hope to identify patterns in the high-energy heavy-ion data that
will clearly and convincingly signal the presence of “new physics” in the matter
produced in those interactions.

In this chapter we have addressed a few data-driven recent developments aimed at
reaching a better understanding of the basics of quarkonium production and absorp-
tion, in proton–nucleus collisions, in the absence of high-density QCD effects. Such
studies need to be continued and strengthened to establish the centrality-dependent
quarkonium production baseline in heavy-ion collisions, with respect to which we
can extract and study signals of QGP formation, gluon saturation, etc. Clearly, such
baselines are crucial to correctly interpret the charmonium “anomalous” suppres-
sions seen at the SPS and RHIC and to analyse the quarkonium production data
soon to be collected in Pb–Pb collisions at the LHC, where a solid understanding
of the basics is even more important, given the lack of p-nucleus measurements and
the very different energies of the pp and Pb–Pb runs.
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Electromagnetic Probes

Rupa Chatterjee, Lusaka Bhattacharya, and Dinesh K. Srivastava

Abstract We introduce the seminal developments in the theory and experiments
of electromagnetic probes for the study of the dynamics of relativistic heavy-ion
collisions and quark–gluon plasma.

1 Introduction

Collision of heavy nuclei at relativistic energies is expected to lead to formation of a
deconfined state of matter known as quark–gluon plasma (QGP) [1], where quarks
and gluons are the effective degrees of freedom rather than nucleons or hadrons
[2, 3]. It is now well accepted that a few microseconds after the “Big Bang,” the
whole universe was in the state of QGP [4].

Several experiments performed at the super proton synchrotron (SPS) at CERN
and relativistic heavy-ion collider (RHIC) at Brookhaven National Laboratory, New
York, have provided a significant evidence of the formation of this novel state of
matter. A giant accelerator known as large hadron collider (LHC) at CERN will be
in operation very soon and will provide many new insights about the properties of
QGP and the theory of strong interactions.

Heavy-ion collisions at relativistic energies produce extremely high temperatures
and energy densities within a very small volume. As a result, quarks and gluons
(also known as partons) no longer remain confined within the nucleonic volume and
create a deconfined state of partons due to multiple scatterings and production of
secondaries due to gluon multiplications. The system (or the fireball) may reach a
state of local thermal equilibrium. It cools by expansion and below a certain critical
temperature (Tc ∼ 180 MeV) or energy density, the partons are confined to form
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hadrons and the system reaches a hadronic state. It may undergo a further expansion
and cooling before the freeze-out takes place.

Radiation of photons and dileptons has been proposed as the most promising
and efficient tool to characterize the initial state of heavy-ion collisions. Unlike
hadrons, which are emitted from the freeze-out surface after undergoing intense
re-scatterings, photons come out from each and every phase of the expanding fire-
ball. Being electromagnetic in nature, they interact only weakly and their mean free
path is larger than the typical system size (∼10 fm). As a result once produced, they
do not suffer further interaction with the medium (α  αs) and carry undistorted
information about the circumstances of their production to the detector [5].

Initially, photons (real as well as virtual) were studied in order to get only the
temperature of the plasma. Several other possibilities, e.g., (i) evolution of the sys-
tem size by intensity interferometry [6–9], (ii) momentum anisotropy of the initial
partons [10, 11] as well as formation time of quark–gluon plasma [12] using elliptic
flow of thermal photons, (iii) an accurate check on jet quenching and other aspects
of the collision dynamics by photons due to passage of high-energy jets through
plasma [13], have come to the fore. Of course dileptons are considered as the most
reliable messengers of the medium modification of vector mesons [14].

2 Sources of Photons

In order to proceed, it is useful to identify various sources of photons from relativis-
tic heavy-ion collisions. Their production is a result of convolution of the emissions
from the entire history of the nuclear collision. Photons are emitted from the pre-
equilibrium stage, from QGP phase, from hadronic phase, and also from the decay

Fig. 1 Schematic diagram of different sources of photons and their relative pT spectra
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of hadrons produced at the time of freeze-out. An ideal situation would ensue if
the contributions from different stages dominate different parts of the pT spectrum.
A schematic diagram of the different sources of photons and their slopes is shown
in Fig. 1. We, thus, need rates and models to study the evolution from different
sources. Hydrodynamics, cascade, fireball, cascade+hydrodynamics are the vastly
used models for this purpose.

2.1 Direct Photons

The term “direct photons” stands for the photons which emerge directly from a
particle collision. In a heavy-ion collision experiment, the detector captures all the
emitted photons including those from decay of final state hadrons. The resultant
spectrum is the inclusive photon spectrum. However, more than 90% of the photons
in this spectrum are from hadron decay. One can subdivide this broad category of
“direct photons” into “prompt,” “pre-equilibrium,” “thermal” (from QGP as well as
hadronic phase), and “jet conversion” depending on their origin. Before we come
to the different sub-categories of direct photons, we start our discussion with decay
photons and their subtraction from the inclusive photon spectrum.

2.2 Decay Photons

As mentioned earlier, most of the decay photons are from 2-γ decay of π0 and η
mesons. ω, η′, etc., also contribute to the decay photon spectrum, marginally. Sub-
traction of the decay background from inclusive photon spectrum is a very challeng-
ing task. WA98 Collaboration [15] used the subtraction method using invariant mass
analysis for decay background and later PHENIX Collaboration [16] has developed
this method to a much higher level of sophistication.

2.2.1 Invariant Mass Analysis

Extraction of direct photon spectrum from the inclusive photon spectrum is done
using invariant mass analysis as the primary step. First, all the detected photons are
listed on an event-by-event basis. Then by selecting two photons randomly from an
event, invariant mass of the pair is calculated. If E1, E2 are the energies and p1, p2

are the three momenta of the photons respectively, then the invariant mass of the
pair is

Mγ γ = [(E1 + E2)2 − (p1 + p2)2]1/2. (1)

If the value of Mγ γ is close to mπ0 , it is assumed that they are the decay products
from the same pion and a π0 spectrum is obtained. Similarly the η spectrum is
obtained. These two spectra are then used to determine the decay photon spectrum
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using kinematics and the subtraction of this spectrum from the inclusive spectrum
gives the direct photon spectrum.

However, in an event having N number of photons, the total number of photon
pairs that can be formed is N C2. For large values of N , this number gets very large.
Thus, there is a very high probability of getting a pair of photons having an invariant
mass mπ0 or mη, which are not decay products of the same pion or η meson.

Several other issues also need to be accounted for: (i) the detector resolution is
finite, (ii) the opening angle between the decay photons can get very small, espe-
cially if the energy of the pion is large, (iii) the photons may not deposit all their
energy in the detector, and (iv) one of the photons may be outside the coverage of
the detector.

2.2.2 Mixed-Event Analysis

Thus, the major problem of invariant mass analysis is that the accidental (false) pho-
ton pairs can also give rise to pion mass and it is not possible to distinguish them
from the correlated pairs. To overcome this problem, a mixed-event analysis [17]
procedure has been used successfully. The basic idea of mixed-event technique is
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Au+Au events compared to a normalized mixed-event sample representing the combinatoric back-
ground. Bottom panels: The mγ γ distributions after subtraction of the combinatoric background for
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Electromagnetic Probes 223

to compare particle spectrum from one event to the result for particle combinations
from different events, which are a priori not correlated. As a first step, properly nor-
malized mixed events are constructed by randomly sampling photons from different
events. The difference of the invariant mass spectra (see Fig. 2) of the real events
and the mixed events then gives the pion and η distributions. Once again, the decay
photon spectrum is subtracted from the inclusive photon spectrum to get the direct
photons.

2.2.3 Internal Conversion and Tagging of Decay Photons

An alternative approach of separating direct photons from decay background is by
measuring the “quasi-real” virtual photons which appear as low mass electron–
positron pair. It is assumed that any source of real photons also produces low mass
virtual photons which decay into e+e− pair. This method is known as internal con-
version method [18, 19] and is based on two assumptions. The first assumption is
that the ratio of direct to inclusive photons is the same for real as well as virtual pho-
tons having mγ < 30 MeV, i.e, γ ∗

dir/γ
∗
incl = γdir/γincl. Second, the mass distribution

follows the Kroll–Wada formula [20]:

d2nee

dmee
= 2α

3π

1

mee

√
1 − 4m2

e

m2
ee

(
1 + 2m2

e

m2
ee

)
Sdnγ . (2)

Here, me and mee are the masses of electron and e+e− pair, respectively, and α is
the fine structure constant. This method is used for Compton scattering (q + g →
q + γ ∗ → q + e+ + e−), Dalitz decay ( π0, η → e+e−γ, ω → e+e−π0), and
also for two γ decay of several other hadrons. The factor S in Eq. (2) is process
dependent and for π0 (→ γ γ ∗ → γ e+e−) decay it is expressed as [21]

S = |F(m2
ee)|2

(
1 − m2

ee

M2
h

)3

, (3)

where Mh is the hadron mass and F(m2
ee) is the form factor. The factor S is 0 for

mee > Mh and goes to 1 as mee → 0 or mee  pT . The key advantage of this
method is the greatly improved signal to background ratio which is achieved by
elimination of the contribution of Dalitz (π0) decay. The experimentally measured
quantity is the ratio of e+e− pairs in a particular invariant mass bin and the direct
photon spectrum is obtained by multiplying γ ∗

dir/γ
∗
incl to the measured inclusive pho-

ton spectrum (left panel of Fig 3).
Due to the excellent resolution of the PHENIX detector to measure charged par-

ticles at low momenta, another powerful technique known as “tagging of decay
photons” [22, 23] is used to eliminate the π0 decay background. This method
is very useful in the low and intermediate pT range ( 1 < pT < 5 GeV) as
the systematic uncertainties introduced by detector efficiency, acceptance, etc.,
cancel out for measuring γ /γπ0 directly in place of conventional double ratio
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Fig. 3 Left panel: Invariant mass distribution of virtual photons from π0 and η Dalitz decay as well
as from direct photons [18, 19]. Middle and right panels: Invariant mass spectrum in “tagging” of
decay photon method [22, 23]

(R = (γ /π0)measured/(γ /π0)decay) technique. In this method, the invariant mass
(mγ e+e− ) distribution of the π0 ( → γ γ ∗ → γ e+e−) decay products is constructed
and then mixed-event analysis is used for the final subtraction (middle and right
panel of Fig. 3).

2.3 Sources of Direct Photons

Direct photons can be classified into different categories depending on their origin
from different stages of the expanding fireball formed after the collision. These
are (1) prompt photons, which originate from initial hard scatterings, (2) pre-
equilibrium photons, produced before the medium gets thermalized, (3) thermal
photons from quark–gluon plasma as well as by hadronic reactions in the hadronic
phase, and (4) photons from passage of jets through plasma. It is not possible exper-
imentally to distinguish between the different sources. Thus, theory can be used
with a great advantage to identify these sources of direct photons and their relative
importance in the spectrum [24].

2.3.1 Partonic Processes for Production of Prompt Photons

In relativistic heavy-ion collisions, prompt photons are produced due to quark–
gluon Compton scattering (q + g → q + γ ), quark–antiquark annihilation process
(q + q̄ → g + γ ), and quark fragmentation ( q → q + γ ) following scattering
of partons of the nucleons in the colliding nuclei (see Fig. 4). At lowest order in
ααs , quark–gluon Compton scattering and quark–antiquark annihilation processes
dominate the photon production. In next-to-leading order (NLO) calculation, many
more complicated scattering processes appear in the photon production cross section
and the total contribution can be written as addition of two different terms as [25]

dσ

d−→p T dη
= dσ (D)

d−→p T dη
+ dσ (F)

d−→p T dη
. (4)
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Fig. 4 Partonic processes for production of photons from (a) quark–gluon Compton scattering,
quark–antiquark annihilation process, and (b) quark fragmentation

In the above equation “D” stands for “direct” or the total Compton scattering and
annihilation contribution while the photons from fragmentation are denoted by “F”.
It is clear that the “D” photons are well separated from hadrons. The “F” photons,
on the other hand, have their origin in collinear fragmentation of colored high-pT

partons and are accompanied by hadrons. This can be used with advantage as the
produced photons can be separated out by employing useful isolation cuts. The two
terms in Eq. (4) can be written explicitly as [26]

dσ (D)

d−→p T dη
=

∑
i, j=q,q̄,g

∫
dx1dx2 Fi/h1 (x1,M) Fj/h2 (x2,M)

αs(μR)

2π

×
(

dσ̂i j

d−→p T dη
+ αs(μR)

2π
K (D)

i j (μR,M,MF )

)
(5)

and

dσ (F)

d−→p T dη
=

∑
i, j,k=q,q̄,g

∫
dx1dx2

dz

z2
Fi/h1 (x1,M) Fj/h2 (x2,M) Dγ /k(z,MF )

×
(
αs(μR)

2π

)2
(

dσ̂ k
i j

d−→p T dη
+ αs(μR)

2π
K (F)

i j,k(μR,M,MF )

)
. (6)

Here, Fi/h1,2 (x,M) are the parton distribution functions and αs(μR) is the strong
coupling defined in the M S renormalization scheme at the renormalization scale
μR ; for details see [25]. As mentioned earlier, in a complete and consistent NLO
pQCD [O(αα2

s )] calculation, important contribution to prompt photon result arises
from various possible 2 → 3 processes like ab → γ cd for the direct as well as for
the fragmentation processes [26, 27].

In case of photons from fragmentation, the higher order correction is very impor-
tant at low xT (= 2pT /

√
s). By choosing a scale for factorization, renormaliza-

tion, and fragmentation, all equal to pT /2, a very good quantitative description is
obtained for all the available pp and p p data without introduction of any intrinsic
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Fig. 5 World’s inclusive and isolated direct photon production cross sections measured in pp and
p p̄ collisions compared to JETPHOX NLO predictions, using BFG II(CTEQ6M) for fragmenta-
tion (structure) functions and a common scale pT /2 [25]

kT . Results spanning over two orders of magnitude in energy and over nine orders
of magnitude in cross sections are shown in Fig. 5.

It should be mentioned though that a similar exercise for pions requires a scale
of pT /3 [28].

In the early calculations, the results for nucleus–nucleus scatterings were often
obtained by multiplying the pp results for some

√
s with corresponding scaling

factor Ncoll (= σN N TAB ; where σN N is the nucleon–nucleon cross section and TAB is
the nuclear overlapping function for nuclei A and B) or number of binary collisions.
In actual practice, often enough, σN N was replaced by σpp. However, as the valence
quark structures of protons (uud) and neutrons (udd) are different, one needs to cor-
rectly account for the iso-spin of the nucleons to calculate the prompt contribution.
This correction will strongly affect the results in the pT range, where the valence
quark contribution is significant. Also, remember that there is no direct measurement
for pn and nn cross sections, though they can be estimated by comparing results of
scatterings involving deuterons. The effect of shadowing on structure function and
energy loss of final state quarks before they fragment into hadrons are two other
corrections [29, 30] which need to be accounted for.

In order to clearly see this point we show the results for prompt photons for nn
and pn collisions normalized to those for pp collisions at

√
s = 200 GeV in the left

panel of Fig. 6. It is clear that at low xT (where processes involving gluons domi-
nate) the effect is not very significant, however with larger values of xT (where the
processes involving valence quarks dominate), the production of photons decreases
by a large factor for the case of pn and nn collisions.
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√
s = 200 GeV. Right panel: Iso-spin, shadowing, and energy loss corrected RAA for prompt

photons at 200A GeV Au+Au collisions using NLO pQCD

The transverse momentum-dependent nuclear modification factor RAA defined
as

RAA(pT ) = 1

Ncoll

dσ AA
γ (pT )/dyd2 pT

dσ pp
γ (pT )/dyd2 pT

(7)

for prompt photons using NLO pQCD and considering iso-spin, shadowing, and
energy loss effects for 200A GeV Au+Au collisions at RHIC is shown in the right
panel of Fig. 6. We note that, for pT < 10 GeV, the iso-spin and shadowing cor-
rected result shows an enhancement in the prompt photon production compared to
the situation when only the iso-spin correction is incorporated [31]. This is due
to anti-shadowing for larger values of Bjorken x or large xT . The inclusion of the
energy loss pushes down the value of RAA to less than 1 for all pT . We also give a
comparison with the PHENIX [32] experimental data in the bottom lower panel of
Fig. 8.
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ferent collider energies with different target projectile combination and comparison of the RHIC
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NLO results at LHC (Pb+Pb@5.5A TeV) and SPS (Pb+Pb@17.4A GeV) are
shown in Fig. 7. To clearly demonstrate the relative features of iso-spin, shadowing,
and energy-loss-corrected prompt photons at different collider energies, results for
RAA as function of xT are shown in Fig. 8.

2.4 Photon Production from Quark–Gluon Plasma

The thermal emission rate of photons with energy E and momentum p from a small
system (compared to the photon mean free path) is related to the imaginary part of
the photon self-energy by the following relation:

E
d R

d3 p
= −2

(2π )3
I mΠμ

R,μ 1

eE/T − 1
, (8)

where ΠμR,μ is the retarded photon self-energy at a finite temperature T . This rela-
tion is valid in the perturbative [33, 34] as well as non-perturbative [35] limits. It
is also valid to all orders in the strong interactions and to order e2 in the electro-
magnetic interactions. If the photon self-energy is approximated by carrying out a
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loop expansion to some finite order, then the formulation of Eq. (8) is equivalent to
relativistic kinetic theory. In order to illustrate this, we closely follow the treatment
of [36, 37].

Thus using relativistic kinetic theory formulation, the contribution of these pro-
cesses to the rate can be written as [36–38]

Ri = N
∫

d3 p1

2E1(2π )3

d3 p2

2E2(2π )3
f1(E1) f2(E2)(2π )4δ(p1

μ + p2
μ − p3

μ − pμ)

× |Mi |2 d3 p3

2E3(2π )3

d3 p

2E(2π )3
[1 ± f3(E3)], (9)

where Mi represents the amplitude for one of these processes and the f ′s are the
Fermi–Dirac or Bose–Einstein distribution functions as appropriate. Positive and
negative signs in the last part of Eq. (9) correspond to Bose enhancement and Pauli
suppression, respectively.

The integral above can be simplified by introducing Mandelstam variables s =
(p1 + p2)2, t = (p1 − p3)2, and u = (p1 − p)2. Now the differential photon rate can
be written as

E
dRi

d3 p
= N

(2π )7

1

16E

∫
dsdt |Mi (s, t)|2

∫
d E1d E2 f1(E1) f2(E2)

× [1 ± f3(E1 + E2 − E)]θ (E1 + E2 − E)(aE1
2 + bE1 + c)−1/2, (10)

where

a = −(s + t)2,

b = 2(s + t)(Es − E2t),

c = st(s + t) − (Es + E2t)2. (11)

Considering the photon energy to be large, one can consider f1(E1) f2(E2) ≈
e−(E1+E2)/T and simplify the above as

E
dRi

d3 p
= N

(2π )6

T

32E
e−E/T

∫
ds

s
ln(1 ± e−s/4ET )±1

∫
dt |Mi (s, t)|2. (12)

In the above equation, positive and negative signs stand for fermions (q) and bosons
(g) in the final state, respectively.

The relation between the amplitude and differential cross section for mass less
particles can be written as

dσ

dt
= |M|2

16πs2
. (13)
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And thus, the differential cross sections for annihilation process and Compton scat-
tering are

dσ annihilation

dt
= 8πααs

9s2

u2 + t2

ut
(14)

and

dσCompton

dt
= −πααs

3s2

u2 + s2

us
. (15)

For annihilation process, N = 20 when summing over u and d quarks and for
Compton scattering, N = 320/3. The total cross section can be obtained after
integrating over t . These differential cross sections have a singularity at t and/or
u = 0 and the total cross section is infinite as the processes involve exchange of
massless particle.

To screen this divergence many-body effects are necessary. This approach will
be discussed later. As a first step let us isolate the region of phase space causing the
divergences. The integration is done over

− s + kc
2 ≤ t ≤ −kc

2, 2kc
2 ≤ s ≤ ∞, (16)

where T 2 � kc
2 > 0 is an infrared cutoff.

This treats u and t symmetrically and maintains the identity s + t + u = 0
appropriate for all massless particles.

In the limit that kc
2 → 0,

E
dRCompton

d3 p
= 5

9

ααs

6π2
T 2e−E/T [ln(4ET/kc

2) + CF ], (17)

E
dRannihilation

d3 p
= 5

9

ααs

3π2
T 2e−E/T [ln(4ET/kc

2) + CB], (18)

where

CF = 1

2
− CEuler + 12

π2

∞∑
n=2

(−1)n

n2
ln n = 0.0460 . . . , (19)

CB = −1 − CEuler − 6

π2

∞∑
n=2

1

n2
ln n = −2.1472 . . . . (20)

These expressions use the full Fermi–Dirac or Bose–Einstein distribution functions
in the final state.

These results have a very interesting structure. Thus, the factor 5/9 arises from
the sum of the squares of the electric charges of the u and d quarks, the factor ααs

comes from the topological structure of the diagrams, a factor T 2 comes from phase
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space which gives the overall dimension of the rate, and we have the Boltzmann
factor e−E/T for photons of energy E . The logarithm arises due to the infrared
behavior.

2.4.1 Infrared Contribution

The infrared divergence in the photon production rate [36, 37] discussed above is
caused by a diverging differential cross section when the momentum transfer goes to
zero. Oftentimes long-ranged forces can be screened by many-body effects at finite
temperatures. Braaten and Pisarski have analyzed problems such as this one in QCD
[39–41]. They have argued that a cure can be found in reordering perturbation theory
by expanding correlation functions in terms of effective propagators and vertices
instead of bare ones. These effective propagators and vertices are just the bare ones
plus one-loop corrections, with the caveat that the one-loop corrections are evaluated
in the high-temperature limit. This makes them relatively simple functions.

The analysis of Braaten and Pisarski shows that a propagator must be dressed
if the momentum flowing through it is soft (small compared to T ). This is because
propagation of soft momenta is connected with infrared divergences in loops. Dress-
ing of propagators are necessary, otherwise corrections due to these are also infinite.

Using the one-loop corrected propagators and vertices and the contribution to the
rate coming from the infrared-sensitive part of phase space can be written as

E
dRBP

d3 p
= 5

9

ααs

2π2
T 2e−E/T ln(

kc
2

2mq
2

), (21)

where 2mq
2 = 1

3 g2T 2.
Adding this contribution to those given by Eqs. (19) and (20), the final result can

be written as

E
dR
d3 p

= 5

9

ααs

2π2
T 2e−E/T ln

(
2.912

g2

E

T

)
. (22)

This is independent of the cutoff kc. Thus, the Braaten–Pisarski method has
worked beautifully to shield the singularity encountered above. We also note that
in kinetic theory calculation, the effective infrared cutoff is kc

2 = 2mq
2. In ear-

lier works an infrared cutoff was often imposed by giving the exchanged quark an
effective temperature-dependent mass.

These early results have been brought to a high degree of sophistication and
results complete to leading order in αs with inclusion of LPM effects are now avail-
able, which should be used for detailed calculation [42].

2.4.2 Photons from Passage of Jets Through QGP

The relativistic heavy-ion collisions at RHIC (and LHC) energies are marked by
a large production of high-energy quark and gluon jets which lose energy while
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passing through the QGP due to collision and radiation of gluons. This is the cele-
brated phenomenon of jet quenching. A quark jet having a transverse momentum pT

would be formed within τ ∼ 1/pT which can be much smaller than τ0, when QGP
is formed, for large pT . This quark (or antiquark) jet, while passing through QGP
may annihilate with a thermal antiquark (or quark) or undergo a Compton scattering
with a thermal gluon and lead to production of a high-energy photon. This process
is called the jet-photon conversion [13].

We have seen that the kinematics of the annihilation of a quark–antiquark pair
(q + q̄ → γ + g) is expressed in terms of the Mandelstam variables s = (pq + pq̄ )2,
t = (pq − pγ )2, and u = (pq̄ − pγ )2. We also recall that the largest contribution
to the production of photons arises from small values of t or u, corresponding to
pγ ∼ pq or pγ ∼ pq̄ [2, 13, 43].

The phase–space distribution of the quarks and gluons produced in a nuclear
collision can be approximately decomposed into two components, a thermal com-
ponent fth characterized by a temperature T and a hard component fjet given by
hard scattering of the partons and limited to transverse momenta pT � 1 GeV:
f (p) = fth(p) + fjet(p). fjet dominates for large momenta, while at small momenta
f is completely given by the thermal part.

The phase–space distribution for the quark jets propagating through the QGP is
given by the perturbative QCD result for the jet yield [13]:

fjet(p) = 1

gq

(2π )3

πR2
⊥τpT

d Njet

d2 pT dy
R(r )δ(η − y)Θ(τmax − τi )Θ(R⊥ − r ), (23)

where gq = 2×3 is the spin and color degeneracy of the quarks, R⊥ is the transverse
dimension of the system, and the η is the space–time rapidity. R(r ) is a transverse
profile function. τmax is the smaller of the lifetime τ f of the QGP and the time τd

taken by the jet produced at position r to reach the surface of the plasma.
One can approximate the invariant photon differential cross sections for the anni-

hilation process and Compton scattering as [2, 13]

Eγ
dσ (a)

d3 pγ
∼ σ (a)(s)

1

2
Eγ [δ(pγ − pq ) + δ(pγ − pq̄ )] (24)

and

Eγ
dσ (C)

d3 pγ
∼ σ (C)(s)Eγ δ(pγ − pq ). (25)

Here, σ (a)(s) and σ (C)(s) are the corresponding total cross sections.
Using Eqs. (24) and (25), the rate of production of photons due to annihilation

and Compton scattering is given by [2]
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Eγ
d N (a)

d4xd3 pγ
= 16Eγ

2(2π )6

N f∑
q=1

fq (pγ )
∫

d3 p fq̄ (p)[1 + fg(p)]σ (a)(s)

×
√

s(s − 4m2)

2Eγ E
+ (q ↔ q̄) (26)

and

Eγ
d N (C)

d4xd3 pγ
= 16Eγ

(2π )6

N f∑
q=1

fq (pγ )
∫

d3 p fg(p)[1 − fq (p)]σ (C)(s)

× (s − m2)

2E Eγ
+ (q → q̄). (27)

The f ′s are the distribution functions for the quarks, antiquarks, and gluons. Insert-
ing thermal distributions for the gluons and quarks one can obtain an analytical
expression for these emission rates for an equilibrated medium [2, 36–38].

In order to estimate the jet-photon conversion contribution, we first note that the
integrals over p in Eqs. (26) and (27) are dominated by small momenta. Therefore
dropping the jet part in the distributions, f (p) in the integrands is approximated
by the thermal part. Now performing the integrals and identifying the quark and
antiquark distributions outside the integrals with the jet distributions, results for
Compton and annihilation scatterings due to jet conversions are given as

Eγ
d Nγ

(a)

d3 pγ d4x
= Eγ

d Nγ
(C)

d3 pγ d4x

= ααs

8π2

N f∑
f =1

(
eq f

e
)2[ fq (pγ ) + fq̄ (pγ )]T 2[ln(

4Eγ T

m2
) + C]. (28)

Here, C = −1.916. If we include three lightest quark flavors, then
∑

f eq f
2/e2 =

2/3. We also assume that the mass m introduced here to shield the infrared diver-
gence can be identified with the thermal quark mass m th.

These pioneering works have now been corrected for energy loss and flavor
change suffered by the jets, as they pass through the plasma [44] as well as
bremsstrahlung induced by the passage of the jets through the plasma [45].

2.4.3 Equilibration Time for Photons

It is of interest to get an idea about the equilibration time of photons in the medium.
Following the treatment of [36, 37], we note that the six-dimensional phase–space
distribution dn/d3 p(= d N/d3xd3 p) for the photons satisfies the rate equation:



234 Chatterjee R. et al.

d

dt

(
dn

d3 p

)
= d R

d3 p

(
1 − dn/d3 p

dneq/d3 p

)
. (29)

In the above equation, dneq/d3 p is the equilibrium distribution and is expressed as
Planck’s distribution,

dneq

d3 p
= 2

(2π )3

1

eE/T − 1
. (30)

Considering τeq (= dneq
γ

d3 p /
d R
d3 p ) as the time for equilibration and assuming zero pho-

tons at the beginning we can write

dn

d3 p
= dneq

d3 p

(
1 − et/τeq

)
. (31)

Using the rate equation, the thermalization time can be expressed in a simplified
form (considering E > 2T ) as

τeq = 9E

10πααs T 2

1

ln( 2.9
g2

E
T + 1)

. (32)

For energy values E = 0.5, 1, 2, 3 GeV, corresponding values for τeq will be about
270, 356, 505, 639 fm/c, respectively, when the temperature is 200 MeV. As the
lifetime of the system is very short, of the order of few tens of fm/c, it is very clear
that the high-energy photons will never reach the equilibrium state in heavy-ion
collisions. This is an important confirmation for the validity of the assumption made
in all such studies that photons, once produced in the collision, leave the system
without any further re-interaction.

2.5 Photons from Hot Hadronic Matter

Hot hadronic matter produced after the hadronization of the quark–gluon plasma
will also lead to production of photons due to hadronic reactions. These photons
will dominate the spectrum at lower pT ( < 1 GeV ). The first ever calculation
of production of thermal photons from hadronic matter was performed by Kapusta
et al. [36, 37].

In a hot hadronic gas (having temperature of the order of pion mass), the most
important hadronic constituents for photon production are π and ρ mesons (see
Fig. 9). The low mass of pions and the large spin–iso-spin degeneracy of ρ mesons
make them the most easily accessible particles in the medium. In order to illustrate
the photon production from these two mesons, we closely follow the treatment of
KLS [36, 37]. In a hadronic reaction involving charged π and ρ meson, the typical
Lagrangian describing the interaction can be written as
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Fig. 9 Typical hadronic reactions for photon production

L =| DμΦ |2 −m2
π | Φ |2 −1

4
ρμνρ

μν + 1

2
m2
ρρμρ

μ − 1

4
FμνFμν, (33)

where Dμ = ∂μ − ieAμ − igρρμ, Φ is the complex pion field, ρμν is the ρ field
strength, and Fμν is the photon field tensor. The differential cross sections for
the dominating photon-producing process (πρ → πγ ) in the hadronic phase are
expressed as [36, 37],

dσ

dt
(π+ρ0 −→ π+γ ) = dσ

dt
(π−ρ0 −→ π−γ )

= αg2
ρ

12sp2
c.m.

[
2 − (m2

ρ − 4m2
π )s

(s − m2
π )2

− (m2
ρ − 4m2

π )

×
(

s − m2
ρ + m2

π

s − m2
π

1

u − m2
π

+ m2
π

(u − m2
π )2

)]
. (34)

Similarly for

dσ

dt
(π−ρ+ −→ π0γ ) = dσ

dt
(π+ρ− −→ π0γ )

= − αg2
ρ

48sp2
c.m.

[
4(m2

ρ − 4m2
π )

[
u

(u − m2
π )2

+ t

(t − m2
ρ)2

− m2
ρ

s − m2
π

(
1

u − m2
π

+ 1

t − m2
ρ

)]
+

[(
3 + s − m2

π

m2
ρ

)

× s − m2
π

t − m2
ρ

]
− 1

2
+ s

m2
ρ

−
(

s − m2
π

t − m2
ρ

)2
⎤
⎦ (35)
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and also

dσ

dt
(π0ρ+ −→ π+γ ) = dσ

dt
(π0ρ− −→ π−γ )

= αg2
ρ

48sp2
c.m.

[
9

2
− s

m2
ρ

− 4(m2
ρ − 4m2

π )s

(s − m2
π )2

+ (s − m2
π )2 − 4m2

ρ(m2
ρ − 4m2

π )

(t − m2
ρ)2

+ 1

t − m2
ρ

(
5(s − m2

π ) − (s − m2
π )2

m2
ρ

− 4(m2
ρ − 4m2

π )

s − m2
π

(s − m2
π + m2

ρ)

)]
. (36)

In the above set of equations, s, t, u are the Mandelstam variables and pc.m. is the
three momentum of the interacting particles in their center-of-mass frame. Typical
results are shown in Fig. 10.

Xiong et al. [46] and Song [47] first introduced the πρ → a1 → πγ channel for
photon production in hadronic phase, whereas baryonic processes and medium mod-
ification were included by Alam et al. [48, 49]. Several refinements, e.g., inclusion
of strange sector, use of massive Yang–Mills theory, and t-channel exchange of ω
mesons, were incorporated by Turbide et al. [50]. The last calculation is essentially
the state-of the-art result at the moment. Photon spectra considering a complete
leading rate from QGP [42] and exhaustive reactions in hadronic matter [36, 37, 50]
are shown in Fig. 11.
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Fig. 10 Left panel: Yield of photons from different hadronic channels (taken from [36, 37])
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Fig. 11 Complete leading order rates from QGP and exhaustive reactions in hadronic matter [36,
37, 42, 50]

3 Photons from Pb+Pb@SPS to Au+Au@RHIC

3.1 SPS

In order to get an idea of greatly increased insights provided by single photon pro-
duction, let us briefly recall some of the important results from the SPS era, many of
which preceded the large strides made in our theoretical understanding mentioned
above. The first hint of single photon production, which later turned out to be the
upper limit of their production, came from the S + Au collisions studied at the SPS
energies [51].

These results were analyzed in two different scenarios by authors of [52]. In
the first scenario, a thermally and chemically equilibrated quark–gluon plasma was
assumed to be formed at some initial time (τ0 ≈ 1 fm/c), which expanded [53],
cooled, and converted into a mixed phase of hadrons and QGP at a phase-transition
temperature, TC ≈ 160 MeV. When all the quark matter was converted into a
hadronic matter, the hot hadronic gas continued to cool and expand, and underwent
a freeze-out at a temperature of about 140 MeV. The hadronic gas was assumed to
consist of π , ρ, ω, and η mesons, again in thermal and chemical equilibrium. This
was motivated by the fact that the included hadronic reactions involved [36, 37]
these mesons. This was already a considerable improvement over a gas of massless
pions used in the literature at that time. In the second scenario, the collision was
assumed to lead to a hot hadronic gas of the same composition. The initial tempera-
ture was determined by demanding that the entropy of the system be determined
from the measured particle rapidity density [54]. It was found that the scenario
which did not involve a formation of QGP led to a much larger initial temperature
and a production of photons which was considerably larger than the upper limit of
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Fig. 12 Left panel: Upper limits at the 90% confidence level on the invariant excess photon yield
for the 7.4% σmb most central collisions of 200A GeV 32 S + Au [51]. The solid and the dashed
curves give the thermal photon production expected from hot hadron gas calculation [52], while the
dotted curve is the calculated thermal photon production expected in the case of a QGP formation.
Right panel: Single photon production in Pb+Pb collision at CERN SPS. Prompt photons are
estimated using pQCD (with a K -factor estimated using NLO calculation) and intrinsic kT of
partons [55]

the photon production, and could be ruled out. The calculation assuming a quark–
hadron phase transition yielded results which were consistent with the upper limit of
the photon production. These results were confirmed [56–62] by several calculations
exploring different models of expansion (see left panel of Fig. 12).

It was soon realized that one may not limit the hadronic gas to contain just π ,
ρ, ω, and η mesons, as there was increasing evidence that perhaps all the mesons
and baryons were being produced in a thermal and chemical equilibrium in such
collisions. Thus authors of [63] explored the consequences of using a hadronic gas
consisting of essentially all the hadrons in the Particle Data Book, in a thermal and
chemical equilibrium. This led to an interesting result for the Pb+Pb collision at
SPS energies, for which experiments were in progress. It was found that with the
rich hadronic gas, the results for the production of photons in the phase-transition
and no-phase-transition models discussed above were quite similar, suggesting that
measurement of photons at the SPS energy could perhaps not distinguish between
the two cases. However, in a very important observation, it was also noted that the
calculations involving hot hadronic gas at the initial time would lead to hadronic
densities of several hadrons/fm3, and while those involving a quark–gluon plasma
in the initial state would be free from this malady. Thus, it was concluded that the
calculations involving a phase transition to QGP offered a more natural description.

The WA98 experiment [15] reported the first observation of direct photons in cen-
tral 158A GeV Pb+Pb collisions studied at the CERN SPS. This was explained [64]
in terms of formation of quark–gluon plasma in the initial state (at τ0 ≈ 0.2
fm/c), which expanded, cooled, and hadronized as in [63] (see right panel of
Fig. 12). An independent confirmation of this approach was provided by an accurate
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description [65] of excess dilepton spectrum measured by the NA60 experiment for
the same system.

Once again the results for single photons were analyzed by several authors using
varying models of expansion as well as rates for production of photons; viz., with
or without medium modification of hadronic properties (see, e.g., [50, 66–69]). The
outcome of all these efforts can be summarized as follows: the single photon pro-
duction in Pb+Pb collisions at SPS energies can be described either by assuming a
formation of QGP in the initial state or by assuming the formation of a hot hadronic
gas whose constituents have massively modified properties. The later description,
however, involved a hadronic density of several hadrons/fm3, which raises doubts
about the applicability of a description in terms of hadrons, as suggested by [63].

3.2 RHIC

The first experimental photon result obtained from the relativistic heavy-ion collider
was the centrality dependent single photon data for 200A GeV Au+Au collisions
by PHENIX collaboration [16], where single photons were identified clearly for
pT > 4 GeV. For central collisions, the lower bound on photon transverse momenta
was even much lower, upto 2 GeV (Fig. 13). Those data were in good agreement
with NLO pQCD results for pp collisions, scaled by number of binary collisions
(without considering the iso-spin effect).

Thermal radiation dominates the direct photon spectrum at lower values of pT

(≤3 GeV) and the measured slope of the thermal photon spectrum can be related to
the temperature of the system.
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In Fig. 14 results from several theoretical models based on hydrodynamics for
thermal photon production at RHIC are shown. The initial temperature and ther-
malization time for Au+Au collision at 200A GeV quoted by several theoretical
groups [50, 64, 66–71] are in the range of 450–650 MeV and about 0.2 fm/c, respec-
tively.

All these calculations are comparable to the experimental data and with each
others within a factor of 2 and also confirm the dominance of thermal radiation in
the direct photon spectrum in low and intermediate pT range.

3.2.1 Indications for Jet Conversion Photons

We have already discussed the procedure for calculating the high-energy photons
due to passage of jets through the quark–gluon plasma.

The parametrized pT distribution of jets (quarks, antiquarks, and gluons) obtained
by using CTEQ5L parton distribution function and EKS98 nuclear modification
factor is given by

d N jet

d2 pT dy
|y=0 = TAA

dσ jet

d2 pT dy
|y=0 = K

a

(1 + pT /b)c
. (37)

Here, TAA = 9A2/8πR⊥2 is the nuclear thickness for a head-on collision and to
include the higher order effects a K -factor of 2.5 is introduced. Numerical values
for the parameters for quarks, antiquarks, and gluons can be found in [13].

Now as a first step, let us ignore the transverse expansion of the plasma and
assume that a thermally and chemically equilibrated plasma is produced in the col-
lision at an initial time τ0 at temperature T0. In an isentropic longitudinal expansion,
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T0 and τ0 are related by the observed particle rapidity density (d N/dy) by

T0
3τ0 = 2π4

45ζ (3)

1

4aπR2
⊥

d N

dy
, (38)

where a = 42.25π2/90, for QGP consisting of u, d, and s quarks and gluons.
d N/dy can be taken as �1260, based on the charge particle pseudorapidity den-
sity measured by PHOBOS experiment [72] for central collision of Au nuclei at√

s N N = 200 GeV. For central collision of Pb nuclei at LHC energies d N/dy �
5625 was used by Fries et al. [13] as in [73].

Further assuming a rapid thermalization, initial conditions can then be estimated
as [73] T0 = 446 MeV and τ0 = 0.147 fm/c for the RHIC and T0 = 897 MeV and
τ0 = 0.073 fm/c for the LHC. Now, taking the nuclei to be uniform spheres, the
transverse profile for initial temperature is given by T (r ) = T0[2(1 − r2/R⊥2)]1/4,
where R⊥ = 1.2A1/3 fm. The same profile R(r ) = 2(1 − r2/R⊥2) is used for the jet
production.

The jet traverses the QGP medium until it reaches the surface or until the tem-
perature drops to the transition temperature Tc (∼160 MeV).

First estimates for the jet conversion photons at RHIC and LHC energies along
with other sources of photons having large transverse momentum are given in
Fig. 15. We see that the jet conversion photons make a fairly large contribution
in the pT range of 4–10 GeV.

The centrality dependence of jet conversion photons was also studied by Fries
et al. [74] (see Fig. 16), which indicates a small but clear contribution of photons due
to passages of jets through the plasma. These early calculations have been brought
to a high degree of sophistication by the McGill group [75] (see Fig. 17), where
jet quenching and jet-photon conversion along with bremsstrahlung is treated in a
single framework. The details can be seen in [75].

Fig. 15 Jet conversion photons at RHIC [left panel] and LHC [right panel] energies (taken from
[13])
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Fig. 16 Photon yield as a function of pT in central (0–10%) Au+Au collisions at 200A GeV.
Results of jet-photon conversion (solid and labeled), primary hard photons (dashed), and the sum
of the two (upper-most solid curve) along with thermal photons are shown separately. Data are
from the PHENIX collaboration [32]

In Fig. 17, the results for thermal photons, direct photons due to primary pro-
cesses, bremsstrahlung photons, and the photons coming from jets passing through
the QGP in central collision of gold nuclei at RHIC energies are plotted. The quark
jets passing through the QGP give rise to a large yield of high-energy photons.
For RHIC this contribution is a dominant source of photons up to pT � 6 GeV.
Due to multiple scattering suffered by the fragmenting partons a suppression of the
bremsstrahlung contribution is found. This will further enhance the importance of
the jet-photon conversion process.

Obviously a high statistics data at several centralities and energies will go a long
way in clearly establishing the presence of jet conversion photons at RHIC and
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LHC energies. This is also of importance, as there are indications that these photons
measure the initial spatial anisotropy of the system [75].

4 Dileptons

Virtual photons or dileptons are also very powerful and efficient probes like the
real photons to study the dynamics of heavy-ion collisions and the properties of
the medium created in the collisions. Real photons are massless, whereas dileptons
are massive. Thus, invariant mass M and the transverse momentum pT are the two
parameters available for dileptons, which can be tuned to investigate the different
stages of the expanding fireball. Dileptons having large invariant mass and high pT

are emitted very early, soon after the collision when the temperature of the system
is very high. On the other hand, those having lower invariant masses come out later
from a relatively cooler stages and at low temperatures.

Similar to the real photons, dileptons are also emitted from every stage of heavy-
ion collisions [2]. In the QGP phase, a quark can interact with an antiquark to form
a virtual photon γ ∗, which subsequently decays in to a lepton (l−) and an anti-
lepton (l+) pair, together known as dilepton. In the hadronic phase, dileptons are
produced from interactions of charged hadrons with their anti-particles by processes
like (π+ + π− → l+ + l−) (see Fig. 18). They are also produced from decay of
hadronic resonances like ρ, ω, φ, and J/Ψ as well as from Drell–Yan process. In
the Drell–Yan process, a valence quark from a nucleon in the projectile nucleus
interacts with a sea antiquark from a nucleon in the target nucleus to form a virtual
photon, which decays into a lepton pair. The dilepton emissions can be classified
into three distinct regimes in a rough estimation, depending on the invariant mass
M of the emitted lepton pairs. These are

(a) Low mass region (LMR): M ≤ Mφ(= 1.024 GeV): In this mass range, vector
meson decays are the dominating source of dilepton production and medium-
modified spectral density is one of the key issues which needs to be addressed.

Fig. 18 Dilepton production from (a) quark–antiquark annihilation and (b) π+π− annihilation
through ρ channel



244 Chatterjee R. et al.

(b) Intermediate mass region (IMR): Mφ < M < MJ/Ψ (=3.1 GeV): In interme-
diate mass region, continuum radiation from QGP dominates the dilepton mass
spectrum and thus this region is important for getting a pure QGP signature.

(c) High mass region (HMR): M ≥ MJ/Ψ : In the HMR, the most interesting phe-
nomenon is the primordial emission and heavy quarkonia like J/Ψ and Υ sup-
pression.

A schematic diagram of continuous dilepton mass spectrum is shown in Fig. 19.

Fig. 19 Expected sources of dilepton production as a function of invariant mass in relativistic
heavy-ion collisions (schematic)

4.1 Dileptons from QGP and Hadronic Phase

Dilepton production by quark–antiquark annihilation process or by π+ π− annihi-
lation process can be expressed in a general form as

a+ + a− → l+ + l− (39)

where the particle “a” can be either a quark or a π meson. We closely follow the
treatment of [14] for calculation of dilepton spectra in this section. From quantum
electrodynamics (QED), the cross section for e+e− → μ+μ− can be written as

σ̃ (M) = 4π

3

α2

M2

[
1 + 2m2

l

M2

] [
1 − 4m2

l

M2

]1/2

. (40)
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In the above equation, α is the fine structure constant (≈1/137), ml is the mass
of μ, and M is the dilepton-invariant mass. For the quark–antiquark annihilation
process, this cross section is modified by inclusion of a color factor Nc(= 3) and
the fractional charges of the up(u) and down(d) quarks. Thus, the new cross section
takes the form as

σq (M) = Fq σ̃ (M), (41)

Fq = Nc(2s + 1)2
∑

f

e2
f , (42)

where s is the spin of quarks, e f is the fractional charge, and the sum is over different
quark flavor “ f .” If we consider only u and d quarks having fractional charges 1/3
and 2/3, respectively, then the factor Fq is 20/3.

In the hadronic phase, the π+π− annihilation from vector meson dominance
model can be expressed as

π+ + π− → ρ → l+ + l−. (43)

For this case, the QED cross section is multiplied by form factor Fπ (M) which is of
Breit–Wigner form as

Fπ (M) = m4
ρ

(m2
ρ − M2)2 + m2

ρΓ
2
ρ

. (44)

Here, Mρ is the mass of the ρ meson (∼ 770 MeV) and Γρ ( ∼ 155 MeV ) is the
decay width. Thus, the total pion cross section as a function of M becomes

σπ (M) = Fπ σ̃ (M)(1 − 4m2
π/M2)1/2. (45)

The reaction rate “R” can be obtained from the kinetic theory:

R(a+a− → l+l−) =
∫

d3 p1

(2π )3
f (p1)

∫
d3 p2

(2π )3
f (p2)σ (a+a− → l+l−; p1p2)vrel

(46)
where

vrel = [(p1.p2)2 − m4
a]1/2

E1 E2
, (47)

f (p) is the occupation probability at momentum p, and energy E = √
p2 + m2

a .
Now, using the distribution function f (p) ∼ e−E/T and integrating over five out of
the six variables, the reaction rate takes a simplified form as

R(T ) = T 6

(2π )4

∫ ∞

z0

σ (z)z2(z2 − 4z2
a)K1(z)dz. (48)



246 Chatterjee R. et al.

Here, z = M/T , za = ma/T , and K1 is the modified Bessel function of the first
kind. The value of the parameter z0 is taken as the larger of 2ma/T and 2ml/T .
Now, for massless u and d quarks (as mu , md  T ), the e+e− emission rate takes a
simple form of T 4 law,

R = 10

9π3
α2T 4. (49)

One can also estimate the relaxation time for lepton pairs to come to equilibrium
with the QGP:

trel = nl
eq

2R
= 9π

10α2T
. (50)

For a temperature range of 200–500 MeV, the value of trel varies from 20 to 60×103

fm/c. We know that the lifetime of the QGP phase is only ∼ 10 fm/c, which is more
than three order of magnitude smaller than trel. Thus, like the real photons, the pro-
duced lepton pairs also escape the system without suffering significant absorption
in the medium.

Now, the dilepton emission rate R is actually defined as the total number of
lepton pairs emitted from a 4-volume element d4x (= d2xT dη τ dτ ) at a particular
temperature T is given by

R = dN/d4x . (51)

Thus, the rate of production of dileptons having invariant mass M can be expressed
using Eq. (46) as

d N

d4xd M2
= σ (M)

2(2π )4
M3T K1(M/T )

[
1 − 4m2

a

M2

]
. (52)

From the last equation and using properties of the modified Bessel’s functions,
the production rate per unit 4-volume for total energy E , momentum p, and invariant
mass M (where E =

√
p2 + M2) can be written as

E
d N

d4xd M2d3 p
= σ (M)

4(2π )5
M2e−E/T

[
1 − 4m2

a

M2

]
. (53)

Integrating the rate of emission over the entire 4-volume from QGP and hadronic
phase, one can obtain the pT spectra at a particular M as
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d N

d M2d2 pT dy
=

∫
τ dτ r dr dη dφ

[[
E

d R

d M2d3 p

]
QGP

fQGP(r , τ )

+
[

E
d R

d M2d3 p

]
HM

fHM(r , τ )

]
, (54)

where η is the space–time rapidity. In the above equation, the temperature T , QGP,
and hadronic matter (HM) distribution functions (fQGP, fHM) all are functions of
space r (x, y), transverse velocity vT , and proper time τ . Equation (54) can be solved
numerically by using any appropriate model [e.g., [77]] with a proper equation of
state (EOS). One can also get the invariant mass spectrum by integrating out the
variable pT from Eq. (54). The invariant mass spectrum of thermal dilepton is dom-
inated by QGP radiation above φ mass and hadronic radiation outshines the QGP
contribution for M ≤ Mφ .

4.2 Medium Modification

As mentioned earlier, in the low-mass region, dilepton emission is largely mediated
by ρ(770), a broad vector meson, as a result of its strong coupling to the ππ chan-
nel and a short lifetime, which is about 1.3 fm/c. In-medium properties of vector
mesons, like change in medium mass and width, have long been considered as prime
signatures of a hot and dense hadronic medium. CERES/NA45 [78, 79] started the
pioneering experiment on dilepton measurement during the period 1989–1992 at
CERN SPS. For p+Be and p+Au collisions, the theoretical estimates, considering
only hadron decay (as source of dilepton production), were in excellent agreement
with the experimental data points. However, the CERES/NA45 experimental data
for S + Au and Pb + Au at 200A GeV and 158A GeV, respectively, exhibit excess
radiation beyond the electromagnetic final state decay of produced hadrons below
the φ mass. From these observations, it was concluded that the theoretical models
based on ππ annihilation can reproduce the experimental data, only if the properties
of the intermediate ρ meson are modified in the medium. This was an exciting dis-
covery and a genuine consequence of many-body physics. However, the resolution
and statistical accuracy of the data were insufficient to distinguish between models
suggesting a drop in the mass of ρ mesons [80] and those which suggest an increase
in their decay width [81] and thus, determine the in-medium spectral properties of
the ρ meson.

Shortly after this, an excess dimuon (over the sources expected from p A mea-
surement) was identified experimentally by Helios/3 [82, 83] (measured both e+e−

and μ+μ−) and NA38/NA50 [84] collaborations.
Rapp and Shuryak [85] and Kvasnikova et al. [65] showed that the excess dimuon

observed by NA50 in the mass region 1.5 < M < 2.5 GeV can be explained by
thermal signal without invoking any anomalous enhancement in the charm produc-
tion. Kvasnikova et al. studied the NA50 intermediate mass dimuon result using
hydrodynamic model and a detailed analysis of the rates of dilepton production from
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Fig. 20 Left panel: Invariant mass spectrum of e+e− pairs emitted in 158A GeV Pb+Au collisions
from the combined analysis of 1995 and 1996 data by CERES/NA45 [78, 79]. The solid line shows
expected yield from hadron decay and dashed lines indicate the individual contribution to the total
yield. Right panel: Comparison of the experimental data to (i) free hadron decays without ρ decays
(thin solid line), (ii) model calculations with a vacuum ρ spectral function (thick dashed line), (iii)
with dropping in-medium ρ mass (thick dash-dotted line), and (iv) with a medium-modified ρ
spectral function (thick solid line)

(a) (b) (c)

Fig. 21 (a) The dimuon invariant mass spectrum after correcting for detector acceptance and
resolution and NA50 data. The Drell–Yan and thermal contributions are shown separately along
with correlated charm decay and direct decays of the J/Ψ and J̄/Ψ . (b) The dimuon transverse
momentum spectrum. (c) Centrality dependent results from [65] and NA50 data [84]

hadronic phase [65]. Detector resolution and acceptance were accurately modeled
in their calculation and the normalization was determined by a fit to the Drell–Yan
data using the MRSA parton distribution function as done in the experimental NA50
analysis. The results are shown in Fig. 21. They also studied the centrality depen-
dence of the NA50 data using hydrodynamics by incorporating azimuthal anisotropy
in the calculation. The results were in fairly good agreement with the measured
excess dilepton data, as can be seen in the third panel of Fig. 21.

4.2.1 Dropping mρ vs. Increasing Γρ

The CERES data were unable to distinguish between the models suggesting drop in
the mass of ρ meson and those suggesting an increase in its width, as seen in Fig. 20.
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Fig. 22 Left panel: In-medium vector meson spectral functions from hadronic many-body theory.
The ρ in cold nuclear matter at several densities proportional to the saturation density ρ0 = 0.16
fm−3. Right panel: NA60 [86] excess dimuons in central In + In collisions at SPS compared to
thermal dimuon radiation using in-medium electromagnetic rates [87]

The high statistics data obtained by the NA60 Collaboration for In + In collisions at
SPS energies for the dimuon excess rather clearly ruled out the models advocating
the dropping mass scenarios. They rather firmly establish the models advocating the
substantial broadening of the decay width of the ρ meson due to many-body effects
(see Fig. 22).

5 Elliptic Flow

Elliptic flow is one of the key observables in relativistic collisions of heavy nuclei,
which confirms the collectivity and early thermalization in the created hot and dense
matter. For a non-central collision (impact parameter b �= 0 ) of two spherical nuclei,
the overlapping zone between the nuclei no longer remains circular in shape, rather
it takes an almond shape. This initial spatial anisotropy of the overlapping zone is
converted into momentum space anisotropy of particle distribution via the action of
azimuthally anisotropic pressure gradient, which gives rise to elliptic flow [88]. Note
that, this anisotropic flow or elliptic flow can also be produced in central collisions
of deformed nuclei, such as U + U collisions [89]. The driving force for momentum
anisotropy is the initial spatial eccentricity εx (=< y2 − x2 > / < y2 + x2 >) and
the momentum anisotropy can grow as long as εx > 0 [90]. Elliptic flow coefficient
v2 is quantified as the second Fourier coefficient of particle distribution in the pT

space, which is of the form:

d N (b)

pT dpT dy dφ
= d N (b)

2πpT dpT dy
(b) × [1 + 2v1(pT , b) cos(φ)

+ 2v2(pT , b) cos(2φ) + 2v3(pT , b) cos(3φ) + . . . ]. (55)
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At midrapidity (y = 0) and for collisions of identical nuclei, only the even
cosine terms survive in the above Fourier series and v2 is the lowest non-vanishing
anisotropic flow coefficient. Now, the value of v2 depends on the impact parameter b,
transverse momentum pT , as well as on the particle species through their rest masses
m. For massless real photons, v2 depends on the elliptic flow of parent particles.

5.1 Thermal Photon v2

Elliptic flow coefficient v2 for photons is a much more powerful tool than the v2

of hadrons to study the evolution history of the system depending on the different
emission time and production mechanism of photons compared to hadrons. Photons
are emitted from all stages and throughout the evolution of the system, whereas
hadrons are emitted only from the freeze-out surface at a relatively much cooler
temperature (∼ 100 MeV). The interplay of the photon contributions from fluid
elements at different temperatures with varying radial flow pattern gives the photon
v2 a richness, which is not possible for hadrons. Also, photons emitted from QGP
phase as a result of qq̄ annihilation and quark–gluon Compton scattering carry the
momenta of the parent quarks or antiquarks, which makes them an unique tool for
QGP study.

Ideal hydrodynamic model has successfully predicted the elliptic flow for dif-
ferent hadronic species upto a pT value of 1.5(2.3) GeV for mesons (baryons) [90]
at RHIC. Experimental data show that v2(pT ) for hadrons saturate beyond that pT

range. However, ideal hydrodynamics predicted v2(pT ) rises monotonically with
pT . The saturation at higher pT is often explained as due to viscosity, neglected in
the discussion here.

Figure 23 shows the pT -dependent v2 for thermal photons [10, 11] for a typical
impact parameter b = 7 fm. Contributions from quark matter (QM) and hadronic
matter (HM) along with the sum of the two are shown separately (left panel of

Fig. 23 Left panel: v2(pT ) for thermal photons along with the v2 for π and ρ mesons. Contributions
from the quark matter and the hadronic matter are shown separately with the sum contribution.
Right panel: Thermal photon v2 for different centrality bins (taken from [10, 11])
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Fig. 23). One can see that v2(HM) rises monotonically with pT , similar to the
hadronic v2 predicted by hydrodynamics. On the other hand, v2(QM) is very small
at high pT or early times, as very little flow is generated by that time. v2(QM) rises
for smaller values of pT and after attaining a peak value around 1.5–2.0 GeV, it tends
to 0 as pT → 0. The total flow or v2(QM+HM) tracks the v2(QM) at high pT in spite
of very large v2(HM), as the yield of photons from hadronic phase is very small at
high pT . It is well known and mentioned earlier that, for photon energy larger than
the rest masses of the photon-emitting particles, the photon production cross section
peaks when the photon momentum and momentum of photon-emitting particles
become almost identical [2]. Thus, at high pT photon v2 reflects the anisotropies of
the quarks and antiquarks at early times. Also, the collision-induced conversion of
vector mesons (ρ) starts dominating the photon production for pT ≥ 0.4 GeV, which
gives rise to a structure at the transition point in the photon v2 curve [10, 11]. As
HM contribution dominates the pT spectrum and hydrodynamics is well applicable
around that pT range, the structure is expected to survive in the experimental result
also.

Recently Turbide et al. [75] have shown that total contribution to photon v2 from
prompt fragmentation (small +ve v2) and jet-conversion (small −ve v2) photons
is very small, almost equal to zero. Also, we know that the prompt photons from
Compton and annihilation processes do not contribute to elliptic flow as their emis-
sion is not subjected to collectivity and has azimuthal symmetry. Thus, at low and
intermediate pT range, v2 from thermal photons plays a dominant role in deciding
the nature of the direct photon v2.

For central collision of two spherical nuclei, the spatial eccentricity (ε) of the
overlapping zone is zero, thus the flow coefficient v2 is also zero. The v2(pT ) for
thermal photons for different centrality bins are shown in the right panel of Fig. 23,
where the value of v2 rises from central toward peripheral collisions. Now, the
elliptic flow as well as spatial eccentricity both rise with higher values of impact
parameter. However, the ratio of the two remains independent of impact parameter
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Fig. 24 Left panel: pT integrated elliptic flow of thermal photons from different phases at RHIC.
Right panel: Time evolution of elliptic flow from different phases, normalized by the final value at
the time of freeze-out (taken from [91, 92])
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up to a very large value of b [91, 92]. The pT integrated v2 for thermal photons from
different phases as a function of collision centrality shows an interesting behavior
(left panel of Fig. 24). The v2(b) rises with b until for very peripheral collisions.
For these, the system size itself becomes very small to generate enough pressure
gradient and elliptic flow, and as a result v2(b) decreases. The pT -dependent as
well as pT -integrated time evolution results [91, 92] of thermal photon spectra and
elliptic flow show explicitly the gradual buildup of spectra and v2 with time very
well. The photon v2 from QGP phase saturates within about 4–5 fm/c (right panel of
Fig. 24), whereas v2 from hadronic phase is not very significant at early times and
it saturates much later.

5.2 Thermal Dilepton v2

Elliptic flow of thermal dileptons is another very interesting and illustrative observ-
able which gives information of the different stages of heavy ion collision depending
on invariant mass M and transverse momentum pT [93]. At the ρ and φ masses,
the pT spectra and v2(pT ) show complete dominance of hadronic phase. At these
resonance masses, radiation from quark matter becomes significant only for very
large pT (≥ 4) GeV (left panel of Fig. 25). The v2(pT ) at M = mρ also shows
similar nature as spectra and the total v2 is almost similar to hadronic v2 upto a large
pT . Right panel of Fig. 25 shows dilepton v2 at ρ mass along with v2 of ρ meson
where v2(HM) tracks v2(ρ). Also, the hadronic v2 is little smaller than the v2(HM)
for dileptons. The effective temperature of dilepton emission is a little larger than
for hadrons, thus the spectra of the later are boosted by a somewhat larger radial
flow [93], which results in smaller elliptic flow.

A totally different situation emerges for the pT spectrum and v2 for dilepton
invariant mass M > Mφ . For M = 2 GeV, the dilepton v2 is similar to v2(QM) in
spite of the 20 times larger v2(HM), as hadronic dileptons are very few compared
to QGP radiation at this M value (Fig. 26).

Fig. 25 pT spectra (left panel) and v2 (right panel) for thermal dileptons at M = mρ . v2(ρ) is also
plotted in the v2 curve for comparison [93]
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Fig. 26 pT spectra (left panel) and v2 (right panel) for thermal dileptons at M = 2 GeV [93]

Fig. 27 Left panel: The mass spectra of thermal dileptons from a hydrodynamical simulation of
central 200A GeV Au + Au collision. Quark and hadronic matter contributions are shown sepa-
rately. Right panel: pT -integrated elliptic flow parameter for dileptons and various hadrons [93]

The pT -integrated spectra and v2 as a function of invariant mass M show well-
defined peaks at the resonance masses (ρ, ω, and φ), as can be seen Fig. 27. For
M ≤ Mφ , the dilepton spectrum is totally dominated by hadronic phase and above
that it is dominated by contribution from QGP. v2(QM) is very small at large M
and rises for smaller M . It shows a nature similar to the thermal photon v2. The
M-dependent v2(HM) is significant only at the resonance masses and beyond φ
mass its contribution to total v2 is negligible. Thus, for large values of M or at early
times flow comes from QGP phase and its value is very small, whereas at later times
or at low M values it is from H M , which is very strong. The measurement of flow
parameter at high M and/or high pT values can be very useful to reveal a pure QGP
signature.

5.3 Elliptic Flow of Decay Photons

We have already discussed that most of the produced photons in heavy-ion collisions
are from the 2-γ decay of π0 and η mesons and the direct photons contain a small
fraction of the inclusive photon spectrum. Thus it is very interesting to know the
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Fig. 28 Left panel: Elliptic flow of photons from π0 decay at midrapidity. f (pT ) stands for the
momentum distribution of the π0. Right panel: Elliptic flow parameters for photons from decay of
π0 obtained using the recombination model (taken from [96])

nature of v2 of decay photons from pion and η decays. The momentum distribution
of decay photons from π0 decay in an invariant form can be expressed as [94, 95]

k0
d N

d3k
(p, k) = 1

π
δ(p · k − 1

2
m2) , (56)

where p and k are the 4-momentum of the pion and photons and m is the pion
mass. Thus the Lorentz invariant cross section of the decay photons using the decay
kinematics from Eq. (56) is

k0
dσ

d3k
=

∫
d3 p

E

(
E

dσ

d3 p

)
1

π
δ(p · k − 1

2
m2) . (57)

Layek et al. [74] have calculated elliptic flow of decay photons considering sev-
eral azimuthally asymmetric pion distributions (Fig. 28). They have shown that
kT -dependent v2 of decay photons closely follows the v2(pT ) of π0 evaluated at
pT ∼ kT + δ (where δ ∼ 0.1–0.2 GeV). Similar results were obtained for decay
photons from η mesons also. This study could be useful in identifying additional
sources of photons as the v2 of π0 is similar to that of π+ and π−. Also by using the
property of quark number scaling or the recombination model, the decay photon v2

can help to estimate the v2 of constituent partons in the π0 or η mesons (right panel
of Fig. 28). See [96] for details.

5.3.1 Experimental Measurement of Direct Photon v2

PHENIX has measured direct photons and its v2 by subtracting v2 of decay pho-
tons (2-γ decay of π0 and η mesons) from inclusive photon v2 using appropriate
weight factor [97]. The procedure followed by them to estimate direct photon v2 is
as follows:
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vdir.
2 = R × vincl.

2 − vbkgd.
2

R − 1
, (58)

where R is the direct photon excess over hadron decays defined as

R = (γ /π0)incl.

(γ /π0)bkgd.
. (59)

The factor R is measured from spectral analysis. The inclusive and hadron decay
v2 are measured using reaction plane method where the background photons are
measured using a Monte Carlo simulation. We have already seen that the pho-
ton v2 shows different signs and/or magnitude depending on the production pro-
cedure of photons in heavy-ion collisions. Thus experimental measurement of
photon v2 can be a very powerful tool to disentangle the intermix contributions
from different sources in different pT ranges. However, the experimentally mea-
sured preliminary PHENIX data still contain a large systematic error (Fig. 29),
which need to be reduced before making any specific conclusion about direct
photon v2.
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Fig. 29 Elliptic flow of direct photons from 200A GeV Au + Au collision at RHIC [98]
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6 Photon-Tagged Jets

Jets are hard phenomenon characterized by a large momentum transfer between
partons and are characterized by several hadrons in a small angle around a leading
particle as a result of jet fragmentation. The hadrons surrounding a jet are known as
associated particles of the jet.

One of the key observables at RHIC energy is the strong suppression of lead-
ing hadron yield at high values of transverse momentum compared to expectations
based on p + p or d + A collisions at same collision energy. This is the celebrated
phenomenon of “jet quenching.” It is assumed that the hard partons lose a large
fraction of their energy when passing through the strongly interacting medium. A
variety of qualitatively different models are available using collisional energy loss
and radiative energy loss mechanisms to describe the nuclear modification factor
RAA defined as

RAA(pT , y) = d2 NAA/dpT dy

TAA(b)d2σ N N/dpT dy
. (60)

Here, TAA is the nuclear overlap function and σN N is the nucleon–nucleon cross
section. The major problem for studying jet properties arises from the fact that con-
ventional calorimetric study cannot measure the jet energy loss very accurately. Also
it is very difficult to directly measure the modification of jet fragmentation function
and jet production cross section.

The “jet quenching” in heavy-ion collisions can be studied by measuring the pT

distributions of charged hadrons in opposite direction of a tagged direct photon.
Quark–gluon Compton scattering and quark–antiquark annihilation process are the
main mechanisms by which direct photons are produced at very high pT , and jets
are produced in the opposite direction of these photons. From momentum conser-
vation law, the initial transverse energy of the produced jets are equal to that of the
produced photons, i.e, Eγ = Ejet. Thus uncertainties regarding the jet cross section
can be avoided by tagging a direct photon in the direction opposite to the jet (see
[99]).

Medium-modified parton fragmentation function Dh/a(z) (z is fractional momenta
of the hadrons) is used to study the jet energy loss. The differential pT distribution
of hadrons from jet fragmentation in the kinematical region (Δφ,Δy) using Dh/a(z)
can be written as

d N jet
ch

dyd2 pT
=

∑
r,h

ra(EγT )
Dh/a(pT /ET )

pT ET

C(ΔyΔφ)

ΔyΔφ
, (61)

where C(ΔyΔφ) = ∫
|y|≤Δy/2 dy

∫
|φ−φ̄γ |≤Δφ/2 dφ f (y − |φ− φ̄γ |) is an overall factor

and f (y, φ) is the hadron profile around the jet axis and ra(EγT ) is the fractional
production cross section of a typical jet associated with the direct photons. Thus,
comparison between extracted fragmentation function in AA and pp collisions can
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be used to determine the jet energy loss as well as the interaction mean free path in
the dense matter produced in high-energy heavy-ion collisions. Thorston Renk [100]
has shown that by γ hadron correlation measurement, the averaged probability dis-
tributions for quarks are accessible experimentally and he has also explained an
analysis procedure capable of distinguishing between different energy-loss scenar-
ios leading to the same nuclear suppression factor (see Fig. 30).
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Fig. 30 Left panel: Nuclear suppression factor RAA for different toy models and hydrodynamical
simulation compared with PHENIX data. Right panel: Momentum spectrum of hard hadrons cor-
related back to back with a photon trigger normalized to the expectation of geometrical absorption
(taken from [100])

6.1 Isolating the Bremsstrahlung Photons

In order to measure direct photon cross section by suppressing the hadron decay
background or in particular to isolate bremsstrahlung photons from accompanying
hadrons, an interesting method known as “isolation cut” can be used successfully.
The basic assumption for performing the cut is that the hadronic energy in a cone
around the photon is less than a certain fraction of the photon energy, i.e., a photon
is considered as isolated if the combined energy of the accompanying hadrons is
less than εEγ (where Eγ is the photon energy) inside a cone of half-opening angle
δ around the photon. The parameter ε is very small ( ∼ 0.1) and is called the energy
resolution parameter. The cone around the tagged photon is known as isolation cone.
The cone opening can be related to the radius R of a circle centered around the
photon in the center of mass system, where R is defined in terms of rapidity η and
azimuthal angle φ as

R ≥
√
Δη2 +Δφ2. (62)

For small rapidities, the half-opening angle δ equals the radius R. This method was
successfully implemented into the theoretical study of isolated prompt photon pro-
duction considering fragmentation contribution also in next-to-leading order (NLO)
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by Gordon and Vogelsang [28]. A very good accuracy of this method over a wide
range of isolation parameters for prompt photon production was demonstrated in
their calculation. Results from RHIC and LHC for this would be very valuable.

6.2 Dilepton-Tagged Jets

In the study of photon-tagged jets, the main problem arises from the jet pair produc-
tion background, where a leading π0 in the jet is misidentified as a photon. For an
event having a huge background “isolation cut” is not a very efficient mechanism in
the low pT range to study photon-tagged jets in heavy-ion collisions and it is useful
only for pp collisions. In the high pT range although the background contribution
related problems are reduced, a substantial problem in photon isolation is created
by small opening angle. On the contrary jets tagged by dileptons are not affected by
background and can be used to observe pT imbalance, a signal of medium-induced
partonic energy loss. As we have mentioned earlier, for dileptons not only pT but
also invariant mass M is another equally important parameter which can be used
accordingly to study dilepton-tagged jets in the medium. At high pT and high M ,
the dilepton yield is much lower compared to low pT and low M range; however,
the relative background contribution is also lower in that range.

At very high transverse momentum Drell–Yan process (h1 + h2 → l+l− + X )
dominates the dilepton production from QGP phase. Srivastava et al. [101] have
estimated the results for dilepton-tagged jets by studying Drell–Yan process at NLO
in relativistic heavy-ion collisions at RHIC and LHC energies. They have also shown
that correlated charm and bottom decay are unimportant as background for dileptons
having large transverse momentum or in the kinematical region of interest for jet
quenching. Lokhtin et al. [102] have studied the dimuon + jet production (including
both γ ∗/Z → μ+μ− modes) at LHC energy and have shown the pT imbalance
betweenμ+μ− pair and a leading particle in a jet is clearly visible even for moderate
energy loss. It is directly related to absolute value of partonic energy loss and almost
insensitive to the angular spectrum of emitted gluons and to experimental jet energy
resolution.

7 Intensity Interferometry of Thermal Photons

The quantum statistical interference between identical particles emitted in relativis-
tic heavy-ion collisions provide valuable insight about the shape and size of the par-
ticle emitting source. We know that direct photons emitted from different stages of
the collision dominate the pT spectra depending on the range of transverse momen-
tum range. Thus, one can extract space–time dimension of the system at different
stages of the collision by measuring the correlation radii for photons at different
transverse momentum.

Two particle correlation function C(q, K ) for photons having momenta k1 and
k2 emitted from a completely chaotic source can be written as
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C(q, K ) = 1 + 1

2

| ∫ d4x S(x, K )eiq.x |2∫
d4x S(x, k1)

∫
d4x S(x, k2)

. (63)

In the above equation, the factor 1/2 appears for averaging over spin and S(x, K ) is
the space–time density function defined as

E
d N

d3 K
=

∫
d4x S(x, K ), (64)

where q = k1 − k2, K = (k1 + k2)/2. (65)

The correlation function C(q, K ) can be expressed in terms of outward, sideward,
and longitudinal momentum difference and radii (qout, qside, qlong, and Rout, Rside,
Rlong, respectively) as

C(qout, qside, qlong) ∼ 1 + 1

2
exp[−(q2

out R
2
out + q2

side R2
side + q2

long R2
long)/2]. (66)

Photon 4-momentum in terms of transverse momentum kT , rapidity y, and azimuthal
angle ψ can be expressed as

kμ = (kT cosh y, kT cosψ, kT sinψ, kT sinh y) (67)

and

qlong = |k1z − k2z| = |k1T sinh y1 − k2T sinh y2|
qout = qT.kT/kT ,

qside = |qT − qoutkT/kT |.

Photon interferometry in the QGP phase has been investigated by several theoret-
ical groups and the first experimental results on direct photon were obtained by
WA98 [103] collaboration. Bass, Müller, Srivastava [6–9] have calculated two-body
quantum correlation of high-energy photon using parton cascade model (PCM) and
ideal hydrodynamic model for central 200A GeV Au + Au collision at RHIC. They
have shown that one can differentiate between the direct photons from early pre-
equilibrium stage and the same from later QGP and hadronic gas stages depending
on features of the correlation function. Left panel of Fig. 31 shows that about 88%
of the total photons having transverse momenta (1 ± 0.1) GeV (produced by hard
parton scattering in PCM [104]) are emitted within a time period of 0.3 fm/c at
rapidity y = 0. Right panel of the same figure shows that at kT = 1 GeV, the con-
tribution of pre-equilibrium phase and thermal photons is similar to the total photon
yield, whereas at kT = 2 GeV hard photons from PCM outshine the thermal ones
by an order of magnitude. The emission time in PCM is very small and hydrody-
namic calculation with τ0 = 0.3 fm/c allows a smooth continuation of the emission
rate. Intensity correlation for kT ≥ 2 GeV (Fig. 31) reveals a pre-thermal photon
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Fig. 31 Left panel: The production rate (per event) of hard photons in a central collision of gold
nuclei at

√
sN N = 200 GeV as a function of time in the centre of mass system. Right panel:

Spectrum of photons from various sources. QM and HM denote quark matter and hadronic matter
contribution respectively (figures are from [6–9]

dominated small size source of brief duration. On the contrary, for kT = 1 GeV
we can see much larger radii for an extended source and suppression of pre-thermal
contribution over thermal (Fig. 32).

Fig. 32 Left panel: Intensity correlation of photons at 1 GeV, considering only PCM(BMS), only
thermal (hyd), and all PCM + thermal photons (BMS+hyd) (See [6]). Right panel: The outward,
sideward, and longitudinal correlations of direct photon predicted by PCM at KT = 2 GeV, inclu-
sion of thermal photons changes the results only marginally
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Intensity interferometry of thermal photons having transverse momentum kT ∼
0.1 − 2.0 GeV [55] provides an accurate information about the temporal and spatial
structure of the interacting medium.

In reference [55] WA98 data are compared with theoretical results and predic-
tion are given for RHIC and LHC energies. One-dimensional correlation function in
terms of qinv (invariant momentum difference) for different kT and rapidity windows
along with WA98 data is shown in Fig. 33. Theoretical results are well fitted in the
form C = 1 + 0.5 a exp[−q2

inv R2
inv/2] and are in reasonable agreement with the

experimental data. At RHIC energy, contribution from quark matter increases and as
a result the two-source aspect in the outward correlation radii becomes more clear.
Similar results are obtained for LHC energies. It is found that the transverse momen-
tum dependence of the different radii are quite different from the corresponding
results for pions and do not decrease as 1/

√
mT . For SPS, RHIC, and LHC energies

the longitudinal correlations show similar values, which can be explained as a result
of boost invariance of the flow pattern.

Fig. 33 One-dimensional correlation function for the kinematic window used in WA98 experi-
ment, assuming a fully source and emitting only a single photon. Outward, sideward, and longi-
tudinal correlation function for thermal photons in central collision at RHIC energy (taken from
[55])
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8 Epilogue

We have tried to give a reasonably complete introduction to the exciting possibilities
provided by radiation of direct photons and dileptons for the study of the dynamics
of relativistic heavy-ion collisions.

While low-mass dileptons provide insights into the medium modification of vec-
tor mesons, those having intermediate masses carry signatures of thermal radiation
from the quark–gluon plasma. We have, due to lack of space, left out the discussion
of correlated decay of charm and bottom mesons which give a large contribution
to dileptons. These are also important as they carry valuable information about the
extent of thermalization, elliptic flow, and energy loss exhibited by heavy quarks.

We have discussed sources of direct photons, consisting of prompt photons, ther-
mal radiation from quark and hadronic matter, and those due to passage of jets
through QGP. We have also seen that photons carry information about the initial
temperature, evolution of elliptic flow, and size of the system. High statistics data
at RHIC and LHC along with photon or dilepton-tagged jets will go a long way in
seeing that we realize the full potential of electromagnetic probes of quark–gluon
plasma.
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Measuring Dimuons Produced
in Proton–Nucleus Collisions
with the NA60 Experiment at the SPS

Carlos Lourenço and Hermine K. Wöhri

1 Introduction

Considerable efforts are currently being invested in the study of high-energy heavy-
ion collisions. The main goals of this experimental programme are the discovery of
the phase transition from confined hadronic matter to deconfined partonic matter,
predicted by lattice QCD calculations to occur when the system reaches sufficiently
high energy densities or temperatures [1] and the study of the physical properties of
the new phase. Both goals are fundamental for the understanding of confinement, a
crucial feature of QCD.

The measurement of dimuon production allows us to access several different
physics processes that are expected to provide crucial information regarding the
formation and the properties of the high density and temperature QCD medium
presumably produced in high-energy nuclear collisions. Measuring dimuons is par-
ticularly suitable to access the production yields of heavy quarkonium states (J/ψ ,
ψ ′ and the Υ family), which are expected to be considerably suppressed by “colour
screening” if a QCD medium with deconfined quarks and gluons is formed in heavy-
ion collisions [2]. Other interesting signals that can be studied through the measure-
ments of dimuon production include the modifications of the spectral properties of
the low-mass vector mesons, the enhancement of strangeness production through
the study of the φ yields, the search for prompt dimuons (virtual photons) radiated
from a thermal medium, etc.

However, the search for “new physics” in the patterns observed in the data col-
lected in high-energy heavy-ion collisions requires a good understanding of what
happens to the corresponding signatures in the case of proton–nucleus collisions,
where such “anomalies” should be absent. The extraction of robust signals also
requires an accurate control of the corresponding backgrounds; it is easy to “cre-
ate” a large signal enhancement, or suppression, with respect to the “well-known”
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expected processes when the yield of the expected signal is only ∼ 1% of the (esti-
mated) background. Spurious anomalies can also be faked by the lack of a solid
understanding of measurement efficiencies, acceptances, phase space windows, etc.

In the next sections we consider several issues that play important roles in a
typical analysis of dimuon measurements. We will use the NA60 detector and pro-
cedures, as used in the running period of year 2002, as a concrete example for illus-
trating some concepts, difficulties, methods, etc. To start with, the capabilities and
limitations of the detector used to collect the measurements should be understood.
Then, we will go through the treatment of the raw data, a procedure involving data
reconstruction, track matching, vertexing, event selection, background subtraction,
etc. Finally, before physics results can be extracted, a Monte Carlo simulation needs
to be made, generating the physics sources expected to contribute to the event sam-
ple under scrutiny, to define the phase space window where the results are obtained
and to evaluate the acceptances and efficiencies for each physics process in the con-
ditions of each data set.

2 Detector Design and Operation

The purpose of the NA60 experiment was to accurately study dimuon production in
proton–nucleus and heavy-ion collisions, by triggering on and reconstructing two
muon tracks in a magnetic spectrometer (as previously done by NA10, NA38 and
NA50), and by remeasuring their momenta and angles with improved accuracy in a
silicon vertex tracker placed just after the target.

The muon spectrometer, initially built for the NA10 experiment in the late 1970s
and schematically illustrated in Fig. 1, consisted of a hadron absorber, eight multi-
wire proportional chambers (MWPC), four trigger hodoscopes (R1–R4) and an air-
core magnet (ACM). The toroidal field of the ACM magnet was generated by circu-
lating current in coils mounted on six radial iron poles, each 4 m long and covering
18◦ in azimuth (see Fig. 2). The hexagonal geometry of the magnet determined the
shape of the detector elements, organised in sextants. The muons were not deflected
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Fig. 1 Schematic representation of the 17 m long muon spectrometer. The beam comes from the
left side
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Fig. 2 Front and longitudinal views of the toroidal magnet of the muon spectrometer (dimensions
in mm)

in azimuth by the toroidal field and suffered a polar angle deflection inversely pro-
portional to their transverse momentum. The magnet’s air gap extended between
an inner radius of 29.5 cm and an outer radius of 154 cm, defining the angular
coverage of the spectrometer, 35–120 mrad. For a beam energy around 400 GeV
this corresponds roughly to one unit of rapidity at mid-rapidity. The ACM magnet,
with its “air core”, was quite a significant improvement with respect to most earlier
experiments, where the muons would have to traverse large amounts of iron and,
hence, would suffer from multiple scattering and energy loss effects, resulting in
a degraded dimuon mass resolution. In the data-taking period of 2002, the oper-
ating current was ±4000 A, resulting in an azimuthal field with a bending power
decreasing from ∼ 3.1 Tm at a radial distance of 30 cm to ∼ 0.6 Tm at 150 cm.

The 5.5 m long main hadron absorber was placed immediately after the vertex
tracker, as close as possible to the target, in order to minimise the fraction of pions
and kaons decaying into muons. It was made of materials with a low atomic number,
to minimise the multiple scattering induced on the traversing muons, and with high
densities, so as to stop the hadrons in a relatively small distance. The non-interacting
beam was stopped in a beam dump made of uranium. The MWPC chambers con-
sisted of three wire planes, rotated by 60◦ with respect to each other, to allow a good
measurement of one space point. The four “R” trigger hodoscopes were made of
scintillator slabs with a time resolution of around 2 ns, arranged in six independent
sextants and oriented parallel to the outer edges. The width of the slabs of the R1
and R2 hodoscopes increased with the distance from the beam line, such that a muon
produced in the target and passing through slab i in R1 would also hit slab i in R2.
In order to accommodate the spatial extent of the target and multiple scattering for
low energetic muons, the coincidence Ri

1 × Ri−1
2 was also allowed in the trigger

logic. This “R1–R2 coincidence”, which ensured that the muons came from the
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target region, was then combined with the R3–R4 information. A dimuon trigger
occurred when the hits in the four hodoscopes formed one of the pre-defined “road
patterns” and if the two muons passed through different sextants. This requirement
imposes a minimum opening angle between the two muons, strongly suppressing
the acceptance of low-mass and low-pT dimuons, a crucial feature for the NA10
experiment, which was aimed at studying high-mass dimuon production and had a
limited data acquisition bandwidth. It is important to understand this trigger con-
dition and the bias it imposes on the measured event samples, in particular in the
context of the background subtraction procedure, as will be mentioned later on.
Two additional trigger hodoscopes (P1 and P2) were used in special data-taking
periods to evaluate the efficiency of the R1–R4 trigger system. A 120 cm thick iron
wall was placed after the tracking chambers and before the last trigger hodoscope,
increasing to around 21 interaction lengths the thickness of the material that must be
crossed by a particle to give a trigger signal, ensuring that no punch-through hadrons
would give fake triggers. While preventing hadrons from triggering the experiment,
this material also absorbs low-energy muons, strongly reducing the detection prob-
ability of low-mass dimuons. The material thickness before the muon chambers is
only 13.4 interaction lengths, to limit the degradation of the tracking due to the
multiple scattering undergone by the muons when traversing the hadron absorbers.
To improve the dimuon mass resolution, among other things, NA60 remeasured the
muons before the hadron absorbers, with a silicon tracker placed immediately after
the targets. The muon tracks were found among the many charged particle tracks
by matching them to the tracks reconstructed in the muon spectrometer, using the
information on both angles and momenta.

Figure 3 illustrates the overall layout of the target region, as used in 2002,
with the silicon telescope placed in the 104 mm vertical gap of the dipole magnet,
between the targets and the first elements of the hadron absorber. The dipole magnet
was operated at a current of ± 900 A, providing a very homogeneous field of 2.5 T
at the centre of the gap and a field integral of 0.95 Tm between the centre of the
target system and the last silicon tracking plane. To evaluate possible systematic
effects, the polarities of both magnets were reversed every few hours, leading to
data samples with four polarity combinations.

target holder

pre-absorber

1 23 4 5 6 7 8 9

dipole magnet

   slot of 
pixel planetelescope stations:

beam

Fig. 3 The silicon tracking telescope, placed in the magnet gap, between the targets and the hadron
pre-absorber. The muon spectrometer’s angular acceptance (around 35–120 mrad) is also indicated
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To study the nuclear dependence of the production cross section of various parti-
cles, three different nuclear targets, with significantly different mass numbers, were
used in the 2002 run of NA60: Be, In and Pb. They had a diameter of 12 mm, com-
pletely intercepting the transverse profile of the proton beam, around 300–400 μm
full width half-maximum in both transverse directions. The Be target was made of
four disks, 2 mm thick each, to minimise reinteractions inside the target. To reduce
the systematic uncertainties in the extraction of the nuclear dependence of the pro-
duction cross sections, all targets were simultaneously exposed to the beam. They
were placed every 8 mm along the beam line, to minimise the probability that the
particles produced in one target would interact on the next one. Their thicknesses
were 4 × 0.45% (Be), 0.88% (In) and 1.15% (Pb) nuclear interaction lengths. There
was no extra material between the targets and the silicon tracker.

Immediately upstream of the target system was placed a beam tracker, with the
purpose of providing the flight path of the incident beam particle in order to calculate
the transverse coordinates of the interaction vertex. It was made of two tracking
stations, placed 10 and 30 cm upstream of the target’s centre, each one composed
of two single-sided silicon micro-strip sensors, rotated by 90◦. The four 400 μm
thick silicon sensors had 24 strips of 50 μm pitch, were placed in a vacuum box
and were operated at a temperature of 130 K, to minimise the degradation of the
charge collection efficiency induced by the accumulated radiation damage. The two
100 μm thick stainless steel windows of the vacuum cryostat plus the four silicon
sensors were as thick (0.46% of an interaction length) as a Be disk.

The vertex telescope used during the 2002 proton run was composed of 14 silicon
micro-strip sensors, designed with variable strip length and pitch (between 60 and
227 μm), so as to match the highly inhomogeneous track density across the sensor
surface and to keep the occupancy below 3%, even in the area closest to the beam
axis and in p–Pb interactions [3]. The number of strips per sensor, 2 × 6 × 128,
was determined by the used read-out chips (12 per sensor) [4–6]. Each sensor was
produced from a single silicon wafer, 10 cm. in diameter and 300 μm thick. This
was the only material on the way of the particles to be tracked. They had a central
hole of 3.6 mm diameter, for the non-interacting beam protons to pass through.
Bi-dimensional information about the transverse position of the particles required
that two sensors were assembled back to back, forming a “station”. The strips of the
sensors of a tracking station had an inclination angle of ±25◦ with respect to the
vertical axis. This value leads to similar resolutions in the x and y coordinates while
simultaneously optimising the curvature (inverse momentum) resolution, given the
presence of the dipole field.

The measurement of production cross sections requires knowing how many pro-
tons interacted during the data collection period, which depends on the intensity of
the beam. The proton beam intensity was redundantly measured, for each burst, by
three independent multi-foil ionisation chambers, filled with argon, placed upstream
of the target. They measured identical values, within 1%. In 2002, the beam intensity
was kept at around 2 × 108 protons per burst, with a spill length of 4.8 s and a SPS
cycle of 16.8 s, so that the interaction pile-up rate would not exceed 20% in the
100 ns window of the micro-strip tracker [7].
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3 Data Reconstruction

3.1 Track and Vertex Reconstruction

Several steps need to be followed to convert the measured “raw data” in information
that can be used for the extraction of physics results. Here we will mention the
procedure used in the reconstruction of the data collected by NA60 in 2002 [8].
The tracks in the muon spectrometer were reconstructed first. Many of the triggered
events were discarded in this step, mostly because at least one of the muons tra-
versed one of the 4 m long iron poles of the ACM magnet. Such events, if kept,
would lead to a degradation of the dimuon mass resolution. The tracking in the
vertex telescope was performed only when at least two muons were reconstructed
in the muon spectrometer and had their origin in the target region. Figure 4 shows
a typical event, where the tracks produced in the Pb target are reconstructed with
the information provided by the silicon micro-strip stations (and by a small pixel
detector under test in this running period).

If at least two tracks were reconstructed in the vertex telescope, the event recon-
struction proceeded to the vertexing step. Only tracks consisting of at least 10
clusters and having a good fit quality contributed to the vertex fitting, made with a
“robust method”, which assigns a weight to each of the contributing tracks, decreas-
ing the influence of the outliers. A Monte Carlo study showed that only ∼ 2% of the
generated events had the collision vertex reconstructed in a wrong target.

Figure 5 shows that the six targets can clearly be distinguished in the distribution
of the z coordinate (along the beam axis) of the reconstructed vertices. The peak
at around −4.2 cm corresponds to the exit window of the beam tracker’s vacuum
cryostat. Deconvoluting the target thicknesses from the measured distribution, the
z-vertex resolution is seen to be between 600 and 900 μm, depending on the tar-
get position. The resolution is better for the most downstream targets because the
reconstructed tracks are extrapolated over a smaller distance and do not traverse the
other targets, undergoing less multiple scattering. The resolution also depends on

Fig. 4 Example of an event reconstructed in the vertex tracker. The two red tracks represent the
muons
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Fig. 5 Distribution of the z coordinate of the reconstructed vertices, for events with both muons
matched to tracks in the vertex region

the number of tracks attached to the vertex; on average, between four and six tracks
were attached to the reconstructed vertices, slightly depending on the target.

3.2 Track Matching

The matching procedure was performed, independently for each muon, using the
angles and momentum information, accounting for the multiple scattering and the
(average) energy lost by the muons in the hadron absorber [9, 10]. Only vertex tracks
with the same charge and similar kinematics as the muon track were considered
as track matching candidates. When there were several track candidates, the one
giving the best matching χ2 was selected. Once two matched muons were found,
their kinematics were recalculated imposing a common (dimuon) origin, to further
improve the dimuon mass resolution.

Figure 6 shows the distribution of the z coordinate of the common origin of
the matched opposite-sign muon pairs, in the mass region of the φ meson. The
resolution is around 1.6 mm for dimuons at the φ mass and remains better than
2 mm for the ω dimuons. For dimuons of mass below 500 MeV/c2 the resolution
of the dimuon origin degrades to values in the range 2.5–6.5 mm (depending on
the target position), showing that low-mass dimuons cannot be used to identify the
target where they were produced.

The rate of matches where the muon is combined with a vertex track that does
not correspond to the real muon (fake matches) is completely negligible in p–A
collisions, given the small particle multiplicities. A significant number of muons is
lost in the matching procedure because the acceptance of the vertex telescope does
not cover the full angular acceptance of the muon spectrometer. Forward tracks
produced in downstream targets are particularly affected by the limited geometrical
coverage of the silicon sensors, given the presence of their beam holes. Nevertheless,
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Fig. 6 Distribution of the z-origin of the dimuons in the mass range of the φ meson, after track
matching

the loss in dimuon statistics when selecting only matched dimuons is largely com-
pensated by the very significant improvement in terms of dimuon mass resolution,
as can be appreciated in Fig. 7. This figure shows the opposite-sign dimuon mass
distribution as measured at the level of the muon spectrometer (left) and after the
improvements provided by the vertex tracker information. Before the matching, the
φ is barely visible as a shoulder on the ρ/ω peak; after the matching we see two
prominent peaks, with dimuon mass resolutions of 29 ± 1 and 32 ± 1 MeV/c2, for
the ω and φ resonances, respectively. The improvement in dimuon mass resolution
is less pronounced for the J/ψ , the more energetic muons being less affected by the
multiple scattering.
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3.3 Combinatorial Background

All dimuon measurements include a certain level of events where the muon pair is
not really a “signal dimuon” but rather a spurious combination of two muons of
uncorrelated origin, mostly due to decays of pions and kaons. This kind of “com-
binatorial background” leads to muon pairs of the same charge just as well as to
pairs of opposite charges. Therefore, its level in the opposite-sign sample can be
estimated through a mixed-event technique, in which single muons from different
like-sign events are combined to form muon pairs of all charge combinations. This
procedure works well at SPS energies, where two muons of the same sign cannot
result from the decay of a single particle. Muon pairs also result from simultaneous
semi-muonic decays of charmed hadrons. At SPS energies the number of D meson
pairs produced in each collision is never higher than one and, therefore, open charm
decays contribute only to the (correlated) opposite-sign dimuon event sample, being
treated in the analysis as a “signal contribution” (discussed later). However, at the
much higher LHC energies, for instance, charm decays will be as “combinatorial”
as pion and kaon decays.

In the case of the NA60 experiment the measured single muons cannot simply
be combined with each other, because the samples of positive and negative single
muons were obtained from dimuon triggers and are, therefore, biased by the trigger
condition requiring the two muons to be in different sextants. This bias distorts in
different ways the muon azimuthal distributions of the +−, ++ and −− samples,
mostly because of the anisotropy introduced by the vertex dipole field. Therefore,
before combining the single muons in muon pairs, we must evaluate what would be
their distribution among the six sextants in the absence of azimuthal angle correla-
tions imposed by the dimuon trigger logic [4, 9, 10]. This event-mixing procedure
was developed for the analysis of the intermediate mass dimuons collected by NA60
in In–In collisions, where the overwhelming fraction of combinatorial background
muon pairs imposes a very accurate evaluation of this contribution. As shown in
[4, 9, 10], where the whole procedure is described in detail, the measured like-sign
muon pairs kinematical distributions are reproduced by the generated mixed-event
samples, in shape and in normalisation, without any free parameters to be adjusted,
with a precision around 1%.

By construction, the +− sample generated by event mixing reproduces only
the uncorrelated background contribution to the measured opposite-sign dimuon
spectra. In the case of proton–nucleus collisions, given the low charged particle
multiplicities, there is also a non-negligible correlated background contribution due,
for instance, to charge correlations. The total opposite-sign background, needed to
derive the signal from the measured opposite-sign data, can be obtained by scaling
up the estimated uncorrelated part by the so-called R factor [8, 11, 12]. Starting from
an R factor of 1.19 ± 0.04, measured by NA38 for p–W collisions at 200 GeV [11],
the values 1.31, 1.19 and 1.17 are derived for p–Be, p–In and p–Pb, respectively, at
400 GeV, assuming that the value by which R exceeds unity is inversely proportional
to the charged particle multiplicity, which increases with collision energy as log

√
s

and with the mass number of the target nucleus as A0.2.
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In any case, the fraction of background in the opposite-sign dimuon data is
relatively small in the dimuon sample collected by NA60 in 2002, given the low
particle multiplicities of the proton–nucleus collisions and the relatively low beam
intensity used (only one collision takes place within the 20 ns time window of the
muon spectrometer). It decreases from around 30% to around 10% after the muon
track matching step, because pion and kaon tracks seen in the vertex telescope are
often not matched to the corresponding decay muon. The signal over background
ratio is 10 in the ω and φ mass regions, and 1.5 in the continuum mass window
1.2–2.1 GeV/c2.

3.4 Luminosity

The determination of production cross sections requires knowing the integrated
luminosity corresponding to the analysed sample of events. In the case of fixed-
target experiments, the integrated luminosity can be calculated as L = Ninc · Ntgt,
where Ninc is the integrated number of protons incident on the target and Ntgt is the
number of nuclei per unit transverse area in that target. Ntgt can be calculated as
NA · ρ · leff/A, where NA is Avogadro’s constant, ρ is the density, A is the atomic
weight and leff is the effective target length, λI (1 − exp(−L/λI)), where λI is the
nuclear interaction length and L is the target thickness. The relevant properties of the
targets and beam tracker used by NA60 in 2002 are collected in Table 1 [13]. The
beam tracker materials (sensors plus windows) should roughly generate as many
collisions as a single Be target. The resulting values for Ntgt are 0.0240, 0.0075 and
0.0064 b−1 for the Be (each of the four), In and Pb targets, respectively.

The number of protons integrated during the bursts selected for the physics anal-
ysis is 1.74 × 1012 protons, as calculated from the measurements provided by the
three independent ionisation chambers. Not all the collisions corresponding to the
measured luminosity will be seen by the experiment, however, because the trigger
system is not 100% efficient and because the data acquisition system, after receiving
a trigger, is unable to process a new event during the “dead time” it takes to read out
the data. In the case of the 2002 running period, given the low number of triggers
per burst and the relatively small data volume per event, the DAQ lifetime was very
high, 99.2% (measured by comparing the beam intensity integrated irrespective of
the DAQ operation with the value measured when the scalers are vetoed during
the periods when the DAQ is busy [8]). The trigger efficiency was estimated to be

Table 1 Properties of the targets and of the beam tracker materials placed on the beam line

Material A ρ [g/cm3] λI [cm] L [mm] L [% λI]

Beryllium (Be) 9.012 1.848 43.30 1.95 0.45
Indium (In) 114.818 7.310 22.40 1.97 0.88
Lead (Pb) 207.2 11.350 17.03 1.95 1.15
Inox (Fe/Cr/Ni) 55.183 7.870 16.93 0.2 0.12
Silicon (Si) 28.086 2.329 47.31 1.6 0.34
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0.87 ± 0.03, from measurements made in the year 2000 [14, 15] with the same
trigger system.

4 Simulation of the Expected Dimuon Sources

Several sources contribute to the dimuon mass spectrum, resulting in several pro-
nounced resonances on the top of a continuously falling shape. The mass contin-
uum processes are the Drell–Yan dimuons, which dominate at large dimuon masses
(above theψ ′ peak) and the simultaneous semi-muonic decays from two (correlated)
D mesons. At the lower end of the dimuon mass spectrum, the electromagnetic
decays of the light pseudo-scalar and vector mesons (η, η′, ρ, ω and φ) are the
dominating processes, via their Dalitz decays or μ+μ− decays. To evaluate how the
measurements are affected by experimental effects, such as the geometrical cover-
age of the detectors, the track reconstruction efficiencies, the vertexing, the track-
matching rates, the smearing due to the limited resolution, a detailed Monte Carlo
simulation needs to be performed, convoluting the generated physics processes with
the performance of the experiment.

The Drell–Yan and open charm contributions can be simulated with the Pythia
event generator [16], for instance. At SPS energies, the p–A charm cross sections
are expected to exceed a linear scaling from pp collisions because the gluon distri-
bution function is “anti-shadowed”. This nuclear effect can be taken into account
through the use of the EKS98 parameterisation [17], or others. The “hadronic decay
cocktail” can be generated with the “Genesis” code [18], after being specifically
tuned for proton–nucleus collisions [8]. It gives the μ+μ− decays of the η, ω, ρ and
φ mesons, and the Dalitz decays η → μ+μ−γ , η′ → μ+μ−γ and ω → μ+μ−π0.

For the extraction of physics quantities, the measured distributions are compared
to the result of a full detector simulation chain. In particular, the generated events
must satisfy the trigger conditions and are subject to the same reconstruction pro-
cedure (with the same settings) as the real data. All the charged particles produced
in the collisions and within the acceptance of the vertex tracker need to be recon-
structed, to find suitable match candidates for the two tracks seen in the muon
spectrometer and to identify the target where the interaction took place. Clearly,
the number of clusters in the vertex telescope influences the track reconstruction
efficiencies, while the number of reconstructed tracks influences the vertexing and
the track-matching efficiencies. In order to have a Monte Carlo simulation as real-
istic as possible (including effects such as noisy micro-strip channels), before the
reconstruction step the two generated muons should be immersed in a measured
event, from which the information corresponding to its own muons was previously
removed. In the analysis of the 2002 NA60 data, the simulated muon tracks were
generated at the vertex of the measured event and the probability that they leave a
hit in each micro-strip detector plane was given by the strip efficiency maps, pre-
viously measured [8] for each sensor. The tracking of the events through the NA60
apparatus was done using the GEANT transport code [19]. This detailed procedure
should ensure that the detector’s acceptance and smearing effects (due to multiple
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scattering and to the finite resolution of the detectors), as well as the reconstruction
efficiencies, are applied to the simulated events in a way that closely reproduces
what happens to the measured data. To verify that the Monte Carlo simulation pro-
cedure properly describes the physics processes and the effects introduced by the
detector, the reconstructed Monte Carlo events must be compared to the measured
events, using several variables, such as the dimuon rapidity, transverse momentum,
etc. This is a very important step because it often happens that the Monte Carlo
simulations are “too good” with respect to the real data. This might be due to mis-
alignments in the detector geometry not accounted for in the simulation, or because
the measured events are collected over a long running period, including days when
some detectors could not be operated, while the simulation is done for a single
“setup”, etc.

5 Acceptances, Phase Space Window and Efficiencies

5.1 Acceptances and Phase Space Window

The angular coverage of the NA60 muon spectrometer, which can be translated
into an acceptance window in dimuon rapidity, is determined by the aperture of
the toroidal magnet. Even if both muons are emitted in the angular region covered
by the detectors, the event will be rejected if one of the muons (or both) does not
have enough energy to reach the last trigger hodoscope, if both muons are emitted
into the same sextant of the R trigger hodoscopes, or if one of the muons (or both)
traverses one of the six 4 m long iron poles of the ACM magnet. Understanding and
computing these detection probabilities (“acceptances”) is very important to extract
the real (physics) information from the measured (and distorted) information.

As an example, Fig. 8 shows the differential acceptances of the ω and φ mesons,
at the level of the muon spectrometer, as a function of the rapidity and cos θCS kine-
matical variables, where θCS is the polar angle of the muons in the Collins–Soper
reference frame. While the probability that a dimuon is detected in the muon spec-
trometer does not depend on the target where it was produced, this is no longer the
case when the vertex tracker information is used. In particular, the beam hole of
the silicon sensors reduces the angular coverage of the (low-pT) muons produced in
the most downstream targets. This means that, for instance, the final event sample
contains fewer forward rapidity ω dimuons from the Pb target than from the In
target. Clearly, such limitations of the detector capabilities must be carefully eval-
uated before deriving the nuclear dependence of particle production. Furthermore,
the phase space window where the physics results are obtained must be chosen such
that all the targets are properly covered. We cannot derive a nuclear dependence
by comparing forward rapidity ω dimuons produced in the Be targets to backward
rapidity ones produced in the Pb target, for instance.

For dimuon masses above 400 MeV/c2 the NA60 apparatus has good acceptance
down to zero pT, while for lower masses the acceptance starts being reasonable
for dimuons of pT larger than ∼ 400 MeV/c. Figure 9 (left) shows the ω and φ
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Fig. 8 Rapidity and cos θCS differential acceptances for the ω and φ dimuons, before matching the
muons to tracks in the vertex region

acceptances as a function of pT. Since the pT acceptance for low-mass dimuons
depends also on rapidity, a rapidity-dependent transverse mass (mT) cut has been
included in the definition of the phase space window, graphically shown in Fig. 9
(right). It is important to underline that the presence of the vertex dipole mag-
net largely increases the NA60 acceptance for opposite-sign low-mass and low-pT

dimuons, with respect to previous dimuon experiments. In particular, many of the
accepted events would be lost without the dipole field because both muons would
go into the same sextant of the trigger hodoscopes, not passing the trigger condition
requiring that the two muons must be in different sextants. Besides, some dimuons
would also be lost in the dead area immediately surrounding the beam line, if it were
not for the dipole field which deflects them into the angular acceptance of the muon
spectrometer. This exceptional improvement can be appreciated in Fig. 10, where
the raw-level pT distributions obtained by NA60, in two different mass windows, are
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Fig. 10 Measured pT distributions for two mass windows, compared to NA38’s distribution for its
lowest dimuon mass window

compared with the pT distribution of the lowest mass dimuons detected by NA38, a
predecessor experiment using the same muon spectrometer but without vertex dipole
magnet.

The phase space window where the analysis of the 2002 NA60 data was made
is defined by the ranges 3.3 < yμμlab < 4.2, | cos θCS| < 0.5, ημ < 4.2 and
mT > 0.4 + 0.7 · (ylab − 4.2)2 GeV. In this window, the acceptances vary by less
than a factor 10 between any two selected events. Events collected outside of this
window have a very small probability of being accepted and their study would be
quite sensitive to possible differences between the simulated experiment and the real
one. The effective thickness of the hadron absorber, the magnitudes of the magnetic
fields and the alignment of the silicon tracking planes are only a few examples of
the many elements that are needed to calculate the detection acceptances, and which
might be inaccurately known.

5.2 Efficiencies

Besides the global efficiencies already mentioned in Sect. 3.4, i.e. the dimuon trigger
efficiency and the DAQ lifetime, there are further efficiencies that need to be consid-
ered when extracting production cross sections from the measured yields: the track
reconstruction efficiency, the track-matching efficiency, the vertexing efficiency, etc.
The efficiency with which the tracks are reconstructed in the muon spectrometer
basically depends on the hit occupancy of the chambers and, therefore, on the beam
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intensity and effective thickness of the hadron absorber. Given the relatively low
beam intensity of the 2002 running period and the small multiplicity of charged par-
ticles produced per proton–nucleus collision, the dimuon reconstruction efficiency
was essentially 100%. The efficiency of the track reconstruction in the vertex tracker
(VT) depends primarily on the efficiency maps of each sensor (which were measured
and incorporated in the Monte Carlo simulation) and on the number of clusters
present in the event. Simulating the dimuons on the top of measured events (after
removing from the data the clusters previously assigned to the muon tracks), the
simulated distribution of the number of silicon clusters is identical to the measured
one, by construction. The “VT reconstruction efficiency” drops from 100% for very
clean events to around 80% for events with a very high number of clusters in the
silicon sensors.

Even if the muon track is within the geometrical coverage of the vertex telescope,
and is reconstructed, the event may still be lost because the track is not recognised as
a muon in the “track-matching” step. It turns out, however, that the track-matching
efficiency is quite high, ∼ 98%, and almost independent of the number of recon-
structed tracks, given that the matching uses the momenta of the tracks, and the
number of “high-momentum” tracks is relatively small in proton–nucleus collisions.
The number of fake matches is negligible; in the rare cases when the matching
does not work, the muon is not matched rather than being matched to a wrong
track.

The left panel of Fig. 11 shows how the convolution of the single muon recon-
struction and matching efficiencies decreases as the number of clusters increases, in
the case of p–In collisions (the other targets give very similar patterns). The right
panel shows the measured distribution of the number of clusters seen in the full
vertex tracker, for the In target.
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Fig. 11 Left: Single muon reconstruction and matching efficiency as a function of the number of
clusters, for the In target. Right: Distribution of the number of clusters in the vertex tracker, as seen
in the measured data, for the In target
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5.3 Comments on Event Selection

Requiring that both muons must be matched to tracks in the vertex tracker rejects a
large fraction of the collected events. It is important to realise, however, that many of
the rejected events are due to background sources and, therefore, their loss improves
the quality of the physics analysis event sample. Of the 75 000 like-sign muon pairs
(due to pion and kaon decays) reconstructed in the muon spectrometer, only 2500
(i.e. 3.3%) survive the matching step, while the signal dimuons have a much higher
survival rate: 25%. Besides, some of the rejected dimuons were produced in colli-
sions downstream of the target region (in the beam dump or in the hadron absorber,
for instance). Some of the signal dimuons produced in the targets are also rejected
in the matching procedure, essentially because the vertex tracker does not cover the
full geometrical acceptance of the muon spectrometer (mostly because of the beam
hole of the silicon sensors). However, this loss of statistics is largely compensated by
the significant improvement in dimuon mass resolution, which allows us to clearly
distinguish the ω and φ resonances, as was shown in Fig. 7. Out of 35 000 opposite-
sign matched dimuons, 76% were produced in one of the six targets; the others had
their vertices in the sensors of the beam tracker (10%) or had no identified vertex
(14%).

6 Target Identification

Having all the nuclear targets simultaneously exposed to the beam should, in princi-
ple, lead to smaller systematic uncertainties in the extraction of the nuclear depen-
dences of particle production cross sections than having each different nuclear target
independently exposed to the beam in a different running period. This is due to the
fact that some sources of systematic errors, such as beam counting, trigger efficien-
cies, etc., are common to all the data samples and, hence, cancel out in relative
studies, from light to heavy targets. However, having all the targets on the beam line
introduces other problems, such as having acceptances that depend on rapidity in
different ways for each target, as we saw before. Furthermore, it is crucial to iden-
tify the specific target where the collision occurred and the dimuon was produced,
something not done with the same efficiency for all the targets and all dimuons. This
is a very important issue and deserves some detailed discussion.

There are two alternative ways of identifying the target where the dimuon was
produced. The first one, illustrated in Fig. 5, consists in calculating the interac-
tion vertex by using all the charged tracks measured in the silicon vertex tracker.
To first order, this method is insensitive to the kinematics of the dimuons, given
that the algorithm ignores which tracks are the muons. However, it is ∼ 20% more
efficient (according to Monte Carlo simulations) at finding the correct interaction
vertex in the case of p–In and p–Pb collisions than in the case of p–Be collisions,
because the more tracks are produced the easier it is to find their common origin.
The other alternative consists in using the point of closest approach between the
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two muon tracks (after matching) to identify the target where they were produced.
This method, illustrated in Fig. 6, has the advantage of treating in the same way
the collisions produced in the different targets (light or heavy) but is limited by the
resolution with which the origin of the dimuon can be determined. In the case of the
“soft” muons from very low-mass dimuons, below ∼ 500 MeV/c2, this method is
not good enough to accurately discriminate between two neighbouring targets.

The best way to ensure that the physics results are not biased by the procedure
used to identify the interaction target is to perform two “analyses” in parallel. In the
first one, the vertexing exclusively relies on the tracks of the vertex tracker, com-
pletely ignoring the dimuon information. If no vertex is found in the target region,
the event is rejected. In the second one, the dimuon information is used to “validate”
the vertex found from the charged tracks; if the dimuon origin is not compatible with
the vertex, taking into account both uncertainties, the event is rejected. Besides,
events where no vertex was found from the reconstructed tracks are recovered by
taking the dimuon origin to identify the target, except if its uncertainty is too large
to significantly discriminate between two consecutive targets. The physics results
cannot depend on the vertexing procedure used; any differences should be taken as
a contribution to the systematic error.

The average number of identified vertices in the NA60 2002 data was 1.04, to
be compared with the 1.2 interactions per trigger expected from interaction pile-up,
given the beam intensity and target thicknesses used [7]. These two numbers are in
good agreement, considering that the vertexing algorithm fails to identify a vertex in
14% of the events with two matched muons. In the events with two vertices, the one
with the largest number of associated tracks is upstream of the other one in exactly
50% of the cases, indicating that the events with two vertices are due to interaction
pile-up and not to cases where a particle produced in one collision interacts in a
downstream target, producing a second interaction. If such events would occur, they
should be rejected if the dimuon was produced in the downstream vertex, since that
dimuon would not be produced in a 400 GeV proton–nucleus collision.

Of the events with a well-identified vertex, 10% result from collisions upstream
of the target region, as expected considering the effective thickness of the beam
tracker materials. These events must be rejected from the final analysis event sam-
ple, and the integrated luminosity correspondingly decreased. Almost no events
(with matched muons) have their vertex located downstream of the target region.

7 Summary and Final Remarks

In the previous sections we presented several issues that need to be considered when
extracting a physics result from dimuon measurements. As a concrete example, we
described the measurements made by the NA60 experiment in 2002 and reviewed
the procedure leading to the understanding of the dimuon mass distributions pro-
duced in interactions of 400 GeV protons on beryllium, indium and lead targets. The
next step would be, for instance, to determine the production cross sections of the ω
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and φ mesons, and their ratios, for each of the p–A studied collision systems, as well
as their nuclear dependences. This can be done by fitting the opposite-sign dimuon
mass distributions to the superposition of the several expected sources. The back-
ground contributions can be fixed to the opposite-sign dimuon mass distributions
obtained from the mixed-event procedure, scaled up by the appropriate R factors,
as described in Sect. 3.3. The Drell–Yan and open charm contributions can also
be kept fixed in the fits, with the shapes resulting from the reconstructed Monte
Carlo events (incorporating the acceptance and efficiency effects) and the normal-
isations determined from the expected cross sections and branching ratios, scaled
by the integrated luminosity. The sum of these three fixed contributions leads to a
broad continuum which should reproduce the window 1.2–2.4 GeV/c2 of the mea-
sured opposite-sign dimuon mass distributions. This is indeed the case, as shown in
Fig. 12.

The mass window between the dimuon threshold and 1.1 GeV/c2 can be described
by the contributions from the light meson decays, fitting the production cross sec-
tions of the η, ω and φ mesons. The result is illustrated by Fig. 12, where the nor-
malisations of the Dalitz and dimuon decay contributions of the ω (and also of the
η) are bound to each other through the corresponding branching ratios [20], and the
yields of the η′ and ρ were fixed through ση

′
pA = 0.15 · σηpA and σρpA = 1.0 · σωpA. It is

worth emphasising that what is really extracted from the data is the product of the
production cross section and the branching ratio of the dimuon decay channel.

The next step consists in evaluating the systematic uncertainties affecting the
result. In the case of the ω and φ production cross sections, besides being affected
by the luminosity determination and by the acceptance calculations, they are also
affected by the vertexing uncertainties, which are larger for the Be targets than
for the In and Pb targets, as seen by comparing the values obtained with the two
different vertex determination methods previously described. The results are also
affected by uncertainties related to the fitting procedure, which can be evaluated by
redoing the fits several times, each time changing one of the inputs. For instance,
it is reasonable to change the background contribution by ± 10%, the ρ/ω ratio by
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± 10%, the η′/η ratio by ± 50%, and the charm normalisation by ± 25%. It should
also be seen how the results depend on the assumptions used in the calculation of
the “hadron decay cocktail”.

Cross-section ratios are more robust than absolute values, because they are not
affected by the luminosity evaluation and are less sensitive to the acceptance uncer-
tainties. Changing the vertexing identification procedure should also have a minor
effect. For such results, hence, the biggest source of systematic uncertainty is the
fitting procedure.

Clearly, many other points would need to be addressed in a “course on how to
measure dimuons in proton–nucleus and nucleus–nucleus collisions”. In this chapter
we ignored several problems that affect the measurements made with nuclear beams.
For instance, how to distinguish a dimuon produced in a central collision from one
produced in a peripheral collision followed by an interaction of a beam fragment on
another target, resulting in very similar information (number of emitted tracks, etc.)
as a central collision. The background subtraction is also much more challenging
in the case of heavy-ion collisions. We could also have discussed in more detail
the advantages and disadvantages of measuring the nuclear dependence of particle
production using several targets simultaneously on the beam line (as done by NA60)
or using one target each time (as done by NA50). The validation of the Monte Carlo
simulation by looking at the real data also deserves a much more detailed discussion,
exposing some difficulties related to the isolation of the signal in the data sample,
etc. Another limitation of this chapter is that some of the issues mentioned here
would be different at much lower or higher collision energies. For instance, the
like-sign muon pair sample is no longer exclusively due to uncorrelated sources
in the very high energy collisions soon to be probed at the LHC, given the high
production cross sections of beauty mesons. Much more could have been said about
the evaluation of systematic uncertainties. The list of items not addressed in this
chapter is, indeed, quite long. Clearly, there is room for a broader review of the
many issues that need to be considered when studying dimuon measurements. We
hope, nevertheless, that this chapter can be useful as a concrete and pedagogical
illustration of some specific points.
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High-pT Hadron Suppression
and Jet Quenching

David d’Enterria and Barbara Betz

Abstract In these introductory lectures, we present a broad overview of the physics
of hadron and jet production at large transverse momenta in high-energy nucleus–
nucleus collisions. Emphasis is put on experimental and theoretical “jet quenching”
observables that provide direct information on the (thermo)dynamical properties of
hot and dense QCD matter.

1 Introduction

The research programme of high-energy nucleus–nucleus physics is focused on the
study of the fundamental theory of the strong interaction – quantum chromody-
namics (QCD) – in extreme conditions of temperature, density, and small parton
momentum fraction (low-x) – see, e.g., [1] for a recent review. By colliding two
heavy nuclei at relativistic energies one expects to form a hot and dense deconfined
medium whose collective (colour) dynamics can be studied experimentally. Lattice
QCD calculations [2] predict a new form of matter at energy densities (well) above
εcrit ≈ 1 GeV/fm3 consisting of an extended volume of deconfined and bare-mass
quarks and gluons: the quark–gluon plasma (QGP) [3–6].

Direct information on the thermodynamical properties (like temperature, energy,
or particle densities) and transport properties (such as viscosities, diffusivities,
conductivities) of the QGP is commonly obtained by comparing the results for
a given observable ΦAA measured in nucleus–nucleus (AA, “QCD medium”) to
those measured in proton–proton (pp, “QCD vacuum”) collisions as a function of
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centre-of-mass (c.m.) energy
√

sNN , transverse momentum pT , rapidity y, reaction
centrality (impact parameter b), and particle type (mass m). Schematically

RAA(
√

sNN, pT , y,m; b) = “hot/dense QCD medium”

“QCD vacuum”
∝ ΦAA(

√
sNN, pT , y,m; b)

Φpp(
√

s, pT , y,m)
.

(1)

Any observed enhancements and/or suppressions in the RAA(
√

sNN, pT , y,m; b)
ratios can then be directly linked to the properties of strongly interacting matter after
accounting for a realistic hydrodynamical modelling of the space–time evolution of
the expanding system of quarks and gluons (globally called partons) produced in
the collision.

2 Jet Quenching and Parton Energy Loss in QCD Matter

2.1 Hard Probes of Hot and Dense QCD Matter

Among all available observables in high-energy nuclear collisions, particles with
large transverse momentum and/or high mass, pT ,m � 2 GeV � ΛQCD (where
ΛQCD ≈ 0.2 GeV is the QCD scale) constitute very useful tools to “tomograph-
ically” study the hottest and densest phases of the reaction (Fig. 1). Indeed, such

Fig. 1 Examples of hard probes whose modifications in high-energy AA collisions provide direct
information on properties of QCD matter such as the transport coefficient q̂, the initial gluon rapid-
ity density d N g/dy, the critical temperature Tcrit, and energy density εcrit [1]
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“hard probes” [7] (i) originate from partonic scatterings with large momentum
transfer Q2 and thus are directly coupled to the fundamental QCD degrees of free-
dom, (ii) are produced in very short timescales, τ ≈ 1/pT � 0.1 fm/c, allow-
ing them to propagate through (and be potentially affected by) the medium, and
(iii) their cross sections can be theoretically predicted using the perturbative QCD
(pQCD) framework.

Jet production in hadronic collisions is an archetypical hard QCD process. An
elastic (2 → 2) or inelastic (2 → 2 + X ) scattering of two partons from each of
the colliding hadrons (or nuclei) results in the production of two or more partons
in the final state. The two outgoing partons have a large virtuality Q which they
reduce by subsequently radiating gluons and/or splitting into quark–antiquark pairs.
Such a parton branching evolution is governed by the QCD radiation probabili-
ties given by the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equations
[8–12] down to virtualities O(1 GeV2). At this point, the produced partons fragment
non-perturbatively into a set of final-state hadrons. The characteristic collimated
spray of hadrons resulting from the fragmentation of an outgoing parton is called a
“jet”.

One of the first proposed “smoking guns” of QGP formation was “jet quench-
ing” [13], i.e. the attenuation or disappearance of the spray of hadrons resulting
from the fragmentation of a parton due to energy loss in the dense plasma produced
in the reaction (Fig. 2). The energy lost by a particle in a medium, ΔE , provides
fundamental information on its properties. In a general way, ΔE depends both
on the particle characteristics (energy E and mass m) and on the plasma proper-
ties (temperature T , particle–medium interaction coupling α, and thickness L), i.e.

Fig. 2 “Jet quenching” in a head-on nucleus–nucleus collision. Two quarks suffer a hard scattering:
one goes out directly to the vacuum, radiates a few gluons, and hadronises; the other goes through
the dense plasma formed in the collision (characterised by transport coefficient q̂ and gluon den-
sity d N g/dy), suffers energy loss due to medium-induced gluonstrahlung, and finally fragments
outside into a (quenched) jet
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ΔE(E,m, T, α, L). The following (closely related) variables are extremely useful
to characterise the energy loss in a medium:

• the mean free path λ = 1/(ρσ ), where ρ is the medium density (ρ ∝ T 3 for an
ideal gas) and σ the integrated cross section of the particle–medium interaction,1

• the opacity N = L/λ or number of scattering centres in a medium of thickness L ,
• the Debye mass m D(T ) ∼ g T (where g is the coupling parameter, i.e. m D ∼ e T ,
α

1/2
s T in QED, QCD) is the inverse of the screening length of the (chromo)

electric fields in the plasma. m D characterises the lowest momentum exchanges
with the medium: the effective masses of the plasma constituents are O(m D),

• the transport coefficient q̂ ≡ m2
D/λ encodes the “scattering power” of the

medium through the average transverse momentum squared transferred to the
traversing particle per unit path length. q̂ combines both thermodynamical
(m D, ρ) and dynamical (σ ) properties of the medium [14–16]:

q̂ ≡ m2
D/λ = m2

D ρ σ . (2)

As a numerical example,2 let us consider an equilibrated gluon plasma at T =
0.4 GeV and a strong coupling αs ≈ 0.5 [17]. At this temperature, the parti-
cle (energy) density is ρg = 16/π2 ζ (3) · T 3 ≈ 15 fm−3 (εg = 8π2/15 ·
T 4 ≈ 17 GeV/fm3), i.e. 100 times denser than normal nuclear matter (ρ =
0.15 fm−3). At leading order (LO), the Debye mass is m D = (4παs)1/2T ≈
1 GeV. The (transport) gluon–gluon cross section is to LO accuracy: σgg �
9πα2

s /(2m2
D) ≈ 1.5 mb. The gluon mean free path in such a medium is λg =

1/(ρgσgg) � (18/π2 ζ (3)αs T )−1 � 0.45 fm (the mean free path for a quark
is λq = 9/4 λg ≈ 1 fm). The transport coefficient is therefore q̂ � m2

D/λg �
2.2 GeV2/fm. Note that such a numerical value has been obtained with a LO
expression for the parton-medium cross section. Higher order scatterings can well
account for a factor K = 2–3 larger q̂ .

• the diffusion constant D, characterising the dynamics of heavy non-relativistic
particles (mass M and speed v) traversing the plasma, is connected, via the
Einstein relations

D = 2T 2/κ = T/(M ηD) (3)

to the momentum diffusion coefficient κ – the average momentum gained by the
particle per unit time (related to the transport coefficient as κ ≈ q̂ v) – and the
momentum drag coefficient ηD .

1 One has λ ∼ (αT )−1 since the QED (QCD) Coulomb (Yukawa) scattering is σel ∝ α/T 2.
2 Natural units used (c = � = 1). For unit conversion, multiply by powers of �c = 0.197 GeV fm.
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2.2 Mechanisms of In-Medium Energy Loss

In the most general case, the total energy loss of a particle traversing a medium is
the sum of collisional and radiative terms: ΔE = ΔEcoll +ΔErad. Depending on the
kinematic region, a (colour) charge can lose energy3 in a plasma with temperature
T mainly4 by two mechanisms:

• Collisional energy loss through elastic scatterings with the medium constituents
(Fig. 3, left), dominates at low particle momentum. The average energy loss in
one scattering (with cross section dσ/dt , where t is the momentum transfer) is

〈
ΔE1scat

coll

〉 = 1

σ T

∫ tmax

m2
D

t
dσ

dt
dt . (4)

• Radiative energy loss through inelastic scatterings within the medium (Fig. 3,
right) dominates at higher momenta. This loss can be determined from the cor-
responding single- or double-differential photon/gluon Bremsstrahlung spectrum
(ω d Irad/dω or ω d2 Irad/dω dk2

⊥, where ω, k⊥ are the energy, transverse momen-
tum of the radiated photon/gluon):

ΔE1scat
rad =

∫ E

ω
d Irad

dω
dω or ΔE1scat

rad =
∫ E ∫ kT,max

ω
d2 Irad

dω dk2
⊥

dω dk2
⊥ .

(5)

For incoherent scatterings one has simply ΔE tot = N · ΔE1scat, where N = L/λ is
the opacity. The energy loss per unit length or stopping power5 is:

E E- E

E

E

E- E

E

X
(medium)

Fig. 3 Diagrams for collisional (left) and radiative (right) energy losses of a quark of energy E
traversing a quark–gluon medium

3 Note that if the energy of the particle is similar to the plasma temperature (E ≈ T ) the particle
can also gain energy while traversing it.
4 In addition, synchrotron-, Čerenkov-, and transition-radiation energy losses can take place,
respectively, if the particle interacts with the medium magnetic field, if its velocity is greater than
the local phase velocity of light, or if it crosses suddenly from one medium to another. Yet those
effects are usually less important in terms of the amount of Eloss.
5 By “stopping power”, one means a property of the matter, while “energy loss per unit length”
describes what happens to the particle. The numerical value and units are identical (and both are
usually written with a minus sign in front).
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− d E

dl
=

〈
ΔE tot

〉
L

, (6)

which for incoherent scatterings reduces to −d E/dl = 〈
ΔE1scat

〉
/λ. As an example,

we show in Fig. 4 the stopping power of muons in copper. At low and high ener-
gies, the collisional (aka “Bethe–Bloch”) and the radiative energy losses dominate,
respectively.

Yet the hot and dense plasma environment that one encounters in “jet quench-
ing” scenarios is not directly comparable to the QED energy loss in cold matter
represented in Fig. 4. A recent review by Peigné and Smilga [18] presents the para-
metric dependences of the energy loss of a lepton traversing a hot QED plasma with
temperature T and Debye-mass m D . In a simplified manner, inserting the Coulomb
(lepton–lepton) and Compton (lepton–photon) scattering cross sections in Eq. (4)
and using Eq. (6), one obtains

• Light lepton (M2  ET ): − d Ecoll
dl ≈ π

3 α
2T 2 ln

(
E T
m2

D

)
≈ π

3 α m2
D ln

(
E T
m2

D

)

• Heavy lepton (M2 � ET ): − d Ecoll
dl ≈ 2π

3 α
2T 2 ln

(
E T

m D M

)
≈ 2π

3 α m2
D ln

(
E T

m D M

)

For radiative losses, the amount of photon emission depends chiefly on the thickness
of the plasma.6 For thin media (L  λ), the traversing particle suffers at most one
single scattering and the QED radiation spectrum is just given by the Bethe–Heitler
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Fig. 4 Stopping power, −d E/dl, for positive muons in copper as a function of βγ = p/Mc (or
momentum p). The solid curve indicates the total stopping power [19]

6 We consider here the formulas where the charged particle is produced inside the plasma, as this
is the typical situation encountered in a QGP.



High-pT Hadron Suppression and Jet Quenching 291

(BH) Bremsstrahlung expression. On the contrary, for thick media (L � λ) there are
N (=opacity) scatterings and the Landau–Pomeranchuk–Migdal (LPM) [20] coher-
ence effect7 reduces the amount of radiation compared to N times the BH spectrum.
Making use of Eq. (5) one can obtain [18]:

• BH photon spectrum (L  λ)8: ω d Irad
dω ≈ α (L2m2

D/λ) · ω/E2 ≈ α q̂ L · ω/E2

ΔEBH
rad ≈ α q̂ L2 ≈ α3 T 3 L2 =⇒ −d Erad

dl
= ΔErad

L
≈ α3 T 3 L . (7)

• LPM photon spectrum (L � λ): ω d Irad
dω ≈ α2 L

√
T 3 ω

E2 ln
(
E2/(ωT )

)

ΔELPM
rad ≈ α2 L

√
ET 3 ln(E/T ) =⇒ −d Erad

dl
≈ α2

√
ET 3 ln(E/T ). (8)

In general, the radiative energy losses of an energetic lepton crossing a hot QED
plasma are much larger than their collisional losses. Yet, if the particle is heavy,
the amount of radiation at angles within a cone θ < M/E is suppressed by
a factor m2

D/M2 (“dead cone” effect, see later) resulting in a reduction of the
Bremsstrahlung emission by a factor m2

D/M2 = α T 2/M2.

The main differences from QED and QCD result from the non-Abelian nature
of QCD: the fact that gluons can also interact with themselves (at variance with
photons in QED) introduces several important changes. First, the QCD coupling
αs runs more rapidly than αem (at least for not asymptotically high temperatures),
and the scale Q at which αs(Q) is evaluated needs to be explicitly considered in
all calculations of collisional energy losses [21, 22]. Second, for radiative losses
it is crucial to take into account the different couplings between quarks and glu-
ons. The relative strengths of the three distinct QCD vertices, αsCF for q → qg,
αsCA for g → gg, and αs TF for g → qq̄ , are completely determined by the struc-
ture (Casimir factors CR) of the gauge group describing the strong force [23]. For
SU (Nc) where Nc is the number of colours, CA = Nc, CF = (N 2

c − 1)/2Nc, and TF

= 1/2. The probability for a gluon (quark) to radiate a gluon is proportional to the
colour factor CA = 3 (CF = 4/3). In the asymptotic limit, and neglecting the gluon
splitting into quark–antiquark pairs (proportional to the smaller factor TR = 1/2), the
average number of gluons radiated by a gluon is CA/CF = 9/4 times higher than
that radiated by a quark. That is the reason why gluon jets have a larger (and softer)
hadron multiplicity than quark jets.

7 The LPM effect describes the fact that, since it takes a finite time to emit a photon, neighbouring
scattering centres interfere coherently and act as one effective scattering centre, inducing single
photon radiation.
8 This spectrum is often written as ω d Irad

dω ≈ α ωc ω/E2, where ωc ≈ q̂ L2 is the characteristic
frequency of the radiated photons.
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2.2.1 QCD Collisional Energy Loss

The collisional energy loss due to elastic scattering of a parton of energy E inside
a QGP of temperature T was originally estimated by Bjorken [13] and Braaten–
Thoma [24] and later improved (including running coupling, finite energy kine-
matics, and quark mass effects) by various authors [21, 22, 25]. Using Eq. (4)
with the momentum-transfer integral limits given by (i) the QGP Debye mass
squared tmin = m2

D(T ) � 4παs T 2(1 + N f /6) and (ii) tmax = s � ET and
taking the dominant contribution to the parton–parton t-differential elastic cross
section

dσ

dt
≈ Ci

4π α2
s (t)

t2
, with αs(t) = 12π

(33 − 2n f ) ln (t/Λ2
QCD)

, (9)

where Ci = 9/4, 1, 4/9 are the colour factors for gg, gq, and qq scatterings respec-
tively, one finally obtains [22]

• Light quark, gluon: − d Ecoll
dl

∣∣
q,g = 1

4 CR αs(ET ) m2
D ln

(
ET
m2

D

)
,

• Heavy quark: − d Ecoll
dl

∣∣
Q = − d Ecoll

dl

∣∣
q − 2

9 CR π T 2
[
αs(M2)αs(ET ) ln

(
ET
M2

)]
,

with CR = 4/3 (3) being the quark (gluon) colour charge. The amount of ΔEcoll

is linear with the medium thickness, and it depends only logarithmically on the
initial parton energy. As a numerical example, taking T = 0.4 GeV, E = 20 GeV,
M = 1.3 GeV (charm quark), and αS = 0.5 (which yields m D = 1 GeV), the elastic
energy loss per unit length is −d Ecoll/dl

∣∣
q = 2.3 GeV/fm and −d Ecoll/dl

∣∣
Q =

2.6 GeV/fm.

2.2.2 QCD Radiative Energy Loss

The dominant mechanism of energy loss of a fast parton in a QCD environment is of
radiative nature (“gluonstrahlung”) [26–32]: a parton traversing a QGP loses energy
mainly by medium-induced multiple gluon emission. The radiated gluon spectrum,
ω d I (ω, l)/dω, has been computed by diverse groups under various approxima-
tions (see Sect. 3.2). The starting point is the QCD radiation probabilities given
by DGLAP splitting functions (Pq,g→g): ω d I (ω)/dω ∝ Pq,g→g(ω/E), modified
to take into account the enhanced medium-induced radiation. All medium mod-
ifications are often encoded into the “transport coefficient” parameter, q̂ , intro-
duced previously, Eq. (2). For thin (thick) media, one deals with the Bethe–Heitler
(Landau–Pomeranchuk–Migdal) gluonstrahlung spectrum. In the LPM case, one
further differentiates between the soft and hard gluon emission cases with respect to
the characteristic gluonstrahlung energy9 ωc = 1

2 q̂ L2. Making use of Eq. (5), the
basic QCD radiative energy loss formulas read [12]

9 Up to prefactors, ωc is the average energy lost in the medium: ωc � 2 〈ΔErad〉 /(αsCR).
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• Bethe–Heitler (BH) regime (L  λ):

ω
d Irad

dω
≈ αs CR q̂ L2/ω =⇒ ΔEBH

rad ≈ αs CR q̂ L2 ln(E/(m2
D L)). (10)

• Landau–Pomeranchuk–Migdal (LPM) regime (L � λ):

ω
d Irad

dω
≈αs CR

{√
q̂ L2/ω

q̂ L2/ω
=⇒ ΔELPM

rad ≈αs CR

{
q̂ L2 (ω < ωc)
q̂ L2 ln(E/(q̂ L2)) (ω > ωc).

(11)

The main differences between the energy loss in a QCD and QED plasma are the
colour factors (CR) and the extra logarithmic dependence of ΔErad on the energy
E of the traversing particle. As a numerical example, taking E = 20 GeV, L =
6 fm, and a medium with q̂ = 2 GeV2/fm, the LPM radiative energy losses per
unit length d Erad/dl are O(10 GeV/fm), to be compared with the elastic losses of
O(2 GeV/fm) estimated before. As we see in Fig. 5, ΔEcoll is in general a small
correction compared to ΔErad for light quarks and gluons but it can be an important
contribution for slower heavy quarks (see next).
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Fig. 5 Comparison of the average radiative and elastic energy losses of light quarks (left) and light
and heavy quarks (right) passing through the medium produced in central AuAu collisions at RHIC
energies as obtained by the AMY [34] and DGLV [35] models (see later)

2.2.3 Heavy-Quark Radiative Energy Loss (“Dead Cone” Effect)

Gluon bremsstrahlung off a heavy quark differs from that of a massless parton. Due
to kinematics constraints, the radiation is suppressed at angles smaller than the ratio
of the quark mass M to its energy E . The double-differential distribution of gluons
of transverse momentum k⊥ and energy ω radiated by a heavy quark at small angles
(k⊥ ≈ ω θ ) differs from the standard bremsstrahlung spectrum by the factor
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ω
d Irad,Q

dω dk2
⊥

= αs CF

π

k2
⊥

(k2
⊥ + ω2θ2

0 )2
≈ ω

d Irad

dω dk2
⊥

·
(

1 + θ2
0

θ2

)−2

, θ0 ≡ M

E
= 1

γ
.

(12)

This effect, known as the “dead cone” [33], results in a reduction of the total gluon
radiation emitted off heavy quarks. In the medium, the total amount of reduction
depends on a non-trivial way on the various kinematics scales (E,M, L) of the prob-
lem [18]. In a simplified way, the reduction is O(m D/M) (compared to O(m2

D/M2)
in the QED case). For a plasma with Debye mass m D = 1 GeV/c2, the reduction of
radiative energy loss for a charm (bottom) quark of mass 1.3 (4.2) GeV/c2 is a factor
∼25% (75%).

2.3 Phenomenological Consequences of Parton Energy Loss

Medium-induced parton energy loss in AA reactions results in various observable
experimental consequences compared to the same measurements in proton–proton
(pp) collisions in “free space”. The presence of jet quenching manifests itself via

(i) a suppression of the spectrum (d NAA/dpT ) of high-pT hadrons [26, 27],
(ii) unbalanced back-to-back high-pT di-hadron azimuthal correlations (d Npair/dφ)

[36, 37],
(iii) modified energy–particle flow (softer hadron spectra, larger multiplicity,

increased angular broadening, etc.) within the final jets [38–43].

Due to the aforementioned hierarchy of flavour-dependent radiative energy losses

ΔErad(g) > ΔErad(q) > ΔErad(c) > ΔErad(b) , (13)

all these medium effects are expected to be larger for gluons and u, d, s quarks than
for c or b quarks (the top quark decays into W b immediately, τ < 0.1 fm/c, after
production).

(i) High-pT leading hadron spectra

The leading hadron of a jet is the hadron that carries the largest fraction of the energy
of the fragmenting parton.10 In a heavy-ion collision, if the parent parton suffers
energy loss, the energy available for such hadrons is reduced and consequently their
spectrum is depleted compared to pp. From the measured suppression factor one
can determine ΔEloss and estimate properties of the produced plasma (expanding
with original transverse area A⊥ = π R2

A ≈ 150 fm2 and thickness L) such as

10 The high-pT part of hadron spectra is dominated by particles with 〈z〉 = phadron/pparton ≈
0.4–0.7 [43].
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• the average transport coefficient 〈q̂〉, from Eq. (10): 〈ΔE〉 ∝ αs CR 〈q̂〉 L2 ,

• the initial gluon density dNg/dy from [30, 31]:

ΔE ∝ α3
s CR

1

A⊥

d N g

dy
L . (14)

(ii) High-pT di-hadron correlations

Parton–parton 2 → 2 scatterings are balanced in pT , i.e. they are back-to-back in
azimuthal angle (Δφ ≈ π ). Such azimuthal correlation is smeared out if one or both
partons suffer rescatterings in a dense plasma.

• The ϕ-broadening arising from the interactions of a parton in an expanding QGP〈
k2

T

〉
med ∝ m2

D/λ ln(L/τ0), is
〈
k2

T

〉
ϕ

= 〈
k2

T

〉
ϕ,vac + 1

2

〈
k2

T

〉
med. The azimuthal correla-

tions between the hadrons issuing from quenched partons will show a dependence
on the q̂ and thickness of the medium: d2 Npair/dΔφ = f (q̂, L).

In addition, it has been proposed that a fast parton propagating through a QGP with
supersonic (β > cs) or “superluminal” (β > 1/n) velocities can generate a wake of
lower energy gluons with either Mach- [44–48] or Čerenkov-like [48–51] conical
angular patterns. After hadronisation those secondary gluons can show up in the
final azimuthal correlations of the measured hadrons with respect to the original jet
axis:

• In the first case, the speed of sound of the traversed matter, 11 c2
s = ∂P/∂ε, can

be determined from the characteristic Mach angle θM of the secondary hadrons:

cos(θM ) = cs

β
. (15)

• In the second scenario, the refractive index of the medium, n ≈ √
εr where εr

is the gluon dielectric constant, can be estimated from the Čerenkov angle of
emission θc of the hadrons:

cos(θc) = 1

n β
= 1√

εr β
. (16)

(iii) Jet spectra and jet shapes

The measurements of fully reconstructed (di)jets or of jets tagged by an away-side
photon or Z -boson [52, 53] in heavy-ion collisions allow one to investigate the
mechanisms of in-medium parton radiation and to characterise the medium prop-
erties via

11 The speed of sound – namely the speed of a small disturbance through the medium – for an
ideal QGP (with ε = 3P , where P is the pressure) is simply cs = 1/

√
3.
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• Medium-modified jet profiles and multiplicities [38, 54], through the differential
ρmed(r ; q̂) and integrated Ψmed(r ; q̂) jet shapes, which provide a sensitive probe
of the mechanisms of energy loss in a QCD plasma.

• Medium-modified fragmentation functions [55], Dmed
parton→hadron(z) where z =

phadron/pparton is the fractional energy carried by a hadron in the jet, are a sensitive
probe of the plasma properties (q̂ for a given L) [39, 56, 57, 40]. Medium effects
enter, e.g. as an additive correction to the DGLAP splitting functions:

Pmed(z) = Pvac(z) + ΔP(z, Q2, E ; q̂, L) , (17)

where ΔP(z, Q2) � 2πQ2/αs d Irad(q̂, L)/dzd Q2 is directly derivable from the
medium-induced gluon radiation spectrum, Eq. (11).

3 Parton Energy Loss Phenomenology

The use of fast partons as a calibrated tomographic probes of hot and dense QCD
matter in heavy-ion collisions relies on the possibility to compute theoretically (i)
their perturbative production cross sections and (ii) their modifications suffered
while propagating through a strongly interacting medium. We discuss here the basic
pQCD principles used to compute high-pT hadron (and jet) cross sections, and we
outline the various existing parton energy loss schemes.

3.1 High-pT Hadroproduction: QCD Factorisation in AA
Collisions

Because of asymptotic freedom, the QCD coupling αs is small for high-energy
(short distance) parton interactions: αs(Q2 → ∞) → 0. The single inclusive12 pro-
duction of a high-pT parton c in a parton–parton collision, ab → c + X , can be thus
computed using perturbation theory techniques. Over short distances, the infinite
number of Feynman diagrams that would theoretically result in the production of
the outgoing parton c can be approximated accurately by a much more manageable
number of terms. In high-energy hadron–hadron collisions, the production of high-
pT particles can be computed from the underlying parton–parton processes using
the QCD “factorisation theorem” [58]. The production cross section of a high-pT

hadron h can be written, to order O(1/Q2), as the product

dσ hard
AB→h = fa/A(x1, Q2) ⊗ fb/B(x2, Q2) ⊗ dσ hard

ab→c(x1, x2, Q2) ⊗ Dc→h(z, Q2) ,
(18)

where σab→c(x1, x2, Q2) is the perturbative partonic cross section computable up to
a given order in αs , and there are two non-perturbative terms:

12 Inclusive refers to the consideration of all possible channels that result in the production of a
given particle c, without any particular selection of the final state X .
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• fa/A(x, Q2): parton distribution functions (PDF), encoding the probability of
finding a parton of flavour a and momentum fraction x = pparton/pnucleus inside
the nucleus A,

• Dc→h(z, Q2): fragmentation function (FF), describing the probability that the
outgoing parton c fragments into the observed hadron h with fractional momen-
tum z = phadron/pparton,

that are universal objects that can be determined experimentally, e.g. in deep-
inelastic e± nucleus and e+e− collisions, respectively. In Eq. (18), one sets Dc→h =
δ(1 − z) if interested in the total parton (i.e. jet) cross section.

The basic assumption underlying the factorised form of Eq. (18) is that the
characteristic time of the parton–parton interaction is much shorter than any long-
distance interaction occurring before (among partons belonging to the same PDF)
or after (during the evolution of the struck partons into their hadronic final state)
the hard collision itself (see sketch in Fig. 6). The validity of Eq. (18) holds thus on
the possibility to separate long- and short-distance effects with independent QCD
time- (length-) scales, as well as on the “leading-twist”13 assumption of incoherent
parton–parton scatterings. Since partons are effectively “frozen” during the hard
scattering, one can treat each nucleus as a collection of free partons. Thus, with
regard to high-pT production, the density of partons in a nucleus with mass number
A is expected to be simply equivalent to that of a superposition of A independent
nucleons: fa/A(x, Q2) = A · fa/N (x, Q2). Thus,

dσ hard
AB→h ≈ A · B · fa/p(x, Q2) ⊗ fb/p(x, Q2) ⊗ dσ hard

ab→c ⊗ Dc→h(z, Q2) . (19)

Fig. 6 Sketch of dijet production and pQCD factorisation in hadronic collisions

13 Processes in which more than one parton from the same hadron/nucleus interact coherently, are
called “higher twist” processes.
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From (18), it is clear that QCD factorisation implies that total hard inclusive cross
sections in a AB reaction scale simply as A · B times the corresponding pp cross
sections:

dσ hard
AB = A · B · dσ hard

pp . (20)

Since nucleus–nucleus experiments usually measure invariant yields for a given cen-
trality bin (or impact parameter b), one writes instead

d N hard
AB (b) = 〈TAB(b)〉 · dσ hard

pp , (21)

where the nuclear overlap function at b, TAB(b), is determined within a geomet-
ric Glauber eikonal model from the measured Woods–Saxon distribution for the
interacting nuclei [59]. Intuitively, one can think of the nuclear overlap TAA(b) as
a function that characterises the surface profile of two “beams” of nucleons collid-
ing at a distance b. The [area]−1 units of TAA indicate that it represents somehow
the effective “parton (integrated) luminosity” of the collision. Since the number of
inelastic nucleon–nucleon (N N ) collisions at b, Ncoll(b), is proportional to TAB(b):
Ncoll(b) = TAB(b) · σ inel

N N , one also writes often Eq. (21) as

d N hard
AB (b) = 〈Ncoll(b)〉 · d N hard

pp . (22)

For minimum-bias14 A B collisions, the average nuclear overlap and number of N N
collisions take a simple form15: 〈TAB〉 = A B /σ geo

AB and 〈Ncoll〉 = A B · σN N/σ
geo
AB .

The standard method to quantify the effects of the medium on the yield of a hard
probe in a AA reaction is thus given by the nuclear modification factor:

RAA(pT , y; b) = d2 NAA/dydpT

〈TAA(b)〉 × d2σpp/dydpT
. (23)

This factor, which is a quantitative version of the ratio (1), measures the deviation
of AA at b from an incoherent superposition of N N collisions (RAA = 1). This
normalisation is often known as “binary collision scaling”.

3.2 Jet Quenching Models

The energy loss formulas presented in Sect. 2.2 refer to an idealistic situation with
an infinite-energy parton traversing a static and uniform QGP with an ideal-gas

14 Minimum-bias collisions are those where there is no specific selection of the final state (e.g. in
particular no centrality selection for heavy ions).
15 For example, for AuAu at

√
sNN = 200 GeV (σ inel

N N = 41 mb, σ geo
AuAu = 7000 mb): 〈TAuAu〉 =

5.5 (23.3) mb−1 and 〈Ncoll〉 = 230 (955) for minimum-bias (0–10% most central) collisions,
respectively.
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equation-of-state (EoS). Experimentally, the situation that one encounters with real-
istic plasmas in heavy-ion collisions is more complex:

• first, there is no direct measurement of the traversing parton but (in the best case)
only of the final-state hadrons issuing from its fragmentation,

• the traversing partons can be produced at any point of the fireball and their energy
spectrum is steeply (power law) falling,

• the temperature and density of the plasma, and correspondingly its Debye mass
and transport coefficient, are position dependent: m D(r), q̂(r),

• the produced plasma is expanding with large longitudinal (transversal) velocities,
β ≈ 1 (0.7),

• the finite size of the plasma and associated energy loss fluctuations have to be
taken into account.

All those effects can result in potentially significant deviations from the analytical
formulas of Sect. 2.2 (e.g. in an expanding plasma the dependence of ΔErad on the
medium thickness L becomes effectively linear rather than quadratic). Four major
phenomenological approaches have been developed [60] to connect the QCD energy
loss calculations with the experimental observables mentioned in Sect. 2.3:

• Path-integral approach to the opacity expansion (BDMPS–LCPI/ASW) [61–67,
32, 68, 69]

• Reaction operator approach to the opacity expansion (DGLV) [70–73, 35]
• Higher twist (HT) [74–79]
• Finite temperature field theory approach (AMY) [80–83]

The models differ in their assumptions about the relationships between the relevant
scales (parton energy E and virtuality Q2, and medium typical momentum μ ≈ m D

and spatial extent L), as well as by how they treat or approximate the structure
of the medium. In practical terms, all schemes are based on a pQCD factorised
approach, i.e. on Eq. (18), where the entire effect of energy loss is concentrated on
the calculation of the medium-modified parton fragmentation functions into final
hadrons: Dvac

c→h(z) → Dmed
c→h(z′, q̂). The final hadronisation of the hard parton is

always assumed to occur in the vacuum after the parton, with degraded energy (z′ <
z), has escaped from the medium (Fig. 7).

E E

...
h

− ε

Fig. 7 Schematic representation of parton energy loss implemented via energy rescaling of the
fragmentation function [55]

3.2.1 BDMPS–LCPI and ASW

The approaches of Baier, Dokshitzer, Müller, Peigné, and Schiffer (BDMPS)
[65, 66, 84, 85] and the light-cone path integral (LCPI) by Zakharov [61] compute
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Fig. 8 Typical gluon radiation diagram in the BDMPS approach [66]

energy loss in a coloured medium in a multiple soft-scatterings approximation. A
hard parton traversing the medium interacts with various scattering centres and splits
into an outgoing parton as well as a radiated gluon (Fig. 8). The propagation of the
traversing parton and radiated gluons is expressed using Green’s functions which
are obtained by a path integral over the fields. The final outcome of the approach is
a complex analytical expression for the radiated gluon energy distribution ω d I/dω
as a function of the transport coefficient q̂ defined perturbatively as [86]

q̂ ≡ ρ
∫

d2k⊥ k2
⊥

dσ

d2k⊥
. (24)

Here ρ is the density of scattering centres (mainly gluons) in the medium, k⊥ is
the transverse momentum of the radiated gluon, and dσ is the differential parton-
medium cross section. The medium-modified parton-to-hadron fragmentation func-
tions are modelled as

Dmed
i→h(z′, Q2) = PE (ε; q̂) ⊗ Dvac

i→h(z, Q2), (25)

where the quenching weights PE (ε; q̂) – computed by Armesto, Salgado, and
Wiedemann (ASW) [32, 87, 69, 88] – encode the probability (assumed Poissonian)
that the propagating parton loses a fraction of energy ε = ΔE/E due to gluon emis-
sion in N (=opacity) scatterings

PE (ε; q̂) =
∞∑

N=0

1

N !

[
N∏

i=1

∫
dωi

d I med(q̂)

dω

]
δ

(
ε; −

N∑
i=1

ωi

E

)
exp

[
−

∫
dω

d I med

dω

]
.

(26)

The quenching weights have been implemented in a Monte Carlo model, the parton
quenching model (PQM) [89, 90] accounting for a realistic description of the parton
production points in heavy-ion collisions. The transport coefficient q̂ is used as the
fit parameter for the data. The longitudinal expansion of the plasma is taken into
account by rescaling the transport coefficient according to the following law [68]:

〈q̂〉 = 2

L2

∫ τ0+L

τ0

dτ (τ − τ0) q̂(τ ), (27)
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where q̂(τ ) = q̂(τ0) (τ0/τ )α and α characterises the time dependence of the plasma
density: n(τ ) ∝ τ−α . A purely longitudinal (or Bjorken) expansion corresponds to
α = 1 and is often assumed in phenomenological applications. When τ0  L ,
Eq. (27) reduces to 〈q̂〉 � 2 q̂(τ0) τ0/L [86].

3.2.2 GLV

The Gyulassy–Levai–Vitev (GLV) [91, 70, 92, 71, 72] (aka DGLV [73, 35]) approach
calculates the parton energy loss in a dense deconfined medium consisting, as in
the BDMPS approach, of almost static (i.e. heavy) scattering centres (Fig. 9) pro-
ducing a screened Yukawa potential. At variance with the BDMPS multiple-soft
bremsstrahlung, GLV starts from the single-hard radiation spectrum which is then
expanded to account for gluon emission from multiple scatterings via a recursive
diagrammatic procedure [71]. The traversing parton gains a transverse momentum
q⊥ and radiates (before or after the scattering) a gluon with a certain momentum

k = (x E, k2
⊥

x E k⊥). The gluon differential distribution at first order in opacity [70] is

x
d I (1)

dxdk2
⊥

= x
d I (0)

dxdk2
⊥

L

λg

∫ q2
max

0
d2q⊥

μ2
D

π (q2
⊥ + μ2

D)2

2k⊥ · q⊥(k − q1)2L2

16x2 E2 + (k − q)2
⊥L2

, (28)

where λg is the mean free path of the radiated gluon. Applying the aforementioned
recursive procedure, one obtains the gluon distribution to finite order (N ≥ 1) in
opacity. Each emission at a given opacity is assumed independent and a probabilistic
scheme is set up, wherein, the parton loses an energy fraction ε in N tries with a
Poisson distribution [72],

PN (ε, E) = e−〈N g〉

N !
ΠN

i=1

[ ∫
dxi

d N g

dxi

]
δ

(
ε −

n∑
i=1

xi

)
, (29)

(a)

(b)(b) (c)

Fig. 9 Diagrams contributing to the lowest order in the opacity energy loss expansion [93]
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where 〈N g〉 is the mean number of gluons radiated per coherent interaction set.
Summing over N gives the probability P(ε) for an incident parton to lose a momen-
tum fraction ε due to its passage through the medium. This is then used to model a
medium-modified FF, by shifting the energy fraction available to produce a hadron
in a similar way as Eq. (25). The key medium property to be obtained from the
fits to the experimental data is the initial gluon density d N g/dy, after accounting
for longitudinal expansion. Note that the density of colour charges of a cylinder of
plasma with “length” τ and surface A⊥ is ρ ≈ d N g/dy/(τ A⊥).

3.2.3 Higher Twist (HT)

The higher twist approximation [94–96, 74–76] describes the multiple scattering
of a parton as power corrections to the leading-twist cross section (Fig. 10). These
corrections are enhanced by the medium length L and suppressed by the power of
the hard scale Q2. Originally, this approach was applied to calculate the medium
corrections to the total cross section in nuclear deep-inelastic e A scattering.

The scheme allows one to compute multiple Feynman diagrams such as those
in Fig. 10 which are then combined coherently to calculate the modification of
the fragmentation function directly as a medium-dependent additive contribution,
Dmed

i→h = Dvac
i→h + ΔDmed

i→h ,

ΔDmed
i→h(z, Q2) =

∫ Q2

0

dk2
⊥

k2
⊥

αs

2π

⎡
⎣∫ 1

zh

dx

x

∑
j=q,g

{
ΔPmed

i→ j D j→h

( zh

x

)}⎤⎦ . (30)

Here, ΔPi→ j ∝ Pi→ j CAαs T A
qg represents the medium-modified splitting function

of parton i into j (a momentum fraction x is left in parton j and the radiated gluon
or quark carries away a transverse momentum k⊥). The entire medium effects are
incorporated in the nuclear quark–gluon correlation T A

qg term. The normalisation C
of this correlator is set by fitting to one data point from which one can directly cal-
culate the medium-modified FFs and then the final hadron spectrum. The parameter
C can also be used to calculate the average energy loss suffered by the parton.

Fig. 10 Leading and next-to-leading order twist contribution to quark scattering in a medium
(hatched area) [97]
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3.2.4 AMY

The Arnold–Moore–Yaffe (AMY) [80, 98, 99, 82, 83] approach describes parton
energy loss in a hot equilibrated QGP, where the hierarchy T � gT � g2T can
be introduced. The hard parton scatters off other partons in the medium, leading to
momentum transfers of O(gT ) and inducing collinear radiation. Multiple scatter-
ings of the incoming (outgoing) parton and the radiated gluon are combined to get
the leading-order gluon radiation rate. One essentially calculates the imaginary parts
of ladder diagrams such as those shown in Fig. 11 by means of integral equations
which yield the 1 → 2 transition rates Γa

bg of a hard parton (a) into a radiated gluon
g and another parton (b). These rates, with T -dependent Bose (for gluons) and Fermi
(for quarks) exponential factors for the medium partons, are then used to evolve the
original distributions over the medium length by means of a Fokker–Planck-like
equation [82]:

d Pa(p)

dt
=

∫
dk

∑
b,c

[
Pb(p + k)

dΓb
ac(p + k, p)

dkdt
− Pa(p)

dΓa
bc(p, k)

dkdt

]
. (31)

The medium-modified FF is obtained from the convolution of the vacuum FF with
the hard parton distributions when exiting the plasma [83]:

Dmed
a→h(z) =

∫
dp f

z′

z

∑
a

Pa(p f ; pi )Dvac
a→h(z′) , (32)

where z = ph/pi and z′ = ph/p f , with pi and p f the momenta of the hard partons
immediately after the hard scattering and prior to exit from the medium. The model
of the medium is essentially contained in the space–time profile chosen for the initial
temperature appearing in the transition rates.

*

Fig. 11 A typical ladder diagram in the AMY formalism [99]

3.2.5 Models Comparison

The four energy loss formalisms discussed above can be roughly divided into two
groups: those calculating the radiated gluon spectrum, i.e. the energy lost by the
initial parton (GLV and BDMPS/ASW) and those determining directly the change
in the final distribution of the traversing partons (higher twist and AMY). Each
approach has its advantages and disadvantages:
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• ASW: It is applicable to both thin and thick media, but so far lacks an implemen-
tation of elastic energy loss.

• GLV: It can be applied in confined and deconfined media, but it does not account
for the energy flow into the medium.

• Higher twist: It can directly compute the medium-modified fragmentation func-
tions and allows the study of multi-hadron correlations, but the formalism is more
appropriate for thin than thick media.

• AMY: It is the only framework that accounts for processes where a thermal gluon
or quark can be absorbed by a hard parton, elastic energy loss can be included in a
straightforward way, but its application to non-thermalised media is questionable.

All four schemes have independently made successful comparisons to the avail-
able data (see Fig. 12 and forthcoming sections). The outcome of the models is one
parameter tuned to ideally fit all experimental observables: q̂ in the BDMPS/ASW
scheme, the initial d N g/dy density in GLV, the energy loss ε0 in HT, and the tem-
perature T in AMY. All jet quenching observables in AuAu collisions at 200 GeV
can only be reproduced with medium parameters consistent with a QGP at tem-
peratures above the QCD phase transition. The analytical results of the different
schemes under “controlled” situations are in principle equivalent, see, e.g., [14]. Yet
the detailed comparison of the models is not always straightforward as they

• use different approximations in their calculations,
• do not always include the same list of physics processes (e.g. ΔEcoll is neglected

in some cases),
• choose a different fitting parameter to characterise the medium, and
• the space–time profile of the quenching medium is not always equivalent.
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Fig. 12 Suppression factor for high-pT pions in central (top) and semicentral (bottom) AuAu col-
lisions at RHIC [100] compared to AMY, HT, and ASW energy loss calculations [101]
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The quantitative consistency of the different schemes has been investigated
within a 3-dimensional hydrodynamics approach (Fig. 12) [101] linking the various
medium properties via thermodynamical relations and using the same space–time
evolution. Yet the extracted q̂ values still differ by factors of 2–3 (see Sect. 4.2). At
least part of the uncertainty is due to the relative insensitivity of the q̂ parameter
to the irreducible presence of (unquenched) partons emitted from the surface of
the plasma [102]. Additional constraints on q̂ can be placed by requiring also the
reproduction of the suppressed di-hadron azimuthal correlations (see Sect. 5.1).

3.3 Jet Quenching Monte Carlos

Ultimately, the discussed energy loss schemes are all based on a final energy rescal-
ing of the vacuum parton-to-hadron fragmentation functions (Fig. 7). Recently,
attempts to reformulate parton energy loss as a medium modification of the per-
turbative evolution of the fragmentation functions have been implemented in Monte
Carlo (MC) models [56, 103–105]. Such MC approaches allow one to address more
detailed experimental observables such as the particle and energy flows within a jet.
The DGLAP scale-dependence (Q2-evolution) equation of the FFs reads

∂Di→h(x, Q2)

∂ log Q2
=

∑
j

∫ 1

x

dz

z

αs

2π
Pi→ j (z) D j→h(x/z, Q2) , (33)

with splitting functions Pi→ j (z). The probabilistic nature of parton showering –
the “Sudakov factor” exp[− ∫

d Q/Q2
∫

dz αs/2π Pi→ j (z, Q2)] gives the proba-
bility that a parton evolves from times t1 to t2 without branching – can be easily
implemented in MC codes by calculating the virtuality and energy fraction of a
parton at each branching point with proper energy-momentum conservation. Parton
showers are a basic ingredient of event generators such as PYTHIA [106] or HER-
WIG [107] which are often used to compare the experimental jet data to the details
of the underlying QCD radiation pattern. Medium effects can be easily included by,
e.g. modifying the splitting functions in Eq. (33). HYDJET [108, 109] was the first
MC code which incorporated medium effects via a PYQUEN routine which modifies
the standard PYTHIA branching algorithm to include radiative and elastic energy
losses. More recent developments like Q-PYTHIA and Q-HERWIG [40] modify the
DGLAP evolution of these two parton-shower MCs. The JEWEL MC [103] imple-
ments elastic scattering in DGLAP evolution plus radiative energy loss through a
multiplicative constant in the collinear part of the splitting functions [39].

3.4 Parton Energy Loss in AdS/CFT

So far, we have discussed perturbative calculations of parton energy loss in an ideal
QGP. Yet the medium produced at RHIC has temperatures O(2 Tcrit) in a domain
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where lattice QCD [2] still predicts large deviations with respect to the asymp-
totic ideal-gas behaviour. Many experimental signals at RHIC are consistent with
the formation of a strongly coupled plasma (sQGP) [110–112]. Such a regime is
theoretically treatable via the anti-de-Sitter/conformal-field-theory (AdS/CFT) cor-
respondence between weakly coupled gravity and strongly coupled gauge theories
[113–115].

The AdS/CFT correspondence conjectures that string theories described in an
anti-de-Sitter space16 times a 5-dimensional sphere (Ad S5 × S5) are equivalent to a
conformal field theory (CFT), defined on the 4-dimensional boundary of this space.
A particularly useful case is N = 4 supersymmetric Yang-Mills (SYM)17 at strong
coupling gY M and large number of colours Nc (i.e. at large ’t Hooft coupling λ =
g2

YM Nc � 1) which is dual to supergravity in a curved space–time. The string
coupling gs , the curvature radius R of the Ad S metric, and the tension (2πα′)−1 of
the string are related to the SYM quantities via R2/α′ = √

λ and 4π gs = g2
Y M =

λ/Nc. Essentially, taking the large Nc limit at fixed λ (i.e. weakly coupled gravity:
gs → 0) and the large λ limit (i.e. weakly curved space and large string tension),
the SYM theory can be described by classical gravity in a 5-dimensional space. By
virtue of such a duality, one can carry out analytical calculations of gravity, which
can then be mapped out “holographically” to the non-perturbative dynamics of the
gauge sector.

One can further exploit the AdS/CFT correspondence for theories at finite tem-
perature, by replacing the Ad S5 space by an Ad S Schwarzschild black hole. The
temperature of the gauge theory is then equal to the black hole Hawking tempera-
ture, T = r0/(π R2), where r0 is the coordinate of the black hole horizon. Recent
applications of this formalism in the context of heavy-ion physics have led to the
determination of transport properties of strongly coupled (SYM) plasmas – such
as its viscosity [117], the q̂ parameter [118], and the heavy-quark diffusion coeffi-
cients [119–122] – from simpler black hole thermodynamics calculations.

In the case of jet quenching calculations [123, 124], one expresses the propa-
gation of a parton through a medium in terms of Wilson lines. The q̂ parameter
can be identified with the coefficient in the exponential of an adjoint Wilson loop

averaged over the medium length:
〈
W A(C)

〉 ≡ exp
[
(−1/4

√
2)q̂ L−L2

]
[118]. One

then evaluates the gravity dual of this Wilson loop given by the classical action of a
string stretching in an Ad S5×S5 space with a Schwarzschild black hole background.
After solving the equations of motion of the string, the transport coefficient q̂ is
determined to be

q̂sym = π3/2Γ( 3
4 )

Γ( 5
4 )

√
g2 NcT 3. (34)

16 Ad S5 is a 5-dimensional space with constant and negative curvature.
17 SYM is a quantum-field SU (Nc) theory like QCD (N = 4 indicates four additional super-
charges) but dissimilar from QCD in many aspects: extra SUSY degrees of freedom, no running
coupling, no confinement, etc. Yet such differences “wash out” at finite T [116].
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Though this result is computed in the infinite coupling and number of colours limits,
typical values of αs = 0.5 and Nc = 3 lead to q̂ = 4.5 – 20.7 GeV2/fm for T = 300–
500 MeV [124], consistent with phenomenological fits of the RHIC data [102].

There have also been AdS/CFT-based calculations [119–122] of the diffusion
properties of heavy quarks, described by a semiclassical string in the gravity theory,
such as the diffusion constant in a N = 4 SYM plasma [120]

D ≈ 0.9

2πT

(
1.5

αs Nc

)1/2

, (35)

which agrees with the drag coefficient, see Eq. (3), computed independently.

4 High- pT Leading Hadron Suppression: Data vs. Theory

The most simple empirically testable (and theoretically computable) consequence of
jet quenching is the suppression of the single inclusive high-pT hadron spectrum rel-
ative to that in proton–proton collisions. Since most of the energy of the fragmenting
parton goes into a single leading hadron, QCD energy loss was predicted to result
in a significantly suppressed production of high-pT hadrons (RAA  1) [26, 27].
We compare in this section the existing measurements of large-pT hadroproduction
in pp and AA collisions and discuss their agreement with jet quenching models.

4.1 High-pT Hadron Spectra in Proton–Proton
and Proton–Nucleus Collisions

Figure 13 collects several pT -differential inclusive cross sections measured at RHIC
in pp collisions at

√
s = 200 GeV: jets [125], charged hadrons [126], neutral

pions [127], direct photons [128], and D, B mesons (indirectly measured via inclu-
sive e± from their semileptonic decays) [129] at central rapidities (y = 0) and
negative hadrons at forward pseudorapidities (η = 3.2) [130]. The existing mea-
surements cover nine orders of magnitude in cross section (from 10 mb down to
1 pb) and broad ranges in transverse momentum (from zero for D, B mesons up to
45 GeV/c, a half of the kinematical limit, for jets) and rapidity (η = 0–3.2).

Standard next-to-leading-order (NLO) [131–138] or resummed next-to-leading
log (NLL) [139] pQCD calculations (yellow bands in Fig. 13) with recent proton
PDFs [140], fragmentation functions [141, 142], and with varying factorisation-
renormalisation scales (μ = pT /2 − 2pT ) reproduce well the pp data. This is true
even in the semi-hard range pT ≈ 1−4 GeV/c, where a perturbative description
would be expected to give a poorer description of the spectra. These results indicate
that the hard QCD cross sections at RHIC energies are well under control both
experimentally and theoretically in their full kinematic domain.
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Fig. 13 Compilation of hard cross sections in pp at
√

s = 200 GeV measured by STAR [125,
126], PHENIX [127–129], and BRAHMS [130] (10–30% syst. uncertainties not shown for clarity)
compared to NLO [131–138] and NLL [139] pQCD predictions (yellow bands)

Not only the proton–proton hard cross sections are well under theoretical control
at RHIC but the hard yields measured in deuteron–gold collisions do not show any
significant deviation from the perturbative expectations. Figure 14 shows the nuclear
modification factors measured in dAu collisions at

√
sNN = 200 GeV for high-pT π

0

at y = 0 [143, 144]. The maximum deviation from the RdAu = 1 expectation is of
the order of ∼10%, well accounted for by standard pQCD calculations [145, 146]
that include DGLAP-based parametrisations of nuclear shadowing [147] and/or a
mild amount of initial-state pT broadening [148] to account for a modest “Cronin
enhancement” [149, 150]. [The only exception to this is baryon (in particular, pro-
ton) production which shows a large Cronin enhancement: RdAu = 1.5–2.0 [151].]
These data clearly confirm that at RHIC midrapidities, the parton flux of the incident
gold nucleus can be basically obtained by geometric superposition of the nucleon
PDFs and that the nuclear (x, Q2) modifications of the PDFs are very modest. Since
no dense and hot system is expected to be produced in dAu collisions, such results
indicate that any deviations from RAA = 1 larger than 1 − R2

dAu ∼20% potentially
observed for hard probes in AuAu collisions (at central rapidities) can only be due
to final-state effects in the medium produced in the latter reactions.



High-pT Hadron Suppression and Jet Quenching 309

Fig. 14 Nuclear modification factors for high-pT π
0 (left) and η (right) mesons at midrapidity in

dAu collisions at
√

sNN = 200 GeV [143, 144] compared to pQCD calculations [145, 146] with
EKS98 [147] nuclear PDFs

4.2 High-pT Hadron Spectra in Nucleus–Nucleus Collisions

Among the most exciting results from RHIC is the large high-pT hadron suppression
(RAA  1) observed in central AuAu compared to pp or dAu reactions. We discuss
here the properties of the measured suppression factor and compare it to detailed
predictions of parton energy loss models.
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Fig. 15 Invariant π0 yields measured by PHENIX in peripheral (left) and central (right) AuAu
collisions (squares) [100] compared to the (TAA-scaled) pp π0 cross section (circles) [152] and to
a NLO pQCD calculation (curves and yellow band) [131–133]
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(a) Magnitude of the suppression: medium properties

Figure 15 shows the π0 spectrum measured in pp collisions [152] compared to
peripheral (left) and central (right) AuAu spectra [100] at 200 GeV, as well as to
NLO pQCD calculations [131–133]. Whereas the peripheral AuAu spectrum is con-
sistent with a simple superposition of individual N N collisions, the data in central
AuAu show a suppression factor of 4–5 with respect to this expectation.

The amount of suppression is better quantified taking the ratio of both spec-
tra in the nuclear modification factor, Eq. (23). Figure 16 compiles the measured
RAA(pT ) for various hadron species and for direct γ in central AuAu collisions
at

√
sNN = 200 GeV. Above pT ≈ 5 GeV/c, π0 [153], η [154], and charged

hadrons [126, 155] (dominated by π± [155]) all show a common factor of ∼5 sup-
pression relative to the RAA = 1 expectation that holds for hard probes, such as direct
photons, which do not interact with the medium [156]. The fact that RAA ≈ 0.2
irrespective of the nature of the finally produced hadron is consistent with a sce-
nario where final-state energy loss of the parent parton takes place prior to its frag-
mentation into hadrons in the vacuum according to universal (but energy-rescaled)
FFs. The suppression factor at top RHIC energies is very close to the “participant
scaling”, (Npart/2)/Ncoll ≈ 0.17, expected in the strong quenching limit where only
hadrons produced at the surface of the medium reach the detector without modifica-
tions [157]. From the RAA one can approximately obtain the fraction of energy lost,
εloss = ΔpT /pT , via

εloss ≈ 1 − R1/(n−2)
AA , (36)

when both the AuAu and pp-invariant spectra are power laws with exponent n, i.e.
1/pT d N/dpT ∝ p−n

T [158].
The high-pT AuAu suppression can be well reproduced by parton energy loss

models that assume the formation of a very dense system with initial gluon rapidity
densities d N g/dy ≈ 1400 (yellow line in Fig. 16) [160, 161], transport coeffi-
cients 〈q̂〉 ≈ 13 GeV2/fm (red line in Fig. 17, left) [89], or plasma temperatures
T ≈ 400 MeV [83]. The quality of agreement between the theory and data has
been studied in detail in [162, 100] taking into account the experimental (though
not theoretical) uncertainties. The PHENIX π0 suppression constrains the PQM
model [89] transport coefficient 〈q̂〉 as 13.2 +2.1

−3.2 and +6.3
−5.2 GeV2/fm at the one and

two standard deviation levels (Fig. 17).
The consistency between the extracted q̂ , d N g/dy, and T values in the various

models can be cross-checked considering the simple case of a gluon traversing a
thermalised gluon plasma. The transport coefficient, Eq. (2), is the product of the
particle density, the medium Debye mass, and the parton-medium cross section.
Taking σgg = 9πα2

s /(2 m2
D) with αs = 0.5 for the latter, one has a simple relation18

between q̂ and ρ:

18 Conversion between units is done multiplying by suitable powers of �c = 0.197 GeV fm.
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q̂[GeV2/fm] = m2
D × σ × ρ = m2

D × 9πα2
s /(2 m2

D) × ρ ≈ 0.14 K ρ[fm−3], (37)

where we introduce the K factor to account for possible higher order scatterings not
included in the LO perturbative cross section. For an ideal ultrarelativistic gas, the
particle density scales with the cube of the temperature as ρ ≈ ndf/9 · T 3. For a
pure gluon plasma, with ndf = 16, ρ[fm−3] ≈ 260 · (T [GeV])3, and one can write
Eq. (37) as

q̂[GeV2/fm] ≈ 36 K · (T [GeV])3. (38)

Fig. 17 Left: RAA(pT ) for neutral pions in central AuAu collisions [100] compared to PQM model
calculations [89] for varying values of the q̂ coefficient (red curve, best fit). Right: Corresponding
(data vs. theory) χ2 values for the fitted PQM q̂ parameter [162]
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In addition, as particle and energy densities are related by ρ[fm−3] ≈ 1.9·
(ε[GeV/fm3])3/4, one can express Eq. (37) also as q̂[GeV2/fm] ≈ 0.27 K ·(ε[GeV/fm3])3/4.
In an expanding plasma, the density follows a power law evolution as a function of
time, ρ = ρ0 (τ0/τ )α , and thus so does the transport coefficient (37):

q̂(τ )[GeV2/fm] ≈ 0.14 K · ρ0

(τ0

τ

)α
= 0.14 K · d N g

dV

(τ0

τ

)
≈ 0.14 K · 1

AT

d N g

dy

1

τ
,

(39)

where for the two last equalities we have assumed a 1-dimensional (aka Bjorken)
longitudinal expansion, i.e. α = 1 and dV = AT τ0 dy, where AT [fm2] is the
transverse area of the system. Combining Eq. (39) with Eq. (27) that relates the
time-averaged q̂(τ ) to that of a static medium with effective length Leff, we finally
get

〈q̂〉 [GeV2/fm] ≈ 0.14 K · 2

Leff[fm] AT [fm2]

d N g

dy
≈ 1.4 10−3 · K · d N g

dy
, (40)

where, for the last equality, we use Leff ≈ 2 fm and 〈AT 〉 ≈ 100 fm2 for the overlap
area in 0–10% most central AuAu. This approximate relation between the average
transport coefficient and the original gluon density is only well fulfilled by the data
(see Table 2 below) for a very large K ≈ 7 factor. The fact that the jet quench-
ing data favour an effective elastic parton-medium cross section much larger than
the LO perturbative estimate (σgg ≈ 1.5 mb) has been discussed many times in
the literature – e.g. in the context of the strong partonic elliptic flow seen in the
data [163, 164] – and supports the strongly coupled nature of the QGP produced at
RHIC.

A more detailed comparison of different energy loss schemes within a realistic
3-dimensional hydrodynamics evolution has been carried out in [165]. The extrac-
tion of a common q̂ parameter from the different model predictions relies on addi-
tional assumptions about the (thermo)dynamical state of the produced matter. The
results for ASW, AMY, and HT are shown in Table 1 (last two rows). The ASW
calculations consistently predict a higher q̂0 than AMY or HT. These differences
can be traced to uncertainties of the thermodynamical scaling choice (q̂ ∝ T 3 or
ε3/4) and to the initial time where the medium is supposed to start to quench (hydro

Table 1 Medium parameters derived in various parton energy loss schemes that reproduce the
high-pT π

0 suppression in central AuAu [100]. The last two rows are from a 3-dimensional hydro
simulation with two choices of q̂(r, τ ) scaling with the local thermal properties of the plasma (T0,
ε0) [165]

Medium parameter ASW HT AMY

〈q̂〉 13 GeV2/fm (PQM) – –
T0 – – 0.4 GeV
q̂0 ∝ ε3/4

0 (r, τ ) 18.5 GeV2/fm 4.5 GeV2/fm –
q̂0 ∝ T 3

0 (r, τ ) 10 GeV2/fm 2.3 GeV2/fm 4.1 GeV2/fm
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calculations at RHIC often start at τ0 = 0.6 fm/c). In addition, AMY accounts for
collisional loses which are neglected in the purely radiative ASW approach.

(b) Centre-of-mass energy dependence

As one increases the centre-of-mass energy in nucleus–nucleus collisions, the pro-
duced plasma reaches higher energy and particle densities and the system stays
longer in the QGP phase. Since ΔEloss ∝ d N g/dy ∝ d Nch/dη, and since the
charged particle multiplicity in AA at midrapidity increases with collision energy
as [166, 167]

d Nch/dη ≈ 0.75 · (Npart/2) · ln(
√

sNN [GeV]/1.5), (41)

one naturally expects the hadron quenching to increase accordingly with
√

sNN . The
actual “excitation function” of the suppression factor is only approximately given by
Eq. (41) because for increasing energies other factors play competing roles: (i) the
lifetime of the quenching medium becomes longer, (ii) the parton spectrum becomes
flatter leading to a comparatively smaller suppression for the same value of ΔEloss

(see next), and (iii) the fraction of quarks and gluons produced at a fixed pT changes
(see Fig. 22 below and the associated colour factor discussion).

Figure 18 compiles the measured RAA(pT ) for high-pT π
0 in central AA col-

lisions in the range
√

sNN ≈ 20 – 200 GeV compared to parton energy loss calcu-
lations that assume the formation of systems with initial gluon densities per unit
rapidity in the range d N g/dy ≈ 400 – 1400 [160, 161, 171] or, equivalently, aver-
aged transport coefficients 〈q̂〉 ≈ 3.5 – 13 GeV2/fm [74] (Table 2). As can be seen
from Eq. (36), RAA depends not only on ΔEloss but also on the steepness (power
law exponent n) of the parton pT spectrum. With decreasing

√
sNN , the pT spectra

become steeper effectively leading to a larger suppression (i.e. smaller RAA) for the

)c (GeV/
T

p
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A
A

R

10–1

1

 in 0–10% central A+A:0π
T

 High p

 = 17.3 GeV (WA98)NNsPbPb   

 = 62.4 GeV (PHENIX prelim.)NNsAuAu   

 = 200 GeV (PHENIX)NNsAuAu   

GLV parton energy loss:

/dy = 400gdN

/dy = 800gdN
gdN /dy = 1400

Fig. 18 Nuclear modification factor, RAA(pT ), for neutral pions in central PbPb at√
sNN = 17.3 GeV [168, 169] and AuAu at

√
sNN = 62.4 GeV [170], 200 GeV [153]; compared to

GLV energy loss calculations for initial gluon densities: d N g/dy = 400, 800, 1400 [160, 161, 171],
respectively. Experimental normalisation errors, O(10–25%), not shown
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same ΔEloss. The SPS data show an RAA for central PbPb which, though consistent
with unity [169], is significantly suppressed compared to the “Cronin enhancement”
observed for peripheral PbPb and for pPb collisions [172].

For each collision energy, the derived values for d N g/dy are consistent with the
final charged hadron density d Nch/dη measured in the reactions. Indeed, assuming
an isentropic19 expansion process, all the hadrons produced at midrapidity in a AA
collision come directly from the original gluons released20:

d N g

dy
≈ Ntot

Nch

∣∣∣∣dη

dy

∣∣∣∣ d Nch

dη
≈ 1.8 · d Nch

dη
. (42)

This relation is relatively well fulfilled by the data as can be seen by comparing the
fourth and fifth columns of Table 2.

Table 2 Initial gluon densities d N g/dy [160, 161, 171], and transport coefficients 〈q̂〉 [89] for
the dense media produced in central AA collisions at SPS and RHIC energies obtained from par-
ton energy loss calculations reproducing the observed high-pT π

0 suppression at each
√

sNN . The
measured charged particle densities at midrapidity, d N exp

ch /dη [166, 167], are also quoted
√

sNN 〈q̂〉 d N g/dy d N exp
ch /dη

(GeV) (GeV2/fm)

SPS 17.3 3.5 400 312 ± 21
RHIC 62.4 7. 800 475 ± 33
RHIC 130. ∼11 ∼1000 602 ± 28
RHIC 200. 13 1400 687 ± 37

(c) pT -dependence of the suppression

At RHIC top energies, the quenching factor remains constant from 5 GeV/c up to
the highest transverse momenta measured so far, pT ≈ 20 GeV/c (Fig. 16). The
flatness of RAA(pT ) was not expected since many original analytical calculations
based on the LPM effect (see, e.g., [173]) predicted an RAA slowly (logarithmi-
cally) increasing with pT . However, the combined effect of (i) kinematics con-
straints (which modify the asymptotic ΔEloss formulas), (ii) the steeply falling pT

spectrum of the scattered partons, and (iii) O(20%) pT -dependent (anti)shadowing
differences between the proton and nuclear PDFs included in the various mod-
els [160, 161, 171, 82, 102] results in an effectively flat RAA(pT ) as found in the
data.

The much larger kinematical range opened at LHC energies will allow to test the
pT -dependence of parton energy loss over a much wider domain than at RHIC. The
GLV and PQM predictions for the charged hadron suppression in PbPb at 5.5 TeV
are shown in Fig. 19. Apart from differences in the absolute quenching factor, PQM

19 Namely, expanding at constant entropy, i.e. without extra particle production.
20 We use Ntot/Nch = 3/2 and the Jacobian |dη/dy| = E/mT ≈ 1.2 for a mostly pionic system.
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Fig. 19 RAA(pT ) for neutral pions at SPS [168, 169] and RHIC [100] compared to the expected
suppression of charged hadrons in central PbPb at the LHC (

√
sNN = 5.5 TeV) by the GLV

(d N g/dy = 2000–4000) [160, 161] and PQM (〈q̂〉 ≈ 30–80 GeV2/fm) [89, 90] models

seemingly predicts a slower rise of RAA(pT ) than GLV. The large pT reaches of the
ALICE [174], ATLAS [175], and CMS [176] experiments (up to 300 GeV/c for the
nominal luminosities) will allow them to test such level of model details.

(d) Centrality (system-size) dependence

The volume of the overlap zone in a heavy-ion collision can be “dialed” either by
selecting a given impact parameter b – i.e. by choosing more central or periph-
eral reactions – or by colliding larger or smaller nuclei. From Eq. (14), the relative
amount of suppression depends21 on the effective mass number Aeff or, equivalently,
on the number of participant nucleons Npart as ε = ΔE/E ∝ A2/3

eff ∝ N 2/3
part .

Combining this expression with Eq. (36) yields [177]

RAA =
(

1 − κ Nα
part

)n−2
,

with α ≈ 2/3 and κ an arbitrary constant. (43)

Figure 20 (left) compares the measured high-pT pion suppression in CuCu and
AuAu at

√
sNN = 200 GeV [178, 179]. Because of the large difference in the Cu

(A = 63) and Au (A = 197) atomic masses, the same Npart value (same overlap
volume) implies very different collision geometries: a thin, elongated collision zone
in AuAu and a thicker, more spherical one in the CuCu case. Yet interestingly the
average suppression in the two systems depends only on Npart. Fitting this depen-
dence with expression (43) yields α = 0.56±0.10, consistent with α ≈ 0.6 expected
in parton energy loss scenarios [100, 177].

21 Since d N g/dy ∝ d Nch/dy ∝ Aeff ∝ Npart, L ∝ A1/3
eff ∝ N 1/3

part , and A⊥ ∝ A2/3
eff ∝ N 2/3

part .
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Fig. 20 Left: Centrality (Npart) dependence of the high-pT π
0 suppression in CuCu and AuAu at

200 GeV [179]. Right: RAA(pT ) for π0 in central CuCu collisions at 22.4, 62.4, and 200 GeV
compared to GLV calculations with initial gluon densities d N g/dy ≈ 100–370 [178]

Figure 20 (right) shows the RAA(pT ) measured in CuCu at 22.4, 62.4, and
200 GeV. The amount of suppression observed is roughly a factor (AAu/ACu)2/3 ≈ 2
lower than in AuAu at the same energies (Fig. 18). The RAA(pT ) can be described
by GLV with initial gluon densities d N g/dy ≈ 100–370 (the CuCu enhancement at
22.4 GeV is actually consistent with a scenario without parton energy loss).

(e) Path-length dependence

The quadratic dependence of the energy loss on the thickness of the medium L ,
Eq. (11), becomes a linear dependence on the initial value of L when one takes into
account the expansion of the plasma. Experimentally, one can test the L-dependence
of parton suppression by exploiting the spatial asymmetry of the system produced
in non-central nuclear collisions (Fig. 21, left). Partons produced “in plane” (“out of

0 1 2 3 4 5 6

–0.05

0
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0.1

0.15

0.2

0.25

 (fm)∈L

S
lo

ss  < 8 GeV/cT5 < p

Fig. 21 Left: Effective thicknesses along various azimuthal directions with respect to the reaction
plane in the overlap region of two heavy ions. Right: Fraction of energy loss Sloss vs. effective
path-length Lε measured for high-pT neutral pions in AuAu at 200 GeV [158]
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plane”), i.e. along the short (long) direction of the ellipsoid matter with eccentricity
ε will comparatively traverse a shorter (longer) thickness.

PHENIX [158] has measured the high-pT neutral pion suppression as a function
of the angle with respect to the reaction plane, RAA(pT , φ). Each azimuthal angle
φ can be associated with an average medium path-length Lε via a Glauber model.
Figure 21 (right) shows the measured fractional energy loss Sloss(φ), obtained via
Eq. (36), as a function of Lε for pions in the range pT = 5–8 GeV/c (markers of
different colours correspond to varying centralities, i.e. eccentricities ε). The energy
loss is found to satisfy the expected ΔEloss ∝ L dependence above a minimum
length of L ≈ 2 fm. The absence of suppression in the surface of the medium is
explained as due to a geometric “corona” effect [180].

(f) Non-Abelian (colour factor) dependence

The amount of energy lost by a parton in a medium is proportional to its colour
Casimir factor CR (i.e. CA = 3 for gluons, CF = 4/3 for quarks). Asymptotically,
the probability for a gluon to radiate another gluon is CA/CF = 9/4 times larger
than for a quark and, thus, g-jets are expected to be more quenched than q-jets in a
QGP. One can test such a genuine non-Abelian property of QCD energy loss in two
ways:

(1) by measuring hadron suppression at a fixed pT for increasing
√

s [181, 182],
(2) by comparing the suppression of high-pT (anti)protons (coming mostly from

gluon fragmentation) to that of pions (which come from both g and q, q̄).

The motivation for (1) is based on the fact that the fraction of quarks and gluons
scattered at midrapidity in a pp or AA collision at a fixed pT varies with

√
sNN

in a proportion given22 by the relative density of q, q̄ , and g at the corresponding
Bjorken x = 2pT /

√
s in the proton/nucleus. At large (small) x , hadroproduction is

dominated by quark (gluon) scatterings. A full NLO calculation [131–133] (Fig. 22,
left) predicts that hadrons with pT ≈ 5 GeV/c at SPS (LHC) energies are ∼100%
produced by valence quarks (gluons), whereas at RHIC they come 50–50% from
both species.

Figure 22 (right) shows the RAA for 4-GeV/c pions measured at SPS and RHIC
compared to two parton energy loss curves, both normalised at the RAA ≈ 1
measured at SPS and extrapolated all the way up to LHC energies [182]. The
lower curve shows the expected RAA assuming the normal non-Abelian behaviour
(ΔEg/ΔEq = 9/4). The upper (dotted) curve shows an arbitrary prescription in
which quarks and gluons lose the same energy (ΔEg = ΔEq ). Above

√
sNN ≈ 100

GeV, gluons take over as the dominant parent parton of hadrons with pT ≈ 5 GeV/c
and, consequently, the RAA values drop faster in the canonical non-Abelian scenario.

22 The different “hardness” of quarks and gluons fragmenting into a given hadron at the corre-
sponding z = phadron/pparton plays also a (smaller) role.
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√
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RAA(pT = 4 GeV/c) for π0 in central AA collisions as a function of collision energy compared
to non-Abelian (solid) and “non-QCD” (dotted) energy loss curves [181, 182]

The experimental high-pT π
0 data supports the expected colour factor dependence

of RAA(
√

sNN) [181].
The second test of the colour charge dependence of hadron suppression is based

on the fact that gluons fragment comparatively more into (anti)protons than quarks
do. One would thus naively expect R p, p̄

AA < RπAA. The STAR results (Fig. 23, left)
are, however, seemingly at variance with this expectation: pions appear more sup-
pressed than protons at high-pT [183]. The use of (anti)protons as a perturbative
reference for particle production is, however, questionable: p, p̄ are already found
to be enhanced in dAu compared to pp collisions by a factor ∼ 50–100% for pT ’s
as large as 7 GeV/c [151]. It is likely that there is an extra mechanism of baryon
production, based, e.g. on in-medium quark coalescence [185–187], which com-
pensates for the energy loss suffered by the parent partons. It is also important to

Fig. 23 Left: RAA(pT ) for pions and (anti)protons in central AuAu at
√

sNN = 200 GeV [183].
Right: Comparison between ΔEg and ΔEq in central collisions of large nuclei at RHIC and LHC
showing large deviations from ΔEg = 2.25ΔEq for finite parton energies [184]
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stress that the ΔEg/ΔEq = 9/4 expectation holds only for asymptotic parton ener-
gies. Finite energy constraints yield values ΔEg/ΔEq ≈ 1.5 for realistic kinematics
(Fig. 23, right) [184].

(g) Heavy-quark mass dependence

A robust prediction of QCD energy loss models is the hierarchy ΔEQ < ΔEq <

ΔEg . Due to the dead cone effect, the radiative energy loss for a charm (bottom)
quark is ∼25% (75%) less than for a light quark (see Sect. 2.2). Surprisingly,
PHENIX and STAR measurements of high-pT electrons from the semileptonic
decays of D and B mesons indicate that their suppression is comparable to that
of light mesons, RAA(Q) ∼ RAA(q, g) ≈ 0.2 (Fig. 24, left) [188–190]. Such a
low RAA cannot be described by radiative energy loss calculations with the same
initial gluon densities or transport coefficients needed to quench the light hadron
spectra [191, 192].
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Fig. 24 RAA(pT ) for decay electrons from D and B mesons in central AuAu at
√

sN N =
200 GeV [188–190] compared to various radiative+elastic energy loss models for c and b quarks
(left) and to a model of D and B meson dissociation in the plasma [196] (right)

Various explanations have been proposed to solve the “heavy flavour puzzle”:

• First, if only c quarks (three times more suppressed than the heavier b quarks)
actually contributed to the measured high-pT decay electron spectrum, then
one would indeed expect RAA(c) ≈ 0.2 [192]. Yet indirect measurements from
PHENIX [193] and STAR [194] have confirmed the similar production yields
of electrons from D and B mesons above pT ≈ 5 GeV/c predicted by NLL
pQCD [195].

• The heavy-quark suppression has revived the interest of computing elastic energy
loss in a QGP [197, 21, 198, 22]. As discussed in Sect. 2.2, ΔEel can indeed be
a significant contribution for heavy quarks (see “rad+el” curves in Fig. 24, left).

• The strongly coupled nature of the plasma at RHIC would lead, according to
AdS/CFT calculations [119–122, 199], to a larger heavy-quark momentum dif-
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fusion parameter than expected in perturbative approaches [200]. This would
explain the larger charm/bottom quenching observed in the data.

• Two works [201, 202] argue that the large charm-quark coalescence into Λc

baryons (with a small semileptonic decay branching ratio) in the plasma would
deplete the number of open-charm mesons and correspondingly reduce the num-
ber of decay electrons compared to pp collisions.

• The assumption of vacuum hadronisation (after in-medium radiation) implicit in
all parton energy loss formalisms may well not hold in the case of a heavy quark.
All existing quark-hadronisation time estimates [148] are inversely proportional
to the mass mh of the final produced hadron. The heavier the hadron, the faster
the formation. In the rest frame23 of the fragmenting heavy-Q the formation time
of D and B mesons [196]

τform = 1

1 + βQ

2z(1 − z)p+

k2 + (1 − z)m2
h − z(1 − z)m2

Q

,

where βQ = pQ/EQ, (44)

is of order τform ≈ 0.4–1 fm/c, respectively. Thus, theoretically, one needs to
account for the energy loss of the heavy quark in the medium as well as for the
dissociation rate of the heavy-quark meson inside the QGP. The expected amount
of suppression in that case is larger and consistent with the data (Fig. 24, right).

5 High- pT Di-hadron φ, η Correlations: Data vs. Theory

Beyond the leading hadron spectra discussed in the previous section, detailed studies
of the modifications of the jet structure in heavy-ion collisions have been addressed
via high-pT multi-particle (mostly di-hadron) φ, η correlations. Jet-like correlations
are measured on a statistical basis by selecting high-pT trigger particles and mea-
suring the azimuthal (Δφ = φ − φtrig) and pseudorapidity (Δη = η − ηtrig) distri-

butions of associated hadrons (passoc
T < ptrig

T ) relative to the trigger:

C(Δφ,Δη) = 1

Ntrig

d2 Npair

dΔφdΔη
. (45)

Combinatorial background contributions, corrections for finite pair acceptance, and
the superimposed effects of collective azimuthal modulations (elliptic flow) can
be taken care of with different techniques [203–205]. A commonly used C(Δφ)
background-subtraction method is the “zero yield at minimum” (ZYAM) [206].

A schematic representation of the di-hadron azimuthal-pseudorapidity corre-
lations d Npair/dΔφdη measured in pp and central AuAu collisions is shown in
Fig. 25. In the pp case, without significant initial- or final-state interactions, a dijet
signal appears clearly as two distinct back-to-back Gaussian-like peaks at Δφ ≈ 0,

23 Note that in the lab system there is an extra Lorentz boost factor: τlab = γQ · τform.
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Fig. 25 Schematic illustration summarising the jet-induced di-hadron correlation signals in Δφ

and Δη observed in pp (left) and central AuAu (right) at
√

sNN = 200 GeV [207]

Δη ≈ 0 (near-side), and Δφ ≈ π (away-side). The away-side peak is broader in
Δη (up to Δη ≈ 2) than the near-side peak due to the longitudinal momentum
imbalance between the two colliding partons with different x1, x2 momentum frac-
tions (the collision is boosted in η in the direction of the larger x1,2). At variance
with such a standard dijet topology, the di-hadron correlations in AuAu reactions at
RHIC show several striking features, discussed in detail below:

• The away-side azimuthal peak at Δφ ≈ π disappears with increasing centrality
for hadrons with passoc

T � 5 GeV/c, consistent with strong suppression of the
leading fragments of the recoiling jet traversing the medium [203].

• The vanishing of the away-side peak is accompanied with an enhanced produc-
tion of lower pT hadrons (passoc

T � 2.5 GeV/c) [205, 204] with a characteristic
double-peak structure at Δφ ≈ π ± 1.1–1.3.

• One observes a large broadening (“ridge”), out to Δη ≈ 4, of the near-side pseu-
dorapidity dNpair/dΔη correlations [204].

5.1 Azimuthal Correlations: Away-Side Quenching
and Energy Loss

Figure 26 shows the increasingly distorted back-to-back azimuthal correlations in
high-pT triggered central AuAu events as one decreases the pT of the associ-
ated hadrons (right to left). Whereas compared to pp the near-side peak remains
unchanged for all pT ’s, the away-side peak is only present for the highest partner
pT ’s but progressively disappears for less energetic partners [208, 209]. Early STAR
results [203] showed a monojet-like topology with a complete disappearance of the
opposite-side peak for passoc

T ≈ 2 – 4 GeV/c.
For any range of trigger ptrig

T and associated passoc
T intervals, the correlation

strength over an azimuthal range Δφ between a trigger hadron ht and a partner
hadron ha in the opposite azimuthal direction can be constructed as a function of the
momentum fraction zT = passoc

T /ptrig
T via a “pseudo-fragmentation function” [210]:
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Fig. 26 Comparison of the azimuthal di-hadron correlation dNpair/dΔφdη for pp (open symbols)

and central AuAu (closed symbols) at
√

sNN = 200 GeV for ptrig
T = 5–10 GeV/c and increasingly

smaller (right to left) values of passoc
T [209]

Daway
pp(AA)(zT ) =

∫ ptrig
T,max

ptrig
T,min

dptrig
T

∫ passoc
T,max

passoc
T,min

dpassoc
T

∫
away

dΔφ
d3σ

ht ha
pp(AA)/dptrig

T dpassoc
T dΔφ

dσ ht
pp(AA)/dptrig

T

.

(46)

Figure 27 (left) shows the measured Daway
AA distributions for pp and AuAu colli-

sions as a function of zT compared to predictions of the HT parton energy loss
model [211] for various values of the ε0 parameter quantifying the amount of
energy loss. Similarly to RAA(pT ), the magnitude of the suppression of back-to-
back jet-like two-particle correlations can be quantified with the ratio IAA(zT ) =
DAA(zT )/Dpp(zT ). I away

AA (bottom-left panel of Fig. 27) is found to decrease with
increasing centrality, down to about 0.2–0.3 for the most central events [203, 212].
The right plot of Fig. 27 shows the best ε0 ≈ 1.9 GeV/fm value that fits the measured
RAA and IAA factors. Due to the irreducible presence of (unquenched) partons emit-
ted from the surface of the plasma, the leading hadron quenching factor RAA(pT )

Fig. 27 Left: Daway
pp(AA)(zT ) distributions for dAu and AuAu collisions at 200 GeV and IAA(zT ) ratio

(for central AuAu) [212], compared to HT calculations [211] for varying ε0 energy loss parameter.
Right: Corresponding (data vs. theory) χ2 values for the fitted ε0 parameter [211]
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is in general less sensitive to the value of ε0 than the di-hadron modification ratio
IAA(zT ).

5.2 Azimuthal Correlations: Away-Side Broadening
and “Conical” Emission

Since energy and momentum are conserved, the “missing” fragments of the away-
side (quenched) parton at intermediate pT ’s must be either shifted to lower energy
(pT � 2 GeV/c) and/or scattered into a broadened angular distribution. Both soft-
ening and broadening are seen in the data when the pT of the away-side associated
hadrons is lowered (see two leftmost panels of Fig. 26). Figure 28 shows in detail the
di-hadron azimuthal correlations d Npair/dΔφ in central AuAu collisions [205, 213]:
the away-side hemisphere shows a very unconventional angular distribution with a
“dip” at Δφ ≈ π and two neighbouring local maxima at Δφ ≈ π ± 1.1–1.4. Such
a “volcano”-like profile has been interpreted as due to the preferential emission of
energy from the quenched parton at a finite angle with respect to the jet axis. This
could happen in a purely energy loss scenario due to large-angle radiation [214], but
more intriguing explanations have been put forward based on the dissipation of the
lost energy into a collective mode of the medium in the form of a wake of lower
energy gluons with Mach- [44–48] or Čerenkov-like [48–51] angular emissions.

In the Mach cone scenario [44–48], the local maxima in central AuAu are caused
by the Mach shock of the supersonic recoiling parton traversing the medium with a
resulting preferential emission of secondary partons from the plasma at an angle θM

(Fig. 29). Such a mechanism would give access, via Eq. (15), to the speed sound cs

of the traversed matter. In an expanding plasma, the speed of sound changes from
cs = 1/

√
3 (QGP) to cs ≈ √

0.2 (hadron gas) through cs = 0 (mixed phase). The

Fig. 28 Normalised azimuthal di-hadron distributions, 1/Ntrig d Npair/dΔφ. Left: STAR data in

central AuAu (squares) and dAu (circles) for passoc
T = 1.3 – 1.8 GeV/c and two ranges of ptrig

T [213].

Right: PHENIX results in central AuAu for various ptrig,assoc
T ranges [209]
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Fig. 29 Top: Perturbed energy (left) and momentum (right) densities for a gluon moving with
β = 0.99955 in a perturbative QGP [220]. Bottom: Perturbed energy density (left) and energy flux
(Pointing vector, right) for a jet with β = 0.75 from an AdS/CFT model [219]

time-averaged value is 〈cs〉 = 1
τ

∫ τ
0 dt cs(t) ≈ 0.3 [46, 47] with a resulting Mach

angle θM = arccos(cs) ≈ 1.3, in rough agreement with the experimental data.
In the Čerenkov picture [48–51], it is argued that the combination of the LPM

gluonstrahlung interference and a medium with a large dielectric constant (n ≈
2.75 is needed in Eq. (16) to reproduce the location of the experimental peaks)
should also result in the emission of QCD Čerenkov radiation with the double-hump
structure observed in the data. However, at variance with the Mach angle which
is constant in the fluid, the Čerenkov angle decreases with the momentum of the
radiated gluon. Such a trend is seemingly in disagreement with the fact that the
measured θc remains relatively constant as a function of passoc

T [209, 215]. In addi-
tion, STAR [216] and PHENIX [217] 3-particle correlation studies seem to clearly
favour the conical over deflected-jets interpretation.

Theoretically, the disturbance of the energy-momentum tensor caused by a heavy
quark has been studied in a N = 4 SYM plasma [218, 219] as well as for a light
quark in a perturbative plasma [220]. In both cases a clear conical structure as well
as a strong flow generated along the path of the jet (diffusion wake [221–224])
are observed (Fig. 29). The results are sensitive to the viscosity of the medium.
Yet, phenomenologically, it is unclear if such partonic collective wake(s) and cone
survives both hadronisation and the final hadronic freeze-out [223–229]. Results for
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a pQCD plasma [227] indicate that the conical signal does not survive freeze-out:
a peak at Δφ = π appears due to the strong diffusion wake. More involved studies,
accounting for, e.g. the plasma expansion and the hadronic phase, are needed before
a final conclusion can be reached.

5.3 Pseudorapidity Correlations: Near-Side “Ridge”

Figure 30 shows the associated Δη–Δφ particle yield (passoc
T � 20 MeV/c) for trig-

ger hadrons ptrig
T > 2.5 GeV/c in pp (PYTHIA simulations) and central AuAu (PHO-

BOS data) at 200 GeV. Both distributions show a clear peak at (Δη,Δφ) ≈ (0, 0)
as expected from jet fragmentation, but the near-side peak in heavy-ion collisions
features a wide associated yield out to Δη ≈ 4, referred to as the “ridge” [230].
The existence of such unique long-range rapidity correlations in the near side of
the trigger parton which is, by construction, the least affected by the medium is
puzzling. The properties (particle composition, pT slope, intra-particle correlations)
of this structure are very similar to those of the soft underlying event in the colli-
sion [231], clearly suggesting that the ridge is formed from bulk matter and not
from jet fragments. Though many different interpretations have been put forward
(see, e.g., [232] for a summary), models that do not require jet triggers for the effect
to appear – such as, e.g.“glasma” flux tubes [233] or “trivial” modifications of the
2- and 3-particle correlations due to radial flow [232] – seem favoured.

ηΔ–4
–2

0
2

φΔ 0
2

4
0

0.5
1

Fig. 30 Per-trigger associated hadron yield for ptrig
T > 2.5 GeV/c as a function of Δη and Δφ for

pp (PYTHIA, left) and 0–30% central AuAu (PHOBOS, right) collisions at 200 GeV [234]

6 Jet Observables in AA Collisions

The measurement of the leading fragments of a jet (single-hadron spectra and/or
di-hadron azimuthal correlations at high-pT ) in AA collisions has been covered in
detail in the previous sections. In this last chapter, we focus on full jet reconstruction
in nuclear reactions. The study of the energy and particle-multiplicity distributions
within a jet issuing from the fragmentation of quenched parton is a powerful tool to
study the response of hot and dense QCD matter to fast quark and gluons.
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6.1 Full Jet Reconstruction in AA Collisions

Experimental reconstruction of jets in hadronic and nuclear collisions is an involved
exercise [235, 236] that requires at least three steps:

• Clustering algorithm: Hadrons belonging to a given jet are measured in the detec-
tor (usually in the cells of the hadronic and electromagnetic calorimeters) and are
clustered together, according to relative “distances” in momentum and/or space,
following an infrared- and collinear-safe procedure that can be also appropri-
ately applied to “theoretical” (Monte Carlo) jets. The algorithm needs to be fast
enough to be run over events with very high multiplicities. Various jet finders
exist presently that fulfil all such conditions, e.g. kT [237] and SISCone [238] as
implemented in the FASTJET package [239].

• Background subtraction: Jets are produced on top of a large “underlying event”
(UE) of hadrons coming from other (softer) parton–parton collisions in the same
interaction. At LHC energies, extrapolating from d ET /dη|η=0 = 0.6 TeV mea-
sured at RHIC [166, 167], one expects a total transverse energy of ∼1 TeV in
1-unit rapidity at midrapidity. Jet reconstruction is usually carried out with small
cone radius R =

√
Δη2 + Δφ2 = 0.3–0.5 (or similar kT -distances, D) to min-

imise the UE contributions. Indeed, at the LHC in a R = 0.4 cone one expects
ΔET = π × R2 × 1/(2π ) × d ET /dη|η=0 ≈ 80 GeV with large fluctuations.
This observation already indicates that it will be challenging to reconstruct jets
below ET ≈ 50 GeV. Various UE subtraction techniques have been developed in
combination with the kT [240–242], UA1-cone [242, 243], or iterative-cone [244]
algorithms.

• Jet corrections: The energy of the reconstructed and background-subtracted jets
has to be corrected for various experimental and model-dependent uncertainties
before comparing it to theoretical predictions. Experimentally, the jet energy
scale (JES) is the most important source of systematic uncertainties in the jet
yield and requires careful data-driven studies (e.g. via dijet and γ -, Z -jet bal-
ancing in proton–proton collisions). In addition, before a given “parton-level”
pQCD calculation can be compared to a measured “hadron-level” jet spectrum,
one needs to estimate the non-perturbative effects introduced by the underlying-
event and hadronisation corrections. In pp collisions, this final step is carried out
usually comparing the results from two Monte Carlos (e.g. PYTHIA and HER-
WIG) with different models for the UE multiparton interactions as well as for the
hadronisation (string and cluster-fragmentation, respectively).

6.2 Jet Clustering Algorithms

In practical terms one usually deals with three types of “jets” (Fig. 31, left). Exper-
imentally, a calorimeter jet (aka “CaloJet”) is a collection of four vectors based on
calorimeter towers clustered in pseudorapidity- azimuth according to a given algo-
rithm. At the Monte Carlo generator level, a hadron or particle jet (aka “GenJet”) is
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Fig. 31 Left: Schema of jet production and measurement [235]. Right: Reconstructed jets in η–φ
space with the SISCone (top) and kT (bottom) algorithms for a simulated pp event at the LHC [245]

a collection of hadrons issuing from the (non-perturbative) hadronisation of a given
parton. Theoretically, a parton-level jet is what one actually calculates in pQCD.
The (non-unique) method to link an initial parton to a set of final-state particles
relies on a procedure known as “jet algorithm”.

The goal of a clustering algorithm is to combine hadrons into jets according to
a given “distance” (radius). Theoretically, such a procedure must be infrared and
collinear safe – i.e. adding a soft gluon or splitting a given parton must not change
the final number of reconstructed jets. In addition, the jet finder must not be too
sensitive to non-perturbative effects – hadronisation, underlying event (and pileup
in pp) – and it must be realistically applicable at detector level (e.g. not too slow).
There are two broad groups of jet algorithms [235, 236]:

• Cone-type algorithms are “top-down” approaches, i.e. they identify energy flow
into pre-defined cones of a given radius. One sums the momenta of all parti-
cles j within a cone of radius R around a seed particle i (often the particle or
calorimeter tower with the largest transverse momentum) in azimuthal angle φ
and pseudorapidity η, i.e. taking all j such that

Δ2
i j = (

ηi − η j
)2 + (

φi − φ j
)2
< R2 . (47)

The direction of the resulting sum is then used as a new seed direction, and
one iterates the procedure until the direction of the resulting cone is stable
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(Fig. 31, top-right). There exist many flavours of this method developed (Jet-
Clu, ILCA/MidPoint, ICone, SISCone, etc.) which have been mainly employed
at hadron colliders. Their main advantages are their speed, which makes them
easy to implement in triggers, and the simplicity of the UE corrections. On the
other hand, their particular implementations can be messy (seeding, split–merge,
dark towers, etc.) and infrared/collinear safety is not guaranteed in many cases.

• Sequential clustering algorithms are “bottom-up” approaches that rely on pair-
wise successive recombinations of the closest hadrons in momentum up to a given
(predefined) distance D. One introduces distances di j between entities (particles,
pseudojets) i and j , and di B between entity i and the beam (B). The clustering
proceeds by identifying the smallest of the distances, and if it is a di j recombining
entities i and j , while if it is di B calling i a jet and removing it from the list. The
distances are recalculated and the procedure repeated until no entities are left.
The distance measures for several algorithms are of the form

di j = min(k2p
T,i , k

2p
T, j )

Δ2
i j

D2
, di B = k2p

T,i , (48)

where Δ2
i j is defined in Eq. (47), kT,i is the transverse momentum of particle

i , D is the jet-radius parameter, and p parameterises the type of algorithm: kT

(p = 1) [246], Cambridge/Aachen (p = 0) [247], anti-kT (p = −1) [245]
(Fig. 31, bottom-right). On the positive side, these algorithms – widely used at
LEP and HERA – are explicitly infrared and collinear safe and more “realistic”
than the cone-based ones as they mimic (backwards) the QCD shower branching
dynamics. On the other hand, they used to be slow and the UE subtraction trickier
compared to the cone jet finders, making them not competitive in a heavy-ion
environment with very large hadron multiplicities. Recently, the time taken to
cluster N particles has been significantly improved in the FASTJET [239] imple-
mentation, based on Voronoi diagrams, going down from O(N 3) for the default
kT jet finder to O(N ln N ). Jet clustering in nucleus–nucleus collisions is now
routinely performed at sub-second times.

6.3 Underlying Event Subtraction

Background energy in a jet cone of size R is O(R2) and background fluctuations
are O(R). As aforementioned, the soft background from the underlying event in a
cone of R = 0.4 in central nucleus–nucleus collisions at RHIC (LHC) is about 40
(80) GeV. Figure 32 (left) shows the (charged) jet and background energies as a
function of the cone radius R in ALICE [174, 241]. Jets can only be identified if the
background energy within the cone is smaller than the signal energy. This can be
achieved by decreasing the cone size (Ebgd

T ∝ R2) to R = 0.3–0.5 and by applying
pT or energy cuts on the charged hadrons or calorimeter towers. The latter option
is not optimal since it also introduces potential biases in the measurement of jet
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Fig. 32 Left: Charged jet energy in a cone of radius R (full lines) in ALICE compared to the
background energy from a HIJING [248] simulation for different cuts in the particles pT (dashed
lines) [174]. Right: STAR AuAu dijet event after background subtraction [249, 250]

quenching effects. STAR [249, 250] (Fig. 32, right) uses a seeded-cone algorithm
with R = 0.4 and pcut

T = 0.1 – 2 GeV/c and estimates the UE background event by
event from the average energy in cones without seeds which is then subtracted from
the reconstructed jets. ALICE uses a modified version of the UA1-cone algorithm
(R = 0.4) where the mean cell energy from cells outside a jet cone is recalculated
after each iteration of the cone jet finder and subtracted from all cells [174, 241].

Similarly, CMS [244, 176] subtracts the UE on an event-by-event basis with a
variant of the iterative “noise/pedestal subtraction” for pp collisions [251]. Initially,
the mean value and dispersion of the energies in the calorimeter cells are calculated
for rings of constant pseudorapidity, η. The value of this pedestal function, P(η), is
subtracted from all cells (the cell energy is set to zero in case of negative values)
and the jets are reconstructed with the default ICone finder. In a second iteration,
the pedestal function is recalculated using only calorimeter cells outside the area
covered by jets with ET > 30 GeV. The cell energies are updated with the new
pedestal function and the jets are reconstructed again, using the updated calorimeter
cells.

Alternatively, FASTJET [240] proposes a background-subtraction procedure after
running any infrared-safe algorithm. The method is based on the concept of a “jet
area” A constructed by adding infinitely soft particles (“ghosts”) and identifying
the region in η, φ where those ghosts are clustered within each jet [241]. Each
reconstructed jet pT is then corrected by subtracting the median value of the noise
distribution in the event, ρ = median [{pT /A}], in the jet area A, via psub

T = pT −
A ·ρ. In practical terms, one fits the measured pT (η)/A background distribution for
each event with a parabola form, ρ(η) = a +b η2 (which excludes any jet peak) and
corrects then the jet pT using the formula above.

6.4 Jet Corrections

The last step of any jet analysis consists in correcting the pT of any measured Calo-
Jet to match closely that of the associated GenJet or parton-level jet, so that it can be
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Fig. 33 List of typical factorised jet energy corrections (CMS analysis) [251]

compared to theoretical expectations. In principle, the different corrections can be
decomposed as shown in Fig. 33. The experimental corrections (labelled levels 1–5
in the plot) can be extracted from the data themselves. For example, the correction
L1 (noise offset) can be obtained from minimum-bias events without jet activity,
and the L2 (flattening of relative, η-dependent, pT responses of the calorimeters)
and L3 (absolute pT calibration) can be derived using pT -balancing techniques
in back-to-back dijet and γ -, Z -jet events in pp collisions. A precise calibration
of the jet energy scale (JES) is essential. Given the steep (power law) fall-off of
the jet cross section as a function of energy, an uncertainty of 10% in the JES can
propagate into uncertainties as large as 50% in the jet yield at a given pT bin. The
L3 correction is thus the most important source of experimental uncertainty in any
jet measurement. The two last corrections, L4 (fraction EMF of energy deposited
by hadrons in the EM calorimeter) and L5 (flavour correction accounting for the
different characteristics of – and therefore detector responses to – gluon, light-quark,
and heavy-quark jets) can be, e.g. obtained in back-to-back γ -jet and b,c-identified
dijet events in pp.

The two “theoretical” corrections (L6 – UE and L7 – parton) aim at bringing the
pT of a CaloJet as close as possible to that of its originating parton. They can only be
obtained from MC simulations that model the effects of final-state radiation (FSR),
hadronisation, and underlying event. In pp collisions, the total shift on a jet pT can
be approximated by the uncorrelated sum

〈
δp2

T

〉 ≈ 〈δpT 〉2
FSR

+ 〈δpT 〉2
hadr

+ 〈δpT 〉2
UE

.
FSR and hadronisation tend to remove energy out of the jet cone, whereas the UE
has the contrary “splash-in” effect [252]. The way these effects modify the jet energy
as a function of the parton pT , flavour and the used cone radius R are summarised in
Table 3. Whereas the effect of FSR can be in principle computed perturbatively, the
UE and hadronisation corrections rely on model-dependent descriptions of multi-
parton interactions (MPI) and parton fragmentation. In pp collisions, one usually
compares the result of PYTHIA and HERWIG – which have different MPI and dif-

Table 3 Main physical effects that contribute to a shift 〈δpT 〉 between the transverse momentum of
a jet and its parent parton in pp collisions (cases with “–” do not have any dependence at LO) [252]

Dependence of jet 〈δpT 〉 shift on

Parton pT Colour factor Radius R

Final-state radiation ∼ αs (pT ) pT Ci ln R + O(1)
Hadronisation – Ci −1/R + O(R)
Underlying event – – R2/2 + O(R4)
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ferent (string vs. cluster) fragmentation models – to gauge the dependence of the
measured jet observables on these non-perturbative phenomena.

In heavy-ion collisions, in-medium FSR and UE are significantly enhanced com-
pared to pp jets, but, since hadronisation occurs after traversing the medium, the
final parton-to-hadron fragmentation should be the same as in the vacuum. Ideally,
the effects of the UE can be controlled embedding MC jets in real events, and the
influence of hadronisation can be gauged, e.g. comparing the results of Q-PYTHIA

and Q-HERWIG [40]. Jet quenching observables – which are the ultimate goal of
our studies – can then be isolated comparing the results of different parton energy
loss MCs such as, e.g. PYQUEN (with large out-of-cone elastic energy loss) and
Q-PYTHIA (with its embedded BDMPS radiative energy loss).

6.5 Jet Shapes

The study of the internal structure of jets – via observables such as jet shapes and jet
multiplicity distributions – in p p̄ collisions at Tevatron has provided valuable tests
of the models for parton branching and soft-gluon emission in the vacuum [253].
The energy degradation of partons traversing a dense QCD plasma will be also
directly reflected in the modification of such jet observables in heavy-ion collisions.
Two variables are useful in this context:

• the differential jet shape, ρ(r ), is the average fraction of the jet pT that lies inside
an annulus of radius r ± δr/2 around the jet axis (e.g. δr = 0.1):

ρ(r ) = 1

δr

1

Njet

∑
jets

pT (r − δr/2, r + δr/2)

pT (0, R)
, 0 ≤ r =

√
Δy2 + Δφ2 ≤ R,

(49)

• the integrated jet shape, Ψ(r ), is the average fraction of the jet pT that lies inside
a cone of radius r concentric to the jet cone (by definition, Ψ(r = R) = 1):

Ψ(r ) = 1

Njet

∑
jets

pT (0, r )

pT (0, R)
, 0 ≤ r ≤ R. (50)

Medium-modified jet shapes in PbPb collisions at LHC energies have been analyt-
ically investigated in [38, 54]. More detailed studies using the recently available jet
quenching Monte Carlos (see Sect. 3.3) are needed.

6.6 Medium-Modified Fragmentation Functions

Due to the coherence and interference of gluon radiation inside a jet (resulting, on
average, in angular ordering of the sequential branching), not the softest partons
but those with intermediate energies (Eh ∝ E0.3−0.4

jet ) multiply most effectively in
QCD cascades [254]. This is best seen in the approximately Gaussian distribution
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Fig. 34 Left: Medium-modified pion fragmentation function for a 100-GeV gluon going through a
medium with increasing q̂ parameter [56]. Right: Single inclusive distribution of hadrons vs. ξ =
ln (Ejet/p) for a 17.5-GeV jet in e+e− collisions (TASSO data) compared to MLLA predictions in
the vacuum (solid curve) and in-medium (dashed curve) [39]

in the variable ξ = log(Ejet/p) = log(1/z) for particles with momentum p in a
jet of energy Ejet, which peaks at the so-called humpback plateau at intermediate
ξ ≈ 3–4 values (Fig. 34, right). As discussed previously, energy loss in a QCD
medium shifts parton energy from high-z to low-z hadrons. As a result, leading
hadrons are suppressed as seen in Fig. 34 (left) where, for increasing q̂ coefficient,
the fragmentation function Di→h(z, Q2) is depleted at high-z. Correspondingly, the
number of low-pT hadrons increases, as seen by the higher humped back in Fig. 34
(right).

Theoretically, the resummed (next-to) modified leading logarithmic approxima-
tion (N)MLLA approach describes well, to (next-to)-next-to-leading order

√
αs

accuracy, the measured distributions of hadrons Di→h(z, Q2) inside a jet (Fig. 34,
right) down to non-perturbative scales Qeff ≈ ΛQC D ≈ 200 MeV, provided that
each parton is mapped locally onto a hadron (“Local Parton–Hadron Duality”,
LPHD) [255] with a proportionality factor κ ≈ 1. Various recent promising applica-
tions of the (N)MLLA approach [256, 57, 41, 42] have investigated QCD radiation
in the presence of a medium.

6.7 Photon-Jet Correlations

The γ -jet (and Z -jet) channel provides a very clean means to determine parton frag-
mentation functions (FFs) [257]. In the dominant QCD Compton process of photon
production (qg → qγ ), because of momentum conservation the photon is produced
back to back to the hard quark, with equal and opposite transverse momentum. Since
the prompt γ is not affected by final-state interactions, its transverse energy (EγT )
can be used as a proxy of the away-side parton energy (E jet

T ≈ EγT ) before any jet
quenching has taken place in the medium. Once the quark fragments into a hadron
h, the γ –h momentum imbalance variable [52], z

γ h ≡ −p
T,h
.p

T,γ
/|p

T,γ
|2, reduces
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at LO to the fragmentation variable, z
γ h = z. The FF, defined as the normalised

distribution of hadron momenta 1/Njets d N/dz relative to that of the parent parton

E jet
T , can be constructed using z

γ h or, similarly, ξ = − ln(z
γ h ), for all particles with

momentum pT associated with the jet.
ALICE [242, 258] and CMS [259] have carried out simulation studies of the

γ -jet channel, where the isolated γ is identified in ECAL, the away-side jet axis
(Δφγ−jet > 3 rad) is reconstructed in the calorimeters, and the momenta of hadrons
around the jet axis (Rjet < 0.5) are measured in the tracker. In the CMS acceptance
and for EγT > 70 GeV, about 4500 γ -jet events are expected according to PYTHIA

(scaled by the Glauber nuclear overlap) in one PbPb year at the nominal luminosity.
The obtained FFs for photon-jet events – after subtraction of the underlying-event
tracks – are shown in Fig. 35 for central PbPb. Medium-modified FFs are measur-
able with high significance in the ranges z < 0.7 and 0.2 < ξ < 6.
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Fig. 35 Medium-modified FF (right) and ratio FF(med)/FF(vac) (left) as a function of ξ for
quenched partons obtained in γ -jet simulations for central PbPb at 5.5 TeV (0.5 nb−1) in ALICE
(left) [242, 258] and CMS (right) [259]

7 Summary

We have reviewed the main theoretical motivations behind the experimental study
of parton scattering and jet fragmentation in the hot and dense QCD matter created
in high-energy nucleus–nucleus collisions. The phenomenology of parton energy
loss has been summarised as well as the main experimental results on single inclu-
sive spectra and di-hadron correlations measured at high transverse momentum,
mainly in AuAu reactions at RHIC collider energies (

√
sNN = 200 GeV). The

“tomographic” analysis of jet structure modifications in AA collisions provides
quantitative information on the thermodynamical and transport properties of the
strongly interacting medium produced in the reactions. Two notable experimental
results have been discussed in detail: (i) the observed factor ∼5 suppression of
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high-pT leading hadrons and (ii) the strongly distorted azimuthal distributions of
secondary hadrons emitted in the away-side hemisphere of a high-pT trigger hadron,
in central AuAu relative to pp collisions in free space. Most of the properties of the
observed high-pT single hadron and di-hadron suppression (such as its magnitude,
light flavour “universality”, pT , reaction centrality, path-length, and

√
sNN depen-

dences) are in quantitative agreement with the predictions of parton energy loss
models. The confrontation of these models to the data permits to derive the initial
gluon density d N g/dy ≈ 1400 and transport coefficient 〈q̂〉 ≈ 13 GeV2/fm of the
produced medium at RHIC.

In the last section of this document, we have reviewed the details of jet recon-
struction in heavy-ion collisions: jet algorithms, underlying-event background sub-
traction, and jet energy corrections. The analysis of jet shapes and the extraction
of medium-modified parton-to-hadron fragmentation functions at low- and high-
hadron momenta promise to shed more light onto the mechanisms of parton energy
loss in QCD matter at the coming LHC energies. The study of jet quenching phe-
nomena is significantly expanding our knowledge of the dynamics of the strong
interaction at extreme conditions of temperature and density.
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In Search of the QCD–Gravity Correspondence

Theodor Braşoveanu, Dmitri Kharzeev, and Mauricio Martinez

Abstract Quantum chromodynamics (QCD) is the fundamental theory of strong
interactions. It describes the behavior of quarks and gluons which are the smallest
known constituents of nuclear matter. The difficulties in solving the theory at low
energies in the strongly interacting, non-perturbative regime have left unanswered
many important questions in QCD, such as the nature of confinement or the mech-
anism of hadronization. In these lectures oriented toward the students we introduce
two classes of dualities that attempt to reproduce many of the features of QCD,
while making the treatment at strong coupling more tractable: (1) the AdS/CFT
correspondence between a specific class of string theories and a conformal field
theory and (2) an effective low-energy theory of QCD dual to classical QCD on
a curved conformal gravitational background. The hope is that by applying these
dualities to the evaluation of various properties of the strongly interacting matter
produced in heavy-ion collisions, one can understand how QCD behaves at strong
coupling. We give an outline of the applications, with emphasis on two transport
coefficients of QCD matter – shear and bulk viscosities.

1 Introduction

Recent results from the Relativistic Heavy Ion Collider (RHIC) at BNL reveal sur-
prising dynamical properties of the strongly coupled quark–gluon plasma (sQGP).
Some of these properties may be explained through two less than traditional meth-
ods that employ dualities to reformulate the underlying gauge theory in curved con-
formal gravitational backgrounds.
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Braşoveanu, T. et al.: In Search of the QCD–Gravity Correspondence. Lect. Notes Phys. 785,
341–369 (2010)
DOI 10.1007/978-3-642-02286-9 10 c© Springer-Verlag Berlin Heidelberg 2010
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The first approach is inspired by string theory and is based on the Anti de Sit-
ter/conformal field theory (AdS/CFT) gravity/gauge theory duality [1–3]. This cor-
respondence maps conformal strongly coupled SU(Nc) gauge theories (i.e., with
large ’t Hooft coupling λ = g2 Nc) onto a weakly coupled dual gravity theory. This
formalism has been applied to conformal gauge theories that share some features
with QCD, such as a maximally super-symmetric N = 4 Yang–Mills theory. This
leads to interesting predictions for several classes of observables that may be related
to the QGP, such as entropy production, transport properties, jet quenching, dijet-
bulk correlations (for a review, see [4]).

The second approach introduces an effective low-energy Lagrangian of QCD
which satisfies the constraints imposed by the renormalization group, is scale and
conformally invariant in the limit of vanishing vacuum energy density, and matches
the perturbative behavior at short distances (high energies) [5–7]. This theory has
a dual description as classical gluodynamics on a curved conformal space–time
background on one hand, and gluodynamics in flat space–time coupled to scalar
glueballs (which play the role of dilatons) on the other. In this approach, one may
be able to describe confinement as an event horizon for colored particles [8–10], in
close analogy to what happens in the vicinity of a black hole. Recent efforts link the
bulk viscosity of QCD matter and the associated entropy production to the breaking
of scale invariance [11, 12].

2 QCD and Its Properties

Quantum chromodynamics (QCD) is at present universally accepted as the theory
of the strong interaction. The fundamental degrees of freedom in the theory are the
quarks and gluons that carry color charges. These particles cannot be directly seen
in Nature because confinement binds them into the color-neutral bound states –
baryons and mesons. QCD has been thoroughly tested in experiment and is known
to possess the expected properties: The coupling constant weakens as the resolution
scale grows (celebrated “asymptotic freedom” [13, 14]), the quarks and gluons man-
ifest themselves through the production of jets, the partonic constituents of matter
are seen in deep inelastic scattering, the corresponding structure functions exhibit
scaling violation, etc.

However, in spite of these successes the behavior of the theory at low energies or
large distances and the structure of its vacuum state are still poorly understood. One
may hope that a progress can be achieved through the studies of thermodynamics
of quarks and gluons – if history is any indication, understanding thermodynamic
behavior may appear simpler than understanding the dynamics of the individual con-
stituents. At temperatures accessible experimentally, the typical distances between
the quarks and gluons in the “quark–gluon plasma” (QGP) are quite large and the
coupling is strong. Achieving a progress in the understanding of QGP thus requires
methods that apply in the strong coupling domain. In these lectures we will focus on
two such methods, with applications to the transport coefficients of the quark–gluon
plasma.
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2.1 The QCD Lagrangian

QCD is formulated as a gauge theory, in analogy with QED. The structure of QED
is entirely fixed by the requirement of invariance under local gauge transforma-
tions, that is, invariance with respect to the phase rotation of the electron field
exp(iα(x)), where the phase factor α depends on the space–time coordinates. In
the case of QCD, we have the constituents – quarks – that come in three different
colors, Nc = 3. The local gauge invariance with respect to the SUc(Nc) rotations in
color space introduces N 2

c − 1 = 8 gauge bosons, the gluons. Quarks are spin 1/2
particles that belong to the fundamental representation of the SUc(3) whereas gluons
are spin 1 particles defined in the adjoint representation of SUc(3). Since quarks can
have three different colors – say, red, green, and blue – a quark state vector can be
expressed as a color multiplet of three components. Interactions with gluons repaint
the colors of the quarks; since color rotations do not commute (in other words,
SUc(3) is a non-abelian group) gluons can also interact with each other.

Let us now formulate this mathematically. First, consider the free Lagrangian of
quark fields:

Lfree =
∑

q=u,d,s...

∑
colors

q̄(x)

(
iγμ

∂

∂xμ
− mq

)
q(x) (1)

and impose its invariance under a gauge transformation of the quark fields defined
as

U : q j (x) → U jk(x)qk(x), (2)

with j , k ε 1 . . .3 (we always sum over repeated indices). The fact that the
Lagrangian of the theory is invariant with respect to these gauge transformations
implies that all physical observables must be gauge invariant.

Note that in Eq. (2) U is a unitary complex-valued matrix, i.e., UU † = U †U =
1 and det U = 1. In the fundamental representation of the group these matrices
form the group SU (3) with 3 being the number of colors Nc. This group has eight
generators T a

i j , aε 1,2,. . .,8 of the fundamental representation of SU (3), hence the
matrix U can be represented as

U (x) = exp(−i φa(x) T a). (3)

The properties of U imply that the generators T a
i j are Hermitian (T a = T a†) and

traceless (T rT a = 0) (check this by making an infinitesimal transformation about
unity). These generators satisfy a Lie algebra:

[T a, T b] = i fabcT c, (4)

where fabc are SU (3) structure constants. This means that unlike QED, QCD is a
non-abelian gauge theory: different color rotations do not commute.
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After we apply the local gauge transformation to the quark fields, the free
Lagrangian given in Eq. (1) acquires some extra terms proportional to ∂μφa(x). In
order to keep gauge invariance, it is necessary to compensate for this extra terms.
This can be achieved by introducing the gauge field (in QCD, gauge fields will
be understood as gluons) Aμk j and replacing the normal derivative ∂μ in the free
Lagrangian (1) by the so-called covariant derivative:

∂μq j (x) → Dμk j q
j (x) ≡

{
δk j∂

μ − iAμk j (x)
}

q j (x). (5)

Note that if we request for a gauge invariance, the Lagrangian written in terms
of covariant derivatives is no longer free, so we now have a coupling between quark
fields and gauge fields. Under gauge transformations the gauge fields should trans-
form as

Aμ(x) → U (x)Aμ(x)U †(x) + iU (x)∂μU †(x). (6)

So the QCD Lagrangian reads as1

LQCD =
∑

q

q̄(x)
(

i γμDμ − mq
)

q(x) − 1

4g2
tr Gμν(x)Gμν(x), (7)

where

Dμ = ∂μ − i Aa
μ ta; (8)

note that we have included g in the definition of the gauge potential to reveal the
dependence of the Lagrangian (7) on the coupling constant; we will need it in what
follows.

The first term of Eq. (7) describes the dynamics of the interaction between the
quarks and gluons while the second one describes the dynamics of the gluon field.
The gluon field strength tensor is given by

Gμν(x) ≡ i
[
Dμ, Dν

] = ∂μAν(x) − ∂ν Aμ(x) − i
[
Aμ(x), Aν(x)

]
(9)

or in terms of the color components Aμa of the gauge field:

Gμν
a (x) = ∂μAνa(x) − ∂ν Aμa (x) + fabc Aμb (x)Aνc (x). (10)

The term T r (Gμν(x)Gμν(x)) is also gauge invariant because T r (U GμνGμνU †) =
T r (GμνGμν). Note that the term T r (GμνGμν) for the given stress tensor has non-
linear couplings between the gauge fields themselves. Such self-interactions are
responsible for the complexity of QCD dynamics.

1 Hereafter we will omit color indices explicitly.
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2.2 Asymptotic Freedom

One of the most remarkable properties of QCD is related to the fact that at large
energies the coupling constant is small, i.e., perturbation theory is applicable. To
better understand this aspect, let us first refer to what happens in QED. The electron–
positron pairs screen the electric charge. Therefore, the electric charge becomes
stronger at short distances. The dependence of the observed effective charge on the
distance is given by

e2(r ) = e2(r0)

1 + 2e2(r0)

3π
log

r

r0

. (11)

This result can be obtained by resumming (logarithmically divergent and regu-
larized at the distance r0) electron–positron loops dressing the virtual photon prop-
agator.

The running of the coupling constant with the distance prescribed by Eq. (11) has
some paradoxical consequences. Indeed, at distances r � r0 the coupling constant
is seen to be independent of the value of the coupling at renormalization scale r0.
Moreover, it vanishes as ∼ log−1(r/r0) so if we require the coupling constant be
finite at r0, in the local limit of r0 → 0 the coupling will vanish. This is the so-called
Moscow zero discovered by Landau and Pomeranchuk [16]. The possible ways out
include the following: (a) We know that QED is not a complete theory; at the scale
r0 ∼ 1/MZ it has to be extended to the electroweak theory; (b) at short distances
QED is no longer weakly coupled, and so the perturbative expression (11) cannot
be trusted and one should find a true non-perturbative answer.

Instead of the dependence on the distance, we can also use momentum space
and consider the dependence of the coupling on the virtuality of the photon, say,
q2 ≡ Q2. In terms of this variable, the expression (11) can be rewritten as

α(Q2) = α(Q2
0)

1 − α(Q2
0)

3π
log

(
Q2

Q2
0

) . (12)

The “Moscow zero” in momentum space manifests itself through the singularity
at Q2 = Q2

0 exp(3π/α); note that since α  1, for all particle accelerator energies
this pole is very far away and so QED is an excellent effective theory.

In QCD the situation is different. Because of the gluon self-interactions, we have
anti-screening [13, 14] – the constant coupling becomes small at short distances
(high energies) but large at large distances (low energies). In Coulomb gauge, the
anti-screening stems from the diagram in which the exchange of a Coulomb gluon
excites from the vacuum zero modes of the transverse gluons [17–19]; for review see
[20]. This diagram is purely real and leads to a Coulomb interaction that strengthens
as the distance grows. As a result, the sign of log(Q2/Q2

0) changes. The final result
is given by the expression
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Fig. 1 The running coupling constant αs (Q2) as a function of momentum transfer Q2 determined
from a variety of processes; from [15]

αs(Q2) = αs(Q2
0)

1 + αs (Q2
0)

12π (11 NC − 2 N f ) log(Q2/Q2
0)
. (13)

In Fig. 1 we show the experimental verification of this prediction. Formally
speaking, the fact that the coupling constant is small at high energies is related to the
negative value of the so-called β-function. We will explain this in detail in Sect. 2.3.

Note that with Eq. (13), no singularity appears in the local limit – so QCD by
itself is a fully consistent field theory. However, the pole is still present at small
virtuality; it thus could affect all soft processes. This problem is very likely related
to confinement of quarks and gluons, and finding the right way of dealing with it is
akin to discovering the Holy Grail for the QCD theorists.

2.3 Scale Invariance Breaking in QCD

Scale invariance plays an important role in many subfields of physics. In a scale-
invariant theory, the physics looks the same at all scales. Suppose that the action
that describes the dynamics of some theory is invariant under dilatations:

x → λx . (14)

If this is the case, by Noether theorem, we have a dilatation current sμ that is
conserved and is given by
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sμ = xν θ
μν, (15)

where θμν is the energy–momentum tensor. The conservation law reads as

∂μsμ = θμμ . (16)

Therefore the divergence of the scale current corresponding to a scale transfor-
mation is equal to the trace of the energy–momentum tensor, and a scale-invariant
theory will have θμμ = 0. Deviations from this will indicate a breaking of scale invari-
ance.

As a simple example consider classical electrodynamics without external sources:

L = −1

4
FμνFμν. (17)

From this Lagrangian, it is straightforward to obtain the energy–momentum ten-
sor:

θμν = −FμρFνρ + 1

4
δμν Fρσ Fρσ . (18)

Taking the trace of this tensor, we find that it will vanish in four dimensions since
in that case δμμ = 4; this shows that classical electromagnetism without sources
is scale invariant. Indeed, the result is the same at classical level for non-abelian
Yang–Mills theories.

However at quantum level this is not true. A simple way to understand this is
the following: In quantum theory, the fluctuations can exist at all scales and thus
their total energy is infinite. To obtain a finite result, we have to renormalize the
theory. We do this at the cost of introducing the renormalization scale which is a
dimensionful parameter. Clearly, its presence violates the original classical scale
invariance of our theory.

In Sect. 2.2, we mentioned that the coupling constant in gauge theories changes
as a function of the virtuality Q2 due to quantum effects – the fluctuations of the
vacuum that dress the propagator of a gauge boson. Because of this, QED and QCD
lose the invariance under scaling transformations at quantum level. Indeed, once
quantum correction is taken properly, the trace of the energy–momentum tensor
calculated from the QCD Lagrangian (7) is [21–26]:

∂μsμ = Θμμ =
∑

q

mqq̄q + β(g)

2g3
trGμνGμν, (19)

where β(g) is the QCD β-function, which governs the behavior of the running cou-
pling:

μ
dg(μ)

dμ
= β(g). (20)
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As we already discussed in Sect. 2.2, the small value for the coupling αs at high
energies is related to the sign of the β-function which is negative for QCD. This
means that the theory is asymptotically free. The leading term in the perturbative
expansion is (cf. Eq. (13))

β(g) = −b
g3

(4π )2
+ O(g5), b = 11Nc − 2N f , (21)

where Nc and N f are the numbers of colors and flavors, respectively.
The hadron masses are defined as the forward matrix elements of trace of the

QCD energy–momentum tensor: 2m2
h = 〈

h|Θμμ|h
〉

(the factor of 2mh is due to
relativistic normalization of states |h〉. The sum in Eq. (19) runs over all quark
flavors, and it might seem that heavy quarks can give a substantial contribution to
the masses of light hadrons. However that does not happen since at small virtualities
the heavy flavor contribution to the sum (19) is exactly canceled by a corresponding
heavy flavor contribution to the β-function [27]. Since the light quarks are light, the
dominant contribution to the masses of most light hadrons comes from the gluon
term in Eq. (19) – in other words, most of the observable mass in the Universe is
due to the energy of gluon interactions.

2.4 Confinement and the Broken Scale Invariance

The asymptotic freedom allows us to probe quarks and gluons at short distances
when the coupling constant is small. However, the growth of the coupling at large
distances leads to the binding of quarks and gluons into color-singlet hadrons of size
∼ 1 fm.

In quantum field theory, the evaluation of scattering amplitudes involves the con-
cept of asymptotic states. However, the fact that quarks and gluons are confined
prevents us from using quarks and gluons as asymptotic states within the S matrix
approach. An appropriate object for studying confinement of quarks is the so-called
Wilson loop [28]:

W (R, T ) = T r

{
P exp

[
i
∫

C
Aa
μT adxμ

]}
, (22)

where Aa
μ is the gluon field and T a is the generator of SU (3). Let us first choose the

contour C in the integral as a rectangle with side R in one of the space dimensions
and T in the time direction. With this contour we are dealing with the propagation of
a heavy static quark and antiquark separated by a distance R propagating in time for
a period T . One important property of the Wilson loop is its relation to the potential
acting between the static quark and antiquark: when T → ∞,

lim
T →∞

W (R, T ) = exp [−T V (R)] , (23)
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where V (R) is the static potential between the heavy quarks.
If we now decide to stretch the size of the rectangle in all directions by the same

factor (T → λT and R → λR simultaneously) one can expect that the value of the
Wilson loop will be modified. The only exception is the Coulomb potential, which
maintains the scale invariance in the asymptotic value of the Wilson loop:

W (R, T ) = W (λ R, λ T ), if V (R) ∼ 1/R. (24)

For QCD, the quark–antiquark potential has the form

V (R) = −4

3

αs(R)

R
+ σ R, (25)

where σ is the tension of the string stretched between the quark and antiquark.
Phenomenology tells us that its value is around ∼1 GeV/fm. As one can easily see,
both the running coupling and the confinement are in violent contradiction with the
scale invariance.

In the limit when T → ∞ and large distances, the asymptotic behavior of the
Wilson loop reads approximately as

W (R, T ) � exp [−σT R] . (26)

This is the famous “area law” of the Wilson loop that signals confinement.
At finite temperature, various transport properties of QCD matter appear sensitive

to confinement. In Sect. 5.3 we discuss the intriguing relation between bulk viscosity
and breaking of scale invariance.

3 Black Holes

The concept of a black hole dates back to the eighteenth century, when the British
geologist and astronomer Rev. John Mitchell advanced the idea of the existence of
a body so massive that the escape velocity at its surface would be equal to the speed
of light. In a paper he wrote to the Royal Society in 1783 he concludes that “all light
emitted would be made to return towards it, by its own proper gravity.” This was
due in part to the popularity of the “corpuscular theory” of light at the time, which
made possible that light could be affected by gravity in the same way as ordinary
matter [29].

The same idea of strong-gravity objects trapping light was proposed by the math-
ematician Pierre-Simon Laplace in his book Exposition du Systeme du Monde in
1796, though it did not gain much consideration throughout the nineteenth century,
as the “wave theory” of light was gaining ground.

Later on, upon the advent of general relativity as a new theory of gravity in 1915
and the formulation of Einstein’s field equations, relating the curvature of space–
time with the matter and energy content within the space–time (via the stress–energy
tensor Tμν)
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Gμν = 8πG

c4
Tμν, (27)

the German physicist and astronomer Karl Schwarzschild gave the solution for a
static, isotropic gravitational field, predicting the existence of a singularity at r =
2G M , the so-called Schwarzschild radius [30]. Schwarzschild introduced a metric

ds2 = c2dt2(1 − 2G M

rc2
) − dr2

1 − 2G M
rc2

− r2dΩ2, (28)

which was proved to be the most general solution of Einstein’s equations with-
out matter (Tμν = 0) and spherical symmetry – via Birkhoof’s theorem in 1923.
It was later used by Oppenheimer and Volkoff in 1939 to predict the collapse of
massive stars [31]. It was not until the introduction of the Eddington–Finkelstein
coordinates in 1958 that the Schwarzschild surface r = 2G M was interpreted as the
event horizon of a black hole, acting as a perfect unidirectional membrane. That is,
information from outside the boundary was allowed to cross it, but events occurring
inside the boundary could in no way affect an outside observer [32].

A major breakthrough came in the 1970s, when Jacob Bekenstein proposed that
a black hole should have a finite nonzero entropy and temperature, proportional to
the area of its horizon. A finite entropy is in agreement with the second law of ther-
modynamics. By applying quantum field theory to the curved space–time around
the event horizon, Stephen Hawking concluded in 1974 that black holes should
emit thermal radiation [33]. He found the temperature of the emitted radiation to
be proportional to the acceleration due to gravity of a near-horizon observer

TB H = �c3

8πG MkB
(29)

and confirmed Bekenstein’s conjecture by fixing the constant of proportionality
between the entropy and the area of the black hole event horizon. In the equa-
tion above, kB is Boltzmann’s constant, G is Newton’s gravitational constant, h
is Planck’s constant, while M is the mass of the black hole.

Interestingly, in gravitational theories the black hole entropy appears to be the
maximum entropy that one can squeeze within a fixed volume, and this entropy is
proportional to the area A of the black hole horizon:

SB H = kB Ac3

4G�
. (30)

This is in sharp contradiction to the “usual” physics when the entropy is propor-
tional to the volume of the system. Since the entropy counts the number of degrees
of freedom, one may wonder whether the “true” number of degrees of freedom
in gravitational theory is smaller than naively expected and whether the dynamics
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might be formulated as a dynamics of the surface modes. We will come back to this
crucial question shortly.

An interesting consequence of Eq. (29) is that black holes that are less massive
than the planet Mercury would become hotter than the cosmic microwave back-
ground (about 2.73 K) and would slowly evaporate with time by giving up energy
through Hawking radiation. As their mass decreased, their temperature would grad-
ually increase. Thus, small black holes will eventually undergo runaway evaporation
and vanish in a burst of radiation.

During the last decade, concerns regarding the formation in high-energy particle
accelerators of black holes that would accrete ordinary matter and put in danger the
Earth were firmly dismissed. The reader can easily check on the basis of formulas
given in this section that the energies of any existing or planned accelerator are many
orders of magnitude below the one needed for the black hole formation in either
classical or quantum gravitational framework. The corresponding studies have been
done at both the Relativistic Heavy-Ion Collider (RHIC) [34] and more recently
at the Large Hadron Collider (LHC). In the case of RHIC, the speculative disaster
scenarios were to some extent due to the misinterpretation of a mathematically dual
treatment of the hot QCD matter as a black hole in Ad S5×S5 space via the AdS/CFT
correspondence [35], which is the topic of Sect. 4.1.

4 Using Black Holes to Understand Gauge Theories

4.1 The AdS/CFT Correspondence

The AdS/CFT correspondence is a successfully tested conjecture about the mathe-
matical equivalence of a string theory defined on an Anti de Sitter (AdS) space and
a conformal field theory2 defined on the boundary of the AdS space. It follows as an
application of the holographic principle [36], developed by ’t Hooft and Susskind,
which states that the description of a volume of space can be encoded on a boundary
to that region of space.3

Here we focus on a particular version of this equivalence, namely the duality
between type IIB string theory on Ad S5 × S5 and a supersymmetric N = 4 Yang–
Mills gauge theory4 on the four-dimensional boundary of Ad S5, as it was originally
introduced by Maldacena [1] in 1997, followed by Gubser, Klebanov, Polyakov [2],
and Witten [3] in 1998.

2 Conformal invariance is a generalization of scale invariance.
3 In case of a black hole, the holographic principle states that the description of all objects falling
into the black hole is entirely given by surface fluctuations of the event horizon.
4 N = 4 supersymmetric Yang–Mills is a conformal field theory.
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4.2 Anti de Sitter Space

On the gravity side, the requirement of conformal invariance fixes the metric of
the fifth dimension uniquely; it is an Anti de Sitter space Ad S5 – that is, a space
with Lorentzian signature (− + + · · · +) and constant negative curvature [37]. The
Anti de Sitter space is a maximally symmetric, vacuum solution of Einstein’s field
equations with negative cosmological constantΛ < 0. In d dimensions, it is defined
by an embedding in d + 1 dimensions

ds2 = −dx2
0 +

d−1∑
i=1

dx2
i − dx2

d+1, (31)

−R2 = −x2
0 +

d−1∑
i=1

x2
i − x2

d+1, (32)

which makes it the Lorentzian version of Lobachevski space. It is invariant under
the group SO(2, d − 1) that rotates the coordinates xμ = (x0, xd+1, x1, . . . , xd−1)
into x ′μ = Λμν xν . In Poincaré coordinates, the metric of this space is given by

ds2 = R2

x2
0

(
−dt2 +

d−2∑
i=1

dx2
i + dx2

0

)
, (33)

where t > −∞, xi < +∞, and 0 < x0 < +∞. Up to a conformal factor, this is
just like (flat) three-dimensional Minkowski space, though not all space is covered.
Thus, in these Poincaré coordinates, Anti de Sitter space can be understood as a
d − 1 dimensional Minkowski space in (t, x1, . . . , xd−2) coordinates, with a warp
factor (gravitational potential) that depends only on the additional coordinate x0.

4.3 Supersymmetry

Now, our conformal field theory needs to be supersymmetric – that is, associate a
fermion (particle with half-integer spin) to every type of boson (particle with integer
spin) and a boson to every type of fermion. This can be represented by a graded Lie
algebra generalization of the Poincaré + internal symmetries, with “even” genera-
tors Pa , Jab, Tr and “odd” generators Qi

α , satisfying the following commuting and
anticommuting laws [37]:

[even, even] = even; {odd, odd} = even; [even, odd] = odd. (34)

We note that Pa and Jab are, respectively, the generators of 3+1 dimensional
translation symmetries and the Lorentz generators of the SO(1, 3) Lorentz group,
which together define the Poincaré symmetry, Tr correspond to internal symmetries
of particle physics such as local U(1) of electromagnetism or local SU(3) of QCD or
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global SU(2) of isospin, while Qi
α are spinors satisfying the supersymmetry algebra

Q boson = fermion; Q fermion = boson. (35)

Since all symmetries of the field theory should be reflected in the dual string
theory, the supersymmetry requirement further constrains the 10-dimensional string
theory to live in Ad S5×S5 (that is five-dimensional AdS space times a 5-sphere) [38].
We make sense of the higher dimensions (D > 4) of the theory by means of Kaluza–
Klein dimensional reduction, which states that the extra D – 4 dimensions are all
curled up in a small space, in the form of a small sphere or torus.

4.4 D-Branes and Black Holes in String Theory

The metric commonly used in AdS/CFT calculations is the Ad S5-Schwarzschild
solution, which describes the near-horizon geometry of D3-branes (see below):

ds2
5 = L2

z2

[
−h(z)dt2 + d

→
x

2 + dz2

h(z)

]
, h(z) = 1 − z4

H

z4
. (36)

Here L is the common radius of curvature of Ad S5 and S5, z = L2

r and zH is the
corresponding z-coordinate of the black hole horizon.5 This metric extremizes an
action derived from type IIB string theory on S5:

S = 1

16πG5

∫
d5x

√−g

(
R + 12

L2

)
. (37)

The relationship between gauge theories and string theory on Anti de Sitter
spaces was motivated by studies of D-branes and black holes in string theory [38].
D-branes are solitons in string theory and are defined (in string perturbation theory)
as surfaces where open strings can end. These open strings have massless modes

Fig. 2 The AdS–Schwarzschild solution, dual to a thermal state of N = 4 super Yang–Mills, by
Gubser

5 z ranges from 0 to ∞ and corresponds to what we previously defined as x0 in Eq. (32).
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Fig. 3 D-brane representation, by Gubser

describing the oscillations of the branes, a gauge field living on the brane or their
fermionic partners. Having N coincident branes on which the open strings can start
and end points us toward a low-energy dynamics described by a U(N ) gauge the-
ory. Now, if one considers Dp-branes, which are charged under p+1-form gauge
potentials, and adds to them D-branes, they generate together a flux of the corre-
sponding field strengths associated with the gauge potentials, which contributes to
the stress-energy tensor; so the geometry becomes curved. One can find solutions of
the supergravity equations carrying these fluxes. These solutions are very similar to
extremal charged black hole solutions in general relativity, except that in this case
they are black branes with p extended spatial dimensions (which, like black holes,
contain event horizons).

If one considers a set of N coincident D3-branes, the near-horizon geometry turns
out to be the famed Ad S5 × S5 [38]. We also know that the low-energy dynamics on
their worldvolume is governed by a U(N ) gauge theory with N = 4 supersymmetry.
These two pictures of D-branes are perturbatively valid for different regimes of the
coupling. While perturbative field theory is valid when gs N is small, the low-energy
gravitational description is perturbatively valid when the radius of curvature is much
larger than the string scale, that is when gs N becomes very large. As an object
is brought closer to the black brane horizon, its energy measured by an outside
observer gets redshifted by the large gravitational potential, so it becomes very
small. Since low-energy excitations on the branes are governed by the Yang–Mills
theory, it becomes natural to conjecture that Yang–Mills theory at strong coupling is
describing the near-horizon region of the black brane, whose geometry is Ad S5×S5!

Near r = 0, the extremal 3-brane geometry given in Eq. (36) is non-singular and
all appropriately measured curvature components become small for large L . Thus,
for L much larger than the string scale

√
α′, the entire 3-brane geometry has small

curvature everywhere and can be described by the supergravity approximation to
type IIB string theory. By expressing the ADM tension (mass per unit area) of the
extremal 3-brane classical solution to N times the tension of a single D3-brane, one
obtains the relation [39]

2

κ2
L4Ω5 = N

√
π

κ
. (38)
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In this context, Ω5 = π3 is the volume of a unit 5-sphere and κ = √
8πG is

the 10-dimensional gravitational constant. Since κ = 8π7/2gsα
′2 and g2

Y M = 4πgs ,
Eq. (38) becomes

L4 = g2
Y M Nα′2, (39)

where gs and gY M are the string and Yang–Mills couplings, respectively. Thus, for
large L � √

α′ a strong ’t Hooft coupling g2
Y M N � 1 is required. This remarkable

result lies at the heart of the success of the AdS/CFT correspondence. We further
point to references [37–39] for comprehensive reviews of the conjectured equiva-
lence.

4.5 QCD and Gravity

As we discussed above, asymptotic freedom and confinement explicitly break con-
formal invariance in QCD, and the AdS/CFT correspondence relies on conformal
symmetry in a very essential way. This is at present the main obstacle in the way
of applying these ideas to QCD. We are interested in the strong coupling behavior
which in QCD is encountered in the low-energy regime. It is thus natural to try and
gain a physical insight on confinement by considering effective low-energy theo-
ries. In this section we will sketch the construction of one of these theories. What
is interesting in this example is that it also points toward gravity: The resulting
effective Lagrangian can be mathematically reformulated as classical QCD on a
curved conformal gravitational background. Our discussion follows the arguments
from [5, 6].

We would like to construct an effective theory that is not scale invariant but
transforms under scale transformations in a well-defined way prescribed by the
asymptotic freedom, i.e., is invariant under the Renormalization Group (RG) trans-
formations.6 Since as we have seen above the scale transformations are generated by
the trace of the energy momentum tensor, we will begin by encoding the dynamics
prescribed by the RG into a set of low-energy theorems for the correlation functions
of the trace of the energy–momentum tensor. We reproduce the derivation [40] of
these theorems here because they will be relevant in the construction of the effective
Lagrangian.

The expectation value of an operator O that is invariant with respect to the change
of renormalization scale M0 can be written as

〈O〉 ∼
[

M0 e
− 8π

b g2(M0)

]d

; (40)

6 Renormalization group is a field theory technique that allows one to investigate the changes of a
physical system as one views it at different distance scales.
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this way the expectation value does not change with the scale M0, and there is thus
no anomalous dimension, only the canonical dimension d.

On the other hand, we can write down this expectation value as a functional
integral that will contain the exponential of the action. We have seen above (see
Eq. (7)) that the action density in gluodynamics depends on the coupling constant
g; it is proportional to 1/4g2:

L = (−1/4g2)F̃aμν F̃a
μν (41)

where F̃ = gF is the rescaled gluon field. The derivative w.r.t. −1/4g2(Q2) of the
expectation value of O thus generates a zero-momentum correlation function:

i
∫

dx 〈T {O(x) , F̃2(0) }〉 = − d

d(−1/4g2)
〈O〉; (42)

this procedure is analogous to differentiating w.r.t. the inverse temperature in statis-
tical mechanics. Combining Eqs. (40) and (42), we obtain [40] for d = 4

i lim
q→0

∫
dx ei q x 〈0|T {O(x) ,

β(αs)

4αs
F2(0) }|0〉connected = 〈O〉 (−4) . (43)

This result can be easily generalized through an iteration method to obtain a set of
relations between n-point correlation functions and an arbitrary number of operators
F2. If our operator O is the trace of the energy–momentum tensor itself, i.e.,

O ≡ θμμ = β(g)

2 g
Fa
μν Faμν, (44)

then Eq. (43) can be written as

i n
∫

dx1 . . . dxn 〈0|T {θμ1
μ1

(x1), . . . ,θμn
μn

(xn), θμμ (0)}|0〉connected (45)

= 〈θμμ (x)〉 (−4)n.

This infinite chain of low-energy theorems determines the structure of the low-
energy theory completely, and we will now construct our effective Lagrangian using
the method developed in [41].

Let us consider gluodynamics in a curved conformally flat background in d
dimensions, with a background described by the metric

gμν(x) = eh(x) δμν. (46)

The action of the gluon fields in this curved background is
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S = − 1

4 g2

∫
dd x

√− g gμν gλσ F̃a
μλ F̃a

νσ , (47)

with g = det gμν . Note that Yang–Mills theory on a curved background is scale
and conformally invariant in any number of dimensions d, contrary to the case a
flat space when the same theory is scale and conformally invariant only if d = 4,
see Eq. (18). The regularization of the action brings in an extra term in Eq. (47) in
d = 4:

ΔS = − 1

4 g2

∫
d4x e2h

[
− b g2

32π2
(F̃a
μν)

2

]
, (48)

where b = 11 NC/3. This new term is proportional to the second term of the right-
hand side of Eq. (19). Therefore, the explicit breaking of the scale invariance of
QCD manifests itself in the theory defined by the effective action given by the sum
of Eqs. (47) and (48) through a term containing the auxiliary scalar field h(x) [41],
without any dimensionful parameters. For a theory defined on a flat space–time,
the scale anomaly presents itself in the phenomenon of dimensional transmutation,
which brings in a dimensionful parameter explicitly.

The kinetic part for the field h(x) can be obtained in a manifestly scale and
conformally invariant way using the Einstein–Hilbert Lagrangian for the one-loop
effective Yang–Mills field:

Seff =
∫

d4x
√−g

(
1

8π G
R − 1

4 g2
gμν gλσ F̃a

μλ F̃a
νσ − e2h θμμ

)
, (49)

where G is some dimensionful constant and R is the Ricci scalar. Using (46) we get

R
√−g ≡ Rμμ

√−g = eh 3

2
(∂μh)2. (50)

In deriving Eq. (50) we have neglected terms of higher order in derivatives and con-
strained ourselves to Einstein’s gravity. This corresponds to an expansion in powers
of the gradients for a slowly varying background field.

With this example, we have constructed an effective Lagrangian that preserves
scale invariance of QCD in a classical curved background at a price of a new dilaton
field h(x).

4.6 Confinement as an Event Horizon for Colored Particles?

In the previous section we have constructed an effective low-energy Lagrangian that
preserves the scale invariance. This effective theory is mapped mathematically onto
classical QCD on a curved conformal gravitational background. It is interesting that
this theory may offer a geometrical way of associating confinement with an event
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horizon for colored particles [10]. In general relativity the appearance of an event
horizon occurs through the modification of the underlying space–time structure by
the gravitational interaction. Our effective Lagrangian L depends on a single back-
ground field, and the modification of the metric can be computed as follows [42]:

gμν = ημνL′ − 4 FαμFαν L′′, (51)

where the primes indicate first and second derivatives with respect to F ≡ FμνFμν .
The vanishing of the temporal component of the modified metric will define the
compact region of the theory, i.e., the counterpart of a black hole. It is possible to
write the effective Lagrangian derived from the action (49) as

LQCD = 1

4
FμνFμν

g2(0)

g2(gF)
= 1

4
FμνFμνε(gF), (52)

with the “dielectric” constant of the system under the presence of the background
field at one loop given by

ε(gF) � 1 − β0

(
g2

4π

)
ln
Λ2

gF
. (53)

Here β0 = (11Nc − 2N f )/48π2, while Nc and N f specify the number of col-
ors and flavors, respectively. Therefore the effective metric (51) computed for the
Lagrangian (52) can yield the vanishing temporal component g00 = 0 when

gF∗ = Λ2 exp{−4π/β0g2}. (54)

Therefore, an event horizon may be formed at r∗ ∼ 1/
√

gF∗ in our effective
theory – it would take colored particles an infinite time to escape. In black hole
physics there is a deep relation between the Hawking temperature and the existence
of an event horizon. Consequently, the radiation emitted by a black hole and its
evaporation process might be related to thermal hadron production (see [10] for
details).

5 Applications: Shear and Bulk Viscosities

To exemplify the use of the two methods presented previously in Sects. 4.1 and 4.5
we will discuss the calculation of two important transport coefficients of QCD
matter, which can be linked to relevant observables in studies of ultrarelativistic
heavy-ion collisions.
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5.1 Definitions

In finite-temperature field theory, the shear and bulk viscosities are defined as trans-
port coefficients of the energy-momentum tensor. For this, we consider a plasma
slightly out of equilibrium, such that there is local thermal equilibrium everywhere,
but the temperature and average velocity are allowed to slowly vary in space. Then
one can define at any point a local rest frame, where the 3-momentum density van-
ishes, θi0 = 0. In this frame, one has the following constitutive relation for the
energy-momentum tensor [43, 44]:

θi j = Peq (ε)δi j − η(∂i u j + ∂ j ui − 2

3
δi j∂kuk) − ζ δi j

→
∇ · →

u , (55)

where Peq (ε) is the pressure (related to the energy density of the system through an
equilibrium equation of state), η is the shear viscosity, ζ the bulk viscosity, and ui

are the flow velocities. All kinetic coefficients can be expressed, via Kubo formulas,
as static limits of correlation functions of the corresponding currents, namely [45]

η = 1

2
lim
ω→0

1

ω

∫ ∞

0
dt

∫
d3r eiωt 〈[θxy(t, x), θxy(0, 0)]〉, (56)

ζ = 1

9
lim
ω→0

1

ω

∫ ∞

0
dt

∫
d3r eiωt 〈[θi i (t, x), θkk(0, 0)]〉. (57)

The shear viscosity η indicates how much entropy is produced by transforma-
tion of shape at constant volume; it is generated by translations. Correspondingly,
the bulk viscosity ζ quantifies how much entropy is produced by transformation of
volume at constant shape; it is generated by dilatations.

5.2 The Shear Viscosity Bound

In [46], the ratio of shear viscosity to volume density of entropy η/s is computed
for a large class of strongly interacting quantum field theories which have a dual
description involving black holes in Anti de Sitter space. This ratio can be used to
characterize how close a given fluid is to being perfect.

A first step is to relate the shear viscosity as defined in Eq. (56) to the absorp-
tion cross section of low-energy gravitons. We consider a graviton of frequency
ω, polarized in the xy direction and propagating perpendicularly to a brane. Since
according to the gauge–gravity duality, the stress–energy tensor couples to the met-
ric perturbations at the boundary [38], then in the field theory picture the absorption
cross section of the graviton by the brane is proportional to the imaginary part of the
retarded Green function of the operator coupled to hxy , that is, θxy :

σabs(ω) = −2κ2

ω
I mG R(ω) = κ2

ω

∫ ∞

0
dt

∫
d3r eiωt 〈[θxy(t, x), θxy(0, 0)]〉, (58)
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where κ = √
8πG emerges as a result of the normalization of the graviton’s action.

Upon comparing Eqs. (56)–(58), one obtains immediately the shear viscosity as a
function of the graviton absorption cross section:

η = σabs(0)

2κ2
= σabs(0)

16πG
. (59)

The next step is to prove that the absorption cross section of a graviton by a black
hole is the same as that of a scalar, which is equal in the low-frequency limit ω → 0
to the area of the horizon, namely σabs(0) = a.

Finally, one needs to compute the volume density of entropy. Again, we use the
dual holographic description and conclude that the entropy of the dual field theory is
equal to the entropy of the black brane, which is proportional to the area of its event
horizon, as found by Bekenstein and Hawking in Eq. (30). The entropy density is
therefore

s = kBa

4G�
, (60)

which results in a shear viscosity to entropy density ratio of

η

s
= �

4πkB
. (61)

It is remarkable that the result – which applies in the limit of strong coupling,
where the gravity description is appropriate – does not depend on the specific met-
ric chosen, the ratio being the same for various types of Dp- and Mp-branes, even
if the corresponding dual theories are very different. Furthermore, according to a
conjecture due to the authors of [46], this result can be viewed as a universal lower
bound for all relativistic quantum field theories at finite temperature and zero chem-
ical potential. The inequality is to be saturated by theories with gravity duals. We

Fig. 4 The ratio of the shear viscosity to the entropy as a function of T/Tc from [50]. KSS bound
is 1/4π
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further refer to [46] for the arguments supporting this conjecture; see also [47, 48]
for a discussion of circumstances under which this bound may be violated.

Recent lattice results [49] give η/s = 0.134(33) for T = 1.65 Tc and η/s =
0.102(56) for T = 1.24 Tc – the values which are above, but not much above, the
bound (61).

At the same time, RHIC data provide a limit for the ratio η/s by measuring the
elliptic flow of particles produced in very energetic heavy-ion collisions. Results
so far have pointed toward a very low-viscosity, nearly perfect fluid of quarks and
gluons [51–54].

5.3 Bulk Viscosity and Hadronization

The transport coefficient of the plasma which is directly related to its conformal
properties is the bulk viscosity [11]. Indeed, it is related by Kubo’s formula to the
correlation function of the trace of the energy-momentum tensor. It is clear from
Eq. (57) that for any conformally invariant theory with θμμ = 0 the bulk viscosity
should vanish. This is the case for N = 4 SUSY Yang–Mills theory. In contrast, a
nonzero ζ can be generated by breaking the scale invariance.

A perturbative evaluation by [44] has yielded very small values for ζ , with the
ratio ζ /η of the order of 10−3 for 3-flavor QCD with αS ≤0.3, neglecting quark
masses. Specifically, ζ was found to scale with α2

S for massless QCD, where con-
formal symmetry is broken by the running of the coupling β(αS) ∼ α2

S:

ζ ∼ T 3

α2
S log[1/αS]

× (α2
S)2 ∼ α2

ST 3

log[1/αS]
for m0  αST . (62)

The presence of quark masses also leads to breaking conformal invariance pro-
vided that m0 ≤ T , and this time

ζ ∼ T 3

α2
S log[1/αS]

× (
m2

0

T 2
)2 ∼ m4

0

Tα2
S log[1/αS]

for αST  m0  T . (63)

Here m0 refers to the heaviest zero-temperature quark mass which is smaller than
or of the order of the temperature T . Only the case of weakly coupled QCD, with
vanishing or negligible chemical potential μ ∼ 0 was considered. Based on the
above results, we can safely conclude that bulk viscosity is negligibly small (at least
with respect to shear viscosity) in the perturbative regime of QCD. Specifically

ζ

s
∼ α2

S and
η

s
∼ 1

α2
S

. (64)

Note that the parametric dependence of the shear and bulk viscosities on the
coupling constant (64) can be easily read off the Kubo formulas (56) and (57) if we
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Fig. 5 Shear vs. bulk viscosity: η/s and ζ/s (s the entropy density) as a function of αS , for N f = 3
QCD, neglecting quark masses. Bulk viscosity ζ has been rescaled by a factor of 1000; from [44]

recall the dependence of the QCD action and the trace of the energy–momentum
tensor on the coupling constant, see Eqs. (7) and (19).

But what happens at strong coupling, where perturbation theory is no longer
applicable? Such is the regime of interest for the quark–gluon plasma. Lattice cal-
culations [50, 49] indicate that shear viscosity gets small, with η/s not much higher
than the conjectured lower bound of 1/4π (refer to Sect. 5.2). Does this mean that
the bulk viscosity at strong coupling may become large?

Since the bulk viscosity is related by the Kubo formula (57) to the correlation
function of the trace of the energy–momentum tensor, this quantity is intimately
related to the breaking of scale invariance. In Sect. 4.5, we introduced the low-
energy theorems for the correlation functions of the trace of the energy–momentum
tensor which do not rely on perturbation theory. Let us see what can be said about
the bulk viscosity on the basis of this approach; we will follow [11].

In this approach, bulk viscosity can be related to the “interaction measure”, i.e.,
the expectation value of the trace of the energy-momentum tensor 〈θ〉 = ε − 3P ,
where ε is the energy density and P is the pressure, both of which are measured
with high precision on the lattice. Following the definitions and conventions of [45],
we can rewrite Eq. (57) by means of the retarded Green’s function as

ζ = 1

9
lim
ω→0

1

ω

∫ ∞

0
dt

∫
d3r eiωt i G R(x) = −1

9
lim
ω→0

1

ω
I m G R(ω,

→
0 ), (65)

where P-invariance was imposed to yield the last expression. Since the spectral
density is defined as

ρ(ω,
→
p) = − 1

π
I m G R(ω,

→
p), (66)

we can further express the retarded Green’s function by using the Kramers–Kronig
relation to yield [11]
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G R(ω,
→
p) = 1

π

∫ ∞

−∞

I m G R(u,
→
p)

u − ω − iε
du =

∫ ∞

−∞

ρ(u,
→
p)

ω − u + iε
du. (67)

Now, relate by analytic continuation the retarded Green’s function for a bosonic
excitation to the corresponding Euclidean Green’s function

G E (ω,
→
p) = −G R(iω,

→
p), ω > 0 (68)

and use Eq. (67) together with the fact that ρ(ω,
→
p) is odd w.r.t. ω to obtain

G E (0,
→
0 ) = 2

∫ ∞

0

ρ(u,
→
0 )

u
du. (69)

We can now use the set of low-energy theorems [40] satisfied by the correlation
functions of the trace of the energy–momentum tensor θ introduced in Sect. 4.5 to
relate the Euclidean Green’s function to the thermal expectation value of θ . Follow-
ing the generalization to the case of finite temperature of [55], we get

G E (0,
→
0 ) =

∫
d4x 〈T θ (x), θ (0)〉 = (T

∂

∂T
− 4) 〈θ〉 . (70)

As discussed before in Sect. 2.3, the scale symmetry of the QCD Lagrangian
is broken by quantum fluctuations, which makes θ acquire a nonzero expectation
value. We now know from Eq. (57) that a nonzero bulk viscosity is associated with
〈θ〉 �= 0, a fact clearly observed on the lattice for SU(3) gluodynamics [56] (the
same holds in the presence of quarks or at large Nc). So let us relate this thermal
expectation value to the quantities computed on the lattice via

(ε − 3P)L AT = 〈θ〉T − 〈θ〉0 with 〈θ〉0 = −4 |εv| , (71)

where the zero-temperature expectation value of θ , related to the vacuum energy
density εv < 0 has to be subtracted. Using Eqs. (69), (70), and (71) we derive an
exact sum rule for the spectral density ρ [11]:

2
∫ ∞

0

ρ(u,
→
0 )

u
du = (T

∂

∂T
− 4) 〈θ〉T = T 5 ∂

∂T

(ε − 3P)L AT

T 4
+ 16 |εv| . (72)

Before extracting the bulk viscosity from Eq. (72), one needs to make an ansatz
for the spectral density in the low-frequency regime only – since the perturbative,
divergent contribution has already been subtracted in the definition of the quantities
on the r.h.s. of the sum rule (72). In order to satisfy Eqs. (65) and (66), the following
ansatz has been assumed in [11]
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ρ(ω,
→
0 )

ω
= 9ζ

π

ω2
0

ω2
0 + ω2

. (73)

Upon substituting Eqs. (73) into (72) one obtains the much-sought expression for
the bulk viscosity

ζ = 1

9ω0

{
T 5 ∂

∂T

(ε − 3P)L AT

T 4
+ 16 |εv|

}
. (74)

We have to emphasize that our result depends crucially on the assumed spectral
density. The shape of the spectral density (and in particular the presence of a ∼
ωδ(ω) term) and the behavior of the relaxation time ∼ ω−1

0 in the vicinity of the
critical point both affect the extracted bulk viscosity.

Contrary to what Kubo’s formula (57) may naively imply, ζ is linear rather than
quadratic in the difference ε− 3P , which seems to be in agreement with the strong-
coupling result obtained for the nonconformal SUSY Yang–Mills gauge plasma
studied by [57]. The parameter ω0(T ) ∝ T is the scale at which perturbation theory
becomes valid, i.e., when the lattice calculations of the running coupling coincide
with the perturbative expression at a given temperature. In the region 1 < T

Tc
< 3 it

was found that ω0(T ) ≈ 1.4
(

T
Tc

)
GeV.

Applying Eq. (74) to the lattice data from [56], with |εv| = 0.62 T 4
c and

Tc = 0.28 GeV, the bulk viscosity can be extracted and the ratio ζ/s computed
as a function of temperature. It turns out that ζ is indeed small at high T away
from the critical temperature Tc – in agreement with the perturbative results of [44],
but becomes very large at T close to Tc, as confirmed by recent lattice calculations
of [58, 59]. A comparison between the results of [11] and [58] is given in Fig. 6.

Fig. 6 ζ/s as a function of T/Tc; comparison with lattice results [58]

Corroborated with the lattice results for shear viscosity of [50, 49], the present
result suggests that bulk viscosity may be the dominant correction to ideal hydrody-
namics in the vicinity of the deconfinement phase transition in the plasma. Several
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condensed matter systems, such as He3 near the critical liquid–vapor point, exhibit
an analogous behavior, with a large ratio of ζ /η affecting sound propagation in these
media [60].

The analysis described above has been extended to the case of QCD with 2+1
quark flavors [12], with qualitatively similar results. This latter case is directly
relevant for heavy-ion collision experiments, where the two light flavors “up” and
“down,” along with strangeness, are produced most abundantly. More recent, high
statistics lattice data on the equation of state for QCD with almost physical quark
masses from the RIKEN-BNL-Columbia-Bielefeld collaboration [61] are used as
an input to extract the bulk viscosity.

The behavior of bulk viscosity near the critical temperature in the presence of
light quarks has been discussed in the framework of the effective Lagrangians, see
[62–66]. It is interesting to note that bulk viscosity can exhibit a rapid growth in the
vicinity of the chiral critical point [12].

We should mention that the effects of conformal symmetry breaking on bulk
viscosity have been studied before in the framework of the gauge–gravity duality,
for nonconformal supersymmetric mass-deformed7 N=2∗ Yang–Mills theory in the
regime of large ’t Hooft coupling g2

Y M Nc � 1 in [57], yielding a linear dependence
of ζ in ε − 3P which is similar to [11]. Further progress has been made by [67]
and [68] in computing bulk viscosity by considering various classes of black hole
solutions, which are gravity duals of gauge theories with broken conformal invari-
ance, via the AdS/CFT correspondence introduced in Sect. 4.1. The latter results
also yield a rise of ζ in the vicinity of T = Tc, though much less sharp than the one
predicted in [11] and [12].

5.4 Bulk Viscosity and the Mechanism of Hadronization

Let us now briefly discuss the connection between the growth of bulk viscosity
near the critical temperature and an increase in entropy, manifested in abundant
particle production in heavy-ion collisions. Namely, the expansion of QCD matter
close to the phase transition, produced in such collisions, is accompanied by the
production of many soft partons, which screen the color charges of the quarks and
gluons present in the medium [12]. Such a scenario may be called “soft statistical
hadronization,” since the produced partons carry low momenta and the hadroniza-
tion pattern is not expected to depend on the phase-space distributions of the original
partons.

The association of inherent entropy to the hadronization process may be sim-
ilar to the “black hole hadronization” picture that associates an event horizon to
the confinement of colored particles [8–10]. Since quantum tunnelling turns out to
be the only allowed means of crossing the event horizon of quarks, one could in
principle relate entropy growth and hadron production to a succession of quantum

7 Assumes the same mass for all fermions and bosons in the theory.



366 T. Braşoveanu et al.

Fig. 7 The mechanism of soft statistical hadronization as an indicator of entropy growth

tunnelling processes that lead to the emission of thermal radiation, which is the QCD
counterpart of the Hawking–Unruh radiation emitted by black holes.

Within this framework, the results of [11] and [58] shown in Fig. 6 point toward
the ζ/s vs. T dependence as a clear indicator of confinement, as seen by the
off-equilibrium thermodynamics. In heavy-ion collisions, this may be manifested
through both a decrease of the average transverse momentum of the resulting parti-
cles and an increase in the total particle multiplicity. Let us also mention an inter-
esting scenario [69] where the growth of bulk viscosity induces an instability in the
hydrodynamical flow of the plasma.

6 Limitations of the Present Approaches and Outlook

In these lectures, we have introduced the two dualities relating QCD and gravity
and discussed applications to the computation of the shear and bulk viscosities of
strongly coupled QCD matter. However, useful and mathematically sound these dual
approaches may seem, there are some serious drawbacks associated with the use of
these methods which we outline below.

In the case of the AdS/CFT correspondence presented in Sect. 4.1, it relates per-
turbative string theory calculations to non-perturbative (strong coupling) calcula-
tions in the four-dimensional N = 4 super Yang–Mills theory, which are otherwise
very difficult to obtain. The ultimate interest is, however, to perform strong coupling
calculations in the real world – in QCD, the theory of the strong interaction. N = 4
super Yang–Mills is quite far from QCD, in particular by being supersymmetric and
conformally invariant. The fact that AdS/CFT is defined for a gauge group SU(Nc)
as a perturbation around Nc = ∞ further complicates matters.

In the case of the second method, one major but hopefully solvable problem
is to include the quarks in the effective action. It may also be useful to formulate
the effective action explicitly as a gravity action in five dimensions and to study
the duality of solutions of the effective dilaton–gluon action on one side and of the
Einstein–Hilbert gravity action on the other. The string-like confining solution of the
effective dilaton–gluon action has been obtained recently in [7] where it was found
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that the formation of the string is accompanied by the emergence of a massless
dilaton mode.

The two approaches outlined in these lectures are at first glance completely dif-
ferent: It is enough to mention that one is essentially guided by conformal invariance
whereas the other is driven by the pattern of conformal invariance breaking. Never-
theless, it is quite likely that once the breaking of scale invariance is introduced
within the AdS/CFT correspondence on one hand (see [70–72, 67] for work in
this direction), and the effective dilaton action is formulated in dual language as
a five-dimensional gravity on the other, the two approaches may appear closer than
it seems at present. In any case, even a remote prospect of finding some day a gravity
dual of QCD certainly justifies giving it a try.
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