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I busied myself, from then on, that is,
from the day of its establishment,
with the task of elucidating a true physical
character for the formula, and this problem
led me automatically to a consideration of the
connection between entropy and probability,
that is, Boltzmann’s trend of ideas;
until after some weeks of the most strenuous
work of my life, light came into the darkness,
and a new undreamed-of perspective
opened up before me.

– Max Planck – Nobel Lecture





Preface

In this book, we develop basic and advanced concepts of plasma thermodynamics
from both classical and statistical points of view. After a refreshment of classical
thermodynamics applied to the dissociation and ionization regimes, the book
introduces the reader, since the very beginning, to discover the role of electronic
excitation in affecting the properties of plasmas, a topic often overlooked by the
thermal (equilibrium) plasma community. This point is usually disregarded in the
existing textbooks of statistical mechanics and thermodynamics mainly devoted to
temperature ranges much lower than those covered in this book.

Concepts, such as translational and internal partition functions of atomic and
molecular species, are introduced and discussed with different degrees of accuracy.
Particular attention is paid to the problem of the divergence of partition function
of atomic species as well as to the state-to-state approach for calculating the
partition function of diatomic and polyatomic molecules, going beyond the well-
known harmonic oscillator and rigid rotor approximations. The limit of the ideal gas
approximation is then discussed by presenting non-ideal effects including Debye-
Hückel and virial corrections. Plasma properties for one and multi-temperature
situations are then discussed presenting in the last chapter tables of thermodynamic
properties of high temperature planetary atmosphere (Earth, Mars, Jupiter) plasmas.

The book is intended as a graduate-level textbook as well as a monograph on
high temperature statistical thermodynamics useful for thermal plasma researchers.
The first four chapters are being used for undergraduate students of Physics and
Chemistry of the University of Bari (Italy).

Bari Mario Capitelli
Gianpiero Colonna
Antonio D’Angola
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Introduction

Plasma technology is an emerging multidisciplinary topics widely studied world-
wide due to its relevance in many applications. The plasma, also called the fourth
state of matter, is a mixture of molecules, atoms, ions and electrons, which can be
described by the laws of classical and statistical mechanics.

Usually, plasma technology distinguishes between thermal and cold plasmas,
the first characterized by the equilibrium between the different degrees of freedom
including the chemical ones, and the second characterized by thermal and chemical
non-equilibrium.

Thermal plasmas are usually characterized by a single temperature determining
the distribution of internal states and the chemical composition through dissociation
and ionization (Saha) equilibria. Boltzmann distributions hold for vibrationally,
rotationally and electronically excited states of heavy particles, while Maxwell
distributions characterize the velocity distribution of free electrons. On the contrary,
thermal plasmas with different temperatures are still accepted in this kind of
literature, the different temperatures being related to the corresponding reservoirs
of energy. The internal distributions are still Boltzmann at a given (different)
temperature. Also in this case chemical equilibrium characterizes the plasma
properties even though caution must be exercised in using it. Typical conditions
for thermal plasmas are temperatures in the range of 5,000–50,000 K, pressure in
the range 10�2–10�3 bar and ionization degree larger than 10�3.

In technological applications, thermal plasmas are considered as high enthalpy
combustion flames, which can be used for cutting, welding, coating spray and
waste removal. Thermal plasmas are also those faced by hypersonic flying objects
(e.g. reentering shuttles or meteorites) impacting Earth or planetary atmospheres.
Thermal plasma conditions are also generated in Laser Induced Breakdown Spec-
troscopy (LIBS) and Inductive Coupled Plasmas (ICP) plasmas, two analytical
tools widely used to determine metal concentrations in complex matrices. For all
these applications, the knowledge of high temperature thermodynamic properties
becomes of paramount importance.
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xvi Introduction

In this book, we develop the basic ideas for plasma thermodynamics trying to
link the new arguments with the concepts that Science and Engineering students
have already learned during physics and chemistry courses. Emphasis will be in
particular given to the role of electronic excitation in affecting the thermodynamic
properties, a topic often overlooked by the thermal plasma community.

Chapter 1 of the book is dedicated to the use of classical thermodynamics
to derive the equations of a reacting mixture by using the equipartition energy
theorem for translational, vibrational and rotational energies, the electronic term
being inserted in parametric form. In this chapter are also presented the corrections
of ideal equations due to real effects, in particular emphasing the classical virial
approach from Van der Waals equation.

Chapter 2 is dedicated to the development of two- or three-level models to
estimate the electronic contribution for atoms and ions under plasma conditions.
These models are based on grouping levels such to reproduce the thermodynamic
behaviour of thousand and thousand electronic excited levels. As an example the
nitrogen atom is reduced to a three-level system composed by the ground state
(4S), a second level which coalesces with appropriate energy and multiplicity the
two low lying excited states 2P and 2D and a third level which accounts for the
huge number of electronically excited states coming from the interaction of the
most important nitrogen core (3P ) with the optical level jumping on the 3s, 3p,
3d, 4s, 4p, 4d, 4f,: : : electronic states. These first two chapters can be used to teach
plasma thermodynamics to graduated students avoiding the massive use of statistical
thermodynamics and quantum mechanics.

Chapter 3 presents statistical thermodynamics of the perfect gas by introducing
the concept of partition function and its linking to the thermodynamic properties of
single species and of mixture. The chapter uses the Boltzmann approach introducing
molecule and system partition function approaches.

Chapter 4 deals with the calculation of the partition function of atomic species
(translational and electronic) and its use in deriving plasma properties considering
atomic hydrogen plasma as a case study. In this chapter, we also introduce the
importance of imposing an upper limit of principal quantum number to avoid the
divergence of partition function, a problem reconsidered in Chap. 8.

Chapters 5 introduces the reader to the partition function of molecular species by
using closed forms and state-to-state approaches for the vibro-rotational partition
functions of several electronic states. Results are presented and discussed to
understand how the standard approach of harmonic oscillator and rigid rotor for
a diatomic species deviates from the state-to-state approach emphasizing the role
of electronic excitation in affecting the partition function and thermodynamic
properties of diatomic molecules. This chapter also introduces the linking between
the symmetry of rotational wavefunctions and nuclear spin discussing the ortho–
para hydrogen case.

Chapter 6 develops Debye–Hückel equations for correcting the thermodynamic
properties of an ideal mixture and for better understanding the problem of the
divergence of partition function. In addition, developments to go beyond the Debye–
Hückel approach are presented and quantified.
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Chapter 7 discusses real gas effects on plasma thermodynamics either applying
the virial approach or by using the Reaction Ensemble Monte Carlo (REMC)
technique. In this chapter, the grand-partition function is introduced which is then
used in the REMC. Problems associated with the calculations of virial coefficients
of atom–atom open shell interactions are also presented.

Chapter 8 is dedicated to the study of the influence of the cutoff of partition
functions on the thermodynamic properties of thermal plasmas. The most used
cutoff criteria derived from Debye–Hückel and confined atom approaches are
introduced. These approaches are rationalized on the basis of results obtained by
solving the Schrödinger equation of atomic hydrogen in a box. Many results for high
temperature-high pressure Oxygen plasmas are presented emphasizing the role of
electronic excitation in affecting the frozen properties of a plasma as well as the total
ones. The effects of electronic excitation on the global thermodynamic properties of
a mixture is hidden, in some cases, by the onset of the reactive contributions due to
the ionization reactions.

Chapter 9 describes plasma thermodynamics for multi-temperature systems
describing the onset of a multitude of Saha equations coming from the maximization
of the total entropy and by minimization of Gibbs potential taking into account
different constraints. Results for hydrogen plasmas, again considered as a case study,
are reported.

Chapter 10 finally discusses the thermodynamic properties of high temperature
planetary atmospheres (Earth, Jupiter, Mars) either in graphical or in tabular form.
The accuracy of the used data is discussed in the case of the air plasma by comparing
with results existing in literature.

An useful appendix is dedicated to the calculation of energy levels and degenera-
cies of complex atoms/ions as well as of diatomic molecules.





Chapter 1
Classical Thermodynamics

In this chapter, we will discuss the equations describing the equilibrium composition
of a system based on classical thermodynamics, limiting our presentation to the
essential ingredients of the theory. The axiomatic approach (Callen 1985) will be
used, leaving an alternative derivation in Chap. 3 in the framework of statistical
thermodynamics.

We will introduce basic expressions for the thermodynamic functions, focusing
on the enthalpy and the specific heats, of reacting ideal mixtures, describing
dissociation and ionization regimes. In doing so, we will make use of the equipar-
tition theorem for translational, rotational and vibrational degrees of freedom of
molecules. The contribution of electronic energy, for both atoms and molecules,
will be introduced parametrically. This last term, which is the heart of this book,
will be widely discussed in Chaps. 2, 4, 5 and 8.

The axiomatic approach will be used also to estimate the correction to thermo-
dynamic functions for a non-ideal gas starting from the Van der Waals equation, in
the framework of virial expansion (Hirschfelder et al. 1966).

1.1 Equilibrium Thermodynamics

We start from the first and second laws of classical thermodynamics written in
differential form (Callen 1985; Capitelli et al. 2010)

dU Dd̄Q � d̄L (1.1)

dS � d̄Q

T
; (1.2)

where U denotes the internal energy, Q and L the heat and the work exchanged
between the system and the environment, S the system entropy and T the absolute

M. Capitelli et al., Fundamental Aspects of Plasma Chemical Physics: Thermodynamics,
Springer Series on Atomic, Optical, and Plasma Physics 66,
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2 1 Classical Thermodynamics

temperature. The differentials of Q and L are written using the symbol d̄ to
mean that they depend on the path of the transformation, i.e. they are not exact
differentials.

The mechanical work in term of the pressure P and the volume V is given by the
equation

d̄L D PdV: (1.3)

The Clausius inequality in the entropy equation assesses that the heat exchanged
reversibly (T dS ) is larger than the heat exchanged irreversibly. Combining
(1.1)–(1.3), we get

dU � T dS � PdV (1.4)

dS � dU

T
� PdV

T
; (1.5)

where the equality is valid for reversible transformations. The equilibrium is then
obtained under the following conditions

.dU /V;S D 0 (1.6)

for constant volume and entropy and

.dS/V;U D 0 (1.7)

for constant volume and energy.
More familiar equilibrium conditions can be obtained by introducing the

Helmholtz (A) and Gibbs (G) potentials defined as

A D U � TS (1.8)

G D A C PV D H � TS; (1.9)

where the new state function H , the enthalpy, is defined as

H D U C PV: (1.10)

Differentiating (1.8), (1.9) and making use of (1.4), (1.5) we obtain

dA � �SdT � PdV (1.11)

dG � VdP � SdT (1.12)

which give the well-known equilibrium conditions for constant (V ,T ) or (P ,T )
constraints

.dA/V;T D 0 (1.13)

.dG/P;T D 0: (1.14)

Equilibrium conditions previously discussed apply to every thermodynamic
system.
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They, however, assume a different form for multi-component systems. In this
case the Gibbs potential is commonly used to describe the equilibrium1. From
(1.12), we can deduce that the Gibbs potential can be written in implicit form as

G D G.P; T / (1.15)

for a system with a constant number of particles. In the more general case of a
system with a variable particle number, the Gibbs potential, which is an extensive
quantity, can be written as

G D G.P; T; n/ (1.16)

where n is the number of moles in the system. Differentiating (1.16) we get

dG D
 

@G

@T

!
P;n

dT C
 

@G

@P

!
T;n

dP C
 

@G

@n

!
P;T

dn (1.17)

and comparing (1.12) with (1.17)

 
@G

@T

!
P;n

D �S (1.18)

 
@G

@P

!
T;n

D V: (1.19)

We introduce the chemical potential �, defined as

� D
 

@G

@n

!
P;T

(1.20)

and then (1.17) can be written as

dG D �SdT C VdP C �dn: (1.21)

Equation (1.21) can be generalized to a multi-component mixture: in this case, the
Gibbs potential is a function of the number of moles ni of each species

G D G.P; T; n1; n2; n3; : : :/ (1.22)

1See (Capitelli and Giordano 2002; Capitelli et al. 2005b) where the equivalence of the use of
different potentials for describing chemical equilibrium is discussed.
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and in differential form becomes

dG D �SdT C VdP C
NX

iD1

�i dni (1.23)

being N the number of species. The chemical potentials �i are defined as

�i D
 

@G

@ni

!
P;T;nj ¤i

: (1.24)

The equilibrium condition for a reacting mixture at constant P ,T is obtained
combining (1.14), (1.23), giving

NX
iD1

�i dni D 0: (1.25)

Let us consider a generic reaction written as

NX
iD1

�iXi D 0; (1.26)

where Xi ’s are all the species in the reaction and �i ’s are the stoichiometric
coefficients (positive for the products, negative for reactants). It is possible to define
the advancement degree, d�, of the reaction as

d� D dni

�i

(1.27)

independent of the species involved in the reaction2. Using this new quantity, (1.25)
can be rewritten as

NX
iD1

�i �id� D d�

NX
iD1

�i �i D 0 )
NX

iD1

�i �i D 0 (1.28)

which is the form commonly used to determine the equilibrium of a reaction.
To go on we introduce the chemical potential of the components of an ideal gas3

�i .T; Pi/ D �0
i .T; P 0/ C RT ln Pi ; (1.29)

2This property is a direct consequence of the mass conservation law.
3The following results will be closely examined in Chap. 3.
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where �0
i is the chemical potential of the i -th species under standard conditions,

P 0 is the standard pressure and Pi is the partial pressure of the i -th species. For
the generic reaction in (1.26) in gas phase, we can define the variation of standard
chemical potential as

��0 D
NX

iD1

�i�
0
i (1.30)

and by means of the equilibrium condition given in (1.28) we have

NX
iD1

�i �i D
NX

iD1

�i�
0
i C

NX
iD1

�iRT ln Pi D ��0 C RT ln
NY

iD1

P
�i
i D 0: (1.31)

We introduce now the equilibrium constant Kp defined as

Kp D
NY

iD1

P
�i
i ; (1.32)

which can be also written as

Kp D exp

�
���0

RT

�
(1.33)

being

��0 D � NH 0 � T� NS0; (1.34)

where � NH 0 and � NS0, respectively, represent the molar reaction enthalpy and
entropy under standard conditions i.e. P0 D 105 Pa (Pauling 1988). Differentiation
of (1.33) with respect to temperature yields the Van’t Hoff equation

dln Keq

dT
� � NH 0

RT2
(1.35)

under the assumption of � NH 0 and � NS0 independent of temperature.

1.2 Dissociation Equilibrium

Let us start with the dissociation process i.e. the simple chemical equation

A2 • 2A (1.36)

We can write the equilibrium condition as

�A2 D 2�A; (1.37)
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which yields

Kd
p D P 2

A

PA2

D exp

 
���0

d

RT

!
(1.38)

being in this case

��0
d D 2�0

A � �0
A2

: (1.39)

The equilibrium condition can be also expressed through the dissociation degree ˛d

˛d D nd

n0

(1.40)

i.e. the ratio of dissociated molecules4 (nd ) and the initial number of molecules (n0).
The moles and the molar fractions (�) of the two species at the equilibrium can be
expressed as

nA2 D n0.1 � ˛d / �A2 D 1 � ˛d

1 C ˛d

nA D 2˛d n0 �A D 2˛d

1 C ˛d

: (1.41)

From (1.38) and (1.41), the equilibrium constant can be expressed through ˛d and
the total pressure P as

Kd
p D P

4˛2
d

1 � ˛2
d

: (1.42)

Now we have all the ingredients to understand the dependence of the dissociation
degree ˛d on pressure and temperature (see Figs. 1.1 and 1.2), we can directly use
(1.42) in the form

˛d D
vuut Kd

p

4P C Kd
p

: (1.43)

From (1.43) it is possible to determine the two important limiting values of ˛d as
a function of P at constant temperature

P ! 0 ) ˛d ! 1

P ! 1 ) ˛d ! 0: (1.44)

The dissociation degree ˛d has a decreasing monotonic behavior with the pressure
at constant temperature (see Fig. 1.1), reaching the limiting value of 1 for P ! 0,
independently of the temperature.

4 It must be noted that in this example the advancement degree defined in (1.27) is related to the
dissociation degree by the simple relation ˛d D �

n0
.
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Fig. 1.1 Dependence of H2

dissociation degree ˛d on the
gas pressure P for different
values of the temperature

Fig. 1.2 Dependence of H2

dissociation degree ˛d on the
gas temperature T for
different values of the
pressure

Let us now examine the behaviour of ˛d as a function of T at constant pressure.
We can still use (1.43); at low temperature we can assume that 4P � Kd

p so that
(1.43) becomes

˛d �
s

Kd
p

4P
(1.45)



8 1 Classical Thermodynamics

We can consider Kp depending only on the temperature5 (see (1.33))

Kd
p D exp

 
� NS0

d

R

!
exp

 
�� NH 0

d

RT

!
: (1.46)

As first approximation the standard entropy variation does not depend on temper-
ature as well as the standard enthalpy that can be approximated by6 � NH 0 � D,
being D the dissociation energy. Therefore, we get the following expression for the
equilibrium constant

Kd
p .T / � A � exp

�
� D

RT

�
(1.47)

being A D exp
�
� NS0

d =R
�
. Substituting in (1.45), we have

˛d D
s

A

4P
exp

�
� D

RT

�
D
r

A

4P
exp

�
� D

2RT

�
(1.48)

This equation shows that ˛d increases exponentially with T (remember that D > 0)
starting from ˛d D 0 for T D 0 K (Kd

p .0/ D 0). At very high temperature,
we can assume that 4P � Kd

p and neglecting 4P in (1.43) we have ˛d D 1,
independently of the temperature. In the intermediate temperature range, ˛d will
present an inflection point (see Fig. 1.2). In the whole, the dissociation degree
follows a sigmoid curve ranging from zero to one as the temperature increases. As
a consequence of the previous discussion, we can deduce the following statement:

The dissociation degree increases with increasing gas temperature at constant
pressure and decreases with increasing the pressure at constant temperature.
This result satisfies the well known Le Chatelier principle.

1.3 Ionization Equilibrium

Another interesting example is the ionization process

A • AC C e� (1.49)

5This assumption is valid only for ideal gases.
6This assumption, which will be eliminated in the next chapters, disregards the internal structure of
atoms and molecules as well as differences in the translational energies of products and reactants.
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which equilibrium condition can be written as (see (1.28))

�AC C �e� D �A (1.50)

We can define the ionization equilibrium constant as

Ki
p D PACPe�

PA

D exp

 
���0

i

RT

!
(1.51)

where

��0
i D �0

AC C �0
e� � �0

A D � NH 0
i � T� NS0

i (1.52)

being � NH 0
i and � NS0

i respectively, the enthalpy and entropy variation in the
ionization process and PAC , Pe� , PA represent in the order the partial pressures
of ions, electrons and atoms. This equation can be easily expressed through the
ionization degree as7

˛i D ni

n0

(1.53)

defined as the ratio of the moles of ionized atoms (ni ) and the initial atom moles
(n0). According to this definition, considering that the total number of moles is
n D nA C nAC C ne� D n0.1 C ˛i /, the moles and the molar fractions of the three
species at the equilibrium can be expressed as

nA D n0.1 � ˛i / �A D 1 � ˛i

1 C ˛i

nAC D ˛i n0 �AC D ˛i

1 C ˛i

ne� D ˛i n0 �e� D ˛i

1 C ˛i

(1.54)

From (1.51) and (1.54), the equilibrium constant can be expressed through ˛i and
the total pressure P as

Ki
p D P

˛2
i

1 � ˛2
i

; (1.55)

which is similar to the corresponding one (1.42) obtained for the dissociation.
The dependence of ˛i on pressure can be written as

˛i D
vuut Ki

p

P C Ki
p

; (1.56)

7 As for the dissociation (see note 4), the advancement degree defined in (1.27) is related to the
ionization degree by the simple relation ˛i D �

n0
.
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Fig. 1.3 Dependence of
atomic hydrogen ionization
degree ˛i on the gas pressure
P for different values of the
temperature

which differs from the corresponding expression for dissociation (1.43) by a factor
4 in the pressure term. As a consequence, the same limiting values reported in (1.44)
for dissociation degree are valid for the ionization degree. The dependence of the
ionization degree on pressure follows the same trend discussed for the dissociation
process.

Following the same arguments used for the dissociation process (see (1.48)), we
can consider � NH 0

i � I , being I the ionization energy8 we can write

˛i D
vuutAP exp

 
� I

RT

!
D
r

A

P
exp

 
� I

2RT

!
; (1.57)

where A D exp
�
�S0

i =R
�
:

The dependence of the ionization degree on pressure and temperature is re-
ported in Figs. 1.3 and 1.4: the results are very similar to those obtained for the
dissociation case (Figs. 1.1 and 1.2), but shifted to higher values of temperature,
because I > D.

8As for the case of dissociation, the assumption � NH 0 � I disregards the internal structure of
atoms as well as differences in the translational energies of products and reactants. Debye–Hückel
corrections, which introduces the lowering of ionization potential are also disregarded in (1.57).
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Fig. 1.4 Dependence of
atomic hydrogen ionization
degree ˛i on the gas
temperature T for different
values of the pressure

1.4 Dissociation and Ionization Equilibria: Coupled Solution

We have presented the dissociation and the ionization equilibrium as independent
events. This is indeed an approximation since an overlapping temperature range in
which the two reactions are mutually influenced does exist. In general, in a real
system, many reactions act at the same time. As a consequence, all the equilibria
must be considered simultaneously, writing a number of equations equal to the
number of unknowns. In the case of a simple dissociating-ionizing system we have
four unknowns (PA2 , PA, PAC , Pe� ), linked by: (a) two equilibrium equations, (b)
the conditions of constant total pressure and (c) the charge conservation i.e.

8̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂:

Kd
p D P 2

A

PA2

Ki
p D PACPe�

PA

P D PA2 C PA C PAC C Pe�

PAC D Pe�

(1.58)
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Fig. 1.5 Dependence of
molar fractions � on the gas
temperature for P D 1 bar

which form a non-linear system9. We can write all the pressures as a function of the
partial pressure of electrons

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂:

PAC D Pe�

PA D P 2
e�

Ki
p

PA2 D P 4
e�

.Ki
p/2Kd

p

P D P 4
e�

.Ki
p/2Kd

p

C P 2
e�

Ki
p

C 2Pe�

(1.59)

which reduces to the solution of a single non-linear equation in Pe , while the
partial pressure of other species can be determined easily by the other rela-
tions. In Figs. 1.5 and 1.6, we have reported the molar fractions (�i D Pi

P
) of the

species as a function of the temperature for P D 1 bar and P D 100 bar for an
hydrogen plasma composed by H2, H , H C and e�. It can be observed that at

9In general, the system of equilibrium equations is very complex and require computer programs
to be solved.
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Fig. 1.6 Dependence of
molar fractions � on the gas
temperature for P D 100 bar

low pressure dissociation and ionization can be considered to a good approxi-
mation as independent events, this condition being not satisfied at high pressure
(see Fig. 1.6).

1.5 Ideal Gas Thermodynamics

In the previous sections, we have shown how to calculate the equilibrium com-
position of a system in the dissociation and ionization regimes. The compositions
enter in the thermodynamics of a reacting system modulating the properties of a
single species. In this section, we will use concepts of classical thermodynamics10

to characterize the properties of the reacting mixture considered as an ideal gas, i.e.
subjected to the following state equation

PV D nRT; (1.60)

where R is the ideal gas constant and n the total number of moles.
An ideal gas is a system formed by classical11 particles which interact between

themselves only through collisions and which dimension is negligible with respect
to the system volume. In few words, an ideal gas is a system formed by point

10Many of the quantities defined in this section will be recalculated in the Chap. 3 in the framework
of statistical thermodynamics.
11Following the Boltzmann statistical distribution.
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particles with null interaction potential. As a consequence, the energy of the system
is the sum of the energy of each particle. This property is reflected to all the extensive
thermodynamic functions. In the following, we will focus on two quantities, the
enthalpy and the specific heat.

1.5.1 Ideal Gas Mixture Enthalpy

For an ideal gas, the enthalpy of a mixture with N species is simply the sum of the
enthalpies of its components

H D
NX

iD1

ni
NHi ; (1.61)

where NHi is the molar enthalpy of the i -th species, that depends only on the
temperature12, and ni the number of moles of the i -th species. The summation rule
in (1.61) is valid for all the extensive thermodynamic functions of an ideal gas, such
as U, S, G, A.

Starting from (1.61) we can define the molar enthalpy of the system, an intensive
quantity, as

NH D H

n
D

NX
iD1

ni

n
NHi D

NX
iD1

�i
NHi (1.62)

being �i the molar fraction of the i -th species.
To calculate the enthalpy per unit mass h, we have to divide the total enthalpy by

the mass of the mixture13

M D
NX

iD1

ni Mi; (1.63)

where Mi is the molar mass of the i -th species. Defining the mean molar mass as

NM D M

n
D

NX
iD1

ni

n
Mi D

NX
iD1

�i Mi (1.64)

we have

h D H

M
D 1

M

NX
iD1

ni
NHi D n

M

NX
iD1

ni

n
NHi D

NH

NM
(1.65)

12 This assumption is true only for an ideal gas, failing however when real effects are important.
13 It must be noted that the total mass of a reacting mixture is constant. This property can be
demonstrated in general considering that the atomic constituents of the mixtures are rearranged
during the chemical processes, remaining however in the system. A demonstration for the
dissociation process is given in note 19.
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Let us now introduce the single species enthalpy per unit mass as

hi D
NHi

Mi

(1.66)

and the mass fraction of a given species as

ci D ni Mi

M
D �i Mi

NM
: (1.67)

We can rearrange (1.66) multiplying and dividing by Mi obtaining

h D
NX

iD1

ni

Mi

M

NHi

Mi

D
NX

iD1

ci hi : (1.68)

The properties described above are of general validity: the parallelism between
(1.62), (1.68) can be extended to all the thermodynamic functions. Moreover to
convert any molar quantity in mass unit is sufficient to divide by the mean molar
mass as in (1.65).

1.5.2 Ideal Gas Mixture Heat Capacity

It is possible to define for a system the heat capacity as

C D @Q

@T
(1.69)

i.e. the quantity of heat necessary to increase the temperature of the system of one
degree. This quantity depends on the path of the transformation, and usually it is
defined for reversible transformations under constant volume or constant pressure
constraints. It must be noted that in these cases, the heat exchanged is related to the
variation of the relevant state functions, as

d̄Q D
�

dH at constant P

dU at constant V
(1.70)

giving

Cp D
 

@Q

@T

!
P

D
 

@H

@T

!
P

(1.71)

and the constant volume heat capacity

Cv D
 

@Q

@T

!
V

D
 

@U

@T

!
V

: (1.72)
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Using the definitions in (1.61), (1.71), the heat capacity of an ideal gas mixture
can be explicitly written as

Cp D
NX

iD1

ni

 
@ NHi

@T

!
P

C
NX

iD1

NHi

 
@ni

@T

!
P

D Cpf C Cpr (1.73)

the first term

Cpf D
NX

iD1

ni

d NHi

dT
D

NX
iD1

ni
NCpi (1.74)

is the so-called frozen heat capacity, where

NCpi D
 

@ NHi

@T

!
P

(1.75)

is the specific heat of the i -th species. The second term in (1.73) is called reactive
heat capacity

Cpr D
NX

iD1

NHi

 
@ni

@T

!
P

(1.76)

To calculate the molar specific heat from the heat capacity, it is not sufficient
to divide the heat capacity by the molar fraction. In fact the molar specific heat at
constant pressure is given by

NCp D
 

@ NH

@T

!
P

D Cp

n
� 1

n

 
@n

@T

!
P

NH ¤ Cp

n
: (1.77)

On the other hand, (1.65) can be extended to the heat capacity per unit mass, i.e. the
specific heat is given by

cp D
 

@h

@T

!
P

D Cp

M
�
��������������

1

M

 
@M

@T

!
P

h D Cp

M
(1.78)

because the total mass of the mixture, M , is constant.

1.6 Single Species Enthalpy

In this section, we will give an estimation of the single species enthalpy and
specific heat. In general, the single species molar enthalpy, as well as the other
thermodynamic functions, can be obtained as the sum of the translational (tr),
internal (int) and formation (f ) contributions

NHi D NH tr
i C NH int

i C NH
f
i : (1.79)
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The molar energy is given by

NUi D NHi � RT: (1.80)

For an ideal gas, the translational molar enthalpy does not depend on the considered
species and is given by

NH tr
i D 5

2
RT; (1.81)

while the corresponding translational energy can be written as

NU tr
i D NH tr

i � RT D 3

2
RT: (1.82)

The internal enthalpy depends on the species and in general is a function of the
temperature only14. On the other hand, NH

f
i , a characteristic of each species, is a

constant15.
The internal energy depends on the internal structure of the species considered,

i.e. on the energy levels. For molecular species, a simple approach can be used,
separating the different contributions coming from electronic (el), vibrational (vib)
and rotational (rot) excitation

NH int D NU int D NH el C NH rot C NH vib: (1.83)

For atoms only the electronic contribution must be considered. An incorrect
approach, often used in the literature, is to neglect NH el, even if its contribution can
be relevant, especially at high temperature. In this chapter, the electronic enthalpy
will be considered as a parameter. The rotational and vibrational contributions can
be estimated using the equipartition theorem.

1.6.1 Equipartition Theorem

Following the classical approach of statistical thermodynamics, the energy of
a diatomic molecule can be obtained by the number of degrees of freedom
characterizing the motion of the molecule considered as a two-point system. Each
point is characterized by three cartesian coordinates so that the diatom will be
characterized by six cartesian coordinates. The motion of the six-coordinate system
can be transformed in three-translational, two-rotational and one-vibrational degrees

14 See note 12.
15 The value of the formation enthalpy depends on which species are considered as reference for
energy.
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of freedom. The equipartition theorem16 assigns to each degree of freedom an
energy of 1

2
RT. Applying the equipartition theorem to diatomic molecules, we

have17

NU D NU tr C NU rot C NU vib C NU el D 3

2
RT C RT C RT C NU el D 7

2
RT C NU el (1.84)

and the enthalpy is given by

NH D NU C RT D 7

2
RT C NH el C RT D 9

2
RT C NH el; (1.85)

where NU el D NH el is the contribution of electronically excited states.
Considering the hypothesis in (1.83), the internal specific heat can be considered

the sum of different contributions

NCp D NC rot
p C NC vib

p C NC el
p D 9

2
R C NC el

p ; (1.86)

where

NC el
p D d NH el

dT
(1.87)

The equipartition theorem can be also applied to polyatomic molecules. In gen-
eral, we must add 1

2
RT for each rotational axis and RT for each vibrational mode.

In particular, for linear molecule we have two rotational axes and 3Natoms � 5

vibrational modes, while for non-linear molecules there are three rotational axes
and 3Natoms � 6 vibrational modes18, where Natoms is the number of atoms in the
molecule, giving

NH D
�

3Na � 3

2

�
RT

NC D
�

3Na � 3

2

�
R (1.88)

16The energy equipartition considers two conditions: each degree of freedom is independent from
the others, the temperature is sufficiently high that the quantum behavior of internal levels is
negligible. The use of the energy equipartition theorem, while correctly describing translational
and rotational degrees of freedom, strongly overestimates the contribution of vibrational energy at
low temperature, as discussed in Chap. 5.
17It should be noted that the vibrational degree of freedom gives to enthalpy a term RT due to
kinetic and potential energy contribution.
18In general, the number of vibrational mode is given by 3Natoms � r � 3 being r the number of
rotational axis.
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for linear molecules, valid also for diatomic molecules, and

NH D .3Na � 2/RT

NCp D .3Na � 2/R (1.89)

for non-linear molecules, neglecting the electronic contribution to enthalpy.

1.7 Mixture Thermodynamics at Constant Pressure

1.7.1 Dissociation

Let us consider again the dissociation reaction in (1.36), starting with a gas
containing n0 moles of A2 molecules. The equilibrium composition is given in
(1.41), being the dissociation degree ˛d as in (1.43). Making use of the equipartition
theorem, the molar enthalpy of atoms and molecules is given by

NHA2 D 9

2
RT C NH el

A2

NHA D 5

2
RT C NH el

A2
C D

2
; (1.90)

where the enthalpy of molecules includes the contribution of translational, rota-
tional, vibrational and electronic degrees of freedom. Atoms, on the other hand,
include translational and electronic contributions plus the formation enthalpy ( D

2
).

The total enthalpy is then written as

H D n0.1 � ˛d /

 
9

2
RT C NH el

A2

!
C 2n0˛d

 
5

2
RT C D

2
C NH el

A

!

D n0

" 
9

2
RT C NH el

A2

!
C ˛d

 
1

2
RT C D C 2 NH el

A � NH el
A2

!#
: (1.91)

The enthalpy per unit mass (see (1.65), (1.68)) is obtained simply dividing both
members of the equation by the total mass19 M D n0MA2 (which is constant)

h D 1

MA2

" 
9

2
RT C NH el

A2

!
C ˛d

 
1

2
RT C D C 2 NH el

A � NH el
A2

!#
: (1.92)

19 The total mass as a function of the dissociation degree is given by
M.˛d / D n0.1 � ˛d /MA2 C 2˛d n0MA.
Considering that
MA D MA2=2

we have
M.˛d / D n0.1 � ˛d C 2˛d =2/MA2 D n0MA2 .
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To obtain the specific heat at constant pressure, we can calculate the derivative
of (1.92) with respect to the temperature. Considering the frozen and reactive
contributions to the specific heat as given in (1.71) for the dissociation we have

cpf D 1

2MA2

"
R

2
.9 C ˛d / C .1 � ˛d / NC el

A2
C 2˛d

NC el
A

#

cpr D 1

MA2

 
1

2
RT C D C 2 NH el

A � NH el
A2

! 
@˛d

@T

!
P

: (1.93)

To calculate

�
@˛d

@T

�
P

, we start determining the logarithm of the equilibrium

constant as given in (1.42)

ln Kd
p D 2 ln ˛d � ln .1 � ˛2

d / C ln .4P /

and differentiating at constant pressure

dln Kd
p

dT
D 2

 
@ ln ˛d

@T

!
P

�
 

@ ln .1 � ˛2
d /

@T

!
P

C
��������������

 
@ ln .4P /

@T

!
P

D

D
 

2

˛d

C 2˛d

1 � ˛2
d

! 
@˛d

@T

!
P

from which we get  
@˛d

@T

!
P

D ˛d .1 � ˛2
d /

2

dln Kd
p

dT
(1.94)

Using the Van’t Hoff equation (see (1.35)), we have the approximate relation

 
@˛d

@T

!
P

� ˛d .1 � ˛2
d /

2

� NH 0
d

RT2
(1.95)

The molar enthalpy of the dissociation is given by

� NH 0
d D 1

2
RT C D C 2 NH el

A � NH el
A2

(1.96)

and combining (1.93)–(1.96) we have

cpr � R

MA2

� NH 0
d

˛d .1 � ˛2
d /

2

� NH 0
d

.RT/2
D R

2MA2

˛d .1 � ˛2
d /

 
� NH 0

d

RT

!2

(1.97)
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1.7.2 Ionization

Let us consider the ionization reaction as written in (1.49). In this section, we
are considering the atomic species A coming from the dissociation of a diatomic
molecule A2, which means that we are considering the energy bias of D

2
for

both atomic and ionic species. Considering initially n0 moles of atoms, the gas
composition can be expressed as a function of the ionization degree ˛i (see (1.53)),
giving the composition reported in (1.54). Considering electronic contribution to
atomic and ionic enthalpies, we have

NHA D 5

2
RT C NH el

A C D

2

NHAC D 5

2
RT C NH el

AC C D

2
C I

NHe� D 5

2
RT: (1.98)

The total enthalpy of the system is then given by

H D n0.1 � ˛i / NHA C n0˛i
NHAC C n0˛i

NHe�

D n0

"
.1 C ˛i /

5

2
RT C .1 � ˛i / NH el

A C ˛i
NH el

AC C D C ˛i I

#
: (1.99)

The enthalpy per unit mass (see (1.65)) is obtained simply dividing both members
of the equation by the total mass M D n0MA

h D 1

MA

"
5

2
RT C NH el

A C D C ˛i

 
5

2
RT � NH el

A C NH el
AC C I

!#
: (1.100)

To obtain the specific heat at constant pressure, we can calculate the derivative of
(1.100) with respect to the temperature. Following the same arguments previously
used for the dissociation, we can write

cpf D 1

MA

�
5

2
R.1 C ˛i / C .1 � ˛i / NC el

p;A C ˛i
NC el
p;AC

�

cpr D 1

MA

�
5

2
RT � NH el

A C NH el
AC C I

� 
@˛i

@T

!
P

(1.101)

in turn one can get  
@˛i

@T

!
P

D ˛i .1 � ˛2
i /

2

� NH 0
i

RT2
; (1.102)
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where the molar enthalpy of the ionization process is given by

� NH 0
i D 5

2
RT � H el

A C H el
AC C I (1.103)

and, combining (1.101)–(1.103), we have

cpr � 1

MA

� NH 0
i

˛d .1 � ˛2
i /

2

� NH 0
i

.RT/2
D R

2MA

˛i .1 � ˛2
i /

 
� NH 0

i

RT

!2

(1.104)

that is the same result as the dissociation (compare with (1.97)) changing the index
d with i .

To qualitatively understand the role of electronic excitation, on cpf and cpr we
should take into account that usually the excitation of an ion occurs in a temperature
range much higher than the corresponding one of the parent atom. We can therefore
write (1.101) and (1.103)

cpf D 1

MA

�
5

2
R.1 C ˛i / C .1 � ˛i / NC el

p;A

�

cpr D 1

MA

�
5

2
RT � NH el

A C I

� 
@˛i

@T

!
P

� NH 0
i D 5

2
RT � H el

A C I: (1.105)

These equations are exact for atomic hydrogen plasmas, due to the lack of
electronic states in HC.

Inspection of the simplified (1.105) shows that the electronic contribution is a
positive term in the frozen specific heat and a negative one, through � NH 0

i , in
the reactive term. As a consequence, a sort of compensation is to be expected
for the total specific heat.

1.8 Mixture Thermodynamics at Constant Volume

In the previous section, we have considered a system working under constant pres-
sure conditions. In this case, the thermodynamic potential that better characterize
the system is the enthalpy20 (see (1.71)). In this section, we will describe how to

20This choice is done only on the basis of simplicity of the equations. Under global equilibrium,
all the potentials are equivalent.
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express the quantities under constant volume conditions, referring to the energy U

(see (1.70), (1.72)).
For an ideal gas, enthalpy and energy are related by the simple equation

U D H � nRT (1.106)

obtained by substituting the ideal gas state law (1.60) in the general definition of the
enthalpy (1.10).

As a consequence, the energy of an ideal gas mixture is given by

U D
NX

iD1

ni
NUi D

NX
iD1

ni
NHi � nRT D

NX
iD1

ni
NHi �

NX
iD1

ni RT D
NX

iD1

ni . NHi � RT/

(1.107)

for analogy with (1.61), and equating the arguments in the first and last summation,
considering the properties in (1.79), (1.81), the single species molar energy is
given by

NUi D NU tr
i C NU int

i C NU f
i D 5

2
RT C NH int

i C NH
f
i � RT: (1.108)

The last term RT can be grouped to any of the other terms, but clearly the more
convenient choice is the translational part, giving

8̂̂̂
<
ˆ̂̂:

NU tr
i D NH tr

i � RT D 3

2
RT

NU int
i D NH int

i

NU f
i D NH

f
i :

(1.109)

Only the translational contribution is affected by (1.106), while the internal
enthalpy and energy are exactly the same.

We can define the reaction molar energy � NU 0 that can be related to the molar
reaction enthalpy (referring to the generic reaction in (1.26)) by the equation

� NU 0 D
NX

iD1

�i
NU 0
i D

NX
iD1

�i . NH 0
i � RT/�i D � NH 0 � RT

NX
iD1

�i : (1.110)

It is possible to extend the previous approach to the constant volume heat capacity
(1.72) for an ideal gas mixture

Cv D
NX

iD1

ni

 
@ NUi

@T

!
V

C
NX

iD1

NUi

 
@ni

@T

!
V
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Cvf D
NX

iD1

ni

d NUi

dT

Cvr D
NX

iD1

NUi

 
@ni

@T

!
V

(1.111)

and for analogy with (1.74)–(1.75) we can write

Cvf D
NX

iD1

ni
NCvi

NCvi D NC tr
vi C NC int

vi D 3

2
R C d NU int

i

dT
(1.112)

Being NU int
i D NH int

i it follows that NC int
vi D NC int

pi . From now on, we will eliminate

the specification v and p for the internal part and we will use the symbol NC int
i

for the internal contribution to the heat capacity.

Considering the dissociation process, the internal energy of the mixture at
equilibrium is

U D H � .1 C ˛d /RT D
 

7

2
RT C NH el

A2

!
C ˛d

 
D C 2 NH el

A � NH el
A2

� 1

2
RT

!

from which we recognize easily

� NU 0
d D � NH 0

d � RT D D C 2 NH el
A � NH el

A2
� 1

2
RT:

The frozen specific heat is given by

Cvf D
 

@U

@T

!
V;˛d

D R

2
.7 � ˛d / C .1 � ˛d / NC el

A2
C 2˛d

NC el
A ; (1.113)

while the reactive specific heat is given by

Cvr D
 

@U

@˛d

!
V;T

 
@˛d

@T

!
V

(1.114)
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where the first factor is � NU 0
d and the second one must be calculated as in Sect. 1.7.1

considering that PV D nRT D .1 C ˛d /RT and calculating the logarithm of (1.42)

ln Kd
p D 2 ln ˛d � ln .1 � ˛2

d / C ln .4R=V / C ln .T / C ln .1 C ˛d /:

The derivative at constant V (ln .4R=V / is constant) can be written as

dln Kd
p

dT
D 2

 
@ ln ˛d

@T

!
V

�
 

@ ln .1 � ˛2
d /

@T

!
V

C
 

@ ln T

@T

!
V

C
 

@ ln .1 C ˛d /

@T

!
V

D
 

2

˛d

C 2˛d

1 � ˛2
d

C 1

1 C ˛d

! 
@˛d

@T

!
V

C 1

T

D 2 � ˛d

˛d .1 � ˛d /

 
@˛d

@T

!
V

C 1

T
� � NH 0

d

RT2

Therefore, 
@˛d

@T

!
V

� ˛d .1 � ˛d /

2 � ˛d

 
� NH 0

d

RT2
� 1

T

!
D ˛d .1 � ˛d /

.2 � ˛d /RT2
.� NH 0

d � RT/

giving as final result  
@˛d

@T

!
V

� ˛d .1 � ˛d /

.2 � ˛d /RT2
� NU 0

d (1.115)

and for the reactive heat capacity

Cvr D � NU 0
d

˛d .1 � ˛d /

.2 � ˛d /RT2
� NU 0

d D R˛d .1 � ˛d /

.2 � ˛d /

 
� NU 0

d

RT

!2

: (1.116)

The frozen and reactive specific heat for dissociation are given by

cvf D 1

MA2

"
R

2
.7 C ˛d / C .1 � ˛d / NC el

A2
C 2˛d

NC el
A

#

cvr D 1

MA2

2
4R

˛d .1 � ˛d /

.2 � ˛d /

 
� NU 0

d

RT

!2
3
5 (1.117)
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and for ionization, following the same procedure as for dissociation, we have

cvf D 1

MA

"
3R

2
.1 C ˛i / C .1 � ˛i / NC el

A C ˛i
NC el
AC

#

cvr D 1

MA

2
4R

˛i .1 � ˛i /

.2 � ˛i /

 
� NU 0

i

RT

!2
3
5 (1.118)

1.9 The Isentropic Coefficient

An important quantity, often used in fluid dynamics, is the isentropic coefficient � .
It enters in the equation of the sound speed (Anderson 2000)

csound D
r

�RT
NM

(1.119)

and in the stationary shock tube or quasi-1D nozzle expansion relations (Anderson
2000), following from adiabatic transformations for an ideal gas. The isentropic
coefficient is defined as

� D
 

@ ln P

@ ln �

!
S

(1.120)

being � the mass density. Equation (1.120) can be written as (Burm 2005; Burm
et al. 1999; Henderson and Menart 2008)

� D Cp

Cv

�

P

 
@P

@�

!
T

D cp

cv

�

P

 
@P

@�

!
T

: (1.121)

We can write the isentropic coefficient as the product of two factors (� D �eqz� )

�eq D cp

cv
(1.122)

and21

z� D �

P

 
@P

@�

!
T

: (1.123)

21For an ideal, non-reacting gas, it is z� D �

P

	
@P
@�



T

D 1. In any case, it is / 1, therefore often the

isentropic coefficient is written as � D cp

cv
(Anderson 2000).
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In some cases, it is very common to refer to the frozen isentropic coefficient22

defined as

�f D Cpf

Cvf
D cpf

cvf
(1.124)

In this section, we will consider the equations describing frozen and total
isentropic coefficients for the dissociation and ionization reactions considered as
independent reactions. The discussion of the relevant equations will allow us
to understand theoretical results when dissociation and ionization reaction are
considered contemporarily.

Let us evaluate the factor z� for the diatom dissociation (Sects. 1.2,1.7.1) and for
the atomic ionization (Sects. 1.3,1.7.2). For the dissociation process, starting from
one mole of molecules, the pressure as a function of the dissociation degree and
temperature can be written as

P D .1 C ˛d /
RT

V
(1.125)

and the mass density is

� D MA2

V
D MA2P

.1 C ˛d /RT
: (1.126)

The derivative at constant temperature of the density with respect to the pressure

 
@�

@P

!
T

D MA2

.1 C ˛d /RT
� MA2P

.1 C ˛d /2RT

 
@˛d

@P

!
T

D MA2

.1 C ˛d /RT

"
1 � P

.1 C ˛d /

 
@˛d

@P

!
T

#
: (1.127)

To calculate the derivative
	

@˛d

@P



T

, we start calculating the logarithm of the

equilibrium condition in (1.42) and remembering that the equilibrium constant
depends only on the temperature and therefore have null derivative i.e.

 
@ ln Kd

p

@P

!
T

D
 

@ ln P

@P

!
T

C ln 4 C 2 ln ˛d � ln.1 � ˛2
d / )

22The frozen isentropic coefficient is used to calculate the frozen speed of sound (Anderson 2000),
which is used for non-equilibrium flows, where the chemical composition is calculated solving a
master equation (Colonna and Capitelli 2001a,b).
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0 D 1

P
C 0 C 2

˛d

 
@˛d

@P

!
T

C 2˛d

1 � ˛2
d

 
@˛d

@P

!
T

)

1

P
D � 2

˛d .1 � ˛2
d /

 
@˛d

@P

!
T

)
 

@˛d

@P

!
T

D �˛d .1 � ˛d /.1 C ˛d /

2P
: (1.128)

Substituting this result in (1.127), we have

 
@�

@P

!
T

D MA2.2 C ˛d � ˛2
d /

2.1 C ˛d /RT
D MA2.2 � ˛d /

2RT
(1.129)

and from (1.123) the coefficient z� for the dissociation process is then given by23

z�d D 2

.1 C ˛d /.2 � ˛d /
: (1.130)

For the ionization reaction, we should follow the same procedure as for dissoci-
ation. Noticing that, for both ionization and dissociation reactions, one particle of
reactants produces two particles of products, we obtain for atomic ionization the
same results as in (1.125)–(1.130) changing MA2 ! MA and ˛d ! ˛i i.e.

z�i D 2

.1 C ˛i /.2 � ˛i /
: (1.131)

It should be noted that, in the considered cases, z� is the reverse of a parable,
ranging from 1 (for ˛ D 0 and ˛ D 1) to 8/9 (˛ D 1=2).

1.9.1 Dissociation Regime

In case of dissociation reaction, the frozen isentropic coefficient is

�df D
R
2

.9 C ˛d / C .1 � ˛d / NC el
A2

C 2˛d
NC el
A

R
2

.7 C ˛d / C .1 � ˛d / NC el
A2

C 2˛d
NC el
A

(1.132)

23From the theorem on derivatives
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�1

T
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while the total isentropic coefficient is given by

�d D z�

R
2

.9 C ˛d / C .1 � ˛d /C el
A2

C 2˛d
NC el
A C R˛d .1 � ˛2

d /
	

� NH 0
d

RT


2

R
2

.7 C ˛d / C .1 � ˛d / NC el
A2

C 2˛d
NC el
A C R

˛d .1�˛d /

.2�˛d /

	
� NU 0

d

RT


2
: (1.133)

For the pure molecular gas (˛d D 0), or fully dissociated gas (˛d D 1) the �df

reduces to

�df.˛d D 0/ D 9R C 2 NC el
A2

7R C 2 NC el
A2

�df.˛d D 1/ D 5R C 2 NC el
A2

3R C 2 NC el
A2

:

Neglecting the internal contribution, the frozen isentropic coefficient becomes

�df.˛d D 0/ D 9

7
D 1:29

�df.˛d D 1/ D 5

3
D 1:67:

It should be also noted that the value 1.29 is the result obtained applying the
classical equipartition theorem considering the excitation of the vibrational degree
of freedom. However, at low temperature, the molecular vibration is not excited and
only rotational and translational degrees of freedom should be included giving for
the frozen isentropic coefficient

�df.˛d D 0/ D 7

5
D 1:40:

These considerations indicate that, in the absence of electronic excitation, the
frozen isentropic coefficient in the dissociation regime changes with the temperature
following the path 1:40 ! 1:29 ! 1:67, this last value being valid for fully
dissociated gas (˛d D 1) .

1.9.2 Ionization Regime

Let us now discuss the properties of the isentropic coefficient for an atomic plasma
with a single ionization reaction. The frozen isentropic coefficient is given by

�if D 5.1 C ˛i /R C 2.1 � ˛i / NC el
A C 2˛i

NC el
AC

3.1 C ˛i /R C 2.1 � ˛i / NC el
A C 2˛i

NC el
AC

: (1.134)



30 1 Classical Thermodynamics

Neglecting the contribution of internal states leads to

�if D 5.1 C ˛i /R

3.1 C ˛i /R
D 5

3
(1.135)

i.e. value for inert monoatomic gases with only translational degrees of freedom.
However, this approximation can fail at high temperature, when electronic excitation
is more important than the translational one. In this case, neglecting also the
excitation of ions (see (1.105)), (1.134) can be written as

�if D ����������5.1 C ˛i /R C 2.1 � ˛i / NC el
A C��������2˛i

NC el
AC

����������3.1 C ˛i /R C 2.1 � ˛i / NC el
A C��������2˛i

NC el
AC

� 1: (1.136)

This value is a lower theoretical limit, which can be approached only under
particular conditions, depending also on the system under consideration.

The total isentropic coefficient is given by

�i D z�

5.1 C ˛i /R C 2.1 � ˛i / NC el
A C 2˛i

NC el
AC C R˛i .1 � ˛2

i /
	

� NH 0
i

RT


2

3.1 C ˛i /R C 2.1 � ˛i / NC el
A C 2R˛i

NC el
AC C 2R

˛i .1�˛i /

.2�˛i /

	
� NU 0

i

RT


2
: (1.137)

Let us consider the extreme case of pure atomic (˛i D 0, z� D 1) system

�i D z�

5R C 2 NC el
A

3R C 2 NC el
A

D 5R C 2 NC el
A

3R C 2 NC el
A

(1.138)

and of fully ionized (˛i D 1, z� D 1) system

�i D z�

5R C 2 NC el
AC

3R C 2 NC el
AC

D 5R C 2 NC el
AC

3R C 2 NC el
AC

: (1.139)

Note (1.138) and (1.139) show the same dependence of the � ratio on the electronic
excitation of atoms and ions.

If we neglect the electronic excitation, we obtain

�i D z�

5.1 C ˛i /R C R˛i .1 � ˛2
i /
�

5
2

C I
RT

�2
3.1 C ˛i /R C 2

R˛i .1�˛i /

.2�˛i /

�
3
2

C I
RT

�2 : (1.140)

It should be noted that the coefficient R is a common factor and can be simplified,
and, expressing the ionization energy in temperature unit as 	 D I

R
, we have
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Fig. 1.7 �f (left) and � D �eqz� (right) for a multicomponent H2 plasma, calculated considering
(excitation) or neglecting (ground) electronic excitation

�i D z�

5.1 C ˛i / C ˛i .1 � ˛2
i /
�

5
2

C 	
T

�2
3.1 C ˛i / C 2

˛i .1�˛i /

.2�˛i /

�
3
2

C 	
T

�2 (1.141)

an expression widely used in the literature (Burm et al. 1999; Burm 2005; Pierce
1968).

1.9.3 Hydrogen Plasma

As an example we consider the hydrogen plasma, formed by H2, H , H C and e�,
with dissociation and ionization processes. Figure 1.7 (left) reports the frozen
isentropic coefficient for an hydrogen plasma as a function of temperature for
different pressures, calculated considering (excitation) and neglecting (ground)
the electronic excitation (important in this case only for atomic hydrogen) while
Fig. 1.7 (right) reports the corresponding total isentropic coefficient. Inspection of
the calculated frozen isentropic coefficients in the presence (excitation) and absence
(ground) of electronic states confirms our simplified arguments. In particular, the
approximate sequence 1:4 ! 1:29 ! 1:67 appears in the frozen isentropic
coefficient in the absence of electronic excitation. In these conditions, �f D 1:67

persists in the ionization regime. On the other hand, a deep minimum in the region of
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partially ionized regime due to the excitation of electronic states of atomic hydrogen
appears in �f . It should be also noted that at high pressure sudden variations of
frozen isentropic coefficient in the partial ionization regime are due to the cutoff of
electronic partition function (see Chap. 8). Note that the excitation of the electronic
degree of freedom in the frozen isentropic coefficient assumes the role of a chemical
reaction.

The behavior of the total isentropic coefficient, i.e. including the reactive
contributions to the total specific heats, follows the trend of frozen isentropic
coefficient in the presence of electronic excitation i.e. the electronic excitation
behaves, as already pointed out, like a chemical reaction even though hidden by
the ionization reaction in the total isentropic coefficient. As a consequence, the total
isentropic coefficient calculated with and without electronic excitation presents a
very similar trend, non-negligible differences appearing at high pressure.

Frozen and total isentropic coefficients coincide at low temperature when the
dissociation and ionization degrees are zero. A deeper minimum in the frozen
isentropic coefficient can be observed in other atomic plasmas such as oxygen,
nitrogen and air (see Chap. 8).

1.10 Real Gas Thermodynamics

The ideal gas is only an approximate picture, considering atoms and molecules as
dimensionless hard spheres. Obviously, this is not valid for a plasma or for high
density systems, where particle interactions and size become effective. The equation
of state of an ideal gas in (1.60) must be corrected to include non-real effects.
Different equations of state have been introduced to describe real gases and the
most famous is the Van der Waals equation�

P C a
n2

V 2

�
.V � nb/ D nRT; (1.142)

where a and b are coefficients depending on the given system24.
A more general equation of state is obtained by the virial expansion (Hirschfelder

et al. 1966) of PV
nRT as

PV

nRT
D 1 C B.T /

n

V
C C.T/

	 n

V


2 C D.T/
	 n

V


3 C 	 	 	 ; (1.143)

where B, C, D, etc. are known as virial coefficients. It should be noted that the
Van der Waals equation can be derived from (1.143) expanding the parenthesis
in (1.142)

PV

nRT
D 1 � a

RT

n

V
C ab

RT

	 n

V


2 C b
P

RT
: (1.144)

24The coefficients can be related to interaction potential between the particle in the mixture as will
be discussed in the Chap. 7.
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This equation is not closed because the last term contains the pressure. Therefore,
we can substitute P with the whole expression in the same equation obtaining

PV

nRT
D 1 � a

RT

n

V
C ab

RT

 
n

V

!2

C b
PV

nRT

n

V
D 1 � a

RT

n

V
C ab

RT

 
n

V

!2

Cb
n

V

2
41 � a

RT

n

V
C ab

RT

 
n

V

!2

C b
PV

nRT

n

V

3
5 : (1.145)

This procedure can be prosecuted to obtain the infinite series25

PV

nRT
D 1 � a

RT

n

V
C b

n

V
C b2

 
n

V

!2

C b3

 
n

V

!3

C 	 	 	 (1.146)

Comparing the coefficients in (1.143), (1.146), we have26

B.T / D b � a

RT

C.T/ D b2

D.T/ D b3

	 	 	 (1.147)

and derivatives

T
dB.T /

dT
D a

RT

T 2 d2B.T /

dT 2
D �2

a

RT

dC.T/

dT
D d2C.T/

dT 2
D 0

	 	 	 (1.148)

(see Fig. 1.8). Virial coefficients and the corresponding derivatives calculated by
(1.147), (1.148) have been reported in Fig. 1.8 for N2 � N2 interaction. The second

25It should be noted that the
P1

nD0 bn D .1 � b/�1:
26The parameter b is called co-volume and should be the minimum volume that can be occupied
by one mole of molecules. Such coefficient is independent of the temperature. On the other hand,
a is related to the attractive force and it depends on the temperature, with the asymptotic relation

lim
T !1

a D 0. From (1.147), we can say that the Van der Waals equation neglect the contribution

of the attractive forces to higher order virial coefficients.
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Fig. 1.8 Second virial
coefficient and first and
second derivatives from
Van der Waals equation (see
(1.147), a D 1:37 � 106 bar
cm6/mol2 and b D 39:1�
10�5 cm3/mol from (Pauling
1988))

virial coefficient presents a trend typical of neutral–neutral interaction showing a
passage from negative (prevalence of attractive forces) to positive values (prevalence
of repulsive forces).

1.10.1 Virial Corrections to Thermodynamic Functions

From (1.143) we can determine the virial correction to the pressure of a gas in the
volume V as

�P vir D nRT

V

 
B

NV C C

NV 2
C D

NV 2
C 	 	 	

!
; (1.149)

where NV D V
n

. To calculate the corrections due to virial expansion to the thermo-
dynamic functions, we should start from the general definition of equation of state
(Landau and Lifshitz 1986)

P D �
 

@A

@V

!
T;ni

: (1.150)

Let us integrate (1.143) over NV D V
n

after writing P as a function of the other
quantities, obtaining

A D �
Z

PdV D �nRT
Z  

1

NV C B

NV 2
C C

NV 3
C D

NV 4
C 	 	 	

!
d NV : (1.151)
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The first term in the integral is the ideal gas Helmholtz free energy. From this
equation, we can deduce that the virial correction to any thermodynamic function F

is an additive term i.e.

F D F ideal C �F vir: (1.152)

Combining (1.151), (1.152), we have

�Avir D nRT

 
B

NV C C

2 NV 2
C D

3 NV 3
C 	 	 	

!
: (1.153)

From the �Avir we can calculate the corrections to all the other thermodynamic
functions as the Gibbs free energy, taking PV from (1.143),

�Gvir D �Avir C V�P vir D nRT

 
2B

NV C 3C

2 NV 2
C 4D

3 NV 3
C 	 	 	

!
(1.154)

the entropy27

�Svir D �
 

@�Avir

@T

!
V

D �nRT

" 
B

T
C PB

!
1

NV C
 

C

T
C PC

!
1

2 NV 2

C
 

D

T
C PD

!
1

3 NV 3
C 	 	 	

#
(1.155)

the internal energy

�U vir D �Avir C T�Svir D �nRT2

 PB
NV C

PC
2 NV 2

C
PD

3 NV 3
C 	 	 	

!
(1.156)

and the enthalpy

�H vir D �U vir C V�P vir D nRT2

" 
B

T
� PB

!
1

NV C
 

2C

T
� PC

!
1

2 NV 2

C
 

3D

T
� PD

!
1

3 NV 3
C 	 	 	

#
: (1.157)

27In this section, we consider PX D
�

@X

@T

�
ni

.
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1.10.2 Virial Corrections to Heat Capacity

Calculating the derivative at constant composition with respect to temperature of
�U vir, we have the correction to the frozen heat capacity at constant volume

�C vir
vf D

 
@�U vir

@T

!
V;ni

D �nRT2

" 
2 PB
T

C RB
!

1

NV C
 

2 PC
T

C RC
!

1

2 NV 2

C
 

2 PD
T

C RD
!

1

3 NV 3
C 	 	 	

#
: (1.158)

The calculation of correction to frozen heat capacity at constant pressure is
more complex because in (1.157), we have an explicit dependence on NV and not
on P . Considering the properties of partial derivatives of composite functions28, the
correction to specific heat is given by

�C vir
pf D

 
@�H vir

@T

!
P;ni

D
 

@�H vir

@T

!
NV ;ni

C
 

@�H vir

@ NV

!
T;ni

 
@ NV
@T

!
P;ni

(1.159)

therefore 
@�H vir

@T

!
NV ;ni

D nRT2

" 
B

T 2
�

PB
T

� RB
!

1

NV C
 

2C

T 2
� RC

!
�

� 1

2 NV 2
C
 

3D

T 2
C
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!

1

3 NV 3
C 	 	 	

#

(1.160) 
@�H vir

@ NV

!
T;ni

D �nRT2

NV

" 
B

T
� PB

!
1

NV C
 

2C

T
� PC

!
1

NV 2
C

C
 

3D

T
� PD

!
1

NV 3
C 	 	 	

#
(1.161)

To calculate the derivative of the molar volume ( NV ) with respect to temperature we
should consider (1.143) dividing both terms by NV

P

RT
D 1

NV C B

NV 2
C C

NV 3
C D

NV 4
C 	 	 	 D f .T; NV /: (1.162)

28For a general function F Œx; y.x/
, the derivative dF
dx

D �
@F
@x

�
y

C
	

@F
@y



x

dy

dx
.
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Fig. 1.9 A comparison of the
constant pressure specific
heat in N2 calculated using
second and third virial
coefficients from Van der
Waals equation with ideal gas
calculation (see Sect. 5.3)

Then the temperature derivative at constant pressure is given by

� P

RT2
D
 

@f

@T

!
NV ;ni

C
 

@f

@ NV

!
T;ni

 
@ NV
@T

!
P;ni

(1.163)

Now we can isolate the derivative of the volume and, substituting P=RT D f , we
have

 
@ NV
@T

!
P;ni

D �
f C T

 
@f

@T

!
NV ;ni

T

 
@f

@ NV

!
T;ni

D �

 
@P

@T

!
NV ;ni 

@P

@ NV

!
T;ni

; (1.164)

where 
@P

@T

!
NV ;ni

D nR

"
.B C T PB/

NV 2
C .C C T PC /

NV 3
C .D C T PD/

NV 4
C 	 	 	

#
(1.165)

 
@P

@ NV

!
T;ni

D �nRT
NV

"
1

NV C 2B

NV 2
C 3C

NV 3
C 4D

NV 4
C 	 	 	

#
: (1.166)

Virial corrections are usually important at high pressure and low temperature
regimes. This point can be appreciated (Fig. 1.9) by comparing the molar specific



38 1 Classical Thermodynamics

heat of pure nitrogen calculated in the ideal approximation (see also Fig. 5.5) and the
corresponding one obtained by (1.159) inserting in it the virial coefficient reported in
Fig. 1.8. These data are in good agreement with more involved calculation reported
in (Tournier and El-Genk 2008), thus indicating that Van der Waals approach can be
used for a rapid estimation of the virial coefficients.



Chapter 2
Two and Three Level Systems: Toward
the Understanding of the Thermodynamics
of Multilevel Systems

In this chapter, we will introduce few level systems to analyze the contribution of
excited states on thermodynamic properties of atomic species, using elementary
concepts of statistical thermodynamics. The present formulation will be applied to
enthalpy and energy, as well as to the specific heats.

Describing the properties of two- or three-level systems gives a general
overview of the contribution of atomic internal states on the thermodynamic
functions (Colonna and Capitelli 2009; D’Ammando et al. 2010; Maczek 1998).
Nevertheless, the few-level approach goes over the simple qualitative description of
the internal contribution, because level lumping in two or three groups approximates
with a good accuracy the contribution of the whole ladder of electronic states for
many systems.

2.1 Two-Level Systems

Let us model an atom as a two-level system, the ground state and one excited
level having, respectively, degeneracies g1 and g2 and molar energies of "1 D 0 and
"2 > 0. Denoting with n1, n2 and n, respectively, the ground state, excited level and
total number of moles, we can write the following balance equation

n1 C n2 D n: (2.1)

The population n1 and n2 are linked by the Boltzmann distribution

n2

n1

D g2

g1

e� 	2
T (2.2)

	2 D "2

k
: (2.3)

M. Capitelli et al., Fundamental Aspects of Plasma Chemical Physics: Thermodynamics,
Springer Series on Atomic, Optical, and Plasma Physics 66,
DOI 10.1007/978-1-4419-8182-0 2, © Springer Science+Business Media, LLC 2012
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Solving the system of equations for n1 and n2, we get the moles of atom in each
state as

n1 D n
g1

g1 C g2e� 	2
T

n2 D n
g2e� 	2

RT

g1 C g2e� 	2
T

: (2.4)

The denominator of the above expressions

Q D g1 C g2e� 	2
T (2.5)

is the partition function of the two-level system.
The populations in the low and high temperature limits are given by

T � 	2 ) n1 D n n2 D 0

T � 	2 ) n1 D n
g1

g1 C g2

n2 D n
g2

g1 C g2

(2.6)

i.e., at low temperature, only the ground state is populated while at high temperature
both levels are populated proportionally to the respective statistical weight.

The molar internal energy is given by

NU int D R

n

�
������	1n1 C 	2n2

� D R	2

n2

n
D R	2

g2e� 	2
T

g1 C g2e� 	2
T

; (2.7)

where 	1 D "1=k D 0. The corresponding limiting values are

T � 	2 ) NU int D 0

T � 	2 ) NU int D R	2

g2

g1 C g2

: (2.8)

As a general behavior, we have g2 � g1 and 	2 � I=k, I being the ionization
potential. As a consequence, at high temperature we have NU int � NaI . Finally, the
internal specific heat NC int is given by

NC int D d NU int

dT
D R	2

n

dn2

dT
D R

�
	2

T

�2
g1g2e� 	2

T	
g1 C g2e� 	2

T


2
; (2.9)

which goes to zero in both high temperature and low temperature limits.
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Table 2.1 Degeneracy (g�)
and characteristic temperature
(	?) for atomic hydrogen
considered as a two-level
system, for different values of
the maximum principal
quantum number included in
the upper lumped level

g? 	? [K]
n D 1 2 0

nmax

5 108 146,187
10 768 154,181
25 11,048 157,196
50 85,848 157,701
75 286,898 157,800
100 676,698 157,835

As case study, let us consider atomic hydrogen which levels have energy and
multiplicity given by

gH;n D 2n2

"H;n D IH

 
1 � 1

n2

!
; (2.10)

where n is the principal quantum number and IH is the ionization potential of the
hydrogen atom. We reduce the multiplicity of electronically excited states of the
atomic hydrogen to a two-level system1:

1. The ground state characterized by energy "?
H;1 D 0, degeneracy g?

H;1 D 2.
2. One excited level having the degeneracy equal to the sum of degeneracies and

the energy equal to the mean energy of all excited states from n D 2 up to a
fixed nmax.

g?
H;2 D

nmaxX
nD2

gH;n (2.11)

	?
H;2 D 1

k g?
H;2

nmaxX
nD2

gH;n"H;n: (2.12)

The energy of the excited state and its characteristic temperature, as well as the
statistical weight depend on nmax, as shown in Table 2.1, where total degeneracy
and characteristic temperature are reported for some values of nmax.

Inspection of the table shows the strong dependence of the upper level
degeneracy on the number of states inserted in the lumped level, while its energy
rapidly converges to IH , spreading around 10,000 K passing from nmax D 5 to
nmax D 100.

1For the sake of clarity, the symbols of the reduced levels are distinguished by those of the real
level by the superscript?:



42 2 Two and Three Level Systems

Fig. 2.1 Atomic hydrogen translational, internal and total molar energy as a function of the
temperature for (a) nmax D 10 and (b) nmax D 100

In Fig. 2.1, one can observe the sensitivity of the molar internal energy on nmax.
For nmax D 100, the internal energy grows rapidly with the temperature, reaching an
asymptotic value equal to the ionization potential, while for nmax D 10 the growth
is much slower, and up to T D 50;000 K the asymptotic value of 1;282 kJ/mole
has not been reached yet. The upper limit of the internal energy can be obtained
from (2.7), considering that, in any case (see Table 2.1), g?

H;2 � g?
H;1 and therefore

in the denominator of (2.8) g?
H;1 C g?

H;2 � g?
H;2 thus giving NU int

H � R	2. In both
cases, the internal energy becomes much higher than the translational one if the
temperature is sufficiently high.

Figure 2.2 shows the dimensionless constant volume specific heat for the same
cases discussed in Fig. 2.1. The internal specific heat presents a maximum value,
which is shifted at lower temperature as nmax increases. It should be also noted that
the internal specific heat, negligible at low and high temperatures, overcomes the
translational contribution ( 3

2
) for intermediate temperatures, as reported in Fig. 2.2.

2.2 Three-Level Systems

Many-electron atoms often possess low lying energy states corresponding to
rearrangement of angular and spin momenta of the valence electrons. In this case,
the two-level approximation must be improved introducing a new level which
describes the low-lying excited states. To this end, we consider a three-level
system composed by the ground state and two excited states, characterized by
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Fig. 2.2 Atomic hydrogen translational, internal and total reduced molar specific heat for
(a) nmax D 10 and (b) nmax D 100

level degeneracies g1, g2, g3 and energies "1 D 0 and "1 < "2 � "3. The balance
equations read

n1 C n2 C n3 D n

n2

n1

D g2

g1

e� 	2
T

n3

n1

D g3

g1

e� 	3
T ; (2.13)

where the 	’s are the energies expressed in K as in (2.3). Solution of the above
system leads to the following expressions for the molar fractions of levels

n1

n
D g1

g1 C g2e� 	2
T C g3e� 	3

T

n2

n
D g2e� 	2

T

g1 C g2e� 	2
T C g3e� 	3

T

n3

n
D g3e� 	3

T

g1 C g2e� 	2
T C g3e� 	3

T

: (2.14)

Likewise the two-level case, the denominator of the above expressions is the
partition function of our three-level system

Q D g1 C g2e� 	2
T C g3e� 	3

T (2.15)
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Let us consider a temperature such that 	2 � T � 	3. In this case, we can drop
the contribution of the last level and, being the first exponential very close to one,
we have

n1

n
� g1

g1 C g2

n2

n
� g2

g1 C g2

n3

n
� g3e� 	3

T

g1 C g2

� 0 (2.16)

reproducing the same situation as a two level system. At very high temperature
(	2 � 	3 � T ), the following asymptotic behavior is obtained

n1

n
D g1

g1 C g2 C g3

n2

n
D g2

g1 C g2 C g3

n3

n
D g3

g1 C g2 C g3

: (2.17)

The internal energy can be written as

NU int D R

n

�
������	1n1 C 	2n2 C 	3n3

�

D R
g2	2e� 	2

T C g3	3e� 	3
T

g1 C g2e� 	2
T C g3e� 	3

T

(2.18)

and the internal specific heat as2

NC int D � U 2 � �. NU int/2

RT 2

� U 2 � D R2
g2	2

2 e� 	2
T C g3	

2
3 e� 	3

RT

g1 C g2e� 	2
RT C g3e� 	3

RT

: (2.19)

2See Sect. 3.2 for a general definition of � U 2 �.
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Table 2.2 Statistical weight
and energy of low lying states
of nitrogen atom

Configuration g " [eV]
2D5=2;3=2 10 2.3838
2P3=2;1=2 6 3.5757

Table 2.3 Degeneracy and
characteristic temperature for
atomic nitrogen considered as
a three-level system, ground
state, low lying level and
upper lumped level, in
hydrogen-like approximation,
for different values of the
maximum principal quantum
number

g? 	? [K]
Ground 4 0
Low lying 16 32849
nmax

5 900 158702
10 6840 165282
25 99360 168125
50 772560 168647
75 2582010 168752
100 6090210 168787

As a case study for the three-level system, let us consider the atomic nitrogen.
The ground state configuration is 4S3=2 having statistical weight g?

N;1 D gN;1 D 4.
There are other two low-lying levels resulting from 2s22p3 electronic configuration,
one corresponding to 2D5=2;3=2 and one to 2P3=2;1=2 whose energy and statistical
weight are reported in Table 2.2. These two levels are grouped together to give a
single low lying state which statistical weight, given by

g?
2 D g.2D/ C g.2P /

and characteristic temperature , calculated as

	? D g.2D/".2D/ C g.2P /".2P /

k g?
2

are reported in Table 2.3.
The energy of the other levels are calculated by using an hydrogen-like

approximation

"n D IN � IH

n2
(2.20)

(IN and IH are, respectively, the ionization potential of nitrogen and hydrogen
atoms) and a statistical weight

gn D 2n2gcore (2.21)

(gcore D 9 represents the statistical weight of the ground state of the more
stable nitrogen core .3P /). They are then grouped to form the third lumped
level (see Table 2.3), limited to the maximum number nmax. A more accurate
approach to calculate electronically excited state energies consists in extending
available (experimental or theoretical) data following the Ritz–Rydberg series (see
Appendix A).
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Fig. 2.3 Atomic nitrogen translationaly, internaly and total molar energy as a function of the
temperature for (a) nmax D 10 and (b) nmax D 100

Fig. 2.4 Atomic nitrogen translational, internal and total reduced molar specific heat as a function
of the temperature for (a) nmax D 10 and (b) nmax D 100

In Fig. 2.3, we report the internal energy of atomic nitrogen considered as a three
level system. Inspection of this figure shows that, similar to the hydrogen atom case
(see Fig. 2.1), the internal energy of the atomic nitrogen strongly increases with
the temperature as well as with the number of excited states considered. In both
cases, the internal energy is much higher than the translational one. This behavior
is reflected on the specific heat (Fig. 2.4) showing similar behavior as the Hydrogen
atom. It should be noted, for nmax D 10, the presence of a shoulder in the internal
contribution around T D 10000 K due to the low lying states. However, this effect
disappears for nmax D 100 hidden by highest lumped level. This point is evident in
Fig. 2.5 where we report different NC int curves corresponding to different nmax values.
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Fig. 2.5 Reduced internal
specific heat of atomic
nitrogen as a function of the
temperature for different
values of nmax. Note that the
case nmax D 2 considers only
the low-lying state

In particular, the curve labeled with nmax D 2 does not consider the third level: in
this case, the first maximum is well evident, disappearing as the degeneracy of the
lumped level grows up.

The results reported in the different figures refers to atomic systems when the
high level energies are lumped allowing their dependence on the principal quantum
number.

2.3 Few-Level Model Accuracy

In previous sections, we have observed that a simplified atomic model, considering
only two or three representative levels, gives a good qualitative description of the
internal contribution to thermodynamic functions of atomic species. In a recent
paper (Colonna and Capitelli 2009), it has been demonstrated that the few-level
approach has a mathematical foundation, showing under what conditions the
results obtained by detailed calculations are reproduced with good accuracy. The
demonstration is based on the Taylor series expansion of the exponential function
around the mean energy

N" D 1

G

nmaxX
nD2

gn"n

G D
nmaxX
nD2

gn (2.22)
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of the excited states, i.e.

Qexact D
nmaxX
nD1

gne� "n
kT D g1 C e� N"

kT

nmaxX
nD2

gne� "n�N"
kT D

D g1 C e� N"
kT

nmaxX
nD2

gn

2
41 �

 
"n � N"

kT

!
C 1

2

 
"n � N"

kT

!2

C 	 	 	
3
5

D g1 C Ge� N"
kT C e� N"

kT

nmaxX
nD2

gn

2

 
"n � N"

kT

!2

C 	 	 	 (2.23)

(2.5), (2.15) are obtained in the first order approximation3 i.e.

Q1 D g1 C Ge� N"
kT : (2.24)

This approximation is obviously better as narrower the distribution of excited
states around their mean value. To improve the results, higher order corrections can
be used (see (Colonna and Capitelli 2009) for details) without losing the advantages
of having coefficients that do not depend on the temperature. For example, the
second order approximation is given by

Q2 D g1 C Ge� N"
kT C e� N"

kT

nmaxX
nD2

gn

2

 
"n � N"

kT

!2

D Q1 C ıQ?: (2.25)

Moreover, it is possible to estimate the error calculating the successive term in
expansion series. As an example, the first order approximate error (see Fig. 2.6 for
atomic hydrogen) is given by the sum of the square terms in (2.23), i.e. the term ıQ?

in (2.25). This value should be compared with the exact errors defined as the relative
difference between the state-to-state calculation and the two-level value obtained in
the i -th order approximation, i.e. retaining the i terms in the expansion. In our case
we have as exact first order error ıQ1 D Qexact � Q1 and exact second order error
ıQ2 D Qexact � Q2.

As an example, the hydrogen atom shows a good agreement between the
two-level approximation and the exact calculation (see Fig. 2.6). The error is below
2% for the partition function and 3% for the specific heat when just 5 levels are
considered, decreasing below 1% for 20 levels. It should be noted that the exact and
approximate errors are quite similar and that the second order correction reduces the
error below 0.5%.

To apply this model to nitrogen and oxygen atoms, we should consider the
three-level approach, due to the presence of low-lying states. The results have been
reported in Fig. 2.7 for a cutoff �I D 500 cm�1, i.e. by considering levels with

3It should be noted that the first order term in (2.23) gives a null contribution.
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Fig. 2.6 Approximate first-order error (?) and exact first (1) and second (2) order errors for
the hydrogen atom partition function and total constant volume specific heat (internal plus
translational) for different number of levels included in the calculation

Fig. 2.7 Exact values and relative percentage errors (first and second order) of the partition
function, internal energy (translational plus internal) and total constant volume specific heat
(translational plus internal) of nitrogen and oxygen atom in the three-level approximation for cutoff
�I D 500 cm�1

energy lower than I � �I in the electronic partition function (see Chap. 8). Also in
this case the first-order error is lower than 2% and the second order error is below
0.5% in the whole temperature range.



Chapter 3
Statistical Thermodynamics

In this chapter, the basic equations of statistical thermodynamics will be derived for
an ideal gas on the basis of Boltzmann approach (Atkins 1986; Moelwin-Hughes
1947).

The method will be used to derive working equations for describing the
thermodynamic properties of ideal gas mixtures. Other approaches, making use of
more sophisticated statistical mechanic concepts, will be presented in Chap. 7.

3.1 From Statistical Probability to Thermodynamic Functions

Let us consider a system of N (identical) particles subdivided by energies as

.N1; "1/; .N2; "2/; .N3; "3/; : : : ; .Ni ; "i /; : : : ; (3.1)

where Ni is the number of particles with energy "i . The total energy and the total
number of particles can be written as

N D
X

i

Ni

U D
X

i

Ni "i : (3.2)

Fixing U and N , the statistical probability W of the existence of a given state is
equal to the number of distinguishable ways realizing the given state i.e.

W D N Š (3.3)

However, since the permutations in the i -th energy class are not distinguishable, the
total permutations must be reduced by a factor Ni Š for all the energy groups, and
therefore
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W D N Š

N1ŠN2Š : : :Ni Š : : :
D N ŠQ

i

Ni Š
: (3.4)

From the statistical point of view, the equilibrium is the state of maximum
probability, while from the thermodynamic point of view is the state of the
maximum entropy. Boltzmann first linked S and W writing the relation S D S.W /.
In particular, considering two independent systems a and b, the entropies Sa and
Sb, being extensive quantities, fulfill the additive property

Sab D Sa C Sb: (3.5)

On the other hand, given the probabilities Wa and Wb of the two independent
systems, we have

Wab D WaWb (3.6)

and therefore

S.WaWb/ D S.Wa/ C S.Wb/ (3.7)

which is a property of the logarithm, i.e.

S.W / D k ln .W /; (3.8)

where k is the Boltzmann constant. Taking into account the Stirling formula1, (3.4).
becomes

S

k
D ln W D lnN Š �

X
i

lnNi Š D N lnN �
X

i

Ni lnNi (3.9)

We are considering an isolated system with the following constraints

dN D
X

i

dNi D 0

dU D
X

i

"idNi D 0: (3.10)

The equilibrium state is at the maximum of the entropy

dS

k
D .lnN C 1/dN �

X
i

.lnNi C 1/dNi D �
X

i

.lnNi C 1/dNi D 0: (3.11)

1 ln xŠ D x ln x � x D x ln x
e

.



3.1 From Statistical Probability to Thermodynamic Functions 53

Using the Lagrange multipliers �, ˇ we can write (3.10) in the form

�dN D
X

i

�dNi D 0

ˇdU D
X

i

ˇ"idNi D 0: (3.12)

Adding these conservation equations in (3.11), we have

dS

k
D dS

k
� �dN � ˇdU D �

X
i

.lnNi C 1/dNi �
X

i

�dNi C

�
X

i

ˇ"i dNi D �
X

i

.lnNi C 1 C � C ˇ"i/dNi D 0: (3.13)

This equation is valid for any value of dNi and therefore we have for any subsystem

lnNi C 1 C � C ˇ"i D 0 (3.14)

which solution is

Ni D Ke�ˇ"i

K D e�.�C1/: (3.15)

Comparing (3.15) with (3.2) we have

N D
X

i

Ni D K
X

i

e�ˇ"i ) K D NP
i

e�ˇ"i
(3.16)

Calculating the logarithm of (3.15) and substituting the value of K in (3.16) we have

lnNi D lnN � ˇ"i � ln
X

j

e�ˇ"j (3.17)

Multiplying both sides of this equation by Ni and summing over i we have

X
i

Ni lnNi D
X

i

Ni lnN �
X

i

Ni ˇ"i �
X

i

Ni ln
X

j

e�ˇ"j D

D N lnN � ˇU � N ln
X

j

e�ˇ"j : (3.18)

From the definition of entropy given in (3.9), we have

S

k
D N lnN �P

i

Ni lnNi D ˇU C N ln
P
j

e�ˇ"j (3.19)
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Considering the first and second laws of thermodynamics (see Chap. 1) written as
dS D dU=T C P dV=T , we get the following relation

�
@S

@U

�
V;N

D 1

T
: (3.20)

Comparing with the derivative calculated from (3.19) 
@S

@U

!
V;N

D kˇ (3.21)

we have

ˇ D 1

kT
: (3.22)

The summation

Q D
X

i

e�ˇ"i (3.23)

is the partition function and from (3.15), (3.16) we have

Ni

N D e�ˇ"i

Q : (3.24)

The partition function gives a complete description of the thermodynamic state
of the system at equilibrium and all the thermodynamic functions can be extracted
from it. Let us start considering its first derivative2

 
@Q
@T

!
V

D
X

i

d

dT
e�"i =kT D 1

kT 2

X
i

"ie�"i =kT

D 1

kT 2

X
i

"i

NiQ
N D UQ

NkT 2
(3.25)

dividing both sides by Q we have3

U D NkT 2

 
@ lnQ

@T

!
V

D NkT

 
@ lnQ
@ ln T

!
V

: (3.26)

2 The energy of a system is a function of its volume. As a consequence, the temperature derivatives
is calculated at constant volume.
3 Remember that 1

f

df

dx
D dln f

dx
and x

df

dx
D df

dln x
.



3.1 From Statistical Probability to Thermodynamic Functions 55

The constant volume heat capacity (see (1.72)) is given by

Cv D
 

@U

@T

!
V

D 2NkT

 
@ lnQ

@T

!
V

C NkT 2

 
@2 lnQ

@T 2

!
V

D Nk

" 
@ lnQ
@ ln T

!
V

C
 

@2 lnQ
@ ln T 2

!
V

#
(3.27)

For an ideal gas (see Sect. 1.5), the enthalpy is given by

H D NkT

 
@ lnQ
@ ln T

!
V

C NkT D NkT

 
@ ln.TQ/

@ ln T

!
V

: (3.28)

We can separate the dependence on V and N=P and T writing the partition
function as

Q D f .T /V D f 0.T /
N
P

(3.29)

obtaining

 
@ lnQ
@ ln T
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D dln f 0

dln T
D dln f

dln T
C dln T
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@ ln TQ
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(3.30)

as a consequence the enthalpy becomes

H D NkT

 
@ ln.TQ/

@ ln T

!
V

D NkT

 
@ lnQ
@ ln T

!
P

(3.31)

and the constant pressure heat capacity is given by

Cp D
 

@H

@T

!
P

D Nk

 
@ lnQ
@ ln T

!
P

C Nk

 
@2 lnQ
@ ln T 2

!
P

: (3.32)

We have to generalize (3.23), (3.24) considering that different molecular states
can have the same energy. We have to introduce the statistical weight gi as the
number of states with the same energy and therefore for a single molecule, the
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equilibrium distribution (Ni =N ), where Ni are discriminated only by their energy
independently of its molecular state, the partition function Q and the energy become

Ni

N D 1

Qgi e�ˇ"i (3.33)

Q D
X

i

gi e�ˇ"i (3.34)

U D N
Q
X

i

gi "ie�ˇ"i (3.35)

Extension of this approach to systems with variable number of particles N yields
to the partition function of the system in the form QN that leads to the Gibbs
paradox (Wannier 1966). This paradox can be solved by introducing the partition
function of N indistinguishable molecules in the form

Q?
N D QN

N Š
; (3.36)

which is called system partition function. Q? is linked with the Helmholtz potential
through the equation4

A D �kT lnQ?
N D �NkT lnQ C kT ln.N Š/ D �NkT

 
ln

Q
N C 1

!
: (3.37)

The Gibbs function is obtained from (1.9)

G D A C P V D �NkT ln

 
ln

Q
N C 1

!
C NkT D �NkT ln

Q
N (3.38)

and the entropy from (1.8)

S D U � A

T
D Nk

"
ln

Q
N C 1 C

 
@ lnQ
@ ln T

!
V

#
: (3.39)

The entropy depends on the logarithm of partition function as well as on its first
logarithmic derivative with respect to temperature.

Before defining the chemical potentials, we want to remember that Q depends in
general not only on the temperature but also on the volume V as will be discussed
in Sect. 4.1.2. To get the chemical potential, we can equivalently calculate the
derivative of the Helmholtz or Gibbs potentials with respect to N , respectively, at

4Applying the Stirling formula reported in note 1.
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constant volume or at constant pressure. Using (3.29), we can write the chemical
potential as

� D
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V;T

D kT

�
ln

Q
N C 1

�
� NkT

N
Q
�

� Q
N 2

�
D �kT ln

Q
N (3.40)

or using G (see (3.38), (3.29)) as
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i.e.

� D
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@A

@N

!
V;T

; (3.42)

which can be obtained also in the framework of the classical thermodynamics
presented in Chap. 1.

3.2 Statistical Mean

The thermodynamic functions of a system can be viewed as the statistical mean
weighted by the distribution function, defined in general as Ni =N , that at the
equilibrium is given by (3.33). Let us define the statistical thermodynamic mean
over the distribution as

� x �D 1

Q
X

i

xi gi e
� "i

kT (3.43)

Comparing with (3.35), we have

U D N � " � : (3.44)

Similarly, starting from (3.27), we can express also the specific heat as a function
of the statistical thermodynamic mean as
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From (3.25), the first term in the equation is given by

"
d

dT
T 2

 
@Q
@T

!
V

#
V

D 1

k

d

dT

X
i

"igi e�"i =kT

D 1

.kT /2

X
i

"2
i gi e�"i =kT D Q � "2 �

.kT /2
(3.46)

therefore we have

Cv

Nk
D � "2 � � � " �2

.kT /2
D �2

"

.kT /2
; (3.47)

where �2
" the variance of the energy. These relations are important to compute

the thermodynamic functions starting from energy levels, as discussed in the next
chapters, avoiding to evaluate the numerical derivatives of the partition function, but
calculating only the summations over the distribution function.

3.3 Multicomponent Ideal Systems

The thermodynamic properties of the N -component ideal gas mixture can be
obtained operating on the total partition function of the system defined as

Qtot D
NY
s

QNs
s

Ns Š
exp

 
�Ni "

f
i

kT

!
; (3.48)

where Qs and Ns are the particle partition function and the number of particles
of the s-th species. The quantity "

f
s is the difference of energy of the s-th species

and the common energy reference5. Applying the general definition in (3.22) and
expressions for the case of variable particle number in (3.37), (3.38), the Helmholtz
and Gibbs thermodynamic potentials are given by

A D �kT
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f
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(3.49)

5 This quantity is related to the molar formation enthalpy in (1.79) by the equation NH f
s D Na"

f
s

where Na is the Avogadro number.
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and the entropy is

S D �
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showing the additive property that can be extended to all the thermodynamic
functions
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U D
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(3.51)



Chapter 4
Atomic Partition Function

In this chapter, the statistical thermodynamic concepts described in the previous
chapter will be applied to atomic species and to their plasma mixtures. Emphasis
will be given to the translational and internal contributions to partition function,
to their derivatives as well as to thermodynamic properties of single species. The
mixture properties are then analyzed after the introduction of a simplified Saha
equation for describing the equilibrium composition of an ionized system. Hydrogen
is considered as a case study and the problem of the cutoff of the atomic partition
function is introduced leaving to Chap. 8 a more detailed description.

4.1 Atomic Structure

Let us start our representation by describing an isolated atom with the appropriate
Hamiltonian. The operator bH is the sum of three contributions

bH D bH n C bH tr C bH int (4.1)

describing the nuclear (n), the translational (tr) and the internal (int) degrees of
freedom1. The solution of the stationary Schrödinger equation

bH
 D "
 (4.2)

can be obtained by factorizing the wave function in nuclear, translational and
internal contributions


 D 
 n
 tr
 int (4.3)

1This result is the consequence of the independence of the nuclear degrees of freedom, atomic
motion and the relative motion of the electrons with respect to the nucleus.
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and solving separately an equation for each degree of freedom (Landau and Lifshitz
1981)

bH n
 n D "n
 n

bH tr
 tr D "tr
 tr

bH int
 int D "int
 int; (4.4)

where the total energy is given as the sum of the eigenvalues

" D "n C "tr C "int: (4.5)

The corresponding partition function can be expressed as the product of three
independent terms

Q D QnQtrQint (4.6)

reflecting the separability property of the Schrödinger equation.

4.1.1 Nuclear Partition Function

The nuclear partition function can be considered equal to the degeneracy of the
nuclear ground state ("n D 0)

Qn D gn
0 (4.7)

since nuclear excitation requires thousand eV. The nuclear partition function does
not affect the internal energy of a species, as well as the specific heat, because its
logarithmic derivative is zero in the temperature range (T < 100;000 K) examined
in this book. It can affect those properties that depend on lnQn such as the entropy.
We will further examine Qn in different points of this book, with the particular
regard to the interdependence of the nuclear spin and rotational partition function of
homo-nuclear diatomic molecules (see Sect. 5.2).

4.1.2 Translational Partition Function

Energy levels corresponding to the translational degree of freedom of a free
particle can be obtained by the so-called particle in the box quantum mechanical
model. Consider a particle of mass m in a cubic box with length L. The classical
Hamiltonian can be written as

bH tr D � „
2m

 
@2

@x2
C @2

@y2
C @2

@z2

!
(4.8)
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being h the Planck constant. Being the box cubic and the three coordinates
independent, the translational wave function can be factorized in three separated
one-dimensional cases. For the x direction, we have

� „
2m

@2

@x2

 tr

x .x/ D "tr
x
 tr

x .x/ (4.9)

and the same for y and z directions. The boundary conditions consist in null wave
function at the box limits, 
 tr

x .0/ D 
 tr
x .L/ D 0. The solution of this problem can

be found in text books of quantum mechanics (Pauling and Wilson 1985) and is
given by

"tr
x;nx

D „2�2

2mL2
n2

x (4.10)


 tr
x .x/ D Ax sin

 
nx�x

L

!
; (4.11)

where nx � 1 is a quantum number having an integer value.
The partition function along the x coordinate is given by

Qtr
x D

1X
nxD1

exp

�
�"tr

x;n

kT

�
D

1X
nxD0

exp

�
� „2�2

2mL2kT
n2

x

�
� 1: (4.12)

The effect of quantized energy can be appreciated only at very low temperature,
very close to the absolute zero. Ideal gas exists at high temperature, when a large
number of states are populated. As a consequence, we can approximate the sum
with an integral over nx , neglecting also �1 in (4.12) obtaining2

Qtr
x �

Z 1

0

exp

�
� „2�2

2mL2kT
n2

x

�
dnx D 1

2

s
2mL2kT

�„2
D L

s
mkT

2�„2
: (4.13)

Due to the independence between the three coordinates, the translational partition
function is the product of the x, y, z contribution that are all equals, giving

Qtr D Qtr
xQtr

yQtr
z D .Qtr

x/3 D
 

mkT

2�„2

! 3
2

L3

D
 

mkT

2�„2

! 3
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V D
 

mkT

2�„2

! 3
2 N kT

P
; (4.14)

2This demonstration is based on the calculation of the integral I D R1

0 exp.�ax2/dx. It is calcu-

lated considering that I D 1
2

q’1

�1 exp.�ax2/dx exp.�ay2/dy. The integral inside the square

root can be calculated in polar coordinates giving �
R1

0 exp.�ar2/2rdr D �
a

R1

0 exp.�s/ds D
�
a

where s D ar2. Going back to the original integral we have to divide by two the square root of
this result obtaining I D 1

2

p
�
a

.
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Fig. 4.1 Atomic hydrogen and free electron translational partition function, divided by the number
of particles, as a function of temperature for different pressures

where V is the volume of the box. The fraction in the parenthesis is related to the
thermal de Broglie length

�th D
s

2�„2

mkT
(4.15)

and the translational partition function can be written as

Qtr D V

�3
th

D N kT

P �3
th

: (4.16)

As an example, the reduced translational partition functions (Qtr=N ) of atomic
hydrogen and free electrons are reported in Fig. 4.1.

For an ideal gas only the translational partition function depends directly on
volume (and therefore inversely on pressure). On the other hand, non-ideal
corrections introduce indirectly the dependence on volume also of the internal
partition function.
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4.1.3 Internal Partition Function

The internal partition function of atomic species is obtained as the sum over the
quantum states of atoms. We have to consider that different states can have the same
energy (degeneracy) that can be grouped together giving a single term, considering
the statistical weight gs;l of the l-th level of the s-th species. Therefore, we should
apply directly (3.33)–(3.35). We must point out that sum in the partition function is
divergent, because the number of levels is infinite while the exponential goes to a
finite value. This problem follows from considering an isolated atom in an infinite
space. The presence of other particles and the confinement of the atom in a finite
volume limits the number of bound states as will be discussed in Chap. 8. Therefore,
we will change (3.34) as

Qint
s D

N m
sX

iD1

gs;i e
� "s;i

kT (4.17)

being N m the maximum number of levels. The level energies are usually referred
to the ground state of the species. For a multi-species system, we need a common
reference of energy, therefore to the energy levels we should add what is called
the formation energy "

f
s and the level energy is written as "0

s;i D "s;i C "
f
s , where

"s;1 D 0. Defining as Qint
s and Q0int

s the partition function calculated, respectively,
using "s;i and "0

s;i we have

Q0int
s D e� "

f
s

kT

N m
sX

iD1

gs;i e
� "s;i

kT D e� "
f
s

kT Qint
s (4.18)

4.2 Single Species Thermodynamics

In this section, we describe the contribution of the different degrees of freedom to the
single atomic species thermodynamic properties, usually given per unit mole (see
Sect. 1.5), considering an Avogadro number Na of particles. To obtain the molar
quantity, it is sufficient to perform the substitution Nak ! R.

4.2.1 Translational Contribution

To determine the translational energy, let us consider (3.26) applied to the
translational partition function as reported in (4.14)

U tr
s D NskT

 
@ lnQtr

s

@ ln T

!
V

(4.19)
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the derivative is given by
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(4.20)

i.e. all the terms are null except that one containing the temperature, giving for the
translational energy

U tr
s D 3

2
NskT D 3

2
nsRT (4.21)

NU tr
s D U tr

s

ns

D 3

2
RT: (4.22)

For the enthalpy, we have

H tr
s D U tr

s C PV D 5

2
NskT D 5

2
nsRT (4.23)

NH tr
s D H tr

s

ns
D 5

2
RT: (4.24)

This result was already discussed in Sect. 1.6 reporting the translational contribution
to specific heats.

Let us now complete the derivation of the thermodynamic potentials from
the statistical mechanics determining the contribution of the atom translation on
Helmholtz and Gibbs free energies. Applying the definitions reported in (3.37),
(3.38), we have

Atr
s D �NskT
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s
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C 1

!
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75 � NskT (4.25)

Gtr
s D �NskT ln

Qtr
s

Ns

D �NskT ln

2
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mkT
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! 3
2 kT
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3
5 : (4.26)

The translational entropy is obtained from (3.39), (3.50) considering the derivative
reported in (4.20)

S tr
s D Nsk

"
ln

Qtr
s

Ns

C 1 C
 

@ lnQtr
s
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!
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#
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s

T
C 3

2
Nsk: (4.27)
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Fig. 4.2 Proton (H C) and free electron translational molar entropy as a function of temperature
for different pressures

A more familiar expression for the molar translational entropy is given by the
Sackur–Tetrode equation

NS tr
s D 3

2
R ln Ms C 5

2
R ln T � R ln Ps C C; (4.28)

where C D 86:14857414 if Ps is expressed in Pa, Ms in g/mole and T in K. As an
example, the translational molar entropies of H C (MH C D 1 g/mol) and electron
(Me D 5:485798959 � 10�4 g/mol) are reported in Fig. 4.2.

The chemical potential, which expression has been anticipated in (1.29) can be
calculated as the derivative with respect to the number of particles of Atr

s or Gtr
s as

given in (3.42) and explicitly written in (3.40) obtaining

�tr
s D �kT ln

Qtr
s

N D �kT ln

2
4
 

mkT

2�„2

! 3
2 kT

Ps

3
5 D �0;t r

s C kT ln Ps; (4.29)
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where

�0;t r
s .T / D �kT ln

2
4
 

mkT

2�„2

! 3
2

kT

3
5 (4.30)

4.2.2 Internal Contribution

To determine the contribution of internal levels, we will start from (4.17), consider-
ing a finite number of levels. The internal contribution to energy is given by

U int
s D NskT

 
@ ln Qint

s

@ ln T

!
v

D Ns

Qint
s

N m
sX

iD1

"s;i gs;i e� "s;i
kT ; (4.31)

where "s;i and the Helmholtz free energy is

Aint
s D �NskT ln Qint

s : (4.32)

The internal contribution to enthalpy is the same as the energy (H int
s D U int

s ).
The same relation holds between Helmholtz and Gibbs free energies (Gint

s D
Aint

s ). As a consequence, C int
p;s D C int

v;s D C int.

For a mixture, the formation energy must be considered, as already discussed in
Sect. 3.3 for the general case. Starting from (4.18) and substituting in (4.31), the
internal energy U 0int, that includes the formation energy, becomes

U 0int
s D NskT

dln Q0int
s

dln T
D NskT
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s C Ns"
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s : (4.33)

The same property hold for the Helmholtz free energy (see (3.49))

A0int
s D �NskT ln Q0int

s D NskT

 
ln Qint

s � "
f
s

kT

!
D Aint

s C Ns"
f
s (4.34)

The energy functions U , H , A and G include the contribution of the formation
energy simply by adding Ns"

f
s .
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For the entropy things are different:

S 0int
s D U 0int

s � A0int
s

T
D U int

s C Ns"
f
s � Aint

s � Ns"
f
s

T

D U int
s � Aint

s

T
D S int

s : (4.35)

The same property is valid for the heat capacity3. Starting from (3.47)

C 0int
s D dU 0int

dT
D dU int

dT
C







�

�
��

dNs"
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s
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D C int

s (4.36)

The internal entropy and the heat capacity are not affected by the energy
reference.

The internal contribution to the chemical potential can be obtained deriving the
Helmholtz free energy with respect to the number of particles

�int
s D

 
@Aint

s

@Ns

!
V;T;Ni¤s

D �kT lnQint
s (4.37)

and considering the formation energy

�0int
s D
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@Ns

!
V;T;Ni¤s

D �kT lnQint
s C "f

s D �int
s C "f

s : (4.38)

We have analyzed the contribution of the formation energy to all the thermodynamic
functions. As for the internal energy, it contributes as an additional term with
superscript f as

U f
s D H f

s D Af
s D Gf

s D Ns"
f
s

Sf
s D 0

�f
s D "f

s : (4.39)

The internal chemical potential does not depend on the pressure,4 therefore we can
write for the total chemical potential

�s D �tr
s C �int

s C �f
s D �0;t r

s C kT ln Ps C �int
s C "f

s (4.40)

3This property is valid only for the single species heat capacity. For a mixture, the formation energy
enters in the reactive contribution to the heat capacity (see Chap. 3).
4This assumption is valid only for an ideal gas. The level cutoff as well as higher order corrections,
as Debye–Hückel, make �int a function of the pressure and of the plasma composition.
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Table 4.1 Some energy
states of the hydrogen atoms

n "n.cm�1/ "n.eV / "n.K/ gn

1 0 0 0 2
2 82,041 10.20436 118,416 8
3 97,234 12.09406 140,345 18
4 102,552 12.75545 148,020 32
. . . . . . . . . . . . . . .
1 109,388 13.605813 157,888 1

and grouping the terms that depends only on the temperature in �0

�0
s D �0;tr

s C �int
s C "f

s (4.41)

and the total chemical potential is

�s.T; P / D �0
s .T / C kT ln Ps (4.42)

as anticipated in (1.29).
The reported equations can be also used for taking into account the electronic

energies of molecular species.

4.2.3 The Atomic Hydrogen as a Case Study

Let us start to describe the atomic hydrogen for which we know, from quantum
mechanics, both level energies and degeneracies (see Table 4.1). The energy of
electronic levels, referred to the ground state, is given by

"n D IH

�
1 � 1

n2

�
being

IH D mee4

8h2�2
0

D e2

8��0a0

D 13:60 eV (4.43)

the ionization energy, n the principal quantum number, �0 the vacuum dielectric
constant and a0 the Bohr radius. The level degeneracy is given by

gn D 2n2:

The internal partition function of atomic hydrogen is then written as

Qint
H D 2C8 exp

�
�118;416

T

�
C18 exp

�
�140;345

T

�
C32 exp

�
�148;020

T

�
C : : :
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Fig. 4.3 Electronic partition function of atomic hydrogen in H , H C, e� plasma as a function of
temperature for different pressures

As anticipated in Sect. 4.1.3, the electronic partition function of an isolated atom
diverges. In fact, the electronic energy converges to the ionization potential while
the statistical weight diverges. We must therefore resort to some cutoff criterion to
limit the number of levels in the electronic partition function (see Chap. 8). The
effect of cutoff on the electronic partition function is higher as the temperature
increases, since only at high temperature excited states start contributing. Indeed,
at room temperature the partition function of atomic hydrogen is equal to the
degeneracy of its ground state (g1D2). Increasing the temperature, the number
of levels entering in the calculation changes, making the partition function and
its derivatives discontinuous with respect to the temperature. These effects are
amplified by the pressure, due to the minor number of levels included in the partition
function. This is true for the most used cutoff criteria used in the literature (see
Chap. 8). Results reported in Figs. 4.3–4.9 have been obtained by using the Debye–
Hückel cutoff criterion as implemented by Griem (1962; 1997).

Let us first examine the dependence of the electronic partition function on the
temperature at different pressures (see Fig. 4.3). In all the reported cases, the
electronic partition function of atomic hydrogen starts from the value of 2, showing
a strong increase with the temperature. The onset and the magnitude of Qint

H strongly
depends on the pressure. As an example for P D0:01 bar the onset occurs at
approximately T D12;000 K, while at P D100 bar, the electronic partition function
starts increasing from 20,000 K; however, in this case, the growth of the partition
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Fig. 4.4 First derivative of the electronic partition function of atomic hydrogen in H , H C, e�

plasmas a function of temperature for different pressures

function is much smaller. This behaviour is obviously due to the number of excited
states entering in the electronic partition function at low pressure much larger than
in the high pressure case.

The trend of the electronic partition function against temperature determines the
shape of the first logarithmic derivative. We should expect a strong increase of the
first derivative up to a maximum followed by a decline. This is indeed the case,
as shown in Fig. 4.4. It should be also noted that the first logarithmic derivative
reported in Fig. 4.4 starts from 0, being negligible the contribution of the internal

energy. Remembering that (see (4.31)) the first derivative is equal to U int
H

NH kT , it must

be compared with the reduced translational contribution ( U tr

N kT D 3
2

and H tr

N kT D 5
2

as shown in (4.21)–(4.24)). We can observe that at low pressure (P D 0:01 bar)
the ratio between the reduced internal energy and the reduced translational one
at its maximum is about 4.7 decreasing at 1.5 at 100 bar. For P D 1 bar the
normalized electronic energy reaches a maximum value of about 4, more than twice
the translational reduced energy. A further contribution to the normalized energy
is "d

2kT coming from the dissociation energy of molecules "d � 4:5 eV. This term
ranges from 26 to 0.26 in the temperature range 1;000 < T < 100;000 K. As an
example at P D 0:01 bar, this contribution at its maximum (T D 20;000 K) is
1.30 to be compared with the translational contribution of 1.5 and the electronic
one of about 6.5. The trend of the first logarithmic derivative determines in turn
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Fig. 4.5 Second derivative of the electronic partition function of atomic hydrogen in H , H C, e�

plasma as a function of temperature for different pressures

the behaviour of the second logarithmic derivative (see Fig. 4.5). This last in fact
should increase with the temperature reaching a maximum, then should vanish
in correspondence of the maximum of the first derivative and then becoming
negative. The maximum and the minimum in the second derivative move to higher
temperature as the pressure increases.

Finally, the normalized internal specific heat ( NC int
H =R) at different pressures

(Fig. 4.6) reflects the trends of both first and second derivatives (see (3.27)).
It presents a maximum after which the specific heat falls again to 0. Similar to
the second derivative, the C int

v;H maximum moves towards higher temperatures as the
pressure increases. Note also that, at low pressure (P D 0:01 bar), the contribution
of the electronic specific heat is 10 times larger than the translation (C tr

v;H =R D 3
2
).

Moreover, we observe that, after exciting the electronic states, the specific heat
reaches the maximum and then it starts decreasing until it vanishes. This be-
haviour can be reconducted to the case of the two-level systems as discussed in
Chap. 2.

A comparison of the specific heat at P D 1 bar in Fig. 4.6 with the corresponding
one in Fig. 2.2 for nmax D 10 shows an excellent agreement emphasizing the good
accuracy of the two-level approach in calculating the partition function. Note also
that, as will be clarified in Chap. 8, nmax D 10 is approximatively the value that the
Debye–Hückel theory gives for an hydrogen plasma at atmospheric pressure in the
temperature range 10,000–40,000 K.
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Fig. 4.6 Internal molar specific heat of the electronic partition function of atomic hydrogen in H ,
H C, e� plasma as a function of temperature for different pressures

4.3 The Saha Equation for Ionization Equilibrium

Consider again the ionization reaction in (1.49) and the equilibrium condition in
(1.50) given by

�AC C �e� � �A D 0

Taking into account the expression of the atomic chemical potential reported in
(3.40), the partition function in (4.6) and the different contributions to the chemical
potentials presented in the previous chapter, we have for each species

�s D �tr
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s D �kT ln
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Considering Ns D Ns

V
the particle density, grouping the terms depending on the

temperature and those depending on the particle density, the equilibrium equation
becomes
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The following relations must be considered5:

(a) mA � mAC

(b) "
f
A D D

2

(c) "
f

AC D D
2

C I

(d) "
f
e� D 0

(e) Qint
e� D 2

and substituting in (4.44) we have
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resulting in the mass action law
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and for partial pressures becomes

KI
p D PACPe�
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2Qint
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� I

kT
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(4.47) together with the conditions of constant pressure and of electro-neutrality
(see (1.58)) is used to calculate the partial pressure of the species in the system and
therefore the ionization degree (see Figs. 1.3 and 1.4).

KI
p depends not only on temperature but also on pressure through the

corresponding dependence of the internal partition functions (see Fig. 4.3).

5Here, we are eliminating the nuclear partition functions of both atoms and ions. It must be pointed
out that atomic and its parent ion nuclear partition functions are equal (see (4.7)) and therefore they
are eliminated from the equation. This property is valid also for the dissociation process, even if the
demonstration is not straightforward. Consider the nuclear contribution to the H2 molecule. The
nuclear spin is 1/2 and therefore gn

0 D 2 for the atom. In this case, the nuclear partition function
of atomic hydrogen should appear as the product of two protons. From the same point of view,
we should consider a nuclear partition function of H2 molecule as a product of two independent
protons obtaining the same result and therefore the cancelation in the equilibrium constant.
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4.4 Plasma Thermodynamics

So far, we have shown the properties of single species as well as the ionization
equilibrium. To simplify the problem, we consider an hydrogen plasma in a
temperature range in which the dissociation process can be considered complete.
We already discussed about the influence of electronic excitation on the thermo-
dynamic properties of a single species, in particular for the specific heat of atomic
hydrogen. Now we want to understand the impact of electronic excitation on the
thermodynamic properties of the mixture, leaving in Chap. 8 a detailed analysis.
Here, we present results for the specific heat of an ideal mixture in the framework
of statistical thermodynamics, separating, as already discussed in Sects. 1.5, 1.7.2,
the frozen and the reactive contributions.

Consider again the ionization reaction described in (1.49), the frozen specific
heat at constant pressure of the system H , H C, electrons, is given by

cpf D 1

MH

"
5

2
R.1 C ˛i / C .1 � ˛i / NC el

H

#
(4.48)

as a function of the temperature and the ionization degree. The reactive contribution
is given by

cpr D 1

2MH

R˛i .1 � ˛2
i /

 
� NH 0

RT

!2

; (4.49)

where the reaction enthalpy has been reported in (1.103). The total specific heat is
given by cp D cpf C cpr, while the internal contribution, already included in cpf, is
given by

cint D 1

MH

�
.1 � ˛i / NC el

H

�
: (4.50)

Values of cpf, cpr, cp and cint have been reported in Fig. 4.7 as a function of the
temperature for different pressures. In the temperature range where the ionization
reaction is occurring, the reactive specific heat is much higher than the frozen one,
this predominance decreasing with increasing of the pressure. However, the internal
contribution plays a not negligible role reaching a maximum value of about 22%
with respect to cpf (Fig. 4.8), and a value of about 14% with respect to the total
specific heat (see Fig. 4.9), at P D1 bar. Note also that the trend of the internal
specific heat reproduces the reactive one (see Chap. 2), being to some extent hidden
in the total specific heat. We can anticipate that the use of other cutoff criteria i.e.
the Fermi one, approximately increases by a factor 2 the ratios cint=cpf and cint=cp

(De Palma et al. 2006), as compared with results in Figs. 4.8, 4.9.
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Fig. 4.7 Frozen (f ), reactive (r) and total (tot ) specific heat as a function of the temperature of
(H , H C, e�) mixture for P D 0:01, 1, 100 bar. The internal (int ) contribution has also been
reported in the smaller box
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Fig. 4.8 Ratio (%) between the internal contribution and the frozen specific heat at constant
pressure of (H , H C, e�) for different pressures

Fig. 4.9 Ratio (%) between the internal contribution and the total specific heat at constant pressure
of (H , H C, e�) for different pressures



Chapter 5
Molecular Partition Function: Vibrational,
Rotational and Electronic Contributions

In this chapter, the working equations for the vibrational, rotational and electronic
partition functions of the diatomic species and their contribution to the thermody-
namic properties will be discussed. First, we present closed forms for the vibrational
and rotational partition functions based on the harmonic oscillator and rigid rotor
models. These approximations can be used for both diatomic and polyatomic
molecules. This model considers the molecular partition function as the product
of the contributions of four independent degrees of freedom, nuclear (n), vibration
(vib), rotation (rot) and electronic (el):

Qint D QnQvibQrotQel: (5.1)

The energy is the sum of the three corresponding contributions

U D U vib C U rot C U el (5.2)

being the nuclear energy negligible in the temperature range examined in this book.
The sum rule is valid for all the thermodynamic functions, as Gibbs free energy or
the specific heat. The electronic partition function can be obtained by summing over
electronic levels as for the atoms (see Sect. 4.1.3).

However, a real molecule is neither an harmonic oscillator nor a rigid rotor.
Anharmonic, not-separable, ro-vibrational states must be considered and the general
formalism will be presented. Moreover also the contribution of electronically
excited states can have an important role, with their own ro-vibrational ladders.

5.1 The Harmonic Oscillator

We start examining the vibrational partition function of the so-called harmonic
oscillator (HO). The classical Hamiltonian for this system is the sum of a kinetic
contribution plus a potential term, which depends on the square of the displacement.

M. Capitelli et al., Fundamental Aspects of Plasma Chemical Physics: Thermodynamics,
Springer Series on Atomic, Optical, and Plasma Physics 66,
DOI 10.1007/978-1-4419-8182-0 5, © Springer Science+Business Media, LLC 2012
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The Schrödinger equation can be exactly solved for this system, giving analytical
eigenfunctions and eigenvalues. In particular, the energy levels are

"0vib
v D

�
v C 1

2

�
h�; (5.3)

where v is the vibrational quantum number, ranging from 0 to 1 and � is
the classical frequency of the harmonic oscillator. The relevant vibrational wave
functions are not degenerate so that the statistical weight of each vibrational level
is gv D 1. The vibrational partition function of an harmonic oscillator is then
calculated as

Q0vib D
1X

vD0

e�"0vib
v =kT D e�h�=2kT

1X
vD0

e�vh�=kT : (5.4)

In the harmonic approximation, the energy of levels monotonically grows with v,
tending to infinity, so that the exponential Boltzmann factors entering in the partition
function approaches zero very rapidly as v increases. In this case, no problem of
divergence is present, differently from the electronic partition function of atoms.

Equation (5.4) can be written in term of the quantity � D e�h�=kT as

Q0vib D p
�

1X
vD0

�v: (5.5)

The series in (5.5) is well known and converges, being � < 1, to the following
expression

Q0vib D
p

�

1 � �
D �

eh�=2kT � e�h�=2kT
��1

(5.6)

We can define the characteristic vibrational temperature as

	v D h�

k
(5.7)

rewriting the partition function as

Q0vib D �
e	v=2T � e�	v=2T

��1 D e�	v=2T

1 � e�	v=T
: (5.8)

For temperatures T � 	v, we can approximate the two exponentials in (5.8) as

e˙	v=2T � 1 ˙ 	v

2T
(5.9)

giving for the vibrational partition function at high temperature the following simple
expression:

Q0vib � T

	v
(5.10)
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and applying the general definitions of the internal energy (3.26) and constant
volume specific heat (1.72) we have the well-known relation

U 0vib � NkT (5.11)

C 0vib � Nk (5.12)

already obtained in Sect. 1.6.1 from the equipartition theorem.
However, we should remember that this result is valid only at high temperature.

In general, the internal energy and the specific heat of the harmonic oscillator
should be calculated applying (1.72), (3.26) to the partition function in (5.4)–(5.8),
assuming the following forms

U 0vib D 1

2
Nh� C Nh�

eh�=kT � 1
(5.13)

C 0vib D N
�

h�

kT

�2 eh�=kT�
eh�=kT � 1

�2 : (5.14)

It should be noted that energy of vibrational levels included in the partition
function are referred to the bottom of the potential curve. On the other hand, we
can refer the level energy to the ground state (v D 0)

"vib
v D "0vib

v � "0vib
0 D

�
v C 1

2

�
h� � 1

2
h� D vh� (5.15)

obtaining for the partition function and for the vibrational energy

Qvib D �
1 � e�h�=kT

��1
(5.16)

U vib D Nh�

eh�=kT � 1
(5.17)

while the vibrational heat capacity is independent of the energy reference. The
choice of the reference level in the vibrational partition function, while giving
different results, especially at low temperature, does not affect the equilibrium
constant for the dissociation process, provided that also the dissociation energy is
referred to the bottom of the potential energy (De) when using (5.8) or to the ground
state (D0) when using (5.16) (see Fig. 5.1).

5.2 The Rigid Rotor

As for the harmonic oscillator, the rigid rotor (RR) can be described exactly by the
Schrödinger equation. The energy of rotational levels are given by
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Fig. 5.1 Molecular potential, vibrational ground state and dissociation energies from the ground
state (D0) and from the minimum of the potential curve (De)

"rot
J D J.J C 1/

h2

8 2I D J.J C 1/k	r ; (5.18)

where I is the momentum of inertia of the rotor (considered as a constant) and

	r D h2

8 2Ik
(5.19)

is the characteristic rotational temperature. The statistical weight (the degeneracy)
of a rotational level is given by

gJ D 2J C 1: (5.20)

As for the harmonic oscillator, we must note that the rotational partition function
of the rigid rotor

Qrot D
1X

J D0

.2J C 1/e�"rot
J =kT D

1X
J D0

.2J C 1/e�J.J C1/	r =T (5.21)

converges since the exponential factor goes to zero, as J increases, faster than
the statistical weight, that depends linearly on the rotational quantum number.
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The rotational characteristic temperature of diatomic species is usually small1, and
therefore, for T � 	r , the sum in (5.21) can be approximated by the integral, giving

Qrot �
Z 1

0

.2J C 1/e�J.J C1/	r =T dJ D
Z 1

0

T

	r

d

dJ
e�J.J C1/	r =T dJ D T

	r

(5.22)

For T � 	r only the ground state contribution survive, while for T � 	r

Qrot � 1 C 3e�2	r =T C 5e�6	r =T C 7e�12	r =T C 	 	 	 ; (5.23)

which can be adequately approximated with the first two or three terms.
This approach cannot be applied to homo-nuclear diatomic molecules. Due to

the Pauli’s exclusion principle, the total wave function must be antisymmetric with
respect to the exchange of the nuclei with semi-integer spin, like H2 or symmetric
for those with integer spin, as D2. The molecules with symmetric nuclear wave
function are called ortho-, those with antisymmetric nuclear wave functions are
called para-. As a consequence, the rotational wave function must be coupled
with the proper nuclear wave function to have the global symmetry properties. It
must be noted that J even and odd correspond respectively to a symmetric and
antisymmetric rotational wave functions. As an example, J D 0 behaves like the
1s orbital of atomic hydrogen (i.e. symmetric), J D 1 behaves like 2p orbitals (i.e.
anti-symmetric), J D 2 as 3d orbitals (i.e. symmetric) and so on.

A simple formula links the nuclear multiplicity to the symmetry:(
gs D .s C 1/.2s C 1/

ga D s.2s C 1/;
(5.24)

where gs and ga are the nuclear statistical weight of symmetric (ortho-) and
antisymmetric (para-) states and s is the spin of a single nucleus.

Being ge and go the statistical weight of the nuclear spin wave function
corresponding to rotational states, respectively, with even and odd2 J , they are
related to the nuclear multiplicity depending on the spin of the nuclear particles:
for s semi-integer 8̂̂̂

<
ˆ̂̂:

ge D ga

gs C ga

go D gs

gs C ga

(5.25)

1Commonly 	r � 10 K, except for H2 having 	r � 90 K.
2It must be noted that J even is coupled with the antisymmetric nuclear state if s is semi-integer
and with the symmetric nuclear state if s is integer.
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while for s integer we have the opposite8̂̂
<̂
ˆ̂̂:

ge D gs

gs C ga

go D ga

gs C ga
:

(5.26)

The rotational partition function must written as

Qrot D ge
X

J even

.2J C 1/e�"rot
J =kT C go

X
J odd

.2J C 1/e�"rot
J =kT : (5.27)

As an example, in the case of molecular hydrogen, taking into account that the
protons are fermions, i.e. s D 1=2, we get ge D 3=4 and go D 1=4 so that

Qrot
H2

D 3=4
X

J even

.2J C 1/e�"rot
J =kT C 1=4

X
J odd

.2J C 1/e�"rot
J =kT : (5.28)

In the high temperature limit, we have

X
J even

.2J C1/e�EJ =kT �
X
J odd

.2J C1/e�EJ =kT � 1

2

1X
J D0

.2J C1/e�EJ =kT (5.29)

and therefore (5.28) becomes

Qrot � T

2	r

: (5.30)

In general, we can write the partition function of diatomic molecules as

Qrot � T

�	r

; (5.31)

where � is a symmetry factor D1 for hetero-nuclear diatomic molecules and D2 for
homo-nuclear ones.

At low temperature, (5.28) cannot be used because the interchange between
ortho- and para-hydrogen is practically forbidden. This means that the ortho-and
para-configurations must be treated as independent, not-reacting species. As a
consequence, also at T D 0 K both configurations are present in the ratio gs W ga. In
this case, the partition functions of the ortho-and para-systems must be calculated
separately, i.e.

Qeven D
X

J even

.2J C 1/e�"rot
J =kT

Qodd D
X
J odd

.2J C 1/e�"rot
J =kT (5.32)
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Fig. 5.2 Comparison between rotational specific heat of H2 calculated from the partition function
in (5.28) (O–P) and in (5.33) (Correct O–P). The marked data are experimental results taken from
(Wannier 1966)

and the thermodynamic properties have to be summed weighted by the respective
statistical weight, i.e.

NU rot D ge NUeven C go NUodd

NC rot D ge NCeven C go NCodd; (5.33)

where the ortho- and para- contributions are calculated from the log derivatives of
the relative partition function. This result can be obtained rigorously considering
that the ortho-hydrogen and para-hydrogen are separate species, therefore the
hydrogen partition function must be calculated using (3.48), i.e. the total partition
function is given by3 (see (Wannier 1966))

Q? D .QtrQeven/geN

.geN /Š

.QtrQodd/goN

.goN /Š
(5.34)

which leads to (5.33) when applying the log derivatives to the partition function in
(5.34). The rotational specific heat calculated in the two formulations (i.e (5.28),
(5.33)) is given in Fig. 5.2. It should be noted that when considering the partition

3Note that ortho- and para-hydrogen have the same translational partition function, because it
depends only on the mass of the species.
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function in (5.28), a peak is observed at low temperature, corresponding to a reactive
specific heat due to the interchange between ortho-hydrogen and para-hydrogen.
This peak disappears when the partition function in (5.34) is considered. The ortho–
para effect in any case disappears for T > 400 K.

5.3 Molecular Partition Function: Beyond Closed Forms

In the previous sections, closed forms for the vibrational and rotational partition
functions have been obtained separating the different degrees of freedom. In doing
so, we should be aware that, summing over the vibrational and rotational ladders,
we are considering levels with energy exceeding the dissociation limit. In the most
general case, each electronic state is described by its own potential energy curve that
can be approximated by an harmonic oscillator only in a small region close to the
minimum. As a consequence, the momentum of inertia depends on vibrational state.
Moreover, the potential energy curve should be corrected by adding the contribution
of the centrifugal force, which depends on the rotational state. In this way, the
vibrational and rotational states are strictly related and we cannot consider them
separately. For this reason, the relative motion of molecular nuclei is described by
ro-vibrational levels. In this picture, the energy of internal levels of the s-th diatomic
molecule depends on the electronic state n, vibrational v and rotational J quantum
numbers, writing the partition function as4

Qint D 1

�

nm
sX

nD0

vm
s .n/X
vD0

J m
s .nv/X
J D0

gs;n.2J C 1/e� "s;nvJ
kT ; (5.35)

where we can understand that the vibrational energy depends not only on the
vibrational quantum number but also on the electronic state, as well as the rotational
energy depends also on the electronic and vibrational state. The relevant sums are
extended on the available electronic states and the limiting values vm

s , J m
s represent

the maximum vibrational and rotational quantum numbers such that the maximum
total energy is below the dissociation limit of the corresponding electronic state5.
Using this approach, it is not possible to obtain closed form for the partition
function and thermodynamic quantities, and the sum over the energy levels must
be calculated directly, as for the atomic species.

To calculate diatomic molecule energy levels, as well as their statistical
weights, the Schrödinger equation must be considered. The Born–Oppenheimer
approximation, which separates the motion of the electrons from that of the nuclei

4When considering ortho–para effects (5.34), must be extended considering the whole internal
partition function, including the contribution of electronically excited states, of ortho-and para-
configurations calculated separately.
5The centrifugal potential introduces a barrier in the energy curve, resulting in the existence of
quasi-bound states above the dissociation limit. The inclusion of these states in the internal partition
function is argument of a debate.
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is commonly used to this end. The solution of the electronic Schrödinger equation
yields the approximate wave functions of the infinite electronic states, expressing
the energy as a function of the internuclear distance. In this way, the potential
energy curve can be built up, so that the nuclear Schrödinger equation can be
solved, including the centrifugal contribution, to describe the relative motion of
the nuclei. The WKB (Wentzel–Kramers–Brillouin) approach is often used to this
end (Patch and McBride 1969; Stancil 1994; Esposito 1999).

In principle dealing with, the electronic partition function of diatomic species,
one is faced with the same problems already encountered for atomic species. Also
in this case, the partition function diverges due to the infinite levels existing for
the isolated molecule so that one should use a cutoff criterion to avoid this kind of
divergence. In general however one profits of the fact that the high-lying excited
states of a diatomic molecule are characterized by excitation energies much higher
than the corresponding dissociation energy so that, at high temperature, dissociation
is favored with respect to electronic excitation. This is not anymore true for the so-
called low-lying molecular excited states, originating either from the interaction of
the ground state and the low-lying excited states of atoms or from the interaction of
low-lying excited states with themselves (see Appendix A).

5.3.1 Ro-Vibrational Energies

The approach described above requires large computational efforts, and often
the level of ro-vibrational states are calculated by semi-empirical formula, which
coefficients are determined from molecular spectra (Herzberg 1963). The treatment
for diatomic molecules follows the method developed by Drellishak (Drellishak
et al. 1964, 1965) and by Stupochenko (Stupochenko et al. 1960) see also (Capitelli
et al. 1994, 2005a; Giordano et al. 1994; Pagano et al. 2009; Babou et al. 2007).
In this method, the energy of a molecular state is split into three contributions: the
electronic excitation, the vibrational and the rotational energy

"s;nvJ D "el
s;n C "vib

s;nv C "rot
s;nvJ: (5.36)

The vibrational energy associated with the v-th vibrational level of the n-th
electronic state of a diatomic molecule is expressed in analytical form as6

"0vib
s;nv

hc
D !e

�
v C 1

2

�
� !exe

�
v C 1

2

�2

C !eye

�
v C 1

2

�3

C!eze

�
v C 1

2

�4

C !eke

�
v C 1

2

�5

C : : : (5.37)

6The spectroscopic constants are usually expressed as wave numbers (the reverse of a length),
therefore, to be converted in energy unit, the energy equations must be multiplied by the factor hc.
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referring to the bottom of the potential energy curve (see Sect. 5.1). It is more
practical to refer to the ground state (v D 0)

"0vib
s;n0

hc
D 1

2
!e � 1

4
!exe C 1

8
!eye C 1

16
!eze C 1

32
!eke (5.38)

and the energy of excited levels can be expressed as

"vib
s;nv

hc
D "0vib

s;nv � "0vib
s;n0

hc
D !0v C !0x0v2 C !0y0v3 C !0z0v4 C !0k0v5; (5.39)

where the index 0 means that the constants refers to the ground state. The following
relation holds: 8̂̂

ˆ̂̂̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂:

!0 D !e � !exe C 3

4
!eye C 1

2
!eze C 3

16
!eke

!0x0 D !exe � 3

2
!eye � 3

2
!eze � 5

4
!eke

!0y0 D !eye C 2!eze C 5

2
!eke

!0z0 D !eze C 5

2
!eke

!0k0 D !eke:

(5.40)

Assuming that (5.37), (5.39) are valid for all the existing vibrational levels,
we can determine the maximum permissible vibrational quantum number from the
following condition

8<
:

"vib
s;nv < D0.n/ 8v � vm

s .n/

"vib
s;nv � D0.n/ v D vm

s .n/ C 1;
(5.41)

where D0.n/) (see Fig. 5.1) is the dissociation energy of the n-th electronic state
referred to the ground state (v D 0).

The analytical expression of the vibrational energies implies that the potential
energy curve is not an harmonic oscillator. A better approximation is given by the
Morse potential

V.r/ D De

�
1 � e�ˇ.r�re/

�2
; (5.42)

where De is the depth of the potential well and re is the equilibrium position. The
Schrödinger equation can be solved exactly for the Morse potential, giving for the
eigenvalue the expression in (5.37) truncated at the term !exe . In this way, it is
possible to relate the potential coefficients to the first spectroscopic coefficients
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8̂<
:̂

!e D ˇ

2 

s
2De

�

xe D ˇre:

(5.43)

Also, the Morse potential is an approximation that cannot reproduce adequately the
potential energy curve in the asymptotic region, and therefore the Morse potential
eigenvalues are improved by adding higher order terms to the energy expression
in (5.37).

The rotational energy for a non-non-rigid rotor is associated to each vibrational
level in a given electronic states, and is given by

"rot
s;nv.J /

hc
D Bs;nvJ.J C 1/ � Ds;nvJ 2.J C 1/2 C : : : ; (5.44)

where 8̂̂
<̂
ˆ̂̂:
Bs;nv D Be.s; n/ � ˛e.s; n/

�
v C 1

2

�
C : : :

Ds;nv D De.s; n/ � ˇe.s; n/

�
v C 1

2

�
C : : :

(5.45)

The Morse potential describes a non-rotating molecule. In case of rotation, the
centrifugal potential must be added obtaining

V 0.J; r/ D De

�
1 � e�ˇ.r�re/

�2 C h2

8 2�r2
J.J C 1/: (5.46)

The constants in the rotational energy expression can be easily related to the
modified potential constants, obtaining

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂:

Be D h

8 2c�r2
e

De D 4B3
e

!2
e

˛e D 6

!e

	p
!exeB3

e � B2
e




ˇe D De

 
8!exe

!e

� 5˛e

Be

� ˛2
e !e

24B3
e

!
:

(5.47)

The function in (5.46) describes a series of potential curves for consecutive J s
(see Fig. 5.3), which shows a maximum, for J > 0, in a position rm.J / larger than
the potential minimum re.J /. There exist a value J ?

m beyond which the maximum
and the minimum coalesce and the potential becomes purely repulsive. This means
that for J D 0 all vibrational states with energy lower than the dissociation limit are
present and no stable state is present for J > J ?

m.
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Fig. 5.3 Molecular potential for the H2 molecule as a function of the interatomic distance for
different values of the rotational quantum number

The centrifugal distortion of the potential energy determines the existence of
“quasi-bound” states, which have energy between the dissociation limit and the
maximum of the rotational barrier. The classical representation of ro-vibrational
levels given by Herzberg (Herzberg 1963) considers all the rotational states for each
vibrational quantum number, therefore the maximum rotational quantum number
Jm.v/ for each v must be determined. In order to calculate Jm.v/, we differentiate
(5.46) with respect to r

@V 0.J; r/

@r
D 2Deˇe�ˇ.r�re/

�
1 � e�ˇ.r�re/

� � h2

4 2�r3
J.J C 1/ (5.48)

and the position of the maximum rm.J / is obtained setting this derivative equal to
zero

@V 0.J; rm/

@r
D 0 (5.49)

for each J and for any electronic state of the molecule. Once the position of
the maximum of the rotational barrier has been determined, we calculate the
corresponding value of the potential

"max.J / D V 0.J; rm/ (5.50)
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Known "max.J / we can calculate the maximum value of the rotational quantum
number Jm.v/ levels from the condition

"rot
s;nv.Jm/ C "vib

s;nv � "max.Jm/

"rot
s;nv.Jm C 1/ C "vib

s;nv > "max.Jm C 1/ (5.51)

This procedure includes the contribution of bound and quasi-bound states in the
calculation of the partition function.

This method has been extensively applied to many diatomic molecules. We start
examining the H2 molecule, and in particular the behaviour of the internal partition
function Qint, its first and the second log derivatives as well as the reduced internal
specific heat. The first and second log derivatives are linked with the reduced internal
energy U int=RT and to the reduced specific heat NC int=R through (3.26), (3.27).

All the quantities have been calculated according to the methods outlined in this
chapter i.e. the curves refer to:

All Partition function calculated following (5.35) where the ro-vibrational
energy is calculated following (5.36)–(5.45) including electronically
excited states;

Ground As All but considering only the contribution of the ground electronic
state;

Closed Partition function calculated considering only the ground electronic state
and applying the closed form equations. i.e. the harmonic oscillator (see
Sect. 5.1) and the rigid rotor (see Sect. 5.2);

SE Energy levels obtained from the solution of the Schrödinger equation for
the effective potential curve of the ground state of H2;

A comparison of the results obtained applying the four methods reported in
Fig. 5.4 is instructive to understand the limits of harmonic oscillator and rigid rotor
approximation and the role of electronic excitation in the partition function and
related quantities of diatomic molecules. We start discussing the different quantities
obtained by using the closed-form approach. In this case, the internal partition
function presents an abrupt increase in the low and intermediate temperature range
followed by a mild continuous increase of partition function due to the infinite
number of considered vibro-rotational states. In the Ground case, Qint follows
the Closed values in the low and intermediate temperature range, approaching a
plateau in the high temperature region due to the finite number of ro-vibrational
levels inserted in the partition function. On the other hand, the All partition function
closely follows the Ground values until the high temperature starts populating the
electronically excited states.

More pronounced are the differences in the first log derivative (i.e. NU int=RT )
which starts from 1 (excitation of rotational degree of freedom) in the Closed
form case, rapidly approaching the asymptotic value of 2 (excitation of rotational
and vibrational degrees of freedom). Also in the Ground case Qint reaches the
maximum value of 2, decreasing soon after due to saturation effect. It must be noted
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Fig. 5.4 Partition function, its first and second log derivatives and internal specific heat of H2

molecule as a function of the temperature: comparison between calculation with inclusion of
electronically excited states (All), only ground state (Ground), closed expression (Closed), and
ro-vibrational levels from the solution of the Schrödinger equation considering the potential curve
of the ground electronic state (SE)

that the Ground case reaches the value of 2 at lower temperature than the Closed
calculation, because of anharmonicity of vibrational levels. The same occurs for the
All values, which however presents a larger maximum at higher temperature due to
the excitation of electronic states.
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These behaviors are also reflected to the second log derivative that in the Closed
case suddenly increases up to a small maximum and then asymptotically decreases
to zero. This behaviour is completely different from that one obtained by the other
methods. The Ground calculation presents a maximum and a minimum, vanishing
very high temperatures, while the All values present two maxima and two minima,
approaching the zero value after the second minimum.

Finally the reduced internal specific heat from Closed form method rapidly
passes from a value of 1 (rotational excitation) to a value of 2 (rotational and
vibrational excitation) keeping this last value in all the temperature range. On the
contrary, the Ground specific heat rapidly reaches a value a little larger than 2, after
which starts decreasing to zero. The electronic excitation, on the other hand, is
responsible in the All calculation for the large maximum at T � 30;000 K after
which it starts to decrease to zero. It is interesting to notice that the log derivatives
and specific heat calculated in the Ground case are in good agreement with the
values obtained with SE method, when accurate ro-vibrational states calculated
solving the Schrödinger equation are included in the partition function. This result
demonstrates the accuracy of the method described in this section.

The results presented in this figure are representative of many other diatomic
systems. In particular, the internal specific heat calculated with the All method
should present at least two maxima, one due to the ro-vibrational excitation of
ground electronic state of the diatom and one to the electronic excitation. The
magnitude and the temperature of the second maximum depends on the number
and the energies of electronic states inserted in the partition function. In the case
of H2, the two maxima are separated, because in addition to ground state, a series
of excited states with a total multiplicity of 129 and energy ranging from 11.37 to
15.31 eV have been inserted in the partition function (Pagano et al. 2008; Pagano
et al. 2009). Moreover, the difference in the energy between the last ro-vibrational
levels of the ground electronic state of H2 (i.e. approximately 4.50 eV) and the
energy of inserted electronic states is high enough to clearly separate the influence,
on the thermodynamic properties, of the electronic excitation and of the ground
state.

Results for N2, N C
2 and O2, OC

2 calculated according to the All approach
(including electronically excited states) have been reported in Fig. 5.5. These
results present a similar qualitative trend for all the considered systems, while
strong differences appearing in the maximum of internal energy and specific heat
due to the different number of electronic states inserted in the relevant partition
functions. Comparison with Fig. 5.4 shows that the electronic contribution to the
specific heats is evident in the case of N2 and OC

2 molecules where the jump of
the specific heat after the excitation of the vibrational degree of freedom clearly
appears. This behaviour is a little hidden in the case of O2 and N C

2 molecules. The
relevant differences, as already pointed out, are due to the number of bound states
considered in different molecules (Capitelli et al. 2005a; Giordano et al. 1994). As
an example, in the case of N2 molecule, we consider, in addition to the ground state,
10 electronically excited states the energy of which ranges from 6.22 to 11.05 eV
with a total multiciplicity of 40, partially overlapping with the vibrational manyfold
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Fig. 5.5 Partition function, its log derivatives and reduced internal specific heat of N2, N
C
2 , O2

and O
C
2 as a function of temperature

Fig. 5.6 Reduced specific heat of CO and NO molecules as a function of the temperature: com-
parison between calculation including (continuous line) and neglecting (dashed lines) quasi-bound
states

of the ground state. On the other hand, for N C
2 we consider, in addition to the ground

state, 5 electronically excited states with energy ranging from 1.14 to 8.01 eV and a
total multiciplicity of 16. Details can be found in (Capitelli et al. 2005a; Giordano
et al. 1994) where one can also appreciate the quality of the reported results by
comparison with existing accurate calculations as well as other results for diatomic
and polyatomic molecules for high temperature planetary atmospheres (Earth, Mars
and Jupiter).
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Note that our results have been obtained by considering both bound and
quasi-bound rotational states. Inclusion of quasibound levels increases the specific
heat in the zone of the excitation of electronic states, due to the fact the quasi-
bound rotational energy levels merge with the corresponding electronic levels of the
considered molecules (see Fig. 5.6 for CO and NO molecules).

5.4 Polyatomic Molecular Partition Functions

The calculation of the partition function of molecules containing more than two
atoms is much more complex. The general picture of considering electronic,
vibrational and rotational state contributions to energy levels, as in (5.36), maintains
its validity, the nuclear motion involves many different degrees of freedom: there are
two rotational axes for linear molecules and three for the others.

The number of vibrational modes nm can be determined easily from the number
of atoms na in the molecule, given by

nm D 3na � 5 (5.52)

for linear molecules and

nm D 3na � 6 (5.53)

for non-linear one7. Not all the vibrational modes are distinguishable in polyatomic
molecules, therefore, differently from the diatomic molecules, a degeneracy factor
(statistical weight) can appear. To simplify the notation, consider as Œv
 the set
Œv1; v2; : : : ; vm
 of all the modes, being m the number of independent vibrational
modes. The total partition function is then obtained generalizing (5.35), (5.36) (see
(Herzberg 1966) for the general theory) giving

Qint D 1

�

X
n

gel
n e� "el

n
kT

X
Œv


gvib
nŒv
e

� "vib
nŒv

kT Qrot

nŒv
: (5.54)

For polyatomic molecules, the harmonic oscillator approximation is usually
considered, supposing also that different modes do not interact between each other8.
Under these approximations, the vibrational energies and the statistical weights are

7This result can be obtained easily by considering that a system with na atoms has 3na degrees
of freedom, three directions of motion (x; y; z) for each atom. However, three degrees of freedom,
corresponding to the translational motion of the centre of mass, must be eliminated, together with
the rotational motion of the molecule. In general a polyatomic molecule has three independent
rotational axes, but for linear molecules, having only two axes, because the molecular axis is not a
rotational one.
8The vibrational modes are calculated finding the eigenvalues and eigenvectors of the Hessian
matrix of the potential. As a consequence, the hypothesis of independent modes is valid only for
weakly excited molecules.
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8̂̂<
ˆ̂:

"vib
nŒv
 D
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iD1

"vib
ni .vi /

gvib
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nD1

gvib
ni vi

(5.55)

8̂̂̂
<̂
ˆ̂̂̂:

"vib
ni .vi / D !e

 
vi C di

vi

!

gvib
in .vi / D .vi C di � 1/Š

vi Š.di � 1/Š
;

(5.56)

where dn id the degeneracy of th n-th vibrational mode. The energy includes the
contribution of the ground state that must be subtracted. Higher order expansion
can be also considered in this formalism, but available data are very scanty.

The symmetry properties can be extracted by comparing the moment of inertia
with respect to the three axes: considering the constants Ae � Be � Ce as

8̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂:

Ae D h

8 2cIA

Be D h

8 2cIB

Ce D h

8 2cIC
;

(5.57)

where IX is the momentum of inertia with respect to the relevant axis. We must
distinguish three cases:

1 – spherical symmetric molecules
This case includes linear molecules or methane, for which IA D IB D IC . The
rotational partition function is given by

Qrot
nŒv
 D

X
J

.2J C 1/e� "rot
i Œv
J
kT : (5.58)

and the rotational energy is given by the relation

"rot
nŒv
J D BnŒv
J.J C 1/ (5.59)

2 – symmetric top molecules
This case includes H2O , NH3, CO2, for which IA ¤ IB D IC . The expression of
rotational partition function includes a further sum over the index l , the projection
of the total angular momentum on the rotational axis,

Qrot
nŒv
 D

X
J

.2J C 1/

JX
kD�J

e� "rot
i Œv
J l
kT (5.60)
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being the rotational levels non-degenerate because of the symmetry breaking
resulting from rotation–vibration interaction. The energy of the levels is given by

"rot
nŒv
J D BnŒv
J.J C 1/ C .AnŒv
 � BnŒv
/l

2 (5.61)

3 – asymmetric top molecules
In this case, IA ¤ IB ¤ IC . The rotational partition function is the same as for
symmetric top molecules given in (5.60), and the energy of the levels is given by

"rot
nŒv
J D 1

2
.BnŒv
 C CnŒv
/J.J C 1/ C

�
AnŒv
 � 1

2
.BnŒv
 C CnŒv
/

�
l2: (5.62)

The coefficients AnŒv
; BnŒv
; CnŒv
 used in the energy equations (5.59)–(5.62) are
calculated as 8̂̂̂

ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂:

AnŒv
 D Ae.n/ �P
i ˛A

ni

�
vi C 1

2
di

�

BnŒv
 D Be.n/ �P
i ˛B

ni

�
vi C 1

2
di

�

CnŒv
 D Ce.n/ �P
i ˛C

ni

�
vi C 1

2
di

�
:

(5.63)

A sample of results for CO2 and NO2 are reported in Figs. 5.7, 5.8. These results
have been taken from (Capitelli et al. 2005a) where one can also find the relevant
spectroscopic data as well as complete tables for other molecules. Figure 5.7,
in particular, shows the internal partition function and its logarithmic derivatives
for both molecules as a function of temperature, these data being calculated with
the state-to-state approach including electronically excited states. On the other
hand, Fig. 5.8 reports the reduced internal specific heat calculated according to
the state-to-state approach with and without electronically excited states and with
the Closed model. The results can be understood on the same basis discussed for
the diatomic molecules especially the well-defined role of electronically excited
states in affecting the reduced internal specific heat. Note that Closed model behaves
differently for the two reported molecules taking into account that CO2 is linear
and NO2 is angular. As a consequence (remember also the equipartition theorem),
the Closed reduced specific heat for CO2 starts from 1 at very low temperatures
(excitation of the two rotational degrees of freedom) rapidly reaching a plateau of
5 (excitation of 2 rotational and 4 vibrational degrees of freedom). On the other
hand, the corresponding values of NO2 are, respectively, 1.5 (three rotations) and
4.5 (three rotations and three vibrations). Note, however, that for this molecule the
Born–Oppenheimeir approximation is violated (Leonardi et al. 1996; Leonardi and
Petrongolo 1997).
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Fig. 5.7 Partition function and first and second log derivative of CO2 and NO2 as a function of
temperature
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Fig. 5.8 Reduced internal specific heat of CO2 and NO2 as a function of temperature: direct sum
(see (5.54)) including electronically excited states (All) or ground state only (Ground) compared
with Closed form calculation, i.e. harmonic oscillator and rigid rotor



Chapter 6
Real Effects: I. Debye-Hückel

The thermodynamic model described in previous chapters is valid only for an ideal
gas, formed by dimensionless particles colliding as hard spheres. However, a plasma
contains also charged particles, interacting through electrostatic forces, which are
effective also at long distance. If the density of charged particle is sufficiently high,
the plasma must be considered as a Debye mixture and the thermodynamic functions
must be consistently corrected (Fermi 1936; Griem 1962, 1997; Wannier 1966;
Zaghloul 2005, 2004).

6.1 Debye–Hückel Theory

The corrections to thermodynamic properties of ideal plasmas can be obtained
by using the Debye–Hückel theory, first developed to describe high concentration
electrolyte solutions. The starting idea is that every ion tends to attract ions of
opposite charge and to repel those with the same charge sign. Each positive ion
feels a negative potential which modifies in the first place the internal energy of the
system and thereafter all the other thermodynamic properties. We can write down
an expression for the electrostatic energy �UDH of a solution of ions as

�UDH D 1

2
qe

NX
sD1

Nszs˚s; (6.1)

where qe is the absolute value of the electron charge,Ns is the number of particles of
the s–th species having charge zsqe and experiencing a mean electrostatic potential
˚s due to the presence of other ions. To determine ˚s , we consider an ion of the
species s-th placed at the origin of the coordinates and investigate the behavior
of the potential �.r/ as a function of the position r relative to the reference ion.
The number density bN i of the other ions in such a potential is assumed to follow a
spatial Boltzmann distribution

M. Capitelli et al., Fundamental Aspects of Plasma Chemical Physics: Thermodynamics,
Springer Series on Atomic, Optical, and Plasma Physics 66,
DOI 10.1007/978-1-4419-8182-0 6, © Springer Science+Business Media, LLC 2012
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bN i .r/ D Ni

V
exp

 
�qezi �.r/

kT

!
: (6.2)

The potential � is the sum of the contribution of all the charged particles in the
plasma. The Poisson equation1 can be used

r2� D ��q

�0

D �qe

�0

NX
iD1

bN i zi ; (6.3)

where �0 is the vacuum electric permittivity and �q is the charge density. Combining
(6.2), and (6.3), we obtain

r2� D � qe

�0V

NX
iD1

Ni zi exp

 
�qezi �

kT

!
: (6.4)

Under the hypothesis that the thermal energy is larger than the electrostatic
energy, i.e.

kT � jqezi �j (6.5)

for any i , we can expand the exponential in Taylor series2, stopped at the second
term, obtaining

r2� D � qe

�0V

NP
iD1

Ni zi

 
1 � qezi �

kT

!

D � qe

�0V

NP
iD1

Ni zi C q2
e �

�0V kT

NP
iD1

Ni z2
i :

(6.6)

For the condition of global electro-neutrality, we have
PN

iD1 Ni zi D 0 and defining
the Debye length as

1

�2
D

D q2
e

�0kT

NX
iD1

Ni

V
z2
i ) �D D

vuuuut
�0kT

q2
e

NP
iD1

Ni

V
z2
i

(6.7)

the Poisson equation become

1r2 D @2

@x2
C @2

@y2
C @2

@z2

2 ex D 1 C x C 1
2
x2 C 1

6
x3 C � � �
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r2� � 1

�2
D

� D 0 (6.8)

Looking for a spherical symmetric solution3 that vanishes for r ! 1, we get the
well-known Debye potential4

� D A

r
e

� r
�D : (6.9)

To determine the constant A, we should remember that we are considering the
potential around an ion having charge zi qe , and noticing that at short range (r �
�D) � behaves like the coulomb potential we have A D zi qe

4��0
obtaining the Debye

potential

� D zi qe

4��0r
e

� r
�D : (6.10)

Now, the potential � is the sum of the potential generated by the ion in the
center of the reference system and that generated by all the other particles in
the plasma. Obviously, this second contribution, considered as a mean field and
therefore independent on the position (in the plasma bulk), is the potential ˚s acting
on our ion. From these assumptions, we can evaluate ˚s for r � �D expanding the
exponential in (6.10) in Taylor series obtaining

� � zi qe

4��0r

 
1 � r

�D

!
D zi qe

4��0r
� zi qe

4��0�D

: (6.11)

It must be noted that the first term in (6.11) is the Coulomb potential generated by
the reference ion; therefore, the potential ˚s in (6.1) is given by

˚s D � zsqe

4��0�D

: (6.12)

6.2 Debye–Hückel Corrections

6.2.1 Internal Energy

The result obtained in the previous section allows us to calculate the contribution
of the electrostatic interaction to the thermodynamic properties, starting from the
internal energy. Combining (6.1), and (6.12), the internal energy is given by

3In this case, we have r2 D @2

@r2 C 2
r

@
@r

4In nuclear physics, this is also known as Yukawa potential, to model the Strong interaction.
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�UDH D �1

2
qe

NX
sD1

Nszs

zsqe

4��0�D

D � q2
e

8��0�D

NX
sD1

Nsz
2
s : (6.13)

From the definition of the Debye length (6.7), we have that the sum in the previous
equation is given by

NP
sD1

Nsz2
s D V kT�0

q2
e �2

D

(6.14)

�UDH D �1

8
kT

V

��3
D

: (6.15)

6.2.2 Helmholtz Free Energy

To determine the correction to the Helmholtz free energy, we have to consider the
Massieu potential defined as

J D �A

T
D k lnQ: (6.16)

Its derivative with respect to temperature at constant volume is related to the internal
energy as  

@J

@T

!
V

D k

 
@ lnQ

@T

!
V

D U

T 2
; (6.17)

where the last equality follows directly from (3.26). Applying (6.16), (6.17) to the
Debye–Hückel corrections of Helmholtz and internal energies, we have

�
 

@�ADH
T

@T

!
V

D �UDH

T 2
: (6.18)

Form (6.7), (6.13), we can assert that �UDH / 1p
T

and integrating (6.18) we have

�ADH D �T

Z
�UDH

T 2
dT D �KT

Z
T � 5

2 dT D 2

3

Kp
T

D 2

3
�UDH: (6.19)
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6.2.3 Pressure

To determine the correction to pressure, we start from the general thermodynamic
relation  

@A

@V

!
T

D �P: (6.20)

Therefore, the correction to pressure is given by

�PDH D �
 

@�ADH

@V

!
T

D 1

12
kT

"
1

��3
D

� 3
V

��4
D

 
@�D

@V

!
T

#
: (6.21)

From the definition in (6.7), we can say that �D / p
V and therefore

 
@�D

@V

!
T

D d.Kp
V /

dV
D 1

2

Kp
V

D 1

2

Kp
V

V
D �D

2V
: (6.22)

Substituting this result in (6.21), we have

�PDH D 1

12
kT

 
1

��3
D

� 3

2

1

��3
D

!
D � 1

24

kT

��3
D

D �ADH

2V
D �UDH

3V
: (6.23)

The state equation follows directly from (6.20) giving

P D Pideal C �PDH D NkT

V
C �PDH D kT

�N
V

� 1

24��3
D

�
: (6.24)

We can use the state equation to derive V as a function of P and T ; noticing that
�PDH does not depend on the volume, being an extensive quantity, we have

V D NkT

P � �PDH
: (6.25)

However, in general we have that P � �PDH and therefore we can expand the
equation in Taylor series5 that truncated at the first order gives

V � NkT

P

�
1 C �PDH

P

�
(6.26)

5It is
1

a � x
D 1

a
C x

a2
C x2

a3
C : : :
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from which we can calculate the corrections to the volume at constant pressure

�VDH

V
D �PDH

P
: (6.27)

6.2.4 Entropy, Enthalpy and Gibbs Free Energy

The correction to the other thermodynamic functions can be obtained by using
the fundamental relations between the thermodynamic functions. The entropy
correction can be obtained by applying (1.8) to �UDH (see (6.15)) and �ADH (see
(6.19))

�SDH D �UDH � �ADH

T
D �UDH

T

�
1 � 2

3

�
D �UDH

3T
D � 1

24
k

V

��3
D

(6.28)

the enthalpy correction is given by (see (6.15), (6.23))

�HDH D �UDHC�PDHV D �UDH

�
1 C 1

3

�
D 4

3
�UDH D �1

6
kT

V

��3
D

(6.29)

and the Gibbs free energy correction is given by (see (6.19), (6.23))

�GDH D �ADH C �PDHV D �UDH

�
2

3
C 1

3

�
D �UDH D �1

8
kT

V

��3
D

: (6.30)

6.2.5 Heat Capacity

Let us now calculate the correction to the frozen heat capacity. First, we focus on
the constant volume heat capacity

�CvfDH D
 

@�UDH

@T

!
V;Ni

: (6.31)

Remembering that �D / p
T (see (6.7)), grouping all the constant quantities in a

single constant we have �UDH D Kp
T

; substituting this result in (6.31), we have

�CvfDH D K d

dT

1p
T

D � K
2T

p
T

D ��UDH

2T
: (6.32)
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For the constant pressure heat capacity, we refer to the equation

�CpfDH D
 

@�HDH

@T

!
P;Ni

D 4

3

 
@�UDH

@T

!
P;Ni

: (6.33)

In this case, considering (6.26), we have, at the zero-th order, that �UDH / T V

�3
D

/
T 2

�3
D

, where �D / p
T V / T . In this case, �UDH / 1

T
and the heat capacity is then

given by6

�CpfDH D 4

3
K d

dT

1

T
D � 4K

3T 2
D �4�UDH

3T
: (6.34)

6.2.6 Chemical Potential and Equilibrium Constant

Now we can calculate the Debye–Hückel correction to chemical potential using the
general relation given in (3.42) extended to multicomponent system, i.e.,

��sDH D
 

@�ADH

@ns

!
V;T;ni¤s

D 2

3

 
@�UDH

@ns

!
V;T;ni¤s

: (6.35)

It should be noted that the dependence of �UDH on the plasma composition is
contained in the Debye length. Therefore, before proceeding in the calculation of
the correction of the chemical potential, we have to determine the derivative of the
Debye length with respect to the number of molecules of each species. Deriving
both sizes of (6.7), we have

 
@��2

D

@Ns

!
V;T;Ni¤s

D � 2

�3
D

 
@�D

@Ns

!
V;T;Ni¤s

D q2
e z2

s

�0kT V
(6.36)

from which we can obtain the desired derivative, i.e., 
@�D

@Ns

!
V;T;Ni¤s

D � �3
Dq2

e z2
s

2�0kT V
D 1

Na

 
@�D

@ns

!
V;T;Ni¤s

(6.37)

6This equation neglects the Debye–Hückel correction to volume. We can estimate easily this
contribution considering that �UDH / 1p

T V
. Using the expression of V given in (6.25), we

have �UDH /
p

P � �PDH

T
�

p
P

P T
.P � 1

2
�PDH/. Calculating the derivatives we have that

the contribution of volume variation in �D is proportional to
�
�UDH

T

�2
which is a second-order

correction.
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remembering that Ns D nsNa, being Na the Avogadro number. Now that all the
quantities have been determined, we substitute (6.15) in (6.35) obtaining

��sDH D �kT V

12�

 
@��3

D

@ns

!
V;T;ni¤s

D kT V

4��4
D

 
@�D

@ns

!
V;T;ni¤s

(6.38)

that combined with (6.37) it gives

��sDH D � kT V

4��4
D

Na�3
Dq2

e z2
s

2�0kT V
D � Naq2

e z2
s

8��0�D

: (6.39)

The Debye–Hückel correction to the chemical potential of a given species is
null for neutrals and negative for all charged particle

The chemical potential of a species inside a plasma is then the sum of the ideal
contribution (see (1.29)) and the Debye–Hückel correction in (6.39), i.e.,

�is D �0
s C RT ln Ps C ��sDH D �0

i C RT ln Ps � Naq2
e z2

s

8��0�D

: (6.40)

Considering the generic reaction reported in (1.26), grouping the first and the last
terms, the equilibrium constant in a plasma is given by

Kp D exp

�
���0

RT
� ��DH

RT

�
D exp

�
���0

RT

�
	 exp

�
���DH

RT

�
: (6.41)

The first exponential correspond to the equilibrium constant calculated in an ideal
gas, the second exponential is the correction, where

��DH D
NsX

iD1

�i��i DH D � Naq2
e

8��0�D

NX
sD1

�sz
2
s : (6.42)

6.2.7 Lowering of the Ionization Potential

The Debye–Hückel theory gives also the possibility to calculate the lowering of
the ionization potential to be inserted in the Saha equation. Let us start from the
definition of the chemical potential for an atomic species in an ideal gas mixture
reported in (4.40)–(4.42): to this term we should add the Debye–Hückel corrections
in (6.39) giving
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�s D �tr
s C �int

s C �f
s C ��sDH D �0

s C "f
s � q2

e z2
i

8��0�D

; (6.43)

where �0
s combine the translational and the internal contributions7. From this

equation, we can affirm that, in a plasma, due to the electrostatic energy (see (6.1)),
the atoms need less energy to ionize, because the electron in the atom become free
not when it can reach the infinity, but if it can move freely in the plasma. Therefore,
the formation energy of an atom in a plasma can be considered as

"f ?
s D "f

s � q2
e z2

s

8��0�D

D "f
s � KDHz2

s ; (6.44)

where the upscript ? refers to quantity corrected by the Debye–Hückel and

KDH D q2
e

8��0�D

: (6.45)

To calculate the lowering of the ionization potential let us consider the reaction

ACq • AC.qC1/ C e�: (6.46)

The reaction energy, which correspond to the ionization energy of the ACq species,
is given by

I ?
ACq D �"? D

X
�i"

f ?
i D "

f

AC.qC1/�KDH.qC1/2�KDH�"
f

ACq CKDHq2; (6.47)

where the for electron it is ze D �1 and "
f
e D 0. Noticing that IACq D "

f

AC.qC1/ �
"

f

ACq , with a simple algebra we have

I ?
ACq D IACq � KDH

�
.q C 1/2 C 1 � q2

�
(6.48)

and the lowering of ionization potential becomes

�IACq D IACq � I ?
ACq D KDH.q2 C 2q C 1 C 1 � q2/ D 2KDH.q C 1/: (6.49)

6.3 The Effects of Debye–Hückel Correction

We now discuss the differences in thermodynamic properties of a reacting mixture
by comparing results obtained by including or neglecting the Debye–Hückel (D–H)
corrections. The differences are not simply given by the Debye–Hückel corrections

7Here we are neglecting the effect of the ionization lowering on the internal partition function of
atomic species, that will be discussed in Chap. 8.
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Fig. 6.1 Relative Debye–Hückel pressure correction as a function of the temperature for different
values of the total pressure (bar)

described in the previous section. The equilibrium constant becomes a function of
�D , so that the composition of the plasma changes. Moreover, for transformation
at constant pressure, a further correction to composition follows from the nonideal
equation of state in (6.24). As an example, we report results for air plasmas, obtained
by the self-consistent approach described in (D’Angola et al. 2008)8.

To better enucleate the importance of Debye–Hückel corrections on the different
plasma properties, we report the ratio of these corrections to the given thermo-
dynamic properties as well as a comparison between D–H calculations and ideal
quantities. In this last case, no D–H corrections are inserted in the relevant equations,
in particular the lowering of the ionization potential in the different equilibria is
absent. On the other hand, in the ideal case the lowering of ionization potential
is used to truncate the partition function of the different atomic species. Let us first
consider the D–H correction to the pressure, i.e., the quantity �PDH=P as a function
of temperature for different pressures for an air plasma (Fig. 6.1). Inspection of this
figure shows that the negative corrections, while negligible at low pressure, can
reach a value of 10% at P D 1;000 bar. For P > 1;000 bar, this ratio is expected to
strongly increase (Zaghloul 2004, 2005).

Figure 6.2 (top) reports the correction to the enthalpy in the form �HDH=H ,
which closely follows the corresponding trend for the pressure with a maximum
negative deviation of about 7%. In Fig. 6.2 (bottom), on the other hand, we report

8This paper updates self-consistently the cutoff of the electronic partition function of atoms using
the lowering of the ionization potential (see (6.49)) that will be discussed in Chap. 8.
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Fig. 6.2 Relative Debye–Hückel enthalpy correction (top) and the relative difference between
Debye–Hückel and ideal calculations (bottom) as a function of the temperature for different values
of the total pressure (bar)

the quantity .H �H ideal/=H , i.e., the relative difference between corrected (ideal C
Debye–Hückel) and ideal enthalpy. The maximum deviation is similar to the results
of the previous plot even though there is a continuous change of sign in this ratio.

Figure 6.3(top) reports the calculated total specific heat for the air plasma in the
D–H approximation, while Fig. 6.3(bottom) reports the quantity .cp � cideal

p /=cp ,
which presents alternance of sign as the enthalpy reaching however differences up
to 15% for the higher examined pressure.
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Fig. 6.3 Specific heat (top) and the relative difference between Debye–Hückel and ideal calcu-
lations (bottom) as a function of the temperature for different values of the total pressure (bar)

Finally, Fig. 6.4(top) reports the electron density for the air plasma as a function
of temperature for the different pressure, while Fig. 6.4(bottom) reports the ratio
Ne=N ideal

e in the same conditions as Fig. 6.4(top). We can appreciate that at P D
1;000 bar this ratio reaches a value of approximately 1.5, probably due to the lack
of the lowering of ionization potential in the ideal equilibrium constants. Similar
results have been reported in (Patch 1969) for hydrogen plasma.
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Fig. 6.4 Electron density (top) and ratio Ne=N ideal
e (bottom) as a function of the temperature for

different values of the total pressure (bar)

6.4 Beyond Debye–Hückel Theory

The results we have presented in the previous section can be considered representa-
tive of classical corrections of the ideal plasmas through the Debye–Hückel theory.
The results, however, can be affected by two factors:

(a) the use of the classical Boltzmann statistics;
(b) Debye-Huckel theory considers electrons and ions as punctual charges.

Classical statistical physics can be considered a good approximation to quantum
physics (Kremp et al. 2005; Fortov and Khrapak 2006) when the following
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inequality between the thermal de Broglie wavelength (�th;s) and the inter-particle
mean distance (ds) holds

�th;s

ds

< 1: (6.50)

The thermal de Broglie wavelength is given by

�th;s D
s

2�„2

mskT
D 1:75 � 10�9

p
MsT

m (6.51)

when Ms is the molar mass [g/mole] and T is expressed in (K). In turn, the inter-
particle mean distance is given by

ds D 1

3

qbN s

; (6.52)

where bN s is the particle density of the species s.
Electrons, due to their mass, are the component which can suffer by the use of

the classical Boltzmann statistics. To understand whether the inequality in (6.50)
is satisfied for the limit conditions reported in this book, we consider an atomic
hydrogen plasma in the following equilibrium cases (Capitelli et al. 1972).

case (a) P D 1;000 bar, T D 15;000 K and bN e D 9:56 � 1023 m�3

case (b) P D 1;000 bar, T D 35;000 K and bN e D 9:22 � 1025 m�3.

Use of (6.50)–(6.52) yields the following values for �th;e , ds and the ratio �th;e=de

for the electrons in the plasma

case (a) �th;e D 6:08 � 10�10 m, de D 1:01 � 10�8 m,
�th;e

de

D 0:060

case (b) �th;e D 3:98 � 10�10 m, de D 2:21 � 10�9 m,
�th;e

de

D 0:18

indicating a fair amount of confidence in the use of Boltzmann statistics for the
extreme conditions reported in this book.

Let us now consider the modification of the Debye–Hückel corrections allowing
finite dimensions of the charged particles. The simplest model is to describe the
plasma particles as hard spheres with a mean contact distance dc . According to
Ebeling (1976), this quantity is given by

dc � �th;e

8
: (6.53)

The chemical potential of a given charged species is then modified as follows
(see (6.39))
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�s D �id
s � q2

e

8��0�D

�
�D

�D C dc

�
: (6.54)

Inspection of (6.54) shows that the ideal chemical potential is corrected by the

usual Debye–Hückel term (see (6.39)) with the additional factor fE D
	

�D

�DCdc



.

Applying these corrections for the considered cases, we obtain

case (a) dc D 4:98 � 10�11 m, �D D 8:64 � 10�9 m, fE D 0:991

case (b) dc D 7:61 � 10�11 m, �D D 1:34 � 10�9 m, fE D 0:964.

The same conclusions can be reached by comparing the chemical potential
of the electron component calculated in the ideal gas approximation with the
corresponding values obtained by taking into account electron–electron interactions.
Use of the results reported by Kremp et al. (2005) (see Fig. 2.1 in the reference)
show that nonideality effects start contributing for Ne � 1028 m�3 (T D 12;000 K),
an electron density range largely exceeding that one investigated in this book.
Finally, we want to report that very recently corrections to the Debye–Hückel
approximation have reported (Ẑivný 2009) for calculating the constant volume
thermodynamic properties of SF6 plasma starting from different initial conditions
by using essentially (6.54). The largest deviations occur for an initial concen-
tration of SF6 equal to 10 mole/m3, which generates a total pressure in the
range 1–10,000 bar in the corresponding temperature range 1,000–50,000 K. The
corresponding �PDH=P increase from zero (T D 1;000 K, P D 1 bar) to 7.81�10�2

(T D 50;000 K, P D 1;000 bar). In the same temperature and pressure ranges
�cDH

p =cp and �cDH
pf =cp values, respectively, increase from zero to 0.05 and 0.04.

All corrections basically confirm the corresponding ones calculated in this chapter
with first-order Debye–Hückel theory.



Chapter 7
Real Effects: II. Virial Corrections

This chapter starts defining statistical ensembles and the relative partition functions
which are the starting point to completely characterize the thermodynamic proper-
ties of a system. It must be noted that the partition functions can be determined in
the framework of the classical or quantum theory, considering the proper statistics.
In this book, we consider mainly nondegenerate plasmas, where the effects of Pauli
exclusion principle (Bose/Einstein or Fermi/Dirac distributions) are not relevant1,
and the Boltzmann statistics can be used.

7.1 Ensembles and Partition Functions

The statistical description of a system formed by a large number of particles N
need the definition of the phase space � , having N 6 dimensions, where each
point is determined by the position r and momentum p D mv of each particle
Œr1; p1; r2; p2; : : : ; rN ; pN 
 
 Œr3N ; p3N 
, where the particle position ranges in the
volume of the system2.

A system is also limited by constraints which define a subspace of � . In the
framework of statistical physics, three cases are considered, the micro-canonical
(��), the canonical (�c), and grand-canonical (�G) ensembles. Each ensemble
is characterized by the density of states, called also distribution function fz, and

1 An exception to this assumption can be found in Chap. 5 for the ortho–para effect in the rotation
of light diatomic molecules.
2 If the particles have internal structure, as excited states or angular momentum, variables to
consider internal states must be added.
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defined as the number of states in a small volume of the phase space, so that the
volume of a given subsystem z, called partition function Qz is given by

Qz D
Z

�z

fz
�
r3N ; p3N � dr3Ndp3N D

Z
�

fz
�
r3N ; p3N � dr3N dp3N (7.1)

being fz
�
r3N ; p3N � D 0 for Œr3N ; p3N 
 … �z. A physical quantity F associated

with the system is then given as the mean over the given ensemble of the quantity
F assumed in each point of the space phase

Fz D 1

Qz

Z
�

F �r3N ; p3N �fz
�
r3N ; p3N � dr3N dp3N : (7.2)

Nevertheless, the ensemble description is a mathematical picture and must be
related to experimental operations. For a thermodynamic system, we measure the
mean value of a quantity over a large interval of time over the trajectory of the
system in the phase space

�
r.t/3N ; p.t/3N �, i.e.,

Fz D lim
t!1

1

t

Z t

0

F �r.�/3N ; p.�/3N � d�: (7.3)

The values calculated by the two expression in (7.2)–(7.3) must be equivalent
and this is true only if for t ! 1 the trajectory passes from all the points in the
ensemble �z (ergodic hypothesis). Obviously, the distribution function completely
defines the corresponding ensemble.

7.1.1 The Micro-Canonical Ensemble

The micro-canonical ensemble corresponds to an isolated system, defined by the
constant energy constraint given by

E
�
r3N ; p3N � D E0: (7.4)

Under the ergodic hypothesis, all the points of � verifying (7.4) are equiprob-
able. Moreover, to account that in the Boltzmann statistics the exchange between
particles will give no results, the factor 1=N Š must be considered. Under these
conditions, the micro-canonical distribution function is

f�

�
r3N ; p3N � D 1

N Š
ı
�
E.r3N ; p3N / � E0

�
(7.5)
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and the micro-canonical partition function ( MQ), which is the volume of the phase
space occupied by the system states, is given by

MQN ;E0 D 1

N Š

Z
�

ı
�
E.r3N ; p3N / � E0

�
dp3N dr3N ; (7.6)

where ı is the Dirac function3.

7.1.2 The Canonical Ensemble

The canonical ensemble (�c) corresponds to a system, defined by the constant
number of particle constraint exchanging energy with a reservoir, corresponding to
a closed system in classical thermodynamics. The environment, having energy Eres

and the system, having energy E , together must be described by a micro-canonical
ensemble with the further conditions that the particles are not exchanged between
the two systems, i.e.,

Eres C E
�
r3N ; p3N � D E0; (7.7)

where Eres and E are calculated considering the summation in (7.4), considering
the particles in its own subsystem. The canonical ensemble describes only the state
of the system and the distribution function depends on the state of the environment.
Considering that the environment is larger than the system and its thermal state
is determined by the temperature, the distribution function is then given by (see
Sect. 3.1)

fc

�
r3N ; p3N � D 1

N Š
ı
�
Eres C E.r3N ; p3N / � E0

�
e� E

kT (7.8)

and the canonical partition function (Q?
N ) is defined by

Q?
N .T / D

Z
�

MQN ;Ee� E
kT dE: (7.9)

7.1.3 The Grand-Canonical Ensemble

The grand-canonical ensemble (�G) corresponds to a system exchanging energy
and particles with the reservoir, i.e. an open system in classical thermodynamics.
As for the canonical ensemble, the environment, having energy Eres and number of

3 The Dirac function can be calculated as the limit for d ! 0 of a square function of unitary

surface and width d , i.e., ı.x/ D
�

0 x ¤ 0

1 x D 0
:
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particles Nres, and the system, having energy E and number of particles N , together
must be described by a micro-canonical ensemble, i.e.,

Eres C E D E0

Nres C N D N0: (7.10)

The distribution function is given by

f�

�
r3N ; p3N � D 1

N Š
ı ŒEres C E � E0
 ı.N C Nres � N0/e

N��E
kT (7.11)

and the grand-canonical partition function (bQ) is calculated according the following
equation

bQ.T / D
1X

ND0

Q?
N .T /zN ; (7.12)

where

z D e
�

kT (7.13)

is the fugacity (� is the chemical potential). The summation in (7.12) has been
extended to infinity because N0 � Nres � N .

7.2 Virial Expansion for Real Gases

The ideal gas represents the simplest model to describe a collection of N mass
points enclosed in a volume. Particles can interact with the boundaries of the volume
by means of elastic collisions and the Hamiltonian for this system takes the form

H D
NX

iD1

p2
i

2mi

; (7.14)

where the kinetic (or total) energies of individual particles are N identified constants
of the motion. This limit is valid for dilute gas, where the interactions between
the particles and the interaction potential vanish over most of phase space. In
this section, interactions between particles are introduced but the system will be
considered sufficiently dilute so that an expansion of the pressure in a power series
of the density quickly converges. This procedure, called virial expansion, was
introduced in Sect. 1.10 in the framework of classical thermodynamics and in this
chapter will be discussed from the statistical point of view. The virial expansion
for a classical gas will be obtained developing the power series for the partition
function bQ in the grand-canonical ensemble. In the case of a real gas, the classical
Hamiltonian is

H D
NX

iD1

p2
i

2mi

C ˚ .fri g/; (7.15)
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where ˚ fri g is the potential energy, function of the position of all the particles.
The range of inter-particle interactions is considerably smaller than the size of the
system; therefore, only pairwise interactions will be considered here, even if higher
order terms can be important at high pressure.

The state of a system is characterized by the couple .E;N /, whose probability
is given by

W .E;N / D 1bQe� E��N
kT : (7.16)

The entropy of the system can be written as

S D �k
X
E;N

W .E;N / log W .E;N /

D �k
X

W

 
�E � �N

kT
� logbQ

!

D U

T
� � NN

T
C k logbQ (7.17)

being

U D P
N

EW .E;N /

NN D P
N

NW .E;N / ;

respectively, the average energy and the average number of particles. By introducing
the following thermodynamic potential ˝ ,

˝ D �kT logbQ (7.18)

and by using (7.17), the Gibbs potential, introduced in Sect. 1.1, can be written as

G D � NN D U � TS � ˝ D U � TS C P V (7.19)

and the following general equation of state for a collection of NN indistinguishable
mass points holds

P V D �˝ D kT logbQ: (7.20)

The grand-canonical partition function is related to the canonical partition
function through (7.12). In the continuos limit, the canonical partition function Q?

N
can be calculated as

Q?
N D 1

N Š

Z
�c

d!e� H.fri ;pi g/
kT ; (7.21)
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where

d! D
NY

iD1

dridpi (7.22)

represents the volume element in the phase space �c .
For an ideal gas, the partition function (see Sect. 4.1.2 for details) is given by

Q?
N D 1

N Š

�
V

�3
th

�N
; (7.23)

where �th is the de Broglie thermal wavelength (see (4.15)). By recalling (7.12),
(7.23), the grand-partition function becomes4

bQ D
X
N

1

N Š

�
V

�3
th

�N
zN D

X
N

1

N Š

�
zV

�3
th

�N
D e

zV
�3

th : (7.24)

The equation of state of ideal gas (1.60) becomes

P V

kT
D logbQ D z.�/V

�3
th

: (7.25)

Considering (7.19) and by recurring to thermodynamic principles

dU � T dS � �d NN D �P dV (7.26)

the following expression holds

d˝ D �SdT � NN d� � P dV: (7.27)

From (7.27), the pressure P and the mean number of particles NN can be obtained,
respectively, as follows

P D �
 

@˝

@V

!
T;�

(7.28)

and

NN D �
 

@˝

@�

!
T;V

: (7.29)

By using (7.24), the potential ˝ is

˝ D �kT logbQ D �kT V

�3
th

z .�/ D �kT V

�3
th

e
�

kT (7.30)

4
1P

nD0

xn

nŠ
D ex :
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the mean number of particles becomes

NN D z.�/V

�3
th

(7.31)

and the equation of state for an ideal gas is

P V

kT
D NN : (7.32)

For real gases, the derivation of the equation of state is much more complicated
due to the presence of the interaction potential in the Hamiltonian and as a
consequence in the grand partition function. In fact, (7.21), considering also (7.23),
becomes

Q?
N D 1

�3N
th N Š

�N ; (7.33)

where �N are the configuration integrals5

�N D
Z

	 	 	
Z NY

iD1

drie� ˚.fri g/
kT (7.34)

and the grand-canonical partition function is

bQ D
X
N

1

�3N
th N Š

�N zN (7.35)

If the gas is sufficiently rarefied, pairwise interactions could be considered6 and
the potential can be written as

˚ .fri g/ D
NX

iD1

NX
j <i

˚ij
�ˇ̌

ri � rj

ˇ̌�
: (7.36)

As first step, the equation of state for a real gas is calculated in the framework of
the canonical ensemble. From (7.28), considering that the partition function in the
canonical ensemble is given by (7.21), the configuration integral in (7.34) becomes

�N D
Z

	 	 	
Z NY

iD1

drie
�P

i;j <i

˚ij
kT D

Z
	 	 	
Z NY

iD1

dri

Y
i;j <i

.1 C fij/; (7.37)

5 In this theory, interaction potentials depend only on positions fri g and not on the velocities fpi g
as it can happen in the presence of magnetic fields.
6 Considering forces which involve multi-particle interactions is possible but the theory becomes
much more complicated.
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where

fij D e� ˚ij
kT � 1 (7.38)

are the Meyer’s functions. Even considering only pairwise interactions, configura-
tion integrals are extremely complex to evaluate. The first few terms in such an
arrangement of the integrand have the formY

i;j <i

.1 C fij/ D 1 C
X
j <i

fij C
X
j <i

X
k<m

fijfkm C : : : ; (7.39)

where the third term must satisfy the conditions that j ¤ k if i D m and
i ¤ m if j D k. To deal systematically with such a series, it will be useful to
adopt a diagrammatic notation (cluster expansion). For a dilute system, the first
contribution of the series given in (7.39) is dominant and configuration integrals can
be rearranged as

�N D V N C
Z

	 	 	
Z X

j <i

fij

NY
kD1

drk: (7.40)

Obviously, each fij depends only on the coordinates of two particles, and, for each
interaction we can change the variables from single particle position to center of
mass Rij D .ri mi C rj mj /=.mi C mj / and to relative position rij D ri � rj

7

obtaining

Z
	 	 	
Z

fij

NY
kD1

drk D
Z

	 	 	
Z Y

k¤i;j

drk

Z
dRij

Z
fij.rij/drij D

D V N�1

Z
fij.rij/drij (7.41)

because the first integrals, as well as the one over Rij, are equal to the volume, and
therefore we have

�N D V N C V N�1
X
j <i

Z
fij.rij/drij: (7.42)

If the gas is formed by a single species, all the integrals are equal. In this case, the
summation can be substituted by the factor N .N�1/

2
� N 2

2
giving

�N D V N C 1

2
V N�1N 2

Z
fij.rij/drij D V N

�
1 � N 2

V
B2

�
; (7.43)

7 The potential here is considered spherical symmetric. The theory must be extended to consider
potentials depending on the relative orientation of molecules. These effects can be important for
large molecules.



7.2 Virial Expansion for Real Gases 125

where

B2 .T / D 1

2

Z
dr
	
1 � e� ˚.r/

kT



D 2�

Z 1

0

r2
	
1 � e� ˚.r/

kT



dr (7.44)

represents the second coefficient of the virial expansion.
From (3.37), (7.33), in the framework of the canonical ensemble, the Helmholtz

free energy A can be written as

A D �kT logQ?
N D �kT log

�
1

N Š�3N
th

V N
�

1 � N 2

V
B2 .T /

��
D

D �kT

�
N log V � log

�N Š�3N
th

�C log

�
1 � N 2

V
B2 .T /

�

'

' �kT

�
N log V � log

�N Š�3N
th

� � N 2

V
B2 .T /



; (7.45)

where log .1 C x/ � x if jxj � 1. From (7.28), the equation of state can be
written as

P D �
 

@A

@V

!
T

D kT

"
N
V

C
�N

V

�2

B2 .T /

#
: (7.46)

Equation (7.46) contains only the first two terms of the more general virial
expansion respect to NV D V=N (compare with (1.143))

P

kT
D

1X
nD1

Bn

�
1

NV
�n

; (7.47)

which can be derived considering the full series given in (7.39) more generally in
the framework of the grand-canonical ensemble.

The result in (7.47) has been derived for monoatomic gases, but it can be
shown (Landau and Lifshitz 1986) that it is still valid for polyatomic gases,
where the interaction potential depends on the mutual distance and on mutual
orientation of the molecules. The rigorous and complete derivation of the virial
expansion can be obtained in the framework of the grand-canonical ensemble, by
adopting a diagrammatic notation (Hirschfelder et al. 1966; Huang 1987; Landau
and Lifshitz 1986). As an example, the third and fourth virial coefficients are written
as (Hirschfelder et al. 1966)

C D B3 D 1

3

•
fijfjkfikdridrj drk (7.48)

D D B4 D 1

8

ZZZZ �
3fijfjkfksfis C 6fijfikfisfjkfks

Cfikfisfjkfjsfks
�

dridrj drkdrs: (7.49)
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7.2.1 The Virial Coefficient for Mixtures

The theory presented in the previous section considers a gas formed by a single
species. For mixtures, such approach needs to be extended. Being the interaction
energy a global property of the gas, the expression of the thermodynamic properties
does not change in the form, and it is reasonable to suppose that the differences
between pure gases and mixtures are limited to the value of the virial coefficients.
An important aspect of the virial expansion is that the multi-particle interaction
potential is approximated as the combination of pairwise potentials8. To determine
the dependence of the virial coefficients on the composition, we have to start from
(7.42). Let us consider the particle i -th and let us group the second particle by
species. Because the potential does not depend on the chosen particle, but only
on the species, we can substitute the second sum over particles with the sum over
species, multiplying by the number of particles

�N � V N D V N�1
X

i

X
sj

Ns

Z
fisj

drisj
D V N�1

X
sj

Nsj

X
i

Z
fisj

drisj
:

(7.50)

Now we can sum over the first index, grouping particles of the same species.
However, we need to divide by 2 to account for particle exchange obtaining

�N � V N D 1

2
V N�1

X
si

X
sj

NsiNsj

Z
fsi sj drsi sj : (7.51)

We can define now the second virial coefficient for the a couple of species

Bsi sj D 1

2

Z
fsi sj drsi sj (7.52)

transforming (7.51) in

�N D V N

0
@1 C N 2

V

X
si

X
sj

�si �sj Bsi sj

1
A : (7.53)

Comparing (7.43), and (7.53), we can obtain the virial coefficient for a mixture

B2 D
X

si

X
sj

�si �sj B2;si sj : (7.54)

8 Even if the virial expansion can be applied for a generic multi-particle potential (Landau and
Lifshitz 1986), a closed expression that relates the virial coefficients to the gas composition can be
obtained only under the approximation of binary collisions.
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Fig. 7.1 Virial correction to air mixture enthalpy as a function of the temperature for different
pressures

Similar procedure can be followed for higher approximation giving for the third
coefficient

B3 D
X

si

X
sj

X
sk

�si �sj �sk
B3;si sj sk

; (7.55)

where B3;si sj sk
is calculated following (7.48).

Virial corrections for an air mixture in the dissociation–ionization regime have
been obtained by inserting (7.54), (7.55) in the relevant equations reported in
Sect. 1.10. The relevant B2;si sj and B3;si sj sk

coefficients have been taken from
the pioneristic work of Hinselrath et al. (Hilsenrath and Klein 1965) who used
phenomenological potentials for describing neutral–neutral and neutral–ion inter-
actions. Ion–ion interactions are, on the other hand, considered in the framework of
Debye–Hückel theory. It should be noted that second and third virial coefficients
calculated by Hinselrath span a temperature range from 2,000 to 15,000 K so
that a fitting procedure has been used to get information about their values for
T < 2;000 K and T > 15;000 K.

Figures 7.1–7.4 report the virial corrections for an air plasma in a wide tempera-
ture range and for different total pressures. Inspection of the different figures shows
that the virial corrections to the enthalpy, frozen specific heat, pressure and entropy
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Fig. 7.2 Virial correction to air mixture frozen specific heat as a function of the temperature for
different pressures

Fig. 7.3 Virial correction to air mixture pressure as a function of the temperature for different
pressures
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Fig. 7.4 Virial correction to air mixture entropy as a function of the temperature for different
pressures

start being important from P > 100 bar becoming very important at P D 1;000 bar
and T < 2;000 K. The entropy corrections are also in line with the estimation made
in (Capitelli and Ficocelli 1977) for pure H2 and pure Ar systems (T D 2;000 K,
P D 1;000 bar). In this case, �Svir=S are, respectively, of 0.5% and 1% against of
a value of 2% for the air mixture at P D 1;000 bar and T D 2;000 K).

The results reported in Figs. 7.1–7.4 can be considered representative of the
importance of virial corrections in affecting the thermodynamic properties of air
plasmas in the low temperature-high pressure regime. An improvement of the input
data should be made specially for correctly taking into account the atom–atom and
atom–ion interactions occurring on several potential curves (see below). On the
other hand, our calculations have been done by disregarding the effect of the virial
corrections on the relevant equilibrium constants describing the different equilibria
(see (Fisher 1966)).

Finally, it is worth noting that the results reported in Figs. 7.1–7.4 have been
obtained neglecting the Debye–Hückel corrections to avoid possible compensation
effects.
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7.3 Virial Coefficient Calculations

The second virial coefficient can be obtained directly by experiments or by
integrating (7.44) with suitable potentials. In addition to the considerations made
in Sect. 1.10 on the linking between the virial coefficients and the parameters a and
b in the Van der Waals equation, we want to discuss the following points:

1. The direct calculation of second virial coefficient from phenomenological
potentials.

2. The calculation of second virial coefficient for atom–atom and atom–ion
interactions occurring on bound and repulsive potential curves.

7.3.1 Phenomenological Potential

The calculation of B.T / for neutral–neutral interaction is usually performed by
using a phenomenological potential which contains a finite-sized hard core with
a weak attractive well following at larger distances. These phenomenological
potentials derive from improvement of Lennard-Jones (Hirschfelder et al. 1966)
type potential (see also (Pirani et al. 2004, 2006)). Under many case, a Buckingam
EXP6 potential (Hirschfelder et al. 1966) is used.

Second virial coefficients as a function of the temperature are reported in Fig. 7.5
(left) for N2 � N2, N � N2 and N � N interactions (Hilsenrath and Klein 1965)
and in Fig. 7.5 (right) for H2 � H2, H � H2 and H � H (Fisher 1966). Note
that the phenomenological N � N virial coefficients (Hilsenrath and Klein 1965)

Fig. 7.5 Second virial coefficient for interactions in N2 � N (Hilsenrath and Klein 1965) and
H2 � H (Fisher 1966) systems. Comparison with N � N (*) (Guidotti et al. 1976) calculated for
the pure repulsive potential 7˙u
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is very close for T > 2;000 K to the corresponding values calculated considering
only the repulsive septet state of the N.4S/ C N.4S/ interaction (Guidotti et al.
1976), implying that the phenomenological potential overestimates the repulsive
contribution.

7.3.2 Open Shells Interactions

In the case of atom–atom as well as atom–ion interactions with incomplete shells,
the second virial coefficient is given by an average between all contributions
arising in the collision (Capitelli and Lamanna 1976; Guidotti et al. 1976). As an
example, two oxygen atoms in the ground state (3P ) can interact along 18 potential
curves (12 repulsive and 6 bound), while the same atoms in the electronic state 1S

interact along one repulsive potential. The second virial coefficient in the case of
multipotential interaction is given by

B.T / D< B >D
P

k gkBkP
k gk

; (7.56)

where gk and Bk are, respectively, the statistical weight factor and the second virial
coefficient for k-th potential curve. The sum is carried out over all potentials which
correlate at large distances with the same electronic states (i.e., n D 18 for 3P C3 P ;
n D 1 for 1S C1 S ).

The calculation of (7.44) for repulsive states9 is straightforward while some
caution must be used for attractive potentials. In this last case, the virial coefficient
can be split, to a good accuracy, into two contributions

B D Bf C Bb; (7.57)

where Bf is the contribution due to the atoms which collide, but remain separated
(positive energy states), and Bb is the contribution related to molecule formation in a
bound state (negative energy). In many circumstances, one must calculate only Bf ,
because Bb is generally taken into account in the equilibrium constant of the disso-
ciation reaction and internal partition function (Biolsi and Holland 1996, 2010). The
coefficient Bf can be calculated by considering an effective potential following the
Hill procedure (Hill 1955) or subtracting the bound and quasi-bound contributions
from the total second virial coefficient following Rainwater (Rainwater 1984).

Figure 7.6 reports the second virial coefficients calculated by (7.57), (7.56) (only
Bf for bound states) for N � N (Guidotti et al. 1976) and O � O (Capitelli and
Lamanna 1976) interactions with the corresponding values obtained by Hilsenrath

9 In principle, no completely repulsive state exists due to the presence of very small depth due to
Van der Waals forces.
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Fig. 7.6 Second virial coefficient of O � O and N � N interactions. Comparison between
(Hilsenrath and Klein 1965; Capitelli and Lamanna 1976) and (Guidotti et al. 1976)

(Hilsenrath and Klein 1965). We can see that the differences between the two sets of
results are very important, the phenomenological values being much larger than the
corresponding ones, which consider the Bf in the calculation of the bound potential.

This contribution presents negative values decreasing the positive one from
the completely repulsive states. In the case of N � N interaction, the first two
bound potentials (1˙C

g , 3˙C
u ) states present Bf negative values which decrease

the positive contribution from the septet state, the quintet state being in intermediate
position. This explains the large differences reported in Fig. 7.6. In the case of O�O

interaction, the differences between values from (Hilsenrath and Klein 1965) and
from (Capitelli and Lamanna 1976) are lower due to the fact that only six potentials
over eighteen are bound. It should be noted that also BH�H values reported in
Fig. 7.5 have been calculated, in addition to the triplet repulsive state, taking into
account the Bf contribution from the singlet bound H � H potential.

7.4 The REMC Method

The Reaction Ensemble Monte Carlo method (REMC) is a molecular-level com-
puter simulation technique for predicting the equilibrium behavior of reactions
under nonideal conditions. The REMC method was independently developed and
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published by two different groups in 1994 (Johnson et al. 1994; Smith and
Triska 1994). REMC provides a computational tool for the exact10 calculation
of macroscopic plasma properties, such as equilibrium concentration for each
species, and relevant thermodynamic quantities, such as density, pressure and
energy, considering simultaneously multiple reactions and multiphase transitions.
The only required information for molecular-level computer simulation techniques
is a description of the intermolecular forces among the particles and internal
chemical potentials for the reacting components.

REMC is based on the grand-canonical ensemble for a multicomponent plasma,
since it involves molecular and atomic production and loss due to chemical reactions
and to particle movement in and out the computational volume.

REMC can be adopted considering different constraints, i.e., fixing two relevant
quantities between internal energy, enthalpy, entropy, temperature, pressure, and
volume (Smith and Lı́sal 2002; Smith et al. 2006). The resulting methods enable,
for example, the direct solution of isoentropic or adiabatic problems.

In the following some details of REMC calculations under constant pressure
and temperature conditions, for a single-phase system, will be given. Reaction
equilibria in plasmas at specified temperature and pressure are attained when the
Gibbs free energy of the system is minimized, subjected to mass conservation and
charge neutrality conditions. Adding to the total partition function, the internal term
Qint

i for a molecule i which includes rotational, vibrational, electronic, and nuclear
contributions, the grand-canonical partition function for a mixture of N reacting
components can be written, from (7.33), as
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where
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Starting from the definition given in (7.34), configuration integrals �Ni can be
written as

�Ni D V Ni

Z
	 	 	
Z

dxNi d!Ni e�ˇ˚.fV;x1;:::;xNi g/; (7.60)

10 Here, exact means that all the terms in the Debye–Hückel theory and infinite virial expansions
are considered.
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where x D r=V 1=3 is a set of scaled coordinates, and ! is a set of orientations and
the grand canonical partition function given in (7.58) becomes

bQ D
1X

N1D0

	 	 	
1X

NsD0

Z
	 	 	
Z

dxN1d!N1 	 	 	 dxNs d!Ns exp Œ� � ˇ˚ .fV; xNi g/
 :

(7.61)

Deviation from nonideality in plasmas arises from long-range Coulombic in-
teraction between charged particles and from short-ranged neutral–neutral and
neutral–charge interactions. Debye–Hückel theory, described in Chap. 6, takes into
account the first source of nonideality11. The contribution of Coulombic interaction
can be accounted for into the REMC method using (6.23), (6.49) which are,
respectively, the ionization potential lowering, entering in the Saha equation, and
the correction to the system pressure.

Computer simulations are usually performed by using a small number N of
particles and the size of the box is limited by the available storage and by the
speed of execution of the program. The computational time taken for evaluating the
potential energy is proportional to N 2. When a particle moves crossing the boundary
of the box, the problem of surface effects can be overcome by implementing periodic
boundary conditions. The cubic box is replicated throughout space to form an
infinite lattice. In the course of the simulation, as a particle moves in the original
box, its periodic image in each of the neighboring boxes moves in exactly the same
way. Thus, as a particle leaves the central box, one of its images will enter through
the opposite face. There are no walls at the boundary of the central box, and no
surface particle. This box simply forms a convenient axis system for measuring
the coordinates of the N particles. When periodic boundary condition is adopted
an infinite number of terms is requested in order to evaluate the total energy. For a
short-range potential energy function, the summation to evaluate total energy can be
restricted considering the particle at the center of a region which has the same size
and shape as the basic simulation box, so that it interacts with all the particles whose
centers lie within this region. This method is called the minimum image convention
and involves N .N � 1/ =2 terms for the calculation of the potential energy due to
pairwise-additive interactions.

The REMC method generates a Markov chain to simulate the properties of the
system governed by (7.61); the chain consists of a combination of three main types
of Monte Carlo steps or state transitions:

D Particle displacements.
R Reaction moves.
V Volume changes fixing the pressure.

11 The Debye–Hückel theory introduces the lowering of ionization potential and the correction
to pressure and to all the thermodynamic functions. It results in a correlation between the
configuration integral and the internal partition function.
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Particle displacements and volume changes are implemented and obtained as in
traditional molecular dynamic simulations (Allen and Tildesley 1989; Frenkel and
Smit 2002). Particles are initially placed in a simulation box and the total energy
of the system is evaluated considering that only pairwise interactions are relevant.
Initial configuration may correspond to a regular crystalline lattice or to a random
configuration but with no hardcore overlaps. A particle is randomly selected and a
random displacement is given by

rl D rk C � .& � 0:5/ ; (7.62)

where k and l are, respectively, the initial and the final state of the system, �

are small displacements properly selected and & are random numbers uniformly
distributed between 0 and 1. The reverse trial move is equally probable. The particle
displacement is accepted with a transition probability k ! l given by

W D
kl D min Œ1; exp .�ˇ�˚kl/
 (7.63)

while old configuration is considered if the transition is not accepted, i.e. the
generated random number is higher than Wkl.

In REMC simulations at pressure and temperature fixed, the volume is simply
treated as an additional coordinate, and trial moves in the volume must satisfy the
same rules as trial moves in positions. A volume trial move consists of an attempted
change of the volume from Vk to Vl (Allen and Tildesley 1989; Frenkel and Smit
2002)

VlDVk C �V .& � 0:5/ (7.64)

and such a random, volume-changing move will be accepted with the probability

W V
kl D min

�
1; exp
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Vk

�

: (7.65)

When a volume change is accepted, the size of the box and the relative position of
the particles change. In order to calculate W V

kl the new configuration energy must
be recalculated considering the new distances between particles.

In the case of one phase, chemically reacting system with one reaction at constant
temperature and volume (Lisal et al. 2000, 2002), changes in the number of particles
Ni due to the reaction steps satisfy the law of conservation of mass for the system,
which may be expressed as

Ni D N 0
i C ��i i D 1; 2; : : : ; s; (7.66)

where � is the extent of reaction (generally an integer equal to 1 for a forward
reaction and �1 for a reverse reaction), N 0

i the number of particles of species i

in the state prior to a reaction step, and �i the stoichiometric number of species i . In
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the following, reaction events are attempted in the forward and the reverse directions
with equal probability and the reaction considered can be expressed as

NX
iD1

�iXi D 0; (7.67)

where Xi denotes the chemical symbol of species i . Starting from the grand-
canonical partition function 7.61, the probability that a system is in a state k is
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where ˚k is the configurational energy of state k. If the reaction proceeds in the
forward direction the probability of the state l is
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and the transition probability for the reaction in the forward direction W
�DC1

kl is
given by
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where N� D P
i �i is the net change in the total number of particles for the reaction

considered. Recalling that the ideal gas equilibrium constant is given by
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while the contribution of ionization lowering is not included in the equilibrium
constant but as a further pressure correction (Lisal et al. 2000). The transition
probability for a reaction move can be written as
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To simulate a chemically reacting system at specified temperature and pressure
rather than at constant temperature and volume, a trial volume change as in (7.65)
must be considered.

In the case of multiple reactions, the REMC approach outlined above for a single
chemical reaction can be straightforwardly generalized (Turner et al. 2008). For any
linearly independent set of nR chemical reactions given by

NX
iD1

�ijXi D 0 j D 1; 2; : : : ; nR (7.73)

and considering that
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the transition probability for a step �j is
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where N�j D Psj

iD1 �ij is the net change in the total number of particles for the
reaction j .

The procedure for a reaction move is the following:

(a) A reaction is randomly selected.
(b) The reaction direction, forward or reverse, is randomly selected.
(c) A set of reactants and products according to the stoichiometry of the reaction

considered is randomly selected.
(d) The reaction move is accepted by evaluating the probability associated with

performing changes of particle identities, together with particle insertions and
deletions, if the total number of particles changes during the selected reaction.

If N is the total number of particles, the optimal choice to speed up the convergence
of the method is to consider steps (D), (R) and (V ) with the relative frequency
N W N W ˛N with ˛ in the range 1–10.

REMC approach is particulary suitable for plasmas especially at high pressure.
This method has been successfully applied to Helium (Smith and Triska 1994),
Argon and air plasmas (Lisal et al. 2002), respectively, consisting of 2, 7 and 26
ionization reactions. The interactions between charged particles in these calculations
were described by Deutsch potentials (Smith and Triska 1994; Lisal et al. 2002)
while both the neutral–neutral particle interactions and the neutral–ion particle
interactions were approximated by EXP6 potentials (Ree 1983).

Figures 7.7, 7.8 show the comparison of the molar specific heat and of the
molar enthalpy of Helium at 4,000 bar obtained by REMC simulation with
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Fig. 7.7 Molar heat capacity of the helium plasma at 4,000 bar. Circles denote the REMC
simulation results (Smith and Triska 1994), with solid curve corresponding to the results obtained
using the Debye–Hückel approximation

Fig. 7.8 Molar enthalpy of the helium plasma at 4,000 bar. Circles denote the REMC simulation
results (Smith and Triska 1994), with solid curve corresponding to the results obtained using the
Debye–Hückel approximation
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Fig. 7.9 Internal molar heat capacity of He and HeC at 4,000 bar. Circles and squares denote
results obtained using Debye–Hückel approximations, with dashed and solid curves corresponding
to the data used by Lisal in REMC simulations (Smith and Triska 1994)

those obtained by statistical thermodynamic approach, including Debye–Hückel
corrections (D’Angola et al. 2008) (see also Chap. 10). However, different data
have been used in REMC (NIST 2009) and in statistical thermodynamic calcula-
tions (Pagano et al. 2008; Pagano et al. 2009), in order to estimate the internal
contribution of atomic species to the thermodynamic properties and equilibrium
constants. In particular, Fig. 7.9 shows internal molar heat capacity of He and HeC
adopted for REMC and our self-consistent calculations. It should be noted that the
REMC data use only observed levels without any cutoff criteria, while the Debye–
Hückel calculations consider extension of levels using Ritz–Rydberg approach (see
Sect. A.3) with a proper cutoff criterion (see Chap. 8), which introduces in the
internal contribution the dependence on the pressure. As a result, in the present case
at very high pressure, the used self-consistent cutoff introduces less electronic levels
in both He and HeC partition functions with respect to the REMC method, having
strong consequence on the internal specific heat. This point can partially explain the
differences observed in Figs. 7.7, 7.8 in addition to the different methods to treat
non-ideal effects.



Chapter 8
Electronic Excitation and Thermodynamic
Properties of Thermal Plasmas

In this chapter, we will show the importance of electronic excitation in deriving
partition functions, their first and second derivatives, as well as the thermody-
namic properties of single atomic species and of plasma mixture. Recent results
obtained by using different cutoff criteria are discussed and compared with the so-
called ground state method, i.e., by inserting in the electronic partition function
only the ground electronic state of the atomic species. The results obtained by
a self-consistent calculation of partition function, equilibrium composition and
thermodynamic properties will be rationalized taking into account the qualitative
considerations reported in Chap. 1.

A rich literature (Capitelli and Molinari 1970; Capitelli and Ficocelli 1970, 1971;
Capitelli et al. 1971, 2009) does exist on the subject indicating the existence of
compensation effects in the calculation of the thermodynamic properties of thermal
plasmas which hide in some cases the role of electronic excitation of atomic species
in affecting the global thermodynamic properties of the plasmas. Results for the
case study of an oxygen plasma in a wide range of temperature (500–100,000 K)
and pressure (1–1,000 bar) are reported and can be considered representative of
many other systems.

As a matter of fact, the atomic levels entering in the partition function are calcu-
lated or measured considering an isolated atom, such that the energy of the levels
is not perturbed by the environment. On the other hand, we present some results
obtained considering the influence of the plasma on the energy levels by solving
the Schrödinger equation for the atomic hydrogen in the presence of the Debye
potential.

8.1 Cutoff Criteria

We have already anticipated in Chap. 4 the necessity to introduce a suitable cutoff
criterion to prevent the divergence of electronic partition functions of atomic

M. Capitelli et al., Fundamental Aspects of Plasma Chemical Physics: Thermodynamics,
Springer Series on Atomic, Optical, and Plasma Physics 66,
DOI 10.1007/978-1-4419-8182-0 8, © Springer Science+Business Media, LLC 2012
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hydrogen. We extend these results to multi-electron atoms by using different cutoff
criteria including:

(a) The ground state method.
(b) The Debye Hückel cutoff criteria.
(c) The Fermi criterion.

Strong differences are expected especially when a complete set (observed and
missing) of electronic levels is used in the calculation.

8.1.1 The Ground State Method

In this case, the internal partition function includes only the ground state

Qint D g1 (8.1)

resulting in null derivatives

dQint

dT
D d2Qint

dT 2
D 0 (8.2)

completely disregarding the contribution of internal states.

8.1.2 Debye–Hückel Criteria

In this case, we have two types of approach, one due to Griem (Griem 1962, 1997)
and one due to Margenau and Lewis (M&L) (Margenau and Lewis 1959).

According to Griem, we write the electronic partition function of a given atomic
species as

Qint D
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gne� "n
kT ;

where "n and gn represent in the order the energy and the statistical weight of the
n-th level. The sum includes all levels with energy up to a maximum value given by
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In turn, the lowering of the ionization potential �Is is given by
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Following M&L, the electronic partition function for atomic hydrogen is written as

Qint D
nmaxX
nD1

gne� "n
kT ;

where nmax is the maximum principal quantum number to be inserted in the partition
function. In turn, nmax is obtained by assuming that the classical Bohr radius of
hydrogenoid atoms does not exceed the Debye length �D i.e.

n2
maxa0

Zeff
D �D;

where Zeff D zs C 1 is the effective charge seen by the electronic excited state
being zs the charge of the species1 and a0 is the Bohr radius. Keeping in mind the
expression
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where V is the volume in [m3], we get
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The two formulations coincide when use is made of hydrogen-like levels presenting,
however, large differences when the dependence of energy on the angular and
spin momenta is considered. In this last case, the partition functions and related
properties calculated according to M&L method exceed the corresponding Griem
values (Capitelli and Ficocelli 1971; Capitelli and Ferraro 1976). This point should
be taken into account when comparing the well-known Drellishak et al. (1963a;
1963b; 1964; 1965) partition functions based on the M&L theory and the corre-
sponding values obtained by the Griem method (see (Capitelli et al. 1970b)).

8.1.3 Fermi Criterion

The Fermi criterion considers an electronic state bound (and then to be included in
the partition function) if its classical Bohr radius does not exceed the inter-particle
distance. One can write

n2
max

a0

Zeff
D 3

r
V

N

1zs D 0 for neutrals, ze D �1 for electrons, zs D 1 for single ionized atoms and so on.
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nmax D
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It should be noted that, following the Fermi criterion, the electronic partition
function depends on the pressure, nmax decreasing as the pressure increases.

8.2 Cutoff From the Schrödinger Equation

The results reported in the previous sections can be rationalized by solving the radial
Schrödinger equation for atomic hydrogen
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2mer2

�
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where R.r/ is the radial wave function, " is the energy eigenvalue, „ is the reduced
Planck constant, ` (0,1,2,3) is the azimuthal quantum number, r is the radial
coordinate, �.r/ is the potential energy and � the reduced mass for the electron–
proton system. Analytical solution of the equation with a Coulomb potential

�c D qe

4��0r
(8.7)

provides the energy levels of the hydrogen atom

"n D �IH

n2
(8.8)

with degeneracy

gn D 2n2: (8.9)

As already pointed out, (8.8), (8.9) inserted in the partition function determines
its divergence implying the necessity of using a cutoff criterion for terminating it. In
this section, we reexamine the problem by considering an hydrogen atom confined
in a spherical box of radius ı. The radial Schrödinger equation has been solved
numerically with the boundary condition (Capitelli and Giordano 2009)2

R.r D ı/ D 0: (8.10)

2This boundary condition is completely different from that one considered for the not confined
atom, i.e., R.r D 1/ D 0.
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Fig. 8.1 Level energies of the hydrogen atom in a box (Capitelli and Giordano 2009) for ` D 0

(left) and ` > 0 (right) compared with the Bohr atom and the particle in a box

In (Capitelli and Giordano 2009), we report results for ı
a0

D 103 and ı
a0

D 104

values by imposing ` D 0 in the radial part of the Schrödinger equation. Figure 8.1
(left) reports the adimensional level energy values

˛n D "n

IH

obtained with ı=a0 D 103 as a function of the principal quantum number n. In the
same figure, we have also reported the analytical reduced level energies, i.e.,

˛Bohr
n D � 1

n2

(labeled Bohr atom), which show the well-known asymptotic trend of level energies

˛Bohr
n

n!1����! 0. The confined atom presents levels that closely follow ˛Bohr
n for low

n, becoming positive for n > 28, asymptotically approaching the values obtained
for the electron in a box in absence of the interaction potential, given by the equation

"box
n D �„2

2meı2
n2 (8.11)
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n D
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where me is the electron mass (see Fig. 8.1). The same behavior has been obtained
for ı=a0 D 104, the energy becoming positive for n > 89. Comparison between
the results calculated with ı=a0 D 103 and ı=a0 D 104 shows that the increase of
ı=a0 shifts the onset of the positive levels to higher n. On the other hand, the bound
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states disappear for ı=a0 ! 0. It is worth noticing that the values of n (for ` D 0)
corresponding to the transition to positive energies can be roughly approximated by
0:9
p

ı=a0.
Different interesting points can be derived from these calculations. The first one

is linked with the fact that the partition function of atomic hydrogen including bound
and positive levels converges since the positive levels present energies increasing
with n2. Thus, the solution of the Schrödinger equation for an hydrogen atom
confined in a box introduces a natural cutoff criterion for the partition function.
Moreover, the principal quantum number at which occurs the onset of the positive
level energies is in satisfactory agreement with the corresponding values obtained by
applying the Fermi cutoff, which gives for the conditions above studied the values
of nmax D 40 and 120 (see (Capitelli and Giordano 2009) for details). Finally,
we want to mention that the equilibrium between bound and continuum levels can
be used in the so-called physical picture to recover the well-known Saha equation
in the chemical picture. All these effects have been obtained by using ns levels.
Going beyond this approximation can be done by calculating the energy levels with
different l values. Figure 8.1 (right), on the other hand, reports the level energies as a
function of the azimuthal quantum number for the ı=a0 D 103 case. We can see that
the quantum number ` starts affecting the results only for n > 15, the dependence
on ` becoming dramatic when we consider very small ı=a0 values.

So far we have presented results of the Schrödinger equation in the box
considering a Coulomb potential. Now we consider the same problem accounting
for a Debye potential (Capitelli et al. 2011a; Ecker and Weizel 1956, 1957; Smith
1964; Roussel and O’Connell 1974) i.e.

�D D qe

4��0r
e�r=�D : (8.13)

Figure 8.2 reports the energy levels for two Debye lengths �D=a0 D 102 and
�D=a0 D 108 for a box ı=a0 D 103 (Capitelli et al. 2011a). In the same figure,
we also report the Bohr levels as well as those of the particle in the box. Inspection
of the figure again shows the transition from bound to continuum levels occurring,
respectively, at nmax D 11 for �D=a0 D 102 and nmax D 29 for �D=a0 D 108.
The last value coincides with the corresponding value in the presence of Coulomb
potential, i.e., the Debye length is too high for affecting the results. In both cases,
the positive levels asymptotically go toward the particle in the box, while the bound
levels closely follow the Bohr results. On the other hand, the energy levels are
strongly affected by the Debye length for �D=a0 < 102 (see below). As an example,
the transition between negative and positive energy values at �D=a0 D 10 occurs at
nmax D 3, i.e., the Debye potential dominates the action of box confinement.

It should be noted that the Margenau and Lewis cutoff criterion for the reported
three conditions give, respectively, nmax values of 3, 10, and 104 compared to 3,
11, and 29 from numerical results. The excellent agreement between Margenau and
Lewis results and numerical ones for the first two cases is not surprising because the
Margenau and Lewis results were based on the energy levels calculated by Ecker
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Fig. 8.2 energy levels for different values of the Debye length �D compared with the Coulomb
levels and the particle in the box

and Weizel (Ecker and Weizel 1956, 1957) solving the Schrödinger equation in
the presence of the Debye potential. The disagreement for the third case, i.e., for
�D=a0 D 108 is the consequence of the inefficiency of the Debye potential in affect-
ing the energy levels for such large value of Debye length, as already pointed out.

8.3 Case Study: Oxygen

We consider a pure oxygen plasma composed mainly by O2, O , OC, OC2,
OC3, OC4, OC5 and electrons, and including also the minority species OC

2 ,
O�

2 , O�. We write a set of equilibrium constants as well as the condition of
electroneutrality and the Dalton law for the total pressure. The equilibrium constants
are calculated, following the statistical thermodynamics, from the relevant partition
functions (Capitelli et al. 2005a; Giordano et al. 1994) which, in the case of atomic
species, depend on electron and ionic species densities and temperature (Griem
criterion) and on the pressure and temperature (Fermi criterion). On the other
hand, the internal partition functions, calculated using the ground state method,
are constant, having Qint D g1. Note also that in the case of atomic species we
use a complete set of energy levels, including observed and missing ones, these
last obtained by using semiempirical methods based on Ritz and Ritz–Rydberg
equations (see Sect. A.3).
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Fig. 8.3 Self-consistent atomic partition function, its temperature derivatives and internal specific
heat as a function of the temperature for O , OC, OC2 for P D 1 bar (left) and P D 100 bar
(right): comparison between Griem and Fermi cutoff

We start examining the properties of selected atomic species obtained by using
the Griem and Fermi cutoff criteria. These data should be compared with the ground
state values that for the O , OC and OC2 assume for T > 2; 000 K the values
QintŒO.3P /
 D 9, QintŒOC.4S/
 D 4, QintŒOC2.2P /
 D 6, first and second
derivatives being null (see Sect. 8.1.1).

Electronic partition functions, their first and second logarithmic derivatives and
internal specific heats are reported as a function of temperature for the three species
O , OC, and OC2 in Fig. 8.3 at 1 bar (left) and at 100 bar (right). In both cases,
the two cutoff criteria give different values of partition function, these differences
propagating on the first and second logarithmic derivatives as well as in the specific
heats. In particular, the Fermi criterion includes in the calculation more levels than
the Griem criterion, with the consequence of larger partition functions. Note also
that, due to the energy range of electronic levels, the partition function of the
different species increases in well-defined temperature ranges, without significant
overlapping between each other. This aspect is better evidenced in the first and
second logarithmic derivatives which present well distinct maxima. The values of
the second logarithmic derivative calculated according to Fermi criterion overcome
the corresponding Griem values up to the maximum, the opposite occurring in
the decreasing region. This behavior is reflected on the specific heat of the
single species which in any case presents the trend characteristic of a system
containing a finite number of excited levels, i.e., the internal specific heat after the
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maximum asymptotically reaches a zero value (see Chap. 1). The large influence of
electronic excitation on the specific heat can be understood by reminding that the
corresponding values for the ground state are null, independently of temperature,
and the reduced translational contribution is 5/2 (Capitelli et al. 1970a).

Let us now examine the behavior of the enthalpy variation for the processes

O • OC C e�

OC • OC2 C e�

OC2 • OC3 C e�:

We can write, respectively,

� NH1 D 5

2
RT C NU int

OC � NU int
O C IO

� NH2 D 5

2
RT C NU int

OC2 � NU int
OC C IOC

� NH3 D 5

2
RT C NU int

OC3 � NU int
OC2 C IOC2 ;

where Is represents, respectively, the first, second and third ionization potentials of
oxygen. Values of � NHi for the ionization reactions calculated at different pressures
according to the three cutoff criteria have been plotted as a function of temperature
in Fig. 8.4.

While � NHi calculated in the ground state approach linearly increases as a
function of temperature, results obtained according to Griem and Fermi cutoff
criteria initially increases, as in the ground state case, but, as the temperature grows,
� NHi starts decreasing up to a minimum value, after which it increases again.
Note that in all the cases the � NHi calculated inserting the electronic excitation
asymptotically converge at very high temperature to the � NHiC1 calculated without
considering the electronic excitation, i.e.,

� NH1 D 5

2
RT C NU int

OC � NU int
O C IO

high T���! 5

2
RT C IOC D � NH2.ground/: (8.14)

As a matter of fact, at very high temperature we have that NU int
O � IO and NU int

OC �
IOC , because the level energies approach the ionization, therefore

IO C NU int
OC � NU int

O

high T���! IOC

justifying the asymptotic behavior previously discussed (see also Chap. 2). This
is the consequence of taking into account the excitation of both O and OC
which occurs in different temperature ranges. Beyond the minimum of � NH1, the
electronic excitation of the ionized species NU int

OC begins to contribute to � NH while



150 8 Electronic Excitation

Fig. 8.4 Reaction enthalpy of the ionization processes of oxygen and its first and second ions
calculated for P D 1, 10, 100, 1,000 bar. Comparison between Griem and Fermi cutoff and ground
state model

the term NU int
O is now decreasing with increasing temperature (compare Fig. 8.3).

A similar behavior is found for the other ionization reactions, although shifted on
the temperature axis.

Figures 8.5–8.7 report the entropy of the O , OC, and OC2 species as a function
of temperature at different pressures calculated according to the ground state method
and to Griem and Fermi cutoff criteria. The differences between the three methods
reflect the trend of the corresponding electronic partition function and of its first
logarithmic derivative. The contribution of the electronic states is well evident in the
different plots when Griem and Fermi start deviating from the corresponding values
calculated using the Ground state method. In any case, the trend of the entropy for
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Fig. 8.5 Molar entropy of oxygen atom for different pressures and for different cutoff criteria

the different species monotonically increases, passing from ground to Griem and
Fermi methods following the corresponding increase of the electronic contribution.

The dependence of the total thermodynamic quantities on cutoff criterion results
from the combination of the single species properties and plasma composition.
To analyze this contribution, we report the dependence of the molar fractions
of the majority species of the oxygen plasma. Figure 8.8 reports the molar
fractions of majority species (left) and their derivatives for O and OC2 (right) as a
function of temperature at different pressures comparing the different cutoff criteria.
The selected derivatives are representative of the dissociation and first ionization
processes, corresponding, respectively, to the maximum and the minimum in O

derivative, and the second and third ionizations (maximum and minimum in OC2

derivative). We can observe that the dissociation weakly depends on the chosen
cutoff, while the three ionization processes are strongly influenced, showing large
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Fig. 8.6 Molar entropy of OC for different pressures and for different cutoff criteria

differences between the Ground and Fermi/Griem results. This behavior can be
used to understand the trend of reactive contribution to the total specific heat.

Let us now examine the thermodynamic properties of plasma mixture. We start
with the behavior of the total entropy (Fig. 8.9) of oxygen plasma as a function of
temperature at different pressures calculated with the different methods. In general,
the Fermi criterion presents larger entropy values compared to Griem and ground
state methods, the differences not exceeding 10%.

The behavior of the different contributions (cpf, cpr) of the specific heat as well as
the total specific heat (cp) are reported in Figs. 8.10 and 8.11. In particular, Fig. 8.11
(left) reports the frozen specific heat as a function of temperature for the different
pressures. In this case, the differences between the three methods can reach at high
pressure a factor larger than 2, the values calculated by using the Fermi criterion
overcoming in any case the values obtained by Griem and Ground state methods.
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Fig. 8.7 Molar entropy of OC2 for different pressures and for different cutoff criteria

More complicated is the situation for the reactive contribution as reported in
Fig. 8.11 (right), which however can be understood by using the derivatives of the
molar fractions reported in Fig. 8.8. The dissociation regime is not affected by
the cutoff of electronic partition function as confirmed by the results of Fig. 8.11
(right). The ionization regimes are strongly affected by the chosen cutoff criterion.
In particular, the second ionization peak follows the history of the derivative of
OC2 species. The compensation between Fermi, Griem, and Ground state methods
occurs only in the dissociation and first ionization regimes while large differences
are observed for the second, third, and fourth ionization reactions, these differences
increasing at high pressure. At 1,000 bar, we observe the largest deviations between
the three methods.

The differences between Griem and Fermi values are reduced in the total specific
heat due to the partial compensation between frozen and reactive specific heats (see
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Fig. 8.8 Molar fractions of the majority species in the oxygen plasma (left) and its derivative
(right), for O and OC2, as a function of the temperature: comparison between Griem and Fermi
cutoff criteria and Ground state method

Figs. 8.10–8.11). On the other hand, this compensation tends to disappear when
comparing these values with the corresponding ground state values. Only at P =1
bar, the ground state values are in good agreement with the other two methods,
while the differences strongly increase at high pressure.

To farther emphasize the role of electronic excitation in affecting the thermody-
namic properties of thermal plasmas we plot, as an example, the ratio between the
internal contribution

cint D 1

M

NX
sD1

ns
NC int
s (8.15)

and the frozen and total specific heat, being ns the number of moles of the s-th
species and M the total mass. Figure 8.12 reports cint=cpf and cint=cp calculated
according to Fermi and Griem methods. From this figure, we can appreciate that the
ratio cint=cpf calculated with the Fermi criterion can exceed by more than a factor
of 2 the corresponding ratio obtained by the Griem criterion, being in any case a
large fraction of the frozen specific heat. On the other hand, the ratio cint=cp is
less affected by the presence of electronic states, still representing however a large
fraction of the total specific heat. In any case, the importance of electronic excitation
is emphasized taking into account that cint for the ground state method is zero in the
ionization regimes. These results are confirmed by the corresponding ones recently
reported in (Singh et al. 2010) for argon and argon–hydrogen plasmas.
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Fig. 8.9 Entropy, calculated using the Ground state method, and its relative difference with
respect to calculations using Griem and Fermi cutoff criteria

Finally Fig. 8.13 report the frozen and the total isentropic coefficients for the
oxygen plasmas calculated according to the three methods. Once more the effects
of the electronic excitation is well evident on the frozen coefficient being in any
case appreciable for the total isentropic coefficient. The low-temperature and high-
temperature behaviors of the isentropic coefficient have been widely discussed in
Sect. 1.9.

The results reported in this section do not exhaust the numerous methods used
in the literature for the calculation of the electronic partition functions of atomic
(neutral and ionized) species. It is worth noting that many researchers calculate
the partition function inserting in it only the observed levels (Moore 1949) (see
also the website (NIST 2009)) avoiding in this case any cutoff criterion (Capitelli
and Ficocelli 1977). Of course, this method or other similar methods (Capitelli
and Molinari 1970) which insert in the partition function only few levels above
the ground state dramatically underestimate the electronic contribution to the



156 8 Electronic Excitation

Fig. 8.10 Constant pressure specific heat calculated with different cutoff criteria

thermodynamic properties of thermal plasmas being not so far from the correspond-
ing values obtained with the ground state method. Note that the famous Gurvich’s
tables (Gurvich and Veyts 1989) insert in the partition function only the electronic
levels coming from the rearrangement of valence electrons, i.e., only the low lying
excited states are considered. As an example, the partition function of an oxygen
atom is obtained by inserting the ground state 3P and the 1D and 1S metastable
excited states. On the other hand, the well-known JANAF tables (Chase Jr. 1998) as
well as the pioneeristic calculations of Gordon and McBride (Gordon and McBride
1994) consider levels which energy is lower than (I �kT ) where I is the ionization
potential of the species. Also, in this case the electronic partition functions are
underestimated.
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Fig. 8.11 Constant pressure specific heat calculated with different cutoff criteria: frozen (left) and
reactive (right) contributions

Fig. 8.12 c int=cpf (left) and c int=cp (right) as a function of the temperature for different pressures
and calculated with different cutoff criteria
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Fig. 8.13 �f (left) and � (right) as a function of the temperature for different pressures and
calculated with different cutoff criteria

8.4 Partition Function and Occupation Probability

In the astrophysical community as well as in dense plasma physics, other formu-
lations of electronic partition functions are used. In particular, the Plank–Larkin
(PL) partition function is widely used in the characterization of high pressure-high
temperature non ideal plasmas. In this case, the partition function for the atomic
hydrogen is given by the following equation3

QPL
H D e�IH =kT

1X
nD1

gn

�
e"0

n=kT � 1 � "0
n

kT

�
; (8.16)

where "0
n D IH � "n D IH =n2 and gn D 2n2. This equation is well known in the

astrophysical literature as well as in the formulation of Equation of State (EOS) for
high-temperature high-pressure plasmas because (Kremp et al. 2005):

1. It is convergent in the limit N ! 0.
2. It is continuos at the Mott densities.

3Note that the preexponential term reports the calculated electron partition function to the counting
of electronic levels from the ground state



8.4 Partition Function and Occupation Probability 159

3. It is a good approximation, at low temperature, for the two-particle sum of states.
4. It depends only on the temperature.

However this partition function gives incorrect population of highly excited states.
In fact, it does not include the contribution of states with binding energies less than
kT . To overcome this point, Vorobeev et al. (2000) (see also (Hummer and Mihalas
1988)) introduces the following partition function (always for atomic hydrogen)

QV
s D e�Is=kT

1X
nD1

wsne"0
sn=kT ; (8.17)

where wn is the occupation probability of the n-th quantum state which in the grand-
canonical ensemble assumes the form

wsn D exp

�
�4�

3
.fe C fi / r3

n

�
; (8.18)

where fe and fi are the fugacities of electrons and protons and rn is the Bohr radius
of the n-th quantum state. Moreover, Vorobeev et al. (2000) rewrite the equation as

QV
s D e�Is=kT

1X
nD1

wsn

�
e"0

sn=kT � 1 � "0
sn

kT

�
C e�Is=kT

1X
nD1

wsn
"0

sn

kT
; (8.19)

where wn D 1 for the first term of (8.19) and wn in the second term of (8.19) is
derived from (8.18). Note that wn D 1 is justified because the main contribution
of this component is made by bound states with orbit dimension less than the
Landau length Ln D q2

e =.4��0kT /. Values of partition function of atomic hydrogen
obtained by the Vorobeev et al. (2000) approach as a function of temperature for
different electron densitiesNe shows a qualitative and quantitative trend very similar
to those calculated by using the Griem approach for the same electron densities.

A similar approach has been recently presented by Zaghoul (2010) who used
(8.17) in combination with the occupation probability

wsn D exp

"
�
�

�IH

IH � "n

�3
#

; (8.20)

where �IH is the lowering of the ionization potential of the hydrogen atom and "n

is the energy of the n-th level. In turn, �IH is expressed according the neighbor
approximation, i.e.,

�IH D �C
.z C 1/q2

e

4��0R0

; (8.21)

where C is a constant and R0 D 3
p

3�N ?=4 with N ? D NH C NH C . This
approach as well as that one reported in (Vorob’ev et al. 2000) can be reduced to the
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Fig. 8.14 Comparison between occupation probability method (Qw) and traditional cutoff (Q).
Plank–Larkin (PL) result is also reported

results, which can be obtained by a cutoff criterion. This point can be understood
by looking at the results reported in Fig. 8.14, where we compare the partition
function obtained by using (8.17) with the occupation numbers given by (8.18) and
the corresponding values obtained by cutting the partition function of the atomic
hydrogen to an nmax consistent with a given lowering of the ionization potential
taken, in this case, as a parameter. We can see that the two methods give essentially
the same results in a wide range of temperature as well as for different lowering
of the ionization potential. To a first approximation, the lowering of 500 cm�1

approximately mimics an atomic hydrogen plasma at atmospheric pressure of about
1023 m�3, while �IH D8,600 cm�1 is typical of an hydrogen plasma at 1,000 bar
and Ne D 1026 m�3. The corresponding partition functions are in satisfactory
agreement with those reported in (Vorob’ev et al. 2000).

Two other interesting aspects can be deduced from Fig. 8.14. The first one is that
the value of the partition function for a lowering of 50,000 cm�1 � 5 eV calculated
according to nmax gives a constant value 2, i.e., the degeneracy of the ground
state of atomic hydrogen, while the use of (8.17), (8.20) gives a constant value a
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little smaller than 2. In the same figure, we have also reported the Plank–Larking
partition function which strongly underestimates the partition function as underlined
by Vorobeev et al (2000). Apparently, the PL can be used only for very dense
plasmas when the excited states are practically disappearing. The results based on
the occupation probabilities, while being in good agreement with the corresponding
values derived from the use of a given cutoff criterion, could be used to eliminate the
discontinuities in the partition functions occurring when the cutoff criterion is used
specially when the complete set of energy levels is reduced to two or three levels.

8.5 Debye–Hückel Energy Levels

The results in Sect. 8.4 have been obtained by using in the relevant partition
functions complete sets of electronic levels derived by using semiempirical methods
and experimental results. In both cases, the energy values can be rationalized by
solving an appropriate Schrödinger equation inserting in it a Coulomb potential.
At high electron density, however, electron–ion interactions are better described by
a Debye potential, which can change, as reported in Chap. 6, the thermodynamic
properties of the plasma. In addition, the Debye potential, when inserted in the
Schrödinger equation, can also change the magnitude of energy levels with further
consequences on partition functions and thermodynamic properties of the mixture
(see Sect. 8.2). A complete set of Debye energy levels up to n D 9 has been obtained
in (Roussel and O’Connell 1974) (see also (Capitelli and Giordano 2009; Capitelli
et al. 2011a) as a function of the Debye length �D for different .n; l/ levels. The
partition function in this case must be calculated allowing the .n; l/ structure with
the appropriate statistical weights, this structure disappearing for Coulomb levels.

We compare results obtained by using energy levels corresponding to the Debye
(Debye) in the relevant figures and the Coulomb (Coulomb) potentials as well as
with the ground state method (Ground) (Capitelli et al. 2008). From a qualitative
point of view, it can be expected that the use of Debye energy levels should
increase the electronic partition function and its derivatives as compared with the
corresponding results obtained by using energy levels from the Coulomb potential.
The action of the Debye potential in fact is to decrease the energy of the levels as
the Debye length decreases and to increase the Boltzmann factors as well as the
number of levels included in the electronic partition function calculation, this last
effect being predominant. The increase in the electronic partition function generates
an increase of the atomic hydrogen molar fractions and, in turn, increases the
importance of electronic excitation on the thermodynamic properties of the plasma.
Figure 8.15 (left) shows the frozen specific heat of the mixture calculated with the
two series of levels. The largest differences occur at P D 100 bar as a result of the
combined effect of the specific heat of atomic hydrogen and of the molar fraction of
the same species. Note that in any case the frozen specific heat calculated from
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Fig. 8.15 Frozen (left) and total (right) specific heat of the (H , H C,e�) plasma calculated at
different pressure using Debye and Coulomb levels, compared to Ground state approximation

the Debye energy levels overcomes the corresponding quantity calculated from
Coulomb levels in all the considered temperature range. The maximum deviation
can reach a value of 40%. On the other hand, an opposite trend is presented by the
reactive contribution to the specific heat (see Fig. 8.15 (right)) so that the differences
Debye and Coulomb levels are smoothed in the total specific heat (see (Capitelli
et al. 2008)).



Chapter 9
Multi-Temperature Thermodynamics:
A Multiplicity of Saha Equations

The multitemperature equilibrium model must be viewed in the framework of
irreversible thermodynamics (Prigogine 1955)1. It applies to systems which can be
divided in subsystems with weak interaction between each other, but with a rapid
internal relaxation. In this case, each subsystem reaches an internal equilibrium,
while the overall system is outside equilibrium, relaxing very slowly. The theory
was originally developed for systems whose volume was geometrically divided in
different parts, with high ratio volumes/surfaces, limiting exchange of mass and
energy through their interfaces.

This theory has been extended to gases and plasma considering as subsys-
tems different degrees of freedom of the particles in the gas. This approach is
commonly used to model nonequilibrium conditions in high enthalpy flowing
plasma (Mostaghimi et al. 1987), encountered in shock wave formation or in
nozzle expansion. In this chapter, we will derive a series of Saha equations for
multitemperature plasmas obtained by using different thermodynamic potentials
and different constraints (Giordano and Capitelli 1995, 2002). The results for an
hydrogen plasma are discussed, focusing on the relevant differences coming from
the selection of the particular method.

9.1 General Considerations

The equilibrium conditions of a one temperature chemical system can be obtained
either by minimizing chemical potentials

.dG/P;T D
X

s

�sdns D 0 (9.1)

1The theory of irreversible thermodynamics is valid only for weak deviations from the equilibrium.
In case of large deviations, the theory fails and a kinetic approach is necessary.

M. Capitelli et al., Fundamental Aspects of Plasma Chemical Physics: Thermodynamics,
Springer Series on Atomic, Optical, and Plasma Physics 66,
DOI 10.1007/978-1-4419-8182-0 9, © Springer Science+Business Media, LLC 2012
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or by maximizing the entropy

.dS/V;U D 1

T

X
s

�sdns D 0; (9.2)

which are equivalent for the one temperature case (Capitelli and Giordano 2002;
Capitelli et al. 2005b; Giordano 1998).

Let us assign a different temperature (T d
s ) to each degree of freedom d of each

species s. This approach can be applied to degrees of freedom that are independent
from each other. In particular, the separation of translational and internal degrees of
freedom is exact. However, this method is often applied to molecules considering
separable also rotation, vibration, and electronic excitation. In this case, we will
consider the following temperatures for the s-th species

T tr translational temperature
T rot rotational temperature
T vib vibrational temperature
T el electronic excitation temperature
T c temperature linked to chemical processes

where for atoms only T tr, T el, and T c can be considered and for electrons only the
translational temperature is used, that for simplicity we will call Te. For polyatomic
molecules, we should distinguish also the different vibrational modes and rotational
axes.

Under the hypothesis of separability of the different degrees of freedom, the
partition function will be considered, neglecting nonlinear coupling, as the product
of the contribution of the different degrees of freedom (see (4.6), (5.1)) each with its
own temperature. In the general case of a diatomic molecule, the partition function
is given by

Qs D Qtr
s .T tr

s /Qrot
s .T rot

s /Qvib
s .T vib

s /Qel
s .T el

s / exp

 
� "

f
s

kT c

!
; (9.3)

where we are including the contribution of formation energy and where the
temperature T c should depend on the reaction more than on the species2. Moreover,
the nuclear partition functions are not considered in (9.3) for the reason discussed
in Sect. 4.1.1.

Now, the calculation of the thermodynamic properties from the partition func-
tions using the statistical thermodynamic theory (see Chap. 3) is not straightforward,
and some assumptions are needed. Considering the general theory of irreversible
thermodynamics, each degree of freedom must be considered independent; there-
fore, the formulae of statistical thermodynamics can be applied separately to each

2Considering a different T c for different species in the same reaction will lead to a physical
inconsistency, because the equation can depend on the reference of the energy.
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partition function. The total properties can be calculated using the sum rule and in
particular we have for the chemical potential

�s D �tr
s .T tr

s / C �rot
s .T rot

s / C �vib
s .T vib

s / C �el
s .T el

s / C "f
s ; (9.4)

where (see (3.40))
�d

s .T d
s / D �kT d

s lnQd
s .T d

s / (9.5)

for each degree of freedom d . The translational contribution is rewritten as

�tr
s .T tr

s / D �kT tr
s ln

�Qtr
s .T tr

s /

Ns

�
D �kT tr

s lnFs C kT tr
s ln Ps; (9.6)

where, to simplify the notation, we define the function Fs as

Fs D
 

mskT tr
s

2�„2

! 3
2

kT tr
s D Qtr

s .T tr
s /Ps: (9.7)

Similarly, the entropy is given by

Ss D S tr
s .T tr

s / C S rot
s .T rot

s / C Svib
s .T vib

s / C S el
s .T el

s /; (9.8)

where (see (3.39) when substituting (3.26), (9.5))

Sd
s .T d

s / D Nsk

�
��d

s .T d
s /

kT d
s

C U d
s .T d

s /

NkT d
s

�
D H d

s � Gd
s

T d
s

(9.9)

for all the internal degrees of freedom while for the translation we have

S tr
s .T tr

s / D Nsk

�
��tr

s .T tr
s /

kT tr
s

C 1 C U tr
s .T tr

s /

NkT tr
s

�
D H tr

s � Gtr
s

T tr
s

: (9.10)

The equilibrium condition derived from the entropy maximization (see (9.2))
contains the derivative of the entropy of each degree of freedom of any species
with respect to the number of particles, that, in all the cases is given by

 
@Sd

s .T d
s /

@Ns

!
U d

s ;V

D � �d
s

T d
s

: (9.11)

Usually all the heavy species have the same translational temperature, namely Th,
while the electron temperature Te is higher3. The internal temperatures are linked

3The condition Te > Th is valid in discharge condition, where the applied electric field warms up
directly the electrons, which transfer their energy to the gas through Joule effect.
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with Te or Th depending on which excitation mechanism is dominant. In general, we
should consider all the internal temperatures as independent quantities. Therefore,
we define the nonequilibrium coefficient 	 for the electron as

	e D Te

Th

: (9.12)

Extending this definition to the internal degrees of freedom, we can define

	d
s D T d

s

Th

: (9.13)

Let us consider a general reaction

X
s¤e

�sXs C �ee D 0 (9.14)

and where the contribution of free electrons is separated from those of heavy
particles, where the stoichiometric coefficients �s are positive for the product and
negative for the reactants. In the following, we will obtain the multitemperature
equilibrium equations resulting from the minimization of G and from the maxi-
mization of S .

9.1.1 Minimization of Gibbs Free Energy

In the multitemperature case, the minimization of Gibbs free energy (9.1) results in
the following condition

X
s¤e

�s

"
kTh.ln Ps � lnFs/ C "f

s C
X

d

kT d
s lnQd

s

#
C

C�ekTe.ln Pe � lnFe/ D 0; (9.15)

Dividing the equation by kTh and separating the pressure terms from the others, we
obtain

X
s¤e

�s ln Ps C �e	e ln Pe

D
X
s¤e

 
�s lnFs � �s

"
f
s

kTh

C
X

d

�s	
d
s lnQd

s

!
C �e	e lnFe; (9.16)
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which can be written as

P �e	e
e

Y
s¤e

P �s
s D F�e	e

e

Y
s¤e

"
Fs

Y
d

.Qd
s /	d

s

#�s

exp

 
��"f

kTh

!
; (9.17)

where

�"f D
X

s

�s"
f
s (9.18)

is the reaction energy.
This equation differs from the one-temperature equilibrium by the presence of

the exponents 	 applied to Pe and to electronic and internal partition functions.
Moreover, it must be noted that the internal partition functions are calculated each
with its own temperature.

9.1.2 Maximization of Entropy

The maximization of entropy (9.2) is based on (9.11) and gives the following
relation

X
s¤e

�s

"
.ln Ps � lnFs/ C "

f
s

kT c
C
X

d

lnQd
s

#
C �e.ln Pe � lnFe/ D 0: (9.19)

Separating the pressure terms from the others, we have

X
s¤e

�s ln Ps C �e ln Pe

D
X
s¤e

 
�s lnFs � �s

"
f
s

kT c
C
X

d

�s lnQd
s

!
C �e lnFe (9.20)

and calculating the exponential we have the equilibrium equation

P �e
e

Y
s¤e

P �s
s D F�e

e

Y
s¤e

 
Fs

Y
d

Qd
s

!�s

exp

 
��"f

kT c

!
: (9.21)

This equation is formally equal to the one-temperature equilibrium (the expo-
nents 	 are disappeared), being the internal partition functions calculated at the
relevant temperature. Moreover, the exponential term depends on the temperature
T c related to the chemical process.
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9.2 Free Energy Minimization for Atomic Ionization

In this section, we will show the different equations arising from minimizing the
Gibbs potential (9.1). For the sake of simplicity, we will consider the ionization
reaction in (1.49)4,

A • AC C e

considering only three temperatures:

Th the translational temperature for all heavy particles (Th D T tr
A D T tr

AC).
Tint the electronic excitation one for all heavy particles (Tint D T el

A D T el
AC).

Te the translational temperature of free electrons.

As in the one-temperature case, the minimization of the Gibbs potential leads to
the equality of the chemical potentials of the left and right-hand side species in the
reaction (see (1.50)).

To remember that we have many temperatures we write explicitly the equilibrium
condition

�tr
AC.Th/ C �el

AC.Tint/ C �e.Te/ D �tr
A.Th/ C �el

A.Tint/: (9.22)

The application of (9.22), however, yields different equations depending on
the hypotheses made on the thermal baths which govern the different degrees of
freedom. This explains the different equations that are encountered in the litera-
ture (Giordano and Capitelli 2002) for multitemperature equilibrium calculations. In
the following, we will discuss some of these cases to show the differences between
the various assumptions.

9.2.1 Case a: Th D Tint ¤ Te

Let us start with one of the most popular cases (Potapov 1966), considering one
temperature for the translational and internal degrees of atoms and ions and one for
the electrons.

With this premise, considering the explicit expression of the translational (4.29)
and internal (4.38) chemical potential, being I the ionization potential5 and Qint

e D 2

the contribution of electron spin degeneracy to the partition function, (9.22)
becomes

4Compare with Sect. 1.3 for the one-temperature case.
5The ionization potential can include also its lowering (see Sect. 6.2.7) obtained in the framework
of Debye–Hückel theory.
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A .Th/ (9.23)

and, dividing by kTe and bringing all the terms on one side, we have
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4 mACkTh
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3
5C ln PAC

	e

� lnQint
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C I
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	e

C lnQint
A .Th/

	e

D 0: (9.24)

Considering that the atomic and ionic masses are almost equal we have that

2
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2
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2�„2

! 3
2

kTh

3
5

and then these terms can be eliminated from (9.24). Calculating the exponential, we
have the Saha equation

 
PAC

PA

! 1
	e

Pe D
 

mekTe

2�„2

! 3
2

kTe

"Qint
AC.Th/

Qint
A .Th/

# 1
	e

Qint
e e

� I
kTe (9.25)

The exponent 1
	e

appears in the pressure and partition function ratios of heavy
particle contribution. The internal partition function is calculated at the gas
temperature.
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9.2.2 Case b: Th ¤ Tint D Te

A different Saha equation is obtained if the electronic excitation is governed by the
electron temperature. In this case, (9.22) becomes

�kTh ln

2
4 mACkTh

2�„2

! 3
2 kTh

PAC

3
5 � kTe lnQint

AC.Te/ C I C

�kTe ln

2
4 mekTe

2�„2

! 3
2 kTe

Pe

3
5 � kTe lnQint

e D

D �kTh ln

2
4 mAkTh

2�„2

! 3
2 kTh

PA

3
5 � kTe lnQint

A .Te/: (9.26)

Proceeding in the same way as in case a, we obtain a different Saha equation
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Qint
A .Te/
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e e

� I
kTe (9.27)

The exponent 1
	e

appears only in the pressure ratios of heavy particles, while
the internal partition function is calculated at the electron temperature.

9.2.3 Case c: Th ¤ Tint ¤ Te

In the more general case of three independent temperatures, (9.22) becomes
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4 mACkTh
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! 3
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3
5 � kTint lnQint

A .Tint/: (9.28)
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Let us define another nonequilibrium coefficient ı given by

Tint D ıTe (9.29)

and following the previous procedure we have
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mekTe
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2
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"Qint
AC.Tint/

Qint
A .Tint/

#ı

Qint
e e

� I
kTe : (9.30)

9.3 Entropy Maximization for Atomic Ionization

When the multitemperature equilibrium composition is calculated maximizing the
entropy (9.2), it is not possible to equate the chemical potentials, but, considering
(9.9), we obtain that the equilibrium condition will relate �d

s =T d
s . In this section,

we will analyze the same cases as in the previous section, using the same symbols. It
should be noted that in the general equation reported in (9.8), we have introduced the
temperature related to the chemical processes. For homogeneity with the previous
section, we will consider T c

s D Tint.
Under these assumptions, the equilibrium condition for the ionization process is

given by

�tr
AC.Th/

Th

C �el
AC.Tint/

Tint
C �e.Te/

Te

C I

kT c
D �tr

A.Th/

Th

C �el
A.Tint/

Tint
: (9.31)

From (3.40), we have that � / T lnQ , consequently we can deduce that the
nonequilibrium coefficient 	e will disappear from the equations. Also, in this case
we have three different expressions for the cases considered above given by

case a Th D Tint ¤ Te
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case b Th ¤ Tint D Te

PAC

PA

Pe D
 

mekTe

2�„2

! 3
2

kTe

Qint
AC.Te/

Qint
A .Te/

Qint
e e

� I
kTe (9.33)

case c Th ¤ Tint ¤ Te
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e e

� I
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These equations differ from corresponding cases in the previous section by
the disappearance of 	e and ı coefficients in the relevant equation.

9.4 Multitemperature Dissociation

In this section, we will consider the multitemperature equilibrium for the dissocia-
tion reaction in (1.36) for a homonuclear diatomic molecule6. Also in this case, a
multiplicity of equations arise from the definition of different temperatures as can be
appreciated by the following examples. In this case, we should consider the general
description given in Sect. 9.1, considering the same translational temperature Th for
all the species, while a different temperature is assigned to each internal degree
of freedom as described in Sect. 9.1: extending (9.12), we define a nonequilibrium
coefficients for each internal degree as

	d
s D T d

s

Th

: (9.35)

Let us now apply to dissociation the same approaches described in the previous
sections for atomic ionization.

Model a – Minimization of Gibbs free energy

Minimizing the Gibbs free energy results in equating the chemical potentials (1.37)
which in the multitemperature case is

�kTh lnFA2 � kT rot
A2

lnQrot
A2

� kT vib
A2

lnQvib
A2

� kT el
A2

lnQel
A2

C kTh ln PA2 D
D �2kTh lnFA � 2kT el

A lnQel
A C D C 2kTh ln PA: (9.36)

Dividing both terms by Th, separating the partition functions from the pressures and
calculating the exponential we get

P 2
A

PA2

D F2
A

FA2

.Qel
A/2	 el

A

.Qrot
A2

/
	 rot

A2 .Qvib
A2

/
	vib

A2 .Qel
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/
	 el

A2

e
� D

kTh (9.37)

Model b – Maximization of entropy

Maximizing the entropy results in the equation

�tr
A2

Th

C �rot
A2

T rot
A2

C �vib
A2

T vib
A2

C �el
A2

T el
A2

D �tr
A

Th

C �el
A

T el
A

C D

kT c
(9.38)

6Compare with Sects. 1.2 for the one-temperature case.
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and writing all the terms explicitly it becomes

lnFA2 � lnQrot
A2

� lnQvib
A2

� lnQel
A2

C ln PA2 D

D �2 lnFA � 2 lnQel
A C D

kT c
A

C 2 ln PA;

(9.39)

and after simple algebra, we get

P 2
A

PA2

D F2
A

FA2

.Qel
A/2

Qrot
A2
Qvib

A2
Qel

A2

e� D
kT c ; (9.40)

where the partition function of the rotational, vibrational, and electronic degrees of
freedom are calculated at their own temperature (T rot, T vib, T el).

We can put in evidence the differences between (9.37), (9.40). In model a, the
internal partition functions are elevated to the power of the relevant nonequilibrium
coefficient 	 and the exponential depend on the translational temperature. The
equilibrium equation obtained in model b does not contain the 	 exponents, as in
one-temperature case, and the exponential depends on the temperature T c governing
the chemical process.

9.5 Diatom Two-Temperature Ionization

We consider the process

A2 • AC
2 C e: (9.41)

We again obtain different two temperature Saha equations depending on the
constraints used in the determination of equilibrium conditions as well as on the
constraints on internal degrees of freedom.

Model a – Minimization of Gibbs free energy
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Case 2 Th D T rot
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Following (Andre et al. 1996, 1997, 2004; Aubreton et al. 1998) �v D p
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Model b – Maximization of entropy
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9.6 Two-Temperature Hydrogen Plasma

Practically all the equations above reported have been used, by many authors (Andre
et al. 1997, 2004; Aubreton et al. 1998; Boulos et al. 1994; Capitelli et al. 2001,
2002; Chen and Eddy 1998; Chen and Han 1999; Cliteur et al. 1999; Ghorui et al.
2008; Girard et al. 1999; Gleizes et al. 1999; Koalaga 2002; Koalaga and Zougmore
2002; Miller and MartinezSanchez 1996; Rat et al. 2008; Tanaka et al. 1997; Van
De Sanden et al. 1989), for numerous applications. We focus our attention on the
thermodynamic properties of the hydrogen plasmas (Capitelli et al. 2001, 2002),
calculated by using the different equations discussed above.

To simplify the problem, we consider only four components (H2, H , H C, and
electrons e) linked by appropriate Saha equations, coupled with electroneutrality
and mass conservation equations. The internal partition function of molecular
hydrogen (vibrational and rotational) is calculated at Th by summing over all of
the rotational states up to the dissociation limit for each vibrational level of the
ground electronic state; this procedure is repeated up to the dissociation limit for
all of the 14 vibrational levels sustained by the ground state potential curve. No
electronically excited states have been considered in this calculation of H2 partition
function (see Chap. 5). The partition function of atomic hydrogen is calculated at
Te by considering levels up to nmax=12. This last assumption is roughly valid for
atmospheric plasmas, when using Debye–Hückel cutoff criterion.

The multitemperature equilibrium composition is obtained by solving the system
of the following equations

Kd .Th; Te/ D P 2
H

PH2

Ki.Th; Te/ D
 

PH C

PH

!z

Pe

P D PH2 C PH C PH C C Pe D
 
NH2

V
C NH

V
C NH C

V

!
kTh C Ne

V
kTe

PH C

kTh

D Pe

kTe

, NH C D Ne; (9.51)

where z D 1=	e in case of minimization of the Gibbs free energy and z D 1

for entropy maximization. Once the composition has been determined, one can
calculate the mixture thermodynamic properties by taking into account the different
temperatures acting in the system. As an example, the total enthalpy can be
written as

H D 5

2
kTh.NH2 C NH C NH C/ C 5

2
kTeNe

CNH2"
int
H2

.Th/ C NH "int
H .T int

H / C NH D C NH C.D C I /; (9.52)
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Fig. 9.1 Constant pressure specific heat for equilibrium conditions (P D 1 bar) as a function of
the temperature

where Ns is the number of particles of the s-th species and "int
H is its internal energy

per particle, each one depending on the relative temperature. Note that in the results
we are discussing, the ro-vibrational partition function of H2 is calculated at Th.

The specific heat is not univocally defined: in this case, we can have

ce
p D

 
@h

@Te

!
Th

(9.53)

ch
p D

 
@h

@Th

!
Te

(9.54)

calculated as the derivative of the enthalpy per unit mass h with respect to the
relevant temperature.

To better understand the multitemperature results, we recall the behaviors of
the molar fractions (Figs. 1.5, 1.6) and the total specific heat (Fig. 9.1) of the
equilibrium hydrogen plasma at P D 1 bar. Inspection of the figures shows the
separation of the dissociation and ionization reactions in the examined temperature
range. In particular, we note that the dissociation regime occurs in the temperature
range 2,000–8,000 K with a strong peak in the specific heat at about T D 4;000 K,
while the ionization regime is located in the temperature range 8,000–20,000 K with
a peak at about T D 15;000 K (see Fig. 9.1).
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Fig. 9.2 Equilibrium composition as a function of the electron temperature for Th D 8;000 K,
calculated according to the different assumptions listed in Table 9.1

Table 9.1 Calculation conditions for the multitemperature hydrogen plasma

Case Keq calculation Temperatures Equation

(a) minimization of Gibbs free energy Tint D Th (9.25)
(b) minimization of Gibbs free energy Tint D Te (9.27)
(c) maximization of entropy Tint D Th (9.32)
(d) maximization of entropy Tint D Te (9.33)

Multitemperature results as a function of Te for Th D 8;000 K (ionization
regime) and as a function of Th for Te D 10;000 K (dissociation regime) have
been calculated under the conditions reported in Table 9.1.
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Fig. 9.3 Constant pressure specific heat ce
p as a function of the electron temperature for Th D

8;000 K, calculated according to the different assumptions listed in Table 9.1

In particular, Fig. 9.2 reports the number densities of the four components
(Ne=V D NH C=V ) versus Te at Th D 8;000 K compared in the four cases. In the
reported ionization regime, the dissociation of H2 is practically complete and the H

concentration starts decreasing from Te > 12;000 K. This explains the exponential
increase of Ne according to (9.25), (9.27), (9.33) and the plateau of Ne when use
is made of (9.32) due to appearance of Th in the corresponding exponential factor.
It should be also noted that (9.25), (9.27), (9.33) produce small differences in Ne ,
these differences however are exalted in the total specific heat of our plasma as
reported in Fig. 9.3. In this figure, we can appreciate that the use of (9.32) does not
produce any maximum in the total specific heat which remains very small.

In the dissociation regime, the use of (9.25), (9.27) and (9.32), (9.33) does not
alter the concentration of molecular and atomic hydrogen having strong effects on
the electron density. These points can be appreciated by looking at Fig. 9.4 where
the number density of the different species are reported as a function of Th for
Te D 10;000 K. Note, however, that in this regime the electron density is always
a minority species due to the selected electron temperature. The total specific heat
(see Fig. 9.5) in the dissociation regime is practically not affected by the selection
of Saha equations for the ionization reaction, the only exception being represented
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Fig. 9.4 Equilibrium composition as a function of the translational temperature for Te D
10;000 K, calculated according to the different assumptions listed in Table 9.1

by the use of (9.32). The ionization equation in this case exponentially increases as
a function of Th preparing the onset of the second peak in the total specific heat for
Th > 8;000 K.

As a final remark, we can say that (9.33) is nowadays preferred to the other
equations even though many authors tend to define a Tint ¤ Te on the basis
of kinetic considerations, mixing concepts of thermodynamics and kinetics. Our
point of view is indeed more neutral, i.e., each equation has its thermodynamic
explanation without a priori preference thus implying that further work is to be
expected to completely clarify this intricate problem.
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Fig. 9.5 Constant pressure specific heat as a function of the translational temperature for Te D
10;000 K, calculated according to the different assumptions listed in Table 9.1



Chapter 10
Thermodynamics of Planetary Plasmas

In this chapter, we report, in graphical and tabular form, the thermodynamic
properties of high temperature planetary atmospheres (Earth, Mars, Jupiter).

All the concepts (cutoff criteria and level completion for atomic species, state-
to-state calculations of molecular partition function, nonideal Debye-Hückel effects)
described in detail in the previous chapters have been implemented in an equilibrium
computer program to produce the results here presented.

The relevant data can be used, with a fair amount of confidence, in fluid dynamic
equilibrium plasma codes. For air plasma, we report also a comparison with existing
data.

10.1 Basic Equations

Thermodynamic properties of high temperature equilibrium plasmas have been cal-
culated in a wide pressure (0.01�100 bar) and temperature range (100�50,000K).
The thermodynamic properties have been obtained by using a self-consistent ap-
proach including Debye–Hückel corrections. The partition functions of the species
are expressed as the product of the translational and internal contributions

Qs D Qtr
s Qint

s : (10.1)

As a consequence, the mean energy is given by the sum of the two contributions

NUs D NU tr
s C NU int

s : (10.2)

The translational partition function and the associated energy are given by
Sect. 4.1

Qtr
s D NkT

P

�
mskT

2�„2

� 3
2

(10.3)
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NU tr
s D 3

2
RT (10.4)

while the internal partition function and the internal energy are calculated as the
sum over atomic or molecular levels

Qint
s D

nmax;sX
iD1

gsi exp
	
� "si

kT



(10.5)

NU int
s D Na

Qint
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nmax;sX
iD1

gsi"si exp
	
� "si

kT



: (10.6)

For all molecules but H2, nmax;s has been restricted to the bound electronic states
originating by the spin and angular momentum coupling of valence electrons. Each
bound state supports a finite number of ro-vibrational levels as described in Chap. 5.
The internal partition function is calculated as in (5.35)

Qint
s D 1

�

nm
sX

nD1

vm
s .n/X
vD0

J m
s .nv/X
J D0

gs;nvJ exp
	
�"s;nvJ

kT



; (10.7)

where n runs over nm
s the electronic states and v and J are, respectively, the

vibrational and rotational quantum numbers. The statistical weight of a .nvJ / state
depends only on the electronic and rotational contribution

gs;nvJ D gel
s;n.2J C 1/: (10.8)

The electronic energies as well as the spectroscopic data of the most important
diatomic molecules for the planetary atmospheres can be found on reports published
by European Space Agency (Capitelli et al. 1994, 2005a; Giordano et al. 1994;
Pagano et al. 2009). For atomic species, the cutoff selected, in the compilation of
the present tables, is the largest between the Fermi and Griem values (D’Angola
et al. 2008). It must be pointed out that the Griem cutoff depends on the plasma
composition making necessary a self-consistent solution of the problem. The
formation of the plasma potential induces in the system real gas properties. The
corrections to the perfect gas behavior have been determined in the framework of
the Debye–Hückel theory (see Chap. 6):

�DH D kT

24��3
D

(10.9)

PDH D ��DH (10.10)

FDH D �2V�DH (10.11)

GDH D UDH D 3

2
FDH (10.12)
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HDH D 2FDH (10.13)

SDH D 1

2
FDH: (10.14)

It must be noted that there is also a correction to the pressure leading to the result

P D
X

s

Ps C PDH; (10.15)

where Ps follows the perfect gas role

Ps D NskT: (10.16)

The partial pressures are calculated solving the equilibrium equation system. Given
a reaction X

s

�rsXs D 0 (10.17)

the sum running over all the species, where the reactants have negative coefficients,
the products have positive coefficients and species not involved in the reaction have
null coefficients, its equilibrium equation can be written as

Kr
p D

Y
s

P �rs
s : (10.18)

In a mixture, there are many of such reactions and the equilibrium compositions
are obtained solving the system of nonlinear coupled equilibrium equations and the
conservation of mass and charge.

The determination of equilibrium composition is a complex problem and many
algorithms have been developed (Smith and Missen 1982; Capitelli et al. 1968;
Bottin et al. 1999; Meintjes and Morgan 1985; Reynolds 1986.; Gordon and
McBride 1994; Mioshi and do Lago 1996; Bishnuy et al. 1997; McDonald and
Floudas 1997; Phoenix and Heidemann 1998; Sofyan et al. 2003). We have applied
a new approach (Colonna and D’Angola 2004; Colonna 2007), which consists
in solving one equilibrium equation at a time. The method is based on the
idea in (Villars 1960, 1959) soon abandoned because the method was not easily
automatized. The reaction ordering is chosen determining, at each step, which
reaction is farther from equilibrium, defining a reaction distance. The algorithm
(details can be found in (Colonna and D’Angola 2004; Colonna 2007)) is very
fast and stable, finding in very few steps the concentration of principal species
and refining the solution of minority species in a second stage. A crucial aspect
is the automatic determination of a shortcut reaction that produces in a single step
the same advancement resulting from hundreds of thousand steps with the original
reaction set. Once the reaction farther from equilibrium is solved, calculating the
new composition, Debye length and cutoffs are updated. It should be noted that
the Debye length and cutoffs converge faster than the mixture composition, being
related to the concentration of the majority species. In hierarchical methods, the
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concept of accuracy differs completely respect to global minimization approaches,
where the tolerance is the maximum percentage error for each concentration. In fact,
the concentration precision is given by the machine error for all the species except
for those with molar fraction below a given tolerance which are affected by large
errors. Details about error analysis are reported in (Colonna 2007).

The thermodynamic properties of the mixture are calculated using the traditional
transformation equation from energy or partition function

F D �kT
X

s

Ns lnQ∫ C FDH (10.19)

U D �
X

s

Ns
NUs C UDH (10.20)

H D U C P V (10.21)

G D F C P V (10.22)

S D U � F

T
(10.23)

cp D
 

@h

@T

!
P

: (10.24)

It should be noted that virial corrections have been neglected in these cal-
culations, being their effects appreciable at high pressures (>20 bar) and low
temperature (<1;500 K) as discussed in Sect. 1.10 and in Chap. 7.

In the next sections, thermodynamic properties of planetary plasma have been re-
ported in a wide pressure (0.01 � 100 bar) and temperature range (100 � 50,000 K).
In particular, species considered, equilibrium compositions and thermodynamic
properties of air, Mars and Jupiter atmosphere have been reported in different
tables. Figures 10.1–10.4 show, respectively, density, enthalpy, entropy and specific
heat of air, Mars and Jupiter atmospheres at P D 1 bar. Note that air and Mars
atmosphere behave similarly, presenting large differences with the corresponding
thermodynamic properties of Jupiter atmosphere.

10.2 Air Plasmas

Thermodynamic properties of high temperature equilibrium air have been cal-
culated in the pressure range (0:01 � 100 bar) and in the temperature range
(100 �50;000 K). In Table 10.1, species considered in the calculations, volume
percentage compositions and enthalpies of formation have been reported while
temperature dependence of molar fractions of air species at atmospheric pressure
has been represented in Figs. 10.5, 10.6, where, respectively, species with molar
fractions �i � 0:1 and 10�8 � �i � 0:1 are shown.
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Fig. 10.1 Comparison of density of air (full line), Mars (dashed line), and Jupiter (dash-dotted
line) atmospheres at P D 1 bar

Fig. 10.2 Comparison of specific enthalpy of air (full line), Mars (dashed line) and Jupiter (dash-
dotted line) atmospheres at P D 1 bar
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Fig. 10.3 Comparison of specific entropy of air (full line), Mars (dashed line), and Jupiter (dash-
dotted line) atmospheres at P D 1 bar

Fig. 10.4 Comparison of specific heat of air (full line), Mars (dashed line) and Jupiter (dash-dotted
line) atmospheres at P D 1 bar
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Table 10.1 Air species,
volume compositions,
and enthalpies of formation

Species Volume (%) hf (eV)

N2 80 0:0

N
C
2 0:0 15:5808

N 0:0 4:8795

N C 0:0 19:4285

N C2 0:0 49:0425

N C3 0:0 96:4825

N C4 0:0 173:9555

O2 20 0:0

O
C
2 0:0 12:071

O�
2 0:0 �0:44

O 0:0 2:5575

O� 0:0 0:95

OC 0:0 16:1755

OC2 0:0 51:3315

OC3 0:0 106:2805

OC4 0:0 183:6965

NO 0:0 0:941

NOC 0:0 10:20536

e 0:0 0:0

Fig. 10.5 Molar fractions of air species at atmospheric pressure. Species with �i > 10�1 have
been considered
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Fig. 10.6 Molar fractions of air species at atmospheric pressure. Species with 10�8 � �i �0.1
have been considered

Specific enthalpy, specific entropy, density, specific heat, equilibrium, frozen and
total isentropic coefficients have been reported in Tables 10.2–10.8 and shown
in Figs. 10.7–10.17 in the pressure range (0.01�100 bar) and in the temperature
range (100 � 50;000 K). Isentropic exponent has been compared with data reported
in (Henderson and Menart 2008) in Fig. 10.18. In this case, we report �f , �eq

and � . The data reported in the different figures can be used with fair amount of
confidence for different applications. It is interesting to compare the relevant data
with the corresponding values reported in the literature. We refer, in particular,
to the atmospheric tables of Boulos et al. (1994) and to the pioneeristic tables
of Yos (1967). The relevant differences for density, enthalpy and the specific
heat are reported in Figs. 10.11–10.13. In general, the agreement is satisfactory
up to T D 15;000 K, the differences becoming important for higher temperatures
especially with Yos results. A similar trend is observed comparing our results with
those in (Lisal et al. 2002) at P D 10 bar (see Fig. 10.14 for enthalpy and specific
heat) by using REMC method Sect. 7.4. The agreement is rather satisfactory, even
though many compensation effects are such to hide the strong differences either in
the method or in the input data.
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Table 10.2 Specific enthalpy h [kJ kg�1] of air as a function of temperature for
different pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 100:958 100:958 100:958 100:958 100:958

200 201:916 201:916 201:916 201:916 201:916

300 303:240 303:240 303:240 303:240 303:240

400 404:808 404:808 404:808 404:808 404:808

500 508:248 508:248 508:248 508:248 508:248

600 612:579 612:579 612:579 612:579 612:579

700 720:163 720:163 720:163 720:163 720:163

800 829:321 829:321 829:321 829:321 829:321

900 941:415 941:415 941:415 941:415 941:415

1,000 1;055:425 1;055:425 1;055:425 1;055:425 1;055:425

1,500 1;654:368 1;654:259 1;654:221 1;654:213 1;654:209

2,000 2;323:130 2;305:327 2;299:679 2;297:896 2;297:331

2,500 3;498:021 3;152:698 3;036:460 2;998:996 2;987:081

3,000 6;070:441 4;804:604 4;094:762 3;829:926 3;742:003

3,500 7;660:881 7;023:943 5;789:172 4;945:197 4;608:160

4,000 8;698:956 8;340:692 7;620:688 6;422:216 5;646:193

4,500 10;577:950 9;510:274 8;929:649 7;983:307 6;863:672

5,000 15;049:494 11;475:684 10;175:724 9;328:274 8;174:183

6,000 33;236:326 22;160:691 14;960:316 12;156:206 10;731:689

7,000 40;446:037 36;908:484 26;338:112 17;495:214 13;731:197

8,000 44;739:726 42;579:756 38;411:294 27;273:108 18;496:571

9,000 53;430:686 47;098:151 44;274:573 38;054:914 25;983:993

10,000 72;082:461 54;698:867 48;741:888 44;957:858 35;217:812

11,000 103;389:677 68;354:953 54;759:995 49;658:797 43;303:235

12,000 135;571:933 90;261:128 64;040:455 54;531:395 49;186:526

13,000 154;883:548 117;569:949 77;801:211 60;800:710 53;985:855

14,000 164;365:813 142;041:377 96;334:081 69;155:888 58;847:149

15,000 169;871:874 158;386:225 117;805:248 80;237:510 64;370:794

16,000 174;122:732 168;220:181 138;488:040 93;874:755 71;103:168

17,000 178;361:867 174;593:747 155;176:206 109;816:833 79;256:961

18,000 183;959:618 179;537:520 167;288:618 126;631:859 88;659:677

19,000 193;464:910 184;168:540 175;923:474 142;712:940 99;586:806

20,000 210;984:575 189;574:536 182;447:346 156;853:857 111;679:541

22,000 279;812:636 209;290:177 193;424:717 178;182:253 137;192:225

24,000 362;905:544 254;714:026 207;299:354 192;937:792 161;050:705

26,000 419;073:559 324;232:491 232;796:547 205;756:099 181;025:090

28,000 449;704:188 390;543:029 276;868:060 221;105:745 197;503:079

30,000 473;912:266 436;641:372 334;847:704 243;944:321 212;326:863

35,000 628;974:590 509;759:647 456;654:276 345;876:572 257;609:617

40,000 849;979:015 666;287:352 533;201:540 456;846:869 335;320:393

45,000 975;976:574 863;540:060 662;213:596 537;790:273 431;910:288

50,000 1;200;753:306 994;645:516 840;160:969 634;877:978 518;237:917
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Table 10.3 Specific entropy s [J kg�1 K�1] of air as a function of temperature for different
pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 7319:489 6654:542 5989:594 5324:647 4659:699

200 7819:896 7154:948 6490:001 5825:053 5160:105

300 8230:788 7565:841 6900:893 6235:946 5570:998

400 8522:692 7857:744 7192:797 6527:849 5862:902

500 8753:887 8088:939 7423:992 6759:044 6094:097

600 8943:382 8278:434 7613:486 6948:539 6283:591

700 9109:891 8444:943 7779:995 7115:048 6450:100

800 9254:838 8589:890 7924:943 7259:995 6595:047

900 9387:601 8722:654 8057:706 7392:758 6727:811

1000 9506:925 8841:977 8177:030 7512:082 6847:135

1500 9991:966 9326:934 8661:945 7996:997 7332:050

2000 10374:514 9700:062 9032:100 8366:231 7700:949

2500 10890:202 10075:241 9359:926 8678:776 8008:679

3000 11823:314 10670:855 9742:725 8980:393 8283:207

3500 12319:994 11357:156 10262:768 9322:957 8549:864

4000 12596:448 11710:856 10753:000 9716:390 8826:319

4500 13035:602 11985:636 11062:363 10084:536 9112:905

5000 13970:891 12397:366 11324:373 10368:275 9388:899

6000 17279:175 14313:497 12183:588 10880:865 9855:392

7000 18411:453 16602:881 13923:622 11696:161 10315:689

8000 18981:905 17367:726 15545:002 12995:618 10948:398

9000 19997:245 17897:942 16240:095 14268:489 11827:040

10000 21949:676 18693:978 16709:937 14999:085 12799:466

11000 24924:062 19988:411 17280:850 15447:199 13571:512

12000 27728:255 21886:790 18084:003 15869:437 14083:893

13000 29280:176 24066:857 19178:810 16367:960 14466:776

14000 29985:485 25880:286 20543:958 16981:410 14824:119

15000 30366:400 27009:256 22017:125 17738:425 15199:842

16000 30640:886 27644:687 23346:350 18607:395 15627:022

17000 30897:830 28032:175 24354:951 19562:656 16111:393

18000 31217:116 28314:784 25045:605 20512:724 16634:408

19000 31729:496 28565:615 25512:308 21372:442 17209:590

20000 32625:472 28842:949 25847:377 22090:143 17813:327

22000 35888:245 29775:056 26369:722 23099:790 18995:512

24000 39505:807 31739:000 26971:198 23738:277 20006:749

26000 41761:739 34514:011 27984:194 24248:271 20788:006

28000 42900:465 36971:663 29607:500 24813:824 21386:844

30000 43734:894 38564:824 31599:371 25594:955 21889:511

35000 48435:833 40818:914 35371:510 28690:005 23256:962

40000 54368:947 44955:346 37411:486 31642:243 25282:578

45000 57340:319 49613:580 40423:931 33539:827 27513:263

50000 62046:283 52378:961 44166:135 35565:736 29303:288
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Table 10.4 Density � [kg m�3] of air as a function of temperature for different pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 0.03465120 0.34651200 3.46512000 34:6512000 346:512000

200 0.01732560 0.17325600 1.73256000 17:3256000 173:256000

300 0.01155040 0.11550400 1.15504000 11:5504000 115:504000

400 0.00866281 0.08662810 0.86628100 8:66281000 86:6281000

500 0.00693025 0.06930250 0.69302500 6:93025000 69:3025000

600 0.00577521 0.05775200 0.57752000 5:77520000 57:7520000

700 0.00495018 0.04950180 0.49501800 4:95018000 49:5018000

800 0.00433140 0.04331400 0.43314000 4:33140000 43:3140000

900 0.00385014 0.03850140 0.38501400 3:85014000 38:5014000

1,000 0.00346512 0.03465120 0.34651200 3:46512000 34:6512000

1,500 0.00231006 0.02310080 0.23100800 2:31008000 23:1008000

2,000 0.00173001 0.01731750 0.17323100 1:73248000 17:3254000

2,500 0.00134653 0.01372700 0.13817400 1:38468000 13:8562000

3,000 0.00101631 0.01086230 0.11295300 1:14655000 11:5231000

3,500 0.00083214 0.00859941 0.09180140 0:96185800 9:80484000

4,000 0.00071898 0.00729257 0.07569730 0:80757500 8:43599000

4,500 0.00062014 0.00637863 0.06527960 0:68592900 7:29747000

5,000 0.00051192 0.00555825 0.05761850 0:59777100 6:35892000

6,000 0.00031352 0.00380173 0.04419050 0:47461300 5:01336000

7,000 0.00024800 0.00260883 0.03105880 0:37068700 4:08181000

8,000 0.00021184 0.00216573 0.02295250 0:27559000 3:29544000

9,000 0.00017757 0.00187718 0.01933550 0:21114100 2:59484000

10,000 0.00014036 0.00160975 0.01696560 0:17719800 2:04911000

11,000 0.00010536 0.00133530 0.01489580 0:15616600 1:69664000

12,000 0.00008212 0.00106728 0.01288570 0:13942700 1:47733000

13,000 0.00007001 0.00084792 0.01091190 0:12427700 1:32233000

14,000 0.00006312 0.00070257 0.00908662 0:10986700 1:19611000

15,000 0.00005830 0.00061502 0.00757016 0:09613230 1:08400000

16,000 0.00005440 0.00055905 0.00644765 0:08339210 0:98021800

17,000 0.00005104 0.00051886 0.00567209 0:07220580 0:88296600

18,000 0.00004792 0.00048632 0.00513651 0:06293000 0:79208000

19,000 0.00004477 0.00045856 0.00474947 0:05560990 0:70894000

20,000 0.00004127 0.00043317 0.00444922 0:04999950 0:63478700

22,000 0.00003329 0.00038244 0.00397611 0:04238760 0:51540300

24,000 0.00002692 0.00032463 0.00358058 0:03750020 0:43155300

26,000 0.00002318 0.00026839 0.00317687 0:03387140 0:37389700

28,000 0.00002093 0.00022758 0.00274892 0:03078790 0:33286300

30,000 0.00001922 0.00020155 0.00235249 0:02779030 0:30155000

35,000 0.00001478 0.00016333 0.00173932 0:02052750 0:24163100

40,000 0.00001131 0.00012852 0.00143504 0:01575240 0:18981200

45,000 0.00000954 0.00010172 0.00117183 0:01306980 0:15005200

50,000 0.00000792 0.00008657 0.00094912 0:01103000 0:12422300
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Table 10.5 Specific heat cp [J kg�1 K�1] of air as a function of temperature for different
pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 1014:520 1007:379 999:692 991:135 980:921

200 1024:986 1019:193 1012:905 1005:712 996:771

300 1035:496 1031:067 1026:177 1020:358 1012:707

400 1046:007 1042:975 1039:520 1035:057 1028:671

500 1056:632 1055:002 1052:987 1049:905 1044:764

600 1067:303 1067:108 1066:540 1064:828 1060:917

700 1078:075 1079:354 1080:253 1079:881 1077:178

800 1089:129 1091:868 1094:242 1095:180 1093:577

900 1100:460 1104:679 1108:478 1110:624 1110:069

1000 1112:283 1117:918 1123:082 1126:371 1126:802

1500 1197:811 1201:673 1207:825 1212:330 1214:302

2000 1576:336 1414:532 1353:060 1326:512 1314:418

2500 3852:955 2310:936 1732:113 1523:123 1443:388

3000 4780:056 4396:216 2736:026 1926:976 1633:423

3500 2224:724 3534:237 3782:774 2627:059 1925:484

4000 2521:479 2304:186 3108:601 3128:177 2293:618

4500 5381:352 2819:383 2493:950 2877:939 2541:829

5000 13324:183 5163:011 2899:424 2605:873 2543:750

6000 14199:251 16723:042 7450:140 3634:367 2651:560

7000 3986:872 9129:795 14323:441 7355:384 3674:722

8000 5566:082 4161:324 8416:463 11594:896 5921:948

9000 12436:343 5550:852 4507:565 9193:429 8779:046

10000 25858:943 9990:580 4871:495 5453:854 9341:867

11000 35022:360 17849:586 7112:580 4465:663 7153:383

12000 25917:821 26178:366 11059:886 5095:517 5214:909

13000 12890:191 27101:316 16452:059 6677:107 4555:560

14000 6447:673 19688:604 21274:323 9130:361 4774:278

15000 4484:200 11760:530 22257:378 12337:200 5541:464

16000 4539:567 7201:355 18702:803 15649:028 6758:608

17000 5836:254 5381:051 13514:762 17795:560 8396:067

18000 8580:667 5132:901 9384:078 17691:110 10338:294

19000 13520:980 5895:724 6976:605 15504:099 12268:423

20000 21472:278 7616:617 5932:350 12482:605 13669:132

22000 41635:856 15119:992 6368:178 7927:448 13373:046

24000 38583:471 28861:573 9512:442 6462:797 10341:591

26000 19648:378 37528:527 16242:392 7012:757 7963:109

28000 11861:544 28695:069 25924:269 9149:809 7124:192

30000 14464:231 17113:209 31322:438 13188:905 7395:310

35000 49705:790 18594:428 16157:240 25600:297 11542:517

40000 29666:227 42697:574 18627:342 17641:543 19040:416

45000 30732:499 31126:417 33526:227 16552:424 18912:212

50000 55626:641 26315:412 33745:157 24246:007 15715:859
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Table 10.6 Equilibrium
isentropic coefficient �eq

of air as a function of
temperature for different
pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 1.40073 1.40073 1.40073 1.40073 1.40073
200 1.40098 1.40098 1.40098 1.40098 1.40098
300 1.39740 1.39740 1.39742 1.39742 1.39742
400 1.39155 1.39155 1.39154 1.39154 1.39155
500 1.38275 1.38274 1.38268 1.38266 1.38267
600 1.37219 1.37219 1.37209 1.37220 1.37208
700 1.36137 1.36140 1.36132 1.36135 1.36135
800 1.35126 1.35144 1.35125 1.35086 1.35120
900 1.34330 1.34264 1.34245 1.34203 1.34234
1,000 1.33383 1.33477 1.33476 1.33398 1.33463
1,500 1.30367 1.30325 1.30284 1.30396 1.30344
2,000 1.24559 1.26628 1.27400 1.27701 1.27759
2,500 1.16097 1.19366 1.22840 1.24696 1.25427
3,000 1.18204 1.17805 1.18942 1.21490 1.23331
3,500 1.26262 1.21437 1.20206 1.20397 1.21936
4,000 1.21162 1.25609 1.23544 1.22233 1.22046
4,500 1.15710 1.20498 1.25251 1.24862 1.23668
5,000 1.18074 1.17045 1.21607 1.25857 1.25744
6,000 1.20001 1.22581 1.19698 1.21481 1.26261
7,000 1.25416 1.21551 1.25006 1.22565 1.23511
8,000 1.19854 1.24953 1.23604 1.27051 1.24718
9,000 1.18964 1.21041 1.25185 1.26396 1.28540
10,000 1.24408 1.20251 1.23013 1.26180 1.29917
11,000 1.27509 1.23834 1.21747 1.25555 1.28957
12,000 1.25587 1.28289 1.23326 1.24001 1.28065
13,000 1.26381 1.29509 1.26803 1.23822 1.26989
14,000 1.34550 1.28188 1.30300 1.25132 1.25971
15,000 1.43566 1.29159 1.31924 1.27685 1.25297
16,000 1.46077 1.34207 1.31827 1.30453 1.25440
17,000 1.39019 1.40511 1.31972 1.32883 1.26803
18,000 1.28075 1.43262 1.33758 1.34540 1.28640
19,000 1.21647 1.39566 1.37205 1.35210 1.30640
20,000 1.20809 1.31841 1.40361 1.35865 1.32759
22,000 1.23741 1.22895 1.37495 1.38533 1.36675
24,000 1.23133 1.24564 1.27975 1.40487 1.39602
26,000 1.23565 1.26042 1.25198 1.36358 1.41848
28,000 1.26725 1.25583 1.27075 1.30398 1.42120
30,000 1.23898 1.26336 1.28467 1.28132 1.39747
35,000 1.21766 1.23682 1.29011 1.31139 1.31423
40,000 1.22304 1.23992 1.26196 1.32144 1.32654
45,000 1.20879 1.24190 1.26214 1.30438 1.35301
50,000 1.20421 1.23192 1.26853 1.28797 1.35465
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Table 10.7 Frozen
isentropic coefficient �f

of air as a function of
temperature for different
pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 1.39993 1.39993 1.39993 1.39993 1.39993
200 1.39980 1.39980 1.39980 1.39980 1.39980
300 1.39852 1.39852 1.39852 1.39852 1.39852
400 1.39393 1.39393 1.39393 1.39393 1.39393
500 1.38549 1.38549 1.38549 1.38549 1.38549
600 1.37466 1.37466 1.37466 1.37466 1.37466
700 1.36329 1.36329 1.36329 1.36329 1.36329
800 1.35261 1.35261 1.35261 1.35261 1.35260
900 1.34314 1.34314 1.34314 1.34314 1.34314
1000 1.33500 1.33500 1.33500 1.33500 1.33500
1500 1.30938 1.30938 1.30938 1.30938 1.30937
2000 1.29724 1.29689 1.29678 1.29674 1.29671
2500 1.29933 1.29251 1.29022 1.28948 1.28922
3000 1.33264 1.30629 1.29194 1.28666 1.28488
3500 1.34856 1.33447 1.30813 1.29076 1.28393
4000 1.35044 1.34462 1.32897 1.30334 1.28729
4500 1.35840 1.34785 1.33866 1.31860 1.29497
5000 1.38558 1.35588 1.34309 1.32882 1.30486
6000 1.47236 1.40747 1.36114 1.33943 1.32031
7000 1.45599 1.44289 1.39815 1.35399 1.32831
8000 1.43048 1.42646 1.41412 1.37458 1.33497
9000 1.41644 1.41111 1.40738 1.38901 1.34436
10000 1.40056 1.39878 1.39910 1.39311 1.35807
11000 1.39914 1.38004 1.38829 1.39187 1.37201
12000 1.41739 1.38249 1.37686 1.38457 1.38056
13000 1.45180 1.39838 1.37341 1.37925 1.38226
14000 1.48074 1.42046 1.37878 1.37126 1.38629
15000 1.50764 1.44605 1.38898 1.37916 1.38240
16000 1.52711 1.47033 1.40631 1.37558 1.38228
17000 1.53938 1.49112 1.43065 1.37736 1.38961
18000 1.53961 1.51346 1.45650 1.39684 1.39682
19000 1.52499 1.52478 1.47689 1.41189 1.40022
20000 1.49545 1.52850 1.48886 1.42390 1.40638
22000 1.44035 1.50208 1.51248 1.46444 1.42935
24000 1.42721 1.45341 1.50072 1.49253 1.45707
26000 1.44384 1.42374 1.46797 1.49672 1.48140
28000 1.46293 1.42543 1.43230 1.48242 1.49367
30000 1.47819 1.43651 1.41391 1.45782 1.49477
35000 1.43304 1.47113 1.43761 1.41780 1.44485
40000 1.43538 1.45900 1.46521 1.43346 1.41969
45000 1.47289 1.46757 1.46771 1.45447 1.43052
50000 1.49658 1.48721 1.47373 1.47102 1.45438
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Table 10.8 Isentropic
coefficient � of air as a
function of temperature
for different pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 1.40064 1.40064 1.40064 1.40064 1.40064
200 1.39977 1.39977 1.39977 1.39977 1.39977
300 1.39744 1.39744 1.39744 1.39744 1.39744
400 1.39173 1.39173 1.39173 1.39173 1.39173
500 1.38279 1.38279 1.38279 1.38278 1.38277
600 1.37216 1.37216 1.37216 1.37216 1.37215
700 1.36136 1.36136 1.36136 1.36133 1.36129
800 1.35131 1.35127 1.35130 1.35127 1.35043
900 1.34242 1.34241 1.34229 1.34221 1.34218
1,000 1.33464 1.33471 1.33440 1.33428 1.33406
1,500 1.30283 1.30323 1.30335 1.30335 1.30325
2,000 1.24469 1.26607 1.27400 1.27661 1.27732
2,500 1.14557 1.18808 1.22641 1.24650 1.25411
3,000 1.14930 1.14978 1.17699 1.21058 1.23197
3,500 1.25430 1.18600 1.16985 1.18822 1.21357
4,000 1.20513 1.24508 1.20511 1.19121 1.20565
4,500 1.13644 1.19447 1.23536 1.21402 1.21011
5,000 1.11762 1.14597 1.20115 1.23190 1.22279
6,000 1.12856 1.12820 1.14627 1.18693 1.22909
7,000 1.24391 1.16181 1.14411 1.16018 1.19547
8,000 1.18333 1.23578 1.17645 1.16137 1.17777
9,000 1.14317 1.19234 1.23105 1.18107 1.17793
10,000 1.13537 1.15973 1.21203 1.22248 1.18783
11,000 1.13541 1.14980 1.18285 1.23193 1.21004
12,000 1.15263 1.15018 1.16923 1.21176 1.23304
13,000 1.21444 1.15631 1.16578 1.19564 1.23571
14,000 1.32092 1.17918 1.16836 1.18393 1.22553
15,000 1.42232 1.22984 1.17535 1.18285 1.20999
16,000 1.45144 1.30555 1.19212 1.18363 1.19831
17,000 1.38149 1.38138 1.22318 1.18872 1.19433
18,000 1.26799 1.41522 1.26897 1.20115 1.19273
19,000 1.19129 1.38069 1.32222 1.21651 1.19385
20,000 1.15815 1.30197 1.36590 1.23957 1.19978
22,000 1.14102 1.18974 1.34917 1.30279 1.22320
24,000 1.15197 1.16107 1.24751 1.34776 1.25933
26,000 1.18763 1.15920 1.19345 1.31971 1.30037
28,000 1.24058 1.17556 1.17773 1.25673 1.32417
30,000 1.21914 1.20769 1.17808 1.21567 1.31752
35,000 1.14052 1.20051 1.22420 1.19840 1.23596
40,000 1.18115 1.15721 1.21333 1.22884 1.21309
45,000 1.18029 1.18831 1.17766 1.23592 1.23070
50,000 1.14522 1.19894 1.19075 1.20481 1.24883
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Fig. 10.7 Density of air at P D 10�2 , 10�1, 1, 10, 100 bar

Fig. 10.8 Specific entropy of air at P D 10�2, 10�1, 1, 10, 100 bar
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Fig. 10.9 Specific enthalpy of air at P D 10�2, 10�1, 1, 10, 100 bar

Fig. 10.10 Specific heat of air at P D 10�2, 10�1, 1, 10, 100 bar
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Fig. 10.11 Percentage differences of density of air with data obtained by Yos at P D 10�2 (dotted
line), 1 (dashed line), 100 (full line) bar and by Boulos et al. (o) at P D 1 bar

Fig. 10.12 Percentage differences of enthalpy of air with data obtained by Yos at P D 10�2

(dotted line), 1 (dashed line), 100 (full line) bar and by Boulos et al. (o) at P D 1 bar
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Fig. 10.13 Percentage differences of specific heat of air with data obtained by Yos at P D 10�2

(dotted line), 1 (dashed line), 100 (full line) bar and by Boulos et al. (o) at P D 1 bar

Fig. 10.14 Comparison of molar enthalpy (left) and specific heat (right) of air with data obtained
by Lisal (o) at P D 10 bar. Solid curves correspond to the results obtained by using the Debye–
Hückel approximation

Thermodynamic properties of high temperature air plasmas including enthalpy,
entropy, density, specific heat, and isentropic (frozen, equilibrium, and total)
coefficients have been reported in Figs. 10.7–10.17 as a function of temperature
for different pressures (see also Tables 10.2–10.8). Figure 10.18 reports the present
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Fig. 10.15 Equilibrium isentropic coefficient of air atmosphere at P D 10�2 (dotted line), 1
(dashed line), 100 (full line) bar

Fig. 10.16 Frozen isentropic coefficient of air atmosphere at P D 10�2 (dotted line), 1 (dashed
line), 100 (full line) bar
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Fig. 10.17 Isentropic coefficient of air atmosphere at P D 10�2 (dotted line), 1 (dashed line),
100 (full line) bar

Fig. 10.18 Comparison of frozen (dashed line), equilibrium (full line), and isentropic (dotted line)
coefficients of air with data obtained by Henderson (Henderson and Menart 2008) at P D 1 bar
(	, ı, �)
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isentropic coefficients with the corresponding ones in (Henderson and Menart
2008). Large differences are observed in the frozen isentropic coefficient while a
satisfactory agreement holds for the other two coefficients.

10.3 Thermodynamic Properties of High-Temperature
Mars-Atmosphere Species

Thermodynamic properties of high temperature equilibrium Mars-atmosphere have
been calculated in the pressure range (0.01�100 bar) and in the temperature range
(100 � 50,000 K). In Table 10.9, species considered in the calculations, volume
percentage compositions, and enthalpies of formation have been reported while
temperature dependence of molar fractions of Mars-atmosphere species at P D 1

bar has been represented in Figs. 10.19–10.24.

Table 10.9 Mars species, volume compositions, and enthalpies of formation

Species Volume (%) hf (eV) Species Volume (%) hf (eV)

C2 0:0 8:54273074 C2N 0.0 5:7674

C
C
2 0: 19:94273074 CNO 0.0 1:3163

C �
2 0: 5:26973074 C � 0.0 6:182

CN 0:0 4:69264775 C 0.0 7:35351324

CN C 0:0 18:29064775 C C 0.0 18:619034

CN � 0:0 0:83064775 C C2 0.0 43:00231

CO 0:0 �1:17950394 C C3 0.0 90:890014

COC 0:0 12:83449606 C C4 0.0 155:38376

CO2 95:3 �4:07475247 N 0.0 4:87933027

CO
C
2 0:0 9:70224753 N C 0.0 19:428233

CO�
2 0:0 �3:475 N C2 0.0 49:043795

C2O 0:0 2:9704 N C3 0.0 96:492844

N2 2:7 0:0 N C4 0.0 173:96623

N
C
2 0:0 15:581 N � 0.0 4:9497068

N �
2 0:0 0:352 O 0.0 2:55800581

N2O 0:0 0:885928879 O� 0.0 0:95

N2OC 0:0 13:77492888 OC 0.0 16:1755

NO2 0:0 0:372497752 OC2 0.0 51:3315

NO 0:0 0:930593918 OC3 0.0 106:2805

NOC 0:0 10:194793918 OC4 0.0 183:6965

N3 0:0 4:2931 Ar 1.6 0:0

C3 0:0 8:15696357 ArC 0.0 15:7596

O2 0:4 0:0 ArC2 0.0 43:3893

O
C
2 0:0 12:0697 ArC3 0.0 84:1243

O�
2 0:0 �0:4510 ArC4 0.0 143:8103

O3 0:0 1:50907122 e 0.0 0:0

O�
3 0:0 �0:594
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Fig. 10.19 Molar fractions of Mars species (with �i > 10�1) as a function of the temperature at
P D 1 bar

Fig. 10.20 Molar fractions of Mars species (with 10�6 < �i < 10�1) as a function of the
temperature at P D 1 bar
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Fig. 10.21 Molar fractions of Mars species (nitrogen compounds) as a function of the temperature
at P D 1 bar

Fig. 10.22 Molar fractions of Mars species (carbon compounds) as a function of the temperature
at P D 1 bar
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Fig. 10.23 Molar fractions of Mars species (oxygen compounds) as a function of the temperature
at P D 1 bar

Fig. 10.24 Molar fractions of Mars species (argon compounds) as a function of the temperature
at P D 1 bar
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Specific enthalpy, specific entropy, density, specific heat, frozen, equilibrium,
and isentropic coefficients have been reported in Tables 10.10–10.16 and shown
in Figs. 10.25–10.31 in the pressure range (0.01�100 bar) and in the temperature
range (100�50000 K).

Table 10.10 Specific enthalpy h [kJ kg�1] of Mars as a function of temperature for
different pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 �8559:452 �8559:452 �8559:452 �8559:452 �8559:452

200 �8489:826 �8489:826 �8489:826 �8489:826 �8489:826

300 �8410:695 �8410:695 �8410:695 �8410:695 �8410:695

400 �8321:767 �8321:767 �8321:767 �8321:767 �8321:767

500 �8224:885 �8224:885 �8224:885 �8224:885 �8224:885

600 �8121:471 �8121:471 �8121:471 �8121:471 �8121:471

700 �8012:614 �8012:614 �8012:614 �8012:614 �8012:614

800 �7899:277 �7899:277 �7899:277 �7899:277 �7899:277

900 �7782:173 �7782:173 �7782:173 �7782:173 �7782:173

1000 �7661:928 �7661:928 �7661:928 �7661:928 �7661:928

1500 �7024:278 �7027:460 �7028:507 �7028:842 �7028:925

2000 �5940:483 �6174:609 �6283:759 �6333:079 �6353:971

2500 �2277:334 �3948:609 �4847:854 �5296:344 �5511:504

3000 3949:492 645:877 �1841:664 �3377:722 �4213:093

3500 7055:595 5484:289 2288:693 �440:640 �2244:422

4000 8014:959 7697:222 6058:844 2901:511 241:053

4500 8887:195 8676:850 8151:700 6003:453 2875:352

5000 10319:080 9595:936 9263:462 8231:542 5416:044

6000 26413:140 15008:254 11512:988 10696:688 9407:740

7000 38337:313 32531:310 19984:141 13555:267 11955:700

8000 45074:670 40360:961 34626:218 22008:500 14982:548

9000 56489:562 46314:800 41528:744 34347:293 21519:650

10000 73383:300 55364:150 46614:156 41696:467 31533:847

11000 97031:183 68428:641 53282:473 46425:750 39923:608

12000 122483:997 86055:906 62592:660 51354:870 45447:714

13000 139751:616 107508:650 74996:055 57538:355 49854:321

14000 149091:111 128108:962 90574:719 65376:045 54396:999

15000 154903:645 143280:670 108318:796 75172:738 59635:523

16000 159871:702 153127:605 125830:087 86983:282 65734:016

17000 165784:301 159901:847 140712:905 100486:968 72971:737

18000 174749:077 165497:086 152160:872 114963:666 81439:122

19000 188766:902 171283:663 160800:753 129334:439 91032:336

20000 207898:066 178638:196 167690:551 142559:703 101597:726

22000 259342:115 202619:349 180273:141 163712:672 124418:298

24000 330004:413 240008:729 196841:565 179281:707 146928:628

26000 391994:174 290404:822 222612:575 193250:128 166810:067

28000 429050:704 352954:776 258841:374 209856:651 183822:710

(continued)
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Table 10.10 (continued)

P (bar)

T (K) 10�2 10�1 1 10 102

30000 461125:778 408874:514 305247:865 232693:552 199332:292

35000 591674:389 503487:821 431420:432 322273:068 244597:880

40000 800658:511 635644:163 523144:847 431458:114 315035:766

45000 983667:726 822182:850 639353:668 521143:556 406374:576

50000 1148455:987 987239:066 797510:038 617142:694 495859:471

Table 10.11 Specific entropy s [J kg�1 K�1] of Mars as a function of
temperature for different pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 5;014:154 4;573:409 4;132:631 3;691:862 3;251:088

200 5;493:835 5;053:049 4;612:304 4;171:518 3;730:749

300 5;813:246 5;372:460 4;931:715 4;490:929 4;050:168

400 6;068:432 5;627:687 5;186:901 4;746:156 4;305:370

500 6;284:387 5;843:642 5;402:856 4;962:070 4;521:325

600 6;472:793 6;032:048 5;591:262 5;150:476 4;709:731

700 6;640:474 6;199:688 5;758:943 5;318:157 4;877:371

800 6;791:743 6;350:999 5;910:212 5;469:426 5;028:682

900 6;929:656 6;488:870 6;048:126 5;607:339 5;166:553

1,000 7;056:307 6;615:521 6;174:776 5;733:990 5;293:204

1,500 7;571:660 7;128:697 6;687:199 6;246:203 5;805:333

2,000 8;179:835 7;611:895 7;112:117 6;644:828 6;192:863

2,500 9;782:626 8;586:499 7;743:110 7;102:571 6;566:410

3,000 12;052:206 10;251:589 8;829:794 7;796:031 7;036:504

3,500 13;027:396 11;749:752 10;101:409 8;698:412 7;640:784

4,000 13;285:093 12;347:962 11;112:060 9;590:786 8;303:597

4,500 13;490:121 12;579:576 11;608:782 10;322:848 8;924:122

5,000 13;789:686 12;772:922 11;843:871 10;794:240 9;459:865

6,000 16;658:524 13;731:825 12;250:284 11;247:461 10;192:806

7,000 18;531:865 16;431:892 13;532:073 11;683:517 10;586:952

8,000 19;426:752 17;488:975 15;494:844 12;799:927 10;988:424

9,000 20;763:723 18;187:041 16;313:531 14;255:803 11;752:683

10,000 22;536:498 19;134:890 16;847:223 15;033:710 12;806:333

11,000 24;783:051 20;373:555 17;477:964 15;482:912 13;607:226

12,000 26;998:496 21;900:481 18;281:453 15;907:328 14;086:489

13,000 28;385:122 23;612:003 19;266:230 16;395:509 14;434:830

14,000 29;079:922 25;137:212 20;412:367 16;966:840 14;764:666

15,000 29;482:064 26;184:917 21;629:009 17;631:661 15;116:567

16,000 29;802:898 26;821:394 22;753:667 18;381:643 15;496:980

17,000 30;161:037 27;232:831 23;652:866 19;187:183 15;920:265

18,000 30;672:287 27;552:996 24;305:839 20;002:228 16;387:135

19,000 31;428:675 27;866:336 24;772:584 20;769:040 16;887:165

20,000 32;408:846 28;242:897 25;126:494 21;439:724 17;409:719

22,000 34;855:277 29;379:445 25;725:458 22;442:504 18;459:852

(continued)
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Table 10.11 (continued)

P (bar)

T (K) 10�2 10�1 1 10 102

24,000 37,924.034 31,000.114 26,442.698 23,118.002 19,410.675
26,000 40,411.580 33,010.238 27,468.046 23,677.275 20,188.540
28,000 41,788.283 35,324.073 28,803.467 24,290.809 20,808.522
30,000 42,893.347 37,254.439 30,396.629 25,071.145 21,336.310
35,000 46,889.229 40,176.240 34,285.370 27,791.727 22,703.300
40,000 52,449.718 43,685.490 36,732.764 30,688.825 24,538.751
45,000 56,772.171 48,070.326 39,453.975 32,793.404 26,643.790
50,000 60,240.516 51,552.906 42,773.186 34,800.472 28,498.920

Table 10.12 Density � [kg m�3] of Mars as a function of temperature for different
pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 0.05227500 0.52274999 5.22749988 52:27499877 522:74998767

200 0.02613750 0.26137499 2.61374994 26:13749938 261:37499384

300 0.01742500 0.17425000 1.74249996 17:42499959 174:24999589

400 0.01306875 0.13068750 1.30687497 13:06874969 130:68749692

500 0.01045500 0.10455000 1.04549998 10:45499975 104:54999753

600 0.00871250 0.08712500 0.87124998 8:71249979 87:12499795

700 0.00746786 0.07467857 0.74678570 7:46785697 74:67856967

800 0.00653437 0.06534375 0.65343748 6:53437485 65:34374846

900 0.00580833 0.05808333 0.58083332 5:80833320 58:08333196

1,000 0.00522750 0.05227500 0.52274999 5:22749988 52:27499877

1,500 0.00348374 0.03484591 0.34848716 3:48495983 34:84991900

2,000 0.00252985 0.02575389 0.25971404 2:60708087 26:11308423

2,500 0.00164631 0.01839228 0.19617560 2:02882912 20:62558106

3,000 0.00100946 0.01199546 0.13930426 1:54454482 16:40802244

3,500 0.00077335 0.00830311 0.09746954 1:14106887 12:83422423

4,000 0.00066844 0.00677529 0.07298476 0:85585320 9:98621687

4,500 0.00059103 0.00594701 0.06081871 0:67185358 7:91106952

5,000 0.00052354 0.00531714 0.05374773 0:56235665 6:44297740

6,000 0.00033876 0.00409619 0.04381878 0:44772332 4:73068567

7,000 0.00025131 0.00271510 0.03297746 0:37117899 3:86922552

8,000 0.00020738 0.00218794 0.02358167 0:28603459 3:25826477

9,000 0.00016723 0.00185315 0.01956045 0:21521145 2:63650200

10,000 0.00013272 0.00155015 0.01694195 0:17935874 2:06917786

11,000 0.00010427 0.00127805 0.01465477 0:15729020 1:70774837

12,000 0.00008387 0.00104518 0.01255987 0:13943796 1:48948445

13,000 0.00007199 0.00085628 0.01067883 0:12345517 1:33273962

14,000 0.00006492 0.00072112 0.00904941 0:10879002 1:20285415

15,000 0.00005990 0.00063356 0.00770505 0:09544519 1:08756058

16,000 0.00005580 0.00057556 0.00666694 0:08351665 0:98225121

17,000 0.00005212 0.00053322 0.00590765 0:07311315 0:88559568

18,000 0.00004850 0.00049898 0.00535795 0:06435142 0:79736776

(continued)
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Table 10.12 (continued)

P (bar)

T (K) 10�2 10�1 1 10 102

19,000 0.00004477 0.00046907 0.00494650 0.05724153 0.71761674
20,000 0.00004106 0.00044064 0.00462208 0.05161573 0.64650232
22,000 0.00003461 0.00038415 0.00410363 0.04376385 0.53016955
24,000 0.00002922 0.00032998 0.00365797 0.03859954 0.44553487
26,000 0.00002525 0.00028197 0.00322937 0.03477183 0.38565435
28,000 0.00002259 0.00024061 0.00282525 0.03147991 0.34239283
30,000 0.00002046 0.00021025 0.00246055 0.02833135 0.30924773
35,000 0.00001570 0.00016606 0.00180610 0.02133358 0.24635212
40,000 0.00001189 0.00013263 0.00146195 0.01641877 0.19539125
45,000 0.00000962 0.00010563 0.00120116 0.01346741 0.15543242
50,000 0.00000814 0.00008790 0.00098518 0.01132572 0.12804555

Table 10.13 Specific heat cp [J kg�1 K�1] of Mars as a function of
temperature for different pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 695:447 695:447 695:447 695:447 695:447

200 790:822 790:822 790:822 790:822 790:822

300 888:635 888:635 888:635 888:635 888:635

400 968:418 968:418 968:418 968:418 968:418

500 1033:570 1033:570 1033:570 1033:570 1033:570

600 1087:600 1087:600 1087:600 1087:600 1087:600

700 1132:660 1132:660 1132:660 1132:660 1132:660

800 1170:250 1170:250 1170:250 1170:250 1170:250

900 1201:560 1201:560 1201:560 1201:560 1201:560

1000 1227:720 1227:710 1227:710 1227:710 1227:710

1500 1433:480 1352:330 1322:630 1312:670 1309:450

2000 4331:680 2766:200 2006:900 1642:740 1469:360

2500 11748:100 7517:010 4604:380 2963:460 2128:870

3000 10090:300 10627:000 7792:040 5183:530 3383:950

3500 2426:320 6591:600 8397:130 6584:290 4672:590

4000 1626:350 2318:620 5562:480 6609:900 5249:010

4500 2089:180 1730:670 2630:040 5281:890 5215:400

5000 6084:740 2294:140 1878:310 3145:610 4713:830

6000 20304:900 15021:400 4041:150 2126:030 2900:680

7000 5817:690 11783:800 15688:200 5194:300 2423:820

8000 9188:220 5293:440 9467:910 12779:000 4623:600

9000 14621:600 7562:800 4903:010 9480:600 9325:380

10000 21909:400 11962:500 6063:830 4884:790 9219:270

11000 26484:000 16364:500 8523:330 4682:520 5975:110

12000 19748:200 20816:900 11526:900 5745:620 4452:860

13000 10699:600 21503:900 14722:000 7271:990 4306:630

14000 6269:210 16679:000 17312:500 9184:180 4875:020

15000 4949:050 10887:100 17786:400 11111:700 5657:120

(continued)
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Table 10.13 (continued)

P (bar)

T (K) 10�2 10�1 1 10 102

16000 5437:740 7275:940 15630:500 12904:100 6588:000

17000 7901:020 5699:100 12215:300 14097:700 7763:830

18000 12590:600 5537:990 9184:640 14296:600 8850:010

19000 17975:600 6796:050 7171:340 13407:800 9848:690

20000 22139:900 9332:420 6265:730 11787:500 10472:100

22000 32065:900 16428:600 7024:650 8501:260 11055:600

24000 35877:200 22345:200 10838:400 6749:020 10190:200

26000 22043:700 29900:600 16112:800 7552:820 8789:740

28000 15200:800 30798:800 21209:000 10019:700 7784:410

30000 19995:600 21607:500 26212:100 14095:000 7732:910

35000 35048:100 21691:400 19744:900 21972:500 11523:300

40000 41652:000 34048:000 19785:600 19260:500 16874:400

45000 32204:000 36349:700 28617:200 17390:200 18188:900

50000 40401:600 29857:900 33050:500 22956:500 16513:500

Table 10.14 Equilibrium
isentropic coefficient �eq of
Mars as a function of
temperature for different
pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 1.39064 1.39064 1.39064 1.39064 1.39064
200 1.33973 1.33973 1.33973 1.33973 1.33973
300 1.29229 1.29229 1.29229 1.29229 1.29229
400 1.25860 1.25860 1.25860 1.25860 1.25860
500 1.23726 1.23726 1.23726 1.23726 1.23726
600 1.22201 1.22201 1.22201 1.22201 1.22201
700 1.20968 1.20968 1.20968 1.20968 1.20968
800 1.20013 1.20013 1.20014 1.20014 1.20014
900 1.19338 1.19337 1.19332 1.19332 1.19332
1,000 1.18809 1.18813 1.18811 1.18810 1.18810
1,500 1.17066 1.17078 1.17274 1.17331 1.17325
2,000 1.10952 1.12129 1.13742 1.15079 1.15968
2,500 1.15935 1.13809 1.12749 1.12970 1.13879
3,000 1.19222 1.19504 1.17333 1.15345 1.14347
3,500 1.24929 1.20836 1.21793 1.19751 1.17510
4,000 1.32978 1.26878 1.23215 1.23586 1.21310
4,500 1.26933 1.31754 1.26870 1.25692 1.24770
5,000 1.16624 1.26641 1.30840 1.27371 1.27577
6,000 1.20170 1.19283 1.20731 1.29400 1.30323
7,000 1.21687 1.20557 1.23070 1.20947 1.29064
8,000 1.21382 1.24045 1.22753 1.25296 1.23223
9,000 1.22825 1.23400 1.26010 1.25704 1.26474
10,000 1.24631 1.24225 1.25588 1.27399 1.29005
11,000 1.26367 1.25922 1.25259 1.28232 1.29220
12,000 1.25689 1.27820 1.26108 1.27305 1.30258
13,000 1.26256 1.28810 1.27413 1.27463 1.30331

(continued)
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Table 10.14 (continued) P (bar)

T (K) 10�2 10�1 1 10 102

14,000 1.31844 1.28318 1.28793 1.28351 1.29450
15,000 1.37265 1.28721 1.29814 1.29620 1.28489
16,000 1.35030 1.31871 1.30331 1.31317 1.29124
17,000 1.27821 1.35549 1.31033 1.32783 1.30229
18,000 1.22961 1.35426 1.32740 1.34052 1.31402
19,000 1.21351 1.31324 1.35180 1.34845 1.32919
20,000 1.20246 1.26849 1.36933 1.35304 1.34351
22,000 1.16541 1.23919 1.33260 1.36793 1.37244
24,000 1.16491 1.23636 1.27807 1.37437 1.39271
26,000 1.19550 1.23971 1.26450 1.34041 1.40436
28,000 1.24638 1.24469 1.26555 1.30204 1.40392
30,000 1.23609 1.24638 1.27231 1.28522 1.38456
35,000 1.23186 1.23752 1.27764 1.29268 1.32293
40,000 1.23286 1.23149 1.26476 1.30689 1.32580
45,000 1.22130 1.23659 1.25670 1.30379 1.34415
50,000 1.20787 1.23989 1.26220 1.28973 1.34863

Table 10.15 Frozen
isentropic coefficient �f of
Mars as a function of
temperature for different
pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 1.40066 1.40066 1.40066 1.40066 1.40066
200 1.35016 1.35016 1.35016 1.35016 1.35016
300 1.29366 1.29366 1.29366 1.29366 1.29366
400 1.25849 1.25849 1.25849 1.25849 1.25849
500 1.23565 1.23565 1.23565 1.23565 1.23565
600 1.21965 1.21965 1.21965 1.21965 1.21965
700 1.20789 1.20789 1.20789 1.20789 1.20789
800 1.19900 1.19900 1.19900 1.19900 1.19900
900 1.19215 1.19215 1.19215 1.19215 1.19215
1000 1.18680 1.18680 1.18680 1.18680 1.18680
1500 1.17228 1.17222 1.17220 1.17219 1.17219
2000 1.17381 1.16966 1.16774 1.16687 1.16650
2500 1.22619 1.19433 1.17803 1.17014 1.16642
3000 1.33833 1.26804 1.21859 1.19000 1.17519
3500 1.38930 1.35367 1.28489 1.23012 1.19637
4000 1.39172 1.38473 1.34789 1.28070 1.22803
4500 1.39010 1.38727 1.37587 1.32859 1.26383
5000 1.39260 1.38620 1.38124 1.35884 1.29881
6000 1.50252 1.41049 1.38225 1.37326 1.34710
7000 1.56316 1.52549 1.42749 1.37681 1.35961
8000 1.54931 1.54992 1.51641 1.41751 1.36125
9000 1.51185 1.52577 1.53110 1.48710 1.38192
10000 1.46494 1.48156 1.50117 1.51009 1.43081
11000 1.43847 1.45467 1.45341 1.48949 1.47116

(continued)
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Table 10.15 (continued) P (bar)

T (K) 10�2 10�1 1 10 102

12000 1.42674 1.41943 1.39722 1.46683 1.48082
13000 1.43745 1.40252 1.34170 1.43956 1.48107
14000 1.45062 1.40067 1.29755 1.42744 1.46694
15000 1.46410 1.41248 1.27549 1.41110 1.44675
16000 1.47360 1.43241 1.27652 1.39414 1.45126
17000 1.47466 1.45001 1.29697 1.38350 1.44882
18000 1.45660 1.46351 1.32902 1.38631 1.44046
19000 1.40321 1.46867 1.36523 1.39102 1.43538
20000 1.31172 1.47018 1.39895 1.40021 1.43439
22000 1.14243 1.45541 1.44498 1.42702 1.44245
24000 1.09840 1.44211 1.45841 1.44155 1.45738
26000 1.13030 1.43741 1.44990 1.45094 1.47237
28000 1.23178 1.43521 1.44331 1.44059 1.48227
30000 1.36291 1.44951 1.44129 1.42049 1.48488
35000 1.50663 1.47691 1.46161 1.36206 1.45979
40000 1.53229 1.50038 1.48015 1.36484 1.43957
45000 1.53381 1.51834 1.48658 1.40431 1.44216
50000 1.53909 1.52202 1.48951 1.42432 1.45659

Table 10.16 Isentropic coefficient � of Mars as a function of
temperature for different pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 1.39061 1.39061 1.39061 1.39061 1.39061
200 1.33941 1.33941 1.33941 1.33941 1.33941
300 1.29168 1.29168 1.29168 1.29168 1.29168
400 1.25950 1.25950 1.25950 1.25950 1.25950
500 1.23746 1.23746 1.23746 1.23746 1.23746
600 1.22163 1.22163 1.22163 1.22163 1.22163
700 1.20987 1.20987 1.20987 1.20987 1.20987
800 1.20091 1.20091 1.20091 1.20091 1.20091
900 1.19397 1.19397 1.19397 1.19397 1.19397
1,000 1.18851 1.18851 1.18851 1.18851 1.18851
1,500 1.16577 1.17068 1.17246 1.17305 1.17324
2,000 1.09749 1.11562 1.13450 1.14956 1.15915
2,500 1.09367 1.09692 1.10506 1.11819 1.13324
3,000 1.11609 1.11269 1.11147 1.11444 1.12211
3,500 1.23478 1.14523 1.13299 1.12865 1.12827
4,000 1.32684 1.25258 1.16674 1.15139 1.14442
4,500 1.26574 1.31264 1.24288 1.17984 1.16590
5,000 1.15561 1.26069 1.29848 1.22642 1.19023
6,000 1.10624 1.12698 1.19295 1.28008 1.24887
7,000 1.19547 1.13548 1.13548 1.18040 1.26472
8,000 1.17572 1.21702 1.16015 1.15220 1.19501

(continued)
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Table 10.16 (continued)

P (bar)

T (K) 10�2 10�1 1 10 102

9,000 1.15950 1.19698 1.23263 1.17256 1.17177
10,000 1.15178 1.17822 1.22425 1.23405 1.18198
11,000 1.14932 1.16960 1.20134 1.25226 1.21920
12,000 1.16119 1.16491 1.18605 1.23550 1.25829
13,000 1.20887 1.16719 1.17561 1.21843 1.26748
14,000 1.29161 1.18263 1.16989 1.20690 1.25488
15,000 1.35679 1.22010 1.17121 1.20218 1.24156
16,000 1.33799 1.27706 1.18294 1.19905 1.23099
17,000 1.26224 1.32782 1.20800 1.19910 1.22464
18,000 1.20266 1.33419 1.24551 1.20592 1.22027
19,000 1.17173 1.29266 1.28722 1.21660 1.21945
20,000 1.15179 1.24247 1.31647 1.23295 1.22143
22,000 1.10958 1.18951 1.29114 1.27880 1.23913
24,000 1.09341 1.17141 1.22886 1.30928 1.25683
26,000 1.12526 1.16036 1.19738 1.28683 1.28414
28,000 1.18177 1.16143 1.18345 1.24357 1.30280
30,000 1.17011 1.18388 1.17762 1.21414 1.29874
35,000 1.15092 1.19570 1.20611 1.18942 1.23933
40,000 1.15502 1.17066 1.21318 1.21094 1.21618
45,000 1.17773 1.17100 1.19008 1.22874 1.22478
50,000 1.16812 1.19198 1.18570 1.21080 1.24306

Fig. 10.25 Mass density of Mars atmosphere at P D 10�2, 10�1, 1, 10, 100 bar
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Fig. 10.26 Specific enthalpy of Mars atmosphere at P D 10�2, 10�1, 1, 10, 100 bar

Fig. 10.27 Specific entropy of Mars atmosphere at P D 10�2, 10�1, 1, 10, 100 bar
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Fig. 10.28 Specific heat of Mars atmosphere at P D 10�2, 10�1, 1, 10, 100 bar

Fig. 10.29 Equilibrium isentropic coefficient of Mars atmosphere at P D 10�2 (dotted line), 1
(dashed line), 100 (full line) bar
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Fig. 10.30 Frozen isentropic coefficient of Jupiter atmosphere at P D 10�2 (dotted line), 1
(dashed line), 100 (full line) bar

Fig. 10.31 Isentropic coefficient of Mars at P D 10�2 (dotted line), 1 (dashed line), 100 (full
line) bar
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10.4 Thermodynamic Properties of High-Temperature
Jupiter-Atmosphere Species

Thermodynamic properties of high-temperature equilibrium Jupiter atmosphere
have been calculated in the pressure range (0.01�100 bar) and in the temperature
range (100�50,000 K). In Table 10.17, species considered in the calculations,
volume percentage compositions, and enthalpies of formation have been reported
while temperature dependence of molar fractions of Jupiter-atmosphere species at
P =1 bar pressure has been represented in Figs. 10.32, 10.33, where, respectively,
species with molar fractions �i 1 0:1 and 10�15 � �i � 0:1 are shown.

Table 10.17 Jupiter species,
volume compositions, and
enthalpies of formation of
Jupiter

Species Volume (%) hf (eV)

H2 89 0:0

H
C
2 0:0 15:4258

H 0: 2:2391

H C 0:0 15:8191

H � 0:0 1:4848893

H
C
3 0:0 11:334

He 11 0:0

HeC 0: 24:5873876

HeC2 0: 79:0047712

e 0:0 0:0

Fig. 10.32 Molar fractions of Jupiter species (with �i > 10�1) as a function of the temperature at
P D 1 bar
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Fig. 10.33 Molar fractions of Jupiter species (with 10�15 < �i < 10�1) as a function of the
temperature at P D 1 bar

Table 10.18 Specific enthalpy h [kJ kg�1] of Jupiter as a
function of temperature for different pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 1376:0 1376:0 1376:0 1376:0 1376:0

200 2489:7 2489:7 2489:7 2489:7 2489:7

300 3724:5 3724:5 3724:5 3724:5 3724:5

400 4992:3 4992:3 4992:3 4992:3 4992:3

500 6266:8 6266:8 6266:8 6266:8 6266:8

600 7544:0 7544:0 7544:0 7544:0 7544:0

700 8824:6 8824:6 8824:6 8824:6 8824:6

800 10111:2 10111:2 10111:2 10111:2 10111:2

900 11406:7 11406:7 11406:7 11406:7 11406:7

1000 12713:9 12713:9 12713:9 12713:9 12713:9

1500 19503:6 19492:6 19489:2 19488:1 19487:7

(continued)

Density, specific enthalpy, specific entropy and specific heat have been reported
in Tables 10.18–10.21 and shown in Figs. 10.34–10.37 in the pressure range
(0.01�100 bar) and in the temperature range (100�50,000 K). The quantities �f

(frozen), �eq (equilibrium) and � isentropic coefficients for the same conditions have
been reported in Figs. 10.38–10.40 and in Tables 10.22–10.24.
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Table 10.18 (continued)

P (bar)

T (K) 10�2 10�1 1 10 102

2000 28195:8 27163:2 26836:5 26733:1 26700:5

2500 57584:4 41710:8 36611:3 34994:0 34482:1

3000 156940:1 87590:3 56999:4 46839:2 43601:2

3500 225474:2 177162:6 103624:8 67908:1 55848:7

4000 242554:6 231098:2 175096:6 104916:1 73746:2

4500 252523:9 249842:3 228270:7 157422:8 99597:5

5000 261622:1 260805:2 253430:0 209175:2 133895:8

6000 280066:3 279453:6 278080:1 267050:8 212072:3

7000 302810:0 298844:9 297275:1 293724:9 269014:8

8000 342950:3 323685:6 317461:6 314338:7 302994:1

9000 431224:9 363945:6 342425:3 335051:3 327637:6

10000 618318:2 437700:9 378169:2 358846:9 349889:3

11000 936215:4 570745:8 433803:5 389061:7 372944:2

12000 1288917:0 784259:0 520980:5 429906:7 399078:6

13000 1524399:0 1065132:0 651569:5 486052:9 430265:7

14000 1645908:0 1341466:0 829268:9 562383:7 468571:5

15000 1717538:0 1544530:0 1046882:0 664274:9 516931:7

16000 1778309:0 1673072:0 1271410:0 790919:8 575009:9

17000 1846551:0 1758698:0 1470318:0 943539:4 646764:0

18000 1919145:0 1827588:0 1625186:0 1112517:0 732469:1

19000 1982015:0 1895537:0 1740160:0 1285079:0 826511:5

20000 2032297:0 1964554:0 1829591:0 1447952:0 936687:3

22000 2113763:0 2084769:0 1976916:0 1715375:0 1181957:0

24000 2187094:0 2174746:0 2108903:0 1910753:0 1434957:0

26000 2258712:0 2251781:0 2216014:0 2065123:0 1668072:0

28000 2330262:0 2324828:0 2304628:0 2199165:0 1873730:0

30000 2402984:0 2397077:0 2382652:0 2312619:0 2012467:0

35000 2632138:0 2580959:0 2566947:0 2533433:0 2381774:0

40000 2979635:0 2821414:0 2754230:0 2726036:0 2635900:0

45000 3225603:0 3142575:0 2981737:0 2913461:0 2848279:0

50000 3418256:0 3394043:0 3272324:0 3123026:0 3039291:0

Table 10.19 Specific entropy s [J kg�1 K�1] of Jupiter as a function
of temperature for different pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 68836:35 60213:64 51590:94 42968:24 34345:54

200 74347:90 65725:19 57102:49 48479:79 39857:09

300 78635:57 70012:87 61390:16 52767:46 44144:76

400 81926:81 73304:11 64681:41 56058:71 47436:01

(continued)
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Table 10.19 (continued)

P (bar)

T (K) 10�2 10�1 1 10 102

500 84;557:66 75;934:96 67;312:25 58;689:55 50;066:85

600 86;744:03 78;121:33 69;498:63 60;875:93 52;253:22

700 88;616:63 79;993:92 71;371:22 62;748:52 54;125:82

800 90;258:42 81;635:72 73;013:02 64;390:31 55;767:61

900 91;724:94 83;102:24 74;479:54 65;856:84 57;234:13

1,000 93;054:73 84;432:03 75;809:32 67;186:62 58;563:92

1,500 98;405:32 89;774:91 81;149:77 72;526:30 63;903:35

2,000 103;269:40 94;092:53 85;294:51 76;616:36 67;976:13

2,500 115;979:50 100;423:00 89;574:57 80;246:03 71;399:97

3,000 151;810:60 116;852:00 96;884:23 84;504:98 74;685:60

3,500 173;307:20 144;402:40 111;109:70 90;930:72 78;424:54

4,000 177;917:50 158;975:30 130;167:90 100;747:30 83;169:20

4,500 180;270:30 163;426:10 142;771:50 113;085:10 89;228:38

5,000 182;188:00 165;741:50 148;106:70 124;007:70 96;434:35

6,000 185;547:10 169;144:60 152;638:90 134;711:60 110;690:40

7,000 189;036:50 172;128:80 155;599:30 138;848:10 119;524:70

8,000 194;353:90 175;432:30 158;290:90 141;603:20 124;083:70

9,000 204;669:90 180;148:00 161;222:80 144;040:80 126;991:50

10,000 224;266:00 187;877:10 164;975:20 146;543:70 129;336:30

11,000 254;478:90 200;503:70 170;258:50 149;417:50 131;532:30

12,000 285;204:30 219;025:60 177;820:80 152;963:80 133;803:70

13,000 304;134:80 241;484:80 188;244:50 157;447:40 136;299:00

14,000 313;180:20 261;989:70 201;387:90 163;091:70 139;134:50

15,000 318;136:50 276;035:30 216;397:90 170;115:40 142;472:10

16,000 322;061:90 284;363:20 230;881:80 178;272:60 146;212:10

17,000 326;199:40 289;562:80 242;957:80 187;528:40 150;566:20

18,000 330;353:00 293;512:20 251;848:70 197;195:40 155;473:00

19,000 333;758:70 297;185:40 258;074:20 206;537:20 160;533:70

20,000 336;343:10 300;734:60 262;666:00 214;904:00 166;199:60

22,000 340;231:20 306;485:10 269;718:90 227;690:50 177;913:90

24,000 343;424:60 310;413:60 275;467:20 236;211:70 188;954:80

26,000 346;292:80 313;505:00 279;780:40 242;453:90 198;313:80

28,000 348;943:90 316;218:10 283;067:10 247;425:70 205;946:80

30,000 351;453:40 318;710:50 285;776:00 251;343:30 210;756:90

35,000 358;471:90 324;386:50 291;474:90 258;217:40 222;406:60

40,000 367;752:50 330;780:20 296;483:00 263;364:70 229;212:70

45,000 373;571:90 338;346:30 301;835:90 267;806:10 234;221:30

50,000 377;635:30 343;663:30 307;961:20 272;216:30 238;321:80
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Table 10.20 Density � [kg m�3] of Jupiter as a function of temperature for different
pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 0.00267038 0.02670375 0.26703750 2.67037500 26:70375000

200 0.00133519 0.01335188 0.13351880 1.33518800 13:35188000

300 0.00089013 0.00890125 0.08901251 0.89012510 8:90125100

400 0.00066759 0.00667594 0.06675938 0.66759380 6:67593800

500 0.00053408 0.00534075 0.05340751 0.53407510 5:34075100

600 0.00044506 0.00445063 0.04450626 0.44506260 4:45062600

700 0.00038148 0.00381482 0.03814822 0.38148220 3:81482200

800 0.00033380 0.00333797 0.03337969 0.33379690 3:33796900

900 0.00029671 0.00296708 0.02967084 0.29670840 2:96708400

1000 0.00026704 0.00267038 0.02670375 0.26703750 2:67037500

1500 0.00017801 0.00178021 0.01780236 0.17802460 1:78024900

2000 0.00013254 0.00133207 0.01334201 0.13348760 1:33508900

2500 0.00009594 0.00103076 0.01056011 0.10642790 1:06692300

3000 0.00005725 0.00072972 0.00830347 0.08702008 0:88371870

3500 0.00004139 0.00047359 0.00606935 0.07030801 0:74281000

4000 0.00003545 0.00036517 0.00428109 0.05460651 0:62220590

4500 0.00003142 0.00031637 0.00334818 0.04141411 0:51341970

5000 0.00002826 0.00028321 0.00288605 0.03259165 0:41780050

6000 0.00002354 0.00023552 0.00236280 0.02430693 0:28384190

7000 0.00002009 0.00020157 0.00201933 0.02036235 0:21727500

8000 0.00001727 0.00017538 0.00176276 0.01770753 0:18210150

9000 0.00001458 0.00015323 0.00155800 0.01568410 0:15919630

10000 0.00001172 0.00013242 0.00138351 0.01404516 0:14211470

11000 0.00000899 0.00011148 0.00122437 0.01265238 0:12841490

12000 0.00000703 0.00009094 0.00107159 0.01141586 0:11691030

13000 0.00000595 0.00007329 0.00092249 0.01027463 0:10699320

14000 0.00000534 0.00006068 0.00078282 0.00919611 0:09803056

15000 0.00000491 0.00005269 0.00066112 0.00817265 0:08982313

16000 0.00000457 0.00004758 0.00056440 0.00721216 0:08219873

17000 0.00000426 0.00004391 0.00049386 0.00634134 0:07512572

18000 0.00000399 0.00004100 0.00044432 0.00558281 0:06848987

19000 0.00000376 0.00003846 0.00040768 0.00494979 0:06229172

20000 0.00000356 0.00003623 0.00037933 0.00443953 0:05661300

22000 0.00000322 0.00003254 0.00033639 0.00371597 0:04692373

24000 0.00000295 0.00002968 0.00030293 0.00324537 0:03946328

26000 0.00000272 0.00002734 0.00027704 0.00291689 0:03394311

28000 0.00000253 0.00002536 0.00025579 0.00265327 0:02984037

30000 0.00000236 0.00002365 0.00023822 0.00244289 0:02713648

35000 0.00000201 0.00002025 0.00020349 0.00206458 0:02180179

40000 0.00000173 0.00001760 0.00017761 0.00179317 0:01853651

45000 0.00000153 0.00001542 0.00015699 0.00158926 0:01623744

50000 0.00000137 0.00001379 0.00013975 0.00142254 0:01455033
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Table 10.21 Specific heat cp [J kg�1 K�1] of Jupiter as a function of temperature
for different pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 10;211:849 10;211:849 10;211:849 10;211:849 10;211:849

200 11;907:825 11;907:825 11;907:825 11;907:825 11;907:825

300 12;611:177 12;611:177 12;611:177 12;611:177 12;611:177

400 12;724:869 12;724:869 12;724:869 12;724:869 12;724:869

500 12;759:968 12;759:968 12;759:968 12;759:968 12;759:968

600 12;785:599 12;785:599 12;785:598 12;785:598 12;785:598

700 12;831:698 12;831:697 12;831:699 12;831:698 12;831:698

800 12;905:290 12;905:293 12;905:288 12;905:289 12;905:289

900 13;008:731 13;008:722 13;008:741 13;008:735 13;008:736

1,000 13;138:985 13;139:019 13;138:948 13;138:972 13;138:967

1,500 14;173:992 14;042:200 14;000:425 13;987:240 13;982:999

2,000 25;130:434 18;058:249 15;819:725 15;111:618 14;887:750

2,500 116;379:067 48;306:267 25;881:216 18;741:034 16;479:515

3,000 231;187:503 146;757:777 61;488:488 30;571:792 20;604:387

3,500 58;023:954 168;531:473 126;948:849 56;202:036 29;257:776

4,000 22;586:727 57;876:068 139;248:345 92;199:496 43;152:688

4,500 18;557:604 25;720:120 72;333:177 111;678:317 60;490:528

5,000 18;029:482 19;686:849 34;914:399 89;484:230 75;661:555

6,000 19;442:848 18;453:558 19;949:100 35;014:862 71;906:903

7,000 28;069:546 21;023:012 19;148:006 21;922:451 42;634:524

8,000 57;222:667 30;271:068 21;812:226 20;114:449 27;608:167

9,000 128;214:337 53;275:128 29;103:847 21;772:700 22;739:095

10,000 253;892:718 98;668:808 43;920:042 26;354:840 22;259:228

11,000 365;601:424 171;423:614 69;747:500 34;895:528 24;289:109

12,000 308;146:786 255;036:727 105;779:132 47;994:140 28;773:689

13,000 167;083:441 293;431:856 153;941:869 66;405:620 34;561:938

14,000 87;783:256 245;549:048 202;350:204 87;189:746 42;651:642

15,000 61;700:036 161;498:941 228;448:856 116;085:152 51;320:218

16,000 63;031:144 101;568:042 215;744:563 138;711:832 65;758:549

17,000 72;781:939 74;037:568 177;943:085 162;450:623 79;374:902

18,000 69;476:080 66;685:827 132;426:680 173;102:523 94;125:302

19,000 55;995:228 69;309:975 99;770:399 169;694:342 98;436:480

20,000 45;481:089 67;817:856 81;260:827 154;524:346 114;768:720

22,000 37;606:629 50;928:801 68;976:942 113;177:327 127;013:369

24,000 36;098:737 40;277:177 60;425:519 85;494:986 27;871:321

26,000 35;602:397 36;858:824 48;589:630 69;509:535 55;111:952

28,000 35;914:187 35;818:259 41;177:918 61;844:596 72;310:198

30,000 37;065:760 35;883:009 38;801:902 52;122:307 41;974:077

35,000 61;472:775 39;183:437 36;769:908 40;664:731 58;199:809

40,000 62;214:193 59;841:547 39;778:027 38;156:053 45;322:209

45,000 40;995:483 59;869:904 53;118:375 39;132:636 41;854:437

50,000 37;178:300 43;090:901 59;124:990 45;071:512 39;718:505
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Fig. 10.34 Mass density of Jupiter atmosphere at P D 10�2, 10�1, 1, 10, 100 bar

Fig. 10.35 Specific enthalpy of Jupiter atmosphere at P D 10�2, 10�1, 1, 10, 100 bar
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Fig. 10.36 Specific entropy of Jupiter atmosphere at P D 10�2, 10�1, 1, 10, 100 bar

Fig. 10.37 Specific heat of Jupiter atmosphere at P D 10�2 , 10�1, 1, 10, 100 bar
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Fig. 10.38 Equilibrium isentropic coefficient of Jupiter atmosphere at P D 10�2 (dotted line), 1
(dashed line), 100 (full line) bar

Fig. 10.39 Frozen isentropic coefficient of Jupiter atmosphere at P D 10�2 (dotted line),
1 (dashed line), 100 (full line) bar
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Fig. 10.40 Isentropic coefficient of Jupiter at P D 10�2 (dotted line), 1 (dashed line), 100 (full
line) bar

Table 10.22 Frozen
isentropic coefficient �f of
Jupiter as a function of
temperature for different
pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 1.59169 1.59169 1.59169 1.59169 1.59169
200 1.45582 1.45582 1.45582 1.45582 1.45582
300 1.42322 1.42322 1.42322 1.42322 1.42322
400 1.41690 1.41690 1.41690 1.41690 1.41690
500 1.41544 1.41544 1.41544 1.41544 1.41544
600 1.41420 1.41420 1.41420 1.41420 1.41420
700 1.41211 1.41211 1.41211 1.41211 1.41211
800 1.40880 1.40880 1.40880 1.40880 1.40880
900 1.40423 1.40423 1.40423 1.40423 1.40423
1000 1.39863 1.39863 1.39863 1.39863 1.39863
1500 1.36586 1.36584 1.36583 1.36583 1.36583
2000 1.34184 1.34005 1.33948 1.33930 1.33925
2500 1.36093 1.33325 1.32445 1.32167 1.32079
3000 1.51876 1.38605 1.33175 1.31424 1.30871
3500 1.64365 1.53516 1.38885 1.32482 1.30412
4000 1.66305 1.63441 1.50550 1.36609 1.31077
4500 1.66586 1.65877 1.60360 1.44381 1.33336
5000 1.66642 1.66426 1.64434 1.53369 1.37507
6000 1.66662 1.66628 1.66289 1.63290 1.49756
7000 1.66633 1.66644 1.66564 1.65723 1.59417

(continued)
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Table 10.22 (continued) P (bar)

T (K) 10�2 10�1 1 10 102

8000 1.66242 1.66512 1.66575 1.66308 1.63711
9000 1.63883 1.65568 1.66228 1.66348 1.65279
10000 1.57118 1.62324 1.64891 1.65873 1.65654
11000 1.50004 1.54469 1.61436 1.63934 1.65205
12000 1.48951 1.49790 1.55343 1.60255 1.63815
13000 1.49966 1.47275 1.50448 1.56727 1.59705
14000 1.52940 1.46719 1.47599 1.53796 1.57563
15000 1.56424 1.48829 1.44464 1.48755 1.53059
16000 1.59576 1.50572 1.46914 1.48703 1.52638
17000 1.61835 1.54253 1.48055 1.46198 1.49052
18000 1.63230 1.56662 1.47531 1.45015 1.45992
19000 1.64135 1.59382 1.50522 1.45085 1.49854
20000 1.64777 1.60962 1.53485 1.46165 1.48735
22000 1.65717 1.63358 1.57129 1.50067 1.48347
24000 1.66207 1.64756 1.60762 1.54406 1.49953
26000 1.66480 1.65601 1.62692 1.55766 1.52655
28000 1.66603 1.66127 1.64351 1.59131 1.55762
30000 1.66632 1.66436 1.65223 1.61613 1.56640
35000 1.66298 1.66540 1.66389 1.64757 1.60482
40000 1.65790 1.65836 1.66496 1.66248 1.64308
45000 1.65980 1.65090 1.65727 1.66523 1.66075
50000 1.66290 1.65366 1.64749 1.66088 1.66524

Table 10.23 Equilibrium
isentropic coefficient �eq of
Jupiter as a function of
temperature for different
pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 1.59060 1.59060 1.59060 1.59060 1.59060
200 1.45519 1.45519 1.45519 1.45519 1.45519
300 1.42303 1.42303 1.42303 1.42303 1.42303
400 1.41685 1.41685 1.41685 1.41685 1.41685
500 1.41541 1.41541 1.41541 1.41541 1.41541
600 1.41415 1.41415 1.41415 1.41415 1.41415
700 1.41202 1.41202 1.41202 1.41202 1.41202
800 1.40864 1.40864 1.40864 1.40864 1.40864
900 1.40400 1.40400 1.40400 1.40400 1.40400
1,000 1.39832 1.39833 1.39833 1.39833 1.39833
1,500 1.35964 1.36353 1.36479 1.36518 1.36531
2,000 1.21915 1.28179 1.31738 1.33159 1.33646
2,500 1.18346 1.18037 1.22526 1.27525 1.30331
3,000 1.25353 1.23692 1.20104 1.22079 1.26135
3,500 1.27949 1.27287 1.26926 1.22614 1.23544
4,000 1.52776 1.30211 1.30829 1.28418 1.24470

(continued)
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Table 10.23 (continued) P (bar)

T (K) 10�2 10�1 1 10 102

4,500 1.63595 1.48304 1.31520 1.33960 1.28572
5,000 1.65216 1.60492 1.41254 1.35471 1.34112
6,000 1.58488 1.63239 1.60315 1.44437 1.41410
7,000 1.38873 1.53369 1.60804 1.57390 1.46186
8,000 1.23879 1.37103 1.51731 1.59037 1.53560
9,000 1.20649 1.26025 1.39276 1.52874 1.57207
10,000 1.24327 1.22715 1.29973 1.43753 1.54841
11,000 1.28397 1.24466 1.25657 1.35499 1.48986
12,000 1.27310 1.28468 1.25214 1.30094 1.42331
13,000 1.27157 1.30789 1.27401 1.27727 1.36156
14,000 1.33530 1.30186 1.30533 1.27618 1.32468
15,000 1.40042 1.30316 1.32803 1.28762 1.29930
16,000 1.37443 1.33749 1.33774 1.31178 1.29411
17,000 1.33594 1.38061 1.33859 1.33466 1.29340
18,000 1.35515 1.38671 1.34736 1.35414 1.30050
19,000 1.42854 1.37030 1.36918 1.36785 1.32181
20,000 1.51988 1.37600 1.39010 1.37741 1.33893
22,000 1.62951 1.47768 1.40081 1.39779 1.37722
24,000 1.65930 1.59240 1.43937 1.42069 1.41165
26,000 1.66488 1.64508 1.52633 1.43997 1.43911
28,000 1.65818 1.66212 1.60091 1.47416 1.46261
30,000 1.62567 1.66373 1.64269 1.52876 1.48036
35,000 1.37246 1.58835 1.66106 1.64072 1.54949
40,000 1.39361 1.39366 1.59098 1.66098 1.62782
45,000 1.58936 1.41491 1.44815 1.62298 1.66119
50,000 1.65294 1.56521 1.42629 1.52769 1.65936

Table 10.24 Isentropic
coefficient � of Jupiter as a
function of temperature for
different pressures

P (bar)

T (K) 10�2 10�1 1 10 102

100 1.59060 1.59060 1.59060 1.59060 1.59060
200 1.45519 1.45519 1.45519 1.45519 1.45519
300 1.42303 1.42303 1.42303 1.42303 1.42303
400 1.41685 1.41685 1.41685 1.41685 1.41685
500 1.41541 1.41541 1.41541 1.41541 1.41541
600 1.41415 1.41415 1.41415 1.41415 1.41415
700 1.41202 1.41202 1.41202 1.41202 1.41202
800 1.40864 1.40864 1.40864 1.40864 1.40864
900 1.40400 1.40400 1.40400 1.40400 1.40400
1000 1.39832 1.39833 1.39833 1.39833 1.39833
1500 1.35959 1.36351 1.36478 1.36518 1.36531
2000 1.21469 1.28029 1.31689 1.33143 1.33641

(continued)
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Table 10.24 (continued) P (bar)

T (K) 10�2 10�1 1 10 102

2500 1.12713 1.16009 1.21833 1.27294 1.30256
3000 1.13046 1.14084 1.16230 1.20727 1.25682
3500 1.25017 1.15692 1.16098 1.18031 1.21933
4000 1.52225 1.26346 1.18043 1.18364 1.20408
4500 1.63467 1.47199 1.24774 1.20161 1.20712
5000 1.65176 1.60133 1.38471 1.23767 1.22173
6000 1.58436 1.63167 1.59761 1.40322 1.27719
7000 1.38551 1.53242 1.60619 1.56005 1.37866
8000 1.22537 1.36617 1.51510 1.58452 1.49278
9000 1.16507 1.24533 1.38719 1.52452 1.54930
10000 1.14998 1.19003 1.28623 1.43155 1.53465
11000 1.14777 1.16963 1.22794 1.34402 1.47916
12000 1.15949 1.16557 1.19903 1.28098 1.41191
13000 1.20861 1.16865 1.18808 1.24331 1.34650
14000 1.30289 1.18416 1.18601 1.22276 1.30302
15000 1.38122 1.22357 1.18890 1.21041 1.26813
16000 1.35910 1.28658 1.20176 1.20903 1.25033
17000 1.31995 1.34666 1.22419 1.20958 1.23462
18000 1.33999 1.36026 1.25834 1.21535 1.22494
19000 1.41665 1.34698 1.30184 1.22655 1.22803
20000 1.51102 1.35392 1.33806 1.24381 1.22865
22000 1.62427 1.46172 1.36260 1.29394 1.24182
24000 1.65536 1.58121 1.40973 1.34400 1.26896
26000 1.66159 1.63627 1.50282 1.37730 1.30463
28000 1.65543 1.65455 1.58324 1.42354 1.34353
30000 1.62298 1.65747 1.62726 1.48802 1.37764
35000 1.36518 1.58219 1.64988 1.61261 1.47308
40000 1.38497 1.38312 1.58114 1.64176 1.57404
45000 1.58641 1.40368 1.43530 1.60577 1.62234
50000 1.65160 1.55932 1.41071 1.51173 1.62349



Appendix A
Spectral Terms for Atoms and Molecules

In previous chapters, the calculation of the electronic partition function of atomic
hydrogen has been carried out by using the analytical formulation of the energy
levels and of the corresponding statistical weights. The situation is deeply dif-
ferent when dealing with the multielectron atoms. In principle, one can write the
Schrödinger equation for the system and solve it through numerical methods. This
approach is in general followed for the ground state and for the so-called low-lying
excited states, i.e., for electronic states arising from the rearrangement of valence
electrons. On the other hand, the solution of the Schrödinger equation for high-
lying excited states (i.e., states characterized by values of principal quantum number
different from that of the ground state) is still a prohibitive task despite the enormous
progress of quantum chemistry calculations. In this case, semiempirical methods,
based on known electronic levels, can be used to get a complete set of energy levels,
ready for the cutoff criterion. In doing so, we must be aware of the enormous number
of energy levels arising from the coupling of the angular and spin momenta in the
multielectron systems. This kind of problems will be analyzed in the first part of
this appendix that will give us the recipes to get complete sets of energy levels for
multielectron atoms.

In the second part, we will consider similar problems for diatomic molecules.

A.1 Atomic Electronic Terms

The electrons in multielectron atoms can be identified through four quantum
numbers (principal, angular, magnetic, and spin) in the order

.n1; l1; m1; s1/

.n2; l2; m2; s2/

.n3; l3; m3; s3/

: : :

M. Capitelli et al., Fundamental Aspects of Plasma Chemical Physics: Thermodynamics,
Springer Series on Atomic, Optical, and Plasma Physics 66,
DOI 10.1007/978-1-4419-8182-0, © Springer Science+Business Media, LLC 2012
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In the frame of the vector model for angular momentum, let us define the following
total quantities:

L Quantum number for the orbital angular momentum, associated to the squared
modulus of the vector L, i.e. jLj2 D L.L C1/, with (2L+1) values of the projec-
tion on the quantization axis (the z-axis) ML D �L; �LC1; : : : ; 0; : : : ; L�1; L.

S Quantum number associated to the spin angular momentum, corresponding to a
vector S with modulus jSj2 D S.S C 1/, with (2S C 1) values of the projection
on the quantization axis MS D �S ,�S C 1,. . . ,0,. . . ,S � 1,S .

J Total angular momentum for J D L C S with jJj2 D J.J C 1/.

The sum rules are those of vector addition, considering their possible relative
orientation. In the following, we will present the practical rules for obtaining L,
S and J 1.

A.1.1 Calculation of L

One-electron atoms L1 D `1.
Two-electron atoms L2 assumes all the integer values in the interval `1 C`2; `1 C

`2 � 1 : : : j`1 � `2j
Three-electron atoms L3 assumes, for each possible value of L2, all the values in

the interval L2 C `3; L2 C `3 � 1 : : : jL2 � `3j.
The procedure is extended adding one electron at a time.

A.1.2 Calculation of S

One-electron atoms S1 D s1

Two-electron atoms S2 assumes all the integer values in the interval s1 C s2; s1 C
s2 � 1 : : : js1 � s2j

Three-electron atoms S3 assumes, for each possible value of S2, all the values in
the interval S2 C s3; S2 C s3 � 1 : : : jS2 � s3j.

The procedure is extended adding one electron at a time.

1It should be noted that the scheme presented in this chapter is the so-called Russell–Saunders
coupling scheme, widely used for the derivation of atomic term symbols of light atoms (Z . 40).
Alternatively, the j � j coupling scheme can be considered. Within this frame, the orbital and
spin angular momenta of each electron are coupled (ji D `i C si ) and then the coupling of one-
electron total angular momenta (j1,j2,j3 . . . ) results in the total angular momentum of the atom J .
This scheme is more appropriate for heavy atoms, when the spin-orbit coupling is the relevant
interaction.
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A.1.3 Calculation of J

J can assume, for each possible value of L and S , all the integer values in the range
L C S; L C S � 1 : : : jL � S j.

Before passing to practical examples, we want to remind that each electronic
term, corresponding to a given electronic configuration, is characterized by a term
symbol written in the form 2SC1LJ . Capital letters in the series (S; P; D; F; G, . . . )
correspond to different values of the orbital angular momentum L (0, 1, 2, 3, 4, . . . ).
On the left of the capital letter, the value of spin multiplicity 2S C 1 is reported2,
while on the right the value of J is found. The total multiplicity of the state, i.e., the
statistical weight is 2J C 1 D .2L C 1/.2S C 1/. Therefore,

2S1=2 identifies a state with L D 0 (state S ), total spin S D 1
2
, resulting in a

doublet (multiplicity 2S C 1 D 2) and with J D 1
2

(J D L C S D 0 C 1
2

D 1
2
).

The statistical weight of the state is 2J C 1 D 2.

A.1.3.1 Hydrogen

For n D 1 (ground state,) we have H.1s/ which corresponds to

S D s1 D 1
2

L D `1 D 0

J D 1
2
:

The electronic term is written as 2S1=2. The statistical weight is given by g1 D
2J C 1 D 2 having energy "1 D 0.

For n D 2, we have H.2s/ and H.2p/ states. The angular momentum of H.2s/

is analogous to the H.1s/ and therefore the electronic term is 2S1=2 and the statistical
weight is g2s D 2.

Let us now consider the excited state H.2p/

S D s1 D 1
2

L D `1 D 1

J D f 3
2
; 1

2
g:

Therefore, we have two terms f2P3=2;2 P1=2g with statistical weights of 4 and 2,
respectively. The energy of the state is given by

"2 D IH

�
1 � 1

22

�
D 3

4
IH

independently of the angular momentum3. Therefore, summing the contribution of
the three terms we have gnD2 D 2 C 4 C 2 D 8, in agreement with the general
formula gn D 2n2.

2Depending on the spin multiplicity, electronic states of atoms are classified as doublets (2S C
1 D 2), triplets (2S C 1 D 3), quartets (2S C 1 D 4), . . .
3If the spin-orbit coupling is neglected.
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A.1.3.2 Helium

The ground state configuration is He.1s2/. The two electrons are not independent
because, due to the Pauli exclusion principle, their spins must be antiparallel.
Therefore, we have:

L D 0 being `1 D `2 D 0

S D 0 being s1 D s2 D 1
2

with ms1 D �ms2

J D 0

giving a configuration 1S0, corresponding to a closed shell atom, characteristic of
noble gas ground state, having degeneracy g1 D 1.

Let us consider the He.1s2s/ excited configuration. The two electrons are now
independent because they do not occupy the same orbital. Therefore, we have:

L D 0 being `1 D `2 D 0

S D f1; 0g being s1 D s2 D 1
2

J D f1; 0g
giving the configurations 3S1 and 1S0, corresponding to a triplet (g D 3) and a singlet
(g D 1) states.

A.1.3.3 Two Not-Equivalent p Electrons (np; mp)

The two electrons are independent because are not in the same orbital. Therefore:

L D f2; 1; 0g being `1 D `2 D 1

S D f1; 0g being s1 D s2 D 1
2
.

To calculate J , we have to combine the different contributions giving the following
terms

L S J Terms

2 1 f3,2,1g 3D3, 3D2, 3D1

2 0 2 1D2

1 1 f2,1,0g 3P2, 3P1, 3P0

1 0 1 1P1

0 1 1 3S1

0 0 0 1S0

A.1.3.4 Two Equivalent p Electrons (np2)

For two equivalent p electrons, characterized by the same principal and orbital
quantum numbers (n; `), not all the electronic terms derived in the previous example
do exist. In this case in fact the Pauli exclusion principle restricts the number of
allowed configurations. For the configuration np2, i.e. (`i D 1; si D 1

2
, with
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Fig. A.1 Arrangements of two electrons on three equivalent p orbitals

axial projections m`i D ˙1; 0, msi D ˙ 1
2
), let us consider the possible values

of the electrons angular momentum projections, algebraically summing in the
resulting total angular and spin momentum projections, ML D m`1 C m`2 and
MS D ms1 C ms2 , as shown in Fig. A.1, where uparrows correspond to ms D 1

2
and

downarrows to � 1
2
. The configurations originating negative total spin projection are

implicitly included.
The maximum ML value of 2, found in constructing the allowed configurations,

with maximum MS D 0, implies the existence of a term 1D, thus accounting for five
configurations with (ML D ˙2,˙1,0 and MS D 0). Repeating the procedure on the
remaining configurations, .ML/max D 1 and .MS/max D 1, one accounts for a 3P

term with nine configurations arising from allowed values ML D ˙1,0 and MS D
˙1,0. Finally, the last arrangement (ML D 0 and S D 0) leads to the 1S term. The
group theory offers an elegant and compact derivation of allowed terms (Bishop
1993), though beyond the scope of this book. It can be demonstrated that the spatial
wavefunction for D and S terms is even, while spin wavefunction is even for triplets
and odd for singles. It is straightforward that due to the antisymmetric nature of the
total (spatial+spin) electronic wavefunction, only 1S ,1D and 3P terms could exist.

This is the case of ground and low-lying excited states of carbon atom.

Term Energy (cm�1/ g
3P0 0 1
3P1 16:40 3
3P2 43:40 5
1D2 10;192:63 5
1S0 21;648:01 1

A.1.3.5 Three Not-Equivalent p Electrons (n1p; n2p; n3p)

The results of the two-electron case with configuration (L2; S2) must be combined
with the third electron (l3; s3), i.e.,
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L2 `3 L S2 s3 S

2 1 f3,2,1g 1 1/2 f3/2,1/2g
1 1 f2,1,0g 0 1/2 1/2
0 1 1

Let us now compose L and S :

L S J Terms # of terms

3 3/2 f9/2,7/2,5/2,3/2g 4F9=2;7=2;5=2;3=2 1
2 3/2 f7/2,5/2,3/2,1/2g 4D7=2;5=2;3=2;1=2 2
1 3/2 f5/2,3/2,1/2g 4P5=2;3=2;1=2 3
0 3/2 3/2 4S3=2 1
3 1/2 f7/2,5/2g 2F7=2;5=2 2
2 1/2 f5/2,3/2g 2D5=2;3=2 4
1 1/2 f3/2,1/2g 2P3=2;1=2 6
0 1/2 1/2 2S1=2 2

A.1.3.6 Three Equivalent p Electrons (np3)

It turns out (see Fig. A.2) that for np3 electronic configuration only the terms 4S ,
2D, 2P survive. This is the case of the nitrogen atoms in ground and low-lying states
with three electrons having principal quantum number n D 2

Term Energy (cm�1) g
4S3=2 0 4
2D5=2 19224:464 6
2D3=2 19233:177 4
2P1=2 28838:920 2
2P3=2 28839:306 4

Fig. A.2 Arrangements of three electrons on three equivalent p orbitals
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Table A.1 Electronic terms for atoms with equivalent-
electron configurations

Configuration Electronic terms Atoms

p p5 2P B, F
p2 p4 1S 3P 1D C, O, NC

p3 4S 2P 2D N, OC

p6 1S Ne

d d9 2D Sc
d2 d8 1S 3P 1D 3F 1G Ti, Ni
d3 d7 2P 4P 22D 2F 4F 2G 2H V, Co
d4 d6 21S 23P 21D 3D 5D 1F Fe

23F 21G 3G 3H 1I

d5 2S 6S 2P 4P 32D 4D 22F Mn
4F 22G 4G 2H 2I

d10 1S Zn

A.1.3.7 Four Equivalent p Electrons (np4)

This situation gives the same terms as the two equivalent p electrons. This is the case
of the oxygen atoms in ground and low-lying excited states, having four electrons
with principal quantum number n D 2, reported below

Term Energy (cm�1/ g
3P2 0 5
3P1 158:265 3
3P0 226:977 1
1D2 15867:862 5
1S0 33792:583 1

In Table A.1, the electronic terms for equivalent-electron configurations are
given. It should be noted that configurations having equal number of electrons or
electron-holes have to be considered as equivalent, giving rise to the same electronic
terms. Complete shell configurations, i.e. p6, always give the 1S term. We give here
the definition of the parity of atomic terms P D .�1/

P
i `i , being the exponent

the algebraic sum of orbital angular momenta of electrons, in a given electronic
configuration.

A.2 Complete Sets of Electronic Levels

The calculation of electronic partition function of atomic species needs of complete
sets of energy levels and of corresponding statistical weights. Here, we want to
present a very simple and rapid method based on the calculation of energy levels by
an hydrogenic approximation and by calculating the statistical weight through the
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L–S coupling. Some examples will explain the procedure which closely follows
that one described in the previous pages. A better set of energy levels can be
obtained by using semiempirical methods with the aid of existing tabulated energy
levels (Capitelli and Molinari 1970) (see also Sect. A.3).

A.2.1 Helium

We want to calculate the complete set of levels with energies and statistical weights
for the configurations derived from the interaction of the Helium core (2S ) with the
(optical) electron jumping on the excited levels.

Let us start with the interaction

2S C 2s

We note that the core configuration (1s1) is characterized by quantum numbers
Score D 1=2 and Lcore D 0, while the 2s excited electron has spin 1/2 and ` D 0. In
the frame of L-S coupling scheme, the singlet 1S0 (g D 1) and triplet 3S1 (g D 3)
states are obtained.

Consider now the interaction
2S C 2p

i.e., (Lcore D 0, Score D 1=2) + (` D 1, s D 1=2). We obtain a triplet state (L D 1),
which corresponds to 1P1 (g D 3), 3P2;1;0 (g D 9) and the total statistical weight is
gnD2 D 16.

Let us now consider the interaction of the core with one electron in the n D 3

shell. The interactions with the 3s and 3p states follow directly from the cases above
considered for the shell n D 2. Additionally, the interaction with the 3d electron
must be considered

2S C 3d

originating, in the L–S coupling, 1D2 (g D 5) and 3D3;2;1 (g D 15), leading to the
total statistical weight gnD3 D g3s C g3p C g3d D 36.

The procedure can be continued to get all excited states coming from the
interaction of the core electron with the optical electron. By comparing the total
statistical weight coming from n D 2 and n D 3 we can deduce that the statistical
weight of helium follows the relation

g D 4n2

with respect to the principal quantum number.
Concerning the energy of levels, to a first approximation we can use an

hydrogenic formula, inserting the helium ionization potential IHe in place of the
corresponding one of the hydrogen atom

En D IHe � IH

n2



A.2 Complete Sets of Electronic Levels 239

neglecting the splitting between singlet and triplet states due to spin–orbit coupling.
Note also that the He ground state has a statistical weight g D 1.

A.2.2 Oxygen

We have already studied the spectroscopic terms coming from the different interac-
tions occurring in the p4 configuration. Now we want to study the interaction of the
most stable atomic oxygen core (i.e., the 4S3=2 state Lcore D 0, Score D 3=2) with the
optical electron jumping on the excited states with n � 3. The stable core derives
from the elimination of one electron from the p4 to obtain the p3 configuration.

Combining the core and an electron with n D 4, thus with ` D 0; : : : ; n � 1 D
0; 1; 2; 3; the following atomic terms can be derived

` s L S J Terms g

0 1/2 0 f2,1g f2,1g 5S2, 3S1 8

1 1/2 1 2 f3,2,1g 5P3;2;1 15

1 1/2 1 1 f2,1,0g 3P2;1;0 9

2 1/2 2 2 f4,3,2,1,0g 5D4;3;2;1;0 25

2 1/2 2 1 f3,2,1g 3D3;2;1 15

3 1/2 3 2 f5,4,3,2,1g 5F5;4;3;2;1 35

3 1/2 3 1 f4,3,2g 3F4;3;2 21

giving a total statistical weight g D 128: For n D 3, only the contribution of state
with ` D 0 � 2 must be considered, giving a total statistical weight g D 72:

We can deduce that the statistical weight for states obtained by the interaction
of the 4S core with the optical electron with n > 2 is reproduced by the general
formula

gn D 8n2:

Again, we can approximate the energy of the excited states through an hydro-
genic form

En D IO � IH

n2
:

We must note that other sequences can arise forming electronically excited states
of oxygen atoms from different core configurations. In fact, keeping in mind that
low-lying excited states of oxygen are formed from different L � S of the core
electrons as 1S or 1D states. The new series are obtained repeating the previous
procedure to each core configuration, obtaining plenty of the different levels. The
corresponding energy can be calculated by the hydrogenic formula

E?
n D IO � IH

n2
C Ecore;
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Fig. A.3 Reduced internal specific heat of C C as a function of temperature: comparison between
calculations including levels having core 2s2 .1S/ and 2s2 .1S/ C 2s2p.3P /

where Ecore is the energy of the excited core configuration with respect to the ground
state. The energy of the states of these series rapidly overcomes the ionization
potential of the ground IO forming the autoionizing states of the atom.

These states, while having energies above the ionization potential, are in same
case considered, especially in the astrophysical literature. In this context, it is
interesting to analyze their effects on the partition function and on thermodynamic
properties. In Fig. A.3, we can see the effects on the internal specific heat of C C of
the autoionizing states coming from 2s2p .3P / core.

As a general rule, we can calculate the statistical weight of excited states
obtained from the interaction of a given core with the excited electron using
the general formula

gn D 2gcoren
2;

where gcore is the statistical weight of the relative core configuration. Keeping
in mind that the electronic configuration of the helium core is a 2S state we
have gcore D 2, while for 4S core of oxygen gcore D 4:
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A.3 Beyond the Hydrogenoid Approximation

The available database for observed atomic electronic energy levels, as
Moore (1949) and NIST tables (Chase Jr. 1998; NIST 2009), miss most of the
predicted electronic levels, especially for higher quantum numbers.

In this section, we present an useful semi-empirical procedure which, applying
a simplified formula to available, experimental or calculated, electronic levels,
allows to complete, interpolating and/or extrapolating, the level series. We apply
this method to estimate level energies of neutral carbon atom (see (Capitelli and
Molinari 1970) for the nitrogen atom). The structure of the ground state is very
complex, due to the presence of a few of low-lying states resulting from different
L–S coupling:

Configuration Terms

2s22p2 1S , 3P , 1D

2s12p3 5S , 3S , 3P , 1P , 3D, 1D

2p4 1S , 3P , 1D

The first three states results from rearrangement of the spin of the p electrons, while
the others are obtained from different rearrangements of the angular momenta.

The first step of the procedure is to determine the energy of the ground state
configuration. If one of these terms has not been observed, it can be derived through
extrapolation from energy levels of isoelectronic species. Practically, for carbon, the
term 2p4.1S/ is missing. We have to consider the energies of N C, OC2 and F C3,
corresponding to the same term, and, relating these energies to the atomic number
Z, we extrapolate to obtain the corresponding value for Z D 6 (carbon).

The excited states come from the excitation of one electron toward higher values
of the principal quantum numbers (n > 2) giving for carbon atoms

2s22p.2P /n`

2s2p2.4P /n`

2s2p2.2D/n`

2s2p2.2S/n`

2s2p2.2P /n`

2p3.4S/n`;

where each series arises from the interaction of different atomic cores, 2s22p.2P /,
2s2p2.4P /, . . . , with the excited electron, where x D s; p; d ,. . . . It should be noted
that in the previous section we have discussed only the excited states coming from
the interaction of the more stable core, 2s22p.2P /, with the excited electron. In
this case, for ` D s, there are two spectroscopic terms: 3P .L D 1; S D 1/,
and 1P .L D 1; S D 0/. NIST’s tables (NIST 2009) report observed levels up to
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n D 10 for the former and n D 14 (missing values n D 11; 12) for the latter. To
extrapolate to higher principal quantum numbers, the following Ritz–Rydberg series
can be used:

En D I � IH .z C 1/2�
n C A C B

n2

�2 ; (A.1)

where z is the charge of the species and A, B are adjustable parameters. The
ionization energy I is related to the specific core configuration. It is calculated as
the sum of the ionization energy from the ground state and the energy of the excited
state of the successive ion in the corresponding electronic state. For example, if we
consider C in the 2s2p2.4P /n` series, I is the sum of the ionization potential of
C from the ground state (11.260 eV) and the energy of the C C in the excited state
2s2p2.4P / (5.336 eV).

The constants A and B can be determined when at least two observed levels are
available. If we have only two levels, it is straightforward to calculate A and B by
solving a system of two equations in two unknowns. If more than two levels are
available, the two parameters are calculated by a best fit procedure. When only one
observed energy level is known in a series, (A.1) cannot be used and the following
formula with a single adjustable parameter should be applied:

En D I � IH .z C 1/2

.n C A/2
(A.2)

obtained from (A.1) considering B D 0.
In some cases, as for 2s2p2.2P /n` for n > 4 and ` D g, no level has been

observed. As an example, to obtain the energy level of the terms corresponding
to 5g, we relate the energy levels (5s; 5p; 5d; 5f ) as a function of the azimuthal
quantum number `.D 0 � 3/, and extrapolate to ` D 4 (see also (Capitelli and
Molinari 1970)).

This method has been applied up to n D 20 and ` D 19, with the exception
of those series where no observed energies are present. For n > 20, we assume an
hydrogen-like behavior and use the following formulas:

En D I � IH .z C 1/2

n2
: (A.3)

At fixed n and for each series, the sum over the statistical weights of all the
corresponding predicted spectroscopic terms for different ` is equal to

gn D 2n2gcore (A.4)

and for n > 20 we apply this last equation to determine the total statistical weight.
This method is more accurate than the hydrogenic approximation (see Sect. A.2)
and has been extensively used in the calculation of thermodynamic properties of
thermal plasmas.



A.4 Electronic Terms of Diatomic Molecules 243

A.4 Electronic Terms of Diatomic Molecules

Analogously to the case of atomic systems, also molecular electronic states are
classified through the value of quantum numbers associated with total orbital and
spin angular momenta and the information is condensed in the corresponding
molecular term symbol.

In diatoms the electric field has an axial symmetry, with respect to the internu-
clear axis and therefore the Hamiltonian commutes with the operator corresponding
to the axial projection of orbital angular momentum, corresponding to the quantum
number �. Capital greek letters (˙ , ˘ , �, ˚ , . . . ) are used for classification of
molecular terms depending on the value assumed by � in the sequence (0, 1, 2 ,
3, . . . ). Moreover, each electronic term is characterized by the total spin S , with
multiplicity (2S C 1) originating doublets (2S C 1 D 2), triplets (2S C 1 D 3),
quartets (2S C 1 D 4), . . . , as seen for atoms. The general term symbol assumes the
form: .2SC1/�.

In the case of diatomic molecules, the term symbol also retains information about
the parity of the electronic wavefunction with respect to some symmetry operations.
More in detail, the reflection about a plane containing the internuclear axis returns
a state with the same energy but with opposite sign of the projection of the orbital
angular momentum, thus leading to the conclusion that all terms with � ¤ 0 are
doubly degenerate. However for ˙ states (� D 0), which are nondegenerate, the
parity is usually specified adding the sign plus or minus as superscript to the term
symbol for even or odd states, i.e. .2SC1/˙C=�.

Finally in the case of homonuclear diatomic molecules, a new symmetry arises
due to the inversion center bisecting the internuclear axis. In this case, the subscripts
g and u are used (.2SC1/�g=u) for even (gerade) and odd (ungerade), respectively.

In the following, the Wigner–Withmer rules for the construction of molecular
electronic terms for diatomic molecules arising from the interaction of atoms in
given electronic states are illustrated.

The � value is determined as the modulus of the algebraic sum of axial
projections of orbital angular momenta of atoms, i.e., � D jML1 C ML2 j, assuming
values in the series, ML1 D L1; L1 � 1; : : : ; 0; : : : ; �L1 and L2 D L2; L2 �
1; : : : ; 0; : : : ; �L2. If L1 � L2 it can be demonstrated that, accounting for double
degeneracy of terms with � ¤ 0 , (2L2 C 1)(L1 C 1) terms arise with � assuming
values from 0 to L1 CL2. The number of molecular terms for each symmetry, given
the orbital angular momenta of atoms, is given in Table A.2.

The atomic spin S1 and S2 vectorially sum in the total spin S , assuming values
in the series S1 C S2, S1 C S2 � 1, . . . jS1 � S2j.
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Table A.2 Number of
molecular terms per
symmetry in diatomic
molecules, for given orbital
angular momenta of atoms

Number of terms �

1 L1 C L2

2 L1 C L2 � 1

3 L1 C L2 � 2

. . . . . .
(2L2+1) L1 � L2

(2L2+1) L1 � L2 � 1

. . . . . .
(2L2+1) 0

A.4.1 H2 Molecule

(a) – Molecular states arising from two atoms in the ground state

The ground state of the hydrogen atom is a 2S state therefore S D 1=2 and L D 0.
Using the combination rules, we have

� D L1 C L2 D 0 ) ˙

S D S1 C S2; jS1 � S2j D 1; 0 ) triplet and singlet

Therefore, two molecular states arise: 1˙ and 3˙ .
To characterize better the symmetry of the states, we must know the parity of the

wave functions. For the hydrogen molecule, we can use either Heitler–London or
molecular orbital (MO) wave functions. By using Heitler–London wave functions
we must remind that the spatial part of these wave functions for the two states are
written (neglecting the normalization factor) as

1˙ 1sa.1/1sb.2/ C 1sa.2/1sb.1/

3˙ 1sa.1/1sb.2/ � 1sa.2/1sb.1/;

where 1sa.1/ represents an hydrogen wave function centered on the atom a

describing electron 1. On the other hand, 1sb.2/ represents an hydrogen wave
function centered on the atom b describing electron 2. The other terms mix the
coordinates of the two electrons. By applying the symmetry operations generated by
inversion through the molecule center and by reflection through a plane containing
the internuclear axis to the first wave function one finds its invariants so that in the
molecular state should appear the g and C characters, i.e., the singlet state should
be better written as 1˙C

g . The same operators applied to the triplet state should add
the characters u and C to the wavefunction, i.e., the triplet state should be written
as 3˙C

u . To conclude we have written the first two molecular states of molecular
hydrogen, the ground X1˙C

g and the first excited state b3˙C
u . The triplet state is

repulsive so that it does not enter in the electronic partition function. However, the
repulsive state, which plays an important role on the transport properties and on the
chemical kinetics of a plasma, should be taken into account also in thermodynamics
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when considering real gas effects, i.e., the virial coefficients (see Chap. 7). The
statistical weight of the ˙ states is equal to the spin multiplicity, which is the number
of total wave functions (space and spin) describing the state. According to the Pauli
exclusion principle, the total wave function (space and spin) must be antisymmetric
under the exchange of every couple of electrons (Capitelli et al. 2011b; Pauling
and Wilson 1985). Keeping in mind the spin wave-functions ˛ and ˇ we can write
the following (a part the normalization factor) wave functions for the two electron
spin system

�singlet D ˛.1/ˇ.2/ � ˛.2/ˇ.1/

�triplet D
8<
:

˛.1/˛.2/

ˇ.1/ˇ.2/

˛.1/ˇ.2/ C ˛.2/ˇ.1/:

To keep antisymmetric the total wavefunction we must couple symmetric space part
with the antisymmetric spin part and vice versa. Therefore for the first two states of
hydrogen molecule, we obtain

1˙C
g / Œ1sa.1/1sb.2/ C 1sa.2/1sb.1/
Œ˛.1/ˇ.2/ � ˛.2/ˇ.1/


3˙C
u / Œ1sa.1/1sb.2/ � 1sa.2/1sb.1/
 	

8<
:

˛.1/˛.2/

ˇ.1/ˇ.2/

˛.1/ˇ.2/ C ˛.2/ˇ.1/

To get the energies of the different states, we must apply the Hamiltonian
operator of H2 molecule to the relevant wave functions. These energies depend
on the internuclear distance resulting in the potential energy curves. Nowadays,
molecular states are obtained by quantum chemistry approaches, i.e., Harthree–Fock
(HF), configuration interaction (CI) and high-level post-HF methods (see (Szabo
and Ostlund 1996)).

(b) – Molecular states arising from excited atoms

Many other bound states can enter in the electronic partition function of
molecular hydrogen. As an example from the interaction between H(1s/CH.2s,2p)
atomic states, we can obtain the following 12 (bound and unbound) molecular states:
1;3˙C

g;u (from 1s C 2s) and 1;3˙C
g;u, 1;3˘g;u (from 1s C 2p), while in the interaction

between H(1s)+H(3s; 3p; 3d ) we obtain 24 molecular states (Capitelli et al. 1974)
and so on. Most of these states have been inserted in the results of Fig. 5.4, which
in particular includes a series of excited states with a total multiciplicity of 129 and
energy ranging from 91700 to 123488.0 cm�1 (see (Pagano et al. 2008) for details).
The potential curves of the most important electronic states of H2, H C

2 and H �
2 are

reported in Fig. A.4 adapted from (Sharp 1970).
Note also that other excited states can be constructed from the interaction

between H.2s/ and H(ns; np; : : :/ with n > 1. These states are characterized by
very large excitation energies and many terms are purely repulsive (Celiberto et al.
1998).
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Fig. A.4 Energy diagram for H2 molecule and its molecular ions

A.4.2 N2 Molecule

(a) – Molecular states arising from two atoms in the ground state

The ground state of the nitrogen atom is 4S ; therefore, S D 3=2 and L D 0.
Using the combination rules, we have

� D L1 C L2 D 0 ) ˙

S D S1 C S2; : : : jS1 � S2j D 3; 2; 1; 0 ) septet; quintet;
triplet and singlet .ground/:

In the interaction, we form four ˙ states (1˙ , 3˙ , 5˙ , 7˙). Considering
the interaction of two identical atoms the gerade/ungerade symmetry should be
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taken into account and being the two atoms in identical quantum states there are
restrictions on the number of terms, in particular if S is even N C

g D N �
u C 1 D

L C 1, while for S odd N C
u D N �

g C 1 D L C 1. Therefore, the different
molecular wave functions show the following symmetries: 1˙C

g , 3˙C
u , 5˙C

g , 7˙C
u .

The increase of spin multiplicity gives more antibonding character to the potential
curves. So the singlet state in which all the spins are paired is strongly bounded,
while the septet state, in which all spins are unpaired, is the most repulsive state.
It should be noted that the triplet state is bounded and represents a metastable state
playing an important role in the kinetics of nitrogen plasmas (Colonna and Capitelli
2001a).

(b) – Molecular states arising from one atom in the ground state and one atom in
the excited 2D state

The excited 2D state of the nitrogen atom is characterized by L1 D 2 and S1 D
1=2, and the interaction with the 4S ground state, L2 D 0 and S2 D 3=2, leads to

� D L1 C L2; : : : ; jL1 � L2j D 2; 1; 0 ) �; ˘ and ˙

S D S1 C S2; : : : jS1 � S2j D 2; 1 ) quintet and triplet

Therefore, we obtain the following states: 3˙ , 3˘ , 3�, 5˙ , 5˘ , 5�. In this case
considering an homonuclear diatomic system, i.e. identical atoms, states with
gerade/ungerade parity arise and, being the atoms in different quantum states, all
the states exist. Therefore in the interaction 4S+2D 12 states arise: 3˙g;u, 3˘g;u,
3�g;u, 5˙g;u, 5˘g;u, 5�g;u. It can be demonstrated (Landau and Lifshitz 1981) that,
concerning the parity of ˙ states, (2L2 C 1) ˙C terms and L2 ˙� terms are found
when the factor .�1/L1CL2P1P2 D 1 and the opposite is true when the factor is
equal to �1, being Pi the parity of the state of i -th atom. In this case we have 3˙C

g;u,
3˘g;u, 3�g;u, 5˙C

g;u, 5˘g;u, 5�g;u. Some of them are repulsive and do not enter in
the partition function.

(c) – Molecular states arising from one atoms in the ground state and one atom in
the excited 2P state

The excited 2P state of the nitrogen atom is characterized by L1 D 1 and S1 D
1=2, and the interaction with the 4S ground state, L2 D 0 and S2 D 3=2, leads to

� D L1 C L2; : : : ; jL1 � L2j D 1; 0 ) ˘ and ˙

S D S1 C S2; : : : jS1 � S2j D 2; 1 ) quintet and triplet:

The following states arise: 3;5˙�
g;u, 3;5˘g;u.
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(d) – Molecular states arising from one atom in the 2D state and one atom in the
excited 2P state

Let us consider the interaction between N(2D), with L1 D 2 and S1 D 1=2, and
N(2P ), with L2 D 1 and S2 D 1=2.

� D L1 C L2; : : : ; jL1 � L2j D 3; 2; 1; 0 ) ˚; �; ˘ and ˙

S D S1 C S2; : : : jS1 � S2j D 1; 0 ) triplet and singlet:

In this case, the number of terms for each symmetry is higher than 1, in fact
following Table A.2 we have 3 states of symmetry 1;3˙g;u, 3 states of symmetry
1;3˘g;u, 2 states of symmetry 1;3�g;u and 1 state of symmetry 1;3˚g;u. Moreover
being .�1/L1CL2P1P2 D �1 two of the three ˙ terms are odd (�) and only
one is even (C). Therefore, the electronic terms are 1;3˚g;u, (2)1;3�g;u, (3)1;3˘g;u,
(2)1;3˙�

g;u and 1;3˙C
g;u.

(e) – Molecular states arising from two atoms in the 2D state

The excited 2D state of the nitrogen atom, with L D 2 and S D 1=2,

� D L1 C L2; : : : ; jL1 � L2j D 4; 3; 2; 1; 0 ) �; ˚; �; ˘ and ˙

S D S1 C S2; : : : jS1 � S2j D 1; 0 ) triplet and singlet:

In the interaction, the number of states per symmetry is the following: five states
1;3˙ , four states 1;3˘ , three states 1;3�, two states 1;3˚ , and one 1;3� . Being the
interaction of two identical atoms in the identical quantum state, restrictions occurs
on the number of state of gerade/ungerade symmetry, in particular

� odd S even or odd Ng D Nu

� even S even Ng D Nu C 1

� even S odd Nu D Ng C 1

� D 0 S even N C
g D N �

u C 1

� D 0 S odd N C
u D N �

g C 1

i.e., 1�g, 3�u, 1;3˚g;u, (2)1�g , 1�u, (2)3�u, 3�g, (2)1;3˘g;u, (3)1˙C
g , (2)1˙�

u ,
(3)3˙C

u , (2)3˙�
g .

(f) – Molecular states arising from two atoms in the 2P state

The excited 2P state of the nitrogen atom, with S D 1=2 and L D 1,

� D L1 C L2; : : : ; jL1 � L2j D 2; 1; 0 ) �; ˘ and ˙

S D S1 C S2; : : : jS1 � S2j D 1; 0 ) triplet and singlet:

The electronic terms are: 1�g , 3�u, 1;3˘g;u, (2)1˙C
g , 1˙�

u , (2)3˙C
u , 3˙�

g .
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A.4.3 NC
2

Molecule

(a) – Molecular states arising from N(4S ) and NC.3P /

The nitrogen ion in the ground state (3P ), L1 D 1 and S1 D 1, interacting with
the nitrogen atom in the ground state (4S ), L2 D 0 and S2 D 3=2, originates

� D L1 C L2; : : : ; jL1 � L2j D 1; 0 ) ˘ and ˙

S D S1 C S2; : : : jS1 � S2j D 5=2; 3=2; 1=2 ) sestet; quartet; and doublet

and considering the gerade/ungerade symmetry, being the atoms different, and the
C=� parity (.�1/L1CL2P1P2 D 1) we have 2;4;6˙C

g;u, 2;4;6˘g;u.



Appendix B
Tables of Partition Function
of Atmospheric Species

In this appendix, we report tables of internal partition functions of species
considered in the planetary atmospheres (Chap. 10).

For molecules, negative atomic ions and some positive atomic ions, as H C,
HeC2 and C C4, internal partitions functions are independent of the pressure (see
Tables B.1–B.7). For other species, self-consistent partition functions are reported
with cutoff depending on the neutral or electron density as discussed in Chap. 8.
For other species self-consistent partition functions in the relevant atmospheres are
reported as a function of temperature for different pressures (see Tables B.8–B.39).

It should be noted that the atomic species reported in the air section are also
present in the Mars section, because, due to the different composition of the two
mixtures, the internal partition functions calculated using the self-consistent cutoff
are slightly different.

B.1 Partition Functions Independent of the Pressure

Table B.1 Internal partition function as a function of temperature

T (K) C2 C
C
2 C �

2 CN CN C

100 19:4 84:2 40:3 74:2 269:9

200 41:8 167:8 80:3 147:8 537:9

300 78:5 251:9 120:4 221:4 806:7

400 134:7 337:9 160:7 295:2 1;079:4

500 209:2 427:9 201:8 369:7 1;361:8

600 299:8 523:5 244:3 445:7 1;659:7

700 405:2 625:9 288:7 524:1 1;977:3

800 524:4 735:7 335:3 605:5 2;317:7

900 657:0 853:4 384:6 690:4 2;682:9

(continued)

M. Capitelli et al., Fundamental Aspects of Plasma Chemical Physics: Thermodynamics,
Springer Series on Atomic, Optical, and Plasma Physics 66,
DOI 10.1007/978-1-4419-8182-0, © Springer Science+Business Media, LLC 2012
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Table B.1 (continued)

T (K) C2 C
C
2 C �

2 CN CN C

1,000 802:8 979:1 436:6 779:3 3;074:4

1,500 1;730:0 1;734:2 742:5 1;292:6 5;455:3

2,000 3;005:5 2;704:2 1;129:2 1;935:4 8;602:9

2,500 4;667:8 3;891:4 1;600:3 2;730:1 12;600:4

3,000 6;763:0 5;297:1 2;158:8 3;707:1 17;538:1

3,500 9;339:3 6;922:1 2;810:0 4;901:5 23;507:7

4,000 12;444:9 8;767:3 3;562:1 6;349:6 30;599:4

4,500 16;128:1 10;833:4 4;427:6 8;086:6 38;900:9

5,000 20;437:5 13;121:2 5;421:9 10;145:4 48;496:2

6,000 31;133:9 18;363:4 7;867:5 15;351:4 71;881:8

7,000 44;939:3 24;491:1 11;037:4 22;199:3 101;310:0

8,000 62;262:3 31;486:8 15;046:9 30;909:5 137;169:0

9,000 83;490:3 39;313:9 19;975:3 41;704:8 179;640:0

10,000 108;959:0 47;916:3 25;865:6 54;818:1 228;677:0

11,000 138;926:0 57;221:7 32;729:4 70;493:5 284;036:0

12,000 173;560:0 67;147:4 40;553:3 88;980:2 345;316:0

13,000 212;931:0 77;605:5 49;303:7 110;522:0 412;003:0

14,000 257;023:0 88;507:5 58;932:7 135;347:0 483;518:0

15,000 305;741:0 99;768:3 69;381:9 163;654:0 559;257:0

16,000 358;924:0 111;308:0 80;586:2 195;606:0 638;612:0

17,000 416;363:0 123;053:0 92;476:5 231;323:0 720;998:0

18,000 477;812:0 134;937:0 104;983:0 270;881:0 805;864:0

19,000 542;999:0 146;904:0 118;035:0 314;312:0 892;701:0

20,000 611;639:0 158;901:0 131;564:0 361;606:0 981;045:0

22,000 758;109:0 182;821:0 159;801:0 467;549:0 1;160;630:0

24,000 914;914:0 206;418:0 189;215:0 587;944:0 1;341;830:0

26,000 1;079;880:0 229;499:0 219;398:0 721;641:0 1;522;480:0

28,000 1;251;030:0 251;931:0 250;006:0 867;258:0 1;700;990:0

30,000 1;426;640:0 273;631:0 280;759:0 1;023;300:0 1;876;200:0

35,000 1;875;870:0 324;428:0 356;908:0 1;449;250:0 2;294;990:0

40,000 2;326;520:0 370;250:0 430;302:0 1;909;420:0 2;681;970:0

45,000 2;767;530:0 411;383:0 499;756:0 2;386;370:0 3;035;950:0

50,000 3;192;450:0 448;284:0 564;792:0 2;867;250:0 3;358;320:0
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Table B.2 Internal partition function as a function of temperature

T (K) CN � CO COC CO2 CO
C
2

100 36:5 36:5 71:3 88:9 403:6

200 72:7 72:7 142:0 180:7 1;022:0

300 108:9 108:9 212:8 290:0 1;966:0

400 145:1 145:1 283:6 432:7 3;374:5

500 181:7 181:7 355:0 621:9 5;423:3

600 218:8 218:8 427:4 870:8 8;331:7

700 257:0 257:0 501:7 1;194:3 12;366:4

800 296:4 296:4 578:4 1;609:3 17;844:9

900 337:5 337:5 658:1 2;135:3 25;139:7

1,000 380:3 380:3 741:1 2;794:3 34;683:4

1,500 625:6 625:6 1;215:8 9;057:6 136;041:0

2,000 928:3 928:3 1;800:2 23;748:9 400;984:0

2,500 1;291:7 1;291:7 2;501:0 53;594:1 978;579:0

3,000 1;717:3 1;717:3 3;322:2 108;246:0 2;089;820:0

3,500 2;206:4 2;206:4 4;267:7 200;822:0 4;041;990:0

4,000 2;760:2 2;760:2 5;343:7 348;462:0 7;242;990:0

4,500 3;379:8 3;379:8 6;559:0 572;935:0 12;215;900:0

5,000 4;066:2 4;066:2 7;925:9 901;355:0 19;613;200:0

6,000 5;644:2 5;644:7 11;180:2 2;010;980:0 45;025;600:0

7,000 7;503:8 7;508:3 15;266:1 4;042;960:0 91;818;700:0

8,000 9;655:5 9;677:9 20;378:5 7;538;410:0 171;203;000:0

9,000 12;110:6 12;192:9 26;732:5 13;289;000:0 297;463;000:0

10,000 14;881:4 15;122:0 34;548:8 22;428;500:0 487;950;000:0

11,000 17;980:5 18;573:5 44;037:7 36;529;500:0 762;868;000:0

12,000 21;420:7 22;700:7 55;386:3 57;695;300:0 1;144;870;000:0

13,000 25;213:7 27;701:0 68;747:5 88;632;800:0 1;658;500;000:0

14,000 29;370:0 33;810:0 84;233:8 132;700;000:0 2;329;600;000:0

15,000 33;897:5 41;291:0 101;915:0 193;921;000:0 3;184;620;000:0

16,000 38;801:5 50;422:5 121;821:0 276;974;000:0 4;249;980;000:0

17,000 44;084:1 61;486:4 143;941:0 387;151;000:0 5;551;490;000:0

18,000 49;744:1 74;756:7 168;233:0 530;289;000:0 7;113;780;000:0

19,000 55;777:4 90;490:2 194;628:0 712;691;000:0 8;959;920;000:0

20,000 62;176:7 108;920:0 223;033:0 941;037;000:0 11;111;000;000:0

22,000 76;031:0 154;658:0 285;432:0 1;563;550;000:0 16;401;400;000:0

24,000 91;202:0 213;232:0 354;450:0 2;455;030;000:0 23;107;400;000:0

26,000 107;559:0 285;412:0 429;037:0 3;672;620;000:0 31;312;000;000:0

28,000 124;959:0 371;519:0 508;158:0 5;270;860;000:0 41;060;200;000:0

30,000 143;253:0 471;506:0 590;843:0 7;299;850;000:0 52;363;000;000:0

35,000 191;954:0 779;484:0 807;644:0 14;530;900;000:0 87;241;400;000:0

40,000 243;299:0 1;161;730:0 1;030;590:0 25;217;400;000:0 130;814;000;000:0

45,000 295;677:0 1;605;250:0 1;252;370:0 39;601;000;000:0 181;761;000;000:0

50,000 347;918:0 2;096;840:0 1;468;410:0 57;697;300;000:0 238;617;000;000:0
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Table B.3 Internal partition function as a function of temperature

T (K) CO�
2 C2O N2 N

C
2 N �

2

100 506:7 515:7 17:6 36:5 83:2

200 1;436:5 1;168:2 35:1 72:7 ;165:7

300 2;691:8 2;188:9 52:6 108:9 ;248:3

400 4;328:1 3;752:3 70:1 145:1 ;331:2

500 6;452:3 6;052:5 87:7 181:7 ;415:1

600 9;197:3 9;325:7 105:5 218:8 ;501:0

700 12;714:7 13;858:6 123:6 256:8 ;589:9

800 17;173:6 19;994:0 142:3 296:1 ;682:6

900 22;760:6 28;137:4 161:6 337:0 ;779:6

1000 29;681:6 38;764:4 181:6 379:5 ;881:5

1500 92;946:6 151;657:0 294:9 623:3 1;472:3

2000 232;951:0 452;222:0 433:1 926:5 2;209:4

2500 502;149:0 1;129;800:0 597:9 1;300:5 3;099:4

3000 971;748:0 2;489;200:0 790:0 1;760:2 4;145:6

3500 1;735;150:0 4;990;270:0 1;010:1 2;322:6 5;350:9

4000 2;911;330:0 9;290;960:0 1;258:6 3;005:2 6;717:8

4500 4;647;740:0 16;289;300:0 1;535:9 3;825:1 8;248:9

5000 7;122;000:0 27;158;900:0 1;842:5 4;798:9 9;946:8

6000 15;147;200:0 66;716;300:0 2;545:6 7;271:3 13;853:4

7000 28;996;500:0 143;419;000:0 3;372:4 10;547:6 18;459:9

8000 51;058;600:0 277;136;000:0 4;330:3 14;753:8 23;789:1

9000 83;959;900:0 490;902;000:0 5;432:2 20;018:5 29;863:5

10000 130;402;000:0 809;212;000:0 6;700:6 26;471:2 36;702:2

11000 193;006;000:0 1;256;250;000:0 8;170:8 34;236:0 44;318:8

12000 274;190;000:0 1;854;330;000:0 9;893:0 43;425:2 52;718:8

13000 376;077;000:0 2;622;810;000:0 11;932:4 54;132:2 61;898:5

14000 500;439;000:0 3;577;330;000:0 14;368:2 66;426:9 71;844:8

15000 648;679;000:0 4;729;550;000:0 17;290:2 80;353:2 82;535:6

16000 821;828;000:0 6;087;160;000:0 20;795:2 95;928:7 93;941:1

17000 1;020;570;000:0 7;654;090;000:0 24;983:0 113;146:0 106;025:0

18000 1;245;250;000:0 9;430;900;000:0 29;952:5 131;976:0 118;748:0

19000 1;495;960;000:0 11;415;200;000:0 35;798:2 152;370:0 132;065:0

20000 1;772;520;000:0 13;602;300;000:0 42;607:4 174;265:0 145;931:0

22000 2;401;460;000:0 18;556;000;000:0 59;417:9 222;241:0 175;130:0

24000 3;127;150;000:0 24;221;600;000:0 80;876:4 275;211:0 205;992:0

26000 3;942;870;000:0 30;515;500;000:0 107;290:0 332;421:0 238;187:0

28000 4;840;950;000:0 37;349;100;000:0 138;790:0 393;117:0 271;427:0

30000 5;813;280;000:0 44;635;100;000:0 175;354:0 456;588:0 305;458:0

35000 8;516;540;000:0 64;303;800;000:0 287;738:0 623;307:0 392;681:0

40000 11;517;600;000:0 85;209;100;000:0 426;328:0 795;278:0 481;109:0

45000 14;719;600;000:0 106;552;000;000:0 585;469:0 966;882:0 569;161:0

50000 18;046;800;000:0 127;785;000;000:0 759;530:0 1;134;550:0 655;843:0
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Table B.4 Internal partition function as a function of temperature

T (K) N2O N2OC NO2 NO NOC

100 166:3 389:8 861:9 168:5 35:3

200 341:9 1009:1 2446:7 335:6 70:3

300 563:9 1965:4 4609:0 502:9 105:3

400 866:5 3408:2 7469:7 670:8 140:3

500 1279:2 5518:6 11236:0 841:0 175:5

600 1833:7 8519:4 16161:2 1015:8 211:1

700 2566:9 12680:8 22533:7 1197:1 247:4

800 3521:4 18324:3 30676:2 1386:8 284:7

900 4746:1 25827:5 40946:7 1586:0 323:3

1000 6297:2 35628:0 53741:2 1795:6 363:3

1500 21450:5 139193:0 172308:0 3016:3 589:5

2000 57938:4 408191:0 438169:0 4546:1 865:1

2500 132975:0 989336:0 953588:0 6398:4 1193:9

3000 269926:0 2087540:0 1858040:0 8580:8 1577:3

3500 497077:0 3956690:0 3336340:0 11099:8 2016:6

4000 845383:0 6879780:0 5628370:0 13961:8 2512:7

4500 1345940:0 11144400:0 9039470:0 17173:4 3066:7

5000 2027870:0 17019800:0 13950700:0 20742:1 3679:5

6000 4036200:0 34488300:0 30232100:0 28988:3 5085:7

7000 7040820:0 60562400:0 59362700:0 38800:9 6741:1

8000 11186600:0 95725500:0 107886000:0 50330:7 8660:9

9000 16629800:0 139802000:0 184018000:0 63781:4 10871:9

10000 23561200:0 192163000:0 297492000:0 79395:7 13420:2

11000 32206900:0 251921000:0 459265000:0 97432:6 16378:0

12000 42814300:0 318074000:0 681110000:0 118143:0 19846:7

13000 55630600:0 389604000:0 975169000:0 141748:0 23955:6

14000 70883200:0 465541000:0 1353510000:0 168428:0 28857:4

15000 88765300:0 544992000:0 1827750000:0 198307:0 34720:3

16000 109427000:0 627158000:0 2408710000:0 231460:0 41719:2

17000 132970000:0 711337000:0 3106170000:0 267905:0 50027:6

18000 159453000:0 796919000:0 3928740000:0 307614:0 59809:7

19000 188888000:0 883384000:0 4883710000:0 350518:0 71214:7

20000 221254000:0 970288000:0 5977070000:0 396510:0 84372:4

22000 294528000:0 1143980000:0 8596430000:0 497205:0 116355:0

24000 378550000:0 1315680000:0 11809600000:0 608415:0 156345:0

26000 472339000:0 1483820000:0 15622300000:0 728686:0 204579:0

28000 574789000:0 1647380000:0 20025900000:0 856525:0 260988:0

30000 684761000:0 1805690000:0 25001400000:0 990496:0 325270:0

35000 985446000:0 2176650000:0 39754100000:0 1343790:0 517034:0

40000 1310990000:0 2511750000:0 57378000000:0 1710180:0 745158:0

45000 1649450000:0 2813070000:0 77304000000:0 2077580:0 999324:0

50000 1992130000:0 3083860000:0 99000100000:0 2438070:0 1270330:0
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Table B.7 Internal partition
function as a function of
temperature

T (K) N � O� C � H � H C HeC2 C C4

100 6:5 4.2 4:000 1 1 1 1
200 7:4 4.6 4:000 1 1 1 1
300 7:9 4.9 4:000 1 1 1 1
400 8:1 5.1 4:000 1 1 1 1
500 8:3 5.2 4:000 1 1 1 1
600 8:4 5.3 4:000 1 1 1 1
700 8:5 5.4 4:000 1 1 1 1
800 8:5 5.5 4:000 1 1 1 1
900 8:6 5.5 4:000 1 1 1 1
1,000 8:6 5.6 4:000 1 1 1 1
1,500 8:7 5.7 4:001 1 1 1 1
2,000 8:8 5.8 4:008 1 1 1 1
2,500 8:9 5.8 4:033 1 1 1 1
3,000 8:9 5.8 4:086 1 1 1 1
3,500 8:9 5.9 4:169 1 1 1 1
4,000 9:0 5.9 4:282 1 1 1 1
4,500 9:1 5.9 4:419 1 1 1 1
5,000 9:1 6.0 4:576 1 1 1 1
6,000 9:3 6.0 4:927 1 1 1 1
7,000 9:5 6.1 5:302 1 1 1 1
8,000 9:7 6.3 5:680 1 1 1 1
9,000 9:9 6.4 6:048 1 1 1 1
10,000 10:1 6.5 6:400 1 1 1 1
11,000 10:2 6.7 6:732 1 1 1 1
12,000 10:4 6.8 7:044 1 1 1 1
13,000 10:6 7.0 7:336 1 1 1 1
14,000 10:7 7.1 7:608 1 1 1 1
15,000 10:9 7.2 7:862 1 1 1 1
16,000 11:0 7.4 8:098 1 1 1 1
17,000 11:1 7.5 8:319 1 1 1 1
18,000 11:3 7.6 8:525 1 1 1 1
19,000 11:4 7.7 8:718 1 1 1 1
20,000 11:5 7.9 8:899 1 1 1 1
22,000 11:7 8.1 9:227 1 1 1 1
24,000 11:9 8.3 9:517 1 1 1 1
26,000 12:0 8.4 9:776 1 1 1 1
28,000 12:2 8.6 10:007 1 1 1 1
30,000 12:3 8.8 10:214 1 1 1 1
35,000 12:6 9.1 10:651 1 1 1 1
40,000 12:8 9.3 10:999 1 1 1 1
45,000 13:0 9.6 11:282 1 1 1 1
50,000 13:2 9.8 11:517 1 1 1 1
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B.2 Selfconsitent Partition Functions of Atomic Species in Air
Atmosphere

Table B.8 Internal partition
function of N as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 4:000 4:000 4:000 4:000 4:000

200 4:000 4:000 4:000 4:000 4:000

300 4:000 4:000 4:000 4:000 4:000

400 4:000 4:000 4:000 4:000 4:000

500 4:000 4:000 4:000 4:000 4:000

600 4:000 4:000 4:000 4:000 4:000

700 4:000 4:000 4:000 4:000 4:000

800 4:000 4:000 4:000 4:000 4:000

900 4:000 4:000 4:000 4:000 4:000

1000 4:000 4:000 4:000 4:000 4:000

1500 4:000 4:000 4:000 4:000 4:000

2000 4:000 4:000 4:000 4:000 4:000

2500 4:000 4:000 4:000 4:000 4:000

3000 4:001 4:001 4:001 4:001 4:001

3500 4:004 4:004 4:004 4:004 4:004

4000 4:010 4:010 4:010 4:010 4:010

4500 4:022 4:022 4:022 4:022 4:022

5000 4:041 4:041 4:041 4:041 4:041

6000 4:105 4:105 4:105 4:105 4:105

7000 4:208 4:208 4:208 4:208 4:208

8000 4:349 4:348 4:348 4:348 4:348

9000 4:524 4:523 4:522 4:522 4:522

10000 4:734 4:727 4:725 4:724 4:724

11000 4:990 4:961 4:952 4:949 4:948

12000 5:339 5:226 5:202 5:194 5:190

13000 5:886 5:538 5:474 5:454 5:448

14000 6:933 5:945 5:770 5:734 5:715

15000 8:969 6:531 6:117 6:022 5:996

16000 13:421 7:496 6:535 6:342 6:292

17000 20:994 9:189 7:055 6:698 6:583

18000 31:899 11:416 7:720 7:075 6:892

19000 51:586 15:737 8:649 7:522 7:224

20000 76:701 20:827 10:243 8:098 7:579

22000 157:071 40:912 14:091 9:476 8:366

24000 290:849 70:806 22:766 11:361 9:290

26000 533:113 115:802 33:449 14:015 10:400

28000 908:347 178:946 48:161 18:253 11:690

30000 1456:560 262:752 67:473 25:647 13:217

35000 3482:800 734:684 138:765 45:545 20:230

40000 6818:060 1330:920 295:223 73:924 30:919

45000 12485:900 2382:080 464:643 111:993 42:185

50000 19402:700 3873:690 693:668 157:473 56:773



262 B Tables of Partition Function of Atmospheric Species

Table B.9 Internal partition
function of N C as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 3:250 3:250 3:250 3:250 3:250

200 5:065 5:065 5:065 5:065 5:065

300 6:045 6:045 6:045 6:045 6:045

400 6:641 6:641 6:641 6:641 6:641

500 7:039 7:039 7:039 7:039 7:039

600 7:323 7:323 7:323 7:323 7:323

700 7:536 7:536 7:536 7:536 7:536

800 7:700 7:700 7:700 7:700 7:700

900 7:832 7:832 7:832 7:832 7:832

1,000 7:939 7:939 7:939 7:939 7:939

1,500 8:274 8:274 8:274 8:274 8:274

2,000 8:448 8:448 8:448 8:448 8:448

2,500 8:555 8:555 8:555 8:555 8:555

3,000 8:630 8:630 8:630 8:630 8:630

3,500 8:688 8:688 8:688 8:688 8:688

4,000 8:738 8:738 8:738 8:738 8:738

4,500 8:786 8:786 8:786 8:786 8:786

5,000 8:835 8:835 8:835 8:835 8:835

6,000 8:938 8:938 8:938 8:938 8:938

7,000 9:054 9:054 9:054 9:054 9:054

8,000 9:180 9:180 9:180 9:180 9:180

9,000 9:314 9:314 9:314 9:314 9:314

10,000 9:453 9:453 9:453 9:453 9:453

11,000 9:596 9:596 9:596 9:596 9:596

12,000 9:740 9:740 9:740 9:740 9:740

13,000 9:886 9:886 9:886 9:886 9:886

14,000 10:031 10:031 10:031 10:031 10:031

15,000 10:177 10:177 10:177 10:177 10:177

16,000 10:322 10:321 10:321 10:321 10:321

17,000 10:467 10:466 10:466 10:466 10:466

18,000 10:613 10:610 10:610 10:610 10:610

19,000 10:763 10:755 10:753 10:753 10:753

20,000 10:923 10:901 10:897 10:896 10:896

22,000 11:304 11:207 11:187 11:183 11:182

24,000 11:917 11:559 11:492 11:475 11:472

26,000 13:176 12:029 11:826 11:778 11:766

28,000 16:075 12:742 12:222 12:102 12:071

30,000 22:390 14:048 12:731 12:459 12:391

35,000 69:675 23:333 15:019 13:638 13:342

40,000 225:137 51:463 21:169 15:674 14:601

45,000 640:863 111:804 35:915 19:772 16:371

50,000 1;478:330 258:378 60:511 26:071 18:844
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Table B.10 Internal partition
function of N C2 as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 2:325 2:325 2.325 2.325 2.325
200 3:141 3:141 3.141 3.141 3.141
300 3:733 3:733 3.733 3.733 3.733
400 4:136 4:136 4.136 4.136 4.136
500 4:422 4:422 4.422 4.422 4.422
600 4:633 4:633 4.633 4.633 4.633
700 4:795 4:795 4.795 4.795 4.795
800 4:923 4:923 4.923 4.923 4.923
900 5:027 5:027 5.027 5.027 5.027
1000 5:112 5:112 5.112 5.112 5.112
1500 5:384 5:384 5.384 5.384 5.384
2000 5:528 5:528 5.528 5.528 5.528
2500 5:618 5:618 5.618 5.618 5.618
3000 5:679 5:679 5.679 5.679 5.679
3500 5:723 5:723 5.723 5.723 5.723
4000 5:757 5:757 5.757 5.757 5.757
4500 5:783 5:783 5.783 5.783 5.783
5000 5:804 5:804 5.804 5.804 5.804
6000 5:836 5:836 5.836 5.836 5.836
7000 5:859 5:859 5.859 5.859 5.859
8000 5:877 5:877 5.877 5.877 5.877
9000 5:891 5:891 5.891 5.891 5.891
10000 5:904 5:904 5.904 5.904 5.904
11000 5:917 5:917 5.917 5.917 5.917
12000 5:930 5:930 5.930 5.930 5.930
13000 5:945 5:945 5.945 5.945 5.945
14000 5:963 5:963 5.963 5.963 5.963
15000 5:984 5:984 5.984 5.984 5.984
16000 6:008 6:008 6.008 6.008 6.008
17000 6:038 6:038 6.038 6.038 6.038
18000 6:071 6:071 6.071 6.071 6.071
19000 6:109 6:109 6.109 6.109 6.109
20000 6:152 6:152 6.152 6.152 6.152
22000 6:252 6:252 6.252 6.252 6.252
24000 6:371 6:371 6.371 6.371 6.371
26000 6:507 6:507 6.507 6.507 6.507
28000 6:660 6:659 6.659 6.659 6.659
30000 6:830 6:826 6.826 6.825 6.825
35000 7:379 7:308 7.299 7.298 7.298
40000 8:474 7:909 7.849 7.838 7.836
45000 12:158 8:787 8.494 8.442 8.429
50000 23:634 10:443 9.315 9.115 9.076
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Table B.11 Internal partition
function of N C3 as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000
300 1.000 1.000 1.000 1.000 1.000
400 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000
600 1.000 1.000 1.000 1.000 1.000
700 1.000 1.000 1.000 1.000 1.000
800 1.000 1.000 1.000 1.000 1.000
900 1.000 1.000 1.000 1.000 1.000
1,000 1.000 1.000 1.000 1.000 1.000
1,500 1.000 1.000 1.000 1.000 1.000
2,000 1.000 1.000 1.000 1.000 1.000
2,500 1.000 1.000 1.000 1.000 1.000
3,000 1.000 1.000 1.000 1.000 1.000
3,500 1.000 1.000 1.000 1.000 1.000
4,000 1.000 1.000 1.000 1.000 1.000
4,500 1.000 1.000 1.000 1.000 1.000
5,000 1.000 1.000 1.000 1.000 1.000
6,000 1.000 1.000 1.000 1.000 1.000
7,000 1.000 1.000 1.000 1.000 1.000
8,000 1.000 1.000 1.000 1.000 1.000
9,000 1.000 1.000 1.000 1.000 1.000
10,000 1.001 1.001 1.001 1.001 1.001
11,000 1.001 1.001 1.001 1.001 1.001
12,000 1.003 1.003 1.003 1.003 1.003
13,000 1.005 1.005 1.005 1.005 1.005
14,000 1.009 1.009 1.009 1.009 1.009
15,000 1.014 1.014 1.014 1.014 1.014
16,000 1.021 1.021 1.021 1.021 1.021
17,000 1.030 1.030 1.030 1.030 1.030
18,000 1.041 1.041 1.041 1.041 1.041
19,000 1.055 1.055 1.055 1.055 1.055
20,000 1.071 1.071 1.071 1.071 1.071
22,000 1.111 1.111 1.111 1.111 1.111
24,000 1.160 1.160 1.160 1.160 1.160
26,000 1.219 1.219 1.219 1.219 1.219
28,000 1.287 1.287 1.287 1.287 1.287
30,000 1.364 1.364 1.364 1.364 1.364
35,000 1.585 1.585 1.585 1.585 1.585
40,000 1.842 1.842 1.842 1.842 1.842
45,000 2.127 2.126 2.125 2.125 2.125
50,000 2.443 2.431 2.428 2.428 2.428



B.2 Selfconsitent Partition Functions of Atomic Species in Air Atmosphere 265

Table B.12 Internal partition
function of N C4 as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 2.000 2.000 2.000 2.000 2.000
200 2.000 2.000 2.000 2.000 2.000
300 2.000 2.000 2.000 2.000 2.000
400 2.000 2.000 2.000 2.000 2.000
500 2.000 2.000 2.000 2.000 2.000
600 2.000 2.000 2.000 2.000 2.000
700 2.000 2.000 2.000 2.000 2.000
800 2.000 2.000 2.000 2.000 2.000
900 2.000 2.000 2.000 2.000 2.000
1000 2.000 2.000 2.000 2.000 2.000
1500 2.000 2.000 2.000 2.000 2.000
2000 2.000 2.000 2.000 2.000 2.000
2500 2.000 2.000 2.000 2.000 2.000
3000 2.000 2.000 2.000 2.000 2.000
3500 2.000 2.000 2.000 2.000 2.000
4000 2.000 2.000 2.000 2.000 2.000
4500 2.000 2.000 2.000 2.000 2.000
5000 2.000 2.000 2.000 2.000 2.000
6000 2.000 2.000 2.000 2.000 2.000
7000 2.000 2.000 2.000 2.000 2.000
8000 2.000 2.000 2.000 2.000 2.000
9000 2.000 2.000 2.000 2.000 2.000
10000 2.000 2.000 2.000 2.000 2.000
11000 2.000 2.000 2.000 2.000 2.000
12000 2.000 2.000 2.000 2.000 2.000
13000 2.001 2.001 2.001 2.001 2.001
14000 2.002 2.002 2.002 2.002 2.002
15000 2.003 2.003 2.003 2.003 2.003
16000 2.004 2.004 2.004 2.004 2.004
17000 2.007 2.007 2.007 2.007 2.007
18000 2.010 2.010 2.010 2.010 2.010
19000 2.013 2.013 2.013 2.013 2.013
20000 2.018 2.018 2.018 2.018 2.018
22000 2.031 2.031 2.031 2.031 2.031
24000 2.048 2.048 2.048 2.048 2.048
26000 2.069 2.069 2.069 2.069 2.069
28000 2.095 2.095 2.095 2.095 2.095
30000 2.126 2.126 2.126 2.126 2.126
35000 2.218 2.218 2.218 2.218 2.218
40000 2.330 2.330 2.330 2.330 2.330
45000 2.456 2.456 2.456 2.456 2.456
50000 2.590 2.589 2.589 2.589 2.589
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Table B.13 Internal partition function of O as a function of pressure
and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 5:346 5:346 5:346 5:346 5:346

200 6:156 6:156 6:156 6:156 6:156

300 6:741 6:741 6:741 6:741 6:741

400 7:140 7:140 7:140 7:140 7:140

500 7:423 7:423 7:423 7:423 7:423

600 7:633 7:633 7:633 7:633 7:633

700 7:794 7:794 7:794 7:794 7:794

800 7:922 7:922 7:922 7:922 7:922

900 8:025 8:025 8:025 8:025 8:025

1,000 8:110 8:110 8:110 8:110 8:110

1,500 8:382 8:382 8:382 8:382 8:382

2,000 8:527 8:527 8:527 8:527 8:527

2,500 8:617 8:617 8:617 8:617 8:617

3,000 8:680 8:680 8:680 8:680 8:680

3,500 8:729 8:729 8:729 8:729 8:729

4,000 8:772 8:772 8:772 8:772 8:772

4,500 8:813 8:813 8:813 8:813 8:813

5,000 8:855 8:855 8:855 8:855 8:855

6,000 8:947 8:947 8:947 8:947 8:947

7,000 9:051 9:051 9:051 9:051 9:051

8,000 9:166 9:166 9:166 9:166 9:166

9,000 9:292 9:290 9:290 9:290 9:290

10,000 9:431 9:422 9:420 9:419 9:418

11,000 9:600 9:566 9:555 9:552 9:550

12,000 9:847 9:723 9:697 9:689 9:685

13,000 10:268 9:913 9:848 9:828 9:821

14,000 11:127 10:179 10:011 9:975 9:957

15,000 12:813 10:643 10:207 10:121 10:097

16,000 16:469 11:295 10:456 10:289 10:244

17,000 22:474 12:571 10:776 10:479 10:380

18,000 30:786 14:197 11:197 10:678 10:530

19,000 45:510 17:378 11:839 10:926 10:693

20,000 63:599 20:980 12:903 11:263 10:870

22,000 119:269 34:913 15:408 12:084 11:272

24,000 208:037 54:645 21:150 13:208 11:755

26,000 364:340 83:334 27:833 14:731 12:332

28,000 599:187 122:388 36:825 17:664 13:016

30,000 933:420 172:861 48:349 21:854 13:845

35,000 2;113:170 450:162 89:066 33:184 18:615

40,000 3;975:420 780:587 177:202 48:770 23:441

45,000 7;060:660 1;351:720 267:024 68:198 29:256

50,000 10;708:900 2;142:700 393:197 92:912 36:572
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Table B.14 Internal partition
function of OC as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 7:000 7:000 7:000 7:000 7:000

200 7:000 7:000 7:000 7:000 7:000

300 7:000 7:000 7:000 7:000 7:000

400 7:000 7:000 7:000 7:000 7:000

500 7:000 7:000 7:000 7:000 7:000

600 7:000 7:000 7:000 7:000 7:000

700 7:000 7:000 7:000 7:000 7:000

800 7:000 7:000 7:000 7:000 7:000

900 7:000 7:000 7:000 7:000 7:000

1000 7:000 7:000 7:000 7:000 7:000

1500 7:000 7:000 7:000 7:000 7:000

2000 7:000 7:000 7:000 7:000 7:000

2500 7:000 7:000 7:000 7:000 7:000

3000 7:000 7:000 7:000 7:000 7:000

3500 7:000 7:000 7:000 7:000 7:000

4000 7:001 7:001 7:001 7:001 7:001

4500 7:003 7:003 7:003 7:003 7:003

5000 7:008 7:008 7:008 7:008 7:008

6000 7:030 7:030 7:030 7:030 7:030

7000 7:075 7:075 7:075 7:075 7:075

8000 7:152 7:152 7:152 7:152 7:152

9000 7:263 7:263 7:263 7:263 7:263

10000 7:409 7:409 7:409 7:409 7:409

11000 7:590 7:590 7:590 7:590 7:590

12000 7:801 7:801 7:801 7:801 7:801

13000 8:039 8:039 8:039 8:039 8:039

14000 8:300 8:300 8:300 8:300 8:300

15000 8:581 8:581 8:581 8:581 8:581

16000 8:877 8:877 8:877 8:877 8:877

17000 9:186 9:186 9:186 9:186 9:186

18000 9:505 9:505 9:505 9:505 9:505

19000 9:832 9:831 9:831 9:831 9:831

20000 10:164 10:163 10:163 10:163 10:163

22000 10:842 10:835 10:834 10:834 10:834

24000 11:545 11:516 11:509 11:508 11:508

26000 12:322 12:208 12:185 12:180 12:178

28000 13:334 12:934 12:864 12:846 12:841

30000 14:867 13:763 13:556 13:508 13:496

35000 25:683 17:316 15:519 15:188 15:116

40000 66:816 27:004 18:760 17:081 16:777

45000 189:602 50:258 25:666 19:850 18:613

50000 485:379 112:798 38:146 23:834 20:813
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Table B.15 Internal partition
function of OC2 as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 1:650 1:650 1:650 1:650 1:650

200 2:882 2:882 2:882 2:882 2:882

300 3:895 3:895 3:895 3:895 3:895

400 4:659 4:659 4:659 4:659 4:659

500 5:238 5:238 5:238 5:238 5:238

600 5:686 5:686 5:686 5:686 5:686

700 6:042 6:042 6:042 6:042 6:042

800 6:330 6:330 6:330 6:330 6:330

900 6:568 6:568 6:568 6:568 6:568

1,000 6:768 6:768 6:768 6:768 6:768

1,500 7:419 7:419 7:419 7:419 7:419

2,000 7:777 7:777 7:777 7:777 7:777

2,500 8:003 8:003 8:003 8:003 8:003

3,000 8:159 8:159 8:159 8:159 8:159

3,500 8:274 8:274 8:274 8:274 8:274

4,000 8:362 8:362 8:362 8:362 8:362

4,500 8:435 8:435 8:435 8:435 8:435

5,000 8:497 8:497 8:497 8:497 8:497

6,000 8:604 8:604 8:604 8:604 8:604

7,000 8:704 8:704 8:704 8:704 8:704

8,000 8:803 8:803 8:803 8:803 8:803

9,000 8:904 8:904 8:904 8:904 8:904

10,000 9:009 9:009 9:009 9:009 9:009

11,000 9:118 9:118 9:118 9:118 9:118

12,000 9:228 9:228 9:228 9:228 9:228

13,000 9:341 9:341 9:341 9:341 9:341

14,000 9:455 9:455 9:455 9:455 9:455

15,000 9:570 9:570 9:570 9:570 9:570

16,000 9:684 9:684 9:684 9:684 9:684

17,000 9:799 9:799 9:799 9:799 9:799

18,000 9:914 9:914 9:914 9:914 9:914

19,000 10:029 10:029 10:029 10:029 10:029

20,000 10:143 10:143 10:143 10:143 10:143

22,000 10:369 10:369 10:369 10:369 10:369

24,000 10:594 10:594 10:594 10:594 10:594

26,000 10:818 10:818 10:818 10:818 10:818

28,000 11:041 11:041 11:041 11:041 11:041

30,000 11:264 11:263 11:263 11:263 11:263

35,000 11:841 11:827 11:824 11:823 11:823

40,000 12:586 12:435 12:403 12:396 12:394

45,000 14:254 13:225 13:036 12:998 12:987

50,000 19:250 14:728 13:838 13:655 13:616
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Table B.16 Internal partition
function of OC3 as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 3:027 3:027 3:027 3:027 3:027

200 3:436 3:436 3:436 3:436 3:436

300 4:100 4:100 4:100 4:100 4:100

400 4:747 4:747 4:747 4:747 4:747

500 5:306 5:306 5:306 5:306 5:306

600 5:775 5:775 5:775 5:775 5:775

700 6:167 6:167 6:167 6:167 6:167

800 6:497 6:497 6:497 6:497 6:497

900 6:777 6:777 6:777 6:777 6:777

1000 7:018 7:018 7:018 7:018 7:018

1500 7:834 7:834 7:834 7:834 7:834

2000 8:303 8:303 8:303 8:303 8:303

2500 8:606 8:606 8:606 8:606 8:606

3000 8:817 8:817 8:817 8:817 8:817

3500 8:973 8:973 8:973 8:973 8:973

4000 9:093 9:093 9:093 9:093 9:093

4500 9:187 9:187 9:187 9:187 9:187

5000 9:264 9:264 9:264 9:264 9:264

6000 9:381 9:381 9:381 9:381 9:381

7000 9:466 9:466 9:466 9:466 9:466

8000 9:531 9:531 9:531 9:531 9:531

9000 9:581 9:581 9:581 9:581 9:581

10000 9:623 9:623 9:623 9:623 9:623

11000 9:657 9:657 9:657 9:657 9:657

12000 9:687 9:687 9:687 9:687 9:687

13000 9:715 9:715 9:715 9:715 9:715

14000 9:741 9:741 9:741 9:741 9:741

15000 9:767 9:767 9:767 9:767 9:767

16000 9:795 9:795 9:795 9:795 9:795

17000 9:824 9:824 9:824 9:824 9:824

18000 9:856 9:856 9:856 9:856 9:856

19000 9:892 9:892 9:892 9:892 9:892

20000 9:932 9:932 9:932 9:932 9:932

22000 10:024 10:024 10:024 10:024 10:024

24000 10:136 10:136 10:136 10:136 10:136

26000 10:267 10:267 10:267 10:267 10:267

28000 10:419 10:419 10:419 10:419 10:419

30000 10:592 10:592 10:592 10:592 10:592

35000 11:102 11:102 11:102 11:102 11:102

40000 11:714 11:714 11:714 11:714 11:714

45000 12:408 12:407 12:407 12:407 12:407

50000 13:174 13:168 13:167 13:166 13:166
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Table B.17 Internal partition
function of OC4 as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000
300 1.000 1.000 1.000 1.000 1.000
400 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000
600 1.000 1.000 1.000 1.000 1.000
700 1.000 1.000 1.000 1.000 1.000
800 1.000 1.000 1.000 1.000 1.000
900 1.000 1.000 1.000 1.000 1.000
1,000 1.000 1.000 1.000 1.000 1.000
1,500 1.000 1.000 1.000 1.000 1.000
2,000 1.000 1.000 1.000 1.000 1.000
2,500 1.000 1.000 1.000 1.000 1.000
3,000 1.000 1.000 1.000 1.000 1.000
3,500 1.000 1.000 1.000 1.000 1.000
4,000 1.000 1.000 1.000 1.000 1.000
4,500 1.000 1.000 1.000 1.000 1.000
5,000 1.000 1.000 1.000 1.000 1.000
6,000 1.000 1.000 1.000 1.000 1.000
7,000 1.000 1.000 1.000 1.000 1.000
8,000 1.000 1.000 1.000 1.000 1.000
9,000 1.000 1.000 1.000 1.000 1.000
10,000 1.000 1.000 1.000 1.000 1.000
11,000 1.000 1.000 1.000 1.000 1.000
12,000 1.000 1.000 1.000 1.000 1.000
13,000 1.001 1.001 1.001 1.001 1.001
14,000 1.002 1.002 1.002 1.002 1.002
15,000 1.003 1.003 1.003 1.003 1.003
16,000 1.006 1.006 1.006 1.006 1.006
17,000 1.009 1.009 1.009 1.009 1.009
18,000 1.013 1.013 1.013 1.013 1.013
19,000 1.018 1.018 1.018 1.018 1.018
20,000 1.024 1.024 1.024 1.024 1.024
22,000 1.042 1.042 1.042 1.042 1.042
24,000 1.065 1.065 1.065 1.065 1.065
26,000 1.096 1.096 1.096 1.096 1.096
28,000 1.133 1.133 1.133 1.133 1.133
30,000 1.176 1.176 1.176 1.176 1.176
35,000 1.312 1.312 1.312 1.312 1.312
40,000 1.483 1.483 1.483 1.483 1.483
45,000 1.681 1.681 1.681 1.681 1.681
50,000 1.901 1.901 1.901 1.901 1.901
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B.3 Selfconsitent Partition Functions of Atomic Species
in Mars Atmosphere

Table B.18 Internal partition function of C as a function of pressure and
temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 6:047 6:047 6:047 6:047 6:047

200 7:325 7:325 7:325 7:325 7:325

300 7:834 7:834 7:834 7:834 7:834

400 8:105 8:105 8:105 8:105 8:105

500 8:275 8:275 8:275 8:275 8:275

600 8:390 8:390 8:390 8:390 8:390

700 8:474 8:474 8:474 8:474 8:474

800 8:537 8:537 8:537 8:537 8:537

900 8:587 8:587 8:587 8:587 8:587

1000 8:627 8:627 8:627 8:627 8:627

1500 8:750 8:750 8:750 8:750 8:750

2000 8:814 8:814 8:814 8:814 8:814

2500 8:863 8:863 8:863 8:863 8:863

3000 8:911 8:911 8:911 8:911 8:911

3500 8:967 8:967 8:967 8:967 8:967

4000 9:033 9:033 9:033 9:033 9:033

4500 9:109 9:109 9:109 9:109 9:109

5000 9:192 9:192 9:192 9:192 9:192

6000 9:378 9:378 9:378 9:378 9:378

7000 9:578 9:578 9:578 9:578 9:578

8000 9:794 9:787 9:785 9:785 9:785

9000 10:059 10:015 10:001 9:996 9:995

10000 10:506 10:296 10:235 10:215 10:209

11000 11:314 10:645 10:499 10:450 10:429

12000 13:039 11:233 10:808 10:699 10:664

13000 16:402 12:046 11:188 10:994 10:903

14000 23:527 13:513 11:726 11:291 11:170

15000 36:631 16:531 12:505 11:693 11:473

16000 59:096 20:524 13:591 12:197 11:751

17000 95:356 28:253 15:071 12:820 12:066

18000 150:983 37:545 17:064 13:361 12:462

19000 215:735 55:117 19:811 14:209 12:907

20000 323:235 72:823 25:318 15:448 13:411

22000 575:124 137:332 36:182 18:752 14:584

24000 934:721 216:856 59:810 22:829 16:026

26000 1527:220 322:346 84:249 28:147 17:778

28000 2351:650 455:038 114:686 35:746 19:775

30000 3450:040 697:270 151:049 45:106 22:015

35000 6892:110 1449:310 267:842 82:834 30:906

40000 11781:900 2297:410 504:874 122:770 43:203

45000 19413:000 3703:310 717:414 168:181 54:469

50000 27720:300 5535:600 986:138 222:399 75:323
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Table B.19 Internal partition function of C C as a function of pressure
and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 3:606 3:606 3:606 3:606 3:606

200 4:535 4:535 4:535 4:535 4:535

300 4:951 4:951 4:951 4:951 4:951

400 5:184 5:184 5:184 5:184 5:184

500 5:333 5:333 5:333 5:333 5:333

600 5:436 5:436 5:436 5:436 5:436

700 5:511 5:511 5:511 5:511 5:511

800 5:569 5:569 5:569 5:569 5:569

900 5:614 5:614 5:614 5:614 5:614

1,000 5:651 5:651 5:651 5:651 5:651

1,500 5:764 5:764 5:764 5:764 5:764

2,000 5:822 5:822 5:822 5:822 5:822

2,500 5:857 5:857 5:857 5:857 5:857

3,000 5:880 5:880 5:880 5:880 5:880

3,500 5:897 5:897 5:897 5:897 5:897

4,000 5:910 5:910 5:910 5:910 5:910

4,500 5:920 5:920 5:920 5:920 5:920

5,000 5:928 5:928 5:928 5:928 5:928

6,000 5:940 5:940 5:940 5:940 5:940

7,000 5:950 5:950 5:950 5:950 5:950

8,000 5:960 5:960 5:960 5:960 5:960

9,000 5:972 5:972 5:972 5:972 5:972

10,000 5:988 5:988 5:988 5:988 5:988

11,000 6:011 6:011 6:011 6:011 6:011

12,000 6:040 6:040 6:040 6:040 6:040

13,000 6:077 6:077 6:077 6:077 6:077

14,000 6:123 6:123 6:123 6:123 6:123

15,000 6:178 6:177 6:177 6:177 6:177

16,000 6:242 6:241 6:240 6:240 6:240

17,000 6:317 6:313 6:312 6:312 6:312

18,000 6:406 6:395 6:393 6:392 6:392

19,000 6:514 6:487 6:482 6:481 6:480

20,000 6:648 6:591 6:579 6:577 6:576

22,000 7:063 6:849 6:803 6:793 6:791

24,000 7:826 7:201 7:070 7:040 7:033

26,000 9:372 7:715 7:405 7:324 7:302

28,000 12:341 8:578 7:819 7:643 7:598

30,000 18:241 9:835 8:350 8:008 7:921

35,000 52:700 17:567 10:477 9:174 8:891

40,000 136:351 35:910 15:086 10:864 10:084

45,000 316:524 72:906 24:128 13:760 11:554

50,000 641:095 137:719 36:760 17:431 13:382
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Table B.20 Internal partition
function of C C2 as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 1:000 1.000 1.000 1.000 1.000
200 1:000 1.000 1.000 1.000 1.000
300 1:000 1.000 1.000 1.000 1.000
400 1:000 1.000 1.000 1.000 1.000
500 1:000 1.000 1.000 1.000 1.000
600 1:000 1.000 1.000 1.000 1.000
700 1:000 1.000 1.000 1.000 1.000
800 1:000 1.000 1.000 1.000 1.000
900 1:000 1.000 1.000 1.000 1.000
1000 1:000 1.000 1.000 1.000 1.000
1500 1:000 1.000 1.000 1.000 1.000
2000 1:000 1.000 1.000 1.000 1.000
2500 1:000 1.000 1.000 1.000 1.000
3000 1:000 1.000 1.000 1.000 1.000
3500 1:000 1.000 1.000 1.000 1.000
4000 1:000 1.000 1.000 1.000 1.000
4500 1:000 1.000 1.000 1.000 1.000
5000 1:000 1.000 1.000 1.000 1.000
6000 1:000 1.000 1.000 1.000 1.000
7000 1:000 1.000 1.000 1.000 1.000
8000 1:001 1.001 1.001 1.001 1.001
9000 1:002 1.002 1.002 1.002 1.002
10000 1:005 1.005 1.005 1.005 1.005
11000 1:009 1.009 1.009 1.009 1.009
12000 1:017 1.017 1.017 1.017 1.017
13000 1:027 1.027 1.027 1.027 1.027
14000 1:041 1.041 1.041 1.041 1.041
15000 1:059 1.059 1.059 1.059 1.059
16000 1:081 1.081 1.081 1.081 1.081
17000 1:107 1.107 1.107 1.107 1.107
18000 1:137 1.137 1.137 1.137 1.137
19000 1:172 1.172 1.172 1.172 1.172
20000 1:210 1.210 1.210 1.210 1.210
22000 1:297 1.297 1.297 1.297 1.297
24000 1:398 1.398 1.398 1.398 1.398
26000 1:512 1.511 1.511 1.511 1.511
28000 1:636 1.635 1.635 1.635 1.635
30000 1:772 1.769 1.768 1.768 1.768
35000 2:200 2.147 2.137 2.134 2.134
40000 3:037 2.645 2.561 2.543 2.539
45000 5:601 3.505 3.081 3.001 2.979
50000 13:175 5.381 3.847 3.532 3.463
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Table B.21 Internal partition
function of C C3 as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 2.000 2.000 2.000 2.000 2.000
200 2.000 2.000 2.000 2.000 2.000
300 2.000 2.000 2.000 2.000 2.000
400 2.000 2.000 2.000 2.000 2.000
500 2.000 2.000 2.000 2.000 2.000
600 2.000 2.000 2.000 2.000 2.000
700 2.000 2.000 2.000 2.000 2.000
800 2.000 2.000 2.000 2.000 2.000
900 2.000 2.000 2.000 2.000 2.000
1,000 2.000 2.000 2.000 2.000 2.000
1,500 2.000 2.000 2.000 2.000 2.000
2,000 2.000 2.000 2.000 2.000 2.000
2,500 2.000 2.000 2.000 2.000 2.000
3,000 2.000 2.000 2.000 2.000 2.000
3,500 2.000 2.000 2.000 2.000 2.000
4,000 2.000 2.000 2.000 2.000 2.000
4,500 2.000 2.000 2.000 2.000 2.000
5,000 2.000 2.000 2.000 2.000 2.000
6,000 2.000 2.000 2.000 2.000 2.000
7,000 2.000 2.000 2.000 2.000 2.000
8,000 2.000 2.000 2.000 2.000 2.000
9,000 2.000 2.000 2.000 2.000 2.000
10,000 2.001 2.001 2.001 2.001 2.001
11,000 2.001 2.001 2.001 2.001 2.001
12,000 2.003 2.003 2.003 2.003 2.003
13,000 2.005 2.005 2.005 2.005 2.005
14,000 2.008 2.008 2.008 2.008 2.008
15,000 2.012 2.012 2.012 2.012 2.012
16,000 2.018 2.018 2.018 2.018 2.018
17,000 2.025 2.025 2.025 2.025 2.025
18,000 2.034 2.034 2.034 2.034 2.034
19,000 2.045 2.045 2.045 2.045 2.045
20,000 2.058 2.058 2.058 2.058 2.058
22,000 2.088 2.088 2.088 2.088 2.088
24,000 2.125 2.125 2.125 2.125 2.125
26,000 2.169 2.169 2.169 2.169 2.169
28,000 2.218 2.218 2.218 2.218 2.218
30,000 2.271 2.271 2.271 2.271 2.271
35,000 2.423 2.422 2.422 2.422 2.422
40,000 2.592 2.589 2.589 2.589 2.589
45,000 2.791 2.768 2.764 2.763 2.763
50,000 3.097 2.971 2.945 2.940 2.939
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Table B.22 Internal partition function of N as a function of pressure
and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 4:000 4:000 4:000 4:000 4:000

200 4:000 4:000 4:000 4:000 4:000

300 4:000 4:000 4:000 4:000 4:000

400 4:000 4:000 4:000 4:000 4:000

500 4:000 4:000 4:000 4:000 4:000

600 4:000 4:000 4:000 4:000 4:000

700 4:000 4:000 4:000 4:000 4:000

800 4:000 4:000 4:000 4:000 4:000

900 4:000 4:000 4:000 4:000 4:000

1000 4:000 4:000 4:000 4:000 4:000

1500 4:000 4:000 4:000 4:000 4:000

2000 4:000 4:000 4:000 4:000 4:000

2500 4:000 4:000 4:000 4:000 4:000

3000 4:001 4:001 4:001 4:001 4:001

3500 4:004 4:004 4:004 4:004 4:004

4000 4:010 4:010 4:010 4:010 4:010

4500 4:022 4:022 4:022 4:022 4:022

5000 4:041 4:041 4:041 4:041 4:041

6000 4:105 4:105 4:105 4:105 4:105

7000 4:208 4:208 4:208 4:208 4:208

8000 4:349 4:348 4:348 4:348 4:348

9000 4:524 4:523 4:522 4:522 4:522

10000 4:734 4:727 4:725 4:724 4:724

11000 4:990 4:958 4:951 4:949 4:948

12000 5:339 5:226 5:199 5:192 5:190

13000 5:886 5:538 5:470 5:453 5:446

14000 6:933 5:946 5:770 5:726 5:715

15000 8:969 6:593 6:117 6:021 5:996

16000 13:421 7:496 6:535 6:342 6:279

17000 19:851 9:189 7:055 6:697 6:576

18000 31:899 11:416 7:720 7:075 6:891

19000 48:156 15:737 8:684 7:522 7:224

20000 76:701 20:827 10:246 8:098 7:579

22000 157:071 40:912 14:091 9:476 8:366

24000 290:849 70:806 21:609 11:361 9:290

26000 533:113 115:802 33:418 13:991 10:400

28000 908:347 178:946 48:161 17:828 11:690

30000 1456:560 262:752 67:473 23:687 13:217

35000 3482:800 734:684 138:765 45:545 18:921

40000 6818:060 1330:920 295:223 73:924 28:148

45000 12485:900 2382:080 464:643 111:993 42:185

50000 19402:700 3873:690 713:616 157:473 56:313
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Table B.23 Internal partition function of N C as a function of pressure
and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 3:250 3:250 3:250 3:250 3:250

200 5:065 5:065 5:065 5:065 5:065

300 6:045 6:045 6:045 6:045 6:045

400 6:641 6:641 6:641 6:641 6:641

500 7:039 7:039 7:039 7:039 7:039

600 7:323 7:323 7:323 7:323 7:323

700 7:536 7:536 7:536 7:536 7:536

800 7:700 7:700 7:700 7:700 7:700

900 7:832 7:832 7:832 7:832 7:832

1,000 7:939 7:939 7:939 7:939 7:939

1,500 8:274 8:274 8:274 8:274 8:274

2,000 8:448 8:448 8:448 8:448 8:448

2,500 8:555 8:555 8:555 8:555 8:555

3,000 8:630 8:630 8:630 8:630 8:630

3,500 8:688 8:688 8:688 8:688 8:688

4,000 8:738 8:738 8:738 8:738 8:738

4,500 8:786 8:786 8:786 8:786 8:786

5,000 8:835 8:835 8:835 8:835 8:835

6,000 8:938 8:938 8:938 8:938 8:938

7,000 9:054 9:054 9:054 9:054 9:054

8,000 9:180 9:180 9:180 9:180 9:180

9,000 9:314 9:314 9:314 9:314 9:314

10,000 9:453 9:453 9:453 9:453 9:453

11,000 9:596 9:596 9:596 9:596 9:596

12,000 9:740 9:740 9:740 9:740 9:740

13,000 9:886 9:886 9:886 9:886 9:886

14,000 10:031 10:031 10:031 10:031 10:031

15,000 10:177 10:177 10:177 10:177 10:177

16,000 10:322 10:321 10:321 10:321 10:321

17,000 10:467 10:466 10:466 10:466 10:466

18,000 10:613 10:610 10:610 10:610 10:610

19,000 10:763 10:755 10:753 10:753 10:753

20,000 10:920 10:901 10:897 10:896 10:896

22,000 11:304 11:207 11:187 11:183 11:182

24,000 11:941 11:559 11:489 11:475 11:472

26,000 13:249 12:029 11:826 11:778 11:766

28,000 16:278 12:742 12:222 12:102 12:071

30,000 22:390 14:048 12:731 12:459 12:391

35,000 72:363 23:333 15:019 13:638 13:342

40,000 225:137 51:463 21:169 15:734 14:601

45,000 640:863 119:811 35:915 19:772 16:369

50,000 1;478:330 258:378 60:511 26:071 18:844
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Table B.24 Internal partition
function of N C2 as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 2:325 2:325 2.325 2.325 2.325
200 3:141 3:141 3.141 3.141 3.141
300 3:733 3:733 3.733 3.733 3.733
400 4:136 4:136 4.136 4.136 4.136
500 4:422 4:422 4.422 4.422 4.422
600 4:633 4:633 4.633 4.633 4.633
700 4:795 4:795 4.795 4.795 4.795
800 4:923 4:923 4.923 4.923 4.923
900 5:027 5:027 5.027 5.027 5.027
1000 5:112 5:112 5.112 5.112 5.112
1500 5:384 5:384 5.384 5.384 5.384
2000 5:528 5:528 5.528 5.528 5.528
2500 5:618 5:618 5.618 5.618 5.618
3000 5:679 5:679 5.679 5.679 5.679
3500 5:723 5:723 5.723 5.723 5.723
4000 5:757 5:757 5.757 5.757 5.757
4500 5:783 5:783 5.783 5.783 5.783
5000 5:804 5:804 5.804 5.804 5.804
6000 5:836 5:836 5.836 5.836 5.836
7000 5:859 5:859 5.859 5.859 5.859
8000 5:877 5:877 5.877 5.877 5.877
9000 5:891 5:891 5.891 5.891 5.891
10000 5:904 5:904 5.904 5.904 5.904
11000 5:917 5:917 5.917 5.917 5.917
12000 5:930 5:930 5.930 5.930 5.930
13000 5:945 5:945 5.945 5.945 5.945
14000 5:963 5:963 5.963 5.963 5.963
15000 5:984 5:984 5.984 5.984 5.984
16000 6:008 6:008 6.008 6.008 6.008
17000 6:038 6:038 6.038 6.038 6.038
18000 6:071 6:071 6.071 6.071 6.071
19000 6:109 6:109 6.109 6.109 6.109
20000 6:152 6:152 6.152 6.152 6.152
22000 6:252 6:252 6.252 6.252 6.252
24000 6:371 6:371 6.371 6.371 6.371
26000 6:507 6:507 6.507 6.507 6.507
28000 6:660 6:659 6.659 6.659 6.659
30000 6:831 6:826 6.826 6.825 6.825
35000 7:382 7:308 7.299 7.298 7.298
40000 8:494 7:909 7.849 7.838 7.836
45000 12:053 8:787 8.494 8.442 8.429
50000 23:634 10:443 9.315 9.115 9.076
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Table B.25 Internal partition
function of N C3 as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000
300 1.000 1.000 1.000 1.000 1.000
400 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000
600 1.000 1.000 1.000 1.000 1.000
700 1.000 1.000 1.000 1.000 1.000
800 1.000 1.000 1.000 1.000 1.000
900 1.000 1.000 1.000 1.000 1.000
1,000 1.000 1.000 1.000 1.000 1.000
1,500 1.000 1.000 1.000 1.000 1.000
2,000 1.000 1.000 1.000 1.000 1.000
2,500 1.000 1.000 1.000 1.000 1.000
3,000 1.000 1.000 1.000 1.000 1.000
3,500 1.000 1.000 1.000 1.000 1.000
4,000 1.000 1.000 1.000 1.000 1.000
4,500 1.000 1.000 1.000 1.000 1.000
5,000 1.000 1.000 1.000 1.000 1.000
6,000 1.000 1.000 1.000 1.000 1.000
7,000 1.000 1.000 1.000 1.000 1.000
8,000 1.000 1.000 1.000 1.000 1.000
9,000 1.000 1.000 1.000 1.000 1.000
10,000 1.001 1.001 1.001 1.001 1.001
11,000 1.001 1.001 1.001 1.001 1.001
12,000 1.003 1.003 1.003 1.003 1.003
13,000 1.005 1.005 1.005 1.005 1.005
14,000 1.009 1.009 1.009 1.009 1.009
15,000 1.014 1.014 1.014 1.014 1.014
16,000 1.021 1.021 1.021 1.021 1.021
17,000 1.030 1.030 1.030 1.030 1.030
18,000 1.041 1.041 1.041 1.041 1.041
19,000 1.055 1.055 1.055 1.055 1.055
20,000 1.071 1.071 1.071 1.071 1.071
22,000 1.111 1.111 1.111 1.111 1.111
24,000 1.160 1.160 1.160 1.160 1.160
26,000 1.219 1.219 1.219 1.219 1.219
28,000 1.287 1.287 1.287 1.287 1.287
30,000 1.364 1.364 1.364 1.364 1.364
35,000 1.585 1.585 1.585 1.585 1.585
40,000 1.842 1.842 1.842 1.842 1.842
45,000 2.127 2.126 2.125 2.125 2.125
50,000 2.443 2.431 2.428 2.428 2.428
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Table B.26 Internal partition
function of N C4 as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 2.000 2.000 2.000 2.000 2.000
200 2.000 2.000 2.000 2.000 2.000
300 2.000 2.000 2.000 2.000 2.000
400 2.000 2.000 2.000 2.000 2.000
500 2.000 2.000 2.000 2.000 2.000
600 2.000 2.000 2.000 2.000 2.000
700 2.000 2.000 2.000 2.000 2.000
800 2.000 2.000 2.000 2.000 2.000
900 2.000 2.000 2.000 2.000 2.000
1000 2.000 2.000 2.000 2.000 2.000
1500 2.000 2.000 2.000 2.000 2.000
2000 2.000 2.000 2.000 2.000 2.000
2500 2.000 2.000 2.000 2.000 2.000
3000 2.000 2.000 2.000 2.000 2.000
3500 2.000 2.000 2.000 2.000 2.000
4000 2.000 2.000 2.000 2.000 2.000
4500 2.000 2.000 2.000 2.000 2.000
5000 2.000 2.000 2.000 2.000 2.000
6000 2.000 2.000 2.000 2.000 2.000
7000 2.000 2.000 2.000 2.000 2.000
8000 2.000 2.000 2.000 2.000 2.000
9000 2.000 2.000 2.000 2.000 2.000
10000 2.000 2.000 2.000 2.000 2.000
11000 2.000 2.000 2.000 2.000 2.000
12000 2.000 2.000 2.000 2.000 2.000
13000 2.001 2.001 2.001 2.001 2.001
14000 2.002 2.002 2.002 2.002 2.002
15000 2.003 2.003 2.003 2.003 2.003
16000 2.004 2.004 2.004 2.004 2.004
17000 2.007 2.007 2.007 2.007 2.007
18000 2.010 2.010 2.010 2.010 2.010
19000 2.013 2.013 2.013 2.013 2.013
20000 2.018 2.018 2.018 2.018 2.018
22000 2.031 2.031 2.031 2.031 2.031
24000 2.048 2.048 2.048 2.048 2.048
26000 2.069 2.069 2.069 2.069 2.069
28000 2.095 2.095 2.095 2.095 2.095
30000 2.126 2.126 2.126 2.126 2.126
35000 2.218 2.218 2.218 2.218 2.218
40000 2.330 2.330 2.330 2.330 2.330
45000 2.456 2.456 2.456 2.456 2.456
50000 2.590 2.589 2.589 2.589 2.589
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Table B.27 Internal partition function of O as a function of pressure
and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 5:346 5:346 5:346 5:346 5:346

200 6:156 6:156 6:156 6:156 6:156

300 6:741 6:741 6:741 6:741 6:741

400 7:140 7:140 7:140 7:140 7:140

500 7:423 7:423 7:423 7:423 7:423

600 7:633 7:633 7:633 7:633 7:633

700 7:794 7:794 7:794 7:794 7:794

800 7:922 7:922 7:922 7:922 7:922

900 8:025 8:025 8:025 8:025 8:025

1,000 8:110 8:110 8:110 8:110 8:110

1,500 8:382 8:382 8:382 8:382 8:382

2,000 8:527 8:527 8:527 8:527 8:527

2,500 8:617 8:617 8:617 8:617 8:617

3,000 8:680 8:680 8:680 8:680 8:680

3,500 8:729 8:729 8:729 8:729 8:729

4,000 8:772 8:772 8:772 8:772 8:772

4,500 8:813 8:813 8:813 8:813 8:813

5,000 8:855 8:855 8:855 8:855 8:855

6,000 8:947 8:947 8:947 8:947 8:947

7,000 9:051 9:051 9:051 9:051 9:051

8,000 9:166 9:166 9:166 9:166 9:166

9,000 9:292 9:290 9:290 9:290 9:290

10,000 9:432 9:422 9:422 9:420 9:418

11,000 9:601 9:565 9:565 9:555 9:550

12,000 9:850 9:733 9:732 9:694 9:685

13,000 10:275 9:952 9:950 9:837 9:819

14,000 11:144 10:271 10:266 9:985 9:956

15,000 12:845 10:761 10:750 10:141 10:098

16,000 16:020 11:518 11:497 10:323 10:233

17,000 21:614 12:669 12:628 10:539 10:375

18,000 30:941 14:352 14:285 10:800 10:528

19,000 43:050 17:610 16:637 11:118 10:692

20,000 63:931 21:312 19:839 11:508 10:868

22,000 119:886 35:529 29:536 12:578 11:268

24,000 209:062 55:669 44:835 14:986 11:748

26,000 365:905 84:897 66:939 17:715 12:323

28,000 601:422 124:622 96:927 24:212 13:003

30,000 936:450 175:889 135:577 30:131 13:795

35,000 2;118:650 455:643 272:798 50:405 16:906

40,000 3;983:830 788:986 468:622 97:460 23:395

45,000 6;609:160 1;363:260 716:958 169:424 29:194

50,000 10;723:700 2;157:420 1;011:150 239:463 38:069
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Table B.28 Internal partition function of OC as a function of pressure
and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 4:000 4:000 4:000 4:000 4:000

200 4:000 4:000 4:000 4:000 4:000

300 4:000 4:000 4:000 4:000 4:000

400 4:000 4:000 4:000 4:000 4:000

500 4:000 4:000 4:000 4:000 4:000

600 4:000 4:000 4:000 4:000 4:000

700 4:000 4:000 4:000 4:000 4:000

800 4:000 4:000 4:000 4:000 4:000

900 4:000 4:000 4:000 4:000 4:000

1000 4:000 4:000 4:000 4:000 4:000

1500 4:000 4:000 4:000 4:000 4:000

2000 4:000 4:000 4:000 4:000 4:000

2500 4:000 4:000 4:000 4:000 4:000

3000 4:000 4:000 4:000 4:000 4:000

3500 4:000 4:000 4:000 4:000 4:000

4000 4:001 4:001 4:001 4:001 4:001

4500 4:002 4:002 4:002 4:002 4:002

5000 4:005 4:005 4:005 4:005 4:005

6000 4:016 4:016 4:016 4:016 4:016

7000 4:042 4:042 4:042 4:042 4:042

8000 4:085 4:085 4:085 4:085 4:085

9000 4:147 4:147 4:147 4:147 4:147

10000 4:229 4:229 4:229 4:229 4:229

11000 4:330 4:330 4:330 4:330 4:330

12000 4:448 4:448 4:448 4:448 4:448

13000 4:582 4:582 4:582 4:582 4:582

14000 4:729 4:729 4:729 4:729 4:729

15000 4:887 4:887 4:887 4:887 4:887

16000 5:055 5:055 5:055 5:055 5:055

17000 5:230 5:229 5:229 5:229 5:229

18000 5:412 5:409 5:409 5:409 5:409

19000 5:607 5:594 5:594 5:594 5:594

20000 5:833 5:781 5:781 5:781 5:781

22000 6:594 6:163 6:162 6:162 6:162

24000 8:569 6:552 6:546 6:546 6:544

26000 14:406 6:953 6:931 6:931 6:926

28000 30:234 7:395 7:321 7:320 7:304

30000 68:213 7:920 7:723 7:721 7:680

35000 430:487 10:831 8:913 8:899 8:627

40000 1819:130 20:863 10:842 10:794 9:648

45000 5626:660 48:597 14:500 14:407 10:868

50000 13908:700 130:543 21:288 21:099 12:468
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Table B.29 Internal partition function of OC2 as a function of pressure
and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 1:650 1:650 1:650 1:650 1:650

200 2:882 2:882 2:882 2:882 2:882

300 3:895 3:895 3:895 3:895 3:895

400 4:659 4:659 4:659 4:659 4:659

500 5:238 5:238 5:238 5:238 5:238

600 5:686 5:686 5:686 5:686 5:686

700 6:042 6:042 6:042 6:042 6:042

800 6:330 6:330 6:330 6:330 6:330

900 6:568 6:568 6:568 6:568 6:568

1,000 6:768 6:768 6:768 6:768 6:768

1,500 7:419 7:419 7:419 7:419 7:419

2,000 7:777 7:777 7:777 7:777 7:777

2,500 8:003 8:003 8:003 8:003 8:003

3,000 8:159 8:159 8:159 8:159 8:159

3,500 8:274 8:274 8:274 8:274 8:274

4,000 8:362 8:362 8:362 8:362 8:362

4,500 8:435 8:435 8:435 8:435 8:435

5,000 8:497 8:497 8:497 8:497 8:497

6,000 8:604 8:604 8:604 8:604 8:604

7,000 8:704 8:704 8:704 8:704 8:704

8,000 8:803 8:803 8:803 8:803 8:803

9,000 8:904 8:904 8:904 8:904 8:904

10,000 9:009 9:009 9:009 9:009 9:009

11,000 9:118 9:118 9:118 9:118 9:118

12,000 9:228 9:228 9:228 9:228 9:228

13,000 9:341 9:341 9:341 9:341 9:341

14,000 9:455 9:455 9:455 9:455 9:455

15,000 9:570 9:570 9:570 9:570 9:570

16,000 9:684 9:684 9:684 9:684 9:684

17,000 9:799 9:799 9:799 9:799 9:799

18,000 9:914 9:914 9:914 9:914 9:914

19,000 10:029 10:029 10:029 10:029 10:029

20,000 10:143 10:143 10:143 10:143 10:143

22,000 10:369 10:369 10:369 10:369 10:369

24,000 10:594 10:594 10:594 10:594 10:594

26,000 10:818 10:818 10:818 10:818 10:818

28,000 11:041 11:041 11:041 11:041 11:041

30,000 11:263 11:263 11:263 11:263 11:263

35,000 11:824 11:823 11:823 11:823 11:822

40,000 12:410 12:401 12:399 12:398 12:393

45,000 13:078 13:026 13:014 13:013 12:984

50,000 13:988 13:795 13:724 13:720 13:602
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Table B.30 Internal partition
function of OC3 as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 2.016 2.016 2.016 2.016 2.016
200 2.249 2.249 2.249 2.249 2.249
300 2.628 2.628 2.628 2.628 2.628
400 2.998 2.998 2.998 2.998 2.998
500 3.318 3.318 3.318 3.318 3.318
600 3.586 3.586 3.586 3.586 3.586
700 3.810 3.810 3.810 3.810 3.810
800 3.998 3.998 3.998 3.998 3.998
900 4.158 4.158 4.158 4.158 4.158
1000 4.296 4.296 4.296 4.296 4.296
1500 4.763 4.763 4.763 4.763 4.763
2000 5.030 5.030 5.030 5.030 5.030
2500 5.203 5.203 5.203 5.203 5.203
3000 5.324 5.324 5.324 5.324 5.324
3500 5.413 5.413 5.413 5.413 5.413
4000 5.482 5.482 5.482 5.482 5.482
4500 5.536 5.536 5.536 5.536 5.536
5000 5.580 5.580 5.580 5.580 5.580
6000 5.646 5.646 5.646 5.646 5.646
7000 5.695 5.695 5.695 5.695 5.695
8000 5.732 5.732 5.732 5.732 5.732
9000 5.761 5.761 5.761 5.761 5.761
10000 5.784 5.784 5.784 5.784 5.784
11000 5.804 5.804 5.804 5.804 5.804
12000 5.821 5.821 5.821 5.821 5.821
13000 5.837 5.837 5.837 5.837 5.837
14000 5.852 5.852 5.852 5.852 5.852
15000 5.867 5.867 5.867 5.867 5.867
16000 5.883 5.883 5.883 5.883 5.883
17000 5.900 5.900 5.900 5.900 5.900
18000 5.918 5.918 5.918 5.918 5.918
19000 5.938 5.938 5.938 5.938 5.938
20000 5.961 5.961 5.961 5.961 5.961
22000 6.014 6.014 6.014 6.014 6.014
24000 6.077 6.077 6.077 6.077 6.077
26000 6.153 6.153 6.153 6.153 6.153
28000 6.239 6.239 6.239 6.239 6.239
30000 6.338 6.338 6.338 6.338 6.338
35000 6.629 6.629 6.629 6.629 6.629
40000 6.978 6.978 6.978 6.978 6.978
45000 7.373 7.373 7.373 7.373 7.373
50000 7.808 7.807 7.807 7.807 7.806
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Table B.31 Internal partition
function of OC4 as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000
300 1.000 1.000 1.000 1.000 1.000
400 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000
600 1.000 1.000 1.000 1.000 1.000
700 1.000 1.000 1.000 1.000 1.000
800 1.000 1.000 1.000 1.000 1.000
900 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000
1,500 1.000 1.000 1.000 1.000 1.000
2,000 1.000 1.000 1.000 1.000 1.000
2,500 1.000 1.000 1.000 1.000 1.000
3,000 1.000 1.000 1.000 1.000 1.000
3,500 1.000 1.000 1.000 1.000 1.000
4,000 1.000 1.000 1.000 1.000 1.000
4,500 1.000 1.000 1.000 1.000 1.000
5,000 1.000 1.000 1.000 1.000 1.000
6,000 1.000 1.000 1.000 1.000 1.000
7,000 1.000 1.000 1.000 1.000 1.000
8,000 1.000 1.000 1.000 1.000 1.000
9,000 1.000 1.000 1.000 1.000 1.000
10,000 1.000 1.000 1.000 1.000 1.000
11,000 1.000 1.000 1.000 1.000 1.000
12,000 1.000 1.000 1.000 1.000 1.000
13,000 1.001 1.001 1.001 1.001 1.001
14,000 1.002 1.002 1.002 1.002 1.002
15,000 1.003 1.003 1.003 1.003 1.003
16,000 1.006 1.006 1.006 1.006 1.006
17,000 1.009 1.009 1.009 1.009 1.009
18,000 1.013 1.013 1.013 1.013 1.013
19,000 1.018 1.018 1.018 1.018 1.018
20,000 1.024 1.024 1.024 1.024 1.024
22,000 1.042 1.042 1.042 1.042 1.042
24,000 1.065 1.065 1.065 1.065 1.065
26,000 1.096 1.096 1.096 1.096 1.096
28,000 1.133 1.133 1.133 1.133 1.133
30,000 1.176 1.176 1.176 1.176 1.176
35,000 1.312 1.312 1.312 1.312 1.312
40,000 1.483 1.483 1.483 1.483 1.483
45,000 1.681 1.681 1.681 1.681 1.681
50,000 1.901 1.901 1.901 1.901 1.901
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Table B.32 Internal partition function of Ar as a function of pressure
and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 1:000 1:000 1:000 1:000 1:000

200 1:000 1:000 1:000 1:000 1:000

300 1:000 1:000 1:000 1:000 1:000

400 1:000 1:000 1:000 1:000 1:000

500 1:000 1:000 1:000 1:000 1:000

600 1:000 1:000 1:000 1:000 1:000

700 1:000 1:000 1:000 1:000 1:000

800 1:000 1:000 1:000 1:000 1:000

900 1:000 1:000 1:000 1:000 1:000

1000 1:000 1:000 1:000 1:000 1:000

1500 1:000 1:000 1:000 1:000 1:000

2000 1:000 1:000 1:000 1:000 1:000

2500 1:000 1:000 1:000 1:000 1:000

3000 1:000 1:000 1:000 1:000 1:000

3500 1:000 1:000 1:000 1:000 1:000

4000 1:000 1:000 1:000 1:000 1:000

4500 1:000 1:000 1:000 1:000 1:000

5000 1:000 1:000 1:000 1:000 1:000

6000 1:000 1:000 1:000 1:000 1:000

7000 1:000 1:000 1:000 1:000 1:000

8000 1:000 1:000 1:000 1:000 1:000

9000 1:000 1:000 1:000 1:000 1:000

10000 1:000 1:000 1:000 1:000 1:000

11000 1:002 1:002 1:001 1:000 1:000

12000 1:007 1:006 1:002 1:001 1:001

13000 1:021 1:016 1:006 1:003 1:002

14000 1:056 1:043 1:014 1:006 1:004

15000 1:133 1:115 1:031 1:013 1:008

16000 1:284 1:245 1:065 1:027 1:013

17000 1:551 1:545 1:126 1:049 1:023

18000 1:997 1:987 1:225 1:085 1:038

19000 2:694 2:681 1:456 1:140 1:059

20000 3:728 3:708 1:732 1:220 1:090

22000 7:220 7:175 2:659 1:488 1:178

24000 13:363 13:274 4:916 1:949 1:329

26000 23:119 22:952 7:988 2:685 1:586

28000 37:426 37:144 12:448 4:226 1:940

30000 57:132 56:697 18:590 6:182 2:437

35000 134:284 133:268 42:582 13:574 4:334

40000 256:011 254:101 96:117 24:788 8:588

45000 423:601 420:154 158:724 40:332 13:110

50000 633:946 628:876 281:687 59:970 18:614
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Table B.33 Internal partition
function of ArC as a function
of pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 4:000 4:000 4:000 4:000 4:000

200 4:000 4:000 4:000 4:000 4:000

300 4:002 4:002 4:002 4:002 4:002

400 4:012 4:012 4:012 4:012 4:012

500 4:033 4:033 4:033 4:033 4:033

600 4:065 4:065 4:065 4:065 4:065

700 4:105 4:105 4:105 4:105 4:105

800 4:152 4:152 4:152 4:152 4:152

900 4:203 4:203 4:203 4:203 4:203

1,000 4:255 4:255 4:255 4:255 4:255

1,500 4:507 4:507 4:507 4:507 4:507

2,000 4:714 4:714 4:714 4:714 4:714

2,500 4:877 4:877 4:877 4:877 4:877

3,000 5:007 5:007 5:007 5:007 5:007

3,500 5:110 5:110 5:110 5:110 5:110

4,000 5:195 5:195 5:195 5:195 5:195

4,500 5:265 5:265 5:265 5:265 5:265

5,000 5:325 5:325 5:325 5:325 5:325

6,000 5:419 5:419 5:419 5:419 5:419

7,000 5:490 5:490 5:490 5:490 5:490

8,000 5:546 5:546 5:546 5:546 5:546

9,000 5:591 5:591 5:591 5:591 5:591

10,000 5:628 5:628 5:628 5:628 5:628

11,000 5:658 5:658 5:658 5:658 5:658

12,000 5:685 5:685 5:685 5:685 5:685

13,000 5:707 5:707 5:707 5:707 5:707

14,000 5:726 5:726 5:726 5:726 5:726

15,000 5:744 5:744 5:744 5:744 5:744

16,000 5:759 5:759 5:759 5:759 5:759

17,000 5:773 5:773 5:773 5:773 5:773

18,000 5:787 5:787 5:787 5:786 5:786

19,000 5:801 5:801 5:800 5:799 5:799

20,000 5:817 5:817 5:815 5:812 5:812

22,000 5:864 5:862 5:856 5:844 5:841

24,000 5:957 5:950 5:930 5:891 5:880

26,000 6:150 6:132 6:092 5:975 5:939

28,000 6:540 6:491 6:395 6:115 6:030

30,000 7:252 7:148 6:941 6:351 6:167

35,000 11:742 11:489 10:365 7:689 6:891

40,000 23:458 22:662 20:771 10:847 8:382

45,000 47:438 45:501 41:158 18:050 10:995

50,000 88:945 84:930 76:092 29:737 15:160
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Table B.34 Internal partition
function of ArC2 as a
function of pressure and
temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 5:597 5:597 5:597 5:597 5:597

200 6:339 6:339 6:339 6:339 6:339

300 6:752 6:752 6:752 6:752 6:752

400 7:007 7:007 7:007 7:007 7:007

500 7:183 7:183 7:183 7:183 7:183

600 7:316 7:316 7:316 7:316 7:316

700 7:422 7:422 7:422 7:422 7:422

800 7:511 7:511 7:511 7:511 7:511

900 7:589 7:589 7:589 7:589 7:589

1000 7:657 7:657 7:657 7:657 7:657

1500 7:916 7:916 7:916 7:916 7:916

2000 8:091 8:091 8:091 8:091 8:091

2500 8:219 8:219 8:219 8:219 8:219

3000 8:320 8:320 8:320 8:320 8:320

3500 8:405 8:405 8:405 8:405 8:405

4000 8:482 8:482 8:482 8:482 8:482

4500 8:556 8:556 8:556 8:556 8:556

5000 8:630 8:630 8:630 8:630 8:630

6000 8:781 8:781 8:781 8:781 8:781

7000 8:938 8:938 8:938 8:938 8:938

8000 9:099 9:099 9:099 9:099 9:099

9000 9:262 9:262 9:262 9:262 9:262

10000 9:424 9:424 9:424 9:424 9:424

11000 9:584 9:584 9:584 9:584 9:584

12000 9:739 9:739 9:739 9:739 9:739

13000 9:889 9:889 9:889 9:889 9:889

14000 10:034 10:034 10:034 10:034 10:034

15000 10:174 10:174 10:174 10:174 10:174

16000 10:307 10:307 10:307 10:307 10:307

17000 10:435 10:435 10:435 10:435 10:435

18000 10:558 10:558 10:558 10:558 10:558

19000 10:676 10:676 10:676 10:676 10:676

20000 10:789 10:789 10:789 10:789 10:789

22000 11:004 11:004 11:004 11:004 11:004

24000 11:205 11:205 11:205 11:205 11:205

26000 11:398 11:398 11:398 11:397 11:397

28000 11:588 11:588 11:588 11:587 11:586

30000 11:781 11:781 11:781 11:779 11:777

35000 12:341 12:341 12:341 12:316 12:304

40000 13:181 13:181 13:181 13:058 12:988

45000 14:657 14:656 14:656 14:211 13:953

50000 17:318 17:317 17:317 16:198 15:341
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Table B.35 Internal partition
function of ArC3 as a
function of pressure and
temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 4:000 4:000 4:000 4:000 4:000

200 4:000 4:000 4:000 4:000 4:000

300 4:000 4:000 4:000 4:000 4:000

400 4:000 4:000 4:000 4:000 4:000

500 4:000 4:000 4:000 4:000 4:000

600 4:000 4:000 4:000 4:000 4:000

700 4:000 4:000 4:000 4:000 4:000

800 4:000 4:000 4:000 4:000 4:000

900 4:000 4:000 4:000 4:000 4:000

1,000 4:000 4:000 4:000 4:000 4:000

1,500 4:000 4:000 4:000 4:000 4:000

2,000 4:000 4:000 4:000 4:000 4:000

2,500 4:000 4:000 4:000 4:000 4:000

3,000 4:000 4:000 4:000 4:000 4:000

3,500 4:002 4:002 4:002 4:002 4:002

4,000 4:005 4:005 4:005 4:005 4:005

4,500 4:012 4:012 4:012 4:012 4:012

5,000 4:023 4:023 4:023 4:023 4:023

6,000 4:064 4:064 4:064 4:064 4:064

7,000 4:134 4:134 4:134 4:134 4:134

8,000 4:233 4:233 4:233 4:233 4:233

9,000 4:362 4:362 4:362 4:362 4:362

10,000 4:515 4:515 4:515 4:515 4:515

11,000 4:689 4:689 4:689 4:689 4:689

12,000 4:881 4:881 4:881 4:881 4:881

13,000 5:086 5:086 5:086 5:086 5:086

14,000 5:301 5:301 5:301 5:301 5:301

15,000 5:523 5:523 5:523 5:523 5:523

16,000 5:749 5:749 5:749 5:749 5:749

17,000 5:979 5:979 5:979 5:979 5:979

18,000 6:209 6:209 6:209 6:209 6:209

19,000 6:440 6:440 6:440 6:440 6:440

20,000 6:669 6:669 6:669 6:669 6:669

22,000 7:121 7:121 7:121 7:121 7:121

24,000 7:561 7:561 7:561 7:561 7:561

26,000 7:989 7:989 7:989 7:989 7:989

28,000 8:404 8:404 8:404 8:404 8:404

30,000 8:807 8:807 8:807 8:807 8:807

35,000 9:776 9:776 9:776 9:776 9:776

40,000 10:720 10:720 10:720 10:719 10:719

45,000 11:691 11:691 11:690 11:685 11:678

50,000 12:756 12:756 12:755 12:734 12:701
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Table B.36 Internal partition
function of ArC4 as a
function of pressure and
temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 1:000 1:000 1:000 1:000 1:000

200 1:012 1:012 1:012 1:012 1:012

300 1:077 1:077 1:077 1:077 1:077

400 1:195 1:195 1:195 1:195 1:195

500 1:346 1:346 1:346 1:346 1:346

600 1:517 1:517 1:517 1:517 1:517

700 1:700 1:700 1:700 1:700 1:700

800 1:888 1:888 1:888 1:888 1:888

900 2:078 2:078 2:078 2:078 2:078

1000 2:268 2:268 2:268 2:268 2:268

1500 3:154 3:154 3:154 3:154 3:154

2000 3:892 3:892 3:892 3:892 3:892

2500 4:487 4:487 4:487 4:487 4:487

3000 4:970 4:970 4:970 4:970 4:970

3500 5:368 5:368 5:368 5:368 5:368

4000 5:703 5:703 5:703 5:703 5:703

4500 5:990 5:990 5:990 5:990 5:990

5000 6:242 6:242 6:242 6:242 6:242

6000 6:671 6:671 6:671 6:671 6:671

7000 7:034 7:034 7:034 7:034 7:034

8000 7:353 7:353 7:353 7:353 7:353

9000 7:641 7:641 7:641 7:641 7:641

10000 7:905 7:905 7:905 7:905 7:905

11000 8:149 8:149 8:149 8:149 8:149

12000 8:377 8:377 8:377 8:377 8:377

13000 8:590 8:590 8:590 8:590 8:590

14000 8:790 8:790 8:790 8:790 8:790

15000 8:979 8:979 8:979 8:979 8:979

16000 9:157 9:157 9:157 9:157 9:157

17000 9:327 9:327 9:327 9:327 9:327

18000 9:488 9:488 9:488 9:488 9:488

19000 9:641 9:641 9:641 9:641 9:641

20000 9:788 9:788 9:788 9:788 9:788

22000 10:065 10:065 10:065 10:065 10:065

24000 10:323 10:323 10:323 10:323 10:323

26000 10:567 10:567 10:567 10:567 10:567

28000 10:800 10:800 10:800 10:800 10:800

30000 11:026 11:026 11:026 11:026 11:026

35000 11:579 11:579 11:579 11:579 11:579

40000 12:139 12:139 12:139 12:139 12:139

45000 12:729 12:729 12:729 12:729 12:729

50000 13:366 13:366 13:366 13:366 13:365
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B.4 Selfconsitent Partition Functions of Atomic Species
in Jupiter Atmosphere

Table B.37 Internal partition
function of H as a function of
pressure and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 2:000 2:000 2:000 2:000 2:000

200 2:000 2:000 2:000 2:000 2:000

300 2:000 2:000 2:000 2:000 2:000

400 2:000 2:000 2:000 2:000 2:000

500 2:000 2:000 2:000 2:000 2:000

600 2:000 2:000 2:000 2:000 2:000

700 2:000 2:000 2:000 2:000 2:000

800 2:000 2:000 2:000 2:000 2:000

900 2:000 2:000 2:000 2:000 2:000

1,000 2:000 2:000 2:000 2:000 2:000

1,500 2:000 2:000 2:000 2:000 2:000

2,000 2:000 2:000 2:000 2:000 2:000

2,500 2:000 2:000 2:000 2:000 2:000

3,000 2:000 2:000 2:000 2:000 2:000

3,500 2:000 2:000 2:000 2:000 2:000

4,000 2:000 2:000 2:000 2:000 2:000

4,500 2:000 2:000 2:000 2:000 2:000

5,000 2:000 2:000 2:000 2:000 2:000

6,000 2:000 2:000 2:000 2:000 2:000

7,000 2:000 2:000 2:000 2:000 2:000

8,000 2:000 2:000 2:000 2:000 2:000

9,000 2:001 2:000 2:000 2:000 2:000

10,000 2:003 2:001 2:000 2:000 2:000

11,000 2:014 2:005 2:002 2:001 2:000

12,000 2:042 2:013 2:005 2:002 2:001

13,000 2:127 2:030 2:011 2:005 2:003

14,000 2:328 2:070 2:022 2:009 2:006

15,000 2:757 2:146 2:044 2:018 2:011

16,000 3:585 2:322 2:068 2:026 2:015

17,000 5:069 2:572 2:119 2:044 2:024

18,000 7:562 3:093 2:243 2:071 2:038

19,000 11:529 3:728 2:381 2:108 2:040

20,000 17:562 4:975 2:570 2:159 2:057

22,000 33:846 8:884 3:416 2:310 2:106

24,000 64:303 16:090 4:544 2:543 2:177

26,000 113:016 28:212 7:108 3:197 2:273

28,000 173:160 47:204 9:825 3:809 2:398

30,000 269:420 67:715 15:712 4:589 2:552

35,000 609:149 192:913 36:505 9:190 3:722

40,000 1;142:980 371:747 73:552 14:390 4:875

45,000 1;891:330 574:449 132:056 27:130 6:287

50,000 2;864:220 896:095 217:103 37:351 11:248
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Table B.38 Internal partition function of He as a function of pressure
and temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 1:000 1:000 1:000 1.000 1.000
200 1:000 1:000 1:000 1.000 1.000
300 1:000 1:000 1:000 1.000 1.000
400 1:000 1:000 1:000 1.000 1.000
500 1:000 1:000 1:000 1.000 1.000
600 1:000 1:000 1:000 1.000 1.000
700 1:000 1:000 1:000 1.000 1.000
800 1:000 1:000 1:000 1.000 1.000
900 1:000 1:000 1:000 1.000 1.000
1000 1:000 1:000 1:000 1.000 1.000
1500 1:000 1:000 1:000 1.000 1.000
2000 1:000 1:000 1:000 1.000 1.000
2500 1:000 1:000 1:000 1.000 1.000
3000 1:000 1:000 1:000 1.000 1.000
3500 1:000 1:000 1:000 1.000 1.000
4000 1:000 1:000 1:000 1.000 1.000
4500 1:000 1:000 1:000 1.000 1.000
5000 1:000 1:000 1:000 1.000 1.000
6000 1:000 1:000 1:000 1.000 1.000
7000 1:000 1:000 1:000 1.000 1.000
8000 1:000 1:000 1:000 1.000 1.000
9000 1:000 1:000 1:000 1.000 1.000
10000 1:000 1:000 1:000 1.000 1.000
11000 1:000 1:000 1:000 1.000 1.000
12000 1:000 1:000 1:000 1.000 1.000
13000 1:000 1:000 1:000 1.000 1.000
14000 1:000 1:000 1:000 1.000 1.000
15000 1:000 1:000 1:000 1.000 1.000
16000 1:001 1:000 1:000 1.000 1.000
17000 1:003 1:001 1:000 1.000 1.000
18000 1:009 1:002 1:000 1.000 1.000
19000 1:023 1:004 1:001 1.000 1.000
20000 1:053 1:010 1:002 1.001 1.000
22000 1:194 1:041 1:009 1.002 1.001
24000 1:614 1:137 1:025 1.006 1.002
26000 2:646 1:384 1:076 1.018 1.004
28000 4:601 1:942 1:165 1.039 1.009
30000 8:621 2:855 1:389 1.075 1.017
35000 32:750 10:919 2:793 1.379 1.093
40000 95:074 31:308 6:851 2.030 1.243
45000 222:978 67:850 16:128 3.961 1.523
50000 447:439 139:700 34:252 6.721 2.462
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Table B.39 Internal partition
function of HeC as a
function of pressure and
temperature

P (bar)

T (K) 10�2 10�1 1 101 102

100 2.000 2.000 2.000 2.000 2.000
200 2.000 2.000 2.000 2.000 2.000
300 2.000 2.000 2.000 2.000 2.000
400 2.000 2.000 2.000 2.000 2.000
500 2.000 2.000 2.000 2.000 2.000
600 2.000 2.000 2.000 2.000 2.000
700 2.000 2.000 2.000 2.000 2.000
800 2.000 2.000 2.000 2.000 2.000
900 2.000 2.000 2.000 2.000 2.000
1,000 2.000 2.000 2.000 2.000 2.000
1,500 2.000 2.000 2.000 2.000 2.000
2,000 2.000 2.000 2.000 2.000 2.000
2,500 2.000 2.000 2.000 2.000 2.000
3,000 2.000 2.000 2.000 2.000 2.000
3,500 2.000 2.000 2.000 2.000 2.000
4,000 2.000 2.000 2.000 2.000 2.000
4,500 2.000 2.000 2.000 2.000 2.000
5,000 2.000 2.000 2.000 2.000 2.000
6,000 2.000 2.000 2.000 2.000 2.000
7,000 2.000 2.000 2.000 2.000 2.000
8,000 2.000 2.000 2.000 2.000 2.000
9,000 2.000 2.000 2.000 2.000 2.000
10,000 2.000 2.000 2.000 2.000 2.000
11,000 2.000 2.000 2.000 2.000 2.000
12,000 2.000 2.000 2.000 2.000 2.000
13,000 2.000 2.000 2.000 2.000 2.000
14,000 2.000 2.000 2.000 2.000 2.000
15,000 2.000 2.000 2.000 2.000 2.000
16,000 2.000 2.000 2.000 2.000 2.000
17,000 2.000 2.000 2.000 2.000 2.000
18,000 2.000 2.000 2.000 2.000 2.000
19,000 2.000 2.000 2.000 2.000 2.000
20,000 2.000 2.000 2.000 2.000 2.000
22,000 2.000 2.000 2.000 2.000 2.000
24,000 2.000 2.000 2.000 2.000 2.000
26,000 2.000 2.000 2.000 2.000 2.000
28,000 2.000 2.000 2.000 2.000 2.000
30,000 2.000 2.000 2.000 2.000 2.000
35,000 2.002 2.001 2.000 2.000 2.000
40,000 2.023 2.007 2.002 2.000 2.000
45,000 2.146 2.045 2.011 2.002 2.001
50,000 2.619 2.197 2.049 2.010 2.003



Appendix C
Constants

a0 0:529177249 � 10�10 (m) Bohr radius
c 299792458 (ms�1) Speed of light
e 2:718281828 Neper number
�0 8:85415 � 10�12 (C2m�1J�1) Vacuum dielectric constant
me 9:1093897 � 10�31 (kg) Electron mass
mp 1:67262158 � 10�27 (kg) Proton mass
AMU 1:66053886 � 10�27 (kg) Atomic Mass Unit
Na 6:0221367 � 1023 (mol�1) Avogadro number
h 6:6260755 � 10�34 (Js) Plank Constant
„ D h

2�
1:05457266 � 10�34 (Js) Reduced Plank Constant

k 1:380658 � 10�23 (JK�1) Boltzmann Constant
8:617386 � 10�5 (eVK�1)
6:950388 � 10�1 (cm�1K�1)

IH 13.6 (eV) Atomic hydrogen
ionization potential

qe 1:6021773 � 10�19 (C) Electron charge
R 8:314510 (JK�1mol�1) Ideal gas constant

C.1 Conversion Factors

cm�1D 1:239842447 � 10�4 eV
J D qe eV
R D Na k
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internal -, 18, 40, 42, 44, 47, 73, 74, 76–78,

91–94, 97, 99, 148
Jupiter, 218, 222, 224
jupiter, 184
Mars, 206, 209, 215
mars, 184
molar -, 16, 38, 43, 46
reactive -, 20, 24, 25, 76, 77, 86, 153, 162
rotational -, 85
single species -, 16
translational -, 66
vibrational -, 81

statistical
distribution, 13
mean, 57
mechanics, 51, 66
physics, 113, 117
probability, 51
thermodynamics, 1, 13, 17, 39, 51, 61, 76,

147, 164
weight, 40, 41, 45, 55, 65, 71, 80, 82, 83,

85, 86, 95, 117, 131, 142, 161, 182,
231, 233, 237–240, 242, 245

Stirling formula, 52, 56

T
thermodynamic, 179

classical -, 120
equation, 105, 179
functions, 1, 14–16, 34, 35, 39, 47, 51, 54,

57–59, 69, 79, 93, 101, 106, 134
model, 101
potentials, 22, 58, 66, 121, 163
principles, 122
properties, 39, 51, 58, 61, 76, 79, 85, 86,

101, 103, 109, 110, 115, 117, 126,
129, 133, 139, 141, 151, 152, 154,
156, 161, 164, 175, 181, 184, 199,
202, 217, 242

state, 54
system, 118

thermodynamics, 244
classical -, 1, 13, 57, 119
equilibrium -, 1
first law, 1, 54
ideal gas -, 13
irreversible -, 163, 164
mixture -, 19, 22
multi-temperature -, 163
plasma -, 76, 181
reacting system -, 13
real gas -, 32
second law, 1, 54
single species -, 65, 141
statistical -, 139

three-level
approach, 48
approximation, 49
system, 39, 42, 45

two-level
approach, 73
approximation, 42, 48
system, 39–41, 43
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V
Van der Waals equation, 1, 32, 33, 37, 130
Van der Waals equation, 34
virial

coefficients, 32, 33, 37, 38, 125–127, 130,
245

phenomenological -, 130
second -, 34, 125, 126, 130–132
third -, 127, 130

corrections, 34, 35, 37, 117, 127, 129, 184

enthalpy, 127
entropy, 106, 129
equilibrium constant, 129
heat capacity, 36
internal energy, 35
pressure, 34, 128
specific heat, 128
specific heat -, 36

expansion, 1, 32, 34, 120, 125, 126,
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