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Preface

The main goal of this book is to give a presentation of various types of coherent
states introduced and studied in the physics and mathematics literature during al-
most a century. We describe their mathematical properties together with application
to quantum physics problems. It is intended to serve as a compendium on coherent
states and their applications for physicists and mathematicians, stretching from the
basic mathematical structures of generalized coherent states in the sense of Gilmore
and Perelomov1 via the semiclassical evolution of coherent states to various specific
examples of coherent states (hydrogen atom, torus quantization, quantum oscilla-
tor).

We have tried to show that the field of applications of coherent states is wide,
diversified and still alive. Because of our own ability limitations we have not covered
the whole field. Besides this would be impossible in one book. We have chosen some
parts of the subject which are significant for us. Other colleagues may have different
opinions.

There exist several definitions of coherent states which are not equivalent. Nowa-
days the most well known is the Gilmore–Perelomov [84, 85, 155] definition: a co-
herent state system is an orbit for an irreducible group action in an Hilbert space.
From a mathematical point of view coherent states appear like a part of group rep-
resentation theory.

In particular canonical coherent states are obtained with the Weyl–Heisenberg
group action in L2(R) and the standard Gaussian ϕ0(x)= π1/4e−x2/2. Modulo mul-
tiplication by a complex number, the orbit of ϕ0 is described by two parameters
(q,p) ∈R

2 and the L2-normalized canonical coherent states are

ϕq,p(x)= π−1/4e−(x−q)2/2ei((x−q)p+qp/2).

Wavelets are included in the group definition of coherent states: they are obtained
from the action of the affine group of R (x �→ ax + b) on a “mother function”
ψ ∈ L2(R). The wavelet system has two parameters: ψa,b(x)= 1√

a
ψ(x−b

a
).

1They have discovered independently the relationship with group theory in 1972.
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vi Preface

One of the most useful property of coherent system ψz is that they are an “over-
complete” system in the Hilbert space in the sense that we can analyze any η ∈H
with its coefficient 〈ψz,η〉 and we have a reconstruction formula of η like

η=
∫
dz η̃(z)ψz,

where η̃ is a complex valued function depending on 〈ψz,η〉.
Coherent states (being given no name) were discovered by Schrödinger (1926)

when he searched solutions of the quantum harmonic oscillator being the closest
possible to the classical state or minimizing the uncertainty principle. He found that
the solutions are exactly the canonical coherent states ϕz.

Glauber (1963) has extended the Schrödinger approach to quantum electro-
dynamic and he called these states coherent states because he succeeded to explain
coherence phenomena in light propagation using them. After the works of Glauber,
coherent states became a very popular subject of research in physics and in mathe-
matics.

There exist several books discussing coherent states. Perelomov’s book [156]
played an important role in the development of the group aspect of the subject and in
its applications in mathematical physics. Several other books brought contributions
to the theory of coherent states and worked out their applications in several fields
of physics; among them we have [3, 80, 126] but many others could be quoted as
well. There is a huge number of original papers and review papers on the subject;
we have quoted some of them in the bibliography. We apologize the authors for
forgotten references.

In this book we put emphasis on applications of coherent states to semi-classical
analysis of Schrödinger type equation (time dependent or time independent). Semi-
classical analysis means that we try to understand how solutions of the Schrödinger
equation behave as the Planck constant � is negligible and how classical mechanics
is a limit of quantum mechanics. It is not surprising that semi-classical analysis
and coherent states are closely related because coherent states (which are particular
quantum states) will be chosen localized close to classical states. Nevertheless we
think that in this book we have given more mathematical details concerning these
connections than in the other monographs on that subjects.

Let us give now a quick overview of the content of the book.
The first half of the book (Chap. 1 to Chap. 5) is concerned with the canonical

(standard) Gaussian Coherent States and their applications in semi-classical analysis
of the time dependent and the time independent Schrödinger equation.

The basic ingredient here is the Weyl–Heisenberg algebra and its irreducible rep-
resentations. The relationship between coherent states and Weyl quantization is ex-
plained in Chaps. 2 and 3. In Chap. 4 we compute the quantum time evolution of
coherent states in the semi-classical régime: the result is a squeezed coherent states
whose shape is deformed, depending on the classical evolution of the system. The
main outcome is a proof of the Gutzwiller trace formula given in Chap. 5.

The second half of the book (Chap. 6 to Chap. 12) is concerned with extensions
of coherent states systems to other geometry settings. In Chap. 6 we consider quan-
tization of the 2-torus with application to the cat map and an example of “quantum
chaos”.
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Chapters 7 and 8 explain the first examples of non canonical coherent states
where the Weyl–Heisenberg group is replaced successively by the compact group
SU(2) and the non-compact group SU(1,1). We shall see that some representations
of SU(1,1) are related with squeezed canonical coherent states, with quantum dy-
namics for singular potentials and with wavelets.

We show in Chap. 9 how it is possible to study the hydrogen atom with coherent
states related with the group SO(4).

In Chap. 10 we consider infinite systems of bosons for which it is possible to
extend the definition of canonical coherent states. This is used to prove mean-field
limit result for two-body interactions: the linear field equation can be approximated
by a non linear Schrödinger equation in R

3 in the semi-classical limit (large number
of particles or small Planck constant are mathematically equivalent problems).

Chapters 11 and 12 are concerned with extension of coherent states for fermions
with applications to supersymmetric systems.

Finally in the appendices we have a technical section A around the stationary
phase theorem, and in section B we recall some basic facts concerning Lie algebras,
Lie groups and their representations. We explain how this is used to build general-
ized coherent systems in the sense of Gilmore–Perelomov.

The material covered in these book is designed for an advanced graduate student,
or researcher, who wishes to acquaint himself with applications of coherent states
in mathematics or in theoretical physics. We have assumed that the reader has a
good founding in linear algebra and classical analysis and some familiarity with
functional analysis, group theory, linear partial differential equations and quantum
mechanics.

We would like to thank our colleagues of Lyon, Nantes and elsewhere, for discus-
sions concerning coherent states. In particular we thank our collaborator Jim Ralston
with whom we have given a new proof of the trace formula, Stephan Debièvre, Alain
Joye and André Martinez for stimulating meetings.

M.C. also thanks Sylvie Flores for offering valuable support in the bibliography.
To conclude we wish to express our gratitude to our spouses Alain and Marie-

France whose understanding and support have permitted to us to spend many hours
for the writing of this book.

Monique Combescure
Didier Robert

Lyon and Nantes, France
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Chapter 1
Introduction to Coherent States

Abstract In this Chapter we study the Weyl–Heisenberg group in the Schrödinger
representation in arbitrary dimension n. One shows that it operates in the Hilbert
space of quantum states (and on quantum operators) as a phase-space translation.
Then applying it to a Schwartz class state of arbitrary profile we get a set of gen-
eralized coherent states. When we apply the Weyl–Heisenberg translation operator
to the ground state of the n-dimensional Harmonic Oscillator, one gets the stan-
dard coherent states introduced by Schrödinger (Naturwissenshaften 14:664–666,
1926) in the early days of quantum mechanics (1926). Later the coherent states
have been extensively studied by Glauber (Phys. Rev. 131:2766–2788, 1963; Phys.
Rev. 130:2529–2539, 1963) for the purpose of quantum optics and it seems that their
name comes back to this work. The standard coherent states have been generalized
by Perelomov (Generalised Coherent States and Their Applications, 1986) to more
general Lie groups than the Weyl–Heisenberg group.

We also introduce the usual creation and annihilation operators in dimension n
which are very convenient for the study of coherent states. We show that coherent
states constitute a non-orthogonal over-complete system which yields a resolution
of the identity operator in the Hilbert space and which allows a computation of the
Hilbert–Schmidt norm and of the trace of respectively Hilbert–Schmidt class and
trace-class operators.

We study their time-evolution for the quantum Harmonic Oscillator hamiltonian
and show that a time evolved coherent state located around phase-space point z is up
to a phase a coherent state located around the phase-space point zt , where zt is the
phase-space point of the classical flow governed by the Harmonic Oscillator. This
property was described by Schrödinger as the non-spreading of the time evolution
of coherent states under the quantum Harmonic Oscillator dynamics.

We also show how to go from the Schrödinger to the Fock–Bargmann represen-
tation using the standard coherent states.

M. Combescure, D. Robert, Coherent States and Applications in Mathematical Physics,
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-0196-0_1, © Springer Science+Business Media B.V. 2012
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2 1 Introduction to Coherent States

1.1 The Weyl–Heisenberg Group and the Canonical Coherent
States

1.1.1 The Weyl–Heisenberg Translation Operator

Consider quantum mechanics in dimension n. Then the position operator Q̂ has n
components Q̂1, . . . , Q̂n where Q̂j is the multiplication operator in L2(Rn) by the
coordinate xj . Similarly the momentum operator P̂ has n components P̂j where

P̂j =−i� ∂

∂xj
(1.1)

� is the Planck constant divided dy 2π . Q̂ and P̂ are selfadjoint operators with
suitable domains D(Q̂) and D(P̂ ).

D
(
Q̂
) = {

u ∈ L2(
R
n
) ∣∣ xju(x) ∈ L2(

R
n
)
, ∀j = 1, . . . , n

}

D
(
P̂
) =

{
u ∈ L2(

R
n
) ∣∣∣∣ ∂u∂xj ∈ L

2(
R
n
)
, ∀j = 1, . . . , n

}

The operators Q̂ and P̂ obey the famous Heisenberg commutation relation
[
P̂j , Q̂k

]=−δj,ki� (1.2)

on the domain of Q̂ · P̂ − P̂ · Q̂. The bracket [Â, B̂] is the commutator:
[
Â, B̂

]= ÂB̂ − B̂Â
On the intersection of the domains D(Q̂)∩D(P̂ ) the operator p · Q̂− q · P̂ is well
defined for z= (q,p) ∈R

2n, where the dot represents the scalar product:

p · Q̂=
n∑
1

pjQ̂j

It is selfadjoint so it is the generator of a unitary operator T̂ (z) called the Weyl–
Heisenberg translation operator:

T̂ (z)= exp

(
i

�

(
p · Q̂− q · P̂ )

)
(1.3)

Now we use the Baker–Campbell–Hausdorff formula

Lemma 1 Consider two anti-selfadjoint operators Â, B̂ in the Hilbert space H,
with domains D(Â), D(B̂). We assume the following conditions are satisfied:

(i) There exists a linear subspace space H0 dense in H, which is a core for Â
and B̂ .
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(ii) H0 is invariant for Â, B̂ , etÂ, etB̂ , ∀t ∈R.
(iii) Â and B̂ commute with [Â, B̂] in H0 and i[Â, B̂], well defined in H0, has a

selfadjoint extension in H.

Then we have

exp
(
Â+ B̂)= exp

(
−1

2

[
Â, B̂

])
exp

(
Â
)

exp
(
B̂
)

(1.4)

Proof Let us introduce

F(t)u= e−t2/2[Â,B̂]etÂetB̂u

where u ∈H0 is fixed. Let us compute the time derivative

F ′(t)u = −t[Â, B̂]e−t2/2[Â,B̂]etÂetB̂u

+ e−t2/2[Â,B̂]etÂ
(
Â+ B̂)etB̂u (1.5)

The only difficulty is to commute B̂ with etÂ. But we have, using the commutations
assumptions,

d

dt

(
etÂB̂e−tÂ

)= etÂ
[
Â, B̂

]
e−tÂ = [

Â, B̂
]

So we get that

F ′(t)= (
Â+ B̂)F(t) (1.6)

and the formula (1.4) follows. �

Using this formula, one deduces the multiplication law for the operators T̂ (z):

T̂ (z)T̂ (z′)= exp

(
− i

2�
σ(z, z′)

)
T̂ (z+ z′) (1.7)

where for z= (q,p), z′ = (q ′,p′), σ(z, z′) is the symplectic product:

σ(z, z′)= q · p′ − p · q ′ (1.8)

and

T̂ (z)T̂ (z′)= exp

(
− i
�
σ(z, z′)

)
T̂
(
z′
)
T̂ (z)

which is the integral form of the Heisenberg commutation relation. In particular we
have: (

T̂ (z)
)−1 = (

T̂ (z)
)∗ = T̂ (−z)

since the symplectic product of z by itself is zero.
The fact that the Weyl–Heisenberg unitary operator is a translation operator can

be seen in the following lemma:
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Lemma 2 For any z= (q,p) ∈R
2n one has

T̂ (z)

(
Q̂

P̂

)
T̂ (z)−1 =

(
Q̂− q
P̂ − p

)
(1.9)

Proof Let us denote L̂(z)= p · Q̂− q · P̂ if z= (q,p). We have easily

i�
d

dt

(
e
it
�
L̂(z)Q̂e−

it
�
L̂(z)

)
= e

it
�
L̂(z)

[
Q̂, L̂(z)

]
e−

it
�
L̂(z)

But we have [Q̂, L̂(z)] = −i�q . So we get the formula for Q̂. With the same proof
we get the formula for P̂ . �

Corollary 1

T̂ (z)= e−iq·p/2�e
i
�
p·Q̂e−

i
�
q·P̂ (1.10)

Proof Let

Û (t)= e−it2q·p/2�e
it
�
p·Q̂e−

it
�
q·P̂

Using Lemma 1 we get

d

dt
T̂ (tz)= d

dt
Û(t)= i

�
L̂(tz)Û (t)

Hence the corollary follows. �

Let us specify the situation in dimension 1. We introduce:

e1 = i√
�
P̂

e2 = i√
�
Q̂

e3 = i1

We easily check that

[e1, e2] = e3, [e1, e3] = [e2, e3] = 0

This means that the operators Q̂, P̂ , 1 generate a Lie algebra denoted by h1 which
is the Weyl–Heisenberg algebra. The elements of this algebra are defined using
triplets of coordinates (s;x, y) ∈R

3 by:

W = xe1 + ye2 + se3 (1.11)
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In quantum mechanics it is more convenient to use the following coordinates:

W =− it

2�
1+ i

�

(
pQ̂− qP̂ )

where the real numbers t, q,p are defined as

q =−√�x, p =√�y, t =−2�s

Then we can calculate the commutator of two elementsW, W ′ of the Lie algebra h1:

Lemma 3

[W,W ′] = (
xy′ − yx′)e3 (1.12)

σ((x, y), (x′, y′))= xy′ −x′y is simply the symplectic product of (x, y) and (x′, y′).

Proof We simply use Lemma 1. �

For any W in h1 we can define the unitary operator eW and we get a group using
(1.4). This group is denoted H1. It is a Lie group and its Lie algebra is h1. The Lie
group H1 is simply R

3 with the non commutative multiplication

(t, z)(t ′, z′)= (
t + t ′ + σ(z, z′), z+ z′), where t ∈R, z ∈R

2 (1.13)

We deduce (1.13) from an elementary computation. If W,W ′ ∈ h1 using (1.4) we
have

eWeW
′ = eW ′′

, where W ′′ = 1

2
[W,W ′] +W +W ′

Using the (t, q,p) and (t ′, q ′,p′) coordinates for W and W ′ respectively, we get the
corresponding coordinates (t ′′, q ′′,p′′) for W ′′ such that

t ′′ = t + t ′ + σ(z, z′), z′′ = z+ z′

which is the Weyl–Heisenberg group multiplication (1.13).
In the same way we define the Weyl–Heisenberg algebra hn and its Lie Weyl–

Heisenberg group Hn for any n≥ 1.

The Weyl–Heisenberg Group Hn and Schrödinger Representation in Dimen-
sion n The Weyl–Heisenberg Lie algebra hn is a real linear space of dimension
2n+ 1. Any W ∈ hn has the decomposition

W =− it

2�
1+ i

�

(
p · Q̂− q · P̂ ), where Q̂= (

Q̂1, . . . , Q̂n

)
, P̂ = (

P̂1, . . . , P̂n
)

(t;q,p) = (t; z) ∈ R× R
2n is a coordinates system for W . The Lie bracket of W

and W ′, in these coordinates, is

[W,W ′] = i

�
σ(z, z′)1
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This reflects the Heisenberg commutation relations (1.2).
As for n= 1 a group multiplication is introduced in R×R

2n to reflect multiplica-
tion between operators eW . So, Hn is the set R×R

2n with the group multiplication

(t, z)(t ′, z′)= (
t + t ′ + σ(z, z′), z+ z′) (1.14)

where σ is the symplectic bilinear form in R
2n:

σ(z, z′)= q · p′ − q ′ · p, if z= (q,p), z′ = (q ′,p′)
Hn is a Lie group of dimension 2n+ 1.

The Schrödinger representation is defined as the following unitary representation
of Hn in L2(Rn):

ρ(t, z)= e−it/2�T̂ (z), (t, z) ∈Hn

In other words the map (t, z) �→ ρ(t, z) is a group homomorphism from the Weyl–
Heisenberg group Hn into the group of unitary operators in the Hilbert space
L2(Rn).

By taking the exponential of W one recovers the Weyl–Heisenberg Lie group
defined above:

eW = e−it/2� exp

(
i

�

(
pQ̂− qP̂ )

)
= e−it/2�T̂ (z)

Recall that z= (q,p).

Remark 1 The Schrödinger representation is irreducible, this will be a consequence
of the Schur Lemma 10. According to the celebrated Stone–von Neumann theorem
(see [182]) the Schrödinger representation is the unique irreducible representation
of Hn, up to conjugation with a unitary operator, for every �> 0.

1.1.2 The Coherent States of Arbitrary Profile

The action of the Weyl–Heisenberg translation operator on a state u ∈ L2(Rn) is the
following:

(
T̂ (z)u

)
(x)= exp

(
− i

2�
q · p

)
exp

(
i

�
x · p

)
u(x − q) (1.15)

Physically it translates a state by z = (q,p) in phase space. One has a similar for-
mula for the Fourier transform that we denote F defined as follows:

Fu(ξ) = (2π�)−n
∫
Rn

e−
i
�
x·ξ u(x) dx
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(
F
(
T̂ (z)u

)
(ξ) = exp

(
i

2�
q · p

)
exp

(
− i
�
q · ξ

)
F(u)(ξ − p)

which says that the state is translated both in position and momentum by respec-
tively q and p. Now taking any function u0 in the Schwartz class S(Rn) the coherent
state associated to it will be simply

uz(x)=
(
T̂ (z)u0

)
(x) (1.16)

A useful example for applications is the following generalized Gaussian function.
Le be Γ a symmetric complex n × n matrix such that its imaginary part Γ is
positive-definite. Then we can take u0 = ϕ(Γ ), where

ϕ(Γ )(x)= (π�)−n/4det1/4(Γ )e i
2�Γ x·x (1.17)

1.2 The Coherent States of the Harmonic Oscillator

1.2.1 Definition and Properties

They have been introduced by Schrödinger and have been extensively studied and
used. They are obtained by taking as reference state u0 the ground state of the har-
monic oscillator

u0(x)= ϕ0(x)= (π�)−n/4 exp

(
−x

2

2�

)
(1.18)

Thus ϕz := T̂ (z)ϕ0 is simply a Gaussian state of the form

ϕz(x) = (π�)−n/4 exp

(
− i

2�
q · p

)
exp

(
i

�
x · p

)
exp

(
− (x − q)

2

2�

)
(1.19)

(Fϕz)(ξ) = (π�)−n/4 exp

(
iq · p

2�

)
exp

(
−i q · ξ

�
− (ξ − p)2

2�

)
(1.20)

ϕz is a state localized in the neighborhood of a phase-space point z= (q,p) ∈ R
2n

of size
√
� in all the position and momentum coordinates. Then it is a quantum

state which is the analog of a classical state z obtained by the action of the Weyl–
Heisenberg group Hn on ϕ0. They are also called canonical coherent states. They
have many interesting and useful properties that we consider now.

It is useful to use the standard creation and annihilation operators:

a = 1√
2�

(
Q̂+ iP̂ ) (1.21)

a† = 1√
2�

(
Q̂− iP̂ ) (1.22)
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a† is simply the adjoint of a defined on D(Q̂) ∩D(P̂ ). Furthermore a simple con-
sequence of the Heisenberg commutation relation is that:

[
aj ,a

†
k

]= δj,k (1.23)

Then the Hamiltonian of the n-dimensional harmonic oscillator of frequency 1 is

Ĥos = 1

2

(
P̂ 2 + Q̂2)= �

n∑
j=1

(
a†
jaj + n

2

)
= �

2

(
a† · a+ a · a†) (1.24)

It is trivial to check that the ground state ϕ0 of Ĥos is an eigenstate of a with eigen-
value 0. A question is: are the coherent states ϕz also eigenstates of a? The answer
is yes and is contained in the following proposition:

Proposition 1 Let z= (q,p) ∈R
2n. We define the number α ∈C

n as

α = 1√
2�
(q + ip) (1.25)

Then the following holds

T̂ (z)aT̂ (z)−1 = a− α (1.26)

Moreover

aϕz = αϕz (1.27)

Proof We simply use Lemma 2 to prove (1.26). Then we remark that:

T̂ (z)aT̂ (z)−1ϕz = T̂ (z)aϕ0 = 0= (a− α)ϕz �

The Baker–Campbell–Hausdorff formula (1.4) is still true for annihilation-
creation operators but we need to adapt the proof with the following modifications.

Let H0 be the linear space spanned by the products φα(x)eη·x where α ∈N
n and

η ∈C
n. We can extend the definition of T̂ (z)u for every u ∈H0 and z ∈C

2n.

Lemma 4 For every u ∈H0, z �→ T̂ (z)u can be extended analytically to C
2n. More-

over T̂ (z)u ∈H0 and we have for every z, z′ ∈C
2n and every u ∈H0,

T̂ (z)T̂ (z′)u= exp

(
− i

2�
σ(z, z′)

)
T̂ (z+ z′)u (1.28)

where σ is extended as a bilinear form to C
2n ×C

2n.

Proof Using formula (1.15), we can extend T̂ (z)u analytically to C
2n. So we can

define

exp

(
i

�

(
p · Q̂− q · P̂ )

)
u := T̂ (z)u, for z= (q,p) ∈C

2n
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Now with the same proof as for (1.4), we get that (1.28) is still true for every z,
z′ ∈C

n. �

Using (1.28), in the creation and annihilation operators representation we have
that

T̂ (z)= exp
(
α · a† − ᾱ · a)= exp

(
−|α|

2

2

)
exp

(
α · a†) exp(−ᾱ · a) (1.29)

Recall that by convention of the scalar product · we have:

ᾱ · a=
n∑
j=1

ᾱjaj , α · a† =
n∑
j=1

αja†
j

Using (1.29) we have, since exp(−ᾱ · a)ϕ0 = ϕ0:

ϕz = exp

(
−|α|

2

2

)
exp

(
α · a†)ϕ0 (1.30)

Two different coherent states overlap. Their overlapping is given by the scalar prod-
uct in L2(Rn). We have the following result:

Proposition 2

〈ϕz,ϕz′ 〉 = exp

(
i
σ (z, z′)

2�

)
exp

(
−|z− z

′|2
4�

)
(1.31)

Proof We first establish a useful lemma:

Lemma 5

〈
ϕ0, T̂ (z)ϕ0

〉= exp

(
−|z|

2

4�

)
(1.32)

Proof We use (1.29). So we get

〈
ϕ0, T̂ (z)ϕ0

〉= exp

(
−|α|

2

2

)〈
ϕ0, e

α·a†
e−ᾱ·aϕ0

〉= exp

(
−|z|

2

4�

)∥∥e−ᾱ·aϕ0
∥∥2

But since ϕ0 is an eigenstate of a with eigenvalue 0, we simply have

∥∥e−ᾱ·aϕ0
∥∥= 1 �

The operator T̂ (z) transforms any coherent state in another coherent state up to
a phase:
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Lemma 6

T̂ (z)ϕz′ = exp

(
− i

2�
σ(z, z′)

)
ϕz+z′

Proof The proof is immediate using (1.7).
The overlap between ϕz and ϕz′ is given by:

〈ϕz,ϕz′ 〉 =
〈
T̂ (z)ϕ0, T̂ (z

′)ϕ0
〉= exp

(
i

2�
σ(z, z′)

)〈
ϕ0, T̂

(
z′ − z)ϕ0

〉

where we have used (1.7). Now using the lemma for the last factor we get the re-
sult. �

In the particular case of the dimension n equals one, the kth eigenstate φk of
the harmonic oscillator (the Hermite function, normalized to unity) is generated
by (a†)k :

φk = (k!)−1/2(a†)kϕ0

so that expanding the exponential, formula (1.30) gives rise to the following well-
known identity:

ϕz = exp
(−|α|2/2)

∞∑
k=0

αk√
k!φk

In arbitrary dimension n, the operator (a†
j )
k excites the ground state of the harmonic

oscillator to the kth excited state of the j th degree of freedom. More precisely let
k= (k1, . . . , kn) ∈N

n be a multiindex. The corresponding eigenstate of Ĥos is:

φk(x)= φk1(x1) . . . φkn(xn) (1.33)

and it has eigenvalue Ek = (k1+ k2+ · · ·+ kn+ n/2)�. Note that this eigenvalue is
highly degenerate, except E0. We have

Lemma 7

φk =
n∏
j=1

(a†
j )
kj

kj ! ϕ0 (1.34)

The physicists often use the ket notation for the quantum states. Let us define it
for completeness:

|0〉 = ϕ0

|k〉 = φk

and they also designate the coherent state with the ket notation:

|z〉 = ϕz
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Then we have:

Lemma 8

|z〉 = exp

(
−|z|

2

4�

) ∞∑
kj=1

αk

k! |k〉 (1.35)

where αj = qj+ipj√
2�

and

αk = α
k1
1 α

k2
2 . . . αknn

k! = k1!k2! . . . kn!

�

1.2.2 The Time Evolution of the Coherent State for the Harmonic
Oscillator Hamiltonian

A remarkable property of the coherent states is that the Harmonic Oscillator dy-
namics transforms them into other coherent states up to a phase. This property was
anticipated by Schrödinger himself [175] who describes it as the non-spreading of
the coherent states wavepackets under the Harmonic Oscillator dynamics. Further-
more the time-evolved coherent state is located around the classical phase-space
point of the harmonic oscillator classical dynamics.

Let z := (q,p) ∈ R
2n be the classical phase-space point at time 0. Then it is

trivial to show that the phase-space point at time t is just zt := (qt ,pt ) given by

zt = Ftz

where Ft is the rotation matrix

Ft =
(

cos t sin t
− sin t cos t

)

We have the following property:

Lemma 9 Define
(
Q̂(t)

P̂ (t)

)
= e−itĤos/�

(
Q̂

P̂

)
eitĤos/�

Note that Q̂(−t), P̂ (−t) are the so-called Heisenberg observables associated to
Q̂, P̂ . Then:
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(i) (
Q̂(t)

P̂ (t)

)
= F−t

(
Q̂

P̂

)
(1.36)

(ii)

e−itĤos/�T̂ (z)eitĤos/� = T̂ (zt )

Proof

(i) One has, using the Schrödinger equation and the commutation property of Q̂, P̂
that

d

dt

(
Q̂(t)

P̂ (t)

)
=
(−P̂ (t)
Q̂(t)

)

Then the solution is (1.36).
(ii) Then

e−itĤos/�
(
p · Q̂− q · P̂ )eitĤos/� = p · Q̂(t)− q · P̂ (t)= pt · Q̂− qt · P̂

By exponentiation one gets the result. �

Proposition 3 The quantum evolution for the harmonic oscillator dynamics of a
coherent state ϕz is given by

e−itĤos/�ϕz = e−itn/2ϕzt

Proof

e−itĤos/�ϕz = e−itĤos/�T̂ (z)eitĤos/� × e−itĤos/�ϕ0

= T̂ (zt )e
−itn/2ϕ0 = e−itn/2ϕzt

where we have used that ϕ0 is an eigenstate of Ĥos with eigenvalue n�

2 . �

In Chap. 3 we shall see a similar property for any quadratic hamiltonian with
possible time-dependent coefficients. Then the quantum time evolution of a coherent
state will be a squeezed state instead of a coherent state, located around the phase-
space point zt for the associated classical flow which is linear (since the Hamiltonian
is quadratic).

1.2.3 An Over-complete System

We have seen that the coherent states are not orthogonal. So they cannot be con-
sidered as a basis of the Hilbert space L2(Rn) of the quantum states. Instead they
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will constitute an over-complete set of continuous states over which the states and
operators of quantum mechanics can be expanded.

We can now introduce the Fourier–Bargmann transform that will be studied in
more details in Sect. 1.3. We start from u0 ∈ L2(Rn), ‖u0‖2 := ∫

Rn
|u0(x)|2 dx = 1.

Let us define the Fourier–Bargmann transform by the following formula

FB
u v(z)=: v�(z)= (2π�)−n/2〈uz, v〉, z= (q,p) ∈R

2n (1.37)

If u0 is the standard Gaussian ϕ0, the associated Fourier–Bargmann transform will
be denoted FB .

Proposition 4 FB
u is an isometry from L2(Rn) into L2(R2n)

Proof We have

〈uz, v〉 = e
i

2�p·q
∫
Rn
v(x)u0(x − q)e−ix·p/� dx (1.38)

From Plancherel theorem we get

(2π�)−n
∫
Rn

∣∣〈u(q,p), v〉∣∣2 dp =
∫
Rn

∣∣v(x)u0(x − q)
∣∣2 dx (1.39)

Then we integrate in q variable and change the variables: q ′ = x − q , x′ = x, so we
get the result. �

Then by polarization we get that the scalar product of two states ψ , ψ ′ ∈ L2(Rn)

can be expressed in terms of ψ�, (ψ ′)�:

〈ψ ′,ψ〉 =
∫
dz(ψ ′)�(z)ψ�(z) (1.40)

We deduce, using Fubini theorem that the function ψ�(z) determines the state ψ
completely:

ψ =
∫
dzψ�(z)ϕz (1.41)

This implies that the Schrödinger representation is irreducible.
Then we use Schur’s lemma:

Lemma 10 If Â is a bounded operator in L2(Rn) such that

ÂT̂ (z)= T̂ (z)Â, ∀z ∈R
2n

then

Â= C1̂

for some C ∈C.
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We deduce that the coherent states provide a resolution of unity. Define the fol-
lowing measure:

dμ(z)= C dz= C dq1 dq2 . . . dqn dp1 dp2 . . . dpn (1.42)

where and C ∈ C is a constant to be determined later. Let |z〉〈z| be the projection
operator on the state |z〉. We consider the operator

Â=
∫
dμ(z) |z〉〈z|

We have the following result:

Proposition 5 Â commutes with all the operators T̂ (z).

Proof Using (1.7) we get:

[
Â, T̂ (z)

] =
∫
dμ(z′)

(
exp

(
− i

2�
σ(z, z′)

)
|z′〉〈z′ − z|

− exp

(
− i

2�
σ(z, z′)

)
|z+ z′〉〈z′|

)

Now using the change of variable z′′ = z+ z′ in the last term we get zero.
Therefore in view of the Schur’s lemma Â must be a multiple of the identity

operator:

Â= d−11

We determine the constant d by calculating the average of the operator Â in the
coherent state |z〉:

d−1 = 〈z|Â|z〉 =
∫
dμ(z′)

∣∣〈z|z′〉∣∣2 =
∫
dμ(z′) exp

(
−|z

′|2
2�

)

The constant C can be chosen so that d = 1. Therefore the resolution of the identity
takes the form: ∫

dμ(z) |z〉〈z| = 1 (1.43)

where dμ(z) is given by (1.42) and the constant C is such that

C

∫
R2n

dz exp

(
−|z|

2

2�

)
= 1

This gives

C = (2π�)−n (1.44)

�
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The resolution of identity (1.43) allows to compute the trace of an operator in
terms of its expectation value in the coherent states. Let us recall what the trace of
an operator is when it exists.

Definition 1 An operator B̂ is said to be of trace class when for some (and then
any) eigenbasis ek of the Hilbert space one has that the series 〈ek, (B̂∗B̂)1/2ek〉 is
convergent. Then the trace of B̂ is defined as

Tr
(
B̂
)=∑

k∈N

〈
ek, B̂ek

〉
(1.45)

An operator B̂ is said to be of Hilbert–Schmidt class if B̂∗B̂ is of trace class.

Proposition 6 Let B̂ be an Hilbert–Schmidt operator in L2(Rn) then we have

∥∥B̂∥∥2
HS
= (2π�)−n

∫
R2n

∥∥B̂uz∥∥2
dz (1.46)

If B̂ is a trace-class operator in L2(Rn) then we have

Tr B̂ = (2π�)−n
∫
R2n

〈
uz, B̂uz

〉
dz (1.47)

Proof Let {ej } be an orthonormal basis for L2(Rn) (for example the Hermite basis
φj ). We have

∥∥B̂∥∥2
HS
=
∑
j

∥∥B̂ej∥∥2

=
∑
j

∥∥(B̂ej )�∥∥2 (1.48)

But we have
(
B̂ej

)�
(z)= 〈

B̂ej , uz
〉= 〈

ej , B̂
∗uz

〉
(1.49)

Using Parseval formula for the basis {ej } we get

∑
j≥0

∥∥B̂ej∥∥2 = (2π�)−n
∫
R2n

∥∥B̂∗uz∥∥2
dz (1.50)

Using that ‖B̂‖2
HS = ‖B̂∗‖2

HS we get the first part of the corollary.
For the second part we use that every class trace operator can be written as B̂ =

B̂∗2 B̂1 where B̂1, B̂2 are Hilbert–Schmidt. Moreover the Hilbert–Schmidt norm is
associated with the scalar product 〈B̂2, B̂1〉 = Tr(B̂∗2 B̂1). So we get
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Tr
(
B̂
)= Tr

(
B̂∗2 B̂1

) = (2π�)−n
∫
R2n

〈
B̂2uz, B̂1uz

〉
dz

= (2π�)−n
∫
R2n

〈
uz, B̂uz

〉
dz (1.51)

�

These formulas will appear to be very useful in the sequel.

1.3 From Schrödinger to Bargmann–Fock Representation

This representation is well adapted to the creation-annihilation operators and to the
Harmonic oscillator. It was introduced by Bargmann [17]. In this representation the
phase space R

2n is identified to C
n:

(q,p) �→ ζ = q − ip√
2

and a state ψ is represented by the following entire function on C
n:

ψ
�
Hol(ζ )=ψ�(q,p)e

p2+q2

4�

Recall that ψ�(z)= (2π�)−n/2〈ϕz,ψ〉, z= (q,p).

Proposition 7 The map ψ �→ψ
�
Hol is an isometry from L2(Rn) into the Fock space

F(Cn) of entire functions f on C
n such that

∫
Cn

∣∣f (ζ )∣∣2e−
ζ ·ζ̄
�

∣∣dζ ∧ dζ̄ ∣∣<+∞
F(Cn) is an Hilbert space for the scalar product

〈f2, f1〉 =
∫
Cn
f1(ζ )f2(ζ )e

− ζ ·ζ̄
�

∣∣dζ ∧ dζ̄ ∣∣ (1.52)

Proof A direct computation shows that ψ�
Hol is holomorphic: ∂ζ̄ψ

�
Hol = 0. Recall

that the holomorphic and antiholomorphic derivatives are defined as follows.

∂ζ = 1√
2
(∂q + i∂p), ∂ζ̄ =

1√
2
(∂q − i∂p)

We can easily get the following explicit formula for ψ�
Hol:

ψ
�
Hol(ζ )= (π�)−3n/42−n/2

∫
Rn
ψ(x) exp

[
−1

�

(
x2

2
−√2x · ζ + ζ 2

2

)]
dx (1.53)
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The transformation ψ �→ ψ
�
Hol is called the Bargmann transform and is denoted

by B. Its kernel is the Bargmann kernel:

B(x, ζ )= (π�)−3n/42−n/2 exp

[
−1

�

(
x2

2
−√2x · ζ + ζ 2

2

)]
,

where x ∈R
n, ζ ∈C

n (1.54)

Recall the notations x2 = x · x, ζ 2 = ζ · ζ , ζ · ζ̄ = |ζ |2.
Using that ψ �→ψ� is an isometry from L2(Rn) into L2(R2n), we easily get that

∫
Cn

∣∣ψ�
Hol(ζ )

∣∣2e−
ζ ·ζ̄
�

∣∣dζ ∧ dζ̄ ∣∣= ‖ψ‖2
2 (1.55)

Hence B is an isometry form L2(Rn) into F(Cn).
For convenience let us introduce the Gaussian measure on C

n, dμB = e−
ζ ·ζ̄
� |dζ ∧

dζ̄ |.
It is not difficult to see that F(Cn) is a complete space.
If {fk} is a Cauchy sequence in F(Cn) then {fk} converges to f in L2(Cn, dμB).

So we get in a weak sense that ∂ζ̄ f = 0 so f is holomorphic hence f ∈F(Cn). �

Let us now compute the standard harmonic oscillator in the Bargmann represen-
tation. We first get the following formula

∫
Rn
∂xψ(x)B(x, ζ ) dx =

∫
Rn
ψ(x)

(
x

�
−
√

2

�
ζ

)
B(x, ζ ) dx (1.56)

∂ζ

∫
Rn
ψ(x)B(x, ζ ) dx =

∫
Rn
ψ(x)

(√
2

�
x − ζ

�

)
B(x, ζ ) dx (1.57)

Hence

B(xψ)(ζ ) = 1√
2
(�∂ζ + ζ )Bψ(ζ ) (1.58)

B(�∂xψ)(ζ ) = 1√
2
(�∂ζ − ζ )Bψ(ζ ) (1.59)

Then we get the Bargmann representation for the creation and annihilation operators

B
[
a†ψ

]
(ζ ) = ζB[ψ](ζ ) (1.60)

B[aψ](ζ ) = ∂ζB[ψ](ζ ) (1.61)

So the standard harmonic oscillator Ĥos = �(a†a+ n
2 ), has the following Bargmann

representation

Ĥ �
os = �ζ · ∂ζ + n�

2
(1.62)
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Remark 2 It is very easy to solve the time dependent Schrödinger equation for Ĥ �
os.

If F ∈F(Cn) such that ζ∂ζF ∈F(Cn), then F(t, ζ )= e− it
2�F(e− it

2� ζ ) satisfies

i�∂tF (t)= Ĥ �
osF(t), F (0, ζ )= F(ζ ) (1.63)

Moreover if �= 1 and if we put e−t/2 in place of e−it/2 we solve the heat equation
∂tF (t)= Ĥ �

osF(t).

We shall see now that the Hermite functions φα have a very simple shape in the
Bargmann representation. Let us denote φ#

α(ζ )= Bφα . Then we have

Proposition 8 For every α ∈N
n, ζ ∈C

n,

φ#
α(ζ )= (2π�)−n/2(α!)−1/2ζ α (1.64)

Moreover {φ#
α(ζ )}α∈Nn is an orthonormal basis in F(Cn).

Proof Let us first recall the notations in dimension n. For α = (α1 · · ·αn) ∈N, α! =
α1! · · ·αn! and for ζ = (ζ1, . . . , ζn) ∈C

n, ζ α = ζ α1
1 · · · ζ αnn .

We get easily that 〈ζ α, ζ β〉 = 0 if α �= β .
It is enough to compute, for n = 1, ‖ζ k‖2

F(C) and this is an easy computation
with the Gamma function.

Let us prove now that the system {ζ α}α∈Nn is total in F(Cn).
Let f ∈F(Cn) be such that 〈ζ α, f 〉 = 0 for all α ∈N

n. f is entire so we have

f (ζ )=
∑
α

fαζ
α

where fα are the Taylor coefficient of f at 0. The sum is uniformly convergent
on every ball of C

n. On the other side from Bessel inequality, we know that the
Taylor series

∑
α fαζ

α converges in F(Cn). But we can see that {ζ α}α∈Nn is also
an orthogonal system in each ball with center at 0. Then we get that fα = 0 for every
α hence f = 0.

Let us remark here that we could also prove that the system {φ#
α(ζ )}α∈Nn is or-

thogonal using that Hermite functions is an orthonormal system and B is an isome-
try.

Finally, let us prove formula (1.64). It is enough to assume n= 1. We get easily
that φ#

0 = 1√
2π

. So for every k ≥ 1, we have, using (1.60),

φ#
k (ζ )= B

[
(a†)k√
k! φ0

]
(ζ )= ζ k√

2πk! �

Then we get the following interesting result.
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Corollary 2 The Bargmann transform B is an isometry from L2(Rn) onto F(Cn).
The integral kernel of B−1 is

B−1(ζ, x)= (π�)−3n/42−n/2 exp

[
−1

�

(
x2

2
−√2x · ζ̄ + ζ̄ 2

2

)]
(1.65)

where x ∈R
n, ζ ∈C

n.

We also get that the Bargmann kernel is a generating function for the Hermite
functions.

Corollary 3 For every x ∈R
n and ζ ∈C

n we have

B(x, ζ )=
∑
α∈Nn

ζ α

((2π)nα!)1/2φα(x) (1.66)

Proof Compute the Fourier coefficient in the Hermite basis of x �→ B(x, ζ ). �

The standard coherent states also have a simple expression in the Bargmann–
Fock space.

Let ϕX be the normalized coherent state at X = (x, ξ).

Proposition 9 We have the following Bargmann representation for the coherent
state ϕX

B[ϕX](ζ )= (2π�)−n/2e
η̄
�
(ζ− η

2 ) (1.67)

where η= x−iξ√
2

.

Proof A direct computation gives

B[ϕX](ζ )=
(√

2π�
)−n ∫

Rn
dy exp

[
−1

�

(
y2 − y(x + iξ +√2ζ

)− ζ 2

2

)]
(1.68)

Then we get the result by Fourier transform of the Gaussian e−y2
. �

One of the nice properties of the space F(Cn) is existence of a reproducing
kernel.

Proposition 10 For every f ∈F(Cn) we have

f (ζ )= (2π�)−n
∫
Cn

e
η̄·ζ
� f (η)dμB(η), ∀ζ ∈C

n (1.69)
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Proof It is enough to assume that f is a polynomial in ζ and that �= 1. So we have

f (ζ )=
∑
α

cα
ζ α

(2π)n/2(α!)1/2 , with cα =
∫
Cn

η̄α

(2π)n/2(α!)1/2 f (η)dμB(η)

(1.70)
Hence we get

f (ζ )= (2π)−n
∫
Cn

(∑
α

ζ αη̄α

α!
)
f (η)dμB(η)= (2π)−n

∫
Cn

eη̄·ζ f (η) dμB(η)

(1.71)
�

Remark 3 The function eζ (η)= (2π�)−ne
η̄·ζ
� is a representation of the Dirac delta

function in the point ζ . Note that eζ is not in F(Cn). Moreover we have f (ζ ) =
〈eζ , f 〉 and |f (ζ )| ≤ (2π�)−n‖f ‖F(Cn).

Using the Bargmann representation we can give a proof of the well-known
Mehler formula concerning the Hermite orthonormal basis {φk} in L2(R). It is suf-
ficient to assume that �= 1.

Theorem 1 For every w ∈C such that |w|< 1 we have

∑
k∈Nn

φk(x)φk(y)w
k

= π−n/2(1−w2)−n/2 exp

(
− 1+w2

2(1−w2)

(
x2 + y2)+ 2w

1−w2
x · y

)
(1.72)

where k = |k| = k1 + · · · + kk .

Proof The case n≥ 2 can be easily deduced from the case n= 1. So let n= 1.
The left and right side of (1.72) are holomorphic in w in the unit disc

{w ∈ C, |w|< 1}. So by analytic continuation principle it is enough to prove it for
w = e−t/2 for every t > 0. Hence the right side of (1.72) is the heat kernel denoted
Kos(t;x, y) of the harmonic oscillator Ĥos .

Using Remark 2 and inverse Bargmann transform we get easily the following
integral expression for K(t;x, y):

Kos(t;x, y)
= 2−1π−3/2e−

x2+y2

2

×
∫
C

exp

(√
2
(
x · ζ̄ +wy · ζ )− 1

2

(
w2ζ 2 + ζ̄ 2)− ζ ζ̄

)∣∣dζ ∧ dζ̄ ∣∣ (1.73)
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The last integral is a Fourier transform of a Gaussian function as it is seen using real
coordinates ζ = q−ip√

2
, z= (q,p). We have

Kos(t;x, y)= 2−1π−3/2
∫
R2

e−
1
2Az·z−iz·Y dY (1.74)

where

Y =
(
i(x +wy)
wy − x

)
, A= 1

2

(
3+w2 i(1−w2)

i(1−w2) 1−w2

)
, w = e−t/2 (1.75)

A is a symmetric matrix, its real part is positive definite and det(A) = 1− w2. So
we have (see [117] or Appendices A, B and C)

Kos(t;x, y)= π−1/2(1−w2)−1/2e−
x2+y2

2 e−
1
2A

−1Y ·Y (1.76)

The Mehler formula follows. �



Chapter 2
Weyl Quantization and Coherent States

Abstract It is well known from the work of Berezin (Commun. Math. Phys.
40:153–174, 1975) in 1975 that the quantization problem of a classical mechani-
cal system is closely related with coherent states. In particular coherent states help
to understand the limiting behavior of a quantum system when the Planck constant �
becomes negligible in macroscopic units. This problem is called the semi-classical
limit problem.

In this chapter we discuss properties of quantum systems when the configuration
space is the Euclidean space R

n, so that in the Hamiltonian formalism, the phase
space is Rn × R

n with its canonical symplectic form σ . The quantization problem
has many solutions, so we choose a convenient one, introduced by Weyl (The Clas-
sical Groups, 1997) and Wigner (Group Theory and Its Applications to Quantum
Mechanics of Atomic Spectra, 1959).

We study the symmetries of Weyl quantization, the operational calculus and ap-
plications to propagation of observables.

We show that Wick quantization is a natural bridge between Weyl quantization
and coherent states. Applications are given of the semi-classical limit after introduc-
ing an efficient modern tool: semi-classical measures.

We illustrate the general results proved in this chapter by explicit computations
for the harmonic oscillator. More applications will be given in the following chap-
ters, in particular concerning propagators and trace formulas for a large class of
quantum systems.

2.1 Classical and Quantum Observables

The quantization problem comes from quantum mechanics and is a mathematical
setting for the Bohr correspondence principle between the classical world and the
quantum world.

Let us consider a system with n degrees of freedom. According the Bohr corre-
spondence principle, it is natural to check a way to associate to every real function
A on the phase space R

2n (classical observable) a self-adjoint operator Â in the
Hilbert space L2(Rn) (quantum observable). According the quantum mechanical
principles, the map A→ Â has to satisfy some properties.
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(1) A→ Â is linear, Â is self-adjoint if A is real and 1̂= 1L2(Rn).

(2) position observables: xj → x̂j := Q̂j where Q̂j is the multiplication operator
by xj .

(3) momentum observables : ξj → ξ̂j := P̂j where P̂j is the differential operator
�

i
∂
∂xj

.
(4) commutation rule and classical limit: for every classical observables A,B we

have

lim
�→0

(
i

�

[
Â, B̂

]− {̂A,B}
)
= 0.

Let us recall that [Â, B̂] = ÂB̂ − B̂Â is the commutator of Â and B̂ , {A,B} is the
Poisson bracket defined as follows:

{A,B}(x, ξ)= (∂xA · ∂ξB − ∂xB · ∂ξA)(x, ξ), x, ξ ∈R
n.

Let us remark that if we introduce ∇A= (∂xA, ∂ξA) then we have {A,B}(x, ξ)=
σ(∇A(x, ξ),∇B(x, ξ)) (σ is the symplectic bilinear form).

If the observables A,B depend only on the position variable (or on the momen-
tum variables) then Â · B̂ = Â.B but, this is no longer true for a mixed observable.
This is related to the non-commutativity for product of quantum observables and
the identity: [x̂j , ξ̂j ] = i� so, the quantum observable corresponding to x1ξ1 is not
determined by the rules (1) to (4).

We do not want to discuss here the quantization problem in its full generality
(see for example [77]). One way to choose a reasonable and convenient quantization
procedure is the following, which is called Weyl quantization (see [117] for more
details). Let Lz be a real linear form on the phase space R

2n, where z = (p, q),
Lz(x, ξ) = σ(z, (x, ξ)) (every linear form on R

2n is like this). It is not difficult to
see that L̂z is a well defined quantum Hamiltonian (i.e. an essentially self-adjoint

operator in L2(Rn)). Its propagator e
−it
�
L̂z has been studied in Chap. 1.

Remark that we have L̂z =−L̂(z), with the notation of Chap. 1.
For ψ ∈ S(Rn), we have explicitly

e
−it
�
L̂zψ(x)= e−

i
2� t

2q·pe
it
�
x·pψ(x − tq). (2.1)

So, the Weyl prescription is defined by the conditions (1) to (4) and the following:

(5)

e−iLz(x,ξ)→ ê−iLz = T̂ (z)
We shall use freely the Schwartz space S(Rn)1 and its dual S ′(Rn) (temperate dis-
tributions space).

1Recall that f ∈ S(Rn) means that f is a smooth function in R
n and for every multiindices α, β ,

xα∂
β
x u is bounded in R

n. It has a natural topology. S ′(Rn) is the linear space of continuous linear
form on S(Rn).
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Proposition 11 There exists a unique continuous map A→ Â from S ′(R2n) into
L(S(Rn),S ′(Rn)) satisfying conditions (1) to (5).

Moreover if A ∈ S(R2n) and ψ ∈ S(Rn) we have the familiar formula

Âψ(x)= (2π�)−n
∫∫

R2n
A

(
x + y

2
, ξ

)
ei�

−1(x−y)·ξψ(y)dy dξ, (2.2)

and Â is a continuous map from S(Rn) to S(Rn).
The hermitian conjugate of Â is the quantization of the complex conjugate of A

i.e. (Â)∗ = ˆ̄A. In particular Â is Hermitian if and only if A is real.

Proof Here it is enough to assume that �= 1.
Let us consider the symplectic Fourier transform in S ′(R2n). Assume first that

A ∈ S(R2n).

Ã(z)=
∫
R2n

A(ζ )e−iσ (z,ζ ) dζ. (2.3)

We have the inverse formula

A(X)= (2π)−n
∫
R2n

Ã(z)eiσ (z,X) dz. (2.4)

For ψ,η ∈ S(Rn) we have

〈ψ, Âη〉 = (2π)−n
∫
R2n

Ã(z)
〈
eiL̂zψ,η

〉
dz. (2.5)

In other words we get

Âψ = (2π)−n
∫
R2n

Ã(z)T̂ (z)ψ dz. (2.6)

�

Definition 2 For a given operator Â, the function A is called the contravariant sym-
bol of Â and the function Ã is the covariant symbol of Â.

Let us remark that we have the inverse formula

Proposition 12 If Â is a continuous map from S ′(Rn) to S(Rn) then we have for
every X ∈R

2n,

Ã(X)= Tr
(
ÂT̂ (−X)). (2.7)

Proof For X = 0 the formula is a consequence of the Fourier inversion formula.
For any X we use that the Weyl symbol of T̂ (−X) is z �→ e−iσ (z,X). �



26 2 Weyl Quantization and Coherent States

As a consequence we have a first norm operator estimate. If Ã ∈ L1(R2n) we
have

∥∥Â∥∥≤ (2π)−n
∫
R2n

∣∣Ã(z)∣∣dz. (2.8)

The r.h.s. in formula (2.2) can be extended by continuity in A to the distribution
space S ′(R2n).

Let us compute now the Schwartz kernelKA of the operator Â defined in formula
(2.6). We have

KA(x, y)=
∫
Rn
Ã(x − y,p)eip·(x+y)/2 dp. (2.9)

Using inverse Fourier transform in p variables, we get

KA(x, y)= (2π)−n
∫
Rn
A

(
x + y

2
, ξ

)
ei(x−y)·ξ dξ (2.10)

this gives (2.2). The other properties are easy to prove and left to the reader.
Let us first remark that from (2.10) we get a formula to compute the �-Weyl

symbol of Â if we know its Schwartz kernel K

A(x, ξ)=
∫
Rn

e−
i
�
u·ξK

(
x + u

2
, x − u

2

)
du. (2.11)

Sometimes, we shall use also the notation Â= Opw
�
A (�-Weyl quantization of A).

Hence we shall say that Â is an �-pseudodifferential operators and that A is its Weyl
symbol. For applications it is useful to be able to read properties of the operator Â
on its Weyl symbol A. A first example is the Hilbert–Schmidt property.

Proposition 13 Let Â ∈ L(S(Rn),S ′(Rn)). Then Â is Hilbert–Schmidt in L2(Rn)

if and only if A ∈ L2(R2n) and we have

∥∥Â∥∥2
HS
= (2π�)−n

∫∫
R2n

∣∣A(x, ξ)∣∣2 dx dξ. (2.12)

In particular if Â and B̂ are two Hilbert–Schmidt operators then Â.B̂ is a trace
operator and we have

Tr
(
Â.B̂

)= (2π�)−n
∫∫

R2n
A(x, ξ)B(x, ξ) dx dξ. (2.13)

Proof We know that

∥∥Â∥∥2
HS
=
∫∫

R2n

∣∣KA(x, y)∣∣2 dx dy.
Then we get the proposition using formula (2.10) and Plancherel theorem. �
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We shall see later many other properties concerning Weyl quantization but most
of time we only have sufficient conditions on A to have some property of Â, like for
example L2 continuity or trace-class property.

Let us give a first example of computation of a Weyl symbol starting from an

integral kernel. We consider the heat semi-group e−tĤos , of the harmonic oscillator

Ĥos . Let us denoteKw(t;x, ξ) the Weyl symbol of e−tĤos andK(t;x, y) its integral
kernel. From formula (2.11) we get

Kw(t;x, ξ)=
∫
Rn

e−
i
�
u·ξK

(
t;x + u

2
, x − u

2

)
du. (2.14)

Using Mehler formula (1.72) we have to compute the Fourier transform of a gen-
eralized Gaussian function, so after some computations, we get the following nice
formula:

Kw(t;x, ξ)=
(
cos(t/2)

)−n/2e− tanh(t/2)(x2+ξ2). (2.15)

Recall that x2 = x · x = |x|2.

2.1.1 Group Invariance of Weyl Quantization

Let us first remark that an easy consequence of the definition of Weyl quantization
is the invariance by translations in the phase space. More precisely, we have, for any
classical observable A and any z ∈R

2n,

T̂ (z)−1ÂT̂ (z)= Â · T (z), where A · T (z)(z′)=A(z′ − z). (2.16)

Hamiltonian classical mechanics is invariant by the action of the group Sp(n) of
symplectic transformations of the phase space R

2n. A natural question to ask is to
quantize linear symplectic transformations. We shall see later how it is possible. In
this section we state the main results.

Recall that the symplectic group Sp(n) is the group of linear transforma-
tions of R

2n which preserves the symplectic form σ . So F ∈ Sp(n) means that
σ(FX,FY)= σ(X,Y ) for all X,Y ∈R

2n. If we introduce the matrix

J =
(

0 1
−1 0

)

then

F ∈ Sp(n) ⇐⇒ F tJF = J, (2.17)

where F t is the transposed matrix of F .
If n= 1 then F is symplectic if and only if det(F )= 1.
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Linear symplectic transformations can be quantized as unitary operators in
L2(Rn)

Theorem 2 For every linear symplectic transformation F ∈ Sp(n) and every sym-
bol A ∈Σ(1) we have

R̂(F )−1ÂR̂(F )= Â · F . (2.18)

Moreover R̂(F ) is unique up to multiplication by a complex number of modulus 1

Definition 3 The metaplectic group is the group Met(n) generated by R̂(F ) and
λ1, λ ∈C, |λ| = 1.

Remark 4 A consequence of Theorem 2 is that R̂ is a projective representation of
the symplectic group Sp(n) in the Hilbert space L2(Rn). It is a particular case of a
more general setting [193].

More properties of the metaplectic group will be studied in the next chapter. Let
us give here some examples of the metaplectic transform.

• The Fourier transform F is associated with the symplectic transformation
(x, ξ) �→ (ξ,−x).

• The partial Fourier transform Fj , in variable xj , is associated with the symplectic
transform:

(xj , ξj ) �→ (ξj ,−xj ), (xk, ξk) �→ (xk, ξk), if k �= j.

• Let A be a linear transformation on R
n, the transformation ψ �→ |det(A)|1/2×

ψ(Ax) is associated with the symplectic transform

FA

(
x

ξ

)
=
(

Ax

(At )−1ξ

)
.

• LetA be a real symmetric matrix, the transformationψ �→ eiAx·x/2ψ is associated
with the symplectic transform

F =
(

1 0
A 1

)
.

2.2 Wigner Functions

Let ϕ,ψ ∈ L2(Rn). They define a rank one operator Πψ,ϕη = 〈ψ,η〉ϕ. Its Weyl
symbol can be computed using (2.11).
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Definition 4 The Wigner function of the pair (ψ,ϕ) is the Weyl symbol of the rank
one operator Πψ,ϕ . It will be denoted Wϕ,ψ . More explicitly we have

Wϕ,ψ(x, ξ)=
∫
Rn

e−
i
�
u·ξϕ

(
x + u

2

)
ψ

(
x − u

2

)
du. (2.19)

An equivalent definition of the Wigner function is the following:

Wϕ,ψ(z)= (2π�)−n
∫
R2n

〈
ϕ, T̂ (z′)ψ

〉
e−iσ (z,z′)/� dz′, (2.20)

where T̂ (z)= e−iL̂z .

We can easily see that (2.19) and (2.20) are equivalent using formula (2.6) and
Plancherel formula for symplectic Fourier transform.

The Wigner functions are very convenient to use. In particular we have the fol-
lowing nice property:

Proposition 14 Let us assume that Â is Hilbert–Schmidt and ψ,ϕ ∈ L2(Rn). Then
we have

〈
ψ, Âϕ

〉= (2π�)−n
∫
R2n

A(X)Wψ,ϕ(X)dX. (2.21)

If A ∈ S ′(R2n) and if ψ,ϕ ∈ S(Rn), the formula (2.21) is still true in the weak sense
of temperate distributions.

Proof Let us first remark that 〈ψ, Âϕ〉 = Tr(ÂΠψ,ϕ). Hence the first part of the
proposition comes from (2.13).

Now if ψ,ϕ ∈ S(Rn) then we easily get Wψ,ϕ ∈ S(R2n). On the other side there
exists Aj ∈ S(R2n) such that Aj →A in S ′(R2n). So we apply (2.21) to Aj and we
go to the limit in j . �

What Wigner was looking for was an equivalent of the classical probability dis-
tribution in the phase space R

2n. That is, associated to any quantum state a distri-
bution function in phase space that imitates a classical distribution probability in
phase space. Recall that a classical probability distribution is a non-negative Borel
function ρ;Z→R

+, Z :=R
2n, normalized to unity:

∫
Z

ρ(z) dz= 1,

and such that the average of any observable A ∈ C∞ is simply given by

ρ(A)=
∫
Z

A(z)ρ(z) dz.
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From Proposition 14 we see that a possible candidate is

ρ(z)= (2π�)−nWϕ,ϕ.

Actually in the physical literature the expression above (with the factor (2π�)−n) is
taken as the definition of the Wigner function but we do not take this convention.

In the following we denote by Wϕ the Wigner transform for ϕ,ϕ.
What about the expected properties of (2π�)−nWϕ as a possible probability dis-

tribution in phase space? Namely:

• positivity
• normalization to 1
• correct marginal distributions

Proposition 15 Let z= (x, ξ) ∈R
2n and ϕ ∈ L2(Rn) with ‖ϕ‖ = 1. We have

(i)

(2π�)−n
∫
Rn

Wϕ(x, ξ) dξ =
∣∣ϕ(x)∣∣2,

which is the probability amplitude to find the quantum particle at position x.
(ii)

(2π�)−n
∫
Rn

Wϕ(x, ξ) dx =
∣∣ϕ̃(ξ)∣∣2,

which is the probability amplitude to find the quantum particle at momentum ξ .
(iii)

(2π�)−n
∫
R2n

Wϕ(x, ξ) dx dξ = 1.

(iv) Wϕ(x, ξ) ∈R.

Proof

(i) Let f ∈ S be an arbitrary test function. We have

∫
Rn

Wϕ(x, ξ)f (ξ) dξ

=
∫
dy ϕ̄

(
x + y

2

)
ϕ

(
x − y

2

)∫
dξ e−iξ ·y/�f (ξ)

= (2π�)n
∫
Rn
dy ϕ̄

(
x + y

2

)
ϕ

(
x − y

2

)
(Ff )(y). (2.22)

By taking for the usual Fourier transform Ff an approximation of the Dirac
distribution at y = 0 we get the result.
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(ii) Is proven similarly.
(iii) Follows from the normalization to unity of the state ϕ.
(iv) We have

Wϕ(z)
∗ = (2π�)−n

∫
dz′

〈
ϕ, T̂ (−z′)ϕ〉eiσ (z,z′)/�

and the result follows by change of the integration variable z′ → −z′ and by
noting that σ(z,−z′)=−σ(z, z′). �

Let us now compute the Wigner function Wz,z′ for a pair (ϕz,ϕz′) of coherent
states.

Proposition 16 For every X,z, z′ ∈R
2n we have

Wz,z′(X)= 2n exp

(
−1

�

∣∣∣∣X− z+ z′
2

∣∣∣∣
2

− i

�
σ

(
X− 1

2
z′, z− z′

))
. (2.23)

Proof It is enough to consider the case �= 1. Let us apply formula (2.20):

Wz,z′(X)= (2π)−n
∫
R2n

〈
ϕz, T̂

(
z′′
)
ϕz′

〉
e−iσ (X,z′′) dz′′. (2.24)

Using formula (1.7) from Chap. 1, we have

〈
ϕz, T̂

(
z′′
)
ϕz′

〉 = 〈ϕz,ϕz′+z′′ 〉e i
2σ(z

′,z′′)

= e−
1
4 |z−z′−z′′|2 e

i
2σ(z,z

′+z′′)+σ(z′,z′′). (2.25)

Using the change of variables z′′ = z − z′ + u, we have to compute the Fourier
transform of the standard Gaussian e−|u|2/4 and (2.23) follows. �

We have the following properties of the Wigner transform:

Proposition 17 Let ϕ,ψ ∈ L2(Rn) be two quantum states. Then Wϕ,ψ ∈ L2(R2n)∩
L∞(R2n) and we have

(i)

‖Wϕ,ψ‖L∞ ≤ 2n‖ϕ‖2‖ψ‖2.

(ii)

‖Wϕ,ψ‖L2 ≤ (2π�)n/2‖ϕ‖2‖ψ‖2.

(iii) Let ϕ,ψ ∈ L2(Rn). Then we have

∣∣〈ϕ,ψ〉∣∣2 = (2π�)−n〈Wϕ,Wψ 〉L2(R2n).
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Proof (i) is a simple consequence of the definition of the Wigner transform and of
the Cauchy–Schwartz inequality. For the proof of (ii) we note that

∫
dz
∣∣Wϕ,ψ(z)

∣∣2 =
∫
dx dξ

∣∣∣∣
∫
dy eiξ ·y/�ϕ̄

(
x + y

2

)
ψ

(
x − y

2

)∣∣∣∣
2

.

Using an approximation argument, we can assume that ϕ,ψ ∈ L1(Rn) ∩ L∞(Rn).
So we have ϕ̄(x + y

2 )ψ(x − y
2 ) ∈ L2(Rn, dy). According to the Plancherel theorem

we have

(2π�)−n
∫
dξ

∣∣∣∣
∫
dy eiξ ·y/�ϕ̄

(
x + y

2

)
ψ

(
x − y

2

)∣∣∣∣
2

=
∫
dy

∣∣∣∣ϕ̄
(
x + y

2

)
ψ

(
x − y

2

)∣∣∣∣
2

so that
∫
dz
∣∣Wϕ,ψ(z)

∣∣2 = (2π�)n
∫
dx

∫
dy

∣∣∣∣ϕ̄
(
x + y

2

)
ψ

(
x − y

2

)∣∣∣∣
2

= (2π�)n‖ϕ‖2‖ψ‖2. (2.26)

�

The Wigner transform operate “as one wishes” in phase space, namely according
to the scheme of classical mechanics:

Proposition 18 Let ϕ,ψ ∈ L2(Rn) and T̂ (z), R̂(F ) be, respectively, operators of
the Weyl–Heisenberg and metaplectic groups, corresponding, respectively, to

– a phase-space translation by vector z ∈R
2n

– a symplectic transformation in phase space

We have

W
T̂ (z′)ϕ,T̂ (z′)ψ (z) =Wϕ,ψ(z− z′), (2.27)

W
R̂(F )ϕ,R̂(F )ψ

(z) =Wϕ,ψ

(
F−1z

)
. (2.28)

Proof We have the nice group property of the Weyl–Heisenberg translation opera-
tor:

T̂ (−z′)T̂ (X)T̂ (z′)= exp

(
− i
�
σ(X, z′)

)
T̂ (X)

so that

W
T̂ (z′)ϕ,T̂ (z′)ψ(z) = (2π�)−n

∫
dX exp

(
− i
�
σ(z− z′,X)

)〈
ϕ, T̂ (X)ψ

〉

=Wϕ,ψ(z− z′).
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As a result of the property of the metaplectic transformation we have

R̂(F )−1T̂ (z′)R̂(F )= T̂ (F−1z′
)
.

Therefore

W
R̂(F )ϕ,R̂(F )ψ

(z) = (2π�)−n
∫
dz′

〈
ϕ, T̂ (Fz′)ψ

〉
e−iσ (z,z′)/�

= (2π�)−n
∫
dz′′

〈
ϕ, T̂ (z′′)ψ

〉
e−iσ (z,Fz′′)/�

= (2π�)−n
∫
dz′

〈
ϕ, T̂ (z′)ψ

〉
e−iσ (F−1z,z′)/�,

where we have used the change of variable Fz′ = z′′ and the fact that a symplectic
matrix has determinant one. �

Now we get a formula to recover the Weyl symbol of any operator Â ∈
L(S(Rn),S ′(Rn)).

Proposition 19 Every operator Â ∈ L(S(Rn),S ′(Rn)) has a contravariant Weyl
symbol A and a covariant Weyl symbol Ã in S ′(R2n).

We have, in the distribution sense in general, in the usual sense if Â is bounded
in L2(Rn),

A(X) = (2π�)−2n
∫∫

R4n

〈
ϕz′ , Âϕz

〉
Wz′,z(X)dz dz

′, (2.29)

Ã(X) = (2π�)−n
∫
R2n

〈
ϕz+X, Âϕz

〉
e−

i
�
σ(X,z) dz. (2.30)

Proof We compute formally. It is not very difficult to give all the details for a rigor-
ous proof.

We apply inverse formula for the Fourier–Bargmann transform (see Chap. 1). So
for any ψ ∈ S(Rn), we have

Âψ(x)= (2π�)−2n
∫∫

R4n

〈
ϕz′ , Âϕz

〉〈ϕz,ψ〉ϕz′(x) dz dz′. (2.31)

So we get a formula for the Schwartz kernel KA for Â,

KA(x, x
′)= (2π�)−2n

∫∫
R4n

〈
ϕz′ , Âϕz

〉
ϕz(x′)ϕz′(x) dz dz′. (2.32)

Then we apply formula (2.11) to get the contravariant symbol A.
The formula for the covariant symbol follows from (2.7) and trace computation

with coherent states. �
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The only but important missing property to have a nice probabilistic setting with
the Wigner functions is positivity which is unfortunately not satisfied because we
have the following result, proved by Hudson [120] for n= 1, then extended to n≥ 2
by Soto–Claverie [181].

Theorem 3 Wψ(X) ≥ 0 on R
2n if and only if ψ = Cϕ

(Γ )
z where C is a complex

number, Γ a complex, symmetric n×n matrix with a positive non degenerate imag-
inary part Γ , z ∈R

2n, where we define the Gaussian

ϕ(Γ )(x)= (π�)−n/4 det1/4Γ exp

(
i

2�
Γ x · x

)
. (2.33)

Proof We more or less follow the paper of Soto–Claverie [181].
We can check by direct computation that the Wigner density of ϕz(Γ ) is positive

(according the definition we have to compute the Fourier transform of the expo-
nent of a quadratic form). We can also give the following more elegant proof. First,
it is enough to consider the case z = (0,0). Second, it is possible to find a meta-
plectic transformation F such that ϕz(Γ ) = R̂(F )ϕ0 (see the section on symplectic
invariance and Chap. 3 for more properties on the metaplectic group). Hence we
get W

R̂(F )ϕ0
(X) =Wϕ0(F

−1(X)). But we have computed above Wϕ0 , which is a
standard Gaussian, so it is positive.

Conversely, assume now that Wψ(X) ≥ 0 on R
2n. We shall prove that the

Fourier–Bargmann transform ψ#(z) is a Gaussian function on the phase space.
Hence using the inverse Bargmann transform formula, we shall see that ψ is a Gaus-
sian.

Let us first prove the two following properties:

ψ#(z) �= 0, ∀z ∈R
2n, (2.34)

∣∣ψ#(z)
∣∣ ≤ Ceδ|z|2 , ∀z ∈R

2n, for some C,δ > 0. (2.35)

We have seen that

∣∣〈ψ,ϕz〉∣∣2 = (2π�)−n
∫
R2n

Wψ(X)Wϕz(X)dX

= 2n
∫
R2n

Wψ(X)e
− 1

�
|X−z|2 dX. (2.36)

The last integral is positive because by assumption Wψ(X) ≥ 0 and∫
Wψ(X)dX = 1.
Using again (2.36) we easily get (2.34). The second step is to use a property of

entire functions in C
n. Let us recall that in Chap. 1, we have seen that the function

ψ#
a (ζ ) := exp

(
p2 + ip · q

2�

)
ψ#(q,p) (2.37)
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is an entire function in the variable ζ = q − ip ∈ C
n. Moreover we get easily that

ψ#
a (ζ ) satisfies properties (2.34). To achieve the proof of Theorem 3 we apply the

following lemma, which is a particular case of Hadamard factorization theorem for
n= 1, extended for n≥ 2 in [181]. �

Lemma 11 Let f be an entire function in C
n such that f (ζ ) �= 0 for all ζ ∈C

n and
for some C > 0, δ > 0,

∣∣f (ζ )∣∣≤ Ceδ|ζ |m, ∀ζ ∈C
n. (2.38)

Then f (ζ )= eP(ζ ), where P is a polynomial of degree ≤m.

2.3 Coherent States and Operator Norms Estimates

Let us give now a first application of coherent states to Weyl quantization. We as-
sume first that �= 1.

Theorem 4 (Calderon–Vaillancourt) There exists a universal constant Cn such that
for every symbol A ∈ C∞(R2n) we have

∥∥Â∥∥L(L2,L2)
≤ Cn sup

|γ |≤2n+1,X∈R2n

∣∣∂γXA(X)
∣∣. (2.39)

Beginning of the Proof From (2.32) we get the formula

〈
ψ, Âη

〉= (2π)−n
∫∫

R4n

〈
ϕz′ , Âϕz

〉
ψ#(z′)η#(z) dz dz′. (2.40)

We shall get (2.39) by proving that the Bargmann kernel KB
A (z, z

′) := 〈ϕz′ , Âϕz〉 is
the kernel of a bounded operator in L2(R2n). Let us first recall a classical lemma

Lemma 12 Let (Ω,μ) be a measured (σ -finite) space, K a measurable function
on Ω ×Ω such that

mK :=max

{
sup
z∈Ω

∫
Ω

∣∣K(z, z′)∣∣dz′, sup
z′∈Ω

∫
Ω

∣∣K(z, z′)∣∣dz
}
.

Then K is the integral kernel of a bounded operator TK on L2(Ω) and we have

‖TK‖ ≤mK.

So the Calderon–Vaillancourt theorem will be a consequence of the following.



36 2 Weyl Quantization and Coherent States

Lemma 13 There exists a universal constant Cn such that for every symbol A ∈
C∞(R2n) we have

∣∣KB
A (z, z

′)
∣∣≤ Cn(1+ |z− z′|)−2n−1 sup

|γ |≤2n+1,X∈R2n

∣∣∂γXA(X)
∣∣. (2.41)

Proof We have already seen that

KB
A (z, z

′) =
∫
Rn

A(X)Wz′,z(X)dX

= 2n
∫
Rn
A(X) exp

(
−
∣∣∣∣X− z+ z′

2

∣∣∣∣
2

− iσ
(
X− 1

2
z′, z− z′

))
dX.

(2.42)

First remark that we have

∣∣〈ϕz′ , Âϕz〉∣∣≤ sup
X∈R2n

∣∣A(X)∣∣. (2.43)

So we only have to consider the case |z′ − z| ≥ 1. The estimate is proved by inte-
gration by parts (as is usual for an oscillating integral).

Let us introduce the phase function

Φ =−
∣∣∣∣X− z+ z′

2

∣∣∣∣
2

− iσ
(
X− 1

2
z′, z− z′

)
. (2.44)

We have |∂XΦ| ≥ |z− z′| hence

∂XΦ · ∂X
|∂XΦ|2 eΦ = eΦ. (2.45)

So we get the wanted estimates performing 2n+ 1 integrations by parts in the inte-
gral (2.42) using formula (2.45).

This achieves the proof of the Calderon–Vaillancourt theorem. �

Corollary 4 Â is a compact operator in L2(Rn) if A is C∞ on R
2n and satisfies

the following condition:

lim|z|→+∞
∣∣∂γz A(z)∣∣= 0, ∀γ ∈N

2d, |γ | ≤ 2n+ 1. (2.46)

Proof Let us introduce χ ∈ C∞(R2n) such that χ(X)= 1 if |X| ≤ 1
2 and χ(X)= 0

if |X| ≥ 1. Let us define AR(X)= χ(X/R)A(X). For every R > 0, ÂR is Hilbert–
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Schmidt hence compact. Using the Calderon–Vaillancourt estimate, we get

lim|R|→+∞
∥∥Â− ÂR∥∥= 0.

So Â is compact. �

Using the same idea as for proving Calderon–Vaillancourt theorem, we get now
a sufficient trace-class condition.

Theorem 5 There exists a universal constant τn such that for every A ∈ C∞(R2n)

we have
∥∥Â∥∥

T r
≤ τn

∑
|γ |≤2n+1

∫
R2n

∣∣∂γXA(X)
∣∣dX. (2.47)

In particular if the r.h.s. is finite then Â is in the trace class and we have

Tr Â= (2π)−n
∫
R2n

A(X)dX. (2.48)

Proof Recall that �= 1. From (2.29) we know that Â has the following decompo-
sition into rank one operators:

Â= (2π)−n
∫∫

R4n

〈
ϕz′ , Âϕz

〉
Πz,z′ dzdz

′. (2.49)

But we know that ‖Πz,z′ ‖T R = 1. So we have

∥∥Â∥∥
T R
≤ (2π)−n

∫∫
R4n

∣∣〈ϕz′ , Âϕz〉∣∣dzdz′. (2.50)

Using integration by parts as in the proof of Calderon–Vaillancourt, we have

∣∣〈ϕz′ , Âϕz〉∣∣≤ CN (1+ |z− z′|)−N
∑
|γ |≤N

∫
R2n

e−|X−(z+z′)/2|2
∣∣∂γXA(X)

∣∣dX (2.51)

with N = 2n+ 1. Now perform the change of variables u= (z+ z′)/2, v = z− z′
and using Young inequality we get

∫∫
R4n

∣∣〈ϕz′ , Âϕz〉∣∣dzdz′ ≤ τn
∑
|γ |≤N

∫
R2n

∣∣∂γXA(X)
∣∣dX (2.52)

hence (2.47) follows.
We can get (2.48) by using approximations with compact support AR like in the

proof of Corollary 4. �
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Remark 5 Using interpolation results it is possible to get similar estimates for the
Schatten norm ‖Â‖p for 1<p <+∞.

Let us now compute the action of Weyl quantization on Gaussian coherent states.

Lemma 14 Assume that A ∈Σ(m) (m is temperate weight). Then for every N ≥ 1,
we have

Âϕz =
∑
|γ |≤N

�
|γ |
2
∂γ A(z)

γ ! Ψγ,z +O
(
�
(N+1)/2), (2.53)

the estimate of the remainder is uniform in L2(Rn) for z in every bounded set of the
phase space and

Ψγ,z = T̂ (z)Λ�Opw1
(
zγ
)
g, (2.54)

where g(x)= π−n/4e−|x|2/2, Opw1 (z
γ ) is the 1-Weyl quantization of the monomial:

(x, ξ)γ = xγ ′ξγ ′′ , γ = (γ ′, γ ′′) ∈N
2d . In particular Opw1 (z

γ )g = Pγ g where Pγ is
a polynomial of the same parity as |γ |.

Proof Let us write

Âϕz = ÂΛ�T̂1(z)g =Λ�T̂1(z)
(
Λ�T̂1(z)

)−1
ÂΛ�T̂1(z)g,

where Λ� is the dilation: Λ�ψ = �
−n/4ψ(�−1/2x) and T̂1 is T̂ for �= 1.

Let us remark that (Λ�T̂ (z))
−1ÂΛ�T̂ (z) = Opw1 [A�,z] where A�,z(X) =

A(
√
�X + z). So we prove the lemma by expanding A�,z in X, around z, with

the Taylor formula with integral remainder term to estimate the error term. �

The following Lemma allows to localized observables acting on coherent states.

Lemma 15 Let A be a smooth observable with compact support in the ball
B(X0, r0) of the phase space. Then there exists R > 0 and for all N ≥ 1 there exists
CN such that for |z−X0| ≥ 2r0 we have

∥∥Âϕz∥∥≤ CN�N 〈z〉−N, for |z| ≥R. (2.55)

Proof It is convenient here to work on Fourier–Bargmannn side. So we estimate

〈
ϕz, Âϕz′

〉= (2π�)−n
∫
R2n

A(Y )Wz,z′(Y ) dY. (2.56)

As we have already seen, we have
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∫
R2n

A(Y )Wz,z′(Y ) dY

= 2n
∫
R2n

exp

(
−1

�

∣∣∣∣Y − z+ z′
2

∣∣∣∣
2

− i

�
σ

(
Y − 1

2
z′, z− z′

))
A(Y)dY. (2.57)

Using integrations by parts as above, considering the phase function Ψ (Y )=−|Y −
z+X

2 |2− iσ (Y − 1
2X,z−X) and the differential operator ∂Y Ψ

|∂Y Ψ |2 ∂Y , we get for every

M,M ′ large enough,

∣∣〈Âϕz,ϕz′ 〉∣∣≤ CM,M ′
∫
[|Y |≤r0]

(
1+ |Y − z|√

�

)−M(
1+ |z− z

′|√
�

)M−M ′

dY. (2.58)

Therefore we easily get the estimate choosing M,M ′ conveniently and using that
the Fourier–Bargmannn transform is an isometry. �

We need to introduce some properties for the Weyl symbols A.

Definition 5 A positive function m on R
d is a temperate weight if it satisfies the

following property. There exist N,C such that

m(X+ Y)≤m(X)(1+ |X− Y |)N, ∀X,Y ∈R
d . (2.59)

A symbol A is a classical observable of weight m if for every multiindex α there
exists Cα such that

∣∣∂αXA(X)
∣∣≤ Cαm(X), ∀X ∈R

2n.

The space of symbols of weight m is denoted Σ(m).

A basic example of temperate weight is mμ(X)= (1+ |X|)μ, μ ∈ R. We shall
denote Σμ =Σ(mμ). For example Σ0 =Σ(1).

Remark 6 The product of two temperate weights is a temperate weight and if m is
a temperate weight then m−1 is also a temperate weight.

As proved by Unterberger [186] and rediscovered by Tataru [183], it is possible
to characterize the operator class Σ̂(1) on the matrix element 〈ϕz′ , Âϕz〉. We state
now a semi-classical version of Unterberger result.

Theorem 6 Let Â� be a �-dependent family of operators from S(Rn) to S ′(Rn).
Then Â=Opw

�
(A�) with A� ∈Σ(1) with uniform estimate2 if and only if for every

2This means that for every γ , sup�∈]0,1] ‖∂γ A‖∞ <+∞.
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N there exists CN such that we have

∣∣〈ϕz′ , Âϕz〉∣∣≤ CN
(

1+ |z− z
′|√

�

)−N
, ∀� ∈ ]0,1), z, z′ ∈R

2n. (2.60)

Proof Suppose that Â = Opw
�
(A�), with A� ∈ Σ(1) is a bounded family. We get

estimate (2.60) by integrations by parts as above.
Conversely if we have estimates (2.60), using (2.23) and (2.29) we have

A�(X) = (π�)−n
∫∫

R4n

〈
ϕz′ , Â�ϕz

〉
exp

(
−1

�

(∣∣∣∣X− z+ z′
2

∣∣∣∣
2

+ iJ
(
X− z′

2

)
· (z− z′)

))
dzdz′. (2.61)

Using the change of variables z+z′
2 = u and z− z′ = √�v we get easily that there

exists C > 0 such that
∣∣A�(X)

∣∣≤ C, ∀X ∈R
2n, � ∈ ]0,1]. (2.62)

In the same way we can estimate every derivatives of A�, after derivation in X in
the integral (2.61). �

The other main fact in Weyl quantization is existence of an operational calculus.
We shall recall its properties in the next section.

2.4 Product Rule and Applications

2.4.1 The Moyal Product

One of the most useful properties of Weyl quantization is that we have an operational
calculus defined by:

The Product Rule for Quantum Observables Let us start with A,B ∈ S(R2n).
We look for a classical observable C such that Â · B̂ = Ĉ. Let us first remark that
the integral kernel of Ĉ is

KC(x, y)=
∫
Rn
KA(x, s)KB(s, y) ds. (2.63)

Using relationship between integral kernels and Weyl symbols, we get

C(X)= (π�)−2n
∫∫

R4n
e2i�σ(Y,Z)A(X+Z)B(X+ Y)dY dZ, (2.64)
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where σ is the symplectic bilinear form introduced above.
Now let us apply Plancherel formula in R

4n and the following Fourier transform
formula:

Lemma 16 Let f (T ) = e
i
2 〈B.T ,T 〉, for T ∈ R

m where B is a non degenerate sym-
metric m×m matrix. Then the Fourier transform f̃ is

f̃ (ζ )= (2π)m/2|detB|−1/2eiπ sgnBe−
i
2 〈B−1ζ,ζ 〉, (2.65)

where sgnB is the signature of the matrix B .

Proof See [117, 163]. �

Hence we get

C(x, ξ)= exp

(
i�

2
σ(Dx,Dξ ;Dy,Dη)

)
A(x, ξ)B(y, η)

∣∣∣∣
(x,ξ)=(y,η)

. (2.66)

We can see easily on formula (2.66) that C ∈ S(R2n). So that (2.64) defines a non-
commutative product on classical observables. We shall denote this product C =
A � B (Moyal product).

In semi-classical analysis, it is useful to expand the exponent in (2.66), so we get
the formal series in �:

C(x, ξ)=
∑
j≥0

Cj (x, ξ)�
j , where

Cj (x, ξ)= 1

j !
(
i

2
σ(Dx,Dξ ;Dy,Dη)

)j
A(x, ξ)B(y, η)

∣∣∣∣
(x,ξ)=(y,η)

. (2.67)

We can easily see that in general C is not a classical observable because of the �

dependence. It can be proved that it is a semi-classical observable in the following
sense.

Definition 6 We say that A is a semi-classical observable of weight m, where m is
temperate weight on R

2n, if there exist �0 > 0 and a sequence Aj ∈Σ(m), j ∈N,
so that A is a map from ]0,�0] into Σ(m) satisfying the following asymptotic con-
dition: for every N ∈ N and every γ ∈ N

2n there exists CN > 0 such that for all
� ∈ ]0,1[ we have

sup
R2n

m−1(z)

∣∣∣∣ ∂
γ

∂zγ

(
A(�, z)−

∑
0≤j≤N

�
jAj (z)

)∣∣∣∣≤ CN�N+1, (2.68)

A0 is called the principal symbol, A1 the sub-principal symbol of Â.
The set of semi-classical observables of weightm is denoted byΣsc(m). Its range

in L(S(Rn),S ′(Rn)) is denoted Σ̂sc(m).
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We may use the notation Σμ
sc =Σsc(mμ).

Now we state the product rule for Weyl quantization.

Theorem 7 Let m, m′ be two temperate weights in R
2n. For every A ∈Σ(m) and

B ∈ Σ(m′), there exists a unique C ∈ Σsc(mp) such that Â · B̂ = Ĉ with C �∑
j≥0 �

jCj . The Cj are given by

Cj(x, ξ)= 1

2j
∑

|α+β|=j

(−1)|β|

α!β!
(
Dβ
x ∂

α
ξ A

) · (Dα
x ∂

β
ξ B

)
(x, ξ).

Proof The main technical point is to control the remainder terms uniformly in the
semi-classical parameter �. This is detailed in the appendix of the paper [31]. �

Corollary 5 Under the assumption of the theorem, we have the well known cor-
respondence between the commutator for quantum observables and the Poisson
bracket for classical observables, i

�
[Â, B̂] ∈ ̂Σsc(mm′) and its principal symbol

is the Poisson bracket {A,B}.

A very useful application of the Moyal product is the possibility to get semi-
classical approximations for inverse of elliptic symbol.

Definition 7 Let A(�) be a semi-classical observable in Σsc(m) and X0 ∈R
2n. We

shall say that A is elliptic at X0 if A0(X0) �= 0.
We shall say that A is uniformly elliptic if there exists c > 0 such that

∣∣A(X)∣∣≥ cm(X), ∀X ∈R
2n. (2.69)

Theorem 8 Let A ∈ Σsc(m) be an uniformly elliptic semi-classical symbol. Then
there exists B ∈Σsc(m

−1) such that B �A= 1 (in the sense of asymptotic expansion
in Σsc(1)). Moreover, we have

B̂ · Â= 1+O
(
�
∞), (2.70)

where the remainder is estimated in the L2norm of operators.
Moreover the semi-classical symbol B of B̂ is B =∑

j≥0 �
jBj with

B0 =A−1
0 , B1 =−A1A

−2
0 . (2.71)

Proof Let us denote by Cj(E,F ) the j th term in the Moyal product E � F . The
method consists to compute by induction B0, . . . ,BN such that

( ∑
0≤j≤N

�
jBj

)
� A(h)=O

(
�
N+1). (2.72)
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We start with B0 = 1
A0

. The next step is to compute B1 such that B1A0+A1B0 = 0.
Then to compute B2 such that

C2(A0,B0)+C1(A1,B1)+B2A0 = 0.

So we get all the Bj by induction using the asymptotic expansion for the Moyal
product.

The remainder term in (2.70) is estimated using the Calderon–Vaillancourt theo-
rem. �

We give now a local version of the above theorem, which can be proved by the
same method.

Theorem 9 LetA ∈Σsc(m) be an elliptic symbol in an open bounded setΩ of R2n.
Then for every χ ∈ C∞0 (Ω) there exists Bχ ∈Σ−∞sc such that

B̂χ Â= χ̂ +O
(
�
∞). (2.73)

Remark 7 For application it is useful to note that if A depends in a uniform way of
some parameter ε ∈ [0,1] then B also depends uniformly in ε. In particular ε may
depend on �.

2.4.2 Functional Calculus

An useful consequence of the algebraic properties of symbolic quantization is a
functional calculus: under suitable assumptions if Ĥ is an Hermitian semi-classical
observable then for every smooth function f , f (Ĥ ) is also a semi-classical observ-
able. The technical statement is

Theorem 10 Let Ĥ be a uniformly elliptic semi-classical Hamiltonian. Let f be a
smooth real valued function such that, for some r ∈R, we have

∀k ∈N, ∃Ck,
∣∣f (k)(s)∣∣≤ Ck〈s〉r−k, ∀s ∈R.

Then f (Ĥ ) is a semi-classical observable with a semi-classical symbol Hf (�, z)
given by

Hf (�, z)�
∑
j≥0

�
jHf,j (z). (2.74)

In particular we have

Hf,0(z) = f
(
H0(z)

)
, (2.75)

Hf,1(z) = H1(z)f
′(H0(z)

)
, (2.76)
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and for, j ≥ 2, Hf,j =
∑

1≤1≤2j−1

dj,k(H)f
(k)(H0), (2.77)

where dj,k(H) are universal polynomials in ∂γz H�(z) with |γ | + �≤ j .

A proof of this theorem can be found in [68, Chap. 8], [107]. In particular we
can take f (s)= (λ+ s)−1 for λ �= 0 (the proof begins with this case) or f with a
compact support.

From this theorem we can get the following consequences on the spectrum of Ĥ
(see [107]).

Theorem 11 Let Ĥ be like in Theorem 10. Assume that H−1
0 [E−,E+] is a com-

pact set in R
n × R

n. Consider a closed interval I ⊂ [E−,E+]. Then we have the
following properties.

(i) ∀� ∈ ]0,�0], �0 > 0, the spectrum of Ĥ is discrete and is a finite sequence of
eigenvalues E1(�)≤ E2(�)≤ · · · ≤ ENI (�) where each eigenvalue is repeated
according its multiplicity.

Moreover NI =O(�−n) as �↘ 0.
(ii) For all f ∈ C∞0 (I ), f (Ĥ ) is a trace-class operator and we have

Tr
[
f
(
Ĥ
)]�∑

j≥0

�
j−dτj (f ), (2.78)

where τj are distributions supported in H−1
0 (I ). In particular, we have

τ0(f ) = (2π)−d
∫
R2n

f
(
H0(z)

)
dz, (2.79)

τ1(f ) = (2π)−d
∫
R2n

f ′
(
H0(z)

)
H1(z) dz. (2.80)

An easy consequence of this is the following Weyl asymptotic formula:

Corollary 6 If I = [λ−, λ+] such that λ± are non critical values for H0
3 then we

have

lim
�→0

(2π�)nNI =
∫
[H0(q,p)∈I ]

dq dp. (2.81)

Remark 8 Formula (2.81) is very well known and can be proved in many ways,
under much weaker assumptions.

For a proof using the functional calculus see [163, pp. 283–287].

3That λ is a non-critical value for H means that ∇H(z) �= 0 if H(z)= λ.
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Under our assumptions we shall see in Chap. 4 that we have a Weyl asymptotic
with an accurate remainder estimate:

NI = (2π�)−n
∫
[H(q,p)∈I ]

dq dp+O(
�

1−n),
using a time dependent method due to Hörmander and Levitan ([116] and its biblio-
graphy). For more accurate results about spectral asymptotics see [122].

2.4.3 Propagation of Observables

Now we come to the main application of the results of this section. We shall give a
proof of the correspondence (in the sense of Bohr) between quantum and classical
dynamics. As we shall see this theorem is a useful tool for semi-classical analysis
although its proof is an easy application of Weyl calculus rules stated above. The
microlocal version of the following result is originally due to Egorov [73]. R. Beals
[18] found a nice simple proof.

Theorem 12 (The Semi-classical Propagation Theorem) Let us consider a time de-
pendent Hamiltonian H(t) ∈Σ2

sc satisfying:
∣∣∂γz Hj (t, z)∣∣≤ Cγ , for |γ | + j ≥ 2; (2.82)

�
−2(H(t)−H0(t)− �H1(t)

) ∈Σ0
sc. (2.83)

We assume thatH(t, z) is continuous for t ∈R and that all the estimates are uniform
in t for t ∈ [−T ,T ].

Let us introduce an observable A ∈Σ1, such that ∂γXA ∈Σ0 if |γ | ≥ 1. Then we
have the following.

(a) For � small enough and for every ψ ∈ S(Rn), the Schrödinger equation

i�∂tψt = Ĥ (t)ψt , ψt=s =ψ (2.84)

has a unique solution which we denote ψt = Û (t, s)ψ . Moreover Û (t, s) can
be extended as a unitary operator in L2(Rn).

(b) The time evolution Â(t, s) of Â, from the initial time s is Â(t, s)= Û (s, t)Â×
Û (t, s) and has a semi-classical Weyl symbol A�(t, s) such that A�(t, s) ∈Σ1

sc.
More precisely we have A(t, s)�∑

j≥0 �
jAj (t, s), in Σ0

sc, which is uniform in
t, s, for t, s ∈ [−T ,T ]. Moreover Aj(t, s) can be computed by the following
formulas:

A0(t, s; z) = A
(
Φt,s(z)

)
, (2.85)

A1(t, s; , z) =
∫ t

s

{
A
(
Φτ,t

)
,H1(τ )

}(
Φt,τ (z)

)
dτ (2.86)

and for j ≥ 2, Aj(t, s; z) can be computed by induction on j .
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Proof Property (a) will be proved later. It is easier to prove it if H is time indepen-
dent because we can prove in this case that Ĥ is essentially self-adjoint (for a proof
see [163]). Then we have

Û (t) := Û (t,0)= exp

(
− it
�
Ĥ

)
.

Let us remark that, under the assumption of the theorem, the classical flow forH0

exists globally. Indeed, the Hamiltonian vector field (∂ξH0,−∂xH0) has a sublinear
growing at infinity so, no classical trajectory can blow up in a finite time. Moreover,
using usual methods in non linear O.D.E. (variation equation) we can prove that
A(Φt,s) ∈Σ(1) with semi-norm uniformly bounded for t, s bounded.

Now, from the Heisenberg equation and the classical equations of motion we get

∂

∂τ
Û(s, τ )Â0(t, τ )Û (τ, s)

= Û (s; τ)
{
i

�

[
Ĥ (τ ), Â0(t, τ )

]− ̂
{
H(τ),A0

}(
Φt,τ

)}
Û (τ, s), (2.87)

where A0(t, s)=A(Φt,s). But, from the corollary of the product rule, the principal
symbol of

i

�

([
Ĥ (τ ), Â0(t, τ )

]− ̂
{
H(τ),A0

})(
Φt,τ

)

vanishes. So, in the first step, using the product rule formula, we get the approxima-
tion

Û (s, t)ÂÛ (t, s)− Â0(t, s)

=
∫ t

s

Û (s, τ )

(
i

�

[
Ĥ (τ ), Â0(t, τ )

]− ̂{
Ĥ (τ ),A0

}
Φt,τ

)
Û (τ, s) dτ. (2.88)

Now, it is not difficult to obtain, by induction, the full asymptotics in �. For j ≥ 2,

Aj(t, s; z)=
∑

|(α,β)|+k=j+1
0≤�≤j−1

Γ (α,β)

∫
s

t[(
∂αξ ∂

β
x Hk(τ)

) · (∂ξ α∂xβA�)](Φt,τ (z)
)
dτ,

(2.89)
with

Γ (α,β)= (−1)|β| − (−1)|α|

α!β!2|α|+|β| i−1−|(α,β)|.

The main technical point is to estimate the remainder terms. For a proof with more
details see [31] where the authors get a uniform estimate up to Ehrenfest time (of
order log�−1). We give in Appendix B the necessary details for uniform estimates
on finite times intervals. �
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Remark 9 If H(t)=H0(t) is a polynomial function of degree ≤ 2 in z on the phase
space R2n then the propagation theorem assumes a simpler form: A(t, s)=A(Φt,s)

and the remainder term is null. This is a consequence of the following exact formula:

i

�

[
Ĥ , B̂

]= {̂H,B}, (2.90)

where B ∈Σ+∞.

Now we give an application of the propagation theorem and coherent states in
semi-classical analysis: we recover the classical evolution from the quantum evolu-
tion, in the classical limit �↘ 0.

Corollary 7 For every observable A ∈Σ0 and every z ∈R
2n, we have

lim
�↘0

〈
Û(t, s)ϕz, ÂÛ (t, s)ϕz

〉=A(Φt,s(z)
)

(2.91)

and the limit is uniform in (t, s; z) on every bounded set of Rt ×Rs ×R
2n
z .

Proof

〈
Û (t, s)ϕz, ÂÛ (t, s)ϕz

〉 = 〈
ϕz, Û(s, t)ÂÛ (t, s)ϕz

〉

=
∫
R2n

A(t, s;X)Wz,z(X)dX

= (π�)−n
∫
R2n

A(t, s;X)e− |X−z|
2

� dX. (2.92)

So by the propagation theorem we know that A(t, s;X) = A(Φt,s(X)) + O(�).
Hence the corollary follows. �

Remark 10 The last result has a long history beginning with Ehrenfest [74] and con-
tinuing with Hepp [113], Bouzouina–Robert [31]. In this last paper it is proved that
the corollary is still valid for times smaller than the Ehrenfest time TE := γE | log�|,
for some constant γE > 0.

2.4.4 Return to Symplectic Invariance of Weyl Quantization

Let us give now a first construction of metaplectic transformations. Other equivalent
constructions and more properties will be given later (chapter on quadratic hamilto-
nians).

Lemma 17 For every F ∈ Sp(n) we can find a C1-smooth curve Ft , t ∈ [0,1], in
Sp(n), such that F0 = 1 and F1 = F .
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Proof An explicit way to do that is to use the polar decomposition of F , F = V |F |
where V is a symplectic orthogonal matrix and |F | = √F tF is positive symplectic
matrix. Each of these matrices have a logarithm, so F = eKeL with K,L Hamilto-
nian matrices, and we can choose Ft = etKetL. Ft is clearly the linear flow defined
by the quadratic Hamiltonian Ht(z)= 1

2Stz · z where St =−J ḞtF−1
t . �

Now we use the (exact) propagation theorem. Û(t, s) denotes the propagator
defined by the quadratic Hamiltonian built in the proof of Lemma 17 and Theo-
rem 12. Then we define R̂(F ) = Û (1,0). Recall that Û(t,0) is the solution of the
Schrödinger equation

i�
d

dt
Û(t,0)= Ĥ (t)Û (t,0), Û (0,0)= 1. (2.93)

The following theorem translates the symplectic invariance of the Weyl quantiza-
tion.

Theorem 13 For every linear symplectic transformation F ∈ Sp(n) and every sym-
bol A ∈Σ(1) we have

R̂(F )−1ÂR̂(F )= Â · F . (2.94)

Proof This is a direct consequence of the exact propagation formula for quadratic
Hamiltonians

Û (0, t)ÂÛ (t,0)= ÂΦt,0. (2.95)

�

We can get another proof of the following result (see formulas (2.27)).

Corollary 8 Let ψ,η ∈ L2(Rn). For every linear symplectic transformation F ∈
Sp(n), we have the following transformation formula for the Wigner function:

W
R̂(F )ψ,R̂(F )η

(z)=Wψ,η

(
F−1(z)

)
, ∀z ∈R

2n. (2.96)

Proof For every A ∈ S(R2n), we have

〈
R̂(F )η, ÂR̂(F )ψ

〉 =
∫
R2n

A(z)W
(
R̂(F )ψ, R̂(F )η

)
(z) dz

= 〈
η, R̂(F )−1ÂR̂(F )ψ

〉

=
∫
R2n

A(F · z)Wψ,η(z) dz. (2.97)

The corollary follows. �

We have the following uniqueness result.
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Proposition 20 Given the linear symplectic transformation F ∈ Sp(n), there ex-
ists a unique transformation R̂(F ), up to a complex number of modulus 1, satisfy-
ing (2.18).

Proof If V̂ satisfies V̂ −1ÂV̂ = Â · F then if B̂ = V̂ −1 · R̂(F ), we see that B̂ com-
mutes with every Â,A ∈Σ(1). In particular B̂ commutes with the Heisenberg–Weyl
translations T̂ (z), hence T̂ (z)−1B̂T̂ (z) = B̂ . But we knows that T̂ (z)−1B̂T̂ (z) =
B̂(· + z). So the Weyl symbol of B̂ (it is a temperate distribution) is a constant com-
plex number λ. But here B̂ is unitary, so |λ| = 1. �

2.5 Husimi Functions, Frequency Sets and Propagation

2.5.1 Frequency Sets

The Husimi transform of some temperate distributions u ∈ S ′(Rn) is defined as
follows:

Definition 8 The Husimi transform of u ∈ S ′(Rn) is the function Hu(z) defined on
the phase space R

2n by

Hu(z)= (2π�)−n
∣∣〈u,ϕz〉∣∣2, z ∈R

2n. (2.98)

The Husimi transform in contrast with the Wigner transform is always non-
negative. We shall see below that the Husimi distribution is a “regularization” of
the Wigner distribution.

Proposition 21 For every ϕ ∈ L2(Rn) we have

Hϕ =Wϕ ∗G0,

where G0 is a gaussian function in phase space namely

G0(z)= (π�)−ne−|z|2/�.

One has
∫
R2n G0(z) dz = 1. This means that the Husimi distribution is a “regular-

ization” of the Wigner distribution.

Proof According to the Proposition 17(iii) we have

Hϕ(z)= (2π�)−n〈Wϕz ,Wϕ〉L2(R2n).

But we know that

Wϕz(X)=Wϕ0(X− z).
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We use Proposition 16:

〈Wϕz ,Wϕ〉 = 2n
∫
R2n

exp

(
−|X− z|

2

�

)
Wϕ(X)dX.

This yields the result. �

In semi-classical analysis (or in high frequency analysis) it is important to un-
derstand what is the region of the phase space R

2n where some states ψ ∈ L2(Rn)

depending on �, essentially lives when � is small. For that purpose let us introduce
the frequency set of ψ .

Definition 9 Let ψ� ∈ L2(Rn), depending on �, such that ‖ψ�‖ ≤ 1. We say that
ψ� is negligible near a point X0 ∈R

2n, if there exists a neighborhood VX0 such that

Hψ�
(z)=O

(
�
∞), ∀z ∈ VX0 . (2.99)

Let us denote N [ψ�] the set {X ∈R
2n, ψ� is negligible near X}. The frequency set

FS[ψ�] is defined as the complement of N [ψ�] in R
2n.

Example 1

• If ψ� = ϕz then FS[ϕz] = {z}.
• Let ψ = a(x)e i

�
S(x) where a and S are smooth functions, a ∈ S(Rn), S real. Then

we have the inclusion

FS[ψ] ⊆ {
(x, ξ)|ξ =∇S(x)}. (2.100)

There are several equivalent definitions of the frequency set that we now give.

Proposition 22 Let ψ� be such that ‖ψ�‖ ≤ 1 and X0 = (x0, ξ0) ∈ R
2n. The fol-

lowing properties are equivalent:

(i)

Hψ�
(X)=O

(
�
+∞), ∀X ∈ VX0 .

(ii) There exists A ∈ S(R2n), such that A(X0)= 1 and
∥∥Âψ�

∥∥=O
(
�
+∞). (2.101)

(iii) There exists a neighborhood VX0 of X0 such that for all A ∈ C∞0 (VX0),

∥∥Âψ�

∥∥=O
(
�
+∞). (2.102)

(iv) There exist χ ∈ C∞0 (Rn) such that χ(x0) = 1 and a neighborhood Vξ0 of ξ0
such that 〈

χ(x)e
i
�
x·ξ ,ψ�

〉=O
(
�
+∞) (2.103)

for all ξ ∈ Vξ0 .
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Proof Let us assume (i). Then we have

Hψ�
(z)=O

(
�
∞), |z−X0|< r0. (2.104)

Using Lemma 15 we have
∥∥Âϕz∥∥≤ CN�N/2〈z〉−N, if |z−X0|> r0/2. (2.105)

We have, using linearity of integration,

Âψ� = (2π�)−n
∫
dz〈ϕz,ψ�〉Âϕz.

From the triangle inequality, we have

∥∥Âψ�

∥∥ ≤ (2π�)−n
∫
dz
∣∣〈ψ�, ϕz〉

∣∣∥∥Âϕz∥∥

≤ (2π�)−n
(∫
[|z−X0|<r0]

dz+
∫
[|z−X0|≥r0]

dz

)
. (2.106)

Then we get (iii):
∥∥Âψ�

∥∥2 =O
(
�
+∞).

Let us now assume (iii); we want to prove (i).
Let us introduce χ ∈ C∞0 (B(X0, r0)), χ(X)= 1 if |X−X0| ≤ r0/2. Using The-

orem 9 we have B̂Â= χ̂ +O(�+∞). Hence χ̂ψ� =O(�+∞). But using Lemma 15
we have 〈(1 − χ̂ )ψ,ϕz〉 = O(�+∞) for |z − X0| ≤ r0/4. So we have proved
〈ψ�, ϕz〉 =O(�+∞) for |z−X0| ≤ r0/4. �

A consequence of this proposition is that Weyl quantization does not increase the
frequency set.

Corollary 9 Let ψ� be such that ‖ψ�‖ ≤ 1, A ∈Σ(1), then we have

FS
[
Â(ψ�)

]⊆ FS[ψ�]. (2.107)

Moreover if A is elliptic at X0 then we have

X0 ∈ FS
[
Â(ψ�)

] ⇐⇒ X0 ∈ FS[ψ�]. (2.108)

Proof Let us assume that X0 /∈ FS[ψ�]. If χ is like in the proof of the proposition,
we have χ̂Aψ� =O(�∞). Applying Lemma 15 we have, for z near X0,

〈
ϕz, ̂(1− χ)Aψ�

〉=O
(
�
∞)

so we get, z near X0, 〈
ϕz, χ̂Aψ�

〉=O
(
�
∞). �
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2.5.2 About Frequency Set of Eigenstates

Let us consider a quantum Hamiltonian Ĥ . Assume thatH ∈Σ(m). Let us consider
the stationary Schrödinger equation

Ĥψ� =E�ψ�, (2.109)

where ‖Ψ�‖ = 1, lim�→0E� =E.

Proposition 23 The frequency set of ψ� is in the energy level set SE = {X ∈
R

2n, H(X)=E}.

Proof Let X0 ∈ R
2n such that H(X0) �= E. There exist δ > 0, r0 > 0 such that

|H(X)−E| ≥ δ, for every X ∈ B(X0, r0). Let us choose some χ ∈ C∞0 (B(X0, r0)),
χ(X0)= 1. Using theorem 9 and the remark following this theorem (here at the end
ε = �), we can find B such that

B̂
(
Ĥ −E�

)= χ̂ +O
(
�
+∞), (2.110)

so we get χ̂ψ� =O(�+∞) hence X0 /∈ FS[ψ�]. �

Assume now that Ĥ satisfies the assumptions of the Propagation theorem and ψ�

satisfies the Schrödinger equation (2.109).

Proposition 24 The frequency set FS[ψ�] is invariant under the classical flow Φt ,
for every t ∈R.

Proof Let X0 /∈ FS[ψ�]. There exists a compact support symbol A elliptic at X0
such that Âψ� =O(�+∞).

For every t we have

Û (−t)Âψ� =O
(
�
+∞)= e

itE�
� Â(t)ψ�.

Recall that the principal symbol of Â(t) is A · Φt . So we find that if z is near
Φ−t (X0), then Â(t)ψ� =O(�+∞), henceΦ−tX0 /∈ FS[ψ�]. So we see that FS[ψ�]
is invariant. �

2.6 Wick Quantization

2.6.1 General Properties

Following Berezin–Shubin [23] we start with the following general setting.
Let M be a locally compact metric space, with a positive Radon measure μ and

H an Hilbert space. For each m ∈M we associate a unit vector em ∈H such that
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the map m �→ em is strongly continuous from M into H. Moreover we assume that
the following Plancherel formula is satisfied, for all ψ ∈H,

‖ψ‖2 =
∫
M

∣∣〈em,ψ〉∣∣2 dμ(m). (2.111)

Let us denote ψ#(m) = 〈em,ψ〉. The map ψ �→ ψ#(m) := Iψ(m) is an isometry
from H into L2(M). The canonical coherent states introduced in Chap. 1 are ex-
amples of this setting where M = R

2n, H = L2(Rn), z �→ ϕz, with the measure
dμ(z)= (2π�)−n dq dp, z= (q,p) ∈R

2n.

Definition 10 Let Â ∈ L(H).

(i) The covariant symbol of Â is the function onM defined byAc(m)= 〈em, Âem〉.
(ii) The contravariant symbol of Â is the function on M , if it exists, such that

Âψ =
∫
M

Ac(m)Πmψ dm, ψ ∈H. (2.112)

For the standard coherent states example, the covariant symbol is called Wick
symbol and the contravariant symbol the anti-Wick symbol.

The covariant symbol satisfies the equality Ac(m)= Tr(ÂΠm).
Let us compute the anti-Wick symbol of some operator Â with Weyl symbol A.
We know that the �-Weyl symbol of the projector Πz is the Gaussian

(π�)−ne−
|X−z|2

� . So we find that the Weyl symbol of Â is the convolution of its
anti-Wick symbol and a standard Gaussian function:

A(X)= (π�)−n
∫
R2n

Ac(X)e−
|X−z|2

� dz. (2.113)

This formula shows that if Â has a bounded anti-Wick symbol (Ac ∈ L∞(R2n))
then its Weyl symbol is an entire function in C

2n, which is a restriction for a given
operator to have an anti-Wick symbol.

Let us remark that the Wick symbol is an inverse formula associated with (2.113):

Ac(z)= 2n
∫
R2n

A(X)e−
|X−z|2

� dX. (2.114)

Now we give another interpretation of the contravariant symbol. Let us first remark
that we have

I∗ · I = 1H, (2.115)

I · I∗ =ΠH, (2.116)

where ΠH is the orthogonal projector in L2(M) on H identified with I(H).
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Proposition 25 Let us assume that Â has a contravariant symbol Ac such that
Ac ∈ L∞(M). Then we have

Â= I∗ ·Ac · I, (2.117)

where Ac is here the multiplication operator in L2(M).

Proof For every ψ,η ∈H we have

〈
η, Âψ

〉=
∫
M

〈η, em〉
〈
em, Âψ

〉
dμ(m) (2.118)

and

〈
em, Âψ

〉 =
∫
M

Ac(m′)〈em,Πm′ψ〉dμ(m′)

=
∫
M

Ac(m′)〈Πm′em,Πm′ψ〉dμ(m′). (2.119)

So we get

〈
η, Âψ

〉=
∫∫

M×M
Ac(m′)〈Πm′em,Πm′ψ〉〈η, em〉dμ(m′) dμ(m). (2.120)

We get the conclusion using the equality

〈η, em′ 〉 =
∫
M

〈em′, em〉〈η, em〉dμ(m). (2.121)

�

Estimates on operators with covariant and contravariant symbols are easier to
prove than for Weyl symbols. Moreover they can be used as a first step to get esti-
mates in the setting of Weyl quantization as we shall see for positivity. The following
proposition is easy to prove.

Proposition 26 Let Â be an operator in H with a contravariant symbolAc. Suppose
that Ac ∈ L∞(M). Then Â is bounded in H and we have

‖Ac‖∞ ≤
∥∥Â∥∥≤ ∥∥Ac∥∥∞. (2.122)

Moreover Â is self-adjoint if and only if Ac is real and Â is non-negative if Ac is
μ-almost everywhere non-negative on M .

For our basic example H= L2(Rn), it is convenient to use the following notation.
If A is a classical observable, A ∈Σ(1), Opw

�
(A) denotes the Weyl quantization of

A and Opaw
�
(A) denotes the anti-Wick quantization of A. In other words Opaw

�
(A)

admitsA as an anti-Wick symbol. The following proposition is an easy consequence
of the above results.
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Proposition 27 Let A ∈ Σ(1) (more general symbols could be considered). Then
we have

Opaw
�
(A) = Opw

�
(A ∗G), where G(X)= (π�)−ne−

|X|2
� , (2.123)

〈
ψ,Opaw

�
(A)ψ

〉 = (2π�)−n
∫
R2n

A(z)Hψ(z) dz, (2.124)

where Hψ(z) is the Husimi function of ψ .

We get now the following useful consequence for Weyl quantization.

Proposition 28 (Semi-classical Garding inequality) Let A ∈Σ(1), A≥ 0 on R
2n.

Then there exists C ∈R such that for every � ∈ ]0,1] we have

〈
ψ, Âψ

〉≥ C�, ∀ψ ∈ L2(
R
n
)
. (2.125)

Proof We know that Opw
�
(A∗G) is a non-negative bounded operator. So the propo-

sition will be proved if

∥∥Opw
�
(A ∗G−A)∥∥=O(�). (2.126)

Using a standard argument for smoothing with convolution, we get �−1(A ∗G −
A) ∈Σ(1), with uniform estimates in � ∈ ]0,1]. Hence we get (2.126) as a conse-
quence of the Calderon–Vaillancourt theorem. �

These results are useful to study the matrix elements 〈ψ�, Âψ�〉, for a family
{ψ�}� in the semi-classical regime [106]. This subject is related with an efficient
tool introduced by Lions–Paul [137] and P. Gérard [82] (see also [35]): the semi-
classical measures. This is an application of anti-Wick quantization as we shall see
now.

2.6.2 Application to Semi-classical Measures

Semi-classical measures were introduced to describe localization and oscillations of
families of states {ψ�}�, ‖ψ�‖ = 1 (or at least bounded in L2(Rn)).

Let us first remark that

A �→ 〈
ψ,Opaw

�
Aψ

〉

is a probability measure μ� in R
2n. Moreover this probability measure has a density

given by the Husimi function of ψ�,

dμ� = (2π�)−nHψ�
(z) dz.
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In particular we have ∣∣〈ψ,Opaw
�
Aψ

〉∣∣≤ ‖A‖∞
for every A ∈ Cb(R2n) (space of continuous, bounded functions on R

2n).

Definition 11 A semi-classical measure for the family of normalized states {ψ�}�
is a probability measure μ on the phase space R2n for which there exists at least one
sequence {�k}, lim

k→+∞�k = 0 such that for every A ∈Σ(1), we have

lim
k→+∞

〈
ψ�k

Op�k
awAψ�k

〉=
∫
R2n

Adμ. (2.127)

In other words, the measure sequence μ�k weakly converges toward the measure μ.

Remark 11 Semi-classical measures can also be defined for states ψ� ∈ L2(Rn,K)
where K is an Hilbert space. By the way in this setting Weyl symbols and anti-Wick
symbols are operators in K.

We can also define semi-classical measures for statistical mixed states ρ̂, where
ρ̂ is a non-negative operator such that Tr ρ̂ = 1.

For more applications and properties of these extensions see the huge literature
on this subject; for example see [135].

The following proposition is a straightforward application of the properties of
the Husimi function.

Proposition 29 Let μ be a semi-classical measure for {ψ�}�. Then the support
supp(μ) of the measure μ is included in the frequency set FS[ψ�], supp(μ) ⊆
FS[ψ�].

Example 2

(i) Let ψ� = ϕz, a standard coherent state. Then this family has one semi-classical
measure, μ= δz (Dirac probability).

(ii) Let us assume that the states family {ψ�}� is tight in the following sense. There
exists a smooth symbol χ , with compact support, such that χ̂ψ� =ψ�+O(�).
Then using Lemma 15, we can see that the family of probabilities {μ�} is tight,
so applying the Prokhorov compacity theorem, there exists at least one semi-
classical measure. One of a challenging problem in quantum mechanics is to
compute these semi-classical measures for family of bound states satisfying
(2.109). If for some ε > 0, H−1[E − ε,E + ε] is a bounded set, this family is
tight. For classically ergodic systems it is conjectured that there exists only one
semi-classical measure, which is the Liouville measure [106].

One important property of semi-classical measures is the following propagation
result.
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Let us consider the time dependent Schrödinger equation

i�∂tψ�(t)= Ĥψ�(t), ψ�(0)=ψ�, (2.128)

whereH is a time independent Hamiltonian. We assume thatH is real, subquadratic
and � independent (for simplicity).

∂
γ

XH ∈ L∞
(
R

2n), for all γ such that |γ | ≥ 2. (2.129)

Let μ be a semi-classical measure for {ψ�}.

Theorem 14 For every t ∈ R, {ψ�(t)} has a semi-classical measure dμt for the
same subsequence �k given by the transport of dμ by the classical flow: Φt , μ(t)=
(Φt )∗μ.

Proof For everyA ∈ C0
∞(R2n), the semi-classical Egorov theorem and comparison

between anti-Wick and Weyl quantization give

〈
ψ�(t),Opaw

�
(A)ψ�(t)

〉=
∫
R2n

A ·Φt dμψ�
+O(�). (2.130)

Hence we get the result going to the limit for the sequence �k . �

We have the following consequence for the stationary Schrödinger equation.

Corollary 10 Let μ be semi-classical measure for a family of bound states {ψ�},
satisfying Ĥψ� = E�ψ�. Then μ is invariant by the classical flow Φt for every
t ∈R.

Proof ψ�(t)= e− it
�
E�ψ� satisfies the time dependent Schrödinger equation so us-

ing the Theorem we get (Φt )∗μ= μ. �

Now we illustrate Corollary 10 on Hermite bound states of the harmonic oscilla-
tor.

We assume n = 1. We can easily compute Husimi function Hj of the Hermite
function φj .

Hj (q,p)=
∣∣〈ϕX,φj 〉∣∣2 = (q2 + p2)j

2j j ! e−
1

2� (q
2+p2). (2.131)

We want to study the quantum measures dμj = (2π�)−1Hj (q,p)dq dp when the
energies Ej = (j + 1

2 )� have a limit E > 0. So we have �→ 0 and j →+∞. For
simplicity we fix E > 0 and choose �= �j = E

j
.

Let f be in the Schwartz class S(R2). We have to compute the limit of∫
f (X)dμj (X) for j →+∞. Using polar coordinates and a change of variables
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we have to study the large k limit for the Laplace integral

I (j) := 1

(j + 1)!
∫ ∞

0
uj e−

j
E
uf

(√
2u cos θ,

√
2u sin θ

)
du, θ ∈ [0,2π[.

We can assume that f has a bounded support and (0,0) is not in the support of f .
Using the Laplace method we get

lim
j→+∞ I (j)= f

(√
2E(cos θ, sin θ)

)
. (2.132)

So, we have

lim
j→+∞

∫
f (X)dμj (X)= 1

2π
√

2E

∫ 2π

0
f
(√

2E(cos θ, sin θ)
)
dθ. (2.133)

On the r.h.s. of (2.133) we recognize the uniform probability measure on the circle
of radius

√
2E. This measure is a semi-classical measure for the quantum harmonic

oscillator. Let us remark that the classical oscillator of energy
√

2E moves on the
circle of radius

√
2E in the phase space.



Chapter 3
The Quadratic Hamiltonians

Abstract The aim of this chapter is to construct the quantum unitary propagator for
Hamiltonians which are quadratic in position and momentum with time-dependent
coefficients. We show that the quantum evolution is exactly solvable in terms of
the classical flow which is linear. This allows to construct the metaplectic transfor-
mations which are unitary operators in L2(Rn) corresponding to symplectic trans-
formations. Simple examples of such metaplectic transformations are the Fourier
transform, which corresponds to the symplectic matrix J defined in (3.4) and the
propagator of the harmonic oscillator, corresponding to rotations in the phase space.

The main results of this chapter are computations of the quantum evolution op-
erators for quadratic Hamiltonians acting on coherent states. We show that the time
evolved coherent states are still Gaussian states which are recognized to be squeezed
states centered at the classical phase space point (see Chap. 8). From these compu-
tations we can deduce most of properties concerning quantum quadratic Hamiltoni-
ans. In particular we get the explicit form of the Weyl symbols of the metaplectic
transformations. These formulas are generalizations of the Mehler formula for the
harmonic oscillator.

Quadratic Hamiltonians are very important in quantum mechanics because
more general Hamiltonians can be considered as non-trivial perturbations of time-
dependent quadratic ones as we shall see in Chap. 4.

3.1 The Propagator of Quadratic Quantum Hamiltonians

A classical quadratic Hamiltonian H is a quadratic form defined in the phase
space R

2n. We assume that this quadratic form is time dependent, so we have

H(t, z)=
∑

1≤j,k≤n
cj,k(t)zj zk

where z = (q,p) ∈ R
2n is the phase space variable and the real coefficients cj,k(t)

are continuous functions of time t ∈R. It can be rewritten as

H(t, q,p)= 1

2
(q,p)S(t)

(
q

p

)
(3.1)
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where S(t) is a 2n× 2n real symmetric matrix of the block form

S(t)=
(
Gt LTt
Lt Kt

)
(3.2)

Gt,Lt ,Kt are n×n real matrices withGt,Kt being symmetric, and LTt denotes the
transpose of Lt . The classical equations of motion for this Hamiltonian are linear
and can be written as (

q̇

ṗ

)
= JS(t)

(
q

p

)
(3.3)

where J is the symplectic matrix

J =
(

0 1n
−1n 0

)
(3.4)

Let F(t) be the classical flow for the Hamiltonian H(t). It means that it is a
symplectic 2n× 2n matrix obeying

Ḟ (t)= JS(t)F (t) (3.5)

with F(0)= 1. Then the solution of (3.3) with q(0)= q,p(0)= p is simply

(
q(t)

p(t)

)
= F(t)

(
q

p

)

We now consider the quantum Hamiltonian

Ĥ (t)= (
Q̂, P̂

) · S(t)
(
Q̂

P̂

)
(3.6)

The quantum evolution operator Û (t)1 is solution of the Schrödinger equation

i�
d

dt
Û(t)= Ĥ (t)Û (t) (3.7)

with Û (0)= 1. The following result was already proved in Chap. 2 as a particular
case of a more general result. We shall give here a simple direct proof.

Theorem 15 One has for all times t

Û (t)∗
(
Q̂

P̂

)
Û (t)= F(t)

(
Q̂

P̂

)
(3.8)

1We shall explain later why this quantum propagator is a well defined unitary operator in L2(Rn).
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Proof Define Q̂t = Û (t)∗Q̂Û(t), and similarly for P̂ (Heisenberg observables).
Using the Schrödinger equation one has

−i� d
dt

(
Q̂t

P̂t

)
= Û (t)∗

[
Ĥ (t),

(
Q̂

P̂

)]
Û (t)

But [
Ĥ (t),

(
Q̂

P̂

)]
=−i�JS(t)

(
Q̂

P̂

)

This means that Q̂t , P̂t must satisfy the linear equation

d

dt

(
Q̂t

P̂t

)
= JS(t)

(
Q̂t

P̂t

)

which is trivially solved by (3.8). �

3.2 The Propagation of Coherent States

In this section we give the explicit form of the time evolved coherent states in terms
of the classical flow F(t) given by the 2n× 2n block matrix form:

F(t)=
(
At Bt
Ct Dt

)
(3.9)

It will be shown that the complex n × n matrix At + iBt is always non-singular.
Then we establish the following result:

Ûtϕz = (π�)−n/4T̂ (zt )
(
det(At + iBt )

)−1/2 exp

(
i

2�
(Ct + iDt )(At + iBt )−1x · x

)

(3.10)
where zt = F(t)z is the phase space point of the classical trajectory and T̂ (z) is the
Weyl–Heisenberg translation operator by the vector z= (x, ξ) ∈R

2n:

T̂ (z)= exp

[
i

�

(
ξ · Q̂− x · P̂ )

]
(3.11)

This means that Ûtϕz is a squeezed state centered at the phase space point zt , so the
squeezed state moves on the classical trajectory.

We take �= 1 for simplicity.
A simple example is the harmonic oscillator

Ĥos =−1

2

d2

dx2
+ 1

2
x2 (3.12)
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It is well known that for t �= kπ, k ∈ Z the quantum propagator e−itĤos has an
explicit Schwartz kernel K(t;x, y) (Mehler formula, Chap. 1).

It is easier to compute directly with the coherent states ϕz. ϕ0 is the ground state
of Ĥos, so we have

e−itĤ ϕ0 = e−it/2ϕ0 (3.13)

Let us compute e−itĤ ϕz, ∀z ∈R
2, with the following ansatz:

e−itĤ ϕz = eiδt (z)T̂ (zt )e
−it/2ϕ0 (3.14)

where zt = (qt ,pt ) is the generic point on the classical trajectory (a circle here),
coming from z at time t = 0. Let ψt,z be the state equal to the r.h.s. in (3.14), and
let us compute δt (z) such that ψt,z satisfies the equation i d

dt
ϕ = Ĥϕ, ϕ|t=0 = ψ0,z.

We have

T̂ (zt )u(x)= ei(pt x−qtpt /2)u(x − qt )
and

ψt,z(x)= ei(δt (z)−t/2+ptx−qtpt /2)ϕ0(x − qt ) (3.15)

So, after some computations left to the reader, using properties of the classical tra-
jectories

q̇t = pt , ṗt =−qt , p2
t + q2

t = p2 + q2

the equation

i
d

dt
ψt,z(x)= 1

2

(
D2
x + x2)ψt,z(x) (3.16)

is satisfied if and only if

δt (z)= 1

2
(ptqt − pq) (3.17)

Let us now introduce the following general notations for later use.
Ft is the classical flow with initial time t0 = 0 and final time t . It is represented

as a 2n× 2n matrix which can be written as four n× n blocks:

Ft =
(
At Bt
Ct Dt

)
(3.18)

Let us introduce the following squeezed states: ϕΓ defined as follows:

ϕΓ (x)= aΓ exp

(
i

2�
Γ x · x

)
(3.19)

where Γ ∈Σn, Σn is the Siegel space of complex, symmetric matrices Γ such that
(Γ ) is positive and non-degenerate and aΓ ∈C is such that the L2-norm of ϕΓ is
one.

We also denote ϕΓz = T̂ (z)ϕΓ .
For Γ = i1, we denote ϕ = ϕi1.
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Theorem 16 We have the following formulas, for every x ∈R
n and z ∈R

2n,

Ûtϕ
Γ (x) = ϕΓt (x) (3.20)

Ûtϕ
Γ
z (x) = T̂ (Ft z)ϕ

Γt (x) (3.21)

where Γt = (Ct +DtΓ )(At +BtΓ )−1 and aΓt = aΓ (det(At +BtΓ ))−1/2.

Beginning of the Proof The first formula can be proven by the ansatz

Ûtϕ0(x)= a(t) exp

(
i

2�
Γtx · x

)

where Γt ∈Σn and a(t) is a complex values time-dependent function. We get first
a Riccati equation to compute Γt and a linear equation to compute a(t).

The second formula is easy to prove from the first, using the Weyl translation
operators and the following known property

Ût T̂ (z)Û
∗
t = T̂ (Ftz)

Let us now give the details of the proof for z= 0.
We begin by computing the action of a quadratic Hamiltonian on a Gaussian

(�= 1).

Lemma 18

Lx ·Dxe
i
2Γ x·x =

(
LT x · Γ x − i

2
TrL

)
e
i
2Γ x·x

Proof This is a straightforward computation, using

Lx ·Dx = 1

i

∑
1≤j,k≤n

Ljk
xjDk +Dkxj

2

and, for ω ∈R
n,

(ω ·Dx)e
i
2Γ x·x = (Γ x ·ω)e i

2Γ x·x �

Lemma 19

(GDx ·Dx)e
i
2Γ x·x = (

GΓ x · Γ x − i Tr(GΓ )
)
e
i
2Γ x·x

Proof As above, we get

Ĥe
i
2Γ x·x =

(
1

2
Kx · x + x ·LΓ x + 1

2
GΓ x ·Γ x − i

2
Tr(L+GΓ )

)
e
i
2Γ x·x (3.22)

�
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We are now ready to solve the equation

i
∂

∂t
ψ = Ĥψ (3.23)

with

ψ |t=0(x)= g(x) := π−n/4e−x2/2

For simplicity we assume here that Γ = i1, the proof can be easily generalized to
Γ ∈Σn.

We try the ansatz

ψ(t, x)= a(t)e i
2Γtx·x (3.24)

which gives the equations

Γ̇t = −K − 2Γ T
t L− ΓtGΓt (3.25)

ȧ(t) = −1

2

(
Tr(L+GΓt)

)
a(t) (3.26)

with the initial conditions

Γ0 = i1, a(0)= (π)−n/4

We note that Γ T L et LΓ determine the same quadratic forms. So the first equation
is a Ricatti equation and can be written as

Γ̇t =−K − ΓtLT −LΓt − ΓtGΓt (3.27)

where LT denotes the transposed matrix for L. We shall now see that (3.27) can be
solved using Hamilton equation

Ḟt = J

(
K L

LT G

)
Ft (3.28)

F0 = 1 (3.29)

We know that

Ft =
(
At Bt
Ct Dt

)

is a symplectic matrix ∀t . So using the next lemma, we have det(At + iBt ) �= 0 ∀t .
Let us denote

Mt =At + iBt , Nt = Ct + iDt (3.30)

We shall prove that Γt =NtM−1
t . By an easy computation, we get
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Ṁt = LTMt +GNt
Ṅt = −KMt −LNt

(3.31)

Now, compute

d

dt

(
NtM

−1
t

) = ṄM−1 −NM−1ṀM−1

= −K −LNM−1 −NM−1(LTM +GN)M−1

= −K −LNM−1 −NM−1LT −NM−1GNM−1 (3.32)

which is exactly (3.27).
Now we compute a(t), using the following equality:

Tr
(
LT +G(C + iD)(A+ iB)−1)= Tr(Ṁ)M−1 = Tr(L+GΓt)

using TrL= TrLT . Let us recall the Liouville formula

d

dt
log(detMt)= Tr

(
ṀtM

−1
t

)
(3.33)

which gives directly

a(t)= (π)−n/4(det(At + iBt )
)−1/2 (3.34)

To complete the proof, we need to prove the following.

Lemma 20 Let F be a symplectic matrix.

F =
(
A B

C D

)

Then det(A+ iB) �= 0 and (C + iD)(A+ iB)−1 is positive definite.

We shall prove a more general result concerning the Siegel space Σn.

Lemma 21 If

F =
(
A B

C D

)

is a symplectic matrix and Z ∈Σn then A+BZ and C+DZ are non-singular and
(C +DZ)(A+BZ)−1 ∈Σn

Proof Let us denote M := A + BZ, N := C +DZ. F is symplectic, so we have
FT JF = J . Using (

M

N

)
= F

(
I

Z

)
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we get

(
MT ,NT

)
J

(
M

N

)
= (I,Z)J

(
I

Z

)
= 0 (3.35)

which gives

MTN =NTM

In the same way, we have

1

2i

(
MT ,NT

)
J

(
M̄

N̄

)
= 1

2i
(I,Z)FT JF

(
I

Z̄

)

= 1

2i
(I,Z)J

(
I

Z̄

)
= 1

2i

(
Z̄ −Z)=−Z (3.36)

We get the following equation:

NT M̄ −MT N̄ = 2iZ (3.37)

Because Z is non-degenerate, from (3.37), we see that M and N are injective. If
x ∈C

n, Ex = 0, we have

M̄x̄ = xTMT = 0

hence

xT Zx̄ = 0

then x = 0.
So, we can define

α(F )(Z)= (C +DZ)(A+BZ)−1 (3.38)

Let us prove that α(F )Z ∈Σn. We have

α(F )Z =NM−1

⇒ (
α(F )Z

)T = (
M−1)T NT = (

M−1)TMT NM−1 =NM−1 = α(F )Z
We have also:

MT NM
−1 − N̄M̄−1

2i
M̄ = NT M̄ −MT N̄

2i
=Z

and this proves that (α(F )(Z)) is positive and non-degenerate.
This finishes the proof of the Theorem for z= 0. �

The map F �→ α(F ) defines a representation of the symplectic group Sp(n)
in the Siegel space Σn. For later use it is useful to introduce the determinant:
δ(F,Z) = det(A + BZ), F ∈ Sp(n), Z ∈ Σn. The following results are easy al-
gebraic computations.
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Proposition 30 We have, for every F1,F2 ∈ Sp(n),

(i) α(F1F2)= α(F1)α(F2).
(ii) δ(F1F2,Z)= δ(F1, α(F2)(Z))δ(F2,Z).

(iii) For every Z1,Z2 ∈ Σn there exists F ∈ Sp(n) such that α(F )(Z1) = Z2. In
other words the representation α is transitive in Σn.

Many other properties of the representation α are studied in [139] and [77].
For completeness, we state the following.

Corollary 11 The propagator Ût is well defined and it is a unitary operator in
L2(Rn).

Proof For every coherent state ϕz, Ûtϕz is solution of the Schrödinger equation. As
we have seen in Chap. 1, the family {ϕz}z∈R2n is overcomplete in L2(Rn). So for-
mula (3.20) wholly determines the unitary group Ût . In a preliminary step we can
see that Ûtψ is well defined for ψ ∈ S(Rn) using inverse Fourier–Bargmann trans-
form, that Ûtψ ∈ S(Rn), and that ‖Ûtψ‖ = ‖ψ‖. So we can extend Ût in L2(Rn).

In particular it results that Ût is a unitary operator and that Ĥt has a unique self-
adjoint extension in L2(Rn). �

It will be useful to compute the Fourier–Bargmann transform of Ûtϕz.
Recall that Û (t)= R̂(Ft ) where R̂(F ) is the metaplectic operator corresponding

to the symplectic 2n× 2n matrix F and that Ft has a four blocks decomposition

Ft =
(
At Bt
Ct Dt

)

Now we define n× n complex matrices Yt , Zt as follows:

Yt =At + iBt − i(Ct + iDt ), Zt =At + iBt + i(Ct + iDt )

One has the following property, using the symplecticity of Ft :

Lemma 22

Z∗Z = Y ∗Y − 41

Yt is invertible.

One can define the matrix Wt as follows:

Wt = ZtY−1
t

which satisfies the following property.
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Lemma 23

(i)

W0 = 0

(ii)

W ∗
t Wt < 1

(iii)

(Γ + i1)−1 = 1

2i
(1+W)

In particular W is a symmetric matrix.

Proof

(i) Is an easy consequence of the fact that F0 = 1, hence Y0 = 21, Z0 = 0.
(ii) We have

W ∗W = (
Y ∗

)−1
Z∗ZY−1 = (

Y ∗
)−1(

Y ∗Y − 41
)
Y−1 = 1− 4

(
YY ∗

)−1
.

(iii) Is a simple algebraic computation. �

Theorem 17 The matrix elements 〈ϕz, Ûtϕz′ 〉 are given by the following formula:
〈
ϕz, Ûtϕz′

〉 = 2n/2 det−1/2(At +Dt + i(Bt −Ct)
)

× e−i/2σ(Ft z′,z)e−(x2+ξ2)/4e−W(ξ+ix)·(ξ+ix)/4 (3.39)

where z− Ftz′ = (x, ξ) and

Wt =
(
At −Dt + i(Bt +Ct)

)(
At +Dt + i(Bt −Ct)

)−1

Proof For simplicity we forget the time index t everywhere.
It is enough to assume that z′ = 0. From the metaplectic invariance, we get

〈
ϕz, Ûϕz′

〉 = 〈
ϕz, T̂

(
Fz′

)
ϕ(Γ )

〉

= e−iσ (Fz′,z)/2
〈
ϕz−Fz′ , ϕ(Γ )

〉
(3.40)

So we have to compute 〈ϕX,ϕ(Γ )〉.
We have

〈
ϕX,ϕ

(Γ )
〉 = π−n/2 det−1/2(A+ iB)e 1

2 (ip·q−q2)

×
∫
Rn

e
i
2 (Γ+i)x·xe−ix·(p+iq) dx (3.41)

So the result follows from computation of the Fourier transform of a generalized
Gaussian (or squeezed state). �
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3.3 The Metaplectic Transformations

Recall that a metaplectic transformation associated with a linear symplectic trans-
formation F ∈ Sp(n) in R

2n, is a unitary operator R̂(F ) in L2(Rn) satisfying one of
the following equivalent conditions

R̂(F )∗ÂR̂(F )= Â ◦ F, ∀A ∈ S
(
R

2n) (3.42)

R̂(F )∗T̂ (X)R̂(F )= T̂ [F−1(X)
]
, ∀X ∈R

2n (3.43)

R̂(F )∗ÂR̂(F )= Â ◦ F,
for A(q,p)= qj , 1≤ j ≤ n and A(q,p)= pk, 1≤ k ≤ n (3.44)

Â is the Weyl quantization of the classical symbol A(q,p) and we recall that the
operator T̂ (X) is defined by

T̂ (X)= exp

(
i

�

(
ξ · Q̂− x · P̂ )

)
(3.45)

when X = (x, ξ) ∈R
2n.

We shall prove below that for every F ∈ Sp(2n) there exists a metaplectic trans-
formation R̂(F ). This transformation is unique up to a multiplication by a complex
number of modulus 1.

Lemma 24 If R̂1(F ) and R̂2(F ) are two metaplectic operators associated to the
same symplectic map F then there exists λ ∈C, |λ| = 1, such that R̂1(F )= λR̂2(F ).

Proof Denote R̂ = R̂1(F )R̂2(F )
−1. Then we have R̂∗T̂ (X)R̂ = T̂ (X) for all

X ∈R
2n. Applying the Schur lemma 10 we get R̂ = λ1, λ ∈ C. But R̂ is unitary

so that |λ| = 1. �

We shall prove here that F �→ R̂(F ) defines a projective representation of the
real symplectic group Sp(n) with sign indetermination only. More precisely, let
us denote by Mp(n) the group of metaplectic transformations and πp the natural
projection: Mp → Sp(2n) then the metaplectic representation is a group homo-
morphism F �→ R̂(F ), from Sp(n) onto Mp(n)/{1,−1}, such that πp[R̂(F )] = F ,
∀F ∈ Sp(2n) For more details about the metaplectic transformations see [133].

Proposition 31 For every F ∈ Sp(n) we can find a C1-smooth curve Ft , t ∈ [0,1],
in Sp(n), such that F0 = 1 and F1 = F .

Proof An explicit way to do that is to use the polar decomposition of F , F = V |F |
where V is a symplectic orthogonal matrix and |F | = √FT F is positive symplectic
matrix. Each of these matrices have a logarithm, so F = eKeL with K,L Hamilto-
nian matrices, and we can choose Ft = etKetL. �
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Let Ft be as in Proposition 31. Ft is the linear flow defined by the quadratic
Hamiltonian Ht(z) = 1

2Stz · z where St = −J ḞtF−1
t . So using above results, we

define R̂(F )= Û1. Here Ût is the solution of the Schrödinger equation

i�
d

dt
Ût = Ĥ (t)Ût (3.46)

that obeys Û0 = 1. Namely it is the quantum propagator of the quadratic Hamilto-
nian Ĥ (t). That the metaplectic operator so defined satisfies the required properties
follows from Theorem 15.

Proposition 32 Let us consider two symplectic paths Ft and F ′t joining 1 (t = 0)
to F (t = 1). Then we have Û1 =±Û ′1 (with obvious notation).

Moreover, if F 1,F 2 ∈ Sp(2n) then we have

R̂
(
F 1)R̂(F 2)=±R̂(F 1F 2) (3.47)

Proof We first remark that the propagator of a quadratic Hamiltonian is determined
by its action on squeezed states ϕΓ and its classical flow. So using (3.20) we see that
the phase shift between the two paths comes from variation of argument between 0
and 1 of the complex numbers b(t)= det(At + iBt ) and b′(t)= det(A′t + iB ′t ).

We have arg[b(t)] = (∫ t0 ḃ(s)
b(s)

ds) and by a complex analysis argument, we have


(∫ 1

0

ḃ(s)

b(s)
ds

)
=

(∫ 1

0

ḃ′(s)
b′(s)

ds

)
+ 2πN

with N ∈ Z. So we get

b(1)−1/2 = eiNπb′(1)−1/2

The second part of the proposition is an easy consequence of Theorem 16 concern-
ing propagation of squeezed coherent states and Proposition 30. More precisely,
the sign indetermination in (3.47) is a consequence of variations for the phase of
det(A + iB) concerning F = F 1 and F = F 2. To compare with F 1F 2 we apply
Proposition 30. �

Remark 12 A geometrical consequence of Proposition 30 is the following. The map
F �→ R̂(F ) induces a group isomorphism between the symplectic group Sp(n) and
the quotient of the metaplectic group Mp(n)/{−1,1}. In other words the group
Mp(n) is a two-cover of Sp(n).

An interesting property of the metaplectic representation is the following.

Proposition 33 The metaplectic representation R̂ has two irreductible non-
equivalent components in L2(Rn). These components are the subspaces L2

od(R
n)

of odd states and L2
ev(R

n) of even states.
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Proof Let us first remark that the subspaces L2
od, ev(R

n) are invariant for R̂(F ) be-
cause quadratic Hamiltonians commute with the parity operator Πψ(x)=ψ(−x).

Now we have to prove that L2
od, ev(R

n) are irreducible for R̂.

Let us begin by considering the subspace L2
ev(R

n). Let B̂ be a bounded operator
in L2

ev(R
n) such that R̂(F )B̂ = B̂R̂(F ) for every F ∈ Sp(n). According to the Schur

lemma, we have to prove that B̂ = λ1, λ ∈C.
In particular B̂ commutes with the propagator of the harmonic oscillator Ut =

eitĤos . We can suppose that B̂ is Hermitian. So B̂ is diagonal in the Hermite basis
φα (see Chap. 1). We have B̂φα = λαφα for every α ∈N

n.
To conclude we have to prove that λα = λβ if |α| and |β| are even.
Assume for simplicity that n= 1 (the proof is also valid for n≥ 2).
Let us consider the metaplectic transformation R̂t = eitx

2
associated to the sym-

plectic transform Ft = exp
( 0 t

0 0

)
.

We have

R̂tφk =
∑
j≥0

c(t, k, j)φj

Using that R̂t B̂ = B̂R̂t we get

c(t, k, j)λj = c(t, k, j)λk (3.48)

Now we shall prove that if k−j is even then c(t, k, j) �= 0 for some t hence λj = λk .
This a consequence of the following

c(t, k, j)=
∫

eitx
2
φk(x)φj (x) dx

If c(t, k, j)= 0 for every t then
∫
R
x2mφk(x)φj (x) dx = 0 for every m ∈N. But this

is not possible if k− j is even (see properties of Hermite functions).
So we have proved that L2

ev(R) is irreducible. With the same proof we also find
that L2

od(R) is also irreducible.
Assume now that B̂R̂(F ) = R̂(F )B̂ and that B̂ is a linear transformation from

L2
ev(R) in L2

odd(R). We still have B̂φk = λkφk . But an Hermite function is odd or
even so λk = 0 for all k and B̂ = 0. So these representations are non-equivalent. �

3.4 Representation of the Quantum Propagator in Terms
of the Generator of Squeezed States

In this section our aim is to revisit some results obtained in [49] and [51].
Let us start with classical Hamiltonian mechanics in the complex model Cn, ζ =

q−ip√
2

. As above, F is a classical flow for a quadratic, time-dependent Hamiltonian.

Let us denote by Fc the same flow in C
n. We easily get

Fcζ = 1

2

(
Yζ + Z̄ζ̄ ) (3.49)
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where

Y =A+D + i(B −C), Z =A−D + i(B +C) (3.50)

Recall that all these matrices are time dependent and Y is invertible. So we have Y =
|Y |V (polar decomposition), where |Y |2 = YY ∗ and V is a unitary transformation
of Cn (V ∈ SU(n)).

We already introduced W = ZY−1 and we know that 0≤W ∗W < 1. So we can
factorize Fc in the following way.

Fc =Dc · Sc (3.51)

Scζ = V ζ (3.52)

Dcζ = (
1−W ∗W

)−1/2
ζ + (

1−W ∗W
)−1/2

W ∗ζ̄ (3.53)

Coming back to the real representation in R
2n, S is an orthogonal symplectic trans-

formation (a rotation in the phase space). Let us compute R̂(S). To do that, we write
V = eiL (this is possible locally in time). L is an Hermitian complex matrix. V is
the flow at time 12 of the quadratic Hamiltonian

Hc
S

(
ζ, ζ̄

)= 1

2

(
ζ ·LT ζ̄ + ζ̄ ·Lζ )

Let H be the real representation of Hc, then we have R̂(S)= e−iĤS . So R̂(S) is a
quantum rotation because we have, for every observable O ,

eiĤS Ôe−iĤS = Ô · S

It is more difficult to compute R̂(D) (the dilation or squeezing part).
We write down the polar decomposition of W , W = U |W |, |W |2 = W ∗W , U

unitary transformation in C
n. We are looking for a generator at (new) time 1 for

the transformation D. Let us introduce a complex transformation B in C
n with the

polar decomposition B =U |B| (|B|2 = B∗B). After standard computations, we get

exp

(
0 B∗
B 0

)
=
(

cosh |B| − sinh |B|U∗
U sinh |B| −U cosh |B|U∗

)
(3.54)

Comparing with previous computation of Dc, we get

cosh |B| = (
1−W ∗W

)−1/2 (3.55)

sinh |B|U∗ = cosh |B|W ∗ (3.56)

sinh |B| = cosh |B||W | (3.57)

2This time is a new time, which has nothing to do with t .
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We can solve the last equation:

|B| = arg tanh |W | (3.58)

More explicitly we have

B =W
∑
n≥0

(W ∗W)n

2n+ 1
(3.59)

In particular B is a symmetric matrix (BT = B) because W is a symmetric matrix.
As for the rotation part, we can get now a dilation generator,

Hc
D =

i

2

(
ζ ·Bζ − ζ̄ ·B∗ζ̄ )

such that the (complex) equation of motion is

ζ̇ = B∗ζ̄
Finally we restore the time t . We have a decomposition Ft =D(Bt )S(Lt ) such that
Ût = λt D̂(Bt )Ŝ(Lt ), where λt is a complex number, |λt | = 1 and

D(Bt )= e
1
2 (a

†·Bta†−a·Bt ∗a) (3.60)

is the generator of squeezed states. More properties of D(B) will be given at the
end of this section. We can get now

Proposition 34 For every time t we have

Ûtϕ0 = det1/2 VtφBt (3.61)

where φBt is the squeezed state defined by

φBt = D̂(Bt )ϕ0 (3.62)

and detV 1/2
t is defined by continuity, starting from t = 0 (V0 = 1).

Proof It is enough to show that ϕ0 is an eigenstate of Ŝ(L) with eigenvalue γ =
1
2 Tr(L). Clearly

(
a† ·Lta+ a ·La†)ϕ0 =

∑
i,j

(
Lj,ia

†
jai +Li,jaia

†
j

)
ϕ0 =

∑
i

Li,iϕ0

since aiϕ0 = 0, ∀i = 1, . . . , n. We get the result by exponentiating. Let us remark
here that even if L is defined in a small time interval we can conclude because the
prefactor of φBt must be continuous in time t . �

We can also demonstrate that the quantum evolution of a coherent state ϕz is
simply a displaced along the classical motion of a squeezed state:
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Proposition 35 Let zt = (qt ,pt ) be the phase space point of the classical flow at
time t starting with initial conditions z= (q,p). Thus

(
qt
pt

)
= Ft

(
q

p

)

One has

Û (t)ϕz = detV 1/2
t T̂ (zt )ΦBt

Proof One uses the fact that, due to that Û (t)= R̂(Ft ),
Û(t)ϕz = Û (t)T̂ (z)ϕ0 = T̂ (zt )Û (t)ϕ0 �

More on n-Dimensional Squeezed States Consider now any complex symmetric
n× n matrix W such that W ∗W < 1. Take as before the polar decomposition of W
to be

W =U |W |, |W | = (
W ∗W

)1/2

U being unitary. We define the n× n complex symmetric matrix B to be

B =U arg tanh |W |
More explicitly writing the Taylor expansion of arg tanhu at 0 we find

B =W
∞∑
n=0

(W ∗W)n

2n+ 1
and we have |W | = tanh |B| (3.63)

Now we construct the unitary operator D(B) in L2(Rn) as

D(B)= exp

(
1

2

(
a† ·Ba† − a ·B∗a)

)

We have

Lemma 25

(i) D(B) is unitary with inverse D(−B).
(ii)

D(B)

(
a
a†

)
D(−B)=

(
(1−WW ∗)−1/2 −W(1−W ∗W))−1/2

−(1−W ∗W)−1/2W ∗ (1−W ∗W)−1/2

)(
a
a†

)

Proof Let us denote

aB(t)=D(tB)aD(−tB), a†
B(t)=D(tB)a†D(−tB)
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Computing

d

dt
aB(t)=D(tB)

[
1

2

(
a† ·Ba† − a ·B∗a),a

]
D(−tB)

we get, using the commuting relations,

d

dt
aB(t)=−BaB(t)

and the same for a†:

d

dt
a†
B(t)= B∗a∗B(t)

We get the result by computing exp
(( 0 B∗
B 0

))
as in (3.54). �

We define the n-dimensional squeezed state as

ψ(B) =D(B)ϕ0

where ϕ0 is the standard Gaussian (ground state of the Harmonic oscillator).
We shall first compute ψ(B) in the Fock–Bargmann representation. We recall that

in the Fock–Bargmann representation one has

B[ϕ0](ζ )= (2π�)−n/2

(independent of ζ ∈C
n).

Then we try the following ansatz:

B
[
ψ(B)

]
(ζ )= a exp

(
1

2�
ζ ·Mζ

)
(3.64)

where M is a complex symmetric matrix that we want to compute. From now on we
assume �= 1.

Let us consider the antihermitian Hamiltonian HB to be

HB = 1

2

(
a† ·Ba† − a ·B∗a)

Take a fictitious time t to vary between 0 and 1 and consider the evolution operator
UB(t)= etHB . Then ψ(B)(t)=UB(t)ϕ0 satisfies the differential equation

d

dt
ψ(B)(t)=HBψ(B)(t)

with the following limiting values:

ψ(B)(0)= ϕ0, ψ(B)(1)=ψ(B)
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In the Fock–Bargmann representation HB has the following form:

HB(ζ, ∂ζ )= 1

2
(ζ ·Bζ − ∂ζ ·B∗∂ζ )

Using the ansatz (3.64) for ψ(B)(t) we see that one has

(
ȧ + a 1

2
ζ · Ṁζ

)
exp

(
1

2
ζ ·Mζ

)
= a(t)HB(ζ, ∂ζ ) exp

(
1

2
ζ ·Mζ

)

Now we compute the right hand side using the convention of summation over re-
peated indices; we get

1

2
a(t)

(
1

2
ζ ·Bζ − 1

2
∂ζj B

∗
ijMikζk − 1

2
B∗ij ∂ζj ζkMki

)
exp

(
1

2
ζ ·Mζ

)

= 1

2
a
(
ζ ·Bζ − Tr(B∗M)− ζ ·MB∗Mζ

)
exp

(
1

2
ζ ·Mζ

)

Identifying we get

Ṁ = B −MB∗M, ȧ =−1

2
a Tr(B∗M)

Let us solve the differential equation

∂tM =−MB∗M +B (3.65)

with Mt=0 = 0.
We consider N such as

M =UN
with U independent of t given by the polar decomposition of B .

Then equation (3.65) becomes

U∂tN =−UN |B|N +U |B|
Thus it reduces to

∂tN =−N |B|N + |B|
At time t = 0, N = 0 thus the solution at time t = 1 is a function of |B| (thus
commuting with |B|) given by

N = tanh |B|
This implies that

M =U tanh |B| =U |W | =W
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Now consider the differential equation satisfied by a(t). We get

2ȧ =−aTr(B∗M)=−aTr
(|B|U∗UN)=−aTr

(|B| tanh |B|)

Since a(0)= (2π)−n/2 we get

a(t) = (2π)−n/2 exp

(
−1

2

∫ t

0
ds Tr

(|B| tanh s|B|)
)

= (2π)−n/2 exp

(
−1

2
Tr log cosh t |B|

)

a(1) = (2π)−n/2
(
det cosh |B|)−1/2 = (2π)−n/2(det

(
1− |W |2))1/4

where we have used that eTrA = det eA.
Thus the squeezed state ψ(B) =D(B)ϕ0 has the following Fock–Bargmann rep-

resentation

ψ(B)(ζ )= (2π)−n/2(det cosh |B|)−1/2
exp

(
1

2
ζ ·Wζ

)
(3.66)

Now using the inverse Fock–Bargmann transform we go back to the coordinate
representation of ψ(B). One has to compute the following integral:

∫
dq dp exp

(
−
(
x2

2
− x√2ζ̄ + ζ̄ 2

2

)
− ζ · ζ̄ + 1

2
ζ ·Wζ

)
(3.67)

The argument of the exponential can be rewritten as

−x
2

2
− 1

4
q2 − ip · q

2
+ p2

4
+ x · (q + ip)− 1

2

(
q2 + p2)

+ 1

4
(q ·Wq − ip ·Wq − iq ·Wp− p ·Wp)

=−x
2

2
+ x(q + ip)− 3

4
q2 − 1

4
p2 + 1

4
(q ·Wq − ip ·Wq − iq ·Wp− p ·Wp)

Thus it appears a quadratic form in q, p which can be written in matrix form as

−1

2
(q,p)M

(
q

p

)

with

M= 1

2

(
31−W −i(W + 1)
−i(W + 1) W + 1

)

One has

M−1 = 1

2

(
1 i

i (31−W)(1+W)−1

)
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Thus the integral over q,p in (3.67) will be the exponential of the following
quadratic form:

−1

2
(x, ix)M−1

(
x

ix

)
− x2

2
(3.68)

with a phase which is exactly

(
det(M/2π)

)−1/2 = (2π)n/2(det(1+W)
)−1/2

It is easy to compute the expression in (3.68). It gives

−1

2
x · (1−W)(1+W)−1x

Thus restoring the � dependence and the factors π we get the following result.

Proposition 36 The squeezed state ψ(B) is actually a Gaussian in the position rep-
resentation given by

ψ(B)(x)= aΓ exp

(
i

2�
x · Γ x

)
(3.69)

with

Γ = i(1−W)(1+W)−1

and

aΓ = (π�)−n/2
(
det

(
1− |W |2))−1/2

(1+W)−1/2

3.5 Representation of the Weyl Symbol of the Metaplectic
Operators

See Chap. 2 for the definitions of covariant and contravariant Weyl symbols. We
have shown that R̂(F ) = Û1 where Ût is the quantum propagator of the quadratic
Hamiltonian,

H(t)= 1

2

(
Q̂, P̂

)
Mt

(
Q̂

P̂

)
(3.70)

with Mt = −J ḞtF−1
t , Ft being a continuous path in the space Sp(n) joining 1 at

t = 0 to F at t = 1. In [52] the authors show the following result.
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Theorem 18

(i) If det(1 + F) �= 0 the contravariant Weyl symbol of R̂(F ) has the following
form:

R(F,X)= eiπν
∣∣det(1+ F)∣∣−1/2 exp

(−iJ (1− F)(1+ F)−1X ·X) (3.71)

where ν ∈ Z if det(1+ F) > 0 and ν ∈ Z+ 1/2 if det(1+ F) < 0.

(ii) If det(1− F) �= 0 the covariant Weyl symbol of R̂(F ) has the following form:

R#(F,X)= eiπμ
∣∣det(1−F)∣∣−1/2 exp

(
− i

4
J (1+F)(1−F)−1X ·X

)
(3.72)

where μ= ν̄ + n
2 and ν̄ ∈ Z.

This formula has been heuristically proposed by Mehlig and Wilkinson [143]
without the computation of the phase. See also [61].

We can restore the � dependence of R(F,X) and R#(F,X) by putting a factor
�
−1 in the argument of the exponentials.

Proof Let us state the following proposition which is a direct consequence of (3.39)
after algebraic computations.

Proposition 37 The matrix elements of R̂(F ) on coherent states ϕz, are given by
the following formula:

〈
ϕz+X

∣∣R̂(F )ϕz〉 = 2n
(
det

(
1+ F + iJ (1− F)))−1/2

× exp

(
−
∣∣∣∣z+ X

2

∣∣∣∣
2

+ 1

2
iσ (X, z)+KF

(
z+ X− iJX

2

)

×
(
z+ X− iJX

2

))
(3.73)

where

KF = (1+ F)
(
1+ F + iJ (1− F))−1 (3.74)

Now we can compute the distribution covariant symbol of R̂(F ) by plugging
formula (3.73) into formula (2.29).

Let us begin with the regular case det(1 − F) �= 0 and compute the covariant
symbol.

Using Proposition 37 and formula (3.39), we have to compute a Gaussian integral
with a complex, quadratic, non-degenerate covariance matrix (see [117]).

This covariance matrix is KF − 1 and we have clearly

KF − 1=−iJ (1− F)(1+ F + iJ (1− F))−1 =−(1− iΛ)−1
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where Λ= (1+ F)(1− F)−1J is a real symmetric matrix. So we have

�(KF − 1)=−(1+Λ2)−1
, (KF − 1)=−Λ(1+Λ2)−1 (3.75)

So that 1−KF is in the Siegel spaceΣ2n and Theorem 7.6.1 of [117] can be applied.
The only serious problem is to compute the index μ.

Let us define a path of 2n× 2n symplectic matrices as follows: Gt = etπJ2n if
det(1− F) > 0, and Gt =G2

t ⊗ etπJ2n−2 if det(1− F) < 0, where

G2 =
(
η(t) 0

0 1
η(t)

)

where η is a smooth function on [0,1] such that η(0) = 1, η(t) > 1 on ]0,1] and
where J2n is the 2n × 2n matrix defining the symplectic matrix on the Euclidean
space R

2n.
G1 and F are in the same connected component of Sp�(2n) where Sp�(2n) =

{F ∈ Sp(2n),det(1− F) �= 0}. So we can consider a path s �→ F ′s in Sp�(2n) such
that F ′0 =G1 and F ′1 = F .

Let us consider the following “argument of determinant” functions for families
of complex matrices:

θ [Ft ] = argc
[
det

(
1+ Ft + iJ (1− Ft)

)]
(3.76)

β[F ] = arg+
[
det(1−KF )−1] (3.77)

where argc means that t �→ θ [Ft ] is continuous in t and θ [1] = 0 (F0 = 1), and
S �→ arg+[det(S)] is the analytic determination defined on the Siegel space Σ2n
such that arg+[det(S)] = 0 if S is real (see [117], vol. 1, Sect. 3.4).

With these notations we have

μ= β[F ] − θ [F ]
2π

(3.78)

Let us consider first the case det(1− F) > 0.
Using that J has the spectrum ±i, we get det(1+Gt + iJ (1−Gt))= 4nentπi

and 1−KG1 = 1.
Let us remark that det(1 − KF )

−1 = det(1 − F)−1 det(1 − F + iJ (1 + F)).
Let us introduce "(E,M) = det(1 − E +M(1 + E)) for E ∈ Sp(2n) and M ∈
sp+(2n,C). Let consider the closed path C in Sp(2n) defined by adding {Gt }0≤t≤1
and {F ′s}0≤s≤1. We denote by 2πν̄ the variation of the argument for "(•,M)

along C. Then we get easily

β(F )= θ [F ] + 2πν̄ + nπ, n ∈ Z (3.79)

When det(1−F) < 0, by an explicit computation, we find arg+[det(1−KG1)] = 0.
So we can conclude as above.

The formula for the contravariant symbol can be easily deduced from the covari-
ant formula using a symplectic Fourier transform. �
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Remark 13 When the quadratic Hamiltonian H is time independent then Ft = etJ S ,
S is a symmetric matrix. So if det(etJ S + 1) �= 0, then we get applying (3.71),

R
(
etJ S,X

)= eiπν
∣∣∣∣det

[
cosh

(
t

2
JS

)]∣∣∣∣
−1/2

exp

(
iσ

(
tanh

(
t

2
JS

)
X ·X

))
(3.80)

This formula was obtained in [118]. In particular the Mehler formula for the Har-
monic oscillator is obtained with S = 1.

In [61] the author discuss the Maslov index related with the metaplectic repre-
sentation.

Remark 14 In the paper [52] the authors give a different method to compute the con-
travariant Weyl symbol R(F,X) inspired by [76]. They consider a smooth family
Ft of linear symplectic transformations associated with a family of time-dependent
quadratic Hamiltonians Ht . After quantization we have a quantum propagator Ût
with its contravariant Weyl symbolUw

t (X). We make the ansatzUw
t (X)= αteX·MtX

where αt is a complex number, Mt is a symmetric matrix. Using the Schrödinger
equation ∂tUw

t =Ht �Uw
t , and the Moyal product, we find for Mt a Riccati equa-

tion which is solved with the classical motion. Afterwards, αt is found by solving a
Liouville equation hence we recover the previous results (see [52] for details).

This approach will be adapted later in this book in the fermionic setting.

3.6 Traps

We now give an application in physics of our computations concerning quadratic
Hamiltonians.

The quantum motion of an ion in a quadrupolar radio-frequency trap is solved
exactly in terms of the classical trajectories. It is proven that the quantum stability
regions coincide with the stability regions of the associated Mathieu equation. By
quantum stability we mean that the quantum evolution over one period (the so-
called Floquet operator) has only pure-point spectrum. Thus the quantum motion
is “trapped” in a suitable sense. We exhibit the set of eigenstates of the Floquet
operator.

3.6.1 The Classical Motion

Let us consider a three-dimensional Hamiltonian of the following form:

H(t)= p2

2m
+ e

r2
0

(
z2 − 1

2

(
x2 + y2))(V1 − V0 cos(ωt)

)
(3.81)

Here p= (px,py,pz) is the three-dimensional momentum, m the mass of the ion,
and r = (x, y, z) is the three-dimensional position. r0 is the size of the trap and e
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the charge of the electron. V1 (resp. V0) is the constant (resp. alternating) voltage.
Such time-periodic Hamiltonians are realized by using traps that are hyperboloids of
revolution along the z-axis that are submitted to a direct current plus an alternating
current voltage. Also known as Paul traps they allow to confine isolated ions like
cesium for rather long times, and also a few ions together in the same trap.

It is obvious to see that this Hamiltonian is purely quadratic and that it decouples
into three one-dimensional Hamiltonians:

H(t)= hx(t)⊗ 1⊗ 1+ 1⊗ hy(t)⊗ 1+ 1⊗ 1⊗ hz(t)

where hx(t) = hy(t) = p2
x

2m − x2

2 (α − β cos(ωt)), hz(t) = p2
z

2m + z2(α − β cos(ωt))
with α = e

r2
0
V1, β = e

r2
0
V0.

Thus x(t), y(t), z(t) evolve according to the Mathieu equations:

ẍ(t)− x(t)(α/m− cos(ωt)β/m
)= 0, z̈(t)+ z(t)(2α/m− cos(ωt)2β/m

)= 0
(3.82)

It is known that each of these equations have stability regions parametrized by
(α,β,ω), in which the motion remains bounded. Furthermore it can be shown that
it is quasiperiodic with Floquet exponent ρ. See [142].

Theorem 19 There exist ρ,ρ′ ∈ R and rapidly converging sequences cn, c′n ∈ R

depending on a = 4α/mω2, b = 2β/mω2 such that the solution of (3.82) with
x(0)= u, ẋ(t)= v/m,z(0)= u′, ż(0)= v′/m are given by

x(t, u, v) = u

c

+∞∑
−∞

cn cos

(
(2n+ ρ)ωt

2

)
+ 2v

mωd

+∞∑
−∞

cn sin

(
(2n+ ρ)ωt

2

)

z(t, u′, v′) = u′

c′
+∞∑
−∞

c′n cos

(
(2n+ ρ′)ωt

2

)
+ 2v′

mωd ′
+∞∑
−∞

c′n sin

(
(2n+ ρ′)ωt

2

)

where c=∑
Z
cn, d =∑

Z
(2n+ρ)cn, and similarly for c′, d ′. Note that the Floquet

exponent ρ is the same for x, y but ρ′ �= ρ.

The proof depends heavily on the linearity of Mathieu’s equations. Note that the
stability regions are delimited by the curves Cj for which (3.82) has periodic solu-
tions, i.e. for which ρ = j ∈ N. For given α,β , there exists ω1,ω2 ∈ R

+ such that
for any ω ∈]ω1,ω2[ the classical equations of motion (3.82) have stable solutions.
ω1 has to be large enough hence the name “radio-frequency traps”.

3.7 The Quantum Evolution

Since ions are actually quantum objects it is relevant to consider now the quantum
problem. As known from the general considerations of this Chapter on quadratic
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Hamiltonians the quantum evolution for Hamiltonians of the form (3.81) is com-
pletely determined by the quantum motion. The Hilbert space of quantum states is
H= L2(R3). One thus finds that the time-periodic Hamiltonian

Ĥ (t) := − �
2

2m
Δ+ (

α − β cos(ωt)
)(
z2 − x2 + y2

2

)

where Δ is the 3-dimensional Laplacian and generates an unitary operator Û(t, s)
that evolves a quantum state from time s to time t . The Floquet operator is the
operator on time evolution over one period T = 2π/ω:

Û (T ,0)= Ûx(T ,0)Ûy(T ,0)Ûz(T ,0)
We shall denote by ÛF (resp. Û ′F ) the operator Ûx(T ,0) (resp. Ûz(T ,0)). Then one
has the following results:

Theorem 20

(i) Given α,β ∈R there exists ω1,ω2 ∈R
+ as in the previous section such that for

any ψ ∈H and any ε > 0 there exists R ∈R
+ such that

sup
t

∥∥F (|r|>R
)
Û(t, s)ψ

∥∥< ε

F(|r|>R) being the characteristic function of the exterior of the ball |r| ≤R.
(ii) For α,β,ω as above, ÛF has pure-point spectrum of the form {exp(−iρπ(k +

1/2))}k∈N where ρ is as in the preceding section the classical Floquet exponent.
Similarly for Û ′F .

Remark 15 A complete proof can be seen in [47].
(i) says that the time evolution of any quantum state remains essentially localized

along the quantum evolution.

Proof To prove (i) it is enough to state the result in one dimension, and to as-
sume m = � = 1. We establish the result for ψ ∈ C∞0 which is a dense set.
Let W(−2x, ξ, t) be the Wigner function of the state ψ(t) := Û (t,0)ψ . Then
W(x, ., t) ∈ L1(R), ∀t ∈R, ∀x ∈R. Furthermore we have

∣∣∣∣ψ
(
t,−x

2

)∣∣∣∣
2

=
∫
dξ W(x, ξ, t)

It follows that

∥∥F (|x|>R
)
ψ(t)

∥∥2 =
∫
|x|>2R

dx dξ W(x, ξ, t)=
∫
|x|>2R

dx dξ W
(
x(t), ẋ(t),0

)

where x(t) is a solution of (3.82) with x(0) = x, ẋ(0) = ξ . Then we perform a
change of variables with uniform (in t) Jacobian, the linearity of Mathieu’s equation
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and the boundedness in time of its solution in the stable region, together with the
fact that W(x, ξ, t) ∈ L1(R2) to conclude. �

An extension of Theorem 20 to Hermite-like wavefunctions is the following:
define

Φk(t, x)= (Lt )−1/2
(
L∗t
Lt

)k/2
Hk

(
x/
√
�|Lt |

)
exp

(
iNtx

2

2�Lt

)

where Hk are the normalized Hermite polynomials and the determination of the
square-root is followed by continuity from t = 0. We have

Û (t,0)Φk(0, .)=Φk(t, .), ∀t ∈R

This can be proven by using the Trotter product formula, a steplike approximation
fN(t) of the function f (t)= α−β cos(ωt) and the continuity of solutions of (3.82)
when fN → f . See [47] and [99, 100] for details.

The normalized eigenstates of ÛF are generalized squeezed states. Let us assume
m= 1 for simplicity. Let F(t) be the symplectic 2× 2 matrix solution of

Ḟ = JMF

where

M(t)=
(

1 0
0 f (t)

)

f (t)= α − β cos(ωt)

F (t)=
(
At Bt
Ct Dt

)

We choose suitable initial data F(0)= ( g 0
0 g−1

)
with

g =
(
ωd

2c

)−1/2

We define Lt =At + iBt , Nt = Ct + iDt . For these initial data, we have

Lt = g

c
eiρωt/2

+∞∑
−∞

cneinωt , Nt = 1

gd
eiρωt/2

+∞∑
−∞

cneinωt

It is clear that |Lt |, NtLt are T -periodic where T = 2π/ω, and furthermore

ei(k+1/2) ρωt2 (Lt )
−1/2

(
L∗t
Lt

)k/2
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is also T -periodic. Then we introduce the self-adjoint quasi-energy operator

K =−i� ∂
∂t
+ hx(t)

acting in the Hilbert space

K= L2(R)⊗L2(Tω)

of functions depending on both x and t , T -periodic in t . This formalism has been
introduced by Howland [119] and Yajima [204]. K is closely related to the quantum
evolution operator. We have the following result:

Lemma 26

(i) Assume Ψ ∈ K is an eigenstate of K with eigenvalue λ. Then for any t ∈ Tω ,
Ψ (t, .) ∈ L2(R) and satisfies

Û (t + T , t)Ψ (t)= e−iλT /�Ψ (t)

(ii) Conversely let ψ ∈ L2(R) satisfy

Û (T ,0)ψ = e−iT λ/�ψ

Then Ψ = eiλt/�Û (t,0)ψ ∈K and satisfies

KΨ = λΨ

Proof Define

Ψk(t, x)= e(k+1/2)ρωt/2Φk(x)

Then using the periodicity properties we have Ψk ∈K and

Û (T ,0)Φk(0, .)= exp

(
−iπρ

(
k+ 1

2

))
Φk(0, .)

and thus

KΨk =
(
k + 1

2

)
�ρω

2
Ψk �



Chapter 4
The Semiclassical Evolution of Gaussian
Coherent States

Abstract In this Chapter we consider semiclassical asymptotics of the quantum
evolution of coherent states at any order in the Planck constant. We consider a con-
trol in time of the remainder term depending explicitly on � and on the stability
matrix. We find that the quantum evolved coherent state is in L2-norm well approx-
imated by a squeezed state located around the phase-space point zt of the classical
flow reached at time t , with a dispersion controlled by the stability matrix at point zt .
The idea goes back to Hepp (Commun. Math. Phys. 35:265–277, 1974) and was
further developed by G. Hagedorn (Ann. Phys. 135:58–70, 1981; Ann. Inst. Henri
Poincaré 42:363–374, 1985). The method that we develop here follows the paper
(Combescure and Robert in Asymptot. Anal. 14:377–404, 1997) where we consider
general time-dependent Hamiltonians and use the squeezed states formalism and the
metaplectic transformation (see Chap. 3). The difference between the exact and the
semiclassical evolution is estimated in time t and in the semiclassical parameter �
giving in particular the well known Ehrenfest time of order log(�−1).

We then provide two applications of the semiclassical estimates: the first one con-
cerns the semiclassical estimate of the spreading of quantum wave packets which
are coherent states in terms of the Lyapunov exponents of the classical flow. The sec-
ond application is to the scattering theory for general short range interactions: then
the large time asymptotics can be controlled and the quantum scattering operator
acts on coherent states following the classical scattering theory with good estimates
in �. More accurate estimates can be obtained using the Fourier–Bargmann trans-
form (Robert in Partial Differential Equations and Applications, 2007). We consider
Gevrey type estimates for the semiclassical coefficients and �-exponentially small
remainder estimates in Sobolev norms for solutions of time-dependent Schrödinger
equations.

4.1 General Results and Assumptions

We shall consider the quantum Hamiltonian Ĥ (t) of a possibly time-dependent
problem. We assume that the corresponding time-dependent Schrödinger equation
defines a unique quantum unitary propagator U(t, s). Then we consider the canoni-
cal Gaussian coherent states ϕz where z= (q,p) ∈R

2n is a phase-space point. Then
we let it evolve with the quantum propagator that is we consider the quantum state

M. Combescure, D. Robert, Coherent States and Applications in Mathematical Physics,
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-0196-0_4, © Springer Science+Business Media B.V. 2012
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at time t defined by

Ψz(t) :=U(t,0)ϕz
Semiclassically (when � is small) Ψ (z, t,�) is well approximated in L2-norm by
a superposition of “squeezed states” centered around the phase-space point zt =
Φ(t)z of the classical flow. This study goes back in the pioneering paper by Hepp
[113] and was later developed by G. Hagedorn in a series of papers [99, 100]. In
[49] an approach is developed connecting the semiclassical propagation of coherent
states to the so-called squeezed states. We develop here a generalization of these
results, following the paper [51], allowing general time-dependent Hamiltonians
and estimating the error term with respect to time t , to z and to �.

The knowledge of the time evolution for any Gaussian ϕz is a way to get many
properties for the full propagator U(t,0) (we can always assume that the initial time
is 0). This is easy to understand using that the family {ϕz, z ∈R

2n} is overcomplete
(Chap. 1). Let us denote by Kt(x, y) the Schwartz-distribution kernel of U(t,0).
From overcompleteness we get the following formula:

Kt(x, y)= (2π�)−n
∫
R2n

dz
[
U(t,0)ϕz

]
(x)ϕz(y) (4.1)

This equality holds as Schwartz distributions on R
2n and explains why it is very

useful to solve the Schrödinger equation with coherent state ϕz as initial state:

i�∂tΨz(t)= Ĥ (t)Ψz(t), Ψz(0)= ϕz (4.2)

Several applications will be given later as well for time-dependent and time-
independent Schrödinger equations type.

4.1.1 Assumptions and Notations

Let Ĥ (t) be a self-adjoint Schrödinger Hamiltonian in L2(Rn) obtained by quan-
tizing a general time-dependent symbol H(x, ξ, t) called classical Hamiltonian. We
use the �- Weyl quantization (see Chap. 2). H is assumed to be a C∞-smooth func-
tion for x ∈R

n, ξ ∈R
n, t ∈]−T ,T [0≤ T ≤+∞ satisfying a global estimate:

(A.0) There exist some nonnegative constants m, M , KH,T such that

(
1+ |x|2 + |ξ |2)−M/2∣∣∂γx ∂γ ′ξ H(x, ξ, t)

∣∣≤KH,T
uniformly in (x, ξ) ∈ R

2n, t ∈]−T ,T [ for |γ | + |γ ′| ≥ m. So H may be a
very general Hamiltonian including time-dependent magnetic fields or non
Euclidean metrics. We furthermore assumeH(x, ξ, t) to be such that the clas-
sical and quantum evolutions exist from time 0 to time t for t in some interval
]−T ,T [ where T <+∞ or T =+∞. More precisely:
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(A.1) Given some z= (q0,p0) ∈R
2n there exists a positive T such that the Hamil-

ton equations

q̇t = ∂H

∂p
(qt ,pt , t), ṗt =−∂H

∂q
(qt ,pt , t)

have a unique solution for any t ∈]−T ,T [ starting from initial data z :=
(q0,p0). We denote zt = (qt ,pt ) := Φ(t)z the phase-space point reached at
time t starting by z at time 0.

(A.2) There exists a unique quantum propagator U(t, s), (t, s) ∈ R
2 with the fol-

lowing properties:
(i) U(t, s) is unitary in L2(Rn) with

U(t, s)=U(t, r)U(r, s), ∀(r, s, t) ∈R
3

(ii) U(., .) is a strongly continuous operator-valued function for the operator
norm topology in L2(Rn). The usual norm in L2(Rn) is denoted by ‖.‖.

(iii) Let

B(k)=
{
u ∈ L2(

R
n
) : ∑
|α|+|β|≤k

∥∥xβ∂αx u
∥∥2 := ‖u‖2

B(k) <∞
}

and let B(−k) be the standard dual space of B(k).
Then we assume that there exists some k ∈N such that for any ψ ∈ L2(Rn) and any
s ∈ [−T ,T ] U(t, s)ψ is B(−k)-valued absolutely continuous in t and satisfies the
time-dependent Schrödinger equation

i�
∂

∂t
U(t, s)ψ = Ĥ (t)U(t, s)ψ

in B(−k) at almost every t ∈]−T ,T [.
If H is independent on time t satisfying (A.0), (A.1) is satisfied if the trajectory

is on a compact energy level: H(qt ,pt ) = E with H−1(E) bounded in R
n
q × R

n
p

and (A.2) is satisfied if Ĥ is self-adjoint. But if H depends on time t , no general
conditions are known that ensure properties (A.1), (A.2) to be true. However, we
shall indicate in the usual Schrödinger case with time-dependent potentials or in the
Schrödinger case with time-dependent electric and magnetic fields some general
technical conditions provided by Yajima [202, 205] such that (A.2) holds true for
k = 2:

(1) Let H(x, ξ, t)= 1
2ξ

2 + V (t, x), IT := [−T ,T ] and

V ∈ C
(
IT ,L

p2
(
R
n
))+ C

(
IT ,L

∞(
R
n
))
,

∂V

∂t
∈ Lp1,α1(IT )+L∞,β(IT )

where β > 1, p2 =Max(p,2), p1 = 2np/(n+ 4p) if n≥ 5, p1 > 2p(p+ 1) if
p = 4 and p1 = 2p/(p+ 1) if n≤ 3, α1 > 4p/(4p− n) and

Lm,p(I )=
{
u :

∫
I

dt

[∫
Rn

dx
∣∣u(t, x)∣∣m

]p/m
<∞

}
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(Note that V (t, x) can be less regular in the time variable if it is more regular in
the space variables.) Then property (A.2) is satisfied for s, t ∈ IT × IT and for
any quantization of H(t).

(2) Let H(x, ξ, t) = 1
2 (ξ − A(t, x))2 + V (t, x) where V (t, x) and A(t, x) =

{Aj(t, x)}j=1,...,n are the electric and magnetic vector potentials. If B(t, x) is
the strength tensor of the magnetic field i.e. the skew-symmetric matrix

Bj,k = ∂Ak

∂xj
− ∂Aj

∂xk

we assume the following:
(i) Aj : Rn+1 → R is such that for any multiindex α, ∂αx Aj is C1 in (t, x) ∈

R
n+1.

(ii) There exists ε > 0 such that
∣∣∂αx B(t, x)

∣∣ ≤ Cα(1+ |x|)−1−ε
, |α| ≥ 1

∣∣∂αx A(t, x)
∣∣+ ∣∣∂αx ∂tA(t, x)

∣∣ ≤ Cα, |α| ≥ 1, (t, x) ∈R
n+1

(iii) V :Rn+1 →R belongs to Lp,α(R)+L∞(R) for some p > n/2 with p ≥ 1
and α = 2p/(2p− n).

In Chap. 1 we have described the construction of standard coherent states by
applying the Weyl–Heisenberg operator to the ground state Ψ0 of the n-dimensional
harmonic oscillator with Hamiltonian

K0 := 1

2

(
P̂ 2 + Q̂2

)

ϕz = T̂ (z)Ψ0

(4.3)

In Chap. 3 we have computed an explicit formula for the time evolution of coherent
states driven by any quadratic Hamiltonian in (q,p).

We shall now define generalized coherent states by applying T̂ (z) to the ex-
cited states Ψν of the n-dimensional harmonic oscillator; given a multiindex ν =
(ν1, . . . , νn), Ψν is the normalized eigenstate of (4.3) with eigenvalue |ν| + n/2. We
recall the notation

|ν| =
n∑
j=1

νj

We thus define

Ψ (ν)
z = T̂ (z)Ψν

and ϕz is simply Ψ (0)
z .

Similarly we define generalized squeezed states Φ(ν)
z,B centered around the phase-

space point z. Let W be a symmetric n× n matrix with polar decomposition W =
U |W | where |W | = (W ∗W)1/2 and U a unitary n× n matrix. We assume that

W ∗W ≤ 1
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and define

B :=UArgtanh|W | (4.4)

Now as in Chap. 3 we construct the unitary operator D̂(B) in L2(Rn) as

D̂(B)= exp

(
1

2

(
a∗ ·Ba∗ − a ·B∗a)

)

a∗ and a being the creation and annihilation operators. We define

Φ
(ν)
z,B := T̂ (z)D̂(B)Ψν

Of course we have

Φ
(ν)
0,B =ψ(B)

where ψ(B) is the standard squeezed state, using the notations of Chap. 2 and

Φ
(0)
z,0 = ϕz

using the notation of Chap. 1.

4.1.2 The Semiclassical Evolution of Generalized Coherent States

In this section we consider the quantum evolution of superpositions of generalized
coherent states of the form Ψ

(ν)
z and prove under the above assumptions that, up to

an error term which can be controlled in t, z,�, it is close in L2-norm to a super-
position of squeezed states of the form Φ

(ν)
zt ,Bt

where zt :=Φ(t)z is the phase-space
point reached at time t by the classical flow Φ(t) of H(t), and Bt is well-defined
through the linear stability problem at point zt . We follow the approach developed
in [51] where we use:

– the algebra of the generators of coherent and squeezed states
– the so-called Duhamel principle, which is nothing but the following identity:

U1(t, s)−U2(t, s)= 1

i�

∫ t

s

dτ U1(t, τ )
(
Ĥ1(τ )− Ĥ2(τ )

)
U2(τ, s) (4.5)

where Ui(t, s) is the quantum propagator generated by the time-dependent
Hamiltonian Ĥi(t), i = 1,2. We take Ĥ1(t) = Ĥ (t) and Ĥ2(t) to be the “Tay-
lor expansion up to order 2” of Ĥ (t) around the classical path zt . More precisely:

Ĥ2(t) = H(qt ,pt , t)+
(
Q̂− qt

) · ∂H
∂q

(qt ,pt , t)+
(
P̂ − pt

) · ∂H
∂p

(qt ,pt , t)

+ 1

2

(
Q̂− qt , P̂ − pt

)
Mt

(
Q̂− qt
P̂ − pt

)
(4.6)
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Mt being the Hessian of H(t) computed at point zt = (qt ,pt ):

Mt =
(
∂2H

∂z2

)∣∣∣∣
z=zt

(4.7)

The interesting point is that since Ĥ2(t) is at most quadratic, its quantum propa-
gator is written uniquely through the generators of coherent and squeezed states. In
Chap. 3 we have shown the link between the quantum propagator of purely quadratic
Hamiltonians and the metaplectic transformations. It is shown that the quantum
propagator of purely quadratic Hamiltonians can be decomposed into a quantum
rotation times a squeezing generator. Let us be more explicit: Let ĤQ(t) be a purely
quadratic quantum Hamiltonian of the form

ĤQ(t)=
(
Q̂, P̂

)
S(t)

(
Q̂

P̂

)

with S(t) a 2n× 2n symmetric matrix of the form

S(t)=
(
Gt L̃t
Lt Kt

)

where Gt,Kt are symmetric and L̃ denotes the transpose of L. In what follows S(t)
will be simply Mt . Let F(t) be the symplectic matrix solution of

Ḟ (t)= JMtF (t) (4.8)

with initial data F0 = 1, where

J =
(

0 1
−1 0

)

It has the four-block decomposition

F(t)=
(
A(t) B(t)

C(t) D(t)

)

In Chap. 3 it has been established that the quantum propagator Uq(t,0) of ĤQ(t)
is nothing but the metaplectic operator R̂(F (t)) associated to the symplectic ma-
trix F(t). It implies that the Heisenberg observables Q̂(t), P̂ (t) obey the classical
Newton equations for the Hamiltonian ĤQ(t) as expected. Therefore we have

Lemma 27

Uq(0, t)

(
Q̂

P̂

)
Uq(t,0)= F(t)

(
Q̂

P̂

)

Passing from the (Q̂, P̂ ) representation to the (a∗,a) representation we easily
get
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Lemma 28

Uq(t)
−1

(
a∗
a

)
Uq(t)= 1

2

(
Yt Z̄t
Zt Ȳt

)(
a∗
a

)

Furthermore one can show that R̂(F (t)) decomposes into a product of a rotation
part and a “squeezing” part. Defining the complex matrices:

Yt =A(t)+ iB(t)− i
(
C(t)+ iD(t)), Zt =A(t)+ iB(t)+ i

(
C(t)+ iD(t))

(4.9)
we have the following identity:

Z∗Z = Y ∗Y − 41

and Yt is invertible. The matrix Wt = ZtY−1
t is such that

W ∗
t Wt < 1, W0 = 0

Furthermore it has been shown in Chap. 3 (Lemmas 21 and 23) that it is a symmetric
matrix. Thus one can define the matrix Bt according to (4.4); note that Bt is not to be
confused with the matrix B(t) of the four-block decomposition of F(t). Introducing
the polar decomposition of Yt :

Yt = |Yt |V ∗t
where

|Y |2 = YY ∗
we see that Vt is a smooth function of t and we can define (at least locally in time)
a smooth self-adjoint matrix Γt by

Vt = exp(iΓt )

Let R̂(t) be the following unitary operator in L2(Rn) (metaplectic transformation):

R̂(t)= exp

{
i

2

(
a∗,a

)( 0 Γ̃t
Γt 0

)(
a∗
a

)}

It has the following property:

Lemma 29

R̂(t)

(
a∗
a

)
R̂(t)−1 =

(
Vta∗
(Ṽt )

∗a

)

Remark 16 R̂(t) will be the rotation part of the metaplectic transformation Uq(t,0)
while D̂(Bt ) will be the squeezing part.
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One has the following property:

Proposition 38 The quantum propagator solving the time-dependent Schrödinger
equation

i�
d

dt
Uq(t, s)= ĤQ(t)Uq(t, s), U(s, s)= 1

is given by

Uq(t, s)= D̂(Bt )R̂(t)R̂(s)−1D̂(−Bs)

Due to the chain rule it is enough to show that

Uq(t,0)= D̂(Bt )R̂(t)

The detailed proof can be found in the paper [51].
Now we can derive an explicit formula for the quantum propagator of Ĥ2(t).

Let St (z) be the classical action along the trajectory for the classical Hamilto-
nian H(x, ξ, t) starting at phase-space point z = (q,p) at time 0 and reaching
zt = (qt ,pt ) at time t :

St (z)=
∫ t

0
ds
[
ẋs · ξs −H(xs, ξs, s)

]

and define

δt = St (z)− qt · pt − q · p
2

The following result holds true:

Proposition 39 Let U2(t, s) be the quantum propagator for the Hamiltonian Ĥ2(t)

given by (4.6). Then we have

U2(t, s)= exp
[
i(δt − δs)/�

]
T̂ (zt )D̂(Bt )R̂(t)R̂(s)

−1D̂(−Bs)T̂ (−zs) (4.10)

Proof Here we use the notation z := q+ip√
2�

.
Using the Baker–Campbell–Hausdorff formula (and omitting the index t in the

following formulas) we get

d

dt
T̂ (z)= T̂ (z)

[
˙̄z · a∗ − ż · a+ 1

2

(
z · ˙̄z− ż · z̄)

]

But

1

2

(
z · ˙̄z− ż · z̄)= i

2�
(ṗ · q − q̇ · p), and iδ̇ = i

[
Ṡ − 1

2
(p · q + ṗ · q)

]
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so that taking the derivative of (4.10) with respect to time t we get

i�
∂U2

∂t
=
[
−Ṡ + 1

2
(p · q̇ + ṗ · q)− 1

2
(ṗ · q − q̇ · p)

+ q̇ · (P̂ − p)− ṗ · (Q̂− q)
]
U2 + T̂ (zt )Hq(t)T̂ (−zt )U2

=
{
q̇ · p− Ṡ + q̇ · (P̂ − p)− ṗ · (Q̂− q)

+ 1

2

(
Q̂− q, P̂ − p)Mt

(
Q̂− q
P̂ − p

)}
U2

= Ĥ2(t)U2 (4.11)

where we have used that q̇ · p− Ṡ =H(q,p, t). �

The important fact here will be that U2 propagates coherent states into Weyl
translated squeezed states so that using (4.5) we get a comparison between the
quantum evolution of coherent states and the Weyl-displaced squeezed state cen-
tered around the phase-space point zt . Consider as an initial state a coherent state
Φ
(0)
z,0 = T̂ (z)Ψ0. We get

U2(t,0)Φ
(0)
z,0 = eiδt /�T̂ (zt )D̂(Bt )R̂(t)Ψ0 = ei(δt /�+γt )Φ(0)

zt ,Bt

using the fact that

R̂(t)Ψ0 = exp(iγt )Ψ0, where γt = 1

2
tr(Γt )

Therefore applying Duhamel’s formula (4.5) to Φ(0)
z,0 we get

U(t,0)Φ(0)
z,0 − ei(δt /�+γt )Φ(0)

zt ,Bt
= 1

i�

∫ t

0
ds U(t, s)

[
Ĥ (s)− Ĥ2(s)

]
ei(δs/�+γs)Φ(0)

zs ,Bs

(4.12)
This will be the starting point of our semiclassical estimate. Taking an arbitrary
multiindex μ= (μ1, . . . ,μn) we denote

Φμ(t) := T̂ (zt )D̂(Bt )R̂(t)Ψμ
Starting from (4.12) we deduce that for any integer l ≥ 1 there exist indexed func-
tions cν(t,�) such that

∥∥∥∥∥U(t,0)Φ0(0)−
3(l−1)∑
|ν|=0

cν(t,�)Φν(t)e
iδt /�

∥∥∥∥∥≤ Ct�l/2 (4.13)
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Furthermore the constant Ct can be controlled in the time t and in the center z of
the initial state. Let us now explicit the Taylor expansion of the Hamiltonian around
the classical phase-space point at time t zt : we denote

f (ν)(ζ )

ν! · (ζ ′)ν =
2n∏
1

1

νj !
∂νj f (ζ )

∂ζ
νj
j

(
ζ ′j
)νj , ν = (ν1, . . . , ν2n)

for f being a real function of ζ ∈R
2n.

Taking for ζ the phase-space point z we can write the Taylor expansion of
H(q,p, t) around the phase-space point zt = (qt ,pt ) at time t as

H(ζ, t) =
l+1∑
|ν|=0

H(ν)(zt , t)

ν! · (ζ − zt )ν

+
∑

|ν|=l+2

∫ 1

0

H(ν)(zt + θ(ζ − zt ), t)
(ν − 1)! · (ζ − zt )ν(1− θ)l+1 dθ

=
l+1∑
|ν|=0

H(ν)(zt , t)

ν! · (ζ − zt )ν +
∑

|ν|=l+2

rν,t (ζ − zt , t) · (ζ − zt )ν (4.14)

Now we perform the �-quantization of (4.6) denoting Ω := (Q̂, P̂ ); we get

Ĥ (t)− Ĥ2(t)=
l+1∑
|ν|=3

Hν(zt , t)

ν! · (Ω − zt )ν +
∑

|ν|=l+2

Rν(t) (4.15)

where

Rν(t)= T̂ (−zt )Opw
�

[
ζ ν · rν,t (ζ )

]
T̂ (zt )

We now insert (4.15) into (4.12) and obtain the semiclassical estimate of order
√
�

for the propagation of generalized coherent states, using in particular the Calderon–
Vaillancourt estimate (Chap. 2). Let us introduce some notation: we consider only
nonnegative time and define

σ(z, t) := sup
0≤s≤t

(
1+ |zt |

)

θ(z, t) = sup
0≤s≤t

[
tr
(
F ∗(s)F (s)

)]1/2

where F(t) is the symplectic matrix solution of (4.8). Let M1 be any fixed integer
not smaller than (M + (m− 2)+)/2. Let us define

ρl(z, t,�)= σ(z, t)lM1
∑

1≤j≤l

( |t |
�

)j (√
�θ(z, t)

)2j+l
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(we recall that the constants M,m,KH,T were defined in Assumption (A.0)). Note
that if (A.0) is satisfied withm= 2 andM = 0 (H(t) is said to be subquadratic) then
we have M1 = 0. The result will be a generalization of (4.13) using as initial state
a superposition of generalized coherent states (defined with higher order Hermite
functions).

Theorem 21 Assume H(x, ξ, t) and z be such that (A.0)–(A.2) are satisfied. Then
for any integers l ≥ 1, J ≥ 1 and any real number κ > 0 there exists a universal
constant Γ > 0 such that for every family of complex numbers {cμ,μ ∈N

n, |μ| ≤ J }
there exist cν(t,�) for ν ∈N

n, |ν| ≤ 3(l− 1)+ J , such that for 0< �+√�θ(t) < κ

the following L2-estimate holds:

∥∥∥∥∥U(t,0)
(

J∑
|j |=0

cjΦ
(j)

z,0

)
− eiδt /�

J+3(l−1)∑
|μ|=0

cμ(t,�)Φμ(t)

∥∥∥∥∥

≤ ΓKH,T ρl(z,�, t)
( ∑

0≤|μ|≤J
|cμ|2

)1/2

(4.16)

Moreover the coefficients cμ(t,�) can be computed by the following formula:

cμ(t,�)− cμ
=

∑
|ν|≤J

|μ−ν|≤3l−3

∑
1≤p≤l−1

( ∑
k1+···+kp≤2p+l−1

ki≥3

�
(k1+···+kp)/2−pap,μ,ν(t)

)
cν (4.17)

where the entries ap,μ,ν(t) are given by the evolution of the classical system and are
universal polynomials in H(γ )(zt , t) for |γ | ≤ l + 2 satisfying ap,μ,ν(0)= 0.

Remark 17 (Comments on the error estimate and the Ehrenfest time) The error term
seems accurate but not very explicit in our general setting. Let us assume for sim-
plicity that T = +∞ and that the classical trajectory zt is bounded and unstable
with a Lyapunov exponent λ > 0. So there exists some constant C > 0 such that

θ(z, t)≤ Ceλt , ∀t ≥ 0.

Then for every ε > 0 there exist Cε and hε > 0 such that

0< t ≤ 1− 3ε

6λ
log

(
1

�

)
⇒ ρ�(z,�, t)≤ Cε�ε� (4.18)

for 0 < � < hε . So roughly speaking we can say that the semiclassical expansion
(4.16) is still valid for times smaller than the Ehrenfest time TE := 1

6λ log( 1
�
). When

the classical trajectory is stable (θ(z, t)≤ C(1+|t |),∀t ∈R) then (4.16) is valid for

much longer time interval: 0≤ t ≤ Cε�− 1
2−ε .



98 4 The Semiclassical Evolution of Gaussian Coherent States

Fig. 4.1 Time evolution of
a coherent state

Remark 18 Let us denote ψ(l)(t, x) = eiδt /�
∑J+3(l−1)
|μ|=0 cμ(t,�)Φμ(t, x) and as-

sume for simplicity that ψ(0) = ϕz and denote ψz(t) = U(t,0)ϕz. ψ(l)(t, x) is
clearly localized very close to the point zt of the classical path. Moreover the shape
of ψ(l)(t, x) is close to a Gaussian shape with center at zt and with a complex co-
variance matrix Γt depending on the stability matrix of the classical system. This
shape evolves with time (see Fig. 4.1). It is exponentially small outside any ball

{|x−qt | ≤ �
1
2−ε}, for any ε and its �-Fourier transform ψ̃z(t, ξ) exponentially small

outside any ball {|ξ − pt | ≤ �
1
2−ε}. From (4.16) we get easily for the exact evolved

state ψz(t) the following probability estimates to be true outside of a narrow tube
around the classical path:∫

|x−qt |≥�
1
2−ε

dx
∣∣ψz(t, x)∣∣2 +

∫
|ξ−pt |≥�

1
2−ε

dξ
∣∣ψ̃z(t, ξ)∣∣2 =O(

�
+∞) (4.19)

Proof We only give here the strategy of the proof. For the technical details we refer
the reader to [51] or to [164] for a different approach. The idea of the proof is to
use repeatedly the Duhamel Formula to yield a Dyson series expansion of U(t,0)−
U2(t,0) and to use (4.15) to calculate Ĥ (t)− Ĥ2(t). One thus has for every integer
p ≥ 1:

U(t,0)−U2(t,0)

=
∑

1≤j≤p
(i�)−j

∫ t

0
dt1

∫ t

t1

dt2 · · ·
∫ t

tj−1

dtj−1U2(t, tj )
(
Ĥ (tj )− Ĥ2(tj )

)

×U2(tj , tj−1)
(
Ĥ (tj−1)− Ĥ2(tj−1)

)
×U2(tj−1, tj−2) · · ·

(
Ĥ (t1)− Ĥ2(t1)

)
U2(t1,0)

+ (i�)−p−1
∫ t

0
dt1

∫ t

t1

dt2 · · ·
∫ t

tp

dtp+1U(t, tp+1)
(
Ĥ (tp+1)− Ĥ2(tp+1)

)

×U2(tp+1, tp)
(
Ĥ (tp)− Ĥ2(tp)

)
U2(tp, tp−1) · · ·

(
Ĥ (t1)− Ĥ2(t1)

)
U2(t1,0)

(4.20)
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We shall apply this formula with p = l− 1. It is convenient to introduce the follow-
ing notation:

Π(t1, . . . , tj ;B1, . . . ,Bj )=U2(0, tj )BjU2(tj , tj−1) · · ·U2(t2, t1)B1U2(t1,0)

where Bk =Opw
�
bk are quantum observables. By the chain rule we have

Π(t1, . . . , tj ;B1, . . . ,Bj )=
∏

1≤k≤j
U2(0, tk)BkU2(tk,0)

where the product is ordered from the right to the left. Denoting

Ĥk(t) :=
∑
|ν|=k

H (ν)(zt , t)

ν! · (Ω − zt )ν

we see that Π(t1, . . . , tp; Ĥk1, . . . , Ĥkp ) is a homogeneous non-commutative poly-

nomial in Q̂, P̂ of degree k1+· · ·+ kp using Lemma 27. Therefore the last integral
in (4.20) will yield the error term in the theorem. For the detailed proof we refer the
reader to [51]. �

A more general result is obtained by taking as initial state a coherent state with
arbitrary profile (see Chap. 1, Sect. 1.1.2): let f ∈ S(Rn) to be the profile of a state.
Define

(Λ�f )(x)= �
−n/4f

(
x√
�

)
(4.21)

Then for any z ∈R
2n we construct a coherent state centered at z by

fz := T̂ (z)Λ�f

One has the following result:

Theorem 22 There exists a family of differential operators with time-dependent
coefficients,

pkj (x,Dx, t), j ≥ 1, k ≥ 3

depending only on the Hamiltonian along the classical path zs, 0 ≤ s ≤ t ,
pjk(x, ξ, t) being a polynomial in (x, ξ) of degree ≤ k such that for any real num-
ber κ > 0 and any integer l ≥ 1 and any f ∈ S(Rn) there exists Γ > 0 such that the
following L2-norm estimate holds:∥∥U(t,0)T̂ (z)Λ�f −U2(t,0)Λ�Pl(f, t,�)

∥∥≤ ΓKH,tρl(z, t,�) (4.22)

where Pl(., t,�) is the (�, t)-dependent differential operator defined by

Pl(f, t,�)= f +
∑

(k,j)∈Il
�
k/2−jpjk(x,Dx, t)f

with Il = {(k, j) ∈N×N : 1≤ j ≤ l − 1, k ≥ 3j, 1≤ k− 2j ≤ l}.
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Moreover the polynomials pkj (x, ξ, t) can be computed explicitly in terms of the
Weyl symbol of the following differential operators defined above

∫ t

0
dtl

∫ tl

0
dtl−1 · · ·

∫ t2

0
dt1Π(t1, . . . , tl; k1, . . . , kl)

Remark 19 If we consider an �-metaplectic transformation V in L2(Rn) we con-
sider the following object Ṽ =Λ−1

�
VΛ� (with no confusion with the notation for

the transpose of a matrix). By definition since V has a quadratic generator Ṽ is
�-independent. So we find that U2(t,0)Λ�Pl(f, t,�) is actually a coherent state
centered at zt with profile D̃(Bt )R̃(t)f . More explicitly

U2(t,0)Λ�Pl(f, t,�)= eiδt /�T̂ (zt )Λ�

( ∑
0≤j≤l−1

�
j/2pj (x,Dx, t)D̃(Bt )R̃(t)f

)

where pj (x,Dx, t) are differential operators with polynomial coefficients depend-
ing smoothly on t as long as the classical flow z→ zt exists.

4.1.3 Related Works and Other Results

In the physics literature the quantum propagation of coherent states has been consid-
ered by many authors, in particular by Heller [110, 111] and Littlejohn [138]. In the
mathematical literature Gaussian wave packets have been introduced and studied in
many respects, particularly under the name “Gaussian beams” (see [8, 159, 160]).
Somewhat related to the subject of this Chapter is the study by Paul and Uribe
[152, 153] of the �-asymptotics of the inner products of the eigenfunctions of a
Schrödinger type Hamiltonian with a coherent state and of “semiclassical trace for-
mulas” (see Chap. 5). However, their approach differs from the one presented here
by the use of Fourier-integral operators, which were introduced in connection with
wave packets propagation in the classical paper by Cordoba and Fefferman [54].

4.2 Application to the Spreading of Quantum Wave Packets

In this section we give an application of the estimate of the preceding section to
the spreading (in phase space) of a quantum wave packet which is, at time 0, local-
ized in the neighborhood of a fixed point of the corresponding classical motion. Let
z= (q,p) be such a fixed point and take as an initial quantum state the coherent
state ϕz. The quantum state at time t is

Ψ (t)=U(t,0)ϕz
We have seen that we can approximate Ψ (t) by a Gaussian wavepacket again local-
ized around zt = z but with a spreading governed by the stability matrix M0 of the
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corresponding classical motion (given by (4.7)). A way of measuring the spreading
of wave packets around the point z in phase space is to compute

S(t) =
〈
T̂ (−z)Ψ (t),

n∑
j=1

(
a∗j aj + aja∗j

)
T̂ (−z)Ψ (t)

〉

= ∥∥aT̂ (−z)Ψ (t)∥∥2 + ∥∥a∗T̂ (−z)Ψ (t)∥∥2
(4.23)

The intuition behind this definition is the following. Let Wz,t be the Wigner function
of the states Ψ (t). According to the properties seen in Chap. 2, (2π�)−nWz,t (X) is
a quasi-probability on the phase space R

2n
X and we have

(2π�)−n
∫
dXWz,t (X)A(X)=

〈
Ψ (t), ÂΨ (t)

〉
.

Applying this relation to Â = T̂ (z)(a∗ · a + a · a∗)T̂(−z) which has the Weyl-
symbol A(q,p)= |q − x|2+ |p− ξ |2, we see that S(t) is the variance of the quasi-
probability (2π�)−nWz,t (X).

Let us notice that S(t) is well defined if the estimate (4.13) holds in the Sobolev
space Σ(2) and with some more assumption on the quantum evolution U(t,0) one
can get the estimate (4.13) in Σ2-norm as we shall see now. More refined estimates
in other Sobolev norms will be given in the last section of this chapter.

Let us consider some symbol g satisfying assumption (A.0) withm= 0, such that
Opw

�
(g) is invertible in the Schwartz space S(Rn). Let us assume that the following

L2-operator norm estimate holds:

∥∥Opw
�
gU(t,0)

[
Opw

�
g
]−1∥∥≤ Ct,g

Then an estimate analogous to (4.13) holds true:
∥∥Opw

�
g
[
U(t,0)T̂ (z)Λ�f −U2(t,0)Λ�Pl(f, t,�)

]∥∥≤ Ct,gΓ KH,t,ρl(z, t,�)
Obviously S(0)= n and we are interested in the difference

ΔS(t) := S(t)− S(0)
Let us first calculate

T (t) :=
〈
T̂ (−z)Φ(t),

n∑
j=1

(
a∗j aj + aja∗j

)
T̂ (−z)Φ(t)

〉

where Φ(t) is the approximant of Ψ (t) given by

Φ(t)= eiδt /�T̂ (z)U0(t)Ψ0

Then

T (t)= n+ 2
∥∥aU0(t)Ψ0

∥∥2 = n+ 1

2
tr
(
Z∗t Zt

)
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where Zt is defined by (4.9) and we use Lemma 28. Therefore

T (t)− T (0)= 1

2
tr
(
Z∗t Zt

)

We show now that this is the dominant behavior of ΔS(t) up to small correction
terms that we can estimate.

Let us assume that the classical flow at phase-space point z has finite Lyapunov
exponents, with a greatest Lyapunov exponent λ ∈R (for notions concerning the sta-
bility and Lyapunov exponents for ordinary differential equations we refer to [39]).
Then by definition there exists some constant C > 0 such that ‖F(t)‖ ≤ Ceλt ,
∀t ≥ 0 where C is independent of t . In what follows we denote by C a generic
constant independent of t, �. Then under the above assumptions we get

∥∥Ψ (t)−Φ(t)∥∥
Σ(2) ≤ C

√
�te3λt , ∀t ≥ 0

We deduce the following result:

Theorem 23 Under the above assumptions we have the long time asymptotics
ΔS(t)=ΔT (t)+O(�ε) if one of the two following conditions is fulfilled:

(i) λ≤ 0 (“stable case”) and 0≤ t ≤ �
ε−1/2

(ii) λ > 0 (“unstable case”) and ∃ε′ > ε such that

0≤ t ≤ ((
1− 2ε′

)
/6λ

)
log(1/�)

In particular we have

Corollary 12 Let us assume that the Hamiltonian H is time independent and that
the greatest Lyapunov exponent is λ > 0. Then S(t) − S(0) behaves like e2λt as
t→+∞ and �→ 0 as long as t[log(1/�)]−1 stays small enough.

(i) More precisely there exists C > 0 such that

e2λt

C
≤ ΔT (t)≤ Ce2λt , ∀t ≥ 0

ΔS(t) = ΔT (t)+O(
�
ε
)
, for 0≤ t ≤ 1− 2ε′

6λ
log

1

�
for some ε′ > ε

(ii) In particular for n= 1 we have a more explicit result:

ΔS(t)= 4b2 + (a − c)2
2(b2 − ac) sinh2(λt)+O(

�
ε
)

(4.24)

under the above condition for t where
(
a b

b c

)=M0 is the Hessian matrix of H

at z.
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Proof We get (i) using that the matrix JM0 has at least one eigenvalue with real
part λ. To prove (4.24) we compute explicitly the exponential of the matrix tJM0
which gives F(t). Its eigenvalues are λ=√b2 − ac and 1/λ. So we get the formula

exp(tJM0)=
(

cosh(λt)+ b
λ

sinh(λt) c
λ

sinh(λt)

− a
λ

sinh(λt) cosh(λt)− b
λ

sinh(λt)

)

hence we have

ΔT (t)= tr
(
Z∗t Zt

)= 4b2 + (a − c)2
2(b2 − ac) sinh2(λt). �

4.3 Evolution of Coherent States and Bargmann Transform

In Sect. 4.1 we have studied the evolution of coherent states using the generators of
coherent states and the Duhamel formula. Here we present a different approach fol-
lowing [164], working essentially on the Fourier–Bargmann side (see Chap. 1). This
approach is useful to get estimates in several norms of Banach spaces of functions
and also to get analytic type estimates.

We keep the notations of Sect. 4.1. We revisit now the algebraic computations of
this section in a different presentation.

Recall that we want to solve the Cauchy problem

i�
∂ψ(t)

∂t
= Ĥ (t)ψ(t), ψ(0)= ϕz, (4.25)

where ϕz is a coherent state localized at a point z ∈R
2n. Our first step is to transform

this problem with suitable unitary transformations such that the singular perturba-
tion problem in � becomes a regular perturbation problem.

4.3.1 Formal Computations

We rescale the evolved state ψz(t) by defining ft such that ψz(t) = T̂ (zt )Λ�ft .
Then ft satisfies the following equation:

i�∂tft =Λ−1
�
T̂ (zt )

−1(Ĥ (t)T̂ (zt )− i�∂t T̂ (zt ))Λ�ft (4.26)

with the initial condition ft=0 = g where g(x) = π−n/4e− 1
2 |x|2 . We easily get the

formula

Λ−1
�
T̂ (zt )

−1Ĥ (t)T̂ (zt )Λ� =Opw1 H
(
t,
√
�x + qt ,

√
�ξ + pt

)
(4.27)

Using the Taylor formula we get the formal expansion

H
(
t,
√
�x + qt ,

√
�ξ + pt

) = H(t, zt )+
√
�∂qH(t, zt )x +

√
�∂pH(t, zt )ξ

+ �K2(t;x, ξ)+ �

∑
j≥3

�
j/2−1Kj(t;x, ξ) (4.28)



104 4 The Semiclassical Evolution of Gaussian Coherent States

where Kj(t) is the homogeneous Taylor polynomial of degree j in X =
(x, ξ) ∈R

2n.

Kj(t;X)=
∑
|γ |=j

1

γ !∂
γ

XH(t; zt )Xγ

We shall use the following notation for the remainder term of order k ≥ 1:

Rk(t;X)=
(
H
(
t, zt +

√
�X

)−∑
j<k

�
j/2Kj(t;X)

)
(4.29)

It is clearly a term of order �
k/2 from the Taylor formula. By a straightforward

computation, the new function ft # = exp(−i δt
�
)ft satisfies the following equation:

i∂tf
#
t =Opw1

[
K2(t)

]
f # +Opw1

[
R(3)z (t)

]
f #, f #

t=t0 = g (4.30)

In the r.h.s. of (4.30) the second term is a (formal) perturbation series in
√
�. We

change again the unknown function f #
t by b(t)g such that f #

t = R̂[Ft ]b(t)g. Let us
recall that the metaplectic transformation R̂[Ft ] is the quantum propagator associ-
ated with the Hamiltonian K2(t) (see Sect. 4.1). The new unknown function b(t, x)
satisfies the following differential equation which is now a regular perturbation dif-
ferential equation in the small parameter �:

i∂t b(t, x)g(x) = Opw1
[
R
(3)
z

(
t,Ft (x, ξ)

)](
b(t)g

)
(x)

b(0, x) = 1
(4.31)

Now we can solve (4.31) semiclassically by the ansatz

b(t, x)=
∑
j≥0

�
j/2bj (t, x)

Let us identify powers of �1/2, denoting

K#
j (t,X)=Kj

(
t,Ft (X)

)
, X ∈R

2n

we thus get that the bj (t, x) are uniquely defined by the following induction formula
for j ≥ 1, starting with b0(t, x)≡ 1,

∂tbj (t, x)g(x) =
∑

k+�=j+2, �≥3

Opw1
[
K#
� (t)

](
bk(t, ·)g

)
(x) (4.32)

bj (0, x) = 0 (4.33)

Let us remark that Opw1 [K#
� (t)] is a differential operator with polynomial symbols

of degree � in (x, ξ). So it is not difficult to see, by induction on j , that bj (t)
is a polynomial of degree ≤ 3j in variable x ∈ R

n with complex time-dependent
coefficient depending on the center z of the Gaussian in the phase space. Moreover,
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coming back to the Schrödinger equation, using our construction of the bj (t, x), we
easily get for every N ≥ 0,

i�∂tψ
(N)
z = Ĥ (t)ψ(N)

z +R(N)z (t) (4.34)

where

ψ(N)
z (t)= eiδt /�T̂ (zt )Λ�R̂[Ft ]

( ∑
0≤j≤N

�
j/2bj (t)g

)
(4.35)

and

RNz (t, x)= eiδt /�
(
�
j/2

∑
j+k=N+3

k≥3

T̂ (zt )Λ�R̂[Ft ]Opw1
[
Rk(t)◦Ft

](
bj (t)g

))
(4.36)

Thus, we have an algorithm to build approximate solutions ψ
(N)
z (t, x) of the

Schrödinger equation (4.25) modulo the error term R
(N)
z (t, x). Of course the hard

mathematical work is to estimate accurately this error term.
Remark that all these computations use only existence of the classical trajectory.
We need some technical estimates concerning the Fourier–Bargmann transform

to have a bridge between the Bargmann side and the usual configuration space. We
refer to [164] for the proofs of the following subsection.

4.3.2 Weighted Estimates and Fourier–Bargmann Transform

We restrict here our study to properties we need later. For other interesting properties
of the Fourier–Bargmann transform the reader can see the book [141].

Recall that in Chap. 1, Sect. 1.2.3, the Fourier–Bargmann transform FB (here
�= 1) was defined as follows

FBv(X)=: v�(z)= (2π�)−n/2〈ϕz, v〉, X = (q,p) ∈R
2n

Let us begin with the following formulas, easy to prove by integration by parts. With
the notations X = (q,p) ∈R

2n, x ∈R
n and u ∈ S(Rn), we have

FB(xu)(X) = i

(
∂p − i

2
q

)
FB(u)(X) (4.37)

FB(∂xu)(X) =
(

3

2i
p− ∂q

)
FB(u)(X) (4.38)

=
(
i(p− ∂p)+ q

2

)
FB(u)(X) (4.39)

Recall that e(p
2+q2)/4FB(u)(q,p) is holomorphic in the complex variable q − ip

(see Chap. 1).
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So, let us introduce the weighted Sobolev spaces, denoted Km(n), m ∈ N.
u ∈Km(n) means that u ∈ L2(Rn) and xα∂βx u ∈ L2(Rn) for every multiindex α,
β such that |α + β| ≤m, with its natural norm. Then we have easily

Proposition 40 The Fourier–Bargmann transform is a linear continuous function
from Km(n) into Km(2n) for every m ∈N.

Now we shall give an estimate in exponential weighted Lebesgue spaces.

Proposition 41 For every p ∈ [1,+∞], for every a ≥ 0 and every b > a
√

2 there
exists C > 0 such that for all u ∈ S(Rn) we have

∥∥ea|x|u(x)
∥∥
Lp(Rnx)

≤ C∥∥eb|X|FBu(X)
∥∥
L2(R2n

X )
(4.40)

More generally, for every a ≥ 0 and every b > a
√

2
|S| there exists C > 0 such that for

all u ∈ S(Rn) and all S ∈ Sp(2n) we have
∥∥ea|x|

[
R̂(S)u

]
(x)

∥∥
Lp(Rnx)

≤ C∥∥eb|X|FBu(X)
∥∥
L2(R2n

X )
(4.41)

We need to control the norms of Hermite functions (see Chap. 1) in some
weighted Lebesgue spaces. Let μ be a C∞-smooth and positive function on R

m

such that

lim|x|→+∞μ(x) = +∞ (4.42)

∣∣∂γ μ(x)∣∣ ≤ θ |x|2, ∀x ∈R
m, |x| ≥Rγ (4.43)

for some Rγ > 0 and θ < 1.

Lemma 30 For every real p ∈ [1,+∞], for every � ∈ N, there exists C > 0 such
that for every α,β ∈N

m we have

∥∥eμ(x)xα∂βx
(
e−|x|2

)∥∥
�,p
≤ C|α+β|+1$

( |α + β|
2

)
(4.44)

where ‖ • ‖�,p is the norm on the Sobolev space1 W�,p , $ is the Euler Gamma
function.2

More generally, for every real p ∈ [1,+∞], for every � ∈ N, there exists C > 0
such that

∥∥eμ((Γ )−1/2x)xα∂β
(
e−|x|2

)∥∥
�,p

≤ C|α+β|+1
(∣∣(Γ )1/2∣∣+ ∣∣(Γ )−1/2

∣∣$
( |α + β|

2

))
(4.45)

1Recall that u ∈W�,p means that ∂αx u ∈ Lp for every |α| ≤ �.
2The Euler classical Gamma function $ must be not confused with the covariance matrix Γt .
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4.3.3 Large Time Estimates and Fourier–Bargmann Analysis

In this section we try to control the semi-classical error term R
(N)
z (t, x), for large

time, in the Fourier–Bargmann representation. This is also a preparation to control
the remainder of order N in �,N for analytic Hamiltonians considered in the fol-
lowing subsection.

Let us introduce the Fourier–Bargmann transform of bj (t)g,

Bj (t,X)=FB[bj (t)g](X)= 〈
bj (t)g, gX

〉
, for X ∈R

2n.

The induction equation (4.32) becomes, for j ≥ 1,

∂tBj (t,X)=
∫
R2n

( ∑
k+�=j+2

�≥3

〈
Opw1

[
K#
� (t)

]
gX′, gX

〉)
Bk

(
t,X′

)
dX′ (4.46)

with initial condition Bj (0,X)= 0 for j ≥ 1 and with B0(t,X)= exp(−|X|24 ).
We have seen in Sect. 4.1 that we have

〈
Opw1

[
K
�
�(t)

]
gX′ , gX

〉= (2π)−n
∫
R2n

K
�
�(t, Y )WX,X′(Y ) dY, (4.47)

where WX,X′ is the Wigner function of the pair (gX′ , gX). Let us now compute
the remainder term in the Fourier–Bargmann representation. Using that FB is an
isometry we get

FB[Opw1
[
R�(t) ◦ Ft,t0

](
bj (t)g

)]
(X)

=
∫
R2n

Bj
(
t,X′

)〈
Opw1

[
R�(t) ◦ Ft,t0

]
gX′, gX

〉
dX′ (4.48)

where R�(t) is given by the Taylor integral formula (4.49):

R�(t,X)= �
�/2−1

k!
∑
|γ |=�

∫ 1

0
∂
γ

XH
(
t, zt + θ

√
�X

)
Xγ (1− θ)�−1dθ (4.49)

We shall use (4.48) to estimate the remainder term R
(N)
z , using estimates (4.40) and

(4.41).
Now we shall consider long time estimates for Bj (t,X).

Lemma 31 For every j ≥ 0, every s ∈ N, r ≥ 1, there exists C(j,α,β) such that
for |t | ≤ T , we have

∥∥eμ(X/4)Xα∂
β
XBj (t,X)

∥∥
s,r
≤ C(j,α,β)σ (t, z)NM1 |F |3jT (1+ T )j (4.50)
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where |F |T = sup|t |≤T |Ft |.M1 and σ(t, z) were defined in Sect. 4.1,M1 depends on

assumption (A.0) on H(X, t). ‖ • ‖s,r is the norm in the Sobolev space Ws,r (R2n)3

Proof The main idea of the proof is as follows (see [164] for details). We proceed
by induction on j . For j = 0 (4.50) results from (4.44).

Let us assume inequality proved up to j − 1. We have the induction formula
(j ≥ 1)

∂tBj (t,X)=
∑

k+�=j+2
�≥3

∫
R2n

K�
(
t,X,X′

)
Bk

(
t,X′

)
dX′ (4.51)

where

K�
(
t,X,X′

) = ∑
|γ |=�

1

γ !∂
γ

XH(t, zt )
〈
Opw1 (FtY )

γ gX′, gX
〉
, and (4.52)

〈
Opw1 (FtY )

γ gX′, gX
〉 = 22n

∫
R2n
(FtY )

γWX,X′(Y ) dY (4.53)

By a Fourier transform computation on Gaussian functions, we get the following
more explicit expression:

〈
Opw1 (FtY )

γ gX′, gX
〉 =∑

β≤γ
C
γ
β 2−|β|

(
Ft

(
X+X′

2

))γ−β

×Hβ
(
Ft

(
J (X−X′)

2

))
e−|X−X′|2/4e−(i/2)σ (X′,X)

(4.54)

Estimate (4.50) follows easily. �

Now we have to estimate the remainder term. Let us compute the Fourier–
Bargmann transform of the error term:

R̃(N+1)
z (t,X) = FB

[
�
j/2

∑
j+k=N+3

k≥3

Opw1
[
Rk(t) ◦ Ft

](
bj (t)g

)]
(X)

=
∑

j+k=N+3
k≥3

∫
R2n

Bj
(
t,X′

)〈
Opw1

[
Rk(t) ◦ Ft

]
gX′, gX

〉
dX′

Using estimates on the Bj we get the following estimate for the error term:

3The Sobolev norm is defined here as ‖f ‖s,r = (∑|α|≤s
∫
dx |f (x)|r )1/r for s ∈N, r ≥ 1.
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Lemma 32 For every κ > 0, for every � ∈ N, s ≥ 0, r ≥ 1, there exists CN,� such
that for all T and t , |t | ≤ T , we have

∥∥Xα∂
β
XR̃

(N+1)
z (t,X)

∥∥
s,r
≤ CN,�MN,�(T , z)|F |3N+3

T (1+ T )N+1
�
N+3

2 (4.55)

for
√
�|F |T ≤ κ , |α| + |β| ≤ �, where MN,�(T , z) is a continuous function of

sup |t−t0|≤T
3≤|γ |≤N�

|∂γXH(t, zt )|.

Proof As above for estimation of the Bj (t,X), let us consider the integral kernels

Nk
(
t,X,X′

)= 〈
Opw1

[
Rk(t) ◦ Ft

]
gX′, gX

〉
(4.56)

We have

Nk
(
t,X,X′

) = �
(k+1)/2

∑
|γ |=k+1

1

k!
∫ 1

0
(1− θ)k

×
(∫

R2n
∂
γ

Y H
(
t, zt + θ

√
�FtY

)
(FtY )

γ ·WX′,X(Y )dY

)
dθ

(4.57)

Let us denote by Nk,t the operator with the kernel Nk(t,X,X′). Using the change
of variable Z = Y − X+X′

2 and integrations by parts in X′ as above, we can es-
timate Nk,t [Bj (t,•)](X). Then using the estimates on the Bj (t,X) we get esti-
mate (4.55). �

Now, it is not difficult to convert these results in the configuration space, using

(4.40). Let us define λ�,t (x)= ( |x−qt |2+1
�|Ft |2 )1/2.

Theorem 24 Let us assume that (A.0) is satisfied. Then we have for the remainder
term,

R(N)z (t, x)= i� ∂
∂t
ψ(N)
z (t, x)− Ĥ (t)ψ(N)

z (t, x)

the following estimate. For every κ > 0, for every �,M ∈N, r ≥ 1 there exist CN,M,�
and N� such that for all T and t , |t | ≤ T , we have

∥∥λM
�,tR

(N)
z (t)

∥∥
�,r
≤ CN,��(N+3−�)/2σ(z, t)NM1 |F |3N+3

T (1+ T )N+1 (4.58)

for every � ∈]0,1], √�|Ft | ≤ κ .
Moreover, if Ĥ (t) admits a unitary propagator (see condition (A.2)), then under

the same conditions as above, we have

∥∥Utϕz −ψ(N)
z (t)

∥∥
2 ≤ CN,�σ (z, t)NM1 |F |3N+3

T (1+ T )N+2
�
(N+1)/2 (4.59)
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Proof Using the inverse Fourier–Bargmann transform, we have

R(N)z (t, x)= T̂ (zt )Λ�

(∫
R2n

(
R̂[Ft ]ϕX

)
(x)R̃(N)z (t,X)dX

)

Let us remark that using estimates on the bj (t, x), we can assume that N is arbi-
trary large. We can apply previous results on the Fourier–Bargmann estimates to
get (4.58). The second part is a consequence of the first part and of the Duhamel
principle. �

We see that the estimate (4.58) is much more accurate in norm than estimate
(4.59), we have lost much information applying the propagator Ut . The reason is
that in general we only know that the propagator is bounded on L2 and no more.
Sometimes it is possible to improve (4.59) if we know that Ut is bounded on some
weighted Sobolev spaces. Let us give here the following example.

Let Ĥ =−�2"+ V (x). Assume that V satisfies:

V ∈ C∞(Rn), ∣∣∂αV (x)∣∣≤ CαV (x),
V ≥ 1,

∣∣V (x)− V (y)∣∣≤ C(1+ |x − y|)M

for some M ∈ R. So the time-dependent Schrödinger equation for Ĥ has a unitary

propagator Ut = eit�
−1Ĥ . The domain of Ĥm can be determined for every m ∈ N

(see for example [163]).

D
(
Ĥm

)= {
u ∈W 2m,2(

R
n
)
,V mu ∈ L2(

R
n
)}

It is an Hilbert space with the norm defined by

‖u‖2
2m,V =

∑
|α|≤2m

∥∥�|α|∂αu∥∥2
L2(Rn)

+ ‖V u‖2
L2(Rn)

Using the Sobolev theorem we get the supremum norm estimate for the error:

sup
x∈Rn

∣∣(Utϕz)(x)−ψ(N)
z (t, x)

∣∣≤ CN,�σ (z, t)NM1 |F |3N+3
T (1+ T )N+2

�
(N−n/2)/2

(4.60)

4.3.4 Exponentially Small Estimates

Up to now the order N of the semi-classical approximations was fixed, even arbi-
trary large, but the error term was not controlled for N large. Here we shall give
estimates with a control for large N . The method is the same as on the previous sec-
tion, using systematically the Fourier–Bargmann transform. The proof are not given
here, we refer to [164] for more details. For a different approach see [101, 102]. To
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get exponentially small estimates for asymptotic expansions in small � it is quite
natural to assume that the classical Hamiltonian H(t,X) is analytic in X, where
X = (x, ξ) ∈ R

2n. This problem was studied in a different context in [87] concern-
ing Borel summability for semi-classical expansions for bosons systems.

So, in what follows we introduce suitable assumptions on H(t,X). As before we
assume that H(t,X) is continuous in time t and C∞ in X and that the quantum and
classical dynamics are well defined.

Let us define a complex neighborhood of R2n in C
2n,

Ωρ =
{
X ∈C

2n, |X|< ρ
}

(4.61)

where X = (X1, . . . ,X2n) and | · | is the Euclidean norm in R
2n or the Hermi-

tian norm in C
2n. Our main assumptions are the following.

(Aω) (Analytic assumption) There exists ρ > 0, T ∈]0,+∞], C > 0, ν ≥ 0, such
that H(t) is holomorphic in Ωρ and for t ∈ IT , X ∈Ωρ , we have

∣∣H(t,X)∣∣ ≤ Ceν|X|, and∣∣∂γXH(t, zt + Y)
∣∣ ≤ Rγ γ !eν|Y |, ∀t ∈R, Y ∈R

2n
(4.62)

for some R > 0 and all γ , |γ | ≥ 3.
We begin by giving the results on the Fourier–Bargmann side. It is the main

step and gives accurate estimates for the propagation of Gaussian coherent states
in the phase space. We have seen that it is not difficult to transfer these estimates
in the configuration space to get approximations of the solution of the Schrödinger
equation, by applying the inverse Fourier–Bargmann transform as we did in the C∞
case.

The main results are stated in the following theorem.

Theorem 25 Let us assume that conditions (A0) and (Aω) are satisfied. Then the
following uniform estimates hold.

∥∥Xα∂
β
XBj (t,X)

∥∥
L2(R2d ,eλ|X| dX)

≤ C3j+1+|α|+|β|
λ,T |F |3jT

(
1+ |t − t0|

)j
j−j

(
3j + |α| + |β|) 3j+|α|+|β|

2 (4.63)

where Cλ > 0 depends only on λ≥ 0 and is independent on j ∈ N, α,β ∈ N
2n and

|t | ≤ T .
Concerning the remainder term estimate we have

∥∥Xα∂
β
XR̃

(N)
z (t,X)

∥∥
L2(R2n,eλ|X| dX)

≤ �
(N+3)/2(1+ |t |)N+1|F |3N+3

T

(
C′λ

)3N+3+|α|+|β|
(N + 1)−N−1

× (
3N + 3+ |α| + |β|) 3N+3+|α|+|β|

2 (4.64)

where λ < ρ, α,β ∈ N
2n, N ≥ 1, ν

√
�|F |T ≤ 2(ρ − λ), C′λ depends on λ and is

independent on the other parameters (�, T ,N,α,β).
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From Theorem 25 we easily get weighted estimates for approximate solutions
and remainder term for the time-dependent Schrödinger equation. Let us recall the
Sobolev norms in the Sobolev space Wm,r(Rn).

‖u‖r,m,� =
( ∑
|α|≤m

�
|α|/2

∫
Rn

∣∣∂αx u(x)
∣∣r dx

)1/r

and a function μ ∈ C∞(Rd) such that μ(x)= |x| for |x| ≥ 1.

Proposition 42 For every m ∈ N, r ∈ [1,+∞], λ > 0 and ε ≤min{1, λ
|F |T }, there

exists Cr,m,λ,ε > 0 such that for every j ≥ 0 and every t ∈ IT we have

∥∥R̂[Ft ]bj (t)geεμ
∥∥
r,m,1 ≤ (Cr,m,λ,ε)j+1(1+ |F |T )3j+2d

j j/2
(
1+ |t |)j (4.65)

Theorem 26 With the above notations and under the assumptions of Theorem 25,
ψ
(N)
z (t, x) satisfies the Schrödinger equation

i�∂tψ
(N)
z (t, x) = Ĥ (t)ψ(N)

z (t, x)+R(N)z (t, x), where (4.66)

ψ(N)
z (t, x) = eiδt /�T̂ (zt )Λ�R̂[Ft ]

( ∑
0≤j≤N

�
j/2bj (t)g

)
(4.67)

is estimated in Proposition 42 and the remainder term is controlled with the follow-
ing weighted estimates:

∥∥R(N)z (t)eεμ�,t
∥∥
r,m,�

≤ CN+1(N + 1)(N+1)/2(√
�|F |3T

)N+3
�
−m′(1+ |t |)N+1 (4.68)

where C depends only on m,r, ε and not on N ≥ 0, |t | ≤ T and � > 0, with the
condition

√
�|F |T ≤ κ . The exponential weight is defined by μ�,t (x) = μ(

x−qt√
�
).

m′ ≥ 0 and hε <min{1, ρ
|F |T }.

Remark 20 We see that the order in j of the coefficient bj (t)g in the asymptotic
expansion in �

j/2 is Cjjj/2 or using Stirling formula C′j$(j)1/2 for some constant
C > 0,C′ > 0. So we have found that the renormalized evolved state b(t, x)g(x)
obtained from ψz(t, x) has a Gevrey-2 asymptotic expansion in �

1/2. Recall that a
formal complex series

∑
j≥0 cj κ

j is a Gevrey series of index μ > 0 if there exist
constants C0 > 0,C > 0 such that

|cj | ≤ C0C
j$(j)1/μ, ∀j ≥ 1.

Any holomorphic function f (κ) in a complex neighborhood of 0 has a convergent
Gevrey-1 Taylor series. But in many physical examples we have a non-convergent
Gevrey asymptotic series f [κ] for a function f holomorphic in some sector with
apex 0. Under some technical conditions on f it is possible to define the Borel sum
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Bf (τ) for the formal power series f [κ] and to recover f (κ) from its Borel sum
performing a Laplace transform on Bf (τ) (see [180] for details and bibliography).

When it is not possible to apply Borel summability, there exists a well known
method to minimize the error between

∑
1≤j≤N cjκj and f (κ). It is called the as-

tronomers method and consists of stopping the expansion after the smallest term of
the series (it is also called “the least term truncation method” for a series). Concern-
ing the semiclassical expansion found for b(t, x)g(x) it is not clear that it is Borel
summable or summable in some weaker sense. A sufficient condition for that would
be that the propagator Ut can be extended holomorphically in κ := �

1/2 in a (small)
sector {reiθ , 0 < r < r0, |θ | < ε}. In a different context (quantum field theory for
bosons), Borel summability was proved in [87].

Using the astronomers method Theorem 26 we easily get the following conse-
quences.

Corollary 13 (Finite Time, Large N ) Let us assume here that T <+∞. There exist
c > 0,�0 > 0, a > 0, ε > 0, such that if we choose N� = [ a� ] − 1 we have

∥∥R(N�)
z (t)eεμ�,t

∥∥
L2 ≤ exp

(
− c
�

)
(4.69)

for every |t | ≤ T , � ∈]0,�0]. Moreover, we have

∥∥ψ(N�)
z (t)−U(t, t0)ϕz

∥∥
L2 ≤ exp

(
− c
�

)
(4.70)

Also we have the following.

Corollary 14 (Large Time, Large N ) Let us assume that T = +∞ and there ex-
ist γ ≥ 0, δ ≥ 0, C1 ≥ 0, such that |Ft,t0 | ≤ exp(γ |t |), |zt | ≤ exp(δ|t |) for every
θ ∈]0,1[ there exists aθ > 0 such that if we choose N�,θ = [ aθ

�θ
] − 1 there exist

cθ > 0, ηθ > 0 such that

∥∥�(N�,θ+2)/2R
(N�,θ+1)
z (t)eεμ�,t

∥∥
L2 ≤ exp

(
− cθ
�θ

)
(4.71)

for every |t | ≤ 1−θ
6γ log(�−1), ∀� ∈ � ∈]0, ηθ ]. Moreover we have

∥∥ψ(N�,θ )
z (t)−U(t, t0)ϕz

∥∥
L2 ≤ exp

(
− cθ
�θ

)
(4.72)

under the conditions of (4.71).

Remark 21 We have considered here standard Gaussian. All the results are true
and proved in the same way for Gaussian coherent states defined by gΓ , for any
Γ ∈Σ+n . These results have been proved in [164] and in [101, 102] using different
methods.
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All the results in this subsection can easily be deduced from Theorem 25. Propo-
sition 42 and Theorem 26 are easily proved using the estimates of Sect. 2.2. The
proof of the corollaries are consequences of Theorem 26 and the Stirling formula
for the Euler Gamma function.

4.4 Application to the Scattering Theory

In this section we assume that the interaction satisfies a short range assumption
and we shall prove results for the action of the scattering operator acting on the
squeezed states. One gets a semiclassical asymptotics for the action of the scattering
operator on a squeezed state located at point z− in terms of a squeezed state located
at point z+ where z+ = Scl(z−), Scl being the classical scattering matrix. For the
basic classical and quantum scattering theories we refer the reader to [66, 162].
Let us first recall some basic facts on classical and quantum scattering theory. We
consider a classical Hamiltonian H for a particle moving in a curved space and in
an electromagnetic field:

H(q,p)= 1

2
g(q)p · p+ a(q) · p+ V (q), q ∈R

n, p ∈R
n (4.73)

g(q) is a smooth positive definite matrix and there exist c > 0, C > 0 such that

c|p|2 ≤ g(q)p · p ≤ C|p|2, ∀(q,p) ∈R
2n

a(q) is a smooth linear form on R
n and V (q) a smooth scalar potential. In what

follows it will be assumed that H(q,p) is a short range perturbation of H(0) = p2

2
in the following sense: there exist ρ > 1, and Cα , for α ∈N

n such that
∣∣∂αq (1− g(q))

∣∣+ ∣∣∂αq a(q)
∣∣+ ∣∣∂αq V (q)

∣∣≤ Cα〈q〉−ρ−|α|, ∀q ∈R
n (4.74)

H and H(0) define two Hamiltonian flows Φt , Φt
0 on the phase space R

2n for all
t ∈R. The classical scattering theory establishes a comparison of the two dynamics
Φt , Φt

0 in the large time limit. Note that the free dynamics is explicit:

Φt
0(q,p)= (q + tp,p)

The methods of [66, 162] can be used to prove the existence of the classical wave
operators defined by

Ωcl±X = lim
t→±∞Φ

−t(Φt
0X

)
(4.75)

This limit exists for every X ∈Z0 where Z0 = {(q,p) ∈R
2n,p �= 0} and is uniform

on every compact of Z0. We also have for all X ∈Z0

lim
t→±∞

(
ΦtΩcl± (X)−Φt

0(X)
)= 0
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Moreover,Ωcl± are C∞-smooth symplectic transformations. They intertwine the free
and the interacting dynamics:

H ◦Ωcl±X =Ωcl± ◦H(0)(X), ∀X ∈Z0, and Φt ◦Ωcl± =Ωcl± ◦Φt
0

Then the classical scattering matrix Scl is defined by

Scl = (
Ωcl+

)−1
Ωcl−

This definition makes sense since one can prove (see [162]) that modulo a closed
set N0 of Lebesgue measure zero in Z (Z \Z0 ⊆N0) one has

Ωcl+ (Z0)=Ωcl− (Z0)

Moreover Scl is smooth in Z \N0 and commutes with the free evolution:

SclΦt
0 =Φt

0S
cl

The scattering operator has the following kinematic interpretation: let us consider
X− ∈ Z0 and its free evolution Φt

0X−. There exists a unique interacting evolution
Φt(X) which is close to Φt

0(X−) for t ↘−∞. Moreover there exists a unique point
X+ ∈Z0 such that Φt(X) is close to Φt

0(X+) for t ↗+∞. X, X+ are given by

X =Ωcl−X− and X+ = SclX−
Using [66] we can get a more precise result. Let I be an open interval of R and
assume that I is “non trapping” for H which means that for every X such that
H(X) ∈ I we have limt→±∞ |Φt(X)| = +∞. Then we have

Proposition 43 If I is a non trapping interval for H then Scl is defined everywhere
in H−1(I ) and is a C∞ smooth symplectic map.

On the quantum side one can define the wave operators and the scattering op-
erator in a similar way. Let us note that the quantization Ĥ of H is essentially
self-adjoint so that the unitary group U(t)= exp(− it

�
Ĥ ) is well defined in L2(Rn).

The free evolution U0(t) := exp(− it
�
Ĥ (0)) is explicit:

(
U0(t)ψ

)
(x)= (2π�)−n

∫ ∫
R2n

exp

(
i

�

(
−t ξ

2

2
+ (x − y) · ξ

))
ψ(y)dy dξ (4.76)

The assumption (4.74) implies that we can define the wave operators Ω± and the
scattering operator S(�) = (Ω+)∗Ω− (see [66, 162]). Recall that

Ω± = lim
t→±∞U(−t)U0(t)

The ranges of Ω± are equal to the absolutely continuous subspace of Ĥ and we
have

Ω±U0(t)=U(t)Ω±, S(�)U0(t)=U0(t)S
(�) (4.77)
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One wants to obtain a correspondence between lim�→0 S
(�) and Scl . There are many

works on the subject (see [99, 102, 165, 203]). Here we want to check this classical
limit using the coherent states approach like in [99, 102].We present here a differ-
ent technical approach extending these results to more general perturbations of the
Laplace operator.

We recall some notations of Chap. 3: Σn is the Siegel space namely the space of
complex symmetric n× n matrices Γ such that Γ is positive and non degenerate.
Given F any 2n×2n symplectic matrix the unitary operator R̂(F ) is the metaplectic
transformation associated to F . gΓ is the Gaussian function of L2 norm 1 defined
by

gΓ (x)= aΓ exp

(
i

2�
Γ x · x

)
(4.78)

and we denote

ϕΓz = T̂ (z)gΓ

Finally Λ� is the unitary operator defined in (4.21).
The main result of this section states a relationship between the quantum scatter-

ing and the classical scattering.

Theorem 27 For every N ≥ 1, every z− ∈Z \N0 and every Γ− ∈Σn we have the
following semiclassical approximation for the scattering operator S(�) acting on the
Gaussian coherent state ϕΓ−z− :

S(�)ϕ
Γ−
z− = eiδ+/�T̂ (z+)Λ�R̂(G+)

( ∑
0≤j≤N

�
j/2bjg

Γ−
)
+O

(
�
(N+1)/2) (4.79)

where we define

z+ = Sclz−, z± = (q±,p±)
zt = (qt ,pt ) is the interacting scattering trajectory zt = Φt(Ωcl− z−), δ+ =∫ +∞
−∞ (ptqt − H(zt )) dt − q+p+−q−p−

2 , G+ = ∂z+
∂z− , bj is a polynomial of degree

≤ 3j , b0 = 1. The error term O(�(N+1)/2) is estimated in the L2-norm.

Let us denote

ψ− = ϕΓ−z− , and ψ+ := S(�)ψ−
Using the definition of S(�) we have

ψ+ = lim
t→+∞

(
lim

s→−∞U0(t)U(t − s)U0(s)
)
ψ− (4.80)

The strategy of the proof consists of applying the estimate (4.13) at fixed time t to
U(t − s) in (4.80) and then to see what happens in the limits s→−∞, t→+∞.
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Let us denote by F 0
t the Jacobi stability matrix for the free evolution and by Ft(z)

the Jacobi stability matrix along the trajectory Φt(z). We have

F 0
t =

(
1n t1n
0 1n

)

We need large time estimates concerning classical scattering trajectories and their
Jacobi stability matrices.

Proposition 44 Under the assumptions of Theorem 27 there exists a unique scat-
tering solution of the Hamilton equation żt = J∇H(zt ) such that

żt − ∂tΦt
0z+ = O

(〈t〉−ρ), for t→+∞
żt − ∂tΦt

0z− = O
(〈t〉−ρ), for t→−∞

Proposition 45 Let us denote

Gt,s := Ft−s
(
Φs

0z−
)
F 0
s

Then we have

(i) lims→−∞Gt,s =Gt exists, ∀t ≥ 0
(ii) limt→+∞F−t0 Gt =G+ exists

(iii) Gt = ∂zt
∂z− , and G+ = ∂z+

∂z−

These two propositions will be proven later together with the following one. The
main step in the proof of Theorem 27 will be to solve the following asymptotic
Cauchy problem for the Schrödinger equation with data given at time t =+∞:

i�∂sψ
N)
z− = Ĥψ(N)

z− (s)+O
(
�
(N+3)/2fN(s)

)

lims→−∞U0(−s)ψ(N)
z− (s)= ϕΓ−z−

(4.81)

where fN ∈ L1(R) ∩L∞(R) is independent of �. The following result is an exten-
sion for infinite times of results proven in Sect. 4.1 for finite times.

Proposition 46 The problem (4.81) has a solution which can be computed in the
following way:

ψ(N)
z− (t, x)= eiδ(zt )/�T̂ (z−)Λ�R̂(Gt )

( ∑
0≤j≤N

�
j/2bj (t, z−)gΓ−

)

The bj (t, z−, x) are uniquely defined by the following induction formula for j ≥ 1
starting with b0(t, x)≡ 1:

∂tbj (t, z−, x)g(x) =
∑

k+l=j+2, l≥3

Opw1
[
K
�
l (t)

](
bk(t, .)g

)
(x) (4.82)

lim
t→−∞bj (t, z−, x) = 0 (4.83)
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with

K
�
j (t,X)=Kj

(
t,Gt (X)

)= ∑
|γ |=j

1

γ !∂
γ

XH(zt )(GtX)
γ , X ∈R

2n

bj (t, z−, x) is a polynomial of degree ≤ 3j in variable x ∈ R
n with complex time-

dependent coefficients depending on the scattering trajectory zt starting from z− at
time t =−∞. Moreover we have the remainder uniform estimate

i�∂tψ
(N)
z− (t)= Ĥψ(N)

z− (t)+O
(
�
(N+3)/2〈t〉−ρ) (4.84)

uniformly in � ∈]0,1], and t ≥ 0.

Proof of Theorem 27 Without going into the details which are similar to the finite
time case, we remark that in the induction formula (4.82) we can use the following
estimates to get uniform decrease in time estimates for bj (t, z−, x). First there exist
c > 0 and T0 > 0 such that for t ≥ T0 we have |qt | ≥ ct . Using the short range
assumption and conservation of the classical energy we see that for |γ | ≥ 3 there
exists Cγ > 0 such that

∣∣∂γXH(zt )
∣∣≤ Cγ 〈t〉−ρ−1 (4.85)

Therefore we deduce (4.84) from (4.82) and (4.85).
Using Proposition 46 and Duhamel’s formula we get

U(t)ψ(N)
z− (s)=ψ(N)

z− (t + s)+O
(
�
(N+1)/2)

uniformly in t , s ∈R. But we have

∥∥ψ(N)
z− (t)−U(t − s)U0(s)ψ−

∥∥
≤ ∥∥ψ(N)

z− (t)−U(t − s)ψ(N)
z− (s)

∥∥+ ∥∥U0(s)ψ− −ψ(N)
z− (s)

∥∥
We know that

lim
s→−∞

∥∥U0(s)ψ− −ψ(N)
z− (s)

∥∥= 0

Then going to the limit s→−∞ we get uniformly in t ≥ 0

∥∥ψ(N)
z− (t)−U(t)Ω−ψ−

∥∥=O
(
�
(N+1)/2)

Then we can compute U0(−t)ψ(N)
z− (t) in the limit t →+∞ and we find out that

S(�)ψ− =ψ(N)
+ +O(�(N+1)/2) where

ψ
(N)
+ = lim

t→+∞U0(−t)ψ(N)
z− (t)

So we have proved Theorem 27. �
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Let us now prove Proposition 44 following the book [162].

Proof Let us denote u(t) := zt −Φ0
t z−. We have to solve the integral equation

u(t)=Φ0
t (z−)+

∫ t

−∞
(
J∇H (

u(s)
)+Φ0

s (z−)
)
ds

We can choose T1 < 0 such that the map K defined by

Ku(t)=
∫ t

−∞
(
J∇H (

u(s)
)+Φ0

s (z−)
)
ds

is a contraction in the complete metric space CT1 of continuous functions u from
]−∞, T1] into R

2n such that supt≤T1
|u(t)| ≤ 1, with the natural distance. So we can

apply the fixed point theorem to prove Proposition 44 using standard technics. �

Proposition 45 can be proved by the same method.
Let us now prove Proposition 46.

Proof Let us denote z0
s :=Φ0

s (z−). Furthermore if S is a symplectic matrix

S =
(
A B

C D

)

and Γ ∈Σn (Σn is the Siegel space) we define

ΣS(Γ )= (C +DΓ )(A+BΓ )−1 ∈Σn

Then let

Γ 0
s =ΣF 0

s
(Γ−)

One has for every N ≥ 0:

i�∂tψ
(N)
z (t, s, x)= Ĥ (t)ψ(N)

z (t, s, x)+R(N)z (t, s, x)

where

ψ(N)
z (t, s, x)= eiδs s,t/�T̂ (zt )Λ�R̂

(
Ft,sF

0
s

)( ∑
0≤j≤N

�
j/2bj (t, s)g

Γ−
)

(4.86)

and

R(N)z− (t, s, x) = eiδs,t /��(N+3)/2

×
( ∑
j+k=N+2, k≥3

T̂ (z−)Λ�R̂
(
Ft,sF

0
s

)

×Opw1
(
Rk(t, s) ◦

[
Ft,sF

0
s

])(
bj (t, s)g

Γ−)) (4.87)
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One denotes Ft,s = Ft−s(Φs
0z−) the stability matrix at Φt−s(Φ0

s (z−)). Moreover
the polynomials bj (t, s, x) are uniquely defined by the following induction formula
for j ≥ 1 starting with b0(s, s, x)≡ 1:

∂tbj (t, s, x) =
∑

k+l=j+2, l≥3

Opw1
[
K
�
l (t, s)

](
bk(t, .)g

Γ−)(x)

bj (s, s, x) = 0

where

K
�
l (t, s,X)=

∑
|γ |=l

1

γ !∂
γ

XH
(
Φt−s(Φ0

s z−
))(
Ft−sF 0

s X
)γ
, X ∈R

2n

So using Propositions 44 and 45 we can control the limit s → −∞ in (4.86)
and (4.87) and we get the proof of the Proposition 46. �

The following corollary is an immediate consequence of Theorem 27 and of the
properties of the metaplectic transformation:

Corollary 15 For every N ∈N we have

S(�)ϕ
Γ−
z− = eiδ+/�

∑
0≤j≤N

�
j/2πj

(
x − q+√

�

)
ϕ
Γ+
z+ (x)+O

(
�
∞)

where z+ = Scl(z−), Γ+ = ΣG+(Γ−), πj (y) are polynomials of degree ≤ 3j in
y ∈R

n. In particular π0 = 1.

Recall that Σm is the space of smooth classical observables L such that for every
γ ∈R

2n there exists Cγ ≥ 0 such that
∣∣∂γXL(X)

∣∣≤ Cγ 〈X〉m, ∀X ∈R
2n

The Weyl quantization L̂ of L is well defined (see Chap. 2). One has the following
result:

Corollary 16 For any symbol L ∈Σ(m), m ∈R, we have

〈
S(�)ϕz− , L̂S

(�)ϕz−
〉= L(Scl(z−))+O

(√
�
)

In particular one recovers the classical scattering operator from the quantum scat-
tering operator in the semiclassical limit.

Proof Using Corollary 15 one gets

〈
S(�)ϕz− , L̂S

(�)ϕz−
〉= 〈

ϕ
Γ+
z− , L̂ϕ

Γ+
z−
〉+O

(√
�
)

and the result follows from a trivial extension of Lemma 14 of Chap. 2. �
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Remark 22 A similar result was proven for the time-delay operator in [192]. The
proof given here is different and doesn’t use a global non-trapping assumption.

Further study concerns the scattering evolution of Lagrangian states (also called
WKB states). It was considered by Yajima [203] in the momentum representation
and by S. Robinson [167] for the position representation. The approach developed
here provides a more direct and general proof that is detailed in [164].

Note also that under the analytic and Gevrey assumption one can recover the re-
sult of [102] for the semiclassical propagation of coherent states with exponentially
small estimate.



Chapter 5
Trace Formulas and Coherent States

Abstract The most known trace formula in mathematical physics is certainly the
Gutzwiller trace formula linking the eigenvalues of the Schrödinger operator Ĥ as
Planck’s constant goes to zero (the semi-classical régime) with the closed orbits of
the corresponding classical mechanical system. Gutzwiller gave a heuristic proof
of this trace formula, using the Feynman integral representation for the propagator
of Ĥ . In mathematics this kind of trace formula was first known as Poisson formula.
It was proved first for the Laplace operator on a compact manifold, then for more
general elliptic operators using the theory of Fourier-integral operators. Our goal
here is to show how the use of coherent states allows us to give a rather simple and
direct rigorous proof.

5.1 Introduction

A quantum system is described by its Hamiltonian Ĥ and its admissible energies
are the eigenvalues Ej(�) (we suppose that the spectrum of the self-adjoint operator
Ĥ in the Hilbert space H = L2(Rn) is discrete). The frequency transition between

energies Ej(�) and Ek(�) is ωj,k = Ek(�)−Ej (�)
�

.
If n= 1, or if the system is integrable, it is possible to prove semi-classical ex-

pansion for individual eigenvalues Ej(�) when �↘ 0. For more general systems it
is very difficult and almost impossible to analyze individual eigenvalues. But it is
possible to give a statistical description of the energy spectrum in the semi-classical
regime by considering mean values

Tr
(
f
(
Ĥ
))=∑

f
(
Ej(�)

)
(5.1)

A first result can be obtained if we suppose that the �-Weyl symbol H of Ĥ is
smooth and satisfies the assumption of the functional calculus in Chap. 2 (Theo-
rem 10). Consider an interval Iε = [λ1− ε,λ2+ ε] such that H−1(I ) is compact for
ε small enough. The following result is proved in [107]:

Proposition 47

(i) For every smooth function f supported in Iε we have the asymptotic expansion
at any order in �

M. Combescure, D. Robert, Coherent States and Applications in Mathematical Physics,
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-0196-0_5, © Springer Science+Business Media B.V. 2012
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Trf
(
Ĥ
)� (2π�)−n

∫
R2n

dX f
(
H(X)

)+∑
j≥1

�
j−nCj (f ) (5.2)

where Cj (f ) are computable distributions in the test function f .
(ii) If λ1 and λ2 are noncritical values for H 1 and if NI denotes the number of

eigenvalues of Ĥ in I := [λ1, λ2] then we have the Weyl asymptotic formula

NI = (2π�)−nVol
(
H−1(I )

)+O(
�

1−n) (5.3)

Remark 23 (i) The first part of the Proposition is an easy application of the func-
tional calculus.

Using (i) it is possible to prove a Weyl formula with an error term O(�θ−n) with
θ < 2

3 . The error term with θ = 1 is optimal (in general) and can be obtained using
a method initiated by Hörmander [42, 107, 116]. Furthermore using a trick initiated
by Duistermaat–Guillemin [71] the remainder term can be improved in o(�1−n) if
the measure of closed classical path on H−1(λi) is zero, for i = 1,2 (see [158]).

The density of states of a quantum system Ĥ is the sum of delta distribution
D(E) =∑

δ(E − Ej(�)). The integrated density of states is the spectral reparti-
tion function N(E)= �{j,Ej (�) < E} where �E denotes the number of terms in a
series E . So that we have D(E)= d

dE
N(E).

The Gutzwiller trace formula is a semi-classical formula which expresses the
density of states of a quantum system in terms of the characteristics of the cor-
responding classical system (invariant tori for the completely integrable systems,
periodic orbits otherwise). Remark that properties of the classical system may have
consequence on the error term in the Weyl formula (see the Remark above). The
prototype of the trace formula is the Poisson summation formula:

+∞∑
n=−∞

f (n)=
+∞∑
k=−∞

f̃ (2πk) (5.4)

for any f ∈ S(R). Recall that f̃ is the Fourier transform f̃ (τ )= ∫
R
dt e−itτ f (t).

We show in which respect it is a Trace Formula. Consider the quantum momen-
tum operator P̂ in dimension one, P̂ = −i d

dx
, acting in L2([0,2π]) with periodic

boundary conditions u(0)= u(2π). P̂ is an unbounded operator with purely discrete
spectrum and one has

sp
(
P̂
)= Z

Therefore one has

Trf
(
P̂
)=

+∞∑
n=−∞

f (n)

1See the definition in Sect. 5.2.



5.1 Introduction 125

The classical Hamiltonian is H(q,p)= p. Therefore the solutions of the classical
equations of motion are

q = t mod(2π)

So, the classical trajectories are periodic in phase space (T1) × R and are k-
repetitions of the primitive orbit of period 2π , ∀k ∈ Z. Thus the periods of the
classical flow are equal to 2kπ, k ∈ Z. Then the Poisson Summation Formula ex-
presses that the trace of a function of a quantum Hamiltonian equals the sum over
the periodic orbits of the corresponding classical flow of the Fourier Transform of
this function taken at the periods of the classical flow.

From the Poisson Summation formula one deduces a Trace Formula for the one-
dimensional Harmonic Oscillator: take

Ĥ0 = 1

2

(
P̂ 2 + Q̂2)

the Hamiltonian of the Harmonic Oscillator. We assume � = 1 for simplicity. The
spectrum of Ĥ0 is {n+ 1

2 , n ∈N}. Therefore for any f ∈ S([0,+∞[) one has

Tr
(
f
(
Ĥ0

))=
∞∑
n=0

f

(
n+ 1

2

)

Replace f by T̂ (q,0)f in (5.4). One gets

∑
n∈Z

f (n+ q)=
∑
k∈Z

e2iπkq f̃ (2kπ)

Therefore for q = 1
2 one gets

Tr
(
f
(
Ĥ0

))=
+∞∑
k=−∞

(−1)kf̃ (2kπ)

But 2kπ are the periods of the orbits for the classical Harmonic oscillator of fre-
quency 1, which are all repetitions of the primitive orbit of period 2π . One notes the
apparition of a factor (−1)k in the trace formula which is the manifestation of the
so-called Maslov index of the periodic orbit of period 2kπ .

The paper of Gutzwiller appeared in 1971. Between 1973 and 1975 several au-
thors gave rigorous derivations of trace formulas, generalizing the classical Poisson
summation formula from d2/dθ2 on the circle to elliptic operators on compact man-
ifolds: Colin de Verdière [45], Chazarain [41], Duistermaat–Guillemin [71]. The
first article is based on a parametrix construction for the associated heat equation,
while the two other ones replace this with a parametrix constructed as a Fourier-
integral operator, for the associated wave equation.

The pioneering works in quantum physics of Gutzwiller [97, 98] and Balian–
Bloch [12, 13] (1972–74) showed that the trace of a quantum observable Â, lo-
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calized in a spectral neighborhood of size O(�) of an energy E for the quantum
Hamiltonian Ĥ , can be expressed in terms of averages of the classical observable
A associated with Â over invariant sets for the flow of the classical Hamiltonian H
associated with Ĥ . This is related to the spectral asymptotics for Ĥ in the semi-
classical limit, and it can be understood as a “correspondence principle” between
classical and quantum mechanics as Planck’s constant � goes to zero.

More recently, papers by Guillemin–Uribe [96] (1989), Paul–Uribe [150, 151]
(1991, 1995), Meinrenken [144] (1992) and Dozias [70] (1994) have developed
the necessary tools from microlocal analysis [117] in a nonhomogeneous (semi-
classical) setting to deal with Schrödinger-type Hamiltonians. Extensions and
simplifications of these methods have been given by Petkov–Popov [157] and
Charbonnel–Popov [40].

In this Chapter we show how to recover the semi-classical Gutzwiller trace for-
mula from the coherent states method.

The coherent states approach presented here seems particularly suitable when
one wishes to compare the phase-space quantum picture with the phase-space clas-
sical flow. Furthermore, it avoids problems with caustics, and the Maslov indices
appear naturally. In short, it implies the Gutzwiller trace formula in a very simple
and transparent way, without any use of the global theory of Fourier-integral opera-
tors. In their place we use the coherent states approximation (gaussian beams) and
the stationary phase theorem.

The use of Gaussian wave packets is such a useful idea that one can trace
it back to the very beginning of quantum mechanics, for instance, Schrödinger
[175] (1926). However, the realization that these approximations are universally
applicable, and that they are valid for arbitrarily long times, has developed gradu-
ally. In the mathematical literature these approximations have never become text-
book material, and this has lead to their repeated rediscovery with a variety of
different names, e.g. coherent states and Gaussian beams. The first place that
we have found where they are used in some generality is Babich [8] (1968)
(see also [9]). Since then they have appeared, often as independent discover-
ies, in the work of Arnaud [6] (1973), Keller and Streifer [124] (1971), Heller
[110, 111] (1975, 1987), Ralston [159, 160] (1976, 1982), Hagedorn [99, 100]
(1980–85), and Littlejohn [138] (1986)—and probably of many more, which
we have not found. Their use in trace formulas was proposed (heuristically) by
Wilkinson [199] (1987). The propagation formulas of [99, 100] were extended in
Combescure–Robert [52], with a detailed estimate on the error both in time and
in Planck’s constant �. This propagation formula of coherent states which is de-
scribed in Chap. 4 allows us to avoïd the whole machinery of Fourier-integral
operator theory. The early application of these methods in [8] was for the con-
struction of quasi-modes, and this has been pursued further in [159] and [150].
They have also been applied to the pointwise behavior of semi-classical mea-
sures [153].

The proof we shall present here for the Gutzwiller trace formula is inspired by
the paper by Combescure–Ralston–Robert [53].
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5.2 The Semi-classical Gutzwiller Trace Formula

We consider a quantum system in L2(Rn) with the Schrödinger Hamiltonian

Ĥ =−�2Δ+ V (x) (5.5)

where Δ is the Laplacian in L2(Rn) and V (x) a real, C∞(Rn) potential.
The corresponding Hamiltonian for the classical motion is

H(q,p)= p2 + V (q)
and for a given energy E ∈R we denote by ΣE the “energy shell”:

ΣE :=
{
(q,p) ∈R

2n :H(q,p)=E} (5.6)

More generally we shall consider Hamiltonians Ĥ obtained by the �-Weyl quanti-
zation of the classical Hamiltonian H , so that Ĥ =Opw

�
(H), where

Opw
�
(H)ψ(x)= (2π�)−n

∫∫
R2n

H

(
x + y

2
, ξ

)
ψ(y)e

i(x−y)·ξ
� dy dξ (5.7)

The Hamiltonian H is assumed to be a smooth, real valued function of z= (x, ξ) ∈
R

2n, and to satisfy the following global estimates:

• (H.0) there exist non-negative constants C,m,Cγ such that
∣∣∂γz H(z)∣∣ ≤ Cγ 〈H(z)〉, ∀z ∈R

2n, ∀γ ∈N
2n (5.8)

〈
H(z)

〉 ≤ C〈H (
z′
)〉 · 〈z− z′〉m, ∀z, z′ ∈R

2n (5.9)

where we have used the notation 〈u〉 = (1+ |u|2)1/2 for u ∈R
m.

Remark 24

(i) H(q,p)= p2 + V (q) satisfies (H.0), if V (q) is bounded below by some con-
stant a > 0 and satisfies the property (H.0) in the variable q .

(ii) The technical condition (H.0) implies in particular that Ĥ is essentially self-
adjoint on L2(Rn) for � small enough and that χ(Ĥ ) is a �-pseudodifferential
operator if χ ∈ C∞0 (R) (see Chap. 2 and [107]).

Let us denote by φt the classical flow induced by Hamilton’s equations with
Hamiltonian H , and by S(q,p; t) the classical action along the trajectory starting at
(q,p) at time t = 0, and evolving during time t

S(q,p; t)=
∫ t

0

(
ps · q̇s −H(q,p)

)
ds (5.10)

where (qt ,pt ) = φt (q,p), and dot denotes the derivative with respect to time. We
shall also use the notation: αt = φt (α) where α = (q,p) ∈ R

2n, is a phase-space
point. Recall that the Hamiltonian H is constant along the flow φt .
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If γ is a periodic trajectory parametrized as t �→ αt , αT ∗γ = α0 where T ∗γ is the
primitive period (the smallest positive period), the classical action along γ is

Sγ =
∫ T ∗γ

0
dt pt q̇t :=

∮
γ

p dq

An important role in what follows is played by the “linearized flow” around the
classical trajectory, which is defined as follows. Let

H ′′(αt )= ∂2H

∂α2

∣∣∣∣
α=αt

(5.11)

be the Hessian of H at point αt = φt (α) of the classical trajectory. Let J be the
symplectic matrix

J =
(

0 1
−1 0

)
(5.12)

where 0 and 1 are, respectively, the null and identity n× n matrices. Let Ft be the
2n× 2n real symplectic matrix solution of the linear differential equation

Ḟt = JH ′′(αt )Ft

F0 =
(

1 0
0 1

)
= 1

(5.13)

Ft depends on α = (q,p), the initial point for the classical trajectory, αt .
Let γ be a closed orbit on ΣE with period Tγ , and let us denote simply by

Fγ the matrix Fγ = F(Tγ ). Fγ is usually called the “monodromy matrix” of the
closed orbit γ . Of course, Fγ does depend on α, but its eigenvalues do not, since
the monodromy matrix with a different initial point on γ is conjugate to Fγ . Fγ has
1 as eigenvalue of algebraic multiplicity at least equal to 2. In all that follows, we
shall use the following definition:

Definition 12 We say that γ is a non-degenerate orbit if the eigenvalue 1 of Fγ has
algebraic multiplicity 2.

Let σ denote the usual symplectic form on R
2n

σ
(
α,α′

)= p · q ′ − p′ · q, α = (q,p); α′ = (
q ′,p′

)
(5.14)

(· is the usual scalar product in R
n). We denote by {α1, α

′
1} a basis for the eigenspace

of Fγ belonging to the eigenvalue 1, and by V its orthogonal complement in the
sense of the symplectic form σ

V = {
α ∈R

2n : σ(α,α1)= σ
(
α,α′1

)= 0
}

(5.15)

Then, the restriction Pγ of Fγ to V is called the (linearized) “Poincaré map” for γ .
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In more general cases the Hamiltonian flow will contain manifolds of periodic
orbits with the same energy. When this happens, the periodic orbits will necessarily
be degenerate, but the techniques we use here can still apply. The precise hypothesis
for this (“Hypothesis C”) will be given later. Following Duistermaat and Guillemin
we call this a “clean intersection hypothesis”, it is more explicit than other versions
of this assumption. Since the statement of the trace formula is simpler and more
informative when one does assume that the periodic orbits are non-degenerate, we
will give only that formula in this case.

We shall now assume the following. Let (ΓE)T be the set of all periodic orbits
on ΣE with periods Tγ , 0< |Tγ | ≤ T (including repetitions of primitive orbits and
assigning negative periods to primitive orbits traced in the opposite sense).

• (H.1) There exists δE > 0 such that H−1([E − δE,E + δE]) is a compact set of
R

2n and E is a noncritical value of H (i.e. H(z)=E⇒∇H(z) �= 0).
• (H.2) All γ in (ΓE)T are non-degenerate, i.e. 1 is not an eigenvalue for the cor-

responding “Poincaré map”, Pγ . In particular, this implies that for any T > 0,
(ΓE)T is a discrete set, with periods −T ≤ Tγ1 < · · ·< TγN ≤ T .

We can now state the Gutzwiller trace formula. Let Â=Opw
�
(A) be a quantum

observable, such that A satisfies the following.
• (H.3) There exists δ ∈R, Cγ > 0 (γ ∈N

2n), such that

∣∣∂γz A(z)∣∣≤ Cγ 〈H(z)〉δ, ∀z ∈R
2n

• (H.4) g is a C∞ function whose Fourier transform g̃ is of compact support with
Supp g̃ ⊂ [−T ,T ] and let χ be a smooth function with a compact support con-
tained in ]E−δE,E+δE[, equal to 1 in a neighborhood ofE. Then the following
“regularized density of states” ρA(E) is well defined:

ρA(E)= Tr

(
χ
(
Ĥ
)
Âχ

(
Ĥ
)
g

(
E − Ĥ

�

))
(5.16)

Note that (H.1) implies that the spectrum of Ĥ is purely discrete in a neighborhood
of E so that ρA(E) is well defined. We have also, more explicitly,

ρA(E)=
∑

1≤j≤N
g

(
E −Ej

�

)
χ2(Ej )

〈
Âϕj , ϕj

〉
(5.17)

where E1 ≤ · · · ≤ EN are the eigenvalues of Ĥ in ]E − δE,E + δE[ (with multi-
plicities) and ϕj is the corresponding eigenfunction (Ĥϕj = Ejϕj ). Let us remark

here that the � scaling:
E−Ej

�
is the right one to have a nice semi-classical limit. The

first argument is that if n = 1 (and for integrable systems), in regular case, eigen-
values are given by Bohr–Sommerfeld formula [108] and their mutual distance is of
order �. The second argument is included in the following result [106, 158].
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Under assumption (H.1) the Liouville measure dLE is well defined on the energy
surface ΣE :

dLE = dΣE

|∇H | (dΣE is the Euclidean measure on ΣE)

Now we can state the Gutzwiller trace formula.

Theorem 28 (Gutzwiller trace formula) Assume (H.0)–(H.2) are satisfied for H ,
(H.3) for A and (H.4) for g. Then the following asymptotic expansion holds true,
modulo O(�∞),

ρA(E) ≡ (π)−n/2ĝ(0)�−(n−1)
∫
ΣE

A(α)dσE(α)+
∑

k≥−n+2

ck(ĝ)�
k

+
∑

γ∈(ΓE)T
(2π)n/2−1ei(Sγ /�+σγ π/2)

{
ĝ(Tγ )

∣∣det(1− Pγ )
∣∣−1/2

×
∫ T ∗γ

0
A(αs) ds +

∑
j≥1

d
γ

j (ĝ)�
j

}
(5.18)

where T ∗γ is the primitive period of γ , σγ is the Maslov index of γ (σγ ∈ Z and is

computed in the proof), ck(g̃) are distributions in g̃ with support in {0}, dγj (g̃) are
distributions in g̃ with support {Tγ }.

Remark 25 We can include more general Hamiltonians depending explicitly in �,
H =∑K

j=1 �
jH (j) such that H(0) satisfies (H.0) and for j ≥ 1,

∣∣∂γH(j)(z)
∣∣≤ Cγ,j 〈H(0)(z)

〉
(5.19)

It is useful for applications to consider Hamiltonians like H(0)+ �H(1) where H(1)

may be, for example, a spin term. In that case the formula (5.18) is true with different
coefficients. In particular the first term in the contribution of Tγ is multiplied by

exp(−i ∫ T ∗γ0 H(1)(αs) ds).

Remark 26 For Schrödinger operators we only need smoothness of the potential V .
In this case the trace formula (5.18) is still valid without any assumptions at in-
finity for V when we restrict ourselves to a compact energy surface, assuming
E < lim inf|x|→∞ V (x). Using exponential decrease of the eigenfunctions [109] we
can prove that, modulo an error term of order O(�+∞), the potential V can be re-
placed by a potential Ṽ satisfying the assumptions of the Remark 2.1.

It is also possible to get a trace formula for Hamiltonians with symmetries [38].
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5.3 Preparations for the Proof

We shall make use of the standard coherent states introduced in Chap. 1 and their
propagation by the time-dependent Schrödinger equation established in Chap. 4. We
denote by

ϕα = T̂ (α)ψ0 (5.20)

the usual coherent states centered at the point α of the phase space R
2n. Then it is

known that any operator B̂ with a symbol decreasing sufficiently rapidly is in trace
class [163], and its trace can be computed by (see Chap. 1)

Tr B̂ = (2π�)−n
∫
R2n

〈
ϕα, B̂ϕα

〉
dα (5.21)

The regularized density of states ρA(E) can now be rewritten as

ρA(E)= (2π)−n−1
�
−n

∫
R×R2n

g̃(t)eiEt/�
〈
ϕα, ÂχU(t)ϕα

〉
dt dα (5.22)

where U(t) is the quantum unitary group:

U(t)= e−itĤ /�, and Âχ = χ
(
Ĥ
)
Âχ

(
Ĥ
)

(5.23)

Our strategy for computing the behavior of ρA(E) as � goes to zero is first to com-
pute the bracket

m(α, t)= 〈
ϕα, ÂχU(t)ϕα

〉
, (5.24)

where we drop the subscript χ in Aχ for simplicity.
First of all we shall use Lemma 14 of Chap. 2, giving the action of an �-

pseudodifferential operator on a Gaussian.
Thus m(t,α) is a linear combination of terms like

mγ (α, t)=
〈
Ψγ,α,U(t)ϕα

〉
(5.25)

Now we compute U(t)ϕα , using the semi-classical propagation of coherent states
result of Chap. 4. We recall that Ft is a time-dependent symplectic matrix (Jacobi
matrix) defined by the linear equation (5.13). R̂(F ) denotes the metaplectic repre-
sentation of the linearized flow F (see Chap. 3), and the �-dependent metaplectic
representation is defined by

R̂�(F )=Λ�R̂(F )Λ
−1
�

(5.26)

We will also use the notation

δ(α, t)=
∫ t

0
ps · q̇s ds − tH(α)− pt · qt − p · q

2
(5.27)
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From Chap. 4 we have the following propagation estimates in the L2-norm: for
every N ∈N and every T > 0 there exists CN,T such that

∥∥∥∥U(t)ϕα − exp

(
iδ(α, t)

�

)
T̂ (αt )R̂�(Ft )Λ�PN(x,Dx, t,�)ψ̃0

∥∥∥∥≤ CN,T �N (5.28)

where ψ̃0(x)= π−n/4 exp(−|x|2/2), and PN(t,�) is the (�, t)-dependent differen-
tial operator defined by

PN(x,Dx, t,�)= 1+
∑

(k,j)∈IN
�
k/2−jpwkj (x,D, t)

with IN =
{
(k, j) ∈N×N, 1≤ j ≤ 2N − 1, k ≥ 3j, 1≤ k− 2j < 2N

}
(5.29)

where the differential operators pkj (x,Dx, t) are products of j Weyl quantization of
homogeneous polynomials of degree ks with

∑
1≤s≤j ks = k (see [52], Theorem 3.5

and its proof). So that we get

pwkj (x,Dx, t)ψ̃0 =Qkj (x)ψ̃0(x) (5.30)

where Qkj (x) is a polynomial (with coefficients depending on (α, t)) of degree k
having the same parity as k. This is clear from the following facts: homogeneous
polynomials have a definite parity, and Weyl quantization behaves well with respect
to symmetries: Opw(A) commutes to the parity operator Σf (x) = f (−x) if and
only if A is an even symbol and anticommutes with Σ if and only if A is an odd
symbol) and ψ̃0(x) is an even function.

So we get

m(α, t) =
∑

(j,k)∈IN ;|γ |≤2N

ck,j,γ �
k+|γ |

2 −j exp

(
iδ(t, α)

�

)

× 〈
T̂ (α)Λ�Qγ ψ̃0, T̂ (αt )Λ�Qk,j R̂(Ft )ψ̃0

〉+O(
�
N
)

(5.31)

where Qk,j , respectively, Qγ are polynomials in the x variable with the same parity
as k, respectively, |γ |. This remark will be useful in proving that we have only
entire powers in � in (5.18), even though half integer powers appear naturally in the
asymptotic propagation of coherent states.

By an easy computation we have

〈
T̂ (α)Λ�Qγ ψ̃0, T̂ (αt )Λ�Qk,j R̂(Ft )ψ̃0

〉

= exp

(
−i 1

2�
σ(α,αt )

)〈
T̂1

(
α − αt√

�

)
Qγ ψ̃0,Qk,j R̂(Ft )ψ̃0

〉
(5.32)

where T̂1(·) is the Weyl translation operator with �= 1.
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We set

mk,j,γ (α, t) =
〈
T̂1

(
α − αt√

�

)
Qγ ψ̃0,Qk,j R̂(Ft )ψ̃0

〉
(5.33)

m0(α, t) =
〈
T̂1

(
α − αt√

�

)
ψ̃0, R̂(Ft )ψ̃0

〉
(5.34)

We compute m0(α, t) first. We shall use the fact that the metaplectic group trans-
forms Gaussian wave packets into Gaussian wave packets in a very explicit way. If
we denote by At , Bt , Ct , Dt the four n× n matrices of the block form of Ft

Ft =
(
At Bt
Ct Dt

)
(5.35)

We have already seen in Chaps. 3 and 4, since Ft is symplectic, that Ut =At + iBt
is invertible. So we have defined

Γt = VtU−1
t , where Vt = (Ct + iDt ) (5.36)

We have from our Chap. 3 (see also [77], Chap. 4)

m0(α, t) = [detUt ]−1/2
c π−n/2

×
∫
Rn

exp

{
i

2
(Γt + i1)x · x − i√

�

(
x − q − qt

2

)

× (
p− pt + i(q − qt )

)}
dx (5.37)

But the integration in x is a Fourier transform of a Gaussian and can be performed
(see in Appendix A, Sect. A.1). The complex matrix Γt + i1 is invertible and we
have

(Γt + i1)−1 = 1+Wt

2i
(5.38)

where we use the following notation:

Wt = ZtY−1
t , Zt =Ut + iVt , Yt =Ut − iVt (5.39)

It is clear that Y is invertible (see Chap. 3). So we get

m0(α, t)= 2nπn/2
[
detYtU

−1
t

]−1/2
∗ [detUt ]−1/2

c e
i
�
ΨE(t,α) (5.40)

where the phase ΨE(t,α) is given by

ΨE(t,α) = t
(
E −H(α))+ 1

2

∫ t

0
σ(αs − α, α̇s) ds

+ i

4
(1−Wt)(ᾰ − ᾰt ) · (ᾰ − ᾰt ) (5.41)

with ᾰ = q + ip if α = (q,p).
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In (5.40) we have a product of square root of determinant. [detUt ]−1/2
c is a

branch for [detUt ]−1/2 with the phase (or argument) obtained by continuity in time
from Ut=0 = 1. For a complex symmetric matrix M with definite-positive real part,
[detM]−1/2∗ is a branch for (detM)−1/2 with the phase obtained by continuity along
a path joining �M to M , the eigenvalues of M1/2 having positive real part. Follow-
ing carefully these phases will give the Maslov correction index.

Remark 27 There is here a difference with the paper [53] where the phase was
obtained before integration in y ∈R

n, so computations here will be a little bit more
natural and easier.

The same phase ΨE(t,α) appears when computing mk,j,γ (α, t) with non-trivial
amplitudes. Then the formula for the regularized density of states in (5.22) takes the
form

ρA(E)=
∫
R

dt

∫
R2n

dα a(t, α,�)e
i
�
ΨE(t,α) (5.42)

where ΨE is given in (5.41) and a(t, α,�)�∑
j∈N aj (t, α)�j .

Our plan is to prove Theorem 28 by expanding (5.42) by the method of sta-
tionary phase. The necessary stationary phase lemma for complex phase functions
can easily be derived from Theorem 7.7.5 in [117]. There is also an extended dis-
cussion of complex phase functions depending on parameters in [117] leading to
Theorem 7.7.12, but the form of the stationary manifold here permits us to use the
following result proved in Sect. A.2.

Theorem 29 (Stationary phase expansion) Let O ⊂ R
d be an open set, and let

a,f ∈ C∞(O) with f ≥ 0 in O and supp a ⊂O. We define

M = {
x ∈O,f (x)= 0, f ′(x)= 0

}

and assume that M is a smooth, compact and connected submanifold of Rd of di-
mension k such that for all x ∈M the Hessian, f ′′(x), of f is non-degenerate on
the normal space Nx to M at x.

Under the conditions above, the integral J (ω)= ∫
Rd

eiωf (x)a(x)dx has the fol-
lowing asymptotic expansion as ω→+∞, modulo O(ω−∞):

J (ω)≡
(

2π

ω

) d−k
2 ∑

j≥0

cjω
−j

The coefficient c0 is given by

c0 = eiωf (m0)

∫
M

[
det

(
f ′′(m)|Nm

i

)]−1/2

∗
a(m)dVM(m) (5.43)

where dVM(m) is the canonical Euclidean volume in M , m0 ∈M is arbitrary, and
[detP ]−1/2∗ denotes the product of the reciprocals of square roots of the eigenvalues
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of P chosen with positive real parts. Note that, since f ≥ 0, the eigenvalues of
f ′′(m)|Nm

i
lie in the closed right half plane.

5.4 The Stationary Phase Computation

In this section we compute the stationary phase expansion of (5.22) with phase ΨE
given by (5.41). Note that a(t, α,�) is actually, according to (5.31), a polynomial
in �

1/2 and �
−1/2. Hence the stationary phase theorem (with �-independent sym-

bol a) applies to each coefficient of this polynomial.
We need to compute the first and second order derivatives of ΨE(t,α). Let us

introduce the 2n× 2n complex symmetric matrix

W
�
t =

(
Wt −iWt

−iWt −Wt

)

It is enough to compute first derivatives for ΨE up to O(|αt − α|2):

∂tΨE(t, α) ≡ E −H(α)− 1

2
(αt − α) · J α̇t + 1

2i

(
W� − 1

)
α̇t · (αt − α) (5.44)

∂αΨE(t, α) ≡ 1

2

(
1+ FT )J (αt − α)+ 1

2i

(
FT − 1

)(
W� − 1

)
(αt − α) (5.45)

The critical set for the stationary phase theorem is defined as

CE =
{
(α, t) ∈R

2n ×R,(ΨE(α, t))= 0, ∂tΨE(t, α)= 0, ∂αΨE(t, α)= 0
}

We have seen in Chap. 2 that since F is symplectic, one has W ∗W < 1, so if
(ΨE(α, t))= 0 then αt = α. Using (5.44) we get

CE =
{
(α, t) ∈R

2n ×R,H(α)=E;αt = α
}

Hence (t, α) is a critical point means that α is on a periodic path of energy E, for
the Hamiltonian H , and period t .

The second derivatives of ΨE restricted on CE can be computed as follows:

∂2
t,tΨE(t, α) =

1

2i

(
W
�
t − 1

)
α̇ · α̇ (5.46)

∂2
t,αΨE(t, α) = −∂αH(α)+

1

2i

(
FTt − 1

)(
W
�
t − 1

)
(α̇) (5.47)

∂2
α,αΨE(t, α) =

1

2

(
JFt − FTt J

)+ 1

2i

(
FTt − 1

)(
W
�
t − 1

)
(Ft − 1) (5.48)

Let Ψ ′′E(t0, α0) be the Hessian matrix of ΨE at point (t0, α0) of CE . We have to
compute the kernel of Ψ ′′E(α0, t0).
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Lemma 33 For every (t0, α0) ∈ CE we have

ker
(
Ψ ′′E(t0, α0)

)= {
(τ, v) ∈R×R

2n, v · ∂αH = 0, (Ft0 − 1)v + τ α̇ = 0
}

(5.49)

Proof Using the Taylor formula we have

(ψE(t,α)) = 1

2
Ψ ′′E(t0, α0)(t − t0, α − α0) · (t − t0, α − α0)

+O(|t − t0|3 + |α − α0|3
)

(5.50)

From W ∗W < 1 we get, for some c > 0,

(ψE(t,α))≥ c|α − αt |2 (5.51)

Using that α− αt = (α − α0)+ (α0 − α0,t0)+ (α0,t0 − αt0)+ (αt0 − αt ) we get

α − αt = (1− Ft0)(α − α0)+ (t0 − t)α̇t +O
(|t − t0|2 + |α − α0|2

)

Then from (5.50) and (5.51) we get, for some c > 0,

∣∣Ψ ′′E(t0, α0)(t − t0, α−α0) · (t − t0, α−α0)
∣∣≥ c∥∥(Ft0 −1)(α−α0)+ (t − t0)α̇

∥∥2

(5.52)
So we have proved the part “⊆” in (5.49). The part “⊇” is obvious. �

The first thing to check, in order to apply the stationary phase theorem is that the
support of α in (5.42) can be taken as compact, up to an error O(�∞). We do this
in the following way: let us recall some properties of �-pseudodifferential calculus
proved in [68, 107]. The function m(z)= 〈H(z)〉 is a weight function. In [68] it is
proved that χ(Ĥ )= Ĥχ where Hχ ∈ S(m−k), for every k (χ is like in (H.4)). More
precisely, we have in the � asymptotic sense in S(m−k),

Hχ =
∑
j≥0

Hχj�
j

and support [Hχ,j ] is in a fixed compact set for every j (see (H.4) and [107] for the
computations of Hχ,j ). Let us recall that the symbol space S(m) is equipped with
the family of semi-norms

sup
z∈R2n

m−1(z)

∣∣∣∣ ∂
γ

∂zγ
u(z)

∣∣∣∣
Now we can prove the following lemma.

Lemma 34 There is a compact set K in R
2n such that for

m(α, t)= 〈
ϕα, ÂχU(t)ϕα

〉
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we have ∫
R2n/K

∣∣m(α, t)∣∣dα =O(
�
+∞)

uniformly in every bounded interval in t .

Proof Let χ̃ ∈ C∞0 (]E−δE,E+δE[) such that χ̃χ = χ . Using (H.3) and the com-

position rule for �-pseudodifferential operators we can see that Âχ (Ĥ ) is bounded
on L2(Rn). So there exists a C > 0 such that

∣∣m(α, t)∣∣≤ C∥∥χ̃(Ĥ )
ϕα
∥∥2

But we can write ∥∥χ̃(Ĥ )
ϕα
∥∥2 = 〈

χ̃
(
Ĥ
)2
ϕα,ϕα

〉
Let us introduce the Wigner function, wα , for ϕα (i.e. the Weyl symbol of the or-
thogonal projection on ϕα). We have

〈
χ̃
(
Ĥ
)2
ϕα,ϕα

〉= (π�)−n
∫
Hχ2(z)wα(z) dz

where

wα(z)= (π�)−ne−
|z−α|2

�

Using remainder estimates from [107] we have, for every N large enough,

Ĥχ2 =
∑

0≤j≤N
Hχ2,j�

j + �
N+1RN(�)

where the following estimate in Hilbert–Schmidt norm holds:

sup
0<�≤1

∥∥RN(�)∥∥HS <+∞

Now there is an R > 0 such that for every j , we have Supp[Hχ2,j ] ⊆ {z, |z| < R}.
So the proof of the lemma follows from

∥∥RN(�)∥∥2
HS
= (2π�)−n

∫ ∥∥RN(�)ϕα∥∥2
dα

and from the elementary estimate, which holds for some C, c > 0,
∫∫
{|z|≤R,|α|≥R+1}

e−
|α−r|2

� dzdα ≤ Ce−
c
�

�

From (5.49) we see that a sufficient condition to apply the stationary phase theo-
rem is the following “clean intersection condition” for the Hamiltonian flow φt .
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Clean Intersection Condition (CI) We assume that CE is a union of smooth com-
pact connected components and on each component, the tangent space T(t0,α0)CE
to CE at (t0, α0) coincides with the linear space {(τ, v) ∈ R × R

2n,

v · ∂αH = 0, (Ft01)v + τ α̇ = 0}.
So under condition (CI) the kernel of Ψ ′′E(t0, α0) coincides with the tangent space

T(t0,α0)(CE). Hence Ψ ′′E(t0, α0) is non-degenerate on the normal space at CE on
(t0, α0), as is required to apply the stationary phase theorem. At this point we have
already proved that there exists an asymptotic expansion for the regularized density
of states ρA(E). A more difficult problem is to compute this asymptotics in general.

The simpler case is the period 0 of the flow: CE = {0, α),H(α) = E}. Then
the property (CI) is satisfied if E is non critical for H . Remark that 0 is not an
accumulation point in the periods of classical paths.

The Hessian matrix on CE is

Ψ ′′E(0, α)=
(− 1

2∇H i∇H
−∇H 0

)

where ∇H = ∂αH . The normal space Nα to CE has the basis {(1,0), (0,∇H)}.
So the determinant of Ψ ′′E(0, α) restricted to N(0,α) is ‖∇H‖4. The stationary phase
theorem gives us

Proposition 48 Let g be such that g̃ is supported in ] − T0, T0[ where T0 > 0 and
φt has no periodic trajectory on ΣE with a period in ] − T0, T0[\{0}. Then we have

ρA(E)= g̃(0)(2π)−n
(∫

ΣE

χ(H(α))

‖∇H‖ dΣE

)
�

1−n +O(
�

2−n) (5.53)

Moreover the asymptotics can be extended as a full asymptotics in �.

As an application of (5.53) we have the following.

Theorem 30 (Weyl asymptotic formula) Assume that H satisfies condition (H.0).
Consider λ1 < λ2 such that H−1[λ1 − ε,λ2 + ε] is compact and are non critical
values for H . Let NI be the number of eigenvalues Ej(�) of Ĥ in I = [λ1, λ2].

Then we have

NI = (2π�)−nVol
{
α ∈R

2n, H(α) ∈ I}+O(
�

1−n) (5.54)

Proof Using a partition of unity it is enough to consider

σ(λ)=
∑

Ej (�)≤λ
χ
(
Ej(�)

)

where χ is supported in a small neighborhood of λ1 or λ2 (between λ1 and λ2 we
can apply the functional calculus to get an asymptotic expansion; see [107]).
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To prove an asymptotic expansion for σ(λ) we use (5.53) choosing A= χ(H), g̃
even, g̃(0)= 1, g≥ 0 and g(λ)≥ δ0 for |λ| ≤ ε0 for some δ0 > 0, ε0 > 0. We have

σ(λ)− 1

�

∫
g

(
μ− λ
�

)
σ(μ)dμ=

∫ (
σ(λ)− σ(λ+ τ�))g(τ ) dτ (5.55)

From (5.53) we have, after integration,

�
−1

∫
g

(
μ− λ
�

)
σ(μ)dμ= (2π�)−n

∫
H(α)≤λ

dα χ
(
H(α)

)+O(
�
−n)

Using the following estimate, for some C > 0:
∣∣σ(λ+ τ�)− σ(λ)∣∣≤ C(1+ |τ |)�1−n (5.56)

we get

σ(λ)= (2π�)−n
∫
H(α)≤λ

dα χ
(
H(α)

)+O(
�
−n)

then (5.54) follows.
Now we prove (5.56). It is enough to consider the case τ ≥ 0.
Suppose τ ≤ ε0. Then

δ0

∫ λ+τ�

λ

σ (μ)≤
∫
dμg

(
μ− λ
�

)
=O(

�
1−n)

For τ = �ε0 with � ∈N, using the triangle inequality, we get
∣∣σ(λ+ �ε0�)− σ(λ)

∣∣≤ C��1−n

Finally for �ε0 < τ < (�+ 1)ε0 using again the triangle inequality we get (5.56). �

Remark 28 Assuming that the set of all periodical trajectories of H in ΣE is of
Liouville-measure 0, it is possible to prove by the same method the following result.
For every C > 0 we have

lim
�↘0

�
n−1�

{
j,E −C�≤Ej(�)≤E −C�

}=
∫
ΣE

dLE =: LE(ΣE) (5.57)

This result was already proved in [106, 158] using Fourier-integral operators.

Now we come to the proof of the Gutzwiller trace formula (5.18).
Note that for isolated periodic orbits on ΣE the non-degenerate assumption is

equivalent to the condition (CI). So it results from our discussion that in this case
the Hessian matrix Ψ ′′E at (t0, α0), where γ is a periodic path with period t0 = kT ∗γ
and α0 ∈ γ is non-degenerate on the normal space Nt0,α0 at CE . Here Nt0,α0 is the
linear space {R(1,0) + {(0, v), v ∈ R

2n, σ (v,∇H) = 0}. Our main problem is to
compute the determinant of the restriction Ψ ′′E,⊥(t0, α0) of Ψ ′′E(t0, α0) to Nt0,α0 . We
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shall denote Πα̇ the orthogonal projection in R
2n on J∇H(α0) := α̇ (tangent vector

to γ ).
It is convenient to introduce the notations

G= 1

2

(
W
�
t0
− 1

)
, K = (

FTt0 − 1
)(
G+ i

2
J

)
+ iJ

Using that Ft0 is symplectic we have

∂2
α,αΨE(t0, α0)=K(Ft0 − 1)

So we have

Ψ ′′E(t0, α0)= i−1
(
Gα̇ · α̇ Kα̇

Kα̇ K(Ft0 − 1)

)
(5.58)

This formula is general. Furthermore we have the very useful result:

Lemma 35 K is a 2n× 2n invertible matrix and we have

K−1 =−1

2

(
U − 1 −i(1+U)
i1+ V −(1+ iV )

)
(5.59)

In particular we have

detK = (−1)n det

(
Y

2

)−1

(5.60)

where U =Ut0 , V = Vt0 , Y = Yt0 .

Proof We have, using definition of W ,

W� − 1+ iJ =
(

W − 1 −i(W − 1)
−i(W + 1) −(W + 1)

)

=
(

2iV 2V
−2iU −2U

)(
(U − iV )−1 0

0 (U − iV )−1

)

After some algebraic computations, using in particular the symplectic relations, we
find

K =
(−1− iV i(1+U)
−i1− V −1+U

)(
(U − iV )−1 0

0 (U − iV )−1

)

So we get the lemma. �

Now we begin to use the non-degeneracy condition to compute the determinant
of Ψ ′′E,⊥(t0, α0). We have

det
(
i−1Ψ ′′E,⊥(t0, α0)

)= i−1 det

(
d Kα̇

Kα̇ K(Ft0 − 1)+ iΠα̇

)
(5.61)

where d = 1
2 (W

� − 1).



5.4 The Stationary Phase Computation 141

Let us introduce now convenient coordinates. We define a Poincaré section S by
the equation T (α)= 0 where T is a classical observable such that {T ,H }(α)= 1,
T (α0)= 0, T is defined in an open neighborhood V0 of α0.

The first return Poincaré map P(α) = φT (α)(α) is defined in V0 ∩ S such that
T (φT (α)(α))= 0 with T (α0)= t0, T (α) is the first return time.

In V0 we can define new symplectic coordinates: (e, τ,%), where e = H(α),
τ = T (α), %(α) ∈ R

2(n−1). The differential P ′(α0) of P at α0 is related with the
stability matrix F = (∂αφt0)(α0):

P ′(α0)v = Fv−
(
FT∇T · v)α̇ (5.62)

For e near E, the Poincaré map Pe is defined in V0∩S∩Σe into V1∩S∩Σe, where
V1 is a neighborhood of α0, by P(α)= φT (α)(α), T (α0)= t0. It is a symplectic map
and for e = E its differential Pγ is the restriction of P ′(α0) to Nγ := Tα0(S ∩ΣE)

(for more details we refer to [103]).
Note that Nγ = {v ∈R

2n, v · ∇H = v · ∇T = 0}.
When the energy e is varying around E we have a smooth family of closed tra-

jectories of period T (e) parametrized by α(e) ∈ V0 ∩ S such that α(E) = α0 and
T (E)= t0. T and α are smooth in e. This result is known as the cylinder Theorem
[103]. It is a consequence of the implicit function theorem applied to the equation
φT (e)(α(e))= α(e). In particular we have

(F − 1)α′(E)= T ′(E)α̇ (5.63)

Note that α′(E) ·∇H = 1 so α′(E) �= 0 and the non-degeneracy assumption implies
that {α̇, α′(E)} is a basis for the generalized eigenspace E1 for the eigenvalue 1 of
F (we have a non-trivial Jordan block if T ′(E) �= 0).

Let V be the symplectic orthogonal of E1: V = {v|σ(v, α̇)= σ(v,α′(E))= 0}.
The restriction of F to V is the algebraic linear Poincaré map Pγ (al). Using (5.62)
we can easily prove that Pγ and Pγ (al) are conjugate: MPγ = Pγ (al) where M is an
invertible linear map from Nγ onto V . So we have

det(Pγ − 1)= det
(
Pγ

(al) − 1
)

In particular if γ is non-degenerate then Pγ − 1 is invertible. The strategy is to
simplify as far as possible the r.h.s. in (5.61).

To simplify our discussion we shall assume that T ′(E) �= 0. It is not a restriction
because if T ′ = 0 we can perturb a little F by Fε , ε > 0, such that

Fεα̇ = F on V, F εα̇ = α, F εα′(E)= α′(E)+ εα̇
The determinant we have to compute depends only on the symplectic map F , so we
can compute with Fεα̇ and take the limit as ε→ 0.

The first step is to find v ∈C
2n such that

(F − 1)v + v · α̇K−1α̇ = α̇ (5.64)
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With this v := v0 we get

det
(
i−1Ψ ′′E,⊥(t0, α0)

)= i−1 det

(
d − v0 ·Kα̇ Kα̇

0 K(F − 1)+ iΠα̇

)
(5.65)

where Πα̇ = (v·α̇)
|α̇|2 α̇.

A direct computation gives

K−1α̇ =− i
2
(F + 1)∇H

so (5.64) is transformed into

(F − 1)v = i

2
v · α̇(F + 1)∇H

Using (F − 1)T∇H = 0 we have v · α̇ = 0, so we have to solve

(F − 1)v0 = α̇ (5.66)

We are looking for v0 = λα̇ +μα′(E) and we find

v0 = 1

T ′(E)

(
α′(E) · α̇
|α̇|2 α̇ − α′(E)

)
(5.67)

So our first simplification gives the expression

det
(
i−1Ψ ′′E,⊥(t0, α0)

)= i−1(d − v0K̇α̇
)

detK det
(
F − 1+ iK−1Πα̇

)

For the first term we get

d − v0K̇α̇ =−iv0 · J α̇ = i σ (α
′(E), α̇)
T ′(E)

detK is already computed. We shall compute det(F − 1 + iK−1Πα̇) in a
symplectic basis {v1, v2, v3, . . . , v2n} where v1 = α̇, v2 = 1

∇H ·α′(E)α
′(E) where

σ(v2j−1, v2j ) = 1 for 1 ≤ j ≤ n and σ(vj , vk) = 0 if |j − k| �= 1. In this basis
we have

K−1Πα̇vj = vj · α̇
|α̇|2 K

−1Πα̇α̇

So combining with the first column we can eliminate the terms K−1Πα̇vj for j ≥ 2
and using that F − 1 is invertible on V we can assume that in the first column only
the two first terms are not zero. Finally we have obtained

det
(
F − 1+ iK−1Πα̇

)= det

⎛
⎝
(
x1 δ

x2 0

)
0

0 [Pγ − 1]

⎞
⎠=−δx2 det(Pγ − 1)

(5.68)



5.5 A Pointwise Trace Formula and Quasi-modes 143

It is left to compute x2 and δ. We have

δ = σ
(
(F − 1)v2, v2

)=− T ′(E)
(∇H · α′(E))2 σ

(
α̇, α′(E)

)
(5.69)

x2 = −1

2
σ
(
(F + 1)∇H,v1

)= |∇H |2 (5.70)

So we get

det
(
i−1Ψ ′′E,⊥(t0, α0)

)= 2n‖∇H‖2 det(Y )−1 det(Pγ − 1) (5.71)

Using the expression (5.40) we find the leading term ρ1,γ (E) for the contribution of
the periodic path γ in formula (5.18), assuming for simplicity that A= 1,

ρ1,γ (E) = (2π)n/2−1[det
(
YU−1)]

∗
−1/2[detU ]−1/2

c [detY ]1/2

× ĝ(Tγ )
[
det(Pγ − 1)

]−1/2
eiψE‖∇H‖−1 (5.72)

where [u]1/2 denotes a suitable branch for the square root. So we get

ρ1,γ (E)= (2π)n/2−1ei(Sγ /�+σγ π/2)ĝ(Tγ )T ∗γ
∣∣det(1− Pγ )

∣∣−1/2 (5.73)

with σγ ∈ Z and Sγ =
∮
γ
p dq .

Let us remark that, because Pγ is symplectic and 1 is not eigenvalue of Pγ , we
have det(Pγ − 1)= (−1)σ

′ |det(Pγ − 1)| where σ ′ is the number of eigenvalues of
Pγ smaller than 1. So we see that

eiσγ π/2 =±eiσ
′π/2 (5.74)

Thus we get that the contribution of the Maslov index in Theorem 28 is to determine
the sign in (5.74).

We have given here an analytical method for its computation. We do not consider
its geometrical interpretation (“Maslov cycle”) for which we refer to the literature
on this subject [60, 134, 166] and references in these works.

The other coefficients, dγj are spectral invariants which have been studied by
Guillemin and Zelditch. In principle we can compute them using this explicit ap-
proach. This completes the proof of Theorem 28.

5.5 A Pointwise Trace Formula and Quasi-modes

From the well known Bohr–Sommerfeld quantization rules it is believed that there
exist strong connections between periodic trajectories of a classical system H and
bound states of its quantization Ĥ . In this section we discuss some properties of lo-
calization for bound states or approximate bound states (quasi-modes) near periodic
trajectories in the simplest cases. More general results are proved in [153].
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5.5.1 A Pointwise Trace Formula

The idea of this formula has appeared in [153]. We give here a proof of the main re-
sult of [153] for Gaussian coherent states. We assume that properties (H.0) and (H.1)
are satisfied. Consider the local density of states defined for every α ∈R

2n by

ρE(α)≡
∑
j

g

(
E −Ej(�)

�

)
χ
(
Ej(�)

)∣∣〈ψα,ψ�

j

〉∣∣2

where ψ�

j are the normalized eigenfunctions for Ĥ , Ĥψ�

j =Ej(�)ψ�

j .

Theorem 31 The local density of states ρE(α) has the following asymptotic behav-
ior as �→ 0:

ρE(α)≡
∑
k∈N

�k(g, α)�
1
2+k (5.75)

The coefficients �k(g, α) are smooth in α and are distributions in g̃. Their expres-
sions depend on the behavior of the path t �→ φtα.

(i) If the path t �→ φtα has no periodic point with period in supp g̃ then �k(g, α)
are distributions in g̃ supported in {0}. In particular the leading term is

�0(g, α)= 1√
2
π−

n+1
2

1

‖∇H(α)‖ g̃(0) (5.76)

(ii) If t �→ φtα has a primitive period T ∗, �k(g, α) are distributions in g̃ supported
in {mT ∗, m ∈ Z}. In particular the leading term is

�0(g, α)= 1√
2
π−

n+1
2
∑
m∈Z

g̃
(
mT ∗

)
C(m) (5.77)

where

C(m)= (
1−W�

mT ∗ α̇ · α̇
)− 1

2 .

Recall that W�
t depends on the monodromy matrix Ft .

Proof As for the trace formula (5.18), we first give a time-dependent formula for

ρE(α) with the propagator U(t)= e−i t� Ĥ .
If Πz is the orthogonal projection on the coherent state ϕz we have

ρE(α)= Tr

(
g

(
E − Ĥ

�

)
χ
(
Ĥ
)
Πα

)

by computing the trace on the basis ψ�

j . So we get

ρE(α)= 1

2π

∫
dt g̃(t)ei

t
�
E
〈
ϕα,U(t)χ

(
Ĥ
)
ϕα
〉

(5.78)
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In (5.78) the integrand is the same as in the proof of the trace formula. The difference
is that here we have only a time integration. So the stationary phase theorem is much
simpler to apply: α is fixed such that H(α) = E, the critical set of the phase ψE ,
is defined by the equation φtα = α so we have t =mT ∗ where T ∗ is the primitive
period (T ∗ = 0 if α is not a periodic point of the flow).
ψ̈E(t, α) is here the second derivative in time of ψE . So we have

ψ̈E(t, α)= i

2

(
1−W�

t

)
α̇ · α̇

For t = 0 we have ψ̈E(α) = i
2‖∇H‖2. Using that ∇H �= 0, the stationary phase

theorem gives the part (i) of the Theorem.
For the periodic case we have to recall that Wt is a complex symmetric n × n

matrix and that W ∗W < 1. With this properties we have easily that for every T > 0
there exists cT > 0 such that

�(1−W�
t

)
α̇ · α̇ ≥ ct‖α̇‖2 for t ∈ [−T ,T ]

So the critical points t =mT ∗, m ∈ Z, are non degenerate and the stationary phase
theorem gives the part (ii) of the Theorem. �

5.5.2 Quasi-modes and Bohr–Sommerfeld Quantization Rules

Quasi-modes (or approximated eigenfunctions) can be considered in more general
and more interesting cases (see [125, 153, 159, 160]) but for simplicity we shall
consider here mainly the fully periodic case. We always assume that (H.0) and (H.1)
are satisfied. We introduce:

(H.P) For every E ∈ [E−,E+], ΣE is connected and the Hamiltonian flow Φt
H is

periodic on ΣE with a period TE .

Remark 29 For n = 1 the periodicity condition is always satisfied. For d > 1 this
condition is rather strong. Nevertheless it is satisfied for integrable systems and for
systems with a large group of symmetries.

Let us first recall a result in classical mechanics (Guillemin–Sternberg, [95]):

Proposition 49 Let us assume that above conditions are satisfied. Let γ be a closed
path of energy E and period TE . Then the action integral J (E)= ∫

γ
p dq defines

a function of E, C∞ in ]E−,E+[ and such that J ′(E)= TE . In particular for one
degree of freedom systems we have

J (E)=
∫
H(z)≤E

dz
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Now we can extend J to an increasing function on R, linear outside a neigh-
borhood of I . Let us introduce the rescaled Hamiltonian K̂ = (2π)−1J (Ĥ ). Using
properties concerning the functional calculus [107], we can see that K̂ has all the
properties of Ĥ and furthermore its Hamiltonian flow has a constant period 2π in
Σ
K0
λ =K−1

0 (λ) for λ ∈ [λ−, λ+] where λ± = 1
2πJ (E±). So in what follows we re-

place Ĥ by K̂ , its “energy renormalization”. Indeed, the mapping 1
2πJ is a bijective

correspondence between the spectrum of Ĥ in [E−,E+] and the spectrum of K̂ in
[λ−, λ+], including multiplicities, such that λj = 1

2πJ (Ej ).
Let us denote by m the average of the action of a periodic path on ΣK0

λ and by
μ ∈ Z its Maslov index (m= 1

2π

∫
γ
p dx− 2πF ). Under the above assumptions the

following results were proved in [107], using semi-classical Fourier-integral opera-
tors and ideas introduced before by Colin de Verdière [44] and Weinstein [195].

5.5.2.1 Statements of Results Concerning Spectral Asymptotics

Theorem 32 [44, 107, 195] There exist C0 > 0 and �1 > 0 such that

spect
(
K̂
)∩ [λ−, λ+] ⊆⋃

k∈Z
Ik(�) (5.79)

with

Ik(�)=
[
−m+

(
k − μ

4

)
�−C0�

2,−m+
(
k− μ

4

)
�+C0�

2
]

for � ∈]0,�1].

Let us remark for � small enough, the intervals Ik(�) do not intersect and this
theorem gives the usual Bohr–Sommerfeld quantization conditions for the energy
spectrum, more explicitly,

λk = 1

2π
J (Ek)=

(
k− μ

4

)
�−m+O(

�
2)

Under a stronger assumption on the flow, it is possible to estimate the number of
states in each cluster Ik(�).

(H.F) Φt
K0

has no fixed point in ΣK0
F , ∀λ ∈ [λ− − ε,λ+ + ε] and ∀t ∈]0,2π[.

Let us denote by dk(�) the number of eigenvalues of K̂ in the interval Ik(�).

Theorem 33 [42, 44, 108] Under the above assumptions, for � small enough and
−m+ (k − μ

4 )� ∈ [λ−, λ+], we have

dk(�)≡
∑
j≥1

Γj

(
−m+

(
k − μ

4

)
�

)
�
j−d (5.80)
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with Γj ∈ C∞([λ−, λ+]). In particular

Γ1(λ)= (2π)−d
∫
Σλ

dνλ

In the particular case n = 1 we have μ = 2 and m = −min(H0) hence dk(�)= 1.
Furthermore the Bohr–Sommerfeld conditions take the following more accurate
form:

Theorem 34 [107] Let us assume n = 1 and m = 0. Then there exists a sequence
fk ∈ C∞([F−,F+]), for k ≥ 2, such that

λ� +
∑
k≥2

hkfk(λ�)=
(
�+ 1

2

)
�+O(

�
∞) (5.81)

for � ∈ Z such that (�+ 1
2 )� ∈ [λ−, λ+].

In particular there exists gk ∈ C∞([λ−, λ+]) such that

λ� =
(
�+ 1

2

)
�+

∑
k≥2

hkgk

((
�+ 1

2

)
�

)
+O(

�
∞) (5.82)

where � ∈ Z such that (�+ 1
2 )� ∈ [F−,F+].

We can deduce from the above theorem and Taylor formula the Bohr–Sommer-
feld quantization rules for the eigenvalues En at all order in �.

Corollary 17 There exist λ �→ b(λ,�) and C∞ functions bj defined on [λ−, λ+]
such that b(λ,�)=∑

j∈N bj (λ)�j +O(�∞) and the spectrum En of Ĥ is given by

En = b
((

n+ 1

2

)
�,�

)
+O(

�
∞) (5.83)

for n such that (n+ 1
2 )� ∈ [λ−, λ+]. In particular we have b0(λ)= J −1(2πλ) and

b1 = 0.

When H−1(I ) is not connected but such that the M connected components
are mutually symmetric, under linear symplectic maps, then the above results still
hold [107].

Remark 30 For n = 1, the methods usually used to prove existence of a complete
asymptotic expansion for the eigenvalues of Ĥ are not suitable to compute the co-
efficients bj (λ) for j ≥ 2. This was done recently in [46] using the coefficients djk
appearing in the functional calculus.
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5.5.2.2 A Proof of the Quantization Rules and Quasi-modes

We shall give here a direct proof for the Bohr–Sommerfeld quantization rules by
using coherent states, following [26]. A similar approach, with more restrictive as-
sumptions, was considered before in [151].

The starting point is the following remark. Let r > 0 and suppose that there exists
Cr such that for every � ∈]0,1], there exist E ∈R and ψ ∈ L2(Rd), such that

∥∥(Ĥ −E)ψ∥∥≤ Cr�r , and lim inf
�→0

‖ψ‖ := c > 0 (5.84)

If these conditions are satisfied, we shall say that Ĥ has a quasi-mode of energy E
with an error O(�r ). With quasi-modes we can find some points in the spectrum of
Ĥ close to the energy E. More precisely, if δ > Cr

c
, the interval [E− δ�r ,E+ δ�r ]

meets the point spectrum of Ĥ . This is easily proved by contradiction, using that Ĥ
is self-adjoint. So if the spectrum of Ĥ is discrete in a neighborhood of E, then we
know that Ĥ has at least one eigenvalue in [E − δ�r ,E + δ�r ].

Let us assume that the Hamiltonian Ĥ satisfies conditions (H.0), (H.1), (H.P).
Using Proposition 49, we can assume that the Hamiltonian flow ΦH

t has a con-
stant period 2π in H−1]E− − ε,E+ + ε[, for some ε > 0.

Following an old idea in quantum mechanics (A. Einstein), let us try to construct
a quasi-mode for Ĥ with energies E(�) close to E ∈ [E−,E+], related with a 2π
periodic trajectory γE ⊂ΣH0

E , by the Ansatz

ψγE =
∫ 2π

0
e
itE(�)

� U(t)ϕz dt (5.85)

where z ∈ γE (ψγE is a state living on γE). Let us introduce the real numbers

σ(�)= 1

2π�

∫ 2π

0

[
q̇(t)p(t)−H0

(
q(t),p(t)

)]
dt + μ

4

where t �→ (q(t),p(t)) is a 2π -periodic trajectory γE in H0
−1(E), E ∈ [E−,E+],

μ is the Maslov index of γ . In order that the Ansatz (5.85) provides a good quasi-
mode, we must first check that its mass is not too small.

Proposition 50 Assume that 2π is the primitive period of γE . Then there exists a
real number mE > 0 such that

‖ψγE‖ =mE�1/4 +O(
�

1/2) (5.86)

Proof Using the propagation of coherent states and the formula giving the action of
metaplectic transformations on Gaussians, up to an error term O(

√
�), we have
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‖ψγE‖2 = (π�)−d/2
∫ 2π

0

∫ 2π

0

∫
Rd

e
i
�
Φ(t,s,x)

(
det(At + iBt )

)−1/2

× (
det(As + iBs)

)−1/2
dt ds dx

where the phase Φ is

Φ(t, s, x) = (t − s)E + (δt − δs)+ 1

2
(qs · ps − qt · pt)+ x · (pt − ps)

+ 1

2

(
Γt (x − qt ) · (x − qt )− Γs(x − qs) · (x − qs)

)
(5.87)

Γt is the complex matrix defined in (5.36).
Let us show that we can compute an asymptotics for ‖ψγE‖2 with the stationary

phase Theorem. Using that (Γt ) is positive non-degenerate, we find that

(Φ(t, s, x))≥ 0, and
{(Φ(t, s, x))= 0

} ⇔ {x = qt = qs} (5.88)

On the set {x = qt = qs}we have ∂xΦ(t, s, x)= pt−ps . So if {x = qt = qs} then we
have t = s (2π is the primitive period of γE) and we get easily that ∂sΦ(t, s, x)= 0.
In the variables (s, x) we have found that Φ(t, s, x) has one critical point: (s, x)=
(t, qt ). Let us compute the Hessian matrix ∂(2)s,xΦ at (t, t, qt ):

∂(2)s,xΦ(t, t, qt )=
(−(Γt q̇t − ṗt ) · q̇t [Γt (q̇t − ṗt )]T

Γt (q̇t − ṗt ) 2iΓt
)

(5.89)

To compute the determinant, we use the identity, for r ∈C, u ∈C
d , R ∈GL(Cd)

(
r uT

u R

)(
1 0

−R−1u 1

)
=
(
r − uT ·R−1u uT

0 R

)
(5.90)

Then we get

2 det
[−i∂2

s,xΦ(t, t, qt )
]

= Γt q̇t · q̇t +
((Γt ))−1

(�Γt q̇t − ṗt ) · (�Γt q̇t − ṗt )det[2Γt ] (5.91)

But E is not critical, so (q̇t , ṗt ) �= (0,0) and we find that det[−i∂2
s,xΦ(t, t, qt )] �= 0.

The stationary phase Theorem (see Appendix A) gives

‖ψγE‖2 =mE2
√
�+O(�) (5.92)

with

m2
E = 2(d+1)/2√π

∫ 2π

0

∣∣det(At + iBt )
∣∣−1/2∣∣det

[−i∂2
s,xΦ(t, t, qt )

]∣∣−1/2
dt

(5.93)
�

We now give one formulation of the Bohr–Sommerfeld quantization rule.
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Theorem 35 Let us assume that the Hamiltonian Ĥ satisfies conditions (H.0),
(H.1), (H.P) with period TE = 2π and that 2π is a primitive period for a periodic
trajectory γE ⊆ΣE .

Then �
−1/4ψγE is a quasi-mode for Ĥ , with an error term O(�7/4), if E satisfies

the quantization condition:

σ(�) := μ

4
+ 1

2π�

∫
γE

p dq ∈ Z (5.94)

Moreover, the number λ := 1
2π

∫
γE
p dq −E is constant on [E−,E+]. Having cho-

sen C > 0 large enough, the intervals

I (k,�)=
[(

μ

4
+ b+ k

)
�+ λ−C�7/4,

(
μ

4
+ b+ k

)
�+ λ+C�7/4

]

satisfy: if I (k,�)∩ [E−,E+] �= ∅ then Ĥ has an eigenvalue in I (k,�).

Proof We use, once more, the propagation of coherent states. Using periodicity of
the flow, we have, if H(z)=E,

U(2π)ϕz = e2iπσ (�)ϕz +O(�) (5.95)

Here we have to remark that the term in
√
� has disappeared. This needs a calcula-

tion.
By integration by parts, we get

ĤψγE = i�

∫ 2π

0
e
itE
� ∂tU(t)ϕz dt

= i�
(
e

2iπE
� U(2π)ϕz − ϕz

)+EψγE
= EψγE +O

(
�

2) (5.96)

So, we finally get a quasi-mode with an error O(�7/4), using (5.86). �

More accurate results on quasi-modes, using coherent states, are proved in par-
ticular in [125, 164].



Chapter 6
Quantization and Coherent States
on the 2-Torus

Abstract The two dimensional torus T
2 is a very simple symplectic space. Nev-

ertheless it gives non trivial examples of chaotic dynamical systems. These systems
can be quantized in a natural way. We shall study some dynamical and spectral
properties of them.

6.1 Introduction

The 2-torus T2, with its canonical symplectic form, is seen here as a phase space. It
is useful to consider classical systems and quantum systems built on T

2 for at least
two purposes.

Dynamical properties of classical non-integrable Hamiltonian systems in the
phase space R

d × R
d (d ≥ 2) are quite difficult to study. In particular there are

not so many explicit models of chaotic systems. But on the 2-torus it is very easy to
get a discrete chaotic system by considering a 2× 2 matrix F with entries in Z and
such that |TrF | > 2. So we get a discrete flow t �→ F tz for t ∈ Z, z ∈ T

21, where
T

2 =R
2/Z2 is the 2-dimensional torus.

In 1980 Hannay–Berry succeeded to construct a “good quantization” R̂(F ) cor-
responding to the “classical system” (T2,F ). From this starting point many results
were obtained concerning consequences of classical chaos on the behavior of the
eigenstates of the unitary family of operators R̂(F ) as well by physicists and mathe-
maticians. In this section we shall explain some of these results and their relationship
with periodic coherent states.

6.2 The Automorphisms of the 2-Torus

We have already seen in Chap. 1 that R2 is a symplectic linear space with the canon-
ical symplectic bilinear form σ = dq ∧ dp. T2 is also a symplectic (compact) man-
ifold with the symplectic two-form σ = dq ∧ dp identified with the plane Lebesgue
measure.

1For t ∈N, F tz means that we apply F t -times starting from z, and if t > 0 then F t = (F−t )−1.
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Here we call automorphism of the 2-torus T2 any map F induced by a symplectic
matrix F ∈ SL(2,Z).

Let F be of the form

F =
(
a b

c d

)
(6.1)

with entries in Z satisfying det(F ) = ad − bc = 1; the corresponding map of the
2-torus is given by

(q,p) ∈ T
2 �−→ (

q ′,p′
) ∈ T

2, with q ′ = aq+bp (mod 1), p′ = cq+dp (mod 1)

So F is a symplectic diffeomorphism of T2. In particular it preserves the Lebesgue
measure mL on T

2.
We shall consider now the discrete dynamical system in T

2 generated by F .
Let us first recall the definitions and properties concerning classical chaos (er-

godicity, mixing). For more details we refer to the books [55, 123, 140].
A (discrete) dynamical system is a triplet (X,Φ,m) where X is a measurable

space, m a probability measure on X and Φ a measurable map on X preserving the
measure m:

For any measurable set E ⊂M one has m(Φ−1E)=m(E).
The orbit (or trajectory) of a point x ∈X is O(x) := {Φk(x), k ∈ Z}. The orbit is

periodic if ΦT (x)= x for some T ∈ Z, T �= 0.

Definition 13 For a dynamical system D = (X,Φ,m) let us consider the time av-
erage or Birkhoff average ET (f, x)= 1

T

∑t=T
t=0 f (Φ

t (x)), where f is measurable.
Φ is ergodic if for any function f ∈ L1(X,m) one has

lim
T→∞ET (f, x)=m(f ), m—everywhere (6.2)

where m(f ) := ∫
X
f dm is the spatial average.

Remark 31 If a dynamical system is ergodic its time average (in the sense of the left
hand side of (6.2)) equals the “space average”, and does not depend on the initial
point x ∈X almost surely.

Proposition 51 A dynamical system D = (X,Φ,m) is ergodic if and only if one of
the following statements is satisfied:

(i) Any measurable set E ⊂ X which is Φ-invariant is such that m(E) = 0 or
m(X \E)= 0.

(ii) If f ∈ L∞(X,m) is Φ-invariant (f ◦Φ = f ) then it is constant m-everywhere.

See [123, 139] for proofs.
This means in particular that the periodic orbits of an ergodic dynamical system

are rather “rare” from a measurable point of view:
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Proposition 52 Let Φ be a continuous map on a compact topological space X en-
dowed with a probability measure m which is Φ-invariant and such that m(U) > 0
for any open set U . If (X,Φ,m) is ergodic, then the set of periodic orbits in X is of
measure 0.

Although relatively rare, the periodic orbit have a strong importance in the frame-
work of ergodic theory since they allow the construction of invariant measures in the
following way. Let x ∈X and let O(x) be a periodic orbit of period p(x) ∈R. The
following probability measure is clearly invariant:

mx = 1

p(x)

p(x)∑
k=1

δΦk(x)

where δa is the Dirac distribution at point a ∈R.
Given a map Φ in X and m an invariant measure, it is not always true that m is

the unique invariant measure. If it is the case the map Φ is said “uniquely ergodic”
and the unique invariant measure is ergodic (see [123]).

Well known examples are irrational rotations on the circle (or translations on the
torus T1). If α is an irrational number,Φ(x)= x+α, mod.1 defines a unique ergodic
transformation in T

1, the unique invariant measure is the Lebesgue measure (see
[123]). In the topological framework one has a characterization of such maps [55]:

Proposition 53 LetD = (X,Φ,m) be a dynamical system withX a compact metric
space, and Φ a continuous map. D is uniquely ergodic if and only if ∀f ∈ C(X):

lim
k→∞

∥∥∥∥∥
1

T

T−1∑
l=0

f ◦Φl −m(f )
∥∥∥∥∥∞
= 0

where ‖ · ‖∞ is the norm of the uniform convergence.

There is a stronger property of dynamical systems which is the “mixing” prop-
erty:

Definition 14 A dynamical system D = (X,Φ,m) is said to be mixing if ∀f,g ∈
L2(X,m) one has

lim
k→∞

∫
X

f
(
Φk(x)

)
g(x)dm(x)=m(f )m(g)

The following result is useful and easy to prove.

Proposition 54 D = (X,Φ,m) is mixing if and only if there exists a total set T in
L2(X,m) such that for every f,g ∈ T we have

lim
k→∞

∫
X

f
(
Φk(x)

)
g(x)dm(x)=m(f )m(g)
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In the framework where X is a differentiable manifold, one can define the notion of
Anosov system (see [123, 139]):

Definition 15 A diffeomorphism Φ of a differentiable manifold M is Anosov if
∀x ∈M , there exists a decomposition of the tangent space at x in direct sum of two
subspaces Eux and Esx and constants K > 0, 0< λ< 1 satisfying

(DxΦ)E
s
x =EsΦ(x), (DxΦ)E

u
x =EuΦ(x)

and ∥∥(DxΦ
n
)
Esx

∥∥≤Kλn, ∥∥(DxΦ
−n)Eux

∥∥≤Kλn
∀x ∈M,n ∈N.

We have the following useful stability result (see [139]).

Theorem 36 Let M be a compact manifold and Φ an Anosov diffeomorphism
on M . There exists ε > 0 small enough such that if ‖Φ − Ψ ‖C1(M) < ε then Ψ
is an Anosov diffeomorphism on M , where

‖Ψ ‖C1(M) = sup
x∈M

(∣∣Φ(x)∣∣+ ∥∥DxΦ(x)
∥∥)

Theorem 37 If Φ is a diffeomorphism Anosov on T
2 then the dynamical system

D = (T2,Φ,μ) is mixing, μ being the normalized Lebesgue measure on T
2.

Let F ∈ SL(2,Z). The hyperbolic automorphism of the 2-torus defined by F rep-
resents the simplest examples of hyperbolic dynamical systems when |TrF | > 2.
Namely if this is satisfied then F has two eigenvalues λ+ = λ > λ− = λ−1 with
λ > 1. Denote Tx(T

2) the tangent space at point x ∈ T
2, E+x (resp. E−x ) the

eigenspace associated to the eigenvalue λ (resp. λ−1) and DxF : Tx(T
2) �−→

TFx(T
2) the differential of F . One has

∥∥DxF(v)
∥∥ = |λ|‖v‖ if v ∈E+x∥∥DxF(v)
∥∥ = ∣∣λ−1

∣∣‖v‖ if v ∈E−x
where ‖ ·‖ is the norm associated to the Riemannian metric ds2 = dq2+dp2 on T

2.
This proves that F is an Anosov diffeomorphism, and is therefore ergodic and mix-
ing.

We can also give a more direct proof that F is mixing using Proposition 54. Let
us consider the total family in L2(T2), ek(x)= e2iπk·x , where k ∈ Z

2. We have

∫
T2
ek(x)e�

(
Φn(x)

)
dm(x)=

∫
T2
ek(x)e(ΦT )n�(x) dm(x)
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If � �= 0, using that A has eigenvalues λ and λ−1 with λ > 1, we see that (ΦT )n� is
large for ±n large hence we get

∫
T2 ek(x)e�(Φ

n(x)) dm(x) = 0. We can conclude
using Proposition 54.

One can easily identify the periodic points of F :

Proposition 55 The periodic points (q,p) ∈ T
2 of an hyperbolic automorphism

of T2 are exactly points (q,p) such that (q,p) ∈Q
2/Z2.

Proof Let A be an hyperbolic automorphism of T2, and n ∈N
∗. Then the finite set

Ln = {( rn , sn ), r, s = 1, . . . , n} is invariant under A and so all elements of Ln are
periodic for A. Let m �= n ∈N

∗. Since one has

Lm,n =
{(

r

m
,
s

n

)
, r = 1, . . . ,m, s = 1, . . . , n

}
⊂ Lmn

all points of Lm,n are also periodic. Thus all points in Q
2/Z2 are periodic for A. No

other point can be periodic. Namely a point (q,p) ∈ T
2 is periodic of period k ∈N

∗
if and only if there exists (m,n) ∈ Z

2 such that

(
Ak − 1

)(q
p

)
=
(
m

n

)

But the matrix Ak − 1 is invertible and has only rational entries. Thus

(
q

p

)
= (

Ak − 1
)−1

(
m

n

)
=
(
rk
sk

)

with (rk, sk) ∈Q
2. This completes the proof. �

Remark 32 An hyperbolic automorphism of T2 is always mixing (so ergodic) but
never uniquely ergodic since every periodic point x gives an invariant probability
measure mx .

6.3 The Kinematics Framework and Quantization

We closely follow the approaches of [10, 27, 29, 30, 59, 104].
Let us recall that we consider as phase space the 2-torus T

2 = R
2/Z2 with its

canonical symplectic two form.
Using the correspondence principle between classical and quantum mechanics,

it seems natural to look for the quantum states ψ having the same periodicity in
position and momentum (q,p) as the underlying classical system.

The Weyl–Heisenberg translation operators T̂ (q,p) “translate” the quantum
state by a vector z = (q,p) ∈ R

2. So we are looking for some Hilbert space H,
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included in the Schwartz temperate distribution space S ′(R), such that for every
ψ ∈H we have

T̂ (1,0)ψ = e−iθ1ψ (6.3)

T̂ (0,1)ψ = eiθ2ψ (6.4)

where we allow a phase θ = (θ1, θ2) since two wavefunctions ψ1,ψ2 satisfying
ψ2 = eiαψ1 define the same quantum state and, more importantly, we shall recover
the plane model as θ runs over the square [0,2π[× [0,2π[.

(6.4) means that the �-Fourier transform F�ψ satisfies

F�ψ(p+ 1)= e−iθ2F�ψ(p) (6.5)

Recall that F�ψ(p)= (2π�)−1/2
∫
R

e−iqp/�ψ(q)dq .
From (6.3), (6.4) we see that ψ must be a joint eigenvector for the Weyl–

Heisenberg operators T̂ (q,p) and we get

T̂ (0,1)T̂ (1,0)ψ = T̂ (1,0)T̂ (0,1)ψ
Since we have

T̂ (0,1)T̂ (1,0)= ei/�T̂ (1,0)T̂ (0,1)

conditions (6.3), (6.4) entail the following quantification condition 1
2π� =N where

N ∈ N and � is the Planck constant. Moreover, the quantum states ψ live in a N -
dimensional complex vector space.

This result can be obtained using the powerful methods of the geometric quanti-
zation [59]. Here we follow a more elementary approach as in [29, 30].

Let us denote by HN(θ) the linear space of temperate distributions ψ satisfying
periodicity conditions (6.3), (6.4) with � = 1

2πN (remark that if � �= 1
2πN and if ψ

satisfies (6.3), (6.4) then ψ = 0). So in all this chapter it is assumed that � = 1
2πN

for some N ∈N.

Proposition 56 HN(θ) is a N dimensional complex linear subspace of the temper-
ate distribution space S ′(R).

Proof Let ψ ∈HN(θ). From condition (6.4) we find that the support of ψ is in the
discrete set {qj = 2πj+θ2

2πN , j ∈ Z}. So ψ is a sum of derivatives of Dirac distributions

ψ =∑
cαj δ

(α)
qj . Using uniqueness of this decomposition we can prove that c(α)j = 0

for α �= 0, so we have ψ =∑
cj δqj where cj = c

(0)
j . Now, using (6.3) we get a

periodicity condition on the coefficient cj . So we have

cj+N = eiθ1cj , ∀j ∈ Z and ψ =
∑

0≤j≤N−1

cj

(∑
k∈Z

eikθ1δqj+k
)

(6.6)

Conversely it is easy to see that if ψ satisfies (6.6) then ψ ∈HN(θ). So the propo-
sition is proven. �
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From the proof of the proposition, we get a basis of HN(θ):

e
(θ)
j =N−1/2

∑
k∈Z

eikθ1δqj+k, 0≤ j ≤N − 1

e
(θ)
j obviously satisfies (6.3). Let us check that it satisfies (6.5) by computing its

Fourier transform. As a consequence of the usual Poisson formula:

∑
k∈Z

e2iπkx =
∑
�∈Z

δ�(x)

we get after some easy computations

F�e
(θ)
j (p)=N−1e−2iπp(j+θ2/2π)

∑
�∈Z

δ �
N
+ θ1

2π
(6.7)

Let us introduce p� = �
N
+ θ1

2π and ε
(θ)
� = N−1/2 ∑

k∈Z e−ikθ2δ �
N
+ θ1

2π +k
, for � =

0, . . . ,N − 1. We have now

F�e
(θ)
j =

∑
0≤�≤N−1

Fj,�ε
(θ)
� (6.8)

where the matrix element Fj,� is given by

Fj,� =N−1/2 exp

(
− i

N

(
2πj�+ θ2�+ θ1j + θ1θ2

2π

))

We put on HN(θ) the unique Hilbert space structure such that {e(θ)j }0≤j≤N−1 is an
orthonormal basis. So we see that F� is a unitary transformation from HN(θ1, θ2)

onto HN(−θ2, θ1). In particular if θ = (0,0), the matrix {Fj,�} is the matrix of the
discrete Fourier transform.

For all ψ ∈H(θ1,θ2) we have

ψ =
N−1∑
j=0

cj (ψ)e
(θ)
j

Then the vector (
cj (ψ)

)N−1
j=0

is interpreted physically as the quantum state of the particle in the position represen-
tation. Similarly in the momentum representation one sees that ψ̃θ ∈HN(−θ2, θ1)

is decomposed as

ψ̃θ =
N−1∑
j=0

dj (ψ)ε
(θ)
j
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One goes from the position to the momentum representation via a generalized Dis-
crete Fourier Transform:

dk
(
ψ̂
)= exp

(
−i θ2

N

(
θ1

2π
+ k

))
1√
N

N−1∑
j=0

cj (ψ) exp

(
−ij

(
2πk

N
+ θ1

N

))

For θ = (0,0) we recognize the discrete Fourier operator that we have introduced
above.

A convenient representation formula for elements of HN(θ) can be obtained us-
ing the following symmetrization operator:

Σ
(θ)
N =

∑
z∈Z2

(−1)Nz1z2ei(θ1z1−θ2z2)T̂ (z) (6.9)

Let us remark that ψ ∈HN(θ) if and only if ψ ∈ S ′(R) satisfies

T̂ (z)ψ = (−1)Nz1z2eiσ ((θ2,θ1),(z1,z2))ψ (6.10)

Proposition 57 Σ
(θ)
N defines a linear continuous map from S(R) in S ′(R). Its range

is HN(θ). Moreover for every ψ ∈ S(R) we have

〈
e
(θ)
j ,Σ

(θ)
N ψ

〉=N−1/2
∑
�∈Z

ei�θ1ψ(qj − �)= e(θ)j (ψ) (6.11)

and ∫
R

∣∣ψ(x)∣∣2 dx = 1

4π2

∫ ∫
[0,2π[2

∣∣e(θ)j (ψ)
∣∣2 dθ (6.12)

The map ψ �→ {e(θ)j (ψ)}0≤j≤N−1 can be extended as an isometry from L2(R) onto

the Hilbert space L2([0,2π[2,CN, dθ

4π2 ).

Proof Recall that we have

T̂ (z)ψ(x)= e−iz1z2/2�eixz2/�ψ(x − z1)

So we have

Σ
(θ)
N ψ =

∑
z1,z2∈Z

ei(θ1z1−θ2z2)eixz2/�ψ(x − z1)

We first compute the z2-sum using the Poisson formula:

∑
z2∈Z

ei(xz2/�−θ2z2) = 1

N

∑
k∈Z

δ k
N
+ θ2

2πN
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we get

Σ
(θ)
N ψ = 1

N

∑
k∈Z

eikθ1
∑

0≤j≤N−1

(∑
�∈Z

ei�θ1ψ(qj − �)
)
δqj+k (6.13)

The equalities (6.11) and (6.12) follow easily from (6.13).
In particular we see that for every j = 0, . . . ,N − 1 we have e(θ)j = Σ

(θ)
N ψj

where ψj(x)= ψ0(qj − x), ψ0 is C∞, with support in [− 1
4N ,

1
4N ] and ψ0(0)= 1.

This proved that Σ(θ)
N (S(R))=HN(θ).

Let us define the map I(ψ) = {e(θ)j (ψ)}0≤j≤N−1. We know that I defines an

isometry from L2(R) into L2([0,2π[2,CN, dθ

4π2 ). We have to prove now that I is
onto.

It is enough to prove that the conjugate operator I∗ is injective on L2([0,2π[2,
C
N, dθ

4π2 ). To do that we have to compute 〈I∗f,ψ〉 where f = (f0, . . . , fN−1), fj
are periodical functions on the lattice 2πZ×2πZ and ψ ∈ S(R). This is an exercise
left to the reader. �

This leads to a direct integral decomposition of L2(R):

L2(R) ∼=
(

1

2π

)2 ∫ 2π

0

∫ 2π

0
dθHN(θ)

ψ ∼=
(

1

2π

)2 ∫ 2π

0

∫ 2π

0
dθ ψ(θ), where ψ(θ)=Σ(θ)

N ψ

This is a Bloch decomposition of L2(R) analogous to the description of electrons in
a periodic structure.

It appears that HN(θ) is equipped with the natural inner product and the spaces
HN(θ) are the natural quantum Hilbert spaces of states having the torus as phase
space.

Let us explain now in more detail the identification

L2(R)∼=
(

1

2π

)2 ∫ 2π

0

∫ 2π

0
dθHN(θ)

For every ψ ∈ S(R) we define ψ̃(θ, j)= e(θ)j (ψ) where θ ∈ [0,2π[2 and j ∈ Z.

We have seen that ψ �→ ψ̃ is an isometry from L2(R) onto L2([0,2π[2×(Z/NZ),
dθ

4π2 ⊗ dμN) where μN is the uniform probability on Z/NZ.

Let Â be some bounded operator in L2(R). Assume that Â is a linear continuous
operator from S(R) to S(R) and from S ′(R) to S ′(R) and that Â commutes with
Σ
(θ)
N (ÂΣ(θ)

N =Σ(θ)
N Â), for every θ ∈ [0,2π[2. Then Â is a decomposable operator

(see Reed–Simon [162], t. 1, p. 281). More precisely we have the following useful
result.
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Proposition 58 Let us denote by ÂN,θ the restriction of Â to HN(θ). Then we have,
for every ψ1,ψ2 ∈ L2(R),

〈
ψ2, Âψ1

〉
L2(R)

=
∫ ∫

[0,2π[2
〈
ψ2(θ), ÂN,θψ1(θ)

〉
HN (θ)

dθ

4π2
(6.14)

where ψ1(θ)=Σ(θ)
N ψ1.

Proof This is easily proved using thatψ(θ)=∑
0≤j≤N−1 ψ̃(θ, j)e

(θ)
j and (6.12). �

We shall apply the following results proved using Reed–Simon [162].

Corollary 18 Let Â be a decomposable operator like above. Then we have
∥∥Â∥∥

L2(R)
= sup
θ∈[0,2π[2

∥∥ÂN,θ∥∥H(θ)
N

(6.15)

and Â is an isometry in L2(R) if and only if ÂN,θ is an isometry in HN(θ) for every
θ ∈ [0,2π[2.

First examples are the Weyl–Heisenberg translations.

Lemma 36 Let z = (z1, z2) ∈ R
2. Then T̂ (z)Σ

(θ)
N = Σ

(θ)
N T̂ (z) if and only if

Nz ∈ Z
2. Moreover if z1 = n1

N
and z2 = n2

N
we have

T̂N,θ

(
n1

N
,
n2

N

)
e
(θ)
j = exp

(
iπ
n1n2

N

)
exp

(
i(θ2 + 2πj)

n2

N

)
e
(θ)
j+n1

(6.16)

Proof Exercise. �

Corollary 19 The unitary (projective) representation (n1, n2) �→ T̂N,θ (
n1
N
, n2
N
) of

the group Z
2 in H(θ)

N is irreducible.

Proof Let V be an invariant subspace of H(θ)
N and v =∑

0≤j≤N−1 aj e
(θ)
j , v �= 0. If

aj = 0 for j �= j0, then using translation T̂N,θ (
n1
N
,0)we get e(θ)j ∈ V ∀j . But playing

with T̂N,θ (0,
n2
N
), if m coefficients aj are not 0 there exists a non zero vector of V

with m− 1 non null coefficients. So we can conclude that V =HN(θ). �

Remark 33 It has been proved that all irreducible unitary representations of the dis-
crete Heisenberg group are equivalent to (T̂N,θ (

n1
N
, n2
N
),HN(θ)), for some (N, θ) ∈

N
∗ × [0,2π[2 [63].

For the particular case θ = (0,0), the states e0
j can be identified with the natural

basis in C
N . Then the translation operators T̂ (1/N,0), T̂ (0,1/N) are simplyN×N
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matrices of the following form:

T̂ (0,1/N) := Z = diag
(
1,ω,ω2, . . . ,ωN−1) (6.17)

where ω= e2iπ/N is the primitive N th root of unity.

T̂ (1/N,0) :=X =

⎛
⎜⎜⎜⎝

0 0 . . . 0 1
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎠ (6.18)

These operators (matrices) have been introduced by Schwinger [175] as “general-
ized Pauli matrices” and are intensively used in quantum information theory for the
mutually unbiased bases problem in C

N . See [50, 175]. They have the following
properties:

Proposition 59

(i) X and Z are unitary.
(ii) They are idempotent, namely

XN = ZN = 1

(the identity matrix in C
N ).

(iii) They ω-commute:

XZ = ωZX.
(iv) X is diagonalized by the discrete Fourier transform F :

F∗XF = Z
where Fj,k = 1√

N
ωjk, ∀j, k = 1, . . . ,N .

Remark 34 A complex N ×N matrix is an Hadamard matrix if all its entries have
equal modulus. Note that F is an unitary Hadamard matrix of the Vandermonde
form, and that X and its powers generate the commutative algebra of the “circulant”
matrices. A N ×N matrix C is said to be circulant if all its rows and columns are
successive circular permutations of the first:

C = circ(c1, c2, . . . , cN)=

⎛
⎜⎜⎜⎝

c1 c2 . . . cN
cN c1 . . . cN−1
...

...
. . .

...

c2 c3 . . . c1

⎞
⎟⎟⎟⎠

C = c11+ cNX+ · · · + c2X
N−1

(6.19)

(see [57]).
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The Discrete Fourier transform in C
N is very natural in this context since it

transforms any basis vector in the position representation into any basis vector in
the momentum representation.

Lemma 37 For any circulant matrix C there exists a diagonal matrix D such that

F∗CF =D
Furthermore

Dj,j =
√
Nĉj =

N−1∑
0

ck+1ω
−jk

Proof Use Proposition 59(iv) and (6.19). �

These properties are very useful to construct the N + 1 mutually unbiased bases
in Quantum Information Theory for N a prime number. See [50].

6.4 The Coherent States of the Torus

Already used in the physical literature in [131] we introduce now the coherent states
adapted to the torus structure of the phase space. They will be the image by the
periodisation operatorΣ(θ)

N of the usual Gaussian coherent states studied in Chap. 1.
In dimension 1 one has, for z= (q,p) ∈R

2 and γ ∈C, γ > 0,

ϕγ,z(x) =
(γ
π�

)1/4

exp

(
− iqp

2�
+ ixp

�
+ iγ (x − q)

2

2�

)
(6.20)

ϕ(θ)γ,z = Σ
(θ)
N ϕγ,z (6.21)

It is easily seen from the definition properties of Σ(θ)
N and the product rules for T̂ (z)

that

ϕ(θ)γ,z =
∑

n1,n2∈Z
(−1)Nn1n2ei(θ1n1−θ2n2)+ i

2�σ(n,z)T̂ (n+ z)ϕγ,0 (6.22)

For every z′ = (z′1, z′2) ∈ Z
2 we get

ϕ
(θ)

γ,z+z′ = (−1)Nz
′
1z
′
2ei(z

′
2θ2−z′1θ1)eiπNσ(z,z

′)ϕ(θ)γ,z (6.23)

Thus the states ϕ(θ)
γ,z+z′ , ϕ

(θ)
γ,z are equal modulo phase factor, so they describe the

same physical system and we can identify them. Recall that σ is the symplectic
form:

σ
(
(a, b), (c, d)

)= ad − bc
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The set {ϕ(θ)γ,z}z∈T2 therefore constitutes a coherent states system adapted to the torus.

In the basis e(θ)j of the position representation we have

cj (q,p) :=
〈
e
(θ)
j , ϕ(θ)q,p

〉

=
(γ
π�

)1/4 1√
N

e−i
qp
2�
∑
m∈Z

eiθ1me
i
�
(xmj p) exp

(
iγ

1

2�

(
xmj − q

)2
)

(6.24)

where xmj = j
N
+ θ2

2πN −m.
Similarly we have in the momentum representation (for γ = i):

dk(q,p)=
(

1

π�

)1/4 1√
N

e−
i

2� qp
∑
m∈Z

e−imθ2+ i
�
qξkm exp

(−1

2�

(
ξkm − p

)2
)

with ξkm = k
N
+ θ1

2πN −m.
An important property which is inherited from the overcompleteness character

of the set of coherent states in L2(Rn) is that the {ϕ(θ)γ,z}z∈T2 form an overcomplete
system of HN(θ) with a resolution of the identity operator 1HN (θ):

Proposition 60 ∀θ ∈ [0,2π)2 and ∀�= 1/2πN we have

1HN (θ) =
∫
T2

dq dp

2π�

∣∣ϕ(θ)γ,q,p〉〈ϕ(θ)γ,q,p
∣∣

where we use the bra–ket notation for the projector on the coherent state ϕ(θ)q,p .

Proof For simplicity we assume γ = i. Since HN(θ) is finite dimensional it is
enough to prove that ∀(j, k) ∈ [0,N − 1]2 we have∫

T2

dq dp

2π�

〈
ϕθq,p, e

θ
k

〉〈
eθj , ϕ

θ
q,p

〉= δj,k
Now using (6.24) together with Fubini’s Theorem we get
∫
T2

dq dp

2π�
c̄k(q,p)cj (q,p) =

∑
m,n

eiθ1(m−n)
∫ 1

0
dp exp

(
2πi

(
j − k −N(m− n))p)

×
∫ 1

0
dq ϕ̄θ0,0

(
xmj − q

)
ϕθ0,0

(
xmj − q

)
(6.25)

If j = k then the first integral in the right hand side of (6.25) is zero except for
m= n in which case we get 1. Thus we get

∫
(q,p)∈T2

dq dp

2π�

∣∣cj (q,p)∣∣2 =∑
m∈Z

∫ 1

0
dq

∥∥ϕθ0,0(xjm − q)
∥∥2 = ∥∥ϕθ0,0

∥∥2 = 1

If j �= k the same integral is zero since j − k ∈N
∗. �
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We also get the Fourier–Bargmann transform ψ� of any state ψ ∈HN(θ) as

ψ� =√N 〈ϕθq,p,ψ 〉

The map Wθ : ψ ∈ HN(θ) �−→ Wθψ = √Nψ� ∈ L2(T2,
dqdp
2π� ) is obviously iso-

metric. The quantity

Hθ(q,p)= ∣∣〈ϕθq,p,ψ 〉
∣∣2

is called the Husimi function of ψ ∈HN(θ).
We have as a corollary an analogous result as Proposition 6:

Corollary 20 Let Âθ ∈ L(Hθ ). Then

Tr
(
Âθ

)=
∫
T2

〈
ϕθq,p, Âθϕ

θ
q,p

〉dq dp
2π�

We have the following very useful semi-classical result.

Proposition 61 For every complex numbers γ, γ ′ with positive imaginary part we
have:

(i) There exist constants C > 0, c > 0 such that for any z, z′ ∈ T
2, N ≥ 1,

∣∣〈ϕθγ ′,z′ , ϕθγ,z
〉∣∣≤ C√Ne−d(z,z′)2cN (6.26)

where d(z, z′) is the distance between z and z′ on the torus T
2. In particular

for γ = γ ′ = i we can choose c= π .
(ii) There exists c > 0 such that ∀θ ∈ [0,2π)2 we have ∀z= (q,p) ∈ T

2

∥∥ϕθγ,z
∥∥2 = 1+O(

e−cN
)

Proof For simplicity, let assume that γ = γ ′ = i. The proof is the same for arbitrary
γ, γ ′.

We recall that in the continuous case one has

∣∣〈ϕz′ , ϕz〉∣∣2 = exp

(
−|z

′ − z|2
2�

)

so that

‖ϕz‖ = 1

Thus we shall prove that the analogous properties (i) and (ii) hold for the coherent
states of the 2-torus but only in the semi-classical limit N→∞. A weaker result is
given in [29], here we shall give a different proof.

We rewrite (6.23): for every z ∈ T
2, m= (m1,m2) ∈ Z

2,

ϕ
(θ)
z+m = eiπN(σ(z,m)+m1m2)ei(m2θ2−m1θ1)eiπNσ(z,z

′)ϕ(θ)z (6.27)
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Let us denote fz,z′(θ)= 〈ϕθz , ϕθz′ 〉 and consider fz,z′ as a periodic function in θ for

the lattice (2πZ)2. Its Fourier coefficient cm(z, z′) can be computed using (6.27),

cm
(
z, z′

) =
∫
[0,2π[2

e−im·θ
〈
ϕθz , ϕ

θ
z′
〉 dθ
4π2

(6.28)

= eiπN(σ(z,m)+m1m2)

∫
[0,2π[2

〈
ϕθz′ , ϕ

θ
z+m̌

〉 dθ
4π2

(6.29)

= eiπN(σ(z,m)+m1m2)〈ϕz′ , ϕz+m̌〉 (6.30)

where m̌= (m1,−m2). fz,z′ being a smooth function in θ , we get

∣∣fz,z′(θ)∣∣≤
∑
m∈Z2

∣∣cm(z, z′)∣∣ (6.31)

But |cm(z, z′)| = (π�)−1 exp(−|z′−z−m̌|22� ). So

∑
m∈Z2

∣∣cm(z, z′)∣∣= (π�)−1
∑
m∈Z2

exp

(
−|z

′ − z− m̌|2
2�

)

Now we have

|z′ − z− m̌|2 ≥ |z′ − z|2 + |m|2 − 2|m||z− z′|
So we get

∑
m∈Z2,|m|≥4

√
2

exp

(
−|z

′ − z− m̌|2
2�

)
≤ e−|z−z′|2πN

∑
m∈Z2

e−|m|2πN/2

So for every N ≥ 1 we get

∑
m∈Z2,|m|≥4

√
2

exp

(
−|z

′ − z− m̌|2
2�

)
≤ Ce−|z−z′|2πN

For the finite sum we have easily

∑
m∈Z2,|m|≤4

√
2

exp

(
−|z

′ − z− m̌|2
2�

)
≤ Ce−d(z,z′)2πN

so we get (i).
Concerning the proof with any γ, γ ′, we have to use the inequality

∣∣〈ϕγ ′,z′ , ϕγ,z〉∣∣≤ C�−1/2e−c
|z−z′|2

�

where C > 0, c > 0 depend on γ, γ ′, but not in z, z′.
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The proof of (ii) uses the same method with z′ = z. So we get

∣∣fz,z(θ)− 1
∣∣≤ ∑

m �=(0,0)

∣∣〈ϕz,ϕz+m〉∣∣

and ∣∣fz,z(θ)− 1
∣∣≤√N ∑

m �=(0,0)
e−|m|2πN

So we have proved (ii). �

6.5 The Weyl and Anti-Wick Quantizations on the 2-Torus

We will show how a phase-space function (classical Hamiltonian) H ∈ C∞(T2) can
be quantized as a selfadjoint operator in the Hilbert space HN(θ). These functions
have to be real.

6.5.1 The Weyl Quantization on the 2-Torus

We identify the functions H with the functions C∞ on R
2 of period (1,1) ∈ R

2.
Then we have

H(q,p)=
∑

(m,n)∈Z2

Hm,ne2iπσ ((q,p),(m,n))

Then we define, following [104] and [64]:

Definition 16

OpW
�
(H)=

∑
m,n

Hm,nT̂

(
m

N
,
n

N

)
(6.32)

Recall that �= 1
2πN , N ∈N

∗.
One has the following property:

Proposition 62 Let θ ∈ [0,2π)2 and � > 0. Then for any function H ∈ C∞(T2)

one has

OpW
�
(H)HN(θ)⊆HN(θ)

Proof This follows directly from the definition of HN(θ) and from

T̂ (m,n)OpW
�
(H)T̂ (m,n)∗ =OpW

�
(H), if m,n ∈ Z

In other words OpW
�
(H) commutes with Σ(θ)

N . �
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Thus we define the operator OpW
�,θ (H) ∈ L(Hθ ) as the restriction of (6.32) to

HN(θ).
In the decomposition of L2(R) as a direct integral, OpW

�,θ (H) is the fiber at θ of

OpW
�
(H).

OpW
�
(H)=

∫ ∫
[0,2π[2

OpW
�,θ (H)

dθ

4π2
(6.33)

We have also the following formula by restriction to HN(θ):

OpW
�,θ (H)=

∑
n,m∈Z

Hn,mT̂

(
n

N
,
m

N

)
(6.34)

In particular we see that the map H �→ OpW
�,θ (H) cannot be injective, so the Weyl

symbol H of OpW
�,θ (H) is not unique. It becomes unique by restricting to trigono-

metric polynomials symbols. Let us denote by TN the linear space spanned by
πn,m(q,p)= e2iπ(nq−mp), for n,m= 0, . . . ,N − 1. Then we have

Proposition 63 OpW
�,θ is a unitary map from TN (with the norm of L2([0,1]2) onto

L(HN(θ)), equipped with its Hilbert–Schmidt norm. In particular we have, for ev-
ery H,K ∈ TN ,

Tr
(
OpW

�,θ (H)OpW
�,θ (K)

∗)=N
∫ ∫

T2
H(z)K(z) dz (6.35)

Proof Let us recall the formula

T̂

(
k

N
,
�

N

)
e
(θ)
j = eiπk�/Nei(θ2+2πj)�/Ne

(θ)
j+k (6.36)

Using that the discrete Fourier transform is unitary, we get

Tr

(
T̂

(
k

N
,
�

N

)
T̂

(
k′

N
,
�′

N

)∗)
=Nδk,k′δ�,�′ (6.37)

So the system {N−1/2T̂ ( k
N
, �
N
)}0≤k,�≤N−1 is an orthonormal basis in L(HN(θ)),

equipped with its Hilbert–Schmidt norm and we get the proposition. �

Corollary 21 Every linear operator Ĥ in HN(θ) has a unique Weyl symbol
H ∈ TN ,

H(z)=
∑

0≤m,n≤N−1

Hm,ne2iπσ (z,(m,n))

where

Hm,n =N−1/2Tr

(
Ĥ T̂

(
m

N
,
n

N

)∗)
(6.38)
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A semi-classical result for the Weyl quantization is the following:

Proposition 64 For all H ∈ C∞(T2) one has

lim
N→∞

1

N
Tr
(
OpW

�,θ (H)
)=

∫
T2
dzH(z)

Proof Using the orthonormal position basis e(θ)j one has

Tr
(
OpW

�,θ (H)
)=

N−1∑
j=0

∑
m,n

Hn,m

〈
eθj , T̂

(
m

N
,
n

N

)
eθj

〉

Now we use the property (6.36):

1

N
Tr
(
OpW

�,θ (H)
)

= 1

N

N−1∑
j,k=0

∑
�,n∈Z

Hn,�N+k

× exp

(
i
πn

N
(�N + k)− iθ1�+ i 2πn

N

(
θ2

2π
+ j + k

))〈
eθj , e

θ
j+k

〉

=
∑
�,n

Hn,�N (−1)�ne−i�θ1+i nθ2N 1

N

N−1∑
j=0

ei
2πnj
N (6.39)

Thus we conclude

1

N
Tr
(
OpW

�,θ (H)
)=H0,0 +

∑
�,n∈Z∗

H�N,nNeiσ ((�,n),(θ1,θ2))

The last term tends to 0 because of the regularity of H , and the first one is∫
T2 dzH(z), which completes the proof. �

6.5.2 The Anti-Wick Quantization on the 2-Torus

As in the continuous case (see Chap. 2) the Anti-Wick quantization is associated to
the system of coherent states.

Definition 17 Let H ∈ L∞(T2). Then ϕθq,p being the system of coherent states
defined in the previous section, we define

OpAW
�,θ (H) :=

∫
T2
H(z)

∣∣ϕθz 〉〈ϕθz
∣∣ dz
2π�
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Remark 35 Note that OpAW
�,θ (H) for H ∈ C∞(T2) is simply the restriction of

OpAW
�

(H) (considered as an operator on S ′(R)) to HN(θ).
Let us recall that we always assume 2π�N = 1.

As for Weyl quantization, Anti-Wick quantization on R
2 and on T

2 are related
with a direct integral decomposition

Proposition 65 Let H ∈ C∞(T2). Then we have the direct integral decomposition

OpAW
�

(H)=
∫ ∫

[0,2π[2
OpAW

�,θ (H)
dθ

(2π)2
(6.40)

In particular we have the uniform norm estimate
∥∥OpAW

�,θ (H)
∥∥≤ ‖H‖∞ (6.41)

Proof Using periodicity of H and direct integral decomposition of ψ ∈ S(R)
(ψ(θ)=Σ(θ)

N ψ ), we get

OpAW
�

(H)ψ =
∑

n=(n1,n2)∈Z2

∫ ∫
[0,2π[2

∫ ∫
T2
H(z)

〈
ϕθz+n,ψ(θ)

〉
ϕz+n dz

dθ

4π2
(6.42)

Using periodicity in z of ϕz and ϕz+n = eiσ (n,z)/2�T̂ (n)ϕz, we get

OpAW
�

(H)ψ =
∫ ∫

[0,2π[2

∫ ∫
T2
H(z)

〈
ϕθz ,ψ(θ)

〉
ϕz+n dz

dθ

4π2
(6.43)

So we have proved (OpAW
�

(H))θ =OpAW
�,θ (H). �

Now we show a link between Anti-Wick quantization and the Husimi function:

Proposition 66 One has for any H ∈ C∞(T2) and for any ψ ∈Hθ

〈
ψ,OpAW

�,θ Hψ
〉=N

∫
T2
dzH(z)Hψ(z)

And we have the following semi-classical limit:

Proposition 67 For any z ∈ T
2, any θ ∈ [0;2π[2, and any H ∈ C∞(T2) we have

lim
N→∞

〈
ϕθz ,OpAW

�,θ Hϕ
θ
z

〉=H(z)

Proof We denote z= (q,p) ∈ T
2 and Bε(z) the ball of center z and radius ε and by

Bcε (z) its complementary set. Take ε- 0. We have

〈
ϕθz ,OpAW

�,θ (H)ϕ
θ
z

〉=
∫
Bcε (z)

dz′

2π�
H
(
z′
)∣∣〈ϕθz , ϕθz′

〉∣∣2 +
∫
Bε(z)

dz′

2π�
H
(
z′
)∣∣〈ϕθz , ϕθz′

〉∣∣2



170 6 Quantization and Coherent States on the 2-Torus

It is clear that the first term in the right hand side tends to 0 as �→ 0 because of
Proposition 61(i). For the second term we denote g(z, z′)=N |〈ϕθz , ϕθz′ 〉|2. We have

∣∣∣∣
∫
Bε(z)

dz′H
(
z′
)
g
(
z, z′

)−H(z)
∣∣∣∣

≤
∫
Bε(z)

dz′
∣∣H (

z′
)−H(z)∣∣g(z, z′)+ ∣∣H(z)∣∣

∣∣∣∣
∫
Bε(z)

g
(
z, z′

)
dz′ − 1

∣∣∣∣

≤ ε‖∇H‖∞
∫
Bε(z)

g
(
z, z′

)
dz′ + ∣∣H(z)∣∣

∣∣∣∣
∫
Bε(z)

dz′ g
(
z, z′

)− 1

∣∣∣∣ (6.44)

Using the resolution of identity we have
∫
Bε(z)

dz′ g
(
z, z′

)= ∥∥ϕ(θ)z
∥∥2 −

∫
Bcε (z)

dz′ g
(
z, z′

)

Using Proposition 61(ii) the first term in the right hand side tends to 1 as N→∞,
and it is clear that the second is small as N→∞. This completes the proof. �

As in the continuous case the Weyl and Anti-Wick quantizations are equivalent
in the semi-classical regime:

Proposition 68 For any H ∈ C∞(T2) and any θ ∈ [0,2π)2 we have
∥∥OpW

�,θ (H)−OpAW
�,θ (H)

∥∥
L(HN(θ))

=O
(
N−1), as N→∞ (6.45)

Proof This result follows from the similar one in the continuous case (see Chap. 2,
Proposition 27) using the estimate

∥∥OpW
�,θ (H)−OpAW

�,θ (H)
∥∥
L(HN(θ))

≤ ∥∥OpW
�
(H)−OpAW

�
(H)

∥∥
L(L2(R))

(6.46)

�

6.6 Quantum Dynamics and Exact Egorov’s Theorem

6.6.1 Quantization of SL(2,Z)

We now consider a dynamics in phase space induced by symplectic transformations
F ∈ SL(2,Z). It creates a discrete time evolution in T

2 and the n-step evolution is
provided by Fn.

One wants here to quantize F as a natural operator in HN(θ).
We have seen in Chap. 2 (3.3) that F is quantized in L(L2(R)) by the metaplectic

transformation R̂(F ). Let us recall the following property:

R̂(F )∗T̂ (z)R̂(F )= T̂ (F−1z
)

(6.47)
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We shall see now how to associate to F an unitary operator in HN(θ).

Proposition 69 Let F ∈ SL(2,Z). Then for any θ ∈ [0,2π)2 there exists θ ′ ∈
[0,2π)2 such that

R̂(F )Hθ ⊆Hθ ′

Furthermore θ ′ is defined as follows:

(
θ ′2
θ ′1

)
= F

(
θ2
θ1

)
+ πN

(
ab

cd

)
,

(
mod 2π
mod 2π

)
(6.48)

Moreover we have

R̂(F )Σ
(θ)
N =Σ(θ ′)

N R̂(F ) (6.49)

Proof We use here Proposition 57 and formula (6.9). From (6.47) we get, if ψ ∈
HN(θ) and z= (z1, z2) ∈ Z

2,

T̂ (z)R̂(F )ψ = R̂(F )T̂ (F−1(z)
)
ψ = e−i(σ (z′,(θ2,θ1))+πNz′1z′2)R̂(F )ψ (6.50)

where

z′ = F−1z=
(
z′1
z′2

)
=
(
d −b
−c a

)(
z1
z2

)

We have σ(z′, (θ2, θ1))= σ(z,F (θ2, θ1)) and

z′1z′2 =−cdz2
1 + (ad + bc)z1z2 − abz2

2

But modulo 2 we have z2
1 ≡−z1, z2

2 ≡−z2, ad + bc≡ 1. So we get, modulo 2π ,

σ
(
z′, (θ2, θ1)

)+ πNz′1z′2 ≡ z1(dθ1 + cθ2 + πNcd)− z2(bθ1 + aθ2 − πNab)
+ πNz1z2

So we have R̂(F )Hθ ⊂Hθ ′ with θ ′ given by (6.48). Moreover it is easy to check
formula (6.49). �

Let us denote θ ′ := πF (θ). So πF is a smooth map from the torus R
2/(2πZ)2

into itself.

Remark 36 We can easily see that R̂θ (J ) = F∗ for θ = (0,0) in the basis of
{e(θ)j }Nj=1, up to a phase.

Definition 18 For every F ∈ SL(2,Z), we shall denote R̂N,θ (F ) the restriction of
R̂(F ) to HN(θ). It is the quantization of F in HN(θ). R̂N,θ (F ) is a linear operator
from HN(θ) in HN(θ

′).
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Proposition 70 R̂N,θ (F ) is a one-to-one linear map from HN(θ) in HN(θ
′).

Furthermore we have the following relationship between R̂N,θ (F ) and R̂(F ).

R̂(F )=
∫ ⊕

[0,2π[2
VN,θ R̂N,θ (F )

dθ

(2π)2
(6.51)

where VN,θ is the canonical isometry from HN(θ
′) onto HN(θ) defined by

VN,θ e
(θ ′)
j = e(θ)j .

In particular for every θ ∈ [0,2π[2, R̂N,θ (F ) is a unitary transformation from
HN(θ) onto HN(θ

′).

Proof We know that R̂(F ) is an isomorphism from S(R) onto S(R) and from S ′(R)
onto S ′(R). Using that HN(θ) is finite dimensional we see that R̂N,θ (F ) is a one-
to-one linear map from HN(θ) in HN(θ

′).
We can easily check that VN,θΣ

(πF (θ))
N =Σ(θ)

N for every θ ∈ [0,2π[2. So using
that πF is an area preserving transformation we get, for every ψ , η ∈ S(R),

〈
η, R̂(F )ψ

〉
L2(R)

= 1

4π2

∫
[0,2π[2

〈
η(θ),VN,θ R̂N,θψ(θ)

〉
HN (θ)

dθ

So the proposition is proved using standard properties of direct integral decomposi-
tions for operators. �

One has the following results concerning the interesting case θ ′ = θ . The proofs
are left to the reader or see [29, 30, 104].

Proposition 71 Consider F ∈ SL(2,Z) with |TrF |> 2. Then ∀N ∈N
∗ there exists

θ ∈ [0,2π)2 so that

R̂(F )HN(θ)⊆HN(θ)

where θ can be chosen independent of N if and only if F is of the form
(

even odd
odd even

)
, or

(
odd even
even odd

)

The case |TrF | = 3 is the only case where the choice of θ is unique with θ = (π,π)
for N odd and θ = (0,0) for N even.

Moreover in the case

F =
(

even odd
odd even

)

the value θ = (0,0) is a solution of the fixed point equation θ = πF (θ).

Remark 37 It has been shown in [64] that for F ∈ SL(2,Z) of the following form:

F =
(

2g 1
2g2 − 1 2g

)
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the operator R̂(F ) has matrix elements in the basis {e(0)j }N−1
j=0 of the form

R̂(F )j,k = CN√
N

exp

(
2iπ

N

(
gj2 − jk + gk2))

where |CN | = 1, so that it is represented as a unitary Hadamard matrix. We do not
know at present whether this property is shared by more general maps F .

6.6.2 The Egorov Theorem Is Exact

As in the continuous case the Egorov theorem is exact since R̂(F ) is the metaplectic
representation of the linear symplectic map F :

Theorem 38 For any H ∈ C∞(T2) one has

R̂N,θ (F )
∗OpW

�,θ (H)R̂N,θ (F )=OpW
�,θ (H ◦ F) (6.52)

Proof By denoting T̂θ (z) the restriction of T̂ (z) to HN(θ) one has

OpW
�,θ (H)=

∑
m,n∈Z

Hm,nT̂θ

(
m

N
,
n

N

)

So

R̂N,θ (F )
∗OpW

�,θ (H)R̂N,θ (F )=
∑
m,n

Hm,nR̂N,θ (F )
∗T̂θ

(
m

N
,
n

N

)
R̂N,θ (F )

But we know that

R̂N,θ (F )
∗T̂θ (z)R̂N,θ (F )= T̂θ

(
F−1z

)
, ∀z= (m/N,n/N)

We do the change of variables

(
m′
n′
)
= F−1

(
m

n

)

Then we get

R̂N,θ (F )
∗OpW

�,θ (H)R̂N,θ (F )=
∑

m′,n′∈Z
(H ◦ F)m′,n′ T̂θ

(
m′

N
,
n′

N

)
=OpW

�,θ (H ◦ F)

This completes the proof. �
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6.6.3 Propagation of Coherent States

As in the continuous case the quantum propagation of coherent states is explicit and
“imitates” the classical evolution of phase-space points. Here the phase space is the
2-torus and ∀z ∈ T

2 the time evolution of the point z= (q,p) is given by

z′ =
(
q ′
p′
)
= F

(
q

p

)
, mod

(
1
1

)

We shall use “generalized coherent states” which are actually “squeezed states”.
Take γ ∈ C with γ > 0. The normalized Gaussian ϕγ ∈ L2(R) were defined in
Sect. 6.4.

ϕγ (x) :=
(γ
π�

)1/4

exp

(
iγ x2

2�

)

Then the generalized coherent states in L2(R) are

ϕγ,z := T̂ (z)ϕγ (6.53)

The generalized coherent states on the 2-torus are as above

ϕ(θ)γ,z =Σ(θ)
N ϕγ,z ∈HN(θ)

We take such coherent state as initial state and apply to it the quantum evolution
operator R̂θ (F ). One has the following result:

Proposition 72 Let F ∈ SL(2,Z) be given by

F =
(
a b

c d

)

If πF (θ)= θ , then

R̂N,θ (F )ϕ
θ
γ,z =

( |bγ + a|
bγ + a

)1/2

ϕθF ·γ,Fz

where F · γ = dγ+c
bγ+a .

Proof We know that Σ(θ)
N R̂(F )= R̂(F )Σ(θ)

N . Let z= (q,p) ∈ T
2. Then we have

R̂N,θ (F )ϕ
θ
γ,z = R̂N,θ (F )Σ(θ)

N ϕγ,z =Σ(θ)
N R̂(F )ϕγ,z

The result follows from the propagation of coherent states by metaplectic transfor-
mations in the plane (see Chap. 3). �
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6.7 Equipartition of the Eigenfunctions of Quantized Ergodic
Maps on the 2-Torus

One of the simplest trace of the ergodicity of a map F on T
2 in the quantum world

is the equipartition of the eigenfunctions of R̂N,θ (F ) in the classical limit N→∞.
It has been established in the literature in different contexts: for the geodesic flow on
a compact Riemannian manifold it was proven by [45, 174, 206]. For Hamiltonian
flows in R

n it was established in [106], and for smooth convex ergodic billiards in
[83]. For the case of the d-torus this problem has been investigated in [28]. Here we
restrict ourselves on the case of the 2-torus.

Theorem 39 (Quantum ergodicity) Let F be an ergodic area preserving map on T
2,

and R̂N,θ (F ) ∈ U(Hθ ) its quantization where θ = πF (θ). Denote by {φNj }j=1,...,N

the eigenfunctions of R̂N,θ (F ). Then there exists E(N)⊂ {1, . . . ,N} satisfying

lim
N→∞

#E(N)

N
= 1

such that ∀A ∈ C∞(T2) and all maps j : N ∈N �−→ j (N) ∈E(N) we have:

lim
N→∞

〈
φNj(N),OpW

�,θ (A)φ
N
j(N)

〉 =
∫
T2
A(z)dz (6.54)

lim
N→∞

〈
φNj(N),OpAW

�,θ (A)φ
N
j(N)

〉 =
∫
T2
A(z)dz (6.55)

uniformly with respect to the map j (N).

Remark 38 This Theorem says that the Wigner distribution and Husimi distribution
(when divided by N ) converge in the sense of distributions to the Liouville distribu-
tion along subsequences of density one.

We begin with a lemma:

Lemma 38 Let us introduce the following Radon probability measures μNj , μ̄N as
follows:

μNj (A)=
〈
φNj ,OpAW

�,θ (A)φ
N
j

〉
, μ̄N (A)= 1

N

N∑
j=1

μNj (A)

This measures are F -invariant. because φNj are eigenstates for R̂N,θ (F ).

One has ∀A ∈ C∞(T2):

lim
N→∞ μ̄N (A)= μ(A)

μ is the Liouville measure on the 2-torus T2.
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Proof We find that the measures μNj are F -invariant, modulo O(N−1), using

Egorov theorem and that φNj are eigenstates for R̂N,θ (F ).
Clearly we have

μ̄N (A)= 1

N
Tr
(
OpAW

�,θ (A)
)

So we have

∣∣μ̄N (A)−μ(A)∣∣ =
∣∣∣∣ 1

N
Tr
(
OpAW

�,θ (A)
)−μ(A)

∣∣∣∣
≤ ∥∥OpAW

�,θ (A)−OpW
�,θ (A)

∥∥
L(Hθ )

+
∣∣∣∣ 1

N
Tr
(
OpW

�,θ (A)
)−μ(A)

∣∣∣∣
We deduce the result using Propositions 64 and 68. �

Remark 39 The Lemma is still true for the Schwartz distributions νNj (A) =
〈φNj ,OpW

�,θ (A)φ
N
j 〉 and ν̄N (A)= 1

N

∑N
j=1 ν

N
j (A). The νNj are exactly F -invariant.

Let us prove now

Proposition 73 For every A ∈ C∞(T2) we have

lim
N→+∞

1

N

∑
0≤j≤N

|μNj (A)−μ(A)|2 = 0 (6.56)

Proof We can replace A by A−μ(A) and assume that μ(A)= 0.
Define for n ∈N

∗ the “time-average” of A:

An = 1

n

k=n∑
k=1

A ◦ Fk.

Using the Remark after Lemma 38, we can replace μNj by νNj .
We have νj (A)= νj (An) for every n≥ 1. So we get using the Cauchy–Schwarz

inequality and F invariance of νNj ,

∣∣νNj (A)
∣∣2 = ∣∣〈OpW

�
(An)φ

N
j ,φ

N
j

〉∣∣2 ≤ ∥∥OpW
�
(An)φ

N
j

∥∥2

≤ 〈
OpW

�
(An)

∗OpW
�
(An)φ

N
j ,φ

N
j

〉
(6.57)

But from the composition rule for � Weyl quantization (Chap. 2) we have

OpW
�
(An)

∗OpW
�
(An)=OpW

�

(|An|2)+O
(

1

N

)
(6.58)
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For every n, consider the limit N→+∞. Using Lemma 38 we get

lim sup
N→+∞

∣∣μNj (A)
∣∣2 = lim sup

N→+∞
∣∣νNj (A)

∣∣2 ≤
∫
T2
|An|2 dμ

Using ergodicity assumption and the Lebesgue dominated convergence theorem we
have

lim
n→+∞

∫
T2
|An|2 dμ= 0

The limit (6.56) follows if μ(A)= 0. �

Now, the Bienaymé–Tchebichev inequality gives the following result according
to which “almost-all” eigenstates are equidistributed on the torus.

Proposition 74 For any H ∈ C∞(T2) and ∀ε > 0

lim
N→∞

#{j : |μNj (H)−μ(H)|< ε}
N

= 1

Along the same lines as in [106] one can concludes for the existence of a H -
independent set E(N) such that the theorem holds true.

Remark 40 A natural question is “is the quantum ergodic theorem true withE(N)=
N” (unique quantum ergodicity)? The answer is negative. In [58] the following re-
sult is proved. Let C = {τ1, . . . , τK }, K periodic orbits for F . Consider the probabil-
ity measure μC,α =

∑
1≤j≤K αjμτj , where αj ∈ [0,1] and

∑
1≤j≤K αj = 1. Then

there exists a sequence Nk→+∞ such that

lim
k→∞

〈
φNNk ,OpW

�,θ (A)φ
N
Nk

〉= 1

2

∫
T2
A(z)dz+ 1

2
μC,α(A) (6.59)

This result shows that some eigenstates can concentrate along periodic orbits, this
phenomenon is named scarring.

6.8 Spectral Analysis of Hamiltonian Perturbations

The previous results can be extended to some perturbations of automorphisms of the
torus T2.

Let H be a real periodic Hamiltonian, H ∈ C∞(T2) and F ∈ SL(2,Z). Let θ ∈
[0,2π[2 be such that θ = πF (θ). We consider here the following unitary operator in
HN(θ), where 2π�N = 1:

Uε = exp

(
−i ε

�
Opw

�,θ (H)

)
R̂N,θ (F )
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We shall see that if F is hyperbolic and ε small enough the quantum ergodic theorem
is still true.

To prepare the proof we begin by some useful properties concerning the propa-

gators V (t)= e−i t� Ĥ , VN,θ (t)= e−i t� ĤN,θ .
Let us introduce the following Hilbert spaces: Ks = Dom(Ĥosc + 1)s/2, where

s ≥ 0, with the norm ‖ψ‖2
s = ‖(Ĥosc + 1)s/2ψ‖2 (Ĥosc =−�2 d2

dx2 + x2).

Lemma 39 For every s ≥ 0 and every T > 0, there exists Cs,T > 0 such that

∥∥V (t)ψ∥∥
s
≤ Cs,T ‖ψ‖s , ∀ψ ∈Ks ,∀t ∈ [−T ,T ],∀� ∈]0,2π]

Proof It is sufficient to assume that s ∈ N (using complex interpolation). For s = 0
we know that V (t) is unitary. Let us denoteΛ= (Ĥosc+1)1/2. Let us assume s = 1.
It is enough to prove that ΛV (t)Λ−1 is bounded from L2(R) into L2(R).

We have

�

i

d

dt
V (−t)ΛV (t)= V (−t)[Ĥ ,Λ]V (t)

Using the semi-classical calculus (Chap. 2), and that H is periodic, we know that
i
�
[Ĥ,Λ] is bounded on L2(R). So the lemma is proved for s = 1.
Now we will prove the result for every s ∈N by induction. Assume the lemma is

proved for k ≤ s − 1. Compute

�

i

d

dt
V (−t)ΛsV (t)= V (t)[Ĥ ,Λs

]
V (t)

But i
�
[Ĥ ,Λs] is an � pseudodifferential operator of order s − 1 for the weight

μ(x, ξ)= (1+ x2+ ξ2)1/2. In particular the operator i
�
[Ĥ ,Λs]Λ1−s is bounded on

L2(R). So we get the result for s using the induction assumption. �

The following result will be useful to transform properties from the space L2(R)

to the spaces HN(θ).
Let ψ ∈ S(R) and for θ ∈ [0,2π[2 be such that ψ̃(θ)= (ψ̃(θ,0), . . . , ψ̃(θ,N −

1) ∈ C
N (coefficient of ψ(θ) in the canonical basis of HN(θ)). Let us denote

Hs
N([0,2π[2) the periodic Sobolev space of order s ≥ 0 of functions from [0,2π[2

into C
N Its norm is denoted ‖ · ‖N,s .

Lemma 40 For every s ≥ 0 there exists Cs such that

∥∥ψ̃∥∥
N,s
≤ Cs‖ψ‖s , ∀ψ ∈ S(R) (6.60)

In particular we have the following pointwise estimate: for every s > 1 there exists
Cs such that ∣∣ψ̃(θ)∣∣≤ Cs‖ψ‖s, ∀ψ ∈Ks (6.61)
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Proof Let us recall that, for every ψ ∈ S(R), θ = (θ1, θ2) ∈]0,2π]2,

ψ̃(θ, j)=N−1/2
∑
�∈Z

ei�θ1ψ(qj − �), qj = j

N
+ θ2

2πN

So we have

∂θ1ψ̃(θ, j) = N−1/2
∑
�∈Z

ei�θ1 i(�− qj )ψ(qj − �)+ iN−1/2qj ψ̃(θ, j) (6.62)

∂θ2ψ̃(θ, j) = N−1/2
∑
�∈Z

ei�θ1 i�
d

dx
ψ(qj − �) (6.63)

Reasoning by induction on |m| =m1 +m2, m= (m1,m2), we easily get
∫
[0,2π[2

∣∣∂mθ ψ̃(θ, j)
∣∣2 dθ ≤ Cm ∑

k+�≤|m|

∫
R

(∣∣(�∂x)kψ(x)∣∣2 + ∣∣x�ψ(x)∣∣2)dx (6.64)

So estimate (6.60) follows. Estimate (6.61) is a consequence of Sobolev estimate in
dimension 2. �

Let us now consider the propagation of coherent states ϕ(θ)γ,z under the dynamics
VN,θ (t) in HN(θ). We shall prove that estimates can be obtained from the corre-
sponding evolution in L2(R) (see Chap. 4), using the two previous lemmas.

Recall these results. We have checked approximate solutions for the Schrödinger
equation:

i�∂tψt = Ĥψt , ψ0 = ϕγ,z, γ > 0

We have found ψ(M)
z,t such that

i�∂tψ
(M)
z,t = Ĥψ(M)

z,t + �
(N+3)/2R

(M)
z,t , ψ

(M)
z,0 = ϕγ,z (6.65)

where, for every s ≥ 0, ‖R(M)
z,t ‖Ks

=O(1) for �→ 0.

ψ
(M)
z,t has the following expression:

ψM
z,t (x)= ei

δt
�

∑
0≤j≤M

�
j/2πj

(
t,
x − qt√

�

)
ϕΓtzt (x) (6.66)

where zt = (qt ,pt ) is the classical path in the phase space R
2 such that z0 = z

satisfying {
q̇t = ∂H

∂p
(t, qt ,pt )

ṗt =− ∂H
∂q
(t, qt ,pt ), q0 = q, p0 = p

(6.67)

and

ϕΓtzt = T̂ (zt )ϕΓt . (6.68)
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ϕΓt is the Gaussian state:

ϕΓt (x)= (π�)−d/4a(t) exp

(
i

2�
Γtx.x

)
(6.69)

Γt is a complex number with positive non degenerate imaginary part, δt is a real
function, a(t) is a complex function, πj (t, x) is a polynomial in x (of degree ≤ 3j )
with time dependent coefficients.

More precisely Γt is given by the Jacobi stability matrix of the Hamiltonian flow
z �→Φt

H z := zt . If we denote

At = ∂qt

∂q
, Bt = ∂pt

∂q
, Ct = ∂qt

∂p
, Dt = ∂pt

∂p
(6.70)

then we have

Γt = (Ct + γDt)(At + γBt )−1, Γ0 = γ, (6.71)

δt (z) =
∫ t

0

(
psqs −H(zs)

)
ds − qtpt − q0p0

2
, (6.72)

a(t) = [
det(At + γBt )

]−1/2
, (6.73)

where the complex square root is computed by continuity from t = 0.
Using the two lemmas and the Duhamel formula, we get, using the notation

ψ(θ) =Σ(θ)
N ψ ,

Proposition 75 For every m≥ 0 and every θ ∈ [0,2π[2 we have

∥∥VN,θϕ(θ)γ,z −ψ(m,θ)
z,t

∥∥
HN (θ)

=O(
N−(m+1)/2) (6.74)

In particular we have ψ(0,θ)
z,t = ϕ(θ)Γt ,zt with the notation of Sect. 6.4.

Let us come back to Hamiltonian perturbations of hyperbolic automorphism F .
Let us denote FεH =Φε

H ◦F . FεH is symplectic on T
2 (it preserves the area). By the

C1 stability of Anosov dynamical systems, for ε small enough, FεH is Anosov. The
quantum analogue of FεH is the unitary operator

R̂N,θ,ε(F )= exp

(
−i ε

�
Opw

�,θ (H)

)
R̂N,θ (F )

We have the following semi-classical correspondence.

Proposition 76 The following estimates hold true uniformly in z ∈ T
2 and

ε ∈ [0,1]:
R̂N,θ,ε(F )ϕ

(θ)
γ,z = Cεϕθγε,F εH (z) (6.75)
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where γε = Cε+F ·γDε
Aε+F ·γBε and

Cε = eiδε(F (z))/�
( |γ b+ a|
γ b+ a

)1/2( |Aε + F · γBε|
Aε + F · γBε

)1/2

In particular Cε is a complex number of modulus one.

Proof This is a direct consequence of propagation of coherent states (Sect. 4.3). �

Now we shall prove some spectral properties for R̂N,θ,ε(F ) for ε small enough.
Let us denote ηNj , 0 ≤ j ≤ N − 1 the eigenvalues of R̂N,θ,ε(F ), so that

R̂N,θ,ε(F )ψ
N
j = ηNj ψ

N
j where {ψN

j }0≤j≤N−1 is an orthonormal basis of HN(θ)

and ηNj ∈ S
1, the unit circle of the complex plane.

Theorem 40 For ε > 0 small enough, when N → +∞, the eigenvalues
{ηNj }0≤j≤N−1 are uniformly distributed on S

1 i.e. for every interval I on S
1) we

have

lim
N→+∞

�{j ;ηNj ∈ I }
N

= μ(I) (6.76)

were μ is the Lebesgue probability measure on S
1.

Proof In a first step we will prove that for every f ∈ C1(S1) we have

lim
N→+∞

1

N
Tr
[
f
(
R̂N,θ,ε(F )

)]=
∫
S1
f (x)dμ(x) (6.77)

Using Fourier decomposition of f it is enough to prove (6.77) for f (z)= zk , k ∈ Z.
Hence we have to prove that for every k �= 0,

lim
N→+∞

1

N
Tr
((
R̂N,θ,ε(F )

)k)= 0 (6.78)

We assume k ≥ 1 (for k ≤−1 there are obvious modifications).
Using that the coherent states are an overcomplete system in HN(θ), we have

Tr
((
R̂N,θ,ε(F )

)k)=
∫
T2

〈
ϕθz ,

(
R̂N,θ,ε(F )

)k
ϕθz
〉

Using the propagation of coherent states we get

∣∣〈ϕθz , (R̂N,θ,ε(F ))kϕθz 〉
∣∣= ∣∣〈ϕθz , ϕγ (ε,k),(F εH )k

〉∣∣+O(
εN−1/2)

and using Proposition 61 we have
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∣∣〈ϕθz , (R̂N,θ,ε(F ))kϕθz 〉
∣∣≤ C(ε, k)√Ne−c(ε,k)d((F εH )kz,z)2N +O(

εN−1/2)

But we know that for ε small enough FεH is Anosov so it is ergodic and its periodic
set has zero measure. So for every δ > 0 we have μ{z ∈ T

2, d((F εH )
kz, z)≥ δ} = 0.

Using that O(εN−1/2) is uniform in z ∈ T
2 we get (6.78) hence (6.77).

Now we get easily the Theorem considering f± ∈ C1(S1) such that f− ≤ 1I ≤
f+ and

∫
S1(f+ − f−) dμ < δ with δ→ 0. �



Chapter 7
Spin-Coherent States

Abstract In this chapter we consider that the unit sphere S
2 of the Euclidean

space R
3 with its canonical symplectic structure is a phase space. Then coherent

states are labeled by points on S
2 and allow us to build a quantization of the two

sphere S
2. They are defined in each finite-dimensional space of an irreducible uni-

tary representation of the symmetry group SO(3) (or its covering SU(2)) of S2 and
give a semi-classical interpretation for the spin.

As an application we state the Berezin–Lieb inequalities and compute the ther-
modynamic limit for large spin systems.

7.1 Introduction

Up to now we have considered Gaussian coherent states and their relationship with
the Heisenberg group, the symplectic group and the harmonic oscillator. These
states are used to describe field coherent states (Glauber [90]). For the description
of assembly of two-levels atom, physicists have introduced what they have called
“atomic coherent states” [5]. These states are defined in Hilbert space irreducible
representations of some symmetry Lie group.

As we shall see later it is possible to associate coherent states to any Lie group
irreducible representation. This general construction is due to Perelomov [155]. In
this chapter we consider the rotation group SO(3) of the Euclidean space R

3 and its
companion SU(2). Irreducible representations of these groups are related with the
spin of particles as was discovered by Pauli [154].

In this chapter (and in the rest of the book) we shall use freely some basic notions
concerning Lie groups, Lie algebra and their representations. We have recalled most
of them in an Appendices A, B and C.

7.2 The Groups SO(3) and SU(2)

Let us consider the Euclidean space R
3 equipped with the usual scalar product,

x = (x1, x2, x3), y = (y1, y2, y3), x ·y = x1y1+x2y2+x3y3 and the Euclidean norm
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‖x‖ = (x2
1 + x2

2 + x2
3)

1/2. The isometry group of R3 is denoted O(3).1 A ∈ O(3)
means that ‖Ax‖ = ‖x‖ for every x ∈R

3. SO(3) is the subgroup of direct isometries
i.e. A ∈ SO(3) means that A ∈O(3) and detA= 1. It is well known that A ∈ SO(3)
is a rotation characterized by a unitary vector v ∈ R

3 (rotation axis) and an angle
θ ∈ [0,2π[. More precisely, v is an 1-eigenvector for A, Av = v and A is a rotation
of angle θ in the plane orthogonal to v. So we have the following formula, for every
x ∈R

3:

Ax :=R(θ, v)x = (1− cos θ)(v · x)v + (cos θ)x + sin θ(v ∧ x) (7.1)

Recall that the wedge product v ∧ x is the unique vector in R
3 such that

det[v, x,w] = (v ∧ x) ·w, ∀w ∈R
3

It is easy to compute the Lie algebra so(3) of SO(3),

so(3)= {
A ∈Mat(3,R),AT +A= 0

}

where AT is the transposed matrix of A.
Considering rotations around vectors of the canonical basis {e1, e2, e3} of R3 we

get a basis {E1,E2,E3} of so(3) where

Ek = d

dθ
R(θ, ek)

∣∣∣∣
θ=0

It satisfies the commutation relation

[Ek,E�] =Em (7.2)

for every circular permutation (k, �,m) of (1,2,3).
It is well known that any rotation matrix is an exponential.

Proposition 77 For every v ∈R
3, ‖v‖ = 1 and θ ∈ [0,2π[ we have

R(θ, v)= eθM(v) (7.3)

where M(v)=∑
1≤k≤3 vjEj .

Proof θ �→ R(θ, v) and θ �→ eθM(v) are one parameter groups, so it is enough to
see that their derivatives at θ = 0 are the same. This is true because we have v∧x =
M(v)x. �

As SO(2) (identified to the circle S
1) SO(3) is connected but not simply con-

nected. To compute irreducible representations of SO(3) it is convenient to consider

1An isometry in an Euclidean space is automatically linear so that O(3) is a subgroup of GL(R3).
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a simply connected cover of SO(3) which can be realized as the complex Lie group
SU(2). SU(2) is the group of unitary 2× 2 matrices A with complex coefficients,

A= (
a b

−b̄ ā
)
, such that |a|2 + |b|2 = 1.

The Lie algebra su(2) is the real vector space of dimension 3 of 2× 2 complex
anti-Hermitian matrices of zero trace:

su(2)= {
X ∈ gl(2,C) |X∗ +X = 0,TrX = 0

}

The three linearly independent matrices:

A1 = 1

2

(
0 i

i 0

)
, A2 = 1

2

(
0 −1
1 0

)
, A3 = 1

2

(
i 0
0 −i

)

form a basis of su(2) on R and satisfy the commutation relations

[Ak,A�] =Am (7.4)

provided k, l,m is a circular permutation of 1,2,3.
Let us consider the adjoint representation of SU(2). This representation is defined

in the real vector space su(2) by the formula

ρU(A)=UAU−1, U ∈ SU(2), A ∈ su(2) (7.5)

In physics the spin is defined by considering the Pauli matrices, which are hermitian
2× 2 matrices given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(7.6)

which satisfy the commutation relations

[σk, σl] = 2iσm (7.7)

which is equivalent to (7.4) because we have Ak = i
2σk . {σ1, σ2, σ3} is an orthonor-

mal basis for the three-dimensional real linear space H2,0 of Hermitian 2× 2 ma-
trices with trace 0, which will be identified with R

3. The scalar product in H2,0
is

〈A,B〉 = 1

2
Tr
(
A∗B

)

Let us denote RU the 3× 3 matrix of ρU in this basis. The following proposition
gives the basic relationship between the groups SO(3) and SU(2).

Proposition 78 For every U ∈ SU(2) we have:

(i) RU has real coefficients.
(ii) RU is an isometry in H2,0.

(iii) detRU = 1.
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(iv) The map U �→RU is a surjective group morphism from SU(2) onto SO(3).
(v) The kernel of U �→RU is kerR = {1,−1}.

Proof

(i) From 〈RUσk,σ�〉 = 1
2 Tr(UσkU−1σ�) we get 〈RUσk,σ�〉 = 〈RUσk,σ�〉.

(ii) Using commutativity of trace we have 〈RUA,RUB〉 = 1
2 TrAA∗ = 〈A,A〉.

(iii) We have detRU =±1 because RU is an isometry. But detR1 = 1 and SU(2)
is connected so detRU = 1.

(iv) It is easy to see that R is a group morphism.

Let us consider the following generators of SU(2):

U1(ϕ)=
(

e−iϕ/2 0
0 eiϕ/2

)
, U2(θ)=

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)

Let us remark that we have, for every ϕ, ϕ′, θ ,

U1(ϕ)U2(θ)U1
(
ϕ′
)=

(
cos(θ/2)e−i/2(ϕ+ϕ′) − sin(θ/2)ei/2(ϕ

′−ϕ)
sin(θ/2)e−i/2(ϕ′−ϕ) cos(θ/2)ei/2(ϕ+ϕ′)

)
(7.8)

Then compute the image:

RU1(ϕ) =
⎛
⎝ cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

⎞
⎠ , RU2(θ) =

⎛
⎝cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞
⎠

RU1(ϕ) is the rotation of angle ϕ with axis e3, RU2(θ) is the rotation of angle θ with
axis e2.

So, if ϕ, θ, η ∈ [0,2π[ we have

RU1(ϕ)U2(θ)U1(η) =RU1(ϕ)RU2(θ)RU1(η)

where (ϕ, θ, η) are the Euler angles of the rotation R(ϕ, θ, η) := RU1(ϕ)RU2(θ) ×
RU1(η). But any rotation can be defined with its Euler angles, so R is surjective.

(v) Let U ∈ SU(2) be such that UAU−1 = A for every A ∈ H2,0. Then we easily
get UAU−1 =A for every A ∈Mat(2,C) hence U = λ1 with λ=±1. �

We shall see now that every irreducible representation of SO(3) comes from an
irreducible representation of its companion SU(2).

Corollary 22 ρ is an irreducible representation of SO(3) if and only if ρ is an
irreducible representation of SU(2) such that

ρRU = ρR−U , ∀U ∈ SU(2)

Proof Let ρ be a representation of SU(2) in a finite-dimensional linear space E
such that ρRU = ρR−U . Then we define a representation ρ̃ of SO(3) in E by the



7.3 The Irreducible Representations of SU(2) 187

equality ρ̃(RU) = ρ(U). Conversely every representation of SO(3) comes from a
representation of SU(2) like above. In other words the following diagram is com-
mutative:

SU(2)
R

ρ

SO(3)

ρ̃

GL(E)

where GL(E) is the group of invertible linear maps in E. �

Corollary 23 The Lie algebras so(3) and su(2) are isomorph though the isomor-
phism DR(1) (differential of R at the unit of the Lie group SU(2)). In particular we
have DR(1)Ak =Ek , k = 1,2,3.

Remark 41 The generators {Lk}1≤k≤3 of the rotations with axis ek give a basis of
the Lie algebra so(3) as a real linear space. Recall that L = (L1,L2,L3) is the
angular momentum.2 Lk belongs to the complex Lie algebra so(3)⊕ iso(3) and is
sometimes denoted Jk , J = ix ∧∇x . For example L3 = i(x2∂x1 − x1∂x2). We have
the commutation relations, for every circular permutation (k, �,m) of (1,2,3),

[Lk,L�] = iLm. (7.9)

This basis can be identified with the matrix basis (iE1, iE2, iE3) considered before.

7.3 The Irreducible Representations of SU(2)

The group SU(2) is simply connected (it has the topology of the sphere S
3), so we

know that all its representations are determined by the representations of its Lie
algebra so(2) (see Appendices A, B and C). Moreover, SU(2) is a compact Lie
group so all its irreducible representations are finite dimensional.

7.3.1 The Irreducible Representations of su(2)

We shall first consider the representation of the Lie algebra su(2) and determine all
its irreducible representations.

Recall that su(2) is a real Lie algebra and it is more convenient to consider its
complexification su(2)+ isu(2). But any matrix can be decomposed as a sum of an

2Multiplication by i gives self-adjoint generators instead of anti-self-adjoint operators.
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Hermitian and anti-Hermitian part, so we have

sl(2,C)= su(2)+ isu(2) (7.10)

sl(2,C) is the space of matrices A= (
a b

c −a
)
, a, b, c ∈C. It is the Lie algebra of the

group of 2× 2 complex matrices g such that detg = 1. It results from (7.10) that ir-
reducible representations of the real Lie algebra su(2) are determined by irreducible
representations of the complex Lie algebra sl(2,C).

One considers sl(2,C) endowed with the basis {H,K+,K−} in which the com-
mutation relations are

[H,K±] =±K±, [K+,K−] = 2H (7.11)

where

H = 1

2

(
1 0
0 −1

)
, K+ =

(
0 1
0 0

)
, K− =

(
0 0
1 0

)

It is also convenient to introduce Hermitian generators (see footnote 2):

K3 =H = σ3

2
, K1 = K+ +K−

2
= σ1

2
, K2 = K+ −K−

2i
= σ2

2
(7.12)

Let (E,R) be a (finite-dimensional) irreducible representation of sl(2,C). For con-
venience let us denote Ĥ the operator R(H). Ĥ admits at least an eigenvalue λ and
an eigenvector v �= 0:

Ĥv = λv
From the commutation relations (7.11) we have

Ĥ K̂+v =
(
K̂+Ĥ + K̂+

)
v = (λ+ 1)K̂+v

Ĥ K̂−v =
(
K̂−Ĥ − K̂−

)
v = (λ− 1)K̂−v

Since there must be only a finite number of distinct eigenvalues of Ĥ , there exists
an eigenvalue λ0 of Ĥ and an eigenvector v0 such that

Ĥv0 = λ0v0, K̂−v0 = 0

λ0 is the smallest eigenvalue of Ĥ . One defines then

vk =
(
K̂+

)k
v0

It must obey

Ĥvk = (λ0 + k)vk
One can show by induction on k that

K̂−vk = ckvk−1, where ck+1 = ck − 2(λ0 + k), ∀k ∈N
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So we get

ck =−k(2λ0 + k − 1), k ∈N

Since the vectors vk �= 0 are linearly independent and the vector space E is finite
dimensional there exists an integer n such that

v0 �= 0, v1 �= 0, . . . , vn �= 0, vn+1 = 0

Thus from K̂−vn+1 = 0 one deduces that 2λ0 + n= 0.
Then ∀k ∈N one has

[
K̂+, K̂−

]
vk = 2Ĥvk,

[
Ĥ , K̂±

]
vk =±K̂±vk (7.13)

One deduces that the vectors {vk}nk=0 generate a subspace of E invariant by the
representation R and since the representation we look for is irreducible, they gen-
erate the complex linear space E which is therefore of finite dimension n+ 1. The
elements of the basis {vk}nk=0 are called Dicke states in [5].

In conclusion we have found necessary conditions to get an irreducible represen-
tation (E(n), R(n)) of dimension n+ 1 of sl(2,C) with a basis {vk}nk=0 of E(n) such
that

R(n)(H)vk =
(
k− n

2

)
vk

R(n)(K+)vk = vk+1

R(n)(K−)vk = k(n− k + 1)vk−1

(7.14)

for 0≤ k ≤ n and v−1 = vn+1 = 0.
We have to check that these conditions can be realized in some concrete linear

space. Let E(n) the complex linear space generated by homogeneous polynomials

of degree n in (z1, z2) ∈C with the basis vk = zk1z
n−k
2

(n−k)! and

R(n)(K−)= z2
∂

∂z1
, R(n)(K+)= z1

∂

∂z2
, R(n)(H)= 1

2

(
z1

∂

∂z1
− z2

∂

∂z2

)

So we have proved:

Proposition 79 Every irreducible representation of sl(2,C) of finite dimension is
equivalent to (E(n), R(n)) for some n ∈N.

In the physics literature one considers j such that n= 2j . j is thus either integer
or half-integer and represents the angular momentum of the particles. We shall see
later that representations of SO(3) correspond to j ∈N so n is even. j is the greatest
eigenvalue of R(n)(H).

In quantum mechanics the representation (E(2j),R(2j)) is denoted (V (j),D(j))

and one considers the basis of V (j) indexed by the number m, −j ≤m≤ j , where
m is integer if j is, and half-integer if j is.
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States in V (j) represent spin states and the operators in V (j) are spin observables.
So we introduce the notation Ŝ� = R(2j)(K�) (it is the spin observable along the
axis 0x�, 1≤ �≤ 3) and Ŝ± = R(2j)(K±). This basis is usually written in the “ket”
notation of Dirac as |j,m〉. The correspondence is the following:

|j,m〉 = (−1)j+m
√
(j −m)!
(j +m)!vj+m

In this basis the representation Dj of the elements K3,K+,K− (basis of the com-
plex Lie algebra sl(2,C) defined at the beginning) act as follows:

Ŝ3|j,m〉 = m|j,m〉
Ŝ+|j,m〉 =

√
(j −m)(j +m+ 1)|j,m+ 1〉

Ŝ−|j,m〉 =
√
(j +m)(j −m+ 1)|j,m− 1〉

Hence

Ŝ−|j,−j 〉 = 0, |j,m〉 =
√

(j −m)!
(j +m)!(2j)!

(
Ŝ+

)j+m|j,−j 〉

We recall that the two components L1, L2 of the angular momentum are related to
the operators L± as follows:

L+ = L1 + iL2, L− = L1 − iL2

In the representation space (V (j),Dj ) of sl(2,C) one can consider the spin operator
S= (Ŝ1, Ŝ2, Ŝ3) and

Ŝ2
1 + Ŝ2

2 + Ŝ2
3 = S2

S2 can be rewritten as

S2 = Ŝ−Ŝ+ + Ŝ3
(
Ŝ3 + 1

)

It is clear that for the representation Dj , the vector |j,m〉 is eigenstate of S2:

S2|j,m〉 = j (j + 1)|j,m〉
Thus S2 acts as a multiple of the identity and is called the Casimir operator of the
representation Dj .

One defines a scalar product on E(2j) by imposing that the basis |j,m〉 is an
orthonormal basis. In the ordered basis:

|j,−j 〉, |j,−j + 1〉, . . . , |j, j − 1〉, |j, j 〉
the operators S3, S± are represented by the following (2j + 1)× (2j + 1) matrices:
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Ŝ3 = diag(−j,−j + 1, . . . , j − 1, j) (7.15)

Ŝ+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 0 0√
2j 0 0 . . . 0 0 0
0

√
2(2j − 1) 0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . .
√

2(2j − 1) 0 0
0 0 0 . . . 0

√
2j 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(7.16)

Ŝ− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
√

2j 0 . . . 0 0
0 0

√
2(2j − 1) . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0
√

2j
0 0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(7.17)

These formulas are consequences of the polynomials representation of the Dicke
states |j,m〉 in the space V (j) given by

|j,m〉(z1, z2)= z
j+m
1 z

j−m
2√

(j +m)!(j −m)!

7.3.2 The Irreducible Representations of SU(2)

We shall see now that for every j ∈ N

2 we can get a representation T (j) of SU(2)
such that its differential dT (j) coincides with the representations D(j) of su(2) that
we have studied in the previous section. Furthermore they are the only irreducible
representations of SU(2).

Since every unitary matrix is diagonalizable with unitary passage matrices we
have ∀A ∈ SU(2):

A= g
(

eit 0
0 e−it

)
g−1

for some t ∈ R. Then we show that the exponential map from su(2) to SU(2) is
surjective:

From the relation (
eit 0
0 e−it

)
= exp(itσ3)

we deduce

A= exp
(
itgσ3g

−1)
with igσ3g

−1 ∈ su(2), hence the result.



192 7 Spin-Coherent States

Taking the Pauli matrices as a basis we find that every A ∈ su(2) can be written
as

A= ia · σ, a= (a1, a2, a3) ∈R
3

We deduce easily that

detA= ‖a‖2

and

A2 =−(detA)1

Therefore we have proven the following lemma:

Lemma 41 For any A ∈ su(2) one has

A2 =−(detA)1

Furthermore one has the following result:

Proposition 80 For any A ∈ su(2) such that detA= 1, one has, ∀t ∈R,

exp(tA)= cos t1+ sin tA (7.18)

Proof Both members of (7.18) have A as derivative at t = 0. It is therefore enough
to show that the map t ∈ R→ 1 cos t + A sin t is a one parameter subgroup of
GL(2,C). Take s ∈R. One has

(1 cos t +A sin t)(1 cos s +A sin s)

= 1 cos t cos s +A2 sin s sin t + (sin s cos t + cos s sin t)A

= 1 cos(s + t)+A sin(s + t) (7.19)

�

As a consequence we see that every element g ∈ SU(2) can be written as

g = α11+ α2I + α3J + α4K

where

I =
(

0 i

i 0

)
, J =

(
0 −1
1 0

)
, K =

(
i 0
0 −i

)

the vector (α1, α2, α3, α4) of R4 being of norm 1. Thus SU(2) can be identified with
the group of quaternions of norm 1.

The group SU(2) acts on C
2 by the usual matrix action.

g =
(
a b

−b̄ ā

)
∈ SU(2) (7.20)
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with |a|2 + |b|2 = 1. Then

g

(
z1
z2

)
=
(
az1 + bz2

−b̄z1 + āz2

)

g induces an action ρ(g) on functions f :C2 →C:

ρ(g)f = f ◦ g−1

Since g has determinant one its inverse g−1 equals

g−1 =
(
ā −b
b̄ a

)

thus (
ρ(g)f

)
(z1, z2)= f (āz1 − bz2, b̄z1 + az2)

One considers V (j) as the vector space of homogeneous polynomials in z1, z2 of
degree 2j (we recall that j ∈ 1

2N). Consider the following basis in V (j):

z
2j
2 , z1z

2j−1
2 , . . . , z

j+m
1 z

j−m
2 , . . . , z

2j
1 , −j ≤m≤ j

It is clear that V (j) is stable by ρ.
One equips V (j) with the SU(2)-invariant scalar product which makes the mono-

mials

pk(z1, z2)= zk1z
2j−k
2√

k!(2j − k)!
an orthonormal basis of V (j). Define the action of g ∈ SU(2) on an homogeneous
polynomial p in the following way:

T j (g)p(z1, z2)= p ◦ g−1(z1, z2)

Let us prove the following.

Lemma 42 Consider the homogeneous polynomial p:

p(z1, z2)=
2j∑
l=0

clz
l
1z

2j−l
2

Then the map

p �→ ‖p‖2 =
2j∑
l=0

l!(2j − l)!|cl |2

defines an Hilbertian norm of V (j) that is invariant by the action of SU(2).
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Proof It is enough to check that ‖p ◦ g∗‖2 = ‖p‖2 which implies that the represen-
tation (V (j), T j ) is unitary. Take

p(z1, z2)= pα,β(z1, z2)= (αz1 + βz2)
2j , α,β ∈C

which generate V (j). Then if

p(z1, z2)=
2j∑
l=0

clz
l
1z

2j−l
2 , p′(z1, z2)=

2j∑
l=0

c′lzl1z
2j−l
2

p ◦ g−1(z1, z2)=
2j∑
l=0

dlz
l
1z

2j−l
2 , p′ ◦ g−1(z1, z2)=

2j∑
l=0

d ′l zl1z
2j−l
2

one has

〈
p′,p

〉 = 〈
p′ ◦ g−1,p ◦ g−1〉=

2j∑
l=0

cl c̄
′
l l!(2j − l)!

=
2j∑
l=0

dld̄
′
l l!(2j − l)! = (2j)!

(
αᾱ′ + ββ̄ ′)2j (7.21)

Namely the Hermitian scalar product in C
2 of (α,β) with (α′, β ′) is invariant under

SU(2). �

We shall study the representation T (j) of SU(2) obtained by restriction of ρ to
V (j). One defines

f
j
m(z1, z2)= zj+m1 z

j−m
2

We first consider diagonal matrices in SU(2). They are of the form

gt = exp(−2itK3)=
(

eit 0
0 e−it

)

Then

(
T (j)(gt )f

j
m

)
(z1, z2)= f jm

(
z1e−it , z2eit

)= e−2imtf
j
m(z1, z2) (7.22)

Thus every f jm is eigenstate of T (j)(gt ) with eigenvalue e−2imt .
We shall now consider the differential dT (j)(g) for the basis elements K3,K±

of sl(2,C): one considers X ∈ sl(2,C),

X =
(
α β

γ −α
)



7.3 The Irreducible Representations of SU(2) 195

and

gt = exp(tX)=
(
a(t) b(t)

c(t) d(t)

)

Then g(0)= 1 and g′(0)=X so that

a(0)= d(0)= 1, b(0)= c(0)= 0,

a′(0)= α, b′(0)= β, c′(0)= γ, d ′(0)=−α
For any polynomial in two variables f (z1, z2) one has

(
(dρ)(−X)f )(z1, z2) = d

dt

(
ρ(gt )

−1f
)
(z1, z2)

∣∣∣∣
t=0
= d

dt
(f ◦ gt )(z1, z2)

∣∣∣∣
t=0

= (αz1 + βz2)∂1f (z1, z2)+ (γ z1 + δz2)∂2f (z1, z2)

Therefore

(dρ)(K3)= 1

2
(z1∂1 − z2∂2)

(dρ)(K+)= z1∂2, (dρ)(K−)= z2∂1

We shall determine the action of dρ(K3), dρ(K±) on the basis vectors f jm of V (j):

dρ(K3)f
j
m =mf jm

Furthermore using

∂1f
j
m = (j +m)zj+m−1

1 z
j−m
2 , ∂2f

j
m = (j −m)zj+m1 z

j−m−1
2

we get

dρ(K+)f jm = (j −m)f jm+1, dρ(K−)f jm = (j +m)f jm−1

Denoting

|j,m〉 = 1√
(j −m)!(j +m)!f

j
m

we get

dT (j)(K3)|j,m〉 = m|j,m〉 (7.23)

dT (j)(K+)|j,m〉 =
√
j (j + 1)−m(m+ 1)|j,m+ 1〉 (7.24)

dT (j)(K−)|j,m〉 =
√
j (j + 1)−m(m− 1)|j,m− 1〉 (7.25)

We use here the abuse of notation ρ = T (j). So we deduce the following result:
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Proposition 81 The differential of the representation T (j) of SU(2) coincides with
the representation Dj of su(2).

Proposition 82 For any j ∈ 1
2N, (V (j), T (j)) is an irreducible representation of

SU(2).
It defines an irreducible representation of SO(3) if and only if j ∈N.
If n is odd (j ∈ N

2 , j /∈N) then T (j) is a projective representation of SO(3).

Proof It follows from general results about the differential of the representations of
Lie groups that the differential of T (j) is an irreducible representation.

The second part comes from the following fact: T (j)(−g)= T (j)(g),∀g ∈ SU(2)
if and only if n is even.

The proof of the last part is left to the reader. �

Corollary 24 Every irreducible representation of SU(2) is equivalent to one of the
representations (V (j), T (j)), j ∈ 1

2N.

Proof Since SU(2) is compact we know that every irreducible representation of
SU(2) is finite dimensional. We have seen that every irreducible representation of
finite dimension of su(2) is one of the Dj , j ∈ 1

2N. This implies the result since
SU(2) is connected and simply connected. �

7.3.3 Irreducible Representations of SO(3) and Spherical
Harmonics

We have seen above that irreducible representations of SO(3) are described by
(T (j),V (j)) for j ∈ N. A more concrete equivalent representation can be obtained
with a spectral decomposition of the Laplace operator on S

2.
Recall that in spherical coordinates (r, θ,ϕ) we have

"= ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

= ∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2
"S2

where "S2 is the spherical Laplace operator on S
2,

"S2 := ∂2

∂θ2
+ 1

tan θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2
(7.26)

SO(3) has a natural representation Σ in the function space L2(R3) (and in L2(S2))
defined as follows: Σ(g)f (x) = f (g−1x) where g ∈ SO(3), f ∈ L2(R3) and the
Laplace operator commutes with Σ .

Let us introduce the linear space H
(j)

3 of homogeneous polynomials f in
(x1, x2, x3) of total degree j and satisfying "f = 0 and restricted to the sphere
S

2; H
(j)

3 is the space of spherical harmonics.
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Recall that the Euclidean measure on S
2 is dμ2(θ,ϕ)= sin θ dθ dϕ.

Theorem 41 H
(j)

3 is a subspace of C∞(S2) of dimension 2j + 1, invariant for the

action Σ . The representation (Σ,H (j)

3 ) is irreducible and is unitary equivalent to
the representation (T (j)V (j)).

Recall the following expression for the measure dμ2 on the sphere: dμ2(θ,ϕ)=
sin θ dθ dϕ.

Proof We shall prove some properties of spherical harmonics which are proved in
more details for example in [130].

The space Hj is invariant by the generators L1,L2,L3 of rotations. In spherical
coordinates we have

L3 = 1

i

∂

∂ϕ
(7.27)

L2 = 1

i

(
cosϕ

∂

∂θ
− sinϕ

tan θ

∂

∂ϕ

)
(7.28)

L1 = i

(
sinϕ

∂

∂θ
+ cosϕ

tan θ

∂

∂ϕ

)
(7.29)

We can compute the Casimir operator: L2 := L2
1 + L2

2 + L2
3 =−"S2 . In particular

we have [L3,"S2] = 0.
If L± := L1 ± iL2 then we have

[L3,L±] =±L±, [L+,L−] = 2L3 (7.30)

L+L− = L2 −L3(L3 − 1), L−L+ = L2 −L3(L3 + 1) (7.31)

Let f ∈Hj . In polar coordinates we have f (r, θ,ϕ)= rjY (θ,ϕ). So we get

"f = 0 ⇐⇒ −"S2Y = j (j + 1)Y

L3 can be diagonalized in Hj

L3Y = λY ⇐⇒ Y(ϕ, θ)= eimϕf (θ), m ∈ Z, −j ≤m≤ j
So admitting that Hj has dimension 2j + 1 we see that the representation (Σ,Hj )

is unitary equivalent to the representation (T j),V (j)). �

Remark 42 Using the same method as in Sect. 7.3.1, for every j ∈ N we have
an orthonormal basis {Y kj }−j≤k≤j of H

(j)

3 where Y kj are eigenfunctions of L3:

L3Y
k
j = kY kj , −j ≤ k ≤ j . In other words Y kj are Dicke states. Moreover they have

the following expression:

Y 0
j (θ, ϕ)=

√
2j + 1

4π
Pj (cos θ) (7.32)
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where Pj are the Legendre polynomials

Pj (u)= 1

2j j !
dj

duj

(
u2 − 1

)j

For k �= 0 we can use the following formula:

L+Y kj =
√
j (j + 1)− k(k + 1)Y k+1

j

L−Y kj =
√
j (j + 1)− k(k − 1)Y k−1

j

(7.33)

Let us prove now two useful properties of the spherical harmonics

Proposition 83

(i) For every j ∈N, H
(j)

3 has dimension 2j + 1.
(ii) {Y kj ,−j ≤ k ≤ j, j ∈N} is an orthonormal basis of L2(S2) or, equivalently,

⊕
j∈N

Hj = L2(
S

2)

Proof Let us introduce the space P
(j)

3 of homogeneous polynomials in (x1, x2, x3)

of total degree j . The dimension of P3,j is (j+1)(j+2)
2 . It easy to prove that " is

surjective so we get (i):

dim(ker")= (j + 1)(j + 2)

2
− (j − 1)j

2
= 2j + 1

To prove (ii) let us introduce on P
(j)

3 a scalar product such that we have an orthonor-

mal basis { x
k1
1 x

k2
2 x

k3
3√

k1!k2!k3! }k1+k2+k3=j . Let us introduce the Hilbert space H := ⊕P
(j)

3 .

So the linear operators ∂
∂xk

and xk are hermitian conjugate. Hence " is conjugate to

r2 = x2
1 + x2

2 + x2
3 .

We have r2P
(j)

3 ⊆P
(j+2)
3 and"P

(j)

3 =P
(j−2)
3 . Using the formula (Fredholm

property) kerA= (ImA∗)⊥, we get P
(j)

3 =Hj

3 ⊕ r2P
(j−2)
3 . Step by step we get

P
(j)

3 =H(j)

3 ⊕ r2H
(j−2)
3 ⊕ · · · ⊕ r2�H

(j−2�)
3 (7.34)

where j − 1≤ 2�≤ j .
Now we can prove that the spherical harmonics is a total system in L2(S2). Let

us remark that the algebra
⋃
j∈N P3,j is dense in C(S2) for the sup-norm (conse-

quence of Stone–Weierstrass Theorem). So using (7.34) we see that
⋃
j∈N H

(j)

3 is

dense in C(S2) for the sup-norm, so
⋃
j∈N H

(j)

3 is dense in L2(S2). �
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7.4 The Coherent States of SU(2)

7.4.1 Definition and First Properties

Let us start with a reference (non zero) vector ψ0 ∈ V (j) and consider elements of
the orbit of ψ0 in V (j) by the action of the representation T (j). We get a family of
states of the form

|g〉 = T (j)(g)ψ0

j will be fixed, so we denote |g〉 = T (g)ψ0. In a more explicit form we have

T (g)ψ0(z1, z2)=ψ0
(
g−1(z1, z2)

)
, (z1, z2) ∈C

2

In principle any vector ψ0 ∈ V (j) can be taken as reference state. However for the
states ψ0 = |j,±j 〉 we can see that the dispersion of the total spin operator S =
(Ŝ1, Ŝ2, Ŝ3), is minimal, so that the states |j,±j 〉 determine the system of coherent
states which, in some sense, is closest to the classical states. In practice we choose
in what follows

ψ0 = |j,−j 〉
Let us recall the definition of the dispersion for an observable Â for a state ψ , where
ψ is a normalized state in an Hilbert space H and Â a self-adjoint operator in H .
For ψ in the domain of Â the average is 〈Â〉ψ := 〈ψ, Âψ〉 and the dispersion is
defined like the variance for a random variable in probability:

"ψÂ :=
〈(
Â− 〈

Â
〉
ψ
1
)2〉

ψ
= 〈
Â2〉

ψ
− 〈
Â
〉2
ψ

Let us recall here the Heisenberg uncertainty principle: if Â, B̂ are self-adjoint op-
erators in H and ψ ∈H , ‖ψ‖ = 1 then we have

("ψÂ)("ψB̂)≥ 1

4

(〈
i
[
Â, B̂

]〉
ψ

)2 (7.35)

Application to the total spin observable gives

"ψS=
∑

1≤k≤3

"ψŜk =
∑

1≤k≤3

∥∥Ŝkψ∥∥2 − 〈
Ŝkψ,ψ

〉2

For ψ0 = |j,m〉 we get

"ψ0 S= j (j + 1)−m2

So the dispersion is minimal for m=±j .
The Heisenberg inequality for spin operators reads (see (7.35))

〈
Ŝ2

1

〉〈
Ŝ2

2

〉≥ 1

4

〈
Ŝ3
〉2 (7.36)

It is easy to see that this inequality is an equality for ψ0 =ψn0 .
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Now our goal is to study the main properties of the coherent states |g〉. Let us
first remark that the full group G = SU(2) is not a good set to parametrize these
coherent states because the map g �→ |g〉 is not injective. So we introduce the so-
called isotropy group H defined as follows:

H = {
g ∈G,∃δ ∈R, T (g)ψ0 = eiδψ0

}

We find that H is the subgroup of diagonal matrices

H =
{(
α 0
0 ᾱ

)}
, α = exp(iψ)

Now the map ġ �→ |g〉 is a bijection from the quotient space X := G/H onto the
orbit of ψ0, where G/H is the set of left coset gH of H in G and g �→ ġ is the
canonical map: G→G/H .

Let us denote X0 =X\
{( 0 1
−1 0

)}
.

Lemma 43 X0 is isomorphic to the set of elements of the form

{(
α β

−β̄ α

)
, α ∈R, α �= 0, β = β1 + iβ2 ∈C, α2 + β2

1 + β2
2 = 1

}

Proof Let us denote g(a, b) a generic element of SU(2), g = (
a b

−b̄ ā
)
, a, b ∈ C,

|a|2 + |b|2 = 1.
We first remark that for every |b| = 1, g(0, b) is in the coset of g(0,1).
Now if |a|2 + |b|2 = 1 and a �= 0 then we have a unique decomposition

g(a, b)= g(a′, b′)g(α,0)
with a′ > 0, α = a

|a| , (a
′)2 + |b′|2 = 1.

So we get the lemma. �

Remark 43 Concerning the orbit with our choice of ψ0 the image of X0 does not
contain the monomial z2j

1 , which are obtained with g(0,1).

Choosing the parametrization

α = cos
θ

2
, β =− sin

θ

2
e−iϕ, 0≤ θ < 2π, 0≤ ϕ < 2π

we see that the space X0 is just a representation of the two-dimensional sphere S
2

minus the north pole, namely the set of unit three-dimensional vectors

n= (sin θ cosϕ, sin θ sinϕ, cos θ), 0≤ θ < π, 0≤ ϕ < 2π
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and any element gn ∈X can be written as

gn = exp

[
i
θ

2
(sinϕσ1 − cosϕσ2)

]
(7.37)

where σ1, σ2 are the Pauli matrices.
Thus gn describes a rotation by the angle θ around the vector m =

(sinϕ,− cosϕ,0) belonging to the equatorial plane of the sphere and perpendic-
ular to n (it is well defined because θ ∈ [0,π[).
Definition 19 The coherent states of SU(2) are the following states defined in the
representation space V (j):

|n〉 = T (gn)ψ0 :=D(n)ψ0 (7.38)

In the physics literature they are called the spin-coherent states because the spin is
classified with the irreducible representations of SU(2) (see [154]). These coherent
states have several other names: atomic coherent states, Bloch coherent states.

Choosing g = gn the coherent state of the SU(2) group can now be written as

|n〉 = T (gn)ψ0 = exp(iθm ·K)ψ0

where

m= (sinϕ,− cosϕ,0), K= (K1,K2,K3)

m is the unit vector orthogonal to both n and n0 = (0,0,1). Note that this definition
excludes the south pole nS = (0,0,−1).

Thus a coherent state of SU(2) corresponds to a point of the two-dimensional
sphere S

2 which may be considered as the phase space of a classical dynamical
system, the “classical spin”. The coherent states associated with the south pole will
be the image of (g(0, β)), |β| = 1 giving monomials z2j

1 .
So we have parametrized the spin coherent by the sphere S

2.
Another useful parametrization can be obtained with the complex plane, using

the stereographic projection from the south pole of the sphere S
2 onto the complex

plane C.
If n = (n1, n2, n3) ∈ S

2 then the stereographic projection of n from the south
pole is the complex number ζ(n)= n1+in2

1+n3
. So in polar coordinates we have ζ(n)=

tan(θ/2)eiϕ .
As we have already remarked, the group SU(2) naturally embeds into the com-

plex group SL(2,C) which is the group of complex matrices having determinant
one. The following Gaussian decomposition in SL(2,C) will be useful. The proof is
an easy exercise.

Lemma 44 For any g ∈ SL(2,C) of the form

g =
(
α β

γ δ

)
, with δ �= 0



202 7 Spin-Coherent States

one has a unique (Gaussian) decomposition

g = t+ · d · t−
where d is diagonal and t± are triangular matrices of the form

t+ =
(

1 ζ

0 1

)
, t− =

(
1 0
z 1

)
(7.39)

and

d =
(
ε−1 0

0 ε

)

We have the formulas

ε = δ, z= γ

δ
, ζ = β

δ
(7.40)

Moreover if g ∈ SU(2) then we have

|ε|2 = (
1+ |ζ |2)−1 = (

1+ |z|2)−1
(7.41)

This allows to write as consequence of Gauss decomposition,

T (j)(g)= T (j)(t+)T (j)(d)T (j)(t−)
Let us write ε = reis with r > 0 and s ∈R.

Taking ψ0 = |j,−j 〉 as the reference state one gets in the representation
(T (j),V (j))

T (j)(t−)ψ0 = ez+Ŝ−ψ0 =ψ0 (7.42)

T (j)(d)ψ0 = e−2j (log r+is)ψ0 (7.43)

So we have

T (g)ψ0 = eiϕNT (t+)ψ0 (7.44)

From (7.41) we get N = (1+ |ζ |2)−j . ϕ is a real number (argument of δ). If g = gn
then δ is real so we get s = ϕ = 0.

In conclusion we have obtained an identification of the coherent states |n〉 with
the state |ζ 〉 defined as follows:

|ζ 〉 = (
1+ |ζ |2)−j exp

(
ζ Ŝ+

)|j,−j 〉
More precisely we denote |ζ 〉 = |gn〉 with the following correspondence:

n= (sin θ cosϕ, sin θ sinϕ, cos θ), ζ =− tan
θ

2
e−iϕ

The geometrical interpretation is that −ζ̄ is the stereographic projection of n.
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Recall the following expression of gn:

gn =
(

cos θ2 − sin θ
2 e−iϕ

sin θ
2 eiϕ cos θ2

)
(7.45)

Another form for |n〉 is given by the following equivalent definition using that gn =
eiθ(sinϕŜ1−cosϕŜ2),

|n〉 =D(ξ)ψ0

where

D(ξ)= exp
(
ξ Ŝ+ − ξ̄ Ŝ−

)
and ξ = tan( θ2 )e

iϕ .
The Gaussian decomposition also provides a “normal form” of D(ξ):

D(ξ)= exp
(
ζ Ŝ+

)
exp

(
ηŜ3

)
exp

(
ζ ′Ŝ−

)

with

η=−2 log |ξ |, ζ ′ = −ζ̄
Since ζ , ζ ′, η do not depend on j it is enough to check this formula in the represen-
tation where j = 1

2 , S= 1
2R(σ ), where σ is the three component Pauli matrix.

For each n ∈ S
2 the coherent state ψn minimizes Heisenberg inequality obtained

by translation of (7.36) by D(n) i.e. putting S̃k = D(n)ŜkD(n)−1 instead of Ŝk ,
1≤ k ≤ 3.

7.4.2 Some Explicit Formulas

Many explicit formulas can be proved for the spin-coherent states. These formulas
have many similarities with formulas already proved for the Heisenberg coherent
states and can be written as well with the coordinates n on the sphere S

2 or in the
coordinates ζ in the complex plane C.

Let us first remark that S2 and C can be identified with a classical phase space. S2

is equipped with the symplectic two form σ = sin θ dθ ∧ dϕ. In the stereographic

projection it is transformed in σ = 2i dζ∧dζ̄
(1+|ζ |2)2 . This is an easy computation using

ζ =− tan θ
2 e−iϕ .

Let us consider first some properties of operators D(n). We shall also use the no-
tationsD(ξ) orD(ζ)where ξ and ζ are given by ξ = tan( θ2 )e

iϕ and ζ =− tan θ
2 e−iϕ

using polar coordinates for n. The multiplication law for the operatorsD(n) is given
by the following formula:

Proposition 84

(i) For every n1,n2 outside the south pole of S2 we have

D(n1)D(n2)=D(n3) exp
(−iΦ(n1,n2)J3

)
(7.46)
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where Φ(n1,n2) is the oriented area of the geodesic triangle on the sphere with
vertices at the points [n0,n1,n2].

n3 is determined by

n3 =Rgn1
n2 (7.47)

where Rg is the rotation associated to g ∈ SU(2) as in Proposition 78 and

gn = exp

(
i
θ

2
(σ1 sinϕ − σ2 cosϕ)

)
(7.48)

(ii) More generally for every g ∈ SU(2) and every n ∈ S
2 such that n and g · n are

outside the south pole we have

D(j)(g)ψn = exp
(−ijA (g,n)

)
ψg·n (7.49)

where g · n = Rg(n) and A (g,n) is the area of the spherical triangle [n0,n,
g · n].

Proof We prove the result in the two-dimensional representation of SU(2). The vec-
tor n3 is determined only by geometrical rule and is thus independent of the repre-
sentation. We choose the representation in V 1/2.

Define R(g) to be the rotation in SO(3) induced by any g ∈ SU(2). By the defi-
nition (7.48) of gn we have

R(gn)n0 = n, ∀n= (sin θ cosϕ, sin θ sinϕ, cos θ)

We need to compute g = gn1gn2 . We use the following lemma:

Lemma 45 ∀g ∈ SU(2) ∃m ∈ S
2 and δ ∈R such that

g = gmr3(δ)

where r3(δ)= exp(i δ2σ3).

Applying the lemma to g = gn1gn2 we get

g = gmr3(δ)

and we need to identify m with n3 given by (7.47). We have

R
(
r3(δ)

)
n0 = n0

Then

R(g)=R(gn1)R(gn2)=R(gm)R
(
r3(δ)

)
Applying this identity to the vector n0 we get

R(gn1)R(gn2)n0 =R(gn1)n2 =R(gm)n0 =m

Thus we have proven that m= n3 =R(gn1)n2.
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So we have seen that the displacement operator D(n) transforms any spin-
coherent state |n1〉 into another coherent state of the system up to a phase:

D(n)|n1〉 =D(n)D(n1)ψ0 =D(n2) exp
(
iŜ3Φ(n,n1)

)
ψ0 = exp

(−ijΦ(n,n1)
)|n2〉

where n2 =R(gn)n1. The second factor in the right hand side of (8.65) does depend
on the representation. The computation of Φ(n1,n2) will be done later.

In the proof of (7.49) the nontrivial part is to compute the phase A (g,n) which
also will be done later. �

The following lemma shows that the spin is independent of the direction.

Lemma 46 One has

D(n)Ŝ3D(n)−1 = n · S

We shall prove the lemma in the representation of the Pauli matrices. First note
that

D(n)= cos
θ

2
+ i sin

θ

2
(sinϕσ1 − cosϕσ2)

Then

D(n)σ3D(n)−1 =
(

cos
θ

2
+ i sin

θ

2
(sinϕσ1 − cosϕσ2)

)
σ3

×
(

cos
θ

2
− i sin

θ

2
(sinϕσ1 − cosϕσ2)

)
(7.50)

We use the properties of the Pauli matrices:

σ1σ3 =−iσ2, σ2σ3 = iσ1, σ2σ1 =−iσ3

to compute the right hand side. One gets

D(n)σ3D(n)−1 = cos θσ3 + sin θ(sinϕσ2 + cosϕσ1)= n · σ
The following consequence is that |n〉 is an eigenvector of the operator n · S:

Proposition 85 One has

n · S|n〉 = −j |n〉

Proof Denote by |n0〉 the vector

eiS3θψ0

Then

S3|n0〉 = −jeiθ Ŝ3ψ0 =−j |n0〉
since we take ψ0 = |j,−j 〉.
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Now we shall use the above lemma:

n · S|n〉 =D(n)J3ψ0 =−j |n〉
This completes the proof of the proposition. �

As in the Heisenberg setting, the spin-coherent states family |n〉 is not an orthog-
onal system. One can compute the scalar product of two coherent states |n〉, |n′〉:

Proposition 86 One has

〈n′|n〉 = eijΦ(n,n
′)
(

1+ n · n′
2

)j
(7.51)

where Φ(n,n′) is a real number. If the spherical triangle with vertices {n0,n,n′} is
an Euler triangle then Φ(n,n′) is the oriented area of this triangle.

Proof To each point n on the sphere S
2 we associate its spherical coordinates θ ∈

[0,π), ϕ ∈ [0,2π) as usual:

x = sin θ cosϕ, y = sin θ sinϕ, z= cos θ

The corresponding element gn ∈ SU(2) is defined as

gn = exp

(
i
θ

2
(sinϕσ1 − cosϕσ2)

)

The matrix i(sinϕσ1 − cosϕσ2) can be viewed as a pure quaternion that we de-
note q . Using (7.18) we have

gn = cos
θ

2
+ q sin

θ

2

Taking n′ ∈ S
2 with spherical coordinates θ ′, ϕ′ we get (using quaternion calculus)

gngn′ = cos
θ

2
cos

θ ′

2
− sin

θ

2
sin

θ ′

2
cos

(
ϕ − ϕ′)

+ σ3i sin
θ

2
sin

θ ′

2
sin

(
ϕ′ − ϕ)+ q ′ cos

θ

2
sin

θ ′

2
+ q sin

θ

2
cos

θ ′

2
(7.52)

Therefore gngn′ is of the form (7.20) with

a = cos
θ

2
cos

θ ′

2
− sin

θ

2
sin

θ ′

2
ei(ϕ−ϕ′)

The element gn of SU(2) can be written as

gn =
(

cos θ2 − sin θ
2 e−iϕ

sin θ
2 eiϕ cos θ2

)
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Now we turn to the representation T (j)(g) in the space V (j) of homogeneous poly-
nomials of degree 2j in z1, z2. The coherent state |n〉 is of the form T (gn)ψ0 for

some n ∈ S
2 and ψ0 being a reference state. We choose ψ0 = z

2j
2√
(2j)! in the homoge-

neous polynomial representation. Note that this is coherent with the choice |j,−j 〉.
The overlap between two coherent states is given by the scalar product:

〈
T (j)(gn)ψ0, T

(j)(gn′)ψ0
〉

= 1

(2j)!
〈(
z2 cos

θ

2
+ z1 sin

θ

2
eiϕ

)2j

,

(
z2 cos

θ ′

2
+ z1 sin

θ ′

2
eiϕ

′
)2j 〉

(7.53)

We make use of the following result:

Lemma 47 Let Πα,β(z1, z2) = (αz1 + βz2)
2j . Then the scalar product in V (j) of

two such polynomials equals

〈Πα′,β ′ ,Πα,β〉 = (2j)!
(
αᾱ′ + ββ̄ ′)2j

Then we get

〈n′|n〉 =
(

cos
θ

2
cos

θ ′

2
+ sin

θ

2
sin

θ ′

2
ei(ϕ−ϕ′)

)2j

By an easy calculus we obtain

∣∣∣∣cos
θ

2
cos

θ ′

2
+ sin

θ

2
sin

θ ′

2
ei(ϕ−ϕ′)

∣∣∣∣
2

= 1+ n · n′
2

Let us now compute the phase of the overlap 〈n′|n〉. It is a non trivial and interesting
computation related with Berry phase as we shall see. It can be extended to a more
general setting for coherent states on Kähler manifolds [32]. We follow here the
elementary proof of the paper [4].

Let us denote

η= arg

(
cos

θ

2
cos

θ ′

2
+ sin

θ

2
sin

θ ′

2
ei(ϕ−ϕ′)

)

Using classical trigonometric formula we get

tanη= sin θ sin θ ′ sin(ϕ − ϕ′)
(1+ cos θ)(1+ cos θ ′)+ sin θ sin θ ′ cos(ϕ − ϕ′) (7.54)

We now compare this formula with the following spherical geometric formula al-
ready known by Euler and Lagrange (see [75] for a detailed proof).

Let 3 points n1, n2, n3 be on the unit sphere S
2, not all on the same great circle

and such that the spherical triangle with vertices n1, n2, n3 is an Euler triangle i.e.
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the angles and the sides are all smaller than π . Let ω be the area of this triangle.
Then we have

tan
ω

2
= |det[n1,n2,n3]|

1+ n1 · n2 + n2 · n3 + n3 · n1
(7.55)

Notice that this formula takes account of the orientation of the piecewise geodesic
curve with vertices n1,n2,n3. The orientation is positive if the frame {On1,

On2,On3} is direct.
From (7.54) and (7.55) we get directly that tan η

2 = tan ω
2 . But ω,η ∈]−π,π[ so

we can conclude that η= ω. �

As is expected, the spin-coherent state system provides a “resolution of the iden-
tity” in the Hilbert space V (j):

Proposition 87 We have the formula

2j + 1

4

∫
S2
dn |n〉〈n| = 1 (7.56)

Or using complex coordinates |ζ 〉,
∫
C

dμj (ζ ) |ζ 〉〈ζ | = 1 (7.57)

where the measure dμj is

dμj (ζ )= 2j + 1

π

d2ζ

(1+ |ζ |2)2

with d2ζ = |dζ∧dζ̄ |
2 .

Proof The two formulas are equivalent by the change of variables ζ =− tan θ
2 e−iϕ .

So it is sufficient to prove the complex version.
Let us recall the analytic expression for |n〉 and |ζ 〉.

|n〉 = ψn(z1, z2)= 1√
(2j)!

(
− sin

θ

2
eiϕz1 + cos

θ

2
z2

)2j

(7.58)

|ζ 〉 = ψζ (z1, z2)= 1√
(2j)!

1

(1+ |ζ |2)j
(
ζ̄ z1 + z2

)2j (7.59)

Recall that we have an orthonormal basis of Dicke states {djk }−j≤k≤j in V (j) where

d
j
k (z1, z2)= z

j+k
1 z

j−k
2√

(j + k)!(j − k)!
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So we get

〈ψζ , dk〉 =
(

(2j)!
(j + k)!(j − k)!

)1/2(
1+ |ζ |2)−j ζ j+k (7.60)

And using the Parseval formula we get

〈η|ζ 〉 = (
1+ |ζ |2)−j (1+ |η|2)−j (1+ ηζ̄ )2j (7.61)

Equation (7.61) is the complex version for the overlap formula of two coherent
states (7.53).

It is convenient to introduce now the spin Bargmann transform (see Chap. 1 for
the Bargmann transform in the Heisenberg setting).

For every v ∈ V (j) we define the following polynomial in the complex variable ζ :

vj,�(ζ )= 〈ψζ |v〉
(
1+ |ζ |2)j

If v =∑
−j≤k≤j ckek a direct computation gives

∫
C

∣∣vj,�(ζ )∣∣2 d2ζ

(1+ |ζ |2)2j+2
= π

2j + 1

∑
−j≤k≤j

|ck|2

= π

2j + 1
‖v‖2 (7.62)

Or equivalently
∫
C

∣∣〈ψζ |v〉∣∣2 d2ζ

(1+ |ζ |2)2 =
π

2j + 1
‖v‖2 (7.63)

This formula is equivalent to the overcompleteness formula by polarisation. �

Remark 44 From the proof we have found that the spin-Bargmann transform:
Bj v(ζ ) := vj,�(ζ ) is an isometry from V (j) onto the space P2j of polynomials
of degree at most 2j equipped with the scalar product

〈P,Q〉 = 2j + 1

π

∫
C

P̄ (ζ )Q(ζ )
d2ζ

(1+ |ζ |2)2j+2

In particular we have

ψj,�
η (ζ )= (

1+ |η|2)−j (1+ η̄ζ )2j

We now extend the computation of the phase Φ(n,n′) in the general case by
giving for it a different expression related with the well known geometric phase.
A similar computation was done in [146].
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Proposition 88 For any n,n′ ∈ S
2 we have

Φ
(
n,n′

)=− i
j

∮
[n,n′]

〈ψn,dψn〉 (7.64)

where the integral is computed on the shortest geodesic arc joining n to n′ of the
one differential form 〈ψn,dψn〉.

To explain the formula we recall here the main idea behind the geometric phase
discovered by Berry [24] and Pancharatnam [149] (see also [2]).

Let us consider a closed loop n(t) : [0,1] → S
2 which is continuous by part,

n(0)= n(1). We define the time-dependent Hamiltonian as

Ĥ (t)= n(t) · S
The solution of the time-dependent Schrödinger equation with this Hamiltonian is
denoted ψ(t). Let us consider η(t) in the Hilbert space and α(t) ∈R such that

ψ(t)= eiα(t)η(t)

We choose α(t) such that 〈η(t), η̇(t)〉 = 0. In other terms η(t) describes a parallel
transport along the curve. Then the geometrical phase α(t) obeys

iα̇(t)+ 〈
ψ(t), ψ̇(t)

〉= 0

We thus have

α(1) := α(γ )= i
∮
γ

〈ψ,dψ〉

If γ delimitates a portion Γ of S2 we have by Stokes theorem

α(γ )=
∫
Γ

〈dψ,dψ〉

where the product of the differentials is the external product.
Let ψn be the coherent state |n〉 obtained at t = 1 from ψ(0) = ψn0 . In the ho-

mogeneous polynomial representation we get

ψn = 1√
(2j)!

(
sin

θ

2
eiϕz1 + cos

θ

2
z2

)2j

Thus

∂ψn

∂θ
= j√

(2j)!
(
z1 cos

θ

2
eiϕ − z2 sin

θ

2

)(
sin

θ

2
eiϕz1 + cos

θ

2
z2

)2j−1

∂ψn

∂ϕ
= 2j√

(2j)! i sin
θ

2
eiϕz1

(
z1 sin

θ

2
eiϕ + z2 cos

θ

2

)2j−1
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Using the invariance of the scalar product in V (j) under SU(2) transformations we
perform the change of variables

Z1 = z1 cos
θ

2
− z2e−iϕ sin

θ

2

Z2 = z1eiϕ sin
θ

2
+ z2 cos

θ

2

(7.65)

One thus have using the orthogonality relations in V (j):

〈
ψn,

∂ψn

∂θ

〉
= j

(2j)!e
iϕ
〈
Z1Z

2j−1
2 ,Z

2j
2

〉= 0 (7.66)

One can calculate the scalar product of ∂ψn
∂θ

and ∂ψn
∂ϕ

:

〈
∂ψn

∂θ
,
∂ψn

∂ϕ

〉
= i

2j2

(2j)!e
−iϕ sin

θ

2

〈
Z1Z

2j−1
2 ,

(
Z1 cos

θ

2
eiϕ +Z2 sin

θ

2

)
Z

2j−1
2

〉

= 1

2
ij sin θ (7.67)

since
〈
Z1Z

2j−1
2 ,Z1Z

2j−1
2

〉= (2j − 1)

We shall now calculate the phase of the scalar product 〈ψn,ψn′ 〉 by calculating the
geometric phase along the geodesic triangle T = [n0,n,n′,n0]. Denote by Ω the
domain on S

2 delimited by T . We have

α(T )= i
∮
T
〈ψn, dψn〉 = i

∫
Ω

〈dψn, dψn〉 (7.68)

This yields

α(T )=−j
∫
Ω

sin θ dθ dϕ =−jArea(Ω)

We denote by [n1,n2] the portion of great circle on S
2 between n1 and n2. We now

integrate (7.68) successively along [n0,n], [n,n′] and [n′,n0]. From the fact that
[n0,n], [n′,n0] lie in verticle planes we have

∫
[n0,n]

〈ψn, dψn〉 =
∫
[n′,n0]

〈ψn, dψn〉 = 0

Thus for an Euler triangle we get

−jArea(Ω)=−jΦ(n,n′)= i
∫
[n,n′]

〈ψn, dψn〉
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In the general case we can subdivide the triangle in several Euler triangles with
vertex at n0 by adding vertices between n and n′. Then we get

Φ
(
n,n′

)=− i
j

∫
[n,n′]

〈ψn, dψn〉

As a consequence of our study of the geometric phase, let us now compute the
phase in formula (7.46).

We already know that

D(n1)D(n2)ψ0 =D(n3)e
iα

and we have to compute α.
We have

〈
ψ0,D(n1)D(n2)ψ0

〉 = eiα
〈
ψ0,D(n3)ψ0

〉
= 〈
D(n1)

∗ψ0,D(n2)ψ0
〉

(7.69)

From Lemma 48 we know that 〈ψ0,D(n3)ψ0〉 ≥ 0. But D(n1)
∗ =D(n∗1) where n∗1

is the symmetric of n1 on the great circle determined by n0 and n1. Applying the
computation of the phase in (7.53) we get

α = arg
(〈n∗1,n2〉

)

With an elementary geometric argument we get the phase in formula (7.46).
As a consequence, we can get the phase A (g,n) in formula (7.49). If g = gm

then A (gm,n)=Φ(m,n). For a generic g ∈ SU(2) we have g = gmr3(δ) for some
δ ∈R.

So we have ggn = gmr3(δ)gn. Let n = (θ,ϕ) (polar coordinates). We have
r3(δ)gn = gn′r3(δ) where n′ = (θ,ϕ + δ). So using computation of Φ in (7.46)
and elementary geometry we find that A (g,n) is equal to the area of the spherical
triangle [n0, n, g · n].

Let us close our discussion concerning the geometric phase for coherent states
by the following result:

Lemma 48 Let ψ1 and ψ2 be two different states on a great circle of Sj (unit sphere
on V (j)). One parametrizes this by the angle θ in the following way:

ψ(θ)= x1(θ)ψ1 + x2(θ)ψ2

where xi(θ) ∈R and ψ(0)=ψ1, ψ(θ0)=ψ2.
One assumes that 〈

ψ(θ), ψ̇(θ)
〉= 0

Then ψ1 and ψ2 are in phase, namely

〈ψ1,ψ2〉> 0
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Proof One can assume that a =�〈ψ1,ψ2〉> 0. Then by an easy calculus we get

x1(θ)= cos θ − a√
1− a2

sin θ, x2(θ)= 1√
1− a2

sin θ, a = cos θ0

〈ψ(θ), ψ̇(θ)〉= 1

2
√

1− a2
〈ψ1,ψ2〉

One deduces that 〈ψ1,ψ2〉 is real therefore positive. �

Remark 45 For two coherent states |n〉 and |n′〉 there are two natural geodesics
joining them: the geodesic on the two sphere S

2 and the geodesic on the sphere Sj

(sphere (2j + 1) dimensional). It is a consequence of results proved above that the
geometric phases for these two curves in V (j) are the same. This was not obvious
before computations.

7.5 Coherent States on the Riemann Sphere

We have seen that it is convenient to compute on the sphere S
2 using complex coor-

dinates given by the stereographic projection. We shall give here more details about
this. In particular this gives a semi-classical interpretation for the spin-coherent
states and a quantization of the sphere S

2. The picture is analogous to the har-
monic oscillator coherent states and the associated Wick quantization of the phase
space R

2d .
The stereographic projection of the sphere S

2 from its south pole is the transfor-
mation πs(n)= ζ , defined by

ζ = n1 + in2

1+ n3

where n= (n1, n2, n3). πs is an homeomorphism from S
2
� := S

2\{(0,0,1)} on the
complex plane C. Moreover πs can be extended in an homeomorphism from S

2

on C̃ := C ∪ {∞} such that πs(0,0,1) =∞. C̃ is a one-dimensional complex and
compact manifold called the Riemann sphere.
π−1
s is determined by the formula π−1

s ζ = (n1, n2, n3) where

n1 = ζ + ζ̄
1+ |ζ |2 , n2 = ζ − ζ̄

i(1+ |ζ |2) , n3 = 1− |ζ |2
1+ |ζ |2

It is known that the group of automorphisms of C̃ (bijective and biholomorphic
transformations) is the Möbius group, the group of homographic transformations
h(z) = az+b

cz+d where a, b, c, d ∈ C such that ad − bc = 1. The conventions are: if

c= 0 then h(∞)=∞; if c �= 0 then h(∞)= a
c

, h(− d
c
)=∞.

Let us denote g = (
a b

c d

)
, g ∈ SL(2,C) and f = hg . Then is not difficult to see

that hg = 1 if and only if g =±12.
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We have seen that if g ∈ SU(2) then Rg defines a rotation in S
2. In C̃ we see that

Rg becomes a Möbius transformation:

Lemma 49 Let R̃g = πsRgπ−1
s and g ∈ SU(2), g = (

a b

−b̄ ā
)
. Then we have

R̃gζ = aζ + b
−b̄ζ + ā , ∀ζ ∈ C̃ (7.70)

Proof We only give a sketch. First it is enough to consider g = g2(θ). After some
computations we get the result using that Möbius transformations preserve the cross
ratio ζ1−ζ3

ζ2−ζ3
. �

For simplicity we denote R̃gζ := g · ζ .
Now our aim is to realize the representation (T (j),V j ) in a space of holomorphic

functions on the Riemann sphere C̃. This is achieved easily with the spin-Bargmann
transform Bj introduced above. Recall that Bj v(ζ )= 〈ψζ , v〉(1+ |ζ |2)j .

We get the images of the Dicke basis and of the coherent states:

d̃�(ζ ) :=Bj (dk)(ζ )=
(

(2j)!
�!(2j − �)!

)1/2

ζ �, j + k = � (7.71)

ψ̃ζ (z) = 〈ψz,ψζ 〉
(
1+ |z|2)j = (

1+ |ζ |2)−j (1+ ζ̄ z)2j
, z, ζ ∈C (7.72)

Let us remark that the Hilbert space V j is transformed in the Hilbert space P2j

(polynomials of degree ≤ 2j + 1) and that P2j coincides with the space of holo-
morphic functions P on C such that

∫
C

∣∣P(ζ )∣∣2(1+ |ζ |2)−2j−2
d2ζ <+∞

So the exponential weight of the usual Bargmann space is replaced here by a poly-
nomial weight.

We see now that the action of SU(2) in the Bargmann space P2j is simple and
has a nice semi-classical interpretation.

Let us denote T̃ j (g) :=Bj T j (g)Bj�.
On the Riemann sphere the representation T̃ j has the following expression:

Proposition 89 For every ψ ∈P2j and g ∈ SU(2) we have

T̃ j (g)ψ(ζ )= μj (g, ζ )ψ
(
g−1(ζ )

)
(7.73)

where g = (
a b

−b̄ ā
)
, μj (g, ζ )= (a + b̄ζ )2j and R̃g−1(ζ )= āζ−b

b̄ζ+a .
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Proof It is enough to prove the proposition for ψ(ζ ) = ζ �. From definition of Bj

we get

(
Bj T j (g)dk

)
(ζ )= (2j)! (j + k)!√

(j − k)!
〈(
ζ̄ z1+z2

)2j
, (āz1−bz2)

j+k(b̄z1+az2
)j−k 〉

V j

Using that the scalar product in V j is invariant for the SU(2) action we obtain

(
Bj T j (g)d�

)
(ζ )=

(
(2j)!

�!(2j − �)!
)1/2(

a + b̄ζ )2j
(
āζ − b
b̄ζ + a

)�
(7.74)

Hence we get the proposition. �

Now, following Onofri [148] we shall give a classically mechanical interpretation
of the term μ(g, ζ ). This interpretation can be extended to any semi-simple Lie
group, as we shall see later.

Let us introduce K(ζ, ζ̄ ) = 2 log(1+ ζ ζ̄ ) (Kähler potential), d the exterior dif-
ferential, ∂ the exterior differential in ζ , ∂̄ the exterior differential in ζ̄ .

We have d = ∂ + ∂̄ and d∂ = ∂̄∂ =−∂∂̄ .
We introduce the one form θ =−i∂K and the two form

ω= dθ = 2i
dζ ∧ dζ̄
(1+ |ζ |2)2

ω is clearly a non-degenerate antisymmetric two form. So (C̃,ω) is a symplectic
manifold. Moreover it is a Kähler one-dimensional complex manifold for the Her-
mitian metric

ds2 = 4
dζdζ̄

(1+ |ζ |2)2
It is not difficult to see that ω is invariant by the action of SU(2): g�ω= ω. In other
words SU(2) acts in C̃ by canonical transformations.

C̃ is connected and simply connected, so there exists a smooth function S(g, ζ )
such that dS(g, ζ )= θ − g�θ .

Now let us compute dμ as follows.
From (7.73) with ψ = ψ̃0 = 1 and using that 〈ψζ ,ψ0〉 = (1+ |ζ |2)j we get

μj (g, ζ )= 〈ψ0, T
j (g−1gζ )

�ψ0〉
〈ψ0,ψζ 〉

Then we compute dμ = (ij (θ − g�θ))μ = (ij dS)μ. Hence we get the classically
mechanical interpretation for μ(g, ζ )

μ(g, ζ )= μ(g,0)eij
∫ ζ

0 (θ−g�θ) (7.75)
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7.6 Application to High Spin Inequalities

One of the first successful use of spin-coherent states was the thermodynamic limit
of spin systems as an application of Berezin–Lieb inequalities. Berezin–Lieb in-
equality holds true for general coherent states.

7.6.1 Berezin–Lieb Inequalities

We shall follow here the notations of Sect. 2.6 concerning Wick quantization. We
assume here that the Hilbert space H is finite dimensional (this is enough for our
application). Let Â ∈L (H ) with a covariant symbol Ac and contravariant symbol
Ac defined on some metric space M with a probability Radon measure dμ(m). It is
not difficult to see that these two symbols satisfy the following duality formulas:

Tr
(
ÂB̂

) =
∫
M

Ac(m)B
c(m)dμ(m) (7.76)

Ac
(
m′
) =

∫
M

∣∣〈em|em′ 〉∣∣2Ac(m)dμ(m) (7.77)

In particular we have

Tr
(
Â
)=

∫
M

Ac(m)dμ(m) (7.78)

Let us remark that if Ac is well defined, Ac is not uniquely defined in general.

Theorem 42 Let Ĥ be a self-adjoint operator in H and χ a convex function on R.
Then we have the inequalities

∫
M

χ
(
Hc(m)

)
dμ(m)≤ Tr

(
χ
(
Ĥ
))≤

∫
M

χ
(
Hc(m)

)
dμ(m) (7.79)

Proof Let us recall the Jensen inequality [170], which is the main tool for proving
the Berezin–Lieb inequalities. For any probability measure ν on M , any convex
function χ on R and any f ∈ L1(M,dν) we have

χ

(∫
M

f dν(m)

)
≤
∫
M

χ
(
f (m)

)
dν(m) (7.80)

We start with the formula

Tr
(
χ
(
Ĥ
))=

∫
M

〈
em,χ

(
Ĥ
)
em
〉
dμ(m)

Using the spectral decomposition for self-adjoint operators, we have

〈
em,χ

(
Ĥ
)
em
〉=

∫
R

χ(λ)dνm(λ)
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where νm is the spectral measure of the state em. It is a probability (discrete) mea-
sure. So the Jensen inequality gives

〈
em,χ

(
Ĥ
)
em
〉≥ χ(Ac(m))

Integrating in m we get the first Berezin–Lieb inequality

∫
M

χ
(
Hc(m)

)
dμ(m)≤ Tr

(
χ
(
Ĥ
))

For the second inequality we introduce an orthonormal basis of H : {vn}1≤n≤N of
eigenfunctions of Â. So we have

〈
vn
∣∣χ(Ĥ )

vn
〉= χ(〈vn∣∣Ĥvn〉)= χ

(∫
M

Hc(m)
∣∣〈vn|em〉∣∣2 dμ(m)

)

From Jensen inequality applied with the probability measure |〈vn|em〉|2dμ(m) we
get

〈
vn
∣∣χ(Ĥ )

vn
〉≤

∫
M

χ
(
Hc(m)

)∣∣〈vn|em〉∣∣2 dμ(m)
Summing in n we get the second Berezin–Lieb inequality. �

7.6.2 High Spin Estimates

We consider a one-dimensional Heisenberg chain of N spin Sn = (Sn1 , Sn2 , Sn3 ), 1≤
n≤N . The Hamiltonian of this system is

Ĥ =−
∑

1≤n≤N−1

SnSn+1

Ĥ is an Hermitian operator in the finite-dimensional Hilbert space HN =⊗NH n

where H n = V (j) for every n.
From the coherent states systems in V (j) we get in a standard way a coherent

system in HN parametrized on (S2)N (or CN using the complex parametrisation).
In the sphere representation, if Ω = (n1, . . . ,nN) ∈ S

N we define the coherent state
ψΩ = ψn1 ⊗ ψn2 · · ·ψnN . We get, as for N = 1, an overcomplete system with a
resolution of identity. We denote dΩN the probability measure (4π)−Ndn1⊗ · · · ⊗
dnN . Wick and anti-Wick quantization are also well defined as explained in Chap. 1.
In particular the Berezin–Lieb inequalities are true in this setting.

As usual the following convention is used: if Â ∈L (H m) and B̂ ∈L (H m′)
then ÂB̂ = 1⊗ 1 · · · ⊗ Â⊗ · · · ⊗ B̂ ⊗ 1 · · · ⊗ 1 with Â at position m, B̂ at posi-
tion m′.
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In particular for the covariant and contravariant symbols of ÂB̂ we have the
following obvious properties:

(AB)c(Ω) = Ac
(
nm

)
Bc
(
nm

′)
(7.81)

(AB)c(Ω) = Ac
(
nm

)
Bc

(
nm

′)
(7.82)

We shall prove the following results concerning the symbols of one spin operators
(S1, S2, S3):

Proposition 90 The covariant symbols are

S1,c(n) = −j sin θ cosϕ (7.83)

S2,c(n) = −j sin θ sinϕ (7.84)

S3,c(n) = −j cos θ (7.85)

The contravariant symbols are

Sc1(n) = −(j + 1) sin θ cosϕ (7.86)

Sc2(n) = −(j + 1) sin θ sinϕ (7.87)

Sc3(n) = −(j + 1) cos θ (7.88)

Proof It seems more convenient to compute in the complex representation ψζ for
the coherent states. In the space V (j) the spin operators are represented by differen-
tial operators

S1 = 1

2
(z1∂z2 + z2∂z1) (7.89)

S2 = 1

2i
(z1∂z2 − z2∂z1) (7.90)

S3 = 1

2
(z1∂z1 − z2∂z2) (7.91)

The coherent state ψj
ζ has the expression

ψζ (z1, z2)= 1√
(2j)!

(
1+ |ζ |2)−j (ζ z1 + z2)

2j

So a direct computation gives

〈ζ |S1|ζ 〉 = −2j
�ζ

1+ |ζ |2 =−j sin θ cosϕ (7.92)

In the same way we can compute S2,c(n) and S3,c(n).
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Computing contravariant symbols is more difficult because we have no direct
formula.

The trick is to start with a large enough set of functions in complex variables
(ζ, ζ̄ ) and to compute their anti-Wick quantizations.

Let us denote Aα,β,τ (ζ, ζ̄ )= (1+ |ζ |2)−τ ζ αζ̄ β and Âα,β,τ (k, �) the matrix ele-
ments of the operator Âα,β,τ ,−j ≤ k, �≤ j , in the canonical basis of V (j). We shall
use the following formula:

〈
v�, Âvk

〉 =
∫
C

Ac(ζ )〈v�,Πζ vk〉dμj (ζ )

〈v�,Πζ vk〉 = 〈v�,ψζ 〉〈ψζ , vk〉 = ckc�ζ̄ j+�ζ j+k
(7.93)

where ck = ( (2j)!
(j+k)!(j−k)! )

1/2.
So we get

Âα,β,τ (k, �)= ckc�
∫
C

(
d2ζ

)
ζ j+k+αζ̄ j+�+β

(
1+ |ζ |2)−2j−τ−2

Using polar coordinates ζ = reiγ we get

Âα,β,τ (k, �)= ckc�δα+k,β+�2(2j + 1)
∫ ∞

0
dr

r2j+2α+2k+1

(1+ r2)2j+τ+2

We compute the one variable integral using beta and gamma functions

∫ ∞

0
dr

rs

(1+ r2)t
= 1

2
B

(
s + 1

2
, t − s + 1

2

)
= 1

2

Γ (s+1
2 )Γ (t − s+1

2 )

Γ (t)

Finally we have the formula

Âα,β,τ (k, �)= (2j + 1)ckc�δα+k,β+�
Γ (j + k + α + 1)Γ (j − α− k+ τ + 1)

Γ (2j + τ + 2)
(7.94)

For example if τ = 1, α = 0,1, β = 0,1,2 we find

Â1,0,1(k, k + 1) = 1

2j + 2

√
(j + k + 1)(j − k) (7.95)

Â0,1,1(k, k + 1) = 1

2j + 2

√
(j + k)(j − k+ 1) (7.96)

Â0,0,1(k, k + 1) = 1

2j + 2
(j − k + 1) (7.97)

Â1,1,1(k, k + 1) = 1

2j + 2
(j + k + 1) (7.98)

Using these results we easily get a contravariant symbol for S as in (7.86). �
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Now we can compute the covariant and contravariant symbols of the Hamilto-
nian Ĥ . Applying the above results, translated in the sphere variables, we get

Hc(Ω) = j2
∑

1≤m≤N−1

nmnm+1 (7.99)

Hc(Ω) = (j + 1)2
∑

1≤m≤N−1

nmnm+1 (7.100)

We are ready now to prove the main result which is a particular case of much more
general results proved in [136, 177]. Let us introduce the quantum partition function

Zq(β, j)= 1

(2j + 1)N
Tr e−βĤ , β ∈R

The corresponding classical partition function is obtained taking the average of spin
operators on coherent states. So we define

Zc�(β, j)=
∫
(S2)N

e−βHc(Ω) dμ(Ω)

Putting together all the necessary results we have proved the following Lieb’s in-
equalities:

Proposition 91 We have the following inequalities:

Zc�(β, j)≤Zq(β, j)≤ Zc�(β, j + 1), ∀j, integer or half-integer (7.101)

This result can be used to study the thermodynamic limit of large spin systems
(see [136]).

Corollary 25 With the notations of the previous proposition we have

lim
j→+∞

Zq(β, j)

Zc�(β, j)
= 1 (7.102)

7.7 More on High Spin Limit: From Spin-Coherent States to
Harmonic-Oscillator Coherent States

We want to give here more details concerning the transition between spin-coherent
states and Heisenberg coherent states.

Let us begin by the following easy connection between spin-coherent states and
harmonic oscillator coherent state. We compute on the Bargmann side. We start
from

ψj,�
η (ζ )= (

1+ |η|2)−j (1+ η̄ζ )2j
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If we replace η and ζ by η√
2j

and ζ√
2j

and let j→+∞ then we get

lim
j→+∞ψ

j,�
η√
2j

(
ζ√
2j

)
= eη̄ζ−|η|2/2 =√2πϕη(ζ )

In the right side ϕη(ζ ) is the Bargmann transform of the Gaussian coherent state
located in η. In this sense the spin-coherent states converge, in the high spin limit,
to the “classical” coherent states.

In the same way we shall prove that the Dicke states converge to the Hermite
basis of the harmonic oscillator.

Let us denote now dj,k the Dicke basis of V (j): Ĥdj,k = kdj,k , −j ≤ k ≤ j . The
spin-Bargmann transform of dj,k is easily computed:

d
�
j,k(ζ )=

(2j)!
(j + k)!(j − k)!ζ

j+k

Recall that (see Chap. 1) the Bargmann transform of the Hermite function ψ�
(� ∈N) is

ψ
�
�(ζ )=

ζ �√
2π�!

Then we have

Proposition 92 For every � ∈N and every r > 0 we have

lim
j→+∞,k→−∞

j−k→�

d
�
j,k

(
ζ√
2j

)
=√2πψ�

� (ζ ) (7.103)

uniformly in |ζ | ≤ r .

Proof The result follows from the following approximations. For j, k large enough
such that j − k ≈ � we have

(2j)!
(j + k)!(j − k)! ≈

(2j)!
�!(2j − �)! ≈

(2j)�

�! �

A different approach concerning the high spin limit of spin-coherent states is to
consider contractions of the Lie group SU(2) in the Heisenberg Lie group H1 (see
[121]). We are not going to consider here the theory of Lie group contractions in
general but to compute on the example of SU(2) and its representations.

Let us consider the irreducible representation of index j of SU(2) in the
Bargmann space P2j . P2j is clearly a finite-dimensional subspace of the Barg-
mann–Fock space F (C).
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Let us compute in this representation the images L�±,L
�
3 of the generators

K±,K3 of the Lie algebra sl(C). We get easily

L
�
3 = ζ

∂

∂ζ
− j (7.104)

L
�
+ = 2jζ − ζ 2 ∂

∂ζ
(7.105)

L
�
− =

∂

∂ζ
(7.106)

Let us introduce a small parameter ε > 0 and denote

Lε+ = εL
�
+ (7.107)

Lε− = εL
�
− (7.108)

Lε3 = L
�
3 +

1

2ε2
1 (7.109)

We have the following commutation relations:

[
Lε+,Lε−

]= 2ε2Lε3 − 1,
[
Lε3,L

ε±
]=±Lε± (7.110)

As ε→ 0 (7.107) define a family of singular transformations of the Lie algebra
su(2) and for ε = 0 we get (formally)

[
L0+,L0−

]=−1,
[
L0

3,L
0±
]=±L0± (7.111)

These commutation relations are those satisfied by the harmonic oscillator Lie alge-
bra: L0+ ≡ a†, L0− ≡ a, L0

3 ≡N := a†a.
We can give a mathematical proof of this analogy by computing covariant sym-

bols.

Proposition 93 Assume that ε→ 0 and j→+∞ such that lim 2jε2 = 1. Then we
have

lim
〈
ψ
j

ζ/
√

2j

∣∣Lε3
∣∣ψj

ζ/
√

2j

〉= |ζ |2 = 〈ϕζ |a†a|ϕζ 〉 (7.112)

lim
〈
ψ
j

ζ/
√

2j

∣∣Lε+
∣∣ψj

ζ/
√

2j

〉= ζ̄ = 〈ϕζ |a†|ϕζ 〉 (7.113)

lim
〈
ψ
j

ζ/
√

2j

∣∣Lε−
∣∣ψj

ζ/
√

2j

〉= ζ = 〈ϕζ |a|ϕζ 〉 (7.114)

Proof From the computations of Sect. 7.5 we have

〈
ψ
j
ζ

∣∣L�3
∣∣ψj

ζ

〉=−j 1− |ζ |2
1+ |ζ |2
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So we have
〈
ψ
j

ζ/
√

2j

∣∣Lε3
∣∣ψj

ζ/
√

2j

〉=+∣∣ζ 2
∣∣+O

(
1

j

)

and we get (7.112).
The other formulas are proved in the same way using the following relations:

〈
ψ
j
ζ

∣∣L�+∣∣ψj
ζ

〉= 2j ζ̄

1+ |ζ |2 ,
〈
ψ
j
ζ

∣∣L�−∣∣ψj
ζ

〉= 2jζ

1+ |ζ |2 �



Chapter 8
Pseudo-Spin-Coherent States

Abstract We have seen before that spin-coherent states are strongly linked with
the algebraic and geometric properties of the Euclidean 2-sphere S

2. We shall now
consider analogue setting when the sphere is replace by the 2-pseudo-sphere i.e. the
Euclidean metric in R

3 is replaced by the Minkowski metric and the group SO(3)
by the symmetry group SO(2,1). The main big difference with the Euclidean case
is that in the Minkowski case the pseudo-sphere in non compact as well its sym-
metry group SO(2,1) and that all irreducible unitary representations of SO(2,1) are
infinite dimensional.

8.1 Introduction to the Geometry of the Pseudo-Sphere, SO(2,1)
and SU(1,1)

In this section we shall give a brief introduction to pseudo-Euclidean geometry (of-
ten named hyperbolic geometry). There exists a huge literature on this subject. For
more details we refer to in [11] or to any standard text book on hyperbolic geometry
like [36].

8.1.1 Minkowski Model

On the linear space R
3 we consider the Minkowski metric defined by the sym-

metric bilinear form 〈x, y〉M := x � y := x1y1 + x2y2 − x0y0 where x, y ∈ R
3,

x = (x0, x1, x2), y = (y0, y1, y2).
So we get the three-dimensional Minkowski space (R3, 〈·, ·〉M)with its canonical

orthonormal basis {e0, e1, e2}.
Let us remark that the Minkowski metric is the restriction of the Lorentz relativis-

tic metric, defined by the quadratic form x2
1 +x2

2+x2
3−x2

0 , to the three-dimensional
subspace of R4 defined by x3 = 0.

The surface in R
3 defined by the equation {x ∈ R

3, 〈x, x〉M = −1} is a hyper-
boloid with two symmetric sheets. The pseudo-sphere PS2 is one of this sheet. So
we can choose the upper sheet:

PS2 = {
x = (x0, x1, x2), x

2
1 + x2

2 − x2
0 =−1, x0 > 0

}
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PS2 is a surface which can be parametrized with the pseudopolar coordinates (τ,ϕ):

x0 = cosh τ, x1 = sinh τ cosϕ, x2 = sinh τ sinϕ,

τ ∈ [0,+∞[, ϕ ∈ [0,2π[
PS2 is a Riemann surface for the metric induced on PS2 by the Minkowski metric.

In coordinates (x0, x1, x2) PS
2 is defined by the equation x0 =

√
1+ x2

1 + x2
2 . So,

in coordinates {x1, x2} on PS2, the metric ds2 =−dx2
0 + dx2

1 + dx2
2 is given by the

following symmetric matrix:

G=
⎛
⎜⎝

1− x2
1

1+x2
1+x2

2

x1x2
1+x2

1+x2
2

x1x2
1+x2

1+x2
2

1− x2
2

1+x2
1+x2

2

⎞
⎟⎠

Hence we see that ds2 is positive-definite on PS2. In polar coordinates we have a
simpler expression: ds2 = dτ 2 + sinh τ 2 dϕ2. The curvature of PS2 is −1 every-
where (compare with the sphere S

2 with curvature is +1 everywhere). By analogy
with the Euclidean sphere we shall denote n the generic point on S

2.
The Riemannian surface measure in pseudopolar coordinates is given by comput-

ing the density
√

detG, where G is the matrix of the metric in coordinates (τ,ϕ).
So the surface measure on PS2 is

d2n= sinh τ dτ dϕ

We can see that the geodesics on the pseudo-sphere PS2 are determined by their
intersection with planes through the origin 0.

We consider now the symmetries of PS2. Let us denote

L=
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠

the matrix of the quadratic form 〈•,•〉M : 〈x, y〉M = Lx · y (recall that the · denotes
the usual scalar product in R

3).
The invariance group of 〈•,•〉M is denotedO(2,1). SoA ∈O(2,1)meansAx�

Ax = x � x for every x ∈ R
3 or equivalently, AT LA = L (AT is the transposed

matrix of A). In particular if A ∈ O(2,1) then detA = ±1. The direct invariance
group is the subgroup SO(2,1) defined by A ∈ O(2,1) and detA = 1. This group
is not connected so we introduce SO0(2,1) the component of 1 in SO(2,1), it is a
closed subgroup of SO(2,1).

The pseudo-sphere PS2 is clearly invariant under SO0(2,1).
It is not difficult to see that 1 is always an eigenvalue for everyA ∈ SO0(2,1). Let

v ∈R
2 be such that ‖v‖ = 1, Av = v and 〈v, v〉M �= 0. The orthogonal complement

of Rv for the Minkowski form 〈., .〉M is a two-dimensional plane invariant by A. So
A looks like a rotation in Euclidean geometry.
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Let us give the following examples of transformations in SO0(2,1):

Rϕ =
⎛
⎝1 0 0

0 cosϕ − sinϕ
0 sinϕ cosϕ

⎞
⎠ : rotation in the plane {e1, e2} (8.1)

B1,τ =
⎛
⎝cosh τ sinh τ 0

sinh τ cosh τ 0
0 0 1

⎞
⎠ : boost in the direction e1 (8.2)

B2,τ =
⎛
⎝cosh τ 0 sinh τ

0 1 0
sinh τ 0 cosh τ

⎞
⎠ : boost in the direction e2 (8.3)

These three transformations generate all the group SO0(2,1). This can be easily
proved using the following remark: if Av = v and if U is a transformation then
AU(Uv)=Uv where AU =UAU−1.

SO0(2,1) is a Lie group. In particular it is a three-dimensional manifold.

8.1.2 Lie Algebra

We can get a basis for the Lie algebra so(2,1) of SO(2,1) by computing the gener-
ators of the three one-parameter subgroups defined in (8.1). We get

E0 : = d

dϕ
Rϕ |ϕ=0 =

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ (8.4)

E1 : = d

dτ
B1,τ |τ=0 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ (8.5)

E2 : = d

dτ
B2,τ |τ=0 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ (8.6)

The commutation relations of the Lie algebra are the following:

[E0,E1] =E2, [E2,E0] =E1, [E1,E2] = −E0 (8.7)

If we compare with generators of so(3)we remark the minus sign in the last relation.
Let us consider the exponential map exp : so(2,1)→ SO(2,1). If A = x0E0 +

x1E1 + x2E2 where x2
0 + x2

1 + x2
2 = 1, we have the one-parameter subgroup of

SO(2,1), R(θ) = eθA. R(θ) is a pseudo-rotation with axis v = (x0,−x2, x1). Its
geometrical properties are classified by the sign of 〈v, v〉M .
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• 〈v, v〉M > 0 (“time-like” axis): R(1) has a unique fixed point on PS2, each orbit
is bounded. R(1) is said to be elliptic

• 〈v, v〉M < 0 (“space-like” axis): there exists a unique geodesic on PS2 invariant
by U(1), R(1) is said hyperbolic

• 〈v, v〉M = 0 (“light-like” axis): the geodesics asymptotically going to Rv are in-
variant by R(1). R(1) is said parabolic

These classification will be more explicit on other models of PS2 as we shall see. As
in the Euclidean case we can realize the Lie algebra relations (8.7) in a Lie algebra
of complex 2× 2 matrices.

We replace the group SU(2) by the group SU(1,1) of pseudo-unitary unimodular
matrices of the form:

g =
(
α β

β̄ ᾱ

)
, |α|2 − |β|2 = 1

SU(1,1) is a Lie group of real dimension 3. Let us introduce now a convenient
parametrization of SU(1,1):

α = cosh
t

2
ei(ϕ+ψ)/2, β = sinh

t

2
ei(ϕ−ψ)/2

where the triple (ϕ, t,ψ) runs through the domain 0≤ ϕ < 2π, 0< t <∞, −2π ≤
ψ < 2π . In this way one gets the factorization

g(ϕ, t,ψ) =
(

cosh t
2 ei(ϕ+ψ)/2 sinh t

2 ei(ϕ−ψ)/2

sinh t
2 ei(ψ−ϕ)/2 cosh t

2 e−i(ϕ+ψ)/2

)

= g(ϕ,0,0)g(0, t,0)g(0,0,ψ)

In the group SU(1,1) we choose three one-parameter subgroups consisting of the
matrices

ω1(t)= g(0, t,0), ω2(t)=
(

cosh t
2 i sinh t

2

−i sinh t
2 cosh t

2

)
, ω0(t)= g(t,0,0)

The generators of these one-parameter subgroups are

b1 = 1

2

(
0 1
1 0

)
, b2 = i

2

(
0 1
−1 0

)
, b0 = i

2

(
1 0
0 −1

)

These three matrices form a basis of the Lie algebra su(1,1) with the commutation
relations:

[b1, b2] = −b0, [b2, b0] = b1, [b0, b1] = b2 (8.8)

We see that the Lie algebras so(2,1) and su(1,1) are isomorph and we can iden-
tify the basis {E0,E1,E2} and {b0, b1, b2}. Now we shall see that SU(1,1) is for
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SO0(2,1) what is SU(2) for SO(3). Let us consider the adjoint representation of
SU(1,1). For every g ∈ SU(1,1) and x = (x0, x1, x2) we have

g

( ∑
0≤k≤2

xkbk

)
g−1 =

∑
0≤k≤2

ykbk

Let us denote y = ρ(g)x, where y = (y0, y1, y2). As in the Euclidean case we have
the following result.

Proposition 94 For every g ∈ SU(1,1) we have:

(i) g �→ ρ(g) is a group morphism from SU(1,1) onto SO(2,1)0.
(ii) ρ(g) = 1 if and only if g = ±1. In particular the groups SO(2,1)0 and

SU(1,1)/{1,−1} are isomorph.
(iii) If A = v0b0 + v1b1 + v2b2 then for every τ ∈ R, ρ(eτA) is a pseudo-rotation

of axis (v0,−v2, v1).

Proof It is easy to see that ρ(g) ∈ SO(2,1) and ρ is a group morphism. Let us re-
mark that we have ωk(t)= etbk for k = 0,1,2. Then we find that ρ(ω0(t)) is the ro-
tation Rt of axis e0 in the Minkowski space, ρ(ω1(t)) is the boost B1,t and ρ(ω2(t))

is the boost B2,t . Then it results that the range of ρ is the full group SO0(2,1).
(ii) is easy to prove, as in the Euclidean case.
We assume v = (v0, v1, v2) �= (0,0,0). The kernel of v0E0 + v1E1 + v2E2 is

clearly generated by the vector (v0,−v2, v1) so we get (iii). �

It will be useful to remark that the group SU(1,1) is isomorph to the SL(2,R)
group of real 2× 2 matrices A such that detA= 1. The isomorphism is simply the

conjugation A �→Λ−1AΛ where A ∈ SL(2,R), Λ= 1√
2

( 1 i

i 1

)
.

Let us remark that we have su(1,1)+ isu(1,1)= sl(2,C) so su(1,1) and su(2)
have the same complexification as Lie algebras.

We shall see now that this isomorphism has a simple geometry interpretation and
this is very useful to get a better insight of the pseudo-sphere geometry.

8.1.3 The Disc and the Half-Plane Poincaré Representations of the
Pseudo-Sphere

Considering the stereographic projection from the apex (0,0,−1) onto the plane
{e1, e2}, the upper hyperboloid is transformed into the disc D of radius 1. By this
transformation the metric on the pseudo-sphere becomes a metric on D. Choosing
in PS2 polar coordinates (τ,ϕ) and in D polar coordinates (r,−ϕ), we have

x0 = cosh τ, x1 = sinh τ cosϕ, x2 = sinh τ sinϕ, r = tanh
τ

2
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In D the metric and the surface element of the pseudo-sphere have the following
expression:

ds2 = 4(dr2 + r2 dϕ2)

(1− r2)2
, d2ζ = 4r dr dϕ

(1− r2)2

So we get another model of the pseudo-sphere named the Poincaré disc model.
It is also convenient to introduce a complex representation of D, ζ = re−iϕ . In D

geodesics are the straight lines through the origin and arcs circle orthogonal to the
boundary (see the references).

Let us remark that the metric is conformal so the angles for the metric coincide
with the Euclidean angles. So an isometry of D is a conformal transformation of D.
We know that such direct transformations f are homographic:

f (ζ )= αζ + β
β̄ζ + ᾱ , such that |α|2 − |β|2 = 1

In other words the direct symmetry group of D is given by a representation of

SU(1,1), g �→ Hg , where Hg(ζ ) = f (ζ ), g = (
α β

β̄ ᾱ

)
. Moreover we see easily

that Hg = 1D if and only if g = ±1. So we recover geometrically the fact that
SO(2,1)≈ SU(1,1)/{1,±1}.

It is well known that the unit disc can be conformally transformed into the
half complex plane H = {z = u + iv, v > 0} by the homography H0ζ = −iζ+i

ζ+1

or H−1
0 z = −z+i

z+i , where ζ ∈ D, z ∈ H. Explicitly, if ζ = reiϕ and z = u+ iv, we
have

u= 2r sinϕ

1+ r2 + 2r cosϕ
, v = 1− r2

1+ r2 + 2r cosϕ

In H the metric and the surface element of the pseudo-sphere have the following
expression:

ds2 = du2 + dv2

v2
, d2z= dudv

v

So we get another model of the pseudo-sphere named the Poincaré half-plane model.
In this model the boundary of the disc is transformed into the real axis. In H the
geodesics are vertical lines and half circles orthogonal to the real axis.

As for the disc we can see that the direct symmetry group of H is the group
SL(2,R) with the homographic action Hg(z)= αz+β

γ z+δ , α,β, γ, δ ∈ R, αδ − γβ = 1
and Hg = 1H if and only if g =±1. We recover the fact that SU(1,1) and SL(2,R)
are isomorph groups.

Finally there is another realization of the pseudo-sphere which is important to
define coherent states: PS2 can be seen as a quotient of SU(1,1) by its compact
maximal subgroup U(1).
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Lemma 50 For every n= (cosh τ, sinh τ sinϕ, sinh τ cosϕ) define

gn =
(

cosh(τ/2) sinh(τ/2)e−iϕ
sinh(τ/2)eiϕ cosh(τ/2)

)

Then the map n �→ {gnω0(t), t ∈ [−2π,2π[} is a bijection from S
2 in the right

cosets of SU(1,1) modulo U(1) where U(1) is identified with the diagonal matrices( eit/2 0
0 e−it/2

)
, t ∈ [0,4π[.

Proof Let us denote g(α,β) = (
α β

β̄ ᾱ

)
, α,β ∈ C, |α|2 − |β|2 = 1. The lemma is a

direct consequence of the following decomposition: there exist α′ > 0, β ′ ∈ C, t ∈
[0,4π[, unique such that

g(α,β)= g(α′, β ′)ω0(t)

More precisely we have α′ = |α|, t = 2 argα, β ′ = eit/2β . This proves the lemma. �

So modulo composition by a rotation of axis e0 on the right, every g ∈ SU(1,1)
is equivalent to a unique gn, n ∈ PS2. We can see that gn is a pseudo-rotation with
axis v = (0, sinϕ, cosϕ) (remark a change of sign).

To get that, remark

g−1
n

d

dτ
gn = 1

2
(cosϕσ1 + sinϕσ2)= (cosϕb1 − sinϕb2)

so gn = eτ(cosϕb1−sinϕb2), this is indeed a pseudo-rotation of axis direction
(0, sinϕ, cosϕ).

8.2 Unitary Representations of SU(1,1)

Let us begin by introducing a useful and important invariant operator for Lie group
representation: the Casimir operator. We first define the Killing form on a Lie alge-
bra g,

〈X,Y 〉0 = 1

2
Tr
(
ad(X)ad(Y )

)
(8.9)

where ad is the Lie adjoint representation: ad(X)Y = [X,Y ], ∀Y ∈ g.
ad(X) is the infinitesimal generator of the one-parameter group transformation

in g:

Gθ(Y )= eθXY e−θX

We have the antisymmetric property:
〈
ad(X)Y,Z

〉
0 =−

〈
Y,ad(X)Z

〉
0, ∀X,Y,Z ∈ g
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Consider a basis {Xj } of g. The Killing form in this basis has the matrix gj,k =
tr(ad(Xj )ad(Xk)). We denote gj,k the inverse of the matrix gj,k .

Let us now consider a representation R of a Lie group G in the linear space V
and ρ = dR the corresponding representation of its Lie algebra g in L (V ). The
Casimir operator Cρas is defined as follows:

Cρas =
∑

gj,kρ(Xj )ρ(Xk)

Let us remark that if V is infinite dimensional some care is necessary to check the
domain of Cρas . Nevertheless a standard computation gives the following important
property.

Lemma 51 The Casimir operator C
ρ
as commutes with the representation ρ,

ρ(X)C
ρ
as = Cρasρ(X), ∀X ∈ g.

In particular if the representation is irreducible then Cρas = cρas1, cas ∈R.

Let us now remark that every irreducible unitary representation of SU(1,1) is
infinite dimensional, this is a big difference with SU(2).

Proposition 95 Let ρ be a unitary representation of SU(1,1) in a finite-dimensional
Hilbert space H . Then ρ is trivial, i.e. ρ(g)= 1H , ∀g ∈ SU(1,1)

Proof Using the isomorphism from SL(2,R) onto SU(1,1), it is enough to prove
the proposition for a unitary representation of SL(2,R).

For every x ∈R, a ∈R, a �= 0, we have

(
a 0
0 a−1

)(
1 x

0 1

)(
a 0
0 a−1

)−1

=
(

1 a2x

0 1

)

Then we see that ρ
( 1 x

0 1

)
are all conjugate for x > 0. By continuity they are conjugate

to 1H = ρ( 1 0
0 1

)
because the representation is finite dimensional. The same property

holds true for x < 0 and for matrices
( 1 0
y 1

)
. But the group SL(2,R) is generated by

the two matrices
( 1 x

0 1

)
and

( 1 0
y 1

)
. So we can conclude that ρ(A) = 1H for every

A ∈ SL(2,R). �

Unitary irreducible representations of SU(1,1) have been computed indepen-
dently by Gelfand–Neumark [81] and by Bargmann [15]. We shall follow here the
presentation by Bargmann with some minor modifications.
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8.2.1 Classification of the Possible Representations of SU(1,1)

Let ρ be an irreducible unitary representation of SU(1,1) in some Hilbert
space H .

It can be proved that H is infinite dimensional except if ρ is trivial (ρ(g)= 1,
∀g ∈ SU(1,1)).

So H will be infinite dimensional.
In the representation space the generators bj define the operators

Bj := i d
dt
ρ
(
ωj (t)

)∣∣∣∣
t=0
, j = 0,1,2

with the commutation relations

[B1,B2] = −iB0, [B2,B0] = iB1, [B0,B1] = iB2 (8.10)

Or with the complex notation B± = B2 ± iB1, we have

[B−,B+] = 2B0, [B0,B±] =±B± (8.11)

We have ρ(ω0(t))= e−itB0 hence e−i4πB0 = 1. So the spectrum of B0 is a subset of
{ k2 , k ∈ Z}. There exists ψ0 ∈H , ‖ψ0‖ = 1 and B0ψ0 = λψ0, λ= k0

2 , k0 ∈ Z.
Using the commutation relation we have

B0B+ψ0 = (λ+ 1)B+ψ0 (8.12)

B0B−ψ0 = (λ− 1)B−ψ0 (8.13)

Reasoning by induction, we get for every k ∈N,

B0
(
Bk+

)
ψ0 = (λ+ k)(B+)kψ0 (8.14)

B0(B−)kψ0 = (λ− k)(B−)kψ0 (8.15)

Introduce now the Casimir operator Cas of the representation which is supposed to
be irreducible, so Cas = cas1 where

Cas = B2
0 −

1

2
(B−B+ +B+B−)

Hence we have the equations

(B−B+ +B+B−)ψ0 = 2
(
λ2 − cas

)
ψ0 (8.16)

(B−B+ −B+B−)ψ0 = 2λψ0 (8.17)

So we get

B−B+ψ0 =
(
λ(λ+ 1)− cas

)
ψ0 (8.18)

B+B−ψ0 =
(
λ(λ− 1)− cas

)
ψ0 (8.19)
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Using now Bk±ψ0 instead of ψ0 we have proved for every k ∈N,

B−Bk+ψ0 =
(
(λ+ k− 1)(λ+ k)− cas

)
ψ0 (8.20)

B+Bk−ψ0 =
(
(λ− k+ 1)(λ− k)− cas

)
ψ0 (8.21)

Let us denote ν+k = ((λ+ k−1)(λ+ k)− cas) and ν−k = ((λ− k+1)(λ− k)− cas).
Using that B+ = B∗− and B− = B∗+ we get from (8.20),

∥∥Bk+1+ ψ0
∥∥2 = ν+k+1

∥∥Bk+ψ0
∥∥2 (8.22)

∥∥Bk+1− ψ0
∥∥2 = ν−k+1

∥∥Bk−ψ0
∥∥2 (8.23)

From (8.22) we can start the discussion.

(I) Suppose that for all k ∈ N, Bk+ψ0 �= 0 and Bk−ψ0 �= 0. Then for every k ∈ N,
λ± k is an eigenvalue for B0.
(I-1) If 0 is in this family (i.e. λ ∈ Z) then we can suppose that B0ψ0 = 0 so we

can choose λ= 0. From (8.22) we find the necessary condition cas < 0.
(I-2) If 0 is not in the family λ± k, λ= 1

2 + k0, k0 ∈ Z and using Bk± we can
assume that λ= 1

2 . From (8.22) we get cas < 1/4.
In these two cases we get an orthonormal basis {ϕm}m∈Z for H , such that
B0ϕm = (m+ ε

2 )ϕm, where ε = 0 in the first case and ε = 1 in the second case.
This is really a basis because the linear space span by the ϕm is invariant by the
representation which is irreducible.

(II) Suppose now that there exists k0 ∈ N such that Bk0+1
+ ψ0 = 0 and Bk0+ ψ0 �= 0.

Using (8.20) we see that for every � ∈N, B�−ψ0 is proportional to B�
′
−B

k0+ ψ0, so

we can replace ψ0 by Bk0+ ψ0. So we have B0ψ0 = λψ0, B+ψ0 = 0. Hence this
gives ν+1 = 0 and cas = λ(λ+ 1). If λ = 0 we get B−ψ0 = 0 and the Hilbert
space is unidimensional. So we have λ > 0. As above we get an orthonormal
basis of H {ϕm}m∈N such that B0ϕm = (λ−m)ϕm.
If there exists k0 ∈N such that Bk0+1

− ψ0 = 0 and Bk0− ψ0 �= 0 we have a similar
result with eigenvalues λ+m for B0.

In case (I) the Casimir parameter cas varies in an interval and we said the represen-
tation belongs to the continuous series; in case (II) the Casimir parameter varies in
a discrete set and we say that the representation belongs to the discrete series.

8.2.2 Discrete Series Representations of SU(1,1)

In the last section we have found necessary conditions satisfied by any irreducible
representation of SU(1,1). Now we have to prove that these conditions can be real-
ized in some concrete Hilbert spaces.
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8.2.2.1 The Hilbert Spaces Hn(D)

Let n be a real number, n≥ 2, Hn(D) is the Hilbert space of holomorphic functions
f on the unit disc D of the complex plane C satisfying

‖f ‖2
Hn(D)

:= n− 1

π

∫
D

∣∣f (z)∣∣2(1− |z|2)n−2
dx dy <+∞, z= x + iy (8.24)

The measure dνn(z) := n−1
π
(1− |z|2)n−2 dx dy is a probability measure on D and

Hn(D) is a complete space with the obvious Hilbert norm is a consequence of stan-
dard properties of holomorphic functions.

It is useful to produce the following characterization of Hn(D) using the series
expansion of f :

f (z)=
∑
k≥0

ck(f )z
k

which is absolutely convergent inside the disc D.
In (8.24) let us compute the integral in polar coordinates z = reiθ . From the

Parseval formula for Fourier series we get

‖f ‖H 2
n (D)

= 2(n− 1)π
∑
k≥0

∣∣ck(f )∣∣2
∫ 1

0
r2k+1(1− r2)n−2

dr (8.25)

So we have

‖f ‖2
Hn(D)

=
∑
k≥0

∣∣ck(f )∣∣2Γ (n)Γ (k + 1)

Γ (n+ k) (8.26)

This gives a unitary equivalent definition of Hn(D) as a Hilbert space of functions
on the unit circle. In particular the scalar product in Hn(D) of f1 and f2 has the
following expression:

〈f1, f2〉Hn(D) =
∑
k≥0

ck(f1)ck(f2)γn,k (8.27)

where γn,� = Γ (n)Γ (�+1)
Γ (n+�) .

From formula (8.26) and (8.27) we easily get that e�(z) := { z�√
γn,�
}�≥0 is an or-

thonormal basis of Hn(D).

8.2.2.2 Discrete Series Realization of SU(1,1) in Hn(D)

These representations can be introduced using Gauss decomposition in the complex
Lie group SL(2,C),

(
α β

γ δ

)
=
(

1 0
γ
α

1

)(
α 0
0 1

α

)(
1 β

α
0 1

)
(8.28)
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where α,β, γ, δ are complex numbers such that αδ − βδ = 1, α �= 0.
Moreover this decomposition as a product like

(
1 0
z 1

)(
u 0
0 1

u

)(
1 w

0 1

)

is unique. So this allows us to define natural actions of SU(1,1) in the disc D.

Let us denote by t−(z) the matrices
( 1 0
z 1

)
, t+(z) the matrices

( 1 z
0 1

)
and d(u) =

(
u 0
0 u−1

)
.

Let us denote g a generic element of SU(1,1),

g =
(
α β

β̄ ᾱ

)

Consider the t− matrix in the Gaussian decomposition of gt−(z). We have t− =
t−(z̃) where the complex number z̃ is z̃ =M−(g)(z) = β̄+ᾱz

α+βz . We get easily that
|M−(g)(z)| = 1 if |z| = 1 and from the maximum principle, |M−(g)(z)| < 1 if
|z|< 1. So we have defined a right action of SU(1,1) in D. In the same way we

get a left action considering the t+ matrix in the decomposition of
( 1 z

0 1

)
g−1. So we

get the action M+(g)(z)= −β+αz
ᾱ−β̄z .

Now we want to define unitary actions of SU(1,1) in the space Hn(D) as fol-
lows:

D−
n (g)f (z)=m−g (z)f

(
M−

(
g−1)z) (8.29)

where the multiplierm−g (z) is chosen such that D−
n defines an unitary representation

of SU(1,1). We prove now that it is true with the choice m−g (z)= (ᾱ − βz)−n.

Theorem 43 For every integer n≥ 2 we have the following unitary representation
of SU(1,1) in the Hilbert space H (D):

D−
n (g)f (z) = (ᾱ − βz)−nf

(−β̄ + αz
ᾱ − βz

)
(8.30)

D+
n (g)f (z) = (α + β̄z)−nf

(
β + ᾱz
α + β̄z

)
(8.31)

Proof It is not difficult to see that D±
n are SU(1,1) actions in the linear space

Hn(D). Let us prove that D−
n is unitary. This follows with the holomorphic

change of variables Z = −β̄+αz
ᾱ−βz , Z = X + iY , z = x + iy. We get z = β̄+ᾱZ

α+βZ ,
dz
dZ
= (βZ + α)−2. We conclude using that for a holomorphic change of variable

in the plane, we have from the Cauchy conditions,
∣∣∣∣det

∂(x, y)

∂(X,Y )

∣∣∣∣=
∣∣∣∣ dzdZ

∣∣∣∣
2
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So we get for any f ∈Hn(D),

∫
D

|ᾱ − βz|−2n
∣∣∣∣f
(−β̄ + αz
ᾱ − βz

)∣∣∣∣
2(

1− |z|2)n−2
dx dy

=
∫
D

∣∣f (Z)∣∣2(1− |Z|2)n−2
dXdY

which says that D−
n is unitary. Let us remark here that the above computations show

that the multiplier m−g is necessary to prove unitarity. �

The next step is to prove that these representations are irreducible. To do that we
first compute the corresponding Lie algebra representation.

Let us compute the image of this basis by the representation D−
n . Straightforward

computations give

d

dt
D−
n

(
ω0(t)

)
f (z)

∣∣∣∣
t=0
= 1

2i

(
n+ 2z

d

dz

)
f (z) (8.32)

d

dt
D−
n

(
ω1(t)

)
f (z)

∣∣∣∣
t=0
= 1

2

(
nz+ (

z2 − 1
) d
dz

)
f (z) (8.33)

d

dt
D−
n

(
ω2(t)

)
f (z)

∣∣∣∣
t=0
= 1

2i

(
nz+ (

1+ z2) d
dz

)
f (z) (8.34)

So we get the three self-adjoint generators B0, B1, B2, Bj = idD−
n (bj ), where d

denotes the differential on the group at 1,

B0 = n

2
+ z d

dz
(8.35)

B1 = i

2

(
nz+ (

z2 − 1
) d
dz

)
(8.36)

B2 = 1

2

(
nz+ (

z2 + 1
) d
dz

)
(8.37)

with the commutation relations

[B1,B2] = −iB0, [B2,B0] = −iB1, [B0,B1] = iB2 (8.38)

Using the notation B± = B2 ∓ iB1, we have

B− = d

dz
(8.39)

B+ = nz+ z2 d

dz
(8.40)

and

[B−,B+] = 2B0, [B0,B±] =±B± (8.41)
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Remark 46 OperatorsBa for a = 0,1,2,± are non-bounded operators in the Hilbert
space Hn(D) so we have to define their domains. Here we know that the represen-
tation D−

n is unitary. So Stone’s theorem gives that B0 is essentially self-adjoint and
the linear space P∞ of all polynomials in z is a core for B0. Moreover the spectrum
of B0 is discrete, with simple eigenvalues {n/2+ k, k ∈N}.
B1 and B2 also have a unique closed extension. Moreover it could be possible to

characterize their domains (left to the reader!). Operators B± are closable in Hn(D).
We keep the same notation B± for their closures.

We have the following useful property.

Lemma 52 B± are adjoint of each other: B∗± = B∓. In particular for every ζ ∈ C

the operator i(ζB− − ζ̄B+) is self-adjoint.

Proof It is enough to prove B∗± = B∓. This is formally obvious because we know
that B1,B2 are self-adjoint. We left to the reader to check that the domains are the
same. �

Let us compute the Casimir operator Cnas for the representation D−
n .

A direct computation of the coefficients gj,k of the Killing form shows that
gj,k = 0 if j �= k and g0,0 =−1, g1,1 = g2,2 = 1. So we get

Cnas = B2
0 −B2

1 −B2
2 = B2

0 −
1

2
(B+B− +B−B+) (8.42)

Let us assume for the moment that D−
n is irreducible. Then by Schur lemma we

know that Cnas is a number; this number can be computed using the monomial z0.
We find easily

Cnas =
n

2

(
n

2
− 1

)
= k(k − 1), k =: n

2
(8.43)

Let us remark that k := n
2 is the lowest eigenvalue of B0 and is called Bargmann

index.

8.2.3 Irreducibility of Discrete Series

Here we prove that for every integer n≥ 2, the representation D−
n is irreducible.

Let E be a closed invariant subspace in Hn(D). The restriction of D−
n to the

compact commutative subgroup g(θ,0,0) is a sum of one-dimensional unitary rep-
resentations. So there exist u ∈E, ν ∈R such that

D−
n

(
g(θ,0,0)

)
u= eiνθu, ∀θ ∈R

But u has a series expansion u(z)=∑
aj z

j . So by identification we have eiνθ aj =
e−i(n+2j)θ aj . From this we find that there exists j0 such that aj0 �= 0 so we find
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ν = n+2j0. But this entails aj = 0 if j �= j0. Hence we conclude that the monomial
zj0 belongs to E.

Now playing with B± we conclude easily that E contains all the monomials zj ,
j ∈ N. We have proved above that the monomials is a total system in Hn(D). So
E =Hn(D).

The discrete series representations have an important property: they are square
integrable (see Appendices A, B and C).

On the group SU(1,1) we have a left and right invariant Haar measure μ. μ is
positive on each non empty open set and unique up to a positive constant (see [128]).

The following result is proved in [129].

Proposition 96 For every f ∈Hn(D) we have
∫

SU(1,1)

∣∣〈D−
n (g)f,f

〉
Hn(D)

∣∣2 dμ(g) <+∞

where dg is the Haar measure on SU(1,1).

There exist other unitary irreducible representations for SU(1,1): the principal
series and the complementary series (see also the book of Knapp [127] for more
details). These representations are not square integrable.

Up to equivalence, discrete series, principal series and complementary series are
the only irreducible unitary representations. Let us explain now what principal series
are.

8.2.4 Principal Series

These representations can also be realized in Hilbert spaces of functions on the unit
circle.

They are defined in the following way: take a nonnegative number λ and a point
z on the unit circle. Then the homographic transformation

z �→ αz+ β̄
βz+ ᾱ

obviously maps the unit circle into itself. One defines

Piλ(g)f (z)= |βz+ ᾱ|−1+2iλf

(
αz+ β̄
βz+ ᾱ

)

One considers the Hilbert space L2(S1) with the scalar product

〈f1, f2〉 = 1

2π

∫ 2π

0
dθf̄1(θ)f2(θ)
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To prove the unitarity of the representation Piλ(g) in the Hilbert space we perform
the change of variable θ �→ θ ′ where

eiθ
′ = αeiθ + β̄

βeiθ + ᾱ
The Jacobian satisfies ∣∣∣∣dθ

′

dθ

∣∣∣∣=
∣∣βeiθ + ᾱ∣∣−2

Thus we have for any real λ:

∫ 2π

0
dθ

∣∣(Piλ(g)f
)(

eiθ
)∣∣2 =

∫ 2π

0
dθ ′

∣∣f (eiθ ′)∣∣2

Now we can prove:

Proposition 97 For any λ ∈ R, Piλ is a unitary irreducible representation of
SU(1,1) in the Hilbert space L2(S1). Moreover its Casimir operator is Ciλ =
−( 1

4 + λ2).

For the generator ω0(t) of the Lie group su(1,1) one gets
(
Piλ

(
ω0(t)

)
f
)(

eiθ
)= f (ei(θ+t))

Thus the corresponding generator of SU(1,1) is simply

L0 = d

dθ

To find the generator associated to ω1 we need to calculate

∣∣∣∣ sinh
t

2
eiθ + cosh

t

2

∣∣∣∣
2

= cosh t + cos θ sinh t

Thus

(
Piλ

(
ω1(t)f

))(
eiθ

)= (cosh t + sinh t cos θ)−1/2+iλf
(

cosh t
2 eiθ + sinh t

2

sinh t
2 eiθ + cosh t

2

)

Thus the generator L1 of SU(1,1) is given by

L1 =
(
−1

2
+ iλ

)
cos θ − sin θ

d

dθ

Similarly using the third generator ω2 one finds

L2 =−
(
−1

2
+ iλ

)
sin θ − cos θ

d

dθ
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Therefore the usual linear combinations B± =±L1 + iL2 satisfy

B+ =
(
−1

2
+ iλ

)
e−iθ − ie−iθ d

dθ

B− = −
(
−1

2
+ iλ

)
eiθ − ieiθ d

dθ

We define

B0 = iL0 = i d
dθ

Using the same method as for discrete series, we can prove that these representations
are irreducible (start with B0 and use B±).

To calculate the Casimir operator B2
0 − 1

2 (B−B+ +B+B−) it is enough to apply
it to the constant function. Thus B01= 0, B±1=±(− 1

2 + iλ)e∓iθ . One finds

C := B2
0 −

1

2
(B−B+ +B+B−)=−

(
1

4
− λ2

)
1

8.2.5 Complementary Series

When the parameter λ of the principal series is imaginary the representation is not
unitary in the space L2(S1). So, following Bargmann [17] we introduce a different
Hilbert space. Let us introduce the sesquilinear form depending of the real parameter
σ ∈]0, 1

2 [,

〈f1, f2〉σ = c
∫ ∫

[0,2π]2
(
1− cos(θ1 − θ2)

)σ−1/2
f1(θ1)f2(θ2) dθ1 dθ2

〈f1, f2〉σ is well defined if f1, f2 are continuous on S
1. The constant c is computed

such that 〈1,1〉σ = 1,

c= 21/2−σπB(σ,1/2)−1

The integral
∫ 2π

0 (1 − cos θ)σ−1/2 dθ is computed using the change of variable
x = cos(θ) so we get c. The following properties are useful to build the Hilbert
space Hσ .

Proposition 98

(i) For every f1, f2 ∈ C(S1) we have

∫ ∫
[0,2π]2

(
1− cos(θ1 − θ2)

)σ−1/2∣∣f1(θ1)
∣∣∣∣f2(θ2)

∣∣dθ1 dθ2 ≤ ‖f1‖‖f2‖



242 8 Pseudo-Spin-Coherent States

(ii)

〈ek, e�〉σ = 0, if k �= �
where ek(θ)= eikθ .

(iii)

〈ek, ek〉σ = λk(σ )
where

λk(σ )= Γ (1/2+ σ)Γ (|k| + 1/2− σ)
Γ (1/2− σ)Γ (|k| + 1/2+ σ) (8.44)

In particular λ0 = 1 and λk(σ ) > 0 for every k ∈ Z and σ ∈]0,1/2[.

Proof

(i) is proved using the change of variable u = θ1 − θ2 and Cauchy–Schwarz in-
equality.

(ii) It is a consequence of the following equality, for k �= �,

〈ek, e�〉σ =
∫ ∫

[0,2π]2
(
1− cos(u)

)σ−1/2e−ikθei�(θ+u) dθ du= 0

(iii) We have λ−k = λk , so it is enough to consider the case k ≥ 0. Hence we have

〈ek, ek〉σ = 2c
∫ π

0

(
1− cos(u)

)σ−1/2 cos(ku)du

We compute the integral using the change of variable x = cosu, so cos(ku)=
Tk(x), where Tk is the Tchebichev polynomial of order k.

〈ek, ek〉σ = 2c
∫ 1

−1
(1− x)σ−1/2(1− x2)−1/2

Tk(x) dx

But we have the following expression, known as the Rodrigues formula [56]:

Tk(x)= (−1)k2k−1 (k − 1)!
(2k)!

(
1− x2)1/2 d

k

dxk

((
1− x2)k−1/2)

Hence we get the result by integrations by parts and well known formulas for
gamma and beta special functions.

�

So if f1, f2 ∈ C(S1), fj =∑
k∈Z c

j
k ek is the Fourier decomposition of fj . Then

as a result we have

〈f1, f2〉σ =
∑
k∈Z

λk(σ )c
1
kc

2
k
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This shows that (f1, f2) �→ 〈f1, f2〉σ is a positive-definite sesquilinear form
on C(S1).

Now we can define the complementary series Cσ , 0< σ < 1/2, as follows. It is
realized in the Hilbert space Hσ of functions f on S

1 such that
∑

k∈Z λk(σ )|ck|2 <+∞ equipped with the scalar product 〈f1, f2〉σ (see proposition (iii)).
So we can define, for f ∈Hσ ,

Cσ (g)f (z)= |βz+ ᾱ|−1+2σ f

(
αz+ β̄
βz+ ᾱ

)

Proposition 99 For all 0< σ < 1/2, Cσ is a unitary irreducible representation of
SU(1,1) in Hσ . Moreover its Casimir operator is Cσ = σ 2 − 1

4 .

Proof We use the same methods as for the discrete and continuous series. In partic-
ular the computations are the same as for the continuous series with σ in place of iλ.
The main difference here is in the definition of the Hilbert space which is necessary
to get a unitary representation. �

8.2.6 Bosons Systems Realizations

Let us start with a one boson system. We consider the usual annihilation and cre-
ation operators a, a† in L2(R) (see Chap. 1). The following operators satisfy the
commutation relations (8.41) of the Lie algebra su(1,1):

B+ = 1

2

(
a†)2

, B− = 1

2
a2, B0 = 1

4

(
aa† + a†a

)
(8.45)

We have seen in Chap. 3 that the metaplectic representation is a projective repre-
sentation of the group Sp(1)= SL(2,R) and it is decomposed into two irreducible
representation in the Hilbert subspaces of L2(R), L2

ev(R) of even states and L2
od(R)

of odd states. But the group SL(2,R) is isomorphic to the group SU(1,1) by the

explicit map g �→ Fg :=M0gM
−1
0 , g ∈ SU(1,1), Fg ∈ SL(2,R) with M0 =

( 1 i

i 1

)
.

So the metaplectic representation defines a representation of the group SU(1,1)
in the space L2(R) with two irreducible components R̂ev,od in the space L2

ev,od(R).
In quantum mechanics it is natural to consider ray-representations (or projective

representations) instead of genuine representations. For example the metaplectic
representation is a ray-representation.

Let us compute the Casimir operators Cev,od for each components.
We compute Cev using the bound state ψ0 for the harmonic oscillator (ψ0 ∈

L2
ev(R)).

Using that Ĥosc = 1
2 (aa

† + a†a) = aa† − 1
2 we get Cevψ0 = − 3

16ψ0 and
Codψ1 =− 3

16ψ1 (B0ψ0 = 1
4ψ0 and B0ψ1 = 3

4ψ1).
We see that the commutation relations (8.45) define two irreducible “representa-

tions” of SU(1,1) which are neither in the discrete series neither in the continuous
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series. The reason is that they are ray-representations corresponding with the even
part and odd part of the metaplectic representation.

More details concerning ray-representations can be found in [16, 197]. In par-
ticular these ray-representations are genuine representations of the covering group
S̃U(1,1) (which is simply connected but SU(1,1) is not). A “double valued repre-
sentation” ρ in a linear space satisfies

ρ(gh)= C(g,h)ρ(g)ρ(h), with C(g,h)=±1

Let us now consider the two bosons system. We consider two annihilation and
creation operators a1,2, a†

1,2 in L2(R2) (see Chap. 1). The following operators satis-
fies the commutation relations (8.41) of the Lie algebra su(1,1):

B+ = a†
1a

†
2, B− = a1a2, B0 = 1

2

(
a

†
1a1 + a†

2a2 + 1
)

(8.46)

The Casimir operator is

Cas =−1

4
+ 1

4

(
a

†
2a2 − a†

1a1
)2

We know from Chap. 1 that we have an orthonormal basis of L2(R2),
{φm1,m2}(m1,m2)∈N2 , where φm1,m2 = (a†

1)
m1(a

†
2)
m2φ0,0 such that

B0φm1,m2 =
m1 +m2 + 1

2
φm1,m2 (8.47)

B+φm1,m2 = φm1+1,m2+1 (8.48)

B−φm1,m2 = φm1−1,m2−1 (8.49)

A direct computation gives

Casφm1,m2 =
(
−1

4
+ (m1 −m2)

2
)
φm1,m2 (8.50)

So if we introduce k = 1
2 (1+ |n0|), we get easily (assuming n0 ≥ 0) the following

lemma.

Lemma 53 For every positive half integer k, the Hilbert space spanned by
{φm2+2k−1,m2 ,m2 ∈ N}, is an irreducible space for the representation of the Lie
algebra with generators (8.45).

We know now that this Lie algebra representation defines a unitary representation
of S̃U(1,1) but only a projective representation of SU(1,1).
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8.3 Pseudo-Coherent States for Discrete Series

We can now proceed to the construction of coherent states by analogy with the
harmonic oscillator case (Glauber states) and the spin-coherent states.

We consider here the discrete series representation.

8.3.1 Definition of Coherent States for Discrete Series

Let us consider the representation (D−
n ,H (D)). It could be possible to work with

D+
n as well. Every g ∈ SU(1,1) can be decomposed as g = gnh where h ∈ U(1)

and n ∈ PS2. It is convenient to start with ψ0 ∈H (D) such that hψ0 = ψ0 so we
take as a fiducial state ψ0(ζ ) = γ

−1/2
n,0 ζ 0 and we define ψn = D−

n (gn)ψ0. Most of
properties of ψn will follow from suitable formula for the operator family D(n)=
D−
n (gn). There are many similarities with the spin setting. We shall explain now

these similarities in more detail.
Using polar coordinates for n we have

gn =
(

cosh(τ/2) sinh(τ/2)e−iϕ
sinh(τ/2)eiϕ cosh(τ/2)

)

So using the definition of the representation D−
n we have the straightforward for-

mula for the pseudo-spin-coherent states.

ψζ (z)=
(
1− |ζ |2)n/2(1− ζ̄ z)−n, where ζ = sinh(τ/2)eiϕ (8.51)

Now we shall give a Lie group interpretation of the coherent states. Let us recall
that Bm = idD−

n (1)bm, m= 0,1,2, and B+ = B2+ iB1, B− = B2− iB−. Then we
have

D(n) = exp
(−iτ (cosϕB1 − sinϕB2)

)
(8.52)

= exp
(
τ/2

(
B−eiϕ −B+e−iϕ

))
(8.53)

The second formula reads

D(n)=D(ξ)= exp
(
ξ̄B−ξB+

)
, with ξ = τ

2
e−iϕ (8.54)

We can get a simpler formula using a heuristic following from Gauss decomposition:

gn =
(

cosh(τ/2) sinh(τ/2)e−iϕ
sinh(τ/2)eiϕ cosh(τ/2)

)

=
(

1 0
tanh(τ/2)eiϕ 1

)(
cosh(τ/2) 0

0 1
cosh(τ/2)

)(
1 tanh(τ/2)e−iϕ
0 1

)
(8.55)
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Recall that B0ψ0 = n
2ψ0 and |ζ | = tanh(τ/2). Moreover if b ∈ su(1,1) then we

have

D−
n

(
etb

)= e−itB, with B = idD−
n (1)b (8.56)

Suppose that (8.56) can be used for b1 ± b2 (which are not in the Lie algebra
su(1,1). Then we get the following representation of pseudo-coherent states in the
Poincaré disc D, where ζ and n represents the same point on the pseudo-sphere PS2,

ψn =ψζ =
(
1− |ζ |2)n/2eζ̄B+ψ0 (8.57)

Let us remark that in the spin case this heuristic is rigorous because the represen-
tation Dj is well defined on SL(2,C) which is not true for D−

n . Nevertheless it is
possible to give a rigorous meaning to formula (8.57) as we shall see in the next
section.

8.3.2 Some Explicit Formula

We follow more or less the computations done in the spin case. We shall give details
only when the proofs are really different.

It is convenient to compute in the canonical basis {e�}�∈N of the representation
space Hn(D) (analogue of Dicke states or Hermite basis). We easily get the formu-
las

B+e� =
√
(n+ �)(�+ 1)e�+1 (8.58)

B−e� =
√
�(n+ �− 1)e�−1, B−e0 = 0 (8.59)

B0e� =
(
n

2
+ �

)
e�. (8.60)

Let us remark that the linear space Pj of polynomials of degree ≤ j is stable for
B0 and B− but not for B+. For every � ∈N we have

B�+e0 =
(
n(n+ 1) · · · (n+ �− 1)�!)1/2

e�

Following our heuristic argument we expand the exponent eζ̄B+ as a Taylor series
(which is not allowed because B+ is unbounded) and we recover the formula:

ψζ (z)=
(
1− |ζ |2)k(1− ζ̄ z)−2k (8.61)

Let us give now a rigorous proof for this. It is enough to explain what is etB+e� for
every t ∈D and every � ∈N. For simplicity we assume t ∈] − 1,1[.

Proposition 100 For every m ∈N, the differential equation

φ̇t = B+φt , φ0(z)= zm
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has a unique solution holomorphic in (t, z) ∈D×D given by the following formulas.
For m= 0

φt (z)= (1− tz)−n (8.62)

for m≥ 1,

φt (z)= (1− tz)−n − 1+ zm(1− tz)−n−m (8.63)

Proof We check φt (z)=∑
�∈N x�(t)z�. So we can compute x�(t) using the induc-

tion formula

x�+1(t)= x�+1(0)+ (n+ �)
∫ t

0
x�(s) ds

The result follows easily. �

From our computations we get the expansion of ψζ in the canonical basis

ψζ =
(
1− |ζ |2)k∑

�∈N

(
Γ (2k + �)

Γ (�+ 1)Γ (2k)

)1/2

ζ̄ e� (8.64)

Proposition 101 For every n1,n2 ∈ PS2 we have

D(n1)D(n2)=D(n3) exp
(−iΦ(n1,n2)B0

)
(8.65)

where Φ(n1,n2) is the oriented area of the geodesic triangle on the pseudo-sphere
with vertices at the points [n0,n1,n2].

n3 is determined by

n3 =R(gn1)n2 (8.66)

where R(g) is the rotation associated to g ∈ SU(1,1) and

gn = exp

(
−i τ

2
(σ1 sinϕ + σ2 cosϕ)

)
(8.67)

Proof Computation of n3 is easy using the following lemma. The phase will be
detailed later. �

Lemma 54 For all g ∈ SU(1,1) there exist m ∈ PS
2 and δ ∈R such that

g = gmr3(δ)

where r3(δ)= exp(i δ2B0).

The following lemma shows that the pseudo-spin is also independent of the di-
rection.
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Lemma 55 One has

D(n)B̂0D(n)−1 =−n � B (8.68)

Proof Let (τ,ϕ) be the pseudopolar coordinates of n, n = n(τ,ϕ). We have
D(n(τ ))= exp(−iτ (cosϕB1 − sinϕB2)).

Let us use the notation A(τ) :=D(n(τ ))AD(n(τ ))−1 where A is any operator in
H (D). Then we have the equalities

d

dτ
B0(τ ) = − cosϕB2(τ )− sinϕB1(τ ) (8.69)

d

dτ
B1(τ ) = − sinϕB0(τ ) (8.70)

d

dτ
B2(τ ) = − cosϕB0(τ ) (8.71)

We have the following consequences:

d2

dτ 2
B0(τ )= B0(τ ),

d

dτ
B0(0)=− cosϕB2 − sinϕB1 (8.72)

hence we get B0(τ )=−n(τ )� B. �

The following consequence is that |n〉 is an eigenvector of the operator n � B:

Proposition 102 One has

n � B|n〉 = −k|n〉 (8.73)

where k = n
2 .

As in the Heisenberg and spin settings, the pseudo-spin-coherent states family
|n〉 is not an orthogonal system in H (D). One can compute the scalar product of
two coherent states |n〉, |n′〉:

Proposition 103 One has

〈
n′
∣∣n〉= e−ikΦ(n,n′)

(
1− n � n′

2

)−k
(8.74)

where Φ(n,n′) is the oriented area of the hyperbolic triangle {n0,n,n′}.

Proof We use the complex representation of coherent states, starting from the defi-
nition, we get

ψζ (z)=
(
1− |ζ |2)k(1− ζ̄ z)−2k

. (8.75)
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Next we use the series expansion

(
1− ζ̄ z)−2k =

∑
�≥0

(2k + �− 1)!
(2k − 1)!�!

(
ζ̄ z
)�

to compute the Fourier coefficient of the coherent state |ζ 〉 in the basis e�

〈e�|ζ 〉 =
(

Γ (2k + �)
Γ (�+ 1)Γ (2k)

)1/2(
1− |ζ |2)kζ � (8.76)

The Parseval identity gives

〈
n′
∣∣n〉= (

1− |ζ |2)k(1− |ζ ′|2)k(1− ζ̄ ′ζ )−2k (8.77)

We can translate this equality in pseudopolar coordinates (ζ = tanh(τ/2)e−iϕ) and
we get

〈
n′
∣∣n〉= (

cosh(τ/2) cosh
(
τ ′/2

)− sinh(τ/2) sinh
(
τ ′/2

)
ei(ϕ

′−ϕ))−2k (8.78)

�

An easy computation now gives the following lemma:

Lemma 56

∣∣〈n′∣∣n〉∣∣2 =
(

1− n � n′

2

)−2k

(8.79)

The computation of the phase Φ in formula (8.74) can be done as for the spin
case using the geometric phase method.

As is expected, the pseudo-spin-coherent state system provides a “resolution of
the identity” in the Hilbert space H (D):

Proposition 104 We have the formula

2k − 1

4

∫
PS2

dn |n〉〈n| = 1 (8.80)

Or using complex coordinates |ζ 〉,
∫
D

dν2k(ζ ) |ζ 〉〈ζ | = 1 (8.81)

where the measure dνn is

dνn(ζ )= n− 1

π

d2ζ

(1− |ζ |2)2

with d2ζ = |dζ∧dζ̄ |
2 .
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Proof The two formulas are equivalent by the change of variables ζ = tanh τ
2 e−iϕ .

So it is sufficient to prove the complex version.
We introduce

f̃ (ζ )= 〈ζ |f 〉Hn(D).

Decompose f in the basis of Hn(D), f =∑
�≥0 c�e�, we have

∣∣f �(ζ )∣∣2 =∑
�≥0

Γ (2k+ �)
Γ (�+ 1)Γ (2k)

(
1− |ζ |2)2k|ζ |2�|c�|2

After integration in ζ we have

2k − 1

π

∫
D

∣∣f �(ζ )∣∣2 d2ζ

(1− |ζ |2)2 =
∫
D

∣∣f (z)∣∣2 d2z

So we get the resolution of identity by a polarisation argument. �

8.3.3 Bargmann Transform and Large k Limit

Here we introduce the (pseudo-spin) Bargmann transform and prove that as
k→+∞ the representation D−

2k contracts to the Harmonic oscillator representa-
tion or Heisenberg–Schrödinger–Weyl representation.

Let us denote

ϕk,�(ζ )= 〈ζ |ϕ〉Hn(D)

(
1− |ζ |2)−k, ϕ ∈H2k(D), ζ ∈D.

In fact this transformation is trivial, here it is identity! But it is convenient to see this
as a Bargmann transform. Using the Parseval formula we easily get

ϕk,�(ζ )=
∑
�∈N

ζ �γ
−1/2
2k,� 〈e�,ϕ〉Hn(D) =

∑
�∈N

e�(ζ )〈e�,ϕ〉Hn(D)

Here we shall note the dependence in the Bargmann index k, so we denote the
pseudo-spin-coherent state ψk

ζ (z).

Proposition 105 The pseudo-coherent states ψk
ζ converge to the Glauber coherent

state ϕζ (see Chap. 1) as k→+∞ in the following Bargmann sense and the Dicke
states �k converge to the Hermite function ψ�, for every � ∈N:

lim
k→+∞ψ

k,�

ζ ′/
√

2k

(
ζ/
√

2k
)= ϕ�

ζ ′(ζ ), ∀ζ, ζ ′ ∈C (8.82)
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Proof It is an easy exercise, knowing that

ϕ
�
ζ

(
ζ ′
)= exp

(
ζ̄ ζ ′ − |ζ |

2

2

)

and that

ψ
�
�(ζ )=

ζ �√
2π�! �

As for the spin case we have analogous results for the generators of the Lie
algebras. Let us introduce a small parameter ε > 0 and denote

Bε± = εB± (8.83)

Bε0 = B0 − 1

2ε2
1 (8.84)

We have the following commutation relations:

[
Bε+,Bε−

]= 2ε2Bε3 − 1,
[
Bε3 ,B

ε±
]=±Bε± (8.85)

As ε→ 0 equations (8.83) define a family of singular transformations of the Lie
algebra su(1,1) and for ε = 0 we get (formally)

[
B0+,B0−

]=−1,
[
B0

3 ,B
0±
]=±B0± (8.86)

These commutation relations are those satisfied by the harmonic oscillator Lie alge-
bra: B0+ ≡ a†, B0− ≡ a, B0

0 ≡N := a†a.
We can give a mathematical proof of this analogy by computing the averages.

Proposition 106 Assume that ε→ 0 and k→+∞ such that lim 2kε2 = 1. Then
we have

lim
〈
ψk

ζ/
√

2k

∣∣Bε0
∣∣ψk

ζ/
√

2k

〉= |ζ |2 = 〈ϕζ |a†a|ϕζ 〉 (8.87)

lim
〈
ψk

ζ/
√

2k

∣∣Bε+
∣∣ψk

ζ/
√

2k

〉= ζ̄ = 〈ϕζ |a†|ϕζ 〉 (8.88)

lim
〈
ψk

ζ/
√

2k

∣∣Bε−
∣∣ψk

ζ/
√

2k

〉= ζ = 〈ϕζ |a|ϕζ 〉 (8.89)

Proof From the proof of Lemma 55 we can compute the following averages:

〈
ψk

n ,Bψ
k
n
〉= kn

Using the ζ parametrization we get the result as in the spin case. �



252 8 Pseudo-Spin-Coherent States

8.4 Coherent States for the Principal Series

As for discrete series we can consider coherent states for the principal and com-
plementary series. The principal series is realized in the Hilbert space L2(S1)

with the Haar probability measure on the circle S
1 and with its orthonormal basis

e�(θ)= ei�θ , � ∈ Z.
e0 being invariant by the rotations subgroup of S(1,1) we define the coherent

states ψλ
n,ζ (z), z ∈ S

1, as

ψiλ
n (z) =

∣∣ cosh(τ/2)+ sinh(τ/2)e−iϕz
∣∣2iλ−1 (8.90)

ψiλ
ζ (θ) =

∣∣1− |ζ |2∣∣ 1
2−iλ∣∣1− ζ̄ z∣∣2iλ−1 (8.91)

In the first formula coherent states are parametrized by the pseudo-sphere and in the
second formula they are parametrized by the complex plane.

Properties of these coherent states are analyzed in the book [156] (pp. 77–83).

8.5 Generator of Squeezed States. Application

We shall prove here that the SU(1,1) generalized coherent states considered above
(introduced by Perelomov [156]) are nothing but the one-dimensional squeezed
states introduced in Chap. 3.

We consider the realization of the Lie algebra su(1,1) defined by the generators

B0 = 1

4

(
aa† + a†a

)

B+ = 1

2

(
a†)2

B− = 1

2
a2

These generators are defined as closed operators in the Hilbert space L2(R). They
obey the commutation rules (8.41). Furthermore for the Casimir operator we have
Cas =− 3

161.
We have already remarked in Sect. 8.2.6 that this representation of the Lie al-

gebra su(1,1) gives a projective representation of SU(1,1) (not a genuine group
representation).
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8.5.1 The Generator of Squeezed States

Consider now one-dimensional squeezed states. Recall the following definition.
Take a complex number ω such that |ω|< 1. We define

β(ω) = ω

|ω| arg tanh
(|ω|)

D(β) = exp
(
βB̂+ − β̄B̂−

)

D(β) is also known as the “Bogoliubov transformation” and generates squeez-
ing.

For |0〉 = ϕ0 being the ground state of B0, let the generalized coherent state ψβ
be defined as

ψβ =D(β)|0〉

Remark 47 It is not difficult to show that in terms of the operators Q̂, P̂ of quantum
mechanics one has

D(β)= exp

(
i

2
β(Q̂2 − P̂ 2)− i

2
�β(Q̂P̂ + P̂ Q̂)

)

We first recall the fundamental property of D(β) proved in Chap. 3 in any di-
mension.

Lemma 57 On D(Q̂)∩D(P̂ ) the following identities holds true:

(i) D(β) is unitary and satisfies

D(β)−1 =D(−β)
(ii)

D(β)aD(−β)= (
1− |ω|2)−1/2(a−ωa†)

(iii)

D(β)B0D(−β)= cosh(2r)B0 − sinh(2r)

2

(
B+eiθ +B−e−iθ

)

with β = reiθ being the polar decomposition of β into modulus and phase.

The following results are direct consequences of Chap. 3:

Proposition 107

(i) Define δ = 1−ω
1+ω . One has

�δ > 0
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and

ψβ(x)=
(�δ
π

)1/4( 1+ω
|1+ω|

)1/2

exp

(
−δ x

2

2

)

(ii) More generally if φk is the kth normalized eigenstate of B0 (Hermite function)
one has

D(β)φk = 2−k/2√
n!

(�δ
π

)1/4( 1+ω
|1+ω|

)k+1/2

Hk
(
x
√�δ ) exp

(
−δx

2

2

)

where Hk is the normalized kth Hermite polynomial.

Now we address the following question: what is the Wigner function of a
squeezed state? It will appear that it is a Gaussian in q,p but with squeezing in
some direction and dilatation in the other direction. One has the following result:

Proposition 108 The Wigner function Wψβ (q,p) is given by

Wψβ (q,p)= 2 exp

(
−q

2�δ
�

− 1

��δ (p+ qδ)
2
)

Remark 48

(i) For β = 0, δ = 1, and thus we recover the Wigner function of ϕ0.
(ii) It is clear that

1

2π�

∫
dq dpWψβ (q,p)= 1

The proof is an easy computation of Gaussian integrals.

8.5.2 Application to Quantum Dynamics

Consider the time dependent quadratic Hamiltonian

Ĥ2(t)= λ(t)B+ + λ̄(t)B− +μ(t)B0 (8.92)

where λ and μ are C1 functions of t , λ is complex and μ is real. Its propagator is
denoted U2(t, s). This is a particular case of general quadratic Hamiltonian studied
in Chap. 1 and in Chap. 4.

We revisit here the computation of U2(t, s) using the su(1,1) Lie algebra rela-
tions satisfied by {B0,B+,B−}.

It is convenient to formulate the result in an abstract setting.
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Proposition 109 Assume that B0,B± are closed operators with a dense domain in
a Hilbert space H such that B∗0 = B0, B∗+ = B− and satisfying the commutation
relations:

[B−,B+] = 2B0, [B0,B±] =±B±.
Then Ĥ2(t) defined by (8.92) has a propagator given by

U2(t, s)=D(βt ) exp
(
i(γt − γs)B0

)
D(−βt ) (8.93)

where the complex function βt and the real function γt satisfy the differential equa-
tions

iω̇t = λ̄ω2
t +μωt + λ, ω0 = 0 (8.94)

γ̇ = −λω̄− λ̄ω−μ, γ0 = 0 (8.95)

Proof The first step is to compute the following derivatives:

i
d

dt
D(βt )= (αtB+ + ᾱtB− + ρtB0)D(βt ) (8.96)

where

αt = i
ω̇t

1− |ω|2 (8.97)

ρt = i
ωt ˙̄ωt − ω̇t ω̄t

1− |ωt |2 (8.98)

Using (8.96) we can compute

i
d

dt
U2(t, s)=

(
αtB+ + ᾱtB− + ρtB0 − γ̇ D(βt )B0

)
D(−βt )

and we directly get (8.94).
Let us prove now (8.96).
The method is the following. Denote L(t)= βtB+ − β̄tB−. We have

L(t + δt)= L(t)+ δL(t)≈ L(t)+ δ d
dt
L(t)

Applying the Duhamel formula we get

eL(t+δt) − eL(t) =
∫ 1

0
ds esL(t+δt)δL(t)e(1−s)L(t)

Then as δt→ 0 we have

d

dt
eL(t) =

∫ 1

0
ds esL(t)L̇(t)e(1−s)L(t)
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Now we have L̇(t)= β̇tB+ − ˙̄βtB− and

d

ds
esL(t)B+e−sL(t) =−2β̄esL(t)B0e−sL(t)

and

d

ds
esL(t)B−e−sL(t) =−2βesL(t)B0e−sL(t)

Using Lemma 57 we get formula (8.96). �

Remark 49 The differential equation satisfied by ωt is a Ricatti equation. We have
seen in Chap. 4 that this equation comes from a classical flow. In particular ωt is
defined for every time t and satisfied |ωt |< 1 (ω0 = 0).

Let us now consider the time dependent Hamiltonian

Ĥg(t)= 1

2

(
P̂ 2 + f (t)Q̂2)+ g2

2Q̂2

where g is a coupling constant and f a function of time t . Properties of this Hamilto-
nian have been considered by [156] and used in [48] to study the quantum dynamics
for ions in a Paul trap.

The su(1,1) Lie algebra relations are satisfied by

B0 = P̂ 2 + Q̂2

4
+ g2

4Q̂2
, B± = Q̂2 − P̂ 2

4
− g2

4Q̂2
∓ QP + PQ

4
(8.99)

So we get

Ĥg(t)= 1

2

(
f (t)− 1

)
B+ + 1

2

(
f (t)− 1

)
B− +

(
1+ f (t))B0

The algebra is the same as above but here the potential g2

2Q̂2 has a non integrable

singularity and we have to take care of the domain of definition for operatorsB0,B±.
Let us consider the Hilbert space L2(R+). Recall the Hardy inequality

∫ +∞

0
dx
|u(x)|2
|x|2 ≤ 4

∫ +∞

0
dx

∣∣u′(x)∣∣2, ∀u ∈H 1
0 (R+)

Recall that H 1
0 (R+) is the Sobolev space H 1(R+) with the condition u(0) = 0.

Denote by L2
1(R+) the space {u ∈ L2(R+), xu ∈ L2(R+)}. The sesquilinear form

(u, v) �→ 〈u,B0v〉 is well defined on V :=H 1
0 (R+)∩L2

1(R+) and is Hermitian, non
negative. So B0 has a self-adjoint extension as a unbounded operator in L2(R+).
Furthermore we see that B± are also defined as forms on V and have closed ex-
tensions in L2(R+) such that B∗+ = B−. These extensions also satisfy the su(1,1)
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Lie algebra relations. Hence the unitary operators D(β), eiγB0 are well defined in
L2

1(R+) with β complex and γ real.
So we can apply Proposition 109 to the propagator Ug(t, s) of Hg(t).

Corollary 26 The Hamiltonian Hg(t) has time dependent propagator Ug(t, s)
given by (8.93)

Ug(t, s)=D(βt ) exp
(
i(γt − γs)B0

)
D(−βt ) (8.100)

where B0, B± are defined by (8.99) and βt , γt are determined by (8.94). Moreover
they are related to complex solutions of the Newton equation

ξ̈t = f (t)ξt , ξ̈0 = ig,

ωt = ξ + iξ̇
ξ − iξ̇ , γt =−1

2
arg

(
ξ − iξ̇) (8.101)

Remark 50 Note that the solution of the classical equation of motion for H0(t)

solves the quantum evolution problem for Ĥg for every g ∈R.

The su(1,1) Lie algebra can also be used to solve the stationary Schrödinger
equations for the hydrogen atom. It is nothing else than a group theoretic approach
of a method already used by Schrödinger himself [176].

Let us consider the radial Hamiltonian for the hydrogen atom with mass 1, �= 1,
charge e, energy E > 0.

(
d2

dr2
+ 2

r

d2

dr2
+ 2

e2

r
− �(�+ 1)

r2
+ 2E

)
R(r)= 0 (8.102)

We transform this equation by the change of variable r = x2 and of function R(r)=
x−3/2f (x). Then we get

(
d2

dx2
+ 8Ex2 − 4�(�+ 1)+ 3/4

x2
+ 8e2

)
f = 0

Another change of variable x = λu with λ= (− 1
8E )

1/4 gives

(
d2

du2
+ u2 +−4�(�+ 1)+ 3/4

u2
+ 8λ2e2

)
f = 0 (8.103)

This equation is the eigenvalue equation for the generator B0 with g2 = 4�(� +
1) + 3/4. So the negative energies of the radial Schrödinger equation (8.102) are
determined by the eigenvalues of B0.
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Lemma 58 The self-adjoint operator B0 has a compact resolvent. Its spectrum is a
discrete set of simple eigenvalues given by

λk = 2s + 1

4
+ k, k ∈N, where s = 1

2
+
(

1

4
+ g2

)1/2

(8.104)

Proof The domain of B0 is included in H 1
0 (R+) ∩ L2

1(R+) so we deduce that its
resolvent is compact.

The computation of the spectrum is standard, using B− and B+ as annihilation
and creation operators on the ground state ψ0. Using the results of Sect. 8.2.1.

We compute the ground state by solving equation B−ψ0 = 0. This a singular
differential equation. We put ψ0(x)= xsϕ(x). We can eliminate the singularity by

choosing s = 1
2 + ( 1

4 + g)1/2. Then the equation is satisfied if ϕ(x)= exp(−x2

2 ). So

we have ψ0(x) = C0x
s exp(−x2

2 ) where s is like in (8.104) and B0ψ0 = 2s+1
4 ψ0.

Then we get all the spectrum of B0 and all the bounded states ψk = CkBk+ψ0 where
the constants CK are chosen to have an orthonormal basis in L2(R+). �

Applying this lemma and formula (8.103) we see that (8.102) has non trivial

solutions for E =En =− e4

2n2 , n≥ 1, the well known energy levels of the hydrogen
atom. More properties will be given in the next chapter.

Remark 51 The Casimir operator is here Cas = cas1. cas is computed by

Casψ0 =
(
B2

0 −
1

2
(B+B− +B+B−)

)
ψ0 = k(k − 1)ψ0

with k = 2s+1
4 . This is not compatible with a discrete representation of SU(1,1)

except if s is half an integer. What we have considered here is an irreducible repre-
sentation of the universal cover S̃U(1,1).

It could be possible to study coherent states ϕβ =D(β)ψ0 in this representation
too as we have done for the discrete representations.

8.6 Wavelets and Pseudo-Spin-Coherent States

As is well known wavelets are associated with the affine group of transformations
of the real axis R: t �→ at + b where a > 0 and b ∈R. We denote g(a, b) this affine
transformation and AF the group of all affine transformations.

Wavelets are real functions defined by the action of the group AF on a given
function ψ so we have

ψa,b(t)= 1√
a
ψ

(
t − b
a

)
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If ϕa,b is the Fourier transform of ψa,b and ϕ the Fourier transform of ψ , we have

ϕa,b(s)=√ae−ibsϕ(as)

Now we shall see, following ideas taken from the paper [25], that wavelets and
pseudo-spin-coherent states are closely related.

This is not surprising using the following facts: the affine group is isomorph to
a subgroup of the SL(2,R) group1 which is isomorph to SL(2,R)/SO(2) and this
one is isomorph to SU(1,1)/U(1).2 Recall that the groups SU(1,1) and SL(2,R)
are conjugate

CSU(1,1)C−1 = SL(2,R), where C = 1√
2

(
1 i

i 1

)

Considering consequences of these facts, we shall find that the discrete series rep-
resentations of SU(1,1) have realizations with strong connections with the affine
group hence relationship between pseudo-coherent states and generalized wavelets
will follow.

Remark that the affine group can be identify to R
∗+ × R with the group law:

(a, b)× (a′, b′)= (aa′, ab′ + b). Let us consider the mapping

M : (a, b) �→
(√

a b√
a

0 1√
a

)

It is easy to see that M is a group isomorphism from AF into SL(2,R). Its image is
denoted Asl .

SU(2) is a compact subgroup of SL(2,R) and it is not difficult to prove that the
quotient space SL(2,R)/SO(2) can be identified to Asl :

Lemma 59 For every A ∈ SL(2,R) there exits a rotation R(θ)= ( cos θ sin θ
− sin θ cos θ

)
and

a unique affine transformation (a, b) ∈R
∗+ ×R such that

A=M (a, b)R(θ)

In particular the left cosets set SL(2,R)/SO(2) is isomorph to Asl .

Let us consider the discrete series D+
n which will be now denoted Dn (n ≥ 2

is an integer, n= 2k where k is the Bargmann index). Using the isomorphism ζ �→
z(ζ )= ζ+i

1+iζ from the unit disc D onto the Poincaré half-plane H, Dn can be realized
in the Hilbert space Hn(H). Hn(H) is the space of holomorphic functions f in H

1Recall that SL(2,R) is the group of 2× 2 real matrices of determinant one.
2Recall that U(1) is identified here with the group of matrices

( e−iθ 0
0 eiθ

)
, θ ∈R.
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such that

‖f ‖2
Hn(H)

= n− 1

π

∫
H

∣∣f (X+ iY )∣∣2Yn−2 dXdY <+∞

with the natural norm. So we have a unitary map f �→ F from Hn(H) onto Hn(D)

where F(ζ )= 2(1+ iζ )−nf (z(ζ )). In Hn(H) the discrete series Dn gives naturally
a unitary representation of SL(2,R)

(
Dn

(
a b

c d

)
f

)
(z)= (d − bz)−nf

(
az− c
−bz+ d

)
(8.105)

To establish a connection with the affine group it is convenient to realize the rep-
resentation Dn in the space Ȟn(H) of anti-holomorphic functions on H, so that
f ∈ Ȟn(H) means that f̌ (z)= f (z̄) with f ∈Hn(H). f �→ f̌ is a unitary map. We
denote ǏnF = f̌ . Then Dn is unitary equivalent to the representation Ďn

(
Ďn

(
a b

c d

)
f

)
(z)= (a − cz)−nf

(
dz− b
−cz+ a

)
(8.106)

Note that the unitary equivalence between Ďn and Dn is implemented by the group,
isomorphism in SL(2,R), (

a b

c d

)
�→

(
d c

b a

)

The restriction of Ďn to the affine group has the following expression:

(
Ďn

(
M (a, b)

)
f
)
(z)= a−n/2f

(
z− b
a

)
(8.107)

Wavelets are functions of a real variable, so the last step is to find a realization of
Dn in the space

L2
n(R+)=

{
ϕ

∣∣∣
∫ +∞

0
t1−n

∣∣ϕ(t)∣∣2 dt <+∞
}

with the natural norm.
Let us introduce the (anti-holomorphic) Fourier–Laplace transform:

(Lnϕ)(z)= cn
∫ +∞

0
ϕ(t)e−it z̄ dt, z ∈C, (z) > 0

cn is a normalization constant.
Using the Fourier inverse formula and the Plancherel formula we have

ϕ(t)= 1

2πcn
ety

∫ +∞

−∞
Lnϕ(x − iy)eitx dx, y > 0, t > 0 (8.108)
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1

2πcn

∫
H

∣∣Lnϕ(x − iy)
∣∣2yn−2 dx dy = Γ (n− 1)21−n

∫ +∞

0
t1−n

∣∣ϕ(t)∣∣2−n dt
(8.109)

So we get isometries between the spaces L2
n(R+), H (H) and Ȟ (H) choosing

cn = 2n−2

π(n−2)! . We have obtained the following irreducible unitary representation of

the affine group in the space L2
n(R+):

Wn(a, b) :=L −1
n Ďn

(
M (a, b)

)
Ln

ϕa,b(t) :=
(
Wn(a, b)ϕ

)
(t)= a1−n/2e−ibtϕ(at)

which represent wavelets on the Fourier side. Coherent states for SU(1,1) where
defined in the Hilbert space Hn(D) by an action of SU(1,1), starting from a fiducial
states ψ0 invariant by the action of the unit circle U(1) (isomorph to SO(2)). Then
SU(1,1) coherent states are parametrized by the quotient SU(1,1)/U(1)

But from Lemma 59 and the isomorphism between SU(1,1) and SL(2,R) we
see that SU(1,1)/U(1) can also be parametrized by the affine group: (a, b) �→ ga,b
where we choose one element ga,b in each left coset. We have seen above in the
construction of coherent states that SU(1,1)/U(1) can be parametrized by C (or
by pseudo-sphere): ξ �→ gξ . If ga,b and gξ are in the same coset then we have
ga,b = gξh where h ∈ U(1). We have chosen ψ0 rotation invariant so the actions
of ga,b and gξ define the same coherent state.

Let us move this construction in Hn(H) and in L2
n(R+). We get, respectively,

fiducial states f0(z)= dn(1− iz)n and ϕ0(t)= entn−1e−t where dn and en are suit-
able constants.

Then using properties of the representation Dn we get a bijective correspon-
dence between SU(1,1) coherent states defined in Hn(D) for D+

n and wavelets in
L2
n(R+). More precisely we have obtained

ϕa,b(t) :=
(
Wn(a, b)ϕ0

)
(t)= a1−n/2e−ibtϕ(at)

which represent wavelets on the Fourier side. Their relationship with the SU(1,1)
coherent states is given by

L −1
n Ǐnψξ = ϕa(ξ),b(ξ), ∀ξ ∈C (8.110)

Ǐ −1
n Lnϕa,b = ψξ(a,b), ∀(a, b) ∈R

∗+ ×R (8.111)

where ξ �→ (a(ξ), b(ξ)) is a bijection from C onto R
∗+ ×R and (a, b) �→ ξ(a, b) is

a bijection from R
∗+ ×R onto C.

In particular we also have a resolution of identity for wavelets which can be
obtained from (8.81) or by a direct computation.

f = n− 1

4π

∫∫
R
∗+×R

da db

a2
〈ϕab, f 〉ϕa,b, ∀f ∈ L2

n(R+) (8.112)
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The reader can find in [25] several explicit formulas concerning the three realiza-
tions of D±

n in Hn(D), Hn(H) and L2
n(R+).

Finally remark that Wn is a representation in L2
n(R+) of a subgroup of S(1,1)

conjugated to the restriction of D+
n . But all the representations Wn are equivalent

contrary to the representations D+
n which are non-equivalent.

If Mn is the unitary map Mnϕ(t)= t1−n/2ϕ(t) from L2
n(R+) onto L2(R+) then

we have clearly MnWn =W2Mn so Wn and W2 are conjugate for every n≥ 2.



Chapter 9
The Coherent States of the Hydrogen Atom

Abstract The aim of this chapter is to present a construction of a set of coherent
states for the hydrogen atom proposed by C. Villegas-Blas (Thomas and Villegas-
Blas in Commun. Math. Phys. 187:623–645, 1997; Villegas-Blas in Ph.D. thesis,
1996). We show that in a semiclassical sense they concentrate essentially around
the Kepler orbits (in configuration space) of the classical motion. A suitable unitary
transformation (the Fock operator) maps the pure-point subspace of the hydrogen
atom Hamiltonian onto the Hilbert space for the S

3 sphere. We study the coherent
states for the S

3 sphere (as introduced by A. Uribe (J. Funct. Anal. 59:535–556,
1984)) and show that the action of the group SO(4) is irreducible in the space gen-
erated by the spherical harmonics of a given degree. Note that coherent states for
the hydrogen atom have been extensively studied by J. Klauder and his school. We
have chosen not to present them here and refer the interested reader to Klauder and
Skagerstam (Coherent States, 1985).

9.1 The S
3 Sphere and the Group SO(4)

9.1.1 Introduction

It is well known that the non-relativistic quantum model for the hydrogen atom is

the quantization Ĥ of the Kepler Hamiltonian H(x,p)= |p|2
2 − 1

|x| , p,x ∈R
3.

The natural symmetry group for H seems to be the rotation group SO(3). We
shall see in Sect. 9.2 that the hydrogen atom has “hidden symmetries” and its sym-
metry group is the larger group SO(4) which explain the large degeneracies of the
energy levels of Ĥ . This is why we start by studying the group SO(4), its irreducible
representations and hyperspherical harmonics.

Recall that SO(4) is the group of direct isometries of the Euclidean space R
4 or

its unit sphere S
3,

S
3 = {

x = (x1, . . . , x4) |x2
1 + x2

2 + x2
3 + x2

4 = 1
}

Let us introduce the Laplacian ΔS3 for the sphere S
3, as the restriction to the unit

sphere S
3 of the Laplace operator ΔR4 :=∑

1≤j≤4
∂2

∂x2
j

. More explicitly computing

M. Combescure, D. Robert, Coherent States and Applications in Mathematical Physics,
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ΔR4 in hyperspherical coordinates:

x1 = r sinχ sin θ cosϕ

x2 = r sinχ sin θ sinϕ

x3 = r sinχ cos θ

x4 = r cosχ, where χ, θ ∈ [0,π[, ϕ ∈ [0,2π[

(9.1)

we get

ΔR4 = 1

r3

∂

∂r

(
r3 ∂

∂r

)
+ 1

r2
ΔS3 (9.2)

where

ΔS3 = ∂2

∂χ2
+ 2

tanχ

∂

∂χ
+ 1

sin2 χ
ΔS2, where (9.3)

ΔS2 = 1

tan θ

∂

∂θ
+ ∂2

∂θ2
+ 1

sin2 θ

∂2

∂ϕ2
(9.4)

Equation (9.2) defines the operator ΔS3 . It is a self adjoint operator in the Hilbert
space L2(S3) for the Euclidean measure dμ3(θ,ϕ,χ)= sin2 χ sin θ dθ dϕ dχ . The
measure dμ3 and the operator ΔS3 are invariant by the group SO(4). The spectrum
of ΔS3 can be described has follows: there exists an explicit constant c ∈ R such
that if Δ3 := −ΔS3 + c then Δ3 has the discrete spectrum

{
λk = (k + 1)2 |k ∈N

}

Each λk is known to have multiplicity (k + 1)2 (see [147] or what follows), which
coincides with multiplicities of bound states of hydrogen atom as we shall see later.

9.1.2 Irreducible Representations of SO(4)

SO(4) is a compact Lie group so we know that all its irreducible representations are
finite dimensional.

The Lie algebra so(4) of SO(4) is the algebra of antisymmetric 4× 4 real matri-
ces; so(4) has dimension 6 so the Lie group SO(4) has dimension 6.

We shall see that its irreducible representations can be deduced from irreducible
representations of SU(2) (computed in the chapter “Spin Coherent States” which
will be denoted (SCS)).

It is convenient to use the quaternion field H and its generators {1,I,J ,K}.
H is a 4-dimensional real linear space which can be represented as the space of
2× 2 matrices q = ( a b

−b̄ ā
)

where a, b ∈C. The basis is related with Pauli matrices:
1= σ0,I = iσ3,J = iσ2,K= iσ1.

The following properties are easy to prove.
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1. {1,I,J ,K} is an orthonormal basis for the scalar product 〈q, q ′〉 := 1
2 tr(q� ·q ′).

So H can be identified with the Euclidean space R
4.

2. q� · q = q · q� = (|a|2 + |b|2)1. In particular if q �= 0, q is invertible and q−1 =
q�

|q|2 where |q|2 = |a|2 + |b|2.
3. SU(2)= {q ∈H, |q| = 1}.
4. su(2)= {q ∈H, q� + q = 0}.

A quaternion q is said pure (or imaginary) if q� + q = 0 and real if q� = q .
5.

g ∈ SU(2) ⇐⇒ g = eθA = cos θ + (sin θ)A, θ ∈R, A a pure quaternion.

Now we can identify SO(4) with the direct isometries group of the Euclidean
space H. In particular if for any g1, g2 ∈ SU(2) we define τ(g1, g2)q = g1 · q · g−1

2
then τ(g1, g2) ∈ SO(4). Furthermore we have

Proposition 110 τ is a group morphism from SU(2)× SU(2) in SO(4). The kernel
of τ is ker τ = {(1,1), (−1,−1)} and τ is surjective.

In particular the group SO(4) is isomorphic to the quotient group SU(2) ×
SU(2)/{(1,1), (−1,−1)} and its Lie algebra so(4) is isomorphic to the Lie algebra
su(2)⊕ su(2).

Proof It is clear that τ is a group morphism. (g1, g2) ∈ ker τ means that g1 · q =
q · g2,∀q ∈ H. So we get successively:g1 = g2, g1 = λ1, λ ∈ C, λ = ±1 because
g1 ∈ SU(2).

To prove that τ is surjective, we use that τ(SU(2) × SU(2)) is a subgroup of
SO(4), its action on H is transitive and that we have a surjective group homomor-
phism g �→Rg from SU(2) in SO(3) (acting in pure quaternions). Let A ∈ SO(4). If
A1= 1 then there exists g ∈ SU(2) such that A= τ(g, g). If A1= q then there exist
g1, g2 ∈ SU(2) such that q = τ(g1, g2)1 so we can write A= τ(g1 · g,g2 · g). �

Now we use the following classical result to deduce irreducible representations
of SO(4) (for a proof see [34]).

Proposition 111 Let G1,G2 be two compact Lie groups, (ρ1,V1) and (ρ2,V2) two
irreducible representations ofG1 andG2, respectively. Then (ρ1⊗ρ2,V1⊗V2) is an
irreducible representation of G1 ×G2. Conversely every irreducible representation
of G1 ×G2 is like this.

Corollary 27 Let (ρ,V ) be an irreducible unitary representation of SO(4). Then
there exist j1, j2 ∈ N

2 such that j1 + j2 ∈ N and such that (ρ,V ) is unitarily equiv-
alent to (T (j1) ⊗ T (j2), V (j1) ⊗ V (j2)).

Proof Using Proposition 110 we can assume that (ρ,V ) is an irreducible repre-
sentation of SU(2)× SU(2)/{(1,1), (−1,−1)}. So (ρ,V ) is an irreducible repre-
sentation of SU(2)× SU(2) and from Proposition 111 we have (ρ,V ) ≡ (T (j1) ⊗
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T (j2), V (j1) ⊗ V (j2)). To get a representation of SU(2)× SU(2)/{(1,1), (−1,−1)}
it is necessary and sufficient that

T (j1)(−1)⊗ T (j2)(−1)= 1V (1)⊗V (2)

So we find the condition j1 + j2 ∈N. �

9.1.3 Hyperspherical Harmonics and Spectral Decomposition
of ΔS3

As we have already seen in Chap. 7 for SO(3) we shall see now that irreducible
representations of SO(4) are closely related with the hyperspherical harmonics and
spectral decomposition of ΔS3 .

Let us introduce the space P(k)
4 of homogeneous polynomials f (x1, x2, x3, x4)

in the four variables (x1, x2, x3, x4) of total degree k ∈ N and H̃(k)
4 the space of

f ∈P(k)
4 such that ΔR4f = 0.

H̃(k)
4 is determined by its restriction H(k)

4 to the sphere S
3 which is by definition

the space of hyperspherical harmonics of degree k.
Let f ∈ P(k)

4 . For x ∈ R
4 we have x = rω, r > 0, ω ∈ S

3 and f (x) = rkψ(ω).
So, using (9.2) we have

ΔS3ψ =−k(k+ 2)ψ, ∀ψ ∈H(k)
4 (9.5)

Let us introduce the modified Laplacian Δ3 = −ΔS3 + 1. Then H(k)
4 is an eigen-

space for Δ3 with eigenvalue λk = (k + 1)2.
The group SO(4) has a natural unitary representation in L2(S3) defined by the

formula

ρgψ(ω)=ψ
(
g−1ω

)
, g ∈ SO(4), ω ∈ S

3

ρ commutes with ΔS3 and each H(k)
4 is invariant by ρ.

The main goal of this sub-section is to prove the following results.

Theorem 44

(i) The Hilbert space L2(S3) is the direct Hilbertian sum of hyperspherical sub-
spaces:

L2(
S

3)=⊕
k∈N

H(k)
4 ,

(
H(0)

4 =C
)

(9.6)

Moreover we have

dim
(
H(k)

4

)= (k + 1)2 (9.7)
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(ii) For every k ∈ N the representation (ρ,H(k)
4 ) is irreducible and equivalent to

the representation (T (k/2) ⊗ T (k/2), V (k/2) ⊗ V (k/2)) where (T (j),V (j)) is the
irreducible representation of SU(2) defined in Chap. 7.

Proof We shall follow more or less the proof of Proposition 83 of Chap. 7. We first
get the following decomposition for homogeneous polynomial spaces in R

4:

P(k)
4 = H̃(k)

4 ⊕ r2P(k−2)
4 (9.8)

P(k)
4 = H̃(k)

4 ⊕ r2H̃(k−2)
4 ⊕ · · · ⊕ r2�H̃(k−2�)

4 (9.9)

where k− 1≤ 2�≤ k and r2 is multiplication by r2 := x2
1 + x2

2 + x2
3 + x2

4 .

Using the Stone–Weierstrass theorem it follows that
⋃
k∈NH(k)

4 is dense in
L2(S3) hence we get the decomposition formula (9.6).

Furthermore we have

dim
(
P(k)

4

)= dim
(
H(k)

4

)+ dim
(
P(k−2)

4

)
, and dim

(
P(k)

4

)=
(
k + 3

k

)

so we get formula (9.7) by the binomial Newton formula.
Let us prove now that H(k)

4 is irreducible for the representation ρ.

Denote by Σ(k)
4 the restriction to S

3 of P(k)
4 . Let us consider a fixed point on S

3,
for example n0 = (0,0,0,1). We can identify with SO(3) the subgroup of SO(4)
fixing n0. Let Σ(k)

4,3 be the subspace of ψ ∈ Σ(k)
4 such that ρgψ = ψ,∀g ∈ SO(3).

Irreducibility of H(k)
4 will follow from the

Lemma 60

(i) The dimension of Σ(k)
4,3 is [ k2 ] + 1 ([λ] is the greatest integer n such that n≤ λ).

(ii) Let E �= {0} be a finite-dimensional SO(4)-invariant subspace of the space
C(S3). Then there exists ψ0 �= 0, ψ0 ∈E such that ρgψ0 =ψ0 ∀g ∈ SO(3).

Admitting this lemma for a moment let us finish the proof of the theorem.

Proof For every k we have the following decomposition of Σ(k)
4 into irreducible

factors:

Σ
(k)
4 =

⊕
1≤�≤L

E�

where each E� is equivalent to some V (j) ⊗ V (j ′). Let us apply the lemma (ii) to
each E�. We get

L≤ dim
(
Σ
(k)
4,3

)=
[
k

2

]
+ 1 (9.10)
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But from (9.8) we get

Σ
(k)
4 =

⊕
2j≤k

H(k−2j)
4

So if one of the H(k−2j)
4 is reducible thenΣ(k)

4 would have at least [ k2 ]+2 irreducible

factors which is not possible because of (9.10). So all the spaces H(k)
4 are irreducible

for ρ. �

Let us prove now that (ρ,H(k)
4 ) is equivalent to the representation (T (k/2) ⊗

T (k/2), V (k/2) ⊗ V (k/2)). This is a consequence of the Peter–Weyl theorem whose
statement is

Theorem 45 [34] Let G be a compact Lie group with Haar measure dμ and let
(ρλ,V

(λ)
λ∈Λ) be the set of all its irreducible unitary representations (up to unitary

equivalence). For each λ ∈Λ consider an orthonormal basis of V (λ): {e(λ)k }1≤k≤kλ
and the matrix elements a(λ)k,�(g)=

√
kλ〈e(λ)k , ρλ(g)(e

(λ)
� )〉, g ∈G.

Then {a(λ)k,�, 1≤ k, �≤ kλ, λ ∈Λ} is an orthonormal basis of L2(G).

In the quaternion model we can see that S3 is isomorphic to the Lie group SU(2)
and up to a normalization constant the Hilbert spaces L2(S3) and L2(SU(2)) coin-
cide.

In V (j) consider the orthonormal basis vk , 0≤ k ≤ 2j and define the linear map
by vk ⊗ v� �→ a

(j)

k,� from V (j) ⊗ V (j) in L2(SU(2)). We get a unitary map U(j)

from V (j) ⊗ V (j) on a subspace E(j) of L2(SU(2)). Now applying the Peter–Weyl
theorem we have the following unitary equivalences:

L2(
S

3)∼ L2(SU(2)
)∼ ⊕

j∈N/2
E(j) ∼

⊕
j∈N/2

V (j) ⊗ V (j)

Using uniqueness for the decomposition into irreducible representations we can con-
clude that H(k)

4 ∼ V (k/2) ⊗ V (k/2). �

9.1.4 The Coherent States for S3

We want to introduce coherent states defined on S
3. Following Uribe [189] we con-

sider a pair of unit vectors a, b in S
3 such that

a · b= 0

(· denotes the usual bilinear form in C
4).

Let

α = a+ ib ∈C
4



9.1 The S
3 Sphere and the Group SO(4) 269

Fig. 9.1 Coherent states on the sphere

The geometrical interpretation is that α represents a tangent vector b at the point
a ∈ S

3. So the set A= {α = a+ ib | a · b= 0, |a| = |b| = 1} can be identified with
the unit tangent bundle S(S3) over S3. Moreover the intersection of S3 and the real
plane containing the vectors a,b is a geodesic on S

3 which will be denoted α̊. We
have clearly α̊ = {ω ∈ S

3, |ω · α| = 1}.
For every α ∈A, ω ∈ S

3 and k ∈N we define

Ψα,k(ω)= (α ·ω)k = (a ·ω+ ib ·ω)k

Uribe [189] has defined these coherent states for sphere S
n in any dimension n. We

shall call them spherical coherent states.
Using definition of A we see that Ψα,k is a spherical harmonics of degree k

namely it is an eigenfunction of Δ3 with eigenvalue (k + 1)2.
Let us remark that if ω is not on the geodesic α̊ then we have |α · ω|< 1 hence

Ψα,k(ω) is exponentially small as k→+∞, so Ψα,k(ω) lives close to the geodesic
α̊ when k is large.

The L2-norm of Ψα,k in L2(S3) is given by

‖Ψα,k‖2 =
∫
S3
|α ·ω|2k dμ3(ω)

Using hyperspherical coordinates we get

‖Ψα,k‖2 = 2π
∫ π

0
sin2k+2 χ dχ

∫ π

0
sin2k+1 θ dθ

Using well known expression for the Wallis integrals wn =
∫ π/2

0 sinn(θ) dθ , we get

‖Ψα,k‖2 = 2π2

k + 1
(9.11)

Let us check now the completeness of the coherent states Ψα,k .
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Proposition 112 The coherent states Ψα,k form a complete set on the irreducible

eigenspace H(k)
4 of the modified Laplacian Δ3 associated with the eigenvalue λk :

Pk = C(k)
∫
α̊∈Γ

|Ψα,k〉〈Ψα,k|dμ(α̊) (9.12)

where Pk is the projector onto H(k)
4 of Δ3 belonging to the eigenvalue λk , C(k) is

a constant of normalization, Γ is the space of geodesics α̊, and dμ(α̊) is the SO(4)
invariant probability measure on Γ . Moreover we can compute C(k):

C(k)= (k + 1)3

2π2

Proof Let g ∈ SO(4). One defines

gα = ga+ igb

It is not difficult to see that SO(4) acts on A transitively so that

A= {
gα0 |g ∈ SO(4)

}

where α0 ∈A is fixed. Then the Haar probability measure dμH on SO(4) induces a
pushed forward measure (or image measure) dμ(α) on A.

The integral operator in the right hand side of (9.12) commutes with any rotation
operator ρg given by a rotation g in SO(4). Therefore by Schur’s lemma this integral

operator must be a multiple of the identity on each irreducible subspace H(k)
4 .

The computation of C(k) is straightforward taking the trace in (9.12) and using
(9.11). �

As we have already remarked for spin coherent states in Chap. 7, the Ψα,k are not
mutually orthogonal. Here it is more difficult to compute 〈Ψα,k,Ψα′,k〉 for α �= α′
but it is possible to compute this overlap asymptotically for k→+∞ as is shown
in [191] and [185]. Here we only state the result.

Proposition 113 For any δ > 0 we have for k→+∞

〈Ψα,k,Ψα′,k〉 = 2π2

k

(
α� · α′

2

)k(
1+O(

kδ−
1
2
))+O(

k−∞
)

(9.13)

Remark 52 α and α′ define the same geodesic if and only if |α� · α′| = 1. So (9.13)
shows that the overlap is exponentially small if and only if α̊ �= α̊′.

Notice that on A the geodesic flow is multiplication by eit , t ∈R.
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9.2 The Hydrogen Atom

9.2.1 Generalities

We consider the hydrogen atom Hamiltonian

Ĥ := P̂ 2

2
− 1

|Q̂| = −
1

2
ΔR3 − 1

|x| (9.14)

Ĥ is the quantization of the Kepler Hamiltonian H(q,p) = p2

2 − 1
|q| , (q,p) ∈

R
3\{0} ×R

3.
The notations are the same as in Chap. 1. The first expression is more often used

in physics the second in mathematics. Ĥ is a self-adjoint operator in L2(R3) with
domain

D
(
Ĥ
)=D

(
P̂ 2)∩D

(
1

|Q̂|
)
=H 2(

R
3) (Sobolev space, Kato’s result)

For simplicity we have taken m= e= �= 1.
It is easy to prove that Ĥ commutes with the angular momentum operator L̂ =

Q̂∧ P̂ which is a consequence of its SO(3) symmetry property: Ĥ commutes with
the three generators L̂= (L̂1, L̂2, L̂3) of SO(3).

Other symmetries were discovered a long time ago for the Kepler problem
(Laplace, Runge, Lenz) and give, after quantization, symmetries for the hydro-
gen atom. Let us consider first the classical Hamiltonian setting and introduce the
Laplace–Runge–Lenz vector:

M := p∧L− q
|q| = (M1,M2,M3) (9.15)

where the classical angular momentum is L = q∧ p = (L1,L2,L3). We have the
following properties.

1. {Mk,H } = 0, k = 1,2,3
2. L ·M= 0
3. {Mj,Lk} = εj,k,�M�

4. {Mj,Mk} = −2Hεj,k,�M�

where εj,k,� is the usual antisymmetric tensor.
In particular we can deduce form these properties that if the energy of H is

fixed and negative (H = E < 0) then the six integrals L,M span a Lie algebra (for
the Poisson bracket) isomorphic to the Lie algebra so(4) (see Sect. 9.1.2 of this
chapter). In these sense the Kepler problem has “hidden symmetries” contained in
the Laplace–Runge–Lenz vector M. For an historical point of view about M we
refer to [94].
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After quantization we get a Laplace–Runge–Lenz operator:

M̂ = 1

2

(
P ∧ L̂− L̂∧ P )− X

|X|
One has the following commutation rules, corresponding to the above classical one
(see [182] for detailed computations).

1. [L̂j , L̂k] = iεjklL̂l
2. [L̂j , M̂k] = iεjklM̂l

3. [M̂j , M̂k] = −2iεjklM̂lĤ

4. L̂ · M̂ = M̂ · L̂= 0
5. M̂2 − 1= 2Ĥ (L̂2 + 1)

It is known that Ĥ has a purely absolutely spectrum on [0,+∞) and a negative
point spectrum of the form

En =− 1

2n2
, n ∈N

∗

The degeneracy of the eigenvalue En is n2. We shall see that this is due to the
“hidden symmetries” contained in the Laplace–Runge–Lenz operator M commuting
with Ĥ (L̂ is also commuting with Ĥ but it generates apparent spherical symmetries
of Ĥ ). Let us now recall the usual proof for the following result.

Lemma 61 The eigenvalue En =− 1
2n2 of Ĥ has degeneracy n2.

Proof We give here a sketch of proof, for the details we refer to any text book in
quantum mechanics.

In spherical coordinates we have

Ĥ =−r ∂
2

∂r2
r − 1

r2
ΔS2 − 1

r

Recall that the spherical harmonics Ym� satisfy L̂2Ym� = �(�+ 1)Ym� (see Chap. 7).
Eigenvalues are obtained by solving the radial equation

−r ∂
2

∂r2
r + �(�+ 1)

r2
− 1

r
f (r)=Ef (r)

So we get the eigenvalues En for n≥ 1 and a basis of the eigenspace:

En := {ψn,�,m, −�≤m≤ �, 0≤ �≤ n}
The degeneracy of En equals to the dimension of En:

dim(Hn)=
n−1∑
p=0

(2p+ 1)
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To this sum of odd numbers up to 2n − 1 we add and subtracts the sum of even
numbers up to 2n− 2. This yields

dim(Hn)= n(2n− 1)− n(n− 1)= n2 �

In the following section we shall recover this result using the SO(4) symmetry in
a transparent way.

9.2.2 The Fock Transformation: A Map from L2(S3) to the
Pure-Point Subspace of Ĥ

We follow a presentation of Bander–Itzykson [14]. Consider the eigenvalue problem
of the hydrogen atom:

Ĥψ =
(
P 2

2
− 1

|X|
)
ψ =Eψ

In Fourier variable p one gets

(
p2

2
−E

)
ψ̃(p)= 1

2π2

∫
R3

ψ̃(q)
|p− q|2 dq (9.16)

where we have set �= 1 for simplicity and ψ̃(p)= (2π)−3/2
∫
R3 dq e−iq·pψ(q) dq.

Since the bound states of the hydrogen atom have negative eigenenergies E we
define p0 > 0 such that

2E =−p2
0

Then we define the stereographic projection from the momentum space R
3 onto S

3
0

(the sphere S3 with the north pole (0,0,0,1) removed): consider S3 divided into two
hemispheres by the momentum space R

3. Given a vector p/p0 ∈R
3 (homogeneous

coordinates), take the line from the north pole to this point. It will intersect the
sphere S

3 at a point w ∈ S
3
0. We have:

w = (w1,w2,w3,w4) (9.17)

wi = 2p0

p2 + p2
0

pi, i = 1,2,3 (9.18)

w4 = p2 − p2
0

p2 + p2
0

(9.19)

w := F(p) defines a new parametrization of the sphere S
3
0. The inverse transforma-

tion is simply

F−1(w)= pi(w)= p0wi

1−w4
, i = 1,2,3
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In this parametrization the Euclidean measure dμ3 of S3 can be computed using the
formula

dμ3(w)= det

(〈
∂F

∂pk
,
∂F

∂p�

〉)
d3p

So we get

dμ3(w)= 2δ
(
w2 − 1

)
d4w=

(
2p2

0

p2 + p2
0

)3

d3p

When p0 = k we denote by wk(p) the corresponding stereographic transformation
(9.17).

To the change of variables F is associated the following unitary transform UF
from L2(R3) into L2(S3):

UF (ψ̃)(w) :=Φ(w)= 1√
p0

(
p(w)2 + p2

0

2p0

)2

ψ̃
(
p(w)

)
(9.20)

Now we can show that the L2 norms of ψ̂ and Φ are the same:

∥∥Φ(w)∥∥2
L2(S3)

=
∫
S3

∣∣Φ(w)∣∣2 dμ3(w)=
∫
R3

p2 + p2
0

2p2
0

∣∣ψ̃(p)∣∣2 dp

Due to the virial theorem1 one has

E

∫
R3

∣∣ψ̃(p)∣∣2 dp=−
∫

p2

2

∣∣ψ̃(p)∣∣2 dp (9.21)

Thus ∥∥Φ(w)∥∥
L2(S3)

= ∥∥ψ̂(p)∥∥
L2(R3)

One has the following remarkable property (just compute).

Lemma 62 Given q ∈R
3 we define the point v ∈ S

3
0 by the stereographic equations

(9.17) with q instead of p and the same p0. One has

|p− q|2 = (p2 + p2
0)(q

2 + p2
0)

(2p0)2
|w− v|2

Therefore from (9.16) one finds that the equation obeyed by Φ is simply

Φ(w)= 1

2π2p0

∫
S3

Φ(v)
|v−w|2 dμ3(v) (9.22)

1Recall that the virial theorem says: if ψ is a bound state of Ĥ and Â = x·∇x+∇x ·x
2i then

〈[Ĥ , Â]ψ,ψ〉 = 0. For the hydrogen atom we have i−1[Ĥ , Â] = −Δ− 1
|x| . So we have (9.21).
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Consider the operator T in L2(S3) defined by

(T Φ)(w)=
∫
S3

Φ(v)
|w− v|2 dμ3(v)

Note that T commutes with rotations ρR defined by

(ρRΦ)(v)=Φ
(
R−1v

)

with R ∈ SO(4). For n ∈ N
∗, H(n−1)

4 is the finite-dimensional space generated by
the harmonic polynomials of degree n− 1 in the variables (v1, v2, v3, v4) restricted
to S

3. We have shown that the operators ρR restricted to the space H(n−1)
4 give an

irreducible representation of SO(4). Thus due to Schur’s lemma, the operator T acts
as a multiple of the identity in H(n−1)

4 :

T |H(n−1)
4

= λn1

We shall now calculate λn.

Proposition 114 One has

λn = 2π2

n

It is enough to take a particular function in H(n−1)
4 say

G(v)= (v3 + iv4)
n−1

solution of

G(w)=
∫
S3

G(v)
|w− v|2 dμ3(v)= λnG(w)

We introduce the spherical coordinates (χ, θ,φ) in S
3:

v1 = sinχ sin θ cosφ

v2 = sinχ sin θ sinφ

v3 = sinχ cos θ

v4 = cosχ

and choose w= (0,0,0,1). We get the following equation:

∫ 2π

0
dχ

∫ π

0
dθ

∫ π

0
dφ

(sinχ cos θ + i cosχ)n−1

2(1− cosχ)
sin2 χ sin θ = λnin−1
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Doing the integration with respect to θ,φ we get

2π

n

∫ 2π

0
dχ

sinχ

1− cosχ
sin(nχ)= λn

which finally yields

λn = 2π2

n

Comparing with (9.22) we obtain p0 = 1
n

and thus

En =− 1

2n2

Thus we recover the point spectrum of the hydrogen atom with its degeneracy: n2 =
dim(H(n−1)

4 ).
We shall now use (9.20) to show that the eigenfunctions of Ĥ map onto the

spherical harmonics defined on S
3.

Recall that L̂ is the quantum angular momentum operator, and

L̂2 = L̂2
1 + L̂2

2 + L̂2
3

Consider the normalized eigenfunctions of the hydrogen atom Ψn,�,m satisfying:

ĤΨn,�,m = − 1

n2
Ψn,�,m (9.23)

L̂2Ψn,�,m = �(�+ 1)Ψn,�,m, �= 0,1, . . . , n− 1 (9.24)

L̂3Ψn,�,m = mΨn,�,m, m=−�,−�+ 1, . . . , �− 1, � (9.25)

Recall that En is the n2-dimensional vector space spanned by the functions

{Ψn,�,m | 0≤ l ≤ n− 1, −l ≤m≤ l}.

Let Hpp be the subspace of L2(R3) spanned by the eigenfunctions of Ĥ . We define
the operator U :Hpp �→ L2(S3) using (9.20):

(
UΨ̂n,�,m

)
(w)= 1√

p0

(
p2(w)+ p2

0

2p0

)2

Ψ̂n,�,m
(
p(w)

)

and extend U linearly to all the space Hpp . Since UΨ̂n,�,m satisfies (9.22) UΨ̂n,�,m
must belong to the space H(n−1)

4 , thus one has

Δ3(UΨ̂n,�,m)= n2UΨ̂n,�,m

where Δ3 is the modified Laplacian on S
3 with eigenvalue n2.
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Since U preserves the L2 norm and the spaces En and H(n−1)
4 have the same

finite dimension U is an unitary operator from En onto H(n−1)
4 . Furthermore it is a

unitary operator from Hpp =⊕
n∈N En onto L2(S3)=⊕

n∈NH(n−1)
4 .

Let Πpp be the orthogonal projector onto the pure-point spectrum space of Ĥ .
One has

−1

2
Ĥ−1Πpp =

∞∑
n=1

n2Πn

where Πn is the projector onto En. One has

Proposition 115

U
(
Ĥ−1Πpp

)
U−1 =−2Δ3

Proof Let Π ′n be the projector onto H(n−1)
4 . One has

Δ3 =
∞∑
n=1

n2Π ′n.

Since

UΠnU
−1 =Π ′n

this yields the result. �

9.3 The Coherent States of the Hydrogen Atom

Using the unitary operator introduced in Sect. 9.2, U : L2(R3) �→ L2(S3), we define
the coherent states of the hydrogen atom as

Ψ̂α,k =U−1Ψα,k (9.26)

From now on we define Ψα,k(w) = ck(α · w)k where the constant ck is chosen so
that ‖Ψα,k‖L2(S3) = 1. It was computed in Sect. 9.1: c2

k = k+1
2π2 .

Equation (9.26) reads using (9.20):

Ψ̂α,k(p)=√p0

[
2p0

p2 + p2
0

]2

Ψα,k
(
wk(p)

)= ck√p0

[
2p0

p2 + p2
0

]2(
α ·wk(p)

)k

(we recall that wk(p) is the stereographic projection (9.17) for p0 = k).
Let us define the dilation operator Dk in L2(R3) as

(DkΨ )(x)= k3/2Ψ (kx)
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or in momentum space

(
DkΨ̂

)
(p)= k−3/2Ψ̂

(
p
k

)

Defining J to be the multiplication operator by ( 2
p2+1

)2 we get

Ψ̂α,k(p)= (DkJΨα,k)(p)= ckDk

[(
2

p2 + 1

)2(
α ·w1(p)

)k
]

(9.27)

Taking the Fourier transform we see that the coherent state for the hydrogen atom
in configuration space equals

Ψα,k(x)= ck

(2πk)3/2

∫
R3

exp

(
ip · x
k

)(
2

p2 + 1

)2(
α ·w1(p)

)k
dp

Now we shall consider the state Ψα,k(x) dilated by k2:

Φα,k(x) := (Dk2Ψα,k)(x)

= ck

(
k

2π

)3/2 ∫
R3

(
2

p2 + 1

)2

exp
(
ikp · x+ k log

(
α ·w1(p)

))
dp

Note that log(α ·w1(p)) is well defined: if α4 = 0 then |α ·w1(p)| → 0 as |p| →∞
and one thus gets a decrease outside a compact K of R3. On K the logarithm is
defined locally. If α4 �= 0 then

α ·w1(p)= α4 +O
(

1

|p|
)

where α4 ∈ C. Then there exists R > 0 such that for |p|> R the logarithm is well
defined.

The aim is now to show that Φα,k(x) concentrates in the neighborhood of a Ke-
pler orbit when k becomes large. This is a semiclassical result since k plays the
role of 1

�
. For doing this we use complex stationary phase estimates applied to the

integral:

Φα,k(x)= ck
(
k

2π

)3/2 ∫
R3
dp

(
2

p2 + 1

)2

exp
(
kf (x,p)

)

with

f (x,p)= ix · p+ log
(
α ·w1(p)

)
(9.28)

The stationary phase condition reads

�f (x · p) = 0 (9.29)

∇pf (x,p) = 0 (9.30)
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But

�f (x,p)= log
(∣∣α ·w1(p)

∣∣)
We have |α ·w1(p)| ≤ 1 with equality only when w1(p) is in the plane generated by
a =�α, b=α. Take for simplicity

α = ê1 + i(ê2 cosγ + ê4 sinγ )

We assume γ �= π
2 ,

3π
2 . The vectors êi are unit vectors in the direction of the compo-

nents wi . Thus the first stationary phase condition (9.29) imposes that w1(p) must
satisfy a parametric equation of the form:

w1(p)= ê1 cosβ + sinβ(ê2 sinγ + ê4 cosγ )

The corresponding conditions for the momentum components are

p1 = cosβ

1− sinβ sinγ

p2 = sinβ cosγ

1− sinβ sinγ

p3 = 0

So p describes the circle Cγ in the plane p3 = 0: p2
1 + (p2 − tanγ )2 = 1

cos2 γ
.

One sees easily that α ·w1(p)= eiβ which is a complex number of modulus 1 as
required. Now we consider condition (9.30): it reads

ixj + 2

(p2 + 1)(α ·w1(p))

[
αj +

(
α4 − α ·w1(p)

)
pj
]= 0 (9.31)

Thus x must satisfy the parametric equations:

x1(β) = sinβ − sinγ

x2(β) = − cosβ cosγ

x3 = 0

Thus x must belong to the ellipse E(γ ) of equation

(x1 + sinγ )2 +
(

x2

cosγ

)2

= 1 (9.32)

of energy −1/2:

p2

2
− 1

|x| = −
1

2
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Fig. 9.2 Kepler ellipse

To apply the saddle point method (see Sect. A.4) one needs to show that the
Hessian matrix is non singular at the critical point (x(β),p(x(β))). One calculates
the Hessian matrix Hβ

Hβ = ∂2
p,pf

(
x(β),p

(
x(β)

))

First of all we easily see that if x is not on the ellipse E(γ ) then we have

Φα,k(x)=O
(
k−∞

)

A tedious calculation sketched in Sect. A.3 shows that on E(γ ) we have

|detHβ |
= (1− sinβ sinγ )4

√(
sin2 γ + 2 sinβ sinγ + 1

)(
sin2 γ − 2 sinβ sinγ + 1

)
(9.33)

So we have detHβ �= 0.
From now on it is enough to consider a neighborhood V of a fixed point x0 :=

x(β) on E(γ ). f (x,p) being holomorphic in a complex neighborhood of (x0,p(x0))

in C
3 × C

3, the saddle point method (see Sect. A.4) can be applied and gives for
every x ∈ V ,

∣∣Φα,k(x)∣∣= Cst k1/2
∣∣∣∣ 2

1+ p2(x)

∣∣∣∣
2

exp
(
kf
(
x,p(x)

)) 1√|detHβ |
(
1+O(

k−1/2))
(9.34)

Let us remark that the exponent in (9.34) is fast decreasing in k for x /∈ E(γ ).
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To analyze more carefully the behavior of |Φα,k(x)| nearby x0 we choose con-
venient coordinates. Let x(β, t, s)= x(β)+ tνβ + sê3 where β ∈ [0,2π[, νβ is the
normal vector to E(γ ) at x(β): νβ = sinβ cosγ ê1 − cosβê2. (t, s) are such that
t2 + s2 < δ2 with δ > 0 small enough.

We use the shorter notations x0 = x(β), xt,s = x(β, t, s), p0 = p(x0).
Using the Taylor expansion we get

f
(
xt,s ,p(xt,s)

)− f (x0,p0)

= ∂xf (x0,p0) · (xt,s − x0)+ 1

2
∂2

x ,xf (x0,p0)(xt,s − x0) · (xt,s − x0)

+ 1

2
∂2

x ,pf (x0,p0)(xt,s − x0) ·
(
p(xt,s)− p0

)

+ 1

2
∂2

p,pf (x0,p0)
(
p(xt,s )− p0

) · (p(xt,s)− p0
)+O(|xt,s − x0|3

)
(9.35)

and

p(xt,s)− p0 = ∂xp(x0)(xt,s − x0)+O
((
t2 + s2)3/2) (9.36)

But we have Hβ =−i∂px so ∂xp(x0)= iH−1
β and we get, taking the real part in the

Taylor expansion,

�f (xt,s ,p(xt,s ))= 1

2
�H−1

β (tνβ + sê3) · (tνβ + sê3)+O
((
t2 + s2)3/2) (9.37)

Here we have used that ∂xf is imaginary and ∂2
x,x(x0,p0)= 0, ∂2

x,p(x0,p0)= i.
The matrix �H−1 (real part of H−1) has the following form (see computations

in Sect. A.3):

�H−1 =− 1

h(β, γ )

⎛
⎜⎝

sin2 β cos2 γ − sinβ cosβ cosγ 0
− sinβ cosβ cosγ cos2 β 0

0 0 h(β,γ )

sin2 γ−2 sinβ sinγ+1

⎞
⎟⎠

where

h(β, γ )= (1− sinβ sinγ )2
(
sin2 γ + 2 sinβ sinγ + 1

)

The eigenvectors of �H−1 are

v1 = (cosβ, sinβ cosγ,0)

v2 = νβ = (sinβ cosγ,− cosβ,0)

v3 = ê3 = (0,0,1)
(9.38)
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with corresponding eigenvalues:

λ1 = 0

λ2 = − sin2 β cos2 γ + cos2 β

h(β, γ )

λ3 = − 1

sin2 γ − 2 sinβ sinγ + 1

(9.39)

Since λ2, λ3 < 0 we see that for k large |Φα,k(x)|2 behaves like a Gaussian highly
concentrated around the ellipse at the point x0. Furthermore it decreases in the di-
rection of the eigenvectors v2, v3 namely in the direction perpendicular to the plane
of the ellipse and in the plane of the ellipse in the direction normal to the ellipse
(note that p(x0) · v2 = 0). More precisely we have

∣∣Φα,k(xt,s)∣∣2 = Cst

∣∣∣∣ 2

p(xt,s)2 + 1

∣∣∣∣
4 1

|detHβ,t,s |e
kQ(t,s)k +O(

k−1) (9.40)

where

Q(t, s)= 1

2
�H−1

β (tνβ + sê3) · (tνβ + sê3)+O
((
t2 + s2)3/2)

The quadratic formQ0(t, s) := 1
2�H−1

β (tνβ+ sê3) · (tνβ+ sê3) is definite-negative
in the plane (t, s).

Now we shall see that as k→+∞ the density probability |Φα,k|2 converges to a
probability measure supported in the ellipse E(γ ). The following statement is close
to [191] (Thesis, Proposition 4.1).

Proposition 116 For every continuous and bounded function ψ in R
3 we have

lim
k→+∞

∫
R3

∣∣Φα,k(x)∣∣2ψ(x) dx= Cst
∫
E(γ )

ψ(e) d(e,O)d�(e) (9.41)

where d�(e) is the length measure on the ellipse E(γ ), d(e,O) is the distance of
e ∈ E(γ ) to its focus O , Cst is a normalization constant.

Proof From computations already done we have

∣∣∣∣ 2

p(x0)2 + 1

∣∣∣∣
4 1

|detHβ |
= (

sin2 γ + 2 sinγ sinβ + 1
)−1/2(sin2 γ − 2 sinγ sinβ + 1

)−1/2

and

detQ0 = λ2λ3

= 1− sin2 γ sin2 β

(1− sinγ sinβ)2(sin2 γ + 2 sinγ sinβ + 1)(sin2 γ − 2 sinγ sinβ + 1)
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So we can apply the stationary phase theorem in variables (t, s) to get

lim
k→+∞

∫
R3

∣∣Φα,k(x)∣∣2ψ(x) dx

= Cst
∫ 2π

0
(1− sinγ sinβ)

(
1− sin2 γ sin2 β

)1/2
ψ
(
x(β)

)
dβ

But for e = x(β) we have (1 − sin2 γ sin2 β)1/2ψ(x(β)) dβ = d�(e) and
(1− sinγ sinβ) is the distance between x(β) and O .

Let us remark that the speed v(β) of a classical particle travelling on E(γ ) is

v(β)=
√

1− sin2 γ sin2 β

1− sinγ sinβ �



Chapter 10
Bosonic Coherent States

Abstract In a first part we give a brief presentation of general Fock space setting
to describe quantum field theory. Bosons are quantum particle with integer spin and
have symmetric wave functions; fermions are quantum particle with half-integer
spin and are represented with anti-symmetric wave functions. The functional set-
ting is given by symmetric or anti-symmetric tensor product of Hilbert spaces. We
describe these spaces and transformations between these spaces. We shall follow
the references (Berezin in The Method of Second Quantization, 1966; Bratteli and
Robinson in Operator Algebra and Quantum Statistical Mechanics II, 1981). Coher-
ent states are defined by translating the vacuum states with the Weyl operators. This
is easily done here for bosons. We shall see in the next chapter how to deal with
fermions.

In a second part we give an interesting application of bosonic coherent states to
the study of the classical limit as �↘ 0 of non-relativistic boson systems with two
body interaction in the neighborhood of a solution of the classical system (here the
Hartree equation). The classical limit corresponds here to the mean-field limit as the
number of particles goes to infinity.

As we have done for finite systems, we here use Hepp’s method, which is a
linearization procedure of the quantum Hamiltonian around the classical field. The
fluctuations around this solution are controlled by a purely quadratic Hamiltonian.
In a series of several important papers (Ginibre and Velo in Commun. Math. Phys.
68:45–68, 1979; Ann. Phys. 128(2):243–285, 1980; Ann. Inst. Henri Poincaré, Phys.
Théor. 33:363–394, 1980) Ginibre and Velo have proven an asymptotic expansion
and remainder estimates for these quantum fluctuations.

Finally, following the paper (Rodnianski and Schlein in Commun. Math. Phys.
291:31–61, 2009) one can show that, in the limit �↘ 0, the marginal distribution
of the time-evolved coherent states tends in trace-norm to the projector onto the
solution of the classical field equation (Hartree equation) with a uniform remainder
estimates in time.

10.1 Introduction

This chapter is very different from the others in this book. Until now we have con-
sidered coherent states depending on a parameter living in a finite dimensional space

M. Combescure, D. Robert, Coherent States and Applications in Mathematical Physics,
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-0196-0_10, © Springer Science+Business Media B.V. 2012
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(typically a phase space for a classical mechanical system or more generally a Lie
group). But coherent states may also be a useful tool to analyze quantum systems
with an infinite number of particles (this was the main motivation for the founder
of coherent states, R.J. Glauber). Large number of particles systems are studied in
many domains of physics: statistical mechanics, quantum field theory, quantum op-
tics for example. There are many books and papers in the physical literature (Wein-
berg [194]). There exist also books more rigorous from the mathematical point of
view [33] and for a discussion concerning physical and mathematical aspects see
the book [78].

10.2 Fock Spaces

10.2.1 Bosons and Fermions

Let us start with a quantum system of identical particles. Each particle has its states
in the Hilbert space h. The states of systems of k particles are in the Hilbert space
h⊗k = h⊗ · · · ⊗ h and if the number of particles is not fixed (like in quantum field
theory) the total Hilbert space is the Fock space

F (h) :=
⊕
k≥0

h
⊗k (10.1)

where h⊗0 =C (“no-particle” space).
Let us recall here that if {ej }j∈J is an orthonormal basis of h then {ei1 ⊗

ei2 ⊗ · · · ⊗ eik , |i1, . . . , ik ∈ J } is an orthonormal basis of h⊗k . So if we denote

ψ
(k)
i1,i2,...,ik

= 〈ei1 ⊗ ei2 ⊗ · · · ⊗ eik ,ψ(k)〉 then we have

‖ψ‖2 =
∑

k≥0,i1,...,ik∈J

∣∣ψ(k)
i1,i2,...,ik

∣∣2 (10.2)

Recall that the differences between bosons and fermions are determined by their
behavior under permutations (Pauli exclusion principle for fermions). Let us denote
Sk the group of permutations of {1,2, . . . , k} and by επ the signature of π ∈Sk .

The following equalities can be extended in two projections in F (h):

ΠB(ψ1 ⊗ · · · ⊗ψk) = 1

k!
∑
π∈Sk

ψπ1 ⊗ψπ2 ⊗ · · · ⊗ψπk

ΠF (ψ1 ⊗ · · · ⊗ψk) = 1

k!
∑
π∈Sk

επψπ1 ⊗ψπ2 ⊗ · · · ⊗ψπk
(10.3)

where ψ1, . . . ,ψk ∈ h. The following notations will be used:

ψ1 ∧ψ2 ∧ · · · ∧ψk =ΠF (ψ1 ⊗ · · · ⊗ψk)
ψ1 ∨ψ2 · · · ∨ψk =ΠB(ψ1 ⊗ · · · ⊗ψk)
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Definition 20 The subspace FB(h) := ΠBF (h) is the Fock space of bosons and
the subspace FF (h) :=ΠFF (h) is the Fock space of fermions.

h
⊗k
B,F =ΠB,F (h

⊗k) are the k-particles subspaces for bosons (B) or fermions(F).

The number operator N is defined as follows:

Nψ(k) = kψ(k), ψ(k) ∈ h
⊗k (10.4)

N can be extended as a self-adjoint operator in F (h) with domain

D(N)=
{
ψ ∈F (h),

∑
k≥0

k2
∥∥ψ(k)

∥∥2
<+∞

}
(10.5)

Moreover N commutes with ΠB,F so N is a self-adjoint operator in the spaces
FF,B(h).

We can define operators in FB,F (h) starting from an Hamiltonian H in h by a
method known as second quantization as follows.

Define H(0) = 0 and for k ≥ 1,

H(k)
(
ΠB,F (ψ1 ⊗ · · · ⊗ψk)

)

=ΠB,F

( ∑
1≤j≤k

ψ1 ⊗ · · · ⊗ψj−1 ⊗Hψj ⊗ψj+1 ⊗ · · · ⊗ψk
)

(10.6)

By linearity the direct sum of H(k) defines an operator H :=⊕
k H

(k) in FB,F (h).
H is the second quantization of H . It is convenient to introduce the dense subspace
defined as

F0(h)=
{
ψ ∈F (h)|ψ(k) = 0 if k large enough

}
⊕

k H
(k) is well defined in F0(h). More precisely we have the following easy to

prove lemma.

Lemma 63 If H is a self-adjoint operator in h then H can be extended as a unique
self-adjoint operator (with dense domain) in FB,F (h). This operator is also denoted
dΓ (H) or H.

If U is a unitary operator then
⊕

k U
(k) can be extended in a unique unitary

operator in FB,F (h). This operator is denoted Γ (U) or U.

Remark 53 If H = 1 then we see that dΓ (1)=N, the number operator.
If Ut = e−itH with H self-adjoint in h then we have Γ (Ut )= e−itdΓ (H) in other

words the infinitesimal generator of Γ (Ut ) is the second quantization of the gener-
ator of Ut .

In quantum field theory the number of particles of the system is not constant
so we have to define two kinds of observable: annihilation operators and creation
operators (other names are absorption and emission operators).
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Definition 21 For every f ∈ h we define the operators a(f ) and a∗(f ) by the fol-
lowing conditions:

a(f )ψ(0) = 0, a∗(f )ψ(0) = f
a(f )(ψ1 ⊗ · · · ⊗ψk)= (k + 1)1/2〈f,ψ1〉ψ2 ⊗ · · · ⊗ψk
a∗(f )(ψ1 ⊗ · · · ⊗ψk)= k−1/2f ⊗ψ1 ⊗ψ2 ⊗ · · · ⊗ψk

Remark that f �→ a(f ) is antilinear and f �→ a∗(f ) is linear on h.

Lemma 64 For every ψ(k) ∈ h⊗k , f ∈ h, we have

∥∥a(f )ψ(k)
∥∥≤ k1/2‖f ‖∥∥Ψ (k)

∥∥, ∥∥a∗(f )ψ(k)
∥∥≤ (k+1)1/2‖f ‖∥∥Ψ (k)

∥∥ (10.7)

a(f ) and a∗(f ) are defined on the linear space D(N1/2) and satisfy,

∥∥a(f )ψ∥∥ ≤ ‖f ‖∥∥(N+ 1)1/2ψ
∥∥ (10.8)

∥∥a∗(f )ψ∥∥ ≤ ‖f ‖∥∥(N+ 1)1/2ψ
∥∥, ∀ψ ∈D(N1/2) (10.9)

a(f ) and a∗(f ) leave the subspaces FB,F (h) invariant. So the annihilation and
creation operators for bosons (B) and fermions (F) are defined as follows:

aB,F (f )= a(f )ΠB,F =ΠB,F a(f )

a∗B,F (f )= a∗(f )ΠB,F =ΠB,F a
∗(f )

(10.10)

Remark 54 Starting from the vacuum state: Ω = (1,0, . . . ,0, . . .) we create a parti-
cle with state a∗B,F (f )Ω = (0, f,0, . . .). More generally if h1, . . . , hk ∈ h we get k
particles in the state a∗(h1)a

∗(h2) · · ·a∗(hk)Ω . It is not difficult to prove that Ω is
cyclic, which means that the family {a∗(h1)a

∗(h2) · · ·a∗(hk)Ω, |, hj ∈ h, k ∈ N} is
dense in F (h) and the same property holds true for bosons and fermions.

In the Fock spaces FB,F (h) we have the canonical commutation relations (CCR)
for bosons and anticommutation relations (CAR) for fermions. More explicitly, if
H,K are two operators, we denote the commutator [H,K] :=HK −KH and the
anticommutator [H,K]+ :=HK +KH . In what follows operators are defined on
FB,F (h)∩F0(h), h1, h2 ∈ h. We have for bosons

(CCR)
[
aB(h1), a

∗
B(h2)

] = 〈h1, h2〉1[
aB(h1), aB(h2)

] = [
a∗B(h1), a

∗
B(h2)

]= 0

and for fermions

(CAR)
[
aF (h1), a

∗
F (h2)

]
+ = 〈h1, h2〉1[

aF (h1), aF (h2)
]
+ =

[
a∗F (h1), a

∗
F (h2)

]
+ = 0
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Remark 55 If an orthonormal basis {ϕj }i∈I of h is given the annihilation/creation

operators are determined by a(∗)i := a(∗)(ϕi) (the subscript F,B is erased when the
context is clear). In particular the number operator can be written as

N=
∑
i∈I

a∗i ai (10.11)

We shall now detail some consequences of relations (CCR) and (CAR).

10.2.2 Bosons

First of all we remark that the Bargmann–Fock realization of quantum mechanics
for n particles is isomorphic to the bosonic Fock realization with h=C

n.
Recall that we have seen in Chap. 1 that in the Bargmann space F (Cn) we have

[
ζj ,

∂

∂ζk

]
= δj,k

and an orthonormal basis

φ#
α(ζ )= (2π�)−n/2(α!)−1/2ζ α

If {ej }1≤j≤n is the canonical basis of Cn, we get a unitary map ΦB from F (Cn)

onto FB(C
n) by the property

ΦB
(
φ#
α

)=ΦB(eα1 ⊗ eα2 ⊗ · · · ⊗ eαk )
Note that ΦB(eα1 ⊗ eα2 ⊗ · · · ⊗ eαk ) is the symmetric tensor product of the eαj . We
have easily

aj =ΦB ∂

∂ζj
Φ−1
B , a∗j =ΦBζ̂jΦ−1

B (10.12)

which proved that bosonic Fock realization and Bargmann–Fock realization of
quantum mechanics are equivalent.

In quantum field theory the one particle space is usually the infinite dimensional
Hilbert space h= L2(Rn). In physical applications it is convenient to consider field
operators depending on a point x ∈R

n (each particle has n degree of freedom). They
are operator valued distributions on L2(Rn). Let Fn be the bosonic Fock space:

Fn =
⊕
k≥0

k∨L2(
R
n
)

with

0∨L2(
R
n
)=C,

k∨L2(
R
n
)=

k⊗
s

L2(
R
n
)
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The subscript s indicates the symmetric tensor product.
⊗k

s L
2(Rn) is the subspace

of
⊗k

L2(Rn) of symmetric functions on R
n ×R

n · · ·Rn︸ ︷︷ ︸
k times

. So
k∨L2(Rn) is the k-

particles space for bosons.
Recall that a vector ψ ∈Fn is a sequence

ψ = {
ψ(k)

}
k≥0

of k-particle wavefunctions ψ(k) ∈ k∨L2(Rn). The scalar product in Fn of two func-
tions ψα , ψβ is given by

〈ψα,ψβ〉 =
∑
k≥0

〈
ψ(k)
α ,ψ

(k)
β

〉
L2(Rnk)

Recall that the state Ω = {1,0, . . . ,0, . . .} is called the vacuum.
The creation and annihilation operators a∗(x), a(x) are defined as operator-

distribution by

(
a∗(x)ψ

)(k)
(x1, . . . , xk) = 1√

k

k∑
j=1

δ(x − xj )ψ(k−1)(x1, . . . , x̂j , . . . , xk) (10.13)

(
a(x)ψ

)(k)
(x1, . . . , xk) =

√
k + 1ψ(k+1)(x, x1, . . . , xk) (10.14)

where x̂j means that xj is absent.
The canonical commutation relations assume the form

[
a(x), a∗(y)

]= δ(x − y), [
a(x), a(y)

]= [
a∗(x), a∗(y)

]= 0

For f ∈ L2(Rn) we recover the definitions:

a∗(f ) =
∫
dx f (x)a∗(x) (10.15)

a(f ) =
∫
dx f̄ (x)a(x) (10.16)

The number operator N has the form

N=
∫
dx a∗(x)a(x) (10.17)

Later we shall consider the Hamiltonian of a bosons system with pairwise inter-
actions described by a potential V = V (x − y). V is supposed to be an even, real
function on R

n. This Hamiltonian can be written as follows in the Fock space F ,
where we assume here that �= 1:

H= 1

2

∫
dx∇a∗(x) · ∇a(x)+ 1

2

∫
dx dy V (x − y)a∗(x)a∗(y)a(y)a(x) (10.18)
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Formula (10.18) needs to be interpreted in the distribution sense. A direct computa-
tion shows that restriction H(k) of H to the k-particles space is, as expected:

H(k) =−1

2

∑
1≤j≤k

Δj +
∑

1≤i<j≤k
V (xi − xj ) (10.19)

where

Δj = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗Δ⊗1 · · · ⊗ 1︸ ︷︷ ︸
k−j

and Δj is the Laplace operator in variables xj ∈R
n.

Let us explain why representations (10.18) and (10.19) formally coincide. We
have to understand the meaning of the r.h.s. in (10.18). We have two terms, the first
is the kinetic energy the second is the potential energy. If Â is an operator in the one
particle space L2(Rn) its second quantization A can be written as

A=
∑
j,k∈I

〈
ej , Âek

〉
a∗(ej )a(ek) (10.20)

Introduce the distributions a∗(x) and a(y) and the Schwartz integral kernel KA of
Â, we have

KA(x, y)=
∑
j,k

〈
ej , Âek

〉
ej (x)ēk(y)

so we get

A=
∫
dx dy KA(x, y)a

∗(x)a(y)

In particular if KA is null outside the diagonal we can write

A=
∫
dx A(x)a∗(x)a(x)

where A(x) is some function or distribution depending in one particle variable.
In particular this is true if Â is a multiplication operator in L2(Rn). Its kernel is
KA(x, y)=A(x)δ(x−y). If Â is a convolution operator (like Laplace operator) we
have the same interpretation using Fourier transform in variable x.

For the potential energy term we have the same interpretation with L2(Rn) re-
placed by L2

s (R
n ×R

n)= L2(Rn)∨L2(Rn) and using that {ej ∨ ek}j,k∈I is an or-
thonormal basis. V = V (x− y) acting as a multiplication operator in L2

s (R
n×R

n).
So we have the formal equality

∫
dx dy a∗(y)a∗(x)V (x − y)a∗(x)a∗(y)a(x)a(y)

=
∑
j,k∈I
j ′,j ′

〈
ej ∨ ek,V (ej ′ ∨ ek′)

〉
a∗(ej )a∗(ek)a(ek′)a(ej ′) (10.21)
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So we get a rigorous interpretation for (10.18) for H acting in the finite number
dense subspace F0(L

2(Rn)). More assumptions will be needed later on V .

10.3 The Bosons Coherent States

As above, here we forget the subscript B , considering only bosons.
We want to extend for infinite number of bosons the coherent states already de-

fined for finite systems (Chap. 1).
The idea is the same: translate by Weyl operators the vacuum (the ground state

for coherent states of harmonic oscillator).
We first define the field operator (or Segal operator):

Φ(f )= a(f )+ a∗(f )√
2

, f ∈ h (10.22)

Notice that if we define Π(f )=Φ(if ) then we have

a(f )= Φ(f )+ iΠ(f )√
2

, a∗(f )= Φ(f )− iΠ(f )
i
√

2

Lemma 65

(i) For every f ∈ h, Φ(f ) is symmetric on the subspace F0(h) and is essentially
self-adjoint.

(ii) D(N1/2) is in the domain of Φ(f ) and for every ψ ∈D(N1/2), f �→ Φ(f )ψ

is continuous on h.
(iii) If ψ ∈D(N) and f,g ∈ h then we have for commutators:

[
Φ(f ),Φ(g)

]
ψ = i〈f,g〉ψ

Proof The only non trivial statement is that Φ(f ) is essentially self-adjoint. Using
the Nelson criterium [162] it is enough to prove that each ψ ∈F0(h) is an analytic
vector for Φ(f ). This a consequence of the estimate

∥∥Φ(f )nψ(k)
∥∥≤ 2n/2(k + n)1/2(k + n− 1)1/2 · · · (k + 1)1/2

∥∥ψ(k)
∥∥‖f ‖n

It follows that for every r > 0 we have

∑
n≥0

rn

n!
∥∥Φ(f )nψ(k)

∥∥<+∞

�

The Weyl operators and their companion coherent states are defined as follows:
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Definition 22 For f ∈ h we define the Weyl translation operators:

T (f )= exp
(
a∗(f )− a(f ))= exp

(∫
dx

(
f (x)a∗(x)− f̄ (x)a(x))

)
(10.23)

The coherent state Ψ (f ) for every f ∈ h is then defined as

Ψ (f )= T (f )Ω

The bosonic coherent states have the following expression (analogue of an ex-
pression already given in Chap. 1 for finite systems of bosons):

Proposition 117 For every f ∈ h we have

Ψ (f )= e−
‖f ‖2

2
∑
k≥0

1√
k!f

⊗k

In particular the probability to have k particles inψ(f ) is equal to e−‖f ‖2‖f ‖2k/k!,
where we recognize the Poisson law with mean ‖f ‖2.

Proof We give formal argument from which it is not difficult to supply rigorous
proofs.

One has the useful formula:

T (f )= e−
‖f ‖2

2 exp
(
a∗(f )

)
exp

(−a(f )) (10.24)

since the commutator [a(f ), a∗(f )] = ‖f ‖2 commutes with a(f ), a∗(f ). We de-
duce

Ψ (f )= e−
‖f ‖2

2
∑
k≥0

(a∗(f ))k

k! Ω = e−
‖f ‖2

2
∑
k≥0

f⊗k√
k!

where f⊗k is the Fock-vector {0,0, . . . , f⊗k,0, . . .}.
Let πk be the orthogonal projector onto the k-particle space⊗ksh. We have found

πk
(
Ψ (f )

)= e−
‖f ‖2

2
f⊗k√
k!

so the probability to have k particles in ψ(f ) is equal to ‖πk(Ψ (f ))‖2 =
e−‖f ‖2‖f ‖2k/k!. �

The main properties of Weyl operators and coherent states are given in the fol-
lowing proposition.

Proposition 118 Let f, g ∈ h.
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(i) T (f ) is a unitary operator and one has

T (f )∗ = T (f )−1 = T (−f )
(ii) The Weyl operator satisfies the commutation relations:

T (f )T (g)= T (g)T (f ) exp
(−2i〈f,g〉)= T (f + g) exp

(−i〈f,g〉)

In particular we have

T (g)Ψ (f )= e−i〈g,f 〉Ψ (g + f )
(iii) We have

T ∗(f )a(g)T (f )= a(g)+ 〈g,f 〉1, T ∗(f )a∗(g)T (f )= a∗(g)+ 〈f,g〉1
(iv) The coherent states are eigenfunctions of the annihilation operators:

a(g)Ψ (f )= 〈g,f 〉Ψ (f )
(v) The expectation of the number operator N in the coherent state Ψ (f ) is

〈
Ψ (f ),NΨ (f )

〉= ‖f ‖2

also we have for the variance:

〈
Ψ (f ),N2Ψ (f )

〉− 〈
Ψ (f ),NΨ (f )

〉2 = ‖f ‖2

(vi) The coherent states are normalized but not orthogonal to each other:

〈
Ψ (f ),Ψ (g)

〉= exp

(
−1

2

(‖f − g‖2 − i〈f,g〉)
)

which implies that

∣∣〈Ψ (f ),Ψ (g)〉∣∣= exp

(
−1

2
‖f − g‖2

)

(vii) The set of operators {T (f ), f ∈ h} is irreducible on F (h): the only bounded
operators B in F (h) commuting with T (f ) for all f ∈F (h) are the scalar
B= λ1, λ ∈C.

In particular the set of coherent states {Ψ (f ),f ∈ h} is total in F (h).

Proof Properties (i) to (ii) are left to the reader. For (iii) we compute

d

dt
T ∗(tf )a(g)T (tf )= T ∗(tf )[a(g), a∗(f )]T (tf )= T ∗(tf )[〈g,f 〉]T (tf )

and we get (iii) integrating in t between 0 and 1. (iv) are (v) are consequences of (iii).
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For (vi) we write, using (10.24): T (f )Ω = e− 1
2 ‖f ‖ea∗(f )Ω . So we get

〈
T (f )Ω,T (g)Ω

〉 = 〈
Ω,T ∗(f )T (g)Ω

〉

= 〈
Ω,T (g − f )Ω 〉

ei〈f,g〉

= e−
1
2 ‖g−f ‖2

ei〈f,g〉 (10.25)

Let us now prove (vii). Remark first that B commutes with Φ(f ) for every f ∈ h

hence with a(f ) and a∗(f ). In particular B commutes with the number opera-
tor N. Let {ei}i∈I be an orthonormal basis for h and ai = a(ei). Denote ψk1,...,kn =
(k1! · · ·kn!)−1/2(a∗1)k1 · · · (a∗n)knΩ . This is an orthonormal basis for the Fock space
FB(h) with the obvious index set. Compute 〈ψk1,...,kn ,Bψj1,...,jm〉. This is 0 if the
sets {k1, . . . , kn}, {j1, . . . , jm}are not equal. Finally we have, using CCR,

〈ψi1,...,in ,Bψi1,...,in〉 = 〈Ω,ai1 · · ·aina∗i1 · · ·a∗inΩ〉 = 〈Ω,BΩ〉
hence B= 〈Ω,BΩ〉1. �

The two following lemmas will be useful later. Let us introduce the operator
family 〈N〉r = (1+N2)r/2 for r ∈R.

Lemma 66 For every r ∈R and every f ∈ h, 〈N〉rT (f )〈N〉−r extends in a bounded
operator in the Fock space FB(h). In other words for every r ≥ 0, T (f ) is bounded
on the Hilbert space D(〈N〉r ) for the norm ‖ψ‖r := ‖〈N〉rψ‖FB(h).

Proof From the previous proposition (iii) we have

T ∗(f )NT (f )=N+ a(f )+ a∗(f )+ ‖f ‖21 (10.26)

We prove the lemma for r = 1
2 . It is not difficult by iteration and interpolation to

prove the result for every r .
We have

∥∥〈N〉1/2T (f )〈N〉−1/2Ψ
∥∥2 = 〈

Ψ, 〈N〉−1/2T ∗(f )〈N〉T (f )〈N〉−1/2Ψ
〉

We can replace 〈N〉 by N, use (10.26) and Cauchy–Schwarz inequality to get

∥∥〈N〉1/2T (f )〈N〉−1/2
∥∥2 ≤ C‖f ‖2 �

Lemma 67 Let α ∈ C 1(R,h), t→ α(t). Then T (α(t)) is strongly differentiable in
t from D(N1/2) to F (h). The derivative is given by

d

dt
T
(
α(t)

)= T (α(t))[a∗(α̇(t))− a( ˙̄α)+ i(ᾱ · α̇)] (10.27)

where α̇ = d
dt
α.
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Proof It is enough to compute the derivative for t = 0. Using Lemma 10.3 the com-
putations can be done for ψ ∈D(〈N〉1/2). In what follows ψ will be omitted.

We have T (α(t))− T (α(0))= T (α(0))T ∗(α(0))(T (α(t))− 1) and

T ∗
(
α(0)

)
T
(
α(t)

)= T (α(t)− α(0))ei〈α(0),α(t)〉
Using Duhamel formula on D(N1/2) we get

T
(
α(t)− α(0))= 1+ t(a∗(α̇(0))− a(α̇(0)))+O(

t2
)

hence

d

dt
T ∗

(
α(0)

)
T
(
α(t)

)∣∣∣∣
t=0
= a∗(α̇(0))− a(α̇(0))+ i〈α(0), α̇(0)〉

The formula (10.27) follows. �

In the following section we shall study the mean-field behavior of large systems
of bosons with weak two particles interactions. For that purpose we introduce one
particle density operator Γ (1)

Ψ for every Ψ ∈ F (h), as follows. It is defined as a
sesquilinear form in h:

(f, g) �→ 1

〈Ψ,NΨ 〉
〈
Ψ,a∗(f )a(g)Ψ

〉 := 〈
f,Γ

(1)
Ψ g

〉
, f, g ∈ h

If h= L2(R3) the Schwartz kernel of Γ (1)
Ψ satisfies

Γ
(1)
Ψ (x, y)= 1

〈ψ,NΨ 〉
〈
Ψ,a∗(x)a(y)Ψ

〉
(10.28)

Moreover if Ψ is a k-particle state then Γ (1)
Ψ is the relative trace in h= L2(Rn) of

the projector |Ψ 〉〈Ψ | and we have

Γ
(1)
Ψ (x, y)=

∫
Rn(k−1)×Rn(k−1)

dx′ dy′Ψ
(
x′, x

)
Ψ̄
(
y′, y

)

We shall be interested to considering the one particle density for Ψ (t) being a time
evolution of a coherent state Ψ (ϕ�(t)), where ϕ�(t) = �

−1/2ϕ(t), depending on a
small (semi-classical) parameter �. We call it Γ (1)

�,t
. We shall see that, under some

conditions, Γ (1)
�,t

converges in trace-norm operator to |ϕ(t)〉〈ϕ(t)|when �↘ 0 where
ϕ(t) follows a classical evolution.

10.4 The Classical Limit for Large Systems of Bosons

10.4.1 Introduction

We have already considered the classical limit problem for systems with a finite
number of bosons in Chap. 1. It has been a natural question since the early days of
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quantum mechanics to compare the classical and quantum mechanical descriptions
of physical systems. One of the oldest and by now best known relation between the
two theories goes back to Ehrenfest [74]. This has been put on a firm mathemat-
ical bases by Hepp [113]. He proved that in the limit where the Planck constant
�

1 tends to zero, the matrix elements of quantum observables between suitable �-
dependent coherent states tend to the classical values evolving according to the ap-
propriate equation. Moreover he proved that the quantum mechanical fluctuations
evolve according to the equation obtained by linearizing the quantum mechanical
evolution around the classical solution. Hepp approach covers the case of quantum
mechanics (that we have studied in detail in Chap. 4) of boson field theories, both
relativistic and nonrelativistic, and more generally of all quantum theories which
can be expressed in terms of observables satisfying the Canonical Commutation
Relations (CCR). One is led to study a perturbation problem for the evolution of
a set of operators satisfying the CCR in a suitable representation. The small pa-
rameter which characterizes the perturbation theory is �

1/2. In the most favorable
cases this evolution is implemented by a unitary group of operators W(t, s). The
solution of the unperturbed problem is given by a unitary group U2(t, s), the in-
finitesimal generator of which is quadratic in the field operators and depends on
the classical solution around which one is considering the classical limit. The op-
erator U2(t, s) describes the evolution of the quantum fluctuations. Hepp’s result
consists of proving strong convergence of W(t, s) towards U2(t, s) when � goes
to zero. We shall explain the results obtained by Ginibre–Velo [86–88] to estimate
the error term in Hepp’s results. We also explain results obtained more recently by
Rodnianski–Schlein [168] using Hepp’s approach to get the convergence of the one
particle marginal for evolved coherent states towards a classical field. Note that this
result is somehow an extension to the quantum field context of the semi-classical ex-
pansion considered before in Chap. 4 for time evolution of Gaussian coherent states
for a fixed number of bosons.

10.4.2 Hepp’s Method

We follow here the presentation given in [87]. We start with the abstract setting of a
general Fock space F (h) and an orthonormal basis {ei}i∈I in h. I = {1,2, . . . , ν},
ν ≤+∞. Recall that ai := a(ei).

So the system is described by the family of quantum operators a= (ai)i∈I satis-
fying the canonical commutation rules:

[ai, aj ] = 0,
[
ai, a

∗
j

]= δi,j

1In physics � is a constant equal to 1.055 × 10−34 J s. As is usual in quantum mechanics we

consider here � as an effective Planck constant obtained by scaling, for example � �→ �√
2m

, where

m is the mass and �↘ 0 means m↗+∞.
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The variables a� expected to have a classical limit are related to a by

a� = �
1/2a or a�(f )= �

1/2a(f ), f ∈ h or a�i = �
1/2ai.

Consider a self-adjoint Hamiltonian H in FB(h), suitably regular (for instance poly-
nomial in a∗, a), with no explicit �-dependence:

H=
∑

C(n1, . . . , nk|m1, . . . ,m�)
(
a∗1
)n1 · · · (a∗1)nkam1

1 · · ·am�� , C(•|•) ∈C

In the Heisenberg picture the time evolution a�(t) of a� is given by the following
equation:

i�
d

dt
a�(t)=

[
a�(t),H(a�)

]
, a�(0)= a� (10.29)

We want to relate the time dependent operators a�(t)with a family of �-independent
c-number variables:2

ϕ(t)= {
ϕi(t)

}
i∈I

which will appear to be the classical limits. ϕ(t) can be identified with a classical
trajectory in the Hilbert space h writing ϕ(t)=∑

i∈I ϕi(t)ei .
We thus expand H in power series of a�i − ϕi, (a�i )∗ − ϕ̄i in a neighborhood of

ϕ, ϕ̄:

H(a�)=H(ϕ)+H1(a� − ϕ)+H2(a� − ϕ)+H≥3(a� − ϕ) (10.30)

where the functions H1, H2, H≥3 are polynomials in a� − ϕ, a∗
�
− ϕ̄ with total

degree 1, 2 and ≥3, respectively, with time dependent coefficients. Defining

H ′k(a)=
[
a,Hk(a)

]
, k = 1,2,≥ 3

we see that H ′k are �-independent, that H ′1(a) is a c-number and that H ′2 is linear in
a, a∗. Equation (10.29) can be rewritten as

i�
d

dt
ϕ + i� d

dt
(a� − ϕ)=H ′1(a�)+H ′2(a� − ϕ)+H ′≥3(a� − ϕ) (10.31)

But we have H ′1(a�) = �H ′1(a). So we choose ϕ to be a solution of the classical
evolution equation associated with Hamiltonian H , namely

i
d

dt
ϕ =H ′1(a) (10.32)

We define

ϕ� = �
−1/2ϕ

2A c-number here is a family of time dependent complex numbers indexed by I . It be can identified

with a vector in h. In the language of quantum mechanics c-numbers are the opposite of Γ (1)
�,t

,
operators in an Hilbert space.
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Then (10.31) becomes

i
d

dt
(a− ϕ�)=H ′2(a− ϕ�)+ �

−1/2H ′≥3

(
�

1/2(a− ϕ�)
)

Let us now introduce the Weyl operator for any (αi)i∈I

T (α)= exp

[∑
i∈I

(
αia

∗
i − α∗i ai

)]= exp
(
a∗(α)− a(α)), where α =

∑
i∈I

αiei

(10.33)
where we have chosen initial time s = 0 for solving equation (10.29). Recall that
T (α) are unitary and obey

T (α)∗aT (α)= a+ α
Note that here we have chosen coordinates in h. If f =∑

i∈I αiei we have T (f )=
T (α).

We define a new variable b(t) as

b(t)= T (ϕ�(s))∗(a(t)− ϕ�(t))T (ϕ�(s))

The initial value problem for (10.29) then reduces to finding a family b(t) of oper-
ators satisfying the (CCR) and the relations

b(0) = a

i
d

dt
b = H ′2(b)+ �

−1/2H ′≥3

(
�

1/2b
) (10.34)

Note that the second term in the right hand side of (10.34) is O(�1/2) since H ′≥3 has
degree at least two. Therefore b(t) is expected to converge towards the solution of
the linearized equation

i
d

dt
b′ =H ′2

(
b′
)
, b′(0)= a (10.35)

which governs the quantum fluctuations around the classical equation. We introduce
the propagator U2(t, s) defined by the quadratic Hamiltonian Ĥ2(t):

i
d

dt
U2(t, s)= Ĥ2(t)U2(t, s), U(s, s)= 1

So we have

b′(t)=U2(t,0)
∗aU2(t,0)

In the same way, the time evolution of operators b(t) will be implemented by a
unitary group W(t, s) such that

b(t)=W(t,0)∗aW(t,0)
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where W(t, s) obeys the differential equation

i
d

dt
W(t, s)= {

H2(a)+ �
−1/2H≥3

(
�

1/2a
)}
W(t, s), W(s, s)= 1 (10.36)

One has the following result, which is easily proved using Lemma 67.

Proposition 119 One has

W(t, s)= exp
(
iω�(t, s)

)
T̂
(
ϕ�(t)

)
U(t − s)T̂ (ϕ�(s))

with

U(t − s)= exp
{−i�−1(t − s)H(a�)

}
and

ω�(t, s)= �
−1

∫ t

s

dτ
{
H
(
ϕ(τ)

)−�〈ϕ(τ),H ′1(ϕ(τ))〉}

Therefore we have proven at least formally the following result:

Proposition 120

T
(
ϕ�(s)

)∗
U(t − s)∗(a(s)− ϕ�(t))U(t − s)T (ϕ�(s))=W(t, s)∗a(s)W(t, s)

with U(t) and W(t, s) given by Proposition 119.

The difficult mathematical problem is to analyze the unitary propagators U2(t, s)

and W(t, s).
One has the following result (see [113]):
Let ϕ(t, x) be a solution of the classical equation (10.32) with initial data ϕ at

t = s. For f ∈ L2(Rn) let us define

ϕ�(f, t)=
∫
dx f (x)ϕ�(t, x)

Similarly consider the solutions b′(t) of the linearized problem (10.35). Let

(
b′
)�
(t, f )=

∑
i∈I

f̄ib
′
i (t), if f =

∑
i∈I

fiei

As usual define the operator valued distributions (b′)�(t, x) such that

(
b′
)�
(t, f )=

∫
dx f (x)

(
b′
)�
(t, x)

Here � denotes either nothing or ∗.
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It is possible to apply the strategy described above to prove semi-classical limit
results for boson systems when �↘ 0. The Hamiltonian H is defined as

H= �

2

∫
dx∇a∗(x) ·∇a(x)+ �

2

2

∫
dx dy V (x−y)a∗(x)a∗(y)a(y)a(x) (10.37)

Note that the limit �↘ 0 is equivalent to the mean-field limit N ↗+∞ considered
in [168] (N = �

−1) for the Hamiltonian

HN = 1

2

∫
dx∇a∗(x) · ∇a(x)+ 1

2N

∫
dx dy V (x − y)a∗(x)a∗(y)a(y)a(x)

(10.38)
Here we have

H ′1 =−
1

2
Δϕ(x)+ ϕ(x)

∫
dy V (x − y)∣∣ϕ(y)∣∣2 (10.39)

so that one requires that the classical evolution ϕt (x)= ϕ(t, x) is a solution of the
Hartree equation:

i
d

dt
ϕt =−1

2
Δϕt + ϕt

(
V ∗ |ϕt |2

)
(10.40)

To state rigorous results some technical assumptions are needed for the potential V .
Recall the following definition (see [115] for more details). For simplicity we only
consider the case h= L2(R3).

Definition 23 A potential V (x), x ∈R
3 is called a Hardy potential if V is real and

there exists C > 0 such that

‖V ϕ‖L2(R3) ≤ C‖ϕ‖H 1(R3), ∀ϕ ∈H 1(
R

3) (10.41)

It is well known that if V (x) = c
|x| , c ∈ R then V is a Hardy potential (by the

usual Hardy inequality). Hardy class potentials included the Kato class potentials.
(see [115] for details).

The following proposition is a particular case of more general ones concerning
Hartree equation [88]. The following proposition is sketched in [168], Remark 1.3.
In [86–88] more refined results are given concerning solutions for Hartree equation
with singular potentials.

Proposition 121 Let V (x) be a Hardy potential. Let ϕ0 ∈H 1(R3). Then equation
(10.40) has a unique solution ϕ ∈ C (R,H 1(R3)). Furthermore one has the property
of conservation of the L2-norm and of the energy:

‖ϕt‖ = ‖ϕ0‖, ∀t ∈R

E (ϕt ) = E (ϕ0), ∀t ∈R
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where

E (ϕ)= 1

2
‖∇ϕ‖2 + 1

2

∫
dx dy V (x − y)∣∣ϕ(x)∣∣2∣∣ϕ(y)∣∣2

Proposition 122 Let V (x) be an even Hardy potential. Assume that the initial data
for the Hartree equation satisfy ϕs ∈H 1(R3). Then one has for |t − s|< T :

(i) The Hamiltonian H is essentially self-adjoint on the dense subspace F0,0 of the
finite particle states with compact supported Fourier transform. In particular
the time evolutions U(t), U2(t, s) and W(t, s) are well defined and are unitary
operators in the Fock space FB(L

2(R3)).
(ii) We have the following limit result for the fluctuation operator around the clas-

sical solution ϕ(t):

s− lim
�→0

W(t, s)=U2(t, s) (10.42)

(iii) One also has

s− lim
�→0

T (ϕ�)
∗U(t − s)∗ exp

[(
a∗(f )− ϕ�(f, t)

)− h.c.
]
U(t − s)T (ϕ�)

= exp
[(
b′
)∗
(f, t)− b′(f ∗, t)] (10.43)

where ϕ� = �
−1/2ϕ.

Proof This proposition is essentially due to Hepp [113].

It is well known that for every k ∈N, H is essentially self-adjoint in
k∨L2(R3) so

we find that H is essentially self-adjoint.
(ii) is proved with Duhamel formula and the following weight estimate for

U2(t, s) proved in [87]. In this case the generator H2 of U2(t, s) is given by

H2 = 1

2

∫
dx∇a∗(x) · ∇a(x)+ 1

2

∫
dx dy V (x − y)∣∣ϕt (y)∣∣2a∗(x)a(x)

+ 1

2

∫
dx dy ϕt (x)V (x − y)

∣∣ϕ̄t (y)∣∣2a∗(x)a(y)+L∗ +L (10.44)

where

L= 1

2

∫
dx dy ϕ̄t (x)V (x − y)ϕ̄t (y)a(x)a(y) (10.45)

Lemma 68 For every δ > 0 and every T > 0 there exists C(δ,T ) such that
∥∥〈N〉δU2(t, s)〈N〉−δ

∥∥≤ C(δ,T ), for |t − s| ≤ T (10.46)

The Duhamel formula gives

W(t, s)=U2(t, s)− i
∫ t

s

W(t, τ )
(
�

1/2H3(τ,a)+ �H4(a)
)
U2(τ, s) dτ (10.47)
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where H3(t,a)=A3(t)+A3(t)
∗ and

A3(t)=
∫
dy dx V (x − y)ϕ̄t (x)a∗(y)a(y)a(x) (10.48)

and

H4 =
∫
dy dx V (x − y)a∗(x)a∗(y)a(y)a(x) (10.49)

Using that F0,0 is dense in F (L2(R3)) and that W(t, s) is unitary in F (L2(R3)),
it is enough to prove that

lim
�→0

W(t, s)Ψ =U2(t, s)Ψ, for every Ψ ∈F0,0 (10.50)

This result is proved using (10.47), (10.48), (10.49), assumptions on V and ϕ and
standard estimates.

(iii) is proven using Proposition 120 and (i). �

Corollary 28 Let A be a smooth and bounded function of a and a (see [19]). Then
we have the following semi-classical limit evolution for quantum expectations in
coherent states:

lim
�→0

〈
U(t)Ψ (ϕ�),U(t)A

(
a− ϕ�,a∗ − ϕ̄�

)
U(t)Ψ (ϕ�)

〉

= 〈
Ω,A

(
b′(t),b′(t)∗

)
Ω
〉

(10.51)

where b′(t) = U2(t,0)∗aU2(t,0) is the linear evolution at the classical evolution
ϕ(t).

Remark 56 In [88] the authors proved a full asymptotic expansion in �
1/2 for a

dense subset of states ψ . We shall see later that we have a better result if V is
bounded.

10.4.3 Remainder Estimates in the Hepp Method

Hepp method was revisited by Ginibre–Velo [88, 89] to extend it to singular poten-
tial and to get quantum correction in � at any order. The spirit of the works of [88,
89] is to exploit the differential equation (10.36) (and the formula (10.47)) to write
a Dyson series expansion for W(t, s). The authors obtain a power series in �

1/2 and
study its analyticity properties in κ := �

1/2. For bounded potentials V this series can
be shown to be Borel summable in vector norm when applied to fixed �-independent
vectors taken from a suitable dense set including coherent states. The potential V is
also assumed to be stable, which means that there exists a constant B ≥ 0 such that

H4 +BN≥ 0 (10.52)
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(N is the number operator (10.17)).
Roughly speaking it means that the potential is sufficiently repulsive near the

origin if attractive somewhere else. More explicitly we can find in [171] a sufficient
condition of stability for a potential V . H4 has the following expression:

(H4Ψ )
(k)(x1, . . . , xk)=

∑
i<j

V (xi − xj )Ψ (k)(x1, . . . , xk)

Let V be such that

V (x) ≥ ϕ1
(|x|), for |x| ≤ r1

V (x) ≥ −ϕ2
(|x|), for |x| ≥ r2

(10.53)

where ϕ1, ϕ2 are positive decreasing on ]0, r1[, [r2,+∞[, respectively, and for some
ν > 3 we have ∫

ϕ1(t)t
ν−1 dt =+∞,

∫
ϕ2(t)t

ν−1 dt <+∞

Then V is stable ([171], Proposition 3.2.8).
Remark that the stability condition is a restriction on the negative part of V .
Before to state the summability result let us recall some definitions concerning

asymptotic series.
Consider a formal power complex series f �(κ)=∑

j∈N αjκj .

Definition 24

(i) f � is a Gevrey series of order 1/s, s > 0, if there exist C > 0, ρ > 0 such that

|α| ≤ Cρj (j !)1/s, ∀j ∈N (10.54)

(ii) The s-Borel transform of the Gevrey series f � is defined as

Bsf (τ )=
∑
j∈N

αj

Γ (1+ j
s
)
τ j (10.55)

where the series converges for τ ∈C, |τ |< ρ−1.
(iii) The Gevrey series f � is said Borel s-summable if

(iii)1 its s-Borel transform Bsf has an analytic extension to a neighborhood
of the positive real axis,

(iii)2 the following integral:
∫ ∞

0
duBsf (u)u

s−1e−(
u
κ
)s

converges for 0< κ < κ0.
If this holds then we say that f � has a s-Borel sum f (κ) defined by

f (κ)= sκ−s
∫ ∞

0
duBsf (u)u

s−1e−(
u
κ
)s (10.56)
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Remark 57

(i) For s = 1 the above definition corresponds to the usual Borel summability.
(ii) At the formal level, formula (10.56) is easy to check using definition of Γ

function and changes of variables.
(iii) (j !)j/s and Γ (1 + j

s
) have the same order as j → as a consequence of the

Stirling formula

Γ (1+ u)=√2πu

(
u

e

)u(
1+ o(1)) as u→+∞.

We state now a sufficient condition for Borel summability due to Watson, Nevan-
linna and Sokal (see [161, 180] and references with extension to any s > 0).

Theorem 46 Let f be an holomorphic function in the complex domain Ds,R :=
{κ ∈ C,�κ−s > R−s} for some s > 0. Assume that there exist C > 0, ρ > 0 such
that in this domain we have

∣∣∣∣f (κ)−
∑

0≤j<N
αjκ

j

∣∣∣∣≤ CρN(N !)1/s |κ|N (10.57)

Then the power series
∑

j∈N αjκj is s-Borel summable and its s-Borel sum is equal
to f (κ) in Ds,R .

In particular on the interval ]0, κ0], f (κ) is uniquely determined by its asymp-
totic expansion.

Remark 58 Estimate (10.57) on the interval ]0, κ0] entails that f (κ) is determined
by its asymptotic expansion up to an exponentially small error like e−cκ−s c > 0.
This is easily seen by stopping the series at the order N ≈ δ

κs
with δ small enough.

Adding an analytic condition in a suitable domain as in the above theorem erase this
error term so that f (κ) is uniquely determined.

The following result gives an accurate asymptotic description for the quantum
fluctuation operator W(t, s), improving Proposition 122.

Theorem 47 Let V be stable and bounded potential. Let ϕ ∈ C 1(R,L2(R3)) be a
solution of Hartree equation (10.40). Let β > 0 and Φ ∈D(exp(βN)). Then there
exists θ > 0 such that for all s, t ∈R, t ≥ s such that t − s ≤ θ , W(t, s)Φ is analytic
in κ in the sector −π

2 < Argκ < 0, |z| small and has an asymptotic expansion at
κ = 0 which is 2-Borel summable to W(t, s)Φ itself. The constant θ depends on V ,
β , ϕ but can be taken independent of B and uniform in V for ‖V ‖∞ and B bounded,
and uniform in ϕ for ‖ϕ‖ bounded.

Proof We only give here the main steps for the proof. We refer to the paper [88] for
a detailed proof.
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A first step is to consider the Duhamel formula (10.47). By iterating it we get
a Dyson series. Then by reordering the Dyson series we get a formal power series
in �

1/2:

W�(t, s)=
∑
j∈N

�
j/2Wj(t, s) (10.58)

where the coefficient Wj(t, s) are operators. W0(t, s)=U2(t, s).
In a second step, 2-Gevrey type estimates3 are obtained for Wj(t, s)Φ where

Φ ∈D(eεN), ε > 0 (Proposition 3.1 in [88]).
In a third step it is proved that W(t, s)Φ has an analytic expansion in κ := �

1/2

in a domain like D2,R . Here the stability condition is used.
The last step consists of estimating the remainder term of the asymptotic expan-

sion of W(t, s)Ψ in κ small. To do that the Dyson series expansion is performed in
two steps, introducing an auxiliary evolution operator U4(t, s) obeying

i
d

dt
U4(t, s)=

(
H2(t)+ �H4

)
U4(t, s)

Then if U2(t, s) is the propagator for H2(t) (which describes the evolution of the
quantum fluctuations), one has

U4(t, s) = U2(t, s)− i
∫ t

s

dτ U2(t, τ )�H4U4(τ, s)

W(t, s) = U4(t, s)− i
∫ t

s

dτ U4(t, τ )�
1/2H3W(τ, s)

Then it can be proved that the series
∑

j∈N �
j/2Wj(t, s)Φ is 2-Borel summable and

its 2-Borel sum is W(t, s)Φ . �

Using similar methods the case of unbounded potentials has been considered in
[89]. The authors obtain the same analyticity domain as in [88] of W(t, s) with
respect to κ = �

1/2 and see that the series is still asymptotic (in the Poincaré sense)
and Gevrey of order 2. It is not known that the series is still 2-Borel summable
for singular potentials. Note that D(exp(βN)) contains the coherent states Ψ (f ),
f ∈ L2(R3).

10.4.4 Time Evolution of Coherent States

We have seen that Hepp’s method concerns the quantum fluctuations in a neighbor-
hood of a classical trajectory. It does not give information on the quantum motion

3Notions of Borel summability have been defined before for complex valued series, extension to
vector valued series is straightforward.
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itself, in particular when the initial state is a coherent state. In Chap. 4 this problem
was considered for finite boson systems. Our goal here is to explain an extension of
this result for large systems of bosons, following the paper [168].

According to the previous section one has to study the evolution operator U(t)=
e−iH�t associated with the Hamiltonian

H= 1

2

∫
dx∇a∗(x) · ∇a(x)+ �

2

∫
dx dy V (x − y)a∗(x)a∗(y)a(y)a(x)

by the evolution equation

i
d

dt
U(t)=HU(t)

and apply it to the coherent state Ψ (�−1/2ϕ) where ϕ� = �
−1/2ϕ, ϕ is a solution

of the Hartree equation (10.40). By definition the Hamiltonian H leaves sectors
k∨L2(R3) with fixed number of particles invariant. One thus have

U(t)∗NU(t)=N (10.59)

One has the following result. Γ (1)
�,t

(defined at the end of Sect. 10.3) is the marginal

operator in the one particle space L2(R3) deduced from the quantum evolution
U(t)Ψ (ϕ�) of the coherent state Ψ (ϕ�). Recall that in an Hilbert space h the trace-
norm of an operator A is defined as ‖A‖Tr =√Tr(A∗A) (see Chap. 1).

Theorem 48 Suppose that V is a Hardy potential (see (10.41). Then there exist
constants C, K > 0 (only depending on the H 1(R3) norm of ϕ and on C) such that

∥∥Γ (1)
�,t
− |ϕt 〉〈ϕt |

∥∥
Tr ≤ C�eKt , t ∈R (10.60)

ϕt is the solution of Hartree equation (10.40) at time t with ‖ϕ0‖ = 1.

Proof We shall give here the main ideas of the proof. The details are in the paper
[168].

We now write the function Γ (1)
�,t
(x, y) using (10.28). One has to calculate the

denominator:
〈
U(t)ψ(ϕ�)Ω,NU(t)ψ(ϕ�)Ω

〉
Using (10.59) we are left with

〈
ψ(ϕ�)Ω,Nψ(ϕ�)Ω

〉

We now use the translation property of the Weyl operator:

T (ϕ�)
∗NT (ϕ�)=

∫
dx

(
a∗(x)− ϕ̄�(x)

)(
a(x)− ϕ�(x)

)
(10.61)
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But using that a(x)Ω = 0 we see that the expectation value of (10.61) in the vacuum
simply equals

�
−1‖ϕ‖2 = �

−1

Therefore Γ (1)
�,t
(x, y) has the following decomposition:

Γ
(1)
�,t
(x, y)

= �
〈
Ω,T

(
�
−1/2ϕ

)∗
U(t)∗a∗(y)a(x)U(t)T

(
�
−1/2ϕ

)
Ω
〉

= ϕ̄t (y)ϕt (x)+ �
1/2ϕ̄(y)

〈
Ω,T (ϕ�)

∗U(t)∗
(
a(x)− ϕt,�(x)

)
U(t)T (ϕ�)Ω

〉

+ �
1/2ϕt (x)

〈
Ω,T (ϕ�)

∗U(t)∗
(
a∗(x)− ϕt,�(y)

)
T (ϕ�)Ω

〉
+ �

〈
Ω,T (ϕ�)

∗U(t)∗
(
a∗(y)− ϕ̄t,�(y)

)(
a(x)− ϕt,�(x)

)
U(t)T (ϕ�)Ω

〉

Now we use the fact demonstrated in the previous section that

T (ϕs,�)
∗U(t)∗

(
a(x)− ϕt,�(x)

)
U(t)T (ϕs,�)=W(t, s)∗a(x)W(t, s)

Thus we get the equality between the two kernels:

Γ
(1)
�,t
(x, y)− ϕt (x)ϕ̄t (y) = �

〈
Ω,W(t,0)∗a∗(y)a(x)W(t,0)Ω

〉

+ �
1/2ϕt (x)

〈
Ω,W(t,0)∗a∗(y)W(t,0)Ω

〉

+ �
1/2ϕ̄t (y)

〈
Ω,W(t,0)∗a(x)W(t,0)Ω

〉
(10.62)

It is remarked in [168] that here it is enough to estimate the Hilbert–Schmidt norm
of Γ (1)

�,t
− |ϕt 〉〈ϕt | instead of its trace-norm. So the main technical part of the paper

[168] is to show that the L2 norm in (x, y) of the right hand side of (10.62) is
bounded above by C�eKt , using suitable approximation of the dynamics W(t, s).
As in [88, 89]W(t, s) is compared with the dynamics U4(t, s) generated byH2(t)+
�H4 (without the H3(t) term), namely

i
d

dt
U4(t, s)=

(
H2(t)+ �H4

)
U4(t, s)

In [168] the following lemmas are proven.

Lemma 69 One has

∥∥(W(t,0)−U4(t,0)
)
Ω
∥∥≤ C�1/2eKt

Lemma 70
〈
W(t,0)Ω,NW(t,0)Ω

〉≤ CeKt
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Now, introducing U4(t, s), the right hand side of (10.62) is rewritten as

Γ
(1)
�,t
(x, y)− ϕt (x)ϕ̄t (y)

= �
〈
Ω,W(t,0)∗a∗(y)a(x)W(t,0)Ω

〉

+ �
1/2ϕt (x)

(〈
Ω,W(t,0)∗a∗(y)

(
W(t,0)−U4(t,0)

)
Ω
〉

+ 〈
Ω,

(
W(t,0)∗ −U4(t,0)

∗)a∗(y)U4(t,0)
∗Ω

〉)

+ �
1/2ϕ̄t (y)

(〈
Ω,W(t, s)∗a(x)

(
W(t, s)−U4(t, s)

)
Ω
〉

+ 〈
Ω,

(
W(t, s)∗ −U4(t, s)

∗)a(x)U4(t, s)Ω
〉)

(10.63)

where we use that U4(t, s) preserves the parity of the number of particles:

〈
Ω,U4(t, s)

∗a∗(y)U4(t, s)Ω
〉= 〈

Ω,U4(t, s)
∗a(x)U4(t, s)Ω

〉= 0

Then we get from Lemmas 69 and 70 the Hilbert–Schmidt estimate
∫
R3×R3

dx dy
∣∣Γ (1)

�,t
(x, y)− ϕt (x)ϕ̄t (y)

∣∣2 ≤ C�2e2Kt , ∀t ≥ 0

Remark 59 In [43] the authors have extended the previous result to the case of
arbitrary factorized initial data.



Chapter 11
Fermionic Coherent States

Abstract This chapter is an introduction to some computation techniques for
fermionic states. After defining Grassmann algebras it is possible to get a classi-
cal analogue for the fermionic degrees of freedom in a quantum system. Following
the basic work of Berezin (The Method of Second Quantization, 1966; Introduction
to Superanalysis, 1987), we show that we can compute with Grassmann numbers as
we do with complex numbers: derivation, integration, Fourier transform. After that
we show that we have quantization formula for fermionic observables. In particular
there exists a Moyal product formula. As an application we consider explicit com-
putations for propagators with quadratic Hamiltonians in annihilation and creation
operators.

11.1 Introduction

We have seen in the Chapter on Bosons that relations (CCR) can be realized with
real or complex numbers. We see here that anti-commutation relations (CAR) need
to introduce a new kind of number, nilpotent, called a Grassmann number. In some
sense, nilpotence is classically equivalent to the Pauli exclusion principle which
characterize fermions. This appears to be strange from a physicist point of view be-
cause Pauli exclusion principle is a purely quantum property, without classical ana-
logue. Nevertheless such a mathematical model exists. Even if “classical fermions”
do not exist in Nature, they are a convenient mathematical tool for computations and
allow to put on the same footing bosons and fermions. This is important to elabo-
rate supersymmetric models which will be considered in more details in the next
Chapter.

Our main goal here is to introduce fermionic coherent states and to describe their
properties. The main difference from the bosonic case considered in Chap. 1 is that
we have to replace complex numbers by Grassmann numbers. So the constructions
have to be revisited with some care. So we shall study in more details Grassmann al-
gebras and we shall see that many properties and constructions well known for usual
numbers can be extended to Grassmann algebras. Our construction of fermionic co-
herent states mainly follows the paper [37]. We also consider in more details the
propagation of Fermions for quadratic evolutions.
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DOI 10.1007/978-94-007-0196-0_11, © Springer Science+Business Media B.V. 2012
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In [21] (see the book [156], Chap. 9) the author introduced Fermionic coherent
states from another point of view, without Grassmann algebras. He have considered
an irreducible representation of the rotation group SO(2n,R) (for a system of n
fermions) called the spin representation. We shall see that the two point of views are
mathematically equivalent.

11.2 From Fermionic Fock Spaces to Grassmann Algebras

It follows from the Chapter on bosons that the fermionic Fock space is the Hilbert
space FF (h) =⊕

k∈N∧kh, where h is the one fermion space and ∧kh is the anti-
symmetric tensor spanned by the states

1

k!
∑
π∈Sk

επψπ1 ⊗ψπ2 ⊗ · · · ×ψπk, ψj ∈ h.

The annihilation and creation operators a(f ), a∗(f ) are bounded operators in
FF (h). This is a consequence of the Canonical Anti-commutation Relation

a(f1)a
∗(f2)+ a∗(f1)a(f2)= 〈f1, f2〉1. (11.1)

Let us begin with an explicit model to realize CAR relations (11.1) which is called
the spin model.

We start with HF =C
2 and the matrices

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
.

So we have (CAR) for a = σ− and a∗ = σ+:

[σ+, σ−]+ = 12, σ 2+ = σ 2− = 0.

This is a model for one state spin. We have the number operator N = a∗a = ( 1 0
0 0

)

and the ground state is e0 =
( 0

1

)
.

We get a model for n spin states in the Hilbert space HH = (C2)⊗n = C
2n . The

annihilation and creation operators are

ak = σ3 ⊗ · · ·σ3︸ ︷︷ ︸
k−1

⊗a⊗ 12 ⊗ · · · ⊗ 12︸ ︷︷ ︸
n−k

,

a∗k = σ3 ⊗ · · ·σ3︸ ︷︷ ︸⊗a ∗⊗12 ⊗ · · · ⊗ 12︸ ︷︷ ︸
n−k

.

The ground state is here Ω0 = e0 ⊗ · · · ⊗ e0︸ ︷︷ ︸
n

.
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This model is unitary equivalent to the fermionic Fock model with h= C
n. We

have

HF =C⊕C
n ⊕ (∧2

C
n
)⊕ · · · ⊕ (∧nCn).

Notice that dim(HF )= 2n.
Let us give now some specific properties for the general fermionic Fock model

(for detailed proofs see [33]).

Proposition 123

(1) For every f ∈ h, a(f ) and a∗(f ) are bounded operators in FF (h):∥∥a(f )∥∥= ∥∥a∗(f )∥∥= ‖f ‖, ∀f ∈ h. (11.2)

(2) Let {ϕj }j∈J be an orthonormal basis for h. The family of states defined as

ψj1,j2,...,jk = a∗(ϕj1) · · ·a∗(ϕjn)Ω, jk ∈ J, n≥ 0,

is an orthonormal basis for FF (h).
(3) If T is a bounded operator in FF (h) commuting with all the operators a(f )

and a∗(g), f,g ∈ h, then T = λ1 for some λ ∈C.

Property (3) of the proposition means that the Fock representation for Fermion is
irreducible.

When the system has n identical particles the creation/annihilation operators are
denoted a(∗)j := a(∗)(ϕj ), 1≤ j ≤ n.

A natural problem is to represent the commutation relations (CAR) with deriva-
tive and multiplication operators as can be done for (CCR) with q and d

dq
or in

the Fock–Bargmann representation (see Chap. 1). In other words we would like to
represent anti-commutation relations like

∂

∂θ
θ + θ ∂

∂θ
= 1. (11.3)

This is not possible in the naive sense. This problem is equivalent to build a classical
analogue for Fermionic observables. In order to satisfy (11.3) it is necessary to re-
place the usual real or complex numbers by Grassmann variables as was discovered
by Berezin [22]. Let us define the Grassmann algebras.

Definition 25 The Grassmann algebra Gn with n generators {θ1, . . . , θn} is an alge-
bra, with unit 1, a product and a K-linear space (K=R or K=C) such that

θj θk + θkθj = 0, ∀j, k = 1, . . . , n

and every g ∈ Gn can be written as

g = c0(g)+
∑
k≥1

∑
j1,...,jk

cj1,...,jk (g)θj1 · · · θjk , (11.4)

where c0(g) and cj1,...,jk (g) are K-numbers.
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This definition has some direct algebraic consequences given below and easy to
prove

1. In equality (11.4) the decomposition is not unique. We get a unique decomposi-
tion if we add in the sum the condition j1 < j2 < · · ·< jk . So we get a basis of
Gn, {θj1 · · · θjk , j1 < j2 < · · · jk;1≥ k ≥ n} and its dimension is 2n.

It is sometimes convenient to introduce E [n] = {0,1}n, ε = (ε1, . . . , εn)

where εk = 0,1, and θε = θ
ε1
1 · · · θεnn . So the above basis can be written as

{θε, ε ∈ E [n]}. |ε| := ε1 + · · · + εn is the number of fermionic states occupied.
In particular (11.4) can be written as

g =
∑
ε∈E [n]

cε(g)θ
ε. (11.5)

2. g ∈ Gn is invertible if and only if c0(g) �= 0.
3. Equality (11.4) can be interpreted as a generating function for fermionic states

where cj1,...,jk (g) are the coefficients of a states in the basis {ψj1,j2,...,jk } of
Proposition 123.

4. Derivatives are defined as follows. If g ∈ Gn we have g = g0 + θjg1 where g0
and g1 are independent on θj . So we define the (left derivative)

∂g

∂θj
= g1.

We also a right derivative denoted g ∂
∂θj

and defined by writing g = g0 + g2θj ,

where g0 and g2 are θj -independent, so g2 =: g ∂
∂θj

.
5. We have (CAR) relations [

∂

∂θj
, θ̂k

]
+
= δj,k, (11.6)

where θ̂k is left multiplication by θk in Gn and [•]+ is the anti-commutator in Gn:
[f,g]+ = fg + gf .

Let us remark that (11.6) are analogue for fermions of the commutation rela-
tion for bosons in the holomorphic representation (see Chap. 1).

It is possible to write the relations (CAR) in a real form. For a finite system we
introduce the self-adjoint operators:

Q̂j =
√
�

2

(
aF,j + a∗F,j

)
, P̂j = i−1

√
�

2

(
aF,j − a∗F,j

)
. (11.7)

So (11.6) is transformed in
[
Q̂j , Q̂k

]
+ =

[
P̂j , P̂k

]
+ = �δj,k1

[
Q̂j , P̂k

]
+ = 0, 1≤ j, k ≤ n. (11.8)

Equation (11.8) can be compared to the relations (CCR): anti-commutators replace
commutator. We have seen in Chap. 1 that (CCR) is a representation of the Weyl–
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Heisenberg Lie algebra. (CAR) (11.8) is a representation of the Clifford algebra
Cl(Rn) which is defined below.

Definition 26 Let Φ be a symmetric bilinear form on a linear space V (over K =R

or C). The Clifford algebra is the associative algebra with unit 1 denoted, Cl(V ,Φ),
generated by V and such that for every u,v in V we have

u · v+ v · u=Φ(u,v) · 1. (11.9)

Taking V = R
n with the canonical basis {ek}1≤k≤n and Φ the usual scalar product

the Clifford algebra Cl(Rn) is the algebra defined by the relations

ej · ek + ek · ej = δj,k. (11.10)

Hence we see that the anti-commutation relations (11.8) for � = 1 define a repre-
sentations of the Clifford algebra Cl(R2n) as the commutation relations (CAR) are
a representation of the Weyl–Heisenberg algebra. We shall see later that Cl(R2n) is
not a Lie algebra but a graded Lie algebra or super-Lie algebra.

On the other side the representation (11.6) of (CAR) is equivalent to the repre-
sentation given in Proposition 123.

Proposition 124 Let us consider a system of n identical fermions (h = C
n). The

linear map Φ from FF (C
n) onto Gn is defined by

Φ(ψj1,...,jk )= θj1 · · · θjk .
We have

a∗j =Φ−1θ̂jΦ, and aj =Φ−1 ∂

∂θj
Φ. (11.11)

11.3 Integration on Grassmann Algebra

The construction follows the bosonic construction with the important difference that
complex numbers are replaced by Grassmann variables, which are anti-commuting.
In particular the classical-quantum correspondence has many differences from the
bosonic case. The main tool is derivation-integration over Grassmann variables in-
troduced by Berezin and which can appear to be sometimes strange. But it is the
right algebra to preserve similarities with Bosons and to have a classical analogue
of Fermions.

11.3.1 More Properties on Grassmann Algebras

A Grassmann algebra can be defined on a field K = R or K = C. The Grassmann
algebra with n generators {θ1, . . . , θn} will be denoted Gn or K[θ1, . . . , θn].
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In applications, we have to replace K itself by a Grassmann algebra Gm :=
K[ζ1, . . . , ζm] where [ζj , ζk]+ = 0. In this case we shall consider the right Gm-
module: Gm[θ1, . . . , θn] with generators {θ1, . . . , θn}. It will be sometimes de-
noted Gm

n .
More explicitly a generic element g of Gm

n can be written as

g =
∑
i1<···ik

θi1 · · · θik · ci1···ik ,

where ci1···ik ∈K[ζ1, . . . , ζm]. Multiplication of a vector v in Gm
n := Gm[θ1, . . . , θn]

by a Grassmann number λ ∈ Gm is v · λ where · is multiplication in K[θ1, . . . , θn,

ζ1, . . . , ζm]. We also have a left multiplication λ · v which may be different from
v · λ.

Recall here that this rule is important because Grassmann algebras are not com-
mutative.

Because of properties of Grassmann variables, it is suitable to introduce the index
set E [n] = {0,1}n. So if ε ∈ E [n] then ε = (ε1, . . . , εn) where εj = 0,1. Let us
denote θε = θε1

1 · · · θεnn . So the (right)-module Gm
n has a basis {θε}ε∈E [n].

The parity operator is also very useful; it is the linear operator defined by P(θε)=
(−1)|ε|θε where |ε| = ε1 + · · · εn. So we have the direct sum decomposition

Gm
n = Gm

n,+ ⊕ Gm
n,−,

where P= 1 on Gm
n,+ and P=−1 on Gm

n,−.
Elements in Gm

n,+ are said even and elements in Gm
n,− are said odd.

Let A be a linear operator in G := Gm
n . A is said even if A and P commute:

[A,P] = 0. In other words that means that A has the following matrix representa-
tion:

A=
(
A+ 0
0 A−

)
,

where A± : Gn,± → Gn,±. The following lemmas are useful in computations.

Lemma 71 Even elements commute with every element: if ψ ∈ Gm
n,+ and ϕ ∈ Gm

n

then ψϕ = ϕψ .
Odd elements anti-commute: if ψ ∈ Gm

n,− and ϕ ∈ Gm
n,− then we have [ψ,ϕ]+ =

ψϕ + ϕψ = 0

Proof Exercise. �

The Leibnitz rule for derivative of products depends on parity:

∂

∂θk
(ψϕ)= (Pψ)

(
∂

∂θk
ϕ

)
+
(
∂

∂θk
ψ

)
ϕ. (11.12)
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If f is a smooth function around 0 and G a Grassmann algebra we can define
f (ψ) for every ψ ∈ G by the Taylor formula

f (ψ)=
∑
k∈N

f (k)(0)

k! ψk.

We remark that the sum is finite because ψk = 0 if k > n. In particular if θ =
(θ1, . . . , θn), γ = (γ1, . . . , γn) are 2nGrassmann generators then eθ ·γ is well defined
where θ · γ =∑

1≤k≤n θkγk .

Lemma 72 If k ≥ 2 we have

θ1θ2 · · · θk = (−1)μ(k)θkθk−1 · · · θ1, (11.13)

where

μ(k) =
{

1 if k ≡ 2,3 mod(4)

0 if k ≡ 0,1 mod(4)
(11.14)

eθ ·γ = 1+ θ · γ +
∑

ε∈E [n],|ε|≥2

(−1)ν(ε)θεγ ε (11.15)

where the integer ν(ε) is defined as follows:

ν(ε)=
{

1 if |ε| ≡ 2,3 mod(4)

0 if |ε| ≡ 0,1 mod(4)
(11.16)

Proof Equation (11.13) is true for k = 1,2. We get the general case by induction on
k using Lemma 71.

(11.15) is proved by induction on n using the identity

eθ ·γ =
∏

1≤k≤n
eθkγk =

∏
1≤k≤n

(1+ θkγk).
�

11.3.2 Calculus with Grassmann Numbers

We have already defined derivatives in Grassmann algebras in the previous section.
To preserve analogy with bosons it is useful to define integration in Grassmann
variables.

Definition 27 Consider a Grassmann algebra Gn with generators {θ1, . . . , θn}.
Let ψ ∈ Gn and 1≤ j1, . . . , jk ≤ n.∫
ψ dθj1 · · ·dθjk ∈ Gn is defined by the following properties.
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(i) ψ �→ ∫ψ dθj1 · · ·dθjk ∈ Gn is linear
(ii) ∫dθj = 0, ∀j = 1, . . . , n.

(iii) ∫ θj dθk = δj,k , ∀j, k.
(iv) ∫dθj dθk = 0, ∀j, k.
(v) ∫∫ψ(θj )ϕ(θk) dθj dθk =

∫
ψ(θj ) dθj

∫
ϕ(θk) dθk , ∀j, k

We see that for fermions integration coincides with differentiation; we easily find
∫
ψ dθj1 · · ·dθjk =

∂

∂θjk
· · · ∂

∂θj1

ψ(θ1, . . . , θn). (11.17)

This formula will be used to compute integrals.

Lemma 73 (Change of variables) Let A be a real invertible n× n matrix (A may
have its coefficient in a Grassmann algebra such that A is even and invertible). Then
we have ∫

ψ(Aθ)dθ = det(A)
∫
ψ(θ)dθ. (11.18)

Proof If θ ′ = θA we have

θ ′k =
∑

1≤j≤n
θjAj,k.

Using definition of determinant we get

θ ′n · · · θ ′1 = θn · · · θ1(detA).

But we have
∫
ψ dθ = ψ(1,...,1) where ψ(1,...,1) is the component of ψ in its expan-

sion ψ(θ)=∑
ε∈E [n] θεψε . Hence we deduce (11.18). �

From the Leibnitz rule we deduce an integration by parts the formula:
∫ (

∂ψ

∂θk

)
ϕ dθ∗ dθ =

∫
Pψ

(
∂ϕ

∂θk

)
dθ∗ dθ. (11.19)

Remark on notation: here dθ∗ dθ means
∏

1≤j≤n dθ∗j dθj . Sometimes it will be de-

noted d2θ .

11.3.3 Gaussian Integrals

In order to preserve analogy with the Bargmann–Fock realization with holomorphic
states (see Chap.1) we need to have a complex structure on our Grassmann algebra.
So we consider the Grassmann algebra G2n with generators {θ1, . . . , θn; θ∗1 , . . . , θ∗n }.
In G2n we can define a complex anti- linear involution such that θk �→ θ∗k . We impose
that ψ �→ψ∗ is R-linear and satisfies
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(i) (zα)∗ = z̄α∗ if z ∈C and α is a generator
(ii) (αβ)∗ = β∗α∗ for every α,β ∈ G2n

Let us denote θ∗ = (θ∗1 , . . . , θ∗n ). The Grassmann algebra G2n with its complex struc-
ture will be denoted G c

n .
Integration on G c

n is defined as follows:
∫
ψ dθ dθ∗ =

∫
ψ dθ1 dθ

∗
1 · · ·dθn dθ∗n .

We have the following property.

Lemma 74 The integral
∫
ψ dθ dθ∗ is invariant under unitary change of variable:

θ =Uζ , U ∈ SU(n). So we have
∫
ψ dθ dθ∗ =

∫
ψ
(
Ūζ,Uζ

)
dζ dζ ∗.

Proof From the proof of the change of variable lemma we have θn · · · θ1 =
(detU)ζn · · · ζ1. Then we get

θ∗n θn · · · θ∗1 θ1 =
(
ζ ∗n ζn · · · ζ ∗1 ζ1

)
detU detU = ζ ∗n ζn · · · ζ ∗1 ζ1.

The lemma follows. �

Proposition 125 Let B be a n× n Hermitian matrix. Then we have
∫

e−θ∗·Bθ dθ∗ · dθ = detB. (11.20)

Proof There exists a unitary matrix U such that UBU∗ =D where D is the diago-
nal matrix D = (b1, . . . , bn). Using the change of variables η=Uθ we get
∫

e−θ∗·Bθ dθ∗ · dθ =
∫

e−η∗·Dη dη∗ · dη=
∏

1≤j≤n

∫
e−bj η

∗
j ηj dη∗j dηj = detB.

�

We can extend the above proposition to more general Gaussian integrals.

Proposition 126 Let C[γ, γ ∗] be an other copy of the complex Grassmann algebra
G c
n and B a n× n Hermitian matrix. Then we have

∫
e−θ∗·Bθeγ

∗·θ+θ∗·γ dθ∗ · dθ = (detB)eγ
∗·B−1γ . (11.21)

Proof As in the proof of Proposition 125 we begin by a unitary change of variable
to diagonalize B . Then we get the result after some computations (reduction to the
case n= 1) left to the reader. �

Another useful Gaussian integral computation is
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Proposition 127 Let us consider a quadratic form in (γ, γ ∗):

Φ
(
γ, γ ∗

)= 1

2

(
γ ·Kγ + γ ∗ ·Lγ ∗ + 2γ ∗ ·Mγ

)
,

where K,L are anti-symmetric matrices. So the following matrix Λ of Φ is anti-
symmetric:

Λ=
(
K −MT

M L

)
.

Assume Λ is non-degenerate. Then we have the Fourier transform result
∫

eΦ(γ,γ
∗)eγ

∗·ξ−ξ∗·γ dγ ∗ dγ = PfΛeΦ
(−1)(ξ∗,ξ), (11.22)

where PfΛ is the Pfaffian ofΛ andΦ(−1) is the quadratic form with the matrixΛ−1.

Proof For ξ = 0 it is well known that the integral is equal to PfΛ which is the
Pfaffian of Λ (see [207]). Recall that PfΛ2 = detΛ.

Then by a usual trick we can eliminate the linear terms in the integral. We do that
by performing a change of Grassmann variables γ = θ − αξ , γ ∗ = ζ − βξ . θ and
ζ are new Grassmann integration variables (not necessarily conjugated) and αξ ,βξ
are computed such that the linear terms are eliminated. So we find

(
αξ
βξ

)
=Λ−1

(
ξ∗
ξ

)
.

The formula (11.22) follows. �

11.4 Super-Hilbert Spaces and Operators

As in the bosonic case we want to find a space to represent fermionic states as
functions in some L2-space.

11.4.1 A Space for Fermionic States

Let us define H (n) the subspace of G2n of holomorphic functions in θ =
(θ1, . . . , θn). ψ ∈H (n) means ∂

∂θ∗k
ψ = 0 for 1≤ k ≤ n.

H (n) is a complex vector space of dimension n with the basis {θε, ε ∈ E [n]}.
Moreover H (n) is a Hilbert space for the scalar product

〈ψ,ϕ〉 :=
∫

eθ
∗·θψ(θ)∗ϕ(θ) dθ dθ∗
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and {θε, ε ∈ E [n]} is an orthonormal basis. We shall denote eε(θ) = θε for ε ∈
E [n]. The space H (n) has dimension 2n over C and is isomorphic to the Fock
space H (n)

F .

Remark 60 The notation ψ∗ for the complex involution is sometimes replaced by
the more suggestive notation ψ̄ which may be sometimes confusing.

The creation/annihilation operators in H (n) are

(
a∗j ψ

)
(θ)= θjψ(θ), ajψ(θ)= ∂

∂θj
ψ(θ).

They satisfy anti-commutation rules (CAR) and a∗k is the hermitian adjoint of ak for
every 1≤ k ≤ n.

The Hilbert space H (n) is not large enough to represent Fermionic states and to
compute with them. As usual in Grassmann calculus we need to add new Grassmann
generators (γ, γ ∗), γ = (γ1, . . . , γn). Let us denote Γ c

n :=C[γ, γ ∗].
As above we introduce H̃ (n) the sub-Grassmann algebra of G c

n ⊗ Γ c
n of holo-

morphic elements in θ .
H̃ (n) will be seen as a module1 over the algebra Γ c

n with basis {θε, ε ∈ E [n]}.
H̃ (n) is a kind of linear space where the complex field number is replaced by the
Grassmann algebra numbers: Γ c

n . The following operations make sense because
they are well defined in G c

n ⊗Γ c
n , with usual properties easy to state: if ψ,ϕ ∈ H̃ (n),

λ ∈ Γ c
n , then ψ +ϕ ∈ H̃ (n) and λψ,ψλ ∈ H̃ (n). In particular every ψ̃ ∈ H̃ (n) can

be decomposed as

ψ =
∑
ε∈E [n]

θεcε(ψ),

where cε(ψ) ∈ Γ c
n .

The scalar product in H (n) can be extended as a sesquilinear form to H̃ (n) by
the formula

〈ψ,ϕ〉 :=
∫
ψ(θ)∗ϕ(θ)eθ∗·θ dθ dθ∗

but now 〈ψ,ϕ〉 is a Grassmann number in Γ c
n and not always a complex number. The

map (ψ,ϕ) �→ 〈ψ,ϕ〉 has usual properties: it is sesquilinear and non negative. But
it is degenerate and only its restriction to the Hilbert space H (n) is non-degenerate.
Here we do not use the general theory of super-space, on our examples direct com-
putations can be done (see the book [62] for more details concerning super-Hilbert
spaces).

Let us remark that every linear operator in H (n) can be extended as a linear
operator in H̃ (n). In particular the parity operator P in variables θ is well defined.

1A module over some ring or algebra is like a linear space where the field number R or C is
replaced by a ring or an algebra (see any textbook in advanced algebra).
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As a first application let us consider the Fermionic Dirac distribution at θ . It is
not difficult to establish the following identity for every ψ ∈H (n):

ψ(θ)=
∫
ψ(γ )e−(θ−γ )·γ ∗ dγ ∗ dγ. (11.23)

In other words the identity is an integral operator with a kernel

E(θ, γ ) := e−(θ−γ )·γ ∗ =
∏

1≤k≤n

(
1− (θk − γk)γ ∗k

)
. (11.24)

It is usual to denote E(θ, γ )= δ(θ − γ ). We have also the more symmetric form

δ(θ − γ )=
∏

1≤k≤n
(θk − γk)

(
θ∗ − γ ∗k

)
.

This could be used to prove that every linear operator in H (n) has a kernel.

11.4.2 Integral Kernels

Proposition 128 For every linear operator Ĥ :H (n)→H (n)2 there exists KH ∈
C[θ, γ ∗] such that

Ĥψ(θ)=
∫
KH

(
θ, γ ∗

)
ψ(γ )eγ

∗·γ dγ dγ ∗, ∀ψ ∈H (n). (11.25)

Moreover KH ∈C[θ, γ ∗] can be computed as follows:

KH
(
θ, γ ∗

)= ∑
ε′,ε∈E [n]

〈
eε′ , Ĥ eε

〉
eε′(θ)eε(γ )

∗. (11.26)

Proof Using that {eε} is an orthonormal system it is not difficult to prove that
(11.25) is satisfied for ψ = eε with KH given by (11.26). So we get the result for
every ψ . �

Corollary 29 Every linear operator Ĥ :H (n)→H (n) has a unique decomposi-
tion like

Ĥ =
∑

ε′,ε∈E [n]
Hε,ε′a

∗ε′aε, (11.27)

where Hε,ε′ ∈C.

2As for bosons, when we consider quantization of observables, it is convenient to denote operators
with a hat accent to make a difference between classical and quantum observables. Sometimes this
rule is not applied when the context is clear.
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These results can be easily extended to linear operators in the super-Hilbert
space H̃ (n).

Proposition 129 For every linear operator Ĥ : H̃ (n)→ H̃ (n) there exists KH ∈
C[θ, γ, γ ∗] such that

Ĥψ(θ)=
∫
KH

(
θ, γ ∗

)
ψ(γ )eγ

∗·γ dγ dγ ∗, ∀ψ ∈ H̃ (n). (11.28)

Moreover K ∈C[θ, γ, γ ∗] can be computed as follows:

K
(
θ, γ ∗

)= ∑
ε′,ε∈E [n]

eε′(θ)
〈
eε′ , Ĥ eε

〉
eε(γ )

∗, (11.29)

and every linear operator Ĥ in H̃ (n) has a unique decomposition

Ĥ =
∑

ε′,ε∈E [n]
Hε,ε′a

∗ε′aε (11.30)

where Hε,ε′ ∈ Γ c
n . This representation, with annihilation operators, first is called

the normal representation of Ĥ .

We denote by End(H̃ (n)) the space of linear operators in H̃ (n).

Corollary 30 Every linear operator Ĥ in H̃ (n) has an hermitian conjugate Ĥ ∗:
〈
ψ, Ĥϕ

〉= 〈
Ĥ ∗ψ,ϕ

〉
, ∀ψ,ϕ ∈ H̃ (n). (11.31)

Moreover Ĥ �→ Ĥ ∗ is a linear complex involution in End(H̃ (n)), satisfying for
every linear operator Ĥ , F̂ in H̃ (n) and λ ∈ Γ c

n ,

• (Ĥ F̂ )∗ = F̂ ∗Ĥ ∗.
• (λĤ )∗ = Ĥ ∗λ∗, (Ĥλ)∗ = λ∗Ĥ ∗.
• a∗k is the hermitian conjugate of ak for 1≤ k ≤ n.

It is convenient to define a fermionic Fourier transform which is a kind of Fourier-
symplectic transform. This will be used for fermionic quantization.

11.4.3 A Fourier Transform

Definition 28 For any ψ ∈ H̃ (n) the Fourier transform is defined as

ψF (α)=
∫

eξ
∗·α−α∗·ξψ(ξ) dξ∗ dξ.
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The following properties are easy to prove:

1. ψ(ξ)= ∫
e(α

∗·ξ−ξ∗·α)ψF (α)dα∗ dα (inverse formula). The Fourier transform is
idempotent: (ψF )F =ψ .

2. 1F (α)= α∗ · α, ξF (α)= α, ξ∗F (α)=−α∗.
3.

∫
ψF (α)(ϕF (α))∗ dα∗ dα = ∫

ψ(ξ)(ϕ(ξ))∗ dξ∗ dξ (Parseval’s relation 1).
4.

∫
ψF (α)ϕF (−α)dα∗ dα = ∫

ψ(ξ)ϕ(ξ) dξ∗ dξ (Parseval’s relation 2).
5. (ψϕ)F (α)= ∫

ψF (α − β)ϕF (β) dβ∗ dβ (Fourier-convolution).
6. (τζψ)F (α) = ψF (α)eζ

∗·α−α∗·ζ (translation-modulation), where τζψ(ξ) =
ψ(ξ − ζ ).

Let us remark that these properties are also satisfied if ψ , ϕ are replaced by linear
operators in End(H̃ (n)) depending on Grassmann variables.

11.5 Coherent States for Fermions

As in the previous section we consider two complex Grassmann algebras G c
n =

C[θ, θ∗] and Γ c
n =C[γ, γ ∗]. H (n) (and H̃ (n)) are spaces of holomorphic states in

variables θ .

11.5.1 Weyl Translations

The Weyl translations are defined as usual:

T̂ (γ )= ea
∗·γ−γ ∗·a, γ = (γ1, . . . , γn). (11.32)

Remark that T̂ (γ ) depends on the 2n independent Grassmann variables (γ, γ ∗).
Nevertheless we simply note T̂ (γ ) and sometimes T̂ (γ, γ ∗) if necessary. They are
translations in the phase space and in particular we have

T̂
(
0, γ ∗

)
ψ(θ)=ψ(θ − γ ∗), T̂ (γ,0)ψ(θ)= eθ ·γ ψ(θ).

Recall that γ · a =∑
1≤k≤n γkak and a∗ · γ =∑

1≤k≤n a∗k γk (beware of the order!).
Using anti-commutations relations (CAR) we have the commutation relations:

αjaj =−ajαj for αj = γj , γ ∗j ,[
a∗j γj , γ ∗k ak

]= γjγ ∗k δj,k,[
aj , a

∗
k γk

]= γkδj,k,
[aj , akγk] = 0.

(11.33)



11.5 Coherent States for Fermions 325

We have a similar relation inverting a and a∗ and using [A,B]∗ = −[A∗,B∗]. From
these relations we get

T̂ (γ )=
∏

1≤k≤n
ea
∗
k γk−γ ∗k ak =

∏
1≤k≤n

(
1+ a∗k γk − γ ∗k ak +

(
a∗k ak −

1

2

)
γ ∗k γk

)
.

(11.34)
The following properties are easily obtained with little algebraic computations sim-
ilar to the bosonic case (see Chap. 1). In particular we also have a Baker–Campbell–
Hausdorff formula:

Lemma 75 Let A,B , be Γ c
n -linear operators in H̃ (n) such that [A,B] commutes

with A,B . Then

eAeBe−
1
2 [A,B] = eA+B.

Proof Let us remark first that eA is well defined by the Taylor series because
dim[H̃ (n)] < +∞ and eA is a Γ c

n -linear operator. Hence the result follows as in
Lemma 1 of Chap. 1. �

Now we state mains properties of the translation operators T̂ (γ ).

1. T̂ (γ ) is Γ c
n -linear in H̃ (n) (on right and left).

2. T̂ (α + γ )= T̂ (α)T̂ (γ ) exp( 1
2 (α

∗ · γ + α · γ ∗)).
3. (T̂ (γ ))−1 = T̂ (−γ ) = T̂ (γ )∗. In particular T̂ (γ ) is a unitary operator in the

super-Hilbert space, which means that the super-inner product is preserved:

〈
T̂ (γ )ψ, T̂ (γ )ϕ

〉= 〈ψ,ϕ〉.
4. Translation property:

T̂ (γ )∗aT̂ (γ ) = a + γ, (11.35)

T̂ (γ )∗a∗T̂ (γ ) = a∗ + γ ∗. (11.36)

11.5.2 Fermionic Coherent States

Now we can give a definition for Fermionic coherent states.

Definition 29 For every Grassmann generator γ we associate a state in the super-
Hilbert space H̃ (n) denoted ψγ = |γ 〉 by the formula

ψγ = T̂ (γ )ψ∅, (11.37)

where ψ∅(θ)= e0,...,0(θ) is the vacuum state, usually denoted |0〉.
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First properties of coherent states ψγ are easily deduced from properties of the
translation T̂ (γ ).

1. ψγ are eigenvectors of annihilation operators a: aψγ = γψγ where a =
(a1, . . . , an) and γ = (γ1, . . . , γn).

2. The inner product of two coherent states satisfies

〈ψγ ,ψα〉 = exp

(
γ ∗ · α − 1

2

(
γ ∗ · γ + α∗ · α)

)
. (11.38)

3.

T̂ (γ )ψα = exp

(
1

2

(
α∗ · γ − γ ∗ · α)

)
ψα+γ . (11.39)

We can give a more explicit formula for ψγ which is very similar to that obtained
in the Bargmann representation for bosons (Chap. 1).

From the above computations we have

ψγ (θ) = e−γ ∗·γ /2
∏

1≤k≤n

(
1+ a∗k γk

)
ψ∅

= e−γ ∗·γ /2
∑

k1<k2<···kj
a∗k1
γk1 · · ·a∗kj γkj ψ∅

= e−γ ∗·γ /2
∑
ε∈E [n]

(−1)ν(ε)θεγ ε

= e(θ−
γ ∗
2 )·γ ,

where ν(ε) was defined in (11.15). In particular we have proved that

〈eε,ψγ 〉 = (−1)ν(ε)γ εe−γ ∗·γ /2. (11.40)

Then for every ψ ∈H (n) we have

〈ψγ ,ψ〉 = e−γ ∗·γ /2
∑
ε∈E [n]

γ ∗εψε. (11.41)

Remark 61 Let us remark that the chirality operator3 χ on coherent state ψγ gives
χψγ =ψ−γ .

One of the most useful property of coherent states is their completeness:

Proposition 130 For every ψ ∈ H̃ (n) we have

ψ(θ)=
∫
〈ψγ ,ψ〉ψγ (θ) dγ ∗ dγ. (11.42)

3A definition of the chirality operator is given in the next section.
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Proof It is enough to prove (11.42) for ψ = eε for every ε ∈ E [n]. Computing the
integrand in the right hand side of (11.42) using (11.40) and (11.41) we get

〈ψγ , eε〉ψγ (θ)=
∑

ε′∈E [n]
(−1)ν(ε)+ν(ε′)eγ ·γ ∗θε′γ ε′

(
γ ε
)∗
. (11.43)

Then using orthogonality relations in Grassmann variables γ we get
∫
〈ψγ , eε〉ψγ (θ) dγ ∗ dγ = θε. (11.44)

�

Remark 62 Coherent states are obtained by translations from a fixed state. Instead
of the vacuum ψ∅ we could start from the state ψ1(θ) = θ1 · · · θn (all modes are
occupied). So we define another family of coherent states:

ψ ′γ = T̂ (γ )ψ1. (11.45)

Any property of ψγ can be translated in a property of ψ ′γ :

• a∗kψ ′γ = γ ∗k ψ ′γ (ψ ′γ is an eigenstate of the creation operators).
• Expansion in the orthonormal basis:

ψ ′γ (θ) = e
γ ∗·γ

2
∑
ε∈E [n]

θ
1−ε1
1

(
γ ∗1

)
ε1 · · · θ1−εn

n

(
γ ∗
)εn

= e
γ ∗·γ

2
∑
ε∈E [n]

(−1)ν
′(ε)θε

c(
γ ∗
)ε
, (11.46)

where εc = (1− ε1, . . . ,1− εn) and ν′(ε) is 0 or 1.
• Completeness: for every ψ ∈ H̃ (n),

ψ(θ)=
∫
ψ ′γ (θ)〈ψ ′γ ,ψ〉dγ dγ ∗. (11.47)

We shall see in the next section that fermionic coherent states are related with a
fermionic harmonic oscillator.

11.6 Representations of Operators

Besides their integral kernels, operators can be represented by several other func-
tions or (Schwartz distributions) often called “symbols” as it is for finite bosons
systems Weyl (covariant, contravariant), Wick, anti-Wick, Wigner functions (see
Chap. 2). We shall see now that this can be also defined for finite systems of
fermions.

A useful tool to compute with operators (quantum observables) is the trace which
is an important spectral invariant.
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11.6.1 Trace

The trace of any linear operator Ĥ in H̃ (n) is defined as usual by the sum of diag-
onal elements

Tr Ĥ =
∑
ε∈E [n]

〈
eε, Ĥ eε

〉
. (11.48)

The parity operator P defined a Γ c
n linear operator in the super-space H̃ (n) and

another useful invariant is the super-trace defined as follows. Let us denote P± the
orthogonal projection on even/odd states in H̃ (n). So every operator Ĥ can be de-
composed as

Ĥ = P+ĤP+ + P−ĤP− + P+ĤP+ + P−ĤP+.

In matrix form this is written as

Ĥ =
(
Ĥ++ Ĥ+−
Ĥ−+ Ĥ−−

)
.

So we have Tr Ĥ = Tr(Ĥ++)+ Tr(Ĥ−−).

Definition 30 (Super-trace) The super-trace of Ĥ is defined as

Str Ĥ = Tr
(
Ĥ++

)− Tr
(
Ĥ−−

)
.

Or if we introduce the chirality operator χ = (1 0
0 −1

)
we have

Str Ĥ = Tr
(
Ĥχ

)
.

Remark 63 If Â is a linear invertible operator in H̃ (n) and if Â is even: ÂP= PÂ
then

Str
(
Â−1Ĥ Â

)= Str Ĥ .

In particular the super-trace is invariant under even unitary transformations of H̃ (n).
More generally we have

Str
(
ÂB̂

)= (−1)εStr
(
B̂Â

)
,

where ε = 1 if Â and B̂ are odd, ε = 1 otherwise.

Recall that the trace and determinant are related through the usual trace-
determinant relation: eTrH = det(eH ). To the super-trace is associated a super-
determinant Ber(Ĥ ) (found by Berezin [20]) such that

exp
(
Str Ĥ

)= Ber
(
exp Ĥ

)
.
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Assume for simplicity that Ĥ has complex coefficients.

Definition 31 Let Ĥ = (
Ĥ++ Ĥ+−
Ĥ−+ Ĥ−−

)
be such that Ĥ−− is invertible.

The Berezian Ber(Ĥ ) of Ĥ is defined by

Ber
(
Ĥ
)= det

(
Ĥ++ − Ĥ+−Ĥ−1−−Ĥ−+

)
det

(
Ĥ−−

)−1
.

The following property is an easy consequence of the definition: if Ĥ and L̂ are
super-operators then

Ber
(
Ĥ L̂

)= Ber
(
Ĥ
)
Ber

(
L̂
)
.

Proposition 131 Let Ĥ be as above. Then we have

exp
(
Str Ĥ

)= Ber
(
exp Ĥ

)
. (11.49)

Proof If Ĥ+− = Ĥ−+ = 0 (11.49) is a consequence of the trace-determinant rela-
tion. The general case can be deduced from this case. �

Proposition 132 Let Ĥ be a linear operator in H̃ (n) and KH(θ, γ ∗) its integral
kernel. We assume that the element of matrix of Ĥ are even in Γ c

n . Then we have

Tr Ĥ =
∫
KH

(
θ,−θ∗)eθ∗·θ dθ dθ∗, (11.50)

Str Ĥ =
∫
KH

(
θ, θ∗

)
eθ
∗·θ dθ dθ∗. (11.51)

Proof By assumption 〈eε′ , Ĥ eε〉 are even Grassmann numbers, so we have

∫
KH

(
θ, θ∗

)
eθ
∗·θ dθ dθ∗ =

∑
ε

〈
eε, Ĥ eε

〉
eε(θ)eε(θ)

∗eθ∗·θ dθ dθ∗.

Splitting the sum according to the parity of ε we get

∫
KH

(
θ, θ∗

)
eθ
∗·θ dθ dθ∗ =

∑
|ε|even

〈
eε, Ĥ eε

〉− ∑
|ε|odd

〈
eε, Ĥ eε

〉
(11.52)

= Str Ĥ . (11.53)

The same computation gives the expression for the trace formula. �

The integral kernel of operators are closely related with the matrix elements on
coherent states (see Chap. 1 concerning Bargmann representation):
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Proposition 133 Under the same assumption on Ĥ as in Proposition 132 we have

〈
ψα, Ĥψβ

〉= e
1
2 (α·α∗+β·β∗)KH

(
α∗, β

)
, (11.54)

where α,β are independent Grassmann generators with their complex conjugate
(α∗, β∗).

In particular the integral kernel of the identity operator is the following expres-
sion of the delta function:

δ
(
θ − γ ∗)= eθ ·γ ∗ . (11.55)

Proof Using the Parseval relation we have

〈
ψα, Ĥψβ

〉 =∑
ε

〈eε,ψα〉∗
〈
eε, Ĥψβ

〉

= e
1
2 (α·α∗+β·β∗)

(∑
ε′,ε
(−1)ν(ε)+ν(ε′)

〈
ε, Ĥ eε′

〉
α∗εβε′

)
. (11.56)

Putting α = θ∗, β = γ ∗ we recognize the integral kernel of H .
Formula (11.55) is easily obtained using properties of coherent states. Note that

this expression for the Dirac function is different from that found before because the
measure on the space is different. �

Hc(α,β) := 〈ψα, Ĥψβ〉 plays the role of a covariant-Wick symbol for Ĥ . We
shall see later that we also have contravariant Wick symbols.

Corollary 31 We have

Tr Ĥ =
∫
Hc(θ,−θ) dθ∗ dθ, (11.57)

Str Ĥ =
∫
Hc(θ, θ) dθ

∗ dθ. (11.58)

In particular for rank one operators Πη,ϕψ = η〈ϕ,ψ〉 we have

Str(Πη,ϕ) = 〈ϕ,η〉, (11.59)

Tr(Πη,ϕ) = 〈χϕ,η〉 = 〈ϕ,χη〉, (11.60)

where χ is the chirality operator.

Proof Let us prove (11.59). The super-trace formula follows from completeness
relation for coherent states and (11.57). So we have

StrΠη,ϕ =
∫
〈ψα,η〉〈ϕ,ψα〉 = 〈ϕ,η〉.

We get the trace formula using the Tr(Πη,ϕ)= Str(χΠη,ϕ). �
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Remark 64 As usual we have the following relation between the trace and matrix-
elements:

Tr
(
ĤΠβ,γ

)= 〈
ψ−γ , Ĥψβ

〉
,

where Πβ,γ (ψ)=ψβ〈ψγ ,ψ〉. Furthermore if Ĥ is even, we have

Tr
(
ĤΠβ,γ

)= 〈
ψγ , Ĥψ−β

〉
.

Concerning the super-trace we have

Str
(
ĤΠβ,γ

)= 〈
ψγ , Ĥψβ

〉
.

Now we define Weyl symbols for fermionic operators.

11.6.2 Representation by Translations and Weyl Quantization

Definition 32 The operator Ĥ has a covariant Weyl symbol Hw if we have the
operator equality:

Ĥ =
∫
Hw(ξ)T̂ (−ξ) dξ∗ dξ, (11.61)

where the symbol Hw ∈ Γ c
n , complex Grassmann algebra with generators (ξ, ξ∗).

Let us remark that Hw depends on the 2n independent Grassmann variables
(ξ1, . . . , ξn; ξ∗, . . . , ξ∗n ). Nevertheless for simplicity we note Hw(ξ).

Proposition 134 Every linear operator Ĥ in H̃ (n) has a covariant Weyl symbol.
This symbol is unique and given by the formula

Hw(ξ)= Str
(
Ĥ T̂ (ξ)

)
. (11.62)

Proof The proof is done in three steps.
First we remark that identity operator 1 and creation operators have Weyl sym-

bols. Direct computations give

1w(ξ)= ξ · ξ∗, ak,w(ξ)= ξk, a∗k,w(ξ)=−ξ∗k .

We remark that if Ĥ , L̂ have Weyl symbols, Hw , Lw then Ĥ L̂ and Ĥ ∗ have Weyl
symbols (it is possible to give a formula, this is left to the reader).

It results that every operator Ĥ has a Weyl symbol because Ĥ is a sum of product
of â∗k , âj .
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To compute the symbol of Ĥ we first compute the diagonal matrix element of
translation operators. We easily get

〈
ψα, T̂ (γ )ψα

〉= exp

(
α∗ · γ − γ ∗ · α − 1

2
γ ∗ · γ

)
. (11.63)

Remark that we have an analogous formula for anti-diagonal element

〈
ψα, T̂ (γ )ψ−α

〉= exp

(
α∗ · γ + γ ∗ · α − 2α∗ · α − 1

2
γ ∗ · γ

)
. (11.64)

Using formula (11.61) we get after straightforward computations

Str
(
Ĥ T̂ (α)

)

=
∫
Hw(ξ) exp

((
β∗ + ξ∗

2

)
· (α − ξ)− (

α∗ − ξ∗) ·
(
β + ξ

2

))
d2ξ d2β.

(11.65)

Computing first integral in β we have

Str
(
Ĥ T̂ (α)

)

=
∫
Hw(ξ)(ξ − α) ·

(
ξ∗ − α∗) exp

(
ξ∗

2
· (α − ξ)− (

α∗ − ξ∗) · α
2

)
d2ξ.

(11.66)

Hence a computation using Grassmann algebra rules gives that

Str
[
Ĥ T̂ (α)

]=Hw(α). (11.67)

�

Remark 65 A direct consequence of our computations is that

Str
(
T̂ (−ξ)T̂ (γ ))= δ(γ − ξ).

As usual we have the following relation between the trace and matrix-elements:

Tr
(
ĤΠβ,γ

)= 〈
ψγ , Ĥψ−β

〉
,

where Πβ,γ (ψ)=ψβ〈ψγ ,ψ〉.

Now we get the contravariant Weyl symbol as Fourier transform of the covariant
symbol

Proposition 135 For every linear operator Ĥ we have

Ĥ =
∫
Hw(α)T̂F (α)d2α, (11.68)
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where Hw(α)=HF
w (α) and

T̂F (α)=
∫

e(a
∗−α∗)·γ+(a−α)·γ ∗ d2γ.

In particular we have the following formula:

1w = 1, aw(α)= α, a∗w(α)= α∗. (11.69)

Proof Formula (11.68) is a direct application of the Parseval relation 2 for Fourier
transform. �

Corollary 32 The super-trace of Ĥ is equal to the integral of the contravariant
Weyl symbol Hw:

Str Ĥ =
∫
Hw(α)d2α. (11.70)

More generally we have the following super-trace product formula:

Str
(
Ĥ Ĝ

)=
∫
Hw(α)Gw(α)d2α. (11.71)

Proof Using the Fourier transform we get

Str Ĥ =Hw(0)=
∫
Hw(α)d2α,

so we have (11.70).
We have for the product

Ĥ Ĝ=
∫
Hw(α)T̂F (α)Ĝ d2α ⇒ Str

(
Ĥ Ĝ

)=
∫
Hw(α)Str

(
T̂F (α)Ĝ

)
d2α.

But Str(T̂F (α)Ĝ) is the Fourier transform of Str(T̂ (α)Ĝ)which is the Weyl symbol
Gw . So we get (11.71). �

Weyl symbols and integral kernel are closely related.

Proposition 136 For every operator Ĥ its integral kernel KH and its covariant
Weyl symbol Hw satisfy

KH
(
θ, γ ∗

) = eθ ·γ ∗
∫
Hw(ξ)e

ξ ·ξ∗
2 eξ

∗·γ ∗−θ ·ξ dξ∗ dξ, (11.72)

Hw(ξ) = e
ξ∗·ξ

2

∫
eα·α∗KH

(
α∗, α

)
eα
∗·ξ−ξ∗·α dα∗ dα. (11.73)
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Proof Remark that the two formulas are clearly equivalent using Fourier and inverse
Fourier transform. To prove the first formula we compute the integral kernel of any
translation operator T̂ (ζ ).

From the relation

ψ(θ)=
∫

eθ ·γ ∗ψ(γ )eγ ∗·γ dγ dγ ∗

we get

KT (ζ)
(
θ, γ ∗

)= eζ ·ζ ∗e(θ−ζ ∗)·γ ∗+θ ·ζ .

Using that Ĥ is a superposition of translations with density Hw(ζ ) we get the first
formula (11.72). �

One of the more useful tool to analyze mean value of observables for a n-bosons
system are Wigner–Weyl functions because of the following well known formula:

Tr
(
ρÔ

)= (2π�)−n
∫
R2n

Wρ(X)O(X)dX, (11.74)

where ρ is a density operator, Ô a quantum observable, Wρ(X) and O(X) are the
Wigner–Weyl symbols, defined in the phase space R

2n, for ρ and Ô . Our goal now
is to find fermionic analogues for formula (11.74). Here we have to overcome alge-
braic problems to deal with Grassmann variables. We again follow the paper [37].

11.6.3 Wigner–Weyl Functions

Ordering is always a problem for computations in non commutative algebras in
particular for quantization of observables. With fermions even classical variables do
not commute.

To prepare further computations we introduce now two families of operators from
which we can get different quantization procedures with interesting connections
between them,

T̂N (γ ) = T̂1(γ )= ea
∗·γ e−γ ∗·a (normal ordering), (11.75)

T̂A(γ ) = T̂−1(γ )= e−γ ∗·aea
∗·γ (anti-normal ordering). (11.76)

We have

T̂N (γ ) = T̂ (γ )e
γ ∗·γ

2 = T̂1(γ ), (11.77)

T̂A(γ ) = T̂ (γ )e−
γ ∗·γ

2 = T−1(γ ), where (11.78)

T̂s(γ ) = T̂ (γ )es
γ ∗·γ

2 , s ∈R. (11.79)
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We also define

R̂A(ξ) = R̂−1(ξ) =
∫

eξ ·γ ∗−γ ·ξ∗Πγ,−γ dγ ∗ dγ, (11.80)

R̂N (ξ) = R̂1(ξ) = R̂−1(ξ)e
ξ∗·ξ . (11.81)

Remark that R̂−1(ξ) is the Fourier transform in γ of Πγ,−γ . We also introduce

R̂s(ξ)= exp

(
1+ s

2
ξ∗ξ

)
R̂−1(ξ), s ∈R. (11.82)

We now show that R̂s generates a quantization for each s as well as the translations
T̂s do and that there exists a kind of duality between them.

Proposition 137 For every linear operator Ĥ in H̃ (n) and every real number s
there exist unique symbols HG ,s , Hw,s in Γ c

n such that

Ĥ =
∫
HG ,s(ξ)R̂−s(−ξ) dξ∗ dξ, (11.83)

Ĥ =
∫
Hw,s(ξ)T̂−s(−ξ) dξ∗ dξ. (11.84)

Moreover we have

HG ,s(ξ) = Tr
(
T̂s(ξ)Ĥ

)
, (11.85)

Hw,s(ξ) = Tr
(
R̂s(ξ)Ĥ

)
. (11.86)

Proof The proof will be done following the method of Sect. 5.2. For simplicity we
only consider the case s = 1 and the symbol HG ,1. The general case is not more
difficult.

First compute the action of R̂−1(−ξ) on coherent states. Using the properties of
the coherent state, we get

R̂−1(−ξ)ψα(θ)= e(ξ+α)·(θ+ξ∗). (11.87)

Hence we get the matrix elements

〈
ψβ, R̂−1(−ξ)ψα

〉= exp

(
(ξ + α) · (ξ∗ + β∗)− 1

2

(
β∗ · β + α∗ · α)

)
. (11.88)

In particular we get the following representation formula for operators 1, ak, a∗k :

1 =
∫ (

1− ξ · ξ∗)R̂−1(ξ) dξ
∗ dξ, (11.89)

ak =
∫
(−ξk)R̂−1(ξ) dξ

∗ dξ, (11.90)

a∗k =
∫
ξ∗k R̂−1(ξ) dξ

∗ dξ. (11.91)
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From this, using that every operator is a polynomial in a and a∗, we find that for
any operator Ĥ there exists HG ,−1 satisfying (11.83).

To get (11.85) we apply the following lemma where we see a duality between
quantization by translations and quantization by coherent states. �

Lemma 76 For every s ∈R we have

Tr
(
T̂s(ξ)R̂−s(−ζ )

)= δ(ξ − ζ ). (11.92)

Proof Using the trace formula with coherent states, we have

Tr
(
T̂s(ξ)R̂−s(−ζ )

)=
∫ 〈

T̂s(−ξ)ψ−γ , R̂−s(−ζ )ψγ
〉
d2γ. (11.93)

In (11.93) we use the properties (11.39), (11.38), (11.87) and after a Berezin integral
computation we get (11.92). �

Let us consider a density operator ρ̂ which means that ρ̂ is a linear, non negative,
hermitian operator in H̃ (n) such that Tr ρ = 1.

For physical reason (see [37]) we assume that ρ̂ is even (it commutes with the
parity operator P).

We introduce the characteristic function χρ defined as

χρ(ξ) := Tr
(
ρ̂eξ ·a∗−a·ξ∗

)
. (11.94)

We can easily see that from properties of trace and translation operators we also
have

χρ(ξ)= Tr
(
ρ̂T̂ (ξ)

)= Tr
(
ρ̂T̂ (−ξ)).

In particular χρ is even. The normal and anti-normal characteristic functions are

χρ,1(ξ) = Tr
(
ρ̂eξ ·a∗e−a·ξ∗

)
, (11.95)

χρ,−1(ξ) = Tr
(
ρ̂e−a·ξ∗eξ ·a∗

)
. (11.96)

Using a trace computation with coherent states we have

χρ,−1(ξ)=
∫

eξ ·β∗−β·ξ∗ 〈ψβ, ρ̂ψ−β〉dξ∗ dξ. (11.97)

So χρ,−1(ξ) is the Fourier transform of the matrix element 〈ψβ, ρ̂ψ−β〉.
Introduce now the “Fourier transform operator”:

T̂F
s (γ ) =

∫
eξ ·γ ∗−γ ·ξ∗ T̂s(ξ) dξ∗ dξ, (11.98)

R̂F
s (γ ) =

∫
eγ ·ξ∗−ξ ·γ ∗R̂s(ξ)dξ∗dξ. (11.99)
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In particular we can easily compute:

R̂F−1(γ )=Πγ,−γ , R̂F
1 (γ )=Π ′γ,−γ , (11.100)

where

Π ′γ,β(ψ)=ψ ′γ 〈ψ ′β,ψ〉.
From Parseval’s relation we get the following representation formula:

Ĥ =
∫
Hw,−s(α)T̂F

s (α) dα∗ dα, (11.101)

Ĥ =
∫
HG ,−s(α)R̂s(α)F dα∗ dα, (11.102)

where

Hw,−s(α) =
∫

eξ ·α∗−α·ξ∗ Tr
(
Ĥ R̂−s(ξ)

)
dξ∗ dξ, (11.103)

HG ,−s(α) =
∫

eξ ·α∗−α·ξ∗ Tr
(
Ĥ T̂−s(ξ)

)
dξ∗ dξ. (11.104)

Recall that

δ(ξ − ζ )= Tr
(
T̂s(ξ)R̂−s(−ζ )

)
.

So we get

Tr
(
Ĥ Ĝ

)=
∫

Tr
(
Ĥ R̂−s(ξ)

)
Tr
(
ĜT̂−s(−ξ)

)
dξ∗ dξ (11.105)

for any operators H , G. Applying the Parseval relation we get

Tr
(
Ĥ Ĝ

)=
∫
HR,−s(γ )Gw,s(γ ) dγ ∗ dγ. (11.106)

Applying this to the density operator ρ̂ we have

ρ̂ =
∫
χρ,s(ξ)R̂−s(−ξ) dξ∗ dξ. (11.107)

Now we introduce the Wigner–Weyl function or quasi-probability as the Fourier
transform of the characteristic function

Wρ,s(γ )=
∫
χρ,s(ξ)e

γ ·ξ∗−ξ ·γ ∗ dξ∗ dξ. (11.108)

We see that Wρ,s(γ )= ρG ,s(γ ) hence

ρ̂ =
∫
Wρ,s(γ )R̂

F ,−s(γ ) dγ ∗ dγ (11.109)
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and for every observable Â,

Tr
(
ρ̂Â

)=
∫
Wρ,s(γ )A

w,−s d2γ. (11.110)

This is why Wρ,s(γ ) is called a quasi-probability.
In particular for s = 1 (normal ordering) and s =−1 (anti-normal ordering) we

have

ρ̂ =
∫
Pρ(γ )Πγ,−γ dγ ∗ dγ =

∫
Qρ(γ )Π

′
γ,−γ dγ ∗ dγ, (11.111)

where Pρ(γ ) = Wρ,1(γ ) and Qρ(γ ) = Wρ,−1(γ ). These functions are quasi-
probabilities and are similar to anti-Wick symbols or contravariant Wick symbols.

A main application of above fermionic symbolic calculus is computation of mean
values of observables. We know that every observable G on the super-Hilbert space
H̃ (n) is a linear expression in (a∗)εaε′ (ε, ε′ ∈ E [n]).
Theorem 49 For any ε, ε′ ∈ E [n] we have

Tr
(
ρ̂
(
a∗
)ε
aε
′) =

∫
Pρ(γ )

(
γ ∗
)ε
γ ε

′
dγ ∗ dγ, (11.112)

Tr
(
ρ̂aε

(
a∗
)ε′) =

∫
Qρ(γ )γ

ε
(
γ ∗
)ε′
dγ ∗ dγ. (11.113)

Proof In the normal case we easily compute the matrix elements of G = (a∗)εaε′

on coherent states then we apply the trace formula with coherent state. The proof is
analogous in the anti-normal case. �

Concerning the Weyl symbols (s = 0) we have the following useful result:

Proposition 138 Let Ĥ , Ĝ be two operators in H̃n. Then we have

Tr
(
Ĥ Ĝ

)= 2−n
∫
Hw(ζ )Gw(2ζ ) d

2ζ, where ζ ∈ G c
n . (11.114)

Proof From definition of covariant and contravariant Weyl symbol we have

Tr
(
Ĥ Ĝ

)=
∫
d2γ d2ζ Hw(γ )Gw(ζ )Tr

(
T̂ (−ζ )T̂F (γ )

)
.

A computation using coherent states gives

Tr
(
T̂ (−ζ )T̂ (η))=

∫
d2θ

〈
T̂ (ζ )ψθ , T̂ (η)ψ−θ

〉= 2ne1/2(ζ ∗·η−η∗·ζ ). (11.115)

Using the Fourier transform we get

Tr
(
Ĥ Ĝ

)= 2n
∫
Hw

(
ζ

2

)
GW(ζ )d

2ζ

and a change of fermionic variables gives (11.114). �
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We have to note a difference from the bosonic case concerning the trace of a
product.

11.6.4 The Moyal Product for Fermions

We have seen before several phase space representations for operators acting in
fermionic spaces. That means that if Ĝ is a quantum (fermionic) observable then Ĝ
has an integral representation on the phase space, with some symbol G, for example
G=Gw or G=Gw for Weyl quantizations.

As we have already seen for bosons, these representations give what it is called
a symbolic calculus. In particular there exists a formula to compute the symbol of
the product of two operators ĜĤ . That means that we have ĜĤ = Ĝ�H , where
G�H is a non commutative product of G and H (it can be interpreted as a twist
convolution). Moyal [145] gave an explicit integral formula to compute G�H for
bosons (see Chap. 2). Our aim here is to give an analogous formula for fermions.
These kinds of formula were discussed in many places, see for examples the book
[19] and the papers [79, 114] and their bibliographies.

Let us start with two operators Ĝ, Ĥ in the super Hilbert space H n, with their
covariant and contravariant Weyl symbols Gw,G

w,Hw,H
w .

We have the following lemma.

Lemma 77 For every Grassmann variables ξ = (ξ1, . . . , ξn) we have the following
properties:

ĜT̂ (ξ) = Ĝ
ξ
w, where Gξ

w(β)=Gw(β + ξ)e1/2(β∗·ξ+β·ξ∗),

T̂ (η)Ĝ = Ĝw,η, where Gw,η(β)=G(β + η)e−1/2(β∗·η+β·η∗),

T̂ (−ξ)ĜT̂ (ξ) = (̂μξG), where (μξG)w(β)= eβ
∗·ξ+β·ξ∗Gw(β).

Proof We have

ĜT̂ (ξ) =
∫
Gw(α)T̂ (−α)T̂ (ξ) d2α

=
∫
Gw(α)T̂ (ξ − α)e1/2(α∗·ξ+α·ξ∗) d2α

=
∫
Gw(β + ξ)T̂ (−β)e1/2(β∗·ξ+β·ξ∗) d2β. (11.116)

We get the first formula. The two other formulas are easily deduced. �

Let us now give a formula for the Moyal product for covariant Weyl symbols.
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Lemma 78 Here Gw � Hw denotes the covariant Weyl symbol of ĜĤ . Then we
have

(Gw �Hw)(γ )=
∫
Gw(γ − ξ)Hw(ξ)e−1/2(γ ·ξ∗+γ ∗·ξ) d2ξ. (11.117)

Proof From Lemma 77 we have

ĜT̂ (−ξ)=
∫
Gw(α − ξ)e−1/2(α·ξ∗+α∗·ξ)T̂ (−α)d2α. (11.118)

We have

ĜĤ =
∫
ĜT̂ (−ξ)Hw(ξ) d2ξ.

So we get

ĜĤ =
∫∫

Gw(γ − ξ)Hw(ξ)e−1/2(γ ·ξ∗+γ ∗·ξ)T̂ (−γ )d2ξ d2γ. (11.119)

The lemma follows. �

Now we shall deduce the Moyal formula for contravariant Weyl symbols by ap-
plying a Fourier transform on the covariant Moyal formula.

We need some preliminaries. Left derivative ∂θ was defined putting the fermionic
variable θ on the left. It will be denoted

−→
∂θ and its action on a function G is denoted−→

∂θ G. We have also a right derivative defined by putting θ on the right and its action
on a function ψ is denoted G

←−
∂θ . We have the following relationship between these

derivatives:

G
←−
∂θ = (−1)1+π(G)−→∂θ G. (11.120)

In particular the signs are opposite if G is even.
We also need a fermionic analogue of Fourier multipliers. Let M be an even

polynomial in Grassmann variables (ζ, ζ ∗). It defines a Fourier multiplier by the
usual formula,

M̂G(ξ)=
∫
GF (

ζ, ζ ∗
)
M
(
ζ, ζ ∗

)
eζ ·ξ∗+ζ ∗·ξ d2ζ. (11.121)

We have the following formula:

M̂G=M(∂ξ∗ , ∂ξ )G. (11.122)

Now we can state the following result.

Proposition 139 Let Ĝ, Ĥ be two linear operators in the super-Hilbert space
H̃ (n). Then the contravariant symbol Gw �Hw of ĜĤ is given by the following
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Moyal formula:

(
Gw �Hw

)
(α)=Gw(α)e

1
2 (
←−
∂α∗ ·−→∂α+←−∂α ·−→∂α∗ )Hw(α). (11.123)

To compute with formula (11.123) it is useful to note that
←−
∂α∗j ·

−→
∂αj =−

−→
∂αj ·

←−
∂α∗j .

Proof Using (11.117) we have

(
Gw �Hw

)
(α) =

∫
Gw(γ − ξ)Hw(ξ)e− 1

2 (γ ·ξ∗+γ ∗·ξ)eα·γ ∗+α∗·γ d2ξ d2γ

=
∫
Gw(β)Hw(ξ)e

− 1
2 (β·ξ∗+β∗·ξ)eξ ·α∗+ξ∗·α+β·α∗+β∗·α d2ξ d2β.

(11.124)

Now we see that the right hand side of this formula can be seen as a Fourier mul-

tiplier in the variables ζ = (β, ξ) with the multiplier M(ζ, ζ ∗) = e− 1
2 (β·ξ∗+β∗·ξ),

using that Gw(β)Hw(ξ) = (Gw ⊗ Hw)F (β, ξ) (β and ξ are independent Grass-
mann variables and ⊗ is the associated tensor product). Hence we get (11.123)
using properties (11.121), (11.122) and (11.120). �

Remark 66 From the formula (11.123) we can compute the Weyl symbol of the
commutator [Ĝ, Ĥ ]. Expanding the exponential in a Taylor series we see that the
first term for the symbol of 1

i
[Ĝ, Ĥ ] is the Poisson bracket {G,H } as expected

where

{G,H } = i(∂αG · ∂α∗H − ∂αH · ∂α∗G)
if we assume G,H even.

11.7 Examples

11.7.1 The Fermi Oscillator

We shall see in the next chapter that the fermionic analogue of the harmonic oscil-
lator is Ĥf os = ωa∗a, ω ∈ R. We can compute the Weyl symbol of Ĥf os using the
Moyal formula. We get

(
a∗ � a

)
(α)= α∗

(
1+ 1

2
←−
∂α∗ · −→∂α

)
α = α∗α+ 1

2
. (11.125)

Let us compute the Weyl symbol of eza
∗a for z ∈C.

Using that (a∗a)2 = a∗a and a Taylor expansion we have

eza
∗a = 1+ (

ez − 1
)
a∗a.
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The Weyl symbol of a∗a is α∗α+ 1
2 . So we get a formula analogous to the bosonic

case,
(
eza

∗a)w(α)= ez + 1

2
e2 tanh(z/2)α∗α. (11.126)

Remark that here the right hand side is everywhere smooth, even if z = i π2 , this is
not true for the bosonic case.

11.7.2 The Fermi–Dirac Statistics

The most popular example is an ensemble of independent fermions in thermal equi-
librium with a reservoir. This system is described by means of the grand canonical
ensemble with the density operator

ρ̂ = Z(β,μ)−1e−β(Ĥ−μN̂), (11.127)

where

Z(β,μ)= Tr
(
e−β(Ĥ−μN̂)

)
, Ĥ =

∑
1≤k≤n

ωka
∗
k ak, N̂ =

∑
1≤k≤n

a∗k ak.

To compute Z(β,μ) we first compute the action of e−β(Ĥ−μN̂) on coherent states.
Introduce the following notations for zk ∈ C, γk ∈ Γ c

n : zk =−β(ωk − μ), Zk =
ezk − 1, z = (z1, . . . , zn), γ (z) = (ez1γ1, . . . , eznγn), Ĥ (z) =∑

1≤k≤n zka∗k ak , we
have

Lemma 79

eĤ (z)ψγ (θ)=ψγ(z)(θ)e 1
2 (γ (z)

∗·γ (z)−γ ∗·γ ). (11.128)

Proof It is a simple Grassmann computation.
First using that (a∗k ak)2 = a∗k ak and Taylor expansion we have

ezka
∗
k ak = 1+ (

ezk − 1
)
a∗k ak = 1+Zka∗k ak.

Using that ψγ is an eigenvector for ak :

eĤ (z)ψγ (θ) =
n∏
k=1

(
1+Zka∗k ak

)
ψγ (θ)

=
∑

k1<k2<···<km
Zk1 · · ·Zkm(θk1γk1) · · · (θkmγkm)ψγ (θ)

= eθ ·γ (z)e−
1
2 γ
∗·γ

= ψγ(z)(θ)e
1
2 (γ (z)

∗·γ (z)−γ ∗·γ ). (11.129)

�
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Remark 67 Equality (11.128) gives evolution by quadratic Hamiltonian of coherent
states with zk =−itωk .

Then using the overlap formula for coherent states we get

〈
ψ−γ , eĤ (z)ψγ

〉= eγ (z)·γ ∗+γ ·γ ∗ . (11.130)

So we get for the trace

Tr
(
eĤ (z)

)=
∫ 〈

ψ−γ , eĤ (z)ψγ
〉
dγ ∗ dγ =

∏
1≤k≤n

(
1+ ezk

)
. (11.131)

In particular we have

Z(β,μ)=
∏

1≤k≤n

(
1+ e−β(ωk−μ)

)
. (11.132)

An analogous computation gives the mean number 〈N̂〉 of Fermions:

〈
N̂
〉= Tr

(
ρ̂N̂

)= ∑
1≤k≤n

1

1+ eβ(ωk−μ)
. (11.133)

11.7.3 Quadratic Hamiltonians and Coherent States

A general quadratic self-adjoint fermionic Hamiltonian has the following form:

Ĥ = 1

2

(
a∗ ·Ma + a∗ ·La∗ − a · L̄a)− TrM

4
, (11.134)

where a = (a1, . . . , an), L,M are n × n matrices, M is hermitian, L is anti-
symmetric (L̄ is the complex conjugate of L, so L̄= (L∗)T where AT is the trans-
pose matrix of A). We assume for simplicity that L,M are time independent; exten-
sion to time dependent Hamiltonians is straightforward.

The Weyl symbol of Ĥ is

H(α)= 1

2

(
α∗ ·Mα + α∗ ·Lα∗ − α · L̄α).

We also introduce the matrix of the quadratic form H :

Ξ =
(
−L̄ −MT

2
M
2 L

)
.

Our goal here is to compare the quantum evolution of Ĥ and the pseudo-classical
evolution for the Hamiltonian H =Hw .
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The equations of motion are

α̇ = {α,H } = i∂α∗j H, (11.135)

α̇∗ = {
α∗,H

}= i∂αj H. (11.136)

We have to remark here that the Poisson bracket {, } is defined according the usual
quantization rule

{̂G,H } = 1

i

[
Ĝ, Ĥ

]
.

To solve this problem we introduce an other set of 2n Grassmann variables (η, η∗)
so that α = αt = Atη + Btη∗, α∗t = B̄t η + Ātη∗ where At,Bt are complex n× n
matrices depending on the time t .

Using that {α,H } = i(Lα∗ + M
2 ) and {α∗,H } = −i(L̄α + M̄

2 ) the equations of
motion (11.135) are

Ȧt = i
(
LB̄t + M

2
At

)
, Ḃt = i

(
LĀt + M

2
Bt

)
. (11.137)

Or, equivalently,

d

dt

(
At Bt

B̄t Āt

)
= i

(
M
2 L

−L̄ − M̄
2

)
·
(
At Bt

B̄t Āt

)
. (11.138)

The matrix
( M

2 L

−L̄ − M̄
2

)
is hermitian. So the “classical evolution” Ft is unitary (in

fermionic pseudo-classical mechanics unitarity replaces symplecticity for evolution
in the phase space).

The 2n×2n matrix Ft =
(
At Bt
B̄t Āt

)
is a representation of the classical flow because

we have

d

dt

(
αt
α∗t

)
= i

(
M
2 L

−L̄ − M̄
2

)
·
(
αt
α∗t

)
with α0 = η,α∗0 = η∗.

Note that Ft has a natural action in the Grassmann algebra C[η,η∗]. We shall see
in the next chapter that C[η,η∗] can be seen as the space of smooth function on
the fermionic phase space so any element g ∈ C[η,η∗] is a classical observable
in the fermionic sense. So the natural action of Ft in C[η,η∗] is (Ftg)(η, η∗) =
g(Ft (η, η

∗)).
But Ft has a natural action in C

n: ζ �→Atζ +Btζ ∗ and C
n is identified with R

2n

by ζ = x + iy, (x, y) ∈ R
n × R

n. It is not difficult to prove that Ft is an isometry
in C

n if and only if the matrix Ft is a unitary 2n×2nmatrix. So Ft can be considered
as a rotation in R

2n and belongs to the classical Lie group SO(2n). Conversely for
any G ∈ SO(2n) there exists a flow Ft such that F1 =G. This can be proved using
a complex diagonal form for G.
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Now we compute the quantum evolution for quadratic Hamiltonians as we did
in the bosonic case. Let us first consider the quantum evolution for the annihila-
tion/creation operators a and a∗:

(
at
a∗t

)
= e−itĤ

(
a

a∗
)

eitĤ . (11.139)

Then we find (
at
a∗t

)
= Ft

(
a

a∗
)
. (11.140)

As an application, we can define a fermionic analogue for the metaplectic represen-
tation which is called the spin representation. For more details about the spin group
we refer to the book [190], Chap. 5. We comment here about its fermionic interpre-
tation. In the e-preprint [67] the authors compare bosonic and fermionic Gaussian
states.

To any F ∈ SO(2n) we can associate a unitary (even) operator Ŝ(F ) in the super-
Hilbert space H (n) such that

Ŝ∗(F )
(
a

a∗
)
Ŝ(F )= F

(
a

a∗
)
. (11.141)

Formula (11.141) is known in the physics literature as a Bogoliubov transformation
and in mathematics as a Shale–Weil representation formula.

The map F �→ Ŝ(F ) is a projective representation: if F ∈ SO(2n) and if Ŝ1(F )

and Ŝ2(F ) are to operators satisfying (11.141) then there exists λ ∈C, |λ| = 1 such
that Ŝ∗1 (F )= λŜ∗2 (F ). This is true because the Fock representation is irreducible.

As in the bosonic case it is possible to determine the spin representation up to a
sign and we have Ŝ(F 1F 2)=±Ŝ(F 1)Ŝ(F 2). This can be proved using propagation
of coherent states which will be now studied.

We have seen (11.128) that the Fermi oscillator propagates a coherent state in a
coherent state following the classical motion. We prove now that this is true for any
quadratic Hamiltonian if we replace coherent states by squeezed coherent states as
in the bosonic case.

Let us denote ψγ,t = e−itĤ ψγ . It is enough to consider the case ψγ = ψ0 = 1
because we have

e−itĤ ψγ = e−itĤ T̂ (γ )eitĤ e−itĤ ψ0.

From the first part we have e−itĤ T̂ (γ )eitĤ = T̂ (Ftγ ). So it is enough to compute

ψ0,t = e−itĤ ψ0. Imitating the bosonic case we consider the following ansatz:

ψ0,t (θ)= s(t)e 1
2 θ ·Γt θ ,

where Γt is an anti-symmetric complex n× n matrix. We compute

e−
1
2 θ ·Γt θ d

dt
ψ0,t = ṡ(t)+ s(t)θ · Γ̇t

2
θ (11.142)
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and

e−
1
2 θ ·Γt θ Ĥψ0,t = 1

2

[
θ · (MΓt +L)θ + θ · Γt L̄Γtθ − Tr L̄Γt − 1

2
TrM

]
s(t).

(11.143)
Identification between anti-symmetric matrices gives the following Riccati equation
for Γt :

iΓ̇t = 1

2

(
MΓt + ΓtM̄

)+L+ Γt L̄Γt , Γ0 = 0, (11.144)

and the Liouville equation for the prefactor s:

iṡ(t)=−1

2
Tr

(
L̄Γt + M

2

)
s(t), s(0)= 1. (11.145)

If Γt = VtW−1
t we see that Γt solves (11.144) if the matrix

(
Vt W̄t

Wt V̄t

)
solves

i
d

dt

(
Vt W̄t

Wt V̄t

)
=
(

M
2 L

−L̄ − M̄
2

)
·
(
Vt W̄t

Wt V̄t

)
.

We have to solve this linear differential equation with the initial data
( 0 1
1 0

)
. So we

find
(
Vt W̄t

Wt V̄t

)
= F ∗t

(
0 1
1 0

)
=
(
BTt A∗t
ATt B∗t

)
.

So we get Vt = BTt and Wt =ATt and hence Γt = BTt (ATt )−1 as far as At is invert-
ible.

Concerning the prefactor s we get

ṡ(t)= i

2
Tr

(
L̄Γt + M

2

)
s(t)= 1

2
Tr
(
ẆtWt

)
s(t)= 1

2
Tr
(
ȦtA

−1
t

)
s(t),

hence using the Liouville formula, we have

s(t)= det(At )
1
2 . (11.146)

Finally we get the following result:

Proposition 140 For any Grassmann generators α = (α1, . . . , αn) the evolution of

the coherent state ψα , ψα,t := e−itĤ ψα , for the quadratic Hamiltonian Ĥ obeys the
following formula for 0≤ t < Tc, with Tc ∈]0,∞]:

ψα,t (θ)= det(At )
1
2 eαt (

α∗t
2 −θ)e(θ−α∗t )·

Γt
2 (θ−α∗t ), (11.147)
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where Tc = inf{t > 0 | detAt = 0} and

(
αt
α∗t

)
= Ft

(
α

α∗
)
=
(
At Bt
B̄t Āt

)(
α

α∗
)

is the pseudo-classical flow and Γt = BTt (ATt )−1.
Moreover the formula (11.147) extends holomorphically for t ∈ C\Z where

Z := {t ∈C,detAt = 0} is a discrete subset of C.

Proof t �→ ψα,t is clearly holomorphic in C. So it is enough to prove the formula
(11.147) for 0< t < Tc. We have already proved (11.147) when α = 0 using that At
is invertible for t small enough. Now we have

ψα,t = T̂ (αt )ψ0,t .

Using that

T̂ (γ )= e
γ ·γ ∗

2 ea
∗·γ e−γ ∗·a

and e−γ ∗·af (θ)= f (θ − γ ∗) we get (11.147) for any α. �

Remark 68 The solution ψα,t is everywhere smooth in time t ∈ R but its Gaussian
shape breaks down when At stops to be invertible. We do not analyze here what
happens in general when det(At ) vanishes, even if it is an interesting question. An
important difference from the bosonic case is the sign of the 1

2 -power of the deter-
minant for the prefactor.

Let us consider the particular cases when L= 0 or M = 0.
If L = 0 we find At = eitM/2 and Bt = 0. Then Γt = 0 at every time and the

shape of the coherent state is constant.
If M = 0, we have

Ft =
(

cos(itL) sin(itL)
− sin(itL) cos(itL)

)
.

The spectrum of L is {iνj }1≤j≤n, νj ∈R, hence

det(At )= 0 ⇐⇒ t = (2k + 1)π

2νj
, k ∈ Z.

The shape of the coherent states breaks down at these times as we clearly see in the
following example.

Assume that n= 2 and L= ( 0 1
−1 0

) := J . We find

At = cos(itJ ), Bt =− sin(itJ ), Γt = tan(itJ ),
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where we have used cos(itJ )= cos t (1) and sin(itJ )= iJ sin t . Hence we have

ψ0,t (θ1, θ2)= cos te−
i
2 θ ·tan(itJ )θ = cos t

(
1+ tan(itJ )θ1θ2

)
.

For t = π
2 , ψ0,t (θ1, θ2)= iθ1θ2 which is no more a Gaussian (a Gaussian function

of Grassmann variables is always invertible). We can only say that it is a degenerate
Gaussian.

In the next paragraph we want to compute the matrix elements 〈ψβ,Utψα〉
where Ut = e−itĤ and deduce from that a computation of the integral kernel of Ut
(fermionic analogue of the Mehler formula), hence a formula for the Weyl symbol
of Ut (fermionic analogue of the Mehlig–Wilkinson formula).

11.7.4 More on Quadratic Propagators

Proposition 141 With the notations of the previous section, for every pair of Grass-
mann generators α = (α1, . . . , αn), β = (β1, . . . , βn), we have

〈ψβ,Utψα〉 = det(At )
1
2 e

1
2 (β·β∗+αt ·α∗t )+β∗·αt e(β∗−α∗t )·(

Γt
2 )(β

∗−α∗t ) (11.148)

for t ∈C\Z .

Proof It is enough to prove (11.148) for α = 0 using the formula

〈ψβ,Utψα〉 = e
1
2 (β·α∗t +β∗·αt )〈ψβ−αt ,Utψ0〉.

Let us introduce the notations: ηγ (θ)= eθ ·γ and

ft
(
γ ∗

)= 〈ηγ ,Utη0〉.
Our strategy to compute ft is to show that it satisfies a quadratic Schrödinger equa-
tion, noticing that f0(γ

∗)= 1.
We have i∂tft = 〈Ĥηγ ,Utη0〉. An easy computation using a∗ηγ (θ) = θηγ (θ)

and aηγ (θ)= γ ηγ (θ) gives that

Ĥηγ (θ)= 1

2

(
θ ·Mγ + θ ·Lθ − γ · L̄γ − TrM

2

)
ηγ (θ). (11.149)

Plugging this formula in 〈Ĥηγ ,Utη0〉 and the formula

(
∂

∂γj
f

)∗
= (−1)1+π(f ) ∂

∂γ ∗j
f

we get

i∂tft
(
γ ∗
)= (

Ĥft
)(
γ ∗
)
.
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Using the previous section’s main result we get

ft
(
γ ∗
)= det(At )

1
2 eγ

∗· Γt2 γ ∗ .

This proves (11.148) for α = 0 hence for any α. �

Using formula (11.54) we get a kind of fermionic analogue of the Mehler formula
for oscillators.

Corollary 33 The integral kernel Kt(θ, γ ∗) of the quadratic propagator Ut has the
following expression, for t ∈C\Z :

Kt
(
θ, γ ∗

)= det(At )
1
2 eθ ·γ ∗t +

1
2 (γ

∗
t ·γt−γ ∗·γ )e(θ−γt )·

Γt
2 (θ−γt ). (11.150)

To conclude this section on quadratic propagators for fermions we now compute

the contravariant Weyl symbols Uw
t of the quadratic propagator Ût = e−itĤ . All the

computations can be extended to time dependent Hamiltonians H(t).
Let us introduce the notations: SpΣ the spectrum of the Hermitian matrix Σ of

H and

ZH =
{
(2k + 1)π

λ
,λ ∈ SpΣ,k ∈ Z

}
.

Theorem 50 Let us consider a quadratic fermionic Hamiltonian like (11.134). Then

the contravariant Weyl symbol Uw
t of e−itĤ is given by the formula

Uw
t (ξ)= det

(
Ft + 1

2

) 1
2

exp

((
ξ∗
ξ

)
· (Ft − 1)(Ft + 1)−1

(
ξ

ξ∗
))

(11.151)

for t such that |t |< T1 where T1 is the first time when det(Ft + 1)= 0.
More generally the formula (11.151) is satisfied for every t ∈C\ZH .

Proof First remark that t �→Uw
t (ξ) is holomorphic in t ∈C, so it is enough to prove

formula (11.151) for 0≤ t < T1.
It could be possible to compute the Weyl symbol Uw

t from the kernel of Ût using
Fourier computation of Gaussians but in this way it does not seem easy to have a
direct expression with the flow Ft . So we choose a more direct approach, as we did
for bosons, making the following ansatz:

Uw
t (ξ)= f (t) exp

(
1

2

(
ξ

ξ∗
)
·Λw

t

(
ξ

ξ∗
))

,

where f (t) is a complex valued function andΛw
t is a 2n×2n anti-symmetric matrix.

Applying the Moyal formula (11.123) to the equation

∂tU
w
t =H �Uw

t
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we get

i
(
ḟ (t)+ f (t)Φw

t (ξ)
)
Uw
t (ξ) = H(ξ)Uw

t (ξ)+
1

2
H
(←−
∂ξ∗ · −→∂ξ +←−∂ξ · −→∂ξ∗

)
Uw
t

+ 1

8
H
(←−
∂ξ∗ · −→∂ξ +←−∂ξ · −→∂ξ∗

)2
Uw
t , (11.152)

where Φw
t is the quadratic form associated with the matrix Λw

t :

Φw
t (ξ)=

1

2
ξ ·Etξ + ξ∗ ·Ktξ∗ + ξ∗ ·Gtξ and Λw

t =
(
Et −GT

2
G
2 Kt

)
.

(11.153)
We also introduce the matrix of the quadratic form H :

Ξ =
(
−L̄ −MT

2
M
2 L

)
,

the matrix J = ( 0 1
1 0

)
and Σ =JΞ the generator of the flow Ft = eitΣ .

It will be useful to remark that J is the fermion analogue of the J matrix of the
symplectic form and that the flow Ft leaves J invariant: FTt J Ft =J .

Now we can compute the right hand side of (11.152) applying carefully the

fermionic computation rules we get, with X = (
ξ

ξ∗
)
,

H
(←−
∂ξ∗ · −→∂ξ +←−∂ξ · −→∂ξ∗

)
Uw
t = −JΞX ·Λw

t XU
w
t , (11.154)

H
(←−
∂ξ∗ · −→∂ξ +←−∂ξ · −→∂ξ∗

)2
Uw
t = Tr

(
JΞJΛw

t

)+Λw
t X ·JΞJΛw

t X. (11.155)

Plugging this into (11.152) and identifying the quadratic and the constant parts in X
we get for Λw

t a Riccati equation and for f a Liouville equation as is expected:

iΛ̇w
t =Ξ −

1

2

(
ΛJΞ −ΞJΛw

t

)− 1

4
Λw
t JΞJΛw

t . (11.156)

It is convenient here to introduce Θt =JΛw
t . So we get

iΘ̇t = 1

4
(2−Θt)Σ(2+Θt), Θ0 = 0. (11.157)

Equation (11.157) is easily solved by a Cayley transform: Θt = 2(Nt − 1)(Nt +
1)−1. So we find Nt = F−1

t and we get

Λw
t = 2J (Ft − 1)(Ft + 1)−1. (11.158)

Using this result we find for f the Liouville equation

ḟ = 1

2
Tr
(
Ḟt (Ft + 1)−1)f (t), f (0)= 1, (11.159)
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and we get

f (t)= det

(
Ft + 1

2

) 1
2

. (11.160)

This achieves the proof of (11.151). �

From this result we can compute the covariant Weyl symbol Ut,w using the
Fourier Gauss formula in Proposition 127.

Corollary 34 Assume that the quadratic formH is non-degenerate (so the matrices
Ξ and Σ are non-degenerate).

Let T2 be the smallest time t > 0 such that det(Ft − 1)= 0. Then for 0< t < T2
we have the formula

Ut,w(γ )= f w(t) exp

(
1

4

(
γ

γ ∗
)
·J (Ft + 1)(Ft − 1)−1

(
γ

γ ∗
))

, (11.161)

where f w(t)2 = det(Ft − 1).
The formula (11.161) is also true for t ∈C, t �= 2kπ

λ
, k ∈ Z, λ ∈ SpΣ .



Chapter 12
Supercoherent States—An Introduction

Abstract In previous chapters we have considered coherent states systems for
bosons and for fermions separately. Here we introduce superspaces, where it is pos-
sible to consider simultaneously bosons and fermions. Our aim is to give a short
introduction to this deep and difficult subject by considering some elementary ex-
amples where coherent states and quantization are involved.

12.1 Introduction

We have seen before that a general setting for coherent states is related to unitary
irreducible representations of Lie-groups. Then we have defined fermionic coher-
ent states associated with a “group of translations in fermions coordinates”. Here
we shall consider states of systems mixing bosons and fermions. This is more diffi-
cult but very essential to give a mathematical model of supersymmetry. Recall that
supersymmetry is a mathematical theory built to describe transformations which ex-
change bosons and fermions. Up to now it is not known if such transformations exist
in Nature.

Anyway it is useful to understand mixed systems with bosons and fermions from
a classical and a quantum point of view as well and to compare them.

In short, superspaces are spaces where it is possible to define classical supersym-
metry.

Supercoherent states are a useful tool to build a bridge between the classical
world and the quantum world as they do in the more familiar case for finite number
bosons systems. So we shall construct here a family of supercoherent states and we
shall see that they have many similarities with the coherent states of the harmonic
oscillator. In particular they can be obtained in several ways: by translations through
a super Weyl–Heisenberg group, as eigenfunctions of a super annihilation operator
or by a minimum uncertainty principle.

We do not give here the more general setting, our aim here is to give a first ap-
proach and compute some interesting examples, in particular concerning the Bose–
Fermi oscillator or super-harmonic oscillator.
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12.2 Quantum Supersymmetry

At the formal mathematical level quantum supersymmetry can be easily imple-
mented with a unitary involution τ in an Hilbert space H (see [184, 200] for de-
tails). Denote HB = ker(τ − 1) and HF = ker(τ + 1). If Π± = 1

2 (1± τ) then Π±
are orthogonal projectors and we have HB =Π+H, HF =Π−H.

Definition 33 Let Ĥ be a self-adjoint operator in H with a τ -invariant domain
D(Ĥ ).
Ĥ is said to be even if [Ĥ , τ ] = 0 (Ĥ and τ commute).
Ĥ is said to be odd if [Ĥ , τ ]+ = 0 (Ĥ and τ anti-commute).

Every Hamiltonian Ĥ in H have a matrix representation in the decomposition
H=HB ⊕HF ,

Ĥ =
(
Ĥ++ Ĥ+−
Ĥ−+ Ĥ−−

)

So Ĥ is odd if and only if Ĥ++ = Ĥ−− = 0 and Ĥ is even if and only if Ĥ−+ =
Ĥ+− = 0.

A supersymmetry is determined by its generators {Q̂k}1≤k≤N where the Q̂k are
self-adjoint and odd operators, so we have [Q̂k, τ ]+ = 0, and Q̂k send bosons on
fermions and vice versa.

The Hamiltonian Ĥ is said supersymmetric if [Ĥ , Q̂k] = 0 for 1≤ k ≤N . But to
have better algebraic properties it is assumed that [Q̂k, Q̂j ]+ = 2Hδj,k ,≤ j, k ≤N .
Here for simplicity suppose that N = 2. We write the Hamiltonian in the symmetric
form

Ĥ = 1

2

(
Q̂2

1 + Q̂2
2

)

or, if we denote Q̂= Q̂1+iQ̂2√
2

, we have the complex form:

Ĥ = 1

2

[
Q̂, Q̂∗

]
+, with the relations

[
Ĥ , Q̂

]= [
Ĥ , Q̂∗

]= 0, Q̂2 = (
Q̂∗

)2 = 0 (12.1)

Q̂ is usually called a supercharge for Ĥ .
The main physical problem in supersymmetry is to check if it is broken or pre-

served. In [200], E. Witten said:
“The most important question about supersymmetry theory is the question

whether there exists in the Hilbert space H a state |Ω〉 which is annihilated by
the supersymmetry operators Qi , Qi |Ω〉 = 0.”

Assume the spectrum of Ĥ is purely discrete. So its energy levels are non neg-
ative real numbers E. If E > 0 the eigenstates for E are pair (ψB,ψF ) where
ψF = Q̂ψB .

If E = 0 then Ĥψ = 0 if and only if Q̂1ψ = Q̂2ψ = 0 then it is said that super-
symmetry is preserved.
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But if there exists ψ ∈D(Q̂)∩D(Q̂∗) such that Q̂ψ = 0 and Q̂∗ψ �= 0 then we
say that supersymmetry is broken. Then the vacuum energy E satisfies E > 0.

Let us now consider the well known Witten example of a quantum mechanical
system with supersymmetry.

It is a spin 1
2 exchange model in one degree of freedom.

So H= L2(R,C2) with the unitary involution σ3 =
( 1 0

0 −1

)
. The supercharge is

Q̂ = 1

i

(
d

dx
+ V ′(x)

)
σ−, σ− =

(
0 0
1 0

)
(12.2)

Q̂∗ = 1

i

(
d

dx
− V ′(x)

)
σ+, σ+ =

(
0 1
0 0

)
(12.3)

An easy computation gives the following Hamiltonian:

Ĥ = 1

2

(
− d2

dx2
+ V ′(x)2

)
12 − σ3

2
V ′′(x) (12.4)

Assume for simplicity that V (x) is a polynomial of even degree: V (x) = c0x
2k +

· · · cmx2k+m with c0 > 0. Then Ĥ is a self-adjoint operator with a discrete spectrum.
It is easy to solve equations Q̂ψ = 0 and Q̂∗ψ = 0. We find

Q̂ψ = 0 ⇐⇒ ψ(x)=ψ(x0)e
V (x0)−V (x) (12.5)

Q̂∗ψ = 0 ⇐⇒ ψ(x)=ψ(x0)e
V (x)−V (x0) (12.6)

So we see that Q̂ψ = 0 has non-zero L2 solution and Q̂∗ψ = 0 has no non-zero L2

solution, hence the supersymmetry is broken.

A supersymmetric harmonic oscillator is obtained with V (x) = ωx2

2 , ω > 0. So
we get the Hamiltonian

Ĥsos = 1

2

(
− d2

dx2
+ω2x2

)
12 − ω

2
σ3

It is easy to get the spectral decomposition for Ĥsos using the Hermite basis {ψk}k∈N
(see Chap. 1). Denote ψk(1/2, x) =

(
ψk(x)

0

)
and ψk(−1/2, x) = ( 0

ψk−1(x)

)
, with

ψ−1 = 0.
For k ≥ 1, {ψk(1/2, ·),ψk(−1/2, ·)} is a basis of eigenvectors for the eigenvalue

k of multiplicity two and 0 is a non degenerate eigenvalue with eigenvector
(
ψ0(x)

0

)
.

Let us remark that besides the position x we have here another degree of freedom
s = 1/2,−1/2 which is discrete and represents the spin of a fermion.

We can rewrite the supersymmetric harmonic oscillator with creation and anni-
hilation operators for bosons and fermions:

aB = 1√
2ωB

(
ωBq + �

d

dq

)
, aF = 1√

2ωF
σ+ (12.7)

a∗B =
1√
2ωB

(
ωBq − �

d

dq

)
, a∗F =

1√
2ωF

σ− (12.8)
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We get the super-harmonic oscillator,

Ĥ = ωB [a∗B, aB ]+ +ωF [a∗F , aF ] (12.9)

where (a∗B, aB) satisfies (CCR) or Weyl–Heisenberg algebra relations and (a∗F , aF )
satisfies (CAR) or Clifford algebra relations. We shall see that Ĥ is supersymmetric
if ωB = ωF .

It is possible to consider systems with n bosons generators and m fermions gen-
erators as well, writing aB = (aB,1, . . . , aB,n) and aF = (aF,1, . . . , aF,m) satisfying
(CCR) relations for aB , (CAR) relations for aF .

The goal of a supersymmetry theory is to put bosons and fermions on the same
footing. For example we would like to consider the parameter s for the spin as
a classical variable on the same footing as x for the position. In other words the
question is to find a kind of classical analogue for the spin. The question seems
strange because the spin is purely quantal and disappears in the usual semi-classical
limit.

Nevertheless Berezin has invented new spaces where this is possible after quan-
tization; he called them superspaces with different super-structures (linear spaces,
algebras, groups and manifolds (see [20])). We shall give here an introduction to
this wide subject, explaining only enough details to understand some semi-classical
properties of supercoherent states. Concerning a more complete presentation we re-
fer to the wealth of literature [20, 65, 132, 190].

12.3 Classical Superspaces

The problem considered here is to find a classical analog for the algebra defined
in (12.1). In other words we want to construct classical spaces mixing bosons
and fermions. We already know classical spaces for bosons: real or complex vec-
tor spaces or manifolds and classical spaces for fermions: Grassmann algebras
K[θ1, . . . , θn], K=R or C.

It is not obvious to understand in geometrical terms what is a classical space
for fermions. We shall come back to this point later. First notice here that it is not
the algebra K[θ ] but instead a mysterious space B such that the space of “smooth
functions” on B with values in the Grassmann algebra K is K[θ ]. In particular B is
a set of dimension 0. This was more or less implicit in the previous sections.

12.3.1 Morphisms and Spaces

The configuration space of a classical system with n bosons and m fermions will be
a symbolic space denoted R

n|m such that

C∞
(
R
n|m) := C∞(Rn)[θ1, . . . , θn] := C∞

(
R
n
)⊗ Gm
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where Gm is the Grassmann algebra with m generators. In other words C∞(Rn|m)
is a C∞(Rn) module with basis {θ1, . . . , θn}.
(x, θ) is interpreted as a coordinates system of a point in the symbolic space

R
n|m; x = (x1, . . . , xn) are the even coordinates and θ = (θ1, . . . , θm) are the odd

coordinates. As for Grassmann algebras, C∞(Rn|m) is a super-module, with a parity
operator P, C∞(Rn)-linear. So

C∞
(
R
n|m)= [

C∞
(
R
n|m)]

+ ⊕
[
C∞

(
R
n|m)]

−

where [•]+ is the even part and [•]− is the odd part.
For applications we need to understand transformation map between different

superspaces Rn|m,Rr|s .
A first approach to define a map Φ : Rn|m→ R

r|s is to use coordinates system:
Φ(y,η)= (x, θ) where x, y are even coordinates, θ, η are odd coordinates. But the
symbolic spaces are defined implicitly by the C∞ functions defined on them. So we
interpret Φ as a change of variables in functions f ∈ C∞(Rr|s),

Φ�(f )(x, θ)= f (Φ(x, θ)) (12.10)

where f �→Φ�(f ) is a linear map. It is important to underline here that the meaning
of the right hand side in (12.10) is given by the left hand side because superspaces
are only symbolic and are defined by their algebra of functions and not by a well
identified geometrical object in the usual sense.

To define supermanifolds it is necessary to define local superspaces in an open
set U of Rn. Then Un|m is the superspace defined by its algebra of C∞ functions:
C∞(Un|m) := C∞(U)⊗ Gm. So we have a natural definition for morphisms from
Un|m in V s|r where V is an open set of R

s . Let us give now some more formal
definitions following [20, 132, 190].

12.3.2 Superalgebra Notions

Definition 34 (Superlinear spaces) A superlinear space V is a vector space on
K=R or C with a decomposition (Z2-grading) V = V0 ⊕ V1. V0 is the set of even
vector, V1 is the set of odd vectors. Then on V there exists a parity (linear) operator
P, defined by Pv= v for v ∈ V0, Pv=−v for v ∈ V1. Elements in V0∪V1 are called
homogeneous.

A linear map F from the superlinear space V into the superlinear spaceW is said
superlinear, or even, if it preserves parities, so F sends Vj in Wj , j = 0,1. A linear
map from V into W is said odd if F(Vj )⊆Wj+1 (j ∈ Z2).

The parity number π(v) is defined for homogeneous elements: π(v) = 0 if
v ∈ V0; π(v)= 1 if v ∈ V1.

Let us remark that every linear map from V into W is the sum of an even map
and an odd map. The following notations will be used:
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SHom(V ,W) is the linear space of even maps V into W and Hom(V ,W) is the
space of all linear maps from V into W . Then Hom(V ,W) is again a superlinear
space and it even part is the space of even maps from V into W .

(
Hom(V ,W)

)
0 = SHom(V ,W)

Definition 35 (Superalgebras) A superalgebra is a linear space A with an associa-
tive multiplication with unit 1 (fg) �→ f ·g, such that for every f,g ∈A+ ∪A− we
have the parity condition:

π(f · g)= π(f )+ π(g)
The superalgebra A is said (super)commutative if

f · g = (−1)π(f )π(g)g · f
Examples: Grassmann algebras K[θ1, . . . , θn] are super-commutative algebras.

Definition 36 (Superspace) If B is a superspace (for example defined by a Grass-
mann algebra) the set of B-points of the superspace Rn|m is the set Rn|m(B) defined
by the following equality:

R
n|m(B)=Hom

(
C∞

(
R
n|m),C∞(B))

The interpretation is that Rn|m(B) = Hom(B,Rn|m) so R
n|m(B) can be seen as

the “points of Rn|m” parametrized by B . An other important trick for a correct inter-
pretation of superspace concerns the product of superspaces. We should like to have
for example R

n|m = R
n|0 ×R

0|m (of course R
n|0 is the usual space R

n and R
0|m is

the space whose C∞-functions are R[θ1, . . . , θm]).
Let us consider 3 classical superspaces X,Y1, Y2. We can understand identifi-

cation between Hom(X,Y1 × Y2) and Hom(X,Y1) × Hom(X,Y2) through iden-
tification between Hom(C∞(Y1 × Y2),C

∞(X)) and Hom(C∞(Y1),C
∞(X)) ×

Hom(C∞(Y2),C
∞(X)). This is done as follows.

If Φ∗k is a morphism from C∞(Yk) into C∞(X) then we get a unique morphism
Π∗ from C∞(Y1 × Y2) into C∞(X) satisfying

Φ∗(f1 ⊗ f2)=Φ∗1 (f1)Φ
∗
2 (f2), for fk ∈C

∞(Yk) (12.11)

Conversely if Φ∗ is given we get Φ∗1 (f1)=Φ∗(f1⊗ 1) and Φ∗2 (f2)=Φ∗(1⊗ f2).
So the identification is determined by (12.11).

12.3.3 Examples of Morphisms

We compute here morphism between some superspaces.

(1) Φ is a morphism from R
n in R

r . It is known that we haveΦ�(f )(x)= f (Φ(x))
with Φ smooth function R

n→R
r .
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(2) Φ is a morphism from R
0|1 into R. Using parity we have Φ�(f )= b0(f ) where

b0(f ) is real, linear and multiplicative in f . So there exists x0 ∈ R such that
Φ�(f )= f (x0), which means that Φ is constant, as it should.

(3) Φ is a morphism from R
1|1 into R. Using parity, we haveΦ�(f )= c0(f ) where

c0 is a morphism from C∞(R) in C∞(R). Hence there exists a smooth function
Φ :R→R such that Φ�(f )= f ◦Φ .

(4) Φ is a morphism from R
1|1 into R

0|1. Using parity, we have Φ�(1) = 1 and
Φ�(θ)= c1θ . (1 is the constant function 1). So we have Φ�(b0 + b1θ)= b0 +
b1c1θ .

From (3) and (4) we clearly see that (x, θ) are coordinates for R1|1.
(5) Φ is a morphism from R

1|2 into R
1. We have

Φ�(f )= b0(f )+ b1(f )θ1θ2

The superalgebra even morphism conditions give

b0(fg) = b0(f )b0(g), f, g ∈ C∞(R), b0(1)= 1 (12.12)

b1(fg) = b0(f )b1(g)+ b1(f )b0(g) (12.13)

From the first condition, there exists ϕ : R→ R such that b0(f ) = f ◦ ϕ. Then
the second condition means that b1 is a derivation at ϕ(x). So there exists χ(x, t),
smooth in a neighborhood of the graph of ϕ such that

b1(f )(x)= χ(x, t)df
dt

∣∣∣∣
t=ϕ(x)

(12.14)

12.4 Super-Lie Algebras and Groups

Standard symmetries (at the classical or quantum level as well) are described
through the group action. Supersymmetries will be described through the action of
super-groups. Moreover these super-groups are derived by exponentiating super-Lie
algebras as in the usual case of Lie groups.

12.4.1 Super-Lie Algebras

Definition 37 A super-Lie algebra s is a superlinear space on K= R,C with a bi-
linear bracket (A,B) �→ [A,B] satisfying the following identities for homogeneous
elements A,B,C:
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[A,B] = (−1)1+π(A)π(B)[B,A] (12.15)

π
([A,B])= π(A)+ π(B) (12.16)

(−1)π(A)π(C)
[
A, [B,C]]+ (−1)π(B)π(A)

[
B, [C,A]]+ (−1)π(C)π(B)

[
C, [A,B]]

= 0 (12.17)

Remark 69 The first equality means that [A,B] is anticommutative excepted if A
and B are odd. In this case the bracket is commutative.

The second identity means that the bracket of two even or two odd elements is
even and the bracket of an even and odd element is odd.

The third identity is the super-Jacobi identity.

As in the standard case of Lie algebras, many examples of a super-Lie algebra
are realized as matrix superalgebras. Let us consider a supervector space on the field
K=R,C, V = V0⊕V1 where the even space V0 has dimension n and the odd space
V1 has dimension m. Any superlinear operator A in V has a matrix representation

A=
(
A++ A+−
A−+ A−−

)

Denote End(V ) the space of all superlinear operators in V . We have seen that
End(V ) is a supervector space with parity π . It is a super-Lie algebra for the super-
bracket:

[A,B] =AB − (−1)π(A)π(B)BA

Choosing basis in V0 and V1 the superspace V is isomorphic to K
n ⊕ Km. This

space is denoted K
n,m (not the same meaning as Kn|m) and the super-Lie algebra is

denoted gl(n|m).
We denote sl(n,m) the sub-super-Lie algebra of gl(n|m) defined by the super-

traceless condition: StrA= 0.
su(n,m) is the sub-super-Lie algebra of matrix A such that

A++ =−A∗++, A−+ =−iA∗+−
For m= 0 we recover the classical Lie algebras gl(n), sl(n), su(n).

Definition 38 Let A be a superalgebra (not necessarily associative). A linear opera-
torD in A is called a superderivation if it satisfies, for every homogeneous elements
f,g in End(A),

D(f · g)=D(f ) · g+ (−1)π(D)π(f )f ·D(g) (12.18)

The basic example is D = adA where A is a super-Lie algebra and adA(B) =
[A,B] (like in standard Lie algebras).
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In the superalgebra C∞(Rn|m), Xj = ∂
∂xj

and Θk = ∂
∂θk

are superderivations (the

first is even, the second is odd). And if h ∈ C∞(Rn|m), hXj and hΘk are again
superderivations.

12.4.2 Supermanifolds, a Very Brief Presentation

To define supermanifolds it is necessary to define local superspaces in an open
set U of R

n. Then we denote Un|m the superspace defined by its C∞ functions:
C∞(Un|m) := C∞(U)⊗ Gm. So we have a natural definition for morphisms from
Un|m in V s|r where V is an open set of Rs . Un|m is a superspace of dimension n|m.

As for a standard manifold, a supermanifoldM of dimension n|m is a topological
space M0 (called the underlying space) such that for each point m ∈M0 we have
an open neighborhood U and a superalgebra RU isomorphic to C∞(V n|m), where
V is an open set of Rn. Moreover a gluing condition has to be satisfied (see [190],
p. 135). In particular M0 is a standard manifold of dimension n.

We have discussed here the super-analogue of real C∞ manifolds. It is possible
to define real analytic or holomorphic supermanifolds. For that we have to replace
C∞(U) by the space Cω(U) of analytic functions in U . In the complex case U is
an open set of Cn (recall that complex analytic = holomorphic).

Nowadays there exist essentially two kinds of (almost) equivalent definitions of
supermanifolds. One defines supermanifold by its morphisms [22, 132, 190], it is
called the algebro-geometrical approach; the other is closer to the standard definition
where a manifold is a set of points but the field of real numbers is replaced by a non-
commutative and infinite dimensional Banach algebra [62, 169]. Here we shall use
the terminology of the algebro-geometrical approach. See [169] for a discussion
about comparison of these two definitions.

We only give here a very brief and sketchy introduction to this rich subject. Our
goal is only to have a better intuition of what is going on some few examples, in
particular concerning the Fermi–Bose (or super) oscillator.

Definition 39 Roughly speaking, a C∞-supermanifold of dimension n|m is a su-
perspace M defined by an underlying manifold of dimension n such that M is
locally isomorph to Un|m, where U is a chart (open set in R

n) of the underlying
manifold M0. There are gluing compatibility conditions between the charts as for
manifolds where C∞(Un|m) replaces C∞(U).

If U is an open set of Rn, the supermanifold Un|m is defined by the underlying
space U and with C∞(Un|m)= C∞(U)[θ1, . . . , θm], θ1, . . . , θm are generators of a
real Grassmann algebra.

Definition 40 A vector field in the super domain Un|m is a derivation in the super-
algebra C∞(Un|m).
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As in the standard case the set V(Un|m) of vector fields in Un|m is a super-Lie
algebra. Note that it is a module over C∞(Un|m) with the following basis in coordi-
nates (x, θ): {

∂

∂x1
· · · ∂

∂xn
; ∂

∂θ1
, . . . ,

∂

∂θm

}

In a supermanifold M the tangent superspace at “P ∈M” of coordinates (x, θ) is
defined locally in a chart Un|m as the space V(Un|m) restricted at (x, θ) (see [190]
for a more precise definition).

12.4.3 Super-Lie Groups

In short, a super-Lie group is a supermanifold and a super-group where the group
operations are morphims. It is not the place here to define rigorously all these terms;
we refer to [62, 132, 169, 190] for a detailed study of supermanifolds and super-
groups.

A super Lie-group is defined as a supermanifold where the group structure is
defined by morphisms

μ :G×G→G, ι=G→G, ν0 :R0|0 →G

These morphisms define, respectively, the multiplication, the inverse element and
the unit element. Of course we need conditions to translate the group properties on
morphisms (see [190] for details).

We have defined before the superspace R
n|m. It is a commutative Lie group for

the “natural” addition with the following morphisms:

(x, θ)+ (y, ζ )= (x + y, θ + ζ ) (12.19)

Addition rule has to be defined in terms of morphisms as follows.
Recall that the space R

n|m is defined by its morphisms and for every superspace
B , Rn|m(B) is the set of B points of Rn|m, Rn|m(B) = Hom(C∞(Rn|m),C∞(B)).
Addition in R

n|m(B) is defined as follows. It is first noticed that a morphism ψ� ∈
R
n|m(B) is determined by its images on the following generators of Rn|m:

fj (x, θ)= xj , gk(x, θ)= θk, 1≤ j ≤ n, 1≤ k ≤m

ψ�(fj ) and ψ�(gk) determine ψ�. Hence the additive group {Rn|m,+} is defined
by the rule, ψ�

1 ,ψ
�
2 ∈R

n|m(B),
(
ψ�

1 +ψ�
2

)
(f )=ψ�

1 (f )+ψ�
2 (f ), for f = fj , gk,

for any ψ�
1 ,ψ

�
2 ∈R

n|m(B) and any superspace B .
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For simplicity, assume n = m = 1. Practically if f ∈ C∞(R1|1) we have
f (x, θ)= f0(x)+ f1(x)θ and the meaning of (12.19) is

μ�(f )(t, s, θ, ζ )= f0(t + s)+ f1(t + s)θ + f1(t + s)ζ

It is easy to explicitly write ι� and ν�0 .
As in the standard case, it is very important to have connections between super-

Lie algebras and super-groups. Without going into details of the theory of super-Lie
groups, (see [22, 190]), let us recall here a definition (up to super-isomorphism) of
the super-Lie algebra of a super-group SG of dimension n|m.

Definition 41 The super-Lie algebra sg of the super-group SG is the superlinear
space of left invariant derivations in the algebra C∞(Un|m) where U is a neighbor-
hood 1 of the underlying Lie group G0.

The easiest example is the superlinear group GL(n,m) corresponding to the
super-Lie algebra gl(n,m). The details can be found in [22].

Elements g of GL(n,m) are superlinear isomorphisms in R
n|m. They are

parametrized by matrices

A(g)=
(
A++ A+−
A−+ A−−

)

where the matrices A++,A−− have even elements and A+−,A−+ have odd ele-
ments. The real component of A(g) is

A0(g)=
(
A++ 0

0 A−−

)

A0(g) is invertible if and only if det(A++)det(A−−) �= 0. Denote G0 = GL(n)×
GL(m). G0 is a standard manifold of dimension n2 +m2. So we see that the super-
manifold GL(n,m) is defined by the sheaf of smooth function

C∞
(
GL(n,m)

) := C∞(G0)⊗R
2nm

It can be proved that it is a super Lie group [22].

Remark 70 One very useful tool to compute in superanalysis is what Berezin called
“the Grassmann analytic continuation principle” [22]. It was sometimes applied im-
plicitly above and we shall often apply it later without more justifications. There ex-
ist several ways to explain this principle in a more mathematical rigorous approach
(see [65, 105]).

The practical rule is the following. Let f be a real function of n real vari-
ables x1, . . . , xn and n nilpotent Grassmann numbers ξ1, . . . , ξn. That means that
ξj ∈ Gn and ξj =∑

|ε|>0 a
j
ε θ

ε where θ1, . . . , θn are generators of Gn. Denote x =
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(x1, . . . , xn) and ξ = (ξ1, . . . , ξn) (using the usual notation in several variable func-
tions), the Grassmann analytic continuation principle says

f (x + ξ)=
∑
α

ξα

α!
∂α

∂xα
f (x) (12.20)

Recall that α = (α1, . . . αn) ∈N
n, ξα = ξα1

1 · · · ξαnn , hence we have ξα = 0 for |α| ≥
2n so the Taylor expansion (12.20) is finite.

We consider now more interesting examples, where even and odd coordinates are
mixed, which gives supersymmetries after quantization.

Let us begin by the toy model R1|1 with the law super-group:

(t, θ) · (s, ζ )= (t + s − iθζ, θ + ζ ) (12.21)

Let us denote SG(1|1) this super-group (it is easy to prove that it is a super-group
with a non-commutative product) and sg(1|1) its Lie algebra.

If f ∈ C∞(R1|1), f (t, θ)= f0(t)+ θf1(t), and (s, η) the coordinates of a super-
vector v in R

1|1, the left translation of f by v is defined by

�τ(s,η)f (t, θ) = f (t − s + iηθ, θ − η)
= f0(t − s)+ iηθf ′0(t − s)+ (θ − η)f1(t − s) (12.22)

Here we have used the Grassmann analytic extension principle. But we have the
group property: �τ(s,η) =� τ(s,0) ◦� τ(0,η) and

�τ(s,0)f (t, θ) = f (t − s, θ), (usual translation by a real number s) (12.23)

�τ(0,ζ )f (t, θ) = f (t, θ)+ ζ
(
iθ
∂

∂t
− ∂

∂θ

)
f (t, θ) (12.24)

So we can conclude that the super-Lie algebra sg(1|1), has the two generators
{∂t , Dθ }, where ∂t = ∂

∂t
is even, ∂θ = ∂

∂θ
, and Dθ = iθ∂t − ∂θ are odd. We have

the commutation rule

[Dθ ,Dθ ]+ =−2i∂t

By analogous computations we get a basis for right invariant vector fields. Only the
odd parts is modified. We get

Qθ = iθ∂t + ∂θ
Only the last commutation rule is changed:

[Qθ ,Qθ ]+ = 2i∂t (12.25)

Moreover we have the following commutation:

[Q,D] = 0 (12.26)
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In mechanics the generator of the time translations is the Hamiltonian H . So equa-
tion (12.25) is a classical analogue for a supersymmetric system.

Consider now a more physical example leading to a classical analogue for the
Witten model [200]. This kind of model was considered before by several physicists
in the 1970s (Wess, Zumino, Salam).

On R
1|2 define the following multiplication (non-commutative) rule:

(t, θ, θ∗)(s, ζ, ζ ∗)= (
t + s − i(θζ ∗ − ζθ∗), θ + ζ, θ∗ + ζ ∗) (12.27)

For f ∈ C∞(R1|2) we have f (t, θ, θ∗)= f0(t)+f1(t)θ +f2(t)θ
∗ +f3(t)θθ

∗. The
multiplication morphism μ∗ is determined by μ∗(fj ) for 1≤ j ≤ 3 (recall that μ∗
is a superalgebra morphism). For every f ∈ C∞(R) the meaning of (12.27) is

μ�(f )(t, s, θ, θ∗, ζ, ζ ∗) = f (t + s − i(θζ ∗ − ζθ∗), θ + ζ, θ∗ + ζ ∗)
= f (t + s)− i(θζ ∗ − ζθ∗)f ′(t + s)− θθ∗ζ ζ ∗f ′′(t + s)

ι� and ν�0 are easily computed such that {R1|2,μ} is a super Lie group that we shall
denote SG(1|2).

As we have done for SG(1|1) we can compute generators for the super-Lie alge-
bra sg(1|2) by identifying left invariant vector fields.

Denote �τs,η,η∗ the left translation by (s, η, η∗), �τη the left translation by
(0, η,0) and �τη∗ the translation by (0,0, η∗). As above we get easily for every
f ∈ C∞(R1|2),

�τηf (t, θ) = f (t, η)+ η(iθ∗∂t − ∂θ )f (t, θ) (12.28)

�τη∗f (t, θ) = f (t, η)+ η(iθ∂t − ∂θ∗)f (t, θ) (12.29)

So we have got the following basis for sg(1|2):
∂t , Dθ = iθ∗∂t − ∂θ , Dθ∗ = iθ∂t − ∂θ∗

with one even and two odd generators. The commutation rules of this algebra are

Dθ
2 = Dθ∗

2 = 0 (12.30)

[Dθ , ∂t ] = [Dθ∗ , ∂t ] = 0 (12.31)

[Dθ ,Dθ∗ ]+ = −2i∂t (12.32)

By analogous computations we get a basis for right invariant vector fields. Only the
odd parts is modified. We get

Qθ = iθ∗∂t + ∂θ , Qθ∗ = iθ∂t − ∂θ∗
Only the last commutation rule is changed:

[Qθ ,Qθ∗ ]+ = 2i∂t (12.33)
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Moreover we have the commutation

[Q,D] = 0 (12.34)

So (12.33) is a classical analogue for the quantum supersymmetric system of Witten.
This will become more explicit later.

12.5 Classical Supersymmetry

12.5.1 A Short Overview of Classical Mechanics

There are many books concerning this very well known subject. For our purpose we
recall here some basic facts concerning Lagrangians and Hamiltonians. We refer for
more details to the following books [7, 92, 182].

In physics classical dynamical systems are usually introduced with their La-
grangian L and their action integral S = ∫

dxL(x) if x is a coordinate system for
classical paths. For a point particle moving in R

n with coordinates q = (q1, . . . , qn)

we have S = ∫ t1
t0
dt L(q, q̇), q̇ is the time derivative of q . The equations of motion

(Euler–Lagrange equations) are deduced from the least action principle,

∂L
∂q
− d

dt

(
∂L
∂q̇

)
= 0 (12.35)

Euler–Lagrange equation may be very difficult to solve. Much information of its
solutions can be obtained studying its symmetries. According the Noether famous
theorem, symmetries give integral of motions I , functions of q, q̇ conserved along
the motion d

dt
I (q, q̇)= 0. In particular the Hamiltonian energy function H is con-

served:

H(q, q̇)= ∂L
∂q̇
· q̇ −L(q, q̇) (12.36)

The canonical conjugate momentum p is defined as

p = ∂L
∂q̇

p is a cotangent vector in (Rn)∗. We consider here for simplicity systems without
constraints and that the configuration space is the Euclidean space R

n (see [7] for
manifolds).

Let us recall now a statement for the Noether theorem concerning symmetries
and integrals of motion.

Theorem 51 Let V (q)=∑
1≤j≤n vj (q) ∂

∂qj
be a vector field and φsV its flow:

d

ds
φsV (qs)= v(qs), q0 = q, where v(q)= (

v1(q), . . . , vn(q)
)

(12.37)



12.5 Classical Supersymmetry 367

(NI) Assume that L is invariant under φsV for s close to 0. Then

IV (q, q̇)= v(q) · ∂L
∂q̇

is an integral of motion: dIV
dt
= 0.

(NII) Assume that there exists a smooth function K on R
n ×R

n such that

v(q) · ∂L
∂q̇
+ v̇(q)∂L

∂q
= d

dt
K(q, q̇) (12.38)

then I = v(q) · ∂L
∂q̇
−K(q, q̇) is an integral of motion.

Remark 71 It is convenient to state Noether’s theorem with finite small deforma-
tions of size ε. Denote δεq = εv(q), δεL = L(q + δεq, q̇ + δεq̇) − L(q, q̇). The
invariance assumptions (12.38) means that

δεL= ε d
dt
K(q, q̇)+O(

ε2) (12.39)

The energy HamiltonianH was defined as a function of (q, q̇). It is convenient to
replace the velocity q̇ by the momentum p using the Legendre transform in q̇ �→ p.

H(q,p)= p · q̇(q,p)−L
(
q, q̇(q,p)

)
(12.40)

If the matrix ∂2L
∂q̇∂q̇

is non-degenerate, H is a smooth function of (q,p) only (at least
locally).

In order to quantize the classical system with Lagrangian L it is assumed that H
is defined globally.

We shall see that for fermions it is not true for interesting examples where the
Lagrangian is degenerate: q̇ �→ p is not onto. But in order to quantize canonically a
classical system we have to compute an Hamiltonian and a Poisson bracket. Dirac
has proposed a method [69] to do that in the degenerate case.

Let us describe roughly the Dirac method which will apply to fermions. We fol-
low here [112] where the reader can find many details.

When q̇ �→ p is not onto the range of the mapping (q, q̇) �→ (q,p) (p = ∂L
∂q̇

) is
a non-geometrically trivial part of the phase space. In particular it is not possible
to recover q̇ from p. In this situation we say that the Lagrangian is singular or
degenerate.

Following [69], it will be assumed that this is a smooth manifold C described
by equations χj (q,p) = 0, 1 ≤ j ≤ m where the differential dχj are everywhere
independent.

The energy Hamiltonian H is always a function of q and p (as in the regular
case) but is defined here only under the constraint (q,p) ∈ C. Dirac assumed that
H has an extension to the whole phase space R

n×R
n (Rn is identified with (Rn)∗)
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and he computed a modified Poisson bracket {•,•}Di such that for any observable
F ∈ C∞(Rn ×R

n) the equation of motion is

Ḟ = {F,H }Di, in particular q̇ = {q,H }Di, ṗ = {p,H }Di (12.41)

On C, using definition of p we have

dH = q̇ dp− ∂L
∂q

dq = ∂H

∂q
dq + ∂H

∂p
dp (12.42)

Then there exists uj (q, q̇), 1≤ j ≤m, such that

q̇ = ∂H

∂p
+

∑
1≤j≤m

uj
∂χj

∂p
(12.43)

ṗ = −∂H
∂q
−

∑
1≤j≤m

uj
∂χj

∂q
(12.44)

So we have for every observable F

Ḟ = {F,H } +
∑

1≤j≤m
uj {F,χj } (12.45)

The constraints χj have to be preserved during the time evolution, which gives the
conditions

{χk,H } +
∑

1≤j≤m
uj {χk,χj } = 0, for 1≤ k ≤m (12.46)

For simplicity assume now m = 2 and {χ1, χ2} = λ �= 0. From conditions (12.46)
we can compute u1, u2:

u1 = {χ2,H }
λ

, u2 =−{χ1,H }
λ

.

Then the Dirac bracket has the following expression:

{F,G}Di = {F,G} + 1

λ

({F,χ1}{χ2,G} − {F,χ2}{χ1,G}
)

(12.47)

It is easy to see that (F,G) �→ {F,G}Di is a Lie bracket on the linear space
C∞(Rn ×R

n).
Let us consider the following example in the configuration space R2: LM = xẏ−

yẋ − V (x, y), V is a smooth potential. This Lagrangian is degenerate. We have

px := ∂LM
∂ẋ

=−y, py := ∂LM
∂ẏ

= x (12.48)
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The energy Hamiltonian is H = V (x, y). We have the two constraints χ1 = px + y,
χ2 = py − x and {χ1, χ2} = 2. Then the Dirac bracket is

{F,G}Di = 1

2
{F,G} − 1

2

(
∂F

∂x

∂G

∂y
− ∂F

∂y

∂G

∂x

)
− 1

2

(
∂F

∂px

∂G

∂py
− ∂F

∂py

∂G

∂px

)

(12.49)
We can check that the Hamiltonian H and the Dirac bracket (12.49) give the Euler–
Lagrange equation for the motion. We find

ẋ = {x,V }Di =−1

2

∂V

∂y
; ẏ = {y,V }Di = 1

2

∂V

∂x
(12.50)

To prepare a canonical quantization of the Lagrangian LM we write the commuta-
tion relations

{x, y}Di = {px,py}Di = −1

2
(12.51)

{x,px}Di = {y,py}Di = 1

2
(12.52)

{y,px}Di = {x,py}Di = 0 (12.53)

A Dirac quantization F �→ F̂ satisfies

{F,G}Di→−i[F̂ , Ĝ]

So we get a representation of the Lie algebra (12.51) in L2(R2) satisfying

x̂ = 1

2

(
x + ∂

i∂y

)
, ŷ = 1

2

(
y − ∂

i∂x

)

p̂x = −1

2

(
y − ∂

i∂x

)
, p̂y = 1

2

(
x + ∂

i∂y

) (12.54)

Notice that this representation in L2(R2) is not irreducible because we have the
constraints p̂x + ŷ = 0, p̂y − x̂ = 0 and the relations (12.54) define an Heisenberg
Lie algebra of dimension 3. So we can get a quantization equivalent to the Weyl
quantization in L2(R).

12.5.2 Supersymmetric Mechanics

Supermechanics is an extension of classical mechanics. In supermechanics a point
has real (or even) coordinates x = (x1, . . . , xn) representing the bosonic degrees of
freedom and Grassmann coordinates, ξ = (ξ1, . . . , ξM), representing the fermionic
degrees of freedom. To encode the two kinds of degree of freedom in the same
object one introduces a “real super variables” X living in the configuration space
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of all the system. A super Lagrangian is a function LS of X and its derivative DX,
with values in a Grassmann algebra. In coordinates we can write X = (x, ξ) where
x has real dependent components, ξ have fermionic (real) components.

In coordinates we get a pseudo-classical Lagrangian L(x, ẋ, ξ, ξ̇ ). The conjugate
momenta are

p = ∂L
∂ẋ
, π = ∂L

∂ξ̇
(12.55)

Assume for a moment that we can define the Hamiltonian H as the Legendre trans-
form of L in (ẋ, ξ̇ ). Let F be an observable on the phase space defined by its coor-
dinates (x, ξ,p,π). Along the motion we want to have as usual

Ḟ = {F,H }

where F is an extension of the usual Poisson bracket. A direct computation, using
equations of motion, gives

Ḟ =
(
∂H

∂p

∂F

∂x
− ∂H

∂x

∂F

∂p

)
−
(
∂H

∂π

∂F

∂ξ
+ ∂H

∂ξ

∂F

∂π

)
(12.56)

Recall that H and F are in the superalgebra C∞(Rn+n|m+m). The right side in
(12.56) is the super Poisson bracket {F,H }, the first term is the usual antisym-
metric Poisson bracket in bosonic variables, inside the second parentheses we have
a symmetric form for the contribution of fermionic variables.

For any homogeneous observables F,G the Poisson bracket is a super Lie prod-
uct in C∞(R2n|2m) satisfying

{F,G} =
(
∂F

∂x

∂G

∂p
− ∂F

∂p

∂G

∂x

)
+ (−1)π(F )

(
∂F

∂ξ

∂G

∂π
+ ∂F

∂π

∂G

∂ξ

)
(12.57)

First consider a simple system with one bosonic state and one fermionic state with-
out interaction. Its states are represented by the superfield:

X = x + iθξ (12.58)

x is a real number depending on time t , ξ is an odd number living in a Grassmann
algebra. We want that X is even and “real”. We introduce two Grassmann complex
conjugate generators {η,η∗} and choose ξ(t)= c̄(t)η+ c(t)η∗ where c(t) is a com-
plex number. Then we have (iθξ)∗ = iθξ so X is even and real. Remark that X is
not a C∞ function on R

1|1 because the coefficient ξ is not a complex number but a
Grassmann variable.

As we have seen the superfield X has to be understood as a morphism from
C∞(R) in C∞(R1|1); using the Grassmann analytic extension principle we have

X∗(f )(x, θ)= f (x)+ if ′(x)θξ
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Let us introduce the super Lagrangian

LS = 1

2
DX ·D(DX)

where D =Dθ .
In coordinates we get the pseudo-classical Lagrangian

Lpcl =
∫
dθ LS = 1

2

(
ẋ2 + iξ ξ̇)

We can easily solve the Euler–Lagrange equations. We get

ẍ = 0, ξ̇ = 0

We can consider the same model with three superfields Xj = xj + iθξj , 1≤ j ≤ 3,

Lpcl = 1

2

(
ẋ · ẋ − iξ̇ · ξ)

Here we have three constraints

χj = πj + i

2
ξj

But we have {χj ,χk} = −iδj,k so the constraints are second order. This system is
invariant by any rotation in R

3. Its Dirac canonical quantization gives a spin system
[182].

The super-group SG(1|1) transforms X by right translations, so we have

X(t − iθη, θ + η)=X(t, θ)+ ηQX(t, θ)
where Q=Qθ . So a variation of X is given by δηX = ηQX, where δη is a deriva-
tion in C∞(R)[θ, η, η∗] considered as a R(η, η∗] module (coefficients of X are in
R[η,η∗]), δηF = [ηQ,F ].

In coordinates we have δηX = δηx + iθδηξ where

δηx = iηξ, δηξ = ηẋ
So we compute the variation of the Lagrangian and the variation of the correspond-
ing action S = ∫

dt dθL. Using that δη is a derivation, we get

δηLS = ηQLS = η(iθ∂t + ∂θ )L (12.59)

Hence we get

∂ηS =
∫
dt ∂t

(∫
dθ iθLS

)
(12.60)

By extension of the Noether theorem to the fermionic case we see that the vec-
tor field Q is the generator of a symmetry for the Lagrangian LS . This symmetry
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is called supersymmetry because it concerns supervariables mixing usual numbers
(real or complex) and Grassmann numbers.

For the corresponding variations of the pseudoclassical Lagrangian Lpcl we have

δηLpcl = 3iη

2

∂

∂t
ξ ẋ

According to Noether’s results we have the conserved charge

IQ = iξ ∂L
∂ẋ
+ ẋ ∂L

∂ξ̇
− 3i

2

∂

∂t
ξ ẋ =−2iξ ẋ

We can compute the Hamiltonian H by Legendre transform. The phase space here
is the superlinear space R

2|1. We get for the conjugate momentum

π = ∂L

∂ξ̇
=− i

2
ξ

So this Lagrangian is degenerate, with the constraint χ = π + i
2ξ . We get H = p2

2
where p is the conjugate momentum to x.

Now we shall consider a more interesting example involving the super-harmonic
oscillator. We consider the superfields:

X = x + θψ∗ +ψθ∗ + yθθ∗ (12.61)

This field may depend on time t , so x, y,ψ,ψ� are time dependent, where x, y are
real numbers, θ, θ� are conjugate Grassmann variables, ψ,ψ∗ are necessarily odd
numbers. As above, to compute these numbers we have to introduce an other pair of
Grassmann variables {ζ, ζ ∗}, anticommuting with the pair {θ, θ∗}. So we consider
that ψ = cζ + dζ ∗ where c, d are complex (time dependent) numbers.

As we have already remarked, to avoid mathematical difficulties it is necessary
to add extra Grassmann variables.

Recall that the superfield X defined in the formula (12.61) is a morphism from
R

1|4 in R which means that it is defined by a morphism X� from C∞(R) in
C
∞(R)[θ, θ∗, ζ, ζ ∗] which can be computed by the Grassmann analytic continu-

ation principle:
(
X�f

)
(x, θ)= f (x)+f ′(x)(ψθ∗+θψ∗)+f ′(x)yθθ∗ −f ′′(x)θθ∗ψψ∗ (12.62)

There exist other rigorous interpretations of this formula. For a detailed discussion
we refer to the paper [105].

Let us introduce a super potential V (X) where V ∈ C
∞(R) and the super La-

grangian

LS = 1

2
Dθ∗XDθX+ V (X) (12.63)

Assume that V is polynomial for simplicity. Then the Lagrangian has the supersym-
metry defined by the odd generators Qθ and Qθ∗ defined before. The infinitesimal
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transformations on fields are δηX = η∗Qθ +ηQθ∗X and as above δη is a derivation.
η,η∗ are Grassmann variables, independent of the other Grassmann variables. We
also have δηV (X)= η∗Qθ + ηQθ∗V (X) and

δηLS = η∗Qθ + ηQθ∗LS

As for the above toy model, it results that the Lagrangian LS is again supersymmet-
ric with generators Qθ ,Qθ∗ .

Now we shall compute in coordinates with the pseudo-classical Lagrangian.
Compute

QθX = ψ∗ + θ∗(iẋ + y)− iθθ∗ψ̇∗ (12.64)

Qθ∗X = −ψ + θ(iẋ − y)− iθθ∗ψ̇ (12.65)

So we get

δηX = η∗ψ∗ − ηψ + θη(y − ix)+ η∗(y + iẋ)θ∗ − i
(
η∗ψ̇∗ + ηψ̇)θθ∗ (12.66)

Hence in coordinates the supersymmetry has the following infinitesimal representa-
tion:

δηx = η∗ψ∗ − ηψ (12.67)

δηψ = η∗(y + iẋ) (12.68)

δηψ
∗ = η(y − ix) (12.69)

δηy = −i
(
η∗ψ̇∗ + ηψ̇) (12.70)

Now we compute the pseudo-classic Lagrangian: Lpcl :=
∫
dθ dθ∗LS . Using the

computation rules for Berezin integral we get

Lpcl = 1

2

(
ẋ2 + y2)− V ′(x)y + i

2

(
ψψ̇∗ − ψ̇ψ∗)+ 1

2
V ′′(x)ψψ∗ (12.71)

The real variable can be eliminated because we have ∂
∂ẏ
Lpcl = 0. From Euler–

Lagrange equation we get ∂
∂y
Lpcl = 0 so y = V ′(x). We now get the following

Lagrangian:

Lw = ẋ2

2
− V ′(x)2

2
+ i

2

(
ψψ̇∗ − ψ̇ψ∗)+ 1

2
V ′′(x)ψψ∗ (12.72)

We can compute the two Noether charges associated with the generators Qθ , Qθ∗ .
The results are

Q= (
ẋ − iV ′(x))ψ, Q∗ = (

ẋ + iV ′(x))ψ∗ (12.73)
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An easy exercise is to compute the dynamics for the Fermi oscillator, well known
for the Bose (or harmonic) oscillator. The Lagrangian is

LF = i

2

(
ψψ̇∗ − ψ̇ψ∗)+ 1

2
ωψψ∗ (12.74)

The Euler–Lagrange equation gives ψ̇ = −iωψ ; hence we get ψ(t) = ηe−iωt ,
where η is any Grassmann complex variable.

It is more suggestive to write down the dynamics in real coordinates:

ξ1(t) = ψ(t)+ψ∗(t)√
2

= 1√
2

(
ηe−iωt + η∗eiωt) (12.75)

ξ2(t) = ψ∗(t)−ψ(t)
i
√

2
= 1

i
√

2

(
η∗eiωt − ηe−iωt

)
(12.76)

12.5.3 Supersymmetric Quantization

The first step is to compute the Hamiltonian Hw for the Lagrangian Lw .
The momenta are defined as usual

p = ∂Lw
∂ẋ

= ẋ (12.77)

π = ∂Lw
∂ψ̇

=− i
2
ψ∗ (12.78)

π∗ = ∂Lw
∂ψ̇∗

= − i
2
ψ (12.79)

Hence the Legendre transform is not surjective: the Lagrangian is degenerate. We
can extend the Dirac method (see more details in [112]) to fermionic variables with
the two constraints

χ1 =
(
π + i

2
ψ∗

)
, χ2 =

(
π∗ + i

2
ψ

)

Recall that here {·} is the super-Poisson-bracket. We have {χ1, χ2} = −i, so the
constraint is of second order. Denote

H = ẋp+ ψ̇π + ψ̇∗π∗ −Lw = 1

2

(
p2 + V ′(x)2)− V ′′(x)ψψ∗

According to Dirac’s method we compute multipliers u1, u2 such that the evolution
of any observable F obeys the equation

Ḟ = {F,H } + u1{F,χ1} + u2{F,χ2}
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u1, u2 are computed with the compatibility conditions χ̇k = 0 for k = 1,2. We get

u1 =−iV ′′(x)ψ, u2 = iV ′′(x)ψ∗

The total Dirac Hamiltonian is here, after computation,

HDi =H + u1χ1 + u2χ2 = 1

2

(
p2 + V ′(x)2)+ iV ′′(x)(ψ∗π∗ −ψπ)

To achieve the quantization of our system we define, as in the bosonic case, the Dirac
bracket. Let F,G depending only on fermionic variables. Then the Dirac bracket is

{F,G}Di = {F,G} + 1

{χ1, χ2}
({F,χ1}{χ2,G} + {F,χ2}{χ1,G}

)

So we have

{ψ,ψ∗}Di =−i, {π,π∗}Di = i

4
, {ψ,π} = {ψ∗,π∗} = 1

2
(12.80)

A quantization F �→ F̂ has to follow the correspondence principle. For F = x,p we
consider the usual Weyl–Heisenberg quantization with the commutator rule [x̂, p̂] =
i�. If F and G are fermionic variables then

i�{̂F,G} = [
F̂ , Ĝ

]
(12.81)

where the brackets are symmetric (anticommutators).
In particular we have

[
ψ̂, ψ̂∗

]= �, [π̂ , π̂∗] = −�
4
,

[
ψ̂, π̂

]= [
ψ̂∗, π̂∗

]= −i�
2

(12.82)

The Dirac quantum Hamiltonian is

ĤDi = 1

2

(
p̂2 + V ′(x)2)+ iV ′′(x)(ψ̂∗π̂∗ − ψ̂π̂) (12.83)

A realization of the commutation relations is obtained with the Pauli matrices:

ψ̂ =√�σ−, ψ̂∗ =√�σ+ (12.84)

π̂ =− i
2
σ+, π̂∗ = − i

2
σ− (12.85)

For �= 1 we get the Witten supersymmetric Hamiltonian considered at the begin-
ning of this chapter:

Ĥ = 1

2

(
− d2

dx2
+ V ′(x)2

)
12 − σ3

2
V ′′(x) (12.86)
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We can also remark that the supercharges Q̂ and Q̂∗ are obtained by quantization
of the Noether charges Q,Q∗.

In particular we can consider an harmonic potential V (x) = ωx2

2 . Choosing a

quantization such that π̂ =− i
2 ψ̂

∗ and π̂∗ = − i
2 ψ̂ we get the super-harmonic oscil-

lator

Ĥsos = 1

2

(
− d2

dx2
+ω2x2

)
+ωψ̂∗ψ̂ (12.87)

We can realize this Hamiltonian with ψ̂ = θ and ψ̂∗ = ∂θ in the super Hilbert space
HS := L2(R) ⊗ H̃(2). It is nothing but a Grassmann algebra interpretation of the
Witten model introduced before with H̃(2) in place of C2.

The scalar product in the Hilbert space HS is defined as

〈F,G〉 =
∫
dx dθ dθ∗ eθ

∗θF ∗(x, θ)G(x, θ), (12.88)

where x is a real variable, θ is an holomorphic Grassmann variable.

12.6 Supercoherent States

As canonical coherent states are built on the Heisenberg–Weyl Lie group, super-
coherent states are built on the super Heisenberg–Weyl super Lie group. We first
consider the simplest case with one boson and one fermion. So we have creation
and annihilation operators a∗B, a∗F , aB, aF for bosons and fermions. They satisfy the
super-Lie algebra commutation relations:

[aB, a∗B ] = 1, [aF , a∗F ]+ = 1 (12.89)

All other relations are trivial.
We have a supersymmetric harmonic oscillator Ĥsos with supersymmetry gener-

ators Q∗,Q,

Ĥsos = a∗BaB + a∗F aF , Q̂= aBa∗F , Q̂∗ = aF a∗B (12.90)

This definition of Ĥsos may differ from others by a constant.
We have [Ĥsos, Q̂] = 0 so (Q̂, Q̂∗) generates a global supersymmetry defined by

the following unitary operators:

Uη = eηQ̂
∗+η∗Q̂

where (η, η∗) are any complex conjugate Grassmann numbers.
Super-translations T̂ (z, γ ) are parametrized by (z, γ ), z is a complex number, γ

is a Grassmann (complex) number,

T̂ (z, γ )= exp(za∗B − z̄aB + a∗F γ − γ ∗aF ) (12.91)
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Using the Baker–Campbell–Hausdorff formula we have the following useful prop-
erties:

T (z, γ ) = exp

(
1

2
γ ∗γ − |z|2

)
exp(za∗B) exp(a∗F γ ) exp(−z̄aB) exp(−aF γ ∗)

(12.92)

T (z, γ )T (u, δ) = exp

(
1

2
(zū− z̄u+ δ∗γ + δγ ∗)

)
T (z+ u,γ + δ) (12.93)

In particular T (z, γ )−1 = T (−z,−γ ) is unitary and

T (z, γ )−1aBT (z, γ ) = aB + z (12.94)

T (z, γ )−1aF T (z, γ ) = aF + γ (12.95)

The ground state of Ĥsos is the state ψ0,0 := ϕ0 ⊗ ψ0 where ϕ0 and ψ0 are the
normalized ground states of the bosonic and fermionic oscillators. So we define
super-coherent states by displacement of the ground state of the super-harmonic
oscillator by super-translations:

ψz,γ = T (z, γ )ψ0,0 (12.96)

Using (12.92) we have

ψz,γ =
(

1+ γ γ ∗

2

)(|z,0〉 + |z,1〉γ ) (12.97)

where we use the notation |z, ε〉 = ϕz ⊗ θε , ε = 0,1.
The coherent states family ψz,γ has the following expected properties. The

proofs follow easily from results already established for bosonic and fermionic co-
herent states.

1. (Normalization)

‖ψz,γ ‖2 = 〈ψz,γ ,ψz,γ 〉 = 1 (12.98)

2. (Non-orthogonality)

〈ψz,γ ,ψu,δ〉 = exp

(
γ ∗δ− 1

2
(γ ∗γ +δ∗δ)

)
exp

(
−1

2

(|z|2+|u|2)+ z̄u
)

(12.99)

3. (Over-completeness) For every ψ ∈HS we have

ψ(x, θ)=
∫
〈ψz,γ ,ψ〉ψz,γ (x, θ) dz dγ ∗ dγ (12.100)

4. (Translation property)

T (z, γ )ψu,δ = exp

(
1

2
(zū− z̄u+ δ∗γ + δγ ∗)

)
ψz+u,γ+δ (12.101)
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5. (Eigenfunctions of annihilation operators)

aBψz,γ = zψz,γ , aFψz,γ = γψz,γ (12.102)

In particular we have the averages for energy and supercharges

〈ψz,γ , Ĥsosψz,γ 〉 = |z|2 + γ ∗γ (12.103)

〈ψz,γ ,Qψz,γ 〉 = zγ ∗, 〈ψz,γ ,Q∗ψz,γ 〉 = z̄γ (12.104)

Remark 72 Definition and properties of supercoherent states with one boson and
one fermion can easily be extended for systems with n bosons andm fermions. Then
z = (z1, . . . , zn) ∈ C

n, γ = (γ1, . . . , γm) represent a system of m complex Grass-
mann variables, aB = (aB,1, . . . , aB,n), aF = (aF,1, . . . , aF,m), etc. The formu-
las are the same using the multidimensional notations: γ ∗ · aF =∑

1≤j≤m γ ∗j aF,j .

Then the energy Hamiltonian can be Ĥ = ωB · a∗BaB + ωFa∗F · aF , ωB,F are real
numbers.

The Hilbert space of this system is Hn,m = L2(Rn)⊗ H̃(m). To have a supersym-
metric system we need that n=m and ωB = ωF .

12.7 Phase Space Representations of Super Operators

As is well known for bosons and as was studied before for fermions we can extend
to mixed systems bosons+fermions representations formulas for operators in the
super-Hilbert space H. Phase space representation means that we are looking for a
correspondence between functions on the phase space and operators in some Hilbert
space. This correspondence is called quantization in quantum mechanics. Our goal
here is to revisit Weyl quantizations for observables mixing bosons and fermions. It
could be possible to do it also for anti-Wick quantization.

To have a better analogy between the bosonic and fermionic variables it is nicer
to write bosonic Weyl quantization in complex coordinates ζ := q+ip√

2
, ζ ∈ C

n,

q,p ∈R
n. The Lebesgue measure in C

n is d2ζ = |dζ ∧ dζ ∗|.
Assume for simplicity that Ĥ , Ĝ have smooth Schwartz kernels in S(R2n). We

consider their Weyl symbolsHw
w ,G

w
w in complex coordinates. Using the same proof

as in the fermionic case we have the following Moyal formulas for the Weyl symbols
of ĜĤ :

(Gw �Hw)(ζ ) =
∫
Cn
d2ηGw(ζ − η)Hw(η)e1/2(ζ̄ ·η−ζ ·η̄) (12.105)

(
Gw �Hw

)
(ζ ) =Gw(ζ )e1/2(

←−
∂ζ ·−→∂ζ̄ −

←−
∂ζ̄ ·
−→
∂ζ )Hw(ζ ) (12.106)

The first formula gives the covariant symbol, the second formula the contravariant
symbol. We have the following relations:

Gw(η) =
∫
d2ζ eζ̄ ·η−ζ ·η̄Gw(ζ ) (12.107)
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Gw(η) = (2π)−2n
∫
d2ζ eζ ·η̄−ζ̄ ·ηGw(ζ ) (12.108)

It is not difficult to get a Moyal formula for classes of operators in the superspace
Hn,m = L2(Rn)⊗ H̃(m). As usual it is enough to establish formulas for smoothing
operators then the formulas are extended to suitable classes of symbols. So we shall
assume that Ĝ, Ĥ are linear continuous operators from S ′(Rn)⊗H̃(m) into S(Rn)⊗
H̃(m) (that means that their Schwartz kernels are in S(R2n ⊗ Gcm)). The covariant
symbol Hw is defined such that

Ĥ =
∫
d2ζ d2γ Hw(ζ, γ )T̂ (−ζ,−γ ) (12.109)

Hw(ζ, γ ) = Str
(
Ĥ T̂ (ζ, γ )

)
(12.110)

where Str is defined as the usual trace in bosonic variable ζ and the super-trace in
the fermionic variable γ . More precisely, for any trace-class operator Ĥ in Hn,m we
have

StrĤ = Tr
(
Ĥ (1⊗ χ))

where χ is the chirality operator in H̃(m) defined in Chap. 11.
The contravariant symbol is the symplectic Fourier transform of the covariant

symbol:

Hw(ζ, γ )=
∫
d2η d2αHw(η,α)e

η̄·ζ−η·ζ̄+α∗·γ+α·γ ∗ (12.111)

So we get the following Moyal formula for super symbols:

(
Gw �Hw

)
(ζ,α)=Gw(ζ,α)e1/2(

←−
∂ζ ·−→∂ζ̄ −

←−
∂ζ̄ ·
−→
∂ζ +←−∂α∗ ··−→∂α+←−∂α ·−→∂α∗ )Hw(ζ,α) (12.112)

Many results explained before for bosons and fermions could be extended to mixed
systems. Instead to do that we now discuss a simple application.

12.8 Application to the Dicke Model

This model was studied in [1] as a supersymmetric system. The Hamiltonian for this
model is

Ĥ =Ωa∗a+ 1

2
ωσ3 + g(a∗ + a)σ1 (12.113)

It concerns a two-level atom interacting with a monochromatic radiation field.
a∗ and a are one particle creation/annihilation operators, the Pauli matrices σ =
(σ1, σ2, σ3) denote the radiation field with frequency Ω , ω is the level distance of
the states of the atom, g is a coupling constant.
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The matrices σ± satisfy the (CAR) relation, so we can identify them with
fermionic creation/annihilation operators. So we can introduce a pair of complex
conjugate Grassmann numbers (β,β∗) such that σ+ ≡ β̂∗ = ∂β , σ− ≡ β̂ is multi-
plication by β (see Chap. 11) and σ3 ≡ 2β̂∗β̂ − 1. But with this choice Ĥ is not an
even operator. To overcome this problem we add a new Grassmann pair of complex
variables (θ, θ∗) and the real Grassmann number η= θ+θ∗. We have η̂2 = 1 (in [1]
η̂ is denoted c and is called a Clifford number, see Chap. 11 for more explanations).
Hence we have the two pairs of Grassmann variables (β,β∗), (θ, θ∗) to represent
the Pauli matrices:

σ+ ←→ η̂β̂∗, σ− ←→ η̂β̂

where we denote η̂ = θ + ∂θ , b = β̂ , b∗ = ∂β . We have to remark that (bη̂)∗bη̂ =
b∗b. With this substitution the Hamiltonian Ĥ is transformed into an even Hamilto-
nian defined in the space L2(R)⊗ H̃(2)

ĤS =Ωa∗a+ 1

2
ω(b∗b− 1)+ g(a∗ + a)(η̂b∗ + bη̂) (12.114)

Its (contravariant) Weyl symbol is

HS(ζ,β, θ)=Ω
(
|ζ |2 − 1

2

)
+ωβ∗β + g(ζ + ζ̄ )(ηβ∗ + βη)

Our aim is to study the dynamics for the Hamiltonian ĤS . It is determined by the
von Neumann equation

i
∂ρ̂t

∂t
= [

ĤS, ρ̂t
]
, ρ̂t=0 = ρ̂0 (12.115)

where ρ̂ is a density operator (a positive operator of trace 1), ρt is the contravariant
Weyl symbol of ρ̂t (also called the Weyl–Wigner Distribution Function).

Let us remark that ĤS depends only on a and γ̂ where γ = βη, because we have
b∗b= γ̂ ∗γ̂ . Moreover we have [γ̂ , γ̂ ∗]+ = 1.
ρt satisfies a Fokker–Planck type equation which can be computed using the

Moyal product formula applied to HS � ρt − ρt �HS . So we get

−∂ρt
∂t
=−→L ρt + ρt←−L ∗ (12.116)

where we find (see also [1])

−i−→L =Ω

(
ζ ∗ − 1

2
−→
∂ζ

)(
ζ + 1

2
−→
∂ζ ∗

)
+ω

((
β∗ + 1

2
−→
∂β

)(
β + 1

2
−→
∂β∗

)
− 1

2

)

+ g
(
ζ + ζ ∗ + 1

2

(−→
∂ζ ∗ −−→∂ζ

))

+ (
θ +−→∂θ

)(
β∗ − β + 1

2

(−→
∂ζ −−→∂ζ

))
. (12.117)
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ĤS being time independent we also have

ρ̂t = e−itĤS ρ̂0eitĤS

So we start to consider the propagation of the dynamical variables a and γ̂ . We first
compute the commutators

[
ĤS, γ̂

] = −γ̂ + g(a+ a∗)(2γ̂ ∗γ̂ − 1) (12.118)
[
ĤS, γ̂

∗] = γ̂ ∗ − g(a+ a∗)(2γ̂ ∗γ̂ − 1) (12.119)
[
ĤS,a

] = −g(γ̂ ∗ + γ̂ )−Ωa (12.120)
[
ĤS,a∗

] = g(γ̂ ∗ + γ̂ )+Ωa∗ (12.121)

So we find the non-linear differential system

i
∂

∂t
γ̂t = −γ̂t + g(a+ a∗)(2γ̂ ∗t γ̂t − 1)

i
∂

∂t
γ̂ ∗t = γ̂ ∗t − g(a+ a∗)(2γ̂ ∗t γ̂t − 1)

i
∂

∂t
at = −g(γ̂t + γ̂ ∗t )−Ωat

i
∂

∂t
a∗t = −g(γ̂ + γ̂ ∗)+Ωa∗t

(12.122)

Assume now that the initial Weyl–Wigner distribution ρ̂ depends only on a,a∗,
γ̂ , γ̂ ∗. Then ρ̂t has the following shape:

ρ̂t = ρ̂0
t (at ,a

∗
t )+ ρ̂1

t (at ,a
∗
t )γ̂t + ρ̂1,∗

t (at ,a∗t )γ̂ ∗t + ρ̂2
t (at ,a

∗
t )γ̂

∗
t γ̂t

Using (12.122) we find that at ,a∗t , γ̂ ∗t γ̂t are functions of t and a,a∗, γ̂ , γ̂ ∗. So ρ̂t
can be written as follows:

ρ̂t = ρ̂(0)t (a,a∗)+ ρ̂(1)t (a,a∗)γ̂ + ρ̂(1)∗t (a,a∗)γ̂ ∗ + ρ̂(2)t (a,a∗)γ̂ ∗γ̂ (12.123)

Now we can give the physical meaning of the bosonic operators ρ̂(•)t (at ,a∗t ) by
taking the average on the fermionic variables (β, θ).

We shall see now that we recover the dynamics generated by the Hamiltonian Ĥ
taking the basis {12, σ+, σ−, σ3}.

We have to compute the relative trace TrH̃2
(ρ̂t (1⊗ Ĝ)), where Ĝ is a fermionic

operator in H̃2, using the formula

TrH̃2

(
ρ̂t
(
1⊗ Ĝ))= 1

4

∫
ρt (a,a∗, β, θ)Gw(β, θ) d

2β d2θ

We compute the covariant Weyl symbols of 12, γ̂ , γ̂
∗, γ̂ ∗γ̂ :

1w(β, θ) = β∗β + θ∗θ
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γw(β, θ) = β(θ − θ∗)
γ ∗w(β, θ) = (θ∗ − θ)β∗

(γ ∗γw)(β, θ) = θ∗θ

Then we get effective distribution functions ρeff (for simplicity the time t is not
written explicitly nor the contravariant bosonic variable ζ )

ρ
(0)
eff =

∫
ρ × (θ∗θ + β∗β)d2θ d2β = ρ(0)

ρ
(1)
eff =

∫
ρ × β(θ + θ∗)(θ − θ∗)β∗ d2θ d2β =−2ρ(1)

ρ
(1)∗
eff =

∫
ρ × (θ + θ∗)β∗β(θ − θ∗) d2θ d2β =−2ρ(1)∗

ρ
(2)
eff = 2

∫
ρ × θ∗θ d2θ d2β = 2ρ(2)

Finally after a direct computation we recover the dynamics for the Hamiltonian Ĥ
defined by (12.113) from the dynamics for the super Hamiltonian ĤS defined by
(12.114) [99, 100]:

ρeff = ρ(0)eff 12 + ρ(1)eff σ+ρ
(1),∗
eff σ− + ρ(2)eff σ3



Appendix A
Tools for Integral Computations

A.1 Fourier Transform of Gaussian Functions

This result is the starting point for the stationary phase theorem.
Let M be a complex matrix such that �M is positive-definite. We define

[detM]1/2∗ the analytic branch of (detM)1/2 such that (detM)1/2 > 0 when M is
real.

Theorem 52 Let A be a symmetric complex symmetric matrix, m×m. We assume
that A is non negative and A is non degenerate. Then we have the Fourier trans-
form formula for the Gaussian eiAx·x/2

∫
Rm

eiAx·x/2e−ix·ξ dξ = (2π)m/2[det(−iA)]−1/2
∗ e(iA)

−1ξ ·ξ/2. (A.1)

Proof For A the real formula (A.1) is well known: first we prove it for m= 1 then
for m≥ 2 by diagonalizing A and using a linear change of variables.

For A complex (A.1) is obtained by analytic extension of left and right hand
side. �

A.2 Sketch of Proof for Theorem 29

Recall that critical set M of the phase f is

M = {
x ∈O,f (x)= 0, f ′(x)= 0

}
.

Note that if a is supported outside this set then J (ω) is O(ω−∞).
Using a partition of unity, we can assume that O is small enough that we have

normal, geodesic coordinates in a neighborhood of M . So we have a diffeomor-
phism,

χ : U→O,

M. Combescure, D. Robert, Coherent States and Applications in Mathematical Physics,
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-0196-0, © Springer Science+Business Media B.V. 2012

383

http://dx.doi.org/10.1007/978-94-007-0196-0


384 A Tools for Integral Computations

where U is an open neighborhood of (0, 0) in R
k ×R

d−k , such that

χ
(
x′, x′′

) ∈M ⇐⇒ x′′ = 0

and if m= χ(x′,0) ∈M we have

χ ′
(
x′,0

)(
R
k
x

) = TmM,

χ ′
(
x′,0

)(
R
d−k
x′′

) = NmM, (normal space at m ∈M).

So the change of variables x = χ(x′, x′′) gives the integral

J (ω)=
∫
Rd

eiωf (χ(x
′,x′′))a

(
x′, x′′

)|detχ ′
(
x′, x′′

)∣∣dx′ dx′′. (A.2)

The phase

f̃
(
x′, x′′

) := f (χ(x′, x′′))
clearly satisfies

{
f̃ ′x′′

(
x′, x′′

)= 0,f̃ (x′, x′′)= 0
} ⇐⇒ x′′ = 0.

Hence, we can apply the stationary phase Theorem 7.7.5 of [117] in the variable x′′,
to the integral (A.2), where x′ is a parameter (the assumptions of [117] are satisfied,
uniformly for x′ close to 0). We remark that all the coefficients cj of the expansion
can be computed using the above local coordinates and Theorem 7.7.5.

A.3 A Determinant Computation

Here we give the details concerning computations of the determinant (9.33) in
Chap. 9.

We write α = (α′, α4)where α′ = ê1+ i cosγ ê2. The gradient of the phase (9.28)
is ix +G(p) where G(p) is given by

G(p) := 2

(p2 + 1)α ·w1(p)

(
α′ + p(α4 − α ·w1(p)

))=K(p)M(p),

where

K(p)= 2

2α′ · p+ α4(p2 − 1)

and

M(p)= α′ + 2p

1+ p2

(
α4 − α′ · p

)

K: R
3 →C, M: R

3 →C
3.
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Since x is a constant the hessian of (9.28) is simply DG(p) where DG (resp.
DK, DM) is the first differential of G (resp. K , M). We want to calculate at the
critical point pc with

pc =
(

cosβ

1− sinβ sinγ
,

cosγ sinβ

1− sinβ sinγ
,0

)
.

Let δp be an arbitrary increase of p. One has

DG(p)(δp)= (
DK(p) · δp) ·M(p)+K(p)DM(p) · δp.

We can write
(
DK(p) · δp)M(p)= (

M(p)⊗ (
DK(p)

)∗) · δp,
where DK(p)∗ ∈ (R3)∗ + i(R3)∗ 5 C

3. Using the dual structure the identification
of (R3)∗ + i(R3)∗ with C

3 is performed via the isomorphism: u �→ (v �→ u · v). We
have

K
(
pc
) = e−iβ(1− sinβ sinγ ),

M
(
pc
) = α′ + (

i sinγ − eiβ
)
pc.

Thus

DG
(
pc
)= e−iβ(1− sinβ sinγ )DM

(
pc
)+M(

pc
)⊗ (

DK
(
pc
))∗
.

It is convenient to choose as a basis of vectors (pc, qc, ê3) where

qc = α′ + (
i sinγ − eiβ

)
pc.

The vectors pc, qc are C-linearly independent for γ �= π
2 + kπ . Simple calculus

yields

DM
(
pc
) = (

i sinγ − eiβ
)
1R3 − (1− sinβ sinγ )pc ⊗ (

qc
)∗
,

DK
(
pc
) = −e−2iβ(1− sinβ sinγ )2

(
α′ + α4p

c
)
.

Thus we get

DG
(
pc
) = e−iβ

(
i sinγ − eiβ

)
(1− sinβ sinγ )1R3

− e−iβ(1− sinβ sinγ )2pc ⊗ (
qc
)∗

− e−2iβ(1− sinβ sinγ )2qc ⊗ (
qc + eiβpc

)∗
. (A.3)

Let H(p) be the Hessian matrix in the basis (pc, qc, ê3) and denote

H1(p)= H(p)

1− sinβ sinγ
.
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The second line of (A.3) yields a matrix in the plane generated by (pc, qc) of the
form (

d1 d2
d3 d4

)

that we calculate using

pc ⊗ (
qc
)∗ =

(
qc · pc (qc)2

0 0

)
,

qc ⊗ (
qc
)∗ =

(
0 0

qq · pc (qc)2

)
,

qc ⊗ (
pc
)∗ =

(
0 0

(pc)2 pc · qc
)
.

We have

(
pc
)2 = 1+ sinβ sinγ

1− sinβ sinγ
,

qc · pc = sinγ
i − eiβ sinβ

1− sinβ sinγ
,

(
qc
)2 = −e2iβ .

We get

d1 = −(1− sinβ sinγ ),

d2 = −e−iβ(1− sinβ sinγ ),

d3 = −e−iβ
(
1+ i sinγ e−iβ

)
,

d4 = 0.

Thus the three-dimensional reduced Hessian matrix H1 equals

H1 =
⎛
⎝d1 d2 0
d3 0 0
0 0 d5

⎞
⎠

with d5 = e−iβ(i sinγ − eiβ). Its determinant equals

detH1 =−d2d3d5.

One has

|detH1|2 = (1− sinβ sinγ )2
[
1− 2 sinβ sinγ + sin2 γ

][
1+ 2 sinβ sinγ + sin2 γ

]
.



A.4 The Saddle Point Method 387

Finally we get the result:
∣∣detH

(
pc
)∣∣

= (1− sinβ sinγ )4
√[

sin2 γ + 2 sinβ sinγ + 1
][

sin2 γ − 2 sinβ sinγ + 1
]
.

We see that it does not vanish provided sinβ sinγ �= 1.

A.4 The Saddle Point Method

A.4.1 The One Real Variable Case

This result is elementary and very explicit. Let us consider the Laplace integral

I (λ)=
∫ a

0
e−λφ(r)F (r) dr

where a > 0, φ and F are smooth functions on [0,1] such that φ′(0) = φ(0) = 0,
φ′′(0) > 0, φ(r) > 0 if r ∈ ]0,1]. Under these conditions we can perform the change
of variables s =√φ(r) where we denote r = r(s) and G(s)= F(r(s))r ′(s). So we
have

Proposition 142 For every N ≥ 1 we have the asymptotic expansion for λ→+∞,

I (λ)=
∑

0≤j≤N−1

Cjλ
−(j+1)/2 +O(

λ−(N+1)/2), (A.4)

where

Cj = Γ
(
j

2
+ 1

)
G(j)(0)

2j ! .

In particular C0 = F(0)(φ′′(0))−1/2.

Proof This is a direct consequence of Taylor expansion applied to G at 0 and using
that, for every b > 0 and ε > 0,

∫ b

0
e−λs2

sj ds = 1

2
Γ

(
j

2
+ 1

)
λ−(j+1)/2 +O(

e−ελ
)
. �

A.4.2 The Complex Variables Case

This is an old subject for one complex variable but there are not so many refer-
ences for several complex variables. Here we recall a presentation given by Sjös-
trand [179] or [178].
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Let us consider a complex holomorphic phase function in a open neighborhood
A× U of (0,0) in C

k ×C
n, A× U 6 (a,u) �→ ϕ(a,u) ∈C.

Assume that

• ϕ(0,0)= 0, ∂uϕ(0,0)= 0.
• det ∂2

(u,u)ϕ(0,0) �= 0.
• �ϕ ≥ 0 ∀u ∈ U , �ϕ > 0 for all u ∈ ∂UR where UR := U ∩ R

n and ∂UR is the
boundary in R

n of UR.

By the implicit function theorem we can choose A× U small enough such that the
equation ∂uϕ(a, z) = 0 has a unique solution z(a) ∈ U , a �→ z(a) being holomor-
phic in A. Then we have the following asymptotic result.

Theorem 53 For every holomorphic and bounded function g in U we have, for
k→+∞,

ekϕ(a,z(a))
∫
UR

e−kϕ(a,r)g(r) dr

=
(

2π

k

)n/2[
det

(
∂2
(u,u)ϕ

(
a, z(a)

))]−1/2
g(a)+O(

k−n/2−1). (A.5)

A.5 Kähler Geometry

Let M be a complex manifold and h an Hermitian form on M :

h=
∑
j,k

hj,kdzj ⊗ dzk, hj,k(z)= hk,j (z).

h is a Kähler form if the imaginary part ω=h is closed (dω= 0) and its real part
g =�h is positive-definite. We have

ω= i
∑
j,k

hj,k(z) dzj ∧ dz̄k.

(M,h) is said a Kähler manifold if h is a Kähler form on M .
Then on M exists a Riemann metric g =�h and symplectic two form ω.
Locally there exists a real-valued function K , called Kähler potential, such that

hj,k = ∂2

∂zj ∂zk
K.

The Poisson bracket of two smooth functions φ,ψ on M is defined as follows:

{φ,ψ}(m)= ω(Xφ,Xψ),
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where Xψ is the Hamiltonian vector field at m defined such that

dψ(v)= ω(Xψ,v), for all v ∈ Tm(M).

More explicitly:

{ψ,φ}(z)= i
∑
j,k

hj,k(z)

(
∂ψ

∂zj

∂φ

∂z̄k
− ∂φ

∂zk

∂ψ

∂z̄j

)
,

where hj,k(z) is the inverse matrix of hj,k(z).
The Laplace–Beltrami operator corresponding to the metric g is

"=
∑
j,k

hj,k(z)
∂

∂zj

∂

∂z̄k
.

In particular for the Riemann sphere we have

ds2 = 4
dζdζ̄

(1+ |ζ |2)2 , (A.6)

{ψ,φ}(z) = i
(
1+ |z|2)2

(
∂ψ

∂z

∂φ

∂z̄
− ∂φ

∂z

∂ψ

∂z̄

)
, (A.7)

" = (
1+ |z|2)2 ∂2

∂z∂z̄
. (A.8)

For the pseudo-sphere we have

ds2 = 4
dζdζ̄

(1− |ζ |2)2 , (A.9)

{ψ,φ}(z) = i
(
1− |z|2)2

(
∂ψ

∂z

∂φ

∂z̄
− ∂φ

∂z

∂ψ

∂z̄

)
, (A.10)

" = (
1− |z|2)2 ∂2

∂z∂z̄
. (A.11)



Appendix B
Lie Groups and Coherent States

B.1 Lie Groups and Coherent States

In this appendix we start with a short review of some basic properties of Lie groups
and Lie algebras. Then we explain some useful points concerning representation
theory of Lie groups and Lie algebras and how they are used to build a general
theory of Coherent State systems according to Perelomov [155, 156]. This theory is
an extension of the examples already considered in Chap. 7 and Chap. 8.

B.2 On Lie Groups and Lie Algebras

We recall here some basic definitions and properties. More details can be found in
[72, 105] or in many other textbooks.

B.2.1 Lie Algebras

A Lie algebra g is a vector space equipped with an anti-symmetric bilinear product:
(X,Y ) �→ [X,Y ] satisfying [X,Y ] = −[Y,X] and the Jacobi identity

[[X,Y ],Z]+ [[Y,Z],X]+ [[Z,X], Y ]= 0.

The map (adX)Y = [X,Y ] is a derivation: (adX)[Y,Z] = [(adX)Y,Z] +
[Y, (adX)Z].

If g and h are Lie algebras a Lie homomorphism is a linear map χ : g→ h such
that [χX,χY ] = [X,Y ].

A sub-Lie algebra h in g is a subspace of g such that [h,h] ⊆ h h is an ideal if
furthermore we have [h,g] ⊆ h. If χ is a Lie homomorphism then kerχ is an ideal.

In the following we assume for simplicity that the Lie algebras g considered are
finite-dimensional.
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g is abelian if [g,g] = 0.
g is simple if it is non-abelian and contains only the ideals {0} and g. The center

Z(g) is defined as

Z(g)= {
X ∈ g, [X,Y ] = 0, ∀Y ∈ g

}
.

Z(g) is an abelian ideal.
If g has no abelian ideal except {0} then g is said semi-simple. In particular

Z(g)= {0}.
The Killing form on g is the symmetric bilinear form B(X,Y ) defined as

B(X,Y )= Tr
(
(adX)(adX)

)
.

g is semi-simple if and only if its Killing form is non-degenerate (Cartan’s criterion).

B.2.2 Lie Groups

A Lie groupG is a group equipped with a multiplication (x, y) �→ x ·y and equipped
with the structure of a smooth connected manifold (we do not recall here definitions
and properties concerning manifolds, see [105] for details) such that the group op-
eration (x, y) �→ x · y and x �→ x−1 are smooth maps.

We always assume that Lie groups considered here are analytic.
A useful mapping is the conjugation C(x)(y) = xyx−1, x, y ∈ G. Its tangent

mapping at y = e is denoted Ad(x). Ad(x) ∈GL(g) and x �→Ad(x) is a homomor-
phism from G into GL(g). It is called the adjoint representation of G and Ad(G) is
the adjoint group of G.

We denote ad the tangent map of x �→Ad(x) at x = e.
The Lie algebra g associated with the Lie group G is the tangent space Te(G) at

the unit e of G. The Lie bracket on g is defined as follows:
Let X,Y ∈ g = Te(G) and define [X,Y ] = (adX)(Y ). g is the Lie algebra as-

sociated with the Lie group G. A first example of Lie group is GL(V ) the linear
group of a finite-dimensional linear space V . Here we have g = L(V ,V ) and the
Lie bracket is the commutator [X,Y ] =XY − YX.

Much information on Lie groups can be obtained from their Lie algebras through
the exponential map exp.

Theorem 54 Let G be a Lie group with Lie algebra g. Then there exists a unique
function exp : →G such that

(i) exp(0)= e.
(ii) d

dt
exp(tX)|t=0 =X.

(iii) exp((t + s)X)= exp(tX) exp(sX), for all t, s ∈R.
(iv) Ad(expX)= eadX .
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There is an open neighborhood U of 0 in g and an open neighborhood V of e in
G such that the exponential mapping is a diffeomorphism form U onto V . This
local diffeomorphism can be extended in a global one if moreover the group G is
connected and simply connected.

Other properties of the exponential mapping are given in [72].
A useful tool on Lie group is integration.

Definition 42 Let μ be a Radon measure on the Lie groupG. μ is left-invariant (left
Haar measure) if

∫
f (x)dμ(x) = ∫

f (yx)dμ(x) for every y ∈ G and μ is right-
invariant (right Haar measure) if

∫
f (x)dμ(x) = ∫

f (xy)dμ(x) for every y ∈G.
If μ is left and right invariant we say that μ is a bi-invariant Haar measure.

If there exists on G a bi-invariant Haar measure, G is said unimodular.

Theorem 55 On every connected Lie group G there exits a left Haar measure μ.
This measure is unique up to a multiplicative constant.

If G is a compact and connected Lie group then a left Haar measure is a right
Haar measure and there exists a unique bi-invariant Haar probability measure i.e.
every compact Lie group is unimodular.

Remark 73 The affine group Gaff = {x �→ ax + b, a, b ∈ R} is not unimodular
but the Heisenberg group Hn and SU(1,1) are. This remark is important to un-
derstand the differences between the corresponding coherent states associated with
these groups. Coherent states associated with the affine group are called wavelets.

In many examples a Lie group G is a closed connected subgroup of the linear
group GL(n,R) (or GL(n,C)).Then we can compute a left Haar measure as follows
(see [172] for details).

Let us consider a smooth system (x1, . . . , xn) on an open set U of G and the
matrix of one-forms +=A−1 ∑

1≤j≤n ∂A
∂xj

dxj . Then we have the following [172]:

Proposition 143 + is a matrix of left-invariant one-forms inU . Moreover the linear
space spanned by the elements of+ has dimension n. There exist n independent left-
invariant one-forms ω1, . . . ,ωn and ω1 ∧ω2 ∧ · · · ∧ωn defines a left Haar measure
on G.

Explicit examples of Haar measures:

(i) On the circle §1 ≡R/(2πZ) the Haar probability measure is dμ(x)= dx
2π .

(ii) Haar probability measure on SU(2). Consider the parametrization of SU(2) by
the Euler angles (see Chap. 7).

g(θ,ϕ,ψ)=
(

cos(θ/2)e−i/2(ϕ+ψ) − sin(θ/2)ei/2(ψ−ϕ)
sin(θ/2)e−i/2(ψ−ϕ) cos(θ/2)ei/2(ϕ+ψ)

)
. (B.1)
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A straightforward computation gives

2g−1 dg =
( −i(cos θ dϕ + dψ) eiψ (dθ − i sin θ dϕ)

e−iψ (dθ + i sin θ dϕ) i(cos θ dϕ + dψ)
)
.

So we get, after normalization the Haar probability on SU(2):

dμ(θ,ϕ,ψ)= 1

16π2
sin θ dθ dϕ dψ.

(iii) Haar measure for SU(1,1). The same method as for SU(2) using the
parametrization

g(ϕ, t,ψ)=
(

cosh t
2 ei(ϕ+ψ)/2 sinh t

2 ei(ϕ−ψ)/2

sinh t
2 ei(ψ−ϕ)/2 cosh t

2 e−i(ϕ+ψ)/2

)
.

After computations we get

2g−1dg =
(
i(cosh t dφ + dψ) e−iψ (dt + i cosh t dφ)

eiψ (dt − i cosh t dφ) i(cosh t dφ − dψ)
)

and a left Haar measure:

dμ(t,φ,ψ)= cosh t dt dφ dψ. (B.2)

(iv) Let us consider the Heisenberg group Hn (see Chap. 1). This group can also be
realized as a linear group as follows. Let

g(x, y, s)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 x2 · · · xn s

0 1 0 · · · 0 y1
0 0 1 · · · 0 y2
...

...
...

...
...

...

0 0 0 · · · 1 yn
0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where x = (x1, . . . , xn) ∈ R
n, y = (y1, . . . , yn) ∈ R

n, s ∈ R. We can easily
check that {g(x, y, s), x, y ∈R

n, s ∈R} is a closed subgroup H̃n of the linear
group GL(2n+ 1,R). H̃n is isomorphic to the Weyl–Heisenberg group Hn by
the isomorphism

g(x, y, s) �→
(
s − x · y

2
,
x − iy√

2

)
.

The Lebesgue measure dx dy ds is a bi-invariant measure on H̃n i.e. the Weyl–
Heisenberg group is unimodular.
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We shall see that when considering coherent states on a general Lie group G it is
useful to consider a left-invariant measure on a quotient space G/H where H is a
closed subgroup of G; G/H is the set of left coset, it is a smooth analytic manifold
with an analytic action of G: for every x ∈ G, τ(x)(gH) = xgH . The following
result is proved in [105].

Theorem 56 There exists a G invariant measure dμG/H on G/H if and only if we
have ∣∣det AdG(h)

∣∣= ∣∣det AdH (h)
∣∣, ∀h ∈H,

where AdG is the adjoint representation for the group G.
Moreover this measure is unique up to a multiplicative constant and we have for

any continuous function f , with compact support in G,

∫
f (g)dμG(g)=

∫
G/H

(∫
H

f (gh)dμH (h)

)
dμG/H (gH),

where dμG and dμH are left Haar measure suitably normalized.

In this book we have considered the three groups Hn, SU(2) and SU(1,1) and
their related coherent states. In each case the isotropy subgroup H is isomorphic
to the unit circle U(1) and we have found the quotient spaces: Hn/U(1) ≡ R

2n,
SU(2)/U(1) ≡ S2 and SU(1,1)/U(1) ≡ PS2 with their canonical measure. Each
of these spaces is a symplectic space and can be seen as the phase space of classical
systems.

B.3 Representations of Lie Groups

The goal of this section is to recall some basic facts.

B.3.1 General Properties of Representations

G denotes an arbitrary connected Lie group, V1,V2,V are complex Hilbert spaces,
L(V1,V2) the space of linear continuous mapping from V1 into V2, L(V ) =
L(V ,V ), GL(V ) the group of invertible mappings in L(V ), U(V ) the subgroup
of GL(V ) of unitary mappings i.e. A ∈U(V ) if and only if A−1 =A∗.

Definition 43 A representation of G in V is a group homomorphism R̂ from G in
GL(V ) such that (g, v) �→ R̂(g)v is continuous from G× V into V .

If R̂(g) ∈U(V ) for every g ∈G the representation is said to be unitary.
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Definition 44 The subspace E ⊆ V is invariant by the representation R̂ if R̂(g)E ⊆
E for every g ∈G.

The representation R̂ is irreducible in V if the only invariant closed subspaces of
V are {V, {0}}.

Definition 45 Two representations (R̂1,V1) and (R̂2,V2) are equivalent if there
exists an invertible continuous linear map A : V1 → V2 such that

R2(g)A=AR1(g), ∀g ∈G.

Irreducible representations are important in physics: they are associated to ele-
mentary particles (see [194]).

Let dμ be a left Haar measure on G. Consider the Hilbert space L2(G,dμ)

and define L(g)f (x) = f (g−1x) where g,x ∈ G, f ∈ L2(G,dμ). L is a unitary
representation of G called the left regular representation.

The Schur lemma is an efficient tool to study irreducible dimensional represen-
tations.

Lemma 80 (Schur) Suppose R̂1 and R̂2 are finite-dimensional irreducible repre-
sentations of G in V1 and V2, respectively. Suppose that we have a linear mapping
A : V1 → V2 such that AR̂1(g)= R̂2(g)A for every g ∈G. Then or A is bijective or
A= 0.

In particular if V1 = V2 = V and AR̂(g)= R̂(g)A for all g ∈G then A= λ1 for
some λ ∈C.

Suppose that (R̂,V ) is a unitary representation in the Hilbert space H then it is
irreducible if and only if the only bounded linear operators A in V commuting with
R̂ (AR̂(g)= R̂(g)A for every g ∈G) are A= λ1, λ ∈C.

A useful property of a representation R̂ is its square integrability (see [93] for
details).

Definition 46 A vector v ∈ V is said to be admissible if we have∫
G

∣∣〈R̂(g)v, v〉∣∣2 dμ(g) <+∞. (B.3)

The representation R̂ is said square integrable if R̂ is irreducible and there exists at
least one admissible vector v �= 0.

IfG is compact every irreducible representation is square integrable. The discrete
series of SU(1,1) are square integrable (prove that 1 is admissible using the formula
(B.2) for the Haar measure on SU(1,1)).

We have the following result due to Duflo–Moore and Carey (see [93] for a
proof).

Theorem 57 Let R̂ be a square integrable representation in V . Then there exists a
unique self-adjoint positive operator C in V with a dense domain in V such that:



B.3 Representations of Lie Groups 397

(i) The set of admissible vectors is equal to the domain D(C).
(ii) If v1, v2 are two admissible vectors and w1,w2 ∈ V then we have

∫
G

〈
R̂(g)v2,w2

〉〈
R̂(g)v1,w1

〉
dg = 〈Cv1,Cv2〉〈w1,w2〉. (B.4)

(iii) If G is unimodular then C = λ1, λ ∈R.

Remark 74 If G is unimodular coherent states can be defined as follows. We start
from an admissible vector v0 ∈ V , ‖v0‖ = 1 and an irreducible representation R̂
in V . Define the coherent state (or the analyzing wavelet) ϕg = R̂(g)v0. Then the
family {λ−1/2ϕg|g ∈G} is overcomplete in V :

λ−1
∫
G

〈ϕg,ψ1〉〈ϕg,ψ2〉dμ(g)= 〈ψ1,ψ2〉, ψ1,ψ2 ∈ V,

where λ= ∫
G
|〈R̂(g)v0, v0〉|2 dμ(g).

B.3.2 The Compact Case

Representation theory for compact group is well known (for a concise presentation
see [129] or for more details [130]). Typical examples are SU(2) and SO(3) consid-
ered in Chap. 7. Here G is a compact Lie group. The main facts are the following:

1. Every finite-dimensional representation is equivalent to a unitary representation.
2. Every irreducible unitary representation ofG is finite-dimensional and every uni-

tary representation of G is a direct sum of irreducible representations.
3. If R̂1, R̂2 are non equivalent irreducible finite representations of G on V1 and V2

then
∫
G

〈
R̂1(g)v1,w1

〉〈
R̂2(g)v2,w2

〉= 0, for all v1,w1 ∈ V1, v2,w2 ∈ V2.

4. If R̂ is an irreducible unitary representation of G, then we have

(dimV )

∫
G

〈
R̂(g)v1,w1

〉〈
R̂(g)v2,w2

〉= 〈v1, v2〉〈w1,w2〉,
for all v1,w1 ∈ V1, v2,w2 ∈ V2. (B.5)

5. (Peter–Weyl Theorem) If we denote by (R̂λ,Vλ), λ ∈ Λ, the set of all irre-
ducible representations ofG andMλ,v,w(g)= 〈R̂λ(g)v,w〉, then the linear space
spanned by {Mλ,v,w(g)|g ∈G,v,w ∈ Vλ} is dense in L2(G,dμ).
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B.3.3 The Non-compact Case

This case is much more difficult than the compact case and there are not yet a general
theory of irreducible unitary representations. The typical example is SU(1,1) or
equivalently SL(2,R) considered in Chap. 8.

These groups have the following properties.

Definition 47 (i) A Lie group G is said reductive if G is a closed connected sub-
group of GL(n,R) or GL(n,C) stable under inverse conjugate transpose.

(ii) A Lie G is said linear connected semi-simple if G is reductive with finite
center.

Proposition 144 If G is a linear connected semi-simple group its Lie algebra g is
semi-simple.

It is known that a compact connected Lie group can be realized as a linear con-
nected reductive Lie group ([127], Theorem 1.15).

Let us consider the Lie algebra g of G. The differential of the mapping Θ(A)=
A−1,∗ at e= 1 is denoted θ . We have θ2 = 1 so θ has two eigenvalues ±1.

So we have the decomposition g= l⊕p where l= ker(θ−1) and p= ker(θ+1).
Let K = {g ∈G|θg = g}. The following result is a generalization of the polar de-
composition for matrices or operators in Hilbert spaces.

Proposition 145 (Polar Cartan decomposition) If G is a linear connected reductive
group then K is a compact connected group and is a maximal compact subgroup
of G. Its Lie algebra is l and the map: (k,X) �→ k expX is a diffeomorphism from
K × p onto G.

B.4 Coherent States According Gilmore–Perelomov

Here we describe a general setting for a theory of coherent states in a arbitrary Lie
group from the point of view of Perelomov (for more details see [155, 156]).

We start from an irreducible unitary representation R̂ of the Lie group G in the
Hilbert space H. Let ψ0 ∈H be a fixed unit vector (‖ψ0‖ = 1) and denote ψg =
R̂(g)ψ0 for any g ∈ G. In quantum mechanics states in the Hilbert space H are
determined modulo a phase factor so we are mainly interested in the action of G
in the projective space P(H) (space of complex lines in H). We denote by H the
isotropy group of ψ0 in the projective space: H = {h ∈G|R̂(h)ψ0 = eiθψ0}.

So the coherent states system {ψg|g ∈G} is parametrized by the space G/H of
left coset in G modulo H : if π is the natural projection map: G→G/H . Choos-
ing for each x ∈G/H some g(x) ∈G we have, with x = π(g), ψg = eiθ(g)ψg(x).
Moreover ψg1 and ψg2 define the same states if and only if π(g1)=ψg2 := x; hence
we have ψg1 = eiθ1ψg(x) and ψg2 = eiθ2ψg(x).
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So for every x ∈G/H we have defined the state |x〉 = {eiαψg} where x = π(g).
It is convenient to denote |x〉 = ψg(x) and x(g) = ψ(x). This parametrization of
coherent states by the quotient space G/H has the following nice properties.

We have ψg = eiθ(g)|x(g)〉 and θ(gh) = θ(g)+ θ(h) if g ∈G and h ∈ H . The
action of G on the coherent state |x〉 satisfies

R̂(g1)|x〉 = eiβ(g1,x)|g1.x〉, (B.6)

where g1.x denotes the natural action of G on G/H and β(g1, x)= θ(g1g)− θ(g)
where π(g)= x (β depends only on x, not on g).

Computation of the scalar product of two coherent states gives

〈x1|x2〉 = ei(θ(g1)−θ(g2))〈0|R̂(g1
−1g2

)|0〉, (B.7)

where x1 = x(g1) and x2 = x(g2). Moreover if x1 �= x2 we have |〈x1|x2〉|< 1 and

〈g.x1|g.x2〉 = ei(β(g,x1)−β(g,x2))〈x1|x2〉. (B.8)

Concerning completeness we have

Proposition 146 Assume that the Haar measure on G induces a left-invariant mea-
sure dμ(x) on G/H (see Theorem 56) and that the following square integrability
condition is satisfied: ∫

M

∣∣〈0|x〉∣∣2 dx <+∞. (B.9)

Then we have the resolution of identity:

1

d

∫
M

〈x|ψ〉ψx dμ(x)=ψ, ∀ψ ∈H, (B.10)

where d = ∫
M
|〈0|x〉|2 dx. Moreover we have the Plancherel identity

〈ψ |ψ〉 = 1

d

∫
M

∣∣〈x|ψ〉∣∣2 dμ(x). (B.11)

Remark 75 (i) As we have seen in Chap. 2, using formula (B.10) and (B.11), we
can consider Wick quantization for symbols defined on M =G/H .

(ii) When the square integrability condition (B.9) is not fulfilled (the Poincaré
group for example) there exists an extended definition of coherent states. This is
explained in [3].

Remark 76 When G is a compact semi-simple Lie group and R̂ is a unitary irre-
ducible representation of G in a finite-dimensional Hilbert space H then it is possi-
ble to choose a state ψ0 in H such that if H is the isotropy group of ψ0 then G/H
is a Kähler manifold (see [148]).

Some results concerning coherent states and quantization have also been obtained
for non-compact semi-simple Lie groups extending results already seen in Chap. 8
for SU(1,1).



Appendix C
Berezin Quantization and Coherent States

We have seen in Chap. 2 that canonical coherent states are related with Wick and
Weyl quantization. Berezin [20] has given a general setting to quantize “classical
systems”.

Let us explain here very briefly the Berezin construction. Let M be a classical
phase space, i.e. a symplectic manifold with a Poisson bracket denoted {·, ·}, and an
Hilbert space H. Assume that for a set of positive numbers �, with 0 as limit point,
we have a linear mappingA �→ Â� where A is a smooth function onM and Â� is an
operator on H. The inverse mapping is denoted S�(Â�). In general it is difficult to
describe in detail the definition domain and the range of this quantization mapping.
Some example are considered in [187, 188].

Nevertheless for a quantization mapping, the two following conditions are re-
quired, to preserve Bohr’s correspondence condition (semi-classical limit):

lim
�→0

S�
(
Â�B̂�

)
(m) = A(m)B(m), ∀m ∈M, (C1)

lim
�→0

1

i�
S�
([
Â�, B̂�

])
(m) = {A,B}(m), ∀m ∈M. (C2)

We have seen in Chap. 2 that these conditions are fulfilled for the Weyl quantiza-
tion of R

2n. In [20] the authors have considered the two dimensional sphere and
the pseudosphere (Lobachevskii plane). In these two examples the Planck constant
� is replaced by 1

n
where n is an integer parameter depending on the considered

representation. The semi-classical limit is the limit n→+∞. For the pseudosphere
n= 2k, where k is the Bargmann index.

In this section we shall explain some of Berezin’s ideas concerning quantization
on the pseudosphere and we shall prove that the Bohr correspondence principle is
satisfied using results taken from Chap. 8.

The same results could be proved for quantization of the sphere [20], using results
of Chap. 7.

Nowadays the quantization problem has been solved in much more general set-
tings, in particular for Kähler manifolds (the Poincaré disc D or the Riemann sphere
§2 are examples of Kähler manifolds), where generalized coherent states are still
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present. This domain is still very active and is named Geometric Quantization;
its study is outside the scope of this book (see the book [201] and the recent re-
view [173].

We have defined before the coherent states family ψζ , ζ ∈D, for the representa-
tions D+n of the group SU(1,1) which is a symmetry group for the Poincaré disc D.
Recall that {ψζ }ζ∈D is an overcomplete system in Hn(D); hence the map ϕ �→ ϕ�,
where ϕ�(z)= 〈ψz,ϕ〉, is an isometry from Hn(D) into L2(D).

Let Â be a bounded operator in Hn(D). Its covariant symbol Ac(z, w̄) is defined
as

Ac(z, w̄)= 〈ψz, Âψw〉〈ψz,ψw〉 .

It is a holomorphic extension in (z, w̄) of the usual covariant symbolAc(z, z̄). More-
over, the operator Â is uniquely determined by its covariant symbol and we have

Âϕ(z)=
∫
D

Ac(z, w̄)ϕ(w)〈ψz,ψw〉dνn(w). (C.1)

From (C.1) we get a formula for the covariant symbol product of the product of
two operators Â, B̂ . If (AB)c denotes the covariant symbol of ÂB̂ then we have the
formula

(AB)c(z, z̄)=
∫
D

Ac(z, w̄)Bc(w, z̄)
∣∣〈ψz,ψw〉∣∣2 dνn(w). (C.2)

From our previous computations (Chap. 8) we have

∣∣〈ψw,ψz〉∣∣2 =
(
(1− |z|2)(1− |w|2)

|1− z̄w|2
)n
.

We have to consider the following operator:

TnF (z, z̄)= n− 1

4π

∫
D

F(w, w̄)

(
(1− |z|2)(1− |w|2)

|1− z̄w|2
)n
dμ(w)

for F bounded in D and C2-smooth.

Proposition 147 We have the following asymptotic expansion, for n→+∞:

TnF (z, z̄)= F(z, z̄)
(

1− n

(n− 2)2

)
+ 1

n

(
1− |z|2)2 ∂

2F

∂z∂z̄
(z, z̄). (C.3)

Proof Using invariance by isometries of D we show that it is enough to prove for-
mula (C.3) for z= 0.

Let us consider the change of variable w = ζ−z
1−z̄ζ . Denote G(ζ, ζ̄ ) = F(w, w̄);

then we get TnF (z, z̄)= TnG(0,0). A direct computation gives
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∂2G

∂ζ∂ζ̄
(0,0)= (

1− |zz̄|)2 ∂
2F

∂z∂z̄
(z, z̄)="F(z; z̄),

where " is the Laplace–Beltrami operator on D. So we have proved (C.3) for any z
if it is proved for z= 0.

To prove (C.3) for z = 0 we use the real Laplace method for asymptotic expan-
sion of integrals (see Sect. A.4).

We write

TnF (0,0)= n− 1

π

∫ 2π

0
dθ

∫ 1

0
dr F

(
reiθ , re−iθ

)
re−(n−2)φ(r), (C.4)

where φ(r)= log((1− r2)−1).
Note that φ(r) > 0 for r ∈]0,1] and φ(0) = 1. So we can apply the Laplace

method (see Sect. A.4 for a precise statement) to estimate (C.4) with the large
parameter λ = n − 2. Modulo an exponentially small term it is enough to inte-
grate over r in [0,1/2]. Using the change of variable φ(r) = s2, s > 0, we have

r(s)=
√

1− e−s2 and

TnF (0,0)= n− 1

π

∫ 2π

0
dθ

∫ c

0
ds e−λsK

(
r(s)

)
se−s2 +O(

λ−∞
)
,

where K(r)= F(reiθ , re−iθ ). Now to get the result we have to compute the asymp-
totic expansion at s = 0 for L(s) = K(r(s))se−s2

. Note that L(s) is periodic in θ
and we have to consider only the part of the expansion independent in θ . If L0(s) is
this part, we get after computation

L0(s)= n− 1

2π(n− 2)
F (0,0)+ n− 1

2π(n− 2)2

(
∂2F

∂z∂z̄
(0,0)− F(0,0)

)
+O

(
1

n2

)

and formula (C.4) follows. �

It is not difficult, using Proposition 147, to check the correspondence principle
(C1) and (C2).

We get (C1) by applying the Proposition to FAB(w, w̄)= Ac(z, w̄)Bc(w, z̄). So
we have

(AB)c(z, z̄)= Tn(z, z̄) −→
n→+∞Ac(z, z̄)Bc(z, z̄).

For (C2) we write

FAB(z, z̄) = Ac(z, z̄)Bc(z, z̄)

(
1− n

(n− 1)2

)

+ 1

n

(
1− |z|2)2

(
∂Ac

∂w̄
(z, z̄)

∂Bc

∂w
(z, z̄)

)
+O

(
1

n2

)
.
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So we get

n
(
FAB(z, z̄)− FBA(z, z̄)

) = (
1− |z|2)2 ∂Ac

∂z̄
(z, z̄)

∂Bc

∂z
(z, z̄)

− ∂Ac

∂z
(z, z̄)

∂Bc

∂z̄
(z, z̄)+O

(
1

n

)
.

But we know that FAB −FBA is the covariant symbol of the commutator [Â, B̂] and
the Poisson bracket {A,B} is

{A,B}(z, z̄)= i(1− |z|2)2
(
∂Ac

∂z̄
(z, z̄)

∂Bc

∂z
(z, z̄)− ∂Ac

∂z
(z, z̄)

∂Bc

∂z̄
(z, z̄)

)
.

So we get (C2).
We have seen that the linear symplectic maps and the metaplectic transformations

are connected with quantization of the Euclidean space R
2n. Here symplectic trans-

formations are replaced by transformations in the group SU(1,1) and metaplectic
transformations by the representations g �→ R̂(g)=D−n (g). Then we have

Proposition 148

(i) For any bounded operator Â in Hn(D) the covariant symbol Ag of R̂(g)Â×
R̂(g)−1 is

Ag(ζ )=Ac
(
g−1ζ, g−1ζ

)
. (C.5)

(ii) The covariant symbol R(g)c of R̂(g) is given by the formula

R(g)c(ζ )= ein arg(α+βζ )
(

1− |ζ |2
ᾱ + β̄ζ̄ − βζ − α|ζ |2

)
(C.6)

where g = ( α β
β̄ ᾱ

)
.

Proof (i) is a direct consequence of definition of D−n (g) and computations of
Chap. 8.

For (ii) using formula (8.74) of Chap. 8 in complex variables we get, after com-
putation,

〈ψζ ,ψg−1ζ 〉 =
(
α+ βz
|α + βz|

)n( 1− |ζ |2
ᾱ + β̄ζ̄ − βζ − α|ζ |2

)

which gives (C.6). �
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