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Preface

This book has developed from the lecture notes of a course in Advanced Quantum
Mechanics held by the authors at the Politecnico of Torino for students of
‘‘physical engineering’’, that is students who, even though oriented towards
applied physics and technology, were interested in acquiring a fair knowledge of
modern fundamental physics. Although originally conceived for students of
engineering, we have eventually extended the target of this book to also include
students of physics who may be interested in a comprehensive and concise
treatment of the main subjects of their theoretical physics courses. What underlies
our choice of topics is the purpose of giving a consistent presentation of the
theoretical ideas which have been developed since the very beginning of the last
century, namely special relativity and quantum mechanics, up to the first consis-
tent and experimentally validated quantum field theory, namely quantum elec-
trodynamics. This theory provides a successful description of the interaction
between photons and electrons and dates back to the middle of the last century.

Consistently with this purpose (and also for keeping the book within a rea-
sonable size), we have refrained from dealing with the many important ideas that
have been developed in the context of quantum field theory in the second part of
the last century, although these are essential for a satisfactory understanding of the
current status of elementary particle physics. A prominent example of such
developments is the so-called standard model, where for the first time all the (non-
gravitational) interactions and the fundamental particles (quarks and leptons) were
coherently described within a unified field theory framework. Looking at the past,
however, one recognizes that this achievement has its very foundations in the two
building blocks of any modern physical theory: special relativity and quantum
mechanics, which have been left essentially unaffected by the later developments.

Quantum electrodynamics has provided a basic reference for the formulation of
the standard model and in general of any field theory description of the
fundamental interactions. In particular a major role is played in quantum elec-
trodynamics by the concept of gauge symmetry which is the guiding principle for
the correct description of the interaction. Likewise, the standard model too, as a
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quantum field theory, is based on a suitable gauge symmetry, which is a
non-abelian extension of the one present in quantum electrodynamics.

On the basis of these considerations, we hope the concise account of quantum
electrodynamics that we give at the end of our book can provide the interested
reader with the necessary background to cope with more advanced topics in
theoretical particle physics, in particular with the standard model.

The present book is intended to be accessible to students with only a basic
knowledge of non-relativistic quantum mechanics.

We start with a concise, but (hopefully) comprehensive exposition of special
relativity, to which we have added a chapter on the implications of the principle of
equivalence. Here we have a principle whose importance can be hardly overes-
timated since it is at the very basis of the general theory of relativity, but whose
discussion in a class, however, requires no more than a couple of hours.
Nevertheless this issue and its main implications are rarely dealt with even in
graduate courses of physics. Can general relativity be totally absent from the
scientific education of a student of physics or engineering? Of course it can as far
as the full geometrical formulation of theory is concerned. However it is well
known that many technological devices, mainly the GPS, require for their proper
functioning to consider the corrections implied by the Einstein’s theories of special
and general relativity. Our account of the principle of equivalence and of its main
implications will allow us to derive in a rather non-rigorous but intuitive way the
concepts of connection, curvature, geodesic lines, etc., emphasizing their intimate
connection to gravitational physics.

Thereafter, in Chaps. 4 and 7, we give the basics of the theory of groups and Lie
algebras, discussing the group of rotations, the Lorentz and the Poincaré group.
We also give a concise account of representation theory and of tensor calculus, in
view of its application to the formulation of relativistically covariant physical
laws. These include Maxwell’s equations, which we discuss, in their manifestly
covariant form, in Chap. 5.

In Chap. 6, anticipating part of the analysis which will be later developed, we
discuss the quantization of the electromagnetic field in the radiation gauge.
We thought it worth illustrating this important example earlier since it clarifies
how the concepts of photon and of its spin emerge quite naturally from a
straightforward application of special relativity and quantum theory in a field
theoretical framework.

In Chap. 8 we review the essentials of the Lagrangian and Hamiltonian
formalisms, first considering systems with a finite number of degrees of freedom,
and then extending the discussion to fields. Particular importance is given to the
relation between the symmetry properties of a physical system and conservation
laws.

The last four chapters are devoted to the development of the quantum field
theory. In Chap. 9 we recall the basic construction of quantum mechanics in the
Dirac notation. Eventually in Chap. 10 we study the quantum relativistic wave
equations emphasizing their failure to represent the wave function evolution in a
consistent way.
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In Chap. 11 we perform the quantization of the free scalar, spin 1/2 and
electromagnetic fields in the relativistically covariant approach. The final goal of
this analysis is to give an account of the quantum relativistic description of fields in
interaction, with particular reference to the interaction between spin 1/2 fields (like
an electron) and the electromagnetic one (quantum electrodynamics). This is done
in Chap. 12 where the graphical description of interaction processes by means of
Feynman diagrams is introduced. After the classical example of the tree-level
processes, we start analyzing the one-loop ones where infinities make their
appearance. We then discuss how one can circumvent this difficulty through the
process of renormalization, in order to obtain sensible results. We shall however
limit ourselves to give only a short preliminary account of the renormalization
program and its implementation at one-loop level.

As the reader can realize, there is scarcely any ambition on our side to develop
the various topics in an original way. Our goal, as pointed out earlier, is to give in a
single 1 year course the main concepts which are the basis of the contemporary
theoretical physics.

A note on the Bibliography. It is almost impossible to give an even short
account of the many textbooks covering some of the topics which are dealt with in
this book. Any textbook on relativity or elementary particle theory covers at least
part of the content of our book. We therefore limit ourselves to quote those
excellent standard textbooks which have been for us a precious guide for the
preparation of the present work, referring the interested reader to them in order to
deepen the understanding of the topics dealt with in this book.

Riccardo D’Auria
Mario Trigiante
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Chapter 1
Special Relativity

1.1 The Principle of Relativity

The aim of physics is to describe the laws underlying physical phenomena. This
description would be devoid of a universal character if its formulation were different
for different observers, that is for different reference frames, and, as such, it could not
deserve the status of an objective law of nature. Any physical theory should therefore
fulfil the following requirement:

The laws of physics should not depend on the reference frame used by the observer.
This statement is referred to as the principle of relativity, and is really at the heart

of any physical theory aiming at the description of the physical world.
Actually, the physical laws are described in the language of mathematics, that

is by means of one or more equations involving physical quantities, whose value
in general will depend on the reference frame (RF) used for their measure. As a
consequence of this, any change in the reference frame results in a change in the
physical quantities appearing in the equations, so that in general these will satisfy
new equations, called transformed equations. The requirement that the transformed
equations be equivalent to the original ones, so that they describe the same physical
law, allows us to give a more precise formulation of the principle of relativity:

The equations of a physical theory must preserve the same form under transfor-
mations induced by a change in the reference frame.

By preserving the same form we mean that if the physical law is given in terms of
a single equation, the transformed equation will have exactly the same form, albeit
in terms of the transformed variables. If we have a system of equations, we can allow
the transformed system to be a linear combination of the old ones. Obviously, in
both cases, the physical content of the original and transformed equations would be
exactly the same.

Changes in the reference frame of an observer can be of different kinds: spatial
translations, rotations, or any change in its state of motion. As we shall see in the
sequel, the latter transformations are the most relevant as far as the implications on
the description of the physical world are concerned.

R. D’Auria and M. Trigiante, From Special Relativity to Feynman Diagrams, 1
UNITEXT, DOI: 10.1007/978-88-470-1504-3_1,
© Springer-Verlag Italia 2012



2 1 Special Relativity

The simplest relative motion is of course the uniform rectilinear motion or inertial
motion, and the requirement that the physical laws be independent of the particular
inertial frame means that the theory satisfies the requirements of the principle of
relativity only as far as inertial frames are concerned. We recall that inertial frames
are those in which the Galilean principle of inertia holds, and that, given any inertial
frame such as, for instance, the one attached to the center of mass of the solar system,
with axes directed towards fixed stars (the fixed star system), all other inertial frames
are in relative rectilinear uniform motion with respect to it.

In the following two chapters we shall refrain from considering accelerated (and
thus non-inertial) frames of reference, restricting ourselves to the analysis of the
implications of the principle of relativity only as far as inertial frames are concerned,
which is the main subject of the special theory of relativity.

The extension of the principle of relativity to any kind of relative motion between
observers, that is to accelerated reference frames, however, has a very deep impact
on our ideas of space, time and matter and leads to a beautiful new interpretation
of the gravitational force as a manifestation of the geometry of four-dimensional
space–time. This analysis, which is the subject of Einstein’s general theory of rel-
ativity, requires, for its understanding, a solid knowledge of differential geometry
and goes beyond the scope of this book; in Chap. 3, however, we shall give a short
introduction to general relativity by discussing the principle of equivalence and tidal
forces. Furthermore an intuitive picture of the four-dimensional geometry of space–
time and its relation to gravitation will be outlined.

1.1.1 Galilean Relativity in Classical Mechanics

In order to verify whether a theory satisfies the principle of relativity we need to
know the transformation laws relating the measures of physical quantities obtained
by different observers. When describing the motion of a system of bodies with respect
to a reference frame all the quantities we need can be expressed in terms of length,
time and mass.1 It is therefore sufficient to find the transformation laws for these
fundamental quantities.

The principle of relativity was first applied to classical mechanics; in this context,
however, only the transformation law of the space intervals is relevant; indeed, as
it is apparent from the formulation of Newton’s second law, the inertial mass of a
point-like object is defined as the constant ratio between the strength of the force
acting on it and the modulus of the resulting acceleration, and this constant value
is assumed to be independent of the actual value of the velocity of the body. Since a
change in the state of motion of a reference frame results in a different velocity of

1 The reference frame associated with an observer is defined by a coordinate system, which we shall
choose to be a system of rectangular Cartesian coordinates (x, y, z) with origin O, with respect to
which the observer is at rest. The frame also consists of all the instruments the observer needs for
measuring the fundamental quantities: a ruler for lengths, a clock for time intervals and scales for
masses.

http://dx.doi.org/10.1007/978-88-470-1504-3_3
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Fig. 1.1 Position vectors of
P relative to two inertial
frames, S, S′, in relative
motion

the body as measured by the new observer, this implies that the value of the mass is
the same in all reference frames.

As far as time intervals are concerned, they were also assumed to be independent
of the particular inertial observer. In the words of Newton: “tempus est absolutum,
spatium est absolutum”. The first statement about the absolute character of time
means that time flows equably for all observers so that the same time-interval between
two events is measured by any (inertial) observer; the second statement “space is
absolute”, means that space-intervals, or lengths, do not depend on the reference
frame in which they are measured, and, as we shall show presently, it is actually a
consequence of the first.

To illustrate this we first need to derive the transformation law for the position
vector x(t) of a material point due a change in the reference frame (for the sake of
simplicity, here and in the following, unless differently stated, when speaking of ref-
erence frames or observers, we shall be always mean inertial frames and observers).

Let us denote by S and S′ two inertial frames, as well as the observers associated
with them, and let (x, y, z), O and (x ′, y′, z′), O ′ be their coordinates and origins,
respectively. Since S and S′ are both assumed to be inertial, their relative motion, say
of S′ with respect to S, is of rigid translational type with constant velocity V. Note
that it is the same thing to say that S′ moves with velocity V with respect to S or that
S moves with velocity −V with respect to S′.

It is moreover convenient to make the following assumptions: The axes of S
and S′ are parallel and equally oriented, the x-and x ′-axes coincide and have the
same orientation as the velocity V. If we denote by t and t ′ the times as measured
by the two observers S and S′ respectively, their common origin t = t ′ = 0 is
chosen as the instant at which the two origins O and O ′ coincide: O = O ′. With
these assumptions the relative configuration of the two frames is referred to as the
standard configuration, see Fig. 1.1. As we shall see in the following, all the main
physical implications of the principle of relativity are already present in this simplified
situation.

Let the two observers S and S′ have identical instruments for measuring distances
and time intervals. The assumption of absolute time implies that the times measured
by S and S′ are the same:
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t = t ′. (1.1)

Next, suppose that the two inertial observers are describing a same event, say the
position P at the time t ≡ t ′, of a particle moving along a given trajectory.

The position P with respect to O and O ′ is described by two different vectors x(t)
and x′(t), whose components are:

x(t) = (x(t), y(t), z(t)), x′(t) = (x ′(t), y′(t), z′(t)). (1.2)

By trivial geometrical considerations we derive the relation between x(t) and x′(t):

x(t) = x′(t)+OO′(t) = x′(t)+ Vt. (1.3)

In the standard configuration we have V = (V, 0, 0), and (1.3) can be written in
components as follows:

x(t) = x ′(t)+ V t,

y(t) = y′(t),
z(t) = z′(t).

(1.4)

To obtain the relation between the velocities v and v′ as measured with respect to S
and S′, respectively, one must differentiate x with respect to t in S and x′ with respect
to t ′ in S′. However, because of (1.1), we can simply differentiate both vectors with
respect to the same variable t = t ′, obtaining:

v = dx
dt
, v′ = dx′

dt ′
= dx′

dt
. (1.5)

Using the above definitions and differentiating both sides of (1.3) or (1.4) with respect
to t, we find:

v = v′ + V, (1.6)

or in components:

vx (t) = v′x (t)+ V,

vy(t) = v′y(t),
vz(t) = v′z(t).

(1.7)

Equations (1.6), or (1.7), defines the composition law for velocities and implies that
velocities behave like vectors under addition.

A further differentiation of (1.6), or (1.7), with respect to t gives the relation
between the accelerations as measured by the two observers. Taking into account
that the relative velocity V is constant, we find:

a(t) = a′(t), (1.8)
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Fig. 1.2 A rod at rest with
respect to S′

or, in components,

ax = a′x ,
ay = a′y,
az = a′z .

(1.9)

Equations (1.3), (1.6), (1.8), or, in components, (1.4), (1.7), (1.9), are called Galilean
transformations and represent the relations between the measures of the kinematical
quantities referred to two inertial reference frames in relative motion with constant
velocity V.

We are now ready to prove that the Newtonian statement about absolute space
(spatium est absolutum) is a consequence of the analogous assumption about time.
In other words, we verify that the spatial distance between two points is the same
for all inertial observers. As an example, let us consider, as shown in Fig. 1.2, a rod
placed along the x-axis whose endpoints A and B are at rest with respect to S′. The
position vectors of A and B in S′ are then x′A = (x ′A, 0, 0) and x′B = (x ′B, 0, 0), so
that their distance L ′ in S′, corresponding to the length of the rod, is:

L ′ = x ′B − x ′A. (1.10)

We note that in S′ the coordinates x ′B and x ′A are time independent and therefore can be
measured at different times without affecting the value of their difference, that is the
measure of the length of the rod. In S instead the coordinates of the endpoints depend
on time, due to the relative motion of S′ and S: xA(tA) = (xA(tA), yA(tA), z A(tA))

and xB(tB) = (xB(tB), yB(tB), zB(tB)). Their expression in terms of the coordinates
of A and B in S′ are given by (1.4):

xA(tA) = x ′A + V tA, xB(tB) = x ′B + V tB,

yA(tA) = 0, yB(tB) = 0,
z A(tA) = 0, zB(tB) = 0.

(1.11)

In order to compute the length L of the rod in S we must consider the coordinates of
the endpoints A and B at the same instant, since evaluating them at different times
would lead to a meaningless result. Setting t = tA = tB we find:
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x ′B − x ′A = (xB(tB)− V tB)− (xA(tA)− V tA) = xB(t)− xA(t). (1.12)

Equation (1.12) then implies:

L = L ′, (1.13)

that is, the length of the rod is the same for both observers. Note that, in defining the
measure of the length L of the moving rod, we have used the notion of simultaneity
of two events, tB = tA. This concept is, however, independent of the reference frame
since, having assumed from the beginning the equality of time durations, that is
�t = �t ′ in different frames, simultaneity in S (�t = 0) implies simultaneity in
S′(�t ′ = 0) for any two inertial frames S and S′. We have thus proven that invariance
of the lengths (absolute space) is a consequence of invariance of the time intervals
(absolute time).

In the previous discussion we have considered the rod lying along the x-axis,
which is the direction of the relative motion. It is obvious that the distances along
the y-or z-axes are also invariant since y′ = y and z′ = z. This means that the
vector describing the relative position of any two points in space is invariant under
Galilean transformations. More specifically, if A and B are two points at rest in S′
(not necessarily along the x-axis) with position vectors x′A, x′B and relative position
vector �x′ ≡ x′B − x′A, and if xA(tA), xB(tB) are the position vectors of the two
points relative to S at different times, we define the relative position vector in S as
the difference between the position vectors taken at the same instant t:

�x(t) ≡ xB(t)− xA(t) = (x′B + Vt)− (x′A + Vt) = x′B − x′A = �x′. (1.14)

We conclude that not only the spatial distance between A and B, but also the direction
from A to B, i.e. the direction and orientation of the relative position vector, is invariant
under Galilean transformations.

So far we have examined the change of inertial frames due to a relative motion
with a constant velocity V. The change of an inertial frame due to a rotation or to a
rigid translation of the coordinate axes are in a sense trivial. They correspond to the
congruence transformations of the Euclidean geometry leaving invariant the space
relations between figures and objects. They have the form

x′ = Rx + b,

where R denotes a 3 × 3 matrix which implements a generic rotation or reflection.
Another trivial transformation is the change of the time origin, or time translation
namely

t ′ = t + β.

In general one refers to the invariance of the laws of physics under rotations/reflections
R and translations b as the properties of isotropy and homogeneity of space,
respectively. Similarly the invariance under shifts in the time origin is referred to
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as homogeneity in time. Note that both transformations do not affect the Newton
postulates of absolute time �t ′ = �t and absolute space, |�x′| = |�x|. Including
the congruence transformations and the time shift gives a more general form to the
Galilean transformations, namely:

x′ = Rx + b− Vt, (1.15)
t ′ = t + β. (1.16)

Unless explicitly mentioned, when referring to Galilean transformations we shall
always refer to the simpler form given in (1.3) or (1.4), (1.6), (1.8).

1.1.2 Invariance of Classical Mechanics Under Galilean
Transformations

We have seen that under the assumption of the invariance of time intervals, the
Galilean transformations, expressed by (1.3), (1.6), (1.8), or, in components, by (1.4),
(1.7), (1.9), provide the relations between the kinematical quantities as measured in
any two inertial systems.

To verify that classical mechanics satisfies the principle of relativity, we need to
transform the fundamental equations of the theory and see whether they keep the
same form in the new reference frame.

Let us start from the principle of inertia: Suppose that in the frame S a free particle,
that is not subject to interactions, moves at a constant velocity v. From (1.6) we see
that in S′ its velocity v′ = v − V is also constant, owing to the constancy of V.
Similarly if v′ is constant also v is and thus the law of inertia satisfies the principle
of relativity.

Let us now examine the second law, namely the Newtonian equation of motion:

F = ma. (1.17)

As already pointed out the mass appearing on the right-hand side of (1.17) is assumed
to be the same in any reference frame; furthermore (1.8) implies that the acceleration
has the same property. Thus the right-hand side is invariant under a change in the
reference frame. In order for the principle of relativity to be satisfied, the force on
the left-hand side must be invariant under Galilean transformations as well.

To ascertain this we recall that in classical mechanics a force2 is defined as an
action at-a-distance between two interacting particles with the following properties:
Its direction coincides with the straight line connecting the particles, its strength only
depends on their distance and it acts on each of them according to the principle of
action and reaction. These properties define a conservative force. Explicitly, if �x

2 Here we are referring to fundamental forces of the nature, like the gravitational force, not to
phenomenological forces like elastic forces, friction etc.
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is the relative-position vector of the interacting particles and |�x| their distance, the
force F acting on one of them has the following form:

F = F(|�x|) �x
|�x| . (1.18)

If we now recall that the vector �x is left unchanged by Galilean transformations,
we immediately conclude that the force itself is invariant.

Thus both sides of (1.17) are invariant3 under a change in the reference frame
and therefore the Newtonian equation of motion satisfies the principle of relativity.
We refer to this propriety as the invariance of classical mechanics under Galileo
transformations. We stress once again that this conclusion is valid only under the
assumption that the mass of a particle does not depend on its velocity.

The study of electromagnetic phenomena has revealed the existence of fundamen-
tal forces of a different kind, not fitting the characterization given in classical (New-
tonian) mechanics and described by (1.18). Think about the magnetic force exerted
by an electric current in a segment of wire on the magnetized pointer of a compass. Its
direction does not coincide with the straight-line connecting the wire to the compass,
and moreover this force is non-conservative. Besides the action at-a-distance picture
of classical mechanics turns out to be inadequate to describe electromagnetic inter-
actions involving fast-moving charged particles. What these processes suggest is that
the interaction between two particles should rather be described as mediated by a
physical, propagating field, such as the electromagnetic field for interacting charges.
In this new picture a force on one particle originates from an action-by-contact on it
of the field electromagnetic field generated by another charged particle: instead the
action of the gravitational field generated by one mass on another mass obeys the
action at-a-distance principle in classical Newtonian mechanics.

Restricting ourselves, for the time being, to the purely mechanical case and to the
Newtonian description of forces, it is interesting to examine the implications of the
principle of relativity on the conservation law of the total linear momentum of an
isolated system of particles.

This property is usually seen as a direct consequence of the second and third
Newton laws. It is however well known that the law of conservation of linear mo-
mentum can be taken, together with the principle of inertia, as a principle from which
both Newton’s law of motion and the action–reaction principle can be deduced.
Indeed, from a modern point of view, the law of conservation of linear momen-
tum is more fundamental than Newton’s laws in that it retains its validity also in
those situations where the concept of Newtonian forces is no longer applicable.
Consider, with respect to some reference frame S, an interaction process in which
two particles, not subject to external forces, with linear momenta p1 and p2, and
masses m1 and m2, interact for a very short time (scattering), and give rise, in the
final state, to two free particles with momenta q1 and q2, and masses μ1 and μ2

3 In general we call covariant an equation which takes the same form in different frames; if not
just the form, but also the numerical values of the various terms are the same, we then say that the
equation is invariant.
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(which can be different from m1,m2, as it generally happens, for instance, in chemi-
cal reactions). Now suppose that the conservation of linear momentum is verified in
S:

p1 + p2 = q1 + q2. (1.19)

Denoting by v1, v2 and by u1, u2 the initial and final velocities of the two particles,
respectively (1.19) can be written as follows:

m1v1 + m2v2 = μ1u1 + μ2u2. (1.20)

Let us now consider the same process in a new inertial frame S′, related to S by a
Galilean transformation. Substituting the old velocities in terms of the new ones and
using the relation (1.6), (1.20) becomes:

m1(v′1 + V)+ m2(v′2 + V) = μ1(u′1 + V)+ μ2(u′2 + V). (1.21)

Since m1v′1,m2v′2, μ1u′1, μ2u′2 are the initial and final linear momenta p′1, p′2,q′1,q′2
of the particles, as measured in S′, (1.21) takes the following form:

p′1 + p′2 = q′1 + q′2 + (μ1 + μ2 − m1 − m2)V. (1.22)

This relation implies that the conservation of linear momentum satisfies the principle
of relativity if, and only if, the total mass is conserved

μ1 + μ2 = m1 + m2. (1.23)

Indeed, under this condition, (1.22) becomes:

p′1 + p′2 = q′1 + q′2, (1.24)

which expresses the conservation of momentum also in the frame S′, consistently
with the principle of relativity.

We end this section with a few observations. From the above discussion, it follows
that the conservation of the total mass is not an independent principle in classical
mechanics, but rather a consequence of the law of conservation of linear momen-
tum and the principle of relativity, a fact which is not always stressed in standard
treatments of Newtonian mechanics.

Secondly, if we consider the more general Galileo transformations (1.15), the
invariance of Newtonian mechanics with respect to spatial translations and time
shifts is obvious. As far as the invariance under rotations of the coordinate frame is
concerned it is sufficient to observe that the equations of classical mechanics can be
written as three-dimensional vector equations; since vectors are geometrical objects
(oriented segments) independent of the orientation of the coordinate frame, the same
is true for the vector equations of the theory. As a third point it must be noted that
the fact that a theory satisfies the principle of relativity does imply that the same



10 1 Special Relativity

physical laws hold true in every inertial frame, but it does not imply that the actual
description of the motion is the same in different frames.

For example, if a ball is thrown vertically (vx = 0) in S, in S′ it will have an
initial velocity v′x = −V �= 0. In S the trajectory is a vertical straight line, while
in S′ the trajectory is a parabola. Mathematically this follows from the fact that the
laws of mechanics are second-order differential equations whose solution depends
on the initial conditions, which are different in different frames.

We also want to stress the different way the principle of relativity is implemented
for Newton’s second law, (1.17), and the conservation of linear momentum, (1.19):
In the latter case the same law holds in the new frame, but the physical quantities,
the momenta, have different values, while in the former case all the quantities, force,
mass, acceleration, have exactly the same values in the two frames. Under Galilean
transformations therefore the conservation of linear momentum is an example of a
covariant law, while the Newtonian law of motion is invariant.

As a last point we observe that the independence of the laws of classical mechanics
from the inertial frame is easily verified in our everyday life. Everybody traveling
by car, train, or ship and moving with uniform rectilinear motion with respect to the
earth (considered as an inertial frame) can observe that the oscillation of a pendulum,
the bouncing of a ball, the collisions of billiard-balls, etc., occur exactly in the same
way as in the earth frame. On the other hand if the moving frame is accelerated the
laws of mechanics are violated, since the new frame is no longer inertial.

1.2 The Speed of Light and Electromagnetism

It is well known that many mechanical phenomena, such as vibrating strings, acoustic
waves in a gas, ordinary waves on a liquid, can be described in terms of propagating
waves. These mechanical waves describe the propagation through a given material
medium of a perturbation originating from a source located in a point or a region
in its interior (like for instance the impact of a stone on the surface of a pond), the
propagation being due to the interactions among the molecules of the medium. If the
medium is homogeneous and isotropic (which we shall always assume to be the case)
the speed of propagation of a wave has the same constant value in every direction
with respect to the medium itself.

For example, in the case of acoustic waves propagating through the atmosphere,
the speed of sound is v(s) �330 m/s with respect to the air (supposed still).

Let S be a frame at rest with respect to the air and S′ another frame in relative
uniform motion with velocity V with respect to the former (we assume the stan-
dard configuration between the two coordinate systems). By means of (1.6) we may
compute the velocity v′(s) of a sound signal with respect to S′.

v′(s) = v(s) − V. (1.25)
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If the sound is emitted along the x-direction, that is in the same direction as the
relative motion, v(s) = (v(s), 0, 0) and one obtains:

v′(s)x = v(s) − V,

v′(s)y = 0,

v′(s)z = 0,

(1.26)

so that the velocity of the sound measured in S′ along the x-direction will be lower
than in S, v′(s)x = v(s) − V < v(s). Vice versa, if the sound is emitted in the negative
x-direction, that is vs = (−v(s), 0, 0), then the modulus of the velocity measured in
S′ will be greater than in S; indeed

v′(s)x = −v(s) − V,

v′(s)y = 0,

v′(s)z = 0,

(1.27)

implying |v′(s)x | = |v(s) + V | > v(s).
Let us now consider a sound wave propagating in S along a direction perpendicular

to that of the relative motion, say along the negative y-axis, v(s) = (0,−v(s), 0)
(see Fig. 1.3). In S′ the velocity of the sound signal is:

v′(s) = v(s) − V = (−V,−v(s), 0) (1.28)

It follows that for the observer in S′, the sound wave will propagate along a direction
forming an angle α with respect to the y-axis given by (Fig. 1.4):

tan α = V

v(s)
, (1.29)

while the modulus of the velocity v′(s) ≡ |v′(s)| turns out to be:

v′(s) =
√
v2
(s) + V 2 > v(s). (1.30)

Note that, if V � v(s), the effect on the velocity of the motion of S′ relative to the

medium is an effect of order V 2

v2
(s)

since:

√
v2
(s) + V 2 ≡ v(s)

√
1+ V 2

v2
(s)

� v(s)
(

1+ 1

2

V 2

v2
(s)

)
. (1.31)

The example of a sound wave illustrates the general fact that the velocity of prop-
agation of a mechanical wave is isotropic, that is the same in every direction, only
in a reference frame at rest with respect to the transmission medium. In any other
inertial frame, the wave velocity is not isotropic, but depends on the direction.
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Fig. 1.3 Sound wave
propagating, with respect to
S, along the y-axis

Fig. 1.4 Same sound wave
as seen from S′

If we now consider the theory of electromagnetism, and in particular the propaga-
tion of electromagnetic waves, we immediately note some peculiarities with respect
to ordinary material waves. Electromagnetism, ignoring quantum processes, is de-
scribed, with extremely good precision, by the Maxwell equations. Maxwell’s theory
predicts that electric and magnetic fields can propagate, in the form of electromag-
netic waves, in the vacuum, that is apparently without a transmission medium, with
a velocity, denoted by c, which is related to the parameters of the theory:

c = 1√
ε0μ0

= 2.997925× 108 m/s.

We refer to this velocity as the speed of light since, as is well known, light is just
an electromagnetic wave with wavelength in the approximate range between 380
and 780 nanometers. According to the principle of relativity, this velocity, being
determined only by the parameters of the theory, should be the same for all the
inertial observers. On the other hand, we have learned that the velocity of a wave
should change by a change in the (inertial) reference frame. How can we resolve this
apparent contradiction?

We note, first of all, that not only the velocity of electromagnetic waves changes
under a Galilean transformation, but, as one can easily ascertain, also the Maxwell
equations themselves are not left invariant by such transformations. Since we cannot
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give up the principle of relativity for electromagnetic phenomena, there are only two
possibilities:

• either the Maxwell equations and their consequences are valid only in a particular
frame, and thus should change their form by a change in reference frame;

• or the Maxwell equations are valid in every inertial frame, but the principle of
relativity should not be implemented by the Galilean transformations. Instead, the
right transformation laws should be chosen in such a way as to keep the validity of
this principle also for electromagnetism as expressed by the Maxwell equations.

Let us first discuss the former hypothesis. If there existed a privileged reference
frame in which the Maxwell equations hold, and thus with respect to which light
has velocity c, we should be able to experimentally detect it. In this respect, over the
course of the nineteenth century, physicists made various hypotheses, among which
we quote the following two.

A first hypothesis was that the frame with respect to which light has velocity
c is the frame of the light source; however this possibility was immediately ruled
out because it would have led to consequences in sharp contrast with astronomical
observations. Indeed, suppose we observe a binary system of stars, of comparable
masses, revolving around their common center of mass; since the respective momenta
are directed in opposite directions, there will be an instant when the motion of the
stars will be in the direction of the terrestrial observer, one approaching and other
withdrawing from it with velocities v and −v respectively. If the velocity of light
were c with respect to the emitting source, with respect to the earth the velocities of
the light signals emitted by the two stars would be c+ v and c− v, respectively, see
Fig. 1.5. Thus the two light waves would reach the terrestrial observer at different
times and the motion observed from the earth would appear completely distorted with
respect to that predicted by Newtonian mechanics. Needless to say that the motion
we observe from the earth instead perfectly agrees with Newton’s laws.4

A second hypothesis was based on the assumption that, in analogy with the me-
chanical waves, also electromagnetic waves propagate through a material medium,
called ether; therefore, as it happens for the mechanical waves, the ether would be
the privileged reference frame where the velocity of light is c and where the Maxwell
equations take their usual form. If this were true, the ether, whose vibrations should
propagate the electromagnetic waves, should fill the whole of space (thus allowing
the light from the stars to reach the earth) and also penetrate the interior of material
bodies. This hypothetical substance would actually have very unusual properties: It
should be stiff enough to give light such an enormous velocity, but also light enough
to allow for the motion of stars and planets through it (Fig. 1.5).

If ether existed, it is reasonable to assume its rest frame to coincide, to a good
approximation, with the frame of the fixed stars, which, as is well known, is the

4 Another reason for ruling out the emitting source as the privileged frame where the Maxwell
equations hold is the fact that, according to the laws of electromagnetism, an electric charge in
an electric field E acquires an acceleration a which must vanish when E → 0; when the frame
is accelerated, as it is generally the case for a moving source, a would preserve a non-vanishing
component equal to acceleration of the reference frame even in the limit of vanishing electric field.
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Fig. 1.5 Light emitted from
stars in a binary system

canonical reference frame where the principle of inertia and the whole of classical
mechanics hold. Accordingly, one should be able to detect the change in the velocity
of light (from the value c) as measured in a reference frame in motion with respect
to the fixed stars, namely, with respect to the ether.

Actually, when we observe the light coming from a star, we are in a frame which,
being attached to the earth, is moving with a velocity V ≈ 30 km/s with respect to
the fixed star system. The velocity of the light from such a star in the earth frame
should be related to c by the Galilean transformations. Let S be the fixed star frame,
and S′ the earth frame moving with velocity V along the x-direction. Suppose, for
the sake of simplicity, that we are observing a light ray coming from the negative
direction of the y-axis in S; note that we are exactly in the same situation as previously
described for the sound waves. Thus the same conclusions should hold provided we
replace, in (1.27)–(1.31), v(s) by c. In particular we find that the light ray will reach
the telescope on earth at an angle α with respect to the y′-axis given by

tan α = V

c
, (1.32)

and a speed

c′ =
√

c2 + V 2 > c. (1.33)

As far as the first effect is concerned, it implies that in order for the light ray to reach
the observer, the telescope should be adjusted by an angle α with respect to vertical
direction. Because of the revolution of the earth, in order to observe a same star over
one year, the orientation of the telescope should be continuously adjusted, so that it
describes a cone whose intersection with the sky defines a little ellipsis (Fig. 1.6).
This phenomenon is in fact observed, and is called aberration of starlight. Every star
on the sky is seen to describe an ellipsis over the course of one year. The angular
half-width of the corresponding cone is given by (1.29), that is, taking into account
of the numerical values of V and c, by

tan α � 10−4 ⇒ α � 20
′′
. (1.34)

The above value is consistent, in the limit of experimental errors, with the current
astronomical observations, and this therefore seems to support the hypothesis that the
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Fig. 1.6 Aberration of
starlight

Fig. 1.7 Two light rays
emitted from earth in
opposite directions

velocity of the light is c only with respect to the ether. This experimental evidence,
however, relies on the measure of the change in the direction of the light ray, which
is an effect of order V/c, but does not verify that its actual speed c′ differs from c
according to (1.33). To ascertain this we should be able to detect a non-vanishing
difference c′ − c, which, as observed in the analogous case of the sound waves, is an
effect of order V 2/c2, that is, in our case,

c′ =
√

V 2 + c2 = c

√
1+ V 2

c2 ⇒
(

c′ − c

c

)
� V 2

c2 ≈ 10−8.

To verify so tiny an effect, it is therefore necessary to set up an experiment with a
very high sensitivity. In 1886 Michelson and Morley realized such an experiment.
The main idea behind it is that, if the ether existed, and if two light signals were
emitted on the earth, one in the direction of its motion (with velocity V relative to
the ether frame), and the other in the opposite direction, their velocities with respect
to the earth would be c − V and −(c + V ), respectively (Fig. 1.7). The experiment
was so designed as to make two light rays, emitted by the same source, interfere
after having traveled back and forth along two orthogonal paths. Under the ether
hypothesis, a rotation of the interferometer by 90◦ would have changed the velocity
of each light signal with respect to the earth, and this would have resulted in a shift
of the interference fringes due to the change in the optical paths of the two beams.

The result of the experiment was negative, indicating that, with respect to the
inertial frame tied to the earth, the velocity of light is c in every direction. Thus,
either the earth reference frame is the ether frame where the velocity of light is
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the same in the every direction (this would give the earth back a central role in the
Universe, four hundred years after Copernicus), or this result should be taken as the
evidence that the ether frame, and the ether itself as a physical substance, does not
exist.

The outcome of the Michelson and Morley experiment has been later confirmed
by an unaccountable number of other experiments, in the course of the last century,
and can be regarded as the first experimental evidence that the velocity of light is the
same in every inertial frame. It is also consistent with the more general assumption
that all the laws of physics, including electromagnetism, have the same form in every
inertial frame, in agreement with the principle of relativity.

1.3 Lorentz Transformations

According to our discussion in the previous section, the apparent contradiction be-
tween the principle of relativity and the constancy of the speed of light, finds its
natural solution in the possibility that the Galilean transformations, used for im-
plementing the principle of relativity in classical mechanics, are not the correct
transformation laws relating the fundamental kinematic quantities x, y, z, t in differ-
ent inertial frames. Indeed, as we have seen, the use of the Galilean composition law
for velocities leads to a speed of light which depends on the reference frame.

To find how the Galileo transformations must be amended, Einstein assumed as
fundamental postulates the principle of relativity, which must apply to every law
of physics (though restricted to inertial frames), and the following new proposition,
based on the experimental evidence discussed in the previous section, and known as
the principle of the constancy of the speed of light:

The speed of light in the vacuum is the same and is isotropic with respect any
inertial reference frame, regardless of the motion of the source.

As we shall see in the following, this latter assumption is crucial in order to extend
the validity of the principle of relativity from mechanics to electromagnetism and in
general to all physical laws.

Starting from these two postulates Einstein developed his theory of special rela-
tivity5 which led to a deep re-examination, from an operative point of view, of the
very concepts of space and time and thus of the meaning of space and time intervals
as well as of simultaneity. In particular the notions of absolute space and time, which
the whole classical mechanics was founded on, were questioned.

Consistently with his two postulates (the principle of relativity and of constancy
of the speed of light) Einstein proposed new transformation laws for space and time
intervals which are known by the name of Lorentz transformations since they were
originally formulated by the Dutch physicist Hendrik Lorentz, albeit with a different
interpretation. These new transformation laws, together with all their consequences,
represent the basis on which Einstein’s theory is constructed. It is clear that the basic

5 Here special refers to the fact that it is restricted to inertial frames.
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postulate �t = �t ′ used in deriving the Galileo transformations must be given up,
since, once taken for granted, the Galileo transformations are unavoidable.

To derive the new transformations let us start by writing down the most general
relation between the coordinates and times of a given event as seen from two inertial
frames S, S′. The validity of the principle of inertia in both frames a = 0⇔ a′ = 0
requires that if the coordinates x , y, z depend linearly on time in S:

x = x0 + vx t,

y = y0 + vyt,

z = z0 + vz t,

also x ′, y′, z′ should depend linearly on t ′ in S′, and this can only happen if the
transformation is linear. We can therefore write:

x ′ = a11x + a12 y + a13z + a14t + a,

y′ = a21x + a22 y + a23z + a24t + b,

z′ = a31x + a32 y + a33z + a34t + c,

t ′ = a41x + a42 y + a43z + a44t + d.

Furthermore, for the sake of simplicity, we will also take the two frames, like in
the Galilean case, in the standard configuration, see Fig. 1.1. We shall see in the
following (see also Chap. 4) how the Lorentz transformations can be extended to
more general configurations.

We shall show presently, working in the standard configuration, that the twenty
undetermined coefficients appearing in (1.33) can be reduced by kinematical con-
sideration, to just one.

First of all, having chosen the origin of times t = t ′ = 0 as the time at which the
origins coincide O = O ′, it immediately follows that, in (1.33), a = b = c = d = 0,
so that x = y = z = 0 implies x ′ = y′ = z′ = 0. Next we observe that the equation
of the z′y′ plane, with respect to S has the form:

x = V t,

while for the observer S′ the corresponding equation reads

x ′ = 0, ∀t ′.
It then follows that

x ′ = α(V )(x − V t), (1.35)

where the coefficient α(V ) must be independent of the coordinates and time, and
can then only depend on the “kinematic parameter” V.

Secondly, as the planes xz ed x ′z′ coincide at all times, y = 0 should imply y′ = 0
and this constrains the relation between y and y′ to have the following form

http://dx.doi.org/10.1007/978-88-470-1504-3_4
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y′ = β(V )y. (1.36)

Note that had we started with the opposite orientation of the x-and x ′-axes we would
have obtained:

y′ = β(−V )y. (1.37)

The simultaneous validity of (1.36) and (1.37) requires β to be an even function of
V:

β(V ) = β(−V ), (1.38)

Furthermore the principle of relativity implies that nothing should change if we
exchange the roles of the two observers, that is if we consider S in motion with
respect to S′ with velocity –V; in that case the primed coordinates become unprimed
and vice versa, so that we may also write:

y = β(−V )y′. (1.39)

Combining (1.36) with (1.39) we readily obtain:

y = β(−V )y′ = β(−V )β(V )y = β2(V )y ⇒ β2(V ) = 1,

which implies β(V ) = ±1. On the other hand, since we have orientated y and y′ in
the same direction, we must have β(V ) ≡ 1. By the same token we also find z = z′.
Thus the first three equations of the transformations (1.33) take the simple form:

x ′ = α(V )(x − V t), (1.40)
y′ = y, (1.41)

z′ = z. (1.42)

Let us now consider the fourth equation involving the time variable t ′. Solving the
first of (1.40) with respect to t we find:

t = 1

V

(
x − x ′

α(V )

)
, (1.43)

Using the same argument which led to (1.37), if we consider S in motion with velocity
−V with respect to S′, the equation obtained from (1.43) by replacing t ′ with t, x
with x ′ and V with −V must also be true:

t ′ = − 1

V

(
x ′ − x

α(−V )

)

= − 1

V

(
α(V )(x − V t)− x

α(−V )

)

= α(V )t + 1

V

(
1

α(−V )
− α(V )

)
x . (1.44)
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Fig. 1.8 Light signal as seen
by S and S′

We may then rewrite the transformation (1.44) as follows:

t ′ = α(V )t + δ(V )x, (1.45)

where we have set

δ(V ) = 1

V

(
1

α(−V )
− α(V )

)
. (1.46)

By simple considerations we have reduced the problem of determining all the coef-
ficients in (1.33), to that of computing a single function α(V ).

This coefficient will be now determined by implementing the principle of con-
stancy and isotropy of the speed of light.

Let us suppose that at t = t ′ = 0, when O ≡ O ′, a light (or electromagnetic
wave) source emits a signal isotropically, see Fig. 1.8. According to this principle,
the signal propagates isotropically with the same constant speed c for both observers
S and S′. Thus with respect to the two frames the wave front of the electromagnetic
signal will be described by spheres of radii r = ct and r ′ = ct ′ respectively. The
equations for the wave front of the spherical wave are thus given by:

x2 + y2 + z2 − c2t2 = 0, (1.47)

for the observer S, and

x ′2 + y′2 + z′2 − c2t ′2 = 0, (1.48)

for the observer S′. Since the four coordinates (x, y, z, t) and (x ′, y′, z′, t ′) refer to
the same physical events, that is the locus of points reached by the signal at a fixed
time, they must hold simultaneously. We must then have:

x2 + y2 + z2 − c2t2 = κ
(

x ′2 + y′2 + z′2 − c2t ′2
)
, (1.49)

where κ is a constant.
If we now substitute the expression of x ′, y′, z′, t ′ in terms of x, y, z, t as given by

(1.40), (1.41), (1.42) and (1.45), in (1.49), we obtain:
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x2 + y2 + z2 − c2t2 = κ
[
α2(x − V t)2 + y2 + z2 − c2(αt + δx)2

]
, (1.50)

and this relation must be an identity in (x, y, z, t).
Conparing the coefficients of z and y on both sides, we immediately find κ = 1.
Next, equating the coefficients of t2, one finds:

−α2(V )V 2 = c2
(

1− α2(V )
)
⇒ α(V ) = ± 1√

1− V 2

c2

.

Since at t = t ′ = 0, x and x ′ have the same orientation, we conclude that:

α(V ) = α(−V ) = 1√
1− V 2

c2

. (1.51)

One can easily verify that, with the above value of α(V ), also the coefficients of x2

and xt are equal. The transformation laws (1.40), (1.41), (1.42) and (1.44) now take
the following final form:

x ′ = γ (V )(x − V t), (1.52)

y′ = y, (1.53)

z′ = z, (1.54)

t ′ = γ (V )
(

t − V

c2 x

)
, (1.55)

where

γ (V ) ≡ 1√
1− V 2

c2

> 1. (1.56)

Equations (1.52) are the Lorentz transformations. They represent the correct trans-
formation laws connecting two inertial frame, which allow to extend the principle of
relativity to electromagnetism.

One can verify, however, that the well established equations of classical mechan-
ics, which are covariant under Galilean transformations, are not covariant under
Lorentz transformations. It seems as if, by requiring the principle of relativity to
hold for electromagnetism, we loose its validity in mechanics. In order to solve
this apparent inconsistency, we should consider the fact that, until the beginning of
the twentieth century, before the discovery of the subnuclear physics and of certain
astrophysical phenomena, all the known physical processes involved bodies moving
at speeds which are much lower than the speed of light. Now it is easy to show that the
Lorentz transformations actually reduce to the Galilean transformations in the limit
in which the velocity of the moving frame V is much smaller than c. Indeed, in this
situation, applying the Taylor expansion to the factor γ (V ) in (1.52) and neglecting
terms of order V 2/c2,6 we find

6 To have an idea of this approximation, consider a very high velocity like, for instance, that of the
earth around the sun, which is about V ≈ 3× 104 m/s. In this case we have V 2/c2 ≈ 10−8!
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γ (V ) = 1√
1− V 2

c2

� 1+ 1

2

V 2

c2 + O

(
V 4

c4

)
� 1.

With the same approximation we may also set t − V
c2 x � t . Thus in this limit the

Lorentz transformations (1.52) reduce to the Galilean ones (1.4). The laws of classical
mechanics should then be regarded as valid only in the limit in which velocities are
much smaller than the speed of light (non-relativistic limit).

It is often useful to deduce from (1.52) the relation between the components of
the relative position vector and the time lapse between two events occurring at points
A and B and at different times. Let (xA, yA, z A), (xB, yB, zB) be the coordinates of
A and B, respectively, and tA, tB the times of the corresponding events, as measured
in S, and let the primed symbols refer, as usual, to the same quantities relative to S′.
Writing (1.52) for the two events in A and in B and subtracting the former from the
latter we obtain:

�x ′ = γ (V )(�x − V�t), (1.57)

�y′ = �y, (1.58)

�z′ = �z, (1.59)

�t ′ = γ (V )
(
�t − V

c2�x

)
, (1.60)

where we have set:

�x = xB − xA; �x ′ = x ′B − x ′A,
�t = tB − tA; �t ′ = t ′B − t ′A.

Equation 1.60 implies that, in contrast to Galilean transformations, the time lapse
between two events is no longer invariant since�t �= �t ′. The postulate of absolute
time (and thus of absolute space), as anticipated, are then inconsistent with the
principles of relativity and of constancy of the speed of light and thus should be
given up.

1.4 Kinematic Consequences of the Lorentz Transformations

Let us now discuss some properties and physical implications of the Lorentz trans-
formations.

Reciprocity: We have already observed that, according to the principle of relativity,
it is equivalent to say that S′ is moving at velocity V with respect to S, or that S is
moving at velocity –V with respect to S′. This in particular implies that the inverse
Lorentz transformations (1.52) expressing (x, y, z, t) in terms of (x ′, y′, z′, t ′) can
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be obtained by simply interchanging in (1.52) primed with unprimed coordinates,
and V with –V. Indeed if we invert (1.52), we find:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x = γ (V )(x ′ + V t ′),
y = y′,
z = z′,
t = γ (V )

(
t ′ + V

c2 x ′
)
,

(1.61)

in accordance with the rule illustrated above.
Symmetry between space and time intervals: There is no doubt that the major

difference between Lorentz and Galilean transformations is the fact that the former
imply a non-trivial transformation of time intervals as opposed to the latter which
are based on the assumption of absolute time. In the former, there is, moreover, a
strong similarity between the transformation properties of space and time intervals
which becomes apparent if we use as new time coordinate x0 ≡ ct . In this notation
the spatial and time coordinates all have the same physical dimensions of a length.
Denoting x, y, z by x1, x2, x3 and defining the dimensionless number β = V/c, the
Lorentz transformations take the following form :

⎧
⎪⎪⎨
⎪⎪⎩

x1′ = γ (V )(x1 − βx0),

x2′ = x2,

x3′ = x3,

x0′ = γ (V )(x0 − βx1),

(1.62)

where the symmetry between the transformation laws of spatial and time coordinates
is evident as they all appear in the above equations on an equal footing.7

The speed of light as the maximum velocity: Let us first observe that if S′ were

moving at a velocity V > c with respect to S, the factor γ =
√

1− V 2

c2 would be
purely imaginary and thus the transformations (1.52) physically meaningless. Let
us now show that if we require the principle of causality to be valid in any inertial
reference frame, then no physical signal can travel at a speed greater than c.

Recall that the principle of causality states that if an event A causes a second
event B to occur, then the event A should always precede B in time: tA < tB . If this
principle were violated, no physical investigation would be possible, since no theory
would be predictive.

Let us then consider two events A and B taking place in the reference frame S
along the x-axis at the points xA, xB at the times tA and tB , respectively, and assume
that in the frame S the event in A precedes the event in B, that is tB − tA ≡ �t > 0.
Now we ask whether is it possible to find a new reference frame S′ where �t ′ < 0,
i.e. where the event in B precedes the event in A.

7 The reader should not mistake the upper labels of the space–time coordinates x0, x1, x2, x3 as
powers of a quantity x! The mathematical difference between quantities labeled by upper and lower
indices will be extensively discussed in the following chapters.
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Suppose the answer is positive, so that if �t > 0 in S, there exists a frame S′ in
which �t ′ < 0. Using (1.60) we then find

�t ′ < 0⇒ �x

�t
>

c2

V
> c, (1.63)

and this can only happen if

�t <
V

c2�x <
�x

c
, (1.64)

where we have used V
c < 1.

On the other hand �x/c has the meaning of the time τAB that a light ray takes to
cover the distance �x = xB − xA; therefore the condition will be satisfied if:

�t < τAB . (1.65)

When (1.65) holds one immediately finds that the velocity V of S′ with respect to S
must satisfy the inequality:

V > c
�t

τAB
, (1.66)

what is certainly possible with V < c.
Having established under what condition it is possible to invert the chronological

order of two events by a change of reference frame, let us now assume that the event
A sends a physical signal at a velocity c′ > c and that this signal determines the
occurrence of the event B. (For example, with reference to Fig. 1.9, the event A can
be the pressing of a switch by the observer S at tA with the emission of a hypothetical
signal of velocity c′ > c whose effect in B is the lighting of a lamp at a later
time tB .)

In this case the inequality (1.65) is certainly satisfied since �t = �x/c′ and
c′ > c.

We then reach the conclusion that, if a signal propagating at velocity c′ > c
existed, that is if it were possible to transmit information at a velocity greater than c,
then two causally related events in one reference frame would appear in a different
frame in the inverse temporal sequence, thus violating the principle of causality,
since the effect would precede its cause. Since we cannot give up the principle of
causality, we conclude that:

No physical signal can propagate at a velocity greater than the speed of light.
Time dilation: Equation 1.60 provides the explicit transformation law for the time

intervals.
Consider a reference frame S′ in motion at a constant speed V relative to another

frame S (the standard configuration of the two frames is understood) (Fig. 1.9).
Suppose an observer in S is measuring the time lapse �t = tB − tA between two
events A and B which occur in S′ at the same place but at different times, so that
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Fig. 1.9 Event A causing
event B

t ′B > t ′A (for instance two successive positions of the second hand of a clock at
rest in S′). If the events occur in S′ along the x ′-axis, we then suppose �x ′ =
x ′B − x ′A = 0. From (1.57) it then follows that�x = V�t . Substituting this relation
in (1.60) we find

�t ′ = γ (V )
(
�t − V

c2�x

)
= �tγ (V )

(
1− V 2

c2

)
= �t

γ (V )
. (1.67)

We conclude that the time lapse measured in S is

�t = γ (V )�t ′ > �t ′. (1.68)

This means that if an observer at rest in the frame S′ measures a time interval �t ′,
an observer in S will measure a lapse �t greater than �t ′ by a factor γ (V ). As an
example, let S′ be a spacecraft traveling at a high velocity V relative a laboratory
frame S on earth, and let time in S and S′ be measured by two identical clocks.
Suppose the observer in S measures the rate at which the clock inside the spacecraft
ticks. He notices that the clock in S′ runs more slowly than his, that is time on the
spacecraft flows more slowly than on earth.8

Relativity of Simultaneity: Another consequence of the transformation law for
time is the relativity of simultaneity. Indeed, let us consider again the inertial frames
S and S′, and suppose that A and B are two events which are simultaneous in S,
namely tA = tB(�t = 0). When observed by S′ the two events will be separated by
a time interval

�t ′ = γ (V ) V

c2�x �= 0. (1.69)

This implies that two events which are simultaneous in S, but occur at different points,
are not simultaneous with respect to a frame S′ in motion with respect to S.

8 Note that the time dilation is a relative effect, that is if we have a clock at rest in S, from Eq. (1.60)
it follows that �t ′ = γ (V )�t, that is time in S′ is dilated with respect to S. The same observation
applies to the length contraction to be discussed in the following.
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Length Contraction: The fact that simultaneity between events is not an absolute
concept implies that the distance between two points depends on the particular ref-
erence frame in which it is measured.

Let us consider the situation described in Sect. 1.1, in which a rod is placed at rest
along the x ′-axis of a frame S′ moving with respect to S at velocity V = (V, 0, 0).
Let the endpoints A and B of the rod be located in the points x ′B and x ′A. We can
repeat one by one the arguments given in Sect. 1.1, from formula (1.10) to formula
(1.12), using now the Lorentz transformations instead of the Galilean ones. In S′ the
length is defined as:

�x ′ ≡ L ′ = x ′B − x ′A,

while the same length is measured in S as the difference between the coordinates of
the endpoints taken at the same time, that is simultaneously:

�x = L = xB(tB)− xA(tA) ≡ xB(t)− xA(t),

where we have set t = tB = tA. From (1.52) we then find:

L ′ = �x ′ = γ (V )(�x − V�t) = γ (V )�x = γ (V )L ,
that is:

L = γ (V )−1L ′.

Since γ (V )−1 = (1− V 2

c2 )
1/2

< 1, the observer S in motion with respect to the rod

will measure a length L contracted by the factor γ (V )−1 with respect to L ′, which
is the length of the object at rest. The conclusion is that: The length L of an object in
motion is contracted with respect its length L ′ at rest:

L =
√

1− V 2

c2 L ′ < L ′. (1.70)

We note, instead, that lengths along the directions perpendicular to that of the relative
motion are not affected by the motion itself�y = �y′,�z = �z′. This in particular
implies that a volume �V = �x�y�z transforms like the length of a rod parallel
to the motion, namely:

�V = 1

γ
�V ′ < �V ′. (1.71)

This in turn has the important consequence that the concept of rigid body, so useful
un classical mechanics, looses its meaning in the framework of a relativistic theory.
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1.5 Proper Time and Space–Time Diagrams

We have learned, in the previous section, that both time and spatial intervals depend
on the reference frame, that is, space and time are not absolute as they were in
Newtonian mechanics, rather their transformation laws are combined in such a way
that only the velocity of light is absolute. Note that, in the standard configuration, the
transformation properties (1.57), (1.60) of�x and�t under Lorentz transformations
are reminiscent of the way in which the components of a vector on the plane transform
under a rotation of the corresponding coordinate axes. It is then natural to describe
the effect of a change in the inertial frame as a kind of “rotation” of the space and
time axes x, t. Considering also the other two coordinates y, z, which do not transform
if the two inertial frames are in the standard configuration, one may regard a Lorentz
transformation as a kind of “rotation” in a four-dimensional space, the fourth direction
being spanned by the time variable.

A more precise definition of this kind of rotation will be given in Chap. 4; for the
time being we call this four-dimensional space of points space–time or Minkowski
space. Every point in space–time defines an event which occurs at a point in space
of coordinates x, y, z, at a time t, and is labeled by the four coordinates t, x, y, z.

In three-dimensional Euclidean space R
3 a rotation of the coordinate axes im-

ply a transformation in the components �x,�y,�z of the relative position vec-
tor between two points, which however does not affect their squared distance
|�x|2 = �x2 +�y2 +�z2. In analogy to ordinary rotations in Euclidean space, a
Lorentz transformation preserves a generalized “squared distance” between events
in Minkowski space which generalizes the notion of distance between two points in
space. To show this let us recall that, in determining the Lorentz transformations, we
required the equality:

x2 + y2 + z2 − c2t2 = x ′2 + y′2 + z′2 − c2t ′2. (1.72)

the left- and right-hand sides of this equation being separately zero, in accordance
to the constancy of the speed of light in every inertial frame. The two events in
A and B, in that case, were the emission of a spherical light wave in O = O ′ at
the time t = t ′ = 0 and the passage of the spherical wave-front through a generic
point of coordinates x, y, z, t and x ′, y′, z′, t ′, respectively. Consider now a light wave
which is emitted in a generic point, instead of the origin, at a generic time, and let
the spherical wave propagate for a time �t in S. Equation 1.72 can be written as:

|�x|2 − c2�t2 ≡ �x2 +�y2 +�z2 − c2�t2

= �x ′2 +�y′2 +�z′2 − c2�t ′2 = |�x′|2 − c2�t ′2. (1.73)

It is now a simple exercise to verify that equality (1.73) holds even if the two events do
not refer to the propagation of a light ray. It is sufficient to express the primed quanti-
ties on the right-hand side in terms of the unprimed ones by using the Lorentz trans-
formations (1.57)–(1.60). One then finds that (1.73) is identically satisfied. Defining

http://dx.doi.org/10.1007/978-88-470-1504-3_4
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the four-dimensional distance �
, also called proper distance between two events,
as

�
2 = |�x|2 − c2�t2, (1.74)

Equation (1.73) then implies that:
The proper distance between two events in space–time is invariant under Lorentz

transformations. In particular, if there exists a frame where the two events are simul-
taneous, �t = 0, the proper distance reduces in that frame to the ordinary distance
�
 = |�x|.

While the proper distance has the dimension of a length, we may define an anal-
ogous Lorentz invariant quantity, called proper time interval �τ, having dimension
of a time, as follows:

�τ 2 = �t2 − 1

c2 |�x|2 = − 1

c2�

2. (1.75)

Both �
 and �τ , being proportional to each other, are referred to as space–time
intervals. If we consider the reference frame, say S′, where a body is at rest, then,
since in this frame �x′ = 0, we have:

�τ 2 = �t ′2,

so that the physical meaning of the proper time interval�τ is that of the time interval
between two events occurring at the same spatial point. In any other frame S, being
�x �= 0, the time interval �t will be different, their relation being given by (1.68).

Writing (1.75) in infinitesimal form (that is referring to infinitely close events),
we find

dτ 2 = dt2 − 1

c2 |dx|2 = dt2
(

1− V 2

c2

)
,

since
∣∣ dx

dt

∣∣ is the velocity V of the frame S′ attached to the particle. It follows

dt = γ (V )dτ,
consistently with (1.68).

1.5.1 Space–Time and Causality

When studying the properties of the Lorentz transformations we have seen that if two
events are causally related, namely if event A determines the occurrence of event B,
then they must be connected by some physical signal, having a velocity v ≤ c and
carrying to B the information of what happened in A (when A and B are the events
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describing the passage of a particle through two points along its trajectory, it is the
very particle which carries the information.)

Let �x and �t be the relative position vector and time lapse between the two
events; then the velocity of the signal will be:

v = �x
�t
,

and we must have |v| ≤ c for the two events to be causally related.
Looking at the definition of proper time, given in (1.75), we see that in this case

we have:

�τ 2 ≥ 0, (1.76)

or, equivalently

�
2 ≤ 0. (1.77)

Indeed:

�τ 2 ≥ 0⇔ c2�t2 − |�x|2 = �t2(c2 − |v|2) ≥ 0⇔ |v| ≤ c.

We conclude that two events can be causally related, that is connected by a physical
signal traveling at a velocity |v| ≤ c, if and only if �τ 2 ≥ 0 or, equivalently,
�
2 ≤ 0.

When (1.76) is strictly satisfied (i.e. when �τ 2 > 0) we say that the space–time
interval between the two events is time-like, since we can always find a reference
frame where the two events occur at the same point in space (|�x| = 0). Indeed, refer-
ring to the Lorentz transformation between two frames in the standard configuration
(�y = �y′ = �z = �z′ = 0) from (1.57) we see that

|�x′| ≡ �x ′ = γ (V )�t

(
�x

�t
− V

)
,

and since �x/�t < c for a time-like interval, �x ′ = 0 in a new Lorentz frame
moving at velocity V = �x/�t .

If �τ 2 = 0, the proper distance between the two events is zero and the corre-
sponding space–time interval is called light-like, since the two points in space–time
can only be related by a light signal: v = c.

If instead the proper time interval between two events A and B is negative

�τ 2 < 0⇔ �
2 > 0 (1.78)

the interval is called space-like. In this case the two events cannot be causally related,
since from (1.74) |�x|/�t ≡ v > c, implying that no physical signal originating
from A, can ever reach the point B at a distance |�x| during the time �t .
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Fig. 1.10 Light-cone

In this case, however, it is possible to find a new reference frame where the two
events are simultaneous; indeed, if

�τ 2 < 0⇒ �x

�t
> c, (1.79)

from (1.60) it follows that we can choose a reference frame S′, moving at a speed
V < c relative to S given by

V = c2 �t

�x
< c, (1.80)

with respect to which �t ′ = 0. If, moreover, V satisfies the inequality c > V >

c2�t/�x we can find a frame in which the chronological order of the two events is
inverted.

It is useful to give a geometric representation of space–time (that is of Minkowski
space) supposing, for obvious graphical reasons, to have a two-dimensional Euclid-
ean space spanned by the coordinates x, y instead of a three-dimensional one. The
time direction will be represented by an axis perpendicular to the xy-plane. It is also
convenient to measure time in units ct, so that all the coordinates of an event, rep-
resented by a point in this space, share the same dimension. The origin O of this
coordinate system represents an event which has occurred in the point x = y = 0 at
t = 0, see Fig. 1.10.

All the points A whose proper distance 
2 from O is time-like or light-like
c2τ 2 ≡ −
2 = c2t2 − |x|2 ≥ 0 are enclosed within a cone in Minkowski space
named the light-cone. As discussed earlier, there can be a causality relation between
the event in O and any other point inside the light-cone. More precisely, referring
to the figure, O can determine the occurrence of A at t > 0 (A is said to belong
to the future light-cone of O), while it can have been determined by an event A′ at
t < 0 (A is said to belong to the past light-cone of O); in any case the physical signal
correlating the two events travels at v ≤ c (Fig. 1.10).

Any event outside the light-cone instead, like the point B in the figure, is separated
from O by a space-like interval τ 2 = −c2
2 = c2t2 − |x|2 < 0, and thus cannot
be in any causal relation with it. For the sake of simplicity we have just discussed
the possible causal relations of events with a particular one located at origin of our
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space–time coordinate system. More generally we may associate with any event A
its own light-cone dividing all events into two sets: Those in the interior of the cone,
�τ 2 ≥ 0, which can be causally related to A, and those outside the cone, �τ 2 < 0
which cannot be correlated to A.

Let us focus on the plane described by the time-and x-axes and relabel the cor-
responding coordinates as follows: x0 ≡ ct, x1 ≡ x . We choose these axes to be
orthogonal and their equations in this plane are x1 = 0, x0 = 0, respectively. Going
to another reference frame S′, by a Lorentz transformation, the old coordinates x0, x1

are related to the new ones x ′0, x ′1 as follows:

x ′1 = γ (x1 − βx0),

x ′0 = γ (x0 − βx1),
(1.81)

so that the new time and x ′-axes (x ′1 = 0, x ′0 = 0 respectively) are described, in the
old coordinates, by the equations:

x1 = βx0,

x0 = βx1.
(1.82)

This means that the ct ′- and the x ′-axes, describing space–time in the new frame,
are rotated by an angle α with respect to the original ct- and x-axes, the former in
the clockwise direction and the latter in the counterclockwise direction, the angle α
being given by:

tgα = β = v

c
< 1,

so that |α| < π/4. This explains geometrically why points inside the light-cone can
always be brought, by means of a suitable Lorentz transformation, to the same point
in space (x = y = 0) by the clockwise rotation of the time axis, while events outside
the light-cone can be always made simultaneous to t = 0 by the counter-clockwise
rotation of the x-axis.

1.6 Composition of Velocities

So far we have examined the implication of the Lorentz transformations as far as
space and time intervals are concerned. Let us now consider how the velocities
transform under Lorentz transformations. In contrast to what we did for the Galilean
transformations, we cannot simply differentiate both sides of (1.57)–(1.59) with
respect to time since dt �= dt ′. To find the correct relations we consider again
two frames of reference S and S′ as in Fig. 1.1, and a particle moving at velocity
v = dx/dt with respect to S and v′ = dx′/dt ′ with respect to S′. Restricting, as
usual, to the standard configuration where the velocity of S′ with respect to S is
(V, 0, 0), (1.57)–(1.59), can be written in infinitesimal form:
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dx ′ = γ (V )(dx − V dt),

dy′ = dy,

dz′ = dz,

dt ′ = γ (V )
(

dt − V

c2

)
.

From the above equations we easily find:

v′x =
dx ′

dt ′
= dx − V dt

dt − V
c2 dx

= vx − V

1− V vx
c2

,

v′y =
dy′

dt ′
= dy

γ (V )
(

dt − V
c2 dx

) = vy

γ (V )
(

1− V vx
c2

) ,

v′z =
vz

γ (V )
(

1− V vx
c2

) .

We have thus derived the following composition laws for velocities:

v′x =
vx − V

1− V vx
c2

,

v′y =
vy

γ (V )
(

1− V vx
c2

) ,

v′z =
vz

γ (V )
(

1− V vx
c2

) .

(1.83)

The different forms of the transformation of the x- component of the velocity v,
parallel to the relative velocity V between the two frames, with respect to the
y- and z-components (orthogonal to V) is obviously due to our choice of the stan-
dard configuration. In the non-relativistic limit V, |v| � c, we can neglect V 2/c2

and V vx/c2 with respect to 1, so that:

γ (V ) � 1+ 1

2

V 2

c2 + · · · � 1,

1

1− V vx
c2

� 1+ V vx

c2 + · · · � 1,

and we retrieve the Galilean composition laws of velocities.

v′x = vx − V,

v′y = vy,

v′z = vz .
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From (1.83) we can easily verify that the composition of two velocities |V| ≤ c and
|v| ≤ c can never result in a velocity |v′| ≥ c, in agreement with the fact that no
signal or body can travel at a velocity greater than the speed of light. We can prove
this property as follows:

|v′|2 = 1(
1− V vx

c2

)2

[
(vx − V )2 +

(
1− V 2

c2

)
(v2

y + v2
z )

]

= 1(
1− V vx

c2

)2

[
|v|2 − 2vx V + V 2 − V 2

c2 (v
2
y + v2

z )

]

= 1(
1− V vx

c2

)2

[
|v|2 − 2vx V + V 2 − V 2

c2 (|v|2 − v2
x )

]

= 1(
1− V vx

c2

)2

[
c2 − c2 + |v|2 − 2vx V + V 2 − V 2

c2 (|v|2 − v2
x )

]

= 1(
1− V vx

c2

)2

[
c2

(
1− V vx

c2

)2

− c2
(

1− |v|
2

c2

) (
1− V 2

c2

)]
,

from which it follows that

|v′|2
c2 = 1− 1(

1− V vx
c2

)2

(
1− |v|

2

c2

) (
1− V 2

c2

)
≤ 1,

since |v| ≤ c and V ≤ c. In particular if |v| = c, then also |v′| = c, and we find that
the velocity of light is the same in every inertial reference frame.

This concludes the examination of the kinematical effects of the Lorentz trans-
formations. For the sake of simplicity we have used throughout standard Lorentz
transformations, as defined in 1.3. More general transformations where the relative
velocity V is not directed parallel to the x-axis do not affect the kinematical effects
examined so far, as will be seen in the next chapter. Even the change of inertial frame
due to rotations and translations of the reference frame as well as the change of the
origin of the time coordinate do not affect the relativistic kinematics since they do
not involve the relative velocity between the frames, on which all the kinematical
effects depend. The explicit form of these more general change of frames will be dis-
cussed at the end of the next chapter, after the discussion of the relativistic dynamics.
Indeed a physical theory obeying the principle of relativity must be covariant under
any change of inertial frame and we shall see that the relativistic dynamics and the
Maxwell theory satisfy this requirement.
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1.6.1 Aberration Revisited

The fact that the speed of the light c is the same in every inertial system does not imply
that its direction of propagation is invariant under Lorentz transformations. We will
illustrate this in the example of the aberration of starlight, which has already been
discussed within the framework of the Galilean transformations where it seemed to
find a natural explanation. Referring to the same configuration considered in that
discussion, let us suppose that a light ray in the fixed-star frame S reaches a telescope
on earth (frame S′) with velocity: c = (0,−c, 0). Applying the composition laws of
velocities (1.83) we find:

c′x =
0− V

1− 0·v
c2

= −V,

c′y = −
1

γ

c

1− 0·v
c2

= − c

γ
,

(1.84)

c′z = 0, (1.85)

that is,

c′ =
(
−V,− c

γ
, 0

)
. (1.86)

It follows that in order for the light ray to be received by the observer in S′, the
telescope should be adjusted by an angle α with respect to the vertical x ′-direction,
given by:

tan α = γ v
c
= 1√

1− V 2

c2

V

c
. (1.87)

This formula, besides showing in a particular case how the direction of light
(Fig. 1.11) changes by a change in the reference frame, also illustrates why the
Galilean transformation laws of velocities give a fairly good account of the phenom-
enon of aberration. Indeed, comparing formula (1.87) with the Galilean expression
(1.32), we see that the relativistic correction given by the factorγ (V ) � 1− 1

2v
2/c2 �

1− 10−8 � 1, is completely negligible, thus explaining why the observed phenom-
enon seemed to be in accordance with the ether hypothesis. On the other hand, note
that the same formulae (1.87), give for the modulus of the velocity of the light signal

|c′|2 = c2

γ 2 + V 2 = c2
(

1

γ 2 +
V 2

c2

)
= c2

in agreement with the principle of the constancy of the speed of light (Fig. 1.11).
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1.7 Experimental Tests of Special Relativity

So far, apart from the aberration of starlight, we have never commented on the
experimental tests of special relativity.

Einstein’s special theory of relativity dates back to more than a century ago, over
the course of which, considerable advances have been made in our understanding of
the physical world, from the discovery of quantum mechanics to the developments of
cosmology, and the formulation of the Standard Model for elementary particles. The
latter theory, which receives almost daily confirmations from experiments carried
out at the various particle accelerators all around the world, simply could not exist
without a relativistic extension of the original quantum mechanics (called relativistic
quantum field theory). In the absence of Einstein’s theory, interaction processes
involving high-energy elementary particles would simply appear incomprehensible
while they are perfectly explained within the framework of relativistic kinematics,
which has never been contradicted by experiments so far. The same can be said for
our understanding of the universe as it results from the cosmological observations,
which are perfectly described by Einstein’s general theory of relativity, which extends
the results of special relativity to non-inertial frames of reference, thereby including
gravitation in the relativity principle (see late Chap. 3).

Nowadays the design of modern high-precision technological devices requires
taking into account relativistic corrections for their correct functioning. We postpone
to the following chapters a more detailed analysis of the impact of special relativity
on modern physics. For the time being it is interesting, from a historical point of
view, to give a short account of one of the first experimental evidences of special
relativity, which dates back to the thirties of the last century. In this experiment,
which involved μ-mesons, the phenomenon of time dilation and length contractions
were first observed. Theμ-meson particles (or muons), which are about 200 times as
heavy as the electrons, can be produced in our laboratories, where they are observed
to decay, in a very short time, into an electron and two neutrinos (very light neutral
fermions):

μ→ e + νe + νμ,

νe and νμ being the electron (anti-)neutrino and the muon neutrino.

http://dx.doi.org/10.1007/978-88-470-1504-3_3


1.7 Experimental Tests of Special Relativity 35

The measured mean lifetime τμ of μ-mesons which are approximately at rest, turns
out to be τμ � 2× 10−6 s.

On the other hand a large amount of these particles is also produced from the
collisions of particles in the cosmic radiation against N2-and O2-molecules in the
top layers of the atmosphere. These muons are actually detected in our laboratories,
so that their velocity should be high enough as to reach our detectors before they
decay. If we were to perform a computation using classical Newtonian mechanics,
which is based on the assumption of absolute time, the mean lifetime of a muon is
the same in every inertial frame. Therefore the minimum velocity v for a μ particle
to reach the surface of the earth would be approximately given by the height h of the
atmosphere divided its mean lifetime. In numbers:

v = h

τμ
≈ 0.5× 1010 m/s > c.

Thus, according to Newtonian mechanics, they should have a velocity much greater
than c, while the actual measure of their velocity turns out to be less than c.

This apparent contradiction, however, disappears when we reconsider the compu-
tation of v in the framework of special relativity. Indeed we know that a time interval,
like the mean lifetime of a particle measured at rest, is not the same when measured
in a different reference frame; in our case we must consider the mean lifetime τ (lab)

μ

of the decaying muon as measured in the laboratory frame S tied to the earth, and the
lifetime τμ measured in the frame S′, moving at velocityυ towards the earth, in which

the particle is at rest. From (1.68) we deduce τ (lab)
μ = γ (v)τμ. As a consequence the

velocity is given by:

v = h

τ
(lab)
μ

= 1

γ (v)

h

τμ
. (1.88)

Solving for υ one finds:

v2 =
(

1− v
2

c2

)(
h

τμ

)2

= c2

c2 +
(

h
τμ

)2

(
h

τμ

)2

= 1

1+ 3.6× 10−3 c2< c2

Thus the velocity that the meson must have to reach the earth is v ≈ 0.998c < c, in
agreement with the experiments.

A possible objection to this result is the following: if we perform the computation
from the point of view of an observer moving with the meson, then its lifetime would
be measured at rest and so we should to use τμ instead of τ (lab)

μ . Note, however, that
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the distance the meson should cover to reach the earth, as measured from its own
frame S′, would not be h, but

h′ = 1

γ (v)
h,

since now the distance h is not at rest, but in motion with velocity v in the reference
frame of the muon. Therefore, in S′ the distance h′ to cover is:

h′ = 1

γ (v)
h

and the corresponding velocity is

v = h′

τμ
= 1

γ (v)

h

τμ
,

in agreement with the computation made in the earth frame S (1.88). In conclusion,
in both cases we obtain a result in agreement with experiment; in the former case by
virtue of time dilation, in the latter case of length contraction.

As already stressed, uncountable phenomena where time dilation (or length con-
traction) is at work are observed in the elementary particle experiments. Indeed most
of the particles created in high energy scattering processes have velocities close to
the speed of light, so that the consequent time dilation can be easily observed.

In the next chapter, when discussing the implications of the Lorentz transforma-
tions on mechanics, other important consequences of the principle of relativity will
be examined.

Reference

For further reading see Refs. [1, 11, 12]



Chapter 2
Relativistic Dynamics

2.1 Relativistic Energy and Momentum

In the previous chapter we have seen that a proper extension of the principle of
relativity to electromagnetism necessarily implies that the correct transformation
laws between two inertial frames are the Lorentz transformations. The price we have
to pay, however, is that the laws of the classical mechanics are no longer invariant
under changes in the inertial reference frame.1 We need therefore to reexamine the
basic principles of the Newtonian mechanics and to investigate whether they can
be made compatible with Einstein’s formulation of the principle of relativity which,
together with the principle of the constancy of the speed of light requires invariance
under the Lorentz rather than the Galileo, transformations. We have indeed learned,
form the discussion in last chapter that the relativistic kinematics has an important
bearing on the very concepts of space and time and, in particular, of simultaneity,
which are no longer absolute. This fact is incompatible with some of the basic
assumptions of classical mechanics. Let us recall that the fundamental force of this
theory, the gravitational force, is described as acting at-a-distance. This gives rise to
several inconsistencies from the point of view of special relativity:

1. The instantaneous action of a body on another implies the transmission of the
interaction at an infinite velocity. As we know, no physical signal can propagate
with a velocity greater than c. To put it differently, in the action at-a-distance
picture, the action of a body A and its effect, consisting in the consequent force
applied to B, are simultaneous events localized in different points (correspond-
ing to the positions of A and B, respectively). Since simultaneity, in relativistic
kinematics, is relative to the reference frame, there will in general exist an
observer with respect to which the two events are no longer simultaneous, or
in which the force is even seen to act on B before A exerts it, that is before A
“knows” about B;

1 Here by classical mechanics we refer to the Newtonian theory.

R. D’Auria and M. Trigiante, From Special Relativity to Feynman Diagrams, 37
UNITEXT, DOI: 10.1007/978-88-470-1504-3_2,
© Springer-Verlag Italia 2012
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Fig. 2.1 Action by contact

2. By the same token also Newton’s second law should be revisited. This equation
indeed relates the acceleration of a point-mass to the total force exerted on it by
all the other bodies, which is given by the sum of the individual forces taken at
the same instant, that is simultaneously. These forces in turn will depend on the
distances between the interacting objects. According to relativistic kinematics
both simultaneity and spatial distances are relative to the inertial observer and
thus, with respect to a different reference frame, the same forces will appear to
be exerted at different times and distances.

The previous considerations imply that a proper formulation of mechanics (and
in particular of dynamics) has to be given in terms of localized interactions, that is
in terms of an interaction which takes place only when the two interacting parts are
in contact and which is then localized at a certain point. This is in fact what happens
when two point-charges interact through the electromagnetic field. The interaction
is no longer represented as an action at-a-distance between the two charges but as
mediated by the electromagnetic field, and can be divided into two moments (see the
Fig. 2.1):

(a) a charge q1 generates an electromagnetic field;
(b) The field, which is a physical quantity defined everywhere in space, propagates

until it reaches the charge q2 located at some point and acts on it by means of
a force (the Lorentz forces).

This mechanism is apparent when one of the two charges (say q1) is moving at
a very high speed. One then observes that the information about the position of the
moving charge is transmitted to q2 at the speed of light through the electromagnetic
field, causing the force acting on it to be adjusted accordingly with a characteristic
delay which depends on the distance between the two charges. In this action-by-
contact picture the interacting parts are three instead of just two: the two charges and
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the field. The force acting on q2 is the effect of the action of the field generated by
q1 on q2. This implies that the action and the resulting force occur at the same time
and place (the position of q2) and this property is now Lorentz-invariant. Indeed if

�t = |�x| = 0, (2.1)

in a given frame, using the Lorentz transformations (1.57)–(1.60), we also have
�t ′ = |�x′| = 0 in any other frame. Thus the action-by-contact representation
is consistent with the principles of relativity and causality. As for the electromag-
netic interaction, we would also expect the gravitational one to be mediated by a
gravitational field. However, as we have mentioned earlier, a correct treatment of
the gravitational interaction requires considering non-inertial frames of reference
which goes beyond the framework of special relativity. In order to discuss how
classical mechanics should be generalized in order to be compatible with Lorentz
transformations (relativistic mechanics), we shall therefore refrain from considering
gravitational interactions.

Even in classical mechanics we can consider processes in which the interaction is
localized in space and time, so that the locality condition (2.1) is satisfied and we can
avoid the inconsistencies discussed above, related to Newton’s second law. These
are typically collisions in which two or more particles interact for a very short time
and in a very small region of space. Since the strength of the interaction is much
higher than that of any other external force acting on the particles, the system can be
regarded as isolated, so that the total linear momentum is conserved, and its initial
and final states are described by free particles. Let us focus on this kind of processes
in order to illustrate how one of the fundamental laws of classical mechanics, the
conservation of linear momentum, can be made consistent with the principle of
relativity, as implemented by the Lorentz transformations.

We shall first show that, if we insist in defining the mass as independent of the
velocity, then the conservation of momentum can not hold in any reference frame,
thus violating the principle of relativity.2

Let us consider a simple process in which a mass m explodes into two fragments
of masses m1 = m2 = m/2 (or equivalently a particle of mass m decays into two
particles of equal masses, see Fig. 2.2). We shall assume the conservation of linear
momentum to hold in the frame S in which the exploding mass is at rest:

vm = 0 = m

2
v1 + m

2
v2 ⇒ v1 = −v2.

For the sake of simplicity we take the x-axis along the common direction of motion
of the particles after the collision, so that v1(y,z) = v2(y,z) = 0. Let us now check
whether the conservation of linear momentum also holds in a different frame S′.
We choose S′ to be the rest frame of fragment 1, which moves along the positive
x-direction at a constant speed V = v1(x) ≡ v1 relative to S, and let the explosion

2 Here and in the rest of this chapter, when referring to the conservation of the total linear momentum
of an isolated system of particles, we shall often omit to specify that we consider the total momentum
and that the system is isolated, regarding this as understood.

http://dx.doi.org/10.1007/978-88-470-1504-3_1
http://dx.doi.org/10.1007/978-88-470-1504-3_1
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Fig. 2.2 Decay of a particle
into two particles of equal
masses

Fig. 2.3 Same decay in the
rest frame of particle 1

occur at the instant t = t ′ = 0, see Fig. 2.3. In the frame S′, the velocity of the mass
m before the explosion is obtained by applying the relativistic composition law for
velocities (1.75):

v′(m)x =
0− v1

1− 0·v1
c2

= −v1 = −V, v′(m)y,z = 0.

Analogously, after the explosion, the velocities of the fragments in S′ are
given by:

v′1 ≡ v′1x = 0, v′2 ≡ v′2x =
−v1 − v1

1+ v2
1

c2

, v′2y = v′2z = 0.

Having computed the velocities in S′ we may readily check whether the con-
servation of linear momentum holds in this frame. It is sufficient to consider the
components of the linear momenta along the common axis x = x ′; before and after
the explosion the total momenta in S′ are given respectively by:

P ′in = m v′(m) = −m v1, (2.2)

P ′f in =
m

2
v′1 +

m

2
v′2x =

m

2
v′2 = −

m v1

1+ v2
1

c2

. (2.3)

http://dx.doi.org/10.1007/978-88-470-1504-3_1
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Since

m v1 �= m v1

1+ v2
1

c2

, (2.4)

we conclude that, in S′ the total momentum is not conserved. Or better, the principle of
conservation of linear momentum (as defined in classical mechanics) is not covariant
under Lorentz transformations thereby violating the principle of relativity. As such
it can not be taken as a founding principle of the new mechanics. It is clear that,
just as the principle of relativity can not be avoided in any physical theory, it would
also be extremely unsatisfactory to give up the conservation of linear momentum;
in the absence of it we would indeed be deprived of an important guiding principle
for building up a theory of mechanics. To solve this apparent puzzle, it is important
to trace back, in the above example, the origin of the non-conservation of the total
momentum.

For this purpose we note the presence of the irksome factor 1+ v2

c2 on the right hand
side of the inequality (2.4), which reduces to 1 in the non relativistic limit. This factor
derives from the peculiar form of the composition law of velocities, which, in turn,
originates from the non-invariance of time intervals under Lorentz transformations,
namely:

dt ′ = γ (V )
(

dt − V

c2 dx

)
= γ (V ) dt

(
1− V vx

c2

)
.

Thus we see that the non-trivial transformation property of dt is at the origin of
the apparent failure of the conservation of momentum.

The same fact, however, gives us the clue to the solution of our problem: if
we indeed replace, in the definition of the linear momentum p of a particle, the
non-invariant time interval dt with the proper time dτ, which is invariant under
a change in the inertial frame, we may the hope to have a conservation law of
momentum compatible with the Lorentz transformations.

Let us then try to define the relativistic linear momentum of a particle as follows:

p = m
dx
dτ
. (2.5)

Recalling the relation between dt and dτ, given by (1.75) of the previous chapter,

dτ = 1

γ (v)
dt =

√
1− v

2

c2 dt, (2.6)

we may write:

p = m
dx
dτ
= m γ (v)

dx
dt
= m(v) v, (2.7)

http://dx.doi.org/10.1007/978-88-470-1504-3_1
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Fig. 2.4 Collision

where

m(v) ≡ m γ (v) = m√
1− v2

c2

. (2.8)

Note that the new definition of the relativistic momentum, (2.7), can be obtained
from the classical one by replacing the constant (classical) mass m, with the velocity-
dependent quantity m(v), called the relativistic mass,so that the classical mass m
coincides with the relativistic one only when the body is at rest: m = m(v = 0). The
mass m is then called the rest mass of the particle.

Let us now show that the conservation law of linear momentum is relativistic,
provided we use (2.7) as the definition of the linear momentum of a particle. To prove
the validity of this principle we would need to consider the most general process of
interaction within an isolated system. For the sake of simplicity, we shall still restrict
ourselves to collision processes, in order to deal with localized interactions, between
two particles only. Consider then a process in which two particles of rest masses
m1, m2 and linear momenta p1,p2 collide and two new particles are produced with
rest masses and momenta μ1, μ2 and q1, q2, respectively, see Fig. 2.1.

We assume that, in a given frame S, the conservation of total linear momentum
holds:

p1 + p2 = q1 + q2. (2.9)

The above equation, using the definitions (2.7), can be rewritten in the following
equivalent forms

m1(v1)v1 + m2(v2)v2 = μ1(u1)u1 + μ2(u2)u1,

m1
dx1

dτ1
+ m1

dx1

dτ2
= μ1

dx̃1

d τ̃1
+ μ2

dx̃2

d τ̃2
, (2.10)

where we have marked with a tilde the quantities referring to the final state. For the
purpose of writing the conservation law in a new reference frame, we shall find it
more useful to work with the second of Eq. (2.10).

Let us consider now the process from a new frame S′ moving with respect to
S at constant speed, in the standard configuration. The two descriptions are related
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by a Lorentz transformation. In particular, if we apply the Lorentz transformation
to (2.10), we note first of all that the components of the same equation along the
y- and z- axes do not change their form since the lengths along these directions are
Lorentz-invariant (dy′ = dy, dz′ = dz), as well as the rest masses mi , μi and the
proper time intervals dτi , d τ̃i . We can therefore restrict to the only component of
(2.10) along the x-axis and prove that

m1
dx1

dτ1
+ m1

dx2

dτ2
= μ1

dx̃1

d τ̃1
+ μ2

dx̃2

d τ̃2
, (2.11)

have the same form in the frame S′, namely that it is covariant under a stan-
dard Lorentz transformation. This is readily done by transforming the differentials
dxi , dx̃i in (2.10), according to the inverse of transformation (1.57):

2∑

i=1

mi

(
dx ′i
dτi
+ V

dt ′

dτi

)
γ (V ) =

2∑

i=1

μi

(
dx̃ ′i
dτi
+ V

dt ′

dτi

)
γ (V ) .

Let us now perform, using (2.7), the following replacement

d

dτ
= dt

dτ

d

dt
= γ (v) d

dt
,

v being the velocity of the particle, so that (2.11) takes the following form3:

(∑

i

p′xi −
∑

i

q ′xi

)
= γ (V ) V

∑

i

(
miγ (v

′
i )− μiγ (u

′
i )

)
,

where v′i and u′i , as usual, denote the velocities of the particles before and after the
collision in the frame S′. The above relation can also be written in vector form as
follows:

(∑

i

p′i −
∑

i

q′i

)
∝

∑

i

(
mi (v

′
i )− μi (u

′
i ), 0, 0

)
. (2.12)

3 Note that γ (V ) = 1√
1− V 2

c2

is the relativistic factor associated with the motion of S′ relative

to S, while γ (v′i ) = 1√
1− v

′2
i

c2

and γ (u′i ) = 1√
1− u′2i

c2

are the relativistic factors depending on the

velocities of each particle and relate the time dt ′ in S′ to the proper times dτi , d τ̃i referred to the
rest-frames of the various particles, according to

⎧
⎪⎪⎨
⎪⎪⎩

dτi =
√

1− v′2i
c2 dt ′

d τ̃i =
√

1− u′2i
c2 dt ′.

http://dx.doi.org/10.1007/978-88-470-1504-3_1
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Since the right hand side contains only the difference between the sum of the
relativistic masses before and after the collision, it follows that, in order for the
conservation of linear momentum to hold in the new reference frame

∑

i

p′i =
∑

i

q′i , (2.13)

we must have:
∑

i

mi (v
′
i ) =

∑

i

μi (u
′
i ), (2.14)

that is the total relativistic mass must be conserved. From this analysis we can con-
clude that:

Given the new definition of linear momentum, (2.7), the conservation of momentum
is consistent with the principle of relativity, i.e. covariant under Lorentz transforma-
tions, if and only if the total relativistic mass is also conserved.

Let us emphasize the deep analogy between our present conclusion and the analo-
gous result obtained when studying the covariance of the conservation law of momen-
tum under Galilean transformations in Newtonian mechanics (see Sect. 1.1.2).

2.1.1 Energy and Mass

We have seen that the concept of force as an action at a distance on a given particle
looses its meaning in a relativistic theory. However nothing prevents us from defining
the force acting on a particle as the time derivative of its relativistic momentum:

F = dp
dt
. (2.15)

Recalling the definition of p, namely, p = m(v) v, we find:

F = d

dt
(m(v)v) = dm(v)

dt
v + m(v)

dv
dt
,

Note that F is in general no longer proportional to the acceleration a = dv
dt .

Writing v = v u, where u is the unit vector in the direction of motion, we obtain

a = dv
dt
=

(
dv

dt

)
u+ v

2

ρ
n,

where, as is well known, the unit vector n is normal to u and oriented towards the
concavity of the trajectory, ρ being the radius of curvature.

http://dx.doi.org/10.1007/978-88-470-1504-3_1


2.1 Relativistic Energy and Momentum 45

Computing the time derivative of the relativistic mass we find

dm(v)

dt
= m

d

dt

⎛
⎝ 1√

1− v2

c2

⎞
⎠ = m(

1− v2

c2

)3/2

v

c2

dv

dt
= m(v)

c2

v

1− v2

c2

dv

dt
,

so that:

F = m(v)

(
1

1− v2

c2

v2

c2

dv

dt
+ dv

dt

)
u+ m(v)

v2

ρ
n = m(v)

1− v2

c2

dv

dt
u + m(v)

v2

ρ
n.

Note that F is not proportional to a. We are now ready to determine the relativistic
expression for the kinetic energy of a particle by computing the work done by the
total force F acting on it. For an infinitesimal displacement dx = v dt along the
trajectory, the work reads:

dW = F · dx = F · v dt = m(v)

1− v2

c2

v
dv

dt
dt = 1

2

m(v)

1− v2

c2

d(v2).

Integrating along the trajectory � (and changing the integration variable into
x = 1− v2

c2 ), we easily find:

W =
∫

�

F · dx =
∫

�

1

2

m(
1− v2

c2

)3/2 dv2 = −c2

2
m

∫
dx

x3/2 = mc2
(

1

x1/2

)

= m√
1− v2

c2

c2 + const = m(v)c2 + const.

If we define the kinetic energy, as in the classical case, to be zero when the particle
is at rest, then the constant is determined to be −m(0)c2, so that, the kinetic energy
Ek acquired by the particle will be given by:

Ek(v) = m(v) c2 − mc2, (2.16)

where, from now on, m = m(0) will always denote the rest mass. Note that in the
non-relativistic limit v2/c2 � 1, we retrieve the Newtonian result:

Ek(v) = mc2
√

1− v2

c2

− mc2 � mc2
(

1+ 1

2

v2

c2

)
− mc2 = 1

2
mv2. (2.17)

where we have neglected terms of order O(v4/c4).
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Let us define the total energy of a body as:

E = m(v)c2, (2.18)

The kinetic energy is then expressed, in (2.16), as the difference between the total
energy and the rest energy, which is the amount of energy a mass possesses when it
is at rest:

Erest = E(v = 0) = mc2. (2.19)

To motivate the definition of the total energy of a particle given in (2.18), we
prove that the total energy in a collision process, defined as the sum of the total
energies of each colliding particle, is always conserved. This immediately follows
from the conservation of the total (relativistic) mass, which we have shown to be a
necessary requirement for the conservation law of momentum to be covariant. Indeed
by multiplying both sides of

m1(v1)+ m2(v2)+ · · · + mk(vk) = cost,

by c2 and using the definition (2.18), we find

E1(v1)+ E2(v2)+ · · · + Ek(vk) = cost.

This fact has no correspondence in classical mechanics where we know that,
as opposed to the total linear momentum, which is always conserved in collision
processes, the conservation of mechanical energy only holds in elastic collisions. This
apparent clash between the classical and the relativistic laws of energy conservation
is obviously a consequence of the fact that the rest energy can be transformed into
other forms of energy, like kinetic energy, etc. We can give a clear illustration of
this by considering again the collision of two particles with rest masses m1, m2 and
velocities v1 e v2. Suppose that the collision is perfectly inelastic, so that the two
particles stick together into a single one of rest mass M. It is convenient to describe
the process in the center of mass frame, in which the final particle is at rest. Let us
first describe the collision in the context of Newtonian mechanics. The conservation
of momentum reads:

p1 + p2 = P = 0,

or, equivalently

m1v1 + m2v2 = 0.

Moreover conservation of the classical mass is also assumed.

M = m1 + m2. (2.20)
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The initial and final mechanical (kinetic) energies are however different since

Ei
k = m1

v2
1

2
+ m2

v2
2

2
, E f

k = 0.

and thus

�Ek = E f
k − Ei

k = −
(

m1
v2

1

2
+ m2

v2
2

2

)
�= 0.

In Newtonian physics, the interpretation of this result is that the kinetic energy of
the particles in the initial state has been converted into heat, increasing the thermal
energy of the final body, that is the disordered kinetic energy of the constituent
molecules.

Let us now describe the same process from the relativistic point of view.
Conservation of momentum and energy give the following two equations:

m1γ (v1)v1 + m2γ (v2)v2 = 0,

m1(v1)c
2 + m2(v2)c

2 = M(0)c2,

where we have set M(v = 0) = M(0).Using (2.16) to separate the rest masses from
the (relativistic) kinetic energies, we obtain

Ek(v1)+ m1c2 + Ek(v2)+ m2c2 = M(0)c2. (2.21)

Since the kinetic energy E f
k of the mass M(0) is zero, it follows4

c2�M(0) ≡ c2(M(0)−m1 −m2) = − (0− Ek(v1)− Ek(v1)) = −�Ek . (2.22)

From the above relation we recognize that the loss of kinetic energy has been
transformed in an increase of the final rest mass M = M(0); thus M is not the sum
of the rest masses of the initial particles (as it was instead assumed in the classical
case, see (2.20)).

If we consider the inverse process in which a particle of rest mass M decays, in
its rest frame, into two particles of rest masses m1 and m2, we see that part of the
initial rest mass is now converted into the kinetic energy of the decay products. The
importance of this effect obviously depends on the size of the ratio (v2/c2).

These examples illustrate an important implication of relativistic dynamics: the
rest mass m of an object can be regarded as a form of energy, the rest energy mc2,

which can be converted into other forms of energy (kinetic etc.). Let us illustrate this
property in an other example. Consider a body of mass M at some given temperature:
M will be given by the sum of the relativistic masses of its constituent molecules, and
its temperature is related to their thermal motion. If we now transfer an amount of

4 Note that at order O(v2/c2) (2.21) can be written c2�M(0) = ( 1
2 m1v

2
1 + 1

2 m2v
2
2).
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energy E, in the form of heat, to the body, the total kinetic energy of its molecules will
increase by E, thereby implying an increase in the mass by E/c2, M → M + E/c2.

Since all forms of energy can be transformed into one another and in particular into
heat, we see that we can associate an equivalent amount of energy E with any mass,
and, in particular, with the rest mass m = m(0). Viceversa to each form of energy
there corresponds an equivalent amount of mass given by m(v) = E/c2.

The equivalence between mass ed energy, which is expressed by (2.18) or, equiv-
alently, by

�E = �m(v)c2, (2.23)

is one of the major results of Einstein’s theory of relativity. As a consequence, for a
system made of interacting parts we define the total energy as:

Etot = E0 + Ek +U + · · · (2.24)

where the sum is made over all the forms of energy which are present in the system:
total rest energy, kinetic energy, potential energy and so on.

As a further example, let us consider a bound system. By definition a bound system
is a system of interacting bodies such that the sum of the kinetic and potential energies
is negative:

Ek +U < 0, (2.25)

provided we fix the potential energy U to be zero when all the components are at
infinite distance from each other and thus non-interacting: U∞ = 0. If we think of
the bound system as a single particle of rest mass M, in its rest frame we can write
its energy E0 = Mc2 as the total energy of the system, namely as the sum of the rest
energies of its constituents and their total kinetic and potential energies, according
to (2.24):

E0 = Mc2 =
∑

i

E0 i + Ek +U =
∑

i

mi c
2 + Ek +U, (2.26)

mi being the rest masses of the constituent particles. Equations 2.25 and 2.26 imply
that, in order to disassemble the system bringing its elementary parts at infinite
distances from one another (non-interacting configuration), we should supply it with
an amount of energy (called the binding energy of the system) given by

�E = −(Ek +U )> 0.

Note that, being Ek +U a negative quantity, from (2.26) it immediately follows
that the rest mass of the bound state is smaller than the sum of the rest masses of its
constituents

M =
∑

i

mi − �E

c2 <
∑

i

mi , (2.27)
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the “missing” rest mass being the equivalent in mass of the binding energy, as it
follows from (2.26)

�M ≡
∑

i

mi − M = �E

c2 . (2.28)

Therefore when a bound state of two or more particles is formed starting from
a non-interacting configuration, the system looses part of its total rest mass which,
being the total energy conserved, is converted into an equivalent amount of energy
�E = �Mc2 and released as, for instance, radiation.

An example of bound state is the hydrogen atom. It consists of a positively charged
proton and a negatively charged electron, the two being bound together by the electric
force. The rest masses of the two particles are respectively:

m p ∼= 938.3 MeV/c2; me ∼= 0.5 MeV/c2,

where, taking into account the equivalence between mass and energy, we have used
for the masses the unit MeV/c2.5

The corresponding binding energy

�E = 1Ry ∼= 13.5 eV,

is called a Rydberg. Since the rest energy of the hydrogen atom is

Mc2 = me c2 + m p c2 −�E =
(

938.3× 106 + 0.5× 106 − 13.5
)

eV,

it follows that

�i mi c2 − M c2

�i mi c2 = �M

me + m p
= 13.5

938.8× 106
∼= 10−8. (2.29)

Thus we see that, in this case, where the force in play is the electric one, the rate
of change in rest mass, �M/M, is quite negligible.

5 We recall that 1 MeV = 106 eV,where 1 eV is the energy acquired by an electron (whose charge
is e ∼= 1.6× 10−19C) crossing an electric potential difference of 1 V:

1 eV = 1.6 · 10−19 J.

Another commonly used unit, when considering energy exchanges in the atomic world, is the atomic
mass unit u, that is defined as 1/12 the rest mass MC of the isotope 12C of the carbon atom at rest;
this unit is more or less the proton mass. Precisely we have: 1u = 1.660 538 782(83) × 10−24

gr = 1
NA
(gr)where NA is the Avogadro number. Taking into account the equivalence mass-energy

we also have

1u = 1

12
MC � 931.494 MeV/c2.
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Let us now consider a two body system bound by the nuclear force, The ratio of
the strength of the nuclear force to that of the electric one is of order 105.An example
is the deuteron system which is a bound state of a proton and a neutron. In this case
we may expect a much larger binding energy and, consequently, a greater rest mass
variation. Using the values of the proton and neutron masses,

c2 m p ∼= 938.272 MeV � 1.00728 u,

c2 mn ∼= 939.566 MeV � 1.00867 u,

�E � 2.225 MeV,

it turns out that the corresponding loss of rest mass is:

�M

m p + mn
= 2.225

1877.838
= 1.18× 10−3,

that is, five orders of magnitudes greater than in the case of the hydrogen atom. This
missing rest mass (times the square of the speed of light) results in an amount of
energy which is released when the bound state is created. A similar mass defect is
present in all atomic nuclei. In fact, as the reader can easily verify, the atomic mass
of an atom, which can be read off the Mendeleev table, is always smaller than the
sum of the masses of the protons and neutrons entering the corresponding nuclei,
since they form a bound state.

2.1.2 Nuclear Fusion and the Energy of a Star

Taking into account that life on earth depends almost exclusively on the energy
released by the sun, it is of outmost importance to realize that the source of such
energy is the continuous conversion of the solar rest mass into radiation energy
and heat that we receive on the earth, through the so-called nuclear fusion; just as
for the reaction, discussed above, leading to the creation of the deuteron, nuclear
fusion essentially amounts to the formation of a bound state of nucleons (protons
and neutrons) with a consequent reduction of rest mass which is released in the
form of energy (radiation). The fact that the solar energy, or more generally, the
energy of a star, could not originate from chemical reactions, can be inferred from
the astronomical observation that the mean life of a typical star, like the sun, is of the
order of 109−1010 years. If the energy released by the sun were of chemical origin,
one can calculate that the mean life of the sun would not exceed 105−106 years. It is
only through the conversion of mass into energy, explained by the theory of special
relativity, that the lifetime of stars can be fully explained in relation to their energy
emission.
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Without entering into a detailed description of the sequences of nuclear processes
taking place in the core of a burning star (which also depend on the mass of the star),
we limit ourselves to give a qualitative description of the essential phenomenon.

We recall that after the formation of a star, an enormous gravitational pressure is
generated in its interior, so that the internal temperature increases to typical values of
106−107 K. At such temperatures nuclear fusion reactions begin to take place, since
the average kinetic energy of nucleons is large enough to overcome the repulsive
(electrostatic) potential barrier separating them. At sufficiently short distances, the
interaction between nucleons is dominated by the attractive nuclear force and nucleon
bound states can form. The fundamental reaction essentially involves four protons
which give rise, after intermediate processes, to a nucleus of Helium, 4

2 He, together
with two positrons and neutrinos:

4× 1
1 H → 4

2 He + 2e+ + 2νe. (2.30)

where e+ denotes the positron (the anti-particle of an electron) and νe the (electronic)
neutrino, their masses being respectively: me+ = me− � 0.5 MeV, mνe � 0.

(Note that ionized hydrogen, that is protons, comprise most of the actual content
of a star.)

The reaction (2.30) is the aforementioned nuclear fusion taking place in the interior
of a typical star. To evaluate the mass reduction involved in this reaction we use the
value of the mass of a 4 He nucleus, and obtain:

�M ∼= 0.0283 u = 0.0283× 931.494 MeV/c2 � 26.36 MeV/c2.

This implies that every time a nucleus of 4 He is formed out four protons, an
amount of energy of about 26.36 MeV is released.

Consider now the fusion of 1 Kg of ionized hydrogen. Since 1 mole of 1
1 H,

weighting about 1 gr, contains NA� 6.023 × 1023 (Avogadro’s number) particles,
there will be a total of ∼1.5 × 1026 reactions described by (2.30), resulting in an
energy release of:6

�E(1 Kg) = 26.36× 1.5× 1026 MeV � 3.97× 1027 MeV ≈ 6.35× 1014 J.

On the other hand, we know that a star like the sun fuses H1
1 at a rate of about

5.64 ·1011 Kg s−1, the total energy released every second by our star amounts approx-
imately to:

�E

�t
= 6.35× 1014 × 5.64× 1011 ≈ 3.58× 1026 J s−1,

This implies a reduction of the solar mass at a rate of:

6 Note that if we had a chemical reaction instead of a nuclear one, involving just the electrons of
two hydrogen atoms (H + H → H2) we would obtain an energy release of E � 2 · 106 J, which
is eight orders of magnitude smaller.
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�m

�t
= 1

c2

�E

�t
∼= 3.98× 109 Kg s−1.

Since the energy emitted over one year (= 3.2×107 s) is�Eyear � 1.1×1034 J,
the corresponding mass lost each year by our sun is�Myear � 1.3 · 1017 Kg. If this
loss of mass would continue indefinitely,7 using the present value of the solar mass,
M � 1.9× 1030 Kg, its mean life can be roughly estimated to be of the order of

T = M
�M

(years) � 1.5× 1013 years.

2.2 Space–Time and Four-Vectors

It is useful at this point to introduce a mathematical set up where all the kinematic
quantities introduced until now and their transformation properties have a natural
and transparent interpretation.

To summarize our results so far, the energy and momentum of a particle of rest
mass m moving at velocity v in a given frame S, are defined as:

• energy: E = m(v)c2 = mγ (v)c2 = m dt
dτ c2,

• momentum: p = m dx
dτ = m(v)v,

where v = dx
dt , and m(v) = m√

1− v2

c2

= m dt
dτ .

From the above definitions we immediately realize that the four quantities:
(

E

c
,p

)
≡

(
m

dt

dτ
,m

dx
dτ

)
, (2.31)

transform exactly as (c dt, dx) under a Lorentz transformation, since both m and
dτ are invariant. Thus, using a standard configuration for the two frames in relative
motion with velocity V, we may readily compute the transformation law of E, p:

p′x = m
dx ′

dτ
= mγ (V )

dx − V dt

dτ
= γ (V )

(
m

dx

dτ
− V m

dt

dτ

)
,

= γ (V )
(

px − V
E

c2

)
. (2.32)

where we have used that m dt/dτ = m γ (v) = E/c2. Furthermore we also have

p′y = py, (2.33)

7 This does not happen however, because the nuclear fusion of hydrogen ceases when there is no
more hydrogen, and after that new reactions and astrophysical phenomena begin to take place.
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p′z = pz, (2.34)

E ′

c
= mc

dt ′

dτ
= m γ (V )

c dt − V
c dx

dτ
= γ (V )

(
E

c
− V

c
px

)
, (2.35)

where we have used the property that the proper time interval, as defined in Eq. (1.75),
is Lorentz invariant: dτ ′ = dτ .

Comparing the transformation laws for the time and spatial coordinates with those
for energy and momentum, given by the (2.32), (2.33), we realize that, given the
correspondences (px , py, pz)→ (dx, dy, dz) and E/c→ c dt, they are identical

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

p′x = γ (V )
(

px − V E
c2

)

p′y = py

p′z = pz
E ′
c = γ (V )

( E
c − V

c px
)
↔

⎧
⎪⎪⎨
⎪⎪⎩

dx ′ = γ (V ) (dx − V dt)
dy′ = dy
dz′ = dz

c dt ′ = γ (V )
(
c dt − V

c dx
)
.

(2.36)
We now recall the expression of the Lorentz-invariant proper time interval, as defined
in equation (1.75):

dτ 2 = dt2 − 1

c2 |dx|2. (2.37)

From the above correspondence it follows that the analogous quantity

E2

c2 − |p|2 = m2γ (v)2 c2 − m2γ (v)2 v2 = m2c2

1− v2

c2

(
1− v

2

c2

)
= m2c2,

is Lorentz invariant as well, being simply proportional to the rest mass of the particle.
Note that the relation

E2

c2 − |p|2 = m2c2 ⇒ E =
√

p2 c2 + m2c4, (2.38)

in the non-relativistic limit becomes:

m c2 + 1

2
m v2 � m c2

(
1+ p2

2m2c2

)
⇒ 1

2
m v2 = |p|

2

2m
� p2

class.

2m
, (2.39)

in agreement with the standard relation between kinetic energy and momentum in
classical mechanics.

http://dx.doi.org/10.1007/978-88-470-1504-3_1
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2.2.1 Four-Vectors

In the previous chapter we have seen that the time and space coordinates of an event
may be regarded as coordinates (ct, x, y, z) of a four-dimensional space–time called
Minkowski space, for which we shall use the following short-hand notation

(xμ) = (x0, x1, x2, x3) = (ct, x, y, z); (μ = 0, 1, 2, 3),

The time coordinate x0 = ct has been defined in such a way that all the four
coordinates xμ share the same dimension. These coordinates can be viewed as the
orthogonal components of the position vector of an event relative to the origin-event
O(xμ ≡ 0).

Given two events A, B labeled by

xμA = (ctA, xA, yA, z A), xμB = (ctB, xB, yB , zB),

we may then define a relative position vector of B with respect to A:

�xμ = xμB − xμA = (�x0,�x1,�x2,�x3) = (c�t,�x,�y,�z).

Using this notation, the Lorentz transformation of the four coordinate differences
�xμ (or their infinitesimal form dxμ) is given, in the standard configuration, by (see
also (1.57)–(1.60) and (1.62)):

⎧
⎪⎪⎨
⎪⎪⎩

�x ′0 = γ (V )
(
�x0 − V

c �x1
)
,

�x ′1 = γ (V )
(
�x1 − V

c �x0
)
,

�x ′2 = �x2,

�x ′3 = �x3,

(2.40)

which, in matrix form, can be rewritten as:

⎛
⎜⎜⎝

�x ′0
�x ′1
�x ′2
�x ′3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

�x0

�x1

�x2

�x3

⎞
⎟⎟⎠ , (2.41)

where, as usual, β = V/c. Restricting ourselves to the standard configuration we
shall provisionally call four-vector any set of four quantities that, under a standard
Lorentz transformation, undergoes the transformation (2.36) in Minkowski space. In
particular, recalling (2.36), we see that the four quantities8

pμ = (p0, p1, p2, p3) ≡ (E/c, px , py, pz),

8 As for �xμ we define p0 = E/c so that all the four components of pμ share the same physical
dimension.

http://dx.doi.org/10.1007/978-88-470-1504-3_1
http://dx.doi.org/10.1007/978-88-470-1504-3_1
http://dx.doi.org/10.1007/978-88-470-1504-3_1
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are the components of a four-vector, the energy-momentum vector, which transforms
by the same matrix (2.41) as (�xμ). Since p0 = E/c = m γ (v) c, recalling (2.7),
the energy-momentum vector can also be written as

pμ = m
dxμ

dτ
= m γ (v)(c, vx , vy, vz) = m Uμ, (2.42)

where Uμ, called four-velocity, is also a four-vector, since the rest mass m is an
invariant.

Recall that, in (1.74) and (1.75), we defined as proper distance in Minkowski
space the Lorentz invariant quantity

�
2 = (�x1)2 + (�x2)2 + (�x3)2 − (�x0)2 ≡ −c2�τ 2. (2.43)

which is the natural extension to Minkowski space of the Euclidean three-dimensional
distance in cartesian coordinates. However in the following we shall mostly use as
space–time or four-dimensional distance9 in Minkowski space the quantity �s2 =
c2�τ 2 = −�
2, that is the negative of the proper distance. This choice is dictated
by the conventions we shall introduce in the following chapters when discussing the
geometry of Minkowski space. Thus, for example, the square of the four-dimensional
distance or norm of the four-vector �xμ is defined as

‖�xμ‖2 = (�x0)2 − (�x1)2 − (�x2)2 − (�x3)2 = c2�τ 2 = �s2. (2.44)

Note, however, that the square of the Lorentzian norm is not positive definite,
that is, it is not the sum of the squared components of the vector (see (2.43)) as
the Euclidean norm |�x|2 is. Consequently a non-vanishing four vector can have a
vanishing norm.

In analogy with the relative position four-vector, we define the norm of the energy-
momentum vector as

‖pμ‖2 = (p0)2 − (p1)2 − (p2)2 − (p3)2 = (p0)2 − |p|2 .
From (2.38) it follows that this norm is precisely the (Lorentz invariant) squared

rest mass of the particle times c2: ‖pμ‖2 = m2 c2.Using the notation of four-vectors,
we may rewrite the results obtained so far in a more compact way.

Consider once again a collision between two particles with initial energies and
momenta E1, E2 and p1,p2, respectively, from which two new particles are pro-
duced, with energies and momenta E3, E4, p3,p4. The conservation laws of energy
and momentum read:

E1 + E2 = E3 + E4,

p1 + p2 = p3 + p4.
(2.45)

If we now introduce the four-vectors pμn , n = 1, 2, 3, 4 associated with the initial
and final particles

9 Alternatively also the denominations Lorentzian or Minkowskian distance are used.

http://dx.doi.org/10.1007/978-88-470-1504-3_1
http://dx.doi.org/10.1007/978-88-470-1504-3_1
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pμn =

⎛
⎜⎜⎝

En/c
pnx

pny

pnz

⎞
⎟⎟⎠ ,

and define the total energy-momentum as the sum of the corresponding four-vectors
associated with the two particles before and after the process, we realize that the
conservation laws of energy and momentum are equivalent to the statement that the
total energy momentum four-vector is conserved. To show this we note that (2.45)
can be rewritten in a simpler and more compact form as the conservation law of the
total energy-momentum four-vector:

pμtot = pμ1 + pμ2 = pμ3 + pμ4 . (2.46)

Indeed the 0th component of this equation expresses the conservation of energy,
while the components μ = 1, 2, 3 (spatial components) express the conservation of
linear momentum. Note that for each particle the norm of the four-vector gives the
corresponding rest mass:

‖pμn ‖2 =
(

En

c

)2

− |pn|2 = m2
n c2.

Until now we have restricted ourselves to Lorentz transformations between frames
in standard configuration. For next developments it is worth generalizing our setting
to Lorentz transformations with generic relative velocity vector V, however keeping,
for the time being, the three coordinate axes parallel and the origins coincident
at the time t = t ′ = 0. Consider two events with relative position four-vector
�x ≡ (�xμ) = (c�t, �x) with respect to a frame S. We start decomposing the
three-dimensional vector �x as follows

�x = �x⊥ +�x‖,

where �x⊥ and �x‖ denote the components of �x orthogonal and parallel to V,
respectively. Consider now the same events described in a RF S′ moving with respect
to S at a velocity V. It is easy to realize that the corresponding Lorentz transformation
can be written as follows

�x′ = �x⊥ + γ (V )
(
�x‖ − V� t

)
, (2.47)

�t ′ = γ (V )
(
�t − �x · V

c2

)
. (2.48)

Indeed they leave invariant the fundamental (1.49) or, equivalently, the proper
time (and thus the proper distance)

c2�t ′2 − |�x′|2 = c2�t2 − |�x|2. (2.49)

http://dx.doi.org/10.1007/978-88-470-1504-3_1
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Writing �x⊥ = �x −�x‖, γ (V ) ≡ γ and using the variables �x0 = c�t and
β = V

c , (2.47) become:

�x′ = x + (γ − 1)�x‖ − γ β�x0, (2.50)

�x ′0 = γ
(
�x0 −�x · β

)
. (2.51)

Recalling that the four-vector p ≡ (pμ) = ( E
c ,p) transforms as x ≡ (xμ) =

(ct, x), we also obtain

p′ = p+ (γ − 1)p‖ − γ V
E

c2 , (2.52)

E ′ = γ (E − p · V) , (2.53)

and since p = m(v)v = E
c2 v, the energy transformation (2.53) can be written as

follows:

E ′ = γ
(

E − v · V
c2 E

)
. (2.54)

Observing that the vector �x‖ can also be written as β·�x
|β|2 β, the matrix form

corresponding to (2.50) and (2.51), is

⎛
⎜⎜⎝

�x ′0
�x ′1
�x ′2
�x ′3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

γ −γβ1 −γβ2 −γβ3

−γβ1 1+ (γ−1)
|β|2 β

1β1 (γ−1)
|β|2 β

1β2 (γ−1)
|β|2 β

1β3

−γβ2 (γ−1)
|β|2 β

2β1 1+ (γ−1)
|β|2 β

2β2 (γ−1)
|β|2 β

2β3

−γβ3 (γ−1)
|β|2 β

3β1 (γ−1)
|β|2 β

3β2 1+ (γ−1)
|β|2 β

3β3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

�x0
�x1
�x2
�x3

⎞
⎟⎟⎠.

(2.55)

In the following we shall use the following abbreviated notation for the matrix (2.55)

�′μν =
(

γ −β jγ

−β iγ δi j + (γ − 1)β
iβ j

|β|2

)
(2.56)

where i, j = 1, 2, 3 label the rows and columns of the 3 × 3 matrix acting on the
spatial components x1, x2, x3, and

β i = vi

c
⇒ γ = 1√

1− β2
,

where we have defined β ≡ |β|.
In Chap. 4 it will be shown that the most general Lorentz transformation �μν,

μν = 0, 1, 2, 3 is obtained by multiplying the matrix �′μν by a matrix R ≡ (Rμν)

http://dx.doi.org/10.1007/978-88-470-1504-3_4
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R =
(

1 0
0 Ri

j

)
(2.57)

where the 3×3 matrix Ri
j describes a generic rotation of the three axes (x, y, z). It is

in terms of this general matrix that the notion of four-vector is defined: A four-vector
is a set of four quantities that under a general Lorentz transformation transform with
the matrix �μν. For example �xμ and pμ are both four-vectors; in fact they have
the same transformation law under a general Lorentz transformation

p′μ =
3∑

ν=0

�μν pν .

�x ′μ =
3∑

ν=0

�μν �xν . (2.58)

To simplify our notation, let us introduce the Einstein summation convention:
Whenever in a formula a same index appears in upper and lower position,10 sum-
mation over that index is understood and the two indices are said to be contracted
(or dummy) indices.11 Using this convention, when we write for instance �μν pν,
summation over the repeated index ν will be understood, so that:

�μν pν ≡
3∑

ν=0

�μν pν .

Using (2.58) it is now very simple to show in a concise way that the conservation
of total momentum P implies the conservation of the total energy E and viceversa.

Let us consider the collision of an isolated system of N particles each having
a linear momentum pi

n, i, j = 1, 2, 3 and let us denote by Pi ≡ ∑N
n=1 pi

n their
total momentum. For each i = 1, 2, 3 the change �Pi of the total momentum
Pi ≡∑N

n=1 pi
n occurring during the collision will be:

�Pi ≡
(∑

n

pi
n

)

f in

−
(∑

n

pi
n

)

in

. (2.59)

We assume that the total momentum is conserved in a certain frame, say S,
that is:

�Pi = 0, ∀i = 1, 2, 3, (2.60)

10 So far the position of indices in vector components and matrices has been conventionally fixed.
We shall give it a meaning in the next Chapters.
11 We observe that contracted indices, being summed over, can be denoted with arbitrary symbols
over, for example �μν pν ≡ �μρ pρ .
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and carry out a Lorentz transformation to a new frame S′. Taking into account that
the momentum of each particle transforms as

p′in = �i
j p j

n +�i
0 p0

n, (2.61)

in the new frame S′ the change of the total momentum is:

�P ′i =
(∑

n
p′in

)

f in

−
(∑

n
p′in

)

in

= �i
j

⎡
⎣

(∑
n

p j
n

)

f in

−
(∑

n
p j

n

)

in

⎤
⎦

+�i
0

⎡
⎣

(∑
n

p0
n

)

f in

−
(∑

n
p0

n

)

in

⎤
⎦ , (2.62)

where Einstein’s summation convention is used and summation over the repeated
index j = 1, 2, 3 is understood. Since the first term in squared brackets on the right
hand side of (2.62) is zero by hypothesis, �Pi = 0, requiring conservation of the
total momentum in S′, �P ′i = 0, implies:

(∑
n

p0
n

)

f in

=
(∑

n

p0
n

)

in

, (2.63)

that is, since

∑
n

p0
n = c

∑
mn(v) = Etot

c
, (2.64)

the total mass, or equivalently the total energy, must be also conserved.
Viceversa, if we start assuming the conservation of energy

∑
n p0

n =
∑

n En/c,
in S and write, for each n,

p0′
n = �0

i pi
n +�0

0 p0
n, (2.65)

the same Lorentz transformation gives:

1

c
�E ′tot. =

(∑
n

p′0n

)

f in

−
(∑

n

p′0n

)

in

= �0
j

⎡
⎣

(∑
n

p j
n

)

f in

−
(∑

n

p j
n

)

in

⎤
⎦

+�0
0

⎡
⎣

(∑
n

p0
n

)

f in

−
(∑

n

p0
n

)

in

⎤
⎦ . (2.66)

The second term in squared brackets on right hand side is�Etot/c and is is zero,
by assumption; Being �0

j the three components of a arbitrary vector for arbitrary
relative motions between the two frames, each of their coefficients must vanish
separately. We then conclude that the energy is conserved in S′ if and only if also the
total linear momentum is.
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The notion of four-vector can be also used to generalize the relativistic vector
(2.15) in a four-vector notation. Recalling the invariance of the proper time interval,
we may also define the force four-vector or four-force as:

f μ ≡ d Pμ

dτ
. (2.67)

To understand the content of this equation, let us consider, at a certain instant, an
inertial reference frame S′ moving at the same velocity as the particle. In this frame
the particle will thus appear instantaneously at rest (the reason for not considering
the rest frame of the particle, namely the frame in which the particle is constantly
at rest is that such frame is, in general, accelerated, and thus not inertial). We know
from our discussion of proper time that dτ coincides with the time dt ′ in the particle
frame S′ so that (2.67) becomes:

f ′0 = m
d2x ′0

dt ′2
= mc

d2t ′

dt ′2
≡ 0 (2.68)

f ′i = m
d2x ′i

dt ′2
≡ Fi , (2.69)

where we have used dt ′ = dτ. It follows that in S′ f ′0 ≡ 0 so that (2.69) becomes
the ordinary Newtonian equation of classical mechanics. To see what happens in a
generic inertial frame S, we perform a Lorentz transformation from S′ to S and find:

f μ =
3∑

ν=0

�μν f ′ν =
3∑

i=1

�μi f ′i ≡
3∑

i=1

�μi Fi . (2.70)

The content of this equation is better understood by writing its time (μ = 0) and
spatial (μ = i) components separately:

f 0 = �0
i Fi = γ

c
v · F, f i =

3∑

j=1

�i
j f ′ j =

3∑

j=1

�i
j F j

=
3∑

j=1

(
δi

j + (γ − 1)
vi v j

v2

)
F j ≡ Fi + (γ − 1)

vi

v2 v · F, (2.71)

v being the velocity of the particle.
We observe that the expression v · F on the right hand side of the first of (2.71),

is the power of the force F acting on the moving particle. The time component of
(2.67) then reads

f 0 = d P0

dτ
= γ

c

d E

dt
≡= γ

c
v · F, (2.72)

and is the familiar statement that the rate of change of the energy in time equals the
power of the force.



2.2 Space–Time and Four-Vectors 61

If no force is acting on the particle the equation of the motion reduces to:

d Pμ

dτ
= 0, (2.73)

or, using (2.42),

dUμ

dτ
= d2xμ

dτ 2 = 0, (2.74)

Being dτ =
√

1− v2

c2 dt, it is easy to see that this equation implies v = const.
Thus (2.74) is the Lorentz covariant way of expressing the principle of inertia.

2.2.2 Relativistic Theories and Poincaré Transformations

We have seen that the conservation of the four-momentum and equation (2.67) defin-
ing the four-force are equations between four-vectors and therefore they automati-
cally satisfy the principle of relativity being covariant under the Lorentz transforma-
tions implemented by the matrix � ≡ (�μν). It follows that the laws of mechanics
discussed in this chapter, excluding the treatment of the gravitational forces, satisfy
the principle of relativity, implemented in terms of general Lorentz transformations.

We may further extend the covariance of relativistic dynamics by adding trans-
formations corresponding to constant shifts or translations

x ′μ = xμ + bμ, (2.75)

bμ being a constant four-vector. This transformation is actually the four-dimen-
sional transcription of time shifts and space translations already discussed for the
extended Galilean transformations (1.15). However, differently from the Galilean
case, there is no need in the relativistic context to add three-dimensional rotations,
since, as mentioned before, they are actually part of the general Lorentz transforma-
tions implemented by the matrix �.

It is easy to realize that the four-dimensional translations do not affect the proper
time or proper distance definitions, nor the fundamental equations of the relativistic
mechanics, (2.46) and (2.67).

We conclude that relativistic dynamics is covariant under the following set of
transformations

x ′μ = �μν xν + bμ. (2.76)

This set of transformations is referred to as Poincaré transformations. Both the
Lorentz and Poincaré transformations will be treated in detail in Chap. 4. Furthermore
in Chap. 5 it will be shown that also the Maxwell theory is covariant under (2.76),

http://dx.doi.org/10.1007/978-88-470-1504-3_1
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_5
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thus proving that the whole of the relativistic physics, namely relativistic dynamics
and electromagnetism, is invariant under Poincaré transformations.

One could think that the invariance under translations and time shifts should not
play an important role on the interpretation of a physical theory. On the contrary
we shall see that such invariance implies the conservation of the energy and momen-
tum in the Galilean case and of the four-momentum in the relativistic case (see
Chap. 8).

Reference

For further reading see Refs. [1, 11, 12]
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Chapter 3
The Equivalence Principle

3.1 Inertial and Gravitational Masses

In this section we discuss the principle of equivalence. We shall see that, besides
allowing the extension of the principle of relativity to a generic, not necessarily
inertial, frame of reference, it allows to define gravity, in a relativistic framework, as
a property of the four-dimensional space–time geometry.

The principle of equivalence, in the so-called weak form, asserts the exact equiv-
alence between the inertial mass m I and the gravitational one mG . We recall that
the inertial mass m I is defined through Newton’s second law of dynamics:

F = m I a. (3.1)

Its physical meaning is, as is well known, that of inertia of a body, that is its reluctance
to be set in motion or, more generally, to change its velocity. The gravitational mass
mG, on the other hand, enters the definition of Newton’s universal law of gravitation
according to:

F = −G
mG MG

r2 ur (3.2)

where G = 6.6732× 10−11 Nm2/Kg2 is the gravitational constant, mG and MG are
the gravitational masses of the two attracting bodies.1 For definiteness we refer to the
situation where the mass MG attracts the mass mG .We see that the gravitational mass
sets the strength of the gravitational force that, ceteris paribus, a given body exerts on
another one. In this sense it would better deserve the name of gravitational charge,
in analogy with Coulomb’s law of the electrostatic interaction, where the electric
charge sets the strength of the electric interaction, the mathematical structures of the
two laws being exactly the same.

1 It goes without saying that we are referring to two spherical bodies or to bodies whose dimensions
are negligible with respect to their distance r.
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However, besides the enormous quantitative difference between the strengths of
gravitational and electrostatic forces2 there is a major qualitative difference between
them: While any two bodies have mass, they do not necessarily have charge. As a
consequence the gravitational force is universal, while the electric force is not.

It is important to note that the equality between inertial and gravitational mass,
expressed by the principle of equivalence, is in some sense surprising, given the sub-
stantial difference between these two physical concepts, which reflects into different
operational definitions of their respective measures.

It is, however, one of the best established results from the experimental point
of view.

Indeed a large number of experiments were devised, since Newton’s times, to
ascertain the validity of this unexpected coincidence; among them, of particular
importance from a historical point of view is the Eötvos experiment, of which we
give a short description in Appendix A. The precision reached in this experiment
is such that �m

m I
≡ |mG−m I |

m I
, is less than 2 × 10−3. Thanks to the advanced tech-

nological features of modern experimental physics, the above ratio has been pushed
to less than 10−15. This justifies the theoretical assumption of the exact equality
between inertial and gravitational mass:

m I = mG, (3.3)

that is the principle of equivalence in its weak form, can be safely assumed as one of
the experimentally best established principles of theoretical physics.

The great intuition Einstein had at the beginning of last century, was to realize the
considerable importance of this seemingly curious “coincidence”, since it implies
that locally, it is impossible to distinguish between the effects of a gravitational field
and those of an accelerated frame of reference.

To justify such a conclusion we illustrate a so-called “Gedankenexperiment”, that
is a conceptual experiment, originally formulated by Einstein to be performed in a
frame of reference attached to an elevator; in our era of space journeys, it seems
however more appropriate to update this experiment by replacing Einstein’s elevator
with a spaceship. Note that the time duration of the experiment inside the spaceship,
together with its spatial extension, define a four-dimensional region of space–time. In
the following we shall moreover restrict ourselves to the framework of the Newtonian
theory of gravitation.

Let us now describe this conceptual experiment, in the following four steps:

(i) Suppose the spaceship, to be simply referred to by A, is initially placed, with the
engines turned off, in a region of space which is far enough from any celestial
body for the net gravitational force acting on it to be negligible. By definition
this is an inertial frame of reference. If a physicist performs experiments within
the spaceship, he will find that all bodies (if not subject to other kind of forces)
move in a rectilinear uniform motion, according to Galileo’s principle of inertia.

2 We recall that the ratio between the electric and gravitational forces between two protons is of the
order of 1038.



3.1 Inertial and Gravitational Masses 65

(ii) Let us assume next that, at some stage, the spaceship reaches the proximity of
a planet, and thus becomes subject to a gravitational acceleration of the form:

g(r) = −G
M

r2 ur, (3.4)

M being the (gravitational) mass of the planet.
In the presence of such an attraction A starts orbiting around the planet,

thus becoming an accelerated frame of reference. The accelerated frame of
reference defined by any massive body which is not subject to forces other than
gravity is usually referred to as a free falling frame. Our spaceship A orbiting
around the planet, is an example of a free falling frame. In this situation an
observer inside A still finds that all bodies execute an inertial motion: Indeed,
the same acceleration g(r), acting on the frame A, also acts on each body inside
of it. It follows that the motion of bodies in A is inertial with respect to the
spaceship itself, since their relative acceleration with respect to A is zero.

Since in both cases (i) and (ii) the motion inside A is of the same kind, that
is inertial, there is no way an observer in the spaceship can distinguish between
the two situations. We conclude that:

It is not possible through experiments performed in the interior of A to tell
whether it is a free falling frame or an inertial one.3

(iii) Consider again the spaceship A in a region far from any celestial body, and
suppose that now, in contrast to case (i), its engines are turned on, thus producing
an acceleration aR which is uniform all over the spaceship and constant in time.
Since now A is accelerated, all bodies inside of it fall with the same acceleration
a′ = −aR, where a′ and aR are the accelerations with respect to A and the
relative acceleration of A with respect to an inertial system, respectively.

(iv) Finally consider the situation in which the spaceship is at rest on a massive
body (for example the earth) which creates a gravitational field of acceleration
g; because of the equality between inertial and gravitational masses, all bodies
inside A fall with the same acceleration g.

Comparing these two last examples, we see the an observer inside the space-
ship cannot tell whether he is in case (iv), where the observed acceleration is
due to a gravitational field and his frame of reference is inertial, or in case (iii)
where his frame of reference is accelerated by the engines of the spacecraft
with acceleration aR = −g with respect to an inertial frame. We conclude that:
It is not possible, through experiments performed in the interior of A, to dis-
tinguish an inertial frame in the presence of a gravitational field from an
accelerated system of reference.

The previous discussion seems to lead to the conclusion that a perfect equivalence
exists between the effects of a gravitational field as observed in an inertial frame of
reference and those observed in an accelerated frame. This may seem very strange:

3 The inertial motion inside a free falling system is a well known fact nowadays, think about the
absence of weight of astronauts inside orbiting spacecrafts.
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A gravitational field after all has its sources in the massive bodies where the field
lines converge, and its intensity is a decreasing function of the distance from them,
vanishing at infinity. The lines of force of the acceleration field a′, on the contrary,
are not converging and do not fall down to zero at infinity.

In fact, as we shall now show, a more accurate and quantitative discussion of
the “Gedankenexperiment” examined above, shows that the assumed equivalence
between gravitational field and non-inertial frames, holds only if we restrict ourselves
to events taking place in a small space region and during a small time interval, that
is, mathematically, in an infinitesimal region of space–time.

To clarify this point, let us examine the situations described in points (i) and
(ii) in some more detail. It is not difficult to realize that the supposed equivalence
between the free falling frame and the inertial system holds only in the limit where
the acceleration g(r) can be regarded as uniform in the interior of A, that is only if:

g(r) � g(r0), (3.5)

where r0 is the barycenter of the spaceship.
Suppose indeed we have a system of particles of masses m1,m2 . . .m N in a

gravitational field, g, each obeying its own equation of motion; let us now rewrite the
equation of motion of, say, the kth-particle (3.1), in an accelerated frame S′ having
a relative acceleration aR with respect to an inertial frame S.4 One has:

mG(k)g(rk) = m I (k)
(
a′k + aR

)
(3.6)

where a′k is the acceleration of the particle in the frame S′. In particular, if S′ is the
free falling system, we have:

aR = g(r0), (3.7)

so that (3.6) becomes:

mG(k)g(rk)− m I (k)g(r0) = m I (k)a′k . (3.8)

The discussion made in points (i) and (ii) holds provided we use the approximation
(3.5), g(rk) � g(r0), that is we consider a sufficiently small neighborhood of the
center of mass of A, such that the gravitational acceleration can be approximated by
a constant vector and higher order effects in the distance |rk − r0| can be neglected.
In this case taking into account the principle of equivalence, mG(k) = m I (k), from
(3.8) it follows:

a′k � 0. (3.9)

This more accurate analysis implies that the equivalence between the free falling
frame and the inertial frame described in the former two experiments only holds

4 We recall that the relative acceleration aR is given in general by the sum of three terms, the
translation acceleration a′, the centripetal acceleration a(centr), and the Coriolis acceleration a(Cor).



3.1 Inertial and Gravitational Masses 67

locally, that is in an infinitesimal neighborhood where, up to higher order terms,
(3.5) is valid. The previous discussion can be made more general by assuming that,
besides the interaction with the gravitational field, the particles are also subjected
to reciprocal non gravitational forces Fkl . In this case let us write the equation of
motion of the kth particle in an inertial frame where a gravitational field g is present:

mGkg(rk)+
∑

l �=k

Fkl(|rk − rl |) = m I k
d2rk

dt2 . (3.10)

We may write the corresponding equation in the free falling system through the
coordinate transformation

r′ = r − 1

2
gt2. (3.11)

In the same hypotheses made before, namely assuming (3.5), which implies
g = const. and (3.3), (3.10) takes the following form:

∑

l

Fkl(|r′k − r′l |) = m I k
d2r′k
dt2 , (3.12)

which is the equation of motion of classical mechanics in the absence of a gravita-
tional field.

As far as the other two situations (iii) and (iv) are concerned, it is clear that also
in this case the equivalence only holds if the approximation (3.5) is used, that is only
locally, since the gravitational field would in general be a function of the point inside
the spaceship, while the field of accelerations is, at each instant, exactly uniform.

Let us recall that our analysis so far has been made within the framework of clas-
sical Newtonian mechanics, without any reference to the implications of Einstein’s
special relativity. If we now assume that the statement of the local equivalence
between an inertial frame of reference in a gravitational field and an accelerated one
also holds in the framework of relativistic mechanics, described in Chap. 2, then we
may reformulate the conclusions of points (i) and (ii), as follows:

In the presence of a gravitational field, locally, the physical laws observed in a free
falling frame are those of special relativity in the absence of gravity. As explained
above, locally means, mathematically, in an infinitesimal neighborhood or, more
physically, in a sufficiently small neighborhood of a point such that, up to higher
order terms, the approximation (3.5) holds.

The previous statement is referred to as the equivalence principle in its strong
form or simply strong equivalence principle.

In particular we see that when gravitation is included in the description of physi-
cal systems, if the strong equivalence principle is assumed to hold, the special role
played by inertial frames is lost, since frames of reference which are rigorously
inertial only exist in infinitesimal regions of space–time. Moreover, since acceler-
ation and gravitation are locally indistinguishable it is reasonable to assume that

http://dx.doi.org/10.1007/978-88-470-1504-3_2
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the physical laws should take the same form also in non-inertial frames, or, in other
words, to require that the principle of relativity be valid not only in inertial frames, but
more generally, in every frame of reference, described by generic four-dimensional
coordinate systems. Recall indeed that we restricted ourselves, in the first chapter,
to coordinate transformations which were linear, since we were only interested in
inertial frames of references (endowed with three-dimensional Cartesian coordinate
systems).5 Anticipating concepts to be introduced in next chapter, this characterizes
the four-dimensional coordinate system associated with inertial frames of reference
to be Cartesian or rectilinear. Extending our analysis to non-inertial frames implies
considering general (four-dimensional) coordinate systems, related to one another
by non-linear transformations: Transformations to arbitrary accelerated frames of
reference are described by arbitrary transformations of the four coordinates labeling
space–time. It follows that in order to implement the principle of relativity on the
laws of physics, in the presence of gravitation, we must require these to have the
same form in any frame of reference, so that they be covariant under general coor-
dinate transformations, i.e. arbitrary changes of coordinates with a non-vanishing,
coordinate-dependent, Jacobian:

xα′ = f α(x0 ≡ ct, x1, x2, x3). (3.13)

Summarizing, while in the special theory of relativity, where the gravitational inter-
action is not taken into account, the physical laws were required to be covariant only
under the linear Lorentz transformations, relating inertial frames, in the presence of
gravity the implementation of the principle of relativity requires that:

The laws of the Physics be covariant under general coordinate transformations
(3.13).

Note that covariance under general coordinate transformations means, as we
discussed in the case of the Lorentz transformations, that the equations describing
the physical laws have exactly the same form, albeit in the transformed variables, in
every coordinate system.

In other words: A theory including a treatment of the gravitational field must be
generally covariant.

It is really amazing that this conclusion, assumed by Einstein as the starting point
for a relativistic theory of gravitation, can be drawn simply from the principle of
equivalence, that is the equality between inertial and gravitational masses.

Because of its general covariance the relativistic theory of gravitation is called
general theory of relativity.

5 Linearity was then a consequence of the requirement that the principle of inertia holds in both the
old and the transformed frames: A motion which is uniform with respect to one of them cannot be
seen as accelerated with respect to the other.
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Fig. 3.1 Tidal forces

3.2 Tidal Forces

We have seen that it is always possible to locally eliminate the effects of a gravitational
field by using a free falling frame. It is then extremely important to examine those
effects of a gravitational field which cannot be eliminated in the free falling frame,
that is which manifest themselves when we go beyond the crude equivalence implied
by the approximate relation (3.5).

In the present section we shall work purely in the classical limit, that is with no
reference to the corrections implied by special relativity, and show that what remains
of a gravitational force in the free falling frame are the tidal forces, see Fig. 3.1.

Let us start indeed from equation (3.8) which, in the classical case, assuming
mI = mG, contains no approximations:

g(r)− g(r0) = a′, (3.14)

the position vector r defining a generic point in a neighborhood of r0. We shall also
denote by h = r − r0 = (hi ) the relative position vector between the two points,
with components hk ≡ xk − xk

0 , where k = 1, 2, 3 and (xk) ≡ (x, y, z), (xk
0 ) ≡

(x0, y0, z0) (see Fig. 3.2).
Let us compute, to the first order in hk, the i-th component of the gravitational

acceleration in the free falling frame. From (3.14) it follows:

ai ′ =
3∑

k=1

∂gi

∂xk

∣∣∣∣
h=0

hk ≡ −
3∑

k=1

∂2φ

∂xk∂xi

∣∣∣∣
h=0

hk + O(|h|2). (3.15)

where i = 1, 2, 3 and φ denotes the gravitational potential.
Taking into account that

gi = − ∂φ
∂xi
= −G

Mxi

r3 , (3.16)
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Fig. 3.2 Coordinates

equation (3.15) becomes:

ai ′ = −G
M

r3
0

3∑

k=1

(
δik − 3

xi
0xk

0

r2
0

)
hk . (3.17)

The acceleration field a′ ≡ (ai ′),defined in (3.17), is the remnant, to order O(|h|),
of the gravitational field in the free falling frame. We see that it is essentially given by
the gradient of the gravitational field and is called the tidal field. Correspondingly,
the force f = ma′ of the tidal field, acting on a given mass m, is the tidal force.

We stress that all these considerations have been obtained using the classical
Newtonian formula for the gravitational field which is both static and non-relativistic.

In order to show what the effect of tidal forces on an extended body is, let us
consider two bodies, say A and B, subject to their mutual gravitational interaction,
and let us assume that A is free falling in the gravitational field of B, like for instance
an orbiting satellite. We also assume, for the sake of simplicity, that the free falling
body A is spherical. We call S′ the frame of reference attached to A and S the one
attached to B. Let the origin of S′ coincide with the barycenter r0 of A, the z′-axis
coincide with direction joining r0 to the center of mass of the attracting body B and
the x ′ and y′-axes lie, as usual, in the plane orthogonal to the z′-axis (see Fig. 3.2).

With reference to this configuration we observe that x3
0 ≡ z0 ≡ r0, so that (3.17)

gives:

f z′ = 2G
Mm

r3
0

hz′, (3.18)

f x ′ = −G
Mm

r3
0

hx ′, (3.19)
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f y′ = −G
Mm

r3
0

hy′, (3.20)

that is, in matrix notation:

⎛
⎝

f x ′
f y′
f z′

⎞
⎠ = m

⎛
⎜⎜⎝

−G M
r3

0
0 0

0 −G M
r3

0
0

0 0 2G M
r3

0

⎞
⎟⎟⎠

⎛
⎝

hx ′
hy′
hz′

⎞
⎠ , (3.21)

where the entries of the matrix on the right hand side are ∂gi/∂xk computed in r0.

From (3.18) it follows that f z′ is attractive or repulsive according to the sign of
hz′; that is, referring to Fig. 3.1, it points downwards on the part of the body facing
B (z′ > 0), and upwards on the opposite side (z′ < 0). The two horizontal compo-
nents f x ′ e f y′, instead, are always attractive, that is they are directed towards the
origin of S′. The net result is an outward stress acting along the line joining A and B
and an inward stress on the horizontal planes z′ = const.

Tidal forces can be very strong in the astrophysical phenomena; for example
the tidal forces exerted by the greatest planets of the solar system on their satellites
induce a tidal heating due to the consequent internal friction; in the case of the Jupiter
satellite Io this results in dramatic volcanic eruptions.6

In the case of a deformable body, tidal forces deform a spherical body to the
shape of an ellipsoid, the major axis lying along the A-B direction. This is in fact
what happens in the case of the earth where the corresponding phenomenon, induced
by the moon, gives rise to the ordinary oceanic tides, whence the denomination tidal
forces has its origin.

We may indeed think of the earth as the body A in free fall on the gravitational
field of the moon, the body B. The “thin” layer represented by the oceans covering
the earth’s surface is indeed deformable. It follows that on the side facing the moon
and on the opposite side tidal forces give rise to high tides, while in the directions
perpendicular to the line earth-moon tidal forces produce low tides (Fig. 3.1). Because
of the bipolar character of these bulges and compressions, the periodicity of tides is
of 12 h. We may make a crude estimation of the tidal size on the earth.

First we observe that tidal forces are conservative. Indeed from equations (3.18),
(3.19), (3.20) it follows that the associated tidal potential energy is:

EP = −G ML mT

r3
0

(
z′2− 1

2
x ′2− 1

2
y′2

)
= −G ML mT

r3
0

(
−1

2
R2 + 3

2
z′2

)

= −G ML mT

r3
0

R2
(

3 cos2 θ − 1

2

)
, (3.22)

where we have introduced spherical coordinates with origin on the center of the earth
(see Fig. 3.2), R being its radius, θ the latitude and we have denoted by ML , mT , r0,

the moon’s mass, the earth’s mass and the earth-moon distance, respectively.

6 In the proximity of the event horizon of a black hole tidal forces are so strong as to completely
disintegrate any body falling inside.
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The total potential energy of a water particle is obtained as the sum EP + mgh,
where mgh is the potential energy of the terrestrial attraction. At the equilibrium the
form of the oceans’ equipotential surface is determined by the condition:

Etot
P = mgh − G MLmT

r3
0

R2
(

3 cos2 θ − 1

2

)
= cost. (3.23)

Equation 3.23 implies h = h(θ); the difference in height between high (θ = 0) and
low (θ = π

2 ) tides turns out to be:

�h ≡ h(0)− h(π/2) = 3G Ml

2gr3
0

R2 � 53 cm. (3.24)

If the gravitational pull of the sun is also taken into account, one finds an additional
contribution about half as large as the previous one.7

3.3 The Geometric Analogy

In this section we try to explain how the equivalence principle discussed in the previ-
ous section naturally leads to a modification of the space–time geometry, described
in special relativity by the Minkowski space. To this end we need to anticipate part
of the discussion of next chapter.

We begin by recalling that in Euclidean geometry the distance between two points
P1 e P2, which is invariant under rotations and translations of the Cartesian coordi-
nate system, can be written as8

�	2 = (�ξ1)2 + (�ξ2)2 + (�ξ3)2 =
∑

i, j

δij�ξ
i�ξ j , (3.25)

if and only if we are using Cartesian (rectangular) coordinates ξ i . By Cartesian
(rectangular) coordinates we mean rectangular (or rectilinear) coordinates, which, in
studying Euclidean geometry, are defined throughout the space. This is possible only
if the geometry is Euclidean, that is the properties of figures, the notion of parallelism
and so on are those derived by Euclid’s axioms.

In (3.25) we have adopted the following notation:

δij = 1 i = j,

δij = 0 i �= j,
(3.26)

7 This crude estimate must be considered, together with the correction due to the sun, just a mean
value. It does not take into account resonance phenomena due to the earth rotation and the shape
of the oceanic depths which can locally alter in a sensible way the rough computation leading to
(3.24).
8 In this section only we denote by ξ i the Cartesian coordinates, while the notation xi is used for
generic curvilinear coordinates.
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that is, in matrix notation:

(δij) =
⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠ (3.27)

The Kronecker symbol δij defines the so called metric tensor
If we adopt the Einstein convention that repeated indices are summed over, then

(3.25) can be written as follows:

�	2 =
∑

i, j

δij�ξ
i�ξ j ≡ δij�ξ

i�ξ j , (3.28)

or, if the two points are infinitesimally apart,

d	2 = δijdξ
i dξ j . (3.29)

It is clear that the same considerations and formalism hold if the Euclidean space
has a generic number D of dimensions; in this case the indices i, j, . . . would run
over D values instead of only three.

As we have already remarked in Sect. 1.5 of the first chapter, there is a close
analogy between the four-dimensional distance in Minkowski space–time and the
Euclidean distance (3.28) in D = 4 dimensions. Indeed the four-dimensional
distance between two events9 labeled by the four coordinates ξ0, ξ1, ξ2, ξ3 was
written as10:

�s2 = c2�τ 2 = (�ξ0)2 − (�ξ1)2 − (�ξ2)2 − (�ξ3)2 =
∑
α,β

ηαβ�ξ
α�ξβ

≡ ηαβ�ξα�ξβ (α, β = 0, 1, 2, 3) (3.30)

that is in a way which is strictly analogous to the four-dimensional Euclidean
distance, the only difference being the replacement of the metric δij with the
Minkowski metric ηαβ:

ηαβ =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , (3.31)

where the extra fourth coordinate is related to time, ξ0 = ct. We stress that these
simple expressions of distance in Euclidean space or proper distance in Minkowski

9 Recall that the space–time (four-dimensional) distance was conventionally defined as the negative
of the proper distance, see (2.44).
10 From now on, we use Greek indices to label four dimensional space-time coordinates and Latin
ones for the coordinates in Euclidean space.

http://dx.doi.org/10.1007/978-88-470-1504-3_1
http://dx.doi.org/10.1007/978-88-470-1504-3_2
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case, are only valid if we use the three-dimensional Cartesian rectangular or the anal-
ogous four-dimensional Cartesian rectangular (also referred to as Minkowskian11)
coordinates ξα,the latter being defined rectangular as the coordinates used to describe
inertial frames in terms of the spatial Cartesian rectangular coordinates and the usual
time coordinate t. In any other coordinate system, not related by a three-dimensional
rotation or a Lorentz transformation, respectively, the Euclidean distance (3.28) or
the Minkowski proper distance (3.30) would take a more complicated form.

Suppose indeed that in the Euclidean case we want to use an arbitrary system of
curvilinear coordinates xi , i = 1, 2, 3 (an example would be the spherical polar
coordinates); we would then have:

ξ i = ξ i (x j ). (3.32)

In these new coordinates the infinitesimal distance (3.30) becomes:

d	2 = δij
∂ξ i

∂xk

∂ξ j

∂x	
dxkdx	

.= gk	dxkdx	, (3.33)

where

gk	 = δijV
i
k V j

	 , (3.34)

being:

V i
k
.= ∂ξ i

∂xk
. (3.35)

The dimensionless quantity gk	(x), replacing δij in the formula for the squared dis-
tance, is called metric tensor or, more simply, metric12 in curvilinear coordinates.

It is obvious that all the geometric quantities of Euclidean geometry (lengths,
angles, areas, etc) do not depend of the particular coordinates used for their descrip-
tion. However it is well known that in general it is much simpler to compute geometric
quantities using Cartesian coordinates, rather than the curvilinear ones.13

The same considerations would of course apply to Minkowski space–time in spe-
cial relativity, if we were to use arbitrary “curvilinear” four-dimensional coordinate
frames. The physical interpretation in this case would be the following: Since an
arbitrary change of coordinates would correspond to arbitrary functions of the origi-
nal Minkowski coordinates ξ0 ≡ ct, ξ1, ξ2, ξ3, the new frame of reference cannot be

11 We shall call Minkowskian the Cartesian rectangular coordinates in the four-dimensional
Minkowski space–time, with metric (3.31).
12 Here and in the following of this chapter we use the word tensor, whose precise meaning will be
given in Chap. 4, in a loose sense, that is as a quantity carrying indices and whose transformation
properties are fixed in terms of the change of coordinates (or of reference frame). In this chapter
the transformation of coordinates considered are either cartesian orthogonal, or Lorentzian or even
arbitrary, as explained below.
13 When dealing with problems which exhibit some degree of symmetry it may, however, be more
useful to use curvilinear coordinates, like spherical, cylindrical, etc.

http://dx.doi.org/10.1007/978-88-470-1504-3_4
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inertial since the transformation is, in general, not linear as it is the case for Lorentz
transformations. It then follows that the new coordinate system (xμ) must corre-
spond to an accelerated frame of reference. Moreover, as it happens in the Euclidean
case, instead of a constant Minkowski metric ηαβ we would end up with a met-
ric tensor depending on the four coordinates xμ = x0, x1, x2, x3. This, of course,
would not change the physical laws, but only describe them in a more general, albeit
cumbersome, way.

Given these preliminaries we now define a space, or a space–time as flat if there
exists a special class of coordinates such that the metric assumes a constant value in
a finite or infinite domain of the space or space–time. In Euclidean and Minkowski
spaces this special class is given by the Cartesian coordinates (in particular the
Minkowski coordinates of special relativity), any two elements of this class being
related by a combination of rotations and translations in Euclidean space or of Lorentz
transformations and translations in Minkowski space. Note that the computation
in generic curvilinear coordinates of geometric quantities or of physical laws in
Euclidean or Minkowskian flat space, respectively, would involve the use of the
metric gμν(xρ), that is of a matrix whose elements are function of the coordinates.
However, in the special class of frames, the corresponding metric is simply given by
the constant matrices (3.27) or (3.31).

If, however, such a special class of coordinates cannot be found in a large
domain,14 we then say that the space or space–time is curved, that is it exhibits
curvature, a concept which we dwell on in the next section.

3.4 Curvature

Suppose now we have a space (finite or infinite) which possesses a curvature, that is
in which it is not possible to introduce in a large domain Cartesian (Minkowskian)
coordinates. For the sake of simplicity, and to have a help from our intuition, we
suppose for the moment that the space in consideration has two space dimensions,
though it may not necessarily be the plane R

2, but rather an arbitrary surface�. It is
well known that on a generic surface it is not possible to introduce in a finite domain
Cartesian coordinates, but only curvilinear ones xi , i = 1, 2.

Restricting our attention to an infinitesimal neighborhood of a point P, however,
we can approximate the surface by the tangent plane to� at P. We say that the local
geometry of the surface at P is identified with that of the corresponding tangent plane,
the local coordinates on �, in the close vicinity of P, coinciding with the Cartesian
ones ξ i , (i = 1, 2) on the plane15 (see Fig. 3.3):

In an infinitely small neighborhood of P we can then use (3.30) to compute the
infinitesimal distance between two points, and thus we conclude that locally the

14 By large domain we mean a domain whose extension is finite or infinite.
15 Being the plane flat, we can describe it by Cartesian coordinates.
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Fig. 3.3 Local geometry and
tangent space

metric can be always reduced to the form δij.
16 However to compute geometric

quantities in a finite domain it is necessary to use general curvilinear coordinates by
transforming the local coordinates through (3.32).17 This means that the geometry
in a large, possibly infinite, domain is determined by the metric tensor gij(x1, x2),

function of the curvilinear coordinates. For example, the length of a curve γ = γ (τ)
can be computed as:

	 =
∫

γ

d	 =
∫

γ

(
gi j (x)dxi dx j

) 1
2 =

∫

γ

(
gi j (x)

dxi

dτ

dx j

dτ

) 1
2

dτ, (3.36)

τ being any parameter on the curve.
We conclude that on a surface with curvature the metric cannot be reduced to

the constant matrix δij in a finite domain; its geometry is therefore described by the
metric tensor gk	(x) or, equivalently by the matrix V i

k defined by (3.35).
Even if these considerations have been made in the special case of a

two-dimensional surface, they can be straightforwardly extended to three-or
N-dimensional curved spaces18 that is to spaces where Cartesian coordinates cannot
be introduced in large domains and, also, to spaces where the local metric is not δij,

but ηαβ, as it happens for the Minkowskian space–time of special relativity.
We can now give a precise geometric interpretation of the strong equivalence

principle of the previous section: Saying that in a free falling frame the laws of the
special relativity hold, means that the space–time geometry in such frame is locally
the same as that of the four-dimensional (hyper)-plane tangent to space–time at the
point in which the frame is located.

This (four-dimensional) tangent plane is of course the Minkowski space of special
relativity. Indeed we have learned that in a free falling frame, locally, that is in an
infinitesimal neighborhood of a point P = (x0, x) in its interior, up to higher order
terms, gravitation is absent, so that the metric tensor reduces to the constant metric
tensor ηαβ of special relativity.19 If instead we use a general frame of reference,

16 Here and in the following by locally we mean that our statement is valid in an infinitesimal
neighborhood of a point where higher order terms can be neglected.
17 Alternatively one can use Cartesian coordinates at each point using the local tangent plane; in this
case, however, one needs a quantity, called connection, which relates the local geometries associated
with different tangent planes.
18 A more precise definition of curvature will be given in the next section.
19 Note that this implies that the free falling frames are the inertial frames described by special
relativity. However, in the presence of a gravitational field, they can be only defined locally, since
only locally the effects of gravity can be canceled.
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which is not free falling, the metric tensor gμν(x) must describe the presence of the
gravitational field.20

We may thus establish the following correspondence between the presence of
curvature in a four-dimensional space which is locally Euclidean (metric δi

j ) and a
space which is locally Minkowskian (metric ηαβ ).

Summarizing, the geometry of space–time is the geometry of a four-dimensional
space with local Minkowski metric; this geometry cannot be flat in the presence of a
gravitational field. Space–time geometry must then be described by a metric gμν(x)
which depends on the presence of a gravitational field, each entry being a function of
the space–time coordinates x0, x1, x2, x3. The metric can be reduced to the special
relativity form ηαβ only locally, that is in an infinitely small neighborhood of an event
P, but not in a large region of space–time.

Generalizing equations (3.33) and (3.34) to a four dimensional space-time, where
ξα(α = 0, 1, 2, 3) are the local Minkowskian coordinates and xμ(μ = 0, 1, 2, 3)
are the general coordinates parametrizing a large domain of the space, we have:

ds2 = ηαβV α
μ V β

ν dxμdxν = gμνdxμdxν, (3.37)

where

V α
μ

∣∣
P
= ∂ξα

∂xμ

∣∣∣∣
P
, (3.38)

and ξα are the local Minkowskian (i.e., inertial) coordinates in an infinitesimal neigh-
borhood of P.

20 As we shall see in the sequel of this chapter the space–time metric gμν(x) is related to the
gravitational potential rather than to the gravitational field.
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Fig. 3.4 Euclidean geometry

Fig. 3.5 Spherical geometry

3.4.1 An Elementary Approach to the Curvature

We recall that the Euclidean geometry is based on Euclid’s eleventh postulate which
states the uniqueness of the straight line passing through a given point P and parallel
to a given straight line. This postulate, in particular, implies that the three interior
angles of a triangle sum up to 180◦, see Fig. 3.4:

α + β + γ = π. (3.39)

Let us take again, for the sake of simplicity and intuition, a two-dimensional space,
more specifically a 2-sphere (see Fig. 3.5). Let us then consider a spherical triangle
defined by joining along maximal circles three arbitrary points of the sphere.21

In spherical geometry one can show that the following relation holds:

α + β + γ = π + A

R2 , (3.40)

where A is the area of the spherical surface enclosed by the triangle and R is the
radius of the sphere.

Let us define the curvature K of the sphere as:

K = 1

R2 . (3.41)

the meaning of K is to indicate how much the geometry of the sphere deviates from
the Euclidean plane geometry where K = 0.

21 A maximal circle is the shortest path joining two points on the sphere. It can be obtained by
intersecting the spherical surface with a plane determined by the two points and the center of the
sphere.
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On the basis of its definition K seems to depend on the radius of the sphere
considered as a two dimensional manifold embedded in the ambient Euclidean space
R

3. Equation (3.40) however tells us that the curvature K can be evaluated by just
performing measures of angles and areas on the two-dimensional surface of the
sphere. It follows that K has an intrinsic geometric meaning, that is independent of
its embedding in the flat 3-dimensional space, since it can be computed by only using
measures on the spherical surface. If we had considered a Lobacevskij surface, where
K is constant, but negative, (3.40) is also valid.

Considering a generic surface �, K is of course no longer constant, but becomes
a function of the point on the surface. Indeed we may characterize the value of K at
P as the curvature of the sphere that best approximates the generic surface in a small
neighborhood of P. In this case (3.40) can be generalized by writing:

α + β + γ − π =
∫

�

K (x1, x2)dA, (3.42)

where dA is an infinitesimal element of the surface� and� is the integration domain.
K (x1, x2) is called the Gaussian curvature of S at P ≡ (x1, x2).

As it follows from the above discussion, K only depends on the intrinsic geometry
of �, while it does not depend on its particular representation in R

3, in terms of
parametric equations of the form:

x = x(x1, x2), y = y(x1, x2), z = z(x1, x2), (3.43)

where x1, x2, are curvilinear coordinates on � and x, y, z are Cartesian coordinates
on R

3. In fact one can show that K is invariant if S is flexed without stretching or
tearing; for example, since K is zero on a plane, it will also be zero on a cone or a
cylinder or in general on any surface which can be unfolded on a plane. If instead
we are to map a portion of the terrestrial globe on a plane, stretching is necessary,
since we have to change the value of K from a positive constant to zero. In this case
the map can be considered a good approximation only if the area considered is much
smaller than 1

K = R2.

3.4.2 Parallel Transport

There is an equivalent way of describing the curvature of a sphere. Consider a cannon
at the north pole (which may metaphorically represent a tangent vector) and let us
carry it along a meridian till it reaches the equator at a point A, displacing it in
such a way as to always keep it parallel to itself, so that the angle it forms with
the meridian remains constant (for example, in Fig. 3.6, the vector forms an angle
zero with the arcs NA and BN and π/2 with the arc AB). This is what it is meant
by parallel transport. Eventually, the same kind of parallel transport is performed
along an arc AB of the equator whose length is 1

4 the circumference, and finally we
carry the cannon back to the north pole along the meridian BN, See Fig. 3.6.
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Fig. 3.6 Parallel Transport

We easily realize that after this tour the cannon arrives back rotated by an angle
of π2 , which is exactly the angular excess described by the curvature:

�θ = α + β + γ − π = 3

2
π − π = π

2
= k A. (3.44)

Indeed the ratio between the angular excess �θ and the area of the spherical octant,
πR2

2 , gives exactly the value of the curvature, namely 1
R2 ≡ K . Although this result

was obtained in a very particular case, it can be shown to hold for a parallel transport
along any closed path γ, not necessarily along geodesic triangles, enclosing an area
� and on any surface. Indeed one can expect and actually show that in the general
case the rotation angle is found by first applying (3.44) to an infinitesimal area dA
and then integrating over the whole area � :

�θ =
∫

�

K (x)d A. (3.45)

where � is the area enclosed by the curve γ.
This alternative way of defining the curvature can be easily extended to manifolds

with any number of dimensions. Since our goal is to define the curvature for the four-
dimensional space–time with local Minkowski metric ηαβ, we consider the parallel
transport of a vector vμ, (μ = 0, 1, 2, 3) along a closed path γ in a four-dimensional
manifold. After the trip, the vector will get back to the initial point “rotated” with
respect to the original direction. However, as we have previously learned, such a
“rotation” is a “four-dimensional rotation” in a space endowed with a metric which
has the same signature as the Minkowski one ηαβ ,22 and therefore is a Lorentz
transformation.

In particular, if the closed path γ is infinitesimal, we can obtain the analogous
of the Gaussian curvature as in the case of a two-dimensional surface. However,
while in two dimensions we just have one orientation for the infinitesimal area dA

22 It can be shown that the signature of the metric, that is the number of positive and negative
eigenvalues of the matrix gμν(x), is the same at each point of a manifold. Since at a given point the
metric can be taken to coincide with ηαβ this explains the meaning of the statement in the text.
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Fig. 3.7 Parallel transports
along infinitesimal contours
with opposite orientations

enclosed by the path γ, (that of the plane tangent to the surface), in four dimensions
dA can have several different orientations. More specifically, if we represent γ as
an infinitesimal parallelogram, we have

(4
2

) = 6 orientations, which we may label
by the ordered couple of the two infinitesimal displacements dxρ, dxσ defining the
parallelogram dA: (ρ, σ ) = (01), (02), (03), (12), (13), (23). We can thus write:

d A→ d Aρσ = −d Aσρ ≡ dxρ ∧ dxσ , (3.46)

where the antisymmetry in the couple of indices ρσ, denoted by the symbol ∧, is
due to the orientation of d Aρσ , which is related to the orientation of the curve γ
(in other words the orientation of dA depends on whether the vector is transported
along γ in one direction or in the other, namely if the displacement dxρ precedes or
follows dxσ , see Fig. 3.7).

In conclusion, performing a parallel transport of a Lorentz vector vμ23 along
an infinitesimal path in space–time the vector undergo an (infinitesimal) Lorentz
transformation given by:

δvμ = Rμνρσ v
νdxρ ∧ dxσ . (3.47)

where Einstein convention of repeated indices is applied and we define Rμνρσ to be
the curvature of the space–time manifold at a point P. We see that in four dimen-
sions, the curvature is actually described by an object carrying four four-dimensional
indices, called Riemann curvature tensor, or simply Riemann tensor, providing the
natural generalization of the two-dimensional Gaussian curvature.

One can show that the number of independent components of Rαβγ δ is 20 (instead
of 44).

3.4.3 Tidal Forces and Space–Time Curvature

From the discussion in the previous section on the geometric analogy and from the
above geometric definition of the curvature, it follows that the Riemann tensor Rμνρσ
describes the deviation of the actual space–time geometry from the flat Minkowski

23 Note that since the closed path is infinitesimal we are allowed to use the in the tangent hyper-plane
the usual flat geometry of special relativity and therefore the reference to vμ as a Lorentz vector is
appropriate.
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geometry, in an intrinsic, coordinate independent way. On the other hand, we have
seen that, in the Newtonian approximation, tidal forces acting in the free falling frame,
also describe the deviation from the Minkowskian geometry of special relativity. It
is therefore obvious that there must be a close relation between curvature and tidal
forces.

To establish this relation, we recall that (3.21) gives the tidal force in the classical
Newtonian approximation, that is in the limit where the description of the gravita-
tional field is static, non-relativistic and to the first order in the displacement vector h.

We also note that the matrix in (3.21), which is the explicit form of ∂gi

∂xk |r=r0 ,

has the physical dimensions of [T−2], while curvature has dimension [L−2]. Thus
if a relation between tidal forces and curvature exists, the two quantities must be

related by a factor c2. At first sight this could seem impossible, since ∂gi

∂xk is a 3× 3
matrix with only spatial indices, i, k = 1, 2, 3, while the Riemann tensor has four
four-dimensional indices, α, β, · · · = 0, 1, 2, 3.

This different structure of indices, however, simply means that only some com-
ponents of the Riemann tensor survive when we take the non-relativistic, static limit
of the full relativistic expression of the (gradient of the) gravitational field as given
by the Riemann tensor in the general theory. Indeed, from the exact formula of the
Riemann tensor of the general theory of relativity, one can see that, in the non rela-
tivistic limit c→∞, denoting by Latin letters the space indices, to lowest order in
1/c one obtains:

Rk
0	0 = − 1

2mc2

∂gk

∂x	
, (3.48)

all the other components of the Riemann tensor being of higher order in 1/c. We may
therefore write:

f k = −2mc2 Rk
0	0h	 (k, 	 = 1, 2, 3). (3.49)

Comparing (3.48) and (3.49) with (3.21) one obtains:

Rk
0	0 = −1

2

⎛
⎜⎜⎝

2 G M
r3

0 c2 0 0

0 −G M
r3

0 c2 0

0 0 −G M
r3

0 c2

⎞
⎟⎟⎠ , (3.50)

We conclude that this matrix describes the curvature of space–time in the classical
non-relativistic limit.
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3.5 Motion of a Particle in Curved Space–Time

To determine the trajectory of a particle in space–time we take advantage of the
principle of equivalence, by first writing the equation of motion in the free falling
frame and then transforming to a general frame.

Locally, in the free falling frame attached to the particle, there is no gravitational
field and the motion is purely inertial in the local special relativistic coordinates ξα

(α = 0,1, 2, 3). On the other hand, in Chap. 2, the special relativistic inertial motion
was described by (2.74), namely24:

Uα = dξα

dτ
= const. −→ d2ξα

dτ 2 =
dUα

dτ
= 0, (3.51)

We stress that this equation is valid in an infinitesimal (both space- and time-) neigh-
borhood of the particle. Switching to the “laboratory” system where the general
coordinates xμ are used, and using the general relation between the two coordinates
ξα and xμ :

ξα = ξα(xμ), (3.52)

we find

dξα

dτ
= ∂ξα

∂xμ
dxμ

dτ
= V α

μ

dxμ

dτ
, (3.53)

d2ξα

dτ 2 =
d

dτ

(
V α
μ

dxμ

dτ

)
= V α

μ

d2xμ

dτ 2 +
∂V α

μ

∂xν
dxμ

dτ

dxν

dτ
= 0. (3.54)

We solve this equation with respect to the second derivatives, by multiplying both
sides by the inverse matrix (V−1)

μ
α , that we denote by

Vμ
α ≡ (V−1)μα ; Vμ

α V α
ν = δμν . (3.55)

Equation 3.54 takes then the following form:

d2xμ

dτ 2 + �μνρ
dxν

dτ

dxρ

dτ
= 0, (3.56)

where we have set:

�μνρ ≡
1

2
Vμ
α

(
∂V α

ν

∂xρ
+ ∂V α

ρ

∂xν

)
. (3.57)

24 With respect to the notations used in Chap. 2, we have changed notation for the locally inertial
coordinates from xμ to ξα (α = 0, 1, 2, 3) since in the present setting the latter describe the locally
inertial coordinates of special relativity, while the former describe a general frame, for example the
coordinates used in the “laboratory” frame, where the gravitational field is present.

http://dx.doi.org/10.1007/978-88-470-1504-3_2
http://dx.doi.org/10.1007/978-88-470-1504-3_2
http://dx.doi.org/10.1007/978-88-470-1504-3_2
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The number of independent components of�μνρ, taking into account the symmetry
in the two lower indices, is 40.

Note that the second term on the left hand side of (3.56) can be given the meaning of
the gravitational acceleration impressed to the particle of coordinates xμ; thus �μνρ,
called affine connection, represents the relativistic generalization of the gravitational
field.

The solution to (3.56) for the spatial coordinates xi , (i = 1, 2, 3), gives the
trajectory of the particle in the gravitational field while the solution for x0 = ct
gives the relation between the local time t and the proper time τ.

One can show that �μνρ can be expressed in terms of the metric and its derivatives.
The quickest way do so is to observe that (3.56), from the four-dimensional point of
view, describes a free inertial motion in the curved space–time since the gravitational
field has been expressed in terms of the affine connection which is a geometric
property of space–time. From this point of view there is no force driving the particle;
instead, the very presence of a non-trivial geometry, characterized by a non-vanishing
Riemann tensor, implies that the free motion must be described by (3.56).

This interpretation is corroborated by the observation that a free motion in a
curved space–time is the analogue of the inertial motion in flat space–time, given by
a straight line. We must therefore expect that the solution to equation (3.56) must
represent the analogue, in a curved space, of a straight line in flat space. Such curve
is called a geodesic and is defined as the shortest line joining two points.

Let us consider two points A and B (events) in the four-dimensional
space–time and let γ be a generic curve joining them. Its four-dimensional length
s(γ ) is given by:

s(γ ) =
∫

γ [A→B]
ds =

∫

γ [A→B]
(gμνdxμdxν)

1
2 . (3.58)

The analogue, in curved space, of the straight line in flat space can be obtained
by requiring the curve γ to be such that its length s(γ ), as a functional of γ, be
minimum, as it is the case for the straight line in flat space.

Solving the variational problem one precisely finds (3.56) with:

�μνρ =
1

2
gμδ

(
− ∂

∂xδ
gνρ + ∂

∂xρ
gνδ + ∂

∂xν
gρδ

)
. (3.59)

Note that since the relativistic gravitational field is given in terms of �μνρ, which
contains the first derivatives of the metric, the ten components of the metric gμν(x)
are the relativistic generalization of the Newtonian gravitational potential.

To simplify formulas, in the rest of the book we shall often use the following
short-hand notation for partial derivatives:

∂μ ≡ ∂

∂xμ
; ∂i ≡ ∂

∂xi
, (3.60)

where μ = 0, 1, 2, 3 and i = 1, 2, 3.
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3.5.1 The Newtonian Limit

Since the geodesic (3.56) describes the trajectory of a particle in a gravitational field,
it must reduce to the usual Newtonian formula in the non-relativistic limit. Recalling
that the metric is related to the gravitational potential, we define the classical New-
tonian limit as that in which, besides the non-relativistic condition v 
 c, we also
require the gravitational field to be weak and static.

On the metric this implies:

gμν = ημν + hμν + O(h2), (3.61)

∂gμν
∂t
= c

∂gμν
∂x0 = 0, (3.62)

where hμν(x) is the first order deviation from the flat Minkowski space corresponding
to the absence of gravitational field. In Appendix B we show that, in this case, the
only non-vanishing component of the affine connection is:

�i
00 =

1

2
giμ(−∂μg00) � −1

2
ηi j∂ j h00 = 1

2
∂i h00, (3.63)

where i is a three-dimensional space index and we have used ηi j = −δi j .

With these approximations the geodesic equation for the index μ = 0 gives
dt
dτ � 1, while for the spatial index μ = i we have:

1

c2

d2xi

dt2 = −
1

2
∂i h00. (3.64)

Equation (3.64) then coincides with the Newton equation if we set:

φ

c2 =
1

2
h00. (3.65)

where φ is the classical gravitational potential. With this identification, (3.64)
becomes:

d2xi

dt2 = −∂iφ. (3.66)

In particular from (3.61) we find:

g00 = 1+ h00 = 1+ 2
φ

c2 . (3.67)
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3.5.2 Time Intervals in a Gravitational Field

Equation 3.67 allows us to evaluate how time intervals are affected by the presence
of a gravitational field. Let us suppose that we are in a free falling frame, where the
Minkowskian coordinates ξα can be used. According to the principe of equivalence,
a clock at rest in such a system measures a time interval which coincides with the
proper time in the absence of gravity:

dτ 2 = 1

c2 ηαβdξαdξβ = η00dt2 = dt2 (α, β = 0, 1, 2, 3), (3.68)

since, for a clock at rest, dξ i

dt = 0.
In any other frame of reference with coordinates xμ, like our laboratory, the

gravitational field is present and the proper time interval will take the following
form:

dτ 2 = 1

c2 gμνdxμdxν . (3.69)

If in this frame the clock has four-velocity dxμ/dt = vμ, then the time interval dt
between two consecutive (infinitely close) ticks satisfies the relation:

(
dτ

dt

)2

= 1

c2 gμν
dxμ

dt

dxν

dt
. (3.70)

In particular, if the clock is at rest in the laboratory frame, that is if vi = 0, we
obtain:

dt

dτ
= (g00)

− 1
2 . (3.71)

The dilation factor on the right hand side of (3.71), however, cannot be observed,
since the gravitational field affects in the same way the ticks of the standard clock
and those of the clock being studied. However, the difference between dt1 e dt2 in
two different points x1, x2 can be observed; indeed (3.71) implies:

dt1 = dτ(g00(x1))
− 1

2 , (3.72)

dt2 = dτ(g00(x2))
− 1

2 , (3.73)

so that:

dt2
dt1
=

[
g00(x1)

g00(x2)

] 1
2

. (3.74)
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In particular, in the classical Newtonian limit, we may use (3.67) and, recalling
(3.67), we obtain

dt2
dt1
=

[
1+ 2φ1

c2

1+ 2φ2
c2

] 1
2

≈
(

1+ 2
φ1

c2

) 1
2
(

1− 2
φ2

c2

) 1
2 ≈ 1− φ2 − φ1

c2 = 1− �φ
c2 ,

(3.75)
where we have defined φ1 = φ(x1) and φ2 = φ(x2) and used that φ

c2 is very small

in most situations.25

For example, if a clock is placed at the point x1 far away from other bodies, so
that no gravitational field is present, we have φ(x1) = 0, and therefore:

dt1 = dτ, (3.76)

since g00(x1) = η00 = 1. The same clock placed at a point x2, e.g., on the earth’s
surface, will tick time intervals dt2 such that:

dt2
dt1
= dt2

dτ
≈ 1− �φ

c2 = 1− φ2

c2 . (3.77)

Since φ2 < 0 we find dt2 > dt1, that is time intervals are dilated in a gravitational
field by a factor (1− φ2

c2 ). In the case of the terrestrial gravitational field we have:

dt2 =
(

1+ G M

c2r

)
dτ. (3.78)

where M is the earth’s mass.
In particular a same clock will tick at a different rate, depending on whether it is

placed at sea level or at height h. Indeed, since

φ1 = −G M

R
; φ2 = − G M

R + h
, (3.79)

we obtain:

dt2 =
(

1− φ2 − φ1

c2

)
dt1 =

[
1− G M

c2

(
1

R
− 1

R + h

)]
dt1. (3.80)

In general we may say that the more negative the gravitational potential is, (or the
greater its absolute value is), the more dilated time intervals are. Because of the factor
1/c2, these effects are generally small, however gravitational time dilation has been
experimentally measured in various different situations.

The first verification by a experiment on earth was performed by Pound and
Rebka combining the gravitational dilation with Doppler effect in the emission and
absorption of photons in Fe57. Further experimental evidence can be inferred from

25 As usual the value at infinity of φ is set equal to zero.
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astrophysical observations (especially from the light spectra of white dwarfs). In this
case we can safely set to zero the earth gravitational potential being much smaller in
absolute value than the potential on the surface of a star. Thus, in this case, we have:

dt2
dt1
= ν1

ν2
> 1, (3.81)

where ν denotes the light frequency and the suffix 1 and 2 are referred to the earth
and to the star, respectively. The frequency of the emitted light is then higher than
that observed on earth and we have a measurable shift towards the red.

In the eighties further confirmations were gained by experiments with time signals
sent to and from Viking 1 Mars lander and from time measurements using atomic
clocks on airplanes; the clocks that traveled aboard the airplanes, upon return, were
slightly faster than those on the ground.

However, the most spectacular evidence of the gravitational red-shift is nowadays
given by its technological application to GPS devices.

A GPS gives the absolute position on the surface of the earth to within 5–10
m of precision; this requires the clock ticks on the GPS satellite to be known with
an accuracy of 20–30 ns. Such an accuracy cannot be reached if we neglected the
special and general relativity effects on time intervals . To compute these effects
we first observe that the transmitting clock is subject to the special relativistic time
dilation due to the satellite orbital speed, compared to an identical clock on the earth.

From our discussion of time dilation in special relativity the clock on the satellite
would run slower, compared to a clock on the earth, by the factor:

√
1− v

2

c2 � 1− v2

2c2 , (3.82)

at first order in v2

c2 , since v, the satellite speed, is much smaller than c.
Suppose the satellite is orbiting at a distance from the center of the earth of about

four times the earth’s radius R. Using the classical result

v2

r
= G M

r2 , (3.83)

with r = 4R, we obtain a time loss of about −7 µs/day.
We now compute the general relativistic effect. First we recall that a clock in a

greater gravitational potential runs faster than one on earth. Then, calling �tE and
�ts the time intervals on earth and on the satellite, respectively, we find:

1− �tE

�ts
= �φ

c2 =
1

c2

[
G M

R + h
− G M

R

]
(3.84)

and if R + h � 4R this gives a gain in time of � 45 µs/day, six times larger than
the special relativistic effect. Summing up the two effects we find that the clock on
the satellite runs faster � 38 µs/day ≡ 38 × 103 ns/day. We see that neglecting
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the relativistic effects, would imply errors three order of magnitude higher than the
necessary accuracy of 20–30 ns.26

3.5.3 The Einstein Equation

Until now we have been discussing some consequences of the principle of equivalence
in relation to the motion of a particle in a given gravitational field. We have seen
that the motion is essentially a free motion in a curved space–time, the generalized
gravitational potential being described by the metric gμν(x) which was supposed to
be a known function of the space–time coordinates.

The knowledge of the metric field is, however, not known a priori, and the
description of the gravitational field requires the knowledge of the equation of
motion of the metric field. To arrive to a rigorous determination of this equation
the principle of equivalence is no more sufficient and we must address the full geo-
metric formalism of general relativity. Nevertheless, in this section, with no ambition
of being rigorous or complete, we shall try to develop some heuristic considerations
to justify the actual form of the gravitational equations.

We recall that in the Newtonian non-relativistic theory the gravitational potential
is static, that is, non-propagating, and, given a distribution of mass in space, it can
be determined through the Poisson equation:

∇2φ = −4πGρ(x), (3.85)

where ρ is the density of matter and, as usual, φ(x) the gravitational potential. On the
basis of the discussions given in the previous sections, it is clear that the relativistic
extension we are looking for must be covariant under general coordinate transfor-
mations. Furthermore the ten components of the metric field gμν(x)must describe a
propagating field generalizing the single static component of the Newtonian grav-
itational potential φ. Indeed, we know that already at the level of special relativity,
dependence on the spatial coordinates implies dependence on the time.

It then follows that the source term ρ must also be generalized, in a covariant
setting,27 in terms of ten quantities depending on the four space–time coordinates.
As we will show in Chaps. 5 and 8, such relativistic extension is given in terms of
the so-called energy momentum tensor Tμν, symmetric in μν, which describes the
density of matter four-momentum and of its current and can be shown to reduce, to
lowest order in v/c, to the single non-vanishing component T00 = ρc = ε/c, ε being
the energy density. On the other hand, on the left hand side, the Laplace operator
in the classical Poisson equation must be replaced by an expression satisfying the
following requirements:

1. It must have the same index structure as Tμν;
2. It must be a second order differential expression on the metric field gμν(x);

26 We also note that the given error increases day by day, since it is a cumulative effect.
27 Here covariant means with respect to general coordinate transformations.

http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_8
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3. It must be covariant under general coordinate transformations;
4. It must reduce to the left hand side of Poisson equation in the non-relativistic

limit.

Let us denote such unknown expression by Gμν.Then the equation we are looking
for should have the form:

Gμν = αTμν. (3.86)

where α is a constant. On the other hand our previous discussion on the geometric
properties of space–time in the presence of gravitation tells us that the Riemann
tensor Rμνρσ , the relativistic extension of the tidal forces, determines the geometric
properties of space–time associated with the presence of gravitation. Thus we expect
that Gμν must be related to the Riemann tensor. Actually one can show that, in
Riemannian geometry, all the requirements enumerated before are satisfied if we set:

Gμν = Rαμαν − 1

2
gμνRτ ρτσ gρσ , (3.87)

and set the unknown constant α of (3.86) α = −8πG in order to reproduce in
the non relativistic static weak-field limit the Poisson (3.85). Thus we see that the
equation for the metric field, also known as Einstein’s equation, is a second order
differential equation whose source is Tμν, which, as we shall see later on, describes
the distribution of energy and momentum in space–time. If such distribution is known
and the initial Cauchy data are given, we can determine the solution for the metric
field gμν. In other words: The energy-momentum distribution, that is the content of
matter-energy and of its current, determines the geometry of space–time.

Reference

For further reading see Refs. [1, 11, 12]



Chapter 4
The Poincaré Group

In this chapter, after briefly reviewing the notions of linear vector spaces, inner prod-
uct of vectors and metric in (three-dimensional) Euclidean space, we shall focus
on coordinate transformations, namely maps between different descriptions of the
same points in space. This will allow us to introduce covariant and contravariant
vectors, as well as tensors, characterized by specific transformation properties under
coordinate transformations. Though we shall be mainly concerned with Cartesian
coordinate transformations, which are implemented by linear relations between the
old and new coordinates, the formalism is readily extended to more general transfor-
mations relating curvilinear coordinate systems, and thus also to curved spaces where
Cartesian coordinates cannot be defined. We shall then study rotations in Euclidean
space and show that they close an object called a Lie group, whose properties are
locally captured by a Lie algebra. This will lead us to the important concept of
covariance of an equation of motion with respect to rotations. The generalization
of all these notions from Euclidean to Minkowski space will be straightforward.
As anticipated in an earlier chapter, points in Minkowski space are described by a
Cartesian system of four coordinates x0, x1, x2, x3 and the distance between two
points is defined by a metric with Minkowskian (or Lorentzian) signature. Poincaré
transformations will then be introduced as Cartesian coordinate transformations
which leave the coordinate dependence of the distance between two points invariant.
These linear transformations include, as the homogeneous part, the Lorentz trans-
formations, which generalize the notion of rotation to Minkowski space. Poincaré
transformations also comprise, as their inhomogeneous part, the space–time trans-
lations, and close a Lie group called the Poincaré group. The principle of special
relativity is now restated as the condition that the equations of motion be covariant
with respect to Poincaré transformations.

4.1 Linear Vector Spaces

Let us briefly recall some basic facts about vector spaces. Consider the three-
dimensional Euclidean space E3. We can associate with each couple of points

R. D’Auria and M. Trigiante, From Special Relativity to Feynman Diagrams, 91
UNITEXT, DOI: 10.1007/978-88-470-1504-3_4,
© Springer-Verlag Italia 2012
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A, B in E3 a vector
−→
AB originating in A and ending in B. If we arbitrarily fix an

origin O in E3, any other point A in E3 will be uniquely identified by its position

vector r ≡ −→O A.
We can then consider the collection of vectors, each associated with couples of

points in E3, which constitutes a vector space associated with E3 and denoted by
V3. Indeed the space V3 is endowed with a linear structure, which means that an
operation of sum and multiplication by real numbers is defined on its elements: we
can consider a generic linear combination of two or more vectors V1, . . . ,Vk in
V3 with real coefficients and the result V:

V = a1V1 + · · · akVk, (4.1)

is still a vector, namely an element of V3, that is there is a couple of points A, B in E3

such that V = −→AB. If A and B coincide the corresponding vector is the null vector

0 ≡ −→AA.
A set of three linearly independent vectors {u1,u2,u3} = {ui }1 defines a basis

for V3 and any vector V can be expressed as a unique linear combination of {ui }:
V = V 1u1 + V 2u2 + V 3u3 =

∑

i

V i ui , (4.2)

where V 1, V 2, V 3 (with the upper index), are the components of V in the basis {ui }.
It is useful to describe the vectors {ui } as column vectors in the following way:

u1 ≡
⎛
⎝

1
0
0

⎞
⎠ ; u2 ≡

⎛
⎝

0
1
0

⎞
⎠ ; u3 ≡

⎛
⎝

0
0
1

⎞
⎠. (4.3)

This allows to describe a generic vector V as a column vector having as entries the
components of V with respect to the basis {ui }.

V ≡ V 1

⎛
⎝

1
0
0

⎞
⎠+ V 2

⎛
⎝

0
1
0

⎞
⎠+ V 3

⎛
⎝

0
0
1

⎞
⎠ =

⎛
⎝

V 1

V 2

V 3

⎞
⎠. (4.4)

This formalism will allow us to reduce all operations among vectors to matrix oper-
ations. We shall also use the boldface to denote the matrix representation of a given
quantity. A Cartesian coordinate system in E3 is defined by an origin O and a basis
{ui } of V3 and it allows to uniquely describe each point P in E3 by means of three
coordinates x, y, z, which are the components of the corresponding position vector
r = −→O P , that is the parallel projections along ui , see Fig. 4.1a:

r = −→O P = xu1 + yu2 + zu3 ≡
⎛
⎝

x
y
z

⎞
⎠. (4.5)

1 Recall that this property means that a1u1 + a2u2 + a3u3 = 0 if and only if a1 = a2 = a3 = 0.
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Fig. 4.1 a Generic Cartesian
coordinate system; b
Cartesian rectangular
coordinate system

It will be convenient to rename the coordinates as follows: x1 = x, x2 = y, x3 =
z. This will allow us to use the following short-hand description of the position vector:

r ≡
3∑

i=1

xi ui ≡ {xi }. (4.6)

A frame of reference (RF) in Euclidean space will be defined by a Cartesian coordi-
nate system. In V3 a scalar product is defined which associates with each couple of
vectors V,W a real number V ·W ∈ R and which satisfies the following properties:

(a) V ·W =W · V (symmetry),

(b) (aV1 + bV2) ·W = a(V1 ·W)+ b(V2 ·W) (distributivity),

(c) V · V ≥ 0;V · V = 0⇒ V = 0 (positive definiteness) (4.7)

With respect to a basis ui , i = 1, 2, 3, a scalar product can be described by means
of a symmetric non-singular matrix called metric:

g = (gi j ) ≡ (ui · u j ) i, j = 1, 2, 3, (4.8)

in terms of which the scalar product between two generic vectors V,W

V =
3∑

i=1

V i ui , W =
3∑

i=1

W i ui ,

can be written as follows:

V ·W = (V 1u1 + V 2u2 + V 3u3) · (W 1u1 +W 2u2 +W 3u3) (4.9)

=
3∑

i=1

3∑

j=1

V i W j ui · u j =
3∑

i=1

3∑

j=1

V i W j gi j (4.10)

= (V 1, V 2, V 3)

⎛
⎝

g11 g12 g13
g21 g22 g23
g31 g32 g33

⎞
⎠

⎛
⎝

W 1

W 2

W 3

⎞
⎠ = VT gW, (4.11)
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where we have applied properties (a) and (b). Property (c) is specific to Euclidean
space and expresses the positive definiteness of its metric, namely that for any vector
V ∈ V3, different from the null vector 0 = (0, 0, 0), the quantity ‖V‖2 ≡ V ·
V = V i gi j V j , called the norm squared of V, is positive. This in turn implies that the
symmetric matrix gi j has only positive eigenvalues. This property will not hold for the
metric in Minkowski space, which has three negative and one positive eigenvalues.

As an example let us consider a basis in which the scalar product is described by
the following metric:

g = (gi j ) =
⎛
⎝

1 0 0
0 3 2
0 2 3

⎞
⎠ .

Given two vectors:

V = 3u1 + 4u2 ≡ (3, 4, 0) = V,

W = 5u1 + 2u3 ≡ (5, 0, 2) =W,

their scalar product can be expressed in terms of the following matrix operation:

V ·W = VT gW = (3, 4, 0)

⎛
⎝

1 0 0
0 3 2
0 2 3

⎞
⎠

⎛
⎝

5
0
2

⎞
⎠ = 31.

It is very useful, in writing this kind of formulae, to use the Einstein summation
convention introduced in Chap. 2: Whenever in a formula a same index appears in
upper and lower position, summation over that index is understood. We say that a
contraction is performed over that index, which is also called dummy index. For
instance, the formula (4.11) for the scalar product can be written as follows:

V ·W =
3∑

i=1

3∑

j=1

V i W j gi j ≡ V i W j gi j , (4.12)

contraction being over the indices i and j. In what follows we shall always use this
convention in order to make formulae simpler and more transparent. Starting from
the notion of scalar product on V3 we can define a distance in E3: the distance d(A,B)
between two points A and B, described by the position vectors rA = xi

Aui , rB =
xi

Bui , respectively, is defined as the norm of the relative position vector rA − rB :

d(A, B) ≡ ||rA − rB || =
√
(rA − rB) · (rA − rB) =

√
(xi

A − xi
B)gi j (x

j
A − x j

B),

(4.13)

http://dx.doi.org/10.1007/978-88-470-1504-3_2
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where we have used the fact that

rA − rB =
(

x1
A − x1

B

)
u1 +

(
x2

A − x2
B

)
u2 +

(
x3

A − x3
B

)
u3. (4.14)

From property (c) of Euclidean metric it follows that, if two points have vanishing
distance, they coincide. Indeed d(A, B) = 0 means that ‖rA − rB‖ = 0, which is
the case only if the relative position vector rA − rB equals the 0-vector (0, 0, 0), i.e.
if rA = rB , that is A = B. This will not hold in Minkowski space where two distinct
points (i.e. two different events) can have vanishing four-dimensional distance.

In V3 we can always choose a basis of vectors {ui } which are ortho-normal
(defining a Cartesian rectangular coordinate system, see Fig. 4.1b), namely satisfy
the condition:

gi j = ui · u j = δi j =
{

1 i = j
0 i �= j

. (4.15)

The unit vectors {ui } define three mutually orthogonal axes: X, Y, Z.2 The metric
matrix, in this case, reads:

g =
⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠. (4.16)

The scalar product between two vectors in this basis acquires the following simple
form:

V ·W = V iδi j W j = V 1W 1 + V 2W 2 + V 3W 3. (4.17)

The norm squared of a vector reads: ‖V‖2 = (V 1)2 + (V 2)2 + (V 3)2 > 0. Also the
expression (4.14) of the distance between two points A and B simplifies considerably:

d(A, B) =
√
(xA − xB)2 + (yA − yB)2 + (z A − zB)2. (4.18)

The above formula could have been deduced directly using Pythagoras’ theorem.

4.1.1 Covariant and Contravariant Components

Consider a transformation of the Cartesian coordinate system which leaves the origin
fixed but brings a basis {ui } into a new one {u′i } and let us see how the components

2 When referring to the collection of Cartesian rectangular coordinates in our Euclidean three-
dimensional space we shall often use, as we did in Chaps. 1 and 2 the symbol x instead of
r : x ≡ (x, y, z).

http://dx.doi.org/10.1007/978-88-470-1504-3_1
http://dx.doi.org/10.1007/978-88-470-1504-3_2
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V ′i of a vector V in the new basis are related to those (V i ) in the old basis. Each
vector u′i can be expressed in terms of its components relative to the old basis {ui }:

u′j = Mi
j ui , (4.19)

where M = (Mi
j ), i labelling the rows, j the columns, has to be an invertible matrix in

order for u′i to be linearly independent. For the sake of convenience let us denote by
D the inverse of M, so that M = D−1. Notice that in the expression on the right-hand
side of (4.19) the summation is taken over the row-index of M. If we arrange the
basis elements ui in a row vector, (4.19) can be written in a matrix form:

(u′1,u′2,u′3) = (u1,u2,u3)D−1, (4.20)

namely the row vector (ui ) transforms by acting on it with the matrix D−1 from the
right. Alternatively, thinking of (ui ) as a column vector, it transforms by the action
of D−1T to the left. The components V i of the vector

V = V i ui , (4.21)

will then transform with the matrix D. Indeed, if V ′i and V i are different descriptions
of a same vector, we have

V = V i ui = V ′i u′i , (4.22)

which implies:

V j u j = V ′i D−1 j
i u j . (4.23)

Being ui independent we find

V ′i D−1 j
i = V j . (4.24)

Using the matrix formalism, we can describe the same abstract vector in (4.21) in
terms of two column vectors V′ = (V ′i ) and V = (V i ) consisting of the correspond-
ing components in the new and old bases, respectively. Equation (4.24) can then be
recast in a matrix form:

D−1V′ = V. (4.25)

We can solve (4.25) in V′ multiplying both sides by the matrix D−1:

V′ = DV⇔ V ′i = Di
j V j . (4.26)

Compare now the two (4.20) and (4.26). If the elements of a basis (which are labeled
by a lower index), as elements of a row vector, transform with a matrix D−1 from the
right (D−1T to the left if seen as a column vector), the corresponding components
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of a vector (labeled by an upper index), as elements of a column vector, transform
with the matrix D from the left. We say that the elements of a basis transform as a
covariant vector (having a lower index), while the components of a vector transform
as a contravariant vector (having an upper index). In our conventions we will often
represent covariant and contravariant quantities, in matrix notation, as components of
row and column vectors, respectively. Let us now consider the scalar product (4.12)
and define the quantities Vi ≡ gi j V j . The presence of a lower index suggests that
it should transform as a covariant vector, as we presently show. Indeed, from the
definition (4.8) of metric and from (4.20) we can deduce its transformation property:

g′ = (g′i j ) = (u′i · u′j ) = (D−1k
i D−1�

j gk�) = D−T g D−1, (4.27)

where we have used the distributive property of the scalar product and defined D−T

as (D−1)T , namely the transpose of the inverse. The scalar product between two
vectors can be expressed in the following simple form:

V ·W = Vi W i = V i Wi , (4.28)

or, in matrix notation

V ·W = (V1, V2, V3)

⎛
⎝

W 1

W 2

W 3

⎞
⎠ = (W1,W2,W3)

⎛
⎝

V 1

V 2

V 3

⎞
⎠, (4.29)

It is useful to define the inverse metric g−1, whose components are denoted by
gi j ≡ g−1i j , so that gik gk j = δi

j . From (4.27) and (4.15) it follows that the inverse
metric transforms as follows:

g−1′ = (g′i j ) = (Di
k D j

�gk�) = D g−1DT . (4.30)

From (4.27) we deduce the transformation property of Vi :

V ′i = g′i j V j ′ = D−1k
i D−1�

j gk�D j
s V s = D−1k

i gk�δ
�
s V s = D−1k

i Vk, (4.31)

where we have used the definition of inverse matrix: D−1�
j D j

s = δ�s . Comparing
(4.31) with (4.20) we conclude that Vi transform as the basis elements ui , namely
as components of a covariant vector. We say that Vi are the covariant components
of the vector V, since they transform covariantly with the basis {ui }. To define them
we needed the notion of metric gi j . Equivalently, we can write the contravariant
components in terms of the covariant ones by contracting the latter with the inverse
metric V i = gi j Vj . We conclude that a vector V can be characterized either in
terms of its covariant or of its contravariant components, and that we can lower a
contravariant index or raise a covariant one by contracting it with the metric or the
inverse metric, respectively.
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From (4.31) we also conclude that the scalar product between two vectors is
invariant under a change of basis, as we would expect since the result of this product
is a number (scalar):

V′ ·W′ = V ′i W ′i = V k D−1k
i Di

�W
� = Vkδ

k
�W � = Vi W i = V ·W.

Geometrically the covariant components of a vector are its orthogonal projections
along the coordinate axes. Indeed we can write:

Vi = gi j V j ≡ ui · u j V j ≡ ui · (u j V j ) = ui · V, (4.32)

recalling the geometric meaning of the scalar product between two vectors, Vi is the
orthogonal projection of V along ui (provided ui has unit length), while the con-
travariant component is obviously the parallel projection, as it follows from (4.22).

Clearly if {ui } is an orthonormal basis, namely if ui · u j = δi j the covariant and
contravariant components of a vector coincide: Vi = δi j V j = V i .

Let r = (xi ) and r′ = (x ′i ) denote the coordinate vectors of a point P with respect
to the two coordinate systems. By (4.26) we find the following relation between the
two:

r′ = Dr ⇔ x ′i = Di
j x j . (4.33)

Let us now consider the most general transformation relating two Cartesian coor-
dinate systems. It is an affine transformation which acts not only on the basis of
vectors but also on the origin, by means of a translation. Let O, (ui ) and O ′, (u′i )
denote the origins and the bases of the two systems. The two bases are related as in
(4.20). A point P is described by the vector

−→
O P = xi ui with respect to the former

coordinate system, and by
−−→
O ′P = x ′i u′i with respect to the latter. Let

−−→
O O ′ = xi

0u′i
be the position vector of O ′ relative to O in the new basis. From the relation:

−−→
O ′P = −→O P −−−→O O ′, (4.34)

we derive the following relation between the new and old coordinates of P

x ′i u′i = xi ui − x0
i u′i = x j Di

j u′i − xi
0u′i . (4.35)

Equating the components of the vectors on the right and left-hand side we find

x ′i = Di
j x j − x0

i , (4.36)

or, as a relation between coordinate vectors,

r′ = (D, r0) · r ≡ Dr − r0, (4.37)

where r0 ≡ (xi
0). The most general transformation of a Cartesian coordinate system

is then implemented by a linear relation (4.36) between the old and the new coordi-
nates. In (4.37) this relation has been described as the action on r of a couple (D, r0)



4.1 Linear Vector Spaces 99

consisting of an invertible matrix D and a vector r0 defining the homogeneous and
inhomogeneous part of the transformation, respectively. Homogeneous transforma-
tions are those considered at the beginning of the present section, which do not affect
position of the origin, O ≡ O ′, and thus are just characterized by the matrix D,
being r0 ≡ 0. If, on the other hand, the homogeneous component of the trans-
formation is trivial, D = 1, the affine transformation (1, r0) only describes a rigid
translation of the frame of reference: x ′i = xi − xi

0. Let us stress here that the matrix
elements Di

j and the parameters xi
0 are constant, namely coordinate-independent.

We can consider the relative position vector between two infinitely close points. Its
components dr = (dxi ), dr′ = (dx ′i ), with respect to the two coordinate systems,
are the infinitesimal differences between the coordinates of the two points, i.e. the
coordinate differentials. Their relation is obtained from (4.36) by differentiating both
sides:

dx ′j = D j
i dxi = ∂x ′j

∂xi
dxi . (4.38)

The matrix D thus represents the coordinate-independent Jacobian matrix of the
coordinate transformation.

General coordinate transformations involve non-Cartesian, i.e. curvilinear coor-
dinate systems, and are typically described by non-linear coordinate relations3

x ′i = x ′i (x)≡ x ′i (x1, x2, x3), as anticipated in Chap. 3. In this case the

Jacobian matrix D =
(
∂x ′ j
∂xi

)
in (4.38) will no longer be coordinate-independent

(think about the relation between Cartesian orthogonal coordinates x, y, z and spher-
ical polar coordinates r, θ, ϕ).4 We shall come back to this point at the end of this
section.

All that have been said about three-dimensional Euclidean space E3 can be easily
extended its n-dimensional version En . It is sufficient to take the indices i, j, . . . to
run from 1 to n instead of taking only three values.

So far we have been considering the transformation properties of the components
of a (covariant or contravariant) vector as the basis of the reference frame is changed.
In physics (and geometry) one in general has to deal with vectors which are functions
of the point in space through its coordinates V(r) = V(x1, x2, . . . , xn), namely with
vector fields. Nothing changes in the transformation rule of the (covariant or con-
travariant) components of the vector field, since, if we perform a Cartesian coordinate
transformation (4.36) (D, r0), at a given point P we will have:

V ′i (P) = Di
j V j (P), contravariant vector,

V ′i (P) = (D−1)k i Vk(P), covariant vector. (4.39)

However the same point P, in the two reference frames, will be described by two
different sets of coordinates: r ≡ (xi ) and r′ ≡ (x ′i ), respectively, i = 1, . . . , n.

3 Such relations are, by definition, invertible, namely the Jacobian matrix
(
∂x ′ j
∂xi

)
is non-singular.

4 We shall use r = (xi ) to denote the collection of Cartesian coordinates. Generic coordinates will
also be collectively denoted by x = (xi ).

http://dx.doi.org/10.1007/978-88-470-1504-3_3
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Therefore the dependence of the components of the vector field on the coordinates
will in general change as a consequence of the transformation:

V ′i (r′) =V ′i (Dr − r0) = Di
j V j (r)

V ′i (r′) =V ′i (Dr − r0) = (D−1)k i Vk(r), (4.40)

where we have used (4.36). In what follows we shall, for the sake of simplicity, talk
about vectors even when dealing with vector fields, omitting their explicit coordinate
dependence, whenever this is not required by the context.5

The vector space Vn , with a positive definite scalar product, will capture all the
geometric properties of En . In particular, we can describe all the points in En in terms
of a Cartesian coordinate system defined by an origin and a basis {ui }i=1,...,n of Vn .
This is a feature of flat spaces in general (the Euclidean space being an example of
flat space) and in the following of this book we shall restrict to this kind of spaces
only. Let us just mention that non-flat spaces have been considered in Chap. 3 and
their features have been described in a non rigorous way by the introduction of the
concept of curvature. In particular we have seen that if the space is not flat (consider a
sphere in the three-dimensional Euclidean space E3), its geometric properties are no
longer captured by a vector space (take two vectors in E3 connecting two couples of
points on the sphere, their sum in general does not connect two points on the sphere).
One can show, however, as was described in intuitive way in the previous chapter,
that infinitesimal displacements in the neighborhood of any point P of the space, do
close a vector space, called tangent space at P. The latter therefore captures only
the local properties of the space, just as the tangent plane to a sphere at a point P
approximates the sphere in the immediate vicinity of P. As anticipated in Chap. 3,
curved spaces can not be described in a finite or infinite region terms of Cartesian
but only by means of curvilinear coordinates. If xi are coordinates in this space,
an infinitesimal displacement is a vector having, as components, the differentials
dxi of the coordinates. All that has been defined for the vector space Vn associated
with a flat space, such as the metric, covariant and contravariant vectors, etc. can
now be defined on the tangent space to a curved space at any point, the matrix
D representing the coordinate-dependent Jacobian matrix of the general coordinate
transformation, see the end of this section. Since in this more general situation, the
coordinates xi are no longer components of vectors, it is correct to associate with
the differentials dxi, rather than with the coordinates xi themselves, contravariant
transformation properties. If the space is flat the tangent spaces at all points coincide
and the geometry is captured by a single vector space.

We end this section by giving a more general definition of contravariant and covari-
ant vectors, which holds also for non-linear coordinate transformations,
and thus extends the definition given earlier to generic coordinate transformations
and, in the light of our previous remark, to transformations on curved spaces. If we
effect a coordinate transformation:

xi −→ x ′i = x ′i (x1, x2, . . . , xn) i = 1 . . . , n, (4.41)

5 This remark will also apply to tensors and tensor–fields, to be introduced in next section.

http://dx.doi.org/10.1007/978-88-470-1504-3_3
http://dx.doi.org/10.1007/978-88-470-1504-3_3
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the coordinate differentials dxi transform through the (coordinate-dependent)
Jacobian matrix:

dx ′i = ∂x ′i

∂x j
dx j . (4.42)

We shall call contravariant a vector V i whose components transform as the coordinate
differentials dxi :

V i −→ V ′i = ∂x ′i

∂x j
V j . (4.43)

In case the transformation (4.41) connects two Cartesian coordinate systems, it is
linear, of the form (4.36), and the Jacobian matrix coincides with the constant matrix
D relating the two bases, so that we retrieve the previous definition (4.26).

Consider now the following differential operators:

∂

∂xi
: f −→ ∂ f

∂xi
, (4.44)

where ∂ f
∂xi are the components of the gradient vector ∇ f of a function f (r) =

f (x1, x2, . . . , xn). These quantities transform under (4.41) according to the rule of
derivatives of composite functions:

∂

∂x ′i
= ∂x j

∂x ′i
∂

∂x j
. (4.45)

We shall call covariant any vector whose components transform as a gradient vector,
namely as (4.45). For an affine transformation (4.36) we then find

x j = D−1 j
i x ′i =⇒ ∂x j

∂x ′i
≡ D−1 j

i , (4.46)

so that the components of the gradient vector transform as the basis elements {ui } of
the Cartesian coordinate system:

∂

∂x ′i
= D−1 j

i
∂

∂x j
, (4.47)

consistently with the earlier characterization of covariant vector.
In the following, we shall restrict to Cartesian coordinate systems and thus will

only consider affine transformations, unless explicitly stated.

4.2 Tensors

Consider now the set of all quantities of the form V i W j , namely expressible as the
product of the contravariant components of two vectors. Under a change of basis
(4.20), resulting from a Cartesian coordinate transformation (4.36), we have:
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V ′i W j ′ = Di
k D j

�V
k W �. (4.48)

A collection of n2 numbers Fi j (i, j = 1, 2, . . . , n) is a contravariant tensor of order
2 and type (2, 0), if, under a change of basis, it transforms as the product of two
contravariant vectors, namely as in (4.48):

Fi j ′ = Di
k D j

�Fk�. (4.49)

The set of all such objects form a vector space (i.e. a linear combination of two type
(2, 0)-tensors is again a type (2, 0)-tensor) which is denoted by Vn⊗Vn . Let us recall
at this point, that given two vector spaces Vn , Vm , the tensor product Vn ⊗ Vm is a
vector space containing the tensor products V⊗W of vectors V ∈ Vn and W ∈ Vm .
The tensor product operation⊗ is bilinear in its two arguments: (αV1+βV2)⊗W =
αV1⊗W+βV2⊗W and V⊗ (αW1+βW2) = αV⊗V1+βV⊗W2. Therefore,
if {ui }i=1,...,n and {wα}α=1,...m are bases of Vn and of Vm , respectively, all products
V ⊗W can be expanded in the basis {ui ⊗ wα} consisting of nm elements, their
components being the product of the components of the two vectors:

V⊗W = (V⊗W)iαui ⊗ wα = V i Wαui ⊗ wα,

where summation over i and α is understood. The tensor product space Vn ⊗ Vm is
defined as the vector space spanned by the {ui ⊗wα} and is thus nm-dimensional. A
generic element of it has the following form:

F ∈ Vn ⊗ Vm,F = Fiαui ⊗ wα.

Notice that F is in general not the tensor product of two vectors: Fiα �= V i Wα . We
can generalize the above construction to define the tensor product of three or more
spaces: Vn⊗Vm ⊗Vk ≡ (Vn⊗Vm)⊗Vk (so that V1⊗V2⊗V3 ≡ (V1⊗V2)⊗V3,
for any V1 ∈ Vn,V2 ∈ Vm,V3 ∈ Vk) and so on. Given � vector spaces Vnk , k =
1, . . . , �, of dimension nk each, the tensor product Vn1 ⊗ Vn2 ⊗ . . . ⊗ Vn� is the

vector space spanned by the �-fold tensor products u(1)i1
⊗ u(2)i2

⊗ . . .⊗ u(�)il
, where

{u(k)ik
}, ik = 1, . . . , nk , is a basis of Vnk . The notion of tensor product of spaces is

important not just for the definition of tensors but also when describing, in quantum
mechanics, the quantum states for a system of non-interacting particles (see Chap. 9).

The n2 entries Fk� can either-be arranged in a n × n matrix or can be viewed
as the components of a n2-dimensional “vector” which transform linearly under a
change of basis. Indeed the quantities Di

k D j
� on the right-hand side of (4.49) can

be thought of as entries of a single matrix M = (Mi j
k�) in which the row and

column indices are represented by the couples (i, j), (k, �), respectively, running
over the n2 different combinations. This matrix would act on the column vector
F ≡ (Fk�) = (F12, F13, . . . , Fnn−1, Fnn), whose components are labeled by the
couple (k, �). We shall denote the matrix M by D⊗D, also called Kronecker product
the two D matrices, so that we can rewrite (4.49) in the following form:

Fi j ′ = Di
k D j

�Fk� = (D⊗ D) i j
k�Fk�. (4.50)
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As anticipated, Fkl , having two contravariant indices, is called contravariant tensor
of order (or rank) 2, or simply a (2, 0)-tensor, the latter notation indicating that it has
two contravariant (upper) indices and no covariant ones.

Similarly, we can define a covariant tensor of order 2, namely of type (0,2) as a
quantity having two lower indices and transforming as the product of the covariant
components of two vectors Vi W j :

F ′i j = D−1k
i D−1�

j Fk� ≡
(

D−T ⊗ D−T
)

i j

k�Fk�. (4.51)

Clearly (0, 2)-tensors form a vector space as well. Finally, we can consider objects
whose components have the form Fi

j and transform as the product of a covariant and

a contravariant vector V i W j :

V ′i W ′j = Di
k D−1�

j V k W�. (4.52)

Such objects are order 2 tensors called type (1, 1)-tensors and are therefore collections
of entries Fi

j transforming as:

F ′i j = Di
k D−1�

j Fk
� ≡

(
D⊗ D−T

)
i;�

j;k Fk
�. (4.53)

Of this kind are the non-singular matrices A = (Ai
j ) defining linear transformations

on Vn , i.e. linear mappings of (contravariant) vectors V = (V i ) into (contravariant)
vectors W = (W i ):

V −→W = AV ⇔ W i = Ai
j V j , (4.54)

To show that Ai
j is a (1, 1)-tensor, let us consider the effect on it of a change of

basis. The column vectors V and W are mapped into V′ and W′, which still satisfy
a relation of the form:

W′ = A′V′. (4.55)

Expressing the transformed (primed) quantities in terms of the old ones we can write:

A′DV = DW ⇒
(

D−1A′D
)

V =W. (4.56)

Being V and W generic, the above relation implies:

A′ = D−1AD, (4.57)

or, in components,

A′ij = Di
k D−1�

j Ak
�, (4.58)
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which shows that the matrix A = (Ai
j ) is a type-(1, 1) tensor.

The transformation property (4.27) implies that the metric is a covariant tensor
of order 2, namely a type-(0, 2) tensor called metric tensor. Similarly, (4.27)implies
that the inverse metric gi j is a type (2, 0) tensor.

The Kronecker symbol δi
j is a (1, 1)-tensor which has the property of being

invariant, namely to have the same form in whatever coordinate system:

δ′ij = Di
k D−1�

jδ
j
� = Di

k D−1k
j = δi

j . (4.59)

It is natural now to define tensors with more than two indices. We define a (p, q)-
tensor, an object having p upper and q lower indices transforming as the product of
q covariant and p contravariant vector components:

T ′a1...ap
b1...bq = Da1

c1 · · · Dap
cp D−1l1

b1 · · · D−1lq
bq T c1...cp

l1...lq . (4.60)

or, using the obvious extension of the notation used for rank two tensors

T ′a1...ap
b1...bq =

(
D⊗ · · · ⊗ D⊗ D−T ⊗ · · · ⊗ D−T

) a1...ap;l1...lq
b1...bq ;c1...cp

T c1...scp
l1...lq , (4.61)

with p factors D and q factors D−T .
We can convert covariant indices into contravariant ones using the metric tensor.

A typical example is the definition, given earlier, of the covariant components of
a vector, obtained from the contravariant ones V i by contraction with the metric
tensor: Vi = gi j V j . To start with, let us consider, as an example, a type (2, 1) tensor

T i j
k . Multiplying this quantity by the metric tensor and contracting over one index,

we obtain a new three-index tensor:

Ti
j
k ≡ gil T

l j
k, (4.62)

which is of type (1, 2): the first index, which used to be contravariant, has become
covariant due to the contraction by gi j . In general this procedure allows us to map a
type-(p, q) tensor into a type-(p − 1, q + 1) one.

Similarly we can use the tensor g jk to convert a covariant index into a contravariant
one and thus to map a type-(p, q) tensor into a type-(p+1, q−1) one. For example:

T i
k = gi j Tjk . (4.63)

4.3 Tensor Algebra

We have previously pointed out that rank 2 tensors of the same type [(2, 0), (1, 1) or
(0, 2)] can be considered as elements of a linear vector space: it is straightforward
to show that the linear combination of two rank 2 tensors of the same type is again
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a tensor of the same type. The same property holds for generic type (p, q) tensors,
which form, for given values of p and q a linear vector space: the linear combination
of two type (p, q) tensors F and G:

Sa1...ap
b1...bq = αFa1...ap

b1...bq + βGa1...ap
b1...bq , (4.64)

is again a type (p, q) tensor.
Moreover we can multiply tensors of different type to obtain a new tensor. Con-

sider two tensors F and G of type (p, q) and (r, s) respectively. We define the tensor
product F ⊗ G of the two tensors, the following type (p + r, q + s) tensor:

(F ⊗ G)a1...apap+1...ap+r
b1...bq bq+1...bq+s = Fa1...ap

b1...bq Gap+1...ap+r
bq+1...bq+s .

(4.65)

Take for example a type (2, 0) tensor Fi j and a type (0, 1) tensor Gk . We can construct
a type (2, 1) tensor from the tensor product of the two: T i j

k = (F⊗G)i j
k ≡ Fi j Gk .

Indeed, from the transformation properties of F and G:

F ′i j = Di
k D j

�Fk�; G ′i = D−1 j
i G j , (4.66)

it follows that:

T ′i j
k = F ′i j G ′k = Di

�D j
m(D

−1)nk F�m Gn = Di
�D j

m(D
−1)nk T �mn .

The generalization of the above proof to tensors of generic rank is straightforward.
The set of all tensors, endowed with the tensor product operation, is called tensor
algebra.

An other operation defined within a tensor algebra is the contraction or trace,
which maps a type (p, q) tensor into a type (p − 1, q − 1) one, and which consists
in taking the entries of a tensor with the same values of an upper (contravariant) and
a lower (covariant) index and summing them over these common values. We say
that the upper and lower indices are contracted with one another. This is what we do
when we compute the trace of a matrix with entries ai

j : we consider the entries with
equal values of i and j (i.e. the diagonal entries) and we sum them up, namely we
compute tr(ai

j ) = ai
i ≡ ∑n

i=1 ai
i . In computing the trace of (ai

j ), in other words,
we are contracting the index i with the index j. Let us consider as an example the
tensor T i j

k , which transforms as follows:

T ′i j
k = Di

�D j
m D−1s

k T �ms . (4.67)

If we contract j with k, namely we set j = k and sum over j from 1 to n, we obtain:

T ′i j
j = Di

�D j
m D−1s

j T
�m

s = Di
�δ

s
m T �ms = Di

�T
�m

m . (4.68)

We observe that T �mm transforms as a contravariant vector, namely as a (1, 0) tensor.
In particular, if we have a tensor, or a product of tensors, with all indices contracted,



106 4 The Poincaré Group

the result is a (0,0) tensor, which is a scalar, namely a quantity which does not depend
on the chosen coordinate system [an example is the trace ai

i of the matrix (ai
j ) ].

Consider, for instance, the transformation property of the product T i jUi j of a (2, 0)
and a (0, 2)-tensors:

T ′i jU ′i j == Di
k D j

�D−1m
i D−1n

j T
klUmn = δm

k δ
n
� T k�Umn = T k�Uk�.

An other example is the scalar product itself Vi W i .
Just as we did for vectors, we may define a scalar field, that is a (0, 0)-tensor as a

scalar quantity defined in each point is space, i.e. a function over space. As such, its
value at any point does not depend on the coordinates used to describe it:

f ′(P) = f (P). (4.69)

This implies that the scalar function will in general have a different dependence on the
chosen coordinates, namely that, under a change of coordinates xi → x ′i ≡ x ′i (x)
it will be described by a new function f ′(x ′) related to f (x) as follows:

f ′(x ′) = f (x). (4.70)

If the functional dependence of f on the new and old coordinates does not change,
that is if:

f ′(x ′) = f (x ′), (4.71)

the scalar function f is said to be invariant.6

A tensor field is a tensor quantity which depends on the coordinates of a point P
in space. A change in coordinates, besides transforming the tensor components, will
also transform the coordinate dependence of the tensor, as we have shown for the
vector and scalar fields. Take for instance a (2, 1) tensor field described by a set of
functions T i j

k(x) in a given coordinate system. Under a coordinate transformation
we have:

T ′i j
k(x
′) = Di

�D j
m D−1s

k T �ms(x). (4.72)

Using the explicit form (4.36) of a Cartesian coordinate transformation, we find:

T ′i j
k(r′) = Di

�D j
m D−1s

k T �ms(D−1r′ + D−1r0), (4.73)

where, in the argument on the right-hand side, we have expressed the old coordinate
vector r in terms of the new one r′ by inverting (4.37). The notion of invariance,
which was given for scalar fields, can be extended to more general tensor fields. Let
us still take, for the sake of simplicity, the type (2, 1) tensor field T i j

k(r). We will
say that Tk

i j (x) is invariant, if it transforms, under a coordinate transformation, as
follows:

6 Of course (4.70) can be also written f ′(x) = f (x), since x is a variable.
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T ′i j
k(x
′) = Di

�D j
m D−1s

k T �ms(x) ≡ T i j
k(x
′). (4.74)

The above invariance condition has an obvious generalization to tensors of type
(p, q). An example of invariant tensor is the Kronecker symbol, as it was shown in
the previous section.

Let us define a (2, 0)-tensor Fi j symmetric if Fi j = F ji and antisymmetric if
Fi j = −F ji . If we now consider a generic type (2, 0) tensor Fi j , it can be decom-
posed into a symmetric and an anti-symmetric part, with respect to the exchange of
the two indices, by writing the following trivial identity:

Fik = 1

2
(Fik + Fki )+ 1

2
(Fik − Fki )

.= FS
ik + FA

ik, (4.75)

where FS
ik = FS

ki and FA
ik = −FA

ki define the symmetric and anti-symmetric
parts of Fi j .

This decomposition does not depend on the coordinate basis we use, since under
a coordinate transformation a symmetric tensor FS

ik is mapped into a symmetric
tensor and similarly for the anti-symmetric ones:

FS
′i j =Di

�D j
m F�mS = Di

�D j
m Fm�

S = D j
m Di

�Fm�
S = FS

′ j i ,
FA
′i j =Di

�D j
m F�mA = −Di

�D j
m Fm�

A = −D j
m Di

�Fm�
A = −FA

′ j i . (4.76)

We conclude that the vector space of type (2, 0)-tensors can be decomposed into
the direct sum of two disjoint subspaces spanned by symmetric and antisymmetric
tensors. The same decomposition can be performed on the space of (0, 2)-tensors,
by writing a generic covariant rank 2 tensor Fi j into the sum of its symmetric and
anti-symmetric components: Fi j = FSi j + FAi j . It is straightforward to prove that
the contraction over all indices of a type (2,0) and a type (0,2) tensors with opposite
symmetry (i.e. one symmetric and the other anti-symmetric) is zero. Consider, for
instance, the contraction of a symmetric (2, 0)-tensor with an anti-symmetric (0, 2)
one:

FS
ik FAik = FS

ki FAki = −FS
ik FAik = 0. (4.77)

By the same token we would have FA
ik FSik = 0. As a consequence of this property,

any rank 2 tensor contracted with a symmetric or an anti-symmetric tensor gets
projected into its symmetric or anti-symmetric component. Consider, for instance,
a tensor T i j with a definite symmetry property (i.e. it is either symmetric or anti-
symmetric) and let Ui j be a generic type (0, 2) tensor, which has symmetric (USi j )
and anti-symmetric (UAi j ) components. Contracting the two tensors over all indices
we find

T i jUi j = T i j
[

1

2

(
Ui j +U ji

)+ 1

2

(
Ui j −U ji

)] = T i j (
USi j +UAi j

)
. (4.78)

Recall now that, according to (4.77), if T i j is symmetric T i jUAi j = 0 and
thus T i jUi j = T i jUSi j , whereas if T i j is anti-symmetric, T i jUSi j = 0 and so
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T i jUi j = T i jUAi j . A similar decomposition cannot be performed for (1, 1) ten-
sors, since the two indices transform differently and therefore the symmetry or anti-
symmetry properties are not preserved by coordinate transformations.

Let us finally introduce the operation of differentiation over tensor fields. By
definition, tensor fields depend on coordinates, and thus can be differentiated with
respect to them. The partial derivative with respect to the coordinate xk of a type-
(p, q) tensor field is a type-(p, q+1) tensor, whose structure differs from the original
one by one additional lower (covariant) index k. Consider, for instance, a type-(2, 1)
tensor field T i j

k(r). Differentiating with respect to x� we find a new quantity Ui j
�k :

∂

∂x�
: T i j

k(r) −→ Ui j
�k ≡ ∂

∂x�
T i j

k(r), (4.79)

which transforms,under a coordinate transformation, as follows:

U ′i j
�k(r′) = ∂

∂x ′�
T ′i j

k(r′) = ∂

∂x ′�
[

Di
m D j

n D−1p
k T mn

p(r)
]

=Di
m D j

n D−1p
k
∂xs

∂x ′�
∂

∂xs
T mn

p(r). (4.80)

On the other hand
(
∂xs

∂x ′�
)

is the (constant) inverse Jacobian matrix of (4.36), that is

(D−1s
�). Substituting this in (4.80) we find:

U ′i j
�k(r′) = Di

m D j
n D−1p

k D−1s
�U

mn
ps(r),

that is the quantity Ui j
�k(r) ≡ ∂

∂x�
T i j

k(r) is a tensor field, and, more specifically,

a type (2, 2) tensor. The operator ∂
∂xk , to be also denoted by the symbol ∂k , behaves,

by definition, as a type-(0, 1) tensor, i.e. as a covariant vector:

∂ ′� ≡
∂

∂x ′�
= D−1s

�

∂

∂xs
= D−1s

�∂s . (4.81)

4.4 Rotations in Three-Dimensions

As we have previously pointed out, the scalar product associates with a couple of
vectors a number which does not depend on the basis we use to describe the vectors.
However, its explicit expression in terms of the vector components is basis-dependent,
since the metric tensor changes: g′i j �= gi j .

Suppose now the change of basis is such that the metric is invariant, that is
g′i j = gi j . We will then have:

V ·W = V i gi j W j = V ′i gi j W
′ j , (4.82)
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that is the functional dependence of V ·W over the old and new components of the
two vectors is the same. Let us denote by

R ≡ (Ri
j ) =

⎛
⎝

R1
1 R1

2 R1
3

R2
1 R2

2 R2
3

R3
1 R3

2 R3
3

⎞
⎠ , (4.83)

the matrix implementing such transformation: V ′i = Ri
j V j ,W ′i = Ri

j W j (or, in
matrix notation V′ = RV,W′ = RW). Expressing in (4.82) the new components in
terms of the old ones we find:

V i gi j W j = V k Ri
k gi j R j

�W
�. (4.84)

Requiring the above invariance to hold for any couple of vectors (V i ) and (W i ), we
conclude that:

Ri
k gi j R j

� = gk�. (4.85)

In matrix notation (4.85) reads

RT gR = g, (4.86)

where g ≡ (gi j ) is the matrix whose components are the entries of the metric tensor
gi j . The above equation could have been obtained from Eq. (4.27), setting g′ = g
and D = R. Recalling that gi j = ui · u j , the above relation is telling us that scalar
products among the basis elements are invariant under R. It is now convenient to use
an ortho-normal basis (ui ) to start with:

ui · u j = gi j ≡ δi j , (4.87)

since the ortho-normality property of a basis is clearly preserved by all the transfor-
mations R which leave the metric invariant. In the ortho-normal basis the relations
(4.85) and (4.86) become:

Ri
kδi j R j

� =
n∑

i=1

Ri
k Ri

� = δk�, (4.88)

and, in matrix form:

RT 1R = RT R = 1, (4.89)

where

1 ≡ (δi j ) =
⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠. (4.90)
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Transformation matrices satisfying (4.88), or equivalently (4.89), are called ortho-
gonal. Orthogonal transformations can be alternatively characterized as the most
general Cartesian coordinate transformations in Euclidean space mapping two
ortho-normal bases into one another, leaving the origin fixed, i.e. the most general
homogeneous transformations between Cartesian rectangular coordinate systems.7

Recalling from Eq. (4.13) that the distance squared between two points is defined
as the squared norm of the relative position vector, an orthogonal transformation
leaves its coordinate dependence invariant. Viceversa, if an affine transformation
xi → x ′i = Ri

j x j − xi
0 of the Cartesian coordinates xi leaves the distance between

any two points, as a function of their coordinates, invariant, its homogeneous part,
described by the matrix R and defining the transformation of the relative position
vector, is an invariance of the metric tensor. This means that, starting from an ortho-
normal basis in which gi j = δi j ,R is an orthogonal matrix. To illustrate the above
implication, note that the invariance of the coordinate dependence of the distance
d(A, B) between any two points translates into the invariance of the norm of any
vector as a function of its components. This latter property amounts to stating that,
if V = (V i ) and V′ = (V ′i ) are the components of a same vector in the old and
new bases, related by the transformation R, then ‖V‖2= VT V =‖V′ ‖2= V′T V′.
Applying this property to the squared norm ‖V +W‖2 of the sum of two generic
vectors V, W, one easily finds that the scalar product (V,W) = VT W is functionally
invariant under R, namely that VT W = V ′T W′ = VT (RT R)W. From the arbitrari-
ness of V and W, property (4.89) follows. Rotations about an axis and reflections
in a plane are examples of orthogonal transformations in E3.Since (4.89) implies
(RT )−1 = R, there is no distinction between the transformation properties of the
covariant and contravariant components of a vector under orthogonal transforma-
tions, as it is apparent from the fact that, being the metric δi j invariant, the two kinds
of components coincide Vi = δi j V j = V i in any Cartesian coordinate system.

A simple example of orthogonal transformation is a rotation by an angle θ about
the X axis, see Fig. 4.2.8 The relation between the new and the old basis reads

u′1 = u1,

u′2 = cos θ u2 + sin θ u3,

u′3 = − sin θ u2 + cos θ u3. (4.91)

Being u′i = Rx
−1 j

i u j , from (4.91) we can read the form of the inverse of the rotation
matrix Rx :

R−1
x = (Rx

−1 j
i ) =

⎛
⎝

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞
⎠, (4.92)

7 In what follows, when referring to Cartesian coordinate systems, the specification rectangular
will be understood, unless explicitly stated, since we shall mainly restrict ourselves to coordinate
systems of this kind.
8 In our conventions, the rotation angle θ , on any of the three mutually orthogonal planes XY, XZ,
YZ, is positive if its orientation is related to that of the axis orthogonal to it (i.e. Z, Y, X) by the
right-hand rule.
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Fig. 4.2 Rotation about the
X axis by an angle θ .

from which we derive:

Rx = (Rx
j
i ) =

⎛
⎝

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎞
⎠, (4.93)

The new components V ′i of a vector are related to the old ones V i according to:
V ′i = Rx

i
j V j , that is

V ′1 = V 1,

V ′2 = cos θV 2 + sin θV 3,

V ′3 = − sin θV 2 + cos θV 3. (4.94)

The matrix Rx in (4.93), which describes this rotation, depends on the continuous
parameter θ: Rx = Rx (θ). The reader can easily verify that (4.89) is satisfied by
Rx . Let us observe that det(Rx ) = 1. This is a common feature of all the rota-
tion matrices and can be deduced by computing the determinant of both sides of
(4.89) and using the known properties of the determinant: det(AT ) = det(A),
det(AB) = det(A) det(B):

det(R) det(RT ) = det(R)2 = 1⇒ det(R) = ±1. (4.95)

Orthogonal transformations with det(R) = +1 are called proper rotations, or simply
rotations, while those with det(R) = −1 also involve reflections and are called A
matrix R having this property is called improper rotations. A typical example of
improper rotation is given by a pure reflection, that is a transformation changing the
orientation of one or all the coordinate axes, e.g.

⎛
⎝
−1 0 0
0 −1 0
0 0 −1

⎞
⎠ . (4.96)
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Let us now perform two consecutive rotations, represented by the matrices R1,R2.
Starting from a basis (ui ), the components V i of a generic vector will transform as
follows:

V i R1−→ V ′i = R1
i

j V j R2−→ V ′′i = R2
i

j V ′i = R2
i

j R1
j
k V k = R3

i
j V j ,

or, in matrix form: V → V′′ = R3V, where R3 ≡ R2R1. Let us show now that
the resulting transformation, implemented by R3 is still a rotation, namely that it is
orthogonal (i.e. RT

3 R3 = 1) and has unit determinant:

RT
3 R3 = (R2R1)

T (R2R1) = RT
1 (R

T
2 R2)R1 = RT

1 R1 = 1,

det(R3) = det(R2R1) = det(R2) det(R1) = 1. (4.97)

This proves that the product of two rotations is still a rotation.
In general the product of two rotations is not commutative:

R2R1 �= R1R2. (4.98)

We can easily understand this by a simple example: if we rotate a system of Cartesian
axes first about the X axis by 90◦ and then about the Z axis by the same angle
or we perform the two rotations in opposite order, we end up with two different
configurations of axes.

Any orthogonal matrix is invertible, having a non vanishing determinant, and its
inverse is still orthogonal. Indeed let R be an orthogonal matrix and R−1 its inverse.
We can multiply both sides of RT R = 1 by (R−1)T to the left and by R−1 to the
right, obtaining:

R−1T R−1 = I, (4.99)

which proves that R−1 is still orthogonal. Clearly, if R is a rotation, namely det(R) =
1, also its inverse is, since: det(R−1) = 1/ det(R) = 1.

Also the identity matrix 1 defines a rotation since it is orthogonal and has unit
determinant. It represents the trivial rotation leaving the system of axes invariant.

We have thus deduced, from their very definition (4.89), the following properties
of orthogonal matrices:

(i) The product of two orthogonal matrices is still an orthogonal matrix;
(ii) The identity matrix 1 represents the orthogonal transformation such that, given

any other orthogonal transformation R : R1 = 1R = R;
(iii) For any orthogonal transformation R one can define its inverse R−1 : RR−1 =

R−1R = 1.R−1 is still is orthogonal;
(iv) Let us add the associative property of the product of orthogonal transformations,

which actually holds for any transformation which is realized by matrices:
Given any three matrices R1(R2R3) = (R1R2)R3.
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The above properties define a group called O(3), where O stands for orthogonal,
namely for the defining property (4.89) of the transformations, and 3 refers to the
dimensionality of the space on which they act. The group O(3) contains the set of
all matrices describing rotations. This set is itself a group, since it satisfies the above
properties and thus is a subgroup of O(3), denoted by SO(3), where the additional S
stands for special, namely having unit determinant. Therefore SO(3) is the rotation
group in three dimensional Euclidean space.

4.5 Groups of Transformations

The orthogonal group is just an instance of the more general notion of group of trans-
formations. In general any set of elements G among which a product operation · is
defined and which satisfies the same properties (i), (i i), (i i i), (iv) as the rotations,
is called a group.

Consider general coordinate transformations and define the product A · B of two
such transformations A, B, as the transformation resulting from the consecutive action
of B and A on the initial coordinate system S: if B transforms S, of coordinates xi ,
into a system S′, of coordinates x ′i = x ′i (x), A maps S′ into S′′, of coordinates
x ′′i = x ′′i (x ′), A · B will transform S into S′′ and will be defined by the coordinate
relations x ′′i = x ′′i (x ′(x)). Given a transformation A which maps S into S′, defined
by the relations x ′i (x), its inverse A−1 is the unique transformation mapping S′ into
S, and is defined by the inverse relations xi (x ′). The identity transformation I is
the trivial transformation mapping a coordinate system S into itself. Finally, we can
convince ourselves that the product of transformations is associative, namely that, if
A, B, C are three transformations, A · (B ·C) = (A · B) ·C . This proves that the set
of all coordinate transformations satisfy the same properties (i), (i i), (i i i), (iv) as
the rotations, and thus close a group called the group of coordinate transformations.

We can generalize the concept of orthogonal transformations and of rotations to
the n-dimensional Euclidean space En , namely to a n-dimensional space endowed
with a positive definite metric gi j , i, j = 1, . . . , n. Orthogonal transformations are
those which leave this metric tensor invariant, and are represented, in an ortho-normal
basis in which gi j = δi j , by n × n matrices R satisfying the orthogonality property:
RT R = 1, 1 being the n×n identity matrix. These transformations close themselves
a group [i.e. satisfy axioms (i), (i i), (i i i), (iv) ], denoted by O(n), which contains,
as a subgroup, the group of rotations SO(n) over the n-dimensional space, described
of orthogonal matrices with unit determinant.

Let us consider the set of all Cartesian (not necessarily rectangular) coordinate
transformations, i.e. the affine transformations (4.36) and show that they close a
group. To this end, let us consider the effect, on a coordinate vector r of two consec-
utive affine transformations (D1, r1), (D2, r2):

r
1−→ r′ = D1r − r1

2−→ r′′ = D2r′ − r2 = D2D1r − D2r1 − r2

= (D2D1,D2r1 + r2) · r.
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The result of the two transformations defines their product, which is still an affine
transformation:

(D3, r3) ≡ (D2, r2) · (D1, r1) = (D2D1,+D2r1 + r2). (4.100)

The identity element and the inverse of an affine transformation have the following
form:

I = (1, 0), (D, a)−1 = (D−1,−D−1a). (4.101)

This proves that the affine transformations close a group, called the affine group. A
subset of affine transformations are the homogeneous transformations (D, 0) which
do not shift the origin of the Cartesian system, but describe the most general trans-
formation on the basis elements, and are defined by an invertible matrix D. They
close themselves a group, as the reader can easily verify, which is the group of non-
singular n× n matrices, called general linear group, and denoted by GL(n). We say
that GL(n) is a subgroup of the affine group. In general if a subset G ′ of a group G is
itself a group with respect to the product defined on G, then G ′ is a subgroup of G. For
instance the rotation group SO(3) is a subgroup of GL(3), since all its elements are
invertible 3× 3 matrices. Similarly the rotation group in a n-dimensional Euclidean
space SO(n) is a subgroup of the general linear group on the same space GL(n). The
most general transformation relating two Cartesian rectangular coordinate systems
is an affine transformation of the form (R, r0):

r′ = (R, r0) · r = Rr − r0, (4.102)

where R is an orthogonal matrix, since the two bases {ui }, {u′i } are both ortho-
normal, and we allowed for a translation of the origin O → O ′. Since this translation
does not affect the coordinate expression of the relative position vector between two
points, (4.102) defines the most general Cartesian coordinate transformation leaving
the distance between two points, as a function of their coordinates, invariant. The
reader can verify that these transformations close a group, called the Euclidean or
congruence group E(n), which is therefore a subgroup of the affine one.9

We can now refine the notion of tensor, relating it to a certain group of trans-
formations. We have introduced tensors as quantities with definite transformation
properties relative to the most general homogeneous linear transformations, i.e. rela-
tive to the group GL(n). We can consider the transformation property of tensors with
respect to the subgroup SO(n) of GL(n). A tensor which is invariant with respect
to the latter, such as δi

j , is a fortiori, invariant under any of its subgroups, including
SO(n). However, a tensor which is invariant with respect to SO(n) is not in general
invariant under GL(n). As an example consider the Ricci tensor εi jk, i, j, k = 1, 2, 3,
which is SO(3)-invariant but not GL(3)-invariant. Such tensor is defined as follows:

9 Let us recall that Euclidean geometry can be fully characterized by the invariance under the
corresponding congruence group.
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it is completely anti-symmetric in its three indices10 and therefore vanishes if any
couple of indices have equal value; Its value is +1 or −1 depending on whether
(i, j, k) is an even or odd permutation of (1, 2, 3) (for instance ε123 = +1). Under a
SO(3) transformation:

ε′i jk = R−1m
i R−1n

j R−1�
k
εmn� = det(R−1)εi jk = εi jk . (4.103)

This proves that εi jk is SO(3)-invariant. It clearly is not GL(3)-invariant since trans-
formations in GL(3) may in general have a determinant which is not 1. One can
verify that for εi jk the following properties hold:

εi jkεi jk = 3!,
εi jkεl jk = 2!δil ,

εi jkεlnk = (δilδ jn − δinδ jl).

Another tensor which is invariant under SO(3) [more generally with respect to
O(3)] but not with respect to GL(3) is the metric gi j = δi j (note that this differs
from the tensor δi

j in that both indices are covariant). This follows from the very
definition of orthogonal matrices (4.88). For the same reason δi j , i, j = 1, . . . , n,
is in general O(n)-invariant but not GL(n)-invariant. Note that δi j , inverse of δi j ,
clearly coincides with δi j , and thus is still O(n)-invariant.

Let us now consider the decomposition (4.75) for tensors transforming under
O(n). We have shown that the two vector spaces spanned by the symmetric Fi j

S and

anti-symmetric Fi j
A components of rank 2 tensors Fi j are invariant, in the sense

that a symmetric (anti-symmetric) tensor is mapped by any element of GL(n) into
a tensor with the same symmetry property. It is easy to show that, if we consider
transformations of tensors with respect to O(n), we can use the O(n) invariant tensor
δi j to decompose the symmetric component Fi j

S in (4.75) into a trace part δi j Fk
k ,

where

Fk
k ≡ δi j Fi j = δi j Fi j

S , (4.104)

and a traceless part F̃ i j
S defined as:

F̃ i j
S =

1

2
(Fi j + F ji )− 1

n
δi j Fk

k . (4.105)

10 Complete antisymmetrization in the three indices μ, ν, ρ on a generic tensor Uμνρ , is defined as
follows:

U[μνρ] = 1

3! (Uμνρ −Uμρν +Uνρμ −Uνμρ +Uρμν −Uρνμ).

It amounts to summing over the even permutations of μ, ν, ρ with a plus sign and over the odd ones
with a minus sign, the result being normalized by dividing it by the total number 6 of permutations
(see Chap. 5).

http://dx.doi.org/10.1007/978-88-470-1504-3_5
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As the reader can easily verify from the definition of trace, F̃ i j
S is indeed a symmetric

traceless tensor, namely: F̃ i j
S δi j = 0. We can now decompose Fi j as follows

Fi j =
(

F̃ i j
S + Di j

)
+ Fi j

A , (4.106)

where

Di j = 1

n
δi j Fk

k , (4.107)

is the trace part, while, as usual

Fi j
A =

1

2
(Fi j − Fi j ), (4.108)

is the anti-symmetric component. Let us show that the components F̃ i j
S and Di j of

all the type (2, 0) tensors span two invariant vector spaces with respect to O(n). We
need first to show that the O(n)-transformed of F̃ i j

S is still symmetric traceless:

F̃ ′i j
S = Ri

k R j
� F̃k�

S =⇒ δi j F̃ ′i j
S = δi j Ri

k R j
� F̃k�

S = δk� F̃k�
S = 0. (4.109)

Finally the trace part Di j = 1
n δ

i jδk�Fk� is also invariant being δi j O(n)-invariant.

4.5.1 Lie Algebra of the SO(3) Group

Let us consider some properties of the rotation group SO(3). This group has dimension
3, which means that the most general rotation in the three dimensional Euclidean
space is parametrized by three angles, such as for instance the Euler angles defining
the relative position of two Cartesian systems of orthogonal axes:

R = R(θ) ≡ R(θ1, θ2, θ3) θ ≡ (θ i ). (4.110)

The Euler angles are often denoted by (θ, φ, ψ) and correspond to describing a
generic rotation as a sequence of three elementary ones: a first rotation about the
Z axis by an angle θ , followed by a rotation about the new Y axis by an angle φ, and
a final rotation about the new Z axis by an angleψ . The entries of the rotation matrix
R(θ) are continuous functions of the three angles.

In general the dependence of the group elements on their parameters θ i is contin-
uous and the parameters are chosen so that

R(θ i ≡ 0) = 1. (4.111)

We also know that the product of two rotations is still a rotation and one can verify
that the parameters defining the resulting rotation is an analytical function of those
defining the first two:
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R(θ1) · R(θ2) = R(θ3), (4.112)

where θ i
3 = θ i

3(θ1, θ2) are analytical functions. In general a group of continuous
transformations satisfying the above properties is called a Lie group.

Since rotation matrices are continuous functions of angles, we can consider rota-
tions which are infinitely close to the identity element. These transformations, called
infinitesimal rotations, are defined by very small (i.e. infinitesimal) angles θ i . We can
expand the entries of an infinitesimal rotation matrix R(θ1, θ2, θ3) in Taylor series
with respect to its parameters and write, to first order in the angles:

R(θ1, θ2, θ3) = 1+ ∂R
∂θ i

∣∣∣∣
θ i=0

θ i + O(θ2). (4.113)

Introducing the matrices Li ≡ ∂R
∂θ i |θ i=0, called infinitesimal generators of rotations,

the above expansion, to first order, reads:

R(θ) = 1+ θ i Li + O(θ2)  1+ θ i Li . (4.114)

Let us consider, as an example, a rotation about the X axis, described by the matrix
Rx in (4.93), by an angle θ and let us expand it, for small θ , up to fist order in the
angle:

Rx =
⎛
⎝

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎞
⎠ =

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠+ θ

⎛
⎝

0 0 0
0 0 1
0 −1 0

⎞
⎠+ O(θ2)

 1+ θL1. (4.115)

From this equation we can read the expression of the first infinitesimal generator
L1, associated with rotations about the X axis:

L1 =
⎛
⎝

0 0 0
0 0 1
0 −1 0

⎞
⎠ . (4.116)

Similarly, expanding infinitesimal rotation matrices about the Y and Z axes
we find:

Ry(θ) ≡
⎛
⎝

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎞
⎠  1+ θL2, (4.117)

Rz(θ) =
⎛
⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞
⎠  1+ θL3, (4.118)
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from which we can derive the corresponding infinitesimal generators:

L2 =
⎛
⎝

0 0 −1
0 0 0
1 0 0

⎞
⎠ , L3 =

⎛
⎝

0 1 0
−1 0 0
0 0 0

⎞
⎠ . (4.119)

In a more compact notation we may write the three matrices Li as follows11:

(Li )
j

k = εi jk . (4.120)

Since a generic rotation R(θ i ) can be written as a sequence of consecutive rotations
about the three axes:

R(θ1, θ2, θ3) ≡ Rz(θ
3)Ry(θ

2)Rx (θ
1), (4.121)

expanding the right-hand side for small θ i , up to the first order, we find

R(θ1, θ2, θ3) ≡ 1+ θ1L1 + θ2L2 + θ3L3, (4.122)

that is the infinitesimal generators of a generic rotation are expressed as a linear
combination (whose parameters are the rotation angles) of the three matrices Li

given in (4.116) and (4.119). In other words, any linear combination of infinitesimal
generators is itself an infinitesimal generator, that is infinitesimal generators span a
linear vector space, of which the matrices (Li ) define a basis. From (4.120) it follows
that the effect of an infinitesimal rotation R(δθ), by infinitesimal angles δθ i ≈ 0,
can be described in terms of the following displacement of the coordinates:

x ′i = xi − εi jkδθ
j xk ⇔ r′ = R(δθ)r  r − δθ × r, (4.123)

where×denotes the external product between two vectors: δθ×r ≡ (εi jkδθ
j xk). The

reader can easily verify the following commutation relation between the infinitesimal
generators:

[
Li ,L j

] ≡ Li L j − L j Li = Ci j
kLk, (4.124)

where

Ci j
k = −εi jk . (4.125)

In other words the commutator [, ] of two infinitesimal generators is still in the same
vector space. As a consequence of this, in virtue of the linearity property of the
commutator with respect to its two arguments, the commutator of any two matrices
in the vector space belongs to the same vector space. The commutator then provides
a composition law on the vector space of infinitesimal generators which promotes it

11 Recall that the orthogonal group makes no difference between upper and lower indices.
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to an algebra. Equation (4.124) and (4.125) define the structure of this algebra and
the constant entries of the SO(3) -tensor Ci j

k are called structure constants. From
(4.125) it follows that Ci j

k is a SO(3)-invariant tensor.
Let us now show how, from the explicit form of the infinitesimal generators Li ,

we can derive the matrix defining a generic finite rotation. Consider a rotation R(θ),
parametrized by some finite angles θ i . We can think of performing it through a
sequence of a very large number N � 1 of infinitesimal rotations R(δθ) by angles

δθ i ≡ θ i

N � 1. For large N, each infinitesimal rotation reads: R(δθ) ≈ 1+ δθ i Li =
1+ 1

N θ
i Li . The finite rotation will therefore be approximated as follows:

R(θ i ) ≈ [R(δθ)]N =
(

1+ 1

N
θ i Li

)N

, N � 1. (4.126)

Intuitively, the larger N the better the above approximation is. Therefore we expect,
in the limit N →∞, to obtain an exact representation of the finite rotation:

R(θ) = lim
N→∞

(
1+ 1

N
θ i Li

)N

. (4.127)

Recalling that, if x is a number, we can express its exponential ex as the limit
ex = limN→∞

(
1+ x

N

)N , in a similar way it can be shown that the limit on the
right-hand side of (4.127) is the exponential of the matrix θ i Li :

R(θ) = exp(θ i Li ), (4.128)

where the exponential of a matrix A is defined by the same infinite series defining
the exponential of a number:

exp(A) ≡
∞∑

n=0

1

n! (A)
n . (4.129)

Therefore, knowing the infinitesimal generators of the rotation group (and, as we
shall see in the next chapter, the same is true for any Lie group), we can express any
rotation as the exponential of an element of the infinitesimal generator algebra:

R(θ) = eθ
i Li . (4.130)

Obviously the determinant of the rotation matrix R(θ i ), being a continuous function
of its entries, will be a continuous function of the three angles as well. Since orthog-
onal matrices can only have determinant ±1, and the matrix in (4.130) at θ i ≡ 0,
has determinant +1, in virtue of its continuity, the value of det(R(θ)) cannot jump
to −1 for some values of the angles. We conclude that the exponential in (4.130)
has determinant +1 and thus that only rotations can be expressed as exponentials.
Therefore transformations in O(3) involving also reflections, which have determi-
nant −1, cannot be written in that form. As opposed to rotations, we will say that
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these transformations of O(3) are not in the neighborhood of the origin in which the
exponential representation holds. We can however write a generic orthogonal matrix
with determinant −1 as the product of a rotation times a given reflection O, e.g.
O = diag(−1, 1, 1).

From the physical point of view the infinitesimal generators of rotations have an
important meaning in quantum mechanics. Let us define the following matrices:

Mi = −i�Li , (4.131)

which, in virtue of (4.124) and (4.125), satisfy the following commutation relations:

[
Mi ,M j

] = i�εi jkMk . (4.132)

These are the commutation relations between the components of the angular momen-
tum operator in quantum mechanics. Aside from the new normalization, (4.131)
expresses the fact that the angular momentum components can be identified with the
infinitesimal generators of the rotation group SO(3). Similarly, when dealing with
symmetries in Hamiltonian (classical) mechanics, we will learn that we can asso-
ciate with any continuous symmetry transformation of the Hamiltonian, a conserved
quantity on the phase space. This quantity will be identified with the infinitesimal
generator of such transformations. In particular invariance under rotations will imply
the conservation of the corresponding infinitesimal generators, which we shall show
to be the components of angular momentum.

Let us observe that the infinitesimal generators Li are represented by anti-
symmetric matrices, as it is apparent from (4.116) and (4.119). This is not accidental,
but follows from the defining property of the rotation group. Consider an infinites-
imal rotation R(δθ i ) = 1 + δθ i Li ∈ SO(3), δθ i ≈ 0. Let us write for R(δθ) the
orthogonality condition:

1 = RT (δθ)T R(δθ) = (1+ δθ i LT
i )(1+ δθ j L j ) = 1+ δθ i (LT

i + Li ),

where we have neglected orders in δθ i higher than the first. Form the above condition
it then follows that:

Li = −LT
i . (4.133)

that is the infinitesimal generators of rotations, with respect to an ortho-normal basis,
are represented by anti-symmetric matrices.

Let us end this section by giving the explicit form of a generic rotation in terms
of the Euler angles:

R(θ, φ, ψ) = eθL3 eφL2 eψL3 . (4.134)

To construct the infinitesimal generators we have used the parametrization of a rota-
tion in terms of θ1, θ2, θ3 and not the Euler angles. This is due to the fact that the
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latter define a parametrization which is singular at the origin where infinitesimal
generators are defined, while this is not the case for the parametrization we used. If
we indeed expand the matrix (4.134) for infinitesimal Euler angles, we do not find
the complete basis of generators.

4.6 Principle of Relativity and Covariance of Physical Laws

The tensorial formalism is particularly convenient since it allows to easily tell whether
physical laws are written in a form which does not depend on the frame of reference
we use, namely if the principle of relativity holds for the group of transformations
with respect to which the tensor quantities are defined. Indeed consider a group G
of Cartesian coordinate transformations (like the rotation group), subgroup of the
affine one.

If an equation is expressed as an equality between two tensors of the same type
with respect to G, if it holds in a RF, it will hold in any other RF related to it by a
transformation of the group G.

To prove this property, let us consider an equation which holds in a basis defining
a certain RF and which is written as an equality between tensors of the same type,
with respect to G:

T i1...ik
ji ... jp = Ui1...ik

j1... jp
, (4.135)

and define Ai1...ik ji ... jp = T i1...ik
ji ... jp
−Ui1...ik ji ... jp . In the original RF (4.135) can

also be written as follows:

Ai1...ik
ji ... jp = 0. (4.136)

In a new RF obtained from the original one by means of G-transformation, using
(4.60), we will have a new tensor A′, related to A as follows:

A′i1...ik
ji ... jp = Di1

n1
. . . Dik

nk D−1m1
j1
. . . D−1m p

jp An1...nk
m1...m p

, (4.137)

and which is still vanishing due to (4.136); Indeed the action of the tensor
(or Kronecker) product of D matrices on the right hand side is an invertible trans-
formation, being the D-matrices themselves invertible by assumption. This can be
proven using the following general property of the Kronecker product of matrices:
(A ⊗ B) · (C ⊗ D) = (AC) ⊗ (BD), which can be generalized to an n-fold ten-
sor product. As a consequence of this, the identity transformation on a tensor is the
tensor product of identity matrices acting on each index and, moreover, the inverse of
a tensor product of invertible matrices exists and is the tensor product of the inverses
of each factor: If A and B are invertible, (A⊗ B)−1 = A−1 ⊗ B−1.

The physical law expressed by (4.135), will then hold also in the new RF, obtained
from the original one through a G-transformation. We say that this equation is man-
ifestly covariant with respect to the transformation group G.
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As an example let us show that the fundamental law of dynamics does not depend
on the orientation of the Cartesian orthogonal axes of the chosen RF, namely that
it is covariant with respect to O(3). Let us consider the simple case of Newton’s
second law in the presence of conservative forces F = ma. Being the force con-
servative, its contravariant components Fi are expressed in terms of the gradient
of a potential energy U, which is a function of the position of the point particle.
Being the components of a gradient covariant, this relation should involve the metric
tensor: Fi = −gi j∂ jU . Also the acceleration is described by contravariant compo-
nents (ai ), since it is expressed as the second derivative with respect to time of the

position vector r, which is described by contravariant components xi : ai ≡ d2xi

dt2 .
Newton’s second law is then written as an equality between two type (1, 0) O(3)-
tensors (contravariant vectors):

mai = Fi = −gi j∂ jU. (4.138)

If we act on the original RF by a transformation in O(3) (rotations and reflections),
we find:

F ′i − m
d2x ′i

dt2 = Ri
j

(
F j − m

d2x j

dt2

)
= 0, (4.139)

which shows that the fundamental law of dynamics is covariant with respect to O(3),
namely with respect to rotations and reflections of the RF.

When we shall consider four-dimensional space–time instead of the three-
dimensional Euclidean space, among all the possible transformations on a RF, of
particular interest are the Lorentz transformations, on which Einstein’s principle of
relativity is based. We shall show, at the end of this chapter, that Lorentz transforma-
tions close a group, the Lorentz group. If we also include space–time translations,
this group enlarges to the Poincaré group. If physical laws are expressed as an equal-
ity between tensors of the same type with respect to the Lorentz group, we will be
guaranteed that the principle of relativity holds.

4.7 Minkowski Space–Time and Lorentz Transformations

In discussing special relativity, we have seen that space–time can be regarded as a
four-dimensional space M4 whose points are described by a set of four Cartesian
coordinates

(xμ) = (x0, x1, x2, x3), μ = 0, 1, 2, 3, (4.140)

three of which (xi ) = (x1, x2, x3) = (x, y, z) are spatial coordinates of our Euclid-
ean space E3, and one x0 = ct is related to time. A point on M4 describes an event
taking place at the point (x, y, z), at the time t. Just as for Euclidean space, we can
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define vectors connecting couples of points in M4, like the infinitesimal displacement
vector connecting two infinitely close events:

dx ≡ (dxμ) = (dx0, dx1, dx2, dx3). (4.141)

These vectors span a four-dimensional linear vector space on which a symmetric
scalar product is defined by means of the metric gμν = ημν , where 12:

ημν =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (4.142)

Given two 4-vectors P ≡ (Pμ) and Q ≡ (Qμ), their scalar product reads:

P · Q = PμημνQν = P0 Q0 −
3∑

i=1

Pi Qi . (4.143)

This scalar product, in contrast to the one defined on the Euclidean space, is not
positive definite, namely does not satisfy property (c) of (4.7), since the corresponding
metric has one positive and three negative diagonal entries (indefinite or Minkowskian
signature). As a consequence of this the squared norm of a 4-vector P ≡ (Pμ),
defined using this scalar product:

‖P‖2 ≡ P · P ≡ PμημνPν = (P0)2 −
3∑

i=1

(Pi )2, (4.144)

can vanish even if P is not zero. In particular a non-vanishing 4-vector can have
positive, zero or negative squared norm, in which cases we talk about a time-like, null
or space-like 4-vector, respectively. We can take, as 4-vector, the displacement vector
dx, whose squared norm measures the squared space–time distance ds2 between two
infinitely close events:

ds2 = ‖dx‖2 = dxμημνdxν = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)3. (4.145)

As pointed out when discussing about relativity, the distance ds in (4.145) should
be interpreted as the infinitesimal proper-time interval times the velocity of light:
ds2 = c2dτ 2. A four-dimensional space on which the metric (4.142) is defined, is
called Minkowski space (or better space–time).

Let us now consider linear coordinate transformations xμ → x ′μ = x ′μ(x)
which do not affect the position of the origin of the coordinate system (i.e. the

12 Some authors alternatively define the Lorentzian metricη as diag(−1,+1,+1,+1). This notation
is common in the general relativity literature and has the advantage of yielding the Euclidean metric
when restricted to the spatial directions 1, 2, 3.
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origins of the two Euclidean coordinate systems O(x = 0, y = 0, z = 0) and
O ′(x ′ = 0, y′ = 0, z′ = 0) coincide at some common initial instant t = t ′ = 0).
Such transformations are defined by homogeneous relations between old and new
coordinates

x ′μ = �μνxν ⇒ dx ′μ = �μνdxν . (4.146)

Just as we defined orthogonal transformations in Euclidean space, we can con-
sider homogeneous transformations (4.146) which leave the distance ds, in (4.145),
between two events, as a function of their coordinates, invariant (invariance of ds).
This condition defines the Lorentz transformations, which are thus implemented by
a 4 × 4 invertible matrix � = (�μν). We can alternatively characterize a Lorentz
transformation by requiring that its action on two generic 4-vectors P ≡ (Pμ) and
Q ≡ (Qμ), which transform as dxμ in (4.146), namely

Pμ→P ′μ = �μν Pν,

Qμ→Q′μ = �μνQν, (4.147)

leaves their scalar product P · Q invariant:

P ′μημνQ′ν = PμημνQν. (4.148)

Substituting the expressions in (4.147) into the above equation, and requiring the
equality to hold for any choice of the two 4-vectors, we derive the following general
condition defining the matrix �

�ρμ�
σ
νηρσ = ημν, (4.149)

or, in matrix notation, setting η ≡ (ημν):

�T η� = η. (4.150)

Lorentz transformations are thus the linear homogeneous coordinate transforma-
tions which leave the metric ημν invariant. Physically they represent the most
general coordinate transformation relating two inertial frames of reference, whose
four-dimensional origins xμ = 0 and x ′μ = 0 coincide. Comparing (4.149) with
(4.88) we see that Lorentz transformations play in Minkowski the role that orthogo-
nal transformation have in Euclidean space. The reader can easily verify that the set
of all matrices �, solution to (4.149), i.e. the Lorentz transformations, satisfy axioms
(i), (i i), (i i i), (iv) of Sect. 4.4 which define a group structure. Lorentz transforma-
tions therefore form a group called the Lorentz group. The elements of this group
depend on a set of continuous parameters, which are the entries �μν of the matrix
�, subject to the condition (4.149). The Lorentz group is therefore an other example
of continuous groups, together with the rotation group, which we have character-
ized in the previous sections as Lie groups. The identity transformation 1 ≡ (δ

μ
ν )
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is in particular a Lorentz transformation corresponding to a particular choice of the
continuous parameters: �μν = δμν .

Consider now the component μ = ν = 0 of (4.149):

(�0
0)

2 − (�i
0)

2 = 1 ⇒ (�0
0)

2 ≥ 1, (4.151)

the above property implies that we can either have�0
0 ≥ 1 or�0

0 ≤ −1. Moreover,
from from (4.149), it also follows that

det(�)2 = 1⇒ det(�) = ±1. (4.152)

Lorentz transformations are then divided in the following four classes:

(i) �0
0 ≥ 1, det(�) = 1 (proper transformations);

(ii) �0
0 ≥ 1, det(�) = −1;

(iii) �0
0 ≤ −1, det(�) = −1;

(iv) �0
0 ≤ −1, det(�) = +1.

Lorentz transformations in the first class are called proper and, as the reader
can easily verify, close a group. An example of a Lorentz transformation of the
second kind is the parity P, which is implemented by the matrix �P = η =
diag(+1,−1,−1,−1). Its effect is to reverse the orientation of the three Cartesian
axes X,Y,Z:

xμ
P−→ x ′μ = �P

μ
νxν ⇔

{
t −→ t ′ = t
x−→x′ = −x

. (4.153)

A transformation of the kind (iii) is the time reversal T, which consists in reversing
the orientation of time while leaving the space-coordinates inert. It is implemented
by the matrix �T = −η = diag(−1,+1,+1,+1)

xμ
T−→ x ′μ = �T

μ
νxν ⇔

{
t −→ t ′ = −t
x−→x′ = x

. (4.154)

Finally a representative of last class is the product of the parity and time reversal
transformations, implemented by the matrix �P�T = −1. Its effect is to reverse the
orientation of the space and time Cartesian axes in Minkowski space–time.

Transformations with�0
0 ≥ 1 are called orthochronous since they do not involve

time reversal. Let us now prove an important property of Lorentz transformations:
Orthochronous transformations leave the sign of the time-component of time-like

(or in general non-space-like) four-vectors invariant, while non-orthochronous ones
reverse it.

To prove it let us consider a non-space-like four vector P ≡ (Pμ) = (P0,P):

‖P‖2 ≥ 0 ⇔ |P|
|P0| ≤ 1. (4.155)
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Let � be a Lorentz transformation which maps Pμ into P ′μ = �μν Pν . The time-
component of the transformed vector reads:

P ′0 = �0
0 P0 +�0

i Pi . (4.156)

The second term on the right-hand side has the form of a scalar product �0 · P
between the vectors �0 ≡ (�0

i ) and P, which can be written as the product of
their norms times the cosine of the angle between them: �0

i Pi = |�0||P| cos(θ).
Dividing both sides of (4.156) by P0, we find:

P ′0

P0 = �0
0

(
1+ |�

0|
�0

0

|P|
P0 cos(θ)

)
= �0

0 (1+ A) . (4.157)

From (4.151) we find that |�0| = √
(�0

0)2 − 1 < |�0
0|. This property and (4.155)

imply that the constant A in (4.157) is, in modulus, smaller than one: |A| < 1, so that
1+A is positive and P ′0/P0 has the same sign as�0

0. This proves the property stated
above, namely that P ′0 and P0 have the same sign if, and only if, the transformation
is orthochronous (�0

0 ≥ 1).
Let us now consider the product of two Lorentz transformations �3 = �1�2

and, in particular, the four-vector defined by the components �3
μ

0 = �1
μ
ν�2

ν
0.

It is expressed as the transformed through �1 of the four vector �2
ν

0. Both �3
μ

0
and �2

μ
0 are time-like since, by virtue of (4.151), ‖�2

ν
0‖2 = ‖�3

ν
0‖2 = 1. As a

consequence of the previously proven property:

sign
(
�3

0
0
) = sign

(
�1

0
0
)
sign

(
�2

0
0
)
, (4.158)

namely the product of two orthochronous or two non-orthochronous transforma-
tions is orthochronous, while the product of an orthochronous transformation and
a non-orthochronous one is non-orthochronous. Since the product of two Lorentz
transformations always has unit determinant, we conclude that the product of any
two transformations in each of the above four classes is a proper Lorentz transforma-
tion. Consider now the inverse �−1 of a Lorentz transformation �. Since �−1� = 1,
and 1 is orthochronous, �−1 is orthochronous if and only if � is. This implies that
any two representatives of each of the above classes are connected, through the right
(or left) multiplication, by a proper Lorentz transformation. Consider indeed two
transformations �1,�2 within a same class. From our previous discussion it follows
that � = �1�

−1
2 is a proper Lorentz transformation such that �1 = ��2. We

conclude that any representative of the classes (i i), (i i i), (iv) can be written as the
product of a proper Lorentz transformation times �P ,�T ,�P�T , respectively.

We shall be mainly interested in those transformations �μν which are continu-
ously connected to the identity transformation 1. Since δ0

0 = 1 and det(1) = 1, these
transformations, by continuity, should the proper Lorentz transformations. They close
a group denoted by SO(1,3), which differs from the group SO(4) of rotations in a
four-dimensional Euclidean space in that the corresponding invariant metric, instead
of being δμν with diagonal entries (+1,+1,+1,+1), is the matrix ημν defined in
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(4.142), with diagonal entries (+1,−1,−1,−1). The argument (1, 3) in the symbol
of the group refers then to the signature of the corresponding invariant metric.13

Just as we did for the rotation group and the general linear group, we define vectors
(Vμ) which are contravariant and vectors (Vμ) which are covariant with respect to
the Lorentz group as quantities transforming as (dxμ) and as the gradient ( ∂

∂xμ f (x))
of a function f (x), respectively:

Vμ→ V ′μ = �μνV ν, (4.159)

Vμ→ V ′μ = �−1ν
μVν . (4.160)

Using the metric tensor gμν = ημν , we can raise or lower indices, that is we can
map a covariant into a contravariant vector and vice-versa, as we have seen in the
more general case

Vμ→ Vμ = ημνV ν,

Vμ→ Vμ = ημνVν,

where we have used ημνηνσ = δμσ . This is proven in the same way as in the general
case, this time using (4.149). Notice that, since η00 = 1, raising or lowering a time
component will not alter its sign, while, being ηi j = −δi j , the same operation will
invert the sign of the spatial components.

All the general properties that we have learned for tensors with respect to GL(4),
clearly apply to SO(1, 3)-tensors as well. For instance we can define a Lorentz tensor
of type (p, q), that is with p contravariant and q covariant indices

Tμ1...μp
ν1...νq , (4.161)

as a quantity transforming under � as follows:

T ′μ1...μp
ν1...νq = �μ1

ρ1 . . . �
μq
ρp�

−1σ1
ν1 . . . �

−1σq
νq T ρ1...ρp

σ1...σq . (4.162)

Tensors of the same type (p, q) form a linear vector space and the collection of all
possible tensors form an algebra with respect to the tensor product operation and
contraction.

Anticipating some concepts which will be introduced and discussed in Chap. 7,
tensors of a given type (p, q) form a basis of a representation of the Lorentz group,
on which the group action is defined by (4.162). Such property means that the effect
on a type (p, q) tensor of two consecutive Lorentz transformations �1, �2, is the
transformation induced by the product of the two �2, �1. This follows from the
definition of the Kronecker product of matrices and in particular from the property
(A⊗ B) · (C⊗ D) = (AC)⊗ (BD), see Sect. 4.6. This representation is in general

13 If the invariant metric were diagonal with entries (+1,+1,−1,−1), the corresponding group
would have been SO(2, 2).
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reducible, that is the vector space spanned by type (p, q) tensors may decompose
into the direct sum of orthogonal subspaces each of which are stable under the action
of the Lorentz group, and therefore define themselves bases of representations of the
group. As an example let us consider a Lorentz tensor with two contravariant indices
Fμν , transforming according to (4.162). Similarly to what happened in the case of
the rotation group, see (4.104) and (4.109), we can decompose this tensor into three
components which transform into themselves under the action of SO(1, 3). Let us
define the trace operation:

Fρρ ≡ ημνFμν, (4.163)

and decompose Fμν as follows

Fμν =
(

F̃μνS + Dμν
)
+ FμνA . (4.164)

The first term within brackets denotes the symmetric traceless component of Fμν :

F̃μνS =
1

2
(Fμν + Fμν)− 1

4
ημνFρρ , F̃μνS ημν = 0.

The second term within brackets in (4.164) represents the trace part:

Dμν = 1

4
ημνFρρ ,

and, finally,

FμνA =
1

2
(Fμν − Fμν).

is the anti-symmetric component. With the above definitions the proof that each of
these components, under a Lorentz transformation, is mapped into the corresponding
component of the transformed tensor, is the same as the one given for the rotation
group. We conclude that antisymmetric, symmetric traceless and the trace each span
three orthogonal subspaces of the total space of type (2, 0) tensors, which are stable
under the action of the Lorentz group. Since they cannot be further reduced, we say
that they define the bases of three irreducible representations of SO (1, 3). The same
result applies to (0, 2)-tensors as well.

The importance of having a physical law written in a tensorial form with respect
to the Lorentz group relies in the following property:

If a physical law is written as an equality between Lorentz tensors of a same type,
in a given RF, it will hold in any other RF connected to the original one by a Lorentz
transformation.

Since Lorentz transformations are the most general homogeneous transformations
relating two inertial RF.s in relative motion, we conclude that a physical law which
can be expressed as an equality between Lorentz tensors of the same type, that is in a
manifestly Lorentz covariant way, is consistent with the principle of special relativity.
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The principle of relativity in other words requires all physical laws to be written
in the following general form:

Fμ1···μp
ν1···νq = Gμ1···μp

ν1···νq , (4.165)

for certain values of p and q. As we shall see, this is indeed the case for Maxwell’s
equations. A tensorial equation of the form (4.165) is said to be manifestly covariant
under Lorentz transformations.

4.7.1 General Form of (Proper) Lorentz Transformations

In our discussion about special relativity in Chap. 1, we limited ourselves to reference
frames with parallel axes and whose relative constant velocity vector was oriented
along the common X axes (standard configuration). In Sect. 2.2.1 of Chap. 2, how-
ever, we have also given the form of the Lorentz transformation when, keeping the
three axes parallel, the velocity has an arbitrary direction. In this section we shall
construct the most general proper Lorentz transformation through the construction of
its infinitesimal generators, just as we did in the case of the rotation group, showing
that for parallel axes it coincides with (2.56) and then generalizing to the case where
the axes of the two frames S and S′ are rotated with respect to each other.

Let us start considering an infinitesimal Lorentz transformation, i.e. a Lorentz
transformation which is infinitely close to the identity 1:

�μν  δμν + ωμν, (4.166)

where ω = (ωμν) is the infinitesimal generator of the transformation. It has infini-
tesimal entries, for which we use the first order approximation. Substituting (4.166)
into (4.149) we find

ημσω
σ
ν = −ηνσωσμ ⇔ ηω = −ωT η, (4.167)

Defining the matrix ωμν = ημσωσ ν , (4.167) implies

ωμν = −ωνμ, (4.168)

namely the infinitesimal generator of the most general proper Lorentz transformation,
upon lowering one index by means of the metric, is represented by a 4 × 4 anti-
symmetric matrix. An anti-symmetric matrix has 4 × (4 − 1)/2 = 6 independent
entries, i.e. all entries above the main diagonal:

(ωμν) =

⎛
⎜⎜⎝

0 ω01 ω02 ω03
−ω01 0 ω12 ω13
−ω02 −ω12 0 ω23
−ω03 −ω13 −ω23 0

⎞
⎟⎟⎠ =

1

2
ωρσ (L

ρσ )μν,

http://dx.doi.org/10.1007/978-88-470-1504-3_1
http://dx.doi.org/10.1007/978-88-470-1504-3_2
http://dx.doi.org/10.1007/978-88-470-1504-3_2
http://dx.doi.org/10.1007/978-88-470-1504-3_2
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where (Lρσ )μν = δ
ρ
μδ
σ
ν − δσμδρν = −(Lσρ)μν is an ortho-normal basis of anti-

symmetric matrices labeled by the (anti-symmetric) couple of indices (ρσ), ρ, σ =
0, . . . , 3. For notational convenience, we shall denote the entries ωρσ in the above
equation by δθρσ and write ωμν = 1

2δθρσ (L
ρσ )μν . The generic infinitesimal gener-

ator is obtained by raising one index of ωμν and has therefore the following form:

ω ≡ (ωμν) = (ημσωσν) = 1

2
δθρσ

(
(Lρσ )μν

) = 1

2
δθρσLρσ , (4.169)

where the matrices Lρσ read:

Lρσ = (
(Lρσ )μν

) = (
ημσ (Lρσ )σν

) = (ηρμδσν − ησμδρν ). (4.170)

The matrices Lρσ play for the Lorentz group the same role that the matrices Li

had for the rotation group: they form a basis for the six-dimensional vector space
spanned by the infinitesimal generators of Lorentz transformations (recall that the
infinitesimal generators of the rotation group spanned a three-dimensional vector
space of which the matrices Li represented a basis). The parameters δθρσ = −δθσρ
(only six of which are independent!) play then the same role of the three angles
δθ i in the SO(3) case. A generic Lorentz transformation depends then on six
independent continuous parameters, and therefore we say that the Lorentz group
has dimension 6.

Using (4.166) and (4.169), we can write an infinitesimal proper Lorentz transfor-
mation as follows:

�μν = δμν +
1

2
δθρσ (L

ρσ )μν ⇔ � = 1+ 1

2
δθρσLρσ , (4.171)

for infinitesimal δθρσ . After some algebra the reader can show that the following
commutation relations among the infinitesimal generators hold:

[
Lμν,Lρσ

] = ηνρLμσ + ημσLνρ − ημρLνσ − ηνσLμρ. (4.172)

In the sequel, we shall define a more general action of the Lorentz group on objects
which are not 4-vectors. In other words we shall consider different matrix repre-
sentations of the same Lorentz group. However the commutation relations (4.172)
between its infinitesimal generators, namely the structure constants, will not depend
on the particular matrix representation considered. For this reason they will charac-
terize the properties of the abstract Lorentz group in a neighborhood of the origin
(proper transformations). Let us observe that, aside from δ

μ
ν , there exist two invariant

tensors with respect to (proper) Lorentz transformations: the metric ημν (which is
invariant under generic Lorentz transformations) and the Levi–Civita tensor εμνρσ ,
defined as follows:

εμνρσ = 1 (μνρσ) even permutation of (0, 1, 2, 3), (4.173)
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εμνρσ = −1 (μνρσ) odd permutation of (0, 1, 2, 3), (4.174)

so that ε0123 = +1. Indeed, in virtue of (4.149)

ημν →�ρμ�σ νηρσ = ημν,
εμνρσ →�μ′μ�νν�ρ

′
ρ�

σ ′
σ εμ′ν′ρ′σ ′ = det(�)εμνρσ = εμνρσ .

Let us return to the basis of infinitesimal generators Lρσ . As previously pointed
out, only six of them are independent. It is therefore convenient to reorganize them
as follows:

L1 ≡ −L23, L2 ≡ −L31, L3 ≡ −L12, (4.175)

or, equivalently:

Li = −1

2
εi jkL jk, i, j, k = 1, 2, 3, (4.176)

and

Ki = L0i , i = 1, 2, 3. (4.177)

The generators Ki are given the name of boost generators. From (4.172) we may
deduce the commutation relations between the six generators Li ,Ki . For instance,
let us write the following commutator:

[L1,L2] =
[
L23,L31

]
= η33L21 = −L21 = −L3. (4.178)

Similarly, we can show that:

[
Li ,L j

] = −εi jkLk, (4.179)

[
Li ,K j

] = −εi jkKk, (4.180)

[
Ki ,K j

] = εi jkLk . (4.181)

By comparing (4.179) with (4.124) and (4.125), we conclude that Li are the gener-
ators of rotations since they satisfy the corresponding commutation relations. They
generate Lorentz transformations of the form

(�R
μ
ν) ≡

(
1 0
0 Ri

j

)
∈ SO(3), (4.182)

which clearly leave ημν invariant. The Lorentz group therefore contains the rotation
group SO(3) as a subgroup.
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Consider now the generators Ki . As opposed to Li , they do not close an algebra.
From (4.170) and (4.177) we may deduce their matrix form:

K1 =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ; K2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ; K3 =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠ ,

note that Ki are symmetric matrices, as opposed to Li . Let us see what a finite
transformation�μν generated by the Kis looks like. Since the rotation generators Li

are not involved, this transformation will not affect the orientation of the Cartesian
axes and thus the two RFs will keep their axes parallel.

Let us denote by σ i the parameters of the transformation. According to our pre-
vious analysis, to obtain a finite Lorentz transformation we need to exponentiate the
infinitesimal generators (in this case σ i Ki ). We find:

� = eσ
i Ki =

∞∑

n=0

1

n! (σ
i Ki )

n . (4.183)

where the parameters σ i are identified with ω0i . Let us now define the norm σ and
the unit vector u = (ui ) associated with the vector (σ i ):

σ = ‖(σ i )‖ =
√∑

i

(σ i )2, ui = σ i

σ
,

3∑

i=1

ui ui = 1, σ i = σui .

Let us compute the following matrices:

ui Ki =
(

0 u j

ui
∅

i j

)
; (∅i j ) =

⎛
⎝

0 0 0
0 0 0
0 0 0

⎞
⎠ ,

(ui Ki )
2 =

(
1 0
0 ui u j

)
; (ui Ki )

3 = (ui Ki ); (ui Ki )
4 = (ui Ki )

2

. . . (ui Ki )
2k = (ui Ki )

2; (ui Ki )
2k+1 = (ui Ki ).

We can now compute the exponential in (4.183):

� = 1+ σ(ui Ki )+ σ
2

2
(ui Ki )

2 + σ
3

3! (u
i Ki )+ σ

4

4! (u
i Ki )

2 + · · ·

= 1+
(
σ + σ

3

3! +
σ 5

5! + · · ·
)
(ui Ki )+

(
σ 2

2
+ σ

4

4! + · · ·
)
(ui Ki )

2

= 1− (ui Ki )
2 + sinh σ(ui Ki )+ cosh σ(ui Ki )

2

=
(

cosh σ sinh σu j

sinh σui δi j + (cosh σ − 1)ui u j

)
.
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Let us take, for instance:

(σ i ) = (σ, 0, 0)→ u = (ui ) = (1, 0, 0), (4.184)

The corresponding transformation reads:

(�μν) =

⎛
⎜⎜⎝

cosh σ sinh σ 0 0
sinh σ cosh σ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (4.185)

If we set in (4.185) sinh σ = − vc γ and cosh σ = γ , which is consistent with
the property cosh2 σ − sinh2 σ = 1 provided γ = 1√

1− v2

c2

, the transformation �

becomes:

�μν =

⎛
⎜⎜⎝

γ − vc γ 0 0
− vc γ γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (4.186)

The transformation �x ′μ = �μν�xν is precisely the one which maps a RF O onto
a RF O ′ in uniform motion with respect to the former with a velocity v = (v, 0, 0),
which we have derived in Chap. 1.

If, more generally, we define the following vector:

(β i ) = β(u1, u2, u3) =
(
vi

c

)
= v

c
, (4.187)

so that we can write γ = 1√
1−β2

, and set sinh σ = −βγ, cosh σ = γ , the most

general proper Lorentz transformation generated by Ki reads:

�μν =
(
γ −β jγ

−β iγ δi j + (γ − 1)β
iβ j

β2

)
. (4.188)

This is the Lorentz transformation which connects two frames of reference S and
S′, the latter moving with respect to the former with a translational uniform motion
with constant velocity vector v = (vi ). It was also derived in Chap. 2, see (2.56). We
say that this transformation boosts the RF S onto S′ and is therefore called a boost
transformation, to be denoted by �B . Consequently, the Ki are called infinitesimal
generators of Lorentz boosts and their parameters are related to the relative velocity
vector.

The most general Lorentz transformation can be written as the product of a boost
�B = exp(σ i Ki ) times a rotation �R = exp(θ i Li ):

� = �B�R = exp(σ i Ki ) exp(θ i Li ), (4.189)

http://dx.doi.org/10.1007/978-88-470-1504-3_1
http://dx.doi.org/10.1007/978-88-470-1504-3_2
http://dx.doi.org/10.1007/978-88-470-1504-3_2
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or, alternatively, as the exponential of a finite combination of the infinitesimal gen-
erators Lρσ : � = exp( 1

2θρσLρσ ).
It is useful at this point to give the explicit matrix form of the Lorentz boost �p

which connects the rest frame S0 of a massive particle, in which p = 0 and thus
the corresponding four-momentum is p̄ = (mc, 0), to a generic RF S in which the
particle has momentum p ≡ (pμ) = (E/c,p):

pμ = �p
μ
ν p̄ν .

The energy and the linear momentum of the particle in S are related by (2.38) of
Chap. 2: E2 − |p|2c2 = m2c4. Moreover the velocity of the particle in S is pc/E .
Since S moves relative to S0 (in the standard configuration) with a velocity v which
is the opposite of that of the particle, we have to set in (4.188) v/c2 = −p/E . Using
the relation γ (v) = E/(mc2) we find for �p the following matrix expression:

�p =
(

E
mc2

p j

mc
pi

mc δi j + pi p j

m(E+mc2)

)
. (4.190)

4.7.2 The Poincaré Group

We want now to write the most general coordinate transformation which leaves the
distance ds, as a coordinate function, invariant. It will generalize the Lorentz trans-
formation in (4.146) by allowing the four-dimensional origins of the two systems of
coordinates not to coincide. It will therefore be described by an affine transformation
(�, x0):

x ′μ = �μνxν − x0
μ ⇒ dx ′μ = �μνdxν, (4.191)

whose homogeneous part � is a Lorentz transformation acting on the directions of
the space–time axes, while the inhomogeneous part x0 = (xμ0 ) describes a global
space–time translation. The reader can easily show, along the lines of Sect. 4.5, that
these transformations, called Poincaré transformations, close a group, named the
Poincaré group. A generic Poincaré transformation depends analytically on the six
parameters of the Lorentz part and the four parameters xμ0 associated with the space–
time translations. The Poincaré group is therefore a ten-parameter Lie group.

In this chapter we have been dealing with matrix representations of transformation
groups acting on component vectors. In order to characterize the algebra associated
with the Poincaré group, we would need to work out a basis of infinitesimal gener-
ators. Such basis would comprise the six generators Lρσ of the Lorentz subgroup
and the four generators Pγ of the space–time translations. It is useful work with a
matrix realization of a generic group element. This is done by associating with a
transformation (�, x0) the following 5× 5 matrix

http://dx.doi.org/10.1007/978-88-470-1504-3_2
http://dx.doi.org/10.1007/978-88-470-1504-3_2
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(�, x0)→
(
�μν −xμ0
∅ν 1

)
, [(∅ν) ≡ (0, 0, 0, 0)], (4.192)

acting on the coordinate vector, extended by an additional entry 1: (xμ, 1) ≡
(x0, x1, x2, x3, 1). The first four components of the resulting 5-vector are the trans-
formed coordinates:

(
xμ

1

)
→

(
�μν −xμ0
∅ν 1

) (
xν

1

)
=

(
�μνxν − xμ0

1

)
=

(
x ′μ
1

)
. (4.193)

This matrix construction applies to a generic affine transformation. We wish now
to write the matrix representation of the infinitesimal Poincaré generators. To this
end let us write an infinitesimal Poincaré transformation to first order in its small
parameters δθρσ , δxμ0 :

(
�μν −δxμ0
∅ν 1

)
≈

(
δμν + 1

2 δθρσ (L
ρσ )μν −δxμ0

∅ν 1

)
= 1+ 1

2
δθρσLρσ + δxγ0 Pγ ,

where 1 is the 5× 5 identity matrix and Lρσ are now represented by 5× 5 matrices:

Lρσ ≡
(
(Lρσ )μν ∅

μ

∅ν 0

)
. (4.194)

The reader can verify that the commutation relations (4.172) still hold. The four
matrices Pγ generate the space–time translations and read:

Pγ ≡
(

∅
μ
ν −δμγ

∅ν 0

)
. (4.195)

The effect of the infinitesimal transformation on xμ is the following:

xμ→ x ′μ = xμ + δxμ, δxμ = δθμνxν − δxμ0 , (4.196)

where we have used the property 1
2δθρσ (L

ρσ )
μ
ν = δθ

μ
ν , which follows from Eq.

(4.170). A finite Poincaré transformation, with a proper Lorentz component �, can
be expressed in terms of exponentials of finite combinations of the infinitesimal
generators:

(
�μν −xμ0
∅ν 1

)
= exγ0 Pγ · e 1

2 θρσLρσ . (4.197)

As an example consider the subset consisting of pure translations (1, x0). The reader
can verify that it is a subgroup. Moreover the result of two consecutive translations
does not depend on the order in which they are effected: (1, x0) · (1, x1) = (1, x1)·
(1, x0). This property makes the group of translations commutative or abelian. Let
us verify that a finite translation (1, x0) is indeed represented by the 5 × 5 matrix
exγ0 Pγ :
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exγ0 Pγ ·
(

xμ

1

)
=

(
δμν −xμ0
∅ν 1

)(
xμ

1

)
=

(
xμ − xμ0

1

)
, (4.198)

where we have used the definition (4.129) of the exponential of a matrix, and the
property that powers of xγ0 Pγ higher than one vanish: (xγ0 Pγ )n = 0, n ≥ 2.

Let us compute the commutation relations between the Poincaré generators. We
clearly have [Pγ ,Pσ ] = 0. This represents the fact that the group of translations is
commutative. Let us now compute [Lρσ ,Pγ ]. Clearly PγLρσ = 0, while:

[Lρσ ,Pγ ] = LρσPγ =
(

∅
μ
ν −ηρμδσγ + ησμδργ

∅ν 0

)
= (ηρνδσγ − ησνδργ )Pν .

Let us now summarize the commutation relations among the Poincaré generators:

[
Lμν,Lρσ

] = ηνρLμσ + ημσLνρ − ημρLνσ − ηνσLμρ, (4.199)

[
Lμν,Pρ

] = Pμδνρ − Pνδμρ , (4.200)

[
Pμ,Pν

] = 0. (4.201)

Reference

For further reading see Refs. [2, 5, 14]



Chapter 5
Maxwell Equations and Special Relativity

5.1 Electromagnetism in Tensor Form

As we have already noted in Chap. 1, Maxwell’s electromagnetic theory is by
definition a relativistic theory, since it implies in particular the constancy of the
speed of light in every RF. As such it must be covariant under the group of Lorentz
transformations, or, using the terminology of the previous chapter, covariant under
the group SO(1, 3).

In this Chapter, using the tensor formalism developed for the Lorentz group, we
shall establish the covariance of the electromagnetic theory under the Lorentz group
by formulating the Maxwell equations as tensor equations, namely as equalities
between Lorentz tensors of the same kind. The use of the Lorentz tensor notation,
besides making the relativistic nature of Maxwell’s theory manifest, will also be
useful for deriving some consequences of the electromagnetic theory in a simpler
and more transparent way.

To begin with, let us write the Maxwell equations in the usual vector notation,
which, by definition, is manifestly covariant under the three-dimensional rotation
group SO(3):

∇ · E = ρ, (5.1)

∇ × B = 1

c

∂E
∂t
+ j

c
, (5.2)

∇ · B = 0 (5.3)

∇ × E = −1

c

∂B
∂t
, (5.4)

where E(x) and B(x) denote as usual the electric and the magnetic field, respec-
tively, and we define x ≡ (xμ) = (ct, x1, x2, x3).1 In the following we shall use

1 We are using the so called Heaviside-Lorentz (HL) system of units, the most useful for theo-
retical considerations. It amounts to considering the electric charge as a quantity whose physical
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the compact notation (3.60) for partial differentiation with respect to Minkowski and
spatial coordinates. We first translate the vector notation into a 3-dimensional ten-
sor notation. For example, using the SO(3)-tensor notation, the three-dimensional
divergence and curl operators can be written as follows:

∂i Ei ≡ ∇ · E, εi jk∂ j Bk ≡ (∇ × B)i .

In the same notation, (5.1)–(5.4) are recast in the following equivalent form:

∂i Ei = ρ (5.7)

εi jk∂ j Bk = 1

c

∂Ei

∂t
+ ji

c
, (5.8)

∂i Bi = 0 (5.9)

εi jk∂ j Ek = −1

c

∂

∂t
Bi . (5.10)

Of course, in this formalism, only covariance with respect to three-dimensional rota-
tions is manifest. Recall that, with respect to the orthogonal group SO(3) (or in
general SO(n) for a n-dimensional Euclidean space), there is no difference between
covariant (lower) and contravariant (upper) indices, since they transform in the same
way. Indices are raised and lowered by contraction with the identity matrix, which

(Footnote 1 continued)
dimensions are derived from the basic dimensional quantities [M, L , T ] (the corresponding units
being [centimeter, gram and second]), by writing Coulomb’s law without additional physical con-
stants, namely in the following form:

F = 1

4π

q1q2

r2 . (5.5)

In this way the electric charge has the physical dimensions [M 1
2 L

3
2 T−1], and the electric field

[M 1
2 L− 1

2 T−1]. (Note that the presence of the factor 1
4π in Coulomb’s law means that the HL

system is rationalized, that is there are no factors 4π explicitly appearing in Maxwell’s equations).
Moreover the electric and magnetic fields are defined so as to have the same dimension, so that the
Lorentz force reads:

F = q
(

E+ v
c
× B

)
. (5.6)

The quickest way to translate formulae written in the international system of units (S.I.) into the HL
one, is to redefine the electric charge as follows: Let ẽ and e be the measures of the electric charge
in the S.I. and the HL systems respectively. We then have:

e = ẽ√
ε0
⇒ ρ = ρ̃√

ε0
, j = j̃√

ε0
.

Moreover the electric and magnetic fields Ẽ, B̃ in the SI system are related to the analogous quantities
E and B in the HL system as follows:

√
ε0Ẽ = E; B = 1√

μ0
B̃. For example, the energy density

takes the form : ρE = 1
2

(
ε0|Ẽ|2 + |B̃|2μ0

)
= 1

2

(|E|2 + |B|2) .
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does not affect the value of the corresponding components. For this reason, when
writing SO(3)-tensors like the Euclidean vectors Ei , Bi or the Levi-Civita symbol
εi jk , we shall not care about the position of their indices: Ei = Ei , Bi = Bi and
so on.

In order to make covariance with respect to SO(1, 3), that is Lorentz transforma-
tions, manifest, we introduce a 4 × 4 antisymmetric matrix Fμν whose entries are
defined as follows:

F0i = −Fi0 = Ei = Ei , (5.11)

Fi j = εi jk Bk ⇔ Bi = 1

2
εi jk F jk, (5.12)

that is:

Fμν =

⎛
⎜⎜⎝

0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

⎞
⎟⎟⎠ . (5.13)

The above quantity will be characterized as a Lorentz- (i.e. a SO(1, 3)-) tensor.
The position of its indices can be changed only with the Lorentz metric (4.142) ημν
(η00 = 1, ηi j = −δi j , η0i = 0). As remarked above, when three-dimensional indices
i, j, . . . belong to SO(3)-tensor quantities, like the electric and magnetic fields, their
position is irrelevant since they are raised or lowered with the metric δi j . Instead
when indices i, j, . . . are a subset of the four-dimensional ones μ, ν, . . . , namely
label components of SO(1, 3)-tensors, we must use the Lorentz metric, so that the
raising, or lowering, of three-dimensional indices implies a change of sign of the
corresponding components, while the same operation on time components μ = 0
leaves their sign unchanged.

Therefore if we lower the two upper indices of Fμν with the Minkowski metric
ημν , we obtain:

Fμν = ημσ ηνρFσρ =

⎛
⎜⎜⎝

0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

⎞
⎟⎟⎠ . (5.14)

We shall prove in the sequel that Fμν (and Fμν) are actually contravariant (and
covariant) antisymmetric tensors of the Lorentz group. We further define the elec-
tromagnetic four-current or, in short, the four-current as:

Jμ =
(
ρ,

1

c
jk

)
→ J 0 = ρ, J k = 1

c
jk . (5.15)

Note that we have denoted Jμ as a Lorentz four-vector. The proof that the four
components of Jμ actually transform as a contravariant four-vector will be given in
Sect. 5.4.
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We now show that (5.7) and (5.8) can be written in the following compact form:

∂νFνμ = −Jμ. (5.16)

Considering first the μ = 0 component of (5.16) and taking into account the anti-
symmetry of Fνμ (F00 = 0), we have:

∂i Fi0 ≡ −∂i F0i = −ρ ⇒ ∂i Ei = ρ,
which coincides with (5.7).

Setting instead μ = i in (5.16) one obtains:

∂0 F0i + ∂ j F ji = − j i

c
,

and since εi jk = −ε j ik,

∂0 Ei − εi jk∂ j Bk = − j i

c
→ εi jk∂ j Bk = 1

c

∂Ei

∂t
+ j i

c
,

which coincides with (5.8).
Thus (5.16), written in terms of four-dimensional indices, is equivalent to the two

non-homogeneous Maxwell equations, (5.7) and (5.8).
Coming next to the homogeneous Maxwell equations (5.9) and (5.10), we show

that, using four-dimensional Minkowski indices, they can also be written in terms of
the following single covariant equation:

∂[μFνρ] ≡ 1

3
(∂μFνρ + ∂νFρμ + ∂ρFμν) = 0. (5.17)

The symbol [μνρ] denotes the complete antisymmetrization in the three indices
μ, ν, ρ. On a generic tensor Uμνρ, this operation is defined as follows:

U[μνρ] = 1

3! (Uμνρ −Uμρν +Uνρμ −Uνμρ +Uρμν −Uρνμ).

In words, it consists in summing over the even permutations of μ, ν, ρ with a plus
sign and over the odd ones with a minus sign, the result being normalized by dividing
it by the total number 6 of permutations. Since Fμν = −Fνμ, this definition applied
to ∂μFνρ, gives (5.17).

Let us write (5.17) choosing one time-index and two spatial indices, that is μ =
0; ν = i; ρ = j :

∂0 Fi j + ∂i Fj0 + ∂ j F0i = 0⇔ εi jk∂0 Bk + ∂i E j − ∂ j Ei = 0,

where we have used Ei = Ei = −F0i , since F0i = η0μηiνFμν = η00ηi j F0 j =
−Ei . This equation can be easily identified with one of the homogeneous
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Maxwell equations; it is sufficient to multiply it by εi j�, summing over i, j and
using the formula: εi jkεi j� = 2δk�. We find:

2∂0 B� + 2ε�i j∂i E j = 0⇔ ε�i j∂i E j = −1

c

∂B�
∂t
,

which coincides with (5.10).
If, instead, in (5.17) we consider three spatial indices, namely, μ = i, ν = j,

ρ = k, we find:

∂i Fjk + ∂ j Fki + ∂k Fi j = 0.

In this case we multiply the above equation by εi jk and sum over i, j, k, obtaining:

3εi jk∂i Fjk = 3εi jk
1

2
ε jk�∂i B� = 3δi

�∂i B� = 3∂i Bi = 0.

so that (5.9) is retrieved.
Summarizing: We have defined two quantities Fμν and Jμ such that the Maxwell

equations are written as:

∂μFμν = −J ν, (5.18)

∂[μFνρ] = 0. (5.19)

In particular, if we compute the four-dimensional divergence ∂ν of (5.18) and take
into account that ∂ν∂μFμν = 0, which follows from the fact that ∂μ∂ν = ∂ν∂μ is
symmetric while Fμν is antisymmetric, we obtain the equation:

∂ν J ν = 0, (5.20)

which, in three-dimensional notation, reads

∂0ρ + 1

c
∂i j i = 0 ⇔ ∂ρ

∂t
+∇ · j = 0. (5.21)

We recognize the above equation as the well known continuity equation of the electric
current expressing, in local form, the conservation of electric charge. Since the elec-
tric charge conservation has been verified so far with no exception in different inertial
systems, it is natural to expect (5.20) to be a Lorentz covariant equation,2 namely
independent of the particular inertial system. This implies that Jμ must transform
as a Lorentz four-vector. In any case we will explicitly verify the four-vector nature
of Jμ from its very definition in Sect. 5.4.

Assuming, for the time being, Jμ to be a four-vector, we may readily show that
Fμν , introduced as a matrix in (5.13), is actually a (contravariant antisymmetric)

2 Actually, since (5.20) contains no free indices, it is a scalar equation, namely ∂μ Jμ(x) =
∂ ′μ Jμ′(x ′).
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tensor with respect to the group of Lorentz transformations, and that consequently
the inhomogeneous Maxwell equations are SO(1, 3)-covariant.

To show this, let us assume (5.16) to hold in a certain inertial RF S′:

∂ ′μF ′μν = −J ′ν . (5.22)

Since ∂μ and Jμ are covariant and contravariant vectors, respectively, in a new RF
S, related to S′ by a Lorentz transformation (i.e. an SO(1, 3) rotation), we have:

�−1ρ
μ∂ρF ′μν = −�νσ Jσ ,

Multiplying by the matrix �−1τ
ν and summing over ν we obtain:

�−1ρ
μ�
−1τ

ν∂ρF ′μν = −J τ

Therefore in the RF S we may write:

Fρτ = �−1ρ
μ�
−1τ

νF ′μν.

Finally, solving with respect to F ′μν , we conclude:

F ′μν = �μρ�νσ Fρσ , (5.23)

expressing the fact that the matrix Fμν is indeed a (contravariant) tensor of order
two. It follows that the Maxwell equation (5.19) is also Lorentz covariant owing to
the four-vector nature of the differentiation operator ∂μ. In conclusion, the theory of
electromagnetism, described by Mawxwell’s equations, is covariant under Lorentz
transformations, a fact which is consistent with our discussion about the principle of
invariance of the velocity of light given in Chap. 1. Moreover, recalling the definition
of the Poincaré group given in Chapter four and the fact that Maxwell’s equations
are obviously invariant under four-dimensional translations, we may assert that the
electromagnetic theory is invariant under the full Poincaré group as it is the case for
relativistic mechanics, see discussion in Chap. 2.

5.2 The Lorentz Force

We recall that in the Maxwell theory the Lorentz force acting on a given charge e is
given by

F = e(E+ v
c
× B), (5.24)

so that its equation of motion reads

F = dp
dt
. (5.25)

http://dx.doi.org/10.1007/978-88-470-1504-3_1
http://dx.doi.org/10.1007/978-88-470-1504-3_2
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Equation (5.24), as it stands, is not written in an explicit tensor form. However
we shall prove that it has the same form in all inertial frames (we wish to remark
here that the tensor form of a physical law is a sufficient, though not necessary
condition for its validity in every RF). To show that (5.24) holds in every RF, we use
the covariant form of the equation of motion in (5.27)

f μ = d

dτ
pμ, (5.26)

and define the four-force f μ acting on the charge as follows:

f μ = −e

c
Fμν

dxν
dτ
= −e

c
Fμν

dxν
dt

dt

dτ
. (5.27)

Note that (5.27) is a covariant equation.
Let us examine both sides of (5.26) in components. Considering the time-

component, we have:

f 0 = e

c
F0ivi dt

dτ
= e

c
E · v dt

dτ
,

dp0

dτ
= 1

c

dE
dt

dt

dτ
. (5.28)

respectively, where we have denoted by E the energy of the charged particle. Equating
the two expressions we find that the μ = 0 component of (5.26) becomes:

dE
dt
= e E · v = dW

dt
,

where W is the work of the force. Thus we retrieve the general result given by
(2.72): The rate of change of the energy of a particle in time equals the power of the
force (in our case of the electric force only).

Let us now consider the μ = i component of (5.27); on the left hand side we find:

f i = eEi dt

dτ
+ e

c
εi jkv j Bk dt

dτ
= e(Ei + εi jk v

j

c
Bk)

dt

dτ
,

while, on the right hand side, we may write:

dpi

dτ
= dpi

dt

dt

dτ
,

Therefore the spatial components of equation (5.26) become:

e
(

E+ v
c
× B

) dt

dτ
= dp

dt

dt

dτ
.

Erasing the common factor dt
dτ = γ, we obtain (5.24), corresponding to the spatial

part of (5.26).
Thus we conclude that (5.24), even if not written in a manifestly covariant form,

is covariant under Lorentz transformation and therefore valid in every RF.

http://dx.doi.org/10.1007/978-88-470-1504-3_2
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5.3 Behavior of E and B Under Lorentz Transformations

Once we know the transformation properties of the electromagnetic tensor under
Lorentz transformations, we may easily find the corresponding laws for its three-
dimensional components E and B.

As Fμν is a Lorentz tensor its transformation under a change of RF is given by:

Fμν → F ′μν = �μρ�νσ Fρσ , (5.29)

where the Lorentz transformation matrix has been computed in the previous chapter.
For a generic boost it is given by (4.188), or (2.56), that is:

�μν =
(

γ −β jγ

−β iγ δi j + (γ − 1)β
iβ j

β2

)
; i, j = 1, 2, 3; β i ≡ V i

c
,

V ≡ (V i ) being the velocity of S’ relative to S and V its norm. Recalling the relations
(5.11) and specializing (5.29) to the components (μ, ν = 0, i) and (μ, ν = i, j), a
simple computation yields the following transformation laws for E and B:

E′ = γ (E+ β × B)+ (1− γ )
β2 (β · E)β, (5.30)

B′ = γ (B− β × E)+ (1− γ )
β2 (β · B)β, (5.31)

where, as usual, we have set β = V
c and denoted by β its length. An equivalent, and

somewhat simpler, way to write the previous transformations is to decompose the
electric and magnetic fields into components E‖,B‖ which are parallel and E⊥,B⊥
which are transverse to V. It is not difficult to see that in this case (5.30) take the
following form:

E′‖ = E‖; B′‖ = B‖, (5.32)

E′⊥ = γ (V )
(

E⊥ + 1

c
V× B⊥

)
, (5.33)

B′⊥ = γ (V )
(

B⊥ − 1

c
V× E⊥

)
. (5.34)

As an example, we compute the electromagnetic field of a charge e in uniform motion
with velocity v in a frame S. Let the charge e be at rest at the origin of a RF S′. An
observer in S′ will observe a Coulombian field:

E′ = e

4π

x′

r ′3
, (5.35)

and no magnetic field, B′ = 0.

http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_2
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Let the RF S be in standard configuration with respect to S′ so that V ≡ v =
(v, 0, 0). To find the fields in S in terms of those in S′, it is sufficient to exchange the
role of the two observers in (5.30), what amounts to exchange the primed quantities
with the unprimed ones and to change the sign of the velocity. One obtains:

E = γ (E′ − β × B′)+ (1− γ )
v2 (v · E′)v, (5.36)

B = γ (B′ + β × E′)+ (1− γ )
v2 (v · B′)v. (5.37)

Taking into account that in S′ we have B′ = 0, (5.36) becomes:

E = γ (v)E′ + (1− γ )E ′x
v
v
, (5.38)

B = γ (v)β × E′. (5.39)

Writing E in components we find:

Ex = E ′x , (5.40)

Ey = γ E ′y, (5.41)

Ez = γ E ′z . (5.42)

Moreover, substituting these values of E into the expression for B given by (5.38),
one finds that in the frame S the following relation holds:

B = v × E
c

, (5.43)

which gives the value of the magnetic field generated by a charge moving at a constant
velocity v in S.

Since E′ depends on x′, to obtain the value of E in S it is still necessary to express
the position vector x′, as measured in S′, in terms of the one (x) measured in S.

We may suppose, with no loss of generality, the field E′ to lie in the xy-plane of
the frame S′; then, taking into account the contraction of lengths along the direction
of motion, namely the x-axis, we have:

x ′ = γ x; y′ = y. (5.44)

Hence (5.40) can be rewritten as follows:

Ex = γ e

4π

x

r ′3
, (5.45)

Ey = γ e

4π

y

r ′3
, (5.46)

Ez = 0,
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that is:

E = γ e

4π

x
r ′3
. (5.47)

We can then express r ′ in terms of r by using the following relation:

r ′2 = x ′2 + y′2 = x2

1− v2

c2

+ y2 = r2 − v2

c2 y2

1− v2

c2

= γ 2r2
(

1− v
2

c2 sin2 θ

)
, (5.48)

where sin θ ≡ y/r , θ being the angle between the direction of x and the x-axis. From
(5.48) it follows:

r ′3 = r3γ 3
(

1− v
2

c2 sin2 θ

) 3
2

, (5.49)

and substituting in (5.47) we obtain the final result:

E = 1

4π

e

r3 x

⎡
⎢⎢⎣

1− v2

c2

(
1− v2

c2 sin2 θ
) 3

2

⎤
⎥⎥⎦ . (5.50)

Moreover, substitution of (5.50) into (5.43) gives the value of the magnetic field.
The formula (5.50) tells us that when a charge is moving with constant velocity

v, the electric field differs from the electrostatic value by the relativistic factor:

f (v, θ) ≡ 1− v2

c2

(
1− v2

c2 sin2 θ
) 3

2

. (5.51)

When the velocity v of the charge is much smaller than the speed of light, v 
 c, we
can set f ≈ 1. However, when the velocity of the charge is close to c the modulus
of E changes according to its direction, thus breaking spherical symmetry. Indeed,
since f (v, θ) is θ -dependent, the strength of the field will be larger when sin θ ≈ ±1,
that is when θ ≈ ±π2 , while it will be smaller when θ ≈ 0. Note, however, that the
electric field is always radial, as in the static case.

5.4 The Four-Current and the Conservation of the Electric
Charge

In Sect. 5.1 the quantity defined in (5.15) was assumed to be a contravariant four-
vector under Lorentz transformations. An argument in favor of this was based on the
requirement that the conservation of the electric charge hold in any inertial frame.



5.4 The Four-Current and the Conservation of the Electric Charge 147

In this section we shall construct the explicit expression of Jμ from which its nature
of Lorentz four-vector will be manifest.

Let us consider, in a given RF, a system of moving point-like charges ek(k =
1, . . . . n), and denote by xk(t) their positions at a given instant t. We want to derive
the explicit expressions for the charge density ρ(x, t) and the current density j(x, t).3

In the three-dimensional notation they can be respectively written as follows:

ρ(x, t) =
∑

k

ekδ
3(x − xk(t)),

j i (x, t) =
∑

k

ek
dxi

k

dt
δ3(x − xk(t)), (5.52)

where δ3(x − x′) is the three-dimensional Dirac delta function, defined by
the property4:

∫
d3x′ f (x′)δ3(x − x′) = f (x).

To show that Jμ = (ρ, j
c ) is a four-vector, we associate with each charge the coor-

dinate four-vector

xμk (t) ≡ (ct, xk(t)),

so that Jμ takes the following form:

Jμ = 1

c

∑

k

ek
dxμk
dt

δ3(x − xk(t)),

or, equivalently:

Jμ(x, t) = 1

c

∑

k

ek

∫
dt ′

dxμk (t
′)

dt ′
δ3(x − xk(t

′))δ(t − t ′).

Since t ′ is an integration variable, it can be replaced by any other variable. In par-
ticular, in the kth-term of the sum, we may replace t ′ with the proper time τk of the
kth-particle, thus obtaining:

Jμ(x, t) =
∑

k

ek

∫
dτk

dxμk
dτk

δ4(xμ − xμk (τk)), (5.53)

3 Note that xk(t) is a kinematical variable referred to the k-th particle, while (xμ) = (ct, x) are
space–time labels.
4 In Cartesian coordinates, if x = (x, y, z) and xk(t) = (xk(t), yk(t), zk(t)), the three-dimensional
Dirac delta function reads: δ3(x − x′) = δ(x − xk(t))δ(y − yk(t))δ(z − zk(t)).
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where

xμk (τk) = (cτk, xk(τk)), (5.54)

and5

δ4(xμ − xμk (τk)) ≡ δ3(x − xk(τk))δ(t − τk)

= cδ3(x − xk(τk))δ (c(t − τk)) . (5.55)

We now observe that given a four-vector Wμ, δ4(Wμ) is a Lorentz scalar, indepen-
dently of Wμ. Indeed, by well known properties of the Dirac δ-function we have6:

δ4(W ′μ) = δ4(�μνW ν) =
∣∣∣ 1

det(�)

∣∣∣ δ4(Wμ) = δ4(Wμ), (5.56)

since the determinant of a Lorentz transformation is ± 1. It is then apparent that,
since in (5.53) both τk and δ4(xμ − xμk (τk)) are Lorentz scalars, Jμ will transform
as dxμk , that is as a four-vector.

We can also derive from the previous expression the continuity equation (5.21)
leading to the conservation of the electric charge. To this end, let us compute the
divergence of the current density j = ( j i ):

∇ · j = ∂i j i =
∑

k

ek
dxi

k

dt

∂

∂xi
δ3(x − xk(t))

= −
∑

k

ek
dxi

k

dt

∂

∂xi
k

δ3(x − xk(t))

= −
∑

k

ek
∂

∂t
δ3(x − xk(t)) = − ∂

∂t
ρ(x, t). (5.57)

Thus we retrieve the continuity equation of the electric current:

∂i j i + ∂

∂t
ρ = 0⇔ ∂μ Jμ = 0.

Let us recall how the conservation of the electric charge is obtained from this equation.
Let

5 We used δ(αx) = δ(x)/α, a particular case of the incoming formula (5.56).
6 This property is easily proven on test functions f (x) = f (xμ). Indeed we can write∫

d4xδ4(� · x) f (x) = ∫
d4xδ4(x ′) f (�−1 · x ′) = ∫ d4x ′

|det(�)| δ4(x ′) f (�−1 · x ′)= f (0)
|det(�)| , where

we have changed the integration variable from x ≡ (xμ) to x ′ ≡ � · x . Recalling that
f (0) = ∫

d4xδ4(x) f (x), and being f(x) generic, we conclude that δ4(� · x) = ∣∣ 1
det(�)

∣∣ δ4(x).
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Q =
∫

V

d3xρ(x, t),

be the total electric charge contained in the volume V. Then

d Q

dt
=

∫

V

d3x
∂

∂t
ρ(x, t) = −

∫

V

d3x∂i j i (x, t) = −
∫

S

d Sn · j(x, t), (5.58)

where S is the surface enclosing the volume V, and n is the unit vector normal to
dS. If V represents a finite domain of the space, then (5.58) expresses the fact that
the variation of the charge inside V is compensated by the flux of current through its
boundary S which is one way of characterizing the conservation of electric charge.

If, instead, V extends over the whole three-dimensional space, V ≡ R
3, then

S = S∞ is a sphere located at infinity, and, since there is no current at the spatial
infinity, the last term on the left hand side of (5.58) is zero. It then follows that:

d Q

dt
= 0,

that is, the total electric charge in the whole space is conserved.

5.5 The Energy-Momentum Tensor

The procedure of assembling together the charge density and its current density into
the four-vector Jμ can be also used to construct a tensor quantity describing, together
with the energy and momentum densities associated with a system of electric charges,
the corresponding currents.

Let us denote by Tμ0
part. the density of the total energy-momentum Pμpart. of the

system of charges, defined as:

Tμ0
part. =

∑

k

pμk (t)δ
3(x − xk(t)), (5.59)

where pμk is the four-momentum of the single charge ek . Upon integration over the
whole space V, we find:

∫

V

d3xTμ0
part. =

∑

k

pμk = Pμpart.,

which is the total four-momentum of the system of charges. In particular its (00)
component reads: T 00

part = 1
cρE where ρE is the energy density of the system of

charges.
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We now define the current density of Pμ as the following three-vector:

Tμi
part. =

1

c

∑

k

pμk
dxi

k

dt
δ3 (x − xk(t)) .

In particular T ji
part. is the i-th component of the current density associated with the

j-th component of the total momentum of the system.
We may now set together Tμ0

part. and Tμi
part. to build a 4× 4 matrix Tμνpart.:

Tμνpart. =
1

c

∑

k

pμk
dxνk
dt
δ3(x − xk(t)). (5.60)

If we use the property that for each massive particle pμk = m(vk)
dxμk
dt , so that we can

write:

pμk
m(vk)

= pμk
Ek

c2,

Equation (5.60) can be recast as follows:

Tμνpart. = c
∑

k

pμk pνk
Ek

δ3(x − xk(t)) = T νμpart. (5.61)

showing that the matrix Tμνpart. is manifestly symmetric.

We now prove that Tμνpart. is a tensor under Lorentz transformations. Indeed, fol-
lowing the same steps used to prove that Jμ is a four-vector, we can rewrite (5.60)
as follows:

Tμνpart. =
1

c

∫
dt ′

∑

k

pνk
dxνk
dt ′

(t ′)δ3(x − xk(t
′))δ(t − t ′) (5.62)

=
∑

k

∫
dτk pνk

dxνk
dτk

(τk)δ
4(xμ − xμk (τk)). (5.63)

where we have used (5.54) and (5.55).
Since Tμνpart. transforms as the product of the two four-vectors pνk and dxνk it is,

by definition a rank two tensor, symmetric in the two upper indices. It is called the
energy-momentum tensor of the charge system.7

Let us now compute its four-dimensional divergence ∂μTμνpart.. We first compute

its three-dimensional counterpart from the definition of Tμi
part. given above:

7 Note that since Tμνpart. is a tensor, from (5.61) it follows that δ3(x − xk(t))/Ek transforms as a
scalar quantity.
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∂i Tμi
part. =

1

c

∑

k

pμk
dxi

k

dt

∂

∂xi
δ3(x − xk(t))

= −1

c

∑

k

pμk
dxi

k

dt

∂

∂xi
k

δ3(x − xk(t)) = −1

c

∑

k

pμk
∂

∂t
δ3(x − xk(t))

= − ∂
∂t

(
1

c

∑

k

pμk δ
3(x − xk(t))

)
+ 1

c

∑

k

(
d

dt
pμk

)
δ3(x − xk(t)). (5.64)

On the other hand, from the definition (5.59), we have:

∂

∂t

(
1

c

∑

k

pμk δ
3(x − xk(t))

)
= ∂

∂x0 T 0μ
part, (5.65)

so that (5.64) becomes:

∂i T
iμ
part. +

∂

∂x0 T 0μ
part. =

1

c

∑

k

(
d

dt
pμk

)
δ3(x − xk(t)), (5.66)

that is:

∂μTμνpart. =
1

c
Gν, (5.67)

where the four-vector Gν defines the density of the total force acting on the system:

Gμ =
∑

k

dpμk
dt

δ3(x − xk(t)). (5.68)

It is important to note that, differently from the case of the four-current, where
∂μ Jμ = 0, here we find:

∂μTμνpart. = 0.

Actually, this was to be expected since ∂μTμνpart. = 0 would imply the conservation
of the total four-momentum Pμpart. of the system of charged particles, and this cannot
be true since the system is not isolated being in interaction with the electromagnetic
field.

We may however expect that, since the total system consisting not only of the
particles, but also of the electromagnetic field, is isolated, its total four momentum
is conserved.

Let us show this in detail. We first observe that in the expression of the Lorentz

force-density, given by (5.68), we may replace on the right hand side
dpμk
dt with

f μ dτ
dt . For our system of charges in interaction with the electromagnetic field we

may therefore write:
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Gμ =
∑

k

f μ
dτ

dt
δ3(x − xk(t))

= −1

c

∑

k

ek
dτ

dt
Fμν

dxνk
dτ

δ3(x − xk(t))

= −1

c
Fμν

∑

k

ek
dxνk
dt
δ3(x − xk(t)) = −Fμν J ν . (5.69)

where we have used the dynamic definition (5.27) of the four-force exerted by the
electromagnetic field on a charge. Using the Maxwell equation ∂ρFρν = −J ν,Gμ

can be rewritten as follows:

Gμ = Fμν∂ρFρν = ∂ρ(FμνFρν)− Fρν(∂ρFμν)

= ∂ρ(FμνFρν)− 1

2
Fρν(∂ρFμν − ∂νFμρ)

= ∂ρ(FμνFρν)− 1

2
Fρν(∂

ρFμν + ∂νFρμ), (5.70)

where we have replaced ∂ρFμν with its antisymmetric part in (ρ, ν), since it is
contracted with Fρν.Next, by using the homogeneous Maxwell equation ∂ [ρFμν] =
0, we can make the following replacement in the last term of the previous equation:

∂ρFμν + ∂νFρμ = −∂μFνρ = ∂μFρν,

and we find:

Gμ = ∂ρ(FμνFρν)− 1

2
Fρν∂

μFρν = ∂ρ(FμνFρν)− 1

4
∂μ(FρνFρν)

= ∂ρ
(

FμνFρν − 1

4
ημρFσνFσν

)
= −c∂ρT ρμem ,

where we have defined the energy-momentum tensor of the electromagnetic field:

Tμνem = −
1

c
(FμρFνρ − 1

4
ημνFρσ Fρσ ). (5.71)

We note that, as for the particle energy- momentum tensor, T ρμem defines the distrib-
ution in space of the energy and momentum, and of their currents, associated with
the electromagnetic field.8

If we now substitute the expression of f μ into (5.67), to obtain:

∂μTμνpart. =
1

c
Gν ⇔ ∂μ(T

μν
part. + T nuμ

em ) = 0.

8 Note that in our conventions all the components of Tμνem have the physical dimensions of a momen-
tum density.
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Defining the sum of the energy-momentum tensors of particles and electromagnetic
field as the total energy-momentum tensor Tμν of the system, we obtain the result:

∂μTμν = 0. (5.72)

As in the case of the four dimensional current, the vanishing of the four-dimensional
divergence (5.72) implies the conservation of the total four-momentum Pμtot, that is of
the total energy and linear momentum of the isolated system consisting of the charges
and the electromagnetic field. Indeed, following the same steps as in the derivation
of the charge conservation from the continuity equation, and setting V = R

3, we
have:

∫

V

d3x∂0Tμ0 = −
∫

V

d3x∂i T
μi = −

∫

S∞

d STμi ni . (5.73)

Since there is no energy or momentum density at spatial infinity, the last integral
vanishes and we obtain:

∂

∂t

∫

V

d3xTμ0 = 0⇒ d Pμtot

dt
= 0. (5.74)

Coming back to the expression (5.71) of the electromagnetic energy-momentum ten-
sor, we now show how to retrieve the familiar definitions of energy, linear momentum,
and Poynting vector from our four-dimensional formalism. If we compute the density
T 0μ

em in terms of the fields E and B, we find:

T 00
em = −

1

c
(F0

i F0i − 1

2
F0i F0i − 1

4
Fi j Fi j ) (5.75)

= −1

c
(−Ei Ei + 1

2
Ei Ei − 1

2
Bi Bi ) (5.76)

= 1

2c
(|E|2 + |B|2) = 1

c
ρE , (5.77)

where:

ρE = 1

2
(|E|2 + |B|2), (5.78)

is the energy density of the electromagnetic field. Moreover:

T i0
em = −

1

c
Fi j F0

j =
1

c
Fi j F0 j = 1

c
εi jk Bk E j

= 1

c
(E× B)i = π i

em =
1

c2 Si , (5.79)
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where:

π i
em =

1

c
(E× B)i , (5.80)

is the momentum density of the electromagnetic field and S = cE×B is the Poynting
vector measuring the energy current density carried by the electromagnetic field. Note
that |S| = ρE c.

We can rephrase the previous results, by stating that the energy E and the linear
momentum P associated with an electromagnetic field, in a given volume V, are
given by:

E = c
∫

V

d3xT 00
em =

∫

V

d3xρE , (5.81)

P i =
∫

V

d3xT i0
em =

1

c2

∫

V

d3xSi . (5.82)

As an example, suppose we consider a region where no charges are present. In
this case, since Tμνpart = 0 and (5.72) reduces to ∂μTμνem = 0. Separating the
ν = 0 and the ν = i components, we have:

∂

∂t
ρE + ∂i Si = 0,

which expresses the conservation of energy in its local form. Upon integration over
a volume V we have:

d

dt

∫

V

d3xρE ≡ d

dt
E = −

∫

V

d3x∂i Si = −
∫

S

dσn · S. (5.83)

As is well known, the physical interpretation of this equation is the following: The
positive (negative) rate of change of electromagnetic energy inside the volume is
compensated by the incoming (outgoing) flux of energy across the boundary S.
In particular, when the integration volume is infinite, owing to the vanishing of the
surface integral, the equation implies the conservation of the electromagnetic energy,
in its global form:

dE
dt
= 0.

Similarly, when ν = i , we obtain:

1

c

∂

∂t
π i + ∂ j T

ji
em = 0,

and, upon integration over V, we find:
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1

c

d

dt
P i = −

∫

V

d3x∂ j T
ji

em = −
∫

S

d ST ji n j , (5.84)

where, as usual, we have applied the divergence theorem (over index j) to the volume
integral on the right hand side. As in the previous case, (5.84) means that the positive
(negative) rate of change of electromagnetic linear momentum inside the volume V is
compensated by the incoming (outgoing) flux of momentum across S. In particular,
when the integration volume is infinite, the equation implies the conservation of the
electromagnetic linear momentum:

d

dt
P i = 0.

5.6 The Four-Potential

We now observe that the homogeneous Maxwell equation (5.19) can be
immediately solved introducing a four-vector Aμ = (A0, Ai ), i = 1, 2, 3 and
setting:

Fμν = ∂μAν − ∂ν Aμ. (5.85)

Indeed, since on any function ∂μ∂ν is a symmetric tensor, the total antisymmetrization
of (5.19), using definition (5.85), gives identically zero:

∂[μFνρ] = ∂[μ∂ν Aρ] − ∂[μ∂ρ Aν] = 2∂[μ∂ν Aρ] = 0.

The four-vector Aμ is given the name of four-potential. We may readily express E
and B in terms of Aμ, using (5.14) and (5.85):

Ei = −F0i = −∂0 Ai + ∂i A0 = −1

c

∂

∂t
Ai + ∂i A0, (5.86)

Bi = 1

2
εi jk Fjk = εi jk∂ j Ak . (5.87)

These formulae allow us to identify−A0(x, t) and Ai (x, t)with the electric potential
V and the vector potential A, respectively; indeed, as is well known in the electro-
magnetic theory, one has:

E = −1

c

∂

∂t
A−∇V . (5.88)

and
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B = ∇ × A, (5.89)

which are the vector form of the previous (5.86) and (5.87). The four-potential,
however, is not uniquely defined; if we redefine Aμ by adding the four-dimensional
gradient of a scalar field,

Aμ→ A′μ = Aμ + ∂μϕ, (5.90)

where ϕ(x) ≡ ϕ(xμ) is an arbitrary function of the space–time coordinates, then
Fμν, and therefore E and B, remains unchanged.9 Indeed:

Fμν −→ F ′μν = ∂μA′ν − ∂ν A′μ = ∂μAν − ∂ν Aμ

+ ∂μ∂νϕ − ∂ν∂μϕ = ∂μAν − ∂ν Aμ = Fμν. (5.91)

From the invariance of Fμν under the change (5.90), it follows that Maxwell’s equa-
tions (5.18), (5.19) are invariant as well. The transformation (5.90) is called gauge
transformation and the corresponding invariance of the Maxwell equations is referred
to as the gauge invariance of electromagnetism.

One can exploit the gauge invariance of electromagnetism to simplify (5.18).
Indeed one can choose the arbitrary scalar field ϕ(x) in such a way that the trans-
formed four-potential satisfy an auxiliary condition. We may for example require:

∂μA′μ ≡ 1

c

∂

∂t
A′0 − ∂i A′i = 0. (5.92)

Using (5.90), we see that we can always construct a four-potential A′μ satisfying the
above equation starting from one (Aμ) which does not, by choosing ϕ(x) in such a
way as to solve the equation:

∂μA′μ = ∂μAμ + ∂μ∂μϕ = 0→ ∂μAμ + ��ϕ = 0 (5.93)

where we have introduced the (Lorentz invariant) d’Alembertian operator:

�� ≡ ∂μ∂μ = (∂0)
2 −

3∑

i=1

(∂i )
2 = 1

c2

∂2

∂t2 −∇2.

Indeed, as is well known, given ∂μAμ and suitable Cauchy data, equation (5.93)
always admits a solution in the unknown function ϕ(x). Thus gauge invariance
implies that we can always choose a four-potential Aμ(x) satisfying

9 While in the classical theory the only measurable physical quantities are E and B, so that the four-
potential seems not necessary for a complete description of the electromagnetic field, in quantum-
mechanics the Aharonov-Bohm effect shows that the E and B fields are not sufficient for describing
the electromagnetic field in interaction with matter, and that for its full description the four-potential
Aμ(x) is necessary.
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∂μAμ = 0. (5.94)

As the above condition fixes (though not completely) the gauge function ϕ(x), it
is called a gauge-fixing condition. The corresponding choice of ϕ, such that (5.94)
holds, is referred to as the Lorentz gauge.10 Note that the Lorentz gauge fixing con-
dition (or simply Lorentz gauge condition) is a scalar under Lorentz transformations.

When the Lorentz gauge is used, (5.18) simplifies considerably. Indeed, writing
on the left hand side of the inhomogeneous Maxwell equation (5.18) Fμν in terms
of Aμ and using the Lorentz gauge condition (5.94) we obtain:

∂μFμν = ∂μ∂μAν − ∂μ∂ν Aμ = ��Aν − ∂ν(∂μAμ) = ��Aν,

that is, each component of the four-potential Aμ satisfies the well known wave
equation in the presence of a source:

��Aμ = −Jμ. (5.95)

Let us consider the case where, in some space domain, the source is absent, Jμ(x) ≡
0; then (5.95) becomes:

��Aμ = 1

c2

∂2 Aμ
∂t2 −∇2 Aμ = 0. (5.96)

It is well known that the general solution to the homogeneous wave equation can
be written as a superposition of plane waves whose polarization is orthogonal to the
direction of propagation. Let us retrieve this result in our Lorentz covariant formalism.

We start solving (5.96) within a bounded region shaped as a parallelepiped, with
sides L A, L B, LC along the three Cartesian axes and volume V = L A L B LC , requir-
ing periodic boundary conditions on the solution in each coordinate. This allows us
to expand the field Aμ(x, t) in a triple Fourier series with respect to the coordinates
x = (x, y, z):

Aμ(x, t) =
∑

k1k2k3

Ãk, μ(t)e
ik·x. (5.97)

where the components of the wave number vector k = (k1, k2, k3) have the following
discrete values:

k1 = 2πn1

L A
; k2 = 2πn2

L B
; k3 = 2πn3

LC
, (5.98)

n1, n2, n3 being integers. Reality of Aμ(x) further imposes that: Ã_k,μ(t) =
Ãk, μ(t)∗. Inserting the expansion (5.97) in (5.96), in virtue of linearity of Maxwell’s

10 This is not the only possible gauge condition. Several other choices are possible. In particular,
when discussing the quantization of the electromagnetic field in Chap. 6, we shall use the more
convenient Coulomb gauge ∇ · A(x) = 0. The Lorentz gauge has the advantage of being Lorentz
covariant. In Chap. 11, the same quantization will be performed using the covariant Lorentz gauge.

http://dx.doi.org/10.1007/978-88-470-1504-3_6
http://dx.doi.org/10.1007/978-88-470-1504-3_11
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equations in the vacuum, Aμ(x) is a solution if and only if each of its Fourier com-
ponents are. Equation 5.96 on the generic k-component reads:

d2

dt2 Ãk, μ(t)+ c2|k|2 Ãk, μ(t) = 0, (5.99)

where we have used the property that

∂i Aμ(x) =
∑

k

iki Ãk, μ(t)e
ik·x ⇒ ∇2 Ãμ(x) = −

∑

k

|k|2 Ãk, μ(t)e
ik·x. (5.100)

From (5.99) we see that each component of Ãk, μ(t) has to satisfy the equation of a
harmonic oscillator and can thus be written in the form:

Ãk, μ(t) = εk,μ(ωk)e
−iωk t + εk, μ(−ωk)e

iωk t , (5.101)

where ωk ≡ c|k| and the reality condition on Aμ(x) further requires that:

ε−k, μ(−ωk) = εk, μ(ωk)
∗. (5.102)

The solution (5.97) to Maxwell’s equation in the vacuum then reads:

Aμ(x, t) =
∑

k

εk, μ(ωk)e
−i(ωk t−k·x) +

∑

k

εk, μ(−ωk)e
i(ωk t+k·x)

=
∑

k

εk, μ(ωk)e
−i(ωk t−k·x) +

∑

k

ε−k,μ(−ωk)e
i(ωk t−k·x)

=
∑

k

(
εk, μe−i(ωk t−k·x) + ε∗k, μei(ωk t−k·x))

=
∑

k

(
εk,μe−ik·x + ε∗k, μeik·x) , (5.103)

where we have defined εk, μ ≡ εk, μ(ωk) referred to as the polarization four-vector
and used (5.102). Moreover we have also defined the wave-number four-vector as:

k ≡ (kμ) = (k0, ki ); k0 ≡ ωk

c
, (5.104)

so that

k · x ≡ kμxμ = kμημνxν = k0x0 − k · x.

Equation (5.103) represents an expansion of the electromagnetic potential Aμ(x) in
plane waves, progressing in the direction of the wave number vector k with angular
frequency ωk ≡ 2π

T = c|k|. We shall also write the solution (5.103) in the more
implicit form:
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Aμ(x, t) =
∑

k

(
Ak,μ(t)e

ik·x + Ak, μ(t)
∗e−ik·x) , (5.105)

where Ak, μ(t) ≡ εk, μe−iωk t and Ak, μ(t)∗ are the two independent solutions to the
harmonic oscillator equation (5.99).

From its definition we see that k ≡ (kμ) is light-like

k2 ≡ kμkμ = (k0)2 − |k|2 = ω2
k

c2 − |k|2 = 0,

Anticipating part of the discussion of next chapter, we may give a quantum interpre-
tation to our result; indeed, from the quantum theory point of view, a monochromatic
plane wave can be interpreted as the relativistic wave function of a particle of energy
E = �ωk and momentum p = �k, that is having a four-momentum11:

pμ = �kμ = �

(ωk

c
,k

)
. (5.106)

If we now recall the general relation between energy and momentum given in
(2.48) of Chap. 2, we see that, from the quantum point of view, the Maxwell equations
imply:

m2c2 = p2 = �
2k2 = 0, (5.107)

that is the rest mass of a particle associated with the plane wave solution to (5.95),
called photon, is exactly zero.

5.6.1 The Spin of a Plane Wave

We must still require Aμ(x) to satisfy, besides the wave equation, the Lorentz gauge
condition (5.94). As we are going to show, this requirement implies that, at each point
x, the physical degrees of freedom of a freely propagating electromagnetic field are
just two. Indeed, if we apply condition (5.94) to the generic plane wave superposition
(5.103) and separately equate each Fourier component k to zero, we easily find:

∂μAμ = 0⇔ kμεk, μ = 0, ∀k. (5.108)

Now we observe that, since kμ is a light-like vector, i.e. k2 = 0, it is always possible
to find a RF where it takes the form kμ ≡ (κ, κ, 0, 0) and thus kμ = (κ,−κ, 0, 0). In
this RF, using equation (5.108), the polarization four-vector has the following form:

εk, μ ≡ (εk,−εk, ε2, ε3). (5.109)

11 This interpretation was already proposed by Einstein in 1905 for the description of the photo-
electric effect.

http://dx.doi.org/10.1007/978-88-470-1504-3_2
http://dx.doi.org/10.1007/978-88-470-1504-3_2
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One may conclude that, for each term of the expansion, the degrees of freedoms, that
is the independent components of the polarization four-vector are three: εk, ε2, ε3.

However this is not the end of the story: As previously anticipated, the choice of the
Lorentz gauge does not completely fix the gauge freedom. We may indeed perform
on Aμ(x) a further gauge transformation

Aμ→ Aμ + ∂μϕ, (5.110)

still preserving ∂μAμ = 0, provided:

��ϕ = 0. (5.111)

This is easily shown by implementing such transformation on the four-potential in
the Lorentz gauge condition. Since it implies:

∂μAμ −→ ∂μ(A
μ + ∂μϕ), (5.112)

if condition (5.111) holds, the transformed field will still be in the Lorentz gauge.
A solution ϕ to the wave equation (5.111), describing the residual gauge symmetry,
can be expressed by the same Fourier expansion (5.103) as Aμ(x):

ϕ(x) =
∑

k

(
ξke−ik·x + ξ∗k eik·x) ; k2 = 0,

so that:

∂μϕ(x) =
∑

k

(
−ikμξke−ik·x + ikμξ

∗
k eik·x) .

Therefore under the transformation (5.110), supplemented by condition (5.111), the
solution (5.103) takes the form:

A′μ(x) =
∑

k

(
ε′k, μe−ik·x + ε′∗k, μeik·x) , (5.113)

where

ε′k, μ = εk, μ − ikμξk ≡ (εk − iκξk,−εk + iκξk, ε2, ε3). (5.114)

Being ϕ, and therefore ξk, arbitrary, we may fix ξk in such a way that the first
two components of the polarization four-vector both vanish. In particular, setting
ξk = −i εk

κ
, we obtain:

ε′k, μ = (0, 0, ε2, ε3). (5.115)

We see that, once the gauge freedom has been completely fixed by (5.93) and (5.11),
the independent components of the polarization four-vector are only two, and pre-
cisely those transverse to the propagation vector k, namely ε2, ε3.
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Since the existence of only two degrees of freedom for each wave vector k implies
that Aμ(x) has two degrees of freedom of at each point x, we conclude that a generic
electromagnetic wave has, at each point in space, only two physical degrees of
freedom, both transverse to the direction of propagation. This fact leads us to the
concept of spin of a plane wave, or better, from the quantum point of view, of spin
of a photon.

Let us define the spin group of a particle as the residual subgroup of the Lorentz
group which remains once we fix our RF to be the particle itself. Quite generally

when our particle has a non-vanishing rest mass m2 = p2

c2 > 0 this RF is defined
as its rest frame, in which pμ = (mc,p = 0). In this case the residual group, i.e.
the spin group, is the rotation group SO(3), subgroup of the Lorentz group, which
leaves the p0 component of the four-momentum invariant.

If, on the other hand, the particle has vanishing rest mass, there exists no RF
where the particle is at rest, its velocity being c. In this case only rotations around
the propagation direction of the particle, corresponding to two-dimensional rotations
on the transverse plane, can be properly defined as the relevant spin group.

This latter is apparently the case of the electromagnetic field, the relevant particle
being the photon. We want to see how its physical degrees of freedom ε2, ε3 transform
under the SO(2) rotations in the transverse plane, in our case the y−z plane. This can
be easily found by recalling that Aμ(x) is a covariant vector field, thus transforming,
under Lorentz transformations, as follows:

Aμ(x)→ A′μ(x ′) = �−1ν
μAν(x),

where x ′ = � · x ⇒ x = �−1 · x ′. In our case, the subgroup of the Lorentz
group leaving the components p0 ≡ �k0 and p1 ≡ �k1 (along the x-direction) of
the photon momentum invariant, clearly coincides with the SO(2) rotation subgroup
whose generic element �(0) has the following matrix form:

�(0) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 cos θ sin θ
0 0 − sin θ cos θ

⎞
⎟⎟⎠ . (5.116)

Since in this RF the polarization four-vector has the form: εμ = (0, 0, ε2, ε3), the
spin group acts on the physical degrees of freedom as follows:

(
ε′2
ε′3

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ε2
ε3

)
. (5.117)

It is convenient to use the complex basis ε2 ± iε3, so that the rotation matrix takes a
diagonal form and the transformation (5.117) becomes:

ε2 ± iε3 → ε′2 ± iε′3 = e∓iθ (ε2 ± iε3).

In general, when the two polarization states of a massless particle transform, under a
rotation about the propagation direction, with a factor e∓inθ , one defines n� to be the
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spin of the particle (the particle is simply said to have spin n). In our case we have
found n = 1, so that we conclude that the photon, the massless particle associated
with an electromagnetic plane wave, has spin one.

5.6.2 Large Volume Limit

In this section we have solved Maxwell’s equations in the vacuum within a finite
“box” of sides L A, L B, LC . This had the advantage of allowing us to work with
Fourier series instead of integrals, when expanding the solution Aμ(x) as a super-
position of plane waves. The components of the wave number vector k are indeed
discrete quantities, the step �ki between two successive values of one of them ki

(i = 1, 2, 3) being �ki = 2π/Li , Li = L A, L B, LC . An elementary cell in the
space parametrized by k1, k2, k3 has then volume:

�3k ≡ �k1�k2�k3 = (2π)3

V
. (5.118)

We can write the discrete sum over the Fourier modes k of a function
f (x) as:

f (x) =
∑

k

fkeik·x =
∑

k

�3k
(2π)3

V fkeik·x. (5.119)

In the large volume limit, in which the size of the box becomes infinite, L A, L B,

LC → ∞, �ki → dki , the ki ’s become continuous variables and the Fourier sum
in (5.119) is replaced by an integral in d3k ≡ dk1dk2dk3:

f (x) =
∑

k

�3k
(2π)3

V fkeik·x →
∫

d3k
(2π)3

V f (k)eik·x, (5.120)

where the notation f (k) ≡ fk emphasizes the fact that we are now treating k as a
continuous variable rather than a discrete label. Thus the passage to the large volume
limit is effected by replacing, in the triple Fourier series:

∑

k

→
∫

d3k
(2π)3

V, (5.121)

which amounts to passing from a Fourier series expansion to a Fourier integral. The
general expansion (5.103) of the solution Aμ(x), in this limit, reads

Aμ(x) =
∫

d3k
(2π)3

V
(
εμ(k)e−ik·x + εμ(k)∗eik·x) . (5.122)
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Let us finally note that the delta-function δk,k′ , defined on discrete momenta as
follows

δk,k′ =
{

1 k = k′
0 k = k′ , (5.123)

so that
∑

k′
δk,k′ fk′ = fk, (5.124)

in the continuum limit becomes

δk,k′ −→ (2π)3

V
δ3(k − k′). (5.125)

Indeed we find:

∑

k′
δk,k′ fk′ →

∫
d3k
(2π)3

V
(2π)3

V
δ3(k − k′) f (k′) = f (k). (5.126)

Reference

For further reading see Ref. [8], (Vol. 2).



Chapter 6
Quantization of the Electromagnetic Field

In this section we shall analyze the general solution Aμ(x) to Maxwell’s equations in
the vacuum by choosing a different gauge fixing condition: The Coulomb gauge. In
this framework we shall describe the electromagnetic field as a collection of infinitely
many decoupled harmonic oscillators. This will pave the wave for the quantization
of the electromagnetic field and the consequent introduction of the notion of photon.

6.1 The Electromagnetic Field as an Infinite System
of Harmonic Oscillators

Let us now still consider an electromagnetic field, described by the vector potential
Aμ(x) ≡ Aμ(x, t) in a region which is “far away” from any charge and current. It is
a solution to the following Maxwell’s equations:

∂μFμν = 0; Fμν = ∂μAν − ∂ν Aμ. (6.1)

As shown in the previous Chapter, equations (6.1) are invariant under gauge trans-
formations:

Aμ→ Aμ + ∂μφ. (6.2)

We have also shown that, upon using the Lorentz gauge:

∂μAμ = 0, (6.3)

and by suitably fixing φ, we can set to zero, for each term in the Fourier expan-
sion, the time-component and the longitudinal component, proportional to k, of the
polarization four-vector εk,μ, that is two components of the four-potential Aμ(x).
For example, given an arbitrary wave propagating, say, in the x1 direction we can set
to zero the components A0, A1. It is however possible to choose other gauge-fixing

R. D’Auria and M. Trigiante, From Special Relativity to Feynman Diagrams, 165
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conditions, as we are going to do in the present Chapter. In particular we are going
to use the Coulomb gauge, which corresponds to imposing the condition:

∇ · A(x) = 0⇔
3∑

i=1

∂i Ai (x) = 0. (6.4)

Let us notice that, in contrast to the Lorentz gauge (6.3), this gauge choice is not
Lorentz covariant, since if it is satisfied in a frame S in a new frame S′ we find
∇′ · A′(x) �= 0.

In a region in which Jμ ≡ 0, the wave equation (6.1), which can be written in the
form:

∂ρ∂
ρ Aμ − ∂ν∂μAν = 0, (6.5)

when decomposed in the components μ = 0 and μ = i , yields the following
equations1:

(∂0∂0 − ∂i∂i )A0 − ∂0(∂0 A0 − ∂i Ai ) = 0, (6.6)

(∂0∂0 − ∂ j∂ j )Ai − ∂i∂0 A0 + ∂i (∂ j A j ) = 0. (6.7)

Using the gauge choice (6.4) the first equation becomes:

∇2 A0 = 0, (6.8)

whose solution is the electrostatic potential A0 = −V in the absence of charges,
which can set to zero, A0 = 0. The second equation (6.7), in the Coulomb gauge,
becomes:

�	Ai = 0, (6.9)

or, equivalently:

(
1

c2 ∂
2
t −

3∑

i=1

∂i∂i

)
A(x) = 0. (6.10)

Equations 6.9 are wave equations for each component Ai (x) of A(x)whose solutions
describe electromagnetic waves. Let us solve these equations, as we did in Sect. 5.6,
within a box with sides L A, L B, LC and volume V = L A L B LC . This allows us
to expand the field A(x, t) in the form of a triple Fourier series with respect to the
coordinates x and write the solution to Maxwell’s equations in the vacuum in the
form (5.105):

1 Recall that summation over repeated Euclidean indices (i , j or k), independently of their relative
position, is understood.

http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_5
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A(x, t) =
∑

k1k2k3

(
Ak(t)e

ik·x + A∗k(t)e−ik·x) , (6.11)

The choice of the Coulomb gauge ∇ · A = 0 then implies, on each single Fourier
component, the transversality condition: k · Ak = 0. Since we are working within
a finite size domain, the periodic boundary conditions on the surface of the cube
require the components of the wave number vector k = (k1, k2, k3) to have the
discrete values in (5.98). Substituting the expansion (6.11) into equation (6.9), and
using the linearity property of Maxwell’s equations in the vacuum, we find that each
Fourier component Ak(t) satisfies the harmonic oscillator equation (5.99):

d2Ak

dt2 + c2|k|2Ak = 0, (6.12)

having used the property (5.100). The vectors Ak(t) and Ak(t)∗ were defined in
Sect. 5.6 to correspond to the two independent solutions to (6.12):

Ak(t) ≡ εke−iωk t , A∗k(t) ≡ ε∗keiωk t , (6.13)

so that (6.11) represents an expansion in plane waves progressing along the direction
of k with angular frequency ωk ≡ 2π

T = c|k|. The following relations then hold:

Ȧk(t) = −iωkAk(t); Ȧk(t)
∗ = iωkA∗k(t). (6.14)

The Fourier expansion (6.11) can then be also written in the form (see (5.103)):

A(x, t) =
∑

k1k2k3

(
εke−ik·x + ε∗keik·x) . (6.15)

Let us now consider the electric field vector:

E = −1

c

∂

∂t
A+∇A0 = −1

c

∂

∂t
A, (6.16)

and expand its components in Fourier series as we did for A(x):

E =
∑

k

(
Ek(t)e

ik·x + Ek(t)
∗e−ik·x) , (6.17)

where, in virtue of Eqs. (6.16) and (6.13), Ek(t) are related to Ak(t) as follows:

Ek(t) = i

c
ωkAk(t) = i |k|Ak(t). (6.18)

Similarly we can Fourier-expand the magnetic field B = ∇ × A:

B =
∑

k

(
Bk(t)e

ik·x + Bk(t)
∗e−ik·x) , (6.19)

http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_5


168 6 Quantization of the Electromagnetic Field

and find

Bk = ik × Ak(t) = nk × Ek, (6.20)

where nk ≡ k
|k| is the unit vector along the direction of propagation. Our aim is now

to compute the wave number expansion of the energy of the electromagnetic field
enclosed in the box:

E =
∫

V
d3x

1

2
(|E|2 + |B|2). (6.21)

Let us first compute |E|2. Using the expansion (6.17) we can write:

|E|2 = 1

c2

∑

k,k′

[
Ek · Ek′e

i(k+k′)·x + E∗k · E∗k′e−i(k+k′)·x

+ Ek · E∗k′ei(k−k′)·x + E∗k · Ek′e
−i(k−k′)·x] ,

where, for the sake of simplicity, we have suppressed the dependence of the Fourier
components on time. A similar expansion can be written for |B|2. Note that, in the
above expression for |E|2, the spatial coordinates x only appear in the complex
exponentials. It then follows that for computing the integral of |E|2 over the volume
V we just need to integrate these exponentials. Consider the following integral:

∫

V
d3x ei(k+k′)·x =

∫ L A

0
dx

∫ L B

0
dy

∫ LC

0
dz ei(k1+k′1)x ei(k2+k′2)yei(k3+k′3)z .

It is the product of three integrals of the same kind. Let us evaluate for instance the
one in dx:

∫ L A

0
dxei(k1+k′1)x = 1

i(k1 + k′1)
ei(k1+k′1)x

∣∣∣∣
L A

0

= 1

i(k1 + k′1)
e

iπ
(n1+n′1)

L A
x

∣∣∣∣∣
L A

0

.

(6.22)
Since n1 + n′1 is an integer, the above integral is always zero unless k1 + k′1 = 0, in

which case
∫ L A

0 dxei(k1+k′1)x = ∫ L A
0 dx = L A. We then find:

∫

V
d3x ei(k+k′)·x = L A L B LC δk,−k′ = V δk,−k′ , (6.23)

where

δk,−k′ =
{

1 if k = −k′
0 if k �= −k′ . (6.24)

Similarly:
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∫

V
d3x ei(k−k′)·x = V δk,k′ , (6.25)

We can now perform the volume integrals in the expression for |E|2 and the analogous
ones for |B|2 and then find the expansion in k of the energy E of the electromagnetic
field within V:

E = 1

2

∫

V
d3x

(
|E|2 + |B|2

)
= V

2

∑

k

[
(Ek · E−k + Ek · E∗k + c.c.)

+ (Bk · B−k + Bk · B∗k + c.c.)
]
, (6.26)

where c.c. denotes the complex conjugate of the previous terms. The terms Ek ·E−k
and Bk · B−k cancel since:

Bk · B−k = (nk × Ek) · (n−k × E−k) = −εi j
n
j
k E
kεi pqn p

k Eq
−k

= −|nk|2Ek · E−k + (nk · Ek)(nk · E−k) = −Ek · E−k,

where we have set nk = −n−k and have used the transversality condition nk ·E±k =
0 and the contraction properties of two εi jk symbols (see Sect. 4.5).

We also find:

|Bk|2 = |Ek|2 = ω2
k

c2 (Ak · A∗k), (6.27)

which allows us to rewrite (6.26) in the form:

E = 2V
∑

k

|Ek|2 = 2
V

c2

∑

k

ω2
k (Ak · A∗k). (6.28)

Let us now introduce the following variables2:

Qk =
√

V

c
(Ak + A∗k); Pk = −iωk

√
V

c
(Ak − A∗k). (6.29)

Taking into account the time-dependence of Ak(t), see (6.14), it is straightforward
to verify that Pk = Q̇k. Equations (6.29) can be easily inverted to express Ak and
A∗k in terms of Qk,Pk:

Ak = c

2ωk
√

V
(iPk + ωkQk); A∗k =

c

2ωk
√

V
(−iPk + ωkQk), (6.30)

Using the above relations we can rewrite the energy in the new variables:

E = H = 1

2

∑

k

(|Pk|2 + ω2
k |Qk|2) =

∑

k

Ek, (6.31)

2 Notice that the Pk here have dimension (Energy) 1
2 .

http://dx.doi.org/10.1007/978-88-470-1504-3_4
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where we have identified the energy E with the Hamiltonian H of the system of
infinitely many degrees of freedom, described by Qk = (Qi

k), each labeled by a wave
number vector k and a polarization index i (as a consequence of the transversality
condition, not all these polarizations are independent, as we shall discuss below).
We can easily verify that Pk,Qk are indeed the canonical variables corresponding
to the Hamiltonian H by showing that they satisfy Hamilton’s equations3:

Q̇i
k =

∂H
∂Pi

k

= Pi
k, Ṗi

k = −
∂H
∂Qi

k

= −ω2
k Qi

k,

where, as usual, the dot represents the time-derivative. These equations can also be
written in the second order form:

Q̈i
k + ω2

k Qi
k = 0, (6.32)

which, given the relation (6.29), are equivalent to the Maxwell equations (6.12) for
each component Ak. We realize that the above equation in the variable Qi

k, for each
polarization component i and wave-number vector k, is the equation of motion of
a harmonic oscillator with angular frequency ωk . Note now that the vectors Pk and
Qk are orthogonal to k in virtue of the transversality property Ak and A∗k:

k · Pk = k ·Qk = 0. (6.33)

This allows us, for a given direction of propagation nk, to decompose Pk and Qk
along an ortho-normal basis uk,α , α = 1, 2 on the plane transverse to n:

Pk =
2∑

1

Pkαuk,α, Qk =
2∑

1

Qkαuk,α.

The index α labels the two polarizations of the plane wave. Taking into account the
ortho-normality of the (uk,α) we can write the Hamiltonian as follows:

H = 1

2

∑

k

∑

α=1,2

(P2
αk + ω2

k Q2
αk) =

∑

k

Hk =
∑

k

Ek =
∑

k

∑

α=1,2

Hk,α, (6.34)

which describes a system of infinitely many, decoupled, harmonic oscillators, each
described by the conjugate variables Pαk, Qαk and Hamiltonian function Hk,α .

Summarizing we have shown that the electromagnetic field, far from charges and
currents, can be represented by a system of decoupled harmonic oscillators, each
associated with a wave-number vector k and polarization α and characterized by
an angular frequency ωk = c|k|.

3 We are anticipating the Hamiltonian formulation of the equations of motion of a mechanical
system, which will be fully discussed in Chap. 8. However we suppose that the reader already
has a basic knowledge of the Hamilton formalism which is propaedeutical to elementary quantum
mechanics.

http://dx.doi.org/10.1007/978-88-470-1504-3_8
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We can also compute the momentum P ≡ (P i ) associated with the electromag-
netic field, given by the formula:

P = 1

c

∫

V
d3xE× B, (6.35)

Using the mode expansion of the electric and magnetic fields we find:

P = V

c

∑

k

[
Ek × B−k + (Ek × B−k)

∗ + Ek × B∗k + E∗k × Bk
]
. (6.36)

The first term in the above sum can we recast in the following form:
[
Ek × B−k

]
i = −

[
Ek × (nk × E−k)

]
i = −εi jlεlpq E j

kn p
k Eq
−k = −ni

k(Ek · E−k),

which changes sign as k→−k, implying that
∑

k Ek × B−k = 0.
On the other hand we have:

Ek × B∗k = nk|Ek|2. (6.37)

Using (6.28) we then find:

P = 2V

c

∑

k

nk|Ek|2 =
∑

k

nk

c
Ek. (6.38)

6.2 Quantization of the Electromagnetic Field

We have described in the previous Section an electromagnetic field in a box, far
from charges and currents, as a collection of infinitely many, decoupled, harmonic
oscillators, each described by a couple of conjugate canonical variables. The field
itself is then a system having infinite degrees of freedom, its physical state being
described by infinitely many canonical variables:

{Pkα, Qkα}, k =
(

2π
n1

L A
, 2π

n2

L B
, 2π

n3

LC

)
, (6.39)

where α = 1, 2 labels the physical components of Pk and Qk, which are transverse
to the direction of propagation of the corresponding plane-wave. The dynamics of
the field is encoded in the Hamiltonian H given in (6.31). Having described the
degrees of freedom of our system in the canonical formalism, we can now proceed
to its quantization4: The canonical variables Pkα, Qkα now become linear operators

4 Although we assume the reader to have a basic knowledge of non-relativistic quantum mechanics,
the relevant notions will be reviewed in Chap. 9. We refer the reader to that Chapter for the notations
used here.

http://dx.doi.org/10.1007/978-88-470-1504-3_9
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P̂kα, Q̂kα in the space of states of the system, and the Poisson bracket between clas-
sical variables is replaced by the commutator between the corresponding operators
according to the rule {·, ·}P.B.→ 1

i�[·, ·]. Since the Poisson bracket between conju-
gate variables p, q corresponding to the same degree of freedom is {q̂, p̂}P.B = 1,
while that computed between variables associated with different degrees of freedom
vanishes, the operators Q̂kα, P̂k′α′ satisfy the following commutation relations

[Q̂k,α, P̂k′,α′ ] = i�δk,k′δα,α′ . (6.40)

To compute the Hamiltonian operator let us first define the operators Âk in terms of
the canonical operators P̂k, Q̂k using the same relations (6.30):

Âk ≡ c

2ωk
√

V

(
i P̂k + ωkQ̂k

)
. (6.41)

Next we expand Âk along the two transverse directions and define the dimensionless
operators ak,α as follows:

Âk = c

√
�

2ωk V

2∑

α=1

ak,αu(k, α). (6.42)

where

akα = 1√
2�ωk

(
i P̂k,α + ωk Q̂k,α

)
. (6.43)

As it is well known, when passing from classical quantities to quantum operators, the
complex conjugation operation is replaced by hermitian conjugation. The hermitian
conjugate of akα is:

a†
k,α =

1√
2�ωk

(
−i P̂k,α + ωk Q̂k,α

)
. (6.44)

Using (6.40), we find that the operators akα, a†
kα satisfy the following commutation

relations:

[ak,α, ak′,α′ ] = [a†
k,α, a†

k′,α′ ] = 0,

[ak,α, a†
k′,α′ ] = δk,k′δα,α′ .

(6.45)

The operator Â(x, t) associated with the vector potential of the electromagnetic field
is then expressed by the Fourier series:

Â(x, t) =
∑

k

(Âk(t)e
ik·x + Âk(t)

†e−ik·x)

=
2∑

α=1

∑

k

c

ωk
√

V

[
ωk Q̂kα cos(k · x)− P̂kα sin(k · x)

]
uk,α.
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We can now use the expansions (6.17) and (6.19) as well as (6.18) and (6.20) to
define the electric and magnetic field operators Ê and B̂ in terms of the operators
Âk,A†

k and thus of akα, a†
kα:

Ê =
∑

k

(
Êkeik·x + Ê†

ke−ik·x) ; B̂ =
∑

k

(
B̂keik·x + B̂†

ke−ik·x) . (6.46)

with:

Êk =
2∑

α=1

Êkαuk,α =
2∑

α=1

i

√
�ωk

2V
akαuk,α; B̂k =

2∑

α=1

B̂kαuk,α = nk × Êk.

(6.47)

We are now able to compute the Hamiltonian operator Ĥ following the same deriva-
tion as in the classical case. Care, however, has to be used in deriving the operator
versions of equations (6.27) and (6.28) from (6.26) since, as opposed to the corre-
sponding classical quantities which were just numbers, the operators Êk and Ê†

k, as
well as their magnetic counterparts, no longer commute. As a consequence of this,
in writing the expression for the Hamiltonian, we should keep the order of factors
in each product and thus, instead of a sum over ÂkÂ†

k, we would find a sum over
1
2 (ÂkÂ†

k + Â†
kÂk). The Hamiltonian operator then reads:

Ĥ =
∑

k

∑
α

�ωk

2

(
ak,αa†

kα + a†
kαakα

)
=

∑

k

∑
α

(
N̂k,α + 1

2

)
�ωk, (6.48)

where

N̂k,α ≡ a†
k,αak,α, (6.49)

The operator Ĥ, in terms of the canonical operators, has the same form as in (6.34):

Ĥ = 1

2

∑

k

∑
α

[
(P̂k,α)

2 + ωk(Q̂k,α)
2
]
. (6.50)

Equations (6.48) and (6.50) describe the Hamiltonian operator associated with the
system of infinitely many quantum harmonic oscillators (k, α) defined in the previous
section. The quantities ak,α and a†

k,α are indeed nothing but the annihilation and
creation operators associated with the quantum oscillator (k, α), which are useful in
constructing the corresponding quantum states. It is now straightforward to determine
the expression for the momentum operator, by using (6.38) and (6.48):

P̂ = 1

c

∫

V
d3xE× B =

∑

k

∑
α

�k
(

N̂k,α + 1

2

)
. (6.51)

Both H and P̂ are expressed in terms of the occupation number operators N̂k,α
(6.49) associated with the quantum oscillators (k, α). We know from elementary
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quantum theory that the states of each oscillator can be described as eigenstates of
the occupation number operator. The states of the (k, α)-oscillator at the time t can
then be written in the form |Nk,α, t〉 and satisfy:

N̂k,α|Nk,α, t〉 = Nk,α|Nk,α, t〉, (6.52)

where Nk,α , eigenvalue of N̂k,α , is a positive integer. The energy and momentum of
this state is

Ek,α = �ωk

(
Nk,α + 1

2

)
, Pk,α = �k

(
Nk,α + 1

2

)
. (6.53)

Note that the operators Âkα(t), and thus also akα(t), depend on time through a
factor e−iωk t . It is apparent however that neither the Hamiltonian and the momentum
operators, nor the commutation relations, depend on time. We choose to use the
Schroedinger representation in which states depend on time while operators are
time-independent: ak,α ≡ ak,α(0). The state |Nk,α, t〉 is constructed by applying
Nk,α-times the creation operator a†

k,α to the ground state |0〉:

|Nk,α, t〉 = 1√
Nk,α!

(a†
k,α)

Nk,α |0, t〉. (6.54)

where 1√
Nk,α ! is a normalization factor, the states being normalized to one, and the

ground state satisfies the relation:

ak,α|0, t〉 = 0. (6.55)

Equations 6.53 are telling us that the energy and momentum of a state are quantized
in units �ωk and �k respectively.

The electromagnetic field, being a collection of decoupled harmonic oscillators, is
described by a state which is the tensor product of the states associated with each oscil-
lator. It will be then characterized by all the occupation numbers {Nk,α} ≡ {Nk1,α1 ,

Nk2,α2 , . . . } of the constituent states:

|{Nk,α}, t〉 ≡ |Nk1,α1 , t〉|Nk2,α2 , t〉 · · · . (6.56)

In particular the ground state of the system is the direct product of the oscillator
ground states. The energy and momentum of the field are the sum of the energies
and momenta associated with each oscillator state, as we easily find by applying the
operators in (6.48) and (6.51) to the state (6.56):

Ĥ|{Nk,α}, t〉 =
[∑

k

∑
α

(
Nk,α + 1

2

)
�ωk

]
|{Nk,α}, t〉,

P̂|{Nk,α}, t〉 =
[∑

k

∑
α

(
Nk,α + 1

2

)
�k

]
|{Nk,α}, t〉,

(6.57)
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We observe that the above eigenvalues exhibit an infinite term, which is the ground
state energy E0 and momentum P0, sum over all the oscillators (k, α), of the corre-
sponding ground state energies �ωk

2 and momenta �k
2 :

E0 =
∑

k

∑
α

1

2
�ωk = ∞,

P0 =
∑

k

∑
α

1

2
�k = ∞.

(6.58)

These terms have no physical meaning and make the energy and momentum oper-
ators, as given in (6.48) and (6.51), ill defined. In order to correctly define these
operators in terms of a and a†, let us introduce the notion of “normal ordering” ::
for a generic bosonic field (such as the electromagnetic one, as we shall see), as the
operation by which the operators a and a†, in a product, are reordered so that a† are
moved to the left and a to the right:

: a†a :≡ a†a, : aa† :≡ a†a. (6.59)

For instance:

: a1a†
1a2a3a†

2 := a†
1a†

2a1a2a3. (6.60)

We then give the prescription that all the operators associated with physical
observables, should be defined as normal ordered products of the field operators.
The Hamiltonian operator Ĥ, for instance, should be defined as follows:

Ĥ =V
∑

k

: |Êk|2 :=
∑

k

∑
α

�ωk

2
: (ak,αa†

k,α + a†
k,αak,α)

=
∑

k

∑
α

�ωk(a
†
k,αak,α) =

∑

k

∑
α

�ωk N̂k,α. (6.61)

Similarly, the correct definition of the momentum operator is:

P̂ = 2V

kc

∑

k

k : |Êk|2 :=
∑

k

∑
α

�kN̂k,α. (6.62)

Let us note that using the normal ordering in the definition of Ĥ and P̂ amounts to
subtracting to their eigenvalues the infinite unphysical contribution associated with
their ground state in the previous definitions (6.48), (6.51).

Having set the energy and momentum of the ground state |{0}, t〉 to zero, the
energy and momentum of a generic state |{Nk,α}, t〉 of the electromagnetic field is
now simply given by the sum of quanta �ωk and �k:

E =
∑

k

∑
α

Nk,α�ωk, P =
(∑

k

∑
α

Nk,α�k

)
, (6.63)
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We associate with each oscillator (k, α), i.e. with each plane wave, a state of a particle
called photon and denoted by the symbol γ , carrying the quantum of momentum,
�k, and of energy, �ωk , and having polarization α. The state |Nk,α, t〉 of the (k, α)-
oscillator is then then interpreted as describing Nk,α photons in the state (k, α).
Its energy and momentum are Nk,α�ωk and Nk,α�k respectively, namely the sum
of the Nk,α quanta of the two quantities associated with each photon. The state
|{Nk,α}, t〉 of the whole electromagnetic field then describes Nk,α photons in each
state (k, α) and its energy and momentum, as given in (6.63), is the sum of the energy
and momenta of the photons in the various states. A photon with energy E = �ωk

and momentum p = �k has a rest mass given by:

m2
γ =

1

c4 E2 − 1

c2 |p|2 =
1

c4 �
2(ω2

k − c2|k|2) = 0, (6.64)

where we have used the definition of ωk . As was anticipated in Chap. 5, the photon is
therefore a massless particle. Its momentum four-vector pμ is thus � times the wave
number four-vector kμ associated with the corresponding plane wave and defined in
(5.14).

The action of a†
k,α or of ak,α on a state amounts to “creating” or “destroying”

a (k, α)-photon since they increase or decrease the energy and momentum of the
corresponding oscillator state by one quantum respectively. This can be seen by
recalling, from elementary quantum mechanics, the following relations which hold
for the (k, α)-oscillator:

a†
k,α|Nk,α, t〉 =√

Nk,α + 1|Nk,α + 1, t〉,
ak,α|Nk,α, t〉 =√

Nk,α|Nk,α − 1, t〉.
(6.65)

Expressing the canonical operators in terms of ak,α, a†
k,α ,

P̂k,α =− i

√
�ωk

2

(
ak,α − a+k,α

)
,

Q̂k,α =
√

�

2ωk

(
ak,α + a+k,α

)
,

(6.66)

we find the following relations:

〈Nk,α|Q̂k,α|Nk,α − 1〉 =〈Nk,α − 1|Q̂k,α|Nk,α〉 =
√

�Nk,α

2ωk
,

〈Nk,α|P̂k,α|Nk,α − 1〉 = − 〈Nk,α − 1|P̂k,α|Nk,α〉 = i

√
�ωk Nk,α

2
.

(6.67)

The representation of the states of the electromagnetic field in terms of occupation
number eigenstates associated with the constituent harmonic oscillators, is called

http://dx.doi.org/10.1007/978-88-470-1504-3_5
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occupation number representation or second quantization. In this construction each
state is obtained by applying the a†

k,α operators to the ground state.
We have been using, so far, the Schroedinger representation in which quantum

states evolve in time while operators are constant. The time evolution of a quantum
state |a, t〉 is described in this picture by the Schroedinger equation (see Chap. 9 for
a general review of the subject):

Ĥ|a, t〉 = i�
∂

∂t
|a, t〉, (6.68)

where |a, t〉 describes the electromagnetic field at a time t and is a generic linear
combination of the the basis elements |{Nk,α}, t〉. Let us recall that, if the Hamiltonian
operator, as in our case, does not explicitly depend on time, a solution to (6.68) at

a time t can be expressed in terms of a time evolution operator of the form e− i
�

Ĥt

acting on the state at a given initial time t = 0

|a, t〉 = e−
i
�

Ĥt |a, t = 0〉.
On the basis elements |{Nk,α}〉 we have:

|{Nk,α}, t〉 = e−
i
�

Ĥt |{Nk,α}, t = 0〉 = e−i(
∑

k,α Nk,αωk )t |{Nk,α}, 0〉. (6.69)

On the other hand operators are all computed at t = 0. In this representation
Lorentz covariance is not manifest.

If we adopt the Heisenberg picture (or representation) instead, see Chap. 9,
the dependence on time is associated with operators, quantum states being time-
independent. We can easily obtain such representation by writing the matrix element
of the operator Âk(x) in the Schroedinger representation between two states at a time
t and equating it to the matrix element of a time-dependent operator Â(x, t) between
the same states computed at t = 0:

〈{Nk′,α′ }, t |Â(x)|{Nk,α}, t〉 =〈{Nk′,α′ }, 0|e i
�

Ĥt Â(x)e−
i
�

Ĥt |{Nk,α}, 0〉
=〈{Nk′,α′ }, 0|Â(x, t)|{Nk,α}, 0〉. (6.70)

In Heisenberg’s representation we act on constant states by means of the time-
dependent operator Â(x, t):

Ak,α(x, t) = e
i
�

Ĥt Âk(x)e−
i
�

Ĥt . (6.71)

The resulting expression is manifestly Lorentz-covariant, as we can verify by com-
puting the matrix elements of the Fourier components Âk(t) at a time t between two
states:

〈Nk,α|Âk(t)|Nk,α + 1〉 =〈Nk,α|e i
�

Ĥt Âke−
i
�

Ĥt |Nk,α + 1〉
=e−iωk t 〈Nk,α|Âk|Nk,α + 1〉 ⇒ Âk(t) = Âke−iωk t .

(6.73)
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In the Heisenberg representation we can then write the electromagnetic field operator
on the space of states in the form:

Â(x, t) =
∑

k

(
Âk,αe−i(ωk t−k·x) + Âk,αei(ωk t−k·x))

= c

√
�

2ωk V

∑

k

∑
α

[
ak,αuk,αe−ik·x + a†

k,αu∗k,αeik·x]
. (6.74)

From the above expansion it is apparent that the operator Â(x, t) depends on the
space-time coordinates, just as in the classical case, through the Lorentz-invariant
product: k · x ≡ kμxμ = k0x0 − k · x, where, as usual, (kμ) ≡ (ωk

c ,k).

6.3 Spin of the Photon

We have learned, from our previous discussion, that each plane wave component

A(x, t) = εke−ik·x + c.c. ≡ εke−
i
�

p·x + c.c., (6.75)

in the expansion (6.15) of a generic solution to Maxwell’s equation in the vacuum,
is associated with the quantum state of a photon of energy E = �ωk , momentum
p = �k and polarization εk. It can thus be interpreted as the wave function of the
corresponding photon.

We know, however, that the photon is a massless particle and, as such, there exists
no RF in which its linear momentum vanishes: p = 0. This implies that there is no
RF in which the total angular momentum J ≡ M + S = x × p + S, where M is
the orbital part and S is the spin (see Chap. 9), coincides with S and thus acts on the
internal degrees of freedom only. The only component of J which acts only on the
internal degrees of freedom of the photon and which thus can be taken as a definition
of its spin, is its component along p, called the “helicity” and denoted by :

 ≡ J · p
|p| = (x × p) · p

|p| + S · p
|p| = S · nk. (6.76)

The helicity  generates rotations about the direction nk of p:

�R(θ) = e
i
�
θ . (6.77)

On the internal components (polarization) of the photon, which are components of
a four-vector (εμ(k)) = (0, εk) (transverse components of Aμ), this transformation
acts as a particular Lorentz transformation. Let us choose a RF in which p is aligned
to the X direction, p = (p, 0, 0) = �k. The infinitesimal generator of rotations about
the X axis is represented, on the four-vector kμ, by the matrix J1:

http://dx.doi.org/10.1007/978-88-470-1504-3_9
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 = J1 = −i�

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ . (6.78)

Since εk is transverse to the direction X of motion, we have: (εμ(k)) = (0, 0, ε2, ε3),
we easily find that  has two eigenvalues i(∓i�) = ±� with eigenvectors:

ε(+)μ (k) =

⎛
⎜⎜⎝

0
0
1
i

⎞
⎟⎟⎠ and ε(−)μ (k) =

⎛
⎜⎜⎝

0
0
1
−i

⎞
⎟⎟⎠ . (6.79)

We define the spin of a massless particle as the number s such that its states are
eigenstates of to the eigenvalues±�s. It then follows that the photon has spin s = 1.
Note that the transformation �R(θ) precisely coincides with the transformation �(0)

given in (5.116) so that the definition of spin of a photon given here corresponds to
the definition of spin of a plane wave given in Sect. 5.6.1.
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Chapter 7
Group Representations and Lie Algebras

7.1 Lie Groups

As already mentioned in Chap. 4 several properties of the rotation group SO(3) and
of the Lorentz group SO(1, 3) are actually valid for any Lie group G and do not
depend of the particular representation of their elements in terms of matrices. Such
representation independent features are encoded in the notion of an abstract group.

In this chapter we give the definition of an abstract group, restricting to Lie groups
only. Without any pretension to rigour or completeness, we define the general concept
of representation and that of a Lie algebra. This will be essential to showing the deep
relation, existing in classical and quantum field theories, between symmetry and/or
invariance properties of a system, to be described in group theoretical language, and
conservation laws of physical quantities. These interrelations will be discussed in
the next chapters. Let us first give the general axioms defining an abstract group.

Def.: An abstract group G is a set of elements within which a law of composition
· (to be characterized as a “product”) is defined, such that, given any two elements
in it g1, g2 ∈ G, their product is an element of G as well: g1 · g2 ∈ G.

The following conditions are to be satisfied:

1) Associative law: g1 · (g2 · g3) = (g1 · g2) · g3;
2) There exists an element g0, called the identity1 which leaves any g unaltered

by the group composition: g0 · g = g · g0 = g;
3) For each g ∈ G there exists an element called the inverse and denoted g−1

such that: g · g−1 = g−1 · g = g0.

1 The identity element is also called the unit element and is sometimes denoted by e.
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In general, given two group elements g1, g2, g1 ·g2 �= g2 ·g1. If for any g1, g2 ∈ G,
g1 · g2 = g2 · g1, the group is called commutative or abelian.2 As shown in Chap. 4,
the set of all non-singular n × n matrices close a group with respect to the matrix
multiplication, which is denoted by GL(n,C), for complex matrices, and GL(n,R),
or simply GL(n), for real ones.

In order to define a Lie group, we first define a continuous group. In general a
q-parameters continuous group G has its elements labeled by q continuously varying
parameters (θr ) ≡ (θ1, . . ., θq):

g ∈ G : g = g(θr ) ≡ g(θ1, . . ., θq), (7.1)

where continuity is expressed in terms of a (squared) “distance” d2 in parameter
space, d2 =∑

r (θ
r − θ ′r )2.

A Lie group is a continuous group such that the dependence of its elements on the
parameters θr satisfies the following requirement: If g(θr

1 ), g(θr
2 ) are two generic

elements of it, the parameters (θr
3 ) = (θ1

3 , . . ., θ
q
3 ) defining their product

g(θr
1 ) · g(θr

2 ) = g(θr
3 ), (7.2)

are q analytic functions θr
3 = θr

3 (θ
s
1 , θ

s
2) of (θ s

1) and (θ s
2) (here the lower index on the

parameters refers to the corresponding group element). Moreover the dependence of
the group elements on the parameters is conventionally fixed so that

g(θr ≡ 0) = g0.

For example, in Chap. 4, we defined the three-dimensional rotation group SO(3) as the
group of 3×3 matrices Ri

j acting on the three-dimensional Euclidean space and leav-
ing the metric gi j = δi j invariant. However the same group could have been defined
abstractly, that is independently of its matrix realization, as the group of continuous
transformations, depending on three parameters, and obeying the composition law
θ3 = θ3(θ1, θ2) or, equivalently, as a Lie group described in the neighborhood of
the identity by an algebra of generators whose structure is defined by (4.124) and
(4.125).

7.2 Representations

The notion of an n-dimensional vector space Vn over the real numbers (real vector
space), introduced in Chap. 4, readily generalizes to that of an n-dimensional vec-
tor space Vn over the complex numbers (complex vector space). The elements of a

2 We could have used a different notation and characterize the composition law as a “sum” +:
g1, g2 ∈ G, g3 = g1 + g2 ∈ G. In this case the identity element is called the zero-element and
denoted by 0: ∀g ∈ G, g+ 0 = 0+ g = g. The inverse of g ∈ G is denoted by −g. This is clearly
just a notation since in general the + composition law has nothing to do with the ordinary sum of
numbers. As an example the real numbers form an abelian group with respect to the ordinary sum,
the zero-element clearly being number 0.
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complex vector space are uniquely defined by a collection of n complex numbers
representing their components relative to a given basis (ui ): V = V i ui ≡ (V i ),
V i ∈ C. Three-dimensional rotations, Lorentz transformations and homogeneous
transformations of Cartesian coordinate systems, discussed in Chap. 4, are examples
of linear, homogeneous transformations on vector spaces (three-dimensional rota-
tions act on vectors in E3, Lorentz transformations on four-vectors in M4 an so on). A
linear function, or operator, A on a vector space Vn is in general defined as mapping
of Vn into itself, which associates with any vector V ∈ Vn a vector A(V) in the same
space, and which satisfies the linearity condition: Given any two-vectors V,W ∈ Vn

and two numbers a, b (real or complex depending on whether Vn is defined over the
real or complex numbers):

A(aV+ bW) = a A(V)+ bA(W). (7.3)

Suppose now A is invertible, so that one can define the inverse linear transformation
A−1 on Vn , then A is called a linear transformation. Being A invertible, if V, W are
linearly independent, also A(V), A(W) are. A therefore maps a basis (ui ) of Vn into
a new basis (u′i ) ≡ (A(ui )). We have dealt in Chap. 4 with linear transformations on
vectors when describing the correspondence between Cartesian coordinate systems
with a common origin (homogeneous linear coordinate transformations). In that case
we have adopted a passive point of view and made transformations act on the base
elements (ui ) of the coordinate system only and not on vectors in space. We have
then considered the relation between the components of a same vector V in the two
bases. In this perspective the action of A is uniquely defined by the n × n invertible
matrix A ≡ (Ai

j ) defining the components of the old basis relative to the new one.

ui = A j
i u′j . (7.4)

The components V′ = (V ′i ) and V = (V i ) of a vector relative to the new and old
bases, respectively, are related by the action of A:

V ′i = Ai
j V j ⇔ V′ = AV. (7.5)

With an abuse of notation we shall denote the array vector V′ of the new components
by A(V).

The same relation is obtained if we use the active description of transforma-
tions and view them as correspondences between different vectors (and in general
points) in space. Then if V = V i ui is a vector in Vn , the active action of a linear
transformation A will map it into a different vector V′ = A(V). If we now define
the matrix elements Ai

j as the components of the new basis element u′j = A(u j )

along ui :

u′j = Ai
j ui , (7.6)

using the linearity property of A we can write:

http://dx.doi.org/10.1007/978-88-470-1504-3_4
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V′ = A(V) = V i A(ui ) = V i A j
i u j = V ′ j u j . (7.7)

Although we find the same relation (7.5), the quantities involved have a different inter-
pretation: V ′i and V i in the passive description are the components of the same vector
in the new and old bases, while in the active representation they represent the compo-
nents of the new and old vectors with respect to the same basis. We shall use the active
description only when describing the effect of a coordinate transformation on the
quantum states (which are vectors in a complex vector space). From now on we shall
represent each vector by the array of its components V ≡ (V i )with respect to a given
basis, so that the effect of a transformation A, in both the complementary descrip-
tions, is then described by the same matrix relation (7.5): V→ V′ = A(V) ≡ AV.
If we have two linear transformations A, B on Vn , their product A · B is the linear
transformation resulting from their consecutive action on each vector: If B maps V
into V′ = B(V) = BV and A maps V′ into V′′ = A(V′) = AV′, then A · B is the
transformation which maps V into V′′ = A(B(V)) = A(BV) = (AB)V. The product
of two transformations is thus represented by the product of the matrices associated
with each of them, in the same order.3 The identity transformation I is the linear
transformation which maps any vector into itself and it is represented by the identity
n× n matrix 1. For any linear transformation A we trivially have A · I = I · A = A.
Finally, being a linear transformation invertible, we can define its inverse A−1 such
that, if A maps V into V′ = A(V), A−1 is the linear transformation mapping V′ into
the unique vector V = A−1(V′) which corresponds to V through A. It follows that
A−1 is represented by the inverse A−1 of the matrix A associated with A. Finally
the product of linear transformations is associative, the argument being substantially
the same as the one used for coordinate transformations in Sect. 4.5. Linear transfor-
mations on vector spaces close therefore a group. Given the identification of linear
transformations on Vn with n×n non singular matrices, such group can be identified
with the group GL(n,C), if Vn is complex, or GL(n) if Vn is real (the symbol GL
stands indeed for General Linear transformations).

An n-dimensional representation D (or representation of degree n) consists in
associating with each element g ∈ G a linear transformation D(g) on a linear vector
space Vn in such a way that:

D(g) · D(g′) = D(g · g′). (7.8)

Since linear transformations on Vn are uniquely defined by n×n invertible matrices,
with respect to a given basis, equation (7.8) characterizes a representation as a homo-

3 The action of a non-invertible operator A is also represented by a matrix A, its definition being
analogous to the one given for transformations. Such matrix, however, is singular. The product of
two generic operators A and B is defined as for transformations and is represented by the product of
the corresponding matrices in the same order. Examples of non-invertible operators appear among
the hermitian operators representing observables in quantum mechanics, Vn being in this case the
infinite dimensional vector space of quantum states. An other example of not necessarily invertible
operators are the infinitesimal generators of continuous transformations, to be introduced below,
which are indeed related, as we shall discover in the next chapters, to observables in quantum
mechanics.
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morphic map of G into the set (group) of n × n invertible matrices.4 Introducing a
basis (ui ), i = 1, . . ., n, on Vn , D(g) acts as an n × n matrix D(g) ≡ (D(g)i j ) on
the components of a vector V = (V i , . . ., V n) according to the law

V ′i = D(g)i j V j ⇔ V′ = D(g)V,

We shall denote by the bold symbol D the representation of a group in terms of matri-
ces. The vector space Vn is called the carrier of the representation or representation
space. In the case of the rotation group, for example, the three dimensional Euclidean
space V3 is the carrier of the representation studied in Chap. 4:

g(θ1, θ1, θ2) ∈ SO(3)
D−→D(g)i j = R(θ1, θ1, θ2)

i
j , i, j = 1, 2, 3.

For a general representation the matrix D(g) is an element of GL(n,C) or of
GL(n,R), depending on whether the base space is a complex or real vector space.

In the active picture, for any g ∈ G, D(g) maps vectors into vectors, all represented
with respect to a same basis (ui ). On replacing the original basis (ui ) by a new one
(u′i ), related to it through a non singular matrix A, as in (7.4), the matrix D(g) gets
replaced by the matrix D′(g) = AD(g)A−1 which represents the action of D(g) in
the new basis. This is easily shown starting from the matrix relation between the
components of a vector V1 and its transformed V2 in the old basis: V2 = D(g)V1.
Being the components V′1 and V′2 of the two-vectors in the new basis given by
V′1 = AV1,V′2 = AV2, we find:

V′2 = AV2 = AD(g)V1 = AD(g)A−1V′1 = D′(g)V′1. (7.9)

It is easily verified that the mapping D′ of a generic group element g into D′(g) is
still a representation, also denoted by D′ = ADA−1.

The representations ADA−1 and D are then said equivalent, and we write:

D ∼ ADA−1. (7.10)

If the homomorphic mapping:

g −→ D(g), (7.11)

is isomorphic, namely it is one-to-one and onto, then the representation is faithful,
otherwise it is unfaithful. A trivial, but important, representation is obtained by the
mapping:

g −→ 1, ∀g ∈ G, (7.12)

and is called the identity, or trivial representation, simply denoted by 1.

4 It is obvious that the identity g0 = e element of the group is represented by the unit n-dimensional
matrix that we will denote by 1 or else by I.
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Coming back to the general case, let us assume that there exists a subspace Vm ⊂
Vn of dimensions m < n such that every element of the subspace Vm is transformed
into an element of the same subspace under all the transformations of the group G:

∀g ∈ G D(g) : Vm → Vm .

If such a subspace exists it is called invariant under the action of G and the represen-
tation D acting on Vn is said to be reducible in Vn . A representation is irreducible if
it is not reducible, that is if there is no proper invariant subspace of the carrier space.
If a representation is reducible, we may find a basis in Vn in which all matrices D(g),
with g ∈ G, can be simultaneously brought to the form

D(g) = (D(g)i j ) =
(

A 0
B C

)
, (7.13)

where A, B, C are matrices of dimensions (n−m)×(n−m),m×(n−m) and m×m
and 0 is the (n − m) × m matrix whose elements are all zero. The corresponding
basis (ui ) is chosen so that its last m elements (u�), � = 1, . . .,m, form a basis of
Vm , while the first m − n elements (ua), a = 1, . . ., n −m, generate the orthogonal
complement Vn−m of Vm in Vn . The components of a generic column vector then
split accordingly: V = (V a, V �), and transform as follows:

V ′a = Aa
bV b, V ′� = C�

�′V
�′ + B�a V a . (7.14)

Therefore, if V ∈ Vm , V a ≡ 0 and thus V ′a ≡ 0, that is V′ = D(g)(V) ∈ Vm .
If it is possible to find a basis in which all the matrices of the representation assume

the form (7.13), but with B = 0, we say that the representation is fully reducible or
decomposable. In this case both Vn−m and Vm are invariant subspaces. The space
Vn , as a vector space, is the direct sum of Vn−m and Vm , Vn = Vn−m ⊕ Vm , and the
representation D is said to be the direct sum of Dn−m and Dm

Dn = Dn−m ⊕ Dm,

where Dn−m and Dm are the two representations of G defined, for any g ∈ G, by the
upper and lower diagonal blocks of D(g)

D(g) =
(

Dn−m(g) 0
0 Dm(g)

)
. (7.15)

The representations Dm,Dn−m may still be completely reducible, and thus may be
further decomposed into lower dimensional representations. We can iterate the above
procedure until we end up with irreducible representations: Dk1 , . . .,Dk� , where∑�

i=1 ki = n. This corresponds to finding a basis in which the matrix representation
under D of a generic element g ∈ G has the following block structure:

D(g) =

⎛
⎜⎜⎜⎝

Dk1(g) 0 . . . 0
0 Dk2(g) . . . 0
...

. . .
...

0 0 . . . Dk� (g)

⎞
⎟⎟⎟⎠ . (7.16)
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We say that the original representation D is completely reducible into the irreducible
representations Dki and write:

D =
�⊕

i=1

Dki ≡ Dk1 ⊕ Dk2 ⊕ . . .Dk� . (7.17)

Correspondingly the representation space Vn of D has been decomposed into the
direct sum of spaces Vki on which Dk1 [g] act:

Vn = Vk1 ⊕ Vk2 ⊕ . . . Vk� . (7.18)

As a simple example we may consider the group SO(2) of rotations in the (x,y) plane.
The three-dimensional representation acting on a generic vector of components (x,y,z)
has the following form:

⎛
⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞
⎠ . (7.19)

We see that the representation is fully reducible into a two-dimensional representation
acting on the components x,y and a one-dimensional representation acting on the
component z (which leaves it invariant).

The simplest (faithful) representation of GL(n) is given in terms of the set of
matrices acting on the components of a vector V ∈ Vn and is called the defining
representation.
However, while studying the tensor algebra, we have emphasized that the (p,q)—
tensors can be thought of as vectors in a representation space of GL(n). More
precisely, the set of nk+� components T i1...ik j1... j� of a tensor of type (k, �), can be
understood as the components of a vector in the representation space Vnk+l on which
the linear action of an element g ∈ GL(n) is defined by (4.60) and (4.61), that is
by the tensor product D ⊗ . . . ⊗ D ⊗ D−T . . . ⊗ D−T of k matrices D and �
matrices D−T . As anticipated in Chap. 4, using the properties of the Kronecker
product of matrices, one can easily verify that the action of the group on tensors
satisfies Eq. (7.8) and thus defines a representation.

As an example, let us recall from Sect. 4.3, that a generic tensor Fi j can be
split into a symmetric and antisymmetric component (Fi j

S , Fi j
A , respectively), see

(4.74). Fi j belongs to the vector space Vn2 of dimension n2, its n2 components can
be thought of as the independent entries of the n×n matrix (Fi j ). This vector space is
the base space of a representation of GL(n), each tensor Fi j transforming according
to (4.49). The symmetric and antisymmetric components Fi j

S , Fi j
A span orthogonal

subspaces V(S), V(A) of Vn2 , such that:

V (S) contains as elements the symmetric tensors, Fi j
S = F ji

S ;
V (A) contains as elements the antisymmetric tensors, Fi j

A = −F ji
A .

The dimensions of V(S) and V(A) are n(n+1)
2 and n(n−1)

2 , so that their sum matches
the dimension of Vn2 :

http://dx.doi.org/10.1007/978-88-470-1504-3_4
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n(n + 1)

2
+ n(n − 1)

2
= n2. (7.20)

In other words Vn2 is the direct sum of V(S) and V(A):

V n2 = V (S) ⊕ V (A).

Since symmetric (antisymmetric) tensors are transformed into symmetric (antisym-
metric) tensors, see (4.76), both V(S) and V(A) are invariant subspaces of Vn2 , and thus
that the representation D⊗D is fully reducible into the direct sum of a representation
D(S) acting on symmetric tensors and a representation D(A) acting on antisymmetric
ones:

D⊗ D = D(S) ⊕ D(A). (7.21)

It must be observed that if we restrict the transformations of a group G to those
of a subgroup G ′ ⊂ G, a representation which was irreducible with respect to the
G may become reducible with respect the smaller group G ′. This is what happens,
for example, when we restrict the transformations of GL(n) to those of the subgroup
O(n) as it was observed at the end of Sect. 4.5. In fact, with reference to (4.106) and
(4.105), we see that if we restrict to O(n) transformations only, the space of symmetric
tensors, which was irreducible with respect to GL(n), becomes now a direct sum of the
subspace of the symmetric and traceless tensors and of the one-dimensional subspace
of tensors proportional to δi j . It then follows that the n2-dimensional space of rank-
two O(n)-tensors Fi j can now be reduced into the direct sum of three subspaces
according to the decompositions of tensors described in (4.106) and (4.105) that
here we rewrite, for the sake of completeness:

Fi j = F̃ i j
S + Fi j

A + Di j ,

where

F̃ i j
S =

1

2
(Fi j + F ji )− 1

n
(δpq F pq )δi j ,

Fi j
A =

1

2
(Fi j − F ji ), Di j = 1

n
(δpq F pq )δi j .

As it was shown in Chap. 4 each of the three subspaces is invariant under O(n)
transformations, elements of each subspace being transformed into elements of the
same subspace. It follows that the n2-dimensional representation of O(n) is fully
reducible into three irreducible representations D(S),D(A),DTr = 1 of dimensions
n(n+1)

2 − 1, n(n−1)
2 and 1, respectively:

D⊗ D = D(S) ⊕ D(A) ⊕ DTr, (7.22)

where D(S) act on symmetric traceless matrices and DTr on the tensors proportional
to δi j (traces).

http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
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The same decompositions hold if instead of the group O(n) we have a non-compact
form like the Lorentz group SO(1, 3) when n = 4. The only difference is that the
one-dimensional subspace is now proportional to the Minkowski metric ημν .

Let us now discuss a property in group theory which has important applications
in physics.

Schur’s Lemma: Let D be an irreducible n-dimensional representation of a
group G. A matrix T which commutes with all matrices D(g), for any g ∈ G, is
proportional to the identity matrix 1n .

In formulas, if

∀g ∈ G : TD(g) = D(g)T, (7.23)

there exists a number λ such that:

T = λ1n ⇔ T i
j = λδi

j , i, j = 1, . . ., n. (7.24)

To show this, let λ be an eigenvalue of T in Vn (which always exists) and V the
corresponding eigenvector:

TV = λV. (7.25)

Let Vλ = {V′ ∈ Vn|TV′ = λV′} be the eigenspace of the matrix T corresponding
to the eigenvalue λ. This space is non-empty since V ∈ Vλ. It can be easily verified
that Vλ is invariant under the action of G. Indeed for any V′ ∈ Vλ and g ∈ G, the
vector D(g)V′ is still in Vλ since:

TD(g)V′ = D(g)TV′ = λD(g)V′, (7.26)

where we have used the hypothesis (7.23) of Schur’s lemma that T commutes with
the action of G on Vn defined by the representation D. Since Vλ is a non-empty
invariant subspace of Vn and being D an irreducible representation by assumption,
Vλ can only coincide with Vn . We conclude that T acts on Vn as λ times the identity
matrix.

An important consequence of Schur’s lemma is that, if D is a n-dimensional
representation of a group G and if there exists a matrix T which commutes with all
matrices D(g), for any g ∈ G, and which is not proportional to the identity matrix
1n , then D is reducible.

This property provides us with a powerful criterion for telling if a representation
is reducible and, in some cases, to determine its irreducible components: Suppose
we find an operator T on Vn which commutes with all the transformations D(g)
representing the action of a group G on the same space. The matrix representation T
of T will then have the form:

T =
⎛
⎜⎝

c11k1 0
. . .

0 cs1ks

⎞
⎟⎠ , (7.27)
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where c1, . . ., cs are different numbers and the corresponding eigenspaces
Vk1 , . . ., Vks of T correspond to different representations Dk1 , . . .,Dks of G. Thus the
degeneracies k1, . . ., ks of the eigenvalues of T are dimensions of representations of
G. In most cases the representations are irreducible; if some of these representations
are not irreducible, we say that there is an accidental degeneracy.5

We shall show in Chap. 9 how Schur’s lemma allows to deduce important infor-
mation on the degeneracy of the energy levels of a quantum mechanical system from
the knowledge of its symmetries.

7.3 Infinitesimal Transformations and Lie Algebras

In the following we shall be mainly concerned with infinitesimal transformations of
a group G, generalizing the definition, given in Sect. 4.5.1 for the rotation group, of
the Lie algebra of infinitesimal generators. As we shall show shortly, the knowledge
of the structure of the group in an infinitesimal neighborhood of the unit element
(i.e. of the algebra of its infinitesimal generators), is sufficient to reconstruct, at least
locally, the structure of the group itself.6 In order to show this let us expand, as we
did for rotations, a generic group element in a given representation D in Taylor series
with respect to its parameters {θr } = (θ1, . . ., θq), assuming them to be small:

D(g(θr )) = 1+ θr ∂D
∂θr

∣∣∣∣
θ t≡0
+O(θ2)

= 1+ θr Lr +O(θ2), (7.28)

where:

Lr ≡ ∂D
∂θr

∣∣∣∣
θr≡0

define the infinitesimal generators of D(g). These matrices clearly depend on the
representation D of the group G we are using.

Just as we did in Sect. 4.5.1, let us write a generic transformation in G, defined by
finite values (θr ) of the parameters, as resulting from the iterated action of a large
number N of “small” transformations with parameters δθr ≡ θr

N  1:

D(g(θr )) = D(g(δθr ))N = D
(

g

(
θr

N

))N

. (7.29)

To first order each infinitesimal transformation D(g(δθr )) can be written using the
expansion (7.28) and neglecting second order terms in the infinitesimal parameters:

5 Indeed in such cases the reducibility of the representation is due to the fact that some extra hidden
symmetry present in the problem was not recognized.
6 It is important to note that locally the same Lie algebra can describe Lie groups which are globally
different. This is for example the case of the groups SO(3) and SU(2), see Appendix F.

http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_4
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D(g(δθr )) ≈ 1+ δθr Lr = 1+ θ
r

N
Lr . (7.30)

We can then write the following approximated expression:

D(θr ) ≈
[

1+ θ
r

N
Lr

]N

.

The larger N the better the above approximation is. In the limit N →∞ we obtain

D(θr ) = exp(θr Lr ), (7.31)

the exponential of a matrix being defined by (4.129). We can summarize the above
result as follows. Given an element g(θ) ∈ G in the neighborhood of the identity
element g = I , that is for values of the parameters θr in a neighborhood of θr ≡ 0,
we may associate with it a unique matrix A(θr )i j ≡ θr (Lr )

i
j such that

D(θr )i j =
(

eA(θr )
)i

j =
∞∑

n=0

1

n!
[
A(θr )n

]i
j ,

where we have used the short-hand notation D(θr ) ≡ D(g(θr )). A(θr ) is referred to
as the infinitesimal generator of the transformation D(g). As the parameters θr are
varied A(θr )ij = θr (Lr )

i
j describes a vector space A of parameters θr with respect

to the basis of infinitesimal generators (Lr )
i

j . In particular the higher order terms in
the expansion (7.28) are written in terms of powers of A(θr ). For example, at second
order the Taylor expansion (7.28) of D(θr ) reads:

D(θr ) = 1+ θr Lr + 1

2
θrθ sLr Ls + O(θ3). (7.32)

From (7.32) we compute, at the same order, the inverse transformation:

D(θr )−1 = 1− θr Lr + 1

2
θrθ sLr Ls + O(θ3). (7.33)

Consider the matrix representation D(θ1),D(θ2) of two group elements, g1 =
g(θ1), g2 = g(θ2), where, for the sake of simplicity, we write θ for the set of n para-
meters {θ1, . . ., θn}, the lower index in θ1, θ2 referring to two different elements. We
define the commutator of D(θ1),D(θ2) as the matrix D−1(θ1)D−1(θ2)D(θ1)D(θ2).
This matrix must be a representation D(θ3) of some group element g3 = g(θ3) ≡
g−1

1 · g−1
2 · g1 · g2. Using (7.32) and (7.33) a simple computation shows that the

terms linear in the θ parameters cancel against each other so that the expansion of
the group commutator becomes

D−1(θ1)D−1(θ2)D(θ1)D(θ2) = 1+ θr
1θ

s
2 [Lr ,Ls] + · · · (7.34)

where [Lr ,Ls] is the algebra commutator defined as Lr Ls − LsLr . On the other
hand from the group composition law we also have

http://dx.doi.org/10.1007/978-88-470-1504-3_4
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D(θ3) ≡ D−1(θ1)D−1(θ2)D(θ1)D(θ2) = 1+ θm
3 Lm + · · · . (7.35)

Since (7.34) and (7.35) must coincide, we deduce

θk
1 θ

l
2[Lk,Ll ] = θm

3 Lm, (7.36)

that is

[Lk,Ll ] = Ckl
mLm, (7.37)

where we have set

Ckl
mθ
[k
1 θ

l]
2 = θm

3 . (7.38)

The set of constants Ckl
m are referred to as the structure constants of the Lie group.

From (7.37) we see that the structure constants are antisymmetric in their lower
indices. We can easily verify that the infinitesimal generators Lr satisfy the identity

[Lk, [Ll ,Lm]]+ [Ll , [Lm,Lk]]+ [Lm, [Lk,Ll ]] = 0 (7.39)

called Jacobi identity. As a consequence, by use of the (7.37) and (7.39), we obtain
that the structure constants must satisfy the identity

Ckl
nCmn

p + Clm
nCkn

p + Cmk
nCln

p = 0, (7.40)

or, equivalently:

C[kl
nCm]pn = 0 (7.41)

where the complete antisymmetrization in three indices has been defined after
(5.17) of Chap. 5. A vector space of matrices A which is closed under commuta-
tion, namely such that the commutator of any two of its elements is still in A, is
an example of a Lie algebra. Its algebraic structure is defined by the commuta-
tion relations between its basis elements, as in (5.37), i.e. by its structure constants
Cmn

p. The Lie algebra, as we have seen, describes exhaustively the structure7 of the
abstract group G in the neighborhood of the identity of G. It follows that the structure
constants Crs

p, do not depend on the particular representation D of G.

7.4 Representation of a Group on a Field

Let us consider an n-dimensional flat space of points Mn and its associated vec-
tor space Vn described by the vectors

−→
AB connecting couples of points in Mn .

7 By structure we mean the correspondence between any two elements of G and the third element
representing their product.

http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_5
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The space Mn can be the Euclidean space En if the metric tensor defined on it
is δi j (in this case we shall be mainly interested in our three-dimensional Euclid-
ean space E3), or, for n = 4, the Minkowski space M4 of special relativity if the
metric is ημν . It is useful at this point to recall the notations used in Chap. 4 for
describing Cartesian coordinates in the various spaces: The collection of generic
Cartesian coordinates on Mn is denoted by r = (xi ) while our familiar Carte-
sian rectangular coordinates are also denoted by x = (x, y, z) and the space-
time coordinates of an event in Minkowski space are also collectively denoted by
x = (xμ) = (ct, x). Let us introduce a second p-dimensional vector space Vp and
let us we consider a map	α: Mn → Vp which associates with each point P ∈Mn,

labeled by Cartesian coordinates xi , i = 1, . . ., n, a vector in Vp, of components
	α(xi ), α = 1, . . ., p,

	α : ∀xi ∈Mn → 	α(xi ) ∈ Vp. (7.42)

This function is called a field, defined on Mn , with values in Vp. The index α is called
the internal index since it labels the internal components 	α of the field, which are
degrees of freedom not directly related to its space-time propagation. An example is
the index α = 1, 2 labeling the physical polarizations of a photon. Vp is consequently
called the internal space. If, as Vp, we take the space Vnk+l of type-(k, l) tensors, the
corresponding field 	i1...ik j1... jl (x

i ) is called a tensor field. We have already intro-
duced the notion of tensor fields in Chap. 4, Sect. 4.3, and illustrated their transforma-
tion properties under a change in the Cartesian coordinates (affine transformations) on
Mn . There we discussed, as an example, the case of a tensor field T i j

k(xi )which has
values in the n3-dimensional vector space Vp = Vn3 of type-(2, 1) tensors. Its trans-
formation law is given by (4.73), its indices transforming under the homogeneous part
D = (Di

j ) (element of GL(n)) of the affine transformation, according to their posi-
tions. Thinking of T i j

k as the p = n3 components of a vector in Vp, their are subject

to the linear action of the matrix
(
D⊗ D⊗ D−T

)i js
lmk defining the representation

the GL(n) transformation on (2,1) tensors. This transformation property is general-
ized in a straightforward way to generic type-(k,l) tensor fields. If we wish to restrict
to transformations preserving the Euclidean or Lorentzian metrics on E3 or M4, as
we shall mostly do in the following, we need to restrict the homogeneous part of the
affine transformation to O(3) or to O(1, 3), respectively.

There are several instances in physics of tensor fields. In particular rank (1,0)
and rank (0,1) tensors are (contravariant or covariant) vector fields, while rank (0,0)
tensors are scalar fields.

Let us give some examples. Well known three-dimensional vector fields are the
gravity field g(x, y, z) in Newtonian mechanics or the electric and magnetic fields
E(x, y, z, t) and B(x, y, z, t) of the Maxwell theory. More precisely they are vectors
with respect to the rotation group SO(3). They are instances of maps between the
Euclidean (E3) or Minkowski space (M4) and the Euclidean three-dimensional vector
space Vn = V3). The four-vector potential Aμ(xν) is again a vector field albeit with
respect to Lorentz transformations SO(1, 3). Here Mn = M4, and Vp = V4, the

http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
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space of four-vectors V = (Vμ) = (V 0, V 1, V 2, V 3) associated with Minkowski
space.

An example of rank (0, 2) tensor field is the covariant field strength Fμν =
∂μAν−∂ν Aμ. Here again Mn is Minkowski space M4 while Vp is the six-dimensional
space of the antisymmetric tensors.

The field of temperatures in a given region of ordinary space x, y, z (Mn = E3)
is an example of scalar field since Vp is the one-dimensional vector space of the
real numbers V1 ≡ R; a scalar field is also the wave function �(x, y, z, t), solution
to the Schroedinger equation, which associates with each point in space-time M4 a
complex number, that is an element of the two-dimensional space V2 ≡ C (in this
case we talk about a complex scalar field).

In all these examples the transformation group G on the tensors, is chosen to
be either SO(3) or SO(1, 3) (or their affine extensions, like the Poincaré group on
M4, keeping in mind that tensor fields, just like vectors, always transform under the
homogeneous part of the coordinate transformation, like the Lorentz group).

We wish now to generalize this discussion to a general transformation group G
and to a carrier space Vp supporting a general representation space, not necessarily
of vector or tensor character. Indeed besides the known cases of the electromagnetic
field Aμ(x) and of its field strength Fμν(x), which are tensor fields, when discussing
the Dirac equation in Chap. 10, we shall be dealing with a field belonging to a
representation of the Lorentz group, called spinor representation, which cannot be
constructed in terms of tensors. This field will provide the relativistic description of
particles with spin 1/2 like the electron.

Let us denote by R(g) the representation of G acting on Vn , and by D(g) the one
acting on Vp. We shall always consider Vn to be either the space of three-vectors on
E3, namely the vectors�x or that of four-vectors on M4,�xμ. If G acts as an affine
group on the chosen Cartesian coordinate system on Mn , like the Poincaré group on
M4, the representations R and D only refer to the action of the homogeneous part of
G, like the Lorentz subgroup of the Poincaré group.

Let us now introduce a Cartesian coordinate system on Mn with origin O and
basis {ui } of Vn , and a basis {ωα} on Vp. Under a generic transformation g ∈ G, two
vectors V = (V i ) in Vn and W = (Wα) in Vp transform as follows:

V i → V ′i = R(g)i j V j ⇔ V→ V′ = R(g)V, (7.43)

Wα → W ′α = D(g)αβWβ ⇔W→W′ = D(g)W. (7.44)

The transformation property of a generic field �(r) ≡ (	α(r)) on Mn with values
in Vp under a transformation G is then the direct generalization of the analogous law
for tensor fields:

	α(r)→	′α(r′) = Dα
β	

β(r) = Dα
β	

β(R−1(r′ + r0))

⇔ �(r)→ �′(r′) = D�(r) = D�(R−1(r′ + r0)), (7.45)

where, for the sake of notational simplicity we have suppressed the explicit depen-
dence of the matrices D = (Dα

β) and Ri
j (and of the translation parameters r0)

http://dx.doi.org/10.1007/978-88-470-1504-3_10
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on the group element g ∈ G. In the above equation R is a 3 × 3 rotation matrix on
r = x = (x, y, z) if Mn = E3 and G = SO(3), or a 4 × 4 Lorentz transformation
matrix (�μν) on r = x ≡ (xμ) = (ct, x, y, z) if Mn = M4 and G is the Poincaré
group. In this latter case, under a generic Poincaré transformation (�, x0) ∈ G, the
space-time coordinates transform as in (4.191)8:

x ′ = �x − x0 ⇔ x ′μ = �μνxν − xμ0 , (7.46)

where x0 ≡ (xμ0 ) parametrize the space-time translations, and (7.45) reads:

	α(x)→ 	′α(x ′) = Dα
β	

β(x) = Dα
β	

β(�−1(x ′ + x0))

⇔ �(x)→ �′(x ′) = D�(x) = D�(�−1(x ′ + x0)), (7.47)

where D = (Dα
β) = D(�) is the matrix implementing the Lorentz transformation

on the internal space.
Besides considering groups of Cartesian coordinate transformations acting both on

the space-time vectors of Vn (e.g. the Lorentz group acting on�xμ as part of the more
general Poincaré group), and on the space Vp, we could consider groups of internal
transformations, namely transformation groups acting only on Vp, namely on the
internal degrees of freedom of the field, while the space or space-time vectors are left
fixed . In this case R is the trivial representation 1 and r0 = 0. Such transformations
act on a field as follows:

	α(r)→ 	′α(r) = Dα
β	

β(r)⇔ �(r)→ �′(r) = D�(r). (7.48)

An example is the group which transforms a wave function, i.e. a complex scalar
field 	(r), by multiplication with a phase:

	(r)→ 	′(r) = D(ϕ)	(r) = eiϕ	(r). (7.49)

The reader can easily verify that the set consisting of phases D(ϕ) = eiϕ is a one-
parameter abelian Lie group with respect to multiplication. It has the simple structure
D(ϕ1)D(ϕ2) = D(ϕ3), where ϕ3 = ϕ1 + ϕ2. This group G is denoted by U(1) and
called the unitary one-dimensional group. When illustrating in the next chapters, the
relation between symmetry transformations and conserved quantities, we shall see
that the internal U(1) symmetry of a system, i.e. the invariance of a system under
internal U(1) transformations, is related to the conservation of a charge which, in
electromagnetism, is the electric charge.

Let us now come back to the case in which G is a transformation group acting
on the space-time RF. The simplest instance of field is the scalar field in which D is
the trivial representation 1, defining a type-(0,0) tensor, with p = 1 that is Vp = R

(real scalar field) or C (complex scalar field). A complex scalar field 	(r) can be

8 Note that the analogous of the Poincaré group in the three dimensional Euclidean space E3 is the
known group of congruences of Euclidean geometry, acting on the space coordinates as in (4.102).

http://dx.doi.org/10.1007/978-88-470-1504-3_4
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described as a couple of real scalar fields 	1(r),	2(r), defined at each point r by
the real and imaginary parts of 	(r):

	(r) = 	1(r)+ i	2(r) ≡ (	1(r),	2(r)) . (7.50)

The transformation law (7.45) reduces, for a scalar field, to

	(r′) = 	(r(r′)) = 	(R−1(r′ + r0)). (7.51)

If Mn = M4 and G is the Poincaré group, r is the space-time coordinate vector (xμ)
and R = � = (�μν) ∈ SO(1, 3).

In general, as discussed in Sect. 4.3, the coordinates r = (xi ) and r′ = (x ′i )
refer to the same point P of Mn , therefore the numerical value of the scalar field
must be the same, even if, when substituting xi = xi (x ′ j ) = (R−1)i j (x ′ j + x j

0 ) the
functional form changes from 	 to 	′. Writing 	′(r′) = 	(r) we are considering
the transformation r′ = Rr− r0 from a passive point of view since space-points are
considered fixed while only the coordinate frame is changed.

However the same transformation can be also considered from a different point
of view, namely as a change in the functional form of 	(r)

	(r)→ 	′(r), (7.52)

with 	′(r) = 	(R−1(r − r0)). In this case we consider the transformation as an
active transformation, since the emphasis is on the functional change of	. The given
change of coordinate in this case is thought of as due to a change of the geometric
point.9

When considering the change in the functional form from an active point of view
it is sometimes convenient to denote the new functional form 	′ taken by 	 as
consequence of the coordinate change induced by an element g ∈ G, as the action
of an operator Og on 	.10 Equation (7.51) takes the following form:

Og	(r) = 	(R−1(r − r0)), (7.53)

where, as usual, R = R(g) and r0 = r0(g).
Consider, for the sake of simplicity, a group G acting in a homogeneous way on the
coordinates (i.e. r0 ≡ 0) and apply in succession two transformations g1, g2 ∈ G,
the resulting transformation corresponding to the product g2 · g1 ∈ G. We have:

9 Note that in the discussion of the vector and tensor calculus in Sect. 4.1 the emphasis was on the
passive point of view since the reference frame was changed by the transformations. Therefore the
whole of the vector and tensor calculus was developed taking this point of view. The active point,
as previously mentioned, will be actually adopted in Chap. 9 when discussing the action of a group
on the Hilbert space of states in quantum mechanics.
10 Here by operator we mean a linear mapping of the vector space of square-integrable functions
on Mn into itself, according to the definition given earlier. Og is actually a transformation and it is
therefore invertible.

http://dx.doi.org/10.1007/978-88-470-1504-3_4
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xi g1−→x ′i = R(g1)
i

j x j g2−→x ′′i = R(g2)
i

j R(g1)
j
k xk = R(g2 · g1)

i
k xk

or, expressing xi in terms of x ′′k

xi = [R(g2 · g1)
−1]i k x ′′k .

Actually the operators OR give a homomorphic realization of the group G, where by
realization we mean a homomorphic mapping on the function space. Indeed from

	′(r) ≡ Og	(r) = 	(R(g)−1r), (7.54)

using the short-hand notation R1 ≡ R(g1) and R2 ≡ R(g2), it follows

Og2 · Og1	(r) ≡ Og2

(
Og1	(r)

) = Og2	(R
−1
1 r) = 	′(R−1

1 R−1
2 r)

= 	((R2R1)
−1r) = 	(R(g2 · g1)

−1r). (7.55)

However the same result is also obtained acting on 	 with the operator Og2·g1 cor-
responding to the group element g2 · g1:

Og2·g1	(r) = 	(R(g2 · g1)
−1r).

Therefore we conclude that

Og2·g1 = Og2 · Og1 . (7.56)

O is thus a homomorphims of G into the group of linear transformations on the space
of functions 	(x) on Mn . It is easy to verify that O maps the unit element of G
into the identity transformation I which maps a generic function 	(x) into itself.
Moreover O−1

g = Og−1 . The mapping O : g ∈ G → Og , has the same properties as
a representation D. However the linear transformations Og are not implemented by
matrices, since they affect the functional form of the field they act on. For this reason
O should be referred to as a realization of G on fields rather than a representation.

7.4.1 Invariance of Fields

The relation (7.53) is referred to general transformations of Cartesian coordinates
(affine transformations), whose homogeneous part described a linear transformation
on Vn (i.e. belongs to the group GL(n)). This relation is actually valid also for any
any (invertible) coordinate transformation (thus including curvilinear coordinates)

x ′i = f i (x1, x2, . . ., xn), (7.57)

where f (x) ≡ ( f i (x)) are differentiable functions which can be inverted to
express the old coordinates (x1, . . ., xn) in terms of the new ones (x ′1, . . ., x ′n):
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xi = f −1i (x ′), or simply x = f −1(x ′). Also the effect of this coordinate transfor-
mation on 	(x) can be represented by the action of an operator O f

O f	(x) = 	( f −1(x)). (7.58)

Only for linear coordinate transformations (among Cartesian coordinates) f i (x)
reduces to: x ′i = Ri

j x j − xi
0. Let us now recall the definition of invariance of a

function 	:
If the functional form of	 does not change under a coordinate transformation (7.57),
O f	(x) = 	(x) then 	 is invariant. From the relation (7.51) and the requirement
of invariance we obtain

	(x) = 	( f −1(x)). (7.59)

From the active point of view this means that even if the geometric point is changed,
the functional form remains the same.11 As an example we may take the coordinate
transformation corresponding to the rotation of the Cartesian coordinate system by
an angle θ in the plane x,y, given by the general SO(2) element

r′ = f (r) = R(θ)r, R(θ) =
(

cos θ sin θ
− sin θ cos θ

)
. (7.60)

The function

	(x, y) = x4 + y2, (7.61)

is not invariant, as can be easily verified by substitution of the coordinates in terms
of the new ones. Instead the function

	(x, y) = x2 + y2, (7.62)

is invariant; indeed

x ′2 + y′2 = (x cos θ + y sin θ)2 + (−x sin θ + y cos θ)2 = x2 + y2. (7.63)

In general to verify the invariance one substitutes x with f −1(x) and checks if the
same function is obtained or not.

So far we have been considering the action of a group of transformations on a
scalar field. In the general case where the representation acts on a field	α(xi )which
is not a scalar, but has internal components transforming in a given representation D
of G, the transformation law is given by (7.45). Also in this more general case it is
useful to describe the effect of a transformation g ∈ G in terms of an operator Og

acting on the field:

11 Equivalently, from the passive point of view, invariance means that a change in the coordinate
frame does not change the functional form.
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g ∈ G : 	α(r)
g→	′α(r′) = Og	

α(r′) = Dα
β	

β(R−1(r′ + r0)), (7.64)

where, as usual, we have suppressed the explicit dependence on g of D, R and r0. Also
in this case the operators Og give a homomorphic image of the group transformations,
their action on Vp being given in terms of the matrices D of the representation
of G.12

Indeed, using the matrix notation and restricting to homogeneous coordinate trans-
formations, for any two given elements g1, g2 of G we have:

Og2 Og1�(r) = Og2�
′(r) = D2�

′(R−1
2 r) = D2D1�(R

−1
1 R−1

2 r), (7.66)

where, as usual we have used the short-hand notation: R1 = R(g1),R2 = R(g2),

D1 = D(g1),D2 = D(g2). On the other hand applying the operator corresponding
to g2 · g1 we also have

Og2·g1�(r) = D(g2 · g1)�(R(g2 · g1)
−1r), (7.67)

Comparing (7.66) and (7.67) and taking into account that D and R are representations
of G

D(g2 · g1) = D(g2)D(g1), R(g2 · g1) = R(g2)R(g1) (7.68)

we find

Og2·g1 = Og2 Og1 . (7.69)

Just as in the scalar field case, the homomorphism O between elements g ∈ G and
operators Og defines a realization of G on the field �(r). The reader can easily
extend the above proof to groups G acting as non-homogeneous linear coordinate
transformations: r0(g) �= 0. The concept of invariance given for scalar functions can
be easily extended to functions transforming in a non trivial representation D of G.
We say that the field 	α(x) is invariant under the action of G if13

12 Note that also in this more general case we may consider the given transformation from an active
point of view, by redefining in the two sides of last equality in (7.64) r′ → r:

	α(r)
g→	′α(r) = Dα

β	
β(R−1(r + r0)). (7.65)

13 If the transformation of the field is due to a general coordinate transformation the matrix D,
which is constant for linear transformations, will be given by the corresponding Jacobian at the
point x. For example, if a vector field vi (x) is invariant under x → f (x), then

v′i (x ′) = vi (x ′) = J i
j (x)v

j (x),

where x = f −1(x ′) and J i
j (x) = ∂ f i

∂x j (x).
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	′α(r) = 	α(r) = Dα
β	

β(R−1(r + r0)), (7.70)

which, for tensor fields acted on by GL(n), reduces to (4.74) and its generalization.

7.4.2 Infinitesimal Transformations on Fields

In this subsection we consider a Lie group G of parameters (θr ) and describe, just as
we did for a generic matrix representation, the action of the operator Og , correspond-
ing to an element g ∈ G in a neighborhood of the identity, in terms of infinitesimal
generators Lr as follows:

Og = eθ
r Lr , (7.71)

where Lr are operators acting on the basis 	α(xi ) both linearly, that is as matrices
on the internal index α and as differential operators with respect to the dependence
on the coordinates xi . The presence of a differential operator in Lr is due to the
fact that the operators Og , which provide a homomorphic image of the group G, act
simultaneously on the linear (internal) vector space Vp, spanned by the basis	α(xi ),
as well as on the functional dependence of the field on the coordinates xi . Therefore
the infinitesimal operators Lr contain, besides the matrix algebra operators acting
on the field components 	α(xi ), also infinitesimal differential operators acting on
the functional space. The proof that a generic Og , in a neighborhood of the identity
operator I, can be expressed as the exponential of a Lie algebra element θrLr is
analogous to the one given for matrix representations and thus we are not going to
repeat it here. In fact (Lr ) represent a basis for the Lie algebra of the generators of
G in the realization O. We are interested instead in deriving the general expression
of the operators Lr .

Consider infinitesimal transformations defined by infinitesimal parameters
δθr  1. Expanding the exponential in (5.71) we can write Og at first order in
δθr as

Og = I + δθrLr ,

It follows that

Og	
α(r) ∼= 	α(r)+ δθrLr	

α(r) = 	α(r)+ δ	α(r), (7.72)

where we have expressed the infinitesimal local variation of the field as given by

δ	α(r) = δθrLr	
α(r). (7.73)

In order to determine the action of Lr on	α(xi )we begin by writing the infinitesimal
form of R(g) e D(g), supposing at first that the action of G on the Cartesian coordinates
r = (xi ) to be homogeneous:

http://dx.doi.org/10.1007/978-88-470-1504-3_5
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R(g)i j � δi
j + δθr (Lr )

i
j ,

D(g)αβ � δαβ + δθr (Lr )
α
β, (7.74)

where (Lr )
i

j and (Lr )
α
β are the matrices describing the Lie algebra generators in

the two representations (recall that i, j = 1, . . ., n label the coordinates on the space
Mn while α, β = 1, . . ., p are indices of the representation space Vp). It follows:

x ′i = R(g)i j x j � xi + δxi ⇒ δxi = δθr (Lr )
i

j x j ,

and

Dα
β(g)	

β(r) � δαβ + δθr (Lr )
α
β	

β(r).

To simplify the notation we write Og�(r′) = �′(r′) and work out both sides of the
finite relation

	′α(r′) = D(g)αβ	
β(r), (7.75)

to first order in the infinitesimal δθr parameters. On the left hand side we have

	′α(x ′i ) � 	′α(xi + δxi ) = 	′α(xi )+ ∂	
α

∂xi
(xi )δxi , (7.76)

where, expanding 	α(xi + δxi ) we only kept first order terms in δxi (since δxi =
O(δθr )) and, for the same reason, we have replaced ∂

∂xi 	
′α(xi ) with ∂

∂xi 	
α(xi ) in

the derivative term.
On the other hand, using the infinitesimal generators defined in (7.28), the right

hand side of (7.75) reads, to first order in δθr :

D(g)αβ	
β � [δαβ + δθr (Lr )

α
β ]	β(xi ). (7.77)

From (7.72), (7.76) and (7.77) we find

	′α(r)−	α(r) ≡ δ	α(r) = δθr Lr	
α(r) =

[
δθr (Lr )

α
β − δαβ δxi ∂

∂xi

]
	β(r)

= δθr
[
(Lr )

α
β − δαβ(Lr )

i
j x j ∂

∂xi

]
	β(r). (7.78)

Since this equality must hold for each component δθr , r = 1, 2, . . ., q we finally
find the action of the infinitesimal operator Lr on 	α(xi ):

Lr	
α(r) =

[
(Lr )

α
β − δαβ (Lr )

i
j x j ∂

∂xi

]
	β(r). (7.79)

In conclusion the action of the generators of the Lie algebra A of G on the basis
functions 	α(r) spanning the representation, is given by the following operator:



202 7 Group Representations and Lie Algebras

Lr ≡ (Lr )
α
β − δαβ (Lr )

i
j x j ∂

∂xi
, (7.80)

where the first term acts linearly on the vector space of the representation labeled by
the index α, while the second term is a differential operator acting on the dependence
of the field on the coordinates. Note that (Lr )

α
β and (Lr )

i
j are the same infinitesimal

generator albeit in different representations: the p-dimensional representation on the
space Vp and the n-dimensional representation in the space of the coordinates. The
most interesting case for us is, of course, that in which G implements the coordinate
transformations corresponding to the relativistic invariance of a theory: The Poincaré
group on Minkowski space-time Mn = M4. Let first G be the Lorentz group SO(1, 3).
We have

x ′μ = �μνxν, (7.81)

where, according to our general conventions, the coordinate indices i, j, . . . have
been renamed μ, ν . . .. Furthermore the infinitesimal parameters δθr will be written
δθρσ , the infinitesimal Lorentz parameters in (4.171). According to (4.166), (4.169),
(4.170), the infinitesimal transformation is given by (the homogeneous part of)
(4.196)

δxμ = 1

2
δθρσ (L

ρσ )μνxν = δθμνxν . (7.82)

Inserting in (7.78) the general infinitesimal transformation of the field under the
Lorentz group takes the following form:

δ	α(x) = 1

2
δθρσLρσ	α(x)

= 1

2
δθρσ

[
(Lρσ )

α
β	

β + (xρ∂σ − xσ ∂ρ)	
α
]
, (7.83)

from which we deduce the expression of the infinitesimal Lorentz generators Lρσ as
differential operators acting on fields:

Lρσ =
[
(Lρσ )

α
β + δαβ (xρ∂σ − xσ ∂ρ)

]
. (7.84)

So far we have mainly been considering groups, as the Lorentz one, acting on coor-
dinates as in (7.81) that is in a linear and homogeneous way. We know, however,
that the most general relativistic theory is invariant under the Poincaré group whose
action on the coordinates, see (7.46), is linear but not homogeneous since it contains
the subgroup of space-time translations, see Sect. 4.7.2. Let us restrict ourselves to
the subgroup of constant translations on the xμ coordinates

xμ→ x ′μ = xμ − xμ0

and, more specifically, to infinitesimal translations, xμ0 = εμ  1. Since constant
translations do not affect the components of relative position vectors, they have a

http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
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trivial action on Vn . Moreover they do not affect the internal components of a field
	α as well. Therefore

	′α(xμ − εμ) = 	α(xμ)→ 	′α(xμ)− εν ∂	
α

∂xν
(xμ) = 	α(xμ), (7.85)

that is

δ	α ≡ 	′α(xμ)−	α(xμ) = εν ∂

∂xν
	α(xμ) = ενPν	α(xμ). (7.86)

Thus a basis of infinitesimal generators of four-dimensional translations is given by

Pμ = ∂

∂xμ
. (7.87)

This is the representation of the infinitesimal generators of translations on the fields.
In Sect. 4.7.2 we gave a matrix representation Pμ of the same generators. There we
have proven that the Lie subalgebra of translations is abelian, as it is apparent also
from this new realization Pμ of its generators, since

[
∂

∂xμ
,
∂

∂xν

]
= 0.

This of course agrees with the Lie algebra of the Poincaré group worked out in
Chap. 4.

Putting together (7.83) and (7.86) we find the following result: Under an infinites-
imal transformation of the Poincaré group (7.46) the classical field 	α transforms
as follows:

δ	α(x) =
(

1

2
δθρσLρσ + εμPμ

)
	α(x)

= 1

2
δθρσ

[
(Lρσ )

α
β	

β(x)+ (xρ∂σ − xσ ∂ρ)	
α(x)

]
+ εμ ∂

∂xμ
	α(x). (7.88)

In particular, for a scalar field, the term (Lρσ )αβ�β is absent, and we find:

δφ(x) = 1

2
δθρσ (xρ∂σ − xσ ∂ρ)φ(x)+ εμ ∂

∂xμ
φ(x). (7.89)

A finite Poincaré transformation (�, x0), � being defined by finite parameters θμν ,
can be written in terms of the action of an operator O(�, x0) defined by exponentiating,
see (4.197), the infinitesimal generators in (7.88):

	′α(x) = O(�,x0)	
α(x) = Dα

β	
α(�−1(x ′ + x0)), (7.90)

where

http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
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O(�, x0) = exμ0 Pμe
1
2 θ
ρσLρσ , D(�)αβ =

(
e

1
2 θ
ρσ Lρσ

)α
β. (7.91)

We close this subsection by observing that since the structure constants do not depend
of the representation, the infinitesimal generators close the same algebra irrespective
of the representation. Thus we have

representation D : [Lr , Ls]αβ = Crs
p(L p)

α
β,

representation R : [Lr , Ls]i
j = Crs

p(L p)
i
j ,

realization O : [Lr ,Ls] = Crs
pLp, (7.92)

as can be easily verified in general. In the case of the Poincaré group, we can verify,
using the explicit expression for the infinitesimal Lorentz and translation generators
Lμν,Pμ, the following commutation relations:

[Lμν,Lρσ ] = ηνρLμσ + ημσLνρ − ημρLνσ − ηνσLμρ, (7.93)

[Lμν,Pρ
] = Pμδνρ − Pνδμρ , (7.94)

[Pμ,Pν
] = 0. (7.95)

which share the same structure constants with those in (4.201).

7.4.3 Application to Non-Relativistic Quantum Mechanics

Let us apply the previous considerations to the non-relativistic Schrödinger wave
function ψ(x, t), x = (x, y, z) ∈ E3, describing the state of a particle at a time
t. Since we consider now only transformations in the Euclidean space Mn = E3,
we shall neglect the dependence of the wave function on time. Let us consider an
infinitesimal rotation R ∈ SO(3)

x ′i = Ri
j x j , (i, j, k = 1, 2, 3),

where, for small angles δθr , the rotation matrix is given by Eq. 7.74

Ri
j � δi

j + δθk(Lk)
i

j ; δθk � 0.

The infinitesimal generators L1,L2,L3 are represented by the matrices given by
(4.116) and (4.119). Since the wave functionψ is a (complex) scalar field, the action
of SO(3) on the (internal) space C of complex values of ψ14 is trivial:

14 Recall that, although complex numbers span a two dimensional vector space, their components
are inert under the SO(3) group.

http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
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Dα
β = δαβ ⇒ (Lr )

α
β = 0.

Thus from (7.78) we find

δψ(x) = δθkLkψ(x) = −δθr (Lr )
i

j x j ∂

∂xi
ψ(x),

where, according to (4.120)

L1 =− x3 ∂

∂x2 + x2 ∂

∂x3 ,

L2 =− x1 ∂

∂x3 + x3 ∂

∂x1 ,

L3 =− x2 ∂

∂x1 + x1 ∂

∂x2 , (7.96)

are the differential operators representing the action of SO(3) on the wave function
ψ(x). They can be rewritten in a more compact form as follows:

Li = εi jk x j ∂

∂xk
. (7.97)

Let us now consider the action of an infinitesimal three-dimensional translation

x′ = x − ε,

where ε = (εi ), εi  1. We have

ψ ′(x′) = ψ ′(x − ε) = ψ(x)⇒ ψ ′(x)− εi ∂ψ(r)
∂xi

= ψ(x), (7.98)

that is, according to Eq. 7.86

δψ(x) = ψ ′(x)− ψ(x) = εiPiψ(x)⇒ Pi = ∂

∂xi
.

In conclusion, infinitesimal rotations and translations on the wave function ψ(r)
are represented by the differential operators in (7.97) and (7.99), respectively. Form
the physical point of view the operators Li and Pi are proportional to the quantum
mechanical operators M̂i , p̂i associated with the angular momentum (see Eq. 4.131)
and the linear momentum, respectively. In order to have hermitian operators with
the right physical dimensions one defines

p̂i = −i�Pi = −i�
∂

∂xi
M̂i = −i�Li . (7.99)

The identification of the above operators with the aforementioned physical quanti-
ties will be motivated in detail in the next chapters, when we will be dealing with
symmetries and conservation laws in quantum mechanics. Note that the Mi matrices

http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
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in Eq. 4.131 and the operators M̂i are different realizations of the same physical
quantity, i.e. the components of the orbital angular momentum. The physical inter-
pretation of the operators pi and M̂i is consistent with the fact that, writing in the
expression for M̂i the partial derivatives in terms of the momentum operator we find

M̂i = −i�Li = εi jk x j
(
−i�

∂

∂xk

)
= εi jk x j p̂k, (7.100)

or, simply

M̂ ≡ x × p̂,

where M̂ = (M̂1, M̂2, M̂3) and p = ( p̂1, p̂2, p̂3).15

Reference

For further reading see Refs. [2, 5, 14]

15 We shall use the convention of denoting by a hatted symbol Ô the quantum mechanical operator
acting on wave functions, associated with the observable O. Occasionally, for the sake of notational
simplicity, the hat will be omitted, provided the operator nature of the quantity be manifest from
the context.

http://dx.doi.org/10.1007/978-88-470-1504-3_4


Chapter 8
Lagrangian and Hamiltonian Formalism

In this chapter we give a short account of the Lagrangian and Hamiltonian formulation
of classical non-relativistic and relativistic theories. For pedagogical reasons we first
address the case of systems of particles, described by a finite number of degrees
of freedom. Afterwards, starting from Sect. 8.5, we extend the formalism to fields,
that is to dinamical quantities described by functions of the points in space. Their
consideration implies the study of dynamic systems carrying a continuous infinity of
canonical coordinates, labeled by the three spatial coordinates.

8.1 Dynamical System with a Finite Number
of Degrees of Freedom

8.1.1 The Action Principle

Let us consider a mechanical system consisting of an arbitrary number of point-
like particles. We recall that the number of coordinates necessary to determine the
configuration of the system at a given instant, defines the number of its degrees of
freedom. These coordinates are not necessarily the Cartesian ones, but are parameters
chosen in such a way as to characterize in the simplest way the properties of the
system. They are referred to as generalized coordinates or Lagrangian coordinates,
usually denoted by qi (t), i = 1, . . . , n, where n is the number of degrees of freedom.
The space parameterized by the Lagrangian coordinates is the configuration space.
Each point P in this space, of coordinates P(t) ≡ (qi (t)), (i = 1, . . . , n), defines
the configuration of the system, that is the position of all the particles at a given
instant. During the time evolution of the dinamical system the point P will therefore
describe a trajectory in the configuration space.

The mechanical properties of the system are encoded in a Lagrangian, that is
a function of the Lagrangian coordinates qi (t), their time derivatives q̇i (t) and the
time t:

R. D’Auria and M. Trigiante, From Special Relativity to Feynman Diagrams, 207
UNITEXT, DOI: 10.1007/978-88-470-1504-3_8,
© Springer-Verlag Italia 2012
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L = L(qi (t), q̇i (t)), t), q = (q1, q2, . . . , qn).

Given the Lagrangian, the time evolution of the system is then derived from
Hamilton’s principle of stationary action.

Let us define the action S of the system as the integral of the Lagrangian along
some curve γ in configuration space between two points corresponding to the con-
figurations of the system at the instants t1, t21:

S[q; t1, t2] =
t2∫

(γ )t1

L(q(t), q̇(t), t)dt. (8.1)

Notice that while L depends on the values of qi and q̇i at a given time t,S depends
on the functions qi , namely on all the values qi (t), with t1 ≤ t ≤ t2, defining a path
γ in the configuration space. Thus, for fixed t1, t2,S is said to be a functional of qi .

Hamilton’s principle of stationary (or least) action states that among all the
possible paths γ connecting the two points q(t1) ≡ (qi (t1)) and q(t2) ≡ (qi (t2))
in the configuration space, the actual path described by the system during its time
evolution between the instants t1 and t2 is given by the curve γ corresponding to
an extremum S. This extremum is found by performing a small deformation of γ
keeping its end-points fixed, that is by performing arbitrary variations δqi (t) of the
coordinates at any instant t, obeying the condition

δq(t1) = δq(t2) = 0, (8.2)

and by requiring S[q; t1, t2] to be stationary with respect to such a variation. In
formulae, the actual path γ of the dynamic system in configuration space is found
by solving the variational problem2:

δS =
t2∫

t1(γ )

(
∂L

∂qi
δqi + ∂L

∂ q̇i
δq̇i

)
dt = 0, δq(t1) = δq(t2) = 0. (8.3)

Note that by δqi (t) we denote the infinitesimal local change of the Lagrangian coor-
dinates, namely δqi � q ′i (t)− qi (t).

To find the trajectory by extremizing of the action S[γ ; t1, t2] one observes that,
being δqi (t) a variation at a fixed instant t , the variation symbol δ commutes with
the time derivative:

δ
d

dt
qi = d

dt
δqi .

1 Here and in the following we shall often use the shorter notation q(t) for the set of the coordinates
{qi } = (q1, . . . , qn) and similarly for their time derivatives, q̇ = {q̇i } = (q̇1, . . . , q̇n).
2 To avoid clumsiness in the following formulae we shall often adopt the Einstein convention of
summing over repeated indices i, j, . . . of the Lagrangian coordinates, even though these indices
are in general just suffixes with no tensorial property.
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Integrating by parts the second term in the integrand of (8.3), we obtain:

δS =
t2∫

t1

[(
∂L

∂qi
δqi −

(
∂L

∂ q̇i

)
d

dt
δqi

)]
dt (8.4)

=
t2∫

t1

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqi dt = 0, (8.5)

where we have used the fact that the total derivative term d
dt

(
∂L
∂q̇i
δqi

)
gives a van-

ishing contribution by virtue of the condition (8.2):

t2∫

t1

d

dt

(
∂L

∂ q̇i
δqi

)
=
(
∂L

∂ q̇i
δqi

)∣∣∣∣
t2

t1

= 0. (8.6)

Equation (8.4) has to hold for arbitrary variations δqi ; this implies that the integrand
must vanish identically. We thus obtain:

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 ∀i = 1, 2, . . . , n. (8.7)

Equation (8.7) are the Euler–Lagrange equations of the system under study. They
are a system of differential equations whose solution for given boundary conditions
determines the time evolution of the system.

We note that the Lagrangian L(q(t), q̇(t)), t) is not uniquely defined; adding
to it the total derivative d

dt f of an arbitrary function f (q, t), does not affect the
Euler–Lagrange equations.3 In fact, if we let:

L(q, q̇, t)→ L ′(q, q̇, t) = L(q, q̇, t)+ d

dt
f,

so that S = ∫
dt L −→ S ′ = ∫

dt L ′, performing the variation qi (t) → qi (t) +
δqi (t), with δqi (t1) = δqi (t2) = 0, we obtain:

δS ′ = δS +
t2∫

t1

d

dt
δ f dt = δS + δ f

∣∣t2
t1

3 Note that the function f can depend on qi and t only, f = f (q, t), in order for d f/dt not to
depend on derivatives of qi of order higher than one.
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However, by virtue of condition (8.2), δ f = ∂ f
∂qi
δqi , computed at the initial and final

instants, is zero, and we conclude that, being δS = δS ′, the same Euler–Lagrangian
equations are obtained.4

In order to determine the general form of the Lagrangian of a mechanical system
let us first determine the Lagrangian for a free particle in the non relativistic case.

Anticipating our discussion on the symmetries of a system, we observe that this
Lagrangian cannot explicitly depend either on the position vector x or of time t , since
the classical theory is based on the assumption of homogeneity of space and time, as
discussed at the end of Sect. 1.1.1. Moreover, it cannot depend on the direction of the
velocity vector v, because of the isotropy of space, (there is no preferred direction).
Then the Lagrangian must be a function of the modulus of v only:L = L(v2). From
the equations of motion it follows:

d

dt

∂L

∂vi
= 0, ∀i = 1, 2, 3,

so that v = const , that is we recover the principle of inertia.
As we shall discuss more systematically in the sequel, a transformation is a

symmetry of a system if this leaves the Lagrangian invariant modulo an additional
total derivative. If we now perform a Galilean transformation with an infinitesimal
velocity ε, requiring it to be a symmetry, the Lagrangian can vary at most by a
total derivative in order to describe the same inertial motion. Now, an infinitesimal
Galilean transformation applied to L gives:

L(v′2) = L
[
(v)2 + 2v · ε + O(ε)2

]
= L(v2)+ ∂L

∂v2 2v · ε (8.10)

The term ∂L
∂v2 2v · ε will be a total derivative if ∂L

∂v2 is independent of v, namely it is
a constant α. It follows that:

L = 1

2
mv2, (8.11)

4 We can directly show that the presence of an additional total derivative does not affect the
equations of motion by showing that d f/dt identically satisfies (8.7). This is readily done by
observing that

d f
dt (q, q̇, t) = q̇i

∂ f
∂qi
+ ∂ f

∂t ,

so that

∂
∂qi

d f
dt = q̇ j

∂ f
∂qi ∂q j

+ ∂
∂qi

∂ f
∂t . (8.8)

On the other hand we have

d
dt

(
∂
∂q̇i

d f
dt

)
= d

dt

(
∂ f
∂qi

)
= q̇ j

∂ f
∂qi ∂q j

+ ∂
∂t

∂ f
∂qi
. (8.9)

Subtracting side by side (8.8) from (8.9) and using the property that the partial derivations
with respect to qi and t commute, we conclude that the Euler–Lagrange equations are identically
satisfied by the total derivative.

http://dx.doi.org/10.1007/978-88-470-1504-3_1
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where we have set α = m/2. The right hand side of (8.11), defines the kinetic energy
of our system of particles.

Assuming that for a system of N non-interacting (i.e. free) particles the Lagrangian
is additive, we have5:

L =
∑

k

1

2
mkv

2
k = T, (8.12)

where we have denoted the total kinetic energy of the system by T . Let us now
consider an isolated system of N interacting particles: the Lagrangian is obtained
by adding to the free Lagrangian an appropriate function of the coordinates, that we
will denote by −U:

L = T −U (x(1), . . . , x(N )). (8.13)

where T in the kinetic energy defined by the sum in (8.12) and the function U defines
the potential energy of the system. Using the Cartesian coordinates of the particles
as Lagrangian coordinates, the equations of motion (8.7) read, in this case:

∂L

∂xi
(k)

− d

dt

∂L

∂ ẋ i
(k)

= 0, (8.14)

where xi
(k)(i = 1, 2, 3) denotes the i th coordinate of the kth particle, (k= 1, . . . , N ).

Using the Lagrangian (8.13), the Euler–Lagrange equations give:

m(k)
dẋi

(k)

dt
= − ∂U

∂xi
(k)

. (8.15)

Identifying the force acting on the kth particle with the right hand side of (8.15)

Fi
(k) = −

∂U

∂xi
(k)

, (8.16)

we retrieve the Newton equation.
Finally we consider the case of a non-isolated system A interacting with a sys-

tem B, whose dynamics is known. For greater generality we use the generalized
coordinates qi .

To determine the Lagrangian of the system A, we consider the Lagrangian of the
system A + B, and use for the coordinates of B their explicit time dependence. We
then start with a Lagrangian of the form

5 This last property gives a physical meaning to our definition of inertial mass m. Indeed, a mul-
tiplication by a constant does not change the equations of motion, but it is equivalent to a change
of the mass unit in the Lagrangian (8.12). However all the mass ratios, having a physical meaning,
are unchanged.
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L = T (qA, q̇A)+ T (qB, q̇B)−U (qA, qB), (8.17)

and replace the qB’s by their explicit dependence on time qB(t).We can then neglect
the term T (qB, q̇B), which, being an explicitly known function of time, can always
be written as a total derivative. The Lagrangian of A becomes:

L A = T (qA, q̇A)−U (qA, qB(t)). (8.18)

This means that if the system is not isolated the Lagrangian is written as in the case
of an isolated system, the only difference being that now the potential energy is an
explicit function of time through qB(t).

8.1.2 Lagrangian of a Relativistic Particle

We may easily determine the Lagrangian of a free relativistic particle, by requiring
L to be invariant under the group of Lorentz transformations (we shall explain in
the following the concept of invariance in a more systematic way). This ensures
covariance of the equations of motion so that the inertial motion will be maintained
in any reference frame.

The simplest relativistic invariant quantity under Lorentz transformations, is the
proper time τ defined by

dτ 2 = dt2 − |dx|2
c2 = dt2

(
1− |v|

2

c2

)
.

It is natural to expect the relativistic action for a free particle to be proportional to
its proper time, namely:

S = α
t2∫

t1

dτ = α
t2∫

t1

dτ

dt
dt = α

t2∫

t1

√
1− v

2

c2 dt, (8.19)

where v ≡ |v|. The corresponding Lagrangian reads:

L(v) = α dτ

dt
= α

√
1− v

2

c2 , (8.20)

modulo a total time derivative. The constant α can be fixed by requiring that in the
non-relativistic limit, vc � 1, the Lagrangian (8.20) reduces to the form L = 1

2 mv2.

Expanding the square root at order O(v2/c2) we find:

L(v) � α − α
2

v2

c2 =
m

2
v2+ const.
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Neglecting the inessential additive constant, we can then identify: α = −mc2. The
relativistic free particle Lagrangian is thus given by

L(v) = −mc2

√
1− v

2

c2 , (8.21)

and for a system of non-interacting particles, we have

L(vi ) =
∑

i

⎛
⎝−mi c

2

√
1− v

2
i

c2

⎞
⎠ . (8.22)

8.2 Conservation Laws

In this section we show that, if the Lagrangian of a system of particles is invariant
under a group of transformations, then the dynamic system enjoys a set of conserva-
tion laws. In general we shall refer to the invariance property of a Lagrangian with
respect to a group of transformations G as a symmetry under this group.

We first show that if a Lagrangian is invariant under translations in time, t →
t + δt , then energy is conserved.

For simplicity, we assume that the invariance under time translations is due to the
fact that the Lagrangian does not explicitly depend on t, namely, ∂L

∂t = 0.6 Then
we may write:

d L

dt
= ∂L

∂qi
q̇i + ∂L

∂ q̇i
q̈i .

We now use the equations of motion (8.7) and obtain:

d L

dt
= d

dt

∂L

∂ q̇i
q̇i + ∂L

∂q̇i
q̈i = d

dt

(
∂L

∂q̇i
q̇i

)
,

that is

d H

dt
= 0, (8.23)

where we have defined:

H = −L + ∂L

∂ q̇i
q̇i . (8.24)

We conclude that the quantity H(q, q̇) = −L + ∂L
∂q̇i

q̇i is conserved.

6 The proof in a more general case is given in the following subsection.
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It is easy to recognize that H is the energy of the system. To show this in a
general way, let us consider a system of particles interacting with a potential energy
U (q1, . . . , qn):

L = T (q, q̇)−U (q).

Here T (q̇) is the kinetic energy which, in Cartesian coordinates, reads:

T = 1

2

∑

k,i

m(k) ẋ
i
(k) ẋ

i
(k). (8.25)

Let us now switch to the generalized (or Lagrangian) coordinates qi , writing7:

xi
(k) = f i

(k)(q1, . . . , qn); ẋ i
(k) =

∂ f i
(k)

∂q j
q̇ j . (8.26)

In terms of the Lagrangian coordinates the kinetic energy takes the form:

T =
n∑

i, j=1

ai j (q)q̇i q̇ j . (8.27)

where we have set

a jl(q) =
N∑

k=1

3∑

i=1

m(k)
∂ f i
(k)

∂q j

∂ f i
(k)

∂ql

This shows that the kinetic energy is homogeneous of degree two in the Lagrangian
velocities q̇i . Applying the Euler theorem for homogeneous functions, we find:

∑

i

∂T

∂q̇i
q̇i = 2T . (8.28)

Moreover:

∂L

∂q̇i
= ∂T

∂q̇i
.

It follows:

H =
∑

i

∂L

∂q̇i
q̇i − L =

∑

i

∂T

∂ q̇i
q̇i − L = T +U.

7 With an abuse of notation, we shall use the same Latin indices i, j, k, l, . . . to label the three-
dimensional Euclidean coordinates xi and the generalized coordinates qi , though the reader should
bear in mind that in the latter case they run over the total number n of degrees of freedom of the
system. Moreover the index k, when written within brackets, is also used to label the particle in the
system. The meaning of these indices will be clear from the context.
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However T +U is by definition the energy of the system and therefore our statement
is proven.8

Let us now consider a system of particles whose Lagrangian L(x(k), ẋ(k)),
in Cartesian coordinates, is invariant under translations of the coordinates xi

(k);
we show that the total momentum is conserved.

Indeed, under a constant translation, the position vector of the kth particle trans-
forms as follows:

x(k)→ x′(k) = x(k) − ε; ε = cost. (8.29)

where ε is a constant vector. In particular we have ẋ′(k) = ẋ(k). Invariance of L ,
amounts to requiring it to have the same functional form in the old and in the new
variables, so that:

L(x, ẋ) = L(x ′, ẋ ′)⇔ δL = L(x ′, ẋ ′)− L(x, ẋ) = −
∑

(k)

∂L

∂xi
(k)

εi = 0. (8.30)

Being εi arbitrary parameters, we conclude that

∑

(k)

∂L

∂xi
(k)

= 0, (8.31)

Using (8.7), the previous equation takes the following form:

d

dt

∑

(k)

∂L

∂ ẋ i
(k)

= 0. (8.32)

On the other hand, in Cartesian coordinates, one has:

∂L

∂ ẋ i
(k)

= ∂T

∂ ẋ i
(k)

= mi ẋi
(k) = pi

(k), (8.33)

so that (8.32) becomes:

d

dt

∑

(k)

p(k) = d

dt
P = 0, (8.34)

where we have denoted by P the total momentum of the isolated system. It follows
that:

The invariance of the Lagrangian under spatial translations implies the conser-
vation of the total momentum.

It is easy to see that if L is invariant only with respect to translations along some
directions (parametrized by the certain components of ε), only the corresponding

8 Note that since we have assumed ∂L
∂t = 0 we have U̇ = 0, meaning that our system is isolated.
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components of the total momentum will be conserved. For example if we have an
external force with Fz = 0 then the Lagrangian will be invariant only with respect
to translations along the z-direction, ε = (0, 0, εz) and we reach the conclusion that
only Pz is conserved.

Let us note here that invariance under the time and space translations are unrelated
in the classical theory, the former being related to time shifts and the latter to space
translations of the general Galilean group (1.15). In a relativistic theory, instead,
both invariances are part of the invariance of the Lagrangian under the subgroup of
four-dimensional translations of the Poincaré group, namely

xμ→ xμ − εμ.
Therefore, energy and momentum conservation, which may hold separately in the
classical theory are strictly related in relativistic mechanics, as discussed in Chap. 2,
and we may speak of the conservation of the total four-momentum pμ = (E/c,p).

Finally let us assume that the Lagrangian of the system is invariant under spatial
rotations. In Cartesian coordinates, an infinitesimal rotation changes the kth position
vector as follows (see eq. (4.123)):

x(k)→ x′(k) = x(k) − δθ × x(k), (8.35)

where δθ is a constant infinitesimal vector whose direction coincides with the rotation
axis and whose modulus is given by the infinitesimal rotation angle δθ.

Requiring invariance amounts to setting L(x, ẋ) = L(x′, ẋ′), that is

0 = δL =
∑

(k)

(
∂L

∂xi
(k)

δxi
(k) +

∂L

∂ ẋ i
(k)

δ ẋ i
(k)

)

Using the Euler–Lagrange equations, we have

δL = −
∑

(k)

(
∂L

∂xi
(k)

εi j	δθ
j x	(k) +

∂L

∂ ẋ i
(k)

εi j	δθ
j ẋ	(k)

)

= −
∑

(k)

(
d

dt

∂L

∂ ẋ i
(k)

εi j	δθ
j x	(k) +

∂L

∂ ẋ i
(k)

εi j	δθ
j ẋ	(k)

)

= −
∑

(k)

d

dt

(
∂L

∂ ẋ i
(k)

εi j	δθ
j x	(k)

)
.

It follows that

d

dt

∑

(k)

δθ j
(
εi j	x

	
(k) pi

(k)

)
= δθ · d

dt

⎛
⎝∑

(k)

x(k) × p(k)

⎞
⎠ = 0.

Since the δθ i are independent parameters, we obtain

http://dx.doi.org/10.1007/978-88-470-1504-3_2
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dMtot

dt
= 0

where

Mtot =
∑

(k)

x(k) × p(k),

is the total angular momentum. Therefore the invariance of a Lagrangian under
rotations, implies conservation of the total angular momentum . As in the previous
case, if we have invariance only under a rotation about the i th-axis (X,Y or Z),
parametrized by the i th component δθ i of the infinitesimal rotation vector, only the
corresponding component of Mtot,i will be conserved.

8.2.1 The Noether Theorem for a System of Particles

The three conservation laws described in the previous subsection are associated with
the invariance properties of the Lagrangian under space and time transformations.
That means that the isotropy and homogeneity of space and time are not spoiled by
interactions.

Actually, these conservation laws are just some of the implications of a general
theorem, the Noether theorem, which we shall discuss in the present subsection. It
essentially states that a conserved quantity is associated with each invariance of the
action.

Let us first define our setting: We consider a system with a finite number of degrees
of freedom, which, in the reference frame S is described in terms of a Lagrangian
L(q, q̇, t) function of the generalized coordinates qi , (i = 1, . . . , n), their time
derivatives q̇i and time t.

Let us now subject the Lagrangian coordinates and time to an arbitrary transfor-
mation:

t ′ = t ′(t), q ′i (t ′) = q ′i (q, t), (8.36)

the only restriction being that (8.36) be invertible. Such transformations of the
Lagrangian coordinates are often referred to as point transformations. In a different
reference frame S′, where the coordinates t ′, q ′i are used, the Lagrangian of the sys-
tem will be given by a different function L ′(q ′, q̇ ′, t ′) of the new set of coordinates
q ′i , (i = 1, . . . , n), q̇i ′ and of time t ′.

We now observe that the action S of a dynamic system is a scalar under the
transformations (8.36), so that, taking into account the discussion made in Chap. 4,
the two actions S and S ′ written in terms of their respective coordinates and times,
are related by the condition:

S ′[q ′i ; t ′1, t ′2] = S[qi ; t1, t2]. (8.37)

http://dx.doi.org/10.1007/978-88-470-1504-3_4
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where

S[qi ; t1, t2] =
t2∫

t1

dt L(q(t), q̇(t), t), (8.38)

in the reference frame S and

S ′[q ′i ; t ′1, t ′2] =
t ′2∫

t ′1

dt ′L ′(q ′(t ′), q̇ ′(t ′), t ′), (8.39)

in the reference frame S′. Similarly also L transforms as a scalar quantity, so that
L and L ′ in the two RF.s are related by

L ′(q ′(t ′), q̇ ′(t ′), t ′) = L(q(t), q̇(t), t). (8.40)

The new equations of motion in S′ are clearly derived in the same way from the new
Lagrangian:

∂L ′

∂q ′i
− d

dt ′
∂L ′

∂q̇ ′i
= 0, ∀i = 1, 2, . . . , n. (8.41)

However, the functional dependence of L ′(q ′(t), q̇ ′(t), t ′) on its arguments q ′(t),
q̇ ′(t), t ′ is in general different from that of L(q(t), q̇(t), t) on q(t), q̇(t), t. Similarly
the actions S and S ′ are different functionals of (qi ) and (q ′i ), respectively. It follows
that the equations of motion derived from them will in general have a different form.

A transformation of the kind (8.36) is a symmetry of the system, namely the
system is invariant under (8.36), if the equations of motion, as a system of differential
equations, have the same form in the new and the old variables q ′i (t ′) and qi (t).

In light of our discussion in Sect. 8.1.1 we can easily convince ourselves that the
Euler–Lagrange equations in the two RFs have the same form provided the functional
dependence of L ′ and L on their respective arguments is the same, modulo an
additional total derivative which does not affect the equations of motion. Using the
general relation (8.40), this amounts to saying that

L(q ′(t ′), q̇ ′(t ′), t ′) = L(q(t), q̇(t), t)+ d f

dt
. (8.42)

At the level of the action the above property can be stated as follows:

S[q ′i ; t ′1, t ′2] =
t2′∫

t1′

dt ′L(q ′, q̇ ′, t ′) =
t2∫

t1

dt L(q, q̇, t) = S[qi ; t1, t2], (8.43)

where we have ignored the total derivative since it yields equivalent actions.
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Summarizing we have seen that a transformation of the kind (8.36) is a symmetry
of the system if it leaves the action invariant, that is if the actions S and S ′ exhibit
the same functional dependence on the paths described by qi and qi ′:

S[q ′i ; t ′1, t ′2] = S[qi ; t1, t2], (8.44)

or, equivalently, if

δS ≡
t ′2∫

t ′1

dt ′L(q ′, q̇ ′, t ′)−
t2∫

t1

dt L(q, q̇, t) = 0. (8.45)

After these preliminaries we may state the Noether theorem as follows:
If the action of a dynamic system is invariant under a continuous group of (non

singular) transformations of the generalized coordinates and time, of the form
q ′i = q ′i (q, t), t ′ = t ′(t), and if the equations of motion are satisfied, then the
quantity:

Q ≡
∑

i

∂L

∂q̇i
δqi + Lδt, (8.46)

is conserved.
We stress that the variations δqi = q ′i (t) − qi (t) corresponding to infinitesi-

mal local transformations of the form (8.36), are not arbitrary as those used in
the discussion of the Hamilton action principle, but correspond to the subclass of
transformations leaving the action invariant.

Let us now start from the invariance property (8.45) to derive the conserved
quantities.

We set

δS =
t ′2∫

t ′1

dt ′L(q ′(t ′), q̇ ′(t ′), t ′)−
t2∫

t1

dt L(q(t), q̇(t), t)

=
t ′2∫

t ′1

dt L(q ′(t), q̇ ′(t), t)−
t2∫

t1

dt L(q(t), q̇(t), t), (8.47)

where, on the right hand side of the above equation, we have used the fact that t ′ is
an integration variable. We now decompose the integration over (t ′2, t ′1) as follows:
Setting t ′1 = t1 + δt1, t ′2 = t2 + δt2, we can write

t ′2∫

t ′1

=
t2∫

t1

+
t2+δt2∫

t2

−
t1+δt1∫

t1

, (8.48)
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so that the first integral of (8.47) can be written as follows:

t ′2∫

t ′1

dt L
(
q ′(t), q̇ ′(t), t

) ≡
t2∫

t1

dt L
(
q ′(t), q̇ ′(t), t

)+ δt2L (q(t2), q̇(t2), t2)

− δt1L (q(t1), q̇(t1), t1) (8.49)

In deriving (8.49) we have replaced, in the last two terms,

L
(
q ′(t), q̇ ′(t), t

) ≡ L (q(t)+ δq, q̇(t)+ δq̇(t), t) , (8.50)

with L (q(t), q̇(t), t) since their difference is infinitesimal (of order O(δq)) and
therefore its product with the infinitesimal quantities δt2 − δt1 is of higher order.

Next we substitute (8.49) into (8.47), obtaining:

δS =
t2∫

t1

[
L
(
q ′(t), q̇ ′(t), t

)− L (q(t), q̇(t), t)
]

dt + L (q(t), q̇(t), t) δt |t2t1 .

(8.51)
The integral on the right hand side can be now expanded as follows:

t2∫

t1

[
L
(
q ′(t), q̇ ′(t), t

)− L (q(t), q̇(t), t)
]

dt =
t2∫

t1

(
∂L

∂qi
δqi + ∂L

∂ q̇i
δq̇i

)
dt

=
t2∫

t1

([
∂L

∂qi
− d

dt

∂L

∂q̇i

]
δqi + d

dt

(
∂L

∂q̇i
δqi

))
dt, (8.52)

where we have integrated by parts ∂L
∂q̇i δq̇

i = ∂L
∂q̇i

d
dt δq

i .Upon substituting (8.52) into
(8.51), we find:

δS =
t2∫

t1

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
δqi dt +

t2∫

t1

d

dt

(
∂L

∂q̇i
δqi + Lδt

)
dt, (8.53)

where we used the obvious equality:

Lδt |t2t1 =
t2∫

t1

dt
d

dt
(Lδt). (8.54)

If the equations of motion are satisfied, the first integral on the right hand side of
(8.53) vanishes and (8.53) becomes:

δS =
t2∫

t1

d

dt

(
∂L

∂q̇i
δqi + Lδt

)
dt. (8.55)
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From this it follows that, if the action is invariant, δS = 0, the quantity

Q(t) =
∑

i

∂L

∂q̇i
δqi + Lδt, (8.56)

is conserved, which is the content of the Noether theorem. Indeed from (8.55), taking
into account the arbitrariness of t2, t1, we have:

Q(t2) = Q(t1), ∀t1, t2 ⇔ d Q

dt
= 0. (8.57)

Quite generally the transformations leaving the action invariant form a group with
g parameters θr (r = 1, 2, . . . , g), so that we may write

δqi = δθr f i
r (q, t).

For instance, rotations in space close the three-parameter group SO(3), the parameters
being the three angles. Factorizing the linear dependence of Q on the infinitesimal
parameters δθr, Q = δθr Qr , and being the parameters θr independent, we end up
with g conserved charges associated with the variations δqi (g+1 if we include also
the time translations).

The conserved quantities Qr are referred to as Noether charges.
As an application, let us derive the conservation laws of energy, momentum and

angular momentum directly from the Noether theorem.
Suppose the Lagrangian is invariant under time translations:

t ′ = t + dt ⇒ δt = dt, (8.58)

Then the coordinates used in the two RF.s only differ by the infinitesimal time delay,
so that q ′i (t ′) = qi (t).From this relation we deduce the infinitesimal relation between
the two coordinate systems

q ′i (t + dt) = qi (t)⇒ q ′i (t)+ q̇i (t)dt = qi (t)

⇒ δqi (t) ≡ q ′i (t)− qi (t) = −q̇i (t)dt. (8.59)

Correspondingly we find:

Q =
(
− ∂L

∂q̇i
q̇ i + L

)
= −H, (8.60)

We see that invariance under time translations implies that we have one conserved
charge corresponding to the energy: H ≡ −Q (Note that the time translation depends
on one parameter, δt).

We have thus generalized our proof of the energy conservation given earlier since
the invariance under time translations is satisfied if, in particular, the Lagrangian does
not explicitly depend on time, ∂L

∂t = 0, as was assumed in the previous subsection.
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If the Lagrangian is invariant under space translations and rotations the value of
the conserved charges Qi is also readily computed using the variations δqk given, in
Cartesian coordinates, by (8.29) and (8.35). In the case of constant space translations,
after renaming δqi ≡ −εi , following the same steps as for the energy conservation,
we find:

Q = −
∑

k

∂L

∂ ẋ i
(k)

εi ≡
∑

k

p(k) · ε = −P · ε, (8.61)

implying conservation of the total momentum. Analogously, setting δqi = −εilmδ

θ l xm , invariance under spatial rotations gives

Q = −
∑

k

∂L

∂ ˙xi
(k)

εilmδθ
l xm
(k) ≡ −δθ ·

∑

k

x(k) × p(k) = −δθ ·M, (8.62)

implying the conservation of the total angular momentum.9

8.3 The Hamiltonian Formalism

In this section we give a short review of the Hamiltonian formalism for the description
of mechanical systems with a finite number of degrees of freedom.

The Hamiltonian formulation of mechanics can be obtained from the Lagrangian
one by introducing the canonical momenta pi , conjugate to the Lagrangian coordi-
nates, defined as

pi = ∂L

∂q̇i
(q, q̇, t). (8.63)

Barring degeneracies, (8.63) can be solved with respect to the Lagrangian velocities,
obtaining: q̇i = q̇i (p, q).

Next one defines the Hamiltonian of the dynamic system as

H(p, q, t) ≡
∑

pi q̇i (p, q)− L(q, q̇(p, q), t). (8.64)

Comparing the definitions (8.24) and (8.64), with see that the physical meaning of
H(p, q) is the energy of the system H = H(q̇, q) and in fact, by abuse of notation,
they have been denoted by the same symbol. However it must be kept in mind
that while in the Lagrangian formalism H is a function of q, q̇ , in the Hamiltonian
formalism H = H(p, q), so that their functional form is different.

9 As noted in the previous discussion invariance under transformations parametrized by just some
components of the vector parameters ε and δθ , implies the conservation of the corresponding
components of the vector quantities P and M.
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Let us now see how the equations of motion are derived in the Hamiltonian
formalism.

By differentiating both sides of (8.64) one finds (using Einstein convention for
summation over repeated indices):

d H = dpi q̇i + pi
∂q̇i

∂p j
dp j + pi

∂q̇i

∂q j
dq j − ∂L

∂qi
dqi − ∂L

∂ q̇i

∂ q̇i

∂p j
dp j − ∂L

∂ q̇i

∂ q̇i

∂q j
dq j

− ∂L

∂t
dt = dpi

[
q̇i +

(
p j − ∂L

∂q̇ j

)
∂q̇ j

∂pi

]

+ dqi

[
− ∂L

∂qi
+
(

p j − ∂L

∂q̇ j

)
∂q̇ j

∂qi

]
− dt

∂L

∂t
.

Upon using (8.63) and the Euler–Lagrangian equations (8.7), one obtains:

d H =
∑

dpi q̇i −
∑

dqi ṗi − dt
∂L

∂t

= ∂H

∂pi
dpi + ∂H

∂qi
dqi + ∂H

∂t
dt,

(8.65)

where the last equality represents the general expression of the total derivative of H .
From the above equation we conclude that

q̇i = ∂H

∂pi
; ṗi = −∂H

∂qi
, (8.66)

−∂L

∂t
= ∂H

∂t
. (8.67)

Equation (8.66) represents a first order system of differential equations for the
Lagrangian coordinates qi and their conjugate momenta pi , which is referred to as
the Hamilton equations of motion. The physical content of the Hamilton equations
and of the Euler–Lagrange equations is of course the same, however each formalism
gives different insight into the properties of the mechanical system.

Considering qi and pi as coordinates of a 2n-dimensional space, called the phase
space, the state of a mechanical system is completely determined at each instant t
by a point in this space labeled by the 2n coordinates q1, . . . , qn and p1, . . . , pn .

The time evolution of the system will then be described by a trajectory in the phase
space. The Lagrangian variables qi and their conjugate momenta pi are referred to
as canonical coordinates.

Let us note that the Hamilton equations (8.66) can be also obtained from the action
principle δS = 0. In fact, in terms of the pi and qi variables the action takes the
form:

S =
t2∫

t1

(∑
pi q̇i − H(p, q)

)
dt. (8.68)
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If we require stationarity of the action with respect to arbitrary variations δpi and δqi ,
with the constraint that they vanish at the end points of the time interval, δpi (t1) =
δqi (t1) = δpi (t2) = δqi (t2) = 0, one obtains:

0 = δS = δ
⎡
⎣

t2∫

t1

(∑
pi q̇i − H(p, q)

)
dt

⎤
⎦

=
t2∫

t1

∑[
δpi q̇i − ṗiδqi + d

dt
(piδqi )− ∂H

∂qi
δqi − ∂H

∂pi
δpi

]
dt

=
t2∫

t1

dt
∑[

δpi

(
q̇i − ∂H

∂pi

)
− δqi

(
ṗi − ∂H

∂qi

)]
+
∑

(piδqi )|t2t1 ,

where the last term is zero. Being δpi and δqi arbitrary, equations (8.66) are retrieved
Let us now consider a dynamic variable f (q, p, t), function of pi (t), qi (t) and

carrying in general also an explicit dependence on t. Computing its time derivative
we find

d

dt
f (p, q, t) =

∑

i

(
∂ f

∂qi
q̇i + ∂ f

∂pi
ṗi

)
+ ∂ f

∂t

=
∑

i

(
∂ f

∂qi

∂H

∂pi
− ∂ f

∂pi

∂H

∂qi

)
+ ∂ f

∂t
= ∂ f

∂t
+ { f, H}. (8.69)

where

{ f, H} ≡
∑

i

(
∂ f

∂qi

∂H

∂pi
− ∂ f

∂pi

∂H

∂qi

)
, (8.70)

defines the Poisson brackets of f with H. From (8.69) it follows that the dynamic
variable f (q, p, t) is a constant of motion if

∂ f

∂t
+ { f, H} = 0. (8.71)

In particular, (8.69) implies that if f does not explicitly depend on time, ∂ f
∂t = 0, then

f is a constant of the motion if and only if

{ f, H} = 0. (8.72)

An important consequence of this is that if H (and therefore L) has no explicit
dependence on time, i.e. if ∂H

∂t = 0, then d H
dt = 0, that is, the energy of the system is

conserved.



8.3 The Hamiltonian Formalism 225

The definition of the Poisson brackets can be extended to any pair of dynamic
variables f (p, q) and g(p, q). We define Poisson brackets of f and g, denoted by
the symbol { f, g}, the following quantity:

{ f, g} =
∑

i

(
∂ f

∂qi

∂g

∂pi
− ∂ f

∂pi

∂g

∂qi

)
= −{g, f }. (8.73)

From the definition it follows that the Poisson bracket is antisymmetric in the
exchange of its two entries. In particular { f, f } = 0.

Moreover, given three dynamic variables f, g, and h the following Jacobi identity
holds (see Appendix D):

{ f, {g, h}} + { f, {g, h}} + { f, {g, h}} = 0. (8.74)

Of particular relevance are the Poisson brackets between the Lagrangian coordinates
and the conjugate momenta, which are readily found to be:

{qi , p j } = δi j , (8.75)

{qi , q j } = {pi , p j } = 0. (8.76)

It is important to observe that when the action S is evaluated along an actual tra-
jectory, defining the evolution of the system in phase space, we can regard S as a
function of the upper limit of the integral; from (8.68) it follows that the increment
of the action between the instants t and t + dt , is given by

d S = pi dqi − H(p, q)dt,

that is

∂S

∂qi
= pi ; ∂S

dt
= −H. (8.77)

Using Cartesian coordinates for a single particle, (8.77) can be written in a
Lorentz covariant way as follows:

∂S

∂xμ
= −ημν pν, (8.78)

where pν = ( H
c ,p

)
and we have considered for simplicity a single particle.

As a simple application of the Hamilton formalism we compute the relativistic
Hamiltonian of a free particle.

Using as Lagrangian coordinates the Cartesian ones, from the relativistic
Lagrangian (8.21) we compute the conjugate momentum:

pi = ∂L

∂vi
= m√

1− v2

c2

vi = m(v)vi , (i = 1, 2, 3),

which coincides with the relativistic momentum. The relativistic Hamiltonian is then
computed from (8.64):
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H = p · v − L = mv2
√

1− v2

c2

+ mc2

√
1− v

2

c2 (8.79)

= mc2
√

1− v2

c2

= m(v)c2, (8.80)

which coincides with the relativistic expression of the energy.10

8.4 Canonical Transformations and Conserved Quantities

In this section we describe the canonical transformations of the Hamiltonian for-
malism. This will allow us to give a new interpretation of the conserved quantities
as generators of those “canonical transformations” which are symmetries, namely
invariances, of the dynamic system.

We observe that the point transformations of the q-variables used in the
Lagrangian formalism for the discussion of the Noether theorem, if symmetries, do
not change the general form of either the Euler–Lagrange equations, or the Hamilton
equations of motion.

In the Hamiltonian formalism, however, we have as independent variables not
only the canonical coordinates qi , but also their conjugate momenta pi playing
the role of additional coordinates. The space parametrized by the 2n coordinates
pi , qi was called phase space. Taken together these 2n canonical coordinates admit a
much larger class of transformations. We may indeed consider arbitrary non-singular
transformations on the 2n canonical variables qi , pi:

pi → Pi = Pi (p, q, t),

qi → Qi = Qi (p, q, t), (8.81)

where, for the sake of clarity, we have denoted the new variables obtained after the
transformation by Qi , Pi .11

We then define canonical transformations the subgroup of transformations leading
to canonical variables Qi , Pi satisfying a system of Hamilton equations of the same
form as in (8.66) though characterized by a different Hamiltonian function H ′12:

Q̇i = ∂H ′

∂Pi
; Ṗi = −∂H ′

∂Qi
(8.82)

10 From the Hamiltonian point of view we must substitute v2 = c2|p|2
c2m2+|p|2 .

11 Note that the transformations (8.81) form a group, the group of coordinate transformations in
phase space.
12 We do not consider in this case transformation of the time variable.
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Note that in general H ′(P, Q, t) �= H(P, Q, t), that is we do not require these trans-
formations to leave the functional form of the Hamiltonian H invariant. Therefore in
general, the new canonical equations will have a different form compared to those
in the old variables pi , qi .

To derive the conditions under which a general transformation (8.81) is canonical,
we observe that the new variables Pi , Qi will satisfy (8.82) if and only if these
equations can be derived by the stationary action principle, as it is the case for the old
variables pi , qi . Therefore, under arbitrary variations of the canonical coordinates,
we must have:

δS = δ
∫ ∑

i

(pi dqi−Hdt) = 0↔ δS′ = δ
∫ ∑

i

(Pi d Qi−H ′(Qi , Pi , t)dt) = 0

This can only happen if the integrands of δS and δS ′ differ by the total differential
of a function F:

d F +
∑

i

Pi d Qi − H ′dt =
∑

i

pi dqi − Hdt. (8.83)

If this equation is satisfied then the general transformation (8.81) is canonical and
the function F is called the generating function of the canonical transformation.

Equation (8.83) implies a set of equations defining F in terms of qi , Qi and t:
∂F

∂qi
= pi ; ∂F

∂Qi
= −Pi ; ∂F

∂t
= H ′ − H. (8.84)

From (8.84), we deduce that the generating function F can be regarded a function
of the old and new Lagrangian coordinates qi , Qi .

We may, however, construct a new generating function �(qi , Pi ) depending on
the old coordinates qi and the new momenta Pi . This can be obtained from the
generating function F by the following Legendre transformation:

�(q, P, t) = F +
∑

i

Pi Qi . (8.85)

Substituting indeed F in terms of � in (8.83), we obtain:

d� =
∑

i

Qi d Pi +
∑

i

pi dqi + (H ′ − H)dt,

that is:

∂�

∂Pi
= Qi ; ∂�

∂qi
= pi ; ∂�

∂t
= H ′ − H. (8.86)

Other Legendre transformations can be defined in order to obtain generating functions
of any couple of old and new canonical coordinates. For our purposes however we
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shall only use the generating function (8.85). The reason is the following. Choosing
�(q, P) =∑

i qi Pi , (8.86) gives:

Qi = qi ; Pi = pi ; H = H ′, (8.87)

that is the corresponding canonical transformation is the identity transformation.
This allows us to generate infinitesimal canonical transformations considering

transformations differing by an infinitesimal amount from the identity one (8.87):

�(q, P, t) =
∑

qi Pi − δθr Gr (q, P, t) δθr � 1, (8.88)

where δθr (r = 1, . . . , g) are the infinitesimal parameters of the canonical transfor-
mation. For this kind of transformations, (8.86) takes the following form:

Qi = qi − δθr ∂Gr

∂Pi
, (8.89)

pi = Pi − δθr ∂Gr

∂qi
, (8.90)

H ′ − H = −δθr ∂Gr

∂t
. (8.91)

On the other hand, on the right hand side of (8.89) and (8.90) we may replace
∂Gr
∂Pi

with ∂Gr
∂pi

since their difference, multiplied by the infinitesimal δθr , is of higher
order and can thus be neglected. The previous equations, using the definition of
Poisson brackets, become:

δqi = Qi − qi = −δθr ∂Gr

∂pi
= −δθr {qi ,Gr }, (8.92)

δpi = δpi = Pi − pi = δθr ∂Gr

∂qi
= −δθr {pi ,Gr }; (8.93)

δH = H ′ − H = −δθr ∂Gr

∂t
. (8.94)

Accordingly, the quantity δθr Gr is called infinitesimal generator of the canonical
transformation and the Gr ’s build a basis of generators.

Let us now consider a dynamic variable function of Pi , qi and let us compute its
transformation under an infinitesimal canonical transformation:

δ f = f (P + δP, q + δq)− f (P, q) = ∂ f

∂Pi
δpi + ∂ f

∂qi
δqi

= −δθr
(
∂ f

∂qi

∂Gr

∂pi
+ ∂ f

∂pi

∂Gr

∂qi

)
= −δθr { f,Gr }, (8.95)

where, by the same token as before, we have approximated ∂Gr
∂Pi

by ∂Gr
∂pi

and
∂ f
∂Pi

by ∂ f
∂pi

since they are multiplied by an infinitesimal quantity. It is easy to verify
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that under the infinitesimal canonical transformation, using (8.92), (8.93) and the
Jacobi identity (8.74), we have

δ{qi , p j } = 0. (8.96)

That means that the fundamental canonical brackets between the Lagrangian coor-
dinates and conjugate momenta are left invariant under an infinitesimal canonical
transformation and therefore also by finite ones.

It is important to observe that the time evolution of the dynamic system, i.e. the
correspondence between the canonical variables computed at a time t and those
evaluated at a later time t ′ > t , can be considered as a particular canonical trans-
formation whose infinitesimal generator is the Hamiltonian.

Let us indeed consider the change of the canonical coordinates when the time is
increased from t to t + dt:

qi (t)→ q ′i (t) = qi (t + dt) � qi (t)+ dtq̇i (t),

pi (t)→ p′i (t) = pi (t + dt) � pi (t)+ dt ṗi (t).

It is easy to show that the infinitesimal generator of this transformation is H. In fact
if we identify:

�(q, P) = qi Pi + dt H(p, q, t),

and use (8.92), (8.93), upon identifying G = −H and δθ = dt , we find:

δqi = −dt
∂G

∂pi
= dt

∂H

∂pi
= dtq̇i ,

δpi = dt
∂G

∂qi
= −dt

∂H

∂qi
= dt ṗi ,

where we have used the Hamilton equations (8.66). We may therefore state that
The Hamiltonian is the infinitesimal generator of the time translations. In other

words H generates the time evolution of the dynamic system.
We further note that if we compute the Poisson brackets of the canonical variables

with the Hamiltonian we find:

{qi , H} = ∂H

∂pi
; {pi , H} = −∂H

∂qi
, (8.97)

so that the Hamilton equations of motion (8.66) can be also written as follows:

q̇i = {qi , H}; ṗi = {pi , H}. (8.98)

8.4.1 Conservation Laws in the Hamiltonian Formalism

In the Lagrangian formalism the conservation laws were derived by requiring the
symmetry transformations on the Lagrangian coordinates to leave the functional
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form of the Lagrangian invariant, modulo an additional total derivative. Applying
this requirement to translations in space and time, and to rotations, we derived the
conservation laws for energy, linear momentum and angular momentum.

Let us apply the same argument of invariance to the Hamiltonian of a dynamic
system: A canonical transformation is an invariance of the system if it leaves the
Hamilton equations of motion invariant in form, and this is the case if the functional
dependence of the Hamiltonian on the old and new canonical variables is the same13

H ′(p′, q ′, t) = H(p′, q ′, t). (8.99)

If we consider infinitesimal canonical transformations (8.89), (8.90), (8.91), p′, q ′
differ from p, q by infinitesimals δp, δq, so that (8.99) amounts to requiring:

δH = H(p′, q ′)− H(p, q) = −δθr {H,Gr } = −δθr ∂Gr

∂t
, (8.100)

where we have used (8.94) and (8.95). From Eqs. (8.69) and (8.100), being δθr

arbitrary, we conclude that

dGr

dt
= ∂Gr

∂t
+ {Gr , H} = 0,

namely that the Gr are constants of motion. In particular we see that the infinitesi-
mal generators Gr of the canonical transformations in the Hamiltonian formalism
correspond to the Noether charges Qr of the Lagrangian formalism.

As an example, we want to retrieve once again the three conservation laws of
linear momentum, angular momentum and energy, in the Hamiltonian formalism.
Let us start implementing the condition of invariance of a system of n particles under
space translations. The (Cartesian) coordinates and momenta of the particles are
denoted, as usual, by x(k) and p(k), (k = 1, . . . , n), respectively. Let us perform the
infinitesimal translations

x(k)→ x′(k) = x(k) − ε; |ε| � 1

p(k)→ p′(k) = p(k),

which are supposed to leave the action invariant. To compute the infinitesimal gen-
erator of a translation on the kth particle we use (8.92) and (8.93):

δxi
(k) = −ε j ∂G j

∂pi
(k)

= −εi ; δpi
(k) = ε j ∂G j

∂xi
(k)

= 0.

From the above equations it follows that:

∂G j

∂xi
(k)

= 0; ∂G j

∂pi
(k)

= δi
j ⇒ G j (x(k),p(k)) =

∑

k

p j
(k) = P j

(tot),

13 In this subsection we use the notations p′i , q ′i instead of Pi , Qi .
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where P j
(tot) is the j th component of the total linear momentum. If the Hamiltonian is

invariant under space-translations then the total linear momentum Ptot has vanishing
Poisson bracket with the Hamiltonian, which in turn implies that it is conserved:

dP(tot)

dt
= 0.

By the same token we deduce the conservation of the total angular momentum.
Indeed under an infinitesimal rotation we have:

x(k)→ x′(k) = x(k) − δθ × x(k),

p(k)→ p′(k) = p(k) − δθ × p(k),

from which it follows that

δxi
(k) = −δθr ∂Gr

∂pi
(k)

= −δθrεir j x j
(k) = −

(
δθ × x(k)

)i
, (8.101)

δpi
(k) = δθr ∂Gr

∂xi
(k)

= −εir jδθ
r p j
(k) = −

(
δθ × p(k)

)i
. (8.102)

From (8.101) and (8.101) we obtain:

Gi =
∑

k

εi jr x j
(k) pr

(k) = Mi(tot),

where Mi(tot) is the i th component of the total angular momentum. Therefore, if the
system is invariant under rotations, the total angular momentum M(tot) commutes
with the Hamiltonian, implying that it is conserved:

d

dt
M(tot) = 0.

Finally we note that if the Hamiltonian does not explicitly depend on t , so that we
have invariance under time translations,

∂H

∂t
= 0,

then, since {H, H} = 0, from (8.72) it follows:

d H

dt
= 0,

that is the energy conservation in the canonical formalism. In fact, as we have seen, the
Hamiltonian is the infinitesimal generator of time translations, which is a symmetry
if neither the Lagrangian, nor the Hamiltonian explicitly depend on time.



232 8 Lagrangian and Hamiltonian Formalism

8.5 Lagrangian and Hamiltonian Formalism in Field Theories

Our discussion has been confined so far to mechanical systems with a finite number
of degrees of freedom, q1(t), . . . , qn(t).

This has been propaedeutic to our principal interest, namely the description of
continuous systems, hereafter called fields. A well known example of field is the elec-
tromagnetic field whose description is given in terms of the four-potential Aμ(x, t);
that means that, at any instant t , its configuration is defined by assigning, for each
component μ, the value of Aμ(x, t) at each point x in space.

In this case we have a continuous infinity of canonical coordinates qi (t) =
Aμ(x, t), labeled by the three coordinates x for the space-point and the index
μ.14 Other examples of fields are the continuous matter fields like fluids, elastic
media, etc.

Quite generally we may view a continuous system as the limit of a mechanical
system described by a finite number of degrees of freedom qi (discrete system), by
letting i become the continuous index x. As a consequence every sum i over the
discrete label i will be replaced by an integration on d3x over a spatial domain V ,
usually the whole three-dimensional space15:

∑

i

→
∫

V

d3x.

In the following we shall consider fields ϕα(x, t) carrying an (internal) index
α, where α labels the components of a “vector ϕ ≡ (ϕα)” on which a repre-
sentation of a group G acts. If α has just one value, it will be omitted and we speak
of a scalar field. In relativistic field theories, the group G will often be the Lorentz
group O(1, 3) so that the index will label a basis of the carrier of a representation
of the Lorentz group.16 For example, in the case of the electromagnetic field, the
role of α is played by the index μ pertaining to the four-dimensional fundamental
representation of SO(1, 3).

8.5.1 Functional Derivative

When we think of fields as a continuous limit of discrete systems, the corresponding
Lagrangian obtained in the limit, L(ϕα, ∂tϕ

α, t), will depend, at a certain instant t,

14 More precisely, since x ≡ (x1, x2, x3), we have a triple infinity of Lagrangian coordinates qi (t)
for each value of the index μ = 0, 1, 2, 3. The three components of x and the index μ play the
role of the index iof the discrete case.
15 Actually in our treatment of a discrete number of degrees of freedom, we have often omitted the
symbol  when there are repeated indices.
16 Somewhat improperly, by the word representation people often refer to the carrier space Vp of
a representation. We shall also do this to simplify the exposition and thus talk about a basis of a
representation when referring to a basis of the corresponding carrier space.
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on the values of the fields ϕα(x, t) and ∂tϕ
α(x, t) at every point in the domain V of

the three-dimensional space. We say in this case that the Lagrangian is a functional
of ϕα(x, t) and ∂tϕ

α(x, t), viewed as functions of x. It will be convenient in the
following to denote by ϕα(t) the function ϕα(x, t) of the point x in space at a given
time t , and by ϕ̇α(t) its time derivative ϕ̇α(x, t) ≡ ∂tϕ

α(x, t). We shall presently
explore some property of functionals. Let us consider a functional F[ϕ], and perform
an independent variation of ϕ(x), at each space point x. The corresponding variation
of F[ϕ] will be:

δF[ϕ] ≡ F[ϕ + δϕ] − F[ϕ] =
∫
δF[ϕ]
δϕ(x)

δϕ(x)d3x, (8.103)

where by definition, δF[ϕ]
δϕ(x) is the functional derivative of F[ϕ] with respect to ϕ at

the point x. Here we have suppressed the possible dependence on time of ϕ and of
the functional F either explicitly or through ϕ: ϕ = ϕ(x, t), F = F[ϕ(t), t].

From its definition it is easy to verify that the functional derivation enjoys the same
properties as the ordinary one, namely it is a linear operator, vanishes on constants
and satisfies the Leibnitz rule.

When the functional depends on more than a single function, its definition can
be extended correspondingly, as for ordinary derivatives. Of particular relevance for
us is the additional dependence of F on the time derivative ∂tϕ(x, t) of ϕ(x, t).
Moreover we may consider a set of fields ϕα labeled by the index α pertaining
to a given representation of a group G. This is the case of the Lagrangian F =
L(ϕα(t), ϕ̇α(t), t), where we recall once again that, in writing ϕ(t), ϕ̇(t) among the
arguments of the Lagrangian, we mean that L depends on the values ϕ(x, t), ϕ̇(x, t)
of these fields in every point x in space at a given time t. Applying the definition
(8.103) to the two functions ϕα(t) and ϕ̇α(t) we have:

δL(ϕα(t), ϕ̇α(t), t) =
∫

d3x
[

δL

δϕα(x, t)
δϕα(x, t)+ δL

δϕ̇α(x, t)
δϕ̇α(x, t)

]
. (8.104)

Note that the Lagrangian depends on t either through ϕα and ϕ̇α or explicitly. The
Lagrangian, as a functional with respect to the space-dependence of the fields, can be
thought of as the continuous limit of a function of infinitely many discrete variables:

L(ϕi (t), ϕ̇i (t), t)
i→x−→ L(ϕ(t), ϕ̇(t), t).

Here and in the following we shall often omit the index α if not essential to our
considerations. Correspondingly, we can show that the functional derivative defined
above can be thought of as a suitable continuous limit of the ordinary derivative with
respect to a discrete set of degrees of freedom qi , described by a Lagrangian L(qi , q̇i ).

Let us indeed regard the values of ϕ(x, t) at each point x as independent canonical
coordinates. To deal with a continuous infinity of canonical coordinates, we divide
the 3-space into tiny cells of volume δV i . Let ϕi (t) be the mean value of ϕ(x, t)
inside the i th cell and L(t) = L(ϕi (t), ϕ̇i (t), t) be the Lagrangian, depending on
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the values ϕi (t), ϕ̇i (t) of the field and its dime derivative in every cell. The variation
δL(ϕi , ϕ̇i ) can be written as

δL(ϕi (t), ϕ̇i (t), t) =
∑

i

(
∂L

∂ϕi
δϕi + ∂L

∂ϕ̇i
δϕ̇i

)

=
∑

i

1

δV i

(
∂L

∂ϕi
δϕi + ∂L

∂ϕ̇i
δϕ̇

)
δV i , (8.105)

If we compare this expression with (8.104), in the continuum limit one can make the
following identification:

δL

δϕ(x, t)
≡ lim
δV i→0

1

δV i

∂L

∂ϕi
,

δL

δϕ̇(x, t)
≡ lim
δV i→0

1

δV i

∂L

∂(ϕ̇i )
,

(8.106)

where x is in the i th cell. In the limit δVi → 0 we can set δVi ≡ d3x. Thus the
functional derivative δL(t)/δϕ(x, t) is essentially proportional to the derivative of
L with respect to the value of ϕ at the point x. Since in the discretized notation the
action principle leads to the equations of motion:

∂L(t)

∂ϕi
− ∂t

∂L(t)

∂ϕ̇i (t)
= 0 (8.107)

in the continuum limit the Euler–Lagrange equations become:

δL

δϕα(x, t)
− ∂t

δL

δϕ̇α(x, t)
= 0. (8.108)

where we have reintroduced the index α of the general case.
In the discretized notation we shall assume the Lagrangian L , which depends

on the values of the fields and their time derivatives in every cell, to be the sum of
quantities Li defined in each cell: Li depends on the values of the field ϕαi (t), its
gradient ∇ϕαi and its time derivative ϕ̇αi (t) in the i th cell only:

L(ϕαi (t), ϕ̇
α
i (t), t) =

∑

i

Li (ϕ
α
i (t),∇ϕαi (t), ϕ̇αi (t), t). (8.109)

Multiplying and dividing the right hand side by δVi and taking the continuum limit
δVi → d3x, the above equality becomes

L(ϕα(t), ϕ̇α(t), t) =
∫

V

d3xL(ϕα(x),∇ϕα(x), ϕ̇α(x); x, t), (8.110)

where x ≡ (xμ) = (ct, x) and we have defined the Lagrangian density L as
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L(ϕα(x),∇ϕα(x), ϕ̇α(x); x, t) ≡ lim
δVi→0

1

δVi
Li (ϕ

α
i (t),∇ϕαi (t), ϕ̇αi (t), t).

Just as Li depends, at a time t , on the dynamic variables referred to the i-th cell only,
L is a local quantity in Minkowski space in that it depends on both x and t.We note
the appearance in L(x) of the space derivatives ∇ϕα(x, t). This follows from the
fact that in order to have an action which is a scalar under Lorentz transformations,
L itself must be a Lorentz scalar. Since Lorentz transformations will in general shuffle
time and space derivatives, L should then depend on all of them. The action, in terms
of the Lagrangian density, will read:

S[ϕα; t1, t2] =
t2∫

t1

L(t)dt =
∫

dtd3xL(x) = 1

c

∫

D4

d4xL(x), (8.111)

where D4 is a space–time domain: An event x ≡ (xμ) in D4 occurs at a time
t between t1 and t2 and at a point x in the volume V . In formulas we will write
D4 ≡ [t1, t2] × V ⊂ M4. Since S does not depend only on the time interval [t1, t2]
but also on the volume V in which the values of the fields and their derivatives
are considered, we will write S ≡ S[ϕα; D4]. The boundary of D4, to be denoted
by ∂D4, consists of all the events occurring either at t = t1 or at t = t2, and of
events occurring at a generic t ∈ [t1, t2] in a point x belonging to the surface SV

which encloses the volume V : x ∈ SV ≡ ∂V . The measure of integration d4x ≡
dx0dx1dx2dx3 = cdtd3x is invariant under Lorentz transformations � = (�

μ
ν ),

since the absolute value |det(�)| of the determinant of the corresponding Jacobian
matrix �, is equal to one:

xμ −→ x ′μ = �μν xν ⇒ d4x −→ d4x ′ = |det(�)|d4x = d4x . (8.112)

It follows that in order to have a scalar Lagrangian density L must have the same
dependence on ∇ϕα(x, t) as on ϕ̇α(x, t), that is it must actually depend on the
four-vector ∂μϕα(x, t). Moreover, being a scalar, it must depend on the fields and
their derivatives ∂μϕα(x, t) only through invariants constructed out of them. For
the same reason it cannot depend on t only, but, in general, on all the space–time
coordinates xμ.

Let us now consider arbitrary infinitesimal variations of the field ϕα(x) which
vanish at the boundary ∂D4 of D4 : δϕα(x) ≡ 0 if x ∈ ∂D4. The corresponding
variation of L can be computed by using (8.110):

δL =
∫

d3x
[
∂L(x, t)

∂ϕα(x, t)
δϕα(x, t)+ ∂L(x, t)

∂∂iϕ
α(x, t)

δ∂iϕ
α(x, t)

+ ∂L(x, t)

∂(ϕ̇α(x, t))
δϕ̇α(x, t)

]

=
∫

d3x
{[

∂L(x, t)

∂ϕα(x, t)
− ∂i

∂L(x, t)

∂∂iϕ
α(x, t)

]
δϕα(x, t)− ∂L(x, t)

∂ϕ̇α(x, t)
δϕ̇α(x, t)

}
, (8.113)
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where we have written ∇ ≡ (∂i )i=1,2,3, used the property that δ∂iϕ
α = ∂iδϕ

α and
integrated the second term within the integral by parts, dropping the surface term,
being δϕα(x) = 0 for x ∈ SV ≡ ∂V .

Taking into account that the quantity inside the curly brackets defines the func-
tional derivative of L , by comparison with (8.108) we find:

δL

δϕα(x)
=
[
∂L(x)
∂ϕα(x)

− ∂i
∂L(x)
∂∂iϕα(x)

]
,

δL

δϕ̇α(x)
= ∂L(x)
∂ϕ̇α(x)

. (8.114)

It is important to note that, using the Lagrangian density instead of the Lagrangian, the
derivatives of L(x, t)with respect to the fields in (x, t) are now ordinary derivatives,
since they are computed at a particular point x. Using the equalities (8.114) the
Euler–Lagrange equations (8.108) take the following form:

∂t
∂L

∂(∂tϕα)
= ∂L
∂ϕα
− ∂i

∂L
∂(∂iϕα)

, (8.115)

or, using a Lorentz covariant notation:

∂L
∂ϕα
− ∂μ

(
∂L

∂(∂μϕα)

)
= 0. (8.116)

8.5.2 The Hamilton Principle of Stationary Action

In the previous paragraph the equations of motion for fields have been derived using
the definition of functional derivative and performing the continuous limit of the
Euler–Lagrange equations for a discrete system.

Actually (8.116), can also be derived directly from the Hamilton principle of sta-
tionary action, considering the action S as a functional of the fields ϕαand depending
on the space-time domain D4 on which they are defined:

S [ϕα; D4
] = 1

c

∫

D4

d4xL(ϕα, ∂μϕα, xμ). (8.117)

Here d4x ≡ dx0d3x = cdtd3x is the volume element in the Minkowski space M4,
and the integration domain D4 was defined as [t1, t2] × V ⊂ M4.

We can now generalize the Hamilton principle of stationary action to systems
described by fields, namely systems exhibiting a continuous infinity of degrees of
freedom. It states that:

The time evolution of the field configuration describing the system is obtained by
extremizing the action with respect to arbitrary variations of the fields δϕα which
vanish at the boundary ∂D4 of the space–time domain D4.
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Precisely, we require the action S to be stationary with respect to δϕα , that is to
satisfy

δS = 0,

under arbitrary variations of ϕα at each point x and at each instant t:
ϕα(x)→ ϕα(x)+ δϕα(x),

provided:

δϕα(x) = 0 ∀xμ ∈ ∂D4. (8.118)

Let us apply this principle to the action (8.117). We have:

δS = 1

c

∫

D4

d4x

(
∂L
∂ϕα

δϕα + ∂L
∂(∂μϕα)

δ(∂μϕ
α)

)
. (8.119)

Now use the property δ(∂μϕα) = ∂μ(δϕα), and integrate by parts the second term
in the integral:
∫

D4

d4x
∂L

∂(∂μϕα)
∂μδϕ

α =
∫

D4

d4x∂μ

(
∂L

∂(∂μϕα)
δϕα

)

−
∫

D4

d4x∂μ

(
∂L

∂(∂μϕα)

)
δϕα =

∫

∂D4

d4σμ

(
∂L

∂(∂μϕα)

)
δϕα

−
∫

D4

d4x∂μ

(
∂L

∂(∂μϕα)

)
δϕα = −

∫

D4

d4x∂μ

(
∂L

∂(∂μϕα)

)
δϕα,

where we have applied the four-dimensional version of the divergence theorem by
expressing the integral of a four-divergence over D4 as an integral (boundary integral)
of the four-vector ∂L

∂(∂μϕα)
δϕα over the three-dimensional domain ∂D4 which encloses

D4. We have used the notation d3σμ ≡ d3σnμ, d3σ being an element of ∂D4 to
which the unit norm vector nμ is normal, see Fig. 8.1. As for the last equality we
have used (8.118) which implies the vanishing of the boundary integral.17 Thus the
partial integration finally gives:

δS = 1

c

∫

D4

d4x

[
∂L
∂ϕα
− ∂μ

(
∂L

∂(∂μϕα)

)]
δϕα. (8.120)

17 This is true if the boundary ∂D4 does not extend to spatial infinity; when the integration domain
D4 fills the whole space, we must require that the fields and their derivatives fall off sufficiently
fast at infinity, or we may also use periodic boundary conditions. In any case the integration on an
infinite domain can always be taken initially on a finite domain, and, after removing the boundary
term, the integration domain can be extended to infinity.
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Fig. 8.1 Space–time domain
D4: of the form [t1, t2] × V
(left), of generic form (right)

From the arbitrariness of δϕα it follows:

∂L
∂ϕα
− ∂μ

(
∂L

∂(∂μϕα)

)
= 0 (8.121)

which are the Euler–Lagrange equations for the field ϕα , coinciding with (8.116).
As we have previously seen in the case of discrete dynamic systems, Lagrangians

differing by a total time derivative lead to the same equations of motion. Similarly for
field theories we can show that Lagrangian densities differing by a four-divergence
∂μ f μ yield the same field equations. Indeed, let the Lagrangian densities L and L′
be related by

L′(ϕα(x), ∂μϕα(x), x) = L(ϕα(x), ∂μϕα(x), x)+ ∂μ f μ,

where f μ = f μ(ϕα(x), x), then the two actions differ by a boundary integral:

S ′ = 1

c

∫

D4

d4xL′(ϕα, ∂μϕα) = 1

c

∫

D4

d4xL(ϕα, ∂μϕα)

+ 1

c

∫

D4

d4x∂μ f μ = S + 1

c

∫

∂D4

d3σμ f μ. (8.122)

We therefore have:

δS ′ = δS + 1

c

∫

∂D4

d3σμδ f μ = δS,

since δ f μ = ∂ f μ

∂ϕα(x) δϕ
α(x) = 0 on the boundary ∂D4.

8.6 The Action of the Electromagnetic Field

As an application of our general discussion, we construct the action of the electromag-
netic field in interaction with charges and currents and show that the stationary action
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principle gives the covariant form of the Maxwell equations discussed in Chap. 5.
To this end we shall be guided by the symmetry principle. As it will be shown in
detail in Sect. 8.7, the invariance of the equations of motion under space-time (i.e.
Poincaré) transformations or under general field transformations is guaranteed if the
Lagrangian density, as a function of the fields, their derivatives and the space-time
coordinates, is invariant in form, up to a total divergence, see Eq. (8.150). As far as
space-time translations are concerned, this is the case if L does not explicitly depend
on xμ. Covariance with respect to Lorentz transformations further requires L to be
invariant as a function of the fields and their derivatives, namely to be a Lorentz
scalar as a function of space-time.

The construction of the action for the electromagnetic field is relatively simple
once we observe that:

• For the field Aμ(x) describing the electromagnetic field the generic index α coin-
cides with the covariant index μ = 0, 1, 2, 3 of the fundamental representation of
the Lorentz group;

• The equations of motion (the Maxwell equations) are invariant under the gauge
transformations:

Aμ→ Aμ + ∂μϕ.

This is guaranteed if the Lagrangian density is invariant under the same transfor-
mations, since the action would then be invariant. In the absence of charges and
currents, the action should be constructed out of the gauge invariant quantity Fμν;

• The Lagrangian density must be a scalar under Lorentz transformations;
• In order for the equations of motion to be second-order differential equations L

must at most be quadratic in the derivatives of Aμ(x), that is quadratic in Fμν.

To construct Lorentz scalars which are quadratic in Fμν we may use the invariant
tensors ημν, εμνρσ of the Lorentz group SO(1, 3).18 It can be easily seen that the most
general Lagrangian density satisfying the previous requirements has the following
form:

L(Aμ, ∂μAν) = aFμνFμν + bεμνρσ FμνFρσ , (8.123)

where Fμν = ημρηνσ Fρσ and a and b are numerical constants. On the other hand,
the second term of (8.123) is the four-dimensional divergence of a four-vector so
that it does not contribute to the equations of motion. Indeed:

εμνρσ FμνFρσ = 2εμνρσ ∂
μAνFρσ

= ∂μ (2εμνρσ AνFρσ
)− 2εμνρσ Aν∂μFρσ

= ∂μ (2εμνρσ AνFρσ
)− 2εμνρσ Aν∂ [μFρσ ]

= ∂μ f μ,

18 Recall that the latter tensor εμνρσ is not invariant under Lorentz transformations which are in
O(1, 3) but not in SO(1, 3), namely which have determinant −1. Examples of these are the parity
transformation �P , or time reversal �T .

http://dx.doi.org/10.1007/978-88-470-1504-3_5
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where we have set: f μ = 2εμνρσ AνFρσ and use has been made of the identity:
∂ [μFρσ ] = 0.

Therefore the Lagrangian density reduces, up to a four-dimensional divergence
to the single term:

Lem = aFμνFμν.

The value of the constant a is fixed in such a way that the Lagrangian contains the
positive definite (density of) “kinetic term” 1/(2c2) ∂t Ai∂t Ai with a conventional
factor 1/2 which is remnant of the one appearing in the definition (8.25) of the
kinetic energy.19 Expanding FμνFμν = (∂μAν − ∂ν Aμ)(∂μAν − ∂ν Aμ) one easily
finds a = − 1

4 .

In the presence of charges and currents, the interaction with the source Jμ(x)
requires adding an interaction term Lint to the pure electromagnetic Lagrangian.
The simplest interaction is described by the Lorentz scalar term:

Lint = bAμ Jμ. (8.124)

This term seems, however, to violate the gauge invariance of the total
Lagrangian, since a gauge transformation on Aμ implies a correspondent change
on the Lagrangian density:

δAμ = ∂μϕ ⇒ δ(gauge)Lint = (∂μϕ)Jμ.
On the other hand by a partial integration δLint can be transformed as follows:

δLint = ∂μ(ϕ Jμ)− ϕ∂μ Jμ.

The first term is a total four-divergence, not contributing to the equations of motion
and thus can be neglected; the second term is zero if and only if ∂μ Jμ = 0, that is if
the continuity equation expressing the conservation of the electric charge holds. We
have thus found the following important result: Requiring gauge invariance of the
action of the electromagnetic field interacting with a current, implies the conservation
of the electric charge.

In conclusion, the action describing the electromagnetic field coupled to charges
and currents is given by

S = 1

c

∫

M4

d4x

(
−1

4
FμνFμν + bAμ Jμ

)
, (8.125)

where the (four)-current Jμ(x) has the following general form (see Chap. 5)20:

19 Note that the kinetic term for A0 is absent because of the antisymmetry of Fμν.
20 Note that we are describing the interaction of the electromagnetic field, possessing infinite degrees
of freedom, with a system of n charged particles, having 3n degrees of freedom represented by the
n coordinate vectors x(k)(t), (k = i, . . . , n). The Dirac delta function formally converts the 3n
degrees of freedom of x(k)(t) into the infinite degrees of freedom associated to x.

http://dx.doi.org/10.1007/978-88-470-1504-3_5
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Jμ(x) = 1

c

∑

k

ek
dxμk
dt

δ3(x − xk(t)). (8.126)

We may now apply the principle of stationary action to compute the equations
of motion. Recalling the form (8.121) of the Euler–Lagrange equations for fields,
we have:

∂L
∂Aμ
− ∂ρ

(
∂L

∂(∂ρ Aμ)

)
= 0. (8.127)

The first term of (8.127) is easily computed and gives:

∂L
∂Aμ

= bJμ(x).

As far as the second term is concerned, only the pure electromagnetic part
−1/4FμνFμν contributes to the variation, yielding:

∂(Fρσ Fρσ )

∂(∂μAν)
= 2

[
∂Fρσ
∂(∂μAν)

]
Fρσ = 4

∂(∂ρ Aσ )

∂(∂μAν)
Fρσ = δμρ δνσ Fρσ = 4Fμν(x).

Putting together these results, (8.127) becomes:

∂μFμν(x)+ bJ ν(x) = 0. (8.128)

Finally he constant b is fixed by requiring (8.128) to be identical to the Maxwell
equation21:

∂μFμν = −J ν,

and this fixes b to be 1. The final expression of the Lagrangian density therefore is:

L = Lem + Lint = −1

4
FμνFμν + Aμ Jμ. (8.129)

In order to give a complete description of the charged particles in interaction with
the electromagnetic field, we must add to L (8.129) the Lagrangian density Lpart

associated with system of particles.
Let us consider for the sake of simplicity the case of a single particle of charge e

and mass m. The total action will have the following form22:

Stot = Sem + Sint + Spart , (8.130)

21 Note that this condition just fixes the charge normalization.
22 The index k given to x(k) in the following formulae has a double function: On the one hand it
indicates that the coordinate vector x(k)(t) is a dynamic variable, and not the labeling of the space
points, as is the case for x; On the other hand if we have more than one particle the following
formulae can be generalized by just summing over k.
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where

Sem[∂μAν] = 1

c

∫
d4x

(
−1

4
FμνFμν

)
,

Spart [ẋ(k)] = −mc2
∫

dt

(
1− v

2
(k)

c2

) 1
2

,

Sint [Aμ(x), x(k), ẋ(k)] = 1

c

∫
d4x Aμ(x, t)Jμ(x, t)

= 1

c

∫ [
e

c
Aμ(x(k), t)

dxμ(k)
dt

]
dt, (8.131)

where in deriving the expression of Sint
23 we have used the explicit form of the

four-current given in (8.126).

Lint =
∫

d3xAμ(x, t)Jμ(x, t) = e

c
Aμ(x(k), t)

dxμ(k)
dt

= eA0(x(k), t)+ e

c
Ai (x(k), t)vi . (8.132)

We recall that x are labels of the points in space, while x(k)(t) are the particle coor-
dinates, that is dynamic variables, as stressed in the footnote.

We now observe that since Sem does not contain the variables xi
(k), we may

compute the equation of motion of the charged particle by varying only L̂ = L part+
Lint:

L̂ = L part + Lint = −mc2

√
1− v

2
(k)

c2 + eA0(x(k), t)+ e

c
Ai (x(k), t)vi .

For the sake of simplicity in the following we neglect the index (k) of the particle.
The first term of the Euler–Lagrange equations:

∂ L̂

∂xi
− d

dt

∂ L̂

∂vi
= 0, (8.133)

reads:

∂ L̂

∂xi
= ∂Lint

∂xi
= e

∂A0

∂xi
+ e

c

(
∂A j

∂xi

)
v j . (8.134)

The second term contains the time derivative of the canonical momentum pi conju-
gate to xi , namely:

23 Note that also Spart can be written as a four-dimensional integral:

Sint = −mc
∫

d4xδ(3)(x − xk)
(

1− 1
c2

( dx
dt

)2
)
.
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pi = ∂ L̂

∂vi
= ∂(L par + Lint )

∂vi
= m(v)vi + e

c
Ai . (8.135)

We see that in the presence of the electromagnetic field the canonical conjugate
momentum is different from the momentum pi

(0) = m(v)vi of a free particle.24 In
fact we have the following relation:

pi = pi
(0) +

e

c
Ai . (8.136)

Taking into account (8.133), (8.135) and (8.136), the equation of motion of the
charged particle becomes:

d

dt

(
pi
(0) +

e

c
Ai

)
− e∂i A0 − e

c
∂i A jv

j = 0. (8.137)

We now recall that A0 = −V, where V is the electrostatic potential. Moreover,
since

d Ai

dt
= ∂Ai

∂x j

dx j

dt
+ c

∂Ai

∂x0 ,

and Ei = Fi0 = ∂i A0 − ∂0 Ai , (8.137) becomes:

dpi
(0)

dt
= eEi − e

c

(
∂ j Ai − ∂i A j

)
v j

= eEi − e

c
Fjiv

j = eEi + e

c
εi jkv

j Bk

= e

(
Ei + 1

c
(v × B)i

)
.

Thus we have retrieved from the variational principle the well known equation of
motion of a charged particle subject to electric and magnetic fields since the right
hand side is by definition the Lorentz force.

8.6.1 The Hamiltonian for an Interacting Charge

As we have computed the Lagrangian Lint + L par for a charged particle, we pause
for a moment with our treatment of the Lagrangian formalism in field theories and
compute the Hamiltonian of a charge interacting with the electromagnetic field. From
the definition (8.64) we find25:

24 Here and in the following we use the subscript 0 to denote the usual free-particle momentum
pi
(0) = m(v)vi and the symbol pi for the momentum canonically conjugated to xi .

25 Recall that the vector A ≡ (Ai ) is the spatial part of the four-vector Aμ ≡ (A0,A), so that Aμ ≡
(A0,−A). On the other hand p is the spatial component of pμ ≡ (p0,p), so that pμ ≡ (p0,−p).
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H(p, x) = p · v − Lint − L par = p · v − eA0 − e

c
A · v + m2c2

m(v)
,

where we have used the relation

−L part = mc2

√
1− v

2

c2 =
m2c2

m(v)
.

It follows:

H(p, x) =
(

p− e

c
A
)
· v + m2c2

m(v)
+ eV (x). (8.138)

We now use (8.135) to express vi in terms of pi:

v =
(
p− e

c A
)

m(v)
= p(0)

m(v)
.

Taking into account the relativistic relations:

E2 = |p(0)|2c2 + m2c4; m(v) = E/c2, (8.139)

where E is the energy of the free particle, we can write:

H(p, x) = E2

m(v)c2 + eV = c

√
m2c2 +

∣∣∣p− e

c
A
∣∣∣
2 + eV (x). (8.140)

From the above equation we find:

(H + eA0)
2 − c2

3∑

i=1

(
pi − e

c
Ai

)2 = m2c4. (8.141)

Next we use the property A0 = A0, Ai = −Ai to put (8.141) in relativistic invariant
form:

(
pμ + e

c
Aμ
) (

pμ + e

c
Aμ
)
= m2c2. (8.142)

where we have set H
c = p0.

Note that (8.142) can be obtained from the relativistic relation pμ(0) p(0)μ = m2c2

of a free particle through the substitution:

pμ(0)→ pμ + e

c
Aμ. (8.143)

in agreement with (8.136). This substitution gives the correct coupling between the
electromagnetic field and the charged particle and is usually referred to as minimal
coupling.
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8.7 Symmetry and the Noether Theorem

In this section we explore the connection between symmetry transformation and
conservation laws in field theory.

We consider a relativistic theory described by an action of the following form:

S
[
ϕα, D4

] = 1

c

∫

D4

d4xL(ϕα, ∂μϕα, xμ). (8.144)

where L(ϕα, ∂μϕα, x) is the Lagrangian density.
We consider a generic transformation of the coordinates xμ and of the fields ϕα:

xμ ∈ D4 → x ′μ = x ′μ(x) ∈ D′4,
ϕα → ϕ′α = ϕ′α(ϕα, x),

∂μϕ
α → ∂μ′ϕ

′α = ∂ ′μϕ′α(ϕα, ∂μϕα, x).

(8.145)

where ∂ ′μ = ∂
∂x ′μ .A transformation on space–time coordinates will in general deform

a domain D4, which we had originally taken to be a direct product of a time interval
and a space volume V , into a region D′4 with a different shape.

As already discussed in the case of a discrete set of degrees of freedom the actual
value of the action computed on a generic four-dimensional domain D4 does not
depend on the set of fields and coordinates we use, since it is a scalar; In other
words:

S ′ [ϕ′α; D′4
] = S [ϕα; D4

]
, (8.146)

or, more explicitly

1

c

∫

D′4

d4x ′L(ϕ′α(x ′), ∂ ′μϕ′α(x ′), x ′) = 1

c

∫

D4

d4xL(ϕα(x), ∂μϕα(x), x), (8.147)

where the transformed Lagrangian density L′ in S ′ is given by

L′(ϕ′α, ∂ ′μϕ′α, x ′) = L(ϕα, ∂μϕα, x), (8.148)

the transformed fields and coordinates being related to the old ones by (8.145).
However, as we have already emphasized in the case of a discrete system, the fact
the action is a scalar, does not imply that the Euler–Lagrange equations derived from
S ed S ′ have the same form. The latter property holds only when the transformations
(8.145) correspond to an invariance (or symmetry) of the system. This is the case
when the action is invariant, namely when:

S
[
ϕ′α; D′4

] = S
[
ϕα; D4

]
. (8.149)
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Note that (8.149) implies that the Lagrangian L is invariant under the transformations
(8.145) only up to the four-divergence of an arbitrary four-vector f μ, which, as we
know, does not change the equations of motion:

L(ϕ′α(x ′), ∂ ′μϕ′α(x ′), x ′) = L(ϕα(x), ∂μϕα(x), x)+ ∂μ f μ, (8.150)

where f μ = f μ(ϕα(x), x).26

In the sequel we shall consider transformations differing by an infinitesimal
amount from the identity, to which they are connected with continuity. We write
these transformations in the following form:

x ′μ = xμ + δxμ,

ϕ′α(x) = ϕα(x)+ δϕα(x), (8.151)

where δxμ and δϕα(x) are infinitesimals and, just as we did in Chap. 7, we define the
local variation of the field as the difference δϕα(x) ≡ ϕ′α(x)− ϕα(x) between the
transformed and the original fields evaluated in the same values of the coordinates
x = (xμ), see for instance (8.72). The invariance of the action under infinitesimal
transformations is expressed by the equation:

cδS =
∫

D′4

d4x ′L(ϕ′α(x ′), ∂ ′μϕ′α(x ′), x ′)−
∫

D4

d4xL(ϕα(x), ∂μϕα(x), x) = 0,

(8.152)
where, for the time being, we do not consider the contribution a four-divergence
∂μ f μ since it leads to equivalent actions.27 The Noether theorem states that:

If the action of a physical system described by fields is invariant under a group of
continuous global transformations, it is possible to associate with each parameter
θr of the transformation group a four-current Jμr obeying the continuity equation
∂μ Jμr = 0, and, correspondingly, a conserved charge Qr , where

Qr =
∫

d3xJ 0
r . (8.153)

Here by global transformations we mean transformations whose parameters do not
depend on the space–time coordinates xμ.

The proof of the theorem requires working out the consequences of (8.152) along
the same lines as for the proof of the analogous theorem for systems with a finite
number of degrees of freedom. For the sake of clarity we shall give, at each step of
the proof, the reference to the corresponding formulae of Sect. 8.2.1.

26 We note that the invariance of the action means that two configurations [ϕα(x), xμ ∈ D4] and[
ϕ′α(x ′), x ′μ ∈ D′4

]
related by the transformation (8.145) are solutions to the same partial differ-

ential equations.
27 This freedom will be taken into account when discussing the energy momentum tensor in the
next section.

http://dx.doi.org/10.1007/978-88-470-1504-3_7
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Fig. 8.2 Space–time
domains D4 and D′4

We begin by observing that since x ′ is an integration variable, we may rewrite δS
as follows (cfr. (8.47)):

cδS =
∫

D′4

d4xL(ϕ′α(x), ∂μϕ′α(x), x)−
∫

D4

d4xL(ϕα(x), ∂μϕα(x), x). (8.154)

The integration domains of the two integrals of (8.154) are D′4 and D4, respectively.
In the discrete case we had [t ′1, t ′2] and t1, t2] instead of D′4 and D4. It is then
convenient to write the first integral over D′4 as the sum of an integral over D4 and
an integral over the “difference” D′4 − D4 between the two domains:

∫

D′4

=
∫

D4

+
∫

D′4−D4

. (8.155)

The domain D′4 − D4, see Fig. 8.2, can be decomposed in infinitesimal four-
dimensional hypercubes having as basis the three-dimensional elementary volume
dσ on the boundary hypersurface ∂D4 and height given by the elementary shift
δxμ of a point on dσ due to the transformation (8.145). We have moreover defined
dσμ ≡ nμdσ as explained after (8.122).

Thus we may write an elementary volume in D′4 − D4 as follows:

d4x = dσμδxμ,

so that the first integral on the right hand side of (8.154) reads
∫

D′4

d4x(· · · ) =
∫

D4

d4x(· · · )+
∫

D′4−D4

(· · · )d4x =
∫

D4

d4x(· · · )

+
∫

∂D4

dσμδxμ(· · · ). (8.156)

A comparison with the analogous decomposition made in the discrete case, (8.48),
reveals that ∂D4 plays the role of the boundary of the interval t1 − t2 (consisting of
the two end-points) and δxμ of δt.
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We may now insert this decomposition in (8.154) obtaining (see (8.51)):

cδS =
∫

D4

d4xL(ϕ′α(x), ∂μϕ′α(x), x)−
∫

D4

d4xL(ϕα(x), ∂μϕα(x), x)

+
∫

∂D4

dσμδxμL(ϕα(x), ∂μϕα(x), x), (8.157)

where, in the last integral, we have replaced L(ϕ′α(x), ∂μϕ′α(x), x) with L(ϕα(x),
∂μϕ

α(x), x), since their difference, being multiplied by δxμ would have been an
infinitesimal of higher order (see the analogous equation (8.54)). On the other hand
the difference between the first two integrals can be written as follows: (8.52):
∫

D4

d4x
[L(ϕ′α(x), ∂μϕ′α(x), x)− L(ϕα(x), ∂μϕα(x), x)

]

=
∫

D4

d4x

[
∂L
∂ϕα

δϕα + ∂L
∂(∂μϕα)

δ∂μϕ
α

]

=
∫

D4

d4x

[
∂L
∂ϕα
− ∂μ ∂L

∂(∂μϕα)

]
δϕα(x)+

∫

D4

d4x∂μ

(
∂L

∂(∂μϕα)
δϕα

)
. (8.158)

where, as usual, we have applied the property

δ(∂μϕ
α) = ∂μδϕα.

Finally we substitute (8.157) and (8.158) into (8.152) obtaining, for the variation
of the action (see (8.53)):

cδS =
∫

D4

d4x

[
∂L
∂ϕα
− ∂μ ∂L

∂(∂μϕα)

]
δϕα(x)+

∫

D4

d4x∂μ

(
∂L

∂(∂μϕα)
δϕα

)

+
∫

∂D4

dσμδxμL(ϕα(x), ∂μϕα(x), x). (8.159)

If the Euler–Lagrange equations (8.121) are satisfied, the first integral in (8.159)
vanishes; moreover the last integral can be written as an integral on ∂D4 by use of
the four-dimensional Gauss (or divergence theorem) theorem in reverse:

∫

∂D4

dσμδxμL =
∫

D4

d4x∂μ(δxμL). (8.160)

We have thus obtained:

δS = 1

c

∫

D4

d4x∂μ

[
∂L

∂(∂μϕα)
δϕα + δxμL

]
. (8.161)
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The above equation gives the desired result: it states that when δS = 0, the integral
in (8.161) is zero. Taking into account that the integration domain is arbitrary, we
must have:

∂μ Jμ = 0, (8.162)

where

Jμ = ∂L
∂(∂μϕα)

δϕα + δxμL. (8.163)

In terms of the infinitesimal, global parameters δθr , r = 1, . . . , g of the contin-
uous transformation group G, the infinitesimal variations δϕα and δxμ can be
written as

δϕα = δθr�αr ; δxμ = δθr Xμr . (8.164)

where�αr andXμr are, in general, functions of the fields ϕα and coordinates xμ. Thus
we may write:

Jμ = δθr Jμr ,

where

Jμr =
(

∂L
∂(∂μϕα)

�αr + Xμr L
)
. (8.165)

Taking into account that the δθr are independent, constant parameters, we can state
that we have a set of g conserved currents ∂μ Jμr = 0. To each conserved current Jμr
there corresponds a conserved charge Qr:

Qr =
∫

R3

d3xJ 0
r , (8.166)

where we take as V the entire three-dimensional space R
3. Indeed:

d Qr

dt
= c

∫

R3

d3x
∂

∂x0 J 0
r = −

∫

R3

d3x
∂

∂xi
J i

r = −
∫

S∞

d2σ

3∑

i=1

J i
r ni = 0.

where the last surface integral is zero being evaluated at infinity where the currents
are supposed to vanish.
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8.8 Space–Time Symmetries

As already stressed in the first Chapters of this book, in order to satisfy the princi-
ple of relativity a physical theory must fulfil the requirement of invariance under
the Poincaré group. The latter was discussed in detail in Chap. 4 and contains, as
subgroups, the Lorentz group and the four-dimensional translation group. Invariance
of a theory, describing an isolated system of fields, under Poincaré transformations
implies that its predictions cannot depend on a particular direction or on a specific
space–time region in which we observe the system, consistently with our assumption
of homogeneity and isotropy of Minkowski space.

The Noether theorem allows us to derive conservation laws as a consequence
of this invariance. Let us first work out the conserved charges associated with the
invariance of the theory under space–time translations:

xμ→ x ′μ = xμ − εμ −→ δxμ = −εμ,
ϕ′α(x − ε) = ϕα(x)⇒ δϕα(x) = ϕ′α(x)− ϕα(x) = ∂ϕα(x)

∂xμ
εμ. (8.167)

Comparing this with the general formula (8.164) we can identify the index r with
the space–time one μ, the parameters δθr with εμ and

�αr = �αν = ∂μϕαδμν ; Xμr = Xμν = −δμν .
Requiring invariance of the action under the transformations (8.167), and inserting
the values of δxμ and δϕα in the general expression of the current (8.163) we obtain:

Jμ = Jμρ ε
ρ =

(
∂L

∂(∂μϕα)
∂ρϕ

α − δμρL
)
ερ ≡ cερTμρ (8.168)

where we have introduced the energy-momentum28 tensor Tμ|ρ:

Tμ|ρ ≡ 1

c

[
∂L

∂(∂μϕα)
∂ρϕ

α − ημρL
]
, (8.169)

so that we have the general conservation law:

∂μTμν = 0. (8.170)

We note that both the indices of Tμ|ν are Lorentz indices, but we have separated
them by a bar since the first index is the index of the four-current while the second
index is the index r labeling the parameters. This being understood, in the following
we suppress the bar between the two indices of Tμ|ν .

28 The alternative name of stress-energy tensor is also used.

http://dx.doi.org/10.1007/978-88-470-1504-3_4
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The four Noether charges associated with the space–time translations are obtained
by integration of J 0

μ ≡ cT 0
μ over the whole three-dimensional space.

Qμ = c
∫

d3xT0μ
.= cPμ, (8.171)

and, from the Noether-conservation law ∂vT vμ, we obtain in the usual way that:

d

dt
Pμ = 0.

To understand the physical meaning of the energy-momentum tensor and of the
conserved four-vector

Pμ ≡
∫

V

d3xPμ ≡
∫

V

d3xT 0μ, (8.172)

where we have defined Pμ ≡ T 0μ, we recall that in the case of systems with a finite
number of degrees of freedom, the conserved four charges associated with space–
time translations are the components of the four-momentum. It is natural then to
interpret Pμ as the total conserved four-momentum associated with the continuous
system under consideration, described by the fields ϕα(x).

As a consequence of this the tensor Tμν can be thought of as describing the
density of energy and momentum and their currents in space and time. In particular,
Pμ ≡ T 0μ represents the spatial density of the four-momentum. We conclude
that the four conserved charges Qμ/c associated with the space–time translations,
which are an invariance of an isolated system, are the components of the total four-
momentum.

Let us now consider the further six conserved charges associated with the invari-
ance with respect to Lorentz transformations.

Under such a transformation, the fields ϕα will transform according to the
SO(1, 3) representation, labeled by the index α, which they belong to; its infini-
tesimal form has being given in (7.83), namely:

δϕα = 1

2
δθρσ

[
(Lρσ )

α
βϕ

β + (xρ∂σ − xσ ∂ρ)ϕ
α
]
. (8.173)

If the action is invariant under the Lorentz group, substitution of the variations (8.173)
and (7.82) into (8.163) gives the following conserved current:

Jμ = − c

2
δθρσMμ|ρσ , (8.174)

where we have introduced the tensor:

Mμ|ρσ = −1

c

[
∂L

∂(∂μϕα)

(
(Lρσ )

α
βϕ

β + (xρ∂σ − xσ ∂ρ)ϕ
α
)

+ (xσ ημρ − xρημσ
)L] , (8.175)

http://dx.doi.org/10.1007/978-88-470-1504-3_7
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and used the identification of the index r with the antisymmetric couple of indices
(μν) labeling the Lorentz generators, so that

Xμr ≡ Xμρσ = δμρ xσ − δμσ xρ,

�αr ≡ �αρσ = (Lρσ )αβϕβ + (xρ∂σ − xσ ∂ρ)ϕ
α. (8.176)

Comparing (8.175) with the definition of the energy-momentum tensor Tμρ , (8.169),
little insight reveals that the two terms proportional to xμ within square brackets
in the former can be expressed in terms of Tμρ as xσ Tμρ − xρTμσ . Therefore the
conserved current Mμ|ρσ takes the simpler form:

Mμ|ρσ = −
[

1

c

∂L
∂(∂μϕα)

(Lρσ )
α
βϕ

β + (xρTμσ − xσ Tμρ)

]
. (8.177)

Being this current associated with Lorentz transformations which are always a sym-
metry of a relativistic theory, the Noether theorem implies:

∂μMμ
ρσ = 0. (8.178)

Using the explicit form (8.177) in the conservation law (8.178) together with (8.170),
we derive the following two equations:

∂μHμρσ + Tρσ − Tσρ = 0, (8.179)

∂μTμν = 0. (8.180)

where we have set

Hμρσ ≡ 1

c

∂L
∂(∂μϕα)

(Lρσ )
α
βϕ

β.

While (8.180) yields again the conservation law associated with the energy-
momentum tensor, (8.179) implies a condition that cannot be satisfied if Tμν is
not symmetric in its two lower indices. To see this, let us consider the case of a scalar
field ϕ(x) carrying no representation index α so that Hμρσ = 0. Then Tρσ −Tσρ �= 0
would be inconsistent with (8.179) which is a consequence of the Noether theorem
(8.178). Actually, as it is apparent from its definition, T ρσ is in general not a symmet-
ric tensor, thus ruining the conservation law (8.178), which, as we shall show shortly,
in particular implies the conservation of the total angular momentum. To solve this
seeming inconsistency we note that the definition (8.169) does not determine the
energy-momentum tensor uniquely. If we indeed redefine Tμν as:

Tμν → Tμν + ∂ρU νμρ, U νμρ = −U νρμ (8.181)

it still satisfies the conservation law, since ∂μ∂ρU νμρ ≡ 0, due to the antisymmetry
of U νμρ in its last two indices. This possibility is related to the freedom we have of
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adding to the Lagrangian a four-divergence ∂μ f μ. Although we had neglected such
freedom when proving the Noether theorem, one can exploit it to obtain a symmetric
energy-momentum tensor.29 To show this, let us perform the following redefinitions:

�μν = Tμν + ∂λUνμλ; Uνμλ = −Uνλμ, (8.182)

M̂μ|ρσ =Mμρσ − ∂λ
(
xρUσμλ − xσUρμλ

)
. (8.183)

where �μν is the new energy momentum tensor. As already remarked these rede-
finitions do not spoil the conservation law associated with the energy-momentum
tensor, since, due to the antisymmetry of Uμνλ in the last two indices, we still
have ∂μ�μν = 0. Moreover, by the same token, it is easily shown that M̂μ|ρσ
is still conserved, i.e. ∂μM̂μ|ρσ = 0, since Mμ|ρσ is and the additional term
∂λ
(
xρUσμλ − xσUρμλ

)
is divergenceless by virtue of the antisymmetry of Uσμλ

in its last two indices:

∂μ∂λ
(
xρUσμλ − xσUρμλ

) = 0. (8.184)

Let us now show that M̂μρσ can be written in the simpler form:

M̂μ|ρσ = −xρ�μσ + xσ�μρ, (8.185)

by a suitable choice of Uσμλ. If we prove this, then, from the conservation of the
current M̂μ|ρσ , we have

0 = ∂μM̂μρσ = −δμρ �μσ + δμσ �μρ = −�ρσ +�σρ, (8.186)

which implies that �μν is symmetric. To prove (8.185) we first write the explicit
form of M̂μρσ by expressing Tμν in (8.177) in terms of �μν and use the following
identity:

−xρ∂
λUσμλ + xσ ∂

λUρμλ = −∂λ
(
xρUσμλ − xσUρμλ

)−Uρμσ +Uσμρ.

The four-divergence on the right hand side cancels against the opposite term in
(8.183) and we end up with:

M̂μ|ρσ = −Hμρσ − xρ�μσ + xσ�μρ −Uσμρ +Uρμσ . (8.187)

Thus in order for M̂ to have the form (185) we need to find a tensor Uνμλ satisfying
the following condition:

Uρμσ −Uσμρ = 1

c

∂L
∂∂μϕα

(Lρσ )
α
βϕ

β ≡ Hμρσ . (8.188)

29 We shall illustrate an application of this mechanism in the case of the electromagnetic field.



254 8 Lagrangian and Hamiltonian Formalism

The solution is30

Uμρσ = 1

2

[
Hμρσ − Hσμρ − Hρσμ

]
. (8.189)

Let us now discuss the physical meaning of the conservation law (8.178), by com-
puting the conserved “charges” Qρσ associated with the 0-component of the current
Mμ|ρσ (8.186). Let us rename Qρσ → Jρσ , since, as we shall presently see, they are
related to the angular momentum. Then integrating over the whole space V = R

3:

Jρσ =
∫

V

d3xM0ρσ = −
∫

V

d3x
[
∂L
∂ϕ̇α

(Lρσ )
α
βϕ

β + (xρT0σ − xσ T0ρ)

]
, (8.190)

are the conserved charged associated with Lorentz invariance:

d

dt
Jρσ = 0. (8.191)

In particular for spatial indices (μν) = (i j) we find:

Ji j = −
∫

V

d3x
[
∂L
∂ϕ̇α

(Li j )
α
βϕ

β + (xiP j − x jPi )

]
= −εi jk J k, (8.192)

where P i is the momentum density.
Let us first consider the case of a scalar field ϕ which, by definition, does not

have internal components transforming under Lorentz transformations, so that the
first term of (8.192) is absent. The second term in the integrand of (8.192) is easily
recognized as the density of orbital angular momentum. Therefore Ji j ≡ −εi jk Mk

is the conserved orbital angular momentum,which, for a scalar field, coincides with
the total angular momentum.

If, however, we have a field ϕα transforming, through the index α, in a non-trivial
representation of the Lorentz group, the first term in (8.177) is not zero; it is clear that
it should also describe an angular momentum which must then refer to the intrinsic
degrees of freedom of the field.31 In fact the first term describes the intrinsic angular
momentum or spin of the field.

In general if the field is not spinless the conservation law implies that only the
sum of the orbital angular momentum and of the spin, that is only the total angular
momentum is conserved.

Note that so far we have been discussing the conservation of the three charges Ji j

associated with the invariance under three dimensional rotations and corresponding

30 The solution (8.189) can be obtained writing, besides (8.188), two analogous equations obtained
by cyclic permutation of the indices ρμσ. Subtracting the last two equations from the first and using
the antisymmetry property (8.181) we find (8.189).
31 Recall from Chap. 4 that, since Lρσ are Lorentz generators, Li = −εi jk L jk/2 are generators of
the rotation group.

http://dx.doi.org/10.1007/978-88-470-1504-3_4
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to the components of the total angular momentum. It is interesting to understand the
meaning of the other three conservation laws (8.178) associated with the invariance
under Lorentz boosts, that is to the components J 0i of the Jμν charges. Restricting
for simplicity to the case of a scalar field, we have from (8.190) and (8.191), setting
(Li j )

α
β = 0,

d

dt

[
x0
∫

d3xT 0i −
∫

xi T 00d3x
]
= 0. (8.193)

Taking into account the conservation of Pi , defined by the first integral, we obtain:

cPi = d

dt

∫
xi T 00d3x. (8.194)

On the other hand since cT 00 represents the energy density, we have T 00d3x =
d E/c = cdm, where E is the total energy related to the total mass by the familiar
relation E = mc2. It then follows:

P = d

dt

∫
xdm. (8.195)

In words: The conservation law associated with the Lorentz boosts implies that the
relativistic center of mass moves at constant velocity.

8.8.1 Internal Symmetries

The symmetries and the associated conserved charges discussed in the previous sec-
tion are space–time symmetries, namely symmetries associated with translations and
Lorentz transformations under which, in a relativistic theory, the action is invariant.

We now want to give an example of a symmetry which does not involve changes
in the space–time coordinates xμ, but that is rather implemented by transformations
acting on the internal index α of a field ϕα(x). In this case the index α labels the
basis of a representation of the corresponding symmetry group G. Such symmetries
are called internal symmetries and G is the internal symmetry group:

xμ→ x ′μ = xμ ⇒ δxμ = 0,

ϕα(x)→ ϕ′α(x) = ϕα(x)+ δϕα(x), (8.196)

where

δϕα = δθr (Lr )
α
βϕ

β, δθr � 1.

From (8.163) the conserved currents have the simpler form:
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δθr Jμr =
∂L

∂(∂μϕα)
δϕα. (8.197)

The simplest, albeit important, example is the case in which we have two real scalar
fields ϕ1, ϕ2, or, equivalently, a complex scalar field ϕ, ϕ∗, the two descriptions being
related by

ϕ1 = 1√
2
(ϕ + ϕ∗); ϕ2 = − i√

2
(ϕ − ϕ∗),

and a Lagrangian density of the following form:

L = c2
(
∂μϕ
∗∂μϕ − m2c2

�2 ϕ∗ϕ
)
. (8.198)

The Euler–Lagrangian equations are

�
2∂μ∂

μϕ + m2c2ϕ = 0. (8.199)

As will be shown in the next Chapter this equation is the natural relativistic extension
of the Schrödinger equation for a particle of mass m and wave functionϕ. It is referred
to as the Klein–Gordon equation, and the Lagrangian (8.198) is the Klein–Gordon
Lagrangian density.

We observe that the Lagrangian density L of (8.198) is invariant under the fol-
lowing transformation:

ϕ(x)→ ϕ′(x) = e−iαϕ(x) (8.200)

where α is a constant parameter.
In the real basis, the transformation belongs to the group SO(2):

(
ϕ′1
ϕ′2

)
=
(

cosα sin α
− sin α cosα

)(
ϕ1
ϕ2

)
. (8.201)

In the complex basis the transformation (8.200) defines a one-parameter Lie group
of unitary transformations denoted by U(1), which is isomorphic to, i.e. has the same
structure as, SO(2). The infinitesimal version of (8.200) is

ϕ(x)→ ϕ′(x) � ϕ(x)− iαϕ(x)⇒ δϕ(x) = −iαϕ(x); δϕ∗ = iαϕ∗.
Using a suitable multiplicative coefficient to normalize the conserved current Jμ to
the dimension of the electric current, we obtain from (8.197):

α Jμ = e

c�

[
∂L

∂(∂μϕ)
δϕ + ∂L

∂(∂μϕ∗)
δϕ∗

]
= −i

ec

�

[
ϕ∂μϕ∗ − ϕ∗∂μϕ]α. (8.202)

Let us verify the conservation law ∂μ Jμ = 0 explicitly:
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i
�

ec
∂μ Jμ = ∂μϕ∂μϕ∗ + ϕ∂μ∂μϕ∗ − ∂μϕ∗∂μϕ − ϕ∗∂μ∂μϕ

= m2c2

�2 ϕϕ∗ − m2c2

�2 ϕϕ∗ = 0

where we have used the equation of motion (8.199). We shall see in Chap. 10 that
the conserved charge:

Q =
∫

d3xJ 0 = i
e

�

∫
d3x(ϕ∗∂tϕ − ϕ∂tϕ

∗) (8.203)

can be identified with electric charge of a scalar field ϕ interacting with the electro-
magnetic field.

Let us note that if the field were real, ϕ(x) = ϕ∗(x), that is if we had just one field,
there would be no invariance of the Lagrangian and the charge Q would be zero. As
it will be shown in the sequel, this is a general feature: when a field is interpreted as
the wave function of a particle, a real field describes a neutral particle, as it happens
for the photon field Aμ(x) = A∗μ(x), while fields associated with charged particles
are intrinsically complex.

8.9 Hamiltonian Formalism in Field Theory

In the previous section we have described systems with a continuum of degrees of
freedom using the Lagrangian formalism. We want now discuss the dynamics of
such systems using the Hamiltonian formalism. The most direct way to derive the
Hamiltonian description of field dynamics is to use the limiting procedure discussed
in Sect. 8.5.1 for the Lagrangian formalism

Consider a theory describing a field ϕ(x) (let us suppress the internal index α
for the time being). Just as we did in Sect. 8.5.1, we divide the three-dimensional
domain V in which we study the system, into tiny cells of volume δV i , defining the
Lagrangian coordinates ϕi (t) as the mean value of ϕ(x, t) within the i th cell. We
thus have a discrete dynamic system and define the momenta pi conjugate to ϕi as

pi = ∂L(t)

∂ϕ̇i (t)
. (8.204)

The Hamiltonian of the system is given by

H =
∑

i

pi ϕ̇i − L , (8.205)

with equations of motion:

ϕ̇i = ∂H

∂pi
; ṗi = −∂H

∂ϕi
. (8.206)

Recall now from the discussion in Sect. 8.5.1 that, in the continuum limit (δVi

infinitesimal)

http://dx.doi.org/10.1007/978-88-470-1504-3_10
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pi (t) = ∂L

∂ϕ̇i (t)
= δVi

δL

δϕ̇(x, t)
= δVi

∂L(x, t)

∂ϕ̇(x, t)
= δViπ(x, t), (8.207)

where x ∈ δVi and we have defined the field π(x, t) as

π(x, t) ≡ ∂L(x, t)

∂ϕ̇(x, t)
, (8.208)

so that pi (t) represents the mean value of π(x, t) within the i th cell δVi . The field
π(x) is the momentum conjugate to the ϕ(x). Expressing pi (t) in terms of π(x)
through (8.207), upon identifying in the continuum limit δVi = d3x, we may write
the Hamiltonian (8.205) as

H =
∫

V

[π(x)ϕ̇(x)− L(x)]d3x, (8.209)

where we have used the definition (8.110) of Lagrangian density. The integrand in
the above equation:

H = π(x)ϕ̇(x)− L(x), (8.210)

defines the Hamiltonian density. Using the notion of functional derivative, the
Hamilton equations of motion can be derived in a way analogous to (8.106):

δH(t)

δϕ(x, t)
= lim
δV i→0

1

δVi

∂H(t)

∂ϕi (t)
,

δH(t)

δπ(x, t)
= lim
δV i→0

1

δVi

∂H(t)

∂πi (t)
,

(8.211)

and combining (8.106), (8.211) with (8.206) and (8.207) we obtain:

π̇(x) = −δH(t)

δϕ(x)
= −∂H(x)

∂ϕ(x)
, (8.212)

ϕ̇(x) = δH(t)

δπ(x, t)
= ∂H(x)
∂π(x)

. (8.213)

Using the same limiting procedure one can see that the Poisson brackets of two
functionals F[ϕ, π ],G[ϕ, π ] is defined as

{F,G} =
∫

V

(
δF

δϕ(x)

δG

δπ(x)
− δF

δπ(x)

δG

δϕ(x)

)
d3x, (8.214)

so that, the time derivative of F gives:
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Ḟ(t) = ∂F

∂t
+
∫

V

(
δF

δϕ(x)
ϕ̇(x)+ δF

δπ(x)
π̇(x)

)
d3x

= ∂F

∂t
+
∫

V

(
δF

δϕ(x)

δH

δπ(x)
− δF

δπ(x)

δH

δϕ(x)

)
d3x

= ∂F

∂t
+ {F, H}, (8.215)

where we have used (8.212)–(8.213).
In particular, if F does not have an explicit dependence on time:

Ḟ(t) = {F, H}.
In this case the dynamic variable F is conserved if and only if its Poisson bracket
with the Hamiltonian vanishes.

Writing:

ϕ(x, t) =
∫

V

δ3(x − x′)ϕ(x′, t)d3x,

π(x, t) =
∫

V

δ3(x − x′)π(x′, t)d3x,

from the definition of functional derivative we have:

δϕ(x, t)

δϕ(x′, t)
= δπ(x, t)

δπ(x′, t)
= δ3(x − x′). (8.216)

Applying this relations we find:

{ϕ(x, t), H} = δH

δπ(x, t)
, (8.217)

{π(x, t), H} = − δH

δϕ(x, t)
, (8.218)

and using the Hamilton (8.212)–(8.213):

ϕ̇(x, t) = {ϕ(x, t), H}, (8.219)

π̇(x, t) = {π(x, t), H}. (8.220)

From (8.216) we also derive the fundamental relations:

{ϕ(x, t), π(x′, t)} = δ3(x − x′), (8.221)

{ϕ(x, t), ϕ(x′, t)} = {π(x, t), π(x′, t)} = 0. (8.222)
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In order to simplify notation, we have developed the Hamilton formalism using just
one field. If we have several fields in some non trivial representation of a group G,
we need an additional index α. The extension of the previous formalism to several
fields is, however, straightforward. For example the momenta conjugate to the fields
are defined as

πα(x) ≡ ∂L(x)
∂ϕα(x)

. (8.223)

Similarly, in defining the Poisson brackets, we need, besides the integration on the x
variable, also a sum over the index α:

{F,G} =
∑
α

∫

V

(
δF

δϕα(x)

δG

δπα(x)
− δF

δπα(x)

δG

δϕα(x)

)
d3x. (8.224)

Furthermore, the relations (8.221)–(8.699) generalize as follows:

{ϕα(x, t), πβ(x′, t)} = δαβδ3(x − x′), (8.225)

{ϕα(x, t), ϕβ(x′, t)} = {πα(x, t), πβ(x′, t)} = 0. (8.226)

An important case is that of two real scalar fieldsϕ1, ϕ2 which, as shown in Sect. 8.8.1,
is equivalent to a single complex scalar field and its complex conjugate. In this case,
using the real notation we have indices α, β = 1, 2. If however, as we shall mostly
do in the next Chapters, we use the complex scalar fields ϕ(x, t), ϕ∗(x, t), then the
Poisson brackets (8.225) become

{ϕ(x, t), π(y, t)} = δ3(x − y), (8.227)

{ϕ∗(x, t), π∗(y, t)} = δ3(x − y), (8.228)

all the other Poisson brackets being zero.

8.9.1 Symmetry Generators in Field Theories

We have seen in Sect. 8.4.1 that the infinitesimal generators of continuous canonical
transformations δθr Gr (t) generate transformations δqi , δpi leaving the Hamilton
equations in the standard form (8.67)–(8.212). Moreover, when the Hamiltonian
is left invariant, H ′ = H , for each parameter θr associated with the continuous
symmetry group G, the infinitesimal generator Gr (t) provides a constant of motion
which coincides with the “charge” given by Noether theorem.

The same of course applies for continuous theories described by fields, namely,
the generators of canonical symmetry transformations of a field theory are precisely
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the conserved Noether charges. Therefore, in analogy with (8.92) and (8.93), we may
write:

δϕα(x, t) = −{ϕα(x, t),G(t)} (8.229)

δπα(x, t) = −{πα(x, t),G(t)}. (8.230)

where G(t) ≡ δθr Gr (t). When the Hamiltonian is left invariant it coincides with
the charge Q(t) ≡ δθr Qr (t) of the Noether theorem.

In the case of Poincaré transformations given by space–time translations and
Lorentz transformations, let us show that the infinitesimal generator has the following
form:

G(t) = −εμPμ(t)+ 1

2
δθμν Jμν(t), (8.231)

where the explicit expression of the generators is obtained from (8.169) and (8.190)
identifying ∂L

∂ϕ̇α
≡ πα:

Pρ =
∫ (

πα(x, t)∂ρϕα(x, t)− η0ρL(x)
)
δ3x, (8.232)

Jρσ = −
[∫ (

πα(x, t)(Lρσ )
α
βϕ

β(x, t)+ (xρPσ − xσPρ

)]
d3x. (8.233)

Let us first consider the case of space–time translations, that is we take G(t) =
−εμPμ. Taking into account the fundamental Poisson brackets (8.225) and the gen-
eral formulae (8.229), (8.230), we obtain:

δϕα = −{ϕα(x, t), [−ερ Pρ(t)]} = ερ δPρ(t)

δπα
(x, t) = ερ∂ρϕα(x, t), (8.234)

so that, for time or space translations we find, respectively:

δϕα = δt{ϕα(x, t), H(t)} = δt∂tϕ
α, (8.235)

δϕα = εi {ϕα(x, t), Pi (t)} = εi∂iϕ
α = ε ·∇ϕα, (8.236)

where ε ≡ (εi ).

For infinitesimal canonical transformations generated by Jμν we find

δϕα = −δθ
ρσ

2
{ϕα(x, t), Jρσ (t)} = −δθ

ρσ

2

δ Jρσ
δπα

(x, t)

= δθμν

2

[
(Lμν)

α
βϕ

β + (xμ∂ν − xν∂μ)ϕ
α
]
. (8.237)

Let us now compute the infinitesimal change of the Hamiltonian:
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δH = H(ϕ′, π ′)− H(ϕ, π) =
∑
α

∫ (
δH

δϕα
δϕα + δH

δπα
δπα

)
d3x.

= −
∑
α

∫ (
δH

δϕα

δG

δπα
− δH

δπα

δG

δϕα

)
d3x

= −{H,G(t)}. (8.238)

If the transformations are a symmetry of the Hamiltonian, δH = ∂G
∂t , see (8.99) and

(8.100), and we recover the result that G(t) is a conserved quantity:

dG

dt
= {G(t), H} + ∂G

∂t
= 0, (8.239)

As an example let us consider Lorentz boosts for which δH �= 0 since it transforms
as the 0-component of the four vector Pμ; infinitesimally we have:

δP0 ≡ 1

c
δH = −θ0i {H, J0i }. (8.240)

On the other hand

δP0 = δθ0μPμ = δθ0i Pi ,

so that combining the two expressions of δP0 we find: {H, J0i } = −cPi . Now if we
consider the component 0i of (8.233) we see that when the Lorentz indexρ = 0, it car-
ries an explicit time dependence in the second term, namely− ∫ d3x (x0Pi−xiP0) .

It follows:

d J0i

dt
= −{H, J0i } + ∂ J0i

∂t
= cPi − c

d

dt

∫
d3xtPi = cPi − cPi = 0, (8.241)

and therefore J0i is also conserved, in agreement with the Noether theorem.

Reference

For further reading see Refs. [1], [2] (Vol. 1)



Chapter 9
Quantum Mechanics Formalism

9.1 Introduction

In this chapter we give a concise review of the quantum mechanics formalism from
a perspective which generalizes the ordinary Schroedinger formulation. In this way
we may reconsider the Schroedinger approach to quantum mechanics from a more
geometrical and group-theoretical point of view and show the close relationship
between the classical Hamiltonian theory and quantum mechanics. Moreover the
formalism developed in this Chapter will be useful for an appropriate exposition of
the relativistic wave equations in Chap. 10 and the field quantization approach in
Chap. 11.

9.2 Wave Functions, Quantum States and Linear Operators

In elementary courses in quantum mechanics the state of a system is described by
a wave function ψα(ξ, t) where the variables ξ denote the set of the coordinates on
which the wave function depends and the suffix α refers to a set of (discrete) phys-
ical quantities, or quantum numbers, which, together with ξ, define the state of the
system. In the Schroedinger approach the variables ξ comprise the space coordinates
x = (x, y, z) while, if spin is present, the variable α labels the corresponding
polarization state. In this case ψα(x; t) is referred to as the wave function in the
coordinate representation. In this section we wish to adopt the Dirac formalism
which allows a quantum description of a system that is independent of its explicit
coordinate representation. Since in all the considerations of this section we refer to
states at a particular instant t, the time coordinate will not be indicated explicitly.

We recall that the essential difference between quantum theory and classical
mechanics resides in the different characterization of the concept of state of a phys-
ical system. According to a more general point of view than the wave function
description, any quantum state can be characterized, independently of the particular

R. D’Auria and M. Trigiante, From Special Relativity to Feynman Diagrams, 263
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representation, by a complex vector in an abstract finite or infinite dimensional com-
plex vector space hereafter denoted as V (c). The vector nature of quantum states is
in agreement with the superposition principle of quantum mechanics, assuring that
any linear combination of quantum states is again a quantum state. In this chapter we
shall be dealing with single particle states. As we presently show the wave function
description of the quantum state will then appear as the set of components of the state
vector along a particular basis.

For the sake of clarity let us first consider the particular case of a finite dimensional
space V (c) endowed with a hermitian scalar product. To recall the Dirac formalism
and to fix the conventions, let us briefly sketch out the defining properties of V (c).

We introduce a n-dimensional complex vector space V (c)
n (see Chap. 7 for a formal

introduction to the concept of complex vector space), whose elements are called kets,
on which the observable dynamic quantities act as linear operators. Using the ket
notation an element a ∈ V (c)

n is denoted by the symbol |a〉 and a basis {ui } of V (c)
n

by {|ui 〉}, (i = 1, . . . , n).
We define on V (c)

n a hermitian scalar (or inner) product associating with each
pair of elements |a〉, |b〉 ∈ V (c)

n a complex number that is denoted by 〈a|b〉,
|a〉, |b〉 ∈ V (c)

n → 〈a|b〉 ∈ C,

with the following properties:

〈a|b〉 = 〈b|a〉∗, (9.1)

〈a|a〉 ≥ 0; 〈a|a〉 = 0⇒ |a〉 = 0, (9.2)

〈a| (α|b〉 + β|c〉) = α〈a|b〉 + β〈a|c〉, ∀α, β ∈ C. (9.3)

Two vectors are said to be orthogonal if

〈a|b〉 = 0.

We may thus associate, by means of the scalar product, with each |a〉 a dual vector
“bra” 〈a| defining a linear correspondence from V (c)

n to C

〈a| : |b〉 ∈ V (c)
n → 〈a|b〉 ∈ C. (9.4)

From the properties of the scalar product it follows that the bra corresponding to the
ket α|b〉+β|c〉 is 〈b|α∗ +〈c|β∗. The squared norm ‖a‖2 of a state |a〉 is the quantity
〈a|a〉, which is strictly positive if |a〉 is non-zero. The distance d of two elements
|a〉, |b〉 is then defined as

d(a, b) = √
(〈a| − 〈b|) (|a〉 − |b〉).

A state in quantum mechanics is associated with a vector of V (c)
n modulo multipli-

cation by a complex number, that is parallel vectors |a〉 and α|a〉, α ∈ C define the
same quantum state:

http://dx.doi.org/10.1007/978-88-470-1504-3_7
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quantum state↔ {|a〉} ≡ {α|a〉|α ∈ C}. (9.5)

In general we shall choose to describe states by unit norm vectors |a〉 : ‖a‖2 =
〈a|a〉 = 1. This of course fixes the vector associated with a given state modulo an
arbitrary phase factor. In next section we shall comment on a convenient choice of
such factors.

Recalling the definition given in Sect. 7.2, a linear operator F̂ on the vector space
V (c)

n is defined as a (not necessarily invertible) mapping from V (c)
n into itself:

F̂ : |v〉 ∈ V (c)
n → |Fv〉 ≡ F̂ |v〉 ∈ V (c)

n , (9.6)

satisfying the linearity condition (7.3) which, in our new notations, reads:

F̂(α|v〉 + β|w〉) = α F̂ |v〉 + β F̂ |w〉, ∀α, β ∈ C. (9.7)

Linear transformations are invertible operators on V (c)
n . Of particular physical rele-

vance in quantum mechanics is the notion of expectation value 〈F̂〉 of an operator F̂
on a state |a〉:

〈F̂〉 ≡ 〈a|F̂ |a〉〈a|a〉 .

Let |ui 〉, i = 1, . . . , n, be a basis of ket vectors in V (c)
n , and let 〈ui | be the dual basis

of bra vectors. The basis |ui 〉 is said to be orthonormal if

〈ui |u j 〉 = δi
j . (9.8)

With respect to this basis F̂ can be represented by a matrix F ≡ (Fi
j ), see (7.6) and

footnote 2 of Chap. 7:

|ui 〉 F̂−→ |Fui 〉 ≡ F̂ |ui 〉 = F j
i |u j 〉, (9.9)

that is, using (9.8)

Fi
j = 〈ui |F̂ |u j 〉.

Clearly if F̂ is not invertible, and thus is not a transfromation, the matrix F is singular
and the vectors |Fui 〉 do not form a new basis.

The identity operator Î on V (c)
n can be written in the form

Î =
n∑

i=1

|ui 〉〈ui |, (9.10)

since it can be easily verified, using the orthonormality of the basis, that Î |ui 〉 = |ui 〉,
for all i = 1, . . . , n. The corresponding matrix representation is the n × n identity
matrix 1 ≡ (δi

j ).
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In quantum mechanics there are two classes of operators which play a special
role: The hermitian and the unitary operators. Both of them can be characterized by
their properties with respect to their hermitian conjugate operators.

The hermitian conjugate F̂† of F̂, is defined as the operator such that

∀|a〉, |b〉 ∈ V (c)
n , 〈a|F̂ |b〉 = 〈b|F̂†|a〉∗,

or, equivalently, 〈a|Fb〉 = 〈F†a|b〉. This definition implies that 〈Fb| ≡ 〈b|F̂† is the
bra of F̂ |b〉. F̂ is a hermitian operator iff F̂ = F̂†, or, equivalently

Fi
j = 〈ui |F̂ |u j 〉 = 〈u j |F̂†|ui 〉∗ = 〈u j |F̂ |ui 〉∗ = (F j

i )
∗,

that is, the matrix representing it coincides with the conjugate of its transposed
(hermitian conjugate): F = F† ≡ (FT )∗, and is therefore a hermitian matrix.
In other words an operator is hermitian if and only if its matrix representation
with respect to an orthonormal basis is hermitian. From this it clearly follows that
the expectation value of a hermitian operator on any state is a real number since
〈a|F̂ |a〉 = 〈a|F̂†|a〉 = 〈a|F̂ |a〉∗.

A unitary operator U is defined by the condition

UU † = U †U = Î . (9.11)

From the above definition we derive the corresponding unitarity property of the
matrix U = (Ui

j ) representing U :

δi
j = 〈ui |u j 〉 = 〈ui |U †U |u j 〉 =

n∑

k=1

〈ui |U †|uk〉〈uk |U |u j 〉 =
n∑

k=1

(U k
i )
∗U k

j ,

i.e. U†U = 1. While a hermitian operator is not necessarily invertible, a unitary one
is, being the corresponding matrix U non-singular: |detU|2 = 1. Unitary operators
are therefore linear transformations and their geometrical and physical meaning
will be discussed in the next section. It can be shown, from the properties of the
corresponding matrix representations, that both hermitian and unitary operators are
diagonalizable, namely admit n linearly independent eigenvectors, and, moreover,
have the following important properties:

(a) The eigenvalues of hermitian operators are real;
(b) The eigenvalues of unitary operators have unit complex modulus;
(c) The eigenvectors |λ1〉, |λ2〉 corresponding to two different eigenvalues λ1, λ2

are orthogonal.

Having defined the relevant mathematical objects, let us recall their relation to
our physical world within quantum mechanics and in particular the role of hermitian
operators. In quantum mechanics physical observables O, like energy, momentum,
position etc. are represented by hermitian operators Ô acting on states and their
expectation value on a given state |a〉 is defined as
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〈O〉 ≡ 〈a|Ô|a〉‖a‖2 . (9.12)

This quantity has the following interpretation: If infinitely many identical systems
are prepared in a state |a〉, a measurement of the observable O on them will give a
statistical distribution of results about an average value 〈O〉. The hermitian property
of Ô, i.e. Ô† = Ô, then guarantees that its expectation value in (9.12) be a real
number, as a measurable quantity should be. The eigenvalues λi of Ô represent all
possible values that the actual measurement of O can give on the system and the
corresponding eigenvectors |λi 〉 describe states characterized by the values λi of O.

Given two states |a1〉, |a2〉, the quantity

P(|a1〉, |a2〉) ≡ |〈a2|a1〉|2
‖a2‖2‖a2‖2 , (9.13)

represents the probability of finding, upon measurement, a system which was initially
prepared in the state |a1〉, in the state |a2〉, characterized, for instance, by a definite
value of a quantity we are measuring. P(|a1〉, |a2〉) is also called transition proba-
bility from the state |a1〉 to |a2〉. For instance P(|λi 〉, |a〉) represents the probability
that the measurement of an observable O on the state |a〉 yield the value λi . Note that
neither of the two measurable quantities (9.12), (9.13) depends on the normalization
of the state vectors. Such normalization, as anticipated earlier, is unphysical and can
be fixed at convenience.

We also recall the concept of a complete set of commuting observables, as a
maximal set of observables represented by commuting operators. It has a considerable
importance in quantum mechanics, since by measuring the value of such a set of
observables on the system, the state vector is uniquely determined: It is the common
eigenvector associated with the eigenvalues of the corresponding hermitian operators.

So far the dimension of the vector space V (c) was taken to be finite. Let us now
suppose the number of dimensions to be infinite as it happens in quantum mechanics
when the eigenvalues of operators representing physical observables form an infinite
but discrete set. Then, if every Cauchy sequence of vectors converges to an element
of the space, we say that our complex infinite-dimensional vector space is a Hilbert
space.1

We introduce an orthonormal basis in the Hilbert space given by the eigenfunc-
tions of a hermitian operator F̂, which we suppose to have a discrete spectrum of
eigenvalues {Fi }, n = 1, . . . ,∞. We may expand the state vector |a〉 of the Hilbert
space along the orthonormal eigenvectors {|Fi 〉}, labeled by the eigenvalues Fi of F̂

|a〉 =
∞∑

i=1

ai |Fi 〉. (9.14)

1 We recall that a Cauchy sequence is any sequence of elements φn such that limm,n→∞ d(φn,

φm) = 0.
In particular, the finite dimensional space V (c)

n treated so far is trivially a Hilbert space.
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By definition the wave function describing the state |a〉 in the F-representation is the
totality of the infinite coefficients of the expansion, namely the components ai of the
state vector along the eigenvectors {|Fi 〉}. Since we are using an orthonormal basis,
each component ai can be written as the scalar product between the bra 〈Fi | and the
ket |a〉.2

ai = 〈Fi |a〉. (9.15)

Actually the Hilbert space does not cover the description all the possible quantum
states of a physical system. Indeed when the eigenstates of a hermitian operator
belong to a continuous spectrum of eigenvalues (or to a discrete set of values followed
by a continuous one), it is necessary to enlarge the Hilbert space to include generalized
functions, like the Dirac delta function, and we may thus have non-renormalizable
wave-functions.In this case we must allow for the dimensions of the vector space
to be labeled by continuous variables and, correspondingly, the sum in (9.14) to be
replaced by an integral over the continuous set of eigenvalues (or by an integral and
a sum over the discrete part of the spectrum).

This is the case, for instance, of the coordinate operator F̂ = x̂ ≡ (x̂, ŷ, ẑ),
the momentum operator F̂ = p̂ ≡ ( p̂x , p̂y, p̂z), as well as the energy operator for
certain systems. As far as the coordinate or momentum operators are concerned, the
integral should be computed over the corresponding eigenvalues F = x = (x, y, z)
or p = (px , py, pz) and the wave function 〈F |a〉 becomes a continuous function of
F: ψ(a)(F).

For quantum states defined in V (c) the coordinate representation is defined by
taking F̂ ≡ x̂ so that the expansion (9.14) takes the form

|a〉 =
∫

V
d3x〈x|a〉|x〉, (9.16)

where d3x ≡ dx dy dz and each eigenvector |x〉 describes a single particle localized
at the point x = (x, y, z) in space. It is defined by the equation x̂|x〉 = x|x〉. The
volume V of integration can be finite or infinite, that is coinciding with the whole
space R

3.In this framework, the wave function ψ(a)(x) of the Schrödinger’s theory,
describing the state |a〉, is the continuous set of the components of the ket |a〉 along
the eigenvectors of the position operator x̂ : ψ(a)(x) = 〈x|a〉. By right multiplication
of both sides of (9.16) with 〈x′| we find

〈x′|a〉 = ψa(x′) =
∫

d3xψa(x)〈x′|x〉. (9.17)

2 Indeed the expansion (9.14) is quite analogous to the expansion of an ordinary vector v along a
orthonormal basis ui in a finite dimensional space

v =
∑

i

vi ui =
∑

i

ui (ui · v)

and the “wave function” representation {〈F |v〉} of v corresponds to the representation of the vector
in terms of its components along the chosen basis: v ≡ {vi }.
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We see that for consistency we must set

〈x′|x〉 = δ3(x′ − x). (9.18)

The above normalization equation can be interpreted as the definition of the wave
function ψx(x′) describing the ket |x〉 in the coordinate representation. Such eigen-
function is no ordinary function, but belongs to the class of generalized or improper
functions. The reader can then easily verify that the identity operator Î can be
expressed in this basis as follows: Î = ∫

d3x|x〉〈x|, which generalizes (9.10) to
a basis labeled by a triplet of continuously varying variables [i.e. (x, y, z)]. Restor-
ing for the moment the explicit dependence of the quantum state |a, t〉 on time, the
(time-dependent) wave function is defined as

ψ(a)(x, t) = 〈x|a, t〉. (9.19)

Note that since d3x has dimension L3, in order for (9.16) to be consistent the state
|x〉 has to be dimensionful, of dimension L− 3

2 . This is in agreement with the nor-
malization (9.18).

There is a one-to-one correspondence between states and wave-functions which
satisfies the property that a linear combination of states corresponds to the same linear
combination of the wave functions representing them (the space of wave function is
said to be isomorphic to V (c)). In particular we can write a hermitian scalar product
on wave functions which reproduces with the inner product between states:

〈b|a〉 = 〈b| Î |a〉 =
∫

V
d3x〈b|x〉〈x|a〉 =

∫

V
d3xψ(b)(x)∗ψ(a)(x), (9.20)

so that we can write the squared norm ‖a‖2 of a state as

‖a‖2 = 〈a|a〉 =
∫

d3x|ψ(a)(x)|2. (9.21)

We conclude that states with finite norm (i.e. normalizable) correspond to square
integrable wave functions, belonging to the Hilbert space L2(V ).

Let us recall, for completeness, the probabilistic interpretation of a wave function
ψ(x, t), normalized to one, in quantum mechanics: The quantity |ψ(x, t)|2dV mea-
sures the probability of finding the particle within an infinitesimal volume dV about
x at a time t .

To complete the correspondence between abstract states and their wave function
representation, we observe that operators acting on states correspond to differential
operators acting on the corresponding wave functions:

|b〉 ≡ Ô|a〉 ⇔ ψ(b)(x) = Ô(x,∇)ψ(a)(x), (9.22)

where Ô(x,∇) is a local differential operator. For example, as we shall review in
Sect. 9.3.1, the momentum operator p̂ is implemented on wave functions by the oper-
ator −i�∇. Observables quantities are represented by differential operators which
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are hermitian with respect to the inner product (9.20). For the time being, we shall
denote abstract operators and their differential representation on wave functions by
the same symbol. Eigenstates |λi 〉 of an observable Ô are represented by eigen-
functions ψi (x) of the corresponding differential operator, solution to a differential
equation:

Ô|λi 〉 = λi |λi 〉 ⇔ Ô(x, �∇)ψi (x) = λiψi (x). (9.23)

The eigenstates of p̂ are then represented by the functions ψp(x) ∝ e
i
�

p·x.
It is apparent from our analysis thus far, that our space V (c) also contains states

with no finite norm, whose wave functions are therefore not in L2(V ). Simple exam-
ples are given by eigenstates of the x̂ or of the p̂ operators, represented, respectively,

by delta functions and by e
i
�

p·x. The norm of the latter is indeed infinite if the space

V is infinite:
∫

V d3x|e i
�

p·x|2 = ∫
V d3x = ∞.3 Although the physical (probabilis-

tic) interpretation of non-normalizable wave functions is more problematic (we can
however define relative probabilities as the ratio of the probabilities associated with
two finite space intervals), as we saw for the case of the position eigenstates, they
are useful to express wave functions which are L2(V ).4 Let us emphasize here the
different role played in non-relativistic quantum mechanics by the space and time
variables x, t . Just as in classical mechanics, the former are dynamical variables
while the latter is a parameter. By this we do not mean that the argument x inψ(x, t)
should be intended as the position of the particle at the time t , since we adopt for
the probability distribution in space the analogue of the Eulerian point of view in
describing the velocity distribution of a fluid in fluid-dynamics.

If we have a system of N non-interacting particles, the corresponding space of
quantum states is the tensor product of the spaces describing the quantum states of
each particle (see Chap. 4, Sect. 4.2). We can therefore consider as a basis of the
N-particle states the vectors:

|x1〉|x2〉 . . . |xN 〉 ≡ |x1〉 ⊗ |x2〉 ⊗ . . .⊗ |xN 〉,

3 As we shall see in Sect. 9.3.1, when dealing with free one-particle states, we can avoid the use of
non-renormalizable wave functions, generalized functions Dirac delta-functions etc, by quantizing
the physical system in a box. In this case, instead of considering the whole R

3 as the domain of
integration, we take a large box of finite volume V, so that the functions which were not
L2(−∞;+∞)-integrable become now L2(V )-integrable. In this way we may always restrict our-
selves to considering the Hilbert space of functions defined over a finite volume.
4 This is not an uncommon feature. For example in the Fourier integral transform

f (x) = 1√
2π

∫
dpF(p)eipx ,

if f (x) ⊂ L2(−∞;+∞), so does its Fourier transform. However the basis functions 1√
2π

eipx are

not in L2(−∞;+∞) since | 1√
2π

eipx |2 = 1
2π .
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also denoted by |x1, x2, . . . xN 〉, describing the particles located in x1, x2, . . . , xN .
The corresponding representation of a state |a, t〉 is described by the wave function:

ψ(x1, x2, . . . , xN , t) ≡ 〈x1|〈x2| . . . 〈xN |a, t〉.

Let us come back now to a single particle system.
Similarly to what we have done when defining the coordinate representation, we

can choose to describe a state |a〉 in the momentum representation by expanding it
in a basis of eigenvectors |p〉 of the momentum operator:

|a〉 =
∫

d3p〈p|a〉|p〉 =
∫

d3pψ̃(a)(p)|p〉, (9.24)

where p̂|p〉 = p|p〉, and ψ̃(a)(p) is the wave function in the momentum repre-
sentation.

As previously pointed out, the state of a system can be completely characterized
in terms of a complete set of observables. Therefore a single particle state can be
identified not just by a certain position x (or momentum p), but also by its spin state,
since the spin operator Ŝ commutes with x̂ (and p̂). Let us label the spin state of a
particle by a discrete index α (representing for instance the eigenvalues of Ŝ2, Ŝz).
We can then take as a basis of the Hilbert space either {|x, α〉} or {|p, α〉}. In the
former case, normalizing the basis elements as follows

〈x, α|x′, α′〉 = δ3(x − x′)δαα′ , (9.25)

Equation (9.16) generalizes to

|a〉 =
∫

d3x
∑
α

|x, α〉〈x, α|a〉 =
∫

d3x
∑
α


α(a)(x)|x, α〉, (9.26)

the wave function being defined by 
α(a)(x) ≡ 〈x, α| a〉. Restoring the explicit
dependence on time the above definition reads


α(a)(x, t) = 〈x, α|a, t〉. (9.27)

We stress that the wave function 
(a)(x) is a c-number field, that is a classical
field.5 As an example, the electromagnetic potential in the Coulomb gauge A(x) =
εkei(k·x−ωt) can be thought of as the wave function6 describing a photon in the
state |a〉 = |�k, α〉, where p = �k is the momentum and, recalling that in the
Coulomb gauge εk · k = 0 (see Chap. 6), the index α = 1, 2 labels the two physical
polarizations in the plane orthogonal to k.

5 As we shall see in Chap. 11 a consistent interpretation of a quantum relativistic theory requires
that the interpretation of 
(a)(x) as a quantum mechanical wave function must be abandoned and
that the classical field be promoted to a quantum mechanical operator.
6 Clearly a normalization factor should be used when giving this interpretation since Aμ has dimen-

sion (Newton)
1
2 and not (length)

3
2 , as a wave.

http://dx.doi.org/10.1007/978-88-470-1504-3_6
http://dx.doi.org/10.1007/978-88-470-1504-3_11
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We may of course describe the state in other representations. If we take, for exam-
ple, the complete set of the eigenfunctions of the Hamiltonian operator, possessing
a discrete spectrum of eigenvalues En and eigenstates |En〉

|a〉 =
∑

En

|En〉〈En|a〉,

the set 〈En|a〉 will now represent the wave function of the same state in the energy
representation. Its relation to the wave function in the coordinate representation is
given by

〈x|a〉 =
∑

n

〈x|En〉〈En|a〉, (9.28)

〈x|En〉 being the eigenfunctions of the Hamiltonian.

9.3 Unitary Operators

As pointed out in Sect. 7.2, when describing transformations in three-dimensional
Euclidean space or in Minkowski space, we have adopted the so-called passive point
of view, that is we have assumed that transformations (rotations, translations, Lorentz
transformations etc.) act on the reference frame {O,ui } → {O ′,u′i }while points and
vectors are fixed. That means that the geometrical meaning of vectors and points is
not altered by a transformation, only their description in terms of coordinates or
components undergoes a change.

This same point of view was adopted in Chap. 7 for the description of the trans-
formation of a field under a change in coordinates. There, writing φ′(x ′) = φ(x) we
were considering the transformation x ′ = f (x) from a passive point of view. How-
ever we pointed out that the transformation φ(x)→ φ′(x) with φ′(x) = φ( f −1(x))
could also be considered from an active point of view, thereby putting the emphasis
on the functional change of φ.

In the following transformations on the Hilbert space of states, namely on the ket
vectors |v〉, will be mainly considered for the time being from the active point of
view. That means that we will describe a linear transformation U on a ket-vector as
acting on the vector itself, while the basis with respect to which it is described is kept
fixed:

|v〉 → |v′〉 = |Uv〉 ≡ U |v〉,

where U is a linear transformation. Here both |v′〉 and |v〉 are then represented in
components with respect to the same basis |ui 〉 defined by the simultaneous eigen-
states of a complete system of observables.7 This means that the effect of a space–time

7 We warn the reader that, in the case of space–time transformations, the orthonormal basis |ui 〉 has
nothing to do with the space, or space–time, reference frame which undergoes the transformation.

http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_7
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coordinate transformation is described at the level of quantum states by means of the
action of an operator mapping the original state vector of the system into a new one.

To motivate this consider, for example, a particle that, with respect to a reference
frame S has definite momentum p and thus is in a state |p〉. In a different frame S ′,
obtained by a rotation R of the first, the same particle will be described as having a
momentum p′ = Rp, that is as being in the new quantum state |p′〉, different from
the original one |p〉. The effect of the transformation is then to change the quantum
state of the system and thus is naturally described on the space of states from an
active point of view: The new state results from the action of an operator U on the
old one: |p′〉 = U |p〉. Such active description of a transformation is referred to as the
Schroedinger representation. We shall also consider the Heisenberg representation
in which operators rather than states are affected by a transformation, and which
realized the passive description of transformations on a quantum system.

Let us choose an orthonormal basis {|ui 〉} for the Hilbert space of states (e.g. the
eigenstates of the momentum operator). The action of an operator U from the active
point of view was described in (7.6), (7.7) and, in the new notations, in (9.9). In the
chosen basis the transformation U is represented by a non singular matrix U = (Ui

j ).
If we write the original state |v〉 and the transformed one |v′〉 ≡ |Uv〉 ≡ U |v〉 in
components with respect to the same basis {|ui 〉}

|v〉 = vi |ui 〉, |v′〉 = v′i |ui 〉, (9.29)

the old an new components are related by the action of U : v′i = Ui
jv

j . If the
basis elements form a denumerable infinity, then U has infinitely many rows and
columns. If the basis elements form a non-denumerable infinity, as it is the case for
the coordinate (or momentum) representation, the action of U is more conveniently
expressed in terms of a differential operator on wave functions. We may consider
transformations belonging to a group G, like the Lorentz transformations. In this case
U provides a representation of G on the space of states (which is more appropriately
called realization if the transformations are realized in terms of differential operators
on wave functions):

g ∈ G : |a〉 ∈ V (c) g−→ |a′〉 = |ga〉 = U (g)|a〉,
∀g1, g2 ∈ G : U (g1 · g2) = U (g1) ·U (g2). (9.30)

The transformation U (g) on states, associated with a coordinate transformation g,
must be defined in such a way that the expectation value 〈O〉 of any observable
quantity, like the position vector x or the linear momentum p, transform correctly
under g. For instance we must have that the expectation value of the position operator
x̂ = (x̂ i ) on a particle state |a〉 transforms under a rotation R ∈ SO(3) as the position
vector x of a classical particle, namely as follows:

〈xi 〉 ≡ 〈a|x̂ i |a〉 R−→ 〈xi 〉′ = 〈Ra|x̂ i |Ra〉 = Ri
j 〈xi 〉. (9.31)

We recall that in quantum mechanics given two states |b〉 and |a〉, the probability
of transition from |a〉 to the state |b〉 is given by (or it is proportional to) |〈b|a〉|2,

http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_7
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if the state is normalizable (or not normalizable), see (9.13) Since this probability is a
measurable quantity, it must have the same value in every reference frame. It follows
that the action of a generic element g of the transformation group G, represented on
states by the operator U, must leave |〈a|b〉|2 invariant for any pair of kets |a〉 e |b〉.
In formulae, if

∀g ∈ G :
{ |a〉
|b〉

g−→
{ |a′〉 = |ga〉 = U (g)|a〉
|b′〉 = |gb〉 = U (g)|b〉 , (9.32)

is the action of g ∈ G on the given kets, we require that:

|〈a|b〉|2 = |〈a′|b′〉|2 = |〈a|U (g)†U (g)|b〉|2.
A theorem by Wigner, which we are not going to prove, states that it is possible to
fix the multiplicative phases in the definition of the (unit norm) state vectors in such
a way that that U (g) is either unitary

〈a|U (g)†U (g)|b〉 = 〈a|b〉 ⇒ (g)† = U (g)−1,

or antiunitary8

〈a|U (g)†U (g)|b〉 = 〈a|b〉∗.

We shall show in the next Chapter that the discrete transformation t → −t called
time reversal is an example of antiunitary operator. Clearly not all transformations
of a group G can be realized as antiunitary operators, since, as the reader can easily
verify, the product of two antiunitary transformations is unitary.

If U (g) is unitary for any g ∈ G,we say that U defines a unitary representation of
G on V (c). In the following we restrict our discussion to the unitary representations
only:

∀g ∈ G : U (g)†U (g) = U (g)U (g)† = Î .

According to our analysis of Lie algebras in Chap. 7, the structure of a Lie group G
in a neighborhood of the identity element U (g0) = Î is captured by the Lie algebra
A of infinitesimal generators, so that a generic element U (g) can be expressed as
the exponential of an element of A:

U (g) = e
i
�
θr Ĝr , (9.34)

8 An antiunitary operator Â does not fit the definition of linear operators given in (9.7). In fact Â is
an example of an antilinear operator define by the property

Â(α|v〉 + β|w〉) = α∗ Â|v〉 + β∗ Â|w〉, ∀α, β ∈ C. (9.33)

http://dx.doi.org/10.1007/978-88-470-1504-3_7
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where (θr ) are the parameters defining the element g of G and Ĝr is a basis of A
and consists of operators in the quantum-space states V (c). Note that, with respect to
notation used in Chap. 7, the infinitesimal generators here are rescaled by a factor i/�.
As usual infinitesimal transformations, parametrized by δθr � 1, can be expressed
by truncating the exponential to first order in the parameters:

U (g) ≈ Î + i

�
δθr Ĝr . (9.35)

Writing the unitary condition to first order in the infinitesimal parameters δθr we
find the following property of the infinitesimal operators:

U (g)†U (g) = U (g)U (g)† = Î ⇔
(

Î + i

�
δθr Ĝ†

r

) (
Î − i

�
δθr Ĝr

)

� Î + i

�
δθr (Ĝ†

r − Ĝr ) = Î ⇔ G†
r = Ĝr ,

namely we find that the infinitesimal generators Ĝr , defined in (9.34), are hermitian.
The hermiticity condition allows us to associate each Gr with observable quantities
that is to operators whose eigenvalues are real and therefore interpretable as the
result of a measurement of a physical quantity.9 In Chaps. 4 and 7, see Sect. 7.3,
the exponential representation of a finite transformation in (9.34) was motivated by
the fact that any finite transformation can be realized by iterating infinitely many
infinitesimal transformations. If F̂ = θr Ĝr/� is a finite element of A, iterating
a large number n � 1 of times the infinitesimal transformation generated by the
infinitesimal element 1

n F̂, in the limit n→∞, we generate a finite group element

U = lim
n→∞

(
1+ i

n
F̂

)n

= Î + i F̂ + i2

2! F̂
2 + · · · = ei F̂ . (9.36)

By suitably choosing F̂ we can reach, through the exponential map (9.36), any
element of G in a finite neighborhood of the identity.

So far we have described the effect of transformations (e.g. of coordinate trans-
formations closing a group G) on the quantum description of a system in terms of the
action of unitary operators on the state vectors. Such description defines the so called
Schrödinger picture (or representation), in which the state of a system belongs to a
unitary representation of the transformation group G. As explained above, the condi-
tion defining such unitary action is that the expectation value 〈Ô〉 of an observable Ô
on a state |a〉 transform under a change in the RF as the corresponding classical
quantity O:

〈O〉 ≡ 〈a|Ô|a〉 U−→ 〈O〉′ = 〈a′|Ô|a′〉 = 〈a|U †ÔU |a〉. (9.37)

We can adopt an alternative description, called the Heisenberg representation, in
which transformations affect the operators Ô associated with observables, leaving

9 Note that the imaginary unit i in (9.34) has been inserted in order to deal with hermitian generators

http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_7
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state vectors unchanged. Since in both representations the effect of a transformation
on the expectation value 〈O〉 of an observable should be the same, we deduce the
following transformation rules in the Heisenberg picture:

Ô U−→ Ô′ = U †ÔU ; |a〉 ∈ V (c) U−→ |a〉. (9.38)

If U represents a Lie group of transformations G, we can consider the effect on Ô
of an infinitesimal transformation defined by parameters δθr � 1:

Ô′ =
(

Î − i

�
δθr Ĝr

)
Ô

(
Î + i

�
δθr Ĝr

)
= Ô + i

�
δθr [Ô, Ĝr ] = Ô + δÔ,

where we have neglected second order terms in δθ and used the property Ĝ†
r = Ĝr .

We deduce that

δÔ = Ô′ − Ô = i

�
δθr [Ô, Ĝr ]. (9.39)

Compare now (9.39) with (8.95) describing the infinitesimal transformation property
of the corresponding observable O in the classical theory. We observe that the former
can be obtained from the latter by replacing the Poisson brackets of the classical
theory with the commutator of the quantum theory:

{·, ·} → − i

�
[·, ·], (9.40)

the classical observable O(p, q) and Gr with their quantum counterparts Ô, Ĝr .
Taking into account that in the classical theory Gr (p, q) are the infinitesimal gener-
ators of canonical transformations, we conclude that canonical transformations are
implemented in the quantum theory by unitary operators U . This was to be expected
since just as Poisson brackets in the classical theory were invariant under canon-
ical transformations, commutators between quantum operators are invariant under
unitary transformations (9.38), as it can be easily verified.

9.3.1 Application to Non-Relativistic Quantum Theory

Let us apply the above considerations in the context of non-relativistic quantum
mechanics.

According to (9.40) the Heisenberg commutation conditions can be deduced from
the Poisson brackets (8.75) of the fundamental quantum canonical variables. We have

[
x̂ i , p̂ j

]
= i�δi

j Î . (9.41)

http://dx.doi.org/10.1007/978-88-470-1504-3_8
http://dx.doi.org/10.1007/978-88-470-1504-3_8
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Using these commutation relations we can introduce the operators Ĝr corresponding
to the infinitesimal generators of rotations, space translations and time translation
in the quantum theory. Let us recall from Chap. 7 that the angular momentum M =
(Mi ), the linear momentum p = (pi ) and the Hamiltonian H are the infinitesimal
generators of rotations, spatial and time translations. The corresponding quantum
hermitian operators will generate the same transformations implemented on quantum
states. Promoting the classical dynamic variables to quantum operators in the Hilbert
space, we then obtain the following infinitesimal generators:

Ĝr:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M̂i (i = 1, 2, 3) angular momentum operator
M̂ = x̂ × p̂ generating SO(3) rotations.

p̂i i = 1, 2, 3 momentum operator p̂, generating space translations.

Ĥ Hamiltonian operator, generating time-evolution.

They are operators corresponding to physical observables and generate transforma-
tions on the system which can be described as an action either on the quantum states
(Schroedinger representation) or on the hermitian operators corresponding to classi-
cal observables (Heisenberg representation). Let us first describe in some detail the
action of these operators on other dynamic variables.

The operators p̂ generate translations in x:

x→ x′ = x − ε; δx = x′ − x = −ε, (9.42)

the corresponding finite unitary transformation being:

U (ε) = e
i
�

p̂·ε . (9.43)

If we take an infinitesimal displacement ε the variation of x̂ is

δ x̂ i = i

�
ε j

[
x̂ i , p̂ j

]
= −εi Î .

reproducing (9.42) on the operator x̂. For finite transformations we then have:

x̂′ = U (ε)†x̂U (ε) = x̂ − ε Î . (9.44)

It is now straightforward to check that the expectation value 〈x〉 of x̂ on a state |a〉
(relative to a frame S) has the right transformation property

〈x〉 ≡ 〈a|x̂|a〉 U (ε)−→ 〈x〉′ = 〈a′|x̂|a′〉 = 〈a|U (ε)†x̂U (ε)|a〉
= 〈a|(x̂ − ε Î )|a〉 = 〈x〉 − ε, (9.45)

where |a′〉 = U (ε)|a〉 = e
i
�

p̂·ε |a〉 is the state of the particle as observed in the
frame S ′ translated with respect to S. Similarly it can be easily shown that if |x〉 is

http://dx.doi.org/10.1007/978-88-470-1504-3_7
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the eigenstate of x̂ corresponding to the eigenvalue x,U (ε)|x〉 is the eigenstate of x̂
corresponding to the eigenvalue x− ε. To this end let us apply x̂ to the transformed
vector U (ε)|x〉 (we suppress, for the sake of simplicity, the argument of U ):

x̂U |x〉 = U (U †x̂U )|x〉 = U
(

x̂ − ε Î
)
|x〉 = (x − ε)U |x〉, (9.46)

where we have used (9.44). From the above derivation we conclude that, modulo a
proportionality factor, we can make the following identification:

U (ε)|x〉 = |x − ε〉. (9.47)

Applying instead U (ε) to the eigenvector |p〉 of p̂, corresponding to an eigenvalue

p, its effect amounts to a multiplication by a phase: U (ε)|p〉 = e
i
�

p̂·ε |p〉 = e
i
�

p·ε |p〉.
Let us now use this property and (9.47) to write the wave function ψp(x) associated
with an eigenstate of the momentum operator:

ψp(x) = 〈x|p〉 = 〈x = 0|U (x)|p〉 = 〈0|p〉e i
�

p·x, (9.48)

where we have written |x〉 = U (−x)|x = 0〉 and used the property U (−x)† = U (x).
We see that ψp(x) ∝ e

i
�

p·x, which has an infinite norm as observed in Sect. 9.2 after
(9.21). Physically this descends from the fact that a particle with definite momentum
is completely delocalized in space, as implied by Heisenberg’s uncertainty principle.

We can now write the relation between the coordinate and the momentum repre-
sentations

ψ(a)(x) = 〈x|a〉 =
∫

d3p〈x|p〉〈p|a〉 =
∫

d3pψ̃(a)(p)e
i
�

p·x, (9.49)

where we have absorbed normalization factors like 〈x = 0|p〉 in the definition of
ψ̃(a)(p). We see that ψ̃(a)(p) is the familiar Fourier transform of ψ(a)(x). Particles
which are localized at each time within a finite region of space of size �x are
described by wave packets ψ(x), whose Fourier transform ψ̃(p) is peaked on some
average value p̄ of the linear momentum and has a width of size �p, related to �x
by Heisenberg’s uncertainty principle: �x�p � �. The probabilistic interpretation
of such a wave function is that the particle it describes is localized within a volume
(�x)3 and moves with a momentum p which is undertermined within a region (�p)3

about p̄.
As mentioned in Sect. 9.2 it is possible to extend the space of square-integrable

wave functions corresponding to normalizable states to include these kind of func-
tions. We can indeed avoid the problem of dealing with non-normalizable states if we
quantize the particle in a box, just as we did for the photon in Chap. 5: We consider the
particle as propagating inside a parallelepiped of sides L A, L B, LC along the three
directions X,Y, Z and volume V = L A L B LC . We then impose periodic boundary
conditions on the wave function, as a consequence of which the eigenvalues of p̂ are
quantized:

http://dx.doi.org/10.1007/978-88-470-1504-3_5
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p = (px , py, pz) = 2π�

(
nx

L A
,

ny

L B
,

nz

LC

)
, nx , ny, nz ∈ Z, (9.50)

and the corresponding eigenstates are normalizable to one:

〈p|p′〉 = δp,p′ . (9.51)

Writing the identity operator as Î = ∑
p |p〉〈p| we rederive the relation (9.49)

between the coordinate and momentum and momentum representation of a state
in the form of a Fourier series

ψ(a)(x) =
∑

p

ψ̃(a)(p)e
i
�

p·x. (9.52)

In the infinite volume limit L A, L B, LC → ∞, see discussion in Sect. 5.6.2 of
Chap. 5 and set k = p/�,we recover a continuous momentum spectrum and the sum
over the discrete momentum values becomes an integral through the replacement:

∑
p

→
∫

d3p
(2π�)3

V . (9.53)

This limit amounts to requiring that V be much larger than the size (�x)3 of the wave
packet describing the particle. In the large volume limit the normalization condition
(9.51) becomes

〈p|p′〉 = (2π�)3

V
δ3(p− p′), (9.54)

where we have used the prescription

δp,p′ −→ (2π�)3

V
δ3(p− p′), (9.55)

which follows from (5.125) of Chap. 5 upon replacing k with p/�.10

Using (9.54) and (9.53), the identity operator can be written as

Î =
∑

p

|p〉〈p| →
∫

d3p
(2π�)3

V |p〉〈p|. (9.56)

The one-particle volume V is a normalization factor which should ultimately drop
off the expression of observable quantities, as it will be shown in Chap. 12, when
computing transition probabilities and cross sections for interaction processes.

Let us now describe the effect of a spatial translation (9.42) on the wave function
ψ(x) ≡ ψ(a)(x) of a particle which is in state |a〉 with respect to the frame S. An

10 We have also used the property of delta-functions δ(cx) = δ(x)/c, so that δ3(k − k′) =
�

3δ3(p− p′)

http://dx.doi.org/10.1007/978-3-642-19627-0_5
http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_12
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observer in the translated frame S ′will observe the particle in the state |a′〉 = U (ε)|a〉
and describe it through the following wave function:

ψ ′(x′) ≡ ψ(a′)(x′) = 〈x′|a′〉 = 〈x′|e i
�

p̂·ε |a〉 = 〈x′ + ε|a〉 = ψ(x′ + ε).

We thus find the correct transformation property (7.98) of the wave function. Writing

ψ ′(x) as resulting from the action of a differential operator Oε = e
i
�

p̂·ε on ψ(x) :
ψ ′(x) = ψ(x + ε) = e

i
�

p̂·εψ(x) and expanding the expression for infinitesimal
shift parameters εi � 1, along the lines of (Sect. 7.4.3), we derive the form of p̂i as
differential operators on wave functions:

p̂i = −i�
∂

∂xi
⇔ p̂ = −i�∇. (9.57)

As we have seen in Sect. 4.1, ordinary rotations are described by the following trans-
formations:

g ∈ SO(3)→ U (θ) = e
i
�
θ i M̂i , i = 1, 2, 3,

where θ ≡ (θ i ) and the M̂i operators satisfy the commutation rules (4.132)

[
M̂i , M̂ j

]
= i�εi jk M̂k .

If we take as Ô the same operators M̂i and compute their variation (9.39), with
Ĝi = M̂i we find

δM̂i = i

�
δθ j

[
M̂i , M̂ j

]
= −εi jkδθ

j M̂k,

that is

δM̂ = −δθ × M̂.

This means that M̂ transforms under rotations as a three-dimensional vector. As far
as the effect of rotations on the position and momentum operators is concerned, we
may further verify that

[M̂i , x̂ j ] = i�εi jk x̂ k; [M̂i , p̂ j ] = i�εi jk p̂k,

implying that x̂ and p̂ transform under rotations as the vectors they represent

δx̂ = −δθ × x̂, δp̂ = −δθ × p̂.

Under finite transformations we therefore have

M̂i → M̂ ′i = U (θ)† M̂iU (θ) = R(θ)i j M j , (9.58)

http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
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x̂ i → x̂ ′i = U (θ)† x̂ iU (θ) = R(θ)i j x̂ j , (9.59)

p̂i → p̂′i = U (θ)† p̂iU (θ) = R(θ)i j p̂ j , (9.60)

which imply the correct transformation rules under rotations of the corresponding
expectation values. Let us now investigate the action of a rotation on the physical
states represented by kets. We take for the sake of definiteness as basis in Hilbert
space either the eigenstates |x〉 of the operator x̂ or the eigenstates |p〉 of p̂, defined
in Sect. 9.2. Consider, for instance, the action of a rotation U (θ) on |p〉: Applying
the operator p̂ to the transformed vector |p′〉 = U (θ)|p〉 we have

p̂U (θ)|p〉 = U (θ)U (θ)†p̂U (θ)|p〉 = U (θ)p̂′|p〉 = U (θ)
(
R(θ)p̂

) |p〉
= (R(θ)p)U (θ)|p〉.

It follows that U (θ)|p〉 is eigenstate of p̂ corresponding to the eigenvalue Rp ≡
(Ri

j p j ). Therefore, neglecting a possible normalization coefficient, we have

U (θ)|p〉 = |R(θ)p〉.
In an analogous way we may show

U (θ)|x〉 = |R(θ)x〉.
The transformation property of a wave function under rotations is readily derived:
Let |a〉 and |a′〉 = U (θ)|a〉 be the states of a same (spin-less) particle in S and in
the rotated frame S ′, ψ(x) and ψ ′(x′) the corresponding wave functions. We have:

ψ ′(x′) = 〈x′|a′〉 = 〈x′|U (θ)|a〉 = 〈R(θ)−1x′|a〉 = ψ(R(θ)−1x′) = ψ(x).

Writing ψ ′(x) = Oθψ(x) = e
i
�

M̂·θψ(x) and expanding for small angles θ i � 1
we find the explicit expression (7.99) for the angular momentum components as
differential operators on wave functions.

We note however that writing the effect of rotations on a state just by means of the
action of the (orbital) angular momentum operator M̂ is correct only if the particle
does not carry spin degrees of freedom as it has been discussed in Chap. 8. If this is
not the case we may think of the rotation as acting simultaneously on the coordinates
by means of the M̂i generators and on the spin degrees of freedom by means of the
generators Ŝi . That means that the infinitesimal generator of the rotations is given by
the total angular momentum operator Ĵ,

Ĵ = M̂+ Ŝ. (9.61)

The effect of a finite rotation g(θ) ∈ SO(3) is

U (θ)|x, α〉 = Dβ
α|Rx, β〉, (9.62)

http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_8
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where the explicit dependence on θ was suppressed and

U (θ) = e
i
�

Ĵ·θ (9.63)

D(θ)βα =
(

e
i
�

Ŝ·θ)β
α acts on the spin-components, (9.64)

R(θ) j
i =

(
e

i
�

M̂·θ) j
i acts on the space-components. (9.65)

Similarly, for the momentum eigenstates |p, α〉, we find

U |p, α〉 = Dβ
α|Rp, β〉.

Consider now a local, scalar differential operator Â(x) (here we suppress, for the
sake of notational simplicity, the obvious dependence of Â on the partial deriv-
atives: Â(x) ≡ Â(x,∇)), acting on wave functions and depending on x and on
partial derivatives with respect to the coordinates (by scalar we mean representing
an observable which does not transform under spatial rotations). An example of
Â(x) is the Hamiltonian operator Ĥ(p̂, x) = Ĥ(−i�∇, x) in the coordinate repre-
sentation. Let us illustrate how Â(x) transforms under a coordinate transformation
f: x→ x′ = f (x), which can be a rotation, a translation, or a general congruence.
Let the transformation be implemented on wave functions by the operator O f :

O fψ(x) = ψ( f −1(x))⇔ O−1
f ψ(x) = ψ( f (x)). (9.66)

If f is a rotation, O f is the transformation Oθ defined above, while x′ = f (x) =
R(θ)x and f −1(x) = R(θ)−1x. Let 
(x) denote the result of the action of
Â(x) on ψ(x):

Â(x)ψ(x) = 
(x), (9.67)

and let us act on both sides by O−1
f :

O−1
f Â(x)ψ(x) = O−1

f 
(x) = 
( f (x)) = Â( f (x))ψ( f (x)), (9.68)

where it is understood that Â( f (x)) = Â(x′) is the operator Â in which also the partial
derivatives are computed with respect to the new coordinates x ′i: Â(x′) ≡ Â(x′,∇′).
On the other hand we have:

O−1
f Â(x)ψ(x) = O−1

f Â(x)O f O−1
f ψ(x) = O−1

f Â(x)O fψ( f (x)) = Â′(x)ψ( f (x)).
(9.69)

Comparing (9.68) with (9.69), being ψ(x) a generic function, we deduce the trans-
formation property of the local differential operator Â(x) under a coordinate trans-
formation:

Â′(x) = O−1
f Â(x)O f = Â( f (x)). (9.70)
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The above equation defines the transformation property of a scalar operator Â(x).
It expresses (9.38) in the coordinate representation. The scalar operator is invariant
under f iff Â′(x) = Â(x), namely iff

O−1
f Â(x)O f = Â( f (x)) = Â(x), (9.71)

or, equivalently:

[ Â(x), O f ] ≡ Â(x)O f − O f Â(x) = 0. (9.72)

We conclude that a local differential (scalar) operator is invariant under a coordinate
transformation f if it commutes with O f .

9.3.2 The Time Evolution Operator

In non-relativistic quantum mechanics space and time are treated on a different
footing. So far we have considered quantum states and their transformations under
unitary operators at a fixed time t, and we have shown that they play in quantum
mechanics the same role as canonical transformations in the classical theory. In
classical mechanics time-evolution, namely the correspondence between the state of
a system at a given instant and its evolved at a later time, is a canonical transformation
generated by the Hamiltonian of the system. In quantum mechanics, however, in order
to describe the time-evolution of a system, we must find an operator on V (c) that
connects the states of a system at two generic instants, say |a, t〉 and |a, t0〉. From
the superposition principle in quantum mechanics it follows that if at t0

|a, t0〉 = α1|b, t0〉 + α2|c, t0〉,
the same superposition must hold at any other time t :

|a, t〉 = α1|b, t〉 + α2|c, t〉.
This implies that the mapping U between |a, t0〉 and |a, t〉

|a, t〉 = U (t, t0)|a, t0〉 (9.73)

must be a linear operator. Requiring also the conservation of the norm of a state
during its time-evolution (conservation of probability), we must have

〈a, t |a, t〉 = 〈a, t0|a, t0〉 ⇒ 〈a, t0|U †U |a, t0〉 = 〈a, t0|a, t0〉,
implying

U †U = Î ,
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that is, the time-evolution operator U has to be unitary. Moreover if U (t, t0) maps
|a, t0〉 into |a, t〉,U (t, t0)−1 = U (t, t0)† maps |a, t〉 into |a, t0〉, so that U (t, t0)† =
U (t0, t). We finally require U to satisfy the condition U (t0, t0) = Î .

In order to determine the time-evolution of |a, t〉 we compute the change of |a, t〉
under an infinitesimal change in the parameter t .

We have

d|a, t〉
dt

∣∣∣∣
t=t0

= lim
t→t0

|a, t〉 − |a, t0〉
t − t0

=
{

lim
t→t0

U − Î

t − t0

}
|a, t0〉. (9.74)

Let us denote the limit of the operator inside the curly brackets by i�Ĥ ; we can the
write, at a generic time t, the differential equation

Ĥ |a, t〉 = i�
d

dt
|a, t〉. (9.75)

The operator Ĥ is the infinitesimal generator of time-evolution and, in analogy with
classical mechanics, is identified with the quantum Hamiltonian. If we substitute
(9.73) in (9.74) we obtain an equation for the evolution operator:

i�
dU (t, t0)

dt
= ĤU (t, t0)⇔ i�

dU (t, t0)†

dt
= −U (t, t0)

† Ĥ , (9.76)

where we have used the hermiticity property of Ĥ : Ĥ† = Ĥ . If the Hamiltonian is
time-independent, as it is the case for a free particle, we can easily write the formal
solution to the above equation with the initial condition U (t0, t0) = Î :

U (t, t0) = U (t − t0) = e−
i
�

Ĥ(t−t0). (9.77)

The equation for the wave function

ψ(x, t) = 〈x|a, t〉,
is obtained by scalar multiplication of both sides of (9.75) by the bra 〈x|. Taking into
account (9.19) we obtain

Ĥψ(x, t) = i�
∂

∂t
ψ(x, t). (9.78)

that is the Schrödinger equation, where Ĥ is now the Hamiltonian operator realized
as a differential operator on wave functions. For a free particle

Ĥ = |p̂|
2

2m
= − �

2

2m
∇2,

and (9.78) reads:
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− �
2

2m
∇2ψ(x, t) = i�

∂

∂t
ψ(x, t), (9.79)

where ∇2 ≡ ∇ · ∇ = ∑3
i=1 ∂

2
i . Note that in this formulation the dynamic vari-

ables described by hermitian operators are not evolving in time, that is they are
time-independent, while states, or equivalently wave functions, are time-dependent.
Thinking of time-evolution as of a particular kind of transformation, we have previ-
ously referred to such description as the Schroedinger picture.

In the Heisenberg picture on the other hand, transformations (including time-
evolution) act on operators while states stay inert. In this representation therefore
states are time independent while operators Ô(t) representing observables evolve in
time. To see how, let us specialize (9.38) to the time-evolution and apply it to an
observable Ô(t):

Ô(t) = U (t − t0)
†Ô(t0)U (t − t0) = e−

i
�

Ĥ(t0−t)Ô(t0)e−
i
�

Ĥ(t−t0), (9.80)

where we have used the property U (t − t0)† = U (t0 − t). Clearly at t = t0, being
U (t0, t0) = Î , any Heisenberg dynamic variable, as well as the state of the system, is
the same as the corresponding one in the Schroedinger picture. To find the equation
of motion for the operator Ô(t) we differentiate both sides of (9.80) with respect to
t :

d

dt
Ô(t) =

(
d

dt
U (t − t0)

†
)

Ô(t0)U (t − t0)+U (t − t0)
†Ô(t0) d

dt
U (t − t0)

= i

�

(
ĤU (t − t0)

†Ô(t0)U (t − t0)−U (t − t0)
†Ô(t0)U (t − t0)Ĥ

)
,

where we have used (9.76). Using (9.80) again we find

d

dt
Ô(t) = i

�
[Ĥ , Ô(t)], (9.81)

which is referred to as the quantum Hamilton equations of motion.
Let us compare this equation with the Hamilton equations of motion of the clas-

sical theory, (8.97). We see that the time-evolution of a dynamic variable in quantum
mechanics can be obtained from the classical formula (8.97) by replacing the Poisson
bracket between the classical observable quantities with the commutator between the
corresponding quantum operators, according to the prescription (9.40).

We give another example of this procedure by examining the condition under
which a quantum dynamic variable is conserved. In the classical case this happens
when the Hamiltonian of the system is invariant under the action of a group of
transformations G. Quantum mechanically the transformation of the Hamiltonian
operator Ĥ under the transformations U (g) of G reads

∀g ∈ G: Ĥ ′ = U (g)† ĤU (g).

The infinitesimal form of the above transformation is given by (9.39) with Ô = Ĥ :

http://dx.doi.org/10.1007/978-88-470-1504-3_8
http://dx.doi.org/10.1007/978-88-470-1504-3_8
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δ Ĥ = Ĥ ′ − Ĥ = i

�
δθr [Ĥ , Ĝr ], ∀θr , (9.82)

where Ĝr denote the infinitesimal generators of G. As in the classical case, in quan-
tum mechanics the group G is a symmetry or an invariance of the theory if under the
action of G-transformations, the Hamiltonian is left invariant (here we assume Ĝg

not to explicitly depend on time):

δ Ĥ = 0⇒ ∀r: [Ĥ , Ĝr ] = 0.

On the other hand from (9.81), using the invariance condition, we obtain

d

dt
Ĝr (t) = i

�
[Ĥ , Ĝr ] = 0,

that is the generators Ĝr of G are conserved. Equation (9.82) amounts to saying
that, a system is invariant with respect to the transformations in G if and only if the
Hamiltonian operator commutes with all the infinitesimal generators of G. Using
the exponential representation of a finite time-evolution operator U (t − t0) and of
a finite G-transformation U (g), this property implies that for any g ∈ G and t, t0:
U (t − t0)U (g) = U (g)U (t − t0), that is the result of a time-evolution and of a
G-transformation (e.g. a change in the RF) does not depend on the order in which
the two are effected on the system.

Let us now mention an important application of Schur’s Lemma, see Sect. 7.2, to
quantum mechanics. Let G be a symmetry group of a quantum mechanical system.
We know, from our previous discussion, that the Hamiltonian operator Ĥ commutes
with the action U of G on the Hilbert space V (c). Its matrix representation on
the states will then have the form (7.27), where c1, . . . , cs (s may be infinite!) are
the energy levels E1, . . . , Es of the system, and k1, . . . , ks their degeneracies. This
means that the k� states |E�〉 of the system corresponding to a given energy level E�,
define a subspace of V (c) on which an irreducible representation Dk� of the symmetry
group G acts. We can easily show this by writing the Schroedinger equation for a
state |E�〉:

Ĥ |E�〉 = E�|E�〉. (9.83)

Consider a generic symmetry transformation g ∈ G and the transformed state |E�〉′ =
U (g)|E�〉. This state corresponds to the same energy level E� as the original one,
since

Ĥ |E�〉′ = ĤU (g)|E�〉 = U (g)Ĥ |E�〉 = E�U (g)|E�〉 = E�|E�〉′, (9.84)

where we have used the property that Ĥ commutes with U (g). Since the above prop-
erty holds for any g ∈ G, the eigenspace of the Hamiltonian operator corresponding
to a given energy level supports a representation of the symmetry group G.

In the generic case, in which there is no accidental degeneracy, Dk1 , . . . ,Dks

are irreducible representations of G. If Dki is not irreducible, this may indicate

http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_7
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that there exists a larger symmetry group G ′ containing G, whose action on Vki is
irreducible. In other words accidental degeneracies may signal the existence of a
larger symmetry of the system. As an example consider the Hydrogen atom which
is a system consisting of an electron and a proton, with charges ±|e|. The classical
Hamiltonian of the system reads:

H(p, x) = |p|
2

2me
− e2

4π |x| , (9.85)

and is manifestly invariant under rotations H(p, x) = H(p′, x′), where x′ =
R(θ)x,p′ = R(θ)p, since it only depends on the norms of the two vectors.
In quantum mechanics, the Hamiltonian operator in the coordinate representation
Ĥ(p̂, x) = Ĥ(−i�∇, x) reads

Ĥ(−i�∇, x) = − �
2

2m
∇2 − e2

4π |x| . (9.86)

It shares the same symmetry as its classical counterpart: If Oθ is the differential
operator defined in Sect. 9.3.1, which implements a rotation on wave functions
(ψ(x)→ Oθψ(x) = ψ(R(θ)−1x)), then, applying (9.70) to Ĥ we find:

Ĥ ′(−i�∇, x) = O−1
θ Ĥ(−i�∇, x)Oθ = Ĥ(−i�∇′, x′) = Ĥ(−i�∇, x),

namely the Hamiltonian operator is invariant under rotations. Thus by Schur’s lemma
we expect the wave functions corresponding to a given energy level to define a basis
of a representation of SO(3). This is actually the case, although such representation
is completely reducible. In other words, there is an accidental degeneracy, which
can be explained by the existence of a larger symmetry group of the system, which
contains, besides the rotation group SO(3) generated by the angular momentum M̂,

a further hidden symmetry SO(3)′, commuting with the first one, generated by the
so called Laplace–Runge–Lenz vector. We say that the symmetry group is actually
G = SO(3)× SO(3)′.

9.4 Towards a Relativistically Covariant Description

Consider the effect on states of a space–time translation. Suppose a same particle is
observed from two different frames S,S ′ whose Cartesian rectangular coordinates
coincide at all times. The only difference is that the chronometers in the two systems
were not set to start at the same time but measure two times, t, t ′ respectively, related
by t = t ′ + ε. The state |a′, t ′〉 observed from S ′ must coincide with the state |a, t〉
measured from S at the same time, so we can write:

|a′, t ′〉 = |a, t〉 = |a, t ′ + ε〉 = e−
i
�

Ĥε |a, t ′〉. (9.87)
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Suppose now the two spatial coordinate systems are related by a rigid translation,
so that the coordinate vectors of the particle in the two RFs are related as follows:
x = x′ + ε. The relation between the two quantum descriptions of the particle
becomes:

|a′, t ′〉 = e
i
�

p̂·ε |a, t ′ + ε〉 = e
i
�

p̂·εe−
i
�

Ĥε |a, t ′〉.

We see that the effect of the coordinate transformation is implemented on the state
by the unitary transformation

U (εμ) ≡ e
i
�

p̂·εe−
i
�

Ĥε = e−
i
�

P̂μεμ, (9.88)

where we have defined the four-momentum operator P̂μ ≡ ( 1
c Ĥ , p̂) and the four-

vector (εμ) ≡ (cε, ε). Note that in this derivation we have used the property that,
for a free particle, Ĥ and p̂ commute.

Consider now the wave function description of the particle state in the two RFs.
Using the definition (9.27) we find:


α
(a′)(x

′, t ′) ≡ 〈x′, α|a′, t ′〉 = 〈x′, α|e i
�

p̂·ε |a, t ′ + ε〉 = 〈x′ + ε, α|a, t ′ + ε〉
= 
α(a)(x′ + ε, t ′ + ε) = O
α(a)(x

′, t ′), (9.89)

which is the correct transformation property under space-time translations of a field

α(a)(x

μ) ≡ 
α(a)(x, t) on Minkowski space. Note that, from an active point of view,
the above transformation can be written as the effect on 
α(a)(x

μ) of a differential
operator O which implements a space-time translation on wave functions:


α(a′)(x
μ) ≡ O
α(a)(x

μ) = 
α(a)(xμ + εμ), (9.90)

where we have just renamed x ′μ in (9.89) by xμ. Writing O = e− i
�

P̂μεμ,we can find
the explicit realization of the four-momentum operator on wave functions from the
infinitesimal form of (9.90) (εμ � 1). The derivation is analogous to that of (7.86)
and yields the following identification

P̂μ = i�ημν
∂

∂xν
. (9.91)

If we use the short-hand notation ∂μ ≡ ∂
∂xμ and ∂μ ≡ ημν∂ν, we can simply write

P̂μ = i�∂μ.
To achieve a relativistically covariant description of states, we need to define on

them Lorentz (and in general Poincaré) transformations, that is they should have a
definite transformation property under Poincaré transformations.11 To this end let us
define the following vectors:

11 In fact we shall characterize a single particle state as belonging to an irreducible representation
of the Poincaré group.

http://dx.doi.org/10.1007/978-88-470-1504-3_7
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|x, α〉 = |(xμ), α〉 = |(ct, x), α〉 ≡ e
i
�

Ĥ t |x, α〉 = e
i
�

P̂·x |(xμ = 0), α〉. (9.92)

The wave function corresponding to a given state would then read:


α(a)(x
μ) = 〈x, α|a, t〉 = 〈x, α|e− i

�
Ĥ t |a〉 = 〈x, α|a〉, (9.93)

where |a〉 ≡ |a, t = 0〉. So far we have just performed redefinitions. Let us now
define the action of Poincaré transformations on these states. In analogy with the
transformation property of states under rotations (9.62) and space translations (9.47)
in the non-relativistic theory, we try to define the action of a Poincaré transformation
(�, x0) on the basis |x, α〉 by means of a unitary operator U (�, x0):

|x, α〉 (�,x0)−→ U (�, x0)|x, α〉 ≡ Dβ
α|x ′, β〉 = Dβ

α|�x − x0, β〉, (9.94)

where we have used the general transformation law (7.46). Consistency requires for
these states a normalization condition which generalizes (9.25):

〈x, α|x ′, β〉 = δ4(x ′ − x)δαβ =
1

c
δ(t ′ − t)δ3(x′ − x)δαβ . (9.95)

The index α labels internal degrees of freedom which can be made to freely vary
by means of Poincaré transformations at fixed point xμ in M4. We may convince
ourselves that the largest group of transformations which leaves xμ fixed is the full
Lorentz group.12 Consider the state corresponding to the origin of the RF xμ ≡ 0
and act on it by means of a Lorentz transformation:

|0, α〉 �−→ U (�)|0, α〉 ≡ Dβ
α|0, β〉. (9.96)

In virtue of homogeneity of space–time, whatever statement about the point xμ = 0
equally applies to any other point xμ. We conclude that the matrix D ≡ (Dβ

α) =

12 This statement seems to be at odds with what we have learned from our earlier discussion
about Lorentz transformations: Under a Lorentz transformation a generic position four-vector xμ

transforms into a different one x ′μ = �μνxν , and the only four vector which is left invariant is the
null one (xμ) ≡ 0 = (0, 0, 0, 0) defining the origin of the RF. For a given Lorentz transformation
� in SO(1, 3) and a point P described by x ≡ (xμ), we can define the Poincaré transformation
�x ≡ (1,−x)(�, 0)(1, x), see Sect. 4.7.2 of Chap. 4 for the notation, which consists in a first
translation (1, x) mapping the origin O into O ′ = P (x → 0), then a Lorentz transformation �

which leaves O ′ invariant 0 → 0, followed by a second translation which brings back O ′ into O
(0 → x). By construction �x , which is not pure Lorentz since it contains translations, leaves x
invariant. The transformations �x , corresponding to � ∈ SO(1, 3), close a group which has the
same structure as the Lorentz group, though being implemented by different transformations: The
correspondence �↔ �x for a given x is one-to-one, and, moreover, if ��′ = �′′ then �x�

′
x =

�′′x . The two groups are said to be isomorphic. Transformation groups sharing the same structure
represent the same symmetry. We shall denote the group consisting of the �x transformation by
SO(1, 3)x . It can be regarded as the copy of the Lorentz group, depending on the point x, which
leaves x invariant.

http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
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D(�) acting on the internal index α is a representation of the Lorentz group. Assum-
ing {|x, α〉} to be a basis of the Hilbert space we define the coordinate representation
of a state by expanding it in this basis:

|a〉 =
∫

d4x
∑
α


α(x)|x, α〉. (9.97)

Acting on |a〉 by means of U (�, x0) we deduce the transformation property of the
coefficients 
α(x):

|a′〉 = U (�, x0)|a〉 =
∫

d4x
α(x)U (�, x0)|x, α〉

=
∫

d4x
α(x)Dβ
α|�x − x0, β〉 =

∫
d4x ′
α(x)Dβ

α|x ′, β〉

=
∫

d4x ′
′β(x ′)|x ′, β〉, (9.98)

where x ′ ≡ �x − x0 and we have used the invariance of the elementary space-time
volume under Poincaré transformations: d4x = d4x ′. We conclude that


′α(x ′) = Dα
β


β(x). (9.99)

We have thus retrieved the general transformation property (7.47) of a relativistic
field under Poincaré transformations.

As we did in Sect. 7.4.2, we can describe the effect of a Poincaré transformation
(�, x0) on 
α(x) in terms of the active action of an operator O(�,x0), as in (7.90):


α(x)
(�,x0)−→ 
′α(x ′) = O(�,x0)


α(x ′). (9.100)

We then write O(�,x0) as the exponential of infinitesimal differential operators, as in
(7.91):

O(�,x0) = e−
i
�

xμ0 P̂μe
i

2�
θρσ Ĵρσ, D(�)αβ =

(
e

i
2�
θρσ�ρσ

)α
β, (9.101)

where, with respect to the notations used in Sect. 7.4.2 we have defined
P̂μ = i�Pμ and

Ĵρσ = −i�Lρσ = M̂ρσ +�ρσ , (9.102)

M̂ρσ = −i�(xρ∂σ − xσ ∂ρ) = −xρ P̂σ + xσ P̂ρ, (�ρσ )
α
β = −i�(Lρσ )

α
β.

The commutation relations (7.95) in these new generators read:

[
Ĵμν, Ĵρσ

]
= −i�

(
ηνρ Ĵμσ + ημσ Ĵ νρ − ημρ Ĵ νσ − ηνσ Ĵμρ

)
, (9.103)

http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_7
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[
Ĵμν, P̂ρ

]
= −i�

(
P̂μδνρ − P̂νδμρ

)
;

[
P̂μ, P̂ν

]
= 0. (9.104)

The differential operator M̂ρσ realizes the action of the Lorentz generators on the
coordinate dependence of the field, while the matrix �ρσ defines the corresponding
action on the internal components. Clearly, since these two operators act on different
degrees of freedom, i.e. different components, they commute:

[M̂ρσ ,�μν] = 0. (9.105)

For the same reason �μν commutes with the four-momentum operator P̂μ. Both
M̂ρσ and �μν satisfy the same commutation relations (9.103) as Ĵρσ , being gener-
ators of different Lorentz representations.

Recalling that the angular momentum operator Ĵ = ( Ĵi ) generates the rotation
subgroup of SO(1, 3), its components are related to the Lorentz generators as in
(4.176):

Ĵi = −1

2
εi jk Ĵ jk = εi jk xi p̂ j − 1

2
εi jk�

jk = M̂i + Ŝi , (9.106)

where we have used the general expression (9.61). From the above equation we
deduce the expression of the spin component operators Ŝi ,which implement the effect
of a rotation on the internal components, in terms of the Lorentz generators: Ŝi =
− 1

2εi jk�
jk . We shall give a more intrinsic definition of spin in the next Subsection,

when describing relativistic states in the momentum representation.
Aside from the operators P̂μ which generate the space-time translations and which

are associated with the components of the four-momentum pμ, also the Lorentz
generators Ĵμν define, through their eigenvalues, observables Jμν transforming
themselves under Lorentz transformations as components of a rank-2 antisymmetric
tensor.

The wave function 
α(x) describes then a free particle with a given spin. We
have not yet imposed, however, the condition that the particle has a certain mass
m, namely that its momentum satisfies the mass-shell condition: p2 = m2c2. Such
condition will be implemented on 
α(x) by a differential operator obtained upon
replacing, in the mass-shell equation p2 − m2c2 = 0, the four momentum with
the corresponding operator P̂μ. We end up with the following, manifestly Lorentz
invariant, differential equation:

(
P̂μ P̂μ − m2c2

)

α(x) = 0⇔

(
∂μ∂μ + m2c2

�2

)

α(x) = 0. (9.107)

We shall examine, in the next chapter, the solutions to the above equation and their
physical interpretation.

To make contact with our previous non-relativistic discussion, we have introduced
the basis of vectors |x, α〉 and used it to define the relativistic wave-function. There
are however problems in defining such states within a relativistic framework. Let us
mention some of them:

http://dx.doi.org/10.1007/978-88-470-1504-3_4
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• The state |x, α〉 would describe a particle located in x at a time t . Due to the
possibility, in relativistic processes, of creating new particles, provided the energy
involved is large enough, and in the light of Heisenberg’s uncertainty principle,
there is a physical obstruction in determining the position of a particle at a given
time with indefinite precision: The smaller the distances we wish to probe, in order
to locate a particle with a sufficiently high precision, the larger the momentum and
thus the energy we need to transfer to the particle and, if the energy transferred
is large enough to produce one or more particles identical to the original one, we
may end up with a system of virtually undistinguishable particles, thus making
our initial position measurement meaningless. This is also related to the problem
with interpreting the relativistic field 
α(x) as the wave function associated with
a given single-particle state, like we did in the non-relativistic theory. We shall
comment on this in some more detail in the introduction to next chapter.

• The normalization (9.95), which guarantees that all the states of the basis have a
positive norm, is not Lorentz invariant. Indeed, while δ4(x−x ′) is Lorentz invariant,
δα,β would be invariant only if the representation D were unitary. There is however
a property in group theory which states that unitary representations of the Lorentz
group can only be infinite dimensional (like the one acting on the infinitely many
independent quantum states of a particle). Being D finite-dimensional, it cannot
be unitary, namely D†D �= 1. As an example, suppose the representation D is the
fundamental (defining) representation of the Lorentz group, that is D(�) = � =
(�μν). If these matrices were unitary, being real, they would be orthogonal. We
have learned, however, that � are pseudo-orthogonal matrices, namely they leave
the Minkowski metric ημν, rather than the Euclidean one δμν, invariant. In other
words �T � �= 1.13

These are some of the reasons why the coordinate basis {|x, α〉} is ill defined in
a relativistic context. We find it however pedagogically useful to use such states in
order to introduce the main objects and notations of relativistic field theory starting
from non-relativistic quantum mechanics. From now on the main object associated
with a given particle will be the relativistic field 
α(x).

13 A problem related to the non-unitarity of D is the fact that if we defined 
α(x) = 〈x, α|a〉, as
we did in the non-relativistic theory, it would no longer have the correct transformation property
(9.99) under Poincaré transformations. For spin 1/2 and 1 particles, we can however define a real
symmetric matrix γ = (γαβ) squaring to the identity γ 2 = 1, such that γD(�)†γ = D(�)−1: For
spin 1 particles D is the fundamental representation, namely D(�) = �, and γ = η,while for spin
1/2 particles, as it will be shown in next Chapter, D is the spinorial representation and γ = γ 0. We
can use this matrix to define 
α(x) ≡ 〈x, β|a〉γ αβ . We shall however, for notational convenience,
still write
α(x) = 〈x, α|a〉, keeping though this subtlety in mind. We can also use the γ matrix to
define a Lorentz invariant normalization for the |x, α〉 states: 〈x, α|x ′, β〉 = δ4(x ′ − x)γαβ . Such
normalization is however problematic since γ is not positive definite and thus some of these states
would have negative norm!
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9.4.1 The Momentum Representation

Since relativistic effects pose in principle no obstruction in determining the momen-
tum and energy of a particle with indefinite precision, the basis of eigenvectors
|p, α〉 = |(pμ), α〉 of the four-momentum operator:

P̂μ|p, r〉 = pμ|p, r〉, (9.108)

is the most appropriate in order to describe the single-particle relativistic quantum
states and thus the action on them of the Poincaré group. It is important at this
point to stress the differences between the coordinate and the momentum bases,
besides the problems mentioned above with defining the former. The internal index
r of the state |p, r〉 labels the degrees of freedom which can be made to freely
vary, using Lorentz transformations, keeping pμ fixed. In the coordinate basis we
could act on α with the full Lorentz group, generated by �μν, while keeping xμ

fixed. This was related to the fact that we can move everywhere in space–time by
means of space-time translations, and in particular we could move to the origin
of the RF, whose invariance under Lorentz transformations is manifest, see (9.96).
The set of Lorentz transformations keeping pμ fixed would coincide with the full
Lorentz group, as for xμ, only if we were able to Poincaré transform a generic pμ

into pμ = 0, corresponding to the absence of a particle (the vacuum state). This
is clearly not possible, since the momentum four-vector is inert under space-time
translations and only transforms under Lorentz transformations, which, however,
cannot alter the Lorentz invariant rest-mass m2 = p2/c2 of the particle (if we work
with proper Lorentz transformations, also the sign of p0 is invariant). The subgroup
of the Poincaré group which leaves a covariant object unchanged is called the little
group G(0) of the object. The little group of xμ is thus the full Lorentz group O(1, 3)
(see comment in footnote 11), while the little group of pμ is a proper subgroup of the
Lorentz group. Then, while α is an index of a representation of the Lorentz group,
the index r of |p, r〉will label a representation of the little group G(0)

p of pμ. Clearly

the matrix representation of G(0)
p will depend upon pμ, since it consists of matrices

�
(0)
p = (�(0)μp ν) such that:

�(0)
p ∈ G(0)

p : �(0)μp ν pν = pμ, (9.109)

its structure however only depends on m2. We can indeed, for a given m2, evaluate
G(0) = G(0)

p̄ in a RF S0 in which pμ = p̄μ is simplest, namely has the largest number
of vanishing components (standard four-momentum). Any other four-momentum
vector p = (pμ) with the same value of m2 will be related to p̄ = ( p̄μ) by a
Lorentz boost �p:p = �p p̄. The explicit matrix form of �p was given in (4.190) of
Chap. 4. The little group G(0) can be taken as the definition of the spin of a particle:
It represents the residual symmetry once we keep its four-momentum fixed at some
representative value p̄.

Let us now see how the structure of the little group depends on m2 (for a
more rigorous discussion of this issue see Sect. E.2 of Appendix E). If m2 > 0,

http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
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we can define a rest-frame for the particle, in which p = 0 and thus choose
p̄ = (mc, 0) as the standard four-momentum. The little group G(0) clearly con-
tains the group of rotations in three dimensions, since a particle at rest is a system
with spherical symmetry. Its generators consist in the components of the total angular
momentum Ĵ, which coincide with the spin components Ŝ since, in the rest frame,
the orbital part is zero M̂| p̄, r〉 = 0. We recover the definition of the spin of a massive
particle as its angular momentum when it is at rest. In this case the index r spans a rep-
resentation of the spin group SU(2) (the group SU(2), i.e. the group of 2 × 2 unitary
matrices with determinant 1, has the same local structure as SO(3), though it admits
more representations, like the double-valued representation pertaining to particles
with spin 1/2. The spin group is therefore SU(2) rather than SO(3), see Appendix F
for a definition of the group SU(2) and its relation to the rotation group). If m2 = 0,
we cannot define a rest-frame for the particle. The best that we can do is to go to a
RF S0 in which the X-axis coincides with its direction of motion and thus choose
p̄ = (E, E, 0, 0)/c. Clearly in this RF we have symmetry under rotations about the

X-axis, which is generated by the helicity operator �̂ = Ĵ·p̄
|p̄| , where p̄ = (E, 0, 0)/c.

In this case the generators of G(0) consist of other two generators, which we impose
to vanish on the state, since they would generate infinitely many internal degrees of
freedom, see Appendix E. Helicity therefore provides the definition of the spin for
massless particles.

Consider the action of the spin group G(0) on a state | p̄, r〉. Since it does not
affect p̄, it will only act on the internal index r :

�(0) ∈ G(0) : U (�(0))| p̄, r〉 = Rr ′
r | p̄, r ′〉, (9.110)

where the matrix R = (Rr ′
r ) = R(�(0)) represents the action of the G(0)-element

�(0) in the representation pertaining to the spin of the particle. Note that R is always
defined to be unitary. This is possible since, in contrast to the full Lorentz group,
G(0) consists of rotations only (it is SU(2) for massive and effectively SO(2) for
massless particles) and thus admits finite dimensional unitary representations.

How does a generic transformation � ∈ SO(1, 3) act on a state |p, r〉? The
infinite-dimensional, unitary representation of the Lorentz group acting on the states
|p, r〉 is constructed starting from the finite-dimensional unitary representation R of
G(0) acting on the particle states in the RF S0 as in (9.110). The particle state |p, r〉
in a RF in which the momentum is p is defined by acting on | p̄, r〉 by means of the
boost �p relating p̄ to p: p = �p p̄

|p, r〉 ≡ U (�p)| p̄, r〉. (9.111)

This suffices to define the action of a Lorentz transformation � on a generic state
|p, r〉. As it is shown in detail in Appendix E, the action of the unitary operator U (�)
which realizes � on states reads:

U (�)|p, r〉 = Rr ′
r |�p, r ′〉, (9.112)
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where now the rotation matrix R in G(0) depends on both � and p : R = R(�, p).
If � is a simple boost, the corresponding rotation R(�, p) is called Wigner rotation.
The method of constructing the unitary infinite-representation of the Lorentz group
on the states |p, r〉 starting from the finite-dimensional representation of the little
group is called method of induced representations, see Appendix E for a more detailed
discussion.

Clearly the effect of a translation on |p, r〉 is trivial since it amounts to multiplying

the state by a phase e
i
�

p·x0 .
Single-particle states are characterized by irreducible representations of the

Poincaré group. Consequently we require the representation R of the spin group G(0)

to be irreducible, as motivated in Appendix E. On these states the mass-shell condi-
tion has not been imposed yet. Just as we did for the eigenstates |p, α〉 in Sect. 9.3.1,
we can derive the wave function description 
αp,r (x) of the states |p, r〉 by project-
ing them on the basis |x, α〉 (see footnote 13 for subtleties with this projection) and

writing each vector |x, α〉 as e
i
�

P̂·x |x = 0, α〉, where the point x = (xμ) = 0 is the
origin of the coordinate system:


αp,r (x) = 〈x, β|p, r〉 = 〈x = 0, α|e− i
�

P̂·x |p, r〉 = cpuα(p, r)e−
i
�

p·x , (9.113)

where we have defined cpuα(p, r) ≡ 〈x = 0, α|p, r〉, cp being a Lorentz-invariant
normalization factor: c�p = cp. Note that 
αp,r (x), for different p = (pμ) define a
complete set of eigenfunctions of the four-momentum operator (9.91):

P̂μ
βp,r (x) = i�ημν∂ν

β
p,r (x) = pμ
βp,r (x). (9.114)

For a given particle, the components pμ are not independent but constrained by the
mass-shell condition p2 = m2c2. From now on we describe a single particle state
in terms of the simultaneous eigenstates |p, r〉 of the linear momentum operator p̂
and of the Hamiltonian Ĥ whose energy eigenvalue E is fixed by the mass-shell
condition E = Ep ≡

√
m2c4 − |p|2c2 > 0:

|p, r〉 ≡ |p, r〉
p0= Ep

c
. (9.115)

Such states were defined in Sect. 9.3.1 and normalized as in (9.54). Their wave
function representation is given by (9.113) in which p0 is now fixed by the mass-
shell condition to Ep/c. The normalization condition (9.54), using (9.113) and (9.20),
reads:

〈p, r |p′, s〉 =
∫

d3xe
i
�
(p−p′)·x c∗pcp′

∑
α

uα(p, r)∗uα(p′, s)

= (2π�)3δ3(p− p′)|cp|2u(p, r)†u(p, s) = (2π�)3

V
δ3(p− p′)δrs,

where we have defined the vector u(p, r) ≡ (uα(p, r)). The above equation implies
for the vectors u(p, r) the following normalization:

http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
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u(p, r)†u(p, s) = 1

|cp|2V
δrs . (9.116)

Comparing (9.100) and (9.112) we find for 
αp,r (x) the following transformation
property under a Lorentz transformation:

O�

α
p,r (x) = D(�)αβ


β
p,r (�

−1x) = cp D(�)αβuα(p, r)e−
i
�

p·(�−1x)

= cp D(�)αβuα(p, r)e−
i
�
(�p)·x = R(�, p)r

′
r


α
�p,r (x)

= cpR(�, p)r
′
r uα(�p, r ′)e−

i
�
(�p)·x , (9.117)

where we have used the Lorentz invariance of cp. From the above equation which
we deduce:

D(�)αβuβ(p, r) = R(�, p)r
′
r uα(�p, r ′). (9.118)

The vectors u(p, r) for a scalar particle are proportional to 1, being the correspond-
ing Lorentz and spin representations, spanned by the indices α and r, trivial. For a
spin 1/2 particle, like the electron or the positron, as we shall see in the next chapter,
they will be of two kinds: One denoted by the same symbol u(p, r), the other by
v(p, r). In this case r = 1, 2 labels the two spin states Sz = ±�/2,while α labels the
four components corresponding tot he spinorial representation of the Lorentz group.
As far as the photon is concerned, the role of uα(p, r) will be played by the polar-
ization vector εr

μ(p), where α ≡ μ labels the Lorentz representation D(�) = � of
the potential four-vector, while r = 1, 2 label the two transverse polarizations.

As remarked earlier, the state |a〉 of a particle is in general described by a wave
packet
α(x) propagating in space and can be represented in terms of its momentum
representation by using (9.93) and (9.113):


α(x) = 〈x, α|a〉 =
∫

d3p
(2π�)3

V
∑
β

〈x, α|p, β〉〈p, β|a〉

=
∫

d3p
̃α(p)e−
i
�

p·x =
∫

d3p
̃α(p)e−
i
�
(Et−p·x), (9.119)

where, as usual, we have defined 
̃α(p) ≡ 〈p, α|a〉. A wave packet is thus expressed

as a superposition of plane waves e− i
�
(Et−p·x) with angular frequency ω = E/�

and wave number k = p/�. It propagates in space at a speed which is the group
velocity of the wave, and which is given by the well known formula v = dω

d|k| .
In terms of the energy and linear momentum, using the relativistic relation between
E = Ep and |p|, we find:

v = dω

d|k| =
d E

d|p| =
|p|c2

E
, (9.120)

which is indeed the expression of the velocity of a particle in special relativity.
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9.4.2 Particles and Irreducible Representations of the Poincaré
Group

An elementary particle state is characterized as transforming in an irreducible rep-
resentation of the Poincaré group. Such representations are uniquely defined by the
mass m and the spin s of the particle which, as we are going to show below, are indeed
invariants of the group, namely if we change inertial RF their values are unaffected.
Therefore all states belonging to the base space of an irreducible representation of the
Poincaré group, being quantum descriptions of a same particle from different inertial
RFs, share the same values of m and s. To show that these observables are Poincaré
invariant, we first need to express them in terms of Lorentz invariant quantities.
On a single particle state the action of the Poincaré generators Ĵρσ , P̂μ is defined.
With respect to the Lorentz group, these are a rank-2 antisymmetric tensor and a four
vector, respectively. Using the Lorentz invariant tensor εμνρσ we can define a second
four-vector, besides P̂μ:

Ŵμ ≡ −1

2
εμνρσ Ĵ νρ P̂σ , (9.121)

which is called the Pauli-Lubanski four-vector. We first notice that the component
M̂νρ of Ĵνρ does not contribute to Ŵμ since

−1

2
εμνρσ M̂νρ P̂σ = −�

2εμνρσ xν∂ρ∂σ = 0, (9.122)

where we have used the property that the ε-tensor is totally antisymmetric in its four
indices and that two partial derivatives commute: ∂ρ∂σ = ∂σ ∂ρ . By the same token
one can show that [Ŵμ, P̂ν] = 0, which implies that Ŵμ, just as P̂μ, is invariant
under space-time translations. Clearly the mass m of a particle is Lorentz invariant
since it is the eigenvalue of the Lorentz invariant operator 1

c2 P̂μ P̂μ.
Consider now a particle with mass m �= 0. In its rest frame S0 its linear momentum

vanishes, pi = 0, that is its state is annihilated by the operators p̂i , while the
eigenvalue of the time-component P̂0 corresponds to the rest energy mc. In this
frame we can replace the components of the operator P̂μ in the expression of Ŵμ

by their eigenvalues p̄ = (mc, 0, 0, 0). The only non-vanishing components of Ŵμ

in this RF are the space ones:

Ŵi = −mc

2
εi jk0�

jk = mc

2
εi jk�

jk = −mcŜi , Ŵ0 = 0, (9.123)

where we have used the convention that εi jk0 = −ε0i jk = −εi jk, namely that
ε0123 = +1, and the definition of the spin-component operators. The squared norm
ŴμŴμ of Ŵμ is Lorentz invariant and, on the states in the rest frame, reads

ŴμŴμ = −
3∑

i=1

Ŵ i Ŵ i = −m2c2|Ŝ|2 = −�
2m2c2s(s + 1), (9.124)
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where we have replaced |Ŝ|2 by its eigenvalue �
2s(s + 1) defining the spin s of the

particle. Being ŴμŴμ Lorentz invariant, its eigenvalue will not change if we switch
to a generic RF. We then conclude that the mass m and the spin s of an elementary
particle are Poincaré invariant quantities. Using the four-vectors P̂μ, Ŵμ, we could
in principle build a third Lorentz invariant operator P̂ · Ŵ ≡ P̂μŴμ. Such operator
is however null, being proportional to εμνρσ�μν∂ρ∂σ = 0. Since there are no other
independent invariants, commuting with the previous ones, which can be constructed
out of the eigenvalues of the Poincaré generators, we conclude that a single particle
state is completely defined by the values of the mass m and the spin s.14

Consider now the case of a massless particle. The standard four-momentum vector
can be chosen to be p̄ = (E, E, 0, 0)/c = (E/c, p̄). Let us compute the four vector
Ŵμ on the states | p̄, r〉:

Ŵμ = −|p̄|
2

(
εμνρ0 + εμνρ1

)
Ĵ νρ. (9.125)

In components:

Ŵ0 = −|p̄|
2
ε01i j Ĵ i j = |p̄| Ĵ 1; Ŵ1 = |p̄|

2
ε01i j Ĵ i j = −|p̄| Ĵ 1,

Ŵa = |p̄|εab( Ĵ
0b − Ĵ 1b); a, b = 2, 3. (9.126)

As proven in Appendix E, in order to have finitely many spin states, we need the two
operators N̂ a ≡ Ĵ 0a − Ĵ 1a to vanish on the states | p̄, r〉, so that Ŵa = 0 and we can
effectively write:

Ŵμ = Ĵ 1 p̄μ = �̂ p̄μ, (9.127)

where we have defined the helicity operator as

�̂ ≡ Ĵ · p̄
|p̄| = Ĵ 1. (9.128)

In going from S0 to any other frame S, p̄μ and Ŵμ are four vectors transforming by
the same Lorentz transformation, so that, in S, Ŵμ = pμ�̂. We conclude that �̂ is
a Lorentz invariant operator. The condition that the single particle state transform in
an irreducible representation of the little group further implies that there can be just
two helicity states:

�̂| p̂,±s〉 = ±�s| p̂,±s〉, (9.129)

The state of a single massless particle is completely defined by the value if its helicity,
which is a Poincaré invariant quantity.15

14 If we consider proper Lorentz transformations (�0
0 ≥ 0, det� = 1, ) the sign of p0, eigenvalue

of P̂0, is invariant as well.
15 Here we are restricting to proper Lorentz transformations. The parity transformation �P: p0 →
p0,p→−p reverses the sign of �.
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9.5 A Note on Lorentz Invariant Normalizations

In this note we show that the normalization that we have adopted for single particle
states is Lorentz invariant. To this end let us consider a particle of mass m and let
S0 denote its rest frame in which p̄ = 0 and p̄0 = mc. S0 then moves, relative to
a given RF S, at the corresponding velocity v of the particle. The relation between
the four-momenta p̄ and p of the particle in S0 and S, respectively, is given by the
Lorentz boost �p. If we write p̄ = �−1

p p, expressing the transformation matrix in
terms of v we have:

p̄0 = γ (v)
(

p0 − v · p
c

)
= γ (v)

(
p0 − v

2

c2

)
p0 = 1

γ
p0,

p̄i = pi + (γ − 1)
v · p
c2 vi − γ v

c
p0, (9.130)

where we have used the relation p = p0v/c and v2 ≡ |v|2 (here, as usual, upper
and lower indices for three-dimensional vectors are the same: vi = vi , pi = pi ).
If we perturb the rest state of the particle in S0 by an infinitesimal velocity, but keeping
the relative motion between the two frames unchanged, the momentum p relative to
S will vary by an infinitesimal amount p→ p+ dp. We can relate the infinitesimal

variation of p̄ to that of p by computing the Jacobian matrix Jp
i

j = ∂ p̄i

∂p j :

d p̄i = ∂ p̄i

∂p j
dp j = Jp

i
j dp j . (9.131)

This Jacobian is computed from the transformation law (9.130) by taking into account
that p0 is not independent of p, being p0 = √|p|2 + m2c2. Using the property:

∂p0

∂pi
= pi

p0 =
vi

c
, (9.132)

from (9.130) we find:

Jp
i

j = ∂ p̄i

∂p j
= δi

j + (γ − 1)
vi v j

v2 − γ
vi

c

∂p0

∂p j

= δi
j +

(
1

γ
− 1

)
vi v j

v2 . (9.133)

The reader can easily verify that the matrix Jp has one eigenvalue 1/γ corresponding
to the eigenvector v, and two eigenvalues 1, corresponding to the two vectors per-
pendicular to v. The determinant of this matrix, being the product of its eigenvalues,
is therefore:

det(Jp) = 1

γ
. (9.134)

http://dx.doi.org/10.1007/978-88-470-1504-3_9
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We can now compute the transformation property of an infinitesimal volume in
momentum space when moving from S to S0:

d3p̄ ≡ d p̄x d p̄yd p̄z = |det(Jp)|d3p = 1

γ
d3p. (9.135)

Note from (9.130) that the same relation holds for the energies: p̄0 = mc = p0/γ .
We conclude that:

d3p
p0 =

d3p̄
p̄0 , (9.136)

namely that d3p/p0 is Lorentz invariant.
Let us now consider the relation between the position vectors of the particle in

the two frames:

x̄0 = γ (v)
(

x0 − v · x
c

)
,

x̄ i = xi + (γ − 1)
v · x
c2 vi − γ v

c
x0. (9.137)

The above equations allow us to compute the relation between the measures dV0 =
d3x̄ and dV = d3x an infinitesimal cubic volume in S0 and S, respectively. The

two quantities are related by the Jacobian matrix Jx
i

j ≡ ∂ x̄ i

∂x j which can be computed
from (9.137). We need however to observe that, in contrast to the case of the four-
momentum, where the energy p0 depends on the remaining space components, the
four components of the position vector are independent and thus ∂x0/∂xi = 0. The
Jacobian matrix Jx

i
j is then easily computed to be:

Jx
i

j = δi
j + (γ − 1)

vi v j

v2 . (9.138)

The eigenvalues of the above matrix are γ (eigenvector v) and twice 1 (eigenvectors
perpendicular to the velocity), so that det(Jx ) = γ and

dV0 = d3x̄ = |det(Jp)|dV = γ dV . (9.139)

The same relation holds for a finite volume: V0 =
∫

dV0 = γ
∫

dV = γ V . This
result was also obtained in Chap. 1 as a consequence of the contraction of lengths
along the direction of relative motion. We conclude that the following quantities are
Lorentz invariant:

d3pV = d3p̄V0; EV = mc2V0. (9.140)

We can now deduce the transformation property of the density of particles, computed
in a given RF S as the ratio between the number of particles N contained in a volume

http://dx.doi.org/10.1007/978-88-470-1504-3_1
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V and V : ρ ≡ N/V . Since N does not depend on the RF, ρ transforms under a
Lorentz transformation as 1/V, namely, if ρ0 = N/V0 is the density in S0,we have:

ρ = γρ0. (9.141)

Consider now the transformation property of a δ3-function computed in the difference
between two momenta p and q, which can be shown to be:

δ3(p̄− q̄) = 1

|det(Jp)|δ
3(p− q) = γ δ3(p− q). (9.142)

From the above property we conclude that 1
V δ

3(p− q), which is the normalization
that we have chosen for the momentum eigenstates, is Lorentz invariant as well.
Since the value of the product EV does not depend on the RF, we can fix for the
volume, as measured in S0, an arbitrary value V0 and write in a generic RF S:

2EV = 2mc2V0 ⇒ V = c0

2E
, (9.143)

where we have defined c0 ≡ 2mc2V0. Since the definition of c0 is referred to a specific
RF S0, it is Lorentz invariant by construction. In all formulas we can then replace the
normalization volume V by 1/(2E) times this Lorentz invariant normalization factor
c0 which however finally drops off the expression of any measurable quantity, as we
shall show in the last chapter when evaluating transition probabilities and cross
sections for interaction processes. The above conclusions also apply to massless
particles, although in this case a rest frame S0 cannot be defined.

Reference

For further reading see Refs. [4], [8] (Vols. 3, 4), [3]



Chapter 10
Relativistic Wave Equations

10.1 The Relativistic Wave Equation

In the previous chapter we have recalled the basic notions of non-relativistic quan-
tum mechanics. We have seen that, in the Schroedinger representation, the physical
state of a free particle of mass m is described by a wave function ψ(x, t) which is
itself a classical field having a probabilistic interpretation. For a single free particle
this function is solution to the Schroedinger equation (9.79). A system of N inter-
acting particles will be described by a wave function ψ(x1, x2, . . . , xN ; t) whose
squared modulus represents the probability density of finding the particles at the
points x1, x2, . . . , xN at the time t. In this description the number N of particles is
always constant that is it cannot vary during the interaction. Note that the conser-
vation of the number of particles is related to the conservation of mass in a non-
relativistic theory: The sum of the rest masses of the particles cannot change during
the interaction. A change in this number would imply a variation in the sum of the
corresponding rest masses.

Strictly related to this property of the Schroedinger equation is the fact that the
total probability is conserved in time. Let us recall the argument in the case of a
single particle.

The normalization of ψ(x, t) is fixed by requiring that the probability of finding
the particle anywhere in space at any time t be one:

∫

V

d3x|ψ(x, t)|2 = 1,

where V = R
3 representing the whole space. This total probability should not depend

on time, and indeed, by using Schroedinger’s equation and Gauss’ law we find:
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d

dt

∫

V

d3x|ψ(x, t)|2 =
∫

V

d3x
(
ψ∗ ∂
∂t
ψ + ψ ∂

∂t
ψ∗
)

= i�

2m

∫

V

d3x
[
(∇2ψ)ψ∗ − ψ∇2ψ∗

]

= i�

2m

∫

V

d3x∇ · (ψ∗∇ψ − ψ∇ψ∗)

= i�

2m

∫

S∞

d S n · (ψ∗∇ψ − ψ∇ψ∗) = 0, (10.1)

n being the unit vector orthogonal to d S and S∞ is the surface at infinity which
ideally encloses the whole space V . The last integral over S∞ in the above equation
then vanishes since both ψ and ∇ψ vanish sufficiently fast at infinity. Thus the total
probability is conserved in time.

Equation (10.1) can also be neatly expressed, in a local form, as a continuity
equation:

∂tρ +∇ · j = 0, ρ ≡ |ψ(x, t)|2, j ≡ i�

2m
(ψ∇ψ∗ − ψ∗∇ψ), (10.2)

which, as we have seen, holds by virtue of Schroedinger’s equation.
Can the above properties still be valid in a relativistic theory? Let us give some

physical arguments about why the very concept of wave function looses its meaning
in the context of a relativistic theory. As emphasized in Chap. 9, in non-relativistic
quantum mechanics x and t play a different role, the former being a dynamical
variable as opposed to the latter.

Furthermore we know that one of the most characteristic features of elementary
particles is their possibility of generation, annihilation, and reciprocal transformation
as a consequence of their interaction. Photons can be generated by electrons in motion
within atoms, neutrinos are emitted in β-decays, a neutral pion, a composite particle
of a quark and an anti-quark, can decay and produce two photons, a fast electron
moving close to a nucleus can produce photons which in turn may transform in
electron-positron pairs, and so on.

That means that in phenomena arising from high energy particle interactions, the
number of particles is no longer conserved.

Consequently some concepts of the non-relativistic formulation of quantum
mechanics must be consistently revised.

First of all, we must give up the possibility of localizing in space and time a
particle with absolute precision, which was instead allowed in the non-relativistic
theory. Indeed if in a relativistic theory we were to localize a particle within a domain
of linear dimensions �x less than �/2mc, by virtue of the Heisenberg uncertainty
principle �x�px ≥ �/2, the measuring instrument should exchange with the par-
ticle a momentum �px ≥ mc, carried for example by a photon. Such a photon of
momentum �px , would carry an energy �E = c�px ≥ mc2 which is greater than

http://dx.doi.org/10.1007/978-88-470-1504-3_9
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or equal to the rest energy of the particle. This would be in principle sufficient to
create a particle (or better a couple particle-antiparticle, as we shall see) of rest mass
m which may be virtually undistinguishable from the original one.

It is therefore impossible to localize a particle in a region whose linear size is of
the order of the Compton wavelength �/mc. In the case of photons, having m = 0
and v = c, the notion of position of the particle simply does not exist.

The existence of a minimal uncertainty �x ≈ �/mc in the position of a particle
also implies a basic uncertainty in time, since from the inequality �t�E ≥ �

2
and the condition �E ≤ mc2 ≈ �c

�x deduced above, it follows that �t � �

�E �
�x
c ≈ �/mc2 (note that in the non-relativistic theory c = ∞ so that�t can be zero).

As far as the uncertainty in the momentum of a particle is concerned, we note that
from�x � c�t it follows that�p � �

c�t , that is the uncertainty in the momentum
px can be made as small as we wish (�px → 0) just by waiting for a sufficiently long
time (�t →∞). This can certainly be done for free particles. Localizing a particle
in space and time with indefinite precision is thus conceptually not possible within a
relativistic context and the interpretation of ρ ≡ |ψ(x, t)|2 as the probability density
of finding a particle in x at a time t should be substantially reconsidered. By the same
token, we can conclude that, using the momentum representation ψ̃(p) of the wave
function instead, we can consistently define a probability density in the momentum
space as |ψ̃(p)|2.

The argument given above relies on the possibility, in high energy processes, for
particles to be created and destroyed. This fact, as anticipated earlier, is at odds with
the Schroedinger’s formulation of quantum mechanics, which is based on the notion
of single particle state, or, in general of multi-particle states with a fixed number of
particles. Such description is no longer appropriate in a relativistic theory.

In order to have a more quantitative understanding of this state of affairs let us go
back to the quantum description of the electromagnetic field given in Chap. 6.

We have seen that in the Coulomb gauge (A0 = 0,∇ ·A = 0), the classical field
A(x, t) satisfies the Maxwell equation:


�A = 1

c2

∂2

∂t2 A−∇2A = 0. (10.3)

Suppose that we do not quantize the field as we did in Chap. 6, but consider the
Maxwell equation as the wave equation for the classical field A(x, t), just as the
Schroedinger equation is the wave equation of the classical field ψ(x, t). We may
ask whether a solution A(x, t) to Maxwell’s equations can be consistently given the
same probabilistic interpretation as a solutionψ(x, t) to the Schroedinger equation. In
other words, does the quantity |Aμ(x, t)|2d3x make sense as probability of finding
a photon with a given polarization in a small neighborhood d3x of a point x at
a time t?

To answer this question we consider the Fourier expansion of the classical field
A(x, t) given in (6.15):

A(x, t) =
∑

k1k2k3

(
εke−ik·x + ε∗keik·x) , (10.4)

http://dx.doi.org/10C1007/978-88-470-1504-3_6
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where εk can be written as in (6.42)

εk = c

√
�

2ωk V

2∑

α=1

ak,αuk,α, (10.5)

but with the operators a, a† replaced by numbers a, a∗ since we want to consider
A(x, t) as a classical field. If Maxwell’s propagation equation could be regarded
as a quantum wave equation, then, according to ordinary quantum mechanics, the
(complex) component of the Fourier expansion of A(x, t)

Ak,α(x) ≡ c

√
�

2ωk V
ak,αuk,αe−ik·x ,

can be given the interpretation of eigenstate of the four momentum operator P̂μ,
describing a free particle with polarization uk,α , energy E = �ω and momentum
p = �k, respectively and satisfying the relation E/c = |p|. This would imply that
Ak,α(x) represents the wave function of a photon with definite values of energy and
momentum. Consequently it would seem reasonable to identify the four potential
Aμ(x, t) as the photon wave function expanded in a set of eigenstates, so that the
Maxwell equation for the vector potential would be the natural relativistic general-
ization of the non-relativistic Schroedinger’s equation.

We note however that, while the Schroedinger’s equation is of first order in the time
derivatives, the Maxwell equation, being relativistic and therefore Lorentz invariant,
contains the operator 
� ≡ 1/c2∂2

t −∇2 which is of second order both in time and in
spatial coordinates. This makes a great difference as far as the conservation of prob-
ability is concerned since the proof (10.1) of the continuity (10.2) makes use of the
Schroedinger equation (9.78). More specifically such proof strongly relies on the fact
that the Schroedinger equation is of first order in the time derivative and of second
order in the spatial ones.

The fact that Maxwell’s propagation equation, involves second order derivatives
with respect to time, makes it impossible to derive a continuity equation for the
“would be” probability density ρ ≡ |A(x)|2 : ∂tρ+∇ · j �= 0. Indeed the first order
time derivatives are actually Cauchy data of the Maxwell propagation equation. As
a consequence the quantity ρ cannot be interpreted as a probability density, since
the total probability of finding a photon in the whole space would not be conserved.

On the other hand, as we have illustrated when discussing the quantization of
the electromagnetic field, these difficulties are circumvented if we quantize the infi-
nite set of canonical variables associated with Aμ(x, t) by the usual prescription of
converting Poisson brackets into commutators. This is effected by converting the
coefficients ak,α, a∗k,α , defined in (10.5), and thus each Fourier component εk, into
operators through the general procedure introduced in Chap. 6 under the name of
second quantization. In this new framework the classical field Aμ(x, t) becomes a
quantum field, that is an operator, and the quantum states of the electromagnetic field
are described in the occupation number representation by the multi-photon state
|{Nk,α}〉, characterized by Nk,α photons in each single-particle state (k, α).

http://dx.doi.org/10.1007/978-88-470-1504-3_6
http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10C1007/978-88-470-1504-3_6
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We may therefore expect the same considerations to apply, as we shall see, also
to free particles of spin 0 and 1/2, for which a consistent relativistic description
can be achieved by a quantum field theory in which particles are seen as quantized
excitations of a field, in the same way as photons were defined as quantum excitations
of the electromagnetic field.

Notwithstanding the difficulties of interpretation mentioned above, it is however
our purpose to give in this chapter, a treatment of the classical wave equations for
spin 0 and 1/2 particles in some detail for two reasons: First we want to give a precise
quantitative discussion of how inconsistencies show up when trying to interpret the
relativistic fields as wave functions of one-particle states, thus tracing back the histor-
ical development of relativistic quantum theories. Second, the formal development
of these equations will allow us to assemble those formulae which we shall need in
the next chapter where the “second quantization” of the spin 0 and 1/2 fields will
be developed, that is the classical fields will be treated as dynamic variables and, as
such, promoted to quantum operators. As shown for the electromagnetic case, the
second quantization procedure allows to describe the system in terms of states which
differ in the number of particles they describe and thus provides an ideal framework
in which to analyze relativistic processes involving the creation and destruction of
particles, namely in which the number and the identities of the interacting parti-
cles are not conserved. This will be dealt with in Chap. 12, where a relativistically
covariant, perturbative description of fields in interaction will be developed for the
electromagnetic field in interaction with a Dirac field. This analysis provides how-
ever a paradigm for the description of all the other fundamental interactions among
elementary particles.

10.2 The Klein–Gordon Equation

Let us consider a relativistic field theory describing a classical field 	α(xμ). Such
field is defined by its transformation property (7.47) under a generic Poincaré trans-
formation (�, x0) (7.46):

(�, x0) : xμ→ x ′μ = 
μνxν − xμ0 ,

	α(x)→ 	′α(x ′) = Dα
β	

β(x) = Dα
β	

β(�−1(x ′ + x0)),

where D = (Dα
β) = D(�) represents the action of the Lorentz transformation � on

the internal degrees of freedom of the field, labeled by α and defining a representation
of the Lorentz group SO(1, 3). In Chaps. 7 and 9, see (9.101), the action of a Poincaré
transformation on 	α(x) was described in terms of the infinitesimal generators Ĵμν
associated with the Lorentz part, and P̂μ generating space-time translations. The
latter provide the operator representation, in a relativistic quantum theory, of the
four-momentum of a particle:

P̂μ ≡
(

1

c
Ĥ , p̂

)
= i�ημν∂ν. (10.6)

http://dx.doi.org/10C1007/978-88-470-1504-3_12
http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10C1007/978-88-470-1504-3_7
http://dx.doi.org/10C1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
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The identification of the Hamiltonian operator, function of the particle position and
the momentum operator, with the generator of time evolution i�∂t is expressed by
the Schroedinger equation (9.78), and describes the dynamics of the system. For a
free particle this equation has the form (9.79), which is clearly not Lorentz covariant,
since it is obtained from the non-relativistic relation E = |p|2/2m upon replacing

p→ p̂ = −i�∇, E → Ĥ = i�∂t . (10.7)

In seeking for the simplest Lorentz-covariant generalization of the Schrödinger equa-
tion describing a free particle, we should start from the mass-shell condition in rel-
ativistic mechanics which relates the linear momentum and the energy with the rest
mass of the particle

p2 + m2c2 = E2

c2 ←→ pμ pμ − m2c2 = 0. (10.8)

Implementing the same canonical prescription (10.7) on	α we end up with (9.107)
of the previous chapter, which can be written in the following compact form:

(

� + m2c2

�2

)
	α(x) = 0. (10.9)

By construction the above equation represents a manifestly Lorentz invariant gen-
eralization of the Schroedinger equation1 and is referred to as the Klein–Gordon
equation.

We note that this equation should hold for particles of any spin, that is for any
representation of the Lorentz group carried by the index α. For example, in the case
of the electromagnetic field, setting φα(x) ≡ Aμ(x) and m = 0 we obtain


�Aμ(x) = 0, (10.10)

that is the Maxwell propagation equation for the electromagnetic four-potential
describing particles of spin 1, in the Lorentz gauge. We shall see in the sequel that
also the wave functions of spin 1/2 satisfy the Klein–Gordon equation.

In the rest of this section we shall treat exclusively the case of spin 0 fields, that
is fields that are scalar under Lorentz transformations. We shall consider a complex
scalar field, φ, or equivalently two real scalar fields (see Chap. 7, Sect. 7.4).

In this case the equation of motion (10.9) can be derived from the Hamilton
principle of stationary action, starting from the following Lagrangian density (8.198):

L = c2
(
∂μφ
∗∂μφ − m2c2

�2 φ∗φ
)
. (10.11)

1 Extension of the invariance to the full Poincaré group is obvious.

http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10C1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_8
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Indeed in this case the Euler–Lagrange equations

∂L
∂φ(x)∗

− ∂μ
(

∂L
∂∂μφ(x)∗

)
= 0; ∂L

∂φ(x)
− ∂μ

(
∂L

∂∂μφ(x)

)
= 0,

give: (

� + m2c2

�2

)
φ(x) = 0. (10.12)

together with its complex conjugate.
As a complete set of solutions we can take the plane waves (9.113)

	p(x) ∝ e−
i
�

pμxμ, (10.13)

with wave number k = p/� and angular frequency ω = E/�. These are the eigen-
functions of the operator P̂μ which describe the wave functions of particles with
definite value of energy E and momentum p, see Chap. 9. Substituting the exponen-
tials (10.13) in (10.12) we find

E2

c2 − |p|2 = m2c2, (10.14)

or

E = ±Ep = ±
√
|p|2c2 + m2c4. (10.15)

We see that solutions exist for both positive and negative values of the energy
corresponding to the exponentials:

e−
i
�
(Ept−p·x); e

i
�
(Ept+p·x). (10.16)

Strictly speaking this is not a problem as long as we consider only free fields. Indeed
the conservation of energy would forbid transition between positive and negative
energy solutions and a positive energy state will remain so. Therefore we could regard
as physical only those solutions corresponding to positive energy E > 0. However
the very notion of free particle is far from reality since real particles interact with
each other, usually in scattering processes. During an interaction transitions between
quantum states are induced, according to perturbation theory. Therefore we cannot
neglect the existence of negative energy states. For example, a particle with energy
E = +Ep could decay into a particle of energy E = −Ep, through the emission
of a photon of energy 2Ep. Moreover the existence of negative energies is in some
sense contradictory since, as shown in the following, from a field theoretical point
of view, the Hamiltonian of the theory is positive definite.2

Thus, the existence of negative energy solutions is a true problem when trying to
achieve a relativistic generalization of the Schroedinger equation.

2 Furthermore, erasing the negative energy solutions would spoil the completeness of the eigenstates
of P̂μ and the expansion in plane waves would be no longer correct.

http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10C1007/978-88-470-1504-3_9
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A second problem arises when trying to give a probabilistic interpretation to
the wave function ψ(x, t). As we have anticipated in the introduction with each
solution to the Schroedinger equation we can associate a a positive probability ρ =
|ψ(x, t)|2, and a current density j = i�

2m (ψ∇ψ∗ −ψ∗∇ψ) satisfying the continuity
equation (10.2), which assures that the total probability is conserved.

We can attempt to follow the same route for the Klein–Gordon equation, and
associate with its solution a conserved current, i.e. a current jμ for which we can
write a continuity equation in the form ∂μ jμ = 0. Although this can be done, as
we are going to illustrate below, the conserved quantity associated with jμ cannot
be consistently identified with a total probability. To construct jμ let us multiply
(10.9) by φ∗

φ∗
(

� + m2c2

�2

)
φ = 0,

and subtract the complex conjugate expression. We obtain:

φ∗
(

� + m2c2

�2

)
φ − φ

(

� + m2c2

�2

)
φ∗ = 0,

which can be written as a conservation law:

∂μ jμ(x) = 0, (10.17)

where3

jμ = i
(
φ∗∂μφ − ∂μφ∗φ) . (10.18)

Note however that j0 = i
c (φ
∗φ̇ − φφ̇∗) is not positive definite and thus cannot

be identified with a probability density. In fact this current has a different physical
interpretation. If we define

Jμ = ce

�
jμ = ice

�

(
φ∗∂μφ − ∂μφ∗φ) , (10.19)

we recognize this as the conserved current in (8.202), associated with the invariance
of the Lagrangian equation (10.11) under the symmetry transformation (8.200). The
corresponding conserved Noether charge was given by (8.203), namely:

Q =
∫

d3xJ 0 = i
e

�

∫
d3x(φ∗∂tφ − φ∂tφ

∗), (10.20)

and was interpreted in Chap. 8 as the charge carried by a complex field.4

3 The factor i has been inserted in order to have a real current.
4 Actually this “charge” can be any conserved quantum number associated with invariance under
U(1) transformations, like baryon or lepton number etc. However we will always refer to the electric
charge.

http://dx.doi.org/10.1007/978-88-470-1504-3_8
http://dx.doi.org/10.1007/978-88-470-1504-3_8
http://dx.doi.org/10.1007/978-88-470-1504-3_8
http://dx.doi.org/10C1007/978-88-470-1504-3_8
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Notwithstanding the above difficulties we shall develop in the following all the
properties of the Klein–Gordon equation since they will be very useful in the second
quantized version of the scalar field theory.

Let us now write down the most general solution to the Klein–Gordon equation.
It can be written in a form in which relativistic invariance is manifest:

φ(x) = 1

(2π�)3

∫
d4 pφ̃(p)δ(p2 − m2c2)e−

i
�

p·x (10.21)

where d4 p = dp0d3p.Let us comment on this formula. We have first solved (10.12),
as we did for Maxwell’s equation in the vacuum (5.96), in a finite size box of volume
V, see Sect. 5.6, so that the momenta of the solutions have discrete values p = �k =
�

(
2πn1
L A

, 2πn2
L B

, 2πn3
LC

)
as a consequence of the periodic boundary conditions on the

box. We have then considered the large volume limit V → ∞, see Sect. 5.6.2, in
which the components of the linear momentum become continuous variables and
the discrete sum over p is replaced by a triple integral, according to the prescription
(5.121):

∑
p

→ V

(2π�)3

∫
d3p. (10.22)

This explains the factor 1/(2π�)3 in (10.21) while the normalization volume V has
been absorbed in the definition of φ̃(p). Secondly, the Dirac delta function δ(p2 −
m2c2) makes the integrand non-zero only for p0 = E

c = ± Ep
c , thus implementing

condition (10.15). Indeed, applying the Klein–Gordon operator to (10.21) and using
the property xδ(x) = 0 we find:

(

� + m2c2

�2

)
φ(x) ∝

∫
d4 pφ̃(p)(−p2 + m2c2)δ(p2 − m2c2)e−

i
�

p·x = 0,

(10.23)
that is the Klein–Gordon equation is satisfied by the expression (10.21).

The representation (10.21) of the general solution of the Klein–Gordon equation
has the advantage of being explicitly Lorentz invariant, but it is not very manageable.
A more convenient representation is found by eliminating the constraint implemented
by the delta function. This can be done by integrating over p0 so that only the
integration on d3p remains.

For this purpose we recall the following property of the Dirac delta function:
Given a function f (x) with a certain number n of simple zeros, f (xi ) = 0, xi ,

(i = 1, . . . , n), then

δ ( f (x)) =
n∑

i=1

1

| f ′(xi )|δ(x − xi ). (10.24)

We apply this formula to the function f (E) = p2 − m2c2 = E2

c2 − |p|2 − m2c2. It
has two simple zeros corresponding to E = ±Ep. Taking into account that

http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_5
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| f ′(±Ep)| = 2

c2 Ep, (10.25)

the derivative being computed with respect to E, and using (10.24), we find:

δ(p2 − m2c2) = c2

2Ep

(
δ(E − Ep)+ δ(E + Ep)

)
. (10.26)

Substituting this expression in (10.21) one obtains:

φ(x) = c

(2π�)3

∫
d3p

∫
d E

2Ep
φ̃(p)

(
δ(E − Ep)+ δ(E + Ep)e

− i
�

p·x)

= c

(2π�)3

∫
d3p
2Ep

(
φ̃(Ep,p)e−

i
�
(E pt−p·x)

+ φ̃(−Ep,−p)e−
i
�
(−E pt−(−p)·x)) . (10.27)

Note that in the second term of the integrand we have replaced the integration variable
p with −p; such change is immaterial since the integration in d3p runs over all the
directions of p. This replacement however allows us to rewrite the argument of

the exponential e− i
�
(−E pt−(−p)·x) as i

�
times the product of the four-vectors pμ =( 1

c Ep,p
)

and xμ:

e−
i
�
(−E pt−(−p)·x) = e

i
�
(E pt−p·x) = e

i
�

p·x . (10.28)

Thus (10.27) takes the final form:

φ(x) = c

(2π�)3

∫
d3p
2E p

[
φ̃+(p)e−

i
�

p·x + φ̃−(p)e i
�

p·x]

= 1

(2π�)3

∫
d3p
2p0

[
φ̃+(p)e−

i
�

p·x + φ̃−(p)e i
�

p·x] , (10.29)

where p0 ≡ Ep/c and we have defined

φ̃+(p) ≡ φ̃(Ep,p); φ̃−(p) ≡ φ̃(−Ep,−p). (10.30)

They represent the Fourier transforms of the positive and negative energy solutions.
It is important to note that in the particular case of a real field φ(x), φ(x) =

φ∗(x), the two Fourier coefficients would be related by complex conjugation,
φ̃∗+ = φ̃−. Instead in the present case of a complex scalar field there is no relation
between them. We also note, by comparing (10.21) and (10.29), that the quantity
d3p
2Ep

is Lorentz invariant (see also Sect. 9.5). In summary (10.29) represents the most
general solution of the Klein–Gordon equation for a complex scalar field φ(x), given

http://dx.doi.org/10.1007/978-88-470-1504-3_9
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in terms of both positive and negative energy solutions. Moreover (10.29), though
not manifestly, is Lorentz invariant since it has been derived from (10.21).

For future purpose it is interesting to compute the conserved charge (10.20) in
terms of the Fourier coefficients (10.30).

To this end let us first compute the Fourier integral form of φ̇(x) from (10.29):

φ̇(x) = −ic
∫

d3p
2(2π�)3�

[
φ̃+(p)e−

i
�

p·x − φ̃−(p)e i
�

p·x] . (10.31)

Inserting the general solution (10.29) and (10.31) in the left hand side of the following
equation:

�

e
Q = i

∫
d3x(φ∗φ̇)+ c.c.

we find a number of terms involving two momentum and one volume integrals. The
integral in d3x can be performed over the exponentials and yields delta functions
according to the property:

∫
d3xe±

i
�
(p−p′)·x = (2π�)3δ3(p− p′). (10.32)

Let us consider each term separately. The terms containing the products φ+φ+ give
the following contribution:

c

(2π�)6

∫
d3x

∫
d3p

4�p0

∫
d3q

[
φ̃∗+(p)φ̃+(q)e+

i
�
((p0−q0)x0−(p−q))·x + c.c.

]

= c

(2π�)3

∫
d3p

4�p0

∫
d3q

[
φ̃∗+(p)φ̃+(q)e+

i
�
(p0−q0)x0δ3(p− q)+ c.c.

]

= c

(2π�)3

∫
d3p

4�p0

[
φ̃∗+(p)φ̃+(p)+ c.c.

]
= c

(2π�)3�

∫
d3p
2p0

φ̃∗+(p)φ̃+(p).

where we have used the fact that if p = q, then Ep = Eq. Similarly, for the φ−φ−
terms we find:

− c

(2π�)6

∫
d3x

∫
d3p

4�p0

∫
d3qφ̃∗−(p)φ̃−(q)e−

i
�
((p0−q0)x0−(p−q))·x + c.c.

= − c

(2π�)3

∫
d3p

2�p0
φ̃∗−(p)φ̃−(p).

Finally the terms containing the mixed products φ+φ− give a vanishing contribution:
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c

(2π�)6

∫
d3x

∫
d3p

4�p0

∫
d3q

[
φ̃∗−(p)φ̃+(q)e−

i
�
((p0+q0)x0−(p+q))·x−

− φ̃∗+(p)φ̃−(q)e
i
�
((p0+q0)x0−(p+q))·x]+ c.c.

= c

(2π�)3

∫
d3p

4�p0

[
φ̃∗−(p0,p)φ̃+(p0,−p)e−

2i
�

p0x0−

− φ̃∗+(p0,−p)φ̃−(p0,p)e
2i
�

p0x0
]
+ c.c. = 0.

The last equality is due to the fact that the expression within brackets, being the
difference between two complex conjugate terms, is purely imaginary and therefore,
when adding to it its own complex conjugate, we obtain zero. The final result is
therefore:

Q = 1

(2π�)3

ec

�2

∫
d3p
2p0

[
φ̃∗+(p)φ̃+(p)− φ̃∗−(p)φ̃−(p)

]
(10.33)

confirming the fact that Q is not a positive definite quantity.
In the introduction we have pointed out that the difficulties in giving a probabilis-

tic interpretation to wave functions satisfying a relativistic equation is ultimately
related to the fact that in the relativistic processes the number and identities of the
particles involved is not conserved. We also know, however, that in any experiment
performed so far, the electric charge is always conserved. We may therefore argue
that the conserved quantity Q should be interpreted as the total charge and J 0 as
the charge density. Furthermore, from (10.33), it follows that solutions with posi-
tive and negative energy have opposite charge. This will have a consistent physical
interpretation only when, in next chapter, we shall pursue the second quantization
program and promote the field φ(x) to a quantum operator acting on multi-particle
states. The quantity Q will be reinterpreted as the charge operator and the positive
and negative energy solutions will describe the creation and destruction on a state of
positive energy solutions associated with particles and antiparticles having opposite
charge.

Note that a real field has charge Q ≡ 0, since φ− = φ∗+, so that it must describe
a neutral particle coinciding with its own antiparticle. This is the case, for example,
of the electromagnetic field.

10.2.1 Coupling of the Complex Scalar Field φ(x) to the
Electromagnetic Field

We show in this section that the charge Q introduced in the previous section can be
given the interpretation of electric charge carried by the particle whose wave function
is described by a complex scalar field. To this end, we observe that the presence
of electric charge can only be ascertained by letting the particle interact with an
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electromagnetic field. In other words the interpretation of the quantity Jμ = (ρ, j/c)
as the electric four-current can be justified only by studying the interaction of φ(x)
with the electromagnetic field Aμ(x).

We have seen in Chap. 8 that the passage from the Hamilton function of a free
particle to the Hamilton function of a particle interacting with the electromagnetic
field can be effected by the minimal coupling substitution pμ→ pμ + e

c Aμ.
Using the analogy with the classical case, the quantum equation describing the

interaction of a complex scalar with the electromagnetic field Aμ can therefore be
derived through the substitution:

P̂μ→ P̂μ + e

c
Aμ = i�∂μ + e

c
Aμ, (10.34)

into the mass-shell condition (9.107) of Chap. 9:

[(
P̂μ + e

c
Aμ
) (

P̂μ + e

c
Aμ
)
− m2c2

]
φ = 0,

thus obtaining, using (10.34), the new field equation:

[(
∂μ − i

e

�c
Aμ
) (
∂μ − i

e

�c
Aμ
)
+ m2c2

�2

]
φ(x) = 0. (10.35)

Defining the covariant derivative Dμ as:

Dμ = ∂μ − ie

�c
Aμ, (10.36)

equation (10.35) becomes:

(
DμDμ + m2c2

�2

)
φ(x) = 0. (10.37)

which can be derived from the Lagrangian density

L = c2
[
(Dμφ)

∗Dμφ − m2c2

�2 |φ|2
]
. (10.38)

We observe that the equation of motion (10.35) is not invariant under the gauge
transformation Aμ(x)→ Aμ(x) + ∂μϕ(x). However, it can be easily checked that
gauge invariance can be restored if we extend the gauge transformation also to the
complex scalar field as follows:

φ(x)→ φ′(x) = φ(x)ei e
�c ϕ(x). (10.39)

Note that in the particular case of a constant gauge parameter ϕ(x) = const. we
have no transformation of the gauge field and we retrieve the invariance under the
U(1)-transformation (8.200) with a constant parameter α = −eϕ/(�c), also called

http://dx.doi.org/10C1007/978-88-470-1504-3_8
http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10C1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_8
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global-U(1) transformation, which implies the conservation of the electric charge.
The name of covariant derivative given to (10.36) stems from the fact that under the
combined transformations

φ′(x) = ei e
�c ϕ(x)φ(x),

A′μ(x) = Aμ(x)+ ∂μϕ(x), (10.40)

we have

Dμφ→ ei e
�c ϕ(x)Dμφ,

that is Dμφ transforms exactly as φ. It follows that the Lagrangian density (10.38),
being a sum of moduli squared, is invariant under (10.40). Equation (10.40) defines
the so called local-U(1) transformations, since they involve a U(1) transformation
of the complex scalar field with a local, i.e. space-time dependent, parameter.

We may now read out the Lagrangian density describing the interaction of Aμ
with φ by expanding the right hand side of (10.38) up to terms which are linear in the
electric charge e and comparing these with the general form of the coupling between
the electromagnetic field ad an electric current, given in (8.125) of Chap. 8. We find:

L = L0 + Lint ,

with

L0 = c2
(
∂μφ
∗∂μφ − m2c2

�2 φ∗φ
)

and Lint = Aμ Jμ,

the four-current Jμ being given by (10.19). As shown in Chap. 8 this current is
conserved ∂μ Jμ = 0 as a consequence of the invariance of the Lagrangian under the
global-U(1) transformation (8.200)

φ(x) −→ φ′(x) = e−iαφ(x),

with a constant parameter α. This justifies our previous guess that

Q =
∫

d3xJ 0(x, t),

is the conserved electric charge carried by the field φ.
We have learned that the interaction of a charged scalar field with the electro-

magnetic one is described by a Lagrangian equation (10.38) which is invariant under
local-U(1) transformations. This guarantees that the minimal coupling between Aμ
and φ does not spoil the gauge invariance associated with the vector potential. The
Lagrangian equation (10.38) is obtained from the one in (10.35), describing the free
scalar field, through the substitution: ∂μ→ Dμ.

http://dx.doi.org/10.1007/978-88-470-1504-3_8
http://dx.doi.org/10C1007/978-88-470-1504-3_8
http://dx.doi.org/10.1007/978-88-470-1504-3_8
http://dx.doi.org/10.1007/978-88-470-1504-3_8
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10.3 The Hamiltonian Formalism for the Free Scalar Field

The Klein–Gordon equation can be cast into a Hamiltonian form following the pro-
cedure discussed in Chap. 8. Rewriting the Lagrangian density (10.12) as:

L = φ̇∗φ̇ − c2∇φ∗ ·∇φ − m2c4

�2 φ∗φ, (10.41)

the Hamiltonian H and the Hamiltonian density H then read:

H =
∫

d3x H(φ, φ∗, π, π∗), (10.42)

H = πφ̇ + π∗φ̇∗ − L = 2φ̇∗φ − L, (10.43)

where

π(x, t) = ∂L
∂φ̇(x, t)

= φ̇∗(x, t), (10.44)

π∗(x, t) = ∂L
∂φ̇(x, t)∗

= φ̇(x, t). (10.45)

Substituting these values into (10.43) we obtain:

H =
∫

d3xH; H = ππ∗ + c2∇φ∗ ·∇φ + m2c4

�2 φ∗φ, (10.46)

showing that the Hamiltonian density, and hence the Hamiltonian, are positive
definite.

The Hamilton equations of motion are:

π̇ = −δH

δφ
; φ̇ = δH

δπ
(10.47)

π̇∗ = − δH

δφ∗
; φ̇∗ = δH

δπ∗
. (10.48)

The equation for the conjugate momentum densityπ∗ gives the propagation equation:

π̇∗ = − δH

δφ∗
⇒ ∂2φ

∂t2 = c2∇2φ − m2c4

�2 φ,

where, in computing the functional derivative, we have integrated the term ∇δφ∗ ·∇φ
by parts and we neglected the total divergence since it gives a vanishing contribution
when integrated over the whole space. Thus we have retrieved the Klein–Gordon
equation (10.12) in the Hamiltonian formalism.

http://dx.doi.org/10C1007/978-88-470-1504-3_8
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Since the Hamiltonian density has the physical meaning of an energy density
it could have been computed alternatively, in the Lagrangian formalism, in terms
of the canonical energy-momentum tensor associated with the Lagrangian density
(10.12). Indeed, from the definition (8.169), and taking into account that we have
two independent fields φ and φ∗, we compute the energy-momentum tensor to be:

Tμν = 1

c

[
∂L

∂(∂μφ)
∂νφ + ∂L

∂(∂μφ∗)
∂νφ
∗ − ημνL

]
, (10.49)

where

∂L
∂(∂μφ)

= c2∂μφ
∗; ∂L

∂∂μφ∗
= c2∂μφ.

Substituting in (10.49) we find:

Tμν = c(∂μφ
∗∂νφ + ∂νφ∗∂μφ)− ημν L

c
. (10.50)

In particular we may verify the identity between energy density cT00 and Hamiltonian
density:

T00 = 1

c
(2φ̇∗φ̇ − L) = 1

c

(
φ̇∗φ̇ + c2∇φ∗ ·∇φ + m2c4

�2 |φ|2
)
= H

c
.

that is

H = c
∫

d3xT00 =
∫

d3x
(
ππ∗ + c2∇φ∗ ·∇φ + m2c4

�2 |φ|2
)
. (10.51)

As far as the momentum of the field is concerned we find

Pi =
∫

d3x
(
φ̇∗∂ iφ + φ̇∂ iφ∗

)
⇒ P = −

∫
d3x

(
π∇φ + π∗∇φ∗) . (10.52)

10.4 The Dirac Equation

In the previous sections we have focussed our attention on a scalar field, whose
distinctive property is the absence of internal degrees of freedom since it belongs
to a trivial representation of the Lorentz group. This means that its intrinsic angular
momentum, namely its spin, is zero.

We have also studied, both at the classical level and in a second quantized setting,
the electromagnetic field which, as a four-vector, transforms in the fundamental
representation of the Lorentz group. Its internal degrees of freedom are described by

http://dx.doi.org/10.1007/978-88-470-1504-3_8
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the two transverse components of the polarization vector. At the end of Chap. 6 we
have associated with the photon a unit spin: s = 1 (in units of �). As explained there,
by this we really mean that the photon helicity is � = 1.

Our final purpose is to give an elementary account of the quantum description
of electromagnetic interactions. The most important electromagnetic interaction at
low energy is the one between matter and radiation. Since the elementary building
blocks of matter are electrons and quarks, which have half-integer spin (s = 1/2),
such processes will involve the interaction between photons and spin 1/2 particles.
It is therefore important to complete our analysis of classical fields by including the
fermion fields, that is fields associated with spin 1/2 particles.

In this section and in the sequel we discuss the relativistic equation describing
particles of spin 1/2, known as the Dirac equation.

10.4.1 The Wave Equation for Spin 1/2 Particles

Historically Dirac discovered his equation while attempting to construct a relativistic
equation which, unlike Klein–Gordon equation, would allow for a consistent inter-
pretation of the modulus squared of the wave function as a probability density. As
we shall see in the following, this requirement can be satisfied if, unlike in the Klein–
Gordon case, the equation is of first order in the time derivative. On the other hand,
the requirement of relativistic invariance implies that the equation ought to be of
first order in the space derivatives as well. The resulting equation will be shown to
describe particles of spin s = 1

2 .
Let ψα(x) be the classical field representing the wave function. The most general

form for a first order wave equation is the following:

i�
∂ψ

∂t
= (−ic�αi∂i + βmc2)ψ = Ĥψ. (10.53)

In writing (10.53) we have used a matrix notation suppressing the index α of ψα(x)
and the indices of the matrices αi ,β acting onψα namely αi = (αi )αβ, β = (β)αβ .

In order to determine the matrices αi ,β we require the solutions to (10.53) to
satisfy the following properties:

(i) ψα(x)must satisfy the Klein–Gordon equation for a free particle which imple-
ments the mass-shell condition:

E2 − |p|2c2 = m2c4;
(ii) It must be possible to construct a conserved current in terms of ψα whose

0-component is positive definite and which thus can be interpreted as a proba-
bility density;

(iii) Equation (10.53) must be Lorentz covariant. This would imply Poincaré
invariance.

http://dx.doi.org/10C1007/978-88-470-1504-3_6
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To satisfy the first requirement we apply the operator i� ∂
∂t to both sides of (10.53)

obtaining:

−�
2 ∂

2ψ

∂t2 = (−ic�αi∂i + βmc2)(−ic�α j∂ j + βmc2)ψ, (10.54)

αiα j∂i∂ j = 1

2
(αiα j + α jαi )∂i∂ j , (10.55)

where, because of the symmetry of ∂i∂ j , the term αiα j∂i∂ j can be rewritten as
If we now require αi and β to be anticommuting matrices, namely to satisfy:

{
αi ,α j

}
≡ αiα j + α jαi = 2δi j 1;

{
αi ,β

}
= 0, (10.56)

and furthermore to square to the identity matrix:

β2 = (αi )2 = 1 (no summation over i), (10.57)

then (10.54) becomes:

−�
2 ∂

2ψα

∂t2 = (−c2
�

2∇2 + m2c4)ψα, (10.58)

which is the Klein–Gordon equation
(

� + m2c2

�2

)
ψα = 0, (10.59)

where the differential operator is applied to each component of ψ.
Therefore, given a set of four matrices satisfying (10.56) and (10.57), (10.53)

implies the Klein–Gordon equation, as required by our first requirement. Equa-
tion (10.53) is called the Dirac equation. We still need to explicitly construct the
matrices αi ,β and to show that requirements (ii) and (iii) are also satisfied. In order
to discuss Lorentz covariance of the Dirac equation, it is convenient to introduce a
new set of matrices

γ 0 ≡ β; γ i ≡ βαi , (10.60)

in terms of which conditions (10.56) and (10.57) can be recast in the following
compact form

{
γ μ, γ ν

} = 2ημν1, (10.61)

where, as usual, i, j = 1, 2, 3 and μ, ν = 0, 1, 2, 3. In terms of the matrices γ μ

(10.53) takes the following simpler form5:

5 For the sake of simplicity, we shall often omit the identity matrix when writing combina-
tions of spinorial matrices. We shall for instance write the Dirac equation in the simpler form(
i�γ μ∂μ − mc

)
ψ(x) = 0.
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(
i�γ μ∂μ − mc1

)
ψ(x) = 0. (10.62)

It can be shown that the minimum dimension for a set of matrices γ μ satisfying
(10.61) is 4. Therefore the simplest choice is to make the internal index α run over
four values so that

ψα(x) =

⎛
⎜⎜⎝

ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

⎞
⎟⎟⎠ (10.63)

belongs to a four-dimensional representation of the Lorentz group.
It must be noted that although the Lorentz group representation S(�) acting on

the “vector” ψ has the same dimension as the defining representation � = (
μν),
the two representations are different. In our case ψα is called a spinor, or Dirac
field, and correspondingly the matrix Sαβ belongs to the spinor representation of the
Lorentz group (see next section).6 This representation will be shown in Sect. 10.4.4
to describe a spin 1/2 particle. This seems to be in contradiction with the fact that ψ
has four components, corresponding to its four internal degrees of freedom, which
are twice as many as the spin states sz = ±�

2 of a spin 1
2 particle. We shall also prove

that if we want to extend the invariance from proper Lorentz transformation SO(1, 3)
to transformations in O(1, 3) which include parity, that is including reflections of
the three coordinate axes, all the four components of ψ are needed.

It is convenient to introduce an explicit representation of the γ -matrices (10.61),
called standard or Pauli representation, satisfying (10.61):

γ 0 =
(

12 0
0 −12

)
; γ i =

(
0 σ i

−σ i 0

)
, (i = 1, 2, 3) (10.64)

where each entry is understood as a 2× 2 matrix

0 ≡
(

0 0
0 0

)
; 12 =

(
1 0
0 1

)
.

The σ i matrices are the Pauli matrices of the non-relativistic theory, defined as:

σ 1 =
(

0 1
1 0

)
; σ 2 =

(
0 −i
i 0

)
; σ 3 =

(
1 0
0 −1

)
. (10.65)

We recall that they are hermitian and satisfy the relation:

σ iσ j = δi j 12 + iεi jkσκ, (10.66)

which implies

6 As mentioned in Chap. 7 the spinor representation cannot be obtained in terms of tensor repre-
sentations of the Lorentz group.

http://dx.doi.org/10C1007/978-88-470-1504-3_7
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Tr(σ iσ j ) = 2δi j ; {σi , σ j } = 2δi j 12; [σ i , σ j ] = 2iεi jkσ
k . (10.67)

The matrices αi ,β read:

αi =
(

0 σ i

σ i 0

)
; β =

(
12 0
0 −12

)
. (10.68)

Using the representation (10.64), the Dirac equation can be written as a coupled
system of two equations in the upper and lower components of the Dirac spinor
ψα(x). Indeed, writing

ψα(x) =
(
ϕ(x)
χ(x)

)
; ϕ(x) =

(
ϕ1

ϕ2

)
; χ(x) =

(
χ1

χ2

)
, (10.69)

where ϕ(x), e χ(x) are two-component spinors, the Dirac equation (10.62) becomes

{
i�c

[(
12 0
0 −12

)
∂

∂x0 +
(

0 σ i

−σ i 0

)
∂

∂xi

]
− mc2

(
12 0
0 12

)}(
ϕ

χ

)
= 0.

(10.70)

The matrix equation (10.70) is equivalent to the following system of coupled
equations:

i�
∂

∂t
ϕ = −i�cσ ·∇χ + mc2ϕ, (10.71)

i�
∂

∂t
χ = −i�cσ ·∇ϕ − mc2χ, (10.72)

where σ ≡ (σ i ) denotes the vector whose components are the three Pauli matrices.
The two-component spinors ϕ and χ are called large and small components of the
Dirac four-component spinor, since, as we now show, in the non-relativistic limit,
χ becomes negligible with respect to ϕ.

To show this we first redefine the Dirac field as follows:

ψ = ψ ′e−i mc2
�

t , (10.73)

so that (10.62) takes the following form:

(
i�
∂

∂t
+ mc2

)
ψ ′ =

[
cαi (−i�∂i )+ βmc2

]
ψ ′.

The rescaled spinor ψ ′ is of particular use when evaluating the non-relativistic limit,
since it is defined by “subtracting” from the time evolution of ψ the part due to its
rest energy, so that its time evolution is generated by the kinetic energy operator only:
Ĥ −mc2 Î . In other words i�∂tψ

′ is of the order of the kinetic energy times ψ ′ and,
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in the non-relativistic limit, it is negligible compared to mc2ψ ′.Next we decompose
the field ψ ′ as in (10.69) and, using (10.68), we find:

i�
∂

∂t
ϕ = cσ · p̂χ, (10.74)

(
i�
∂

∂t
+ 2mc2

)
χ = cσ · p̂ϕ, (10.75)

where we have omitted the prime symbols in the new ϕ and χ. In the non-relativistic
approximation we only keep on the left hand side of the second equation the term
2mc2χ , so that

χ = 1

2mc
σ · p̂ϕ. (10.76)

Substituting this expression in the equation for ϕ we obtain:

i�
∂

∂t
ϕ = 1

2m
p̂2ϕ = − �

2

2m
∇2ϕ, (10.77)

where we have used the identity:

(p̂ · σ )(p̂ · σ ) = |p̂|2 = −�
2∇2, (10.78)

which is an immediate consequence of the properties (10.66) of the Pauli matrices.
Equation (10.77) tells us that in the non-relativistic limit the Dirac equation

reduces to the familiar Schroedinger equation for the two component spinor wave
function ϕ. Moreover, from (10.76), we realize that the lower components χ of the
Dirac spinor are of subleading order O( 1

c )with respect to the upper ones ϕ and there-
fore vanish in the non-relativistic limit c→∞. This justifies our referring to them
as the small and large components ofψ , respectively. We also note that in the present
non-relativistic approximation, taking into account that the small components χ can
be neglected, the probability density ψ†ψ = ϕ†ϕ + χ†χ reduces to ϕ†ϕ as it must
be the case for the Schroedinger equation.

10.4.2 Conservation of Probability

We now show that property (ii) of Sect. 10.4.1 is satisfied by the solutions to the Dirac
equation, namely that it is possible to construct a conserved probability in terms of
the spinor ψα. Let us take the hermitian conjugate of the Dirac equation (10.62)

−i�∂μψ
†γ μ† − mcψ† = 0. (10.79)

We need now the following property of the γ μ-matrices (10.63) which can be easily
verified:
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γ 0γ μ† = γ μγ 0. (10.80)

Multiplying both sides of (10.79) from the right by the matrix γ 0 and defining the
Dirac conjugate ψ̄ of ψ as

ψ̄(x) = ψ†(x)γ 0,

we find:

−i�∂μψ̄γ
μ − mcψ̄ = 0,

where we have used (10.80). Thus the field ψ̄(x) satisfies the equation:

ψ̄(x)(i�
←−
∂ μγ

μ + mc) = 0, (10.81)

where, by convention

ψ̄
←−
∂ μ ≡ ∂μψ̄.

Next we define the following current:

Jμ = ψ̄γ μψ. (10.82)

and assume that Jμ transforms as a four-vector. This property will be proven to
hold in the next subsection. Using the Dirac equation we can now easily show that
∂μ Jμ = 0, that is Jμ is a conserved current:

∂μ Jμ = (∂μψ̄)γ μψ + ψ̄γ μ∂μψ = ψ̄←−∂ μγ μψ + ψ̄γ μ∂μψ
= i

mc

�
ψ̄ψ − i

mc

�
ψ̄ψ = 0. (10.83)

Note that the 0-component ρ = J 0 = ψ†ψ of this current is positive definite. If
we normalize ψ so as to have dimension [L−3/2], then ρ has the dimensions of
an inverse volume and therefore it can be consistently given the interpretation of a
probability density, the total probability being conserved by virtue of (10.83). The
second requirement (ii) is therefore satisfied.

10.4.3 Covariance of the Dirac Equation

We finally check that Dirac equation is covariant under Lorentz transformations, so
that also the third requirement of Sect. 10.4.1 is satisfied

Lorentz covariance of the Dirac equation means that if in a given reference frame
(10.62) holds, then in any new reference frame, related to the former one by a Lorentz
transformation, the same equation should hold, although in the transformed variables.
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Let us write down the Dirac equation in two frames S′ and S related by a Lorentz
(or in general a Poincaré) transformation:

(
i�γ μ∂ ′μ − mc

)
ψ ′(x ′) = 0, (10.84)

(
i�γ μ∂μ − mc

)
ψ(x) = 0, (10.85)

where ∂ ′μ = ∂
∂x ′μ and x ′μ = 
μνxν .

We must require (10.84) to hold in the new frame S′ if (10.85) holds in the original
frame S.

Let S ≡ (Sαβ) = S(�) denote the matrix D(�) = (Dα
β) in (7.47) representing

the action of a Lorentz transformation � on the spinor components. A Poincaré
transformation on ψα(x) is then described as follows:

ψ ′α(x ′) = Sαβψ
β(x), (10.86)

where, as usual, x ′ = �x−x0.We use a matrix notation for the spinor representation
while we write explicit indices for the defining representation 
μν of the Lorentz
group. Since:

∂

∂x ′μ
= ∂xν

∂x ′μ
∂

∂xν
= (
−1)νμ∂ν,

we have:

(
i�γ μ∂ ′μ − mc

)
ψ ′(x ′) =

(
i�γ μ(
−1)νμ∂ν − mc

)
Sψ(x) = 0. (10.87)

Multiplying both sides from the left by S−1 we find:

[
i�(
−1)νμ

(
S−1γ μS

)
∂ν − mc

]
ψ(x) = 0. (10.88)

We see that in order to obtain covariance, we must require

(
−1)νμS−1γ μS = γ ν ⇒ S−1γ νS = 
νμγ μ. (10.89)

In that case (10.88) becomes:

(
i�γ ν∂ν − mc

)
ψ(x) = 0,

that is we retrieve (10.85). In the next subsection we shall explicitly construct the
transformation S satisfying condition (10.88). We then conclude that Dirac equation
is covariant under Lorentz (Poincaré) transformations.

We may now check that the current Jμ = ψ̄γ μψ introduced in the previous
subsection transforms as a four vector. From (10.86) we have, suppressing spinor
indices

http://dx.doi.org/10.1007/978-88-470-1504-3_7
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ψ
′
(x ′) = Sψ(x) = ψ†(x)S†γ 0, (10.90)

so that

ψ
′
(x ′)γ μψ ′(x ′) = ψ†(x)γ 0(γ 0S†γ 0)γ μSψ(x) = ψ(γ 0S†γ 0)γ μSψ, (10.91)

where we have used the property (γ 0)2 = 1. As we are going to prove below, the
following relation holds:

γ 0S†γ 0 = S−1. (10.92)

In this case, using (10.89), (10.91) becomes

ψ
′
(x ′)γ μψ ′(x ′) = ψ(x)S−1γ μSψ = 
μνψ(x)γ νψ(x), (10.93)

which shows that the current Jμ transforms as a four-vector.

10.4.4 Infinitesimal Generators and Angular Momentum

To find the explicit form of the spinor matrix S(�) we require it to induce the
transformation of the γ -matrices given by (10.89). Actually it is sufficient to perform
the computation in the case of infinitesimal Lorentz transformations.

We can write the Poincaré-transformed spinor ψ ′(x ′) in (10.86) as resulting from
the action of a differential operator O(�,x0), defined in (9.101):

ψ ′α(x ′) = O(�,x0)ψ
α(x ′) = Sαβψ

β(x), (10.94)

The generators Ĵρσ of O(�,x0) are expressed, see (9.102), as the sum of a differential
operator M̂ρσ acting on the functional form of the field, and a matrix �ρσ acting
on the internal index α (which coincide with (−i�) times the matrices (Lρσ )αβ in
(7.83)). These latter are the Lorentz generators in the spinor representation:

S(�) = e
i

2�
θρσ�

ρσ

, (10.95)

and satisfy the commutation relations (9.103):

[
�μν,�ρσ

] = −i�
(
ηνρ�μσ + ημσ�νρ − ημρ�νσ − ηνσ�μρ) . (10.96)

http://dx.doi.org/10E1007/978-88-470-1504-3_9
http://dx.doi.org/10E1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_9
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We can construct such matrices in terms of the γ μ ones as follows:

�μν = −�

2
σμν, (10.97)

where the σμν matrices are defined as:

σμν ≡ i

2
[γ μ, γ ν] = −σνμ. (10.98)

Using the properties (10.61) of the γ μ-matrices, the reader can verify that �μν

defined in (10.97) satisfy the relations (10.96). The expression of an infinitesi-
mal Lorentz transformation on ψ(x) follows from (7.83), with the identification
(Lρσ )αβ = i

�
(�ρσ )αβ = − i

2 (σ
ρσ )αβ :

δψ(x) = i

2�
δθρσ Ĵρσψ(x)

= 1

2
δθρσ

[
− i

2
σρσ + xρ∂σ − xσ ∂ρ

]
ψ(x), (10.99)

where we have adopted the matrix notation for the spinor indices and used the
identification:

Ĵρσ = M̂ρσ +�ρσ = −i�(xρ∂σ − xσ ∂ρ)− �

2
σρσ . (10.100)

To verify that the matrices�ρσ defined in (10.97) generate the correct transformation
property (10.89) of the γ μ matrices, let us verify (10.89) for infinitesimal Lorentz
transformations:


μν ≈ δμν +
1

2
δθρσ (L

ρσ )μν = δμν + δθμν,

S(�) ≈ 1− i

4
δθρσ σ

ρσ , (10.101)

where we have used the matrix form (4.170) of the Lorentz generators Lρσ =
[(Lρσ )μν] in the fundamental representation: (Lρσ )μν = ηρμδσν − ησμδ

ρ
ν .

Equation (10.89) reads to lowest order in δθ :
(

1+ i

4
δθρσ σ

ρσ

)
γ μ

(
1− i

4
δθρσ σ

ρσ

)
= γ μ + 1

2
δθρσ (L

ρσ )μνγ
ν.

The above equation implies:

i

2
[σρσ , γ μ] = (Lρσ )μνγ ν = ηρμγ σ − ησμγ ρ, (10.102)

which can be verified using the properties of theγ μ-matrices. Having checked (10.89)
for infinitesimal transformations, the equality extends to finite transformations as

http://dx.doi.org/10.1007/978-88-470-1504-3_7
http://dx.doi.org/10.1007/978-88-470-1504-3_4
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well, since the latter can be expressed as a sequence of infinitely many infinitesimal
transformations.

As far as (10.92) is concerned, from the definition (10.97) we can easily prove
the following property:

γ 0(�ρσ )†γ 0 = i�

4
γ 0[γ ρ, γ σ ]†γ 0 = i�

4
γ 0[(γ σ )†, (γ ρ)†]γ 0

= i�

4
[γ 0(γ σ )†γ 0, γ 0(γ ρ)†γ 0] = − i�

4
[γ ρ, γ σ ] = �ρσ .

Let us now compute the left hand side of (10.92) by writing the series expansion of
the exponential and use the above property of �μν :

γ 0S†γ 0 = γ 0

[ ∞∑

n=0

1

n!
(
− i

2�
θρσ�

ρσ†
)n
]
γ 0 =

∞∑

n=0

1

n!
(
− i

2�
θρσ γ

0�ρσ†γ 0
)n

= exp

(
− i

2�
θρσ γ

0�ρσ†γ 0
)
= exp

(
− i

2�
θρσ�

ρσ

)
= S−1.

(10.103)

This proves (10.92).
In terms of the generators Ĵρσ of the Lorentz group we can define the angular

momentum operator Ĵ = ( Ĵi ) as in (9.106) of last chapter:

Ĵi = −1

2
εi jk Ĵ jk = M̂i +�i ,

M̂i = εi jk x̂ i p̂ j ; �i = −1

2
εi jk�

jk, (10.104)

where, as usual M̂ = (M̂i ) denotes the orbital angular momentum, while we have
denoted by � = (�i ) the spin operators acting as matrices on the internal spinor
components. Let us compute the latter using the definition (10.97) of �μν :

�i = −1

2
εi jk�

jk = �

4
εi jkσ

jk = �

2

(
σ i 0
0 σ i

)
, (10.105)

The above expression is easily derived from the definition of σ i j and the explicit
form of the γ μ-matrices:

σ i j = i

2
[γ i , γ j ] = − i

2

( [σ i , σ j ] 0
0 [σ i , σ j ]

)
= εi jk

(
σ k 0
0 σ k

)
,

where we have used the properties (10.67) of the Pauli matrices and the relation
εi jkε

jk� = 2δ�i . For a massive fermion, like the electron, � = (�i ) generate the spin
group G(0) = SU(2), see Sect. 9.4.1, which is the little group of the four-momentum
in the rest frame S0 in which p = p̄ = (mc, 0). In Sect. 9.4.2 we have shown that

http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
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|�|2 = −ŴμŴμ/(m2c2), i.e. the spin of the particle, is a Poincaré invariant quantity.
In our case, using (10.105), we have:

|�|2 = �
2s(s + 1)1 = 3

4
�

21, (10.106)

from which we deduce that the particle has spin s = 1/2, namely that the states
|p, r〉 belong to the two-dimensional representation of SU(2), labeled by r. The
matrix R(�, p) in (9.112) is thus an SU(2) transformation generated by the matrices
si ≡ �σi/2, see Appendix F:

R(�, p) = exp

(
i

�
θ i si

)
, (10.107)

where, if � were a rotation, θ i would coincide with the rotation angles, and thus be
independent of p, whereas if � were a boost, θ i would depend on p and on the boost
parameters.

Note that, in the spinorial representation of the Lorentz group, which acts on the
index α of ψα(x), a generic rotation with angles θ i is generated by the matrices �i

in (10.105) and has the form:

S(�R) = e
i
�
θ i�i =

(
e

i
�
θ i si 0

0 e
i
�
θ i si

)
=
(

S(θ) 0
0 S(θ)

)
, (10.108)

S(θ) ≡ e
i
�
θ i si = cos

(
θ

2

)
+ iσ · θ̂ sin

(
θ

2

)
, (10.109)

where θ ≡ (θ i ), θ ≡ |θ | and θ̂ ≡ θ/θ. Equation (10.109) is readily obtained along
the same lines as in the derivation of the 4 × 4 matrix representation of a Lorentz
boost in Chap. 4. Equation (10.108) shows that, with respect to the spin group SU(2),
the spinorial representation is completely reducible into two two-dimensional rep-
resentations acting on the small and large components of the spinor, respectively.
Moreover we see that a rotation by an angle θ of the RF about an axis, amounts to a
rotation by an angle θ /2 of a spinor.

If the particle is massless, R is an SO(2) rotation generated by the helicity operator
� in the frame in which the momentum is the standard one p = p̄. Choosing7

p̄ = (E, 0, 0, E)/c, �̂ = �3 and

R(�, p) = exp

(
i

�
θs3

)
, (10.110)

Finally we may verify that the spin � does not commute with the Hamiltonian, i.e.
it is not a conserved quantity. Indeed, the expression of the Hamiltonian given in
(10.53), namely

7 Note that, with respect to the last chapter, we have changed our convention for the standard
momentum of a massless particle. Clearly the discussion in Chap. 9 equally applies to this new
choice, upon replacing direction 1 with direction 3.

http://dx.doi.org/10E1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10C1007/978-88-470-1504-3_9
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H = −ic�αi∂i + βmc2 = cαi p̂i + βmc2 =
(

mc2 cp̂ · σ
cp̂ · σ −mc2

)
,

where we have used the explicit matrix representation (10.68) of αi ,β. Using for
� the expression (10.105) we find:

[H, �k] = ic�

(
0 εki jσ

i p̂ j

εki jσ
i p̂ j 0

)
= ic�εki jα

j p̂i �= 0. (10.111)

We see that, considering the third component �3, the commutator does not vanish ,
except in the special case p1 = p2 = 0, p3 �= 0. In general the component of � along
the direction of motion, which is the helicity �, is conserved. This is easily proven
by computing [H,� · p̂] = [H, �i p̂i ] and using the property that H commutes with
p̂i , so that, in virtue of (10.111), [H, �i p̂i ] = [H, �i ] p̂i = 0.

Similarly also the orbital angular momentum is not conserved since, if we compute
[H, M̂k] and use the commutation relation [x̂ i , p̂ j ] = i�δi

j , we find:

[H, M̂k] = εki j [H, x̂ i ] p̂ j = cεki jα
�[ p̂�, x̂ i ] p̂ j = −ic�εki jα

i p̂ j .

Summing the above equation with (10.111) we find:

[H, Ĵk] = [H, M̂k +�k] = −ic�εki jα
i p̂ j + ic�εki jα

i p̂ j = 0,

namely that the total angular momentum J =M+� is conserved.
So far we have been considering the action of the rotation subgroup of the Lorentz

group on spinors. We have learned in Chap. 4 that a generic proper Lorentz transfor-
mation can be written as the product of a boost and a rotation:

S(�) = S(�B)S(�R). (10.112)

Let us consider now the boost part. Lorentz boosts are generated, in the fundamen-
tal representation, by the matrices Ki defined in Sect. 4.7.1 of Chap. 4. To find the
representation of these generators on the spinors, let us expand a generic Lorentz
generator in the spinor representation:

i

2�
θμν�

μν = i

�
θ0i�

0i + i

�
θi�

i = λi K i + i

�
θi�

i , (10.113)

where, as usual, θi = −εi jkθ
jk/2 while λi ≡ θ0i . The boost generators K i =

i�0i/� read:

K i = 1

2
γ 0γ i = 1

2
αi . (10.114)

A boost transformation is thus implemented on a spinor by the following matrix

S(�B) = e
i
�
λi�

0i = eλi K i
. (10.115)

http://dx.doi.org/10C1007/978-88-470-1504-3_4
http://dx.doi.org/10C1007/978-88-470-1504-3_4
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The above matrix can be evaluated by noting that (λi K i )2 = −λiλ jγ
iγ j/4 = λ2/4,

where λ = |λ| and we have used the anticommutation properties of the γ i -matrices.
By using this property and defining the unit vector λ̂i = λi/λ the expansion of the
exponential on the right hand side of (10.115) boils down to:

S(�B) = cosh

(
λ

2

)
1+ sinh

(
λ

2

)
λ̂iαi . (10.116)

From the identifications cosh(λ) = γ (v), sinh(λ) = γ (v)v/c, λ̂ = (λ̂i ) = v/v, see
Sect. 4.7.1 of Chap. 4, we derive:

cosh

(
λ

2

)
=
√
γ (v)+ 1

2
; sinh

(
λ

2

)
=
√
γ (v)− 1

2
,

S(�B) =
√
γ (v)+ 1

2
1+

√
γ (v)− 1

2

vi

v
αi . (10.117)

It is useful to express the boost �p which connects the rest frame S0 of a massive
particle to a generic one in which p = (pμ) = (Ep/c,p). In this case we can write
γ (v) = E/(mc2), v/c = pc/Ep and (10.117), after some algebra, becomes:

S(�p) = 1√
2m(mc2 + Ep)

(pμγ
μ + mcγ 0)γ 0

= 1√
2m(mc2 + Ep)

(
(p0 + mc)12 p · σ

p · σ (p0 + mc)12

)
. (10.118)

10.5 Lagrangian and Hamiltonian Formalism

The field equations of the Dirac field can be derived from the Lagrangian density:

L = i
�c

2

(
ψ̄(x)γ μ∂μψ(x)− ∂μψ̄(x)γ μψ(x)

)− mc2ψ̄(x)ψ(x). (10.119)

Indeed, since

∂L
∂∂μψ̄(x)

= −i
�c

2
γ μψ(x),

we find

∂L
∂ψ̄(x)

− ∂μ
(

∂L
∂∂μψ̄(x)

)
= 0⇔ (

i�γ μ∂μ − mc1
)
ψ(x) = 0, (10.120)

that is, the Dirac equation.

http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10C1007/978-88-470-1504-3_4
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In an analogous way we find the equation for the Dirac conjugate spinor ψ̄(x):

∂L
∂ψ

(x)− ∂μ
(

∂L
∂∂μψ(x)

)
= 0⇔ ψ̄(x)

(
i�γ μ
←−
∂μ + mc1

)
= 0. (10.121)

We note that the Lagrangian density has, in addition to Lorentz invariance, a further
invariance under the phase transformation

ψ(x) −→ ψ ′(x) = e−iαψ(x), ψ̄(x) −→ ψ̄ ′(x) = eiαψ̄(x). (10.122)

α being a constant parameter. In Sect. 10.2.1, we have referred to analogous trans-
formations on a complex scalar field as global U (1) transformations, the term global
refers to the property of α of being constant. This is indeed the same invariance
exhibited by the Klein–Gordon Lagrangian of a complex scalar field and leads to
conservation of a charge according to Noether theorem.

Let us compute the energy-momentum tensor

T νμ = 1

c

[
∂L

∂∂νψ(x)
∂μψ(x)+ ∂μψ̄(x) ∂L

∂∂νψ̄(x)
− ημνL

]

= 1

c

[
i
�c

2

(
ψ̄γ ν∂μψ − ∂μψ̄γ νψ)− ημνL

]
. (10.123)

We observe that the Lagrangian density is zero on spinors satisfying the Dirac equa-
tion. We may therefore write

T νμ = i
�

2

(
ψ̄γ ν∂μψ − ∂μψ̄γ νψ) . (10.124)

This tensor is not symmetric. We can however verify that the divergences of Tμν

with respect to both indices vanish:

∂μT νμ = ∂μTμν = 0, (10.125)

The latter equality is a consequence of the Noether theorem, being μ the index of
the conserved current. As for the former, it is easily proven as follows:

∂μT νμ = i
�

2

(
∂μψ̄γ

ν∂μψ + ψ̄γ ν
�ψ − 
�ψ̄γ νψ − ∂μψ̄γ ν∂μψ
) = 0,

where we have used the Klein–Gordon equation forψ and ψ̄.Using property (10.125)
we can define a symmetric energy momentum-tensor �μν simply as the symmetric
part of Tμν :

�μν = 1

2
(Tμν + T νμ), (10.126)
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since (10.125) guarantee that ∂μ�μν = 0. The four-momentum of the spinor field

Pμ =
∫

V
d3xT 0μ,

has the following form

Pμ = i
�

2

∫

V
d3x

(
ψ̄γ 0∂μψ − ∂μψ̄γ 0ψ

)
, (10.127)

while the field Hamiltonian H = cp0 reads

H = i
�

2

∫

V
d3x

(
ψ†ψ̇ − ψ̇†ψ

)
. (10.128)

Using the Dirac equation and integrating by parts, we can easily prove that the right
hand side is the sum of two equal terms:

i�
∫

V
d3x ˙̄ψγ 0ψ = −i�c

∫

V
d3x∂i ψ̄γ

iψ − mc2
∫

V
d3xψ̄ψ

= i�c
∫

V
d3xψ̄γ i∂iψ − mc2

∫

V
d3xψ̄ψ = −i�

∫

V
d3xψ̄γ 0ψ̇,

so that the Hamiltonian can also be written in the following simpler form:

H = i�
∫

V
d3xψ†ψ̇. (10.129)

Let us now compute the conjugate momenta of the Hamiltonian formalism:

π(x) = ∂L(x)
∂ψ̇(x)

= i
�

2
ψ†(x), (10.130)

π†(x) = ∂L(x)
∂ψ̇†(x)

= −i
�

2
ψ(x). (10.131)

We note that from these equations it follows that the canonical variablesπ,ψ, π†, ψ†

are not independent: π† ∝ ψ,π ∝ ψ†. In view of the quantization of the Dirac field,
we need to deal with independent canonical variables. It is useful, in this respect, to
redefine the Lagrangian density in the following way:

L = i�cψ̄(x)γ μ∂μψ(x)− mc2ψ̄(x)ψ(x). (10.132)

The reader can easily verify that the above expression differs from the previous
definition (10.119) by a divergence. We then define, as the only independent variables,
the components of ψ(x), so that the corresponding conjugate momenta read



334 10 Relativistic Wave Equations

π(x) = ∂L(x)
∂ψ̇

= i�ψ†(x). (10.133)

From the canonical Poisson brackets (8.225) and (8.226) and the above expression
of between π(x), we find:

{
ψα(x, t), ψ†

β(y, t)
}
= − i

h
δ3(x − y)δαβ , (10.134)

{
ψα(x, t), ψβ(y, t)

} =
{
ψ†
α(x, t), ψ†

β(y, t)
}
= 0. (10.135)

It is convenient to rewrite the Hamiltonian H in (10.129) using Dirac equa-
tion (10.53):

H = i�
∫

V
d3xψ†ψ̇ =

∫

V
d3xψ†[−i�cαi∂i + mc2β]ψ. (10.136)

The reader can verify that the Hamiltonian density in the above formula can be
written in the form:

H = παψα − L. (10.137)

We can also verify that the Hamilton equation

π̇†(x) = − δH

δψ†(x)
= −

[
−i�cαi∂i + mc2β

]
ψ, (10.138)

coincides with the Dirac equation

i�ψ̇ = (−i�cαi∂i + mc2β)ψ.

10.6 Plane Wave Solutions to the Dirac Equation

We now examine solutions to the Dirac equation having definite values of energy
and momentum. A spinor field with definite four-momentum p = (pμ) and spin r ,
must have the general plane-wave form given in (9.113):

ψp,r (x) = cpw(p, r)e
i
�
(p·x−Et) = cpw(p, r)e

− i
�

p·x , (10.139)

where w(p, r) is a four-component Dirac spinor and cp a Lorentz invariant normal-
ization factor, to be fixed later. Inserting (10.139) into (10.62), and using the short
hand notation � p ≡ γ μ pμ, we find that the generic spinorw(p) satisfies the equation
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( � p − mc) w(p, r) = 0. (10.140)

where pμ = ( E
c ,p

)
. If we decompose w(p, r) into two-dimensional spinors as in

(10.69) and use the representation (10.64) of the γ -matrices (10.140) becomes:

( E
c − mc −σ · p
σ · p − E

c − mc

)(
ϕ

χ

)
= 0. (10.141)

We have shown that each component of ψ(x) is in particular solution to the Klein–
Gordon equation (10.59) which implements the mass-shell condition. This can be
also verified by multiplying (10.140) to the left by the matrix ( � p + mc):

( � p + mc)( � p − mc)w(p, r) = ( � p2 + mc � p − mc � p − m2c2)w(p, r) = 0.

Using the anti-commutation properties of the γ μ-matrices we find

� p2 = γ μγ ν pμ pν = 1

2
(γ μγ ν + γ νγ μ)pμ pν = ημν pμ pν = p2, (10.142)

which implies

( � p + mc)( � p − mc)w(p, r) = (p2 − m2c2)w(p, r) = 0, (10.143)

namely the mass-shell condition. As noticed earlier, the Klein–Gordon equation
contains negative energy solutions besides the positive energy ones:

E2

c2 = p2 + m2c2 ⇒ E = ±Ep = ±
√
|p|2c2 + m2c4. (10.144)

The problem of interpreting such solutions, as already mentioned in the case of the
complex scalar field, will be resolved by the field quantization which associates them
with operators creating antiparticles. We write the solutions with E = ±Ep in the
following form:

ψ(+)p,r (x) ≡ cpw((Ep/c,p), r)e
i
�
(p·x−Ept) = cpu(p, r)e−

i
�

p·x ,

ψ(−)p,r (x) ≡ cpw((−Ep/c,p), r)e
i
�
(p·x−Et) = cpv((Ep/c,−p), r)e

i
�
(p·x+Ept),

where we have defined u(p, r) ≡ w(( Ep
c ,p

)
, r
)
, v
(( Ep

c ,−p
)
, r
) ≡ w((− Ep

c ,p
)
, r
)
.

We shall choose the normalization factor cp to be: cp ≡
√

mc2

EpV . Note that the expo-

nent in the definition of ψ(−)p,r acquires a Lorentz-invariant form if we switch p into
−p. We can then write:

ψ(+)p,r (x) ≡
√

mc2

EpV
u(p, r)e−

i
�

p·x , (10.145)
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ψ
(−)
−p,r (x) ≡

√
mc2

EpV
v(p, r)e

i
�

p·x . (10.146)

In the above solutions we have defined p = (pμ) = ( Ep
c ,p

)
so that (10.146)

describes a negative-energy state with momentum −p, v(p, r) ≡ w(−p, r).
The general solution to the Dirac equation will be expanded in both kinds of

solutions, and have the following form:

ψ(x) =
∫

d3p
(2π�)3

V
2∑

r=1

(
c(p, r)ψ(+)p,r (x)+ d(−p, r)∗ψ(−)p,r (x)

)
,

where c, d are complex numbers representing the components of ψ(x) relative to
the complete set of solutions ψ(±)p,r (x). By changing p into −p in the integral of the
second term on the right hand side, we have:

ψ(x) =
∫

d3p
(2π�)3

V
2∑

r=1

(
c(p, r)ψ(+)p,r (x)+ d(p, r)∗ψ(−)−p,r (x)

)

=
∫

d3p
(2π�)3

√
mc2V

Ep

2∑

r=1

(
c(p, r)u(p, r)e−

i
�

p·x + d(p, r)∗v(p, r)e
i
�

p·x) .
(10.147)

We need now to explicitly construct the spinors u(p, r), v(p, r). Being u(p, r) =
w(p, r) and v(p, r) = w(−p, r), the equation for u(p, r) is the same as (10.140),
while the one for v(p, r) is obtained from (10.140) by replacing p→−p:

( � p − mc)u(p, r) = 0; ( � p + mc)v(p, r) = 0. (10.148)

The Lorentz covariance of the above equations implies that S(�)u(p, r) and S(�)v
(p, r)must be a combination of u(�p, s) and v(�p, s),8 with coefficients given by
the rotation R(�, p)sr of (10.107), or (10.110) for massless particles, according to
our discussion in Sect. 9.4.1:

S(�)u(p, r) = R(�, p)r
′

r u(�p, r ′)

S(�)v(p, r) = R(�, p)r
′

r v(�p, r ′).
(10.149)

These are nothing but the transformation properties derived in (9.118). In the frame
S0 in which the momentum p is the standard one p̄, u( p̄, r) and v( p̄, r) transform

8 This can be easily ascertained by multiplying both (10.148) to the left by S(�). We find that
S(�)u(p, r) and S(�)v(p, r) satisfy the following equations: (S(�)� pS(�)−1−mc)S(�)u(p, r) =
0 and (S(�)� pS(�)−1 + mc)S(�)v(p, r) = 0. Next we use property (10.89) and invari-
ance of the Lorentzian scalar product γ · p ≡ γ μ pμ =� p to write S(�)� pS(�)−1 =
� p′ = γ μ p′ν , where p′ = �p. Thus the transformed spinors satisfy (10.148) with the transformed
momentum p′, and consequently, should be a combination of u(p′, s) and v(p′, s), respectively.

http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
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covariantly under the action of the spin group. Let us construct them in this frame
and then extend their definition to a generic one.

Consider a massive particle, m �= 0, and let us first examine the solutions of the
coupled system (10.141) in the rest frame S0, where p = 0, namely p̄ = (mc, 0).
Equation (10.141) becomes:

(
E − mc2

)
ϕ = 0;

(
E + mc2

)
χ = 0. (10.150)

Then we have either

E = Ep=0 = mc2; ϕ �= 0, χ = 0,
or

E = −Ep=0 = −mc2; ϕ = 0, χ �= 0.

The non zero spinors in the two cases can be chosen arbitrarily. We choose them to
be eigenvectors of σ 3 :

ϕ1 =
(

1
0

)
; ϕ2 =

(
0
1

)
. (10.151)

In S0 we can then write the positive and negative energy solutions in the momentum
representation as

u(0, r) ≡ u( p̄, r) =
(
ϕr

0

)
; v(0, r) ≡ v( p̄, r) =

(
0
ϕr

)
r = 1, 2, (10.152)

where 0 =
(

0
0

)
. Since the ϕr are eigenstates of σ 3, the rest frame solutions

u(0, r) and v(0, r) are eigenstates of the operator:

�3 =
(

�

2 σ
3 0

0 �

2 σ
3

)
, (10.153)

corresponding to the eigenvalues ±�/2.
Once the solutions in the rest frame are given we may construct the solutions

u(p, r) and v(p, r) of the Dirac equation in a generic frame S where p �= 0 as
follows:

u(p, r) = � p + mc√
2m(mc2 + Ep)

u(0, r), (10.154)

v(p, r) = −� p + mc√
2m(mc2 + Ep)

v(0, r). (10.155)

The denominators appearing in (10.154) and (10.155) are normalization factors deter-
mined in such a way that the spinors u(p, r), v(p, r) obey simple normalization
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conditions (see (10.168)–(10.169) of the next section). It is straightforward to show
that u(p, r) and v(p, r) satisfy (10.148) by using the properties

( � p + mc)( � p − mc) = ( � p − mc)( � p + mc)

= p2 − m2c2 + mc � p − mc � p = p2 − m2c2 = 0,
(10.156)

which descend from (10.142).
Using the representation (10.64) of the γ -matrices and the explicit form of � p, we

obtain u(p, r) and v(p, r) in components:

u(p, r) =
⎛
⎝
√

Ep+mc2

2mc2 ϕr
p·σ√

2m(Ep+mc2)
ϕr

⎞
⎠ ; v(p, r) =

⎛
⎝

p·σ√
2m(Ep+mc2)ϕr√
Ep+mc2

2mc2 ϕr

⎞
⎠ . (10.157)

Let us show that the above vectors transform as in (10.149) with respect to
rotations �R :

S(�R)u(p, r) = e
i
�
θ i�i u(p, r) =

⎛
⎜⎝

√
Ep+mc2

2mc2 S(θ i )ϕr

S(θ i )p·σ√
2m(Ep+mc2)

ϕr

⎞
⎟⎠

=
⎛
⎜⎝

√
Ep+mc2

2mc2 ϕ′r
S(θ i )p·σS(θ i )−1√

2m(Ep+mc2)
ϕ′r

⎞
⎟⎠ , (10.158)

where:

ϕ′r ≡ S(θ i )ϕr = S(θ i )srϕs = Rs
rϕs . (10.159)

Let us now use the property of the Pauli matrices to transform under conjugation by
an SU(2) matrix S(θ), θ ≡ (θ i ), as the components of a three-dimensional vector
σ ≡ (σi ) under a corresponding rotation R(θ), see Appendix (F):

S(θ)−1σi S(θ) = R(θ)i
jσ j ⇒ S(θ)σi S(θ)−1 = R(θ)−1

i
jσ j . (10.160)

We can then write:

S(θ)p · σS(θ)−1 = p ·
(

R(θ)−1σ
)
= p′ · σ , (10.161)

where p′ ≡ R(θ)p. Since �R p = (p0,p′), we conclude that

S(�R)u(p, r) = Rs
r

⎛
⎝
√

Ep+mc2

2mc2 ϕs

p′·σ√
2m(Ep+mc2)

ϕs

⎞
⎠ = Rs

r u(�R p, s). (10.162)
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A similar derivation can be done for v(p, r). If � is a boost, of the form � =
exp

( i
�
ω0i J 0i

)
, the corresponding representation on the spinors reads S(�) =

exp
( i

�
ω0i�

0i
)
. The resulting SU(2) rotation R(�, p), which we are not going to

derive, is the Wigner rotation.
We note that u(p, r) and v(p, r) are not eigenstates of the third component of the

spin operator �3 (10.153) except in the special case of p1 = p2 = 0, p3 �= 0. This
can be explained in light of the discussion done in Sect. 9.4.1 about little groups.
The solutions u(p, r) and v(p, r), for a fixed p, transform as doublets with respect
to the little group of the momentum p, which we have denoted by G(0)

p : The action

of G(0)
p on the solutions u(p, r) and v(p, r), according to (10.149), does not affect

their dependence on p, and only amounts to an SU(2)-transformation on the index r.
This group is related to the little group G(0) = SU(2) of p̄ = (mc, 0), generated by
the�i matrices as follows: G(0)

p = �p ·SU(2) ·�−1
p . This means that its generators

are �′i = S(�p)�i S(�p)
−1. If instead we act on u(p, r) and v(p, r) by means

of a G(0) = SU(2)-transformation, it will affect dependence of these fields on p,
mapping it into p′ = (p0,Rp). Therefore, if u( p̄, r) and v( p̄, r) are eigenvectors of
�3, u(p, r) and v(p, r) will be eigenvectors of �′3.

In Sect. 9.4.1 of last chapter, a general method was applied to the construction
of the single-particle quantum states |p, r〉 acted on by a unitary irreducible repre-
sentation of the Lorentz group. The method consisted in first constructing the states
of the particle | p̄, r〉 in some special frame S0 in which the momentum of the par-
ticle is the standard one p̄, and on which an irreducible representation R of the
little group G(0) of p̄ acts ( p̄ = (mc, 0) and G(0) = SU(2) for massive particles,
while p̄ = (E, E, 0, 0)/c and G(0) is effectively SO(2) for massless particles). A
generic state |p, r〉 is then constructed by acting on | p̄, r〉 by means of U (�p), see
(9.111), that is the representative on the quantum states of the simple Lorentz boost
�p connecting p̄ to p: p = �p p̄. This suffices to define the representative U (�)
of a generic Lorentz transformation, see (9.112). In this section we have applied
this prescription to the construction of both the positive and negative energy eigen-
states of the momentum operators. The role of |p, r〉 is now played by the spinors
u(p, r), v(p, r), and that of U (�) by the matrix S(�), as it follows by comparing
(10.149) with (9.112). It is instructive at this point to show that the expressions for
u(p, r), v(p, r) given in (10.154) or, equivalently, (10.157), for massive fermions,
could have been obtained from the corresponding spinors u(0, r), v(0, r) in S0 using
the prescription (9.111), namely by acting on them through the Lorentz boost S(�p):

u(p, r) = S(�p)u(0, r); v(p, r) = S(�p)v(0, r). (10.163)

This is readily proven using the matrix form (10.118) of S(�p) derived in Sect. 10.4.4
and the definition of u(0, r), v(0, r) in (10.152). The matrix product on the right hand
side of (10.163) should then be compared with the matrix form of u(p, r), v(p, r)
in (10.157).

http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10E1007/978-88-470-1504-3_9
http://dx.doi.org/10E1007/978-88-470-1504-3_9
http://dx.doi.org/10E1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
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10.6.1 Useful Properties of the u( p, r) and v( p, r) Spinors

In the following we shall prove some properties of the spinors u(p, r) and v(p, r)
describing solutions with definite four-momentum.
• Let us compute the Dirac conjugates of u(p, r) e v(p, r):

ū(p, r) = u†(p, r)γ 0 = u†(0, r)
� p† + mc√

2m(Ep + mc2)

γ 0

= u†(0, r)γ 0γ 0 � p† + mc√
2m(Ep + mc2)

γ 0

= ū(0, r)
� p + mc√

2m(Ep + mc2)

. (10.164)

In an analogous way one finds:

v̄(p, r) = v̄(0, r) −� p + mc√
2m(Ep + mc2)

. (10.165)

Recalling the property (10.156), from (10.164) and (10.165) we obtain the equations
of motion obeyed by the Dirac spinors ū(p, r) e v̄(p, r) :

ū(p, r)( � p − mc) = 0,

v̄(p, r)( � p + mc) = 0.
(10.166)

• Next we use the relations:

( � p + mc)2 = 2mc( � p + mc),

( � p − mc)2 = 2mc(−� p + mc),
(10.167)

which follow from (10.142) and the mass-shell condition p2 = m2c2, to compute
ū(p, r)u(p, r ′):

ū(p, r)u(p, r ′) = 2mc

2m(Ep + mc2)
ū(0, r)( � p + mc)u(0, r ′)

= c

Ep + mc2 (ϕr , 0, 0)( � p + mc)

⎛
⎝

0
0
ϕr ′

⎞
⎠

= ϕr · ϕr ′ = δrr ′ , (10.168)
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With analogous computations one also finds:

v̄(p, r)v(p, r ′) = c

Ep + mc2 v̄(0, r)(−� p + mc)v(0, r ′)

= c

Ep + mc2 (0, 0,−ϕr )(−� p + mc)

⎛
⎝

0
0
ϕr ′

⎞
⎠

= −δrr ′ , (10.169)

and moreover

ū(p, r)v(p, r ′) ∝ ū(0, r)( � p + mc)(−� p + mc)v(0, r ′)
= 0 = v̄(p, r)u(p, r ′). (10.170)

Summarizing, we have obtained the relations

ū(p, r)u(p, r ′) = δrr ′ ,= −v̄(p, r)v(p, r ′),
ū(p, r)v(p, r ′) = 0. (10.171)

• Next we show that:

u†(p, r)u(p, r ′) = Ep

mc2 δrr ′ ≥ 0, (10.172)

v†(p, r)v(p, r ′) = Ep

mc2 δrr ′ ≥ 0. (10.173)

Indeed, using the Dirac equation � pu = mcu, and ū� p = mcū, we find

u†(p, r)u(p, r ′) = ū(p, r)γ 0u(p, r ′) = ū(p, r)
mγ 0 + mγ 0

2m
u(p, r ′)

= ū(p, r)
� pγ 0 + γ 0� p

2mc
u(p, r ′).

Using now the property

� pγ 0 + γ 0� p = {� p, γ 0} = pμ{γ μ, γ 0} = 2ημ0 pμ = 2Ep

c
,

the last term, can be rewritten as follows:

Ep

mc2 ū(p, r)u(p, r ′) = Ep

mc2 δrr ′ .

so that (10.172) is retrieved. Equation (10.173) is obtained in an analogous way.
We conclude that u†(p, r)u(p, r ′) and v†(p, r)v(p, r ′) are not Lorentz invariant

quantities, since they transform as Ep, that is as the time component of a four-vector.
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This agrees with the previous result that Jμ = ψ̄γ μψ is a four-vector whose time
component is J 0 = ψ†ψ > 0.

We can also prove the following orthogonality condition:

u(p, r)†v(−p, s) = 0, (10.174)

where we have used the short-hand notation u(p, r) ≡ u((Ep/c,p), r), v(p, r) ≡
v((Ep/c,p), r).To prove the above equation we use the Dirac equation for v(−p, s):
� p′v(−p, s) = −mcv(−p, s), where p′ ≡ (Ep/c,−p). We can then write:

u(p, r)†v(−p, s) = ū(p, r)γ 0v(−p, s) = 1

2mc
ū(p, r)( � pγ 0 − γ 0� p′)v(−p, s)

= 1

2mc
ū(p, r)(piγ

iγ 0 + γ 0γ i pi )v(−p, s) = 0.

(10.175)

From property (10.174) it also follows that positive and negative energy states are
represented by mutually orthogonal spinors if they have the same momentum:

[
ψ(+)p (x)

]†
ψ(−)p (x) = 0. (10.176)

Recalling from (10.145) and (10.146) that

ψ(+)p,r (x) = cpu(p, r)e−
i
�
(Ept−p·x); ψ(−)p,r (x) = cpv(−p, r)e

i
�
(Ept+p·x),

from the orthogonality condition (10.174) it indeed follows that

ψ(+)p,r (x)
†ψ(−)p,s (x) = |cp|2u†(p, r)v(−p, s)e

2i
�

Ept = 0. (10.177)

Having fixed the normalization factor cp in (10.139) to be
√

mc2

V Ep
, we now observe

that (10.172) and (10.173) represent the right normalization (9.116) of the u and v
vectors in order for the corresponding positive and negative energy solutionsψ(±)p,r (x)
to be normalized as in (9.54):

(
ψ(±)p,r , ψ

(±)
p′,r ′

)
=
∫

d3xψ(±)p,r (x)
†ψ

(±)
p′,r ′(x) =

(2π�)3

V
δ3(p− p′)δrr ′ ,

as the reader can easily verify. Similarly, using the orthogonality condition (10.174),
which applies to the above expression only when p′ = p, we can show that positive
and negative energy solutions are mutually orthogonal:

(
ψ(+)p,r , ψ

(−)
p′,r ′

)
=
∫

d3x|cp|2u(p, r)†v(−p′, r ′)e
i
�
(Ep+E ′p)t e−

i
�
(p−p′)·x

∝ (2π�)3δ3(p− p′)e
2i
�

Ept u(p, r)†v(−p, r ′) = 0.

http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
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•Finally we define projection operators
+(±p) on the positive and negative energy
solutions:


+(p)αβ ≡
2∑

r=1

u(p, r)α ū(p, r)β, (10.178)


−(p)αβ ≡ −
2∑

r=1

v(p, r)αv̄(p, r)β . (10.179)

Using the formulae (10.171) we see 
±(p) are indeed projection operators:


+(p)u(p, r) = u(p, r); 
+(p)v(p, r) = 0, (10.180)


−(p)u(p, r) = 0; 
−(p)v(p, r) = v(p, r). (10.181)

The explicit form of 
± is immediately derived from (10.167) since they express
the fact that � p ± mc are proportional to projection operators. Thus we have:


+(p) = 1

2mc
( � p + mc), (10.182)


−(p) = − 1

2mc
( � p − mc). (10.183)

10.6.2 Charge Conjugation

We show the existence of an operator in the Dirac relativistic theory which transforms
positive energy solutions into negative energy solutions, and viceversa. One can
prove on general grounds that that there exists a matrix in spinor space, called the
charge-conjugation matrix with the following properties

C−1γμC = −γ T
μ ; CT = −C; C† = C−1. (10.184)

In the standard representation we may identify the C matrix as

C = iγ 2γ 0 =
(

0 −iσ 2

−iσ 2 0

)
. (10.185)

Given a Dirac field ψ(x), we define its charge conjugate spinor ψc(x) as follows:

ψc(x) ≡ Cψ̄T (x). (10.186)

The operation which maps ψ(x) into its charge conjugate ψc(x) is called charge-
conjugation. Let us show that charge conjugation is a correspondence between pos-
itive and negative energy solutions.
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To this end let us consider the positive energy plane wave described by the spinor
u(p, r). Its Dirac conjugate ū will satisfy the following equation:

ū(p) ( � p − mc) = 0.

By transposition we have
(
γ T
μ pμ − mc

)
ūT (p) = 0

If we now multiply the above equation to the left by the C matrix and use the property
(10.184) we obtain

(� p + mc)CuT (p) = 0, (10.187)

which shows that charge-conjugate spinor uc(p) = CuT (p) satisfies the second
of (10.148) and should therefore coincide with a spinor v(p) defining the negative
energy solution ψ(−)−p with opposite momentum −p. Besides changing the value of
the momentum, charge-conjugation also reverses the spin orientation. Going, for
the sake of simplicity, to the rest frame, where a positive energy solution with spin
projection �/2 along a given direction, is described by

u(0, 1) = (1, 0, 0, 0)T ,

see (10.152), we find for the charge conjugate spinor uc ≡ Cγ 0u∗ (note that
γ 0T = γ 0)

uc(0, r) = Cγ 0u∗(0, r = 1) = (0, 0, 0, 1)T = v(0, r = 2),

that is a negative energy spinor with spin projection−�/2. In general the reader can
verify that

uc(0, r) = εrsv(0, s), (10.188)

where summation over s = 1, 2 is understood, and (εrs) is the matrix iσ2: ε11 =
ε22 = 0, ε12 = −ε21 = 1.

Let us now evaluate uc(p, r) using the explicit form of u(p, r) given in (10.154):

uc(p, r) = Cγ 0u(p, r)∗ = Cγ 0 � p∗ + mc√
2m(mc2 + Ep)

u(0, r)∗

= C
� pT + mc√

2m(mc2 + Ep)

γ 0u(0, r)∗ = − � p + mc√
2m(mc2 + Ep)

uc(0, r)

= εrs
− � p + mc√

2m(mc2 + Ep)

v(0, s) = εrsv(p, s). (10.189)
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In the above derivation we have used the properties C � pTC−1 = − � p and γ 0 � p∗ =
� pT γ 0.

We shall see in the next chapter that, upon quantizing the Dirac field, negative
energy solutionsψ(−)−p,r with momentum−p and a certain spin component (up or down
relative to a given direction) are reinterpreted as creation operators of antiparticles
with positive energy, momentum p and opposite spin component. Thus the charge
conjugation operation can be viewed as the operation which interchanges particles
with antiparticles with the same momentum and spin. As far as the electric charge
is concerned we need to describe the coupling of a charge conjugate spinor to an
external electromagnetic field as it was done for the scalar field. This will be discussed
in Sect. 10.7. We anticipate that the electric charge of a charge conjugate spinor
describing an antiparticle is opposite to that of the corresponding particle.

10.6.3 Spin Projectors

In Sect. 10.6.1 we have labeled the spin states of the massive solutions to the Dirac
equation by the eigenvalues, in the rest frame, of �3: u(0, r), v(0, r), for r = 1, 2
correspond to the eigenvalues+�/2 and −�/2 of �3. This amounts to choosing the
two-component vectors ϕr to correspond to the eigenvalues +1 and −1 of σ3. We
could have chosen u(0, r), v(0, r) to be eigenvectors of the spin-component � · n
along a generic direction n in space, |n| = 1. The corresponding eigenvalues would
still be ±�/2. Clearly, for generic n,� · n is not conserved, namely it does not
commute with the Hamiltonian, as proven in Sect. 10.4.4. This is not the case if
n = p/|p|, in which case the corresponding component of the spin vector defines
the helicity � = � · p/|p| which is indeed conserved.

We now ask whether it is possible to give a covariant meaning to the value of
the spin orientation along a direction n.We wish in other words to define a Lorentz-
invariant operator On which reduces to � · n in the rest frame, namely such that, if
in S0:

(� · n)u(0, r) = εr
�

2
u(0, r); (� · n)v(0, r) = εr

�

2
v(0, r), (10.190)

where ε1 = 1, ε2 = −1, in a generic frame S:

Onu(p, r) = εr
�

2
u(p, r); Onv(p, r) = εr

�

2
v(p, r). (10.191)

Clearly, using (10.163), we must have:

On = S(�p)(� · n)S(�p)
−1 = �′ · n, (10.192)

where �′i are the generators of the little group G(0)
p ≡ SU(2)p of p.
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We shall however compute On in a simpler way, using the Pauli-Lubanski four-
vector Ŵμ introduced in Sect. 9.4.2, which, on spinor solutions with definite momen-
tum pμ, acts by means of the following matrices:

Wμ ≡ −1

2
εμνρσ�

νρ pσ , (10.193)

It is useful to write it in a simpler way by introducing the matrix γ 5 (see Appendix G):

γ 5 = iγ 0γ 1γ 2γ 3 = i

4!εμνρσ γ
μγ νγ ργ σ =

(
0 12
12 0

)
. (10.194)

Note that γ 5 anticommutes with all the γ μ-matrices and thus commutes with the
Lorentz generators �μν which contain products of two γ μ-matrices. From this we
conclude that γ 5 commutes with a generic Lorentz transformation S(�), since it
commutes with its infinitesimal generator.

Using the γ 5 matrix the Pauli-Lubanski four-vector (10.193) takes the simpler
form:

Wμ = −1

2
εμνρσ

(
−�

2
σνρ

)
pσ = �

4
εμνρσ σ

νρ pσ

= i�

2
γ 5σμν pν = −iγ 5�μν pν, (10.195)

where we have used the identity

γ 5σμσ = − i

2
εμσνρσ

νρ,

given in Appendix G, which can be verified by direct computation, starting from
the definition of γ 5. Using the Lorentz transformation properties (10.89) of the γ μ-
matrices, and the invariance of the εμνρσ -tensor under proper transformations, we
can easily verify that Wμ transforms like the γ μ-matrices:

S(�)WμS(�)−1 = 
−1μ
νW ν . (10.196)

Let us now introduce the four-vector nμ(p) = (n0(p),n(p)) having the following
properties:

{
n2 = nμnμ = −1,
nμ pμ = 0.

(10.197)

In the rest frame, p = 0 and E = mc2 �= 0, the previous relations yield:

nμ pμ = n0 E = 0⇒ n0 = 0,

n2 = (n0)2 − |n|2 = −1⇒ |n| = 1,
(10.198)

http://dx.doi.org/10C1007/978-88-470-1504-3_9
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that is nμ(p = 0) = (0,n). We may now compute the scalar quantity nμWμ:

nμWμ = i�

2
γ 5σμνnμ pν − �

4
γ 5(γμγν − γνγμ)nμ pν

= −�

4
γ 5(2γμγν − 2ημν)n

μ pν = −�

2
γ 5γμnμ � p. (10.199)

where the property n · p = 0 has been used. In the rest frame p = 0, nμWμ becomes:

(n ·W )(p = 0) = �

2
γ 5(niγ i )p0γ 0 = −�

2
mcγ 5γ 0γ i ni = −�

2
mcγ 5αi ni

= −mc� · n, (10.200)

where we have used the property

�i = �

2
γ 5αi , (10.201)

which can be verified using (10.194), (10.68) and (10.105). Thus we have found a
Lorentz scalar quantity that in the rest frame reduces to n · �:

On ≡ − 1

mc
nμWμ

p=0−→ O(0)
n = n ·�. (10.202)

In the particular case of n pointing along the z-axis, n = nz = (0, 0, 0, 1), from
(10.105) we find

O(0)
nz
= − 1

mc
nμWμ

∣∣∣∣
p=0
=
(

�

2 σ3 0
0 �

2 σ3

)
= �3. (10.203)

Clearly, using the transformation property (10.196) of Wμ and the Lorentz invariance
of the expression of On , in a generic frame S we find

On = − 1

mc
nμWμ = S(�p)O

(0)
n S(�p)

−1, (10.204)

that is if u(0, r), v(0, r) are eigenvectors on � · n, u(p, r), v(p, r) are eigenvectors
on On corresponding to the same eigenvalues, which is the content of (10.190) and
(10.191).

We can define projectors Pr on eigenstates of On corresponding to the eigenvalues
εr �/2 = ±�/2:

Pr ≡ 1

2

(
1+ εr

2

�
On

)
= 1

2

(
1+ εr

1

mc
γ 5�n� p

)
. (10.205)
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In the rest frame the above projector reads:

P(0)
r ≡

1

2

(
1+ εrγ

5niαi

)
=
(

12 + εr n · σ 0
0 12 + εr n · σ

)
. (10.206)

The matrices Pr project on both positive and negative energy solutions with the same
spin component along n. Let us now define two operators 
+,r ,
−,r projecting on
positive and negative solutions with a given spin component r , respectively:


+,r u(p, s) = δrsu(p, s); 
+,rv(p, s) = 0,


−,r u(p, s) = 0; 
−,rv(p, s) = δrsv(p, s).
(10.207)

They have the following general form:

(
+,r )αβ = uα(p, r)ūβ(p, r); (
−,r )αβ = −vα(p, r)v̄β(p, r), (10.208)

as it follows from the orthogonality properties (10.168) and (10.169). To find the
explicit expression of these matrices in terms of p and n, we notice that they are
obtained by multiplying to the right and to the left the projectors Pr on the spin state
r by the projectors 
± on the positive and negative energy states:


±,r = 
±Pr
± = 
± 1

2
(1± εrγ

5 �n) = ± 1

4mc
( � p ± mc)(1± εrγ

5�n),

where we have used the property:
(

1+ εr
1

mc
γ 5 � n� p

)
( � p ± mc) = ( � p ± mc)(1± εrγ

5�n), (10.209)

which can be easily verified using the fact that � p and �n anticommute: �n� p = − � p�n.

10.7 Dirac Equation in an External Electromagnetic Field

We shall now study the coupling of the Dirac field to the electromagnetic field Aμ.
To this end, as we did for the complex scalar field in Sect. 10.2.1, we apply the

minimal coupling prescription, namely we substitute in the free Dirac equation

pμ→ pμ + e

c
Aμ, (10.210)

that is, in terms of the quantum operator

i�∂μ→ i�∂μ + e

c
Aμ. (10.211)

In the convention which we adopt throughout the book, the electron has charge
e = −|e| < 0. The coupled Dirac equation takes the following form:
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[
(i�∂μ + e

c
Aμ)γ

μ − mc
]
ψ(x) = 0. (10.212)

Using the covariant derivative introduced in (10.36), (10.212) takes the form

[
i�γ μDμ − mc

]
ψ(x) = 0, (10.213)

Just as in the case of the complex scalar field, the resulting equation is not invariant
under gauge transformations

Aμ(x)→ Aμ(x)+ ∂μϕ(x), (10.214)

unless we also apply to the Dirac wave function the following simultaneous phase
transformation

ψ(x)→ ψ(x)e
ie
�c ϕ(x). (10.215)

In connection with the discussion of the meaning of the charge-conjugation oper-
ation, it is instructive to see how the Dirac equation in the presence of an external
electromagnetic field transforms under charge-conjugation. The equation for the

charge-conjugate spinor ψc = Cψ
T = Cγ 0ψ∗ is easily derived from (10.212)

and reads:
((

i�∂μ − e

c
Aμ
)
γ μ − mc

)
ψc(x) = 0. (10.216)

We see that ψ and ψc describe particles with opposite charge. This justifies the
statement given at the end of Sect. 10.6.2 that antiparticles have opposite charge with
respect to the corresponding particles.9 Let us now recast (10.212) in a Hamiltonian
form. Solving with respect to the time derivative, we have:

i�
∂ψ

∂t
=
[
−c

(
i�∂i + e

c
Ai

)
αi + βmc2 − eA0

]
ψ = Hψ, (10.218)

where H = H f ree+Hint , H f ree being given by (10.53) and Hint = −e(A0+Aiα
i ).

In order to study the physical implications of the minimal coupling it is convenient
to study its non-relativistic limit. We proceed as in Sect. 10.4.1. We first redefine
the Dirac field as in (10.73), so that the Dirac equation (10.218) takes the following
form:

(
i�
∂

∂t
+ mc2

)
ψ ′ =

[
−c

(
i�∂i + e

c
Ai

)
αi + βmc2 − eA0

]
ψ ′.

9 We also observe that the Dirac equation is invariant under the transformations

ψ → ψc, Aμ →−Aμ. (10.217)
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Next we decompose the field ψ ′ as in (10.71) (omitting prime symbols on ϕ and χ )
and find:

(
i�
∂

∂t
+ eA0

)
ϕ = cσ ·

(
p̂− e

c
A
)
χ, (10.219)

(
i�
∂

∂t
+ eA0 + 2mc2

)
χ = cσ ·

(
p̂− e

c
A
)
ϕ. (10.220)

As explained earlier, in the non-relativistic limit, we only keep on the left hand side
of the second equation the term 2mc2χ , since the rest energy mc2 of the particle is
much larger than the kinetic and potential energies, so that

χ = 1

2mc
σ ·

(
p̂− e

c
A
)
ϕ,

so that only the large upper component ϕ remains. Substituting the expression for χ
into the first of (10.219) we obtain:

(
i�
∂

∂t
+ eA0

)
ϕ = 1

2m

[
σ ·
(

p̂− e

c
A
)]2

ϕ. (10.221)

To evaluate the right hand side we note that given two vectors a, b the following
identity holds as a consequence of the Pauli matrix algebra:

(a · σ )(b · σ ) = a · b+ iσ · (a × b).

In our case

a = b =
(

p̂− e

c
A
)
,

but the wedge product does not vanish, since ∇ and A do not commute. We find:

(
p̂− e

c
A
)
×
(

p̂− e

c
A
)
ϕ = i

e�

c
(−A×∇ +∇ × A) ϕ + i

e�

c
A×∇ϕ

= i
e�

c
Bϕ. (10.222)

Substituting in (10.221) we finally obtain:

i�
∂ϕ

∂t
=
[

1

2m
|i�∇ + e

c
A|2 + eV − e

mc
s · B

]
ϕ ≡ Hϕ, (10.223)

where we have defined, as usual, s ≡ �σ/2, and written A0 as −V, V being the
electric potential. Equation (10.224) is called the Pauli equation. It differs from the
Schroedinger equation of an electron interacting with the electromagnetic field by
the presence in the Hamiltonian of the interaction term:
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Hmagn = − e

mc
s · B = −μs · B, (10.224)

which has the form of the potential energy of a magnetic dipole in an external
magnetic field with:

μs = e

mc
s = g

e

2mc
s, (10.225)

representing the electron intrinsic magnetic moment. The factor g = 2 is called the
g-factor and the gyromagnetic ratio associated with the spin, defined as |μs |/|s|, is
g|e|/(2mc). Recall that the magnetic moment associated with the orbital motion of
a charge e reads

μorbit = e

2mc
M, (10.226)

M being the orbital angular momentum. The gyromagnetic ratio |μs |/|s| = |e|/(mc)
is twice the one associated with the orbital angular momentum. This result was found
by Dirac in 1928.10

Finally we note that in the present non-relativistic approximation, taking into
account that the small componentsχ can be neglected, the probability densityψ†ψ =
ϕ†ϕ + χ†χ reduces to ϕ†ϕ as it must be the case for the Schroedinger equation.

Let us write the Lagrangian density for a fermion with charge e, coupled to the
electromagnetic field:

L = ψ̄(x)
(

i�c� D − mc2
)
ψ(x). (10.227)

The reader can easily verify that the above Lagrangian yields (10.212), or, equiva-
lently (10.213). Just as we did for the scalar field, we can write L as the sum of a part
describing the free fermion, plus an interaction term LI , describing the coupling to
the electromagnetic field:

L = L0 + LI ,

L0 = ψ̄(x)
(

i�c � ∂ − mc2
)
ψ(x),

LI = Aμ(x)J
μ(x) = eAμ(x)ψ̄(x)γ

μψ(x),

(10.228)

where we have defined the electric current four vector Jμ as:

Jμ(x) ≡ ejμ(x) = eψ̄(x)γ μψ(x). (10.229)

In Sect. 10.4.2 we have shown that, by virtue of the Dirac equation, Jμ is a conserved
current, namely that it is divergenceless: ∂μ Jμ = 0.

10 We recall that the Zeeman effect can only be explained if g = 2.We see that this value is correctly
predicted by the Dirac relativistic equation in the non-relativistic limit.
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10.8 Parity Transformation and Bilinear Forms

It is important to observe that the standard representation of the γ -matrices given
in (10.4.1) is by no means unique. Any other representation preserving the basic
anticommutation rules works exactly the same way. It is only a matter of convenience
to use one or the another. In particular the expression (10.97) of the Lorentz generators
�μν in terms of γ μ-matrices is representation-independent.

In this section we introduce a different representation, called the Weyl represen-
tation, defined as follows:

γ 0 =
(

0 12
12 0

)
; γ i =

(
0 −σ i

σ i 0

)
; i = 1, 2, 3. (10.230)

It is immediate to verify that the basic anticommutation rules (10.61) are satisfied.
Defining

σμ = (12,−σ i ); σ̄ μ = (12, σ
i ), (10.231)

equation (10.230) can be given the compact form

γ μ =
(

0 σμ

σ̄μ 0

)
. (10.232)

The standard (Pauli) and the Weyl representations are related by a unitary change of
basis:

γ
μ
Pauli = U †γ

μ
W eylU.

Decomposing as usual the spinor ψ into two-dimensional spinors ξ e ζ:

ψ =
(
ξ

ζ

)
, (10.233)

one can show that, in the Weyl representation, the proper Lorentz transformations
act separately on the two spinors, without mixing them. As we are going to show
below, this means that the four-dimensional spinor representation, irreducible with
respect to the full Lorentz group O(1, 3) becomes reducible into two two-dimensional
representations under the subgroup of the proper Lorentz group SO(1, 3).

To show this we observe that since infinitesimal transformations in the spinor
representation of the Lorentz group are, by definition, connected with continuity to
the identity, they ought to have unit determinant, and therefore they can only belong
to the subgroup of proper Lorentz transformations SO(1, 3).

We can compute, in the Weyl basis, the matrix form of the �μν generators:

�μν = −�

2
σμν = − i�

4

[
γ μ, γ ν

]
(10.234)
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= − i�

4

(
σμσ̄ ν − σνσ̄μ 0

0 σ̄ μσ ν − σ̄ νσμ
)

(10.235)

and restricting μν to space indices we have

�i = −1

2
εi jk�

jk = �

2

(
σi 0
0 σi

)
. (10.236)

The generators �i of rotations S(�R) have the same form as in the Pauli repre-
sentation. the corresponding finite transformation will therefore be implemented on
spinors by the same matrix S(�R) in (10.108).

Moreover from (10.100) the spinor representation of the infinitesimal boost gen-
erators J 0i , are also given in terms of a block diagonal matrix

�0i = −i�Ki = −i�
αi

2
= − i�

2

(
σi 0
0 −σi

)
. (10.237)

It follows that if we use the decomposition (10.233) a proper Lorentz transformation
can never mix the upper and lower components of the Dirac spinor ψ. The explicit
finite form of the proper Lorentz transformations in the spinor representation can
be found by exponentiation of the generators, following the method explained in
Chap. 7.

A generic proper Lorentz transformation can be written as the product of a rotation
and a boost transformation, as in (10.112). The rotation part was given in (10.108),
while the boost part S(�B) was given in (10.116) in terms of the matrices αi , whose
matrix representation now, in the Weyl basis, is different. One finds that under �R,B

the two two-spinors ξ, ζ transform as follows:

ξ
�R−→

[
cos

θ

2
+ iσ · θ̂ sin

θ

2

]
ξ ; ζ

�R−→
[

cos
θ

2
+ iσ · θ̂ sin

θ

2

]
ζ,

ξ
�B−→

[
cosh

λ

2
+ σ · λ̂ sinh

λ

2

]
ξ ; ζ

�B−→
[

cosh
λ

2
− σ · λ̂ sinh

λ

2

]
ζ,

where θ ≡ |θ |; λ ≡ |λ|; λ̂ = λ
|λ| ; θ = θ

|θ | .
The above results refer to proper Lorentz transformations, that is they exclude

transformations with negative determinant: det � = −1.Let us now consider Lorentz
transformations with det � = −1. Keeping
0

0 > 0, the typical transformation with
det � = −1 is the parity transformation �P ∈ O(1, 3) defined by the following
improper Lorentz matrix:

(
P )
μ
ν =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (10.238)

http://dx.doi.org/10C1007/978-88-470-1504-3_7
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On the space-time coordinates xμ it acts as follows :

x0 → x0; x→−x, (10.239)

that is it corresponds to a change of the orientation of the three coordinate axes.
We now show that �P acts on spinors as follows:

S(�P ) = ηPγ
0, (10.240)

where ηP = ±1.
We may indeed verify that

S(�P )
−1γ μS(�P ) = 
P

μ
ν γ

ν.

which generalizes the general formula (10.89) to the parity transformation. The
above property is readily proven, using (10.240):

S(�P )
−1γ 0S(�P ) = γ 0 = �P

0
0γ

0,

S(�P )
−1γ i S(�P ) =− γ i = �P

i
jγ

j . (10.241)

The action of a parity transformation on a Dirac field ψ(x) is therefore:

ψ(x)
P−→ ηPγ

0ψ(x0,−x). (10.242)

If we take into account that in the Weyl representation the γ -matrices are given by
(10.230) and are off-diagonal, we see that the parity transformation �P transforms
ξ and ζ into one another:

{
ξ → ηPχ,

χ → ηPξ.
(10.243)

This result shows that while for proper Lorentz transformations the representation of
the Lorentz group is reducible since it acts separately on the two spinor components,
if we consider the full the Lorentz group, including also improper transformations
like parity, the representation becomes irreducible and we are bound to use four-
dimensional spinors.

Let us now write the Dirac equation in this new basis. On momentum eigenstates

w(p)e− i
�

p·x it reads:

( � p − mc)w(p) = 0⇒
{
(p0 − p · σ )ξ = mcζ,
(p0 + p · σ )ζ = mcξ,

(10.244)

where we have written w = (ξ, ζ ). For massless spinors m = 0 the above equations
decouple:

(p0 − p · σ )ξ = 0; (p0 + p · σ )ζ = 0, (10.245)
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which will have solutions for p0 > 0 and p0 < 0. The above equations fix the
helicity � of the solution which, as we know, is a conserved quantity and labels the
internal degrees of freedom of a massless particle.11 On the two two-spinors ξ, ζ ,
the helicity is indeed � = �p · σ/(2|p|) = �p · σ/(2p0): It is positive for negative
energy solutions ζ and positive energy solutions ξ , while it is negative for positive
energy solutions ζ and negative energy solutions ξ.

In nature there are three spin 1/2 particles, called neutrinos and denoted by
νe, νμ, ντ , which, until recently, were believed to be massless.

In next chapter we shall be dealing with the other improper Lorentz transformation
besides parity, which is time-reversal.

10.8.1 Bilinear Forms

Let us now consider the matrix γ 5, introduced in (10.194). Its explicit form in the
Weyl representation is

γ 5 = iγ 0γ 1γ 2γ 3 = i

4!εμνρσ γ
μγ νγ ργ σ =

(
12 0
0 −12

)
. (10.246)

Let us investigate the transformation properties of γ 5 under a general Lorentz
transformation:

S−1(�)−1γ 5S(�) = i

4!εμνρσ S−1γ μSS−1γ νSS−1γ ρSS−1γ σ S

= i

4!εμνρσ

μ

μ′

ν
ν′


ρ

ρ′

σ
σ ′γ

μ′γ ν
′
γ ρ
′
γ σ
′

= det(�)
i

4
εμνρσ γ

μγ νγ ργ σ

= det(�)γ 5. (10.247)

In particular under a parity transformation, being det �P = −1 we have:

S(�P )
−1γ 5S(�P ) = −γ 5, (10.248)

that is, it transforms as a pseudoscalar. By the same token we can show that:

S(�)−1γ 5γ μS(�) = det(�)
μν(γ
5γ ν). (10.249)

11 Recall that helicity is invariant under proper Lorentz transformations and labels irreducible
representations of SO(1, 3) with m = 0.
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so that γ 5γ μ transforms as an pseudo-vector, that is as an ordinary vector under
proper Lorentz transformations, and with an additional minus sign under parity.
Defining

γ μν ≡ 1

2
[γ μ, γ ν],

we verify that γ μν transforms an antisymmetric tensor of rank two:

S(�)−1γ μνS(�) = 1

2

[
S−1γ μS, S−1γ νS

]
= 
μρ
νσ γ ρσ (10.250)

while γ5γ
μν transforms like a pseudo- (or axial-) tensor, that is with an additional

minus sign under parity as it follows from (10.248):

S(�)−1γ5γ
μνS(�) = det(�)
μρ


ν
σ γ

5γ μν. (10.251)

These properties allow us to construct bilinear forms in the spinor fields ψ which
have definite transformation under the full Lorentz group.

Indeed if we consider a general bilinear form of the type:

ψ̄(x)γ μ1...μkψ(x) (10.252)

as shown in Appendix G the independent bilinears are:

ψ̄(x)ψ(x); ψ̄(x)γ μψ(x); ψ̄(x)γ μνψ(x); ψ̄(x)γ 5ψ(x); ψ̄(x)γ 5γ μψ(x).
(10.253)

To exhibit their transformation properties we perform the transformation

ψ ′(x ′) = Sψ(x)→ ψ
′
(x ′) = Sψ(x) = ψ†(x)S†γ 0 (10.254)

and use the relation (10.92) of Sect. 9.3.3, namely

γ 0S†γ 0 = S−1 (10.255)

Using (10.247) and (10.248) it is easy to show that ψ̄(x)ψ(x) is a scalar field while
ψ̄(x)γ 5ψ(x) is a pseudoscalar, i.e. under parity they transform as follows:

ψ̄(x)ψ(x)→ ψ̄ ′(x ′)ψ ′(x ′); ψ̄(x)γ 5ψ(x)→−ψ̄ ′(x ′)γ 5ψ ′(x ′). (10.256)

By the same token, and using (10.250) and (10.251) as well, we find analogous
transformation properties for the remaining fermion bilinears. The result is summa-
rized in the following table:

http://dx.doi.org/10.1007/978-88-470-1504-3_9
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Bilinear P-transformed Kind

ψ̄(x)ψ(x) ψ̄(xP )ψ(xP ) Scalar field
ψ̄(x)γ 5ψ(x) −ψ̄(xP )γ

5ψ(xP ) Pseudo-scalar field
ψ̄(x)γ μψ(x) ημμψ̄(xP )γ

μψ(xP ) Vector field
ψ̄(x)γ 5γ μψ(x) −ημμψ̄(xP )γ

5γ μψ(xP ) Axial-vector field
ψ̄(x)γ μνψ(x) ημμηννψ̄(xP )γ

μνψ(xP ) (Antisymmetric) tensor field

where, in the second column, there is no summation over the μ and ν indices, and
xP ≡ (xμP ) = (ct,−x).

Reference

For further readings see Refs. [3], [8] (Vol. 4), [9], [13]



Chapter 11
Quantization of Boson and Fermion Fields

11.1 Introduction

In the previous chapter we have examined the relativistic wave equations for spin
0 and spin 1/2 particles. The corresponding fields φ(x) and ψα(x) were classical
in the same sense that the Schroedinger wave function ψ(x, t) is a classical field.
In contrast to the non-relativistic Schroedinger construction, we have seen that requir-
ing relativistic invariance of the quantum theory, that is invariance under Poincaré
transformations, unavoidably leads to serious difficulties when trying to interpret
the field as representing the physical state of the system: It implies the appearance
of a non-conserved probability density and, most of all, the appearance of negative
energy states. Note that the latter difficulty is in some sense contradictory because if
we just consider the field aspect of the wave equations, the field energy, expressed
in terms of the canonical energy momentum tensor, is positive.

As we have anticipated in the previous chapter and shall show in the present one,
the key to a consistent quantization procedure is provided by the quantization of a
free electromagnetic field discussed as an example in Chap. 6, where the would-be
wave function represented by the classical field Aμ(x, t) was interpreted as a quan-
tum “mechanical” system with infinite degrees of freedom described by a system of
infinitely many decoupled harmonic oscillators. Within the Hamiltonian formulation
of the theory, the infinite dynamic variables associated with the degrees of freedom
of Aμ(x) were quantized according to the same prescription used for systems with a
finite number of degrees of freedom, namely trading dynamic variables with oper-
ators whose commutation rules are determined by the Heisenberg prescription1:

{A, B}P.B = − i

�
[A, B]. (11.1)

1 In this Chapter we denote the Poisson brackets by the symbol {, }P.B. since we want to reserve
the symbol {A, B} to the anticommutator of quantum operators, {A, B} = AB + B A.
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Actually when we try to extend this procedure to free fields other than the electro-
magnetic field, we shall find that in order to ensure the positivity of energy we have
to treat field with integer and half-integer spin on a different footing. Integer spin
fields, also called bosonic fields, like the electromagnetic field discussed Chaps. 5
and 6, or the Klein–Gordon field, will be quantized by a straightforward extension
of the canonical Heisenberg quantization method already used for the electromag-
netic field, namely trading classical Poisson brackets with commutators according
to (11.1). Fields with half-integer spin, like the Dirac field, will instead require a
quantization procedure based on anticommutators rather than commutators. Only in
this case we can obtain a consistent description of the quantized fermion field in
which the energy is positive definite. Besides the self-consistency of the procedure,
it will turn out that the different quantization rules for relativistic bosonic and fermi-
onic fields give a natural explanation of the connection between spin and statistics
namely the Pauli principle for spin 1/2 particles, which, in non-relativistic theory,
must be introduced as an independent assumption. Actually, while the quantization
of bosonic fields using commutators yields a consistent theory, the same prescription
applied to fermionic fields will be seen to violate the microcausality of the theory
which is a fundamental requirement of the relativity principle.

11.2 Quantization of the Klein–Gordon Field

In the previous chapters we have been dealing with classical fields of different spin:
bosonic with spin 0 and 1 (massless) and fermionic with spin 1/2. These fields are
distinguished, at the classical level, by their different transformation properties under
the Lorentz group. A bosonic field φα(x) sits in a tensor representation of the Lorentz
group. For example, while the scalar field is a Lorentz singlet, the electromagnetic
field Aμ(x) transforms in the defining representation of the Lorentz group. A fermi-
onic field, like the spin 1/2 Dirac field, transforms instead in the spinor representation
(or for half-integer spins in higher spinor representations).

In Chap. 8 we have given the fundamental Poisson brackets between the classical
field �α(x) and its conjugate momentum density πα(x). We have also pointed out
that, in a quantum theory, the dynamic variables�α(x) and their conjugate momenta
πα(x) are promoted to linear operators �̂α(x), π̂α(x) acting on the Hilbert space of
the physical states. As mentioned in the introduction their commutation properties
depend on their being bosonic or fermionic. For every boson fieldφα(x) the quantiza-
tion procedure is effected through the canonical Heisenberg equal time commutation
rules through the prescription (11.1). A bosonic quantum field theory will thus be
characterized by the following commutators between the field operators:

[
φ̂α(x, t), π̂β(y, t)

]
= i�δαβδ

3(x − y),
[
φ̂α(x, t), φ̂β(y, t)

]
= [

π̂α(x, t), π̂β(y, t)
] = 0. (11.2)

http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_6
http://dx.doi.org/10.1007/978-88-470-1504-3_8
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Taking into account that the complex conjugation of a classical dynamic variable
must be replaced by the hermitian conjugate of the corresponding quantum operator,
we can also write the hermitian conjugate counterparts of (11.2):

[
φ̂†α(x, t), π̂†

β(y, t)
]
= i�δαβδ

3(x − y),
[
φ̂†α(x, t), φ̂†β(y, t)

]
=
[
π̂†
α(x, t), π̂†

β(y, t)
]
= 0. (11.3)

Note that the classical relation (8.208) now becomes

π̂α(x, t) = ∂

∂t
φ̂†
α(x, t); π†α(x, t) = ∂

∂t
φ̂α(x, t). (11.4)

The same replacement (11.1) implies that the classical Hamilton equations, given in
terms of the Poisson brackets in (8.221) and (8.222), at the quantum level become

i�
∂

∂t
φ̂α(x, t) =

[
φ̂α(x, t), Ĥ

]
,

i�
∂

∂t
π̂α(x, t) =

[
π̂α(x, t), Ĥ

]
, (11.5)

where the Hamiltonian operator is obtained from the classical expression (8.209)
and (8.210) by promoting the field variables to quantum operators. We note that this
replacement implies time evolution in the quantum system to be described in the
Heisenberg picture since the classical dynamic variables are time dependent. Thus
the quantum state of the system is time independent.

In this section we restrict our discussion to the dynamics of a free complex scalar
field, which, as discussed in Sects. 8.8.1 and 8.8.9 is equivalent to two real scalar
fields. Since by definition a scalar field sits in the trivial representation of the Lorentz
group, it corresponds to a spin-0 field, carrying no representation indices. Its classical
description is given in terms of the Lagrangian (10.11) from which the classical
Klein–Gordon equation (10.12) is derived. In that case, following (11.1), the Poisson
brackets (8.226) become the equal-time commutators (11.2) with no indices α, β:

[
φ̂(x, t), π̂(y, t)

]
= i�δ3(x − y),

[
φ̂†(x, t), π̂†(y, t)

]
= i�δ3(x − y), (11.6)

all the other possible commutators being zero.
To derive the quantum equations of motion we first need to compute the

Hamiltonian operator. Recall that the classical Hamiltonian density is given by
(10.46), that here we rewrite here for convenience:

H = ππ∗ + c2∇φ∗∇φ + m2c4

�2 φ∗φ. (11.7)

Caution is however required when trading the classical fields in the above expression
by their quantum counterparts ϕ̂(x), ϕ̂†x), π̂(x), π̂†(x), since operators appearing
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in products in (11.6), being computed at the same space–time point xμ = yμ, do not
in general commute (see Sect. 11.4 below). This implies that a certain order must be
chosen. The convention we shall use will be shown in the sequel to lead to consistent
results in the development of the theory. It consists in the following substitutions:

(classical fields) (field operators),
π∗(x)π(x) → π̂(x)π̂†(x),

φ∗(x)φ(x) → φ̂†(x)φ̂(x),

∇φ∗(x) ·∇φ(x) → ∇φ̂†(x) ·∇φ̂(x).
(11.8)

The resulting Hamiltonian operator reads:

Ĥ =
∫

d3x
[
π̂(x)π̂†(x)+ c2∇φ̂†(x) ·∇φ̂(x)+ m2c4

�2 φ̂†(x)φ̂(x)

]
. (11.9)

Let us now use this Hamiltonian in the quantum Hamilton’s equations (11.5)

i�
∂

∂t
φ̂(x, t) =

[
φ̂(x, t), Ĥ

]
; i�

∂

∂t
π̂(x, t) =

[
π̂(x, t), Ĥ

]
. (11.10)

and show that it reproduces the quantum version of the classical Klein–Gordon
equation.

Applying (11.6) to the the first of (11.10) we find

i�
∂

∂t
φ̂(y, t) =

[
φ̂(x, t), Ĥ(t)

]
=
∫

d3y
[
φ̂(x, t), π̂(y, t)

]
π̂†(y, t)

= i�π̂†(x, t), (11.11)

which is the expression (11.4) of the conjugate momentum operators. The same
computations applied to the last of (11.10) (or better to its hermitian conjugate),
yields

i�
∂

∂t
π̂†(x, t) = c2

∫
d3y

[
π̂†(x, t),

(
∂φ̂†

∂yi

∂φ̂

∂yi

)
(y, t)

]

+ m2c2

�2

∫
d3y

[
π̂†(x, t), φ̂†(y, t)

]
φ̂(y, t)

= −c2
∫

d3y
[
π̂†(x, t), φ̂†(y, t)

]
∇2φ̂(y, t)

− i
m2c2

�
φ̂(x, t)

= i�

(
c2∇2φ̂ − m2c2

�2 φ̂

)
(x, t). (11.12)

Substituting in the left hand side the value of π† given by (11.11) we obtain

http://dx.doi.org/10.1007/978-88-470-1504-3_11
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1

c2

∂2φ̂

∂t2 −∇2φ̂ − m2c2

�2 φ̂ = 0, (11.13)

so that the quantum field operator obeys the same Klein–Gordon equation as its
classical counterpart.

In an analogous way we reproduce the quantum version of equation (10.52)

P̂(t) = −
∫

d3y
[
π̂(y)∇φ̂(y)+∇φ̂(y)π̂†(y)

]
, (11.14)

where y = (ct, y),which yields the right transformation property of the field operator
under infinitesimal space-translations (see (9.39))

δε φ̂(x, t) = i

�

[
φ̂(x, t), ε · P̂(t)

]
= − i

�

∫
d3y

[
φ̂(x, t), π̂(y, t)

]
ε ·∇φ̂(y, t)

= ε ·∇φ̂(x, t).
(11.15)

We can thus also write:

−i�∇φ̂(x, t) =
[
φ̂(x, t), P̂(t)

]
. (11.16)

Recalling that P̂ is the three-dimensional counterpart of the four-momentum
P̂μ = (Ĥ/c, P̂) of the field, (11.13) and (11.16) can be written in a Lorentz covariant
form as

[
φ̂(x, t), P̂μ(t)

]
= i�∂μφ̂(x, t) = i�ημν∂νφ̂(x, t). (11.17)

Solving the quantum Klein–Gordon theory means to explicitly construct the Hilbert
space of states V (c) and the dynamic variables φ̂α, π̂α, Ĥ acting as operators on
it, such that the commutation relations (11.6), and the equations of motion (11.10)
are satisfied. In the free field case we are now considering, this can be achieved by
constructing the quantum states of the system in terms of states describing a definite
number of particles with given momenta, that is in terms of simultaneous eigenstates
of the occupation number operator. This representation is called the Fock space
representation, or occupation number representation, and was in fact used for the
quantization of the free spin 1 electromagnetic field given in Chap. 6. In that case
we started representing the free field as a collection of infinitely many decoupled
harmonic oscillators, one for each plane wave, i.e. for each wave number vector
k and polarization. The quantization of the field was effected by quantizing each
constituent harmonic oscillator: A complete set of quantum states was constructed
as the product of the various quantum oscillator states, each characterized by an
integer number, the occupation number, representing the corresponding oscillation
mode. In this picture a single particle state, that is a photon state with energy �ω,

linear momentum �k and a given polarization i (helicity), was associated with each
plane wave, i.e. harmonic oscillator, and the occupation number of the corresponding

http://dx.doi.org/10.1007/978-88-470-1504-3_10
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quantum state represented the number of photons with those physical properties. A
quantum field state in this representation is completely defined by specifying the
occupation number of each oscillator state, that is the number of photons with a given
four-momentum �kμ and helicity i. Such states differ by the number of particles they
describe, each photon representing a quantum of field-excitation.

The same procedure will be applied in the present chapter to the quantization of
scalar and fermion fields. The key ingredient for this constructin, namely the repre-
sentation of the field as a collection of decoupled harmonic oscillators, is guaranteed
by the fact that all free fields satisfy the Klein–Gordon equation and can thus be
expanded in plane waves.

For interacting fields instead no closed solution to the problem of quantization is
known in general and we have to resort to a perturbative approach, to be developed
in the next chapter.2

As classical and quantum equations of motion are formally identical, we can
expand the quantum field φ̂(x) in plane waves with positive and negative angular
frequency, that is in a complete set of eigenfunctions with definite four-momentum
defined in (10.13) and (10.16).

We replace in the classical expansion of (10.29) the c-number coefficients of the
exponentials by operator coefficients as follows:

φ̃+(p)→ φ̂+(p) = �

c

√
2EpV a(p),

φ̃−(p)→ φ̂−(p) = �

c

√
2EpV b†(p), (11.18)

where the normalization has been chosen such that a(p) and b†(p) are dimensionless
operators. Therefore we have the following expansions:

φ̂(x) =
∫

d3p
(2π�)3

�
√

V√
2Ep

[(
a(p)e−

i
�

p·x + b†(p)e
i�
p ·x

)]
, (11.19)

φ̂(x)† =
∫

d3p
(2π�)3

�
√

V√
2Ep

[(
a†(p)e

i
�

p·x + b(p)e−
i�
p ·x

)]
, (11.20)

π̂(x) = ∂

∂t
φ̂† = i

∫
d3p
(2π�)3

√
V Ep

2

[
a†(p)e

i
�

p·x − b(p)e−
i
�

p·x] , (11.21)

π̂(x)† = ∂

∂t
φ̂ = −i

∫
d3p
(2π�)3

√
V Ep

2

[
a(p)e−

i
�

p·x − b†(p)e
i
�

p·x] . (11.22)

2 Actually we shall only consider the quantum description of the interaction between the electro-
magnetic field and a Dirac field.
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Note that had we considered an hermitian field φ̂†(x) = φ̂(x), corresponding to a
real classical field, hermiticity would have identified b† ≡ a†. For a non-hermitian
field instead the a and b operators are independent.3

Equations (11.19) and/or (11.20) can be inverted to compute the operators a(p),
b(p) and their hermitian conjugates in terms of φ̂ and φ̂†. To this end let us define
the following function:

fp = 1√
2EpV

e−
i
�

p·x ,

and prove that

a(q) = i
∫

d3x
[

f ∗q (x)∂t φ̂(x)− φ̂(x)∂t f ∗q (x)
]

= i
∫

d3x
[

f ∗q (x)π̂†(x)− φ̂(x)∂t f ∗q (x)
]
, (11.23)

a†(q) = −i
∫

d3x
[

fq(x)∂t φ̂
†(x)− φ̂†(x)∂t f ∗q (x)

]
(11.24)

= −i
∫

d3x
[

fq(x)π̂(x)− φ̂†(x)∂t f ∗q (x)
]
. (11.25)

Let us recall here some useful properties which we shall extensively use in the
following:

∫
d3x e±

i
�

p·x = (2π�)3δ3(p); f (p) =
∫

d3qδ3(p− q) f (q),

Ep ≡
√

m2c4 − |p|2c2 = E−p. (11.26)

Consider the first of (11.23) and let us rewrite the first term on the right hand side
using for φ̂ the expansion (11.19):

i
∫

d3x f ∗q (x)∂t φ̂(x) =
∫

d3x
∫

d3p
(2π�)3

√
Ep

Eq

[
a(p)

2
e−

i
�
(p−q)·x

− b†(p)
2

e
i
�
(p+q)·x

]
= a(q)

2
− b†(−q)

2
e

2i
�

Eqt , (11.27)

where we have used the fact that p = q implies Ep = Eq. By the same token we
prove that:

−i
∫

d3xφ̂(x)∂t f ∗q (x) =
a(q)

2
+ b†(−q)

2
e

2i
�

Eqt . (11.28)

3 We have used a similar argument after (10.30), in the classical case.

http://dx.doi.org/10.1007/978-88-470-1504-3_10
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Summing (11.27) and (11.28) the terms with b†(−q) drop out and we find the first
of (11.23). We can prove similar formulas for b and b†:

b(q) = i
∫

d3x
[

f ∗q (x)∂t φ̂
†(x)− φ̂†(x)∂t f ∗q (x)

]

= i
∫

d3x
[

f ∗q (x)π̂(x)− φ̂†(x)∂t f ∗q (x)
]
, (11.29)

b†(q) = −i
∫

d3x
[

fq(x)∂t φ̂(x)− φ̂(x)∂t fq(x)
]

= −i
∫

d3x
[

fq(x)π̂
†(x)− φ̂(x)∂t fq(x)

]
, (11.30)

by showing that the following properties hold:

i
∫

d3x f ∗q (x)∂t φ̂
†(x) = −a†(−q)

2
e

2i
�

Eqt + b(q)
2
,

−i
∫

d3x φ̂†(x)∂t f ∗q (x) =
a†(−q)

2
e

2i
�

Eqt + b(q)
2
. (11.31)

From (11.23) and (11.29), and from the commutation relations (11.6), we may now
compute the commutators among a(q), a†(q), b(q), b†(q)

[
a(p), a†(q)

]
=
∫

d3xd3y
[

f ∗p (x)π̂†(x)− φ̂(x)∂t f ∗p (x), fq(y)π̂(y)− φ̂†(y)∂t f ∗q (y)
]

=
∫

d3xd3y
(

f ∗p (x)∂t fq(y)
[
φ̂†(y), π̂†(x)

]
− ∂t f ∗p (x) fq(y)

[
φ̂(x), π̂(y)

])

= i�
∫

d3xd3y
(

f ∗p (x)∂t fq(y)− ∂t f ∗p (x) fq(y)
)
δ3(x − y)

= i�
∫

d3x
(

f ∗p (x)∂t fq(x)− ∂t f ∗p (x) fq(x)
)

= i�

2V

(
− i

�

√
Eq

Ep
− i

�

√
Ep

Eq

)
(2π�)3δ3(p− q) = (2π�)3

V
δ3(p− q).

Analogous computations give the complete set of commutation relations:

[
a(p), a(q)†

]
= (2π�)3δ3(p− q) · 1

V
,

[
b(p), b(q)†

]
= (2π�)3δ3(p− q)

1

V
, (11.32)

all the other possible commutation relations being zero. The reverse is also true: Given
φ̂(x), φ̂†(x) expressed in terms of operators a, b, a†, b†, satisfying the relations
(11.32), the canonical commutation rules (11.2) are satisfied. Let us check the first
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of (11.2). Using the expansions (11.19), (11.20), (11.21) and (11.22) and assuming
the commutation rules (11.32), we find

[
φ̂(x, t), π̂(y, t)

]
=
∫

d3p
(2π�)3

∫
d3q
(2π�)3

�
2V

2
√

Ep Eq

× i

�
Eq

[
[a(p), a(q)†]e− i

�
(Ep−Eq)t e

i
�
(p·x−q·y)

− [b(p)†, b(q)]e i
�
(Ep−Eq)t e−

i
�
(p·x−q·y)]

=
∫

d3p
(2π�)3

�
2

2Ep

[
i

�
Epe

i
�

p(x−y) + i

�
Epe−

i
�

p(x−y)
]

= i�δ3(x − y).

With analogous computations one verifies the other commutation rules in (11.2).
For a finite volume V, the components of the linear momentum p have discrete

values, see (9.50) of Chap. 9, and the integral in d3p becomes a sum, according to
the identification (9.53). In particular, using the prescription (9.55), the commutation
relations (11.32) for discrete momenta simplify to:

[
a(p), a(q)†

]
= δp,q;

[
b(p), b(q)†

]
= δp,q, (11.33)

all other commutators being zero.4

Let us now express, in the large volume limit, the Hamiltonian operator (11.9) in
terms of the operators a, a† and b, b†. Upon using the expansions (11.19), (11.20),
(11.21) and (11.22), the first term on the right hand side of (11.9) gives:

∫
d3xπ̂ (x)π̂†(x) =

∫
d3x

∫
d3p
(2π�)3

d3q
(2π�)3

V

2

√
Ep Eq

×
[
a†(p)a(q)e

i
�
((Ep−Eq)t−(p−q)·x) + b(p)b†(q)e−

i
�
((Ep−Eq)t−(p−q)·x)

− a†(p)b†(q)e
i
�
((Ep+Eq)t− i

�
(p+q)·x) − b(p)a(q)e−

i
�
((Ep+Eq)t−(p+q)·x)]

=
∫

d3p
(2π�)3

V

2
Ep

[
a†(p)a(p)+ b(p)b†(p)−

(
a†(p)b†(−p)e

2i
�

Ept

+ b(p)a(−p)e−
2i
�

Ept
)]
,

(11.34)

where we have used the properties (11.26). With an analogous calculation, and using
the following expansion

∇φ̂(x) = i
∫

d3p
(2π�)3

√
V

2Ep
p
(

a(p)e−
i
�

p·x − b†(p)e
i
�

p·x) , (11.35)

4 In the discrete notation we shall often use the following symbols ap ≡ a(p), bp ≡ b(p).
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the second term on the right hand side of (11.9) reads:

∫
d3x∇φ̂(x)† ·∇φ̂(x) =

∫
d3x

∫
d3p
(2π�)3

d3q
(2π�)3

V

2
√

Ep Eq
p · q

×
[
a†(p)a(q)e

i
�
((Ep−Eq)t−(p−q)·x) + b(p)b†(q)e−

i
�
((Ep−Eq)t−(p−q)·x)

− a†(p)b†(q)e
i
�
((Ep+Eq)t− i

�
(p+q)·x) − b(p)a(q)e−

i
�
((Ep+Eq)t−(p+q)·x)]

=
∫

d3p
(2π�)3

V

2Ep
|p|2

[
a†(p)a(p)+ b(p)b†(p)+ a†(p)b†(−p)e

2i
�

Ept

+ b(p)a(−p)e−
2i
�

Ept
]
,

(11.36)

while the third term has the following expansion

∫
d3xφ̂†(x)φ̂(x) =

∫
d3p
(2π�)3

�
2V

2Ep

[
a†(p)a(p)+ b(p)b†(p)

+
(

a†(p)b†(−p)e
2i
�

Ept + b(p)a(−p)e−
2i
�

Ept
)]
. (11.37)

Summing up the three results, we finally obtain

∫
d3x

[
π̂(x)π̂†(x)+ c2∇φ̂†(x) ·∇φ̂(x)+ m2c4

�2 φ̂†(x)φ̂(x)

]

=
∫

d3p
(2π�)3

V

2Ep

[
(E2

p + c2|p|2 + m2c4)(a†(p)a(p)+ b(p)b†(p))

+(−E2
p + c2|p|2 + m2c4)

(
a†(p)b†(−p)e

2i
�

Ept + b(p)a(−p)e−
2i
�

Ept
)]

=
∫

d3p
(2π�)3

V Ep(a
†(p)a(p)+ b(p)b†(p)).

(11.38)
where we have used the definition of Ep in (11.26).

The Hamiltonian operator has therefore the following form,

Ĥ =
∫

d3p
(2π�)3

V Ep(a
†(p)a(p)+ b(p)b†(p))

=
∫

d3p
(2π�)3

V Ep

[
a†(p)a(p)+ b†(p)b(p)+ (2π�)3

V
δ3(p− p)

]
. (11.39)

The Dirac delta function appearing in the last term of the right hand side is an infinite
constant devoid of physical significance since it associates with the vacuum an infinite
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energy. This is apparent if we consider the particle in a finite-size box, with volume
V . The momentum becomes discretized and (11.39) will have then the form:

Ĥ =
∑

p

Ep

[
a†(p)a(p)+ b†(p)b(p)+ 1

]
. (11.40)

The vacuum energy part would read
∑

p Ep = ∞. This inessential infinite constant
can be formally eliminated in the same way as we did for the electromagnetic field
in Chap. 6, that is by introducing the normal ordering prescription when computing
physical quantities. Let us recall the definition of “normal ordering”: An operator
product is normal ordered if all the creation operators stand to the left of all destruc-
tion operators. For instance:

: a(p)a†(p) : = : a†(p)a(p) := a†(p)a(p),

: b(p)b†(p) : = : b†(p)b(p) := b†(p)b(p). (11.41)

With the normal order prescription the Hamiltonian (11.9) is replaced by

Ĥ =
∫

d3x :
[
π̂ π̂† + c2∇φ̂† ·∇φ̂ − m2c4

�2 φ̂†φ̂

]
: (11.42)

As a consequence (11.39) takes the following form:

Ĥ =
∫

d3p
(2π�)3

V Ep :
[
a†(p)a(p)+ b(p)b†(p)

]
:

=
∫

d3p
(2π�)3

V Ep

[
a†(p)a(p)+ b†(p)b(p)

]
. (11.43)

where no infinite constant appears. For finite volume V the normal ordered
Hamiltonian reads

Ĥ =
∑

p

Ep :
[
a†(p)a(p)+ b(p)b†(p)

]
:

=
∑

p

Ep

[
a†(p)a(p)+ b†(p)b(p)

]
. (11.44)

It is instructive to compare the above expression with the corresponding one (6.61)
found in Chap. 6 for the electromagnetic field. Identifying �ωk with the energy Ep
of a photon of momentum p = �k, we recognize that the two expressions for the
energy are quite similar. The only differences between (11.44) and (6.61) consist,
on the one hand, in the absence in the former of the polarization index, as it must
be the case for a spinless field, (recall that the electromagnetic field has spin 1 and
therefore has a polarization index related to the helicity of the photon); on the other
hand we have the presence, on the right hand side of (11.44), of additional operators

http://dx.doi.org/10.1007/978-88-470-1504-3_6
http://dx.doi.org/10.1007/978-88-470-1504-3_6
http://dx.doi.org/10.1007/978-88-470-1504-3_6
http://dx.doi.org/10.1007/978-88-470-1504-3_6
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b, b†,which, as will be shown in the following, are always present for a charge field.
They are not present in the electromagnetic field due to the hermiticity of Âμ(x).

We can proceed in the same way to evaluate the total quantum momentum of the
field P̂i , given in (11.14), in terms of the operators a(p), b(p) and their hermitian
conjugates. Using (11.35), (11.21) and (11.22) we find:

P̂ =
∫

d3p
(2π�)3

V

2
p
[(

a†(p)a(p)+ b(p)b†(p)
)

+ a†(p)b†(−p)e
2i
�

Ept − b(−p)a(p)e−
2i
�

Ept
]
+ h.c.,

where h.c. denotes the hermitian conjugate terms. In the last term on the right hand
side of the above equation we have performed the following change in the integration
variable p→ −p, gaining a minus sign. Note that the last two terms in the integral
sum up to an anti-hermitian operator, which cancels against its hermitian conjugate.
The first two terms instead are hermitian, so that we end up with:

P̂ =
∫

d3p
(2π�)3

V p
(

a†(p)a(p)+ b(p)b†(p)
)

=
∑

p

p
(

a†(p)a(p)+ b(p)b†(p)
)
, (11.45)

where the last equality refers to the case of a finite volume V and discrete momenta.
Note that in this case no normal ordering is necessary since, when writing bb† in
terms of b†b in (11.45) we have

∑
p

pb(p)b†(p) =
∑

p

p
(

b†(p)b(p)+ 1
)
=
∑

p

pb†(p)b(p), (11.46)

due to the cancelation of p against −p when summing the constant term over all
possible values of p.

Putting together the results obtained for Ĥ and P̂i , we may define the four-
momentum quantum operator

p̂μ =
∫

d3p
(2π�)3

V pμ
(

a†(p)a(p)+ b†(p)b(p)
)
. (11.47)

So far we have defined the quantum operator associated with a Klein–Gordon field.
We still need to define the Hilbert space of quantum states on which such operator
acts. This will allow us to give a particle interpretation of our results.

Our discussion so far paralleled the one for the electromagnetic field in Chap. 6.
When we wrote the field operators φ̂(x), φ̂†(x) in terms of the a, b operators and of
their hermitian conjugates satisfying the commutation relations (11.32) (or (11.33)),
we have described the quantum system as a collection of infinitely many decoupled
quantum harmonic oscillators of two kinds: The “(a)” and the “(b)” oscillators, asso-
ciated with the positive and negative energy solutions to the Klein–Gordon equation.

http://dx.doi.org/10.1007/978-88-470-1504-3_6
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Each value of p defines a corresponding oscillator of type (a) and (b), the operators
a(p), a†(p) and b(p), b†(p) being the corresponding destruction and creation oper-
ators, respectively. For the two kinds of oscillators we define the (hermitian) number
operators:

N̂ (a)
p = a†(p)a(p); N̂ (b)

p = b†(p)b(p), (11.48)

We see that both the energy (11.43) and the momentum (11.45) are expressed as
infinite sums over such operators. In particular the Hamiltonian operator Ĥ is the
sum over the Hamiltonian operators Ĥ (a)

p , Ĥ (b)
p of the various oscillators (we use

here, for the sake of simplicity, the finite volume notation):

Ĥ =
∑

p

(
Ĥ (a)

p + Ĥ (b)
p

)
,

Ĥ (a)
p ≡ Ep N̂ (a)

p = Epa†(p)a(p); Ĥ (b)
p ≡ Ep N̂ (b)

p = Epb†(p)b(p). (11.49)

Since these harmonic oscillators correspond to independent, decoupled degrees of
freedom of the scalar field, operators associated with different oscillators commute,
as it is apparent from (11.32). In particular the hermitian operators N̂ (a)

p , N̂ (b)
p form a

commuting system5 and thus can be diagonalized simultaneously. As a consequence
of this the quantum states of the field can be expressed as products of the infinite states
pertaining to the constituent quantum oscillators, each constructed as an eigenstate
of the corresponding number operator.

Recall indeed, from elementary quantum mechanics, that the states of a, say type
(a), quantum oscillator, corresponding to a momentum p, have the form |Np〉(a),
eigenstates of N̂ (a)

p :
N̂ (a)

p |Np〉(a) = Np|Np〉(a), (11.51)

the energy of such state being Np Ep. The action on it of a(p) or a†(p), lowers or
raises Np by one unit, respectively. In other words they destroy or create quanta of
energy Ep. This follows from the commutation relations:

[
N̂ (a)

p a†
p

]
= a†

p;
[

N̂ (a)
p , ap

]
= −ap, (11.52)

from which we find

5 The fact that [N̂ (a), N̂ (b)] = 0 immediately follows from the property that a and b commute, as
stressed after (11.33). Consider now the number operators corresponding to oscillators of a given
kind, say (a) :

[N̂ (a)
p , N̂ (a)

p′ ] = a†(p)[a(p), a†(p′)]a(p′)+ a†(p′)[a†(p), a(p′)]a(p)
=
(

a†(p)a†(p′)− a†(p′)a(p)
)
δpp′ = 0, (11.50)

the same result obviously holds for the operators N̂ (b).
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N̂ (a)
p a†

p|Np〉(a) = a†
p N̂ (a)

p |Np〉(a) + a†
p|Np〉(a) = (Np + 1)|Np〉(a),

N̂ (a)
p ap|Np〉(a) = ap N̂ (a)

p |Np〉(a) − ap|Np〉(a) = (Np − 1)|Np〉(a),

that is the states a†
p|Np〉(a) and ap|Np〉(a) correspond to the eigenvalues Np + 1 and

Np − 1 of N̂ (a)
p , respectively.

Requiring Np, as well as the energy, to be non-negative, the sequence
Np − 1, Np − 2, . . . must terminate with zero, corresponding to ground state |0〉(a)
for which ap|0〉(a) = 0, so that

N̂ (a)
p |0〉(a) = 0.

The eigenvalues Np are then non-negative integers (Np = 0, 1, 2, . . .), also called
occupation numbers, and the corresponding eigenstates are constructed by applying
the creation operator a†(p) to |0〉(a) Np-times:

|Np〉(a) = 1√
(Np)!

a†
pa†

p . . . a
†
p|0〉(a),

where the denominator is fixed by normalizing the state to one. What we have said
for the type (a) oscillator equally applies to the type (b) ones. The ground states of
the two kinds of oscillators will be denoted by |0〉(a) and |0〉(b) respectively. We can
summarize the construction of single-oscillator states, for a given momentum p, as
follows

Type a − oscillators ;Type b − oscillators

N̂ (a)
p |Np〉(a) = Np|Np〉(a) ; N̂ (b)

p |Np〉(b) = Np|Np〉(b)

ap|0〉(a) = 0 ; bp|0〉(b) = 0

|Np〉(a) = (a†
p)

Np√
(Np)! |0〉

(a) ; |Np〉 = (b†
p)

Np√
(Np)! |0〉

(b)

a†
p|Np〉(a) =

√
Np + 1|Np + 1〉(a) ; b†(p)|Np〉(b) =

√
Np + 1|Np + 1〉(b)

ap|Np〉(a) =
√

Np|Np − 1〉(a) ; bp|Np〉(b) =
√

Np|Np − 1〉(b)

We may now construct the Hilbert space of quantum field states, labeled by the
eigenvalues of the number operators. The states |{N }〉(a) of the system of type-(a)
oscillators are constructed as tensor products of the single-oscillator states |Np〉(a)
over all possible values p1,p2, . . . , of p :

|{N }〉(a) ≡ |Np1, Np2 . . .〉(a) = |Np1〉(a)|Np2〉(a) · · ·

=
[
(a†(p1))

Np1 (a†(p2))
Np2 · · ·√

(Np1)!(Np2)! · · ·

]
|0, 0, . . . , 0〉(a), (11.53)
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where |0, 0, . . . , 0〉(a) denotes the product over all p of the ground states |0〉(a)
associated with each type-(a) oscillator. By the same token we construct a complete
set of states from the system of type-(b) oscillators |{N }〉(b). The full Hilbert space
of states of the quantum field will be the product of the Hilbert spaces associated with
each type of oscillators, and will therefore be generated by the following complete
set of vectors:

|{N }; {N ′}〉 ≡ |{N }〉(a) ⊗ |{N ′}〉(b), (11.54)

Each of the above states are constructed by repeatedly applying a† and b† operators
to the “vacuum” state:

|0〉 ≡ |0, 0, . . . , 0〉(a) ⊗ |0, 0, . . . , 0〉(b), (11.55)

For instance

a†(p)|0〉 = |0, . . . , 0, 1, 0, . . . , 0〉(a) ⊗ |0, . . . , 0〉(b),
b†(p)|0〉 = |0, . . . , 0〉(a) ⊗ |0, . . . , 0, 1, 0, . . . , 0〉(b),

where the position of the entry 1 corresponds to type-(a), respectively (b), oscillator
state labeled by the momentum p. The states |{N (a)}; {N (b)}〉 are, by construction,
eigenstates of all the number operators N̂ (a)

p , N̂ (b)
p and the Hilbert space they generate

is called Fock space.
Recall now the expression of the momentum operator P̂ of the field in the contin-

uous as well as in the discrete (i.e. finite volume) notations

P̂ =
∫

d3p
(2π�)3

V p
(

N̂ (a)
p + N̂ (b)

p

)
�

∑
p

p
(

N̂ (a)
p + N̂ (b)

p

)
, (11.56)

which completes, with the Hamiltonian operator Ĥ in (11.49), the four momentum
operator:

P̂μ =
∫

d3p
(2π�)3

V pμ
(

N̂ (a)
p + N̂ (a)

p

)
�

∑
p

pμ
(

N̂ (a)
p + N̂ (a)

p

)
. (11.57)

Just as we did for the quantized electromagnetic field, the quantum field states are
interpreted as describing a multiparticle system: Each type-(a) and type-(b) oscil-
lator defines a single particle state with definite momentum p and the occupation
number Np is interpreted as the number of particles in that state. This time how-
ever the quantized excitations of the field are described in terms of two kinds of
particles, according to the type of oscillator. Conventionally those describing exci-
tations of types-(a) and (b) oscillators are referred to as particles and antiparticles,
respectively. For instance the state |{N }; {N ′}〉 describes Np1 particles and N ′p1
antiparticles with momentum p1; Np2 particles and N ′p2

antiparticles with momentum
p2, and so on.

http://dx.doi.org/10.1007/978-88-470-1504-3_11


374 11 Quantization of Boson and Fermion Fields

With this interpretation the quantum Hamiltonian and momentum operators
are simply understood as the sum of the energies and momenta of the particles
and antiparticles in the system, each carrying a quantum of energy Ep and of
momentum p. Every single-particle (antiparticle) state contributes to the energy and
momentum of the total field state |{N }; {N ′}〉 an amount Np Ep and Npp (N ′p Ep and
N ′pp), respectively, proportional to the corresponding occupation number.

Therefore when this number varies by a unit, the total energy and momentum of the
state vary by Ep and p, respectively. It is important to note that even if antiparticles are
associated with negative energy solutions to the classical Klein–Gordon equation,
they contribute a positive energy Ep to the Hamiltonian, that is antiparticles are
positive energy particles. Let us observe in this respect that the photon, associated
with the excitations of the electromagnetic field, coincides with its own antiparticle,
since in that case, as often pointed out, the field Âμ(x) is hermitian, thus implying
a = b.

We conclude that the operators a†(p) and b†(p) create a particle and an antiparticle
with momentum p, respectively, while a(p) and b(p) destroy them. In an analogous
way, denoting by φ̂+(x) and φ̂−(x) the positive and negative energy components of
the field operator φ̂(x) in (11.49):

φ̂(x) = φ̂+(x)+ φ̂−(x),

φ̂+(x) =
∫

d3p
(2π�)3

�
√

V√
2Ep

a(p)e−
i
�

p·x =
∑

p

�√
2EpV

a(p)e−
i
�

p·x ,

φ̂−(x) =
∫

d3p
(2π�)3

�
√

V√
2Ep

b†(p)e
i
�

p·x =
∑

p

�√
2EpV

b†(p)e
i
�

p·x , (11.58)

the former destroys a particle at the space–time point x ≡ (xμ) (since it contains
a(p)) while the latter creates an antiparticle at x (since it contains b†(p)). The reverse
is true for φ̂†

−(x), φ̂
†
+(x), defined as the negative and positive energy components of

φ̂†(x), respectively:

φ̂
†
−(x) =

∫
d3p
(2π�)3

�
√

V√
2Ep

a†(p)e
i
�

p·x ,

φ̂
†
+(x) =

∫
d3p
(2π�)3

�
√

V√
2Ep

b(p)e−
i
�

p·x , (11.59)

It is implicit from the above discussion that we are working in the Heisenberg picture
in which operators, like φ̂(x, t) depend on time while states are constant. This is
necessary in order to have a relativistically covariant framework, see Sect. 6.2.1 of
Chap. 6.

The Fock space formalism is particularly suited for providing a multiparticle
description of a quantum relativistic free field theory. It is however interesting to
write down the familiar non-relativistic wave function of a system of particles, using

http://dx.doi.org/10S1007/978-88-470-1504-3_6
http://dx.doi.org/10.1007/978-88-470-1504-3_6
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the x-representation instead of the Fock representation. We define a state describing
n particles located at the points x1, . . . , xn at a time t as

|x1, . . . , xn; t〉 ≡ φ̂†
−(x1, t) . . . φ̂†

−(xn, t)|0〉, (11.60)

where the effect of φ̂†
−(xi , t) is that of creating a particle in xi at the time t. On the

other hand a generic n particle state in the Fock-representation is defined as

|N1, N2, . . . 〉(a) = (a†
1)

N1
(a†

2)
N2 . . .

(N1!N2! . . . ) 1
2

|0〉(a), (11.61)

where N1 + N2 + · · · = n and we have used the short-hand notation N1 ≡ Np1 ,

N2 ≡ Np2 , and so on. The wave function φ(n)N1,N2,...
(x1 , . . . , xn, t) realizing the

coordinate representation of the state (11.61) therefore reads

φ
(n)
N1,N2,...

(x1, . . . , xn, t) = 〈x1 , . . . , xn; t |N1, N2, . . . 〉(a). (11.62)

By the same token we construct the coordinate representation of a multi-antiparticle
state |N ′1, N ′2, . . . 〉(b) or of a generic particle-antiparticle state |{N }; {N ′}〉. We con-
clude from this that the multi-particle wave function (describing both particles and
antiparticles) is completely symmetric with respect to the exchange of the particles
(antiparticles) since the operators φ̂†

−(xi , t) and φ̂†
−(x j , t) (φ̂−(xi , t) and φ̂−(x j , t))

commute. In other words: Spin-zero particles obey the Bose–Einstein statistics. This
result, which obviously holds for the photon field, can be shown to be valid for all
particles of integer spin.

11.2.1 Electric Charge and its Conservation

We have seen that a complex scalar field, being equivalent to two real fields, has extra
(internal) degrees of freedom which are related to the existence of antiparticles. We
now show that these extra degrees of freedom are connected with the presence of a
charge carried by the field. We recall that in the classical Hamilton formulation the
current and the charge associated with the Klein–Gordon field are given by (8.202)
and (8.203) of Chap. 8, see also (10.19) and (10.20) of Chap. 10. At the quantum
level they become the following operators:

Ĵμ = −i
ec

�
:
[
∂μφ̂†(x)φ̂(x)− φ̂†(x)∂μφ̂(x)

]
:, (11.63)

and

Q̂ = i
e

�

∫
d3x :

(
φ̂†(x)π̂†(x)− h.c.

)
:, (11.64)

where h.c. denotes, as usual, the hermitian conjugate of the preceding terms. The
explicit computation of Q̂ is quite similar to that of Q in (10.33) of Chap. 10 . If we
compute the first term of (11.64) we find

http://dx.doi.org/10.1007/978-88-470-1504-3_8
http://dx.doi.org/10.1007/978-88-470-1504-3_8
http://dx.doi.org/10.1007/978-88-470-1504-3_8
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
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i
e

�

∫
d3x φ̂†(x)π̂†(x) = i

e

�

∫
d3p
(2π�)3

d3p
(2π�)3

(−i�)
V

2

√
Eq

Ep

×
[
a†(p)a(q)e

i
�
(Ep−Eq)t− i

�
(p−q)·x − b(p)b†(q)e−

i
�
(Ep−Eq)t− i

�
(p−q)·x

− a†(p)b†(q)e
i
�
(Ep+Eq)t− i

�
(p−q)·x + b(p)a(q)e−

i
�
(Ep+Eq)t+ i

�
(p+q)·x]

= e
∫

d3p
(2π�)3

V

2

[
a†(p)a(p)− b(p)b†(q)(p)− a†(p)b†(−p)e

2i
�

Ept

+ b(−p)a(p)e
−2i
�

Ept
]
,

where, in the last integral we have changed p→−p. If we sum the above expression
with its hermitian conjugate, the quantities containing a†a and b†b, being hermitian,
will sum up. The terms containing ba and a†b†, on the other hand, add up to a
antihermitian operator which cancels against its hermitian conjugate. We then obtain:

Q̂ = e
∫

d3p
(2π�)3

V :
[
a(p)†a(p)− b(p)b(p)†

]
:

= e
∫

d3p
(2π�)3

V (a(p)†a(p)− b(p)†b(p)),
(11.65)

or, equivalently, in terms of the number operators N̂ (a)
p , N̂ (b)

p ,

Q̂ = e
∫

d3p
(2π�)3

V
(

N̂ (a)
p − N̂ (b)

p

)
, (11.66)

Using the finite volume notation, the charge operator has the following simple form:

Q̂ =
∑

p

e
(

N̂ (a)
p − N̂ (b)

p

)
. (11.67)

This formula shows that if particles have charge e, antiparticles have opposite charge
−e. We conclude that, as anticipated in Sect. 10.6.2, particles have the same mass
as the corresponding antiparticles but opposite charge.

We have learned that, in the classical Klein–Gordon theory, the charge Q is con-
served. This was related, in the Hamiltonian framework, to the fact that it generates
phase transformations which leave the Hamiltonian invariant. We show that the same
properties hold in the quantum theory.

From the classical treatment we expect the generator Ĝ of a global phase trans-
formation to be related to Q̂ as follows:

Ĝ(t) = −�

e
Q̂(t), (11.68)

http://dx.doi.org/10.1007/978-88-470-1504-3_10
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so that the corresponding unitary transformation reads:

U (α) = e
i
�
αĜ(t) = e−

i
e α Q̂(t). (11.69)

To show that the above operator implements a phase transformation on φ̂(x), let
us transform the latter by means of U (α), computed at the same time. For α  1
we have

φ̂′(x, t) = U †(α)φ̂(x, t)U (α) ≈ φ̂(x, t)− i
α

e

[
φ̂(x, t), Q̂(t)

]
= φ̂(x)+ δφ̂(x),

δφ̂(x, t) = −i
α

e

[
φ̂(x, t), Q̂(t)

]
.

(11.70)
On the other hand, from the explicit form of Q̂ in (11.64) and the canonical commu-
tation relations between φ̂ and π̂ , we also have

[
φ̂(x, t), Q̂(t)

]
= − ie

�

∫
d3y

[
φ̂(x, t), π̂(y, t)

]
φ̂(y, t) = eφ̂(x, t), (11.71)

from which it follows that

δφ̂(x, t) = −iαφ̂(x, t), (11.72)

as in the classical case. Furthermore we can easily verify that the transformation
(11.72) leaves the Hamiltonian (11.42) invariant:

δ Ĥ = [Q̂, Ĥ ] = 0. (11.73)

Combining this result with the quantum equation

d Q̂

dt
= − i

�
[Q̂, Ĥ ],

we find that the charge operator is conserved.

11.3 Transformation Under the Poincaré Group

We recall that, in the Heisenberg picture, any operator on the Hilbert space of states
transforms according to (9.38) of Chap. 9. In particular the action of a Poincaré
transformation (�, x0) on a scalar field operator φ̂(x) reads

φ̂(x) = φ̂′(x ′) = U †(�, x0)φ̂(x
′)U (�, x0) = O(�,x0)φ̂(x

′), (11.74)

where, as usual, x ′ = �x − x0. We can indeed easily verify that the above trans-
formation law for the quantum field is in agreement with the transformation law of
the classical field, namely of the wave function. Recall from (11.60) and (11.62),
the general relation between a multi-particle state and the corresponding coordinate

http://dx.doi.org/10.1007/978-88-470-1504-3_9
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representation. For a single particle state |s〉 in the Fock space, the corresponding
wave function φ(s)(x) is expressed as:

φ(s)(x) = 〈0|φ̂(x)|s〉. (11.75)

If we now perform the Poincaré transformation (�, x0) on the field operator, accord-
ing to (11.74), we find

φ(s)(x)
(�,x0)−→ φ′(x ′) = 〈0|φ̂′(x ′)|s〉 = 〈0|U †(�, x0)φ̂(x

′)U (�, x0)|s〉
= 〈0|φ̂(x)|s〉 = φ(x) = φ(�−1(x ′ + x0)) = O(�,x0)φ(x

′), (11.76)

we have used the property, which we shall always assume to hold, that the vacuum
state is invariant under the Poincaré group: U (�, x0)|0〉 = |0〉. Equation (11.76)
is indeed the correct transformation law for a classical scalar field. It is important
however to bear in mind that the unitary operator U (�, x0) acts on the Fock space of
states, while O(�,x0) acts on the space of functions. Clearly (11.76) defines a relation
between the infinitesimal Poincaré generators of the two operators. Let us denote
here by Ĵ

ρσ and P̂
μ the generators of U (�, x0), that is the representation of the

Poincaré generators on the quantum states. We can write:

U (�, x0) = e−
i
�

P̂μxμ0 e
i

2�
θρσ Ĵρσ . (11.77)

Recalling the expression (9.101) of O(�,x0) in terms of its infinitesimal generators
Ĵρμ and P̂μ, given in (9.102), we can write an infinitesimal Poincaré transformation
of the field operator as follows:

δφ̂(x) = i

�

[
φ̂(x),

1

2
δθρσ Ĵ

ρσ − ε · P̂
]
= i

�

(
1

2
δθρσ Ĵρσ − ε · P̂

)
φ̂(x),

where we have expanded in (11.74) both U (�, x0) and O(�,x0) to first order in the
infinitesimal Poincaré parameters δθρσ , xμ0 = εμ. Using the explicit form of Ĵρμ

and P̂μ in (9.102) we find:

i

�

[
φ̂(x), Ĵρσ

]
= (xρ∂σ − xσ ∂ρ)φ̂(x); i

�

[
φ̂(x), P̂μ

]
= −∂μφ̂(x). (11.78)

The realization of Ĵμν and P̂
μ in terms of the field operator is obtained from (8.234)

and (8.237), respectively, by promoting all the classical fields to quantum operators.
Coming back to the finite unitary transformation (11.74) it is interesting to see how

the creation and annihilation operators transform under a Lorentz transformations.
Let us show that the following transformation laws for a(p) and b(p):

U †(�)a(p)U (�) = a(�−1 p); U †(�)b(p)U (�) = b(�−1 p). (11.79)

induce on φ̂(x) the corresponding transformation (11.74). Indeed we have

http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_8
http://dx.doi.org/10.1007/978-88-470-1504-3_8
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U†(�)φ̂(x ′)U (�) =
∫

d3p

(2π�)3
�
√

V√
2Ep

[
U†(�)a(p)U (�)e− i

�
p·x ′

+ U†(�)b†(p)U (�)e
i
�

p·x ′]

=
∫

d3p

(2π�)3
�
√

V√
2Ep

[
a(�−1 p)e− i

�
p·x ′ + b†(�−1 p)e

i
�

p·x ′]

=
∫

d3p′
(2π�)3

�

√
V ′√

2Ep′

[
a(p′)e− i

�
(�p′)·x ′ + b†(p′)e i

�
(�p′)·x ′]

=
∫

d3p′

(2π�)3

�
√

V ′√
2Ep′

[
a(p′)e−

i
�

p′·(�−1x ′) + b†(p′)e
i
�

p′·(�−1x ′)
]

= φ̂(�−1x ′),
(11.80)

so that (11.79) is verified.6

11.3.1 Discrete Transformations

In the study of the Lorentz transformations, we have mostly considered the proper
subgroup SO(1, 3) corresponding to transformations with unit determinant that are
connected with continuity to the identity transformation. This allows us to consider
their infinitesimal action on the fields.

In Chap. 4 we have also defined other Lorentz transformations. These include the
parity transformation or space reflection P and the time reversal transformation T,
whose active action of a scalar field is

P : φ̂(x, t)→ ηP φ̂(−x, t), (11.81)

T : φ̂(x, t)→ ηT φ̂(x,−t). (11.82)

These transformations are respectively implemented on four-vectors by the matrices
�P and �T given in Chap. 4, with negative determinant: det �P = det �T = −1.
The complex factors ηP , ηT can only be ±1 since parity and time reversal are invo-
lutive, namely applying them twice gives the identity transformation.

Let us first consider the parity transformation. In classical canonical mechanics,
a parity transformation implies the inversion of the position vector x and the linear
momentum of a particle, while it leaves its angular momentum (including spin),
invariant:

P : x→−x; p→−p; J→ J. (11.83)

6 In the above derivation we have used the Lorentz invariance of the measure d3pV and of EpV,
see Sect. 9.5.1 of Chap. 9

http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10.1007/978-88-470-1504-3_4
http://dx.doi.org/10S1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
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In field theory, we note that the Klein–Gordon equation is invariant under (11.81).
The sign ηP in the transformation defines the intrinsic parity of the field, the sign
plus or minus corresponding to scalar or pseudoscalar field, respectively.7 Since any
transformation is determined by a unitary transformation in the Hilbert space of the
states, let us denote by U (P) the one implementing parity, so that

U (P)†φ̂(x, t)U (P) = ηP φ̂(−x, t), (11.84)

where ηP = ±1 denotes the intrinsic parity of the field. Using the expansion (11.19)
it is easy to see that the transformations (11.84) can be realized in terms of the
oscillators a(p), b(p) as follows:

U (P)†a(p)U (P) = ηPa(−p); U (P)†b(p)U (P) = ηP b(−p). (11.85)

Let us give an explicit realization of the operator U (P) in terms of a, b, a†, b†,

depending on the intrinsic parity of the field. Consider the operator eiλS, with

S =
∑

p

(
a†

pa−p + b†
pb−p

)
,

where, for the sake of clarity, we have used a discrete notation: ap ≡ a(p), bp ≡ b(p).
Now use the identity (see for instance [2] for a general proof)

eiλS Oe−iλS = O + iλ[S, O] + i2λ2

2! [S, [S, O]] + · · · . (11.86)

Since
[
S, ap

] = −a−p
[
S,
[
S, ap

]] = ap,

we find

eiλSape−iλS = ap cos λ− ia−p sin λ,

and the same relation for bp. Setting λ = ηPπ/2, we get rid of the term in a(p),
obtaining

ei π2 ηP Sape−i π2 ηP S = −iηPa−p, (11.87)

ei π2 ηP Sbpe−i π2 ηP S = −iηP b−p. (11.88)

This is close to (11.85), but not yet correct. To get the exact result we multiply eiλS

by the further operator eiλ′S′ , defined in such a way that

7 The intrinsic parity can only be fixed by experiment involving interactions, so that it is meaningful
only when specified relative to other particles.
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eiλ′S′ape−iλ′S′ = iap, (11.89)

eiλ′S′bpe−iλ′S′ = ibp. (11.90)

This is achieved by taking

S′ =
∑

p

(
a†

pap + b†
pbp

)
,

and λ′ = −π/2. The reader can show that [S, S′] = 0.
Combining these results and defining

U (P) ≡ ei π2 S′e−iηP
π
2 S = exp i

π

2
(S′ − ηP S)

= exp i
π

2

∑
p

(
a†

pap + b†
pbp − ηPa†

pa−p − ηP b†
pb−p

)
. (11.91)

Note that U (P) is indeed a unitary operator satisfying

U (P)|0〉 = |0〉,
as can be easily seen expanding the exponentials. Thus the vacuum state has even
parity. Moreover considering the momentum operator (11.45) we see that

U (P)†P̂U (P) = −P̂,

consistently with the fact that the eigenvalues of the physical momentum are ordinary
vectors under a space reflection.

On the other hand U (P) commutes with the Hamiltonian, implying the conserva-
tion of the parity operator: [U (P), Ĥ ] = 0.8

On the quantum field φ̂(x, t)we can also define a transformation with no analogue
in the non-relativistic quantum theory: the charge conjugation C. It corresponds to
exchanging particles for antiparticles, that is

ap → ηC bp; bp → ηC ap, (11.92)

or, in terms of the field operator,

φ̂(x)→ ηC φ̂
†(x),

where ηC is a constant which, defining C as an involutive transformation, can be
chosen to be ±1. This operation is clearly a symmetry of the charged scalar theory.
The construction of the unitary operator U (C) implementing such transformation on
the Hilbert space of the states, namely

8 Since the parity transformation is involutive, U (P)2 = Î , its eigenvalues can only be ±1.
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U (C)†apU (C) = ηC bp,

U (C)†bpU (C) = ηC ap,

U (C)†φ̂(x)U (C) = ηC φ̂
†(x), (11.93)

can be done by the same procedure used for the parity transformation. The result is

U (C) = exp

⎡
⎣ iπ

2
ηC

∑
p

(
a†

pap + b†
pbp − ηC a†

pbp − ηC b†
pap

)
⎤
⎦. (11.94)

It is easily verified that U (C) is unitary and satisfies U (C)|0〉 = |0〉.Moreover, from
(11.63) and (11.64) it follows

U (C)† ĴμU (C) = − Ĵμ; U (C)† Q̂U (C) = −Q̂. (11.95)

That means that, under charge conjugation the sign of the charge is flipped, according
to our previous discussion in Sect. 11.2.1.

We finally consider time reversal T : t → −t . In classical canonical mechanics
time-reversal leaves the position x of a particle unchanged while it reverses its velocity

v = dx/dt → dx/d(−t) = −v

and thus its linear momentum p→−p, as well as the angular momentum (including
spin). In summary

T : x→ x; p→−p; J→−J. (11.96)

Time reversal is a symmetry of classical Newtonian mechanics, where force is taken
to depend only on the position on the particle:

d2x(t)
dt2 = F(x(t)) ⇔ d2x(−t)

dt2 = d2x(−t)

d(−t)2
= F(x(−t)), (11.97)

that is if x(t) is a solution to the Newton equation, also x(−t) is. T, however, is
not a symmetry when we consider, for instance, the action of the Lorentz force on a
moving charge, which depends on the velocity of the particle, and thus in general is
not invariant under it.

As far as field theory is concerned, the Klein–Gordon equation is invariant under
the transformation

φ̂(x, t)→±φ̂(x,−t), (11.98)

but the equal time commutation relations, for example
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[
φ̂(x, t), φ̂(y, t)

]
= i�δ3(x − y), (11.99)

do not exhibit this invariance unless (11.99) is accompanied by the change i →−i.
That means that we must include in the time reversal operator U (T )

U (T )†φ̂(x, t)U (T ) = ηT φ̂(x,−t), (11.100)

the complex conjugation operator K . This operator is defined by the following
properties9

K (λ1|a〉 + λ2|b〉) = λ∗1|K a〉 + λ∗2|K b〉; 〈a|K b〉 = 〈b|K a〉, 〈K a|K b〉 = 〈b|a〉,
(11.101)

where |a〉 is a generic state, λis a c-number and the last equation expresses the fact
that the norm is not affected by complex conjugation: given a generic state |a〉,
we indeed have 〈K a|K a〉 = 〈a|a〉. The first of (11.101) represents the property of
K of being antilinear. We define for a generic antilinear operator A its hermitian
conjugate A† through the relation 〈a|Ab〉 = 〈b|A†a〉, for any |a〉, |b〉 (note the
difference with respect to the definition of the analogous quantity for a linear operator
S: 〈a|Sb〉 = 〈S†a|b〉). An antilinear operator A is antiunitary if, and only if, for any
two states: 〈Aa|Ab〉 = 〈b|a〉 (one can show that if A preserves the norm of any
vector it is antiunitary, so that antiunitarity for an antilinear operator is equivalent to
norm-preserving). If A is antiunitary we have A† A = AA† = Î , since 〈Aa|Ab〉 =
〈b|A† Aa〉 = 〈b|a〉, for any |a〉, |b〉. The second of (11.101) characterizes then K as
a hermitian operator (K = K †), while the last of (11.101) expresses the fact that K
is antiunitary: K † K = K K † = Î . The complex conjugation K, being antiunitary
and hermitian, squares to the identity: K 2 = Î . From this property one can show
that there exists an orthonormal basis of vectors |un〉 on which K |un〉 = |un〉 (real
basis). With respect to a real basis, the action of K on any vector simply amounts
to changing its components into their complex conjugates, hence the name complex
conjugation for K.

If Ô is a linear operator and A is an antilinear transformation, the following relation
can be easily derived:

〈a|A† Ô A|b〉 = 〈a|A† Ô Ab〉 = 〈Ô Ab|Aa〉 = 〈Ab|Ô†|Aa〉,
which implies that, if we take A to be antiunitary and Ô = i Î , we then have:
〈a|A†i A|b〉 = −i〈Ab|Aa〉 = −i〈a|b〉, for any two states |a〉, |b〉. Symbolically this
property can be expressed by the relation:

A−1i A = A†i A = −i,

where the identity operator on the right hand side is understood.
We must require U (T ) to satisfy the above property as well, namely to be antiu-

nitary, so that

9 For a formal treatment of this issue see for instance A. Messiah, Quantum Mechanics, Dover
1999.
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U (T )†[φ̂(x, t), φ̂(y, t)]U (T ) = U (T )†i�U (T )δ3(x − y),

implies

[
φ̂(x,−t),−φ̂(y,−t)

]
= −i�δ3(x − y),

and the equal time commutation relations are left invariant.
Let us write the time-reversal operator as

U (T ) = U K , (11.102)

where U is a unitary transformation. The operator U(T) defined above is indeed
antiunitary since, defining for a generic couple of states |T a〉 ≡ U (T )|a〉, |T b〉 ≡
U (T )|b〉, we have:

〈T a|T b〉 = 〈U K a|U K b〉 = 〈K a|K b〉 = 〈b|a〉.
Requiring it to satisfy (11.100), we get

U†apU = ηT a−p; U†bpU = ηT b−p, (11.103)

ηT = ±1, so that we can take U to have the same form as U (P) in (11.91), with
ηP → ηT . To show this, let us implement U (T ) defined above on the field operator
φ̂(x) defined in (11.19) and written in the discrete notation:

U (T )†φ̂(x)U (T ) =
∑

p

�√
2EpV

(
ηT a−pe

i
�

p·x + ηT b†
−pe−

i
�

p·x)

= ηT

∑
p

�√
2EpV

(
ape−

i
�

p·xT + b†
pe

i
�

p·xT
)
= ηT φ̂(x,−t),

where xT ≡ (xμT ) = (−ct, x). In the above derivation we have used K †e± i
�

p·x K =
e∓ i

�
p·x and changed the integration variable from p to −p.

We can also verify that

U (T )†P̂U (T ) = −P̂,

and, as far as the current operator is concerned, we also find from (11.63)

U (T )†ĵ(x, t)U (T ) = −ĵ(x,−t); U (T )† ĵ0(x, t)U (T ) = ĵ0(x,−t).

Both these results are in agreement with our physical intuition.
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11.4 Invariant Commutation Rules and Causality

Let us note that all the commutation rules among field operators considered so far
are equal-time commutators. We now consider commutators at different times. We
show that the commutator

D(x − y) = c

�

[
φ̂(x), φ̂†(y)

]
, (11.110)

is a Lorentz invariant function. Furthermore, if the four-dimensional distance between
x ≡ (xμ) e y ≡ (yμ) is space-like, that is if (x − y)2 = (x0 − y0)2 − |x− y|2 < 0,
then the commutator is zero.

To show these properties we decompose φ̂(x) and φ̂†(x) in their positive energy
and negative energy parts, according to (11.58) and (11.59). We clearly have
[φ̂+(x), φ̂†

+(y)] = [φ̂−(x), φ̂†
−(y)] = 0, so that

D(x − y) = c

�

[
φ̂+(x), φ̂†

−(y)
]
+ c

�

[
φ̂−(x), φ̂†

+(y)
]
. (11.111)

From the commutation rules (11.32) between a, a† and b, b†, we find

c

�

[
φ̂±(x), φ̂†

∓(y)
]
= ±D±(x − y), (11.112)

where

D±(x − y) = �c
∫

d3p
(2π�)3

1

2Ep
e∓

i
�

p·(x−y), (11.113)

and therefore (11.111) becomes

D(x − y) = D+(x − y)− D−(x − y) = −2i�c
∫

d3p
(2π�)3

1

2Ep
sin

p · (x − y)

�
.

(11.114)

Using then (10.26) we find that D±(x − y) and D(x − y) can be written in the
following manifestly Lorentz invariant form

D+(x − y) = �

∫
d4 p

(2π�)3
δ(p2 − m2c2)θ(p0)e−

i
�

p·(x−y),

D−(x − y) = �

∫
d4 p

(2π�)3
δ(p2 − m2c2)θ(−p0)e−

i
�

p·(x−y),

D(x − y) = �

∫
d4 p

(2π�)3
δ(p2 − m2c2)ε(p0)e−

i
�

p·(x−y). (11.115)

where

http://dx.doi.org/10.1007/978-88-470-1504-3_10
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θ(p0) =
{

1 for p0 > 0
0 for p0 < 0.

(11.116)

and ε(p0) = θ(p0)− θ(−p0).

The relativistic invariance of the three D-functions follows from the fact that
the functions θ(p0), θ(−p0), ε(p0) are themselves invariant under proper Lorentz
transformations since the four-vector pμ is non-spacelike. Indeed the restriction
E > 0 due to the presence of θ(p0) on the right hand side of (11.115) implies
that, when expanding δ(p2−m2c2) according to the (10.24)–(10.26), we must only
take the positive energy solution E > 0 of p2 − m2c2 = 0. This choice is Lorentz
invariant (more precisely it is invariant under proper Lorentz transformations) since
pμ is non-spacelike, as it was proven in full generality in Chap. 4: If p0 > 0 in a
given reference frame it will keep the same sign in any other frame.10 The same
argument holds for the functions θ(p0) and ε(p0).

We conclude that D(x− y) = D(x0− y0, x−y) as well as D±(x− y) are Lorentz
invariant functions, namely

D±(x − y) = D±(� · (x − y)),

where � ≡ (�μν) is a proper Lorentz transformation and �·(x−y) ≡ �μν(xν−yν).
Recalling our discussion in Sect. 1.5.1, we know that when (x− y)2 < 0 there exists
a frame where x0 = y0, in which

D(x − y) ≡ D(0, x − y) = 2i�c
∫

d3p
(2π�)3

1

2Ep
sin

p · (x − y)
�

= 0, (11.117)

since the integrand is odd for p→−p.This implies that D+(0, x−y) = D−(0, x−y)
as can be also verified from their explicit expressions:

D±(0, x − y) = �c
∫

d3p
(2π�)3

1

2Ep
e∓

i
�

p·(x−y)

= �c
∫

d3p
(2π�)3

1

2Ep
e

i
�

p·(x−y). (11.118)

On the other hand Lorentz invariance of the D-functions implies that the properties
(11.117) and (11.118) must hold in any any Lorentz frame. Therefore from (11.114)
and (11.110) we conclude that if the four-dimensional distance is
spacelike, (x − y)2 < 0, the function D(x − y),vanishes

10 Let us repeat here the argument given in Chap. 4 in a more compact form. Suppose p0 > 0, in a
frame S. In a Lorentz transformed frame S′ moving at velocity v with respect to S, we have

p′0 = γ
(

p0 − v
c · p

)
≥ γ

(
p0 − |v|c |p|

)
.

However p0 = √|p|2 + m2c2 ≥ |p| and therefore, since |v|c < 1

p′0 ≥ γ
(

1− |v|c
)
|p| > 0.

http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_4
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(x − y)2 < 0⇒ D(x − y) = c

�

[
φ̂(x), φ̂(y)†

]
= 0, (11.119)

and moreover

D+(x − y) = D−(x − y). (11.120)

This result is important in order to have a causal theory. The operators φ̂(x) and
φ̂†(y) are associated with the field excitations which can be interpreted as particles
at the points xμ ed yμ of space–time. If the two events related to the presence of
the two quanta are separated by a space-like distance, (x − y)2 < 0, they cannot
be correlated since this would imply the presence of a signal traveling at a velocity
greater than c, thus violating the causality principle, as explained in Chap. 1.11

The requirement of commutativity of two observables separated by a space-like
distance is referred to as the principle of microcausality. It is also worth noting that
this result is guaranteed by the cancelation of the contributions from D(±)(x − y)
in the commutator, related in turn to the presence of positive and negative energy
solutions φ̂+(x), φ̂−(x). The very presence of these two solutions and, in particular,
of the negative energy ones, so embarrassing for the classical Klein–Gordon equation,
is therefore essential for the consistency of the quantum field theory.12

For the sake of completeness we now show that D+(0, x − y) is different from
zero, and give its explicit expression.

D+(0, x − y) = �c
∫

d3p
(2π�)3

1

2Ep
e

ip·(x−y)
� . (11.121)

Using polar coordinates for the variable p, we have d3p = |p|2 sin θd|p|dθdϕ,
so that:

�

c
D+(0, x − y) = �

2

(2π�)3
(2π)

∞∫

0

d|p||p|2
2Ep

1∫

−1

d(cos θ)e
i
�
|p||x−y| cos θ

= 1

(2π)2�

∞∫

0

d|p||p|2
2Ep

�

(
e

i
�
|p||x−y| − e− i

�
|p||x−y|

)

i |p||x − y|

= 1

(2π)2

∞∫

0

d|p||p|
Ep|x − y| sin

( |p|
�
|x − y|

)

11 We note that the requirement of causality refers to observables and in general the field operators
are not necessarily observables. However quite generally observables in a physical system are
constructed in terms of local functions of the field variables so that the requirement of causality can
be expressed in terms of the fields themselves.
12 The requirement of commuting operators for space-like separations is also called “locality” and,
correspondingly, the quantum field theory is referred to as a “local theory”. Locality assures that
the results of two measures made at a space-like distance cannot have any influence on one another,
there being no correlation between the two events.

http://dx.doi.org/10.1007/978-88-470-1504-3_1
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= 1

(2π)2c

∞∫

0

d|p||p|√|p|2 + m2c2
sin

( |p|
�
|x − y|

)
1

|x − y|

= 1

(2π)2
m

|x − y|K1

(mc

�
|x − y|

)
. (11.234)

where Kn(z) are the modified Bessel functions of the second type and we have used
the general formula

∞∫

0

dzz
sin(bz)√
z2 + γ 2

e−β
√

z2+γ 2 = bγ√
b2 + β2

K1

(
γ

√
b2 + β2

)
. (11.123)

In our case we have z = |p|, γ = mc, b = |x−y|
�
, β = 0. The asymptotic behavior

of K1(z) as z→∞ is

K1(z) =
√
π

2z
e−z

(
1+ O

(
1

z

))
� e−z, (11.124)

and therefore for large space–time separation |x − y| → ∞
D+(0, x − y) ≈ c

�

m

|x − y|e
−mc

�
|x−y|, (11.125)

that is D+ is sensibly different from zero only within spatial distances of the order
of the Compton wave-length λ = �/mc of the particle.

11.4.1 Green’s Functions and the Feynman Propagator

The invariant D-functions discussed in the previous paragraph are strictly related
to another invariant function which plays a major role in the theory of interacting
fields: the Feynman propagator function DF (x − y). It is defined to be the vacuum
expectation value of the so called time-ordered product:

DF (x − y) = c

�
〈0|T φ̂(x)φ̂†(y)|0〉, (11.126)

where

T φ̂(x)φ̂†(y) =
{
φ̂(x)φ̂†(y) x0 > y0,

φ̂†(y)φ̂(x) y0 > x0.
(11.127)

and we note that there is no ambiguity when x0 = y0 since in this case φ̂(x) and
φ̂†(y) commute.13 Furthermore the fact that φ̂(x) and φ̂†(y) commute at space-like

13 For a hermitian (and thus neutral) field

DF (x − y) = c
�
〈0|T φ̂(x)φ̂(y)|0〉. (11.128)
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distances ensures that time ordering remains invariant under Lorentz transformations,
and thus that the Feynman propagator is Lorentz invariant.

To compute DF (x − y) we note that if x0 > y0, using (11.113) and the fact that
the destruction operators annihilate the vacuum, we have

〈0|T φ̂(x)φ̂†(y)|0〉 = 〈0|φ̂+(x)φ̂†
−(y)|0〉

= 〈0|
[
φ̂+(x), φ̂†

−(y)
]
|0〉 = �

c
D+(x − y).

Similarly for y0 > x0 we get

〈0|T φ̂(x)φ̂†(y)|0〉 = 〈0|[φ̂†
+(y), φ̂−(x)]|0〉 =

�

c
D−(x − y). (11.129)

We may then write the Feynman propagator in the following compact form:

DF (x − y) = θ(x0 − y0)D+(x − y)+ θ(y0 − x0)D−(x − y) (11.130)

The physical meaning of the Feynman propagator is easily understood if we observe
that for x0 > y0, DF (x − y) = 〈0|φ̂+(x)φ̂†

−(y)|0〉, that is DF (x − y) measures
the probability amplitude that a particle be created at y at the instant y0 and then
destroyed at x at the instant x0, while, if y0 > x0, DF (x − y) = 〈0|φ̂†

+(y)φ̂−(x)|0〉
is the probability amplitude that an antiparticle be created in x at the time x0 and
then destroyed in y at the time y0.

If we now use the explicit expression of D+(x− y) and D−(x− y)we may write

DF (x − y) = [
θ(x0 − y0)D+(x − y)+ θ(y0 − x0)D−(x − y)

]

= c�

∫
d3p
(2π�)3

1

2Ep

[
θ(x0 − y0)e−

i
�

p·(x−y) + θ(y0 − x0)e
i
�

p·(x−y)
]
.

(11.131)

We are now going to prove that, using the Cauchy residue theorem, we can write
the above expression for the Feynman propagator in terms of a an integral in the
complex p0 plane along the path CF in Fig. 11.1:

DF (x − y) = i�2
∫

d3p
(2π�)3

∫

CF

dp0

2π�

e− i
�

p·(x−y)

p2 − m2c2

= i�2
∫

d3p
(2π�)3

∫

CF

dp0

2π�

e− i
�

(
p0(x0−y0)−p·(x−y)

)

(
p0 − p̄0

) (
p0 + p̄0

) ,
(11.132)

where, as usual, p · (x − y) ≡ p0(x0− y0)−p · (x− y) and p̄0 ≡ √|p|2 + m2c2 =
Ep/c > 0.To show this we observe that if x0 > y0 we can close the contour CF in the
lower p0 half-plane, where the imaginary part of p0 is negative, along a semi-circle
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Fig. 11.1 Integration in the
complex p0 plane

Fig. 11.2 The x0 > y0 case

C (−)∞ of infinite radius, so that the integral along C (−)∞ be exponentially suppressed,
see Fig. 11.2. Indeed, denoting the integrand in (11.132) by f (p0,p):

f (p0,p) ≡ i�

2π

1

p2 − m2c2 e−
i
�

p·(x−y),

the integral of f along C (−)∞ vanishes since limIm(p0)→−∞ e
1
�

Im(p0)(x0−y0) = 0.We
can then write:
∫

CF

f (p0,p)dp0 =
∫

CF+C(−)∞

f (p0,p)dp0 = −2π i Resp̄0( f )

= −2π i[(p0 − p̄0) f (p0,p)]p0= p̄0 = �

2 p̄0 e−
i
�

p·(x−y)
∣∣∣

p0= p̄0
.

Therefore, for x0 > y0, the integral in (11.132) reads:

∫
d3p
(2π�)3

∫

CF

dp0 f (p0,p) = �c
∫

d3p
(2π�)3

e− i
�

p·(x−y)

2Ep
= DF (x − y).

which is consistent with (11.131). If instead y0 > x0 we close the contour in the
upper half-plane along the semi-circle C (+)∞ , see Fig. 11.3, and obtain:
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Fig. 11.3 The y0 > x0 case

Fig. 11.4 Prescription for
the Feynman propagator:
Shifting the poles in the p0

plane

∫

CF

f (p0,p)dp0 =
∫

CF+C(+)∞

f (p0,p)dp0 = 2π i Res− p̄0( f )

= �

2 p̄0 e
i
�

(
p̄0(x0−y0)+p·(x−y)

)
.

Inserting the above result in (11.132) and changing the integration variable from
p to −p, we find

∫
d3p
(2π�)3

∫

CF

dp0 f (p0,p) = �c
∫

d3p
(2π�)3

e
i
�

p·(x−y)

2Ep
= DF (x − y),

which completes the proof of (11.132). Summarizing, the Feynman propagator is
defined by the integral over the four-momentum space of f (p0,p),with the prescrip-
tion that the integral over p0 be computed along CF .Such prescription is equivalent to
integrating over the real p0 axis and shifting at the same time the poles to±( p̄0−iε)),
where ε is an infinitesimal displacement, as shown in Fig. 11.4. The denominator
p2 − m2c2 of f (p0,p), with this prescription, changes into p2 − m2c2 + iε and
(11.132) can be also written as follows

DF (x − y) = i�2
∫

CF

d4 p

(2π�)4

e− i
�

p·(x−y)

p2 − m2c2

=
∫

d4 p

(2π�)4
e−

i
�

p·(x−y)DF (p), (11.133)
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where

DF (p) ≡ i�2

p2 − m2c2 + iε
, (11.134)

Equation (11.134) is the expression of the Feynman propagator in momentum space.
We now show that DF (x − y) is a Green’s function for the Klein–Gordon equa-

tion. Let us briefly recall the notion of Green’s function for a linear differential
equation. Consider the problem of finding the function f (xμ) which satisfies the
inhomogeneous differential equation

L(x) f (x) = g(x), (11.135)

L(x) being a local differential operator. If there exists a unique solution for each
g(x), there must exist an inverse operator L−1 such that, formally:

f (x) = L−1g(x).

Computing the operator L−1, however, is more than just taking the inverse to L, since
it denotes that operation plus the boundary conditions. By definition the Green’s
function G(x, y) is the solution to (11.135) where g(x) = −iδ4(xμ − yμ) and
corresponds to L−1 together with the associated boundary conditions. The solution
of the differential equation (11.135) is then given by the formula

f (xμ) = f0(x
μ)+ i

∫
d4 yG(xμ, yμ)g(yμ). (11.136)

where f0(xμ) is the general solution of the associated homogeneous equation. This
is easily verified applying the operator L to both sides of (11.136).

Let us then consider the Klein–Gordon equation describing the interaction of a
classical field φ(x) with an external source J (x):

(
��x + m2c2

�2

)
φ(x) = J (x). (11.137)

Identifying L(xμ) with the operator ��x + m2c2

�2 and g(xμ) with J (xμ), the general
solution of (11.137) can be written as

φ(x) = φ0(x)+ i
∫

d4 y D(x, y)J (y) (11.138)

where φ0(x)is the general solution to the homogeneous part of the Klein–Gordon

equation
(
��x + m2c2

�2

)
φ0(x) = 0 while the last term is a particular solution of

the inhomogeneous equation. Acting with the Klein–Gordon operator on (11.133)
we find
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Fig. 11.5 Prescription for the retarded Green function

(
�� + m2c2

�2

)
DF (x − y) = i�2

∫
d4 p

(2π�)4
e−

i
�

p·(x−y) 1

�2

(
−p2 + m2c2

)
DF (p)

= −iδ(4)(x − y).
(11.139)

so that DF (x − y) is the Green function of the Klein–Gordon equation together with
the boundary conditions implicit in the choice of the integration contour CF .

Since the Green function is not unique we may introduce two further Green
functions corresponding to different boundary conditions, defined as follows:

DR(x − y) = c

�
θ(x0 − y0)

[
φ̂(x), φ̂†(y)

]
. (11.140)

named retarded Green function and

DA(x − y) = c

�
θ(y0 − x0)

[
φ̂(x), φ̂†(y)

]
,

named advanced Green function. Direct computation yields the following expression
for the retarded Green function:



394 11 Quantization of Boson and Fermion Fields

Fig. 11.6 Prescription for
the advanced Green function

DR(x − y) = c

�
θ(x0 − y0)

([
φ̂+(x), φ̂†

−(y)
]
+
[
φ̂−(x), φ̂†

+(y)
])

= θ(x0 − y0) (D+(x − y)− D−(x − y))

= θ(x0 − y0)�c
∫

d3p
(2π�)3

1

2Ep

(
e−

i
�

p·(x−y) − e
i
�

p·(x−y)
)
.

(11.141)

Proceeding as in the case of the Feynman propagator we may write DR(x − y) as
the integral to the function f (p0,p) with a specific prescription

DR(x − y) = i�2
∫

d3 p

(2π�)3

∫

CR

dp0

2π�

e− i
�

p·(x−y)

p2 − m2c2 =
∫

d3 p

(2π�)3

∫

CR

dp0 f (p0,p),

where CR is the contour shown in Fig. 11.5. As shown in the Figure, if x0 > y0

the contour should be closed on the lower half plane, giving two residues, which
reproduce the expression (11.141), while if x0 < y0 the contour should be closed in
the upper half plane, yielding zero. By the same token one shows that the advanced
Green function DA(x − y) can be written as

DA(x − y) = i�2
∫

d4 p

(2π�)4

e− i
�

p(x−y)

p2 − m2c2 ,

where the p0 integration now has to be done along the contour CA of Fig. 11.6.

11.5 Quantization of the Dirac Field

The consistent quantization of the bosonic spin 0 scalar field illustrated in this Chapter
and of the spin 1 electromagnetic field pursued in Chap. 6 was effected by replacing
the classical Poisson brackets between dynamic variables with commutators between
operators. This quantization procedure leads, among other things, to a positive
definite energy and in general to a consistent description of the quantized dynamic
variables. If we now turn to the quantization of the Dirac field which describes spin
1/2 particles and is solution to the Dirac equation, we shall show that the aforemen-
tioned prescription does not work. Indeed we shall shortly see that in order to have
a positive definite field energy at the quantum level we shall be forced to trade the

http://dx.doi.org/10.1007/978-88-470-1504-3_6
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canonical Poisson brackets in the classical theory for anticommutation rules among
operators.

To show this it is instructive to first pursue the canonical approach which trades
the classical Poisson brackets (10.134), (10.135) for commutation rules showing that
it unavoidably leads to inconsistent results.

Let us start from the classical Poisson brackets of the previous chapter, Sect. 10.5.
Replacing ψ and π = i�ψ† with the field operators ψ̂(x) and π̂(x) = i�ψ̂† and
implementing the replacement (11.1), we find

[
ψ̂α(x, t), ψ̂†

β(y, t)
]
= δ3(x − y)δαβ ,[

ψ̂α(x, t), ψ̂β(y, t)
]
=
[
ψ̂†
α(x, t), ψ̂†

β(y, t)
]
= 0,

(11.142)

where ψ̂(x, t) and ψ̂†(x, t), being time-dependent operators, are described in the
Heisenberg picture .

If we define the Hamiltonian operator by replacing in the expression of the clas-
sical one (10.136), classical with quantum fields, the Heisenberg equation obeyed
by ψ̂ reads:

˙̂
ψ(x, t) = − i

�

[
ψ̂(x, t), Ĥ(t)

]

= − i

�

∫

V

d3y
[
ψ̂(x, t), ψ̂†(y, t)

]
(−i�cαi∂i + mc2β)ψ̂(y, t)

= − i

�
(−i�cαi∂i + mc2β)ψ̂(x, t), (11.143)

implying:

i� ˙̂ψ(x) = (−i�cαi∂i + mc2β)ψ̂(x),

that is

(
i�γ μ∂μ − mc

)
ψ̂(x) = 0. (11.144)

As for the complex scalar field we find that the field operators satisfy the same
equations as their classical counterparts.

Proceeding as in the classical case we expand the the field ψ̂(x) in terms of the
positive and negative energy solutions of the classical equation of motion, as in
(10.147):

ψ̂(x) =
∫

d3p
(2π�)3

√
mc2V

Ep

2∑

r=1

[
c(p, r)u(p, r)e−i p·x

� + d†(p, r)v(p, r)ei p·x
�

]
,

(11.145)

http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10S1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
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ψ̂†(x) =
∫

d3p
(2π�)3

√
mc2V

Ep

2∑

r=1

[
c†(p, r)u†(p, r)ei p·x

� + d(p, r)v†(p, r)e−i p·x
�

]
,

(11.146)

where c(p, r) and d†(p, r) are now operators and the overall normalization has
been chosen in order for them to be dimensionless. Just as we did for the scalar
field operator, it is convenient to split ψ̂(x) into its positive and negative energy
components, ψ̂+(x) and ψ̂−(x), respectively:

ψ̂(x) = ψ̂+(x)+ ψ̂−(x),

ψ̂+(x) =
∫

d3p
(2π�)3

√
mc2V

Ep

2∑

r=1

c(p, r)u(p, r)e−i p·x
� ,

ψ̂−(x) =
∫

d3p
(2π�)3

√
mc2V

Ep

2∑

r=1

d(p, r)v†(p, r)e−i p·x
� . (11.147)

We also define ψ̂†
+(x) ≡ (ψ̂−(x))† and ψ̂−(x) ≡ (ψ̂+(x))†, as the corresponding

components of ψ̂†(x). Let us now determine the commutation rules obeyed by the
c, d, c†, d† operators. In order to do this we observe that the expansions (11.145)
and (11.146) can be inverted to compute the operator coefficients c(p, r) and d(p, r)

in terms of ψ̂(x) and ˆ̄ψ(x). For example we can show that:

c(p, r) =
√

mc2

V Ep

∫

V

d3xū(p, r)γ 0ψ̂(x)e
i
h p·x . (11.148)

Indeed:

c(p, r) =
√

mc2

V Ep

∫

V

d3xū(p, r)γ 0ψ̂(x)e
i
�

p·x

=
∫

V

d3x
∫

d3q
(2π�)3

mc2
√

Ep Eq

2∑

s=1

[
ū(p, r)γ 0u(q, s)c(q, s)e−i (q−p)·x

�

+ ū(p, r)γ 0v(q, s)d†(q, s)ei (q+p)·x
�

]

=
∫

d3q
(2π�)3

mc2
√

Ep Eq

2∑

s=1

[
ū(p, r)γ 0u(q, s)c(q, s)(2π�)3δ3(p− q)

+ ū(p, r)γ 0v(q, s)d†(q, s)(2π�)3δ3(p+ q)e
2i
h Ept

]

= mc2

Ep

2∑

s=1

[
ū(p, r)γ 0u(p, s)c(p, s)+ ū(p, r)γ 0v(−p, s)d†(−p, s)e

2i
h Ept

]
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= mc2

Ep

2∑

s=1

Ep

mc2 δrsc(p, s) = c(p, r),

where in the last line we used (10.172) and (10.174).
In an analogous way we can compute the operator coefficient d(p, r):

d(p, r) =
√

mc2

V Ep

∫

V

d3x ˆ̄ψ(x)γ 0v(p, r)e
i
h p·x ,

and their hermitian conjugates

c†(p, r) =
√

mc2

V Ep

∫

V

d3x ˆ̄ψ(x)γ 0u(p, r)e−
i
h p·x ,

d†(p, r) =
√

mc2

V Ep

∫

V

d3xv̄(p, r)γ 0ψ̂(x)e−
i
h p·.x . (11.149)

It is now possible to compute the commutators among the operators c, c†, d, d†.

We find

[
c(p, r), c†(q, s)

] = mc2

V
√

Ep Eq

∫

V

d3x
∫

V

d3yu†(p, r)
[
ψ̂(x, t), ψ̂†(y, t)

]
u(q, s)

× e
i
�
(p·x−q·y) = (2π�)3

V
δ3(p− q)δrs,

(11.150)

where we used (11.142) and (10.172). Analogous computations also give

[
d(p, r), d†(p, s)

]
= (2π�)3

V
δ3(p− q)δrs, (11.151)

while all the other commutators are zero

[c, c] =
[
c†, c†

]
= [d, d] =

[
d†, d†

]
= 0.

[c, d] =
[
c, d†

]
= 0.

Using (10.136) it is now easy to compute the energy Ĥ

http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
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Ĥ = i�
∫

V

d3xψ̂†∂t ψ̂ = i�
∫

V

d3x
∫

d3p
(2π�)3

√
mc2V

Ep

2∑

r=1

[
c†(p, r)u†(p, r)e

ip·x
�

+ d(p, r)v†(p, r)e−
i p·x
�

] ∫ d3q
(2π�)3

√
mc2V Eq

(−i

�

)

×
2∑

r=1

[
c(q, s)u(q, s)e−

iq·x
� − d†(q, s)v(q, s)e

iq·x
�

]
.

The terms containing c†(p, r)d†(q, s) and d(p, r)c(q, s) give a vanishing contribu-
tion since the integration in dx implies q = −p and the resulting factors are zero in
virtue of (10.174):

u†(p, r)v(−p, s) = 0; v†(p, r)u(−p, s) = 0.

Using then (10.172) and (10.173) we finally find:

Ĥ =
∫

d3p
(2π�)3

V Ep

[
c†(p, r)c(p, r)− d(p, r)d†(p, r)

]
. (11.152)

A similar computation gives the quantum momentum operator as it follows from
(10.127):

P̂i = −i�
∫

V

d3xψ̂†∂i ψ̂

=
∫

d3p
(2π�)3

V pi
[
c†(p, r)c(p, r)− d(p, r)d†(p, r)

]
.

(11.153)

where a partial integration has been used.
Finally we compute the conserved charge Q̂ associated with the four-current

Ĵμ = e ˆ̄ψγμψ̂:

Q̂ = e
∫

V

d3xψ̂†(x)ψ̂(x)

= e
∫

d3p
(2π�)3

V
[
c†(p, r)c(p, r)+ d(p, r)d†(p, r)

]
.

(11.154)

Let us now observe that (11.152) implies that the energy H can take on both positive
and negative values, even if we normal order it by dropping the infinite ground state
energy:

Ĥ =
∫

d3p
(2π�)3

V Ep

[
c†(p, r)c(p, r)− d†(p, r)d(p, r)

]
. (11.155)

http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
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On the other hand, the charge operator Q̂ turns out to have the same sign for particles
and antiparticles (it is positive definite if e > 0, negative definite is e < 0).

Thus the negative energy problem is not solved by field quantization and, more-
over, also the charge operator, being positive definite, gives an inconsistent result,
owing to the experimental fact that particles and antiparticles (e.g. an electron and a
positron) have opposite charges. Such conclusions are of course unacceptable.

To avoid these difficulties we replace the equal-time commutation relations
(11.142) of the Dirac field with equal-time anticommutation relations, that is
we set

{
ψα(x, t), ψ†

β(y, t)
}
= δ3(x − y)δαβ ,

{
ψα(x, t), ψβ(y, t)

} =
{
ψ†
α(x, t), ψ†

β(y, t)
}
= 0. (11.156)

Thus for spin 1/2 fields we assume that the correspondence between the classical
Poisson brackets is given by

{ , }P.B.→ − i

�
{ , } ,

where {A, B} = A · B + B · A is the anticommutator. The Heisenberg equation
obeyed by ψ̂(x, t) is, however, still written in terms of a commutator:

i� ˙̂ψ(x, t) =
[
ψ̂(x, t), Ĥ(t)

]
. (11.157)

Indeed, if we write (11.157) explicitly

i� ˙̂ψ(x, t) =
[
ψ̂(x, t), Ĥ(t)

]

=
⎡
⎣ψ̂(x),

∫

V

d3yψ̂†(y, t)(−i�cαi∂i + βmc2)ψ̂(y, t)

⎤
⎦ , (11.158)

and use the identity

[C, AB] = {A,C} B − A {B,C} ,

identifying the operators in the last line of (11.158) with C, A, B, respectively, we
easily retrieve the Dirac equation for −ψ̂(x, t).

Along the same lines which previously led to the derivation of the commutation
rules (11.150) and (11.151), we now find the following anticommutation rules among
the operators c, c†, d, d†:

{
c(p, r), c†(q, s)

}
= (2π�)3

V
δ3(p− q)δrs =

{
d(p, r), d†(q, s)

}
, (11.159)
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all other anticommutators being zero. The Hamiltonian is still given by (11.152)
since commutation rules were not used in deriving (11.154). Now, however, we can
use the anticommutation relations (11.159) to write

d(p, r)d†(p, r)→−d†(p, r)d(p, r)+ (2π�)3

V
δ3(0). (11.160)

Subtracting the infinite zero-point energy we find

Ĥ =
∫

d3p
(2π�)3

V Ep

[
c†(p, r)c(p, r)+ d†(p, r)d(p, r)

]
. (11.161)

The same result is obtained using a normal ordering prescription, that is by requiring
that in all physical operators the creation operators must be at the left of the destruction
operators. However, since in the present case the operators are fermionic, that is they
obey anticommutation rules, we must take into account an extra minus sign when
swapping the position of two of them:

: cc† := −c†c = − : c†c :, : dd† := −d†d = − : d†d : . (11.162)

Defining all the physical quantities in terms of normal ordered products of field
operators, we have:

Ĥ = i�
∫

V

d3x : ψ̂†∂t ψ̂ :=
∫

d3p
(2π�)3

V Ep

2∑

r=1

(
N̂ (c)

p,r + N̂ (d)
p,r

)
, (11.163)

P̂i = i�
∫

V

d3x : ψ̂†∂ i ψ̂ :=
∫

d3p
(2π�)3

V pi
2∑

r=1

(
N̂ (c)

p,r + N̂ (d)
p,r

)
, (11.164)

Q̂ =
∫

V

d3x : ψ̂†ψ̂ :=
∫

d3p
(2π�)3

V
2∑

r=1

(
N̂ (c)

p,r − N̂ (d)
p,r

)
, (11.165)

where N̂ (c)
p,r = c†(p, r)c(p, r) and N̂ (d)

p,r = d†(p, r)d(p, r).
We see that the adoption of the anticommutation rules (11.156) leads to an

Hamiltonian operator which is positive definite while the charge operator may
assume both positive and negative values. In conclusion, much like in the case of
the complex scalar field associated with spin 0 particles, and the electromagnetic
field associated with the spin 1 photons, we have found that for spin 1/2 particles
the quantum field is represented as an infinite collection of two types of quantum
harmonic oscillators: For each single particle state (p, r), there are oscillators of
type “c” (associated with the classical positive energy solutions) whose excitations
are interpreted as particles in the state (p, r); and oscillators of type “d” (associated
with the classical negative energy solutions) whose excitations, for each state (p, r),
are interpreted as antiparticles in the same state. The essential difference between
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the bosonic and the fermionic case is the necessity to use anticommutation rules for
the quantization of the latter in order to obtain a sensible theory.

The most important implication of the anticommutation rules for the c and d
operators is obtained when we construct the Fock space of states for the fermion
field in an analogous way as we did for the scalar field. Indeed multiparticle states
are obtained by acting on the vacuum state of the whole system by means of the
creation operators c†(p, r) (for particles) and d†(p, r) (for antiparticles). We can
easily convince ourselves that in this construction two identical particles cannot
occupy the same state. If we indeed try to act twice on the vacuum, or on a generic
state, with the same creation operator to create two identical particles in a given state,
we find zero. This is a consequence of the anticommutation relations (11.156), which
imply

(c†)2 = 1

2
{c†, c†} = 0 = (d†)2,

for each (p, r). Therefore the states of the system are of the type

|0〉; |N (c)
p,r = 1〉 = c†(p, r)|0〉; |N (d)

p,r = 1〉 = d†(p, r)|0〉.
It follows that the particle and antiparticle occupation numbers for each single par-
ticle state (p, r) can only take the values 0 or 1:

N (c)
p,r = 0, 1; N (d)

p,r = 0, 1.

This is in fact the statement of Pauli’s exclusion principle for particles of spin 1
2: two

spin 1/2 particles cannot exist in a same quantum state (p, r).At the end of Sect. 11.2
we have shown that spin 0 particles obey the Bose-Einstein statistics. We now show
that for spin 1/2 particles the Schroedinger wave function is completely antisymmet-
ric under the exchange of particles. Following the same steps as for spin 0 particles,
the wave function �(n)N1, ... ,Nk

(x1 . . . xn, t) in the Schroendiger representation is

�
(n)
N1, ... ,Nk

(x1, . . . , xn, t) = 〈x1, . . . , xn; t |N1, . . . ., Nk〉, (11.166)

where Ni = 0, 1 since (c†
i )

2 = 0. Moreover, since

|x1, . . . xn; t〉 = ψ̂†
−(x1, t), . . . ψ̂†

−(xn, t)|0〉, (11.167)

and the quantum operators anticommute
{
ψ̂

†
−(xi , t), ψ̂†

−(x j , t)
}
= 0, the wave

function �(n) is antisymmetric in the exchange of xi and x j . We conclude that

�
(n)
N1, ... ,Nk

(x1, . . . , xn; t) is completely antisymmetric in the exchange of the particles
positions xi .

The connection between spin and statistics or, equivalently, between spin and the
type of the commutation relations used for quantization, is one of the most significant
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predictions of local relativistic quantum field theory. It is specifically a relativistic
effect, since it can be shown that in the non-relativistic Schroedinger theory, using the
Fock-space representation, both quantization procedures based on commutators and
anticommutators, give a consistent theory. Therefore such a connection, so essential
for explaining the stability of ordinary matter in the non-relativistic domain, is a con-
sequence of the relativistic formulation, that is of the principle of relativity expressed
by the Lorentz invariance of physical laws.

Let us end this section by commenting on the definition of the single particle
(or antiparticle) states. A single spin-1/2 particle state (describing say electron) with
momentum p and spin component sz = εr �/2 (ε1 = +1, ε2 = −1), is obtained by
acting on the vacuum state |0〉 by means of c(p, r)†:

|p, r〉(c) = c(p, r)†|0〉. (11.168)

The normalization is the usual Lorentz-invariant one:

(c)〈p, r |q, s〉(c) = 〈0|c(p, r)c(q, s)†|0〉 = 〈0|{c(p, r)c(q, s)†}|0〉

= (2π�)3

V
δ3(p− q)δrs . (11.169)

As for the antiparticle state, recall form our discussion on charge conjugation in
Chap. 10, that the component r of d(p, r) is associated with an antiparticle (say a
positron) of opposite spin component sz = −εr �/2. Thus if |p, r〉(d) describes an
antiparticle with momentum p and spin component sz = εr �/2, we have:

|p, r〉(d) = εrsd(p, s)†|0〉, (11.170)

where the effect of εsr is to reverse the spin component.

11.6 Invariant Commutation Rules for the Dirac Field

As for the Klein–Gordon field we now compute the general anticommutation rules
for Dirac fields at different times. Using the decomposition (11.147) of the field
operator ψ̂(x) into its positive and negative energy components we can write the
general anticommutators among Dirac fields as we follows

{ψ̂(x), ˆ̄ψ(y)} = {ψ̂+(x), ˆ̄ψ−(x)} + {ψ̂−(x), ˆ̄ψ+(y)}, (11.171)

where we have suppressed the spinor indices α, β.
Taking into account (11.159), the anticommutators on the right hand side give

{ψ̂+(x), ˆ̄ψ−(x)} =
∫

d3p
(2π�)3

mc2

Ep

2∑

r=1

u(p, r)ū(p, r)e−
i
�

p·(x−y), (11.172)

http://dx.doi.org/10.1007/978-88-470-1504-3_10
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{ψ̂−(x), ˆ̄ψ+(y)} =
∫

d3p
(2π�)3

mc2

Ep

2∑

r=1

v(p, r)v̄(p, r)e
i
�

p·(x−y), (11.173)

respectively. Using the spin sum given by (10.182) and (10.183) and summing the
two results we obtain

{ψ̂(x), ˆ̄ψ(y)} =
∫

d3p
(2π�)3

c

2Ep

(
( � p + mc)e−

i
�

p·(x−y) + ( � p − mc)e
i
�

p·(x−y)
)

=
∫

d3p
(2π�)3

c

2Ep
(i� � ∂ + mc)

[
e−

i
�

p·(x−y) − e
i
�

p·(x−y)
]
.

(11.174)

Comparing (11.172) and (11.173) with the definitions (11.113) we find

{ψ̂±(x), ˆ̄ψ∓(y)} = ±
(

i � ∂ + mc

�

)
D±(x − y) ≡ S±(x − y), (11.175)

so that we may rewrite (11.174) as follows:

{ψ̂(x), ˆ̄ψ(y)} = S(x − y) =
(

i � ∂ + mc

�

)
D(x − y), (11.176)

where we have defined

S(x − y) = S+(x − y)+ S−(x − y). (11.177)

Note that S(x − y), S±(x − y) all satisfy the Klein–Gordon equation. Moreover,
if (x − y)2 < 0, D(x − y) vanishes, and so does its derivatives with respect to x,
since if we increase x by an infinitesimal amount dx, x + dx is still at a space-
like distance from y and thus the zero value of D is unaffected. We conclude that
S(x − y), that is the anticommutator between two spinor-field operators, vanishes
at space-like distances (x − y)2 < 0. In Dirac theory the local observables are
expressed in terms of fermion bilinears. It can be verified that bilinears in the Dirac
fields satisfy microcausality. Indeed

[ ˆ̄ψα(x)ψ̂β(x), ˆ̄ψγ (y)ψ̂δ(y)]
= ˆ̄ψγ (y)[ ˆ̄ψα(x)ψ̂β(x), ψ̂δ(y)] + [ ˆ̄ψα(x)ψ̂β(x), ˆ̄ψγ (y)]ψ̂δ(y)
= − ˆ̄ψγ (y)Sδα(y − x)ψ̂β(x)+ ˆ̄ψα(x)Sβγ (x − y)ψ̂δ(y). (11.178)

which is zero if (x − y)2 < 0 since S(x − y) is. Therefore the commutators of
bilinears for space-like separations is zero, ensuring microcausality for the Dirac
theory.

http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
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11.6.1 The Feynman Propagator for Fermions

We extend the concept of time ordering introduced for bosonic particles in Sect. 11.4.1
to Dirac fermions. For notational convenience we shall, from now on, omit the “hat”
symbol ˆon the field operator whenever there is no possibility of confusing it with
the corresponding classical quantity. We define the Feynman propagator for spin 1/2
fields as

SF (x − y) = 〈0|Tψ(x)ψ̄(y)|0〉, (11.179)

where the time-ordered product is

Tψ(x)ψ̄(y) =
{
ψ(x)ψ̄(y) x0 > y0,

−ψ̄(y)ψ(x) y0 > x0.
(11.180)

Note the difference in sign when y0 > x0 with respect to the bosonic case. If x0 > y0

we have:

SF (x − y) = 〈0|(ψ+(x)+ ψ−(x))(ψ̄+(y)+ ψ̄−(y))|0〉
= 〈0|ψ+(x)ψ̄−(y)|0〉 = 〈0|{ψ+(x), ψ̄−(y)}|0〉 = S+(x − y).

Similarly for x0 < y0 we find

SF (x − y) = −{ψ−(x), ψ̄+(y)} = −S−(x − y). (11.181)

The Feynman propagator becomes

SF (x − y) = θ(x0 − y0)S+(x − y)− θ(y0 − x0)S−(x − y)

= 1

�

[
θ(x0 − y0) (i� � ∂ + mc) D+(x − y)

+ θ(y0 − x0) (i� � ∂ + mc) D−(x − y)
]
. (11.182)

Let us now move the θ factors past the differential operator (i� � ∂ + mc). Since the
latter contains a derivative with respect to x0, we will have to write:

θ(x0 − y0) (i� � ∂ + mc) (· · · ) = (i� � ∂ + mc) [θ(x0 − y0)(· · · )]
− i�γ 0[∂0θ(x

0 − y0)](· · · ).

Using the property of distributions14 d
dz θ(z) = δ(z),Eq. can be recast in the following

form:

14 This property is easily proven on a generic test function f (z) : ∫∞
−∞ f (z) d

dz θ(z)dz =
− ∫∞−∞ f ′(z)θ(z)dz = − ∫∞0 f ′(z)dz = f (0) = ∫∞

−∞ f (z)δ(z)dz.
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SF (x − y) = 1

�
(i� � ∂ + mc)

[
θ(x0 − y0)D+(x − y)+ θ(y0 − x0)D−(x − y)

]

− iγ 0δ(x0 − y0)
[
D+(x − y)− D−(x − y)

]
.

(11.183)

The last term vanishes since

δ(x0 − y0) (D+(x − y)− D−(x − y)) = δ(x0 − y0)D(x − y) = 0,

in virtue of the microcausality condition (11.119). We end up with the following
expression for the Feynman propagator:

SF (x − y) = 1

�
(i� � ∂ + mc)

[
θ(x0 − y0)D+(x − y)+ θ(y0 − x0)D−(x − y)

]

= 1

�
(i� � ∂ + mc) DF (x − y),

(11.184)

where DF (x − y) is the Feynman propagator for the spinless field, as defined in
(11.130). Using now the definitions (11.133) and (11.134) we obtain the final result

SF (x − y) =
∫

CF

dp4

(2π�)4
SF (p)e

− i
�

p·(x−y), (11.185)

SF (p) = i�
� p + mc

p2 − m2c2 + iε
. (11.186)

With an abuse of notation, it is common in the literature to denote the spinorial matrix
SF (p) in (11.186) with the following symbol:

SF (p) = i�

� p − mc + iε
. (11.187)

Formally multiplying both the numerator and denominator by the matrix � p + mc,
we retrieve the right hand side of (11.186).

11.6.2 Transformation Properties of the Dirac Quantum Field

We consider first the transformation properties of the Dirac field operator ψ̂α(x)
under the space–time symmetries of the Poincaré group.15 Equations (11.166) and
(11.167) allow to define the general relation between the relativistic wave function

15 In this section we restore the “hat” symbol on the field operators.
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ψα(a)(x) describing the state |a〉 of a spin 1/2 particle in the coordinate representation

(configuration space) and the field operator ψ̂α(x):
ψα(a)(x) = 〈0|ψ̂α(x)|a〉. (11.188)

Take, for instance, a single particle state |a〉 which is described by a wave packet,
superposition of monochromatic plane-waves associated with the states |p, r〉 (see
Chap. 9):

|a〉 =
∫

d3p
(2π�)3

V
2∑

r=1

f (p, r)|p, r〉 =
∫

d3p
(2π�)3

V
2∑

r=1

f (p, r)c(p, r)†|0〉.

=
∑

p

2∑

r=1

f (p, r)c(p, r)†|0〉,
(11.189)

where in the last line we have used the discrete momentum notation. If we substitute
in (11.188) the above expansion and use the expression (11.145) for ψ̂(x), we find
(we keep, for the sake of simplicity, the discrete momentum notation):

ψα(a)(x) =
∑

p

∑
q

√
mc2

EpV

2∑

r,s=1

f (q, r)u(q, s)〈0|c(p, s)c(q, r)†|0〉e− i
�

p·x

=
∑

p

∑
q

√
mc2

EpV

2∑

r,s=1

f (q, r)u(q, s)〈0|{c(p, s), c(q, r)†}|0〉e− i
�

p·x

=
∑

p

√
mc2

EpV

2∑

r=1

f (q, r)u(q, r)e−
i
�

p·x ,

(11.190)

where we have used the finite-volume version of the anticommutator in (11.159):
{c(p, s), c(q, r)†} = δp,qδrs . We then retrieve for ψα(a)(x) the general form of the
classical positive energy solution to the Dirac equation.

In Chap. 10 we have written the general transformation property of a Dirac field
ψ(x) induced by a space–time symmetry transformation. A generic Poincaré trans-
formation is implemented on the quantum states, as discussed in Chap. 9, by a unitary
transformation U (�, x0). In light of the relation (11.188) we can write for the field
operator ψ̂(x) the following transformation law:

ψ̂α(x)
(�,x0)−→ ψ̂ ′α(x ′) = U (�, x0)

†ψ̂α(x ′)U (�, x0) = S(�)αβψ̂
β(x)

= O(�,x0)ψ̂
α(x ′), (11.191)

where, as usual x ′ = �x − x0. Using (11.188), it is straightforward to see that
(11.191) implies (10.86). Performing indeed a Poincaré transformation on the state

http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_10
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|a〉 (|a〉 → |a′〉 = U (�, x0)|a〉), the corresponding wave function given by (11.188)
transforms as follows

ψα(x)
(�,x0)−→ ψ ′α(x ′) = 〈0|ψ̂α(x ′)U |a〉 = 〈0|UU †ψ̂α(x ′)U |a〉

= S(�)αβ〈0|ψ̂β(x)|a〉 = S(�)αβψ
β(x), (11.192)

where ψ(x) ≡ ψ(a)(x), ψ ′(x) ≡ ψ(a′)(x), U ≡ U (�, x0).

Just as we did for the scalar field in Sect. 11.3, we write the unitary operator
U (�, ε) corresponding to an infinitesimal transformation in terms of its generators
J
μν,Pμ so that, expanding both U (�, ε) and O(�,ε) to first order in the Poincaré

parameters δθρσ , εμ  1, we can express the infinitesimal variation of ψ̂(x) as
follows:

δψ̂α(x) = i

�

[
ψ̂α(x),

1

2
δθρσ Ĵ

ρσ − ε · P̂
]
= i

�

(
1

2
δθρσ Ĵρσ − ε · P̂

)
ψ̂α(x),

where, as usual, Ĵρσ , P̂μ are the infinitesimal generators of O(�,x0) which imple-
ments the Poincaré transformation on the internal components and the functional
form of ψ̂α(x). Using the explicit form of Ĵρσ in (10.100) we deduce the following
commutation relations for ψ̂(x):

i

�
[ψ̂α(x), Jρσ ] = − i

2
(σρσ )αβψ̂

β(x)+ (xρ∂σ − xσ ∂ρ)ψ̂α(x),

i

�
[ψ̂α(x),Pμ] = −∂μψ̂α(x). (11.193)

The above commutators completely define the transformation properties of ψ̂ under
the action of the Poincaré group. Of course U, as well as its generators J

μν,Pμ, act on
the c and d operators in the expansion of ψ̂. Let us define what such an action should
be in order to reproduce the correct transformation property (11.191). To this end let
us recall that the u(p, r) andv(p, r) spinors transform under a Lorentz transformation
as in (10.149) of Chap. 10, where the matrix R(�, p)rs is a rotation in the spin-
group, namely a SU(2) (for massive particles) or an SO(2) (for massless particles)
transformation depending on the momentum p and the Lorentz transformation itself.
Let us show that the transformation law (11.191) is correctly reproduced if:

U (�, x0)
†c(p, s)U (�, x0) = e−

i
�

p·x0R(�,�−1 p)s r c(�−1 p, r),

U (�, x0)
†d(p, s)U (�, x0) = e−

i
�

p·x0 [R(�,�−1 p)sr ]∗d(�−1 p, r). (11.194)

Computing the hermitian conjugate of last equation we find:

U (�, x0)
†d†(p, s)U (�, x0) = e

i
�

p·x0R(�,�−1 p)sr d†(�−1 p, r). (11.195)

Applying the above properties, the transformation rule for the spinor field operator
reads:

http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
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U (�, x0)
†ψ̂(x ′)U (�, x0)

=
∑
p,r

√
mc2

EpV

(
U †c(p, r)Uu(p, r)e−

i
�

p·x ′

+U †d†(p, r)Uv(p, r)e
i
�

p·x ′) =
∑
p,r,s

√
mc2

EpV
R(�,�−1 p)rs

×
(

c(�−1 p, s)u(p, r)e−
i
�

p·(x ′+x0) + d†(�−1 p, s)v(p, r)e
i
�

p·(x ′+x0)
)

=
∑

p′,r,s

√
mc2

Ep′V ′
R(�, p′)r s

×
(

c(p′, s)u(�p′, r)e−
i
�
(�p′)·(x ′+x0) + d†(p′, s)v(�p′, r)e

i
�
(�p′)·(x ′+x0)

)

=
∑

p′,s

√
mc2

Ep′V ′
(

c(p′, s)S(�)u(p′, s)e−
i
�

p′·x + d†(p′, s)S(�)v(p′, s)e
i
�

p′·x)

= S(�)
∑

p′,s

√
mc2

Ep′V ′
(

c(p′, s)u(p′, s)e−
i
�

p′·x + d†(p′, s)v(p′, s)e
i
�

p′·x)

= S(�)ψ̂(x),
(11.196)

where we have changed summation variable from p to p′ = �−1 p and, as usual,
wrote x = �−1(x ′ + x0). We have moreover used the transformation properties
(10.149).

11.6.3 Discrete Transformations

Let us now consider the three discrete transformations corresponding to parity P,
charge conjugation C and time-reversal T for the Dirac quantum field. In the previous
Chapter we have seen that for the classical Dirac field the space reflection corresponds
to the active transformation (see (10.242)):

ψ(x, t)→ ψ ′(x, t) = ηPγ
0ψ(−x, t), (11.197)

with respect to which it is easily verified that the Dirac equation is invariant. For the
quantized field we must seek a unitary operator U (P) such that16

U (P)†ψ(x, t)U (P) = ηPγ
0ψ(−x, t). (11.198)

We can define through its action on the operators c(p, r), d†(p, r), which should
reproduce (11.198). Using the properties

16 We suppress here and in the following the “hat” symbol for the field operator.

http://dx.doi.org/10.1007/978-88-470-1504-3_10
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γ 0u(p, r) = u(−p, r), γ 0v(p, r) = −v(−p, r)

which can be easily derived from the explicit form of the spinors u(p, r) and v(p, r)
given in (10.154) and (10.154), we find the operators c and d† should transform
under parity as follows

U (P)†c(p, r)U (P) = ηP c(−p, r), (11.199)

U (P)†d†(p, r)U (P) = −ηP d†(−p, r). (11.200)

The explicit form of U (P) can be obtained following the same procedure as in the
scalar field case. The result is

U (P) = e
iπ
2

∑
p,r

[
c†(p,r)c(p,r)−d†(p,r)d(p,r)−ηP c†(p,r)c(−p,r)−ηP d†(p,r)d(−p,r)

]
.

In the case of charge conjugation one seeks a unitary operator U (C) such that

U (C)†ψU (C) = ηCψ
c, (11.201)

whereψc = Cψ̄T is the charge conjugate field defined in Sect. 10.6.2, and the matrix
C = iγ 2γ 0 satisfies (10.184). We have seen in Sect. 10.6.2 that ψ → ψc leaves the
(free) Dirac equation invariant. Moreover also the anticommutation rules are invari-
ant under the same substitution. Indeed writing the (equal-time) anticommutation
relations as

{ψα(x), ψ̄(y)β} = (γ 0)αβδ
(3)(x − y) (11.202)

and multiplying by CρβC−1
ασ , and contracting over the α, β, repeated indices α, β,

we obtain

{ψα(x)C−1
ασ , ψ

cρ(y)} = (C−T γ 0CT )σ
ρδ(3)(x − y).

We now observe that

ψ̄c = −ψT C−1

so that, using the property (10.184) we have

{(ψ̄c)σ (x), (ψ
c)
ρ
(y)} = (γ 0)ρσ δ

(3)(x − y) (11.203)

Exchanging x ←→ y we prove the invariance.
We observe now that the operator ψc(x) has the following form:

ψc(x) =
∑
p,r

√
mc2

EpV

(
c(p, r)†uc(p, r)e

i
�

p·x + d(p, r)vc(p, r)e−
i
�

p·x) .

http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
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Recalling the following relations (see (10.189)):

uc(p, r) = εrsv(p, s); vc(p, r) = −εrsu(p, s),

it is straightforward to prove that the action of U (C) on the c, d operators should be:

U (C)†c(p, r)U (C) = ηCεrsd(p, s); U (C)†d(p, r)U (C) = −ηCεrsc(p, s).

We leave to the reader the exercise of finding the explicit form of the unitary operator
U (C).

Let us give here the transformation properties of fermion bilinears. As men-
tioned in last Chapter, all physical quantities associated with the Dirac field, like
the conserved current Jμ, are expressed in terms of fermion bilinears of the form
ψ̄(x)�ψ(x), where � can be 1, γ μ, γ 5, γ 5γ μ, γ μν. In the quantum theory of the
free fermion field, physical quantities should be expressed in terms of normal-ordered
bilinears: ψ̄(x)�ψ(x) : in the fermion field operator ψ(x). Consider the effect of
charge conjugation on a generic fermion bilinear:

: ψ̄(x)�ψ(x) : C−→ : ψ̄c(x)�ψc(x) :, (11.204)

where we have used the property |ηC |2 = 1. The transformed bilinear can also be
written in the following form:

: ψ̄c(x)�ψc(x) := − : ψT (x)C−1�Cγ 0ψ†(x) :, (11.205)

where we have used the property ψ̄c = −ψT C−1 and the † symbol in ψ† should be
intended as the hermitian conjugate of each component ψα as a quantum operator,
and not as the transposed of the complex conjugate of the spinorial vector (ψα).

Now consider the following property of normal ordered products of Dirac field
operators:

: ψ†
α(x)ψ

β(x) := − : ψβ(x)ψ†
α(x) :, (11.206)

which can be easily proven by decomposing each field operator into its positive and
negative energy components and using the definition (11.162) of normal-ordering.
The transformed bilinear can then be recast in the following form:

: ψ̄c(x)�ψc(x) :=: ψ̄(x)C�T C−1ψ(x) :, (11.207)

where we have used the properties of γ 0 and of the C-matrix described in last Chapter.
From (11.207) we can deduce the transformation properties of the fermion bilinears,
which are summarized below:
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scalar : : ψ̄(x)ψ(x) : C−→ : ψ̄(x)ψ(x) :
pseudo-scalar : : ψ̄(x)γ 5ψ(x) : C−→ : ψ̄(x)γ 5ψ(x) :,

vector : : ψ̄(x)γ μψ(x) : C−→− : ψ̄(x)γ μψ(x) :,
pseudo-vector : : ψ̄(x)γ 5γ μψ(x) : C−→ : ψ̄(x)γ 5γ μψ(x) :,

antisymmetric tensor : : ψ̄(x)γ μνψ(x) : C−→− : ψ̄(x)γ μνψ(x) :,

(11.208)

where we have used the property Cγ 5C−1 = γ 5, so that C(γ 5γ μ)T C−1 =
C(γ μ)T γ 5C−1 = C(γ μ)T C−1γ 5 = γ 5γ μ.

Finally we consider the time-reversal. From the discussion given in the Klein–
Gordon case we expect that it will be represented by an antiunitary operator
of the form

U (T ) = U K ,

where K is the complex conjugation operator defined in Sect. 11.3.1. The general
transformation property of the spinor field operator reads:

U (T )†ψ(x, t)U (T ) = ηT S(T )ψ(x,−t), (11.209)

where the matrix S(T ) implements the effect of time reversal on the spinor compo-
nents of ψ(x). Let us determine S(T ).

We multiply the Dirac equation to the left by U (T )† and to the right by U (T ).
When these operators pass across the γ μ-matrices and the i factor, their effect is to
complex-conjugate them, being U (T ) antilinear. We find

(
i�(γ μ)∗∂μ + mc

)
U (T )†ψ(x, t)U (T ) = 0.

Using (11.209) and multiplying the equation to the left by the spinorial matrix
S(T )−1, we find:

(
i�S(T )−1(γ μ)∗S(T ) ∂

∂xμ
+ mc

)
ψ(xT ) = 0,

where we have defined xT ≡ (xμT ) = (−ct, x). Taking into account that ∂

∂xμT
=

−ημμ ∂
∂xμ (no summation over μ), in order for the above equation to be equivalent

to the Dirac equation (though in the time-reversed coordinates):

(
−i�γ μ

∂

∂xμT
+ mc

)
ψ(xT ) = 0⇔

(
−i�γ μ

∂

∂xμ
+ mc

)
ψ(x) = 0,

we must require for the matrix S(T ) the following property:

S(T )−1(γ μ)∗S(T ) = ημμγ μ no summation over μ. (11.210)

The reader can verify that the matrix below satisfies this condition:
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S(T ) = γ 5C, (11.211)

where γ 5 is the matrix introduced in Sect. 10.6.3.
We may compute the effect of time reversal on the four-current jμ = ψ̄γ μψ.

We have

U (T )† jμ(x, t)U (T ) = U (T )†ψ̄(x)U (T )(γ μ)∗U (T )†ψ(x)U (T )
= ψ†(xT )S(T )†γ 0∗γ μ∗S(T )ψ(xT ) = ψ̄(xT )S(T )−1γ μ∗S(T )ψ(xT )

= ημμ jμ(xT ), (11.212)

where we have used the property S(T )†γ 0 = −γ 0S(T ) = γ 0S(T )−1, being
S(T )−1 = −S(T ). Similarly we can verify that the action of time reversal on the
other spinor bilinears reads:

scalar : : ψ̄(x)ψ(x) : T−→ : ψ̄(xT )ψ(xT ) :
pseudo-scalar : : ψ̄(x)γ 5ψ(x) : T−→ : ψ̄(xT )γ

5ψ(xT ) :,
pseudo-vector : : ψ̄(x)γ 5γ μψ(x) : T−→ ημμ : ψ̄(xT )γ

5γ μψ(xT ) :,
antisymmetric tensor : : ψ̄(x)γ μνψ(x) : T−→ ημμηνν : ψ̄(xT )γ

μνψ(xT ) :,
(11.213)

To define the action of U (T ) on the c and d operators, we first observe, using (10.154),
(10.155) and (11.210) that17:

S(T )u(p, r) = εrsu(−p, s)∗; S(T )v(p, r) = εrsv(−p, s)∗, (11.214)

where the effect of εrs is to flip the spin component, as time reversal should do. From
the above relations we may conclude that the action of U (T ) on the c and d operators
should be:

U (T )†c(p, r)U (T ) = ηT εsr c(−p, s); U (T )†d(p, r)U (T ) = ηT εsr d(−p, s).
(11.215)

We leave the proof that (11.215) reproduce (11.209) as well as the explicit construc-
tion of the U (T ) operator to the reader as an exercise.

11.7 Covariant Quantization of the Electromagnetic Field

In Chap. 6 the quantization of the electromagnetic field was achieved using the
Coulomb (or radiation) gauge

∇ · A = 0 = A0.

17 To prove it it suffices to note that S(T )� pS(T )−1 = γ μ∗ p′μ, where (p′μ) ≡ (p0,−p) and that
S(T )u(0, r) = εrsu(0, s).

http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_6
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This approach has the advantage that only the physical degrees of freedom of the
Maxwell field, namely, for each value of the momentum p, the two polarizations
states orthogonal to p, are quantized. The Coulomb gauge, however, refers to a
particular frame where A0(x) = 0 so that the Lorentz invariance of the theory is not
manifest: Moving to another RF, the corresponding Lorentz transformation would
not in general preserve such condition and would switch on the time-component
of the vector potential. For practical calculations it is important to have a covariant
formalism. In the classical case this is achieved by choosing the manifestly covariant
Lorentz gauge ∂μAμ = 0, but, as we shall see below, this cannot be imposed as an
operatorial equation when Aμ(x) is quantized. We must rather impose a suitable
version of it on the physical states of the theory.

To understand what concretely goes wrong when we try to naively apply to the
electromagnetic field, the quantization procedure that we have followed for the lower
spin fields, let us observe that the Maxwell Lagrangian density (8.129) depends on
the derivatives of Aμ(x) only through the field strength Fμν,which does not contain
the time derivative Ȧ0 of A0.As a consequence of this, the momentum π0, conjugate
to A0 is zero:

π0 = ∂L
∂ Ȧ0
= 0. (11.216)

This clearly poses a problem when we try to quantize the system by promoting the
field components and their conjugate momenta to operators satisfying the canonical
commutation relations. This problem arises from the gauge symmetry associated
with the field Aμ(x), which is telling us that the number of variables we use to
describe it exceeds the number of its physical degrees of freedom (which is two).

On the other hand, as pointed out above, the covariant structure of Maxwell’s
equations and a canonical quantization procedure which only takes into account
the independent (physical) degrees of freedom, are incompatible: If we choose, for
instance, to promote only the spatial components A(x) of Aμ(x), and their conjugate
momenta, to operators, leaving A0(x) to be a classical field, we are breaking the
manifest Lorentz covariance of the theory. A possible way out is to modify the
Lagrangian of the electromagnetic field so as to manifestly break gauge invariance.
In doing this, all the four components of Aμ(x) become independent degrees of
freedom, which can thus be quantized. The alternative Lagrangian density proposed,
along these lines, by Fermi is obtained by adding to the Maxwell’s Lagrangian density
(8.129) a term proportional to (∂μAμ)2, so as to obtain:

L = −1

4
FμνFμν − 1

2
(∂μAμ)2 = −1

2
∂μAν∂

μAν + 1

2
∂μAν∂

ν Aμ − 1

2
(∂μAμ)2.

(11.217)

Writing

−1

2
(∂μAμ)2 = −1

2
∂μAν∂

ν Aμ + (four-divergences), (11.218)

http://dx.doi.org/10.1007/978-88-470-1504-3_8
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and neglecting the four-divergences, the Lagrangian density (11.217) reads:

L = −1

2
∂μAν∂

μAν = − 1

2c2 Ȧμ Ȧμ + 1

2
∇Aμ ·∇Aμ, (11.219)

and the corresponding Euler–Lagrange equations of motion are

��Aμ = 0. (11.220)

We observe that, even if the equations of motion have the same form as Maxwell’s
equations in the Lorentz gauge, they are by no means equivalent to them since the
condition ∂μAμ = 0 has not been imposed. To recover the description of the field in
terms of the two physical degrees of freedom we shall eventually have to impose a
constraint on the physical states (see next section).

The conjugate momentum is

πμ = ∂L
∂ Ȧμ

= − 1

c2 Ȧμ, (11.221)

and the classical Hamiltonian of the field turns out to be

H(t) =
∫

d3x[πμ Ȧμ − L] = −
∫

d3x
1

2
[c2πμπμ +∇Aμ ·∇Aμ]

=
∫

d3x
1

2c2

[
3∑

i=1

(
( Ȧi )

2 + c2|∇Ai |2
)
−
(
( Ȧ0)

2 + c2|∇A0|2
)]
.

(11.222)

We can now promote, according to the general quantization prescription, the com-
ponents of Aμ and the corresponding conjugate momenta, to operators.18 The equal
time commutation relations will then read:

[
Aμ(x, t), πν(y, t)

] = i�δμν δ
3(x − y), (11.223)

[
Aμ(x, t), Aν(y, t)

] = [πμ(x, t), πν(y, t)] = 0. (11.224)

It is also a simple matter to check that the quantum equations of motion

Ȧμ(x, t) = − i

�
[Aμ(x, t), H(t)], (11.225)

π̇μ(x, t) = − i

�
[πμ(x, t), H(t)], (11.226)

(11.227)

18 Here and in the remainder of this Chapter we denote the quantized fields without the “hat symbol”.
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lead to (11.220); indeed

Ȧμ(x) = i

2�

[
Aμ(x),

∫
d3yc2πν(y)πν(y)

]
= −c2

∫
d3yδνμδ

3(x − y)πν(y)

= −c2πμ(x),

π̇μ(x) = i

�

∫
d3y

[
πμ(x),

∂Aν(y)

∂yi

]
∂Aν(y)

∂yi

= − i

�

∫
d3y

[
πμ(x), Aν(y)

]∇2 Aν(y) = −
∫

d3yδ3(x − y)∇2 Aμ(y)

= −∇2 Aμ(x),
(11.228)

where in rewriting the expression for π̇μ(x) we have applied integration by parts
with respect to the integration variables yi .

Comparing the two commutators we obtain

1

c2 Äμ(x) = ∇2 Aμ(x),

which coincides with (11.220).
Let us now expand the field operator in plane waves, as we did in Chap. 5, (5.122).

We recall that, in the present theory, all components of the polarization vector εμ(k)
are in principle independent. As far as the classical field Aμ(x) in (5.122) is con-
cerned, it is convenient to expand, for each monochromatic wave, the four vector
εμ(k) in a basis ε(λ)μ (k) of four independent real four-vectors:

εμ(k) = c

√
�

2ωkV

3∑

λ=0

ε(λ)μ (k)aλ(k), (11.229)

where the factor in front of the right hand side is introduced in order for the vectors ε(λ)μ
and the Fourier coefficients aλ(k), to be dimensionless. In terms of these quantities,
the expansion (5.122) for the classical field reads:

Aμ(x) = c
∫

d3k
(2π)3

√
�V

2ωk

3∑

λ=0

ε(λ)μ (k)
[
aλ(k)e−ik·x + aλ(k)∗eik·x] , (11.230)

When we consider the quantum field operator, the complex coefficients a and a∗ in
the above expansion become operators a and a†, so that we can write:

Aμ(x) = c
∫

d3k
(2π)3

√
�V√
2ωk

3∑

λ=0

ε(λ)μ (k)
[
aλ(k)e−ik·x + a†

λ(k)e
ik·x] (11.231)

πμ(x) = i

c

∫
d3k
(2π)3

√
�Vωk

2

3∑

λ=0

ε(λ)μ (k)
[
aλ(k)e−ik·x − a†

λ(k)e
ik·x] . (11.232)

http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_5
http://dx.doi.org/10.1007/978-88-470-1504-3_5
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As mentioned earlier, the polarization vectors ε(λ)μ (k) are a set of four real uncon-
strained polarization four-vectors which will be chosen to satisfy, in the four dimen-
sional space–time, the orthonormality condition

ε(λ)(k) · ε(λ′)(k) = ηλλ′ , (11.233)

and the completeness condition

3∑

λ,σ=0

ε(λ)μ (k)ε(σ)ν (k)ηλσ = ημν. (11.234)

It is useful to have an explicit expression of the four polarization vectors in a given
reference frame. We first observe that in three-dimensional space, for each value of
the wave number vector k,we may take as a complete set of orthonormal vectors the
transverse polarization vectors ε(1)(k), ε(2)(k) and the longitudinal vector n = k

|k|(
ε(3)(k) ≡ −n

)
satisfying ε(r)(k) · ε(r ′)(k) = δrr ′ , r, r ′ = 1, 2 and ε(r)(k) · n = 0

together with the completeness relation

2∑

r=1

ε
(r)
i (k)ε(r)j (k)+

ki k j

|k|2 = δi j . (11.235)

This is sufficient for the description of the polarization vectors used in Chap. 6, where
we worked in the Coulomb gauge in which A0(x) = 0. However, we can formally
extend the completeness relation (11.235) to a four-dimensional setting by writing
the transverse polarization vectors and the longitudinal vector n as follows:

ε(3)μ (k) =
(

0
−n

)
ε(1,2)μ (k) =

(
0

ε(1,2)(k)

)
. (11.236)

Of course the above vectors refer to a particular RF in which the time component
is zero. A Lorentz transformation will in general alter this property. In a arbitrary
frame the longitudinal vector ε(3)μ (k) can be written as

ε(3)μ (k) = kμ − ημ(k · η)
(k · η) (11.237)

where kμ = (k0,−k)T , k0 = |k| and we have introduced an arbitrary time-like
vector with unit norm: ημημ = 1. One easily verifies that in the Lorentz frame
where

ημ = (1, 0)T , (11.238)

ε
(3)
μ (k) reduces to the form (11.236). To obtain a complete set of orthonormal four-

dimensional vectors in Minkowski space, we further add the time-like polarization
vector

http://dx.doi.org/10.1007/978-88-470-1504-3_6
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ε(0)μ (k) = ημ. (11.239)

It is now easily verified that the given four vectors ε(λ)μ (k), λ = 0, 1, 2, 3 satisfy
the two conditions (11.233) and (11.234) corresponding to the orthonormality and
completeness relations in Minkowski space.

Aside from the presence of the polarization vectors, the expansion (11.231) is
quite analogous, for each of the four values of μ, to the expansion of four real scalar
fields and their conjugate momenta as given in (11.19) and (11.21) (the reality of
Aμ being expressed by the relation b† = a†). Therefore, along the same lines as in
Sect. 11.2 (see the discussion from (11.23) to (11.32)) we can compute aλ and a†

λ in
terms of Aμ(x) ad πμ(x) by inverting (11.232) and (11.231). Applying the canonical
commutation relations (11.223), we find for aλ and a†

λ the following relations

[
aλ(k), a†

σ (k′)
]
= −ηλσ (2π)

3

V
δ3(k − k′), (11.240)

[a, a] =
[
a†, a†

]
= 0. (11.241)

The computation of the invariant commutation rules follows the same lines as in
Sect. 11.4; indeed from (11.220) one finds

[
Aμ(x), Aν(y)

] = −�c

⎛
⎝

3∑

λ,λ′=0

ε(λ)μ (k)ε(λ
′)

ν (k)ηλλ′

⎞
⎠ D(x − y), (11.242)

where D(x − y) is the function of (11.115) where we set m = 0. If we assume the
polarization vectors to satisfy the completeness relation (11.234), we end up with

[
Aμ(x), Aν(y)

] = −�cημνD(x − y). (11.243)

Similarly, following the steps of Sect. 11.4.1, one can evaluate the Feynman
propagator

DFμν(x − y) = 1

c�
〈0|T Aμ(x)Aν(y)|0〉

= 1

c�
〈0|

[
θ(x0 − y0)Aμ(x)Aν(y)+ θ(y0 − x0)Aν(y)Aμ(x)

]
|0〉

= − ημνDF (x − y) =
∫

CF

d4 p

(2π�)4

−i�2ημν

p2 + iε
e−i p

�
(x−y)

(11.244)

where DF (x − y) is the Feynman propagator for the scalar field, computed in
Sect. 11.4.1, CF is the contour defined in Fig. 11.1, and pμ = �kμ is the photon
four-momentum. The Feynman propagator in momentum space is therefore
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DFμν(p) = − i�2

p2 + iε
ημν. (11.245)

Note that, just as the Feynman propagator for the scalar and spinor fields, DFμν(x−y)
is the Green’s function associated with the equation of motion for Aμ(x), namely it
satisfies the equation

��x DFμν(x − y) = iημνδ
4(x − y). (11.246)

This can be easily verified by taking the Fourier transform of both sides and using
the fact that the Fourier transform of δ4(x − y) is 1.

Let us mention that we could have broken the gauge invariance of the Maxwell
Lagrangian by adding a term proportional to ∂μAμ with a generic coefficient, thus
obtaining:

L = −1

4
FμνFμν − 1

2α
(∂μAμ)2

= −1

2
∂μAν∂

μAν + 1

2

(
1− 1

α

)
(∂μAμ)2, (11.247)

where we have neglected additional four-divergences and α is a generic number,
which we have previously fixed to 1. Imposing the Lorentz gauge ∂μAμ = 0 the
above Lagrangian is equivalent to the original one. This time, however, the conjugate
momenta read:

πμ(x) = − 1

c2 Ȧμ + η
μ0

c

(
1− 1

α

)
(∂ν Aν). (11.248)

The equations of motion now have the following form:
[
��δρμ −

(
1− 1

α

)
∂μ∂

ρ

]
Aρ(x) = 0. (11.249)

The equation for the Feynman propagator changes accordingly, from (11.246) to:
[
��δρμ −

(
1− 1

α

)
∂μ∂

ρ

]
DFρν(x − y) = iημνδ

4(x − y). (11.250)

Going to the momentum representation by evaluating the Fourier transform of both
sides, we find:

[
p2δρμ −

(
1− 1

α

)
pμ pρ

]
DFρν(p) = −i�2ημν, (11.251)

which is now solved by

DFμν(p) = − i�2

p2 + iε

(
ημν − (1− α) pμ pν

p2

)
, (11.252)

as the reader can easily verify.
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11.7.1 Indefinite Metric and Subsidiary Conditions

As it stands this theory exhibits the embarrassing property that the Hilbert space
contains states with negative norm, which is the price we have to pay for preserving
manifest Lorentz covariance at the quantum level. To see this it is sufficient to observe
that the commutation relations (11.240) are the usual ones only if λ = λ′ = 1, 2, 3.
When λ = λ′ = 0, however, we have

[
a0(k), a†

0(k
′)
]
= −(2π)3δ(3)(k − k′) · 1

V
,

For the sake of simplicity, let us switch once again to the discrete momentum notation,
pertaining to a finite volume V, and treat correspondingly the discrete variable k as
an index, defining: akμ ≡ aμ(k), ε

(λ)
kμ ≡ ε(λ)μ (k).

We can then write
[
ak0, a†

k′0

]
= −δkk′ .

The appearance of the minus sign is of course related to the indefinite character of
the Lorentz metric.

To see why negative norm states appear, let us compute the norm of the state
a†

k0|0〉:

〈0|ak0a†
k0|0〉 = 〈0|

[
ak0, a†

k0

]
|0〉 = −1,

or more generally for a state containing N (0)
k “timelike” (i.e. excitations of theμ = 0

quantum oscillator) photons

〈N (0)
k |N (0)

k 〉 = (−1)N (0)
k . (11.253)

Negative norm states are clearly unacceptable on physical grounds since they would
lead to negative probabilities. Furthermore their existence implies that the expectation
value of quantum Hamiltonian can be negative. To show this we first observe that
quantization of the Hamiltonian (11.222) can be computed exactly as in the case of
the (real) scalar field leading to

H =
∑

k

�ωk

(
3∑

λ=1

a†
kλakλ − a†

k0ak0

)

=
∑

k

�ωk a†
kλakσ η

λσ , (11.254)

where, as usual, we have discarded the infinite constant corresponding to the zero
point energy by the normal-ordering prescription.
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We note that the minus sign appearing in the Hamiltonian does not imply a negative
contribution to the energy. In fact the number operator for the time-like photons reads

N (0)
k = −a†

k0ak0,

since

N (0)
k a†

k0|0〉 = −a†
k0[ak0, a†

k0]|0〉 = 1× a†
k0|0〉,

N (0)
k (a†

k0)
2|0〉 = 2× (a†

k0)
2|0〉, etc.

The expectation value of the Hamiltonian, however, can be negative, since, using
(11.253),

〈N (0)
k |H |N (0)

k 〉 = N (0)
k �ωk(−1)N (0)

k .

It is important to stress that what we have quantized so far is not the Maxwell theory,
but rather a theory based on the Lagrangian (11.219). In the classical theory the
additional degrees of freedom related to the longitudinal and timelike components
were eliminated by choosing the Lorentz gauge ∂μAμ = 0.We may try to implement
the Lorentz gauge as an operatorial constraint on the state vectors |s〉 of the Hilbert
space, through the condition

∂μAμ|s〉 = 0. (11.255)

This is however too strong a condition, and it is clearly not satisfied by the vacuum
state |0〉. Indeed, decomposing the quantum field Aμ into positive and negative
frequency parts, we obtain

∂μAμ|0〉 = ∂μA−μ(x)|0〉 = 0, (11.256)

from which it follows

0 = A+ν(y)
∂

∂xμ
A−μ(x)|0〉

= ∂

∂xμ
[
A+ν(y), A−μ(x)

] |0〉 = −�cημν
∂

∂xμ
D+(y − x)|0〉,

and since the last right hand side is not zero, condition (11.256) is inconsistent. The
consistent formulation of the quantum Lorentz-gauge condition, called subsidiary
condition, is due to Gupta and Bleuler and is given by the less stringent requirement:

∂μA+μ|s〉 = 0, (11.257)

which is obviously satisfied by the vacuum state. The above condition can be inter-
preted as defining a physical state. Moreover (11.257) also implies that the classical
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Lorentz-gauge condition is satisfied in terms of its expectation value between phys-
ical states |s〉. Indeed

〈s|∂μAμ|s〉 = 〈s|∂μ
(

A−μ + A+μ
) |s〉 = 〈s|∂μA+μ|s〉∗ + 〈s|∂μA+μ|s〉 = 0.

where we have used the relation A+μ = (A−μ)† and the general property that
〈s|Ô†|s〉 = 〈s|Ô|s〉∗, which holds for any operator Ô.

Let us now express the subsidiary condition in terms of the operators a†
k0, ak0, by

defining the operator L(k) as follows:

∂μAμ+(x) = −i
∑

k

c

√
�

2wkV
L(k)e−ik·x ⇒ L(k) = kμ

3∑

λ=0

ε
(λ)
kμakλ,

(11.258)
where we have used the expansion (11.231). Equation (11.257) can be recast in the
following form

L(k)|s〉 = 0, ∀k. (11.259)

In the frame in which k = (κ, 0, 0, κ) (k0 = k3 = κ), using as polarization vectors

ε
(0)
kμ = (1, 0, 0, 0); ε

(1)
kμ = (0,−1, 0, 0); ε

(2)
kμ = (0, 0,−1, 0); ε

(3)
kμ = (0, 0, 0,−1),

L(k) becomes

L(k) = κ(ak0 − ak3), (11.260)

Moreover from (11.259) we also find

〈s|a†
k0ak0|s〉 − 〈s|a†

k3ak3|s〉 = 0, (11.261)

that is the occupation numbers associated with the timelike and longitudinal photons
coincide on a physical state, so that the total contribution from these excitations
to the expectation value of the quantum Hamiltonian is zero. Thus the subsidiary
condition ensures that only the physical degrees of freedom of the electromagnetic
field contribute to the (expectation value of) energy. The same can be shown to
hold for the four-momentum Pμ of the field. Let us finally show that the subsidiary
condition (11.259) eliminates all the negative norm states. We first prove that the
operator L† commutes with L19:

19 It is straightforward to prove this property in a generic RF, using the general expression of L(k)
in (11.258)

[L(k), L(k′)†] = kμk′νε(λ)k,με
(σ)

k′,ν [akλ, a†
k′σ ]

= −kμk′νε(λ)k,με
(σ)

k′,νηλσ δkk′ = −k2δkk′ = 0, (11.262)

where we have used the photon mass-shell condition k2 = 0 and the completeness property of the
polarization vectors.
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[
L(k), L†(k′)

]
= k2

[
ak0 − ak3, a†

k0 − a†
k3

]

= k2
[
ak0, a†

k0

]
+ k2

[
ak3, a†

k3

]
= 0.

(11.263)

The action of the operator L†(k) = k(a†
k0 − a†

k3) on a state generates a particular
admixture of timelike and longitudinal photons which we shall call pseudophoton.
Clearly a state containing only transverse photons satisfies the subsidiary condition
(11.259) and thus is physical. Given a physical state |s〉, any other state obtained
acting on it any number of times by L† is still physical. This is easily shown using
(11.263):

L(L†)k |s〉 = (L†)k L|s〉 = 0. (11.264)

This is not the case if we act on a physical state by a combination of a†
0 and a†

3 which

is different from L†, say a†
0 + a†

3 . The resulting state would not be physical since:

L(k)(a†
0 + a†

3)|s〉 = [L(k), (a†
0 + a†

3)]|s〉 = −2k|s〉 �= 0. (11.265)

Thus pseudophotons are the only combinations of longitudinal and timelike photons
allowed in a physical state. Let us show that a physical state containing at least one
pseudophoton is perpendicular to any other state (including itself) satisfying (11.259)
and thus has zero norm. Consider a physical state (L†)k |s〉 containing a number of
pseudophotons created by (L†)k, and let |s′〉 be another physical state, we have:

〈s′|(L†)k |s〉 = (〈s′|L†)(L†)k−1|s〉 = 0, (11.266)

by virtue of (the hermitian conjugate of) condition (11.259): L|s′〉 = 0.We conclude
that states containing at least one pseudophoton have zero norm and are orthogonal
to any other physical state. Adding to a physical state an other one containing at least
one pseudophoton will not alter its physical content. It indeed corresponds to a gauge
transformation, see below.

We have thus far learned that a state satisfying the subsidiary condition can only
contain pseudophotons besides the transverse ones, and thus we can convince our-
selves that the most general physical state |sph〉 is constructed by adding to a state |s0〉
containing just transverse photons (and thus no pseudophoton) other ones containing
any number of pseudophotons besides the transverse ones:

|sph〉 ≡ |s0〉 +
∑

k

f0(k)L†(k)|s′0〉 +
∑

k1,k2

f1(k1)L
†(k1) f2(k2)L

†(k2)|s′′0 〉 + · · ·
(11.267)

where |s0〉, |s′0〉, |s′′0 〉 are states containing transverse photons only. The second state
on the right hand side contains one pseudophoton, the third two and so on. We can
easily show that the terms in (11.267) containing pseudophotons do not affect scalar
products between physical states of the form (11.267), being them orthogonal to any
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state satisfying the subsidiary condition, including themselves. Take indeed an other
state |s̄ ph〉 = |s̄0〉 + · · · of the form (11.267), using (11.259) and (11.263) we find:

〈s̄ ph |sph〉 = 〈s̄0|s0〉. (11.268)

This important result states that the allowed admixtures of timelike and longitu-
dinal photons (pseudophotons) do not affect the scalar products and in particular the
norm of the states. Thus all the physical state vectors have positive norm. As pointed
out earlier, the states |sph〉 and |s0〉 are physically equivalent. Mathematically the
difference between them corresponds to the gauge freedom of the classical theory.
To see this explicitly, let us write, just as we did for the scalar and Dirac field, the
relation between the classical potential Aμ(x) and its quantum counterpart Âμ(x)
(we temporarily restore the “hat” symbol on the field operator). If |s〉 is a physical
state describing a single photon, we can describe it in configuration space through
the classical potential

Aμ(x) = 〈0| Âμ(x)|s〉. (11.269)

Let us now consider the physically equivalent state, obtained by adding to |s〉 a
single-pseudophoton state:

|s′〉 = |s〉 +
∑

k

i f (k)L(k)†|0〉. (11.270)

Let us show that the classical field Aμ(x) changes accordingly by a gauge
transformation:

A′μ(x) = 〈0| Âμ(x)|s′〉 = Aμ(x)+ δAμ(x),

δAμ(x) =
∑

k,k′
c

√
�

2ωk′V
i f (k)ε(λ)k′μ〈0|ak′λ, L(k)†|0〉e−ik′·x

=
∑

k,k′
c

√
�

2ωk′V
i f (k)ε(λ)k′μkνε(σ)kν 〈0|[ak′λ, a†

kσ ]|0〉e−ik′·x

=
∑

k

c

√
�

2ωkV
(−ikμ) f (k)e−ik·x = ∂μ�(x), (11.271)

where

�(x) ≡
∑

k

c

√
�

2ωkV
f (k)e−ik·x . (11.272)

Thus adding to |s〉 a single pseudophoton state amounts to a gauge transformation
on the corresponding classical field.
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A physical state is therefore more appropriately described in terms of a class or
a set of vectors which differ from one another by zero norm states (i.e. containing
pseudophotons). Different choices of vectors within a same class differ by a gauge
transformation and thus define the same physical object. In a consistent quantum
theory of the electromagnetic field, measurable quantities should be gauge invariant.
The expectation value of an observable Ô on a physical state should not therefore
depend on the choice of vectors within the corresponding class. Take two physical
states |sph〉 = |s0〉 + · · · and |s̄ ph〉 = |s̄0〉 + · · · of the form (11.267), and therefore
in the same classes as |s0〉 and |s̄0〉, respectively. Gauge invariance requires the
following condition on the matrix element of any observable Ô between these two
states:

〈s̄ ph |Ô|sph〉 = 〈s̄0|Ô|s0〉. (11.273)

A sufficient condition for this to hold is that the operator Ô commute with L
and L†:

[Ô, L] = [Ô, L†] = 0. (11.274)

The above condition indeed allows us to move, in the terms containing L
and L†, the L† operators to the left and the L ones to the right, past Ô, hitting
the bra and ket physical vectors, respectively, and thus giving a zero result.

In next chapter we shall study electromagnetic interaction processes, like the
Compton scattering. We will learn that the probability amplitude describing the
transition between the initial and final states in the process is expressed as the matrix
element of an operator, the S-matrix, between the states of the incoming and outgoing
particles. Gauge invariance is then guaranteed if the S-matrix satisfies conditions
(11.274).

We can choose to describe physical states through the representative vectors |s0〉
of each class, which only contain transverse photons. This corresponds to a gauge
choice. In particular single photon states with definite momentum p = �k and
transverse polarization r (r = 1, 2) will read:

|p, r〉 = a†
pr |0〉. (11.275)

A generic physical state will then be expressed as a superposition of the above states:

|s0〉 =
∑

p

2∑

r=1

f (p, r)|p, r〉, (11.276)

and the corresponding description in configuration space is
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Aμ(x) = 〈0| Âμ(x)|s0〉 =
∑

p

c�√
2EpV

2∑

r=1

ε(r)pμ f (p, r)e−
i
�

p·x

V→∞−→ c�

∫
d3p
(2π�)3

√
V

2Ep

2∑

r=1

ε(r)μ (p) f (p, r)e−
i
�

p·x . (11.277)

We see that the transverse polarization vectors ε(r)μ (p) play the role of the vector s
u(p, r) introduced in (9.113) of Chap. 9.20 Recall, from our discussion of irreducible
representations of the Poincaré group, that the states of a massless particle are char-
acterized by a definite value of its helicity �. From last section of Chap. 6 we have
learned that the polarization vectors with definite helicity ±� are given by complex
combinations of the transverse vectors: ε(1)μ (p)± iε(2)μ (p).21 If we denote by εμ(p, r)
such complex vectors we can write the photon field operator in the following form:

Âμ(x) = c�

∫
d3p
(2π�)3

√
V

2Ep

2∑

r=1

(
εμ(p, r)a(p, r)e−

i
�

p·x

+ εμ(p, r)∗a(p, r)†e
i
�

p·x) . (11.278)

where a(p, r) are the complex combinations a1(p)∓ ia2(p).

11.7.2 Poincaré Transformations and Discrete Symmetries

Let us recall the transformation property of the classical electromagnetic field under
a Poincaré transformation:

Aμ(x)
(�,x0)−→ A′μ(x ′) = �μν Aν(x) = O(�,x0)Aμ(x

′), (11.279)

where μ and ν indices are raised and lowered using the Lorentzian metric (�μ ν ≡
ημρ�

ρ
σ η

σν) = (�−T )μ
ν and, as usual, x ′ = �x − x0. From the relation (11.269)

we deduce, just as we did for the scalar and Dirac fields, the transformation property
of the field operator Âμ(x):

Âμ(x)
(�,x0)−→ U † Âμ(x

′)U = �μν Âν(x) = O(�,x0) Âμ(x
′), (11.280)

where U = U (�, x0) is the unitary operator implementing the Poincaré transfor-
mation on the physical multi-photon states. The commutation relations between the

20 Note that this correspondence should take into account a normalization factor due to the fact that
Aμ(x) does not have the dimension of a wave-function: 〈x|s0〉.
21 In Chap. 6 the direction of motion was chosen along the X -axis so that the transverse directions
were 2 and 3. Here the motion is chosen along the Z -axis.

http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_6
http://dx.doi.org/10.1007/978-88-470-1504-3_6
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infinitesimal generators J
μν,Pμ of U (�, x0) and the Âν(x), which characterize its

transformation properties, are deduced just as we did for the lower spin fields, namely
by writing (11.280) for an infinitesimal transformation and expanding it to first order
in the parameters.

Let us now evaluate the action of the discrete symmetries C, P, T on the photon
field. Since a photon coincides with its own antiparticle, the action of C only amounts
to a multiplication by a factor ηC = ±1:

U (C)† Âμ(x)U (C) = ηC Âμ(x). (11.281)

We shall choose ηC = −1 for reasons we are going to illustrate below, so that the
photon is odd under charge conjugation. As for P, T, the transformation properties
read:

U (P)† Âμ(x)U (P) = ηP�Pμ
ν Âν(xP ) = ηPημμ Âμ(xP ), (11.282)

U (T )† Âμ(x)U (T ) = ηT�Tμ
ν Âν(xT ) = −ηT ημμ Âμ(xT ), (11.283)

with no summation over μ. In the above formulas we have defined xP ≡ �P x =
(ct,−x), and xT ≡ �T x = (−ct, x). In order to determine action of U (C),U (P)
and U (T ) on the a operators which reproduces (11.281), (11.282) and (11.283), one
follows the same procedure illustrated for the scalar and Dirac field, though we shall
refrain from doing it here.

11.8 Quantum Electrodynamics

In Sect. 10.7 of Chap. 10, we have studied the interaction of a charged Dirac field
ψ(x) (such as an electron) with the electromagnetic one Aμ(x). The description of
such interaction was obtained by applying to the free Dirac equation the minimal
coupling prescription (10.210). The resulting equations of motion could be derived
from the Lagrangian density (10.228). If we include the electromagnetic field in the
description by adding to L in (10.228) the term Le.m. describing the free Maxwell
field we end up with the following Lagrangian density for the system:

Ltot = L0 + LI , (11.284)

where L0 describes the free Dirac and electromagnetic fields:

L0 = LDirac + Le.m.,

LDirac = ψ̄(i�cγ μ∂μ − mc2)ψ,

Le.m. = −1

4
FμνFμν,

(11.285)

http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
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while LI is the interaction term in (10.228):

LI = Aμ(x)J
μ(x) = eAμ(x)ψ̄(x)γ

μψ(x). (11.286)

The classical equations of motion are readily derived from Ltot and read

��Aμ = −eψ̄γμψ, (11.287)

(
i�γ μ∂μ − mc

)
ψ = −e

c
γ μψ Aμ, (11.288)

the latter coinciding with (10.212) of last Chapter.
In this section we formulate the quantum version of this theory, known as quantum

electrodynamics, that is the quantum theory describing the interaction between an
electron (or in general a charged spin 1/2-particle) and the electromagnetic field. To
this end we describe the classical system in the Hamiltonian formalism and write
the Maxwell term Le.m. in the form (11.219). We easily realize that the conjugate
momenta to the Dirac and electromagnetic fields are given by the same Equations as
in the free case, namely by (10.133) and (11.221). The Hamiltonian density reads

H = πψψ̇ + πμ Ȧμ − Ltot = HDirac +He.m. +HI = H0 +HI , (11.289)

where

HDirac = −i�cψ̄γ i∂iψ + mc2ψ̄ψ, (11.290)

He.m. = − 1

2c2 Ȧμ Ȧμ − 1

2
∂i Aν∂i Aν, (11.291)

HI = −eψ̄γ μψ Aμ ≡ −LI , (11.292)

and H0 ≡ HDirac + He.m. represents the Hamiltonian density of the free fields
ψ(x), Aμ(x). The quantization of the system is effected by promoting ψα(x) and
Aμ(x) to operators and the Poisson brackets to commutators/anticommutators22:

[
Aμ(x, t), πν(y, t)

] = i�δνμδ
3(x − y), (11.293)

[
Aμ(x, t), Aν(y, t)

] = [
πμ(x, t), πν(y, t)

] = 0, (11.294)

{
ψα(x, t), ψ†

β(y, t)
}
= − i

�
δ3(x − y)δαβ , (11.295)

{
ψα(x, t), ψβ(y, t)

} =
{
ψ†
α(x, t), ψ†

β(y, t)
}
= 0. (11.296)

22 As often done previously, we shall omit in this section the hat symbol on field operators only.

http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
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Furthermore we require that Dirac and electromagnetic field operators commute at
equal time:

[
ψα(x, t), Aμ(x′, t)

] = [
ψα(x, t), Ȧμ(x′, t)

] = 0. (11.297)

The time evolution is determined by the Hamilton quantum equations

ψ̇ = − i

�
[ψ, Ĥ ]; Ȧμ = − i

�
[Aμ, Ĥ ]; π̇μ = − i

�
[πμ, Ĥ ]. (11.298)

where

Ĥ =
∫

d4xĤ(x),

is the conserved Hamiltonian. One easily verifies that the Hamilton equations of
motion are equivalent to the Euler–Lagrange equations. Equation (11.298) can be
formally integrated to read

ψ(x, t) = e
i
�

Ĥ tψ(x, 0)e−
i
�

Ĥ t , (11.299)

Aμ(x, t) = e
i
�

Ĥ t Aμ(x, 0)e−
i
�

Ĥ t . (11.300)

Quantizing the interacting system means defining a Hilbert space of states and
quantum field operators acting on it, which satisfy the canonical commutation/
anticommutation relations, as well as the equations of motion. As the operators
obey coupled equations, we cannot expand them in terms of the free field solutions.
We can of course expand the field at a certain time, say t = 0 exactly as in equations
(11.231) and (11.145), with creation and destruction operators obeying the same
commutation rules as in the free case. However they are no longer eigenmodes of the
Hamiltonian and hence we cannot interpret them as creation and destruction opera-
tors of single particles. Indeed (11.300) imply that those operators evolve in time as

cp,t = e
i
�

Ĥ t cp,0e−
i
�

Ĥ t

and analogously for the other operators. This means the entire apparatus of the free
field theories for constructing the eigenmodes of the Hamiltonian breaks down and
the exact solution of the coupled equations is unknown. Indeed interacting quantum
theories are too complex to be solved exactly and we must resort to perturbative
methods, to be developed in the next chapter. Let us here anticipate some concepts
related to this issue. In the perturbative approach the quantum Lagrangian and Hamil-
tonian are written in terms of the free field operators ψ(x), Aμ(x), evolving with
H0 =

∫
d3x(HDirac +He.m.), and acting on the Fock space of free-particle states.

These are expressed as the tensor product of the electron/positron states and the
photon states:
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|{Ne−}; {Ne+}〉0 ⊗ |{Nγ }〉0, (11.301)

where Ne− , Ne+ , Nγ are the occupation numbers of electron, positron and photon
states, the subscript “0” indicates that these states pertain to the free theory (e = 0).
Such states are constructed, as illustrated in this chapter, by acting on a vacuum state
|0〉0 by means of creation operators. Also the free field operators are expressed in
terms of creation and annihilation operators, and all terms in the quantum Lagrangian
and Hamiltonian are written in normal ordered form. In particular the interaction term
reads:

ĤI = −e : ψ̄γ μψ Aμ :≡ −L̂I . (11.302)

Writing everything (fields, states, Hamiltonian etc.) in terms of the solution to the
free problem, corresponding the absence of interaction (e = 0), is the lowest order
approximation from which the perturbation analysis is developed, the perturba-
tion parameter being the dimensionless fine structure constant α ≡ e2/(4π�c) ≈
1/137  1. All perturbative corrections, as we shall illustrate in next Chapter, are
expressed in terms of a series expansion in powers of the interaction Hamiltonian:

ĤI ≡
∫

d3xĤI , (11.303)

(and thus in powers of the small constant α), through the so called S-matrix. Let us
stress that each term in this expansion is expressed in terms of free fields.

Here we wish to comment on the issue of symmetries. So far we have defined
symmetry transformations on free fields. The Lagrangian and Hamiltonian density
operators L̂tot , Ĥtot according to the above prescription, are obtained from their clas-
sical expression in (11.284), (11.285), (11.289) and (11.290) by replacing the fields
by their corresponding free quantum operators, and normal ordering the resulting
expression. Let g be a symmetry transformation of the free theory (e = 0), belong-
ing to some symmetry group G, and let U (g) be the unitary operator which realizes
it on the free-particle states. The invariance property is expressed in terms of the free
action operator

∫
d4xL̂0

g−→
∫

d4xL̂′0 =
∫

d4xU (g)†L̂0U (g) =
∫

d4xL̂0. (11.304)

If U (g) also commutes with the interaction Hamiltonian (11.303) or, equivalently
with the interaction Lagrangian, we have

∫
d4xL̂′tot =

∫
d4xU (g)†L̂totU (g) =

∫
d4xL̂tot . (11.305)

The above property is equivalent to the statement that g is a symmetry of the classical
interacting theory described by Ltot .

In this case the transformation g will also commute with the S-matrix which, as
mentioned above, is expressed as a series expansion in powers of ĤI . If this is the
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case for any g ∈ G, then the whole group G will be a symmetry of the full quantum
theory. This is the case, however, if also the vacuum |0〉 of the interacting theory is
invariant under U (g), that is for any g ∈ G:

U (g)|0〉 = |0〉. (11.306)

Although we do not know |0〉 a priori, we assume it to be unique and to be invariant
under the symmetries of L̂tot .

Let us review these symmetries

• Poincaré invariance. This was our guiding principle for constructing a local rela-
tivistic field theory. It is guaranteed by the fact that Ltot is written in a manifestly
Lorentz invariant form and therefore transforms as a scalar under Lorentz trans-
formations:

L̂′tot (x
′) = U (�, x0)

†L̂tot (x
′)U (�, x0) = L̂tot (x), (11.307)

where x ′ = �x − x0.

• Local-U(1) invariance. This symmetry characterizes the present theory and is
described by the local transformations in (10.214) and (10.215) of Chap. 10:

Aμ(x)→ Aμ(x)+ ∂μϕ(x),
ψ(x)→ ψ(x)e

ie
�c ϕ(x). (11.308)

• Parity. The free part of the action is parity invariant, since the Lagrangian density is
written in a form which is manifestly invariant under (proper and improper) Lorentz
transformations. Consider the transformation property of LI (x) under parity:

U (P)†L̂I (x)U (P) = eU (P)†(: ψ̄(x)γ μψ(x) :)U (P)U (P)† Aμ(x)U (P)

= eηP : ψ̄(xP )γ
μψ(xP ) : Aμ(xP ),

(11.309)

where we have used the transformation properties of the fermion current, derived
in Sect. 10.8.1, and of Aμ(x).The factor ηP is the photon intrinsic parity. Choosing
ηP = 1, the whole action is invariant. This is consistent with the fact that parity is
conserved in all electromagnetic processes.

• Time-reversal. The free part of the action is invariant for the reasons explained
above, while L̂I (x) transforms as

U (T )†L̂I (x)U (T ) = eU (T )†(: ψ̄(x)γ μψ(x) :)U (T )U (T )† Aμ(x)U (T )

= −eηT : ψ̄(xT )γ
μψ(xT ) : Aμ(xT ),

(11.310)

where we have used the transformation properties (11.213) of the fermion current
and those of Aμ(x).The factorηT is related to the photon field. ChoosingηT = −1,
the action is invariant. This is also consistent with experimental evidence.

http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
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• Charge-conjugation. The free part of the action is invariant. Indeed we have:

U (C)†L̂0(x)U (C) = L̂0(x)+ four-divergence. (11.311)

This is apparent if we consider the Maxwell contribution to L̂0 and the mass term
of the spinor field, which is proportional to the invariant bilinear ψ̄ψ, see (11.208).
As far as the kinetic term for ψ(x) is concerned we have:

U (C)†ψ̄(x)(i�cγ μ∂μ)ψ(x)U (C) = −∂μψ̄(x)i�cγ μψ(x)

= ψ̄(x)(i�cγ μ∂μ)ψ(x)+ four-divergence.
(11.312)

The interaction Lagrangian density L̂I (x) transforms as

U (C)†L̂I (x)U (C) = eU (C)†(: ψ̄(x)γ μψ(x) :)U (C)U (C)† Aμ(x)U (C)

= −eηC : ψ̄(x)γ μψ(x) : Aμ(x),
(11.313)

where we have used the transformation properties (11.208) of the fermion current
and those of Aμ(x). The factor ηC is again related to the photon field and choosing
ηC = −1, the action is invariant. Electromagnetic processes are indeed found to
respect charge-conjugation symmetry.

Not all the fundamental interactions in nature respect the above symmetries and,
in particular, the discrete ones. The strong (nuclear) interaction, which is respon-
sible for the binding force among protons and neutrons within nuclei as well as
for the confinement of quarks inside protons and neutrons, respects P,C, T sepa-
rately, just as electromagnetic interaction does. On the other hand the weak inter-
action, responsible for the beta decay of certain nuclei, is known to violate parity:
The mirror image of certain processes do not occur with the same rate as the original
ones.

There is however an important theorem, which we are not going to prove, which
states that in a local field theory described by a Lorentz-invariant, normal-ordered
Lagrangian density L̂(x), the numbers ηC , ηP , ηT for each field can be chosen so that
the product CPT of the three discrete transformations C, P, T is always a symmetry.
In particular L̂(x) transforms as follows:

U (T )†U (P)†U (C)†L̂(x)U (C)U (P)U (T ) = L̂(−x). (11.314)

This is known as the CPT theorem. The symmetry of a theory under CPT implies
that the image under CPT of a process must be as likely to occur as the process itself.
The effect of a C PT transformation is to change particles into antiparticles, and to
reverse space and time directions. The latter operation maps a process into its inverse
with the initial and final states interchanged. Furthermore the spin components of
the various particles are reversed as well.

Although we are not going deal with interactions other that the electromag-
netic one, let us mention that the weak, strong and electromagnetic interactions
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are described by a unified local, Lorentz-invariant field theory known as standard
model. The weak interaction is found to violate parity, charge conjugation and also,
to a smaller extent, the combination CP. Assuming it to be correctly described by
the standard model, by the above theorem we expect the combination CPT to be
preserved in the weak interaction phenomenology.

Reference

For further reading see Refs. [3], [8] (Vol. 4), [9], [13].



Chapter 12
Fields in Interaction

12.1 Interaction Processes

So far we have restricted our analysis to free bosonic and fermionic fields. In this
case we were able to canonically quantize them, by associating with the fields and
their conjugate momenta operators acting on a Hilbert space of states and satisfy-
ing the canonical commutation (or anti-commutation) relations and the equations of
motion. This was possible since free fields can be represented as collections of infi-
nitely many decoupled harmonic oscillators, each associated with a given one-particle
state. Quantizing them amounted to quantizing each oscillator,1 whose elementary
excitation is now interpreted as an elementary particle in the corresponding state.
This defines the correspondence between particles and fields, such as for the photon
and the electromagnetic field. The field operators are then constructed in terms of
the annihilation and creation operators associated with each quantum oscillator and
satisfy canonical relations, expressed in terms of commutators (for bosons) or anti-
commutators
(for fermions). Quantum states for the system are multi-particle states constructed as
tensor products of the elementary oscillator states. They are completely character-
ized by the corresponding occupation numbers, interpreted as the number of particles
in the corresponding single-particle state, and generate the Fock space of quantum
states of the field. The Hamiltonian operator then describes the time evolution of a
generic state of the system.

This route to the canonical quantization of fields, however, only works for free
fields. In the presence of interactions, a basis of eigenstates of the Hamiltonian
operator is in general not known. One has to give up the purpose of finding an exact
solution to the canonical quantization problem and try to achieve a perturbative
description of the interaction whenever this is feasible. It is useful in this respect,
generalizing our discussion in Sect. 11.8, to write Lagrangian L of the interacting
theory as the sum of a term L0 describing the free fields and an interaction term

1 For fermionic fields it is more appropriate to talk about anti-oscillators, being them quantized
using anti-commutators in order to reproduce the right statistics.
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L I ≡ L − L0:
L = L0 + L I . (12.1)

A similar decomposition can be done for the Hamiltonian H of the system:

H = H0 + HI . (12.2)

We shall assume the interaction term L I not to involve time derivatives of the fields,
so that we have: HI = −L I . If the interaction term HI is “small”, namely it is
proportional to some small coupling constant λ, we can study its effect on the known
solution to the free problem perturbatively. In other words we express the solution
to the complete theory, i.e. field operators φ̂ and states |ψ〉, in terms of the free field
operators φ̂0 and states |ψ〉0 plus perturbative effects due to the interaction, which
can be expanded in powers of λ and which vanish in the limit λ→ 0 :

φ̂(x) = φ̂0(x)+
∞∑

n=1

φ̂n(x)λ
n,

|ψ〉 = |ψ〉0 +
∞∑

n=1

|ψ〉nλn . (12.3)

The example which we shall be mostly concerned with, is the interaction between
an electron (or, in general, a charged fermion) and the electromagnetic field, which
was dealt with in Sect. 11.8 of Chap. 11. In this case HI has the following form
(see (11.290) of Chap. 11):

HI = −
∫

d3 x eAμψγ
μψ, (12.4)

where Aμ(x) and ψ(x) are the photon and the electron fields respectively,
e = −|e| < 0 the electron charge. The dimensionless coupling constant associ-
ated with the electromagnetic interaction is the fine structure constant λ = α =

e2

4π�c ∼ 1
137 , which is small and thus allows a perturbative analysis.

In this chapter we wish to give a synthetic account of the relativistic-covariant
perturbation theory developed, for quantum electrodynamics, by Feynman, Dyson,
Schwinger and Tomonaga, which generalizes the familiar perturbative analysis in
non-relativistic quantum theory to a framework in which relativistic covariance is
manifest at all perturbative orders. This approach provides a powerful and simple
diagrammatic technique for computing amplitudes of scattering or decay processes,
as well as perturbative corrections to generic physical observables: Each order λn

term in a perturbative expansion is described in terms of diagrams made of basic
building blocks called propagators and vertices.

The starting point of this analysis is to express the complete Lagrangian and
Hamiltonian in terms of the free fields φ0(x), namely in terms of fields evolving

http://dx.doi.org/10.1007/978-88-470-1504-3_11
http://dx.doi.org/10.1007/978-88-470-1504-3_11
http://dx.doi.org/10.1007/978-88-470-1504-3_11
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according to H0 and quantized as operators acting on the Fock space of free field
states. Such Hamiltonian should be itself regarded as the first term of a perturbative
expansion and by no means describes the total energy of the interacting system. Sim-
ilarly, the constants appearing in this Hamiltonian (coupling constants and masses)
should be regarded just as the first term of a perturbative expansion in λwhich yields
the measured values of the corresponding physical quantities.

Before entering the mathematical details of this analysis let us discuss the
relativistic-invariant description of scattering and decay processes.

12.2 Kinematics of Interaction Processes

If there were no interaction term HI in the Hamiltonian, a system originally prepared
in an eigenstate of the free Hamiltonian H = H0, |ψ, t = 0〉 = |E〉0, and describing
free particles with definite momenta and total energy E, will stay (in the Schroedinger

picture) in the same state ever after |ψ, t〉 = e− i
�

Ĥ0t |E〉 = e− i
�

Et |E〉. In the presence
of an interaction HI �= 0, the eigenstates |E〉0 of H0 are no longer eigenstates of the
complete Hamiltonian and a system initially prepared in |E〉0 will in general evolve
in time towards a different state. If we consider processes in which the interaction
among the particles takes place in a small volume and during a short time-lapse, we
can describe the states of the interacting particles long before (t → −∞) and long
after (t → +∞) the interaction as free-particle states and express them in terms of
eigenstates of H0.We shall call these two asymptotic states as the states of incoming
and outgoing particles, to be denoted by |ψin〉 and |ψout 〉 respectively. They belong
to the Fock space of free-particle states. We should think of the incoming and outgo-
ing (in the far past and future respectively) particles as being so far apart from one
another as not to feel their reciprocal action.2 This picture would not be consistent
with describing the corresponding states as those of particles with definite momenta,
since momentum eigenstates are completely delocalized in space and time. We should
instead think of |ψin〉 and |ψout 〉 as combinations of momentum eigenstates describ-
ing wave packets with definite width �, approaching each other before the interaction
and departing from one another after it. Each wave packet will have a momentum
which is indeterminate within a cubic element	3p ∼ �

3/�3 about a central value p.
We assume � to be large enough for the probability of each process not to vary appre-
ciably within	3p but to depend only on the mean values pi of the momenta of each
wave packet.

Let us now make some general remarks about the number of independent kine-
matic variables describing an isolated system of interacting particles in relation to
its symmetry properties. Consider a process involving a total number N of parti-
cles (which include both the incoming and the outgoing ones), each particle being

2 This would not be true if, during the interaction process, bound states of particles are formed. The
final system at t →+∞ would not consist in this case of free-particles only. We shall not consider
interactions which allow the creation of bound states.
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described by a 4-momentum pμi , i = 1, . . . , N , a polarization and a rest-mass
mi . Long before and after the interaction, for each free-particle we can write the
mass-shell condition p2

i = pμi piμ = m2
i c2 (also called on-shell condition). Thus

each free particle state is described by the three components of its linear momentum
pi and its polarization (i.e., as we have learned in the previous chapters, a free-
particle is defined by an irreducible representation of the Poincaré group). If the
particles are scalar, the total state of the system is therefore defined by 3N variables.
Poincaré symmetry however reduces the number of independent variables. Invariance
under space–time translations (a given process should look the same if observed in
different places of our universe at different times) implies the conservation of the
total 4-momentum, which amounts to 4 conditions on the 3N variables, cutting the
number of independent ones down to 3N − 4. The physics of the process is also
invariant under rotations and boosts of the frame of reference (i.e. Lorentz invari-
ance), though the description of the system in terms of the 3N − 4 variables is not.
If we are to achieve a Lorentz invariant description of the process, we need to find a
maximal number of combinations of the 3N − 4 which are not affected by Lorentz
transformations of the frame of reference (Lorentz-invariant quantities). We have
already taken into account N of them, namely the rest-masses m2

i , with the mass-
shell condition. The remaining Lorentz-invariant quantities are obtained by requiring
generic functions of the 3N−4 variables to be invariant under each of the six indepen-
dent infinitesimal Lorentz transformations. This implies six further conditions which
reduce the number of variables to a total of 3N−10 Lorenz-invariant quantities. The
above counting therefore accounts for the 10 conserved Noether charges associated
with each Lorentz symmetry generator, which reduce the number of independent
momentum components to 3N – 10. For particles with spin, this number should be
further multiplied by the number of spin states.

12.2.1 Decay Processes

Each elementary decay process consists of a single particle decaying into two or
more particles, like, for instance, a neutron which decays into a proton, an electron
and an anti-neutrino:

n→ p+ + e− + ν̄e. (12.5)

Consider a system of identical unstable particles prepared in a same initial state
|ψin〉 att → −∞. With the passing by of time a number of the initial particles will
decay. If N (t) � 1 is the number of particles in a small volume dV3 at a time t,
so that ρ(t) = N (t)

dV is the corresponding particle density, and if dN(in) 	 N (t)
denotes the number of these particles decaying between t and t + dt , we can write

3 Here we denote by dV a volume which is infinitesimal but still macroscopic in size, so as to contain
a considerable number of particles.
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the probability of a decay per unit time as follows:

d P(in)

dt
= dN(in)

N (t)dt
= dN(in)

ρ(t)dV dt
. (12.6)

Experimentally one finds that this quantity is a constant, depending only on the
initial state |ψin〉 and related to the probability of a single decay event to occur. Such
constant is expressed in terms of a decay width �(in), which has the dimension of
an energy, divided by � :

dN(in)

ρ(t)dV dt
= �(in)

�
. (12.7)

When computed in the rest-frame of the particle, the inverse of the above quantity
gives the mean life-time τ ≡ �

�(in) , which is a characteristic feature of the particle
itself. The mean life-time of an isolated neutron, for instance, is about 15 min. while
that of the muon μ− is of the order of 10−6 sec. (see Chap. 1)

Let us discuss now the relativistic covariance of (12.7). Suppose the quantities in
(12.7) are referred to an inertial RF S and let us consider the same decay process
as described from a different inertial RF S′ (primed quantities being referred to the
latter). The space–time volume element dV dt is Lorentz invariant, and so is the
number of events contained therein: dV dt = dV ′dt ′, dN = dN ′. Equation (12.7)
implies that the product ρ�(in) is Lorentz invariant: ρ�(in) = ρ′�(in′), where in′
refers to the initial state |ψ ′in〉 of the decaying particles as seen from S′.

Consider now a process in which a particle of rest mass M decays into a final
system of n particles of rest masses m1,m2, . . . ,mn . Suppose the initial particles are
prepared in a same state with definite momentum and energy Ein (in the rest-mass
frame we have Ein = Mc2). We wish to study the probability for the decays to
yield outgoing particles in a certain quantum state |ψout 〉. Let us characterize |ψout 〉
by a complete system of observables, which include the momenta of the outgoing
particles qi , i = 1, . . . , n, and other (discrete) quantities like the spin, which we
collectively denote by α, so that |ψout 〉 = |α,q1, . . . ,qn〉. If each outgoing particle
is thought of as contained in a finite box of volume4 Vi , i = 1, . . . , n, in which it is
quantized, the momenta are discrete as well and, denoting by dN(in;α,q1, . . . ,qn)

the number of decay events, within dV dt, yielding particles in the asymptotic state
|ψout 〉, the probability per unit time of observing the n outgoing particles in the final
state |α,q1, . . . ,qn〉 reads:

d

dt
P(in;α,q1, . . . ,qn) = dN(in;α,q1, . . . ,qn)

ρdV dt
= 1

�
�(in;α,q1, . . . ,qn).

(12.8)

Since, as already observed, dN(in;α,q1,...,qn)
dV dt is Lorentz-invariant, also the product,

which we shall denote by �̂, of the partial-width �(in;α,q1, . . . ,qn) times ρ must

4 The normalization volumes Vi , here and in the following, should be thought of as having a
microscopic size, given by the width of the wave packet describing the particle. It should not be
confused with the macroscopic volume element dV in which the decay events occur.
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have the same property. This implies that, in changing the reference frame from S to
S′ we have:

�̂(in,q1, . . . ,qn) = ρ�(in,q1, . . . ,qn)

= ρ′�′(in′,q′1, . . . ,q′n) = �̂(in′,q′1, . . . ,q′n). (12.9)

The total probability per unit time of the decay event is obtained by summing the
partial probability (12.8) over all the final states

d

dt
P(in) = �(in)

�
=

∑
q1...qn

∑
α

d

dt
P(in;α,q1, . . . ,qn)

=
∑

q1...qn

∑
α

1

�ρ
�̂(in;α,q1, . . . ,qn). (12.10)

As usual, in the limit of large volume V we may replace the sum over momenta by

an integral:
∑

q =
∫ d3qV
(2π�)3

and write

d

dt
P(in) = �(in)

�
=

∫ ∑
α

1

�ρ
�̂(in;α,q1, . . . ,qn)

d3q1V1

(2π�)3
· · · d

3qn Vn

(2π�)3
.

(12.11)

Notice that each factor d3qi Vi
(2π�)3

is Lorentz-invariant. The integrand in (12.11) now
represents the probability per unit time of observing the final particles with momenta
contained within elementary cubic volumes d3qi about some average values qi ,

i = 1, . . . , n. Let us stress that the momenta qi are referred to the final state of the
system at t → ∞ in which the particles are infinitely far apart and in this state Vi

represents the average volume occupied by the wave-packet associated with the ith
particle. We can then define for each produced particle a density (number of i th-
type particles per unit volume) ρi = 1

Vi
. According to our discussion in Sect. 9.5

of Chap. 9, we can, for each particle, refer the definition of the volume Vi to a RF
S0i in which the product of twice the volume times the energy has a certain value
c0i (2V0i E0i = c0i ) in the appropriate units and write:

ρi = 1

Vi
= 2Ei

2V0 E0i
= 2Ei

c0i
. (12.12)

The same can be done for the density ρ of the initial particles, by setting ρ =
2Ein/c0, Ein being their energy. The normalization factors c0, c0i have dimension
(Newton) × (length)4 and are relativistically invariant since they are defined in a
specific frame of reference. As we shall see, these constants will finally drop out
of the expressions for any physical quantity. Equation (12.11) will then have the
following form:

d P(in)

dt
= �(in)

�
= c0

2Ein

∫
1

�
�̂(in,q1, . . . ,qn)d�q1 . . . d�qn , (12.13)

http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
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where we have introduced the following Lorentz-invariant measures: d�qi ≡
d3qi c0i

(2π�)32Ei
. The final momenta and energies are related by the mass-shell condition:

E2
i − c2|qi |2 = m2

i c4. The above equation provides a Lorentz-covariant description
of a decay process. The integration in (12.13) is performed over all possible final
momenta of the outgoing particles, which are constrained by the energy-momentum
conservation condition, being our system isolated:

Pμin = Pμout , (12.14)

where Pμin ≡
(

1
c Ein,pin

)
, is the energy-momentum vector of the decaying particle

and Pμout ≡
∑n

i=1 qμi is the total final energy-momentum of the system. We can
take condition (12.14) into account in the integration by factoring out of �̂ a δ4

(Pin − Pout ), that is redefining:

�̂→ �̂(2π�)4δ4(Pin − Pout ). (12.15)

Equation (12.13) will then read:

d P(in)

dt
= �(in)

�
= c0

2Ein

∫
1

�
�̂(in,q1, . . . ,qn)d�

(n), (12.16)

where d�(n) is the n-particle relativistically invariant measure in phase space and is
defined as:

d�(n) ≡ (2π�)4δ4(Pin − Pout )
d3q1

(2π�)3
V1 · · · d3qn

(2π�)3
Vn

= (2π�)4δ4(Pin − Pout )
d3q1c01

(2π�)32E1
· · · d3qnc0n

(2π�)32En
. (12.17)

It is manifestly Lorentz-invariant since δ4(Pin − Pout ) is. In (12.16), the kinematic
analysis of the process, i.e. all the implications of the conservation laws, is encoded in
the integration over d�(n), and is separated from the dynamics of the process, which
depends on the nature of the interaction involved, which is described by �̂. This
latter quantity, being Lorentz-invariant, should depend on the 3N − 10 = 3n − 7
Lorentz-invariant variables associated with the system. For a particle decaying into
two particles, n = 2 and 3n − 7 is negative, meaning that all the kinematical
variables are fixed by the symmetry of the system and the mass-shell condition, so
that �̂ will only depend on the rest-masses (i.e. it is a constant).

A same particle may decay into different systems of particles, defining different
decay channels. For instance the neutral pion π0, which is a neutral particle about
270 times as heavy as the electron, decays, most of the times, into two photons,
π0 → 2γ. However about 1% of them decay into an electron, a positron and a
photon, π0 → e+ + e− + γ. There are other decay channels which are much rarer.
We can define for each channel a decay width�(in, channel), given by (12.16), where
the sums and integrals on the right-hand-side are over all possible states of the decay
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products in the given channel. The total decay width �(in), yielding the probability
of decay per unit time, will then be given by the sum of the widths associated with
each channel: �(in) =∑

channel �(in, channel). The relative probability associated
with each channel can be characterized by a branching ratio B R(in, channel) ≡
�(in, channel)

�(in) , which tells us how likely is the corresponding decay to occur. For the
neutral pion we have:

B R(π0 → 2γ ) = �(π0 → 2γ )

�(in)
∼ 99%,

B R(π0 → e+ + e− + γ ) = �(π0 → e+ + e− + γ )
�(in)

∼ 1%, (12.18)

all other channels having BR less than 10−3. The mean life-time of a neutral pion is
about 10−16 seconds.

12.2.2 Scattering Processes

Consider a process in which particles are projected at a fixed target. If the incident
particle comes close enough to the target particle at rest, the two will feel the interac-
tion and be scattered or produce new particles. This happens if the impact parameter,
i.e. the distance between the initial line of motion and the line parallel to it through
the target particle, is “small enough”. Depending on the nature of the interaction and
on the energy of the incident particle, we can define an effective area about the target
particle, on the plane perpendicular to the initial line of motion, so that if the incident
particle crosses this area interaction takes place, otherwise the states of motion of
the two particles remain practically unperturbed. This area is called cross-section σ
of the interaction.

Let ρ1 and ρ2 be the densities of the incident and target particles respec-
tively in the laboratory frame S0 in which the latter are at rest, and let v be
the relative velocity of the two colliding particles in S0 (that is the velocity of
the incident particle). The number of incident particles colliding with a single
target particle during a short time lapse dt is given by the number of particles
which pass through the corresponding cross-sectional area σ : ρ1vσdt, where
v = |v| and ρ1v is the flux of the incident particles. Multiplying this number by
the number ρ2dV of target particles in a small volume dV, we find the number dN
of collisions taking place in dV during dt. The number of events per unit time and
volume then reads:

dN(in)

dV dt
= ρ1ρ2vσ(in). (12.19)

The cross sectionσ is then defined as the number of collision events for each scatterer,
per unit flux of the incident beam and unit time. We can also define the probability
dP(in) of a single event between t and t + dt as the number of events per target
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particle, that is: dP(in) = dN(in)/Ntarget = dN(in)/(ρ2dV ). Equation (12.19) can
also be written in the following way:

d P(in)

dt
= (ρ1v)σ, (12.20)

providing an alternative definition of cross section as the probability of the scattering
event per unit flux of the incident beam and unit time.

Since the left-hand side of (12.19) is Lorentz-invariant, we wish to write the right-
hand side in terms of Lorentz-invariant quantities as well. Suppose each collision
produces n particles with rest-masses m1, . . . ,mn . We can consider, just as we did
for the decays, the number of events dN(in, α,q1, . . . ,qn) which produce particles
in a final state |ψout 〉 characterized by momenta contained within an elementary
momentum space volume d3qi about an average value qi , i = 1, . . . , n, and certain
values of the remaining (discrete) quantum numbers α : |ψout 〉 = |α,q1, . . . ,qn〉.
To this end we write the cross section σ associated with this final state in terms of a
density function �lab times the invariant measure on the phase space d�(n), which
accounts for all the kinematic constraints:

dN(in, α,q1, . . . ,qn)

dV dt
= ρ1ρ2v�lab(in, α,q1, . . . ,qn)d�

(n). (12.21)

The above formula is still not Lorentz-invariant since we are in the reference frame
S0 in which the target particle is at rest. Let us now move to a generic RF S in which
the incident and target particles have velocities v1, v2 and four-momenta pμ1 , pμ2
respectively. Let M1,M2 denote the rest-masses of the two interacting particles:
M2

1 c2 = p1 · p1,M2
2 c2 = p2 · p2. Recalling the discussion in Sect. 9.5 and (9.141)

therein, the densities ρ1, ρ2 in S can be expressed in terms of their correspond-
ing values ρ(0)1 , ρ

(0)
2 in the rest-frames of the two particles, through the γ -factors:

ρi = ρ
(0)
i γi , γi = (1 − v2

i
c2 )
− 1

2 , vi = |vi |, i = 1, 2. Let us show that the quantity
ρ1ρ2v in S0 can be expressed with respect to S in the following Lorentz-invariant
fashion

ρ
(0)
1 ρ

(0)
2

√
(p1 · p2)2

M2
1 M2

2 c2
− c2, (12.22)

as we can show using the properties
p0

i
Mi c = γi ,

pi
Mi
= γi vi:

ρ
(0)
1 ρ

(0)
2

√
(p1 · p2)2

M2
1 M2

2 c2
− c2 = ρ(0)1 ρ

(0)
2 γ1γ2c

√(
1− v1 · v2

c2

)2 − 1

γ 2
1 γ

2
2

= ρ1ρ2

√
|v1 − v2|2 − 1

c2

(
v2

1v
2
2 − (v1 · v2)2

)

= ρ1ρ2

√
|v1 − v2|2 − 1

c2 |v1 × v2|2
= ρ1ρ2 f (v1, v2), (12.23)

http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
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where we have used the property |v1×v2|2 = v2
1v

2
2 − (v1 ·v2)

2 and we have defined

f (v1, v2) ≡
√
|v1 − v2|2 − 1

c2 |v1 × v2|2. If the collision is head-on, the two initial

velocities are collinear (i.e. v1×v2 = 0) and f (v1, v2) is the modulus of the relative
velocity: f (v1, v2) = |v1 − v2|. In the laboratory frame v2 = 0, v1 = v and the
above expression yields ρ1ρ2v. Formula (12.23) is more general and also applies
to the case in which one of the two particles (say particle 1) is massless, so that
v1 = c. In this case the corresponding rest-frame does not exist but (12.23) yields
ρ1ρ2(1 − v2 cos(θ)), where θ is the angle between v1 and v2. If both particles are
massless, the frame S0 does not exist and (12.23) gives ρ1ρ2(1− cos(θ)).

Equation (12.21) can now be written in a fully Lorentz-invariant way:

dN

dV dt
(in, α,q1, . . . ,qn) = ρ1ρ2 f (v1, v2)�(in, α,q1, . . . ,qn)d�

(n),

= (2E1)(2E2)

c01c02
f (v1, v2)�(in, α,q1, . . . ,qn)d�

(n),

(12.24)

where we have written ρi = 1/Vi = 2Ei/c0i and�(in, α,q1, . . . ,qn) is a Lorentz-
invariant function which equals �lab in the laboratory frame S0. The quantity
�(in, α,q1, . . . ,qn)d�(n) is also called differential cross section dσ and charac-
terizes the probability that the scattering process, starting from a given initial state,
yields final particles with momenta contained within infinitesimal neighborhoods
d3qi of qi:

dσ(in, α,q1, . . . ,qn) = �(in, α,q1, . . . ,qn)d�
(n)

= 1

ρ1ρ2 f (v1, v2)

dN

dV dt
(in, α,q1, . . . ,qn)

= 1

ρ1 f (v1, v2)

d P

dt
(in, α,q1, . . . ,qn). (12.25)

In the above formula summation (or integration) over all quantities referred to the
final state which�(in, α,q1, . . . ,qn) does not depend on is understood. It is useful,
when explicitly calculating of dσ , to eliminate the delta-function δ4 in the expression
of d�(n), by first integrating over one of the final linear momenta, and then over the
total energy of the system. We shall illustrate this below when computing d�(2).

The total cross section of the process is the sum of the differential cross sections
over all possible states of the final n particles:

σ(in) =
∑
α

∫
dσ(in, α,q1, . . . ,qn) =

∑
α

∫
�(in, α,q1, . . . ,qn)d�

(n).

The Lorentz-invariant quantity�(in, α,q1, . . . ,qn), should only depend, aside from
the rest-masses of the particles, on the 3N−10 = 3n−4 remaining Lorentz-invariant
variables associated with the system, and on the polarizations of the particles in the
initial and final states. If the scattering produces two outgoing particles, n = 2,
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of momenta qμ1 , qμ2 , and rest-masses μ1, μ2, starting from two colliding particles
with momenta pμ1 , pμ2 and rest masses m1,m2, the system is described by only
two independent Lorentz-invariant variables (aside from the rest-masses which we
consider as constants). It is useful to express them in terms of the Mandelstam
variables s, t, u:

s ≡ (p1 + p2)
2 = (q1 + q2)

2, t ≡ (p1 − q1)
2 = (p2 − q2)

2,

u ≡ (p1 − q2)
2 = (p2 − q1)

2, (12.26)

which are manifestly Lorentz-invariant, though not independent. The relation between
s,t,u is readily found by expressing them as follows:

s = (m2
1 + m2

2)c
2 + 2p1 · p2, t = (m2

1 + μ2
1)c

2 − 2p1 · q1,

u ≡ (m2
1 + μ2

2)c
2 − 2p1 · q2. (12.27)

We then find:

s + t + u = (3m2
1 + m2

2 + μ2
1 + μ2

2)c
2 + 2p1 · (p2 − q1 − q2)

= (m2
1 + m2

2 + μ2
1 + μ2

2)c
2. (12.28)

Therefore we can choose as independent Lorentz-invariant variables describing the
system any two of s,t,u, the third Mandelstam variable being fixed in terms of them
by (12.28).

In the center of mass frame p1 = (E1/c,p), p2 = (E2/c,−p), q1 = (E ′1/c,q),
q2 = (E ′2/c,−q), p1+ p2 = ((E1+ E2)/c, 0) and thus s = (E1+ E2)

2/c2, so that
c
√

s is the total energy. Consider now an elastic collision (m1 = μ1,m2 = μ2) in
the center of mass frame. In this case E1 + E2 = E ′1 + E ′2 implies |p| = |q|, from
which it follows that E1 = E ′1 and E2 = E ′2. We then find, after some algebra:

t = −2|p|2(1− cos θ) = −4|p|2 sin2 θ

2
, (12.29)

u = −2|p|2(1+ cos(θ))+ (E1 − E2)
2

c2 = −4|p|2 cos2
(
θ

2

)

+ (E1 − E2)
2

c2 , (12.30)

where θ is the angle between p and q. The variable −t represents the norm of the
momentum 	p = p− q transferred during the process.

12.3 Dynamics of Interaction Processes

In the description we have given in last section of decay and scattering processes,
we have encoded the dynamics of the event, namely the details of the interaction, in
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the Lorentz-invariant functions �̂ and�, separating it from the kinematics, which is
captured by the phase-space element d�(n). In this section we are going to express
these quantities in terms of the interaction Hamiltonian HI .

12.3.1 Interaction Representation

As anticipated in the introduction, in perturbation theory the Hamiltonian of the
interacting system is computed on free fields, namely on fields evolving according
to H0.

In the Schrödinger picture, see Sect. 9.3.2, operators, including the Hamiltonian, are
constant while states |ψ(t)〉S evolve in time according to the Schrödinger equation:

i�
∂

∂t
|ψ(t)〉S = Ĥ |ψ(t)〉S = (Ĥ0 + ĤI )|ψ(t)〉S . (12.31)

Both Ĥ0 and ĤI can be expressed in terms of Hamiltonian-density operators

Ĥ0 =
∫

d3xĤ0, ĤI =
∫

d3xĤI , (12.32)

Ĥ0 and ĤI being functions of free-field operators and their derivatives computed at
some fixed time t = 0, and thus not evolving

Ĥ0 = Ĥ0(φ̂0(0, x), ∂μφ̂0(0, x)), ĤI = ĤI (φ̂0(0, x), ∂μφ̂0(0, x)). (12.33)

Clearly, the Schrödinger picture does not provide a relativistically-covariant descrip-
tion of the interaction since the free-field operators are all computed at t = 0.

The time evolution of states was described, in Sect. 9.3.2 of Chap. 9, in terms of
a time-evolution operator U (t, t0), defined by property (9.73):

|ψ; t〉S = U (t, t0)|ψ; t0〉S . (12.34)

Let us recall the main properties of U (t, t0) discussed in Sect. 9.3.2. The inverse of
U (t, t0) is the operator which maps the state at t back to t0: U (t, t0)−1 = U (t0, t).
Substituting (12.34) into (12.31) we find that U (t, t0) is solution to the following
equation:

i�
d

dt
U (t, t0) = ĤU (t, t0), (12.35)

with the initial condition U (t0, t0) = 1. From hermiticity of Ĥ it follows that U (t, t0)
is unitary. Indeed let us first show that U (t, t0)†U (t, t0) is constant:

�
d

dt
(U (t, t0)

†U (t, t0)) =
(

d

dt
U (t, t0)

†
)

U (t, t0)+U (t, t0)
†
(

d

dt
U (t, t0)

)

= i
(

U (t, t0)
† Ĥ†

)
U (t, t0)+U (t, t0)

†
(
−i ĤU (t, t0)

)

= iU (t, t0)
† ĤU (t, t0)− iU (t, t0)

† ĤU (t, t0) = 0. (12.36)

http://dx.doi.org/10.1007/978-88-470-1504-3_12
http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
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Being constant this operator should be equal to its value at t = t0, namely
U (t, t0)†U (t, t0) = 1, and thus U (t, t0) is unitary.

In the Heisenberg picture states |ψ〉H are constant while operators evolve in
time. The relation between states in the Heisenberg and in the Schrödinger pictures
is defined by the time-evolution operator: |ψ〉H = U (t, t0)†|ψ(t)〉S . Similarly the
operators Ô(t)H and Ô in the two representations are related to one another in such
a way that their mean values on the states is the same: Ô(t)H = U (t, t0)†ÔU (t, t0).
As pointed out in the introduction, the fundamental problem which motivates the
perturbative approach is that an exact solution to either (12.31) or (12.35) is not
known. In order to develop a Lorentz-covariant perturbation theory, it is convenient to
work in the interaction representation which is somewhat in between the Schrödinger
and the Heisenberg picture. In this representation operators, which depend on the
free-field operators, evolve according to H0, while states evolve according to HI .

Let us introduce the time-evolution operator U0(t, t0) associated with the free-field
theory and thus satisfying the equation:

i�
d

dt
U0(t, t0) = Ĥ0U0(t, t0). (12.37)

According to our discussion of Sect. 9.3.2, Chap. 9, being Ĥ0 a constant operator, the

above equation is easily integrated: U0(t, t0) = U0(t − t0) = e− i
�

Ĥ0(t−t0). Taking
t0 = 0, the states |ψ(t)〉I and operators Ô(t) in the interaction picture are related to
those in the Schrödinger representation as follows:

|ψ(t)〉I ≡ U0(t, 0)†|ψ(t)〉S = e
i
�

Ĥ0t |ψ(t)〉S,
Ô(t) = e

i
�

Ĥ0tÔe−
i
�

Ĥ0t . (12.38)

It is straightforward to verify that the state |ψ(t)〉I satisfies (9.76):

i�
d

dt
|ψ(t)〉I = ĤI (t)|ψ(t)〉I , (12.39)

where ĤI (t) ≡ e
i
�

Ĥ0t ĤI e− i
�

Ĥ0t is the interaction Hamiltonian in the interaction
representation. It non-trivially depends on time since ĤI and Ĥ0 do not commute.
In particular, if we compute in this picture the density ĤI (t) associated with the
interaction Hamiltonian, we see that it is expressed in terms of the free-field operators,
and their derivatives, computed in a generic space–time point xμ = (ct, x) and thus
has a Lorentz-covariant expression:

ĤI (t) ≡ e
i
�

Ĥ0tĤI (φ̂0(0, x), ∂μφ̂0(0, x))e−
i
�

Ĥ0t = ĤI (φ̂0(t, x), ∂μφ̂0(t, x)),

where we have used the property of free-field operators of evolving according to Ĥ0:

e
i
�

Ĥ0t φ̂0(0, x)e−
i
�

Ĥ0t = φ̂0(t, x). (12.40)

http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
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12.3.2 The Scattering Matrix

In perturbation theory the solution to the evolution equation (12.39) is sought for
in the form of a series expansion in the small coupling-parameter λ which HI (t) is
proportional to. This expansion is to be determined by successive approximations.

Let us now define a time-evolution operator UI (t, t0) for states in the interaction
representation:

|ψ(t)〉I = UI (t, t0)|ψ(t0)〉I , (12.41)

satisfying the initial condition UI (t0, t0) = 1. Substituting in (12.39), we find for
UI (t, t0) the following equation:

i�
d

dt
UI (t, t0) = ĤI (t)UI (t, t0), (12.42)

which is the analogue in the interaction picture of (12.35) in the Schrödinger rep-
resentation. Since ĤI (t) is hermitian (ĤI (t) = ĤI (t)†), we can apply the same
argument used for U0, see (12.36), to prove that UI is unitary: UI (t, t0)UI (t, t0)† =
UI (t, t0)†UI (t, t0) = 1. From this it follows that UI (t, t0)−1 = UI (t0, t) =
UI (t, t0)†.

Let us now seek for a solution to the above equation in the form of a series
expansion in λ:

UI (t, t0) =
∞∑

k=0

Uk(t, t0), (12.43)

where each term Uk(t, t0) is proportional to λk . For λ = 0 there is no interaction and
thus the interaction picture coincides with the Heisenberg one in which the states do
not evolve in time, implying that the first term in the above expansion is the identity
matrix Uk=0(t, t0) = 1. The initial condition on UI (t, t0) then implies on the other
terms: Uk>0(t0, t0) = 0. Substituting the expansion (12.43) in (12.42), recalling that
ĤI (t) is proportional to λ, and equating the coefficients of the same power in the
coupling-constant, we find the following iterative relation:

d

dt
Uk(t, t0) = − i

�
ĤI (t)Uk−1(t, t0)

⇒ Uk(t, t0) = − i

�

t∫

t0

dt1 ĤI (t1)Uk−1(t1, t0).

The above equation is formally solved for each k as follows:

Uk(t, t0) =
(
− i

�

)k t∫

t0

dt1

t1∫

t0

dt2 . . .

tk−1∫

t0

dtk ĤI (t1)ĤI (t2) . . . ĤI (tk). (12.44)
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It is convenient to write the above composite integral in a form in which all integrals
are computed between t0 and t. To this end, let us consider, for the sake of simplicity,
the second order term Uk=2(t, t0):

U2(t, t0) = − 1

�2

t∫

t0

dt1

t1∫

t0

dt2 ĤI (t1)ĤI (t2). (12.45)

In the above expression the integration variables are in the following order t1 > t2.
Let us define the chronological operator T as follows:

T [ĤI (t1)ĤI (t2)] ≡
{

ĤI (t1)ĤI (t2) if t1 > t2,
ĤI (t2)ĤI (t1) if t2 > t1.

(12.46)

From the above definition we see that, if we compute the double integral of
T [ĤI (t1)ĤI (t2)] over the square in the (t1, t2)-plane defined by t0 ≤ t1, t2 ≤ t ,
we find

t∫

t0

dt1

t∫

t0

dt2T [ĤI (t1)ĤI (t2)] =
t∫

t0

dt1

t1∫

t0

dt2 ĤI (t1)ĤI (t2)

+
t∫

t0

dt2

t2∫

t0

dt1 ĤI (t2)ĤI (t1).

Being t1, t2 integration variables, the two terms on the right-hand side are equal and
we can then write:

U2(t, t0) = − 1

�2

t∫

t0

dt1

t1∫

t0

dt2 ĤI (t1)ĤI (t2)

= − 1

2�2

t∫

t0

dt1

t∫

t0

dt2T [ĤI (t1)ĤI (t2)]. (12.47)

Similarly we define the chronological operator on a generic k-fold product of ĤI (t)
operators at different times, as the operator which rearranges the factors so that the
instants at which the operators are computed, decrease in reading the product from
left to right (time-ordered product):

T [ĤI (ti1)ĤI (ti2) . . . ĤI (tik )] ≡ ĤI (t1)ĤI (t2) . . . ĤI (tk), (12.48)

where t1 > t2 > · · · > tk . Generalizing our discussion for the k = 2 case, we
can convince ourselves that since the left hand side of (12.48) is symmetric in the
exchange of the factors, it contributes k! equal terms when integrated over t1, t2, . . .,
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tk from t0 to t , so that the correct expression of Uk(t, t0) is obtained by dividing this
integral by k!. The above definition allows us to write Uk(t, t0) in (12.44) as follows:

Uk(t, t0) = 1

k!
(
− i

�

)k t∫

t0

dt1

t∫

t0

dt2 . . .

t∫

t0

dtk T [ĤI (t1)ĤI (t2) . . . ĤI (tk)].

(12.49)
Note that, if the values of the operator ĤI (t) at different times commuted (that is if
[ĤI (t), ĤI (t ′)] = 0), there would be no issue of time-ordering and thus no need of
using the T-operator. In this case the right-hand side of (12.49) would have a simple
form in terms of the kth power of a single integral

Uk(t, t0) = 1

k!
(
− i

�

)k
⎛
⎝

t∫

t0

dt ′ ĤI (t
′)

⎞
⎠

k

, (12.50)

and the series (12.43) is easily summed to an exponential:

UI (t, t0) = exp

⎛
⎝− i

�

t∫

t0

dt ′ ĤI (t
′)

⎞
⎠ . (12.51)

In general, however, [ĤI (t), ĤI (t ′)] �= 0 and the correct solution to (12.42) is not
given by the above exponential but rather by the following formal expansion:

UI (t, t0) = T

⎡
⎢⎣exp

⎛
⎜⎝− i

�

t∫

t0

dt ′ ĤI (t
′)

⎞
⎟⎠

⎤
⎥⎦ ≡

=
∞∑

k=0

1

k!
(
− i

�

)k t∫

t0

dt1

t∫

t0

dt2 . . .

t∫

t0

dtk T [ĤI (t1)ĤI (t2) . . . ĤI (tk)], (12.52)

where the symbol T [exp(. . .)] represents the prescription that the integrand in each
multiple integral originating from the expansion of the exponential should be time-
ordered. This means that, when acting by means of UI (t, t0) on a state |ψ(t0)〉I ,
the values of the operator ĤI (t) at earlier times should be applied to it before those
computed at later times.

Let |ψ(t)〉I describe the state of the system at the time t. Long before the interac-
tion, the system consists of free-particles described by the state |ψin〉 (we shall often
omit the subscript “I” of the interaction representation), so that:

|ψin〉 = lim
t→−∞ |ψ(t)〉I = |ψ(−∞)〉I . (12.53)

At a time t, the state |ψ(t)〉I can be formally expressed in terms of |ψin〉 using the
time-evolution operator UI :
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|ψ(t)〉I = UI (t,−∞)|ψin〉. (12.54)

Long after interaction the system is described by the free-particle state |ψ(+∞)〉I ,
related to the initial state as follows:

|ψ(+∞)〉I = UI (+∞,−∞)|ψin〉 = S|ψin〉, (12.55)

where we have defined the scattering matrix S (S-matrix) as

S ≡ UI (+∞,−∞) = T

⎡
⎣exp

⎛
⎝− i

�

+∞∫

−∞
dt ′ ĤI (t

′)

⎞
⎠

⎤
⎦

=
+∞∑

n=0

(−i

�

)n 1

n!
+∞∫

−∞
dt1 . . .

+∞∫

−∞
dtnT

[
ĤI (t1) . . . ĤI (tn)

]
. (12.56)

If we now use (12.32) in the interaction representation, we can express S in a Lorentz
invariant fashion, in terms of the interaction Hamiltonian density ĤI (t, x) = ĤI (x):

S ≡ T

⎡
⎣exp

⎛
⎝− i

c�

+∞∫

−∞
d4xĤI (x)

⎞
⎠

⎤
⎦

=
+∞∑

n=0

(−i

c�

)n 1

n!
+∞∫

−∞
d4x1 . . .

+∞∫

−∞
d4xnT

[ĤI (x1) . . . ĤI (xn)
]
. (12.57)

Just as UI , S is a unitary operator acting on the Fock space of free-particle states:

SS† = 1, (12.58)

and it encodes the information about the interaction.
In general one is interested in the probability of finding the system, after the

interaction, in a free-particle state |ψout 〉. If the particles are initially prepared in a
state |ψin〉, this probability P(in; out) reads

P(in; out) = |〈ψout |ψ(+∞)〉|2
〈ψout |ψout 〉〈ψ(+∞)|ψ(+∞)〉 =

|〈ψout |S|ψin〉|2
〈ψout |ψout 〉〈ψin|ψin〉 , (12.59)

where we have used (12.55). The transition amplitude A(in; out) (also called, for
scattering processes, scattering amplitude) is then given by the matrix element of S
between the initial and final states. Let us define an operator T so that S = 1+ iT.
The identity operator only contributes to the transition amplitude when the initial
and final states coincide, namely when there is no interaction. Excluding this case
we can write

A(in; out) ≡ 〈ψout |S|ψin〉 = i〈ψout |T|ψin〉. (12.60)
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Since the system is isolated, the total four-momentum is conserved. If we think of the
initial and final states as consisting of plane waves of total four-momenta Pμin, Pμout ,
respectively, we can factor out of the matrix element (12.60) a delta function imple-
menting this constraint

〈ψout |T|ψin〉 = (2π�)4δ4(Pout − Pin)〈ψout |T |ψin〉. (12.61)

As previously emphasized, if the interacting particles were described by plane waves
(i.e. eigenstates of the momentum operator), it would not even make sense to talk
about “initial” and “final” states. We should always think of the process as of an
interaction between wave-packets moving with linear momenta which are narrowly
distributed about some average value, so that we can suppose the matrix element
of T not to vary appreciably within the momentum intervals associated with each
particle.

To make contact with our discussion in Sects. 12.2.1 and 12.2.2 let us express the
probability of an interaction process per unit time in terms of S-matrix elements.
We start considering a scattering process of two particles of masses m1,m2, which
yield a number of outgoing particles. The initial state describes two wave-packets
of momenta narrowly distributed about two average values p̄1, p̄2. Therefore using
Fock space representation it has the form

|ψin〉 = |ψ1〉|ψ2〉,
|ψi 〉 =

∫
d�p

∑
r

fi (p, r)|p, r〉, i = 1, 2, (12.62)

where fi (p, r) is the weight of each |p, r〉 contributing to the wave-packet |ψin〉,
and where, as usual, d�p ≡ d3pi

(2π�)3
Vi . The one-particle states |ψi 〉 correspond to

the following positive-energy solutions to the Klein–Gordon equation, which, for
type-(a) bosons (complex scalar field and electromagnetic field) and type-(c) fermi-
ons, respectively, read:

φi (x) = 〈0|φ̂(x)|ψi 〉 =
∫

d3p
(2π�)3

�

√
Vi

2Ep
fi (p)e−

i
�

p·x

= �

∫
d�p√
2EpVi

fi (p)e−
i
�

p·x ,

Aμ(x) = 〈0| Âμ(x)|ψi 〉 = c�

∫
d�p√
2EpVi

2∑

r=1

fi (p, r)εμ(p, r)e−
i
�

p·x , (12.63)

ψαi (x) = 〈0|ψ̂α(x)|ψi 〉 =
∫

d�p

√
mc2

EpVi

2∑

r=1

fi (p, r)u(p, r)αe−
i
�

p·x , (12.64)

We wish now to relate the Fourier coefficients fi of the wave packets to the cor-
responding particle density. Consider, for instance, the case in which the incoming
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particles are described by either a complex scalar field, or a Dirac field.5 For each
of them we can define a conserved current jiμ = (ρi ,

1
c ji ), which, for a scalar and a

fermion, respectively, reads:

jiμ = i
c

�
(φ∗i (x)∂μφi (x)− ∂μφ∗i (x)φi (x)),

jiμ = ψ iγμψi , (12.65)

no summation over i. The time-components ρi = j0
i of the current are positive defi-

nite, being constructed out of positive-energy solutions, and thus can be consistently
regarded as one-particle densities. We are now considering a single interaction event
and therefore, being ρi related to a single-particle state, it will be normalized as fol-
lows6:

∫
d3xρi = 1. This choice, using (12.65), implies the following normalization

for the one-particle states, as the reader can easily verify7:

1 =
∫

d3xρi =
∫

d�p

∑
r

| fi (p, r)|2 = 〈ψi |ψi 〉. (12.66)

The above normalization is used also for the outgoing particles, so that 〈ψin|ψin〉 =
〈ψout |ψout 〉 = 1.

In the following, for the sake of simplicity, we shall limit ourselves to two incoming
spin 0 particles, described by complex fieldsφi (x), although the final relation between
the transition probability, the differential cross section and the S-matrix elements,
straightforwardly extends to spin 1/2 and 1 particles. Being φi (x) positive energy
solutions, ρi > 0 can be consistently regarded as single-particle densities. We also
observe that, substituting (12.63) inside (12.65) we find:

jiμ(x) = i
c

�

∫
d�p√
2EpVi

d�p′√
2Ep′Vi

�
2

×
(

fi (p)∗ fi (p′)(−i)
piμ

�
e−

i
�
(p′−p)·x − i fi (p) fi (p′)∗

p′iμ
�

e
i
�
(p′−p)·x

)

≈ 2
c

�2 p̄iμ|φ(x)|2,
(12.67)

where we have used the property that fi (p) are narrowly peaked about average values
p̄i and thus we have approximated, in the integral, p′iμ, piμ with p̄iμ.

8 Using the

5 The final relations we are going to derive apply to the photon field as well.
6 In Sects. 12.2.1 and 12.2.2, in contrast to the present section, we were considering collections
of particles decaying or interacting (i.e. colliding beams) and thus the densities ρ were referred to
multi-particle systems.
7 Recall our choice of normalization for the single-particle momentum eigenstates:

〈p, r |p′, r ′〉 = (2π�)3

V δ3(p− p′)δrr ′ .

8 For fermionic fields, in the same approximation, we would find jiμ(x) ≈ p̄iμ
mc ψ i (x)ψi (x).
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same approximation, and restricting to the time component ρi = j0
i of the currents,

we can set p′0 ≈ p0 ≈ Ep̄/c, so that the energy factors arising from the time-
derivatives cancel against the factor 1/

√
Ep Ep′ , and we can write the densities ρi in

the following form:

ρi (x) ≈ 1

Vi

∫
d�pd�p′ fi (p)∗ fi (p′)e−

i
�
(p′−p)·x , (12.68)

Let |ψout 〉 describe a system of free outgoing wave packets whose momenta are also
narrowly distributed about some average values, the average final total momentum
being P̄outμ. Let us now write the matrix element of T in plane waves components

〈ψout |T|ψin〉 =
∫

d�p1 d�p2 f1(p1) f2(p2)〈ψout |T|p1〉|p2〉

=
∫

d�p1 d�p2 f1(p1) f2(p2)(2π�)4δ4(P̄outμ − p1μ − p2μ)

× 〈ψout |T |p1〉|p2〉. (12.69)

To evaluate the transition probability, we need to compute the squared modulus of
the above amplitude:

|〈ψout |T|ψin〉|2 =
∫

d�p1 d�p2 d�p′1 d�p′2 f1(p1) f ∗1 (p′1) f2(p2) f ∗2 (p′2)

× (2π�)8δ4(P̄outμ − p1μ − p2μ)δ
4(P̄outμ − p′1μ − p′2μ)

× 〈ψout |T |p1〉|p2〉〈ψout |T |p′1〉|p′2〉∗.
(12.70)

Let us now approximate the matrix elements 〈ψout |T |p1〉|p2〉, 〈ψout |T |p′1〉|p′2〉
with the corresponding value computed on p̄i , 〈ψout |T |p̄1〉|p̄2〉.Writing δ4(P̄outμ−
p1μ−p2μ)δ

4(P̄outμ−p′1μ−p′2μ) as δ4(P̄outμ−p1μ−p2μ)δ
4(p1μ+p2μ−p′1μ−p′2μ)

and expressing the second delta function as follows:

(2π�)4δ4(p1μ + p2μ − p′1μ − p′2μ) =
∫

d4xe−
i
�
(p1+p2−p′1−p′2)·x , (12.71)

the expression (12.70) can be recast in the form

|〈ψout |T|ψin〉|2 =
(∫

d4x
∫

d�p1 d�p2 d�p′1 d�p′2 f1(p1) f ∗1 (p′1)

× f2(p2) f ∗2 (p′2)e−
i
�
(p1+p2−p′1−p′2)·x

)

× (2π�)4δ4(P̄outμ − p̄1μ − p̄2μ)|〈ψout |T |p̄1〉|p̄2〉|2

=
(∫

d4xρ1(x)V1ρ2(x)V2

)

× (2π�)4δ4(P̄outμ − p̄1μ − p̄2μ)|〈ψout |T |p̄1〉|p̄2〉|2, (12.72)
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where we have used the approximated expressions (12.68). Finally, differentiating
both sides of (12.72) with respect to time and using the definition (12.59) of transition
probability we find:

d P

dt
(in; out) = c

(∫
d3xρ1(x)V1ρ2(x)V2

)

× (2π�)4δ4(P̄outμ − p̄1μ − p̄2μ)|〈ψout |T |p̄1〉|p̄2〉|2. (12.73)

If we consider ρ1 uniform in the region where particle 2 is localized (i.e. the region
in which ρ2 is non-vanishing) we can write in the above expression

∫
d3xρ2 = 1.

If the final state |ψout 〉 = |α,q1, . . . qn〉 describes n outgoing particles with def-
inite momenta q1, . . . ,qn and characterized by discrete quantum numbers which
collectively denoted by α, we would rewrite (12.73) in the following form:

d P

dt
(in;α,q1, . . . qn) = cρ1(x)V1V2|〈α,q1, . . . qn|T |p̄1〉|p̄2〉|2d�(n). (12.74)

where d�(n), defined in (12.17), is, as usual, the phase space element which depends
on the uncertainties d3q� in the definition of each final momenta and accounts for
the kinematic constraints. Using (12.25) we can write the differential cross section:

dσ = 1

ρ1 f (v1, v2)

d P

dt
(in;α,q1, . . . qn)

= c
V1V2

f (v1, v2)
|〈α,q1, . . . qn|T |p̄1〉|p̄2〉|2d�(n), (12.75)

where, for head-on collisions, f (v1, v2) = |v1 − v2|.
Along the same lines we can derive the expression of a decay probability per unit

time in terms of matrix elements of T. In this case the initial state |ψin〉 = |ψ1〉
would describe a single particle with rest mass M and average four momentum
p̄μ = ( 1

c Ep̄, p̄). The reader can easily verify that

d P

dt
(in;α,q1, . . . qn) = c

(∫
d3xρ(x)V

)
|〈α,q1, . . . qn|T |p̄〉|2d�(n)

= cV |〈α,q1, . . . qn|T |p̄〉|2d�(n)

= V

�
�̂(in,q1, . . . ,qn)d�

(n), (12.76)

where d�(n) is the phase-space element describing the n outgoing particles, ρ is
the density associated with the decaying particle, V the corresponding volume and
we have used the definition of the differential width �̂ given in (12.16). The above
equation allows to express �̂ in terms of T-matrix elements.

Note that in (12.75) and (12.76), for scattering and decay processes respec-
tively, each incoming and outgoing particle contributes a volume factor: In (12.75)
Vi , i = 1, 2, for each colliding particle, in (12.76) the normalization volume V asso-
ciated with the decaying particle, and V�, � = 1, . . . , n, for each particle produced,
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from the definition of d�(n). It is useful, as we did in the previous sections, to express
each volume factor in terms of the energy of the corresponding particle by a suitable
choice of the normalization: Vi = c0i/(2Epi ) (incoming particles), V = c0/(2Ep)

(decaying particle), and V� = c0�/(2Eq� ) (outgoing particles). As pointed out in
Sect. 12.2.1, the dimensionful normalization coefficients c0k , k running over all the
incoming and outgoing particles, should finally drop out of the expression for the
cross section or the decay width, since these physical quantities ought not depend
on the specific normalization used. They indeed cancel against analogous coeffi-
cients originating from |〈α,q1, . . . qn|T |in〉|2, (|in〉 being |p̄1〉|p̄2〉 for scattering
processes or |p̄〉 for decays). Let us motivate this by anticipating part of the forthcom-
ing discussion on the structure of the scattering amplitude. Consider the contribution
to the amplitude 〈α,q1, . . . qn|T |in〉, of a generic term in the perturbative expan-
sion (12.57). It will be expressed as the matrix element between the initial and final
states of products of a number of Hamiltonian densities ĤI (x) computed in different
points:

〈α,q1, . . . qn|ĤI (x1) · · · ĤI (xm)|in〉. (12.77)

As we shall see in the Sect. 12.3.6, the above matrix element can be written as a
sum of terms, each containing a number of propagators, depending on m, which do
not contribute volume factors, and factors of the form 〈p|�̂|0〉, for each incoming
and outgoing particle, � being the particle field and p its momentum.9 These terms
will contribute a factor

∏
k

1√
Vk
∝ ∏

k
1√
c0k

, k running over the total number N

of incoming and outgoing particles. Therefore the squared modulus of the matrix
element precisely contains inverse normalization factors which cancel against those
originating from the normalization volumes in the formula (12.75), so that the final
expression for dσ does not depend on them. This implies that we can forget about the
normalization factors and safely replace in all formulas the normalization volumes
V by 1

2E . This is done by replacing the matrix element 〈T 〉 by a rescaled one 〈T ′〉
defined as follows:

〈T ′〉 =
N∏

k=1

√
Vk2Ek〈T 〉, (12.78)

where the multiplicative factor on the right hand side does the job of replacing
the normalization volumes Vk (one for each incoming and outgoing particle) in the
expression of 〈T 〉 by 1/(2Ek) . With this position (12.75) and (12.76) will read:

dσ = c
1

4Ep1 Ep2 f (v1, v2)
|〈α,q1, . . . qn|T ′|p̄1〉|p̄2〉|2d�(n), (12.79)

9 This will be shown in detail when proving Wick’s theorem. Each matrix element 〈p|�̂|0〉 contains
a factor

√
V coming from the expansion of �̂ in terms of creation and annihilation operators (a†, a,

respectively), and a factor 1
V coming from the vacuum expectation value (v.e.v.) 〈0|aa†|0〉, which

equals 〈0|[a, a†]|0〉 = [a, a†] for bosons and {a, a†} for fermions. The matrix element 〈p|�̂|0〉will
thus contribute a factor 1√

V
.
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d P

dt
(in;α,q1, . . . qn) = 1

2�Ep
�̂(in,q1, . . . ,qn)d�

(n)

= c

2Ep
|〈α,q1, . . . qn|T ′|p̄〉|2d�(n), (12.80)

where now d�(n) = (2π�)4δ4(P̄outμ − p̄1μ − p̄2μ)
∏n
�=1 d�q� and �q� =

d3q�
(2π�)32Eq�

.

The formula for the cross section, in particular, can be made manifestly invariant
by recalling, from (12.23), that

f (v1, v2) = 1

γ1γ2 M1 M2c

√
( p̄1 · p̄2)2 − M2

1 M2
2 c4.

This allows to recast (12.79) in the following Lorentz-invariant form:

dσ = 1

4c2
√
( p̄1 · p̄2)2 − M2

1 M2
2 c4
|〈α,q1, . . . qn|T ′|p̄1〉|p̄2〉|2d�(n). (12.81)

If we are in the laboratory frame in which particle 2 is a target particle at rest, the
above formula reduces to

dσ = 1

4c3 M2|p1|
|〈α,q1, . . . qn|T ′|p̄1〉|p̄2〉|2d�(n). (12.82)

Upon replacing V → 1/(2E), the dimension of |〈T ′〉|2 for a scattering process
involving two incoming and n outgoing particles is

[
|〈T ′〉|2

]
= [length]3n−2 × [energy]n+2. (12.83)

The reader is invited to re-derive (12.81) and (12.82) in the more general case in
which the incoming particles are generic bosonic fields (like a spin 1 photon) or
fermionic fields (like an electron or a positron).

We have reduced the problem of studying, at a perturbative level, an interaction
process to that of computing S-matrix (or, equivalently, T-matrix) elements, which
encode the dynamics of the process itself. In what follows we shall introduce, in the
framework of quantum electrodynamics, a graphical method, originally developed
by Feynman, for computing these matrix elements.

Let us briefly elaborate on the issue of symmetry and its implications for inter-
action processes. Consider a transformation implemented on the space of states by
a unitary operator U. Let U be a symmetry of the free theory which remains a sym-
metry also in the presence of interaction. In light of our discussion in Sect. 11.8, it
will in particular commute with the interaction Hamiltonian: [U, ĤI ] = 0. We also

http://dx.doi.org/10.1007/978-88-470-1504-3_11
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require the vacuum |0〉 of the interacting theory, which we assume to be unique, to
be invariant under U: U |0〉 = |0〉. It follows that U commutes with S:

[U,S] = 0 ⇔ U †SU = S. (12.84)

As a consequence of this 〈out |S|in〉 = 〈out |U †SU |in〉 = 〈out ′|S|in′〉, where
|in′〉 ≡ U |in〉 and |out ′〉 ≡ U |out〉. This implies that the transition probabilities in
(12.59) between the original and the transformed states be the same:

P(in; out) = P(in′; out ′). (12.85)

As an example we can consider the Poincaré symmetry, which, as often stressed,
encodes the fundamental assumption of homogeneity and isotropy of space–time, and
which has been our guiding principle for constructing a relativistic theory. Invariance
under a generic Poincaré transformation implies:

U †(�, x0)SU (�, x0) = S. (12.86)

If the symmetry, on the other hand, involves time-reversal T, U is antiunitary and
thus:

U †SU = S†, (12.87)

since U commutes, in the expansion of S, with all the ĤI factors, but switches i into
−i. Consequently we can write

〈out |S|in〉 = 〈out |S(in)〉 = 〈US(in)|U (out)〉 = 〈S†U (in)|U (out)〉
= 〈in′|S|out ′〉, (12.88)

that is

P(in; out) = P(out ′; in′). (12.89)

In other words one of the effects of a transformation which involves time reversal,
is to invert the roles of the initial and final states, as it was to be expected.

12.3.3 Two-Particle Phase-Space Element

Before moving to dynamics and the computation of amplitudes, let us calculate,
in the new conventions, the phase space element d�(2) associated with two final
particles of rest-masses μ1, μ2:

d�(2) = cδ(Etot − E ′1 − E ′2)δ3(ptot − q1 − q2)
d3q1d3q2

(2π�)24E ′1 E ′2
, (12.90)
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where E ′1 ≡ Eq1 and E ′2 ≡ Eq2. We can integrate over q2 and then move to the
center of mass frame where q1 = q = −q2, obtaining

d�(2) = cδ(Etot − E ′1 − E ′2)
|q|2d|q|d�
(2π�)24E ′1 E ′2

, (12.91)

where we have written d3q = |q|2d|q|d�, d� being the solid angle element10:
d� = 2π sin(θ)dθ . Note now that E ′1 and E ′2 are not independent since
|q|2 = 1

c2 (E
′
1)

2 − μ2
1c2 = 1

c2 (E
′
2)

2 − μ2
2c2. We wish to integrate (12.91) in the

total energy E ′1+ E ′2, in order to get rid of the remaining delta-function. To this end
we use |q|d|q| = E ′1d E ′1/c2 = E ′2d E ′2/c2 and write:

|q|d|q| = E ′1|q|d|q| + E ′2|q|d|q|
E ′1 + E ′2

= E ′1 E ′2
c2

d(E ′1 + E ′2)
E ′1 + E ′2

. (12.92)

Integration of (12.91) over the total energy then yields:

d�(2) =
∫
δ(Etot − E ′1 − E ′2)

|q|d�
16(π�)2c

d(E ′1 + E ′2)
E ′1 + E ′2

= |q|d�
16(π�c)2

√
s
. (12.93)

We can express now |q|2 in terms of s by solving11 √s =
√
μ2

1c2 + |q|2 +√
μ2

2c2 + |q|2:

|q|2 = (μ2
1 − μ2

2)
2c4 − 2s(μ2

1 + μ2
2)c

2 + s2

4s
. (12.94)

Equation (12.93) then becomes:

d�(2) =
√
(μ2

1 − μ2
2)

2c4 − 2s(μ2
1 + μ2

2)c
2 + s2

32(π�c)2s
d�. (12.95)

If, for example, μ1 = μ2 = μ, we have E ′1 = E ′2 =
√

sc/2, |q|2 = s
4 − μ2c2 and

the above formula yields:

d�(2) = 1

32(π�c)2

√
1− 4μ2c2

s
d�. (12.96)

10 We have supposed the dynamics of the process not to depend on the azimuthal angle ϕ, which
is reasonable for an isolated system of interacting particles: In the case of a head-on collision both
θ and ϕ are referred to the common direction of the two incident particles in the CM frame.
11 For an elastic collision between two particles of rest masses m1,m1, we have μ1 = m1, μ2 =
m2 and |p| = |q|. Using (12.94) one can easily show that the factor

√
(p1 · p2)2 − m2

1m2
2c4 in

the formula (12.81) for the cross-section can be alternatively be written as
√

s|p| = E |p|/c, E =
E1 + E2 being the total energy of the system.
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It is useful to totally express the phase-space element in terms of invariant quantities,
so that the resulting formula can be easily specialized to the frame of reference in
which a given process is most conveniently studied. To this end let us consider the
expression (12.29) for t. For given total energy of the system, in the CM frame,
|p| = |q| is fixed, so that θ is the only variable t depends on. Differentiating both
sides we find:

d(−t) = −2|q|2d cos(θ) = |q|
2

π
d�. (12.97)

Substituting the above expression in (12.95), and using (12.94) once again, we find

d�(2) = 1

8π(�c)2
d(−t)√

(μ2
1 − μ2

2)
2c4 − 2s(μ2

1 + μ2
2)c

2 + s2
. (12.98)

12.3.4 The Optical Theorem

Let us now discuss an important consequence of the unitarity property (12.58) of the
S-matrix, known as the optical theorem. Consider a scattering between two particles
of rest masses m1,m2, and let us use the short-hand notation, denoting by S f i and T f i

the matrix elements 〈�out |S|ψin〉, 〈�out |T |ψin〉 (the subscripts f and i stand for final
and initial state respectively). Let us now compute the matrix element of both sides
of (12.58) between |ψin〉 and |ψout 〉 and write SS† =∑

n S|n〉〈n|S†, where {|n〉} is
a complete set of states in the Fock space. We can then rewrite (12.58) in components
as follows:

∑
n

S f n S∗in = δ f i , (12.99)

where we have used the property 〈�out |1|ψin〉 = δ f i and denoted by S f n and Sin

the elements 〈�out |S|n〉 and 〈�in|S|n〉, respectively. Recall now the definition of the
matrix element Tab between two states a and b: Sab = δab + i(2π�)4δ4(Pa −
Pb)Tab, Pa, Pb being the total 4-momenta in the two states. Equation (12.99) can
then be recast in the following form:

i(2π�)4δ4(Pout − Pin)
(
T f i −T ∗i f

)

+
∑

n

(2π�)8δ4(Pout − Pn)δ
4(Pin − Pn)T f nT ∗in = 0, (12.100)

where we have used the property of {|n〉} of being a complete set of states,∑
n δ f nδin = δ f i .Writing δ4(Pout−Pn)δ

4(Pin−Pn) = δ4(Pout−Pin)δ
4(Pout−Pn),

we can deduce from (12.100) the following equation:
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T f i −T ∗i f =
∑

n

i(2π�)4δ4(Pout − Pn)T f nT ∗in, (12.101)

where all the kinematical quantities are subject to the constraint Pin = Pout . Since
Tab is proportional to the (small) coupling constant λ, to lowest order in λ,T is
hermitian: T f i = T ∗i f .

Suppose now that the kinematical constraints only allow elastic processes. This
means that δ4(Pin − Pn)Tni is different from zero only for states |n〉 describing
two (free) particles of rest masses m1,m2. In the CM frame the final state is totally
defined by the scattering angle θ between q and p. The value θ = 0, in particular,
corresponds to the forward scattering in which the initial and final states coincide
|ψin〉 = |ψout 〉 (i.e. i = f and p = q). In this case (12.101) reads:

2 Im (Ti i ) =
∑

n

(2π�)4δ4(Pout − Pn)|Tin|2. (12.102)

Observe now that we can replace the sum over the intermediate states n, by the
integral over the momenta q1,q2 of the corresponding two particles and the sum∑

pol.(n) over their polarizations:

∑
n

→
∑

pol.(n)

∫
d3qi

(2π�)3
Vi . (12.103)

Equation (12.102) will then read:

2 Im (Ti i ) =
∑

pol.(n)

∫
|Tin|2d�(2). (12.104)

Note that the left hand side is proportional to the total cross-section of the elastic
scattering

σt (in) ≡
∫

dσ(in; n) = cV1V2

f (v1, v2)

∑

pol.(n)

∫
|Tin|2d�(2), (12.105)

where we have used (12.75). Equation (12.104) can now be written in the following
form:

2 Im (Ti i ) = f (v1, v2)

cV1V2
σt . (12.106)

We have now performed the replacement V → 1/(2E) yet. This is done by writing
the left hand side in terms of T ′i i , defined in (12.78):

Ti i = 1

V1V24E1 E2
T ′i i . (12.107)
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The normalization volumes cancel and we end up with:

Im (T ′i i ) = 2c2
√
(p1 · p2)2 − m2

1m2
2c4σt = 2cE |p|σt , (12.108)

where E is the total energy in the CM frame and we have used the comment in
footnote 10. Equation (12.108) directly descends from the unitarity property of S
and relates the imaginary part of the forward scattering amplitude to the total cross
section of the process. It describes the content of the optical theorem.

12.3.5 Natural Units

Our analysis would simplify considerably if we could get rid of all the factors �, c
occurring in our formulas. This can be done, for instance, by choosing length (or
mass) as the only fundamental quantity and by defining in terms of it the units of
mass (or length) and time so that � = c = 1.

Let us denote by [c] and [�] the new dimensional quantities corresponding to the
units where c = 1 and � = 1. Then we may write

1 kg = c

�
× (1 m)−1 [c−1

�],
1 s = c × 1 m [c−1].

We see that in this system of units, which are referred to as natural units, mass
dimensions is inverse to length dimension while time has the same dimension as
length. In particular the mass m of a particle has the same value as its rest energy
mc2 and as the inverse Compton wavelength of the particle mc/�. Both mass and
energy have therefore the dimension of an inverse length. The electric charge, which

in the Heaviside-Lorentz system had dimension of (mass)
1
2 (length)

3
2 × (time)−1, in

natural units is dimensionless.
In summary, in the system of natural units we have:

[time] = [
length

]
, [mass] = [

energy
] = 1[

length
] ,

1 s = 3× 108 m, 1 kg = 2.84× 1042(m)−1,

1 Joule = 3.159× 1023(m)−1, 1 eV = 50543.3(m)−1,

The measures of the elementary electric charge and of the electron mass are

e = 0.3026, α = e2

4π
∼ 1

137
,

me = 9.109× 1031 kg = mec2 = 0.511 MeV = 2.59× 1010(m)−1.

The dimensions of bosonic and fermionic fields are:
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[φ] = 1

[length] , [ψ] =
1

[length] 13
, (12.109)

while action is dimensionless. The Fourier expansion of a field operator in these units
will have the following simpler form:
Complex scalar field:

φ̂(x) = φ̂(+)(x)+ φ̂(−)(x),

φ̂(+)(x) =
∫

d3p
(2π)32Ep

ape−i p·x ,

φ̂(−)(x) =
∫

d3p
(2π)32Ep

b†
peip·x ,

Real vector field:
Âμ(x) = Â(+)μ(x)+ Â(−)μ(x),

Â(+)μ(x) =
∫

d3p
(2π)32Ep

∑
r

a(p, r)εμ(p, r)e−i p·x ,

Spin-1/2 field:

Â(−)μ(x) =
∫

d3p
(2π)32Ep

∑
r

a(p, r)†εμ(p, r)∗eip·x ,

ψ̂(x) = ψ̂(+)(x)+ ψ̂(−)(x),

ψ̂(+)(x) =
∫

d3p
(2π)32Ep

√
2m

2∑

r=1

c(p, r)u(p, r)e−i p·x ,

ψ̂(−)(x) =
∫

d3p
(2π)32Ep

√
2m

2∑

r=1

d(p, r)†v(p, r)eip·x ,

where, as explained in the previous section, we have replaced V by 1/(2E). In the
sequel, we shall often label the helicity states of the photon by the index i = 1, 2, and
denote the corresponding (complex) polarization vectors by εμ(p, i), not to confuse
it with the analogous index r of the fermion field.

Let us also recall the expressions for the Feynman propagators, which we shall
use in the following sections:

Complex scalar field:

DF (x − y) = 〈0|T [φ̂(x)φ̂†(y)]|0〉 =
∫

d4 p

(2π)4
DF (p)e

−i p·(x−y),

DF (p) = i

p2 − m2 + iε
,
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Real, massless vector field:
DFμν(x − y) = 〈0|T [ Âμ(x) Âν(y)]|0〉

=
∫

d4 p

(2π)4
DFμν(p)e

−i p·(x−y),

DFμν(p) = − i

p2 + iε

(
ημν − (1− α) pμ pν

p2

)
.

where α should not be mistaken with the fine structure constant! It is the constant
associated with the choice of the gauge fixing for the photon field.

Spin-1/2 field:
SF (x − y)αβ = 〈0|T [ψ̂α(x)ψ̂β(y)]|0〉

=
∫

d4 p

(2π)4
SF (p)

α
βe−i p·(x−y),

SF (p) = i

� p − m + iε
. (12.110)

From now on we shall use the natural units. The factors �, c in any formula can be
eventually restored by straightforward dimensional arguments.

12.3.6 The Wick’s Theorem

In what follows we shall be interested in computing S-matrix elements between initial
and final states. This requires evaluating matrix elements of time-ordered products of
interaction Hamiltonians, of the form (12.77). To this end it will be useful to express
a time ordered product of free-field operators in terms of normal ordered products
of the same operators. This is the content of Wick’s theorem.

Let us introduce the notion of contraction between field-operators. If ϕ1(x), ϕ2(x)
denote generic (bosonic or fermionic) field operators (we shall omit, from now on,

the hat over the symbols of field operators), the contraction is defined
as follows:

� �

ϕ1(x1)ϕ2(x2) ≡ 〈0|Tϕ1(x1)ϕ2(x2)|0〉. (12.111)

Clearly to the v.e.v. on the right hand side only products of annihilation and creation
operators of the same kind (i.e. associated with the same field) contribute, and thus
the contraction is non vanishing only if ϕ2 = ϕ†

1 . A non vanishing contraction thus
coincides with the Feynman propagator:
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� �

φ(x1)φ
†(x2) = DF (x1 − x2),

� �

ψα(x1)ψβ(x2) = SF (x1 − x2)
α
β,

� �

Aμ(x1)Aν(x2) = DFμν(x1 − x2). (12.112)

If we denote byϕ(+) and ϕ(−) the positive and negative energy parts ofϕ, proportional
to the annihilation, creation operators respectively, we can write the contraction, or
Feynman propagator, as a commutator (anti-commutator for fermionic fields) of field
operators.12 Suppose first x0

1 > x0
2

� �

ϕ(x1)ϕ
†(x2) = 〈0|ϕ(x1)ϕ

†(x2)|0〉 = 〈0|ϕ(+)(x1)ϕ
†
(−)(x2)|0〉

= 〈0|
[
ϕ(+)(x1), ϕ

†
(−)(x2)

]
± |0〉 =

[
ϕ(+)(x1), ϕ

†
(−)(x2)

]
± , (12.113)

where we have used the property that ϕ(+)|0〉 = 〈0|ϕ(−) = 0 and the fact that the
commutator (or anti-commutator for fermions), of two field operators is a complex
number. Similarly for x0

2 > x0
1 we find

� �

ϕ(x1)ϕ
†(x2) = ±〈0|ϕ†(x2)ϕ(x1)|0〉 = ±

[
ϕ

†
(+)(x2), ϕ(−)(x1)

]
± , (12.114)

the lower sign, here and in the following, refers to the case of two (components of)
fermionic fields. From the definition of time ordering it follows that the contraction
of two fermionic operators is odd with respect to the inversion of their order:

� �

ψ(x1)ψ(x2) = −
� �

ψ(x2)ψ(x1).

Let us now define the contraction between two operators which are not adjacent
within a product:

� �

ϕ1(x1)ϕ2(x2) . . . ϕk−1(xk−1)ϕ
†
1(xk)ϕk+1(xk+1) . . .

= ±
(

� �

ϕ1(x1)ϕ
†
1 (xk)

)
ϕ2(x2) . . . ϕk−1(xk−1)ϕk+1(xk+1) . . . (12.115)

where the minus sign only occurs if ϕ1 is fermionic and, in bringing ϕ†
1 in front of

the product, it has crossed an odd number of fermionic fields, as in the following
case:

� �

ψ1(x1)ψ2(x2)ψ 1(x3) = −
� �

ψ1(x1)ψ 1(x3)ψ2(x2). (12.116)

12 For the sake of simplicity we shall also denote the commutator and anti-commutator by
[·, ·]+, [·, ·]−, respectively: [·, ·]+ = [·, ·], [·, ·]− = {·, ·}.
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Wick’s Theorem A time-ordered product of field-operators can be written as a sum
of normal ordered products as follows:

T [ϕ1(x1) · · ·ϕn(xn)] = : ϕ1(x1) · · ·ϕn(xn) :
+

∑

single contraction

: ϕ1(x1) · · · � �· · · · · · · ·ϕn(xn) :

+
∑

two contractions

: ϕ1(x1) · · · � �· · · · · ·· · · � �· · · · · · · ϕn(xn) :

+ · · ·
(12.117)

where the final ellipses represent terms with a higher number of contractions.
Before proving it, as an example, let us apply the theorem to a four-fermion prod-

uct (one should think of each field below as a generic component of a Dirac spinor,
so that ψ̄(x1) should be intended as ψ̄α(x1), ψ(x2) as ψβ(x2), ψ̄(x3) as ψ̄γ (x3) and
ψ(x4) as ψσ (x4), with no contraction in general among the indices, which are sup-
pressed for the sake of notational simplicity.)

(12.118)

In the above derivation we have used the properties . We shall prove
Wick’s theorem by induction. Let us first prove it for n = 2 and use, for the sake of
simplicity, the short-hand notation ϕi ≡ ϕi (xi ):

T [ϕ1ϕ2] =: ϕ1ϕ2 : + � �
ϕ1ϕ2. (12.119)

From (12.113) and (12.114), if ϕ1 and ϕ2 commute, their contraction is zero and the
creation and annihilation operators in the time ordered product can be rearranged to
obtain a normal ordered expression, so that (12.119) is trivially satisfied. If the two
field operators do not commute, namely if ϕ2 = ϕ†

1 , we start considering the case
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x0
1 > x0

2 and expand the left hand side into products of the positive and negative
energy components of the two fields:

T [ϕ1ϕ2] = ϕ1ϕ2 = ϕ1(+)ϕ2(+) + ϕ1(+)ϕ2(−) + ϕ1(−)ϕ2(+) + ϕ1(−)ϕ2(−)
= ϕ1(+)ϕ2(+) ± ϕ2(−)ϕ1(+) + ϕ1(−)ϕ2(+) + ϕ1(−)ϕ2(−)
+ [
ϕ1(+), ϕ2(−)

]
± =: ϕ1ϕ2 : + � �

ϕ1ϕ2,

(12.120)

where, in order to obtain a normal ordered expression, we had to swap the positions
of ϕ1(+) and ϕ2(−) in second term of the second line, and this has produced a
commutator/anti-commutator (the lower sign, as usual, refers to the case of two
fermionic fields). Then we have used (12.113). If, on the other hand, x0

1 < x0
2

we have
T [ϕ1ϕ2] = ±ϕ2ϕ1 = ±

(
ϕ2(+)ϕ1(+) + ϕ2(+)ϕ1(−) + ϕ2(−)ϕ1(+) + ϕ2(−)ϕ1(−)

)

= ± (
ϕ2(+)ϕ1(+) ± ϕ1(−)ϕ2(+) + ϕ2(−)ϕ1(+) + ϕ2(−)ϕ1(−)

)

± [
ϕ2(+), ϕ1(−)

]
± =: ϕ1ϕ2 : + � �

ϕ1ϕ2,

(12.121)
Suppose now the theorem holds for the product of n fields, let us prove it for n + 1.
We start from a time-ordered product of the form T [ϕϕ1 . . . ϕn], where ϕ ≡ ϕ(x).
With no loss of generality, we can assume x0 > x0

1 , . . . , x0
n , so that

T [ϕϕ1 . . . ϕn] = ϕT [ϕ1 . . . ϕn] = ϕ [: ϕ1 . . . ϕn :
+

∑
single

contraction

: ϕ1 · ·� �· · · · · · · ·ϕn :

+
∑
two

contractions

: ϕ1 · · � �· · · · · · · · · � �· · · · · · · ·ϕn : + · · · ], (12.122)

where we have applied Wick’s theorem to T [ϕ1 . . . ϕn]. It is useful now to write
ϕ = ϕ(+)+ϕ(−) and to insert each componentϕ(±) inside the normal ordered products
within square bracket. Since ϕ(−) contains a creation operator and multiplies the
normal ordered terms to the left, it can be moved inside the normal order symbol, since
the resulting product is already normal ordered: ϕ(−) : ϕ1 . . . ϕn :=: ϕ(−)ϕ1 . . . ϕn : .
This is not the case for ϕ(+), which contains an annihilation operator and thus should
be moved to the right of all the creation operators in a normal ordered product in order
for the resulting expression to be in normal order as well. Every time ϕ is moved past
a field to the right, a commutator (or anti-commutator) is produced. Considering, for
simplicity, only bosonic fields, we can write

ϕ(+) : ϕi1 · · ·ϕik : =: ϕi1 · · ·ϕik : ϕ(+)+ : [ϕ(+), ϕi1 ]ϕi2 · · ·ϕik :
+ : ϕi1 [ϕ(+), ϕi2 ] · · ·ϕik : + · · · : ϕi1ϕi2 · · · [ϕ(+), ϕik ] :

=: ϕ(+)ϕi1ϕi2 · · ·ϕik : + : � �
ϕϕi1

ϕi2 · · ·ϕik :
+ : � �

ϕϕi1ϕ i2 · · ·ϕik : + · · · +: � �
ϕϕi1ϕi2 · · ·ϕik

:,
(12.123)
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where we have used the properties : ϕi1 · · ·ϕik : ϕ(+) =: ϕ(+)ϕi1ϕi2 · · ·ϕik : and
= [ϕ(+), ϕi ] (recall that x0 > x0

i ). The reader is invited to explicitly verify (12.123)
in the simple case of three bosonic fields ϕ, ϕ1, ϕ2, by writing the expression of the
normal ordered products in terms of the positive and negative-energy components
of the fields, and to generalize the above derivation to the case of fermionic fields.
We can now apply (12.123) to the product of ϕ(+) with each normal ordered term
within square brackets in (12.122). The contractions in (12.123) yield all the missing
contractions involving ϕ, which are needed to write Wick’s formula (12.117) for
the case of the n + 1 fields ϕ, ϕ1, · · · , ϕn . From the first term, for instance, we get
:ϕ(+)ϕ1 · · ·ϕn:, which sums up with :ϕ(−)ϕ1 · · ·ϕn: to give :ϕϕ1 · · ·ϕn:, plus all the
terms with single contractions involving ϕ. This completes the proof of the theorem.

We shall be interested in applying Wick’s theorem to write a generic time ordered
product

T [ĤI (x1) · · · ĤI (xn)], (12.124)

of the interaction Hamiltonian, in terms of normal ordered quantities. Each operator
ĤI (x) consists of a normal ordered product of field operators computed at the same
point x. The whole product (12.124), however, is not normal ordered. In other words
we have a time-ordered product of normal-ordered groups ĤI (x) of field operators.
As a corollary of Wick’s theorem, we can prove that, when applying (12.117), the
contractions between fields within a same normal ordered group (i.e. a same factor
ĤI (x)) do not contribute. Let us prove this in the simple case of a normal ordered
group :ϕ(x)ϕ†(x): consisting of two fields and apply Wick’s theorem to a product of
the form T [: ϕ(x)ϕ†(x) : ϕ1 . . . ϕn].Since the two fieldsϕ(x), ϕ†(x) are computed at
the same time, we can write their product as a time-ordered one, and apply (12.119):

ϕ(x)ϕ†(x) = T [ϕ(x)ϕ†(x)] =: ϕ(x)ϕ†(x) : + � �

ϕ(x)ϕ†(x). (12.125)

We can now write

T [: ϕ(x)ϕ†(x) : ϕ1 . . . ϕn] = T [ϕ(x)ϕ†(x)ϕ1 . . . ϕn] −
� �

ϕ(x)ϕ†(x)T [ϕ1 . . . ϕn].

Applying Wick’s theorem to the time ordered terms on the right hand side, we
see that the second term precisely cancels against the one containing the contraction

from the first one which therefore does not appear in the final expression.
Let us now consider the problem of evaluating the matrix elements of S (or equiva-

lently of T) between an initial state |in〉 = |p1, r1; · · · ;pk, rk〉 describing k incoming
particles with momenta p1, . . . ,pk and spin components r1, . . . , rk (the k = 1 case
corresponds to a decay process), and a final state |q1, s1; · · · ;qn, sn〉 describing n
outgoing particles with momenta q1, . . . ,qn and spin components s1, . . . , sn .Denot-
ing generically by ai , a†

i the annihilation and creation operators associated with the
i th particle, respectively, we can write
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|p1, r1; . . . ;pk, rk〉 =
k∏

i=1

ai (pi , ri )
†|0〉,

|q1, s1; . . . ;qk, sk〉 =
n∏

�=1

a�(q�, s�)
†|0〉, (12.126)

so that

〈q1, s1; . . . ;qn, sn|T|p1, r1; . . . ;pk, rk〉 = 〈0|
n∏

�=1

a�(q�, s�)T
k∏

i=1

ai (pi , ri )
†|0〉.

(12.127)

If we apply Wick’s theorem to each term in the perturbative expansion (12.57) of
the S matrix, we see that the only terms which contribute to the above matrix ele-
ment are those containing for each incoming particle an annihilation operator on the
right to match the corresponding creation operator acting on the vacuum, and, for
each outgoing particle, a creation operator on the left, to match the corresponding
annihilation operator to the left of T. In this way, the creation and annihilation oper-
ators, for each particle, would combine into non-vanishing matrix elements of the
form 〈0|a j a

†
j |0〉 �= 0. Therefore the terms in the expression of T contributing to the

amplitude of the process have the general (normal-ordered) form

n∏

�=1

a�(q�, s�)
†

k∏

i=1

ai (pi , ri )× (contractions), (12.128)

the number of contractions depending on the order in λ of the term in the perturbative
expansion (12.57). In the next section we shall review, within the theory of quantum
electrodynamics, the Feynman rules for computing the contributions, of different
order, to the amplitude of a given process.

12.4 Quantum Electrodynamics and Feynman Rules

Quantum electrodynamics (QED) is the quantum field theory describing the inter-
action of electrons and/or positrons, the quanta of the Dirac field, with photons,
the quanta of the electromagnetic field. The Lagrangian density is obtained from
(10.228) of Chap. 10 by adding the term describing the free Maxwell field Aμ(x),
and reads:

L = ψ(i �D − m)ψ − 1

4
FμνFμν = ψ(i � ∂ − m)ψ − 1

4
FμνFμν + Aμ Jμ

= L0 + LI ,

(12.129)

http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
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where, as usual, �D ≡ γ μDμ, Dμ ≡ ∂μ − ieAμ being the covariant derivative,
and Jμ(x) ≡ eψ(x)γ μψ(x) is the conserved electric current.13 The interaction
Hamiltonian is HI (x) = −LI = −Aμ Jμ and the corresponding operator is obtained
by replacing the fields in its expression by the corresponding free operators, and by
normal ordering the resulting products14:

ĤI (x) ≡ −e : ψ(x)γ μψ(x)Aμ(x) : . (12.130)

If we want to describe electromagnetic interaction processes involving not just an
electron but also other charged fermion particles, like muons for example, we would
need to include in the definition of L the corresponding kinetic term and electric
current. For instance, to include a fermion with charge q and fieldψq(x), the electric
current is to be defined as: Jμ(x) = eψ(x)γ μψ(x)+ qψq(x)γ

μψq(x).
Let us start considering for the time being interaction processes involving elec-

trons, positrons and the electromagnetic fields. We need to compute the S-matrix
elements between the initial and final states. The scattering matrix S is defined per-
turbatively in the coupling constant e, according to (12.57), the nth-order term S(n)
having the form:

S(n) = (−i)n

n!
+∞∫

−∞
d4x1 . . .

+∞∫

−∞
d4xnT

[ĤI (x1) . . . ĤI (xn)
]
. (12.131)

As pointed out in the previous section, each of these terms is a time-ordered product
on normal-ordered quantities ĤI (x). In order to compute the contribution to a given
process of S(n), we would need to apply Wick’s theorem in order to express each
time-ordered product in terms of normal-ordered terms. It is then useful to represent
each of these terms by a diagram, which will considerably simplify the task of
computing the corresponding contribution to the amplitude. We associate with each
factor ĤI (xi ), i = 1, . . . , n, in the integral (12.131) a point in the diagram, localized
in xμi , called vertex. The plane of the diagram thus represents space–time, with just
one spatial direction. Which of the two is the time direction will then depend on
the specific process we are going to consider and will not be specified for the time
being. The operator ĤI (xi ) consists of three field-operators computed in xi : ψ(xi )

which destroys an electron in xi or creates a positron in the same point and ψ(xi )

which creates an electron or destroys a positron in xi . The former will be represented
by a solid line ending in the vertex and directed towards it, the latter by a solid
line originating in the vertex and directed outwards. Finally the operator Aμ(xi )

creates or destroys a photon in xi . It will be represented by an undirected dashed
line ending in xi . In this way, we have associated with each factor in the integral
(12.131) a vertex with three lines. The Wick expansion of the integrand in (12.131)
will contain normal-ordered terms in which two or more operators belonging to
different ĤI factors are contracted (recall that contractions between operators in

13 In order to restore the � and c factors in the covariant derivative, we simply need to replace
e→ e

�c , as the reader can easily verify.
14 For the sake of simplicity, we shall suppress the hats on the symbol of the field operators.
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the same ĤI -factor do not enter the Wick expansion). These terms are graphically
represented by drawing the three line-vertices for each factor and connecting the lines
corresponding to the contracted operators. Contracted operators are then represented

graphically by lines connecting two vertices: by a line connecting

xi and x j and oriented from x j to xi ; by a dashed, undirected
line joining xi to x j . The reason why the latter line is not oriented is due to the
symmetry of the photon propagator DFμν(xi − x j ) with respect to an exchange of
xi and x j : DFμν(xi − x j ) = DFμν(x j − xi ). Each of these internal lines describes
a virtual particle propagating between the two vertices. By virtual particle we mean
a particle whose momentum does not satisfy the on-shell condition: p2 − m2 = 0
for the electron, k2 = 0 for the photon, kμ being the photon 4-momentum.

The normal ordered terms, besides the contractions, will also contain un-contracted
field operators, which we shall refer to as free. These operators will be represented by
lines extending from the vertex in which they are computed to infinity: The line rep-
resenting ψ(x) will originate at infinity and end in x. In the matrix element between
initial and final state, it will contribute only if the initial state contains a free electron
or if the final state contains a free positron. In these two cases ψ(x) will destroy
the incoming electron or create the outgoing positron in x, respectively. In the first
case, if the electron state is |pe− , r〉 = c†(pe− , r)|0〉, ψ(x) would give the following
non-vanishing contribution to the amplitude15:

〈0|ψ(x)|pe− , r〉 =
∫

d�q
√

2m
2∑

s=1

u(q, s)〈0|c(q, s)c†(pe− , r)|0〉e−iq·x

=
∫

d�q
√

2m
2∑

s=1

u(q, s)〈0|[c(q, s), c†(pe− , r)]−|0〉e−e−iq·x

= √2mu(pe− , r)e
−i pe−·x .

(12.132)

Similarly, in the second case, if the final positron state is |pe+ , r〉 = d†(pe+ , r)|0〉,
the field ψ(x) will contribute the following non-vanishing quantity:

〈pe+ , r |ψ(x)|0〉 =
√

2mv(pe+ , r)e
−i pe+·x . (12.133)

By the same token we can show that a free ψ(x) operator contributes only to those
processes with an incoming positron, which will be destroyed in x, or with an outgoing
electron, which will be created in x by the same operator. It will be represented by

15 Recall that, in the light of our comments below eq. (12.76), we have replaced
everywhere the normalization volume V with 1/(2E), so that, for instance [c(p, r), c†(q, s)]− =
(2π)32Eδ3(p− q). Note that, had we kept the normalization volumes, the calculation below would

yield 〈0|ψ(x)|p, r〉 =
√

m
EpV e−i p·x , contributing a factor 1/

√
V to the amplitude, as anticipated in

our discussion below eq. (12.76).
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a line originating in the vertex x and extending towards infinity. In these two cases
ψ(x) will therefore, contribute the following matrix elements to the amplitude:

〈0|ψ(x)|pe+ , r〉 =
√

2m v̄(pe+ , r)e
ipe+·x ,

〈pe− , r |ψ(x)|0〉 =
√

2m u(pe− , r)e
ipe−·x . (12.134)

We can also have a process with an electron in both the initial and final states. In
this case the normal-ordered product : ψα(y)ψβ(x): will contribute the following
quantity to the amplitude:

〈qe− , r | : ψα(y)ψβ(x) : |pe− , r〉 = 〈0|c(qe− , r)ψ(−)α(y)ψ
β
(+)(x)c

†(pe− , r)|0〉
= 〈0| [c(qe− , r), ψ(−)α(y)

]
−

×
[
ψ
β
(+)(x), c†(pe− , r)

]
− |0〉

= 〈qe− , r |ψα(y)|0〉〈0|ψβ(x)|pe− , r〉,
(12.135)

where we have used the property that 〈0|cc†cc†|0〉 = 〈0|[c, c†]−[cc†]−|0〉 =
〈0|cc†|0〉〈0|cc†|0〉.

Finally a free photon field operator Aμ(x) can either destroy an incoming photon
or create an outgoing one in x, giving the following contributions to the amplitude
in these two cases respectively:

〈0|Aμ(x)|k, i〉 = εμ(k, i)e−ik·x ,
〈k, i |Aμ(x)|0〉 = εμ(k, i)∗eik·x , (12.136)

where i = 1, 2 labels the transverse polarizations of the photon. Graphically a free
Aμ(x) operator is represented by an infinite, undirected, dashed line extending from
infinity to the vertex x. A same diagram can therefore describe a variety of processes:
A solid line extending from infinity to a vertex x (oriented towards it), can either
describe an incoming electron destroyed in x or an outgoing positron created in x,
and similarly a solid line originating in x and ending at infinity can either describe
an incoming positron destroyed in x or an outgoing electron generated in the same
point. The direction on a fermion line is thus not related to the direction of motion, but
rather to the flow of the electron charge. Similarly a dashed line stretching from x to
infinity can either describe a photon destroyed in x (i.e. absorbed) or a photon created
at the same point. This ambiguity is due to the fact that a same normal ordered term
in the Wick expansion of S(n) will in general contribute to different processes. The
lines of a diagram which originate or end at infinity are called external legs. When
we consider specific processes, we shall identify the external legs with incoming or
outgoing particles, thus fixing the time direction in the graph.

Consider the lowest order term S(1):

S(1) = ie
∫

d4x : ψ(x)γ μψ(x)Aμ(x) : . (12.137)
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Fig. 12.1 A vertex in QED

The integrand is already normal-ordered and all field operators are free. It is repre-
sented by the vertex in Fig. 12.1 with three external legs. It may describe a process
in which an electron decays in x into an electron and a photon (photon emission),
or the analogous decay of a positron, or an electron and a positron annihilating and
giving rise to a photon etc. All these processes, although having a non-vanishing
amplitude, cannot occur because of kinematical reasons. Consider, for instance, an
electron with momentum p which emits a photon with momentum k, ending up in a
free state with momentum p′. The momentum conservation implies:

p = p′ + k. (12.138)

Computing the norm of both sides and using the on-shell conditions p′2 = p2 =
m2, k2 = 0, we find m2 = m2 + 2k · p′, namely k · p′ = 0. In the rest frame of
the initial electron this condition reads k0 p′0 − k · p′ = k0(p′0 + |p′|), where we
have used the properties k = −p′ and k0 = |k|. Since p′0 + |p′| > 0, momentum
conservation implies k0 = 0, namely that there is no final photon and that the initial
electron stays still. Thus the probability of the process is suppressed by the phase
space element d�, which is non-vanishing only for the trivial process with k0 = 0.

Let us now consider the second order term S(2):

S(2) = −e2

2!
∫

d4xd4 yT [: ψ(x)γ μψ(x)Aμ(x) :: ψ(y)γ νψ(y)Aν(y) :].
(12.139)

Wick expanding the integrand we find the following terms:
Note that the terms (3) and (4) only differ for the exchange x ↔ y, and thus, upon
integrating over the positions of the two vertices, give an equal contribution. The same
holds for (7) and (6). All the diagrams corresponding to these terms are illustrated
in Fig. 12.2. We see that the diagram representing the first term is disconnected and
describes two separate, single-vertex, processes occurring in x and y, each of these
are forbidden by the conservation of 4-momentum, as explained above. The second
term may describe an electron–electron scattering, in which one of the two incoming
electrons emits a virtual photon in x, which is absorbed by the second incoming elec-
tron in y. Similarly it may also describe an electron-positron or a positron–positron
scattering.Thus in QED the electric interaction between two charged particles is
described in terms of an exchange of virtual photons between them. Finally the same
diagram can describe the annihilation of an incoming electron and a positron in a
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(12.140)

point x, which produces a virtual photon decaying in y into a new electron–positron
pair. The diagram (3) has several interpretations as well. It may describe an electron
emitting two photons in y and x respectively, or absorbing a photon in y and emitting
one in x, or vice-versa, or finally absorbing two photons in x and y respectively. It
may also describe analogous emission/absorbtion processes by a positron moving
from x to y (opposite to the flow of the electron charge). Note that, between two
consecutive emissions/absrobtions, the electron or positron is described by its prop-
agator, namely it is virtual. Diagram (5) may describe a photon which produces a
couple of virtual electron and positron in y, which annihilate in x to produce a final
photon. Diagram (6) may describe an electron emitting a virtual photon in y and
re-absorbing it in x. In other words the electron interacts with itself. Such process
represents then a self-interaction of an electron or a positron. Finally (8) is a vacuum
diagram: The initial and final states are both empty and at some point y, for instance,
a virtual electron-positron couple and a photon are created from the vacuum and then
destroyed in some other point x. Diagrams (1), (2), (3) do not contain loops and are
thus called tree diagrams. The remaining diagrams, on the contrary, contain loops.
As we shall see in Sect. 12.7, the corresponding amplitudes ar plagued by infinities.
Note that in all the above diagrams there is no discontinuity in the orientation of the
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Fig. 12.2 Diagrams of S(2)

fermion lines. This is a general property which is related to the conservation of the
electric charge and thus to the continuity of its flow in a given process.

As a final remark, we notice that when computing the contribution of S(n) in
(12.131) to the amplitude of a given process, terms in the integral differing in the order
of the n vertices x1, . . . , xn give an equal contribution to the amplitude. Exchanging,
for instance, x with y in the diagrams in Fig. 12.2 will yield the same processes. As a
consequence of this, when computing the amplitudes, we shall always find a factor
n! which cancels against the 1

n! in (12.131).
The graphical representations of interaction amplitudes, discussed in the present

section, are known as Feynman diagrams. We shall better appreciate the utility of this
technique when working in the momentum representation, namely when explicitly
computing the S-matrix element between eigenstates of the 4-momentum operator.

12.4.1 External Electromagnetic Field

Consider now electromagnetic interaction processes involving an electron and an
other fermionic particle with charge q, which we shall refer to as “particle q” (for



474 12 Fields in Interaction

example the scattering of an electron by a nucleus of charge q = Ze). Upon including
the electric current associated with particle q, the interaction Hamiltonian will read

ĤI (x) ≡ − : [eψ(x)γ μψ(x)+ qψq(x)γ
μψq(x)]Aμ(x) : . (12.141)

Suppose particle q is massive enough for its state not to change during the process:

|ψin〉 = |ine〉|inq〉, |ψout 〉 = |oute〉|outq〉 = |oute〉|inq〉,
in other words |outq〉 = |inq〉. For these processes we need not have a second
quantized description of particle q in terms of a field operator, since we do not need
to destroy an initial state and to create a new final one. Indeed, the only terms in the
Wick expansion of S at all orders, which contribute to the amplitude are those having,
as free operators, only ψ which destroys the electron in the initial state, ψ which
creates an electron in the final state, ψq which destroys the incoming particle q and
ψq which creates an outgoing one in the same state. The terms should not contain
any external Aμ, since neither |ψin〉 nor |ψout 〉 contains photons. This implies that
all the photon fields are to be computed between vacuum states, namely they only
contribute in contractions (i.e. propagators). The lowest order term contributing to
the scattering amplitude is S(2):

S(2) = (i)2

2! eq
∫

d4xd4 y : [ψ(x)γ μψ(x)ψq(y)γ
νψq(y)DFμν(x − y)

+ (x ↔ y)] := (i)2eq
∫

d4xd4 y : ψ(x)γ μψ(x)ψq(y)

× γ νψq(y) : DFμν(x − y), (12.142)

where we have used the fact that, in virtue of the parity of Dμν
F (x− y), the two terms

in square bracket give an equal contribution to the integral. Computing the matrix
element of S(2) between the initial and final states, we find:

〈ψout |S(2)|ψin〉 = −e
∫

d4xd4 y〈oute| : ψ(x)γ μψ(x) : |ine〉DFμν(x − y)J νq (y),

(12.143)

where

J νq (y) ≡ 〈inq | : ψq(y)γ
νψq(y) : |inq〉, (12.144)

is the classical current associated with particle q in the state |inq〉. Recall now, from
the definition of the Green’s function DF , that:

Aext
μ (x) ≡ i

∫
d4 y DFμν(x − y)J νq (y), (12.145)

is the classical electromagnetic field generated by the current J νq . In our problem it
represents the electromagnetic field generated by a particle whose state is unperturbed
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Fig. 12.3 Interaction with an
external fields

by the interaction process and will be referred to as an external field. The amplitude
(12.143) can the be recast in the following first order form:

〈ψout |S(2)|ψin〉 = 〈oute|
(

ie
∫

d4x : ψ(x)γ μψ(x) : Aext
μ (x)

)
|ine〉

= 〈oute|
(
−i

∫
d4xĤext

I (x)

)
|ine〉, (12.146)

where

Ĥext
I (x) = −e : ψ(x)γ μψ(x) : Aext

μ (x). (12.147)

We have shown that, in all interaction processes in which particle q is just a
“spectator”, its effect on the electron can be accounted for by means of the external
field Aext

μ it generates. This is done by adding to the QED Hamiltonian describing
just the electron and the electromagnetic field, the corresponding interaction term,
generalizing thus the definition of the interaction Hamiltonian

Ĥ′I (x) ≡ ĤI (x)+ Ĥext
I (x) = −e : ψ(x)γ μψ(x)(Aμ(x)+ Aext

μ (x)) : .
This amounts in turn to redefining the electromagnetic potential in the QED
Lagrangian (12.129) as the sum Aμ(x) + Aext

μ (x) of the field operator Aμ(x) and
the external field Aext

μ (x). Let us stress that Aext
μ (x) is a classical field and not an

operator, namely it is a number and thus acts as the identity on the Fock space of free
photons. Therefore the interaction term Ĥext

I (x) contains just two field operators,
ψ,ψ. Graphically it will be represented by a 2-line vertex, with the external field
being represented by a cross, as in Fig. 12.3.

12.5 Amplitudes in the Momentum Representation

12.5.1 Möller Scattering

Let us start considering a specific process describing the scattering between two
electrons (labeled by 1, 2 respectively):

e− + e− −→ e− + e−. (12.148)
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The initial state describes the incoming electrons with momenta p1,p2 and polariza-
tions r1, r2, respectively. The final momenta and polarizations of the two electrons
are q1,q2 and s1, s2 respectively:

|ψin〉 = |p1, r1〉|p2, r2〉,
|ψout 〉 = |q1, s1〉|q2, s2〉. (12.149)

We shall compute the amplitude of the process to lowest order, namely the matrix
element of S(2) between the initial and final states. The only term contributing to the
amplitude is the one described by the diagram (2) in Fig. 12.2, so that:

〈ψout |S(2)|ψin〉 = (ie)2

2!
∫

d4xd4 y

× [〈q1, s1|〈q2, s2| : ψ(x)γ μψ(x)ψ(y)γ νψ(y) : |p1, r1〉|p2, r2〉
×DFμν(x − y)

]
. (12.150)

We can convince ourselves that the only term in the normal product which contributes
to the matrix element is the one of the form c†c†cc, since we need to destroy the two
incoming electrons and to create the two outgoing ones. Let us explicitly compute
the corresponding matrix element, bearing in mind that the two c† operators come
from the ψ fields, while the two c operator originate from the ψ fields. We write the
initial and final states in terms of creation operators acting on the vacuum:

|p1, r1〉|p2, r2〉 = c(p1, r1)
†c(p2, r2)

†|0〉,
|q1, s1〉|q2, s2〉 = c(q1, s1)

†c(q2, s2)
†|0〉. (12.151)

There is a peculiarity about this kind of processes which involve identical particles
in the initial and final states: there is an overall sign ambiguity in the amplitude due
to the choice of the order in which the creation operators are written in (12.151). We
can write:

〈ψout | : ψ(x)γ μψ(x)ψ(y)γ νψ(y) : |ψin〉 =
∫

d�qd�pd�q′d�p′4m2
∑

s,r,s′,r ′

× [−ū(q, s)γ μu(p, r)ū(q′, s′)γ νu(p′, r ′)
× 〈0|c(q2, s2)c(q1, s1)c(q, s)†c(q′, s′)†c(p, r)c(p′, r ′)

× c(p1, r1)
†c(p2, r2)

†|0〉e−i[(p−q)·x+(p′−q ′)·y],
(12.152)

the minus sign on the second line is due to the definition of normal order for fermions.
To compute the v.e.v. of the eight creation/annihilation operators, we compute a single
state of the form ccc†c†|0〉, which is clearly proportional to the vacuum. To this end
we move each c operator to the right until it annihilates the vacuum, at each step an
anti-commutator being produced
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c(p, r)c(p′, r ′)c(p1, r1)
†c(p2, r2)

†|0〉 = c(p, r){c(p′, r ′), c(p1, r1)
†}c(p2, r2)

†|0〉
− c(p, r)c(p1, r1)

†c(p′, r ′)c(p2, r2)
†|0〉

= {c(p′, r ′), c(p1, r1)
†}{c(p, r), c(p2, r2)

†}|0〉
− c(p, r)c(p1, r1)

†{c(p′, r ′)c(p2, r2)
†}|0〉

= {c(p′, r ′), c(p1, r1)
†}{c(p, r), c(p2, r2)

†}|0〉
−{c(p, r)c(p1, r1)

†}{c(p′, r ′)c(p2, r2)
†}|0〉.

(12.153)
By the same token we prove that

〈0|c(q2, s2)c(q1, s1)c(q, s)†c(q′, s′)†

= 〈0|{c(q1, s1), c(q, s)†}{c(q2, s2), c(q′, s′)†}
− 〈0|{c(q2, s2), c(q, s)†}{c(q1, s1), c(q′, s′)†}. (12.154)

The scalar product between the states in (12.153) and (12.154) gives rise to four
terms, each of the form of a product of four anti-commutators:

〈0|c(q2, s2)c(q1, s1)c(q, s)†c(q′, s′)†c(p, r)c(p′, r ′)c(p1, r1)
†c(p2, r2)

†|0〉
= {c(q1, s1), c(q, s)†}{c(q2, s2), c(q′, s′)†}{c(p′, r ′), c(p1, r1)

†}
× {c(p, r), c(p2, r2)

†}
− {c(q1, s1), c(q, s)†}{c(q2, s2), c(q′, s′)†}{c(p′, r ′), c(p2, r2)

†}
× {c(p, r), c(p1, r1)

†}
− {c(q2, s2), c(q, s)†}{c(q1, s1), c(q′, s′)†}{c(p′, r ′), c(p1, r1)

†}
× {c(p, r), c(p2, r2)

†}
+ {c(q2, s2), c(q, s)†}{c(q1, s1), c(q′, s′)†}{c(p′, r ′), c(p2, r2)

†}
× {c(p, r), c(p1, r1)

†}.
Each anti-commutator provides a delta function on the momenta times a delta func-
tion on the polarizations. Substituting the above expansion in the integral (12.152),
for each term the integration over the momenta and the summation over the polar-
izations disappear:

〈ψout | : ψ(x)γ μψ(x)ψ(y)γ νψ(y) : |ψin〉
= 4m2

[
−ū(q1, s1)γ

μu(p2, r2)ū(q2, s2)γ
νu(p1, r1)e

−i[(p2−q1)·x+(p1−q2)·y]

+ ū(q2, s2)γ
μu(p2, r2)ū(q1, s1)γ

νu(p1, r1)e
−i[(p2−q2)·x+(p1−q1)·y]

+ ū(q1, s1)γ
μu(p1, r1)ū(q2, s2)γ

νu(p2, r2)e
−i[(p1−q1)·x+(p2−q2)·y]

−ū(q2, s2)γ
μu(p1, r1)ū(q1, s1)γ

νu(p2, r2)e
−i[(p1−q2)·x+(p2−q1)·y]

]
.

(12.155)
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Fig. 12.4 Two second-order contributions to the e− − e− scattering amplitude

Note that the first and the fourth term, as well as the second and the third ones within
square brackets, are obtained from one another by exchanging x and y. They will
then give equal contributions to the integral (12.150), producing a factor 2 which
cancels against the 1/2!. The first term in square brackets describes the electron
(p1, r1)which is destroyed in y where the electron (q2, s2) is created. This transition
is due to the emission of a virtual photon in y, which is absorbed by the electron
(p2, r2), causing its transition to the state (q1, s1). In the second term the roles
of the two final electrons is interchanged. The Feynman diagram representation of
these two contributions to the amplitude are represented in Fig. 12.4. Both these
diagrams have the same geometry represented in Fig. 12.3, (2). Since however we
are now considering a specific process, it is useful to identify the external legs so
as to identify in the plane of the graph the time direction: The plane of the picture
represents space–time and time flows from right to left. The reader should however
bear in mind that Feynman diagrams are not a graphical representation of the actual
time evolution of the interacting system. They are just a graphical tool for constructing
the contributions to the amplitude of a given process to all orders.

Substituting the above result in (12.150) we find

〈ψout |S(2)|ψin〉 = (ie)2
∫

d4xd4 y4m2

×
[(
−ū(q1, s1)γ

μu(p2, r2)ū(q2, s2)γ
νu(p1, r1)e

−i[(p2−q1)·x+(p1−q2)·y]

+ ū(q2, s2)γ
μu(p2, r2)ū(q1, s1)γ

νu(p1, r1)e
−i[(p2−q2)·x+(p1−q1)·y]

)

×
∫

d4 p

(2π)4
D̃Fμν(p)e

−i p·(x−y)
]
,

(12.156)

where we have written the photon propagator in momentum space. Let us notice
that an incoming electron in a state (p, r) contributes a factor u(p, r)e−i p·xv to the
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integrand in the expression of the amplitude, xμv being the location of the vertex in
which the electron state is destroyed. An outgoing electron created at xμv is a state
(p, r) contributes a factor ū(p, r)eip·xv . In general with every particle annihilated
or created, at a point xμv is associated a characteristic factor e−i p·xv , or eip·xv ,
respectively, pμ being the corresponding 4-momentum. Therefore, in (12.156) the
exponentials e−i p·x , eip·y signal the creation of a virtual photon in y with momentum
p (being the photon virtual p2 �= 0), and its destruction in x. Let us now perform the
integrations over the space–time positions x and y of the two vertices. The integrand
depends on these variables only through the exponential factors. Let us consider the
first term in (12.156). The integrals for the two vertices yield the following delta
functions:

∫
d4xe−i(p2−q1+p)·x = (2π)4δ4(p2 − q1 + p),

∫
d4 ye−i(p1−q2−p)·y = (2π)4δ4(p1 − q2 − p). (12.157)

We find, upon integration, a delta function which implements the conservation of
4-momentum at each vertex: At x the sum of the momenta p2 and p of the incoming
electron and photon equals the momentum q1 of the outgoing electron; similarly at y
we have p1 = q2 + p. If we now perform the integration over the momentum of the
virtual photon, we end up with a single delta-function implementing the conservation
of 4-momentum for the whole process, as a consequence of the invariance of the
system under global space–time translations:

∫
d4 p

(2π)4
(2π)8δ4(p2−q1+ p)δ4(p1−q2− p) = (2π)4δ4(p1+ p2−q1−q2).

Similarly, as far as the second term in (12.156) is concerned, the integration over x
and over y yield (2π)4δ4(p2 − q2 + p) and (2π)4δ4(p1 − q1 − p), respectively,
and upon integrating over p we find the same factor (2π)4δ4(p1 + p2 − q1 − q2).

Factoring this delta function out, we finally end up with the following amplitude

〈ψout |S(2)|ψin〉 = i〈ψout |T(2)|ψin〉 = i(2π)4δ4(p1 + p2 − q1 − q2)

× 〈ψout |T ′(2)|ψin〉 = (2π)4δ4(p1 + p2 − q1 − q2)(ie)
24m2

×
(
−ū(q1, s1)γ

μu(p2, r2)ū(q2, s2)γ
νu(p1, r1)D̃Fμν(p2 − q1)

+ ū(q2, s2)γ
μu(p2, r2)ū(q1, s1)γ

νu(p1, r1)D̃Fμν(p1 − q1)
)
. (12.158)

We have thus found the second order contribution to the amplitude 〈ψout |T ′|ψin〉
entering the formula (12.74) for the probability per unit time of the process. Let us
now insert in 〈ψout |T ′(2)|ψin〉 the explicit expression of the photon propagator in
momentum space. Consider the first term within brackets in (12.158):
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ū(q1, s1)γ
μu(p2, r2)ū(q2, s2)γ

νu(p1, r1)D̃Fμν(p)
∣∣∣

p=p2−q1

=
[

ū(q1, s1)γ
μu(p2, r2)

(−i)

p2 + iε

(
ημν − (1− α) pμ pν

p2

)

× ū(q2, s2)γ
νu(p1, r1)

]∣∣∣∣
p=p2−q1

. (12.159)

Let us show that the pμ pν term in the propagator does not contribute to the above
quantity by using the Dirac equation for the incoming and outgoing electrons (let us
recall, for completeness, the same equations for the positron states as well):

( �q − m)u(q, r) = 0, ū(q, r)( �q − m) = 0, (12.160)

( �q + m)v(q, r) = 0, v̄(q, r)( �q + m) = 0. (12.161)

Using p = p2 − q1, it is easy to show that ū(q1, s1) � pu(p2, r2) = 0:
ū(q1, s1)� pu(p2, r2) = ū(q1, s1)� p2u(p2, r2)− ū(q1, s1)�q1u(p2, r2)

= (m − m)ū(q1, s1)u(p2, r2) = 0. (12.162)

By the same token we prove that ū(q2, s2) � pu(p1, r1) = 0. We can then conclude
that:

i〈ψout |T ′(2)|ψin〉 = (ie)24m2

×
(
−ū(q1, s1)γ

μu(p2, r2)
−i

(p2 − q1)2
ū(q2, s2)γμu(p1, r1)

+ ū(q2, s2)γ
μu(p2, r2)

−i

(p1 − q1)2
ū(q1, s1)γμu(p1, r1)

)
. (12.163)

As previously pointed out, there is an ambiguity in the overall sign, while the relative
sign between the two terms in brackets is fixed and physically relevant.

12.5.2 A Comment on the Role of Virtual Photons

The treatment of the Möller scattering has shown that the interaction between elec-
trons at second order in the fine structure constant can be viewed as due to the
exchange of a virtual photon between the two electrons.16 We recall that by vir-
tual photon we mean a photon whose momentum k = p2 − p1 does not satisfy
the mass-shell condition, k2 �= 0, which can thus be interpreted as a massive

16 The same interpretation is of course also true for the interaction between electron and positron
in Bhabha scattering, see Sect. 12.5.3. For the sake of definiteness and simplicity we shall refer the
considerations of this subsection to the Möller scattering.
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particle with m2 = k2. While for a real photon only the two transverse polariza-
tions are physical, when a virtual photon is exchanged, all four polarization vectors
ε
(λ)
μ (k), λ = 0, 1, 2, 3 contribute to the amplitude. It is then interesting to see what is

the role of the time-like and longitudinal photons ε(0)μ (k), ε(3)μ (k) in the interpretation
of the process.

Let us refer for concreteness to the second diagram of the Möller scattering whose
lowest order amplitude is given by the second term of (12.163). We observe that the
sum over the indices μ of the gamma-matrices is due to the ημν factor of the photon
propagator D̃Fμν = −iημν(k2+ iε)−1, which in turn comes from the completeness
relation (12.166). Therefore the amplitude corresponding to the first term of (12.163)
could have been alternatively written as

ū(q2, s2)γ
μu(p2, r2)

[
λ=3∑

λ=0

ε(λ)μ(k)ε
(λ)
ν (k)

]
−i

(p1 − q1)2
ū(q1, s1)γ

νu(p1, r1).

(12.164)

For a virtual photon we must take as polarization vectors a set which for k2 → 0
reduces to the set used for a real photon in (11.236) and (11.237). As seen in Sect.
11.7, such set is obtained by simply replacing the longitudinal vector ε(3)μ (k) of
(11.237) with

ε(3)μ (k) = kμ − ημ(k · η)√
(k · η)2 − k2

. (12.165)

Let us now decompose the sum appearing in the completeness relation

3∑

λ=0

ε(λ)μ (k)ε(λ)ν(k) = ημν, (12.166)

into the sum over λ = 0, 3, corresponding to the exchange of timelike and longitu-
dinal photons and the sum over the transverse polarizations λ = 1, 2. In particular,
using (12.165) for ε(3)μ (k) and the value ε(0)μ (k) = ημ of (11.239), we have

ε(0)μ (k)ε(0)ν (k)− ε(3)μ (k)ε(3)ν (k) = ημην − [kμ − ημ(k · η)][kν − ην(k · η)]
(k · η)2 − k2 .

Since we are interested in the contribution to the amplitude of the λ = 0, 3 polariza-
tions, we substitute the right hand side of this expression into (12.164) with the sum
restricted to the values λ = 0, λ = 3. Since, as already seen in the previous section,
the terms proportional to kμ do not contribute by virtue of gauge invariance17 we

17 In this special case this can be also seen directly. Indeed

kμū(q2, s2)γ
μu(p2, r2) = ū(q2, s2)(p2 − q2)μγ

μu(p2, r2)

= −mū(q2, s2)u(p2, r2)+ mū(q2, s2)u(p2, r2) = 0, (12.167)

and similarly for the other factor of (12.168).
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obtain

− i

k2 ū(q2, s2)γ
μu(p2, r2)ū(q1, s1)γ

νu(p1, r1)× ημην
(

1− (k · η)2
(k · η)2 − k2

)

= −i ū(q2, s2)γ
0(p2, r2)

1

k2 − (k0)2
ū(q1, s1)γ

0u(p1, r1)

= iu†(q2, s2)u(p2, r2)
1

|k|2 u†(q1, s1)u(p1, r1),

(12.168)

where in the second step we have used the explicit value η = (1, 0, 0, 0) valid in the
Lorentz frame where ε(1,2)μ (k) are transverse (see Sect. 11.7 of Chap. 11). We now
observe that u†(q2, s2)u(p2, r2) and u†(q1, s1)u(p1, r1) are the Fourier transform in
the momentum space of the charge densities, while 1

|k|2 is the Fourier transform of
1/(4πr). It follows that (12.168) represents an “istantaneous” Coulomb interaction
between the two electrons. Adding the sum over the two transverse polarizations
λ = 1, 2 the result is that the interaction between the two electrons is given by
transverse “waves” plus an istantaneous Coulomb interaction.

12.5.3 Bhabha and Electron-Muon Scattering

Let us now consider the scattering between an electron e− and a positron e+ (first
studied by H. Bahbha in 1936):

e− + e+ −→ e− + e+. (12.169)

Let the momenta and polarizations of the electron and positron be (p−, r−), (p+, r+)
in the initial state, and (q−, s−), (q+, s+) after the interaction, respectively:

|ψin〉 = |p+, r+〉|p−, r−〉 = d(p+, r+)†c(p−, r−)†|0〉,
|ψout 〉 = |q+, s+〉|q−, s−〉 = d(q+, s+)†c(q−, s−)†|0〉,
〈ψout | = 〈0|c(q−, s−)d(q+, s+), (12.170)

where we have used the property that, if A, B are two operators (AB)† = B† A†.

Note that we have represented the initial state as resulting from the action on the
vacuum of the electron creation operator followed by that of the positron, and we
have used the same (conventional) ordering of creation operators for the final state.
This will fix the overall sign of the amplitude, in contrast to the previous case in
which identical particles where present in the initial and final states and the overall
sign was ambiguous.

As for the electron–electron scattering, the second order contribution to the ampli-
tude will come from term (2) in the Wick expansion (12.140) of S(2) (represented by
diagram (2) of Fig. 12.2):

http://dx.doi.org/10.1007/978-88-470-1504-3_11
http://dx.doi.org/10.1007/978-88-470-1504-3_11
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〈ψout |S(2)|ψin〉 = (ie)2

2!
∫

d4xd4 y

× [〈 q+, s+|〈q−, s−| : ψ(x)γ μψ(x)ψ(y)γ νψ(y) : |p+, r+〉|p−, r−〉
×DFμν(x − y)

]
. (12.171)

Only terms of the form d†c†cd in the normal ordered product will contribute to the
matrix element, with a term proportional to:

〈0|c(q−, s−)d(q+, s+)d†c†cdd(p+, r+)†c(p−, r−)†|0〉
= {d(q+, s+), d†}{d, d(p+, r+)†}{c(q−, s−), c†}{c, c(p−, r−)†}.

Each anti-commutator in the above expression provides a delta function on the
momenta times a delta on the polarizations. These deltas single out, in the expansion
of the field operators, the term with the same momentum and polarization as the corre-
sponding external state: for instance {d(q+, s+), d†}will single out of the expansion
of theψ operator containing d†, the term proportional to v(q+, s+); {d, d(p+, r+)†}
the term proportional to v̄(p+, r+) in the expansion of the ψ field containing d, and
so on. Since d† may come from ψ(x) or ψ(y) and d from ψ(x) or ψ(y), there
are, in total, four such terms. Consider the contributions in which d, d† originate
from field operators computed in the same vertex. There are two of them, related
by an exchange of the two vertices x ↔ y, which then give equal contributions to
the integral (12.171). Each of them describes a positron and electron exchanging a
virtual photon, as illustrated in Fig. 12.5a. Note that, in the corresponding Feynman
diagram, the direction of motion for the positron is opposite to the orientation on the
corresponding external leg, as is represented by an arrow parallel to it. The reason
is that the arrow on an external fermionic leg indicates the flow of negative charge
(electron charge), which is clearly opposite to the flow of the positron charge. One
of them contributes to the integrand in (12.171) a term of the form:

−v̄(p+, r+)γ μv(q+, s+)ū(q−, s−)γ νu(p−, r−)e−i(p+−q+)·x e−i(p−−q−)·y,

to be contracted with the photon propagator, the other a similar term with x ↔ y.The
minus sign in the above expression originates from the definition of normal ordering
for fermions: :dd†c†c := −d†c†cd.

Consider now the two terms in which d† and d originate from field operators com-
puted in different vertices. They are also related by an exchange of the two vertices
and thus give equal contributions to the integral (12.171). Each of them describes
a process in which the incoming electron and positron lines converge on a same
vertex, where the two particles are both destroyed (by c and d, respectively). They
annihilate, producing a virtual photon which propagates up to the second vertex where
it originates the couple of outgoing electron and positron (created by c† and d†,
respectively), see Fig. 12.5b. This is thus an annihilation process rather than a diffu-
sion one. Its contribution to the integrand in (12.171) is a term of the form:

ū(q−, s−)γ μv(q+, s+)v̄(p+, r+)γ νu(p−, r−)e−i(p−+p+)·yei(q++q−)·x ,
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Fig. 12.5 Two second-order contributions to the e− − e+ scattering amplitude: The diffusion, (a),
and the annihilation, (b) diagrams

to be contracted with the photon propagator. The integration over x and y yields
the conservation of 4-momentum at each vertex. We have thus found two distinct
contributions to this integral, one describing a diffusion and an other an annihilation
process. In the former case the momentum of the photon is p = p−−q− = q+− p+,
while in the latter p = p− + p+ = q+ + q− (the sign of p is irrelevant since the
integral is invariant upon changing p→−p and x ↔ y).

Upon integration over x and y and the photon momentum p we end up with a single
delta function implementing the conservation of the total momentum p− + p+ =
q+ + q−. By factoring this delta function out, just as we did in the case of the
electron-electron scattering we derive the expression for the matrix element of T ′(2):

i〈ψout |T ′(2)|ψin〉 = (ie)24m2

×
(
−v̄(p+, r+)γ μv(q+, s+)

−i

(p− − q−)2
ū(q−, s−)γμu(p−, r−)

+ ū(q−, s−)γ μv(q+, s+)
−i

(p− + p+)2
v̄(p+, r+)γμu(p−, r−)

)
, (12.172)

where we have used the properties v̄(p+, r+)( �p+−�q+)v(q+, s+) = 0 and v̄(p+, r+)
( �p++ �p−)u(p−, r−) = 0 which descend from (12.161) and (12.160).

Consider now an electron–muon scattering:

e− + μ− −→ e− + μ−. (12.173)

The interaction Hamiltonian is obtained by writing the electric current as the sum of
the electron and the muon ones, as in (12.141), in which “particle q” (which however
now is no longer a “spectator”) is the muon (q = e = −|e| < 0):

ĤI (x) ≡ −e : [ψ(x)γ μψ(x)+ ψ(μ)(x)γ μψ(μ)(x)]Aμ(x) : . (12.174)
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Fig. 12.6 Two second-order
contribution to the e− − μ−
scattering amplitude

We shall indicate the quantities associated with the muon by a subscript (μ),
not to be confused with a 4-vector index. Let the initial and final electron states
be (p1, r1), (q1, s1), while the initial and final muon states be (p2, r2), (q2, s2),
respectively:

|ψin〉 = |p1, r1〉|p2, r2〉 = c(p1, r1)
†c(μ)(p2, r2)

†|0〉,
|ψout 〉 = |q1, s1〉|q2, s2〉 = c(q1, s1)

†c(μ)(q2, s2)
†|0〉. (12.175)

The second order contribution to the amplitude, see (12.142), reads:

〈ψout |S(2)|ψin〉 = (ie)2
∫

d4xd4 y

× 〈q1, s1|〈q2, s2| : ψ(x)γ μψ(x)ψ(μ)(y)γ νψ(μ)(y) : |p1, r1〉|p2, r2〉
× DFμν(x − y). (12.176)

In the expansion of the normal product in creation and annihilation operators, there is
just one term contributing to the matrix element, of the form c†c†

(μ)c(μ)c: The incom-
ing muon can only be destroyed by ψ(μ)(y) and the outgoing one only be created by
ψ(μ)(y).We have therefore just one term contributing to the amplitude, represented
in Fig. 12.6. This situation should be contrasted with the electron–electron case, in
which the initial and final states consisted of identical particles and the independent
diagrams contributing to the amplitude, modulo x ↔ y, were two, one obtained from
the other by interchanging the external legs corresponding to the outgoing electrons.

Using the property:

〈0|c(μ)(q2, s2)c(q1, s1)c
†c†
(μ)c(μ)cc(p1, r1)

†c(μ)(p2, r2)
†|0〉

= {c(μ)(q2, s2), c†
(μ)}{c(μ), c(μ)(p2, r2)

†}{c(q1, s1), c†}{c, c(p1, r1)
†},

and integrating over the momenta and the positions of the vertices, we arrive at the
following expression for the amplitude:
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Fig. 12.7 Two second-order
contribution to the
e− + e+ → μ− + μ+
amplitude

i〈ψout |T ′(2)|ψin〉 = (ie)24mmμ

×
(

ū(μ)(q2, s2)γ
νu(μ)(p2, r2)

−i

(p1 − q1)2
ū(q1, s1)γνu(p1, r1)

)
. (12.177)

We leave as an exercise to the reader to show that the second order amplitude for the
annihilation process, see Fig. 12.7,

e− + e+ −→ μ− + μ+, (12.178)

reads:

i〈ψout |T ′(2)|ψin〉 = (ie)24mmμ

×
(

ū(μ)(q−, s−)γ νv(μ)(q+, s+)
−i

(p+ + p−)2
v̄(p+, r+)γνu(p−, r−)

)
. (12.179)

12.5.4 Compton Scattering and Feynman Rules

Let us now consider the interaction between electromagnetic radiation (photons) and
matter, in particular a process in which a photon is scattered by an electron (Compton
scattering):

γ + e− −→ γ + e−, (12.180)

in which the initial state consists of a photon γ in the state (p1, i) (i = 1, 2 being
its polarization) and an electron in the state (p2, r), while the final state describes a
photon and electron in the states (q1, i ′), (q2, s), respectively:

|ψin〉 = |p1, i〉|p2, r〉 = a(p1, i)†c(p2, r)
†|0〉,

|ψout 〉 = |q1, i ′〉|q2, s〉 = a(q1, i ′)†c(q2, s)†|0〉. (12.181)

We shall compute the second-order amplitude of this process. The only terms in the
Wick expansion (12.140) of S(2) contributing to the amplitude are those containing
two electromagnetic free fields and two electron free fields, namely terms (3) and
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Fig. 12.8 Two second-order contributions to the Compton scattering amplitude

(4), which, however, give an equal contribution upon integration over x and y. We
can thus focus of (3) and write:

〈ψout |S(2)|ψin〉 = (ie)2
∫

d4xd4 y

× 〈q1, i ′|〈q2, s| : ψ(x)γ μSF (x − y)γ νψ(y)Aμ(x)Aν(y) : |p1, i〉|p2, r〉. (12.182)

Expanding the free field in creation an annihilation operators, we can convince our-
selves that the only terms contributing to the matrix element have the form: c†a†ca,
which destroys the initial photon and electron (operators a, c, respectively) and cre-
ates the outgoing ones (operators a†, c†). Their non-vanishing contributions have the
general form:

〈0|c(q2, s)a(q1, i ′)c†a†caa(p1, i)†c(p2, r)
†|0〉

= [a(q1, i ′), a†][a, a(p1, i)†]{c(q2, s), c†}{c, c(p2, r)
†}. (12.183)

Let us note, however, that there are two terms of the form c†a†ca: One in which a
comes from Aμ(x) (and thus a† from Aμ(y)), the other in which a comes from Aμ(y)
(and thus a† from Aμ(x)). The former describes a process in which the incoming
electron emits the outgoing photon (q1, i ′) in y and absorbs the incoming one in x,
see Fig. 12.8a, while in the latter the incoming photon (p1, i) is absorbed in y and
the outgoing one emitted in x, see Fig. 12.8b.

Using, for each term, (12.183), and eliminating, by integration, the delta functions
arising from the commutators and anticommutators, we end up with:

〈ψout |S(2)|ψin〉 = (ie)2
∫

d4xd4 y
∫

d4 p

(2π)4
2m

×
[

ū(q2, s)γ μ
i

� p − m
γ νu(p2, r)εμ(p1, i)εν(q1, i ′)∗ e−i(p2−q1−p)·yei(q2−p1−p)·x

+ ū(q2, s)γ μ
i

� p − m
γ νu(p2, r)εν(p1, i)εμ(q1, i ′)∗ e−i(p1+p2−p)·yei(q2+q1−p)·x] ,

(12.184)
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We note that under the exchange

p1 � −q1; εμ(p1, i) � εμ(q1, i ′)∗

the total matrix element remains invariant. This invariance is known as crossing
symmetry, the graph (a) being referred to as the crossed term of graph (b). The
integrations over x and y implement the conservation of momentum at each vertex,
while the integration over the momentum p of the virtual electron yields the global
delta function (2π)4δ4(p1 + p2 − q1 − q2). The matrix element of T ′(2) reads:

i〈ψout |T ′(2)|ψin〉 = (ie)22m

× ū(q2, s)

[
γμ

i

� p2− �q1 − m
γ ν + γ ν i

� p1+ � p2 − m
γμ

]
u(p2, r)

× εμ(p1, i)εν(q1, i ′)∗,
(12.185)

Let us now verify that the above result does not depend on our gauge choice for the
electromagnetic potential, namely that it is not affected by a gauge transformation
Aμ → Aμ + ∂μ�. In momentum space a gauge transformation amounts to adding
an unphysical component to εμ:

εμ(p, i) −→ εμ(p, i)+ χ(p)pμ. (12.186)

To show that such component gives no contribution to (12.185), let us replace any of
the photon polarization vectors (e.g. εμ(p1, i)) by the corresponding 4-momentum
p1μ and prove that the resulting expression is zero. It suffices to prove that the
following quantity vanishes:

ū(q2, s)

[
γ μ

i

� p2− �q1 − m
γ ν + γ ν i

� p1+ � p2 − m
γ μ

]
u(p2, r)p1μ

= ū(q2, s)

[
� p1

i

� p2− �q1 − m
γ ν + γ ν i

� p1+ � p2 − m
� p1

]
u(p2, r). (12.187)

To this end let us write, in the first and second terms within square brackets:

� p1 = −(−� p1+ �q2 − m)+ ( �q2 − m) = −( � p2− �q1 − m)+ ( �q2 − m),

� p1 = ( � p1+� p2 − m)− ( � p2 − m), (12.188)

respectively. As far as the first term is concerned, we can use ū(q2, s)( � q2 −
m) = 0, while ( � p2− � q1 − m) cancels against the electron propagator, yielding
−ū(q2, s)γ νu(p2, r). Similarly, for the second term, we use the equation of motion
( �p2−m)u(p2, r) = 0, while ( � p1+ � p2−m) cancels against the propagator, yielding
ū(q2, s)γ νu(p2, r). Summing the two contributions we find for (12.187):

ū(q2, s)(−γ ν + γ ν)u(p2, r) = 0, (12.189)
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thus proving that the amplitude (12.185) is gauge invariant. This result extends to any
amplitude with external photon fields and is required by consistency of the quantum
theory.

Feynman Rules. From the above discussion we can formulate few simple graph-
ical rules which allow us to write each perturbative contribution to the amplitude of
a process. The order-n amplitude i〈T ′(n)〉 of a process is computed as follows:

• Write n three-leg vertices, of the form in Fig. 12.1, identify some of these legs with
the incoming and outgoing fields (external legs) and connect all the remaining legs
to one another (photon to photon, electron to electron) in all possible ways. In
this way we write all possible n-vertex Feynman diagrams with the given external
legs. Each diagram yields a contribution to the amplitude, which should be finally
summed up over all the diagrams.

• In each diagram we associate an incoming electron or positron with the field
u(p, r) or v̄(p, r), respectively, while outgoing electrons and positrons contribute
fields ū(p, r) and v(p, r) respectively. Finally an incoming or outgoing photon
contributes a polarization vector εμ(p, i) or εμ(p, i)∗, respectively.

• Each vertex is associated with a factor ieγ μ = ie((γ μ)αβ), where α can contract
either an incoming positron (v̄α) or an outgoing electron (ūα) field, while index β
can contract either an outgoing positron vβ or an incoming electron uβ.

• 4-momentum is conserved at each vertex.
• Each internal fermion line contributes a propagator S̃F (p) = i

�p−m+iε , while an

internal photon line contributes a propagator D̃Fμν(p) (the final expression for the
amplitude does not depend on the gauge choice α), where pμ is the momentum
carried by the corresponding virtual particle.

• Diagrams differing by an exchange of two external legs corresponding to identical
fermions contribute terms with a relative minus sign.

12.5.5 Gauge Invariance of Amplitudes

Different gauge choices for the photon field should not affect the physical predic-
tions of the theory. This is indeed the case since, as we are going to show shortly, the
S-matrix element defining the amplitude of a process is gauge invariant. Consider a
generic diagram, or set of diagrams, describing an interaction process. As we have
already noted, fermion lines always form polygonal curves which consist of inter-
nal lines, contributing fermion propagators to the amplitude, between external ones
describing incoming and outgoing fermions. The orientation on the fermionic line
segments along a polygonal path, which represents the flow of the fermion charge,
is continuous because of charge conservation. Their end points are vertices at which
an internal or external photon line ends. The former contributes a photon propagator
DFμν(k) to the amplitude, the latter a photon polarization vector εμ(k, r). In both
cases the index μ contracts the γ μ matrix at the vertex. The gauge choice for a
virtual photon, is encoded in the term kμkν within DFμν(k), which, if the ampli-
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Fig. 12.9 Contributions to the amplitude of a process in which a photon with momentum kμ ends
in different vertices along a fermion line

tude is to be gauge invariant, should not contribute to the S-matrix element. This
was indeed shown to be the case for the Möller scattering. A gauge transforma-
tion on a real photon, on the other hand, induces a transformation of the amplitude
which is obtained by replacing the polarization vector εμ(k, r) with kμ, according
to (12.186). When discussing the Compton scattering amplitude, we have proven
that such transformation is indeed ineffective. We have also shown that the final
amplitude of the process is the sum of all diagrams in which a given (internal or
external) photon line is attached to a different vertex of a fermion line, see Fig. 12.8
for the Compton scattering. In Fig. 12.9 this is illustrated for a generic fermion line
with n+2 vertices: the three diagrams represented in the picture are the contributions
to the amplitude in which the photon with momentum k (k-photon) is attached to the
(i + 3)th, (i + 2)th, and (i + 1)th vertices respectively; These are clearly part of the
sum over the n+ 2 diagrams in which the k-photon line ends in all possible vertices.
The momenta pi , i = 0, . . . n + 1, are fixed in terms of the momentum p0 of the
incoming fermion and of the photon momenta ki by the momentum conservation at
each vertex:
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pi = p0 +
i−1∑

�=0

k�. (12.190)

To prove gauge invariance in full generality, it suffices then to show that, replacing
the k-photon polarization with the corresponding momentum kμ (that is replacing
it with a gauge photon εμ ∝ kμ) in each of the n + 2 diagrams the sum of the
resulting amplitudes is zero. Consider, for instance, the contribution from diagram
(a) of Fig. 12.9. In this case the matrix γ μ in the (i + 3)th vertex is contracted with
kμ, yielding:

. . . γ μi+2
1

� pi+2+ � k − m
� k 1

� pi+2 − m
γ μi+1

1

� pi+1 − m

= . . . γ μi+2
1

� pi+2+ � k − m
( � k+ � pi+2 − m − ( � pi+2 − m))

1

� pi+2 − m
γ μi+1

= . . . γ μi+2

(
1

� pi+2 − m
− 1

� pi+2+ � k − m

)
γ μi+1

1

� pi+1 − m
,

(12.191)

where we have written � k =� k + � pi+2 − m − ( � pi+2 − m). Similarly, from diagram
(b) we have:

· · · 1

� pi+2+ � k − m
γ μi+1

1

� pi+1+ � k − m
� k 1

� pi+1 − m
γ μi

1

� pi − m

= · · · γ μi+1
1

� pi+1+ � k − m
( � k+ � pi+1 − m − ( � pi+1 − m))

1

� pi+1 − m
γ μi

= · · · 1

� pi+2+ � k − m
γ μi+1

(
1

� pi+1 − m
− 1

� pi+1+ � k − m

)
γ μi

1

� pi − m
,

(12.192)

and from diagram (c):

· · · 1

� pi+1+ � k − m
γ μi

1

� pi+ � k − m
� k 1

� pi − m
γ μi−1

1

� pi−1 − m

= · · · γ μi
1

� pi+ � k − m
( � k+ � pi − m − ( � pi − m))

1

� pi − m
γ μi−1

= · · · 1

� pi+1+ � k − m
γ μi

(
1

� pi − m
− 1

� pi+ � k − m

)
γ μi−1

1

� pi−1 − m
.

(12.193)

Note that the second term in (12.191) cancels against the first one in (12.192) and
that the second term in (12.192) is canceled by the first one in (12.193). We can then
convince ourselves that, summing all the n + 2 diagrams up, the contributions from
the intermediate diagrams cancel out and we are thus left with the two contributions
from the diagrams in which the k-photon ends in the first and last vertices. These
read:
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· · · γ μ0
1

� p0+ � k − m
� ku(p0, r)

= · · · γ μ0
1

� p0+ � k − m
( � p0+ � k − m − ( � p0 − m)) u(p0, r), (12.194)

ū(pn+1 + k, s) � k 1

� pn+1 − m
γ μn · · ·

= ū(pn+1 + k, s) (−( � pn+1 − m)+ � k+ � pn+1 − m)
1

� pn+1 − m
γ μn · · ·

(12.195)

The first term in (12.194) cancels against the second term from the next contribution,
in which the k-photon ends in the second vertex, while the second term is zero by
virtue of the Dirac equation: ( � p0 − m)u(p0, r) = 0. Similarly the first term in
(12.195) cancels against the first term from the previous diagram, in which the k-
photon ends in the one but last vertex, while the second term is zero by virtue of the
Dirac equation.

This argument equally applies to all the fermion lines in the diagrams of a process,
showing that a gauge transformation on a generic photon field does not affect the
total amplitude.

12.5.6 Interaction with an External Field

Let us end this subsection by considering the interaction of an electron with
an external electromagnetic field Aext

μ , analyzed in Sect. 12.4.1. This process is
described within QED by replacing, in the interaction term of the Hamiltonian,
Aμ → Aμ + Aext

μ . Let us write the first order term in the amplitude in the non-
relativistic limit. Let the incoming and outgoing electron states be (p, r) and (q, s),
respectively. Let us restore, for this analysis only, all the �, c factors, as well as the
normalization volume Ve of the electron. The lowest-order S-matrix element reads:

Let us write the external field in Fourier components:

Aext
μ (x) =

∫
d4k

(2π�)4
Ãext
μ (k)e−

i
�

k·x , (12.196)

where kμ is a 4-momentum. In the Lorentz gauge we then have ∂μAext
μ ⇔

kμ Ãext
μ = 0. The matrix element in (12.196) is readily computed by writing the

electron field operators and the initial and final states in terms of creation and annihi-
lation operators. As usual the integration over x yields the conservation of momentum
at the vertex: q = p + k. Integrating out all the delta functions we find:

〈ψout |S(1)|ψin〉 = i
e

�c

(
mc2

√
Ep EqVe

)
ū(p+ k, s)γ μu(p, r) Ãext

μ (k). (12.197)



12.5 Amplitudes in the Momentum Representation 493

In the non-relativistic limit we retain only terms of order less than two in the ratio
v
c . We can then approximate the energy of the electron with its rest energy Eq ≈
Ep ≈ mc2. In this limit k0 = Eq − Ep ≈ 0, namely kμ ≈ (0,k). Defining
�A ≡ Ãext

μ (k)γ μ and writing u(p, r) ≈ �p+mc
2mc u(0, r), where u(0, r) ≡ (φr , 0), we

find

〈ψout |S(1)|ψin〉 ≈ i
e

�cVe

ū(0, s)( � p+ � k + mc) �A( � p + mc)u(0, r)
4m2c2 . (12.198)

It is useful to write the field strength Fμν of the external electromagnetic field in
momentum space as well:

Fμν =
∫

d4k

(2π�)4
F̃μν(k)e

− i
�

k·x ; F̃μν(k) = − i

�
(kμ Ãext

ν − kν Ãext
μ ), (12.199)

and to introduce the Fourier transforms Ẽ(k), B̃(k) of the electric and magnetic fields,
respectively:

Ẽi ≡ F̃i0, B̃i ≡ 1

2
εi jk F̃ jk . (12.200)

We wish now to rewrite the matrix ( � p+ � k +mc) � A( � p+mc) using the properties:

�A� p = 2( Ãext · p)−� p�A, � k�A = (k · Ãext )+ 1

2
[� k, �A]

= (k · Ãext )+ kμ Ãext
ν γ μν, (12.201)

which directly descend from the gamma matrix algebra (recall that γ μν ≡
1
2 [γ μ, γ ν]). We then find

( � p+ � k + mc)�A( � p + mc) =� p�A� p+ �k �A( � p + mc)+ mc{�A, � p} + m2c2 �A
= [2( Ãext · p)+ (k · Ãext )+ kμ Ãext

ν γ μν ]( � p + mc)

= [2( Ãext · p)+ kμ Ãext
ν γ μν ]( � p + mc), (12.202)

where we have used properties (12.201), the on-shell condition p2 = m2c2 and the
Lorentz gauge condition k · Ãext = 0. We can now rewrite the amplitude (12.197):

〈ψout |S(1)|ψin〉 ≈ i
e

4�cVem2c2

× ū(0, s)[2( Ãext · p)+ i�

2
F̃μνγ

μν]( � p + mc)u(0, r) = i
e

4�cVem2c2

× ū(0, s)[2( Ãext · p)− i�Ẽiγ
0i + i�

2
εi jkγ

i j B̃k]( � p + mc)u(0, r).

(12.203)
Let us now write the matrix � p + mc:
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� p + mc = mc(1+ γ 0)− p · γ =
(

2mc12 −p · σ
p · σ 02

)
. (12.204)

in the non-relativistic limit, the off-diagonal blocks are subleading, so we shall only
consider the diagonal ones. The matrix element between ū(0, s) and u(0, r) belongs
to the upper-diagonal block, and, being γ 0i off-diagonal, the term in (12.203) con-
taining the electric field is subleading in the non-relativistic limit. To lowest order in
v
c we find:

〈ψout |S(1)|ψin〉 ≈ i

�cVe
ϕ

†
s

[
e

mc
( Ãext · p)+ ie�

4mc
εijkγ

i j B̃k
]
ϕr

= − i

�cVe
ϕ

†
s

[
eṼ (k)− e

mc
pi Ãext

i (k)− e

mc
s · B̃(k)

]
ϕr

= − i

�c

∫
d4x〈ψout |Ĥext

I (x)|ψin〉, (12.205)

where Ṽ (k) = − Ãext
0 (k) is the Fourier transform of the electrostatic potential, s =

�σ/2 is the spin vector. To derive (12.205) we have used the property

i�

2
εi jkγ

i j B̃k = �

(
B̃kσ

k 02

02 B̃kσ
k

)
. (12.206)

The quantity between square brackets in (12.205) can be compared with the analo-
gous quantity appearing on the right hand side of (10.223) of Chap. 10. Since s = �

2 σ ,
we see that, excluding the kinetic term 1

2m p2, the expressions of the two interaction
Hamiltonians coincide at first order in e. The last term in square brackets is the cou-
pling term −μs · B̃ of the electron spin to the external magnetic field, where the
magnetic moment associated with the spin is usually written in the form

μs = ge

2mc
s. (12.207)

g being the so called electron g-factor. Comparing this definition with the corre-
sponding term in (12.205), we see that for the electron g = 2, to lowest order in the
perturbative expansion (classical value). We also note that, setting s = �

2 σ , this value
coincides with the result given in (10.224) and (10.226), namely the gyromagnetic
ratio e

mc is twice as large as the one related to the orbital angular momentum.
The exact amplitude is obtained by summing to (12.205) all higher order correc-

tions 〈S(n)〉. In particular the term in 〈S(2)〉, described by the diagram in Fig. 12.10,
will be computed in Sect. 12.8.6 and will provide an important test of the theory
against experiments.

http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_12
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Fig. 12.10 First perturbative
contribution to the electron
anomalous magnetic moment

12.6 Cross Sections

12.6.1 The Bahbha Scattering

We analyze here two instances of interaction processes: the Bahbha and the Compton
scattering. Compute the cross section for the electron–positron scattering (12.169),
to lowest order in α. The Lorentz-invariant variables describing the process are, aside
from the electron (positron)-mass m, the cross scalar products among the 4-momenta
pμ+, pμ−, qμ+, qμ−, all of which can be expressed in terms of the three Mandelstam
variables s,t,u defined in (12.26):

p+ · p− = q+ · q− = s − 2m2

2
, p+ · q+ = p− · q− = 2m2 − t

2
,

p+ · q− = q+ · p− = 2m2 − u

2
. (12.208)

Equation (12.28) in this case implies s + t + u = 4m2. The explicit form of t, u in
the CM frame is given by (12.29) and (12.30):

t = −4|p|2 sin2
(
θ

2

)
, u = −4|p|2 cos2

(
θ

2

)
, (12.209)

being E1 = E2 = E ′1 = E ′2 = E = √
m2 + |p|2 and s = 4E2.

Let us now use (12.81) to write, in the CM frame:

dσ = 1

2
√

s(s − 4m2)
|〈T ′(2)〉|2d�(2) = 1

64π2s
|〈T ′(2)〉|2d�, (12.210)

where we have used the property
√
(p+ · p−)2 − m4) = 1

2

√
s(s − 4m2) and the

general form (12.96) of d�(2). We shall consider the simpler case in which the
incoming particles are not polarized and the spin states of the final particles are
not measured. The probability per unit time is then computed by averaging the one
referred to distinct polarizations of the electron–positron system, over the initial spin
state and summing over the final ones. This amounts, in (12.210), to define:
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|〈T ′(2)〉|2 =
1

4

∑
s±,r±
|〈q+, s+|〈q−, s−|T ′(2)|p+, r+〉|p−, r−〉|2, (12.211)

where the factor 1/4 is related to the average over the four distinct polarization states
of the initial electron-positron system. Let us now use our previous result (12.172)
for the scattering amplitude and write:

|〈T ′(2)〉|2 = 4e4m4
∑

s±,r±

[
AA∗ + B B∗ + AB∗ + B A∗

]
, (12.212)

where the terms

A = −1

t
v̄(p+, r+)γ μv(q+, s+)ū(q−, s−)γμu(p−, r−),

B = 1

s
ū(q−, s−)γ μv(q+, s+)v̄(p+, r+)γμu(p−, r−), (12.213)

are referred to the diagrams in Fig. 12.5a (diffusion) and b (annihilation), respectively.
Now, using the gamma-matrix properties (γ μ)†γ 0 = γ 0γ μ and (γ 0)† = γ 0, one
can easily show that

(ū1γ
μu2)

∗ = u†
2(γ

μ)†(γ 0)†u1 = u†
2γ

0γ μu1 = ū2γ
μu1, (12.214)

and similarly (v̄1γ
μu2)

∗ = ū2γ
μv1, (v̄1γ

μv2)
∗ = v̄2γ

μv1, so that we can write

A∗ = −1

t
v̄(q+, s+)γ μv(p+, r+)ū(p−, r−)γμu(q−, s−),

B∗ = 1

s
v̄(q+, s+)γ μu(q−, s−)ū(p−, r−)γμv(p+, r+). (12.215)

Next we need to recall the formulas (10.182) and (10.183) of Chap. 10, for the
projectors on the positive and negative-energy solutions of the Dirac equation18

∑
r

u(p, r)α ū(p, r)β = ( �p + m)αβ
2m

,

∑
r

v(p, r)αv̄(p, r)β = ( �p − m)αβ
2m

, (12.216)

to rewrite the AA∗ term in (12.212) as follows:

18 In the case of polarized fermions, there would be no summation over the spin states and we should
use, for each particle, the expression given in Sect. 10.6.3, for the projector on the corresponding
polarization:

u(p, r)ū(p, r) = (� p + m)

4m
(1+ εrγ

5�n), v(p, s)v̄(p, s) = (� p − m)

4m
(1− εsγ

5�n).

http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
http://dx.doi.org/10.1007/978-88-470-1504-3_10
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∑
r±,s±

AA∗ = 1

16m4t2 Tr
(
γμ( �q+ − m)γ ν( � p+ − m)

)
Tr

(
γμ( � p− + m)γν( �q− + m)

)
.

To prove the above formula it is useful to write, in the product AA∗, the spinor indices
explicitly. By the same token we find:

∑
r±,s±

B B∗ = 1

16m4s2 Tr
(
γμ( �q+ − m)γ ν( �q− + m)

)
Tr

(
γμ( � p− + m)γν( � p+ − m)

)
,

∑
r±,s±

AB∗ = − 1

16m4st
Tr

(
γμ( �q+ − m)γ ν( �q− + m)γμ( � p− + m)γν( � p+ − m)

)
,

∑
r±,s±

B A∗ = − 1

16m4st
Tr

(
γμ( �q+ − m)γ ν( � p+ − m)γμ( � p− + m)γν( �q− + m)

)
.

To compute the above traces we need to recall from Appendix G the following
gamma-matrix identities:

Tr(γ μγ ν) = 4ημν,

Tr(γ μγ νγ ργ σ ) = 4(ημνηρσ + ημσ ηρν − ημρηνσ ),
Tr(γ μ1 · · · γ μ2k+1) = 0,

γ μ� Aγμ = −2� A,
γ μ� A� Bγμ = 4(A · B),

γ μ� A� B�Cγμ = −2 �C�B� A. (12.217)

The first of the above identities is proven by writing γ μγ ν = 2ημν − γ μγ ν ,
computing the trace of both sides and using the cyclic property of the trace
Tr(γ μγ ν) = Tr(γ νγ μ). Similarly the second is proven by shifting γ σ to the left,
past the other three gamma-matrices, and then using again the cyclic property of
the trace Tr(γ μγ νγ ργ σ ) = Tr(γ σ γ μγ νγ ρ). Finally the property that the trace
of an odd number of gamma-matrices is zero is easily proven using the properties
(γ 5)2 = 1, γ μγ 5 = −γ 5γ μ of the γ 5-matrix:

Tr(γ μ1 · · · γ μ2k+1) = Tr(γ μ1 · · · γ μ2k+1(γ 5)2) = Tr(γ 5γ μ1 · · · γ μ2k+1γ 5)

= −Tr(γ μ1 · · · γ μ2k+1).

(12.218)

We shall also need the general identities (G.25), (G.26) of Appendix G.
Now the reader can easily derive the following formulas:

Tr
(
γ μ( � p ± m)γ ν( �q ± m)

) = 4
[

pμqν + pνqμ −
(

p · q − m2
)
ημν

]
,

Tr
(
γ μ( � p ± m)γ ν( �q ∓ m)

) = 4
[

pμqν + pνqμ −
(

p · q + m2
)
ημν

]
,

which are needed, together with (G.25), to derive, after some algebra, the following
expressions:
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∑
r±, s±

AA∗ = 1

m4t2

(
2(p+ · p−)(q+ · q−)+ 2(q+ · p−)(p+ · q−)

+ t (q+ · p+)+ t (q− · p−)+ t2
)
= 1

m4t2

(
s2 + u2

2
+ 4m2(t − m2)

)
,

∑
r±, s±

BB∗ = 1

m4s2

(
t2 + u2

2
+ 4m2(s − m2)

)
,

∑
r±, s±

AB∗ =
∑

r±, s±
BA∗ = − 2

m4st
(p+ · q−)

(
p+ · q− + 2m2

)

= − 2

m4st

(
m2 − u

2

) (
3m2 − u

2

)
.

(12.219)
Inserting the above result in (12.210) we find a general formula for the cross section:

dσ

d�
= α

s

[
1

t2

(
s2 + u2

2
+ 4m2(t − m2)

)
+ 1

s2

(
t2 + u2

2
+ 4m2(s − m2)

)

+ 4

st

(
m2 − u

2

) (
3m2 − u

2

) ]
, (12.220)

where, as usual, α = e2/(4π).The first and second terms in square brackets originate
from the squared norm of the diffusion and annihilation terms in the amplitude,
respectively, while the third is a cross product.

Consider now the non-relativistic limit in which E ∼ m(s ∼ 4m2) and we
neglect terms of the order |p|2/m2 (like t/m2 and u/m2). In this limit we see that the
second and third terms on the right hand side of (12.220) are subleading, that is
the annihilation amplitude does not contribute to the cross section, which then
reduces to19:

dσ

d�
=

(
e2

2μv2

)2
1

sin4
(
θ
2

) , (12.221)

where v = μ|p| = 2|p|/m is the relative velocity, being μ = m/2 the reduced mass
of the system. Since only the diffusion diagram contributes in the non-relativistic
limit, we would have obtained the same result for the scattering of an electron off
any charge-e particle. Equation (12.221) reproduces the classical result obtained by
E. Rutherford when studying the scattering of alpha-particles off heavy nuclei.

19 Note that, in order to restore the �, c factors, we would need to multiply (12.220) by �
2, while

(12.221) needs no �, c factors to be restored.
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12.6.2 The Compton Scattering

Let us now analyze the Compton scattering (12.180). We shall denote the quantities
associated with the photon and the electron by 1 and 2, respectively. The initial and
final 4-momenta of the photon are written as follows:

p1 = (ω,p1), q1 = (ω′,q1), (12.222)

where |p1| = ω, |q1| = ω′, ω, ω′ being the angular frequencies of the incom-
ing and outgoing electromagnetic plane-waves. We shall analyze the scattering
in the laboratory frame in which the electron is initially at rest: p2 = 0. The angular
variables are referred to the direction of the incident photon. In particular we shall
denote by θ the photon diffusion angle, namely of the angle between q1 and p1.

Recalling that, for physical photons, p2
1 = q2

1 = 0, we have:

s − m2 = 2p1 · p2 = 2q1 · q2 = 2mω, u − m2 = −2p1 · q2

= −2p2 · q1 = −2mω′. (12.223)

Let us now use the conservation of the total 4-momentum and write q2 = p1 +
p2 − q1. Computing the squared norm of both sides we find

0 = p1 · p2 − p1 · q1 − p2 · q2 = m(ω − ω′)− ωω′(1− cos(θ)),

from which we find

1

ω′
− 1

ω
= 1

m
(1− cos(θ)). (12.224)

Let us now express the phase-space element in terms of photon quantities. To this
end let us write the t variable as follows:

t = 2m2 − 2p2 · q2 = −2p1 · q1 = −2ωω′(1− cos(θ)) = −2m(ω − ω′),
where we have used (12.224). For a given ω, t will depend on the variable ω′, related
to θ by (12.224). From the above equation we find dt = 2mdω′. Using (12.224) we
can write dω′ = ω′2d cos(θ)/m and thus:

d(−t) = −2mdω′ = −2ω′2d cos(θ) = ω′2

π
�. (12.225)

We can now write the phase space element substituting the above expression for
d(−t) in (12.98) and identifying μ2 = m, μ1 = 0 :

d�(2) = 1

8π

d(−t)

s − m2 =
ω′2

16π2mω
d�. (12.226)

The differential cross-section, to lowest order, reads:
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dσ = 1

4p1 · p2
|〈T ′(2)〉|2d�(2) = 1

16π

d(−t)

(s − m2)2
|〈T ′(2)〉|2

= 1

(8πm)2

(
ω′
ω

)2

|〈T ′(2)〉|2d�. (12.227)

Let us now evaluate |〈T ′(2)〉|2. As usual we consider unpolarized initial particles and
we do not measure the spin states of the outgoing electron and photon. This implies
that the probability per unit time should be summed over the final polarizations and
averaged over the initial ones, which amounts, in (12.227), to write

|〈T ′(2)〉|2 =
1

4

∑

i,i ′,r,s
|〈q1, i ′|〈q2, s|T ′(2)|p1, i〉|p2, r〉|2

= e4m2
∑

i,i ′,r,s

[
εμ(p1, i)εν(q1, i ′)∗ερ(p1, i)∗εσ (q1, i ′)

× ū(q2, s)

(
γμ

1

� p2− �q1 − m
γ ν + γ ν 1

� p1+ � p2 − m
γμ

)
u(p2, r)

× ū(p2, r)

(
γ σ

1

� p2− �q1 − m
γ ρ + γ ρ 1

� p1+ � p2 − m
γ σ

)
u(q2, s)

]
.

(12.228)

Consider the quantity Rμν ≡ ∑2
i=1 εμ(p, i)εν(p, i)∗ in the Coulomb gauge where

εμ = (0, ε). This tensor has only spatial components, R00 = R0i = Ri0 = 0, which,
being ε transverse to the direction of propagation n ≡ p/|p|, read:

Ri j = δi j − ni n j . (12.229)

The reader may easily verify that Rμν can be written in the form:

Rμν = −ημν + χμ pν + χν pμ, (12.230)

where χ0 = 1
2ω , χi = −ni/(2ω). The last two terms on the right hand side of

(12.230) can be reabsorbed by a gauge transformation of εμ and do not contribute to
(12.228) since, as shown in Sect. 12.5, the amplitude of the process is gauge invariant
and thus the contraction of the photon momentum with any of the gamma-matrices
γ μ, γ ν, γ ρ, γ σ is zero (see (12.187) and (12.189)). We can thus replace in (12.228)
the sum over the photon polarizations,

∑2
i=1 εμ(p, i)εν(p, i)∗, by −ημν. Equation

(12.228) can now be recast in the following compact form:

|〈T ′(2)〉|2 =
e4

4
Tr

[
( �q2 + m)

(
γμ
� p2− �q1 + m

u − m2 γ ν + γ ν � p1+ � p2 + m

u − s2 γμ
)

× ( � p2 + m)

(
γν
� p2− �q1 + m

u − m2 γμ + γμ � p1+ � p2 + m

u − s2 γν

)]
, (12.231)

where we have used the property ( � p+m)( � p−m) = p2 −m2. Using the identities
(G.25) and (G.26), we find the following useful formulas:
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Tr
[
( �q2 + m)γ μ( � p2− �q1 + m)γ ν( � p2 + m)γν( � p2− �q1 + m)γμ

]

= 8[4m4 − (s − m2)(u − m2)+ 2m2(u − m2)],
Tr

[
( �q2 + m)γ μ( � p2+ � p1 + m)γ ν( � p2 + m)γν( � p2+ � p1 + m)γμ

]

= 8[4m4 − (s − m2)(u − m2)+ 2m2(s − m2)],
Tr

[
( �q2 + m)γ μ( � p2− �q1 + m)γ ν( � p2 + m)γμ( � p2+ � p1 + m)γν

]

= Tr
[
( �q2 + m)γ μ( � p2+ � p1 + m)γ ν( � p2 + m)γμ( � p2− �q1 + m)γν

]

= 8m2[4m2 + (s − m2)+ (u − m2)]. (12.232)

Expanding the right hand side of (12.231) and using the above identities we find:

|〈T ′(2)〉|2 = 8e4

[
m4

(
1

u − m2 +
1

s − m2

)2
+ m2

(
1

u − m2 +
1

s − m2

)

− 1

4

(
s − m2

u − m2 +
u − m2

s − m2

)]

= 8e4

[
m2

4

(
1

ω′ −
1

ω

)2
+ m

2

(
1

ω
− 1

ω′
)
+ 1

4

(
ω

ω′ +
ω′
ω

)]
, (12.233)

where we have used (12.223). Next we use (12.224) to rewrite the above equation in
the following form:

|〈T ′(2)〉|2 = 2e4
[
ω

ω′
+ ω

′

ω
− sin2(θ)

]
. (12.234)

Substituting the above result in (12.227) we obtain the following formula for the
differential cross-section:

dσ

d�
= r2

e

2

(
ω′

ω

)2 [
ω

ω′
+ ω

′

ω
− sin2(θ)

]
, (12.235)

where re ≡ α
m = e2

4πm

(= e2

4πmc2

)
is the classical radius of the electron. The above

formula was originally found by O. Klein and Y. Nishina in 1929, and by I.E. Tamm
in 1930. In the limit of low-energy photons, in which ω 	 m, neglecting terms of
order ω

m , we can approximate, in virtue of (12.224), ω′ with ω and write:

dσ

d�
≈ r2

e

2

(
1+ cos2(θ)

)
, (12.236)

The approximation becomes exact if we compute the total cross-section at threshold,
that is when ω,ω′ → 0. Since

lim
ω,ω′→0

ω

ω′
= 1

by integration in d� we easily find

σ(thr.) = 8

3
πr2

e =
8

3
π

e2

4πm
. (12.237)
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12.7 Divergent Diagrams

So far we have considered amplitudes and cross-sections corresponding to tree-
diagrams, that is diagrams where no closed lines (loops) appear. They correspond
to the terms from (1) to (4) of the second order S-matrix S(2) given in (12.140) and
to the corresponding diagrams in Fig. 12.2. The amplitudes from (5) to (8) instead
involve loops, as it is apparent from the same figure. In particular diagrams (5) and (6)
(which represents the equal contributions of the terms (6) and (7) in (12.140)) refer
to transitions between initial and final states consisting of a single particle with the
same quantum numbers. They are referred to as self-energy transitions. Considering
first the electron self-energy diagram corresponding to the terms (6) and (7), the
S-matrix element contributing to the process is read from (12.140)20:

(ie)2
∫

d4xd4 y : ψ̄(x)γ μSF (x − y)γ νψ(y) : DFμν(y − x)

= −i
∫

d4xd4 y : ψ̄(x)�(x − y)ψ(y) :, (12.238)

where we have defined21:

�(x − y) ≡ −ie2γμSF (x − y)γ νDFμν(x − y)

= −ie2
∫

d4q

(2π)4
d4k

(2π)4
γμ

1

�q − m
γ ν

1

k2 e−i(q−k)·(x−y)

=
∫

d4 p

(2π)4
�(p)e−i p·(x−y). (12.239)

and p = q − k. The Fourier transform �(p) of �(x − y) reads

�(p) ≡ −ie2
∫

d4k

(2π)4
γ μ

1

� p− � k − m
γ ν

1

k2 . (12.240)

Computing the S(2) term (12.238) between an incoming and outgoing electron states
with momenta Pi and Pf , the space–time integrals yield a delta-function δ4(Pf −Pi )

implementing the total momentum conservation (Pf = Pi ), times a second delta-
function which sets Pi = q − k = p. We find:

i〈T ′〉 = −2miū(p, r)�(p)u(p, r). (12.241)

Notice that, in contrast to the tree-amplitudes, here the delta functions are not
enough to eliminate all the momentum integrals and we are left with the integral
(12.240) over the photon momentum k. This is a common feature of diagrams con-
taining loops. The function �(p) describes the presence of the kind of loop in

20 The factor 1
2 is canceled by the sum of the two identical terms (6) an (7) of (12.140).

21 Here and in the following we shall omit, for the sake of simplicity, the integration prescription
defined by the infinitesimal term iε in the Feynman propagators.
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Fig. 12.11 a Electron
self-energy diagram; b
Photon self-energy diagram;
c second order
vacuum–vacuum transition

Fig. 12.11a, in the momentum space representation of an amplitude and only depends
on the inflowing momentum p. We see that the integral representing�(p) is linearly
divergent as k →∞ since there are four powers of k in the numerator and three in the
denominator. Divergencies arising for high values of the four-momentum circulating
in a loop are also called ultraviolet divergences.

As for the photon self-energy, corresponding to diagram (5) of Fig. 12.2, the term
in S(2) contributing to it can be written as follows:

−i
∫

d4xd4 y : Aμ(x)Av(y) : �μν(x − y), (12.242)

where we have defined

�μν(x − y) ≡ ie2Tr
(
γ μSF (x − y)γ νSF (y − x)

) =
∫

d4k

(2π)4
�μν(k)e−ik·(x−y),

where we have denoted by k the difference between the momenta of the internal
fermions, see Fig. 12.11b. The Fourier transform �μν(k) of �μν(x − y) reads:

�μν(k) = −ie2
∫

d4 p

(2π)4
Tr

(
γ μ

1

� p − m
γ ν

1

� p− � k − m

)
. (12.243)

Computing S(2) between two single-photon states, and factoring out the delta function
which implements the total momentum conservation, we find:

i〈k, i |T ′|k, i〉 = −iεμ(k, i)∗�μν(k)εv(k, i). (12.244)

Just like �(p),�μν(k) represents the presence, in the momentum representation of
an amplitude, of a fermion loop, and depends only on the inflowing photon momen-
tum k. It is referred to as the vacuum polarization tensor. We see that�μν(k) exhibits
a quadratic ultraviolet divergence. As we shall discuss in the following, the presence
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of infinities is a general feature of the perturbative expansion when closed lines, that
is loops, appear in a diagram, since the integration over the virtual particles circulat-
ing in the loop makes in general the integral divergent. We note that the existence of
transitions between initial and final one-particle states implies that the one-particle
states are not stable, since

U (+∞,−∞)|p, s〉 �= |p, s〉, (12.245)

U (+∞,−∞)|k, λ〉 �= |k.λ〉. (12.246)

Furthermore in our case the matrix elements are divergent. As we shall see in
Sect. 12.8.2 to dispose of the linear divergence in the electron self-energy graph
we must perform a mass renormalization which allows us to absorb the linear diver-
gent part of (12.240) in the definition of the experimental mass, thereby ensuring
that the one-particle electron (or positron) states (12.245) are stable.

As far as the photon self-energy graph is concerned, we can show that it must
vanish as a consequence of gauge invariance of the S-matrix. To show this it is
convenient to first decompose the vacuum polarization tensor in (12.243) as

�μν(k) = �μν(0)+�(1)μν (k), (12.247)

so that

�(1)μν (k) = �μν(k)−�μν(0)→ 0

as k → 0. Let us prove that the quadratic divergence of�μν(k) is entirely contained
in �μν(0). To this end consider the general operator expansion22

1

A + B
= 1

A
− 1

A
B

1

A
+ 1

A
B

1

A
B

1

A
+ · · ·

and apply it to the propagator ( � p− � k − m)−1 with A =� p − m and B =� k We
obtain

1

( � p− � k − m)
= 1

( � p − m)
− 1

( � p − m)
� k 1

(� p − m)
+ · · · . (12.248)

Inserting this into (12.243) we find

�μν(0) = −ie2
∫

d4 p

(2π)4
Tr

(
γ μ

1

� p − m
γ ν

1

� p − m

)
, (12.249)

22 The expansion is easily derived from the identity

1

A + B
= 1

A
(A + B − B)

1

A + B
= 1

A
− 1

A
B

1

A + B
.
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while�(1)μν (k) is given by the sum of the other terms in the expansion each of which

features extra powers of p in the denominator implying that the divergence of�(1)μν (k)
is at worst linear.

Since�μν(k) is a rank-two Lorentz tensor depending only of k, by Lorentz covari-
ance we may set

�μν(0) = Aημν,

�(1)μν (k) = C(k2)k2ημν + D(k2)kμkν, (12.250)

where A is a constant. On the other hand, gauge invariance of the S(2) term in (12.242)
implies

kμ�μν(k) = 0. (12.251)

This can be shown by gauge-transforming the polarization vectors in (12.244) accord-
ing to (12.186). This induces extra pieces in the amplitude23:

εμ(k)∗�μν(k)kνχ(k)+ εν(k)�μν(k)kμχ∗(k)+ |χ(k)|2kμkν�μν.

Requiring them to vanish, by gauge invariance, (12.251) follows. Using the decom-
position (12.250), we have

kμ�μν(k) = kν
(

A + C(k2)k2 + D(k2)k2
)
= 0.

For k2 = 0, with kμ �= 0, we find

A = 0.

Hence for arbitrary k

C(k2) = −D(k2).

Since the term containing the quadratic divergence A vanishes the expression of the
vacuum polarization tensor reduces to

�μν(k) = �(1)μν (k) = C(k2)(ημνk2 − kμkν). (12.252)

Finally, inserting this result in the matrix element 〈k, i |T ′|k, i〉, we find

i〈k, i |T ′|k, i〉 = −iεμ(k, i)C(k2)(ημνk2 − kμkν)εμ(k, i) = 0, (12.253)

as a result of the mass-shell and transversality conditions: k2 = 0, kμεμ = 0.
We conclude that the vanishing of the photon self-energy for the second order

23 Note that this relation is obtained by gauge-transforming the polarization vectors in (12.244)
according to (12.186), and requiring the variation of the amplitude to vanish.
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S-matrix elements ensures that one-particle photon states (12.246) are stable. Let
us note that the result A = 0, was obtained by requiring gauge invariance of the
S-matrix. Actually if one computes the trace�μμ(0) directly from the integral expres-
sion (12.243) one finds

A = 1

4
�μμ(0) = −

i

4
e2

∫
d4 p

(2π)4
Tr

(
γ μ
( � p + m)

p2 − m2 γμ
( � p + m)

p2 − m2

)

= −ie2
∫

d4 p

(2π)4
(−2p2 + 4m4)

(p2 − m2)2
, (12.254)

where we have used Tr(γ μ) = 0. The result is that A does not vanish, but diverges
quadratically so that gauge invariance appears to be violated. It is however essential
that no gauge invariance property be lost in a consistent theory. Actually it can be
shown that there are different ways of manipulating the divergent integral, one of
them reestablishing the A = 0 result. From this point of view we can say that the
gauge invariance of the theory must be the guiding principle in defining divergent
ill-defined integrals and thus consistency of the quantum theory implies A = 0.
Finally we consider the last term of the second order amplitude (12.140), namely the
term (8) which is associated with the matrix element 〈0|S(2)|0〉.Diagrammatically it
is a graph with no external line, see Fig. 12.11c, consisting of just propagators,
and it is referred to as a vacuum-vacuum transition. The amplitude is readily
calculated to be

〈0|S(2)|0〉 = ie2(2π)4δ(4)(0)
∫

d4 p

(2π)4
d4q

(2π)4
Tr

[
γ μ

1

� p − m
γμ

1

�q − m

]
1

k2 ,

where k = q− p, and corresponds, in momentum space, to the graph in Fig. 12.11c.
We have two sources of infinities in the above expression: One given by the δ(4)(0)
factor due to the absence of external lines in the diagram, implying that the matrix
element is proportional to the four-dimensional volume in space–time; The other
infinity shows up in the double integral which is ultraviolet divergent in p as well
as in q. Actually we may simply ignore this diagram along with all vacuum-vacuum
transition amplitudes, of any order in the perturbative expansion. For example at
fourth order we may have the vacuum diagrams in Fig. 12.12a. To show that the sum
of all these diagram is physically irrelevant, we recall that the S-matrix elements
describe the evolution of a state vector from t = −∞ to t = +∞ in the inter-
action picture (it is a mapping between asymptotic free-particle states). Under this
transformation the vacuum state must remain invariant. Let us denote by

C = 〈0|S|0〉,
the sum of all the vacuum–vacuum transitions to all orders in perturbation theory.
Conservation of the four-momentum pμ implies that the S-matrix can only map the
vacuum state, which has pμ = 0, into itself. Therefore

S|0〉 = C |0〉 = 〈0|S|0〉|0〉.
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Fig. 12.12 a Fourth order
vacuum–vacuum transition;
b disconnected fourth order
graph for the Compton
scattering

However unitarity of the S-matrix implies

〈0|SS†|0〉 = 〈0|CC∗|0〉 = 〈0|0〉 = 1⇒ |C |2 = 1.

The conclusion is that C is just a phase factor and can be disregarded. Note that each
Feynman diagram can be accompanied by a set of vacuum graphs. For example at
fourth order we may have the disconnected graph in 12.12b and so on at any order
in perturbation theory. Since in any disconnected diagram the S-matrix element is
the product of the matrix elements of the disconnected parts, we conclude that the
constant C appears as an overall multiplicative phase factor in the S-matrix. If S′
is the S-matrix with all the disconnected diagrams omitted CS′ is the full S-matrix
differing from S by a trivial phase factor. It follows that all the disconnected Feynman
diagrams can be omitted in studying the perturbative expansion.

12.8 A Pedagogical Introduction to Renormalization

In Sect. 12.7 we have shown that the last three diagrams of Fig. 12.10 are expressed
in terms of divergent integrals. Aside from the divergences associated with vacuum–
vacuum transitions (which, as we have seen, can be disregarded because their effect
is of multiplying any S-matrix element by a same phase factor), the divergence
associated with the photon self-energy transitions (vacuum polarization) was shown
to vanish on the grounds of gauge invariance. On the other hand, the divergence
associated with the electron self-energy graph was found to be somewhat “serious”
in that there seems to be no simple and consistent way to eliminate it.24

Actually the treatment of the aforementioned divergences was given for matrix
elements 〈out |S(2)|in〉 of S(2) between initial and final single-particle states obeying

24 Note that the problem of the electron self-energy already exists in the classical theory of the
electron. Indeed, either one assumes the electron to be a point particle without structure, in which
case the total energy of the electron together its associated field is infinite; or one assumes a finite
electron radius, in which case it should explode as a consequence of the internal charge distribution.
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the equations of motion of the free theory (on-shell particles), namely25

( � p − m)u(p, s) = 0, (12.255)

k2 = 0; ε · k = 0. (12.256)

Photon and electron self-energies are just an example of diagrams containing loops.
As already mentioned, the presence of loops in a Feynman diagram entails an inte-
gration over the momentum k of the virtual particle circulating in the loop, and
this, in general, implies an ultraviolet divergence of the integral when the k → ∞.
Thus, when we consider higher order terms in the perturbative expansion many more
ultraviolet divergences (actually infinitely many) show up in the computation of the
S-matrix. This tells us that the Feynman rules for the computation of the amplitudes
are in some sense incomplete since they do not tell us what to do with divergent inte-
grals when computing amplitudes beyond the lowest tree-level. It turns out, however,
that if we express amplitudes in terms of the physical measurable parameters of the
theory, namely the mass and the coupling constant, the amplitudes become finite.

Let us make this statement more precise. It must be observed that when we consider
higher order terms in perturbation theory, the parameters m and e appearing in the
Lagrangian do not represent the experimental values of mass and coupling constant,
as it was anticipated in the introduction. For example the electron experimental mass
is defined as the expectation value of the Hamiltonian (the energy operator) when
the one-particle electron state has zero three-momentum. This has to be computed,
to the order of precision required, using

mexp = 〈p, s|Ĥ |p, s〉
〈p, s|p, s〉

∣∣∣∣∣
p=0

,

|p, s〉 and Ĥ being the states and Hamiltonian operator of the complete interacting
theory, the former being perturbatively expressed in terms of free states in (12.3).
Notice that in no situation an electron state can be identified with a free state in the
Fock space, of the kind we have been using so far in our analysis: the higher order
terms in the expansion (12.3) are always present. The reason for this is that an electron
is never isolated since it always interacts at least with its own electromagnetic field,
and its self interaction contributes to the perturbative expansion (12.3).

Similarly the coupling constant, the physical charge of the electron, should be
defined as the quantity which appears in an experimental result. For example the
charge may be defined as the parameter that appears in the Compton scattering
cross-section at threshold. Therefore to any order in the computation, the result must
be given by the formula (12.237) with e replaced by eexp.

25 Here and in the following we shall refer, for simplicity, only to electron wave functions u(p, s),
to electron lines and so on. However all our analysis equally applies to the electron antiparticle, the
positron, as well as to, any other charged lepton, like muons and tau mesons.
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When these definitions are implemented, the parameters e,m entering the original
Lagrangian can be expressed in terms of the physical ones by relations of the form

e = e(eexp),

m = m(mexp, eexp).

In the following it will be convenient to rename e0 and m0 the parameters entering
the Lagrangian, called the bare parameters, while the physical measurable values of
the coupling constant and mass will be denoted by e and m, respectively, so that the
relations (12.257) take the form

e0 = e0(e),

m0 = m0(m, e).

As we shall see in the sequel, these relations actually contain divergent quantities.
This means that, since the experimental mass and charge are obviously finite, the
parameters e0, and m0 entering the Lagrangian, in terms of which the Feynman rules
were constructed, must be themselves infinite in order to obtain finite results for the
physical parameters. Therefore e0 and m0 are not observable. By eliminating e0,m0
in terms of m, e, and by suitable redefinition of the fields, all higher order amplitudes
turn out to be finite. The technique used to handle the divergences appearing in
perturbation theory is called renormalization. By means of it the divergences can
be isolated and reinterpreted as unobservable redefinitions of the mass, coupling
constants and field operators of the theory.

Let us observe that the renormalization program requires manipulations of infinite
quantities, given in terms of divergent integrals showing up in the perturbative expan-
sion. This raises many questions of mathematical consistency, not all of them having
a clear answer. However, even if its mathematical formulation may seem somewhat
unsatisfactory, from a pragmatic point of view the renormalization program is fully
justifiable, since by means of it we are able to extract finite results which are found
to be in remarkable agreement with experiments. We shall give examples of that in
the last section.

Renormalization is therefore a necessary route in order to extract physical verifi-
able answers from the quantum theory of fields.

The full renormalization program is rather complicated and its full exposition is
beyond the scope of this book. The key point however is that, as it will be shown in
the next section, in quantum electrodynamics all the divergences appearing in higher
order corrections are associated with a limited number of diagrams, represented in
Fig. 12.13a–c, namely the self-energy diagrams considered as parts of larger higher-
order graphs, together with the vertex-part diagram to be defined below. This means
that, once we are able to consistently eliminate the divergences associated with this
limited number of diagrams, all the divergences of the theory, at least in principle, can
be eliminated. In this case we say that the theory, QED in our case, is renormalizable.

By self-energy part or self-energy insertion of a larger diagram we mean a portion
of the graph which, if cut off from the rest, is a self energy diagram of the kinds
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Fig. 12.13 One-loop
divergent diagrams in QED

illustrated in Fig. 12.11a and b. It is important at this stage to distinguish between
self-energy parts and self-energies, computed for the second order amplitudes in
Sect. 12.7. Indeed, in the latter case the amplitude was taken between external on-shell
states, that is between states obeying the equations of motion of a free particle, while
the former describe just parts of the amplitude associated with the larger diagram.
They can be viewed themselves as self-energy amplitudes, whose external lines
however, may not describe on-shell particles, but rather be internal lines of the larger
graph, represented by propagators. For example in the Compton scattering we may
have, at fourth order, the diagrams in Fig. 12.14a. We see that in these diagrams there
is a second-order 1-loop electron self-energy inserted in an external and internal
electron line of the larger graph. Note that, in the latter case, both the lines attached
to the self-energy part are internal and thus correspond to electron propagators in
the amplitude. Therefore the self-energy part is not computed between external one-
particle states obeying the free-particle equations of motion ( � p − m)u(p, s) = 0,
i.e. the inflowing momentum is off-shell p2 �= m2.

Similarly, considering a photon self-energy insertion, we may have at fourth order
the 1-loop diagrams in Fig. 12.14b, where the second-order self-energy part is inserted
between two photon lines, one of which is internal and thus described by a virtual
photon, for which the mass-shell and transversality conditions k2 = 0, ε · k =
0 are not satisfied. It follows that our computations of the self-energies given in
Sect. 12.7 for the second-order 1-loop S-matrix elements between external on-shell
states should be reconsidered when applied to self-energy parts. In particular the
proof that the (divergent) 1-loop self-energy of the photon is zero does not apply
when we have a photon self-energy part since the conditions k2 = ε · kμ = 0 used in
the proof do not hold. The same is true a fortiori for the 1-loop electron self-energy
considered in Sect. 12.7, where we have seen that it is actually divergent even if
it refers to an amplitude between external states. We shall show in the following
that both the photon and electron self-energy insertions can be made finite by mass
renormalization, coupling constant renormalization and field renormalization.
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Fig. 12.14 a Second order
electron self-energy parts in
fourth order diagrams; b
second order photon
self-energy parts in fourth
order diagrams

Furthermore, when we consider diagrams that are parts of larger ones, besides
the self-energy graphs, a further divergent contribution comes into play, namely the
vertex part, whose 1-loop diagram, (second order in the coupling constant), is given
in Fig. 12.13c. This diagram exists only when it is part of a larger diagram since when
the external electron and photon lines are on the mass-shell momentum conservation
cannot be satisfied. This justifies why it was not considered when discussing S-matrix
elements between external states.26

12.8.1 Power Counting and Renormalizability

In this section we show that QED is a renormalizable theory, by which we mean
that only a limited number of amplitudes is divergent. In particular, at one-loop, the
divergent amplitudes are those associated with the self-energies and vertex insertions
discussed in the previous section, see Fig. 12.13a–c. This justifies the assertion made
in the previous section that the consideration of the self-energies and vertex parts are
actually sufficient to show that in QED all the divergences can be disposed of.

We have so far restricted our attention to diagrams containing just one loop. A
generic diagram may however contain various loops Let us define the superficial
degree of divergence DG of a diagram as a number which signals, if non-negative,
the presence in the amplitude of divergent integrals. We observe that in each Feyn-
man graph there is an integration in ( �p −m)−1d4 p for each internal fermion (elec-
tron) line and an integration d4k

k2 for each internal boson (photon) line, which con-
tributes three and two units, respectively, to the degree of divergence of the amplitude,

26 There are in principle further divergences associated with the so-called photon-photon system,
Fig. 12.13d and the three-photon vertex, Fig. 12.13e. Such divergences are however armless (see
below).
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Furthermore, at each vertex we have a δ4-function expressing conservation of the
momenta flowing in and out of the vertex. This eliminates four momentum inte-
grations at each vertex (i.e. an integral in d4 p). However one of the momentum
δ4-functions just implements the conservation of the total momentum and thus is
ineffective in eliminating momentum integrals. Taking this into account, we may
define the superficial degree of divergence to be given by

DG ≡ 3Fi + 2Bi − 4(V − 1), (12.257)

where Fi and Bi are the number of internal fermion and boson lines, respec-
tively, and V is the number of vertices. Here we are using the words “fermion”
and “boson” instead of electron and photon because our considerations are actu-
ally valid for any theory containing bosons and fermions. What really characterizes
a theory is the interaction vertex. For QED the interaction Hamiltonian density is
HI = −eψ̄(x)γ μψ(x)Aμ(x), so that at each vertex there are two fermion and one
boson lines. Let us denote Fi , Fe and Bi , Be the number of internal and external
lines. Since an external line is connected to one vertex and an internal line connects
two vertices, it is easy to see that27

2Fi + Fe = 2V,

2Bi + Be = V . (12.258)

If we solve the above equations inFi and Bi and substitute the result into (12.257)
we find

DG = 4− 3

2
Fe − Be. (12.259)

We conclude that the degree of divergence does not depend on the number of vertices
and internal lines, but only on the number of external lines. In particular we see that
DG > 0 only for a limited number of diagrams. In general when this happens we
say that the theory is renormalizable. Therefore QED is renormalizable.

On the other hand the renormalizability property is related to the physical dimen-
sion of the coupling constant. Let us first recall from Sect. 12.3.5 that, using nat-
ural units [c], [�], the fermions have dimension 3

2 in mass units and the bosons
dimension 1. Furthermore the action of a theory is dimensionless, so that the
Lagrangian density has dimension (in mass) [M4]. On the other hand, if from each
vertex f fermionic and b bosonic lines originate, respectively, we must have that the
dimension of the coupling constant λ in front of the interaction Lagrangian density is

[λ] = [M4−ν] = [M−dλ],

27 To derive these relations, one can cut each internal fermion line of a diagram into two parts. The
total number of lines so obtained should be twice the number of vertices. In this counting however,
each internal line contributes two units (i.e. a total of 2Fi units) and each external ones a single unit
(i.e. a total of Fe units). A similar argument applies to the boson lines.
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where ν = 3
2 f +b. In particular for quantum electrodynamics we find ν = 3

2 f +b =
4, so that the coupling constant e√

4π
,
( e√

4π�c
in the usual units

)
is indeed dimen-

sionless. For a general theory we can generalize (12.258) as follows:

2Fi + Fe = fV .

2Bi + Be = bV . (12.260)

Substituting the values of Fi and Bi in (12.257) we find

DG = bV − Be + 3

2
( f V − Fe)− 4V + 4

= V

(
b + 3

2
f − 4

)
+ 4− 3

2
Fe − Be = −dλV − 3

2
Fe − Be + 4, (12.261)

where we have denoted by dλ = b+ 3
2 f −4 the physical dimension of λ. Therefore:

If b+ 3
2 f < 4, that is if dλ > 0, as the perturbative order V increases, DG decreases

and amplitudes are finite. We say in this case that the theory is super-renormalizable.

If b + 3
2 f = 4, so that dλ = 0, the coupling constant is dimensionless. In this case

DG is independent of V and the theory is renormalizable.

If b + 3
2 f > 4, dλ < 0, the theory is not-renormalizable since, by increasing the

order of the diagram, that is the number of the vertices, the degree of divergence also
increases and we are left with an infinite number of divergent diagrams.

After this general discussion, let us come back to the case of the QED. At one-
loop order besides the three divergent diagrams a,b,c of Fig. 12.13, corresponding
to the electron and photon self-energy parts and vertex part discussed before, which
are of second-order in the coupling constant, there is also at one loop a divergent
fourth-order diagram, represented in Fig. 12.13d, which is referred to as the photon-
photon system and an order-three three-photon vertex, see Fig. 12.13e. Applying
(12.257) to diagrams a,b, and c we immediately conclude by power counting that the
electron self-energy part is linearly divergent (DG = 1), the photon self-energy part
is quadratically divergent (DG = 2) and the vertex part is logarithmically divergent
(DG = 0).

As far as the photon–photon system is concerned, it is logarithmically divergent,
while the three-photon vertex is linearly divergent DG = 1. However, an explicit
evaluation of the former diagram, shows that the coefficient of its divergent part is
exactly zero. Therefore we shall disregard this diagram in the following. As far as
the three-photon vertex is concerned, it is zero being odd under charge conjugation
and thus would violate the charge conjugation symmetry (recall from Chap. 11 that
the photon is odd under charge conjugation: ηC = −1). Actually, by the same
argument, one can show that all diagrams with an odd number of external photons
is zero (Furry’s theorem).

Renormalizability of QED means that all the divergences appearing in the pertur-
bative expansions can be eliminated. As previously anticipated, a complete account
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of the full renormalization program to all orders is rather heavy and complicated
and would be outside the scope of this pedagogical introduction. In the following
we shall therefore limit ourselves to apply the renormalization program to the self-
energy and vertex parts given in Fig. 12.13 which correspond to 1-loop insertions
and are therefore of second order in the coupling constant. We believe that even in
this restricted framework the main ideas used in the full renormalization program,
to all orders, can be understood.

Thus far we have been dealing with divergences as if they were well defined
quantities. Actually, in order to make sense of divergent integrals, and their manipu-
lations, it is important, as a first step, to make such divergent integrals finite by some
regularization procedure. The general procedure is the following. One first separates
the divergent integral into two parts,28 where the first part is still divergent, but the
divergence is entirely contained in a set of divergent constants, that is in a set of
integrals which do not depend on the external momenta, the second part instead is
completely finite and, in general, will depend on the external momenta. To show
how this separation can be made we quote the following simple example.29 Let us
consider the following integral:

σ(p) =
∞∫

0

dk

k + p
,

which is logarithmically divergent. If we differentiate with respect to p we obtain

σ ′(p) = −
∞∫

0

dk

(k + p)2
= − 1

p
.

Therefore

σ(p) = − log p + c.

We have thus separated the divergent part of σ(p), given by the constant c, from its
finite part. Analogously, from the linearly divergent integral

σ(p) =
∞∫

0

kdk

k + p
,

by the same procedure, we obtain

28 Actually, beyond 1-loop, there are divergences that require a more careful treatment than just
separation into a divergent and a finite part (overlapping divergences). We can neglect them, since
we are going to discuss only 1-loop self-energy and vertex insertions which cannot give rise to this
kind of divergences.
29 See Weinberg’s book [13].
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σ(p) = a + bp + p log p,

where a and b are divergent constants. In general for a divergence of order D of the
integral we obtain a polynomial in the external momenta of degree D − 1 whose
constant coefficients are divergent plus a finite part. Actually the given decomposition
is equivalent to the first terms of a Taylor expansion of the integral in the external
momenta. However we must pay attention to the fact that the separation between
a divergent part and a finite part is not uniquely defined. Indeed we may always
change the value of the finite part by adding a constant to it and subtracting the same
constant from the divergent part. In order to have a uniquely defined expansion we
must therefore add some requirement dictated by physical considerations.

The previous examples are given in terms of one-dimensional integrals. Coming
back to the divergent four-dimensional integrals arising from loop integration, in
order to manipulate the “constant” divergent integrals they need to be regulated,
that is made finite, by a some convenient regularization scheme. There are several
regularization schemes which do the work and would be worth discussing, since they
allow to compute the explicit form of the divergence. However, being their treatment
rather technical, it would be outside the limited discussion of the renormalization that
we plan to present. We shall therefore avoid entering the detail of the regularization
procedures. We can just give a simple example of how regularization can be achieved
for the linearly divergent integral (12.240). In this case can use the so called Pauli–
Villars scheme of regularization by modifying the photon propagator in the integral
as follows:

ημν
−i

k2 → ημν

(−i

k2 −
−i

k2 −�2

)
= −iημν

−�2

k2(k2 −�2)
.

The integral (12.240) becomes

�(reg)(p) = −ie2
∫

d4k

(2π)4
γ μ

1

( � p− � k)− m
γμ

[ −�2

k2(k2 −�2)

]
. (12.262)

We see that�(reg)(p) is finite as long as�2 is kept finite. If we separate the integral
into a divergent (in the�2 →∞ limit) and a finite part, as we shall do in Sect. 12.8.2,
the finite part remains the same when �2 →∞, while the divergent regulated part
becomes infinite only when �2 →∞.

This example shows how regularization allows us to manipulate quantities which
become divergent only when the regularization is removed. In the following, with
abuse of notation, we shall call these regulated quantities “divergent”, but it must
be kept in mind that they are in fact regulated. Only once regularization has been
performed the renormalization program allows us to separate the divergent part of an
integral from its finite part and to prove that the entire divergence can be eliminated
by appropriate redefinitions of the mass and coupling constant of the theory. This
procedure is referred to as mass and coupling constant renormalization, and will be
discussed in the next sections.
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Fig. 12.15 Corrected electron propagator by insertion of a second-order self-energy part

Fig. 12.16 Correction to the electron propagator in the chain approximation

Since our process of elimination of the infinities will require a redefinition of
the parameters and of the fields entering the Lagrangian, we will rewrite the initial
Lagrangian, in terms of which the Feynman rules are defined, as follows:

L0 = ψ0(i� ∂ − m0)ψ0 − 1

4
F0μνFμν0 + e0 A0μψ̄0γ

μψ0. (12.263)

Therefore, in this notation, the fieldsψ(x), Aμ(x) and the coupling constant e appear-
ing in all the formulas written so far, should be intended as ψ0(x), A0μ(x) and e0,

respectively.

12.8.2 The Electron Self-Energy Part

Consider an internal electron line of a Feynman graph. When adding higher order
contributions to the amplitude of the same process, we will have to consider a dia-
gram which differs from the initial one only in the insertion of a self-energy part in
the electron line. In summing the contributions from the two diagrams, all the rest
factorizes while the propagator associated with the internal line is replaced by the
following sum, see Fig. 12.15:

SF (x − y)+
∫

d4x1d4x2SF (x − x1)[−i�(x1 − x2)]SF (x2 − y),

where �(x1 − x2) was defined in (12.239). Since the effect of the higher order
contribution is accounted for by replacing the propagator SF (x − y) in the original
amplitude with the above sum, the second term on the right hand side can be seen as
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a second order correction to the free propagator. In momentum space this correction
reads,

SF (p)+ SF (p) [−i�(p)] SF (p), (12.264)

where

SF (p) = i( � p − m0)
−1 ≡ i

� p + m0

p2 − m2
0

,

and −i�(p) is given in (12.240). Diagrammatically the 1-loop corrected propaga-
tor is given in Fig. 12.15.30 The correction (12.264) to the free propagator can be
improved by considering the so called chain approximation. In this procedure one
considers higher order corrections to the free propagator arising as a (infinite) sum of
all the graphs obtained as chains of 1-loop insertions as in Fig. 12.16. The improved
correction S′F to the propagator is then

S′F (p) = SF (p)+ SF (p)[−i�(p)]SF (p)

+ SF (p)[−i�(p)]SF (p)[−i�(p)]SF (p)+ · · ·
= SF (p)

(
1

1+ i�(p)SF (p)

)

= i

� p − m0

1

1−�(p)( � p − m0)−1 =
i

� p − m0 −�(p) . (12.265)

Note that each correction term in the above sequence is two orders (in the coupling
constant) higher with respect to the preceding one, since each self-energy insertion
in the chain is of second-order (Figs. 12.17, 12.18).31

30 Note that if (12.264) were taken between external (on-shell) electron lines, we would recover
the electron self-energy computed in Sect. 12.7, namely (12.241).
31 Actually we could make the chain approximation exact (12.264) if we would consider each
electron self-energy insertion not restricted to one-loop order. This can be done by introducing the
concept of one particle irreducible (1PI) diagram. A diagram is 1PI if it cannot be disconnected by
cutting one internal line. Thus we may consider a 1PI self-energy diagram which has contributions
from 1PI diagram only, like the three fourth order diagrams of Fig. 12.17a, while the graph b, being
reducible, would not contribute. The reason for selecting only 1PI diagrams is that the reducible
diagrams can always be decomposed in 1PI diagrams without further integration, and therefore if
we can take care of the divergences of the 1PI diagrams, we automatically take care of the general
diagram. Let us denote the correction to the free propagator due to the sum of all possible 1PI
self-energy diagrams by −i�∗(p), see Fig. 12.18a. The correction (12.264) becomes

SF (p)+SF (p)
(−i�∗(p)

)
SF (p). (12.266)

If we now perform the chain expansion as in (12.265) but with −i�(p) replaced by −i�∗(p), we
obtain the exact propagator in the form

S′F (p) =
i

� p − m0 −�∗(p) , (12.267)

see Fig. 12.18b. In the following however we will limit ourself to consider the approximation
(12.264) where only the 1-loop integral �(p), lowest order approximation of �∗(p), appears.
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Fig. 12.17 Examples of fourth-order corrections to the electron propagator: a one-particle irre-
ducible; b one-particle reducible

Fig. 12.18 a Definition of −i�∗(p) as the sum of the corrections to the electron propagators due
to all 1PI diagrams; b exact propagator

To proceed we apply the considerations of the last section to separate the divergent
part of�(p) from its finite part. As we have noted earlier, the expansion of a divergent
integral into a polynomial in the external momenta with divergent coefficients plus
a finite remainder is equivalent to a Taylor series expansion, truncated to the first
divergent terms plus a finite remainder. Let us apply this technique to the divergent
integral

�(p) = −ie2
0

∫
d4k

(2π)4
γ μ

1

� p− � k − m0
γμ

1

k2 . (12.268)

By differentiation with respect to the external momentum p, we increase the power
of k in the denominator by one unit making the result only logarithmically divergent.
Through a second differentiation we obtain a finite, that is convergent, integral. In
our case we have then a Taylor expansion truncated at first order in p plus a finite
remainder. Taking into account that by Lorentz invariance�(p) can only be function
of � p and p2 we expand �(p) in powers of ( � p − m) where m is arbitrary:

�(p) = δm + B( � p − m)+�(c)(p). (12.269)
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Here δm and B are divergent constants given by

δm = �(p)|p2=m2 , B = 1

4
γ μ

∂�

∂pμ

∣∣∣∣
p2=m2

.

while �(c)(p) is convergent and satisfies

�(c)(p) = γ μ ∂�
(c)

∂pμ
= 0 for p2 = m2. (12.270)

We see that the entire divergence of �(p) is contained in the infinite constants
A and B.

We can now insert the result (12.269) into the expression on the right hand side
of (12.265), obtaining

i

� p − m0 −�(p) =
i

� p − m0 − δm − B( � p − m)−�(c)(p) . (12.271)

We see that the pole of S′F (p), which defines the mass of the particle, is no longer at
p2 = m2

0. If we choose the arbitrary parameter m to satisfy:

m0 +�(m) = m, (12.272)

where �(m) ≡ �(p)|p2=m2 , (12.271) yields

S′F (p) =
i

( � p − m)(1− B)−�(c)(p) . (12.273)

Recalling that �(c) vanishes for p2 = m2,m becomes the mass of the particle,
which is shifted from its original value m0, the shift being proportional to the diver-
gent quantity δm ≡ �(m). Since δm is divergent we conclude that the bare mass
m0 present in the original Lagrangian must be divergent as well, in order for the
physical mass m to be finite.32 The mass renormalization given by the mass shift
(12.272) provides the removal of the divergent term δm = �(m) from the corrected
propagator, but it still depends on the infinite constant B.33 As it is apparent from

32 Naively one could think that the separation of the physical mass into the bare mass m0 and the
mass-shift δm = �(m)would correspond to the separation of the electron mass into a “mechanical”
and a “electromagnetic” mass. However such separation is devoid of physical meaning since it
cannot be observed. We also note that the process of mass renormalization is not a peculiarity of
field theory. For example when an electron moves inside a solid it has a renormalized mass m∗, also
called effective mass, which is different from the mass measured in the absence of the solid, i.e.
the bare mass m0. However, differently from our case, the effective and bare mass can be measured
separately, while in field theoretical case m0 cannot be measured.
33 We observe that this term would give a vanishing contribution if we had an external on-shell
state instead of the propagator in (12.264) since the term B(� p − m) in (12.269) is zero on the free
electron wave function.
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the (12.273), this infinite constant changes the residue at the pole from its original
value i to

i (1− B)−1 .

To dispose of the divergent constant B we observe that neglecting higher order terms
in e2

0 we may write

�(c)(p) � �(c)(p)(1− B),

that is

�(c)(p) � �(c)(p)(1− B) = �(c)(p)Z−1
2 ,

where

Z2 ≡ (1− B)−1. (12.274)

Equation (12.273) can be recast in the following form:

S′F (p) = i
Z2

( � p − m)−�(c)(p) .

We see that the expression multiplying Z2 is completely finite. On the other hand, the
multiplicative constant Z2 can be reabsorbed in a redefinition of the electron field,
namely by defining a renormalized physical fieldψ(x) in terms of a bare unphysical
one ψ0(x) as follows:

ψ0 = Z
1
2
2 ψ. (12.275)

Recalling indeed the definition (12.110) of the Feynman propagator and its Fourier
transform, we have

S′F =
∫

d4ξeip·ξ 〈0|T (ψ(y + ξ)ψ̄(y))|0〉

= Z−1
2

∫
d4ξeip·ξ 〈0|T (ψ0(y + ξ)ψ̄0(y))|0〉

= i
1

( � p − m)−�(c) . (12.276)

so that, when written in terms of the renormalized mass m and the renormalized
field ψ , the corrected propagator is completely finite. The renormalization of the
bare field into the physical field by the divergent constant Z2 given in (12.275) is
usually referred to as the wave function renormalization.34 At the Lagrangian level,

34 Recall that a one-particle state and its wave function ψ(x) is related to the quantum fields ψ̂ by
〈0|ψ̂(x)|a〉, see for example (12.64) for a boson particle.
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we can give an interpretation of the renormalization procedure as the addition of
counterterms to the original Lagrangian L0. Indeed, taking into account (12.272)
and (12.275) we have

LDirac
0 = ψ0(i� ∂ − m0)ψ0 = Z2ψ(i� ∂ − m)ψ + Z2ψψδm. (12.277)

Therefore the Dirac Lagrangian written in terms of the physical mass and fields is

LDirac = ψ(i� ∂ − m)ψ

= LDirac
0 − (Z2 − 1)ψ(i� ∂ − m)ψ − Z2ψψδm. (12.278)

One can verify that applying the Feynman rules to these counterterms the mass
m0 acquires the correction (12.272) while the logarithmically divergent part B is
subtracted from �(p).

12.8.3 The Photon Self-Energy

Let us now consider the photon self-energy graph. We perform the same steps as
in the case of the electron self-energy graph. A photon self-energy insertion in an
internal photon line defines a second order correction to the photon propagator. In
the coordinate representation the second-order corrected photon propagator reads:

D′Fμν(x − y) = DFμν(x − y)

+
∫

d4x1d4x2 DFμρ(x − x1)[−i�ρσ (x1 − x2)]DFμρ(x2 − y),

and is represented diagrammatically in Fig. 12.19. In the momenutm representation
the corrected propagator reads:

D′Fμν(k) = DFμν(k)+ DFμρ(k)[−i�ρσ (k)]D′Fσν(k). (12.279)

As in the electron case, the self energy diagram is just part of a larger graph and the
inflowing momentum k is off mass-shell. For this reason �ρσ (k) is non-vanishing
and is expressed by the divergent integral in (12.243), which is of second order in
the charge e0.

Just as for the electron case, we limit ourselves to the chain approximation and
consider all the higher order corrections to the propagator originating from chains
of self-energy insertions, see Fig. 12.20.35 Performing the sum over the chain of

35 The discussion made in footnote 29 about the exact electron propagator also applies to the photon
case. We can express the exact photon propagator as the sum of chains of insertions �∗μν(k) each
representing the sum of all the 1PI diagrams to the photon propagator. We shall restrict, for the sake of
simplicity, to the chain approximation of the photon propagator, in which�∗μν(k) is approximated,
to lowest order, by �μν(k).
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Fig. 12.19 Second order correction to the photon propagator

Fig. 12.20 Correction to the propagator in the chain approximation

1-loop diagrams is, however, somewhat more complicated than in the case of the
electron self-energy, because of the tensor indices carried by �μν.We may proceed
as follows. Denote by DF (k) and �(k) the 4 × 4 matrices DFμν(k) and �ρσ (k).
Define now the projector P(k) = (P(k)μν):

P(k)μν ≡ δμν −
kμkν

k2 . (12.280)

The reader can easily verify that P(k)n = P(k). From the general form (12.252) of
the vacuum polarization tensor found in Sect. 12.7 and the expression of DFμν(k) in
(12.110), it follows that:

−i�ρσ (k)DFσν(k) = −C(k2)P(k)ρν. (12.281)

The corrected propagator in the chain approximation reads:

D′F = DF + DF [−i�]DF + DF [−i�]DF [−i�]DF + · · ·
= DF

[
1− i�DF + (−i�DF )

2 + · · ·
]

= DF

[
1− CP+ C2

P+ · · ·
]
= DF

[
1− P+

( ∞∑

n=0

(−C)n
)

P

]

= DF

[
1− P+ 1

1+ C
P

]
, (12.282)
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where C = C(k2) and we have used the property of the matrix P(k) of being a
projector. From the above derivation we then find:

D′Fμν(k) = −i
ημν

k2

(
1

1+ C
+ C

1+ C

kμkν
k2

)
. (12.283)

In light of the discussion made in Sect. 12.5.5 about the gauge invariance of
S-matrix elements, we can disregard the kμkν terms in D′F since they give a vanishing
contribution to the S-matrix. Therefore the non trivial part of D′Fμν(k) reduces to

D′Fμν(k) = −
iημν

k2
(
1+ C(k2)

) . (12.284)

The important point is the fact that, assuming that C(k2) has no pole at k2 = 0, the
pole of the photon propagator is not shifted with respect to the tree diagram level,
namely it is located at k2 = 0. Therefore no mass renormalization is needed for
the photon self-energy part. Recalling our discussion in Sect. 12.7, this absence of
renormalization is due both to gauge invariance which implies the vanishing of the
quadratically divergent part �μν(0) = Aημν , and to the assumption of regularity of
C(k2) at k2 = 0. We now have to eliminate the further divergent term C(k2) from
D′Fμν(k) the residue being now given by (1+C(0))−1. This can be done exactly as
in the case of the electron self-energy part. We first observe that the quantity

�(c)(k2) = k2C(k2)− k2C(0), (12.285)

must be finite since C(k2) is logarithmically divergent. In fact �μν(k) is given by
a quadratically divergent integral and C(0) is the coefficient of k2 in its expansion
around k2 = 0

k2C(k2) = k2C(0)+�(c)(k2). (12.286)

Therefore the divergence is entirely contained in C(0). We fix the ambiguity in
(12.285) alluded to in Sect. 12.8.2, assuming�(c)(0) = 0,which can always be done
by shifting a constant from C(0) to �(c)(k2). Therefore the corrected propagator
takes the form

D′Fμν(k) = −
iημν

k2 (1+ C(0))+�(c)(k2)
. (12.287)

We see that the residue changes by the factor Z3 ≡ (1+C(0))−1.Moreover, neglect-
ing higher order terms, we may also write

�(c)(k2) � �(c)(k2)(1+ C(0)) = �(c)(k2)Z−1
3 ,

so that (12.287) becomes
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D′Fμν(k) = −
iημν Z3

k2(1+�(c)(k2))
. (12.288)

where the expression multiplying Z3 is completely finite. As for the electron self
energy, the factor Z3 can be now by reabsorbed by the photon wave function renor-
malization, namely by setting

A0μ = Z
1
2
3 Aμ (12.289)

Indeed recalling (12.110) we have

D′μνF =
∫

d4ξeip·ξ 〈0|T (Aμ(y + ξ)Aν(y))|0〉

= Z−1
3

∫
d4ξeip·ξ 〈0|T (A0μ(y + ξ)A0ν(y))|0〉

= −iημν
1

k2 +�(c)(k2)
. (12.290)

Similarly to what we did for the electron self-energy, the photon wave function
renormalization (12.289) can be interpreted at the Lagrangian level, as the addition
of a counterterm. Indeed we can write for the electromagnetic free Lagrangian density

LF2
0
= −1

4
Fμν0 F0μν = −1

4
Z3 FμνFμν. (12.291)

Therefore the electromagnetic Lagrangian density in terms of the physical renormal-
ized fields is

LF2 = −1

4
FμνFμν = LF2

0
+ 1

4
(Z3 − 1)FμνFμν. (12.292)

The change in the photon propagator given by the self-energy insertion is referred
to as vacuum polarization. The vacuum polarization is a physical measurable effect.
Indeed, let us consider for example the Möller scattering. We have seen in Sect. 12.5.2
that, in a specific Lorentz frame, we can separate the interaction due to the exchange
of transverse photon from the one due to the exchange of longitudinal and timelike
photons, the latter resulting in a instantaneous Coulomb potential energy, whose
Fourier transform is 36

e0V (|k|) = e2
0

|k|2 .

When the self-energy insertion is taken into account, we have to replace the lowest
order photon propagator DFμν with the new propagator D′Fμν given in (12.288).
This implies that the vacuum polarization changes the Coulomb law as follows:

36 With respect to (12.163) we have replaced the coupling constant e with e0 since the amplitude
was computed at lowest order in the coupling constant.
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e2

|k|2 →
e2

|k|2(1+�(c)(−|k|2)) ,

where we have defined e2 = Z3e2
0 and we have set k2 = −|k|2 since we are in

the non-relativistic limit in which k0 = 0. The factor 1/(1+�(c)(−|k|2)) behaves
much like a dielectric constant ε(k) since, as we show below, it reduces the effective
charge (in absolute value) ‘seen’ at a given |k| as |k| decreases (i.e. as the distance
from the charge increases) it lowers the Coulomb in the same way as it happens for
charges in a dielectric material. Pictorially we may say that the vacuum polarization
creates electron–positron virtual pairs circulating in the loop with a resulting partial
screening of the electric charge, as it happens for a charge in a polar dielectric
material. The actual value of�(c)(−|k|2)) can be computed explicitly by appropriate
regularization of �μν(k2). One finds that for |k|2 	 m2 (the threshold for the pair
production e+e−)

e2

|k|2 [
1+�(c)(−|k|2)] �

e2

|k|2
(

1+ α

15π

|k|2
m2

)
. (12.293)

Consider now a Hydrogen-like atom and let us Fourier transform the corresponding
potential energy to configuration space. We have:

eV (x) =
∫

d3k
(2π)3

eik·x −e2

|k|2(1+�(c)(−|k|2)) � −
e2

4πr
− α

15π

e2

m2 δ
(3)(x),

where r = |x|.This change indicates that the electromagnetic force becomes stronger
at small distances.37 This effect can be measured in hydrogen-like atoms, where the
wave function is non-zero at the origin for s-waves. In fact this produces a shift of
the 2s 1

2
level given by

	E =
∫

d3x|ψ(x)|2
(
− α

15π

e2

m2 δ
(3)(x)

)
= − 4α2

15m2 |ψ(0)|2,

and using |ψ(0)|2 = α3m3

8π for the 2s state, we get

	E = −1.123× 10−7 eV.

This change has in particular the effect of removing the degeneration between the
2s 1

2
and 2p 1

2
levels. As will be discussed in the last section, the Lamb shift also

removes the degeneration with a much larger correction. The agreement between
theory and experiments, however, is good enough to verify the shift due to the vacuum
polarization.

37 The seeming singularity due to the presence of the delta function is actually due to our approxi-
mation |k|2 	 m2. In general the correction will be smooth and strongly peaked around x = 0.
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12.8.4 The Vertex Part

We now discuss the third divergent diagram, namely the vertex part whose 1-loop
second order graph is shown in Fig. 12.21, together with the tree-level vertex. The
element of S(3) contributing to the amplitude reads:

(ie0)
3
∫

d4xd4 yd4z : ψ̄0(x)γ
μSF (x − y)γ νSF (y − z)γ ρψ0(z) :

× DFμρ(x − z)A0ν(y) = ie0

∫
d4xd4 yd4z : ψ̄0(x)�

ν(x, z|y)ψ0(z) : A0ν(y),

(12.294)

where we have defined the vertex part connecting the three external legs as:

�ν(x, z|y) ≡ (ie0)
2γ μSF (x − y)γ νSF (y − z)γ ρDFμρ(x − z).

Using the explicit form (12.110) of the propagators in momentum representation we
can write:

�ν(x, z|y) = (ie0)
2
∫

d4q ′
(2π)4

d4q

(2π)4
d4k′
(2π)4

× γμ i

�q ′ − m
γ ν

i

�q − m
γμ
−i

(k′)2 ei(q ′−q)·(y−x)ei(q+k′)·(z−x). (12.295)

Changing integration variables from q, q ′, k′ to k = q ′ − q, p = q + k′ and k′ the
above expression simplifies to:

�ν(x, z|y) =
∫

d4 p

(2π)4
d4k

(2π)4
�μ(p + k, p)eik·(y−x)eip·(z−x), (12.296)

where

�μ(p + k, p) ≡ −ie2
0

∫
d4q

(2π)4
γ μ

i

� k+ �q − m
γ ν

i

�q − m
γμ

−i

(p − q)2
. (12.297)

When the operator (12.294) is computed between on-shell states, conservation of the
total momentum sets the corresponding amplitude to zero, as explained in Sect. 12.4.
Consequently the third order term (12.294) can only contribute to the amplitude of
a larger process, in which at least one of the three external legs is an internal line
of the corresponding Feynman diagram. This means that at least one of the fields
ψ̄0(x), ψ0(z), A0μ(y) in (12.294) is contracted with some other one within a higher
order S-matrix term, to make a propagator. An other process to which such term may
contribute is the interaction of an electron with an external field, in which case A0μ(y)
is to be replaced by Aext

0μ (y). In this case the one loop vertex diagram contributes to
the amplitude a term of the form

2mie0Vμ(p′, p)Aext
0μ (k) = 2mie0ū(p′)�μ(p′, p)u(p)Aext

0μ (k), (12.298)



12.8 A Pedagogical Introduction to Renormalization 527

Fig. 12.21 Third order vertex loop

where Vμ(p′, p) ≡ ū(p′)�μ(p′, p)u(p), while p and p′ = p+ k are the momenta
of the incoming and outgoing electrons, respectively. We see that the above term has
the same form as the tree vertex contribution (12.197) except for the presence of
�μ(p′, p) instead of γ μ. Similarly, if the photon of momentum k is a virtual photon
within a larger graph, the current Vμ(p′, p) will have to be contracted with the cor-
responding photon propagator DFμν(k).According to our discussion in Sect. 12.5.5,
gauge invariance with respect to the incoming photon of momentum k = p′ − p
requires the current Vμ to be conserved (i.e. divergenceless), namely:

kμVμ(p′, p) = (p′ − p)μVμ(p′, p) = 0. (12.299)

When summing all the contributions to a given amplitude coming from S-matrix
terms of orders differing by two units, we will have to sum contributions from two
diagrams differing just in the substitution of a tree vertex by a one loop vertex. Adding
up the two terms amounts to effectively replacing in the lowest order one:

γ μ→ �μ(p′, p),

�μ(p′, p) ≡ γ μ +�μ(p′, p). (12.300)

The quantity�μ(p′, p) then represents a second order correction to a vertex, whose
integral expression in (12.297) has a logarithmic divergence for large values of the
integration variable q, representing the momentum of a virtual electron. The matrix
�μ(p′, p) is referred to as the second order corrected vertex. There are other cor-
rections to the vertex, obtained by inserting self-energy parts in the legs of the three
diagram. These are in principle accounted for by using the exact propagators for the
electrons and the photon.

Expanding �μ(p′, p) in p, p′

�μ(p
′, p) = Lγμ +� f

μ(p
′, p), (12.301)

where Lγμ = �μ(0, 0) and one can isolate the divergent part L, which is a constant,

from the finite remainder � f
μ(p′, p). The second order corrected vertex �μ(p′, p)

consequently splits as follows:
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�μ(p
′, p) = (1+ L)γμ +� f

μ(p
′, p). (12.302)

The ambiguity in the definition of L is fixed as follows. Let us first show that, on the
general grounds of Lorentz covariance, if p′ = p, the current Vμ(p, p) = ū(p)
�μ(p, p)u(p) is proportional, through a constant, to ū(p)γ μu(p). By Lorentz
covariance we can indeed convince ourselves that �μ(p, p), which is a spinorial
matrix depending on p, can only be combination of the matrices pμ1 and γ μ. Using
then the property38

ū(p)γ μu(p) = pμ

m
ū(p)u(p), (12.304)

we conclude that

Vμ(p, p) = ū(p)�μ(p, p)u(p) = f0ū(p)γ μu(p), (12.305)

f0 being a constant. Actually, using Lorentz covariance and the gauge invariance con-
dition (12.299), one can show that the current Vμ(p′, p) can only have the following
general form

Vμ(p′, p) = ū(p′)
(

F1(k
2)γ μ + F2(k

2)γ μνkν
)

u(p), (12.306)

where k = p′− p. 39 It follows that Vμ(p, p) = F1(0)ū(p)γ μu(p), so that F1(0) =
f0. We now fix the ambiguity in L by requiring L = f0, which implies

u(p, s′)� f
μ(p, p)u(p, s) = 0. (12.307)

Let us observe that the vertex �μ(p′, p) contains in general the coupling constant e0

and a factor Z2 Z
1
2
3 originating from the wave function renormalization of the electron

and photon fields

LI
0 = e0ψ̄0γ

μψ0 A0μ = e0 Z2 Z
1
2
3 ψ̄γ

μψ Aμ. (12.308)

We conclude that the logarithmic divergence in the vertex part correction can be
absorbed in a charge (or coupling constant) renormalization as follows:

38 To show this use the general identity

ū(p′)γ μu(p) = 1

2m

[
u(p′)γ μ � pu(p)+ u(p′)� p′γ μu(p)

]

= u(p′)
[

p′μ + pμ

2m
− γ μν (p

′
ν − pν)

2m

]
u(p), (12.303)

where we have written γ μγ ν = ημν + γ μν, and γ μν being defined as [γ μ, γ ν ]/2.
39 See Weinberg’s book [13] for a general derivation of this formula. There the most general form
of �μ(p′, p) is written in terms of γ -matrices, p and p′. The number of independent terms reduces
considerably upon using the Dirac equation �pu(p) = mu(p)(ū(p′)�p′ = mū(p′)) and the identity
(12.303). By further implementing the gauge invariance condition (12.299) the final expression
boils down to the one in (12.306).
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e0 Z2 Z
1
2
3 → e0 Z2 Z

1
2
3 (1+ L) = e, (12.309)

where e defines the physical renormalized coupling constant. Setting 1+ L = Z−1
1

we rewrite (12.309) as follows:

e = e0 Z2 Z
1
2
3 Z−1

1 . (12.310)

We now show an important identity between the vertex function �μ(p′, p) and the
propagator S′F (p). The identity, referred to as Ward identity, is

�μ(p, p) = i
∂S′−1

F (p)

∂pμ
(12.311)

and, as we shall presently show, it is a consequence of the gauge invariance of the
theory. The identity is trivially satisfied by the tree level vertex γμ and the free
propagator i ( � p − m)−1 .At next order, using (12.265) and (12.301), we can rewrite
the Ward identity as follows:

�μ(p, p) = −∂�(p)
∂pμ

. (12.312)

The proof (at second order) can be done by exploiting the fact that, in the presence
of a constant external electromagnetic field Aext

0μ , the electron self-energy part is
modified as follows.

−i�(p)→−i�(p)+ ie0 Ãext
0μ �μ(p, p)+ · · · , (12.313)

where the right hand side represents a power series in the constant Ãext
μ and the second

term represents a single interaction with Ãext
μ . Note that, since the external field is

constant, it transfers zero momentum, so that its Fourier transform is non-zero only
for k = 0 : Ãext

0μ = Ãext
0μ (k = 0)δ4(k). Diagrammatically we can represent (12.313)

as in Fig. 12.22. On the other hand, gauge invariance requires that the interaction with
the external field can be obtained by performing the minimal coupling substitution:

pμ→ pμ + e0 Aext
μ . (12.314)

Therefore we also have

�(p)→ �(p)+ e0 Ãext
μ

∂�(p)

∂pμ

∣∣∣∣
Ãext
μ =0
+ · · · . (12.315)

Comparison of (12.313) and (12.315) gives the Ward identity (12.312).
An important consequence of the Ward identity is that the wave function and

vertex renormalization constants are equal

Z1 = Z2 ⇔ L = −B. (12.316)
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Fig. 12.22 Insertion of an external field in an electron line at zero momentum transfer k = 0

To show this we compute the right hand side of the Ward identity (12.312) using
(12.269) while on the left hand side we substitute (12.301). We obtain

Lγμ +� f
μ(p, p) = −γμB − ∂

∂pμ
�(c)(p).

We now sandwich this relation between external on-shell states and find

u(p, s′)γμu(p, s)L = −Bu(p, s′)γμu(p, s), (12.317)

where we have used (12.307) and the fact that ∂
∂pμ�

(c)(p) vanishes for � p = m.

Recalling the definition (12.274) and that Z1 ≡ (1+ L)−1, we immediately obtain
(12.316).

The equality (12.316) implies that the coupling constant renormalization (12.309)
reduces to

e = Z
1
2
3 e0 → e0 A0μ = eAμ. (12.318)

The cancelation between the electron and photon wave function renormalization
constants has been shown to work at one loop level (second order in the coupling
constant). Actually the implementation of the full renormalization program reveals
that the cancelation between the constants Z1 and Z2 is valid at all orders of the
perturbation theory. It follows that these renormalizations are in fact spurious. This
result is of fundamental importance. Indeed, generalizing to the electromagnetic
interaction of other charged particles, it implies that the electromagnetic coupling is
universal.

The interpretation of the coupling constant renormalization follows the usual lines.
Starting from (12.308) and (12.309) we have

LI
0 = e0ψ̄0γ

μψ0 A0μ = Z1eψ̄γ μψ Aμ. (12.319)

Therefore the physical renormalized interaction Lagrangian density can
be written as

LI = eψ̄γ μψ Aμ = LI
0 + (1− Z1)ψ̄γ

μψ Aμ. (12.320)
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12.8.5 One-Loop Renormalized Lagrangian

We can now summarize the results of the previous sections writing down the rela-
tion between the bare Lagrangian density (12.263) we started from and the phys-
ical renormalized Lagrangian density L. Adding (12.278), (12.292) and (12.320)
we find

L0 = ψ0(i� ∂ − m0)ψ0 − 1

4
F0μνFμν0 + e0 A0μψ̄0γ

μψ0

= L+	L, (12.321)

where

L = ψ(i� ∂ − m)ψ − 1

4
FμνFμν + eψγμψ Aμ, (12.322)

and

	L = (Z2 − 1)ψ(i� ∂ − m)ψ + Z2ψψδm

− 1

4
(Z3 − 1)FμνFμν − (1− Z1)ψγ

μψ Aμ. (12.323)

The relation between the bare fields and parameters and the physical ones is
given by

ψ0 = Z
1
2
2 ψ; A0μ = Z

1
2
3 Aμ

m0 = m − δm; e0 = Z1 Z−1
2 Z

− 1
2

3 e = Z
− 1

2
3 e. (12.324)

Note that the added terms in	L have exactly the same structure as the terms present
in the original Lagrangian L0.

The conclusion is that in order to have finite two-point Green’s functions, that is
propagators, and vertex functions we must start from a Lagrangian whose fields and
parameters are not the physical fields and parameters, but are the unphysical, formally
infinite bare quantities defined by (12.324). This has been shown at one-loop level or,
equivalently, at second order for the self-energy and vertex insertions. In the general
theory of renormalization one proves that the results obtained at one-loop level are
sufficient to render finite the diagrams to any order in the perturbative expansion.

12.8.6 The Electron Anomalous Magnetic Moment

We have seen that the removal of the divergences from the second- order self-energy
and vertex parts of a larger diagram is achieved by separating the divergent from the
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finite parts of the amplitude, the former being reabsorbed in the mass, coupling con-
stant and wave-function (field) renormalization. The finite parts, on the other hand,
give a well defined contribution to the amplitude and the result of its computation
can be compared with experiment.40 In this subsection we want to give an important
example of this finite contribution in a specific case, namely the (second-order) cor-
rection to the scattering of an electron by an external field Aext

μ . This will allow us
to compute the anomalous magnetic moment of the electron and compare the result
with experiment.

Let us start with the first-order computation of the scattering amplitude of an
electron in the external field Aext

μ . It was computed in Sect. 12.5, (12.197), with the
result

〈ψout |S(1)|ψin〉 = i
e

�c

(
mc2

√
Ep Ep′Ve

)
ū(p′, s)γ μu(p, r) Ãext

μ (k), (12.325)

where k = p′ − p. Let us now consider the second order correction to the vertex part
whose diagram is given in Fig. 12.23. We know that the vertex correction is given by
the right hand side of (12.301), where the entire (logarithmic) divergence is contained
in the constant L and can be reabsorbed in the coupling constant renormalization via
Z1 = (1+ L)−1. Hence � f

μ represents an observable effect. We are thus confronted

with the explicit computation of � f
μ. The computation of this integral is not trivial

and we shall only quote the result. If the electron is supposed on the mass-shell,
p′2 = p2 = m2, and if the momentum transfer kμ is small one obtains

ū(p′)� f
μ(k)u(p) =

α

2π
ū(p′)

[
− 1

2mc
γμνkν + 2k2

3m2c2 γμ

(
ln

m

λmin
− 3

8

)]
u(p).

(12.326)

Comparing the above formula with the general expression in (12.306) we can identify
the invariant functions F1(k2), F2(k2) in the latter with the following quantities:

F1(k
2) = L + α

3π

k2

m2c2

(
ln

m

λmin
− 3

8

)
,

F2(k
2) = − α

4πmc
, (12.327)

where we have used the identification of L with F1(k2 = 0) = f0. We see that
only F1 is divergent, the divergence being in L and is reabsorbed in the charge
renormalization, while F2 is finite and gives the correction to the electron magnetic
moment, as we shall show.

The constant λmin in (12.326) is a fictitious photon mass that has been introduced
in order to avoid the divergence of the integral for small k, known as the “infrared
catastrophe”. In fact to obtain the previous result the photon propagator has been
modified as follows:

40 Corrections given by the finite parts of loop diagrams are often referred to as radiative correction.
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Fig. 12.23 Radiative
correction to the Aext

μ field

−i
1

k2 →−i
1

k2 + λ2
min

. (12.328)

This modification obviously entails that the amplitude (12.326) diverges when we
let the photon mass go to zero giving rise to the so-called infrared catastrophe.
Let us shortly comment on this point, since this kind of infrared divergence occurs
quite often when computing Feynman diagrams. Actually this infrared divergence
has nothing to do with the ultraviolet one present in �μ(p′, p) which was included
in the definition of L. Its origin lies in the fact that considering an electromagnetic
interaction process, we are asking a wrong question, namely: What is the amplitude
of electron scattering with the emission of no photon? Now, in any scattering experi-
ment, the electrons can radiate photons whose energy and momentum is sufficiently
small to be undetected by the experimental apparatus. If the apparatus has an energy
resolution Em , then photons with energy E < Em will remain undetected. When
the amplitude for the soft photon emission is combined with the infrared divergent
amplitude, the divergence disappears.

Coming back to the our second order amplitude, we see that the first order ampli-
tude (12.325) is changed as follows:

〈ψout |S(1) + S(3)|ψin〉

= i
e

�c

(
mc2

√
Ep Ep′Ve

)
ū(p′, s)

(
γ μ +� f μ(p′, p)

)
u(p, r) Ãext

μ (k), (12.329)

where� f μ(p′, p), the finite remainder of the second-order vertex part, is the radia-
tive correction to the first-order electron scattering. This is not the only correction to
the first-order scattering. There is a further correction arising from the vacuum polar-
ization graph of Fig. 12.23. One can show that the external field will get replaced by

A(ext)
μ (k)→ A(ext)

μ (k)

(
1− α

15π

k2

m2c2

)
,
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which amounts just to adding − 1
5 to − 3

8 in the last term of (12.326). We now
show that the first term of (12.326), depending on the function F2, computed at
zero momentum transfer (k2 = 0), represents the effect of an anomalous electron
magnetic moment to the amplitude. To this end let us rewrite the current u(p′)γ μu(p)
in the three-level part (12.197) of (12.329) using (12.303). As shown in Sect. 12.5.6
by evaluating the non-relativistic limit of the tree amplitude, the term contributing to
the magnetic coupling is the one proportional to γ μνkμ Ãext

ν which has the following
form:

i
1

�cVe

e

2mc
ū(p′)γ μνkμ Ãext

ν (k)u(p),

where we have used the non-relativistic approximation Ep ∼ Ep′ ∼ mc2. The
factor e/(mc) = ge/(2mc) represents the gyromagnetic ratio that we have computed
earlier. If we add the second order correction represented by the first term in (12.326)
we end up with

i
1

�cVe

e

2mc
(1− 2mcF2) ū(p′)γ μνkμ Ãext

ν (k)u(p).

We see that the gyromagnetic ratio has acquired a correction of the form:

e

mc
→ e

mc
(1− 2mcF2) = 2e

2mc

(
1+ α

2π

)
= ge

2mc
, (12.330)

corresponding to a corrected g-factor:

g = 2
(

1+ α

2π

)
.

This result was first obtained by Schwinger in 1948. The quantum deviation

	μ = (g − 2)e

2mc
s,

of the electron magnetic moment from its classical value, due to perturbative correc-
tions, is usually referred to as the electron anomalous magnetic moment. Nowadays
the very high precision measurements [10] of g − 2 provide the most stringent tests
of QED (the agreement between theory and experiment is to within ten parts in a
billion).41

There is another experimental result which is successfully predicted by quantum
electrodynamics, which is worth mentioning without entering into heavy technical
details. It is the splitting of the 2s1/2 and 2p1/2 levels in hydrogen atom, which was

41 Since in order to test QED predictions for higher order corrections to a given quantity (like
the g-factor), a high-precision determination of the coupling constant α is needed, one uses the
QED formulas to experimentally determine α. QED is then tested by comparing the values of α
determined from different experiments.

http://dx.doi.org/10.1007/978-88-470-1504-3_12
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first measured by Lamb and Retherford in 1947 and is known as the Lamb shift.
Indeed one can interpret the correction � f

μ appearing in (12.326) as a modification
of the effective field Ãext

μ seen by the electron, in our case Ãext
μ reducing to the

Coulomb potential. This modification produces a splitting of the 2s1/2 and 2p1/2
levels, but it still depends on the λmin cutoff present in (12.326). However if one
takes into account the contribution from emission and absorption of virtual photons of
momenta less than λmin, then the dependence from λmin cancels out. The final result
gives for the splitting a value of 1052.01 Mc/s. By improved theoretical calculations
the value is raised to 1057.916. This agrees with the experimental value with an
accuracy of 10−5.

Reference

For further reading see Refs. [3], [8] (Vol. 4), [9], [13].



Appendix A
The Eotvös’ Experiment

Let us consider two bodies, with inertial masses mI e m0I , and suppose we attach
them to the ends of a torsion pendulum as in the Fig. A.1. We denote by ‘ and ‘0

the distances of the masses from the center of suspension. Let z and x be directed
vertically and southwards, respectively; on the left part of Fig. A.1 these directions
have been drawn at a particular point P of the terrestrial surface, the y direction
being the normal passing through P corresponding to the west–east direction. Note
that the centrifugal force mIa due to the rotation of the earth forms an angle h with
the vertical direction equal to the latitude of P, while the gravitational force mGg is
directed towards the center of the earth.

On the right part of the Fig. A.1 we have drawn the torsion pendulum, and the
centrifugal forces mIa and m0Ia have been decomposed along the x and z axes.

The centrifugal forces acting in the x direction give rise to a momentum along
the vertical direction z given by:

sz ¼ mIax‘�m0Iax‘
0: ðA:1Þ

On the other hand, equilibrium in the east–west direction requires the vanishing of
sx, so that we may write:

mGg�mIazð Þ‘ ¼ m0Gg�m0Iaz

� �
‘0: ðA:2Þ

If we now substitute the value of ‘0 given by (A.2) into (A.1) we find:

sz ¼ mIax‘g

m0
G

m0
I

� mG

mI

� �

g
m0

G

m0
I

� az

: ðA:3Þ

This component sz, if non vanishing, should be balanced by the momentum exerted
by the torsion of the rod to which the pendulum is suspended. Experimentally no
torsion momentum is observed, and therefore we must have: sz ¼ 0, that is:
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m0G
m0I
¼ mG

mI

; ðA:4Þ

It follows that the ratio between inertial and gravitational masses does not depend
on the particular body we are considering. Choosing the same unit for their
measure we conclude that the two masses are indeed equal.

Fig. A.1 The Eotvös’ experiment
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Appendix B
The Newtonian Limit of the Geodesic
Equation

In this section, we show that in the non-relativistic limit v� c, by further assuming
the gravitational field to be weak and stationary, the geodesic equation (3.56) reduces
to the Newton equation of a particle in a gravitational field. As previously pointed out,
the metric field glmðxÞ is the generalization of the Newtonian potential, and the
statement that the gravitational field be weak and stationary is expressed by condi-
tions (3.61) and (3.62), computing all quantities to first order in v=c and h.

We first rewrite (3.56) by splitting the coordinate index l into l ¼ 0
and l ¼ iði ¼ 1; 2; 3Þ:

d2ðctÞ
ds2

þ C0
00

dðctÞ
ds

� �2

þ 2C0
0i

dðctÞ
ds

dxi

ds
þ C0

ij

dxi

ds
dxj

ds
¼ 0; ðB:1Þ

d2xi

ds2
þ Ci

00
dðctÞ
ds

� �2

þ Ci
jk

dxk

ds
dxj

ds
þ 2Ci

0j

dct

ds
dxj

ds
¼ 0: ðB:2Þ

Since

dxi

ds

� ��
dx0

ds

� �
¼ vi

c
; ðB:3Þ

one recognizes that the condition v=c� 1 makes the last two terms of both
equations negligible, so that (B.1) and (B.2) become:

1
c

d2t

ds2
þ C0

00
dt

ds

� �2

¼ 0 ðB:4Þ

1
c2

d2xi

ds2
þ Ci

00
dt

ds

� �2

¼ 0: ðB:5Þ
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Taking into account that the time derivative of glm is zero for a stationary field,
from (3.59) we find:

C0
00 ¼

1
2
g0qð�oqg00 þ 2o0gq0Þ ¼ �

1
2
ðg0q � h0qÞoqg00 þOðh2Þ

¼ �g00o0h00 þOðh2Þ ¼ Oðh2Þ ’ 0; ðB:6Þ

Ci
00 ¼ �

1
2
gijojg00 ¼ �

1
2
ðgij � hijÞojh00 þOðh2Þ

¼ 1
2
ojh00 þOðh2Þ; ðB:7Þ

where we have taken into account (3.61), (3.62), the fact that gij ¼ �dij, and the
inverse of relation (3.61), namely:

glm ¼ glm � hlm þOðh2Þ: ðB:8Þ

Equation (B.4) implies

dt

ds
¼ const:; ðB:9Þ

so that d2xi

ds2 ¼ dt
ds

� �2d2xi

dt2
: Taking into account (B.9), and (B.7), (B.5) becomes:

d2xi

dt2
¼ �c2

2
oih00; ðB:10Þ

where the minus sign on the right hand side originates from the metric. This is
exactly Newton’s equation of a particle in a gravitational field if we identify the
Newtonian potential /ðxÞ with h00 as follows:

/
c2
¼ 1

2
h00: ðB:11Þ

Indeed, with such identification, (3.64) can be rewritten as:

d2xi

dt2
¼ �oi/: ðB:12Þ

Furthermore, from the previous equations, we also see that in the limit of non-
relativistic, weak and static field we can write:

g00 ¼ 1þ h00 ¼ 1þ 2
/
c2
: ðB:13Þ
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Appendix C
The Twin Paradox

The so called twin paradox is the seemingly contradictory situation arising from a
naive application of the time dilation phenomenon discussed in Chap. 1 to the
following conceptual experiment.

Let A and B be two twins which are initially both at rest on earth. Suppose the
twin B makes a journey on a high speed spaceship with constant velocity v and
then comes back to earth meeting again the twin A. Let S be the frame of reference
of earth and S0 the one attached the spaceship. If Dt is the time duration, relative to
the earth’s system S, of the total journey of B, if we were to naively apply the
special relativity formulas given in Chap. 1, and since the events A, B occur in the
same place relative to S0, the corresponding time Dt0 elapsed in the spaceship
frame S0 is related to Dt by the time dilation relation Dt ¼ Dt0cðvÞ: It follows that
the twin B must be younger than the twin A when they meet again. This result
appears to be paradoxical, since from the principle of relativity it follows that it is
the same thing to consider B traveling with velocity v with respect to A or
A traveling with velocity �v with respect to B. Since time dilation depends on v2,
considering B at rest and A traveling, it should be also possible to argue that A is
younger than B. This puzzling result can be easily seen not to be correct if we
recall that the special relativity effects can be applied only to frames of reference
in relative uniform motion. If the two twins are to meet again to find out who is the
younger, the spaceship system S0 must invert its motion in order to come back to
earth and therefore there is a part of its motion which is accelerated with respect to
S. The situation is therefore not symmetrical since the S frame always remains
inertial, while the frame S0 is non-inertial during the inversion of its motion. There
is thus no logical contradiction in saying that B is younger than A.

Even if the analysis of the twin paradox can be made entirely within the
framework of special relativity we shall give its solution by applying the principle
of equivalence discussed in this Chapter and showing that in both reference
systems S and S0 the twin B is younger than the twin A. We shall perform the

computation at the first order in v2

c2 and we shall denote by t1; t3; t2 the time
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durations of the forth and back journeys and the inversion of motion, respectively.
In the frame of reference S0 the corresponding times lapses will be denoted by
t01; t

0
2; t
0
3.

• Let us first compute the total time duration of the journey from the point of view
of the twin A, that is relative to the frame of reference S.

The B twin in the frame S0, measures a total duration of the journey
t0 ¼ t01 þ t02 þ t03, while A measures t ¼ t1 þ t2 þ t3 where:

t01 ¼ t1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
’ t1 1� 1

2
v2=c2

� �
; ðC:1Þ

t03 ¼ t3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
’ t1 1� 1

2
v2=c2

� �
; ðC:2Þ

t02 ’ 0 t2 ’ 0; ðC:3Þ

where we have set t02 ¼ t2 ’ 0 since the time of turnaround of S0, from the point of
view of the inertial frame S, can be neglected compared with t1 and t3: Note that
the times t0i are proper times since B is at rest in S0: Setting t1 ¼ t3 the total
duration of the journey of B from the point of view of A is:

t0 ¼ 2t1 1� 1
2

v2

c2

� �
: ðC:4Þ

Thus, if we take v ¼ 9� 107 m=s and t1 ¼ 20 years, and if the two twins were,
say, 22 years old when B departed, as they re-meet after the trip, their age

difference will be t1
v2

c2 � 2 years: A will be 62 and B 60. It is instructive to derive
(C.4) from geometric considerations, see Fig. C.1.

Let us plot on a space–time diagram, relative to S, the trajectories (world-lines)
of the two twins. Let the points O and R in the diagram be the events in which they
depart and meet again, respectively. The twin A is at rest in S and thus its world-
line is vertical, directed along the time direction. Suppose, for the sake of
simplicity that the twin B moves forth and back along the x-axis, so as to describe,

Fig. C.1 World-lines of the
two twins in a space–time
diagram
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in the diagram, two segments: One, OP, with positive slope Dx
cDt
¼ v

c
[ 0 during the

forward journey, and an other, PR, with slope �v
c
\0, during the backward

journey. The lengths of the two world-lines, divided by c, measures the proper-
time intervals relative to A and B (i.e. the times measured by A and B, respectively)
between the two events O and R. Since A is at rest in S, its proper time interval is

t ¼ jORj
c
¼ t1 þ t2 þ t3 ’ 2t1: As for B, its proper time interval is

t0 ¼ t01 þ t02 þ t03 ’ 2t01 ¼
2
c
jOPj: ðC:5Þ

From the diagram one would naively conclude that t0[ t since the length of the
trajectory of B appears to be greater than that of A. Recall, however, that we are in
Minkowski space and that lengths are measured with the Lorentzian signature for
the metric. As a consequence, in contrast to the Pythagorean theorem which holds
in Euclidean geometry, the squared length of the hypotenuse of the right triangle
OPP 0 is given by the difference of the squared lengths of the catheti, instead of the
sum (in other words the hypotenuse is shorter than each of the catheti):

jOPj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jOP 0j2 � jPP 0j2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t21 � Dx2

q
¼ ct1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2

c2

r

; ðC:6Þ

where we have used Dx ¼ vt1: Substituting the above result in (C.5), and
expanding the square root to the first order in v2=c2, we find (C.4).

• Let us now compute the duration of the journey from the point of view of
B himself (frame of reference S0).

In this case t1 and t3 are proper times, being the twin A at rest with respect to
the earth’s frame of reference S, which is now moving relative to B, and we have

t01 ¼
t1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p ’ t1 1þ 1

2
v2=c2

� �
; ðC:7Þ

t03 ¼
t3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p ’ t3 1þ 1

2
v2=c2

� �
:

Let us now compute t02 which now, as opposite to the previous analysis, cannot be
neglected: we are indeed now in a non-inertial frame of reference and, as we shall
see below, it will turn out to be proportional to t1:

Indeed, during the turnaround of the spaceship, there is an acceleration field
g ¼ 2v

t2
with respect to the earth (directed towards the earth itself). According to the

equivalence principle, we can interpret this acceleration as due to an equivalent
gravitational potential with strength / ¼ gh where h ¼ vt01; using (3.75) one
obtains:

t02 ¼ t2 1� gh

c2

� �
¼ t2 1� 2vh

t2c
2

� �
¼ t2 �

2v2

c2
t01 ¼ t2 � 2

v2

c2
t1 þO

v4

c4

� �
;
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where we made use of (C.7) implying t01 ¼ t1 þOðv2=c2Þ: The final result is
therefore:

t0 ¼ t01 þ t02 þ t03 ’ 2t1 1þ 1
2
v2

c2

� �
þ t2 � 2

v2

c2
t1

’ 2t1 1� 1
2
v2

c2

� �
; ðC:8Þ

where we have used t2 � t1, see (C.4).
We see that (C.8) coincides with (C.4). We conclude that from both the

points of view of A and B the time elapsed for the twin B is shorter than the time
elapsed for the twin A. In other words, after the journey the twin B is younger than
the twin A.
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Appendix D
Jacobi Identity for Poisson Brackets

We show that given three dynamical variables f ðp; qÞ; gðp; qÞ; hðp; qÞ their
Poisson brackets obey the Jacobi identity, namely:

ff1; ff2; f3gg þ ff2; ff3; f1gg þ ff3; ff1; f2gg ¼ 0; ðD:1Þ

where we have renamed fðp; qÞ; gðp; qÞ; hðp; qÞ of the text [see (7.39) of Sect. 8.3]
with the more convenient notation f1ðp; qÞ; f2ðp; qÞ; f3ðp; qÞ:

Let us compute ff1; ff2; f3gg:

ff1; ff2; f3gg ¼
of1

oqi

o

opi

of2

oqj

of3

opj

� of2

opj

of3

oqj


 �
� of1

opi

o

oqi

of2

oqj

of3

opj

� of2

opj

of3

oqj


 �

¼ of1

oqi

o2
f2

opioqj

of3

opj

þ o2
f3

opiopj

of2

oqj

� o2
f2

opiopj

of3

oqj

� o2
f3

opioqj

of2

opj


 �

� of1

opi

o2
f2

oqioqj

of3

opj

þ o2
f3

opiopj

of2

oqj

� o2
f2

oqiopj

of3

oqj

� o2
f3

oqioqj

of2

opj


 �
;

where sum over the repeated indices i; j is understood.
Considering the terms which are bilinear in the first derivatives with respect to

the two q0is we have:

of1

oqi

of2

oqj

o2
f3

opiopj

� of3

oqj

o2
f2

opiopj


 �
: ðD:2Þ

Adding to this expression the analogous terms coming from from the second and
third term of the identity (D.1) which are simply obtained by cyclic permutations
of 1, 2, 3, we see that the total contribution sum up to zero:

of1

oqi

of2

oqj

o2
f3

opiopj

� of3

oqj

o2
f2

opiopj


 �
þ of2

oqi

of3

oqj

o2
f1

opiopj

� of1

oqj

o2
f3

opiopj


 �

þ of3

oqi

of1

oqj

o2
f2

opiopj

� of2

oqj

o2
f1

opiopj


 �
¼ 0
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The same of course would happen if we considered all the other terms bilinear in
the first derivatives with respect to two p0is and to one qi and one pi: Therefore the
total sum is identically zero.
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Appendix E
Induced Representations and Little Groups

E.1 Representation of the Poincaré Group

The single particle states jp; ri are constructed as a basis of a (infinite
dimensional) space V ðcÞ supporting a unitary, irreducible representation of the
Poincaré group. This construction is effected through the method of induced
representations: we start defining the single particle states j�p; ri in a fixed
reference frame S0, where the four momentum is a standard one pl ¼ �pl: These
states differ by the internal degree of freedom, labeled by r, related to the spin of
the particle and which is acted on by the little group Gð0Þ � SOð1; 3Þ of the

momentum �p � ð�plÞ (spin group), consisting of the Lorentz transformations Kð0Þ

which leave �p inert:

Kð0Þ 2 Gð0Þ , Kð0Þlm�pm ¼ �pl: ðE:1Þ

A transformation Kð0Þ of Gð0Þ is implemented on the states j�p; ri by a unitary

operator UðKð0ÞÞ which then maps j�p; ri into an eigenstate of the four-momentum

corresponding to the same eigenvalue �p: The vector UðKð0ÞÞj�p; ri has then to be a
linear combination of the basis elements j�p; ri through a matrix R � ðRr

sÞ:

UðKð0ÞÞj�p; ri ¼ RðKð0ÞÞsrj�p; si: ðE:2Þ

Such matrix RðKð0ÞÞ defines a (unitary) representation R of Gð0Þ which
characterizes the spin of the particle. For a massive particle m2 6¼ 0;Gð0Þ ¼
SUð2Þ, see Sect. E.2, and R has dimension 2sþ 1 (that is r ¼ 1; . . .; 2sþ 1Þ;
s being the spin of the particle (in units �h); for a massless particle, m2 ¼ 0;Gð0Þ is
effectively SOð2Þ, generated by the helicity operator, see Sect. E.2, and r ¼ 1; 2
labels the helicity state. Proper Lorentz transformations do not alter the eigenvalue
of the helicity, as proven in Sect. 9.4.2.
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A state jp; ri, corresponding to a generic four momentum p � ðplÞ is defined
by acting on j�p; ri with the Lorentz boost Kp which relates S0 to the RF S in
which the momentum of the particle is p : p ¼ K�p: If UðKÞ is the unitary
transformation implementing a Lorentz transformation K on the states, jp; ri is
then defined as:

jp; ri ¼ jKp�p; ri � UðKpÞj�p; ri: ðE:3Þ

The above relation defines jp; ri and UðKpÞ at the same time. Equations (E.2) and
(E.3) allow to define the action of a generic Lorentz transformation K on the states
jp; ri through a corresponding unitary operator UðKÞ: Suppose K transforms p into
p0:p0 ¼ Kp: We can then write:

UðKÞjp; ri ¼ UðKÞUðKpÞj�p; ri ¼ UðKp0 Þ UðKp0 Þ�1
UðKÞUðKpÞ

� �
j�p; ri

¼ UðKp0 ÞU K�1
p0 KKp

� �
j�p; ri; ðE:4Þ

where Kp0 is the Lorentz boost connecting �p to p0: Note now that the

transformation Kð0Þ � K�1
p0 KKp first maps �p into p, then p into p0 and finally p0

back into �p: It therefore belongs to the little group Gð0Þ of �p and thus its action on
j�p; ri is defined in (E.2). We then find:

UðKÞjp; ri ¼ Rr0
rUðKp0 Þj�p; r0i ¼ Rr0

rjKp; r0i; ðE:5Þ

where now the rotation matrix R, associated with Kð0Þ, depends on both K and p:
R ¼ RðK;pÞ: If K is a simple boost, the corresponding rotation RðK;pÞ is called
Wigner rotation.

The action of a Poincaré transformation ðK; x0Þ on jp; ri then reads:

e�
i
�hx

l
0 P̂lUðKÞjp; ri ¼ Rr0

re
� i

�hx
l
0 P̂l jKp; r0i ¼ Rr0

re
� i

�hx0�ðKpÞjKp; r0i:

As mentioned in Chap. 9, the procedure illustrated here for constructing the uni-
tary, infinite dimensional representation of the Poincaré group on single particle
states starting from the (finite-dimensional) representation of the spin group is
called method of induced representations.

Having defined the single particle states jp; ri and the action of Poincaré
transformations on them, let us prove general properties that were used, or simply
mentioned, in Sect. 9.4.1.

• The little group G
ð0Þ
p of a generic momentum p, defined in (9.109), is related to

Gð0Þ through conjugation by Kp: G
ð0Þ
p ¼ KpGð0ÞK�1

p : To see this we first observe

that with each element Kð0Þ of Gð0Þ, defined by the property Kð0Þ�p ¼ �p, we can

associate a unique transformation Kð0Þp in the little group G
ð0Þ
p of p, whose effect

consists in a first boost to the RF S0 in which the four-momentum is �p, followed

by the transformation Kð0Þ which leaves �p inert, and then a second boost back to

548 Appendix E: Induced Representations and Little Groups

http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9
http://dx.doi.org/10.1007/978-88-470-1504-3_9


the initial frame in which the momentum is p: Kð0Þp ¼ KpKð0ÞK�1
p : We easily

verify that Kð0Þp so defined leaves p invariant:

Kð0Þp p ¼ Kp Kð0ÞK�1
p

� �
p ¼ Kp Kð0Þ�p ¼ Kp �p ¼ p; ðE:6Þ

which implies that Kð0Þp 2 G
ð0Þ
p : Similarly, given an element Kð0Þp 2 G

ð0Þ
p we can

construct the unique element Kð0Þ ¼ K�1
p Kð0Þp Kp in Gð0Þ: This proves that little

groups corresponding to four-momenta with the same mass squared, are
conjugated to one another, and thus share the same structure, though being

represented by different matrices. The one between G
ð0Þ
p and Gð0Þ is the same

kind of relation, that we have called isomorphism in footnote 11, which exists
between the little group Oð1; 3Þ of the origin (Lorentz group), and that of a
generic space–time point x; Oð1; 3Þx, and implies that the two groups realize
the same symmetry.

• In order for the representation U of the Poincaré group on the single-particle
states jp; ri to be irreducible, the representation R of the spin group Gð0Þ has to
be irreducible as well. Indeed, if R were reducible, there would be a proper
subset of states in S0, denoted by j�p; si0 which are stable with respect to the

action of Gð0Þ: The states jp; si0 ¼ UðKpÞj�p; si0 span a proper subspace V
ðcÞ
0 of

the full Hilbert space V ðcÞ which is stable with respect to the Lorentz group. This
is easily shown by applying a generic Lorentz transformation UðKÞ to jp; si0, as

in (E.5): the corresponding Gð0Þ transformation Kð0Þ � K�1
p0 KKp will act on

j�p; si0 mapping it into a combination of states in the same Gð0Þ-invariant

subspace. The action of Kp0 on such combination will therefore still be in V
ðcÞ
0 :

Thus the full representation of the Lorentz group would be reducible.
Consequently, R is the ð2sþ 1Þ-dimensional representation of the spin group
SUð2Þ for massive particles, while it is the one-dimensional representation
defined by a given value of the helicity for massless particles.

E.2 Little Groups

The little group of a four-momentum vector p ¼ ðplÞ was defined in Sect. 9.4 as

the set of all the Lorentz transformations Kð0Þp leaving p invariant, namely
satisfying (9.109). Such set is indeed a group, as the reader can easily verify. Let
us construct the little group Gð0Þ of the standard four-momentum �p: Writing
(9.109) for an infinitesimal transformation (4.171) we find1:

1 Recall that Jqr ¼ �i�h Lqr;Lqr being defined in (4.170).
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Kð0Þ�p � 1þ i

2�h
dhqrJ

qr

� �
�p ¼ �p) dhqrJ

qr�p ¼ 0; ðE:7Þ

from which we deduce that Gð0Þ is generated by those combinations dxqrJ
qr of

the Lorentz generators Jqr which annihilate �p: Let us consider the different cases:
m2 [ 0: In this case we can choose the standard RF S0 as the rest frame of the

particle in which �p ¼ ðmc; 0; 0; 0Þ: Equation (E.7) the implies the following
conditions on then infinitesimal generators:

0 dh0;1 dh0;2 dh0;3

dh0;1 0 �dh1;2 �dh1;3

dh0;2 dh1;2 0 �dh2;3

dh0;3 dh1;3 dh2;3 0

0

BB@

1

CCA

1
0
0
0

0

BB@

1

CCA ¼

0
0
0
0

0

BB@

1

CCA) dh0l ¼ 0; ðE:8Þ

that is the infinitesimal generators of Gð0Þ read:

i

2�h
dhijJ

ij ¼ i

�h
dhiJ

i; ðE:9Þ

having defined dhi ¼ ��ijkdhjk=2: We conclude that Gð0Þ is the rotation group

SOð3Þ: When we consider the action of these generators on states, Ĵi also contains
the spin-component Ŝi, which can act on bi-dimensional representations (as it is
the case for spin 1=2 particles). Since SOð3Þ has no such representation, it is
appropriate to say that Ĵi generate the spin group SU(2).

m2 ¼ 0: The standard four-momentum vector can be chosen to be �p ¼
ðE;E; 0; 0Þ=c: Equation (E.7) the implies:

0 dh0;1 dh0;2 dh0;3
dh0;1 0 �dh1;2 �dh1;3
dh0;2 dh1;2 0 �dh2;3
dh0;3 dh1;3 dh2;3 0

0

B@

1

CA

1
1
0
0

0

B@

1

CA ¼
0
0
0
0

0

B@

1

CA) dh01 ¼ 0
dh0a ¼ �dh1a

�
;

ðE:10Þ

where a ¼ 2; 3: The generators of Gð0Þ consist in J23 ¼ �J1 which generates
rotations about the direction X of motion, and the following two matrices:

Na � J0a � J1a: ðE:11Þ

From the commutation relations among the Jqr:s we deduce:

½J23;N2	 ¼ �i�hN3; ½J23;N2	 ¼ i�hN3; ½N2;N3	 ¼ 0: ðE:12Þ

A group generated by three generators J23;Na with the above commutation
relations is denoted by ISOð2Þ and contains an SOð2Þ subgroup generated by J23

and a two-parameter subgroup of translations generated by Na: It is the group of
congruences on the Euclidean plane E2:
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Defining N
 ¼ N2 
 iN3 and the helicity matrix C � J1 ¼ �J23 we find:

½C;N
	 ¼ 
�hN
; ½Nþ;N�	 ¼ 0: ðE:13Þ

Consider now the action of the operators Ĉ; N̂
 on the states j�p; ri: In going from
the 4� 4 matrix representation of these operators, to their representation on states,

the commutation structure (E.13) is preserved. Moreover N̂þ ¼ ðN̂�Þy; while Ĉ is
hermitian and can thus be diagonalized. Suppose it has an eigenvalue �hs on j�p; si
(the state vectors being normalized to one). Note that the operators N̂þ; N̂� behave
as creation and annihilation operators in the sense that, using (E.13) one can easily
verify the following:

N̂þj�p; si ¼ a0j�p; sþ 1i; N̂�j�p; sþ 1i ¼ a�0j�p; si; ðE:14Þ

a0 being some complex number. If we continue applying those operators we can
construct infinitely many states j�p; sþ ki:

N̂þj�p; sþ ki ¼ akj�p; sþ kþ 1i; N̂�j�p; sþ kþ 1i ¼ a�kj�p; sþ ki; ðE:15Þ

Note that N̂ � N̂þN̂� ¼ N̂�N̂þ is positive definite and:

N̂j�p; sþ ki ¼ N̂�N̂þj�p; sþ ki ¼ jakj2j�p; sþ ki ¼ N̂þN̂�j�p; sþ ki
¼ jak�1j2j�p; sþ ki; k ¼ � � � ;�2;�1; 0; 1; 2; . . .; ðE:16Þ

from which we deduce that jak�1j2 ¼ jakj2 ¼ jaj2: If we require the system to have
finitely many spin states, corresponding to its internal degrees of freedom, some
state should be annihilated by N̂þ, which implies ak ¼ 0 for some k, and thus
a ¼ 0: We conclude that N̂
 and N̂ must be zero on any state (consequently also
N̂a are zero): the only generator of the little group which has non trivial action on

the states is the helicity operator Ĉ generating the SOð2Þ subgroup of ISOð2Þ: The
condition that the single particle state transform in an irreducible representation of
SOð2Þ further implies that there can be just two helicity states:

Ĉj�p;
si ¼ 
�hsj�p;
si; ðE:17Þ

s being the spin of the particle.
m2\0: Let us just mention this case which corresponds to an unphysical

particle called tachyon which moves faster than light: v2

c2 ¼ jpj
2
c2

E2 gt; 1: The standard
four-momentum vector can be chosen to be �p ¼ ð0;p1; 0; 0Þ: Clearly (E.7) is
solved by a 4� 4 matrix A obtained from dhqrJ

qr by deleting the second row and
the second column. It generates Lorentz transformations in the three-dimensional
subspace of M4 spanned by the coordinates ðct; y; zÞ and orthogonal to the X-axis.
This space is a three-dimensional Minkowski space M3 with a metric g ¼
diag ðþ1;�1;�1Þ and the corresponding symmetry subgroup of the Lorentz group
is therefore Gð0Þ ¼ SOð1; 2Þ.
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Appendix F
SU(2) and SO(3)

The group SU(2) is the group of all 2� 2 unitary matrices with unit determinant
(also called special unitary matrices). Let S ¼ ðSr

sÞ be a generic element of the

group. By definition SyS ¼ 12 and det ðSÞ ¼ 1: From our general discussion of
unitary matrices, it follows that, we can write S, in a neighborhood of the identity,
as the exponential of i times a hermitian matrix A as follows:

S ¼ eiA ) Ay ¼ A: ðF:1Þ

From the matrix property det ðSÞ ¼ expðiTrðAÞÞ, it follows that, being S special, A
should be traceless. The most general 2� 2 hermitian traceless matrix has the
form:

A ¼ a b� ic

bþ ic �a

� �
¼ br1 þ cr2 þ ar3; ðF:2Þ

where ri are the Pauli matrices, defined as:

r1 ¼ 0 1
1 0

� �
; r2 ¼ 0 �i

i 0

� �
; r3 ¼ 1 0

0 �1

� �
: ðF:3Þ

The Pauli matrices therefore form a basis for 2� 2 hermitian traceless matrices,
and thus a basis of the algebra of infinitesimal generators of SU(2). The reader can
verify that these three matrices satisfy the following relations:

rirj ¼ dij12 þ i�ijkrj: ðF:4Þ

In particular, we can choose as basis elements the matrices si � �hri=2 which
satisfy the following commutation relations:

si; sj

 �
¼ i�h�ijk sk; ðF:5Þ
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as it can be easily verified using (F.4). Note that the three matrices si satisfy the
same commutation relations as the components M̂i of the orbital angular
momentum, which generate the group SOð3Þ of rotation in the three-dimensional
Euclidean space. These two groups share therefore the same structure in a
neighborhood of the identity element (they are locally isomorphic). For this reason
the spin is sometimes improperly referred to as an internal angular momentum.
The two groups are however globally different and this reflects in the fact
that SUð2Þ has representations (the even-dimensional ones) which SOð3Þ does
not have.

Let us illustrate the relationship between SUð2Þ and SOð3Þ in some more detail.
We define a mapping between elements of the two groups as follows. Consider an
element (2� 2 complex matrix) S ¼ ðSr

sÞ; r; s ¼ 1; 2, of SU(2) and its adjoint

action on the Pauli matrices: S�1ri S ¼ Syri S; i; j ¼ 1; 2; 3: Since the Pauli
matrices form a basis for hermitian traceless matrices, resulting matrix is still
hermitian traceless:

ðSyriSÞy ¼ Syryi S ¼ SyriS; TrðSyriSÞ ¼ TrðSSyriÞ ¼ TrðriÞ ¼ 0:

Therefore Syri S can be expanded in the basis ðriÞ: Let us denote by R½S	ji the

components along ri of Syri S:

SyriS ¼ R½S	ji rj: ðF:6Þ

Since R½S	 � ðR½S	ji Þ is a 3� 3 matrix, we have thus defined a correspondence
which maps a 2� 2 matrix S of SUð2Þ into a 3� 3 matrix R½S	: We want to
show first that this correspondence is a homomorphism, namely that R½S1S2	ji ¼
R½S1	ki R½S2	jk:

ðS1S2ÞyriðS1S2Þ ¼ Sy2ðS
y
1riS1ÞS2 ¼ R½S1	ki ðS

y
2rkS2Þ

¼ R½S1	ki R½S2	jkrj ¼ ðR½S1	R½S2	Þji rj: ðF:7Þ

Let us prove now that the matrix R½S	 is real by computing the hermitian-conjugate
of both sides of (F.6) and using the property that the left-hand side is hermitian:

SyriS ¼ ðSyriSÞy ¼ ðR½S	ji Þ
�rj: ðF:8Þ

Since the components associated with any vector (in this space vectors are

hermitian matrices!) are unique, comparing (F.8) to (F.6) we find: ðR½S	ji Þ
� ¼

R½S	ji : Using the first of properties (10.67), we can write

R½S	ji ¼
1
2

Tr½ðSyriSÞrj	; ðF:9Þ

Finally let us show that the matrix R½S	 is orthogonal. To this end we use the

general property of homomorphisms that: R½S�1	 ¼ R½S	�1 and write
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R½S	�1j
i ¼ R½Sy	 ji ¼

1
2

Tr½ðSriS
yÞrj	 ¼

1
2

Tr½ðSyrjSÞri	 ¼ R½S	 i

j ;

where we have used the cyclic property of the trace. We conclude that R½S	�1 ¼
R½S	T , which means that R½S	 2 Oð3Þ: Let us show that R½S	 2 SOð3Þ, namely
that det ðR½S	Þ ¼ 1: To show this let us use the property that r1r2r3 ¼ i12: Then,
from unitarity of S it follows that:

12 ¼ SyS ¼ �iSyr1r2r3S ¼ �iðSyr1SÞðSyr2SÞðSyr3SÞ
¼ �iðR½S	i1riÞðR½S	j2rjÞðR½S	k3rkÞ ¼ �iR½S	i1R½S	

j
2R½S	

k

3ðrirjrkÞ: ðF:10Þ

Now use the following property of the Pauli matrices

rirjrk ¼ i�ijk12 þ dijrk � dikrj þ djkri; ðF:11Þ

which follows from (F.4), to rewrite rirjrk: Note that the terms with the d matrix

do not contribute because of the orthogonality property of R: R½S	ikR½S	
j

‘dij ¼P3
i¼1 R½S	ikR½S	

i
‘ ¼ dk‘, which is zero if k 6¼ ‘: The only term in rirjrk which

contributes to the summation is i�ijk12, and therefore we can rewrite (F.10) as
follows:

R½S	i1R½S	
j
2R½S	

k

3�ijk12 ¼ 12: ðF:12Þ

We recognize in the sum R½S	i1R½S	
j

2R½S	
k
3�ijk the expression of the determinant of

a matrix in terms of its entries and therefore we conclude that:

detðR½S	Þ ¼ 1; ðF:13Þ

namely that R½S	 2 SOð3Þ: We have thus defined a homomorphism between
SU(2) and SO(3):

S 2 SUð2Þ �!R R½S	 2 SOð3Þ: ðF:14Þ

This homomorphism is two-to-one. Indeed, the matrix S which corresponds to a
given orthogonal one R½S	 is defined modulo a sign: R½S	 ¼ R½�S	: In a
neighborhood of the identity of SUð2Þ, the correspondence is therefore one-to-one
and thus the two groups are called locally isomorphic.

The fact that si and the 3� 3 SOð3Þ-generators Mi, defined in (4.131), have the
same commutation relations allows to write the correspondence R as a mapping

between the element S ¼ e
i
�h hisi of SUð2Þ and e

i
�hh

iMi of SOð3Þ defined above in the
following way:

R½ei
�h hisi 	 ¼ e

i
�h hiMi 2 SOð3Þ; ðF:15Þ

as it can be easily verified for infinitesimal transformations (hi � 1).
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Appendix G
Gamma Matrix Identities

We collect in this Appendix the most useful formulae used for the manipulation of
gamma-matrices. All the following relations are actually a consequence of the
defining anticommutation rules (10.62), namely

clcm þ cmcl ¼ 2glm l; m ¼ 0; 1; 2; 3: ðG:1Þ

Let us first observe that, since the matrix representation is four-dimensional, from
(G.1) it follows

glmc
lcm � clcl ¼ 4: ðG:2Þ

Let us suppose that we have an expression of the type

cl cmcqcr. . .ð Þcl:

Using several times the anticommutation rules (G.1), the two cl can be put side by
side, and we find the following formulae:

clcmcl ¼ �2cm; ðG:3Þ

clcmcqcl ¼ 4gmq;

clcmcqcrcl ¼ �2crcqcm:

The first is readily proven by writing cqcl ¼ �clcq þ 2glq:
As for the second we write

clc
qcrcl ¼ clc

q �clcr þ 2glrð Þ ¼ 2cqcr þ 2crcq ¼ 4gqr:

In an analogous way, using the previous result, we have for the third identity

clc
qcrcscl ¼ clc

qcr �clcs þ 2glsð Þ ¼ �4gqrcs þ 2cscqcr

¼ �4gqrcs þ 2cs �crcq þ 2gqrð Þ ¼ �2cscrcq:
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In most applications the indices of the gamma matrices are contracted with four-
vectors. Introducing the notation

6a ¼ c � a ¼ clal; ðG:4Þ

and using (G.1) we have, for example

6a 6bþ 6b 6a ¼ 2a � b; 6a 6a ¼ a � a: ðG:5Þ

The formulae (G.3) take the following form

cl 6acl ¼ �2 6a ðG:6Þ

cl 6a 6bcl ¼ 4a � b ðG:7Þ

cl 6a 6b 6ccl ¼ �2 6c6b 6a: ðG:8Þ

Consider now the matrix c5 defined in (10.194) and define the following matrices:

clm ¼ c½lcm	 ¼ 1
2

cl; cm½ 	 � �irlm; clmq ¼ c½lcmcq	: ðG:9Þ

We may easily prove the following duality relations

c5cl ¼ �
i

3!
�lmqrc

mqr;

c5clm ¼ �
i

2
�lmqrc

qr;

c5clmq ¼ i�lmqrc
r:

ðG:10Þ

As for the first one, multiplying both sides of (10.194) by c3 to the right and using
the property c3c3 ¼ 1, we find:

c5c3 ¼ ic0c1c2 ¼ i�0123 c0c1c2 ¼ �i�3012 c0c1c2; ðG:11Þ

where we have used �0123 ¼ 1: By Lorentz covariance, the above relation implies
the first of (G.10). As far as the second equation is concerned, we further multiply
(G.11) to the right by c2 and find:

c5c3c2 ¼ ic0c1 ¼ �i�3201c
0c1: ðG:12Þ

Covariantizing the above equation, the second of (G.10) follows. By a similar
argument, the third of those equations can also be proven.

Let us now consider the following set of 16 matrices

CA ¼ 1; c5; cl; c5cl; clm
� �

; A ¼ 1; . . .; 16; ðG:13Þ

where, when A labels the matrices clm, we consider only the six independent
couples ðl; mÞ with l\m, so as to avoid repetitions: A ¼ ðl; mÞ ¼ fð0; 1Þ; ð0; 2Þ;
ð0; 3Þ; ð1; 2Þ; ð1; 3Þ; ð2; 3Þg: Note that for each value of A:
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cAcA ¼ eA1; (no summation over AÞ

where eA ¼ 1 for CA ¼ f1; cl; c5g and eA ¼ �1 for CA ¼ fclm; c5clg: The follow-
ing properties hold:

CA 6¼ 1) TrðCAÞ ¼ 0;
1
4

TrðCACBÞ ¼ eA dA
B ; ðG:14Þ

where eA ¼ 
1: For instance TrðclmcqrÞ ¼ �4dlm
qr ¼� �2ðdl

qd
m
r � dl

rd
m
qÞ: In this

case A ¼ ðlmÞ;B ¼ ðqrÞ and eA ¼ �1
The proof that all the CA;s, except 1, are traceless is based on the observation

that the trace of the product of two anticommuting matrices is zero. Indeed from
the invariance of the trace of a matrix product under a cyclic permutation of the
matrices, we have

AB ¼ �BA! TrðABÞ ¼ 0:

Now c5cl and clm are already in this form. As for c5 it suffices to write

c5 ¼ ic0c1c2c3 ¼ �ic1c2c3c0:

Taking the trace of the above cl-matrix products, it immediately follows that this
trace must vanish. On the other hand we can observe from (10.194) that the
explicit for of c5 in the Pauli basis is traceless. Clearly this product is basis-
independent, since a change of basis amounts to a conjugation of c5 or any other
matrix by a non singular one U, and such conjugation does not affect the value of
the trace: Tr ðU�1c5UÞ ¼ Tr ðUU�1c5Þ ¼ Tr ðc5Þ ¼ 0: A similar argument applies
to the cl matrices, which are traceless in the Pauli basis, and thus are traceless in
any other basis. We can regard the CA as vectors in a vector space and define
among them a symmetric scalar product ð�; �Þ as follows: ðCA;CBÞ � TrðCACBÞ.
Being the CA mutually orthogonal with respect to this scalar product, they are
linearly independent. Indeed if we consider a generic combination of them

X16

1

cACA ¼ 0;

upon multiplication of both sides by CB and taking the trace, we obtain:
X16

1

cA TrðCACBÞ ¼ 4eBcB ¼ 0 ! cB ¼ 0 8B:

A generic 4� 4 matrix is defined by its 16 elements, which implies that the vector space
consisting of all the 4� 4 matrices is 16-dimensional. The 16 linearly independent
matrices fCAg form therefore a basis for this space, i.e. a complete set of matrices in
terms of which any other matrix M can be expressed as a unique linear combination:

M ¼
X16

A¼1

CACA; CA ¼
eA

4
TrðMCAÞ: ðG:15Þ
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In Chap. 12 we shall often need to compute traces of products of gamma matrices.
Let us derive some useful properties of these traces. We start defining the fol-
lowing quantities:

T l1l2...ln � 1
4

Trðcl1cl2 . . .clnÞ: ðG:16Þ

These are Lorentz-invariant tensors. To prove this let us observe that the cl

matrices, if written in components ðclÞab, can be viewed as a mixed Lorentz-
tensor, with two contravariant indices l; a in the fundamental and spinorial
representations, respectively and one covariant spinorial index b: As a Lorentz
tensor, it is invariant since, if we simultaneously apply to all its indices a Lorentz
transformation K, it remains unchanged:

ðclÞab �!
K

Kl
mSðKÞaa0SðKÞ

�1b0

bðcmÞa
0

b0 ,

, cl �!K Kl
mSðKÞcmSðKÞ�1 ¼ cl;

ðG:17Þ

where we have used (10.89) with K �! K�1. If we apply the above property to
each gamma-matrix in T l1l2���ln we find:

T l1l2���ln � 1
4

Trðcl1cl2 � � � clnÞ

¼ Kl1
m1 � � �Kln

mn

1
4

TrðScm1S�1Scm2S�1 � � � ScmnS�1Þ

¼ Kl1
m1 � � �Kln

mn
T m1m2���mn ; ðG:18Þ

where we have used the invariance of the trace under conjugation of the gamma-
matrices by S ¼ SðKÞ: This proves the Lorentz-invariance of the tensors T l1l2���ln :
These tensors should therefore be expressed in terms of the only invariant tensor of
the full Lorentz group O(1,3), namely glm: Since every tensor made up in terms of
the metric tensor is necessarily of even order, the trace of the product of an odd
number of gamma matrices is zero. From the anticommutation relations(G.1),
using the cyclic property of the trace we easily find

T lm � 1
4

TrðclcmÞ ¼ glm: ðG:19Þ

Let us now consider the trace of the product of four gamma matrices. We show that

T l1l2l3l4 ¼ gl1l2gl3l4 � gl1l3gl2l4 þ gl1l4gl2l3 : ðG:20Þ

By successive steps we bring cl1 to the right end of the product. In the first step,
using (G.1) we find

T l1l2l3l4 ¼ 2gl1l2T l3l4 � T l2l1l3l4 ¼ 2gl1l2gl3l4 � T l2l1l3l4 : ðG:21Þ

As a second step we (anti)commute cl1 with cl3 on the right-hand side of (G.21),
and so on until after the last anticommutation we find the tensor T l2l3l4l1 , which
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equals to T l1l2l3l4 by the cyclic identity of the trace. Putting together the results of
the successive commutations we recover (G.20).

The same iterative procedure can be applied to any number of gamma
matrices. As a further example consider the trace of six gamma matrices. We
can write

T l1l2l3l4l5l6 ¼ gl1l2T l3l4l5l6 � gl1l3T l2l4l5l6

þ gl1l4T l2l3l5l6 � gl1l5T l2l3l4l6 þ gl1l6T l1l2l3l4 ;

and the four-index tensors can be reduced using (G.21). In general, using the
property

T l1l2...ln ¼ gl1l2T l3...ln � gl1l3T l2...ln þ � � � þ gl1lnT l2...ln�1 ; ðG:22Þ

a generic rank tensor can be reduced to combinations of products of g-matrices.
In actual computations the Lorentz indices of the gamma matrices are contracted

with four vectors al, so that we typically have to evaluate expressions like

a1a2. . .anð Þ � 1
4

Trð6a1 6a2. . . 6anÞ: ðG:23Þ

In that case formula (G.22) implies:

a1a2. . .anð Þ ¼ ða1 � a2Þ a3. . .anð Þ � ða1 � a3Þ a2. . .anð Þ þ � � � þ ða1 � anÞ a2. . .an�1ð Þ:
ðG:24Þ

Using the properties discussed above we can also prove the following identities
which will be useful when computing cross sections in Chap. 12:

Tr ð6Aþ aÞclð6Bþ bÞcmð6Cþ cÞclð6Dþ dÞcm

 �

¼ �32ðA � CÞðB �DÞ þ 16 abðC �DÞ þ 16 acðB �DÞ þ 16 adðB � CÞ
þ 16 bcðA �DÞ þ 16 bdðA � CÞ þ 16 cdðA � BÞ � 32 abcd; ðG:25Þ

Tr ð6Aþ aÞclð6Bþ bÞcmð6Cþ cÞcmð6Dþ dÞcl

 �

¼ 16 ðA �DÞðB � CÞ þ ðA � BÞðC �DÞ � ðA � CÞðB �DÞ½ 	
� 32 abðC �DÞ þ adðB � CÞ þ bcðA �DÞ þ cdðA � BÞ½ 	
þ 64 acðB �DÞ þ 16 bdðA � CÞ þ 64 abcd: ðG:26Þ
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Index

A
Aberration

of starlight, 14
relativistic, 33

Action, 208
at-a-distance, 8
by-contact, 8
evaluated along an actual

trajectory, 225
invariance in field theory, 245
istantaneous, 37
of the electromagnetic field, 239
symmetry in field theory, 245

Action principle
for the hamiltonian formulation, 236

Action principle of stationary action
for fields, 236

Action principle of stationary action
for a system of particles, 208

Algebra
Lie, 190
rotation group Lie algebra, 116

Angular momentum
as a set of three charges associated

to rotations, 254
as infinitesimal generators

of SO(3), 117–119
four-dimensional, as a set of six charges

associated to Lorentz
transformations, 255

Annihilation
electron-positron, 481

Anomalous
electron magnetic moment, 534

Anticommutation relations
for the Dirac field, 399

Antiparticles, 374, 400

B
Bhabha scattering, 480
Boost generators

as a set of three charges associated the
motion of the relativistic center
of mass, 255

Bose-Einstein statistics
for scalar particles, 373

Boundaryconditions
periodic, 309

C
Canonical transformations, 226

generating function, 227
infinitesimal, 228

Cartesian coordinates, 91
Causal theory, 385
Causality principle, 22
Chain approximation, 517

for photon self-energy, 521
Charge conjugation

matrix, 343
of Dirac equation in an electromagnetic

field, 349
transformation of a quantum scalar

field under, 381
transformation of a quantum

spinor field, 409
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C (cont.)
Charge conservation, 148
Charge operator

for the Dirac field, 398
for the scalar field, 376

Chronological operator, 447
Conservation laws

for a system with finite number
ofdegrees of freedom, 213

Commutation and anticommutation rules
for interacting Dirac and
electromagnetic fields, 427

Commutation relations for scalar bosonic
fields, 360

Dirac fields, 402
the electromagnetic field, 172, 417

Commutator
of group elements, 314

Complex scalar field
interacting with an externalelectromagnetic

field (classicaldescription), 313
Compton scattering, 486
Configuration space, 208
Connection

affine, 84
Conservation

of charge in Klein Gordon equation, 308
of charge quantum operator, 377

Conservation laws
in Hamilton formalism, 229
of total angular momentum for particle

with spin, 330
Constants of motion

in Hamilton formalism, 230
Continuity equation, 148

in Schrödinger theory, 304
Contraction

of lengths, 25
Contravariant vector, 97

general definition, 101
Coordinates

Lagrangian, 207
rectangular, 95

Coulomb
gauge fixing, 166

Coulomb potential
and virtual photons, 482

Counterterm
for the Dirac Lagrangian, 521
for the electromagnetic free

Lagrangian, 524
Coupling

minimal, 244, 315, 348

Coupling constant
experimental definition, 508

Covariance
and tensor equations, 121
under a transformation group, 122

Covariant
derivative, 315
vector components as orthogonal

projections, 98
Covariant law, 10
Covariant vector, 97

general definition, 101
CPT theorem, 431
Creation-destruction operators, 172–176

anticommutation relations, 399
Creation-destruction operators

commutation relations, 366
for the Dirac field, 397
transformation under Lorentz

group, 378–379
Cross section

for Compton scattering, 499
for Bhabha scattering, 495

Cross-section, 438
differential, 442
Lorentz invariant form

of differential, 455
total, 442

Crossing symmetry, 488
Current

Noether, 249
four-dimensional electric, 240

Curvature, 81
and tidal forces, 82
gaussian, 80
Riemann curvature tensor, 81
two-dimensional, 78

D
Decay

channels, 437
partial width, 437
probability, 437
processes, 436
width, 437

Degree of divergence
superficial, 511

Degrees of freedom, 207
internal, 168

Diagrams
divergent, 502
tree, 472

566 Index



Dirac
Hamiltonian, 333
Lagrangian, 331

Dirac equation, 319
covariant form of, 321
conservation of probability, 323
covariance under Lorentz

transformations, 324
hamiltonian form of, 319
in an external electromagnetic field, 348
in momentum space, 335
negative energy solutions, 335
non-relativistic limit, 322–323
plane waves solutions, 334

Dirac field
quantum Fourier expansion, 395

Dirac spinor
orthonormality relations, 341
projectors on positive and negative

solutions, 343
Distance

in vector spaces, 94
proper, 27

Divergent constants
as coefficients of a Taylor expansion of a

divergent diagram, 514

E
Eigenvalues

of a hermitian operator, 266
of a unitary operator, 266

Einstein convention, 58
electromagnetic field

of a charge in uniform motion, 144
as a set of harmonic oscillators, 170
covariant quantization, 413
quantum equations of motion, 414
quantum Fourier expansion, 415

Electron
magnetic moment, 351
self-energy part, 516

Electron mass
experimental definition, 508

Energy
classical kinetic, 211
ground state infinite, 175
negative, 309
relativistic kinetic, 45, 212
rest, 46

energy-momentum
four-vector, 55
relativistic relation, 53

Energy-momentum tensor
of a system of electric charges, 150
as a set of four Noether charges

associated with space-time
symmetries, 251

divergenceless of, 250
for Dirac equation, 332
non-unicity, 252
of electromagnetic field, 152
symmetric, 252
symmetry as a requirement

of consistency, 252
Equation

quantum Hamilton’s equations, 285
Equivalence

principle of, 1
strong principle of, 67
weak principle of, 63

Ether hypothesis, 13
Euler-Lagrange

equations, 209
equations for fields, 236

Event, space–time, 26
Expectation value

of an operator, 265
Experiment

Eötvos, 537
of Michelson and Morley, 14

External field
electron in an external field, 488

F
Feynman diagrams

of self-interaction, 472
second-order contributions, 471

Feynman propagator
for the extended Fermi Lagrangian, 417
for fermions, 404
for scalar fields, 388
for spinor fields, 402
for the electromagnetic field, 417
in momentum space, 392
in momentum space, for spinor fields, 405

Feynman rules
for electrodynamics, 489

Field
tensor, 106

Fields, 193
Lagrangian and Hamiltonian

formalism, 232
Flux

of incident particles, 440
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F (cont.)
Fock space

for the quantum scalar field
excitations, 373

Force
four-force, 60
relativistic, 44
tidal, 69

Four-current, 139
Four-momentum

as a set of four Noether charges, 271
Four-vectors, 54
Four-velocity, 55
Frame of reference, 1
Functional

as limit of a function of infinite many
discrete variables, 233, 257

derivative, 232
of fields, 233

G
Gamma matrices, 320

manipulations, 557
standard Pauli representation, 321
Weyl representation, 352

Gauge invariance
and conservation of the electric charge, 240
for scattering amplitudes, 489
global and local, 316
of Dirac equation in an electromagnetic

field, 349
Generator

infinitesimal, 117, 130–132, 135, 190
Generators

of canonical transformations in field
theory, 260

Green’s function, 392
advanced and retarded, 393

Group
GL(n), 114
O(n), SO(n), 113
SO(1, 3), 126
SO(3) as a subgroup of O(3), 113
SO(3) structure constants, 119
U(1) invariance and charge conservation,

256, 377
of congruences, 114
abelian, 182
abstract, 181
affine, 113
continuous, 182
homomorphic realization, 197
Lie, 182

little group for Dirac solutions, 337
Lorentz, 124, 133
of transformations, 113
Poincaré, 133
realization, 197

Gupta-Bleuler
subsidiary condition, 420

H
Hamilton

equations, 170
equations for the interacting Dirac and

electromagnetic quantum field, 428
equations of motion, 223, 229
equations of motion for the quantum Dirac

field, 399
formulation of classical mechanics, 222
quantum equations of motion, 361

Hamiltonian
for the covariantly quantized

electromagnetic field, 414
of a charge in the electromagnetic

field, 243
as generator of the time evolution

of a system, 229
density, 258
density for the interacting Dirac and

electromagnetic quantum field, 427
for a system with finite number of degrees

of freedom, 222
in terms of creation and destruction

operator for scalar fields, 367–370
in terms of creation and destruction

operators for the Dirac field, 400
of a classical scalar field, 317
of a free relativistic particle, 225
quantum, 284
quantum interaction density in

electrodynamics, 468
quantum operator for scalar fields, 361

Hamiltonian formalism
in field theory, 257

Heisenberg
commutation relations on quantum

operators, 276
picture, 285, 361, 445
representation, 285

Heisenberg prescription, 359
Helicity, 178, 329, 345
Hilbert space, 267

negative norm states, 419
Homogeneity

of space, 6, 210
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I
Impact parameter, 440
Inertia

relativistic formulation of the principle
of, 61

Infrared catastrophe, 532
Interaction

Hamiltonian, 429
Lagrangian, 427
local, 38
picture, 444

Internal symmetries, 255
Interval

light-like, 28
space-like, 28
time-like, 28

Invariance
under Poincaré group, 250
under space-time translations, 251
gauge, 156

Invariance under change of coordinates
of a field, 200
of a scalar field, 198

Invariant law, 10
Isotropic propagation, 11
Isotropy of space, 6, 210

J
Jacobi identity

for Poisson brackets, 225

K
Kinematics

of interaction processes, 435
Klein-Gordon

quantum equation, 308
quantum field, 358

Klein-Gordon equation, 306
general soution, 311

Kronecker symbol, 104

L
Lagrangian

density, 234
extended Fermi Lagrangian for the

electromagnetic field, 418
Fermi Lagrangian for the quantum

electromagnetic field, 410
for a classical free particle, 210
for a relativistic free particle, 212

for a system with finite number of degrees
of freedom, 207

of a classical scalar field, 308
of charged particles, 242
of interaction between charges and

electromagnetic field, 241
of the quantum eletromagnetic field

interacting with the Dirac field, 426
one-loop renormalized Lagrangian for

quantum electrodynamics, 531
quantum Lagrangian density in

electrodynamics, 467
Lamb-shift, 535
Legendre transformation, 227
Lie algebra

commutator, 192
infinitesimal generator, 190
Jacobi identity, 192

Light
velocity of, 12

Light-cone, 29
Lorentz

orthochronous transformations, 125
boost in spinor representation, 330
force, 243
gauge fixing, 157
group, 124, 133
subgroup of proper transformations, 125

Lorentz force
covariant form of, 143

Lorentz gauge
operatorial constraint, 420

Lorentz group
Lie algebra, 130

Lorentz invariance
and the associated conserved currents, 251

Lorentz transformation
definition, 124
infinitesimal, 129

M
Möller scattering, 474
Mandelstam

variables, 443
Map

exponential, 275
Mass

conservation of relativistic, 46
energy equivalence, 48
gravitational, 63
inertial, 2, 63
relativistic, 42
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M (cont.)
Mass conservation

in classical mechanics, 9
Mass renormalization, 519
Matrices

kronecker product of, 102
Matrix

as a (1, 1)-tensor, 104
exponential of a, 119
orthogonal, 109

Maxwell
equations, 137
equations in tensor form, 141

Mean-life time, 437
Metric

in euclidean space, 73, 93
inverse, 97
Minkowski, 73
tensor, 74

Minimal coupling, 244, 315, 348
Momentum

canonically conjugate to a field, 258
in terms of creation and destruction

operator for scalar fields, 370, 373
in terms of creation and destruction

operators for the Dirac field,
400

non conservation of classical momentum
in relativity, 39

relativistic, 41
Momentum conservation

in classical mechanics, 9
Muon lifetime, 35

N
Newton equation, 7
Noether charges, 221
Noether theorem

for a system with finite number
of degrees of
freedom, 217–221

and conserved charges, 249
in field theory, 246–249

Non-relativistic limit
of Dirac equation in an

electromagnetic field, 347
Non-renormalizability condition, 513
Normal ordering, 175, 367

for spinor fields, 397
Normalization volume

independence of scattering amplitude
from, 451

O
Observable, 267

complete set of commuting
observables, 267

Occupation number, 177
One-particle irreducible

self-energy diagrams, 517
One-particle states

stability, 504
Operator

differential, 200
hermitian, 266
hermitian conjugate, 266
linear, 265
number operator for scalar field

excitations, 371
unitary, 266

Optical-theorem, 458

P
Parallel transport, 79
Parity

transformation, 125
transformation of a quantum scalar

field, 379
transformation of a quantum spinor

field, 408
Particle density normalization, 438
Pauli equation, 350
Pauli principle

for fermions, 401
Phase space, 223
Phase-space

invariant measure, 439
two-particle, 456

Photon, 159
as an excitation of the quantum

electromagnetic field, 176
helicity, 178
single particle state, 423
virtual, 469, 471, 480
wave-function, 306

Photon mass
absence of renormalization, 523

Poincaré
Lie algebra, 136

Poincaré transformation, 134
Poisson brackets, 224

between fields and conjugate
momenta, 260

of functionals, 258
of spinor fields, 334
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for the canonical coordinates
and momenta, 225

invariance under canonical
transformations, 229

Polarization
four-vector, 158
transverse, 160

Polarization vectors
completeness relation, 416

Positive energy
one particle states, 451

Potential
electromagnetic four-potential, 155

Principle
of constacy of the speed of the light, 16
of inertia, 6, 7
of relativity in arbitrary frames, 68

Principle of microcausality, 385
Probability of transition, 437
Pseudophotons, 422

and gauge transformations, 423

Q
Quantization

in a box, 278

R
Radiative correction

to the Coulomb law, 523
to the electron magnetic moment, 532

Reference frame, 1
accelerated, 64
accelerated, 2
inertial, 2
of fixed stars, 14
standard configuration of, 3, 17

Regularization, 512
Relativity

general, 68
general theory of, 2
principle of, 1
special, 16
special theory of, 2

Relativity Principle
covariance of the physical laws written

in tensor form, 127
in tensor form, 120

Renormalizability
and coupling constant dimensions, 512
of a theory, 512
of quantum electrodynamics, 512

Renormalization, 507–516

of electric charge (coupling constant), 528
of the interaction Lagrangian, 531

Representation, 182
coordinate, 268
defining, 187
equivalent, 185
faithul, unfaithful, 185
fully reducible, decomposable, 186
Heisenberg, 177
reducible, irreducible, 186
Schrödinger, 177
trivial, 186
unitary, 272

Rigid body, 25
Rotation

improper, 111
infinitesimal, 117

Rotations
unitary operator in Hilbert space, 281–282

S
Scalar field

multiparticle wave function, 374
quantum Fourier expansion, 364

Scalar product, 93
hermitian, 264

Scattering matrix, 449
invariance under symmetry, 455
second-order contributions, 471–473
unitarity, 449

Schrödinger
equation, 284
picture, 275, 284, 444
representation, 275
wave function, 284

Schrödinger wave function
infinitesimal transformation under

rotations, 206
infinitesimal transformation under

translations, 205
Schur’s lemma, 189
Self-energy

diagrams, 502
electron self-energy diagram, 502
parts (or insertions), 510
photon self-energy diagram, 503

Simultaneity
in classical mechanics, 5
in special relativity, 24

Space
flat, 75, 100
invariant, 186
Minkowski, 26, 54
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S (cont.)
curved (non-flat), 75, 100

Space-time, 26
Spin, 254

covariant description
of orientation, 345

group, 161
of the photon, 161
projectors, 345

Spinor
bilinear forms, 355
Dirac conjugate, 324
infinitesimal transformation

under Lorentz, 326
large and small components, 323
representation, 321, 326
representation generators, 326
parity transformation, 352–355
reducibility under proper Lorentz

transformations, 354
Standard model, 432
Structure constants, 192
Super-renormalizable theories, 513

T
Tensor, 101–104

O(n) symmetric traceless, 115, 188
(p, q)-tensors, 104
covariant or contravariant under

Lorentz transformations, 127
algebra, 104–108
contraction of indices, 105
contravariant, 102
covariant, 103
differentiation, 108
field, 106, 193
general transformation law, 104
invariant, 106, 115, 130
Lorentz invariant, 130, 156
raising and lowering of indices, 104
symmetric and antisymmetric, 107

Tensor representation of Lorentz group, 127
Time

dilation, 23
evolution operator, 283
proper, 26

Time intervals
in a gravitational field, 86

Time reversal
exchange of final and initial states in

scattering amplitude, 456
transformation of the Lorentz

group, 124

transformation of a quantum scalar field
under, 382

transformation of a quantum
spinor field, 411

Time-ordered product, 448
for boson fields, 388
for spinor fields, 404

Transformation
GL(n), 185
active, 183, 196, 272
affine, 98, 134
antilinear, 383
antiunitary, 274, 383
boost, 133
canonical versus unitary, 276
congruence, 6
Galileian, 5
general coordinate, 68
homogeneous, 99
infinitesimal Lorentz, 129, 202
internal, 195
invariance under Galileo, 7–10
Lorentz (standard configuration),

20, 55–56, 133
of a classical field under

Poincaré group, 203
of a quantum scalar field under

Poincaré group, 378
of a spinor field under Poincaré

group, 405, 408
of electric and magnetic fields, 144
of the quantum electromagnetic

field under Poincaré
group, 425

passive, 183, 196, 272
Poincaré, 61, 134
translation, 99
unitary, 266

Transition amplitude, 449
Translation

space-time, 122
time, 7

Twin paradox, 541

U
Units

Heaviside-Lorentz, 137

V
Vacuum polarization, 524
Vacuum polarization tensor

gauge invariance of, 503
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Vacuum-vacuum
transition, 506

Vector
bra vector, 264
ket vector, 264

Vector space, 91, 264
Velocity

classical composition of, 4
limit, 16, 31
relativistic composition of, 30

Vertex part, 509, 524, 526
second-order corrected, 526

Volume
large volume limit, 162
normalzation volume for wave

packets, 279

W
Ward identity, 529
Wave equation

classical relativistic, 303–09

Wave function
antisymmetry for fermion particles, 401
energy representation, 272
in momentum space, 271
probabilistic interpretation, 269
spin dependence, 281

Wave function renormalization
for the Dirac field, 520
for the photon field, 524

Waves
electromagnetic, 12
mechanical, 10

Wick’s theorem, 462

Z
Zeeman effect, 351
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