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Preface

Originated from studies on steam engines, thermodynamics is formulated tradition-
ally for homogeneous materials. Applying to condensed matters however, laws of
thermodynamics have to be evaluated with respect to the structural detail. Follow-
ing after Kirkwood’s chemical thermodynamics, the author’s attempt is to discuss
lattice dynamics in crystalline states in light of the traditional laws. It is noted that
lattice symmetry remains as implicit in crystalline states if assumed as homoge-
neous, whereas deformed crystals with disrupted symmetry are not necessarily
stable and inhomogeneous, exhibiting mesoscopic properties. In this context,
the lattice dynamics in uniform crystalline states should accordingly be revised.
Although mostly presumptive in the literature, such attempts should be formulated
with fundamental principles for modern thermodynamics. I have selected structural
changes and superconducting transitions for this book to discuss as basic phenome-
na in crystals in thermal environment.

Born and Huang have laid ground for thermodynamics of crystalline states in their
book Dynamical Theory of Crystal Lattices. They assumed, however, that order—
disorder phenomena were independent from the lattice dynamics, and hence excluded
from their book. On the other hand, new evidence indicates that the problem must be
treated otherwise; the lattice does play a vital role in ordering processes. Accordingly,
I was motivated to write about physics of crystal lattice in the light of Born—Huang’s
principles, which constitutes my primary objective in this book.

In modern experiments, mesoscopic objects in crystals can be investigated
within timescale of observation, yielding results that appear somewhat unusual, if
compared with macroscopic experiments. It is important that thermodynamic rela-
tions in mesoscopic states should be expressed with respect to the timescale of
observation. Also significant is that mesoscopic quantities in crystals are driven by
internal interactions of nonlinear character. In this book, I have therefore discussed
thermodynamic quantities with respect to the timescale of observation, including
elementary accounts of nonlinear physics to discuss long-range correlations, which
I believe is the first attempt in a textbook of thermodynamics. For convenience of
readers who are not particularly familiar with nonlinear physics, I have attached
Appendix, listing some useful formula of elliptic functions.



vi Preface

I have written this book primarily for advanced students in physics and engi-
neering, assuming their knowledge of traditional thermodynamics and quantum
theories. Although written as a textbook, this book may not be suitable for use in a
regular classroom. However, it is designed to serve as a useful reference for seminar
discussions. It is my hope to see if this book is found as stimulating for advanced
studies of condensed matter.

I should mention with my sincere appreciation that I have benefited for my
writing from numerous discussions and comments with my colleagues and students.
Finally, I thank my wife Haruko for her continuous support and encouragement.

November 2009 M. Fujimoto
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Chapter 1
Introduction

The basic objective in this book is to determine the dynamical role of the lattice
structure for structural changes. In this chapter, thermodynamic principles are
reviewed for crystalline states, realizing that the concept of order variables should
be redefined in relation to lattice excitations. Although implicit in thermodynamic
functions, the lattice is dynamically essential for structural and superconducting
transitions in crystals. It is also significant that order variables emerge in finite
amplitude at a critical temperature as related with an adiabatic potential in a crystal.
Here, we introduce necessary modifications of the traditional principles, serving as
a preliminary account of thermodynamics of crystalline states.

1.1 Crystalline Phases

Originated from steam engines with compressed vapor, today’s thermodynamics is
a well-established discipline of physics for thermal properties of matter. If char-
acterized by a uniform density, a crystal can be in a thermodynamic state expressed
by functions of temperature and pressure of the surroundings. Specified by symme-
try of the lattice structure, properties of a single crystal are essentially due to masses
and other physical nature of constituents at lattice points, although geometrical
symmetry per se cannot be responsible for physical properties. In thermodynamics
of crystalline states, structural changes are still an outstanding problem, but cannot
be properly solved with uniform state functions, unless the structural detail is taken
into account. A structural transition is generally discontinuous at a specific temper-
ature, below which even a chemically pure crystal becomes inhomogeneous and
composed of substructures in smaller volume, for example, domains, in thermal
equilibrium. Domains in finite volume are not uniform in principle, but a transfor-
mation from one kind to the other can be described with thermodynamic principles,
if some realistic internal variables can be specified. In fact, among various types of
crystals, there are some inhomogeneous crystals signified by distributed sinusoidal
densities, which are regarded as modulated thermodynamic states. Consistent with
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2 1 Introduction

Kirkwood’s definition [1] in chemical thermodynamics, thermodynamic functions
can be defined with continuous internal variables of space coordinates, in addition
to temperature and pressure of the surroundings.

In Dynamical Theory of Crystal Lattices, Born and Huang [2] laid foundation
of thermodynamics of crystalline states in 1954, but their general theory has not
been fully substantiated by experimental results, perhaps supporting data were not
properly analyzed at that time. In today’s literature however, there are many results
available for evaluating their theory, yet such a task has not been carried out
properly.

Needless to say, a crystalline state is very different from a gaseous state of a
large number of free constituent particles. A crystal packed with identical consti-
tuents is characterized by distinct symmetry, whereas fast molecular motion pre-
vails in gaseous states. The internal energy of a gas is primarily kinetic energies of
particles in free motion, whereas in a crystal it is essentially intermolecular poten-
tial energies. A structural change between different crystalline phases is a dynamic
process across their boundaries. Also, it is significant that a gas is normally confined
to a container in finite volume, whereas a crystal has its own volume under given
conditions. Nevertheless, the surface boundaries are often neglected, or dealt with
under a simplified mathematical conjecture, besides surfaces have only a little
contribution to bulk properties of a crystal in large size.

In thermodynamics, a crystal must always be in contact with the surroundings in
equilibrium. Assuming no chemical activity, surfaces provide a physical contact,
where only /heat can be exchanged with the surroundings. Joule demonstrated that
heat is nothing but energy, although it is of a unique type of energy among others.
Boltzmann interpreted that heat is originated from randomly distributed micro-
scopic energies in the surroundings. Excitations in a crystal are basically due to the
vibrating lattice at a given temperature, which are quantum mechanically a gas of
phonons in random motion, as Planck postulated for thermal radiation. The phonon
spectrum is virtually continuous; the internal energy is associated statistically with
the average phonon energies. In this context, the lattice symmetry remains implicit
in thermodynamic functions that are defined as uniform in a stable crystal at
constant volume V.

Equilibrium between two bodies in thermal contact can be characterized by a
common temperature T, indicating that there are no net flows of heat across the
surfaces. For a combined system of a crystal and its surroundings, the total amount
of fluctuating heat AQ is signified as negative, that is, AQ < 0, implying that any
thermal process should be fundamentally irreversible in nature, as stated by the
second law of thermodynamics. Depending on the process, AQ cannot be uniquely
specified as a function of temperature and pressure; hence, the heat quantity Q
cannot be a state function. Instead, a function S defined by AQ/T = AS is utilized as
a state function, if the integrating denominator T can be found for AS to be a total
differential, representing a reversible contact by another common quantity S
between the crystal and surroundings. Clausius generalized this argument in an
integral form §.AQ/T <0 or §.dS <0 along a closed curve C in a phase
diagram, where the equality sign is assigned for a reversible process. Thermal
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equilibrium can therefore be specified by a maximum of the state function S, called
the entropy. Boltzmann interpreted the entropy S in terms of thermodynamic
probability g(T), representing the average of randomly distributed microscopic
energies in the surrondings. He wrote the relation

S = kg Ing(T), (1.1)

where kg is the Boltzmann constant. It is significant that such a probability is a valid
concept for crystalline states to be in equilibrium at temperature T and pressure p;
random phonon energies allow statistical description.

Physical properties of a crystal can be represented by the internal energy
U(p,T), which can be varied by not only heat Q but also external work W, as stated
by the first law of thermodynamics, that is,

AU=0+W. (1.2)

In a solid, mechanical work can change the volume, accompanying a structural
modification, which can be performed by an external force, electric and magnetic
fields, if constituent molecules consist of electric or magnetic moments. Denoting
such elemental variables by o, located at lattice sites m, the work W performed by
an external agent X can be expressed as W = — > 0¢,X. These o, are generally
called order variables.

It is realized that internal variables o,, depend on their sites in the lattice, and
generally correlated with each other. Internal correlations are primarily indepen-
dent of temperature, hence occurring adiabatically, whereas the heat quantity Q
depends on the temperature, flowing in and out of a crystal in isothermal conditions.
Nevertheless, internal correlations in crystals may generally be observed as weakly
temperature dependent.

Mutually correlated o, can be expressed in a propagating mode, if a crystal is in
an excited condition, exhibiting modulated lattice translation. Owing to their
nonlinear character, such correlations can be considered as driven by an adiabatic
potential AU, at the lattice point m, as will be discussed in Chap. 7. In this case,
their propagation can be characterized by a modulated periodicity different from the
original lattice, showing a periodically ordered structure. On the other hand, if
correlations occur only in short distances between g, and 7, their energies can be
expressed by — J,,,06,,0,. In this case, by writing

- ijno-mgn = *Gmea (13)
n

we can consider the internal field X,, = >, J,,,0,. Taking the spatial average over
all lattice sites, we can consider the mean-field average (X,,) instead of X,,. For
nonvanishing (g,,) # 0, (1.3) can be interpreted as work performed by (X,,) on
(o), representing the correlation energy in mean-field accuracy. However, if
expressing (1.3) as — (6,,)Xin, the internal field X, may be regarded in better
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accuracy than (X,,). If the corresponding adiabatic potential AU, can be specified,
we have the relation X, = —0AU,,/0x,,, which gives an alternative expression for
> ImnOn.

In the presence of an external field X, the effective field can then be assumed as
X + Xine = X'. Although X is an adiabatic variable, X;,; can be a function of T and p,
so that the effective field X’ is generally temperature dependent, that is, X' = X'(T)
under a constant p. The macroscopic energy relation for a general process can then
be expressed as

AU < AQ — A(6X') or AU —TAS + A(cX’) <0.

Defining the Gibbs potential G = U — TS + gX’, we obtain the equilibrium
condition

AG <0. (1.4)

This indicates that a minimum of the Gibbs potential can determine equilibrium
against any variation of thermodynamic variables.

In practice, it is important to identify order variables ¢,,, against which the Gibbs
function can be minimized for equilibrium under a fixed external condition. If a
crystal is assumed as a continuous medium, distributed microscopic variables a,,
among lattice sites can be expressed by an averaged continuous variable o, called
the order parameter in the mean-field approximation. The Gibbs function can then
be given as G(p, T; ¢), where ¢ is normally defined to take values restricted in the
range 0<o< 1. Noted that some crystals are ordered spontaneously with no external
agent, for which the internal field Xj, is considered as responsible. For a ferromag-
netic crystal, Weiss (1907) postulated such a field Xj,; as proportional to ¢, which is
the magnetization in the mean-field approximation.

According to (1.4), under a constant 7—p condition, thermal equilibrium can be
determined by fluctuating ¢ at a minimum of the Gibbs function. Such fluctuations
may occur in a crystal spontaneously, establishing equilibrium as determined by
(1.4). As substantiated by observed anomalies, such spontaneous fluctuations are
not hypothetical, as will be discussed in later chapters.

1.2 Structural Changes

In equilibrium conditions, crystalline states are stable, but transformable from one
state to another by varying surroundings and external forces. We consider that the
order variables g, in collective motion are responsible for such phase transitions.
Although primarily independent of the hosting lattice, the correlated variables can
modify the lattice translational symmetry, leading to another structure in different
symmetry. In this case, due to Newton’s action-reaction principle, correlated
displacements u,, of lattice points can also be considered to counteract g,,. Born
and Huang [1] proposed that structural stability should be maintained with
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minimum strains, which can be determined by minimizing the Gibbs potential
modified for such a deformed crystal.

Considering a transition from a phase 1 to another phase 2 at critical conditions
p. and T, the Gibbs potential can be expressed as G(p., T.; 01, 02 ), where ¢ and o,
are variables to represent two phases, signifying that the crystal is composed of
mixed phases during the process. In fact, these g, and ¢, may be randomly
distributed variables, so that the mixed composition considered here is not well
defined. Nevertheless, we write the Gibbs potential in the presence of an applied
field X at the critical temperature as

Guans = G(pe, Te;01,02) — (01 + 02)X.

On the other hand, the Gibbs potentials for coexisting phases 1 and 2 at p and T
can be expressed as

G1:G(p,T)—01X and G2:G(p,T)—O'2X.

For a binary transition characterized by ¢, = —a,, we can consider fluctuations
Ag; = —Aa,, for which the change in the Gibbs potential can be expanded as

1 9*G
AGuans = 5 > (W) AGiAG; + - - - (1.5)
ij=1.2 1 1/ p,T

Neglecting higher-order terms for small Ag;, a nonvanishing AGy,,s gives a
discontinuity at the transition. On the other hand, if the inversion does not exist,
AGans is dominated by a finite first-order derivative of G; the phase transition
signified by the first-order term is called the first-order transition. For a binary case
as given by (1.5), AGyus of the second-order terms are predominant, and the
transition is called second order, according to the Ehrenfest’s classification. It is
noted from (1.5) that both the correlations Ag;Ag; and the second-order derivatives
of G should not vanish for second-order phase transitions. It is significant that the
presence of internal correlations Ac;Ag; is necessary for the transition to be second
order, which is in fact substantiated by transition anomalies.

First-order transitions are characterized by G; = G», if X = 0; otherwise,

AGLz = (0'2 — O'1>X. (16)

The Gibbs potential and order parameter are referred to as extensive variables;
by definition these are thermodynamic quantities proportional to the corresponding
volumes. Denoting domain volumes by V; and V5, the total volume is determined
by V1 + V, = V. Hence, (1.6) can be interpreted in terms of the volume ratio V; /V>,
or by o /0, that can be varied with an applied X (see Chap. 4). Domain volumes are
thus transformable by applying X, as V| < V;.

Figure 1.1 shows a phase diagram, where Gibbs functions of two phases G; and
G, are schematically plotted in a p—T plane. The crossing point P(p,, T,) indicates
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Fig. 1.1 Phase equilibrium
in the p-T diagram. Two
curves of Gibbs functions
G(p,T) and G,(p, T) cross at
a point P(po, To),
representing thermal
equilibrium between phases 1
and 2. If the transition is
discontinuous, such Gibbs
functions cannot specify the
equilibrium sufficiently at P,
requiring another variable, for
example, o.

the external condition for a transition between G and G,; however, the discontinu-
ity AG is implicit in this diagram. Nevertheless, at P there is a discontinuous change
of curvature as related to AGy,,s. Figure 1.2a illustrates a continuous second-order
transition G; — G at the critical temperature T¢. In the phase diagram ¢—T shown
in Fig. 1.2b however, a continuous transition is broadened by fluctuations in the
vicinity of T. At noncritical temperatures below T, the first-order transformation
01 <> g can be performed by applying a force X as described by (1.6).

1.3 Modulated Phases

Associated with lattice excitations, the order variable ¢ is primarily in propagation
through the crystal space, but modulated in finite amplitude. Such a modulated
wave is in standing-wave form in practical crystals in thermal equilibrium, thereby
detectable during an ordering process, and in sinusoidal phases of some crystalline
systems. Such standing waves can signify a thermodynamic crystalline state with
modulated symmetry. In this sense, a modulated ¢ is essential, which may be called
a mesoscopic variable. Following after Kirkwood’s definition, we consider such
phases specified by a continuous variable ¢ as thermodynamic phases.

In a practical observation, the Gibbs potential for a mesoscopic state should be
expressed by a time average

1t (1 \
(G)p‘T - g J() dt<‘_/ JV g(r7 t)d r>a

where 1, is the timescale of observation, g(r, t) is the density of the potential, and V
is a sampling volume. Writing as

1 r a(r,0)dr = (g(r),,

t Jo
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Fig. 1.2 (a) The second- (a)
order phase transition is
characterized by two
functions G; and G, that have
a common tangent and
different curvatures at P in the
p-T diagram. (b) Equilibrium
between binary domains
specified by ¢, and o,, which
are separated phases at
temperatures below the
critical temperature 7.
Transition anomalies near T
are shown schematically by
the shaded area.

(G) 7 ¢an be expressed as a spatial average

(@ = | (a0 1.7

over the volume V. The time-averaged density (g(r)), can be sampled in practical
experiments. Although the simplest assumption is to consider (1.7) by the mean-
field average, it is important that (g(r)), can be measured by sampling experiments,
providing more accurate information than mean-field approximation. In practice, a
mesoscopic variable ¢ (r, t) can thus be sampled as (o (r)), that is informative for the
spatial distribution. It is noted that the timescale 7, and sampling volume V are
usually specified for sampling experiments.

Further, the dynamical variation of g(r) is essentially adiabatic, but recognized
actually as temperature dependent in crystals in thermodynamic environment. Such
a variation may cause a volume change, although ignored in traditional arguments.
In order for (1.7) to be a meaningful space—time average, the function (G) . should
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be obtained after a thermal relaxation process in the modulated lattice, in order to
represent the consequence of the Born—Huang principle [2].

1.4 Superconducting States in Metals

The superconducting transition in metals is interpreted as a condensation phenom-
enon in the reciprocal space. Although characterized by supercurrent and Meissner’s
magnetic effects, thermally superconducting phase transitions were recognized in
specific heat measurements, which can be interpreted with the concept of conden-
sates. Frohlich’s field-theoretical model of electron—phonon interaction has provided
a clear image of condensates to initiate a phase transition, for which the theory of
Bardeen, Cooper, and Schrieffer allows to define order variables. The last three
chapters in this book are devoted to discussions of superconducting transitions in
metals analogous to structural changes; both phase changes are signified by nonlinear
adiabatic potentials that arise from the lattice.

Exercises 1

1. What is the mean-field average? If a physical event at each lattice point is
random and independent in space, the average should always be zero, should
it not? There must be some kind of correlations among them, in order to have a
nonzero average. Discuss this issue.

2. Review Ehrenfest’s classification of phase transitions from a standard book on
thermodynamics. In his definition of second-order transitions, vanishing first-
order derivatives and nonzero second-order derivatives of the Gibbs function are
necessary. On the other hand, we noted that correlations Ag;Ac; among internal
variables are also required for the definition. Is this a conflict? If so, this problem
should be discussed to clear the apparent conflict before proceeding to the
following chapters.
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Chapter 2
Phonons

In this chapter, dynamics of an idealized lattice is discussed as an approximate
model for practical crystals in complex structure. Lattice vibrations in propagating
modes represent fundamental excitations in the periodic structure, being character-
ized by frequencies and wave vectors distributed in virtually continuous spectra.
Quantum theoretically, the lattice dynamics is represented by a phonon gas, where
phonon quanta behave like classical particles. On the other hand, lattice excitations
at low frequencies can be responsible for the strained structure. For thermoelastic
properties of crystals, such excitations play essential roles, depending on thermal
and mechanical conditions of the surroundings.

2.1 Normal Modes in a Simple Crystal

For a cubic lattice of N-particles of identical mass, first we solve the classical
equations of motion by taking nearest-neighbor interactions into account. Although
the problem is essentially quantum mechanical, the classical results are also useful
in the approximate approach. It is noted that lattice symmetry is invariant with
nearest-neighbor interactions to retain the lattice stability. In harmonic approxima-
tion, the equations of motion are /inear, and separable into 3N independent equa-
tions. Each one is a one-dimensional equation along symmetry axes, and the total
number of particles in the crystal is 3N. In such an idealized case, the classical
equations of motion can be written as

Xp = C()2()CI1+1 + Xpo1 — 2X,,), ).}n = wz(ynJrl + Y1 — 2))n)» and

. 2
n=w (Zi1+1 +Zp-1 — 2Zn>7

where the suffixes n indicate lattice sites and w® = k/m, where x and m denote
the mass of a constituent particle and the force constant, respectively. Instead of

M. Fujimoto, Thermodynamics of Crystalline States, 11
DOI 10.1007/978-1-4419-6688-9_2, © Springer Science+Business Media, LLC 2010
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rectangular coordinates x,, y,, and z,, we can use the generalized coordinates ¢,,,
with which the equations of motion can be written as

Gn = O (Gnit + Guor — 24n).- (2.1)

Defining the conjugate momentum to g, by p, = mgq,, the Hamiltonian of the
vibrating lattice can be expressed as

2

H = Z {pn (Cln+1 QH)Z + % (QH - in)z}- (22)

In the summation, each expression for n represents one-dimensional chain of
identical masses m, as illustrated in Fig. 2.1a.

Normal coordinates and conjugate momenta, Q. and P, can be expressed by the
Fourier expansions

1
: cexpikna and =— P expikna, (2.3)

where a is the lattice constant. For each normal mode, the amplitudes Q, and P, are
related as

N
Q=0;, P=P;, and Y expi(k—K)na =Ny, (2.4)
n=0

where Oy is Kronecker's delta, that is, oy = 1 for k = k', otherwise zero
fork =k
Using normal coordinates, the Hamiltonian can be expressed as

1 2n/a . . ok
H= m ; {PkPk + Qkam2w2 <51n2 ;) }a (2.5)
(a) n-1 n n+l
{0 O0—O0—C0—
f—
(b)

1
2(x /mf
Fig. 2.1 (a) One-
dimensional monatomic
chain of the lattice constant a.
(b) A dispersion curve w
versus k of the chain lattice.

|
::]Fl
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where

Or = —m* 0?0y (2.6)

and

k k
o = 20 sin?a - 2\/5 sin—2 2.7)

As indicated by (2.7), the lattice modes of coupled oscillators are dispersive,
signified by @y that is not linearly related with k. From (2.5), H composed of N
independent harmonic oscillators is expressed by the normal coordinates Q, and
conjugate momenta P;, where k = 2nn/Na and n=0,1,2,...,N. Figure 2.1b
shows the dispersion relation (2.7) of the characteristic frequency wy.

Equation (2.6) can be solved with the initial conditions for Q; and Qk att =0,
and the solution is expressed as

0,(0)

Wi

O () = 0k(0) cos ayt + sin wyf.

Accordingly, we have

qn(t) = ﬁ ; [qn/ (0)cos{ka(n—n") — wyt} +% sin{ka(n—n") — ot} |,

n'=nn+l1

(2.8)

where a(n — n’) represents distances between sites n and n’. Considering a cubic
volume L? where L = Na, the whole crystal is packed by a large number of these
unit volumes. Composed of such units, we can ignore surfaces from a large crystal,
setting periodic boundary conditions g,—o(f) = ¢,—n(¢) for L = Na. Expressing the
coordinates by x = na, (2.8) can be written as

q(x,t) = Z [A cos(hkx — wit) + By sin(Lkx — wyt)],
k

where A; = ¢;(0)/v/N and B; = ¢;(0)/wxv/N. The boundary conditions at
x=0 and x =L can thus be specified by kL =2znn or k =2mn/L, where
n=0,1,2,...,N. Hence, for a large L, the position x can be assumed to be a
continuous variable. Consisting of propagating waves in tx-directions, ¢(x,#) can
be conveniently written in complex exponential form, that is,

q(x,1) = Crexpi(ky — ot + @), (2.9)
k
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where C7 = A7 + B and tan ¢, = By /Ay. In three-dimensional crystals, these one-
dimensional modes along x, y and z axes are independent of each other; there are in
total 3N normal modes in the crystal.

2.2 Quantized Normal Modes

The Hamiltonian of a crystal lattice can be separated into 3N independent normal
modes, expressing propagations along the symmetry axes, on each we have
k=1,2,...,N. In quantum theory, the normal coordinate Q, and conjugate
momentum Py = —ih(0/0Qy) are operators, where 7 is the Planck constant
h divided by 27, obeying commutation relations

01, 0¢] =0, [Pe.Pe]=0, and [P, Qp] =ihdw.  (2.10)
We consider the Hamiltonian operator

1

o (PiP]  2020,0]) (2.11a)

t

for the normal mode k, where P,]: and Q, are transposed matrix operators of the
complex conjugates P; and Qf, respectively.
Denoting the eigenvalues of Hy by &, we have the equation

Hy

Hipy, = ey (2.11b)

For real &, P, and Oy should be Hermitian operators, as characterized by P,J(r =P,
Defining operators

4 to
P P,
b= ML AP T ey — P 2.12)
2mey, v/ 2mey,

we obtain the relation

| .
bkbz = m(mzwiQiQk +P/J£P1<) +12%€(QZPZ — POx)

Hk ia)k

Ok (Q_iP_i — PLOy).
8k+28k (Q—kP—_k — PrQx)

From this, we can derive

I |
M, = hoy <b,]:bk + 5), if o = S o, 2.13)
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Therefore, H; are commutable with the operator b;[ by, that is,

(e, bl = 0,

and from (2.12)

be.bl] = 60 [besbi] =0, and [bl,b1] = 0.

Accordingly, we obtain

[Mi,b)] = houb]  and by, Hy] = hiondy.

Combining these with (2.11b), the relations

Hk(b;r%) = (& + hwk)(bl]:‘//k) and  Hi(buy) = (ex — ho) (b

can be derived, which indicate that b,ir Y, and by, are eigenfunctions for the
energies ¢ + fiwy and ¢ — fiwy, respectively. In this context, b; and by, are referred
to as creation and annihilation operators for the energy quantum 7wy, and we can
write

bl = 1. (2.14)

Applying the creation operator bz on the ground-state function i, ng-times, the
eigenvalue of the wave function ()™, can be expressed as [n; + (1/2)]hawy,
indicating that this state consists of n; quanta plus the ground-state energy
(1/2)hoy. Considering fiwy like a particle, called a phonon, such an exited state
with n; identical phonons is multiply degenerated by permutation n;! Hence, the
normalized wave function of a phonon can be expressed by (1/v/7!) (b:,r)”k V. The

total lattice energy in an excited state, which consists of ny,n,,... phonons in
the normal modes 1,2, ..., can then be expressed by
Uny,na,...) = U, + anhwk, (2.15a)
k

where U, =), hiwy/2 is the total zero-point energy. The corresponding wave
function can be written as

CINCIES

describing a system of nj, n,, ... phonons of energies nifiwy, , naficoy,, . . ., leaving
the total number n; + ny + - - - as undetermined.

Y(ny,ny,...)= (Wi, ), (2.15b)
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2.3 Phonon Momentum

In the foregoing, we discussed a one-dimensional chain of mass particles as a model
for a real crystal in three dimensions. This model is valid in harmonic accuracy;
however, it is not sufficient for real crystals. In general, the lattice vibration
propagating in arbitrary direction can be regarded as the vibrating field, which is
more appropriate concept than the classical theory of normal modes. Considering
sound waves in anisotropic media, such a field is a more realistic concept, where
quantized phonons behave like free particles.

Setting rectangular coordinates x, y, z along the symmetry axes in an orthorhom-
bic crystal, lattice vibrations can be described in classical theory by a set of
equations

2
Py, K
ﬁ + 5{((])@,’!1 - ‘Ix,m+l)2 + (q«‘ﬁ,ﬂl - qunl*I)z} = 8".7”1’
Pyu | K
n 2 2
2ym2 + E{(Qy.nz - quanrl) + (Qy,nz - st”z*l) b= Eyanz s
2
bz, K
2;:13 + E{(C]z,m - quJrl)z + (Gzny — ‘h,nzfl)z} = Ezm3; (2.16)

where &, ,, + &, + €20, = &nynyny 18 the vibration energy at a lattice site specified
by indexes (ny,n,, n3), and K is the force constant.

The variables gy, , ¢y, , g n, in (2.16) are three components of a classical vector
¢, which can be interpreted as probability amplitudes of the harmonic displacement
in the vibration field. In this assumption, we can define a wave function for the
displacement field ¥ (ny,n,n3) = qxn, qyn,q- > for which these components can
be written as

q(x,t) = Z Crx expi(:l:kxx — ot + 4,%),

k,\

qly,t) = Z Cy, expi(ikyy — ot + wk}_),
%

q(z, 1) = ZC"» expi(:l:kzz — ot + gokz),
k-

and hence

. Exny T N2&yp, + N3E;
Y(ny,na,n3) = ZAk exp1<ik cp = Mo T by T 38y gok)‘
%

h
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Here, Ay = Ci,Ci, Cr., o = ¢y, + ¢, + ¢r.» and k = (ky, ky, k.) are the amplitude,
arbitrary phase constant, and wave vector, respectively. Further writing

N1 &y, + &y ny + Nn3&; ny
h

— oy, (2.17a)

the field propagation along the direction of a vector k can be expressed as
Y(k,wp) = Acexpi(k - r — ot + ), (2.17b)

describing a phonon of energy 7iw; and momentum = 7k. For a small value of |k,
the propagation in a cubic lattice can be characterized by a constant speed v of
propagation determined by w; = v|k|, for which we have no dispersion in this
approximation.

The phonon propagation can be described in the space of k, &y, k. called a
reciprocal lattice space, as illustrated in two dimensions in Fig. 2.2. We have the
relations

in a cubic crystal. A discrete set of integers (11, 15, n3) determines a momentum of a
phonon propagating in the direction of k, where |k| = 2%, /n? + nZ + n2. All points
on a spherical surface of radius |k| correspond to the same 7wy, which are almost
continuously distributed on the sphere of a sufficiently large radius.

Fig. 2.2 Two-dimensional

reciprocal lattice. A lattice

point is indicated by (., ky).
Two-quarter circles of radii k
and k + dk show surfaces of
constant & and &g for small
|k| in kyky-plane. — Iy
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2.4 Thermal Equilibrium

In thermodynamics, a crystal must always be in thermal contact with the surround-
ings. The quantized vibration field should therefore be in equilibrium with the heat
reservoir. A large number of phonons are in free motion, traveling randomly in all
directions through the lattice, reflecting from surfaces, where their energy and
momentum are exchanged with the surroundings. In thermal equilibrium, the
phonon distribution can therefore be described statistically with the concept of
probability.

For such a crystal in thermal equilibrium with the heat reservoir, the total
internal energy should be written as U + U, where Uy is a contribution from the
heat reservoir. The total U + U should take a stationary value against any varia-
tions of the other variables to specify equilibrium. Signified by random phonons,
the internal energy of a crystal can be calculated with statistical probabilities w and
ws for deviations from equilibrium. In this case, the product probability ww; can be
considered to be maximum for U + Us to be constant. Accordingly, we set up a
variation problem as

o(wws) =0 and 6(U+Us) =0.
Therefore, for arbitrary variations we can write
wgow +wowg =0 and OoU + 6U = 0,

and we can derive the relation

o(lnw)  d(Inwy)

oU oUs

The quantity in common between U and U can be defined as the equilibrium
temperature. Therefore, writing it as § = 1/kgT, we obtain the relation

o(lnw) 1 B U
SU —,B—kB—T or w—woexp(—kB—T), (2.18)

where w, is the integration constant to be determined with the quantum nature of
absolute zero T = 0K, and kg is the Boltzmann constant. This allows defining
absolute zero temperature by U = 0; however, due to uncertainty 7 = 0 cannot be
reached quantum theoretically. The ground-state energy U, = (1/2)Nhiw, is
referred to as the zero-point energy.

Although only vibrating lattice was considered so far, properties of a crystal can
also be contributed by additional variables located at lattice points or interstitial
sites in a crystal. These variables are primarily independent of lattice vibrations, but
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can interact with the lattice in some crystals. Nevertheless, denoting such micro-
scopic energies and their probabilities by ¢; and w;, we can write

U:ZS,- and w:Hw,-,
i i

where

Wi = W, exp <— kz—iT)’ (2.19)

which is known as the Boltzmann probability. The probabilities w; must satisfy
the relation >, w; = 1, regarding these exclusive events; and w, = 1/Z, where
Z =>",exp(—¢;i/ksT) is the partition function. Constituting a microcanonical
ensemble, thermal properties of a crystal due to these microscopic variables can
be calculated with the partition function Z.

2.5 Specific Heat

Thermal properties of a crystal can be represented by a specific heat Cy at constant
volume V, which is defined as Cy = (OU/OT),,. The internal energy U is given by
the sum of normal mode energies & = (n; + (1/2))hiwy for the wave vector k in
virtually any direction in the reciprocal lattice. Denoting the number of phonons of
energies & by g(k), we can write the partition function as

&k g\ = niho
Zi = g(k) exp(— ,@;) = g(k) exp<—2kB‘T> S jexp(— ;BT"),
ni=!

=0

where the summation is an infinite series, if %, /kgT<1. In fact, this condition is

met in a crystal at a given temperatures, so that Z can be calculated as
exp(—hawy/2kpT)

1 — exp(—Hwy /kgT) "

For the whole system, the partition function can be calculated as Z = [ [, Z; and

hence InZ =) ,InZ;, from which the free energy can be expressed as
F =kgT Y ,InZ, and we have

Z = g(k)

h i
nZ = — % L kT ing(k) — ksTind 1 — exp( — 2%\ L,
2 ks T

Using the relation F = U — TS = U + T(0F /OT),,, we obtain

U= —T*9/0T) (F/T)
Therefore

hwk 1
U=U d U,== hay. 2.20
o zk:exp(hwk/kBT) " ° 2 Zk: @k (2:20)
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(b)

Fig. 2.3 (a) A typical constant-energy surface in three-dimensional reciprocal space, where dS is
a differential area on the surface. (b) The two-dimensional view in the k,k,-plane.

The specific heat at constant volume can then be expressed as

ou (hcok/kBT)z exp(ha)k/kBT)
Cv=|[—1 =k . 2.21
' (3T)v ’ zk: (exp(hio /ksT) — 1)* (221)

To calculate Cy with (2.21), we need to evaluate the summation for the number
of phonon states on an energy surface & = fi(w; + 1/2) = constant in the recipro-
cal space. For an anisotropic crystal, such a surface is not spherical, but complex as
shown in Fig. 2.3a. The summation in (2.21) can therefore be re-expressed by a
volume integration in the k-space, where the volume element is given by d*k =
dk - dS = dk, |dS|. Here, dk, is the component of dk perpendicular to the surface
element |dS| = dS, as illustrated two dimensionally in Fig. 2.3b. By definition, we
can write dwy = dey/h = (1/h)|gradge(k)|dk,, where (1/h)|Vie(k)| =vg is
the group velocity for dispersive propagation, and hence dk, = dwy/v,. Using
these notations, (2.21) can be expressed as

Cy =k J (hwk/kBT)zeXp(ha)k/kBT)
CT L (explhon k) — 1)

D(wy)dawy, (2.22a)

where

D(wy) = (L >3 £§ (2.22b)

21 Vg

is the density of phonon states on the surface S.

Tedious numerical calculations were carried out in early studies on representa-
tive crystals; the result obtained from a diamond lattice is shown in Fig. 2.4a,
comparing with calculated dispersion relations for longitudinal and transversal
modes in the vibration field, which are characterized by zero and nonzero frequen-
cies at k = 0, respectively. Due to these characters, the frequency distribution is
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Fig. 2.4 (a) Examples of practical dispersion curves. Longitudinal and transverse dispersions are
shown by solid and broken curves, respectively. (b) The solid curve shows an example of an
observed density function, being compared with the broken curve of Debye’s model.

complicated as shown in the figure. On the other hand, Einstein and Debye
proposed simplified formula for densities D(wy ), which are approximate but useful
for evaluating thermal properties of crystals.

2.6 Approximate Models

2.6.1 Einstein’s Model

At elevated temperatures 7, we can assume that properties of a crystal are domi-
nated by a phonon energy %w,. Einstein proposed to consider a single mode
frequency w,, disregarding all others in the vibration spectrum. In this model,
(2.22b) can be simplified as D(w,) = 1, and hence the specific heat (2.22a) and
the internal energy can be expressed as

&expé

Cy = 3Nkg
(expé —1)°

(e

respectively, where ¢ = @g/T; the parameter O = fiw,/kg is known as the
Einstein temperature. It is noted that in the limit ¢ — 0, we obtain Cy — 3Nkg.

At high temperatures, U can be attributed to independent constituent masses
vibrating in degrees of freedom 2; hence, the corresponding thermal energy is
2 X %kBT, and

U =3NkgT and Cy = 3Nkg. (2.24)

This is known as the Dulong-Petit law.
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2.6.2 Debye’s Model

At low temperatures, longitudinal vibrations at low frequencies are dominant
modes, which are characterized by nondispersive relation @ = vgk. The speed v,
is nearly constant because of a nearly spherical surface for constant energy in the
k-space. Letting v, = v for brevity, (2.22b) can be expressed as

3 2
D(w) = <L ) 4”? . (2.25)

2n) ¥

Debye assumed that with increasing frequency, the density D(w) should be termi-
nated at a frequency w = wp, called Debye’s cutoff frequency, as shown by the
broken curve in Fig. 2.4b. In this case, the density function D(w) o »? should be
normalized as [ D(w)dw = 3N, so that (2.25) can be replaced by

0
D(w) = — . (2.26)

Therefore, in the Debye’s model, we have

U — 3Nk TJ‘“D 10 n 10 3w3dw
“O o 2 Texp(ho/ksT) = 1) o)
and
@D tiw kg T liw \ 3wid
c =3N/<Bj exp(hio/kgT) <_w> o do
o (exp(hw/kgT) — 1)" \ksT Op

Defining parameters fiop /kgT = Op and iw /kgT = &, similar to Einstein’s model,
these expressions can be written as

9 3 (Op/T 63
U= gNkB(BD + 9NkBT<—) J —d¢

Op/ Jo expl-—1
and
T\ (O0/T & exp ¢
Cy = INkg | — J —————d¢.
Y ? (®D) o (expé—1)*
Introducing the function defined by
o T\ (O0/T  £34
n(=) =3(— J L, (2.27)
T Op/ Jo expé-—-1
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Fig. 2.5 Observed specific heat Cy /3R against T/@p, for representative metals. R is the molar gas
constant. In the bottom-right corner, shown are values of ®p, for these metals. The T3 law and
Dulong—Petit limits are indicated to compare with experimental results.

known as the Debye function. The expression Cy = 3Nkgn(®p/T) describes
temperature-dependent Cy for T<®p. In the limit of @p/T — oo however, these
U and Cy are dominated by the integral

JOO 63(15 B 7'54

o expé—1 15’

and hence the formula

9 T\ n4
U = -—Nkg©® ONkgT | — | —
glVkB D+ B (@)

; (2.28)
TY o
Cy = 9Nkg (—) —.

Op/ 15

can be used for lower temperatures than ®@p. In the Debye’s model, we have thus
the approximate relation Cy o< T° for T<®p, which is known as Debye’s T-law.

Figure 2.5 shows a comparison of observed values of Cy from representative
monatomic crystals with the Debye and Dulong—Petit laws, valid at low and high
temperatures, respectively, showing reasonable agreements.

2.7 Phonon Statistics 1

We discussed that the lattice vibration field can be considered as a gas of phonon
particles (7w, k). However, a phonon is a quantum-mechanical particle that
cannot be considered as a classical particle. It is noted that a large number of
phonons can exist in a lattice in excited states and that phonons are independent
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each other, but fundamentally unidentifiable particles. Therefore, they do not obey
Boltzmann statistics for classical particles. Besides, the fotal number of phonons is
left undetermined; the boundaries between the crystal and heat reservoir should be
open to exchange phonons and heat. In this case, the Gibbs potential of the crystal
should be expressed as G(p,T,n), where n represents the average number of
phonons in a given crystal.

Restricting to a constant p condition, the equilibrium between the crystal
and reservoir can be obtained by minimizing the total Gibbs function, G =
G(T,n1) + G2(T, ny), under the condition n; + n, = constant. Here, the indexes
1 and 2 are assigned for the crystal and the surroundings, respectively. Using
variation principles for a small arbitrary change dn, = n; — n,, we obtain

ony T ony pT

(), (o)

81’!1 pT 81’!2 PyT'

This is a quantity, known as the chemical potential i, between the crystal and the
reservoir; namely for particle transfer we have u; = p, in equilibrium. Using a

chemical potential, a variation of the Gibbs potential for an open crystal can be
expressed as

therefore

dG = dU — TdS + pdV — udN, (2.29)

where N = n; + n, is a constant.

For a thermodynamic state characterized by the internal energy U, and phonon
number N,, we consider probabilities in statistical mechanics for the states deter-
mined by (U,,N,) and (U, —&,N, — n). Such probabilities are related to the
entropy as given by the Boltzmann formula, that is,

g0 = expLUO’NO) and g= expS(U0 —&No —n) )
kB kB
Hence, we have
8 _exp{S(Uo —&;No —n)/kg} _ _~AS
% exp{S(Us, No) [k} P s
where
oS oS
AS =8(U, — &,N, — n) — S(Uy,N,) = — & — n.
U, ) . ONo )y,

Using (2.29), we can derive the relations

oS\ _1 4 (95 _
o,)y, T ONo)y T’
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so that

n—e
8 = 8o CXp —'ukBT . (2.30)

For a phonon system, the energy ¢ can be determined by any wave vector k,
where |k| = 1,2,...,3N, and N can take any number of 0, 1,. .., 00, and (2.30) is
called the Gibbs factor, instead of the Boltzmann factor for a closed system.
Depending on the type of application, it is handy to define the notation
/. = exp(u/ksT), and write g = g,A" exp(—e/kgT). Here, the parameter A repre-
sents a probability for the energy level ¢ to accommodate one phonon, whereas the
Boltzmann factor expresses isothermal probability.

For a phonon system, the energy levels are given by ¢, = nfiw; therefore using
the Gibbs factor for ¢ = fiw, the partition function for an open phonon system can
be expressed as

N N n
" ne '\ . £
Z:Z;/I exp(—kBT> Z(;{Aexp<—kBT)} .

Considering that Lexp(—¢/kgT)<1, this can be evaluated as

1
Z= .
1 — Aexp(—e¢/ksT)

Using this, so-called the grand partition function, the average number of phonons
can be calculated as

(n) = 29z - ! = ! , 2.31)

0 1 € E— 1
Z ) = ex —1
)' eXp( kBT) 1 p kBT

which is known as the Bose—Einstein distribution. So far, phonon gas was discussed
specifically, but the Bose—Einstein statistics (2.31) can be used for all identical
particles that are characterized by plus parity. Phonons are examples of particles
called Bosons. Those particles of minus parity will be discussed in Chap. 11 for
electrons as an example.

2.8 Compressibility of a Crystal

In the foregoing, we considered a crystal under a constant volume condition. On the
other hand, under constant temperature, the Helmholtz free energy can vary with a
volume change AV, as expressed by

AF = (31”) AV,
),
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where p = —(0F /0V); may be considered for the pressure on the phonon gas in a
crystal. At a given temperature, such a volume change is offset by the external
pressure p, and hence the quantity — pAV is regarded as an adiabatic work on the
crystal.

It is realized that volume-dependent energies need to be included in the free
energy of a crystal, in order to deal with the pressure from outside. Considering
such an additional energy U, = U,(V), the free energy can be expressed as

NS ©p

F=U, +9NkBT<—) J [——Hn{l —exp(—é)}} E2d¢ =U,+3NkpTn (—) ,
Op 0 2 T

(2.32)

where 7(®p/T) is the Debye function defined in (2.27), for which we have the

relation
o N\ _ (o) __T %
<8 In ®D T o OlnT v a ®D oT ' (233)

Writing { = {(T,V) = Tn(®p/T) for convenience, we obtain
AN _ oy % _aT(
v/, V\om®p/, VvV \0InT),’

din®
dlnV

where the factor

is known as Griineisen’s constant. Using (2.30), the above relation can be re-

expressed as
N _ v (95 _
(), =7 Gr), -1

From (2.29), we have 3Nkg((T,V) = F — U,; therefore, this can be written as

P2, ) o) e

Noted U, = U,(V), the derivative in the first term of the right-hand side is equal to
T(OF/OT), = —TS; hence, the quantity in the curly brackets becomes
— U + U, = Uyjp that represents the energy of lattice vibration. From (2.31), we
can derive the expression for pressure in a crystal, that is,

dUo vaib
dv v’

p= (2.35)
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which is known as Mie—Griineisen’s equation of state.
The compressibility is defined as

1 /oV

which can be obtained for a crystal by using (2.32). Writing (2.32) as
pV = —=V(dU,/dV) + yUy, and differentiating it, we can derive

Op du, d*U, OU.ip
vy = S ; _
Pt (av)T v~ Var +’( v ).

Since the atmospheric pressure is negligible compared with those in a crystal, we
may omit p, and also from (2.31)

i\ _ 7 Uy _
(o), =7 (@), o)

in the above expression. Thus, the compressibility can be obtained from

1 ) du, d’u, »*
N _V<a_€> = Var _/V(TCV — Vo), @37)
T

K

where Cy = (OU.ir /0T ), is the specific heat of lattice vibrations.

If p = 0, the volume of a crystal is constant, that is, V = V,, and dU,/dV = 0,
besides Uy, = constant of V. Therefore, we can write 1/x, = V,(d*U,/ de)V:VO,
meaning a hypothetical compressibility k, in equilibrium at p = 0. Then with
(2.34), the volume expansion can be defined as

V_VoiKovaib
Vo vV

B = (2.38)

Further, using (2.32),

op\ _ v (90U _1Cv
ar), “v\er ),” v

which can also be written as

o)y~ _L(vV\ "
V\op/r

and hence we have the relation among 7y, k, and f3, that is, y = —(V/Cy)(B/x).

) - 7lar).
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Table 2.1 th))ye(;s - Fe Al Cu Pb Ag

t at S 1

by thermal and olastic | Temal 453 38315 88 2s
Elastic® 461 402 332 73 214

experiments.

Data from Becker [3]
dCalculated with elastic data at room temperature.

Such constants as @, x, 8, and y are related with each other, and significant
parameters to characterize the nature of crystals. Table 2.1 shows measured values
of ®p by thermal and elastic experiments on some representative monatomic
crystals.

Exercises 2

1. Itis significant that the number of phonons in a crystals is left as arbitrary, which
is characteristic for Boson particles. Sound wave propagation at low values of k
and o can be interpreted as transporting phonons, which is a typical example of
low-level excitations, regardless of temperature. Discuss why the undetermined
number of particles is significant in Boson statistics? Is there any other Boson
systems where the number of particles is a fixed constant?

2. Einstein’s model for the specific heat is consistent with assuming crystals as a
uniform medium. Is it an adequate assumption that elastic properties are attrib-
uted to each unit cell, if the crystal is not uniform? At sufficiently high tem-
peratures, a crystal can be considered as uniform. Why? Discuss the validity of
Einstein’s model at high temperatures.

3. Compare the average number of phonons (n) calculated from (2.26) with that
expressed by (2.31). Notice that the difference between them depends on the
chemical potential: u = 0 or u # 0. Discuss the role of a chemical potential in
making these two cases different.

4. The wave function of a phonon is expressed by (2.17b). Therefore in a system of
many phonons, phonon wave functions are substantially overlapped in the
crystal space. This is the fundamental reason why phonons are unidentifiable
particles; hence, phonon gas may be regarded as condensed liquid. For Boson
particles “He, discuss if helium-4 gas can be condensed to a liquid phase at
4.2 K.

5. Are the hydrostatic pressure p and compressibility discussed in Sect. 2.8 ade-
quate for anisotropic crystals? Comment on these thermodynamic theories
applied to anisotropic crystals.



Chapter 3
Order Variables and Adiabatic Potentials

Thermal properties of a crystal are primarily due to the vibrating lattice, while
dielectric, magnetic, and mechanical properties can be determined from measured
response functions of a crystal to an applied field or force. Such an external action X
on internal variables ¢ is primarily an adiabatic variable independent of tempera-
ture. As in a compressed gas, the external work on a crystal is expressed by — oX,
and hence the Gibbs potential can be defined by G = U — TS + ¢X. On the other
hand, internal variables ¢ at lattice sites can be independent of each other in some
cases, but correlated in other conditions. In the latter, the effect of X is expressed
effectively as — (X + Xin), where Xiy, is an internal field that was originally
proposed by P. Weiss for a ferromagnet. In this chapter, these internal variables o
and Xjy are discussed in terms of correlations in a crystal, leading to Weiss’ concept
to be included in the Gibbs function.

3.1 One-Dimensional Ionic Chains

The lattice excitation in an ionic chain crystal at a low energy is characterized by a
wave vector k and frequency w, propagating in the direction of k. We consider here
one-dimensional chain of ions in an ionic crystal, which is perturbed with surround-
ing chains.

In this section, following Born and von Karman, we consider a one-dimensional
chain of positive and negative ions arranged alternately, as illustrated in Fig. 3.1.
Coulomb interactions between ionic charges are cancelled out, so that we assume
ionic charges as insignificant for the dynamics of ions, if there is no electric field
applied externally. With this assumption, the interionic potential is essentially elas-
tic one between ions in the nearest distance. Denoting such a short-range potential
by ¢(r —r,), where r, is the ionic distance in the static chain, we can write the
equations of motion for ionic masses m, and m_ as

M. Fujimoto, Thermodynamics of Crystalline States, 29
DOI 10.1007/978-1-4419-6688-9_3, © Springer Science+Business Media, LLC 2010
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o ] R R |
n-1 n n+l

Fig. 3.1 Dipolar chain lattice in one dimension. Plus and minus ions are located in pair at each
lattice sites ..., n— L,n,n+1,....

miy = =" (ro + 1, —w)) + &' (ro + 1ty =, ) = " (ro) (w, + 10,y = 2u)
and

m_iiy, = =@ (ro+uyy —u,) + ¢ (ro +uy —u) = ¢"(ro) (wy, +ul —2u,),
where the suffix n indicates lattice sites for a pair of + ions as shown in Fig. 3.1. By

letting u* = ut expi(kx, — wt) and |x,41 — X,| = 7, in the above, we can derive
time-independent equations:

{m+w2 - 2(f>/l(”o)}“: + ¢" (ro){1 + exp(—ikro)bu, =0,

¢ (ro) {1 + exp(ikro) Yul + {m_w* —2¢" (ro) }uy; = 0. @

If the determinant of these coefficients in (i) can be equal to zero, the equations are
soluble for u; and u, for secular oscillations, that is,

‘ meo? =20"(r0) ¢ (r){1 + exp(—ikro)} ’ o
¢" (ro){1 — exp(ikro)} m_w* —2¢"(r,)

Therefore, for a given value of &, @? can be determined as

w? = ¢//(70)
mym_

{(m+ +m_)+ \/(m+ +m ) - 4m+msin2%}. (ii)

And from (i), the amplitude ratio is

_ —m_{1 4 exp(—ikr,)} - (iid)
(my —m_) \/(m+ +m_)* — 4m,m_sin> b

:‘:
S lox

It is noted from (ii) that the solution for the + sign is characterized with »? # 0
at k = 0, whereas for the — sign, the solution can be signified by w? = 0 at k = 0;
the general relation between w and k derived from (ii) is the dispersion relation
along the ionic chain. In the latter case of — sign, at small values of k£ we have
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o~ oy [P0
2(my +m-)

For such a vibration, called an acoustic mode, the speed of propagation is approxi-
mately given by v = w/k, where v = /¢"(r,)/2(m, +m_), depending on the
mass m + m_. On the other hand, for the former mode of + sign, called the optic
mode, we have

. \/2<m++m>¢"<ro> Lo wk—o,

mym_

and its propagation is signified by the reduced mass @ = mym_/(m, +m_), and
characterized by nonzero frequency at k = 0. For an optic mode at k = 0, from (iii)
we obtain the relation

2 =—— or myul +m_u; =0. @iv)

This indicates that the center of mass of =+ ions is unchanged. In contrast, an aco-
ustic mode represents the center-of-mass motion that can be described by

1.5 11.5
13
_.-;‘;, ‘-":""'{;:—
N
1.0 I 11.0
1/ |
- 3.
~ |
~ ~ s |
p ¥ Vi
05 . X\ )’ 8.-—05
e N L !
R /g
N b
‘\b /’I’ 1 3
Fig. 3.2 Dispersion curves in R s |
one-dimensional dipolar ‘
lattice. Thick numbers
indicate mass ratios m_ /m,. -0.5 0 0.5
Frequency gaps between r
—— ]

acoustic and optic modes, —
except for m_/m, = 1. A
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the center-of-mass coordinate ul™ = (m ul +m_u,)/(m; +m_), varying as
us™ = uS™ expi(kx — wi).

The dispersion relations (ii) are sketched numerically in Fig. 3.2, where o is
plotted as a function of r,/A, where A is the wavelength related as k = 2/, for
various numerical values of mass ratio m_ /m.. as indicated in the figure. It is noted
that except for m_/m, = 1, there is a frequency gap between optic and acoustic
modes.

In the foregoing theory, ionic charges were disregarded for the dynamics of the
chain. However, in optic modes the electric dipole moment p,, is explicit in the ionic
displacement at each site n, that is,

pn=e(uy —u_) =eu(ul —u;)expi(kx, — wt). (v)

It is noted, however, that these charges arise normally from loosely bound electrons
in ions, instead of whole ions. Although implicit in the foregoing theory, such a
dipole moment p, depends on the mass of displaced charges, making the dynamics
substantially different from the ionic displacements; the motion of p, is actually
signified by the reduced mass. Nevertheless, in the presence of an applied electric
field E, the significant interaction is — p,E, regardless of the origin of charges.

3.2 Order Variables

Microscopic dipole moments associated with optic modes act as order variables in
the dielectric crystal. They are identical at all lattice sites, and regarded primarily as
independent from each other; otherwise correlated in collective motion, depending
on thermodynamic conditions. Such variables are magnetic moments in a magnetic
crystal, where displaced spins of constituent molecules are responsible for magnetic
properties in strained structure. Order variables are not always identifiable from
crystallographic data, but their activity is recognizable from dielectric and magnetic
evidence, and considered as responsible for changing lattice symmetry. Associated
with electronic displacements from their original sites, correlated order variables
can be regarded as classical vectors in the timescale of observation. If occurring in
finite magnitudes, the space symmetry is disrupted, resulting in a structural change
of a crystal.

Realized from the above example of a dipolar chain, electric dipole moments in
optic modes are characterized by the reduced mass, instead of heavier ionic masses.
The charge displacements arise from displacing electrons, so that p, in motion is
distinctively different from an acoustic excitation characterized by the ionic mass.
In Sect. 3.3, we will discuss the general theory of displacements of small masses in
a crystal with Born—Oppenheimer’s approximation, where the mass ratio between
the charge carrier and the rest of the ion yields a significant criterion for dynamics
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of order variables. Meanwhile, examples of order variables are shown in the fol-
lowing for representative structural changes, where such variables can be visualized
from crystallographic data at least qualitatively.

3.2.1 Perovskite Crystals

In crystals of perovskites with chemical formula ABOs3, an octahedral (BO)é_ ion is
surrounded by eight A*" ions at the corners of a cubic cell as illustrated by Fig. 3.3.
Typically, the negative ionic group in bipyramidal shape has an additional degree of
freedom, in which the central ion B*" can be displaced between two positions marked
by 1 and 1" in Fig. 3.3a, or the group as a whole is rotated in either direction 1 or 1’ as
shown in Fig. 3.3b. Related by inversion with respect to the center, such linear or
angular displacements between 1 and 1’ are considered as responsible for a binary
transition between macroscopic phases that are also related by inversion, as indicated
for BaTiO; and SrTiO; crystals, respectively. In the former case, the center of the
group shifts either toward the +x or —x direction, generating an electric dipole
moment along the x-axis, whereas in the latter the center of the ion remains unchanged
but the structure may be strained around the x-axis. In both cases, the order variable is
defined as a vector component ¢, varying as a function of time #. In practice, the

@

. o O e O e
Fig. 3.3 Structure of a IN | N PR,
perovskite crystal: (a) A F N LN
BaTiO; type and (b) SrTiO; y Q 41 Y f 1/.\9
type. An Ti*" ion in the N /)Q = all
bipyramidal TiO?~ complex || "NoboA ;
is in motion between 1 and 1/ | @ —O/ S —
related by inversion. —x
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timescale of inversion, as compared with that of observation, is a significant factor for
such moving o, to be detectable. Assuming that such displacements occur randomly at
lattice sites, we may consider their statistical average determined by the probability
difference between 1 and 1’ states, that is, (o,) = p; — py.

3.2.2 Tris-Sarcosine Calcium Chloride

Sarcosine is an organic amino acid, H;C— NH, —CH,;—CO;H, crystallizing with
inorganic CaCl, molecules in quasi-orthorhombic structure at room tempera-
tures, when prepared from aqueous solutions. The crystal is twinned in quasi-
hexagonal form and spontaneously strained, consisting of slightly monoclinic
ferroelastic domains along the a-axis; a single-domain sample can be cut out for
experiments. A tris-sarcosine calcium chloride (TSCC) crystal exhibits a ferro-
electric phase transition at 120 K under atmospheric pressure. Figure 3.4a shows
the result of X-ray crystallographic studies by Kakudo and his collaborators [4],
in which a quasihexagonal molecular arrangement is evident in the bc-plane.
Figure 3.4b illustrates the Ca”Og complex, where the central Ca®" ion is
symmetrically surrounded by six sarcosine molecules. In paramagnetic reso-
nance experiments with transition ions, for example, Mn>", substituting for the
Ca’" ion, the order variable can be identified as associated with the Ca2+0g
complex.

(a) (b)

Fig. 3.4 Molecular arrangement in a TSCC crystal: (a) a view in the bc-plane and (b) structure
around a Ca>" ion surrounded by six O~ of sarcosine molecules. The order variable ¢ is associated
with such bipyramidal CaO4 complexes, executing binary fluctuations.
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Fig. 3.5 Structure of a KDP
crystal. The order variable
can be associated with a
pyramidal PO, ion with four
surrounding protons; two
protons at closer and two
others at distant positions to
PO,.

3.2.3 Potassium Dihydrogen Phosphate

Figure 3.5 shows the molecular arrangement in orthorhombic crystals of potas-
sium dihydrogen phosphate (KDP), KH,PO,. In this structure, tetrahedral phos-
phate ions PO?[ are linked with each other via four hydrogen bonds, as illustrated
in the figure. Along each bond direction, a proton oscillates between two posi-
tions, and each PO?[ tetrahedron is consequently distorted or disoriented, depend-
ing on the proton configuration in the four hydrogen bonds. Therefore, the order
variable should be associated with the complex structure of PO;~ with four
attached protons. In this model, a vector variable of the proton group may be
coupled with the orientation of POZ’, but the order variable has not been identi-
fied exactly yet, which can be studied by experiments with more-than-one para-
magnetic probes.

3.3 Born-Oppenheimer’s Approximation

Born and Huang [2] discussed a dynamic displacement of an electron from the
constituent ion at a lattice site in Born—Oppenheimer’s approximation. Although
unspecified in their theory, there should be a conceivable origin for separating them,
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as in Newton’s classical action—reaction principle. Signified by the reduced mass,
such a relative displacement can be significantly affected by the corresponding
ionic displacement. In so-called adiabatic approximation, these authors showed the
presence of a potential responsible for the displacement, which we shall call an
adiabatic potential.

We consider in the following an electron of mass m that belongs to an ion of
mass M at a site n. Because of m < M, the reduced mass is nearly the same as m,
and the mass of the remaining ion is almost identical to M; that is, y =~ m and
M — m =~ M. To simplify the argument, we denote displacements of these particles
from static positions by x, and X, respectively, in one dimension. For the mass m,
we have the Hamiltonian

H——Xﬂ:£+U 3.1)
o — 2m Ox2 ’ )

where U = )", U, is the potential energy that is perturbed as

n P
H:Ho—;w@

Defining a parameter x by x* = m/M, the perturbing term can be expressed as
k*H;, where

” P
==Yy —— 3.2
H — 2m OX? ©-2)
and hence the perturbed Hamiltonian can be expressed by
H="H, +*H,. (3.3)

Omitting the index n for brevity, we write the unperturbed and perturbed wave
equations as

HOC]-'),'(X,X) = 8,‘(X)(],'),»(X,X) (3.4a)
and
Hlﬁ,»(x,X) = E,’lﬁi(x,X)7 (3.4b)

where the eigenvalues ¢; and E; are indexed by i for the unperturbed and perturbed
equations (3.4a) and (3.4b), respectively. Assuming that the lattice displacement is
restricted in the vicinity of X = X,,, so that we set the origin at x = 0 for X = X,,.
A small ionic displacement u can then be represented by

X — X, = xu. (3.5)
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First, we expand unperturbed functions in (3.4a) with respect to xu, and write
them in power series of k, that is,

6(X) = &(Xo + ru) = & + Kgfl) +r2e®

i i

d;(x, Xo + Ku) = (/)fo) + xq&fl) + K2¢1('2) e,

o
H, (La Xo + Ku) =HO 4 .kHD + 1 PHP + -

where q’)fo), (b(l), (;’)Q), ... are mutually orthogonal functions. Using these expansions

i i
in (3.4a), and setting all coefficients of terms «°, k, k2, ... equal to zero, we have

(HO — ") =0, (ia)
(HO — )™ = (1) — D)) (iia)

(H = &™) = —(H) —a)gf" — (D =g, (i)

The perturbed Hamiltonian can then be written as
H=HO + kHD + 12 (HY + 1)+ HD + -
in which the term x*H; was replaced for convenience by

W o2

4oy _ 2 2902) 2 _
K'Hi =x"H;” and H; __Z%W'

For the perturbed equation (3.4b), eigenvalues and eigenfunctions are expanded
in similar manner as above, that is,

E =E” 4+ kB 4+ PEP + ...

i

and

v =y gV 2y ® 4
1 i i 1 :

(0)

i

Noting E ;, we obtain the following relations:

(HY — &)y =0, (ib)
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(HO — )y = — (1D — gy ©) (iib)

(HO — ey = (1 = EDW — (D + 1P —EDW,  Giib)

First, from (ia) and (ib), we see that x//fo) (x) = quO) (x,X,) is a solution that
represents the approximation at u = 0. Therefore, for a nonzero u we write

v () = 70w (), (iv)

where () (1) is an arbitrary function of u. Using (iv), the inhomogeneous equation
(iib) can be solved, if

M@m@—wwww=ihﬁmw—ww9w=m

because qSEO) and (]5(1) are independent and orthogonal functions. Comparing these
results, we obtain E l-l = sil . Itis noted at this point that slm is the coefficient of ku;
in the expansion, so we can write stl) = (as,./axi)xizxomi, which is zero at u; = 0.
On the other hand, El(l) is also a similar coefficient in the expansion series, and
hence independent of u;. In this way, we have the relation

D = ) — o,

Also Hf)” = 0 in this case, and we see that (;’)E1> is a solution of (iib). Thus, we can
write a linear combination

W = 10w @) + 1w () v

for the perturbed state in accuracy of x, where %(®)(x) and %" (u) are arbitrary
functions of u.
Using (v) and E\" = 0 in (iiib), we obtain

(M =i = =10 — (D + 1Y — B 0]

_ H<1>x<1>¢>§°). vi)

()
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Subtracting ") x (iia) and z) x (iiia) from this expression, we can derive

(1) = =797 = 109" = 007 + 57— )04,

which is soluble if
600 44— £ 0

Noted that (H\” + & — E®)7( in the integrand is independent of x, this condi-
tion is met if

(M + 6 = 7)) = 0. (viD

Equation (vii) implies that motion of mass M perturbed by the displacement u is
harmonic and independent of x. In this approximation, the lattice structure remains
therefore unmodified, when the approximate wave function is ; (x, u) = lp 04 Ky, ()
in the first order of x, which is called harmonic approximation.

In the second order of KZ, we have

Wieou) = i+ gl + Pyl (viii)

for which ¢§2) can be obtained as follows. Owing to (vii), (vi) can be expressed
as

(H® — ey — 702 — WMy =0

which should be consistent Wlth (1a) and (ib), that is, (H(O) — 850))1/152) = 0. The

o
solution can be written as y<2)¢ 9 where %) is another arbitrary function of u.

Therefore, we have the relation

Accordingly,

Ui (u) = 70 b () + 7V e w) + V@) (). (@0

Using (iv), (v), and (ix) in (viii), we can write

Wi(x, 1) = 70 () {8 (x) + 1" (x, 1) + 1217 (x, 1)}
+i {0 () + kbl ()} + x2x<2><u>¢§°> (v)
= {79 (u) +K7“>()+K7 )} + {1 ()
+ 7V () el + 1O gl
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This can be re-expressed approximately as

~ {1 () + k70 () + 122 @) 1o () + k! (x,u) + K26 (x, 1)},

if adding higher-order terms K3X(2>¢§1) and K3X<l)¢§2> =+ K4X<2)¢§2>. This result
indicates that in accuracy of x°, the motion of m can be considered as almost
independent of M. In this accuracy, the motion should be determined thermody-
namically by an adiabatic force; hence, we call it adiabatic approximation.

In adiabatic approximation, modified lattice motion is independent of order
variables. This is an important feature for the adiabatic process in thermodynamics,
because all thermal effects in crystals come through the lattice. Although the origin
for displacements is unspecified, the presence of an internal potential AU is clear in
Born—Huang’s theory, as it is explicit in the adiabatic approximation. The modified
Hamiltonian in adiabatic approximation can be written as

H=HY +*H? + AU, (3.6a)
where
AU = 2eW (u) + K38§3)(1/{) + K4{81(»4)(u) +C} (3.6b)

and C is a constant related with 8231(2) / Ou? as verified in [2], where further detailed
calculations to higher order are discussed. This AU is an adiabatic potential
responsible for the displacement of an electron, as described by (3.6a).

With respect to the center of mass of a constituent ion, the force JAU/Ox is
counteracted by — JAU/Ox, and hence AU is implicit for the order variable. In
contrast, it is explicit in the relative coordinate system. Further, for a real system,

the adiabatic potential should be expressed in three-dimensional crystal space. As

8§1>, ) 81(»4), ... in (3.6b) represents u;, u?, uf, ... times corresponding derivatives,
the adiabatic potentials can be expressed by these power terms of mixed compo-
nents, for example, V,uiy, Vo ligltipltiy, VopysUizltigltiyliis, - . -, pending values of
coefficients V_, and o, f8,... represent x, y, and z. Each of these potentials can

play specific roles, as will be discussed later.

&

s

3.4 Lattice Periodicity and the Bloch Theorem

3.4.1 The Reciprocal Lattice

In Sect. 3.3, we discussed a displaced electron from a constituent ion. At the
transition threshold, such a displacement cannot be simultaneous at all sites
quantum mechanically. It is a classical postulate to assume identical displacements
at all lattice sites. Nevertheless, the lattice symmetry can be disrupted by
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an adiabatic potential AU that is related with heavy mass M of the constituent ions.
On the other hand, if randomly moving from original sites, each displacement
occurs in arbitrary phase, which should be synchronized to attain minimum strains
in the new structure. We can consider such a phasing process for transition
anomalies. Despite of the uncertain phase, it is a valid assumption that the
displacement u; can be described by a classical vector in finite amplitude. After
such phasing, both u; and AU (u;) emerge simultaneously at a critical temperature.

In stable crystals, all physical events at lattice sites are assumed as identical,
except for surfaces and defects. Therefore, any function at a lattice site i, for
example, u(r;,t), must be invariant by space translations at arbitrary time 7. The
translation can be specified by a vector

R = na, + nya, + n3as, 3.7

where ay, a,, as are basic unit translations in the lattice and ny, ny, n3 are integers.
Therefore, the space invariance can be expressed at time ¢ by

u(ri,t) = u(ri + R, 1). (3.8)

Such a function can be expressed by a linear combination of exponential functions,
that is,

u(ri,t) = Z ugexpi(G - r; — wt), 3.9
G

for which the vector G is determined by the periodicity condition (3.8). We can then
obtain the relation expiG - R = 1, that is, G - R = 2n x (0 or integer), from which
we obtain G || R and |G| = (27 x integer)/|R|. Corresponding to basic translations
ay, a, and a3, we define the reciprocal vectors

[\

2 2
g(az X a3), @ :—n(a_g xa), and a; :—n(al X a), (3.10)

“ Q Q

*
1

where Q = (ayaya3) is the volume of the primitive cell of the reciprocal lattice.
Writing

G = ha) + ka, + laj, (3.11a)

we obtain the relation
hny + kn, 4+ Ing = 27 X integer, (3.11b)
where h, k, and [ are integers; hence, (ha?, ka}, la}) gives a basic translation in the

reciprocal lattice. Applying periodic boundary conditions to a crystal in large cubic
volume V = L;L,L, we have the relation G - R = 2n x integer for |R| = L, L,, L3;
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therefore, G; = (2n/L;)ni, G» = (2n/Ly)ny, and G3 = (2n/L3)ns. The vectors
a}, a;, and a3 constitute orthonormal relations in the crystal space of basic vectors
a,, ay, and az; namely, a} - a; = 2n, a] - a, = 0, etc. Mutually independent dis-
placement modes in crystal space can be specified by wave vectors G.

Equation (3.9) implies that any function f (r;, ) defined at lattice site i of a crystal
represents propagation with a kinetic energy proportional to G*. The displacement
u; and its conjugate momentum can be expressed by a point in the dual crystal and
reciprocal space; the latter is equivalent to the momentum space in analytical
mechanics. In crystals, such a variable as in (3.9) can be activated thermally as
well as adiabatically by internal and external fields. With inversion symmetry, the
propagation in crystals is signified by wave vectors =+ 2G, but a frequency w is
positive because time is a positive variable. The displacement u; in a crystal can
therefore be written as

up = ugexpi(xG-ri—wt) or ug=u;expi(¥G-r;+ wr), (3.12)

representing waves propagating in opposite directions.

Dynamically an adiabatic potential AU(u;) is responsible for u; in classical
description; both are in phase, propagating in an arbitrary direction R(ny, ny,ns),
signified by the phase ¢; = G - r; — wt + (arbitrary angle). The phase ¢; is an
internal variable whose values can be restricted effectively to 0 < ¢; < 2n. None-
theless, since ¢, is almost continuous in the range of 27, we can define a continuous
phase variable ¢ = G - r — ot in the same range, that is, 0 < ¢ < 27, which is
adequate for a crystal in sufficiently large size. Although such a conversion as
¢; — ¢ is just a matter of convenience, physically a phasing process is involved in
minimizing structural strains. Referring to an arbitrary coordinates (r,?), such a
continuous phase variable ¢ is necessary to specify a mesoscopic state of a crystal.

Including such a mesoscopic mode (3.12), for a crystalline state we have to
consider a periodic lattice potential for the translation (3.7). It is significant that
the mode ug and AU are in phase at a wave vector G, whose spatial periodicity is
determined by the wavelength 1 = 27/|G|.

3.4.2 The Bloch Theorem

An excitation in a crystal is given as a propagation mode through the periodic
structure along the direction of a reciprocal vector G given by (3.11a). If the
displacement u; is considered as in Sect. 3.4.1, at the critical temperature we expect
anomalies as related to space—time uncertainties of u;. However disregarding
anomalies in this section, we discuss ionic excitations in a crystal, which can be
expressed by the wave function (r), where r is an arbitrary position in the range
0<r<Ai
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For the wave function (r), we write the Hamiltonian equation

T\ 2m

Hop(r) = {ﬁ+ v<r>}¢<r> — By(r), G13)

where V(r) is the adiabatic potential that satisfies the periodic condition
V(r) =V(r+R).

We can similarly assume
Y(r) =y(r+R), (3.14)

implying that V(r) and y/(r) can both be in phase.

For one-dimensional chain, we can write R = na, where the vector a is the
translation unit, and n = 1, 2,. . .,N, where N is the total number of lattice sites on the
line. From (3.14), the functions at all n are equal to y/(r), therefore

Y (r+ na) = c"y(r),

so that ¢" =1 or ¢ = exp(2znni), which is satisfied by L = na and 2zn/L = |G|.
Therefore, we can write

VU (r+ na) = {expiG - (na) }y(r).

Combining this with the Fourier expansion y(r) = > ¢ expiG - r, translational
symmetry can be expressed by

Y(r+R) =) ¢s(r)expiG - (r+R), (3.15a)
G

where R is an arbitrary lattice point given by (3.7) and ¢ (r) is the amplitude of the
wave propagating along the direction of G. Equation (3.15a) is generally called the
Bloch theorem.

The above argument applies generally to tight-bound electrons in crystals.
In this model, electrons are in orbits around ions, but not necessarily transportable
for electric conduction through the lattice. On the other hand, for a loosely bound
electron in typical metals, the Bloch theorem can also be employed, constituting
the basic model for metallic conduction. In this case, we consider the wave
function

Y(r) = Z op(r)expik - r. (3.15b)
3

Written similar to (3.15a), this wave function describes a nearly free electron
propagating with a wave vector k.
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The momentum is expressed by a differential operator p = —i/iV in quantum
theory. Operating p on {/(r), we have

pY(r) = expik - r(fk + p)o,(r),
and hence
Py (r) = expik - r(k + p)’ o, (r).

Accordingly, Equation (3.13) can be expressed as

{i (p+ )" + V(’)}%(’) = erpy(r) (3.16a)
or
2 .
{_zhm (V2 4 2ik - V) + V(r)}gok(r) = <sk - F;Z) o (r). (3.16b)

Applying (3.8) to each k of (3.15b),

Vi(r) =Y era(r) expitk +G) -,
G

where for the amplitudes we have a periodicity relation

o(r) = prig(r)

at all the reciprocal lattice points in the direction of k. Eigenvalues ¢; of (3.15a)
are also characterized by a periodic relation

&k = Ep4-G- (317)

Accordingly, constant-energy surfaces in polyhedral shape can be determined by
|G|, which can be constructed in the reciprocal space.

3.4.3 Lattice Symmetry

In the foregoing, a weak ionic excitation in a noncritical region of a crystal was
discussed with the Bloch theorem, referring to an arbitrary lattice point r. Such
excitations considered as propagating waves should be standing waves in crystals,
in order for them to be sampled with appropriate probes. Characterized by the wave
vector k and energy &, the Bloch excitation is caused in phase with an adiabatic
lattice potential. As discussed in Sect. 3.4.1, such excitations occur in random phase
¢; in the range 0 < ¢; < 27 in repetition; hence, ¢, can be replaced by a single
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continuous phase variable ¢ in the range 0 < ¢ < 2x. Translational lattice symme-
try can therefore be expressed by an operator T as

Ti(r) = @i (r + R) = (expik - R)p,(r), (3.18)

which is equal to ¢, (r), if K = G; a group of these operators T constitutes the space
group of a crystal.

In addition to space symmetry, the primitive cell needs to be specified by a point
group, consisting of rotation, reflection, etc., for complete characterization of the
lattice structure. Elements of the point group constitute an orthogonal set of invariant
coordinate transformations. Signifying a point operation by S, we have the relation

So(r) = o (S7'r). (3.19)

In a crystal in thermal and adiabatic equilibrium, the function ¢, (r) must be
invariant under the operations 7 and S, as we set k = G in (3.18). We can also verify
that the wave equation (3.16a) or (3.16b) is invariant under S, where the eigenvalue ¢,
is degenerate s-fold, if s is the number of symmetry elements of the point group.
Further, we should consider an additional space inversion r — —r, signifying a phase
reversal ¢ — —¢ at any time, which is a requirement for unpolarized states. For the
group theory of crystalline lattices, interested readers are referred to Tinkham [5].

3.4.4 The Brillouin Zone

Crystal symmetry characterizes the geometrical structure of a lattice, whereas the
corresponding reciprocal lattice exhibits symmetry of excitations within the struc-
ture. Physically, such excitations arise from lattice vibrations that are signified by k
and ¢. Equations (3.16a) and (3.16b) are written for excitations in the reciprocal
lattice, in which the vectors k and k + G specify dynamically identical states.
Owing to the identity relation in repetition, the reciprocal lattice can be reduced
to a zone specified by values of G, which is called the Brillouin zone.

Figure 3.6a shows an example of a Brillouin zone in one dimension, where the
zone center is at G = 0, and the zone boundaries are between the first and the next
ones as determined by k = +G /2 = +r/a. These boundaries are signified by reflec-
tions, where the wave functions ¥, (r) of (3.15b) on both sides are connected as

W) =0 (D) o bt

Therefore, ,(r) are in standing waves in the form

. X X
lﬁk:n/a(x) = Sln; wk:n/a(x) or lpk:n/a(x) = COSz (pk:n/a(x)’



46 3 Order Variables and Adiabatic Potentials

(a)
- —Z;{-"C l: Eﬁ”o—-———s-k
dy kg ' +hy' +k $
(b) (c)
ky K
wfa M I
< 7 ! R
= A e
iy T : - :\ ’I\S
A X k\ ‘I:""“T';ﬁku
3 - TR 4z :
M
k_\_[

Fig. 3.6 (a) Brillouin zone in one dimension, — n/a<k,<m/a; the zone center is I'. (b) Two-
dimensional Brillouin zone in the k,k,-plane. (¢) Brillouin zone in a cubic lattice.

Also notable is that the eigenvalue & is a continuous function of k, for which we
have a relation

Vier =0 at k=42, (3.20)
a

Figure 3.6b illustrates the Brillouin zone of a square lattice. Symmetry of the
point group is expressed as 4mm; a fourfold axis of two sets of mirror planes m,, m,,
and two diagonal planes m,, my. Specific points I', M, X and specific lines 4, Z, X
are significant, as indicated in the figure. The point I" is at the origin k = 0,
transforming into itself under all operations in the point group. The point M trans-
forms into itself or into the opposite corner of the square under the same operations;
these corners are related with each other by the same reciprocal vector, and hence
the four corners are equivalent. The point X is invariant under the operations 2., n1,,
my, where a reflection m, and a rotation 2; in succession carried a point (%, 0) into
the identical point (—Z,0).

Particular lines A, X, Z are invariant under mirror reflections m,, mg4, m,, respec-
tively. It is noted that by m,, an arbitrary point A(Z, —k,) on the line Z can be carried
to the identical point B(—Z, —k,) that differs by the vector G = (%,0,0), implying
that (3.20) can be applied to all points on the zone boundaries.

For a simple cubic lattice, such specific points and lines as in the square lattice are
shown in Fig. 3.6¢, where the basic feature of the Brillouin zone can be confirmed by
using the point group operations of %, 3, % There are four special points R, M, X, I"
and five specific lines, A, S, T, 2, Z, A, indicated in the figure, representing invariant
points and lines under the point group operations similar to those in the two-
dimensional square lattice. We shall not discuss on crystal symmetry any further,
leaving the detail to a standard reference book on group theory [5].
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3.5 Phonon Scatterings

For an adiabatic excitation in a crystal, the wave function is normally in stand-
ing waves, being characterized by an invariant eigenvalue ¢ by a translation
k — k + G in the reciprocal space. Using the Bloch theory, this feature is immedi-
ately clear from the relations ¥, ;(r) = ¥, (r) and &g = &, as can be verified in
the first Brillouin zone.

Considering that the order variable o4(¢) in a crystal can be described by
the wave function Y. (r,t) =y, ($), or(¢p) is associated with the density
Vi(¢) Y. (o), which is determined by the wave equation

oy 1 OAU

~ Ao, = - 227 21
or o7 o, 321)

where A = V? is the Laplacian operator. The function o (¢,) represents free
propagation along the direction of k, if AU is constant or in quadratic for free
propagation. Otherwise (3.21) is an inhomogeneous differential equation, whose
nonlinear solutions will be discussed later in Chap. 7. In thermodynamics, order
variables are temperature-dependent variables and subjected to a practical observa-
tion within a given timescale. In addition, depending on the condition of a crystal,
collective o and o can be correlated, as indicated by nonzero AU.

In harmonic approximation, the potential AU can be quadratic, making the
structure stable, where o7 are in free propagation. The corresponding o; is there-
fore distributed among lattice points, with probabilities determined by the mean-
field approximation. In contrast, in an anharmonic potential AU, the correlated o7
is expressed by a classical vector in finite amplitude. A symmetry change between
different phases is associated with a change in AU that occurs at the critical
temperature.

It is important to realize that order variables o; emerge as related to spontaneous
displacements u;, in the lattice, playing together a significant role in a modulated state
of a crystal. We shall call such coupled variables (o, u;) a condensate by analogy of
a condensing liquid. In crystals, condensates are formed to stabilize modulated
structure, as postulated by Born and Huang. Representing a modulated state, con-
densates are said to be mesoscopic, as characterized by distributed densities. In this
book, we restrict the use of the word macroscopic only to uniform crystals. The
mesoscopic state is signified by finite displacements u; that scatter phonons inelasti-
cally, and hence the condensate (o, u;) exhibits usually temperature dependence.

The potential AU can be expressed in series expansion with respect to the
components iy, Uy, u; of uy, that is,

AU =Y Vu, + 3 Vi wug + >V wugu, + -+, (3.22)
g 2 2y
where the indexes o, f3,7,... stand for coordinates x,y,z. We can write these

displacement components in (3.22) as u, = u,,expi(k, - r — w,t). Denoting
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scattering phonons by two sets of wave vectors and frequencies (K;,Q;) and
(K2,9,), the first term in the series of (3.22) can give rise to an off-diagonal
element, for example,

1 +t, )
u,, m {expl(Kl +k,—K>) r}g J expi(—Q; — wy + )t ds,

—ty

which is equal to u VCE ), if K, — K| = 2k, and Q, — Q; = w,, giving a probability

for the phonon state to change from (K, Q) to (K; + 2k,, Q; + ®,). In the above
expression, f, is the timescale of observation and therefore the time-related integral
on the right-hand side can be calculated as

J’L"’ sin(AQ — wy)t,

T expi(AQ — w,)tdt =

s, (AQ — w,)t,
which is equal to 1, if AQ = w,. Owing to a variety of AQ for inelastic scatterings,
such a time-dependent AU can be significant only if (AQ — w,)t, ~ 1 at normal
temperatures, causing a thermal transition. Such scatterings can also take place with
to odd terms in (3.22), that is, Vo(( >, V( ﬁ) etc., which are observable within the
timescale f,, if (AQ — w,)t, < 1. In these cases, the scattered phonon transfers its
energy to the surroundings; the process is normally called thermal relaxation.
Further noted is that even terms in (3.22) give rise to secular potentials. For
example, the quartic term of VO((?%, s can be time independent with a four-phonon
scattering as specified by

K,-Ky=Ks—K,+G and wp— o, =w, — w;. (3.23)

Owing to such time-independent components, AU(¢) can be with a propagation
mode, moving with o(¢), as described by the nonlinear equation (3.21), yielding
solutions that are significantly different from free propagation.

Exercises 3

1. Discuss the phasing process of distributed o;, referring to Born—Huang’s
postulate.

2. Although unspecified in Sect. 3.3, it is important to realize that the displacements
u; have a directional character with respect to the symmetry axes of a crystal.
Accordingly, order variables o; coupled with u; can violate space symmetry, if
they are in finite magnitude. We can expect that mutual correlations and modified
potentials AU; are responsible for finite magnitudes of o; and ;. Discuss this
problem in qualitative manner.

3. With lattice dynamics alone, we cannot deal with thermodynamic problems. In

Sect. 3.5, we discussed phonon scatterings by u; in general. Realize that no
transfer of thermal energy occurs if #; is in harmonic motion. Why?



Chapter 4
Statistical Theories of Binary Ordering

Order—disorder phenomena in alloys and magnetic crystals can be analyzed by
statistical theories, assuming that the lattice structure plays no significant role.
Lattice vibrations and symmetry are therefore implicit in thermodynamic functions
in these theories. Restricted in mean-field accuracy, the statistical theory has only
limited access to experimental details, for which a different approach is needed
beyond the probability concept. In ordering processes, the lattice stability is an
important issue, but statistical theories cannot deal with symmetry changes. Never-
theless, in this chapter, we review existing theories because the probability concept
is still useful for simplifying the problem. Characterized by a random process,
statistical theories are valid in some aspects of ordering processes, leaving symmetry-
related problems to different studies.

4.1 Probabilities in Binary Alloys

Properties of binary alloys, such as B-brass CuZn, are well documented, exhibiting
order—disorder transitions at specific temperatures 7. In their statistical theory,
Bragg and Williams [6] considered probabilities for pairs of like-atoms A—A and
B-B, and for unlike-atoms A-B or B—A to be at nearest-neighbor lattice sites,
thereby introducing the concept of short- and long-range order. Judging from
observed T, of the order of 450°C, the lattice in B-brass is not so rigid because of
the constituents in diffusive motion; nonetheless, such probabilities in the lattice
can be defined by the Boltzmann statistics, as verified in later discussions.

We define probabilities p,(A) and p,(B) for a lattice site n to be occupied by an
atom A and an atom B, respectively. For such exclusive events, we have the relation

Pu(A) +pa(B) =1 (4.1a)

M. Fujimoto, Thermodynamics of Crystalline States, 49
DOI 10.1007/978-1-4419-6688-9_4, © Springer Science+Business Media, LLC 2010
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and define the order variable as
On = DPn (A) —Pn (B) (4.1b)

Here, by definition, we have 0 < p,(A),p,(B) < 1, and hence the variable g, is
in the range — 1< g, < 1. The disordered state characterized by p,(A) =
pn(B) = 1/2 can therefore be expressed by g, = 0, whereas the state where all
sites are occupied either by A or B, called complete order, can be signified
by ¢, = £1, indicating that the crystal is composed of ordered A-domain and
B-domain in equal volumes; otherwise, the whole crystal should consist of inter-
mingled sublattices of A and B, representing al/loy. However, it is an empirical
matter, if we have domains in two volumes or alloy in the whole volume; these two
cases remain as theoretically undetermined, as will be discussed in the next section.
In partially ordered states in a mixed atomic arrangement, the variables o, are
distributed among lattice sites. Assuming a random arrangement of ¢, it is logical
to consider the average (0,) = }\,Zn o, over N lattice sites to express the macro-
scopic degree of order; we can thereby define the order parameter by n = (o,).
This is known as the mean-field average. In practice, it is a useful approximation;
however, its validity should be justified experimentally.

However, for a system characterized by randomness, it is a common practice to
use the correlation function defined by

I'={((on—n)(on —n)) = (Omon — 772>a 4.2)

after taking the relations (o,,) = (0,) = 7 into account.

It is significant to assume that each o, at lattice site n is correlated only with the
nearest neighbors g,, by an amount of energy ¢,,, composing the short-range
interaction energy E, with all ¢,, at the surrounding sites m. Restricting to nearest
neighbors only, E, can be expressed as

E,=Y {empn(A)pa(A) + 6hnpn(B)Pa(B) + e pn(A)pa(B) + cpmpm (B)pa(A)}.
Using (4.1a) and (4.1b), we have
Pa(A) =

(1+0, and p,(B)==(1—-0,),

N =
N =

and similar expressions for p,,(A) and p,,(B) at a site m. Substituting these for
probabilities in the above expression, the short-range energy E, can be expressed in
terms of ¢, and g, as

E, = ZEmna
m
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where

1 (28AB AA BB

('SAA - 8?1]3)(0*’” + 0-11) + Z mn — €mn " Emn )Gmtfn.

mn

1, aB | .Aa , BBy, |
Epn = 5 (28mn te,, + 8mn) + Z
Abbreviating K, = (688 — ¢h) and J,,, = (e + 638 — 2658), E,, can be
written as

E iy = constant — K, (0 + 61) — JynGm0n.

Since egnA ~ ¢BB for like-atoms in alloys, we can assume K, ~ 0. Disregarding the
constant term, the short-range interaction energy is therefore dominated by the term
of J,,,, that is,

Epn = —JpnOm0,. (43)

Although the factor J,,, is not known from the first principle, the product ¢,,0, in
(4.3) represents the correlation energy between neighboring order variables. We
may therefore consider that the mean-field average (E,,,) is proportional to (5,,G,)
for m # n. In any case, (4.3) is a general form of correlation energy, for which J,,,
indicates the strength of correlation.

4.2 The Bragg—Williams Theory

Bragg and Williams considered that the number of unlike pairs A—B is essential for
expressing the degree of disorder, which can be evaluated by mean-field averages
of probabilities

(Pa(A)) = (pu(A)) =5 (1 4+n) and  (p,(B)) = (pm(B)) =5 (1 — 7).

I\JI'—‘
NI*—‘

In a crystal of N lattice sites in total, we consider that each lattice point has z nearest
sites. In this case, the number of unlike pairs can be expressed by

Nas = N={pu(A))p(B)) = SN=(1 — 7).

This indicates that Nag = %Nz in the disordered state for n = 0, but Nyg = 0 in the
completely ordered states for 7 = £1. Therefore in the former case, the short-range
energy E(n) is given as E(0) = 0. On the other hand, in complete ordered case, it is
expressed by E(41) = —INJz. For a partially ordered state for 0<|n|<1, the short-
range energy is given by

1
E(n) = =5 NJzp, (4.4)
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where J = (J,,) is the mean-field average. We consider that (4.4) represents the
energy for long-range interactions, because (J,,,,) is averaged over the whole crystal.

The macroscopic ordering energy E(7) can be statistically calculated with a
probability g(n) for Nap unlike pairs to be found at a given temperature 7, which
can be given by the number of combined A and B atoms to be placed independently
among N sites. That is,

#0 = (wimian ) (v ) = (122) (122)

In this case, using (2.19), the macroscopic properties can be determined by maxi-
mum of the probability

W = () = gl exp{ - 221,

where the lattice contribution, if any, can be included in wy, which however is a
trivial factor under a constant volume condition. The thermodynamic equilibrium
can then be obtained for minimizing Helmholtz’ free energy F = —kgT InW.
Solving the equation (0F/dn),, = 0, we have

0 NzJn?
—<1 1 =0
sty +227)

For a large N, the second term can be evaluated by using Stirling’s formula,
that is,

| N
Olng(n) _ Ny 14m g 20 L+n
on 2 1—-n kgT 1—n
from which we obtain
zJn
n = tan Yal 4.5)

Equation (4.5) can be solved graphically for 7, as shown in Fig. 4.1, where the
straight line n = (2kgT/zJ)y and the curve 1 = tanhy cross at a point P to deter-
mine the value of the order parameter 7 at a given temperature 7. It is noted that the
origin 77 = 0 is the only crossing point if 77 = y, where the straight line is tangential
to the curve, determining the transition temperature T, = z/J/2kg. Also noted is that
there is one crossing point at all temperatures below T, while no solution is found
at temperatures above 7.
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Fig. 4.1 Graphic solution of T
(4.5). Crossing points P n n-y TT:T ¥
between the straight line '
n =y and the curve

n =tanhy. At T =T, the
crossing point n = 0 is at O. \
For T<T,, there is one P
crossing point P. No solution
for T>T..

Writing y = (T../T)n for convenience, the function tanh y can be expanded into
a series, which may be truncated at low power if the temperature is close to T¢,

that is,
T\ (T,
2 c
=3l=)(=-1
g (T) (T )
and hence
=)
T.

Therefore 7 is characterized by parabolic temperature dependence, that is,
noc T, —T for T <T,, as illustrated in Fig. 4.2a. In this analysis, the specific
heat Cy is discontinuous at T = T; because £ = 0 for n = 0 for T > T, whereas
by differentiating (4.4) we obtain

OF 1 dp 3
) =N L —ZNky for T <T..
(aT)V 2V Tt s e

Accordingly, the discontinuity of Cy at T = T is given by
3
ACy =3 Nkg. (4.6)

Figure 4.2b shows the specific curve in the vicinity of T, sketched against tem-
perature. However, as compared with the experimental curve of Cu—Zn alloy, there
is a considerable discrepancy from the mean-field theory.
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Fig. 4.2 Mean-field (a)
approximation. (a) Order -~ _
parameter 7 = 7)(T). =
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4.3 Becker’s Interpretation

In the Bragg—Williams theory, an alloy can be segregated into two-component parts
below T.. Although signified by =+ 7, these parts cannot be specified by their
volumes. In fact, a segregated alloy exhibits two domains of different volumes
with lowering temperature. Domains are characterized by their volumes V4 and Vg
in practice; the numbers N and Ny in the theory must therefore be associated with
the corresponding volumes by the relation Vo + Vg =V, where V is the volume
of the whole alloy. Following Becker’s book [3], domain volumes are discussed
here, giving a practical interpretation of segregated or mixed states.

Writing Nao = yN, we have Ng = (1 — 7)N, where y is a continuous parameter,
0 <y < 1. A constant parameter y can be used like another order parameter without
referring to the lattice structure. We can assume that in a fixed structure y = Vo /V
and 1 — y = Vg /V because of the relations Na o Va and Ng o Vg. In this case, the
ordering energy (4.4) can be written as

E(y) =- %NJZV(I = 7).

In the whole crystal, this energy state can be weighted by the probability

wi) = <1{JV/> (N(IN— V))'
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Therefore, the free energy is calculated as

where

f()=7yIny+(1-7)In(1 —7) +kJ—ZTV(1 -7)-
B

In equilibrium, two domains can be distinguished by different sets of para-
meters (Ny,7;) and (N3, y,), with which the free energy of a whole alloy can be
expressed as

F=kgT{N1f(71) + Naf(72)},
where

Ni+N, =N and Ny, +Nyy, =Ny.

For thermal equilibrium between two domains, F can be minimized against any
variations 0Ny and 0N, with Lagrange’s method of multipliers 4 and p. Namely,
from 6F = 0, we obtain

fn) +A+uy; =0 and f(y,) + A+ pup, =0,

and write

f')+u=0 and f(p)+u=0

to assure the minimum against variations dy; and J7,. Eliminating 4 and u from
these relations, we can derive

F)=Ff () and f(y1) =f(2) =F )1 = 712)-

Figure 4.3a shows Becker’s numerical analysis for the function f(y), where
considering s = zJ /kgT as an adjustable parameter, curves are drawn for s = 0,
2,3 and 6. For s = 2, that is, T = zJ /2kg = T, the curve shows a single minimum
aty; = 7, = /2. On the other hand, for s = 3, two different minima at y, # 7, are
found with f'(y,) = f'(y,) symmetrically as illustrated; one close to y = 0 and the
other close to y = 1. For a larger value of s, for example, s = 6, these are very close
to 0 and 1, respectively. Figure 4.3b is the plot for T verses ) or 1, where the left and
right branches below T, are for the domains A and B; the volume ratios V4 /V and
Vg /V are related as Va + Vg = V.
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Fig. 4.3 Becker’s graphic solutions. (a) f(y) verses 7. (b) T verses y and .

We realize that Becker’s interpretation is an addendum to Bragg—Williams’
theory; we consider that each constituent atom occupies a finite volume in a rigid
crystal. In this context, Becker’s theory disregards the lattice structure entirely.

4.4 Ferromagnetic Order

Heisenberg (1929) postulated that electron exchange between magnetic ions is
responsible for spin ordering in a ferromagnetic crystal, which is expressed by a
Hamiltonian

1
Hn.,n+1 = - Ejsn . 2sn+1a (47)

where 7 is the exchange integral between valence electrons of neighboring ions at
n and n + 1 sites. H, 1 in (4.7) is expressed as a correlation s, - §,4+1 between
neighboring spins. Instead of spin s,, order vectors defined as o, = ys, with the
gyromagnetic ratio y can be used for (4.7) to express the correlation energy between
ions at these sites. Writing therefore J,,,, = %J m» WE have

Hnm = *Jnmo'n Oy

for a magnetic system, where o, - o, is the scalar product of vectors.
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In an uniform magnetic field B applied externally, the energy of o, can be
written as

H, = -0, B+Z]nman F Oy,

where the summation includes all o, that interact with o,. Therefore, we can
assume that o, is exposed to the effective magnetic field B + B,, where
B, = <Zm Jnmtrm> is the mean-field average. Such an internal field as B, was
first postulated by Weiss, who assumed that B,, is proportional to {(c,,); B, = A(5,)
was called the molecular field. This concept can be used for long-range spin
correlations in the mean-field accuracy. In this book, we shall refer to it as the
Weiss field. In a magnetic crystal, (g,) is the magnetization M and the effective
magnetic field B + AM can be assumed to act on uncorrelated (o). In this case,
we can write

M =y, (B + M), (4.82)

where y, is a paramagnetic susceptibility, for which we can use Curie’s law
%o = C/T with the Curie’s constant C. From (4.8a), we can obtain the ferromag-
netic susceptibility

M C C

i R~ 4.
B T—-C. T-T. (4.80)

X
This is known as the Curie—-Weiss law, where T, = CZ indicates the transition
temperature that is related to the long-range parameter A. Equation (4.8b) is
applicable to temperatures close to T, considering magnetic correlations as weak
perturbations. In the mean-field approximation, the ferromagnetic phase transition
is characterized by singular behavior of y at T = T.

The Weiss field has a significant implication for an ordering process in the mean-
field approximation. The ordering energy E = —%NZJ n* in (4.4) for a binary state
can be expressed as E = —nXiy, Where Xiy = 3zJn. By writing 1zJ = 7, such an
expression is found analogous to the magnetization energy — M - B, = —M>.

Rewriting (4.5) as

exp( — (_1)Xint —exp( — (+1)Xint
n= tanh& = ke T kT

kgT < (_I)Xint> ( (+1)Xint> ’
exp| ———— | +exp| ——F—
P keT P ksT

this expression can be interpreted as

n=(ox) = (Pa(A)) — (Pa(B)), 4.9)
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where

and

(=) Xint (+1)Xing
Z= S )
exp( kT + exp kT

Equation (4.9) indicates that an order parameter is defined by the difference of
Boltzmann probabilities between two inversion states 4 1 separated by the Weiss
field Xj,. Accordingly, Bragg—Williams’ probabilities for binary states at a given
temperature can be determined by the Weiss field that represents distant correla-
tions. Discussing on the statistical distribution of Xj, at a given temperature, the
ordering in Bragg—Williams’ theory is clearly an isothermal process.

4.5 Ferromagnetic Transitions in Applied Magnetic Fields

Binary ferromagnetic spin order can be modified by an externally applied field B.
According to Weiss, we can consider that magnetic spins s, are in the effective
magnetic field B + B,,, and the magnetic ordering energy can be expressed by

Ei = )M? + MB = —M(Biy T B).

Denoting the numbers of + spins and — spins in unit volume of the crystal by N,
and N_, the order parameter can be expressed by

N, N
TTNL AN

where N + N_ = N is the total number of spins. Following Becker’s argument in
Sect. 4.3, for the order parameter, we can use domain volumes V' and V_, instead
of N; and N_, if the crystal volume is unchanged.

Writing that N = 5(1 & 1), we can express

1
M =Nyn and E(+n) = —zzvjzn2 F NynB.

And, the thermal properties can be determined by the free energy F = —kgT InZ,
where the function Z = Z(n) is given by

Z=Z(+n)Z(-n) = (ﬁ)(ﬁ)eXP(—W)
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The most probable values of N, and N_ can be determined in such a way that
InZ(+n) and InZ(—n) are maximized, respectively. Using the relation

dN, = —dN_ from a constant N, we therefore have
d N d 1 dE(+n)
—1 =—(=N.InN N_InN_) =——
dN, n<N+) an, (TNe N NIV ) = e =

and

d N d N 1 dE(—n)
—In =———1n = —— .
dN N_ dN_ N_ kgT dN_
From these, we obtain

A 2 dE(+n)
N, NkgT dn ’

and hence

mi= o 2 (L
T T er\ 27T

which can be solved for 7, obtaining

Jzn yB
— tanh + 2, 4.10
= tan <2kBT kBT> (4-10)

This is identical to (4.5) if B = 0, therefore (4.10) can also be solved graphically.
Namely, writing y = (Jz/2kgT)n + (yB/ksT), (4.10) is expressed as n = tanhy;
the value of 7 can be determined in the n—y plane from the crossing point between
the straight line and the tanh curve, as illustrated in Fig. 4.4. Although we can define

Fig. 4.4 Graphic solution of _Tlo /

(4.10).n = —n, at T, and one
crossing point for T'<T,.
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T. = Jz/2kg for B = 0, the crossing point does not correspond to n = 0 if B # 0, in
which case T, does not signify a transition. However, the intercept yB/kgT on the
n-axis is small and insignificant in a practical magnetic field, where the transition
temperature T, can be determined as permitted within accuracy of yB/kgT = 0.

Exercises 4

1. In this chapter, order variables ¢, and their short-range correlations (4.5) are all
defined statistically. In contrast, Heisenberg’s spin—spin interactions were
derived quantum mechanically, which is interpreted as adiabatic in thermody-
namics. Despite of different approaches, we have a consistent result expressed
by (4.5). However, extending (4.5) for long-range correlations is hardly accept-
able, because of lacking randomness in the system. Discuss in detail on this issue.

2. Can the mean-field average be consistent with the Boltzmann statistics? If Weiss
molecular field is interpreted as the mean-field average A{a,), (c,) is the mean-
field average. Therefore, it appears to be incorrect to assume that {g,) = 7, as
the order parameter can be determined statistically. How do you resolve this
conceptual conflict?



Part 11
Structural Phase Changes



Chapter 5
Pseudospin Clusters and Short-Range
Correlations

Structural phase transformations constitute a major subject of investigation in
thermodynamics of crystalline states. A partial displacement in the constituent
molecule represented by an order variable is essential for describing structural
changes. Although considered as primarily independent of the lattice structure,
such an order variable in finite magnitude disrupts local symmetry in a crystal.
Correlations of these variables between adjacent sites are responsible for their
clustering, leading to a macroscopic symmetry change. Following Born and
Huang, we consider clustered order variables in a short range to form condensates
for minimal structural strains in the lattice. Consequently, a condensate is char-
acterized by a specific wave vector for propagation in the lattice. In this chapter, we
define pseudospins for binary order variables and discuss the nature of their
correlations in short range.

5.1 Pseudospins for Binary Displacements

The lattice structure is characterized by the space group, where all lattice sites are
identical, and constituent molecules are configured by the point group. Dynami-
cally, masses of constituents are in vibrating motion of harmonic modes, forming a
stable structure at their average positions. On the other hand, restricted by the point
group, a specific part of the constituent can be in motion independent of lattice
vibrations. Exemplified in perovskite crystals, such parts defined as order variables
can be in collective motion under thermal conditions, which are evidenced by
diffuse X-ray diffraction patterns. Figure 5.1 is an X-ray photograph obtained
from a perovskite crystal of NiNbO; at 700°C, showing a diffuse pattern due to a
slow movement of constituent ions.

Among such displacive phase transitions in perovskite crystals, SrTiO; and
BaTiO5; show typical structural changes that are illustrated schematically in
Fig. 3.3a, b. Here, we consider that the Ti** ion in Fig. 3.3a can fluctuate at a fast
rate between two positions 1 and 1’ in the octahedral SiOé’ group along the
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DOI 10.1007/978-1-4419-6688-9_5, © Springer Science+Business Media, LLC 2010



64 5 Pseudospin Clusters and Short-Range Correlations

Fig. 5.1 A diffuse X-ray
diffraction photograph from
NiNbOj; at 700°C (from [12]).

z-direction with an equal probability, where the point symmetry remains invariant
under fast inversion. In Fig. 3.3b shown is similar inversion that arises from fast
rotation of TiOé’ by small positive and negative angles around the z-axis. In these
cases, a vector variable o, parallel to the z-axis represents such inversion symmetry
at a site n.

In a packed structure of perovskite, a variable o, inverting 1 and 1’ can be
regarded primarily as independent from &, at other sites (m # n), but these can be
correlated with each other, depending on the thermal condition. The correlations are
considered to be caused by an adiabatic potential originated from the lattice.
Expressing by a Hamiltonian 7, we can write the equation of motion as

0o,
i = [H.a,]. (5.1)

To consider o, in classical motion, it is necessary to take a timescale of
observation ¢, into account; thereby, the time derivative in (5.1) can be replaced

by the average
1o
<8””> :lJ (80,,>dt_
ot /), tolJo \ Ot

This should vanish however, if f, — 0o, as is normally assumed in statistical
mechanics of equilibrium states. In this case, (5.1) should be written as

[H, (o),] =0, (5.2)

indicating that the observed (o, ), is commutable with . In contrast, if 7, is finite, a
relaxation formula
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oo, __((rn>[
i -t

should be utilized in (5.1), where 7 is a relaxation time under isothermal conditions.
Therefore, we have

in{o,),
T

= [H, (ow),].

Landau [6] assumed that the commutator on the left-hand side can be replaced by a
product of uncertainties — iAeA{o,), originating from distributed eigenvalues &
and (o,),. Specified by 7, the interacting lattice is clearly responsible for these
uncertainties. We can then write the uncertainty relation

(5.4)

If (5.2) is valid, we have Ae¢ = 0 and H = 0. Otherwise, (5.3) due to nonzero H
signifies the outset of a transition, for which Landau proposed that (5.4) determines
the character of order variables (o,), at the threshold.

If Alo,),>(0,),, (0,), is quantum mechanical because of the uncertainty
A(o,), dominating over (o,); if on the other hand A(o,),<(0,),, (07,), can be a
classical vector because of a negligible A(o,),. Setting the relation A¢ ~ kgT,
(5.4) provides a criterion for the character of (o,), to be justified with respect to the
critical temperature T¢, that is,

i
T, > —~ 10" sK. (5.5)
kg

In perovskites, phase transitions are called displacive in the range 100 K < T, <
200 K, and estimated relaxation time is about 0.5 x 10713 s. Therefore, the value of
T, is roughly 500 times larger than the Landau’s limit 10~'" given by (5.5),
confirming that (o), represents a classical displacement at and below T¢.. On the
other hand, in crystals of hydrogen-bonding KDP, we have T, ~ 1,000K and
T a2 10713 s, so that 1T, &~ 107!, indicating that (&), is barely in quantum charac-
ter. In KDP, the order variable is rated as quantum mechanical, although not
precisely identified as in perovskites.

Characterized by inversion, (o,), shows similar behavior to a conventional
spin variable of :l:%, in which sense it is called a pseudospin. For Ae # 0,
inversion of a pseudospin can be analyzed in slow tunneling motion, so that the
phase transition cannot be continuous, accompanying fluctuations of the order
of Ae. In this case, the order variable behaves almost like a classical vector in
the lattice, for which we can consider statistical correlations between adjacent
sites.
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5.2 A Tunneling Model

The pseudospin inversion is essentially a quantum-mechanical tunneling through a
potential U(z,) corresponding to Ag, where z, is the position of the pseudospin on
the direction of fluctuation. In this section, we discuss such a model of inversion in
one dimension, following Blinc and Zeks [7].

Omitting the suffix » for simplicity, we assume that the unperturbed state can be
determined by the wave equation

HO(tDo = 809007

where the eigenvalue is positive, that is, &, > 0, representing the kinetic energy
of fluctuations. For such a particle we consider an effective potential of so-called
a double well, where the central hump represents the perturbing potential U(z).
The ground energy ¢, is therefore doubly degenerate because of the symmetry.
The wave functions in the right and left wells are denoted by ¢, (+z) and ¢,(—z),
respectively. By the perturbing potential U(z), the degenerate level ¢, is split into
two energies, corresponding to symmetric and antisymmetric combinations of
these wave functions. Namely, marked by suffixes + and —, we have

_ 900(+Z) + 900(_2) an _ <p0(+2) - <100(_2)
V= /2 d = V2 ,

which are normalized as
Vi, Yy = o (H2)p,(+2) + pp(—2)p (—2) = 1.

Here, the terms ¢} (4z)y,(+z) and ¢}(—z)p,(—z) represent the probabilities
pn(+z) and p,(—z) for the particle to be at +z and — z, respectively, so that
pn(+Z) +Pn(—2) =1

The perturbed Hamiltonian can then be expressed by

Ho= o o = W )~ S W ),

hence &, = &, = U(0)/2 and ¢, — ¢ = U(0). Therefore, we can define

0; = l//:_‘;bqt - '//ilﬁf :pn(+z) 7pn(*z)a (5.6a)

to express the z-component of a vector o,,. For the transverse components of o, we
consider

Ox = Po(+2)Po(—2) + po(—2)po(+2) (5.6b)
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and
0y = o (+2)0(—2) = 5 (—2)@o(+2), (5.60)
then we can show the commutation relations
lov,0y] =i0., [0y,0.] =i0o,, and [o.,0,] =Iio,. (5.6d)

These are required relations for (o,,0y,0.) to constitute a quantum-mechanical
vector o,,.

5.3 Pseudospin Correlations

Correlations between pseudospins in a crystal are signified by the distance
between right and left wells, or left and right, of adjacent pseudospins. Consi-
dering two pseudospins at adjacent sites n and n + 1, the correlation energy can be
written as

Hn,nJrl = Z (wz,zan.ﬁv\’xl}lﬂ’(slp:+l‘7l/jn+l,6)a (57)

afiyé

where V.5 are interaction tensor elements between the density matrices (i/,,1,)
and (,, | ,¥,+1,5)- The indexes o, 8, 7, and & represent either + or — at each of the
sites 7 and n + 1 in the chain. The interaction elements V4,5 can be signified by
symmetry as

V;\ :V \;,V; I :Vw \:Vu7etc.

for which the density elements can be expressed explicitly as

Vo Wy = 3{05(+2) 00 (+2) + 05 (—2)po(—2) + 5 (+2) 0, (—2)
+05(=2)@o(+2) }= 5 (1 4 042),

lp:;Jrlpn— = %{903(_"2)900("’_2) - (Pz(_z)(po(_z) - @3(‘*‘2)%(—2)
+o5(=2)¢o(+2)} =3 (on — ony),

etc., and also similar expressions for Y, | W, | . ¥, W, . etc.
Therefore H,, .11 can be written in terms of components of pseudospins o, and
Oy as
Hn,n+1 = _Jr1.n+10'n,z0n+l,z - Knﬁn-HO'n.xO'n-&-l,x, (5.8)

where

Jonr1 =2V o and Ky =2V o Vi -V
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The total Hamiltonian of two adjacent pseudospins can then be expressed as
H == Hn + Hn+1 + Hn,n+1

=& — 5 (Gn.z + 0n+1,z) - Jn7n+10'n,zo'n+lﬁz - Kn,nJrlanA,xO'nJrl,x- (5.9

The second term on the right-hand side is the average energy of pseudospins, as
if the potential U were applied externally; the interaction energy between o, and
0,41 1s described by the parameters J,, ,+1 and K, ,11 in the third and fourth terms,
respectively. Equation (5.9) is analogous to the classical correlations discussed in
Sect. 4.1.

Nevertheless, for small ¢, and U at the threshold of a structural change, o, and
o, are considered as classical vectors, as justified for perovkites in Sect. 5.1.
In this case, we can assume that V, ., =V____ by symmetry and obtain
Jynt1 = Ky ny1. Therefore, the interaction terms in (5.9) can be given essentially
in scalar product form as

Hn,n+1 = _-]n,nJrla'n T Onid, (510)

for correlation energies between classical vectors o, and 7, 1.

In a binary crystal for T > T¢, pseudospins are in harmonic motion in the lattice
because U = 0, and hence we can assume (p,(+)), = (p.(—)),, the equal proba-
bility for :l:% in random motion. On the other hand, if electrically dipolar
pseudospins are in an applied field E, we have to consider the potential
U = —e(o,),-E. In this case, the thermal averages of (p,(%)), at a temperature
T are unequal and proportional to the Boltzmann factor ex —2;—[% , and the order
parameter is given by

n= <O-n,2>r = <Pn(+2)>, - <Pn(_2)>,- (5.11)

Nevertheless, signified by a change in lattice symmetry, the structural change
can be attributed to displacive vectors in finite magnitude, as exemplified by typical
structural changes in perovskites. We consider that a center potential U(z, ) emerges
at the critical temperature T, from the deformed structure, as discussed in Chap. 3
with the Born—Huang principle.

5.4 Condensates

Order variables o, for a spontaneous structural change are classical vectors, for
which an adiabatic potential U, is responsible. Consequently, the lattice points
should be displaced by u, from original sites by the force — VU, counteracting
against the force VU, on o, in the center-of-mass coordinate system, as implied by
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Newton’s action—reaction principle. Thus, classical displacements (o, u,) should
always take place together during a structural change, for which a periodic potential
>, Uy is responsible. Such a pair of displacements shall be called the condensate
hereafter by analogy with a condensing gas.

These o, and u, should be in phase, as expanded in Fourier series. Therefore,
the former can be expressed as

o, = Za’k expi(k - r, — wty), (5.12)

representing a wave packet defined by the summation over possible values of k.
By virtue of space-reversal symmetry, (5.12) should be invariant for inversion
r, — —ry; hence, we can consider o is invariant for k — —k equivalently. On the
other hand, time-reversal symmetry must be omitted in all thermal applications. For
the summation in (5.12), we can therefore consider only + k and#, > 0.Inacrystal in
finite size, these waves should therefore be observed as standing, which are expressed
by their phases ¢ = +k - r, — wt, that is pinned as ¢ (r,) = 0 at (r,,0). We can
therefore deal with pseudospin waves that are always pinned at ¢ = 0, regardless of
the position and time. Thus, we obtain the relation

T = —0_k.
In this context, (5.12) can be written as
o, =0 expilk-r,—ot,) +o_rexpi(—k-r, + wty), (5.13a)

where

o =Y 0, expi(Fk -1, + ot). (5.13b)

n

It is noted that the phase variable ¢, = k - r, — wt, at arbitrary (r,,t,) is essential
for o, which is invariant in phase reversal ¢, — —¢,,.

Physically, it is significant that the lattice is strained by the displacements o, and
the corresponding u,,. For strained crystals, Born and Huang [2] have proposed that
the strain energy should be minimized for stability. Hereafter, this proposal is called
the Born—-Huang principle. Although difficult to express it explicitly, we may
assume that the combined local displacement as ao, + bu,,, with constants a and
b, is responsible for strained structure of a crystal. The strain energy can then be
expressed as proportional to

S (a0, + buy)" (a0 + bu,y)

T Saa‘e, - o + Y bbu, - ul, + 3 (a,bh o, - wh + byagu, - o). (5.14)

/ / /
n,n n,n n,n
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This can be minimized for strain-free equilibrium, for which all variables at sites n
and ' in these products are necessarily in phase.

Noted that these variables characterized by phases ¢, = k - r, — wt, are gener-
ally incoherent, for which the Born-Huang principle suggests that a thermal
phasing process forced by the periodic potential )", U, can take place to make
them coherent for minimal strains. Namely, we can write

d g, — 0,
0o =, (5.15)

where 7 is a time constant. By this process, random phases of o, become in phase,
as expressed by o,, thereby making the crystal strain-free. While consistent with
Born-Huang’s proposal, such a phasing process is postulated for a condensate to
stabilize the lattice.

Further, we postulate that these o, at nearest-neighbor sites n and n’ become
coherent, forming clustered pseudospins in phase. Such a cluster can be considered
as a seed for the condensate to grow larger with increasing range of correlations.
It is considered that the strain energy can be lowered by clustering, where the
discontinuity in the corresponding internal energy is responsible for a sharp rise in
the specific heat C,—T curve at T, as shown in Fig. 5.2. In contrast, a gradual tale in
the curve between T and T, can be attributed to another phasing process, which
together can be considered as a precursor of the transition.

8,32}(E
7.68 .
7.04 1
6.40 +
2
& 576+
o
E
- o2l12F ]
«
T
= 448t 4
Fig. 5.2 An example of a
transition anomaly from (- 3.84
brass, which are characterized
by a sharp rise at T, a narrow 3.20k - ]
starting range from the
threshold 77} and a gradual tail 0 ' 2(}0 * 2 ('] 0 4 660

after the transition (from N
[13D). temperature C
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Following (5.10), for classical pseudospins, the correlation energy is expressed
as

Hn = - Zjn1i10'n1 c Oy, (516)

where the index m refers generally to interacting sites with o,. In (5.16), the
distance of correlations is unspecified, but normally limited to the nearest and
next-nearest neighbors.

Setting fluctuations aside, we assume that pseudospins in a cluster become all in
phase at temperatures below T.. For clustered pseudospins, we write o, = g,ep,
and o, = g,e,, where g, is the amplitude, and e,, and e, are unit vectors. Figure 5.3
sketches clustered pseudospins in a perovskite crystal. With respect to the center of
TiO  ion, the short-range correlations with the nearest and next-nearest neighbors
are indicated by J and J', respectively, in the bc-plane. Assuming that g, is constant,
these unit vectors can be expressed as

e, =e g expi(q-r, — oty) +e_sexpi(—q-r, + ot,)
and

e, =e . expi(q-r, —wt,) +e_gexpi(—q-r, + wt,).

The short-range correlation energy (5.16) can then be expressed as
H,=— ZZaiew -e_gexpiq - (rn —ry)expio(t, — ty).

In practice, the time average (H,), :% j" H,d(t, — t,,) over the timescale

of observation ¢, is a measurable quantity, which can be written as

(Hu), = —03F,e+q ey ZJ”’” expiq - (ry —r,), (5.17)
m,n
where
1 (Tt sin wt,
I''=— —i(ty — tp) }d(tm — t,) =
= ||, e lit = e - 1) =T

is the time correlation function with a value close to 1, if wt,<1. Equation (5.17)
can be re-expressed as

<H”>t = _Ggrfe+q : e—q‘ln(q)v (5.18a)
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where

]n(q>:Z]mneXPiQ'("m—"n)- (518b)

(H,), in (5.18a) can be minimized, if a specific wave vector ¢ = k can be found
to satisfy the equation:

V,J.(g) =0. (5.18¢)

Depending on the values of J,,,, such a wave vector k can specify the direction for
the cluster to grow, as will be shown by the examples in the next section.

Although expressed in complex form for mathematical convenience, o, is in
fact real, so that the Fourier transform should have a relation 0'1 ¢ =0 and hence
for unit vectors

_— .
e, =ey. 1)

Accordingly, the normalization condition in the reciprocal space can be
written as

— * . * . f— . 11
N=é e +e e ,=2e, e, (ii)

On the other hand, the vectors e, are also normalized in the crystal space; we have
another equation for normalization, that is,

N = Ze’; e, =2e,-e_4+ eiq exp(2iq - ry) + eiq exp(—2igq - r,). i)
Equations (ii) and (ii’) should be identical regardless of n, for which either

exp(2iq - r,) = exp(—2iq -r,) =0 (iii)

or ) ) .
e, =e,=0 (iv)

need to be satisfied. If (iii) is independent of n, we have either ¢ = 0 or G/2,
corresponding to ferrodistortive or antiferrodistortive arrangements of o, along
these directions of k, whereas (iv) indicates that (e,)> + (eq)i + (eg)? =0, for
which values of the vector ¢ can be arbitrary, independent of the lattice periodicity.
If taking (eql\)z =1, for example, we have (eq‘,)z + (eq:)z = —1, and hence
eq, = expip and e, *ie, =iexpip, where ¢ = gx + constant can be obtained
for an arbitrary angle ¢. Such arrangements of classical pseudospins o, along the
specific k are called incommensurate with respect to the periodic lattice. In these
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cases, the discrete phase ¢, = ¢q - r, — wt, is practically a continuous angle in the
region 0 < ¢, < 27; hence, these discrete angles ¢, can be replaced by a continu-
ous angle ¢ in the same region 0 < ¢ < 2.

5.5 Examples of Pseudospin Clusters

Calculating short-range correlations by (5.18a)—(5.18c) is a familiar method for
magnetic crystals, resulting in magnetic spin arrangements of various types [8].
Using (5.18a)—(5.18c), symmetry changes in structural transformations can be
interpreted similarly. In this section, examples are shown for some representative
systems.

5.5.1 Cubic-to-Tetragonal Transition in SrTiO;

Figure 5.3 shows a structural view of a SrTiOj crystal, illustrating short-range
correlations in the vicinity of TiOé’ at the center. In the cubic phase, three lattice
constants along the symmetry axes are denoted by a, b, and ¢ for mathematical
convenience, and correlation strengths J,,, with the nearest and next-nearest neigh-
bors expressed by J and J', respectively. In this model of a pseudospin cluster,
the correlation energy can be calculated by (5.18a), where the parameter J,(q)
determined by (5.18b) is expressed as

Fig. 5.3 Model of the short-
range cluster in perovskites.
Interactions J and J' are
assigned for 6 nearest and 12
next-nearest neighbors,
respectively.
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T(q) = 27{cos(qaa) + cos(gub) + cos(q.c)}
+ 4J'{cos(qpb) cos(q.c) + cos(g.c) cos(qqa) + cos(qaa) cos(qrb)},

where the index n is omitted. Using this expression in (5.18c), we can obtain the
specific wave vector ¢ = k by solving the equations

sin(k,a){J + 2J' cos(kyb) + 2J' cos(k.c)} =0,
sin(kpb){J + 2J' cos(k.c) + 2J' cos(k,a)} =0, (1)
sin(k.c){J + 2J' cos(k,a) + 2J' cos(kpyb)} = 0,
for k = (kq, kp, k).
It is found that either one of the following wave vectors can satisfy (i). Namely:
ki = (kia, kip, ki) for
sin(ky,a) = sin(kypb) = sin(k.c) = 0. (ii)
ka = (kaa, kap, ko) for
sin(kyqa) =0,  cos(kapb) = cos(kyec) = =1+ 553

sin(kyb) =0,  cos(kyec) = cos(kpqa) = =1+ 553 (iii)
sin(kyec) =0, cos(kpqa) = cos(kapb) = —1 + 55

And, k3 = (k3a,k3b,k3c) for

cos(ksqa) =0, cos(kspb) = cos(ks.c) = —55;
cos(kspb) =0,  cos(kz.c) = cos(ksaa) = —55; (iv)
cos(ksec) =0,  cos(ksqa) = cos(kspb) = — 5.

Solution (ii) gives a wave vector ky = (&, ) where /, m, and n are 0 or

+ integers, which gives commensurate arrangements with J(k;) = 6J + 12J' due
to 6 nearest and 12 next-nearest neighbors in the cluster. On the other hand, for k5, a
component kp, is commensurate along the a-axis, whereas the other ky, and k.
are incommensurate along the b and ¢ axes in two dimensions, provided that
|1 — (J/2J")] < 1. Solution (iii) shows a similar two-dimensional incommensura-
bility in the ca- and ab-planes.

Solution (iv) provides a similar result to (iii); the first set gives an incommen-
surate arrangement in the bc-plane, if |J/2J| < 1, and commensurate along the
a-axis, and so on.

Applying these results to SrTiOs, it is clear that a tetragonal phase below T,
occurs at a Brillouin zone-boundary incommensurate in two dimensions, which is
actually confirmed by the neutron inelastic scattering experiments, showing a dip in
the phonon energy at about T. ~ 130K. As shown in Fig. 5.4, the lowest dip
appeared at ¢/b* = 5 L+ §,, where the shift 5, was attributed to a perturbation at
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Fig. 5.4 Phonon dispersion Zone Bounday
curves in K,SeO, near the 5F I _—,
Brillouin zone boundary

obtained by neutron inelastic
scatterings. Curves 1, 2, 3,
and 4 were determined at 250,
175, 145, and 130 K,
respectively (from [14]).

L)

Phonon Energy (meV)

the zone boundary. However, in the magnetic resonance experiment by Miiller et al.
[9], the incommensurate wave vector can be expressed as

1 1
ke = l(i - 5a)a* and k. = n(i— 5C>c*,

in the ac-plane, where ¢* and c¢* are reciprocal lattice constants. Small shifts d,, 0p,
and 0. are incommensurate parameters, arising from perturbations at the zone
boundary. It is noted that the foregoing argument is only mathematical, due to
unknown J and J'. However, the calculation predicts at least the symmetry proper-
ties of condensates in perovskites.

5.5.2 Monoclinic Crystals of Tris-Sarcosine Calcium Chloride

Tris-sarcosine calcium chloride (TSCC), where sarcosine is an amino acid
H;C — NH,—CO;H, can crystallize in twin from aqueous solutions at room tem-
perature. A single-domain crystal is optically uniform, and obtained by cutting a
naturally grown crystal, which is spontaneously strained along the a-axis and
slightly monoclinic along the b-direction. The molecular arrangement is sketched
in Fig. 3.4a. We already discussed the pseudospin model with Fig. 3.4b, where a
Ca”" ion is surrounded octahedrally by six O~ of carboxyl ions —CO,H of sarcosine
molecules. In Fig. 5.5a shown is a model for a pseudospin cluster in TSCC, which is
composed of pseudospins in nearest-neighbor distances on the a, b, and ¢ axes as
well as in the diagonal directions in the bc-plane.
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Fig. 5.5 Pseudospin lattice
in a crystal of TSCC. (a) A
pseudospin cluster in the bc-
plane. (b) Parallel pseudospin
chains shown by broken lines.
The adjacent chains are
characterized by different
phases 0<¢,, ¢, <27.

Denoting these correlation parameters by J,, Jp, J., and J4, (5.18b) can be
written as

b C
J(q) = 2J,(qqa) + 2, cos(gpb) + 2J. cos(q.c) + 4]y cos% cos%.

From (5.18c) applied to this J(g), we can determine the wave vector k for minimal
strains. By similar calculation to perovskites in Sect. 5.5.1, the following specific k-
vectors can be considered for cluster energies. That is,

nl wm mn
k = _——.— |
1 (a7b7c)7

and

l ks.c J
k3 = (n_ @,k&-) where cos 32‘6 -4
a

Here, I, m, and n are zero or integers. Among these, k| is a commensurate vector
with the lattice, for which we have J(ky) = 2J, + 2J, + 2J..

In contrast, k, and k5 are incommensurate vectors on the b and ¢ axes, provided
that |/;/2Jp| < 1 and |J,;/2J.| < 1, respectively. The thermodynamic phase of a
TSCC crystal below 120 K is known as ferroelectric and characterized by sponta-
neous polarization along the b-axis, for which the vector k; is therefore considered
as responsible. For ¢ = k,, we have

2

2J J?
J(kz):Zla+2.]h+2\lc—J—d:2.[a+2JC+2Jh(1 _J—g);
b b
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this should be positive for stable arrangement. If /; = 0, we have J(ky) = J(ky).
On the other hand, for J; = —2J,,, we have J (k) = 2J, — 6J;, + 2J.<J (k;), which
gives a lower correlation energy than the commensurate phase of k;. Writing

¢ = kyb/2 in cos®? = —J, /2], the above J (k) can be re-expressed as

J(ky) = 2J, + 2J. + 2J cos 20 + 44 cos . (5.19)

This is a well-known formula in the theory of magnetism for a spiral arrangement of
spins in one dimension [10].

In TSCC crystals, interactions between adjacent pseudospin chains are signifi-
cant for longitudinal propagation along the b-axis, as shown in Fig. 5.5b, whereas
the correlations between chains 1 and 2 appear to be responsible for transverse
motion. For a similar situation in charge—density—wave systems, Rice [11] sug-
gested such an interchain potential as J;  cos(¢; — ¢,), where two chains are
signified by phases ¢, and ¢,, as illustrated in Fig. 5.5b, c. In this model, J;, — 0, if
assuming A¢ = ¢, — ¢, — 0; such a phasing mechanism leads all chains in
parallel to the b-axis to a domain wall on the ac-plane.

Exercises 5

1. Order variables o, located at lattice sites n are subjects of practical observation
such as X-ray diffraction. Collisions between o, and X-ray photons occur at
space-time coordinates (x,,#,), which are distributed in the target area of a
collimated X-ray beam. Therefore, we have randomly distributed phases in the
diffracted beam, which can be recognized as uncertainties. Landau’s criterion (5.5)
is clearly concerned about such uncertainties. Review his argument, referring to the
quantum-mechanical uncertainty principle. Also, why the energy uncertainty can
be justified with the equipartition theorem of statistical mechanics?

2. Why should we consider a group of ordered pseudospins as the cluster at the
threshold of a structural change? Is it consistent with the Born—Huang principle?
Discuss this question in qualitative manner.

3. Clustering with short-range correlations discussed in Sect. 5.4 can be character-
ized as phasing of pseudospins for collective motion. Justify this phasing process
in terms of the Born—Huang principle. Can the process be considered as iso-
thermal in thermodynamic environment? Hint: See if phonon scatterings can
be inelastic, when two phonons are considered as interacting with correlated
pseudospins as @, - G

4. In a perovskite crystal, either of conditions (iii) and (iv) in Sect. 5.5.1 was
considered for two-dimensional order, which was actually substantiated experi-
mentally. Discuss the theoretical reason for supporting two-dimensional order.



Chapter 6
Critical Fluctuations

Landau (1937) showed a simplified approach to the order—disorder problem. While
the underlying assumptions need to be revised for dynamical aspects of ordering,
adiabatic fluctuations arising from correlations cannot be discussed with his
abstract theory. If incorporated with the condensate model however, the theory
becomes acceptable beyond mean-field accuracy. In this chapter, considering
Landau’s argument as prerequisite to refined theories, critical fluctuations in corre-
lated pseudospins are discussed for binary systems. Also here, pinning of collective
pseudospin modes is discussed, which is normally extrinsic in character, but can be
intrinsic as well, considering pseudospin correlations. In a pinning potential field,
the pseudospin mode is in standing waves in the crystal space, which are detectable
in practical experiments.

6.1 The Landau Theory of Binary Transitions

For a crystal exhibiting binary order, Landau [6] proposed a theory of a second-
order phase transition, using the Gibbs potential defined as a function of the order
parameter 7). The parameter 7 varies between 0 and 1, representing disordered and
ordered states, respectively. Landau’s order parameter is a continuous function of
temperature under a constant p, signifying the mean-field average of distributed
variables g, over the entire lattice sites n; hence, his theory is valid in the mean-field
accuracy. We note that the transition temperature T, in this approximation is always
higher than the observed temperature 7., indicating a significant discrepancy from
the mean-field theory.

The Gibbs potential below T, is assumed to be given by a power expansion of 7,
that is,

1 1 1
G(n) = G(0) +5An2 +ZB774 +gcn"+..., (6.1)
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where G(0) represents the value for 77 = 0. Higher-order terms in (6.1) imply the
significance of 7 in finite magnitude. Terms of higher-than-second power in this
expansion are responsible for nonlinear ordering, modulating the lattice as anhar-
monic; however, the lattice is disregarded in Landau’s theory. In (6.1), odd-power
terms are excluded for a binary system that is characterized by inversion symmetry,
1 < —n. Therefore, we have the relation

G(n) = G(-n). (6.2)

This hypothesis is also essential for order variables to be a displacement vector in
the lattice structure. Although Landau considered n as a scalar quantity, 1 can
generally be a vector.

In equilibrium, the function G(n) should take a minimal value at ) = ), around
which an arbitrary variation Anp = 7 — 1), may be considered mathematically. We
can therefore assume a change

AG =G(n) — G(n,) 2 0.

The value of 7, can therefore be determined from (OAG/dn),, 7 = 0. For a small ||
in the vicinity of Ty, (6.1) can be truncated at the fourth-order term 774 in sufficient
accuracy, that is,

1 1
AG@):Emf+ZBﬁ.

Differentiating this with respect to 7, we obtain the equation An, + Bn> = 0.
Therefore, the equilibrium can be determined by either

A
N, =0 or %:_E' (6.3a)

In the former, 7, = 0 represents the disordered state. For the latter, Landau postu-
lated that the factor A is temperature dependent and expressed as

A=A(T-T,) for T>T, (6.4a)
and

A=A(T,—T) for T>T,, (6.4b)

where A’ is a positive constant; B is assumed as a positive temperature-indepen-
dent constant. Using (6.4b), the second solution 77% = —A/B in (6.3a) can be
written as

/!

A
%:E@fT)brT<n. (6.3b)
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In Landau’s theory, the transition can be determined by the factor A reversing
sign at T = T, and by a positive B that emerges at T,, thereby shifting equilibrium
from n, =0 to 1, = £+/A’/B(T, — T) with decreasing temperature. Thermal
equilibrium is determined by

G(0) at n,=0 for T>T,,

and

34" A7
G(n,) = G(0) — T nozi\/; for T <T,.

Figure 6.1 shows schematically a change of the Gibbs potential with varying
temperature. For T > T,, 1, = 0 for equilibrium at all temperatures as shown by
Fig. 6.1a. For T < T,, n, = £+/A’/B(T, — T) from (6.3b), shifting equilibrium
with a parabolic temperature dependence, and lowering the minimum by
— 347 /4B, as illustrated in Figs. 6.1b, c. As illustrated in this figure, ordering
starts at T =T, with lowering temperature; signs =+ indicate two opposite
domains.

So far, we discussed Landau’s theory in the framework of equilibrium thermo-
dynamics. The variation principle can be applied to minimize G(7); however, the
variation can physically arise from real fluctuations, which were not considered in
the traditional thermodynamics. At the minimum of the Gibbs potential in Landau’

(a) Ggl])

(b)

Fig. 6.1 Landau’s quartic
potentials. (a) T = T,; (b) and

" — 1,
(c) for T < T,. Binary r L L i
equilibrium is indicated by R ! !
| T 1 S5

two-way shifts and increasing
depths of minima with
decreasing temperature.
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theory, the variation 1 — 7, at a constant p and T condition should be originated
from an internal mechanism that may be expressed by expansion terms in (6.1). In
the condensate model on the other hand, we consider adiabatic potentials AU, at the
lattice sites as related with 7. In this context, Landau’s expansion terms can be
interpreted as

A B
AG =S + 50 + ... = (AU) = —nam, (6.5)

where Xi,, = —9(AU,)/0n represents the internal field in the mean-field approxi-
mation. Such an internal field X, is an adiabatic variable that can be considered as
if applied externally, similar to Weiss’ molecular field in magnetic crystals. As
related in (6.5), these AG and A7 can be regarded as internal fluctuations of G and 7.

In dielectric or magnetic crystals, the order parameter 7 is associated with
microscopic dipole or magnetic moments, respectively. Therefore, such 7 can
respond to applied electric or magnetic fields. Denoting an external field as X, we
can include an additional term — nX in the Gibbs function. Assuming a small
variation of 7 in the vicinity of T,, we can write

1
AG. = AG(n) —nX = S An* —nX

for T > T,, where the equilibrium can be determined from (0G- / an)pj =0, that
is, An — X = 0, from which the susceptibility is expressed by

1 1
XT>T0 = % = IK = m, (668)
where 7, = 0 in equilibrium, and A = A'(T — T,) from (6.4a). The susceptibility
(6.6a) indicates that the system can be ordered by X to such an extent as determined
by the term of A in the Gibbs potential, even at temperatures above T,.
For T < T,, on the other hand, since AG(n) is contributed by 1/4Bn"* as well, the
equilibrium is determined by minimizing

1 1
AG. =-An’ +-Bn* —nX
<=54n + 221 A,
and hence An, + Bn} — X = 0, in which 1> = —A/B gives equilibrium at T < 7.
Accordingly, we have

Mo 1
S N — 6.6b
A<t =24 = 24T, — T) (6.6b)

where A = A'(T, — T) as assumed in (6.4b).
Both (6.6a) and (6.6b) are generally called Curie-Weiss’ laws, indicating a
singularity at T,, where the approaching is characterized by constants 1/A’ or
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1/2A" for T > T, or T < T,, respectively. Of course, these expressions are mean-
ingful only if the strength of an applied X is regarded as negligible.

6.2 Adiabatic Fluctuations

We assume that the Gibbs potential fluctuates with the order parameter under the
critical condition, varying with an internal mechanism. With fluctuations of the
order parameter, the volume of a crystal may not be constant, but change adiabati-
cally under constant 7. In a condensate, fluctuations are in sinusoidal excitations in
random phase, hence diminishing in a phasing process. Therefore, such fluctuations
in a crystal are quite different in character from thermal fluctuations in random type.

Corresponding to AG = (A'/2)(T, — T)n* + (B/4)n* for T<T,, we can consider
a change of the adiabatic potential in similar type, that is, AU,=(1/2)ac?*+
(1/ 4)b0‘i, at a temperature T close to T, representing the outset of phase fluctua-
tions. Below T, we consider a < 0 and b > 0, indicating that the pseudospin vector
o, behaves like a classical displacement, as discussed in Chap. 5. Due to the positive
quartic term (1/4)ba?, the equilibrium position of @, shifts closer to the neighboring
pseudospin ©,,(m # n), so that their mutual correlations between them become
appreciable. In this context, the potential AU, is responsible for correlations at
temperatures close to T7;. Therefore, it is reasonable to consider AU, for the motion
of o,.

In the condensate model, the order variable o, can be expressed primarily as
o, =) orexpi(k-r, — wt,), where k and o are distributed, representing a dis-
placement at a site n. In the Fourier transform oy = ), o, exp(—i(k - r, — wt,)),
the amplitude o, is finite, but the phase ¢, = k - r, — wt, is distributed in the range
0 < ¢, <2r in repetition. In the critical region however, such a phase ¢, is
uncertain by an amount A¢,, as related to uncertain Ak and Aw. The critical region
is therefore dominated by distributed phases ¢, + A¢,, which we call hereafter
phase fluctuations or simply fluctuations.

In a continuum lattice, distributed phases ¢, can be replaced by a single continu-
ous phase ¢ = k - r — wt in the range 0 < ¢ < 27, but accompanying uncertainty
A¢, omitting the index n. We can therefore write o = o, exp{—i(¢ + A¢)} to
represent correlated pseudospins, where |k| ~! determines an effective measure of the
correlation distance in the moving frame of condensates. Further notable is that o is
no longer sinusoidal in the presence of a quartic potential, as verified theoretically by
Krumshansl et al. [15]. As will be discussed later, o, can generally be described by an
elliptic function, showing nonlinear character of distant correlations. Writing
o = 0of (¢ + Ag), the finite amplitude o, is related with the velocity of propaga-
tion, which is typical for nonlinear propagation, and f(¢ + A¢) is a function of a
fluctuation phase.

With Born-Huang’s principle, we assume that distributed phases ¢, in the
critical region can become in phase with the lattice excitation. The process for
A¢ — 0 is primarily adiabatic as forced by the lattice excitation. The nonlinear o

n
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and the corresponding adiabatic potential AU; become in phase after A¢p — 0 in the
propagating reference frame. Considering the space inversion r — —r in a binary
crystal, two phase variables ¢p = +k - r — wt are significant for fluctuations. For
such a variable o, = @of(¢) after thermal phasing, we have the relation

o =0, 6.7)
with respect to the inversion center ¢ = 0. In practice, there should be a potential in
a crystal, providing oy, with respect to the inversion center, which is called a
pinning potential. Thus, these two waves o1, are pinned in equilibrium crystals.

Although attributed to Born—Huang’s principle, it is significant to realize that
such a phasing as assumed in the foregoing should take place thermally by
exchanging energy with the heat reservoir at the boundaries. In this context, the
phasing can be observed as thermal relaxation of mesoscopic variables to a stable
lattice structure, which is not describable by the dynamical theory alone.

6.3 Critical Anomalies

At the threshold of the transition, we consider that collective modes o4, =
o, expi(tk - r — wt) are pinned by the potential AU, = (a/2)o7 + (b/4)o} at
¢ = 0, where both o, and AU, become stationary in the moving coordinate system
atk.

The Gibbs function can fluctuate between G(o;) and G(o_;) with the
corresponding collective modes o, = o, expi¢ and o_; = o, exp(—i¢p), where
¢ =k -r — wt, across a positive potential barrier AU at ¢ = 0 at a temperature
close to T". The potential AU is a symmetrical function with respect to ¢ = 0,
which can be considered as proportional to cos(2¢), because of the quadratic term
dominant at temperatures close to T.. Assuming the amplitude o, as constant, the
Gibbs function is a function of ¢, which fluctuates between ¢, = +k - r — wt and

G(4)

= +
St o
2;’\ \J( 2
e A
¢ 0 b,

Fig. 6.2 Phase fluctuations of the Gibbs potential at the critical condition.
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¢_ = —k - r — wt, as illustrated in Fig. 6.2. For two parabolic curves for G(+¢),
their minimum positions are indicated by ¢, and ¢_, respectively, where phase
fluctuations occur in the range ¢_<¢<¢_ through the potential AU =V cos 2¢,
where V' > 0. As a simple level-crossing in quantum mechanics, we solve the
problem by considering o, as the wavefunctions of the equation Hoy; = eL 0 1.
The degenerate eigenvalues, ¢, = ¢_, represent kinetic energies of phase fluctua-
tions, which are perturbed by the potential AU.

In this case, the perturbed function can be expressed as a linear combination of
o, and o_, and so we write

o=c,0,.+c_o_ and ci +c2 =1, (6.8)

where c¢; and c_ are normalizing coefficients, for the perturbed equation
(H 4+ Vcos2¢)o = eo. These coefficients ¢, and c_ can be determined, if

&, —¢& A
=0, (6.9)
A e —¢
where
2n
f o* (Vcos2¢p)o_dep Vel ("
A= 2 OV(,-;r o . = T J COSZ(2¢)d¢
Jo d¢ =52 |, exp(—2i¢p) cos 2¢d¢ 0
Vo?

=—2. 6.10
o (6.10)

Solving (6.9) for the perturbed energy ¢, we obtain

&4 & ep —e_\2 2
e
‘T2 2

which can be simplified as ¢ = ¢, £ A, if writing the unperturbed energies as
&, = &_ = &,. Thus the degeneracy of the fluctuation energy is lifted, resulting in
a gap 2A, as indicated in Fig. 6.2.

In this case, the coefficients ¢, and c_ should satisfy the relations
ci =c2 =1 /2, because of the normalization (6.8); hence, we obtain symmetrical

and antisymmetrical functions:

oL +0_ oL —0_
O =—"F7=— - =
V2 V2

which can be assigned to ¢, + A and ¢, — A, respectively. The perturbed states are
therefore characterized by o4 = V20, cos¢ and op = V2io, sin ¢, which are
called the amplitude and phase modes, respectively, giving two separate modes of
fluctuations. The critical region signified by these two modes (6.11a) was actually
observed in neutron inelastic scattering and magnetic resonance experiments, as
described in Chap. 10.

and op = (6.11a)
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In the thermodynamic environment, the fluctuations are observed as the energy
loss via thermal relaxations with varying temperature. Actually, with decreasing
temperature, the amplitude mode was found to fade away thermally faster than the
phase mode. It is noted that the Gibbs potential for the stable phase mode is
expressed by quadratic and quartic potentials, shifting equilibrium from ¢ = 0 to
¢ = ¢, with decreasing temperature, representing separated domains in a crystal.

6.4 Observing Anomalies

In the transition region, the fluctuations are spread anomalously in a form different
from random fluctuations, which we call critical anomalies. In fact, due to sym-
metrical and asymmetrical modes

o =20, cos¢p and op= V2ia, sin ¢, (6.11b)

the anomalies are signified by distributed phases ¢ in the range 0 < ¢ < 27 in
repetition, In practical experiments, such fluctuations can be detected, if the time-
scale of observation ¢, is sufficiently shorter than the repeat time 27 /w; otherwise,
they are averaged out. Accordingly, observed results can be analyzed by means of
these time averages (04), and (op),. Assuming that o, is constant, we have

lo

1 in wt,
(G4), = \/E(rot— J cos(k - r — wt)dt = 2V20, Sm(;) 2 cosk-r
o Jo Wil
and
1 (% in wt
(op), = 2iV20,— J sin(k - r — wr)dr = 2V2ia, D% Gink - r.
to 0 Wi,

Amplitudes of these modes are reduced by the factor I' = sinwt,/wt, that
determines the width of fluctuations depending on f,; namely, I' — 1 if wt, — 0.
Further k - r represents the spatial phase ¢ to determine the observed width, which
can be measured with the effective amplitude I'|o,| in a specified timescale 7.

Owing to the classical character, these (¢4), and (op), may be considered as
longitudinal and transverse components of a complex pseudospin ¢ = g4 + iop,
where

Op = 0oCO8p,, Gp=0,sing, and o, =2v2|0,|l. (6.12)
In practice, these components are measured from a sample crystal oriented in the

laboratory reference. Therefore, the quantities proportional to ¢4 p can be expressed
as foz "fap(¢,)oapdd,, where fip(¢p,) are densities of fluctuations distributed
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Fig. 6.3 Intensity
distributions of the amplitude
mode (A) and phase mode (P).

density —————=—

between ¢, and ¢, + d¢,. In practice, a linear variable ¢, defined by ¢ = cos ¢,

and hence + /1 — & =sin ¢,, is more convenient than the angular variable ¢,.
So converting variables from ¢, to &, we obtain the following quantities

Oo
V1-=¢&

for 04 and op modes, respectively. Figure 6.3 shows curves of these density
functions, where A and P modes exhibit clearly distinctive shapes. The latter is
distributed between + ¢, and — o, with the width 26, o< I", whereas the former is
a single line at the center ¢ = 0. Practical examples of observed anomalies are
shown in Chap. 10.

+1 o +1
J FO%dE and j G dac,

¢

6.5 Extrinsic Pinning

An ideal crystal is characterized by translational symmetry of a periodic structure.
In contrast, practical crystals are by no means perfect because of the presence of
many types of imperfections such as lattice defects, dislocations, impurities, and
surfaces. Apart from surfaces that determine thermal properties of crystals, the
other imperfections can usually be reduced by careful preparation; thereby, a
crystal can be assumed to be nearly perfect. If this is the case, most significant
are point defects that disrupt translational lattice symmetry. However, if a crystal
contains such defects that are arranged in a manner different from the lattice
periodicity, we say that is pseudosymmetry. Order variables may be pinned by
pseudosymmetric potentials, causing a transition in different type.
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6.5.1 Pinning by Point Defects

A practical crystal contains some unavoidable imperfections that are mostly miss-
ing constituents or impurity ions at lattice sites. Translational space symmetry is
disrupted by such point defects, by which collective pseudospin modes can be
pinned, exhibiting standing waves in a crystal.

A point defect can be represented by a potential as a function of distance r — r;
from a defective lattice site r;. Such a defect potential is not harmonic in a crystal,
but we assume that it is confined symmetrically to the vicinity of the defect site.
Nevertheless, in a crystalline phase in low defect density, propagation of pseudos-
pin modes o, exp(Lig;) is perturbed by a defect potential at site /; mathematically,
the problem is the same as in Sect. 6.3.

At such extrinsic defects in a crystal, fluctuations can be either symmetric or
antisymmetric with respect to the defect center; the former is for defects at a regular
lattice site, whereas the latter can represent surface sites. Considering the symmetric
combination, (o ; + o _) / V2 =20, cos ¢;, we express the pinning potential as

V($) = —V,cos g, (6.13)

where ¢ is the phase variable in the range 0 < ¢ < 27x; the minimum is located at
¢ = 0. Here, the magnitude is expressed as V,, in (6.10) applied to this case. Needless
to say, (6.13) is a meaningful potential, provided that ¢, are continuous distributed.

Considering surfaces as imperfections, we take antisymmetric function
(o4 —0_)) / V/2 to express the pinning potential as — V,, sin ¢, which however
does not give minimum at ¢ = 0. Therefore, we may consider that the pinning
occurs at ¢ = n/2, for which the pinning potential is defined by the same expres-
sion as (6.13), considering that ¢ is an angular deviation from 7 /2. Point defects,
including surfaces, can therefore be considered as extrinsic perturbations; thereby, a
pseudospin mode can be pinned at the threshold of transition, exhibiting phase
fluctuations as described by (6.13).

6.5.2 Pinning by an Electric Field

If the order variables are electrically dipolar, the arrangement of o, can be
perturbed by an electric field E applied externally. In this case the crystal is
stabilized with an additional potential energy — (Zn (r,,) - E. Here, the field E, if
uniform, is asymmetrical at all sites n, hence, those o, mode interacting with the
field is expressed by an asymmetric combination (&, — &, ) / V2 that is
proportional to sing, ;. In this case, the pinning potential can be expressed as

VEe(p) = —a E sin ¢. (6.14a)

However, Vg(0) = 0 at the pinning center is ¢ = 0. This can be lowered if the
phase ¢ shifts by 7/2, namely,
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T . Y
Vi (qﬁ + 5) = —0,E sin (qﬁ + E) = —0,E cos ¢, (6.14b)

which gives minimum at ¢ = /2.

In magnetic resonance studies on the ferroelectric phase transition of TSCC crystals,
two fluctuation modes o4 and op were identified. In the presence of a weak electric
field, it was observed that the spectrum of g4 split into two lines with increasing E at a
temperature below T, which was interpreted by a change of the pinning potential from
(6.14a) to (6.14b) with shifting ¢ by /2 in a thermal relaxation.

6.5.3 Surface Pinning

Surfaces are not defects, but a pseudospin mode o; can be interacted with an
antisymmetric field A similar to an electric field in character, assuming that surface
point behaves like a reflecting wall. Considering perfect reflection, the mode should
be a standing wave (0 _s; — 0 _5 _¢) / v/2 inside a crystal, whereas o, = 0 outside,
respectively, where the indexes — s and + s signify inside and outside. Therefore,
we can write the pinning potential as

Vs = —0,Asin¢g for —n<¢p <0. (6.15)

Thermodynamically, heat exchange with the surroundings can be considered for
Vs to associate with a lattice mode. The corresponding lattice displacement u at
¢ = 0 is responsible for the heat transfer as perturbed by phonon scatterings.

Exercises 6

1. In the Landau theory, the order parameter was considered as a scalar quantity.
Considering the theory for a vector variable & = o, expi¢, (6.1) is a function of
the magnitude square 0'%. In this case, the theory disregards the phase ¢ and all
space—time uncertainties. Is this consistent with the mean-field approximation?

2. Critical fluctuations are observed in two modes, o4 and op. Experimentally, we
know that o4-mode is temperature dependent, decreasing below T, whereas op is
stable. What is the reason for that? Explain on the basis of the condensate model.

3. Usually, critical fluctuations can be observed in two modes, o4 and o p of clustered
pseudospins pinned by the adiabatic potential. Extrinsically pinned pseudospins
o are either symmetric or antisymmetric, but the former is not distinguishable
from o 4. Further, op are characterized by phase shifting on lowering temperature,
while o, and defect-pinned o remains unchanged with temperature. Discuss
these features of pinned pseudospins in terms of pinning potentials.



Chapter 7
Pseudospin Correlations

Landau’s expansion (6.1) can be interpreted as an adiabatic potential for pseudospin
correlations in a mesoscopic state. By virtue of Born—Huang’s principle, a change
of the Gibbs potential AG due to an adiabatic potential AU represents changing
correlations with temperature below T.. Analyzed with a truncated AU in one
dimension, however, the dynamics of ¢ should reflect lattice symmetry in a crystal.
Using AU defined as consistent with lattice symmetry, the propagating vector o~ can
be described in three-dimensional crystal space. Signified by the transverse compo-
nent, the variable o is found to be incommensurate with the lattice periodicity. In
this chapter, the nature of a propagating o is discussed for their correlations with
pinning potentials in crystals.

7.1 Propagation of a Collective Pseudospin Mode

Pseudospins o, and their Fourier transform o7 in a periodic lattice constitute a
vector field, which is a convenient concept to describe propagation along the
direction of k. This is a useful approach to a continuum field at a small ||, similar
to the phonon field representing lattice vibrations. It is the Helmholtz theorem in
classical field theory that such a pseudospin field consists of two independent
subfields that are longitudinal and transverse to the direction of k. We consider
that such o as expressed by classical vectors are in free propagation in the absence
of an external field; otherwise, the collective motion is restricted by an adiabatic
potential:

1 1
AU(oy) = iaoi +Zbo'2.

We first consider longitudinal propagation along k, writing o as a function of
space—time coordinates x and z. Although signified by two components o and o 4,
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we set the transverse component ¢ aside and write the wave equation for the
longitudinal component o} as

* L, P OAU
(W —v? o 2) or(x, 1) = o = —01ok (acy + bay), (7.1a)

where oy (x,t) = o(kx — wt), vo = @/k is the speed of propagation in the crystal
space, and the amplitude oy, can be infinitesimal for a small %, if ignoring AU
as constant. In the presence of AU, Krumshansl et al. [15] solved (7.1a) by
re-expressing it in a simplified form

d’y
—+Y-Y =0, (7.1b)
d¢?
using rescaled variables
O
Y=— and ¢ =k(x—wt), (7.1¢)
Oko
where
lal > |a| ke 2 ldl
O =1\ —, k"= =—2 and ki =—.
k b m(vg - vz) 1-— t—i ° m?

The corresponding frequency can be obtained by the relation @ = vyk, as
expressed by

w® = v (kK — k), (7.2)

indicating that the propagation is dispersive. It is noted from (7.2) that @ = 0 if
k = k,, but for a finite @ we should have v < v, and k > k,. The former case can
then be assigned to the critical temperature T =T, and the latter to T < T7,
respectively. The dispersion (7.2) is originated from the nonlinear character of (7. la)

For a small oy, the term Y3 in (7.1b) can be ignored, in which case (7.1b) is a
linear equation, whose solution is sinusoidal, that is, Y = Y, sin(¢ + ¢, ). Here Y,, is
infinitesimal and ¢, = 0 can be chosen as the reference point. Nevertheless, the
nonlinear equation (7.1b) can be solved analytically as shown below.

Integrating (7.1b) once, we obtain

dY 27 2 2\ (2 2
2<dqb> f(i —Y)(,u —Y), (7.3)
where

P=1-V1-o2 and p>=1+V1-02,
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where o = (dY/d¢),_,, is a constant of integration. Writing £ = Y/4 for conve-
nience, (7.3) can be re-expressed in integral form as

(7.4a)

ﬂ:f] dé
vae b Ji-a) (- ed)

where & is the upper limit of the variable &, and the corresponding phase ¢ is
specified as ¢,. Here, the ratio k = A/ is called the modulus of the elliptic integral
of the first kind (7.4a). It is noted that the constants A and p can be written in terms of
the modulus «x, that is,

V2K V2
——— and u=—.
1+ K2 V1 + K2

The inverse function of the integral (7.4a) can be written as

& = (7.4b)

snfL

\/EK
which is known as Jacobi’s elliptic sn-funcion. Using previous notations, the
nonlinear mode ¢ can be expressed as

01 = AgosSn—— (7.5)

\/_;c

showing an elliptical wave that is modified from a sinusoidal wave by /, p, x and o.
Also significant is that the amplitude of ¢ and phase ¢, are both determined by the
integral in (7.4a) that is typical for nonlinear waves.

Using an angular variable ® defined by ¢ = sin ©, (7.4a) is expressed as

0,
¢ _ J o (7.62)

V2K o V1 = k2sinf@®

where ©, represents an effective sinusoidal phase of &;, which is useful to express
the propagation as a sinusoidal function, that is,

sn— =sin® 7.6b
o I (7.6b)

In this way, ¢, can be regarded as the longitudinal component of a classical vector,
that is, 0; = Ao, sin @ with effective amplitude 1g,. In fact, Jacobi named @ as
the amplitude function and wrote

0 )
®, =am E———
0o V1 — k2sin’@®
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Nevertheless, we stay on the definition of effective phase angle. Figure 7.1 shows
the relation between the elliptic integral

© de
u(k) = J . —
0 V1 —1x2sin“®

and Jacobi’s ®; = am u, plotted for k = 0.5 and 0.9.

Except for x = 1, the sn-function (7.6b) is periodic, whose periodicity is
expressed by the repetitive unit determined by the difference between ®; =0
and ©@; = 2x. That is, the period of the sn-function is given as

b

K(x) = J i a.7)
0V1 — k2sin’@®
and this is called the complete elliptic integral. We consider that long-range
correlations are included in (7.5) for 0 < k¥ < 1. The range of 0 < ® = 7 is
equal to the period of sn-function 4K ().
For k = 1 or A = . = 1 by definition, (7.6a) can specifically be integrated as

¢
\/57

showing | — 0, in the limit of ¢, — oo. Figure 7.2 illustrates curves of (7.5) and
(7.8) for representative values of the modulus x.

01 = 0, tanh (7.8)

O am(u)
7| | [T
I
I
1
"‘!-:-._.__‘_‘_‘_
K=0.9
o ____ |
B } i
S
i I K=05
10 : -
: 1 2
1
I
I
Wz ] .
Fig. 7.1 Effective phase 2
®;(u) and (Jacobi’s
amplitude function) vs. u.
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Fig. 7.2 Elliptic functions sn(¢/v/2x) plotted against ¢ for various values of the modulus «.

7.2 Transverse Components and the Cnoidal Potential

In the above dynamical theory, the amplitude o, is left undetermined, which should
however take a finite value originated from thermal interactions with the surround-
ings at a given temperature. Leaving the temperature dependence to later discus-
sions, for the periodic solution (7.5) for 0 < x < 1, we have g; = A0, sin @, that
represents the longitudinal component of a vector 1o,. We can therefore consider
the transverse component ¢, that can be written as

011 = A6,c08 O = }y(rocn("b—z1 for 0 <k <1, (7.9a)
K

using elliptic cn-function, so that we have the relation o2 + o2, = /%62
From (7.8) for k¥ = 1, the transverse component can be expressed as

é

for k=1, 7.9b
NG (7.9b)

011 = g,sech

and we have o7 + g7, = d>.

In the presence of the transverse component of a longitudinally correlated pseu-
dospin, we can consider an adiabatic potential AU (o1, ) = 1/2ac7 |, assuming that
there is no cross correlations with adjacent parallel chains in a crystal. On the other
hand, it is noted that the pseudospin direction is reversed across ¢, = 0 and nn of
the periodic sn-function, for which a work by a force F = —0U /0x = —kOU /0¢,

is required, which can be calculated as W = — f; al%dd)l over the
1

phase reversing region of width 26. Here, the potential U can be expressed
as proportional to 62, if there are no transverse correlations. In fact, in the vicinity
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of ¢, =0, we consider o1(¢,) = 011 (¢; +/2) = Lo, and OU/I¢p, x d/d¢,
cn2¢1/\/§K, so that

daw ¢ d ¢

—— = —2,%¢> (cn —l) — (cn—l>.

do, ° V2i) dé, V2K

In the theory of elliptic functions, the differentiation can be performed with another

elliptic function defined by dn’u = 1 — x*sn’u. With a dn-function for a general
variable u, we have formula

(snu)’ = cnu dnu, (cnu) = —snudnu and (dnu)’ = — x?snu cnu,

as listed in Appendix. Letting u = ¢, / \/2i, with these formula, the above dW can
be written as

aw 1 dw _ 22%6? 20762 )
— == = dny = — 2 (dnu)(d
Wb o du Vo cnu snu dnu N (dnu) (dnu)
— 7;“203 4 2 b4 .
K2 dey V2K
Expressing W for the adiabatic potential, we have
AU(x) = uzagdnzﬂ for 0<x< 1. (7.102)

V2K

A potential proportional dn’u shows the same wave form as sn’x and cn’u, so that
(7.10a) is generally referred to as a cnoidal potential. On the other hand, for k¥ = 1,
dnu = sechu

é
V2

In this case, g;, approaches £ g, x oo in the limit of ¢; — oo, which can be
assigned to a domain boundary where the pseudospin direction is reversed. These
boundaries at ¢; = 0 and oo are identical, as indicated by inversion symmetry.
Figure 7.3a, b and c, the curves of o1, ¢, and o1, near the boundary, is plotted,
respectively, against ¢ to illustrate their behaviors.

AU(x = 1) = g%sech? for x=1. (7.10b)

7.3 The Lifshitz’ Condition for Incommensurability

We notice that the elliptic function for 0 < x < 1 is periodic, but its period is not
necessarily the same as lattice periodicity. In such a case, the pseudospin mode is
called incommensurate; however, it can be commensurate if one of these phases
matches the other. Adiabatic fluctuations are generally incommensurate, but may
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(a) cr(tb} .

Fig. 7.3 A pseudospin mode along x direction for x = 1. (a) Distributed mode vectors in the xz
plane. (b) The longitudinal component ¢ (¢). (c) The transverse component ¢, (¢).

become commensurate if pinned by a potential with the lattice symmetry. Lifshitz
derived the statistical condition for incommensurability, which is a significant
criterion for fluctuations in crystalline states.

For practical analysis of experimental results, mesoscopic pseudospin modes of
elliptic and hyperbolic functions can conveniently be expressed as

01 =0,5in®; and o, = 0,cos O,

that are components of a classical vector o = (o, 7, ), where o, and @ (x, t) are
the amplitude and phase, respectively. In the condensate model, these dynamical
variables are temperature dependent, because the corresponding lattice displace-
ments (u1, u) ) can scatter phonons inelastically. It is noted that the phase variable
®(x, 7) is spatially periodic with the period 4K (i) that is not necessarily in phase
with the lattice translation. In any case, the observed pseudospins can be expressed
with temperature-dependent amplitude and phase. The Gibbs potential can there-
fore be specified by such a mesoscopic variable o, or by g, and ®; G(p, T; o) takes
a minimum value in equilibrium. For small but finite amplitude o,, the extent of
pseudospin correlations can be specified by the phase function ©.

Lifshitz considered statistically such correlation energies as determined by
Jijo; - o, and derived the thermodynamic condition for incommensurability. In
practice, such time-dependent quantities in thermodynamic argument should be
averaged over the timescale of observation, that is, (...),. Further, we assume that
the correlated pseudospin o7 is a function of x in the longitudinal variation, and that
fluctuations between x; and x; can be signified by dx = x; — x; and x = 1/2(x; + x;).
The correlation function can therefore be written as proportional to

<0*(xi)0'(xj) +a(x;)o" (x,-))t =2(c"(x)a(x)), + <0_*(x)8<;_ix) —oa(x )80'8)(6 )> ox

+ <o* (x) 8((795:6) +o(x) 80(;)(Cx)> (dx)?

do*(x) &a(x) Oo(x) 8*a*(x)
Jr< ox o2 Ox 0«2 >,(5x)3




98 7 Pseudospin Correlations

Lifshitz considered that the Gibbs potential is contributed significantly by such
correlation terms as related to Ox, that is,

6 [ (Y e, (000 GeP
I A 7 o " ox L2 J Ox Ox2  Ox Ox? L
(7.11)

where iD/2 is defined for convenience as a constant proportional to dx. The Gibbs
potential can then be written as

mv? da |’

Ox

dx
+5lof +2 lal > —+G6u. (7.12)
t

where the upper limit L represents a sampling length of the mesoscopic ¢ in
practical experiments. Writing ¢ = ¢, expi¢, G(o) is a function of g, and ¢, we
have (7.12) re-expressed as

L Jas: bet m? (do, : mvia2 (d¢ :
G(ao,¢>)—G(0)—|—/0 <2 +t7 5 (dx) t— (E)

o (1 aetty) o

© dx dx? L’

which is minimized for equilibrium by setting G /da, = 0 and G /d¢ = 0 simul-
taneously. Carrying out these partial differentiations of G(ag,, ¢), we obtain the
equations

ac, + ba> + mv? o, + mv? <d00> ’ + 2Do
o o o dx2 o\ dx o

(1+5x2dz—¢> =0

and

(et o) (20 58)}

From the second equation, we see immediately that

d¢ D
A 7.13
i v% q, ( )

which is the wave number independent of the lattice periodicity, since D and mvg
are both constants that are unrelated with the lattice; ¢ is therefore incommensurate
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with the lattice. Also, assuming that o, is primarily independent of x in the first
relation, we can solve the first relation for ag, that is,

L _a-(p/mi)
© b

Thus, the wave g, expigx is incommensurate if D # 0, which is known as the

Lifshitz’ theorem. Literally, incommensurability originates from a nonvanishing

displacement (dx), of lattice points, for which Lifshitz’ expression D # 0 is an

obvious requirement.

7.4 Pseudopotentials

The space group may be modified with additional translational symmetry called
pseudosymmetry, signifying a periodic rotation of local structure, for instance m
times over a multiple lattice spacing. On a so-called screw axis of m-fold rotation,
we can consider a commensurate potential V%, where correlated pseudospins o(¢)
can be pinned, if the spatial phase of ¢ matches such lattice spacing. Assuming that a
lattice with pseudosymmetry is signified by transversal displacements of lattice points

2
u=u, exp(j:iep), where 0, = —np andp=0,1,2,...,m—1, (7.14)
m
along the m-fold screw axis, we can consider the potential

VE(0o,01,. .., 00 1) x Zp iy

= Uy Zp {exp i0, + exp(—i@,,)} = 2u, Zp cos 0.

Here, these angles 0, can be re-expressed by the lattice coordinates x, = pa,
combined with (7.14); 0, = (2n/m)(x, /ao) = GpXp, where G,, = 2n/ma,, and
therefore we have VE Zp cos (Gmxp). Consider that a mesoscopic pseudospin
mode o = 0, expi¢ is pinned by the adiabatic potential V,,(¢) corresponding to
VL we should have a phase matching G,,x, = m¢, so that

m’

cos(m¢) = %{exp(imdb) + exp(—im¢)} = g (" +a7 ™).

(o]

Therefore, the potential V,(¢$) is characteristically a function of o(¢) and
expressed as

2 2p0™
V() = Zp( "4 = % cos(mg), (7.15)

where p is the proportionality constant.
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The Gibbs function can then be written as

* * _\2 *
G(g):JL{ao a+b(o o) +mv(2,8iaa+v (d))}d_x

2 4 2 Ox ox " L

Considering the time average of the integrand (. ..), for practical measurements,

L [ac® bat m? (95,\* mvia? (Op\*  2pa” dx
G(00,¢)—J0< >ttt (8x) +t— <a> +— cos(ma) tf.

Setting 9G(6,, ¢)/05, = 0 and 9G(6,, ¢)/Ip = 0 for minimum of G(a,, ¢), we
obtain

ac, + ba> + 2pa™ ! cos(me) + mv:{ a do 2 + Coo | _ 0 1)
© o T =P% °] "\ dx de? [
and
d . .
mvia? £ —2poy sin(m¢) = 0. (i)

Integrating the second equation, (ii) can be modified as

—~my,

) g

1 o\
: 3(%5) + Vin(¢) = constant,

expressing a conservation law that is analogous to a simple pendulum with a
finite amplitude. Using abbreviations ¥ = m¢ and { = 2mpo™—2 /mvg (ii) be
simplified as

F
. {siny = 0. (7.152)

This is a standard form of the sine-Gordon equation. For the conservation law,
(7.15a) can be integrated as

1 /dy\?
3 <dl)€> —{cosy =E, (7.15b)
where the constant E represents the energy of an equivalent pendulum. On the other
hand, (i) determines the amplitude ¢,, which is not constant as in a simple
pendulum, depending on the phase . Such a phase-related amplitude is typical
for a nonlinear oscillation.
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Equation (7.15b) can be written in an integrated form

X=X ‘[wldw
o V2(E + Ccos )

where the upper and lower limit i, and O correspond to coordinates x and x,. This
integral can be expressed by the elliptic integral of the first kind, if the modulus « is
defined by x? = 2{/E + {, that is, if k<1

K J@ de
Vo V1= «2%sin2@’

X— X, =
where © = % Therefore,

VZ(x — x,)

K

sin®; = sn for 0 <k <1,

and

sin®; = tanh \/{(x — x,) for x=1.

To discuss the phase matching condition, it is convenient to define x — x, = A(x)
corresponding to the phase difference between ®; = 0 and ®; = 7, that is,

m doe 2kK
A(K)ZLJ _ 2ekKlw)
VT Jo V1 = k2in’® vV
where K(k) is the complete elliptic integral of the first kind as defined in (7.7).
Phase matching with the pseudopotential V =V, Zp cos (Gmxp) may be stated by
Gnxp, = ©, = 2mp/m, assuming that the pseudospin wave reflects perfectly from
the potential barrier V,. However, depending on the structural detail, V,, is consid-
ered as an inductive reflector, accompanying a phase shift on reflection. Therefore,
the pseudopotential is normally expressed as

(7.16)

Vi=-Vo_ cos{®(1-5,)}, (7.17)

where 6, is called the incommensurate parameter, since the phase matching is not
always perfect.

Figure 7.4 illustrates the behavior of ®,, as described by sin (2np/m) =
sny/{(x — x,) /K, against x — X,, showing characteristic lengths A(x) that deter-
mined by (7.16). In the above, we assumed that x><1, which means E< — { by
definition. On the other hand, if E> — { we have a case for xk2>1. If { can be
ignored, the sine-Gordon equation can be reduced to an equation for free motion; no
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X=X

Fig. 7.4 Phase variables of a collective mode pinned by a pseudopotential V,,(¢).

pinning occurs if V,,(¢) is disregarded. In this context, the change from x > 1 to
Kk < 1 with lowering temperature signifies a transition to a mesoscopic phase in
commensurate structure.

Although one-dimensional correlations are a valid assumption for anisotropic
crystals, experimentally such a model should be evaluated on sample crystals of
high quality characterized by a small defect density. For such phase-locking phase
transitions in K»ZnCly and Rb,ZnCly crystals, Pan and Unruh [16] reported laminar
patterns of such discommensurattion lines perpendicular to the x-direction after
transitions recorded by transmission electron microscopy (TEM). Although there
were additional “splittings” and “vortex-like” patterns, the dominant laminar structure
in the dark fields is deniable evidence for pseudopotential as discussed in the above.

Exercises 7

1. Derive (7.1b) from the wave equation

m <W - W) or(x,t) = fk(aak + bak),

using rescaled variables (7.1c).

2. The Lifshitz’ theory is based on statistical correlations whose energy is mini-
mized by the variation principle. Although mathematical, the arbitrary varia-
tions can be considered as related to thermal fluctuations. If Lifshitz’ calculation
is performed with this interpretation, the incommensurability should be consis-
tent with observed results obtained with varying temperature. Discuss the
validity of Lifshitz’ theory for thermal fluctuations.



Chapter 8
The Soliton Theory

The adiabatic potential was discussed in the foregoing for pseudospin correlations
in crystalline states. In this chapter, we learn that some aspects of the problem can
be analyzed by the soliton theory in better accuracy. Mathematically, solutions of
the Korteweg—deVries equation are expressed by elliptic functions of the propagat-
ing phase. The traditional concept of long-range order in crystalline states can be
revised with soliton solutions, which however need to be subjected to phonon
scatterings for thermodynamic descriptions. While collective pseudospins are not
fully describable in one dimension, the soliton theory can explain the nonlinear
propagation in sufficient accuracy.

8.1 A Longitudinal Dispersive Mode of Collective Pseudospins

In the expression o = o, expi¢ for a collective pseudospin mode, the phase ¢ is
independent of the amplitude @, only if considered as infinitesimal. For a finite o,
on the other hand, the propagation is dispersive, for which the speed v is not
constant. Physically, there should be an internal force in the crystal; thereby, the
transversal component o | plays a significant role.

Such a mesoscopic variable o can be considered to represent a classical vector field
in crystal space, where the propagation at long wavelengths is described by analogy of
a continuous fluid. We consider that the pseudospin density p and its conjugate current
density j = pv represent a continuous flow at a constant speed v under a constant
pressure p. On the other hand, if there is a pressure gradient — dp/0x along the
direction x of propagation, the speed v cannot be constant, resulting in speed-dependent
amplitude. In a condensate, the gradient — dp/0x can be considered to arise from
the force — OAU/0x. For a change of the speed v, we can write the equation

v ov 1 op .
5‘*“’&——?0&’ @)
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where p, = o2 is a constant density if the nonlinear term v(9v/0x) can be ignored.
However, actually the density p is not confined to the x-axis and transversally
spread; hence, we can write p, = p, + p, assuming p, as a function of x and z, for
which the y-direction is ignored for simplicity. Then, the equations of continuity
can be written as

op, ov op, ..
or + poa =0 and T 0. (i)

The density p, flows on the x-axis but p, does not propagate along the z-direction,
remaining in the vicinity of the axis. We assume that p, satisfy the equation

d%p.
5z TP = po) =P, (i)

where « is a restoring force constant.

Equation (i) is nonlinear because of the term v(9dv/0x), whereas (ii) and (iii) are
linear equations. We consider v(Jv/dx) as a perturbation, which can be ignored, if
(1) is linearized. Both density components p, andp, are functions of x and z, but we
assume the same amplitude, that is, |p,| = |p.| = p,. By introducing a set of reduced
variables X' = /ox, ¢’ = \/ot, and p' = (p — p,)/P,» €quations (i), (ii) and (iii) can
be linearized as

ov 8[)/_ 8[)/ 6\)_ 32P, r_ .
i i A & ()

where p’ = p/p, for simplicity. For these linearized equations (iv), the variables,
p’,v,p/, an all be proportional to expi(kx’ — wr’), where @ = vk. Therefore the
dispersion relation

K2 1

2 _ ~ 3

“Tre or ka—ik
can be obtained for a small k, but the speed v is not a constant. In the expression
expi(ky’ — of') = expi{k(¥' = /) = (1/2)k’}, we write k(X —7)=¢ and
(1/2)k*¢ = =, performing a coordinate transformation from (', ') to (f, 7) by differ-
ential relations

0 0 g 0 g

— =k—=— and —=—k—+= Lpd

o 0E or oz 2" o )

First expressing (i) and (ii) in terms of X', 7and p’, we obtain

!/
(“)ervaerZ?p 0 and B_erﬁJrB(pv)

o Tox ox o Taw T ow
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These equations, combined with the last one in (iv), can be transformed by (v) to
express them with coordinates ¢ and 7. That is

o 1 ,0v dv Op

op' 1,00 v Op'v) )

aZp/ azp/ 1 azp/
N 2 _ 14 16
e R ML

Here, quantities p’, p, and v — v, that emerge at T, can be expressed in power
series with respect to small k?, which are written in asymptotic form

P =Kp/ +kp, +,

p=Kp' +kp +---,
and

v7v0:k2v1+k4vz+~~~.

Substituting these expansions for p’, p/, and V' in (vi), we compare coefficients of
terms k2, k*,.. . separately.
From the factors proportional to k%, we obtain

8p1' oy . oy 8171/_ I
6£+8§_’ 8é+85_0, and p; =p,.

After combining the first two relations, the third one can be expressed as
pi'=p/ =vi+o(1), (vii)

where @(t) is an arbitrary function of 7.
Next, comparing coefficients in the k* terms, we obtain

_9p) 19p) Ova O(p) v1)

o "2 ot o OE

:O’

Ovy 10w vy Opy
"9 T2 T aE T =0
and
82 !
p2/ _ p2/+ pl
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Eliminating p,’, v2, and p,’ from these equations, we arrive at the relations for p,’,
vi, and py’, that is,

ovy o 63\/1 ovy  Jo
St MiGr Tt e+ o=,
ar Vo e T P ae
and
apy’ ,0p)  &p)  Op) ¢
43 _ o= _Zr
o TP e e T T

Note that these equations for viand p,” become identical, if the function ¢(t) is
chosen to satisfy the relation

a(p,y’ 0
(pl ’Vl) +£: 0.

0¢ ot
Due to (vii), we notice that p;’ also satisfies this equation for v; or p,’. We can
therefore write the equation

5%} % 83V1
o TVige OE 353

=0, (8.1)

where V| represents v;’, p,’,and p;’ that are functions of £ and 7. This equation is
known as the Korteweg—deVries equation. By definition, ¢ is a modified phase of
propagation, whereas t signifies evolving nonlinearity. It is noted that 7 is not
necessarily the real time, but representing any parameter for evolving the nonlinear
process such as temperature if considering thermodynamic environment. The quan-
tity K>V is called a soliton because it exhibits a particle-like behavior, as will be
explained later. In this approximation, it is significant that the mesoscopic pseudos-
pin mode is driven in phase by an adiabatic force with increasing nonlinearity.

In the above, we discussed a one-dimensional chain of classical pseudospins by
analogy of fluid, for which a pressure gradient — Jdp/Ox can be interpreted as
related with dp’/9¢ = k*(9°p,’/ d&) in the accuracy of k*. In this hydrodynamic
approach, the pressure p can be considered as a force related to “viscous correla-
tions” among pseudospins.

8.2 The Korteweg—deVries Equation

In this section, we continue to discuss the function o(¢$) in one dimension, taking
only a longitudinal component for simplicity. We can disregard the time ¢ in & (x, 7)
to write it simply as o(x), which is legitimate because the coordinate
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transformation x — v, — x makes the coordinate system stationary with respect to
x. In such a moving frame of reference o(x) represents a mesoscopic pseudospin
o (x), for which we have the differential equation

Do (x) = £,0(x), (8.2)

where D = 0/0x is a differential operator, and the eigenvalue ¢, representing the
kinetic energy of propagation.

We consider a problem of finding such a potential V(x) that makes the eigen-
value &, unchanged. In the presence of V(x), (8.2) should be modified as

Lo = (D*+V)o =¢o, (8.3)

on which we impose the condition ¢ = &,, that is, de/dt = 0 with respect to the
variable .
On the other hand, the nonlinearity of o may evolve as described by the equation

0
Eﬂ(x, 7) = Bo(x, 1), (8.4)

where B is an operator function of D, and 7 is the variable for changing state of
o(x,1).

Suppose B is given in a simple form B; = ¢D, we obtain o, = co, from (8.3),
signifying that ¢ is simply a function of x — ct. The D? operator satisfies (8.2)
where the eigenvalue ¢, is invariant, so that it is not considered for developing the
nonlinearity. In contrast, if B is involved as proportional to 83, we can verify that a
significant potential V(x, ) may emerge from (8.3).

The wave equation can be expressed as

Lo(x,7) = {D* +V(x,7)}o(x,7) = £0(x, 1) = £,0(x, 1), (8.5)

For convenience, differentiations are shorthanded by such suffixes as 9V /ox = V,,
o*V / x> =V, etc. in the following arguments. Differentiating (8.4) with respect
to T, we have

%(ﬁ(}') =L.0+ Lo, =-V,0 + LBo,

and

% (e0) = .0 + €0, = &,0 + ¢(Bo) = ¢,0 + BLo.
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Therefore

(=V.+[£,B))o =¢0, where [L,B]=LB-BL

If the condition &, = 0 is fulfilled, the equation to be solved for V is given by

(=V. +[L,B))o(x,7) =0. (8.6)

Assuming B = B3 = aD? + ¢D + b with a constant a, and variable coefficients
b and c that are functions of x and 7, we have

(L, B3] = (2¢, + 3aV,)D?0 + (cx + 2b, + 30V, ) Do + (b + @V + cVi)o.

To obtain a differential equation for V(x — ct) from (8.5), the coefficients of D’
and Do should vanish, so that we have

2cy+3aV,=0 and cy +2by+3aV,, =0.

Integrating these expressions, the coefficients cand b can be determined as
3 3
c:—EaV—i—C and b:—Zan—f—B,

where C and B are constants of integration.
Consequently, [£, Bs|o = {(a/4)(Viw —6VV,) +CV,}o, and (8.6) can be
expressed as

(Vxxx - 6VVX)()- + (CV‘ - VT)O' =0.

A~

Transforming variables (x,t) back to (x — ¢t,7), and setting C = 0 and a = —4,
this equation can be expressed as

Ve —=6VV,+ Vi =0. (8.7)

This is the standard form of the Korteweg—deVries equation for the potential
V(x, ). As mentioned earlier, the corresponding pseudospin variable is in phase
with V(x, 1), sharing a common equation of propagation with the same eigenvalue
€. Noting that the evolving equation is o, = (—4D3 + 6VD + 3V, + B)o, where
the phase can be expressed by x — ¢t with an arbitrary constant «- Interpreting it
for a thermodynamic application, the constant « is the speed for the dispersive
propagation and the variable t can represent an energy transfer rate to the heat
reservoir.



8.3 Solutions of the Korteweg—deVries Equation 109

8.3 Solutions of the Korteweg—deVries Equation

Equation (8.7) can be analytically solved for the potential V' (x — ot). Since such a
potential is stationary in the frame of reference at a constant phase, we require the
condition 0V /9(x — at) = 0, and hence V; = «V,. Therefore, (8.7) can be written
as oV, — 6VV, + V., =0, that is,

dv?  dv,,
_|_

v, — 3=
* dr | dx

=0.

This can be integrated as
Ve =3V? —aV +a,

where a is a constant of integration. Multiplying by V,, this equation can be
integrated once more, resulting in

V2 =2V3 —aV? 4 2aV + b,

where b is another constant. The right-hand side is algebraically an expression of
third order with respect to V, and hence we can write it as

V2= 2(V = Vi)(V = Vo) (V = V3).

Here, V|, V>, and V3 are three roots of the third-order equation Vf(V) = 0. Illu-
strated in Fig. 8.1 are curves of the equation — V2 = 0 plotted against V, which
can cross the horizontal axis at three points V, V,, and V3, if they are all real (case
A); otherwise at two real roots (case B) or only at one point (not shown). Since our

Fig. 8.1 Solving the Korteweg—deVries equation. Oscillatory and solitary solutions are repre-
sented by the curves A and B, respectively.
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interest is only in a real V,, we take the region Vo,<V<V3 of a curve A as a
significant part for our purpose, which is characterized by — V2 > 0.

We redefine the variable V by setting V — V3 = —g for the above third-order
equation, which can then be expressed as

g2 =2g(Vs—Vi—g)(Vs—V2—g).
Further, introducing another variable £ by g = (V3 — V3) &2, we obtain

V=V,
Vs=Vy'

E=_(V3=V)(1 =& (1 —k*E) where «>=

N =

By using a phase variable defined by ¢ = 1/V3 — Vx, this can be modified as
28, = (1-8)(1 - 8.

This can be written as a function in integral form

(8.8a)

N R
v2oh g -e)

where the phase ¢, is determined by the upper limit &; of this integral. Or in the
reverse form, Jacobi’s sn-function can be defined from (8.8a), that is,

& = sn(%;l(). (8.8b)

In previous notations, the soliton potential is expressed by

V(d) =Vs— (Vs = Va)sn?(y/V3 — Vid;k) for 0<K <1, (8.92)

where the sn’-function is periodic with the period defined

1 d&
2K(k) =2 .
l V- —eg)

On the other hand, the potential V(¢) in (8.92a) has an oscillating interval of
2K(x)/+/V3 — V3, corresponding a finite amplitude V3 — V5. If V, — V, we
have the curve B in Fig. 8.1, for which x — 1 and K(1) = oc. In this case, the
potential is

V() = V3 + (V3 — Va) sech®(\/V3 — Vi ¢). (8.9b)
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This shows a pulse-shaped potential with a height V3 — V,, propagating with
effective phase +/V3 — V0. Specifically if V3 — V; is infinitesimal, the modulus
K is almost zero; (8.9a) exhibits a sinusoidal variation

V((I)) V3 + V3 V2 sm \/V3 V](j)

It is noted that the coefficients in (8.9a) and (8.9b) are related with the modulus x.
By definition V3 — V, = x?(V3 — V), and hence the amplitude V3 — V is propor-
tional to k2. Adjusting values of V1, V,, and V3, the potential V(¢) can be made as
consistent with adiabatic potentials derived in Chap. 7.

Thus, solutions of the Korteweg—deVries equation are expressed by elliptic
functions of a propagating phase, either oscillatory or in a pulse shape, depending
on the modulus k. Particularly, a solitary potential of (8.9b) is known as the Eckart
potential. Such potentials behave like independent particles in a system of many
solitons, which can be proven in more rigorous manner. Nevertheless, we are not
going into the mathematical detail in this book, accepting the results.

Physically, the transverse density component p, can be responsible for disper-
sive longitudinal o mode; mathematically the relation between p,(¢) and the
soliton potential V(¢$) was confirmed from the Korteweg—deVries equation. Fur-
ther, in the above theory we consider V(¢) only as a scalar, but it should reflect
symmetry of the adiabatic potential. In fact, in Sect. 8.1 we assumed
Ip,(®)] = |p.(¢")], ignoring the phase difference between ¢ and ¢’ of o, and o,
components, respectively. However, taking (8.9a) for the potential for the longitu-
dinal density p,(¢), the potential

V() = Vo + (Vs = Va)en? (Vs — Vid'; «) (8.10)

can be considered for the transversal density p,(¢’). In the above, the direction z is
set arbitrarily perpendicular to x, however the choice should be decided according
to the lattice symmetry in a given crystal. Also, owing to anisotropic correlations,
the modulus &’ in (8.10) is not necessarily the same as k for (8.9a). In order for the
potentials (8.9a) and (8.10) to constitute the net potential for the vector o, the phase
difference must be determined by ¢ — ¢’ = K, so that the adiabatic potential for &
should be given by

AU(o) =V(d)+ V(b —K), (8.11)

where V is for (8.10) acting on the transversal density.

Actually, Jacobi’s elliptic functions can be expanded into power series as in
Landau’s expansion that can be truncated at a quartic term o* (see Appendix). It is
therefore logical to consider for the Landau theory that the soliton potential is given
by (8.11). The truncated potential can be expressed as AU = (a/2)o> + (b/4)a* in
the adiabatic approximation. Such a soliton interpretation of Landau’s expansion
owes the operator 533 that signifies the dispersive nature of the evolving equation
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(8.4). At any rate, either elliptic or quartic potential is useful for practical analysis of
mesoscopic variables.

It is notable that the soliton potential (8.9b) can be used for describing a domain
wall, at which the component o (¢) for k = 1 becomes singular at ¢ = 0, where
the direction is reversed with an energy proportional to ¢ . In this interpretation,
the adiabatic potential AU(o ) in 7.9b represents the domain-wall energy in the
limit of ¥k — 1.

8.4 Cnoidal Theorem and the Eckart Potential

It is significant that adiabatic potentials obtained from the Korteweg—deVries
equation are conformable with the order variable density; both are signified by
the propagating phase ¢ = x — at. Furthermore, by the coordinate transformation
x —at — X', the potential V(x") becomes always in phase with the order density

o (x’)? in the system of x’. Therefore omitting 7, we can express these as V(x, ) and

o (x,x)* for mathematical convenience.
The Eckart’s potential (8.8b) characterized by a solitary peak can be written as

v(x)z—vosechz(;ﬁ) for K =1. (8.12)

excluding the constant term, where d is introduced to indicate the width 2d of the
symmetric peak around x = 0, as shown in Fig. 8.2a. It is noted that (8.12) is related
to 7.8b, whose transverse character is explicit in both; hence, the corresponding
pseudospin component can be written as o (x/d).

In contrast, the oscillatory potential (8.9a) is periodic in space. Although
expressed as sn> for 0 < x < 1, such a potential is essentially the same as cn’-
function, because of the relation sn?> + cn? = 1. In Chap. 7 we have shown that the
transverse component ¢ | (x, k) is in motion with an adiabatic cnoidal potential:

V(x, k) = —Vodn?u(x, x), (8.13a)
where V,, is a proportionalty constant. Because of the relation dn’u = 1 — k?sn’u,
(8.13a) gives an identical potential

V(x, k) = —Vok?sn?u(x, «), (8.13b)

ignoring the additive constant. In any case, all of these squared elliptic functions
represent the periodic curve, called a cnoidal curve as sketched in Fig. 8.2b. For a
physical application, the additive constant remains trivial, and hence the adiabatic
potential AU (o) is expressed by (8.13a) or (8.13b).
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@ V@)

A
L

(b)

AU(x,x)

Fig. 8.2 (a) Eckart’s potential of the half-width 2d. (b) A sketch of a cnoidal potential
cn?(¢/+/2x) with periodic peaks.

At this point, we introduce a mathematical theorem for a sn® function, stating
that each peak of cnoidal expansion can be replaced by a sech? potential. The
rigorous proof is too complex at the present level of mathematical theory; we only
quote the resulting formula for the present discussions. The theorem states that

m=+00
2K%sn’x = —2a Z sech?(y/ax — cm) + constant, (8.14)

where

2

_m _TCK(K) b
a—m, C_K’(K)’ and K'(x) = K(V1—x?).

Here, m specifies the peak positions x,, along the x-axis for — co<m< + o0; K(k)
is the complete elliptic integral (7.7). Readers interested in the derivation of (8.12)
should be directed to consult a standard textbook on elliptic functions. Owing to
(8.14), the cnoidal potential can be replaced by a periodic array of Eckart’s
potentials that are located at x = (¢/+/a)m.

By virtue of this theorem, problems related to the oscillatory potential can be
reduced to Eckart’s potential as discussed in the next section.
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8.5 Condensate Pinning by the Eckart Potentials

In this section, we discuss the eigenvalue problem of o(x,x) in the Eckart’s
potential field V(x, k). Denoting the eigenvalue by ¢, the perturbed wave equation
can be written as

o (x)
dx2

+ (8 + V,sech? g)c(x) =0.

For a stable pinning, the eigenvalue should be negative, so that we write &¢ = —pu>-
Replacing x/d by x, and setting Vod> = v, and p*d*> = B2, this equation can be
expressed as

d’o(x)
dx2

+ (=P + vosech®x) o (x) = 0. (8.15)

This is a familiar differential equation in Mathematical Physics, whose solution is
expressed by hypergeometric series. Following Morse and Feshbach [17], we
transform (8.15) to the hypergeometric equation in standard form.

By defining the relation o(x) = Af(x)sechPx, the differential equation for the
function f(x) can be obtained as

d*f
A2

2B(tanh x) % + (v, — B* — B)(sech®x)f (x) = 0.

This can further be re-expressed in terms of another variable { = (1/2)(1 — tanhx)
as

2
-0 apa-20

df
2 it

T 00— B =Bl =0,

Then, we define such parameters a, b, and c that satisfy the relations
a+b=2—-1,
where

c=14+p and ab= —v,+p*—f;

1 1
e :l: 0 .
a,b 2—|—ﬁ IVAY —|—4

that is,
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Using a, b, and ¢, we obtain the hypergeometric equation expressed in standard
form, that is,

& aof
C(l—C)z—i—{c—(a—l—b—&—1)C}d—€—abf—0. (8.16)

Expressing as f({) = F(a, b, ¢;{), the solution of (8.16) is called a hypergeometric
function.
The mesoscopic pseudospin variable o (x, k) can then be expressed as

o (x) = AsechP (x)F(a, b, ¢; (). (8.17)

However, we are only interested in extreme cases that can be specified by { — 0
and { — 1, in order to interpret them physically at far distances, for which we use
the expansion formula:

a(a+ 1)b(b+1)

2
deler ) - T ®.18)

ab
F(a,b,¢;0) =1+ —

In the former case, we consider x — oo corresponding to { — 0, and hence

(%), — A2Pexp(—px).

In the latter case of { — 1, we consider x — —o0
For calculating o(x) in these cases, it is convenient to use the following formula
[18]:

I'(e)I'(c—a—Db)

I'(c—a)['(c—b)

c—ap(©)(a+b—c)
['(a)L'(b)

F(a,b,¢;{) = F(a,ba+b—c+1;()

+(1=20) F(c—a,c—b,c—a—-b+1;1-),

where I'(---) are gamma functions. It is noted from (8.15) that the first term
dominates F(a,b,¢;({), if { — 0. On the other hand, if { — 1 we have
(1 =) ~2Pexp(—Ppx) and F(---;1 =) — 1 in the second term, which
dominates F(a,b,c;(). Considering a small value of P, we approximate that
sechPx ~ 2P exp(+Px) and F(a,b,1 + B;{) — 1 in the first term. In this case, by
using B = —ik to express propagating waves we can write that

I'lc)T'(a+b—c¢) I'(c)I'(c—a—Dh)
=00 X TP () (b) T(c—a)(c—b)
x exp(—ikx). (8.19)

o(x) exp(+ikx) +
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Using expressions for a, b, and ¢, we notice that the numerators of these coefficients
are T'(1 4+ B)T'(—P) and T'(1 + B)T(B), respectively, whereas the denominators
have singularities, depending on the value of v,. In Fig. 8.3 shown is the curve of
a gamma function I'(z) plotted against the variable z, where there are a number of
polesatz = 0,—1,—2,.... Hence, the first coefficient has singularities at

1 / 1
a7b:§+[3j: vo—l—Z:—m, m=0,—-1,-2,..., 6))

whereas the second coefficient can be specified by singularities for the denominator
to become infinity, that is,

I'(c—a)'(c—b) :l"(%—&- vo+é—ll>l"<%— v0+4—1‘> zﬁ

cos(n Vo +4

= 00,

hence

1 1
1/v0+4—‘:n+§ or v, =n(n+1), (ii)

where n can be any integer. Combining (i) and (ii), we obtain

B:(n+_)_m__:n_m, (iii)

Fig. 8.3 Gamma function I'(z). i ——



8.5 Condensate Pinning by the Eckart Potentials 117

Fig. 8.4 Soliton levels in cnoidal potentials.

where m = 0,1,2,...,n— 1. Therefore the eigenvalues for f > O can be repre-
sentedas B, =p=n,n—1,n—-2,...,1.

Imposing conditions for no transmission and reflection on (8.19), the pseudospin
wave o (x) can be in phase with the soliton potential, if p(x) and V(x) are conformal
with integers specified by (i) and (ii). Therefore, by expressing the potential by
eigenvalues p, the steady-state equation (8.15) for longitudinal wave functions
0, (x) can be written as

o, (x .
dxgpz() + {*Bﬁ +p(p + 1)SechZX}0p(X) =0, (iv)
where discrete eigenvalues g, = 7[312, can be determined by Bf, = p? that are

indexed by p = n,n— 1,n—2,...,2, 1. Writing the equation (iv) for two adjacent
levels at n and n — 1, we have

d’o,
di2

+{-p* +p(p + )sech’x}o, =0
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and

dz(l'p,I
dx2

+{~p =1+ (0 — Vpsech®s}or, 1 = 0.

Hence, for a change o,_; — o, the potential value decreases by AV,_;, =
—2psech®x. We consider that such transitions can take place as a thermal relaxation
process with varying temperature. Dynamically inaccessible though, such transi-
tions can be observed thermodynamically through interactions with the lattice.
Corresponding lattice displacements u), are subjected to phonon scatterings, result-
ing in relaxation processes between strained energies related to uf, and u12,71 that are
proportional to T, and T,,_i, respectively, using the equipartition theorem.

In Fig. 8.4, we show a change of the periodic potential (8.13b) with lowering
temperature, where eigenvalues of the pseudospin density are indicated in each of
periodic Eckart’s potentials. Although not indicated in the figure, the density levels
are actually in band structure whose widths are significantly broader at smaller n. In
this context, it is reasonable to say that thermal relaxation processes are responsible
for these transitions toward the lowest level determined by n? in each potential well.

8.6 Remarks on the Soliton Potential

In the foregoing theory, the soliton potential is derived mathematically for invariant
eigenvalues of propagating pseudospins. Physically, it is clear that such a potential
for the phase variable represents the correlation energy of pseudospins in the whole
crystal, although we may write itas AU = — ) Jj;0;.07;. Formally, such a correlation

energy as expressed by AU(oy, 02, ..., o) lc?eéljn be introduced by a canonical trans-
formation from the Hamiltonian of independent o; and their conjugate momenta at
sufficiently low temperatures; however, it is considered as sufficient for the present
discussion that AU is so identified physically, being responsible for a modified lattice
structure.

Exercises 8

1. Consider a one-dimensional oscillator, where the spring force F is given in a

nonharmonic relation with the displacement x. Assuming F = —ax — bx>, the
equation of motion can be expressed as mi = —ax — bx*. Replacing +/a/mt and

\/b/ax by t and x, respectively, we write the equation as

d*x 5
— = —x—x.
dr?
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Integrating this equation, we obtain

ldxz_E 32Xt
2\dr) 2 4’

where E is the integration constant. In this case, if U = (x* /2) + (x* /4) is the
potential energy, we have the energy conservation law E = constant. Show the
solution of the above non-linear equation is given by an elliptic function.
Answer. Solving the above for x, we can write

t—iJX &
T V2E— (127

Noting that the quantity inside the square root must be positive for a real
solution, we assume that the motion is limited within a range —a < x < +a,
where E < U, as illustrated in Fig. 8.5a. Such limits =+ a are determined by

@ +2a* —4E=0 or da*=-1++1=4E.

Using a, we can write
2F — x* —%x4 = (a2 —xz)(Z—i—a2 +x2).

Therefore, setting x = acos ©,

(@ de 2
ty =+ J where k> = a427
Vi+a® Jo V1—ksin’@ 2(1+a?)
(@) (b)
v ( ,\'} weight
\ i > / x
E
Fig. 8.5 (a) The oscillatory

region a;< x < a, for E < V(x).
(b) A model for buckling of an
elastic rod. 1
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and the period of oscillation is

42
T= ik[((k).
a
2. For the potential U(x) in a more general form than in the problem (1), we can
repeat the same argument. In a given U(x), the motion is restricted in the range

a;<x<a in Fig. 85a. In this case, we can express that
2(E—U) = (x — a1)(az — x)V(x). Converting x to an angular variable ® by

_ata a—a

5 5 cos ©
we can obtain
O 4o
Hh = :I:J .
0 VV(O)

Using this result for the potential U(x) = %ax2 +ibx4 confirm the previous
formula in the problem (1).

3. Anharmonic potentials as discussed in problems (1) and (2) represent the
property of the spring force. On the other hand, we consider them as arising
from condensates, which are temperature dependent in thermodynamic environ-
ment. The anharmonic part of the potential is considered as the adiabatic
potential, although dynamically we cannot make it distinct from the spring
force. While the crystal stability is attained by harmonic interaction, the anhar-
monicity arises from the lattice as an adiabatic potential. Discuss the physical
origin of anharmonicity with respect to pseudospin—lattice interactions.

4. For stability of an elastic body, there is a nonlinear problem known as buckling,
which is important for structural stability. Consider a uniform elastic rod. When
compressed by external forces F and — F applied at both ends, the rod stays
straight until F reaches a critical strength, beyond which it is stable in bent
shape, as illustrated in Fig. 8.5b.

The condition for elastic stability can be obtained with a simple analysis.
Denoting the radius of curvature by R, mechanical equilibrium can be described
as the torque F x yproportional to R~!, that is, Fy = cR~!, where c is a constant.
On the other hand, 1/R = (d6/ds), where 0 and s are the angle and the length of
the curved rod measured from one end, as indicated in the figure. Therefore,
using the relation dy/ds = sin 0, we obtain

d*0 F
—Z—Csin():O, where (=-—.
ds c
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This is a sine-Gordon equation, whose solution was discussed in Chap. 7. The
problem can be concluded by stating that the longitudinal length of the bent rod /
is given by

Alx) =1

for which the value of k¥ can be determined numerically.

It is interesting that this classical buckling can be compared with an elliptic
function for oy = Aoosn(¢, / V/2x); in a continuous crystal, we have such a
similarity to buckling.



Chapter 9
Soft Modes

Soft modes can be considered as direct evidence for structural changes in crystals
because of their frequencies diminishing toward the critical temperature, destabi-
lizing lattice structure. In dielectric crystals, soft modes are detected with time-
dependent electric fields at low frequencies. In nondielectric crystals, neutron
inelastic scatterings are the method for studying soft phonons. Although the spatial
detail of condensates is implicit, the soft mode can be analyzed for symmetry
changes at phase transitions, that is caused by an adiabatic potential. In this chapter,
we discuss the relation between critical anomalies and soft modes observed in
dielectric and neutron inelastic scattering experiments.

9.1 The Lyddane-Sachs-Teller Relation

In dielectric crystals, the polarization is associated with polar displacements that are
related with lattice excitations. These displacements are represented by a polariza-
tion vector P(r,¢) that is a function of space—time in an externally applied electric
field E = E, exp(—iwt), where E, and o are the amplitude and frequency, respec-
tively. In ionic crystals, P(r, t) is not only related to a mass displacement u(r, ), but
also contributed by the ionic polarization expressed by oE, where o is called the
ionic polarizability. At low frequencies, it is significant that such functions P(r, 1)
and u(r,t) constitute continuous fields, just like the vibration field as discussed in
Chap. 2. We can therefore write the equation

P =au+ bE, ©9.1)

and for the polar lattice mode u we can assume an equation of motion

2

87’; —du+VE, 9.2)

in a weak field E, where a,b and o', b’ are constants.

M. Fujimoto, Thermodynamics of Crystalline States, 123
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Such mass displacements u(r, f) occur in a wave propagating along the direction
of an applied field E(r, ), for which we can generally consider two independent
modes of propagation characterized by curl # = 0 and div u = 0, which are known
as irrotational and solenoidal component fields, respectively. Therefore, u is
expressed as u = uy + ur; uy is defined by curl up, = 0 and div uy # 0, whereas
ur is determined by curl uy # 0 and div ut = 0. Here the indexes L and T indicate
longitudinal and transverse modes with respect to the direction of E.

Experimentally, if the external field is applied uniformly over the crystal, we
write E = E, exp(—iwt) with constant amplitude E,. On the other hand, for P and
u from internal origins, we can write P = P,exp(—iwt) and u = u, exp(—iwr)
where their amplitudes P, and u, are proportional to expi k - r. From (9.1) and
(9.2), we obtain the relations among these space-dependent amplitudes:

P, =au, +bE, and — o’u,=du,+ b'E,.

Eliminating u,, we obtain the relation

b/
he (v e
—a —

The dielectric function &(w) is defined by D, = ¢(w)E, = ¢,E, + P,, and the
susceptibility x by P, = yeoE,; therefore, ¢(w) can be expressed as

ab’
F(CO) — & = b+ Y
—d -
and hence

£(0) — &(o0)
= p TR 9.3
S(CU) S(OO) 1 _ ((1)2/60(2)) ( )
where b = ¢(00) — &, and @’ = — w2, and hence % = (0) — &(c0). It is noted that

(9.3) is a valid expression of the dielectric function at an arbitrary point r at a
constant frequency w,, while the displacement u, at r depends on the strength of an
applied field E,.

In a continuum crystal, we decompose the displacement u(r, ) into solenoidal
and irrotational components characterized by divur = 0 and curl u;, = 0, respec-
tively. As these components u;, and ut have amplitudes proportional to expi k - r,
we can derive relations for these amplitudes u, and u,r, namely

ik-u;r =0 or klugr
and

ikxuy =0 or ki u.
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Accordingly, by decomposing as E = Ey. + Et, where Er Luj, and E || uy, respec-
tively, the dielectric response functions from Ep and Et can be expressed
separately.

At sufficiently low frequencies, the electric displacement D should satisfy the
basic equation div D = 0, so that we have div P = —¢,div E. Hence, from (9.1), we
obtain the relation adivu = — (&, + b)div E. Thus, for a transverse mode, we obtain
divur = 0, and so div E1 = 0. On the other hand, a longitudinal mode is character-
ized by div up. # 0, so that we have

divE; = — dive; and — wiuL =du, +VE..

0

Therefore, for ur and uy we have separate equations of propagation

82u1‘ o N 2
W =aur = —w,ur
and
O*uy, ,ab e(0)
e <a Jrso—i—b = 78(oo)w°uL’
where

e(0
Wer = W, and oL = W, ﬁ
&(o0)

are characteristic frequencies of transverse and longitudinal modes, respectively.
Accordingly, between these mode frequencies and dielectric constants, we find the
relation

oL _ 9.4)

This is known as the Lyddane—Sachs—Teller (LST) formula.

The dielectric function (9.3) plotted against ® exhibits a forbidden gap
¢(0) — &(00), as shown in Fig. 9.1, where a singularity exists at o = w,r, and
also &(woL) =0 at w = wer. The LST relation should be consistent with the
Landau’s theory in the mean-field approximation. For dielectric constants above
and below T, dielectric constants can be written in terms of susceptibilities as

8>(0) = 80(1 + =) =&y and 8<(0) = 30(1 + <) A o)<



126 9 Soft Modes

Fig. 9.1 Dispersion curve for oy
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Assuming that both y_ and y., obey Curie-Weiss’ laws (6.6ab) in the vicinity of T,
we can write

02 (T>Ty) xT—T, and (T <T,) x T, —T, 9.5)

suggesting that frequencies of the transverse modes diminish or soften, if T, is
approached from both sides. Thus, soft modes can be predicted from the LST
formula, if combined with Curie—Weiss laws.

9.2 Soft Lattice Modes in Condensates

In the above theory, amplitudes P, and u, proportional to expi k - r are related to an
arbitrary lattice point r, signifying a mesoscopic distribution. However, if this
exponential factor is just equal to 1, we have a maximum response from P, and
u,. This applies at the lattice point r = R = 0 if k = 0, and at r = 2R if k = G/2,
since we have expi G - R = 1 in both cases. Here, G is a translation vector in the
reciprocal lattice and these two cases represent the center and boundary points of
the first Brillouin zone, respectively. In Sect. 9.1, a response of the dielectric
polarization to an applied field was discussed at the zone center k = 0, whereas
similar soft modes were also studied at the zone boundary k = G/2 by neutron
inelastic scattering experiments. Dielectric properties of crystals originate from
displaced charges at the lattice sites R. On the other hand, neutron inelastic
scatterings can take place with mass displacements associated with two unit cells
in size of 2R. In any case, soft modes are observed from condensates in crystals in
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thermodynamic environment, for which the above theory is only approximate,
because we assumed harmonic displacements u, in (9.2).

In the presence of correlations, pseudospins are in collective motion, which is
driven by the internal adiabatic potential in modulated lattice, shifting frequency
and damping energy via phonon scatterings. Soft modes are significant objectives to
study, subjecting to symmetry and anharmonicity of the adiabatic potential.

9.2.1 The Lattice Response to Collective Pseudospins

Considering longitudinal and transverse displacements uy || k and ur Ll k from
equilibrium positions, the adiabatic lattice potential in a condensate can generally
be expressed as

AU =V (uL + Z uT> +v® (uf + Z u%) +v® (ui + u%)
T T

+V(3){uL<zT:u%> +u§<ZT:uT>}+V<4>{uﬁ+uf<;u%)}+-~~,

(9.6)

where > ;- is the summation for independent transverse directions along the
y- and z-axes and V() V@ V0B yv@#  are expansion coefficients of the
corresponding powers 1, 2, 3, 4,.... Here up and ur are finite displacements
but small in amplitude in the vicinity of T,. This AU expressed by (9.6) can then
be truncated at the fourth order, and composed of component terms of
v v,

Expressing the phonon wave function by |¢, ), we can calculate the matrix
elements (¢q', »'|AU|q, w) for the isothermal average (AU); at T. Time-dependent
(AU)y can arise from the matrix element (¢’, o'|ut|q, ) for ¢’ # q. These parts
expressed by AU, are subjected to inelastic phonon scatterings in a crystal. On the
other hand, the secular potential AU can be expressed as

AU, = AUy + AU,
The longitudinal component is given by

AUg = (VO + V2 + vuf (9.7a)
by writing > p uj = u? + u?, the transverse potential can be decomposed as

AUST = AUS+ + AUS,,
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where
AUg, = (VY 4 V@2 32 and AU = (VD + V&2 )l (9.7b)

In contrast, time-dependent components AU; contain nonzero elements
(¢, |ut|q,w) #0 and (¢,0'|u}|q,®) #0 for ¢ —qg=k and o' —w = Ao,
which are responsible for inelastic phonon scatterings. Taking a time-dependent
element, for example, V<1>, we have

(g, CU|AU |q7 w) = (1><q'|uL,T|q>expi(tAa));

the scattering probability can thereby be expressed as the time average of

— cos(tAw)

integrated over phonon collision time f,. Therefore, calculating (P), = i j:t Pdt,
we obtain

5 sin(fAw)

Py, =2[vt | (q'|urr|q) Ao
o

; 9.8)

where the factor sin(f,Aw)/f,Aw is nearly equal to 1, if 1,>1/Aw.

For lattice modes ur, = uqL exp(—iwt) and ur = uqr exp(—iwt), the probability
(9.8) at temperature T can be calculated for phonon scatterings between ¢ and ¢/,
while A represents the energy transfer to the surroundmgs which is equal to kg7
Considering uy for thermal perturbation, the factor ‘V | in (9.8) represents energy
damping from the u#; mode. Noting from (9.6) that the damping is also contributed
by V(3)u% and higher time-dependent terms, the overall damping can be expressed
by an empirical constant y as in the following analysis. Setting uy aside, the
equations of motion for the transverse mode ur can be written as

2

m (d”T +7 dur + wzuT) = - ag;i = Fo exp(—iwr), (9.9)
where Fo = — (V) + V®y2 )(0u?./Ox) from (9.7b), which is the driving force; w,
is the characteristic frequency and y the damping constant of the unforced mode.

Equation (9.9) represents a harmonic oscillator forced by an external force,
which can be used for a zone-center transition at G = 0 as perturbed by an applied
electric field, and also for a structural transition at zone-boundaries at (1/2)G. In
the latter experiment, the momentum loss of neutrons is equal to iG/2.

Using ur = uex exp(—iwr) in (9.9), we obtain the steady solution of (9.9)

2 2
m(—w” — iwy + ;) uor = Fyy,
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Fig. 9.2 A complex (a) i
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from which we can define the complex susceptibility as

Mg+ 1

x(w) =

. 9.10
Foy o} —o?—ioy ©.10)

Expressing in a complex form as y(w) = y'(w) — iy”(w), the real and imaginary
parts of (8.10) can be expressed as

2 2
/ W, — " wy
1 (w) = and W) = , (9.11)
) et s a L

respectively. These two parts of a complex susceptibility are plotted against @
in Fig. 9.2, where y”(w) is a dumbbell-shaped symmetric curve, if
y> ‘wg — w?|/w? ~2Aw where Aw = @ — w,- Otherwise, y(w) ~ 1/wy for
y<Aw, showing no peak at ® = w,, and is called overdamped, the otherwise case
for y>Aw is underdamped. For a complex susceptibility (9.10), the neutron experi-
ment can reveal the energy loss expressed as proportional to iw o y(w).

Experimentally, the characteristic frequency w, of soft modes becomes close to
zero in the vicinity of T, where (9.9) is dominated by the damping term. Therefore,
we write




130 9 Soft Modes

Fig. 9.3 Dielectric soft-
mode spectra &(w) observed
from BaTiOs crystals by
backward-wave techniques.
Curves for 1, 2, 3, 4 were
obtained at temperatures 474, =
535, 582, and 667 K, 500
respectively (from [20]).
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Y T, *ur = —= exp(—iwr)
dt
Abbreviating as w2 /y = 1/t and F,4 /my = F/, this equation is expressed as
Bt 4T _ ot exp(—ioor) 9.12)
— 4+ — = Fexp(—iw .
dt P ’

where 7 is a relaxation time. Equation (9.12) is known as Debye’s relaxation.
Setting ur = A exp(—iwt), we obtain the susceptibility for such a relaxator, that is,

1 T iwt?

= . 9.13
—iw+ (1/7) 1+w212+1+(u212 ©-13)

ap(w) =

It is noted that (9.12) and (9.13) are of the same Debye’s type in an overdamped
soft mode where t and F' are related to y and Fi.. In practical crystals with lattice
imperfections, such a relaxation as described by (9.13) was found near w =0
independently, but showing a sharp peak distinct from the overdamped soft
mode. The parameters y and F’ for the soft mode are related to the lattice periodic-
ity, and the sharp line can be attributed to lattice imperfections and independent of
the lattice.

Figure 9.3 shows an example of dielectric functions from ferroelectric crystals of
BaTiO; obtained by Petzelt and his coworkers [16], showing the presence of soft
modes in the paraelectric phase, as characterized by dispersive ¢'(w) of the Debye’s
type and absorptive ¢’(w) of dumbbell shape. Some results from neutron scattering
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Fig. 9.4 A plot of squared soft-mode frequencies versus T — T, obtained by neutron scatterings
from SrTiO3 (from [21]).

experiments are discussed in Chap. 10. In observed squared frequencies wg Versus
T. — T shown in Fig. 9.4, there is a noticeable deviation from the straight line
predicted by the mean-field theory.

9.2.2 Temperature Dependence

Equation (9.9) represents a dynamical oscillator in thermodynamic environment.
The damping constant y and characteristic frequency w, are temperature dependent.
Temperature dependences of y and w, are attributed to the adiabatic potential
subjected to phonon scatterings, and we already discussed damping 7 in the
previous section. On the other hand, the temperature-dependent frequency ,
arising from AU should be confirmed separately.

Under a constant pressure, the crystal structure is strained by AU, resulting in a
small volume change. In this context, we need to verify if such an adiabatic
potential can cause a frequency change in phonon spectra. Assuming that a strained
lattice is an isotropic and continuous medium, the Gibbs potential of the lattice can
be written as

MW+MW

G(k) = kT
(k) = keTIn =02+ 55

where « is the compressibility, and here AV /V represents volume strains that may be
temperature dependent. From the equilibrium condition, we set (0G/0V),; = 0 to
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obtain the relation AV/V = —«[kgT/w(k)][0w(k)/OV] in the first order. On the
other hand, from (2.32) and (2.33), combining with the equipartition theorem
Ui, = kgT, we can write

AV Ky KkykgT
= kAp = g = T
2 v
where y = —dInw(k)/dInV is Griineisen’s constant, which is normally consid-

ered as temperature independent. If so, the frequency w(k) may vary adiabatically
with V. This result implies that no thermal shift of w(k) is expected in isotropic
crystals; hence, a thermal frequency shift should be attributed to time-dependent
AUs.

Paying no attention to the volume change, we consider AU, that can be
expressed as

AU, = V(3>uf(uy +iu,) + V(4)ui(u§ +u?),

where > pur in (9.9) is replaced by a complex displacement u, + iu. in a y—z
plane, for calculating convenience. Cowley [19] showed that inelastic phonon
scatterings by the term of V) occur via uy, & iu;; whereas the second term of v
is responsible for elastic scatterings via u§ + u2 In (9.9), the damping terms
(V(l) + V(3>u%) > pur are also complex, so the damping factor can be expressed
in a complex form as y = I' — i®. In his theory, the secular frequency is written as
o(k,Aw), where Aw represents energy changes =+ /A during the inelastic pho-
non process; ' and @ are also functions of k and Aw.
In Cowley’s theory, the steady-state solution of (9.9) can be written as

Fsi/m
—o(k)* + 2 — io(k)(T —i0)’

Uo+ (k, ACO) =

for which the squared characteristic frequency can be expressed effectively as
o(k, Aw)* = 0 + o(k)®(k, Ao). (9.14)
Here, the factor ®(k, Aw) is contributed by three parts, that is,
Dk, Aw) = Oy + O, (k) + Dy (k, Aw),
where

(k)
@0 —_ WAV
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is negligible for AV = 0 as discussed earlier. The second term is expressed as

B (v

@, (k) = Nal® . L (K. K|i2|K', —K'),

where 7 is the number of scattered phonons (K', '), giving rise to a temperature-
dependent frequency shift with @, (k) < T, if combining with the equipartition
theorem 7' (n + 1) = kgT.

The expressions for @, (k, Aw) and for I'(k, Aw) are similar, thereby the effec-
tive damping parameter becomes

’ 2

hi VO (k|ur|Ky, K
AT (k, Aw) = — VO (Klur K, Ko)

~ 16Nw(k) W1,

02
x[(n +ny + D{=0(0 + o1 + @2) + 6(w — w1 — 2)}] .
[ = m){—3(e — 1 + @2) + (0 + 1 — 1)}

Considering two temperatures T; = (hw(k)/kg)(n; +n,+1) and T, =
(iw(k)/kg)(ny — ny), this damping term indicates that the phonon energy
liw(2ny + 1) is transferred to the heat reservoir, which is equal to kg (T — T»).

It was controversial, if the soft-mode frequency converges to zero. Experimen-
tally, it is a matter of timescale of observation; however, no answer can be given to
this question, because the transition threshold is always obscured by unavoidable
fluctuations. Considering that o (k) is determined at k = 0 and signified by Aw for a
soft mode, that is, w(0) = w, = Aw, we can write (9.14) for the effective charac-
teristic frequency (0, Aw) as

(0, Aw)* = 0 + ©1(0)(w, £ Aw).

This can be made equal to zero, if we choose Aw = +®,(0)/4, in which case we
obtain w, = £Aw/2. Assuming that A emerges at T,, we may write @2 = A'T,.
Further writing the second term in the above as @(0)(w, + Aw) = £A'T, we
obtain (0, Aw)* = A'(T, & T), which agree with Landau’s hypothesis (9.5).

For a zone-boundary transition, a soft mode can be studied with intensities of
inelastically scattered neutrons in the scattering geometry K + k — K’, where K
and K’ are wave vectors of neutrons. The timescale of neutron collision is signifi-
cantly short, so that the critical anomalies can be studied by scanning scattering
angles with varying temperature of the sample crystal. In this case, (9.14) can be
expanded for small |k| as

ok, Aw)* = 0(0,Aw)* + Kkk> + - - -,

with a small constant k, so that we can write approximate relations
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olk,Aw)? = A (T —T,) + k-k> for T >T,,

) (9.15)

ok, Aw)* = A (Ty —T) + kk* for T <T,,
which are useful formula for the intensity analysis of scattered neutrons in a fixed
geometry, as shown by Fig. 5.4.

9.2.3 Cochran’s Model

Temperature-dependent lattice modes were observed in early spectroscopic studies
on structural transitions, but it was after Cochran’s theory (1690) [36] that such
modes are called soft modes. Based on a simplified model of an ionic crystal, he
showed that the frequency softening can occur as a consequence of counteracting
short- and long-range interactions. In this section, we review Cochran’s theory, but
modifying ionic displacements for a condensate in a crystal, assuming displaceable
charges with effective masses that are considerably lighter than ions.

If a particle of mass m and charge +e is displaced by u from its site, a hole of
mass m’ and charge — e is left behind, creating a dipole moment ¢ = eu that is
regarded as the order variable. Dynamically, such a dipole G is in motion with
respect to the center of mass, characterized by the reduced mass u = mM /(m + M),
where m and M are masses of the charge and the ion with a hole, respectively.
Nevertheless, as u~m if m < M, we can disregard the lattice structure in
Cochran’s model.

In his model, one-dimensional chain of mass particles m and m’ is considered in
an applied field £ = E, expiwt. We assume that these dipoles o; = eu; are corre-
lated between neighboring sites, so that the crystal as a whole is polarized as
expressed by the polarization P along the direction of the chain. Accordingly, we
consider a depolarizing field as expressed by — P/é, along the direction of the
chain. Further, taking dipolar interactions from all other chains into account,
Cochran included the Lorentz field — P/3¢,, assuming an uniform crystal. Accept-
able in the mean-field accuracy, his theory can bring a temperature dependence into
dynamic equations through the temperature-dependent polarization P.

Denoting the transverse displacements of charges +e and — e by uf and ug,
respectively, we can write equations of motion as

duf ~ P
m dtzT = —C(uf —uy) —|—e(E—|—3—80) and
d’uy P
T — _C(um —ut) —el E+ —
a2 Clur — uy) €< + 38())7

where C is a restoring constant that represents a short-range interaction. Assuming
P = e(uf — uy)/v, where v is the specific volume of a crystal, these equations can
be combined as
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’p ¢ P
—=—|(E+—) —CP. 9.16
Fae =% ( T 330) ©.162)

For a given field E = E, exp iwt, we set P = P, exp it in (9.16a) and obtain the
expression for the susceptibility

(or) = P, e?/eqv
Ko CeoEo € — (€2/3e4v) — uwi’

which shows a singularity if pwi = C — (e?/3¢,v). Therefore, if the condition
C = €% /3¢,v is met, ot can be zero, for which y(wr) or P(wr) can be regarded
to represent a soft mode.

On the other hand, if charges eand — e are signified by longitudinal displace-
ments u; and u;_, respectively, by defining P = e(u;” — u; ) /v we have the equation

aep & P P
—=—|E——+4+-—) —CP 9.16b
# dr? 1 ( &o + 380) ’ ( )

from which the longitudinal susceptibility can be written as

Yo = e?/eqv
nev=cy (2¢2/3e4v) — pwi

Since C is a positive constant, the frequency determined by uwi = C + (2¢*/3¢,v)
cannot vanish. In Cochran’s theory, the soft mode should be a transverse mode, and
both wr and wy, can be temperature dependent.

9.3 Central Peaks

For a binary displacive structural change, we consider that pseudospins emerged at
T? and then clustered in periodic lattice at T.. In the process of condensate
formation, the corresponding lattice displacement ur of clustered pseudospins
should be different from unclustered ones dynamically. Therefore, in the following,
we specify these displacements by ur and vt, respectively, which are pinned and
observed in practical experiments.

We can assume that these two modes are coupled in such a way as vt = cur,
where ¢ is temperature dependent. For the coupled system, the equations of motion
can be written as

d®ur  dur dvr Fyt .
A T g T =, exw(sion
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Fig. 9.5 Soft-mode spectra from SrTiOs; and KMnF3, consisting of a soft-mode and a central peak
(from [22]).

and

dvr | vr y .
L —F —imt).
. + exp(—iwt)

The steady-state solutions can be expressed as
Fy 1
Uos (—@ — i@y + @2) — i)' vor = £ and  ves (ia) + > =F,
m T

from which we can derive the susceptibility function for the coupled oscillator:

() Mo+ 1
) = = .
x Foo 02— o?—iwy —icyF'(wt/1 —ior)

Setting 6° = ¢)'F’, this susceptibility formula is simplified as

1
) = . 9.17
1) 02 — 0? —iwy — (Fot/1 - iw1) ©17)

If these two modes u and v are independent, that is, d = 0 or ¢ =0, (9.17) is
characterized by a simple oscillator formula for the u-mode. If the observed
susceptibility contains such an additional independent response as given by (9.13)
in the vicinity of w = 0, we have
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1 T

= . 9.18
#) wg—wz—iwy+l—ia)r ©-18)

Nevertheless at @, ~ 0, these two terms at a very low frequency become over-
lapped, and indistinguishable unless y < 1/7. Experimentally however, such a
response of Debye’s type happens to be a distinctively sharp peak, and observed
distinctively in zone-boundary transitions at near-zero frequency, which is called a
central peak, as shown in Fig. 9.5.

9.4 A Change in Lattice Symmetry

Macroscopically, a structural transformation is characterized by a symmetry change
in a crystal. It is considered as arising from an adiabatic potential emerging at the
critical temperature. We assume that the potential AU; given by (9.7a) and (9.7b) is
significant at the outset of pseudospin ordering along the x-axis, and for T < T, the
potential expressed by

AUy = VO (i} +12) + Vil (3 + u?) (9.19)

can be responsible for lowering symmetry via phonon scatterings by transverse
displacements u, and u.. Noted that (9.7a), (9.7b), and (9.19) are characterized by
the same class of a cubic symmetry group; the transition may take place with
minimal energy for deforming lattice structure. Fig. 9.6a, b illustrate examples for
symmetry changes at transition temperatures 7., as observed from soft-mode
spectra.

Soft modes observed by optical experiments on TSCC crystals, and identified as
B, modes for T > T, and A; modes for T < T, and propagating along x and z
directions, respectively. Except for the critical region, the adiabatic potentials are
written as

1 1 1 1
AUp, = 5Auf + ZBu;% and AUy, = EAuf + ZBuj;‘.

For the symmetry change between B, and A;, we postulate the coordinate trans-
formation from + u,to + u; F uf,, corresponding to phonon scatterings K, < —K
and K, —K. < —K,, K., respectively. Therefore, the process can be determined by
a linear combination

W =l + ey where ¢ +c; =1,
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Fig. 9.6 Soft-mode spectra as a function of temperature: (a) from TSCC, (b) SrTiO; (from [23, 24]).

with which the potential in the critical region is expressed by

1 1
AUer = S Au + 2 Bu i, (9.14)

where the second quartic term represents a coupling between AUp,, and AUy,.
Therefore, we re-express (9.14) as

A B A B
AU, =2 (5 u? + 1 uf) + c§ (E u;z + Zufu’f) )

We assume that the critical state can change by c?c — 0 and ¢ — 1 to establish
the normal state, where we should have u;f = —A/B in thermal equilibrium.
Therefore,



Exercises 9 139

A
lim AU,, — +Zu2. 9.15)

cy—1 Y

This indicates that the A; mode below T is characterized by w(0)* = 2A(T, — T),
which appears to be substantiated by the curves in Fig. 9.6.

For phonon-energy curves for SrTiO3 below 105°K in Fig. 9.6b, the quadratic
potential should also be related effectively to anisotropic quartic potentials, depend-
ing on k. These curves are determined by w_ (0,k)> = A(k)(T, — T) + xk?, where
the coefficient A(k) depends on the direction of k. Experimentally, near-linear
relations between w (0, O)2 and T, — T as shown in Fig. 9.4, were obtained for
many structural transitions. Consistent with the mean-field theory however, we
have no significant reason to support this linear relation. Hence, we usually write

®(0,0) (T, — T)ﬁ , where [ is called a critical exponent that is determined
empirically; f = 1/2 in mean-field approximation.

Exercises 9

1. In Cochran’s theory, the polarization P is a macroscopic variable. How his
theory can be modified for a mesoscopic polarization?

2. In Landau’s theory, he postulated that A = A'(T — T,,) where A’ is a positive
constant; hence, A is positive for T > T, but negative for T < T,. In practical
crystals, A’ is not necessarily a constant, depending on the wave vector k of the
order parameter. Why? Discuss the mechanism for variable A’. Representing
primarily a harmonic potential, but often including a quartic potential effec-
tively, so that the soft-mode frequency exhibits often a different temperature
dependence, as shown in Fig. 9.6a, b.



Chapter 10
Experimental Studies of Mesoscopic States

Mesoscopic states in crystals can be characterized by the phase variable, which is
observable from condensates pinned by intrinsic and extrinsic potentials. Conden-
sates in crystals are primarily longitudinal in one dimension, although showing
transversal features as well in practical crystals. Except for thermal and mechanical
measurements, such mesoscopic condensates can generally be studied by sampling
experiments. Experiments are therefore focused on their frequency dispersion and
pseudospin arrangement that vary with temperature for 7<7.. Samplings can be
performed by using photons, neutrons, nuclear and paramagnetic probes, constitut-
ing basic techniques in contemporary physics of solid materials. These probes can
sample specific parts of constituents selectively; photons are generally sensitive to
order variables, neutrons are useful for studying displacements of heavy constitu-
ents, and magnetic resonance probes yield information about local structural
changes, which are all complementary. In this chapter, such experiments as X-ray
diffraction, dielectric measurements, light and neutron inelastic scatterings, and
magnetic resonance spectroscopy are outlined for condensate studies with relevant
results to substantiate theoretical arguments.

10.1 Diffuse X-Ray Diffraction

The crystal structure is usually determined by X-ray diffraction. A collimated X-ray
beam is scattered from a crystal, forming a diffraction pattern on a photographic
plate, depending on the orientation with respect to the beam. Such a diffraction
pattern is basically due to elastic scattering of X-ray photons by distributed electron
densities. Soft X-ray photons in keV energies are scattered by electrons distributed
in crystal planes, while keeping heavy nuclei intact under normal circumstances.
On the other hand, in the critical region, the lattice is modulated along symmetry
directions, so that X-ray diffraction patterns exhibit anomalous broadenings, called
diffuse diffraction.

M. Fujimoto, Thermodynamics of Crystalline States, 141
DOI 10.1007/978-1-4419-6688-9_10, © Springer Science+Business Media, LLC 2010
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In early crystallographic studies, Bragg established the concept of crystal planes
of constituents that signifies the periodic lattice structure in normal crystals. A
collimated X-ray beam reflects like optical light from a large number of parallel
crystal planes, showing an interference pattern on a photographic plate placed
nearby. Figure 10.1 illustrates an experimental arrangement for analyzing such
diffraction patterns.

In light of Born-Huang’s principle, we postulate for binary transitions that
condensates are formed for minimal structural strains, in such a way that the lattice
modulation occurs along a specific symmetry axis. Denoting such an axis by a,
Fig. 10.1 shows schematically how the diffraction is modified along the g-axis.
Assuming that a collimated beam of monochromatic X-ray of a wave vector K, is
incident perpendicularly on the a-axis, Bragg’s diffraction law can be written as

K,—K==+G. (10.1)

Here, K is the wave vector of diffracted X-ray and G = na is the translation vector
along the ag-axis, where n is an integer, representing a group of parallel crystal
planes perpendicular to the axis. On the other hand, only the magnitude |G| is
significant for the beam of K to diffract in all directions in three dimensions; all of
these satisfy (10.1). Namely, these diffracted beams K are lying on conical surfaces
with respect to the g-axis as shown in Fig. 10.1; such conically diffracted beams
constitute Laue’s law for constructing diffraction patterns. We show in the figure
how the lattice modulation can occur along the a-axis for a given wave vector k.

Fig. 10.1 X-ray diffraction
setup. Incident X-ray beam
K,, diffracted beam K on a
conical surface. The

modulated axis is indicated
by G || a. a
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Considering a charge element p(r,)d’r that scatters an incident X-ray photon
field E, expi(K, - r, — wt,) at a point r, and time #,, the scattered field is spherical
and expressed by the classical theory of radiation as

HK - (r—r,) —o(t—1t,
A(r,t) o J d3r0p(r0)Eo expi(K, - ro — wt) expif (r|r i 2 | o )}
V(ro) — 7Ty

Hence, the scattered amplitude at a distance r > r, is given by an approximate
form A(r,t) x expi(K - r — wt)/r = A,, which can be re-expressed by

A
2 J Ero{p(ro)expi(Ky — K) - ro}. (10.2)
Es vy

For elastic scatterings from a rigid crystal, by the relation expi(+G - r,) = 1, the
intensity ratio (10.2) gives maximum scattered amplitude, which is proportional to
the net charge at the lattice point 7,.

In practice however, a collimated X-ray beam strikes a finite area on a crystal
plane, so that the reflected beam arises from all scatterers in the impact area. Letting
positions of scatterers as r,;, where m = 1,2, ... in the impact area, (10.2) can be
re-expressed as

Ay

2= D _In(G)exp(—iG - ron), (10.3)

where
fm(G> = J p(rom)d3rom-
V(rom)

This is called the atomic form factor. However, electronic densities overlap signifi-
cantly between neighboring atoms, and (10.3) overestimates individual contribu-
tions. In this context, we need to redefine independent factors for these constituents.
Replacing r,,, by a continuous variable s — r,;,, we can write

J p(s) exp(—iG - s)d’*s = J 0(5 = Fom) exp{—iG - (s — Fop) Yd* (s — 7o)
V(s) V(s)

X exp(—iG - rom)
:fm(G) exp(fiG : rom)a

where

fn(G) = JV( ) p(s = Fom) eXp{—i(s — Fou) }d* (s — Fom). (10.4)
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With (10.4), (10.3) can be expressed as
me CXP IG : rom me eXP{ (xmh + ymk + Zml)}

This is called the structural form factor, with which the field of a scattered beam at a
distant position 7 can be expressed as

Eg(r) _S(G)

A expi(K - r — wt).

Using the structural factor, the intensity of the scattered beam is given by

1(G
(IO) = r—zS*(G)S(G). (10.5)

If a crystal is modulated in a direction of the g-axis, the periodicity of pseudos-
pins is modified by the wave vectors G + k and the energies F Ae = fi(w — w,) =
FhAw, so that the scatterings should be inelastic. We therefore consider conserva-
tion laws

K,—K=G+k and ¢(K,) —¢K)= FAe(k), (10.6)
by which (10.2) can be revised for inelastic scatterings as

expi{K - (r—r,) —o(t—1t,)}

|r — 1o

Sl

X Jd3rop(r0) €xXp i(Ko *ro — woto)

S Jd3r0p(r°) xpilK.-r— o) expi{(Ko — K) - r — (0w, — @)1, }.

r
Using (10.6) in this expression, we obtain

Eg(r) expi(K-r— wt)
x
E, r

X > {f(G+k)expi(k-ry — Awto) +£(G — k) expi(—k - 1y + Awto)},

m

where

f(Gtk)= J Brop(ry) expi(G £ k) - r,
V(r,)
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We consider |k|<|G| for a weak modulation, in which case f(G + k) = f(G),
and phase fluctuations expi(G £ k) - r, can be separated to amplitude and phase
modes, similar to the critical condition discussed in Chap. 6. Taking these symmet-
ric and antisymmetric modes into account, we can derive the corresponding inten-
sity at r, that is,

1(G+k) 1<G>+2vgg>lz S [cos k- (7 — 1) — A (t — 1)}

+sin{k- (ry,—r,) —Aw(t, —t,)}].

1, 1,

Here, the first term on the right-hand side represents elastic scatterings, while phase
fluctuations in the impact area S are explicit in the second inelastic term. Consider-
ing timescale of observation ¢,, the latter represents the intensity anomaly due to
diffuse diffraction, that is,

2

where ¢ = k- (r,, —r,) — Aw(t, — t,) represents fluctuating phases. Here, it is
convenient to consider that r,, — r, = r and t,, — ¢, = T are continuous space-time,
that is, ¢ =k-r—Aw-71; (10.7b) expresses that time averages (cos¢), and
(sin ¢), are integrated over the area S.

Assuming a rectangular area S = L,L, and continuous ¢ = kx — Aw - 7, the
symmetric spatial fluctuations can be calculated as

s emoras= (5[} o) [ )

(033 _
— <kix L)l cos¢d¢> = <¢2 E 5 sinqs2 5 91 cos¢2;¢l>t7

Here, ¢, and ¢, indicate limits of the space integration at x; and x,; hence,
¢y, — ¢, = Adp = kL, and (¢, + ¢,)/2 = kx — Aw - 7. After a similar calculation
for %fs (sin ¢),dS, we obtain the formula for the net intensity anomaly:

(AI(G)), sinkL, sin(t,Aw) '
I, kL, toAD {(cos kx), + (sinkx),}. (10.7¢)

This formula should explain diffused intensities of X-ray diffraction; however,
broadened diffraction spots and lines are hardly resolvable in X-ray experiments.
In contrast, in neutron inelastic scatterings and magnetic resonance studies, such
anomalies are resolved and analyzed as expressed by (10.7¢).
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10.2 Neutron Inelastic Scatterings

By X-ray diffraction studies, it is possible to detect transition anomalies, but failed
to see their detail because of insufficient resolution. The difficulty was also related
to detected patterns that are generally obscured by strong elastic scatterings mask-
ing inelastic scatterings. On the other hand, the symmetric and antisymmetric
contributions were resolved in neutron experiments.

For one-dimensional modulation, we notice that if collimated X-ray beam is
parallel to the modulated axis, that is, if K, || G, from (10.1) we have K = 0. In
contrast, inelastic scatterings occur in neutron experiments at the zone boundaries
+ G/2.If K = 0, no diffraction of the beam from G-planes is expected, while in the
direction perpendicular to K, only inelastically scattered neutrons can be detected.
Figure 10.2 illustrates such an arrangement that inelastic scatterings can be studied
in the perpendicular direction, avoiding elastic scatterings; this is a practical
arrangement, provided that the incident beam K, has a sufficiently high intensity.
In this figure, we notice that the incident beam is almost in parallel to the a-axis,
where some amount of elastic reflection is unavoidable at a small K. Thermal
neutrons from a nuclear reactor are characterized by de Broglie’s wavelengths
comparable with lattice spacing, so that inelastic scatterings can be observed in
higher resolution than X-ray.

It is fortunate that an intense thermal neutron source is made available for
such experiments, which were indeed performed at leading laboratories in the
world. In this section, we discuss the principle for the experiment and representative
results. In Fig. 10.3 shown is a sketch of a triple-axis spectrometer, consisting of

detector
-
f'-—-__--"
! \?\ spectrum

|

|
Lo
T
| I
I

| fluctuations
I

crystal

neutron beam
—

goniometer

Fig. 10.2 Experimental arrangement for neutron inelastic scatterings. Incident beam K,. In
perpendicular directions K, only inelastic scatterings can be observed with no diffraction. The
fluctuation spectrum can be recorded by scanning the scattering angle.
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Fig. 10.3 Triple-axis
spectrometer for neutron
scattering experiments. The
monochrometer, goniometer,
and analyzer are all rotatable
around their axes in parallel.

A
z s i ’/;;////
N o

detector

monochrometer, goniometer, and analyzer which are all rotatable individually
around their parallel axes. The monochrometer and analyzer are diffraction devices
utilizing crystals of known lattice spacing; thereby, the wavelength can be selected
and measured by adjusting angles 6 and 0, respectively, as indicated in the figure. A
sample crystal is mounted on the goniometer, which can be rotated around a
symmetry axis to scan scatterings in the vicinity of K, || G, as shown in Fig. 10.2.

Similar to X-ray, momentum and energy conservation laws can be applied to
neutron impact on a scatterer, that is,

K,—K=G;tk and ¢(K,)—¢e(K) = FAe(k) = Fhdow, (10.8)

where Ae(k) represents a transferred energy between the neutron and scatterer.
Here, we have written specifically the lattice vector G;, because the neutron
experiments indicated that the transition occurred near the Brillouin zone bound-
aries + G/2. The zone-boundary transition is signified by scatterers combining
two unit cells, and hence called the cell-doubling transition. Experimentally, the
translation vector G; was not exactly G/2, but some shift from the boundary was
detected, arising from a perturbation.



148 10 Experimental Studies of Mesoscopic States

Expressing an incident neutron by the wave function y ~ expi(K, - ro — Wol,),
the scattered neutron from a scatterer at a lattice point r, can be described by the
wave function

N expi{K-(r—r,) —o(t—1t)}
W] drt . |
x expi{(K —K,) 1o — (0 — 0ot }

where r, and ¢, represent the space-time of the impact. In the direction perpendicu-
lar to K, we require the condition for no elastic scatterings, that is, K = Fk and
K, = —G;, for which case y/(r, ) can be modified as

W] drptrg SR OO i) 7 o)

V(r) [r—ro|

We can define the structural factor for a finite area that include many scatterers
at roy as

f(Gi+k) = J Erop(r,) expi(G; + k) - ro,
V(ro)

and express the wave function, by assuming |r — ro,| &~ r and to, = t,, as

) expi{Fk-rto(t—1)}
,
X Z{f(G[ +k)expi(k - rom — AW - tom)

Y(G;: +k

+f(G; —k)expi(—k - Fom + Aw - 1)}
Writing n,,(G; £ k) =f(G; £ k) expi(Lk - Fom F A® - to), the intensity of scat-

tered neutrons can be given by

1(Gi+k)=(|P(G;£k)|*), <Z{n;‘,,(Gf+k)n,,(Gi+k) +n (G —k)n,,(G,«—k)}>

<Z|nm(Giik)|2>

+ <Z{nfn(Gi+k)n,,(Gi+k)+nfn(G,-k)nn(G,»k)}>.
m#n t

The first term represents elastic scatterings at =+ k, whereas the second one indi-
cates inelastic contributions. The latter can be expressed as
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(AI(G; £ k)), O(<Z expiG; - (Fom — Fon)

m#n
X “f(Gl + k)|2 eXPi{k' (rom - ron) - A(U(tom - ton)}

+£(G; — k)|2 expi{—k - (Fom — ron) + Ao (tom — ton)}} >

t

Considering that r,, — r,, = r and t,, — t,, =t are continuous space-time, the
intensity anomaly (AI(G;*+ k)), is signified by phase fluctuations ¢ =k -r—
Aw-tand —¢p =—k-r+Aw-t.

If these scattering factors f(G; & k) can be approximated for a small k as

F(Gi £ )] = (G + 2k - Vil (G,
we can express the intensity anomaly as
(AI(G; £ k)), = A{cos ¢), + P(sin ¢),, (10.9)

where

AO(J |7(G))| cos(G; - r)dr  and Po<J 2k - Vi|£(G))]* cos(G; - r)dr.
v(r) )

V(r

Here, we considered that the fluctuations are pinned symmetrically at the zone
boundary. It is noted that the scattering anomalies given by (10.9) are identical to
(10.7¢) for X-ray diffraction.

Expression (10.9) indicates that the intensity anomaly is contributed by two
modes of phase fluctuations (cos¢), and (sin¢), at intensities A and P. In
Chap. 6, we have discussed such distributed intensities with respect to the phase
¢ =k-r+ ¢,(t,), where ¢ (¢,) is an arbitrary phase depending on 7,, as shown in
Fig. 3.6. Figure 10.4 shows examples of anomalous intensities of scattered neu-
trons, which were observed from magnetic MnF, crystals near the critical Neél
temperature Ty. These anomalies observed in different scattering geometries show
clearly anisotropic intensities composed by A and P, showing phase fluctuations in
these two modes. For observing such fluctuations, it is noted that the timescale ¢,
in the scattering process should be comparable to Aw~! for the energy transfer,
otherwise the scattering anomalies vanish for #, > Aw~!.

10.3 Light Scattering Experiments

Insulating crystals are optically transparent, where light waves are refracting as
normally characterized by the refractive index. However, intense coherent light
waves from a laser oscillator can be used to detect generally feeble scattered light
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Fig. 10.4 Typical intensity distributions observed from a magnetic MnF, crystal at the Neél
temperature Ty (from [28]).

in sizable intensity, permitting studies of phonon spectra. Incident light induces
dielectric fluctuations among constituent atoms, producing Rayleigh radiation that
are attributed to elastic impact of photons, while inelastic scatterings of laser light
also occur in a substantial intensity, yielding information about phonons in a
crystal.

10.3.1 Brillouin Scatterings

When sound waves are set up as standing waves in liquid, an incident monochro-
matic light beam exhibits a diffraction pattern that characterizes the periodically
modulated densities. In this case, induced dielectric fluctuations are responsible for
scatterings of light. This phenomenon is known as the Brillouin scatterings. The
principle can be applied to sound waves in an insulating crystal, if there is a
photoelastic mechanism for constituents to interact with the light. Such scatterings
are basically inelastic collision processes between photons and constituents in a
crystal, where the crystal symmetry affects minimal strains in the lattice in conse-
quence of Born-Huang’s principle.

In Fig. 10.5a, we consider that an intense monochromatic light of wave vector K|,
polarized along the y-direction is incident upon the (101) plane of a sample crystal,
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(@) ; (b)

incident wave

Fig. 10.5 (a) A light scattering arrangement for Brillouin scatterings. Incident light is polarized in
the y-direction as marked v. . .v, while scattered light is depolarized to v...v and h. . .h directions.
(b)A general Brillouin scattering geometry with phonon excitations =+ Q.

and that the scattered light of K is detected in the perpendicular direction [101]. In
this case, phonons of wave vectors =+ @ should participate in the scattering process
as shown in Fig. 10.5b, illustrating a scattering geometry for K, K,,, and + Q. It is
noted that owing to photoelastic properties determined by symmetry of the crystal,
the phonon waves are not necessarily longitudinal but transversal as well; conse-
quently the scattered light K can be polarized in two directions v-v and h-h, as
indicated in Fig. 10.5a. The symmetry relation between incident and scattered lights
should be expressed exactly in terms of the group operations; however, we simply
consider the scattered components fluctuating in vertical and horizontal directions.
Namely, Ap, = oE and Apy, = onE, where o, and oy, are polarizabilities, if the
amplitude of light is E.

Denoting the polarized laser light by the electric field E, expi(K, - ro — ®oto)
at the impact position and time (r,,7,), the induced polarization is
Ap(ro,ty) = (2)E, expi(K, - ro — Wol,), where (o) represents a tensor with com-
ponents o, and oy. As given in Sect. 10.1, the scattered field can be expressed for a
distant point |r — ro| & r as

_expi(K-r—ot)

B~ PP (g, ) B

x expi{ (Ko — K) -ro — (0o — w)to}d3rodt0.

(10.10)

If = w,, (10.10) is maximum at all |[K| = |K,|, representing elastic collisions
known as the Rayleigh scatterings. Defining the scattering angle ¢ by
K, -ro = (2mro/2) cos ¢, where / is the wavelength, the Rayleigh intensity /g (K)
can be expressed for r, < 4 as
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IR(K) o 21%y?

2
1Ky Y (1 + cos”yp),

where the two terms on the right-hand side represent intensities for E, and Ej,
respectively.
For inelastic Brillouin scatterings, the conservation rules are

K,—K=+0Q and o,— o = FAo,

where + Q and F Aw are the wave vectors and frequencies of scattering phonons,
as illustrated in Fig. 10.5b. The angle 6 between K, and K is called the scattering
angle, with which the magnitude of Q is expressed as

0| = 2|K0|sin§. (10.11a)

Experimentally, to keep incident photons away from the detecting photon counter,
we normally select 6 = 90°, but the Rayleigh scatterings cannot be avoided,
obscuring Brillouin spectra. In isotropic media characterized by the optical index
n, for laser light of wavelengths 1, we have |K,| = 2zn/A and Brillouin scatterings
show frequency shifts given by

2
™ inl. (10.11b)
2 2

AVB:i

The speed of phonon propagation can be evaluated from the Brillouin shift Avg
using (10.11b).
Brillouin intensities can be expressed as

Ig(K,£0Q) (xiizﬂ (ApiAp)) expi{£Q - (r, —ro) FAw (L, —1,)}d* (¥, — ro)d(Z, —1,),
(10.11¢)

where (Ap;Ap;) is a dyadic tensor with elements, for example, Ap,Apy, for which
the time average over fluctuations should be performed with respect to the time-
scale of measurement.

While Brillouin scatterings are always found in crystals, we are interested in soft
modes that are signified by temperature-dependent frequencies and their fluctua-
tions. Therefore, the experimental task is to find the direction of a sound wave Q
where Avg is temperature dependent. On the other hand, the critical fluctuations
exhibited by Brillouin intensities /5 (K, Q) are difficult to isolate from the Ray-
leigh line, if Avg is too close to zero.

For a typical dielectric crystal, if assuming n~ 1.5, v~ 2 x 10°ms~!, and
A = 514.5 nm, the Brillouin shift can be estimated to be of the order of Avg ~ 6%
10°Hz = 0.2cm™'. A Fabry-Pérot interferometer as sketched in Fig. 10.6 is
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Fig. 10.6 Fabry-Pérot interferometer.

commonly used for analyzing Brillouin spectra, where a device of parallel semi-
transparent planes with a narrow gap d enhances interference after multiple reflec-
tions. Denoting the index of refraction of air by n, we can write the interference
condition for an incident angle s as

2ndcosy = mi  (m : integers).

In this device, the wavelength A can be scanned by varying the index n with
controlled air pressure.

Normally, iy = 0° is chosen for normal incidence for such an interferometer, in
which case 1/4 = m/2d. Assuming that a wave of 1 — A/ gives positive interfer-
ence at m + 1, we have 1 /(1 — Ad) = (m + 1)/2d; hence, the resolvable frequency
range of spectra is determined by

1 1 1

I—AL . 2d

This is called the free spectral range (FSR) of the interferometer.

Light scattering experiments are generally performed with a fixed geometry of
wave vectors as shown in Fig. 10.5b, for which the Brillouin intensities can be
evaluated with (10.11c) averaged with respect to 7 —f, over the timescale of
observation. For the scattering geometry where K, = G, where G represents the
unique axis of modulation, (10.11c) gives rise to intensity anomalies similar to
(10.9) for neutron inelastic scatterings. For such light scatterings, the equation of
motion can be written for induced dipole displacements as

mii; + yi; + 0*u;) = eE, exp(—itAw),

where e and m are the charge and mass of the dipole moment Ap; = eu;. The steady-
state solution is derived as
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Ap = 6_2 Ey = (a(/ F 10{//)E
" om —Aw? + 0? FiyAow P

where

e’ey/m
—Aw? + 0 FiyAw

! S0
o Fio; =

are complex polarizabilities due to E,. Therefore, (10.11c) can be expressed as

2

ATL(K -+ k) oc 72 {(aff2) (cos ), + (e (sin ).},

where ¢ = k-r — Aw -t is the fluctuating phase in the range 0 < ¢ < 2n. We
already discussed in Chap. 6 such anomalies.

Figure 10.7a, b shows a typical result of Brillouin spectra that were obtained
from KDP crystals [25, 26]. The frequency shifts of Brillouin lines in Fig. 10.7a
are different, depending on polarized components of scattered light, while exhibit-
ing clearly temperature dependences as shown in Fig. 10.7b. The temperature-
dependent frequency shift Avg represents clearly soft modes of £+ k and F Aw,
while sinusoidal fluctuations turn theoretically to elliptical ones with increasing E2.
However, small Brillouin shifts near the critical temperature are masked by the
intense Rayleigh line near the center, making the detail unknown. Line shapes of
Brillouin lines are theoretically asymmetrical, appearing however as practically
symmetrical in observed spectra.
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Fig. 10.7 (a) Examples of Brillouin spectra from KDP at room temperature. Observed in v...v
and h. . .h directions. (b) Soft-mode frequency versus temperature (from [26]).



10.3 Light Scattering Experiments 155

10.3.2 Raman Scatterings

Light scatterings in crystals also observed from constituent molecules that are
also vibrating independently from the lattice. However, such a scattered light
from constituents themselves shows a frequency shift arising from their interactions
with the lattice, as first discovered by Raman. Such a frequency shift can also be
analyzed for the lattice properties; this is known as the Raman scattering.

Following Placzek [2], assuming the lattice vibrations are characterized by
a single frequency w, Raman scatterings of a polarized monochromatic light
are sketched in this section. For a constituent molecule, we consider wave
equations

He, = eop, and  Hepy = &1,
for the ground and excited energies ¢, and ¢;, respectively. For such a molecule
embedded in a lattice, the net wave function can be written as ¢,y and ¢,y in
adiabatic approximation, where y represents the wave function of vibrating lattice
specified by the phonon number 7.

Linearly polarized light can be decomposed into two circularly polarized com-
ponents in opposite directions, namely

1 1
EcosQr = §E+ expiQr + EE, exp(—iQr).

Therefore, the Schrodinger equation for the perturbed system can be written as

1 . 1 . . oY
{H 5P E. expiQr — §p~E_ exp(—lﬁt)}‘{’ = 1h§,

where p is a dipole moment induced in the molecule. The wave function represent-
ing the ground state perturbed by E can be written as

: h
Yo = {Y, + Vo expiQr +y,_exp(—iQs)} exp{—itw}_

h
Hence, in the first-order approximation, we have
{H — (eo + nho £ hQ) Wy =p-Es,,

which relate the unperturbed ground state , and polarized ground states i/, . We
therefore write

Vo= ¥oxo and Y, = <p0(6'+x+ + C—Xf) +coly,
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where

(£lpl0) - E-
h(to+Q) "

4 =
The dipole moment in the ground state can then be expressed with components
pi(t) = (0lpi[0) + Z {04 (Q)E; exp iQt + o;(—Q)E_;exp(—iQ)},
J

where

P+ CHpI0) | (O (1pil0) , ©Olpil=)(=lpl0) | (Olp=)(=Ipil0)

%(€) = hw+Q) hw—Q) h(—w+Q) h(—0—Q)

constitute the polarizability tensor with respect to i,j = x,y in the plane of E . For
this tensor, we can verify the relations o;; = “z*, and oy; = oc_;‘i, indicating that (oc,;,') isa
real and hermitic tensor.

We can write similar expressions for the excited molecular state, that is,

: h
Wi = {Y, expiQr +,_exp(—iQs)} exp(—ithnw>
where
_ (£[pl0) - E+
Vie = :
(o + Q)

Using this ¥, the induced transition probability for emission processes can be
calculated with the matrix elements

" 1810t
(WolplY )= exp ho

J{6'§<l#3|pll//1> + WP + TPl ) by

) et (Olp*|£){(£[p|0) . €l

_ o Ol 1=){£Ipl0) Qe

ColbolPlV i exp ==+ o) expi(2:+ )
Ol [ ) (£ pl0) 1o
(Epl0) a4
(o — Q) expi( i)

where ¢, = & — &,. The first term on the right-hand side is independent of the
phonon energy %m, whereas the second and third terms indicate Raman emission
processes at Q = w1, = w that are signified by An = 1. The emission spectrum
consists therefore of two satellite lines, as illustrated by Fig. 10.8a, traditionally
called Stokes and anti-Stokes lines for plus and minus phonon, respectively. Since
the phonon frequency o is represented by frequency shifts of Raman satellites,
it should exhibit softening at temperatures close to T.. Figure 10.8b shows an
example of Raman results of soft modes. Masked by Rayleigh radiation, the critical
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anomalies are not resolved in Raman studies, which is a common difficulty in all
light scattering experiments.

It should be noted, however, that the Raman satellites do not always occur, since
their probabilities depend on the polarizability tensor. For example, if p is a perma-
nent dipole and not directly associated with lattice strains, Raman emission is
restricted to the selection An =0, and no satellites. In general, the so-called
Raman activity must be examined exactly prior to the experimental work.

10.4 Magnetic Resonance

The magnetic resonance technique utilizes either nuclear spins or paramagnetic
ions, probing local changes in a crystal undergoing a structural transition. Nor-
mally, naturally abundant isotopic spins can be used as nuclear probes; in contrast,
paramagnetic probes need to be implanted as impurities in normal crystals. In such
chemically doped crystals, we have to be careful if the physical properties are not
much modified. Nevertheless, if the process remains close to practically unchanged
from undoped crystals, impurity ions provides very significant information sensi-
tive to the transition mechanism. On the other hand, nuclear probes can be used with
no such worry about structural modification; but in practice, usable isotopes may
not be abundant in nature.

10.4.1 Principles of Magnetic Resonance and Relaxation

Although well known in molecular beam experiments, the equation of motion of
magnetic moments in condensed matter was established by Bloch [27] for nuclear
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spins, which is applicable to paramagnetic moments as well. The magnetic
moments are normally independent of the hosting lattice; however, their energy
transfer to the lattice is described as a relaxation process.

Microscopically, the elemental magnetic moment p is in Larmor precession
in an applied uniform magnet field B,, || z at a constant frequency @y, = yB,, where
y is the gyromagnetic ratio, as shown in Fig. 10.9a. Its z-component . is kept
constant while in precession around the z-direction; the perpendicular component
1, is driven by an oscillating magnetic field B; that is applied perpendicular to B,,.
The linearly oscillating field B; is composed of two circularly rotating compo-
nents as

B x cos wt = = (expiwt + exp(—iwt)),

N —

hence exerting a torque — u,;B; on p by the circular field in the first term, if
® = oL, to increase the angle 0 of precession. This phenomenon is the magnetic
resonance. Considering such p in a crystal, the motion of macroscopic magnetiza-
tion M = > p should be discussed, for which Bloch wrote the equations for M,
and M, separately as

crystal
holder

) coupling
N, iris
i i
—_—— ‘{BBU 'I‘L(I.t
hm 1 i ¢ [ \ sink
- cavity resonator
N

Fig. 10.9 (a) Larmor precession. (b) Magnetic resonance in thermal environment. (¢) A LC
resonator for magnetic resonance at radio frequencies. (d) A microwave resonator for a paramag-
netic resonance experiment.
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dm, M, — M, dM | M,
—=-————""and =——.
dr T, dr T>

(10.12)

The first equation signifies a relaxation to thermal equilibrium with the lattice, and
T, is called the spin-lattice relaxation time. The second one describes that the
synchronization of microscopic y; becomes in phase to exhibit the net precession
of M, =) u,; the phasing time is indicated by T». Bloch considered that spin-spin
interactions of magnitude AB among microscopic yu, are responsible for diverse
precessions of u, becoming in phase after T, that is called the spin-spin relaxation
time. For random precessions of u in the presence of AB, it is necessary to meet the
condition

1
L —JAB < 9B, (10.13)
T,

Equation (10.13) is referred to as the condition for slow passage.
In these two magnetic fields B, and B, the Bloch equations are written as

M M
4 yBoMy + - —iyB1 M, exp(Fimt),
dr & (10.14)
M, M.—M, i , _ :
5 + —7 = EyBO{M+ exp(—iwt) + M_ exp(iwt)}.
i

In (10.14) known also as the Bloch equations, M 1 are the transverse components of
M synchronized with the rotating fields B exp(Fiw?).

A steady-state solution under the slow passage condition is given by
M, = constant; hence from the first equation, we obtain

yB1 M. exp(Fiwt)
+ = . :
Fo + B0 + (i/T2)

Using this result into (10.12), we can derive

z

M. 1+ (o-— wL)’T2 and M.  {(w— op)T, +i}yB; exp(Fiwr)
M, 1+ (w - a)]_)2 + 92T T, M, 1+ ((1) - wL)2T% + VzB%Tsz '
If (yB1Ty Tz)2 < 1, from the first relation we have M, ~ M,, for which the angle 6
can be expressed as

My vB1 T,

~

tan 0 = —_—————— .
Mo 1 —+ (CU — (L)L)ZT%

Defining the high-frequency susceptibility by My = y(w)B; exp(Fiwt), and
writing M, = y,B,, we obtain the susceptibility in complex form
z(w) = y'(w) — iy"(w), where the real and imaginary parts are
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(@) oL(® — o)
o (0 — o) + dw? + 2B3T 0w

and

() _ OLO® (10.15)
o (0 — op)? + 00? + 2B*T 100 .

Here, we have set 0w = 1/T, for convenience. Magnetic resonance specified by
® = oy, can be detected from either y’(wy) or y”(wy); the former shows frequency
dispersion in the vicinity of wy, whereas the latter is related to the loss of high-
frequency energy, as illustrated by the curves in Fig. 9.2. These expressions in
(10.15) are normally called dispersion and absorption of magnetic resonance,
which can be measured as changes in resonant circuits when scanning the oscillator
frequency w or applied magnetic field B, across the resonance condition wp, = yB,.
Nevertheless, in practice, most experiments are using the field-scan method at a
fixed oscillator frequency .

The paramagnetic moment . is associated with the angular momentum of
electrons, that is, p = yJ = yA(L + §), where L and S are total orbital and spin
angular momenta, respectively. The energy levels in a field B, are given by
&m = —yhJ,,Bo, where J,, =J,J —1,...,—J, for which the selection rule is
AJpum—1 = £1. Hence, the magnetic resonance takes place when the radiation
quantum /o is equal to the energy gap between adjacent levels, that is,

ho = &y — &1 = hyBoAJyyym—1 = IyB, and o = yB,.

The latter is exactly the same as the Larmor frequency wy. Figure 10.9b shows the
quantum view of magnetic resonance. For an electron, the Larmor frequency is
expressed as w, = gfiB,, where § = y/2/ and g are Bohr’s magneton and Landé’s
factor, respectively; g = 2 for an electron in particular.

In quantum theory, the magnetic resonance can be described as absorption and
emission of a photon 7Ziw with probabilities

2

W = (e — D F(),
2h

where f(w) = 1/T is a shape function normalized as [f(w)dw = 1. Under prac-
tical experimental conditions where  is a radio or microwave frequency, induced
transitions are predominant and the spontaneous emission is negligible. Further,
for these magnetic moments in a crystal at a normal temperature T, the population
N,, at an energy level ¢, is determined by the Boltzmann statistics, that is,
Ny < exp(—én/ksT). Therefore, at resonance w = ., the energy transfer rate to
the magnetic system can be written as

ho
Win,m—1 (h(UL)(Nm - Nm—l) = Wmm—1 (th)Nm (1 — exXp <_ k;) >
B

hor, nw? B2
N,, 222

ol N g lem = DIf (o).

~ Winm—1 (th)Nm
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Fig. 10.10 A microwave bridge spectrometer for a paramagnetic resonance.

This should be equivalent to the macroscopic energy loss %wLx”(wL)B% in a
resonator, and therefore we can write

w
7' (1) = N {mlu |m = 1)f (1),
ksT

indicating that magnetic resonance intensity is appreciable at low temperatures.

The magnetic resonance signified by a complex susceptibility can be measured
from a sample crystal placed in an inductor L = y(w)L,, where L, is the inductance
of the empty coil, producing a field B; by an oscillating current on L,. With a
conventional laboratory magnet of B, ~ 10* gauss, the Larmor frequency . is of
the order of 1-10 MHz for nuclear resonance, whereas it is a microwave frequency
of 9-35 GHz for paramagnetic resonance. Accordingly, for these measurements,
we use a LC resonator or a cavity resonator, as illustrated by Fig. 10.9c and d,
respectively, in which sample crystals are placed at a location of B; in a maximum
strength. Such a loaded inductor combined with a capacitor C for a radio wave
measurement, and a resonant cavity for microwaves, can be expressed by an
impedance Z, that is,

1 1
Z=R+ioL+ —=R+wy'L,+i| oL, —— |,
ioC wC

where R is the resistance in the resonator. Figure 10.10 shows a block diagram of a
microwave bridge, which is basically an impedance bridge, commonly used for
paramagnetic resonance experiments. In balancing such a bridge, the real and
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imaginary parts of Z can be measured independently. Although these parts are
related mathematically, it is convenient in practice for y'(w) and y”(w) to be
measured separately.

10.4.2 The Spin Hamiltonian

Although a magnetic impurity ion in a nonmagnetic crystal is primarily indepen-
dent of the lattice, its electronic density is deformed by the spin-orbit coupling that
can then modify the local symmetry. The impurity site is considered as signified by
a static potential, called crystalline potential, representing such modified local
symmetry. We postulate that such a potential can be orthorhombic with respect to
impurity center, and expressed by the coordinates x, y, and z in a quadratic form

V(x,y,z) = Ax® + By* + CZ2. (10.16)

Here, for these coefficients, we have the relation A + B 4+ C = 0, because such a
static potential should satisfy the Laplace equation V>V = 0. Further, such a local
symmetry axes are generally not the same as the symmetry axes of the lattice, since
the unit cell contains usually even numbers of equivalent constituent ions. In this
case, the coordinates x, y, z and the symmetry axes a, b, ¢ of a crystal are related by a
coordinate transformation, which can be determined experimentally.

Most paramagnetic impurities for typical probing are ions in the groups of
transition elements. Considering ions of the iron groups, electrons are characterized
by their net orbital and spin angular momenta, L and S, which are coupled as AL - S,
where the spin-orbit coupling constant / is of the order of 300 cm™'. On the other
hand, the crystalline field energy is typically of the order of thousands cm™'.
Therefore, in the first approximation, we can consider that L is quantized in
precession around the crystalline field, while the spin S is left as free from the
lattice, which is usually described as orbital quenching. In this approximation, the
spin-orbit coupling energy can be expressed as the first-order perturbation

EI(}S) = ;“(LXSX +L\S) + LzSz)a (1017)

assuming /A as constant. The second-order perturbation energy can be calculated as

i . .
ER = =SS (J lﬁoLil/Jde> (J x//sszpOdv),
ij v v

which is determined by nonvanishing off-diagonal elements of L;L; between states
with an energy gap Ae. Hence, this can be expressed in a convenient form as

EY = SiD;S; = (SIDIS), (10.18)

i
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where D is a tensor

D)~ (j sz,-w,;dv) (j w:ijodv)

that is called the fine-structure tensor, for which we can verify the relation

trace D = ZDii =0 or Dy+Dy,+D,=0. (10.19)

The tensor D represents the ionic charge cloud ellipsoidally deformed in
the crystalline field, as illustrated in Fig. 10.11a. In this case, the spin S modified
by the spin-orbit coupling interacts with the crystalline potential as describe by
(10.18).

In an applied magnetic field B,,, the spin can interact with B, as expressed by the
Zeeman energy Hz = — (L + 2S) - B,, where the orbital angular momentum L is
quenched by the crystalline field; therefore, H; must be expressed to the second-
order accuracy. In the first-order approximation, H is determined by the effective
magnetic moment of S only; E(Zl) = —2p8 - B, where g, = 2. Assuming that B, || z,
the second-order energy is expressed as E(Z2> = (27./A¢)S.B,, so that the Zeeman
energy determined by E(Zl) + Eg) is given by

22
E,=—g.fS.B, where g,= 2(1 + Ag)

(@) (b)

Fig. 10.11 (a) A symmetric distortion of a quadratic tensor of zero trace. Here, it is shown in two
dimension. (b) The magnetic hyperfine field B, is shown at the position of a nuclear spin L, in
precession around the net field B. + B,.
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If assuming B, || x, or y, by a similar calculation we can derive different g,
expressed by

E»"vy = _gx,yﬁsx.yBo where &=8& = 2(1 — é)

Here, we considered for simplicity that the crystalline potential is uniaxial along the
z-direction. These g-factors depend on the direction of applied field, so that the
Zeeman energy can generally be expressed as a tensor product by defining a tensor
quantity g = (g;;), that is,

Hz = —B(S|g|Bo)- (10.20a)

For experimental convenience, we usually specify the applied field as B, = B,n
with the unit vector malong the direction. It is therefore convenient to express
(10.20a) as

H; = —g.fS-B, where g> = (n|g*|n). (10.20b)

In paramagnetic resonance, we consider the Hamiltonian consisting of (10.18)
and (10.20b), that is,

H = —g.BS - B, + (S|D|S), (10.21)

which is called the spin Hamiltonian.

For experimental convenience, the spin is considered as quantized with respect
to the applied field B,, and so we express S, = M7, where the quantum number M
are £ half-integers. From (10.20a) and (10.20b), we have g,S = (S|g; hence, the
second term in (10.21) can be modified as (S|gDg'|S)/g>. However, since g and D
are coaxial tensors, the tensor D' = gDg' /g2 is usually written as D, replacing what
was originally defined as the fine-structure tensor. Accordingly, (10.21) is written
for S quantized with B, as

H= _gnﬂSnBo + <n|D|n>Si

The quantities g2 = (n|g*|n) and (n|D|n)S?> can be determined from magnetic
resonance spectra recorded for all directions of B,, which can be numerically
diagonalized for the principal axes x, y, and z.

10.4.3 Hpyperfine Interactions

In paramagnetic resonance spectra, the interaction between the paramagnetic
moment u. and nuclear magnetic moment u, located within the orbital yields
often significant structural information. As illustrated in Fig. 10.11b, such an
interaction, known as the hyperfine interaction, can be a classical dipole-dipole
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interaction, but quantum theoretically contributed by the charge density at
the position of u, that is called a contact interaction. The hyperfine interaction is
thus characterized by their orientation and expressed as (. |A|pm, ), but trace A # 0
because of the contact contribution. Writing (u.| = (S|g and (u,| = y(I|, where
I is the nuclear spin, the hyperfine interaction can be expressed as

Hur = By(S|gAI). (10.22)

As S is quantized along B,, (10.22) can be expressed as
Eyi = —7B. -1,

where B, = M/ <n|gAATng |r) is the effective magnetic field due to g, as shown

in Fig. 10.11b; the nuclear moment yI can be considered to be in precession around
B., if B > B,. In this case, the first-order hyperfine energy is given by

E\) = —g,BK,Mm' where ¢>K> = (n|gAA'g'|n). (10.23)
In fact, the quantity K, defined here is in energy unit, while in magnetic resonance
practice more convenient to express it in magnetic field unit. In the field unit, we
note that the hyperfine energy can simply be written as Egg = —K,Mn?. In any
case, for practical convenience, we may define the hyperfine tensor K = gA/g,, so
that (10.22) is expressed as Hpr = (S|K|I). Further noted is that the quadratic form
of K? can be diagonalized, but the principal axes do not coincide with those for the
crystalline potential.

10.4.4 Magnetic Resonance in Modulated Crystals

Paramagnetic resonance spectra of transition ions are generally complicated to
analyze, due to the fact that the applied magnetic field is not sufficiently strong
enough to avoid complexity due to forbidden transitions. Nevertheless, the transi-
tion anomalies can be detected in anomalous g-factors, fine and hyperfine structures
in selected directions of B,, although complete analysis is not always possible.

We assume that a probe spin S can be modulated in a mesoscopic phase by the
order variable g(¢) in such a way that

S'=a-S where a=1+ (cle. (10.24)

Here 1 and e are the tensors for identity and strains in the crystal; the latter deforms
local symmetry, restricted by trace e = 0. The spin Hamiltonian can therefore be
modified as

H' = —P(S'Ig|Bo) + (S'|DIS") + (S'IK|I).
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Using (10.24), this can be expressed as
H =H+Hi,
where
H = —p(S|g|Bo) + (SIDIS) + (SIK|I)
and
H, = —af(S|e'g|B,) + a(S|e'D + De|S) + *(S|e'De|S) + a(S|e'K|I). (10.25)

These terms in (10.25) are basic formula for anomalies in paramagnetic spectra in
modulated phases.

In practice, we analyze such anomalies in terms of quantum numbers M and n’
for § and I. The Zeeman and hyperfine anomalies expressed by the first and last
terms are given by — g,SMB, and K,Mm/', respectively, where the spin is linearly
modulated by ¢ at a binary transition, hence exhibiting symmetrical and antisym-
metrical fluctuations. On the other hand, the fine-structure term of D is quadratic
with respect to oM, being characterized by ¢ and ¢°.

For the hyperfine term in (10.25), we obtain the expression

K”? = (n|a'K'Ka|n) = (n|K*|n) + o(n|e'K*> + K’e|n) + o> (n|e'Ke|n);
therefore for a binary splitting characterized by =+ o, we can write
K (+)? —K\(=)* = 20(n|e'K> + Ke|n).

The hyperfine splitting can then be expressed as

20
AK, = K,(+) = K,(=) = 2 (nle'K* + K’eln),

where K, = 4(K/,(+) + K},(—)), signifying the anomaly as proportional to ¢, simi-

lar to the g,, anomaly.
On the other hand, the fine-structure anomaly derived from (10.25) is

Hip = 6(S,|e'D + DelS,) + a*(S,|e'De|S,),
yielding a modulated energy
AE(FI) = (a,o + b,c*)M?,
where

a, = (nle'D 4 De|n) and b, = (n|e'De|n).
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Hence, the magnetic resonance condition for the selection rules AM = +1 is
given by

haw = g,pB, + (Dn + AD,I)(ZM + 1),
where
AD, = a,o + b,d”. (10.27a)

It is noted that a binary structural change is signified by a mirror plane char-
acterized by ¢ — =£o. Therefore, the critical region is signified by symmetric and
antisymmetric fluctuations between + a,0 + b,0% and — a,c + b,0?, so that the
binary fluctuations are given specially by

AD,(A) = 2a,6» and AD,(P) = 2a,op (10.27b)

in all directions of B,. For fluctuations in amplitude and phase modes, we have
ga = 0,08 ¢ and op = g, sin ¢. In Fig. 10.12, AD,(P) in (10.27b) and AD, in
(10.27a) are sketched according to magnetic resonance practice. These drawings
are made on derivatives of distributed intensities with respect to the microwave
frequency v, representing Av = v; cos ¢ and Av = v| cos ¢ + vocos’¢. It is only a
matter of technical convenience that magnetic resonance spectra are displayed as
the first derivative.

(b)

—V12/2\r‘2

Nl 1
¢ v:

Fig. 10.12 Magnetic resonance anomalies displayed by first derivatives of the absorption y”(B,).
(a) Line shape given by (10.27b). (b) Line shape given by (10.27a).
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10.4.5 Examples of Transition Anomalies

10.4.5.1 Mn>" Spectra in TSCC

The ferroelectric phase transition in TSCC crystals at T, = 130K was thoroughly
investigated with paramagnetic impurities, Mn>", Cr’ ", Fe*™, VO*T, etc. Although
trivalent impurities show complex spectra as associated with unavoidable
charge defects, there should be no problem with divalent ions. Mn?>" ions are parti-
cularly useful, among others, because of the simple spectral analysis in TSCC. In
Fig. 10.13a shown is a Mn>" spectrum when B, applied in the hc-plane, where
two lattice sites in a unit cell give identical spectra at temperatures above T,. The
g-tensor and the hyperfine tensor with a *>Mn nucleus (/ = 5/2) were found as
isotropic, while the spectra in all directions of B, were dominated by the fine
structure. In Fig. 10.14a, the observed D plotted in the solid curves are for
T > T., where these lines split into two broken lines at temperatures T < T,

(@ |
Mn /TSCC o o e NS VER V2

—_—s

W’W i WLH%F

(-5/2,-3/2) I | ’ , (/2,52
32y L1 1 1] 8o LY 11 1] /232
(b) .
VO'/BCCD
T Ll
293K \ ~I~Y .J\.'Jr
) l
; i
© 92GH: ‘T 35 GHz
JWP e 3
3 akG 11 | 12 14%G

Fig. 10.13 (a) A representative resonance spectrum of Mn?* ions in TSCC (from [30]). (b)
Representative vO**+ spectra in BCCD. Spectra observed at different microwave frequencies are
compared at temperatures above and below 7. = 164 K (from [31]).
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Fig. 10.14 (a) Angular dependence of the fine-structure splitting D, and anomaly AD, in Mn?>"
spectra in TSCC. (b) Representative change of a Mn?* hyperfine line with temperature. The
temperature was lowered from 7. downward as 1 -2 —3 — ... — 7. No anomaly was
observed 7 (from [30]).

showing anomalous line shape with decreasing temperature. Figure 10.14b shows
changing line shapes for the transition AM = 1 and Am’ = 0 at 9.2 and 35 GHz with
decreasing temperature. It is noted that the shape and splitting are explained by
(10.27b) with different timescales in these resonance experiments. Also noticeable is
that the central line A is more temperature dependent than the stable domain lines P.

10.4.5.2 Mn*" Spectra in BCCD

BCCD crystals exhibit a sequential phase changes, as in Fig. 10.15¢, showing
commensurate and incommensurate phases that are indicated by C and I, where
soft modes were found at thresholds in some of these transitions. Mn”>" impurities
substituted for Ca®" ions exhibited spectra distinguishing these phases, however
too complex for complete analysis. Nevertheless, Mn*" spectra are characterized
by larger fine-structure splitting than in TSCC. Due to the large crystalline poten-
tial, the spectra exhibit both allowed and forbidden lines in comparable B, parallel
to the principal axes x, y, and z, where only allowed transitions are observed. In
some other directions n, transition anomalies were revealed in resonance lines for
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M = +£5/2, as shown in Fig. 10.15b. Here six components of >>Mn hyperfine lines
are in anomalous shape as illustrated by Fig. 10.12b, which is characterized by
fluctuations of a,o + b,0?, indicating that such resonance lines do not represent
domain splitting.

10.4.5.3 VO>" Spectra in BCCD

VO®" ions substituted for Ca*" in a BCCD crystal show simple spectra as in
Fig. 10.13b, which are dominated by the hyperfine structure of >'V nucleus (/ =
7/2). Eight hyperfine component lines observed at 9.2 and 35 GHz are in different
shapes, which are similar but with different separations, as can be explained by
(10.26). The g,-factor and hyperfine splitting K,, are both anisotropic, as shown
in Fig. 10.16a, and the anomalies AK,, are of type (10.26) in all directions of B,,
m’ in best resolution. Observed temperature dependence of a hyperfine line is
shown in Fig. 10.16b.
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Chapter 11
Electrons in Metals

Identical constituent molecules in a crystal are attractively correlated in the lattice
structure. In a binary system below a critical temperature T, such correlations can
be expressed as J;;o; - o, where J;; is undetermined by the first principle. On the
other hand, in Chap. 9, we discussed that such correlations in a whole crystal can be
represented by a soliton potential arising from the structure deformed by a collec-
tive mode of 7. The pseudospin o; or its Fourier transform o7 can be regarded as a
classical field, consisting of Fermion particles if quantized. In metallic crystals,
electrons are quantum mechanically correlated as described by Pauli’s principle;
such electron correlations are related with their spin directions, which are notably
similar to o7; o, for classical molecular correlations. In this context, we may expect
a similar relation between binary and electron systems, leading to analogous phase
transitions.

Superconductivity was a peculiar phenomenon when discovered by Kamerlingh
Onnes in 1911, but is now known as arising from a phase transition between normal
and superconducting states at a very low temperature. This transition is essentially
due to interplay between lattice excitations and electron correlations, which are
fundamental in a multi-electron system in a crystal, as described by the quantum
field theory. In this chapter, the field theory is outlined as a prerequisite for super-
conducting transitions in metals, where quantum correlations among electrons play
an essential role, in addition to electron-phonon condensates in crystalline metals.

11.1 Phonon Statistics 2

In Chap. 2, we discussed phonons as particles characterized by the energy 7wy
and momentum 7%k, when the lattice vibration field is quantized. The quantized
vibrations can thus be equivalent to a large number of phonons that behave
like independent particles. In classical language, such particles are described as
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independent and collision-free, whereas in the quantum field theory we consider
many correlated phonons that are subjected to the uncertainty principle.

We discussed a normal mode of lattice vibrations, which are indexed by the
wave vector k for the Hamiltonian H;, and obtained (2.14) to define operators b,
and bl. The total Hamiltonian and total number of phonons are then expressed by

1
szk:m:zk:hwk@,thE) and N:Zk:b,tbk, (11.1)

respectively. Thermodynamic properties of a phonon gas can therefore be deter-
mined by normal modes with energies ¢, = nficw;, composed of n;, = b,chk phonons
at a given temperature 7, moving freely in all directions of k in this approximation.
Noted that w; are characteristic frequencies of the lattice, for which #; can take an
arbitrary value, while the total N = ", 1s left undetermined.

As defined in Sect. 2.2, the operators bk and b, signify the energy ¢, plus and
minus one phonon energy 7wy, being referred to as the creation and annihilation
operators, respectively. From one of the commutatlon relations [by, b ] = Oy, We
notice that these operators commute as byb = bk, by at different k* and £, signifying
that the lattice is invariant by exchanging phonons /i, and hiwyp between the states
k and k’. In terms of energy and momentum, two phonons (%wy, fik) and (ficwy , Fik')
are not identifiable in the crystal space, while each phonon is characterized by the
rest energy fiw, at |k| = 0. Consisting of a large number of identical particles of
haw,, the vibration field can be regarded as a gas described by the Bose-Einstein
statistics, as already discussed in Sect. 2.7.

For a small |k| compared with reciprocal lattice spacing, the lattice is considered
as if a continuous medium. In the field theory, classical displacements g; and the
conjugate momenta p; can be replaced by continuous variables, ¢(r, f) and p(r, ¢),
propagating along an arbitrary direction. Expressed by Fourier series in one dimen-
sion, these variables can be a function of the phase of propagation, that is,
¢ = k - r — wyt, where r and ¢ are arbitrary position and time in a crystal, respec-
tively. Correspondingly, the quantized field can be expressed by the field v/ (r, t) and
its conjugate momentum 7n(r,t) = p[Oy(r,t)/0t], where p is the effective mass
density. Normalizing to the volume € in the periodic structure, these field variables
can be expressed as

{bkexpl(k r—wkt)—i—bTexpl( k-r— o)},

n(r,t :—Z\/ {—brexpi(k - r—a)kt)—i-bTexpl( k-r— o)},
Ve 5

(11.2)
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where b,i = b_;. Imposing the relation

JQ Y(r,0)o(r —r')dQ = y(r',1)

for the field (r, ), we can show the following commutation relations for these field
variables, that is,

n(r, W (r' ) — (¥, O)n(r,t) = ?5(r -r),

l,b(r, l‘)l,b(r/, l) - lp(rlv t)lp(rv t) =0,
and
n(r,t)n(r',t) — n(r , t)n(r,t) = 0.

Writing the Hamiltonian density as H = (12/2p) + (1/2)(V /)?, where  is a
restoring factor per volume, we can show that (11.2) are solutions of the Heisenberg
equation — i[Oy (r,1)/0t] = Hy(r,t), as verified with the Lagrangian formalism.
Nevertheless, we shall not discuss the formal theory in this book; interested readers
are referred to a standard book, for example, Quantenfeldtheorie des Festkorpers by
Haken [33].

In thermodynamics of a phonon gas, we consider that energy levels nificy, . . .
are like excitation levels that are occupied by n, phonons at a given temperature 7.
Assuming the presence of correlations among unidentifiable phonons, we must
put a statistical weight 1" on the isothermal probability exp (f nhaoy [kp T) , where
A represents an adiabatic chance to add one phonon to this level [37]. If phonon-
phonon correlations exist, phonon numbers 7, can be changed as if driven by a
potential, which is expressed by a probability A. In fact, 4 is equivalent to the
chemical potential p, that is, 2 = exp(u/kgT), for an open thermodynamic system.
Using 4, the partition function of H; can be written as

nge
Z/l’kexp( nlk(z(;k) —Z{ie p<—lz%>} .
ni

ny

This is an infinite power series of a small quantity x = Aexp ( — hoy/ kBT) <1, so
that Z; can be expressed simply as 1/(1 — x) for ny = 0,1,2,...,00; hence, we
obtain Zy = 1/[1 — Aexp(hiw/kgT)]. The partition function for the whole crystal is
given by the product Z = [] Zx, with which the thermal average of the number of
phonons can be calculated as

anﬂnk exp( n;hw) _ i;; = % Zlnzk.
- k
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Therefore, we have (n) = >, (n), where

0 d X 1
(e oL ok T n(l -) 1—x Lexp (hoy/ksT) — 1

Using u instead of 4, the average number of phonons (n;) at the k-state is therefore
expressed by

1
~exp {(hay — p)/kgT} —1°
In the limit of T — (iwy — p)/kg =0, we have (n;) — oo, meaning that if
1 = &, almost all phonons are thermally at the first level ¢, = hwy; this is called

the Bose-Einstein condensation. Clearly, such a condensation can occur only at
very low temperatures; however if ¢ = 0, there is no phonon condensation.

(ne) (11.3)

11.2 Conduction Electrons in Metals

11.2.1 The Pauli Principle

Electrons are familiar particles in nature, known as basic constituents of matter. If
characterized by the mass and charge, the electron is a classical particle; however, it
should be treated as a quantum particle in a multielectron system, as signified by
their mutual correlations. Electrons in atomic orbital states are governed by Pauli’s
principle that permits for two electrons with antiparallel spins to occupy each state.
An electron is therefore characterized by an additional degree of freedom that is
expressed by intrinsic spin variables + 1/2. Two electrons coupled with antiparal-
lel spins are not distinguishable from each other, interacting with a force different
from the electrostatic Coulomb force. The spin interaction between +1/2 and —1/2
plays a significant additional role in a multielectron system. Of course, the Coulomb
interaction cannot be ignored between electrons; however, spin correlations are
essential in close distance particularly.

A state of two electrons can be expressed by the wave function V/(ry, 01572, 02),
where r; and r, are their positions, and ¢; and ¢, express spin directions of these
electrons. An operator P can be defined for exchanging these electrons 1 and 2 in
such a state of two electrons, that is,

Py(ri,01;12,02) = Y(rp, 02511, 01).

Applying P once again on both sides, the state should return to the original one,
therefore

P2Y(ry,01;12,02) = P Y(ra, 02511, 01) = Y(r1,01;12,02),
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from which we obtain
P2=1 or P==l. (11.4)

Therefore, the wave function is given by either symmetric or antisymmetric combi-
nation of wave functions in exchanging their positions, which can be expressed by
P = +1or P = —1, respectively; the operator P is called the parity. Since the parity
P and the Hamiltonian H are commutable, that is, [H,P] = 0, the eigenfunction
of two electrons is given by a linear combination of V(ry,o1;r2,02) and
V(ry,02;r1,01), that is,

%{wm,ol;rz,ag) + (ray02im1, 1))

Phonons and electrons are known as examples of particles in different categories
that are expressed by P = +1 and P = —1, respectively; the parity and spin are
therefore intrinsic properties of these particles. Phonons in crystals and electromag-
netic photons are both characterized by zero spins and P = +1, whereas electrons
and protons are particles of spin + % and P = —1. In general, elementary particles
have spins 1/2n, where n is either even or odd integers, corresponding to the parity
+1 or —1, respectively. In the theory of elementary particles, the parity and spin
are intrinsic properties of particles, although disregarded in the classical theory.
In the following, a large number of conduction electrons in metals are discussed,
which are nearly free but can be correlated significantly at very low temperatures.

Conduction electrons in normal metal are in nearly free motion, for which we
can apply the Sommerfeld’s model (1928). Considering, for simplicity, a metallic
crystal of cubic volume V = L* with periodic boundary conditions, one-particle
state of an electron is expressed by a plane wave

Vi =expik-r y(o) (11.5)

with energy eigenvalues &(k) = 7i*k* /2m, where k is the wave vector, and 7(o) is
the spin function. Due to the Pauli’s principle, each of these energy states specified
by k and ¢ can be occupied by two electrons with antiparallel spins; all energy
levels are filled with such pairs up to the level k = kg, called the Fermi level. If
there are odd number of electrons in crystals, only the top level ¢(kg) is occupied by
one electron with arbitrary spin, while all other levels &(k) for k < kg are filled with
two electrons each with antiparallel spins at T = 0 K. In any case, electrons near the
Fermi level &(kp) can be excited by an applied electric field E, causing electrical
conduction, while all others can stay intact at levels (k) below &(kg). In this model,
total number of states is determined by the spherical volume of radius kr in the
reciprocal space times two, that is, (47k/3) x 2. On the other hand, a small cube
of volume (27‘E/L)3 in the reciprocal space can be occupied by one state only.



180 11 Electrons in Metals

Denoting the total number of electron per volume by N, we have the relation

N =2 x 4nk2/3/(2n/L)*. On the other hand, letting L} =V the volume of a
crystal, p, = N/V is the number density of electrons; hence, the Fermi energy
can be expressed as

hZ
o = olke) = 5 (3n2p,)*>. (11.6)

11.2.2 The Coulomb Interaction

In the Sommerfeld model, Coulomb’s interactions among electrons are disregarded,
although justifiable only in approximate manner; besides, normal crystals are
electrically neutralized with ionic charges. The insignificance of Coulomb’s inter-
actions in a multielectron system was verified by Thomas and Fermi [34] in their
theory of the screening effect. Placing a charge -e at the origin of coordinates in a
metal, they have proved that there is no significant electrostatic effect due to other
charges. Considering the static potential energy V, = (1/4n¢,)(e?/r) and the
kinetic energy ¢(kg) of an electron is perturbed by V,, that is, e(kp) = e(kp) + Vo,
resulting in the effective density p' = (1/3727%)(2mV,, + p%)*/, where pp = Jikg is
the Fermi-level momentum. With this density p’, we can write the Poisson equation
V' = —(p' — p,)/¢0, Where ¢, is the dielectric constant of vacuum, whereas the
Coulomb potential V, should satisfy the Laplace equation V?V, =0. We can
calculate the density difference approximately as

; 3/2 3/2
p’—pz(z'”)g/2 Vot BE (Y
° 3m2nle, ® 2m 2m
3 3/2
pF VO 4mpF { (p VO ) }
— 1+ —1p4+—Voil+0 :
3n2h’e, { ( P/ 2m> } i’ B/2m

Assuming that V' = V{1 + O(V,/p%/2m)} for a small ratio V,/p%/2m = V,/eF,
the Poisson equation can be reduced to

1 d [,V
— — — | = —xV’
r2dr<r dr) K

where Kk = 4mpg/ nhe,. This equation gives a solution expressed by V' ~
exp(—xr?), implying that the charge —e at r = 0 is screened within an effective
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length k2. Such a screening length, depending on the value of k¥ > kg, is shorter
than the nearest-neighbor distance in a typical metal. Thus, in spite of the crude
assumption V, < &g, we can postulate that Coulomb’s interactions are screened and

hence ignored, supporting Sommerfeld’s free electron model.

11.2.3 The Lattice Potential

In a periodic crystal, conduction electrons cannot be free from the lattice potential
V(r) =V(r+mai + ma; + nza3),

where (n;,n,,n3) are integers along the symmetry axes. The Fourier transform of
V() can be expressed as

V(r)=> VgexpiG-r, (11.7a)
G

where G = haj + ka; + la; is a translation vector in the reciprocal lattice,
corresponding to the lattice translation (ay,a,,a3), as defined by (3.10).

In adiabatic approximation, the electronic motion is perturbed by the lattice
potential, resulting in a modulated wave function

Vi(r,o) = u(r)expik - r y(o), (11.7b)
where the amplitude u,(r) is a periodic function in the lattice. However, such a

function as called Bloch’s function is not uniquely determined, as seen from the
relation

Vio(r) = {w(r)expi(+G - r)} expi{(k ¥ G) - r}y(0), (11.7¢)

which is held at any lattice point r = R,, for any k satisfying the relation
kTG =k (11.8)
thereby, (11.7¢) is another Bloch’s function. Along the normal direction of a crystal
plane (h,k,l), (11.8) represents a Bragg diffraction of the plane wave expik - r by
such planes of + G, reflecting and interfering in phase for a constructive diffraction

pattern. Such diffraction is originated from elastic collisions of electrons and
lattice. Therefore, the Bloch wave in the lattice behaves like a free wave modified
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Fig. 11.1 Energy band structure of a Bloch electron in one-dimensional crystal.

by such elastic reflections at Brillouin zone boundaries. From (11.8), we note that
e(k F G) = ¢(k). Squaring (11.8), we have +2k-G + G*> =0, indicating that
diffractions of electron wave take place at k = 3|G|. Therefore, for the Bloch
wave, we can reduce the reciprocal space to the first zone determined by the lowest
value of % |G|, that is, the first Brillouin zone. Figure 11.1 shows schematically the
effect of a periodic lattice in one dimension.

In fact, at the zone boundaries, two waves exp i(i% - r) are no longer indepen-
dent, as the degenerate energy is split into (G /2) &V, forming a band structure
with forbidden energy gap 2V ,, as shown in the figure. In addition, the energy
band theory shows that the mass for a Bloch electron should be expressed by a
modified effective mass m* as given by

hZ
e(k) = Z%kik/ + constant.

ij

Electrons in a metal can be described basically as free particles, although modulated
by the periodic lattice, disregarding Coulomb’s interactions. Since the Bloch wave
is sinusoidal, electrons can interact significantly with sinusoidal lattice modes in
respect to their phase relation.
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11.3 Many-Electron System

Although described as nearly free particles, at very low temperature we should
consider spin-spin correlations among electrons play a significant role in metals, as
determined by the Pauli’s principle. Due to their correlations, thermal properties of
conduction electrons cannot be described by the Boltzmann statistics.

We consider a system of N electrons that are primarily independent free parti-
cles. The wave function ¥ of the system can be constructed by one-electron wave

function v, , expressed by (11.5) with energies &(k) = 22”'1‘2 , where m* is the
effective mass. Denoting electrons by 1,2,...,N, such a function ¥ can be con-

structed with a linear combination of products of W, , in the form of Slater’s
determinant, that is,

l/Jkl ,a(l) l//kz,ﬁ(z) lpkg,o'(3) tet lpkN,a(N)

l//kl ,0(2) !//k2,0(3) wk3,0(4) s l//kN,(r(N - 1)
T(1’2’7N) = l//kl,a(3) l//kg,a(4) lpk3.0(5) l//k,\/.,o(‘]\]_z) ;

Vo) VoM =1) sV =2) oo (1)

in order to satisfy Pauli’s principle.

In the presence of a perturbing lattice potential V(n), the eigenstate of one
electron is determined by Schrodinger equation:

h2
/
- %Awk’,a + Vi 5 = e(K').

In this approximation, W(1,2, ..., N) is not the eigenfunction of the whole system,
but a similar Slater’s determinant of the perturbed wave functions ¥, (1) can

represent the perturbed state of N electrons.
Electrons are indistinguishable particles, and hence each label in the wave

function ¥(1,2,...,N) should indicate the presence or absence of an electron in
each ome-electron state. In this sense, labels 1,2,... N can be replaced, for
example, by W(0, 1, ..., 1), etc., where 1, and Oy express the presence and

absence of an electron in these k-states, respectively.
Creation and annihilation operators a;[, and a; can be defined for electrons, to
express the following properties:

alWe o (00) = Y (1), (11.92)
al ,(1x) =0, (11.9b)
a ., (0) =0, (11.9¢)

and

ai o (1) = Wi, (0p). (11.9d)
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Among these, particularly (11.9b) manifests Pauli’s principle; namely, no more

than one particle can be in any state specified by k and ¢ It follows from (11.9b) and
(11.9¢) that

(@) = (@) = 0.

To exchange two electrons in the system, we can use two creation operators a,ﬁ and

a}:,, and write

afal {0, (00)W(02) -+ W o (00) -+ Y (O) -}
= Y1 (0)2(0) Yo (L) - o g (L) -+

Then, the antisymmetric nature for two electrons can be expressed as
alal P (..., 0., 0p,...) = —abaly(...,00,..., 0. ). (11.10)
Therefore, exchanging two creation operators is equivalent to exchanging ¥, , and

Y in the Slater’s determinant. It is noted that (11.9) and (11.10) are satisfied, if
these operators obey the commutation rules

[ak,fl;tzh = aka}; + a}t/ak = O s
(11.11)
la},a], =0, |ax,ap], =0.

As in the phonon case, the number operator in the state , , can be defined by
n = alay, (11.12)

so that the total number of electrons is expressed as No = ) _, nx. We can confirm
from the commutating relations in (11.11) that

e (0) = ajaw ,(0) = 0

and

e (1) = al{a (1)} = alr . (00) = vy, (1e),

indicating that eigenvalues of the number operator n; are 0 and 1, respectively.
The Hamiltonian for noninteracting electrons can be expressed as

H=> el = e(k)ala, (11.13)

k k
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where £k in the foregoing one-dimensional theory can be replaced by a vector £,
for which ¢(k) is the eigenvalue of one-electron Hamiltonian in three dimensions.
Despite the perturbation, (11.13) can also be used for the perturbed many-electron
system, if specified by eigenvalues ¢(k’), where k' is the perturbed wave vector.
We are thus allowed to use operators a,t, and ap for perturbed one-electron
states &(k').

The parity of electrons P = —1 is scalar and the correlation energy between
electrons at r; and r; can be described by a scalar potential V(r; — r;), representing
spatial correlations. Total correlations are expressed as

1
Himzigv(\ri—rjl). (11.14)

Such interaction energy is determined by matrix elements between one-electron
states in Slater’s determinants. For almost free electrons, Hj,; may have nonzero
matrix elements, if the potential V(|r; — r;|) is a periodic function associated with
lattice excitations. Assuming that

V(iri =) = > Voexp{—i@ - Iri —rl} or
+0

1
VQ:5J52d3\r,-—rj~|expiQ~|r,~—rj|7 (11.15)

such matrix elements can be written as

1
(ke K [Hin ' K) = 565 J J SrdnV(|r - r) expil(k — K) -1+ (K —K) -1}

Therefore, such Hj, as related to (10.15) can give rise to a secular perturbation, if
we have the relations

k-K¥=Q and K'-K"=-0Q (11.16)
or
k—kK=K"—K"
where + Q@ are phonon vectors. This implies that an electron emits a phonon #Q on
collision with the lattice, which is subsequently absorbed by the lattice, so that the

two-electron process (11.16) appears as if elastic scatterings. Hence, for this
process, the matrix element can be expressed as
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1 \ _
(k, Q| Hine[K", —Q) = 0 > Vol paral,_pai. (11.17)
k7k//7Q

In a static periodic lattice potential, we noticed that electrons can be scattered as
in the Bragg diffraction; however, such scatterings, in contrast, may occur dyna-
mically in a modulated lattice structure. As discussed later, Frohlich considered
phonon-electron interactions as described in the above argument.

11.4 Fermi-Dirac Statistics for Conduction Electrons

In a metallic crystal, energy levels &(k) of one conduction electron are practically
continuous, which are thermally accessible in thermodynamic environment. Obey-
ing the Pauli’s principle, such one-electron state i/ is either vacant or occupied by
one electron in specified spin state, that is, y(0) or y,(1) with thermal probabilities
1 or exp (—¢(k)/ksT), corresponding to excitation energy zero or ¢, respectively.
Considering correlations among these electrons, the latter should be modified by
multiplying the factor 4 as in the case of phonons; we can write the Gibbs sum

k
Zr =1 +iexp<—z(72).
B

For electrons, the energy ¢(k) can be occupied by only one electron in a specific spin
state, so that n;=1. Therefore, the thermodynamic probability for a one-particle
state ¢ to be occupied by one electron is given by

1

P(e, 1) =——.
exp(i;—‘;)+ 1

(11.18)

Electrons are particles obeying (11.8) at temperature 7, which is called the Fermi-
Dirac distribution.

Exercises 11

1. The Bose-Einstein distribution is determined by the probability for an energy
level ¢ = ne, to be occupied by n particles of energy &, = fiw, which is
expressed by

1

exp —%{;#) -1

PBE(87 I’l) =
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On the other hand, the Fermi-Dirac distribution is given by

1

(e=p)

Pep(e, 1) =—————.
ekaB—T+ 1

Show that these distributions become identical, if exp (;;’T” = 1, that is,

u—e
kgT

Pgg(e,n) =~ Prp(e, 1) =~ exp

This is the Gibbs factor in Boltzmann—Gibbs statistics. Discuss these results in
terms of the criterion for quantum and classical particles.

2. Show that a pressure of a Fermi electron gas in the ground state is given by

b 3} (N)

5 m\V

Find an expression for the entropy of a Fermi electron gas, assuming kg7 < <ég.



Chapter 12
Superconducting Phases

In 1911, Kamerlingh Onnes discovered superconducting mercury, which however
remained as puzzling for some time with no significant applications. It is now
recognized as a fundamental problem in the many-electron system superconducti-
vity occurs in many conductors below critical temperatures T, of phase transitions.
In this chapter, the superconducting phenomenon and related theories are summar-
ized, prior to discussing the Bardeen-Cooper-Schrieffer theory in Chap. 13.
The superconducting state is characterized not only by zero electrical resistance,
but also as perfect diamagnetism, making the thermodynamic description more
complex than structural phase transitions.

12.1 Superconducting States

12.1.1 Zero Electrical Resistance

The electric conduction in metals originates from drifting electrons as described
by the Ohm’s law. The energy loss of electrons can be attributed to inelastic
collisions between electrons and the lattice; the electrical resistance obeys normally
Matthiessen’s rule expressed by

R= Rideal + Rres-

Here, R;q4ea1 is due to scatterings by the lattice, whereas the residual resistance R is
caused by impurities and imperfections in the lattice. The resistance Rjg., exhibits
temperature dependence proportional to T° at temperatures below the Debye’s
temperature @p, whereas R, is virtually temperature independent. Figure 12.1a, b
compares a typical normal resistance of platinum with superconducting mercury.
The Matthiessen’s rule is clearly seen from Fig. 12.1a, while the electric resistance
of Hg shows an abrupt drop down to near zero at a specific temperature 7. This was
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Fig. 12.1 (a) Electrical resistance in normal metals. (b) Electrical resistance of superconducting
mercury.
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Fig. 12.2 H_ - T phase diagram of superconducting metals. (a) Observed results. (b) Idealized
phase diagram.

a peculiar phenomenon, judging from a normal conductivity shown in Fig. 12.1a.
The nearly zero resistance of Hg below T, implies that the corresponding current
becomes infinite, according to the Ohm’s law; the metal can thereby be character-
ized by infinite conductivity. In this case, the current in a superconducting coil
should be persistent, which was in fact demonstrated by Collins, who estimated that
the resistance is near zero, that is, Ryper < Rnormal X 10715,

Nevertheless, early attempts to obtain a high magnetic field using a supercon-
ducting solenoid were a failure. It was learned that the superconductivity was
destroyed by own magnetic field of the coil. It became clear experimentally that
at temperatures below T, there is a critical magnetic field H. to destroy super-
conductivity. The field H. was found to be a function of T that appeared to be
parabolic as shown in Fig. 12.2a. The lowest temperature in these measurements
was limited to about 1.7 K, the H, versus T relation was extended close to 0 K on
a parabolic curve
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2
H.=H, (1 —T—) (12.1)

Here H,, is the extrapolated value of H.. to 0 K, which is relatively weak as shown in
Fig. 12.2 for these superconducting metals. Inspired by such a H. — T curve,
Fig. 12.2b looks like a phase diagram between normal and superconducting states,
although the origin of a critical magnetic field is not immediately clear.

12.1.2 The Meissner Effect

Meissner and Ochsenfeld (1933) discovered the effect of a magnetic field applied to
a superconductor. If a conductor in near-ellipsoidal shape is cooled down below the
transition temperature in the presence of a magnetic field of sufficient strength, all
magnetic field lines are found to be all pushed outside, as illustrated by Fig. 12.3.
Such a magnetic effect, known as the Meissner’s effect, idealizes the superconduct-
ing state by zero flux density inside the conductor, that is,

B=0. (12.2)

For a magnetizable material, ellipsoidal shapes can be employed for simplicity, in
which case we can write B = uoH + M, where M is the magnetization; thereby, the
Meissner effect (12.2) can be expressed by the susceptibility y,,, = M/H = — i, in
MKS unit. In this context, the superconducting state can be referred to as perfect
diamagnetism. Figure 12.4a shows the magnetization curve for an idealized super-
conductor, where the magnetization rises as proportional to the applied field
strength, however diminishing suddenly to zero at the critical field H.. Thus, an
ideal superconductor is characterized by perfect diamagnetism in addition to
infinite conductivity, although their relation is unknown.

(a) (b)

- B =~ B _
szﬁ

[ narmal state ]

\

Fig. 12.3 The Meissner’s effect in an idealized superconducting sphere. (a) Normal state.
(b) Superconducting state.
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Fig. 12.4 Magnetization curves for Meissner’s effect in superconductors. (a) Type L. (b) Type II.

Using Ohm’s law, the superconducting current density can be expressed as
Jj=oE, where E is an applied electric field. Such an electric field E must, however,
be zero if ¢ = oo, in which case from the Maxwell’s equations, we obtain 0B/0t = 0,
implying that B must be constant of time. This suggests that the magnetic flux
density B penetrated into a conductor at temperatures above 7. should be frozen in
the superconducting state, when the temperature is lowered below T.. In contrast,
the Meissner effect characterizes a superconductor by B = 0, and moreover we
cannot determine the superconducting current j by the Maxwell theory. We must
therefore consider that Meissner’s effect is independent from the supercurrent j.

On the other hand, the magnetization M due to Meissner’s effect is distributed
generally in practical samples depending on its shape, and hence the critical field
cannot be uniform. Pure metals were studied with samples in long cylindrical shape
that are regarded as approximately ellipsoidal, where H. can take a well-defined
single value. Such an idealized superconductor as characterized by a magnetization
curve in Fig. 12.4a is referred to as Type I. However, there are some superconduc-
tors of alloy compounds, which are characterized by intrinsically distributed H.,
and called Type II. In Fig. 12.4 shown is a typical magnetization curve of a Type II
superconductor, which is signified by two critical fields H.; and H,, as indicated in
the figure. The region between H.; and H,, is generally called the vortex region.
Type II superconductors can be considered for important applications, if H, is
sufficiently high, for the superconductivity is extended to a vortex region in
relatively high magnetic fields.

12.1.3 Normal and Superconducting Phases in Equilibrium

We consider a superconducting state of a Type I metal specified by magnetization
M due to the Meissner effect. As inferred from Fig. 12.2b, the superconducting
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state can be in mixed normal and superconducting phases in equilibrium. In
contrast to the normal phase that is nonmagnetic, the superconducting phase is
characterized by a magnetization M that can be considered as induced by a
magnetic field H =—M/u,, so that the Meissner effect can be represented by an
external work —H-dM per unit superconducting volume. Therefore, under a
constant volume condition, the first law of thermodynamics can be written for
the superconducting phase as

dU =H -dM + TdS. (12.1)
Defining the Gibbs function as
GH, T)=U—TS — HM, (12.3)

the thermal equilibrium can be specified by dG < 0 against variations of T and H.

The condition for the two phases to coexist at a temperature T at the critical field
H. is that the densities of Gibbs functions g and g, — which are defined by the
relations gV, = Gy, g,V,, = Gy, and V 4+ V.= V — can take the same value if the two
phases are in thermal contact. We therefore write

gs(HmT) :gn(HCaT)7 (12.4)

on the equilibrium line in Fig. 12.2b. In the normal phase, g,, has nothing to do with
the magnetic field H.; hence, g,(H.,T) can be replaced by g,(0,7).
At T,, in the absence of an external field, we have

gn(O,TC) :gS(O7 T.), (12.5)

implying that the transition is continuous. On the other hand, in the presence of an
applied field H for T<T,, the Gibbs function G4(H.,T) should be calculated as

He
Gs(H.,T) = G4(0,T) — VJ

1
M(H)dH = G(0,T) + V(2 uon> .
0

This superconducting phase is in equilibrium with the normal G,(0,7) in H.. Hence,
the transition is discontinuous at 7, as expressed by

1
&n(0.T) = 4(0,T) = 5 oHe. (12.6)

Using the thermodynamic relation
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the latent heat L per volume can then be expressed as

dH,
L= —,uOTHCd—TC. (12.7)

In Ehrenfest’s classification, such a transition below T, is first order, chang-
ing between normal and superconducting phases with applied field in the range
0 < H < H. in mixed volumes of these phases. The transition at T is second order,
for which L = 0; hence, we obtain H. = 0 from (12.7).

On the other hand, the specific heat exhibits a discontinuity at T, because of a
sudden change in the magnetization, which can be calculated at a constant volume

V as
O(ss — sn) d’H, dH.\?
sy =T A TSI g S ey (e 12.
“me { ar }V a { arz *\ar (12.83)

Since H. = 0 at T,, the discontinuity at 7T is given by

2
(Cs - Cn)TC = :uoTc <(11[-7[«C> ; (12.8b)
which is known as Rutger’s formula.

The temperature dependence of H. is significant in the above argument, particu-
larly when the absolute zero is approached. According to the third law of thermo-
dynamics, we should expect s, — s — O in the limit of T — 0. In (12.8b), this
condition is fulfilled if

. dH.
}111‘(1) T =0. (12.9)

Therefore, the tangent at 7 = 0 is horizontal, so that the equilibrium curve is not
exactly parabolic.

12.2 Long-Range Order in Superconducting States

The superconducting state below 7T, is composed of two volumes of normal and
superconducting states, whose ratio depends on the magnitude of applied magnetic
field. The transition at T, is second order with no latent heat, accompanying a
discontinuous specific heat. On the other hand, below T, the superconducting state
consists of normal and superconducting phases, whose volumes vary adiabatically
with an external magnetic field; hence, the transition is first order. In this case, it is
logical to define an order parameter with Landau’s theory to describe such an
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adiabatic process in a superconducting state. With such an order parameter, we can
sketch the mesoscopic process in terms of temperature and applied magnetic field,
although Landau’s theory is limited only to the mean-field accuracy.

In a superconducting state, the order parameter can be defined as n = 0 at T,
and 7 = 1 for complete order at T = OK. Disregarding structural details of the
lattice, we can consider the density of Gibbs function as g(n, T) and write

1 .
g(()?TC) = 7§ch2a (l)
where )T, represents the specific heat of conduction electrons at T, as derived from
Sommerfeld’s formula c.; = )T for a electron gas. On the other hand, g(1,0) should
represent the order energy of condensed electrons per unit volume at T = 0, which is

given by

1 ..
8(170):_§M0H(2>' (11)

Unlike binary systems, no inversion symmetry exists in multielectron system,
so that the Gibbs function can be expressed in a series expansion with even and
odd power terms. That is,

1
8(n,T) = o+ a(H, T)n+ 5 BH, T)n* + - (iif)

Gorter and Casimir wrote g(n,T) in an alternative form

HE T
g(777T):go_'u2077—%\/1—77. (12.10)

Here, the factor /1 —7n of the third term in (12.10) is somewhat ambiguous;
however, their g(n,T) is appropriate to meet requirements ( i) and (ii). In Landau’s
function (iii), these coefficients a, f3,. . . are left arbitrary, so that (iii) and (12.10) are
not conflicting. Nevertheless, Gorter-Casimir’s formula is a useful approximation
to deal with observed specific heat and H.(T) for T<T.. {

Using (12.10), thermal equilibrium can be determined from (%) ur = 0, that is,

T2 poHy

4T—n 2

At T =T, we should have n = 0 and hence VTc2/4 = ,uDH(,Z/Z. Therefore, the order
parameter can be expressed as
T\
=1—(=. 12.11
n (Tc> ( )
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Substituting 7 into (12.10), and differentiating two times with respect to tempera-
ture, we can derive the specific heat:

3
Cs = 37)—T (12.12)
T?
In this model, ¢, oc T3, giving the same temperature dependence as CDebye fOr
lattice vibrations, but these two can be distinguished by different proportionality
factors.

Using (12.12) and Sommerfeld’s formula for a normal conductor ¢, = yT in
(12.8a), we can derive the expression H. = H,{1 — (T%/T?)}, which is parabolic,
representing temperature dependence of H. in mean-field approximation. Thus, the
empirical formula (12.1) is consistent with Gorter-Casimir’s theory. Nonetheless, it
is significant to realize that such assumptions as (iii) and (12.10) agree conceptually
with an internal adiabatic potential in condensates that drives ordering processes.

Fig. 12.5a shows experimental data of specific heat of gallium metal. Experi-
mentally, normal and superconducting phases are separated in the presence of a
magnetic field with strength lower than H.. in mixed volumes like domains in binary
magnets. To analyze the temperature-dependence of the specific heat of the super-
conducting phase, ci/yT. versus T./T were plotted against the applied magnetic field
in the range between 0 and 300 gauss. Deviating slightly from the linear relation,
the mean-field approximation does not fully support the experimental result, while
normal phase can be considered primarily as a free-electron gas. Nevertheless, such

@ (b)

1.0

log, (C/YT)

0.01-

o o5 10 15
T* (K%

Fig. 12.5 Specific heat measured in superconducting gallium. (a) C/T versus T°. (b) A semi-log
plot of C/yT versus T./T (from [35]).
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Table 12.1 Superconducting metals
A(0) (in eV) extrapolated to 0 K (T, in K) [H, (in Gauss) extrapolated to 0 K]

Al 34
(1.140)
[105]
V16 Zn 24 Ga 33
(5.38) (0.875) (1.091)
[1,420] [53] [51]
Nb 305 Mo 2.7 cd 15 In 105 Sn 115
(9.50) (0.92) (0.56) (3.0435) (3.722)
[1,980] [95] [30] [293] [309]
La 19 Ta 14 Hg 165 T 735 Pb 273
(6.00) (4.438) (4.153) (2.39) (7.193)
[1,100] (830] [412] [171] [803]

Data compiled from Kittel [35]

anomalies are significant at extremely low temperatures. Figure 12.5b in semi-log
plot shows clearly an anomaly in logarithmic character, that is,

Cs Nexp<—?> (12.13)

with a constant b, which is known as a logarithmic anomaly.

Exponential ¢ expressed by (12.13) allows the temperature dependence to be
interpreted in terms of a Boltzmann factor exp (— Ey/kgT). Assuming this £, = kgb
to represent an energy gap in the superconducting spectrum, the exponential ¢
suggests the presence of an energy gap E, proportional to b between normal
electrons and unidentified superconducting charge carriers. Writing as £, = A/2,
the parameter A is the electron-electron coupling in the theory of superconducting
transition, as will be discussed in Chap. 13. The logarithmic anomaly can therefore
be important evidence for the gap A that is essential in the theory of superconduct-
ing states.

The gap A is a function of temperature T, while the theoretical A(T) was later
derived by Bardeen, Cooper, and Schrieffer. With their formula, values of A(0)
were estimated by extrapolating measured plots to 7 = 0 K for various super-
conductors, which are listed in Table 12.1. The table also includes observed values
of T. and H.(0), where the latter was previously denoted by H,,.

12.3 Electromagnetic Properties of Superconductors

Superconductivity was first characterized by infinite electrical conductivity and
later revised with additional perfect diamagnetism. These two phenomena were
considered as consistent with Maxwell’s theory of electromagnetism, but not quite
as such at temperatures below T, because of unknown charge carriers. Besides,



198 12 Superconducting Phases

normal and superconducting phases can be studied separately with an applied
magnetic field. Consequently, it is now realized that the superconducting phase is
characterized by the Meissner effect, whereas the normal phase exhibits a usual
conduction described by Ohm’s law. For the former, we consider that supercon-
ducting charge carriers are particles of charge ¢’ and mass »’, which are different
from electrons of e and m.

With different charge carriers, the normal and superconducting current densities,
J, and J, are considered as determined by an applied electric field as

J.=0oFE (12.14a)
and
oJs
A—=E 12.14b
o ; ( )

respectively. Equation (12.14a) is the Ohm’s law, whereas (12.14b) is equivalent to
the current density J; = nee'vg in accelerating motion of n, superconducting
particles, that is,

dv

/ S /
m — = E
dr ¢

Hence, from (12.14b), we have

m/

A= (12.15)

nsel2

Expressing the superconducting state by the supercurrent density Js, we can
write the Maxwell equations

OB OE
curlE = T and curlB =y, (JS + & E)
Combining the first equation with (12.14b), we obtain
OJs OB
HHA—)=——. 12.16
cur ( 8!) T ( )

Assuming OE/0t = 0 in the second Maxwell equation, we have curl B = pu.J,,
which expresses spatially distributed B. Combining this and (12.16), we can write

v OB

OB A oB\ oB .,
— = —curl (— curl E) = —J“curl curlE =1 R

ot Ho
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where the parameter A is a constant defined as

2=
Ho

It is realized that these differential equations deal with local properties of a
superconductor, so that Meissner’s effect in a bulk body cannot be decribed.
Nevertheless, we notice that (12.16) is for J s, and the corresponding ES should be
obtained to determine the magnetic field B that penetrates to a depth A from
the superconducting surface. For simplicity, writing the equation for B. in the
z-direction perpendicular to the surface as

J*V?B. —B. =0, (12.17)

the solution can be expressed as BZ = BO exp(—z/1); z = A gives the effective
penetration depth of B., and B. = 0 for z > . However, notice that this result is not
the same as B, = 0, so the Meissner effect does not arise from Maxwell’s theory.

To obtain the Meissner effect in the region 0 < z < /4, London proposed to
revise (12.16) and (12.17) as

curl(AJs) = —B (12.18)

and
B = J*V°B. (12.19)

Equation (12.18) gives the relation between J, and B, while the constant / in
(12.19) describes the penetration depth. In the layer of thickness A, the Meissner
effect is said as incomplete, and beyond z = 4 we have complete Meissner’s effect
B = 0. Equation (12.19) may be oversimplified in practical cases, giving however a
correct order magnitude of 2, which is estimated as 10> cm.

The London equation (12.18) can be modified by using the vector potential A
defined by B= curl A that satisfies the relation div B = 0. Using A, (12.17) can be
expressed as

curl(AJs +A) = 0. (12.20a)

If the superconducting body is simply connected, as illustrated by the curve C; in
Fig. 12.6, we can write

A +A=Vy, (12.20b)

where y is an arbitrary scalar function that satisfies V>’ = 0, hence giving unique
values of J; and A at any point inside C;. On the other hand, if the body is multiply
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normal state

Fig. 12.6 A superconducting body surrounded by a normal conductor. A closed surface S| is filled
by superconducting state completely, whereas the surface S, enclosing a void or normal state X.
These spaces in S; and S, are singly and multiply connected.

connected, (12.20a) should be written in integral form to obtain a relation between
the persistent surface supercurrent and the vector potential A. Leaving the latter
case aside, in a simply connected body, we can choose the gauge with div A = 0 for
a time-independent case, to write another vector potential as A + Vy with an
arbitrary y. This allows choosing y = — 7. Using such a new gauge 7/, called the
London gauge, (12.20b) can be simplified as

1 1
=——A=-—5A. 12.21
JS A ﬂoiz ( )

Equation (12.21), called also London’s equation, we can deal with Meissner’s
effect in a simply connected metal.

Equation (12.21) indicates that each of ng superconducting carriers produce a
current (n1'/e")j,, where ngj; = J, represents the total supercurrent density. There-
fore, for a system of independent superconducting particles, we can write the
Hamiltonian

1 ,
Hoystem = Zz—m,{ps(n) —dA(r)Y, (12.22)
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in which the momentum p(r;) and position r; constitute a field that can interact with
the electromagnetic field. In this case, assuming a continuous field of (py(r;), r;), we
can define the Hamiltonian density H from Hygem = f Hd’r, that is,

'volume
i pS L € L

which is called one-particle Hamiltonian.

The potential A(r) is invariant under a gauge transformation, that is, A(r') =
A(r) 4+ Vy(r), where the scalar function y(r) can be arbitrarily selected with
V2y (r) = 0. However, the gauge invariance of the Hamiltonian 7 must be fabricated
to be consistent with the electromagnetic field. In quantum theory, considering py(r)
as a differential operator — iV, the Schrodinger equation Hy (r) = Ey(r) with the
energy eigenvalue E can be made as invariant under the gauge transformation. We
postulate that a transformed equation

1
2m’

{=ihV, — AW )Yy (r) = Ey(r)

can be written as

1
2m’

{—ihV, — A(r) = &'V, (N} Y(r) = EY(r').

We notice that this equation can be satisfied by a transformed function

-
b) = exp Ay )

This function Y () can therefore be characterized by a phase shift ¢'y(r)/h

from  (r), which is assumed as due to a transformation by y (r).

On the other hand, the momentum p(r) = —i%iV, is a field operator related to the
speed of a superconducting carrier particle at a position r, and hence we can express
it as m'v(r) = ps(r) — €’A(r). Therefore, for the total momentum Ps(r) = nsp(r),
we can write

Py(r) = ¢'AJy(r) + €'A(r). (12.23)
Accordingly, (12.20a) and (12.20b) can be expressed as
curl Pi(r) =0 and Py(r) = nVy/'(r),

where y/(r) is a scalar function in a simply connected conductor. Nevertheless,
considering — ngy’ as the transformation gauge, the London’s equation (12.21) is
equivalent to

P,(r) = 0. (12.24)
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Equations (12.23) and (12.24) indicate that zero momentum P = 0 is established with
the London gauge in a simply connected superconductor, exhibiting the Meissner
effect. This can be interpreted for the long-range order of momenta p; to show the
value zero in the superconducting state. It is noted that inversion symmetry does exist
in these momentum variables p(r), and the corresponding wave function represents a
significant feature of the correlated charge carriers in a superconducting state.

In multiply connected conductor, y'(r) cannot be a unique function of r, so we
must discuss it separately. Figure 12.6 sketches a superconducting domain sur-
rounded by a normal phase that is shaded in the figure. In a practical metal, the body
may be porous, where the inside shaded part bordered by 2 can be in normal phase
or an empty space. Inside the closed curve C, the metal is superconducting, whereas
C, has a different phase inside as shown, representing simply connected and
multiply connected cases, respectively. Equation (12.23) is a formula for an arbi-
trary local point r; hence in integral form, we have

J p.-dS1+ = —J p,-dS|—
Si+ Si-

for Cy, where S, and §;_ are surfaces above and below the page, respectively, both
subtending the curve C; in common. For such a simply connected medium, fluxes
of p, threading in and out of C are equal and opposite, leading to (12.24).

It was an important experimental finding that a persisting current flows along a
superconducting coil for considerably long time of about a year or so. Based on
such findings, the Meissner’s effect in a simply connected body can be revised for a
multiconnected body by trapping the flux of magnetic field lines threading 2.
Choosing the curve C, including 2 as a doubly connected space, two integrals
fﬁsz P, - dS; and ¢ p, - dX can be calculated, but the former vanishes because of
(12.24), so that only the latter contributes the total integral. In this case, it is
convenient to use the magnetic induction vector B, and for the trapped flux inside
2 we write the induction law as

—gi; B-dS)::§ (CuﬂE)-dS)::§ E'dlz,
8t x> > P

ignoring the surface penetration for simplicity. Here, the Stokes theorem is used for
deriving the last equation, Sy represents a closed surface subtending the curve X,
and dly is the line element along 2. Also, using (12.14b) to replace E, we obtain

g(fﬁ B-dSz+A+ Js~dlz> =0. (12.25a)
b) s

ot

Defining the total flux ® = ¢ B - dSy + A ¢, J, - dI5 through the curve X, we have
the formula

oD
B =0 or F = constant. (12.25Db)
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The surface integral in (11.26a) can be replaced by fz (curlA) - dSsy = sz -dly,
and hence

D= jE (A + AJS) - dls. (12.26)
X

For a simply connected body, we have shown in (12.20a) and (12.20b) that the
vector A + AJ, can be expressed as Vy’, and the London’s equation (12.21) was
obtained by choosing the London gauge, resulting in ® = 0. In a multiply connected
body, on the contrary @ = constant because of a trapped magnetic flux in X, for
which the function 7’ cannot be uniquely determined, indicating that a supercurrent
returns to any point on its passage repeatedly. Mathematically, the line integral in
(12.25a) can be limited to one circulation along the path X, where ®(#') = ®(r) on
returning to = r, accompanying a phase shift ¢’y /% = 2. Therefore, the London
gauge can be selected as y' = ng(2n7i/e'), and in such a superconductor the trapped
flux in a hole X can be expressed as

2
d)sz) Vi (r) - dls = n, Z . (12.27)
)

Experimentally, it was found that @ is determined by e’ = 2e, indicating that the
superconducting charge carriers consist of two electrons. Therefore, the quantized
flux @ is an integral multiple of ®, = //2e¢ = 2.0678 x 10~! teslam?. This unit
flux @, is usually called a fluxoid. Owing to the trapped flux in voids in practical
conductors, supercurrents can exist on their surfaces, even after removing the
applied magnetic field. This explains a persisting current observed in a super-
conducting coil. Practical superconductors are thus signified by such trapped
magnetic flux, in addition to resistance-free conduction.

12.4 The Ginzburg-Landau Equation and the Coherence
Length

In the forgoing, we learned that the superconducting phase is characterized by an
ordered momentum Py(r) in (12.23), while in a multiply connected conductor the
flux @ of an applied field is trapped in a void as in (12.27). However, the differential
relations in Sect. 12.3 are local, referring to an arbitrary point in the surface layer of
depth /. Inside the layer, for distributed J(r) and A(r), their spatial correlations
should be taken into account to determine the thermodynamic properties. It is
logical to consider the wave function yr to represent distributed order variables
in terms of the distributed density as

ng = Y (P)y(r). (12.28)
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Considering (12.28) for the order parameter n expressed by (iii) of Sect. 12.2,
Ginzburg and Landau wrote Gibbs free energy density for the superconducting
state as

&=t Aoy — AW P 4 ﬂ(llﬁl) +5 32 (12.29)

Here on the right-hand side, the second term represents the kinetic energy of the
order parameter, the third and fourth are the adiabatic potential as in Landau’s
theory of a binary system, and the last is the magnetic field energy density. The
adiabatic potential associated with lattice deformation should also be related to the
applied magnetic field. In contrast to (iii) in Sect. 12.2, the Ginzburg-Landau
function (12.29) describes a superconducting transition in more detail, because
the kinetic energy is included. It is particularly important to determine the role of
long-range order for superconducting domains that coexist with normal conducting
domains. The Ginzburg-Landau theory shows a straightforward approach to the
superconducting transition.

In equilibrium, the total Gibbs function G5 = fv gsdV must be minimized against
arbitrary variations of i and A. From the condition dG, = 0, we obtain

Sgs = (g‘f;) oW+ (ggAs) 0A = 0.

Hence from ((;// ), = 0and (

)l// = 0, we can derive the equations
1
5,7 (1Y = AV Y + (o + Bl =0 (12.30)

and

2
J(r) = —lh—e(l# VY — gy )—%WnﬂA, (12.31)

respectively. Equation (12.30) is called the Ginzburg-Landau equation and (12.31)
represents the superconducting current density.

In the absence of an applied field, that is, A = 0, (12.30) is identical to (7.1a) that
is a nonlinear equation of propagation in an adiabatic potential AU = o + By/|*y
in classical analogy. For simplicity, we consider one-dimension wave function {s(x)
at a given time ¢, for which (12.30) can be expressed as

R d?
2m' dx?

+ o + Bl Py =0, (12.32)

where we consider o« < 0 and § > 0 for T < T.. In fact, the differential equation of
this type was already discussed in Sect. 7.1, and hence we use the results directly in
the present argument. We are interested in a solution that can be derived in the form
of Y =, f(¢) with ¢ = kx that represents the phase of propagation.
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We set the boundary conditions iy = 0 at x = 0 and / = constant at x = oo,
signifying the threshold and complete superconducting order, respectively. Near at
x = 0, we can assume that \ is very small, so that (12.32) for the threshold is
approximately expressed as

h2 le//
o ae TV =0

This is a harmonic oscillator equation, whose solution is simply given as

hZ

— 12.33
2m' |l ( )

V=Y, expizx where ¢ =

and i, can be infinitesimal. We note that (%)X:O = 1,; therefore, we have L = =1
or k¥ = 1, which will be required later.

For the ordered state determined near at x = co, we have 1/, = constant; hence
(12.31), can be written as o + S|y, f(¢)> = 0, and consequently |y f(¢)[* = ||/
regardless of ¢. Using this result into (12.31), we can obtain the solution

Here, the parameter ¢ signifies an approximate distance for the density ny = |l//|2 to
reach a plateau in the direction x, which is a significant measure for the supercurrent
to exist, and called the coherence length. By definition, ¢ depends on »7'lal that is an
intrinsic constant of the superconductor, different from the penetration depth A of an
applied field.

Using [/|* = |a|/p in (12.29), we obtain the relation

o2

8s — &n = _ﬁa

representing an ordered state of the superconductor. This should be identical to
(12.6), from which we obtain the relation

=4 ,72 12.34
H, . .

The corresponding supercurrent density (12.30) can be expressed as

e/Z )
Ji(r) = = YA,
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which is London’s equation (12.20), and therefore the penetration depth A can be

expressed as
ml
A= ”,u egoc' (12.35)

On the other hand, at the threshold (12.30) can be written as

% (—ihV — A Y = .

m

For the magnetic field B applied parallel to the y-axis, this equation is expressed as

nofor P 1 /.0 ,\°
ﬁ(@+@>w+%<1ha—y+63> lﬁ—O(l/l.

Setting Y =, (x) expi(kyy + k.z), we obtain

1 d? )
S {—thﬁ + 1?k* + (hky — ¢'Bx) }wo =ay,.

This can be modified as

1 d? (k2 + k2
{—h2 — B — 2hkye’Bx}lﬁo = (cx P& TE) v,

2m' dx? 2m’

: : : likye'B . .
Using a coordinate transformation x — —> — = X', this equation can be expressed
m

as a harmonic oscillator equation, that is,

oo, ., , K>
(3 ez 370 J9e = (2= )

where @i, = ¢'B/m'. Therefore, the threshold H,, of a superconductor of Type 2 is
determined by the lowest eigenvalue of the above equation, that is, «, if k, = 0. That
is, from the relation %th = o, we can solve the equation for B = p,H.,. Combining
(12.33), (12.36), and (12.34) for &, 4, and o versus H,, respectively, we can derive
the equation

yi
Hey = V2KkH, where Kk = : (12.36)
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When x> 1/ \/5, we have H., > H,, which characterizes Type II superconductor.
The ratio x is a significant parameter to determine the type of superconductors;
Type I or 1T depending on the value of «, either x < 1/v/2 or x> 1/+/2, respec-
tively.

It is interesting that we can write H, in terms of the quantized flux ® = n®,,
where @, = 277i/¢’. Combining (12.34) and (12.36) with the unit flux ®,, we can
state that

2mla €0, B D,
eh 2nh 2m'E 2mEd

Heo = (12.37)

We note that H,, is equal to the unit flux per area 2I1&” that signifies the ordered
area at the superconducting threshold.

Exercises 12

1. Consider a superconducting plate of large area and thickness J, where the
penetration of a magnetic field can be along the normal direction x. Show that

x/A
8/22°

B(x) = B, cosh

The effective magnetization M(x) in the plate is given by B(x) — B, = M(x).
Derive the equation M(x) = —B,[(6* — 4x%)/82%].

2. In a superconductor at temperatures for 0 < T < T, we consider the normal and
supercurrents, j, and js, obeying the Ohm’s law and the London’s equation,
respectively. Consider a plane electromagnetic wave (E,B) « exp i(k-r—wt)
propagating through the superconductor. Using the Maxwell’s equations, derive
the dispersion relation between k and w that can be expressed as

Here, o and / are the normal conductivity and superconducting penetration
depth, respectively.

3. Consider an infinitely long cylindrical superconductor, where the mag-
netic induction B has a cylindrical symmetry. Write the penetration equation
B — \*>V?B = 0 with cylindrical coordinates (p,0,z), and show

@,

B =
() 2102

A
In— for é<p<i,
p
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—exp—p for A<p.

Here

is the total flux.



Chapter 13
Theories of Superconducting Transitions

Nearly free independent electrons in metals become correlated on lowering tem-
peratures, causing a superconducting transition. Observed anomalies at the transi-
tion threshold are informative about the correlations, but not quite revealing. On the
other hand, the critical temperature 7, varies with isotopic mass M composing the
lattice, providing evidence for the lattice to be involved in the superconducting
mechanism. Nevertheless, electron—electron correlations are essential in such a
multielectron system in a superconducting crystal. Following Frohlich’s proposal
for electron—phonon interactions, Cooper proposed an electron-pair model for
superconducting charge carriers. Based on this model, Bardeen, Cooper, and
Schrieffer presented the theory of superconducting transitions, which is the objec-
tive for discussions in this chapter. The superconducting transition can thereby be
described in terms of electron-pair carriers, in analogy of pseudospin clusters for
structural phase changes.

13.1 The Frohlich Condensate

Electron scatterings are essential for the electron—lattice interaction in a crystal. It is
noted that electron scatterings in a harmonic lattice are elastic, with which the
energy exchange occurs according to conservation laws. In this case, electrons
behave like free particles in the lattice, but colliding with the crystal surface.
However, phonon excitations strain the lattice, where the modulated structure can
be interpreted in term of electron-phonon interactions. At low temperatures, the
lattice vibrations are slow in timescale of observation, so that the strained lattice can
be described by classical displacements in finite magnitude.

M. Fujimoto, Thermodynamics of Crystalline States, 209
DOI 10.1007/978-1-4419-6688-9_13, © Springer Science+Business Media, LLC 2010



210 13 Theories of Superconducting Transitions

Denoting by u the displacement from a regular lattice point r,, the displaced
lattice coordinate is expressed as r = r, + u; the lattice potential is thereby mod-
ified in the first order as

V(r)=V(r,) +u-VV(r), (13.1a)

where V(r,) represents the rigid lattice specified by the space group. On the other
hand, u is a function of r, as expressed in Fourier series

u(r) = Zuqexpi(q'rfa)t), (13.1b)
q

where ¢ is the wave vector of lattice translation. In Chap. 2, such a lattice vibration
at a small ¢ was discussed as a vibration field, which is expressed in terms of
phonons (7w, fiq), if quantized. Assuming that the lattice is constructed with
mass points M, the Foul;[ier transform u, is expressed with phonon creation and
annihilation operators, by and b, as

2Mw
u, :3,/7@ — b,). (13.1¢)

The Hamiltonian of a system of electrons and the hosting lattice can be written as
H = He + HL + Hine + Heour- (13.2)

Here, the electronic term is assumed to be given by (10.11), that is,

Ha=> g(k)aZak, (13.3a)
k

composed of many one-electron modes specified by wave vectors k and energies
I k? /2m, where m is the effective mass. The lattice term is given by

Ho = (ho,)bib,. (13.3b)

q

The Coulomb’s interaction term Hcoy is added to (13.2) to make H complete,
which can however be ignored, as justified by the shielding effect in a system of
closely packed charges. We assume the Bloch’s approximation for electrons,
allowing each one to behave like a free particle in the lattice. Accordingly, the
one-electron wave function is expressed as Y (r) =y expi(k - r+ p,), where
the phase constant ¢, can be arbitrary and randomly distributed in the crystal.
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The interaction term 7, arises from the term u - VV(r,) in (12.1a) that is
signified by such a matrix element as

k%wwmvwmmmmwr (13.4)

Here, (1| and (u,| are phonon wave functions before and after scatterings. Because
of the sinusoidal nature of the wave function of electrons, the integral
Jo W (r)u - VV(ro)y (r)d®r does not vanish if k' — k = g, which is detectable at
low frequencies if observed at r, in sufficiently long timescale. In this case, H;,: can
be expressed by a delta function 6(kK' —k — g + G), where G is any reciprocal
vector of the lattice. Here, we consider G= 0 for the present discussion, ignoring
G # 0 for simplicity.

Matrix elements (13.4) have always undetermined phase factors expiA¢p; due to
phase differences Ay, in these scattering processes in a crystal; however, the
element can take a maximum value for Ak = ¢, if there is a process for Ap, — 0.
As proposed by Born and Huang, we consider such a phasing process for minimiz-
ing lattice strains; thus, Hiy can represent condensates at Ak = g and Ay, = 0, as
in the case of binary transitions. With respect to phonon states, if (13.4) can be off
diagonal, that is, (u;\ -+ |ug) # 0, such a time-dependent Hi,, can be thermally
unstable, but stabilized by adiabatic phasing, constituting condensates in the mod-
ified lattice. Abrupt rise of the specific heat before reaching the superconducting
state can be attributed to such a phasing mechanism in short time.

At a given time, Hj, can be expressed as

wm:—jd%@@mvwvwwh (13.5)
Q

where p = )", Py exp(—iq - r;) is the modulated electron density to interact with
u(r). For the Fourier transform p, =) p(r;)exp(iq - r;)/Qexpressed as
p(r)exp(iq - r)/Q for a small |g|, we can write

Pq= Zanak (13.6)
k

in the second-quantization scheme. The interaction H;,, can therefore be expressed
in terms of p, as

Hie =1 Dylpgbh — plby), (13.72)
q

where the constant D, is determined by phonon spectra as

, 4 Cho,

=— 13.7b
7 9 NMOW?’ ( )
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under isothermal conditions. In this case,

c—h—z/ww *d’r
_Zm [e) 0

is a constant for the Bloch’s function V/,; v, is the sound velocity of the phonon
mode of g. Considering H;,; as an adiabatic perturbation, we can leave D, as a
temperature-independent constant.

In the second-quantization scheme, the Hamiltonian H represents the total
ordering energy, in which H;,, represents a propagating condensate of an electron
coupled with a phonon in phase. Such a phasing can be interpreted as synchronized
electron scatterings that are driven by the lattice displacement u(r).

13.2 The Cooper Pair

Noting that a condensate is involved in off-diagonal elements of displacements,
we can consider electron—electron interactions, if two condensates can interact
coherently. We consider such coupled condensates can carry two electronic charges
in a superconducting state. For such a coupling, we have to consider another ther-
modynamic situation where an adiabatic process occurs for two condensates to
bound in inversion symmetry ¢ < —q, accompanying a phase difference with
respect to the displacement u(r). For such pairs to be considered as identical charge
carriers, these phases should be forced to synchronize with u in a slow passage on
decreasing temperature. While the factor D, in (13.7a) is considered as temperature
independent, we need to assume an additional phasing process, which is analogous
to pseudospin clusters in binary systems. We write the Hamiltonian for identical
pairs as ﬂ, which should be different from H for Frohlich’s condensates, but
derived by a canonical transformation with an action variable that can represent
such a thermal process.
We write the Hamiltonian (13.2) of single carriers as

H="Ho + IH, ®

where AH’ replaces Hy for convenience. Performing a canonical transformation on

‘H with an action variable S, we can obtain the Hamiltonian H for electron—electron
interactions. The canonical transformation

H = exp(—S)Hexp S (ii)
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converts H to ﬂ, for which the action S is attributed to an adiabatic potential for

minimal lattice strains.
Expanding H into a power series, we have

ﬂ=H+mﬂ+gmﬂﬂ+
With (i), this expression can be written as
H=Ho+ IH + [Ho,S] + [AH, S].
Here, if S is chosen in such a way that
IH' + [Ho,S] =0, (iii)
we have
H ="H, + [AH,S]. (iv)

Since H, is diagonal, from (iii) we obtain matrix elements of S, that is,

Clk ay
1,80,y = —iD et d
N ngk_gkq_hwq an
(v)
Clk, a;d
0,|S _
Oulslle) =Dy 3 e

With these results, (iv) can be expressed

{ D; f t 1 1
H="H,+-2 an B | '
+ 2 ka,:ak g A A (Sk — g — hwy e — g+ hwq) (vi)

In (v), scatterings with g and — g signify emission and absorption of a phonon 7w,
from and to the displacement u,, respectively, which occur in the processes
k—k—q and k' +q — k'. These terms in (vi) can take a large value, if
|Ak| = |q| and — Ak ~ AK’, which can be achieved after phasing. Such a scattering
process is illustrated by a vector diagram in Fig. 13.1a.

Considering that the off-diagonal elements a,i 4 and ay, , ap of the electron
density matrix associated with the coupling process, H expresses for two electrons
to be a bound object, if the momentum conservation rule restricts the interaction to a
specific scattering k' = —k. In this case, illustrated in Fig. 13.1b, the binding energy
of two electrons can be determined from (vi) as



214 13 Theories of Superconducting Transitions

k >
- k _;‘
J\] \
= SRR W,
K —k
k;
Fig. 13.1 (a) A coupled Frohlich’s condensates. (b) A Cooper’s pair.
~ ho i i
H =D? 2 a_aa ., a . (13.82)
! 7k (6k—q — Sk)z - (hwq)z ! +q
Or for a lattice of many ¢, we can write
H=-> Vk q)a,liqakaima_k, (13.8b)
k.q
where
ho
—V(k,q) =D, a (13.8¢)

(6k—g — Sk)z - (hwq)z .

The interaction H is attractive, if V(k, q)>0, suggesting that such a pair of electrons
can be a superconducting charge carrier of 2e. If this is the case, from (13.8c), we
should have

lersq — &x| < haog; (13.8d)

otherwise, H is repulsive. By definition, the constant D, is proportional to fiw, and
(13.8d) implies that one-electron energies &, should be modulated by an amount Ag;
smaller than 7w, in order for H to be attractive. In the limit of Agp — hwy, we
obtain an intense coupling of two electrons (13.8c).

However, k' and k are distributed with the scattering geometry k' = k & ¢ for
a given g, thereby modulating the spherical Fermi surface ¢ by =+ fiw,. Therefore,
H generates thermal instability of the surface for the particular scatterings
Ak = —AK'. Figure 13.2 shows schematically a Fermi sphere in the k-space modu-
lated by =+ hw,, leading to a singularity when Ag; = hiw,. With singular scatterings
in Fig.13.1b, Cooper proposed that this specific interaction yields a pseudoparticle
of two electrons, called Cooper’s pairs, playing the essential role in
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Fig. 13.2 A one-electron ky
energy surface & modulated
by Debye’s phonons in k-
space.

superconducting states. Supported by experimental evidence, Cooper’s pairs are
identical pseudoparticles, whose number is considerable for the superconducting
phase. In fact, Bardeen, Cooper, and Schrieffer elaborated the theory of super-
conducting transitions, assuming Cooper’s pairs as charge carriers.

It is realized that a Cooper pair can be treated as a single particle of charge
e’ = 2e and mass m’ = 2m, whose motion can be discussed relative to the lattice.
With the fixed center of mass, a Cooper’s pair is a single particle in free space;
however with respect to the fixed lattice, an adiabatic potential must be considered
for the motion.

It is noted that the Cooper pair can be characterized by inversion ¢ < —gq, for
which a binary order variable can be defined. In this case, a superconducting
transition can be described like a binary transition with Frohlich’s condensates.
In fact, Anderson showed that such an order variable can be defined from the
Bardeen—Cooper—Schrieffer theory.

13.3 Critical Anomalies and the Superconducting Ground State

13.3.1 Critical Anomalies and Energy Gap
in a Superconducting State

As characterized by Ak’ = —Ak, the Cooper pair was described with respect to
the center-of-mass coordinate system, where k' + k = 0. However, with respect to
the lattice, k' + k cannot be equal to zero, for which an adiabatic potential is
responsible. Considering such pairs to emerge at T, signifying the threshold of a
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superconducting phase, the transition can be characterized by a process to establish
inversion symmetry ¢ < —gq.

The transition is initiated by the potential — VV(r,) that emerges at T, where
critical anomalies appear as related to fluctuations, as discussed in Sect. 6.3. It is
noted that the Cooper pair is associated with the symmetric mode of fluctuations

%(uq + u_,); hence, we have to consider the antisymmetric mode %(u,, —u_g,) for

uncoupled electrons. The wave function of the Cooper pair is symmetrically
modulated by the lattice wave ui, ~ exp(=iq - ), so that the modulated wave
function of an electron pair is given by , (uy + u_,). Therefore, the corresponding
kinetic energy is modulated between &4, and &_,, and

"’k
Ckrqg — &k = i—q.
m

In this context, the Fermi level for k = kp shows an energy gap E, at T, that is,

hsz‘]o
m

2 =FE

2

where ¢, is the critical phonon wave vector. We can define the coherence length by
¢, = 1/2q, at T, which is therefore expressed by

S
 mE,’

S (13.9)

Clearly, the lattice modulation is responsible for the coherence length &,, which
was not defined as related to the lattice in Ginzburg—Landau’s theory. The critical
singularity is due to the discontinuity in forming Cooper’s pairs, similar to clusters
in structural transitions.

For a Cooper’s pair, we consider scattering processes signified by k — k' =
k+gqand —k — —k' = —k — q, with respect to the center-of-mass coordinates.
Therefore, in the relative coordinate frame of reference, the wave functions ¥, (r)
and Y/, (r) must be functions of r = r; — r, with respect to the fixed center of mass,
that is, r, = 0, where we can write Schrodinger equation

2
{fm (kz + ;kQ) + ﬂ}zpk,k,(r) = W (r),

where / is the eigenvalue and \; ,(r) =, o4 exp ik - r. Denoting the unperturbed
energy by E;, we can write the secular equation

(Ex — Do+ > o (e, —k|H|K', —K') = 0,
k/
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where k = k' — gand — k = —k’ 4 ¢. The perturbation H in (13.8b) is related with
distributed k” deviated from kg in a small range that is limited by the Debye’s cutoff
frequency wp. In this case, the second term in the above is assumed as a constant C
in the first approximation, so that we obtain o = C/(Ey — ). As the second
approximation, the summation is replaced by an integral over the corresponding
energy Ey, that is,
Ex
(Ek — },)O(k = —VJE O(k/pk/dEk/,
F

where E — Ep = A<howp. Assuming p;,, =~ pg, we obtain

1 Ev  dEp Ev — A Ev —Ep+ A
- = = ln = 111 .
PV

g Ev — 2 Ep—J A
Letting £ — Er = howp, we have the expression

B 2%&)])
exp(1/pgV) — 1

which is the binding energy of the Cooper’s pair with respect to the Fermi level.

(13.10)

13.3.2 Order Variables in Superconducting States

Bardeen, Cooper, and Schrieffer published the theory of superconducting transi-
tions in 1957, assuming that Cooper’s pairs are dominant charge carriers in the
superconducting phase. Hereafter, their theory is called the BCS theory.

We write the Hamiltonian for interacting electrons as expressed by

H= Z (8ka;,rak + s,kaika,k) — Z V(k, —k)az,aik,a,k/ak,
% ok

where &, = ¢_; is the energy of a single electron at k and — k on the Fermi surface.
Here, one-electron energy is ¢, referring to the Fermi energy as zero. The above
Hamiltonian can be re-expressed by

H= Z aka;rak - Z V(K k; q)az,wa;[fqak/ak. )
kK K kiq
The wave function can usually be expressed as /(. .., ng, ..., ny, .. .), where n; and

np take values either 1 or 0, depending on one-particle states k and k' either
occupied or unoccupied, respectively. In contrast, in BCS theory the Cooper’s
pair is expressed by a two-particle wave function ¥ (ny, ny), and therefore using
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] Tt

number operators n; = aya; and n, = a’ a_;, we rewrite (i) for the BCS Hamil-
tonian Hpcs as

Hpcs = — Z (I —np —n_g)ex — VZaIaik,a,kak, (ii)
Kk

k

where V is assumed as a constant. Applying (ii) to Y (n, n_) of the two-particle
subspace, we have paired states for ny = n_; of k and — k, which are either both
occupied or both unoccupied, and hence

(1= = n )y (1, 1) = =Y (1e, 1)
and

(1 —me —n g ) (0, 0-4) = Y (0x, 0-).

Therefore, expressing these paired states by column matrices (?) and (é)

respectively, the operator 1 — n; — n_; can be expressed by a matrix

1 0
l—l’lk —N_j = 0 —1 = Okz-

This is the z-component of Pauli’s matrix . Further noting that

aZaJ[klﬁ(lkl_k) =0 and aZaJ[kt//(OkO_k) = l//(lkl_k),

Tl

the operator a; a_; can be related to x- and y-components of Pauli’s . Considering

that
(01 L (0 i
%=\ o) M =i o)

n . 0 2
O = Okx + 10y = 0 0

we can define

and

- . 0 0
Oy = Okx — 10y = 2 0/

Then, we can obtain the relations

1
a,iraJ[k = 50,: and a_;a; = 50:.

Using these results,
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Vv
— E : § : -+
HBCS - — Sko-k,z - Z O'k/O'k
% K
%4
=- E &Okz — g (O 1Ok x + Ok yOky)- (iii)
% o

In this argument, oy ; is an operator for creating or destroying the paired states =+ k.
However, writing (iii) as a scalar product of vectors o and a field F; defined by

Vv |4
(-5 ; Ok x; — 5 ;Gk’,y;8k>7

that is,

HBCSZ—ZO'k'Fk~ (iv)
7

This can be interpreted as the interaction energy of classical vectors o7 in the field
F; that represents a Weiss field due to the other o in the system. In this classical
interpretation, in order for (iv) to be minimum, o should be parallel to Fy,
characterizing for these quantities to be in phase.

In (iv), the direction of such classical vectors may be expressed in terms of an
angle 6; with respect to the z-axis, representing the effective sinusoidal phase.
Assuming o confined to the xz-plane for simplicity, we can write the relation
oy || Fy as

= tan 0. )

Fk,x _ Okx _ %Zk’ Ok x
Fr. o &

In fact, V is a function of kX’ and k, depending also on distances, but it can be

assumed as constant in the critical region, if characterized by smaller |k| and &.

Further, judging from (13.8c), V(K', k) has a well-defined singularity. Assuming for

the singularity to occur at 0; = 0, we can write gy , = gy, sin 0. Noticing that the

amplitude oy, depends only on [k'|, we can write V;, = >, V(k', k)o}-|, and obtain

Vi . .
tan 0, = # Z sin 0. (vi)

Such a phase angle 6; as determined by (vi) expresses the mesoscopic feature of
superconducting condensate clusters conveniently, which is however not directly
observable in conducting materials. Nevertheless, we pay attention to the singular
behavior of tan 6 at 0;, = 0, which represents a boundary wall, like domain walls in
magnetic ordering processes. Writing tan 6, = Ay /e, the singularity of 6; can be
attributed to the parameter A, which satisfies the relation
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V! A V! 1
A=k e o 1=y (vii)

2 % VAL + e 2% AL+

The summation ) ,, --- can be replaced by integration with respect to distributed
region of gy, if |k’| is small. Assuming energies ¢ are distributed between — fiwp
and + howp, where wp is the Debye’s frequency, (vii) can be calculated by
integration

V'pg J thop g , . hop
1= = V'pgsinh™ ——,
2 —hop A /Az + 82 F A

where indexes k and &’ are omitted for simplicity, and pg is the density of states at
the Fermi level. Therefore, for V/pr = 1, we can derive the expression

th 1
A=———>2h — .
sinh(1/Vipp) " e""( prF> i

This is the BCS formula for the energy gap 4, which is positive, if V' > 0. It
is noted that the field F is by no means static, but interpreted for inverting the

quasispin o7 between oy, = *1, for which a work 2|F| = 2y/¢& + A,% is required.
The minimum work is 2A at the Fermi level that is obtained by &, — 0, which is the
energy gap in a superconductor at T < T..

The BCS Hamiltonian Hpcs is responsible for exciting Cooper’s pairs at the
Fermi level, so that the ground state in a superconductor can be specified by (iv)
plus the energy for creating paired electrons. Assuming oy, = 0, the ground state
can be characterized by

E,=— Zskako cos 0, —% Zak’xakx + ZZSk
k k' k

pair

1 .
= _ Ek: E0ko (cos 0 + 3 sin 0 tan 0k> + Z 2¢;.

pair

Simplifying the second term with (vii) as

A? 2A2
g sksinHktaHQk:E —_— =
2 Vv’
k KoyJel+ A

and replacing >, --- by integration, we have
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Assuming A = hwp, this can be evaluated as

) AN I

For thermodynamics, we have to deal with the energy gap 4 given by (viii) as a
function of temperature. Near the critical temperature T, the interaction potential
Vi=> V(K k)oy,0or VY, op. in (v) may be assumed to be determined by the
statistical average

(+DFy. (=DFy.

S e R Y Fp.
(ow:) = (+1)FA/ = 1)Fk/ kT
exp + exp T B
Hence, (v) can be written as
tan 0 Z tanh sm 0 A
k — e K =
2e ek

where Fy/, is in energy unit, so that we can replace it by 4/ az, + Ai,. If the transition
is characterized by A = 0, this equation can specify the critical temperature 7 as

1= VZ26/<' tanh—
Replacing 3", --- by integration, we obtain

dé, (ix)

2 J\+th de e Jth/ZkBTC tanhé
Vo

— tanh = —
—liop & 2kB T 0 5

which is the BCS formula for T,. By graphical integration, these authors showed
that T, is given as

1
kgT. = 1,14hwp exp (— W) x)
F

Combined with (viii), the energy gap is related with T, as 2A = 3.5T.. Experimen-
tally, the values of 2A /T, obtained from Sn, Al, Pb, and Cd are 3.5, 3.4, 4.1 and 3.3,
respectively. In fact, 4 is a function of temperature 7. Figure 13.3 shows the
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Fig. 13.3 The energy gap E, i
as a function of temperature S 10k
T. The BCS formula "Ld’o ’
compared with experimental ~ L
results (from [35]). e
s 08+
06
04r
02+

02 04 06 08 10
T/T.

theoretical curve of A/kgT, versus T/T., where experimental results are compared
with the BCS calculation. The agreement is quite reasonable, supporting the
assumption for the interaction potential V. The isotope effect expressed by
MO3T, = constant follows directly from (x), since the Debye’s frequency wp is
proportional to M0,

13.3.3 BCS Ground States

Supported by the isotope effect, the BCS Hamiltonian describes the interacting
electron—lattice system in a metal. We need next to formulate the equation of
motion for thermodynamics of superconducting transition.

Writing the BCS Hamiltonian (i) as Hpcs = Y, Hy, where

Hk = sk(aZak + a]ika,k) — VZaZ,aik,a,kak,
k!

.I.

the operators a; and a; are dynamical variables whose time variation is determined
by the Heisenberg equation;. Therefore from

T
ihaaif:[aZaHk] and ih%Z[dk,Hk]

with the identity relations aya; = 0 and aIaI = 0, we obtain
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1ha, = grap — Cltk Vv E a_pdy
k/
and

ihdtk = —eka]:k —ay VZa,JLaJ[k,
k/

We can define the quantity Ay =V) ., a_pay and its complex conjugate

A=V, a,]:,atk,, expressing interactions between condensates for |g;| < fiwp.
If |&x| > howp, we have to take Ay = A = 0, signifying for no electron pairs to be
formed.

Using Ay, the equations of motion are linearized, that is,

f

lhak = &dyr — Aka_k and ihd,k = —Ek(lik — A;:ak. (1)

These equations have a solution proportional to exp{—i(4;/%)t}, if we can set a
determinant equation

Ak — €k Ay 2 2 X .
=0 or A, =¢ +AA;. ii
Ay Ak + &k k k Kk (i)

Equations (i) represent an eigenvalue problem, where a real 4; expresses the
binding energy of a Cooper’s pair. The operators for (i) and (ii) can be determined
by linear combinations of these one-electron operators

O = Updy — Vid_yp, O = Upd—; + Viay,

[ t l

o = Upay — Vid—p, 0., = Upd_, + Vidy.

(iii)

Relations (iii) are known as the Bogoliubov transformation. The coefficients u; and
vy are real and symmetric and antisymmetric, respectively, with regard to inversion
k — —k, that is, uy = u_; and vy = —v_;, normalized as u% + v,% = 1. And, for the
operators o, and oy,we have the following anticommutator relations:

[O(k, OCZ/]+ = UpUp [ak,a;{,h + ViV [aik,a,krh = 5/(1(/(14% =+ Vi) = 5]<]<f

and

[O(k, Ot_k]Jr = ukvk[ak,a;rh - vkuk[aik, (l_k]Jr = UV} — ViU = 0.
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Differentiating (i), we obtain Azu; = &ruy + Agvi. Combining this result with
(ii), we derive the relation

Ak(u,% - v2) = 2& U Vi
It is noted that this expression is identical to tan 0; = Ay/é, which was previously
discussed in Sect. 12.3.2, if we write

0 0
Up = cosgk and v, = sin?k. @iv)

Using the operator oy, the ground state of the system may be represented by a
wave function

00 Dy = (_Vk)(uk + Vkazatk)q)vao

This is not normalized, however omitting the factor — v, we can confirm that

(@ vaC|(”k +via- xar) (ug + Vka/ir )|(DvaC> = (”i + Vl%)<q)va0||q)vaC>§

hence, the function

H uk—l—vkak k)cbm (13.11)
k

is considered for the normalized wave function for the ground state. This wave
function (13.11) was originally postulated in the BCS theory, proposing that
Cooper’s pairs and unpaired condensates are determined by probabilities v; and
u?, respectively. With Bogoliubov’s operators’ creation and annihilation of a
Cooper’s pair can be described conveniently. In fact, the normalization u7 + v = 1
assumed in the BCS theory is confirmed by Bogoliubov’s theory.

We can further verify that

oDy o o (oot H U j o Dyae =0 for ooy =0,
KAk

signifying annihilation of a pseudoparticle. Also, from
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Otlir,q)o = (uk/a;r, — vk/a_k«)(uk/ + vk/a,]:,aik,) H (uk + vka;{atk)(l)vac
kA

= Clz, H (Mk + Vkala-‘;k)q)vacv
ey

f

we see that the operator o, creates a single particle; oc,]:oik, is for the pair
creation.

The number operator in the k-state can be expressed in terms of Bogoliubov
operators as

] )

n = agag = (MkOCZ + VkOC,k)(btkOCk +vroy).

Using 6; given by (iv), u; and v; in (12.9) are related to

O 1 ] 0, 1 -
ufzcosZ;:2<1+Z> and v%zsin22k:2<l—ji>, (13.12)

indicating that these probabilities depend on the ratio & /.

Finally, the previous result of the energy gap E, can be verified with @, in
(13.11). Namely, the expectation value of the kinetic energy is expressed as

(@olaay|@0) = (Dol Do) = v

and the potential energy term is

— <q)o‘a];|»-/aik/afk”ak”|q)0> = <(Do|14k’Vk’Mk”Vk”OLk’OJk/OC—k”Oﬂiku|(I)o> = l,{k/vk/uk//vk/r,

Hence,

<®0‘HBCS |(I)0> =2 Z ekvz -V Z UpViUp Vi
k kK

= Zek(l —cos 0;) 7% Zsin@k sin Oy

k kK

AZ
—Zskcos9k——.
T Vv

The energy gap is then given as E, = (@, |Hpcs| Do) + D |6x]-
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13.3.4 Superconducting States at Finite Temperatures

The BCS result in Sect. 13.3.3 is applicable to absolute zero of temperature.
However, at a finite temperature, the ground state @, should be modified by adiabatic
excitations of condensates, as described by Ginzburg-Landau’s theory. In the
following, we discuss the BCS theory modified in thermodynamic environment.

The number of quasiparticles of Cooper’s pairs can be assumed to be tempera-
ture dependent, for which we consider the complete set of temperature-dependent
states

(Do), ol [0o), o ach D), ...

forming the basis. Here, |- - -) expresses temperature-dependent ket-states.
To study thermodynamic properties of a superconductor, we need to introduce
the statistical average number of quasiparticles as given by the function

fe= <0f/J<rOfk>-

Assuming statistical independence of excitations, the entropy of the system can be
given by

S=ks > {filnfi+ (1 —fi)In(1 —fi)}.
k

.’.

We re-express the Hamiltonian of interacting pairs Hy = & (a ax +aika,k)f

V(a,faika,kak) by the Bogoliubov transformation. The kinetic energy term can
be converted to

Z <8k(ukai + o) (uroe + kaxtk)) = Z a{vi(l —fi) + upfi}, ()

k k

P

in which we noted that o o’ , = 0. The first term on the right-hand side of (i) can be
interpreted as representing the condensate system that has no quasiparticle at the
state of wave vector k, with thermal probability vi. The second term, on the other
hand, u%z is the probability for the state to be occupied by quasiparticles. The factors
1 — fi and f; in these terms are the statistical weights due to average numbers of
quasiparticles.

Similarly, the interaction term can be calculated as

D Vil K5q) (1= 26)(1 = 2fie).

k&'
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It is noted from (13.8¢) that V/(k,k’; ¢) can be factorized as Vi (q)V_x(—¢q). There-
fore, the thermodynamic potential can be expressed as

g(T,p) = (Hacs) — TS = Y _ex{uifi +vi(1 —fo)}
3

— Z ViV vive (1 — 2fi) (1 — 2fw) (ii)

k&K

—ksT > {felnfi + (1 = fi) In(1 = fi)}.
k

We first minimize this Gibbs function with respect to v;. This procedure is the same
as in the zero-temperature case of Sect. 13.3.3, so that we can arrive at (13.12)
without repeating calculation, that is,

1 ~
and V=2 |1-—— % ,

2 1 &
-
2 & + A(T)?

& + A (T)

where Ay (T) = >, Viugvi (1 — 2fy), representing one-half of the gap at the super-
conducting transition, which is now verified as temperature dependent.
Minimizing the Gibbs function (ii) with respect to f;, we obtain

ksT{Infi +In(1 —fi)} + /&2 + A(T)> = 0,

that is,

1

- where E; =+/&2+ AT
TFopE ) e Be= e+ AdT)

Ji

This is the Fermi—Dirac distribution function for temperature-dependent Ej.

In fact, as seen from Fig.12.2, the Gibbs potential is a function of tem-
perature T as well as an applied magnetic field H, that is, G(H,T). In the
absence of H, the superconducting transition at 7T, is second order characterized
by no latent heat, signifying that Ex(T.) = 0. On the other hand, in the presence
of H, the transition is discontinuous, as signified by a finite energy gap Ex(T)
that is temperature dependent. With the BCS theory, the value of E; is thus
calculable, as shown in Fig. 13.3, where the calculated result is compared with
experimental values from some superconducting metals, showing a reasonable
agreement.
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Exercises 13

1. We can define creation and annihilation operators for Cooper’s pairs by

[

ap =a;,a’, and ap = aqa_y,

respectively, where g, a’,, etc., are one-particle Fermion operators. Show that
the pair operators satisfy the commutation relations

lag,a)

ag, ay) = (1 —ng —n_y)opp,
lax, ar] =0,
and
lag, av], = 2arap (1 — Spp).

2. Show that the total number of particles is conserved with the equations of motion
(i) in Sect. 13.3.3.

3. In this chapter, we defined the coherence length & with respect to the critical
wave vector of modulation ¢,. Justify the reason why it is referred to as
coherence length.



Appendix

1. Elliptic Integrals
Elliptic integrals of the first kind:

V4

© d sin g d
F(K»<P>=/—(p,2:/ > I
0 V1—r2sin®¢  Jo /(1 —-22)(1 —«222)

and the complete elliptic integral is

= K(k).

n/2 1
F(K,E> :/ do :/ dz
2 0o V1—rZsinfe  Jo /(1 —22)(1—K222)

Elliptic integral of the second kind:

® . sing 1 _ 42,2
E(i@ga):/ 4/ 1 — K2 sin gadcp:/ ﬁdz7
0 0
and the complete elliptic integral is
/2 1 1 — ,222
E(K,g) :/0 \/1—K2sin2<pdgoz/o \/TKZ;(]ZZE(K)
K(x)

= / dn?(u, x)du.
0

where dn(u, x) is the Jacobi’s dn-function.
Defining k' = V1 — k2, K(x') = K’, and E(x') = E', we have the relation

EK' +E'K — KK' = g (Legendre’s relation. )

229
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2. Jacobi’s Elliptic Function

From the elliptic integral

) /" dz
u(x) =
0 /(1 —22)(1 —K222)
we write the reverse function as
z=snu = sn(u, x),

which is Jacobi’s sn-function. Considering the relations with trigonometric and
hyperbolic functions, we also define the corresponding cn- and dn-functions by

2

cn’u = 1 — sn?

u and dn’u =1 — K*sn’u.

In the limit of k — 0,
snu — sinu, cnu— cosu, and dnu — 1.
On the other hand, if k — 1, we have

sny — tanhu, cnu — sechu, and dnu — sechu.

Differential formula:
dsnu denu ddnu )
=cnudnu, = —snudnu, = —K“snucnu.
du du du
Expansion formula:
14+ 5 14l +r*
snu=u— u + u +

3! 5! o

1, 1+42 , 1+4432 +16*
cnuzl—iu—f— TR al w4,

2 4 VAN 16 442 4\,.2
dnuzl—%u2+(+4lf)’< u4—( i 2'+K)K ub +
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