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Preface

As a classic theory dealing with energy and its transitions in matter, ther-
modynamics has always been a valuable theoretical tool, providing useful in-
sights into all fields of science and technology since the 19th century. In this
book, the basic underlying principles of thermodynamics are introduced con-
cisely and their applicability to the behavior of all classes of materials, such as
metals and alloys, ceramics, semiconductors, and polymers, is illustrated in
detail. The book accentuates more physical thermodynamics and statistical
physics closely tied to computer simulation results, which could deepen our
present understanding of material’s properties on a physical basis. This book
acts also as an authored advanced text, including authors’ findings on the
new topics of nanothermodynamics or the size effect of thermodynamic func-
tions. Thus, the book intends to provide an integrated approach to macro-
(or classical), meso- and nano-, and microscopic (or statistical) thermody-
namics within the framework of materials science, which helps us to see a
natural connection between the molecular and nanometer level properties of
systems and their collective properties on macroscopic scales, benefiting our
current understanding of nanoscience and nanotechnology in 21st century.
Since nanothermodynamics has only been recently developed, we emphasize
the close relationship between the text and the new literature on this subject.

This book is intended for scientists, engineers and graduate students en-
gaged in all disciplines of materials science.

Qing Jiang and Zi Wen
Jilin University, May 2010
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Nomenclature

al lattice constant
aB activity of material B
aemf thermal emf
alc the lattice constants of cubic phase
alt the lattice constants of tetragonal phase
A surface or cross-sectional area
A′ material constant
A0 surface atom density
AAFM(∞) the exchange stiffness; AAFM(∞) = 2JAFM(∞)s2/al

Af austenite transition finish temperature
AL area of two-dimensional unit cell of liquid
AS area of two-dimensional unit cell of solid
As austenite transition start temperature
b Burgers length
b Burgers vector
b′ cut-off distance
B magnetic induction
B Bucky diamond
B′ 2Svib(1− θ)/(3Rθ)
Bm bulk modulus
bcc body centered cubic structure
c c = c′H ′v/Hv

c1 additional condition for different surface states
ce equilibrium concentration of vacancy
C heat capacity
C′ concentration in the fluid for a particle of radius r
C′0 bulk saturation concentration
CB magnetic contribution to the heat capacity
CCurie Curie constant
Cd concentration for diffusion
CHmag heat capacity at constant magnetic field
Cm molar heat capacity
CM heat capacity at constant magnetic moment
CP,m molar heat capacity at constant pressure
CV,m molar heat capacity at constant volume
CN coordination number
CNT classical nucleation theory



ΔCpss heat capacity difference between polymorphous solid phases of
the same substance

d dimension of crystal
D diameter
D diamond
dc diamond-type structure

e e = −4u′ΔS/(3λN1/3
A V

2/3
s )

E total energy
E∗ migration energy for diffusion
E0 FM/AFM interfacial energy
Ec bulk cohesive energy
Eci(N) cohesive energies of atoms at interior of cluster
Ecr crystalline field
Ecs(N) cohesive energies of atoms at surface of cluster
Ee electric field in vacumm
Eel elastic energy
Eexc spin-spin exchange interaction energy
Efr frictional energy
Eg band gap width
Emp magnetic potential energy
Ep potential energy
EPA photoabsorption energy
EPL photoluminescence energy
Es energy for electron-phonon coupling
Eth(T ) thermal energy
Ev van der Waals interlayer attraction
Evx the vacancy formation energy of the x site
EY Young’s modulus
f surface or interface stress

f f = (ff + fr)/2
fB activity coefficient of material B
fc fraction of electrons in the crystal
fe elastic force
ff interface stress of forward transition
fo force
fr interface stress of reverse transition
F Helmholtz function
F fullerenes
fcc face centered cubic structure
fi number of degree of freedom
g degeneracy of the level
g′ geometry factor of the lattice type considered
gL(r) liquid radial distribution function
gm Gibbs free energy difference between bulk liquid and crystal
G Gibbs function or Gibbs free energy
G graphite
G′ magnetic Gibbs function
Gd misfit dislocation energy



Gel elastic Gibbs free energy
Gi non-coherent interface Gibbs free energy
Gs surface free energy
Gshear shear modulus
Gv volume Gibbs free energy
ΔG Gibbs free energy change
h atomic diameter
h and l subscripts for high and low pressure phases
hf atomic diameter of films
hP Planck’s constant (6.62× 10−34 J·s)
hs atomic diameter of substrate
H enthalpy
H ′ magnetic enthalpy
He exchange bias field
He0 exchange bias field at 0K, E0/(MFMtFM)
HeTb exchange bias at Tbl

Hmag magnetic field intensity
Hs critical or threshold field required to destroy superconductivity

in a metal
Hs,0 critical field at 0K
hcp hexagonal close packed structure
hr hour
ΔHs solid transition enthalpy
ΔHsn superconductor transition enthalpy
ΔHv heat of evaporation at Tm or Tb

ΔH ′v heat of evaporation at T = 0 K
i i-th level
I current
Ir moment of inertia
J diffusing flux
J ′ spin interact energy
JAFM the exchange integral
Jd diffusing coefficient
Jint interface coupling exchange between the FM and AFM spins
Ji, Js, Jsub exchange constant or exchange coefficient where subscripts “i”,

“s”, and “sub” show interface, surface and substrate, respec-
tively and Ji = Js + Jsub

k Boltzmann’s constant
k scaling exponent
k′ rate of adsorption
k−1 rate of evaporation from the completely covered surface at a

certain T
km a given macrostate
kr ratio of CP and CV

ks spring constant
K K = k′/k−1

KAFM the magnetic anisotropy constant
led electric displacement
ls length of step



L liquid
ΔL thickness of surface layer of nanoparticles
m∗ effective mass

m′ m = (2− υ1 − υ1/2
1 )/2

M magnetic moment
Mf martensite transition finish temperature
MFM fixed saturation magnetization of the FM layer
Ms martensite transition start temperature
Mw molecular or atomic weight
min and max minimum and maximum value
n number of atoms in a molecule
n′ layer number of epitaxially grown films
n0 number of energy level
n′c critical layer number
ne equibrium number of vacancy
ns symmetry number
N number of particles
NA Avogadro constant
Nd dislocation number
O carbon onions
P pressure

P P = (Pf + Pr)/2
Pd electric polarization
Pe external pressure
Pf forward transition pressure
Pin internal pressure
Pn necessary pressure for the solid transition in thermodynamic

equilibrium
Pr reverse transition pressure
Ps macroscopic spontaneous polarization
Pss surface spontaneous polarization
Psv interior spontaneous polarization
Pw static pressure hysteresis width
q q = (dρL/dT )[Tm/ρL(Tm)]
Q heat
Qij electrostrictive coefficient
QP heat at constant pressure
QV heat at constant volume
r radius, half thickness of film
r∗ critical radius of the nucleation
r0 critical radius between solid and liquid
rc critical radius of nanocarbon for phase transition
re effective dislocation stress field radius
rg grain size
rh radius of the hollow part of cylinder
ri denote the vector position of the i-th link in the chain
R ideal gas constant
R end-to-end vector
Rb net displacement magnitude
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Re equimolar radius
Rs radius of surface tension
R cell position
s solid
s spin value
s11, s12 elastic compliance constants
S entropy
sa atoms/molecules at the surface
sc simple cubic structure
ΔSb bulk solid-vapor transition entropy
ΔSel electronic entropy
ΔSm melting entropy
ΔSpos positional entropy
ΔSs solid transition entropy
ΔSsn superconductor transition entropy
ΔSvib vibrational entropy
t time
t0 thickness of film that has firmly attached to a substrate
tC Celsius temperature
tf thickness of a monolayer
tFM thickness of FM layer
th isotropic film of thickness
tr molecular relaxation time
ts surface melting layer thickness
T absolute temperature
T0 temperature at which the Gibbs free energy of austenite and

martensitic phase are equal
T0b temperature at which the austenite and ferrite of the same com-

position have an identical G value
Tb bulk solid-vapor transition temperature
Tbl blocking temperature
Tc the critical temperature
TC Curie temperature
Tf freezing temperature
Tg glass transition temperature
TK Kauzmann temperature
Tm melting temperature
Tmh melting temperature of high pressure phase
Tml melting temperature of low pressure phase
Tm(r) size dependent melting temperature
Tn critical temperature of the nucleation
TN the Néel temperature
Tr reduced temperature
Troom room temperature
Ts solid transition temperature
Ts,0 superconductor transition temperature in the absence of a mag-

netic field
Tt triple point temperature



u potential difference
u′ u′ = (dρL/dT )/ρL(Tm)
u(r) potential energy function
ud misfit dislocation energy of a single dislocation
ue elastic free energy of unit volume
U internal energy
υ vibrational quantum number
υ1 υ1 = Zs/Zb

υ′1 υ′1 = Z′s/Z
′
b

vu ultrasound propagation velocity
V volume
VL g-atom volume of liquid
Vs g-atom volume of crystal
Vf g-atom volume of the film
va atoms/molecules within the particle
w a critical exponent
w w = γsv0/γLv0

w′ weight fraction of the second polymer component
wr reversible work
W mechanical work
W ∗ useful work
Y biaxial modulus, Y = EY/(1− νP)
Ys stability parameter
z a number of order unity
zb coordinates without CN imperfection
zi coordinates with CN imperfection
Z partition function
Zb coordination number (CN) of interior atom
Z′b next nearest CN of interior atom
Zhkl broken bond number
Zs coordination number of surface atom
Zs′ next nearest CN of surface atom

α coefficient of thermal expansion
α′ Lagrangian multiplier
αF ferrite phase
αM martensitic phase
αr σ2

s /σ
2
v

αs σ2
s /σ

2
v for glass transition

β compressibility
β′ Lagrangian multiplier
γA austenitic phase
γexp experimental values of interface energy
γi non-coherent interface
γLv0 bulk liquid-vapor interface energy
γ′Lv0(T ) γ′Lv0(T ) = dγLv0(T )/dT
γsL0 bulk solid-liquid interface energy
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δ Tolman’s length, δ = Re −Rs

δmin minimum value of δ
δv vertical distance from the surface of tension to the dividing

surface
δ∞ Tolman’s length when r →∞
ε bond energy
ε0 permittivity of free space
εa actual permittivity
εe electronic energy
εemf electromotive force
εF Fermi energy
εi the energy in level i
εn nuclear energy
εn′ kinetic energy of the electrons
εp kinetic energy of the holes
εr relative permittivity
εrt rotational energy
εt translational energy
εv vibrational energy
ζ ratio of the surface volume to the entire volume
η packing density
ηv dynamic viscosity
θ order parameter
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and that of the film surface
θa contact angle
θc (Tm − T )/Tm, degree of undercooling
θm rotation angle of the magnetic dipole from its zero energy po-
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θs fraction of the surface occupied by gas molecules
ϑs and ϑL electrical conductivity of the crystal and the melt
Θ characteristic temperature
ΘD Debye temperature
ΘE Einstein temperature
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κs κs = κ− 2q/3

λ 2−1/6h

λ′ λ′ = (81/2/3)(6η/π)2/3

λc critical misfit
Λ critical exponent
μ chemical potential
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μ0 permeability of free space
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νs, νL characteristic vibration frequencies of the particles in the crys-
tal and melt

ξ correlation length
ξ0 microscopic length
ξ1 Jint/(4KAFMral)
Π the number of phases presented
ρ density
σ root-mean-square (rms) average amplitude of atomic thermal

vibration
ς strain
τ Turnbull coefficient
τij τij = ∂γsv/∂ςij
τs shear stress
Γ jump frequency of atom
Γ ′ generic extensive property of a solution
υ a constant related to CN
Υ mean-square root error between the predicted and the experi-

mental results
ϕ total bond strength ratio between next-nearest neighbor and

the nearest one
ϕc volume fraction of clusters at Tm

φ geometric factor
Φ total flux
χ electric susceptibility
ψ effective dislocation stress field radius
ω interaction parameter
� � = |γLv0(Tm)− γe

Lv0(Tm)|/γe
Lv0(Tm)

Ω the number of microstates

b stress
l 1/νc
Δ�c Peltier heat
∞ bulk size



Chapter 1 Fundamentals of Thermodynamics

This chapter firstly looks back on the development of macroscopic thermo-
dynamics during the last three hundred years and its historical contribution
to the social evolvement. The present achievement and challenges are also
discussed. To clearly understand the thermodynamic laws, the essential con-
cepts of thermodynamics are defined and clarified. Further, the macroscopic
thermodynamics of materials and the fundamental principles of four ther-
modynamics laws are introduced, which are the essential basis of the later
chapters. The intrinsical relationships between these thermodynamics laws
through a series of mathematical deductions are given, which additionally re-
sult in the acquirement of the most important physical amounts of materials.

1.1 Thermodynamics of Materials Science, Scope and

Special Features of the Book

Classical thermodynamics is a branch of physics originating in the nineteenth
century as scientists were first discovering how to build and operate steam
engines [1], which primarily led to the industrial revolution. A steam engine
is a heat engine that performs mechanical work using steam as its working
fluid. Historically, thermodynamics developed just out of needs to understand
the nature of these heat engines and to increase the efficiency of transition
between heat and work [2]. With a deeper understanding of the relationship
between heat, work and temperature, the design of engines of specific power
output and efficiency became possible. Although the relationship between
science and technology in this period is complex, it is fair to say that without
the introduction of scientific thermodynamic methods, the development of
the industrial revolution would not have been so swift.

The demands of the industrial revolution had put the “standard model”
of physics in a crisis around the question of “what is energy?”. Energy as the
capacity to do work is essentially an abstract concept. It cannot be measured
directly and thus has no definite value. Thermodynamics, dealing with energy
and its transitions, is based on two laws of nature, namely the first and
the second laws of thermodynamics [3]. Thermodynamics tells us that the
energy differences can be measured by heat and work removed or added.



2 Chapter 1 Fundamentals of Thermodynamics

Heat and work are not stored as such anywhere, but are the two forms of
energy transfer. Such results of thermodynamics meant that physics could be
rewritten in terms of energy. Therefore, thermodynamics is one of the most
basic sciences with applications in all fields of science and technology since
its results are essential for physics, chemistry, materials science, chemical
engineering, aerospace and mechanical engineering, cell biology, biomedical
engineering, and economics [4].

In wide range of applications of thermodynamics, the scientific discipline
that intersects the areas of materials science and thermodynamics is com-
monly known as thermodynamics of materials. Materials science involves
investigating relationships of materials between manufacture, compositions
and structures, properties, and performance [5]. The major determinants for
materials structures and thus their properties are their constituent elements
and the way in which they have been processed into their final forms as well
as their activity between the manufactured parts and working surroundings.
The development of thermodynamics both drove and was driven by atomic
theory and even by quantum mechanics. The development of thermodynam-
ics also motivated new directions in probability statistics. Atomic theory tells
us that the electrons in the constituent elements occupy a set of stable en-
ergy levels and can transform between these states by absorbing or emitting
photons that match the energy differences between the levels. Such electron
structure of the individual atoms in turn determined various types of atomic
interaction bondings that exist among constituent atoms or molecules. With-
out a doubt, materials store energy through the arrangement and motion of
the constituent atoms, and so the way that a material changes its atomic
structure during undergoing a change in thermodynamic state is governed
by the laws of thermodynamics. Thermodynamics thus affects materials mi-
crostructures, defect concentration, atomic ordering, etc. Altogether, energy
has to do with materials science. Thermodynamics of materials just deals with
the relationships between energy and matters and describes how the prop-
erties of materials are affected by thermodynamic processes. In many cases,
thermodynamics of materials is a crucial factor to good engineering design
and performance forecast of manufactured components, parts, devices, tools,
machines, etc. [6].

The last 50 years witnessed progressive miniaturization of the components
employed in the construction of devices and machines [7]. One of the most
striking significance of miniaturizing a solid to nanometer scale is the tun-
ability in physical and chemical properties compared with the corresponding
more bulky solids. Miniaturization itself has also achieved evident progress in
the fields of microelectronics or super-large-scale integration circuits (SLIC)
along with constant speed of scaling to maximize transistor density due to
the requirements for electrical and functional performances. As predicted
by Moore’s law, new technology generations have been introduced with a
2-year or 18-month cycle, and packing density and device speed have in-
creased exponentially at rapidly decreasing cost per function [8]. Today,
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45 nm process technology is the world’s normal chip-manufacturing tech-
nology, where on-chip interconnect networks include eleven metal levels and
connect more than 107/mm2 transistors for 70 Mbit static random access
memory (SRAM) chips [9]. Moreover, in one of the biggest advancements
in fundamental transistor design, Intel used different transistor materials to
build 731 million transistors inside the present generation of the company’s
Intel Core i7 family in November, 2008 with 45 nm technique. Minimum fea-
ture sizes of the silicon technology are reduced to 32 nm in 2009. It is further
envisioned that this size will be 22 nm in 2011 and 15 nm in 2013, while the
ultimate feature sizes could be below 10 nm [8]. Nanomaterials have also been
and will be widely utilized in medicine fields. For instance, nanoparticles have
properties that are useful for the diagnosis and treatment of cancer, includ-
ing their size-dependent properties, stability in solvent, ideal size for delivery
within the body, and tunable surface chemistry for targeted delivery. Sev-
eral different nanoparticle building blocks possessing varied functionalities
can be assembled into one multifunctional composite nanoparticle, further
expanding their potential use in cancer diagnostics and therapeutics [10].
With the large surface-to-volume ratio, the surface, interface, and quantum
effects make such microscopic and mesoscopic systems differ substantially
from isolated atoms of their constituent elements or the corresponding bulk
counterparts in performance. The quantities, such as the phase transition
temperature, the Young’s modulus, and the extensibility of a solid, are no
longer constant but change with the materials size. Properties of nanomateri-
als determined by their shapes and sizes are indeed fascinating and form the
basis of the emerging field of nanoscience and nanotechnology that have been
recognized as the key area being of significance in science, technology, and
economics in the 21st century. Thus, as the bridge between the atomic and
macroscopic scales, the microscopic and mesoscopic systems have attracted
tremendous interest in recent years because of their novel mechanical, ther-
mal, acoustic, optical, electronic, dielectric, and magnetic properties from a
basic scientific viewpoint, as well as from their great potential in upcoming
technological applications such as SLIC and nano-electromechanic systems
(NEMS). Accordingly, a huge experimental database has been generated for
nanothermodynamics in past decades [10 – 13].

The physical and chemical properties of a macroscopic system can be well
described using the classical thermodynamics in terms of the Gibbs free en-
ergy or the continuum medium mechanics. At the atomic scale, the quantum
effect becomes dominant and the physical properties of a small object can
be reliably optimized in computations by solving the Schrödinger equations
for the behavior of electrons or the Newtonian motion of equations for the
atoms with a sum of averaged interatomic potentials as key factors to the
single body systems. However, for a small system at the nanometer regime,
called mesoscopic or furthermore microscopic system, both the classical and
quantum approaches encountered severe difficulties [10, 11].

Unfortunately, the unusual behavior of a nanostructure goes beyond the
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expectation and description of the classical theories in terms of the contin-
uum medium mechanics and the statistic thermodynamics. As the nanoth-
ermodynamics is an emerging field of study, fundamental progress is lagging
far behind the experimental exploitations. Many questions and challenges
are still open for discussion. Extending the validity of thermodynamics into
nanometer size range thus becomes an urgent task. It is fascinating that the
new variable of size and its combination with various thermodynamic pa-
rameters not only offer us opportunities to tune the physical properties of
nanomaterials, but also allow us to gain information that may be beyond
the scope of conventional approaches. Therefore, to complement the classical
and the quantum theories, a set of analytical expressions from the perspec-
tive of nanothermodynamics for the size dependence of the intrinsic physical
properties of a specimen is necessary where the size should be introduced as
an independent variant [12]. This technique to extend the suitability range
of the classic thermodynamics is usually called “top-down method”. It is
noteworthy that since scientists and engineers in the long history have been
familiar to the classic thermodynamic theory, for the most people, especially
for materials scientists and engineers, using an extension of the classic ther-
modynamics theory is a much easy way compared with other theories to go
into the nanoworld theoretically.

Based on the four thermodynamic laws, two essential and two additional,
thermodynamics gives a number of exact relationships between many prop-
erties of materials. However, they are a theoretical construction, and new
properties cannot be measured, but just be calculated. To get numerical
answers, the theoretical framework has to be connected to the behavior of
matters through properties that can be measured. However, before the advent
of computers, only limited descriptions of matters were possible. Computer
simulation as a new powerful technique could supply not only the details of
atomic structures, but also the corresponding electronic states. Thus, com-
puter simulation could support and make up the modeling results of nanoth-
ermodynamics. The use of computers starting around 1960 showed a gradual
and even a dramatic change for thermodynamics, and is now practiced. It be-
came increasingly possible to correlate data in proper models and then to use
these models in combination with the rigorous thermodynamic relations with
better answers. Almost all thermodynamic theories now rely on simulation
techniques. This method has been named “bottom-up method” [14].

Some thermodynamic properties are easier to understand and explain
based on the macroscale, while other phenomena are more easily illustrated
at the microscale. Macro- and microscale investigations are just two views
of the same thing. “Bottom-up method” together with “top-down method”
guarantees development of nanothermodynamics or mesoscopic thermody-
namics in recent years.

The book will start here in Chapter 1 with an introduction to the sub-
ject of macroscopic thermodynamics of materials and development of fun-
damental principle of four thermodynamics laws, which are essential for the
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later chapters. Chapter 2 discusses the microscopic point of view: statistical
mechanics, and how microscopic and macroscopic properties are connected.
Chapter 3 shows the thermodynamic descriptions of heat capacity and en-
tropy in solid, both are elementary parameters for many physical properties
of matters. Alloying of elements and compounds leads to the presence of
many interesting properties. In addition, some important chemical reactions
take place not among pure elements or compounds, but among elements or
compounds dissolved in one another as solution. A knowledge and under-
standing of phase diagrams are thus important to the engineers relating to
the design and control of the heat treatment procedure. Furthermore, the de-
velopment of a set of desirable mechanical characteristics for a material often
results from a phase transition with the help of the heat treatment technique.
Chapter 4 and Chapter 5 deal with thermodynamics of solution, phase dia-
grams, and phase transitions. Thermodynamic definitions of interface energy
and interface stress are clarified to formulate surface thermodynamics [10,
11]. This theme becomes more and more important due to the appearance
of nanotechnology. In Chapter 6, the interface thermodynamics is developed.
In all later three chapters, the basic underlying principle of thermodynam-
ics is applied to the behavior of all classes of materials, such as metals and
alloys, ceramics, semiconductors and polymers. An important characteristic
of this book is accentuation of a physical basis of thermodynamics. This is
partly because of the development of physical theory, which makes it pos-
sible to analyze, illustrate and understand the physical nature of materials
and materials properties. This book acts also as an authored advanced text,
including authors’ research production in the new topics of nanothermody-
namics or size effect of thermodynamic functions. Thus, authors intend to
provide integrated approach to macro-(or classical), meso- and nano-, and
microscopic (or statistical) thermodynamics.

1.2 Concepts of Thermodynamics [6, 15 – 17]

Thermodynamics is one of the basic sciences, which mathematically and
quantitatively deals with heat and work and their transfer of materials in
equilibrium, materials transitions, and their relationships with properties of
materials. The thermodynamics consists of four essential laws that govern the
study of energetic transitions and the relationships between thermodynamic
properties [2, 3]. Two of these – the first and the second laws – dispose energy,
directly or indirectly. Consequently they are of fundamental importance in
materials studies of energy transitions and usage. The remaining two state-
ments – the zeroth and the third laws – refer to thermodynamic properties and
possess a second importance. The power of thermodynamics is that every-
thing follows from these laws although it is hard for people to clarify how this
is followed. By logical reasoning and skillful manipulation of these laws, it
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is possible to correlate many properties of materials and to gain insight into
many chemical and physical changes that materials undergo. In this chapter,
we shall develop the principles of thermodynamics and show how they apply
to a system of any nature.

There are a number of terms used in the study of thermodynamics and
these concepts and terms are basilic in thermodynamic studies, hence their
physical meanings must be clear and will be introduced in the following sec-
tion.

As the word used in thermodynamics, a system is a part of the universe
under consideration. A real or imaginary boundary separates the system from
the rest of the universe, which is referred to as the environment. A useful clas-
sification of thermodynamic system is based on the nature of the boundary
and the flows of matter, energy and entropy through it. There are three kinds
of systems, depending on the kinds of interchanges taking place between a
system and its environment. If condition is such that no energy and matter
interchange with the environment occurs, the system is said to be isolated.
If there are interchanges of energy and matter between a system and its en-
vironment, the system is named being open. A boundary allowing matter
exchange is called permeable. The ocean would be an example of an open
system. If there is only interchange of energy (heat and work) crossing the
boundary, the system is called closed. A greenhouse is for instance such a
system where exchanging energy with its environment is present while sub-
stances keep constant. Whether a system interchanges heat, work or the both
is usually thought to be a property of its boundary, which may be adiabatic
(not allowing heat exchange) or rigid boundary (not allowing exchange of
work). In reality, a system can never be absolutely isolated from its environ-
ment, because there is always at least some slight coupling, even if only via
minimal gravitational attraction.

The state of a thermodynamic system at any instant is its condition of
existence at that instant, which is specified by values of a certain number
of state variables or properties. Different properties that can be used to de-
scribe the state of a system comprise energy, entropy, chemical composition,
temperature, pressure, volume, external field and substance size. The specifi-
cation of the state of the system must include the values of these properties.
A state of the system, which can be reproduced, means that the state is well
defined.

A property of a system depends only on the state of the system, and not
on how that state was attained. The uniqueness in the value of a property
at a state introduces naming state function for a property. By contrast, the
so-called path functions are quantities, which concern the path of a process
by which a system changes between two states. Since a property is a state
function, its differential must be an exact or perfect differential in a mathe-
matical term. The line integral of the differential of a property is independent
of the path or curve connecting the end states, and this integral vanishes in
the special case of a complete cycle.
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Thermodynamic properties of a system may be classified as intensive and
extensive properties. The former is independent of the extent or mass of the
system and can be specified at a specific point in the system, such as pressure,
temperature, and specific volume. The latter is not additive because it does
not scale with the size of the system and cannot be specified at a particular
point of space. Its value for the entire system is equal to the sum of its
values for all parts of the system. Volume, energy, and mass are instances
of extensive properties. To change the latter to the former is generally done
by normalizing the former by the size of the system, namely, by making the
property be a density.

For our purpose, the energy of a system can be divided into three cat-
egories: internal, potential, and kinetic energy. To take them in a reverse
order, kinetic energy refers to the energy possessed by the system due to
its overall motion, either translational or rotational. The kinetic energy to
which we refer is that of the entire system, other than that of the molecules
in the system. For instance, if the system is a gas, the kinetic energy is the
energy due to the macroscopic flow of the gas, not the motion of individ-
ual molecules. A familiar form of this energy is the translational energy of
(1/2)mv2 possessed by a body of mass m moving at a velocity v.

The potential energy of a system is a sum of the gravitational, centrifugal,
electrical, and magnetic potential energy. To illustrate this, the gravitational
potential energy is taken as an example. A 1 kg mass, 10 m above the ground,
clearly has a greater potential energy than the same mass on the ground.
The potential energy can be converted into other forms of energy, such as
the kinetic energy, if the mass is allowed to fall freely. The sizes of kinetic
and potential energy lies in the environment in which the system exists.
Particularly, the potential energy of a system depends on the choice of an
arbitrarily chosen zero level. However, the difference in the potential energy,
such as that between the mass at 10 m and that at the ground level, is the
same and is independent of the datum plane.

The internal energy of a thermodynamic system, denoted as U , is the sum
of all microscopic forms of energy of a system. It is related to the molecular
structure and degree of molecular activity and may be viewed as the sum of
kinetic and potential energy of the molecules. U includes the energy in all
chemical bonds, and the energy of the free, conduction electrons in metals. U
of a system depends on the inherent qualities, or properties, of materials in the
system, such as composition and physical form, as well as the environmental
variables (temperature, pressure, external fields, system size, etc.). U has
many forms, including mechanical, chemical, electrical, magnetic, surface,
thermal, and size ones. For example, a compressed spring has higher internal
energy (mechanical energy) than a spring without compression because the
former can do some work on changing (expanding) to the uncompressed state.

On the question of thermal energy, it is intuitive that U of a system
increases as its temperature T increases. The form of U of a material relating
to its T is called thermal energy, not heat. Note that heat is the energy in



8 Chapter 1 Fundamentals of Thermodynamics

transfer between a system and the environment. Thermal energy is possessed
by the system, and is a state function of a system and an extensive quantity.
The SI unit of the energy is the joule.

The entire structure of the science of classical thermodynamics is built on
the concept of equilibrium states. When a system is in equilibrium, unbal-
anced potential (or driving force), which tends to promote a change of state,
is absent. The unbalanced potential may be mechanical, thermal, chemical or
any combination of them. When temperature gradient is absent in a system,
the system should be in a state of thermal equilibrium, which is the subject
of the zeroth law of thermodynamics. If there are variations in pressure or
elastic stress within the system, parts of the system may move, either ex-
pand or contract. Eventually these motions (expansion or contraction) will
cease. When this has happened, the system is in mechanical equilibrium. If
a system has no tendency to undergo either a chemical reaction or a process
such as diffusion or solution, the system is regarded as in a state of chemical
equilibrium. If all these equilibrium is satisfied, the system is in a state of
thermodynamic equilibrium.

In the most part of this book, we shall consider systems that are in thermo-
dynamic equilibrium, or those in which the departure from thermodynamic
equilibrium is negligibly small. The local state of a system at thermodynamic
equilibrium is determined by the values of its intensive parameters, such as
pressure P , T , and system size (radius) r, etc. Specifically, thermodynamic
equilibrium is characterized by a minimum of a thermodynamic potential.
Usually the potential is the Helmholtz free energy, i.e. system is in a state at
constant T and volume V . Alternatively, the Gibbs free energy can be taken
as the potential, where the system is at constants P and T .

When any property of a system is changed, the state of the system varies,
and the system undergoes a process. A thermodynamic process may be de-
fined as the energetic evolution of a thermodynamic system from an initial
to a final state. Paths through the space of thermodynamic properties are
often specified by holding certain thermodynamic variables as constants. It
is useful to group these processes into pairs, in which each variable holding
constant is one member of a conjugate pair. For instance, P -V conjugate pair
is concerned with the transfer of mechanical or dynamic energy as the result
of work.

An isobaric process is a thermodynamic process in which P stays constant:
ΔP = 0 where Δ shows the difference. The heat transferred to the system
does work but also changes U of the system, such as a movable piston in
a cylinder. In this instance, P inside the cylinder is always at atmospheric
pressure, although it is isolated from the atmosphere. In other words, the
system is dynamically connected, by a movable boundary, to a constant-
pressure reservoir.

An isochoric process is one where V is held constant, meaning that the
mechanical work done by the system W is zero. It follows that for a sim-
ple system of two dimensions, any heat energy transferred to the system
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externally will be absorbed as U . An isochoric process is also known as an
isometric or isovolumetric process. An example would be to place a closed tin
can containing only air into a fire. To the first approximation, the can will
not expand, and the only change is that the gas gains U , as evidenced by its
increase in T and P . We may say that the system is dynamically insulated
from the environment by a rigid boundary.

The temperature-entropy (T -S) conjugate pair is concerned with the
transfer of thermal energy as the result of heating.

An isothermal process is a thermodynamic process where ΔT = 0. This
typically occurs when a system is in contact with an outside thermal reser-
voir (heat bath), and processes occur slowly enough to allow the system to
continually adjust to T of the reservoir through heat exchange. Having a sys-
tem immersed in a large constant-temperature bath is such a case. Any work
energy performed by the system will be lost to the bath, but its T will remain
constant. In other words, the system is thermally connected by a thermally
conductive boundary to a constant-temperature reservoir.

An adiabatic process is a process where there is no heat transferred into
or out of the system by heating or cooling. For a reversible process, this is
identical to an isentropic process. Namely, the system is thermally insulated
from its environment and its boundary is a thermal insulator. If a system
has entropy which has not yet reached its maximum equilibrium value, S will
increase even though the system is thermally insulated.

During a thermodynamic process, some unbalanced potential exists either
within the system or between it and the environment, which promotes the
change of state. If the unbalanced potential is infinitesimal so that the system
is infinitesimally close to a state of equilibrium at all times, such a process
is called quasistatic. A quasistatic process may be considered practically as
a series of equilibrium states and its path can graphically be represented as
a continuous line on a state diagram. By contrast, any process taking place
due to finite unbalanced potentials is non-quasistatic.

A system has undergone a reversible process if at the conclusion of the
process, the initial states of the system and the environment can be restored
without leaving any net change at all elsewhere. Otherwise, the process is
irreversible. A reversible process must be quasistatic, so that the process
can be made to traverse in the reverse order the series of equilibrium states
passed through during the original process, without change in magnitude of
any energy transfer but only a change in direction.

The most natural processes known to be reversible are an idealization.
Although real processes are always irreversible, some are almost reversible.
If a real process occurs very slowly, the system is thus virtually always in
equilibrium, the process can be considered reversible.
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1.3 Temperature and Zeroth Law of Thermodynamics

We often associate the concept of T with how hot or cold a system feels
when we touch it. Thus, our senses provide us with qualitative indications of
T . However, our senses are unreliable and often misleading. We thus need a
reliable and reproducible method, which makes quantitative measurements
establish the relative “hotness” or “coldness” of systems that is solely related
to T of the system.

After the three laws of thermodynamics were explained practically and
theoretically, the scientists tried to make thermodynamics systematically logi-
cal. It was realized that a basic statement about T was important and even
more fundamental. This statement is given the unusual name of the zeroth
law of thermodynamics: When two systems are each in thermal equilibrium
with a third system, the first two systems are in thermal equilibrium with
each other.

The above statement implies that all systems have a physical property
that determines whether or not they will be in thermal equilibrium when
they are placed in contact with other systems. This property is called tem-
perature. Two systems in thermal equilibrium with each other are at the
same T . Thus, thermometers can be called the “third system” and used to
define a temperature scale. The thermometer as a device is used to mea-
sure T of a system, with which the thermometer is in thermal equilibrium.
All thermometers make use of some physical properties exhibiting a change
with T that can be calibrated in order to make T measurable. Some of the
physical properties used are (1) V of a liquid, (2) the length of a solid,
(3) P of a gas held at constant V , (4) V of a gas held at constant P , (5) the
electric resistance of a conductor, and (6) the color of a very hot object. For
instance, VL, the volume of a liquid, is taken as such physical property in the
familiar liquid-in-glass mercury or alcohol thermometers. The thermometers
used most widely in precise experimental work are however the resistance
thermometer and the thermocouple.

Another important type of thermometer, although it is not suitable for
routine laboratory measurements, is the constant volume gas thermometer.
The behavior observed in this device is P variation with T of a fixed V of gas.
When the constant volume gas thermometer was developed, it was calibrated
using the ice and steam points of water. P and T values are then plotted on
a graph, as shown in Fig. 1.1.

The line connecting the two points serves as a calibration curve for mea-
suring unknown T . To measure T of a substance, we place the gas thermome-
ter in thermal contact with the substance and measure P of the gas. Then,
T of the substance from the calibration curve can be found.

If the curves in Fig. 1.1 are extended back toward negative T , we find a
starting result. In any case, regardless of the type of gas or the value of the
low starting P , P extrapolates to zero when the Celsius temperature tC is
−273.15 ◦C. This suggests that this particular T is universal in its importance,
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Fig. 1.1 P -T diagram of dilute gases where tC denotes Celsius temperature.

which does not depend on the substance used in the thermometer. In addition,
since the lowest P = 0, which would be a perfect vacuum, this T must
represent a lower bound for physical processes. Thus, we define this T as the
starting point of the absolute or the thermodynamic temperature, which is
utilized as the basis for the Kelvin temperature scale T = tC − 273.15 ◦C =
0 K. The size of one “degree” in the Kelvin scale (called a Kelvin or one K)
is chosen to be identical to the size of a degree in the Celsius scale. Thus, the
relationship that enables us to convert between tC and T is

tC = T − 273.15.

Early gas thermometers made use of ice and steam points according to the
procedure just described. However, these points are experimentally difficult
to duplicate because they are pressure-sensitive. Consequently, a procedure
based on two new points was adopted in 1954 by the International Committee
on Weights and Measures. They are 0 K and the triple point of water where
water, water vapor, and ice coexist in equilibrium with a unique T and P .
This convenient and reproducible reference T for the Kelvin scale is tC =
0.01 ◦C or T = 273.16 K and P = 4.58 mmHg 1© . Thus, the SI unit of T is
defined as 1/273.16 of this triple point.

1.4 First Law of Thermodynamics [6, 17, 18]

The first law of thermodynamics is essentially the law of conservation of
energy applied to thermodynamic systems. Through his famous experiments
in 1843 Joule was led to the postulate that heat and work were of equivalent
quantities, which is generally known as the first law of thermodynamics. This

1© 1 mmHg = 1.33322×102 Pa.
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law is most simply stated as “energy cannot be created or destroyed” or “the
energy of the universe is a constant”. More precise statement is for instances:
“a given amount of energy in a particular form can be converted to energy
of a different form and then transformed back into the same amount of the
original form. The total energy during the conversion and reverse process
is constant”. Remember that the first law states that energy is conserved
always. It is a universally valid law for all kinds of processes and provides a
connection between microscopic and macroscopic worlds.

In thermodynamics of materials, we are most interested in the transitions
of energy and how it governs the interaction of energy with materials. We
know that as a material changes its structure or as individual atoms of the
material increase their motion, the energy of the material changes. However,
this energy change must be balanced by an equal and opposite variation in
energy of the environment. Thus, although we haven’t developed much detail
of how energy and materials interact, we do know that the total energy is a
constant throughout the process regardless of the details of their interaction.

According to the first law of thermodynamics, it is useful to separate
changes to U of a thermodynamic system into two sorts of energy transfers:
heat Q and work W . Both indicate path dependent quantities. They only
have meaning when describing a property of the process, not the state of the
system. We cannot tell what the heat of a system is. We can however tell
what heat is associated with a well defined process. Neither heat nor work
is the energy contained in a system and neither is a system property. The
differential of a path function is inexact and is denoted by the symbol δ to
distinguish from the symbol d for exact differentials.

Q is a form of energy exchange between a system and its environment.
Heat flows from regions of high T to that of low T . So like P , T is a potential
for transferring energy, specifically the potential to transfer energy as Q. Q
is a mechanism by which energy is transferred between a system and its
environment due to the existence of ΔT between them. The algebraic sign
of Q is positive when heat flows from the environment into the system. The
increase in T of the system is caused by an increase in the thermal energy of
the system. In a thermodynamic sense, heat is never regarded as being stored
within a system. When energy in the form of heat is added to a system, it
is stored not as heat, but as kinetic and potential energy of the atoms or
molecules making up the system.

From an atomic point of view, heat is the transfer of energy that occurs
through the chaotic motion of matters at a molecular scale. The atoms in a
hot region of a material vibrate chaotically more than that in a cooler region
of the material. As atoms vibrate, they impart a force to their neighbors
and cause them to move. The hotter the atoms, the more vigorous the mo-
tions and the larger the forces they impose on their neighboring atoms. This
random motion passing from one point to another in the material results
in energy transfer and eventually brings out a uniform amount of chaotic
motion once the random motion of energetic atoms has flowed so that no
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temperature gradients persist. This transfer of kinetic energy to neighboring
atoms accomplished through flow of random atomic motion is called heat
transfer. Random, chaotic motion is thus disordered and is classified as ther-
mal motion, whereas work causes ordered, organized motion of the atoms in
a system in a uniform manner.

The work-energy principle, in mechanics, is a consequence of Newton’s
law of motion. It states that the work of the resultant force on a particle is
equal to the change in kinetic energy of the particle. If a force is conservative,
the work of this force can be set to equal the change in potential energy of
the particle, and the work of all forces exclusive of this force is equal to the
sum of the changes in kinetic and potential energy of the particle.

Work can also be done in a process where there is no change in either
the kinetic or potential energy of a system. Work is thus done when a gas
is compressed or expanded, or when an electrolytic cell is charged or dis-
charged, or when a paramagnetic rod is magnetized or demagnetized, even
though the gas, or the cell, or the rod, remains at rest at the same elevation.
Thermodynamics is largely (but not exclusively) concerned with processes of
this sort where the work is defined as all other forms of energy transferred
between the system and its environment by reasons other than a temperature
gradient.

In mechanics, the work is defined as the product of a force and the dis-
placement when both are measured in the same direction. When a thermo-
dynamic system undergoes a process, the work in the process can always be
traced back ultimately to the work of some force. Mechanical work W can
be made on the system, say, by compressing the system (volume changes).
Electrical work being done on the system is the moving charges in the system
by the application of an external electric field. Thus, it is convenient to ex-
press the work in terms of the thermodynamic properties of the system and
we first seek to derive the expression for work in relation to volume changes.

Consider the compression of a gas in a cylinder of an automobile engine.
If the gas is taken as the system, work done on the system is by the face of
the piston, whose magnitude is the force fo, multiplied by the distance Δl
through which the piston moved (Fig. 1.2).

Fig. 1.2 Mechanical work.

If the cross-sectional area of the piston is taken as A, the gas pressure
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against the piston is P , this work term W can be converted into

W = −foΔl = −PAΔl = −PΔV, or δW = −PdV. (1.1)

Note that W is done on a system when there is a pressure gradient where
P is the potential to do the mechanical work. W is expressed in a unit J (=
N·m) when P is expressed in a unit N·m−2, or pascal (Pa), and the volume
change ΔV is expressed in unit m3.

The direction of force and the distance moved establishes the algebraic
sign of W , which is defined as being positive when work is done on a system
by the environment. W < 0 when the system does work on the environment.
Thus negative sign in Eq. (1.1) insures that when system is compressed, W
is positive since Δl will be negative. The sign convention is the same for both
Q and W , that is, these terms are considered to be positive when they add
energy to the system.

There are a number of other work modes that occur frequently in thermo-
dynamic analyses. Consider next a specialized mechanical system with work
modes other than −PdV . The work done in stretching an elastic thin solid
rod or wire consists of A and l where V0 = Al is the volume of the rod at
the unstrained state. If the stretching force fo acts through an elongation dl,
the work input is δW = fodl. It is appropriate in the study of elastic solids
to express work in terms of the stress δ and the strain ς where δ = fo/A and
dς = dl/l. Upon substituting these equations into the expression for work,
we get the work of elastic stretching δW = Alδdς, or,

δW = V0δdς. (1.2)

One important application of thermodynamics is the study of the behavior
of paramagnetic substances at extremely low T . This issue will be consid-
ered more fully in Secs. 2.5.2 and 3.1.2, and for the present we discuss only
the expression for the work in a process where the magnetic state of the
material in a magnetic field is changed. To start with this theme, several
essential concepts of the magnetism are simply clarified. Just as an electron
current in a small loop produces a magnetic field, an electron revolving in
its orbit around the nucleus and rotating around its own axis has associated
a magnetic dipole with its motion. In the absence of an external magnetic
field, all such dipoles cancel each other. In the presence of an external field,
however, the frequencies and senses of orbiting and spinning of the electrons
will be changed in such a manner as to oppose the external field. This is the
diamagnetic nature of all materials. In some materials, however, there are
permanent magnetic dipoles owing to unbalanced electron orbits or spins.
These atoms behave like elementary dipoles, which tend to align with an ex-
ternal field and to strengthen it. When this effect in a material is greater than
the diamagnetic tendency common to all atoms, this material is termed para-
magnetic. Note that paramagnetism is T -dependent. When T is sufficiently
lower, the atomic elementary dipoles are magnetically aligned within micro-
scopic domains, which can be readily aligned by a relatively small external
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field Hmag to form a large induction. This is referred to as ferromagnetic. A
ferromagnetic material becomes paramagnetic above a T known as the Curie
temperature TC. TC of Fe, Co, and Ni are far above room temperature; they
are thus usually referred to as ferromagnetic. On the other side, some metallic
salts with TC < 1 K are usually considered as paramagnetic. A paramagnetic
material is not a magnet if there is no Hmag applied to it. Under an external
field, it becomes slightly magnetized in contradistinction to a ferromagnetic
material, which shows very strong magnetic effects.

In ferromagnetic materials, each atom has a comparatively large dipole
moment caused primarily by uncompensated electron spins. Interatomic forces
produce parallel alignments of the spins over regions containing large num-
bers of atoms. These regions or domains have a variety of shapes and sizes
(with dimensions ranging from a micron to several centimeters), depending
on materials and magnetic history. The domain moments are generally ran-
domly oriented, the material as a whole has therefore no magnetic moment.
Under Hmag, however, those domains with moments in the direction of the
applied Hmag increase their sizes at the expense of their neighbors, and the
internal field becomes much larger than Hmag alone. When Hmag is removed,
a random domain alignment in the material does not usually occur, and a
residual dipole field remains. This effect is called hysteresis. The magnetic
effects on a ferromagnetic material are not reversible because the reverse
process of demagnetization forms a hysteresis loop with the forward process
of magnetization. Thus, the state of a ferromagnetic system relies on not only
its present condition, but also its past history. A ferromagnetic system is thus
not amenable to thermodynamic analyses. On the other hand, the magneti-
zation process is reversible and the state of the system can be described by
a few thermodynamic variables for a paramagnetic system (such as a param-
agnetic salt) or a diamagnetic system (such as a superconducting material).
Most experiments on magnetic materials are performed at constant P and
involve insignificant volume changes. Hence, variations of P and V can be
ignored.

When the system consists of a long slender rod in an Hmag parallel to its
length l with cross-sectional area A, demagnetizing effects can be neglected.
Suppose it is to be wound uniformly with a magnetizing winding of negligible
resistance, having N turns and carrying a current I. Hmag = NI/l set up by I
in the winding, which in turn produces a magnetic induction B, being the flux
density in the rod. Φ = BA is the total flux. If I is changed by dI, and in time
interval dt, the flux is varied by dΦ, there is an induced back electromotive
force (emf) εemf according to the relation εemf = −NdΦ/dt = −NAdB/dt in
terms of Faraday’s law of electromagnetic induction. A quantity of electricity
dq is transferred in the circuit during dt, the work done by the system is
thus δW = −εemfdq = NA(dq/dt)dB = NAIdB. Combining the preceding
equation of Hmag = NI/l, it gives δW = V HmagdB with V = Al.

If μv is the magnetization in the rod, or the magnetic moment per unit
volume, B in the core becomes B = μ0(Hmag + μv), where μ0 = 4π× 10−7
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N·A−2 is permeability of free space. The magnetic moment is present since
the originally random distribution of orbital and spin motions of electron
under an Hmag reorientates. When this expression for B is inserted in the
δW equation, δW = μ0V HmagdHmag + μ0V Hmagdμv. When there is no
material within the winding, μv = 0, and the right-hand side of the equation
is reduced to the first term only, or μ0V HmagdHmag is the work required to
increase the magnetic field of the empty space of V by an amount dHmag. The
second term on the right is therefore the work associated with the change in
magnetization of the rod. Because we are interested in the thermodynamics
of the material, the work of magnetization, exclusive of the vacuum work,
is simply δW = μ0V Hmagdpm, which can be written in terms of the total
magnetic moment M = μ0V μv, namely,

δW = HmagdM. (1.3)

Equation (1.3) indicates that work input is required to increase the magne-
tization of a substance.

Next, we take the work of polarization into account. In contrast with
an electric conductor having a sufficiently large number of free electrons, a
dielectric or electric insulator has none or only a relatively small number
of free electrons. The major effect of an electric field on a dielectric is the
polarization of the electric dipoles. Work is done by Hmag on the dielectric
material during the polarization process.

For the purpose of deriving the equation of work in polarizing a dielectric,
let us consider a parallel-plate capacitor or condenser. The two plates, each
of area A with a distance of separation l, are charged with equal and opposite
charges ±q. According to electrostatics, when the space between the plates
is a vacuum, the electric field intensity Ee created by the charges is given by
Ee = q/(Aε0), where ε0 = 8.85× 10−12 C2·N−1·m−2 is the permittivity of a
free space. u = Eel = ql/(Aε0) where u is the potential difference between
the plates.

Let a dielectric material be inserted between the plates. In the absence of
Ee, in spite of the atomic irregularities, we can imagine the dielectric to be
composed of generally uniform distributions of positive and negative charges.
Under the influence of an Ee, a rearrangement of the charges in the dielectric
takes place and it thus becomes polarized. The positive charges are displaced
slightly in the direction of the field, while the negative charges are done in the
opposite direction. Thus, because of the presence of the dielectric between the
capacitor plates, the effective charge on each plate is reduced by a relative
permittivity εr. The actual permittivity of dielectric is then calculated by
multiplying the relative permittivity by ε0, εa = εrε0 = (1 + χ)ε0, where
χ is the electric susceptibility of the dielectric. Hence, the electric field and
the potential difference between the plates are described by the equation
Ee = q/(Aεa) and u = ql/(Aεa).

The electric polarization Pd of a dielectric is defined as the electric dipole
moment per unit volume and is related to Ee by Pd = ε0χEe, while Pd and
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Ee in turn are related to the electric displacement led, which can be separated
into a vacuum contribution and the one arising from the dielectric by led =
εaEe = ε0Ee +Pd = q/A. The reversible work done in charging a capacitor is
δW = udq, which may be transformed to δW = (Eel)d(Aled) = (Al)Eedled =
V Eedled. Combining the preceding equation with led = ε0Ee + Pd, it gives
δW = V ε0EedEe + V EedPd.

When there is no material between the capacitor plates, Pd = 0, δW =
V ε0EedEe and V ε0EedEe = d(V ε0E

2
e /2) is the work required to increase

the electric field of the free space between the capacitor plates by an amount
dEe. This quantity is additive to U when the first law is used. Therefore, with
P ′d = V Pd, the reversible work in the polarization of a dielectric material is

δW = V EedPd = EedP ′d. (1.4)

As a final example of a process, in which work other than mechanical one
(−PdV ) is done, take into account the work of surface when the area of a
surface A for a film with thickness 2r is changed,

δW = γsvdA = 2γsvdV/r (1.5)

where γsv is surface energy or solid-vapor interface energy. Note that r could
be extended as a radius for a particle or a wire. Equation (1.5) is especially
important when material size is considered as a variant, which will come into
contact with nanothermodynamics and will be discussed in detail in Chapter
6.

Since work can be done by many different kinds of forces, to find the total
work, we add together the mechanical, magnetic, electrical, and surface work,
etc. That is δWtotal = δW +δW ′+δW ′′+ · · · = −PdV +HmagdM +EdP ′d +
γdA + · · · . Let us define δW ∗ as “useful” work exclusive of the PdV term,
δWtotal = δW + δW ∗. Because we often focus on simple systems where only
mechanical work is done on or by the system, δWtotal = δW = −PdV .

If we have a closed system and it is carried out through a cycle, the first
law is expressed by∮

δQ +
∮
δW = 0, or

∮
(δQ + δW ) = 0. (1.6)

Since the cyclic integral of the quantity (δQ + δW ) is always zero, it is a
differential of a property of the system and is a state function or a property
of the system. This property is called the stored energy, which represents
all energy of a system at a given state, such as the kinetic energy, potential
energy and all other energy of the system. We call the energy the internal
energy U . In the absence of motion and gravity effects, the first law for a
closed system may be written in integrated form as

ΔU = Q + W, (1.7)
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or in a differential form
dU = δQ + δW. (1.8)

The value of Q as a transfer quantity and a process variable depends on the
process that the system undergoes during heat transfer. Q values of several
simple processes are discussed here. From the first law and taking into account
only mechanical work, we have

δQ = dU + PdV. (1.9)

If dV = 0, there is no work done between the system and the environment,
δW = 0. Hence, the heat flow into the system is just equal to the change in
internal energy,

δQV = dU, or QV = ΔU. (1.10)

For an isometric process, the infinitesimal expression for heat forms an exact
differential, but for processes involving work, it forms an inexact differential.

Although Eq. (1.10) is simple and convenient, many processes occur un-
der a constant P , rather than with a constant V . This is because in many
laboratory experiments a considered system is exposed to atmospheric pres-
sure, rather than kept in vessel with a constant V . If the process is isobaric
(dP = 0), from the first law and considering only mechanical work, then the
heat associated with this process is δQP = dU + (PdV )P = dU + d(PV ) =
d(U + PV ). The term U + PV is defined as enthalpy H ,

H ≡ U + PV. (1.11)

H in Eq. (1.11) has the unit of energy. H is a state function since U , P , and
V all are. Finally,

δQP = dH, or QP = ΔH. (1.12)

For a system under a constant P , ΔH is the heat received by the system plus
the useful work that has been done.

Although H is commonly used in engineering and science, it is impos-
sible to directly measure it, while ΔH is measured instead. For exothermic
and endothermic reaction at a constant P , ΔH equals the energy released
(negative) and absorbed (positive) in the reaction, respectively.

If ΔV is little and P is not too big (these are the conditions of small
PdV ),

dH = dU + PdV ≈ dU. (1.13)

This is exactly the case we find for processes involving condensed phases
under a low to moderate P where ΔU ≈ ΔH , which is often used in some
theoretical calculations and computer simulations due to the simplicity.

When heat is transferred to a system, a change of U occurs, which can
affect the kinetic energy or potential energy of the molecules, or both. We
can define two types of heat: sensible and latent. Sensible heat Q causes a
temperature change but the system does not change its phase. Latent heat
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causes phase change with a constant T ; for example, latent heat of boiling,
latent heat of melting, etc.

Q transferred to or from a system causes its T changing from an initial
value Tin to a final value Tfi, which is calculated as follows: Q = CΔT =
C(Tfi−Tin) where the proportionality constant C is called the heat capacity.
C is the amount of heat energy required to increase the unit temperature of
a substance in a unit of J·K−1. C is an extensive property because its value
is proportional to the material amount in the system; for instance, a bathtub
of water has a greater heat capacity than a cup of water. The heat capacity
of a unit quantity of a substance is called specific heat capacity or specific
heat, which becomes an intensive property and can be measured.

When the unit quantity is the mole, the term molar heat capacity Cm

in J·mol−1·K−1 may be used to describe the measure more explicitly. The
equation relating heat energy to Cm is

Q = nCmΔT (1.14)

where n is the number of moles.
C is mathematically defined as the ratio of a small amount of heat δQ

added to the system, to the corresponding small increase in its temperature
dT ,

C =
(
δQ

dT

)
cond.

. (1.15)

For a real system, the path through energy changes must be explicitly defined,
since Cm value relies on which path from one T to another is chosen. Cm of
substances are typically measured under constant P (CP,m). However, fluids
(gases and liquids) are typically also done at constant V (CV,m). CV,m is
determined by

CV,m =
(
δQm

dT

)
V

=
(

∂Um

∂T

)
V

. (1.16)

Note that we have implicitly assumed that no other forms of work, such as
electrical or magnetic, are involved. Accordingly,

dU = nCV,mdT. (1.17)

Measuring CV,m can be prohibitively difficult for liquid and solids. That is,
dT typically requires large P to maintain a liquid or solid at constant V . This
implies that the containing vessel must be nearly rigid or at least very strong.
Instead it is easier to measure CP,m (allowing the material to expand or
contract as it wishes). The thermal energy added to the material is accounted
for by the increase in U plus W done by the material as it expands against
the constant P imposed on it. As a result,

CP,m =
(
δQm

dT

)
P

=
(

∂Hm

∂T

)
P

. (1.18)
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1.5 Entropy and Second Law of Thermodynamics [6, 17,

18]

It is well known that physical processes in nature proceed toward equilibrium
spontaneously. Liquids flow from a region of high elevation to that of low
elevation; gases expand from a region of high P to that of low P ; heat flows
from a region of high T to that of low one, and material diffuses from a
region of high concentration to that of low one. A spontaneous process can
proceed only in a particular direction. Everyone realizes that these reversed
processes do not happen. But why? The total energy in each case would
remain constant in the reversed process as it did in origin, and there would be
no violation of the principle of conservation of energy. There must be another
natural principle, in addition to the first law, not derivable from it, which
determines the direction, in which a natural process will take place. This
principle is contained in the second law of thermodynamics, which epitomizes
our experience with respect to the unidirectional nature of thermodynamic
processes.

The invention and improvement of the steam engine and internal com-
bustion engine, the devices that convert Q into W , played an important role
in the development of the second law. These devices also made industrial
development possible, and greatly changed the nature of our everyday life.
The first law accounts for the energy involved in such a conversion but places
no limits on the amounts that can be converted. The second law is concerned
with limits on the conversion of “heat” into “work” by heat engines. As one
of the fundamental laws of nature, the second law cannot be derived from any
other laws and may be stated in many different forms, but when its statement
is accepted as a postulate, all other statements of it can then be proved. One
of which, known as the Kelvin-Planck statement, is as follows: it is impossi-
ble to construct a heat engine that, operating in a cycle, produces no other
effect than the absorption of energy from a reservoir and the performance of
an equal amount of work. Its essence is that it is theoretically impossible to
construct a heat engine that works with 100% efficiency.

Can we find some features all of the above dissimilar impossible processes
have in common? What are the conditions under which no process at all can
occur, and in which a system is in equilibrium? Is there any thermodynamic
quantity that can help us to predict whether a process will occur sponta-
neously? These questions could be answered if some properties of a system,
namely, some state functions of a system, have different values at the be-
ginning and at the end of a possible process. A function having the desired
property was devised by Clausius and is called entropy of the system S. The
concept of S is developed using the properties of the Carnot cycle and then
calculating entropy changes ΔS during reversible and irreversible processes.

The principles governing heat engines were investigated in 1824 by a
French engineer Sadi Carnot. Through considering an idealized heat engine,
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now called a Carnot engine, Carnot found that a heat engine operating in
an ideal, reversible cycle – called a Carnot cycle – is the most efficient engine
possible. Such an engine establishes an upper limit on the efficiencies of all
real engines. That means not all the heat removed from a high T reservoir is
converted into work. In fact, the amount that can be converted is governed
by the temperatures of the two reservoirs.

The Carnot cycle consists of two reversible isothermal and two reversible
adiabatic processes. From thermodynamic calculation, it was concluded that
for any two temperatures T2 and T1, the ratio of the magnitudes of Q2 and
Q1 and that of the magnitudes of T2 and T1 in a Carnot cycle have the same
value for all systems, no matter whatever their nature is, where Q2 is a heat
flow into the system and Q1 is a heat flow out of the system, namely,

T2

T1
= −Q2

Q1
, or

Q1

T1
+

Q2

T2
= 0. (1.19)

A system undergoing a reversible cycle is presented by the continuous curve
shown in Fig. 1.3. It is possible to subdivide this cycle into a number of small
Carnot cycles as indicated. The isotherms and part of the adiabats of the
small Carnot cycles form a zigzag curve which follows closely the path of
the original cycle. The remaining parts of the adiabats of the small Carnot
cycles cancel out because each section is traversed once in a forward direction
and once in a reverse direction. As the number of Carnot cycles is increased,
the zigzag curve can be made to approach the original cycle to any desired
degree.

Fig. 1.3 A reversible cycle subdivided into infinitesimal Carnot cycles.

Let δQ1, δQ
′
1, δQ

′′
1 , · · ·, δQ2, δQ

′
2, δQ

′′
2 , · · · denote the respective algebraic

amounts of heat exchanged, which are positive when absorbed and negative
when given off by the system. Then for the small Carnot cycles as we may



22 Chapter 1 Fundamentals of Thermodynamics

write
δQ1

T1
+
δQ2

T2
= 0, and

δQ′1
T ′1

+
δQ′2
T ′2

= 0, · · ·, etc. Adding the preceding

equations gives
δQ1

T1
+
δQ2

T2
+
δQ′1
T ′1

+
δQ′2
T ′2

+ · · · =
∑ δQ

T
= 0. In the limit,

upon replacement of the summation of finite terms by a cyclic integral, we
obtain ∮

δQrev

T
= 0 (1.20)

where the subscript “rev” serves as a reminder that the result above is applied
to reversible cycles only. The foregoing equation states that the integral of
δQ/T when carried out over a reversible cycles is equal to zero. It follows that

the differential δQrev/T is a perfect differential and the integral
∮
δQrev/T

is a property of the system. This property is called entropy S, and

dS =
δQrev

T
, or δQrev = TdS. (1.21)

Equation (1.21) is the defining expression for S. Integrating along a reversible
path between two equilibrium states 1 and 2 gives

ΔS12 = S2 − S1 =
∫ 2

1

δQrev

T
. (1.22)

It cannot be overemphasized that S is a state function; it depends only on
the state that the system is in, and not on how that state is reached. If a
system goes from state 1 to 2, its entropy changes from S1 to S2. However, it
is only when the system travels along a reversible path between the two end

states that Eq. (1.22) is valid. If the path is irreversible,
∫ 2

1

(δQirr/T ) differs

from ΔS12. The relation that does exist between the change in entropy and

the integral
∫ 2

1

(δQ/T ) along any arbitrary path can be obtained as follows:

dS � δQrev

T
, or ΔS12 = S2 − S1 �

∫ 2

1

δQ

T
(1.23)

where the equality holds for a reversible process and so does the inequality
for an irreversible process. This is one of the most important equations of
thermodynamics. It expresses the influence of irreversibility on the entropy
of a system.

For an isolated system, δQ = 0. Thus, in light of Eq. (1.23),

dSisolated � 0. (1.24)

This is the principle of increase of entropy. In accordance with the first law,
an isolated system can only assume those states for which the total U remains
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constant. Now according to the second law as expressed by Eq. (1.22) of the
states of equal energy, only those states, for which the entropy increases or
remains constant, can be attained by the system.

In addition to U and S of a system, several other useful quantities can
be defined that are combinations of these and the state variables. One such
quantity, already introduced, is H = U + PV . There are two combinations
of thermodynamic properties involving the entropy being of great utility in
thermodynamics, which are the Helmholtz function F and the Gibbs function
G.

In light of the first law, when a system performs any process, reversible
or irreversible, between two equilibrium states, the total work in the process
is

W + W ∗ = ΔU −Q. (1.25)

We now derive expressions for the maximum amount of work that can do
when a system undergoes a process between two equilibrium states, for the
special case in which the only heat flow is from a single reservoir at a T and
the initial and final states are at the same T . In light of Eq. (1.24), the sum
of the increase in entropy of the system, ΔS, and that of reservoir, ΔSr, is
equal to or greater than zero, namely, ΔS + ΔSr � 0 and ΔSr = −Q/T .
Hence, ΔS −Q/T � 0 and TΔS � Q. As a result, from the first law,

ΔU − TΔS = Δ(U − TS) � W + W ∗. (1.26)

Let us define a property of the system called Helmholz function F , by the
equation

F ≡ U − TS, (1.27)

then for two equilibrium states at the same T ,

ΔF = ΔU − TΔS, (1.28)

and from Eq. (1.26),
ΔF � W + W ∗. (1.29)

That is, the decrease in F sets an upper limit to the work in any process be-
tween two equilibrium states at the same T , during which there is a heat flow
into the system from a single reservoir at this T . If the process is reversible,
the equality sign then holds in Eq. (1.29) and the work is a maximum. Against
that, when the process is irreversible, the work is less than this maximum.

Equation (1.29) is perfectly general and applies to a system of any nature.
The process may be a change of states, or a change of phases, or a chemical
reaction.

If both V and T are constants, considering only mechanical work PdV ,
then W = W ∗ = 0 and

ΔF � 0, or F2 � F1. (1.30)
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Take into account next a process under a constant external P . W in such a
process is −PΔV = −Δ(PV ), and from Eq. (1.29),

ΔF + Δ(PV ) = Δ(F + PV ) � W ∗. (1.31)

Let us define Gibbs function G as

G ≡ F + PV = U − TS + PV = H − TS. (1.32)

Then for two states at the same T and P ,

ΔG � W ∗. (1.33)

The decrease in G therefore gives an upper limit to the useful work in any
process between two equilibrium states at the same T and P where the process
is reversible. Because its decrease in such a process equals the maximum
energy that can be “freed” and can be the useful work done by a system, the
Gibbs function has also been called the free energy of a system. We however
shall use the term “Gibbs function” to avoid confusion with the Helmholtz
function.

Similar to Eq. (1.30), if the only work is PdV , W ∗ = 0 and

ΔG � 0, or G2 � G1. (1.34)

That is, in such a process G either remains constant or decreases. Conversely,
such a process is possible only if G2 is equal to or less than G1.

1.6 General Thermodynamic Relationships [6, 17, 18]

We have defined and used several thermodynamic properties by now. Some
of them are directly measurable, but others cannot be measured and must
be calculated from data of other properties and quantities, which can be
measured. We are now ready to develop some useful general relationships be-
tween thermodynamic properties that shall facilitate such calculations. We
will restrict our attention to simple systems which require only two inde-
pendent properties to determine their thermodynamic states. Once the ther-
modynamic relations are developed for such systems, it is simple to write
analogous relations for other simple systems.

We now combine the first and second laws to obtain several important
thermodynamic relations. The analytical formulation of the first law, in a
differential form, is dU = δQ+δW . The second law states that for a reversible
process between two equilibrium states is δQ = TdS. Also, the work in a
reversible process, for a PV T system, is δW = −PdV . It follows that in any
infinitesimal reversible process for a PV T system,

dU = TdS − PdV. (1.35)
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This may be used in connection with the definitions of H , F and G functions
to form three other important relations,

dH = TdS + V dP, (1.36)

dF = −SdT − PdV, (1.37)

dG = −SdT + V dP. (1.38)

Equations (1.35) to (1.38) are four basic relations of properties. They are ap-
plicable for any process, reversible or irreversible, between equilibrium states
of a simple compressible system with a fixed mass.

A number of useful partial derivative relations can be readily obtained
from the four basic relations. They are as follows:(

∂U

∂S

)
V

= T and
(

∂U

∂V

)
S

= −P, (1.39)

(
∂H

∂S

)
P

= T and
(

∂H

∂P

)
S

= V, (1.40)

(
∂F

∂T

)
V

= −S and
(

∂F

∂V

)
T

= −P, (1.41)

(
∂G

∂T

)
P

= −S and
(

∂G

∂P

)
T

= V. (1.42)

Since U , H , F , and G are all thermodynamic properties and state functions,
dU , dH , dF , and dG are exact differentials. Applying these exact conditions
to Eqs. (1.35) through (1.38), one obtains(

∂T

∂V

)
S

= −
(

∂P

∂S

)
V

, (1.43)

(
∂T

∂P

)
S

=
(

∂V

∂S

)
P

, (1.44)

(
∂S

∂V

)
T

=
(

∂P

∂T

)
V

, (1.45)

(
∂S

∂P

)
T

= −
(

∂V

∂T

)
P

. (1.46)

The above equations are known as the four Maxwell relations. Note that in
each of the Maxwell relations the cross product of the differentials has the di-
mensions of energy. The independent variable in the denominator on one side
of an equation is the constant on the other side. They are of great usefulness
in the transition of state variables, and particularly in the determination of
change in entropy, which are not experimentally measurable, in terms of the
measurable properties of P , V , and T .
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The magnetic systems of primary interest in thermodynamics are para-
magnetic crystals, whose volume change in a process or “−PdV ” can be
neglected. The only work interaction is due to the magnetization of the ma-
terial, i.e., δW ∗ = HmagdM .

A system for which the only reversible work mode is the magnetization
of the magnetic material is called a simple magnetic system. This will be
taken as an example to illustrate the application of the above equations.
The first law for a reversible process in a simple magnetic system is dU =
δQ + HmagdM . Combination of this equation and the second law leads to

dU = TdS + HmagdM. (1.47)

Eq. (1.47) is a very basic equation which combines the first and second laws
as applied to a simple magnetic system.

It is helpful to define two new properties, the magnetic enthalpy H ′ and
magnetic Gibbs function G′, H ′ = U − HmagM and G′ = H ′ − TS = U −
TS − HmagM . F takes the usual definition, F = U − TS. Comparing to
H = U +PV in a PV T system, the equations do have the same form, we can
take over all of the equations previously derived for the enthalpy H , replacing
H with H ′, V with −M , and P with Hmag. From these equations and Eq.
(1.47) it follows that

dH ′ = TdS −MdHmag, (1.48)

dF ′ = −SdT + HmagdM, (1.49)

dG′ = −SdT −MdHmag. (1.50)

Applying the condition of exactness to the four basic relations, Eqs. (1.47)
to (1.50), results in the following four Maxwell relations,(

∂T

∂M

)
S

=
(

∂Hmag

∂S

)
M

, (1.51a)

(
∂T

∂Hmag

)
S

= −
(

∂M

∂S

)
Hmag

, (1.51b)

(
∂S

∂M

)
T

= −
(

∂Hmag

∂T

)
M

, (1.51c)

(
∂S

∂Hmag

)
T

=
(

∂M

∂T

)
Hmag

. (1.51d)

A crystalline metal with the atoms lies on a regular repetitive lattice. When
the crystal lattice is perfect, free electrons in the metal are able to pass
through it without difficulty. However, there are two factors that generally
ruin the perfect arrangement of a crystal lattice and thus give rise to electrical
resistance. These are the thermal vibrations of the atoms and the impurities
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or imperfections of the metal. As T falls, the thermal vibrations of the lattice
atoms decrease, which bring out the decrease of the electrical resistance of
metals. Since any real specimen of a metal cannot be perfectly pure and
will inevitably contain some impurities, the effect of impurity on electrical
resistance is more or less T -independent. Thus we can see that impurities
and lattice imperfections (point defects, dislocations, interfaces or surfaces)
are mainly responsible for the small constant residual resistivity of a metal
at very low T .

However, many metals exhibit extraordinary behavior. After the residual
resistivity of a metal has been reached, when T is further reduced, its electri-
cal resistance suddenly disappears completely. Once a current is introduced
in the metal at such low T , the current will continue to undergo flow undi-
minished for an indefinite period of time. This phenomenon was discovered in
1911 by Onnes and was given the name superconductivity. A material having
superconductivity at low T is called a superconductor. Since its discovery,
the superconductivity has been found in many metallic elements and in a
very large number of alloys and compounds, and even in oxides or ceramics.

The superconductivity has many applications. For instance, it can be ap-
plied in journal bearings to eliminate friction, in electric motors to reduce
internal losses, in electromagnets to obtain very high magnetic fields, and
in high-speed computers to form the so-called cryotrons to be used as logic,
memory, and comparison elements. There are two kinds of superconductivity,
known as type I and type II. Most of those elements exhibiting superconduc-
tivity belong to type I, while alloys generally belong to type II. The two types
have many properties in common, but there are considerable differences in
their magnetic behavior. In 1957 an acceptable fundamental theory of su-
perconductivity was formulated by Bardeen, Cooper, and Schrieffer (BCS
theory) when quantum mechanics was applied to the free electrons in a crys-
tal lattice. The complete treatment of the theory is extremely complicated.
It requires an advanced knowledge of quantum mechanics and is beyond the
scope of this book. It is our intention here to give only a brief descriptive
introduction of the thermodynamics of superconductors.

The normal to superconductor transition occurs at a temperature Ts,0,
which depends not only on P , but also on the size when the materials are
low dimensional. For a strain-free pure bulk metal, Ts,0 is well defined and
can be measured accurately.

Superconductivity can be destroyed by a magnetic field. A magnetic field-
strength required to destroy superconductivity in a metal is called a critical
or threshold field Hs. The uniqueness of Hs at a given T relies on the shape
and orientation of the superconductor as well as on any impurity and strain
in it. In an ideal case, when a strain-free pure type I superconductor in the
shape of a long thin cylinder is placed longitudinally in a uniform magnetic
field, the transition between normal and superconductivity is sharp and a
unique value of Hs can be obtained at a given T , which is only a function
of T . Figure 1.4(a) shows this dependence of a type I superconductor. It is
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observed that Hs curve forms the boundary of superconducting states which
divides the Hs-T plane into two regions. The area enclosed by Hs curve is
the region in which the metal is superconducting. It is normal to go beyond
the confines of the curve. Ts,0 values and the critical field at T = 0 K, Hs,0,
for a number of elements are given in Table 1.1.

Fig. 1.4 (a) T -dependent Hs of a type I superconductor. (b) The effect of zero
electrical resistance and zero magnetic induction.

Table 1.1 The superconducting elements [19]

Element Ts,0 Hs,0 Element Ts,0 Hs,0 Element Ts,0 Hs,0

Al 1.2 0.79×104 Ir 0.1 ∼0.16×104 Ru 0.5 0.53×104

Cd 0.5 0.24×104 La-α 4.8 Ta 4.5 6.6×104

Ga 1.1 0.41×104 La-β 4.9 Tc 8.2
In 3.4 2.2×104 Pb 7.2 6.4×104 Tl 2.4 1.4×104

Hg-α 4.2 3.3×104 Th 1.4 1.3×104 U-α 0.6
Hg-β 4.0 2.7×104 Sn 3.7 2.4×104 U-β 1.8
Mo 0.9 Ti 0.4 V 5.3 Type II
Nb 9.3 Type II W 0.01 Zn 0.9 0.42×104

Os 0.7 ∼0.5×104 Zr 0.8 0.437×104 Re 1.7 1.6×104

Figure 1.4(a) reveals that every critical field curve has a negative slope,
which increases in magnitude from zero at 0 K to a finite value at T0.
These curves may be approximated by a parabolic equation of the form
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Hs = Hs,0(1− T 2/T 2
s,0).

In addition to the disappearance of electrical resistivity, a superconducting
metal also shows a magnetic effect – the disappearance of magnetic induction.
The phenomenon of zero magnetic induction was discovered by Meissner and
Ochsenfeld in 1933 and is now commonly known as the Meissner effect. Its
meaning can be understood by considering a type I superconducting metal
going through a few processes as depicted in Fig. 1.4(a). The specimen is first
cooled at zero magnetic field from a normal state a to a superconducting state
b, and then is magnetized at constant T from state b to state c, which is well
below the critical field curve. When the magnetic field is applied to the spec-
imen in superconducting states, persistent currents induced on the surface
of the specimen prevent the field from penetrating the metal. Thus, as illus-
trated in Fig. 1.4(b), at state c the magnetic lines of forces are bulging around
the specimen. When the specimen is heated in a constant Hs from state c
to state d, as Hs curve is passed, the persistent current on its surface dies
out and magnetic flux penetrates into it. Thus, as illustrated in Fig. 1.4(b),
Hs has uniformly penetrated the metal at state d since the metal is now
in a normal state and is virtually nonmagnetic. The fact that the magnetic
field is expelled from the metal when it becomes superconducting implies not
only infinite electrical conductivity, but also perfect diamagnetism. This is
the essence of the Meissner effect.

As a further illustration of the magnetic nature of superconductivity, let us
consider the variations of the magnetic induction B and the magnetization μv

of a type I superconductor as Hmag is increased isothermally across the critical
field. In general, B = μ0(Hmag + μv). When the metal is in superconducting
phase, we have

B = 0, and μv = −Hmag, (1.52)

whereas beyond Hs corresponding to the given T , the metal is normal. Since
normal metals (excluding ferromagnetic metals, such as Fe) are virtually
nonmagnetic, it follows

μv = 0, and B = μ0Hmag. (1.53)

There is another property of a metal, which changes abruptly during transi-
tions from normal to superconductivity. As we know, conduction heat transfer
in a metal is mainly due to the mobility of free electrons. However, at a su-
perconducting state the free electrons of a metal no longer interact with the
lattice in such a way that the electrons can pick up heat energy from one part
of the metal and deliver it to another part. Therefore when a metal becomes
superconducting, its thermal conductivity decreases in general. At T << Ts,0,
the decrease in thermal conductivity is abrupt at the crossing of the critical
field curve. Since superconductivity can be destroyed by the application of
a magnetic field, the thermal conductivity of a superconductor can be eas-
ily controlled by means of a magnetic field. This is the basic principle for a
thermal valve.
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A type I superconducting system at any values of Hmag and T within
the superconducting region has a strictly fixed state and is independent of
how the system got there. Hence a type I superconductor may be considered
as a thermodynamic system whose equilibrium states can be described by
a few thermodynamic properties, and the transitions between normal and
superconducting states are reversible.

As plotted in Fig. 1.4, below Hs curve the system is in the supercon-
ducting phase. Otherwise, the normal phase is present. Hs curve itself is the
equilibrium line for the phase coexistence. In general, the transition between
normal and superconducting phases, taking place at constant T and Hs, in-
volves a finite latent heat, denoting a first order phase transition. We now
derive the equation for the latent heat as functions of T and Hs. Accord-
ing to Eq. (1.50), the differential of the magnetic Gibbs function is given
by dG′ = −SdT −MdHmag. At T = constant and Hmag = Hs = constant,
we must have dG′ = 0, or G′(n) = G′(s), where the superscripts (n) and (s)
denote respectively normal and superconducting phases. When T and Hs are
increased to T +dT and Hs+dHs respectively, G′(n)+dG′(n) = G′(s) +dG′(s),
or dG′(n) = dG′(s). Applying Eq. (1.50), we obtain −S(n)dT −M (n)dHs =
−S(s)dT −M (s)dHs. Therefore, −dHs/dT = (S(n)− S(s))/(M (n)−M (s)). In
light of Eqs. (1.52) and (1.53), M (n) = μ0V μ

(n)
v = 0 and M (s) = μ0V μ

(s)
v =

−μ0V Hs. It follows

ΔSsn = S(n) − S(s) = −μ0V Hs
dHs

dT
. (1.54)

Now since ΔHs = T (S(n) − S(s)) = latent heat, we obtain finally

ΔHsn = −μ0V THs
dHs

dT
. (1.55)

Since dHs/dT is always negative, we see from Eq. (1.54) that S(n) > S(s).
Since entropy is physically an index of orderliness, we conclude that more
orders exist in the superconducting than in the normal phase. From Eq.
(1.55) we see that ΔHs,0 = 0 at the two extremes of Hs curve, i.e., dHs/dT
at T = 0, and Hs = 0 at T = Ts,0. Between them, ΔHsn > 0, indicating that
heat addition is required in changing from superconducting to normal phase.

Since the transition between normal and superconducting phases takes
place at Ts,0 without latent heat evolution in the absence of a magnetic field
while heat capacity shows a discontinuity at Ts,0, this phase transition is
obviously of the second order.

There are some useful relationships concerning C and Hs. With simple
mathematical treatment of Eq. (1.54), we obtain TdS(n)/dT − TdS(s)/dT =
−μ0V Td(HsdHs/dT )/dT . Since C = TdS/dT , it reads

C(s) − C(n) = −μ0V T
d

dT

(
Hs

dHs

dT

)
, (1.56)
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or C(s) −C(n) = μ0V T (dHs/dT )2 + μ0V THsd2Hs/dT 2. Equation (1.56) can
be used to determine C(s) −C(n) from measurements of magnetic properties
for an ideal type I superconductor. At T = Ts,0 and Hs = 0, Eq. (1.56)
reduces to (

dHs

dT

)2

T=Ts,0

=
1

μ0V Ts,0
(C(s) − C(n))T=Ts,0 . (1.57)

This equation could be utilized to determine the slope of Hs curve at Ts,0 from
measurements on C. Conversely, the magnitude of C jump at Ts,0 decides the
slope of Hs curve. Integrating Eq. (1.56) from T = 0 K and Hs = Hs,0 to
T = Ts,0 and Hs = 0 along Hs curve, there is∫ Ts,0

0

(C(s) − C(n))dT = μ0V

∫ 0

Hs

Td
(

Hs
dHs

dT

)

= μ0V THs
dHs

dT

]Ts,0

0

− μ0V

∫ 0

Hs,0

Hs
dHs

dT

where the method of integration has been used in part. Now, since at T =
Ts,0, Hs = 0, the first term in the last expression is zero, and therefore,∫ Ts,0

0

(C(s) − C(n))dT =
1
2
μ0V H2

s,0, or H2
s,0 =

2
μ0V

∫ Ts,0

0

(C(s) − C(n))dT

which is useful to determine Hs,0 from heat capacity measurements.
Until 1986, physicists had believed that BCS theory forbade supercon-

ductivity at T > 30 K. In that year, Bednorz and Müller discovered super-
conductivity in a lanthanum-based cuprate perovskite material, which had
a Ts,0 of 35 K without a magnetic field [20]. Particularly, the lanthanum
barium copper oxides, an oxygen deficient pervoskite-related material, are
proved to be promising. In 1987, Bednorz and Müller were jointly awarded
the Nobel Prize in Physics for this work. Shortly after that, Chu and his co-
workers found that replacing La with Y, often abbreviated to YBCO, raised
Ts,0 to 93 K [21]. YBCO compound with the formula YBa2Cu3O7 is a fa-
mous high-temperature superconductor because from a practical perspective,
it was the first material to achieve superconductivity above Tb of N2 of 77
K at atmospheric pressure. Their work led to a rapid succession of new high
temperature superconducting materials, ushering a new era in the study of
superconductivity. However, although many other cuprate superconductors
have since been discovered, the theory of superconductivity in these materials
is one of the major outstanding challenges of theoretical condensed matter
physics.

Magnesium diboride (MgB2) is another inexpensive and useful supercon-
ducting material. Although this material was first synthesized in 1953, its
superconductivity had not been discovered until 2001 [22]. Magnetization
and resistivity measurements established a Ts,0 of 39 K, which was believed
to be the highest yet determined for non-copper-oxide bulk superconductors.
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Though it is generally believed to be a conventional (phonon-mediated) su-
perconductor, MgB2 is rather an unusual one. In fact, it is a multi-band
superconductor, that is, each Fermi surface has different superconducting
energy gaps. This differs from usual theories of phonon-mediated supercon-
ductivity, which assume that all electrons behave in the same manner. More-
over, MgB2 was regarded as behaving more like a low temperature metallic
superconductor than a high temperature cuprate superconductor.

Very recently, researches have discovered a new family of high temperature
superconductors. In 2008, Hosono and his colleagues reported that lanthanum
oxygen fluorine iron arsenide LaO1−xFxFeAs becomes a superconductor at
2.6 × 106 K [23, 24]. Thereafter, Chen and his colleagues found that samar-
ium oxygen fluorine iron arsenide (SmO1−xFxFeAs) goes superconducting
at 43 K [25]. Physicists consider the discovery of the new iron-and-arsenic
compounds as a major advance, which are the only other high-temperature
superconductors differing from the copper-and-oxygen compounds found in
1986. The mechanisms of the new superconductors are believed to be differ-
ent from those of the old ones, since the latter evolves from a state with one
electron per copper ion, whereas the former evolves from a state with two
electrons per iron ion. Nowadays, the new materials are generating intense
interest to synthesize higher quality samples consisting of a single pristine
crystal in the next step.

1.7 Third Law of Thermodynamics [6, 17, 18]

A basic law of thermodynamics was born from the attempt to calculate equi-
librium constants of chemical reactions entirely from thermal data (i.e., H
and CP,m). What has come to be known as the third law of thermodynamics
had its origin in the Nernst heat theorem. Nernst noted from the experi-
mental results by Thomsen and Berthelot, and by careful experiments with
galvanic cells. In the experiments, ΔG in a reaction generally approached
ΔH more closely as T was reduced, even at quite high T . In 1906, he there-
fore proposed a general principle that as T → 0, not only did ΔG and ΔH
approach equality, but their rates of change with T approached zero. That
is,

lim
T→0

(
∂ΔG

∂T

)
P

= 0, lim
T→0

(
∂ΔH

∂T

)
P

= 0. (1.58)

In geometric terms this means that the graphs of ΔG and ΔH as a function
of T both have the same horizontal tangent at T = 0 as shown in Fig. 1.5.

The first of Eq. (1.58) can be rewritten as

lim
T→0

(
∂(G2 −G1)

∂T

)
P

= lim
T→0

[(
∂G2

∂T

)
P

−
(

∂G1

∂T

)
P

]
= 0. (1.59)
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Fig. 1.5 ΔG and ΔH as a function of T for an isobaric process.

Since (∂G/∂T )P = −S,
lim
T→0

(S1 − S2) = 0. (1.60)

This is the Nernst heat theorem, which states that in the neighborhood of
absolute zero, all reactions in a liquid or solid in internal equilibrium take
place without change in entropy.

Planck, in 1911, made a further hypothesis that not only the entropy
difference vanishes as T → 0, but also that the entropy of every solid or
liquid substance in internal equilibrium at absolute zero is itself zero, that is,

lim
T→0

S = 0. (1.61)

This is named the third law of thermodynamics. If the substance is heated
reversibly at constant V or P from T = 0 to T = T , its entropy at T is

S(V, T ) =
∫ T

0

CV
dT

T
, S(P, T ) =

∫ T

0

CP
dT

T
. (1.62)

Because entropy changes near room temperature are often needed in thermo-
dynamic calculations, the integral of Eq. (1.62) has been evaluated for many
substances at 298 K, which is generally called the “standard” entropies. The
form in Eq. (1.62) assumes that no phase changes take place between 0 K
and T . If there are phase transitions, such as solid to liquid and liquid to
gaseous transitions in the region of 0 K and T , they must be considered in
the integration,

S(P, T ) =
∫ Tm

0

CP
dT

T
+

ΔHm

Tm
+
∫ Tb

Tm

CP
dT

T
+

ΔHb

Tb
+
∫ T

Tb

CP
dT

T
(1.63)

where ΔHm and ΔHb are the molar enthalpies of melting and boiling, re-
spectively, and Tm and Tb are the corresponding melting points.

Now since the third law asserts that the entropy of any substance must
be finite or zero at 0 K, it follows that the entropy of a substance must
be finite at any finite T . Consequently, from Eq. (1.62) we conclude that
lim
T→0

CV = lim
T→0

CP = 0. However, CP /T = (∂S/∂T )P may in fact diverge as
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T approaches 0 K. The Nernst theorem implies that the change in entropy is
zero in any process at 0 K. For example,

lim
T→0

(
∂S

∂P

)
T

= lim
T→0

(
∂S

∂V

)
T

= 0. (1.64)

The derivatives of many thermodynamic properties are related to the deriva-
tives of the entropy through the Maxwell relations. Using the relations, we
obtain

lim
T→0

(
∂V

∂T

)
P

= lim
T→0

(
∂P

∂T

)
V

= 0. (1.65)

Since coefficient of thermal expansion α =
1
V

(
∂V

∂T

)
P

and V remains finite

as T → 0, we can also write the compressibility β as

lim
T→0

β = 0. (1.66)

The third law also implies that it is impossible to reduce T of a system to
0 K in any finite number of operations.
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Chapter 2 Statistical Thermodynamics

After the introduction of macroscopic thermodynamics of Chapter 1, the
microscopic thermodynamics, or statistics thermodynamics, is introduced in
this chapter. Three essential distribution functions of particles in statistics
thermodynamics, namely, Maxwell-Boltzmann (MB), Bose-Einstein (BE),
and Fermi-Dirac (FD) statistics, are described after introducing some basic
concepts, such as energy levels, degeneracy and thermodynamic probability,
distinguishability of particles, ways of arrangement of particles, etc. Based
on the functions, the partition function is obtained, which results in achieve-
ments of all macroscopic thermodynamic functions. In addition, emphasis
is given on the relationship between the macroscopic and microscopic func-
tions and importance of microscopic functions related to essential physical
meaning.

There are two approaches to the study of thermodynamics, macroscopic
and microscopic thermodynamics. Macroscopic thermodynamics is concerned
with relative changes of the macroscopic properties of matter, such as heats of
transition, P , T , Cm, and vapor pressure. Except in the study of chemical re-
actions, where it is recognized that elements combine in simple proportions to
form compounds, macroscopic thermodynamics does not require any knowl-
edge of the atomistic nature of matters. Microscopic thermodynamics, on the
other hand, attempts to compute absolute values of thermodynamic quan-
tities based on a statistical averaging of such properties of individual atoms
or molecules as the mass and volume of atoms, molecular bond strength,
and vibration frequencies. Because of the characteristic of this statistical av-
eraging, microscopic thermodynamics is usually called statistical thermody-
namics. Macroscopic thermodynamics can ignore the existence of molecules,
molecular complexity, and quantum mechanics. Statistical thermodynamics
however relies heavily on quantum mechanics, and knowledge of molecular
motion and structures.

The methods of statistical thermodynamics were first developed during
the latter part of the 19th century, largely by Boltzmann and Gibbs. As
the quantum theory was present in the early years of the 20th century, Bose
and Einstein, and Fermi and Dirac introduced certain modifications of Boltz-
mann’s original ideas and succeeded in clearing up some of the unsatisfactory
features of the Boltzmann statistics. Statistical methods can be applied not
only to molecules but also to photons, elastic waves in solids, and the more



38 Chapter 2 Statistical Thermodynamics

abstract entities of quantum mechanics called wave functions. We shall use
the neutral term “particle” to designate any of these.

2.1 Basic Concepts [1– 3]

A basic idea embodied in statistical thermodynamics is that even when a ma-
terial is in equilibrium on a macroscopic scale, it is dynamic on a microscopic
scale. This dynamic distribution and its consequences are derived using the
methods of statistical thermodynamics. To establish the basis for the study
of statistical thermodynamics, the one based on probabilities, we will distin-
guish between a macrostate and a microstate. A macrostate of a system in
macroscopic thermodynamics is called a “state”, which is characterized by a
few state variables, such as T , V , and U , and is the state of all particles in
the system.

A system in one macrostate passes very rapidly through many microstates
during the observation time because atoms or molecules move and change
direction quickly. An atom in a solid, for example, vibrates at a frequency in
the order of 1013 s−1. Gas molecules have velocities of order of 102 ms−1. It
is easy to see that we do not have the ability to track the movement of all
atoms in time or to extract usable information from those trajectories. The
picture of a material as a rapidly changing system leads us to the realization
that when we observe a property of a system, we really see the average of this
property in all of the microstates that the material passed through during the
observation time. What we can do is to take advantage of the large number
of atoms in the system to make statistical descriptions of the behavior of the
atoms that make up the material based on their microscopic behavior.

In this chapter, we will deal with thermodynamic systems on the ideas
that macroscopic systems are only the manifestation of microscopic behav-
ior. The microscopic behavior gives us all needed information to analyze
the macroscopic system because the macroscopic system behaves in an av-
erage way. An important premise to the statistical thermodynamics is that
a system in a given macrostate can exist in every microstate consistent with
the constraints of the macrostate. The ergodic hypothesis of the microscopic
thermodynamics states that the time average of the properties of a system is
equivalent to the instantaneous average over the ensemble of the microstates
available to the system.

At atomistic or microscopic scales, the classical mechanics does not apply,
and it must be replaced by the quantum mechanics. In order to describe
matters from the atomistic, microscopic points of view, we are required to
be aware of some of the main results of the quantum mechanics. The most
important one for our purposes is that energy is quantized where the energy
of a system can only take on certain discrete values. For example, we know
from spectroscopy that molecules and materials emit and absorb light at
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characteristic frequencies. These frequencies correspond to the differences in
energy in the system and are discrete. Semiconductors offer another simple
example. It is known that pure and perfect semiconductors have band gaps,
which separate the valence electronic band from the conduction band. The
energy of electrons between these two bands is forbidden. What is more
difficult to see is that the energy levels within the bands are quantized as
well, the energy spacing between the energy levels within the band is however
extremely small.

Our consideration for particles is so restricted that the energy of each
is independent of the energy of the others. Actually, because the atoms in
materials collide with each other and exchange energy, the energy of an in-
dividual particle will vary with time as it is bumped up into higher energy
levels or relaxes to a lower energy level by transferring some of its energy to
neighbors. Just as we did not want to keep track of the trajectories (positions
and velocities) of all 1023 atoms in a system, we also do not want to keep
track of the energy of each particle. However, we find that collisions cease
to influence the distribution of energy at equilibrium. Our statistical method
therefore envisions an equilibrium array of particles without making refer-
ence to collisions. It is much easier if we could just keep track of how many
particles have a particular energy.

Based on the quantum mechanics, it is frequently found that several quan-
tum states have the same or nearly the same energy ε. These states are then
grouped together and belong to the same energetic level. The number of
these states with the equal energy is known as the degeneracy of the level, g.
Although the energy of the states is equal, they still are distinct states. Shift-
ing of particles from one state to another on the same level constitutes a new
arrangement.

The meaningful specification of a finite array of microstates can only be
made after means has been devised for breaking the energy of particles into
finite increments. The energy is subdivided in the following arbitrary way:
An array of N particles has a total energy E. The energy of Ni particles is
assumed to take on the discrete value εi and∑

i

Ni = N. (2.1)

Also, since the particles in these states included in any level i all have the
same energy εi, the total energy of the particles in level i is εiNi, and the
total energy E of the system is

∑
i εiNi = E. If the system is in an external

conservative force field such as a gravitational, electric, or magnetic field, E
will consist in part of the potential energy Ep of the system. If Ep = 0, E is
then the internal energy U and∑

i

εiNi = U. (2.2)

The word “macrostate” can now be applied to the gross (or observable) state
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that corresponds with a given set of numerical values N1, N2, · · ·, Ni, and
thus satisfies the above two constraints. The number of microstates for each
macrostate will be equal to the number of ways in which we can choose these
Ni from N particles.

The fundamental assumption in statistical mechanics is the principle of
equaling a priori probabilities. In slightly restrictive form, we say that all mi-
crostates of motion occur with an equal frequency. This principle implies that
all arrangements of a system of molecules in phase space are equally probable
– a fact we have to use in writing the probability of a given macrostate. There
is no definite information or logical reason to favor one particular arrange-
ment, so this principle is indeed the only alternative. The validity of this
principle, however, can only be supported by the aposteriori success of sta-
tistical mechanics in predicting the macroscopic behavior of thermodynamic
systems.

In the later few sections, we will see how probability connects with thermo-
dynamics. If we can take a macroscopic system, look at all the possible ways
in which the individual atoms may be acting (as determined by their energy)
and take the statistical average of their behavior, we will get a very accurate
description of what the system is doing macroscopically. In other words, we
would like to determine the probabilities of how energy is distributed among
the individual particles in a system. From those probabilities, we determine
how the system behaves, including how it evolves to other distributions of
energy as we change the conditions of the system.

The number of equally probable microstates, corresponding to a given
macrostate km, is called the thermodynamic probability of the macrostate
Ωk. For most macrostates of an assembly of a large number of particles,
the thermodynamic probability is a very large number. The total number
Ω of possible microstates of an assembly, or the thermodynamic probability
of the assembly, equals the sum over all microstates of the thermodynamic
probability of each macrostate,

Ω =
∑

k

Ωk. (2.3)

To find the most likely configuration of a system or the most probable
macrostate, we need to determine which macrostate has the most microstates
and also has the right total energy and number of particles. Maximizing Ωk

can result in this macrostate with respect to changing Ni in the correspond-
ing level εi under the constraints of the system with the total energy U and
the total particle number N .

When we consider many particles, the question of distinguishability among
them arises. There are two ways to distinguish different particles. The first
relies on differences in the particles’ intrinsic physical properties, such as
mass, electric charge and spin. If there are differences in them, they can be
distinguished by measuring the relevant properties. However, it is an empiri-
cal fact that particles of the same species have completely equivalent physical
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properties. For instance, every electron in the universe has exactly the same
electric charge. In this case, a second technique should be utilized, which is to
track the trajectory of each particle. As long as we can measure the position
of each particle with infinite precision (even when the particles collide), there
would be no ambiguity about which particle is which. In a solid where atoms
are localized, that is, they vibrate from some fixed locations, the particles
(the atoms) are distinguishable.

The problem in this approach is that it contradicts the principles of quan-
tum mechanics. According to quantum theory, the particles do not possess
definite positions during the periods between measurements. Instead, they
are governed by wave functions that give the probability of finding a particle
at each position. As time passes, the wave functions tend to spread out and
overlap. Once this happens, it becomes impossible to determine, in a subse-
quent measurement, which particle positions correspond to those measured
earlier. The particles are then said to be indistinguishable or identical. In the
case of atoms or molecules in a gas, the particles are not localized and are
indistinguishable.

We shall analyze a number of widely different systems, which require the
application of Maxwell-Boltzmann (MB), Bose-Einstein (BE), or Fermi-Dirac
(FD) statistics. The subject matter includes a study of the properties of an
ideal gas, the photon gas, the specific heat of a solid, and the electron gas in
metals. These are some of the many uses of quantum-statistical mechanics,
which lead to a broader understanding of the nature of matters.

To illustrate the difference between macrostates and microstates, we di-
gress from the problem at hand to enumerate the solution of five combina-
tional problems that we must subsequently use in discussing the probabilities
of macrostates.

Problem 1. How many ways can we arrange N distinguishable objects?
Let us suppose that, for example, we wish to arrange N books in various ways
on a shelf. When the first book is placed in any one of N ways, there remain
only N−1 ways of placing the second. There are thus N(N−1) ways of placing
the first two. When they are in position, there exist N−2 ways of placing the
third. As a result, there are N ! ways of arranging N distinguishable objects.

Problem 2. How many ways can we put N distinguishable objects into
r different boxes (regardless of order within the boxes), such that there are N1

objects in the first box, N2 in the second, · · ·, and Nr in the r-th box? Once
more we have N books but now there are r shelves, and the order within any
shelf is unimportant. There are again a total of N ! arrangements of books,
but the arrangements that result from changing books on a given shelf must
be divided off because they are not relevant. We must divide N ! by N1!,
N2!, · · ·, Ni!, · · ·, Nr−1!, and Nr! to account for the meaningless rearrange-

ments. There are thus N !/
r∏

i=1

Nr! ways of putting N1, N2, · · ·, Nr, distin-

guishable objects into r distinct boxes (regardless of order).
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Problem 3. How many ways can we select N distinguishable objects
from a set of g distinguishable objects? This is nothing more than putting
N books on one of two shelves and g − N books on the other. The distin-
guishable “books” are simply divided in two groups within which there is no
concern for order. The answer to this problem can be written immediately,
as a special case of Problem 2, in the form g!/[N !(g −N)!] ways of selecting
N distinguishable objects from g distinguishable objects.

Problem 4. If there is no limit on the number of objects in any box,
how many ways can we put N indistinguishable objects into g distinguishable
boxes? This is the first problem in which we must cope with the indistin-
guishability of objects. We might liken it to the problem of placing N copies
of the same book among g shelves. The problem can be solved very simply
when we reduce it to a more abstract form. Let us designate the books with
identical dots, and separate shelves with slashes: · · ·/· · · · ·/ · /· · · · /·. There
are N dots and g − 1 slashes, denoting a total of g boxes. The “boxes” are
distinguishable by virtue of their locations, and the apparent indistinguisha-
bility of the slashes is irrelevant to the problem. The problem can now be
asked in the form: how many ways can we select N distinguishable dot lo-
cations and g − 1 distinguishable slash locations from N + (g − 1) dot and
slash locations? The problem is now to reduce to Problem 3 and the answer
is (N + g − 1)!/[N !(g − 1)!] ways of putting N indistinguishable objects into
g distinguishable boxes.

Problem 5. How many ways can we put N distinguishable objects
into g distinguishable boxes? Each of N different books can be put on any
of g shelves. The first book can be placed in g ways, the second book can
be placed also in g ways, and so on. There are thus gN ways to place N
distinguishable objects into g distinguishable boxes.

In science, the term “entropy” is generally interpreted in three distinct,
but semi-related, viewpoints, i.e., from a macroscopic classical thermodynam-
ics, a microscopic statistical thermodynamics, and an information theory. The
statistical definition of entropy described below is the fundamental one while
the other two can be mathematically derived from it, but not vice versa. All
properties of entropy (including second law of thermodynamics) follow from
this definition.

We can relate the number of microstates Ω of a system to its entropy S
by considering the probability of a gas to spontaneously compress itself from
the original volume Vi into a smaller volume Vf . The probability of finding
N molecules in Vf is Ωf/Ωi = (Vf/Vi)N and ln(Ωf/Ωi) = N ln(Vf/Vi) =
nNA ln(Vf/Vi) where n is molar number of particles in a system, NA is Avo-
gadro constant. We have seen for a free expansion that ΔS = nR ln(Vf/Vi).
Thus, ΔS = (R/NA) ln(Ωf/Ωi) = k ln(Ωf/Ωi) or, Sf − Si = k lnΩf − k lnΩi

where k = R/NA is Boltzmann’s constant. Thus, we arrive at an equation,
first deduced by Boltzmann, relating the entropy of a system to the number
of microstates,

S = k lnΩ . (2.4)
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Boltzmann was so pleased with Eq. (2.4) that he asked for it to be engraved
on his tomb stone. From a statistical viewpoint, S of a system consisting of a
very large number of particles is proportional to the natural logarithm of Ω .
If we could prepare an assembly with unique microstate, Ω = 1, lnΩ = 0, and
S = 0. This system is perfectly ordered since the state of each particle is the
same. If more energy states are available to the system, Ω > 1 and S > 0.
In this case it is impossible to specify uniquely the state of each particle
since the state of the particle may be distinct in the system. The system is
more disordered as Ω increases. Thus, S of a system may be thought of as a
measure of the disorder of the system.

This statistical interpretation of entropy allows additional insight into the
meaning of T = 0. According to the Planck statement of the third law, the
entropy of a system in internal equilibrium approaches zero as T → 0 where
the system in internal equilibrium must be perfectly ordered.

2.2 Classical Statistic Thermodynamics of Independent
Particles [1, 2, 4, 5]

In statistical mechanics, MB statistics describe the statistical distribution of
particles over various energy states in thermal equilibrium, when T is high
enough and density is low enough to render quantum effects negligible. MB
statistics were developed in the late 1800s, before the advent of quantum
mechanics. Therefore, this method of evaluation is not restricted to the rules
of quantization of energy. In MB statistics, the particles of a system are con-
sidered distinguishable, but there is no restriction on the number of particles
that can occupy the same energy state.

Consider a system of N particles and r′ energy levels. The number of
microstates, Ω , corresponding to a given macrostate, can be written by the
answer to Problem 2 in Sec. 2.1, which tells the number of arrangements for
placing N1 particles in the first level, N2 particles in the second level, etc.,

Ω = N !
r′∏

i=1

1
Ni!

(2.5)

where Ni represents the number of particles in the i-th level. However, the
number of arrangements is actually larger than this value, because we have
not accounted for different arrangements within a given energy level. It is
possible to rearrange the Ni distinguishable particles within gi distinguishable
quantum states at this level. This number of rearrangements is given by
Problem 5 in Sec. 2.1 as gNi

i . Since the number of arrangements within a given
energy level is independent of other levels, the total number of arrangements
of the system due solely to rearrangement of particles within the levels is the
product of gNi

i terms at all the levels. The total number of distribution, or
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the thermodynamic probability, for a given set of Ni values is the product of
the two relations developed above. Thus,

Ω = N !
r′∏

i=1

(gi)Ni

Ni!
. (2.6)

Since the most probable macrostate by definition is the one with the largest
number of microstates, the relationship between Ni, gi, and εi in the
macrostate may be found by maximizing lnΩ function of Eq. (2.6) of lnΩ =
ln N ! +

∑
i(Ni ln gi − ln Ni!). Maximization of lnΩ requires that it be differ-

entiated with respect to Ni. To avoid differentiation of factorial quantities,
we may replace lnN ! and lnNi! using Stirling’s formula. The result after this
treatment is

lnΩ = N ln N +
∑

i

(Ni ln gi −Ni ln Ni). (2.7)

Let gi remain constant, d(lnΩ) =
∑

i(ln gi− ln Ni− 1)dNi. Maximizing lnΩ ,

d(ln Ω) =
∑

i

ln(gi/Ni)dNi = 0. (2.8)

Since N and U of a system are conserved, for a differential change in a state,∑
i

dNi = 0, (2.9)

and ∑
i

εidNi = 0. (2.10)

The maximization of Eq. (2.8) is accomplished using the method of La-
grangian multipliers. To pursue the Lagrangian method, we shall multiply
Eqs. (2.9) and (2.10) by the arbitrary Lagrangian multipliers α′ and β′, re-
spectively. That is,

α′
∑

i

dNi = 0 and β′
∑

i

εidNi = 0. (2.11)

Subtracting Eq. (2.11) from Eq. (2.8),
∑

i[ln(gi/Ni) − α′ − β′εi]dNi = 0
where (i − 2)dNi terms are independent. Through selecting α′ and β′ with
certain values, the remaining dNi terms become independent. Hence, their
coefficients may be set to be equal to zero for all i values with the same
format,

ln(gi/Ni)− α′ − β′εi = 0. (2.12)

With a simple mathematical treatment,

Ni =
gi

eα′+β′εi
. (Maxwell-Boltzmann) (2.13)
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This expression is known as MB distribution and is one of the most impor-
tant results of statistical mechanics. It is the most probable distribution of
particles among energy states for independent, distinguishable particles, not-
ing the exponential nature of the distribution. The value of Ni/gi (fractional
occupancy) falls off rapidly as the value of εi increases for given values of α′

and β′.
By employing the constraining Eq. (2.1), it is found

eα′ =
1
N

∑
i

gie−β′εi . (2.14)

In any equilibrium state, the values of εi, gi, and T are known for each energy
mode, at least in theory. Consequently, the summation quantity that appears
in Eq. (2.14) has a known value for a given energy mode. This summation is
called the partition function Z, namely,

Z =
∑

i

gie−β′εi . (2.15)

The MB distribution law expressed in terms of Z function is now read,

Ni

N
=

gie−β′εi

Z
. (2.16)

The Z function is so named because it expresses the partition or distribution
of energies over the various energy levels. The great value of Z function
will be found to lie in its role as a generating function for the macroscopic
thermodynamic properties.

One feature of Z function is that if the energy of the system is composed
of contributions from different degrees of freedom, say, translational energy in
the x, y and z directions, molecular rotations, molecular vibrations, etc. that
are independent of each other, Z function is the product of the individual
partition functions of each of these modes considered separately,

Z =
∑

t

gt exp−
εt
kT

∑
r

gr exp−
εrt
kT

∑
v

gv exp−
εv
kT . (2.17)

It should be noted that Z is a dimensionless number. We can anticipate that
the multiplier α′ (which arises from the constraint of constant N) should be
related in some fashion to the absolute number of particles presented. The
exact relation is related to the chemical potential μ,

α′ = −μ/kT . (2.18)

The constant β′, on the other hand, is related in some way to the general
level of particle energy. The entropy for a system of distinguishable particles
can be expressed in terms of Z function with the help of the thermodynamic
probability. The combination of Eqs. (2.4) and (2.7) yields

S = k lnΩ = k[N ln N +
∑

i

(Ni ln gi −Ni ln Ni)]. (2.19)
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In light of Eq. (2.16), ln(gi/Ni) = ln(Z/N) + β′εi. The substitution of this
relation into Eq. (2.19) results in

S = kN ln N + k
∑

i

(Ni ln Z −Ni ln N + Niβ
′εi)

= kN ln N + kN ln Z − kN ln N + kβ′U,

or, S = kN ln Z + kβ′U. (2.20)

β′ is eliminated from Eq. (2.20) with the help of the definition of T ,
(∂S/∂U)V,N = 1/T = [(∂(kN ln Z + kβ′U)/∂U)]V,N , which gives

1
T

= kβ′ + k

[
∂

∂β′

(
N ln

∑
i

gie−β′εi

)
+ U

]
∂β′

∂U
. (2.21)

However,

∂

∂β′

(
N ln

∑
i

gie−β′εi

)
+ U = −N

∑
i

gie−α′εie−β′εi

∑
i

gie−α′e−β′εi

+ U

= −
N
∑

i

Niεi

∑
i

Ni

+ U = 0.

Therefore, in light of Eq. (2.21),

β′ = 1/kT . (2.22)

Substituting Eq. (2.22) into Eq. (2.20),

S = kN ln Z + U/T. (2.23)

All the thermodynamic properties of a system in MB statistics can be ex-
pressed in terms of lnZ and its partial derivatives. U associated with a given
energy mode is given by U =

∑
i Niεi. If Eq. (2.16) for Ni in terms of Z

function is substituted into the above expression, it reads

U =

∑
i

Ngiεie−β′εi

Z
. (2.24)

A further refinement of this equation is possible by comparing it with the
derivative of lnZ = ln

∑
i gie−β′εi based in Eq. (2.15) with respect to β′. The
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values of εi are held fixed during the differentiation. The result is

(
∂ ln Z

∂β′

)
V

= −

∑
i

giεie−β′εi

Z
. (2.25)

Comparing Eqs. (2.24) and (2.25),

U = −N

(
∂ ln Z

∂β′

)
V

= NkT 2

(
∂ ln Z

∂T

)
V

= nRT 2

(
∂ ln Z

∂T

)
V

. (2.26)

Then,

S = kN ln Z + NkT

(
∂ ln Z

∂T

)
V

= nR ln Z + nRT

(
∂ ln Z

∂T

)
V

. (2.27)

With similar treatments in light of Eqs. (2.26) and (2.27), the Helmholtz free
energy F is determined to be

F = U − TS = −nRT ln Z. (2.28)

The equations developed above permit the evaluation of pertinent thermo-
dynamic properties where Z function should be determined by methods of
statistics. Z function of each energy mode depends in turn upon the allowed
energy levels for that mode. Hence we need, next, to investigate techniques
to obtain values of the discrete energy levels.

2.3 Energy Mode and Energy Levels [2, 5]

The total energy of a molecule can be split into energy resulting from different
modes of motion. Roughly speaking, a molecular energy state is the sum
of electronic, vibrational, rotational, nuclear and translational components,
consequently, ε = εe + εv + εrt + εn + εt. In the quantum mechanics, also
known as the wave mechanics, the general method of attacking a problem is
to set up and solve an equation known as Schrödinger’s equation. For a single
particle in three dimensions,

i�
∂

∂t
Ψ(r, t) = − �

2

2m
∇2Ψ(r, t) + V (r)Ψ(r, t). (2.29)

This Schrödinger equation for a system where r = (x, y, z) is the particle’s po-
sition in a three-dimensional space, Ψ(r, t) denotes the wave function, which
is the amplitude for the particle at a given position r at any given time t, m
is the mass of the particle, and V (r) is the potential energy of the particle at
the position r.
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In thermodynamics one is primarily concerned with particles which are
restrained to certain regions of the space. In this case, time-independent
standing waves are set up. Eq. (2.29) will generally yield to a separation-of-
variables solution of the form Ψ(r, t) = f(t)ψ(r). Thus, the equation becomes
i�

f

df

dt
=

1
ψ

[
V (r)ψ − �

2

2m
∇2ψ

]
. Since the left-hand side depends upon t alone

and the right-hand side upon r only, each side must equal the same constant
named ε. Thus,

V (r)ψ − �
2

2m
∇2ψ = εψ. (2.30)

Suppose that a particle translates freely in a box. The motion is free where
no external force fields or intermolecular forces act upon it except on the
box walls. Such simplest case would be unidimensional motion in the interval
(0, L) with collisions on the “walls”. Thus, V (r) = 0 in (0, L) and infinite at
x = 0 and L. Since no wave function can exist as V → ∞, ψ(0) and ψ(L)
must both vanish. And since ψ function should be continuous, it should still
be close to zero at x = 0 and L, where V (r) = 0. We can therefore drop V (r)
from the consideration and write Schrödinger equation in the form

− �
2

2m

d2ψ(x)
dx2

= εxψ(x). (2.31)

The general solution of Eq. (2.31) is ψ(x) = A sin

√
2mεx

�2
x+B cos

√
2mεx

�2
x.

Substitution of the first boundary condition of ψ(0) = 0 gives B = 0 and that

of the second one of ψ(L) = 0 specifies the eigenvalues as εx =
h2

P

8mL2
n2

x with
nx = 1, 2, 3, · · ·. The term nx is known as the translational quantum number
in the x direction. Similar equations are valid in the y and z directions. For
a free particle in a three-dimensional cubic box of volume, V = L3, the total
translational energy is

εt =
h2

P

8mV 2/3
(n2

x + n2
y + n2

z) =
n2

i h
2
P

8mV 2/3
(2.32)

where n2
i = n2

x + n2
y + n2

z , and nx, ny, nz are integers of 1, 2, 3, · · ·, etc.
The degeneracy gi of a level, or the number of energy states in the level,

is calculated in terms of the translational quantum numbers. The result is

gi =
1
8

4π
3

n2
i =
π

6
n3

i . (2.33)

In order to evaluate the translational partition function Zt, the translational
energy equation (2.32) is substituted into the expression for Z,

Zt =
∑

exp
(
− εt

kT

)
=
∑
nx

∑
ny

∑
nz

exp
[ −h2

P

8mkTV 2/3

(
n2

x + n2
y + n2

z

)]
.

(2.34)
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The value of Z depends upon the summation over all available levels of
energy. Before trying to reduce this to a more compact form, let us look
at the quantity, the so-called “characteristic temperature for translation”,
Θt ≡ h2

P/8mkV 2/3. For a hydrogen molecule in a 1 cm3 cubic box, Θt ≡
1.2× 10−14 K. Θt provides an indicator of the closeness of quantum spacing.
Under normal conditions, the intervals in the above summations are very
close to each other since h2

P is a very small number. When Θt << T , the
summation on the right-hand side of Eq. (2.34) may be evaluated as the
product of three integrals of a similar form. Considering the x direction only,

Zx =
∫ ∞

0

exp
[
(−Θt/T )n2

x

]
dnx =

∫ ∞

0

exp(−Cn2
x)dnx where C = Θt/T .

Since
∫ ∞

0

exp(−Cn2
x)dnx =

√
π/C/2 is well known, Zx = [πT/(4Θt)]1/2 =

(2πmkT )V 1/3/hP. Because Zt = ZxZyZz according to Eq. (2.34), Zt func-
tion is shown as

Zt =
(
πT

4Θt

)3/2

=
V

h3
P

(2πmkT )2/3. (2.35)

For a given chemical species, Zt function is primarily a function of V and T
of the system.

All diatomic gases and a number of triatomic gases (for examples, CO,
CO2, CS2, N2O) are linear molecules. The atoms of the molecule lie in a
straight line. As a first approximation for these gases, it may be assumed
that the interatomic distances are fixed. The assumption of a rigid rotator is
valid generally at not too high T . Under these conditions, the solution of the
wave equation shows the total energy of both rotational degrees of freedom
of the j-th level εrt as

εrt = j(j + 1)h2
P/(8π2Ir) (2.36)

where Ir is the moment of inertia of the molecule. The rotational quantum
numbers j are integral values with j = 0, 1, 2, 3, · · ·. The order of magnitude
for the spacing of εrt ∼ 5 to 500 J·mol−1 is much larger than that for the
translational mode. Excitation of the rotational levels thus would occur at
much higher T than that of the translation.

In addition to the energy-level spacing, we need information on the num-
ber of energy states per level. Quantum mechanics demonstrates that there
are 2j + 1 of molecular quantum states which correspond approximately to
the same magnitude of the rotational energy. Therefore, in rotation,

gj = 2j + 1. (2.37)

The degeneracy of a rotational level thus increases linearly with j. Both
Eqs. (2.36) and (2.37) are substituted into the expression for the rotational
partition function of a rigid rotator Zrt,

Zrt =
∑
j=0

(2j + 1) exp[−j(j + 1)h2/(8π2IrkT )]. (2.38)
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Once again we wish to develop the limiting value of this sum. Let Θrt ≡
h2

P/(8π2Irk) be the characteristic rotational temperature with a dimension
of T , Zrt =

∑
j=0(2j + 1) exp[−j(j + 1)Θrt/T ]. Although the energy lev-

els are more widely spaced in rotation than in translation, a continuum of
energy often is a reasonable assumption. The summation of Zrt with this
approach becomes integration. The evaluation of the rotational partition

function by integration may be justified when Θrt << T , Zrt =
∫ ∞

0

(2j +

1) exp [−j(j + 1)Θrt/T ] dj. Note that (2j + 1)dj is equivalent to d(j2 + j)
and let x = [(j2 + j)Θrt]/T , the above expression can thus be rewritten as

Zrt =
∫ ∞

0

exp
[−(j2 + j)Θrt/T

]
d(j2 + j) =

T

Θrt

∫ ∞

0

exp(−x)dx. (2.39)

The value of the integral in Eq. (2.39) is unity. Hence, Zrt = T/Θrt =
8π2IrkT/h2

P. This equation is valid for a heteronuclear diatomic molecule,
assuming a continuum for the energy levels and behavior as a rigid rotator.
For homonuclear molecules a symmetry number ns is necessary in the de-
nominator of the rotational partition. For homonuclear diatomic molecules,
ns = 2, and for heteronuclear ones ns = 1. Therefore the above equation
should be revised into the general form,

Zrt = 8π2IrkT/(nsh
2
P) = T/(nsΘrt). (2.40)

When the energy levels are not closely spaced, it may be necessary to carry
out the actual summation of terms in Eq. (2.38), rather than to use an integra-
tion technique. This is accomplished through the Euler-Maclaurin summation
formula. The result is

Zrt =
T

nsΘrt

[
1 +

1
3

(
Θrt

T

)
+

1
15

(
Θrt

T

)2

+
4

315

(
Θrt

T

)3

+ · · ·
]

. (2.41)

This approaches Eq. (2.40) rapidly as T > Θrt. However, Θrt is generally
assumed between 2 and 100 K, Eq. (2.40) is thus valid in the range of practical
interest.

The vibrational motion of a molecule can often be treated as the motion
of a harmonic oscillator. A unidimensional harmonic oscillator is a particle
moving about an equilibrium position (x = 0) subject to a restoring force
fo that is linearly dependent upon x. Thus, fo = −ksx, where ks is the
“spring constant.” The potential energy for such a particle is defined for any
conservative force field, consequently fo = −dV (x)/dx. Thus, we have, in
this case, the scalar relation,

V (x) = −
∫ x

0

fodx =ksx
2/2. (2.42)

Equation (2.42) is substituted into Eq. (2.30) to obtain the Schrödinger

wave equation for a one-dimensional harmonic oscillator,
d2ψ

dx2
+

8π2m

h2

(
ε−
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1
2
ksx

2

)
ψ = 0. The general solution of this differential equation is given by

an infinite series. The allowed vibrational energy levels are quantized, and
given by

εv =
(

υ +
1
2

)
hPν (2.43)

where υ = 0, 1, 2, 3, · · · is the vibrational quantum number, and ν is the
fundamental frequency of oscillation in s−1. ν lies in the infrared region of
the electromagnetic spectrum for diatomic gases. Recall that the equation for
the rotational energy indicates the ground-level energy being zero. However,
in the ground level, the vibrational energy is hν/2. The quantity hν is referred
to as a quantum of energy.

The energy spacing of the vibrational levels of 4000 – 40000 J·mol−1 is
extremely large. According to Eq. (2.43), the vibrational levels of a harmonic
oscillator are equally spaced. The quantum mechanics also shows that the
degeneracy of a one-dimensional harmonic oscillator is unity. That is gvib = 1.

The vibrational partition function may now be obtained by the usual
summation process. In this case, the characteristic temperature of vibration
Θv is large, being in the order of 103 K. One cannot pass from summation to
integration at temperatures in the range of practical interest. It is unnecessary
to do so, however, because in this case the partition function can be summed
exactly. The multiplicity, or degeneracy factor, of the vibrational levels is
unity. The partition function constructed from the energy given in Eq. (2.43)
is Zv =

∑
υ=0 exp[−(υ + 1/2)hPν/(kT )] where hPν/k ≡ Θv. This equation

can be expanded as Zv = exp[−Θv/(2T )][1+exp(−Θv/T )+exp(−2Θv/T )+
· · · ] and summed. We recognize that the bracketed term is in the form of a
binomial expansion. Thus Zv is presented as

Zv =
exp[−Θv/(2T )]

1− exp (−Θv/T )
. (2.44)

In some instances it is convenient to suppress the ground-level energy εv,0

and then correct for this later. Equation (2.43) may be modified as

εv − εv,0 = υhPν. (2.45)

If Eq. (2.45) is used as vibrational energy εv in the partition function of vi-
bration, a constant multiplicative factor, exp[−hPν/(2kT )], has likewise been
suppressed. The equation for the partition function of a harmonic oscillator
is then

Zv =
(

1− exp
−hPν

kT

)−1

. (2.46)
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2.4 Bose-Einstein and Fermi-Dirac Statistics [2, 3, 5]

Calculations in statistical mechanics rely on probabilistic arguments, which
are sensitive to whether the objects studied are identical. Uncertainty prin-
ciple requires that we abandon the concept of distinguishability except in
certain restrictive cases. As a result, identical particles exhibit markedly dif-
ferent statistical behavior from distinguishable particles.

There are two main categories of identical particles: bosons, which can
share quantum states, and fermions, which are forbidden from sharing quan-
tum states (this property of fermions is known as the Pauli Exclusion Princi-
ple). In statistical mechanics, BE and FD statistics determine the statistical
distribution of identical indistinguishable bosons and fermions under the en-
ergy states in thermal equilibrium. Photons, phonons and helium-4 atoms,
for example, are not bound by Pauli Exclusion Principle and will therefore
be subject to BE statistics. This explains why, at low T , bosons can be-
have very differently from fermions; all the particles will tend to congregate
together at the same lowest-energy state, forming what is known as a Bose-
Einstein condensate. FD statistics describes the energy of identical particles
with half-integer spin which comprises a system in thermal equilibrium, being
most commonly applied to electrons.

Two particular situations will be of subsequent interest to us. Each will
have a slightly different statistical description. Assume that an energy level εi

has a degeneracy gi. The number of ways of distribution Ni indistinguishable
particles among the gi sublevels of an energy level εi is given by the answer to
Problem 4 in Sec. 2.1, as (Ni+gi−1)!/[Ni!(gi−1)!]. Thus the thermodynamic
probability ΩBE that a set of occupation numbers Ni can be realized is the
product of the ways that each individual energy level can be populated,

ΩBE =
∏

i

(Ni + gi − 1)!
Ni!(gi − 1)!

. (2.47)

Again consider the i-th level, where there are gi energy states and Ni in-
distinguishable particles available, which may be placed in gi states. Now,
however, Ni � gi, and the number of particles in a given state must be unity
or zero. A microstate consists of one way of arranging the Ni particles among
the gi places available. There are gi!/[Ni!(gi −Ni)!] ways in which gi quan-
tum states can be divided into Ni that are occupied by a single particle and
gi −Ni that are not. The total number of ways of arranging them is equiva-
lent to the answer to Problem 3 in Sec. 2.1, as gi!/[Ni!(gi −Ni)!]. Since the
number of arrangements of each level is independent of other levels, again
the thermodynamic probability ΩFD is given as the product of the number
of arrangements for each level,

ΩFD =
∏

i

gi!
Ni!(gi −Ni)!

. (2.48)
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It is a matter of great convenience that in dilute gases the degeneracies are
largely unoccupied and gi >> Ni. In this case, (gi + Ni − 1)!/[(gi − 1)!Ni!] =
(gi + Ni − 1) · · · (gi + 1)gi/Ni! is a little larger than gNi

i /Ni! and gi!/[(gi −
Ni)!Ni!] = gi(gi − 1) · · · (gi −Ni + 1)/Ni! is a little smaller than gNi

i /Ni!. As
a result,

ΩFD
∼= ΩBE

∼= ΩB

N !
=

gNi

i

Ni!
. (2.49)

Distribution functions for particles of the preceding two types are obtained
using the same basic strategy that underlay the derivation of MB distribution.
The particles must be distributed in such a way as to maximize the thermo-
dynamic probability subject to the usual constraints that there is a fixed
number of particles, and a fixed energy. The procedure, using the method
of Lagrangian multipliers, will be the same as that outlined in Sec. 2.2. In
the resulting distribution of the Ni’s for bosons of BE function, the average
occupation number per state in any level i, Ni/gi, is

Ni,BE

gi
=

1
exp (α′ + β′εi)− 1

=
1

exp
(

εi−μ
kT

)− 1
. (2.50)

Einstein pointed out a curious phenomenon related to BE distribution in
1925. This subsequently received attention for its possible relevance to the
λ transition of liquid helium. Suppose that a BE gas is cooled to a very low
T . Since β′ >> 1, ε0 < ε1 < · · · , and exp(β′ε0) << exp(β′ε1) << · · · , it

follows that N =
∞∑

i=0

Ni =
g0

exp (α′ + β′ε0)− 1
+

g1

exp(α′ + β′ε1)− 1
+ · · · =

N0 + N1 + · · · , or

N ≈ g0

exp (α′ + β′ε0)− 1
= N0. (2.51)

The preceding result implies that at low T there can be a pileup of particles
in the ground state ε0, or the Bose-Einstein condensation. The transition
temperature at which this takes place can be identified. This temperature is
rather like a condensation point and, indeed, it is found to lie at T = 3.2 K,
which is comparable with the observed λ transition for helium, T = 2.19 K.

The Pauli Exclusion Principle requires the development of a third type of
quantum-statistical description. By the same reasoning as in MB statistics,
the expected number of fermions in states with energy εi is

Ni,FD

gi
=

1
exp (α′ + β′εi) + 1

=
1

exp
(

εi−μ
kT

)
+ 1.

(2.52)

The distribution function for indistinguishable particles can all be represented
by the single equation,

Ni,FD

gi
=

1
exp

(
εi−μ
kT

)
+ A

(2.53)
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where A = −1 in BE statistics, A = +1 in FD statistics, and A = 0 in MB
statistics.

Note that when εi = μ, the value of Ni/gi in BE statistics becomes
infinite, while for levels in which εi < μ, it is negative and hence meaningless.
That is, in this statistics, μ must be lower than the energy of the lowest
permitted energy level. The particles like to concentrate in levels for which
εi is only little greater than μ.

In FD statistics, on the other hand, all levels are populated down to the
lowest and as εi decreases, Ni/gi → 1. That is, the low-energy levels are very
nearly uniformly populated with one particle per state.

2.5 Application of Quantum Statistics

2.5.1 Spatial Configuration of Long Chain Polymers [6, 7]

The study of long chain polymers has been a source of problems within the
field of statistical mechanics since about the 1950s. Disordered long chain
polymers are too complex to be described using a deterministic method. How-
ever statistical approaches can yield results and are often pertinent since large
polymers (that is to say, polymers containing a large number of monomers)
can be described efficiently as systems at the thermodynamic limit. One of
the reasons that scientists were interested in their study is that the equa-
tions governing the behavior of a polymer chain are independent of the chain
chemistry. The statistical approach to polymer physics is based on an anal-
ogy between a polymer and either a Brownian motion, or some other types
of random walks.

Random walks in space (or more exactly, random flights since we consider
three dimensions) can be thought of as snapshots of the path taken by a
random walker in time. The results of random walk analysis have been applied
to computer science, physics, ecology, economics and a number of other fields
as a fundamental model for random processes in time. For instance, the path
traced by a molecule as it travels in a liquid or a gas, the spatial configuration
of long chain polymers, and the topic of electronic transport in amorphous
photoconductors can all be modeled as random walks. In the present section,
we will illustrate such an application for rubber elasticity in polymers.

The freely joined chain is the simplest model of a polymer. In this model,
fixed length polymer segments are linearly connected, and all bonds and
torsion angles are equiprobable. The polymer can therefore be described by a
simple random walk and an ideal chain. The ideal chain model assumes that
there are no interactions between chain monomers and polymer segments can
overlap each other as if it is a phantom chain. In reality, this occurs when a
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single polymer chain is located in bulk polymer materials where the above
interactions are effectively canceled out. The ideal chain model provides a
good starting point for investigation of more complex systems and is better
suited for equations with more parameters. Since two segments cannot occupy
the same space at the same time, this interaction between segments can be
modeled as excluded volume. This causes a reduction in the conformational
possibilities of the chain, and leads to a self-avoiding random walk, which
cannot repeat its previous path. This is present when a single polymer chain
is in a dilute solution, whose statistics differs from the simple random walk
where the idea of the fractal dimension should be introduced.

When the random walk is applied to polymer structures, the walk is rein-
terpreted as the physical configuration (static configuration in a glass) of a
flexible long-chain molecule, rather than the transitory path of a diffusing
particle. Each step of length b (for a uniformly stepping walk) is interpreted
as a chemical unit–a monomer segment of the chain. The net displacement
magnitude Rb is now the end-to-end length separating the first and last
monomers at the two ends of the chain. Above the glass transition tempera-
ture Tg, the polymer chain oscillates and Rb changes over time. The net time
average 〈Rb〉, or the root mean square (rms) end-to-end length 〈R2

b〉1/2(Rrms)
is a useful measure of the size of the chain.

By considering an ideal chain, we use N and ri to denote the number of
steps and the vector position of the i-th link in the chain (|ri| = ri = b). Then
the end-to-end vector Rb achieved in walks of N steps is Rb =

∑i=N
i=1 ri and

〈R2
b〉 =

N∑
i=1

〈ri · ri〉+
∑
i�=j

〈ri · rj〉 (2.54)

where the angle brackets means an average over all possible walks having
exactly N steps, that is configuration average. The second summation is a
double sum extending over all values of i and j except for those with i = j. All
of the latter diagonal terms, corresponding to the appearance in R2

b = Rb ·Rb

of the self-products ri ·ri, which represents the square of the length of a given
step of the walk, have been separately taken into account in the first sum
of Eq. (2.54). Since there are N such self-product terms, and since each
contributes b2, the first sum is simply Nb2. On the other hand, the second
sum of Eq. (2.54), containing configuration averages over cross terms ri · rj ,
necessarily vanishes because of the assured randomness of the walk. Since
two different steps i and j are completely uncorrelated and all orientations
of ri and rj occur with equal probability, the average ri · rj of their scalar
products, taken over all possible configurations, must equal zero. Hence,

Rrms = 〈R2
b〉1/2 = N1/2 · b. (2.55)

In addition to Rrms, the full distribution function P (Rb) is also known for
random walks. P (Rb) is the probability of finding configuration with Rb.
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As no direction is favored over any other, it is isotropic and depends only
on the scalar Rb = |Rb|. Thus the frequency of occurrence of end-to-end
lengths lying in the range from Rb to Rb + dRb in configuration space is, in
three dimensions, 4πR2

bP (Rb)dRb. Assuming that distribution of end-to-end
vectors for a very large number of identical polymer chains is Gaussian, the
probability distribution has the following form:

P (Rb) =
(

3
2πNb2

)3/2

exp
−3Rb · Rb

2Nb2
. (2.56)

Figure 2.1 shows P (Rb) and 4πR2
bP (Rb) functions of an assembly of

chains assumed to have random-walk conformations and an Rrms of 300 Å (a
representative value for polymers with N ≈ 105). P (Rb) in Fig. 2.1 provides
a linear section, along any radial line, of the spherically symmetric three-
dimensional free endpoint distribution P (Rb). The function 4πR2

bP (Rb)
amounts to the pair correlation function (i.e., the radial density function
RDF) for connected chain ends. Its peak occurs at (2/3)1/2Rrms and its sec-
ond moment is R2

rms. Although other linear measures of the region encom-
passed by a random coil chain might be adopted (such as the rms distance of
the chain segments from its center of gravity, called its “radius of gyration”),
they scale each other in the same order.

Fig. 2.1 Distribution functions for the end-to-end distance Rb of an assembly of
“ideal” (i.e., random-walk configuration) chains for which Rrms is 300 Å.

Throughout this discussion, Rb has been employed as a fantastically
abridged one-parameter characterization of chain conformation. For each Rb

there exists an astronomical variety of possible configurations. The complete
configuration of any particular chain, that is, the full sequence of ri’s of Eq.
(2.54), is virtually unknowable, due to the complete atom-by-atom structure
of any amorphous system. Precisely because of the large numbers involved,
the statistical approach becomes both necessary and valid.
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Upon stretching a material we are doing work on the system to exhibit
a limited elastic region while the material regains its original dimensions
if the stress is removed. As the resulting strain is related to the extent of
movements of atoms from their equilibrium conditions, substances such as
crystalline solids and amorphous glasses have elastic limits rarely exceeding
1% because atomic adjustments are localized. The elastic properties of elas-
tomers, however, are truly exceptional. Elastomers are polymeric materials,
natural or synthetic, that can be stretched to several times its original length
without breaking owing to the ability of their constituent polymeric chains
to rotate about the chain bonds. By far the most widely studied elastomer
is the natural rubber, its deformation is reversible and instantaneous and it
shows almost no creep. The reversible character of the deformation is a con-
sequence of the fact that rubbers are lightly cross-linked, which prevent the
chains from slipping past each other. The chains between adjacent crosslinks
contain typically several hundred main chain atoms. The instantaneous de-
formation occurring in rubbers is due to the high segmental mobility and
thus to the rapid changes in chain conformation of the molecules. The en-
ergy barriers between different conformational states must therefore be small
compared to the thermal energy. Given our probability distribution function,
there is a maximum corresponding to Rb = 0. Physically this amounts to
that there are more microstates of chain conformations with an end-to-end
vector of zero than any other microstate. Stress acting on the rubber net-
work will stretch out and orient the chain between the crosslink joints. This
will thus decrease the entropy of the chains and hence give rise to an en-
tropic force. The change in chain conformation is expected to change the
intramolecular internal energy. The packing of the chains may also change,
affecting the intermolecular-related internal energy. Both the intramolecular
and intermolecular potentials contribute to the energetic force. The follow-
ing thermodynamic treatments yield expression differentiating between the
entropic and energetic contributions to the elastic force fe.

According to the first and second laws of thermodynamics, the internal
energy change dU consisting of the chain exchanging heat (δQ), deformation
and P − V work (δW ) is shown as dU = TdS −PdV + fedRb, where fedRb

is the work done by the deformation. Physically what is more interesting
is to consider deformation at constant V in order to view only the direct
effects of orientation on entropy and internal intramolecular energy where
δW = −PdV = 0. The partial derivative of U with respect to Rb at constant
T and V is fe = (∂U/∂Rb)T,V − T (∂S/∂Rb)T,V . (∂U/∂Rb)T,V vanishes for
ideal chains, which means that the polymer chains can rotate freely and its
U does not change with conformation. We are thus led to

fe = −T

(
∂S

∂Rb

)
T,V

. (2.57)

Equation (2.57) shows that the elastic force necessarily stems from a purely
entropic effect. This entropic force is very similar to P of an ideal gas. U



58 Chapter 2 Statistical Thermodynamics

of an ideal gas depends only on its T , and not on V of its container, so
it is not an energy effect that tends to increase V like gas pressure does,
or P of an ideal gas has a purely entropic origin. The elasticity of rubbers
is predominantly entropy-driven, which brings out a number of spectacular
phenomena. The stiffness increases with increasing T and Q is reversibly
generated on deformation. What is the microscopic origin of such an entropic
force? The most general answer is that the effect of thermal fluctuations
tends to bring a thermodynamic system toward a macroscopic state that
corresponds to a maximum in the number of microscopic states, which are
compatible with this macroscopic state.

Return now to the probability distribution function (Eq. (2.56)) of finding
configuration with Rb. Recall that according to the principle of equally likely
a priori probabilities, Ω at some physical value is directly proportional to
the probability distribution at that physical value, viz, Ω(Rb) = cP (Rb),
where c is an arbitrary proportionality constant. The entropy associated to
a macrostate of an ideal chain is thus equal to

S(Rb) = k lnΩ(Rb) = k ln P (Rb) + C0 (2.58)

where C0 is a fixed constant. By combining Eqs. (2.57) and (2.58), it reads

fe = −3kTRb/(Nb2) = −ksRb. (2.59)

The above thermodynamic equation is the same as that for the conventional
P −V systems where P and V are substituted by −fe and Rb. The resulting
stress-strain relationship is called the equation of state of the ideal chain. It is
only exact in the limit of polymers containing a large number of monomers,
that is, the thermodynamic limit.

An analogous expression to Eq. (2.57) can be derived: fe =(∂F/∂Rb)T,V =
(∂Ω∗/∂Rb)T,V at constant V and T where F = U − TS. Insertion of Eq.
(2.59) into the above equation gives

F = Ω∗ = −3kTR2
b/(2Nb2) = ksR

2
b/2, ks = 3kT/(Nb2). (2.60)

Equations (2.59) and (2.60) are known as the entropic spring results. Namely,
upon stretching a polymer chain we are doing work on the system to drag
it away from its (preferred) equilibrium state and the chain behaves like
a conventional spring. Particularly the work can be related entirely to the
entropy change of the system.

2.5.2 Statistical Thermodynamics of a Paramagnetic Crystal [3,
8]

The properties of paramagnetic crystals are essential interest at extremely
low T of a few Kelvin or less. A number of simplifying assumptions will be
made, but the procedure is the same as in more complicated cases.
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Paramagnetism results from the tendency of unpaired magnetic dipole
moments associated with the electron orbital angular momentum, the elec-
tron spin, or the both, to align themselves parallel to the applied field. Para-
magnetism occurs in compounds containing transition metal ions that have
either incomplete d shells (the iron, palladium and platinum groups) or in-
complete f shells (the lanthanide and actinide groups). Both of the net spin
and orbital magnetic moments may contribute to paramagnetism, but for an
ion with an incomplete d shell, the effective orbital moment may be quenched
by electrostatic interactions with its neighboring ions, leading to a predom-
inant spin moment. Paramagnetism is due mainly to the spin angular mo-
ments of the electrons. Every electron in an atom has not only an electric
charge but also a magnetic moment μB of 1 Bohr magneton, being equal to
9.27 × 10−24A ·m2, as if the electron were a tiny sphere of electric charge
spinning about an axis.

It was shown in Sec. 1.6 that the thermodynamic properties of a para-
magnetic crystal could be calculated from a knowledge of G′ = H ′ − TS.
Using the methods of statistics, G′ can be derived in terms of T and the
parameters that determine the energy levels of the atoms in the crystal. In
a paramagnetic material, because the atoms can be labeled according to the
positions they occupy in a crystal lattice, the system obeys MB statistics. As
usual, the first step is to calculate Z, defined as Z =

∑
j Δgj exp(−εj/kT ).

Because of their oscillatory motion, the molecules have the same set of
vibrational energy levels as those of any solid, and the total vibrational en-
ergy constitutes the internal energy Uvib. In addition, the small interaction
between the magnetic ions, and their interactions with the electric field set
up by the remainder of the lattice, gives rise to an additional internal energy
(of the ions only) Uint. Each magnetic ion in a paramagnetic crystal is a small
permanent magnet and is equivalent to a tiny current loop as shown in Fig.
2.2.

Fig. 2.2 Magnetic ion of the magnetic moment μv equivalent to a small current
loop.

The ion has a magnetic moment μv, which can be represented by a vector
perpendicular to the plane of the loop. If the paramagnetic crystal is placed
in a magnetic field B, where the moment vector makes an angle θ with the
direction of B, a torque τ of magnitude μvB sin θ is exerted on the loop,
in such a direction as to align μv in the same direction as B. Finally, the
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ions have a magnetic potential energy which, like the gravitational potential
energy of particles in a gravitational field, is a joint property of the ions and
the source of the field and cannot be considered as internal energy. The total
magnetic potential energy is Emp.

The vibrational energy levels associated with internal magnetic and elec-
trical interactions, and the potential energy levels are all independent. Z can
be expressed as the product of independent partition functions Zvib, Zint, and
ZHmag . Thus, Z = ZvibZintZHmag . The magnetic ions constitute a subassem-
bly, characterized by the partition functions Zint and ZHmag only, and they
can be considered independent of the remainder of the lattice, and simply as
a container of the subassembly.

The paramagnetic salts most widely used contain paramagnetic ions sur-
rounded by large number of nonmagnetic particles. A typical example is
Cr2(SO4)3·K2SO4·24H2O (chromium potassium alum). Its magnetic prop-
erties are due solely to the chromium ions existing in the crystal. Cr+++

has three unpaired electron spins and therefore a magnetic moment of 3μB.
Besides the two chromium ions there are four sulphur ions, two potassium
ions, forty oxygen ions, and forty-eight hydrogen ions. Hence there are a total
of ninety-four nonmagnetic particles. The magnetic ions are so widely sepa-
rated in the molecules that the interaction between them is negligibly small.
At the same time, the effect of the orbital motions of the valence electrons
is quenched by the fields of neighboring ions. What remains is a net electron
spin. Although Uint and Zint play important roles in the complete theory, we
shall neglect them and consider that the total energy of the subassembly is
its potential energy Ep only. Thus we solely consider ZHmag .

Emp is the work that must be done to rotate the magnetic dipole from its
zero energy position π/2 to θm,

Emp =
∫ θm

π/2

τdθm = μvB

∫ θ

π/2

sin θmdθm = −μvB cos θm.

For simplicity, only a subassembly of ions having a magnetic moment of
1 Bohr magneton μB is considered. The principles of quantum mechanics
restrict the possible values of θm, for such an ion, to either 0◦ or 180◦, so
that the magnetic moment is either parallel or antiparallel to the field (other
angles are permitted if the magnetic moment is greater than μB). As an
example, for an electron with a single net electron spin, there would be two
possible energy levels, with spin quantum number ms = 1/2 (spin parallel
to B) and ms = −1/2 (spin antiparallel to B). The corresponding values
of cos θm are then +1 and −1, and the possible energy levels are −μBB
and +μBB. The energy levels are nondegenerate. There is only one state in
each level, but there is no restriction on the number of ions per state. ZHmag

therefore reduces also to the sum of two terms,

ZHmag = exp
(

μBB

kT

)
+ exp

(−μBB

kT

)
= 2 cosh

(
μBB

kT

)
(2.61)
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since by definition the hyperbolic cosine is given by cosh x = (1/2)[exp(x) +
exp(−x)].

The thermodynamic properties of a two-level system exhibit the same
features as those of more complex systems and are easier to calculate. Let N ↑
and N ↓ represent respectively the number of ions whose moments are aligned
parallel and antiparallel to B. The corresponding energy is ε ↑= −μBB and
ε ↓= +μBB. The average occupation numbers in the two directions are then

N ↑= N

Z
exp

(−ε ↑
kT

)
=

N

Z
exp

(
μBB

kT

)
,

N ↓= N

Z
exp

(−ε ↓
kT

)
=

N

Z
exp

(
−μBB

kT

)
.

The excess of those ions in the parallel, over those in the antiparallel align-
ment, is

N ↑ −N ↓= N

Z

[
exp

(
μBB

kT

)
− exp

(
−μBB

kT

)]
=

N

Z
2 sinh

(
μBB

kT

)
,

which reduces to N ↑ −N ↓= N tanh (μBB/kT ).
The net magnetic moment M of the crystal is the product of μB of

each ion and the excess number of ions aligned parallel to B. Thus, M =(
N ↑ −N ↓)μB = NμB tanh (μBB/kT ). This is the magnetic equation of

state of the crystal, expressing M as a function of B and T . Note that M
depends only on the ratio B/T .

Since the limits of small and large x are tanh(x) = (ex − e−x)/(ex +
e−x)

−−−→
x → 0(1−1)/(1+1) = 0 and tanh (x) = (ex−e−x)/(ex+e−x)−−−−→x →∞ex/ex

= 1, in the case of μBB >> kT, tanh (μBB >> kT ) → 1 and M = NμB.
This is simply the saturation magnetic moment Msat, which would result if
all ionic magnets were parallel to B.

At the other extremes of weak B and high T, (μBB/kT ) << 1, tanh
(μBB/kT ) → μBB/kT, and M = (Nμ2

B/k)(B/T ). This is just the exper-
imentally observed Curie law, stating that M ∝ B/T or M = CCurieB/T
in weak B and at high T where CCurie is the Curie constant. The meth-
ods of statistics therefore not only lead to the Curie law, but also provide a
theoretical value of CCurie = Nμ2

B/k.
We now calculate other thermodynamic properties of the system. Emp

can then be found from

Emp = NkT 2

(
∂ ln Z

∂T

)
B

= −Nk

(
μBB

k

)
tanh

(
μBB

kT

)
. (2.62)

The energy is −NμBB at T = 0 and approaches zero asymptotically at high
T . Here higher T produces increased randomization of the dipole moments
and Emp goes to zero.
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The magnetic contribution to the heat capacity also has distinctive char-
acteristics, which is given by

CB =
(

∂Emp

∂T

)
B,N

= Nk

(
μBB

kT

)2

sech2

(
μBB

kT

)
. (2.63)

Figure 2.3 shows graphs of Emp and CB (both divided by Nk) as a function of
kT/(μBB). The curves differ from the corresponding curves for the internal
energy and heat capacity of an assembly of harmonic oscillators because there
are only two permitted energy levels and the energy of the subassembly can-
not increase indefinitely with increasing T. CB has a fairly sharp peak known
as a Schottky anomaly. It is called anomalous because the heat capacity usu-
ally increases with increasing T , or stays constant. The anomaly is useful for
determining energy level splitting of ions in rare-earth and transition-group
metals.

Fig. 2.3 The specific potential energy and specific heat capacity at constant mag-
netic intensity, both divided by Nk, for a paramagnetic crystal as a function of
kT/(μBB).

Now we compare CB of the magnetic subassembly with CV of the entire
crystal. Letting T = 1 K and B = 1 T (a comparatively strong laboratory
magnetic field), we have (kT/μBB) ≈ 1.5, sech2(μBB/kT ) = 0.66, and by
Eq. (2.63), CB ≈ Nk(1.5)−2 × 0.66 ≈ 0.29Nk. Assuming that there are
50 nonmagnetic particles for every magnetic ion, and taking a ΘD = 300 K
as a typical value, we have from the Debye T 3 law, CV ≈ Nk(50) ×
(12π4/5)(1/300)3 ≈ 0.5 × 10−5Nk. Hence, CB at T = 1 K is about 100000
times CV . Much more energy is required to orient the ionic magnets than
to increase the vibrational energy of the molecules of the lattice. It is this
energy of the orientation which allows the cooling of the lattice during the
process of adiabatic demagnetization described in Sec. 3.1.2.

The most important thermodynamic property of two-level system is the
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entropy. For MB statistics, S = Emp/T + Nk ln Z. Substituting Eqs. (2.61)

and (2.62) into this expression, S =Nk

[
ln
(

2 cosh
μBB

kT

)
−μBB

kT
tanh

μBB

kT

]
.

Figure 2.4 is a graph of S/(Nk), plotted as a function of kT/μBB. At low
T, ln[2 cosh(μBB/kT )] = ln[exp(μBB/kT ) + exp(−μBB/kT )] →
ln[exp(μBB/kT )] = μBB/kT and (μBB/kT ) tanh(μBB/kT ) → μBB/kT .
Thus, S → 0 as T → 0. As T → 0 all the dipoles are in the lowest energy
state pointing to a direction parallel to the applied magnetic field. There is
only one possible microstate. As a result, W = 1 and S = k ln 1 = 0. At
high T , the second term in brackets approaches zero, cosh(μBB/kT ) → 1,
and S → Nk ln 2. This is exactly what we would expect. At the upper tem-
perature limit, W = 2N , the number of equally probable microstates, and
S = Nk ln 2. This corresponds to a pattern of random dipole orientations,
involving equal numbers of parallel and antiparallel magnets in any chosen
direction. In this disordered state S as a function of B/T only reaches the
maximum. In a reversible adiabatic demagnetization, S and hence B/T re-
main constants. Thus as B drops, T must decrease too, in agreement with
the thermodynamic result.

Fig. 2.4 The entropy of a paramagnetic crystal.

2.5.3 Negative Temperature [3]

Consider again a system with just two possible magnetic energy levels, in
which μB of a particle can be either parallel (↑) or antiparallel (↓) to B. In
the equilibrium state at a T , the ratio of the average occupation numbers of
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the levels is

N ↑
N ↓ = exp

(
ε ↓ −ε ↑

kT

)
, or T =

1
k

[
ε ↓ −ε ↑

lnN ↑ − ln N ↓

]
(2.64)

and we can consider this as the equation defining T , in terms of ε↑, ε↓, N ↑,
and N ↓. If ε↓ > ε↑ and N ↑> N ↓, the right side of the equation is positive
and T > 0.

Now suppose the direction of the magnetic intensity is suddenly reversed.
Those magnetic moments, which were parallel to the original field, and in
the state of lower energy ε↑, are opposite to the new field and are now in
the higher energy state, while those opposite to the original field, and in
the higher energy state ε↓, are parallel to the new field and are now in the
lower energy state. Eventually, the moments in the higher energy state will
hop over to the new lower energy state, but immediately after the field has
been reversed, and before any change in occupation numbers has taken place.
The average occupation number N

′ ↓ of the new upper state is the same as
the number N ↑ in the original lower state, and the occupation number
N
′ ↑ of the new lower state is the same as the number N ↓ in the original

upper state. We say that there has been a population inversion. The concept
is of fundamental importance in laser science because the production of a
population inversion is a necessary step in the workings of a laser. Now if the
temperature of the system is defined by Eq. (2.64),

T ′ =
1
k

[
ε ↓ −ε ↑

lnN ′ ↑ − lnN
′ ↓

]
.

Since N
′↓ > N

′↑, the denominator on the right side of the equation is negative
and T ′ < 0.

Negative temperatures can be looked at from another viewpoint. At T
= 0, all magnets are in their lower energy states. As T is increased, more
and more magnets move to the state of higher energy. When T → +∞, both
states are equally populated. Then one might say that if the number in the
higher state is even greater than that in the lower state, as it is when there
is a population inversion, the temperature must be hotter than infinity. We
thus have the paradoxical result that a system at a negative T is even hotter
than at an infinite T .

In paramagnetic substances, the interactions between the ionic magnets
and the lattice are so great that the substance cannot exist in a state of pop-
ulation inversion for an appreciable time. However, it was found by Pound,
Purcell, and Ramsey in 1951 that the nuclear magnetic moments of lithium
atoms in LiF interact so slowly with the lattice that a time interval of several
minutes is required for equilibrium with the lattice to be attained, a time long
enough for experiments to be made showing actual existence of a population
inversion.
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Chapter 3 Heat Capacity, Entropy, and Nano-
thermodynamics

Two important thermodynamic parameters of heat capacity and entropy, and
the constitutions of them are extensively introduced where different ways to
deduce the above amount and the corresponding mathematical and physical
relationships presented in the above deductions are given. Based on these re-
sults and related messages shown in Chapters 1 and 2, the recent progress in
thermodynamics for materials in nanometer size range – Nanothermodynam-
ics – and several typical applications are present where the functions of the
size-dependent functions of cohesire energy and entropy are recommended.

3.1 Heat Capacity

3.1.1 Relations of Principal Heat Capacities [1, 2]

The thermodynamic properties of materials are intensive thermodynamic pa-
rameters, which are specific for a given material. Each is directly related to
a second order differential of a thermodynamic potential. For a single com-
ponent system, only three thermodynamic parameters are needed to derive
all others, namely, heat capacity Cm, the coefficient of thermal expansion α,
and the compressibility β, being the three possible second derivatives of G
with respect to T and P or V .

Cm describes the ability of a given quantity of a substance to store energy
(internal energy or enthalpy) while undergoing a given temperature change
other than a phase change. Cm may be expressed in terms of Eqs. (1.16) and
(1.18),

CP,m =
(

∂H

∂T

)
P

=
(

∂H

∂S

)
P

(
∂S

∂T

)
P

= T

(
∂S

∂T

)
P

= T

(
∂

∂T

(
−∂G

∂T

)
P

)
P

= −T

(
∂2G

∂T 2

)
P

,
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CV,m =
(

∂U

∂T

)
P

=T

(
∂S

∂T

)
V

=T

(
∂

∂T

(
−∂F

∂T

)
V

)
V

=−T

(
∂2F

∂T 2

)
V

. (3.1)

As T varies, the energy stored in the atomic bonds changes. When the stored
energy increases, so does the length of the atomic bonds. As a result, solids
typically expand in response to heating and contract on cooling; this dimen-
sional response to temperature change is α, which can be written as

αV =
1
V

(
∂V

∂T

)
P

=
1
V

(
∂

∂T

(
∂G

∂P

)
T

)
P

=
1
V

∂2G

∂T∂P
. (3.2)

In thermodynamics and fluid mechanics, all one needs to know is how V
changes when P is varied by a small amount, and this is described by the
compressibility of the fluid or solid – either the isothermal compressibility,
βT , or the adiabatic compressibility, βS , according to circumstances. They
are mathematically expressed as

βT = − 1
V

(
∂V

∂P

)
T

= − 1
V

(
∂

∂P

(
∂G

∂P

)
T

)
T

= − 1
V

(
∂2G

∂P 2

)
T

, (3.3)

and

βS = − 1
V

(
∂V

∂P

)
S

. (3.4)

For a solid, the distinction between the two is usually negligible. The inverse
of the compressibility is called the bulk modulus.

There are two more important equations for CP in relation to P -V -T
data: one is the ratio of CP to CV and the other is their difference. The
former kr is shown as

kr =
CP

CV
=

(∂S/∂T )P

(∂S/∂T )V
. (3.5)

According to the mathematical cyclic relations where the variables are per-
muted cyclically, (∂S/∂T )P = −(∂P/∂T )S(∂S/∂P )T and (∂S/∂T )V =
−(∂V/∂T )S(∂S/∂V )T . If we substitute the above expressions into Eq. (3.5),
CP /CV = [(∂P/∂T )S(∂S/∂P )T ]/[(∂V/∂T )S(∂S/∂V )T ]. Taking together the
two derivatives at constants S and T , (∂P/∂T )S/(∂V/∂T )S = (∂P/∂T )S

(∂T/∂V )S =(∂P/∂V )S =−1/(V βS) and (∂S/∂P )T /(∂S/∂V )T = (∂S/∂P )T

(∂V/∂S)T = (∂V/∂P )T = −V βT . In light of Eq. (3.5), we have

kr =
CP

CV
=

βT

βS
. (3.6)

CP − CV = T (∂S/∂T )P − T (∂S/∂T )V . In light of the mathematical re-
lation, (∂S/∂T )P = (∂S/∂T )V + (∂S/∂V )T (∂V/∂T )P . Thus, CP − CV =
T (∂S/∂V )T (∂V/∂T )P = TV α(∂S/∂V )T . Using Maxwell relation and math-
ematical cyclic relation, (∂S/∂V )T = (∂P/∂T )V = −(∂V/∂T )P (∂P/∂V )T =
α/βT . Finally,

CP − CV =
TV α2

βT
. (3.7)
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Equation (3.7) can be used for the conversion of CP into CV , or vice versa,
when adequate P -V -T data are available. Since CV values of solids and liq-
uids are very difficult to determine experimentally, measured CP values must
be converted using these equations when solid-liquid transition is thermody-
namically considered.

3.1.2 Magnetic Heat Capacity [3]

In an analogy to CV and CP , let us define the heat capacity at constant
magnetic moment CM and that at constant magnetic field CHmag for a simple
magnetic system by the following equations:

CM =
(

∂U

∂T

)
M

= T

(
∂S

∂T

)
M

, (3.8)

and

CHmag =
(

∂H ′

∂T

)
Hmag

= T

(
∂S

∂T

)
Hmag

. (3.9)

Taking the difference between Eqs. (3.8) and (3.9), one obtains, CHmag −
CM = T

(
∂S

∂T

)
Hmag

−T

(
∂S

∂T

)
M

. Thus, we have,
(

∂S

∂T

)
Hmag

=
(

∂S

∂T

)
M

+

(
∂S

∂M

)
T

(
∂M

∂T

)
Hmag

. As a result, CHmag − CM = T

(
∂S

∂M

)
T

(
∂M

∂T

)
Hmag

.

Substituting Maxwell relations into this equation leads to

CHmag − CM = −T

(
∂Hmag

∂T

)
M

(
∂M

∂T

)
Hmag

= T

(
∂M

∂T

)2

Hmag

(
∂H

∂M

)
T

.

The equation for entropy and internal energy for a simple magnetic system
can be easily derived. When we consider S = S(T, M) or S = S(T, Hmag),
we obtain two equations:

TdS = CMdT − T

(
∂Hmag

∂T

)
M

dM, (3.10)

and

TdS = CHmagdT + T

(
∂M

∂T

)
Hmag

dHmag. (3.11)

∂S/∂Hmag can be determined by Eq. (3.11) through (∂S/∂Hmag)T =
(∂M/∂T )Hmag . For a paramagnetic salt obeying Curie’s law, (∂M/∂T )Hmag <
0 and S decreases as Hmag enhances. Such a magneto thermodynamic phe-
nomenon is the cause of the magnetocaloric effect, in which a reversible
change in temperature of a suitable material is achieved by exposing the
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material to a changing magnetic field. This is also known as adiabatic demag-
netization by low temperature physicists, due to the application of process
specifically to affect a temperature drop.

The production of low temperatures by adiabatic demagnetization of a
paramagnetic salt can be understood with the help of Fig. 3.1 where S is
a function of T from the initial Hmag = 0 at T1, by contacting a bath of
liquid helium, to Hmag,1. The state of the system is represented by the point
a. Hmag is now increased isothermally and reversibly, in the process a − b,
to a value Hmag,1, forcing various magnetic dipoles of the salt to align and
putting these degrees of freedom of the paramagnetic salt into a state of
lowered entropy at a constant T1.

Fig. 3.1 S function of a magnetic system at Hmag = 0 and at Hmag = Hmag,1.

In the isothermal process a− b where dT = 0, Eq. (3.11) yields

δQT = TdST = T

(
∂M

∂T

)
Hmag

dHmag,T .

At constant Hmag, (∂M/∂T )Hmag < 0. As Hmag increases, δQT < 0 and
there is a heat flow out of the salt into the helium bath.

The next step is to isolate the system thermally from the surroundings
and perform the reversible adiabatic process b− c where Hmag is reduced to
zero while S remains constant. The final temperature T2, from Fig. 3.1, is
evidently lower than T1. In this process, since dS = 0, Eq. (3.11) becomes
dTS = −(T/CHmag)(∂M/∂T )HmagdHmag. Because (∂M/∂T )Hmag and dHmag

are both negative, dTS is negative too. T → 10−3 K has been attained in this
way.
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3.1.3 Heat Capacity of Lattice Vibration of Solids [3, 4]

Thermal energy in a solid may exist in a variety of forms that correspond with
various modes of motions in its fundamental particles. Some common modes
of motion include internal vibration and rotation within the molecules, and
the translation of free electrons. These modes, however, are absent in solids.
For instance, there exists little or no free-electron contribution in nonmetals,
and there is no internal vibration or rotation in monatomic crystals, such as
metals. Furthermore, not all modes of motions are significant at all temper-
ature levels. The free-electron contribution in metals, for example, becomes
appreciable compared to the contribution of lattice vibration only at very
low temperatures −T < 30 K. At room temperature however, it is almost
negligible. One particular mode of motions, which always plays a significant
role in the evaluation of the thermal properties of such solids, is the lattice
vibration, which will be developed in this section by a statistical-mechanical
description.

The statistical-mechanical description of the solid distinctly differs from
that of the gaseous state in one essential point: The strong interactions
between the molecules preclude a consideration of the dynamic behavior of
each individual molecule which was possible in the theory of gaseous state. In
solids, we consider the motions of the whole lattice and analyze these gross
motions statistically.

When we add some thermal energy to an object, in most cases it is directly
detectable as a small increase in T (the exception is during a phase transi-
tion). Therefore, Cm is one of the most important thermal properties of ma-
terials. Dulong and Petit noted in 1819 that CV,m ≈ 3R(≈ 25 J ·mol−1·K−1)
for all elementary solids, which is named the law of Dulong and Petit. Neu-
mann extended this law in 1831 to say that each molar atom in the molecule
of a solid contributed 25 J·mol−1·K−1 to CV,m. Although these laws are by no
means exact, they strongly suggest that some underlying physical principles
might be responsible for the degree of success.

The atoms of a solid, unlike those of a gas, are constrained to oscillate
about fixed points by the relatively large forces exerted on them by other
atoms. Let us imagine that each executes harmonic motion. The atoms of a
solid are free to move in three dimensions, not just one, so that an assembly of
N atoms has 3N degrees of freedom. The potential energy associated with its
harmonic motion, which could be neglected for the widely separated atoms
of a gas, is on the average just equal to the kinetic energy. Hence, if the
equipartition principle is valid for solids, we must assign an energy kT to
each degree of freedom (kT/2 for kinetic energy, kT/2 for potential energy)
rather than just kT/2 as for the atoms of a gas. The total molar energy of N
atoms is then

U = 3NkT, (3.12)
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and CV,m from the theory is

CV,m = (∂U/∂T )V = 3NAk = 3R. (3.13)

Equation (3.13) verifies the empirical laws beautifully, but it fails to explain
why certain substances deviate very strongly from this law.

Figure 3.2 shows CP,m(T ) and CV,m(T ) functions of Cu at P = 0.1 MPa.
At low T , the two are nearly equal, and near absolute zero both drop rapidly
to zero. While CV,m(T ) ≈ 3R at high T, CV,m(T ) drops as T decreases. This
behavior is the characteristic of the most solids, although T , at which the
sharp drop occurs, varies widely from one substance to another. The above
phenomenon cannot be understood in terms of partition functions of the kind
used to describe ideal gases.

Fig. 3.2 Schematical graphs of CV,m and CP,m of Cu as a function of T at P =
0.1 MPa.

The first analysis of the thermodynamics of lattice vibrations was carried
out by Einstein, who recognized that a quantum explanation might resolve
the failure of the classical heat capacity theory and proposed that the atoms
of a solid could be considered in the first approximation as an assembly of
quantized oscillators. All vibrate with the same frequency ν. In an assembly
of NA atoms, applying Eqs. (2.26) and (2.46), the internal energy of 3NA

oscillators is

Um = RT 2

[
∂(lnZ)

∂T

]
V

= 3RΘE

[
1

exp(ΘE/T )− 1

]
(3.14)

where ΘE ≡ hpν/k is the Einstein temperature. Since CV,m = (∂Um/∂T )V ,
there is

CV,m = 3R

(
ΘE

T

)2 exp(ΘE/T )
[exp(ΘE/T )− 1]2

. (3.15)

Equation (3.15) has two characteristics of the observed heat capacities: when
T 
 ΘE or ΘE/T is small, CV,m approaches the Dulong-Petit value of 3R.
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When T � ΘE, the exponential term is large, we can neglect the 1 in the
denominator, and

CV,m = 3R

(
ΘE

T

)2

exp(−ΘE/T ). (3.16)

When T → 0, the exponential term goes to zero more rapidly compared
with that 1/T 2 goes to infinity, and CV,m → 0, being in agreement with
experiments and the third law. However, because of the rapid decrease of the
exponential term, the theoretical values of CV,m, at very low temperature,
decrease much more rapidly than the experimental values. It remained for
Debye to suggest another form of the vibration equations for the individual
atoms.

Debye realized that the individual vibrating atoms are not really inde-
pendent, but are strongly coupled. He analyzed the situation by treating an
entire crystal as an elastic medium with a range of frequencies, varying from
zero to some maximum value νm, which is characteristic of solids. An alterna-
tive approach is to consider the elastic waves themselves as the “particles” of
an assembly. Each wave can also be taken as a particle and is called a phonon,
and the assembly is described as a phonon gas. Since the waves or phonons
are indistinguishable, and there is no restriction on the number permitted
per energy state, the assembly obeys BE statistics.

U of the assembly is now obtained by integrating the expression of dUν ,
the internal energy of waves with frequencies between ν and ν + dν. In the
frequency interval over all values of ν from zero to νm, there is

U ≡ 9N

ν3
m

∫ νm

0

hpν3

exp(hpν/kT − 1)
dν. (3.17)

Let ΘD ≡ hpνm/k be named Debye temperature, some ΘD values are given
in Table 3.1.

Table 3.1 ΘD values of several metals and compounds

Substance ΘD/K Substance ΘD/K Substance ΘD/K

Pb 88 KBr 177 Cu 315
Tl 96 Ag 215 Al 398
Hg 97 Ca 226 Fe 453
I 106 KCl 230 CaF2 474

Cd 168 Zn 235 FeS2 645
Na 172 NaCl 281 Diamond 1860

For convenience, we introduce the dimensionless quantities of x = hpν/kT

and xm = hpνm/kT = ΘD/T . Then U = 9NkT

(
T

ΘD

)3 ∫ xm

0

x3dx

exp(x) − 1
. At

the high temperature limit where x = hpν/kT is small, exp(x) − 1 ≈ x and

the integral becomes
∫ xm

0

x2dx =
x3

m

3
=

Θ3
D

3T 3
. Um = 3NAkT and CV,m = 3R,

in agreement with the Einstein theory and the Dulong-Petit law.
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At intermediate and low T , the value of the integral can be expressed only
as an infinite series. To a good approximation, the upper limit of the integral
at very small T can be taken as infinity instead of xm since the integrand
is small for values of x > xm. The definite integral then equals π4/15, and
hence at lower T ,

U =
3
5
π4NkT

(
T

ΘD

)3

, (3.18)

and by differentiation,

CV,m =
12π4

5
R

(
T

ΘD

)3

. (3.19)

Equation (3.19) is known as the Debye T 3 law. According to this law, CV,m

decreases with T 3 near T = 0, rather than exponentially as in the Einstein
theory. The decrease is therefore less rapid and the agreement with experi-
ments is much better.

Although the Debye theory is based on an analysis of elastic waves in a
homogeneous, isotropic, continuous medium, experimental CV,m values of
many crystalline solids are in good agreement with the Debye theory at
T/ΘD < 0.02. As T increases, CV,m increases somewhat faster than the the-
ory would predict.

Fig. 3.3 CV,m/R of various solids as a function of T/ΘD.

Figure 3.3 shows a graph of CV,m/R as a function of T/ΘD, and the
points are experimental values for a variety of metals or compounds. In light
of Fig. 3.3, when T/ΘD > 1, the system roughly behaves “classically” and
CV,m is nearly equal to the “classical” or “non-quantum” value of 3R. When
T/ΘD < 1, quantum effects become significant and CV,m → 0 as T → 0. It is
noteworthy that ΘD is induced by Fig. 3.3, which leads to different locations
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of room temperature compared with ΘD. For Pb, “room temperature” is
well above ΘD = 88 K, while for diamond, “room temperature” is much
lower than ΘD = 1860 K and a “quantum solid” is present.

At intermediate T , there is good agreement between CV,m values cal-
culated by the both theories. This agreement might be expected since the
Dulong-Petit theory as a first order approximation works at high temper-
ature. The Einstein theory is a second order approximation, which is valid
for high and intermediate temperatures. The Debye theory is a third order
approximation that is effective also at low temperatures when other effects
do not dominate.

3.1.4 Electronic Heat Capacity of Metals [3]

The most important example of an assembly obeying FD statistics is the
free electrons in metals. There is good reason to believe that each atom
in metallic crystalline lattice parts with one or more of its outer electrons
and that these free, or conducting, electrons behave essentially as a gas.
Consequently, it is common to speak of them collectively as an electron gas.
If these particles are free to move about, their behavior is similar to that
of the translational motion of an ideal monatomic gas and the thermal and
electrical conductivities of a metallic solid are the results of this motion within
the solid. That is, this electron gas has translational degrees of freedom, which
is quite independent of the metallic ions forming the crystal lattice.

Since free electrons have to obey the Pauli Exclusion Principle, a proper
description of their behavior requires the use of FD statistics. That is, any
energy state can be associated with no more than one electron. Nevertheless,
the allowed εi, and gi of electrons will still be those associated with transla-
tional motion such as Eqs. (2.32) and (2.33). From them, we can derive the
differential relationships between the ni, εi, and gi,

dn =
1
2

(
8m

ε

)1/2
V 1/3

hP
dε, (3.20)

and
dg = πn2dn/2. (3.21)

FD distribution for these electrons can also be expressed in a differential
form,

dN =
dg

exp[(ε− μ)/kT ] + 1
. (3.22)

With the help of Eqs. (3.20) and (3.21),

dg

dε
=

dg

dn

dn

dε
=
π

2
8mV 2/3ε

h2
P

· 1
2

(
8m

ε

)1/2
V 1/3

hP
= 2πV

(
2m

h2
P

)3/2

ε1/2. (3.23)
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Equation (3.23) is actually low by a factor of two. Electrons have a spin de-
generacy of two because they can be spinning in either of two directions. Each
mode of storage of translational energy can occur in combination with either
mode of rotation. Equation (3.23) should accordingly be replaced, in this case,
by dg = 4πV (2m/h2

P)3/2ε1/2dε. If for brevity we set A ≡ 4πV (2m/h2
P)3/2,

dg = Aε1/2dε. The degeneracy therefore increases with the increasing square
root of the energy. From FD distribution function of Eq. (3.22), replacing

the sum with an integral, we have N = A

∫ ∞

0

ε1/2

exp[(ε− μ)/kT ] + 1
dε. The

integral cannot be evaluated in closed form and the result can be expressed
only as an infinite series. The result is, first obtained by Sommerfeld,

μ = εF

[
1− π

2

12

(
kT

εF

)2

+
π4

80

(
kT

εF

)4

+ · · ·
]

. (3.24)

The Fermi energy εF is a constant for a given metal. As we shall show, εF is
a function of N/V , the number of electrons per unit volume. Thus, μ in Eq.
(3.24) is a function of T and N/V . When T = 0, μ0 = εF. The distribution
function at T = 0 is then

N0
i =

gi

exp[(εi − εF)/kT ] + 1
. (3.25)

The significance of εF can be seen as follows: In all levels for which εi <
εF, εi − εF is a negative quantity, and at T = 0, (εi − εF)/(kT ) → −∞.
Hence, N0

i = gi. That is, the average number of electrons in a level equals
the number of states in the level, and all levels with energy smaller than εF

are fully occupied with their quota of one electron in each state.
In all levels for which εi > εF, the term (εi − εF) is positive. Hence,

the exponential term equals +∞ and N0
i = 0 at T = 0. There are thus no

electrons in these levels and εF is the maximum energy of an electron at
T = 0 K. The corresponding level is called the Fermi level.

An expression for εF can now be obtained from the requirement that∑
dN0 = N . Replacing the sum with an integral, introducing the distribution

function at T = 0, and integrating over all levels from zero to εF, we have

N = A

∫ εF

0

ε1/2dε =
2
3
Aε

3/2
F , or, after inserting the expression for A,

εF =
h2

P

8m

(
3N

πV

)2/3

. (3.26)

Thus, as stated earlier, εF is a function of N/V , but is independent of T .
The solid curve in Fig. 3.4 is a graph of dN0/dε = Aε1/2 at T = 0. The

curve extends from ε = 0 to ε = εF, and is zero at all energetic levels being
greater than εF.
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Fig. 3.4 Graphs of the distribution function of free electrons in a metal at T = 0
and at two higher temperatures T1 and T2.

As a numerical example, let the metal be Ag. Since Ag is monovalent,
we assume one free electron per atom. The density of Ag is 10.5×103kg·m−3

with atomic weight of 107, N/V = 5.86× 1028 m−3. The mass of an electron
is 9.11 × 10−31 kg and hP = 6.62 × 10−34 J·s. Then εF = 9.1 × 10−19 J =
5.6 eV. U =

∑
εiNi for the electrons or, replacing the sum with an integral,

U = A

∫ ∞

0

ε3/2

exp[(ε− μ)/kT ] + 1
dε. Again, the integral cannot be evaluated

in a closed form and must be expressed as an infinite series. The result is

U =
3
5
NεF

[
1 +

5π2

12

(
kT

εF

)2

− π
4

16

(
kT

εF

)4

+ · · ·
]

. (3.27)

When T = 0, U0 = (3/5)NεF where ε0 = U0/N = 3εF/5 ≈ 3.5 eV for
a single electron of Ag. The mean kinetic energy of a gas molecule at room
temperature is only about 0.03 eV. If this value reaches 3.5 eV, T ≈ 28000 K.
Hence the mean kinetic energy of the electrons in a metal, even at absolute
zero, is much greater than that of molecules of an ordinary gas at T ∼ 103 K.
At T = 300 K, kT/εF = (1.38 × 10−23 × 300)/(9.1× 10−19) = 4.58 × 10−3

for Ag, which is very small. To a good approximation, one can consider that
μ = εF at any T .

The dotted curves in Fig. 3.4 are dN/dε graphs at higher temperatures
T1 and T2 with T2 > T1. The occupation numbers change appreciably with
increasing T only in those levels near εF. The reason for this is the following.
Suppose U of metals gradually increases from U0 at T = 0, as T raises. In
order to accept a small amount of energy, an electron must move from its
energy level at T = 0 to a level of slightly higher energy. However, except for
those electrons near εF, all states of higher energy are fully occupied. Thus,
only those electrons near εF can move to a higher level. With increasing T ,
those levels just below εF become gradually depleted, electrons at still lower
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levels can move to those that have been vacated, and so on.
For the particular level at which ε = μ, and at T > 0, the exponential

term in the distribution function is equal to 1, and the occupation number is
Ni = gi/2. If T is low, as a good approximation, μ = εF and the Fermi level
is 50% occupied.

In light of Eq. (3.27), Ce
V =

π2

2

(
kT

εF

)
Nk

[
1− 3π2

10

(
kT

εF

)2

+ · · ·
]
. At

low T , the high order terms of kT/εF can be neglected, and Ce
V,m = (π2/2) ·

(kT/εF)R, which is zero at T = 0 K and increases linearly with T . For Ag at
300 K, using kT/εF value previously calculated, Ce

V,m = 2.25 × 10−2R. On
the other hand, CV,m = 3R/2 for a monatomic ideal gas.

We therefore see that as a direct consequence of the Pauli Exclusion Prin-
ciple, the mean kinetic energy of the electrons in metals is much smaller than
that of the molecules of an ideal gas at the same T . But the excitation energy
required to jar electrons into the unoccupied higher energy states is too big,
except that near εF. As a result, only very few of electrons actually contribute
to CV,m. This result illustrates what had long been a puzzle in the electron
theory of metallic conduction: the observed CV,m of metals is similar to that
of isolators of about 3R, as given by the Dulong-Petit law. The free electrons
however, if they behave like the molecules of an ideal gas, should make an
additional contribution of 3R/2 to CV,m, resulting in a value being larger
than experimental results. The fact that only those electrons having energy
near εF can increase their energy with increasing T let us understand why
the electrons make only negligible contribution to CV,m.

3.2 Entropy [5]

The concept of entropy is derived from the interpretation of the second law,
which just summarizes our experience with those spontaneous happenings
and millions of others: All kinds of energy spontaneously spread out from
where they are localized to where they are more dispersed, if they are not
hindered from doing so. The opposite does not occur spontaneously. En-
tropy just measures what happens in that kind of process (at a specific T )
of energy dispersing. So, the words and meaning of “the entropy” and “the
second law” are so closely related (entropy is the quantitative measure of the
qualitative law) that they are often used interchangeably. Never forget that
entropy must always be connected with energy in general, and specifically
with energy that is being or has been dispersed. Actually, we should always
say “entropy change” because we were measuring the difference in energy
distribution “after” something happens versus the “before”. Entropy change,
ΔS, measures how much energy is dispersed in a system, or how wide spread
of the energy of a system becomes (both always involving T ). We take an ex-
ample of melting ice process to illustrate ΔS. Ice is melted to water at 273 K
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where ΔS = Q/T . Thus, in that equation, it is easy to see that Q (the en-
thalpy of fusion) is how much “heat” energy is spread out in the ice to change
it to water [6].

Melting is one of the most familiar natural phenomena. A common aspect
of the melting of all types of crystals and the liquids formed from them is that,
regardless of the physical and chemical nature of the condensed phases coex-
isting at the point of the phase transition, the regular repetition of lattice site
in all three dimensions disappears upon melting. Any approach to describe
the melting process must accordingly incorporate the existence of positional
disorder that occurs as a result of the transition from the crystalline state to
the liquid state. This aspect of the melting process distinguishes the entropy
of melting from other thermodynamic parameters.

Melting is characteristic of any crystalline material, regardless of the par-
ticular features of its interatomic interaction. However, the fact that this
phenomenon is common to different types of materials does not rule out a
diversity of ways in which the transition occurs from the solid state to the
liquid state. For example, the melting of semiconductors is characterized by
fundamentally different types of transitions from the solid state to the liquid
state, associated with the presence or absence of radical changes in the nature
of the interatomic interaction upon the melting transition. This circumstance
alone suggests that the positional disorder, which is common to all materials,
cannot be the only source of an increase in entropy upon melting.

In calculating the heat of the phase transition by statistical methods,
Frenkel and Mott started from the argument that a liquid, like a solid, is a
system of oscillators, with the sole distinction that the equilibrium positions
of these oscillators in the liquid are distributed at random. That approxima-
tion was based on many experimental results indicating similarities in the
structure of liquids and solids near Tm. The vibrational spectrum of a crystal
and a melt at Tm can be approximated well by the Einstein approximation,
according to the ideas of Frenkel and Mott, since the condition kT � hν usu-
ally holds here. From the standpoint of the change in the type of vibrational
spectrum in the atomic subsystem, the melting process is characterized by
a lowering of the maximum frequency of the vibrations of the particles due
to a weakening of binding forces upon the melting transitions. In this case a
basic parameter of the model is a characteristic frequency ν, and the parti-
tion function for each phase can be written in a much simpler way. Letting
subscripts “s” and “L” denote solid and liquid, respectively, the entropy of
melting ΔSm has the expression,

ΔSm = 2R ln(νs/νL). (3.28)

This model of melting presupposes that the only reason for ΔSm is a change
in the nature of the vibration spectrum. This circumstance allowed Mott to
link ΔSm upon melting with corresponding changes in electrical conductivity
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ϑ and to derive the well-known expression,

(ϑs/ϑL) = exp(−335ΔSm) (3.29)

where ΔSm is in J·mol−1·K−1. Numerous tests have shown that there are
significant deviations between Eq. (3.29) and experiments in several cases.
Regel showed that Eq. (3.29) is satisfied by “good” metals, i.e., those have
approximately the same values of ΔSm (about R). By contrast, semimetals –
Ga, Sb, and Bi, distinguished by high values of ΔSm (about 2.5R) – have
anomalies in the changes in their physical properties upon melting.

For these materials, melting is accompanied by a significant increase in
CN and by a strengthening of the “metallization bonds”. The latter circum-
stance is seen directly in an increase in ϑ of Ga, Sb, and Bi upon melting.
Equation (3.29) does not yield even an indirect hint of the direction of the
changes in the electric properties upon melting. A more striking picture is
observed in the semiconductors Ge and Si, whose melting is accompanied
by radical changes in the short-range order and in the nature of the inter-
atomic bonds. These materials are distinguished by anomalously large values
of ΔSm (about 3.5R). These facts reflect, in addition to structural disorder
and changes in the vibrational spectrum of particles upon melting, changes
in the nature of the interatomic bonds, which go with this process. The lat-
ter changes are known to be intimately related to variations in states of the
electronic subsystem.

This conclusion follows more clearly from an analysis of the behavior of
ΔSm of simple solids as a function of the atomic number of the corresponding
elements, as shown in Fig. 3.5.

The features of this plot indicate that elements, which exhibit elevated
values of ΔSm, are specifically those elements whose melting is related with
structure changes of the short-range order and the nature of the interatomic
binding. Thus, the changes occurring in the vibrational spectrum of atoms
during a melting contribute only a part of ΔSm, and this part, even when
summed with the positional component due to the structural disorder, often
does not constitute the total ΔSm of such crystals. Consequently, analysis of
ΔSm of simple substances in connection with the periodic table of elements
leads to a completely rigorous law. Substances in which the type of inter-
atomic binding changes upon melting are distinguished by elevated values of
ΔSm. All other simple substances have low values of this entropy (0.3–1.5R).

For the substance of this group, the absolute values of ΔSm are associated
with differences of ν in the solid and liquid phases and also with changes in the
vacancy concentrations upon melting. Both are determined by the electronic
configuration of the particles and by the concentration of free electrons. This
case is ultimately responsible for subtle differences in ΔSm. With regard to
thermodynamic characteristics of the process by which chemical compounds,
particularly, semiconductor compounds, undergo melting, we see the principle
of chemical analogy, incorporating ideas of electronic analogs and second
periodicity, in its full glory.
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Fig. 3.5 ΔSm of simple solids versus the atomic number of elements.

Table 3.2 shows values of Tm, ΔHm, and ΔSm of semiconductor com-
pounds of various structural groups. Large values of ΔHm and ΔSm are
indeed characteristics of compounds, which undergo a substantial change in
the type of interatomic binding due to melting. This is true primarily of III-
V compounds, whose melting is analogous to that of Si and Ge. When a
compound melts, the process is complicated by thermal dissociation of the
compound in the liquid phase. This circumstance can strongly influence ΔSm.

Analyzing the data in Table 3.2, we see a correlation between thermody-
namic characteristics of the melting process, on the one hand, and character-
istics of the interatomic bonding strength, on the other. In this situation, it is
quite natural that there would be a correlation between these thermodynamic
characteristics and the extent to which the interatomic binding becomes ionic.

As an example, supporting the point of view discussed above, Fig. 3.6
gives the correlation between ΔSm and the degree of ionicity of the bond, as
calculated by the Pauling method for a group of Cu and Ag chalcogenides.
This dependence illustrates the interrelationship between these characteris-
tics during sequential anionic and cationic substitution of components form-
ing several analogous compounds with the general formula I2VI (I here is Cu
or Ag, while VI is S, Se, or Te). Analysis of the periodic behavior of ΔHm

and ΔSm of simple solids in comparison with the corresponding changes in
the nature of the interatomic bonds during the melting yields the important
conclusion that changes in the electronic configurations of the atoms at the
time of the phase transition contribute to ΔSm. Here we consider both the
suggestion of an electronic component of the entropy of melting ΔSel and
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(the more important point) a validation of this suggestion.

Table 3.2 Thermodynamic characteristics of the melting of certain semiconductor
compounds (Note that in fact the units of ΔHm and ΔSm are kJ·g-atom−1 and
J·g-atom−1·K−1 since the number in a molecule is larger than 1. The data shown
in the table have been divided by number of atoms in a molecule, which guarantees
the Avogadro constant remains)

Comp-
ounds

Tm

/K
ΔHm

/(kJ·
mol−1)

ΔSm

/(J·
mol−1·
K−1)

Comp-
ounds

Tm

/K
ΔHm

/(kJ·
mol−1)

ΔSm

/(J·
mol−1·
K−1)

Cu2S 1403 11.29 7.9 GeS 938 22.57 24.24
Cu2Se 1386 17.97 12.96 GeSe 943 32.6 34.69
Cu2Te 1398 24.66 17.56 GeTe 998 40.13 40.55
Ag2S 1111 8.78 7.9 SnS 1155 31.77 27.17
Ag2Se 1170 17.56 15.05 SnSe 1133 42.64 38.04
Ag2Te 1272 21.32 17.14 SnSe2 930 38.46 40.96
CuI 875 10.87 12.12 SnTe 1063 45.14 41.8
ZnS 2123 43.89 20.9 PbS 1393 36.37 26.33
ZnSe 1773 53.5 30.1 PbSe 1361 49.32 40.55
ZnTe 1513 57.68 40.96 PbTe 1190 57.27 48.07
CdS 2023 58.1 20.48 Sb2S3 819 65.21 79.42
CdSe 1525 45.56 29.68 Sb2Si3 885 77.33 87.36
CdTe 1318 57.27 40.55 GaP 1623 122.06 70.22
Mg2Si 1375 85.27 61.86 GaAs 15111 96.98 63.95
Mg2Ge 1388 77.33 55.59 GaSb 985 50.16 48.49
Mg2Sn 1051 47.65 45.56 InP 1335 50.16 47.65
Mg2Pb 823 38.87 47.23 InAs 1215 48.49 43.47

AlP 1770 30.93 17.56 InSb 809 40.13 49.74
AlAs 1870 75.66 40.55 HgSe 963 28.01 29.26
AlSb 1327 59.36 43.89 HgTe 943 32.19 34.28
GaSe 1233 38.87 31.77 Sb2Te3 894 99.9 111.61

Ga2Se3 1273 98.65 76.49 Bi2S3 1123 58.94 48.49
GaTe 1097 52.67 48.49 Bi3Se3 979 84.85 86.11
Ga2Te 1063 122.47 115.37 Bi2Te3 858 118.71 118.71
InSe 933 19.23 20.9 Zn3As2 1288 92.38 71.9

In2Se3 1173 63.95 54.34 ZnAs2 1041 40.55 38.87
InTe 969 36.78 37.62 Cd3As2 994 71.48 74.4

In2Te3 940 88.2 94.05 CdAs2 894 35.11 39.29

It is noteworthy that all the components of entropy of melting were sum-
marized by Ubbelohde in his book [7], where it was shown that one can
distinguish vibrational, positional, orientational, configurational, and other
components of ΔSm for various classes of substances, depending on atomic
interaction. But which of these components is predominant will depend on
the particular features of the physical nature of the substance.

Cusak and Enderby suggested that the analysis of simple substances is
limited to three major components of the entropy of melting: the positional,
the vibrational, and excess components,

ΔSm = ΔSpos + ΔSvib + ΔS3 (3.30)
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Fig. 3.6 ΔSm as a function of the ionicity of the bonds in copper and silver
chalcogenides.

where ΔS3 should reflect ΔSel during the melting.
For metals, ΔSel is negligible in comparison with ΔSpos and ΔSvib since

the type of binding is preserved without changes in the state of the elec-
tronic subsystem when metals melt. When these simple substances formed
by subgroup–IVB, VB, and VIB elements undergo melting, there is a dis-
ruption of the corresponding system of covalent bonds and a transition to
a metallic state. This transition is accompanied by substantial changes in
the concentration of free electrons where ΔSel is extremely substantial. In
the case of the group–IVB elements Ge and Si, ΔSm is nearly twice the sum
of ΔSpos + ΔSvib. Equally big differences can be observed for elements of
subgroup VB (Sb and Bi). Differences, which are slight, but still extremely
important, can be seen for the subgroup–VIB elements Te and Po.

For ΔSm of semiconductors, as stated above, can be represented as the
sum of three components,

ΔSm = ΔSpos + ΔSvib + ΔSel. (3.31)

In light of the discussion above, ΔSm measured experimentally is of an inte-
grated characteristic, being determined by the three processes associated with
changes in these subsystems. These processes can evidently be characterized
by corresponding values of thermal effects.

Let us now take a brief look at some independent estimates of these
entropies of melting.

3.2.1 Positional Part of Melting Entropy and Its Evaluation [5]

ΔSpos is the portion of a system’s entropy that is related to the position of
its constituent particles rather than their velocity of momentum. The idea of
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ΔSpos arises in connection with the positional disorder as a substance under-
goes a melting transition. It is physically related to the number of ways of
arranging all the particles of the system while maintaining some overall set
of specified system properties, such as energy. ΔSpos is also known as micro-
scopic entropy or conformational entropy in the study of macromolecules. In
general, ΔSpos is the foundation of statistical thermodynamics.

In the case of simple liquids, only two particle species are present: the
atoms of the given substance and vacancies. In this case the positional com-
ponent is found from the expression (details see Sec. 4.5),

ΔSpos = −R(xA ln xA + xv ln xv) (3.32)

where xA and xv are the mole fractions of the host material and vacancies,
respectively. For a melting process, xA = 1/(1 + ΔVm/Vs) and xv = 1 − xA

where ΔVm = VL− Vs. Equation (3.32) assumes that ΔVm consists of vacan-
cies with the same size of atoms, which of cause is considerably rough since
the size of vacancies must be smaller than atom sizes while the bond length
of liquid atoms is larger than that of solid atoms. The above approximation
however does not lead to big error when ΔSpos is considered.

In evaluating ΔSpos of semiconductors, we need to consider a post melting
effect which arises because the metallization of the bonds is not completed
at Tm and instead extends a T above Tm for about ten to dozens of K. In
this temperature interval the liquid is assumed to be bistructural. It can be
thought of as a solution of clusters which retain structural features inherited
from the crystal in a metallic matrix. The presence of clusters in melts should
evidently change the number of methods by which a given state can be reali-
zed and should therefore influence the thermodynamic probability and thus
ΔSm.

Taking into account the volume fraction of clusters (ϕc) at Tm, we can
put the expression for ΔSpos in the following form:

ΔSpos = −R

[
xA(1 − ϕc) ln

xA(1− ϕc)
xA(1 − ϕc) + xv

+ xv ln
xv

xA(1− ϕc) + xv

]
.

(3.33)
For semiconductor compounds, we should also consider the possibility that
these compounds will dissociate into their components upon melting. When
the crystal is binary, consisting of A and B elements, the following quasi-
chemical reaction could be taken,

(AB)s ↔ (AB)L + AL + BL + VL. (3.34)

In the quasicrystal approximation, the number of vacancies can be calculated
from data on the change in the density due to melting under the condition
that the volume per atom is constant in the solid and liquid phases.

The differences among the vacant positions in the liquid phase can be
ignored. ΔSpos can evidently be calculated as the entropy of displacement
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of the structural units present in the system. Consequently, by analogy with
Eq. (3.32), for a system containing structural units in accordance with qua-
sichemical reaction of Eq. (3.34), we can write

ΔSpos = −R(xAB ln xAB + xA ln xA + xB ln xB + xv ln xv). (3.35)

A calculation of the atomic fraction of dissociation products at Tm requires
calculating the degree of dissociation. The latter calculations can be carried
out once we have determined the radius of curvature of the liquidus at Tm.
Taking account of the dissociation of the compound and the presence of
clusters, ΔSpos is shown as

ΔSpos = −R

[
xAB(1− ϕc) ln

xAB(1− ϕc)
xAB(1 − ϕc) + xA + xB + xv

+xA ln
xA

xAB(1− ϕc) + xA + xB + xv

+xB ln
xB

xAB(1− ϕc) + xA + xB + xv

+ xv ln
xv

xAB(1− ϕc) + xA + xB + xv

]
. (3.36)

Equation (3.36) reflects the most general case and includes expressions for
particular cases. In the case ϕc = 0, for example, Eq. (3.36) becomes Eq.
(3.35), while for ϕc = 1 (a complete blocking of the particles in a crystal-like
structure), ΔSpos = 0. Calculations of ΔSpos, incorporating clustering and
dissociation of semiconductor compounds, have shown that the effect of these
processes on ΔSpos is appreciable. As expected, ΔSpos value calculated for
the case with clustering is lower, i.e., the partial preservation of a crystal-like
structure reduces the positional disorder in the system.

3.2.2 Contribution of Vibrational Part of Melting Entropy of
Semiconductors [5]

For metallic and organic crystals, the type of chemical connection does not
vary during the melting transition. Thus, ΔSel ≈ 0, and

ΔSvib = ΔSm −ΔSpos. (3.37)

For some semi-metals, ΔSel �= 0, ΔSvib must be determined in a direct way,
such as Mott’s equation,

ΔSvib = 3R ln(νs/νL) = (3/2)R ln(ϑs/ϑL). (3.38a)

If the parameters in the above equations are unavailable, as a first order
approximation,

ΔSvib ≈ ΔSm −R. (3.38b)
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The maximum νs at Tm is estimated most simply from the Lindemann rela-
tion,

νs = CL(Tm/MwV 2/3)1/2 (3.39)

where Mw is the molecular weight, V is the atomic volume, and the constant
CL is 2.06×1012kg1/2·m·s−1·K−1/2.

In addition to Eq. (3.39), several other relations can also be utilized,

νs = kT 1/2
m /hA′(2n2 + 1), (3.40a)

νs = (C1k/h)(A′V 2/3α)1/2, (3.40b)

νs = C2k(Z/2)1/2/(hρ1/3
a V 1/3). (3.40c)

Here ρa is the coefficient of the density of the atomic packing as a fraction of
one, C1 = 19.3K7/4·m, C2 = 5.6× 103K·m−1, and A′ is a material constant.
Equations (3.40a) to (3.40c) are essentially equivalent. They may be used,
regardless of the availability and reliability of corresponding experimental
data.

Determining νL is a more complicated matter. Since the validity of ap-
proximating the collective motion in a melt as primarily a vibrational motion
is supported by both theories and experiments, that there is an abrupt ap-
pearance of diffusion degrees of freedom at the time of melting is obvious.
However, the relative number of these freedom degrees does not exceed 3%
for a group of metals. In this connection, νL becomes particularly significant,
which reflects the dynamics of the vibrational motion of particles in the liquid
phase. νL in molten semiconductors through the dynamic viscosity ηv is es-
tablished by

νL = (3/4)ηv(N2
A/ρM2

w)1/3 (3.41)

where ρ is the density of the melt, NA is Avogadro constant. Substituting the
values of νs and νL at Tm (Eqs. (3.39) and (3.41), respectively) into Mott’s
formula (3.28), we find

ΔSvib = 3R ln
4

3ηv

C(TmMw)1/2

(V NA)2/3
. (3.42)

Note that νs can also be obtained from Eq. (3.40) when the corresponding
experimental data are available.

Table 3.3 lists ΔSvib values calculated from Eq. (3.42) for some basic
semiconductors. ΔSvib values are not only comparable to ΔSpos, but also
(frequently) greater than ΔSpos ones. Thus, ΔSvib during the melting plays
a substantial role in semiconductors, especially in cases where the melting is
accompanied by changes of atomic structures. For organic crystals, ΔV on
melting is small and ΔSpos is thus negligible as a first order approximation.
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Table 3.3 νs, νL and ΔSvib values of certain semiconductors at Tm

Substance
νs·
10−12

/s−1

νL·
10−12

/s−1

ΔSvib

/(J·
mol−1

·K−1)

Substance
νs·
10−12

/s−1

νL·
10−12

/s−1

ΔSvib

/(J·
mol−1

·K−1)

Sb 2.08 1.7 5.02 Bi 1.4 1.2 3.76
Si 7.0 5.35 6.69 Ge 2.29 1.9 4.6

GeTe 4.2 2.9 9.07 SnTe 2.8 2.62 0.96
PbTe 2.4 1.5 11.7 PbSe 2.68 1.7 10.45
PbS 3.12 2.09 9.91 GaAs 6.51 3.45 11.20
InAs 5.25 1.43 21.03 AlSb 7.35 2.17 19.35
GaSb 5.67 3.22 10.07 InSb 4.36 2.62 12.75

When one or more solid-state phase transitions of some organic crystals
closely precede the melting, the corresponding ΔSm values are reduced [8].
Herein, the cumulative entropy of fusion ΔSc

m should be introduced, which is
defined as the summation of all entropy changes at all transition temperatures
and Tm. Thus,

ΔSvib ≈ ΔSc
m. (3.43)

An additional important equation is the determination of ΘD of solids using
the ultrasound propagation velocity vu, which was derived from the approxi-
mation of an isotropic continuum,

ΘD =
2hP

πk

(
3N

4πVA

)1/3

vu. (3.44)

Taking account of the premises underlying the derivation of Eq. (3.43) and
the fact that Eq. (3.43) for cubic crystals agrees well with ΘD data found
in other ways (e.g. from elastic constants or thermal expansion), Eq. (3.43)
may be used to calculate ΘD of the liquid phase. Furthermore, as pointed out
by Frenkel in his day, the approximation of an elastic continuum for liquids
is even more systematic than for crystals, since in the latter case there will
unavoidably be manifestations of anisotropy, even for highly symmetric (in
particular) cubic crystals, while liquid is ideally isotropic.

3.2.3 Electronic Component of Melting Entropy [5]

As mentioned above, the idea of a ΔSel follows from an analysis of the perio-
dic law of ΔSm (Fig. 3.5) and from the set of experimental data (primarily
on electrical properties: the electrical conductivity, the thermal electromotive
force emf, and the Hall effect, which reflect changes in the nature of the intera-
tomic bonds during melting of a solid). This component essentially reflects
the role of changes in the electronic subsystem due to a melting process.

A quantitative calculation of ΔSel for several semiconductors was carried
out on the basis of an analysis of thermoelectric effects at the solid-liquid in-
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terface. Classically, an applied temperature difference causes charged carriers
in materials, no matter whether they are electrons (negative charges) or holes
(positive charges), to diffuse from the hot side to the cold side, similar to a
gas that expands when heated. Mobile charged carriers migrating to the cold
side leave behind their oppositely charged and immobile nuclei on the hot
side, which give rise to a thermoelectric voltage. Thermoelectric power of a
material is a measure of the magnitude of an induced thermoelectric voltage
in response to a temperature difference across that material.

Typically metals have small thermoelectric powers because they have half-
filled bands. Electrons and holes both contribute to the induced thermoelec-
tric voltage, thus canceling each other’s contribution to that voltage and
making it small. By contrast, semiconductors can be doped with an excess
amount of electrons or holes and thus can have large positive or negative
values of the thermoelectric power depending on the charge of the excess
carriers. The sign of the thermoelectric power can determine which charged
carriers dominate the electric transport in both metals and semiconductors.
The thermoelectric power also measures the entropy per charge carrier in the
material. Superconductors have zero thermoelectric power since the charged
carriers carry no entropy. Equivalently, the thermoelectric power is zero be-
cause it is impossible to have a finite voltage across a superconductor.

Guided by the concept of the reversibility of thermoelectric effects, which
is postulated in the thermodynamics of irreversible processes, investigators es-
tablished a relationship between ΔSm and a change in the Seebeck coefficient
in the melting transition. The amount of heat δQ evolved at a solid-liquid
interface, which is crossed by a certain number (dn) of electrons at Tm for
an arbitrarily small current, is given by δQ = ΔS∗Tmdn, or,

ΔS∗ = δQ/(Tmdn) (3.45)

where ΔS∗ is the change in entropy per electron. On the other hand, we
have, δQ = Δ/cedn where e is the electron charge, and Δ/c is the Peltier heat,
which is evolved at the interface due to a change in the Seebeck coefficient
upon melting. Δ/c/T = Δaemf with Δaemf being the change in emf coefficient
due to the melting. Comparison of these relations yields

ΔS∗ = e(aemf,s − aemf,L). (3.46)

If we know the change in the carrier concentration upon melting, Δn, in light
of Eq. (3.46),

ΔSel = eΔn(aemf,s − aemf,L). (3.47)

With determined ΔSel values of Si, Ge, Sb, Bi, and several semiconductor
compounds in terms of Eq. (3.31), Δn can be calculated by Eq. (3.47), which
corresponds to measurements from the Hall-effect. This result is convincing
evidence that changes in the electronic subsystem contribute substantially
to ΔSm, when a substance undergoes a semiconductor-metal melting. Since
the mechanism for carrier scattering in the liquid phase has not been finally
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resolved, and since calculations of the carrier concentration from measure-
ments of the Hall coefficient are not completely rigorous, Eq. (3.47) is thus
meaningful.

ΔSel can also be calculated by a purely thermodynamic method. The
general expression for ΔSm with covalent–metallic interatomic binding is
read as

ΔSm = fcΔSmet + ΔScov (3.48)

where subscripts “met” and “cov” denote typical metals (e.g., Cs) and purely
covalent crystals (e.g., diamond), and fc is the number of free electrons in a
real crystal at its Tm, divided by the total number of electrons. fc has been
determined by

fc = exp(−Eg/2kT ) (3.49)

where Eg is the band gap width at Tm. Assuming that all the excess entropy
of melting for a purely covalent crystal over that of a good metallic crystal
is determined by the difference ΔScov − ΔSmet, Chakraverty [9] suggested
calculating it from the Boltzmann equation incorporating the change in the
number of bound electrons,

ΔScov −ΔSmet = k ln
(4N)!

[(2N)!]2
. (3.50)

A covalent crystal is regarded as a solid having 4N electrons, where N is the
number of atoms in the crystal. The melting of such a crystal is accompa-
nied by a “depairing” of 2N electron pairs and the complete liberation of the
electrons. Calculation from Eq. (3.50) yields a value of 23.07 J·mol−1·K−1,
in satisfactory agreement with the difference between ΔSm of diamond and
ΔSm of cesium: 31.35–7.52 = 23.83 J·mol−1·K−1. A closer look reveals that
this difference is essentially the maximal possible ΔSel, which is an obvious
characteristic of diamond. A graphic illustration of the conclusion of
Chakraverty shows that electron delocalization plays a decisive role in ΔSm.
The corresponding relationship is shown in Chakraverty’s plot of ΔSm versus
the fraction of electrons in the crystal fc for several simple solids, which is
localized at Tm (Fig. 3.7).

We see an inverse proportionality. As fc in the solid phase increases, the
possible destruction of homeopolar bonds in the course of melting becomes
progressively less significant for ΔSm. Clearly not conforming to this behavior
is Se. This circumstance indicates that the nature of the interatomic bond
remains the same as this substance goes into the liquid phase. Thus, there is
essentially no delocalization of electrons when Se melts. This effect was used
to calculate the number of electrons in the liquid phase. Taking account of ϕc

in the melt of semiconductors, which goes into a metallic state upon melting,
ΔSel can be determined by

ΔSel = k ln
[4N(1− ϕc)(1 − fc)]!
{[2N(1− ϕc)(1− fc)]!}2 . (3.51)
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Fig. 3.7 ΔSm of semiconductors and of semimetals versus the change in the relative
number of bound electrons at a melting transition.

ΔSel values of five substances in terms of Eq. (3.51) are shown in Fig.3.8
as a function of the relative number of paired electrons, which become free
in the molten state. The origin of coordinates here corresponds to an ideal
metal, with fc = 1 and ΔSel = 0. The uppermost point on this plot is
the largest possible ΔSel, characteristic of a hypothetical covalent crystal.
Diamond can apparently be regarded as such a substance. The data of the five
semi-conductors of Si, Ge, AlSb, GaSb, and InSb conform almost perfectly
to the straight line connecting these two extreme points.

Fig. 3.8 ΔSel of certain semiconductors versus the relative number of electrons
which are delocalized at the time of melting.

All the approaches discussed above ΔSel values produce similar results.
The proposition that there is a significant ΔSel passing from melting in a
semiconductor-metal fashion can be thus regarded as a demonstrated fact:
physical reality.
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Let us look at yet another approach for calculating ΔSel. This approach
is based on the argument that a semiconductor–metal transition observed
during the melting of the most important semiconductors forces us to switch
from MB statistics to FD statistics in describing the behavior of the electrons
in the liquid phase.

We now examine the entropy of a closed, equilibrium system, which can
be written as S = R lnΩ . The increment in entropy due to the change in the
carrier energy spectrum upon melting can thus be described by

ΔSel = S
(L)
el − S

(s)
el = R ln(ΩL/Ωs). (3.52)

For a metallic melt, we write the density of states in the form for a system
of a degenerate electron gas,

Ωel(ε) = (2π/h2
P)(2m)3/2√εe. (3.53)

Here εe is the energy of the electron. The density of states for an electron gas
in a crystal in the premelting region can be written in a way, which reflects
the circumstance that a semiconductor at such temperature behaves as if it
had an intrinsic conductivity,

Ωs(εn′ , εp) = [Ω(εn′)Ω(εp)]1/2 (3.54)

where Ω(εn′) and Ω(εp) are the densities of one-particle states for electrons
and holes, respectively.

According to Eq. (3.53), Ω(εn′) =
√

2m
∗3/2
n

2π2h3
P

√
εn′ and Ω(εp) =

√
2m

∗3/2
p

2π2h3

√
εp where m∗

n and m∗
p are the effective masses, and εn′ and εp are the kinetic

energy of the electrons and holes, respectively. Using Eqs. (3.52)–(3.54) and
the above equations, there is

ΔSel =
R

2

[
ln
(

m∗
nm∗

p

m2

)−3/2

+ ln
εe√
εn′εp

]
. (3.55)

The total energy of the electrons and holes in an intrinsic semiconductor with
an Eg can be written as

ε = 2
∫ ∞

0

εf0(ε)Ω(ε)dε + 2
∫ ∞

0

(ε′ + Eg)f0(ε′)Ω(ε′)dε′ (3.56)

where the first integral corresponds to electrons, and the second to holes.
Replacing f0(ε) and f0(ε′) by the corresponding distribution functions, and
replacing Ω(ε) and Ω(ε′) by the above mentioned equations, there is

ε =
√

2
π2

m
∗3/2
n

h3
exp

μ

kT

∫ ∞

0

exp
(
− ε

kT

)
ε3/2dε +

√
2
π2

m
∗3/2
p

h3
exp

(
− μ

kT

)
exp

(
−Eg

kT

)∫ ∞

0

exp
(
− ε′

kT

)
×

(ε′ + ΔE)dε′. (3.57)
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Using the value of the chemical potential of an electron for a semiconductor,

μ = −Eg

2
+

3
4
kT ln

m∗
p

m∗
n

, (3.58)

and integrating Eq. (3.57), there is

ε =
(2π

√
m∗

nm∗
pkT )3/2

4πh3
(3kT +ΔE) exp

(
−ΔE

2kT

)
=

3
2
kTn+

n

2
(3kT +2ΔE).

(3.59)
In the one-particle approximation, we have

εn′ = 3kT/2, (3.60)

and
εp = (3kT + ΔE)/2. (3.61)

In the liquid state, εn′ can be found as the energy a degenerate electron gas
(i.e., introducing an FD distribution),

εe =
h2

P

2m∗
L

(
3ni

8π

)2/3

. (3.62)

An analysis of Eq. (3.55) led us to conclude that a calculation of ΔSel re-
quires knowledge of not only certain physical constants of a crystal, but also
the concentration of free carriers in the melt. The latter can be determined
from measurements of the Hall coefficient. Accordingly, some precise experi-
mental studies were carried out for the temperature dependence of the Hall
coefficients of Ge, Si and III-Sb compounds in the solid and liquid states with
error being less than 4%. The abrupt change observed in the Hall coefficient
at Tm corresponds to a metallization of the bonds of these substances with
melting.

The so calculated ΔSel values of some substances are shown in the last
column of Table 3.4 while ΔSel values obtained by other methods are also
shown, based on measurements of the thermal emf at Tm (ΔSel(I)), the dif-
ference between ΔSm and the sum of ΔSvib and ΔSpos (ΔSel(II)), and a
calculation of the change in the configurational entropy of the binding elec-
trons (ΔSel(III)). The obtained results are similar to errors within 10%.

Table 3.4 ΔSel of Ge, Si, and III-Sb compounds calculated in various ways. The
meanings in parentheses for ΔSel see the text

Substance
Entropy units

ΔSel(I) ΔSel(II) ΔSel(III) ΔSel(IV)

Ge 21.32 20.06 16.72 20.48
Si 15.05 21.32 19.23 15.05

AlSb 14.21 – 20.9 11.29
GaSb 18.81 12.96 18.81 18.81
InSb 21.74 11.29 15.88 22.99
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Note also that this calculation has disregarded the possibility of a tempera-
ture dependence of the effective masses of the density of states. Accordingly,
this calculation qualifies as only a first approximation.

From data on ΔSel, we can solve the inverse problem, i.e., to calculate the
effective masses of the density of states in the crystal and the melt near Tm.
Such calculations would make it possible to draw certain conclusions about
a model for describing the electronic states in molten semiconductors.

3.3 Nanothermodynamics

In the last decade, we have seen the explosive development of a new scie-
ntific field, now commonly known as nanoscience [10]. Nanoscience could
be defined as the activity aiming at the understanding of natural laws of
matter at a nanoscale level (say, 1 – 100 nm). Nanomaterials are thus in-
termediate between single atoms (molecules) and bulk matters. This result
in the so-called specific and smooth size effects due to the larger surface-
to-volume ratio of nanomaterials than that of their bulky counterparts [11].
The former is responsible for the existence of “magic numbers” and related
irregular variation of properties in clusters, whereas the latter pertains to
nanostructures in the size domain between clusters and bulk systems [12]. It
has also been found that the electronic structure of small particles is gene-
rally very discrete and not overlapping as the case with bulk materials, i.e.
quantum effect occurs. Two aspects of nanomaterials above render them fun-
damentally different in their behavior from those of their constituent parts
(either atoms or molecules) and from those of macroscopic pieces of matters
[11]. One particular phenomenon, size-dependent melting point depression,
occurs when the particle size is of the order of nanometers, as first demon-
strated by Takagi [13] by means of transmission electron microscope (TEM)
observation. Indeed, depending on the size, metallic, semiconductor, and or-
ganic nanocrystals with a clean surface all melt below the bulk melting point
Tm(∞). For example, the melting point Tm(r) of Au nanoparticles can be
300 K lower than its Tm(∞) [14] where r denotes the size of low dimensional
materials. Consequently, nanomaterials possess direct and potentially tech-
nological implications related to the thin film preparation and the thermal
stability of the nanosized materials and devices.

As a major goal in materials physics and chemistry, to quantify the size
dependent changes associated with the nanocrystals, a reasonable thermo-
dynamic model in terms of experimentally measurable physical parameters
is clearly indispensable. The classical thermodynamics on macroscopic sys-
tems describes adequately the macroscopic behavior of bulk systems with the
change of macroscopic parameters where the astrophysical objects and small
systems at the nanometer scale are excluded. However, the basic thermody-
namic relationships of a macroscopic system (such as Eqs. (1.35) to (1.38))
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with a statistic basis are only valid for materials being at least larger than
submicron size while the parameter “size” is actually a constant of bulk [12].

Is thermodynamics applicable to nanosystems? The answer is yes because
the thermodynamic limit has not been fulfilled and Gibbs free energy contains
more contributions. Since a nanosystem has an extra degree of freedom, size,
the study of equilibrium nanosystems requires modification of macroscopic
thermodynamics. This subject appropriately is called nanothermodynamics,
which has the potential to become an important contributor to nanoscience
and technology. It is noteworthy that, in the context of some modern experi-
mental techniques such as the atomic force microscopy, the thermodynamic
method is equally promising as a theoretical and empirical description of the
experimentally investigated nanosystems. Indeed in many cases, experimental
data on nanoparticle properties are rather scanty and contradictory since
experimental arrangements can affect measuring results when the particle is
not entirely rigid. Thus, thermodynamic consideration on nanoscale becomes
an urgent task due to the requirement of the development of nanoscience and
nanotechnology.

There are recently three kinds of fundamental approaches to open up the
nanothermodynamics, which are based on the fluctuations of the tempera-
ture, the Tsallis’ entropy, and the Laplace-Young equation in small systems.
The first one is a generalized thermodynamic model dealing with nanosys-
tems, which was first studied by Hill [15] in 1961–1964, where only the first
law was considered. The second one is on the basis of the Tsallis’ generali-
zation of the ordinary Boltzmann-Gibbs thermo-statistics by relaxing the ad-
ditive properties of the thermodynamic quantities (the entropy, in particular)
to include non-extensivity of nanosystems [16, 17]. The last one considers the
size-induced internal pressure Pin = 2fsv/r, where fsv denotes the surface
stress of solid, which may also be extended to a general case for the pres-
sure effect on properties of bulk materials since any pressure source should
have the same effect on materials properties [18]. These approaches devel-
oped from various perspectives can contribute significantly to understanding
of properties of nanosystems. However, a consistent insight and a quantita-
tive and unified model on nanothermodynamics are still highly desirable. This
task can be performed by deeply analyzing the size dependence of a typical
known process of thermodynamic phase equilibrium [12], such as melting,
which is so obvious in nature that even the ancient speculative physicists
might expect to discuss it and stimulated the development of classical ther-
modynamics in the nineteenth century [19]. Before the detailed consideration
on size dependence, it is necessary to introduce firstly the most general bulk
melting.
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3.4 Melting Thermodynamics

3.4.1 A Melting Criterion [20]

An alternative for studying the melting transition was carried out in 1910 by
Lindemann for single component crystals with a kinetic consideration: Solids
liquefy when the amplitude of atomic thermal vibrations exceeds a fraction of
the interatomic spacing, which is much simpler than the usual phase equilib-
rium consideration based on the thermodynamics and will be used as the base
of the size-dependent melting model. According to the Lindemann model, at
the melting for a given bulk crystal, the typical vibrational displacement
σ(∞), or the root-mean-square (rms) average amplitude of atomic thermal
vibration, should be some fixed fraction of the atomic or molecular diameter
(the nearest atomic or molecular spacing) h, or σ(∞)/h = 1/2. This implies
that direct collisions between the atoms constituting the lattice would become
possible, leading to the lattice demise. Lindemann’s quantitative model made
use of Einstein’s explanation of the low-temperature specific heats of solids,
which proposed that the atoms vibrate as quantized harmonic oscillators and
the corresponding ΘE(∞) is proportional to νE(∞) by hPνE(∞) = kΘE(∞).
Einstein’s theory was published in 1907, and its adoption by Lindemann ap-
pears to be the first application of quantum theory to condensed matter after
Einstein’s own paper.

The theory is quite simple, which averages thermal vibrational energy to
the temperature by the equipartition relation [19],

m[(2πνE(∞)]2σ2(∞) = kT (3.63)

where m is the atomic mass. The modern form of Lindemann’s criterion has
been given by, ΘD(∞) = c[Tm(∞)/(MwV

2/3
s )]1/2, where c denotes a fraction

of the nearest-neighbor spacing at which melting occurs. Based on the above
equation, Θ2

D(∞) ∝ Tm(∞). Now it is known that c varies slightly with
crystal structure: It is 0.13 for an fcc crystal and 0.18 for a bcc crystal [21].
This difference is partly due to the change of h, which depends on CN of the
specific structure. The h reduces with CN [22]. In order to eliminate or reduce
this difference among distinct lattices or CN s, h can not be determined by
h itself, but by atomic volume that depends little on the lattice structure,
and hence c is almost lattice-independent [23].

There are also other classic kinetic models for melting. Grüneisen corre-
lates Tm(∞) with the reciprocal of the linear thermal expansion coefficient
[24], while Born relates Tm(∞) to the absence of elastic resistance against
shearing stress [25]. Both of the models share a similar physical nature of
Lindemann’s one [26] and thus will not be further discussed.

However, the Lindemann’s model has its limitation. The model is based
on harmonic forces, whereas melting must involve bond breaking or loosening
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[22, 27]. The model, which depends on properties of the solid phase alone,
cannot predict Tm convincingly. In fact, Lindemann did not intend to provide
a “melting criterion” at all in his original paper, but rather pointed out the
possibility to estimate the frequency of oscillators to support Einstein’s model
for explaining CP drop of solids at low T .

Melting may be due to the intrinsic disorder created by thermal exci-
tations, such as vibrational modes, point defects such as vacancies and in-
terstitials, dislocations, and, in the case of molecular crystals, orientational
defects [28, 29]. Each type has a characteristic excitation energy dictating an
exponential increase of the energy of solid with T . This leads also to lowe-
ring of Tm, where solid and liquid have the same Gibbs free energy value.
In addition, as we now understand, a proper analysis of dynamical melting
should proceed with reference to process at the solid-liquid interface.

Despite the unsolved problems for the modeling of melting, Lindemann’s
criterion has provided the most bases for predicting the melting behavior
as it has been experimentally confirmed. In the following, the criterion will
be used as a starting point to model the size dependence of the melting.
There are many models for other types of size-dependent phase transition
temperatures, such as magnetic transitions, various phase transition models
will be discussed further in Chapter 5.

3.4.2 Existing Models for Size-dependent Melting of Crystals [12]

Tm(r) functions have been experimentally measured since 1954 by Takagi. A
linear relationship of Tm(r) ∼ 1/r is usually modeled, which is simply deduced
in terms of a ratio of the surface volume to the entire volume ζ = ΔV/V .
Contrary to observed depression in Tm for substrate-supported small crystals
with a relatively free surface, it has been observed that small crystals em-
bedded in the matrix can melt below Tm(∞) in one matrix (undercooling),
while in another matrix the same nanocrystals can be greatly superheated
above Tm(∞) (superheating). The apparent contradictory experimental ob-
servations require further definite experiments as well as a clear physical
understanding of the melting phenomena of nanocrystals. The correspondent
size dependence is function of r and dimension d. In addition, since 1940’s,
surface melting below Tm(∞) with a thickness of several atomic layers of a
solid is widely studied, which is a process proceeding under the condition of
γsv > γsL + γLv where γ is interface energy with subscripts sv, sL, and Lv
being the corresponding interfaces. Note that s, v, and L denote solid, vapor
and liquid, respectively. The physical nature of the surface melting is that
although ΔG(T < Tm) = Gl(T < Tm) − Gs(T < Tm) > 0, the condition of
γsv > γsL + γLv leads to formation of a liquid surface layer, which neutralizes
the positive ΔG(T < Tm). This effect has naturally been enhanced due to
the increase of ζ.
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The earliest thermodynamic consideration for Tm(r) function was derived
by Pawlow in 1909 where the relative change from Tm(∞) was taken into
account, which was even one year earlier than the modeling of Tm(∞) by
Lindemann in 1910 and much early than the experimental result in 1954,
which has the following form:

Tm(r)/Tm(∞) = 1− 2Vs[γsv − γLv(ρs/ρL)2/3]/(rΔHm) (3.64)

where ρ denotes mass density. For the most cubic metals,

γsv − γLv ≈ γsL (3.65)

with ρs ≈ ρL and thus (ρs/ρL)2/3 ≈ 1 and in terms of Eq. (3.65), Eq. (3.64)
can be expressed as

Tm(r)/Tm(∞) ≈ 1− 2VsγsL/(rΔHm). (3.66)

Actually, Eq. (3.66) is identical to the Gibbs-Thomson equation,

Tm(r)/Tm(∞) ≈ 1− (1/r1 + 1/r2)VsγsL/ΔHm (3.67)

where r1 and r2 are principal radii of curvature of the interface that bound
a solid. For a spherical particle, 1/r1 = 1/r2 = 1/r, Eq. (3.67) = Eq. (3.66).

Before the most experimental results were present in 1990’s, Couchman
and Jesser quantitatively modeled Tm(r) in 1977,

Tm(r)/Tm(∞) = 1− [3(Vs + VL)(γsM − γLM)/2r −ΔU ]/ΔHm (3.68)

where subscript “M” denotes matrix, ΔU shows energy density difference
between the nanocrystal and the nanoliquid. If ΔU is negligible, Tm(r) can
either higher or lower than Tm(∞), depending on the sign of γsM − γLM,
which is closely related to the nature of the interface. Generally, γLM−γsM =
γsL cos θ, where θ is the contact angle between a particle and the matrix
ranging from 0◦ to 180◦. For a particle wetted by the matrix, 0◦ � θ < 90◦

and 0 < γLM − γsM � γsL where the matrix/particle interface should be
coherent or semi-coherent. Consequently, superheating happens and Tm(r)
increases with decreasing r. For a nanocrystal with θ � 90◦, γLM − γsM � 0
and undercooling occurs.

Superheating has also been interpreted through various pressure effects,
such as a capillary effect due to the decreasing of r, the differential thermal
expansion between the matrix and the nanocrystals, and the effect due to
volume change during the melting. However, these models underestimate ex-
perimental observations since they can only predict a very small superheating
up to 6 K. The reason is that they have only considered mechanical effects
while the dominant chemical interfacial effect is neglected.
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If the surface-melting phenomenon is taken into account, Tm(r) function
has different expressions,

Tm(r)/Tm(∞) = 1− 2Vs[γsL/(1− ts/r)− γLv(1− ρs/ρL)]/(rΔHm), (3.69)

Tm(r)
Tm(∞)

= 1− 2VsγsL[1− exp(−ts/ξ)]
rHm(1 − ts/r)

−Vs[(γsv − γLv)− γsL(1− ts/r)2] exp(−ts/ξ)
ξHm(1− ts/r)2

, (3.70)

Tm(r)/Tm(∞) = 1− 2VsγsL/[rΔHm(1− ts/r)] (3.71)

where ts is surface melting layer thickness and ξ in Eq. (3.70) shows the
correlation length of solid-liquid interface. Note that when ts � r, ts 

ξ, ρs ≈ ρL, and in terms of Eq. (3.65), Eqs. (3.69)–(3.71) have essentially
predicted the same trend as given by Eq. (3.66). This result implies that
when r is large enough, the surface-melting phenomenon does not change
the melting behavior of the nanocrystals although it indeed exists. However,
when ts is comparable with r being in the size range of r < 5 nm (ζ >
10%), Eqs. (3.69)–(3.71) indicate a stronger melting point depression than
Eq. (3.66) does. Note that once Eq. (3.66) comes into play, the surface-melting
phenomenon disappears.

Another way to calculate Tm(r) was made by Semenchenko who has con-
sidered melting of a small solid particle embedded in the corresponding liquid,
which has an exponential form,

Tm(r)/Tm(∞) = exp[−2VsγsL/(rΔHm)]. (3.72)

Equation (3.72) almost gives the same Tm(r) value of Eqs. (3.69)–(3.71) in the
full size range of nanocrystals. As r increases, with a mathematical relation
of exp(−x) ≈ 1 − x is valid where x is small, Eq. (3.72) ≈ Eq. (3.66). Since
some variables in Eqs. (3.69)–(3.71) come from fitting experimental results,
Eq. (3.72) is more convenient to predict Tm(r) when r <5 nm with the same
level of accuracy.

In the above equations, γsL value, as an important thermodynamic amount
to determine Tm(r) function, has been deduced recently according to Gibbs-
Thomson equation,

γsL = 2hΔSvib(∞)ΔHm/(3VsR). (3.73)

Equation (3.73) is capable of predicting γsL values quite accurately for el-
ement and compound crystals when the crystalline anisotropy is negligible,
Substituting Eq. (3.73) into Eq. (3.66), one gets

Tm(r)/Tm(∞) = 1− 4hΔSvib(∞)/(3Rr). (3.74)

Note that although any surface reconstruction decreases γsv, such as roughi-
ng and surface melting, which seems to be neglected in Eq. (3.74), ΔSvib(∞)
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itself indeed has included the surface relaxation phenomenon. This is because
ΔSvib(∞) value measured at Tm(∞) has included various surface relaxations
since this has occurred in the corresponding solid. However, Eq. (3.74), or Eq.
(3.66) still fails for correct description of Tm(r) function of smaller nanocrys-
tals where ζ > 20%.

In Eq. (3.74), there is a size limit of r = (αr − 1)r0, at which Tm(r) =
0 K. If r � (αr − 1)r0, Tm(r) � 0, which is strictly forbidden in physics. As
indicated above, when r < (5 ∼ 10)r0, Eq. (3.66) or (3.74) is no longer valid.
By contrast, Eqs. (3.69)–(3.72) can be applied to (αr−1)r0 < r < (5 ∼ 10)r0

due to the nonlinear parts between Tm(r) and 1/r in these equations. Note
also that r must be larger than (αr − 1)r0 since Tm(r) has to be larger than
the Kauzmann temperature TK where ΔSm(r) is equal to zero. The related
details will be considered in Sec. 4.6.

It is interesting that although ΔHm function appears in the above equa-
tions, it disappears in Eq. (3.74) since it is included in ΔSvib(∞). Thus,
the detailed form of ΔHm is not of immediate concern. Based on an analogy
with the liquid-drop model and empirical relations between the bulk cohesive
energy Ec(∞), γ, and Tm(∞), Tm(r) functions are determined as follows:

Tm(r)/Tm(∞) = 1− (c2/r)(1 − γMs/γsv) (3.75)

where c2 is a constant relating to atomic volume, Tm(∞) and γsv. Equation
(3.75) is very similar to Eq. (3.68) and could describe both undercooling and
superheating of nanocrystals. For the case of undercooling, γMs = 0. When
superheating occurs, γMs/γsv > 1.

Sun et al. connects Tm(r) function directly to the CN -imperfection ef-
fect on atomic cohesive energy of the lower coordinated atoms near the sur-
face. It is suggested that the CN -imperfection causes the remaining bonds of
the lower-coordinated atoms to contract spontaneously with an association
of magnitude increase of the bond energy, i.e., bond-order-length-strength
(BOLS) correlation, which contributes to Ec (the sum of bond energy ε over
all coordinates of a specific atom with the coordination z, Ec = zNAε/2),
and hence to G that determines the thermodynamic behavior of a system.
The thermal energy required to loosen the bonds of the specific atom is a
portion of Ec. Thus, Tm(r) ∝ Ec(r), which leads to

Tm(r)/Tm(∞) = 1 +
∑
i�3

βij(zibc
−m′
i − 1) (3.76)

where βij is the volume or number ratio of the i-th atomic layer to that
of the entire crystal, zib = zi/zb where zi and zb are the coordinates with
and without CN imperfection, ci shows CN -dependent reduction of bond
length, and m′ is a parameter varying with the bond nature. The model
indicates that Tm change arises from the change of atomic cohesion of the
under-coordinated atoms in the superfacial skins while the atoms in the core
interior remain as they are in the bulk.
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Moreover, the surface-phonon instability model suggests that Tm(r) is
a function of two bulk parameters: Tm(∞) and the energy of formation of
intrinsic defects. The shape effect on Tm(r) for polyhedral nanocrystals, which
is in nature also related to ζ, is also considered and the corresponding shape
factor is introduced.

In summary, all the above models predict the same linear relationship
between Tm(r) and 1/r due to the surface effect when r is large enough.
However, as ζ > 10%, the dramatic drop of Tm(r) is present because the
energetic states of internal atoms also change, which has been considered by
Eqs. (3.69)–(3.72) in different approaches although their considerations are
not directly related to energetic state of atoms, but ζ. Since the superheating
phenomenon was realized later than the undercooling one, the later models
of Eqs. (3.68), (3.75), (3.76) attempted to determine both undercooling and
superheating with also a similar linear relationship of Tm(r) ∼ 1/r. The sign
of the 1/r term is negative for undercooling but positive for superheating.
Note that if the CN imperfection of the second surface layer is considered, Eq.
(3.76) becomes a nonlinear function and could describe the melting behavior
of smaller size of nanocrystals.

However, it is often that a single phenomenon corresponds to numerous
models. A unified model dealing with not one, but all related phenomena,
is required. This unification certainly brings out comprehension of interde-
pendence of among different phase transitions, which is given in the next
section where we will present a melting model of nanocrystals and give a
systematical analysis of both modeling considerations and experimental ob-
servations in order to discover the mechanism for the melting transition in a
thermodynamic approach.

3.4.3 Size-dependent Melting Thermodynamics of Crystals [12]

The following consideration is at the heart of various models based on Linde-
mann’s criterion for Tm(r) [30],

σ2(r) = σ2
va(r) + [σ2

sa(r) − σ2
va(r)]nsa/nva (3.77)

where the subscripts “sa” and “va” denote atoms/molecules at the sur-
face and located within the particle, respectively. nsa/nva = ζ = (4πr2h)/
[(4/3)πr3 − 4πr2h] = r0/(r − r0) with r0 = 3h for a spherical or a quasi-
spherical particle. Equation (3.77) states that the rms of the particle is the
average of its “surface” and “bulk” values. For bulk crystals, atoms in the
surface layers can oscillate with larger amplitude than atoms in the interior
of the crystals, and the average amplitude of the whole crystal is independent
of the size of the crystal. However, both σ2

va(r) and σ2
sa(r) are larger than

the corresponding σ2
va(∞) and σ2

sa(∞). It is assumed that σ2
sa(r)/σ2

va(r) =
σ2

sa(∞)/σ2
va(∞) = αr is size-independent although σ2

sa(r) and σ2
va(r) are size-
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dependent. Moreover, since the cooperative coupling between the surface
and the interior atoms/molecules of small particles may be important, it
is phenomenologically considered that the variation of σ2(r) is dependent
on the value of σ2(r) itself. Thus, a change in σ2 with ζ can be given by
σ2(ζ + dζ)− σ2(ζ) = (αr − 1)σ2(ζ)dζ [30]. Integrating this equation yields

σ2(r)/σ2(∞) = exp[(αr − 1)ζ] = exp{(αr − 1)/[(r/r0)− 1]} (3.78)

where r0, at which all atoms/molecules are located on the surface, can be
extended for different dimensions d with d = 0 for nanospheres, d = 1 for
nanowires and d = 2 for thin films. For a nanosphere and a nanowire, r has
the usual meaning of radius. For a thin film, r denotes its half thickness. r0

is given by:(1) r0 = 3h for d = 0 since 4πr2
0h = 4πr3

0/3; (2) r0 = 2h for d = 1
since 2πr0h = πr2

0; and (3) r0 = h for d = 2 since 2h = 2r0. Note that for
disk-like nanoparticle, its quasi-dimension has been defined as d = 1 since its
ζ is between that of particles and that of thin films [31]. In short,

r0 = c1(3− d)h. (3.79)

In Eq. (3.79), c1 is added as an additional condition for different surface
states. c1 = 1 for nanocrystals with free surface. When the interface interac-
tion between the nanocrystals and the corresponding substrate is weak, such
as thin films deposited on inert substrates, the film/substrate interaction is
van der Waals forces while the inner interactions within the thin films are
strong chemical bonds, c1 = 1 too. If this strength on the interface is com-
parable with that within films, c1 varies somewhat. When these are similar,
which is equal to the case that one of the two surfaces of the films disappears,
c1 = 1/2 is thus got (the side surfaces of the thin films are neglected due to
the low thickness). For more complicated interfaces, c1 may be considered
case by case between 1/2 and 1.

Since usually Tm(∞) > ΘD(∞), the high temperature approximation
can be utilized, σ2(r, T ) = f(r)T , where f(r) is a T -independent but r-
dependent function. Thus, at any T , σ2(r, T )/σ2(∞, T ) = f(r)/f(∞). Moreo-
ver, when T = Tm, f(r)/f(∞) = {σ2[r, Tm(r)]/h2}/{σ2[∞, Tm(∞)]/h2}·
[Tm(∞)/Tm(r)] = Tm(∞)/Tm(r) in terms of Lindemann’s criterion. In the
above equation, h is assumed to be a size-independent constant, namely,
ΔVs = Vs(∞) − Vs(r) ≈ 0 or Δh = h(∞) − h(r) ≈ 0. It is known that
Δh/h = ΔVs/(3Vs) = 0.1%− 2.5% when r < 10 nm and it is negligible when
r > 10 nm. Thus, even r < 10 nm, [Vs(r)/Vs(∞)]2/3 ≈ 0.95 − 0.97. Note
also that ΘD(r) function can be obtained as a generalization of relationship,
Θ2

D(∞) ∝ Tm(∞), i.e., Θ2
D(r)/Θ2

D(∞) = Tm(r)/Tm(∞). According to Eq.
(3.78),

Tm(r)/Tm(∞) = σ2(∞)/σ2(r) = Θ2
D(r)/Θ2

D(∞)
= exp{−(αr − 1)/[(r/r0)− 1]}. (3.80)

Based on Mott’s expression for ΔSvib(∞) of bulk crystals at Tm(∞)
[5, 32] and the above model, ΔSvib(r) of metallic crystals and αr in Eq.
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(3.80) could also be developed [33, 34]. ΔSvib(r) of nanocrystals can be
obtained as a generalization of Eq. (3.42), i.e., ΔSvib(r) - ΔSvib(∞) =
(3R/2) ln{[Tm(r)/Tm(∞)][Cs(r)/CL(r)]2/[Cs(∞)/CL(∞)]2}. Instead of treat-
ing CL(r) and Cs(r) to be size-dependent, respectively, the ratio of CL(r)/
Cs(r) ≈ CL(∞)/Cs(∞) is approximately taken as a size-independent value.
Hence,

ΔSvib(r) −ΔSvib(∞) = (3R/2) ln{[Tm(r)/Tm(∞)]. (3.81)

Substituting Eq. (3.79) into Eq. (3.81), it reads

ΔSvib(r) = ΔSvib(∞)− (3R/2)(αr − 1)/[(r/r0)− 1]. (3.82)

It is known that ΔSm(r) for metallic crystals is mainly vibrational in na-
ture. Hence, although ΔSvib(r) represents only one of several contributions
to ΔSm(r), one may suggest that ΔSm(r) follows the same size dependence
as ΔSvib(r),

ΔSm(r) = ΔSm(∞)− (3R/2)(αr − 1)/[(r/r0)− 1]. (3.83)

In Eq. (3.83), the smallest size of crystals is assumed to be 2r0 where a
half of atoms of a crystal are located on the surface with ζ = 1. Tm(2r0) =
Tm(∞) exp(1−αr) where both have almost the same short range order and the
structure difference between crystal and liquid is little. As a result, melting
disappears, ΔSm(2r0) = ΔSvib(2r0) = 0 is thus assumed for the smallest
nanocrystal, which leads to

αr = 2ΔSm(∞)/(3R) + 1 = 2ΔSvib(∞)/(3R) + 1. (3.84)

Eliminating the parameter αr from Eq. (3.83) by means of Eq. (3.84), one
has

ΔSm(r)/ΔSm(∞) = 1− 1/(r/r0 − 1). (3.85)

Equation (3.85) is remarkably simple and more importantly, free of any ad-
justable parameter. Equation (3.85) has been supported by the experimental
results of Sn [35] and Al [36]. It is also utilized for organic nanocrystals due to
their similar melting nature, i.e., ΔSm(r) of organic crystals are essentially
contributed by a vibrational part [23]. However, since organic crystals are
molecular ones, h or r0 stated above must be newly defined. A simple gener-
alization is that h is defined as the mean diameter of the organic molecule,
which implies that a molecule in organic crystals takes a similar effect of
an atom in metallic crystals. Hence, when a molecule is located on the sur-
face of the organic crystal, the amplitude of the thermal vibration of the full
molecule is larger than that of molecules within the crystal.

Since the shape of an organic molecule is usually not spherical, h as a

mean diameter of a molecule is defined as h =
1
3

3∑
i=1

hi where hi is the length

of the molecule along three axis directions. For the organic molecules not
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having any regular shapes, the direction of the longest size is defined as the
x-axis and the shortest size is defined as another axial direction. Different
choices of the axes only lead to little difference of h, which changes Tm(r)
and Sm(r) functions little specially when r/h is large enough (for instance,
usually r > 2 nm in experiments and h < 0.5 nm for most organic crystals).

After determination of h by consideration of the geometric shape based
on the bond length and bond angle of organic molecules, ΔSm(r) of organic
nanocrystals may be calculated in terms of Eqs. (3.80) and (3.85). Figure 3.9
presents a comparison between the prediction of Eq. (3.85) and experimental
results of four organic nanocrystals [37].

Fig. 3.9 ΔSm(r) functions of benzene, chlorobenzene, heptane, and naphthalene.
The lines are Eq. (3.85). , , , and denote the experimental results of ben-
zene, chlorobenzene, heptane, and naphthalene, respectively. ΔSm(∞) values of
benzene, chlorobenzene, heptane, and naphthalene in J·g-atom−1·K−1 are 2.842,
3.375, 3.042, and 2.920, respectively. r0 is taken as 2h (for the calculations of h
values, see ref. [23]). The corresponding r0 values in nm are 0.7584, 0.8036, 0.9650,
and 0.9024.

For nanocrystals embedded in a matrix with coherent or semi-coherent in-
terfaces, it is expected that the msd value of interfacial atoms of nanocrystals
(σ2

ia(r)) falls between that of the interior atoms of nanocrystals (σ2
va(r)) and

that of the matrix (σ2
M(r)), under the assumption that σ2

ia(r) of the interfacial
atoms of the nanocrystals has an algebraic average value between σ2

va(r) of
interior atoms and σ2

M(r) and combining the assumption of σ2
va(r) ≈ σ2(∞),

αr is determined as

αr = {[σ2
M(r) + σ2

va(r)]/2}/σ2
va(r) = [σ2

M(r)/σ2(∞) + 1]/2. (3.86)

As stated above, the high-temperature approximation for σ2
M(T ) at a T is

utilized. Substituting T = TM(∞) and T = Tm(r) into Eq. (3.63), one gets
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σ2
M[Tm(r)]/σ2

M[TM(∞)] = Tm(r)/TM(∞). According to the Lindemann cri-
terion, or σ(∞)/h = c, σM(TM(∞))/hM = σm(∞)/h, where σM[TM(∞)] de-
notes the rms displacements of atoms of the matrix at the corresponding Tm,
and hM shows atomic diameters of the matrix, σ2

M[TM(∞)] = (hM/h)2σ2
m(∞)

or σ2
M(Tm(r))/σ2

m(∞) = (hM/h)2[Tm(r)/TM(∞)] and thus αr = {(hM/h)2

[Tm(r)/TM(∞)] + 1}/2 in terms of Eq. (3.86). Since the difference between
Tm(r)/TM(r) and Tm(∞)/TM(∞) is little, αr is a weak function of r. As a
first order approximation, Tm(∞) takes the place of Tm(r), or αr takes its
smallest value. Finally, it reads

αr = {[Tm(∞)/TM(∞)](hM/h)2 + 1}/2. (3.87)

Substituting Eq. (3.87) into Eq. (3.80), the superheating of nanocrystals can
be predicted by Eq. (3.80). As shown in Eq. (3.80), Tm(r) depends on r and
αr. Only when αr < 1, which is related to the relative size of h and Tm(∞)
between the nanocrystals and the matrix, does Tm(r)/Tm(∞) > 1 apply and
Tm(r) increases as r decreases. Thus, necessary conditions for superheating of
the nanocrystals embedded in the matrix are Tm(∞)/TM(∞) < 1 and there
are the coherent or semi-coherent interfaces between them. Another sufficient,
but not necessary condition is that the atomic diameter of the matrix is
smaller than that of the nanocrystals (hM/h < 1). For the superheating
case, when Tm(∞)/TM(∞) = (h/hM)2, αr = 1. However, this is physically
impossible since Tm(∞) ∝ 1/h. If αr > 1, which is determined solely by
ΔSvib(∞) for free nanocrystals, Tm(r) decreases with decreasing r. Tm(2r0)
is the lowest melting temperature and vice versa.

The physical nature for depression and enhancement of Tm(r) may essen-
tially be induced by different surface/interface conditions. For crystals with
free-standing surface, the increase of the coherent energy of surface atoms of
crystals is larger than that of the corresponding liquid, which renders that
Tm(r) and ΔSm(r) drop. For crystals embedded in a more stable matrix with
coherent or semi-coherent interfaces, the chemical bonds of the atoms on the
coherent nanocrystals/matrix interface have more or less ionic characteristic,
which leads to the enhancement of the bond strength on the interface. Since
the surface melting of the nanocrystals is avoided, a superheating arises due
to the suppression of thermal vibration of atoms on the coherent interface
between the matrix and the nanocrystals. Thus, Tm(r) and ΔSm(r) increase.

The coherent interface can exist between the same or different atomic
structures related to definite epitaxial relations between the nanocrystals
and matrix where the atomic distances, on the interface are similar. For
instance, for Pb/Al system, they have the same structure, this relation is
given by (111)Al//(111)Pb, and [110]Al//[110]Pb. When structures are differ-
ent, such as Pb/Zn and In/Al systems, their epitaxial relations are given by
(0001)Zn//(111)Pb, [1120]Zn//[110]Pb, and {111}Al//{111}In, [110]Al//[110]In
respectively.

Figure 3.10 presents Tm(r) of semimetal In nanocrystals in different di-
mensions and different surroundings. Tm(r) is indeed a function of d especially
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when r is small. When r/r0 > 5 − 10, exp(−x) ≈ 1 − x. Equation (3.80) is
simplified as Eq. (3.74) with d = 1. Since Tm(r, d = 0) < Tm(r, d = 1) <
Tm(r, d = 2), Eq. (3.74) is a good approximation of Eq. (3.80) when the di-
mension effect on Tm(r) is neglected. This is true when r is large enough.
In addition, according to Eq. (3.87), αr decreases as Tm(∞)/TM(∞) and
hM/h decrease, both are essential and determine the superheating tendency
of nanocrystals. The nonlinear relationship between Tm(r) and 1/r in Eq.
(3.80) implies that besides ζ, the interior atoms of nanocrystals have ad-
ditional contribution to Tm(r). This result shows good evidence that the
macroscopic rules cannot simply be extended to the microscopic size range
with a linear relationship of 1/r when ζ is large.

Fig. 3.10 Tm(r) of semi-metal In nanocrystals in terms of Eqs. (3.80), (3.81),
(3.85), and (3.89) shown as solid lines. The dash line presents Tm(∞) = 429.75
K. For In, ΔSvib(∞) = 6.58 J·mol−1·K−1 in terms of Eqs. (3.31) and (3.32)
where ΔVm/Vs = 2.7% and ΔSm(∞) = 7.59 J·mol−1·K−1 with ΔHm(∞) = 3.26
KJ·mol−1, h = 0.3684 nm. For Al, TM(∞)= 933.47 K and hM = 0.3164 nm. The
symbols , , and denote experimental results with d = 2, d = 1, and d = 0 for
In nanocrystals with free surface or deposited on inert substrates. The symbol
shows experimental results for the In/Al system. (Reproduced from Ref. [12] with
permission of Bentham Science Publisers Ltd.)

An emphasis should be again laid on that although the surface melt-
ing phenomena have not been directly considered in Eq. (3.80), they have
been included in ΔSvib(∞) value since ΔSvib(∞) is experimentally deter-
mined in the existence of surface melting. Thus, Eq. (3.80) correlates to Eqs.
(3.69)–(3.71) well but without fitting parameters. Hence, Eq. (3.80) is more
convenient to predict Tm(r) function.

Another thermodynamic function of melting besides Tm(r) and ΔSm(r)
is ΔHm(r). From the general thermodynamics,

ΔHm(r) = Tm(r)ΔSm(r). (3.88)
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Based on Eqs. (3.80), (3.83) and (3.88), ΔHm(r) function is determined,

ΔHm(r)
ΔHm(∞)

=
[
1− 1

(r/r0)− 1

]
exp

[
−2Svib(∞)

3R

1
(r/r0)− 1

]
. (3.89)

ΔHm(r) function as a general one is suitable for all kinds of the first order
transition and has been extended to the second order transition, such as glass
transition. For the contents of that see Chapter 5.

A comparison between Eq. (3.89) and experimental results for ΔHm(r)
function of In nanocrystals is shown in Fig. 3.11. A pretty agreement between
them is got. Since both of Tm(r) and ΔSm(r) functions are linearly propor-
tional to 1/r, ΔHm(r) should drop more considerably than this linearity as r
decreases especially when r is small.

Fig. 3.11 ΔHm(r) functions of disk-like In nanoparticles in terms of Eqs. (3.89)
shown as the solid line and the symbol denotes the corresponding experimental
results where ΔHm(∞) = 3.36 kJ·mol−1, d = 1 and other parameters are the same
as the caption of Fig. 3.10. (Reproduced from Ref. [12] with permission of Bentham
Science Publishers Ltd.)

3.5 Cohesive Energy

3.5.1 Size-dependent Cohesive Energy of Crystals [12]

The nature of the thermal stability of nanocrystals is determined directly by
the size-dependent cohesive energy of nanocrystals Ec(r). Ec(r) is the en-
ergy required to break the atoms of the solid into isolated atomic species,
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which can be obtained experimentally by measuring the latent heat of sub-
limation at various low temperatures, and extrapolating to zero Kelvin. The
first experimental data on Ec(r) function of Mo and W have been determined
through measuring the oxidation enthalpy of nanocrystals. The results show
that as r decreases, Ec(r) increases (or its absolute value decreases).

As a natural consideration, ΔHm(r) function of Eq. (3.89) should be
applicable to the determination of Ec(r) function if the corresponding tran-
sition entropy term for the solid-vapor transition ΔSb = Eb/Tb(Eb denotes
the bulk cohesive energy at Tb with Tb being the bulk solid-vapor transition
temperature) is used to substitute ΔSvib(∞). In light of this consideration,
Ec(r) function in terms of Eq. (3.91) is given as follows:

Ec(r)
Ec(∞)

=
[
1− 1

(r/r0)− 1

]
exp

[
−2ΔSb

3R

1
(r/r0)− 1

]
. (3.90)

In Eq. (3.90), Ec(2r0) = 0 where the structures of the solid and the vapor
are indistinguishable, which here is a single atom or molecule since a single
atom or molecule cannot be identified whether it is in a solid or a vapor state.
Thus, 2r0 = h/2. Accordingly, r0 = h/4. Note that although for the solid-
liquid transition r0 is dimension-dependent, r0 is dimension–independent for
solid-vapor transition due to the structural characteristic of the vapor.

Figure 3.12 compares Eq. (3.90) and experimental observations for Ec(r)
functions of Mo and W nanocrystals. Except the Ec(r= 0.5 nm) value of W
nanoparticles, which will be discussed in Sec. 3.5.2, it is evident that Eq.
(3.90) is consistent with the experimental observation: Ec(r) increases with
a decrease in size due to the increase of the surface/volume ratio while the

Fig. 3.12 The size dependence of Ec(r) for Mo and W nanocrystals where the solid
lines denote Eq. (3.90) and the symbols [Ec(r=2nm) = −410 kJ·mol−1, Ec(r=15
nm) = −544 kJ·mol−1] and [Ec(r=0.5 nm) = −590 kJ·mol−1, Ec(r=3 nm) =
−619 kJ·mol−1, Ec(r=15 nm) = −791 kJ·mol−1] show experimental data of Mo
and W nanocrytals, respectively. (Reproduced from Ref. [12] with permission of
Bentham Science Publishers Ltd.)
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surface atoms have lower CN and thus higher energetic state. Because the
energetic state of the vapor phase is size-independent and referenced as zero,
it is conceivable that the above size dependence of Ec(r) is solely induced by
averaged energetic state of atoms of the nanocrystals.

Considering the mathematical relation of exp(−x) ≈ 1−x when x is small,
Eq. (3.90) can be rewritten as [Ec(∞) − Ec(r)]/[Ec(∞)ΔSb] ≈ 2r0/(3Rr).
This result is in agreement with the general consideration that the decrease
of any size-dependent thermodynamic amount is proportional to 1/r or the
surface/volume ratio. However, as r further decreases to the size comparable
with h, namely, about several nanometers, the size effect of the thermody-
namic amount is more powerful than the above simplified form from Eq.
(3.90) because the energetic state of interior atoms of the nanocrystals in
this size range is higher than that of the corresponding bulk ones too.

The size dependence of Ec is not much more than that of the latent
heat. This is because although ΔSb in Eq. (3.90) is one order larger than
ΔSm(∞), r0 = h/4 for solid-vapor transition is one order smaller than r0 = 3h
for solid-liquid transition. As a result, the exponential term in Eq. (3.90) has
a similar size to the solid-liquid transition.

It has been assumed up to now that nanoparticles have the same struc-
ture of the corresponding bulk crystals even if r is small. As r of the particles
decreases to a size of 0.5h < r < 5h, or r < 1−1.5 nm where the particles con-
sist of only dozens of or several hundred atoms, the structure of the particles,
which usually are called clusters, differs from that of the corresponding bulk
crystals with even negative specific heat in some cases. The prediction of Eq.
(3.90) thus may be no longer fully correct. This is the case of the experimen-
tal values of Ec (0.5 – 1nm) of W nanoparticles shown in Fig. 3.12. However,
the limit case of Eq. (3.90) is still correct because a particle consisting of one
atom cannot be considered as a solid and the corresponding cohesive energy
value must be zero. A detailed discussion about Ec(r) of clusters will be held
in the following section.

3.5.2 Vacancy Formation Energy and Cohesive Energy of Clusters

Clusters have shown unique chemical and physical properties compared with
their counterpart in bulk [38]. One of the applications of these materials is to
act as catalysts with certain Ec(N) and γsv(N) due to huge surface-volume
ratio, where N is the number of atoms in a cluster [39]. If a metallic cluster has
a spherical shape, the corresponding N value is named magic number. These
kinds of clusters are easy to study where some rules could be found, which
will be considered in this section. The best known structures of this kind of
structure or cluster with magic number are quasi-crystalline structures such
as icosahedron (IH), truncated decahedron (DH), and truncated octahedron
(TO) with large proportion of atoms located at edges and vertices [40].
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The basic understanding of energetic term of clusters is the cohesive en-
ergy of atoms at surface and interior, Ecs(N) and Eci(N), which are the mean
values of all surface and interior atoms of clusters. Both can be determined
by computer simulation techniques. As a result, Ec(N) and γsv(N) are ob-
tained. More exactly, the cohesive energy of atoms at a special x site, Ecx(N),
is more complicated and in some cases is more important than Ec(N) one.
This is because many properties, such as adsorption, catalysis and optical
behavior of clusters, are exhibited by atoms at special surface locations of
clusters [41]. Moreover, alloy clusters show superior performance compared
with a single element cluster in catalytic and optical properties [42]. To de-
termine the degree of segregation or mixing in an alloy cluster, besides the
surface sites, Ecx(N) of the interior sites also needs to be understood.

Ecx(N) values cannot be directly obtained by using simulation tech-
niques. The vacancy formation energy of the x site Evx(N) in a cluster
however could be determined using simulation techniques [43], which can be
related to Ecx(N). For bulk crystals, the vacancy formation energy Ev(∞)
is approximately a fraction of Ec(∞), such as Ev(∞)/Ec(∞) ≈ −0.3 for
the transitional metals [44]. For nanocrystals, a thermodynamic relation-
ship has been deduced as Ev(N)/Ec(N) = Ev(∞)/Ec(∞) where Ev(N) is
the average value of Evx(N) [45]. Since clusters usually have non-crystalline
and quasi-crystalline structures, this linear relationship may be invalid and
Ecx(N) ∼ Evx(N) relationship still needs to be clarified.

In the following, Ag clusters with the magic number are introduced as
examples to illustrate the situations of clusters and the corresponding Ec(N)
and Ev(N) where the typical IH (N = 13, 55 and 147), DH (N = 75 and 101)
and TO (N = 38) structures are taken as shown in Fig. 3.13. The specific
surface and interior sites are marked with numbers.

Ev(∞) denotes the lowest energy to remove an atom from a selected site,
and usually the atom is brought to an assumed reservoir which determines
the atomic chemical potential [46]. For single element crystals, this potential
is Ec(∞). The physical meaning behind this is that the removed atom is
brought to a kink site at surface [46]. Although the cohesive energy of the
under-coordinated kink site Eck(∞) is greater than Ec(∞), it has been widely
reported that the binding energy of the atoms at the kink site Ebk(∞) is just
equal to −Ec(∞) [47]. This is mainly because when an atom is bound at the
kink site, besides its cohesive energy turning from 0 to Eck(∞), the cohesive
energy of the coordinated atoms also decreases since these atoms all gain one
extra bond. Thus, in Density Functional Theory (DFT) simulation, Ev(∞)
has been deduced as [46]

Ev(∞) = E(1) + E(∞, N − 1, 1)− E(∞, N, 0) + Ec(∞) (3.91)

where E(1) is the total energy of a single atom, E(∞, N, 0) and E(∞, N−1, 1)
are separately the total energy of the super cell and that after the atom at x
site is removed. Since clusters are quite different from bulk crystals in both
structure and energy, a new reservoir should be assumed to calculate Evx(N).
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Fig. 3.13 Ag cluster structures with different magic numbers N . The different
surface and interior sites are marked with numbers and the corresponding site
names are shown in Table 3.5.

With the same consideration as bulk crystals, it is simply assumed that the
new reservoir is determined by Ec(N) where Ebk(N) = −Ec(N).

Table 3.5 Ec(N) and Ecx(N) in eV.atom−1, Evx(N) in eV, Nx and Zx(N) of Ag
clusters obtained from DFT simulation and Eqs. (3.92) and (3.95)

Cluster −Ec(N) Atomic sites Nx Zx(N) Evx(N) −Ecx(N)

IH13 2.13 (1) vertex 12 6 0.44 2.10
(2) core 1 12 0.79 2.44

TO38 2.64 (1) (111) facet 8 9 1.21 3.10
(2) vertex 24 6 0.5 2.39
(3) sub-layer 6 12 1.16 3.05

IH55 2.79 (1) edge 30 8 1.05 2.77
(2) vertex 12 6 0.84 2.56
(3) sub-layer 12 12 1.33 3.05
(4) core 1 12 1.15 2.87

DH75 2.82 (1) (111) facet 10 9 1.15 3.05
(2) top edge 10 8 0.9 2.80
(3) notch edge 5 10 1.35 3.25
(4) top vertex 2 6 0.4 2.3
(5) notch vertex 10 7 0.84 2.74
(6) lateral vertex 20 6 0.5 2.4
(7) sub-top vertex 2 12 1.18 3.08
(8) sub-top edge 10 12 1.36 3.24
(9) sub-(111) facet 5 12 1.04 2.94
(10) core 1 12 1.32 3.22
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Continue

Cluster −Ec(N) Atomic sites Nx Zx(N) Evx(N) −Ecx(N)

DH101 2.9 (1) (111) facet 10 9 1.04 3.08
(2) top edge 10 8 0.82 2.86
(3) notch edge 10 10 1.24 3.28
(4) lateral edge 10 7 0.61 2.65
(5) top vertex 2 6 0.32 2.36
(6) notch vertex 10 7 0.65 2.69
(7) lateral vertex 20 6 0.37 2.41
(8) sub-notch edge 10 12 1.43 3.47
(9) sub-top vertex 10 12 1.06 3.10
(10) sub-top edge 2 12 1.16 3.20
(11) sub-(111) facet 5 12 1.16 3.20
(12) core 2 12 1.31 3.35

IH147 2.99 (1) (111) facet 20 9 1.14 3.18
(2) edge 60 8 0.81 2.85
(3) vertex 12 6 0.3 2.34
(4) sub-edge 30 12 1.25 3.29
(5) sub-vertex 12 12 0.99 3.03
(6) second sub-layer 12 12 1.28 3.32
(7) core 1 12 0.42 2.46

To confirm the validity of the above relationship, more detailed discussion
is given. At bulk surfaces, CN of the atoms at the close packed (111) facet
and at the kink site are separately Zs(111) = 9 and Zsk = 6 [48]. Hence, three
neighboring bonds of an atom should be broken when making a kink at the
plane. For clusters, the average CN of the atoms at the close packed sur-
face Zs(N) = 6 − 8 [49], which brings out the CN of corresponding kink
sites Zsk(N) being 3 − 5. For instance, for Ag IH13 and DH75 clusters,
Ec(13)/Ec(∞) = 0.61 and Ec(75)/Ec(∞) = 0.8 with Zs (13) = 6 and Zs (75)
= 7.4 [49]. Thus, Zsk (13) ≈ 3 and Zsk (75) ≈ 4. It has been reported that at
Cu bulk surfaces, the binding energy of the Cu adatoms at the hollow sites of
the (111) and (100) facets keeps the ratios of Eb(111)(∞)/Ec(∞) = −0.64 and
Eb(100)(∞)/Ec(∞) = −0.8 [47]. Since the CN of these sites are separately
Zs(111)(∞) = 3 and Zs(100)(∞) = 4 while the crystalline structure of Ag is
also fcc, these sites should be similar to the kink sites of Ag IH13 and DH75
clusters. Thus, Ebk(13)/Ec(∞) ≈ −0.64 and Ebk(75)/Ec(∞) ≈ −0.80 are
approximately valid and the assumption of Ebk(N) ≈ −Ec(N) is reasonable.
With the above consideration for the new reservoir, Evx(N) is defined as

Evx(N) = E(1) + Ex(N − 1, 1)− E(N, 0) + Ec(N) (3.92)

where E(N, 0) and Ex(N − 1, 1) are the total energy of the cluster with N
atoms and that after the atom at x site is removed. For transitional metals, it
has been found that Ev(∞)−Ev(111)(∞) ≈ Ecb(∞)−Ec(111)(∞) = γ(111)(∞)
where γ is the surface energy, which says that the difference of Ev between
the bulk surface and interior is essentially induced by the corresponding dis-
crepancy in Ec. Following the same consideration, the difference of Evx(N)
in the same cluster is assumed to be mainly decided by the discrepancy in
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Ecx(N), there is

Evy(N)− Evx(N) ≈ Ecy(N)− Ecx(N) (3.93)

where subscript “y” denotes another site in the cluster, which differs from
“x”. Moreover, Ecx(N) could also be deduced as

Ecx(N) = [NEc(N)−
∑

z

NzEcz(N)]/Nx (3.94)

where Nx and Nz are the numbers of atoms of the x and z sites. Inserting
Eq. (3.94) into Eq. (3.93), it reads

Ecx(N) = Ec(N)− {
∑

y

Ny[Evy(N)− Evx(N)]}/N. (3.95)

In Eq. (3.95), Ec(N) values could be obtained by simulations, Evy(N) and
Evx(N) values are calculated in terms of Eq. (3.92) and simulation results.
Moreover, γ(N) is defined as [49]

γ(N) = Ecs(N)− Eci(N) (3.96)

where Ecs(N) and Eci(N) are separately the average cohesive energy of the
surface and interior atoms of the considered clusters.

Based on Eq. (3.91), Ev(∞) = 1.18 eV, which agrees with experimental
and simulation results of 1.11 – 1.24 eV for bulk Ag crystals [45]. The calcu-
lated Evx(N) values of Ag clusters in light of Eq. (3.92) are shown in Table
3.5. The vertex sites have comparatively small Evx(N) values as Ev-vertex(N)
= 0.3 – 0.84 eV, or the sites are easy to form vacancy compared with other
surface sites. This result is not difficult to understand since Zvertex(N) = 6
except at the notch vertex sites of DH structures. In addition, Evx(N) firstly
increases with increasing N until a maximum appears at Ev-vertex (55) = 0.84
eV and then it decreases. Namely, vacancy is easier to form at the vertex sites
with increasing N when N > 55.

Clusters would transform to nanocrystals as N further increases. Al-
though nanocrystals usually keep the TO structure thermodynamically, the
IH and DH structures could also be metastable due to some kinetic factors
[50]. Simulation results show that Au nanocrystals in a size range of 3–8 nm
have the “Chui icosahedron” (c-IH) structure [51], which is truncated from
the IH structure where all atoms at the vertex site are removed. A thermo-
dynamic model suggests that there is a critical size beyond which the c-IH
structure is energetically more favorable than the IH structure [52]. This con-
clusion corresponds to the result that clusters or nanocrystals with larger size
tend to form vacancies at the vertex sites.

For the atoms at (111) facets [Z(111)(N) = 9] and edge [Zedge(N) = 8]
sites, Ev(111)(N) = 1.04 – 1.21 eV and Ev-edge(N) = 0.81 – 1.05 eV, which
are much larger than those of the bulk (111) and (100) facets of Ev-(111)(∞)
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= 0.77 eV and Ev-(100)(∞) = 0.53 eV. Hence, vacancies are more difficult
to form at these sites for clusters than for the corresponding bulks. For the
interior sites of Ag clusters, most Ev-interior(N) values are in the range of 1 –
1.43 eV, which is approximately equal to or even larger than Ev(∞) = 1.18
eV. Accordingly, vacancies are more difficult to form at some interior sites
of clusters than those at the interior of bulk crystals. The exceptions are the
core sites of IH13 and IH147 with Ev-core (13) = 0.79 eV and Ev-core (147)
= 0.42 eV. Therefore, the core site of the IH structure may be unoccupied.

On the other side, the calculated Ecx(N) values in terms of Eq. (3.94) are
also shown in Table 3.5. For the surface sites with Zsx(N) = 6, Ec-vertex(N)
values are in the range of (−2.3) − (−2.56) eV with only exception of
Ec-vertex(13) = −2.10 eV. Ec-vertex(N) does not show obvious size dependence
like Ev-vertex(N). Similarly, Ecx(N) keeps almost the same with the same
Zsx(N) when Zsx(N) = 7 − 10. For the bulk surface, Ecs(∞) ≈
[Zs(∞)/Z(∞)]1/2Ec(∞) has been demonstrated using simulation techniques
[53]. Ecx(N) ∼ Zx(N) relationship is similar to Ecs(∞) ∼ Ec(∞) one. Thus,
for the most surface sites of clusters, Ecx(N) ≈ Ecs(∞) when Zsx(N) =
Zs(∞). As mentioned above, even if Ecx(N) ≈ Ecs(∞), surface atoms of
clusters could not easily be separated to form vacancy. This is because for
forming a vacancy at the cluster surface, chemical potential of the assumed
reservoir has been changed from Ec(∞) to Ec(N), which increases difficulty
of the vacancy formation.

For most interior atoms of clusters, Ecix(N) = (−2.87)− (−3.35) eV with
Zix(N) = 12. Although Ecix(N) > Ec(∞), some interior sites are harder to
form vacancy than bulk due to the change of the chemical potential of the
reservoir from Ec(∞) to Ec(N). The exceptions are the core sites of IH13
and IH147 with Ec-core (13) = 2.44 eV and Ec-core (147) = 2.46 eV where
there are smaller vacancy formation energy of Ev-core (13) = 0.79 eV and
Ev-core (147) = 0.42 eV.

Through averaging the Ecsx(N) and Ecix(N) values, Ecs(N), Eci(N) and
γ(N) values in terms of Eq. (3.96) are calculated and shown in Table 3.6.
Both Ecs(N) and Eci(N) increase as N decreases. γ(N) values are in the
range of 0.46 – 1.06 J·m−2, which is smaller than the corresponding bulk
value γ(N) = 1.2 J·m−2 [53]. Since the surface atoms are mostly located at
the edge and vertex sites, they should have more broken bonds and higher

Table 3.6 Ecs(N), Eci(N), γ(N) and Zs(N) of Ag clusters obtained from DFT
simulation and Eqs. (3.95) and (3.96)

Clusters Zs(N)
γsv(N)

/(eV·atom−1)
γsv(N)

/(J·m−2)
−Ecs(N) −Eci(N)

IH13 6 0.34 0.46 2.1 2.44
TO38 6.75 0.48 0.85 2.57 3.05
IH55 7.43 0.33 0.6 2.71 3.04
DH75 7.4 0.43 0.86 2.71 3.14
DH101 7.53 0.51 1.06 2.76 3.27
IH147 7.96 0.36 0.75 2.86 3.22
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Ecs(N) values. However, due to the high pressure existing in the cluster,
Eci(N) would also increase. According to Table 3.6, the increasing extent of
Eci(N) is large than Ecs(N), which induces the decreasing of corresponding
γsv(N). Since both cohesive values of surface Ecs(N) and interior Eci(N)
would change for clusters, γsv(N) is different from the corresponding bulk
value γsv(∞).

3.6 Size Effect on Bandgap of II-VI Semiconductor
Nanocrystals [54]

Semiconductor nanocrystals show tunability of their electronic and optical
properties by the three-dimensional confinement of carriers. One of their cha-
racteristics is the increase of the valence-conduction band-gap Eg(r) function
(the so-called blue-shift) with decreasing r, or ΔEg(r) = Eg(r)−Eg(∞) > 0.
According to the nearly-free-electron approach, Eg is a function of the crys-
talline field Ecr, which depends on the total number of atoms and the inter-
atomic interaction of the solids and indicates that the bandgap is determined
by the first Fourier coefficient of the crystalline field Ecr,1, namely, Eg =
2|Ecr,1|. If ΔEg is supposed to be proportional to ΔEcr, ΔEg(r)/Eg(∞) =
|ΔEcr(r)/Ecr(∞)|. Because Ec is also related to both the total CN of an atom
and the interatomic interaction, such as Ecr, the relationships of Ec ∝ Ecr

and ΔEc(r) ∝ ΔEcr(r) must also exist. As a result,

ΔEg(r)
Eg(∞)

=
∣∣∣∣ΔEcr(r)
Ecr(∞)

∣∣∣∣ =
∣∣∣∣Ec(r) − Ec(∞)

Ec(∞)

∣∣∣∣ = 1− Ec(r)
Ec(∞)

. (3.97)

Substituting Eq. (3.90) for Ec(r)/Ec(∞) function into Eq. (3.97), it reads

ΔEg(r)
Eg(∞)

= 1−
[
1− 1

(4r/h)− 1

]
× exp

(
−2ΔSb

3R

1
(4r/h)− 1

)
. (3.98)

Equation (3.97) denotes that only two parameters ΔSb and h are needed in
order to predict the ΔEg(r)/Eg(∞) value. h and ΔSb values of elements are
easy to find in literature. For compounds, even if their h values cannot be
found, algebraic-averaged h values of elements consisting of the compounds
may be utilized and this substitution leads to little error. However, ΔSb val-
ues of compounds, especially those of semiconductor compounds, are difficult
to find since many of them are unstable and are broken down before Tm is
reached. Thus, ΔSb = 13R, which is the mean values of all elements in the pe-
riodic table (70 – 150 J·g-atom−1·K−1), will be taken for II-VI semiconductor
nanocrystals.

For II-VI semiconductors with zinc-blend structure, h = (31/2/4)a with a
being the lattice parameters (0.541 nm, 0.567 nm, 0.610 nm, 0.582 nm, 0.605
nm and 0.648 nm for ZnS, ZnSe, ZnTe, CdS, CdSe and CdTe, respectively).
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There is little difference of h values for them since the difference of the lattice
constants a is small, thus they should have the similar size dependence of
bandgap expansion. If simply h = 1/4 nm is taken and take that ΔSb ≈ 13R,

ΔEg(r)
Eg(∞)

≈ 1−
[
1− 1

16r − 1

]
× exp

(
−26

3
1

16r − 1

)
. (3.99)

In Eq. (3.99), there is no any thermodynamic quantity, which implies
that all II-VI semiconductors concerned have similar electronic structures.
Comparisons of ΔEg(r)/Eg(∞) of II-VI semiconductor nanocrystals CdSe
between Eq. (3.99) and available experimental results are shown in Fig. 3.14.
As expected, ΔEg(r) increases with a decrease in size. In the figure, there
still exists a little deviation between Eq. (3.99) and experimental results. A
possible reason for this is that parts of the experimental data were directly
determined based on the photoluminescence (PL) or the photoabsorption
(PA) measurements, where the corresponding energy EPL and EPA differs
from each other with a difference called Stoke shift, or EPL = Eg − Es and
EPA = Eg + Es with Es denoting the energy for electron-phonon coupling.
Thus, for PL and PA, the mentioned bandgap should be joint contributions
of both crystal potential and electron-phonon coupling. Only the crystals
potential contributes to the actual bandgap (Eg = (EPL + EPA)/2), yet
the electron-phonon coupling causes the Stoke shift (2Es). For bulk semi-
conductors, Es(∞) is far smaller than Eg(∞) and hence is negligible. As a
result, Eg(∞) ≈ EPL(∞) (or EPA(∞)). However, with decreasing of r, Es(r)
abruptly increases, which induces the enhanced difference between Eg(r) and
EPL(r) (or EPA(r)) especially when r < 1 nm.

Fig. 3.14 A comparison of ΔEg(r)/Eg(∞) of CdSe between Eq. (3.99) (solid line)
and experimental results shown as , , , × and +. The Eg(∞) value used in Eq.
(3.99) is 1.74 eV. (Reproduced from Ref. [54] with permission of Elsevier)
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20 Lindemann A. Üder die Berechnung Molekularer Eigenfrequenzen. Z. Phys.,
11, 609-610 (1910)

21 Stillinger F H. A topographic view of supercooled liquids and glass formation.
Science, 267, 1935-1939 (1995)

22 Sun C Q, Wang Y, Tay B K, Li S, Huang H, Zhang Y B. Correlation between
the melting point of a nanosolid and the cohesive energy of a surface atom. J.
Phys. Chem., B 106, 10701-10705 (2002)

23 Jiang Q, Shi H X, Zhao M. Melting thermodynamics of organic nanocrystals.
J. Chem. Phys., 111, 2176-2180 (1999)

24 Cahn R W. Melting and the surface. Nature, 323, 668-669 (1986)

25 Born M. Thermodynamics of crystals and melting. J. Chem. Phys., 7, 591-603
(1939)



References 117

26 Jin Z H. Gumbsch P, Lu K, Ma E. Melting mechanisms at the limit of super-
heating. Phys. Rev. Lett., 87, 055703 (2001)

27 Hoffmann H J. Reasons for melting of chemical elements and some conse-
quences. Materialwiss. Werkst., 34, 571-582 (2003)

28 Pauchard L, Bonn D, Meunier J. Dislocation-mediated melting of a two-
dimensional crystal. Nature, 384, 145-147 (1996)

29 Burakovsky L, Preston D L. Analysis of dislocation mechanism for melting of
elements. Solid State Commun., 115, 341-345 (2003)

30 Shi F G. Size dependent thermal vibrations and melting in nanocrystals. J.
Mater. Res., 9, 1307-1313 (1994)

31 Zhang Z, Li J C, Jiang Q. Modelling for size-dependent and dimension-
dependent melting of nanocrystals. J. Phys. D: Appl. Phys., 33, 2653-2656
(2000)

32 Mott N F. The resistance of liquid metals. Proc. R. Soc., A 146, 465-472
(1934)

33 Jiang Q, Shi F G. Entropy for solid-liquid transition in nanocrystals. Mater.
Lett., 37, 79-82 (1998)

34 Jiang Q, Tong H Y, Hsu D T, Okuyama K, Shi F G. Thermal stability of
crystalline thin films. Thin Solid Films, 312, 357-361 (1998)

35 Lai S L, Guo J Y, Petrova V, Ramanath G, Allen L H. Size-dependent melting
properties of small tin particles: nanocalorimetric measurements. Phys. Rev.
Lett., 77, 99-102 (1996)

36 Eckert J, Holzer J C, Ahn C C, Fu Z, Johnson W L. Melting behavior of
nanocrystalline aluminum powders. Nanostruct. Mater., 2, 407-413 (1993)

37 Jackson C L, Mckenna G B. The melting behavior of organic materials confined
in porous solids. J. Chem. Phys., 93, 9002 (1990)

38 Halperin W P. Quantum size effects in metal particles. Rev. Mod. Phys., 58,
553-606 (1986)

39 Coquet R, Howard K L, Willock D J. Theory and simulation in heterogeneous
gold catalysis. Chem. Soc. Rev., 37, 2046-2076 (2008)

40 Baletto F, Ferrando R. Structural properties of nanoclusters: Energetic, ther-
modynamic, and kinetic effects. Rev. Mod. Phys., 77, 371-423 (2005)

41 Lopez N, Nørskov J K. Catalytic CO oxidation by a gold nanoparticle: A
density functional study. J. Am. Chem. Soc., 124, 11262-11263 (2002)

42 Wang A Q, Chang C M, Mou C Y. Evolution of catalytic activity of Au-Ag
bimetallic nanoparticles on mesoporous support for CO oxidation. J. Phys.
Chem., B 109, 18860-18867 (2005)

43 Wilcoxon J P, Provencio P P. Heterogeneous growth of metal clusters from
solutions of seed nanoparticles. J. Am. Chem. Soc., 126, 6402-6408 (2004)

44 Itoh M, Kumar V, Kawazoe Y. Ab initio calculations of the stability of a
vacancy in Na clusters and correlation with melting. Phys. Rev., B 73, 035425
(2006)

45 Yang C C, Li S. Investigation of cohesive energy effects on size-dependent
physical and chemical properties of nanocrystals. Phys. Rev., B 75, 165413
(2007)

46 Neugebauer J, Scheffler M. Adsorbate-substrate and adsorbate-adsorbate in-
teractions of Na and K adlayers on Al(111). Phys. Rev., B 46, 16067-16080
(1992)

47 Karimi M, Tomkowski T, Vidali G, Biham O. Diffusion of Cu on Cu surfaces.
Phys. Rev., B 52, 5364-5374 (1995)



118 Chapter 3 Heat Capacity, Entropy, and Nanothermodynamics

48 Liu Z P, Hu P, Alavi A. Catalytic role of gold in gold-based catalysts: A
density functional theory study on the CO oxidation on gold. J. Am. Chem.
Soc., 124, 14770-14779 (2002)

49 Liu D, Zhu Y F, Jiang Q. Cohesire energy in several Ag clusters. J. Phys.
Chem. C 113, 10907-10912 (2009)

50 Grochola G, Russo S P, Snook I K. On morphologies of gold nanoparticles
grown from molecular dynamics simulation. J. Chem. Phys., 126, 164707
(2007)

51 Chui Y H, Grochola G, Snook I K, Russo S P. Molecular dynamics investiga-
tion of the structural and thermodynamic properties of gold nanoclusters of
different morphologies. Phys. Rev., B 75, 033404 (2007)

52 Barnard A S, Opletal G, Snook I K, Russo S P. Ideality versus reality: Emer-
gence of the Chui icosahedron. J. Phys. Chem., C 112, 14848-14852 (2008)

53 Jiang Q, Lu H M. Size dependent interface energy and its applications. Surf.
Sci. Rep., 63, 427-464 (2008)

54 Yang C C, Jiang Q. Size effect on the band-gap of II-VI semiconductor
nanocrystals. Mater. Sci. Eng., B 131, 191-194 (2006)



Chapter 4 Phase Diagrams

In this chapter, one of the most important applications of thermodynamics
to materials, namely the phase diagram, is described based on the phase di-
agram thermodynamics as the physical basis of phase diagrams. The series
of phase diagrams with different variables, different bonding natures, and
distinct component numbers (one and two) are introduced in detail. In ad-
dition, recent extension and progress of thermodynamics in nanoscience and
nanotechnology, such as size-dependent phase diagram and size-dependent
band gap of semiconductor alloys, are also introduced.

4.1 Gibbs Phase Rule and Phase Diagram of Unary Sys-
tem [1– 3]

A phase is a portion of matter that is uniform throughout, not only in chem-
ical compositions but also in physical states. Thermodynamic stability of
phases is an important issue for the users and producers of materials, which
depends on such variables as T, P , composition, and r in a system. A change
in T, P, r, and/or composition for the system in equilibrium will result in
transition from one stable phase to another. Note that there are also other
variables, which affect the phase stability, such as external fields (electric,
magnetic, electrochemical, etc.). We neglect them in this chapter while these
factors could be considered in a similar way. Note also that the variable, r
has a similar effect of surface; we in this chapter take however a more general
form, namely, r, to study this effect. Our goal is to figure out how T, P, r, and
composition changes affect the equilibrium between phases, which results in
that we can make maps of the existing phases at various variables or phase
diagrams. Much of the information about the control of microstructures or
phase structures of a particular alloy system is conveniently and concisely
displayed in a phase diagram, which is the mainstay of materials science and
technology. Of course, many useful materials involve thermodynamically un-
stable structures whose physical stability is maintained by limiting the rate
at which the structure approaches equilibrium. Even in those cases, however,
it is important to know how many phases may exist at equilibrium, given
a set of specified physical constraints. The phase rule addresses that ques-
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tion. Although in recent days there are also metastable phase diagrams for
related phase equilibriums, we have not considered them while these kinds
of phase diagrams follow the same rule of the phase diagram for phases in
thermodynamic equilibria.

The constructions of phase diagrams as well as some of the principles
governing the conditions for phase equilibria are dictated by laws of ther-
modynamics. One of these is the Gibbs phase rule. This rule represents a
criterion for the number of phases that will coexist within a system at equi-
librium, and is expressed by the simple equation,

fi = C −Π + N (4.1)

where Π is the number of phases presented. The parameter fi is termed the
number of degree of freedom or the number of externally controlled variables
(e.g., T, P , composition) which must be specified to completely define the
state of the system. Or, expressed another way, fi is the number of these
variables that can be changed independently without altering the number of
phases that coexist in equilibrium. The parameter C represents the number
of components in the system. Finally, N in Eq. (4.1) is the number of non-
compositional variables (e.g., T and P ).

The phase diagram of a one-component system (C = 1), such as pure
water, is shown in Fig. 4.1. In the region containing only one phase (Π =
1), f i = C − Π + 2 = 2. Thus in the gas region, both T and P may be
arbitrarily fixed while the phase remains.

Fig. 4.1 Phase diagrams of a most simple substance (a), water which expands on
freezing (b).

The lines of equilibria or phase boundaries separate the three phases of
solid, liquid, and gas in Fig. 4.1 in three two-phase regions (Π = 2), where
there is only one degree of freedom, fi = C − Π + 2 = 1. On these two-
phase lines, we may arbitrarily fix eitherP or T . Once that has been done,
another variable cannot be changed freely. Let us consider the slope of the
lines of equilibria. Suppose two phases, i and ii, are in contact with each
other and in equilibrium. Then the Gibbs free energy is related to G(i) =
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G(ii). Along the phase line, we also have dGi = dGii. Inserting the condition
of equilibrium dG = −SdT + V dP into the line, we obtain -SidT + VidP =
−SiidT + ViidP . Rearranging the equation, dP/dT = (Si − Sii)/(Vi − Vii).
From the relation between heat and change of entropy in a reversible process,
there is ΔHi→ii(T, P ) = TΔSi→ii(T, P ). Combining the last two equations
where all amounts are in molar units, it reads

dP

dT
=

ΔHi→ii(T, P )
TΔVi→ii(T, P )

. (4.2)

Equation (4.2) is the Clapeyron equation, which, geometrically speaking,
not only expresses the slope of the equilibrium line, but also gives the rate,
where the P must change with T for two phases to remain in equilibrium. It
applies to all changes of phases where there is a discontinuity in S and V at
the transition that is the first order phase change.

4.2 Clapeyron Equation in Condensed State Equilibria
[3, 4]

For the most substances, the slope of the solid-liquid line is positive. The
greater the P on a given substance, the closer the molecules of the substance
are brought to each other, which increases the effect of the substance’s inter-
molecular forces. Thus, the substance requires a higher T for its molecules to
have enough energy to break out the fixed pattern of the solid phase and enter
the liquid phase. The reason is also interpreted qualitatively from Eq. (4.2),
which shows that this is associated with the fact that the most substances
expand on melting and therefore have both ΔV and ΔH positive. Water is
an exception in that it expands on freezing so that the solid-liquid boundary
has a negative slope. Thus, in the case of water, it is possible by increasing P
isothermally to pass from vapor to solid to liquid (e.g. at T1 in Fig. 4.1(b))
whereas for most substances, the solid is the high-pressure phase. As stated in
Chapter 3, when chemical bonding is changed, such as semiconductors, ΔV
could also be negative where coherent bonding with CN ≈ 4 − 8 in solids
changes to metallic bonding with CN ≈ 10− 11 in liquids.

To utilize Eq. (4.2) for determination of the phase diagram, one is fre-
quently interested in knowing the relation between the equilibrium values of
P and T instead of their mutual rate of change. This leads to trying and
integrating Eq. (4.2) where experimental ΔHi→ii(T, P ) and ΔVi→ii(T, P )
functions for a certain material are needed. Since both ΔHi→ii(T, P ) and
ΔVi→ii(T, P ) are functions of T and P , and the necessary separation of vari-
ables cannot be accomplished in any direct and known manner, the integra-
tion of Eq. (4.2) has been carried out through approximate methods ever
since the equation was first established in the 19th century.

The crudest approximation is to take ΔHi→ii and ΔVi→ii as constants.
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When ΔP = P − P0 and ΔT = T − T0 are small where the subscript “0”
denotes the initial point, ΔHi→ii(T, P ) ≈ ΔHi→ii(T0, P0) and ΔVi→ii(T, P ) ≈
ΔVi→ii(T0, P0) have a minor error. Equation (4.2) then integrates to give
P = (ΔH0,i→iilnT/ΔV0,i→ii) + a′ with a′ being a constant.

Instead of assuming that ΔHi→ii was constant, we may make the better
approximation that ΔHi→ii is a function of T while ΔVi→ii is a function of
P, ΔHi→ii(T, P ) ≈ ΔHi→ii(T ) and ΔVi→ii(T, P ) ≈ ΔVi→ii(P ), which brings
out a simplification of Eq. (4.2) [5],

dP

dT
=

ΔHi→ii(T )
TΔVi→ii(P )

. (4.3)

In fact, the P and T dependent molar volumes of the both phases for wide
ranges of P and T are rarely known. Simple analytical forms of ΔV (T, P )
have to be used.

In order to assess the P effect on T , the surface stress-induced internal
pressure Pin for a spherical particle is extended to the bulk case. Let P denote
the sum of Pin and the external pressure Pe, P = Pin + Pe. When Pe ≈ 0,
P = Pin. This is the case for the size-dependent transition of low-dimensional
materials. When Pin ≈ 0 with r →∞, P = Pe, which is the usual situation of
pressure-dependent transition for bulk materials. Since any pressure source
should have the same effect on materials properties, Pin can be substituted by
Pe. In our case, we will use the expression of Pin as that of P in the following
[6, 7].

As an example, the T -P phase diagram of Ge determined by Clapeyron
equation is introduced [8]. In the T -P phase diagram of Ge, there are to-
gether three transitions with the corresponding T (P ) functions, which are
the melting of Ge-I, the solid transition between Ge-I and Ge-II where I
and II denote different solid states, and the melting of Ge-II. These tran-
sitions are identified by subscripts of I-L, I-II and II-L, respectively. Ac-
cording to Eq. (4.3), three T (P ) curves are obtained by integrating Eq.
(4.3) after suitable considerations for initial points and ΔH(T ) and ΔV (P )
functions, which are described here. The first one in consideration is the
I-L transition. For this transition, ΔHm(T ) function can be determined by
Helmholtz function, ΔHm(T ) = ΔGm(T )−TdΔGm(T )/dT . For semiconduc-
tors, ΔGm(T ) = ΔHm,0T (Tm,0−T )/(Tm,0)2 where the subscript “0” denotes
the reference state [9] (for details see Sec. 4.6). Thus,

ΔHm(T ) = ΔHm,0(T/Tm,0)2. (4.4)

When T < TK with TK = Tm,0/2 being the Kauzmann temperature or isen-
tropic temperature where ∂ΔGm(T )/∂T = 0 [10], ΔHm(T ) = ΔHm(TK). As
a result, at T < TK,

ΔHm(T ) = ΔHm,0/4. (4.5)

Another function of Eq. (4.3) is ΔVI-L(PI) = (VL,0 − VI,0) + (ΔVL − ΔVI)
where VL,0 and VI,0 as molar volumes of liquid and solid are known data
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while ΔVL = −VLPLβL and ΔVI = −VIPIβI with the available compre-
ssibility β = −ΔV/(V P ).PL and PI in the above equations are considered by
assuming a spherical particle with a radius r where there exists a curvature-
induced pressure. In light of the Laplace-Young equation, PI = 2fI/r and
PL = 2γsv/r [11]. Essentially γsv describes a reversible work per unit area
to form a new surface while f denotes a reversible work per unit area due
to the elastic deformation, which equals the derivative of γsv with respect to
the strain tangential to the surface. For solid, f �= γ while for liquid f = γsv.
Thus, ΔVL = −VL,0PI(γ/fI)βL because PI/PL = fI/γsv. Substituting this
relationship into ΔVI-L(PI) function, it reads

ΔVI-L(PI) = VL,0 − VI,0 + [VI,0βI − VL,0(γsv/fI)βL]PI (4.6)

where f has been expressed as

f = (h/2)[3ΔSvibΔHm(T )/(βV R)]1/2. (4.7)

When the initial point of (P0, T0) is selected as (0, TmI,0) where TmI,0 is the
melting temperature of Ge-I under ambient pressure, integrating Eq. (4.3)
with ΔHI-L(TI-L) and ΔVI-L(PI) functions in terms of Eqs. (4.4) and (4.6),

∫ PI

0

{VL,0 − VI,0 + [VI,0βI − VL,0(γsv/fI)βL]PI}dPI

= [ΔHI-L,0/(TmI,0)2]
∫ T

TmI,0

TdT, or,

T (PI) = TmI,0

√
1+{2(VL,0−VI,0)PI+[VI,0βI−VL,0(γsv/fI)βL]P 2

I }/ΔHI-L,0.

(4.8)

Note that Eq. (4.8) is also applicable to nanosized material if TmI,0 in Eq.
(4.8) is substituted by Tm(r) at P = 0, TmI,0(r). Thus, TmI,0(r) is a function
of r and P . The value of TmI,0(r) has been deduced as Eq. (3.80). In Sec.
4.5.2, we will discuss the size-dependent phase diagram in detail.

For I-II transition, the subscript “I′” is used to substitute I for distinguish-
ing this P -induced transition from melting transition of the Ge-I phase since
the initial point as the boundary condition is selected as (PI-II,0, 273), where
P > 0 and related parameters have been affected by P . Since PI′ varies a
little in the full transition temperature range, as a first order approximation,
ΔVII ≈ ΔVI′ is assumed and thus VII,0fIIβII ≈ VI′,0fI′βI′ . As a result,

ΔVI-II(PI′ ) ≈ VII,0 − VI′,0, (4.9)

and
fII ≈ (VI′,0/VII,0)(βI′/βII)fI′ . (4.10)
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The corresponding thermodynamic parameters of Ge-II differ from Ge-I due
to their distinct structures. Since the specific heat difference between different
polymorphous solid phases ΔCP is small, it is assumed that

ΔSvibII-L ≈ ΔSvibI-L + ΔSvibI-II (4.11)

where ΔSI-II = ΔHI-II,0/TI-II,0, which may be determined by

ΔSvibI-II = (ΔHI-II,0/TI-II,0)(ΔSvibI-L/ΔSmI) (4.12)

where ΔSvibI-II/ΔSI-II is supposed to be equal to ΔSvibI-L/ΔSmI as a first
order approximation.

With the neglect of ΔCP , ΔHI-II,0 ≈ ΔHII-L −ΔHI-L. As the transition
occurs at T < TK, in terms of Eq. (4.5),

ΔHI-II,0 = (ΔHII-L −ΔHI-L,0)/4. (4.13)

Note that Eqs. (4.4) and (4.5) are also applicable to ΔHII-L(T ). In terms of
Eqs. (4.5), (4.7) and (4.10), (VI′,0/VII,0)(βI′/βII)hI′ [ΔSvibI-LΔHmI,0/
(βI′VI′,0)]1/2 = hII[ΔSvibII-L ×ΔHmII/(βIIVII,0)]1/2, it yields

ΔHII-L = (VI′,0/VII,0)(βI′/βII)(h2
I′/h2

II)(ΔSvib
I-L/ΔSvib

II-L)ΔHI-L,0. (4.14)

In terms of Eqs. (4.11) – (4.14), ΔHI-II,0 is obtained as

ΔHI-II,0 = {[(4TI-II,0ΔSmI −ΔHI-L,0)2

+16ΔHI-L,0TI-II,0ΔSmI(VI′,0/VII,0)(βI′/βII)(h2
I′/h2

II)]
1/2

−ΔHI-L,0 − 4TI-II,0ΔSmI}/8. (4.15)

Integration of PI′ from PI-II,0 to PI′ and T from TI-II,0 to T in terms of Eqs.

(4.9) and (4.15) gives
∫ PI′

PI-II,0
(VII,0 − VI′,0)dPI′ = ΔHI-II,0

∫ T

TI-II,0

1
T

dT , which

brings out

T (PI′) = TI-II,0 exp[(VII,0 − VI′,0)(PI′ − PI-II,0)/ΔHI-II,0]. (4.16)

Letting Eq. (4.8) = Eq. (4.16), the Ge-I/Ge-II/liquid triple point (Pt, Tt) is
obtained, which is considered as the known threshold point for the melting
curve of Ge-II. Since all the three phases (Π = 3) coexist there, there is no
freedom in the system and the condition for thermodynamic equilibrium leads
to unique T and P defining the triple point, or there is only one combination
of T and P where three phases coexist in a single-component system.

If it is assumed that Eqs. (4.4) and (4.6) are applicable to the ΔHII-L(T )
and ΔVII-L(P ) functions through substituting the initial point of (0, TmI,0) by
(Pt, Tt), Eq. (4.3) is integrated from Pt to PII for PII and from Tt to T for T to
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give
∫ PII

Pt

{VL−VII+[VIIβII−VL(γ/fII)βL]PII}dPII = (ΔHII-L/T 2
t )
∫ T

Tt

TdT ,

which in turn results in

T (PII)

=Tt

√
1+{2(VL−VII)(PII−Pt)+[VIIβII−VL(γ/fII)βL](PII−Pt)2}/ΔHII-L.

(4.17)

Figure 4.2 presents functions of Eqs. (4.8), (4.16) and (4.17) and experimental
results of T -P phase diagram of Ge where the necessary parameters are listed
in Table 4.1. Note that Pin in tiny droplets of a few molecules may reach GPa
range studied here where the pressure has a real effect on V of solid and liquid.

Fig. 4.2 A comparison of T -P phase diagrams of Ge between Eqs. (4.8), (4.16)
and (4.17) (solid line) and experimental results shown with different symbols come
from distinct sources.(Reproduced from Ref. [8] with permission of Elsevier)

The P -T relationship in Fig. 4.2 is established by a generalization from
the consideration of internal pressure on small particles to the bulk case.
Thus, the low size limit of nanoparticles for Pin at 6h in Eqs. (4.8) and (4.17)
must be considered. For I-L transition, at 6hI = 1.47 nm, Pl = 6.12 GPa in
terms of Eq. (4.7). As shown in the figure, Pt = 9.915 GPa. In order to predict
the P -T relationship from 6.12 GPa to 9.915 GPa, the value of T (P = 6.12
GPa) and the corresponding slope are linearly extended up to Pt point. This
consideration is based on the experimental results shown in the figure where
when P is large enough, the melting curve approximately changes linearly.
With a similar consideration, for II-L transition, at 6hII = 1.62 nm, P2 =
3.92 GPa in terms of Eq. (4.10) and the largest applicable pressure is 13.835
GPa, which is the sum of Pt and P2.
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Table 4.1 Necessary parameters for calculating T (P ) phase diagram of Ge in
terms of Eqs. (4.8), (4.16) and (4.17). T is in K, P in GPa, V in cm3·mol−1, β in
10−11Pa−1, γ and f in J·m−2 and ΔH is in kJ·mol−1

I-L transition I-II transition II-L transition

TmI,0 1210.4 TI-II,0 273d Tt 714f

PI-II,0 10d Pt 9.915f

VI,0 13.64a VI′,0 11.93a VII 9.66a

VL,0 12.94a VII,0 9.66a VL 12.94a

βI 1.33b βII 1.19b

βL 10.00 βL 10.00
fI 2.252c fII 1.589c

γ 0.581 γ 0.581
ΔHI-L,0 36.94 ΔHI-II,0 0.2e ΔHII-L 37.74e

aVI,0 = Mw/ρI and VL,0 = Mw/ρL with Mw = 72.59 g·mol−1 being the molar weight

and ρ being the density, ρI = 5.32 g·cm−3 and ρL = 5.61 g·cm−3·VII,0 = NAvII and VI′,0 =
NAvI′ where NA denotes the Avogadro’s constant and v is the mean atom volume within the

corresponding crystalline structures. vII = a2
IIcII/4 = 0.016,053 nm3 with the lattice constants

aII = 0.4884 nm and cII = 0.2692 nm for β-Sn structure and vI′ = (aI′)
3/8 = 0.019,815 nm3

where the lattice constant aI′ = 0.5412 nm for diamond structure.
bβI = 1/Bm,I and βII = 1/Bm,II with Bm being the bulk modulus, Bm,I = 75.0 GPa and

Bm,II = 84.0 GPa. Note that as the first-order approximation, βI′ ≈ βI is assumed.
cfI is calculated by Eq. (4.7) with hI = (31/2/4)aI = 0.2450 nm due to its diamond struc-

ture where aI = 0.5658 nm denoting the lattice constant and ΔSvib
I-L = 4.6 J·mol−1·K−1.fII is

calculated through Eq. (4.10) where fI′ = 1.151 J·m−2 determined by Eqs. (4.5) and (4.7) with

βI′ ≈ βI = 1.33×10−11 Pa−1 being a weak function of pressure and hI′ = (31/2/4)aI′ = 0.2343
nm for diamond structure.

dThis value is the more recent value and approximately the mean value among the experi-
mental results.

eΔHI-II,0 is calculated by Eq. (4.15) where ΔSmI = ΔHI-L,0/TmI,0 = 30.52 J·mol−1·K−1

and hII = cII = 0.2692 nm due to its β-Sn structure. The value of ΔHII-L is determined by Eq.
(4.13).

fThe triple point (Pt, Tt) is determined by letting Eq. (4.8) = Eq. (4.16).

High pressure work on Ge is plagued with the problems of sluggish phase
transitions and possible metastable phases. Thus, the I-II phase boundary
in the T -P diagram is very indefinite with a wide reported transition pres-
sure where the transition with hysteresis is very slow, especially at the lower
temperature range. As shown in the figure, although a mean value of PI-II,0
among different experiments has been selected to ascertain the I-II transition
curve, the predicted I-II phase boundary in terms of Eq. (4.16) is indeed
approximately equal to the mean value of the experimental results.

4.3 Solution, Partial Molar Properties and Chemical Po-
tential [1, 12, 13]

Until now we have confined our discussion to closed physical systems, which
cannot exchange matter with their surroundings. Now it is time to extend
our discussion to open systems, in which the quantity of matter is not fixed
and matter can move in or out of the system.

Many interesting properties of materials, important phase equilibria and



4.3 Solution, Partial Molar Properties and Chemical Potential 127

phase transitions take place not among pure elements or compounds, but
among elements of compounds dissolved in one another’s solutions. A solution
is a homogeneous mixture of two or more substances, in which particles of
one or more substances (the solute) are distributed uniformly throughout
another substance (the solvent), so that the mixture is homogeneous at the
molecular or ionic level. A solution may exist in any phase, which may be
solids, liquids, gases, or a combination of these. Brass, aqueous hydrochloric
acid and air are examples of the solid, liquid and gas solution, respectively.

A solution that has uniform physical and chemical characteristics is de-
fined as one homogeneous phase. We know that a system may consist of
more than one phase and the concentration of chemical species throughout
the system is typically inhomogeneous. To describe the phase equilibria of
system with many chemical species, and with non-uniform distributions of
those components in the different phases, we need to generalize our treat-
ment of phase equilibria and phase transitions. In order to understand the
thermodynamic properties of these multicomponent systems, the key idea
here is that we need to develop a method of describing the properties of so-
lutions. This strategy for describing solutions is heavily based on the concept
of partial molar properties, which will be considered here.

Partial molar properties are thermodynamic quantities, which indicate
how any extensive property of a solution or a mixture varies with changes in
the molar composition of the mixture at constants T and P . Stated another
way, it is the change rate of that quantity as mass of a particular component
is added to a system at constants T and P . Thus, a partial molar quantity
is expressed mathematically as the partial derivative of that quantity with
respect of number of moles n at constant T , P , and n of all other materials
in the system. Every extensive property of a solution has a corresponding
partial molar property.

Let us consider the Gibbs free energy of a solution consisting of materials
A and B at constants T and P . G = G(nA, nB)T,P is a function of the
amounts of A(nA) and B(nB). Because G is a state function, there is

dG =
(

∂G

∂nA

)
T,P,nB

dnA +
(

∂G

∂nB

)
T,P,nA

dnB.

(∂G/∂nA)T,P is named the partial molar volume of A, and is written as

GA =
(

∂G

∂nA

)
T,P,nB

. (4.18)

Then,
dG = GAdnA + GBdnB. (4.19)

Similarly, G of a solution with i components can be expressed as dG =
ΣiGidni. The partial molar property is thus an intensive property without
mass dependence of the system. As a limiting case, the partial molar Gibbs
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free energy of pure A is just the molar one of A, Gm,A, where the subscript
“m” denotes the molar amount.

The significance of Eq. (4.18) is shown in Fig. 4.3. It is the change rate of
the volume of the solution with respect to the moles of B added. The partial
molar volume of a component in a solution is the volume change of a very
large amount (infinite, in fact) of the solution when one mole of the particular
component is added to it, at constants T and P .

Fig. 4.3 Gibbs free energy of solution A-B as a function of moles of B added to
the solution.

We can integrate Eq. (4.19) along a special path where nA/nB remains
constant. If the composition is constant, GA and GB are constants, and G =
GAnA + GBnB. Dividing this by the total number of moles, nA + nB, Gm is
got,

Gm = GAxA + GBxB (4.20)

where xA and xB are the mole fractions of A and B in the solution. The same
principle applies to other quantities, such as H, S, and F . Generaly, for a
generic extensive property of a solution Γ ′, we have Γ ′m =

∑
i

Γ ′ixi.

For a system with variable composition, the thermodynamic energy is
also a function of n of each of the substance present at a given time. To be
more useful, the thermodynamic basic equations with Eqs. (1.36) – (1.39) are
extended to deal with changes in composition through additions of mass. For
U = U(S, V, ni), H = H(S, P, ni), F = F (T, V, ni), and G = G(T, V, ni), we
have

dU = TdS − PdV +
∑

i

(
∂U

∂ni

)
S,V,nj �=ni

dni,

dU = TdS + V dP +
∑

i

(
∂H

∂ni

)
S,P,nj �=ni

dni, (4.21)

dF = −SdT − PdV +
∑

i

(
∂F

∂ni

)
T,V,nj �=ni

dni,
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dG = −SdT + V dP +
∑

i

(
∂G

∂ni

)
T,P,nj �=ni

dni.

Since G = F + PV, dG = dF + PdV + V dP . Combining with the equations
above,

dG = −SdT + V dP +
∑

i

(
∂Gi

∂ni

)
T,P,nj �=ni

dni

= −SdT + V dP +
∑

i

(
∂F

∂ni

)
T,V,nj �=ni

dni.

Thus, ∑
i

(
∂Gi

∂ni

)
T,P,nj �=ni

=
∑

i

(
∂Fi

∂ni

)
T,V,nj �=ni

.

By repeating the procedure for each of the defined thermodynamic variables,
we have∑

i

(
∂Gi

∂ni

)
T,P,nj �=ni

=
∑

i

(
∂Fi

∂ni

)
T,V,nj �=ni

=
∑

i

(
∂Hi

∂ni

)
S,V,nj �=ni

=
∑

i

(
∂iU

∂ni

)
T,V,nj �=ni

= μi

where μi is the chemical potential of the component i and μi = Gi. This
implies that the partial molar Gibbs free energy and the chemical potential,
one of the most important properties in thermodynamics and chemistry, are
the same in quantity.

In real systems, it is usually difficult to hold the entropy fixed, since this
involves good thermal insulation. It is therefore more convenient to use μ as
the partial derivative of F or G with respect to ni with constants T, V , and
T, P , respectively. Under isobaric and isothermal conditions, knowledge of μi

yields every property of mixture as it completely determines Gi.
μi as a fundamental parameter is conjugate to the composition, being

used extensively in the treatment of the thermodynamics of solutions and of
chemical reactions. In modern statistical physics, μi is the Lagrange multi-
plier (see Eq. (2.18)) for the average particle constraint, when maximizing
S. This is a precise and abstract scientific definition, just like T is defined as
the Lagrange multiplier for the average energy constraint. μ at T = 0 K of a
system of electrons is also called the Fermi level.

4.4 Graphical Representation, Ideal and Regular Solu-
tions [1]

If we know a property of a two-component solution as a function of ni, we
can determine the partial molar values of that property. Taking Vm as an
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example, we have Vm = VAxA + VBxB. From this equation, the result would
look something like the solid line in Fig. 4.4. Because xA +xB = 1, dxA +dxB

= 0, and dxA/dxB = −1, Eq. (4.20) can also be written as (∂Vm/∂xB)T,P =
VB−VA. Multiplying this equation by xA and xB, respectively, two equations
are present. Subtracting them from Vm, it reads

VA = Vm − xB

(
∂Vm

∂xB

)
T,P

, (4.22a)

VB = Vm + xA

(
∂Vm

∂xB

)
T,P

. (4.22b)

This is a kind of abstract at this point and it may be difficult to realize
what this is telling us. Equation (4.22a) says that VA can be thought of as
the intersection of the tangent of Vm as a function of xB with Vm axis at
xB = 0. VB on the other hand is the intersection of that tangent with Vm axis
at xB = 1. Figure 4.4 shows this graphically.

Fig. 4.4 Plot of Vm versus xB to show geometrical relationships to an A-B solution.

Substituting G for V in Eqs. (4.22a) and (4.22b) and combining the rela-
tionship of GA = μA, the chemical potentials of each species in solution as a
function of composition are got,

μA = Gm − xB

(
∂Gm

∂xB

)
T,P

, (4.23a)

μB = Gm + xA

(
∂Gm

∂xB

)
T,P

. (4.23b)

The functions that are of special importance for expressing μ in detail and to
construct a phase diagram for a multicomponent material are G, H, S. Thus,
we will concentrate on them. There are various standard models for solutions
that provide approximations to the above functions. Let us consider firstly
the thermodynamics of ideal solution.
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Ideality of solutions is analogous to that of gases, with the important
difference that intermolecular interactions in condensed phases are strong and
can not simply be neglected as they can in an ideal gas. What is meant by
“ideal” in these cases is that the interactions between the constituents of the
solution are the same, regardless of their nature. More formally, for a mix of
molecules of A and B, the interaction energy between unlike neighbors (εAB)
is the same as that between neighbors εAA and εBB, i.e. εAB = εAA = εBB.
It follows that there is no enthalpy change (enthalpy of mixing ΔmixH =
0) when the substances are mixed, then the solution is automatically ideal.
The more dissimilar the nature of A and B, the more strongly the solution is
expected to deviate from ideality.

Why do the components of the ideal solution mix with each other? The
reason is the existence of the entropy of mixing of an ideal solid solution,
which consists of atoms labeled A and B. Using Boltzmann equation written
for each of the components and the mixture, all the configurations are at
the same energy level, all are equally probable, and then the positioning of
atoms on a lattice is random where ΔmixH = 0. For one mole of atoms (the
sum of NA and NB is Avogadro’s number of atoms, Nm), the way number
of microstates is Nm! to introduce the atoms onto the lattice. Not all these
different configurations are distinguishable. To account for this, we must di-
vide by the number of different ways that the NA atoms can be distributed
on their sites. Using an argument similar to the one above, rearranging the
atoms labeled A on the lattice can be done in NA! ways. A similar relation-
ship applies for NB. The entropy of this configuration, the entropy of mixing
NA and NB, is ΔmixSm = klnΩ = kln[Nm!/(NA!NB!)] = kln[Nm!-NA!-NB!].
Using Stirling approximation,

ΔmixSm = k[Nm ln Nm −Nm −NA ln NA + NA −NB ln NB + NB]
= k[(NA + NB) ln Nm −NA ln NA −NB ln NB]
= −k[NA ln(NA/Nm) + NB ln(NB/Nm)]
= −kNm[(NA/Nm) ln(NA/Nm) + (NB/Nm) ln(NB/Nm)]
= −R[xA ln xA + xB ln xB].

The above expression can be generalized to a mixture of i components,
starting with Ω = Nm!/(

∏
i Ni!), namely,

ΔmixSm = −R
∑

i

xi ln xi. (4.24)

Since ΔmixHm = 0, there is ΔmixGm = ΔmixHm−TΔmixSm = RT
∑

i

xi ln xi,

or for a two-component solution, ΔmixGm = RT (xA ln xA + xB ln xB). Since
the mole fraction is always smaller than unity, the ln terms are negative, and
ΔmixGm < 0. This becomes more negative as T increases. As a result, ideal
solutions are always completely miscible.



132 Chapter 4 Phase Diagrams

Gibbs free energy of the mixture equals the sum of Gibbs free energy
of individual components and Gibbs free energy of mixing. This yields a
fundamental expression for μ as a function of xi. Now by mixing A and
B to form an ideal solution, it reads Gm = Ginitial + ΔmixGm = xAGm,A +
xBGm,B+RT (xA ln xA+xB ln xB). Substituting the above equation into Eqs.
(4.23a) and (4.23b), it reads

μA = Gm,A + RT ln xA, (4.25a)

μB = Gm,B + RT ln xB. (4.25b)

If the chemical potential of a pure component i is denoted μ∗i , Gm,i = μ∗i and
the chemical potential of i in an ideal solution is μi = μ∗i + RT ln xi.

Only the difference of chemical potential, Δμi = μi − μ∗i , has a physical
meaning. The absolute value of μi depends on the location of zero of the
potential energy scale, which is also called the standard state. For an ideal
solution system, it is convenient to choose the pure component as its standard
state. Note that the standard state is defined for each T .

Figure 4.5 shows the graphs of Gm as a function of xB, with the two
points representing Gm,A and Gm,B of pure A and B taken at different levels.
Using the partial molar operator, we can convert general thermodynamic
relationships to the coefficient one,

(
∂Gi

∂P

)
T,ni

=

[
∂

∂P

(
∂G

∂ni

)
T,P,nj �=ni

]
T,ni

=

[
∂

∂ni

(
∂G

∂P

)
T,ni

]
T,P,nj �=ni

=
[

∂V

∂ni

]
T,P,nj �=ni

= Vi,

and the change in the partial molar volume is

ΔmixVi = Vi − Vm,i =
(

∂Gi

∂P

)
T,nj

−
(

∂Gm,i

∂P

)
T,nj

=
(

∂ΔmixGi

∂P

)
T,nj

.

Now, if the mixture is ideal, we have

ΔmixVi =
(

∂(RT ln xi)
∂P

)
T,nj

= 0,

and thus
ΔmixV

ideal
m =

∑
i

xiΔmixVi = 0.

For an ideal solution, the change of the partial molar volume is absent as we
form the mixture. In other words, the partial molar volume is independent
of composition. If that is the case, the volume of the mixture is just the
weighted average of the molar volumes of the pure substances. Thus, for an
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Fig. 4.5 Plot of Gm versus xB to show their geometrical relationships.

ideal mixture, there is no change in V , U , or H from the total values of the
pure states of all the components.

Better model of the Gibbs free energy of solution comes from consideration
of the interactions between atoms in the system. The simplest version is
called the regular solution model–it averages the interactions between like
and unlike atoms to calculate ΔmixH and uses the ideal solution to calculate
ΔmixS. The regular solution model can predict “unmixing” and this results
in a spinodal phase diagram.

For a solid solution consisting of randomly distributed A and B on the
lattice sites, ΔmixS of A and B is equal to the entropy of mixing of an
ideal solution. Each atom will be assumed to have an energy interaction
only with its nearest neighbors numbered by CN or z. We will mix NA

atoms of A with NB atoms of B. Before mixing, the number of NAA bonds
among the A atoms (in pure A) is NAz/2. We arrive at this conclusion by
counting the number of bonds emanating from each A atom (z), multiplying
by NA, then dividing by 2 because the bonds are doubly counted. After
mixing, the number of AA bonds will be (NA)2z/2N with N = NA + NB.
To count the number of AA bonds we multiply NA by two factors: z and
the probability that its nearest neighbor is an A atom, NA/N . The same
procedure is followed for calculating the number of BB bonds and AB bonds.
Thus, ΔmixU = z[(NA)2zεAA/(2NT)+(NB)2zεBB/(2NT)+NANBzεAB/NT−
NAεAA/2 − NBεBB/2]. The resulting energy after mixing is listed in Table
4.2.

Table 4.2 Bond energy after mixing atoms A and B in a solid solution
Number of bonds Energy per bond Energy

NAB NANBz/N εAB NANBzεAB/N
NAA (NA)2z/(2N) εAA (NA)2zεAA/(2N)
NBB (NB)2z/(2N) εBB (NB)2zεBB/(2N)

Since xA = NA/N , the above equation can be rewritten as ΔmixU =
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zN [(x2
A − xA)εAA + (x2

B − xB)εBB]/2 + xAxBεAB = zNxAxB[εAB − (εAA +
εBB)/2], or

ΔmixU = ωxAxB (4.26)

where ω = zN [εAB − (εAA + εBB)/2] is called the interaction parameter.
All ε values are negative, decreasing in absolute value with reducing r or

decreasing N [14 – 16]. If decreasing rates of different ε values are distinct,
ω is size-dependent. According to general quantum chemistry consideration,
all thermodynamic quantities are roughly a linear function of 1/r that cor-
responds to the surface/volume ratio of particles. ω is assumed to have the
same relationship. Because ΔHm(2r0) = 0 in terms of Eq. (3.88), ω(r) should
have the same limit and thus is assumed to have the following form:

ω(r)/ω(∞) = 1− 2r0/r. (4.27)

Equation (4.26) for the ΔmixU is equal to ΔmixH for solids because the
volume change influencing the PV term in the definition of enthalpy is very
small. Therefore,

ΔmixGm = ΔmixHm−TΔmixSm = RT (xA ln xA+xB ln xB)+ωxAxB. (4.28)

From Eq. (4.26) it can be seen that the solution will behave as ideal (ΔmixH
= 0) when |εAB| = (|εAA| + |εBB|)/2. If |εAB| > (|εAA| + |εBB|)/2, ω < 0
and ΔmixH < 0. (Remember that ε < 0). A negative ΔmixH favors stable
homogeneous solutions and a positive ΔmixH makes a system separate and
has a miscibility gap at lower T .

To make adjustment for the non-ideality of the solution, a new property
called the activity is used instead of x in the fundamental equation for μ. If
materials A and B form a continuous set of solutions, but are non-ideal, the
activity of material B is usually expressed as aB = fBxB. Consequently,

μB = μ∗B + RT ln aB = μ∗B + RT ln xB + RT ln fB (4.29)

where f is called the activity coefficient. If the solution itself is ideal, aB = xB

and fB =1 in light of Eqs. (4.25) and (4.29). Thus, departure of f from unity
indicates a non-ideal behavior of the regular solution from the ideal solution,
and f should account for the changes in the enthalpy during mixing.

Substituting Eq. (4.28) into Eqs. (4.23a) and (4.23b), μ of the individual
components in a regular solution is shown to be

μA = μ∗A + RT ln xA + ωx2
B, (4.30a)

μB = μ∗B + RT ln xB + ωx2
A. (4.30b)

Comparing Eq. (4.29) and Eq. (4.30), it reads

fA = exp
ωx2

B

RT
, fB = exp

ωx2
A

RT
. (4.31)
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4.5 Equilibrium Conditions of Phases and Phase Dia-
gram of Binary Systems [1, 3, 17]

Conventional equilibrium phase diagrams represent the relationships between
T , P , x and the quantities of phases in equilibrium. When two or more phases
are in equilibrium, there is no driving force for change, and the phases are
stable. It is important to understand the criteria for equilibrium because the
usefulness of many metallic, polymeric, and ceramic systems depends on the
presence of various different equilibrium phases in materials. To approach
this subject, the equilibrium conditions of phases need to be considered.

When a thermodynamic system is in thermal equilibrium, mechanical
equilibrium, and diffusional (or chemical) equilibrium, it is said to be in
thermodynamic equilibrium. The first two equilibria require the system to
have constants T and P .

For a multicomponent (A, B, etc.), multiphase (α, β, etc.) system, all
phases are in direct contact with each other where there are no surface ef-
fects or chemical reactions. The only displacement accessible to the system
is that involving the transfer of mass from one phase to another. Suppose,
for example, that we transfer dnA moles (with dnA > 0) of the Ath con-
stituent from phase α to phase β. dnαA = −dnβA. From Eq. (4.21), we know
that dG = −SdT + V dP +

∑
i

μidni. At constants T and P for the entire

system, we have dGT,P = dGα + dGβ = −μαAdnA + μβAdnA = (μβA −μαA)dnA.
The equilibrium criterion of dGT,P � 0 [Eq. (1.34)], is valid for any type of
homogeneous or heterogeneous system. Now it is however more meaningful to
restrict the initial use of this criterion to a study of phase equilibrium, which
occurs in the multiphase system. Since dnA is positive by construction, we
conclude that μ

β
A − μαA � 0 or μ

β
A � μαA. If the system is not in equilibrium,

μ
β
A < μαA, which indicates that a system can minimize its Gibbs free energy

by transforming to the phase with the lowest chemical potential. When the
system is in equilibrium, μβA = μαA, there is only one chemical potential de-
fined for the system. Our conclusion is that two phases in equilibrium must
have the same T , P and μ. The above sequence of derivations can easily be
extended to include more phases and/or extended to include mixtures, where
we would find that the T , P , and μ of each component must be the same in
every phase, i.e. μαA = μβA = μγA = · · · . with similar conditions for each of the
other components.

We know that systems like to minimize their energy. In solids, components
are usually rearranged by diffusion. Thus, a chemical potential gradient of a
component means that there is a driving force for diffusion of that material
to regions of lower μ value. Just like temperature gradients are the potential
for heat transfer, and pressure gradients are the driving force for bulk mass
transport, chemical potential governs the flow of particles between distinct
phases. μ can therefore be used to determine whether or not a system is in
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equilibrium.
In a binary system containing gases, P changes are important. In con-

densed systems, however, the thermodynamic properties are relatively in-
sensitive to changes in P and modest variations in P do not appreciably
alter phase relationships. Thus, when dealing with relationships in solids, it
is common to assume that the P of the system is one atmosphere pressure
and is neglected. Now the phase rule is reduced to fi = C − Π + 1. At
least Π = 1, f imax accommodated is two. In such a condensed phase system,
it is possible to plot phase stability regions for two-component systems in
two dimensions. In binary diagrams, composition is generally plotted on the
abscissa and T is drawn on the ordinate.

4.5.1 Complete Miscibility, Continuous Binary Solution Phase Di-
agram and Related Size Dependence

For a two-component system A-B, in which A and B are completely miscible
in both solid and liquid states, an ideal solution is present. Based on our
knowledge of the thermodynamics of the ideal solution (Sec. 4.4), we could
predict the equilibrium phase diagram of this system, given information about
Tm and ΔHm of the two components.

At T < Tm, for the melting of pure A, ΔGm = ΔHm − TΔSm. For
simplicity, assume ΔCP = 0 between liquid and solid where ΔHm and ΔSm

are T−independent. At Tm, the two phases are in equilibrium where ΔGm =
0 and ΔSm = ΔHm/Tm. ΔGm can thus be rewritten as

ΔGm = ΔHm(Tm − T )/Tm = μ∗L − μ∗s . (4.32)

Let ΔT = Tm − T be the degree of supercooling. μ of A and B in the ideal
liquid solution is μA,L = μ∗A,L + RT ln xA,L and μB,L = μ∗B,L + RT ln xB,L. In
light of these relations, Gm,L = xA,LμA,L+xB,LμB,L = xA,Lμ∗A,L+xB,Lμ∗B,L+
RT (xA,L ln xA,L + xB,L ln xB,L). Gm,s has a similar form. If we now choose
the pure liquids A and B as the standard states, the terms μ∗A,L and μ∗B,L are
each zero. Combining the equations above, the Gm,L and Gm,s are

Gm,L = RT (xA,L ln xA,L + xB ln xB,L),
Gm,s = RT (xA,s ln xA,s + xB,s ln xB,s)

−xA,s[ΔHm(Tm,A − T )/Tm,A]− xB,s[ΔHm(Tm,B − T )/Tm,B].

The Gm,L and Gm,s values are plotted from (a)–(d) in Fig. 4.6 at various
T . At T > Tm,A and Tm,B, Gm,L curve (Fig. 4.6(a)) lies below the curve
for the solid across the entire composition range. Hence, the liquid exists in
equilibrium across the phase diagram, as expected. The reverse is true for
T < Tm,A and T < Tm,B (Fig. 4.6(b)).

At Tm,A < T < Tm,B, Gm,L and Gm,s intersect at a point away from the
vertical axes. If, at a given T , Gm,L and Gm,s curves intersect, there is a
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range of compositions over which the two may exist in equilibrium, xB,1 and
xB,2. In the equilibrium where μ values are equal in all phases, the tangent
of the curves is the same at the equilibrium compositions (i.e., a common
tangent). This result allows equilibrium to be determined by a geometrical
construction: drawing the common tangent line between the two curves as
illustrated in Fig. 4.6(c). The intercepts of the tangent to Gm versus xB

curve on the vertical axes xA = 0 and xB = 0 are μB and μA, respectively,
and μA,s = μA,L and μB,s = μB,L. The result of a calculation based on this
principle is a phase diagram of the type shown in Fig.4.6(d), with a lens-like
stability region for the coexistence of liquid and solid.

Fig. 4.6 Gm and phase diagram for ideal solutions (solid and liquid) of a system
A –B: (a) at T > Tm,A and T > Tm,B, (b) at T < Tm,A and T < Tm,B, (c) at
Tm,A < T < Tm,B, (d) phase diagram.

If the solid and liquid solutions of A and B are non-ideal, their thermo-
dynamic properties can be described by a regular solution. μA,L and μA,s in
the regular solution can be expressed from Eq. (4.29),

μA,L = μ∗A,L + RT ln aA,L, (4.33a)

μA,s = μ∗A,s + RT ln aB,s. (4.33b)

Combining Eqs. (4.32), (4.33a), (4.33b), and the condition of phase equilib-
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rium, μA,s = μA,L, we have

ln(aA,s/aA,L) = ΔHm,A(Tm,A − T )/(Tm,ART ). (4.34)

Similarly, for component B,

ln(aB,s/aB,L) = ΔHm,B(Tm,B − T )/(Tm,BRT ). (4.35)

It is known from Eq. (4.31) that ln fA = (ω/RT )x2
B and ln fB = (ω/RT )x2

A.
Substituting the above relations into Eqs. (4.34) and (4.35), it reads

ΔHm,B(Tm,B−T )/Tm,B = ωs(1− xB,s)2−ωL(1− xB,L)2 + RT ln(xB,s/xB,L),
(4.36)

and

ΔHm,A(Tm,A−T )/Tm,A = ωs(xB,s)2−ωL(xB,L)2+RT ln[(1−xB,s)/(1−xB,L)].
(4.37)

xB,L and xB,s in a bulk phase diagram are respectively unique at a certain T ,
and can be determined through Eqs. (4.36) and (4.37) when other quantities
are known. The equations can in return be utilized to determine ωs(∞) and
ωL(∞) when T, xB,L and xB,s are at hand from the corresponding bulk phase
diagrams besides ΔHm and Tm [18]. Although the chemical bonds between
components in the phase diagrams are different in nature, they can be utilized
in a unified form. However, the assumption that ω is composition-independent
is only valid for the continuous solution phase diagram where the electroneg-
ativity difference between two components is small. Since ωs(∞) and ωL(∞)
are weak functions of composition, as a first order approximation, they are
determined at T ≈ (Tm,A + Tm,B)/2 with the corresponding xB,L and xB,s in
the bulk phase diagram.

As an example, Fig. 4.7 shows a continuous solution phase diagram of
binary systems of ceramic Al2O3-Cr2O3 in terms of Eqs. (4.36) and (4.37)
where ωs(∞) and ωL(∞) are firstly determined by Eqs. (4.36) and (4.37)
through introducing the corresponding known bulk phase diagram [19]. To
determine ωs(∞) and ωL(∞), T = 2430 K, xCr2O3,L = 0.44 and xCr2O3,s =
0.67 are used in calculation in Fig. 4.7. With the determined ωs(∞) and
ωL(∞) values, the bulk phase diagram is replotted in Fig. 4.7.

Table 4.3 Related parameters and data used in Fig. 4.7. To determine h value,
the related data are Vc,Al2O3 = 0.2548 nm3, Vc,Cr2O3 = 0.2898 nm3.

r/
nm

Tm/
K

ΔHm/
(J·mol−1)

ωs/
(J·mol−1)

ωL/
(J·mol−1)

h/nm
ΔSvib/

(J·g-atom−1·K−1)

Al2O3 2327 113040 0.634 9.716∞
Cr2O3 2512 117230

22371.72 22733.72
0.6618 9.344

Al2O3 1937.66 72032.5410
Cr2O3 2086.4 73269.45

13488.36 13706.61

Al2O3 1148.04 5253.644
Cr2O3 1200.68 882.46

163.31 165.96
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Fig. 4.7 Al2O3-Cr2O3 nano phase and bulk phase diagrams where the solid lines
show the theoretical results in terms of Eqs. (4.36) and (4.37), and the symbol
denotes the bulk experimental results. For the necessary parameters used see Table
4.3. (Reproduced from Ref. [18] with permission of IOP Publishing Ltd.)

Since the bulk solidus and liquidus curves in the binary regular solution
phase diagrams correspond to experimental results, the fitted ωs(∞) and
ωL(∞) values in return should have minor error.

One consideration of the size effect on phase diagrams is to separate the
thermodynamic quantities into bulk and surface items, related to the contri-
bution of ζ [20]. Since the nanophase equilibrium is metastable in nature and
is difficult to measure, theoretical work may be an alternative. In addition,
metastable nanophases of a substance could not be exclusive where several
metastable phases are present in different size ranges, which could be even
absent in bulk [21]. Thus, the size-dependent phase diagrams also draw great
interest of researchers.

To calculate nanophase diagrams, Tm(r), ΔHm(r) and ω(r) functions of
components are basic thermodynamic quantities. The former two have been
determined in Chapter 3 while ω(r) is determined by Eq. (4.27). Taking
Tm(r), ΔHm(r) and ω(r) functions into Eqs. (4.36) and (4.37), binary con-
tinuous solution nanophase diagrams can be calculated as shown in Fig. 4.7.
In the figure, ΔSvib(∞) ≈ ΔSm(∞) = ΔHm(∞)/[nTm(∞)] where n is the
atom number in a molecule since the unit of ΔSvib(∞) is J·g-atom−1 · K−1

[22]. n = 5 in ceramic Al2O3-Cr2O3 system. Since 2r0= 6h in terms of Eq.
(3.79) where h is component-dependent, different components have different
r0 values, a larger h value of the two components will be taken to calculate
2r0, which avoids physically unreasonable negative ΔHm(r) in terms of Eq.
(3.88) without evident error. For molecules, h = V

1/3
c where Vc is volume of

the cell. For organic molecules, there is no direct value of Vc. Vc is determined
by Vc = Mw/(ρNA). Other necessary parameters during the calculations and
the calculated results are shown in Table 4.3. In light of Eq. (4.27), ωs(r) and
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ωL(r) have the same size dependence.
As r decreases, solidus and liquidus curves drop since Tm(r) of each com-

ponent decreases. When r → 2r0, Tm(2r0) = Tm(∞) exp[−2ΔSvib(∞)/(3R)]
in terms of Eq. (3.80), which implies that Tm(2r0) is determined by Tm(∞)
and ΔSvib(∞). Another evident change comparing with the bulk phase di-
agram is that the two-phase zone of the nanophase diagram becomes small.
As r → 2r0, which is about several nanometers, the zone even approaches
zero. This is a direct result of ω(2r0) = 0 where the regular solution deterio-
rates into the ideal solution and the structures of liquid and the solid become
similar since they have a similar short range order.

Since the second phase strengthening is one of the strengthening meth-
ods for all structural materials, the above equations could be extended to
deal with this kind of problem where only the size of one component with
size-dependent thermodynamic quantities decreases and another remains the
bulk.

4.5.2 Immiscibility–Two Mechanisms of Phase Transitions [1, 23,
24]

There may be partial miscibility between two components in the solid state,
which is usually proportional to T , unless the individual components undergo
a phase change. To examine this phenomenon, a regular solid solution of
two components is considered, which can be used to predict the pattern of
the phase separation of the two partially miscible components. In light of
Eq. (4.28), ΔmixGm = RT (xA ln xA + xB ln xB) + ωxAxB. The first term
of RT (xA ln xA + xB ln xB) is the one that applies to ΔmixGm for an ideal
solution. The second term ωxAxB represents the nonideality of the mixture.
If ω has a small positive value, ΔmixSm ensures that the two components
of A and B mix in more or less all proportions. As ω increases, ΔmixSm is
less able to dominate the positive ΔmixHm and ΔmixGm, although remaining
negative overall, acquires a shape with two minima and one maximum, i.e.,
becoming partially immiscible as illustrated in Fig. 4.8(a).

The compositions of the two immiscible phases, xB,1 and xB,2, are eas-
ily determined using the common tangent method described in the preced-
ing section, which are those corresponding to the two minima in the curve
of ΔmixGm, where the first derivative of the curve is zero and the second
is positive. This method has been used to calculate the phase diagram as

illustrated in Fig. 4.8(b). Differentiating with respect to xB,
∂ΔmixGm

∂xB
=

RT ln
(

xB

1− xB

)
+ω(1−2xB) = 0. To satisfy the equation needs two xB val-

ues denoting the minima corresponding to the two immiscible phases in equi-
librium. The equation has a maximum at xB = 1/2. The solution of this equa-
tion, when plotted against T , yields a line of miscibility gap in Fig. 4.8(b).
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Further differentiation gives

∂2ΔmixGm

∂x2
B

= RT

{
1

xB
+

1
(1 − xB)

}
− 2ω = 0. (4.38)

Fig. 4.8 Plots of ΔmixGm versus xB for a regular solution (a) and the correspond-
ing phase diagram having the miscibility gap, showing spinodal line (b).

This can be solved to give the upper consolute temperature (the temper-
ature at which the two solutions just become miscible) as Ta = ω/2R, i.e.,
the plot has no curvature. In this phase diagram, the single-phase region,
T > Ta, indicates that A and B are completely miscible. At T < Ta, the
solution is separated into two phases of α1 and α2. At points under the mis-
cibility gap, the phase compositions vary with T . For example, at 800 K the
phase compositions xB,1 and xB,2 are in equilibrium.

Another feature of the phase behavior is related to the points of inflection
in the curves of ΔmixGm with respect to xB when their second derivative
equals zero (Eq. (4.38)). These inflection points, called spinodal points, have
a special significance in the study of phase transitions. The locus of spinodal
points can be indicated with a dash line in phase diagrams as in Fig. 4.8(b).

To appreciate the importance of the spinodal curve, we consider the region
to the right of the spinodal point in Fig. 4.9, where ΔmixGm curve is concave
downward and has regions of a negative curvature (∂2ΔmixGm/∂x2

B < 0).
In this region the solution may begin the process of decomposition into the
equilibrium phases by incremental changes in composition without increasing
Gm of the system, called the spinodal decomposition mechanism. A different
situation exists in the region to the left of the spinodal point (the inflection
point), in which the curvature is positive (∂2ΔmixGm/∂x2

B > 0). Hence, as
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the material is separated into two phases, Gm of the system must increase
before it can finally decrease, called the nucleation and growth mechanism.
This difference in path for Gm during decomposition results in a difference in
phase transition behavior, which is important for kinetics. It will be useful to
discuss the two different phase transition mechanisms in the context of Gm

curves.

Fig. 4.9 The relation between ΔmixGm and composition on either side of the
spinodal point.

The dynamics of phase separations is driven by fluctuations. In gen-
eral, if a fluctuation leads to a decrease in ΔmixGm, it will happen spon-
taneously. Consider a part of ΔmixGm curve where the curvature is nega-
tive, ∂2ΔmixGm/∂x2

B < 0. Suppose that a very small fluctuation occurs and
consider what happens to ΔmixGm for the small fluctuation. Apparently,
ΔmixGm change is negative for an arbitrarily small fluctuation in a compo-
sition that one part of the system gets more concentrated at the expense of
another. The system is inherently unstable and this process is called spinodal
decomposition under a condition,

∂2ΔmixGm

∂x2
B

< 0. (4.39)

Now we consider the part of the curve where the curvature is positive but
inside the miscibility gap (two-phase region). Apparently, ΔmixGm here in-
creases. Therefore, small fluctuations in this region do not lead to phase
separation and the system is “stable”. In other words, it is metastable with
respect to infinitesimal composition fluctuations. Such a system is clearly
unstable to the separation into the limiting compositions given by the com-
mon tangent construction. How does the system phase separate? Clearly an
average composition within the two-phase region, but outside of the spin-
odal curves, requires large composition fluctuations to decrease the energy. A
process requiring a large composition fluctuation is called “nucleation”. Nu-
cleation is a phase transition that is large in degree (composition change) but
small in extent (size). After a nucleus forms, the new phase grows. Together,
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the process is called nucleation and growth and the transition is discontin-
uous, whereas spinodal decomposition is small in degree but large in extent
and it is continuous.

Nucleation is a topic of wide interest in many scientific studies and techno-
logical processes, which is the starting of a phase transition in a small region.
It is used heavily in industry. The most widely used examples are directional
solidification of vanes in different engines and the growth of monocrystalline
silicon in semiconductor industry. Recently, these ideas are also utilized in the
growth of quantum dots, nanowires, nanobelts, single crystalline thin films,
etc. in nanotechnology.

In solidification, nucleation is the formation of a crystal phase from liq-
uid phase. Nucleation without preferential nucleation sites is a homogeneous
one, which occurs spontaneously and randomly, but it requires supercool-
ing or superheating of the medium. The creation of a nucleus implies the
formation of an interface at the boundaries of a new phase. The change
in Gibbs free energy is balanced by the energy gain of creating a new vol-
ume, and the energy cost due to appearance of a new interface, expressed
as ΔG = −(4π/3)r3ΔGv + 4πr2γsL where ΔGv = GL − Gs being a change
in Gibbs free energy per unit volume between the two phases, which relate
to the ΔT as described in Eq. (4.32). The greater the supercooling or ΔT ,
the larger the ΔGv, which favors phase transition. When the solid nucleus is
spherical in a radius r, we have

ΔG(r, T ) = −(4π/3)r3ΔGv(T ) + 4πr2γsL. (4.40)

The first and second terms of the right hand of Eq. (4.40) and their addition
(ΔG(r, T )) are given in Fig. 4.10. ΔG achieves maximum ΔG∗ at r = r∗,
which means that the nucleus will certainly grow when r > r∗. The nucleus
with r∗ is termed the critical nucleus. Letting dΔG/dr = 0, it reads

r∗ =
2γsL

V ΔGv
=

2γsLTmV

ΔL
s HmΔT

. (4.41)

Equation (4.41) shows that r∗ ∝ 1/ΔT . Substituting Eq. (4.41) into Eq.
(4.40) gives the nucleation barrier energy or the driving force for nucleation
ΔG∗,

ΔG∗ =
16
3
πγ3

sLT 2
mV 2

ΔH2
mΔT 2

. (4.42)

ΔG∗ is an amount to overcome the additional energy associated with the
interface or the interfacial energy, which will be discussed in Chapter 6 in
detail.

Heterogeneous nucleation occurs much more often than homogeneous nu-
cleation. It forms at preferential sites such as phase boundaries or impurities
like dust and requires less energy than homogeneous nucleation. At such pref-
erential sites, the effective interface energy is lower, thus diminishing ΔG∗ and
facilitating nucleation. An interface promotes nucleation because γss < γsL
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Fig. 4.10 ΔG(r, T ) function during solidification.

where subscript ss denotes solid-solid interface, which encourages particles to
nucleate. The above inequation can be quantitatively described by another
amount – the wetting contact angle θ between two phases, which is always
greater than zero. The Gibbs free energy needed for heterogeneous nucleation
is equal to the product of homogeneous nucleation and a function of θ,

ΔGhetero = ΔGhomo × f(θ) (4.43)

where f(θ) = 1/2 + 3 cos θ/4 − cos3 θ/4 < 1.ΔGhetero < ΔGhomo leads to
less ΔT needed. θ determines the ease of nucleation by reducing the energy
needed. It is important to note that r∗ remains unchanged while volume of the
critical nucleus can be significantly small for heterogeneous nucleation where
θ affects the shape of the nucleus. During the heterogeneous nucleation, some
energy is released by the partial destruction of the previous interface. For ex-
ample, precipitate particles can be formed at grain boundaries of a solid. This
can interfere with precipitation strengthening, which relies on homogeneous
nucleation to produce a uniform distribution of precipitate particles.

4.6 On Approximation of Gibbs Free Energy Change of
Crystallization [25]

For a solidification process of an undercooled liquid, ΔGv = ΔHv − TΔSv,
which is an important parameter in the nucleation theory. Because the nu-
cleation frequency has an exponential dependence on ΔGv, the accuracy of
an estimate of ΔGv is often critically important when we analyze nucleation
phenomena. It is known that

ΔHv = TmΔSm +
∫ T

Tm

ΔCP dT, (4.44a)
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ΔSv = ΔSm +
∫ T

Tm

ΔCP

T
dT (4.44b)

where ΔCP is the heat capacity difference of supercooled liquid and solid.
Since CP of the undercooled liquid, CL

P , is rarely available, the functional
dependence of ΔGP (T ) on undercooling must often be estimated, which can
be satisfactorily described by a linear relation,

ΔCP = AT + B (4.45)

where A and B are unknown constants. In light of this equation,

ΔGv = ΔSmΔT −
[
A

2
(ΔT )2 + B

(
ΔT − T ln

Tm

T

)]
. (4.46)

This can be simplified by using the approximation, ln(Tm/T ) ∼= 2ΔT/(Tm +
T ), which is strictly valid only for small ΔT . However, in the temperature
range of interest here (Tm/2 < T < Tm), this leads to errors in ΔGv of less
than 4% at the largest undercooling. Equation (4.46) then can be simplified
to

ΔGv =
ΔHmΔT

Tm
− (ΔT )2

[
A

2
+

B

Tm + T

]
. (4.47)

Moreover, Jones and Chadwick proposed that ΔCP can most simply be ap-
proximated as a constant, i.e. A = 0 and B = ΔCP , which brings out

ΔGv =
ΔHmΔT

Tm
− ΔCP (ΔT )2

Tm + T
. (4.48)

Although authors do not specifically indicate how the constant value for ΔCP

should be chosen, usually the best value available is ΔCP (Tm). If ΔCP values
are unavailable at all, the simplest assumption made by Turnbull [26] is ΔCP

= 0,
ΔGv = ΔHmΔT/Tm. (4.49)

This is the oldest linear approximation. Although the assumption of ΔCP

= 0 is a bad one for polymers, it is not unreasonable for metallic systems
where ΔCP is very small.

In studies of glass forming liquids, Hoffman treated ΔCP as a constant
which could be evaluated [9], in terms of the temperature T∞ at which ΔHv

= 0, being slightly below the Tg of the liquid, given in Fig. 4.11 sketchily.
A linear function of ΔHv = ΔHm −ΔCP (Tm − T ) is often adequate in

a considerable temperature range. Since ΔHv = 0 at T = T∞, Hoffman’s
estimate is

ΔCP = ΔHm/(Tm − T∞). (4.50)

Substituting Eq. (4.50) into the above equation, we have ΔHv = ΔHm[(T −
T∞)/(Tm−T∞)]. Equation (4.47) now becomes, after rearranging the terms,

ΔGv =
ΔHmΔT

Tm

[(
T

Tm

)
+
(

ΔT

Tm + T

)
×
(

T

Tm
− T∞

Tm − T∞

)]
. (4.51)
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Fig. 4.11 Idealized enthalpy-temperature diagram showing definition of T∞, and
decrease of ΔH as T falls below Tm.

At this point, Hoffman indicated that ΔT/(Tm + T ) is small for small ΔT
and assumes that T/Tm

∼= T∞/(Tm − T∞) when T ∼= Tg, so that the last
term in his estimate can be neglected, leading to his final result,

ΔGv =
ΔHmΔT

Tm

(
T

Tm

)
. (4.52)

The validity of this approximation depends critically on his original assump-
tion that T∞ is close to Tg. However, if Eq. (4.50) is used to estimate T∞
by equating ΔCP with the measured ΔCP (Tm), it becomes clear that at
least for metals with a small ΔCP value, T∞ << 0. Thus, the assumption of
T∞ ≈ Tg is invalid for metals and alloys but is appropriate for some organic
substances, which have a large ΔCP value at Tm so that ΔHv at Tg can be
much smaller than ΔHv at Tm.

However, an appropriate adaptation of Hoffman’s approach can be made
as follows [25]: When ΔCP is small, although ΔHv with decreasing T does
not become much smaller than ΔHm around Tg, ΔSv decreases more quickly.
As Kauzmann has pointed out, ΔSv seems to vanish at TK being somewhat
below Tg. This fairly universal phenomenon, observed in many materials, has
its physical basis that ΔSv is primarily configurational in nature and hence
decreases very quickly around Tg due to the rapid increase in configurational
order associated with the rise in viscosity. For constant ΔCP , Eq. (4.44b)
becomes ΔSv = ΔHm/Tm + ΔCP ln(T/Tm), and since ΔSv vanishes at T =
TK, ΔCP = [ln(TK/Tm)]ΔHm/Tm. For metallic glass forming systems, Tg ≈
Tm/2, and hence TK is probably somewhere between Tm/2 < T0 < Tm/3.
As a result, the best constant approximation is ln(TK/Tm) ∼= 1 or ΔCP =
ΔHm/Tm. Substituting this result into Eq. (4.46) leads to

ΔGv =
ΔHmΔT

Tm

(
2T

Tm + T

)
(4.53)

which should be fairly accurate for materials with constant ΔCP such as
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some easy glass forming alloys.
Singh and Holz [27] have proposed a new expression for the change in free

energy by making the following expression for the last term in Eq. (4.46),

A

2
(ΔT )2 + B

(
ΔT − T ln

Tm

T

)
= ΔSm

(ΔT )2

Tm + 6T
. (4.54)

This brings out

ΔGv =
ΔHmΔT

Tm

(
7T

Tm + 6T

)
. (4.55)

Equation (4.55) takes into account the temperature dependence of ΔCP suit-
ably, which reproduces ΔGv function of metallic elements of experimental
results as shown in Fig. 4.12. Note that although Eq. (4.55) is well described
ΔCP of metallic elements, Eq. (4.53) is much better for glass forming alloys.

Fig. 4.12 ΔGv on crystallization for Pb vs ΔT . The filled circles are the experi-
mental results obtained by extrapolation of available data. The names and related
curves denote the model predictions of the corresponding authors from Eq. (4.49)
(dash line), Eq. (4.54) (solid line) and Eq. (4.53) (dot ted dash line). (Reproduced
from Ref. [27] with permission of Elsevier)

The rising value of CL
P with increased ΔT is a common feature of liquids

which exhibits a continuous hardening to a glass [28]. The termination of the
rise in CL

P represents the thermal manifestation of the glass transition. From
this viewpoint, Chen and Turnbull have suggested that this fact denotes the
loss of Spos of the liquid. In terms of the free volume approach refined by
Cohen and Grest, this behavior is related to the fraction of liquid-like cells
available for configurational adjustment. Other similar defect-based models
reported involve a number of parameters, which can be adjusted to fit the
CL

P behavior.
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4.7 Bandgap Energy of Binary Nanosemiconductor
Alloys [29]

Now size-tunable properties are a hallmark of quantum dots and related
nanostructures due to the potential applications to optoelectronics, high-
density memory, quantum-dot lasers, vivo imaging, and lately biosensing and
biolabeling. Size also plays a role when nanocrystals must be incorporated
into larger superstructures such as mesoporous materials in photovoltaics
[30]. However, the tuning of physical and chemical properties only by chang-
ing r could cause problems in many applications, particularly, if unstable
small particles (less than ∼ 2 nm) are used. One effective way to solve the
problem of dual requirements is to employ alloy nanocrystals. As a valid
method, alloying could tune the spectrum continuously since the interatomic
interactions among different elements or compounds are different. Actually,
tuning bandgap of nanocrystals by alloying could result in high lumines-
cence and stability compared to the case for the component with narrower
bandgap. An example to illustrate the advantages of alloying is the com-
parison of (ZnSe)x(CdSe)1−x with CdSe nanocrystals. A proven strategy for
increasing the luminescence and stability of CdSe nanocrystals is to grow a
thin inorganic layer of a wider bandgap semiconductor on the surface of the
core nanocrystals, where r is very small. By contrast, r of (ZnSe)x(CdSe)1−x

nanocrystals increases and thus the nanocrystals have better thermal stabil-
ity with high crystallinity (or less defects). Note that subscript “x” shown in
the alloy composition denotes the fraction of the first component in the alloy
with 0 < x < 1. For example, blue-emitting (ZnSe)x(CdSe)1−x nanocrystals
have particle sizes of over 3.5 nm, which is 3 times larger than that of the
blue-emitting CdSe/ZnS nanocrystals. In addition, the stronger ZnSe bond
stabilizes the weaker CdSe bond, and the shorter bond length of ZnSe intro-
duces stiff struts into the system. Both lead to an increase of the dislocation
energy. The addition of ZnSe into the CdSe lattice results in an increased
covalency and a reduced ionicity, thus inhibiting plastic deformation and the
generation of defects. Moreover, although inorganic-capped CdSe can provide
a potential step for electrons and holes originating in the nanocrystals, and re-
duce the probability of the carriers to migrate to the sample surface, spatial
compositional fluctuations in (ZnSe)x(CdSe)1−x nanocrystals can produce
atomically abrupt jumps in the chemical potential that can further localize
free exciton states in the crystalline alloy.

After the above alloying, Eg(x, r) with a bowing behavior induced by in-
teratomic interactions is however a nonlinear function of x [31], which leads to
difficulty for materials design because the Eg(x, r) value could be determined
only by experiments. If the Eg(x, r) function is a linear one, a certain spec-
trum could be predicted only by that of two components with the additive
rule. Note that for semiconductor alloys, the component could be compounds
as shown in the above.
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On the basis of assumption that a bulk ternary semiconductor alloy or
psedo-binary semiconductor compound alloy is a regular solution of compo-
nents, Eg(x,∞) has been given by [32],

Eg(x,∞) = xEg(0,∞) + (1 − x)Eg(1,∞) + ω(x,∞)x(1 − x). (4.56)

According to a virtual-crystal approximation model [33], ω(x,∞) essentially
originates from the intersubstitutional crystalline structure with the normal
CN . Up to now, although some experimental results have been brought about,
the theoretical way to quantitatively determine ω(x,∞) values is still imma-
ture. Theoretical Eg(x, r) functions of alloys cannot be determined either.

As r decreases from bulk, surface/volume ratio of the compound increases
while the component and the structure are retained. Under this condition,
Eg(0, r) function varies continuously as r drops. This continuity of Eg(0, r)
function terminates at the lowest limit value of r0(0), as stated early. Thus,
r can vary from ∞ to r0(0) continuously. The cases for Eg(1, r) and ω(x, r)
functions should be similar. Under the above considerations, Eg(x, r) function
can be obtained from Eq. (4.56) by simply substituting ∞ by r, namely,

Eg(x, r) = xEg(0, r) + (1− x)Eg(1, r) + ω(x, r)x(1 − x). (4.57)

Eg(0, r) function of unary nanosemiconductor in terms of Ec(0, r) function
has been described in Sec. 3.5 without any adjustable parameter, which is
shown in a little modified form as

Eg(0, r)
Eg(0,∞)

= 2−
(

1− 1
12r/r0(0)− 1

)
exp

(
−2ΔSb(0,∞)

3R

1
12r/r0(0)− 1

)
.

(4.58)
In the original work, the calculation is deduced for the solid-vapor transi-
tion of particles where d = 0 is defined. To suit a more general case for
all low dimensional materials, r0(0) = (3 − d)h(0) is used in Eq. (4.58). To
balance this modification, a constant of 12 is added in Eq. (4.58). At the
smallest crystal size 2r0(0) = 2(3 − d)h(0), Eg(0, r)/Eg(0,∞) → 2. Thus,
Eg(0, r) is an ascending function with r. Equation (4.58) is simple since
only two variables of ΔSb(0,∞) and h(0) are needed in order to predict
Eg(0, r)/Eg(0,∞) or Eg(1, r)/Eg(1,∞) value when 0 in the function is sub-
stituted by 1. Moreover, ω(x, r) function has been determined in Eq. (4.27),
namely, ω(x, r)/ω(x,∞) = 1 − 2r0(x)/r where r0(x) = (3 − d)h(x) and
h(x) = xh(0) + (1 − x)h(1). h is less dependent on composition concerned
here with data given in Table 4.4 since both components are in the same
group in the Periodic Table of Elements.

Substituting Eqs. (4.58) and (4.27) into Eq. (4.57) gives rise to an analytic
Eg(x, r) function,

Eg(x, r) = xEg(0, r)+(1−x)Eg(1, r)+[1−2r0(x)/r]ω(x,∞)x(1−x). (4.59)

In order to determine ω(x,∞) values of IIB–VIB semiconductors, Eg(x,∞)
functions of some bulk pseudo-binary IIB–VIB chalcogenide semiconductors
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are plotted in Fig. 4.13. The unknown ω(x,∞) values of WZ-(CdS)x(CdSe)1−x,
WZ-(ZnS)x(CdS)1−x, and WZ-(ZnSe)x(CdSe)1−x used in Eq. (4.59) are de-
termined from Fig. 4.13 (WZ denotes the wurtzite structure).

Fig. 4.13 Eg(x,∞) functions of some bulk pseudo-binary IIB–VIB chalco-
genide semiconductors of experimental (symbols) and fitting results (curves). (a)
WZ-(ZnSe)x(CdSe)1−x, (b) WZ-(ZnS)x(CdS)1−x, (c) WZ-(CdS)x(CdSe)1−x. The
mean ω(x,∞) values for WZ-(ZnSe)x(CdSe)1−x, WZ-(ZnS)x(CdS)1−x, and WZ-
(CdS)x(CdSe)1−x are respectively identified as -0.92 eV, -1.01 eV and -0.50 eV by
quadratic curve fitting. The curves are shown in terms of Eq. (4.27) using the mean
ω(x,∞) values derived from quadratic curve fitting and Eg(0,∞) and Eg(1,∞) val-
ues listed in Table 4.4. (Reproduced from Ref. [29] with permission of Wiley-VCH)

Figure 4.14 shows comparisons of Eg(x, r) functions of some homoge-
neously alloyed pseudo-binary IIB–VIB chalcogenide semiconductor nanopar-
ticles with r < 10 nm (d = 0) in terms of Eq. (4.59) and available experimental
results while Fig. 4.15 presents the related cases for the nanocrystals at r �
20 nm (d = 0 or d = 1).

It is shown that Eg(x, r) functions increase on deceasing r, similar to the
cases of Eg(0, r) and Eg(1, r). An obvious increase in Eg(x, r) is observed for
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Table 4.4 The relevant data used in the calculations of Eq. (4.59)

ΔSb(∞)/
Structure (J·g-atom−1 Lattice constant/nm h/nm Eg(∞)/eV

·K−1)

CdS ZB
67.11

a = 0.582 0.253 2.42
WZ a = 0.4160, c = 0.6756 0.212 2.50

CdSe ZB
67.63

a = 0.608 0.262 1.76
WZ a= 0.430, c = 0.701 0.219 1.74

CdTe ZB 68.79 a = 0.648 0.281 1.51
ZnS ZB

68.01
a = 0.541 0.235 3.68

WZ a =0.3811, c = 0.6234 0.195 3.51
ZnSe ZB 68.53 a= 0.567 0.245 2.72
GaN ZB

61.43
a =0.3189, c = 0.5178 0.196 3.20

WZ a = 0.498 0.162 3.39
AlN WZ 61.55 a =0.311, c = 0.498 0.157 6.02
InN ZB

58.37
a =0.3533, c = 0.5693 0.216 1.80

WZ a = 0.452 0.179 0.70

the size range of r < 10 nm shown respectively in Fig. 4.14 while this increase
is less obvious for r � 10 nm shown in Fig. 4.15. For a given r, Eg(x, r) shifts
higher from the narrower bandgap side α1(x = 0) to the wider bandgap side
β1(x = 1) with the increase of x. This blue shift [or increase in Eg(x, r)] is
ascribed to the formation of alloyed nanocrystals via the intermixing of the
wider bandgap β1 with the narrower bandgap α1. Moreover, bowing shape of
Eg(x, r) curves drops with r; in contrast to the prediction curves with r �
10 nm in Fig. 4.15, an almost linear relationship as x varies is interestingly
observed for the curves shown in Fig. 4.14 especially when r < 2.5 nm.

For clarity, Fig. 4.16 shows ω(x, r) of IIB-VIB chalcogenide semiconduc-
tors as function of r in terms of Eq. (4.59), which determines the bowing shape
of Eg(x, r) curves. Corresponding to the bowing shape of Eg(x, r) curves in
Fig. 4.14 (r < 10 nm) and Fig. 4.15 (r � 10 nm), ω(x, r) ≈ ω(x,∞) when
r � 10 nm, but it lowers clearly as r < 5 nm. Especially, ω(x, r) → 0 when
r → 2r0(x) ≈ 1.4 nm for d = 0 or r → 2r0(x) ≈ 1 nm for d = 1. Now
Eg[x, 2r0(x)] function deteriorates into Végard’s Law where about a half of
atoms are located on the particle surface, which leads to evident enhance-
ment of solubility due to the lack of elastic energy induced by solute atoms
within a solution.

Although Eg(x, r) curves determined experimentally have a bowing shape,
which leads to difficulty of materials design, the bowing shape of Eg(x, r)
curves becomes weak and deteriorates into an almost linear function of x as
r decreases. This is especially true when r < 2.5 nm at d = 0 or 1. Since
the requirement of miniaturization of electronic and optic parts or devices
is gradually enhanced, a smaller r value is asked in materials design where
ω(x, r) → 0. This result suggests that when r → 2r0(x), even if we do not
know the exact ω(x,∞) value, we can still determine Eg(x, r) function of the
alloys in terms of Végard’s Law. Note that at r > 10 nm (Fig. 4.15), the size
effect on Eg(x, r) is much weak, and ω(x, r) ≈ ω(x,∞) in this regime. In this
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case, Eq. (4.56) should be directly used to estimate Eg(x, r) value.

Fig. 4.14 Eg(x, r) functions of zinc blende ZB–(CdS)x(CdSe)1−x nanoparticles (d
= 0) of Eq. (4.59) (curves) and experimental results (symbols). α and β denote
the compounds with narrower bandgap at x = 0 and wider bandgap at x = 1,
respectively. r values are selected based on known experimental results. Different
r values are shown respectively in (a)–(e). The mean ω(x,∞) = -0.53 eV is taken
for simplicity. h(x) = xh(0) + (1 − x)h (1). For ΔSb(0,∞),ΔSb(1,∞), Eg (0, ∞),
Eg (1, ∞), h (0) and h (1) values see Table 4.4. (Reproduced from Ref. [29] with
permission of Wiley-VCH)
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Fig. 4.15 A comparison of Eg(x, r) functions of nanostructured materi-
als between Eq. (4.59) (curves) and experimental results (symbols) for (a)
ZB-(CdSe)x(CdTe)1−x (d = 0), (b) WZ-(ZnS)x(CdS)1−x(d = 0), (c) ZB-
(CdS)x(CdSe)1−x(d = 0), (d) WZ-(CdS)x(CdSe)1−x(d = 1) and (e) ZB-
(ZnSe)x(CdSe)1−x (d = 1). r values are selected based on known experimental
results. (Reproduced from Ref. [29] with permission of Wiley-VCH)
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Fig. 4.16 ω(x, r) of some pseudo-binary IIB–VIB chalcogenide semiconductors
as function of r in terms of Eq. (4.59). r0(x) is calculated by the relationship
r0(x) = (3−d)h(x) with d = 0 or d = 1. The averaged h values of all cited IIB–VIB
chalcogenides semiconductor compounds are about 0.24 nm as shown in Table 4.4.
For simplification, this value will be taken as a rough estimate of h to determine the
corresponding 2r0(x). (Reproduced from Ref. [29] with permission of Wiley-VCH)
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Chapter 5 Thermodynamics of Phase Transi-
tions

Understanding how to predict and describe the existence of these transitions,
their characteristics and consequences for everyday phenomena is one of the
more important roles of statistical and condensed matter physics. In this
chapter, thermodynamics of phase transitions is described, which are ubiq-
uitous in nature and are widely used to realize, improve or extend the mate-
rials properties. Examples include magnets, liquid crystals, superconductors,
crystals, amorphous solids, and liquid condensation. These transitions occur
between equilibrium states as functions of T, P, Hmag, r, etc.; and define the
nature of the matters we deal with on a day-to-day basis.

5.1 Thermodynamic Classification of Phase Transitions
[1, 2]

The first attempt at classifying phase transitions was the Enrenfest clas-
sification scheme, which grouped phase transitions based on the degree of
non-analyticity involved. In other words, even though μ of the component
undergoing phase transition remains unchanged, its derivative with respect
to a state variable (for instance T ) changes. The nature of this change is the
basis of the Ehrenfest classification scheme, under which phase transitions
were labeled by the lowest derivative of the G that is discontinuous in the
transition.

For the various solid/liquid/gas transitions, such as vaporization, fusion,
or sublimation of pure substance, T and P remain constants while S and
V show finite changes. Since dG = −SdT + V dP in terms of Eq. (1.38),
it is apparent that there will be no change in G function during such a
phase transition. However, since (∂G/∂T )P = −S and (∂G/∂P )T = V , it
follows that the first-order derivatives of G must have finite changes. Such a
transition is therefore called a first-order phase transition. The left part of
Fig. 5.1 illustrates the main characteristics of first-order transitions.

In contrast to first-order transitions there are phase changes taking place
at constants T and P without changes of S and V , or the first-order deriva-
tives of G function exhibit continuity as illustrated in the right part of Fig.
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5.1. If the second-order derivatives of G function have finite variations dur-
ing the transition however, such a transition is defined as a second-order
phase transition. From Eqs. (3.1) – (3.3), CP , α, and β in the related second-
order phase transitions vary finitely. The higher derivatives of G function,
however, are not all continuous. In light of Ehrenfest, an n-th order phase
transition has a discontinuity in the n-th derivative of G function with respect
to T, ∂nG/∂T n.

The Ehrenfest scheme is an inaccurate method of classifying phase tran-
sitions since it does not take into account the case where a derivative of free
energy diverges. For instance, in the ferromagnetic transition, CP diverges
to infinity. In the modern classification scheme, phase transitions are divided
into two broad categories, named similarly for the Ehrenfest classes: the first-
order phase transitions are those that involve a latent heat. During such a
transition, a system either absorbs or releases a fixed (and typically large)
amount of energy while T stays constant as heat is added. The second class
of phase transitions is the continuous phase transitions, also called second-
order phase transitions. These have no associated latent heat and correspond
to divergent susceptibility, an infinity correlation length, and a power law
decay of correlations. Lev Davidovich Landau has given a phenomenological
theory for this kind of phase transition.

Fig. 5.1 Several thermodynamic functions during the first-order (left) and second-
order (right) phase transitions.
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In a first-order phase transition, the slope of the P ∼ T equilibrium curve
is given by the Clapeyron equation (Eq. (4.2)), dP/dT = (S2−S1)/(V 2−V 1),
where the superscripts “1” and “2” denote the initial and final phases of a
transition. In a second-order transition, the right side of this equation be-
comes indeterminate. To determine its slope dP/dT, we now use the condi-
tions that there are no changes in S and V .

The entropy change for a simple compressible system may be expressed
as a function of any pair of the variables P , V , and T , thus forming three
general equations, the derivations of which are as follows: When S is consid-
ered as a function of T and P , we have dS = (∂S/∂T )P dT + (∂S/∂P )T dP .
Since (∂S/∂T )P = CP /T and (∂S/∂P )T = −(∂V/∂T )P , dS = CP dT/T −
(∂V/∂T )P dP . This is the second dS equation. Starting from the condition
that S1 = S2 or dS1 = dS2 and through the use of the second dS equa-
tion, we obtain C1

P dT − TV α1dP = C2
P dT − TV α2dP where we have used

V = V 1 = V 2. Therefore,

dP

dT
=

C2
P − C1

P

TV (α2 − α1)
. (5.1)

Alternately, starting from the condition that V 1 = V 2 or dV 1 = dV 2 and
noting that dV = (∂V/∂T )P dT +(∂V/∂P )T dP = V αdT −V βdP, we obtain
V α(1)dT − V β(1)dP = V α(2)dT − V β(2)dP . Thus,

dP

dT
=

α2 − α1

β2 − β1
. (5.2)

Equations (5.1) and (5.2) are known as Ehrenfest’s equations for the second-
order phase transitions. Interestingly, the only phase transition known to
exhibit distinct jumps in CP and α and obey Eq. (5.2) is the normal super-
conductor transition [3]. For the most systems undergoing continuous phase
transitions, instead of jumps in CP and α, critical behavior is observed.

The transition from ferromagnetism to paramagnetism at the Curie point,
and that from ordinary liquid He to superfluid liquid He at λ point were orig-
inally thought to be a second order. These transitions satisfy the conditions
that T , P , G, S, and V (and therefore U , H , and F ) remain constants.
More precise experimental data however indicate that the conditions of finite
changes in CP , β, and α are not satisfied. Instead, these properties would
become infinite at the transition temperature. It was the resemblance of this
curve to the Greek letter λ that led to the name of λ transition for such a
transition.
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5.2 Landau and Ising Models for the Second-order Phase
Transitions

5.2.1 Landau Model [4, 5]

Continuous, or the second-order, phase transitions can be very spectacular,
because they give rise to a diverging correlation length and hence to behavior
known as critical phenomena. Landau theory in physics was introduced by
Landau in an attempt to formulate a general theory of the second-order phase
transitions. He was motivated to suggest that the free energy of any system
should obey two conditions: the free energy is analytic, and the free energy
obeys the symmetry of the Hamiltonian.

A generic system to discuss the transitions is the magnet. Uniaxial fer-
romagnet is a simplest example of phase transitions. As we know, G =
U−TS−HmagM has to be minimized at constants P and T . The big question
is a minimum with respect to variables. When symmetry is broken, one needs
to introduce one or more extra variables to describe the state of the system.
In the ferromagnic phase, magnetization M vanishes at certain temperature
Tc at Hmag = 0. Below Tc a spontaneous M is observed, its direction can
be “up” and “down” with equal likelihood. The nearest neighbors interact in
a way favorable to point in the same direction. At Hmag = 0, G consists of
two terms of U and −TS. At low T, U is more important and the system is
a ferromagnet. At high T, G is minimized by disordered state in which S is
large. It is the fight between the order and disorder that makes the critical
state specifically interesting. We can denote the variables by M ; in a generic
case, it is called the order parameter θ. In some cases it is difficult to specify
θ and in general it can be a scalar, a vector, a tensor, etc. A basic element
of Landau’s theory for continuous phase transitions is the presence of a θ.

θ is a measure of the degree of order in a system; the extreme values are
0 for total disorder and 1 for complete order. Landau supposes here that a
given system can be described by a single θ, which should be zero at high
T , usually above Tc, for disordered phase, and it is non-zero in an ordered
phase. Examples include the dielectric polarization in a ferroelectric system,
the fraction of superconducting electrons in a super conductor, or the fraction
of neighbor-A-B bonds to total bonds in an alloy AB.

Landau’s unified theory of all the second-order phase transitions concerns
itself with what is happening in the vicinity of the phase transition. In this
region the magnitude of θ will be small as T → Tc. The Landau approach
expands the free energy as a power series in these small parameters where
the free energy is assumed to be an analytic function of θ, which leads to a
phenomenological expression for G,

G(P, T, θ) = G0(P, T ) + a(P, T )θ + b(P, T )θ2 + c(P, T )θ3 + d(P, T )θ4 + · · ·.
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First we note that G0(P, T ) can be ignored here since the origin of the energy
is entirely arbitrary. The coefficients in the Landau expansion a, b, c, and d
are function of P and T . We know that above Tc, θ is vanished and θ has
some finite value below Tc. The minimum of the free energy below Tc should
therefore occur at θ �= 0 and above Tc at θ = 0(∂G/∂θ = 0). From this
we conclude immediately that a = 0 (for systems without external fields),
because otherwise θ �= 0 at any T . Also b in front of the quadratic term
in the free energy should be positive for T > Tc (minimum at θ = 0) and
negative at T < Tc (minimum of G at θ �= 0). The simplest choice is

b(P, T ) = a0(T − Tc) (5.3)

where a0 is positive constant and Eq. (5.3) is only valid in a neighborhood of
Tc. The condition that θ is finite below Tc requires d(P, T ) > 0 and that a0

and d are sufficiently large that all the interesting behavior occurs for small
θ. Thus, we don’t have to worry about higher order functions. Furthermore,
Landau’s idea is to forget the details of the microscopic model and consider
just the symmetries. Hence, the power series of the G must only contain terms
which respect the symmetry of the θ(c = 0), so that G can be expanded into

G(P, T, θ) = a0(T − Tc)θ2 + dθ4. (5.4)

To find the minimum, we set the derivative with respect to θ to zero, (∂G/∂θ)T

= 2a0(T − Tc)θ + 4dθ3 = 0, which has the roots

θ =

⎧⎪⎨
⎪⎩

0 T > Tc[−a0

2d
(T − Tc)

]1/2

T < Tc

with a0 and d positive. θ = 0 corresponds to the minimum of the G function
(Eq. (5.4)) at T > Tc where G(T ) = G0. The other root, θ = [a0(Tc −
T )/(2d)]1/2, is related to the minimum of G(T ) at T < Tc where

G(P, T ) = G0 − a2
0(Tc − T )2/(4d).

The variation of G(θ, T ) as a function of θ2 for three representative T is
shown in Fig. 5.2 (a), and θ(T ) function is shown in Fig. 5.2 (b).

Landau model describes a phase transition in which θ → 0 as T → Tc. S =
−∂G(θ, T )/∂T = S0−a0θ

2 where S0 = −∂G0/∂T , which is the entropy drop
as the ordered phase is entered and it is continuous at the transition,

T > Tc, θ = 0, S = S0(T );

T < Tc, θ2 =
a0(Tc − T )

2d
, S = S0(T ) +

a2
0(T − Tc)

2d
.

CP = T (∂S/∂T )P is then,

CP =

⎧⎨
⎩

T (∂S0/∂T )P = CP,0 T > Tc

CP,0 +
a2
0T

2d
T < Tc
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Fig. 5.2 (a) Landau G function versus θ2 at representative T . As T drops below Tc

the equilibrium value of θ2 gradually increases, as defined by the position of Gmin.
(b) Typical behavior of θ as a function of T . Below Tc, θ is finite, which vanishes
at T > Tc.

At the transition there is a discontinuity in CP given by ΔCP = a2
0Tc/2d, in

accord with the mean field theory. However, the magnitude of the disconti-
nuity can be obtained in terms of the Landau parameters.

Taking the magnetization as an example, we can specify M as an order
parameter. As a result, G depends on T, Hmag, M . Those are the intensive
parameters characterizing the state. Landau’s theory corresponds to a mean
field theory that ignores the effect of fluctuations, and hence gives incorrect
predictions of critical exponents and, occasionally, fluctuations may even pre-
vent the transition from being continuous. In spite of this, the application of
Landau’s theory to predicting and understanding the symmetry changes at
the transition point and the qualitative behavior of the system seems to be
quite successful so far. The great virtue of Landau’s theory is that it makes
specific predictions for what kind of non-analytic behavior one should see
when the underlying free energy is analytic.

5.2.2 Ising Model [6, 7] and its Applications

Far and away the most influential model of a system capable of a phase
transition is the Ising model. This was invented by Lenz in 1920 as a simple
model of a ferromagnet, though we shall see that it can be interpreted as
a model of other systems too. Magnetism (or electromagnetism) is one of
the fundamental forces of nature. A field of magnetic force is produced by
the motion of an electrically charged particle, so electric current (which con-
sists of moving electrons) produces a magnetic field. In 1925 Uhlenbeck and
Goudsmit hypothesized that the electron has a “spin”, and thus behaves like
a small bar magnet. In an external magnetic field, the direction of the elec-
tron’s magnetic field is either parallel or antiparallel to that of the external
field.

In the same year Lenz suggested to his student Ising that if an interaction
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was introduced in between spins so that parallel spins in a crystalline lattice
attracted one another, and antiparallel spins repelled one another, then at
sufficiently low T the spins would all be aligned and the model might provide
an atomic description of ferromagnetism. Thus the “Ising model” arose in
which “spins”, located on the sites of a regular lattice, have one of two values,
+1 and –1, and spins with spin values si and sj on adjacent sites interact
with an energy −J ′sisj where J ′ is a positive real number. Thus, spins with
similar values interact with an energy −J ′, and those with dissimilar values
interact with the (higher) energy J ′. The magnetization per spin of a system
of N spins is defined as

∑
i

(si/N) which thus lies between −1 and +1 and

the total energy function (the “Hamiltonian”) is defined as the sum of the
interaction energy, i.e.,

E = −1
2

∑
ij

J ′ijsisj −Hmag

∑
i

si (5.5)

where Hmag breaks the symmetry, the subscripts label lattice sites, and Jij is
defined that J ′ij = J ′ where i and j are neighbouring sites, otherwise J ′ij = 0.

The model’s partition function can now be written as

ZIsing =
∑
{si}

exp

⎡
⎣β

⎛
⎝1

2

∑
ij

J ′ijsisj + Hmag

∑
i

si

⎞
⎠
⎤
⎦

where {si} indicates that the sum should be extended over all possible as-
signments of ±1 to lattice sites.

Ising studied the simplest possible model consisting simply of a linear
chain of spins, and showed that for this d = 1 case there is no (non-zero) Tc

(i.e., the spins become aligned only at T = 0). In 1944, Onsager solved the
model for d = 2 in the absence of an externally applied magnetic field and
showed that the model’s critical exponents were quite different from those
predicted by Landau’s theory, which had been thought correct. An exact
solution for the d = 2 model in non-zero external field has only recently
appeared. Despite decades of intensive effort, we still have no exact solution
for d = 3.

The Ising model can be mapped into the lattice gas, which is a simple
model of density fluctuations and liquid-gas transitions. Since the kinetic en-
ergy doesn’t depend on the position only on the momentum, the statistics of
the positions only relate with the potential energy, and the thermodynam-
ics of the gas only relies on the potential energy for each configuration of
atoms. We divide the d-dimensional space occupied by the gas up into cells
of just the same size as an individual atom. Each atom is obliged to occupy
a single cell, and no cell may contain more than one atom. Let Ri be 0 or
1 decided by whether the cell is occupied or not. Since the gas is non-ideal,
atoms attract each other and the energy of the gas is lower when atoms are
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in adjacent cells than when each lives in glorious isolation. If the attraction
is only between nearest cells, the energy is reduced by −4JRiRj for each
occupied neighboring pair.

The density of the atoms can be controlled by adding a chemical poten-
tial, which is a multiplicative probability cost for adding one more atom. A
multiplicative factor in probability can be reinterpreted as an additive term
in the logarithm energy. The extra energy of a configuration with N atoms
is changed by μN . The probability cost of one more atom is a factor of
exp(−βμ). As a result, the energy of the lattice gas is E = −2

∑
ij

J ′RiRj −
μ
∑
i

Ri. In order to show the correspondence between the lattice gas and the

Ising model, we make the variable transition Rj = (si + 1)/2 and obtain

E = −1
2

∑
ij

J ′sisj − 1
2

∑
i

(4J ′ − μ)si.

Therefore, the lattice model is isomorphic with the Ising model: “spin up”
in the Ising model corresponds to an occupied cell in the lattice model, “spin
down” is related to an empty cell. In the Ising model, Hmag depends (within
constants) on μ and the coupling constant is 4J ′.
β-brass is an alloy consisting of equal numbers of Cu and Zn atoms. At T

= 0 the alloy consists of two interpenetrating cubic lattices, one of Cu and
one of Zn atoms, in such arrangement that each Cu atom is surrounded by
eight Zn atoms, and vice versa for each Zn atom. As T is raised, more and
more Cu atoms stray onto the Zn sub-lattice and vice versa, until at 739 K
the division into two distinct sub-lattices breaks down altogether. Above
739 K, both sub-lattices contain equal numbers of each kind of atoms. This
system can be described by the Ising model as follows:

At low T , the system is ordered because it is energetically preferable to
unlike atoms to become the nearest neighbours rather than the like atoms.
Suppose that the system’s energy is lowered by an amount J ′ for every bond
between unlike atoms on adjacent sites, and raised by J ′′ for every bond
between like atoms on adjacent sites. By a suitable choice of the arbitrary
zero point of the energy scale, we can ensure that J ′ = J ′′.

Now we set the order parameter on the i-th site si to +1 if the site is
occupied by a Cu atom, and to −1 if it is occupied by a Zn atom. Then the

system’s energy function becomes E = −1
2
∑
ij

J ′ijsisj , which is identical with

Eq. (5.5) for the Ising model’s energy function in the case of Hmag = 0.

5.2.3 Critical Exponent [8, 9]

Critical exponents describe the behavior of physical quantities near contin-
uous phase transitions, which are associated with the emergence of power
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law distributions of certain physical quantities. A power law is a special kind
of mathematical relationship between two quantities, which is some poly-
nomial relationship that exhibits the main property of scale invariance. In
physics and mathematics, scale invariance is a feature of objects or laws that
do not change if length scales (or energy scales) are multiplied by a com-
mon factor. The most common power laws relate two variables and have the
form of f(x) = axK + o(xK), where a and K are constants, K is typically
called the scaling exponent, and o(xK) is an asymptotically small function
of xK. Given a relation of f(x) = axK, scaling the argument x by a con-
stant factor causes only a proportionate scaling of the function itself. That
is, f(cx) = a(cx)K = cKf(x) ∝ f(x).

Suppose f(Tr) is a function describing the behavior of a physical quantity,
such as magnetization, where Tr = (T − Tc)/Tc, the reduced temperature Tr

is zero at the phase transition. As Tr → 0, the limit Λ of ln[f(Tr)]/ ln tr, if
it exists, is called the critical exponent associated with f . In this case, we
write f ∼ T Λ

r (“∼” is read as “is asymptotically equal to”). It is important to
remember that this only represents the asymptotic behavior of the function
f(Tr) as Tr → 0. In other words, a number of quantities show a power law
behavior close to Tc, e.g. M(T ) ∼ (Tc − T )βc.

Other examples of critical exponents for thermodynamic quantities are

C ∼ |Tc − T |−αc ,

χ = (∂M/∂Hmag)T ∼ |Tc − T |−γc ,

M(Hmag, Tc) ∼ H
1/δc
mag .

There was an astonishing empirical fact to explain the coincidence of the crit-
ical exponents in very different phenomena, such as magnetic systems, super-
fluid transition (λ transition), alloy physics · · ·. These phenomena, whereby
dissimilar systems exhibit the same critical exponents, are called universal-
ity. Universality is an important concept of the theory of continuous phase
transition. Systems of the same dimension and with a phase transition into
an ordered state with the same symmetry belong to the same universality
class. They have essentially the same critical properties.

One of the successes of the modern theories of critical phenomena is in
finding relations between the various critical exponents-scaling theories. Thus
phase transitions in many different systems may be described by the same un-
derlying scale-invariant theory. In fact, Scale invariance is a feature of phase
transitions in diverse systems. The key observation is that near a phase tran-
sition or critical point, fluctuations occur at all length scales. Diverse systems
with the same critical exponents, which display the identical scaling behavior
as they approach criticality, can be shown to share the same fundamental dy-
namics. For instance, among the critical exponents for magnetic systems are
αc, βc, γc and νc. They are not all independent, and it is possible to derive
inequalities such as αc + 2βc + γc � 2.
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5.3 Thermodynamics of Martensitic [10] and Bainite
Transitions [11]

Martensitic phase transitions are first order, diffusionless, shear (displacive)
solid state structural changes, which can be induced either by variation of T
or by application of stress. It is the origin of properties such as shape memory
effect, superelasticity, and high damping capacity (internal friction). The ap-
plication of thermodynamics to understanding the martensite transition has
been extremely productive over the last several decades in moving towards
the generalization of effects in several steel systems.

During such transitions, a parent phase (the austenite phase γA) trans-
forms into a crystallographic different product phase (the martensitic phase
αM) without any change of composition where γA is the high temperature
phase. On cooling at a proper rate, αM starts to nucleate at the marten-
site start temperature Ms. Upon further cooling, further nucleation of other
γA and growth occur in such a way that αM progressively invades γA. The
transition finishes when all γA has been replaced by αM at the martensite fin-
ish temperature Mf . Depending on the final temperature reached on cooling
(T > Mf), the transition could stop before the whole system has changed into
αM, i.e., a mixture of γA and αM is obtained. On heating, the reverse transi-
tion occurs starting at the austenite start temperature (As) and finishing at
the austenite finish temperature (Af).

A general scheme of G function of γA and αM and their difference ΔG is
reported in Fig. 5.3 as a function of T . At high T, γA has lower G and thus
is more stable than αM.

Kaufman and Cohen, in their pioneering work, first introduced the use-
ful concepts of T0 temperature and driving force, and established a ther-
modynamic framework, which can be applied to martensitic transitions. As
shown in Fig. 5.3, G of γA and αM at T0 are equal, or thermodynamically in
(metastable) equilibrium, i.e.,

G(γA, T0) = G(αM, T0). (5.6)

At any other T , there is a difference in G between αM and γA, which is
a quantitative measure of the driving force for the martensitic transition,
the larger in a positive sense the greater the driving force. According to the
scheme in Fig. 5.3(b), for γA → αM transition, this driving force can be
defined as

ΔG(γA → αM, T ) = G(αM, T )−G(γA, T ), (5.7)

whereas for the reverse transition,

ΔG(αM → γA, T ) = G(γA, T )−G(αM, T ). (5.8)

The experimental determination of T0 depends on bracketing it between Ms

and As. The hysteresis between Ms and As can be reduced by plastic defor-
mation, thus closing the gap to a few degrees. However, in non-thermoelastic
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Fig. 5.3 Schematic representation of G functions of the parent (γA) and marten-
sitic (αM) phases (a), ΔG function between the above two phases (b) and ΔG
function where ΔG(γA → αM,Ms) = ΔG(αM → γA, As) (c). (Reproduced from
Ref. [10] with permission of Elsevier)

alloys, as in Fe-C system, hysteresis between Ms and As can be as large as
hundreds of degrees.

When the entropy difference between the two phases is constant, and
ΔG(γA → αM, Ms) = ΔG(αM → γA, As) [Fig. 5.3(c)], the following equation
holds for non-thermoelastic transitions,

T0 = (Ms + As)/2. (5.9)

When there are no magnetic contributions to G, CP of a solid pure ele-
ment or an alloy presents a smooth trend, and is approximately equal in
the considered temperature range where martensitic transitions usually oc-
cur. This implies that the ΔS(γA → αM) can be assumed to be constant.
On the contrary, when magnetic transitions occur, CP shows the so-called λ
shape, i.e. a sharp peak at Curie or Néel temperature. As a consequence,
the difference in CP between the parent and martensitic phases can be
large, ΔG(γA → αM, T ) is not a linear function of T and the driving forces
ΔG(γA → αM, Ms) �= ΔG(αM → γA, As). Eq. (5.9) is invalid. This occurs
indeed very often. For instance, magnetism is present in Fe-base alloys. Even
when the aforementioned hypotheses are not fulfilled, however, Equation
(5.9) is commonly used as a reasonable approximation for obtaining T0 in
non-thermoelastic martensitic alloys.

In thermoelastic alloys, hysteresis between Ms and As is limited, and
thus bracketing is not required to estimate T0. Unfortunately, it has been
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found for some β-brass that As < T0, and thus the determination of T0

requires special care. The origin of this behavior is related to the accumulation
of strain energy in the direct reaction (on cooling), which is sufficient to
“prematurely” start the reverse transition on heating. However, it has been
recognized that for several thermoelastic transitions, it can be assumed that
the elastic contribution becomes negligible at Ms and Af , i.e. for the first
plate of martensite to form during the direct transition, and for the last
plate to disappear during the inverse transition. Thus, T0 should lie at half
way between Ms and Af and Eq. (5.9) should be modified to

T0 ≈ (Ms + Af)/2. (5.10)

Figure 5.4 reports G(T ) functions of equilibrium phases. For the purpose
of illustration, a generic Fe-X system is considered and G curves of γA and
αM as a function of composition at different T are shown. For an alloy com-
position x0 at a temperature T1 being higher than T0 (Fig. 5.4(a)), γA is
stable, and its G(T1) is given by point A′. When T is decreased down to T0

(Fig. 5.4(b)), the G values of both γA and αM are equal (point B). However,
according to the common tangent rule, the equilibrium state of the system
is a mixture of γA and αM, whose G is given by point B′. At any lower T3

(Fig. 5.4(c)), γA (point C) has the possibility to transform into αM without
composition change (point C′) or into the more stable mixture of αM − γA
(point C′′), whose compositions are given by the tangent points C′′′ and
C′′′′. Although a thermodynamic driving force exists for a transition of γA
into the stable mixture of αM−γA (line CC′′), this reaction requires diffusion
of the components and can be hindered by rapid cooling at low T . Thus, the
martensitic reaction, being diffusionless, can occur even with a lower driving
force (CC′).

The previous thermodynamic scheme is simplified in some regards: (1) In
most cases, both γA and αM are metastable when the martensitic transition
occurs. This implies that in the schemes of Figs. 5.3 and 5.4, curves for one or
more other phases which have lower G(T ) values should be included, i.e. the
“true” thermodynamic equilibrium is different from that including only γA
and αM. However, this “true” equilibrium can be avoided by quenching and
the schemes in Figs. 5.3 and 5.4 are therefore useful to the purpose of describ-
ing the martensitic transition. (2) As previously described, the martensitic
transition and its reverse occur at different T on cooling and heating, with
respect to T0. This is due to the effect of other energetic terms, such as
elastic and plastic energy or irreversible frictional energy, which hinder the
formation of the martensite and its reverse.

The major non-chemical contributions are: (1) An elastic stored energy
Eel(γA → αM), i.e. the energy necessary to accommodate the residual strain
after the martensite transition, and the subsequent slip or twinning at the
habit plane. Eel is reversibly accumulated during the direct reaction and re-
leased in the reverse transition. In non-thermoelastic transitions, irreversible
plastic deformation also occurs. (2) An irreversible frictional energy or fric-
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Fig. 5.4 G(T ) functions for parent and martensitic phases in a generic Fe-X system
as a function of composition at three different temperatures: (a) T1 > T0; (b)
T2 = T0; (c) T3 < T0. (Reproduced from Ref. [10] with permission of Elsevier)

tional work Efr, which is related to the motion of the interface and the cre-
ation of defects during the transition. (3) An interfacial energy contribution
γssA, i.e. the energy released due to the creation of the interface between γA
and αM. In non-thermoelastic transitions this term is rather small in compari-
son with the total driving force, the interface being coherent or semicoherent,
and is often neglected.

Both Eel and Efr are of the order of 50 – 100 J·mol−1 in thermoelastic tran-
sitions, whereas higher values appear in non-thermoelastic ones. The driving
force for the martensitic transition can thus be expressed as Eel +Efr +γssA.
At Ms combining this equation and Eq. (5.7), the following energy balance
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is established,

ΔG(γA → αM) = Eel + Efr + γssA. (5.11)

In light of the aforementioned non-chemical contributions to the energy bal-
ance, the different behaviors of thermoelastic and non-thermoelastic marten-
sites can be rationalized, and experimental observations can be explained. It
has been observed experimentally that the growth and shrinkage of thermoe-
lastic martensitic phases take place in a well defined sequential order, with
the first plate forming during cooling being the last one to disappear during
heating. A necessary condition for this behavior is the absence of plastic ac-
commodation of the transitional shape and volume changes. Eel(γA → αM)
accumulated in the direct reaction is reversibly recovered during the reverse
transition, and therefore helps the reversion of the martensite. In the early
stages of the reverse reaction, it can be large enough to promote the transi-
tion, even without the help of ΔG(γA → αM). As a consequence, As may lie
below the T0. Moreover, the hysteresis in thermoelastic martensites is limited
because of the absence of nucleation and the lower value of elastic energy in
comparison with plastic accommodation.

Salzbrenner and Cohen have carried out a complete series of experiments,
in order to clarify the role of different contributions to these transitions.
Their main results are: (1) If a single crystal is forced to transform with
a single interface, no Eel is accumulated, and the transition proceeds up to
completion with the same T at the interface. The thermal hysteresis observed
is totally due to Efr, which can be assumed constant since the dimensions
of the interface do not change during the transition. Since Ms = Mf , and
As = Af , Eq. (5.9) is valid for determination of T0. (2) Multiple interfaces,
single crystal samples transform with increasing storage of Eel. Since the
transitional shape and volume are constrained, a progressive depression of
the transition curves to lower T in the thermal hysteresis cycle. If nucleation
takes place at a free corner, the specimen can be considered unconstrained
at Ms and Af and Eq. (5.10) can be used. (3) If polycrystalline specimens
are considered, Eel is operative even at Ms and Af . Consequently, while T0

is not changed, these temperatures are shifted to lower values and Eqs. (5.9)
and (5.10) are invalid.

In the non-thermoelastic case, Eel is not a controlling factor of the reac-
tion, and both the direct and reverse transitions require separate nucleation
to start. Now the critical driving force to nucleate martensite from the parent
phase is the same as that in the reverse transition, i.e. ΔG(γA → αM, Ms) =
ΔG(αM → γA, As). With the further assumption that CP values of the both
phases are similar, Eq. (5.9) is generally considered valid and widely applied.

There is another similar transition in steel, namely, bainite transition. In
a far-reaching paper, Zener (1946) attempted to give a rational thermody-
namic description of the phase transitions in steel. He assumed that bainite
growth is diffusionless, any carbon supersaturation in bainitic ferrite is re-
lieved subsequent to growth, by partitioning into the residual austenite. He
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believed that unlike martensite, there is no Eel associated with the growth
of bainite. Thus bainite should form at a temperature just below the cor-
responding equilibrium temperature T0b, where γA and ferrite (αF) of the
same composition have an identical G value. This is schematically shown in
Fig. 5.5.

Fig. 5.5 Schematic illustration of the origin of the T0b curve on the phase dia-
gram. The T ′0 curve incorporates a strain energy term for the ferrite, illustrated on
the diagram by raising the Gibbs free energy curve for ferrite by an appropriate
quantity.

Hultgren at the time proposed a model for the role of substitutional al-
loying elements in steel; at high T where diffusion rates are reasonable, these
elements can redistribute during transition in a way consistent with equilib-
rium. The transition was then said to occur under “orthoequilibrium” con-
ditions. This contrasts with “paraequilibrium” in which the substitutional
alloying elements are unable to partition, although C, which is a fast diffus-
ing interstitial element, redistributes between the phases until its chemical
potential is uniform throughout.

Another important solid transition in steel is the eutectoid transition
with the product phase peralite, which consists of cementite and ferrite. The
mechanism of pearlite transition was believed to be initiated by the nucleation
of cementite. This led to the contrasting suggestion that bainite is initiated
by the nucleation of ferrite. Hultgren put these ideas together and proposed
that upper bainite begins with the nucleation and growth of ferrite with a
paraequilibrium C concentration, causing the residual austenite to become
enriched in C. This bainitic ferrite, unlike the ferrite associated with pearlite,
was considered to have a rational Kurdjumov-Sachs or Nishiyama-Wasserman
orientation relationship with γA in which it grows. This was used to illustrate
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the observed difference in ferrite morphologies in bainite and pearlite. Bainitic
ferrite was always found to consist of individual plates or sheaves whereas
the ferrite in pearlite apparently formed alternating plates of a regularly
spaced two-phase lamellar aggregate. The enrichment of austenite with C
should eventually cause the paraequilibrium precipitation of cementite from
austenite in a region adjacent to the bainitic ferrite. At this time, pearlitic
cementite was thought to bear a rational orientation relation to the austenite
grain into which the pearlite colony grows whereas bainitic cementite should
be randomly orientated to the austenite in which it precipitated. This process
of ferrite and subsequent cementite precipitation then repeated, giving rise to
the sheaf of bainite. Thus, the upper bainite is similar to pearlite but growing
under paraequilibrium conditions and different in the orientation relations
with austenite. Later, Hillert pointed out an important distinction between
pearlite and upper bainite; in the former case, the ferrite and cementite phases
grow cooperatively, whereas in the latter case, the plates of bainitic ferrite
form first with the precipitation of cementite being a subsequent reaction.

A bainitic microstructure is far from equilibrium. The free energy change
accompanying the formation of αF in a Fe-0.1C wt% alloy at 813 K is
−580 J·mol−1, whereas that for the formation of an equilibrium mixture
of allotriomorphic ferrite and austenite at the same T is −1050 J·mol−1.
Consequently, the excess energy of αF is about 470 J·mol−1 relative to al-
lotriomorphic ferrite, equivalent to about 0.04 in units of RTm. This is about
an order of magnitude larger than the stored energy of a severely deformed
pure metal. It is small, however, when compared with highly metastable
materials such as rapidly-quenched liquids which solidify as supersaturated
solutions, or multilayered structures having a high density of interface (Table
5.1). Thus, bainitic steel can be welded whereas all the other materials listed
with higher stored energy would not survive the welding process.

Table 5.1 Excess energy of metastable materials adapted from Turnbull

Example Excess energy (RTm)

Highly supersaturated solution 1
Amorphous solid 0.5

Artificial multilayers 0.1
Bainite 0.04

Cold-deformed metal 0.003

The concepts of equilibrium, metastable equilibrium and indeed con-
strained equilibrium remain useful in spite of the large excess energy, which
can be applied to αF in the interpretation of the transition mechanism and
to the design of modern steel.

The atom-probe experiments have established that there is no redistri-
bution of substitutional solutes during the bainite transition. These experi-
ments cover the finest conceivable scale for chemical analysis. They rule out
any mechanism which requires the diffusion of substitutional solutes. This
includes the local equilibrium modes of growth. By contrast, all experimen-
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tal data show that pearlite grows with the diffusion of substitutional solute
atoms. Cr, Mo, Si, and Co have been shown to partition at the reaction front.
The extent of partitioning is smaller for Mn and Ni, especially at large un-
dercoolings, but there is localised diffusion. These observations are expected
because pearlite is the classic example of a reconstructive transition.

Solutes in iron affect the relative stabilities of γA and αF. This thermody-
namic effect is identical to all transitions. We have seen, however, that sub-
stitutional solutes do not diffuse at all during displacive transitions whereas
they are required to do so during reconstructive transition. It is for this rea-
son that the observed effect of solutes, on the rate of transition, is larger for
reconstructive than for displacive transition as shown in Fig. 5.6.

Fig. 5.6 Time-temperature-transition (TTT) diagrams showing the greater retard-
ing effect that Mn has on a reconstructive transition compared with its influence
on a displacive transition.

Bainite forms at somewhat higher T where C can escape from the plate
within a fraction of a second. Its original composition cannot thus be mea-
sured directly. There are three possibilities. C may partition during growth
so that the ferrite may never contain any excess C. The growth may on the
other hand be diffusionless with C being trapped by the advancing interface.
Finally, there is intermediate case in which some C may diffuse with the
remainder being trapped to leave the ferrite partially supersaturated.

Diffusionless growth requires that transition occurs below T0b, when the
free energy of αF becomes smaller than that of γA of the same composition.
Growth without diffusion can only occur if C concentration of γA lies to
the left of the T0b curve. It is found experimentally that transition to αF

does stop at T0b boundary. The balance of evidence is that the growth of αF

below Bs involves the successive nucleation and martensitic growth of sub-
units, followed in upper αF by the diffusion of C into the surrounding γA.
The possibility that a small fraction of C is nevertheless partitioned during
growth cannot entirely be ruled out, but there is little doubt on whether αF
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is at first substantially supersaturated with C.
The chemical potential is not uniform in steel when the bainite reaction

stops. The reaction remains incomplete in that the fraction of αF is less
than expected from a consideration of equilibrium between γA and αF. This
“incomplete reaction phenomenon” explains why the degree of transition to
αF is zero at Bs (starting transition temperature of bainite) and increases
with undercooling below Bs in steel where other reactions do not overlap the
formation of αF.

Although the bainite reaction stops before equilibrium is reached, the
remaining γA continues to decompose by reconstructive transition, albeit at
a greatly reduced rate. Pearlite often forms sluggishly after αF. The delay
between the cessation of αF and the start of pearlite varies with the steel
composition and transition temperature. In one example, the bainite reaction
stopped in a matter of minutes, with pearlite growing from the residual γA
after some 32 h at T = 723 K. In another example, isothermal reaction
to lower αF at 751 K was completed within 30 min, but continued heat
treatment for 43 days caused the incredibly slow reconstructive transition to
two different products. One of these was alloy-pearlite which nucleated at the
austenite grain boundaries and developed as a separate reaction. The other
involved the irregular, epitaxial and reconstructive growth of ferrite from the
existing αF. The extent of ferrite growth in 43 days was comparable to the
thickness of the bainite plates, which took just a few seconds to form. The
two-stage decomposition of γA is more difficult to establish for plain carbon
steel where the reaction rates are high, with the pearlite reaction occurring
a few seconds after αF.

5.4 Glass Transition

5.4.1 Freezing into Solid State: Glass Formation versus Crystal-
lization [12, 13]

A wide variety of materials ranging from metals to polymers can solidify as
glasses rather than crystals. In order to obtain solid, we can do the following
experiment, that is, cooling the vapor of the material until it condenses into
the liquid state, and then further gradually cooling the liquid until it solidifies.
Results of such an experiment, for a given quantity of the material, may be
represented on a V (T ) plot such as the one schematically shown in Fig. 5.7.

Figure 5.7 should be read from right to left, since time runs in that di-
rection during the course of the quenching (T -lowering) experiment. A sharp
break or bend in V (T ) marks a change of phase occurring with decreasing T .
The first occurs when the gas condenses to the liquid phase at Tb. Continued
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Fig. 5.7 The two general cooling paths by which an assembly of atoms can con-
dense into the solid state. Route 1© is the path to the crystalline state; route 2© is
the rapid-quench path to the amorphous solid state.

cooling now decreases the liquid volume in a continuous fashion, the slope of
the smooth V (T ) curve defining the liquid’s α = (1/V )(∂V/∂T )P (The ex-
periment is assumed to take place at P ≈ 0). Eventually, when T is brought
low enough, a liquid→solid transition takes place with the exception of liquid
He, which remains liquid as T → 0 under P → 0. The solid then persists in
T = 0, its signature in terms of V (T ) being a small slope corresponds to the
low α value which characterizes a solid. A liquid may solidify in two ways:
One is discontinuous with a crystalline solid, the other is continuous with an
amorphous solid (glass).

The two solids resulting from these two quite different solidification sce-
narios are labeled, correspondingly, 1© and 2© in Fig 5.7. The former occurs
at Tm. The liquid→crystal transition is marked by a discontinuity in V (T ),
an abrupt contraction of the volume of the crystalline solid. But crystal-
lization takes time through nucleation and growth by outward propagation
of the crystal/liquid interfaces. In a quenching experiment carried out at
a sufficiently low cooling rate, this is usually the route taken to arrive at
the solid state. At sufficiently high cooling rates however, most materials
alter their behavior and follow route 2© to the solid phase. Tm is bypassed
without incident, and the liquid phase persists until a lower glass transition
temperature Tg is reached and the second solidification scenario is realized.
The liquid→glass transition occurs in a narrow temperature interval near Tg.
There is no volume discontinuity, instead V (T ) bends over to acquire the
small slope characteristic of the low α of a solid.

With the liquid being cooled at a finite rate, the liquid may be taken
below Tm along the V (T ) trajectory, which smoothly continues the curve from
higher T . In the temperature interval between Tm and Tg, the liquid is referred
to as the undercooled liquid. If its temperature can be taken below Tg before
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crystallization has time to occur, the undercooled liquid solidifies as the glass
and remains in this form essentially indefinitely. Glass formation, therefore,
is a matter of bypassing crystallization. The channel to the crystalline state
is evaded by quickly crossing the dangerous temperature regime between
Tm and Tg. For a material to be prepared as an amorphous solid, cooling
must proceed “fast enough and far enough”. “Far enough” means that the
quenching must be taken to T < Tg, and “fast enough” implies that Tg <
T < Tm must be crossed in a time too short for crystallization to occur. In
contrast to crystallization, which is heterogeneous (pockets of the solid phase
appear abruptly within the liquid and then grow at its expense), the glass
transition occurs homogeneously throughout the material. This transition
(i.e., all liquids would form glasses) would be observed for any liquid when
sufficiently undercooled and the amorphous state is a universal property of
condensed matter, no matter whether ceramic, polymeric or metallic.

The fundamental difference between crystals and glasses comes from their
microscopic, atomic-scale structure. In crystals, the equilibrium positions of
the atoms form a translationally periodic array. The atomic positions exhibit
long-range order. In amorphous solids, long-range order is absent; the array of
equilibrium atomic positions is strongly disordered. For crystals, the atomic-
scale structure is securely known at the outset from the results of diffraction
experiments, and it provides the basis for the analysis of such properties
as electronic and vibrational excitations. For amorphous solids however, the
atomic-scale structure is itself one of the key mysteries.

Roughly speaking, a glass is a material that is out of equilibrium, having
the disordered molecular structure of a liquid and the rigidity of a solid. An
amorphous solid is metastable with respect to some crystalline phase with
the thermodynamic equilibrium state of the lowest energy. While this state-
ment itself is correct, the emphasis is misplaced because experience teaches
that the crystalline ground state is normally kinetically inaccessible. Once
formed, glasses can persist without practical limit (> 10n year). The situ-
ation is similar to that of crystalline metastable diamond (the most stable
crystalline structure is graphite at ambient T and P ). Since the same is true
of a glass well below Tg, metastability becomes an academic matter. But
the underlying physics of the glass transition remains one of the most fas-
cinating open questions in materials science and condensed-matter physics.
A hotly debated issue is whether the glass transition involves an underlying
thermodynamic or kinetic phase transition. The Monte Carlo simulation [14]
provides further evidence that the glass transition is not thermodynamic in
origin.

A thermodynamic phase transition must involve abrupt changes in cer-
tain thermodynamic properties, such as V . According to the thermodynamic
viewpoint, the experimentally observable glass transition is a kinetically con-
trolled manifestation of an underlying thermodynamic transition. A detailed
view of the vicinity of the liquid→glass transition is shown in Fig. 5.8 for the
case of the organic glass polyvinylacetate (CH2CHOOCCH3). V (T ) functions
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are cooling rate dependent where two experimental time scales are 0.02 and
100 hr while the the fixed initial temperature is well above Tg. Change this
time by a factor of 5000 shift Tg by only 8 K. Thus this effect, while quite
real, is small.

Fig. 5.8 V (T ) functions of an organic material with two different cooling rates
in the neighborhood of the glass transition while α(T ) function is under the fast-
cooling rate (0.02 hr). The slope changes in the curves signal the occurrence of the
liquid→glass transition.

The reason that Tg shifts to lower T when the cooling process is extended
over longer time resides in the temperature dependence of a typical molecular
relaxation time tr. The quantity 1/tr characterizes the rate at which the
molecular configuration of the condensed system adapts itself to a change in
T . This quantity varies enormously during the cooling process. An indication
of this dramatic variation is given at the top of Fig. 5.7 where in crude
order-of-magnitude terms, values of tr are associated with three temperatures:
Tm, Tg, and a temperature well below Tg (say, Tg-50 K). The structural-
rearrangement response time may increase from the order of 10−12 sec at Tm

to 1010 years at Tg-50 K. As T traverses the region near Tg, tr(T ) becomes
comparable to the time scale of the measurement. As T is lowered below Tg, tr
becomes much longer than any experimentally accessible time, so that the
material loses its ability to rearrange its atomic configuration in harmony with
the imposed decline of T . The atoms get frozen into well defined positions
(equilibrium positions, about which they oscillate), which correspond to the
configuration they had at Tg: If a longer experimental time t is available,
then a lower T is needed to achieve the condition tr(T ) > t, which freezes
the atoms into the configuration that they maintain in the amorphous solid
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state. Note that the mildness of the t dependence on Tg is simply the other
side of the coin with respect to the severity of the exceedingly steep function
tr(T ).

While kinetic effects clearly play a role in the operational definition of Tg,
it is generally believed that the observed glass transition is a manifestation
of an underlying thermodynamic transition viewed as corresponding to the
limit t→∞, the average cooling rate −dT/dt→ 0.

5.4.2 Characteristic Properties of Glass Transition [12]

The basic thermodynamic response function to be experimentally examined
in connection with a temperature-induced change of phase is CP . Figures
5.9(a) and 5.9(b) shows CP (T ) data for two very different amorphous solids,
the covalent glass As2S3 and the metallic glass Au0.8Si0.1Ge0.1. In each case,
the glass transition clearly appears as a “step” in the CP . For As2S3, CP (T )
can be followed continuously from low temperature up through Tg and well
into the liquid regime to Tm and beyond. For Au0.8Si0.1Ge0.1, a portion of
the liquid curve (shown with dash line in the figure) is extrapolated between
measured values taken just above Tg and below Tm, because crystallization
intervenes shortly after passing these temperatures at the relatively slow heat-
ing or cooling rates required for measuring CP . Figure 5.9 provides the first
thermodynamic evidence of a glass transition in an amorphous metal, ob-
served upon warming a splat quenched sample through Tg.

Fig. 5.9 (a) CP of the crystalline, amorphous, and liquid forms of a covalent As2S3,
which is a prototypical galss former. (b) CP signature of the glass transition in a
metallic glass.

The behavior of CP (T ) near Tg in Figs. 5.9(a) and 5.9(b) is qualititavely
the same as that of α(T ) in Fig. 5.8: Both the CP and the α step up, in a
narrow temperature interval, from a low value characteristic of the glass to a
high value characteristic of the liquid. This observation characterizes the glass
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transition closely resembling a second-order thermodynamic transition. While
V (T ) is continuous through the vicinity of Tg, α(T ) and CP (T ) definitely
change their values upon passing through this region. However, these changes
are not sharp (as they should be in a true second-order transition) but instead
are diffuse, occurring over a small temperature interval rather than at a single
sharply definable T . Thus the kink in V (T ), separating the undercooled liquid
from the amorphous solid in Fig. 5.7, is rounded, so that the corresponding
step in α(T ), while steep, is not a vertical discontinuity. Similar statements
apply to the bend in the S(T ) function and to the corresponding step in
CP (T ). Nevertheless, the steps exhibited near Tg in Figs. 5.9(a) and 5.9(b)
are certainly quite clear and pronounced. It is therefore convenient, in order to
further distinguish the solidification transition which occurs at Tg from that
which occurs via crystallization (in a true first-order transition) at Tm, to
phenomenologically characterize the glass transition as an apparent, diffuse,
second-order transition.

The confluence of both the thermodynamic and the kinetic dimensions
of the glass transition presents one of the most formidable problems in con-
densed matter physics. The two best known theoretical treatments, with
both adopting an equilibrium thermodynamic viewpoint, are the polymer-
configuration model of Gibbs and DiMarzio [15] and the free-volume model
of Turnbull and Cohen [16, 17].

Strong empirical support for the idea that the observed glass transition is
the kinetically modified reflection of an underlying equilibrium transition is
contained in data of the type displayed in Fig. 5.10. The curve shown here,
obtained by integrating CP (T ) heat capacity data for the hydrogen-bonded
glass-forming liquid H2SO4·3H2O, tracks S(T ) of the liquid from Tm down
to Tg. The quantity plotted is the excess entropy Sex = Sliquid − Scrystal, the
amount by which the entropy exceeds that of the crystal at the same T . As T
decreases from Tm to Tg, Sex drops sharply, which comes from the fact that
just as in Fig. 5.9(a), the CP of the liquid is substantially larger than that
of the crystal. Data are not shown here for the glass (T < Tg), but since we
know that both the crystalline and amorphous solids have nearly equal CP ,
it follows immediately that Sex levels off at low T to a nearly constant value
close to Sex(Tg).

The significant point about Fig. 5.10, the key feature which bears ma-
terially on the question of an underlying thermodynamic transition, is the
dash line that extrapolates the liquid curve below Tg. However, were we to
adopt a view of the glass transition as a purely kinetic phenomenon, it would
be possible to probe the dash curve by shifting Tg to lower T, thereby ex-
tending the life of the liquid phase. Extend the curve to Sex = 0, where
t → ∞, at a T not far from the observed Tg in Fig. 5.10, and still quite far
from T = 0. Further extending leads to the extrapolated Sliquid < Scrystal

or Sex < 0, which creates an “entropy crisis”. This explanation originates in
the famous work of Kauzmann [18]. Since the existence, at the same tem-
perature, of an amorphous phase with lower S than the stable crystalline
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Fig. 5.10 The excess entropy of a glass-forming liquid in the region between Tm

and Tg, showing the extrapolation to zero excess entropy at a temperature near Tg.

phase is physically implausible, the extrapolated curve cannot be followed
beyond the T (Sex = 0) at which the excess entropy vanishes. T (Sex = 0) is
defined as Kauzmann temperature TK, which is a lower bound of Tg. Thus
thermodynamic constraints do strongly limit the influence of kinetic effects
upon Tg since Tg → TK as cooling rate goes to zero.

5.4.3 Size Effect on Glass Transition [19]

An attractive choice for studies of finite size effects on the glass transi-
tion is polymer thin films since they are experimentally easy to access. The
first study of this issue was done by Bares in 1975, where it was observed
that Tg of styrenebutadiene-styrene triblock copolymer decreases as its ζ in-
creases and its molecular weight Mw decreases. Now we know that Tg of a
free-standing polymer thin film decreases as r decreases. However, Tg of a
substrate-supported film can increase or decrease depending on the strength
of chemical interaction between the support and the film and the thickness
of the film while Mw has little effect on Tg. This observation leads to an
argument that the radius of gyration of a molecule Rg, which depends on
Mw, has no effect on Tg when r of the film is equal to or smaller than Rg

(dozens of to hundred nanometers). In light of this, it is hypothesized that
the correlation length for intermolecular cooperative rearrangement ξ, which
determines the glass transition behavior, is independent of Mw.

One way to find a unified model for the size-dependent glass transition is
to utilize an analogy between the glass transition and the melting transition.
The both reflect a common tendency toward order, even if the transitions
have different classes (second and first order transitions, respectively). Thus,
finite size effects of Tg may be related to these on crystal melting. Accord-
ing to Lindemann’s criterion for melting, as long as σ of atoms or molecules
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reaches a critical fraction of interatomic distance, a crystal will melt. During
the transition, the viscosity of the crystal will drop sharply. In fact, this is also
the transition characteristic of a glass transition. Since glasses and crystals
as solids have the same solid feature, their vibrational characteristics should
be similar at their melting temperatures of Tg and Tm [19]. As a phenomeno-
logical observation, it is assumed that σ2

g(∞) ≈ σ2(∞) where the subscript
“g” denotes Tg although there is no rigorous justification for this. Substitut-
ing this relationship into Eq. (3.80), namely, letting Tg(r), Tg(∞), σ2

g(r) and
σ2

g(∞) replace Tm(r), Tm(∞), σ2(r) and σ2(∞), it reads

Tg(r)/Tg(∞) = σ2
g(∞)/σ2

g(r) = exp{−(αr − 1)/[(r/r0)− 1]}. (5.12)

In Eq. (5.12), for free-standing films or those supported by a passivated sub-
strate where there is a weak chemical film/substrate interaction of van der
Waals force, the corresponding αr(αs) has been determined by

αs = [2ΔCpg(∞)/(3R)] + 1 (5.13)

where ΔCpg(∞) is the heat capacity difference between the bulk glass and the
bulk liquid at Tg(∞). This generalization of Eqs. (3.80) and (3.84) is based
on consideration of the transition order. As a melting transition, it is a first
order transition characterized by a discontinuous change of the first deriva-
tive of the Gibbs free energy, or ΔSm. Although there are kinetic aspects
to be consistent in a narrow temperature range near Tg, the glass transition
is still an equilibrium thermodynamic transition with little diffuse heat ca-
pacity change. Thus, a glass transition as a second order one behaves with
a discontinuous change of the second derivative of the Gibbs free energy, or
ΔCpg. αs > 1 in Eq. (5.13) since ΔCpg(∞) is positive. Thus, Tg(r) decreases
as r decreases in light of Eq. (5.12). Note that h in Eq. (3.79) is defined as
the smallest unit in crystals, which has different vibration properties when
the unit is located on the surface or within the crystals.

For a polymer film deposited on a substrate, the substrate could produce
long-range effects on chain connectivity owing to the chemical interaction
between the substrate and the film. If this chemical interaction is similar in
strength to van der Waals force among the chain molecules, this interaction
will only lead to a disappearance of one surface, which lets Eq. (3.79) be r0 =
(3−d)h/2. When the chemical interaction between the substrate and the film
is stronger than the van der Waals force, such as hydrogen bonding between
the polymer and the SiO2 surface, αi = σ2

i (r)/σ2
v(r), where the subscript

“i” denotes the interface. Since αs = σ2
s (r)/σ2

v(r), αi = αsσ
2
i (r)/σ2

s (r). It is
assumed that the bond strength ε is inversely proportional to σ2, namely,
σ2

s (r) ∝ 1/εs and σ2
i (r) ∝ 1/εi. Thus, σ2

i (r)/σ2
s (r) = εs/εi, or [20],

αi = αsεs/εi. (5.14)

If εs = εi, this is possible when nanoparticles are embedded into a certain
liquid, αi = αs = 1 and Tg(r) = Tg(∞). When εs and εi have comparable
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sizes, assuming that the total effect of both surfaces and the film/substrate
interface on Tg(r) is additive, there is

Tg (r)
Tg(∞)

=
{

exp
(
− αs − 1

(r/r0)− 1

)
+ exp

(
− αi − 1

(r/r0)− 1

)}/
2. (5.15)

Figure 5.11 compares Tg(r) function of polystyrene (PS) films with differ-
ent surface conditions. As shown in the figure, when the molecular force at
the interface (surface) is stronger than that within the film, a superheating
is present. In an opposite case, an undercooling occurs. Note again that the
size dependence of Tg(r) is much weaker than Tm(r) since the glass transition
is a second order transition where Cpg(∞) value in a size about (1/4− 1/5)
R in Eq. (5.13) is much smaller than the usual ΔSvib(∞) ≈ R.

Fig. 5.11 Tg(r) function of free-standing polystyrene (PS) films and PS films
supported by Si substrate with hydrogen bonding in terms of Eqs. (5.12), (5.13),
(5.15) and (3.79). The dash line denotes Tg(∞) of PS. For free-standing PS films,
d = 2, αs = 1.154 determined by Eq. (5.13) where Cpg(∞) = 30.7 J·mol−1·K−1 =
1.919 J·g-atom−1·K−1, Tg(∞) = 375.15 K, r0 = ξ = 5 nm with c1 = 1 in terms
of Eq. (3.79) where ξ = ξ[T < Tg(∞)] = 5 nm, which is used to substitute h for
polymers. The symbol shows the experimental results. For PS films supported
by Si substrate with hydrogen bonding, εi = 4.5 kcal·mol−1 is the mean hydrogen
bonding strength of 4− 5 kcal·mol−1, εs = 1.5 kcal·mol−1 shows the mean van der
Waals force of 1 − 2 kcal·mol−1. Thus, αi = 0.388 5 in terms of Eq. (5.14). r0 =
ξ = 2.5 nm with c1 = 1 in light of Eq. (3.79) where ξ = ξ[Tg(∞)] = 2.5 nm. The
symbol. denotes the experimental evidence. (Reproduced with permission from
Ref. [19])

When a blend as a compatible system consists of two polymers where their
interaction is essentially van der Waals force, the blend could be considered as
a mixture and their properties may be additive. Let w′ be the weight fraction
of the second polymer component, the corresponding Tg(w′, r) function of
thin films may be determined by the Fox equation,

1/Tg(w′, r) = (1− w′)/Tg(0, r) + w′/Tg(1, r). (5.16)
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Equation (5.16) supplies an easy way to determine Tg(w′, r) function of poly-
mer alloys when Tg(0, r) and Tg(1, r) are known from Eq. (5.12) or Eq. (5.15)
where w′ = 0 or w′ = 1 is considered for components. Note that Eq. (5.16) for
bulk is simply extended for thin films due to their interaction of two polymer
components.

Figure 5.12 presents Tg(w′, r) function of poly(2,6-dimethyl-1,4-phenylene
oxide)/polystyrene (PPO/PS) blended films supported by a passivated Si
substrate [21]. Good correspondences between Eq. (5.16), experimental re-
sults, and computer simulation results are shown where Tg(w′, r) decreases as
r decreases and decreases as w′ increases since Tg(1,∞) < Tg(0,∞). The suc-
cessful application of Eq. (5.16) implies that the chemical interaction between
polymer films is weak. Thus their interaction nature of van der Waals force
is not necessary to be specially considered. The properties of the composite
can be simply determined by an algebra sum of the components.

Fig. 5.12 Tg(w
′, r) function of PPO/PS [poly(2,6-dimethyl-1,4-phenylene ox-

ide)/polystyrene] blend films supported by a passivated Si (100) substrate in terms
of Eqs. (5.12), (5.13), and (5.16) with c1 = 1/2 in Eq. (3.79) since the interaction
between the film and the substrate interface is similar to that within polymer. For
PPO, Tg(0,∞) = 483 K, Cpg(∞) = 1.591 J·g-atom−1·K−1, and r0 = ξ = 9 nm.
For PS, Tg(1,∞) = 375.15 K, Cpg(∞) = 1.919 J·g-atom−1·K−1, and r0 = ξ = 5
nm. The symbols and denote experimental and computer simulation results,
respectively. (Reproduced with permission from Ref. [19])
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5.5 Ferromagnetic and Antiferromagnetic Phase Transi-
tions of Nanocrystals

5.5.1 Size-dependent Ordering Temperatures of Ferromagnetic
and Antiferromagnetic Nanocrystals [22]

The Curie temperature TC and the Néel temperature TN are the most im-
portant properties to characterize ferromagnetic (FM) and antiferromag-
netic (AFM) phase stabilities, which are mostly present in low-dimension.
such as thin films deposited on substrates of Fe/Au(100), Co/Cu(111), and
Ni/Cu(100) systems. Interest in the thin films, superlattices, nanoparticles
and nanorods of AFM insulators has grown for both fundamental stud-
ies and device application, for example, Ho/Nb/Y, Ho/Y/Nb, CoO/SiO2,
CoO/MgO, CoO/NiO, CoO/Fe3O4, NiO/MgO thin films and CuO nanopar-
ticles and nanorods.

Generally, for free nanocrystals and thin films deposited on nonmagnetic
substrates, TC(r) and TN(r) functions are almost size-independent at r > 5
nm; as r is further reduced, TC(r) and TN(r) decrease; finally, TC(r) and
TN(r) approaches 0 K for small enough r (usually a few monolayers). Fur-
thermore, due to the different ζ values of free nanocrystals, the change of the
TC(r) function of nanorods or nanowires with r is less than that of nanopar-
ticles, but greater than that of thin films. Whereas the TN(r) of CoO thin
films supported by NiO and Fe3O4 substrates increases as r decreases, which
is attributed to the vicinity effect at the NiO/CoO and Fe3O4/CoO inter-
faces, where the exchange coupling of CoO is enhanced. This differs from the
experimental results of Fe/Cr(001), where TN(r) decreases with dropping r,
which could be induced by the spin-frustration effect in the vicinity of the
rough Fe/Cr(001) interfaces, where the interfacial exchange energy can be
minimized only locally and frustration of the interfacial spins occurs since Fe
and Cr have magnetically long-range order.

To understand the underlying mechanisms for TC(r) and TN(r) functions,
the pioneering theoretical work of Fisher and his co-workers strongly influ-
ences our general understanding [23], in which ξ is defined as the distance
from a point beyond which there is no further correlation of a physical prop-
erty associated with that point, and follows the temperature-dependent func-
tion ξ(T ) = ξ0T

vc
r , where Tr = 1 − T/TC is the reduced temperature, ξ0 is

a macroscopic length, and vc is a universal critical exponent. This scaling
relationship leads to shift of TC(r) to lower temperature than that of the
bulk when ξ exceeds 2r. As far as thin films concerned, when 2r > ξ,

TC(r)/TC(∞) = 1− [(ξ + tf)/(4r)]L, (5.17a)
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with L= 1/vc, tf denotes the thickness of a monolayer. When 2r < ξ,

TC(r)/TC(∞) = (2r − tf)/(2ξ). (5.17b)

Since nanoparticles have different characteristics of TC(r) functions from
those of thin films, a unified model should be considered. In light of the
effect of the breaking of exchange bonds, TC(r) function of nanoparticles has
been proposed,

TC(r)/TC(∞) = 1− (3ΔL)/(4r) (5.18)

where ΔL is the thickness of surface layer of nanoparticles. However, Eq.
(5.18) differs from experiment data of TC(r) function of Fe3O4 nanoparticles
since a constant ΔL cannot satisfactorily describe this case in the full size
range.

Since the dimension of nanocrystals d significantly affects the TC(r) func-
tion, while Eqs. (5.17) and (5.18) consider the cases of d = 2 for thin films
and d = 0 for particles respectively, they thus exhibit different forms. Sun
established a unified model to consider the dimension effect on TC(r) by in-
corporating the bond order-length-strength (BOLS) correlation mechanism
into the Ising premise,

TC(r)/TC(∞) = 1 +
∑
i�3

xi(zibq−w
i − 1) (5.19)

where qi = hi/h = 2/{1 + exp[(12 − zi)/(8zi)]} shows a CN dependent
reduction of h, zib = zi/zb with zi and zb being the coordinates with and
without CN imperfection, respectively, and xi = τ ′hqi/D is the portion
of atoms in the i-th atomic layer from the surface compared to the total
number of atoms of the entire solid. i = 1, 2, 3 corresponds to thin films,
nanorods, and nanoparticles, respectively, although the physical background
of this definition is unclear. The power index w as an indicator of the bond
nature is an adjustable parameter. Equation (5.19) has a good correspondence
with experimental results when w ≈ 1.

Since Eq. (5.19) has an adjustable parameter, further efforts need to be
made. Based on the size-dependent cohesive energy function, TC(r) of thin
films can be given as

TC(r)/TC(∞) = {1− 1/[4r/(c1h)− 1]} exp{[−2ΔSb/(3R)]/[4r/(c1h)− 1]}
(5.20)

where ΔSb is the bulk evaporation entropy of crystals. c1 is added as an
additional condition to different surface states. c1 = 1 for the nanocrystals
with free surface. When the interface interaction between the nanocrystals
and the corresponding substrate is weak, such as thin films deposited on inert
substrates, the film/substrate interaction is weak van der Waals forces while
the inner interactions within the thin films are strong chemical bonds, c1 =
1/2. If this strength on the interface is comparable with that within films,
c1 varies somewhat. When these are similar, which is equal to the case that
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one of the two surfaces of the films disappears, c1 = 1/2 is thus got (the side
surfaces of the thin films are neglected due to the low thickness). For more
complicated interfaces, c1 may be considered case by case between 1/2 and
1. Equation (5.20) has presented a qualitative explanation for drop of TC(r)
function of nanocrystals with decreasing of r.

In addition to Eqs. (5.17)–(5.20), another theoretical model, a finite-size
scaling relationship, has also been proposed for reproducing TC(r) functions
of Co/Ni alloys,

[TC(∞)− TC(r)]/TC(r) = [(r − r′)/ξ0]−w (5.21)

with r′ denoting the finite half-thickness of films at TC(r) = 0. Although Eq.
(5.21) can also fit the experimental data of Co, Co1Ni1, Co1Ni3 and CoNi9, it
strictly holds only in the large size limit of r through help of three adjustable
parameters r′, ξ0 and w and their physical meanings are unclear.

In the explanations of TN(r) functions, besides the empirical law that is of
similar form of Eq. (5.21), the finite-size scaling law has also been employed
to analyze the experimental data [24],

TN(r)/TN(∞) = 1− (ξ0/2r)w, (5.22)

and ξ(T ) = ξ0[1 − T/TN(∞)]−v, where ξ0 is the extrapolated correlation
length at T = 0 K.

In magnetic materials, the spins are coupled through the strong, short-
range exchange interactions and the long-range magnetic dipolar interactions.
It is well known that near TC, there exist two opposite forces: the ordering
force due to the exchange interaction of magnetic moments, and the disor-
dering force of lattice thermal vibrations. Based on the mean-field approxi-
mation,

kBTC(∞) = Eexc(∞) (5.23)

where Eexc is the spin-spin exchange interaction energy.
The average thermal vibrational energy is related to T by an equipartition

relation of m(2πvE)2σ2(T ) = kT (Eq. (3.63)). In terms of this relationship
and Eq. (5.23), at TC(∞), the thermal vibration of atoms will destroy the
magnetic ordering due to the exchange interaction of nearest-neighbor atoms
with σ2[TC(∞)] = kTC(∞)/[m(2πvE)2] = Eexc(∞)/[m(2πvE)2]. Similarly,
based on Lindemann’s basic assumption that melting occurs when σ reaches a
fraction of atomic diameter c at Tm(∞), σ2[Tm(∞)] = kTm(∞)/[m(2πvE)2] =
(ch)2 and ΘD(∞) = c[Tm(∞)/(mh2)]1/2. In terms of the above three rela-
tionships and an assumption that Eexc(∞)/(2πvEc2)2 = A′ with A′ being a
material constant, one can obtain

TC(∞) ∝ Θ2
D(∞). (5.24)

If FM and AFM nanocrystals have the same crystal structure of the corre-
sponding bulk, Eq. (5.24) can be extended to nanometer size, TC(r) ∝ Θ2

D(r).
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Thus, TC(r)/TC(∞) = Θ2
D(r)/Θ2

D(∞). Substituting Eq. (3.80) into this equa-
tion leads to TC(r)/TC(∞) = Eexc(r)/Eexc(∞) = exp[−(αr − 1)/(r/r0 − 1)].
The same case should occur for TN(r)/TN(∞) function. Therefore,

TC(r)/TC(∞) = TN(r)/TN(∞) = Eexc(r)/Eexc(∞)
= exp[−(αr − 1)/(r/r0 − 1)]. (5.25)

For metallic or compound crystals with free surfaces, αr is determined by
Eq. (3.84). While FM or AFM films are epitaxially grown on substrates, the
effect of such epitaxial film/substrate interfaces on αr must be considered
since the atomic vibration at interfaces differs from that at free surfaces.
Based on the Ising model, the simplest case is that only the surface and
interface coupling constants (Js and Ji) are different from the rest, where
the subscript “i” denotes the interface. For the sake of simplicity, the effect
induced by the exchange interface thickness is neglected while Ji = Js + Jsub

is assumed to be a first approximation with the subscript “sub” denoting
the substrate. Thus, αi = σ2

i (r)/σ2
v(r) = αsσ

2
i (r)/σ2

s (r) in light of the def-
inition of α where αs = σ2

s (r)/σ2
v(r). Since the magnitude of the exchange

interaction is proportional to the bond strength ε, the bond strength is re-
versely proportional to σ2, σ2(r) ∝ 1/J, σ2

s (r) ∝ 1/Js and σ2
i (r) ∝ 1/Ji. As a

consequence, σ2
i (r)/σ2

s (r) = Js/Ji, or,

αi = αsJs/Ji. (5.26)

If the effects induced by surface and interface on TC(r) and TN(r) are additive,
according to Eq. (5.25), it reads

TC(r)/TC(∞) = TN(r)/TN(∞)
= {exp[−(αs − 1)/(r/r0 − 1)]

+ exp[−(αi − 1)/(r/r0 − 1)]}/2. (5.27)

Note that Eq. (5.27) is only valid for the case of thin films while the
side surface is neglected due to its small percentage of the total surface.
For nanoparticles and nanorods, the contribution of substrates on TC(r) is
neglected since the corresponding interface has only a small percentage of
the total surface. In this case, Eq. (5.25) is directly used. In the following,
although TC(r) and TN(r) functions are denoted by Eq. (5.27), when the
considered systems are nanoparticles and nanorods, αs = αi, and Eq. (5.27) =
Eq. (5.25).

Figure 5.13 compares TC(r) functions of Eq. (5.27) and experimental re-
sults of magnetic transition metals and their alloys and compounds, such as
Ni, Fe3O4 and MnFe2O4 nanoparticles, Ni nanorods, and Fe, Co, Co1Ni1,
Co1Ni3, Co1Ni9, Ni thin films, which are deposited on a nonmagnetic metal
substrate. For an epitaxial FM film on a magnetic inert substrate with negli-
gible lattice mismatch, exchange interaction between them is assumed to be
absent since it is assumed that the surface and the film/substrate interface
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are magnetically similar. Thus, αi = αs in terms of Eq. (5.26) with Ji = Js

and Jsub= 0. On the other side, for this kind of epitaxial film, the interaction
strength at the film/substrate interface is comparable with the inner one,
which results in disappearance of one of the two surfaces of films. Thus, the
critical size of the epitaxial films is r0.

Fig. 5.13 Comparisons of TC(r) functions of Eq. (5.27) and experimental mea-
surements for Fe, Co, Co1Ni1, Co1Ni3, Co1Ni9, Ni, Fe3O4 and MnFe2O4 nanocrys-
tals. The necessary parameters: (a) the symbols , , , , , and de-
note the experimental results of Fe/SiO, Fe/Ag(001), Fe/Au(100), Fe/Pd(100),
Fe/Ag(111) and Fe/Ag(100) epitaxial films, respectively; (b) for Co, Co1Ni1,
Co1Ni3 and Co1Ni9 alloy films, , , , denote the experimental evidence of
Co/Cu(100), Co/Cu(111), Co/Cu(001) epitaxial films and , and denote the
Co1Ni1/Cu(100), Co1Ni3/Cu(100), Co1Ni9/Cu(100) epitaxial thin films; (c) for Ni,
the symbols , denote Ni nanoparticles, , , the nanorods, and , , , and

the experimental evidence of Ni/Cu(100), Ni/Cu(001), Ni/Cu(111), Ni/W(110)
epitaxial films; (d) for Fe3O4 and MnFe2O4, the symbols and denote Fe3O4 and
MnFe2O4 nanoparticles, respectively. The other necessary parameters used in the
calculations are listed in Table 5.2.

As shown in this figure, Eq. (5.27) is quantitatively consistent with the
experimental data of thin films epitaxially grown on silicon oxide glass, or
nonmagnetic metallic substrates. The depressed TC(r) of FM nanocrystals
should be attributed to the reduction in the number of spin interactions at the
surface in comparison with that in the interior. Although Eqs. (5.17) – (5.19)
can also fit the experimental results of FM nanocrystals, some adjustable
parameters, such as ξ and L in Eq. (5.17), ΔL in Eq. (5.18) and w in Eq.
(5.19), are present. The utilization of these experimentally fitting parameters
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could mislead understanding of the related physical nature since the fitting
parameters actually consist of several factors. It should be noted that for
alloys the corresponding TC(∞) and ΔSm(∞) values are roughly estimated
by their algebraic sum of elements. As shown in Fig. 5.13(b), Eq. (5.27)
corresponds to experimental evidence well.

Table 5.2 The parameters utilized in the calculations of Eq. (5.27) for FM mate-
rials. TC(∞) is in K, ΔSm(∞) in J·g-atom−1·K−1, h and r0 are in nm

TC(∞) ΔSm(∞) h r0 αr

Fe films 1 043 7.628 0.248 3 0.124 2 αi=αs = 1.612
Co 1 404 9.157 0.249 7 0.124 9 αi=αs = 1.734

0.747 6(d =0); αs = 1.811(d =0,1)
Ni 630 10.12 0.249 2 0.498 4(d=1); αi =αs = 1.811

0.124 6(d=2)
CoNi 1 018 9.638a 0.249 5 0.124 8 αi=αs = 1.773

Co1Ni3 824.3 9.879a 0.249 3 0.124 7 αi =αs = 1.792
Co1Ni9 708.3 10.02a 0.249 3 0.124 7 αi =αs = 1.803
Fe3O4 860 10.55 0.222 0 0.669 αs = 1.845 8

MnFe2O4 573 10.55b 0.222 3 0.666 αs = 1.845 8
aΔSm(Co1Nin,∞) = [ΔSm(Co, ∞) + nΔSm (Ni, ∞)]/(n + 1) as a first approximation,

where n denotes the number of Ni atoms in the compounds.
bSince no experimental data of ΔSm(MnFe2O4,∞) or ΔSvib(MnFe2O4,∞) are in hand,

ΔSm(MnFe2O4,∞) ≈ ΔSm(Fe3O4,∞) is taken.

Figure 5.13(c) shows the comparisons of TC(r) function of Ni nanocrystals
with different dimensions (d = 0, 1 and 2) between experimental results and
Eq. (5.27). As seen in this figure, TC(r) decreases with r and d while the
surface/volume (A/V ) ratios of free nanocrystals are 3/r, 2/r and 1/r for d =
0, 1, 2, respectively. Since the freestanding materials have larger A/V , their
size dependence is more than that of the substances supported by substrates.
However, this dimension effect has been neglected in Eqs. (5.17), (5.18) and
(5.20).

In addition to the aforementioned metallic substances, TC(r) functions of
nanocompounds such as Fe3O4 and MnFe2O4 nanoparticles are given in Fig.
5.13(d). As shown in the figure, the depressed TC(r) of compound nanocrys-
tals also follows Eq. (5.27) in the full size range.

TN(r) has a similar form of TC(r) function. Similar results for CoO thin
films epitaxially grown on SiO2 or MgO substrate have been shown in Fig.
5.14. In light of the properties of magnetic exchange interaction of AFM, the
nearest spacing of the parallel spin-spin coupling of AFM h = 2al with al

being the lattice parameter since the lattice of AFM can be considered to
consist of two sublattice with opposite spin direction. Whereas for CoO thin
films supported by Fe3O4 and NiO substrates, there exist strong exchange
couplings at CoO/Fe3O4 or CoO/NiO interface where the thermal vibration
of interface atoms is suppressed and much higher energy is required to dis-
order the ordering force. Therefore, TN(r) increases as r decreases. Equation
(5.27) is qualitatively consistent with experimental evidence Although the
free surface of such CoO film has still a tendency to lower the value of TN(r)
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of films, the total effect of the free surface and the interface leads to the drop
of the total energy, thus increasing TN(r) function with decreasing r. Fur-
thermore, the stronger the interaction at the interface is, the more the TN(r)
function will increase Thus, different substrates lead to the distinct TN(r) and
TN(∞) values of CoO. For the sake of simplicity, exchange bias effect from
FM/AFM interface, existence of easy and hard axes, and magnetocrystalline
anisotropy are neglected.

Fig. 5.14 Comparisons between TN(r) functions of Eq. (5.27) and experimental
evidence for CoO thin films epitaxially grown on SiO2 or MgO substrates ( and ,

and ), and on Fe3O4 ( ) and NiO ( ) substrates, respectively. For CoO deposited
on nonmagnetic substrates, the parameters r0 = h/2 = 0.426 0 nm in terms of Eq.
(3.79) with d = 2, and αi = 1.544 according to Eq. (5.26) with Js ≈ Ji, Jsub ≈ 0
and αs = 1.544; for CoO supported by Fe3O4 and NiO substrates, αi = 0.4139 and
0.5544 in terms of Eq. (5.26) with αsJs/(Js+Jsub) ≈ αsTC(∞)/[TC(∞)+TC,sub(∞)],
which is achieved based on the mean-field approximation, Js ∝ TC(∞) and Jsub ∝
TC,sub(∞) or Js ∝ TN(∞) and Jsub ∝ TN,sub(∞). ΔSm(∞) of metallic oxides are
given as ΔSm,MO(∞) = [ΔSm,M(∞)+ΔSm,O(∞)]/2 as a first approximation since
no experimental data are found, where the subscripts “M” and “O” denote the
metal and oxygen atoms, respectively.

Considering the mathematical relationship of exp(−x) ≈ 1−x with small
x, under the condition that r >> r0, Eq. (5.27) can be simplified to

TC(r)/TC(∞) = TN(r)/TN(∞) ≈ 1− (αs + αi − 2)r0/(2r). (5.28)

Comparing Eq. (5.28) with the scaling law of Eq. (5.17a) for thin films with
2r > ξ, TC(r) follows a power law curve with L = 1. Thus, Eq. (5.17a) can be
rewritten as TC(r)/TC(∞) = TN(r)/TN(∞) = 1− [(ξ + r0)/(4r)]. Associated
with this relationship and Eq. (5.28), ξ = (αs + αi − 2)2r0 − r0. For Fe, Co,
Ni thin films, ξ = 0.4048 nm, 0.5531 nm, 0.6322 nm, respectively, which
are approximately consistent with experimental and theoretical values of
0.4583, 0.3962, 0.7048.
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Equation (5.28) is similar to Eq. (5.18) for nanoparticles. Combining Eqs.
(5.18) and (5.28),

ΔL ≈ 4(αs − 1)r0/3, (5.29)

which indicates that ΔL is related to two parameters of ΔSvib and h. Sub-
stituting these parameters into Eq. (5.29), ΔL = 0.8084 nm, 0.9692 nm,
0.7521 nm, 0.7512 nm and 1.541 nm for Ni, Gd, MnFe2O4, Fe3O4 and CuO
nanoparticles, respectively, or ΔL ≈ 3h. Thus, when r is larger than several
nanometers, Eq. (5.18) can be rewritten as

TC(r)/TC(∞) = TN(r)/TN(∞) ≈ 1− (9h)/(4r). (5.30)

Equation (5.30) becomes a pure geometrical equation and emphasizes the
surface contribution to TC(r) function.

In light of Eqs. (5.19) and (5.28),∑
i�3

qi(zibq
−w
i − 1) ≈ −(αs + αi − 2). (5.31)

Obviously, w is functions of materials and interface conditions. According to
Eq. (5.31),

∑
i�3

qi(zibq
−w
i − 1) = 0.0421 for the case of CoO epitaxial films

on Fe3O4 substrates. With this value, TN(r) function of Eq. (5.19) is pre-
dicted to increase as r is reduced, which is qualitatively consistent with the
experimental evidence.

In short, Eq (5.27) without any adjustable parameter can be utilized to
predict dimension and interface effects on TC(r) or TN(r) function through
introducing the parameter r0 and αr. When 0 < αr < 1, TC(r) or TN(r)
increases with decreasing r, while the contrary occurs when αr > 1, which
is determined by both effects of surface and film/substrate interface with
different interface interaction strengths. Furthermore, when Eq. (5.28) is rea-
sonable, the adjustable parameters appearing in Eqs. (5.17) – (5.19) could be
quantitatively determined and more exact physical meaning of these param-
eters may be found.

5.5.2 Thermal Stability in Exchange-biased FM/AFM Bilayers
[22]

Exchange bias refers to a shift of hysteresis loop along a magnetic field axis,
which can be observed in exchange interacting FM/AFM materials. Materi-
als exhibiting the exchange bias and related effects have been proposed and
utilized in applications, such as permanent magnet materials, high density
recording media, domain stabilizers in recording heads, spin-valve devices
and giant magnetoresistance (GMR) type devices. However, the microscopic
origin of this effect is not well understood yet.
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One important property of exchange bias is its thermal stability indi-
cated by the blocking temperature Tbl, which is of concern for the design
of magnetic heads and governs the choice of the biasing materials. At Tbl,
the exchange bias field He, which is equal to the shift of the hysteresis loop,
approaches zero. Tbl is a function of r. As r decreases, Tbl(r) function de-
creases in bilayer systems. One empirical Tbl(r) function based on the thermal
fluctuation model for polycrystalline AFM films has been given as follows:

Tbl(r)/Tbl(∞) = 1− (ξ1/rg)w (5.32)

where ξ1 = Jint/(4KAFMral) is the correlation length and Jint is the interface
coupling exchange between the FM and AFM spins, KAFM is the magnetic
anisotropy constant, rg and al are the grain size and the lattice constant of
AFM, respectively. Equation (5.32) is valid for larger rg values.

For an exchange-biased FM/AFM system comprising a thick FM layer
with a thickness tFM and an AFM layer with infinite thickness, rg → ∞,
the magnitude of the exchange bias field at 0 K, He0(∞), is related to the
FM/AFM interfacial energy, E0(∞), where He0(∞) = E0(∞)/(MFMtFM)
[22]. In this relationship, MFM is the fixed saturation magnetization of the
FM layer because the effect of tFM on He is here assumed to be constant. To
estimate the value of He0(∞), two theoretical approaches have been pursued
to determine the value of E0(∞). On the basis of the idea of planar domain
walls at a smooth FM/AFM interface, E0(∞) = 2[AAFM(∞)KAFM(∞)]1/2,
where AAFM(∞) = 2JAFM(∞)s2/al is the exchange stiffness, with JAFM be-
ing the exchange integral and s the s-spin of AFM. Another theory argued
that the assumption of an ideal interface was unrealistic, and the roughness of
the interface leads to magnetic defects, which gives rise to local random fields.
Therefore, E0(∞) was determined by, E0(∞) = 2z[AAFM(∞)KAFM(∞)]1/2/
π2, with z being a number of order unity. A common characteristic of both
deductions is E0(∞) ∝ [JAFM(∞)s2KAFM(∞)]1/2. According to this rela-
tionship and the mean field approximation, JAFM(∞)s2 ∝ Eexc,AFM(∞),
and thus,

E0(∞) ∝ [Eexc,AFM(∞)KAFM(∞)]1/2. (5.33)

where Eexc,AFM(∞) denotes the spin-spin exchange interaction on the sub-
lattice of AFM.

It is understandable that with increasing T the thermal energy Eth(T ) is
introduced to decrease the FM/AFM interfacial energy, namely, E(T,∞) =
E0(∞)− Eth(T,∞), where Eth(T ) = kBT in light of the Einstein’s relation-
ship. At Tbl(∞), taking E(Tbl,∞) = 0 as reference, in terms of Eq. (5.33),

kBTbl(∞) ∝ [Eexc,AFM(∞)KAFM(∞)]1/2. (5.34)

If AFM nanocrystals have the same crystalline structure as the correspond-
ing bulks, and the domain walls of the AFM layer are perpendicular to the
FM/AFM interface, Tbl(r) can be obtained as a generalization of Eq. (5.34),
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i.e., kBTbl(r) ∝ [Eexc,AFM(r)KAFM(r)]1/2. Combining this relationship and
Eq. (5.34) brings out

Tbl(r)/Tbl(∞) = {[Eexc,AFM(r)KAFM(r)]/[Eexc,AFM(∞)KAFM(∞)]}1/2

(5.35)
where KAFM(r)/KAFM(∞) = Eexc,AFM(r)/Eexc,AFM(∞) is assumed if the
size dependence of KAFM(r) is mainly induced by Eexc(r) for the coherent
FM/AFM interface. Therefore, Eq. (5.35) can be rewritten as

Tbl(r)/Tbl(∞) = Eexc,AFM(r)/Eexc,AFM(∞). (5.36)

For coherent FM/AFM structures, Tbl(r) function is dependent not only on
the FM/AFM interface interaction strength but also on the AFM field. The
former determines the magnitudes of Tbl(∞), and the latter the size depen-
dence of the Tbl(r) function. Since we consider only the relative difference of
Tbl(r) and Tbl(∞), while the value of Tbl(∞) is taken directly from exper-
iments, the contribution of the FM/AFM interface interaction strength to
Tbl(∞) is ignored. Based on this consideration and the mean-field approxi-
mation for AFM with sublattice magnetization, in terms of Eqs. (5.25) and
(5.36),

Tbl(r)/Tbl(∞) = exp{−2ΔSvib(∞)/[3R(r/al − 1)]}. (5.37)

The comparisons of Tbl(r) functions between Eq. (5.37) and experimental
data of Fe3O4/CoO, NiO/NiFe, CoNiO/NiFe, FeMn/NiFe, MnPt/CoFe and
FeF2/Fe bilayer systems are shown in Fig. 5.15(a) and (b), where Tbl(r)
functions decrease to 0 K as r is reduced from bulk to thin enough AFM
layers (usually a few nanometers). Equation (5.37) agrees quantitatively with
experimental evidence.

Fig. 5.15 Comparisons of Tbl(r) functions between Eq. (5.37) and experimental
evidence: (a) Fe3O4/CoO ( , , , , , , ), NiO/NiFe ( ) and CoNiO/NiFe
bilayers ( ); (b) FeMn/NiFe ( ), MnPt/CoFe ( ) and FeF2/Fe bilayers systems ( ).
The necessary parameters are listed in Table 5.3.
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Table 5.3 Parameters utilized in calculations using Eq. (5.37) for the AFM ma-
terials. Tbl(∞) is in K, ΔSvib(∞) is in J·g-atom−1·K−1, r0 and ξ1 are in nm

Tbl(∞) ΔSvib(∞)a r0 = ab
l ξl δ

CoO 292 6.789 0.4260 1.8 1.20
NiO 463 7.271 0.4210 1.92 1.40

CoNiO 423 7.899 0.4235 2.17 1.65
FeMn 425 7.786 0.7140 1.00 1.60
MnPt 616 8.764 0.7736 2.48 1.62
FeF2 79 5.724 0.9380 0.73 0.62
a For alloys AB, ΔSvib(∞) = [ΔSA,vib(∞) + ΔSB,vib(∞)]/2, where A and B denote dif-

ferent metallic atoms, and ΔSvib(∞) = 7.493, 7.628, 9.584 (J·g-atom−1·K−1) for Mn, Fe, Pt,
respectively.

b al = 0.426 0, 0.421 0, 0.376 0, 0.357 0, 0.386 8 and 0.469 0 (nm) for CoO, NiO, IrMn,
FeMn, MnPt, and FeF2, respectively. r0 = 0.211 8 nm for CoNiO is the mean value of CoO and
NiO.

According to the definition of Tb1, it is natural to consider that Tb1

should be (at least slightly) below TN and should depend on the strength
of FM/AFM interface exchange field. This results from the unidirectional
exchange anisotropy and the spin-spin exchange interaction of AFM with
sublattice magnetization. It is well known that Tb1(r) corresponds to the sit-
uation at which the AFM spins follow the motion of the FM layer. Thus,
HeTb(r) = 0 because the unidirectional exchange anisotropy energy is less
than E0, where HeTb(r) denotes the exchange bias at Tb1(r). This differs
from the finite-size scaling of TN(r) of AFM in FM/AFM system, where
JAFM at the FM/AFM interface is enhanced, which results in increasing of
TN(r) function with dropping r. Equation (5.37) also sheds light on the He0(r)
function in the following form:

He0(r)/He0(∞) = Tb1(r)/Tb1(∞) = exp{−2ΔSvib(∞)/[3R(r/al − 1)]}
(5.38)

where the effect of FM layers is set as an invariable. Both He0(r) and Tbl(r)
functions have the same trend with dropping r. He0(r) function of Eq. (5.38)
is presented in Fig. 5.16. As shown in the figure, He0(r) decreases with de-
creasing r. The results qualitatively correspond to available experimental
evidence with large scatters. Note that since their ΔSvib(∞) values, in a size
of R, are similar (although the substances are different), the curves based on
Eq. (5.38) are almost the same.

Since there exists different degree of spin-spin interactions between the
inner and surface atoms because of the reduction in the number of spin inter-
actions at the AFM surface, the Eexc,AFM(r) function decreases with drop-
ping r. Thus, the decreasing Tbl(r) and He0(r) functions should be attributed
to decreasing exchange interaction field of AFM layer with r because both
Tb1(r) and He0(r) functions are influenced by AFM layers. As shown in Figs.
5.15 and 5.16, although the related compounds show different spin structures,
for example, FeMn and MnPt have the non-collinear spin structure and the
collinear spin structure, respectively, Tb1(r) and He0(r) in light of Eqs. (5.37)
and (5.38) are still in agreement with experimental data, respectively.

Following the mathematical relation of exp(−x) ≈ 1− x when x is small
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Fig. 5.16 Comparisons of He(r) functions between Eq. (5.38) and available ex-
perimental results: CoO/Fe3O4 ( and ), IrMn/NiFe ( ), FeMn/FeNi bilayers (
and ).

enough, Eq. (5.37) can be simplified to

Tbl(r)/Tbl(∞) ≈ 1− C/r (5.39)

where C = 2alΔSvib(∞)/(3R). Equation (5.39) indicates that the most im-
portant size effect on Tbl(r) relates closely to A/V ratio or 1/r of AFM layer,
when r > 5al ≈ 3.5 − 4 nm. Comparing Eq. (5.39) with Eq. (5.32), w(r) =
{ln[2alΔSvib(∞)/(3R)]− ln r}/(lnξ1−lnr). As r →∞, w(∞) = 1. Thus,

w(r)/w(∞) = {ln[2alΔSvib(∞)/(3R)]− ln r}/(ln ξ1 − ln r). (5.40)

It is known that w(r) in Eq. (5.32) depends on the non-universal value of the
actual coupling strength in ultrathin films while w(r) function in Eq. (5.40)
further indicates that this dependence is related to ξ1 at the FM/AFM inter-
face coming from the balance between the anisotropy energy of AFM and the
FM-AFM spins exchange coupling energy, ξ1 ∝ Jint/KAFM. In the mean-field
theory, a similar relationship can be given as ξ0 ∝ Jint0/KAFM0, with sub-
script “0” denoting the corresponding values of the mean-field approximation.
As a result,

ξ1/ξ0 = (JintKAFM0)/(Jint0KAFM). (5.41)

As ξ1 = 2alΔSvib(∞)/(3R) for r > 5al where Eq. (5.39) is valid, w(r) =
1 in terms of Eq. (5.40), which corresponds to the w value of the mean-
field theory and leads to ξ0 = 2alΔSvib(∞)/(3R) in terms of Eq. (5.32).
With a good approximation, ΔSvib(∞) ≈ R for compounds and metallic el-
ements, and al =

√
2h with h being the atomic diameter for face-centered

cubic (fcc) structure, ξ0 ≈ 2
√

2h/3, which is related to the expected value
of FM/AFM exchange interface thickness restricted to h− 2h. Note that ξ0

is a little different for distinct crystalline structures of AFM due to differ-
ent relationships between h and al, such as h =

√
2al/2 for NaCl structure
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and h = (2a2
l + c2)1/2/2 for the body-centered tetragonal (bct) structure,

respectively.
Obviously, the experimentally overestimated Jint value in comparison with

Jint0 results in ξ1 > ξ0 according to Eq. (5.41) while Jint is strongly affected
by experimental conditions. In light of the ξ1 values of CoO, NiO, CoNiO,
IrMn, FeMn and MnPt, w(r) function determined by Eq. (5.40) generally
increases with decreasing r, which is shown in Fig. 5.17.

Fig. 5.17 Shift exponent w(r) function in terms of Eq. (5.40) for CoO, NiO,
CoNiO, IrMn, FeMn, MnPt and FeF2 FM/AFM bilayers. The used parameters in
Eq. (5.40) are listed in Table 5.3.

If Jint value is derived from the Heisenberg model, where the spin-spin
exchange coupling in thin films is assumed to be uniform throughout the
films, Jint > Jint0, ξ1 > ξ0 and w > 1 are also obtained since the exchange
coupling near surfaces of thin films in mean-field approximation is expected to
be weaker than that in the bulk. Nevertheless, for AFM materials with much
higher anisotropy, such as FeF2, ξ1 is predominantly determined by KAFM,
and the effect of Jint is negligible. Thus, ξ1 ≈ ξ0 in terms of Eq. (5.41) with
Jint/KAFM ≈ Jint0/KAFM0, and w(r) ≈ 1 with a much weak apparent size
dependence in light of Eq. (5.40).

If ξ1 = ξ0 = 2alΔSvib(∞)/(3R) and w = 1 in Eq. (5.32), Eq. (5.32)
is the same as Eq. (5.40), in which the parameters are definitely physical
in describing all Tbl(r) functions in the exchange-biased FM/AFM bilayers
although Eqs. (5.32) and (5.40) are only valid for thicker film limit. As r →
h/2, Eq. (5.37) is more suitable for predicting Tbl(r) function since when r is
comparable with h/2, energetic changes of internal atoms in AFM materials
also contribute to Tbl.

In light of the analysis above, the size-dependent phase and thermal stabil-
ities for low dimensional FM and AFM nanocrystals and FM/AFM systems
are still related with 1/r, which suggests a progressively increasing role of the
surface layer with decreasing r. As a key thermodynamic quantity, ΔSvib(∞)
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determines the atomic vibration and the interaction strength among atoms.
This brings out an interesting result that the phase and thermal stabilities
of FM and AFM nanocrystals are also related to the natural properties of
substances: ΔSvib, size of nanocrystals, and the corresponding bulk values
that embody most properties of materials.

5.5.3 Ferroelectric Phase Transition of Nanocrystals [22]

Ferroelectric (FE) crystals are characterized by a displacement of ions from
their centrosymmetric positions. This displacement leads to a net dipole mo-
ment of the unit cell and to a spontaneous static polarization. With increasing
T this polarization decreases until, at the ferroelectric phase-transition tem-
perature, Tce, the crystal undergoes a phase transition from the polarized
ferroelectric phase to the nonpolarized paraelectric phase.

Since its discovery in 1920 by Valasek, ferroelectricity has attracted con-
siderable interest from a fundamental point of view due to its wide range of
potential applications. In view of the sustained trend towards further minia-
turization of microelectronic devices, investigations of the scaling effects in
ferroelectrics acquire great practical importance. For such cooperative phe-
nomena, a different degree of ordering is expected to occur near surface or
interface, leading to an intrinsic dependence on r.

The surface spontaneous polarization temperature of free nanocrystals
is lower than that of the bulk, or Tce(r) < Tce(∞). However, some recent
experiments demonstrated that substrates impart mechanically on ultrathin
epitaxial thin films, and may affect their phase transition characteristics and
the order of the transition. This is induced by the elastic interaction with
the transition strain, which may assist or obstruct the transition, and thus
raise or lower the Tce(r) value accordingly. The mechanisms of the concerned
phenomena may be regarded as interface effect.

The Landau phenomenological theory and the transverse Ising models
have been used to develop the surface and size effects of ferroelectrics. The
former has been more fruitful, in which the free energy expansion coeffi-
cients are assumed to be size-independent, and the extrapolation length δ′

is introduced to qualitatively illustrate the difference between the surface
and the interior. When δ′ > 0, polarization is reduced at the surface and
Tce(r) < Tce(∞). When δ′ < 0, polarization is enhanced at the surface and
Tce(r) > Tce(∞). However, the existence of several adjustable parameters in
the related models leads to the hard understanding of the physical natures.
In the transverse Ising model, two-spin interaction constant and tunneling
frequency are modified near the surface, which consequently results in the
size dependence of ferroelectric properties. In this model, only the decreased
Tce(r) functions with r have been predicted where the interface effect and di-
mension dependence are neglected, such as the difference of Tce(r) functions
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of thin films, nanowires or nanorods, and nanoparticles. In fact, the both
effects on Tce(r) functions still remain open. Recently, Sun et al. and Yang
et al. have obtained Tce(r) functions by combining the BOLS correlation
mechanism and the size-dependent cohesive energy with the Ising premise,
respectively, which are of the same forms of Eqs. (5.19) and (5.20). Besides,
as an empirical 1/r relation,

Tce(r)/Tce(∞) = 1−A′/r (5.42)

is widely pursued, where A′ is a material constant. In addition, based on the
model for Tm(r), Tce(r) equation of the perovskite ferroelectric nanocrystals
with a first-order transition has been given by

Tce(r)/Tce(∞) = exp{−[2ΔSce/(3R)]/[r/r0 − 1]}, (5.43)

where ΔSce denotes the transition entropy, r0 is the critical particle size
where the ferroelectric phase cannot exist or the Curie transition is absent.

From a fundamental point of view, the displacive ferroelectric materi-
als characterized by macroscopic spontaneous polarizations Ps are caused by
atomic off-center displacement, which results from a delicate balance between
long-range Coulomb interaction and short-range covalent interaction. It is
well known that the ferroelectric properties in low dimensions are mainly de-
termined by the truncation of Coulomb interaction, which affects the dipoles
located both at surfaces and inside the materials and results in the alteration
of Ps. As a particular case of tetragonal phase, Ps being normal to the surface
(Px = Py = 0, Pz = Ps �= 0, where the subscripts denote the polarization axis
directions) is expected to be stable and the largest, which is typically the
desired polarization direction in devices.

It is worth emphasizing that the termination of the lattice periodicity
in the surface normal has two effects. One is the reduction of CN of sur-
face atoms and the other is the creation of a surface potential barrier. Both
bring out a large number of physical quantities, such as σ2(r),Θ2

D(r), Eexc(r),
and Ps(r), and at the surfaces differ from their interior counterparts. Now
suppose that there exists a surface layer on a nanocrystal with a size r, in
which the surface spontaneous polarization Pss(r) differs from the interior
one Psv(r). Following a similar deduction for the size dependent function of
atomic thermal vibrations of nanocrystals in Chapter 3, one can obtain

Ps(r)/Ps(∞) = exp[(αr − 1)/(r/r0 − 1)] (5.44)

where r0 is determined by Eq. (3.79), in which h denotes the critical size of
basic structural unit required for ferroelectric activity at which Ps = 0.

For freestanding perovskite ferroelectric nanosolids, αr is determined as

αr = 1−ΔSce(∞)/(3R) (5.45)

The coupling effect between the mechanical deformation or strain ς and Ps in
the ferroelectric materials can be described via the electrostrictive coefficient
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Qij , namely, ς = Q12P
2
s . For thin films eptiaxially grown on substrates, Psi

at the interface can be expressed as Q12P
2
si = Q12P

2
sv + ςi, with ςi = (a′lt −

alt)/alt and Q12P
2
si ≈ −|als − alc|/als, where a′lt = alt{β(als − a)/[3als(s11 +

s12)] + 1} is the lattice constant of the tetragonal phase of the film under
the stress b = (als − alc)/[als(s11 + s12)], where alt and alc are, respectively,
the lattice constants of tetragonal and cubic phase of ferroelectrics, β is the
compressibility, als is the lattice constant of the substrate, s11 and s12 are
the elastic compliance constants. If some interface relaxation takes place,
the real substrate lattice parameter als should be replaced by the effective
substrate lattice parameter a∗ls. Based on the above relationships, in terms of
the definition of α, let subscript “i” denote this interface, the corresponding
αi = Psi/Psv, namely,

αi = {1− [(a′lt − alt)/alt]/[−|als − alc|/als]}−1/2. (5.46)

It should be noted that Eq. (5.46) has neglected the contribution of the strain
gradients, which may be important in proper ferroelastics, and the coupling
between these gradients and polarization.

Based on the effective field theory developed to describe the lattice dy-
namics of ferroelectric systems, Tce(∞) = k′P 2

s (∞) with k′ = ρ′Vx(Σbγb/λs)/
kB where ρ′ is the parameter relating Tce to ionic polarization Pion(∞), Vx

is the volume of a primitive cell in the crystal lattice, γb is a Lorentz-field
tensor, λs = P 2

s (∞)/P 2
ion(∞). This relationship is valid over a wide range

of materials. From a simple physical consideration, this simple relationship
between experiments and theories may be interpreted as equivalence between
the lattice vibrational energy and the displacive energy of the ferroelectric
state. Note that here the influence of depolarizing field is neglected because
the remnant surface charge near the critical point is so small that the in-
fluence of the relevant depolarizing field becomes a secondary factor for the
structural instability. If this relationship may be generalized for the corre-
sponding size-dependent function, Tce(r)/Tce(∞) = P 2

s (r)/P 2
s (∞). In terms

of Eq. (5.44), Tce(r) is established as

Tce(r)/Tce(∞) = P 2
s (r)/P 2

s (∞) = exp[2(αr − 1)/(r/r0 − 1)]. (5.47)

The existence of a free surface and substrate constraint destroy the macro-
scopic symmetry of the system and can significantly affect Tce(r). Under the
assumption that the surface and interface effects on Tce(r) are additive,

Tce(r)/Tce(∞) = P 2
s (r)/P 2

s (∞)
= {exp[2(αs − 1)/(r/r0 − 1)]

+ exp[2(αi − 1)/(r/r0 − 1)]}/2. (5.48)

According to Eq. (5.48), Ps(r) function (solid line) of SrRuO3/BaTiO3/
SrRuO3 capacitors is shown in Fig. 5.18 and good agreement between Eq.
(5.48) and available experimental measurements is found, which sharply
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deviates from that of free BaTiO3 films (dash line). This indicates that
SrRuO3/BaTiO3 interface not only results in smaller critical size, but also
takes different roles in impacting on the ferroelectric stability of films in com-
parison with that of free films.

Figure 5.19 shows the Tce(r) functions of the freestanding PbTiO3

nanocrystals according to Eq. (5.48). The main effect of a free surface is to
alter the environment of surrounding polarizable groups of atoms. This can
result in the loss of translational invariance of the structure, and the mod-
ifications of the phonon spectrum and soft modes, as well as dipole-dipole
interaction. Therefore, it is reasonable to assume the existence of surface
layer of ferroelectric crystals in which the spontaneous polarization is lower
than that of interior, thus the suppression of Tce(r) is present. Similar to
TC(r) functions of FM nanocrystals, as r is reduced, the change strength of
Tce(r) functions follows the order of thin films, nanorods, and nanoparticles
due to different ξ or d values in Eq. (3.79).

Fig. 5.18 Comparisons of Ps(r) function of BaTiO3 thin films between Eq. (5.48)
(solid line) and available experimental results of SrRuO3/BaTiO3/SrRuO3 ( ). The
necessary parameters are αi ≈ 0 according to Eq. (5.46) since both SrRuO3 and
BaTiO3 have the approximately same lattice constants, r0 = (2h)/2 = 2.4 nm with
d = 2, Ps(∞) = 46 μC·cm−2. The dash line denotes Ps(r) function of the free
BaTiO3 thin films, where αs = 0.992 in terms of Eq. (5.45) with ΔSce(∞) = 0.1
J·g-atom−1·K−1.

The comparisons between the predicted Tce(r) functions in terms of Eq.
(5.48) (solid line) and experimental evidence of BaTiO3 and PbTiO3 epitax-
ial grown thin films on different substrates are shown in Fig. 5.20. Equation
(5.48) corresponds well to available experimental results. As shown in Fig.
5.20, the tensile stress induced by the positive misfit strain εi at coherent fer-
roelectrics/substrate interface will also result in the decrease of Tce(r) with r.
Although this coherent interface brings out the disappearance of a free surface
of the films, the tensile stress still constrains the ferroelectricity. Comparing
with Tce(r) function of the freestanding thin films with two free surfaces, this
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Fig. 5.19 Comparisons of Tce(r) functions between Eq. (5.48) (solid lines) and
experimental evidence ( , , ) for PbTiO3 free nanocrystals. The necessary pa-
rameters are as follows: Tce(∞) = 769 K is the average value of the corresponding
experiments, αs = 0.963 in terms of Eq. (5.45) with ΔSce = 0.46 J·g-atom−1·K−1, r0
= 0.79, 1.59 and 2.38 (nm) in terms of Eq. (3.79) with d = 2, 1 and 0, respectively,
and h ≈ 0.8 nm.

decrease of Tce(r) may be sharper or slighter, depending on the magnitude of
misfit strain. As εi > εv > 0, the decrease of Tce(r) of epitaxial grown thin
films is bigger as shown in Fig. 5.20(a); while 0 < εi < εv, the related drop
of Tce(r) is weaker as shown in Fig. 5.20(b). This implies that when a tensile
stress is applied, the ferroelectricity can be stabilized only in thicker films.

Because of the electrostrictive coupling between lattice strain and polar-
ization in ferroelectrics, the deformation of the lattice along the alt and clt

tetragonal directions is proportional to P 2
s . Therefore, the tetragonal distor-

tion η can be written, with good approximation, as ηt(∞) = (clt− alt)/alt =
(Q11 − Q12)P 2

s (∞). If this relationship can be extended to nanometer size,
in the light of Eq. (5.48), there is

ηt(r)/ηt(∞) = P 2
s (r)/P 2

s (∞) = Tce(r)/Tce(∞) (5.49)

which is obtained via assuming that Q11−Q12 is size-independent. ηt(r), P 2
s (r)

and Tce(r) have the same trends as the dropping r.
Since the low-dimensional ferroelectric materials are particularly prone

to processing-induced defects, which include microstructural heterogeneities,
variations in crystalline quality, and mechanical stresses imposed on the ma-
terials by the substrates, the values of parameters in Eq. (5.48) are taken
from the corresponding experimental values for better correspondences.

Taking again the relation of exp(x) ≈ 1 + x with small x, Eq. (5.42)
in fact has the same form as that of Eq. (5.47), namely, Tce(r)/Tce(∞) ≈
1 + 2(αr − 1)r0/r, which indicates that the most important size effect is still
related with 1/r.

On the other hand, Ps at the surface and the interface is introduced
through αr in Eq. (5.47). When αr < 1, Tce(r) increases with decreasing r,
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Fig. 5.20 Comparisons of Tce(r) functions between Eq. (5.48) for BaTiO3 and
PbTiO3 thin films epitaxially grown on different substrates (solid line) and exper-
imental results. The dash lines are for the freestanding BaTiO3 and PbTiO3 thin
films, respectively. (a) For BaTiO3/SiO2 ( ) system with Tce(∞) = 395 K, the pa-
rameters: αi= 0.876 6 for BaTiO3/SiO2 interface in terms of Eq. (5.46) with als =
0.417 9 nm of SiO2, respectively, and β = 5.1×10−3 GPa−1, al = 0.400 96 nm and
alt = 0.400 51 nm, s11 + s12 = 5.62×10−12 m2·N−1·r0 = 2.41 nm in terms of Eq.
(3.79) with d = 2. (b) For PbTiO3/SrTiO3 epitaxial thin films ( and ), where
αs = 0.892 in terms of Eq. (5.45), αi = 0.983 8 in terms of Eq. (5.46) with als =
0.390 5 nm of SrTiO3, and β = 4.9×10−3 GPa−1alc = 0.390 5 nm and alt =
0.389 9 nm, s11 + s12 = 5.5×10−12 m2·N−1, r0 = 0.792 nm in terms of Eq. (3.79)
with d = 2, Tce(∞) = 895 K is the average value of the corresponding experiments.
The other parameters are the same as those in Fig. 5.19.

while contrary when αr > 1. Although complicated, the size dependence of
Tce(r) can also be analyzed by Eq. (5.48) as long as the surface or interface
conditions of the nanocrystals and relative thermodynamic parameters are
clear.

5.5.4 Superconductive Phase Transition of Nanocrystals

The BCS theory had played an important role in understanding the role of
the electron-phonon interaction in normal and superconducting metals and
compounds. According to BCS theory of superconductivity, Tcs depends on
the electron-phonon interaction of superconducting metals and compounds.
In light of McMillan, Tcs(∞) = [ΘD(∞)/1.45] × exp{−1.04(1 + Jep)/[φ −
μ∗(1+0.62Jep)]}, where Jep and μ∗ are the electron-phonon coupling constant
and the Coulomb pseudopotential of Morel and Anderson, respectively. If
μ∗ << Jep, this relationship can be approximated as

Tcs(∞) ∝ ΘD(∞). (5.50)
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It is assumed that Tcs(r) has the same size dependence of ΘD(r), or

Tcs(r)/Tcs(∞) = ΘD(r)/ΘD(∞). (5.51)

Substituting Eq. (3.80) into Eq. (5.51) leads to

Tcs(r)/Tcs(∞) = exp[−[(αr − 1)/2]/(r/r0 − 1)] (5.52)

where αr is determined by Eq. (3.84) for free nanocrystals. For metallic
nanosolids with oxide at the surface, such as Al, because the metal-oxygen
bonding is stronger than metal-metal bonding, αr < 1 according to the defi-
nition of αr = σ2

s (r)/σ2
v(r). Under the assumption that the bond strength ε

is reversely proportional to σ2, namely, σ2
s (r) ∝ 1/εs and σ2

v(r) ∝ 1/εv, αr in
this case is taken as

αr = εv/εs. (5.53)

Equation (5.52) and experimental results of Pb thin films are shown in Fig.
5.21 and Tcs(r) decreases as r drops where good correspondence within the
experimental error range is observed. Once r → t0 where t0 is the critical size
at which the superconductivity vanished and t0 can be determined in terms
of Kubo formula, Tcs(r) functions decrease dramatically although t0 does
not appear in Eq. (5.52). Note that since Pb thin films may refer to finely
granular structures with high densities of inner surfaces/grain boundaries and
cannot be described by a continuous film, this granular structure is similar
to a random structure of a chain polymer modelled by a trajectory of a self-
avoiding walk with a fractal dimension of d′ = (2+d)/3. For thin films, since
d = 2, d′ = 4/3 in terms of the above equation.

In Figs. 5.21 and 5.22, Tcs(r) functions of nanoparticles are also predicted
in terms of Eq. (5.52) by introducing dimension-dependent r0 values deter-
mined by Eq. (3.79), where Eq. (5.52) corresponds to experimental evidence.
This extension in crystal shape from films to particles or rods is valid only
when the crystal has a continuous, rather than discrete, electron spectrum,
which, however, may be questionable for nanoparticles since their discrete-
ness of the electron spectrum changes the effective electron density states
and coupling strength. The deviations between Eq. (5.52) and experimental
evidence shown in Figs. 5.21 and 5.22 may indeed be attributed to this ef-
fect. Nevertheless, since superconductive thin films and nanoparticles have
the similar forms of the external field dependence of Eb, and if their surface
atoms are assumed to have the same vibrational mode, the mechanisms of
the superconducting transition of thin films could qualitatively be utilized
for nanoparticles without big error.

The comparisons of enhanced Tcs(r) functions between Eq. (5.52) and ex-
perimental evidence for Al thin films and nanoparticles are shown in Fig. 5.22
where αr is determined by Eq. (5.53). Equation (5.52) is roughly in agreement
with experimental results in experimental error range. This enhancement of
Tcs(r) is induced by existing alumina on the surface of Al nanosolids with
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Fig. 5.21 Comparisons of Tcs(r) functions between Eq. (5.52) and experimental
results for Pb nanoparticles ( , ) and films ( , , , , ). The necessary parameters
are: Tcs(∞) = 7.2 K, r0 = 0.65, 1.17 nm in terms of Eq. (3.79) with d = 4/3 and
d = 0 for granular films and nanoparticles, respectively, and h = 0.3900 nm, αr =
1.6406 in terms of Eq. (3.84) with ΔSvib = ΔSm = 7.99 J·mol−1·K−1.

Fig. 5.22 Comparisons of Tcs(r) of Al nanoparticles (solid line) and thin films
(dash line) between Eq. (5.52) and experimental measurements ( and , for
nanoparticles, , for thin films). The parameters in Eq. (5.52) are: Tcs(∞) =
1.175 K, r0 = 0.9498 nm or 0.3166 nm in terms of Eq. (3.79) for nanoparticles with
d = 0 or for thin films with d =2 where h = 0.3166 nm. αr = 0.3636 in terms of
Eq. (5.53) with εAl–Al = εv = 186.2 kJ·mol−1 and εAl–O = εs =512.1 kJ·mol−1.

Al–O bonding, which leads to the vibrational suppression of surface Al atoms
and thus αr < 1.

For nanosolids, not only the electronic properties but also the phonon
spectrum will certainly be influenced by size. Because of the favorable sur-
face/volume ratio in nanosolids, also possible electron-electron interaction
will be affected via surface phonons. The two parameters ΘD and σ describ-
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ing the vibrational lattices or atoms are useful in determining the role of
phonons in its superconducting mechanism. In light of modern field theory,
an electron will have a self-energy in this vibrational field since it produces a
lattice deformation that in turn reacts on the electron, which can be consid-
ered as the attractive interaction among the electrons. The interaction brings
out energy lowering of systems below Eb, where these electrons are in long-
range order, namely, in superconducting state. As shown in the figures, the
complicated Tcs(r) functions for nanocrystals can be described in a simple
and unified form with related thermodynamic parameters.

It is worth emphasizing that the above nanothermodynamics functions
predict the relative difference of nanocrystals and bulk counterparts, while
most of the properties of the materials have been embodied in bulk properties.
Thus, the modelling could be realized in a simple and unified form. However,
since thermodynamics can only describe statistical behavior of large number
of molecules, this top-down method cannot be utilized to depict the action of
clusters with only a few molecules or atoms. Once r decreases to r0, quantum
effect is important, which results in the disability of this method. In addition,
if the structure of nanocrystals differs from that of the corresponding bulk,
where the electronic distribution varies, the above equations are also invalid
since we assume that the crystalline structure is remained.
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Chapter 6 Thermodynamics of Interfaces

In this chapter, one important application field of thermodynamics in recent
years, the thermodynamics of interfaces, is introduced. The bulk and size-
dependent interface energy values, which include interface energy of solid-
vapor, liquid-vapor, and solid-solid, are considered. Another important re-
lated phenomenon, interface stress, is also described and quantitatively mod-
eled. Based on these quantitative results, several typical surface phenomena,
such as crystal growth, surface reconstruction, adsorption, and surface phase
transition, are analyzed. These results could benefit us to understand and
utilize the interfaces or crystalline defects as tools for better materials prop-
erties. Also, the given data may promote the development of nanotechnology
due to the large surface/volume ratio of nanomaterials.

If a perfect crystal could be obtained, atoms would only exist on lattice
sites, every lattice site would be occupied by one atom, each atom would have
its full quota of electrons in the lowest energy levels, and the atoms would be
stationary. However, as an example, experimentally it has been found that
there is discrepancy between the stress theoretically needed to deform a per-
fect crystal plastically and the actual stress measured on ordinary crystals.
The latter is much lower than the former, which denotes that the atomic
structures of the most crystalline materials are not perfect: The regular pat-
tern of atomic arrangement is interrupted by crystalline defects. This is also
the case of the electric conduction. Nowadays, using various electronic mi-
croscopes, the existance of different defects in crystalline structures has been
confirmed and observed. The detailed messages about them are known.

There are many types of defects in crystals and all defects are of great
importance to the materials scientists as they affect properties of materials
in different ways. Defects are classified according to their dimension d. In
ascending order of d, they are point defects (vacancies with d = 0), line
defects (dislocations with d = 1), and planar defects (interfaces and surfaces
(solid-vapor interface) with d = 2). Defects may also be classed as intrinsic
defects, when they occur in an otherwise perfect substance; or they may be
termed extrinsic defects, when they derive from the presence of impurities.
The vacancy is a thermodynamic stable defect, which results in the decrease
of Gibbs free energy and thus exists certainly in crystals. Planar defects are
unavoidable since any material has a certain size with a boundary. As a result,
although we could drop the amount of defects in crystalline structures, such
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as rods of single crystals in a diameter of 450 mm, being the case in silicon
industry, the essesntial decreases are dislocations and grain boundaries. Since
the most progressive fields in materials science and nanotechnology now are
related interfaces, we in this chapter will consider the thermodynamics of
interfaces at full length.

6.1 Point Defect Thermodynamics [1, 2]

Point defects are defects which are not extended in space in any dimension.
At T > 0 K, the atoms in a solid are subject to thermal vibrations where
they continuously vibrate in their equilibrium positions in the lattice with
average amplitude of vibration that increases with increasing T . At a given T ,
there is always a wide spectrum of vibration amplitudes due to the energetic
fluctuations. Thus, the vibrations occasionally in a localized region may be so
intense that an atom is displaced from its lattice site and a vacancy is formed.
The displaced atom can move either into an interstice, in which it is called a
self-interstitial, or on to a surface lattice site. The vacancy self-interstitial is
known as a Frenkel defect and the simple vacancy itself as a Schottky defect
(Fig. 6.1).

Fig. 6.1 The formation of a Schottky defect (a) and a Frenkel defect (b)

Consider a fixed volume of crystal and let n vacancies be distributed over
N lattice sites. The vacancies can take up many different possible positions
in the crystal, which leads to configurational entropy associated with their
distributions. The vacancies thus not only increase the degree of disorder of
the crystal, but also raise the entropy, which favours decrease in free energy.
The total number of arrangements of the n vacancies is given N !/(N − n)!.
However, vacancies are indistinguishable from one another: We cannot dif-
ferentiate between vacancies i and j on a given site. There are n indistin-
guishable ways of obtaining the first vacancy, (n − 1) ways of obtaining the
second, (n− 2) ways of obtaining the third, and so on, and in all n!. As a re-
sult, the total number of arrangements, or probability Ω of the system, is Ω =
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N !/[(N −n)!n!]. Using relationship of Eq. (2.4) and Stirling’s approximation
for factorials, we obtain

ΔS = k ln Ω = k ln{N !/[(N − n)!n!]}.

On the other hand, the introduction of defects into a perfect solid requires
an expenditure of energy on the system. If the defects are truly isolated from
each other, then the internal energy should just be proportional to the number
of defects. Let Δu represent the internal energy change for the formation of
a single defect; then ΔG = nΔu + Δ(PV ) − TΔS ≈ nΔu − TΔS for the
formation of the n vacancies. Positive Δu is related to an increase in the
internal energy of the crystal. The relative contributions of two terms, ΔU
and ΔS, to ΔG of the crystal given as a function of n are shown in Fig. 6.2
where ce is the equilibrium concentration, ΔU is molar vacancy formation
energy.

We can see that as n increases, ΔG falls to a minimum with n = ne and
then increases where ne is the equibrium number of vacancies. In equilibrium,
(∂ΔG/∂n)T = 0, there is Δu− kT ln[(N −ne)/ne] = 0. If we assume that N
is very large, then n << N and the above equation rearranges to

ne/N = ce = exp[−Δu/(kT )] = exp[−ΔU/(RT )]. (6.1)

As indicated in Eq. (6.1), ce is a function of T . As T increases, ce increases
dramatically when ΔU remains constant. Up to Tm, ce reaches the maximum.

Fig. 6.2 ΔG,−TΔS and nΔu as functions of n at a certain T .

Many important solid state processes, such as recovery, recrstallization,
and precipitation, proceed from atoms moving (diffusing) from one lattice
site to another in the crystal. One of the reasons for our interest in ce is the
diffusion, which leads to occurance of the above phenomena. Both of atoms
from the host material and from substitutional atoms diffuse by a vacancy
mechanism, i.e., atoms diffuse by jumping into vacant lattice sites. ne thus
decides the diffusion rate.
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To accelerate the above mentioned solid state processes in materials en-
gineering, sometimes we need to change n. In light of Eq. (6.1), this can be
realized by heating the material to T ≈ Tm, keeping the material there for a
certain time to guarantee ce(T ) is reached. After that, a quenching technique
is used to remain ne(Tm) at the room temperature Troom. Since ne(Tm) is sev-
eral orders of ne(Troom), the time of the later diffusion treatment is evidently
shortened.

Concerned with solid state diffusion, we introduce the basic laws of dif-
fusion which were discovered by Adolf Fick on a phenomenological base long
before point defects were known. The starting point is Fick’s first law , stating
that the flux J of diffusing particles (not necessarily atoms) is proportional to
the gradient of their concentration (for ideal mixtures). In one spatial dimen-
sion, this is Ji = −Jd(∂Cdi/∂x), where the index “i” refers to the particular
particle with number i observed, and Jd is the diffusion coefficient of that
particle. The driving force of the one-dimensional diffusion for ideal mixture
is the concentration gradient, −∂Cd/∂x where Cd denotes the concentration.
In systems other than ideal solutions or mixtures, the driving force for dif-
fusion of each species is the gradient of chemical potential of this particle.
Then Fick’s first law can be written as Ji = −(JdCdi/RT )(∂μi/∂x). Since the
gradient of μi may differ from zero even for constant concentrations, special
effects as, e.g., uphill diffusion, are contained within this formulation.

The next basic equation is the continuity equation. It says that the changes
of Cd within a volume element must express the difference between what goes
in and what goes out–we have conservation of the particle number here. In
mathematical terms, this means ∂Cd/∂t = −∂J/∂x. Substituting Fick’s first
law to this equation and assuming Jd to be a constant, we obtain Fick’s sec-
ond law : ∂Cd/∂t = Jd(∂2Cd/∂x2), which predicts how diffusion causes the
concentration field to change with time.

We now must link the phenomenological description of diffusion (that only
works on averages and thus only if many particles are considered) with the
basic diffusion event, the single jump of a single atom or defect. We describe
the net flux of particles as the difference in the number of particle jumps to the
left and to the right. With the jump frequency Γ , i.e. the number of jumps per
second from one position to a neighboring one, we obtain Jd = g′a Γ for cubic
crystals, where a is the lattice constant, g′ is the geometry factor of the lattice
type considered. Γ = Γ 0 exp(−ΔG∗/RT ), with ΔG∗ being the Gibbs free
energy for the jump or for the migration of the atom or defect, i.e. the Gibbs
free energy barrier that must be overcome between two identical positions in
the lattice. Γ 0 is the frequency of “attempts” to overcome the energy barrier
for a jump. It is, of course, the vibration frequency of the lattice atoms
around 1013 s−1. In a simple vacancy mechanism, since only lattice atoms
that have a vacancy as a neighbor can jump, or, in other words, the number
of lattice atoms jumping per second is identical to the number of vacancies
jumping per sec, Γ of atom is expressed as Γ = ceΓ0 exp(−ΔG∗/RT) =
Γ0 exp[−ΔU/(RT)] exp(−ΔG∗/RT), where ΔG∗ = ΔH∗ − TΔS∗ ≈ E∗ −
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TΔS∗ with E∗ being migration energy and ΔS∗ the migration entropy for
diffusion. Combining everything, there is

Jd = Jd0 exp[−(ΔU + E∗)/(RT )]

where all constant (or nearly constant) factors have been included in Jd0. In
fact, the activation energy for diffusion, E0, consists of two terms, the energy
of formation ΔU and the energy of motion E∗ of a vacancy: E0 = ΔU + E∗.

6.2 Line Defects Thermodynamics [2]

The dislocation theory is the core for metallic materials since the disloca-
tion is responsible for their plastic property, while the plasticity guarantees
metals and alloys to be widely used as structural materials in industry and
in our life. Although the line defect is theoretically modeled and named as
the dislocation, it is in 1950’s that this linear crystalline defect was experi-
mentally confirmed by direct observation with the electron microscope. The
dislocation is long in one direction, while its diameter is only about 1–2 h. It
is known that the regularity of a crystal lattice implies that each atom takes
its site with minimized potential energy. Thus, a dislocation must represent a
rising of the potential energy of all the atoms whose positions are affected by
its presence. Thus, an energy may be ascribed to a dislocation which, physi-
cally, is the strain energy built into the crystal structure by displacement of
the atoms from their regular positions.

Unlike vacancies, linear defects cannot move spontaneously and chaoti-
cally. A slight stress, however, is sufficient for a dislocation to start motion.
There are essentially two types of dislocations. One is named the screw dislo-
cation developed by Volterra in 1907, the other is called the edge dislocation
established by Nabarro in much later 1952. Here we show the dislocation
model or the basic geometry of the screw dislocation in Fig. 6.3. The left side
is the schematic figure of the screw dislocation in crystalline lattice while the
right side presents a cylinder of an elastic material deformed as defined by
Volterra. The dislocation is made by slicing off one side of the cylinder along
the axis direction and by moving one lattice constant a, or the Burgers vector
b. This leads to the formation of strain. b can also be obtained by taking a
Burgers loop around the axis along the lattice site at a lattice plane. The
step number of loops along a direction must be the same. It is found that
there is a gap between the starting point and the end point. The difference
between the two points as a vector is equal to b, whose direction is parallel
to the axis of the cylinder or perpendicular to the lattice plane.

With the results of the elasticity theory we can get approximate formula
for the energy of a dislocation. The energy of a dislocation comes from the
elastic part contained in the elastically strained bonds outside the radius rh

of the above cylinder (rh is the radius of the hollow part of right side of Fig.
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Fig. 6.3 Model for the calculation of the energy of a screw dislocation.

6.3) and from the energy stored in the core, which is of course energy sitting
in the distorted bonds. The total energy per unit length Eul is the sum of the
energy contained in the elastic field, Eel, and the energy in the core, Ecore,
i.e., Eul = Eel + Ecore. In the core region the strain is very large and atoms
are displaced by about a or b. The linear elasticity theory thus is no more
valid there. This is the reason why in Fig. 6.3 the cylinder is hollow, which
denotes the core region and must be considered separately, which is added to
the solutions from the linear elasticity theory.

Further understanding of the above can be built up by analyzing the
stress-strain curve along the radius direction of the cylinder. It is interesting
to note from this that the stresses and strains are proportional to 1/r and
therefore diverge to infinity as r →0 as shown in the schematic picture in Fig.
6.4. This makes no sense and therefore the cylinder used for the calculations
must be hollow to avoid too small r values, i.e. smaller than r0. Real crystals,
of course, do not contain hollow dislocation cores. If we want to include the
dislocation core, we must do this with a more advanced theory of deformation
or a non-linear atomistic theory. The picture simply illustrates that strain and
stress are smooth functions of r where we then have no problem in using the
Volterra approach.

Fig. 6.4 The relationship between both stress and strains and 1/r.
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The elacstic strain energy dEel of a small volume element dV is given by
(1/2) τsς dV where τs is the shear stress with the shear modulus Gshear and
ς is the strain. Since τs = Gb/(2πr) while ς = b/(2πr), the work done is

dW =
1
2
τsςdV =

1
2

Gshearb

2πr
b

2πr
dV =

1
2
Gshear

(
b

2πr

)2

dV.

The volume of the annular element dV is 2πrldr where l denotes the length of
the cylinder. Hence, dW = Gshearb

2ldr/(4πr). Eel contained within a cylinder
of radius Rc around the dislocation is obtained by integrating this equation
up to the limit Rc. The lower limit of integration is taken to be rh and the
region inside rh is referred to as the dislocation core. We therefore have

E =
Gshearb

2l

4π

∫ Rc

rh

dr

r
+ Ecorel

where Ecorel is the strain energy within the radius 0 to rh, i.e., the core
energy.

How large is rh or the extension of the dislocation core? Since the theory
used is only valid for small strains, we may equate the core region with the
region if the strain is larger than, say, 10%. From the equation above it is
seen that the strain exceeds about 0.1% or 10% whenever r ≈ b. A reasonable
value for rh therefore lies in the range b and 4b, i.e. rh � 1 nm in most cases
and the reliable estimate of core energy is Gshearb

2l/10. Thus, on integrating
to obtain the elastic strain energy, we get for E

E =
Gshearb

2l

4π
ln

Rc

rh
+

Gshearb
2l

10
.

Since generally Rc >> rh, the logarithmic term in this expression only varies
slowly with Rc/rh. As an approximation, ln(Rc/rh) may be taken as 4π, thus,

E ≈ Gshearb
2l + Gshearb

2l/10. (6.2)

Equation (6.2) shows that E ∝ b2; and Ecore is only one tenth of Eel.
For typical metals, such as Cr or Cu, G ≈ 5 × 1010N · m−2. Taking

b = 2.5×10−10m, E ≈ 5.5 eV·atom−1 for a screw dislocation. An equation
similar to Eq. (6.2) can be derived for an edge dislocation and would give E ≈
8 eV·atom−1. These energy is considerably greater than the formation energy
of Schottky defects in metals. We have seen how Schottky defects become an
equilibrium feature of a crystal due to the entropy effect. Dislocations also
increase the entropy, but in this case the entropy change does not outweigh
the very large enthalpy increase of 5.5 – 8 eV·atom−1, and consequently the
free energy of the crystal is increased. As a result, dislocations are non-
equilibrium defects. If possible, a crystal will decrease its dislocation density
in order to drop its free energy.
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6.3 Thermodynamics of Interfaces [3]

Molecules or atoms in an interface (surface) are in different environments
from molecules or atoms within bulk materials. If a material is finely di-
vided, interface effects may be quite significant. 1 m3 of the material divided
into 10−6m cubes has a surface area of 6×103 m2. The unsymmetrical force
field at a surface gives rise to a surface energy parallel with the surface, a
tendency of asymmetric molecules to be oriented in a surface, and a capacity
to bind other molecules at the surface either physically or chemically. Such
interfacial phenomena may be defined as those related to the interaction be-
tween one phase (solid or liquid) and another (solid, liquid, gas or vacuum)
in a narrow region where the transition from one phase to another occurs.
Our understanding of the nature of the interfacial region and the changes or
transitions has historically lagged behind that in many other scientific areas
because of the development and implementation of both theoretical and prac-
tical concepts. In the late 19th and early 20th centuries, great achievements in
thermodynamics have been made in the theoretical understandings of inter-
face interactions. Modern computational and analytical techniques available
in the last thirty years have led to significant advances toward a more com-
plete understanding of the inimitable nature of interfaces and the interface
interactions due to the rapid increase of computation ability/price ratio of
computers. With the computing techniques or computer simulations, the so-
called computation materials science considers the interface properties from
three different size scales. (1) Atomic and electronic scales where the ab initio
calculation based on the first principles is used. In this size scale, many-body
interaction behavior of dozens of several hundred molecules is considered to-
gether. (2) Nanometer to millimeter size scales where the molecular dynamics
and Monte Carlo methods are utilized. In these techniques, many-body in-
teraction behavior of several thousand to several hundred million molecules
can be calculated. (3) Engineering behavior of large-scale construction prob-
lems, or bulk materials. In this case, the finite element method is a powerful
tool where averaging constitutive laws are used to incorporate interface mi-
crostructures.

When interface size at least in one dimension is at nanometer size range,
ζ increases and thus interface effect on materials properties becomes evident.
Consequently, the corresponding materials properties could not be readily
interpreted based on “classical” atomic or solid solution theories, and the
regions of space involved were beyond the scope of existent experimental
techniques. Since in the nanosize range the ab initio calculation cannot be
realized due to the computing ability of present computers, the computer
simulations remain many uncertainties. An alternative is the classic thermo-
dynamics, which still holds importance to model the above phenomena. This
is because not only the classic thermodynamics has been widely applied to
bulk materials, but also people are very familiar with this unique technique.

It is well known that the thermodynamic approach is applicable to a big
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system consisting of great number of atoms/molecules. An ensemble of many
small objects will also be a macroscopic system, which may be rather spec-
ulative or correspond to a real dispersed system (aerosol, micro-emulsion,
composed material, etc). However, extension of thermodynamic methods to
very small objects, such as nanoparticles, still faces many principal difficul-
ties. In this chapter, the size-dependence of thermodynamic amounts related
to interfaces is introduced based on authors’ own recent works, which relates
the nanothermodynamic amounts directly to the corresponding bulk ones.

6.3.1 Thermodynamic Description of Surface Free Energy of Liq-
uids and Solids [4]

The molecules at the surface of a liquid are attracted into the body of the
liquid because the attraction of the underlying molecules is greater than the
attraction by the vapor molecules on the other side of the surface. This inward
attraction causes the surface to contract if it can give rise to a force in the
plane of the surface. The surface energy of a liquid, γLv, is responsible for
the formation of spherical droplets, the rise of water in a capillary, and the
movement of a liquid through a porous solid. γLv is the force per unit length
on the surface that opposes the expansion of the surface area. This definition
is illustrated by the idealized experiment in Fig. 6.5, where the movable bar
is pulled with force fo to expand a liquid film that is stretched like a soap-
bubble film on a wire frame. γLv = fo/2l, where l is the length of the bar,
and factor 2 is introduced because there are two liquid surfaces, one at the
front and one at the back.

Fig. 6.5 Idealized experiment for the determination of the surface tension of a
liquid.

γLv decreases as T rises and becomes very small at a few degrees below
the critical temperature Tc. It is zero at Tc where the liquid-vapor transition
occurs. γLv of liquid metals and molten salts is large in comparison with that
of organic liquids due to different bond natures.

Surface work W ′ is required to increase the area of a surface. In Fig. 6.5,
W ′ for the film is W ′ = fox = 2γLvlx = γLvA, where x is the displacement
of the moving bar, A is the total area. The unit of γLv is in J·m−2. For
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a system in equilibrium, the infinitesimal total work due to the change in
area of the surface is δW = −PdV + γLvdA. A equation combining the first
(dU = δQ + δW ) and the second (δQ = TdS) laws for an open-component
system is expressed,

dU = TdS − PdV + γLvdA + μdn (6.3)

where dn is the change in the number of moles in the system. The equilibrium
state of a one-component system consisting of n mole particles at a fixed T
and P is the one with the minimum of G(T, P, n) = U + PV − TS. Thus,

dG = dU + PdV + V dP − TdS − SdT

= −SdT + V dP + γLvdA + μdn (6.4)

where the second form has been obtained by substituting Eq. (6.3). The γLv

in Eqs. (6.3) and (6.4) is given by

γLv =
(

∂U

∂A

)
S,V,n

=
(

∂G

∂A

)
T,p,n

=
(

∂H

∂A

)
S,P,n

=
(

∂F

∂A

)
T,V,n

. (6.5)

Here γLv can be identified as the surface excess free energy per unit area
or surface free energy for short (but imprecisely), which is also suitable for
solid-vapor interface energy or surface energy of solids γsv since the case is
similar. Thus, in the later sections, Eqs. (6.4) and (6.5) are also utilized for
γsv. Note that in this section and later sections we denote sometimes the solid-
vapor interface and the liquid-vapor interface as surface for simplicity since
simply the interaction force of the vapor phase is much weaker than solid and
liquid phases. Thus, solid-vacuum and liquid-vacuum interfaces have similar
behavior.

The thermodynamics of the interface/surface as formulated by Gibbs has
proven to be one of the most useful and powerful frameworks for studying
solid surface phenomena. Central to this approach is the quantity referred to
as interface energy. It is equal to the reversible work per unit area needed
to create a surface and is the fundamental parameter that determines the
behavior of fluid-fluid interfaces. However, Gibbs was the first to point out
that for solids, there is another type of surface quantity, differing from γsv,
the surface stress f . f can also critically affect the behavior of surfaces that is
associated with the reversible work per unit area needed to elastically stretch
a pre-existing surface. The relationship between f and γsv is derived in the
following section.

6.3.2 Thermodynamics of Surface Stress and Intrinsic Stress [4]

The physical origin of f can be qualitatively understood in the following
manner. The nature of the chemical bonding (e.g., the number of bonds) of
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atoms at the surface differs from that in the interior. Thus, h of the surface
atoms differs from that of the interior atoms if the surface atoms were not
constrained to remain structurally coherent with the underlying lattice. As
a result, the interior of the solid can be considered as exerting a stress f on
the surface. There has been some confusion with regard to identifying f of
either sign as compressive or tensile. When f is positive, the surface work
fdA is negative if dA is negative. This indicates that the surface could lower
its energy by contracting and is therefore under tension. Namely, a positive
(negative) f is referred to as a tensile (compressive) surface stress.

The elastic deformation of a solid surface can be expressed in terms of
a surface elastic strain tensor ςij , where i, j = 1, 2. Consider a reversible
process that causes a small variation in the area through an infinitesimal
elastic strain dςij . One can define a surface stress tensor fij that relates the
work associated with the variation in γsvA, the total excess free energy of the
surface, owing to the strain dςij (summing over each repeated index):

d(γsvA) = Afijdςij . (6.6)

Equation (6.6) was first given by Shuttleworth, who derived it by considering
the two reversible paths illustrated in Fig. 6.6. In the first path (clockwise),
the solid pictured in the upper left is cleaved into two pieces and then both
pieces are subjected to the same elastic strain. The work associated with
the first step is wr1 = 2γsvA, where A is the area of each of the newly
created (unstrained) surfaces. The work of the second step, denoted by wr2,
equals the work needed to elastically deform the total bulk volume and four
(two original and two newly formed) surfaces. In the second path of Fig. 6.6
(counter-clockwise), the solid is first subjected to the elastic strain and is then
cleaved into two pieces. The work of the first step w1 is equal to that needed
to deform the bulk volume and the two surfaces. The difference wr2 − wr1 is

Fig. 6.6 Schematic representation of two reversible paths that illustrate the rela-
tionship between surface free energy and surface stress. (Reproduced from Ref. [4]
with permission of Elsevier)
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the excess work necessary to elastically deform two surfaces of area A to area
A(ςij). This difference can be equated with the work performed against fij .

wr2 − wr1 = 2
∫

fijdA(ςij) = 2
∫

Afijdςij . (6.7)

The work associated with the second step of the second path can be expressed
as wr2 = 2γ(ςij)A(ςij), so that wr2 − wr1 = 2[γ(ςij)A(ςij) − γsvA]. Equating
the total works of the two reversible paths leads to W2 −W1 = wr2 − wr1.
Therefore,

2[γ(ςij)A(ςij)− γsvA] = 2
∫

Afijdςij , (6.8)

which is equivalent to Eq. (6.6). Since d(γA) = γdA+Adγ, and dA = Aδijdςij
(where δij is the Kronecker delta), fij can be expressed as

fij = γδij + ∂γsv/∂ςij . (6.9)

In contrast to γsv, which is a scalar, fij is a second rank tensor. For a general
surface, it can be referred to such a set of principal axes that the off-diagonal
components are identically zero. Furthermore, the diagonal components are
equal for surface possessing three-fold or higher rotation axis symmetry. This
means that fij for high symmetry surfaces is isotropic and can be taken as a
scalar f = γsv + ∂γsv/∂ς. Rewrite this as

f − γsv = ∂γsv/∂ς. (6.10)

Equation (6.10) shows that the difference between f and γsv is equal to the
change in surface free energy per unit change in elastic strain of the surface.
For most solids, ∂γ/∂ς �= 0. ∂γ/∂ς has usually the same order of magnitude
as γsv and can be positive or negative, while γsv (for a clean plane surface) is
always positive. Thus, f has also generally the same order of magnitude as
γsv and can be positive or negative.

Both f and γsv can each be considered as representing a force per unit
length, the former (latter) is exerted by a surface during elastic (plastic)
deformation. As a result, both f and γsv have been referred to as “surface
tension”. This has undoubtedly contributed to some of the confusion in the
literature concerning the difference between them, and it is probably best
not to use the term when discussing solid surfaces. It is often stated that
in contrast to solids, fLv and γLv are the same for fluids (to identify the
difference between the surface stresses of solid and liquid, the subscript “Lv”
for f is added). This is due to the fact that when a fluid such as a soap
film is stretched, the atoms or molecules in the interior move to the surface
to accommodate the new area created. In this case γLv remains constant
during the stretching process, and according to Eq. (6.10), fLv = γLv. This
has led some to claim by the same reasoning that at high T where there is
sufficient atomic mobility, f = γsv for solids during processes such as creep.
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However, this is not correct. During the initial elastic deformation in a creep
experiment, the work per unit area needed to stretch the solid is f , while
during plastic deformation γsv represents the specific surface work to create
new surface. Thus, the quantity being measured in a creep test, where the
plastic strain is much greater than the elastic strain, is γsv, not f .

For many processes, the easiest and most unambiguous way of determin-
ing whether f or γ is the relevant parameter is the following: If a small
variation in area does not change the surface atomic density, then the spe-
cific surface work is equal to γsv; if the variation is due to an elastic strain
that changes the surface density of atoms, then the specific surface work is f .
According to this rule, plastic deformation and crack propagation are exam-
ples of processes where γsv equals the surface work, independent of mech-
anism. On the other hand (as will be discussed in more detail later), the
Laplace pressure associated with a small solid particle in a fluid is propor-
tional to f . In the case of liquids, all processes of interest involve variations
in area without varying the surface density, and the surface work represents
γLv (However, in the case of a compressible liquid, it is possible to conceive
of a surface stress-like quantity that denotes the surface work when a liquid
is subjected to a hydrostatic pressure).

Cahn pointed out that the expression for f can be simplified by using a
Lagrangian measure of the area AL. The relation between AL and the physical
area A is A = AL(1+ςij), where ςij represents the trace of the elastic strain
εij . AL is the surface area measured with respect to a standard state of
strain, and remains unchanged during elastic deformation. In the Lagrangian
coordinate system, it is necessary to define the surface free energy γL so that
γLAL = γsvA,

γL = γsv(1 + ςij). (6.11)

The two types of surface work that can be performed on solid to change its
A can be taken as either changing AL and holding ςij constant, or changing
ςij and holding AL constant. The former surface work is equal to γL, while
the latter is equal to fij ,

fij = ∂γL/∂ςij. (6.12)

Substituting Eq. (6.11) into Eq. (6.12) leads to Eq. (6.9). For many problems,
the use of the Lagrangian coordinate system greatly simplifies the analysis.

Surface and interface stresses influence the structure and properties of
thin films. These stresses are often important factors in determining beha-
vior of thin films with high surface/volume ratio, and can result in a sig-
nificant intrinsic stress, induce higher order elastic behavior, and affect the
thermodynamics of epitaxy.

There exists stress in almost all deposited thin films. These stresses de-
velop because certain processes occur, which would result in the films chang-
ing their in-plane dimensions if they are located on substrates. A well-known
example is thermal stress which develops in response to a change in T when
the thermal expansion coefficients of a film and a substrate are different. In-
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trinsic stresses are defined as those developing during film growth. Consider
an isotropic film of thickness th that is constrained to have its bulk lattice pa-
rameter. Assume that there is not a strong film-substrate interaction so that
f >> bin, the interface stress bin can be interpreted as the specific interface
work associated with changing disolcation density. When the constraint is re-
moved, the film elastically deforms on the substrate in response to f . Letting
ς represent the resultant elastic in-plane radial strain, the elastic energy per
unit area in the film is given by Ytς2, where Y is the biaxial modulus equal
to EY/(1-νP), where EY is Young’s modulus and νP is Poisson’s ratio. The
work per unit area performed against f can be expressed as 2fς. The total
work per unit area is therefore: W ′ = 2fς + Ytς2. The equilibrium strain ς∗

is determined by setting ∂W ′/∂ς = 0,

ς∗(th) = −f/EYth. (6.13)

Based on this result, it has been sometimes argued that the intrinsic stress
resulting from opposing this deformation would equal −EYς∗(th), and there-
fore should be of the same sign as f and be inversely proportional to th.
However, this is an incorrect physical picture with regard to generating an
intrinsic stress in a film. A film on a substrate that displays an equilibrium
strain relative to bulk does not have to be under a state of intrinsic stress.
Instead, if at some point during deposition, the film is firmly attached to the
substrate, intrinsic stress will subsequently be generated by f as th increases.

This idea can be carried out quantitatively. Consider a film that has firmly
attached to a substrate with a thickness t0. Assuming no intrinsic stress
generating mechanisms have operated, the deposited film is in a stress-free
state with its equilibrium in-plane lattice parameter equaling a0[1+ς∗(t0)],
where a0 is the bulk lattice parameter. During further deposition, if the
film was not constrained by the substrate, the equilibrium strain relative to
bulk ς∗(th) is determined by Eq. (6.13), and there is a difference of Δς =
ς∗(th) − ς∗(t0). However, since t0 was constrained by the substrate, it could
not elastically deform in the plane of the film, the substrate must impose
an in-plane biaxial stress to oppose the latent strain Δς as t increases. As a
result, b generated in the film due to the effect of f is equal to

b(th) = −EYΔς = f(1/th − 1/t0). (6.14)

As th → ∞, b → −f/t0. Even though the above analysis considered just the
effect of f while the film with t0 was assumed to be stress-free, the result
given in Eq. (6.24) is, nevertheless, of general validity. That is, Eq. (6.14)
represents the contribution to the overall b resulting from f , independent of
other stress generating mechanisms (and even if the lattice parameter differs
from a0[1 + ς∗(t0)] at t = t0).

Consideration is now given to the proper value of t0. It would appear
plausible that growing crystals first become constrained when substantial
impingement occurs. t0 would depend in part on the thermodynamics of the
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film-substrate interface, in particular, on how well the film wets the substrate.
t0 would also be dependent in large part on kinetic factors, such as the
deposition rate and the surface mobility of the adatoms (which in turn relies
on the deposition temperature). Experimental studies have indicated that a
metal film deposited by physical vapor deposition can become continuous at
th=1 nm. Referring to Eq. (6.14), and using reasonable values of f = 2 N·m−1

and t0 = 5 nm, b(th) generated when th >> t0 is of the order of −4×108 Pa.
Note that b(th) has an opposite sign of f .

Since most experimental and theoretical investigations on f of metals
give positive values, the proposed mechanism would be expected to produce
a compressive b. It is generally found that at the end of nonepitaxial growth,
metallic films exhibit a positive b. However, during the early stages of deposi-
tion the film often shows a compressive stress, which increases in magnitude
with increasing t, up to a certain thickness. After that a competing tensile
stress generating mechanism appears and eventually dominates. Two popular
models to explain generation of a tensile stress in metal films are the grain
growth model and the grain boundary relaxation model. In both processes
the total grain boundary volume reduces with decreasing time, which, not
constrained by the substrate, leads to a densification of the film. Kinetic anal-
yses of these processes have been given by Doerner and Nix. They showed
that in both cases a significant amount of time can elapse before a perceptible
tensile stress is developed. During this period of time, the film can grow to
a thickness many times larger than t0. As a result, a compressive b due to
f can develop before the other processes generate a competing tensile stress
that eventually dominates. Of course, f < 0 for some thin films, which leads
to b > 0.

In the above discussion, the effect of bin was not considered. If there is a
strong epitaxial relationship between a film and substrate, bin could be very
important and in fact dominate the behavior. However, if a strong epitaxial
relationship is absent (for example, metal deposition on an amorphous sub-
strate), bin plays little role. In either case, the effect of bin can be formally
taken into account by considering f to be a net surface stress, which is the
sum of f and bin. If the film is a polycrystal, the interface stress of the grain
boundaries could contribute a term to b. In the case of films with a columnar
microstructure, this term is a function of grain sizes but not t. As a result,
the interface stress has little effect on development of b until significant grain
growth occurs, and it is therefore not expected to be important during the
early stages of deposition.

6.3.3 Real Surface: Reconstruction and Relaxation [5–7]

The 2D translational symmetry of ideal surfaces and half-spaces with bulk
atomic positions are characterized by the primitive Bravais vectors. In addi-
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tion to point and line defects, on a real surface of a crystal there are other
reasons why the assumption of an ideal surface is not valid in general. Such
a picture does not fully account for the bonding behavior of the atoms in
a crystal. In an ideal infinite crystal, the equilibrium position of each indi-
vidual atom is determined by the forces exerted by all other atoms in the
crystal, resulting in a periodic structure. If a surface is introduced to the
system by terminating the crystal along a given plane, these forces will be
altered, changing the equilibrium positions of the remaining atoms. This is
most noticeable for the atoms at or near the surface plane, as they now only
experience inter-atomic forces from one direction. The forces acting on them
result in displacements of atomic positions with respect to those of the infi-
nite crystal. Consequently, the atomic structure of the surface is not merely
a truncation of a bulk crystal.

The distortion of the ideal bulk-like atomic configuration due to the exis-
tence of a surface (more precisely, the non-existence of formerly neighboring
atoms in the vacuum) depends on the bonding behavior of the material con-
sidered. Let’s take the surfaces and interfaces of semiconductors as examples,
which play a decisive role in many technologically important device appli-
cations and lead to the birth of surface science in the 1960s, In the 1960s
and 1970s, the standard method for generating semiconductor surfaces was
to cleave a single crystal in an ultra-high vacuum. The natural cleavage plane
is the (111) surface for diamond structure semiconductors characterized by
purely covalent bonds such as Si and Ge, and the (110) surface for zinc-blende-
structure III-V and II-VI semiconductors characterized by partially covalent
and partially ionic bonds. In such covalently bonded semiconductors, strong
directional bonds are present. Each bond contains two spin-paired electrons.
When a surface is created, at least one such bond per atom is “cut”. A “cut”
bond is called a “dangling” bond and contains less than two spin paired
electrons. The lack of electron pairing makes dangling bonds unstable, re-
quiring the surface atoms to “seek new coordinates”, so that the free energy
of the system reaches its minimum. Sometimes, this process is accompanied
by bringing surface atoms closer together. One of these mechanisms resulting
in pairs of surface atoms is schematically indicated in Fig. 6.7(a). However
such a rearrangement can also yield rough surface layers, the stoichiometry
of which is changed with respect to the ideal surface [Fig. 6.7(b)]. In both
cases, the 2D Bravais lattice of the surface is changed. Such perturbations de-
stroying the translational symmetry of the fictitious ideal surface are known
as surface reconstruction.

In simple metals, instead, one has a gas of quite delocalized electrons and
chemical bonds, which are far less directional than in semiconductors. Conse-
quently, there are no preferred directions in the displacements of atoms with
the exception of that parallel to the surface normal vector itself. One thus
expects a displacement mainly of the first-layer atoms in a vertical direction
with respect to the surface as indicated in Fig. 6.7(c). The 2D Bravais lat-
tice and, hence, the 2D translational symmetry remain unchanged. Such a
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Fig. 6.7 Schematic illustrations of atomic rearrangements in the surface region.
(a) pairing reconstruction; (b) missing row reconstruction; and (c) relaxation of the
uppermost atomic layer.

translational-symmetry-conserving change of the atomic structure is called
surface relaxation, which barely reduces the density of states (DOS) for the
surface layer at εF. The surface reconstruction is however accompanied by
opening of a surface band gap around εF where a significant reduction of the
DOS is present.

A standard notation has been adopted to describe reduced symmetry
structures due to the restruction in which, e.g., a Si(hkl)-(n × m) symbol
designates the reconstruction of the (hkl) plane (given by its Miller indices)
into one, in which the interatomic spacings are multiplied by n and m in
the x and y directions respectively. This notation is often used to describe
reconstructions concisely, but does not directly indicate changes in the layer
symmetry (for example, square to hexagonal).

Semiconductor surfaces are known to reconstruct differently under vari-
ous conditions such as upon cleavage, upon epitaxial growth and annealing
conditions, due to overlayer growth, deposition of passivating or surfactant
layers, and induced by defect formation. For example, over 300 phases of
Si surfaces have been reported depending on T , on which crystal facet is
exposed. The Si(111) facet affords an illuminating example of this fact: Low-
temperature cleavage generates a (2×1) structure with alternating rows of
depressed and raised surface atoms, shown in Fig. 6.8(a). This would allow
the depressed atoms to assume more planar geometry with sp2-like bond-
ing and the raised atoms to assume a pyramidal geometry with a bonding
configuration involving more s characters of the dangling bonds. Since the
energetic level of s electrons is lower than that of p electrons, the dangling
bonds at the raised atoms would be occupied by two electrons, while the dan-
gling bonds at the depressed atoms would become empty. This would then
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make the surface semiconducting in nature. A (2×1) structure is not stable,
and depending upon the annealing temperature. Si(111) exhibits a number
of irreversible high-temperature reconstructions. When vacuum is annealed
above 603 K, the (2×1) reconstruction changes to a mixture of (5×5) and
(7×7) reconstructions. When annealed above 873 K, only the (7×7) recon-
struction is observed. The (7×7) structure is stable up to around 1173 K
and remains so when the sample is cooled down to Troom. A first-order re-
versible (7×7) ↔ (1×1) phase transition takes place at even higher T . The
(1×1) structure can also be stabilized at Troom by some other means: such as
small amounts of adsorbed chlorine, laser annealing, when the (7×7) struc-
ture is quench-cooled from high T . Thus, the kinetic accessibility as well as
the ground-state free energy play an important role in determining which of
the various possible reconstructions actually occurs under a specified set of
preparation conditions.

Fig. 6.8 (a) Ball-and-stick model of the (2×1) π-bonded chain structure on Si(111)
resulting from the single-bond scission cleavage of silicon. (b) Atomic arrangement
on the Si(111)-(7×7) according to the DAS model.

The high-temperature (7×7) reconstruction of Si(111) was first observed
in 1959. This reconstruction can be described as the dimer adatoms stacking
fault (DAS) model and is characterized by (1) dimerization of second-layer
atoms, (2) adatoms, and (3) a stacking fault between the first and second
layers over one-half of the (7×7) unit cell. This is shown in Fig. 6.8(b). Notice
that the stacking sequence in the right half of the surface unit mesh is the
same as in bulk Si while that in the left half is faulted. The ideal (unrelaxed)
7×7 structure would contain 48 Si atoms in every surface layer. In the DAS
model of the 7×7 reconstruction, there are a total of 102 Si atoms in the
top three layers of the 7×7 unit cell. These are: 12 atoms in the adatom
layer, 42 atoms in the rest atom layer, and 48 atoms in the layer containing
the stacking fault. Of all these 102 atoms only 19 (the 12 adatoms, six rest
atoms and one atom at the bottom of the corner-hole) atoms possess dangling
bond. This reduction in the dangling bond number stabilizes the metallic 7×7
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reconstruction, which energetically is favourable compared with the (2×1)
reconstruction by 60 meV per 7×7 unit cell.

The driving force for a surface reconstruction changing the density of
surface atoms is the difference between f and γsv, i.e., the strain derivative
of the surface energy τij = ∂γsv/∂ςij . Consequently a surface would tend
to reconstruct toward a state in which f = γsv [5]. When τij > 0, there
is an increasing tendency for the density of surface atoms, and vice versa
for a negative value. The conclusion concerning the driving force for surface
reconstruction is similar to results of other studies of surface densification.
However, in those studies it was shown that this driving force does not re-
sult in any reconstruction. The reason for the obviously different findings
could be that the above criterion follows within the linear elasticity theory
and, hence, applies only for small uniform strains when the surface layer and
bulk are strained together. A reconstruction involving straining the surface
layer alone necessarily changes the surface-substrate bonding, which gener-
ally costs energy. The application of the above criterion to the case of Au
(110) surface should therefore fail. This surface undergoes a missing row re-
construction in which alternate [110] rows of atoms are removed from the
surface. The removal of one-half of the surface layer of atoms cannot plau-
sibly be discussed within the linear elasticity theory since the missing row
reconstruction involves very great changes in the local environment of some
atoms.

6.3.4 Equilibrium of Fluid Droplets and Solid Particles [4]

Consider a fluid (liquid or vapor while we here discuss a liquid) droplet in
equilibrium with a different surrounding fluid that can be considered infi-
nite in extent. There will be a pressure difference ΔP = P1 − P2 (where the
subscripts “1” and “2” refer to the droplet and the surrounding fluid, respec-
tively) acting on the droplet owing to f or γLv where f = γLv as mentioned
above. In equilibrium, the virtual work ΔPdV resulting from a small varia-
tion in the volume of the droplet due to transfer of atoms or molecules from
the surrounding fluid to the droplet equals γdA, the increase in the total free
energy of the surface. For a spherical droplet with radius r, the area of the
droplet A is 4πr2 and dA= 8πrdr and γdA = 8πγLvrdr. Since the volume
change is dV = 4πr2dr, this equality leads to the well-known Laplace-Young
Equation,

ΔP = 2γLv/r. (6.15)

Because of this Laplace pressure ΔP , the vapor pressure of a small droplet
exceeds that of a plane surface of the liquid, and the vapor pressure of a
concave surface of a liquid is smaller than that of a plane surface. When we
consider the Gibbs free energy change dG with dn moles of a substance added
to the droplet, μplanar = (∂G/∂n)T,P,A for a planar surface. If the surface is
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curved, which is our case of the spherical droplet, the surface area varies
and dA = 2dV/r = 2Vmdn/r where Vm is the molar volume of the liquid.
Combining this equation with Eq. (6.4) yields

dG = −SdT + V dP + (2VmγLv/r + μplanar)dn. (6.16)

The total chemical potential of the liquid in the droplet is thus given by
μ = 2VmγLv/r + μplanar. If the related surrounding vapor behaves like a
perfect gas, there is μ = μplanar+RT ln(P/P0) where P0 is the vapor pressure
for a planar surface. Combining this equation with the preceding one yields
the Kelvin equation,

ln
(

P

P0

)
=

2VmγLv

rRT
. (6.17)

This equation gives the vapor pressure P of a droplet with a radius r.
Equation (6.15) may be used to derive the relation between γLv and the

rise, or drop of a liquid in a capillary illustrated in Fig. 6.9. If the contact
angle θa that the liquid makes with the wall is smaller than 90˚, the liquid
will rise; when θa > 90˚, the surface of the liquid will be depressed. If the
capillary is of sufficiently small diameter, the meniscus will be a section of

Fig. 6.9 Rise or drop of a liquid in a capillary where h value is equal to the
distance between the bottom of the meniscus and the height of the surrounding
liquid plane.

a sphere, and the radius of curvature of the liquid surface in the capillary
is given by r = rt/ cos θa, where rt is the radius of the capillary tube. The
difference between the pressure in the liquid at the curved surface and that
at the flat surface of the liquid is given in light of Eq. (6.15),

ΔP = 2γLv cos θa/rt.

Therefore, the atmospheric pressure pushes the liquid up the tube until ΔP
is balanced by the hydrostatic pressure due to the liquid column of height h.

2γLv cos θa

rt
= hg(ρL − ρv)
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where ρL and ρv are the densities of the liquid and the vapor respectively,
and g is the acceleration of gravity. Since ρv << ρL, ρv may be neglected,

γLv =
hgρLrt

2 cos θa
.

If the above equation is used to determine γLv with the measured h value,
it is found that the obtained γLv value is slightly lower than the real one.
This can be corrected by adding rt/3 to the measured h. After that a good
agreement between experiments and the above equation could be found.

If the small droplet is changed to a small solid in equilibrium with a
surrounding fluid, Eq. (6.15) is still valid. For simplicity, it will be assumed
that the solid is spherical and has an isotropic surface stress f . Substituting
f as γLv into Eq. (6.15), there is

ΔP = 2f/r. (6.18)

In literature, the Laplace pressure for a solid is often incorrectly written as
Eq. (6.15) rather than Eq. (6.18).

As discussed by Gibbs, and more recently by Cahn, the chemical potential
of the solid phase will contain the term 2fVs/r (Eq. (6.16)), where Vs is the
molar volume of the solid. This is because a transfer of atoms from the fluid to
the solid phase will change the Laplace pressure acting on the solid. However,
μL contains the term 2γLvV/r, reflecting the fact that the transfer changes
the physical area of the solid-fluid interface. This leads to

μs − μL = 2(f − γLv)V/r. (6.19)

Note that, except for the special case of f = γ, the chemical potentials of
the two phases in equilibrium are not the same. Gibbs restricted his atten-
tion to a single component solid in equilibrium with a multicomponent fluid.
Cahn extended the analysis for the case of a multicomponent solid with both
substitutional and interstitial components. The analysis is simplified if the
Lagrangian coordinate system is used. In the case of an interstitial compo-
nent, the transfer of atoms from the fluid to the solid does not change the
Lagrangian surface area but can induce an elastic strain if the component
has a nonzero partial molar volume. Cahn showed that for interstitial com-
ponents, the chemical potential is the same for solid and fluid phases (μs−μf

= 0), while for the substitutional components the difference is given by Eq.
(6.19), where V is now the volume of the solid divided by the number of
moles of substitutional lattice sites.

Various thermodynamic derivations employing correct expression for the
Laplace pressure of solids have been given by Cahn. Some of them are given
below in order to illustrate under what circumstances the equilibrium behav-
ior is determined by γLv and/or f . The Lagrangian measure of the surface
free energy γL is used in order to emphasize the fact that Cahn used the
Lagrangian coordinate system in his derivations, which significantly reduced
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the complexity of his analysis. The difference between Tm and the melting
temperature of a finite-sized single component solid Tm(r) is

Tm − Tm(r) = 2γLvV/r(SL − Ss) (6.20)

where S is the molar entropy. Melting or freezing a surface layer of atoms
changes the Lagrangian area. The relevant surface parameter is γLv. Similarly,
the solubility of a dilute single component solid in a multicomponent fluid is
given by

C = C0 exp(2γLvV/rRT ) (6.21)

where C is the concentration in the fluid for a particle of radius r, C0 is
the bulk saturation concentration, R is the gas constant. Again, γLv is the
appropriate parameter since dissolving a layer from the solid changes the
Lagrangian area. Similar to Eq. (6.21), the equilibrium vapor pressure P for
a single component solid sphere with a radius r, assuming that the vapor is
monatomic, is shown as

P = P0 exp(2γLvV/rRT ) (6.22)

Consideration is now given to P of a dilute interstitial component. Assuming
the component vaporizes in monatomic form, there is

P = P0 exp(2fV i/rRT ) (6.23)

where Vi is the partial molar volume of the component in the solid. In this
case, f is valid because transfer of interstitial component atoms does not
change the Lagrangian area but does work against f if the component has a
nonzero partial molar volume.

As a final example, the vapor pressure of a dilute substitutional compo-
nent that vaporizes in monatomic form has the following equation,

P = P0 exp{2[γLvV + f(V − Vi)]/rRT }. (6.24)

The term involving γLv accounts for the change in Lagrangian area, while
the term involving f reflects the work performed against the surface stress
when Vi of the substitutional component differs from V .

Many derivations in literature do not employ correct expression for the
Laplace pressure of a solid, using γ instead of f in Eq. (6.18). As a result,
they apply only to the rare special case of f = γ. Even though some deriva-
tions using the incorrect expression for the Laplace pressure for the solid can
produce the correct result (as is often the case for many derivations of Eqs.
(6.21) and (6.22)), it is obviously impossible to obtain Eqs. (6.23) and (6.24)
without considering effect of f .
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6.3.5 Wulff Construction and Adsorption on Solid Surfaces [5, 8]

The anisotropy of γsv determines the equilibrium shape of small crystals at
a particular T . The crystal is assumed to be of macroscopic (or at least)
size so that edge and apex effects can be neglected. The equilibrium crystal
shape (ECS) at constant T with fixed V and μ is determined by minimizing

the sum of γsvA, namely, G =
∮ ∫

A(V )

γsv(n)dA with a fixed V . The Wulff

theorem states that ECS is not necessarily the state of the minimum surface
area. It may be a complex polyhedron with the lowest total surface energy
for a given V . A minimal surafce only occurs for a perfectly spherical Wulff
plot with a sphere ECS, i.e., an isotropic excess surface free energy. This has
been experimentally shown for water droplets in the absence of gravity. For
crystals, the variation of γsv with the normal n produces, on each surface
element dA, a force proportional to ∂γsv/∂n, which alters its direction at
the same time as γsv would like to shrink its area. Consequently, ECS can
be no longer a sphere. Figure 6.10 schematically shows Wulff plot γsv(n) in
two dimensions, which governs the equilibrium shape and the morphological
stability of a crystal. In a real three-dimensional crystal the situation is more
complicated.

Fig. 6.10 A polar plot of the surface free energy for a 2D crystal (solid line) and
the ECS based on the Wulff construction (dotted line).

Besides the variation of γsv with the surface normal, also the strength
of the variation plays a role. This is demonstrated in Fig. 6.11. The ECS is
constructed for Si taking into account γsv values of four orientations, namely,
[001], [011], [113], and [111]. In Fig. 6.11(a) and (b) the same energetic order-
ing of γ111 < γ100 < γ110 < γ113 but different values have been used. The first
parameter set is derived from measurements while the second one has been
calculated by an ab initio method. Qualitatively the shapes in Fig. 6.11(a)
and (b) are the same. However, the relative areas of the crystalline facets
vary with the absolute numbers of the various energy. Considering only the
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two lowest γsv values for (111) and (100) orientations, the cubic symmetry
suggests that the Wulff shape is a regular octahedron with (111) facets trun-
cated at each apex by (100) planes perpendicular to the cube axes at the
same distance from the octahedron center. The inclusion of the (113) energy
destroys the octahedral shape discussed frequently for homopolar semicon-
ductors. On the other hand, the (110) facets in the tetrakaidecahedron (Fig.
6.11(a)) disappear completely in Fig. 6.11(b), indicating the influence of the
absolute values of γsv.

Fig. 6.11 Equilibrium shapes of a Si crystal based on the Wulff construction
using (a) experimental values or (b) calculated values. Four surface orientations are
considered. The areas with the orientation sequence (100), (311), (110), and (111)
vary from black to white.

Crystalline facets, part of a Wulff construction, are thermodynamically
stable. Since all four orientations considered appear on the ECSs to a certain
extent in Fig. 6.11, the four reconstructed or relaxed surfaces (111), (110),
(100), and (311) are stable surfaces in this respect. Of course, the (110) areas
in Fig. 6.11(b) are negligibly small because of the high value of γ110. The
inclusion of the 16×2 reconstruction of the Si(110) surface should, however,
lower this value.

The existence of γsv leads to adsorption. In a bulk material, all the bond-
ing requirements (be ionic, covalent, or metallic) of the constituent atoms
of the material are filled by other atoms in the material. However, atoms
on the surface of the adsorbent are not wholly surrounded by other adsor-
bent atoms and therefore can attract adsorbates. The exact nature of the
bonding depends on the details of the species involved, but the adsorption
process is generally classified as physisorption (characteristic of weak van der
Waals forces) or chemisorption (characteristic of covalent bonding). The heat
evolved in the physisorption process is of the order of magnitude of the heat
evolved in the process of condensing the gas, and the amount adsorbed may
correspond to several monolayers. Physical adsorption is readily reversed by
lowering the pressure of the gas or the concentration of the solute, and the
extent of physical adsorption is smaller at higher T due to the entropy ef-
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fect. Chemisorption involves the formation of chemical bonds, which may be
so tight that the original species may not be recovered. For example, when
oxygen is adsorbed on graphite, heating the surface in a vacuum leads to
the formation of carbon monoxide. The rate of chemisorption may be fast or
slow, depending on the activation energy. Physical adsorption of a gas may
occur at a low T and the gas may become chemisorbed when T is raised.
Chemisorbed gases cannot be removed by simply exposing a solid surface to
a vacuum.

Adsorption is usually described through isotherms, that is, the amount
of adsorbate on the adsorbent as a function of its P (if it is a gas phase) or
concentration (if it is a liquid phase) at constant T . The quantity adsorbed is
nearly always normalized by the mass of the adsorbent to allow comparison
of different materials. To discuss the theory of adsorption we first consider
a very simple model treated by Langmuir. It is a semi-empirical isotherm
derived from a proposed kinetic mechanism based on four assumptions: (1)
The surface of the adsorbent is uniform, that is, all the adsorption sites
are equivalent. (2) Adsorbed molecules do not interact. (3) All adsorption
occurs through the same mechanism. (4) At the maximum adsorption, only a
monolayer is formed: molecules of adsorbate do not deposit on other already
adsorbed molecules of adsorbate, only on the free surface of the adsorbent.

If θs is the fraction of the surface occupied by gas molecules, the rate of
evaporation from the surface is k−1θs, where k−1 is the rate of evaporation
from the completely covered surface at a certain T . The rate of adsorption
of molecules on the surface is proportional to the fraction of the area that
is not covered (1 − θs) and to P of the gas. Thus the rate of condensation
is expressed as k′(1 − θs)P , where k is a constant at a given T and includes
a factor to allow for the fact that not every gas molecule that strikes an
unoccupied space will stick.

In equilibrium, the rate of evaporation of the adsorbed gas is equal to the
rate of condensation,

k−1θs = k′(1− θs)P. (6.25)

We have thus

K =
k′

k−1
=

θs

(1− θs)P
, or θs =

KP

1 + KP
(6.26)

where P is the partial pressure of the gas or the molar concentration of the
solution. θs ≈ KP at very low P and θs ≈ 1 at larger P . Since the volume
V of gas adsorbed is proportional to θs, θs = V/Vm and we obtain a straight
line,

1
V

=
1

Vm
+

1
VmKP

. (6.27)

Through its slope and y-axis intercept we can obtain Vm and K, which are
constants for each adsorbent/adsorbate pair at a given T . In fact, some data
do not show asymptotic saturation and do not give a linear plot except at low
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P . Thus adsorption on solids is more complicated than that the Langmuir
theory has indicated.

In physical adsorption, molecules of a gas may be adsorbed to the depth
of many monolayers. In 1938, Brunauer, Emmett, and Teller developed an
isotherm model, or BET theory, that takes that possibility into account. The
derivation of the formula is more complicated than Langmuir’s. The result is

x

V (1− x)
=

1
Vmc

+
x(c− 1)

Vmc

where x is the pressure divided by the vapor pressure for the adsorbate at a
T (usually denoted by P/P 0), c = KP where K is determined by Eq. (6.26).
The key assumption used in deriving BET equation is that the successive
adsorption heat for all layers except the first one equals the condensation
heat of the adsorbate.

6.4 Solid-liquid Interface Energy

6.4.1 Bulk Solid-liquid Interface Energy and That at Melting
Points [3, 9, 10]

The bulk solid-liquid interface free energy γsL0, which is defined as the re-
versible work required to form or to extend a unit area of interface between
a crystal and its coexisting fluid plastically, is one of the fundamental ma-
terials properties. It plays a key role in many practically important physical
processes and phenomena like homogeneous nucleation, crystal growth from
the melt, surface melting and surface roughening, etc. Thus, a quantitative
knowledge of γsL0 values is necessary. However, direct measurements of γsL0

are not at all easy even for elements in contrast to the case of interface en-
ergy of bulk liquid-vapor γLv0. Some attempts are made to obtain γsL0 by
theoretical approaches or computer simulations. A widely used technique in
an indirect way to determine γsL0 value is nucleation experiments of un-
dercooled liquid based on the classical nucleation theory (CNT), which was
made firstly by Turnbull. According to CNT, the undercooled liquid crystal-
lizes at nucleation temperature Tn with a critical nucleation size r∗ induced
by a localized structural and energetic fluctuation where the thermodynamic
properties of nanometric aggregates of the newly nucleated phase are the
same as those of the corresponding bulk one. Thus, the nucleus-liquid inter-
face energy γsL(r∗, Tn) at Tn is treated as the respective value for a planar
interface γ′sL0 being temperature-independent (this assumption is known as
the capillarity approximation), which makes it possible to consider the Gibbs
free-energy difference of a spherical nucleus in the liquid ΔG(r, T ) as a sum



6.4 Solid-liquid Interface Energy 233

of a volume term and an interface term as Eq. (4.40). With a consideration
for homogeneous nucleation rate, γsL0 in Eq. (4.40) can be determined, which
as an empirical relationship is proportional to ΔHm,

γCNT = τΔHm/(V 2/3
s N

1/3
A ) = τhΔHm/Vs (6.28)

where Turnbull coefficient τ is considered to be 0.45 for metals (especially
closed-packed metals) and 0.34 for nonmetallic elements at about 20% of
undercooling below Tm, Vs is the g-atom volume of the crystal, h is the
atomic diameter, and NA is the Avogadro constant. A computer simulation
confirms this empirical relationship where τ calculated for the interfaces of
(111), (100) and (110) of an fcc crystal is 0.36, 0.35, 0.37, respectively, or
γCNT for the fcc crystal has a small anisotropy. According to the review
papers of Eustathopoulos and Kelton, τ = 0.55± 0.08 and τ = 0.49±0.08 for
metals while τ increases noticeably for molecules having more asymmetry.
Equation (6.28) would seem capable of predicting γCNT quite accurately for
many crystals.

However, the droplet technique has been modified and improved recently.
The results of maximum supercooling are much more than those found by
Turnbull before, which in many cases are about twice as much. According to
CNT, this means that the γCNT values measured by Turnbull are lower than
real γsL ones for metals. In addition, the existence of τ to be determined
also weakens the theoretical meaning of this equation, and makes it only
an empirical rule. Moreover, Eq. (6.28) overlooks some important pieces of
physics and will be considered later.

Although Eq. (6.28) underestimated γsL values, Eq. (6.28) has been ra-
tionalized in terms of interfacial bonding models by Ewing, thus it reads

γsL = hΔHm/(4Vs) + (NAb′k/VL)
∫ b′

0

gL(r) ln g(r)dr (6.29)

where gL(r) is the liquid radial distribution function, b′ is the cut-off distance
beyond which gL(r) shows no significant deviation from unity, k is Boltz-
mann’s constant, and VL is the g-atom volume of the liquid. The approach
of Miedema and den Broeder results in

γsL = 0.211ΔHm/(V 2/3
s N

1/3
A ) + 0.52× 10−7T/V 2/3

s (6.30)

while that of Gránásy and Tegze yields

γsL = φ(ΔHm + TΔSm)/[2(V 2/3
s /N

1/3
A )]. (6.31)

In Eq. (6.31), φ is a geometric factor ranging from 0.29 to 0.63 for cubic or
hcp structure, depending on the interface orientation.

It is known that the most powerful method available for theoretically es-
timating γsL is to directly use the so-called Gibbs-Thomson equation (known
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also as the Kelvin equation), which describes the equilibrium between a small
solid nucleus and the infinite amount of its liquid, as follows:

Tm(r, r′)/Tm = 1− VsγsL(1/r + 1/r′)/ΔHm. (6.32)

r and r′ in Eq. (6.32) are principal radii of curvature of the crystal in equi-
librium on the interface with the liquid at Tm(r, r′). Equation (6.32) is valid
when r and r′ are large enough (say 10 nm) and thus the crystal retains its
bulk values of γsL0, Vs and ΔHm. For an actual γsL measurement, r = r′(d = 1
and r0 = 2h) or r = r and r′ =∞(d = 2 and r0 = h) can be taken.

Tm(r) function has been described by Eqs. (3.80) and (3.84),

Tm(r)/Tm(∞) = exp{−[2ΔSvib/(3R)]/[(r/r0)− 1]}. (6.33)

When r > 10r0 ≈ 10 nm, in terms of the mathematical relationship of
exp(−x) ≈ 1− x, equation (6.33) is written as

Tm(r)/Tm ≈ 1− 2r0ΔSvib/(3Rr). (6.34)

Through comparing Eqs. (6.32) and (6.34) with respect to Eq. (3.79),

γsL0 = 2hΔSvibΔHm/(3VsR). (6.35)

Equation (6.35) is similar to the Turnbull’s empirical equation (Eq. (6.28))
where τ = 2ΔSvib/3R. Thus, τ is not a constant, but dependent on ΔSvib.
Since for all kinds of crystals except the semiconductors, there is ΔSvib ≈
ΔSm, each parameter in Eq. (6.35) is known. Thus, Eq. (6.35) can predict
γsL0 values directly.

To confirm the generality of Eq. (6.35), the values of γsL0(Tm) for dif-
ferent types of elemental crystals including true metals, semi-metals, and
semiconductors are predicted and shown in Table 6.1. For comparison, the
corresponding experimental γexp and γTS based on the Turnbull-Spaepen re-
lation are also shown in Table 6.1 noting that the Turnbull-Spaepen relation
is read as

γTS = 0.6[M/(ρliqNA)]1/3ΔHm (6.36)

with M being the atomic mass.
Although Eq. (6.35) overestimates γsL0 of metals at Tm typically by 50%

to 100% in comparison with that obtained from CNT or the undercooling
experiments of liquid droplets of elements, typically from the Turnbull’s work,
the predicted γsL0 values are in agreement with those of γexp and γTS except
for Si (the reason will be explained later) and Mo where the reason remains
unknown. As for Cr, the larger deviation between γsL0 and γTS may result
from lower ΔSm value, which is thought not to present its true value. When
151, 215, 85, 48 and 88 (mJ·m−2) for Al, Au, Sn, Pb and Bi in light of Eq.
(6.35) are compared with the corresponding experimental values of 131–151,
270±10, 62±10, 40±7 and 55–80 (mJ·m−2) derived from measurements of
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Tm depression, the theoretical data are 120, 151, 83, 71 and 95 (mJ·m−2).
It is obvious that Eq. (6.35) corresponds better to the experimental results
than the latter theoretical results especially for Al, Au, Pb and Bi. Thus, Eq.
(6.35) can quantitatively estimate γsL0 values of metals.

Table 6.1 Comparisons of γsL0(Tm) among Eq. (6.35), γTS by Eq. (6.36), and
γexp. ΔSvib is determined by Eq (3.38a) for Al and Sn, by Eq. (3.38b) for Ga, by
Eq. Svib ≈ Sm − Sel for Ge, Si, Sb, Te and Bi. Since ΔSel of Si, Sb, Te and Bi are
unknown, ΔSel/ΔSm for these semiconductors are assumed to be the same as those
for Ge with ΔSel = 16.8 J·g-atom−1·K−1. ΔSvib for the rest elements is determined
by Eq. (3.37). γ in mJ·m−2, h in nm, ρ in g·cm−3, V in cm3·g-atom−1, ΔHm in
kJ·g-atom, Tm in K, ΔV/V in %, ΔSvib in J·g-atom−1·K−1

γsL0 γTS γexp h ρliq ρs Vs ΔHm Tm ΔV/V ΔSvib

Ti 216 234 0.290 4.11 10.6 15.5 1943 3.2 6.80
V 364 354 0.262 5.56 8.8 20.9 2175 5.2 7.86
Cr 272 326 0.250 6.28 7.20 7.2 16.9 2130 7.2 6.08
Mn 243 246 0.273 5.73 7.4 12.1 1517 1.7 7.26
Fe 236 276 221 0.248 7.01 7.1 13.8 1809 3.4 6.47
Co 353 338 0.251 7.76 6.7 16.1 1768 3.5 7.85
Ni 421 367 326 0.249 7.91 6.6 17.2 1726 5.4 8.11
Cu 297 261 270 0.256 8.00 7.1 13.0 1358 4.2 7.75
Zn 137 122 141 0.267 6.58 9.2 7.3 693 4.3 8.60
Zr 192 208 0.318 6.24 14.1 16.9 2125 3.5 6.69
Nb 402 400 0.286 7.62 8.55 10.9 26.4 2740 5.5 7.73
Mo 626 533 0.273 9.00 10.2 9.4 32.0 2890 6.4 9.01
Tc 441 425 0.270 10.2 11.5 8.5 24.0 2473 5.8 7.74
Ru 431 434 0.265 10.7 12.2 8.3 24.0 2523 7.0 7.51
Rh 387 391 0.269 10.7 12.4 8.3 21.5 2236 8.9 7.41
Pd 311 304 0.275 10.5 8.9 17.6 1825 5.9 7.64
Ag 199 176 0.289 9.34 10.3 11.3 1234 3.8 7.82
Cd 92 81 0.298 8.02 13.1 6.1 594 3.8 8.87
Hf 341 310 0.313 11.9 13.1 13.7 24.0 2500 3.2 8.45
Ta 472 477 0.286 14.6 16.6 10.9 31.6 3287 6.7 7.60
W 511 582 0.274 16.2 19.3 9.5 35.4 3680 12 6.62
Re 541 581 0.274 18.0 21.0 8.8 33.2 3453 9.7 6.91
Os 525 572 0.268 19.2 22.4 8.5 31.8 3300 9.7 6.93
Ir 468 464 0.271 20.0 22.5 8.6 26.0 2716 5.5 7.67
Pt 336 333 0.278 19.0 9.1 19.6 2045 6.6 7.58
Au 215 201 270±10 0.288 17.4 10.2 12.5 1338 5.2 7.62

190
Hg 29 28 0.301 13.4 14.8 2.3 234 3.7 8.51
In 35 38 0.325 7.02 15.7 3.3 430 2.7 6.70
Tl 39 45 0.341 11.2 17.2 4.2 577 3.2 6.13
Pb 48 49 40±7 0.350 10.7 18.2 4.8 601 3.6 6.77
Se 72 78 0.232 3.99 4.80 16.5 6.7 494 13 10.2
Al 151 170 149 0.286 2.39 10.0 10.8 933 6.15
Sn 89 79 62±10 0.281 7.00 16.7 7.0 505 9.22
Ga 87 76 0.244 6.09 11.8 5.6 303 10.1
Ge 412 453 0.245 5.60 13.6 31.8 1210 9.40
Si 738 672 332 0.235 2.51 12.1 50.0 1685 10.3
Sb 185 200 0.290 6.48 18.2 19.7 904 7.80
Te 158 168 0.286 5.71 20.5 17.5 723 8.65
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Continue

γsL0 γTS γexp h ρliq ρs Vs ΔHm Tm ΔV/V ΔSvib

Bi 88 101 55–80 0.309 10.1 21.3 10.9 545 7.20
Li 31 38 30 0.304 0.51 13.1 3.0 454 2.2 5.77
Na 19 22 20 0.372 0.94 23.7 2.6 371 2.5 6.15
K 11 13 0.454 0.83 45.5 2.3 336 2.6 6.06
Rb 10 11 0.495 1.46 55.9 2.2 313 2.5 6.17
Cs 8 9 0.531 1.84 71.1 2.1 302 2.6 6.06
Be 287 303 0.223 1.69 1.85 5.0 12.2 1560 2.5 6.96
Mg 115 113 0.320 1.59 14.0 8.7 922 3.6 8.15
Ca 60 61 0.395 1.37 26.2 8.5 1112 4.1 6.24
Sr 56 58 0.430 2.37 2.60 33.7 8.3 1041 2.7 7.06
Ba 45 49 0.435 3.20 3.50 39.2 7.8 1002 2.4 6.94

The dependence of γsL0 on crystal structure is crucial to understand the
role of metastable structures in nucleation pathways. In 1897, Ostwald for-
mulated his “step rule”, which states that nucleation from the melt occurs to
the phase with the lowest activation barrier, but not necessarily to the ther-
modynamically most stable bulk phase. In the case of the nucleation of fcc
crystals, there is evidence that crystallization often proceeds first through the
formation of bcc nuclei, which transforms to fcc crystals later in the growth
process. This phenomenon has been observed in experiments on metal al-
loys, in computer simulations of Lennard-Jones particles and weakly charged
collides. These results could be interpreted as that if γsL0 for bcc crystals
were significantly lower than those for fcc crystals in these systems, substan-
tially lower activation barriers would be brought out. Using a simple model
of interfacial structure, Spaepen and Meyer predicted that γsL0 for bcc-melt
interfaces (γbcc) should be about 20% lower than that for fcc-melt interfaces
(γfcc), based on packing considerations. Molecular dynamics (MD) simula-
tion results of Fe also show that γbcc/γfcc = 65%–70%. Equation (6.35) can
also easily confirm this difference. Since the difference of V between bcc and
fcc iron is only 1.3%, the effect of the change of V can be neglected. Thus,
γbcc/γfcc ≈ (ΔHbcc

m /ΔH fcc
m )(ηbcc/ηfcc)1/3 in terms of Eq. (6.35). With the

known values of ΔHbcc
m /ΔH fcc

m ≈ 0.72 and ηbcc/ηfcc ≈ 0.92, 1− γbcc/γfcc ≈
0.3, which is consistent with the reported values of 30%–35%. Moreover, from
the viewpoint of the internal energy change, the change from the melt to bcc
structure should be smaller than that to fcc structure, which leads to also
small activation barrier.

Table 6.2 shows γsL0 values of 15 organic molecular crystals, the pre-
dictions in terms of Eq. (6.35) partly correspond to the latest experimental
results but are less than the early experimental results. Organic crystals as
molecular crystals differ from metallic and ionic ones, whose chemical bonds
are covalent within molecules but consist of van der Waals forces or hydro-
gen bonds among molecules. The former, being responsible for stability of
individual molecules, is much stronger than the latter, being primarily re-
sponsible for bulk properties of matter, such as γsL0. Because bond strength
of van der Waals forces or hydrogen bonds is weaker than that of metallic
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or ionic bonds, γsL0 values of organic crystals are also smaller than those of
metallic and ionic crystals, such as Pb with γsL0 ≈ 40±7 mJ·m−2 (this value
in fact is one of the smallest γsL0 values among metallic or ionic crystals due
to its small ΔSm and ΔHm values in terms of Eq. (6.35)). Moreover, γsL0

values of compounds composed of full hydrogen bonds, such as H2O with
γsL0 ≈ 25–45 mJ·m−2, should also be larger than those of organic crystals
since organic crystals consist of hydrogen bonds and van der Waals force.
Thus, γsL0 < 30–40 mJ·m−2 for organic crystals.

Table 6.2 Comparisons of γsL0(Tm) between Eq. (6.35) and available experimental
results γexp for ice and organic crystals where γLv0 values are also listed

γsL0 γexp γLv0 m n h Vs ΔHm ΔSvib

Ice 56
44±10
45±15

3 1 0.310 6.55 2006 7.34

Benzene 15.4
15.7
22±2

28.9 12 1 0.503 6.40 829 2.95

Naphthalene 18.6
8.2

61±11
28.8 18 2 0.452 6.18 1062 2.98

Ethylene dibromide 16.4
19.5
35±7

38.4 8 2 0.509 19.8 1368 5.81

Cis-decalin 8.5 11.6 32.2 28 2 0.503 5.48 515 2.24

Trans-decalin 9.6 18.4 29.9 28 2 0.509 5.67 516 2.59

Chlorobenzene 15.7 14.1 33.6 12 1 0.534 7.66 802 3.50

Cyclohexane 3.1 4.6 25.5 18 1 0.547 5.46 150 2.55

Heptane 10 17.1 20.1 23 7 0.302 5.04 616 3.34

Stearic acid 14.3
106–151
151±10
135–180

28.9 56 18 0.294 7.83 1010 2.95

Myristic acid 16.0
81

116±10
28.6 44 14 0.292 10.8 1031 3.15

Lauric acid 13.9
71 ±15
100±15

28.5 38 12 0.299 4.90 964 3.05

Pivalic acid 2.4
2.8

2.7±0.2
17 1 0.572 6.60 146 2.33

Carbontetrabromide 10.6
10–20
28±4

5 1 0.540 19.0 790 5.89

Succinonitrile 7.3
8.9

7.9±0.8
47 10 2 0.402 6.20 370 3.78

Diphenyl 14.4
24

50±10
34.5 22 2 0.505 7.06 905 2.78

It is known that organic molecules mostly consist of C-H bonds with in-
termolecular dispersion forces caused by relative movement between electrons
and the atomic nucleus. Their relative movements change the electron den-
sity within the molecule. Generally, the larger the number of electrons and
the more diffuse the electron cloud in the molecule, the greater the dispersion
forces in the molecule. However, the forces hardly affect the net attraction
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applied to a unit area of interface, the size difference of γsL0 values for organic
molecules thus is smaller than that of metallic and ionic crystals (for other
three that of intermolecular forces, orientation forces and induced forces, a
similar discussion may be held).

Although measured γsL0 values of organic crystals composed of chain
molecules are much larger than the above limits shown in Table 6.2, their
real values should be similar to those composed of spherical molecules since
γsL0 denotes excess energy of unit area where molecular weight has negligible
effect on it. Even if chain molecules may contain one or more hydrogen bonds,
γsL0 values still vary little since the most bonds of the molecules are van
der Waals forces. This result also implies that anisotropy of γsL0 of organic
crystals is small.

Moreover, for a typical fcc crystal, bond number decrease of molecules on
a solid-liquid interface is usually 1–2 while that on a liquid-vapor interface
is 3–4. If this bond number is roughly proportional to the corresponding
interface energy, with the note that the bond strength difference of molecules
between solid and liquid states is only several percent, γsL0 < γLv0 while γLv0

is easy to measure with better measuring accuracy. Thus, γLv0 value is good
reference as an upper limit of γsL0. For organic crystals, γsL0 ≈ γLv0/2 as a
rough estimation. Since γLv0 ≈ 20–40 mJ·m−2 shown in Table 6.2, γsL0 <
20 mJ·m−2, which is also smaller than the above-stated limits in terms of
considerations of the bond strength of metallic, ionic, and hydrogen bonds.
On the basis of the above consideration, it is known that γsL0 values of organic
molecules must be smaller than those of the other types of crystals. Equation
(6.35) is in agreement with the principles of γsL0 < γLv0 and with the upper
size limit of γsL0 values.

In Table 6.2, although γsL0 < 20 mJ·m−2 as analyzed for organic crystals
in the above discussion, γsL0 values of different organic crystals change from
0.62 mJ·m−2 for cyclohexane to 19.7 mJ·m−2 for ethylene dibromide, their
sizes differences are about 30 times. This difference is analyzed in Eq. (6.35)
where the variants are h, ΔSm/R, and ΔHm/Vs. Since h varies a little for dif-
ferent substances, ΔHm/Vs, denoting the energetic difference between crystal
and liquid, and ΔSm/R, showing that the corresponding structural difference
is more important. ΔHm/Vs values are between 27 and 172 J·cm−3 in Table
6.2, while ΔSm/R values are in the range from 0.064 to 0.568. Since ΔHm/Vs

and ΔSm/R for one substance do not simultaneously take the largest values
induced by different Tm, with the known fact that ΔHm = TmΔSm, the real
differences in γsL0 values are smaller than the largest possible one.

For intermetallic compounds and oxides listed in Table 6.3, Eq. (6.35)
also corresponds to available theoretical results with the absolute deviation
smaller than 6%. Although higher Tm and larger ΔV/V of these substances
make ΔSvib comparable with those of elemental crystals, larger ΔHm and
smaller Vs indicate that their γsL0(Tm) values are larger than those of most
elemental crystals.
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Table 6.3 Comparison of γsL0(Tm) between γsL0 by Eq. (6.35) and other theo-
retical results γ′ for intermetallic compounds and oxides

γsL0 γ′ h ρs Vs ΔHm Tm ΔV/Vs ΔSvib

α-MoSi2 651 620 0.277 6.27 8.1 28.2 2173 29 8.4
β-MoSi2 538 509 0.460 6.32 8.0 22.9 2303 35 5.1

WO3 233 241 0.193 7.2 8.1 17.9 1743 18 6.8
ZrO2 491 500 0.223 5.89 7.0 29.1 2988 15 6.6
Ref 57,60–61 56–57 56 56–57 57,62

6.4.2 Size Dependence of Solid-liquid Interface Energy [3]

For comparison, γCNT values for elemental crystals Au, Al, Sn, Pb and Bi
in terms of Eq. (6.28) are 132, 93, 33.6, 54.5 and 54.4 (mJ·m−2), which cor-
respond to the lower limits of the corresponding experimental data for Sn,
Pb and Bi, but are by far lower than those for Au and Al. This disagree-
ment results from the two approximations in the CNT: (1) The heat capacity
difference between solid and liquid ΔCp is assumed to be zero. Namely, the
influence of ΔCp is neglected, or ΔHm(T ) is independent of temperature. (2)
The nucleus-liquid interface energy γsL(r∗, Tn) is treated as the value for a
temperature-independent planar interface γCNT, i.e. the capillarity approx-
imation. Since the values of γCNT in Eq. (6.28) are initially obtained for
nuclei-liquid interface while any nucleus during solidification is in nanometer
size range, γsL(r), not γsL0, has to be considered.

To determine γsL(r) function, we consider a compressible spherical parti-
cle, or a cube with cube side taken as r, immersed in the corresponding bulk
liquid. According to Laplace-Young equation, ΔP = 2fA/(3V ) = 2f/r (Eq.
(6.18)). Using the definition of β = −ΔV/(V ΔP ), ς = Δr/r = ΔA/(2A) =
ΔV/(3V ) under small strain and A/V = 3/r where Δ denotes the difference,

ς = −2βf/(3r). (6.37)

In terms of a scalar definition of f , there exists

f = ∂G/∂A = ∂(γsLA)/∂A = γsL + A∂γsL/∂A ≈ γsL + AΔγsL/ΔA (6.38)

where G = γsLA states the total excess Gibbs surface free energy, or ΔγsL =
(ΔA/A)(f − γsL).

To find mathematical solutions of f and γsL or γsL(r), two boundary
conditions of γsL(r) are needed. An understandable asymptotic limit is that
as r →∞, γsL(r) → γsL0. As r →∞, let

ΔγsL = γsL(r) − γsL0. (6.39)

Substituting Eq. (6.39) into Eq. (6.38) and taking in mind that V/A = r/3
and ΔA/A = 2β = −4βf/(3r) in terms of Eq. (6.16), it reads

γsL(r)/γsL0 = [1− 4βf2/(3γsL0r)]/[1 − 4βf/(3r)]. (6.40)
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Equation (6.40) is consistent with general calculations of thermodynamics
and quantum chemistry for particles.

Another boundary condition of γsL(r) is γsL0 value at the smallest size
r0 where almost all atoms of a low-dimensional crystal immersed in fluid are
located on its surface with a radius of r0 and the crystal is assumed to be
indistinguishable from the surrounding fluid. Thus, the solid-liquid interface
is at all diffuse where the crystal is similar to a cluster produced by an
energetic fluctuation of the fluid. As a result, γsL(r0) → 0 where hA/V =
1 − Vi/V = 1 − [(r0 − h)/r0]3−d = 1 with Vi being the interior volume of
the crystal. r0 depends on the existence of curvature. When a crystal has
plane surface, such as films, r0 = h. For crystals with curved surfaces, such
as particles or wires, r0 > h. As a first order approximation, r0 ≈ 3h/2 where
hA/V = 26/27 for a spherical particle. In summary,

r0 = 3h/2, for curved surface, (6.41a)

r0 = h, for plane surface. (6.41b)

Now Eq. (6.40) can be rewritten as

γsL(r)/γsL0 = [1− r0/r]/[1− γsL0r0/(fr)] (6.42)

with 4βf2/(3γsL0) = r0 or f = ±[(3γsL0r0)/(4β)]1/2. The different signs of
f correspond to the tensile (+) and compressive (−) stress on the surface.
The possible physical background of the positive or negative f could be illus-
trated based on the following mechanism: Atoms at the interface suffer a CN
reduction, bond contracts spontaneously, which leads to the enhancement of
the atomic binding energy and hence the tensile stress, or f > 0. This is
the case of free nanoparticles. When the interface atoms of different elements
are intermixing, CN or the bond strength may increase, such as alloying or
compound formation. The alloying and chemical reaction may alternate the
atomic valences, which may introduce repulsive stress of the ions or electronic
changes.

The above deduced f is in fact the solid-liquid interface stress fsL, which
differs from the solid-vacuum surface stress fsv. It is assumed that f ≈
fsL(Tm) ≈ fsv(Tm) because the interface stress induced by the elastic strain
of a solid remains almost constant when the vacuum is substituted by the
liquid on the solid surface where the liquid affects little the elastic strain of
the solid. For the most elements, f is one order larger than γsL0. Although
some MD work based on a hard-sphere model shows that f has the same
magnitude of γsL0, the hard-sphere model itself may lead to this result where
strain is absent, this and f co-exist Thus, when f > 10γsL0, Eq. (6.42) may
be simplified to a first order approximation,

γsL(r)/γsL0 ≈ 1− r0/r. (6.43)

Equation (6.43) denotes γsL(r) ∼ 1/r relationship. Figure 6.12 gives an exam-
ple for comparison between Eq. (6.43) and the computer simulation result of
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γsL(r)/γsL0 where γsL(r) value reduces as r decreases. The both are in agree-
ment. In Fig. 6.12, since the cited fcc crystal has not given an idiographic
substance, the simplified form of Eq. (6.42), namely, Eq. (6.43), is employed.

Fig. 6.12 γ(r)/γ0 as a function of r0/r in terms of Eqs. (6.43) and (6.53) with
r0 = 3h/2. For γss(r)/γss0 function, the solid line and the dash line are obtained
by using negative and positive f , respectively. The symbols and illustrate the
computer simulation results of γsL(8h)/γsL0= 0.58 for unknown fcc metal and those
for Cu where γss0 = 594 mJ·m−2. (Reproduced from Ref. [3] with permission of
Elsevier)

At the same time, γsL(r) values of five organic nanocrystals have also been
calculated in terms of Eq. (6.42) and are shown in Table 6.4. Equation (6.42)
is consistent with experimental observation with the note that there exists a
size distribution of nanocrystals. As r decreases, γsL(r) drops. At r = 2 nm,
the decrease in γsL(r) for different substances is distinct due to different r0

or r0/r values. The relative drop of γsL(r)/γsL(∞) values reaches 20%–40%
where r0 may be near 4 nm. Thus, the energetic resistance to the nucleation
process in liquid may be lower than what CNT has estimated. In addition,
the success of Eq. (6.42) for γsL(r) values in return confirms again that ΔHm

and ΔSvib, not ΔHm itself, determine γsL0 values as shown in Eq. (6.35).

Table 6.4 Comparison of γsL(r)/γsL0 values between Eq. (6.42) with r0 = 3h/2
and experimental results where the experimental data of γsL(r = 2 nm) are obtained
by measuring the slope of experimental data of Tm versus 1/r with two points of
r = 2 nm and r ≈ 4.3 nm in terms of Gibbs-Thomson equation. Since β values of
crystals are not found, β values of the corresponding liquid are used, which leads
to minor error. Note that β values of naphthalene and trans-decalin have been
estimated as those of benzene

γsL(r)/γsL0
β/(MPa−1×10−5)

Experiments Eq. (6.42)

Benzene 0.67 0.66 87
Naphthalene 0.68 0.69 ≈ 87

Chlorobenzene 0.89 0.63 67
Heptane 0.63 0.80 134

Trans-decalin 0.60 0.68 ≈ 87
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6.4.3 Nucleus-liquid Interface Energy [3]

As mentioned in Chapter 4, several improved expressions for ΔGm(T ) func-
tion have been proposed through considering ΔCp function below Tm, such
as Eqs. (4.52), (5.53) and (4.55), they are adequate for different kinds of
substances. These equations predict a steepest variation near Tm, and a
much weaker temperature-dependence near TK, which can be determined
by letting dΔGm(T )/dT = 0. With these ΔGm(T ) functions, the respec-
tive ΔHm(T ) functions can also be determined in terms of ΔHm(T ) =
ΔGm(T )− TdΔGm(T )/dT (Helmholtz function),

ΔHa
m(T ) = 49ΔHmT 2/(Tm + 6T )2, (6.44a)

ΔHb
m(T ) = 4ΔHmT 2/(Tm + T )2, (6.44b)

ΔHc
m(T ) = ΔHm(T/Tm)2 (6.44c)

where superscripts of “a”, “b” and “c” stand for metallic elements, ionic
crystals and semiconductors, respectively. Because ΔGm(T ) is determined by
ΔCp while ΔCp between crystal and glass approaches to zero when T � TK,
the liquid must transform to glass. Thus, Eq. (6.18) is valid only at T > TK

where T
(a)
K = (71/2−1)Tm/6, T

(b)
K = (21/2−1)Tm, and T

(c)
K = Tm/2. Note that

T > TK is satisfied in undercooling experiments. Combining Eq. (6.25) and
Eq. (6.44), the temperature-dependent γsL0(T ) functions can be expressed as

γa
sL0(T ) =

2hΔHmΔSvib

3RV

(
7T

Tm + 6T

)2

, (6.45a)

γb
sL0(T ) =

2hΔHmΔSvib

3RV

(
2T

Tm + 6T

)2

, (6.45b)

γc
sL0(T ) =

2hΔHmΔSvib

3RV

(
T

Tm

)2

. (6.45c)

γsL0(T ) in terms of Eq. (6.45) decreases as T drops. As T → Tm, γa
sL0 ≈

γb
sL0 ≈ γc

sL0 due to the decreased effect of ΔCp on ΔGm(T ). Although nega-
tive temperature dependence for γsL0 has been considered, it differs from the
usual understanding that differences of structures and surface states between
crystal and liquid decrease with T .

Substituting Eq. (6.45) into Eq. (6.42), the integrated size- and
temperature-dependent interface energy can be read as

γa
sL(r, T ) =

2hΔHmΔSvib

3RV

(
1− 3h

2r

)(
7T

Tm + 6T

)2

(6.46a)

γb
sL(r, T ) =

2hΔHmΔSvib

3RV

(
1− 3h

2r

)(
2T

Tm + T

)2

, (6.46b)
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γc
sL(r, T ) =

2hΔHmΔSvib

3RV

(
1− 3h

2r

)(
T

Tm

)2

. (6.46c)

Substituting Eqs. (4.52), (4.53) and (4.55) into Eq. (4.40) and when γsL0 is
replaced by γsL(r, T ) in terms of Eq. (6.46), the critical size of nuclei r∗ can
be determined by letting ∂ΔG(r, T )/∂r = 0,

r∗(a) = h(A1 +
√

A2
1 − 3A1θc/2)/θc, (6.47a)

r∗(b) = h(4B1 +
√

16B2
1 − 18Bθc)/(3θc), (6.47b)

r∗(c) = h(C1 +
√

C2
1 − 3C1/2) (6.47c)

where θc = (Tm−T )/Tm is the degree of undercooling. A1 = 14ΔSvib(1−θc)/
[3R(7−6θc)], B1 = ΔSvib(1−θc)/[R(2−θc)] and C1 = 2ΔSvib(1−θc)/(3Rθc).
Substituting Eq. (6.47) into Eq. (6.46) with experimentally determined θc

values, γsL(r∗, Tn) can be determined.
Figure 6.13 shows a comparison between γsL(r∗, Tn) values in terms of

Eq. (6.46) and experimentally determined γCNT values in good agreement,
which implies that the γCNT value by Eq. (6.28) is not γsL0, but γCNT.

Fig. 6.13 The comparison between γsL(r∗, Tn) in terms of Eq. (6.46) for a variety
of elemental systems and γCNT calculated from the CNT. (Reproduced from Ref.
[3] with permission of Elsevier)

Aforementioned Tn and γsL(r∗, Tn) correspond well to the Turnbull’s un-
dercooling experimental results although both the expressions of γsL(r, T )
and ΔGm(T ) functions differ from those in CNT. The possible reason may
be the mutual compensation for γsL(r, T ) and ΔGm(T ) functions. However,
there is about 40% difference in the value of r∗ between CNT (r∗ ≈ 4h)
and the above equations (r∗ ≈ 5.5h), which may result from neglecting of
derivative of γsL(r, T ) to r in CNT. Although we cannot confirm the above
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difference from experiments due to the experimental difficulties, a little larger
r∗ should be more reasonable. Moreover, according to Eq. (6.47), the size of
r∗ is decided by ΔSvib and θc due to the introduction of γsL(r, T ) function,
and it increases with an increase in ΔSvib or a decrease in θc. Since ΔSvib and
θc values for elements with different bond natures are similar, r∗ is in fact
independent of the elemental types. Thus, r∗ ≈ 5.5h is here for all concerned
elements.

In Eq. (6.28), h also affects γCNT value. To accurately estimate this in-
fluence, h of all elements should be unified to h′ where the elements with
different structures have the same CN of 12. According to the Goldschmidt
premise for lattice contraction, (1 − h/h′) will be 3%, 4%, and 12% if CN
reduces from 12 to 8, 6, and 4, respectively. From this correlation between h
and h′ for the elements, whose CN is 4, 6 or 8, replacing h with h′, Eq. (6.28)
can be simplified to

γCNT = τ2ΔHm/Vs (6.48a)

with τ2 ≈ 0.11 ± 10% nm except semi-metals Pb, Sn and Ga as shown in
Fig. 6.14. In a similar way, Eq. (6.28) can also be simplified to

γsL0(Tm) = τ3ΔHm/Vs (6.48b)

with τ3 = 2Svibh
′/(3R) ≈ 0.18 ± 15% nm except Fe, Al and Ga. Equation

(6.48) can represent γCNT or γsL0(Tm) with a unique τ2 or τ3 rather than two
different τ values by Eq. (6.28) due to different bond natures of the elements.
Moreover, the disappearance of h or h′ in Eq. (6.48) implies that the unique
parameter deciding γsL0 is ΔHm. This conclusion is confirmed by Fig. 6.14
where we indeed find a good relationship between ΔHm/Vs and γsL(r∗, Tn)
(γCNT).

Fig. 6.14 γsL(r∗, Tn) as a function of ΔHm/Vs for a variety of elemental systems
in terms of Eq. (6.48a) (solid line) while and denote γsL(r∗, Tn) values of metals
and semiconductors. (Reproduced from Ref. [3] with permission of Elsevier)
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Substituting Eq. (6.47) into Eq. (6.48) and plotting the function, the curve
can be linearly regressed as a function of θc, which leads to

γsL(r∗, Tn) ≈ (1.78− 3.83θc)× 10−10 ×ΔHm/Vs. (6.49)

The standard deviations for the constants 1.78 and 3.83 are 0.01 and 0.16,
respectively. Equation (6.49) indicates that Eqs. (6.48a) and (6.48b) denote
two extreme cases where θc = θn (the maximum degree of undercooling,
which is nearly a constant of 0.18±0.02 for the most elements) and θc = 0,
respectively. In fact, at any θc value, γsL(r∗, Tn) is always proportional to
ΔHm/Vs.

As an example, Fig. 6.15 shows such a relationship at θc = 0.1 where the
linearly regressed slope equals 1.40 as indicated by Eq. (6.49). Figure 6.15
implies that ΔHm is related to bond energy of atoms while γsL denotes the
bond energy difference between surface atoms and interior ones of a crystal.
Thus, γsL is proportional to the cohesive energy Ec, which has been deter-
mined by Eq. (3.90) and is also size-dependent. This result is confirmed in
Fig. 6.16 where a comparison between γsL(r, T )/γsL0(T ) function in terms of
Eq. (6.43) and Ec(r)/Ec(∞) function by Eq. (3.90) (ΔSb ≈ 12R is assumed
except for Sb and Bi) is made. As shown in the figure, there are good agree-
ments between them. Thus, the size dependence of γsL(r) originates from
that of Ec(r). In terms of Eq. (6.48) or Eq. (6.49), γsL(r∗, Tn)/γsL0(Tm) is
within 10% of the value of Ec(r∗)/Ec(∞), which also confirms the validity of
Eq. (6.48) or Eq. (6.49).

Fig. 6.15 γsL(r∗, Tn) as a function of ΔHm/Vs with θc = 0.1 for elements in terms
of Eq. (6.49) (solid line) where and denote the γsL(r, T ) values of fcc and non-fcc
elements, respectively. (Reproduced from Ref. [3] with permission of Elsevier)

Another linear relationship between γsL(r∗, Tn) or γCNT and Tm with
large scatter among different groups of elements has been rejected as the
basis for an empirical rule in favor of the correlation with ΔHm. However,
direct calculations for γCNT values of transition fcc metals with hard-sphere
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systems have shown a high correlation with Tm, which can also be extended
to γsL0(Tm) for all fcc metals since ΔHm = TmΔSm and τ3ΔSm = 1.59 ±
7% nm·J·mol−1·K−1 in terms of Eq. (6.48b). For other elements, τ3ΔSm val-
ues show large scatter in a range of 1.04 to 5.44 (nm·J·mol−1·K−1) due to
the scatter of ΔSm values. This indicates a disagreement of a linear relation-
ship between Tm and ΔHm. Thus, it is not Tm, but ΔHm, which generally
characterizes γsL0(Tm) value better.

Fig. 6.16 Comparison between γsL(r)/γsL0 of Eq. (6.43) (dot ted line) and
Ec(r)/Ec(∞) of Eq. (3.90) (solid line). (Reproduced from Ref. [3] with permission
of Elsevier)

Note that all of the above considerations for the monotone size-dependent
γsL(r, T ) function are based on an essential assumption on Ec(r)/Ec(∞) func-
tion, which supposes that as r decreases, the increase (or decrease in absolute
values) of Ec(r) of materials is induced by two effects: One is the increase of
the surface/volume ratio, and the other is the increase of the interior atoms of
the materials, the increase of the latter is sharper than the former. If the lat-
ter is neglected, done especially by computer simulation technique, we could
observe a slight increase of γsL(r, T ) as r decreases.

6.5 Solid-solid Interface Energy [3]

For coherent or semi-coherent solid-solid interface, its interface energy can
be determined by some classic dislocation models. While for semi-coherent
interface, atomic diameter misfit on the interface must be smaller than 0.15–
0.25, γss0 is very strongly dependent on the misorientation of the two crystal
halves and remains challenge. However, for high angle grain boundary, γss0

is almost a constant, which will be considered here.
Since a liquid may be regarded as a solid with such a high concentration of

dislocation cores that are in contact everywhere, solid-solid interface energy
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γss0 at Tm is considered to be twice the γsL0 approximately, γss0(Tm) ≈
2γsL0(Tm). Combining with Eq. (6.35),

γss0(Tm) ≈ 4hΔSvibΔHm/(3VsR). (6.50)

As shown in Table 6.5, γss0(Tm) values based on Eq. (6.50) for eleven elements
and two organic crystals correspond to available theoretical values γ′ss0. In
addition, the listed data of γ′ss0 and γ′sL0 for Pivalic acid and Succinonitrile
determined by the equilibrated grain boundary groove shapes also confirm
the validity of γss0(Tm) ≈ 2γsL0(Tm) with the absolute deviation being smaller
than 5.5%. Thus, Eq. (6.50) can be used to quantitatively calculate γss0(Tm)
values, at least for metals and organic crystals.

Table 6.5 Comparison of γss0(Tm) between γss0 by Eq. (6.25) and available theo-
retical or experimental results γ′ss0 for metals and organic crystals with γ in mJ·m−2

System γss0 γ′ss0 γ′sL0 System γss0 γ′ss0 γ′sL0

Cu 584 601 Ag 398 392,375
Au 430 400 Al 302 300–380
Ni 844 866,757 Co 706 650
Nb 804 760 Ta 944 900
Sn 158 160,164 Pivalic acid 4.8 5.2±0.4 2.7±0.2
Bi 176 140.5±14.1 Succinonitrile 14.6 15.0±2.0 7.9±0.8
Pb 96 111.5±15.6

The way to deduce γss(r) is similar to that to deduce γsL(r) while Eqs.
(6.16) and (6.37) must be modified due to different interface conditions. We
assume that f as a first order approximation keeps constant for both solid-
liquid and solid-solid interfaces at Tm, which leads to the same strain on both
sides of the interface when the grains are isotropic. However, elastic modulus
of grain boundaries should be larger than that of the solid-liquid interface
with less strain under the same stress. This is introduced by the fact that
A = 3V/(2r) for solid-solid interface because two solid-liquid interfaces of
particles combine to form one grain boundary with

ΔP = 2fA/(3V ) = f/r, (6.51)

and
ς = −βf/(3r). (6.52)

Both equations indicate that the strain on the grain boundary is only a
half of that on the solid-liquid interface and thus ΔA/A = 2ς = −2βf/(3r).
Now Δγss = γss(r) − γss0 = (ΔA/A)(f − γss) = −2βf(f − γss)/(3r), or

γss(r)/γss0 = [1− r0/(4r)]/[1− γssr0/(4fr)]. (6.53)

Similar to the simplification of γsL(r), Eq. (6.53) can also be simplified to

γss(r)/γss0 = 1− r0/(4r). (6.54)
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Figure 6.12 shows an agreement between Eq. (6.53) and the computer simu-
lation results for Cu. It is interesting that the use of a negative f for γss(r)
in Eq. (6.53) leads to a full agreement with the computer simulation results,
which implies that f < 0 at the grain boundary.

If we compare Eqs. (6.43) and (6.54), γsL(r)/γsL0 < γss(r)/γss0. This
result shows that the stiffer surrounding of grains brings out less decrease
of γss(r) as r decreases. For the grain boundaries, even if when r → r0,
γss(r)/γss0 ≈ 75% while γsL(r)/γsL0 = 0. Since when r ≈ 2r0, the grains
are no more stable and will transform to amorphous solids in terms of the
computer simulation results, the smallest value of γss(r0)/γss0 could be about
85%.

6.6 Solid-vapor Interface Energy or Surface Energy

6.6.1 Bulk Surface Energy of Elementary Solids [3]

The surface energy γsv0 of solids usually is defined as the difference between
the Gibbs free energy of the surface and that of the bulk or simply as the
energy needed to split a solid in two along a plane, which is one of the ba-
sic quantities to understand the surface structure and phenomena. Despite
of its importance, γsv0 value is difficult to determine experimentally. The
most experiments are performed at high T where surface tension of liquid
is measured, which is extrapolated from zero Kelvin. This kind of experi-
ment contains uncertainties of unknown magnitude and corresponds to only
γsv0 value of an isotropic crystal. Moreover, many published data determined
by the contact angle of metal droplets or by peel tests disagree with each
other, which can be induced by the presence of impurities or by mechani-
cal contributions, such as dislocation slip or the transfer of material across
the boundary. In addition, there are hardly experimental data on the more
open surfaces except for the classic measurements on Au, Pb and In to our
knowledge. Therefore, a theoretical determination of γsv0 values especially
for open surface is of vital importance.

There have been several attempts to calculate γsv0 values of metals using
either ab initio techniques with tight-binding (TB) parameterizations or semi-
empirical methods. γsv0 values, work functions and relaxation for the whole
series of bcc and fcc 4d transition metals have firstly been studied using the
full-potential (FP) linear muffin-tin orbital (LMTO) method in conjunction
with the local-spin density approximation to the exchange-correlation poten-
tial. In the same spirit, γsv0 values and the work functions of the most elemen-
tal metals including the light actinides have been carried out by the Green’s
function with LMTO method. Later, the full-charge density (FCD) Green’s
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function LMTO technique in the atomic-sphere approximation (ASA) with
the generalized gradient approximation (GGA) was utilized to construct a
large database that contains γsv0 values of low-index surfaces of 60 elements
in the periodic table. The results denote a mean deviation of 10% for the 4d
transition metals from FP methods. This database in conjunction with the
pair-potential model has been further extended to estimate the formation
energy of mono-atomic steps on low-index surfaces for an ensemble of fcc and
bcc metals.

On the other side, the traditional broken-bond model is again suggested to
estimate γsv0 values of the transition metals and the noble metals at different
facets. The simplest approach to get a rough estimation of γsv0 values at T =
0 K is to determine the broken bond number Zhkl for creating a surface area
by cutting a crystal along certain crystallographic plane with a Miller index
(hkl). Zhkl = Zb−Zs where Zs and Zb are CN of surface atoms and that of the
corresponding bulk ones. Multiplying this number with the cohesion energy
per bond Ec/Zb for the non-spin-polarized atom at 0 K, γsv is determined
by [6.11],

γsv0 = (1 − υ1)Ec/(NAAS) (6.55)

where υ1 = Zs/Zb and As denotes the area of the two-dimensional unit cell
of solid.

In Eq. (6.55), Ec is independent of crystalline structures as a first order
approximation since energy differences among crystal structures are several
orders of magnitude smaller than Ec when the bond type remains unaltered.

Although the broken-bond rule seems to contradict the basic knowledge
about the electronic structure since Ec, in general, does not scale linearly with
Zs, the above estimation provides the order of magnitude of γsv0 and shows a
possible relationship between γsv0 and atomic binding strength. Despite the
absence of verification from experiments, such a rule has been used to give a
reasonable description of γsv0 value of Al.

Since the bond strength becomes stronger for an atom with a smaller CN,
this CN-bond-strength relation can be quantified using tight-binding approx-
imation. In the second-moment tight-binding approximation, the width of
the local density of states on an atom scales with Zs, leading to an energy
gain to be proportional to the square root of Zs due to the lowing of the
occupied states. Neglecting repulsive terms, there is Ec/Zb ∝ Z

1/2
s . Since Ec

of an atom is a bonding energy sum of all bonds, γsv0 is suggested as

γsv0 = [1− υ
1/2
1 ]Ec/(NAAS). (6.56)

Equation (6.55) does not consider the variation of bond strength with CN
while Eq. (6.56) has neglected the repulsive terms of potentials, the both thus
need corrections. Namely, the former neglects while the latter overestimates
the effect of relaxation on γsv0, which brings out that Eq. (6.55) can be an
acceptable concept for strongly covalent crystals while Eq. (6.56) is especially
suitable for noble metals.



250 Chapter 6 Thermodynamics of Interfaces

Although a direct utilization of Eq. (6.55) or Eq. (6.56) is reasonable, one
of them could not alone give satisfied predictions for γsv0 values in comparison
with the experimental and theoretical results. To obtain a more general for-
mula, we arbitrarily assume that both Eqs. (6.55) and (6.56) could make up
the deficiency with the same weight to both formulae. Thus, γsv0 values may
be determined by an averaged effect of them without elaborate estimation on
the relaxation energy,

γsv0 = [2 − υ1 − υ
1/2
1 ]Ec/(2NAAS). (6.57)

Equation (6.57) implies that γsv0 values still depend on the bond-broken
rule although they are scaled by both Zs and Z

1/2
s . In Eq. (6.31), Zs is

determined by the crystalline structure with the corresponding Zhkl in terms
of a geometric consideration. For fcc or hcp structure, Zb = 12. For a bcc
lattice, although Zb= 8 is taken according to the nearest-neighbor definition
by some authors (probably the majority), others prefer to take Zb = 14
since the difference between the nearest neighbor bond length and the next-
nearest neighbor bond length is small. Here, the latter is accepted although
the next nearest neighbor bond length is only taken as a fraction of the
nearest neighbor bond length. By assuming that the total energy of a surface
atom is the sum of contributions from both the nearest neighbor and the
next-nearest neighbor atoms, Eq. (6.57) should be rewritten for bcc metals
after normalization,

γsv0 = [(2− υ1 − υ
1/2
1 ) + ϕ(2− υ′1 − υ

′1/2
1 )]Ec/[(2 + 2ϕ)NAAS] (6.58)

where the superscript accent sign denotes the next nearest CN on a surface
and ϕ shows the total bond strength ratio between the next nearest neighbor
and the nearest neighbor.

To roughly estimate the size of ϕ, LJ potential of u(r) = −4ε[(λ/r)6 −
(λ/r)12] is utilized with ε being the bond energy and λ insuring du(r)/dr(r=h)

= 0, i.e. λ = 2−1/6h where h is the atomic distance in equilibrium and r is
the atomic distance. For fcc crystal, h = 21/2a/2 and h′ = a, respectively.
Let r = a, ε′ ≈ ε/4, and ϕ ≈ [(1/4)×6]/12 = 1/8. Thus, the effect of the
next nearest CN can be neglected as a first order approximation, which is
also applicable to hcp crystals. Namely, Eq. (6.58) can be simplified to Eq.
(6.57) for fcc and hcp crystals. For bcc crystal, h = 31/2a/2 and h′ = a,
respectively. Let r = a, ε′ = 2ε/3. Thus, ϕ = [(2/3)×6]/8 = 1/2. Adding this
value into Eq. (6.58),

γsv0 = [3− υ1 − υ
1/2
1 − υ′1/2− (υ′1/4)1/2]Ec/(3NAAS). (6.59a)

Note that the bonding of LJ potential, which is utilized to justify ϕ value in
Eq. (6.58), differs from the metallic bond in its nature. For instance in an
LJ bonded system, the surface relaxation is outwards whilst in the transition
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metals it is inwards. However, this difference leads to only a second order
error in our case and has been neglected.

The effect of next nearest CN also occurs for simple cubic (sc) and dia-
mond crystals (dc) structures because there are twice or thrice as many the
second neighbors as the first neighbors, respectively. Similar to the above
analysis, for sc crystals: ε′ ≈ ε/4 and ϕ = [(1/4)×12]/6 = 1/2, which is
the same for bcc and thus Eq. (6.33a) can also hold for sc crystals. For dc
structure, ε′ ≈ ε/10 and ϕ = [(1/10)×12]/4 = 3/10. With this ϕ value, Eq.
(6.58) is rewritten as

γsv0 = [26− 10υ1 − 10υ
1/2
1 − 3υ′1 − (9υ′1)

1/2]Ec/(26NAAS). (6.59b)

Zhkl can be determined by some known geometrical rules. For any surface of
a fcc structure with h � k � l,

Zhkl = 2h + k for h, k, l being odd, (6.60a)

Zhkl = 4h + 2k for the rest. (6.60b)

In a similar way, Zhkl for any surface of a bcc structure is determined with
the consideration of the next nearest CN,

Zhkl = 2h + (h + k + l) for h + k + l being even, (6.61a)

Zhkl = 4h+2(h+k+ l) for h+k+ l being odd and h−k− l � 0, (6.61b)

Zhkl = 2(h+k+ l)+2(h+k+ l) for h+k+ l being odd and −h+k+ l > 0
(6.61c)

where the second item of the right-hand side of Eq. (6.61) denotes the broken
bond number of the next nearest neighbors. For sc crystals, Zhkl values of
the nearest and the next nearest atoms are 1 and 4 for (100) surface as well
as 2 and 5 for (110) surface, respectively. For diamond structure crystals,
Zhkl values of the nearest and the next nearest atoms are 1 and 6 for (110)
surface. For several surfaces of a hcp structure, Zhkl is obtained by

Zhkl = 4(h + k) + 3l for (0001), (6.62a)

Zhkl = 4(h + k) + (8h + 4k)/3 for (1010) (6.62b)

where the first item of the right-hand side of Eq. (6.62) denotes the average
number of basal broken bonds while the second item is that of non-basal
broken bonds.

Table 6.6 shows some necessary parameters in Eqs. (6.57) and (6.59).
Tables 6.7–6.9 give the predicted γsv0 values for fcc, bcc, hcp, diamond and
sc structure crystals in terms of Eqs. (6.57) and (6.59) where two sets of
experimental results γ′′sv0 and the first principle calculations γ′sv0 are also
shown. Note that the experimental results are not orientation-specific but
are averaged values of isotropic crystals. Thus, they should be close to those
of the most close-packed surface.
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Table 6.6 AS, Zs and Zb values for different surfaces and structures where a is
lattice constant while Zs and Zb are determined by Eqs. (6.60)–(6.62)

Structure Surface AS Zs Zb

fcc (111) 31/2a2/4 9 12
(100) a2/2 8 12
(110) 21/2a2/2 6 12

bcc (110) 21/2a2/2 Zs = 6, Z′s = 4 Zb = 8, Z′b = 6
(100) a2 Zs = 4, Z′s = 4 Zb = 8, Z′b = 6

(111) 31/2a2 Zs = 2, Z′s = 0 Zb = 8, Z′b = 6

hcp (0001) 31/2a2/2 9 12

(1010) (8/3)1/2a2 16/3 12

Diamond (110) 21/2a2/4 Zs = 3, Z′s = 6 Zb = 4, Z′b = 12

sc (100) a2 Zs = 5, Z′s = 8 Zb = 6, Z′b = 12

(110) 21/2a2 Zs = 4, Z′s = 7 Zb = 6, Z′b = 12

Table 6.7 Comparison of γsv0 of fcc metals between the predicted values γsv0 of
Eq. (6.57), FCD calculations γ′sv0, and experimental results γ′′sv0. Ec in kJ·g-atom−1,
a in nm, and γ in J·m−2, which are the same as those in Tables 6.8 and 6.9

Ec a (h k l) γsv0 γ′sv0 γ′′sv0

(111) 1.83 1.95 1.79, 1.83
Cu 336 0.366 (100) 2.17 2.17

(110) 2.35 2.24

(111) 1.52 1.28 1.51, 1.50
Au 368 0.420 (100) 1.80 1.63

(110) 1.94 1.70

(111) 1.85 1.92 2.00, 2.05
Pd 376 0.385 (100) 2.15 2.33

(110) 2.35 2.23

(111) 2.70 2.47 2.66, 2.70
Rh 554 0.387 (100) 3.15 2.80

(110) 3.41 2.90

(111) 0.55 0.32 0.59, 0.60
Pb 196 0.511 (100) 0.64 0.38

(110) 0.70 0.45

(111) 0.43 0.57 0.50, 0.49
Ca 178 0.562 (100) 0.50 0.54

(110) 0.55 0.58

(111) 0.90 0.87
Ac 410 0.579 (100) 1.03 0.73

(110) 1.14 0.68

Mn∗ 282 0.353 (111) 1.65 3.10 1.54, 1.60

(111) 1.20 1.17 1.25, 1.25
Ag 284 0.418 (100) 1.40 1.20

(110) 1.51 1.24

(111) 2.44 2.01 2.38, 2.45
Ni 428 0.358 (100) 2.88 2.43

(110) 3.11 2.37



6.6 Solid-vapor Interface Energy or Surface Energy 253

Continue

Ec a (h k l) γsv0 γ′sv0 γ′′sv0

(111) 2.54 2.30 2.49, 2.48
Pt 564 0.402 (100) 2.98 2.73

(110) 3.24 2.82

(111) 3.19 2.97 3.05, 3.00
Ir 670 0.391 (100) 3.74 3.72

(100) 4.06 3.61

(111) 1.45 1.20 1.14, 1.16
Al 327 0.405 (100) 1.68 1.35

(110) 1.84 1.27

(111) 0.33 0.43 0.42, 0.41
Sr 166 0.617 (100) 0.39 0.41

(110) 0.43 0.43

(111) 1.61 1.48 1.50
Th 598 0.519 (100) 1.85 1.47

(110) 2.36 1.45

The symbol *, which has the same meaning in Tables 6.8 and 6.9, denotes that when the
low temperature equilibrium crystal structure has a lower symmetry than a close packing phase
at high temperature or under a high pressure, the latter is utilized.

Table 6.8 Comparison of surface energy of crystals in bcc, sc and diamond struc-
tures between the predicted values γsv0 based on Eq. (6.59), FCD calculations γ′sv0,
and experimental results γ′′sv0

Ec a (h k l) γsv0 γ′sv0 γ′′sv0

(110) 0.50 0.56 0.52, 0.53
Li 158 0.399 (100) 0.58 0.52

(111) 0.72 0.59

(110) 0.16 0.14 0.13, 0.15
K 90.1 0.530 (100) 0.18 0.14

(111) 0.23 0.15

(110) 0.10 0.08 0.10, 0.10
Cs 77.6 0.626 (100) 0.12 0.09

(111) 0.14 0.09

(110) 0.27 0.30
Ra 160 0.537 (100) 0.32 0.29

(111) 0.40 0.32

(110) 2.74 3.26 2.62, 2.56
V 512 0.302 (100) 3.26 3.03

(111) 4.04 3.54

(110) 2.52 2.43 2.42, 2.48
Fe 413 0.286 (100) 2.92 2.22

(111) 3.62 2.73

(110) 3.20 3.45 2.91, 3.00
Mo 658 0.317 (100) 3.81 3.84

(111) 4.62 3.74

(110) 3.36 4.01 3.27, 3.68
W 859 0.358 (100) 3.90 4.64

(111) 4.84 4.45

Bi 210 0.326 (100) 0.55 0.54 0.49, 0.49
(SC∗) (110) 0.64 0.54
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Continue

Ec a (h k l) γsv0 γ′sv0 γ′′sv0

Si 446 0.771 (110) 1.06 1.14

(110) 0.29 0.25 0.26, 0.26
Na 107 0.420 (100) 0.34 0.26

(111) 0.41 0.29

(110) 0.12 0.10 0.12, 0.11
Rb 82.2 0.571 (100) 0.15 0.11

(111) 0.18 0.12

(110) 0.36 0.38 0.38, 0.37
Ba 183 0.503 (100) 0.41 0.35

(111) 0.51 0.40

(110) 0.43 0.49 0.45, 0.45
Eu 179 0.458 (100) 0.50 0.46

(111) 0.61 0.52

(110) 2.39 3.51 2.35, 2.30
Cr∗ 395 0.285 (100) 2.83 3.98

(111) 3.50 4.12

(110) 2.58 2.69 2.66, 2.70
Nb 730 0.376 (100) 2.99 2.86

(111) 3.72 3.05

(110) 3.40 3.08 2.90, 3.15
Ta 782 0.335 (100) 4.05 3.10

(111) 5.01 3.46

Sb 265 0.336 (100) 0.66 0.61 0.60, 0.54
(SC∗) (110) 0.77 0.66

Po 144 0.334 (100) 0.38 0.44
(SC∗) (110) 0.44 0.37

Ge 372 0.810 (110) 0.80 0.88

For both noble and transition metals, the predicted γsv0 values agree fully
with the experimental results and FCD calculations as shown in Tables 6.7–
6.9 although γsv0 for transition metals have slightly larger deviations than
those for the noble metals due to the fact that their d-bands are not fully
filled and they present peaks at the Fermi level, which can slightly change
from one surface orientation to the other and consequently the energy needed
to break a bond changes also a little.

As shown in these tables, γsv0 values of transition metals increase along
an isoelectronic row where a heavier element has a larger γsv0 value. This is
because the d-level of a heavier element is higher in energy and the corre-
sponding d-wave function with a stronger bonding is more extended. This is
also true for elements in the same row in the periodic table where a heavier
element has more d-electrons. An exception is in VA series where γsv0 value
of Nb is smaller than that of V possibly due to the rehybridization of Nb
where Nb, whose d shell is less than the half-full, rehybridizes in the opposite
direction, i.e., depletes their d2

z orbitals based on a charge density difference
analysis.

γsv0 values for sp metals except for Be are smaller than those for d-metals
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due to their bond nature of s- and p-electrons, which are more mobile than
the localized d-electrons and therefore less energy is needed to break these
bonds.

Table 6.9 Comparison of γsv0 values of hcp metals between Eq. (6.57), FCD
calculations γ′sv0, and experimental results γ′′sv0

Ec a (h k i l) γsv0 γ′sv0 γ′′sv0

Be 320 0.222
(0001)
(1010)

2.40
2.88

1.83
2.13

1.63, 2.70

Mg 145 0.320
(0001)
(1010)

0.53
0.65

0.79
0.78

0.79, 0.76

Zn 130
0.268

(c/a=1.86)
(0001)
(1010)

0.66
0.72

0.99 0.99, 0.99

Cd 112
0.306

(c/a=1.89)
(0001)
(1010)

0.44
0.47

0.59
0.76, 0.74

Tl 182 0.371
(0001)
(1010)

0.49
0.60

0.30
0.35

0.60, 0.58

Sc 376 0.330
(0001)
(1010)

1.25
1.53

1.83
1.53

1.28

Ti 468 0.295
(0001)
(1010)

1.96
2.39

2.63
2.52

1.99, 2.10

Co 424 0.253
(0001)
(1010)

2.42
2.95

2.78
3.04

2.52, 2.55

Y 422 0.355
(0001)
(1010)

1.22
1.49

1.51
1.24

1.13

Zr 603 0.325
(0001)
(1010)

2.08
2.54

2.26
2.11

1.91, 2.00

Tc 661 0.274
(0001)
(1010)

3.22
3.93

3.69
3.90

3.15

Ru 650 0.272
(0001)
(1010)

3.20
3.90

3.93
4.24

3.04, 3.05

La∗ 431 0.387
(0001)
(1010)

1.05
1.28

1.12
0.92

1.02

Lu 428 0.351
(0001)
(1010)

1.27
1.55

1.60
1.42

1.23

Hf 621 0.320
(0001)
(1010)

2.22
2.71

2.47
2.31

2.19, 2.15

Re 775 0.276
(0001)
(1010)

3.72
4.54

4.21
4.63

3.63, 3.60

Os 788 0.275
(0001)
(1010)

3.80
4.64

4.57
5.02

3.44, 3.45

For fcc metals except Ca, Sr and Al, the mean-square root error Υ be-
tween the predicted and the experimental results for the most close-packed
(111) facet is about 7.5%. For Al, the degree of covalent Al–Al bonding in-
creases or the nature of the bonding changes with reduced CN, which leads
to deviation of Eq. (6.57) from experimental results since Eq. (6.57) neglects
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the variation of bonding types. However, the reason of deviations for Ca and
Sr is unclear.

For hcp metals, Υ ≈ 10% except Mg, Zn, Cd and Tl. For Cd and Tl,
both of the predictions and FCD calculations deviate evidently from the
experimental results. In the case of Zn and Cd, c/a ratios (1.86 and 1.89)
are larger than the ideal value of (8/3)1/2. Thus, the nearest CN values will
differ from the ideal condition, which should contribute to the deviation. For
sc metals, Υ = 2.6% where Sb and Bi with the rhombohedral structure are
assumed to have slightly a distorted sc structure. For bcc metals, Υ = 10%.
The smallest value of Υ in all considered structures appears for diamond
structure crystals with Υ = 1.4%, which implies that the pure coherent bond
does not change after a CN deduction.

Note that the temperature dependence of γsv0 is ignored here although
the experimental results listed in Tables 6.7–6.9 are calculated at 0 K while
the most lattice constants cited are measured at Troom. This temperature
effect deteriorates the prediction accuracy and can be partly responsible for
the disagreement with other experimental and theoretical results.

In the FCD calculations, there are often exceptions that the most close-
packed surface does not have the lowest γsv0 values or there exists a weak
orientation-dependence. These physically unacceptable results are fully
avoided here. Moreover, the anisotropy of γsv0 is perfectly considered. γ(100)/
γ(111) ≈ 1.16 and γ(110)/γ(111) ≈ 1.27 for fcc metals as well as γ(0001)/γ(1010) ≈
1.22 for hcp metals, which show the agreement with theoretical values of 1.15
and 1.22. In addition, γ(100)/γ(110) ≈ 1.16 for sc and bcc metals, which is es-
pecially comparable with 1.14 for monovalent sp metals based on the jellium
model.

If the experimental results are taken as reference, 60% of γsv0 values of
the most close-packed surfaces of 52 elements shown in Tables 6.7–6.9 are in
better agreement with experimental ones than those of the FCD calculations
while 20% of the FCD calculations are in reverse. Note that local density
approximation (LDA) is implied here while GGA is used in FCD. Recently,
it has been shown that both methods need to be corrected due to the neglect
of surface electron self-interactions where GGA is worse than LDA. This is
surprising because GGA is generally considered to be the superior method
for energetic calculations.

The formula for the transition metals and noble metals works well com-
pared with that for others as the greatest contribution to bonding is from
the s-d interaction and the orbital of the others is localized, which is more
like a pair interaction. According to Tables 6.7–6.9, the predicted γsv0 val-
ues of divalent sp metals have little correspondence with the experimental
results since many body (e.g. trimer) terms are here critical to understand
the cohesive energy. Thus, the used pair potentials physically may not be
fully correct. Possibly the background of the formula, i.e. the broken-bond
model, is not universally applicable although the lattice constants used in
Eqs. (6.57) and (6.59) have measuring error of about 2%.



6.6 Solid-vapor Interface Energy or Surface Energy 257

According to the first principles calculations, the effect of relaxation on the
calculated γsv0 value of a particular crystalline facet may vary from 2% to 5%
depending on the roughness. The semi-empirical results indicate further that
the surface relaxation typically affects the anisotropy by less than 2%. Surface
relaxations for vicinal surfaces have been studied mainly using semi-empirical
methods due to the complexity arisen by the simultaneous relaxation of a
large number of layers. Here, the relaxation effect is simply considered by
adding Eq. (6.56) into Eq. (6.55). According to Tables 6.7–6.9, this measure
leads to satisfactory results.

The above formula gives a new insight into and another way to a general
estimation of γsv0 of elements, which is difficult to realize by present first prin-
ciples calculation, and gives a basis of comparison and supplement to further
theoretical and experimental considerations for γsv0 values of elements.

Recently, Lodziana et al. have proposed that γsv0 of θ-alumina is nega-
tive [12]. Their use of the term “negative solid-vapor interface energy” can
cause and has already caused confusion in the scientific community. Mathur
et al. nicely summarized and clarified definitions of γsv0 for single- and multi-
component systems [13]: γsv0 for single-component systems is always posi-
tive, whereas for multi-component systems it can become negative due to
chemical effects, which has been confirmed experimentally. The situation in
a multicomponent system is slightly more complicated (such as θ-alumina
+ water), where chemical effects must be considered. In such a system, the
Gibbs dividing surface can be located so that there is no excess term for one
component, but this only leads to non-zone excess quantities for the other
components, which alters the solid’s surface energy. Physically, this is a result
of the interaction energy between the solid surface and the other components.
Thus, in addition to reversible work for creation of new (clean) surface area,
surface energy here also includes chemical interactions between the newly
formed surface and the surroundings. Adsorption on solid surfaces is typi-
cally an exothermic process and it reduces the solid’s surface energy. Others
have indeed shown that chemical effects can lead to negative surface energy.

6.6.2 γsv0 of Several Ceramics with NaCl Structure [3]

The alkaline metal oxides (AMO) as one kind of three supporting industries
in material domain hold the balance in daily life and industrial manufac-
ture. The transition metal carbides (TMC) and the transition metal nitrides
(TMN) have been widely applied as surface layers of cutting tools, electri-
cally conducting diffusion barriers in electronic devices, in coatings for solar
applications and for corrosion protection. All of these applications due to
their unique properties (e.g. high hardness and high Tm) are closely related
with their surface states. γsv0 as an important concept changes growth rate,
catalytic behavior, adsorption, surface segregation and formation of grain



258 Chapter 6 Thermodynamics of Interfaces

boundaries. However, it is the ionic character and the hardness of the oxides
which result in less reliable experimental data on γsv0 although computer
simulations of them have been carried out.

Although Eqs. (6.57) and (6.59) are deduced for elemental crystals, they
can be extended for insulators or metallic compounds. The main source of
the bonding in these ceramics is the ionic interaction between metal and
non-metal atoms in the NaCl structure where Zb = 6 and Zs are 5, 4, and
3 respectively for (100), (110) and (111) surfaces. Note that because γsv0

values of these compounds under comparison are usually reported in unit of
eV·atom−1 obtained by computer simulations, γsv0 value in this section is
also denoted in this unit.

Table 6.10 gives γ100values of TMCs in terms of Eqs. (6.56) and (6.57).
Other computer simulation and theoretical results for TMCs are also shown
for comparison. It can be found that the agreement on different methods for
stable TMCs is greater than that for metastable TMCs, such as CoC, NiC
and OsC. The Fermi levels of both CoC and NiC lie in the upper part of
the d region, which may lead to that the simulation results are much lower
than those in terms of Eq. (6.57). While for OsC, the Fermi level contains the
most d states that do not hybridize with carbon states. Thus, the simulation
results represent different trends compared with the theoretical ones. Equa-
tion (6.56) is in close agreement with LDA simulation results while those
of Eq. (6.57) have good correspondence with other theoretical results based
on modification of Ec of the classic broken-bond rule. It is found that all
γsv0 values calculated from GGA are smaller than those from LDA, which
confirms other similar simulation results.

From Table 6.10, even the largest pseudopotential result (0.68 eV·atom−1)
from LDA is about 18.1% lower than the result (0.83 eV·atom−1) from LMTO
for TiC due to different approaches during solving the DFT equations. The
former treats the effective one-electron potential without any shape approx-
imation and allows one to solve the electronic-structure problem for bulk as
well as for the surface from the first principles within a single scheme. LMTO
often employs the atomic sphere approximation (ASA) that is clearly inad-
equate for structures with large interstitial regions or with low coordination
symmetry, as in the present surface calculations. Thus, the LMTO approach
is generally regarded as an efficient but relatively inaccurate method.

Table 6.11 shows γ100values of twelve existing stable TMNs with the meth-
ods as stated above. The calculated results of γ100 values of metastable phases
have worse accuracy, partly due to their metastable natures with possibly un-
suitable potentials. Thus, the corresponding calculations are not shown. γ100

values of the stable TMNs determined by GGA-PW91 with the correspond-
ing potential are nearly half of the results in terms of Eq. (6.31) while being
larger than other simulation results. LDA results are relatively large and in
agreement with the modified broken bond model better. Since the existing
results are little, it is difficult to evaluate the accuracy of different simulation
methods.
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Table 6.10 Comparison of γ100 values in eV·atom−1 of TMC between γ1 of
Eq. (6.57), γ2 of Eq. (6.56), γ3 by using FP-LMTO calculations based on LDA,
simulation results γ4 using GGA-PW91 and γ5 by LDA, theoretical results γ6, and
other available results γ7 using pseudopotential plane-wave-based DFT. Ec is in
eV·atom−1

Ec γ1 γ2 γ3 γ4 γ5 γ6 γ7

ScC 6.37 0.79 0.57 0.67 0.47 0.56 0.68, 0.86
TiC 7.16 0.89 0.65 0.83 0.54 0.69 0.84, 0.98 0.50
VC 6.94 0.86 0.62 0.77 0.37 0.55 0.88, 0.92 0.36
CrC 5.80 0.72 0.50 0.71 0.34 0.42 0.88, 0.84
MnC 5.14 0.64 0.43 0.70 0.30 0.47 0.87, 0.85
FeC 5.67 0.71 0.47 0.71 0.34 0.55 0.86
CoC 5.69 0.71 0.48 0.72 0.20 0.32 0.83, 0.85
NiC 5.65 0.70 0.49 0.45 0.21 0.45 0.75, 0.77
YC 6.39 0.80 0.43 0.65 0.33 0.44 0.62, 0.78
ZrC 7.93 0.99 0.64 0.86 0.53 0.66 0.82, 0.94
NbC 8.26 1.03 0.72 0.87 0.49 0.69 0.90, 0.87
MoC 7.22 0.90 0.66 0.77 0.38 0.64 0.90, 0.77
TcC 6.88 0.86 0.66 0.69 0.37 0.61 0.88, 0.77
RuC 6.73 0.84 0.68 0.69 0.31 0.45 0.86, 0.77
RhC 6.23 0.77 0.62 0.68 0.38 0.41 0.82, 0.75
PdC 5.36 0.67 0.52 0.47 0.32 0.48 0.73, 0.65
LaC 5.74 0.71 0.39 0.70 0.25 0.33 0.63, 0.81
HfC 8.11 1.01 0.68 0.90 0.52 0.70 0.82, 0.97
TaC 8.56 1.07 0.70 0.88 0.52 0.68 0.87, 0.89
WC 8.25 1.03 0.74 0.77 0.47 0.65 0.85, 0.76
ReC 7.47 0.93 0.73 0.66 0.34 0.44 0.81, 0.73
OsC 7.36 0.92 0.78 0.62 0.28 0.41 0.77, 0.71
IrC 6.84 0.85 0.75 0.59 0.31 0.35 0.72
PtC 6.34 0.79 0.69 0.49 0.14 0.29 0.64, 0.68

Table 6.11 Comparison of γ100 values in eV·atom−1 of TMNs between γ1 of Eq.
(6.57), γ2 of Eq. (6.56), simulation results γ3 using GGA-PW91 and γ4 using LDA,
and other simulation results γ5

Eb γ1 γ2 γ3 γ4 γ5

ScN 6.72 0.84 0.59 0.39 0.54
TiN 6.69 0.83 0.58 0.38 0.61 0.36
VN 6.25 0.78 0.55 0.29 0.47 0.27
CrN 5.14 0.65 0.44 0.28 0.36
YN 6.98 0.86 0.61 0.45 0.50
ZrN 7.52 0.94 0.66 0.48 0.73
NbN 7.50 0.95 0.66 0.41 0.56
MoN 6.20 0.78 0.55 0.38 0.45
TcN 5.48 0.69 0.48 0.36 0.38
LaN 6.27 0.79 0.55 0.34 0.50
HfN 7.62 0.96 0.67 0.45 0.69
TaN 7.63 0.96 0.67 0.39 0.55

For TMCs and TMNs, the existence of the d-electron of transition metals
leads to almost the same lattice constants for the same group when the period
number of transition metals increases. At the same time, their Ec increases
gradually. Thus, γsv0 values increase a little as the period number increases.
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On the other side, as the group number in the same period varies, a maximum
of Ec values is reached at VB or IVB group. Thus, the corresponding γsv0

values also approach their maxima. It is known that the variation of the
bandwidth of compounds should be proportional to that of γsv0 values, which
has been confirmed for 4d-TMC by analyzing the density of states (DOS)
and the Fermi energy using LMTO method. It is found that the bandwidth
developed an early maximum for ZrC and NbC around 11 eV, after which it
remains fairly constant, and then shifts downwards for AgC only around 5
eV. The same trend is found in the 3d, 4d and 5d carbides. Considering the
chemical similarities between TMNs and TMCs, the variations of γsv0 values
in TMN series should follow the same rule.

Table 6.12 gives the calculated γsv0 values of AMOs in terms of Eq. (6.57),
Eq. (6.56), LDA and GGA-PW91, and other theoretical results. The packing
densities of (100), (110) and (111) surfaces of NaCl structure are roughly
in the ratio of 1: 0.71: 0.58, which suggests a sequence of γ100 < γ110 <
γ111 where the (100) surface is the most stable surface and the (111) one is
the most reactive. As expected, the calculated results agree with the above
sequence.

Table 6.12 Comparison of γsv0 values in eV·atom−1of AMOs between γ1 of Eq.
(6.31), γ2 of Eq. (6.30), simulation results γ3 using GGA-PW91 and γ4 using LDA,
and other two series of available LDA results γ5 and GGA results γ6

Ec (hkl) γ1 γ2 γ3 γ4 γ5 γ6

MgO 5.15
(100)
(110)
(111)

0.64
1.32
2.04

0.45
0.95
1.51

0.24
0.75
2.03

0.32
1.03
2.30

0.32
0.98

0.29
0.87

CaO 5.50
(100)
(110)
(111)

0.65
1.41
2.18

0.48
1.01
1.61

0.24
0.73
1.62

0.31
1.05
2.07

0.30
0.92

0.24
0.73

SrO 5.20
(100)
(110)
(111)

0.65
1.34
2.06

0.45
0.96
1.53

0.23
0.68
1.54

0.28
0.96
1.65

0.28
0.83

0.25
0.73

BaO 5.05
(100)
(110)
(111)

0.62
1.23
2.00

0.44
0.93
1.49

0.21
0.66
1.04

0.27
0.88
1.62

0.27
0.75

0.20
0.62

γ111 value of MgO is 2.54 eV·atom−1, which was obtained by the DFT
based on full-potential linearized augmented plane-wave method. When it is
compared with γ100= 0.26 eV·atom−1, γ111 is one order larger than γ100.
This can be induced by its polar nature with instability. From Table 6.12,
comparison between Eq. (6.57) and the simulation results shows that the
deviation between them increases along the series from MgO to BaO. This
may be due to the increase of the crystalline lattice constant with drop of
the binding energy induced by the increase of cation repulsion and decrease
of anion-anion overlap.

For a certain surface, γsv0 values decrease along the sequence going from
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MgO to BaO where the energy loss of MgO is most obvious. MgO has much
broader bandwidth and higher dispersion than the rest of the series. The
DOS analysis indicates that the O (2p) band becomes narrower along the
series going from MgO to BaO. Only the bandwidth of MgO is prominently
broader while the bandwidths of CaO, SrO, and BaO are roughly the same.
These could be the change cause of γsv0 along the period numbers of the
corresponding metals. The above fact can also be considered by Eq. (6.57).
The reverse ratio between the period number of the metals and γsv0 values
of AMOs is induced by increase of a due to the rapid increase of s-electron
orbital as the period number increases while Ec remains almost constant for
the same group of elements.

6.6.3 Size-dependent Surface Energy of Solids [3]

The thermodynamic behavior of nanocrystals differs from that of the cor-
responding bulk materials mainly due to the additional energetic term of
γsv(r)A–the product of the surface (or interfacial) excess Gibbs free energy
and the surface (or interfacial) area. This term becomes significant to change
the thermal stability of the nanocrystals due to increasing A/V ∝ 1/r. When
the surfaces of polymorphs of the same material possess different interfacial
free energy, a change in phase stability can occur with decreasing r.

In mesoscopic size range, the size dependence of the liquid-vapor interface
energy γLv(r) was thermodynamically considered by Tolman and Buff [14,
15], respectively. The final form of the analytical equation is as follows [14]:

γLv(r)/γLv0 = 1− 2δv/r + · · · (6.63)

where γLv0 is the corresponding bulk value of γLv(r), δv denotes a vertical
distance from the surface of tension to the dividing surface where the super-
ficial density of fluid vanishes. As a first order approximation, although there
is no direct experimental evidence to support Eq. (6.63), Eq. (6.63) should
also be applicable to predicting γsv(r) since the structural difference between
solid and liquid is very small in comparison with that between solid and gas
or between liquid and gas. In addition, it is unknown whether r in Eq. (6.63)
can be extended from micron size to nanometer size. Although both the ex-
pressions of Eqs. (6.55) to (6.59) and the corresponding results are different,
all of them indicate that

γsv = νEc/(NAAS) (6.64)

where ν < 1 is a function of CN.
If the nanocrystals have the same structure as the corresponding bulk, ν

is size-independent. Thus, Eq. (6.64) may be extended to nanometer size as

γsv(r) = νEc(r)/(NAAS). (6.65)
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Combining Eq. (6.65) with Eq. (3.90), there is

γsv(r)/γsv =
[
1− 1

4r/h− 1

]
exp

(
−2ΔSb

3R

1
4r/h− 1

)
. (6.66)

Comparisons of γsv(r) of Be, Mg, Na, Al thin films and Au particles with
different facets between Eq. (6.66) and experimental and other theoretical
results are shown in Figs. 6.17 and 6.18 where the related parameters in Eq.
(6.66) are listed in Table 6.13. It is evident that predictions of Eq. (6.66) are
in agreement with the experimental values of Be and Mg (0001), and with
other theoretical results of Na (110) and for three low-index surfaces of Au.
The deviations in all comparisons are smaller than 5% except the deviation
for Al (110) with a deviation of about 10%.

As shown in Figs. 6.17 and 6.18, γsv(r) decreases with a decrease in size.
This trend is expected since E(r) of the nanocrystals increases as r decreases.
In other words, γsv(r) as an energetic difference between surface atoms and
interior atoms decreases as energetic state of interior atoms increases.

Fig. 6.17 γsv(r) as a function of 1/r in terms of Eqs. (6.66) (solid line) and
(6.68) (segment line) for nanocrystals Be, Mg, Na and Al with different facets.
The symbols , and denote the experimental results of Be and Mg (0001),
the theoretical values for Na (110) and Al (110). (Reproduced from Ref. [3] with
permission of Elsevier)

Since exp(−x) ≈ 1−x when x is small enough, Eq. (6.66) can be rewritten
as

γsv(D)/γsv ≈ 1−ΔSbh/(6Rr). (6.67)

Equation (6.67) is in agreement with the general consideration that the de-
crease of any size-dependent thermodynamic quantity is proportional to 1/r.
If γsv(r) of Eq. (6.67) and γLv(r) of Eq. (6.63) have the same size dependence,
δ = ΔSbh/(12R) ≈ h when ΔSb ≈ 12R as seen in Table 6.13. Namely, the
transition zone separating a solid phase and a vapor phase is only one atomic
layer, being an understandable result. This δ value is expected since when
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Fig. 6.18 γsv(r) as a function of 1/r for nanocrystals Au with different facets in
terms of Eq. (6.66) (solid line) and Eq. (6.68) (segment line). The symbols , and
denote the calculated results of (111), (100) and (110) facets in terms of a modified
embedded-atom-method potential. (Reproduced from Ref. [3] with permission of
Elsevier)

Table 6.13 Necessary parameters in equations with r and h in nm, Ec in kJ·mol−1,
Tb in K, ΔSb in J·mol−1·K−1, and γsv0 in J·m−2

Element Surface r h Ec Tb ΔSb γsv0

Be (0001) 0.95 0.222 292.4 2745 106.5 1.83
Mg (0001) 1.40 0.320 127.4 1363 93.5 0.79
Na (110) 1.73 0.372 97.0 1156 83.9 0.26
Al (110) 2.15 0.286 293.4 2793 105.0 1.30

2.86

(111) 1.28
Au (100) 1.90 0.288 334.4 3130 106.8 1.63

(110) 1.70

the atomic distance is longer than h, the bond energy decreases dramatically.
Thus, Eq. (6.63) can be rewritten as

γLv(r)/γLv0 ≈ γsv(r)/γsv0 ≈ 1− 2h/r. (6.68)

It is known that the surface energy ratio between different facets is a more
important parameter in determining the crystalline shapes. Equation (6.66)
indicates that

γ1
sv(r)

γ2
sv(r)

=
γ1
sv0

γ2
sv0

(6.69)

where the superscripts “1” and “2” denote different facets. Equation (6.67)
implies that although the surface energy is size-dependent, the surface en-
ergy ratio between different facets is size-independent and is equal to the
corresponding bulk ratio. Equation (6.69) can also be compared with the
theoretical results for Au where for example, γ

(100)
sv (3.8nm)/γ

(111)
sv (3.8nm)
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≈1.24 and γ
(110)
sv (3.8nm)/γ

(111)
sv (3.8nm) ≈1.28, which correspond well to the

corresponding bulk ratios of 1.27 and 1.32.
Note that the structures of Be and Mg, Na, Al and Au belong to hcp, bcc

and fcc structures, respectively. Owing to the agreement shown in Figs. 6.17
and 6.18, the model should be applicable to all crystalline structures with
different facets. Thus, Eq. (6.66) not only supplies a simple way to determine
γsv(r) values of different facets without any free parameter but also has an
evident thermodynamic characteristic.

6.7 Liquid-vapor Interface Energy or Surface Tension

6.7.1 Bulk Surface Tension and Its Temperature Coefficient [3]

The γLv0 function and its temperature dependence are fundamental and
important in the theory and practice of materials processing (e.g. crystal
growth, welding and sintering), and its temperature coefficient γ′Lv0(T ) =
dγLv0(T )/dT governs the well-known Marangoni convection on the surface of
melt. There are several characteristics for the liquid surface. First, the liquid
surface usually takes an equilibrium configuration with the minimum energy
due to the high mobility of liquid molecules. Second, because the liquid fails
with respect to elastic deformation resistance, γLv0(T ) equals surface stress
when surface adsorption is not taken into account. Although early methods
of measurement of γLv0(T ) are sufficiently precise, there is still uncertainty
regarding its absolute values, particularly the γ′Lv0(T ) function mainly due
to the effect of impurities, which markedly changes the measured results.
Therefore, considerable efforts have recently been directed towards the ex-
perimental determinations of γLv0(T ) and γ′Lv0(T ) of metals, and progress
has been achieved with the advent of levitation processing and oscillating
drop techniques. However, such an experiment often suffers from the am-
biguities in the interpretation of the resulting frequency spectra. It is also
unlikely that experimental measurements will ever encompass all possible
temperature ranges of interest for all metals.

In contrast to the determination of γLv0(Tm) values, γ′Lv0(Tm) values are
not well known experimentally even for elemental metallic liquids. A recent
analysis of existing data shows that this quantity is known with accuracy
better than 50% for only 19 metals while the accuracy is worse for other 28
metals. For the rest 18 metals (mainly refractory metals), there are even no
experimental results.

Computer stimulations with Monte Carlo or MD methods are considered
to be one of the reliable methods, with which γLv0 can be calculated either
using the mechanical expression for the surface stress or from the viewpoint of
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γsv0. Unfortunately, the former approach suffers from rather high fluctuation
and statistical uncertainty, while the latter introduces additional complexity
into performance. Thus, the demand of developing reliable prediction meth-
ods has never declined.

Semiempirical predictions based on the correlation between the surface
and bulk thermodynamic properties are always active. Stephan firstly links
γLv0 to the heat of evaporation ΔH ′

v at T = 0 K,

γLv0(Tm) = c′ΔH ′
v/V

2/3
L (6.70)

with c′ being an unknown constant. Equation (6.70) seems to apply only to
transition metals. Although Eq. (6.70) has existed for more than 100 years,
attempts to theoretically determine c′ value are rare.

On the other hand, γLv0(T ) of pure substances may be evaluated from
values of critical temperature Tc by the Eötvos or Guggenheim empirical
equations,

γLv0(T )V 2/3 = Q(1− T/Tc) (6.71a)

or
γLv0(T )/γLv0(Tm) = (1− T/Tc)j (6.71b)

where the precoefficient Q and the exponent j are system-dependent, e.g. j =
4/5 for strongly hydrogen-bonded substances, j = 11/9 for H2, N2 and CO,
etc. However, j value for liquid metals has not been determined. Moreover,
unlike those of organic liquids, Tc values of liquid metals are only available
for alkali metals and Hg, which severely restricts the use of Eq. (6.71a).

When γLv0(Tm) and γ′Lv0(Tm) values are known, under the assumption
that γ′Lv0(T ) is nearly a constant being equal to γ′Lv0(Tm) when T is near
Tm, the γLv0(T ) function is expressed simply in a differential form,

γLv0(T ) = γLv0(Tm) + γ′Lv0(Tm)(T − Tm). (6.72)

However, Eq. (6.72) has not been strictly examined. Thus, both γLv0(T ) and
γ′Lv0(T ) functions need to be further considered.

As stated in Sec. 6.6.1, Eq. (6.58) can be used to calculate γsv0 of ele-
ments. Due to the structural similarity of liquid and solid at least near Tm,
Eq. (6.58) for γsv0 should give suggestions for γLv0 modeling and analytical
determination of c′ value in Eq. (6.70).

About 60 years ago, noting that fusion has only a little effect on V, Ec,
and CP of substance, Frenkel reached the conclusion that “the character
of the heat motion in liquid bodies, at least near the crystallization point,
remains fundamentally the same as in solid bodies, reducing mainly to small
vibrations about certain equilibrium position”. The very slight change in
volume on melting is also thought to imply that the atoms in a liquid are
tightly bound to one another like those in a crystalline solid. Thus, the
structural and energetic differences between a solid and a liquid are very
small in comparison with those between a solid and a vapor or between a
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liquid and a vapor. Consequently, Eq. (6.58) can be extended to determine
γLv0 with several modifications: (1) SinceT � Tm >> 0 for liquids, Ec at 0
K should be replaced by ΔHv(T ) and AS should be substituted by AL(T )
where the subscript “L” denotes liquid; (2) The influence of molar excess
surface entropy ΔS(T ) should contribute to γLv0 due to the high temperature
condition; (3) CN of liquid is usually determined by integrating the radial
distribution function (RDF) up to the first minimum while the distance of
the second minimum of RDF is approximately twice that of the first one, the
effect of the next nearest neighbors thus may be neglected in terms of the LJ
potential, namely ϕ ≈ 0. Thus, Eq. (6.58) can be rewritten for determining
γLv0(T ),

γLv0(T ) = [m′ΔHv(T )− TΔS(T )]/[NAAL(T )] (6.73)

with m′ = (2 − ν1 − ν
1/2
1 )/2.

Since metallic liquid is closely packed, the packing density of a random
close packing (ηL = 0.637) can be employed for the liquid. The volume change
on melting ΔV/Vs is not solely determined by the difference in η between
two phases, and the Goldschmidt premise for lattice contraction should also
be considered. Otherwise, when ηL = 0.637 is compared with ηfcc = 0.74,
ΔV/Vs = ηfcc/ηL−1 ≈ 16%, which is larger than the experimentally observed
value of 2%–6%. Note that ηL = 0.637 is the maximal value that the single-
component liquid can take, which leads to the fact that the specific volume
difference between a solid with bcc structure and the corresponding liquid
is only 0.2%. Whether a metal can be undercooled depends on the energetic
nucleation barrier. When ΔV on crystallization is small, the corresponding
nucleation barrier should be also small, as discussed in Sec. 6.4.1. This leads
to a small degree of undercooling. If this rule can also be applied to elements,
the local order in the metallic liquid is very similar to the bcc-type short-
range order, such as liquid Zr. Correspondingly, this consideration can also be
applied to the surface structure of liquid metals. Note that the surface of bcc
structure is (110) facet to ensure the minimum of the product of γsv0

∑
Abcc.

Thus, the expression of Abcc is assumed to be applicable also to the liquid as
a first order approximation. As a result, ν1 = 3/4 and AL = 81/2h2/3. For
any pure, isotropic, condensed material, h = (6ηV/π)1/3. V can be calculated
from the atomic weight M and ρ(T ) by V = M/[NAρ(T )]. Thus, AL(T ) can
be determined as

AL(T ) = λ′{M/[NAρL(T )]}2/3 (6.74)

with λ′ = (81/2/3)(6η/π)2/3. Since dρL/dT ≈ dρL(Tm)/dT for liquid met-
als in the temperature range of Tm− 2Tm, ρL(T ) is equal to ρL(Tm) +
(dρL/dT )(T − Tm) with dρL/dT being the temperature coefficient of liq-
uid density. This range could be up to 3Tm for Rb and Cs and 4Tm for Li
and K.

It is known that ΔHv(Tc) = 0 for most substances and reaches the maxi-
mum at the triple point Tt where Tt is very close to Tm for metals. Recently,
an empirical equation ΔHv(T )/ΔHv(Tm) = (1 − t)it+j has been proposed
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for liquids having a triple point where t = (T − Tm)/(Tc − Tm), i = 0.44 and
j = −0.137 [16]. In terms of the known Tm, Tb and Tc values for alkali metals
(Hg is not involved in this work), it is found that ΔHv(T ) function between
Tm and Tb is a very weak function of T (<2%) and thus negligible. Moreover,
it is reported that ΔHv(Tm) values of Cd, Cr, Mn and Zn are 101, 344, 234
and 115 (kJ·mol−1) while the corresponding ΔHv(Tb) values are 100, 339,
226 and 119 (kJ·mol−1). Their differences are less than 3.5%. Thus, the rela-
tion ΔHv(Tm � T � Tb) ≈ ΔHv(Tm) ≈ ΔHv does not lead to big deviation
and can be accepted as a first order approximation.

In Skapski’s model, the main contribution to ΔS results from the change
of oscillation frequency of atoms at the surface. Note that according to Lin-
demann’s criterion, the mean value of oscillation frequency reaches a certain
value at Tm, which leads to a constant ΔS value at Tm. It is known that
ΔHv determines the bond strength of liquid atoms, which further deter-
mines the size of oscillation frequency. Since ΔHv(T ) varies little between
Tm and Tb, the temperature dependence of ΔS(T ) is thus negligible and
ΔS(T ) ≈ ΔS(Tm) ≈ ΔS can also be assumed.

With these considerations and insertion of Eq. (6.74) into Eq. (6.73),
γLv0(T ) between Tm and Tb can be determined as

γLv0(T ) =

[
m′ΔHv − TΔS

λN
1/3
A

](
ρL(T )

M

)2/3

(6.75a)

or
γLv0(T )
γLv0(Tm)

=
(

1 + κ− κ
T

Tm

)(
1− q + q

T

Tm

)2/3

(6.75b)

where κ = 1/[m′ΔHv/(TmΔS)− 1] and q = (dρL/dT )[Tm/ρL(Tm)] are con-
stants for certain metals. Deviation of Eq. (6.75a) with respect to T brings
out

−γ′Lv0(T ) =
γLv0(T )

T

[
1

m′ΔHv/(TΔS)− 1
− 2

3
T

ρL(T )
dρL

dT

]
. (6.76)

6.7.2 Determination of γLv0(Tm) and γ′Lv0(Tm) Values and γLv0(T )
and γ′Lv0(T ) Functions [3]

Table 6.14 gives the comparison between the predicted γLv0(Tm) values for
48 liquid metals in terms of Eq. (6.75a ) and available mean values of exper-
imental results γe

Lv0(Tm). These experimental data are mainly obtained by
the maximum bubble pressure technique for oxidizable metals with low Tm

like Na, the sessile drop technique for metals with moderate Tm like Cu, and
the drop weight technique employed at the extremity of a pendant wire with
electron bombardment heating for refractory metals like W.
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It is found that � = |γLv0(Tm) − γe
Lv0(Tm)|/γe

Lv0(Tm) < 10% for 40 el-
ements [from Cu to Ba (Table 6.14)]. Note that although γe

Lv0(Tm) = 867
mJ·m−2 was proposed for Al, several measurements suggested that the most
data for γe

Lv0(Tm) of Al pertain to oxygen-saturated material and those for
pure Al could be about ∼1070 mJ·m−2. If this result is used, � for Al will
only be 3.6%. For divalent metals Mg, Zn and Cd, Eq. (6.75a) is evidently
smaller than γe

Lv0(Tm). According to Miedema and Boom, these three metals
have an exceptionally stable free atomic configuration, which is close to that
of rare gas. Thus, smaller γLv0(Tm) values in terms of Eq. (6.75a) may be
reasonable. Although � values of Ta, Nb, Li, Be, and La range from 13% to
22%, the causes are unknown. The data given above imply that Eq. (6.75a)
is suitable for all metals although the errors for transition metals are slightly
larger than those for other metals.

Table 6.14 Comparisons of γLv0(Tm) in mJ·m−2 for liquid metals between γLv0

of Eq. (6.75a) and experimental results γe
Lv0, as well as comparisons of γ′Lv0(Tm)

in mJ·m−2· K−1 between γ′Lv0 of Eq. (6.76) and experimental or estimated results
γ′eLv0ΔHv in kJ·g−1·atom−1, ρL in kg·m−3, and dρL/dT in kg·m−3·K−1ΔS = 5.30
J·mol−1·K−1, m′ ≈ 0.19. The asterisk * denotes that the accuracy on γ′eLv0 is better
than 50%

γLv0 γe
Lv0 −γ′Lv0 -γ′eLv0 ΔHv ρL dρL/dT

Cu∗ 1352 1355, 1310 0.21 0.19, 0.23 300 8000 –0.801
Ag∗ 925 910, 925 0.18 0.17, 0.21 255 9346 –0.907
Au∗ 1211 1138, 1145 0.18 0.19, 0.20 330 17360 –1.500
Ni∗ 1810 1838, 1796 0.33 0.42, 0.35 378 7905 –1.160
Pd 1467 1475, 1482 0.25 0.28, 0.28 380 10490 –1.266
Pt∗ 1896 1746, 1860 0.31 0.29, 0.31 490 19000 –2.900
Co∗ 1779 1830, 1881 0.30 0.37, 0.34 375 7760 –0.988
Rh 2010 2000, 1970 0.26 0.30, 0.66 495 10800 –0.896
Ir∗ 2241 2140, 2250 0.20 0.23, 0.25 560 20000 –0.935
Fe∗ 1650 1830, 1855 0.26 0.23, 0.39 355 7015 –0.883
Ru 2363 2180, 2250 0.31 580 10900
Os 2508 2500, 2500 0.23 630 20100
Mn 986 1152, 1100 0.21 0.20, 0.35 226 5730 –0.700
Tc 2245 2350 550 10300
Re∗ 2755 2520, 2700 0.20 0.23 705 18800 –0.800
Cr 1582 1628, 1642 0.19 0.20, 0.20 339 6280 –0.300
Mo 2110 2250, 1915 0.21 0.20, 0.30 600 9340 –0.743
W∗ 2676 2500, 2310 0.23 0.29, 0.21 800 16200 –1.250
V∗ 1902 1855, 1900 0.23 0.19, 0.31 453 5700 –0.531
Ti 1520 1525, 1500 0.27 0.26, 0.20 425 4110 –0.702
Zr∗ 1669 1480, 1435 0.14 0.20, 0.17 580 5800 –0.310
Hf∗ 1591 1630, 1490 0.21, 0.19 575 11100
Sc 895 939, 870 0.12, 0.12 318 2846
Y 899 872, 800 0.09, 0.09 380 4243
Ce 845 794, 740 0.09 0.07, 0.08 350 6685 –0.227
Pr 782 743, 716 0.09 0.09, 0.08 330 6611 –0.240
Nd 658 689, 687 0.10 0.09, 0.09 285 6688 –0.528
Gd 690 664, 664 0.06, 0.06 305 7140
Th 1108 1006, 978 0.14 514 10500
U 1453 1550, 1552 0.15 0.14, 0.27 420 17900 –1.031
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Continue

γLv0 γe
Lv0 −γ′Lv0 -γ′eLv0 ΔHv ρL dρL/dT

Al∗ 1031 1070, 867 0.19 0.15, 0.16 283 2385 –0.280
Pb∗ 466 462, 457 0.12 0.11, 0.11 178 10678 –1.317
Tl∗ 439 461, 459 0.11 0.09, 0.11 165 11280 –1.430
Na∗ 215 200, 197 0.09 0.10, 0.09 98 927 –0.236
K∗ 110 112, 110 0.07 0.08, 0.07 79 827 –0.229
Rb 90 90, 85 0.06 0.07, 0.06 76 1437 –0.486
Cs∗ 73 69, 70 0.05 0.06, 0.05 69 1854 –0.638
Ca∗ 328 337, 366 0.09 0.11, 0.10 164 1365 –0.221
Sr∗ 268 289, 286 0.08 0.08, 0.08 144 2480 –0.262
Ba 231 226, 267 0.07 0.07, 0.07 150 3321 –0.526
Mg 359 557, 583 0.14 0.15, 0.26 128 1590 –0.265
Zn 466 789, 815 0.18 0.25, 0.21 119 6575 –1.100
Cd 305 637, 642 0.13 0.20, 0.15 100 8020 –1.160
Ta∗ 2467 2180, 2010 0.22 0.25, 0.20 735 15000 –1.147
Nb∗ 2335 2040, 1840 0.27 0.24, 0.18 690 7830 –0.800
Li 465 404, 399 0.15 0.16, 0.15 137 525 –0.052
Be 1637 1350, 1320 0.24 0.29 297 1690 –0.116
La 901 737, 728 0.09 0.11, 0.10 400 5955 –0.237

γLv0(Tm) values of transition metals increase along an isoelectronic row,
where a heavier element has a larger γLv0(Tm) value. This is because the d
level of a heavier element is higher in energy and the corresponding d wave
functions with stronger bonding are more extended. Two exceptions are Pd
and Zr. For Pd, the full filled d orbital drops the system energy in terms of
Hunt’s rule, which indicates that its ΔHv value only approaches that of Ni.
Since Vm and Tm values of Pd are obviously larger than those of Ni, γLv0(Tm)
of Pd is thus smaller than that of Ni in terms of Eq. (6.75a). For Zr, its ΔHv

and Vm values approach those of Hf while its Tm value is obviously smaller
than that of Hf, γLv0(Tm) of Zr is therefore larger than that of Hf. The reason
of larger ΔHv value of Zr is unclear.

γLv0(Tm) values of sp metals except the value of Be are smaller than those
of d metals due to the bond nature of s and p electrons, which are more
mobile than the localized d electrons. Moreover, in contrast to the transition
metals, γLv0(Tm) values of sp metals decrease along an isoelectronic row. This
arises because the outmost n′s electrons (the number of period n′ = 2–6) are
progressively bound more loosely as they are screened from the nucleus by
the increasing number of filled inner shells in the ionic core.

Note that assuming the geometric structure in liquid Si and Ge to be
close to that of (100) face of sc structure, their γLv0 values can be calculated
using the above method and reasonable correspondences with experimental
or other theoretical results have been found.

To find the similarity between Eq. (6.75a) and Eq. (6.70), the prefactor
c′ in Eq. (6.70) can be determined by rearranging Eq. (6.75a) at T = Tm,

γLv0(Tm) = cΔHv/V 2/3
s (6.77)
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with
c = (m′ − TmΔS/ΔHv)/(λN

1/3
A ). (6.78)

Eq. (6.78) has determined c′ value in Eq. (6.70) although Eq. (6.77) differs
from Eq. (6.70) a little due to the difference of ΔHv and ΔH ′

v, or c =
c′ΔH ′

v/ΔHv.
Figure 6.19 gives a plot of γLv0(Tm) against ΔHv/V

2/3
s for considered

liquid metals in terms of Eq. (6.77) with a linearly regressed slope of c =
0.174 × 10−8 mol1/3 where the correlation coefficient of the fit is 0.998. All
metallic elements can thus be estimated by the same c value, which implies
that Tm/ΔHv is almost a constant (since ΔS value has been taken as a
constant according to Lindemann’s criterion, m′ ≈ 0.19 and λ ≈ 1.08) in
terms of Eq. (6.78), which also confirms the correctness of Eq. (6.77). It is
known that ΔHv ∝ ΔHm, and Tm/ΔHm = 1/ΔSm. Since ΔSm is almost a
constant for metallic elements, c value as a constant is reasonable. In terms
of the ΔH ′

v data, it is found that ΔH ′
v/ΔHv is nearly a constant (≈ 1.09)

for transition metals. Thus, c = c′ΔH ′
v/ΔHv = 0.174 × 10−8 mol1/3 where

c′ = 0.16 × 10−8 mol1/3 as determined above. In contrary to Eq. (6.70),
which is considered to be only suitable for transition metals, all metals are
involved in Fig. 6.19. This improvement is only induced by the replacement
of ΔH ′

v by ΔHv(Tm). ΔHv(Tm) describes the atom bonding of stable liquid
and can be exactly measured while ΔH ′

v can be obtained only by extension
of experimental results. In addition, since the difference between 0 K and Tm

for transition metals are larger than that for non-transition metals, which
leads to larger difference between ΔHv(Tm) and ΔH ′

v for transition metals
than for non-transition metals. This results in smaller suitability range of Eq.
(6.70) but not Eq. (6.77).

Fig. 6.19 γLv0(Tm) as a function of ΔHv/V
2/3
s for liquid metals in terms of Eq.

(6.77) where the solid line is linearly regressed. (Reproduced from Ref. [3] with
permission of Elsevier)
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In terms of Eq. (6.75a), the introduction of ΔS drops the value of γLv0(T ).
At Tm, the decreasing extents range from 8% (for La and Ce) to 20% (for
Mg and Sr).

Table 6.14 also shows comparisons between γ′Lv0(Tm) values of Eq. (6.76)
and available experimental or estimated results γ′eLv0(Tm). Good agreement is
also found, namely, Eq. (6.76) provides a satisfactory description for γ′Lv0(Tm).

Equation (6.76) at T = Tm can be written as

−γ′Lv0(Tm) = (κ− 2q/3)γLv0(Tm)/Tm. (6.79)

In terms of the expressions for c and κ, κ = m′/(cλN
1/3
A ) ≈ 0.19. Taking

the mean value of –0.17 for q = (dρL/dT )[Tm/ρL(Tm)], there is the slope
κs = κ− 2q/3 ≈ 0.30.

The relation between −γ′Lv0(Tm) and γLv0(Tm)/Tm for the fourth, fifth
and sixth periods are plotted in Fig. 6.20 in light of Eq. (6.79) with κs =
0.30, where −γ′Lv0(Tm) functions increase almost linearly with increasing
γLv0(Tm)/Tm for the A family metals in the same period, and the sequence is
nearly the same as that in the Periodic Table of the Elements, although some
deviations appear. This is understandable as their outmost electric configu-
rations of s+d electrons undergo nearly the same situation from the leftmost
(IA metals) of one to the rightmost (VI I IA metals) of ten in these peri-
ods. The exceptions are as follows: (1) In the fourth period (from K to Ni),
the anomalies of Mn and Cr are present where their 3d orbital is half-filled;
(2) Similarly, the appearance of the full 4d orbital also results in the anomaly
of Pd of the fifth period (from Rb to Pd). On the contrary, the occurrence of
half full 4d orbital in Mo and the half full 5d orbital of Re in the sixth period
(from Cs to Pt) do not change the sequence. These may be explained as the

Fig. 6.20 –γ′Lv0(Tm) as a function of γLv0(Tm)/Tm for (a) the fourth ( ), (b) the
fifth ( ) and (c) the sixth ( ) periods A family metals where the solid lines are
determined by Eq. (6.79). (Reproduced from Ref. [3] with permission of Elsevier)
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following: In terms of Hund’s rule, the half and the full fillings of an orbital
usually drop the system energy while the full filling is more effective. For
example, ΔHv values of Cr and Mn are evidently smaller than the neighbor
elements V and Fe as shown in Table 6.14. It is also applicable to Pd in com-
parison with Rh (Ag is not involved because it is a B family metal). While
the increase of electronic shell decreases the effect of electric configuration,
ΔHv value of Mo (Re) is thus in between those of Nb (W) and Tc (Os). Since
γLv(Tm) ∝ ΔHv (the total energetic level of the system), the abnormity only
happens in Cr, Mn and Pd.

Note that Tc and La elements are not involved in Fig. 6.20 because
γ′Lv0(Tm) value of the former is absent while those of the latter are abnor-
mally small possibly due to the effect of f electrons on γ′Lv0(Tm) value. Since
the s + d electrons of the most lanthanide elements remain constant, their
γ′Lv(Tm) values hardly change as shown in Table 6.14, and the correspond-
ing κs values thus approach zero. In other words, f electrons hardly work as
valence electrons.

When elements with empty or full filled electrons of second outmost sub-
shell are considered, only the outermost s electron layer is valence electrons,
two groups of elements exist, namely, s = 1 (IA and IB metals) and s = 2
(IIA and IIB metals). There still exists a linear correlation between γ′Lv0(Tm)
and γLv0(Tm)/Tm as shown in Fig. 6.21. In Figs. 6.20 and 6.21, all elements
with the sub-shell of (n′ − 1)d are located on the right of the figure while all
elements with the sub-shell of (n′ − 1)p are found on the left of the figure.
When the sub-shell is (n′ − 1)s, the elements are located in the middle or on
the right of the figure. When we compare Figs. 6.21 and 6.22, the κs value
of metals in groups IIA and IIB with s = 2 is similar to that of Eq. (6.79).
However, the κs value of metals in groups IA and IB with s = 1 is 30% less
than that when n′ remains constant.

Fig. 6.21 –γ′Lv0(Tm) as a function of γLv0(Tm)/Tm for (a) IA and IB ( ) and (b)
IIA and IIB ( ) metals. (Reproduced from Ref. [3] with permission of Elsevier)

γLv(Tm) = 359, 466, 305(mJ·m−2) for Mg, Zn and Cd based on Eq. (6.75a)
are employed in plotting Figs. 6.19 and 6.21, the existence of related linear
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correlations implies that these calculated values may be reasonable. In terms
of Eq. (6.76), the contribution of ΔS on γ′Lv0(Tm) value ranges from 36% (for
metals like Nb and Pt with greater γLv0 values) to 78% (for metals like Cd,
Li and Sr with less γLv0 values). Neither ΔS nor dρL/dT is thus negligible.

Figure 6.22 shows the comparison of γLv0(T )/γLv0(Tm) between Eqs.
(6.75b) and (6.72) and experimental evidence for transition metals Ni, Co, Re
and W in good agreement. The experimental data for liquid Ni, Co, Re and
W in the temperature ranges of 1573–1893 K, 1541–1943 K, 2800–3600 K and
3360–3700 K, respectively, correspond to the undercooling of 155 K, 227 K,
659 K and 320 K as well as the overheating of 165 K, 175 K, 141 K and
20 K. These plots in terms of Eq. (6.72) and Eq. (6.75b) are nearly identical
with Co, Re and W. Although it seems that the difference between the two
equations is big for Ni, its real difference is only about 1%. The agreement
shown in Fig. 6.22 confirms the linear correlation between γLv0(T ) and T
in both cases of T < Tm and T � Tm, which denotes the appliance of Eqs.
(6.72) and (6.75b) including supercooled liquid metals.

Fig. 6.22 Comparison of γLv0(T )/γLv0(Tm) function between the predictions of
Eq. (6.75b) (solid line), Eq. (6.72) (dash line) and available experimental data for
transition metals Ni ( ), Co ( ), Re ( ) and W ( ). (Reproduced from Ref. [3] with
permission of Elsevier)

Figure 6.23 presents the comparisons of γLv0(T )/γLv0(Tm) between Eq.
(6.75b) and experimental results for non-transition metals Na, K, Rb and
Cs with a difference of less than 5% at Tm < T < 3.5Tm. An approximately
linear relation between γLv0(T ) and T occurs again. Equation (6.72) is thus
a good approximation of Eq. (6.75b).

Substituting the expression ρL(T ) = ρL(Tm) + (dρL/dT )(T − Tm) into
Eq. (6.75b) produces an equation of

γLv0(T ) =

[
m′Hv − TS

λN
1/3
A

][
1 + u(T − Tm)

M/ρL(Tm)

]2/3
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Fig. 6.23 Comparison of γLv0(T )/γLv0(Tm) function between the predictions of
Eq. (6.75b) (solid line) and available experimental results for non-transition alkali
metals Na ( ), K ( ), Rb ( ) and Cs ( ). (Reproduced from Ref. [3] with permission
of Elsevier)

where u′ = (dρL/dT )/ρL(Tm). Since u′ ≈ –10−4 K−1 and T − Tm < 800K
in Fig. 6.23, u′(T − Tm) is smaller than 0.1. Considering the mathematical
relation of (1+x)2/3 ≈ 1 + 2x/3 when x is sufficiently small (e.g., x < 0.1),
Eq. (6.75b) can be rewritten as γLv(T ) ≈ (m′ΔHv − TΔS)[1 + 2u′(T −
Tm)/3]/(λN

1/3
A V 2/3). Because (m′ΔHv − TΔS)[1 + 2u′(T − Tm)/3] = v +

(T − Tm){ −ΔS + (2u′v/3)[1−ΔS(T − Tm)/v]} with v = m′ΔHv − TmΔS,
there is

γLv(T )≈{v+(T−Tm){−ΔS+(2u′v/3)[1−ΔS(T−Tm)/v]}}/(λN
1/3
A V 2/3).

(6.80)

In terms of m′, ΔHv, Tm and ΔS values listed in Table 6.14, ΔS(T−Tm)/v <
0.1 for most metals at T − Tm < 800 K, which thus is negligible as a first
order approximation. Thus, Eq. (6.54) can be simplified to γLv0(T ) ≈ [v +
(−ΔS+2u′v/3)(T −Tm)]/(λN

1/3
A V 2/3). Because v/(λN

1/3
A V 2/3) = γLv0(Tm)

and (−ΔS + 2u′v/3)/(λN
1/3
A V 2/3) = γ′Lv0(Tm), the correspondence between

Eqs. (6.72) and (6.75b) shown in Fig. 6.22 is not only understandable, but
also inevitable.

γLv0(T ) is related to the bond strength of atoms and its derivative on
T corresponds to the bond strength change or electron orbitals change as T
varies. As long as the substance remains liquid and T < Tc, electron orbitals
of liquids change linearly with T . Derivative of Eq. (6.80) with respect to T
leads to

γ′Lv0(T ) ≈ γ′Lv0(Tm) + e(T − Tm) (6.81)

with e = −4u′ΔS/(3λN
1/3
A V

2/3
s ) being the temperature coefficient of γ′Lv0(T ).
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Equation (6.81) indicates that γ′Lv0(T ) ∝ T positively since e > 0 (u <
0). This tendency against T is the reverse of that of γLv0(T ) because the
energetic difference between liquid and vapor drops as T increases. Although
Eq. (6.81) ultimately gives positive temperature dependence, e has only a
secondary effect and can be neglected as a first order approximation. For
instance, e ≈ 3.0× 10−5 mJ·m−2·K−2 for Ni and 1.6×10−5 mJ·m−2·K−2 for
V. Even T − Tm = 1000 K, γ′Lv0(T )/γ′Lv0(Tm) values of Ni and V are only
1.09 and 1.08, or the error range is smaller than 10%.

Note that the simulated results based on Monte Carlo method in conjunc-
tion with the embedded-atom potential show 20%–60% underestimations for
Al, Ni, Cu, Ag and Au, and 20% overestimation for Co when they are com-
pared with the experimental data. Thus, this method needs to be further
improved. The above theoretical method is therefore a powerful and even
unique tool at present to determine γLv0(T ) function with good accuracy.

6.7.3 Size Dependence of Liquid-vapor Interface Energy [3]

Gibbs defines that γLv with a given bulk value γLv0 depends on pressure P, T
and the composition of the two coexisting bulk phases. However, when the
liquid-vapor interface is curved, γLv is a function of r of the droplet, γLv(r).
Guggenheim suggested that the γLv(r) would change when r falls below 50
nm based on statistical mechanical considerations [17].

A half-century ago, Tolman extended the idea of Gibbs and showed that if
the radius Rs of the surface of the droplet did not coincide with the equimolar
radius Re, γLv varied with size. Moreover, Tolman proposed that the two
surfaces must, in general, be distinct from each other. Tolman estimated the
Tolman’s length δ = Re − Rs [18], or the separation between the equimolar
surface and the surface of tension. He assumed that δ could be taken as a
constant in the nanometer region, and derived the equation,

γLv(r)/γLv0 = 1/(1 + 2δ/r). (6.82)

Kirkwood and Buff developed a general theory based on statistical mechan-
ics for the interfacial phenomena and confirmed the validity of Tolman’s
approach [19]. For a sufficiently large droplet, Eq. (6.82) may be expanded
into power series. Neglecting all the terms above the first order, the asymp-
totic form was obtained, which has been illustrated as Eq. (6.63). Values for
γLv(r)/γLv0 determined by Eqs. (6.63) and (6.82) are close to each other at
r/δ � 10.

Tolman predicted that γLv(r) should decrease with decreasing r, indi-
cating a positive δ. The asymptotic Tolman’s length in the limit of r →
∞, δ∞ = h, is independent of the choice of the dividing surface. However,
δ was also predicted to be negative by a rigorous thermodynamic deriva-
tion, which would lead to an increase of γLv(r) when r drops. It is generally
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assumed that δ > 0 for spherical droplets and δ < 0 for bubbles in a liquid.
This consideration can also be simply translated as that δ > 0 where r > 0
for droplets but r < 0 for bubbles. In addition to the uncertainty in the sign
of δ, the validity of Eq. (6.82) is considered to be questionable for very small
particles.

It is known that for a planar interface of metallic elements at Tm, γsv0/γLv0

= w = 1.18 ± 0.03. Note that in the derivation of γsv(r) the nanocrystal
is assumed to have the same structure of the corresponding bulk. Since
the structure and energy differences between solid and liquid are little in
comparison with those between solid and gas or between liquid and gas, the
above expression for the bulk may be extended to nanometer size with the
same form,

γsv(r)/γLv(r) = w. (6.83)

Combining Eqs. (6.66) and (6.83), there is

γLv(r)
γLv0

=
[
1− 1

4r/h− 1

]
exp

(
−2ΔSb

3R

1
4r/h− 1

)
. (6.84)

Comparisons of γLv(r)/γLv0 for Na and Al droplets between Eq. (6.84)
and the computer simulation results are shown in Fig. 6.24 where agreement is
found, which in return confirms the validity of the assumption in Eq. (6.57).
As a comparison, Eq. (6.82) with δ = h is also shown in Fig. 6.24 where
obvious derivations between Eq. (6.82) and the computer simulation results
occur at δ/r > 0.4 (namely, r < 0.72 nm for Al or r < 0.93 nm for Na).
Although Eq. (6.84) is deduced in light of the relation between γsv0 and CN
of surface atoms for metals, this relation should be also applicable to other
types of materials. Figure 6.25 shows γLv(r) function of water by Eq. (6.84)
with correspondence of the computer simulation results where h in this case
is redefined as O–H bond length. Similarly, the prediction of Eq. (6.84) with
δ = h is also shown in Fig. 6.25.

As shown in Figs. 6.24 and 6.25, γLv(r) decreases with size, following
the trend of γsv(r) and E(r) where Eq. (6.84) provides the same or better
accuracy of Eq. (6.82). This is because the energetic state of the interior
molecules increases more quickly than that of the surface molecules as r
decreases.

Although δ is assumed to be a constant as required by the derivation
of Eqs. (6.63) and (6.82), several applications of statistical thermodynam-
ics have indicated that δ depends heavily on r. Since the results of these
treatments are based on rather complex numerical calculations, it would be
difficult to express δ(r) analytically. Fortunately, Eq. (6.84) can be used to
satisfy this requirement.

Substituting Eq. (6.82) into Eq. (6.84) rather than Eq. (6.63) because the
latter is an approximation of Eq. (6.82) and leads to error when r/δ � 5,

δ(r) =
r

2

[
exp

(
2ΔSb

3R

1
4r/h− 1

)/(
1− 1

4r/h− 1

)
− 1

]
. (6.85)
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Fig. 6.24 Comparison of the δ/r (δ = h) dependence of γLv(r)/γLv0 described by
various models and computational results for Na and Al.

Fig. 6.25 γLv(r) function with δ = h, for water, where γLv0=75 mJ·m−2.

δ(r)/h determined by Eq. (6.85) for Na, Al and water droplets are shown
as a function of r/h in Fig. 6.26. δ(r) > 0 and decreases when r increases,
being consistent with statistical thermodynamics, computer simulations, and
other approaches for Lennard-Jones fluids. However, there is an obvious dif-
ference between Eq. (6.85) and others. In Eq. (6.85), δ(r) > 0 while it will
decrease to a negative limiting value for the planar interface in the others.

The value of δ in Eq. (6.85) is on the verge of infinitude when r reaches
its lower limit h. When r is sufficiently large, considering the mathematical
relation of exp(−x) ≈ 1 − x when x < 0.1, the minimal value δmin in terms
of Eq. (6.85) can be written as δmin = δ∞ = hΔSb/(12R), or

hΔSb/(12R) < δ. (6.86)

ΔSb ≈ 12R for metallic elements leads to δ∞ ≈ h for Na and Al as indicated
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by Tolman while δ′∞ ≈ 3h/8 for water due to ΔSb ≈ 9R/2. This is the reason
why the differences of Eqs. (6.82) and (6.84) at r/h � 5 for Na and Al while
at r/h � 10 for water are present. Thus, the size dependence of δ(r) strongly
depends on the value of ΔSb. Eq. (6.86) also implies that the decrease of
the bond strength results in the diffusion of the liquid-vapor interface. The
corresponding physical picture is that the energetic difference of the molecule
on the liquid surface and that in the vapor decreases as the bond strength
weakens. Thus, the liquid-vapor interface transition zone becomes narrow.

Fig. 6.26 δ(r)/h as a function of r/h in terms of Eq. (6.85) for Na, Al and H2O
droplets.

6.8 Applications of Size-dependent Interface Energy

6.8.1 Thermodynamic Phase Stability of Nanocarbons [3]

Crystalline carbon is polymorphic in three forms of diamond (D), graphite
(G) and fullerenes (F ). A recent progress of new structures of carbon is
graphene, being a single or several graphite layers with the same structure
of G. The carbon bonding of D is sp3 (tetrahedral) hybridization while that
of G is sp2 (trigonal) one. As a result, D has a three-dimensional structure
while G consists of two dimensional layers stacked in an AB sequence, which
differs from the AB sequence in a hexagonal close packed (hcp) structure
and is linked by a weak van der Waals interaction produced by a delocalized
π-orbital. When the materials size is in bulk, G is the stable allotrope of
C at atmospheric pressures. G→D transition only occurs at high T and P
according to the equilibrium phase diagram of bulk carbon. As r decreases
to nanometer, D can be obtained at low T and P . However, it has been
observed that D initially formed with r < 1.5 nm transforms into G as it
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grows, a size-dependent thermodynamic transition. If r decreases to 1 nm, F
or carbon onions (O) could be the most stable form of C. Note that F and
O, which are not true graphitic phases, share many structural characteristics
with G, e.g. sp2 hybridization and six-member rings. Between D and F or O,
an intermediary bucky diamond (B) phase with a D-like core and a G-like
outer shell is often found due to the motivation to drop γsv. The mechanism of
relative phase stability of the above phases can be quantitatively determined
in a unified thermodynamic form.

The above transitions can be determined by considering effects of sur-
face free energy Gs(T, r) induced by γsv, elastic free energy Ge(T, r) induced
by f , and volume Gibbs free energy Gv(T, r). For solid particles, since the
complicated function of free energy difference between i and j nanophases
ΔGi→j(T, r) cannot be easily considered, a facile way is to distinguish sep-
arately the effects of T and r on ΔGi→j(T, r). This can be realized by
roughly defining that ΔGi→j(T, r) function is contributed by the difference
sum of a temperature-dependent ΔGi→j

v (T ), a size-dependent ΔGi→j
s (r), and

a size-dependent ΔGi→j
e (r). ΔGi→j

v (T ) shows the bulk value and thus is size-
independent. The latter two terms denote the size effects. Although they also
have temperature effect on ΔGi→j(T, r), it is a higher order one since this ef-
fect has been partly countervailed as differences where the related two phases
have a similar temperature dependence. This consideration certainly leads to
errors in the calculation, as shown in the following; these errors however do
not evidently affect the ultimate estimation of the phase stability of different
carbon polymorphs in nanometer size range, which in return confirms that
the above simplification is reasonable.

For a spherical and quasi-isotropic nanocrystal , ΔGi→j(T, r) function
reads

ΔGi→j(T, r) = ΔGi→j
v (T ) + ΔGi→j

s (r) + ΔGi→j
e (r). (6.87)

ΔGi→j
s (r) in Eq. (6.87) can be expressed as

ΔGi→j
s (r) = Ajγj

sv −Aiγi
sv (6.88)

where A = 3Vs/r is surface area. In Eq. (6.88), γsv is roughly defined as being
isotropic. However, this approximation is not used for strong anisotropic G
where γG

b = 0.13 J·m−2 and γG
h = 4.80 J·m−2 with subscripts “b” and “h”

denoting the basal and high-index planes, respectively. The former is induced
by van der Waals force while the latter is present due to the bond deficits.
Thus, γG is defined as

γG = (γG
b AG

b + γG
h AG

h )/(AG
b + AG

h ). (6.89)

The experimental γsv values for single-walled and multi-walled nanotubes are
0.040 J·m−2 and 0.045 J·m−2, which are about two orders smaller than γD

or γG
h . Since the structures of F and O are similar to nanotubes, as a first

order approximation, it is assumed that

γF ≈ γO ≈ γG
b ≈ 0. (6.90)
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ΔGi→j
e (r) is expressed as

ΔGi→j
e (r) = P i

inV i
s − P j

inV j
s . (6.91)

In concerned nanocarbon structures, V F
s (r) is size-dependent and V F

s (r) =
[V F (r)/NF ]NA where V F (r) = 4πr3/3 is the total volume of F , NF =
4πr2/A0 is the corresponding number of C atoms with A0 being surface atom
density. Thus,

V F
s (r) = NAA0r/3. (6.92)

According to Laplace-Young equation, Pin = 2f/r (Eq. (6.16)), where f is
determined by

f = [(3γsLh)/(4β)]1/2 for plane surfaces, (6.93a)

f = [(9γsLh)/(8β)]1/2 for curved surfaces. (6.93b)

For the considered cases, f = 3.54 J·m−2 is determined by Eq. (6.93) for
the widely studied C60, which is consistent with f = 2.36–4.02 J·m−2 by
computer simulations where the f values are transformed from eV·atom−1

to J·m−2 by using A0 = 0.027 nm2·atom−1. In equilibrium, ΔGi→j(T, r) =
0. The corresponding critical size ri→j

c (T ) in terms of Eq. (6.87) is obtained
as follows:

ri→j
c (T ) = [4(f iV i

s − f jV j
s ) + 6(γjV j

s − γiV i
s )]/ΔGi→j

v (T ). (6.94)

ΔGi→j
v (T ) of G, D, F and O in Eq. (6.85) are determined one by one.

ΔGG→D
v (T ) of G and D can be found in terms of the bulk T ∼ P phase

diagram of carbon, and is expressed as

ΔGG→D
v (T ) = P (T )ΔV G→D

s (6.95)

where ΔV G→D
s is approximately a temperature-independent constant, which

implies that the dilatability difference between G and D within the consid-
ered temperature range has a secondary effect on ΔV G→D

s .
Since F can be considered as finite two-dimensional analogues of G with-

out interlayer attraction and dangling edge bonds, ΔGD→F
v (T ) ≈

ΔGD→G
v (T ) + ΔEG→F

c where ΔEG→F
c is the difference of Ec between G

and F . Note that a lot of isolated pentagon rule structures of F without
related thermodynamic parameters deviate from the sphere shape while C60
data can be found in literature, as an example, C60 is used as the typical
model molecule of F here. With a similar way, other types of F can also
be calculated when necessary parameters are known. The corresponding for-
mation entropy difference has been neglected since the both phases have the
same coordination of the sp2 bonding. Thus, substituting Eq. (6.95) into the
above ΔGD→F

v (T ) expression, there is

ΔGD→F
v (T ) = −P (T )ΔV D→G

s + ΔEG→F
c . (6.96)
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As there are no interlayer attractions and dangling edge bonds for F , it has
no van der Waals interlayer attraction Ev. If O is treated as nested F with
Ev,

ΔGF→O
v (T ) = −Ev, (6.97)

which can be supported by the fact that as the shell number of O goes
up, its stability increases due to the appearance of Ev. Since present known
experimental and theoretical results consider more about D → O transi-
tion, D is used as a standard state for comparison and ΔGD→O

v (T ) =
ΔGD→F

v (T ) + ΔGF→O
v (T ) function is therefore considered in comparison

with other known results. The ΔGD→O
v (T ) function reads

ΔGD→O
v (T ) = −P (T )ΔV D→G

s + ΔEG→F
c − Ev. (6.98)

In terms of Eq. (6.94) and other related equations, T ∼ r phase diagram
of nanocarbon is calculated and plotted in Fig. 6.27 where necessary param-
eters are listed in Table 6.15. During the calculation, r values of different
structures are unified by those of D where different structures have the same
atom number. Moreover, to clarify three contributions towards ΔGi→j(T, r)
separately, ΔGi→j

v (T ), ΔGi→j
s (r) and ΔGi→j

e (r) functions are present in Fig.
6.28 for each transition. Although ΔGi→j(T, r) is a temperature-dependent
function, Fig. 6.28 only shows a special case at T = 0 K where the calculation
is the easiest with the largest energetic difference of phases, which benefits
the understanding of their relative sizes.

As shown in Fig. 6.27, rG→D
c decreases from about 7 nm at 0 K to 2 nm

at 1500 K, which corresponds to other experimental and theoretical results
well. In terms of Eq. (6.90), ΔGG→D

e (r= 5 nm) = 5.80 kJ·mol−1, which is ten
times ΔGG→D

s (r= 5 nm) = 0.56 kJ·mol−1 in light of Eq. (6.87) as shown in
Fig. 6.28. Accordingly, f acts as a major driving force for G →D transition
at the nanoscale, which is also the reason why the temperature dependence
of rG→D

c is evident in terms of Eq. (6.94).
For D → F transition, although fproduces Pin on particles, f only leads

to a negative effect on D → F transition when r is small since P F
in V F

m ∝
1/r1/2 in Eq. (6.90) in terms of Eqs. (6.91) and (6.93) while PD

in V D
m ∝ 1/r

induced by gradually decreased size of V F
m with r. Thus, there must be a

size where ΔGD→F
e = 0. As shown in Fig. 6.28, this size is about 2.5 nm.

Although the same case is present in the calculation of ΔGD→F
s based on

Eq. (6.87) due to the size dependence of AF
m induced by V F

m , this effect on
ΔGD→F

s is absent where γF ≈ 0 in terms of Eq. (6.89) has been employed.
As a result, ΔGD→F

s ≈ −γDAD
m is always negative, which is also the case of

D → O transition as shown in Fig. 6.28.
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Fig. 6.27 The r ∼ T transition diagram of nanocarbon in terms of Eq. (6.94)
under P= 0 (solid line) where other theoretical ( , , and ) and experimental
results ( , , and ) are presented for comparison. P (T ) = (2.73T+ 2.02×103)
MPa. (Reproduced from Ref. [3] with permission of Elsevier)

Table 6.15 Thermodynamic parameters of the nanocarbon

h
/nm

Vs

/(cm3·
mol−1)

ΔHm

/(kJ·
mol−1)

Tm

/K

ΔSm

/(J·
mol−1·
K−1)

ΔSvib

/(J·
mol−1·
K−1)

β
/(10−10

Pa−1)

Ec

/(kJ·
mol−1)

f
/(J·
m−2)

γ
/(J·
m−2)

Ev

/(kJ·
mol−1)

D 0.154 3.417 125 3723 33.58 6.37 0.088 6.10 3.70
G 0.142 5.398 120 4800 25.00 4.75 1.000 –714 1.10 3.27
F 0.157 5.4r 53 1600 33.12 6.29 0.212 –675 2.11 0

/r1/2

O 7.3 0 5.4

The rD→O
c (T ) curve is very close to the rD→F

c (T ) one in Fig. 6.27 due to
the competition between a small positive contribution of weak interlayer at-
traction on ΔGF→O

v on one side and a small negative contribution of the size-
dependent volume on ΔGF→O

s on the other side. The both lead to ΔGF→O ≈
0 in the considered size range and at the level of the approximation used here.
In fact, O and F as stable states of nanocarbon are indistinguishable within
uncertainties when r < 1.3 nm. All experimental results of rc could be con-
sidered to be consistent with Eq. (6.94).

The disappearance of dangling bonds in F and O leads to significant
drop of their total free energy GF and GO because γG

h disappears, which
stabilizes F and O when r is very small. This is clearly shown in Fig. 6.28.
The energetic increase caused by the dangling bonds in D is greater than
the energetic decrease induced by Pin at very small r. Because these different
contributions of γsv and f in distinct structures at different r on nanocarbons
are distinct, nanocarbons undergo transitions in a series of G →D → O(F )
or bonding of sp2 → sp3 → sp2 with reducing r.

Note that during D → O or D → F transition as well the correspond-
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Fig. 6.28 ΔG as a function of r where the solid lines for ΔGi→j(T =
0, r),ΔGi→j

s (r),ΔGi→j
e (r), and ΔGi→j

v (T = 0) functions (simplified to Tot, S, E,
and V) are determined in terms of Eqs. (6.86), (6.87), (6.90), and (6.95)–(6.98),
respectively. The dotted line denotes ΔGi→j = 0.(Reproduced from Ref. [3] with
permission of Elsevier)

ing reverse transitions, an intermediary B phase with a D-like core and
a G-like outer shell is often formed. For D → B transition, ΔGD→B

v (T ) =
ΔGD→G

v (T )/r, ΔGD→B
e (r) = (PD

in V D
s − PG

in V G
s )/r and ΔGD→B

s (r) =
6(V G

s γG
b −V D

s γD+V D
s γi)/r when D → B transition interface is (111)/(0001)

faces where γi is the interface energy between the D-like core and the G-like
outer shell. γi ≈ 1.04 J·m−2 is determined for the interface between zigzag
(8,0) carbon nanotube and (111) facet of D. Inserting necessary parame-
ters listed in Table 6.15 into Eq. (6.87) and letting ΔGD→B(T = 0, r) =
0, rD→B

c (T = 0) ≈ 0.5nm. Thus, ΔGD→B(T � 0, r > 0.5nm) � 0, which
means that D → B transition is thermodynamically possible. This result
is consistent with the theoretical predictions that B and other kinds of C
nanoparticles at coexist r > 0.7 nm where the coexistence of B and F takes
place when r = 0.7–0.9 nm, so does that of B and O when r = 0.9–1.0
nm, and that of B and D when r > 1.0 nm. These results also correspond
to the recent experimental results that the surface of D with r > 0.5 nm
reconstructs in an F -like manner, or a D → B transition.
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6.8.2 Static Hysteresis of Solid Transition of CdSe Nanocrystals
[3]

As the first-order structural transition, many solids transform to denser struc-
tures under applied P , resulting in materials with novel properties without
any change in the material composition. The structural transitions are uti-
lized such as for the steel hardening by martensite transition, for shape mem-
ory effect, for high fracture toughness ceramics of ZrO, and for diamond film
formation.

The microscopic mechanisms of solid-solid phase transition processes are
comparatively more complicated to understand due to the inhomogeneous ki-
netic effect, the complicated effect of grain boundaries, defect formation, and
often irreversible transition characteristics. Theoretical estimates for lifetimes
of metastable states can be off by many orders of magnitude because they
must include generally unknown details of microscopic transition pathways.
It is interesting that when r is in nanometer range, the study of phase tran-
sitions may be simplified because small crystals can behave as single crystals
and reproducibly cycle the transition without appearance of lattice defects,
such as dislocations and grain boundaries, where there is only a single transi-
tion interface between the parent phase and the formed phase. The existence
of the single interface leads to a constant static pressure hysteresis width
Pw(t→∞)(t denotes the time) and this value could be estimated.

High-pressure phases can persist in a metastable state at ambient pressure
if sufficiently large energetic barriers and low transition temperature hinder
transition to the more energetically favorable structure. The both are char-
acterized by a large kinetic transition hysteresis loop width Pw(t →0). Some
known examples are the high-energy structures of martensite in carbon steels
relative to that of ferrite plus carbide and that of diamond relative to that
of graphite. As r decreases, the metastable high-pressure phases and some
denser parking phases, which have not been found in bulk state, are easily
formed at ambient pressure as found in CdSe, HgS, ZnO, ZnS, GaAs, Fe, Co,
Cr, and In. The essential reason is the existence of Pin for an isotropic spher-
ical or quasi-spherical nanoparticle induced by f (Eq. (6.16)). Here CdSe
nanocrystals are taken as a model system to discuss the phenomenon since
experimentally the transition from wurtzite-like phase to the rocksalt-like
phase has been carried out in detail.

To determine the thermodynamic solid transition, the thermodynamic
amount of the high-pressure phase must be firstly known, which could be
obtained from that of the corresponding low-pressure phase. Let subscripts
“h” and “l” denote the high-pressure and the low-pressure phases respectively,
the pressure-dependent transition volume difference per g-atom ΔV (P ) is
expressed approximately as ΔV (P ) ≈ ΔV0 + [ΔVh(P ) − ΔVl(P )] where
ΔV0 = Vh(P = 0)−Vl(P = 0), ΔVh = −VhPhβh and ΔVl = −VlPlβl where β
is the compressibility. For CdSe crystals, the experimental evidence indicates
that ΔV (P ) ≈ ΔV0 or ΔVh(P ) ≈ ΔVl(P ). Thus, Vhfhβh ≈ Vlflβl. In light of
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Eq. (6.93), this result implies that fβ ∝ ΔHmβ1/2 = constant. Since ΔHm

is related to the bond strength, β−1/2 thus is reasonably proportional to the
bond strength. As a result of the above approximation,

fh ≈ (Vl/Vh)(βl/βh)fl. (6.99)

Since the discussed solid transition of CdSe occurs at T < TK, ΔHm(T ) =
ΔHm(TK/Tm)2 = ΔHm/4 is taken. Substituting this relation into Eq. (6.8),
we have

γsL = h(ΔSm −R)ΔHm/(6VsR). (6.100)

Because ΔCpss, the heat capacity difference between polymorphous solid
phases of the same substance, is always small if no Curie transition between
them occurs, ΔSm of such phases are approximately equal. Thus,

ΔHmh = ΔHml −ΔHs, (6.101)
ΔSmh ≈ ΔSml, (6.102)

Tmh = ΔHmh/ΔSmh (6.103)

where ΔHs denotes the solid transition enthalpy. Since ΔHmh may be deter-
mined through Eqs. (6.93), (6.99) and (6.100), ΔHs is given by Eq. (6.101).

According to the first thermodynamic law,

ΔSs = [ΔHs − PnΔV (P )]/T (6.104)

where ΔSs is the solid transition entropy and Pn shows the necessary pressure
for the transition in thermodynamic equilibrium. Since the parent phase is
the stable one under ambient pressure, ΔHs > 0, ΔSs > 0 and ΔV < 0.

In Eq. (6.104), Pn being an energy barrier going from one phase to another
is related with the Gibbs free energy difference between the two phases ΔGss.
In general consideration, any energetic contribution to the phase, such as
Δγsv, is taken as a part of ΔGss. Thus, Δγsv affects the size of Pn through
ΔGss. Since such parameters are unknown, Pe is determined by considering
the relationship between Pn and Pw(t →0). Based on experimental results,
Pw(t →0) is observed to be temperature-dependent but size-independent.
While the former is understandable due to the kinetic nature of the hysteresis
formation, the latter should be valid within a limited size range where only a
single transition interface is present with the interface energy γss, which is a
thermodynamic quantity in a size of Pw(t→∞). If the rest hysteresis width
of Pw(t →0) ∼ Pw(t → ∞) induced by the kinetic effect is contributed from
both transition directions in the same size, the total transition barrier in the
forward and the reverse transition directions has the same size of Pw(t→0)/2
as a first order approximation. Therefore, Pn = Pf + Pif − Pw(t →0)/2 =
Pr + Pir + Pw(t →0)/2 where Pf and Pr are the forward and the reverse
transition pressures respectively and Pw(t →0) = Pf − Pr. In light of Eq.
(6.16), Pif = 2ff/r and Pir = 2fr/2. With these relationships and simple
mathematical treatments,

Pn = P + 2f/r (6.105)
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where P = (Pf + Pr)/2 and f = (ff+ fr)/2. Since f > 0, Pn > P . With the
calculated value of ΔHs and ΔSs in terms of Eqs. (6.101) and (6.104), the
transition temperature at ambient pressure Ts is obtained as follows:

Ts = ΔHs/ΔSs. (6.106)

The static parts of the hysteresis width Pw(t → ∞) could be determined
in light of the equation of Pw(t → ∞) = −2γssA/ΔV . According to the
standard combining rule for this cross term, γss = (γssh + γssl)/2 is taken.
Since γss = 2γsL in light of Eq. (6.25), γss ≈ γsLh + γsLl. For a spherical or
quasi-spherical nanocrystal with a unique transition interface, the maximal
Ag value is nπr2 with V = 4nπr3/3 where n is the nanocrystal number of
one gram-atom crystal, or A = 3Vs/(4r). Substituting γss and A values into
the above equation, it reads

Pw(t →∞) = −3Vs(γsLh + γsLl)/(2rΔVs). (6.107)

Since Eq. (6.107) is only applicable to the transition of single crystals with one
transition interface without dislocations, r < 10− 15 nm should be satisfied.
Note also that although Pn can be determined by Pw(t →0) in terms of
Eq. (6.105) with some assumptions, Pw(t →0) itself is a complicated multi-
parameter function of the activation energy, the activation volume and the
time cannot directly be calculated.

According to the above equations, the determined thermodynamic quan-
tities for the wurtzite and the rocksalt phases of CdSe and related param-
eters are shown in Table 6.16. As shown in Table 6.16, Tmh < Tml and
ΔHmh < ΔHml are understandable due to the metastable nature of the high-
pressure phase. γmh > γml and fmh > fml because on the surface there is a
higher bond density of the high-pressure phase than that of the low-pressure
phase. The determined ΔHs= 2.51 kJ·g-atom−1 is similar to the theoretical
calculation of ΔHs = 3.16 kJ·g-atom−1, and is one order smaller than ΔHm.
This is an expected result that the sum of the total bond strengths of two
phases is similar. According to the estimated ΔHs value, ΔSs and Ts values
are also obtained in terms of Eqs. (6.104) and (6.106).

Table 6.16 Necessary parameters for the calculation of the transition behavior
of CdSe in terms of Eqs. (6.93), (6.99)–(6.103), (6.105)–(6.107). h is in nm, V in
cm3·g-atom−1, T in K, ΔH in kJ·g-atom−1, ΔSml in J·g-atom−1 K−1, β in 10−12

Pa−1, γ in mJ·m−2, f in J·m−2, Pn in GPa,Pw(t→∞) in GPa·nm·nm−1

hl hh Vl Vh ΔV ΔV/V Tml

0.219 0.286 16.90 14.01 –2.89 –0.171 1525

ΔHml ΔSml ΔSvibl βl βh γsLl γsLh

22.78 14.94 6.624 21.9 17.4 39.20 54.94

fl fh ΔHmh ΔSmh ΔSvibh Tmh ΔHs

0.542 0.823 20.27 14.94 6.624 1357 2.51

ΔSs Pn Ts Pw(t→∞)

31.3–40.9 4.59–5.15 62–80 0.83/r
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Under the assumption that the kinetic transition resistance in two tran-
sition directions has the same size, ΔSs and Ts values are determined by two
sets of experimental data at different T . It is found that ΔSs > ΔSm, which
implies that structural change between two solid phases is greater than that
between the solid and liquid. The obtained Ts value is much lower than Tr.
This result confirms the above assumption that the positive ΔCpss value is
small (ΔCpss > 0 since the high-pressure phase is metastable at the ambient
pressure). The larger values of ΔSs and ΔT = T −Ts may be the reason why
Pn value for the solid transition of CdSe is several orders larger than that for
the usual martensite transition.

In the size range of 1.3 nm < r < 6.3 nm, 0.66 GPa > Pw(t→∞) > 0.13
GPa in terms of the result of Pw(t → ∞) = 0.83/r. This result implies that
the static hysteresis is size-dependent although the validity of Eq. (6.107) is
only for single crystals up to a value about r = 10− 15 nm. Since Pw(t→0)
≈ 6 GPa at room temperature and decreases as T increases, which is one
order larger than Pw(t→∞), the size of Pw(t→0) is mainly induced by the
kinetic effect.

As r increases, the reverse transition is absent, it is plausible that Pw(t→
∞) is proportional to bond number on the transition interface which is pro-
portional to the interface area of r2. Thus, the size contribution to Pn through
Pin is not evident although Pin ∝ 1/r.

In the above approach, since only general thermodynamic measurable
quantities are utilized, this measure seems to be applicable to solid transitions
of other semiconductor compounds, such as GaAs, InAs, etc., although there
is a lack of necessary experimental data used above.

6.8.3 Critical Layer Number and Critical Misfit of Epitaxial Grown
Metallic Thin Films [3]

Ultrathin metallic films epitaxially grown on metallic substrates have been
the subjects of many studies because they present very unusual chemical,
electronic and magnetic properties, which differ from the corresponding bulk
counterparts. The structure of the grown films is affected by the correspond-
ing substrate with certain crystalline facets. To minimize the total G of the
film, the film could prefer to take lattice strain at the film/substrate interface
ςf/s to avoid the formation of non-coherent interface with a larger interface
energy γi since a coherent or a semi-coherent interface behaves as a much
lower γi. However, as the layer number n′ increases, or the surface (inter-
face) area A = Vs/(n′h sin θ1) decreases where Vs is the g-atom volume of the
film and h sin θ1 shows the layer distance of the film from the substrate with
θ1 being the corresponding angle between direction of the nearest atoms at
neighbor planes and that of the film surface, the total value of elastic energy
of the film Ge will be greater than the total non-coherent interface free energy
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Gi = Aγi. Subsequently, the stable strain-free structure with a non-coherent
interface is recovered at a critical layer number n′c where a transition from
the strained structure to a normal one occurs.

When the epitaxially grown metallic ultrathin films on metallic substrates
are remained, the thermodynamic condition is Ge < Gi. At n′ = n′c,

Gi = Ge. (6.108)

Ge can be determined by the elastic theory. Let x axis and y axis be hor-
izontal directions along the interface, and z axis be perpendicular to the
interface. At n′c, the essential assumptions are as follows: (1) ςxx(z= 0) =
ςyy(z= 0) = ςf/s = |hf − hs|/hs with the subscripts “f” and “s” denoting
film and substrate, and ςxx(z = n′h sin θ1) = ςyy(z = n′h sin θ1) = 0 at
the surface of the film where the interface restriction disappears; (2) The
strain along the z-axis varies linearly with the form of ςxx(z) = ςyy(z) =
ςf/s[1 − z/(n′h sin θ1)], bxx(z) = byy(z) = Eyςf/s[1 − z/(n′ch sin θ1)]/(1 − νp)
in terms of Hooke’s law; (3) bzz = 0 and bij = 0 where i �= j since ςxx and
ςyy do not produce b; (4) the film is isotropic as a first order approxima-
tion. Under these assumptions, the elastic energy of unit volume ue is taken
as ue = (bxx + byy)ςf/s[1 − z/(n′h sin θ1)]/2 = Ey{ςf/s[1 − z/(n′h sin θ1)]}2.
Thus,

Ge =
∫

V

uedV =
VsEyς

2
f/s

n′h sin θ1

n′h sin ζ∫
0

[1− z/(n′h sin θ1)]2dz =
VsEyς2

f/s

3(1− νp)
.

(6.109)
On the other side,

Gi = γiVs/(n′h sin θ1). (6.110)

It is known that γi = 4hSvibΔHm/(3VsR) in terms of Eq. (6.50). For film/
substrate interfaces, as a first order approximation, a mean value of the both
substances for γi is taken,

γi ≈ 4h̄ΔSvibΔHm/(3V sR) (6.111)

where the upper bar on the symbols denotes that the related amount is a
mean one. Substituting Eqs. (6.109) and (6.110) into Eq. (6.108) at n′ = n′c,
there is

n′c =
3(1− νp)γi

Eyh sin θ1ς2
f/s

=
4(1− νp)ΔS̄vibΔH̄m

sin θ1V̄sREyς2
f/s

. (6.112)

To understand a general characteristic of Eq. (6.112), a 3D graph for n′c(Gi,
ςf/s) function is plotted in Fig. 6.29. It is clear that a thicker epitaxial film
can be obtained when εi value is small and Gi or γi value is larger. As ςf/s

decreases, n′c increases evidently. Thus, as expected, suitable substrates and
facets to obtain the smallest ςf/s will be decisive factors for manufacturing
thicker epitaxial films. Note that the lattice contraction of the films has been



6.8 Applications of Size-dependent Interface Energy 289

neglected. If this factor is introduced, the n′c values will be a little lower than
the shown ones.

n′c values in light of Eq. (6.112) and the corresponding experimental re-
sults n′′c of Ni and Cu metallic films grown epitaxially on different metallic
substrates are listed in Table 6.17. Agreement is found except for Ni(100)/
Pd(100) system where the prediction has a difference of 50%–100% compared
with the experimental results. However, even if n′ < n′c and the strained film
has a higher energetic state than the corresponding one with non-coherent
interface , this strained structure may still exist in a metastable state, which
is a usual case for solid transition where there exists a transition hysteresis.
Thus, the predicted value of n′c should be related to the smallest value in
experimental experience.

Fig. 6.29 A 3D plot for n′c(Gi, ςf/s) function in terms of Eq. (6.112) where h sin θ1
= 0.25 nm, Ey = 100 GPa and νp = 0.3 are taken. (Reproduced from Ref. [3] with
permission of Elsevier)

Table 6.17 Comparison of n′c between the predictions of Eq. (6.112) and exper-

imental results n′′c where sinθ1 values are 21/2/2 and 61/2/3 respectively for (100)
and (111) planes

Film/substrate ςf/s νf Ey/GPa n′c n′′c
Ni(100)/Pd(100) 0.095 0.31 200 6 9 – 12
Ni(001)/Cu(001) 0.025 0.31 200 33 > 11
Ni(111)/Pt(111) 0.102 0.31 200 5 6
Cu(111)/Pd(111) 0.071 0.34 130 10 9

All four systems given in Table 6.17 have the same characteristic of ςf/s >
0. It is possible that the energetic increase of atoms by straining is smaller
than that by pressing due to the dissymmetrical potential function of atoms.

Since the lattice parameter of an attached film generally differs from that
of the substrate, there exist lattice misfits at the film/substrate interface and
b is produced in this system. Usually, the lattice misfit on the film/substrate
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interface can be accommodated in two ways: the film is elastically strained
in order to accord with the substrate and/or misfit dislocations arise.

The concept of a limiting misfit as the upper limit of misfit, below which
epitaxial growth may occur, was related to relevant concepts of misfit strain
ς, misfit dislocations, critical misfit λc and critical thickness. λc is homoge-
neously strained into registry with the substrate, and the critical thickness
is the critical layer thickness above which an interface of given natural mis-
fit loses registry by introducing misfit dislocations. λc and the thickness of
the eptaxial growth films were widely considered. However, misfit disloca-
tions practically occur in the most eptaxial growth films. As ς increases, the
energy of the film increases, ς in the film is relaxed by formation of the mis-
fit dislocations with the misfit dislocation energy Gd. Once it reaches some
value being greater than the γi, the interface is completely incoherent where
λ = λc.

The incoherent free interface energy of the film Gi is simply calculated by

Gi = γssA (6.113)

where γss is determined by Eq. (6.111). When an interface between a fully
relaxed film and a substrate consists of dislocations, the corresponding γss is
equal to Gd = Ndud where Nd and ud denote the dislocation number and
the misfit dislocation energy of a single dislocation. As a simplification, it
is assumed that the film and the substrate are elastically equivalent, and
the dislocation is edge one that is parallel to x-axis or y-axis, thus, ud =
Eyb

2l(ln re/b + 1)/[4π(1 + νp)(1− νp)] where l is the length of a dislocation.
re is an effective dislocation stress field radius, which is often approximated
as the film thickness th. b ≈ h̄ is the Burgers vector. Nd = A/(lD) with
D = b/λ being the distance between two neighbor dislocations along x− or
y− axis. Thus, the total number along the two axes N = 2Ni = 2λA/(lh̄).
Thus,

Gd =
EyAhλ[ln th/h + 1]

2π(1− ν2
p)

. (6.114)

Let Gd = Gi at λc in terms of Eqs. (6.113) and (6.114), where the interface
transforms from a semi-coherent interface to an incoherent interface due to
the requirement of minimum of the interface energy,

Gd

Gi
=

3V sREyλc[ln th/h̄ + 1]
8πΔSvibΔHm(1− ν2

p)
,

or,
λc ≈ ΔSvibΔHm(1− ν2

p)/[V sEy(ln th/h̄ + 1)]. (6.115)

In light of Eq. (6.90), λc may shift to a greater value through increasing ΔHm

value of the substrate according to the definition of ΔHm.
The calculated λc values by Eq. (6.115) for some epitaxial growth thin

films on different substrates are listed in Table 6.18 where th/h̄ ≈ 1 is taken.
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The results indicate that films with epitaxial growth can be obtained ex-
cept Febcc/Au(100) and Co/Pt(111) systems. From Eq. (6.115), the epitaxial
growth film exactly depends on the energetic conditions. When the substrate
has a larger ΔHm and the film has a smaller Ey, a thicker film with an
epitaxial growth can be obtained.

Table 6.18 Comparison between λc by Eq (6.115) and λ′c = |hf −hs|/hs when the
solid is isotropic

ν
Ey

/GPa
λc λ′c ν

Ey

/GPa
λc λ′c

Ni/Pd(100) 0.31 200 0.102 0.095 Ni/Cu(100) 0.31 200 0.101 0.025
Mo/W(100) 0.293 325 0.085 0.006 Febcc/Au(100) 0.29 211 0.055 0.139

Fefcc/Cu(100) 0.29 200 0.149 0.008 Fefcc/Ni(100) 0.29 200 0.093 0.018
Ag/Mn(100) 0.37 83 0.118 0.117 Cu/Pd(111) 0.34 130 0.105 0.071
Ni/Pt(111) 0.31 200 0.106 0.102 Co/Cu(111) 0.31 209 0.085 0.017
Co/Pt(111) 0.31 209 0.084 0.099 Ag/Pt(111) 0.37 83 0.156 0.041
Cu/Mo(110) 0.34 130 0.166 0.066 Cu/W(110) 0.34 130 0.170 0.072
Ni/Mo(110) 0.31 200 0.132 0.093 Ni/W(110) 0.31 200 0.134 0.099

Nb/Febcc(110) 0.40 105 0.155 0.151

6.8.4 Reconstruction Possibility of fcc Metallic Surfaces at Room
Temperature [3]

The process, in which the atoms in the top monolayer(s) are redistributed to
create a surface region with a distinct (and often more complex) structure
from the ideally terminated 1×1 surface, is called surface reconstruction,
which occurs on various semiconductor and metal surfaces both in the clean
state and in the presence of an adsorbate (see Sec. 6.3.3). On low-index
metal surfaces, reconstructions are often characterized by a change in the
atomic density of the top monolayer. One of them is the commensurate-
incommensurate (C-I) phase transition although sometimes neither phase is
strictly incommensurate. In all cases an increase in the density is observed,
with a concomitant uniaxial or biaxial elastic contraction of surface layers.
The surfaces that exhibit these reconstructions belong exclusively to the 4d
and 5d transition metals and feature filled or nearly filled d-shells. Note that
these structural reconstructions can also be found in other metals.

Frenkel-Kontorova (FK) model has been widely used with some success
in describing the incorporative type of reconstructions found on clean, metal-
lic fcc surfaces, especially on (111) facet of Au. For application to two-
dimensional systems, FK model assumes that the physical system can be
adequately described by a planar array of atoms that interact harmonically
with each other and rest with a static, corrugated potential provided by the
atoms of the substrate. The structure of the overlayer is then determined
from a balance of the interlayer and intralayer interactions. Herring [20] and
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Cammarata [21] have considered these using a bulk continuum elastic model,

Ys = (f − γsv)/Gh > μ′ (6.116)

where μ′ ∼= 1/[4π(1− νp)] ∼= 0.1, and Ys is the stability parameter. (f − γsv)
denote the driving force for the reconstruction while the opposing force is
due to the disregistry with the underlying lattice. In spite of its simplicity,
Eq. (6.116) has successfully predicted surface reconstruction condition, and
is consistent with the bulk continuum elastic theory and MD simulations
for surface reconstructions on clean Au (111) surfaces. Since f and γsv are
experimentally difficult to determine, Eqs. (6.57) and (6.93) can be employed
to determine Ys. Thus, Ys can be simply calculated theoretically.

γsv, f and Ys of some fcc metals with (111) facets are respectively calcu-
lated in terms of Eqs. (6.31), (6.68) and (6.91), and are shown in Table 6.19.
As shown in the table, although Ys values obtained from Eq. (6.91) with the
calculated f and γsv values differ from Y ′s values with cited f and γsv values,
Ys and Y ′s values have the same predictions for the surface reconstructions of
the concerned nine elements. The surface reconstructions are absent for the
most elements except Au (111) and Pb (111) where Ys > 0.1. Note also that
although both Au and Pb exhibit surface reconstruction at Tr, their Tr/Tm

values are different.

Table 6.19 Comparison of Ys in terms of Eq. (6.116) and other theoretical results
Y ′s at T = 300 K with related parameters for (111) facets of nine fcc metals where
β,G, f , and γsv are in units of 10−12 Pa−1, GPa, J·m−2, and J·m−2.

β G f γsv Ys Y ′s
Ir 2.695 209 4.01 3.19 0.034 ±0.034
Ni 5.640 76.0 3.04 2.44 0.032 –0.022
Cu 7.257 48.3 2.23 1.83 0.032 0.007
Ag 9.653 30.3 1.65 1.20 0.051 0.035
Pd 5.348 43.6 2.91 1.85 0.088 0.057
Pt 3.623 60.9 3.71 2.54 0.069 0.087, 0.19∗

Pb 21.83 5.59 0.75 0.55 0.102 0.103
Au 5.848 26.0 2.27 1.52 0.100 0.119, 0.19
Al 13.30 26.2 1.65 1.45 0.026 0.041
∗Pt(111) can be reconstructed under certain circumstances.

The Y ′ values of Ir (111) and Ni (111) shown in Table 6.19 are negative,
i.e. f < γsv. It is known that f = γ + ∂γ/∂A, while γsv < f for solids is
very often although there are exceptions depending on the sign of ∂γ/∂A.
Thus, Y ′s < 0 is inacceptable. In fact, the bond strength of surface atoms and
thus f on one side increase while γsv on the other side decreases after the
surface relaxation. Thus, after the reconstruction, even if Ys < 0 before the
reconstruction, there must be γsv < f or Ys > 0 after that. Since Eqs. (6.31)
and (6.68) for γsv and f can be approximately applied to any surface of any
structure, the surface reconstruction can be in general predicted.
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carbon polymorphs, 279
Carnot cycle, 21
chemical potential, 45, 174
Clapeyron, 121
classical nucleation theory, 232
cluster, 108
coefficient of thermal expansion, 34,

67
cohesive energy, 109
compressibility, 34, 67, 123
computer simulation techniques, 109
correlation length, 98, 180, 192
Coulomb pseudopotential, 202

coupling constants, 187
critical exponents, 164
critical layer number, 287
critical misfit, 287
critical nucleus, 143
critical or threshold field, 27
Curie temperature, 15, 184

D

Debye temperature, 73
defects, 207
degeneracy, 48, 52
diffusionless growth, 173
dimension-dependent r0 values, 203
dislocations, 207
dislocation theory, 211
driving force, 166, 225

E

Ehrenfest’s equations, 159
Einstein temperature, 72
elastic stored energy, 168
elastic strain energy, 213
electric susceptibility, 16
electron-phonon coupling constant,

202
electronic, 81, 87
electronic heat capacity, 75
energy levels, 39
enthalpy, 18
entropy, 22, 81
entropy of melting, 79
environment, 6
eutectoid transition, 171
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excess entropy, 179
exchange bias, 191

F

FD statistics, 52
Fermi energy, 76
Fermi-Dirac (FD), 37
ferroelectric (FE) crystals, 197
ferroelectric phase-transition tem-

perature, 197
Fick’s first law, 210
Fick’s second law, 210
films, 287
first law of thermodynamics, 11
first-order transitions, 157, 284
frictional work, 168

G

Gibbs free energy, 127, 131
Gibbs function, 24
glass transition, 176
growth, 143

H

ΔHm(r) function, 106
heat, 12
heat capacity, 19, 67
heat capacity difference, 239
Helmholz function, 23
hysteresis, 167

I

ideal solution, 130, 131
intensive and extensive properties,

7
interaction parameter, 134
interface, 214
interface energy, 169, 207
interface stress, 207, 219
internal energy, 7

Ising model, 162, 163, 187

J

jump frequency, 210

K

Kauzmann temperature, 99, 180
kinetic energy, 7

L

Landau model, 160, 161
Landau phenomenological theory,

197
Langmuir, 231
Laplace-Young equation, 225
lattice vibration, 71
law of Dulong and Petit, 71
Lindemann model, 95
Lindemann’s criterion, 100
linear defect, 211

M

magic number, 108
magnetic enthalpy, 26
magnetic Gibbs function, 26
magnetic induction, 15
magnetization, 15
martensitic phase transitions, 166
Maxwell relations, 25
Maxwell-Boltzmann (MB), 37
MB statistics, 43
melting criterion, 95, 96
mesoscopic systems, 3
microscopic mechanisms, 284
migration energy, 211
molecular dynamics (MD) simula

tion, 236
Monte Carlo method, 275
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N

Néel temperature, 184
nanocarbons, 278
nanomaterials, 93
nanophase diagrams, 139, 140
nanoscience, 3, 93
nanoscience and technology, 94
nanotechnology, 3
nanothermodynamics, 3, 93, 94
negative temperatures, 63, 64
non-coherent interface, 289
nucleation, 143
nucleation temperature, 232
nucleus-liquid interface energy, 239
number of degree of freedom, 120

O

orthoequilibrium, 171

P

paraequilibrium, 171, 172
partial molar properties, 127
partition function, 45
Pauli exclusion principle, 75
phase diagram, 121
phase transitions, 284
point defects, 208
population inversion, 64
positional, 82
potential energy, 7

Q

quasi-isotropic nanocrystal, 279

R

random walks, 54
reconstruction and relaxation, 221
reconstructions, 224
regular solution, 133

S

second-order phase transitions, 158
second law of thermodynamics, 20
semi-coherent interface, 287
semiconductor nanocrystals, 114
single-walled and multi-walled nano-

tubes, 279
size-dependent cohesive energy, 106
spin-spin exchange interaction en

ergy, 186
spinodal decomposition, 141, 142
state of a system, 6
static hysteresis, 284
static pressure hysteresis, 284
statistical thermodynamics, 37
strain, 14
stress, 14
superconducting, 202
superheating, 97
surface energy, 17
surface free energy, 219
surface melting, 98, 104
surface reconstruction, 222
surface spontaneous polarization,

197, 198
surface stress, 94, 216
surface tension, 264
surface-to-volume ratio, 3, 93
system, 6

T

Tg(r) function, 182
Tm(r) function, 105
thermodynamic temperature, 11
thermodynamics, 1, 94
third law of thermodynamics, 32
Tolman’s length, 275
top-down method, 4

U

undercooling, 97
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“useful” work, 17

V

vacancies, 208
vacancy formation energy, 209
vapor pressure, 228
vibrational, 82, 85
vibrational displacement, 95

W

work, 12
Wulff construction, 230

Z

zeroth law of thermodynamics, 10
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