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Preface

The present book on Rational Reconstructions of Modern Physics has evolved from

investigations, lectures, and discussions with many colleagues in Physics and

Philosophy during the last 10 years. Selected problems of this treatise were pre-

sented at various conferences, as the biennial meetings of the “International Quan-

tum Structures Association” (IQSA) in 2002, 2006, and 2010, and at the annual

conferences of the “Académie Internationale de Philosophie des Sciences” (AIPS),

for instance in 2004. In particular, I mention here the lectures and discussions that I

could contribute to the informal research seminars in Philosophy of Physics, which

were organized by Brigitte Falkenburg at the University of Dortmund over a period

of several years. – The stimulating discussions at all these events, the critique of my

new approach but also the encouragement to continue this way of reasoning, are

gratefully acknowledged.

The aim of this book is to summarise the results of these efforts which were

partly scattered throughout various journals, proceedings of conferences, fest-

schrift-volumes, etc. and to reorganize them in a new and systematic order. The

results and implications of the present investigations are partly new and they are in

general not in accordance with the well known interpretation of Modern Physics in

the light of classical physics. The goal of this attempt is a rational reconstruction of

the leading theories of Modern Physics, the Theories of Special and General

Relativity and Quantum Mechanics, a project that will be further elucidated and

motivated in the “Introduction” of the main text.
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Introduction

Even without a fully elaborated idea of the development of physical theories, we

expect – at least among physicists – a wide spread agreement with the hypothesis

that the progress in physics consists of an interplay between experimental results

and theoretical drafts. A successful theory summarises a large number of experi-

mental results in a formal mathematical and conceptual system – a so called

“theory” – where new and additional experiments will contribute either to a

confirmation or – what is usually more important – to a refutation of the theory

by means of falsification. A refutation of this kind is then a challenge to formulate a

new theoretical concept, an improvement of the first preliminary theory. In this

way, the development and the progress of physics seems to consist in a stepwise

accumulation of new results and thus in a permanent increase of knowledge.

Also the idea of the dynamical development of physical theories as it was

conceived by Thomas Kuhn1 and others can be incorporated into this very general

conception, however with an important additional distinction. Whereas in the

phases of “normal science” the accumulation of physical knowledge takes place

by summarising more and more experimental results into an already existing theory

– whose domain of validity is extended in this way often by rather artificial

assumptions – in the phases of “revolution” the extended and exhausted old theory

is replaced by a completely new theory, which will again be subject to the interplay

of confirmation and falsification. One clue of this argument is, that physical theories

cannot really be falsified, since in most theories there are ways to extend the theory

by additional assumptions such that by fully exhausting the new theory all known

results can be incorporated. Hence, from time to time “revolutions” seem to be

unavoidable.

Accordingly, the progress in physics seems to consist of an increase of knowl-

edge, of the increasing number of experimental results and of permanently im-

proved theories that summarise these results and interpret them on the basis of

theoretical connections between various results. There is, however the important

1Thomas S. Kuhn (1962), Paul Feyerabend (1970).
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argument of the advocates of Kuhn’s ideas, that the formulation of a new theory

after a revolution is by no means unique but depends, except from the scientific

situation, also from the historical, sociological and psychological background of the

involved scientists. We will not go into the details of the long lasting controversial

debate about the justification of these arguments, since for the most important

theories of modern physics, the Theory of Relativity and Quantum Theory, there

are essentially no alternative approaches known.2

The present investigation will not follow these two ways of reasoning, neither

the traditional idea that the progress in science consists of continuous accumulation

of new results, nor Kuhn’s modification of this idea that the development of physics

takes place in a sequence of large steps, which correspond to phases of revolution

and consolidation. Instead of these well known alternatives we argue in favour of a

completely different way for explaining the progress in physics, in particular of

physical theories in the last century. We will show, that the two models mentioned

for the progress in science are not able to grasp the most radical and at the same

time very simple change from the so called “classical” Newtonian physics to the

theories of “modern physics” in the twentieth century.

In particular we will show, that the transition from classical physics to the three

leading theories of modern physics, Special Relativity, General Relativity and

Quantum Mechanics cannot adequately be understood as an increase of knowledge

about various new empirical facts. In contrast, the very progress of these transitions

consists of a stepwise reduction of prejudices, i.e. of quite general hypothetical

assumptions of classical mechanics, that can be traced back to the metaphysics of

the seventeenth and eighteenth centuries. Accordingly, our proof of these state-

ments will be a constructive one: We start from Newton’s classical mechanics and

show, that by abandoning or relaxing the various not justified metaphysical hypoth-

eses contained in it, the theories of “modern physics” can be constructed. In this

way, we can demonstrate two important results. On the one hand we show, how the

theories of modern physics can be justified and that, without explicit reference to

new experimental results. On the other hand, the original difficulties of understand-

ing the new theories can now convincingly be explained and at the same time

completely be eliminated.

2Except perhaps from the “Bohm” theory of Quantum Mechanics, and the “Jordan-Brans-Dicke”

theory of General Relativity.
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Chapter 1

Rise and Fall of Physical Theories

1.1 The Evolution of Modern Physics

from the Classical World

Classical physics, which is assumed here as represented by classical mechanics, is

usually considered as the correct physical theory of our ordinary everyday experi-

ence (OE). This experience refers to the dimensions and processes of the human

life, to slow motions, to time intervals that are comparable with hours, days, and

years etc. and to distances that correspond almost to the dimensions of human

beings. The world as we know it through ordinary experience determines what we

call intuitive or comprehensible. We do not want to begin with the meaning of the

word “intuitive” and its history. Rather, this concept will find its bearing in ordinary

experience (OE), which, as pre-scientific experience, precedes all scientific cogni-
tion. This vague sense of intuitive and comprehensible is not only used in popular

science but also corresponds largely to the usage of the terms in the literature of

modern physics. This does not rule out the possibility that individual physicists

interested in fundamental questions have understood these concepts in a deeper

sense and in line with the philosophical tradition.1 Such an interpretation, however,

seems initially to have been limited to Quantum Mechanics and will therefore be

omitted for the present purpose.

At this point, it is already useful to introduce an important distinction. The

concept of intuitiveness that has its bearing in ordinary experience (OE) can be

understood in two different ways.2 First, it can be taken to mean the immediately

and directly discernible intuitiveness, i.e. the agreement of a new experience with

already known and familiar elements of ordinary experience. In this case, we also

speak of direct intuitiveness. “Intuitive”, however, can also refer to a familiarity or

resemblance with ordinary experience, which is revealed to the observer only after

prolonged observation and via a number of logical steps. In this case, we speak of

indirect intuition. Both types of intuition are found in physics.3

1 Falkenburg (2006).
2 Huber (2006).
3 Huber (2006) speaks of “sensible intuitive” and “rationally intuitive”.

P. Mittelstaedt, Rational Reconstructions of Modern Physics,
Fundamental Theories of Physics 169, DOI 10.1007/978-94-007-0077-2_1,
# Springer Science+Business Media B.V. 2011
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Hence, there exists a kind of reductionism of intuitiveness. By means of a

more or less long series of steps, phenomena that at first glance are by no means

directly intuitive, comprehensible and familiar, can nevertheless be traced back

to directly intuitive phenomena. These are the indirectly intuitive processes and

experiential structures. Obviously, the indirectness of intuitiveness can differ by

degree with respect to various phenomena and different observers. There are experi-

ences, particularly in modern physics, the indirect intuitiveness of which has only

been gradually over the span of several years, while simple, although initially irritating

classical-mechanical processes – such as the Coriolis forces in an accelerated frame of

reference – can be traced back very quickly to directly intuitive structures. Between
different observers there can also be gradual differences. A trained and experienced

natural scientist will be able to discern the indirect intuitiveness of a process more

quickly and in fewer steps than a lay person in the same area.

Classical physics sees itself as the scientific theory of the world of ordinary

experience. However, in the formulation of classical physics, especially of Classical

Mechanics (CM), certain basic experiences are extrapolated beyond immediate

experience and elevated to general principles, which then form the basis of the

corresponding classical-physical theory. These principles, which are not justified

by experience alone, can probably be attributed to the influence of modern meta-

physics in the rise of classical physics in the seventeenth and eighteenth centuries.4

This influence concerns the assumption of the existence of an absolute space, the

assumption that Euclidean geometry applies to this space, the existence of an

absolute and universal time as well as the assumption of an unbroken causality.

Furthermore, there is the assumption that matter consists of individual and perma-

nent substances, the properties of which are “thoroughgoing determined” and

simultaneously decidable.

We summarise these hypothetical assumptions in the “classical ontology” O(C).
Generally, by the term “ontology” we understand the most general features of

a certain domain of reality. In the present case, we call “classical ontology” O(C)
the most general properties of objects that belong to the realm of classical physics,

i.e. to the classical world. In a similar sense, we will later speak of “quantum

ontology” O(Q) referring to all kinds ob quantum objects. In the following, we

often compare ontologies with respect to their strength. Generally, we say that an

ontology O is stronger than another ontology O’, if an object o contained in O must

fulfil more requirements than an entity o’ contained inO’. By these explanations we
establish a partial ordering relation between two ontologies O and O’.

Ordinary experience (OE) does not justify the ontological hypotheses of the

classical ontology O(C). But ordinary experience is also not precise enough to

contradict them. This means, that in any case Classical Mechanics is loaded with

ontological hypotheses that have neither a rational nor an empirical justification.

Hence, since these presuppositions enter explicitly into Classical Mechanics, it is to

4 Falkenburg (2006).
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be expected, that classical mechanics will enter with physical experience as that

experience becomes more and more precise. In order for us to be able to respond

adequately to such contradictions, we shall now investigate in more detail, where

these ontological hypotheses enter as premises into the structure of Classical

Mechanics. Once that is known, the hypotheses could possibly be weakened or

abandoned. This weakening corresponds to a transition from the classical ontology

O(C) to a weaker ontology O’ in the above mentioned sense.

Since the formulation of classical mechanics in Newton’s Principia of (1687)5

neither classical mechanics itself nor the underlying classical ontology O(C) were
seriously questioned by physicists or by philosophers for almost 200 years. Only at

the end of the nineteenth century, Ernst Mach6 and Henri Poincaré7 formulated

serious objections against the conceptual basis of classical mechanics. A few years

later, the same arguments and objections were taken up by Albert Einstein for

establishing the Special Theory of relativity. However, Einstein did not discuss

explicitly the arguments of Mach and Poincaré against Classical Mechanics and

Newton’s theory of space-time. Moreover, it is an open historical question whether

Einstein knew at all the objections of Mach and Poincaré in detail from the

literature. With respect to Ernst Mach, Stachel8 mentions the possible influence

of Einstein’s early reading of Mach’s Mechanics (around 1897). But nothing is

known about Einstein’s reaction to the work of Poincaré. Presumably, he never read

Poincare’s most relevant paper of 1898. In addition, Einstein and Poincaré never

met before the first Solvay Conference in 1911, where they had only a short and

ineffective debate. 9

In detail, the critique of Mach and Poincaré was concerned with the concepts of

absolute space and absolute time in Newton’s Principia. With respect to time

Newton wrote:

Absolute, true and mathematical time, of itself, and from its own nature flows equably
without regard to anything external, and by another name is called duration: relative,
apparent and common time, is some sensible and external (whether accurate or unequable)
measure of duration by the means of motion, which is commonly used instead of true time.

Mach emphasised that this concept of absolute time has no empirical meaning, since

there is no realisable experiment that could be used for measuring numerically the

time difference between two arbitrary events. In addition, he could show that there

are no motions that can be used as reliable and universal clocks. Which kind of

motion we consider to be a clock is merely a matter of convention. In summarising

these results, Mach argued that absolute time is a useless metaphysical concept and

should be completely eliminated in physics. On the basis of similar considerations,

Henri Poincaré arrived at the result that the measure of time that we use in physics, is

5 Newton (1687).
6Mach (1901).
7 Poincaré (1898).
8 Stachel (1989).
9 Huber (2000).
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not based on empirical grounds but on arbitrary conventions and on non-empirical

principles like simplicity. Another aspect of time, which was first clarified

by Poincaré is the concept of distant simultaneity. Using an astrophysical example,

Poincaré could show that any concept of simultaneity of events separated in space, is

based on conventional stipulations that are – in most cases – tacitly presupposed in

our physical theories.

A similar, but not completely equivalent problem is induced by the concept of

absolute space. In the Principia Newton wrote:

Absolute space, in its own nature, without regard to anything external, remains always
similar and immovable. Relative space is some movable dimension or measure of the
absolute spaces; which our senses determine by its position to bodies: and which is vulgarly
taken for immovable space.

In contrast to the problem of absolute time, Newton was convinced that the absolute
space has a well defined empirical meaning and he described explicitly an experi-

ment – the so-called bucket experiment – that would allow to decide whether a given

body is at rest in absolute space or whether it is moving relative to the absolute space.

In this way, the concept of absolute motion could be defined. In this situation, Mach

could not simply argue that in the same sense as absolute time also absolute space is a

purely metaphysical concept, that should be eliminated in physics. Hence, Mach

demonstrated in a first step, that Newton’s interpretation of the bucket experiment

and thus the experimental proof for the existence of an absolute space was a fallacy –

and on the basis of this demonstration he argued that also the absolute space is a

metaphysical concept that should be eliminated in physics.

Similar arguments against Classical Mechanics were put forward by the foun-

ders of Quantum Mechanics (QM) many decades later. Bohr, Heisenberg,

Schrödinger and others found out, that several most general features of classical

mechanical objects were no longer in accordance with theoretical and experimental

results of the new quantum physics. We mention here the thoroughgoing deter-

mination and individuality of objects, the unbroken strict causality of physical

processes and the general conservation of substance. Obviously, these results

confirmed the above mentioned observations made in Special Relativity, that

Newton’s Classical Mechanics and space-time theory is loaded with metaphysical

hypotheses without any rational or empirical justification.

Summarizing the results of this section we find, that classical physics is loaded

with hypotheses that cannot be confirmed or disproved in the realm of ordinary

experience (OE). Hence, (OE) is not adequately described by classical mechanics.

In modern physics, i.e. in the physics of the twentieth century, which investigates

the properties of space-time and of the quantum world with a much higher degree of

accuracy as in earlier centuries, the hypotheses mentioned were found to be even in

contradiction with theoretical and experimental results of Special Relativity (SR),
General Relativity (GR), and Quantum Mechanics (QM), respectively. On the basis

of these results, we can elucidate also another interesting aspect of the interrelations

between classical physics – represented by Classical Mechanics – and modern

physics given by (SR), (GR), and (QM), namely the problem of intuitiveness.
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1.2 Intuitiveness and Truth of Modern Physics

Since its emergence, twentieth century physics has had the reputation of being

unintuitive, abstract and difficult to understand, while the earlier classical physics,

by contrast, is regarded as intuitive and comprehensible. The history of physics

in the twentieth century demonstrates how this widespread assessment resulted in

a clear rejection of the new theories, the defamation of individual scientists and

even political persecution. Einstein’s Special Theory of Relativity10 of 1905 was

especially affected by this rejection, probably also because it was the first of the

theories of modern physics to be apparently in clear contradiction to “common

sense”. The, in many respects, much more radical General Theory of Relativity of
1916, on the other hand, provoked much less public agitation and rejection, a fact

that was probably due also to its complex mathematical form. The continued

interest in the cosmological consequences of this theory such as the big bang,

the age of the universe, cosmic expansion etc. is due to the significance of these

results for our world view and not to the alleged unintuitiveness of the underlying

theory. It was not until Quantum Mechanics was discovered in 1925 that there was

again considerable public irritation due to the numerous philosophically explosive

theses contained in this theory.

In the following reflections, we shall consider whether there is a factual justifi-
cation for the above mentioned assessment of classical and modern physics, which

is based merely on a historical observation. Initially, this impression seems to be

confirmed by the fact that modern physics, i.e. the Theory of Relativity and

Quantum Mechanics, deals with previously unknown phenomena that do not

occur in our ordinary experience (OE). The difficulties with the acceptance of

modern physics, however, could also be due to the fact that the intuitiveness of

its phenomena is not easily recognized and not at first glance. It will turn out that

this is actually the case. According to the definition of the concept of intuitiveness

by recourse to ordinary experience (OE) we could try to answer the question

whether in this sense classical physics is intuitive and modern physics unintuitive.

The first impression seems to support these two theses. There is, however, still

another important argument which must be taken into account. It concerns the

observation mentioned above, that classical physics is loaded with metaphysical

hypotheses, which cannot be justified by rational or empirical means – and which

do not occur any longer in the theories of modern physics.

The following considerations will show, that these two arguments – the problem

of intuitiveness in classical physics and modern physics, and the role of metaphysi-

cal hypotheses in physical theories – lead to an adequate understanding of the

peculiar relation between classical and modern physics. In particular, these reflec-

tions will show how the theories of

Modern Physics could evolve from theories of the classical world. The objective

of the present study is systematic rather than historical. We are not interested in

10Hentschel (1990); Huber (2000); Könneker (2001).
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knowing how the great three theories of modern physics – the Special Theory of

Relativity, the General Theory of Relativity, and Quantum Mechanics – actually

came about and what intensions their discoverers pursued. Neither do we want to

focus on the reception of these theories. Instead, we want to discuss the purely

theoretical question, how these three theories could have been discovered, if step by

step, scientists had feed themselves of metaphysically motivated hypotheses

contained in Classical Mechanics. The answer to this question yields surprising

results regarding the intuitiveness and truth of modern physics.

1.3 The New Approach: Reduction and Elimination

of Metaphysical Hypotheses

On the basis of the preceding discussion it became obvious that classical mechanics

(CM) and more general classical ontology O(C) is loaded with hypotheses that are

neither plausible nor intuitive. Since the theories of Modern Physics seem to be free

in each case from one ore more of these hypotheses, it could perhaps be possible to

obtain essential features of these modern theories by relaxing or even eliminating

some of the hypothetical assumptions of the ontology O(C) of classical mechanics.

This is an interesting task and we will follow this idea in the subsequent chapters.

We will try to answer the question, whether simply eliminating or weakening the

hypotheses mentioned leads already to the theories of Modern Physics, or whether

other assumptions, empirical results, or new hypotheses must be added.

We do not maintain, that the components O(C)1. . .O(C)6 of the classical ontol-
ogy listed below are complete. We mention here only those ontological features that

are known to be in disagreement with one or more of the theories of Modern

Physics. Hence, we must be prepared to find out one day more, not yet discovered

ontological properties, that provide similar but new problems with future discov-

eries in physics. – In addition, the elimination of metaphysical assumptions in

physical theories must not be completely exhaustive. A rigorous abandonment of

all metaphysical assumptions in physics would possibly destroy indispensable

conceptual prerequisites of any physical theory, as the possibility of a formal

language of physics, the assumption of a world that exists irrespective of our

consciousness, and the existence of a universal intersubjective natural science

that is independent of individual scientists etc. 11

Even if it is obvious, that a reduction of the ontological hypotheses of classical

mechanics can be carried through in the described way – there are still some open

questions. Is it really sufficient to abandon completely just those ontological

hypotheses that we know accidentally, or could it happen that in some cases we

would thereby go too far? In this case, the reduction itself must be weakened. The

reduction could then be performed in two steps. First, we eliminate a strong

11Vollmer (2000: 46–67, 2007: 67–81).
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hypotheses and secondly we add a much weaker hypothesis as a compensation. This

is not only a hypothetical problem. In the following considerations we will find out,

that a situation of this kind actually occurs in the realm of Quantum Mechanics,

which is treated in Chap. 3 in more detail.

In order to carry through a reconstruction of one of the great three theories of the

twentieth century physics, we begin with a detailed formulation of the classical

ontology O(C).
The ontological hypotheses of classical Mechanics read:

O(C)1 There exists an absolute time. It establishes a universal temporal order of two or more

events, it provides a universal measure of time and it explains the concept of simultaneity

of two spatially separated events.

O(C)2 There exists an absolute space. It explains the concepts of absolute motion and

absolute rest. Euclidean Geometry applies to this absolute space.

O(C)3 There are individual and distinguishable objects. These objects cannot only be named

and identified at a certain instant of time, but also re-identified at any later time.

Generally, they possess also a temporal identity.

O(C)4 These objects possess elementary properties Pl in the following sense: An elementary

property Pl refers to an object system such that either Pl or the counter property

‾Pl pertains to the system. Furthermore, objects are subject to the law of thoroughgoing

determination according to which “if all predicates are taken together with their

contradictory opposites then one of each pair of contradictory opposites must belong to it”12

O(C)5 For objects of the external objective reality, the causality law holds without any

restriction. There is an unbroken causality.

O(C)6 For objects of the external objective reality the law of conservation of substance holds

without any restriction.

The classical ontology O(C) which is characterised by these requirements is

neither intuitive and comprehensible nor is it justified by experimental evidence.

It is overloaded with metaphysical hypotheses that clearly exceed our ordinary

experience (OE), which on its part determines what we call intuitive and compre-
hensible. Hence, Classical Mechanics which is based on Classical Ontology is not

the physical theory of our ordinary everyday experience. In addition, it is also not

the correct theory of Modern Physics. Classical Mechanics describes a fictitious

world which does not exist in reality.

In the subsequent Chaps. 2 and 3 will be confronted with three different kinds of

reconstructions by relaxing and eliminating metaphysical hypotheses of classical

mechanics. These different kinds correspond to the various problems of eliminating

the hypothetical assumptions just mentioned.

(a) In Chap. 2 we present a reconstruction of Special Relativity by abandoning the

hypothesis O(C)1, which states the existence of absolute time. In this case, our

way of reasoning can be applied perfectly to the problem. In a first step we

demonstrate how some general structures of space and time can be established

and how some basic concepts of mechanics can be formulated. In this part, it

does not matter whether we make use of the hypothesis O(C)1 of the existence

12Kant (1998:B 600).
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of an absolute time. However, in a second step of our derivation it matters

whether we make use of this hypothesis or not. If we use the hypothesis O(C)1

we obtain Newton’s classical space-time with Galilei transformations and the

basic elements of classical mechanics. If we abandon completely all assump-

tions that can be traced back to the hypothesis O(C)1, then we arrive at the

Minkowskian space-time of Special Relativity, in particular at the Lorentz-

transformations – and that without adding any new assumption – neither a

theoretical one (an additional hypothesis) nor a new empirical result (Fig. 1.1).

(b) The attempt to reconstruct in a similar way also the General Theory of
Relativity (in Sect. 2.4) is less convincing. The reason is, that we are confronted
here with the situation that the elimination of classical ontological hypotheses –

O(C)1 and O(C)2 – is not sufficient. The abandonment of O(C)1 leads merely to

Special Relativity, as will be shown later in Sect. 2.2. The hypothesis O(C)2

consists of two parts, the assumption of an absolute space that defines the

concept of absolute motion, and the assumption that Euclidean Geometry

applies to this space. Since Newton’s assumption of the existence of an absolute

space is completely absent in the foundations of Classical Mechanics – which

was not recognized by Newton – there is no need to eliminate this hypothesis.

However, the assumption that Euclidean Geometry applies at least to the

“relative space”, is important for the mathematical formulation of Classical

Mechanics. There is, however, no need to eliminate this assumption

completely. It must merely be relaxed. In this way we could arrive at a

Riemannian Geometry of the 3-dimensional space and at a Pseudo-Riemannian

Geometry (with signature 2) of the 4-dimensional space-time continuum.

In spite of this encouraging result, this is not yet the entire General Relativity

but only the geometrical part of it. The missing part consists of Einstein’s field

equation and the coupling between space-time and gravitation, which is

induced by these equations. The coupling between matter, the source of the

gravitational field, and the geometry of space-time, cannot be obtained merely

O(C)

O(SR)

Absolute
time

no absolute
time

Fig. 1.1 The step from the classical ontology O(C) to the improved ontology O(SR) of special
relativity
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by eliminating or relaxing convenient hypotheses O(C)k of classical mechanics

or classical ontology, respectively (Fig. 1.2).

(c) In Chap. 3 we describe the attempt to reconstruct Quantum Mechanics, or more

precisely non-relativistic quantum mechanics in Hilbert space. Since the rela-

tivistic aspect is not relevant here, we leave the hypotheses O(C)1 and O(C)2

unchanged and relax only the remaining hypotheses O(C)3 . . .O(C)6. However,
for the relaxation of these ontological assumptions we must apply a somewhat

modified strategy. In particular, the hypothesis O(C)4 turns out to be too global
and not sufficiently differentiated. For this reason, a complete abandonment of

this hypothesis would destroy too much and not lead to the desired result.

Hence we must either compensate the complete abandonment by adding a new,

weaker hypothesis, or we should abandon merely an ontological hypothesis

O(C)4* that is definitely weaker than O(C)4. In both ways we arrive at a

O(C)

O(SR)
O(GR)

Absolute
time

no absolute
time

Riemannian
geometry

Euclidean geometry

Fig. 1.2 The steps from classical ontology O(C) to the reduced ontology O(GR) of general

relativity

O(C)

O(Q)

O(Q∗)

metaphysical
hypotheses

Quantum 
ontology 

Improved 
quantum ontology

Fig. 1.3 Two steps from classical ontology O(C) to the improved quantum ontology O(Q*)
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formulation of Quantum Mechanics that contains not only the idea of mutually

excluding complementary observables, but also its relaxation of joint unsharp,

statistically complementary properties.

We will explain this problem more in detail later in Sects. 3.5 and 4.3. For the

present it is sufficient to illustrate our strategy in Fig. 1.3 We have to perform

two tasks: First we must reduce classical ontology O(C) by eliminating not suffi-

ciently justified hypotheses. This corresponds to the transition O(C)!O(Q) to

a quantum ontology O(Q). In a second step we must correct partly the first step,

since the ontology O(Q) is both too restrictive and also not sufficiently restrictive.

This step is indicated by the transition O(Q) ! O(Q*) to a more sophisticated

ontology O(Q*).
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Chapter 2

Reconstruction of Special and General Relativity

2.1 Historical Development Versus Rational Reconstruction

The historical development of the Theory of Special Relativity offers a rather

complicated and confusing impression. At the end of the nineteenth century we

find several important philosophical investigations by Ernst Mach, Henri Poincaré

about the underlying philosophical prejudices of Newton’s theory of space and time

and of Classical Mechanics. In addition, we find important mathematical contribu-

tions by Poincaré and Lorentz about the structure of space and time. Finally, there

was an extensive discussion about the meaning of the Michelson experiment, which

was considered – erroneously – by many physicists as an experimentum crucis for
the validity of Special Relativity. Actually, the Michelson experiment demonstrate

merely the isotropy of the so-called two-ways velocity of light. We will come back

to this point later.

Without any explicit reference to these various considerations Einstein formu-

lated the Theory of Special Relativity in his famous paper of 1905, which termi-

nated the long lasting debate about space, time, and relativity – at least among

experts in this field. As already mentioned above (in Sect. 1.1) it is not quite clear,

whether Einstein knew the relevant contributions of Mach and Poincaré. Here, we

refer again to the investigations of Huber1 and Stachel.2 In addition, it is not known,

whether Einstein knew in 1905, when he wrote his paper, the Michelson experi-

ment.3 Presumably, Einstein mentioned this experiment in his later publications

merely as an ex post justification of his theory.

Under these conditions, it is not surprising that in 1905 Einstein did not provide a

theory, that distinguishes clearly between empirical results and hypothetical ele-

ments in the foundation of his publication. Presumably, also the difficulties of the

acceptance of the new “Theory of Relativity”, as it was called very soon, can at least

partly be explained by this lack of systematics. Accordingly, after a few years of

consolidation of the new theory, several physicists tried to reformulate and to

1Huber (2000).
2 Stachel (1989).
3 Stachel (1982).

P. Mittelstaedt, Rational Reconstructions of Modern Physics,
Fundamental Theories of Physics 169, DOI 10.1007/978-94-007-0077-2_2,
# Springer Science+Business Media B.V. 2011
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simplify the Theory of Special Relativity in terms of an axiomatic theory making

use of the “principle of relativity” and the “principle of the constancy of the velocity

of light” as basic requirements of the theory.

We will not follow here this strategy and this way of reasoning, but according to

our general program we will establish a “rational reconstruction” of Special Rela-

tivity which does not refer to the historical development of the theory at all. Instead,

we want to discuss the pseudo-historical question, how Special Relativity could

have been discovered, if scientists had feed themselves of the metaphysically

motivated hypotheses contained in Newton’s theory of space-time and classical

mechanics and of other widespread prejudices as the misleading interpretation of

the Michelson experiment.

The reconstruction of Special Relativity, that we have in mind here, has a long

history and can be traced back to the early days of (SR) in the beginning of the

twentieth century,4 but at this time it was almost ignored by the scientific commu-

nity of physicists. Of course, in the contributions quoted here, the authors were not

able to identify an invariant velocity constant contained in the results of this

approach, with the velocity of light. In addition, this way of reasoning was moti-

vated by the somewhat antiquated and no longer convincing idea, that Special

Relativity should be based on two axioms, the postulate of relativity and the

postulate of the invariance of the speed of light.5 Many years later, this attempt

was elaborated in more detail6 and combined with the idea of a rational reconstruc-

tion of a physical theory that is free from metaphysical prejudices.7 The present

paper follows essentially the way of reasoning of these latter publications.

2.2 Reconstruction of Special Relativity

The reconstruction of Special Relativity occurs in several clearly distinguished

steps, which will briefly be mentioned here. The first step consists of the introduc-

tion of space and geometry. However, for two reasons we will not make use of

Newton’s hypothesis O(C)2 of the existence of an absolute space, which we briefly

discussed in Sect. 1.1. First, as we mentioned already in Sect. 1.1, the pretended

experimental proof of this hypothesis by means of the “bucket-experiment” was

shown by Ernst Mach8 to be a fallacy. Second, for the foundations of Classical

Mechanics, the assumption of the existence of an absolute space is not needed at all.

Ironically, Newton’s own mathematical formulation of classical mechanics does

not make use of an absolute space and demonstrates in this way the redundancy of

4 Ignatowski (1910); Franck and Rothe (1911).
5We will not discuss here the reasons for the inadequacy of this axiomatic approach.
6 Lévy-Leblond (1976); Mittelstaedt (1976).
7Mittelstaedt (1995); (2006).
8Mach (1901).
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this concept. Instead of the strong and unnecessary hypothesis O(C)2 we will make

use of the much weaker assumption, that for any observer there is a local “relative”

space that allows for the most general geometrical constructions. According to the

first Helmholtz theorem, the assumption that finitely extended measurement rods

are freely movable in space implies that the geometry measured with these measur-

ing rods is elliptical, hyperbolical, or Euclidean.9 This result makes it possible to

establish an Euclidean space with the help of additional conventional postulates.

Hence, we will presuppose here merely the free mobility of finitely extended

measuring rods in a local relative space. We should, however, emphasise already

at this place, that the presupposition mentioned is realisable only if there are

no gravitational fields. The reason is, that gravitational fields cannot be screened

off and thus there is no region in space that is free from gravitational forces, which

is a necessary precondition for free mobility.

Our next task is the introduction of the concept of time. Since we have aban-

doned the hypothesis O(C)1 of the existence of an absolute and universal time, for a

constructive approach to the concept of time we proceed in the following way.

Time is a one dimensional continuum which we describe by a coordinate y. At any
position x, time can be measured by a local clock C(x) which is realized by a

convenient physical process. This time scale y, which measures merely the direc-

tion of time and the order of several events, will be called here topological time.

In order to determine the metric time that is measured by a local clock, we proceed

in three steps.

1. Inertial system. We consider an ensemble G{k1, k2,. . .kn} of bodies freely thrust
into space as well as a frame of reference equipped with measuring rods, which

can be visualized as a material base of an observer (e.g. a spacecraft). If the

trajectories of the test bodies ki are Euclidean straight lines from the perspective

of this frame of reference, then the frame of reference is called an inertial frame

of reference or an inertial system denoted usually by I. It is obvious, that this
definition of inertial systems presupposes, that there are no gravitational fields.

Otherwise we would never find a frame of reference of the kind mentioned.

2. Topological time. In an inertial system I with spatial coordinates (x, y, z), at an
arbitrary space point x a topological time y can be introduced by means of an

arbitrary physical motion. A topological time determines the direction of time

and the temporal order of several events.

3. Metric time. While topological time can be tied to an arbitrary physical process,

metric time is subject to the requirement that the test bodies ki not only move on

straight lines but also at constant velocities. This requirement can be met, since

empirically the bodies ki move uniformly relative to one another, which can be

determined without knowledge of a metric time.

In thisway,at anyspatial pointx ametric time t¼ t(x) is defined,which canbemeasured

by a local clockC(x).We restrict our considerations to one spatial coordinate and write

9More details about the two Helmholtz theorems can be found in Sect. 2.4.
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t(x) and C(x). On account of its definition, metric time t is determined only up to a

transformation t ! t0 ¼ atþ b; with constant numbers a and b.
The constant a changes the temporal measure and constant b the zero point of the

time scale. Both parameters must be determined by a convention.

The combination of space and time in a space-time continuum occurs through

the definition of the synchronicity of spatially separated clocks and through the

determination of the transformations between different inertial systems. The free

choice of the zero-point of the metric time implies that for two clocks C(xA) and
C(xB) at different points xA and xB in space their synchronicity must be determined

by a convention.10 Thereby, Einstein’s method by means of light signals turned out

to be particular simple and useful. At time tA
ð1Þ a light signal is emitted in xA, which

is reflected in xB and received again in xA at time tA
ð3Þ. In order to find out the zero-

point of a clock C(xB) – of the same construction – in xB we determine the time tB
ð2Þ

of the reflection by the condition

tB
ð2Þ ¼ tA

ð1Þ þ e tA
ð3Þ � tA

ð1Þ
� �

where e is an undetermined real parameter 0� e� 1, that must be determined by a

convention. In physics, usually Einstein-synchronisation is applied, where e ¼ 1
2
.

This convention implies, that the velocity of light in the two possible directions has

the same value.

For methodological reasons we emphasise, that this convention does not imply,

that the metric of space-time depends essentially on the existence of light, which –

in this case – would have an important constituting influence on the structure of

space-time. The same convention could also be achieved by other methods, e.g. by

slow motion of clocks.11

On the basis of these definitions, in an inertial system I we can introduce a

system KI of coordinates with three Cartesian coordinates (x, y, z) of the Euclidean
space and a metric time t such that time scales of different positions in space are

connected according to Einstein-synchronisation with e ¼ 1
2
. We denote a system of

coordinates KI (x, y, z, t) of this kind as a Galilean system of coordinates in the

inertial system I. In a given inertial frame of reference I a Galilean system of

coordinates KI (x, y, z, t) is not yet uniquely determined. Indeed, it is possible to

change the system KI of coordinates by several space-time transformations, without

thereby changing the state of motion of the inertial system I. These internal

transformations of an inertial system consists of:

1. Translations in space

xk ! xk
0 ¼ xk þ ak; ak ¼ const: k ¼ 1; 2; 3ð Þ

with a constant vector a¼ (a1, a2, a3), which shifts the spatial zero-point of KI.

10 Poincare (1898).
11Mittelstaedt (1976/89).
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2. Orthogonal rotations in space

xk ! xk
0 ¼ aki � xi aki ¼ const: i; k ¼ 1; 2; 3ð Þ

with the orthogonality relations

aik � alk ¼ dil ¼ aki � akl

induces a rotation of the spatial coordinate axis, where distances are conserved.

Since the nine coefficients of aik must satisfy six relations, there are three

independent parameter ai.

3. Translations in time

t ! t0 ¼ tþ b b ¼ const:

don’t change the inertial system. The metric time is merely determined up to

a transformation t! t0 ¼ a t+ b, where parameter a determines the time-scale,

which is not changed here, and b induces a shift of the zero-point of the time

scale.

Hence we find, that the internal transformations of an inertial I system

contain 7 parameter, 3 parameter ai of the translation, 3 parameters ai of
the orthogonal rotation, and 1 parameter b of the shift of the zero-point of the

time-scale.

2.2.1 Transformations Between Inertial Systems

For investigating transformations TI I0 between two inertial systems, we consider

two inertial systems I and I0 with relative motion that are oriented at the same

constituting ensemble G¼G{k1, k2, . . .}. We will assume here, that the systems of

coordinates KI (x, y, z, t) and KI0(x
0,y0, z0, t0), that belong to I and I0, respectively, are

Galilean systems of coordinates, such that t and t0 are metric time scales, and the

synchronisation parameter of systems I and I0 reads e ¼ 1
2
. For sake of simplicity, in

the following we restrict our considerations to one spatial coordinate x.
The transformations TI I0

x ! x0 ¼ fi x; tð Þ
t ! t0 ¼ f0 x; tð Þ

that connect the systems of coordinates KI (x, y, z, t) and KI0(x
0,y0, z0, t0), can

be derived from a few postulates that follow from the fact that both systems

I and I0 are oriented at the same constituting ensemble G. In system I as well as
in system I0 point like test bodies ki are moving equably on straight lines. Hence

we require
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Postulate 1: Straight (x, t) lines are transformed into straight (x0, t0) lines.

According to the fundamental theorem of projective geometry, this postulate

leads to the functions

x0 ¼ a1xþ b1tþ c1ð Þ axþ btþ cð Þ= ;

t0 ¼ a0xþ b0tþ c0ð Þ axþ btþ cð Þ=

with the same denominator in both fractions. In order to avoid unnecessary singu-

larities, we require for further simplification.

Postulate 2: Finite values (x,t) are transformed into finite values (x0, t0).
This postulate implies the linearity of the functions f0 and f1

x0 ¼ a1xþ b1tþ c1; t
0 ¼ a0xþ b0tþ c0:

Consequently, a point P0 at rest in I0 has in I the velocity

vP0 ¼ dx dt=ð Þdt0¼0 ¼ �b1 a1= ¼ const:

which means that system I0 is moving relative to system I with a constant velocity

vII0 ¼ v. Hence the relative motion of two inertial systems is equably in time and

straight in space. The coefficients ai, bi, and ci of the transformation are functions of

the relative velocity v.
For further simplification we require

Postulate 3: The systems of coordinates KI (x, t) and KI0 (x
0, t0) coincide at t¼ 0.

This requirement implies c1¼ 0 and thus the spatial part of the transformation

reads

x0 ¼ a1ðvÞxþ b1ðvÞt ¼ a1ðvÞ xþ b1ðvÞ a1ðvÞ=ð Þ � t
and thus

x0 ¼ kðvÞ x� vtð Þ
where we used k(v): ¼ a1(v) Hence, the formulas for the transformation read

x0 ¼ kðvÞ x� vtð Þ; t0 ¼ mðvÞtþ nðvÞx

with three arbitrary functions k(v), m(v), and n (v) of the relative velocity v.

2.2.2 Digression: Derivation of the Galilei Transformation

At this point of our derivation it becomes obvious, that the assumption of an

absolute and universal time t, as it is presupposed in Newton’s theory of space
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and time, leads to the Galilei transformations. Indeed, if we use this universal time

in the systems I and I0, then we have t¼ t0 and thus m (v)¼ 1 and n (v)¼ 0 and obtain

x0 ¼ k(v)(x� vt), t0 ¼ t with only one unknown function k(v). This function can be

determined to be k¼ 1 in the following way.

Since the constituting ensemble G does not distinguish any particular direction in

space, we require:

Postulate 4: Isotropy of the transformation TI I0

If we consider – as always in the present investigation – only one spatial

coordinate x, then the requirement of isotropy means, that a simultaneous change

of signs of x, x0, and v does not change the transformation. Hence, the original

transformation

x0 ¼ kðvÞ x� vtð Þ; t0 ¼ t

is changed by the transition

x; x0; vð Þ ! �x;�x0;�vð Þ

into the new transformation

x0 ¼ k �vð Þ x� v � tð Þ; t0 ¼ t

which must not differ from the original transformation. Comparing the coefficients

of both transformations, we find

kðvÞ ¼ k �vð Þ

i.e. k(v) is an even transformation.

The constituting ensemble G does not distinguish one particular system of

inertia. With respect to their defining properties, inertial systems are indistinguish-

able. We summarize this statement in the following

Postulate 5: No system of inertia is distinguished with respect the ensemble

G (k1,k2 . . .kn) (Principle of Relativity).
Remark : The kinematical indistinguishability of inertial systems is often called

their “relativity”. The “principle of relativity”, which asserts this indistinguishability,

is obviously not an empirical principle but follows from the definition of an inertial

system and of the ensemble G. In particular, it is not a characteristic of Special

Relativity but it holds in the same sense in the Newtonian theory of space-time.

Hence, also for the derivation of the Galilei transformations it must be taken into

account.

For the transformation, the indistinguishability of the inertial systems I and I0

means, that the systems are also indistinguishable with respect to the connecting

transformations TII0(v) with v¼ vII0 and TI0I (v0) with v0 ¼ vI0I. Hence,

the transformations TII0(v) and TI0I (v
0) must have the same formal structure. The

application of this property allows for further specification of the transformation.
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Using the above mentioned form x0 ¼ k(�v)(x� v�t), t0 ¼ t of the transformation,

a comparison of the two transformations

TI I0 ðvÞ : x0 ¼ kðvÞ x� v � tð Þ; t0 ¼ t

TI0I v
0ð Þ : x ¼ k0 v0ð Þ x� v � tð Þ; t ¼ t0

leads in a first step to k(v)¼ k0(v). The complete evaluation of the principle of

relativity leads to the requirement that the transformations

T�1
II0 ðvÞ : x ¼ x0 kðvÞ= þ v � t0; t ¼ t0

TI0I v
0ð Þ : x ¼ k v0ð Þ x0 � v0t0ð Þ; t ¼ t0

must agree. Comparing the coefficients with respect to x0 we get 1/k(v)¼ k(v0) and
with respect to t0

v ¼ k v0ð Þv0 ¼: u v0ð Þ:

On account of the principle of relativity we have also

v0 ¼ uðvÞ ¼ �kðvÞv:

Hence, for the function u(v) we obtain the functional equation

v ¼ u uðvÞð Þ

with the solutions u(v)¼� 1/v and u(v) ¼ � v. If we require that u(v) is defined for
all values of the relative velocity v, then the solution u(v) ¼ � 1/v must drop out.

In order to decide between the remaining solutions we note that u¼ v leads to

k(v)¼�1, and that u¼� v leads to k(v)¼� 1. If we require that the transformation

x0 ¼ kðvÞ x� v � tð Þ; t0 ¼ t

emerges continuously from the identity TI I0(0), then we have x0 ¼ k(0)x¼ x and

obtain k¼ 1. Hence, also u¼ v is dropped out and we obtain

uðvÞ ¼ �v; v0 ¼ �v; kðvÞ ¼ 1:

Finally, the transformation assumes the form

x0 ¼ x� v � t; t0 ¼ t

and is known as the Galilei transformation. The relative velocities of the systems

I and I0 in this case are vII0 ¼ + v and vI0I ¼ � v. The generalisation of the
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Galilei transformations to three spatial dimensions does not provide any new

problem and reads

xk
0 ¼ xk � vkt; t0 ¼ t:

The most general Galilei transformation which connects systems of coordinates

in I and I0 is composed of the pure Galilei transformation discussed here and the

internal transformations in an inertial system. It depends on 10 independent para-

meters and reads

xk
0 ¼ akixi þ vktþ ak; t0 ¼ t with aikalk ¼ dil ¼ akiakl

2.2.3 End of the Digression

Within the context of Special Relativity, we have to determine not one but the three

functions k(v), m(v), and n(v) and that without the assumption of an absolute and

universal time. This goal can be achieved if we make use of further properties of

inertial systems. Since the constituting ensemble G does not distinguish any partic-

ular direction in space, we require again the postulates 4 and 5 and proceed in the

following way:

Postulate 4: Isotropy of the transformation TI I0

If we consider – as always in the present context – only one spatial coordinate x,
the requirement of isotropy means, that a simultaneous change of signs of x, x0, and
v does not change the transformation. Hence, the original transformation

x0 ¼ kðvÞ x� vtð Þ; t0 ¼ mðvÞtþ nðvÞ � x

is changed by the transition

x; x0; vð Þ ! �x;�x0;�vð Þ

into the new transformation

x0 ¼ k �vð Þ x� v � tð Þ; t0 ¼ m �vð Þt� n �vð Þ � x

which is not different from the original transformation. Comparing the coefficients

of both transformations, we find

kðvÞ ¼ k �vð Þ; mðvÞ ¼ m �vð Þ; nðvÞ ¼ �n �nð Þ:

Instead of the odd function n(v) we will use here the even function

aðvÞ :¼ �nðvÞ v � mðvÞ= :
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Hence, we obtain for the transformation TII0

x0 ¼ kðvÞ x� v � tð Þ; t0 ¼ mðvÞ t� aðvÞ � v � xð Þ

with three even functions k, m, a. The constituting ensemble G does not distinguish

one particular system of inertia. With respect to their defining properties, inertial

systems are indistinguishable. We summarize this statement again in

Postulate 5: No system of inertia is distinguished with respect to the ensemble

G (k1,k2 . . .kn) (Principle of Relativity).

Remark : As already mentioned above, the principle of relativity is not an empirical

principle but follows from the definition of an inertial system and the ensemble G.
We emphasise again, that this principle is not a characteristic of Special Relativity

but it holds already in the Newtonian theory of space-time. Hence, also for the

derivation of the Galilei transformations it had be taken into account.

For the transformation between two inertial systems, the postulate 5 means that

the transformations TII0 and TI0I have the same formal structure. The application of

this property allows for further specification of the transformation. Using again the

denotation v¼ vII0 and v
0 ¼ vI0I for the relative velocities of I and I

0, we can compare

the transformations TII0(v) and TI0I(v
0) and get

TII0 ðvÞ : x0 ¼ kðvÞ x� v � tð Þ; t0 ¼ mðvÞ t� aðvÞv � xð Þ

TI0I v
0ð Þ : x ¼ k0 v0ð Þ x0 � v0 � t0ð Þ; t ¼ m0 v0ð Þ t0 � a0ðvÞv0 � x0ð Þ

The indistinguishability, i.e. the equality of the formal structure implies

kðvÞ ¼ k0ðvÞ; mðvÞ ¼ m0ðvÞ; nðvÞ ¼ n0ðvÞ:

If these conditions are fulfilled, then the functions TI0I (v
0) and T�1

II0(v) should

generally agree. For evaluating this requirement we calculate from

TI0I v
0ð Þ : x ¼ k v0ð Þ x0 � v0 � t0ð Þ; t ¼ m v0ð Þ t0 � a v0ð Þv0 � x0ð Þ

the relative velocity v

v ¼ dx dt=ð Þdx0¼0 ¼ �k v0ð Þv0 m v0ð Þ= ¼: u v0ð Þ
and from

TII0 ðvÞ : x0 ¼ kðvÞ x� v � tð Þ; t0 ¼ mðvÞ t� aðvÞv � xð Þ

the relative velocity v0

v0 ¼ dx0 dt0=ð Þdx¼0 ¼ �kðvÞv mðvÞ= ¼: uðvÞ:
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From these relations for v and v0 we obtain for the function u the functional equation

v ¼ u v0ð Þ ¼ u uðvÞð Þ:

If we require that u is defined in the entire velocity space, then the solutions u
(v)¼� 1/v are ruled out. At first, the two solutions u1(v)¼ v and u2(v) ¼ � v
remain. However, if we require that for v! 0 the transformation TI I0(v) approaches
continuously the identical transformation, then also u1(v) is ruled out and we obtain

v ¼ vI I0 ¼ �vI0 I ¼ �v0:

This result could also be obtained for Galilei transformations, whose derivation

was finished at this point. Here, we have only

TI I0 ðvÞ : x0 ¼ kðvÞ x� v � tð Þ; t0 ¼ mðvÞ t� aðvÞ � v � xð Þ

and

TI0 I v
0ð Þ : x ¼ k �vð Þ x0 þ v � t0ð Þ; t ¼ m �vð Þ t0 þ a �vð Þ � v � x0ð Þ

with three still undetermined even functions k, m, a.
For further determining these functions, we make use of the equivalence of the

transformations T�1
I I0(v) and TI0I (�v). By comparing the coefficients of the time

transformations

T�1
I I0 ðvÞ : t ¼ t0

mðvÞ 1� av2
� �þ avx0

kðvÞ 1� av2
� �

TI0 I �vð Þ : t ¼ m �vð Þt0 þ m �vð Þav x0

we obtain

kðvÞ ¼ mðvÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aðvÞv2p :

Hence we get for the transformation TI I0(v) :

x0 ¼ x� vtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aðvÞv2

p ; t0 ¼ t� aðvÞvxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aðvÞv2

p :

For the determination of the function a(v) we apply again the principle of

relativity, i. e. the indistinguishability of the systems I and I0 and require

Postulat 6 : The inertial systems I and I0 are indistinguishable also with respect to a
third inertial system I00.

Formally, this means that the iterative application of the transformations TI I0(v)
and TI0I00(v

0) with velocities v¼ vII00 and v
0 ¼ v0I0I00 corresponds to the application of a

2.2 Reconstruction of Special Relativity 21



third transformation TI0I00(v
00) of the same type with v00 ¼ v. Using

again as abbreviation kðvÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aðvÞv2p.

the connected transformation

TI0 I00(v
0)
N

TI I0(v) reads

x00 ¼ k v0ð ÞkðvÞ x � 1þ aðvÞvv0ð Þ � t v0 þ vð Þf g
t00 ¼ k v0ð ÞkðvÞ t � 1þ a v0ð Þvv0ð Þ � x aðvÞvþ a v0ð Þv0ð Þf g:

It should be possible to write these transformations in the form

x00 ¼ k v00ð Þ x� v00 tð Þ;

t00 ¼ k v00ð Þ t� a v00ð Þv00 xð Þ:

If we compare the coefficients of this and the preceding form, we find

aðvÞ ¼ a v0ð Þ ¼ a ¼ const:;

which means that a is a constant that does not depend on v.
Hence, for the velocity v00 we obtain

v00 ¼ vþ v0

1þ avv0

as the theorem for the addition of velocities.

The transformations can now be written in the form

TI I0 v; að Þ : x0 ¼ x� vtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� av2

p ; t0 ¼ t� avxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� av2

p

with a universal real constant a, whose sign and absolute value are still open.

For the determination of the sign of the constant a we make use of the require-

ment, that there are at least some pairs of events with the same temporal order in the

systems I and I0 with arbitrary relative velocity v. This requirement is not a new

postulate, since we must require the invariance of the temporal order at least for

those events, which correspond to points on the space-time trajectories of the test

bodies of the ensemble G. Otherwise, the systems I and I0 could be distinguished

with respect to the trajectories of G, in contradiction to the above mentioned

principle of relativity.

For evaluating this requirement, we distinguish two cases:

(I) a ¼ : � � �2< 0 (where � has the dimension of a velocity)

In the transformation TI I0 (v, a) all values of the relative velocity v are possible,
i.e. all v-values with�/< v< +/ lead to real values of the coordinates (x0, t0).

(II) a ¼ : + o �2> 0 (where o has the dimension of a velocity)
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In the transformation TI I0 (v, a), the values of the coordinates (x0, t0) have real
values only, if the relative velocity v is restricted by the condition�o< v< +o
with o> 0.

These two cases are physically distinguished in the following sense.

1. The temporal distance Dt¼ t2� t1> 0 of two events E1(x1, t1) and E2(x2, t2)
with the spatial distance Dx¼ x2� x1 are transformed by a transformation

TI I0 (v, a) of type (I) according to

Dt0 ¼ Dtþ vDx
�2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

�2

s,

Since v can assume any value, we can always find an inertial system I0(v)
such that Dt0 < 0. In this case, the velocity v must merely fulfil the condition

|v|>� |Dt|/|Dx|. This means, that for any pair (E1, E2) of events the chrono-

logical order can be changed by a convenient transformation to an other inertial

system I0. Hence, there is no pair of events (E1, E2) with an (invariant) temporal

order, which is the same in all systems of inertia.

2. The temporal distance Dt¼ t2� t1 of two events E1(x1, t1) and E2(x2, t2) with
the spatial distance Dx¼ x2� x1 are transformed by a transformation TI I0 (v, a)
of type (II) according to

Dt0 ¼ Dt� vDx
o2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2 o2=

p.
:

Since the velocity v is restricted in this case by the condition�o� v � +o, the
temporal order of two events E1(x1, t1) and E2(x2, t2) with |Dx/Dt|<o cannot be

changed. Hence, pairs of events E1(x1, t1) and E2(x2, t2) with |Dx/Dt| < o have the

same temporal order in all systems of inertia, i.e. their temporal order is invariant

with respect to transformations of type (II). These transformations that depend

except of v on the constant o are denoted in the following text by TI I0 (v,o).
On the basis of these results, it is now easy to decide between the two possible

signs of a. In case (I), a< 0, there are no pairs (E1, E2) of events whose chronologi-

cal order is the same in all systems of inertia. In case (II), a> 0, there are at least

some pairs (E1, E2) of events with an invariant chronological order. These pairs are

characterised by V : ¼ |Dt|/|Dx|�o. According to the above formulated postulate,

that at least for some pairs of events the chronological order should be the same in

all inertial systems, we can decide now for a> 0.

The corresponding transformation TII0 (v, o), i.e.

x0 ¼ x� vtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2 o2=

p ; t0 ¼ t� vx
o2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2 o2=
p

2.2 Reconstruction of Special Relativity 23



contains still one undetermined constant o. On account of�o< v < +o, the
constant o is the maximal relative velocity between two inertial systems, i.e.

we have always vII0 ¼ v�o. For the special value o¼ c, we obtain the Lorentz

transformation TII0(v, c), but without a justification for this special choice of o. As
long as the constant o is not yet determined numerically, we call the transformation

TII0(v,o) “generalised Lorentz transformations”.
For the determination of the numerical value of the constant o, we could use

several different ways. Presumably, the most simple method is to introduce at first in

the inertial system I, which is at rest, space-time coordinates that establish Einstein-
synchronisation of spatially separated clocks – and to require that also the space-time

coordinates of themoving inertial system I0(v) areEinstein-synchronised. Bymeans of

this requirement and other methods12 the undetermined constant o in the generalised

Lorentz-transformation TII0(v,o) can be determined in principle empirically with the

result o¼ c, where c is the velocity of light in vacuum. In this way, we would arrive

finally at the Lorentz-transformations TII0(v, c).
The generalised Lorentz transformations TI I0(v, o) between two inertial systems

I and I0 form a 10-parameter Lie group, the Poincaré group.13 With this last step we

also arrive at the space-time continuum of Special Relativity, the Minkowskian
space-timeM. The Minkowskian space-time is a four- dimensional manifold M that

is equipped with a metric tensor gmn. It can best be characterised by the line-element

ds2, which is invariant against generalised Lorentz transformations TI I0(v,o). With

Cartesian spatial coordinates xi the line-element ds2 reads

ds2 ¼ gmndx
mdxn ¼ o2dt2 � dx1

� �2 � dx2
� �2 � dx3

� �2
with m, n, ∈ {0, 1, 2, 3} and dx0¼o dt. The signature of gmn is 2 and thus gmn
a Lorentz metric.14 Within this indefinite Lorentz metric on a manifold M, the non-

zero vectors at a point p can be divided into three classes, into vectors that are called
timelike, null, or spacelike. In the space Tp of tangent vectors of M at p, the null

vectors constitute a double cone, the null cone, which separates the timelike from

the spacelike vectors. In the coordinates (x1, x2, x3, t) the null cone can be expressed
by the equation

x1
� �2 þ x2

� �2 þ x3
� �2 � o2t2 ¼ 0

that is illustrated in (Fig. 2.1).

Hence, the apex angle g of the null cone (from the t-axis) is connected with the

constant o by the relation g¼ arc tan o.

12 Other empirical methods for the determination of o are for instance the time dilatation of

moving clocks or the increase of the inertial mass of moving bodies. More details are discussed in

section (2d).
13Mittelstaedt (2006).
14 Hawking and Ellis (1973), p. 38.
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The early attempts of a rational reconstruction of Special Relativity, which we

mentioned briefly in Sect. 2.1, can now be considered critically in the light of our

present results. From a fundamental point of view, the attempt to reconstruct

Special Relativity merely on the basis of the “principle of relativity” is irrelevant

similarly as the attempt to base Special Relativity on two “axioms”, the “principle

of relativity” and the “principle of the constancy of the velocity of light”. As to the

latter principle, the so called second axiom, it became obvious that for a recon-

struction of Special Relativity this postulate is not needed at all, except perhaps for

the numerical determination of the constant o, which could, however, also be

obtained empirical. More important is the observation, that also the first axiom,

the “principle of relativity” cannot be used as an axiom, since it follows from the

definition of the concept of an inertial system. For this reason, it holds equally in

Special Relativity and in Newton’s theory of space-time and must not be under-

stood as a characteristic of Einstein’s theory of Special Relativity.

2.3 Space-Time Intervals and Relativistic Mechanics

2.3.1 Measurements of Space-Time Intervals

According to the terminology of the last Sect. 2.1, we call points in the Minkowski

spaceM again “events”E(x, t).Wewill consider here two eventsE1(x1, t1) andE(x2,t2)
with the spatial distance Dx¼ |x2� x1| and the temporal distance Dt¼ t2� t1.

15

15 Here and in the following we use bold letters for spatial three-vectors.

Fig. 2.1 The null-cone at
point p and the cone angle g
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Furthermore, for these two events E1 and E2 we can define the four-dimensional

distance

Dsð Þ2 ¼ o2 Dtð Þ2 � Dxð Þ2;
which can be positive, negative, or null – as the line element ds2 defined in the last

Sect. 2.1. Although the spatial distance Dx and the temporal distance Dt are

changed by a generalised Lorentz transformation TII0(v, o), the four-dimensional

distance (Ds)2 remains invariant under these transformations. Indeed, if we consider

for sake of simplicity again only one spatial coordinate x, then from the transfor-

mation laws of a spatial distance

Dx0 ¼ Dx� vDtð ÞgðvÞ with gðvÞ :¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��v2 o2=ð Þp.

and of the temporal distance

Dt0 ¼ Dt� vDx o2
	� �

we obtain

o2 Dt0ð Þ2 � D x0ð Þ2 ¼ o2 Dtð Þ2 � DðxÞ2

and thus

Ds0ð Þ2 ¼ Dsð Þ2:
Hence, it is in particular invariant, whether (Ds)2 is positive, negative or null.

Using this classification, pairs of events E1 and E2 can now be divided into three

classes in an invariant way:

(I) If |Dx(E1, E2)/Dt (E1,

E2)| < o
then the events E1 and E2 are time-like, and their chronological

order is TII0(v, o) - invariant.
(II) If |Dx(E1, E2)/Dt (E1,

E2)| ¼ o
then the events E1 and E2 are null, and their chronological order is

TII0(v, o) - invariant.
(III) If |Dx(E1, E2)/Dt (E1,

E2)| > o
then the events E1 and E2 are space-like, and their chronological

order is not TII0(v, o) - invariant.

Here we used the same terminology as for the three classes of non-zero vectors at
a certain point p in the Minkowski space M.

On the basis of these results, we can now describe several “surprising phenomena”

of Special Relativity. In the first years after the discovery of Special Relativity by

Einstein, these surprising phenomena were the reason, why Special Relativity was

considered for almost 20 years as counterintuitive and not comprehensible. The results

in question are, however, only very striking examples of phenomena that are merely

not “directly intuitive” but merely after a detailed consideration “indirectly intuitive”.

We will try to show here, that the mentioned phenomena are in fact “indirectly

intuitive” and for this reason no longer surprising.
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2.3.1.1 Relativity of Distant Simultaneity

Let us consider two events E1(x1, t1) and E2(x2, t2) at different places x1 6¼ x2, that
are, in a given inertial system I with coordinates KI (x, t), simultaneous, i.e. they

have the same time values t1¼ t2. According to the terminology just introduced,

these two events are space-like. This means, that a generalised Lorentz transforma-

tion TII0(v, o) to an other inertial system I0(v), which is moving with velocity v 6¼ 0

and which has coordinates KI0(x
0,t0), the chronological order of E1 and E2 can be

changed such, hat for the transformed events E0
1(x1

0, t10) and E2
0(x2 0, t20) we get

either t01< t02 or t01> t02. If the inertial system is realised by the earth, say, and the

moving system I0 by an aircraft, then the two events with the distance Dx¼ x1� x2
and the vanishing time difference Dt¼ t1� t2¼ 0 in the earth system I, will have a
non-vanishing temporal distance

Dt0 ¼ gðvÞ Dt� vDx o2
	� � 6¼ 0:

obviously, for given values Dx and Dt in I, we could always find another system

I0(v) such that

Dt0>0 if Dt>vDx o2
	

and

Dt0<0 if Dt<vDx o2
	

:

The result of these considerations is, that for two distant events there is no absolute

simultaneity. It is usually called “relativity of simultaneity”.

This “relativity” can be illustrated by many surprising situations as it was shown

in the famous book Mr. Tompkins in Wonderland by George Gamov.16 However,

the relativity of distant simultaneity is no longer surprising and counterintuitive, if

we realise that there is no absolute and universal time, which could be used for

establishing an absolute simultaneity. Hence, in the light of our general program,

the relativity of simultaneity is not directly intuitive but rather indirectly compre-
hensible, if we refer to the lack of absolute time.

2.3.1.2 Time Dilatation

If two events E1(x1, t1) and E2(x2, t2) are timelike to each other, i.e. if

Dx Dt=j j<o

16 Gamov (1946).
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then the chronological order of these events are invariant with respect to

transformations TII0(v,o). Hence, Dt¼ t2� t1> 0 in the inertial system I implies that

also Dt0 ¼ t2
0 � t1

0 > 0 in an other inertial system I0. We will assume here, that this

is the case. The time difference of E1 and E2 in the inertial system I0 is then given by

Dt0 ¼ gðvÞ Dt� vDx o2
	� �

:

If the two events are in I at the same place x1¼ x2 and thus Dx¼ 0, the relation

between the two time intervals Dt and Dt0 reads

Dt0 ¼ gðvÞDt:

By means of this relation, the phenomenon of time dilatation is expressed particu-

larly clear. Indeed, if Dt is the period of a clock CI at rest in I at the place x1¼ x2,
and if Dt is thus a measure for the time interval between two events that correspond

to the ticking of the clock CI, then this period appears in the perspective of I0 as
dilated, i.e. we have

Dt0 ¼ gðvÞDt � Dt:

The time intervals of a moving clock CI (here the clock CI at rest in I) appears to
another observer (here at rest in I0) as dilated, compared with the period of clock CI0

of similar type at rest in I0. In other words, the moving clock CI proceeds slower

than the clock CI0 at rest in I0. This phenomenon is usually called “time dilatation”.
On account of the dynamical indistinguishability of inertial systems, i.e. on

account of the principle of relativity, we can also invert the whole situation.

A clock CI0 at rest in I
0 with the period Dt0 in I0, has in the coordinates of the inertial

system I, which is moving with the velocity (� v) relative to I0, the period

Dt ¼ gðvÞDt0 � Dt0:

In comparison to a clock CI, of similar type, at rest in I, the moving clock CI0 is

again slower. Hence, we cannot state that one of the clocks CI or CI0 is slower than

the other one, irrespective of the frame of reference in question, but only, that in the

perspective of a given inertial system a moving clock is slower than a clock at rest

of similar type.

2.3.1.3 Lorentz Contraction

The relativity of distant simultaneity has interesting and surprising implications for

the measurement of spatial distances. For demonstrating this result we consider an

inertial system I and a rigid measuring stick S at rest with the length l0¼ x2� x1. The
two end points of the stick l1 and l2 are then at the positions l1: x¼ x1, l2: x ¼ x2.
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If S is not at rest but moving with velocity v 6¼ 0, then we must determine its

length by a convenient measurement process. Instead of moving the measuring

stick S, we consider the measuring stick at rest from the perspective of another

inertial system I(�v) moving with the velocity (�v). In this system I(�v) the

trajectories of the end points l1 and l2 read

I0 �vð Þ l1 : x
0 ¼ x01ð0Þ þ vt0

l2 : x
0 ¼ x02ð0Þ þ vt0

� �
:

The generalised Lorentz transformations between the inertial system I and I0

x0 ¼ gðvÞ x0 � vt0ð Þ; t0 ¼ gðvÞ t0 � vx0 o2
	� �

is determined such that at t¼ 0 there is coincidence of the two origins of the systems

of coordinates.

If we consider the events

E1 : x
0
1 ¼ x01ð0Þ; t1 ¼ 0; E2 : x

0
2 ¼ x02ð0Þ; t2

0 ¼ 0

which indicate the beginning of the motion of the endpoints l1 and l2, then we obtain
the x – coordinates of these events in the inertial system I by

x1 ¼ gðvÞx01ð0Þ; x2 ¼ gðvÞx02ð0Þ

which allow to determine the initial values x01(0) an x02(0). With this result we

obtain the trajectories of l1 and l2 in its final form

I0 �vð Þ l1 : x
0
1 t0ð Þ ¼ x1 gðvÞ= þ vt0

l2 : x
0
2 t0ð Þ ¼ x2 gðvÞ= þ vt0

�

The length l0 of the measuring stick S in the inertial system I0(�v) is defined as the

difference of the x0 – coordinates at the same time t, i.e.

l0 :¼ x02ðtÞ � x01ðtÞ ¼ x2 � x1ð Þ gðvÞ= ¼ l0 gðvÞ=

where l0 is again the length of S at rest in I. It is called rest length or proper length.
Hence, the length of the same S is contracted in any other moving system I0(v)

according to

l0 ¼ l0 gðvÞ= � l0

This phenomenon is called length contraction or Lorentz contraction of moving

bodies.

The Lorentz contraction is again – similarly as the time dilatation – a relative

phenomenon. From an observer in the inertial system I0 the moving stick S (which is
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at rest in I) appears contracted, compared with a similar stick, which is at rest in I0.
On account of the (dynamic) indistinguishability of all inertial systems, the situa-

tion can also be inverted: The measuring stick S0 which is at rest in I0 with the proper
length l0, appears to an observer at rest in I (to whom the stick S0 is moved with

velocity (�v)) contracted in comparison to the stick S at rest in I.

2.3.2 Relativistic Kinematics and Dynamics

On the basis of the preceding derivation of the space-time structure of Special

Relativity, in particular the generalised Lorentz transformations TI I0(v,o), we can

now begin to formulate the elements of the relativistic kinematics and dynamics. In

a given inertial system I with coordinates KI (t, x
i) with i∈{1,2,3) we consider the

space-time trajectory TB of a body B, which is described by the function xk¼ f k(t)
with k∈{1,2,3). The velocity of B is then given by

vk ¼ dxk dt= ¼ df kðtÞ dt= :

By the relation

dt : ¼ 1 o o2dt2 � dx1
� �2 � dx2

� �2 � dx3
� �2n o1 2=




¼ dt 1� v2 o2
	� �1 2= ¼ ds o=

we define a new time element, the so called “proper time” dt, which is connected by
the relation ds¼odt with the invariant line element ds. Empirically, dt is the time

element of a clock CB, that is comoving with the body B. Since dt is the time

element of a concrete clock, it has the same value in all systems of inertia. In other

words, dt is invariant with respect to generalised Lorentz transformations. This

argument confirms from an operational view the formal result that dt is invariant

since it is connected with the line element by ds ¼ o dt.

2.3.2.1 Relativistic Velocity

The behaviour of the velocity vk under generalised Lorentz transformations TI I0

(v, o) is complicated. For this reason, it is more convenient to formulate the

kinematical and dynamical concepts of relativistic mechanics not with respect to

the coordinate time t, but with respect to the invariant time element dt of the proper
time, which is connected with the invariant line element by ds¼o dt. The world-
line (trajectory) of a mass point can then be expressed by a function

xm ¼ xm tð Þ; m 2 0; 1; 2; 3f g:
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The four dimensional vector um of the velocity will be defined here by

um :¼ dxm dt=

and thus

um ¼ odt dt= ; dxi dt=
� �

¼ dt dt o; dt dt=ð Þ dxi dt=
� �� �	

; i 2 1; 2; 3f g:

With

u0 ¼ dx0 dt= ¼ odt dt= ¼ o � gðvÞ and gðvÞ :¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2 o2=ð Þp.

we obtain

u2 ¼ u0
� �2 �X

ui
� �2 ¼ o2 � gðvÞ2 � gðvÞ2v2 ¼ o2;

which means that u2¼o2 is an invariant quantity.

2.3.2.2 Relativistic Acceleration

In analogy to the definition of the relativistic velocity um, we can define a concept of
relativistic acceleration am that refers to the proper time t by

a0 : ¼ du0 dt= ¼ g4v o dv dt=ð Þ=

ai : ¼ g2 þ g4v2 o2
	� �

dv dt=ð Þ

where dv/dt is the acceleration in the sense of classical mechanics. On trajectories

of free particles the acceleration disappears, i. e. we have the equation of motion

dum dt= ¼ d2xm dt2
	 ¼ 0

of a free particle. For all other trajectories the equation of motion reads

d2xm dt2
	 ¼ Am xl; ul; t

� � 6¼ 0:

The term on the right hand side of this differential equation is usually decomposed

into two parts, the “force” Fm which represents the external influence on the body,

and the invariant rest mass mo which is a measure of the inertia of the moving body.

With the ansatz

Am xl; ul; t
� � ¼ Fm xl; ul; t

� �
m0=
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we obtain the relativistic equation of motion

m0d
2xm dt2

	 ¼ Fm xl; ul; t
� �

which has some similarity with the equation of motion in Newton’s classical

mechanics. However, it should be emphasised that there are no formal reasons for

decomposing the function Am into two parts as Am¼Fm/m0. This decomposition can

be justified only by its practical success for the description of mechanical processes.

For the interpretation of the relativistic equation of motion we make use of the

invariant quantity

u2 ¼ u0
� �2 �X

ui
� �2 ¼ o2

and obtain

du2 dt= ¼ 2 u0a0 �
X

ui � ai
� �

¼ 0

and by multiplication with m0

u0F0 �
X

ui � Fi ¼ 0

Furthermore, if we define

m :¼ gðvÞm0 and f i :¼ Fi gðvÞ= ;

then we obtain the 0-equation in the non-relativistic formulation

d mo2ð Þ dt= ¼ v � f 0� equationð Þ

and the three spatial equations

d m vð Þ dt= ¼ f : 1; 2; 3� equations

In the non-relativistic limit v/o<< 1 we obtain for these two equations

d mov
2 2=

� �
dt= ¼ v � f

i.e. the non-relativistic energy conservation theorem, and

d movð Þ dt= ¼ f

i.e. the non-relativistic equation of motion.

On account of this obvious analogy we denote
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m :¼ m0gðvÞ

as relativistic mass and

E :¼ mo2

as relativistic energy.

The relation E¼mo2 is not only a meaningful denotation for the quantity mo2.

It expresses the equivalence between the energy of a mechanical system and its

inertial mass. This can be demonstrated in the following way. Let

pm ¼ m0u
m

the four-vector of the momentum with the components

m ¼ 0 : p0 ¼ m0 u
0 ¼ m0 gðvÞo ¼ m � o ¼ E=o

m ¼ 1; 2; 3 : pk ¼ m0 u
k ¼ m0 gðvÞvk ¼ vkE=o2:

Obviously, the quantity E has some properties of the energy in the sense of the

non-relativistic mechanics. Indeed, it holds

dE=dt ¼ dðmo2Þ=dt ¼ m0o2dgðvÞ=dt ¼ v � f ¼ dEkin=dt

since v � f¼ dEkin/dt holds in classical mechanics. Hence, up to a constant, E is a

measure for the kinetic energy and we put

Ekin ¼ mo2 þ const: ¼ m0gðvÞo2 þ const:

If we require that for v¼ 0 the kinetic energy vanishes, then we find for the

constant the value (� m0o
2) and get

Ekin ¼ mo2 � m0o2;E ¼ Ekin þ m0o2

By means of the four-vector pm we can form the invariant quantity

p2 : ¼ ðp0Þ2 � ðpÞ2 ¼ E2=o2 � ðpÞ2 ¼ m0
2o2

and obtain the useful formula

p0 ¼ pðp2 þ p2Þ ¼ pðm0
2o2 þ p2Þ:

The tree-velocity viP depends on the momentum p and can be expressed by

viP ¼ pi=
pðm0

2 þ p2=o2Þ:
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However, in the particular case of particle which has rest mass m0¼ 0, as the

photon, the three-velocity viP does not depend any longer on p and is given by

viP ¼ pi=
pðm0

2 þ p2=o2Þ ¼ pi=
pðp2=o2Þ ¼ opi= pj j:

Furthermore, from

p2 ¼ ðp0Þ2 � ðpÞ2 ¼ m0
2o2 ¼ 0

it follows, that the energy-momentum four-vector of a photon is a future oriented

null vector p with the components

pm ¼ pj j; pð Þ:

Conversely, since photons are moving on the null cone, the trajectory of a photon

reads ds¼ 0. In this case, the tree-momentum pi¼om0 dx
i/ds is meaningful only, if

also m0¼ 0 and thus we obtain merely the proportionality pi ~ dxi, where the factor
of proportionality is undetermined.17 These latter results about zero-mass particles

will become of particular interest for the discussion in Sect. 4.1.

2.4 The Numerical Value of the Constant v: The First

Answer to the Problem

In the preceding sections of the present Chap. 2 we reconstructed Special Relativity,

i.e. the Lorentz transformations and the elements of a relativistic mechanics merely

by abandoning the hypothesis O(C)1 of the existence of an absolute and universal

time. In this derivation it became obvious, that this reconstruction leads only to the

generalised Lorentz transformation TII0 (v, o) and to the generalised relativistic

mechanics, in which the numerical value of the constant o is left open. There is no

way for a theoretical determination of this numerical value. However, the value of

the constant o can be obtained by experimental means and we mention here several

ways for an experimental determination of the constant o.
From a methodological point of view, there are at least two somewhat different

ways for an empirical determination of o. Firstly, we can make use of an important

step in the reconstruction of the generalised Lorentz transformation. Secondly, we

can use the somewhat surprising effects of relativistic mechanics, which we dis-

cussed in Sect. 2.3. We will begin with the step mentioned in the reconstruction of

the Lorentz transformation.

17 Sexl and Urbantke (1992), p. 69.
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2.4.1 The Invariance of the Einstein-Synchronisation

In a given inertial system I it is convenient to introduce a system of coordinates

KI(x
i, t) which fulfils the requirement of Einstein synchronisation, often indicated

by the synchronisation parameter e ¼ 1
2
. As already mentioned above, two clocks

C(xA) and C(xB) which are at rest at different places xA and xB, respectively, can be

synchronised by a convention. Einstein’s method to synchronise clocks by means of

light signals is well known: At a time tð1ÞA a light signal is emitted in xA, reflected in
xB and received again in xA at the time tA

ð3Þ. For the time tB
ð2Þ of the reflection in xB

we make use of the condition

tB
ð2Þ ¼ tA

ð1Þ þ e tA
ð3Þ � tA

ð1Þ
� �

where e is an undetermined real parameter 0� e� 1, that must be determined by a

convention. Einstein-synchronisation corresponds to the value e¼½. This conven-

tion implies, that the velocity of light in the two possible directions has the same

value. For methodological reasons we emphasise, that this convention does not

imply, that the metric of space-time depends essentially on the existence of light,

which – in this case – would have an important constituting influence on the

structure of space-time. The same convention could also be achieved by other

methods, e.g. by slow motion of clocks.18

On the basis of these definitions and conventions, the determination of the

numerical value of the constant o can now be carried through in the following

way: We start with the inertial system I, which is assumed to be at rest, space-time

coordinates that establish Einstein-synchronisation of spatially separated clocks –

and require, that also the space-time coordinates of a moving inertial system I0(v)
that can be arrived by a generalised Lorentz transformation, are Einstein-
synchronised. By means of this requirement, the undetermined constant o in the

generalised Lorentz transformation TII0(v,o) can be determined (in principle)

empirically with the result o¼ c, where c is the velocity of light in vacuum.

Our second way refers to several “surprising effects” of Special relativity which

we discussed in Sect. 2.3. We mention here three different effects that can be used

for an empirical determination of the unknown constant o.

2.4.2 Time Dilatation

In an inertial system I we compare the period Dt of a clock C1 at rest in x1 with the

period Dt0 of a clock C2 at the place x2 moving with velocity v. If the two clocks are

18Mittelstaedt (1976/89).
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at the same place, x1¼ x2, then the two periods can directly be compared. In this

situation we obtain the result

Dt0 ¼ gðv;oÞDt with gðv;oÞ ¼ 1=
pð1� v2=o2Þ:

From this equation we get

ðDt0=DtÞ2 ¼ 1=ð1� v2=o2Þ
and in a few steps finally

o ¼ v=
pð1� ðDt=Dt0Þ2Þ

Since the values of v, Dt, and Dt0 can be measured, the numerical value of o can be

determined by this equation with the result o¼ c, where c is again the velocity if

light in vacuum.

2.4.2.1 Lorentz Contraction

In an inertial system I with coordinates KI (x,
k t) we consider a measuring stick S at

rest with the length l0¼ x2� x1, where x1 and x2 are the coordinates of the two

endpoints l1 and l2 of the stick. Furthermore, we consider another inertial system

I0(�v) moving relative to I with the velocity (�v). If we measure the length of the

measuring stick S in the moving system I0(�v), – and that according to the well

defined rules for the measurements of spatial distances of moving bodies – then we

obtain a length l0 that is smaller than l0. For an observer O
0 in I0 the measured length

l0 of S is shorter than the length l0 of an identically constructed stick at rest in I0(�v).
This “length contraction” of moving bodies is expressed in the present problem by

l0 ¼ l0=gðv;oÞbl0:
More explicitly this relation reads

l0 ¼ l0 � pð1� v2=o2Þbl0:

From this result we obtain

ðl0=l0Þ2 ¼ 1� v2=o2

and finally the desired result for o

o ¼ v=
pð1� ðl0=l0Þ2Þ:

Since v, l0 and l0 can directly be measured, the value of o can be determined as

o¼ c by this equation.
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2.4.2.2 The Inertial Mass of a Moving Body

We consider an inertial system I. The inertial mass of a body Bwhich is at rest in I is
called its rest mass m0. If we compare this mass m0¼m(0) with the inertial mass of

another body B0 moving with the velocity v, then we observe an increase of the

inertial mass m(v) such that

mðvÞ ¼ m0 gðv;oÞ:
More explicitly, this relation reads

ðm0=mðvÞÞ2 ¼ 1=gðv;oÞ2 ¼ 1� v2=o2

and thus

v2=o2 ¼ 1� ðm0=mðvÞÞ2

and

o ¼ v=
pð1� m0=mðvÞ2Þ ¼ c:

In the four measurement procedures for the numerical determination of the constant

o, we could provide a first answer to the problem, why the numerical value of o
agrees with the velocity of light in vacuum. First of all, this is an empirical result.

We emphasise again, that this numerical agreement does not necessarily mean also

a conceptual agreement between o and c. A second answer to the problem men-

tioned will at least be indicated in Sect. 4.2 where we investigate the meaning of the

constant “c” in physics. However, presently it seems to be more important to

explicate and to illustrate the problem of the numerical value of o than to solve

it. Presumably, it is one of the open problems in contemporary physics.

2.5 Could Special Relativity Have Been Discovered

Already by Newton?

2.5.1 A Pseudo-Historical Digression

On the basis of the results of the preceding investigations, in the present section we

will discuss the purely hypothetical question, whether the theory of Special Rela-

tivity, which was discovered by Einstein in 1905, could have been discovered

already at an earlier time. More precisely, we ask whether at a certain time and

on the basis of the scientific knowledge, that was available at this time, the theory

of Special Relativity could have been discovered – not only a few years – but more

than two hundred years before Einstein, when Newton had just finished his

Principia in 1687. This pseudo-historical turn of the general idea of reconstruction
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of a given theory was first formulated by Oskar Becker and applied to problems of

the history of mathematics.19

In Chaps. 1 and 2 of the present considerations we explained, that in addition to

the well known historical models for the development of physical theories, the

model of a permanent accumulation of knowledge and Kuhn’s model of the

progress by “revolutions”, there exist a third way, that we explained here in detail.

Indeed, sometimes it could happen, that the progress in physics does not consist of

the accumulation of new results, but of the reduction and elimination of prejudices

that are silently incorporated in the old theory. This third model applies in particular

to the theories of Modern Physics in the 20th century, which can be reconstructed

by eliminating metaphysical hypotheses of Newton’s Classical Physics.

For this way of explaining the development of physical theories, classical

physics and in particular classical mechanics plays an important role. Our ordinary

experience (OE) which we briefly discussed in Sect. 1.1 is extended in many

respects in classical mechanics and formulated in terms of mathematics. General

principles and metaphysically motivated hypotheses were incorporated into this

extended theory of ordinary experience in order to achieve a mathematically

consistent and well established theory. The result of these efforts is Newton’s

theory of space-time and classical mechanics, which is presented in his Principia.
It is loaded with several metaphysical hypotheses, the most important ones were

formulated in Sect. 1.3.

It is a surprising observation, that the reduction or elimination of these meta-

physical hypotheses, without loosing thereby the mathematical consistency of the

theory, leads to the theories of modern physics. Our prime example for the

reconstruction of a theory by systematic elimination of hidden metaphysical pre-

judices of classical mechanics is the reconstruction of the theory of Special Rela-

tivity, which we presented in the preceding Sect. 2.2. Among other interesting

features, this reconstruction of (SR) shows, how – in contrast to the actual historical

development of this theory – the theory of Special Relativity could have been

discovered, if step by step, scientists had freed themselves of the metaphysically

motivated hypotheses of absolute time and Euclidean space, which are contained in

classical mechanics. Hence, our reconstruction of (SR) allows presumably also to

answer the question, whether Newton could have discovered the theory of Special

Relativity already at the end of the 17th century, say.

In the beginning of the 20th century, the situation of Special Relativity was very

confusing since it was not completely clear, whether the theory provided new

empirical or theoretical results in addition to several new conventions. In particular,

the theory appeared to provide several surprising features, often considered as

paradoxes. that contradict our common sense and our ordinary experience, which

is usually considered as intuitive and comprehensible. For illustration, we mention

here 5 of the most important paradoxes of the theory, which are at first sight

counterintuitive and not comprehensible. (For details we refer to Sect. 2.3)

19 Becker,O. (1965), p. XIII f.
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1. There is no absolute simultaneity
It is not possible, to say in an absolute sense, that two events E1 and E2 happen at

two distant points x1 and x2 in space, but at the same time values t1 and t2. If an
observer O(0) at rest finds simultaneity, i.e. t1¼ t2, then another observer O(v)
moving with velocity v> 0 in another inertial system I(v), will find out that the

time difference between the two events reads Dvt¼ g(v) v�(x2� x1)/o
2 6¼ 0.

2. There is a time dilatation of moving clocks
In an inertial system I, we consider two observersO1 andO2, who are equipped with

identically constructed clocks C1 and C2, respectively. If O1 is at rest in I and O2

moving with a constant velocity v, then in system I the moving clock C2 runs

slower than clock C1. Hence, the period t2 of C2 is larger than the period t1 of C1

: t2¼ g(v)�t1� t1.

3. There is a clock paradox
We consider two observers O1 and O2 and assume that they are equipped with

identically constructed clocks C1 and C2 which are perfectly shock-prove. The

two observer meet together in xð1ÞA at time tð1ÞA (of clock C1) and synchronize

their clocks such that tð1ÞA ¼ tð2ÞA where tð2ÞA is the time of clock C2. Let O1 be

an inertial observer at rest and O2 an observer who first moves away from O1,

and then changes the direction and moves back to O1 in xð1ÞA. The moving

observer reads on his clock C2 a length of time t2 for the entire round-trip,

whereas the observerO1 measures on his clock C1 a duration t1 for the round trip
that is always larger than t2, i.e. t1> t2. Hence, for the moving observer O2 less

time elapsed between the two encounters than for the observer O1 at rest.

4. There is a length contraction of moving bodies
Consider two inertial observer O1 and O2, where O1 is at rest in an inertial system I1

and O2 is moving with constant velocity v. Both observers are equipped with

identically constructed measuring rods for the measurement of spatial distances.

If O1 measures the spatial distance DAB
(1) between two points xA and xB that are

at rest in the system I1, then the moving observer O2 obtains for the distance of

the same points the smaller value

Dð2Þ
AB ¼ Dð1Þ

AB=gðvÞbDð1Þ
AB:

This reduction of distances is also called “length contraction”.

5. There is a maximal velocity of moving observers
Consider two inertial observers O1 and O2, where O1 is at rest and O2 is moving

with constant velocity v – measured by O1. This velocity v of O2 can never

exceed the limiting velocity o, i.e. v<o, where o is a universal constant that

agrees numerically with the velocity c of light in vacuum. This means that the

observer O2 cannot move faster than the velocity of light.

These five statements are in contradiction to the corresponding statements of

Classical Mechanics. In this context, Classical Mechanics plays a particular role,
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since it is not the theory of a certain domain of phenomena, but rather an “empty”

theory, i.e. a theory, that deals with nothing but classical physics itself. In classical

mechanics, we formulate the most general laws and structures, which refer to any

theory of classical physical objects. For this reason, the differences and contra-

dictions of this theory with respect to Special Relativity, which we have just

mentioned here, are of quite general importance.

The five paradoxical features of Special Relativity may illustrate among other

things the reaction of the scientific community to Einstein’s new theory of space

and time. Hence, before we are going to answer pseudo-historical question in the

title of this section, we should clarify the significance of the pretended paradoxes.

At this point, we refer to the distinction between “directly intuitive” and “indirectly

intuitive”, which we discussed in Sect. 1.1. It is obvious, that the five facts in

question are not directly intuitive but rather counterintuitive. They could, however,

be “indirectly intuitive”, i.e. reducible to “directly intuitive” facts via a long way of

logical steps. For our present problem, this is actually the case. Within the frame-

work of Newton’s theory of space-time, the paradoxical properties would

completely disappear. However, we know that this classical space-time is loaded

with several not justified metaphysical hypotheses, in particular with the hypothesis

of the existence of an absolute and universal time. Without this hypothesis, the

resulting theory of space-time shows the paradoxical features mentioned. However,

since the hypothesis of an absolute time is by no means intuitive and comprehensi-

ble, the consequences of an abandonment of the absolute time hypothesis are more

intuitive and more comprehensible, i.e. the statements 1–5 are “indirectly intuitive”

in the discussed sense. In other words, the five paradoxical statements are paradoxes

in the literally sense and we expect that they can be resolved by a deeper inspection

of the problem. Of course, this result must also be derived by the explicit recon-

struction of Special Relativity.

The explicit reconstruction of Special Relativity, which we presented in Chap. 2,

confirms this conjecture. In order to demonstrate, that classical mechanics is based

on hypothetical assumptions that clearly exceed our ordinary experience (OE),
classical mechanics must be reformulated by the same conceptual and mathemati-

cal means as Special Relativity. This has been done in Sect. 2.2. On the background

of this reformulated Classical Mechanics the theory of Special Relativity can be

reconstructed merely by abandoning the ontological hypotheses in question. This

reconstruction consists of several clearly distinguished steps, which will only

briefly be mentioned here. All details can be found in Sect. 2.2.

The first step is the establishment of an Euclidean geometry in space which can be

justified by the assumption, that finitely extended measuring rods are freely movable.

For the second step, the introduction of a convenient concept of time, we introduce the

constituting ensembleG(k1, k2, . . .) of bodies ki, that are freely thrust into space aswell
as a frame of reference equipped with measuring rods. If the trajectories of the test

bodies ki are Euclidean straight lines from the perspective of this frame of reference,

then the frame of reference is called an inertial system I.While topological time can be

tied to an arbitrary process,metric time is subject to the requirement that test bodies ki
not only move in a straight line but also at constant velocity. This requirement can be
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met, since empirically the bodies ki move uniformly relative to one another, which can

be determined without knowledge of a metric time.

The third step deals with the combination of space and time in a space-time.

It occurs through the definition of the synchronicity of spatially separated clocks

and through the transformations between inertial systems. The internal transforma-

tions I! I of an inertial system I consist of the transformations of the Euclidean

group and a one – parameter transformation for the time translation. On the basis of

the above instructions, the transformations I ! I0(v) from I to another inertial

system I0(v) moving at velocity v have (in one space coordinate) the form

x0 ¼ kðvÞðx� vtÞ; t0 ¼ mðvÞ � tþ nðvÞ � x

with tree arbitrary functions k(v), m(v), and n(v).
At this point, the decision is made between Classical Mechanics and the theory

of Special Relativity. If one presupposes the hypothesisO(C)1 of the existence of an
absolute time, then one would arrive in a few steps at the Galilei transformations

x0 ¼ x� v � tt0 ¼ t

of Classical Mechanics. If the hypothesis O(C)1 is completely abandoned, on the

other hand, in a fourth step one obtains due to the kinematical indistinguishability

of inertial systems the unknown functions k(v), m(v), and n(v) and finally the

generalised Lorentz transformation of Special Relativity TII0 (v, o), i.e.

x0 ¼ x� vtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2 o2=

p ; t0 ¼ t� vx
o2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2 o2=
p

which still contains the undetermined constant o. On account of the

relation�o< v < + o, o is the maximal relative velocity between two inertial

systems, i.e. we have vII0 ¼ v�o.
Since the constanto appears in many physical processes, the numerical value ofo

can be determined experimentally in various ways. Several methods were already

mentioned at the end of the preceding section: In an inertial system I, which is at rest,
we could introduce space-time coordinates that establish Einstein-synchronisation
and require that also the space-time coordinates of a moving inertial system I(v) that is
obtained by a transformation TII0(v,o) are Einstein-synchronised. The result of this

requirement is o¼ c. We could also use the time dilatation of a moving clock for the

numerical determination of o, or we could use the increase of the inertial mass of

moving bodies. Hence, the empirical determination of the numerical value of o does

not provide any new problem.

On the basis of the preceding discussion we are now in the position to give a –

perhaps preliminary – answer to the question in the title of this section, whether

already Newton could have found the theory of Special Relativity. According to the

general task formulated byOskar Becker in 1965, whichwe alreadymentioned above,

wemust first ask for the scientific knowledge that was available at the time of Newton
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at the end of the 17th century and could have been used by him. From an experimental

point of view, we mention here in particular the measurement of the velocity of light

byO.Rømer in 1670, i.e. 16 years beforeNewton’s “Principia” appeared in 1st edition.

This measurement confirmed first of all that the velocity of light in vacuum is not

infinite but has a finite limit which he determined explicitly. From a theoretical point

of view we have seen, that for the reconstruction of Special Relativity only the

mathematical techniques for working with linear equations or collineations are

required, i.e. techniques which were well known to Newton and his contemporaries.

By means of this empirical and theoretical knowledge all steps of our recon-

struction in Sect. 2.2 could have been performed. Even without a universal time, the

construction of inertial systems and the definition of a topological time was

possible. The metric time could have been introduced by the requirement, that the

equation of motion should look as simple as possible. (In the real history of physics,

this convention was found by H. Poincaré in 1898).

Even the synchronisation of distant clocks by means of light signals in the sense

of Einstein was already possible, since these signals were known to proceed with a

finite velocity of light. Hence, all necessary means for a successful reconstruction of

Special Relativity were already available for Isaac Newton.

In spite of these obviously good preconditions, the actual Isaac Newton could not

have found Special Relativity. The reason is not, that did not possess the necessary

mathematical and physical abilities, since from a formal point of view Special

Relativity is a rather simple theory. But, presumably, he was too much biased by

the ideas of the theology and metaphysics of his time and could, for that reason, not

identify his own assumptions as unjustified ontological hypotheses. However, a

critical reflection of this kind would have been the indispensable precondition of

an abandonment or a relaxation of the hypothetical assumptions in question.

2.6 The Attempt to Reconstruct General Relativity

2.6.1 The Pseudo-Riemannian Character of Space-Time

The theory of General Relativity was developed by Einstein after the formulation

of Special Relativity during the period from 1907 through 1915. Einstein’s

journey from Special to General Relativity was far from being systematic and is

characterised by various attempts in vain, by the application of several principles,

hypotheses and changing goals. We will not go into the details of the history of this

fascinating development of a new theory but instead refer to the literature, in

particular to the contributions to this topic by J. Stachel.20 For the development

of General Relativity Einstein made use of several physical and methodological

principles but only of very few experimental results. As to the principles, we

20 Stachel (2002).
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mention here the equivalence principle, the requirement of general covariance, the
principle of general relativity, and at least in the first years of the General Relativity
project alsoMach’s principle. The result of these efforts is a well elaborated theory,
which is meanwhile also confirmed by many experimental results. However, due to

its rather confusing historical development it is very hard to say, whether this theory

is merely true with respect to experiments and observations, whether it is partly a-

priori true, or whether it is true in the sense of mathematics. In this situations, it is

reasonable to perform a “rational reconstruction” of the theory in a similar way, as

we have already done it for the much simpler theory of Special Relativity in

Sect. 2.2.

General Relativity, as we understand it today, is a theory of space-time in

the presence of gravitational fields and at the same time a theory of gravitation.

As to the first part, the theory of space-time we note, that for the development of

Special Relativity (in 2b) gravitational fields had to be excluded explicitly, since in

the presence of gravitational fields finitely extended systems of inertia cannot

properly be defined. Indeed, if we were starting again with a constituting ensemble

G of bodies, which are freely thrust into space, we would not find a frame of

reference such that the trajectories of the test-bodies are straight lines in the sense of

the Euclidean geometry. This remark does not refer to the theory of General
Relativity as such but merely to the well known fact that gravitational fields cannot

be screened off, which means that in the presence of gravitational fields there is no

field-free region in space.

General Relativity generalises the Minkowskian space-time of Special Relativ-

ity in several respects. General Relativity leads to a Riemannian metric of the three-

dimensional position space R3 and to a pseudo-Riemannian space of signature 2 for

the four-dimensional space-time R4. In addition, in its second part, General Rela-
tivity connects the metric tensor of space-time and the Riemannian curvature tensor

with the energy-momentum tensor of matter by means of Einstein’s field equations.

We will come back to this important aspect at the end of this section.

At first, we discuss the alleged unintuitiveness of General Relativity. It refers,

primarily, to the non-Euclidean or Riemannian character of the geometry of the

3-spaces and only in a second step to the pseudo-Riemannian structure of space-

time. Obviously, it is difficult to discuss in detail the non-Euclidean character of the

geometry of the 3-dimensional position spaces, since the geometry or metric of

space cannot be perceived as such. It is useful, therefore, to focus on observable

preconditions, from which these metric structures are derived. In this regard,

Helmholtz’ two theorems 21 are very helpful

1. If finitely extended measuring rods are freely mobile in space, then the geometry
measured with these rods is elliptical, hyperbolic or Euclidean.

2. If the free mobility is guaranteed only for infinitesimally extended measuring
rods, then the geometry measured with these rods is Riemannian.

21 Laugwitz (1960), pp. 145–149.
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The premise of the first theorem, the free mobility of finite measuring roads, will

be called here hypothesis H(E), whereas the premise of the second theorem, the free

mobility of infinitesimally extended measuring rods, will be called hypothesis H(R).
Ordinary experience leads to an intuition of space that is certainly not strictly

Euclidean in character. Even as the form of intuition as discussed by Kant in the

critique of pure reason, space is three-dimensional, topologically and presumably

also metrizable, but no more than that. The Euclidean character of space is an

additional assumption, which is introduced by Classical Mechanics and which

presupposes the hypothesis H(E) regarding the free mobility of finitely extended

measuring rods. Within the domain of objects of Classical Mechanics, this hypoth-

esis can certainly not be verified with the requisite precision. It is an empirically

unverifiable additional assumption.

We obtain the spatial metric of the theory of General Relativity not by abandon-
ing the empirically unjustified hypothesis H(E), as in the case of hypothesis O(C)1

of the existence of an absolute and universal time, but rather by weakening it to the

assumption H(R) that only infinitesimally extended measuring rods are freely

mobile, which yields the Riemannian character of the spatial metric according to

Helmholtz’ second theorem. This weakening is certainly compatible with the

spatial intuition of ordinary experience, but not with the spatial geometry of

Classical Mechanics. Hence, here too, it is the spatial intuition of Classical

Mechanics expressed by H(E) that is unintuitive, not the spatial geometry of the

general Theory of Relativity obtained through weakening H(E) to H(R).
As a consequence of the Riemannian character of the 3-dimensional position

space, any additional constructions and definitions referring to time and the con-

nection of space and time can only be carried out locally. A constitutive ensemble G
of bodies freely thrust into space can only be used locally and momentarily for the

constitution of inertial systems, which are therefore called local systems of inertia.
With these local inertial systems, it is nevertheless possible to define – locally and

momentarily – a topological and a metrical time. The local inertial frames of

reference also allow for local execution of the constructions required for the

formation of space-time, whereby a Minkowskian space-time M4 is constructed

locally and momentarily at every point of the space-time. These pseudo-Euclidean

M4 spaces are tangent spaces of the finite space-time R4, which thus reveals itself as

a pseudo-Riemannian space R4. Note, that this somewhat complicated way of

reasoning is necessary, since for the space-time R4 with an indefinite metric there

is no generalised Helmholtz theorem which could be used in this case.

The measurement of space-time intervals as usually described by means of

measuring rods and clocks is not only very laborious, but also unsatisfactory for

methodological reasons, since clocks and measuring rods would enter the semantics

of the theory as primitive entities. It is possible to avoid both drawbacks, however,

if light beams and particle paths are used for measurement. The trajectories of

particles as well as those of light rays are geodesics of the Riemannian metric and

are thus themselves objects of the theory. An explicit execution of this program can
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be found in Marzke and Wheeler 22 (light clocks) and in the axiomatic system of

Ehlers, Pirani and Schild,23 which has been expanded later by the radar geometry of

Schröter and Schelb.24 We shall not pursue this topic further, since it is of no

consequence for our problem.

2.6.2 Einstein’s Field Equations

The theory of General Relativity is not only a theory of the pseudo-Riemannian

space-time R4 but also a theory of gravitation. The influence of a Riemannian space-

time – as the guiding field – on the movement of test particles and light rays is

locally indistinguishable from the influence of a gravitational field. This equiva-

lence was one of the most important motivating principles of Einstein. Hence

space-time is also influenced by the material sources of a gravitational field.

General Relativity describes this influence by means of Einstein’s field equations

Gmn : ¼ Rmn � 1=2Rg
mn ¼ � kTmn

in which the Einstein-tensor Gmn of space-time is proportional to the energy-

momentum tensor T mn of matter (Rmn is the Ricci-tensor, R ¼ Rm
m the curvature

scalar, and gmn the metric tensor). The factor of proportionality is the gravitational

constant k. Since for the Einstein-tensor Gmn the identity Gmn
;n � 0 holds, Einstein’s

equations imply also the equation of motion of the field creating matter Tmn
;n ¼ 0.

At this point, the following problem of our reconstruction of General Relativity

becomes obvious. The Riemannian character of space-time is not exclusively

induced by the gravitational field and its material sources. Of course, according

to Einstein’s field equations the energy momentum tensor Tmn provides a gravita-

tional field and thus a guiding field for particles and light rays. However, also for

vanishing Tmn there are, except from the Minkowskian space-time, many non-trivial

solutions of Einstein’s field equations. These “vacuum solutions” represent an

additional contribution to the Riemannian structure of space-time. Formally, the

vacuum solutions can be characterised by the reduced field equations that follow

from Einstein’s field equations for vanishing matter, i.e. for Tmn¼ 0. The solutions

of this reduced field equations Rmn ¼ 0 are also called “Einstein-spaces” and were

extensively discussed in the literature.25

Hence, the pseudo-Riemannian structure of space-time is partly induced by

solutions of the vacuum field equations and partly by solutions of Einstein’s field

equations with non-vanishing matter. Locally, these two contributions cannot be

22Martzke and Wheeler (1964).
23 Ehlers, et al. (1972).
24 Schröter and Schelb (1994).
25 Petrow (1964).
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distinguished. Formally, the Riemannian curvature tensor can be decomposed in

two additive terms that correspond to the curvature of the vacuum and to the

curvature of a matter induced space-time.26 To further elucidate this point, we

decompose the Riemannian curvature tensor Rabgd according to

Rabgd ¼ Cabgd � 1

n� 2
ðgagRbd � gadRbg þ gbdRagÞ � R

ðn� 1Þðn� 2Þ ðgadgbg

� gaggbdÞ:
Since for vanishing matter (Tmn¼ 0) we have Rmn ¼ 0 and R¼ 0, the Weyl tensor
Cabgd describes the curvature of a matter free space-time. Note that Ca

bad ¼ 0.

Consequently, also our way of reconstructing General Relativity refers only to

the pseudo-Riemannian space-time structure as such and not to its possible separa-

tion in two components with different origins – and thus not explicitly to its

connection with matter. This means, that our way of reconstructing General
Relativity by weakening the metaphysical hypotheses of classical mechanics,

leads in the present case from the strong hypothesis H(E) of Euclidean geometry

of the 3-dimensional space to the relaxed hypothesis H(R) of a Riemannian

geometry of the 3-dimensional position spaces and finally, as explained above, to

a pseudo-Riemannian geometry of space-time. Since there is no way to distinguish

the two contributions mentioned to this space-time, there is no way to say anything

about the coupling between space-time and matter, i.e. about Einstein’s field

equations and the coupling constant k. In other words, our way to reconstruct

General Relativity by relaxing metaphysical hypotheses of classical mechanics

comes to an end at this point. A justification of Einstein’s field equations is not at

sight in this way.

Einstein’s field equations, which represent the second important part of General
Relativity, are as such loaded with several hypothetical assumptions that are neither

intuitive nor justified by rational arguments. However, in contrast to the theological

and metaphysical hypotheses of Newton’s classical physics, which were eliminated

here, Einstein’s equations are based on several mathematical and methodological

assumptions. Here, we refer to the above mentioned principle of equivalence, the
postulates of general covariance and general relativity and also the more mathe-

matical requirement, that the field equations in question should be the most simple
quasi-linear second order differential equations in the pseudo-Riemannian space-
time R4. In a similar context, Wheeler27 mentions even six different hypothetical

approaches to Einstein’s equations.

1. Einstein’s original derivation, based on the principles of equivalence and

correspondence.

2. Élie Cartan’s derivation, resting on the fact that the boundary of a boundary is

zero.

26 Hawking and Ellis (1973), p. 85.
27Wheeler (1973).
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3. The most compact derivation one knows, based on the idea that density of mass-

energy governs curvature.

4. The derivation of Hilbert and Palatini, founded upon the principle of last action.

5. The derivation of Hojman, Kuchar and Teitelboim, that introduces the group-

theoretical concept of ‘“group” of deformations of a spacelike hypersurface in

spacetime’.

6. The schematic derivation of Andrei Sakharov, founded upon the concept of “the

metric elasticity of space”. (Cf. also footnote 128)

There is, however still another way to General Relativity, in particular to

Einstein’s field equations, that should be briefly mentioned. Here, we think of the

flat space-time approach, which formulates the theory of gravitation in the Min-

kowskian space-time of Special Relativity. We could start for this approach with

the equation

DF ¼ 4pkr

for the scalar potential F in Newton’s theory of gravitation, where r is the density

of the field creating matter and k Newton’s gravitational constant. We can replace

Newton’s field equation by a Lorentz-invariant equation, if we substitute the

density r by the energy-momentum tensor Tmn and the scalar fieldF by a symmetric

tensor field cmn. Taking into account that the energy of the free tensor field should

be positive, then the most simple generalisation of Newton’s potential equation

reads

1
c2

@2

@t2 � D
� �

cmn ¼ f ðTmn � 1=2�mnTÞ

with the subsidiary condition cmn
;n ¼ 1=2cl

l;m,where T ¼ Tmn�
mn and f is a coupling

constant.

It is obvious that this Lorentz invariant equation is not yet Einstein’s field

equation. However, a detailed investigation28 shows, that it is equivalent to the

linear approximation of Einstein’s equation according to the coupling constant k. In
the limit (n!1) of a power sequence of approximations according to f we

would arrive at Einstein’s equations, where the coupling constants are related by

k¼ f 2.
Summarizing this brief report, we find that the various approaches to Einstein’s

field equations mentioned, are based on several mathematical or methodological

assumptions.

Consequently, on account of these hypothetical components Einstein’s field

equations are not justified in the same sense as the pseudo-Riemannian character

of space-time.

28Mittelstaedt (1976), pp. 64–66.
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2.7 Conclusion

The considerations of the present section led to a result that is quite different from

the corresponding arguments in the context of Special Relativity. In Sect. 2.2 we

could show, that abandoning the hypothesis O(C)1 of an absolute time in classical

mechanics results in Special Relativity, which is, for this reason, closer to the

empirical truth than classical physics. In General Relativity, we must distinguish

two different parts. The first part, the pseudo-Riemannian structure of space-time,

follows if we eliminate again the hypothesis O(C)1 of an absolute time and if we

relax in addition the assumption O(C)2 of the Euclidean geometry of the three-

dimensional position space. The relaxation of the latter assumption leads after

a long way of reasoning to the result, that the four-dimensional space-time is a

pseudo-Riemannian space R4 with signature 2. This is an obvious gain of knowl-

edge, since the space-time R4 is closer to the truth than the Minkowskian space-time

M4 of Special Relativity. However, for the second part of General Relativity,

Einstein’s field equations, there is no argument in sight that could justify an increase

of knowledge by these equations. The situation is even worse. Einstein’s field

equation are loaded with new formal hypotheses, that are not justified by rational

reasoning or empirical evidence. For this reason, there is no guarantee that the

consequences of the field equations, in particular the large variety of rather strange

space-time models, correspond to possible situations of real world.
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Chapter 3

Reconstruction of Quantum Mechanics

3.1 The Historical Development of Quantum Mechanics

The historical development of quantum mechanics offers a rather heterogeneous

picture, a large variety of interpretations, goals, and philosophical classifications.

Quantum mechanics was understood as a theory in the spirit of positivism, opera-

tionalism, and empiricism, - to mention here only a few of numerous interpreta-

tions. Neither the main protagonists of quantum mechanics, Bohr, Heisenberg,

Schrödinger, and Pauli agreed completely about the understanding of the new

theory, nor represent individual scientists permanently the same philosophical

position. As an outstanding example, we mention here Heisenberg, who changed

his assessment of quantum mechanics several times.

In the early history of quantum mechanics, the theory was based by its founders,

in particular by Niels Bohr, on three principles, that played an important role in the

first years of the theory: the so-called quantum postulate, the correspondence

principle, and the principle of complementarity. According to Bohr, the quantum

postulate “attributes to any atomic process an essential discontinuity, completely
foreign to classical theories and symbolised by Planck’s quantum of action”.1 The
principle of correspondence expresses the methodological requirement to searching

for analogies between quantum theory and classical physics, in Bohr’s words, it

“expresses our endeavours to utilize all classical concepts by giving them a suitable
quantum-theoretical reinterpretation”.2 The notion of complementarity has a neg-

ative meaning because it expresses an essential restriction of quantum systems:

“The very nature of quantum theory forces us to regard the space-time coordination
and the claim of causality, the union of which characterizes the classical theories,
as complementary but exclusive features of the description, symbolizing the ideali-
zation of observation and definition, respectively”.3

It is obvious, that these requirements, i.e. the quantum postulate, the principle of

correspondence, and the complementarity statement cannot be considered as

1Bohr (1934), p.53.
2Bohr (1934), p. 8.
3Bohr (1934), pp. 54–55.
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axioms of quantum mechanics in the formal logical sense. In addition, they are

neither intuitive and comprehensible nor justified by experimental evidence.

Instead, they are mere reactions of the first generation of quantum physicists to

the completely new situation they were confronted with. Hence, for an adequate

understanding of the theory, it seems to be the best way to forget about these

“principles” and to reconstruct quantum mechanics exclusively on the basis of well

understood rational aspects. In the present chapter, we will provide a rational

reconstruction of quantum mechanics of this kind.

3.2 The Reduction of Ontological Hypotheses

As already mentioned above (Sect. 1.3) our way to reconstruct QuantumMechanics

is similar to the reconstruction of Special Relativity in Sect. 2.3. Also in Quantum

Mechanics we will use a convenient relaxation of the ontological premises of

Classical Mechanics listed in Sect. 1.3. In Special Relativity we had to relax merely

the metaphysical hypotheses concerning the structure of space and time. It is

obvious, that for the reconstruction of Quantum Mechanics other ontological

assumptions of Classical Mechanics must be taken into account. However, this is

not the only difference between the two approaches. More important is a methodo-

logical difference. For the reconstruction of Quantum Mechanics our starting point

is not a certain material structure of quantum objects, but the language and logic

which is used for the descriptions of quantum physical phenomena. Hence, our first

step consists of a convenient reduction of the classical ontology O(C) already

mentioned above (in Sect. 1.3) and the first formulation of a quantum ontology

O(Q). In a second step, we will investigate the implications of these reductions for

establishing a formal language of quantum physics and in particular a formal logic

of quantum physics, which is usually called quantum logic.

Modern physics, in particular quantum physics, is characterised not only by a

huge number of new experimental results and by a well-elaborated theory, but

essentially by a radical change of the underlying ontology. The new ontology

reflects various new insights of quantum theory and will be called here “quantum

ontology”. It is still a controversial question how this quantum ontology looks like

in detail. We mention here in particular the ontology of substances (objects), of

properties, and of unsharp (fuzzy) properties. It should be emphasised that the

discussed changes of the traditional ontology are not modifications that are induced

by incorporating new empirical results. Instead, the new quantum ontologies can be

obtained from the traditional (classical) ontology merely by relaxing and

weakening of various assumptions and hypotheses of the classical ontology.4

Here we will briefly mention the most important changes. The classical ontology

O(C) assumes that there are individual objects Si and that these objects possess

4Mittelstaedt (2003).
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elementary properties Pl in the following sense. An elementary property Pl refers

to an object such that either Pl or the counter property Pl pertains to the system.

An object is thoroughgoingly determined, i.e. with respect to each property P the

object S possesses either P or the counter property �P. From these strong require-

ments it follows that all objects can be individualised by elementary properties if

impenetrability is assumed as an additional condition. For objects Si of the external

objective reality the causality law and the law of conservation of substance hold

without any restriction.

There are important objections against this classical ontology O(C). The strict

postulates ofO(C) are neither both intuitive and plausible nor can they be confirmed

and justified by experimental means. The rigorousness of the assumptions men-

tioned exceeds the mere qualitative everyday experience and it exceeds the possi-

bilities of experimental tests. In particular, the principle of thoroughgoing

determination mentioned above has never been tested with an accuracy, which

would allow calling the result a principle. Hence, classical ontology is neither

intuitive nor is it justified by experimental evidence. Moreover, what is more

important, the ontology O(C) is not in accordance with quantum physics.

A quantum mechanical object does never possess all possible elementary properties

Pl either positive or negative; it is not carrier of all possible properties. Instead, only

a subset of all properties pertain to the system and can simultaneously be deter-

mined. These “objective” properties pertain to the object like in classical ontology.

From these restrictions it follows that in quantum mechanics no strict causality can

be established and that object systems cannot be individualised and re-identified by

means of their objective properties.

We will not use these empirical results for formulating the ontology of quan-

tum phenomena. However, we learn from these considerations that the classical

ontology contains too much structure and too strong requirements compared

with quantum physics. This observation offers the possibility to formulate

the ontology O(Q) of quantum physics by merely relaxing some hypothetical

requirements of classical ontology O(C). We note that no new requirements

must be added to the assumptions of the classical ontology O(C). Quantum
ontology can thus be formulated as a relaxed version of the ontology O(C) in
the following way.

O(Q)1 If an elementary property P pertains to a system, then a test of P leads with certainty to the

result P. In addition, any arbitrary property can be tested at a given object with the result

that either P or the counter property �P pertains to the object system.

O(Q)2 Quantum objects are not thoroughgoingly determined. They possess only a few elemen-

tary properties, either positive or negative. Properties that pertain simultaneously to an

object are called “objective” and “mutually commensurable”.

O(Q)3 Since a quantum object is not thoroughgoingly determined, for quantum objects there is no

strict causality law.

O(Q)4 The lack of thoroughgoing determination and strict causality implies that quantum objects

cannot be individualised and re-identified at later times.

This relaxed ontology O(Q) can now be used as a starting point for establishing a

formal language and logic of quantum physics. The quantum ontology has far
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reaching consequences for the possibilities of proving or disproving elementary

(material) propositions and thus for the pragmatics of a formal language of

quantum physics. This quantum pragmatics turns out to be a relaxation of a

corresponding pragmatics of the language of classical physics, i.e. compared with

classical pragmatics the new quantum pragmatics provides less possibilities for

justifying and refuting propositions that attribute properties to an object system.

3.3 The Formal Languages of Classical Physics

and of Quantum Physics

3.3.1 The Formal Language of Classical Physics

On the basis of quantum ontology and in the sense of the operational approach

mentioned we can establish a pragmatics, semantics, syntax. We will start with the

calculus L i of intuitionistic propositional logic, since this calculus can be justified

by operational means only, i.e. by dialogs or by proof-trees.5 On the basis

of elementary propositions that possess certain well-defined pragmatic properties,

the calculus L i of formal intuitionistic logic can be established. Within the context

of quantum logic two pragmatic properties of elementary (material) propositions

are of particular interest. First, we mention the property (v) of value definiteness,

which means that an elementary proposition is either true or false in the sense

of the assumed semantics. In L i value definiteness is not presupposed but replaced

by the weaker requirement [v] that leaves this question open. It is well known that in

Li the assumption (v) for elementary propositions implies that all finitely connected

propositions (by the logical connectives ∧, ∨, ¬, and !) are also value definite in

the sense of (v). This leads to the calculus Lc of classical, Boolean logic.6

More important for the present problem is the property (a) of “unrestricted

availability”. An elementary proposition A is called “available”, if after a success-

ful proof of A this proof result is still “available” after the proof or disproof of

another, arbitrary proposition B. The decisive step from the calculus Li of intuitio-

nistic logic to the calculus LQi of intuitionistic quantum logic is the relaxation of the

strong availability requirement (a) for elementary propositions to the weaker

requirement of “restricted availability” [a]. By “restricted availability” we under-

stand the assumption that the result of a proof or disproof of A is available (in a

dialog or any other proof procedure) after a subsequent proof or disproof of another

proposition B only, if A and B are mutually commensurable, i.e. if the commensu-

rability proposition k(A,B) can be shown to be true. Two propositions A and B are

called to be “commensurable” if after a proof (or disproof) of A, and a subsequent

5Mittelstaedt (1976), Stachow (1976).
6Mittelstaedt (1976).
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proof (or disproof) of B, a repeated proof attempt of A leads with certainty to the

previous result. For elementary propositions A and B “proof” means a verification

of the respective property by measurement, whereas for connected propositions

“proof ” means success in a dialog game together with material proofs of elemen-

tary propositions.

In order to illustrate the importance of the pragmatic preconditions (v), [v] and

(a), [a] in intuitionistic logic Li and in intuitionistic quantum logic LQi, respectively,

we derive a few of the most important formulas in both logical systems. Since first

of all, there are no reasons to doubt in the value definiteness of elementary

propositions in Li and LQi, we can replace the more complicated proof procedures

by means of dialogs as used in the literature7 by the simpler and more intuitive

methods of proof-trees.

The ontological preconditions mentioned guarantee the objective decidedness and

finite testability of elementary propositions Ae(S), which attribute elementary proper-
ties Pe(A) to an object system S. Hence Ae(S) will be called to be true, |—Ae(S), if and

only if the system S possesses the property Pe(A). According to the preconditions the

truth ofAe(S) can be shown by a finite proof procedure, e.g. by ameasuring process. In

any case, either A ore the counter proposition A turns out to be true in this way. This is

meant by the statement, that elementary propositions are value definite. The semantics

that is established by this concept of truth will be called “realistic”.

In the following discussion we will consider the formal object language S (S) of

propositions A(S) that attribute properties P(A) to an object system S. In the formal

language SC of classical physics and on the basis of the subset SC
(e) of value

definite elementary propositions we can introduce the logical connectives by the

possibilities to attack and to defend them, i.e. by the possibilities to prove or to

refute the connective. As an example we consider the two-place-operation “sequen-

tial conjunction”.

Connective Denotation Attacks Defences

AuB “A and then B” 1. A?, 2.B? 1.A!, 2.A!

where A? means the challenge to prove A, and A! the successful proof. This attack-

and defence scheme can be illustrated most conveniently by a proof-tree which is

chronologically ordered,8,9. The first branching point corresponds to the test of A at

t1, the second one corresponds to the B-test at t2 (Fig. 3.1).

The ordinary straight line corresponds to a successful branch, the two dashed

lines to branches without success. The chronological order is fixed here, but the

time difference dt¼ t2� t1 > 0 may assume arbitrary positive values. There is one

branch of success.

7Mittelstaedt (1978).
8Mittelstaedt (1978).
9Stachow (1980).

3.3 The Formal Languages of Classical Physics and of Quantum Physics 53



In a similar way the one place operation “negation” may be introduced by the

proof three for ¬A (not A) with one branch for success and one branch without

success (Fig. 3.2).

The sequential conjunction (and the other sequential connectives) refer to two

instants of time t1 and t2. The logical connectives refer to one common instant of

time. The logical connective which corresponds to the sequential conjunction is the

logical conjunction A∧B, which is defined by the following attack-and defence

scheme

Connective Denotation Attacks Defences

A∧B A and B A?, B? A!, B!

In contrast to the sequential conjunction we have here an arbitrary number of

attacks and defences in arbitrary order. In this way it is guaranteed that the result of

the A-and B tests can be attributed to a common time value. If A∧B is proved, then

A and B are simultaneously true. The assumed independent testability of proposi-

tions A and B implies that after a test of B the result of a preceding test of A is still

valid and available without any restrictions. The unrestricted availability of the

results of A-and B tests implies that for the proof of A∧B we need only two steps,

provided their time difference dt¼ t2� t1 is sufficiently small. There is no need in

repeating the proofs (Fig. 3.3).

B

A

A

B

B

A

t 2 tt 1

Fig. 3.1 Proof-tree for A┌┐B in classical language

t

A

A

A

Fig. 3.2 Proof-tree for ¬A in classical logic
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In a similar way the other logical connectives, i.e. the disjunction A∨B (A or B)

and the material implication A!B (if A then B) can be defined by the possibilities

to prove or to disprove them, or by the respective prove trees (Fig. 3.4).

The full language SC of classical physics can then inductively be defined by the

set SC
(e) of value definite elementary propositions and by all finitely connected

compound propositions A ∈ SC. The concept of truth can then be defined in the

following way:

A proposition A∈ SC is said to be true if the proof tree of A leads finally to a branch of success;

it is called false if the proof tree ends with a branch without success.

Furthermore, on the set of propositions we introduce two binary relations,

(i) the value equivalence A¼B, A is true if and only if B is true

(ii) the implication A�B , A¼A∧B

tt2t1

A

B

B

A

Fig. 3.3 Proof-tree for A∧B in classical logic

Fig. 3.4 Proof trees for A∨B

and A!B in classical logic
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The full language can then be formulated as

SC ¼ fSCðeÞ; u; ^; _; !; :;¼;�g

The semantics described here is a combination of a realistic semantics (with

respect to elementary propositions) and a proof semantics (with respect to com-

pound propositions). Hence, the truth of a compound proposition depends on the

one hand on the connectives contained in it, on the other hand on the elementary

propositions and their truth values. This leads to the following question: Are there

finitely connected propositions A∈SC which are true in the sense of the semantics

described, irrespective of the truth values of the elementary propositions contained

in them? Propositions of this kind will be called formally true. Examples for

formally true propositions can easily be found. On account of the value definiteness
of the elementary propositions we have the formally true proposition

A _ :A ðtertium non daturÞ

and on account of the unrestricted availability of propositions in a proof tree we

have the formally true proposition

A ! ðB ! AÞ;

which is true even without the assumption of value definiteness of elementary

proposition. If both value definiteness and unrestricted availability of propositions
are assumed, then we obtain the formally true proposition

A ! ððA ^ BÞ _ ðA ^ :BÞÞ:

There are many, even infinitely many formally true propositions. The totality of

formally true propositions is called classical logic and the algorithm which gen-

erates propositions of this kind is the calculus L C of classical logic.
For the formulation of the calculus of the classical logic L C we make use of two

special propositions,

� the true proposition (verum) V, such that |—V and for all A∈S C we have A�V

and

� the false proposition (falsum) L¼ ¬V with L�A for all A∈S C.

Using the two propositions V and L, we have |—A , V�A and |—A!B ,
A�B.

The calculus L C can be formulated as a calculus of implications with “begin-

nings”)A�B and rules like A � B)C�D. � The Lindenbaum-Tarski algebra

of L C is a complete, complemented and distributed lattice LB (Boolean lattice). If it

is freely generated by a finite number of elementary propositions it is also atomic

and fulfils the covering law.
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The calculus LC of classical logic reads

1.1. ) A � A

1.2. A � B; B � C ) A � C

2.1 ) A ^ B � A

2.2. ) A ^ B � B

2.3. C � A; C � B ) C � A ^ B

3.1. ) A � A _ B

3.2. ) B � A _ B

3.3. A � C; B � C ) A _ B � C

4.1. ) A ^ ðA ! BÞ � B

4.2. A ^ C � B ) C � A ! B

5.0 ) L � A;) A � V

5.1. ) A ^ :A � L
5.2. ) V � A _ :A

The formal propositional logic does not depend on the elementary propositions

which are contained in the formally true propositions. However, the logic depends

on the general preconditions under which proof processes are possible. In the

present case the most important preconditions are the finite decidability of elemen-

tary propositions and the unrestricted availability in a proof-process. Formally true

propositions are not true in an absolute sense. Their truth follows from the prag-

matic preconditions of proving or disproving propositions. Only in this transcen-

dental sense they are a-priori true.

3.3.2 The Formal Language of Quantum Physics

In the preceding section (c1) about the formal language of classical physics, we

mentioned already the weak pragmatic preconditions [v] and [a], which presuppose

neither value definiteness (v) nor unrestricted availability (a), respectively, in their

strict version. Since the strong preconditions (v) and (a) cannot be justified in

general by rational reasoning or by experimental means, and in accordance with

our most general method of relaxing or abandoning ontological hypotheses, we

restrict our investigations to the relaxed and less hypothetical conditions [v] and [a].

On the basis of these weak pragmatic preconditions [v] and [a] a formal language

S Q of quantum physics and the calculus L Qi of intuitionistic quantum logic can be

established.

For the constitution of a quantum language we begin again with elementary

propositions A which attribute a property P(A) to an object system S. Accordingly,

the proof of the elementary proposition A consists in a measurement of property

P(A) with positive outcome.

The possibilities for quantum measurements allow for the assumption that

after the measurement of P(A) we obtain either a positive or negative result.10

10Busch et al. (1996).
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Hence, an elementary proposition A can either be proved (result A) or disproved

(result A) and are thus value-definite. Furthermore, if after a successful proof of A, a

new proof attempt for A is made, then one obtains again the result A, if the applied

measurement is repeatable. However, if after a successful proof of A another

elementary proposition B is proved, then a new proof attempt for proposition

A will in general not lead to the previous positive result. Hence, two propositions

A and B are in general not simultaneously decidable. This is only the case if the

corresponding properties P(A) and P(B) are commensurable. In this case we will

call also the propositions A and B “commensurable”.

Elementary propositions A,B, . . . are thus in general incommensurable, i.e. not

simultaneously (jointly) decidable. If proposition A, say, was shown to be true, then

after a proof attempt of B and irrespective of the result (B or B), a new proof attempt

of A will in general not lead to the previous result. Instead, this result is available

after the B-test only if A and B are commensurable. In a sequence of proofs

the results are only restrictedly available, where the restrictions are given by the

violations of commensurabilities. For the definition of the connectives the restricted

availability is very important.

These restrictions do not invalidate the definitions of the negation ¬A and the

sequential conjunction AuB which are defined here by the same proof-trees as in

the language SC of classical language. The negation is defined by one proof attempt

and the sequential conjunction by two subsequent proof attempts. In both cases the

restricted availability does not matter since repeated proof attempts do not occur

here. However, the restrictions do matter if one tries to define the other connec-

tives.11,12

The logical conjunction A∧B is defined here by the same attack-and defence

scheme as in classical language. Since unrestricted availability is no longer given

here, the proof -tree for

Connective Denotation Attacks Defences

A∧B A and B A?, B? A!, B!

A∧B consists of an infinite number of steps and cannot be reduced to two steps

as in classical language. If, however, A and B were commensurable, then it would

again be possible to reduce the proof-tree to one A-proof and one B-proof. In order

to achieve generally at a finite proof-tree we make use of the commensurability

proposition k(A,B) which is defined to be true if and only if A and B are commen-

surable. The counter proposition is denoted here by kðA;BÞ.13 The logical conjunc-
tion A∧B is then true if in addition to A and B also k(A,B) is shown to be true.

Hence, we have a proof-tree with three subsequent tests at time values t1, t2, t3.

Since the conjunction A∧B is understood as a simultaneous connective, the time

differences t3� t2 and t2� t1 must be sufficiently small (Fig. 3.5).

11Mittelstaedt (1978).
12Stachow (1980).
13Mittelstaedt (1978).
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The commensurability propositions k(A,B) and k(A,B) are contingent proposi-

tions whose truth must be shown by a convenient sequence of measurements.

We will not go into detail here. By means of the commensurability propositions

k(A,B) and k(A,B) one can define also the logical disjunction A∨B and the material

implication A!B by proof trees with a finite number of steps. Similarly as in

classical language we can define here binary relations between propositions. The

proof equivalence A�B means that A can be replaced in any proof tree by B

without thereby changing the result of the proof tree. The binary relation of value

equivalence A¼B means that A is true if and only if B is true.14 The relation of

implication A�B can then be defined by A�A ∧ B. Finally, we mention that

again A!B is true if and only if A�B holds and that the commensurability

proposition is true if and only if A� (A∧B)∨(A∧¬B) holds (Fig. 3.6).
The full language SQ of quantum physics can then inductively be defined by the

set SQ
(e) of elementary propositions, the commensurability propositions k and k and

the connectives mentioned. Together with the relations “� ”, “¼”, and “�” the

language SQ reads

Fig. 3.5 Proof tree for the

logical conjunction

Fig. 3.6 Proof trees for the

logical disjunction and the

material implication

14If two propositions are proof equivalent, then they are also value equivalent. The inverse is not
generally true. However, in classical language the two equivalence relations coincide.
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SQ ¼ fSQðeÞ; k; k;u;^;_;!;:;�;¼;�g

Quantum logic is the formal logic of quantum language SQ and its syntax. The

reduced possibilities of proving propositions are in particular important for those

propositions which are true, irrespective of the elementary propositions contained

in them, i.e. for formally true propositions. It turns out that in quantum language

there are less formally true propositions than in classical language. In order to make

this more preliminary information more precise we will express the totality of all

formally true propositions of quantum language by a calculus, the calculus of

quantum logic.

There are, first of all, many formally true propositions of classical language

which are also formally true in quantum language. The value definiteness of elemen-

tary propositions implies that also all finitely connected propositions are value

definite, i.e. the proposition A∨¬A, the tertium non datur law, is formally true.

The precondition that measurements are repeatable in principle implies that k(A,A)

is always true and hence A!A, the law of identity, is formally true. In a similar

way, it follows that ¬(A∧¬A), the law of contradiction, is formally true in quantum

logic. The three cases mentioned are not very surprising since these formally true

propositions contain only one proposition A. Hence, commensurability problems

cannot appear. There are, however, also formally true propositions in quantum logic

which contain two ore more elementary propositions, where nothing is presupposed

about their mutual commensurability. An example of this kind is the proposition

(A∧(A!B))!B, the modus ponens law, which is formally true in quantum logic

irrespective of the truth or falsity of the commensurability proposition k(A,B).

Fig. 3.8 Proof-tree for

A! (B!A) in quantum

logic

A

A

B

A

B

A

Fig. 3.7 Proof tree for A! (B!A) in classical logic
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More important for the characterisation of quantum logic are those propositions

which are formally true in classical logic but not in quantum logic. The shortest and

in addition most important proposition which is formally true in classical logic but

not in quantum logic is the proposition A! (B!A). In classical logic the proof-

tree for A! (B!A) contains only branches of success (Fig. 3.7).

In quantum logic the situation is more complicated since the proof tree for the

material implication contains also the test of commensurability propositions k(A,B).

For this reason, the proof-tree for A! (B!A) contains 5 branches, but only 3

branches of success. Only if the commensurability of A and B were presupposed,

then the proof-tree would contain only successful branches. This means that in

general the proposition A! (B!A) is not true and thus not formally true (Fig. 3.8).

3.4 The Approach to Orthomodular Quantum Logic

On the basis of the weak pragmatic preconditions [v] and [a] of a formal language

SQ of quantum physics, which presuppose neither value definiteness nor unre-

stricted availability, we can establish now the calculus LQi of formal intuitionistic

quantum logic. This calculus summarizes the totality of all propositions that are

formally true even under the restrictions that are induced by the commensurability

tests. There are – as in classical logic – infinitely many propositions that are

formally true, i.e. true irrespective of the truth or falsity of the elementary proposi-

tions contained in them. They can be summarised in the quantum logical calculus

LQi, which we present here as a calculus of implications A�B. It contains “begin-

nings”)A�B and “rules” of the form A� B)C�D. For the formulation of this

calculus we use of the two special propositions V (verum) and L (falsum) such that
for all propositions A∈SQ the relations L�A�V hold. � If A! (B!A) is true

then the relation

A� (B!A) holds. A�B!A implies B�A!B and vice versa and A�B

!A holds if and only if k(A,B) is true. Hence, in a calculus of quantum logic the

commensurability propositions k(A,B) can be eliminated by this implication and

will no longer appear in its final formulation.

The calculus LQi of intuitionistic quantum logic reads:

1.1. ) A � A

1.2. A � B; B � C ) A � C

2.1 ) A ^ B � A

2.2. ) A ^ B � B

2.3. C � A; C � B ) C � A ^ B

3.1. ) A � A _ B

3.2. ) B � A _ B

3.3. A � C; B � C ) A _ B � C

4.1. ) A ^ ðA ! BÞ � B

4.2. A ^ C � B ) A ! C � A ! B

4.3. A � B ! A ) B � A ! B

(continued)
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4.4. B � A ! B; C � A ! C ) B � C � A ! B � C; � 2 f^;_;!g
5.0. ) L � A;) A � V

5.1. ) A ^ :A � L
5.2. A ^ C � L ) A ! C � :A
5.3. A � B ! A ) :A � B ! :A

We mention briefly some important properties of this calculus of intuitionistic

quantum logic:

(i) The calculus LQi is complete and consistent with respect to the dialog seman-

tics mentioned,15 i.e. all implications that are derivable in LQi can successfully

be defended in a dialog and vice versa.

(ii) If the elementary propositions considered are value definite in the sense of

(v), then all finitely connected propositions are also value definite. For these

propositions the calculus LQi can be extended by the “excluded middle”

V�A∨¬A. The extended calculus LQ will be called the calculus of ortho-
modular quantum logic since the Lindenbaum-Tarski algebra of LQ is an

orthomodular lattice.16 Compared with the calculus LQi the calculus LQ

contains only the new additional beginning

) V � Av:A: (5.4)

The assumption that elementary (material) propositions are value definite is not

purely hypothetical. It is based on the conjecture that the respective properties can

be verified or falsified by material, experimental processes. It can easily be seen

thatLQ isa relaxationof thecalculusLCofclassical (Boolean)propositional logic.

(iii) The commensurability of two propositions A and B can be expressed in LQi

by a binary relation A�B given by A�B!A which is according to LQi

symmetric. In LQ this relation reads A� (A∧B)∨(A∧¬B). The commen-

surability proposition mentioned above can be expressed in LQ by k(A,

B)¼ (A∧B)∨(A∧¬B)∨(¬A∧B)∨(¬A∧¬B). It is true if and only if A�B

holds. If A�B is added to LQi as an additional general beginning,

) A � B ! A; (4.5)

then one obtains the calculus Li of intuitionistic logic. If it is added to LQ, then

one obtains the calculus LC of classical logic.

(iv) If a set {A1 . . .An} of elementary propositions is mutually commensurable, then

the commensurability is inherited to all finitely connected propositions. Within

the framework of the calculus LQ of orthomodular logic this subset of mutually

commensurable propositions is determined by a calculus LC of classical logic.

15Stachow (1976).
16Mittelstaedt (1978), p.29; Kalmbach (1983).
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(v) In the calculus LQi for two propositions A and B the material implication

A!B is uniquely determined by LQi. A!B is true if and only if A�B holds.

In the extended calculus LQ the uniquely defined material implication can be

expressed by the other connectives as A!B¼ ¬A∨(A∧B).

Summarising the various interrelations between the logical calculi LQi, LQ, Li,

and LC we obtain the following diagram (Fig. 3.9)

The strongest calculus LC is on the top of the diagram, the weakest calculus LQi

on the bottom. The arrows indicate the various relaxations leading from one

calculus to another one. The propositions by the side of the diagram indicate the

difference between the respective calculi. E.g. the proposition A! (B!A) is

formally true in Li but not in LQi.

The explicit construction of the logical calculi LQi and LQ is only one aspect of

quantum logic. The Lindenbaum-Tarski algebras of LQi and LQ are lattices LQi and

LQ, respectively and these lattices are of particular interest. Since the lattice LQ is

orthomodular we called LQ the calculus of orthomodular quantum logic. If all

propositions refer as predicates to a single object, then LQ is atomic and fulfils

the covering law.17

Definition. In a lattice LQ an element a with a 6¼L is called an atom, if for any
element X∈LQ, L�X� a implies either X¼L or X¼ a.

Atomicity. If for any element A∈ LQ there exists an atom awith a�A, LQ is called

atomic.

Covering law. Let a� LQ be an atom. If for all elements A and X of LQ, the relation

A�X�A∨a implies X¼A or X ¼ A ∨ a, the lattice LQ is said to fulfil the

covering law.A lattice LQ that is atomic and fulfils the covering law will be denoted

here by LQ
*.

LC

Li LQ

A®(B®A)

A®(B®A)

LQi

AÚØA

AÚØA
Fig. 3.9 Interrelations

between the logical calculi

L Qi, L Q, L i, and L C

17Stachow (1984).
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3.5 The Bottom-up Reconstruction of Quantum

Mechanics in Hilbert Space

At this point, the two faces of quantum logic become obvious. Orthomodular

quantum logic is not only a consequence of an ontology O(Q) that is – at first

sight – in accordance with quantum theory, it is presumably also the origin of this

theory in the following sense. If we have once achieved an orthomodular lattice LQ
*

in the described way, it seems to be possible to proceed to the lattice LH of

subspaces of Hilbert space. The last step was strongly motivated by the Piron-

McLaren theorem18 which states that a lattice LQ* (of length at least 4) is isomor-

phic to the lattice LH(D) of subspaces of a Hilbert space over a division ring D,

where D is given by the real, the complex, or the quaternion numbers. If the real and

the quaternion numbers could be excluded by experimental reasons, we would

arrive at the Hilbert space H(C) over the complex numbers C and thus at quantum

mechanics in Hilbert space. If this way of reasoning were really conclusive, it

would allow for testing the consistency of the reconstructed quantum mechanics

with the underlying ontology O(Q).
However, the lattice LQ* does not restrict the choice of the division ring per se to

the real, the complex, and the quaternion numbers. Indeed, Keller19 could show in

1989 that there are lattices LQ* that fulfil all the conditions of the Piron-McLaren

theorem but nevertheless allow for non-classical Hilbert spaces over non-

Archimedean division rings. This negative result was considered by many scientists

as demonstrating the fundamental impossibility of the quantum logic approach to

quantum mechanics in Hilbert space.20 However, this discouraging conclusion was

again disproved by an important result discovered by Maria Solèr 21 in 1995 that

allows for a purely lattice-theoretical characterisation of classical Hilbert spaces. In

fact, every lattice which satisfies in addition to the conditions of the Piron-McLaren

theorem 22 also the so-called “angle bisecting condition” is isomorphic to a classical

Hilbert lattice, in particular to the Hilbert space H(C) over the complex numbers C.

Obviously, we must confirm that the properties of quantum mechanics in Hilbert

space are compatible with the ontological preconditions [a] and (v) of this approach.

Of course, this consistency requirement is fulfilled with respect to the commen-

surability problem, i.e. to the condition [a]. But it cannot be fulfilled with respect to

the value definiteness, i.e. to the condition (v). Indeed, this ontological preconditions

of the preceding section is still too strong and cannot be realised in Hilbert space

quantum physics. Orthomodular quantum logic is based on intuitionistic quantum

logic LQi and the assumption that the material elementary propositions are value

18Cf. Piron (1964), McLaren (1965), and Varadarajan (1968).
19Keller (1980).
20For more details cf. Dalla Chiara et al. (2001), pp.48–50 and Dalla Chiara et al. (2004),

pp.72–74.
21Solèr (1995).
22Piron (1976), McLaren (1965).
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definite, since the respective properties can be verified or falsified by material

processes. This assumption which allows to extend the calculus LQi to the stronger

calculus LQ is usually justified by a recourse to quantum mechanical measurements.

However, more detailed investigations of the quantum theory of measurement have

shown in recent years, that after a unitary measurement process a definite value of

the measured property cannot be attributed to the object system and no definite value

can be attributed to the pointer of the measuring apparatus.23,24 Consequently,

elementary (material) propositions that attach truth-values to directly measurable

properties cannot be value definite� in contrast to the assumption mentioned above.

One way to solve this “problem of objectification” consists in a relaxation of the

underlying ontology O(Q). Indeed, we could weaken the ontological presuppositions
by considering unsharp properties and unsharp elementary propositions, which are not

value definite. This idea is strongly supported by physics, since the quantum mechan-

ics of unsharp observables (POV-measures) was developed recently in detail and is

now well established. In particular, the quantum theory of measurements was elabo-

rated for the more general case of unsharp observables. 25 Unsharp observables are

understood here as unsharp properties that pertain objectively to a quantum system.

It is not meant here that the value of an observable ismerely subjectively unknown but

objectively decided. Instead, we are faced here with an objective un-decidedness of

properties.

For the relaxation of the ontologyO(Q) in the sense of unsharp properties we refer
to the brief remarks in Sect. 1.3. Accordingly, the new task is the formulation of an

unsharp quantum ontology, that will be denoted here by O(QU). The quantum

ontology O(Q), which is characterised by the requirements O(Q)1 . . .O(Q)4 in

Sect. 3.2 is not yet in complete accordance with quantum physics for the following

two reasons. First, the most general observables in quantum mechanics – the POV-

measures – correspond to unsharp properties that allow for unsharp joint properties,

even for complementary observables. Hence, the ontology O(Q) is too restrictive

since, generally, it does not allow for joint properties of complementary observables.

Second, the requirement of value definiteness for all properties cannot be fulfilled,

since the pointer objectification in the measurement process cannot be achieved in

general. Hence, in this respect, the ontology is not sufficiently restrictive.

The two objections against O(Q) can both be taken into account, if O(Q) is
replaced by the new quantum ontology O(QU) of unsharp properties, provided the

degree of unsharpness is conveniently defined. It is a difficult question, how much

unsharpness is needed quantitatively for removing the two deficiencies of O(Q)
mentioned. In Sect. 4.3, where we investigate the meaning of Planck’s constant in

quantum physics, we can provide an answer to this question.

Comparing the three ontologies in question, we find that on the one hand, O(QU)

is partly stronger than O(Q) since it allows for unsharp joint complementary

23Busch et al. (1996).
24Mittelstaedt (1998).
25Busch et al. (1996).
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properties that are not contained inO(Q). On the other hand, O(QU) is partly weaker

than O(Q) since value definiteness of properties is not required. However, O(QU) is

weaker than the classical ontology O(C). These relations are illustrated in Fig. 3.10.

From the logical point of view, one has to show that the ontology of unsharp

properties leads to a language and logic of unsharp propositions. At this point a
clear distinction must be made between two different relaxations of the concept of

value definiteness. For a sharp (s) proposition A value definiteness means that either

A or the counter proposition A can shown to be true. In other words, there is a proof

procedure that leads either to A or to A. In intuitionistic logic L i and in intuitionistic

quantum logic LQi this value definiteness (v) is not assumed but replaced by the

relaxed value definiteness [v] which means that in general neither a proof of A nor a

proof of A is known. However, if accidentally a subset {A1. . .An} of elementary

propositions is value definite in the sense of (v), then this value definiteness is

inherited to all propositions which are finitely connected by the Ai and the logical

connectives ∧, ∨, ¬, and !.

If sharp (s) propositions are replaced by propositions which are in general

unsharp, expressed by {s}, then for an unsharp proposition A the two possibilities

A and A are no longer mutually exclusive. This means that the properties P(A) and

P(A) can both be attributed to the object system S. Under these conditions, the

proposition A ^ �A is no longer formally false, which leads to various kinds of

paraconsistent logical systems. The relaxed value definiteness that is induced by the

unsharpness assumption {s} will be denoted here by {v}. This weakened value

definiteness means that the unsharp predicates A and �Awill both objectively pertain

to the system. This corresponds to a realizable experimental situation in a measure-

ment process. Hence we find that there are two quite different relaxations of the

value definiteness of orthomodular logic:

1. intuitionistic value indefiniteness [v]

2. unsharp value indefiniteness {v}

O(C)

O(Q)

O(QU)

metaphysical
hypotheses

value
definiteness

unsharp
observables

Fig. 3.10 Comparison between the ontologies O(C), O(Q) and O(QU)
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In unsharp quantum logic LQi
u both relaxations are taken together. This means

that even sharp propositions are value indefinite in the sense of [v]

In the quantum logic LQi of sharp propositions we made use of a relaxation of the

availability (a) which is replaced by the restricted availability [a]. If we proceed from

LQi to a quantum logic of unsharp propositions the relaxation of the availability that

leads to condition [a] is too strong and must be partially retracted. Indeed, the

amount of availability increases with the unsharpness of the propositions in question.

If after the successful proof of the unsharp proposition A by a measurement another

unsharp proposition B is proved, then the result of the previous A-measurement is

partially still available. This can be demonstrated experimentally as well as theoreti-

cally within the context of a simple Mach-Zehnder interference experiment.26 Note

however, that the conveniently defined amounts u(A) and u(B) of unsharpness of A

and B, respectively, must fulfil the Heisenberg relation u(A)u(B)� �h/2.27 This

partially retracted, restricted availability will be denoted here by {a}.

This means that the new and modified availability is restricted via uncertainty

relation by Planck’s constant. In other words, if the mutual uncertainties (i.e. the

product u(A)u(B)) remain below �h then we fall back to the rigorously restricted

availability [a]. � We summarize the various pragmatic preconditions of elemen-

tary (material) propositions in the following table.

(s) {s}

(v) [v]

Properties of elementary propositions

{v}

(a) [a] {a}

The logical calculi are related to these properties in the following way:

(s): (v) (a) L C

[v] (a) L i

(v) [a] L Q

[v] [a] L Qi

{s}: {v} {a} L Qi
u

These considerations show that elementary (material) propositions are in general

characterised by the unsharp value definiteness {v} and by the relaxed restricted

availability {a}. The new task is then the explicit construction of a formal logic of

unsharp propositions in the sense of {s} by means of a dialog game, say. This has not

yet been done except one not completely satisfying attempt.28 On the basis of {s}, {v}

26Mittelstaedt et al. (1987).
27Busch (1985) and Busch et al. (2007).
28Giuntini et al. (1989).
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and {a} we expect an unsharp (fuzzy) paraconsistent logic with commensurability

restrictions that are weaker than the restrictions in intuitionistic and orthomodular

quantum logics LQi and LQ. In the literature, we find a large variety of proposals for

unsharp quantum logics.Wemention here: Unsharp quantum logic ,29 effect algebras

and unsharp quantum logics,30 Brouwer-Zadeh quantum logic,31 fuzzy intuitionistic

quantum logic,32 partial unsharp quantum logic.33

Presently, it is not known, whether one of these logical systems corresponds to the

requirements formulated in this chapter, i.e. whether it can be reconstructed by the

operational techniques mentioned. Hence, the proposed {v}� {a}� dialog seman-

tics could serve as a criterion, as a guiding principle for finding the “true” unsharp

quantum logic. The new task is rather ambitious. In a first step, it must be shown that

the generalised dialog semantics leads� if at all� to one of the proposed logical

systems. With respect to the dialog-semantics, soundness and completeness must be

proved. In the proposals mentioned soundness and completeness was proved merely

with respect to an algebraic semantics. This is, however, not sufficient for demon-

strating consistency between logic and the underlying ontology that is expressed by

the pragmatic preconditions of the formal language in question.

In the revised approach to quantum logic, which was discussed in the preceding

Sect. 3.4, we assumed that elementary (material) propositions correspond to unsharp

properties in the sense of POV – measures. The formal logic of these “unsharp

propositions” leads to a Lindenbaum�Tarski� algebra that will� presumably�
agree with one of the proposed algebras of unsharp properties. We expect that in a

final step this way of reasoning leads to the effect algebra in Hilbert space and to

quantum mechanics of unsharp properties in Hilbert space. For the ontological pre-

conditions of quantum logic this means, that the assumed properties of elementary

(material) propositions should be reproducible as outcomes of a preparatory quantum

mechanical measurement process. This is the requirement of consistency between

quantum logic and the underlying ontology mentioned above. However, even for the

unsharp propositions discussed in the last section, this requirement cannot be fulfilled.

As mentioned above (Sect. 3.4) the first attempt to solve the measurement

problem consists in generalising the concept of object-observables by replacing

sharp observables (projection valued measures) by unsharp observables that are

given by POV-measures (positive operator valued measures). This attempt was

based on the conjecture that the quantum measurement problem is induced by the

use of idealised sharp observables. This is, however, not the case. It could be

shown that not only for sharp observables but also for unsharp object observables

in the sense of POV-measures, pointer objectification cannot be achieved.34

29Dalla Chiara (1995).
30Foulis (1994).
31Giuntini 1990.
32Dalla Chiara et al. (1993).
33Dalla Chiara et al. (1994).
34Busch and Shimony (1996).
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Moreover, we do not know up to now, whether a stronger relaxation of the

ontological premises can solve the measurement problem.35

However, this negative result does not invalidate directly the generalisation of

orthomodular quantum logic, which we investigated in the present section. The

generalised quantum logic, which is based on unsharp elementary propositions in

the sense of POV-measures, presupposes more adequate ontological hypotheses

than orthomodular quantum logic. Hence, this new logic, which is again weaker

than classical logic is applicable to a domain of physical phenomena that is more in

accordance with quantum mechanics than orthomodular logic. It is not claimed

here, that quantum logic of unsharp propositions is free from ontological hypoth-

eses at all and thus applicable to the totality of physical phenomena.

Quantum logic of unsharp propositions is not the “true logic”. Since unsharp

propositions do not solve the measurement problem, we cannot expect that unsharp

quantum logic is the “final logic” of physics, which is in accordance with the

universal “final theory of everything”. However, unsharp quantum logic is closer

to the “final logic” than orthomodular logic and classical logic. This means, in

addition, that due to the more adequate relaxation of non-empirical ontological

hypotheses quantum logic of unsharp properties is more intuitive andmore plausible

than quantum logic of sharp properties and classical logic.

3.6 Physics of Indistinguishable Objects

The rational reconstruction of quantummechanics, whichwe discussed in this chapter,

was guided by the idea that the essential features of quantum mechanics can be

obtained from classicalmechanicsmerely by abandoning or relaxing themetaphysical

hypothesesO(C)1. . .O(C)6 contained in the classical theory. For the reconstruction of
quantum mechanics, more precisely of non-relativistic quantum mechanics, we had

to abandon only the hypotheses O(C)3. . .O(C)6, whereas the hypotheses O(C)1 and
O(C)2 of the existence of an absolute time and of the validity of the Euclidean

geometry in a relative space, respectively, could be preserved without any change.

Presently, it is not known,whether the elimination of these two hypotheses would lead

to an improvement of the already reconstructed quantum mechanics.

However, it would be worthwhile to know, how the elimination of the hypoth-

eses O(C)3. . .O(C)6 is expressed in detail in the reconstructed quantum mechanics.

Generally, it is rather hard to see, which feature of the reconstructed quantum

mechanics is induced by the elimination of which hypothesis. The reconstructed

full theory is the result of abandoning or relaxing the totality O(C)3. . .O(C)6 of

hypotheses without thereby indicating the influence of a particular hypothesis.

There is, however, a remarkable and elucidating exception. If we eliminate in

classical mechanics nothing, except the hypothesis O(C)3 which states that there

are individual objects, then we obtain a classical theory with objects that are

35Busch (1998).
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indistinguishable. Except from this conceptual deficiency, the reconstructed theory

would not show any remarkable quantum features.

The only difference between this pseudo-classical theory and the true classical

mechanics is, that the statistics of bodies is no longer governed by Boltzmann

statistics. Indeed, the statistics of indistinguishable objects, which was first discov-

ered in the statistical behaviour of photons by Planck and Einstein, was later

elaborated generally as the statistics of indistinguishable objects by Natanson36

and finally applied to photons and massive particles by Bose37 and Einstein. 38

Today, it is called Bose-Einstein statistics. In order to illustrate this result we

consider, according to Natanson, P indistinguishable particles and N distinguish-

able boxes of finite size and investigate the distribution of P particles over N boxes.

In case of classical, i.e. distinguishable particles there are

mCðP;NÞ ¼ NP

ways to distribute the P particles over N boxes. For indistinguishable particles

there are

mBEðP;NÞ ¼
ðN þ P� 1Þ!
P!ðN � 1Þ!

possible ways for distributing the particle over the N boxes. This is the kind of

distribution which is called today Bose-Einstein statistics. In contrast to the

classical situation, in B-E statistics permutations of particles in a box do not lead

to new cases. Hence, a large number of configurations which in the classical case

are considered different, in B-E statistics are count as one. For a more intuitive

illustration, we show in Fig. 3.11. the possible ways to distribute two particles

(P¼ 2) over three boxes (N¼ 3) for classical statistics according to mC(P, N) as well
as for Bose-Einstein statistics according to mBE(P, N).

39

The physical relevance of the Bose-Einstein statistics becomes clear, if we

identify the boxes with states in the sense of quantum mechanics. In the limit of

high temperature, the number of possible states is increasing and the number of

configurations with two or more particles in one state becomes negligible.

The difference to classical statistics disappears in this case, except from a simple

reduction of the statistical weight of any configuration by a factor P! compared with

the classical case. In contrast, for low temperature the number of configurations

with two or more particles occupying the same state is not negligible, and those

configurations are privileged. This means, that at low temperature Bose-particles

36Natanson (1911).
37Bose (1924a), (1924b).
38Einstein (1924), (1925).
39Adopted from Hund (1967), p. 154.
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have a greater probability than classical particles to occupy the ground state.

This phenomenon is known as Bose-Einstein condensation.

3.7 Are the Laws of Quantum Logic Laws of Nature?

The reconstruction of quantum mechanics by abandoning several hypothetical

assumptions of classical mechanics allows also to give a – perhaps preliminary –

answer to the difficult and ambitious question, whether the laws of quantum logic

are genuine laws of nature. Without going at this place already too much into

details, by a law of nature we understand a contingent, albeit universally valid law

that refers to the external material reality. Here, we don’t think of the huge number

of rules that are often denoted as “laws”, like Ohm’s law, but of the most funda-

mental law-like structures in physics as classical mechanics, quantum mechanics,
electrodynamics, general relativity, etc. For more details we refer to the literature.40

The early history of quantum logic provides a rather confusing picture. In his

pioneering book of 1932, J. von Neumann41 made the observation, that the projec-

tion operators in a Hilbert space may be considered as elementary yes – no

propositions about measurable properties and he constructed also the most im-

portant logical connectives “and”, “or”, and “not” in terms of projection operators.
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Fig. 3.11 Comparison of Bose-Statistics and classical statistics

40Armstrong (1983); Mittelstaedt, P./Weingartner, P. (2004); Van Fraassen (1989).
41von Neumann (1932).
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In a subsequent publication with G. Birkhoff of 1936, 42 entitled “the Logic of
quantum mechanics” the authors could show, that the projection operators and the

corresponding propositions constitute an orthocomplemented “lattice” with some

additional properties. In contrast to the orthocomplemented and distributive

(Boolean) lattice of classical logic, the lattice of “the logic of quantum mechanics”

turned out to be much weaker than the Boolean lattices and to be neither distributive

nor modular.

However, this formally well elaborated first version of “quantum logic” was not

generally accepted by the scientific community of physicists and philosophers. The

critique against “the logic of quantum mechanics”43 was mainly concerned with the

objection, that “the logic of quantum mechanics” is not a genuine logic in the strict

sense, a formal structure in the tradition of Aristotle, Thomas Aquinas, and George

Boole, which governs the rules of our rational thinking and arguing. The reason for

this refusing reaction to quantum logic was the suspicion, that either simple mis-

takes were made in the presentation of quantum logic44, - or that the advocates of

quantum logic tacitly ignored the fact that the deviations of quantum logic from

ordinary classical logic are induced by empirical results of quantum mechanics.

Hence, quantum logic could also be obtained in a very natural way, namely, as

Putman wrote, just by reading “the logic off from Hilbert space”. 45 If these

assumptions were true, then the laws of quantum logic would indeed be laws of

nature in a somewhat disguised form. – We add, that in the sceptical contributions

to quantum logic, we don’t find any critical remark about the justification of

classical logic. Instead, classical logic was taken for granted and only the deviations

from this “true” logic were subject to the critique mentioned.

The operational approach to quantum logic, which makes use of a reduction or

relaxation of metaphysical hypotheses of classical ontology in establishing a formal

language and logic of quantum physics, was only stepwise accepted by the scien-

tific community since the early 1960-th. In this approach, which is presented here in

sections (3c) and (3d), quantum logic appears as an a-priori structure that is justified

more rigorously and under weaker assumptions than the laws of classical logic. This

means, that first of all the pretended preference of classical is no longer justifiable

and secondly, that quantum logic contains less empirical contributions – if at all –

than classical logic. In other words, at this stage of our discussion, there is no need

to care about possible empirical components in quantum logic. Hence, our first, still

preliminary result is, that the laws of quantum logic are a-priori true and should not

be considered as laws of nature.

On the basis of the operational justification of quantum logic which refers to a

relaxed quantum ontology,46 the a priori foundation of quantum logic can be made

42Birkhoff, G. and J. von Neumann (1936).
43For a very detailed presentation of the history of quantum logic cf. Jammer (1974), pp. 341–616.
44Feyerabend (1965); Stegm€uller (1970), pp. 438–461.
45Putnam (1969).
46Stachow (1976); Mittelstaedt (1978).
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more explicit and the formal algebraic structure can be elaborated more in detail.

(Cf. Sect. 3.4) In particular, it turns out, that the Lindenbaum-Tarski algebras of the

calculi of formal quantum logic are lattices. In classical logic, the lattice structure of

the calculi of formal logic was already well known, e.g. from the investigations of

Lorenzen 47 and Curry. 48 In a similar way, the calculi of intuitionistic quantum

logic and of the full orthomodular quantum logic lead to corresponding lattice

structures. These investigations confirm in some sense the above mentioned con-

jecture, that quantum logic in its various representations is a formal structure that

follows a priori from the most general preconditions of a scientific language of

physics. On this stage of our treatment, there are no law-like contributions in sight

in the sense of laws of nature.

However, only on this very high formal level of considerations a completely new

aspect becomes meaningful, which we called in Sect. 3.5 “the two faces of quantum

logic”. The orthomodular quantum logic, which we constructed in Sect. 3.4 is not

only a consequence of the quantum ontology O(Q), but presumably also its origin.

Namely, if we have once an orthomodular lattice that refers to predicates of a single

system,49 then it seems to be possible to proceed in a few steps to the lattices LH of

subspaces of Hilbert space. By means of the important theorems of Piron, Keller,

and Solèr – mentioned in Sect. 3.5 – we finally arrive at quantum mechanics in

Hilbert H(C) space over the field of complex numbers C. There are two possible

interpretations of this important result: The long way from quantum ontology O(Q)
via quantum language, quantum logic, quantum lattices to quantum mechanics in a

Hilbert spaceH(C) shows, that quantum mechanics itself is a-priori true in the sense

of a transcendental justification. Secondly, since quantum mechanics is usually

considered as an empirical structure that corresponds to a genuine law of nature,

also the laws of quantum logic, which finally lead to quantum mechanics must

contain empirical components that at the end of this way of reasoning imply the

empirical components in quantum mechanics. Where do these empirical elements

in quantum mechanics come from?

The answer to this question is given by the theory itself. By means of a

consistency argument – sometimes called “self-consistency” – the empirical com-

ponents that are still contained in the quantum ontology O(Q), and presupposed in

the whole way of reasoning, can be justified by quantum mechanics in Hilbert

space. Indeed, the remaining weak ontological premises O(Q)1 . . .O(Q)4, which are
free from metaphysical hypotheses, turn out to be compatible with quantum

mechanics in Hilbert space. In this way, quantum mechanics can justify that

ontology from which quantum logic and quantum mechanics evolved.

The whole way of reasoning is graphically represented in Fig. 3.12. The

Q-ontology in box [1] contains an empirical physical component that is free from

metaphysical contributions. The formal structures that arise from this quantum

47Lorenzen (1955).
48Curry (1952).
49As mentioned in section (3d) a lattice of this kind is atomic and fulfils the covering law.
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ontology appear as a-priori structures, as long as the empirical physical component

ofO(Q) is ignored. However, the various structures in this diagram, Q – language in

box [2], Q – logic in box [3], Q – lattices in box [4], preserve the empirical physical

component, which finally leads to Q – mechanics in Hilbert space in box [6]. And

this final theory justifies the physical content in question in the initial quantum

ontology in box [1] and confirms in this way the whole way of reasoning. The laws

of quantum logic originate from certain most general features of nature in box [1]

and they lead – after incorporating various mathematical structures – to the laws of

nature in box [6]. However, in the present context, the laws of quantum logic are no

laws of nature but a formal structure that evolves a-priori from the preconditions of

a scientific language of quantum physics. Obviously, the answer to the question,

whether the laws of quantum logic are laws of nature, is strongly context dependent.

For an adequate understanding of these interrelations we have to explain the fact,

that obviously the weak ontological preconditions formulated in box [1] are suffi-

cient for deriving the full quantum mechanics in box [6]. This means that the

empirical physical content of quantum mechanics is not larger than the empirical

content in the initial ontology O(Q) in box [1]. In this clearly defined sense,

quantum ontology and quantum mechanics are equivalent. With respect to the
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Fig. 3.12 Self-consistency between Q-ontology and quantum mechanics
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empirical physical content, quantum ontology is sufficient and necessary for quan-

tum mechanics. This implies, that quantum mechanics in Hilbert space is a theory

that does not contain much information about the empirical reality that we call

nature. But obviously, the same theory contains a lot of information about our ways

to grasp this physical reality by means a formal language, its syntax and semantics,

and a formal logic, together with various mathematical structures. In the course of

our reconstruction of quantum mechanics from the initial ontology in box [1], these

linguistic and mathematical tools were added to the original quantum ontology.

This result agrees with the well known observation that quantum mechanics is at

bottom an empty theory, a formal framework that must be filled step by step with

empirical content. Also quantum ontology is only a framework that must be filled

with linguistic and mathematical structures. Hence, from a structural point of view,

quantum mechanics in box [6] is much richer than the ontology in box [1].

However, quantum mechanics does not possess more empirical physical content

than O(Q) – but also not less if it confirms the ontology O(Q) by a self-consistency

argument.

At this stage of our consideration we must argue very carefully. The assumed

quantum ontology, which is based on the requirements O(Q)1 . . .O(Q)4, implies two

important premises for establishing a language and logic of quantum physics, (a) the

restricted availability of propositions and (b) the value definiteness and reliability of

elementary propositions. Premise (a) can be confirmed by the self-consistent justifi-

cation of the ontology O(Q). However, the premise (b) is too strong. According to

the quantum theory of measurement we can objectify only properties that are not

value definite and – and even in its unsharp version – not reliable. This inconsistency

between quantummechanics and quantum ontology, which wementioned already in

Sect. 3.4, is known as the “problem of objectification” or the “measurement

problem”.

It is, of course, an important question, how quantum mechanics can lead to

results, that are not compatible with the presupposed quantum ontology O(Q). The
reason is, that we have tacitly assumed here, that the correctly reconstructed

quantum mechanics is in addition universally valid and applicable to all domains

of the physical reality. This assumption, which was not justified here, implies that

quantum mechanics can be applied also to the quantum mechanical measuring

process. This means, that quantum mechanics governs not only the phenomena of

the microscopic quantum world, but also the partly macroscopic means of its own

verification. In the original formulation of the quantum ontology O(Q), this goal
was not envisaged at all, and thus the compatibility of the extended quantum

mechanics with the original ontology was still an open question.

The present situation is quite similar to the situation in the early days of opera-

tional quantum logic, when the classical ontology O(C) was replaced by O(Q).
Indeed, the ontological preconditions contained in O(Q) are too strong compared

with the reconstructed quantum mechanics. Hence, self-consistency cannot be

achieved. However, O(Q) is not loaded with metaphysical hypotheses but merely

with simplifying assumptions. In order to re-establish consistency between quantum

mechanics and the underlying ontology, O(Q) must be further relaxed, in particular
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with respect the value definiteness of elementary properties. In Sect. 3.5 about the

bottom-up reconstruction of quantum mechanics in Hilbert space, we discussed in

detail the difficulties of this project, which are not jet resolved. As the envisaged

result of such efforts we expect self-consistency between quantum mechanics and a

new weak ontology O(QU) of unsharp properties. 50

On the basis of these considerations, we will try to answer the question in the

title of the present section. Under the optimistic assumption, that self-consistency

can be achieved by means of this new and weak unsharp ontology O(QU), the

empirical physical content of this ontology will be contained also in the laws of

quantum logic. In this sense, the laws of unsharp quantum logic are based of

empirical, physical results, that might be considered as laws of nature, but the

laws of unsharp quantum logic itself are not genuine laws of nature. We emphasise

again, that the empirical component mentioned is not a particular feature of

ordinary (orthomodular) and of unsharp quantum logic, since the empirical, physi-

cal content of classical logic, that originates from classical ontology O(C), is much

larger. As mentioned already at the end of Sect. 3.5, for this reason unsharp

quantum logic is closer to a hypothetical “final logic” than orthomodular logic

and classical logic.

3.8 Quantum Physics and Classical Physics – Their

Respective Roles

The reconstruction of quantum mechanics which we have presented here, allows to

answer the question whether in this theory the ideas, the goals, and the philosophical

interpretations of the founders of quantummechanics are actually realised. In Bohr’s

approach, which we have briefly sketched in Sect. 3.1, as well as in the following two

or three decades quantum mechanics was considered always in the perspective of

classical physics. The apparatuses for the empirical justification were considered as

objects of classical physics and the interpretation of the theory was based on

classical concepts. Hence, classical physics seemed to be a necessary requisite for

the justification and interpretation of quantum mechanics.

In the present chapter we provided a (rational) reconstruction of quantum

mechanics which is based on the weak ontologies O(Q) or O(QU), and on the

formal languages that can be established on the basis of these ontologies. The

relaxation of the classical ontology O(C) consists of a relaxation or elimination of

hypothetical assumptions that are contained in O(C) but which can neither be

justified by rational arguments nor by empirical evidence. The result of our recon-

struction is a formal quantum mechanics in Hilbert space, which reflects merely the

structures of the relaxed quantum ontology. This reconstructed quantum mechanics

is an empty theory which must still be filled with material content. However, the

50We will come back to this ontology O(QU) in subsections (4c-1) and (4c-4).
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theory is presumably universally valid and within the framework of the given

ontology also not disprovable. As to the quantum ontology in question we note,

that it is neither completely free from hypothetical assumptions nor is it obvious,

that it can grasp all relevant structures of the quantum world. Hence, on the level of

the ontology, there is still room for improvement and revision.

This new foundation and justification of quantummechanics shows, that many of

the pretended strange features of the theory have nothing to do with the theory but at

most with the ways of its discovery. As in classical physics also in quantum

mechanics objects are described by their properties but with the difference, that

objects are not thoroughgoing determined. However, this restriction has nothing to

do with the measurement apparatuses. On account of the universal validity of

quantum mechanics also the apparatuses are quantum objects and governed by the

restricted quantum ontology. In the quantum theory of measurement an apparatus is

part of the quantum world and its connection with object systems is described by the

same theory as entanglement.

The interrelation between quantum mechanics and classical physics now

becomes obvious. Quantum mechanics is based on a weaker ontology than classical

physics and depends, for this reason, on less not sufficiently justified hypotheses.

The theory is valid in the large domain of reality that corresponds to the weak

ontology. In particular, quantum theory holds for the measurement apparatuses and

that irrespective of the question whether they are – according to the traditional

view – considered as microscopic or macroscopic entities. This means, that for

measurement processes and for the interpretation of quantum mechanics classical

physics is completely dispensable. Classical physics is not the methodological

Apriori of quantum physics. Not only with respect to the empirical justification

but also with respect to its interpretation quantum mechanics remains with itself.
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Chapter 4

Three Constants of Nature

4.1 The Problem of Constants of Nature in Modern Physics

In accordance with the results of the preceding Chaps. 2 and 3, we assume that the

two fundamental theories of modern physics, the Theory of Relativity (SR) and

Quantum Mechanics (QM) can be obtained from the classical space–time theory

and classical mechanics (CM) by abandoning or relaxing hypothetical assumptions

contained in these classical structures. In addition, it became also obvious in the

preceding chapters, that classical mechanics and Newton’s space-time theory

describe a fictitious world that does not exist in reality. Hence, we do not expect

to find in modern physics any indications that refer to classical mechanics and to

Newton’s space-time. Possible traces of absolute time and absolute space are

equally eliminated in Special and General Relativity as the classical limit in

Quantum Mechanics. In modern physics we can completely forget about the

pretended classical roots. In Quantum Mechanics as well as in Relativity there is

no need and no room for anything like a correspondence principle or a non-

relativistic limit, respectively.

Independent of these considerations and irrespective of their possibly far

reaching implications, classical mechanics and classical space–time are often

considered under a completely different angle as limiting cases of the theories of

modern physics. According to this assessment the borderline between Relativity

and Classical Physics is characterised by the constant “c”, whereas the borderline

between Quantum Mechanics and Classical Physics is determined by Planck’s

constant ћ. Both quantities, c and ћ are thereby considered as fundamental con-

stants of nature. However, in the light of the above mentioned arguments about the

interrelations between Newton’s classical physics and the fundamental theories of

modern physics, it is rather hard to understand, why the well established theories

of modern physics should contain constants of nature, that characterise the border-

lines to a theory of a fictitious world. In other words, how can well established

theories contain parameters, which relate these theories to a theory of a fictitious

world. Since there is no satisfying and convincing answer to this question, we will

search in the following sections for alternative meanings of the constants “c” and

“ћ”. In particular, we will ask whether there is an intrinsic meaning of “c” within

P. Mittelstaedt, Rational Reconstructions of Modern Physics,
Fundamental Theories of Physics 169, DOI 10.1007/978-94-007-0077-2_4,
# Springer Science+Business Media B.V. 2011
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the theory of relativity and that without any relation to classical physics – and we

will ask whether there is an intrinsic meaning of “ћ” in quantum mechanics and that

again without any recourse to classical mechanics.

4.2 The Meaning of the Constant “c” in Special Relativity

4.2.1 Preliminary Remarks

From a historical point of view, the theory of Special Relativity (SR) was under-

stood at first as improvement and generalisation of classical physics that hold in the

domains of very large velocities. As long as the new theory was considered as

restricted to these domains of the physical reality, the boundary line between

the new theory (SR) and the classical Newtonian theories of space-time could be

characterised by the constant “c” (velocity of light). This understanding of the

constant “c” is well known from the literature and can be found in many mono-

graphs and textbooks. However, in the first two or three decades of the 20th century

it became more and more obvious that the new theory of Special Relativity (SR) is

not restricted to the relativistic domain mentioned but, compared with classical

physics, is universally valid and applicable to all domains of the physical reality.1

Hence, the interpretation of the constant “c” as indicating the boundary between

classical physics and relativistic physics became meaningless. Indeed, on the basis

of an increasing experimental accuracy of measurements it turned out that (SR) is

also valid for motions that are slow compared with the velocity c of light. This

implies, that also another interpretation of the constant “c” is possible, the limiting

case interpretation, which states that in the limit (v/c! 0) of very slow motions

compared with the velocity of light, Special Relativity (SR) approaches to physics

in classical space–time. It is obvious, that the less careful formulation, which

replaces the limit mentioned above by the limit (c!/) is very misleading, since

“c” is a constant with a well known numerical value of 3�108 m/sec and will never

approach to infinity.2

If Special Relativity were interpreted and justified operationally by means of

light rays such, that measurements of space-time intervals are generally performed

by means of light signals, then the value of the velocity of light would have a direct

and constituting influence on the observable space-time structure of (SR). In the

first two or three decades of the 20th century, Einstein and other scientists argued

very often in favour of an operational interpretation of (SR). Many of the charac-

teristic effects of (SR) were explained “intuitively” by measurements with light

signals, i.e. traced back to the properties of light rays. We mention here in particular

1 Except, of course of domains that are not considered in the present paper.
2 The first measurement of the velocity of light by O. Rømer was performed in 1670, several years

before Newton’s “Principia” appeared in 1686 (1st ed.) and 1723 (2nd ed.).
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the synchronisation of distant clocks by light signals, the demonstration of the time

delay of a moving clock and of the clock paradox by permanent communication

between different observers with the help of light signals, and the theoretical

construction of a light clock.3 Only the attempt to explain also the phenomenon

of the “Lorentz contraction” by means of optical observations4 provided some

problems. Indeed, R. Penrose5 and J. Terrell6 could demonstrate that the relativistic

length contraction of moving bodies is not directly visible. However, irrespective of

these critical remarks for at least 50 years the operational approach to Special

Relativity by means of light rays was considered by the scientific community of

physicists to be well established. We will not follow here this operational interpre-

tation of Special Relativity further on, but replace it by a more realistic approach to

space-time for reasons that are explained in the following sections.7

4.2.2 Metaphysics and Ontology

In contrast to his often quoted statement8, Newton’s mechanics is based on many

hypotheses that can be traced back to the metaphysics and theology of the 17th

century, which are however, hidden and not made explicit in his work. In addition,

for two hundred years physics was based on these hypotheses, which were not

questioned by physicists and philosophers. Only at the end of the 19th century, some

of the metaphysical hypotheses of physics were exposed and made explicit, in

particular by Mach, Poincaré, and somewhat later by Einstein. The progress of

physics in the 20th century is essentially the result of a stepwise reduction of

metaphysical prejudices that were inherently contained in Newton’s conception

of physics. Here, we are interested only in the first step of this long lasting historical

process, the elimination of the concept of absolute time, which was introduced by

Newton in his “Principia” with the words

“Absolute true, and mathematical time, of itself and from its own nature flows equably
without relation to anything external.”9

In Newton’s writings we cannot find any indication of a rational or empirical

justification of this statement. It is of a purely hypothetical character.

3Marzke et al. (1964); Misner et al. (1973), p. 397.
4 Cf. for instance Gamov (1946).
5 Penrose (1959).
6 Terrell (1959).
7 For more details cf. Mittelstaedt (2006), p. 260.
8 Hypotheses non fingo (Principia, 3. ed, p. 943).
9 The original Latin formulation reads: “Tempus absolutum, verum et mathematicum, in se per

natura sua absque relatione ad externum quodvis, aequabiliter fluit”.
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In order to elucidate the meaning of the deconstruction of absolute time

in modern physics we start from the well known classical ontology O(C) of

Newtonian physics, but without the assumption that there is an absolute and

universal time. On the basis of this reduced ontology, which we denote here by O

(SR), we will reconstruct a new, reduced physical theory of space-time. Obviously,

this reduced ontology O(SR) will grasp a larger domain of reality than the old

classical ontology O(C), since it is based on less postulates than Newton’s classical

ontology. Consequently, we expect that the physical theory of space-time that is

reconstructed on the basis of the reduced ontology O(SR) is applicable to a larger

domain of reality than classical physics and universally valid within the framework

of phenomena discussed in the present paper. In particular, we expect that this

approach will provide new insights and perspectives of the main problem of the

present investigation, the meaning of the constant “c”.

4.2.3 Reconstruction of Special Relativity

The reconstruction of Special Relativity, that we have in mind here, does not make

use of any recourse to the propagation of light and its velocity. It follows essentially

the detailed way of reasoning of the reconstruction of Special Relativity presented

in Sects. 2.2 and 2.3. As already mentioned in Sect. 2.1, this approach has a long

history and can be traced back to the early days of (SR) in the beginning of the 20th

century.10 We will not repeat the historical, but now somewhat antiquated argu-

ments here, but instead apply more recent results11 and in particular the derivation

of Special Relativity in Sects. 2.2 and 2.3.

According to the general remarks in the last section we start with the ontology

O(SR), which can be obtained from Newton’s classical ontology O(C) if we

dispense with the assumption that there exists an absolute and universal time.

However, even under these restricted conditions we can start defining the concept

of an inertial system. In a first step we introduce as in Sect. 2.2 an ensemble of small

bodies G¼ {k1, k2, . . .kn} which were freely thrust into the empty space. An inertial

system can then be defined as a material basis of an observer that is equipped with

rods and clocks for measurements of space-time intervals. A frame of reference of

this kind is called an “inertial” system I, if the elements of the constituting ensemble

G move on straight lines in the sense of Euclidean geometry.12 Since empirically,

the relative velocity of different bodies ki and kj does not depend on time, we can

10 v. Ignatowski (1910) ; Frank et al. (1911) .
11 Levy-Leblond (1976); Mittelstaedt (1976).
12 It is an important and difficult problem, how many test bodies must at least be used in the

ensemble G in order to allow for deriving the linearity of the transformations between inertial

systems. We will not discuss this question here and refer to the literature. Cf. Borchers et al.

(1972).
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define a “metric time” by the requirement that the elements kn ∈ G are moving not

only on straight lines but also uniformly, i.e. with time-independent velocities.13

An inertial system I can be equipped with a system KI(xi, t) of coordinates of
space and time, where xi are Cartesian coordinates, say, of an Euclidean space and

“t” the metric time as defined above. The transformation TII0 that leads from

coordinates KI(xi, t) of I to the coordinates KI0(x
0
i,t

0) of another inertial system I0

transforms straight lines of the 4-dimensional (xi, t)-space to straight lines of the

(x0i, t0)-space. Hence, these transformations are at first collineations, which reduce,

however, to linear transformations if we postulate that finite (xi, t)-values are always
transformed into finite (x0, t0)-values. The linearity of the transformation TII0

implies, that the velocity vII0 ¼ v of the system I0 relative to the system I is constant
with respect to time t.

In the following we consider, for sake of simplicity only one spatial coordinate x.
If we further assume, that the systems of coordinates K(x, t) and K0 (x0,t0) of I and I0,
respectively, coincide at t¼ 0, then the transformations TII0 assume the simple form

x0 ¼ kðvÞðx� vtÞ; t0 ¼ mðvÞtþ nðvÞx

with three arbitrary functions k(v), m(v), and n(v) that depend on the velocity v of I0

relative to I. The following requirements are not substantially new postulates but

consequences of the definition of the concept of an inertial system. Here we refer to

the postulates 4, 5, and 6 of Sect. 2.2. Since the constituting ensemble G does not

distinguish a special direction in space, we postulate isotropy of the transformation

TII0 (postulate 4). Since no system of inertia is distinguished with respect to G, we
postulate the principle of relativity (postulate 5). Finally, we require that two

inertial system I and I0 are indistinguishable also with respect to a third inertial

system I00 (postulate 6). These requirements imply the following restrictions for the

functions k(v), m(v), and n(v)

kðvÞ ¼ kð�vÞ; mðvÞ ¼ mð�vÞ; nðvÞ ¼ � nð�vÞ:

Instead of the odd function n(v) we will use here as in Sect. 2.2 the even function

aðvÞ : ¼ �nðvÞ=v� mðvÞ:

If we introduce the notation

v : ¼ vII0 ;w : ¼ vI0I

for the relative velocities of I and I0, respectively. we obtain

v ¼ vII0 ¼ � vI0I ¼ � w:

13Mittelstaedt (1995), pp. 22–23.
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Making use again of the equivalence of TI0Ið�vÞ and TII0
�1ðvÞ we get

kðvÞ ¼ mðvÞ ¼ ð1� aðvÞv2Þ�1=2:

and thus

x0 ¼ ðx� vtÞð1� aðvÞv2Þ�1=2; t0 ¼ ðt� aðvÞvxÞð1� aðvÞv2Þ�1=2:

Hence, the remaining task is the determination of the unknown function a¼ a(v).
Using again the relativity principle and in particular the equivalence of two inertial

systems I an I0 with respect to a third one I00, we find that

aðvÞ ¼ aðv0Þ ¼ a ¼ const:>0;

i.e. a is a positive constant that is independent of v.
Concluding this discussion we find that the constant a has a positive value,

a¼o �2> 0. Hence the transformation TII 0 ðv;wÞ between two inertial systems I
and I0 with the relative velocity v reads (for one spatial coordinate x)

x0 ¼ ðx� vtÞð1� v2=o2Þ�1=2; t0 ¼ ðt� vx=o2Þð1� v2=o2Þ�1=2

and contains a positive constant o2¼ 1/a, where o is a velocity. At this point of our

consideration we can already formulate two important results about the meaning of

the constant o.

1. Since in the case a> 0 we have�o� v� +o and find that the maximal velocity

v between two inertial systems I and I 0 is given by o.
2. Since the velocity v between two systems of inertia I and I0 is restricted by o, the

temporal order of two events (E1, E2) in system I cannot in general be inverted

by a transformation to system I 0.

However, it should be emphasized here, that in our derivation of the transformation

TII 0 ðv;oÞ there is no obvious reason to identify the invariant velocity constant o
with the velocity c of light. – Furthermore we note, that the somewhat difficult

decision for the case a> 0 of a positive value of a is at the bottom a causality

requirement, since it can be traced back to the causal structure of the trajectories of

the test bodies ki of the constituting ensemble G, which structure should be

preserved by a transformation between inertial systems.14

14 For more details cf. Mittelstaedt (1995), pp. 83–116.
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4.2.4 The Meaning of the Constant v

The transformations TII 0 ðv;oÞ between inertial systems I and I0 - the inhomogeneous

Lorentz transformations - form a 10-parameter Lie group, the Poincare´ group.

In accordance with Sect. 2.2 we call the transformations TII 0 ðv;oÞ also “generalised
Lorentz transformations” since the numerical value of the parameter o is still

open.15 As already mentioned in Sect. 2.2, with this last step we also arrive at

the space – time continuum of Special Relativity, the Minkowski space M.

The Minkowski space is a 4-dimensional manifold M that is equipped with a metric

tensor gmn. The signature of gmn is 2 and thus gmn a Lorentz metric.16 With this

indefinite Lorentz metric on the manifold M, the non-zero vectors at a point p can be
divided into three classes, into vectors that are called timelike, null, or spacelike.
In the space Tp of tangent vectors of M at p, the null vectors constitute a double cone,
the null cone, which separates the timelike from the spacelike vectors. (In order to

avoid any terminological confusion, we do not use the term light-cone here).
In the coordinates (t, x1, x2, x3) the null cone can be expressed by the equation

o2t2 � x1
2 � x2

2 � x3
2 ¼ 0:

Hence the apex angle g of the null cone (from the t-axis) is connected with the

constant o by the relation g¼ arc tan o or o¼ tan g (Fig. 4.1). This connection

shows, that the constant o, which could not be determined within the framework

of our reconstruction of Special Relativity, is a genuine property of the Minkows-

kian space M. Since M is an empty space-time, the constant o characterises an

intrinsic feature of the Minkowski space, the null cone structure and that irrespec-

tive of any physical processes that might happen in this space-time.

15Mittelstaedt (2006)
16 Hawking and Ellis (1973), p. 38.

Fig. 4.1 The null-cone at
point p and the cone angle g

4.2 The Meaning of the Constant “c” in Special Relativity 85



This is the meaning of the constant o on the most abstract level of the

Minkowskian space-time M. Consequently, we should clearly distinguish between

the constant o, which turned out to be a structural constant of the Minkowskian

space-time, and other constants that characterise some physical processes. Within

the present context, the propagation of light is of particular interest. According to

the reconstruction of Special Relativity and relativistic mechanics, which we have

carried out in Sects. 2.2 and 2.3, respectively, we can make use of the components

(p0, p) of the four-vector pm of the momentum for formulating the quantity

p2 : ¼ ðp0Þ2 � ðpÞ2 ¼ m0
2o2;

which is invariant against generalised Lorentz transformations TII 0 ðv;oÞ. From this

invariance relation we obtain the formula17

p0 ¼ pðm0
2o2 þ p2Þ

which allows to express the three-velocity viP of a particle P as function of the rest

mass m0 and the three-momentum p by

viP ¼ pi=
pðm0

2 þ p2=o2Þ:

Hence, for vanishing restmass (m0¼ 0) the momentum dependence disappears

and we get

viP ¼ opi= jpj;

which means that the particle (photon) will move along the null cone with velocity

|vP|¼o. We add, that according to our present knowledge the photon is even the

only zero-mass particle. Moreover, since the velocity of light can be measured by

well known methods to be vL¼ c, the numerical value of the constant o can now be

determined as o¼ c. In order to avoid any terminological confusion, we clearly

distinguish here the null-cone as an intrinsic characteristic of the Minkowski space

from the light-cone, which governs the propagation of light in vacuum. For this

reason, we did not use the term light-cone in the preceding sections.

Concluding this discussion we can argue, that the apex angle of the null-cone of
the Minkowskian space is not determined by the velocity c of light, but that the

velocity c of light in vacuum is determined by the apex angle g¼ arc tan o of the

null-cone of the Minkowskian space M. In other words, we argue in favour of a

strict dualism of space-time and matter within the framework of Special Relativity.

From a historical point of view, the opposite position seems to be induced by the

operational approach to Special Relativity by Einstein and other scientists in the

beginning of the 20th century. We mentioned this approach already in Sect. 4.2.1

17 Cf. Mittelstaedt (1995), p.114; Sexl R.U. and Urbantke H. K. (1992), p. 68.
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(PRELIMINARY REMARKS) as a way to understand why the empirical value of the

velocity of light could perhaps have some influence on the structure of space-time.

However, our considerations have shown, that this is obviously not the case.

4.2.5 One More Fundamental Question

Even if we could identify the constant o as a characteristic number of the Min-

kowskian space-time, we could not present a sufficient reason for its empirical

value o¼ c¼ 3�108 m/s. Hence, the question arises whether this number is a

“contingent” value without any sufficient reason. However, at this point we must

first ask and clarify what “contingency” means in the context of physics. Presently,

we know only one situation in physics, in which we observe values that are

completely fortuitous: The outcome of a quantum mechanical process can in

general not be determined strictly but only by means of probabilities. This implies

the following consideration. If “c” is a fundamental and universal constant that

refers to all processes and to the entire world, and if “c” has a contingent value, then

for an adequate understanding of the contingency of “c” we must consider the

evolution of the universe and trace it back to the quantum mechanical process of the

creation of the world in its beginning.18 Since a quantum process of this kind will

hardly create a single universe but rather a huge number of possible worlds, a so

called “multiverse”,19 the fortuitousness of the fundamental constant “c” would

correspond to a statistical distribution of possible values of “c” in the presumably

large ensemble of simultaneously created worlds.

Hence, on the large scale between a small positive value c> 0 and the limit

c!1, which corresponds to Newton’s classical physics, the value c¼ 3�108 m/s

determines the position of our actual Minkowskian space-time. Consequently, for

any observer in our world, the constant “c” has a definite value that does not depend

on any law within this world and not on the methods of observation. The constant

“c” has a contingent value in our world, but in the large ensemble, the multiverse of

simultaneously created worlds, there are merely probabilities for the many possible

values of the so-called constant “c”.

4.3 Planck’s Constant Ћ in the Light of Quantum Logic

4.3.1 Ontological Preliminaries

A similar situation as in case of the constant “c” can be found in the domain of

quantum physics with respect to Planck’s constant ћ, which is widely considered as

18Vilenkin (1982); Linde (1990).
19 Ellis (2003); Carr (2007).
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a characteristic of quantum mechanics. First, we mention that according to the

results of Chap. 3, quantum mechanics can be obtained by a careful relaxation of

some ontological hypotheses of classical mechanics. In addition, there are good

reasons to assume that quantum mechanics is universally valid. Hence, we do not

expect to find in quantum mechanics explicit indications of a borderline that is

determined by ћ and that separates the validity domain of quantum mechanics from

the validity domain of classical mechanics. The classical roots of quantum mechan-

ics are completely eliminated in our way of reasoning and Bohr’s correspondence

principle has become void. Obviously, this situation is very similar to the

corresponding investigations of the constant “c” in Special Relativity. However,

from a more technical point of view there are important differences between the

considerations about “c” and about “ћ”. The starting point for a rational reconstruc-
tion of quantum mechanics is not a relaxed version of classical mechanics but a

formal scientific language and logic that is based on a weak quantum ontology,

which is free from many hypothetical assumptions of a classical language. The

corresponding formal logic, the “quantum logic” is the basis of a rational recon-

struction of quantum mechanics in Hilbert space, which was discussed in Sect. 3.4.

In the present section we will investigate the important and at first sight

surprising observation, that in the well known systems of quantum logic Planck’s

constant ћ does not appear. What is the reason for this apparent deficiency of

quantum logic? We recall, that the main goal of quantum logic is the “bottom-up”

reconstruction of Hilbert lattices, effect algebras, and of quantum mechanics in

Hilbert space as treated in Sect. 3.5 – and all that without any reference to the actual

historical development of the theory.20 The starting point is a weak quantum

ontology that describes the most general features of the quantum physical reality.

As in Sect. 3.5, we consider here three types of ontologies of different strength: The

classical ontology O(C), the weaker quantum ontology O(Q), and the unsharp

quantum ontology O(QU) which is partly stronger than O(Q), since it allows for

unsharp joint properties and partly weaker thanO(Q), since it does not require value
definite properties. In any case, O(QU) is weaker than the classical ontology O(C).
As to the terminology of weak and strong ontologies, we refer to the definition of a

partial ordering relation between two ontologies in Sect. 1.1. Many details about

these ontologies can be found in the literature.21 The main result consists of the

observation, that the quantum ontologies O(Q) and O(QU) can be obtained by

convenient relaxations of the classical ontology O(C). The relaxations in question

consist in the elimination of hypothetical assumptions contained in O(C), that are
neither justified by rational reasoning nor by experimental evidence. However, the

present considerations will show, that it is not sufficient to simply eliminate a

certain hypothesis, since it must be replaced by some weaker requirement.

20 Dalla Chiara (2001).
21Mittelstaedt (2005).
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Except from other assumptions of the classical ontology22, which are not

relevant here, for the present investigations the classical ontology is characterised

by the following requirements:

– There are individual and distinguishable object Si which possess elementary

properties Pl such that either Pl or the counter property
�
Pl pertain to the

system.

– Objects Si are “thoroughgoing determined”, i.e. an object possesses each ele-

mentary property either affirmative (P) or negative (
�
P). Hence, objects can be

individualized by elementary properties and re-identified at later times, if the

property of impenetrability is presupposed.

There are important objections against this ontology O(C), in particular against the

second requirement. It is merely a hypothetical assumptions that cannot be justified

by rational arguments or by experimental evidence. In addition, classical ontology

is not in accordance with quantum physics. A quantum system does not possess all

elementary properties either affirmative or negative. Instead, only a subset of

properties pertains to the system and can simultaneously be determined. These

“objective” properties pertain to the object like in classical ontology. However,

quantum objects cannot be individualised and re-identified by their objective

properties, since there are not enough such properties. We will not use these

material results here, but we learn from these considerations that classical ontology

has too much structure compared with quantum physics. This observation offers the

interesting possibility to formulate the ontology of quantum physics by relaxing

some hypothetical assumptions of the classical ontology O(C). We emphasise

again, that no new requirements will be added to the assumptions of O(C). In this

sense, our first attempt to a new quantum ontology O(Q) reads:

– If an elementary property P pertains to an object as an objective property, then a

test of this property by measurement will lead with certainty to the result P.
– Any elementary property P can be tested at a given object with the result that

either P or the counter property
�
P pertains to the system.

– Quantum objects are not thoroughgoing determined. They possess only a few

elementary properties either affirmative or negative. Properties, which pertain

simultaneously to an object, are called “objective” and “mutually commen-

surable”.

The first two requirements are in complete accordance with O(C) whereas the third
one is a strong relaxation of the corresponding assumption of O(C). However, as
already mentioned in Sect. 3.5, the new quantum ontology O(Q) is not yet in

complete accordance with quantum physics for two reasons.

– The most general observables in quantum mechanics correspond to unsharp

properties that allow for joint properties even for complementary observables.

22 Cf. Section (1c).
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Hence, O(Q) is too restrictive since it does not allow generally for joint

properties.

– The requirement of value definiteness cannot be fulfilled for all properties, since

the pointer-objectification in the measurement-process cannot be achieved gen-

erally. Hence, O(Q) is also not sufficiently restrictive.

These two objections against O(Q) can both be taken into account, if O(Q) is

replaced by a new quantum ontology O(QU) of unsharp properties. It is difficult

to say, how much unsharpness is needed for removing the two deficiencies of O(Q)
mentioned. We come back to this question at the end of Sect. 4.3.4

Comparing the three ontologies in question, we find that on the one hand O(QU)

is partly stronger than O(Q), since it allows for unsharp joint complementary

properties that are not contained in O(Q). On the other hand, O(QU) is partly

weaker than O(Q), since value definiteness of properties is not required. However,
O(QU) is weaker than the classical ontology O(C). These relations are illustrated

again in Fig. 4.2.

4.3.2 The Quantum Logic Approach

The main goal of the quantum logic is the reconstruction of Hilbert lattices and of

quantum mechanics in Hilbert space on the basis of the weak quantum ontologies

mentioned.23 Starting from the weak ontology O(Q) we can construct a formal

language SQ of quantum physics whose syntax leads together with a convenient

semantics of truth to the calculus LQ of quantum logic. The Lindenbaum-Tarski

algebra of LQ turns out to be a complete, orthomodular lattice LQ, which in addition

is atomic and fulfils the covering law, if the language is assumed to refer to a single

O(C)

O(Q)

O(QU)

metaphysical
hypotheses

value
definiteness

unsharp
observables

Fig. 4.2 Interrelations between the ontologies O(C), O(Q) and O(QU)

23 Dalla Chiara et al. (2001).
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system. We denote this lattice by LQ
*. Using the Piron-McLaren Theorem24 and the

angle-bisecting condition of Solèr,25 we arrive at the three classical Hilbert spaces

and in particular at the complex numbers Hilbert space H(C) of quantum mechanics.

Compared with the classical ontology O(C), a formal classical language SC and

the classical propositional logic LC, there are important differences that come from

the elimination of the hypothetical assumptions contained inO(C). In particular, we
have sacrificed here the assumption that objects are always “thoroughgoing deter-

mined”. As a consequence of this reduction, propositions of the language SQ loose

their “unrestricted availability” and are in general only restrictedly available. For

the calculus LQ of quantum logic this relaxation implies the loss of the distributive

law. We could go one step further and proceed to the ontology O(QU) of unsharp

properties by omitting the assumption, that for each property P it is objectively

decided, whether P or its counter property
�
P pertains to the system.

This relaxation implies that propositions are no longer value definite and that

both the “excluded middle” and the “law of contradiction” are no longer formally

true.26 The theory, which we obtain in this way by reducing ontological premises, is

an abstract Hilbert space quantum theory of sharp and unsharp properties. It is an

empty theory, a formal framework of quantum mechanics, which is presumably

universally valid. It is, however, not a priori valid in the strict sense, since the

underlying ontologies O(Q) and O(QU) do still contain hypothetical premises that

are not queried here. The abstract quantum theory, which is reconstructed on the

basis of the weak quantum ontology O(QU) is, however, closer to the truth than the

theory based on O(Q) and in any case closer to the truth than the classical

mechanics based on the classical ontology O(C).

4.3.3 In Search of Planck’s Constant

Within the quantum logic approach quantum mechanics in Hilbert space appears as

an abstract and empty theory which is based on the weak quantum ontology and

thus presumably universally valid. Hence, we expect first of all to discover some-

where in this theory Planck’s constant ћ, which is widely considered as a charac-

teristic of quantum mechanics and as a number, that indicates the border line

between the quantum world and the classical world. However, within the quantum-

logic approach there is no classical world27 and hence no border line between the

two worlds, from which we could read off Planck’s constant. Hence, there is no

hope to find the constant ћ within the domain of abstract quantum theory in Hilbert

space. In order to discover Planck’s constant in the realm of quantum logic, we must

24Mac Laren (1965), Mittelstaedt (2005), Piron (1976).
25 Solèr (1995).
26 Dalla Chiara (1995), Foulis (1994).
27Mittelstaedt (2005).
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extend the abstract and empty theory by incorporating real entities into the theory.

We will find that “objects” or “particles” can be comprehended if the abstract

theory is extended by concepts that are usually considered as classical notions.

Since intuitively, particles are objects that are somehow localised in space,

we consider first the concepts of localizability and homogeneity.

4.3.3.1 Localizability

Let D be a domain of the physical space R. If R¼R(1) is one dimensional, the

domains D considered are Borel sets on the real line, i.e. D∈B(R). Let L(H) be
the set of bounded linear operators on a Hilbert space H. The mapping

E : BðRÞ ! LðHÞ;D ! EfDg

is a projection valued measure (PV-measure), if E{D}¼E{D}*¼E{D}2 for all

D∈B(R), E{I}¼ 1, and E{\ Di}¼∑E{Di}. According to the spectral theorem, this

PV-measure leads to a self-adjoint operator, the position operator Q. More gener-

ally, we could start with a non-empty set O, a s-algebra F of subsets of O, and
hence on a measurable space (O, F).

A normalised positive operator valued measure (POV-measure) can then be

defined by

E : F ! LðHÞ onðO; FÞ;

where E{X}� 0, X∈F, E{O}¼ I and Ef[Xig ¼ P
E Xif g for disjoint sequences

(Xi) ∈F.

4.3.3.2 Homogeneity

Homogeneity and isotropy are features of the physical space, which show that the

physical space has no observable properties. In a one dimensional space this means,

that a translation by an amount a

ga : D ! gaðDÞ ¼ fl : ðl� aÞ 2 Dg

with D∈B(R), is a symmetry transformation. If the physical space is homogeneous

then there exists a unitary operator Ua, depending on a, Ua : E ! Ua
�1E Ua

such that

EfgaðDÞg ¼ Ua
�1EfDgUa:
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Where E{D} is the projection operator mentioned above. We can choose the

parameter a such that it is additive, i.e. UaUb¼Ua+b. According to Stone’s theorem

and under this condition a self-adjoint operator P with Ua¼ exp(iaP), the displace-
ment operator, is uniquely determined.

4.3.3.3 Canonical Commutation Relations

If we consider the position operator Q as generator of a one-parameter group with

parameter b, we get Vb¼ exp(ibQ). Together with the corresponding expression

Ua¼ exp(iaP) for the displacement operator P, we find the canonical commutation

relations in the Weyl formulation

UaUb ¼ ei
ab
VbUa:

For a dense subset D of the entire Hilbert space the Weyl commutation relations

imply that the operators P and Q satisfy the relation

Q,P½ � f ¼ I f for all f 2 D:

4.3.3.4 Physical Objects

The notion of an object is intimately related with the equivalence of active and

passive space-time transformations and with the covariance of observables under

these transformations. Indeed, if we understand by an object an entity of the

external reality that exists objectively and independent of the observing subject

and his measurement devices, then it should not matter whether the object is

(actively) transformed by a translation in space, say-or whether the apparatus and

its coordinates are (passively) transformed in the opposite direction. If we combine

this idea with the concepts of localization and homogeneity mentioned, we can

characterize an “object” in the following way:

Let M be a topological space, the configuration space of the intended object and

G a locally compact transformation group that acts transitively on M. Here, we

think preferably of the Galilei group G and its one-parameter subgroups of space

translations and velocity boosts. An element g ∈G induces a one-to-one and

continuous mapping of M to itself

g : D ! gðDÞ; M ! M;

with D ∈B(M). A projection valued measure E: D!E{D} leads to a unitary

representation of the group, g!Ug with
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Ug : E ! Ug
�1EUg:

We can now express the requirement of objectivity (of the intended object) by the

covariance in Fig. 4.3.

For an element of the external reality it should not matter whether we transform

first the domain D by mapping g of M to itself (passive transformation) and go in a

second step (corresponding to a PV-measure) from g(D) to E{g(D)}; - or whether
we go first from D to the projection operator E{D} and in a second step

(corresponding to a unitary representation Ug from E{D} to Ug
�1E{D}Ug (active

transformation).

This requirement, which expresses the equivalence of active and passive trans-

formations, means that the covariance diagram in Fig. 4.3 commutes, i.e.

EfgðDÞg ¼ Ug
�1EfDgUg

Observables, E that fulfil this “covariance postulate” correspond to properties of the

object in question that transforms covariant under the transformation of the Galilei

group. In other words, a quantum object is carrier of properties E{D} which

transform under the Galilei transformations.28

4.3.3.5 Elementary Particles

On the basis of this general concept of a quantum object as carrier of properties

E{D} of the orthomodular lattice LQ, we can specify this concept by considering

different classes. Different representations g!Ug of elements g ∈ G of the

10-parameter Galilei group by automorphism Ug (on the lattice LQ of projection

operators) correspond to different kinds of objects. In particular, the elementary

objects are given by irreducible representations g!Ug. However, there are no

irreducible unitary true representations g!Ug of the Galilei group but only

projective ones that contain a real, yet undetermined parameter z.

Fig. 4.3 Covariance diagram

28Mittelstaedt (1995), Piron (1976).
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It should be emphasised here, that this way of reasoning for the constitution of

objects is not restricted to PV – measures i.e. to sharp observables, since it can

easily be extended and generalised to unsharp observables in the sense of POV –

measures. Unsharp properties are then given by “effects” in Hilbert space, the

algebra of which will be denoted here by E(H).29 Hence, in the covariance diagram
(Fig. 4.3) the PV – measures must be replaced by POV – measures and the lattice of

projection operators by the effect algebra E(H). In this case, objects are carriers of

the most general observables, given by POV – measures.30

For further illustrating this result, we mention briefly a few technical steps.31

From the position operator Q a self-adjoint operator Q0 for the velocity can be

obtained by formal differentiation with respect to the time t, i.e. by Q0 ¼ i [H,Q],
where H is the evolution operator which is not yet fully determined at this point. For

motivating the next step, we consider again the classical situation. If we change the

reference system K to a new system K0 which moves with the constant velocity v¼ v
(K,K0) relatively to K, the velocity Q0 and the position operator Q will change

according to the transformation.

If also in quantum physics this velocity boost transformation is considered as

a symmetry transformation, then there exists a one -parameter unitary group Gv,

such that

Q0 þ v ¼ GvQ
0Gv

�1 and GvGv0 ¼ Gvþv0 :

Since the system is elementary and Gv commutes with Q, we may write Gv¼ exp

(iv f(Q)) where f is a Borel function on the real line. For combining the velocity

boosts with the displacements mentioned above we define a two-parameter family

of unitary operators T(a, v) such that

Qþ a ¼ Tða; vÞQ T�1ða; vÞ
Q0 þ v ¼ Tða; vÞQ0 T�1ða; vÞ

Hence, T(a, v) is a projective representation of the two-dimensional translation

group whose arbitrary phase factor can be written in the form

Tða1; v1ÞTða2; v2Þ ¼ expfi z=2ða1v2 � a2v1Þg Tða1 þ a2; v1 þ v2Þ

Where z 6¼ 0 is an arbitrary real constant which distinguishes different inequivalent

projective representations. We can re-identify the one-parameter subgroups Ua and

Gv by the relations Ua¼T(a, 0) and Gv
�1 ¼ Tð0; vÞ, and by means of the commu-

tation relations we find Ua Gv
�1 ¼ expði zavÞGv

�1Ua and Gv
�1 ¼ expði zaQÞ.

29 Foulis (1994); Busch et al. (1995), p. 25.
30 Busch et al. (1995), p.52; Mittelstaedt (1995).
31 Jauch (1968).
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From this relation we obtain in a few steps32 Q0 ¼P/z and P/z¼ i [H, Q] where H is

the most general evolution operator which is compatible with the principle of

Galilei invariance.

In order to identify the parameter z, we refer to some classical aspects of an

elementary object. If the object considered is localizable, we will call it an elemen-

tary particle. The parameter z is often interpreted as the inertial mass m of the

particle in question. This is, however, not quite correct. A more detailed investiga-

tion that refers to the classical motion and to the dynamics of the particle shows,

that z¼m/ћ, where m is the inertial mass and ћ is a universal constant. Indeed, if we

describe the classical motion by the movement of a point in the configuration space

(given by the real line), then we can identify the classical motion with the motion of

the expectation value x of the position operator Q.
Let W be a state operator with W 2 TðHÞ1þ, where TðHÞ1þ is the set of positive

trace one operators. Then we have x¼ tr{WQ}, and for the velocity we find

dx=dt ¼ tr fWQ0g ¼ i � trfW½H;Q�g ¼ trfWPg=z:

Here we made use of the relations Q0 ¼P/z¼ i [H, Q] mentioned above. For the

momentum we obtain

mdx=dt ¼ trfWPg m=z ¼ �h � trfWPg:

At this preliminary stage of the discussion the constant ћ can be identified as

connecting the displacement operator P with the momentum operator p of the

particle such that p¼ ћP and can be determined experimentally (at least in princi-

ple) as

�h ¼ m=z ¼ 1:05� 10�27erg s:

Summarizing these arguments we find, that the decisive steps in our search for

Planck’s constant ћ made use explicitly of classical concepts:

1. The concepts of localizability and homogeneity of the physical space

2. The definition of objects making use of covariance diagrams that distinguish

explicitly representations of the Galilei group by transformations of the physical

space-time and by automorphism Ug on the algebra of projection operators.

3. The classical concept of movement of a point in the configuration space.

Hence, our first, still preliminary result is, that for discovering the physical meaning

of Planck’s constant ћ, in addition to the abstract quantum logic, classical concepts

must be taken into account. However, this result would invalidate the idea of an

autonomous quantum world without any recourse to a classical world.

32 Jauch (1968).
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4.3.4 The Meaning of Ћ in the Quantum World

Within the framework of the quantum theory in Hilbert space, we can derive a

relation that is of particular importance for the constant ћ. We think of the

uncertainty relation, in particular if it is formulated in terms of unsharp observables,

i.e. of POV-measures,33 On the basis of the requirement of Galilei covariance for

position q and momentum p the uncertainty relation

dq � dpr�h=2

can be derived, where the meaning of the expressions dq and dp differs in various

interpretations of quantum mechanics. Here we are interested in the “Heisenberg

interpretation” of the uncertainty relations, i.e. an individualistic interpretation of

these relations in terms of unsharp observables q and p34 The number ћmay then be

considered as the smallest possible degree of inaccuracy of jointly measured
observables q and p that are probabilistically complementary. Obviously, this
meaning of ћ can be expressed exclusively in terms of quantum physics and without

any recourse to the classical world.

As to quantum-logic, the meaning of ћmust be expressed in terms of the abstract

language SQ and of the formal logic LQ. Compared with the language SC of classical
physics, the main restriction of quantum language is the restricted availability of

propositions in a formal proof process. Proof processes are formulated either by a

derivation within the framework of a calculus or by a dialog according to the rules

of the material or formal dialog game. If after a material proof of a proposition A
another proposition B was successfully shown to be true, the previously proved

proposition A is no longer available except proposition A and B are commensurable.

For unsharp propositions, these strict alternatives can be considerably be relaxed,

since even probabilistically complementary, unsharp propositions are not strictly

incommensurable. Consequently, the degree to which the proposition A is still

available after a proof of B, depends on the degree of commensurability of A
and B. Hence, in the spirit of the uncertainty relation for individual unsharp proposi-
tions, the constant ћ can be identified here as a measure for the smallest possible
unavailability of the unsharp complementary propositions A and B. In other words,
Planck’s constant determines the smallest possible unavailability, and in this sense ћ
is a universal constant in the realm of quantum-logic.

We can go one step further to the ontology O(QU) of unsharp properties.

Compared with the classical ontology O(C), the main restriction of the quantum

ontology O(Q) is, that objects are not thoroughgoing determined. This restriction is,

however, too strong since for the most general observables we must allow for

unsharp joint properties even for probabilistically complementary observables. This

argument is taken account of in the ontology O(QU) of unsharp properties. Objects

33 Busch (1985), Busch et al. (1995), Busch et al. (2007).
34 Busch et al. (2007).
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of O(QU) are “partially determined” in the sense that all possible predicates pertain

at least unsharp to the system. This is, however, only a qualitative characterisation

of the ontology O(QU). Quantitatively, and in the spirit of the uncertainty relation

we can say, that the minimal degree of unsharpness of probabilistically comple-
mentary properties which pertain jointly to a system is given by ћ. This is the

meaning of Planck’s constant on the level of quantum ontology.

Hence, we find that Planck’s constant ћ is also an intrinsic characteristic of

quantum ontology and thus of the quantum world at all, that describes “the largest
possible degree of joint determination of unsharp complementary properties”.
In contrast to classical systems, quantum systems are only partially determined,

where the largest possible degree of partial determination is measured by ћ. Since in
this way we can identify ћ as an intrinsic feature of quantum physics and express this

feature exclusively in terms of quantum physics, we could forget about the long

detour on our way to Planck’s constant making use of several classical concepts.

In other words, we can through away “Wittgenstein’s ladder” whose steps consist in

the preset case of various classical concepts. On the basis of these results, we can

now try to answer the question posed in the introduction: What is the reason, why in

the operational approach to quantum logic the constant ћ does not appear in the first

instance? For a bottom-up reconstruction of quantum mechanics the reduced quan-

tum ontologies O(Q) and O(QU) are too general and not sufficiently specific for a

complete reconstruction of quantum logic and quantum mechanics. These theoretical

structures can be obtained only up to an unknown real parameter, whose numerical

value must be determined empirically and turns out to be ћ. Hence, on the long scale
between classical physics and complete fortuitousness, Planck’s constant determines

the actual position of quantum logic and quantum physics (Fig. 4.4).

4.4 The Problem of the Gravitational Constant k

In Sects. 4.2 and 4.3 of the present chapter we could show that the two constants of

nature “c” and “ћ” don’t describe border lines between the Newtonian physics and

Special Relativity and Quantum Mechanics, respectively, - but instead intrinsic

properties of the Minkowskian space-time and of the quantum world. In analogy,

one could guess that the relativistic gravitational constant k is not only a borderline

between Newton’s theory of gravitation and the domain of very strong gravitational

fields as they are treated in General Relativity, but a characteristic intrinsic feature
of the pseudo-Riemannian space-time which is generated by the distribution of

matter and by convenient boundary conditions.

classical mechanics complete fortuitousness quantum mechanics

h = 0 1 << h <•h = (h)exp= 1

Fig. 4.4 Planck’s constant shows the position of quantum mechanics
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In General Relativity, many properties of the Minkowskian space-time have

only a local meaning, as the local and momentarily systems of inertia on the world-

line of an observer and the local null-cones at any space-time point of such a time-

like world-line. Graphical illustrations of these features are well known from

the literature in General Relativity. (Cf. for instance Hawking and Ellis (1973),

p.152 for the Schwarzschild solution). Hence, we expect that the apex angles of

the null-cones on the world-line of a geodesic observer depends not only on the

constant “c” as in Special Relativity, but also on the gravitational constant, which

determines the strength of the local gravitational field, i.e. the curvature of the

space-time at the space-time point in question. In this sense, the gravitational

constant k describes an important intrinsic property of the pseudo-Riemannian

space-time – and that without any recourse to Special Relativity and to the

Newtonian space-time.

These considerations show, that also the gravitational constant k – in a similar

way as the constants “c” and “ћ” – may be considered as a characteristic of the

space-time structure of General Relativity. This impression is completely correct

if we forget about the origin and the development of General Relativity and take

this theory simply for granted. The same meaning of the constant k is confirmed

also by the field-theoretical flat-space-time approach to General Relativity, which

considers k as the coupling constant between the gravitational field – given by a

symmetric tensor field cmn and the field generating energy-momentum (matter)

tensor Tmn. However, against this interpretation of the meaning of the constant k,
an important argument can be put forward. General Relativity can be recon-

structed by relaxing hypothetical assumptions of Newton’s classical physics

only partially. As shown in Sect. 2.6 we can obtain in this way merely the

pseudo-Riemannian structure of space-time but not Einstein’s field equations,

which contain the gravitational constant k and import it into the full theory of

General Relativity.

This means, that the general way of reasoning in the present treatise cannot be

applied to the constant k. In the case of the constants “c” and “ћ” we could argue,

that the theories of Special Relativity and of Quantum Mechanics can be recon-

structed merely by relaxing several hypothesis of Newton’s Classical Physics and

that without any new empirical results. In this approach, the constants “c” and “ћ”
appear as characteristics of the two resulting theories, which show intrinsic proper-

ties of the relativistic space-time and of the quantum world, respectively. Since this

way of reasoning is not applicable to General Relativity, the constant k has at first

merely the meaning of an experimentally well established coupling constant.

In Sect. 2.6 we discussed the attempt to reconstruct General Relativity. In

this context we mentioned Wheeler’s six hypothetical approaches to Einstein’s

field equations. If one approach of this six-fold way to General Relativity were

successful, then we could say something about the meaning of the constant k.
Indeed, on the basis of the full theory of General Relativity, i.e. the pseudo-

Riemannian space-time and Einstein’s field equations, the mere coupling constant

k obtains a much deeper meaning. This meaning can be expressed in different ways

by the influence of the energy-mass density on the curvature of the Riemannian
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space-time. In the literature 35 we find an extensive discussion of the various ways

to this goal. Perhaps the most fundamental and at the same time the most intuitive

way is the approach (no.6) by Sakharov36, which interprets the constant k as a

measure of the “metric elasticity of space”, as a characteristic constant that

describes the resistance of space to deformations. The conceptual framework of

this view is well known from classical mechanics of elastic continua. The resistance

of a homogeneous isotropic solid to deformations is usually described by two

elastic constants, Young’s modulus and Poisson’s ratio. Here, the resistance of

space to deformations is described by only one constant, the constant of gravity.

4.5 Three Constants of Nature: Concluding Remarks

In the preceding Sects. 4.2–4.4 of the present chapter, we discussed the physical

meaning of the three fundamental constants c, k, and ћ and that in the light of the

rational reconstructions of modern physics presented in this treatise. The three

constants in question refer to the three major theories of modern physics, to Special
Relativity, General Relativity, and Quantum Mechanics. Accordingly, the usual

interpretation of the constants mentioned is to indicate the borderlines between the

domains of the three theories of modern physics and the domain of classical

physics. As mentioned already in Sect. 4.1, this well known interpretation is,

however, not tenable. The reason is, that in the rational reconstructions of modern

physics we eliminated the classical structures and all traces of the classical world.

Hence, it is very hard to believe that the well established theories of modern physics

contain constants of nature that indicate the borderlines to a fictitious classical

world and to the pretended classical roots of modern physics.

For these reasons we made a fresh start to understand the meaning of the three

constants of nature and from now on exclusively within the framework of the

theories of modern physics. In this way, it turned out, that the three constants c,
k, and ћ characterise essential intrinsic features of the domains of validity and

application of the three theories in question. Of course, we obtained these results

without any explicit reference to classical mechanics and classical space-time.

(a) Special Relativity is concerned with physics in the 4-dimenional Minkowskian

space-time, which is equipped with a Lorentz metric of signature 2. The

constant “c” characterises an intrinsic feature of this space-time, the apex

angle g of the null cone, which is related to the constant “c” by g¼ arctg c.
(b) General Relativity is concerned with a matter induced Pseudo-Riemannian

space-time of signature 2. The gravitational constant k is a characteristic

feature of this space-time and describes the “metric elasticity of space”.

35Misner, C. et al. (1973), pp. 417–428, in particular p. 426.
36 Sakharov, A. (1967).
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(c) Quantum Mechanics does not allow to attribute two complementary properties

jointly to an object system, except the two properties are sufficiently un-sharp.

The constant ћ is a characteristic of the quantum world and describes the

largest possible degree of joint determination of two unsharp probabilistically
complementary properties.

Summarising these results we find that the constants c, k, and ћ describe intrinsic

features of the domains of Special Relativity, General Relativity and Quantum
Mechanics, respectively.
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Chapter 5

Interpretations of Modern Physics

5.1 Introductory Remarks

Since the advent of Modern Physics in 1905, when Einstein’s theory of Special

Relativity appeared, we observe a rapidly increasing activity to “interpret” this new

and for the present somewhat strange theory of Modern Physics. However, it should

be emphasised, that Special Relativity was only the first one in a sequence of new

theories, that allegedly required an “interpretation”. It was followed by General

Relativity, which from a mathematical point of view is much more ambitious and

thus even less comprehensible than Special Relativity. Accordingly, interpretations

of General Relativity are concerned with mathematical subtleties as well as with

purely conceptual problems. The third theory in the sequence in question is

Quantum Mechanics. With General Relativity it shares the great mathematical

complexity and intricacies, with Special Relativity the new conceptual situation,

in particular the difficult interrelations between classical physics and the new

theory. Hence, it should not be very surprising, that the majority of interpretations

of modern physics are concerned with Quantum Mechanics.

In contrast to the obvious activity in interpreting the three theories of Modern

Physics, it is at first sight somewhat astonishing, that comparable interpretations of

classical physics, in particular of classical mechanics are almost unknown. Only at

the end of the 19th century we find at least three remarkable exceptions: First the

critical investigations of Ernst Mach about the concepts of space and time in New-

ton’s mechanics,1 second the investigations of Henri Poincaré2 about the conven-

tionality of distant simultaneity and the various conventions underlying the measure

of time in mechanics. And third, the investigations of H. von Helmholtz3 about the

empirical facts underlying the geometry of the three dimensional physical space. –

The common goal of these and comparable investigations was a careful distinction

between experimental facts, conventions and hypothetical assumptions in classical

mechanics. In Newton’s Principia these components are not adequately

1Mach (1901).
2 Poincare (1898).
3 von Helmholtz (1868).

P. Mittelstaedt, Rational Reconstructions of Modern Physics,
Fundamental Theories of Physics 169, DOI 10.1007/978-94-007-0077-2_5,
# Springer Science+Business Media B.V. 2011
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distinguished. However, it will become obvious in the following sections, that this

kind of interpretation of classical mechanics is rather innocuous compared with the

activities that we call “interpretations of modern physics”.

The different ways to treat classical physics and modern physics raise the

question, where the difference comes from. Not onlly in the beginning of the 20th

century, but also today the usual answer given to this question by physicists and

philosophers of science reads: Since in contrast to classical physics, which is

intuitive and comprehensible, Modern Physics is unintuitive and difficult to under-

stand, it requires an additional interpretation. Usually, “interpretation” is under-

stood thereby as a way to establish some relations between the formal expressions

of the theory and elements of the physical reality. – However, against this wide

spread conviction we refer to the opposite way of reasoning that we formulated in

Chaps. 1–3. If, according to the considerations in these chapters the theories of

Modern Physics are at bottom intuitive and comprehensible, then we must ask

again, why these theories require something like an “interpretation”. We expect that

a detailed investigation of this problem will show, that for the theories of Modern

Physics there is actually no need for additional interpretations. In order to confirm

the arguments of these preliminary considerations in the light of Chaps. 1–3, we

will investigate here the two most interesting interpretations that were applied to

theories of Modern Physics. Thereby, we distinguish two types of interpretations,

depending on whether (a) the theoretical terms are interpreted by entities inside the

realm of the theory, and (b) by entities outside the realm of the theory. Accordingly,

we distinguish interpretations with (a) internal semantics and (b) with external

semantics.

5.2 Two Interpretations

5.2.1 The Interpretation of the Theory of Special Relativity

Special Relativity was not only the first of the theories of Modern Physics that

allegedly required an additional interpretation, but from a formal point of view it is

also a very simple theory. For these reasons, we begin our considerations with this

theory. As already mentioned in Chap. 2, in particular in Sect. 2.5, the theory of

Special Relativity confronted the scientific community with several surprising and

astonishing results, which called for an additional and helpful interpretation of these

results. We mention here the loss of an absolute simultaneity of spatially separated

events, the time dilatation of moving clocks, the length contraction of moving solid

bodies and the maximal velocity of moving observers. In reaction to these shocking

results a large number of proposals were made, how these strange implications of

Einstein’s theory could be eliminated, relaxed, explained by rational reasoning and

“interpreted” in some way.
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Since all the surprising results are assumed to be outcomes of measurements,

Einstein made use of an important methodological requirement: the apparatuses for

the measurements of time intervals and spatial distances must be truly existing

physical objects, like clocks, measuring sticks, etc. Of course, this postulate

expresses clearly the difference to Newton’s position in his Principia. We repeat

the relevant passage quoted already in Sect. 1.1:

“Absolute, true and mathematical time, of itself, and from its own nature flows equably
without regard to anything external, and by another name is called duration.”

In many interpretations of Special Relativity, the requirement mentioned was used

and considered to be very helpful. It leaves, however, the question open, whether

the really existing measuring apparatuses are entities within the realm of the theory

considered, or whether they are outside the domain of reality, that is grasped by the

theory. – We will come back to this problem in the following considerations.

Already in the paper on 1905, Einstein defined the concept of distant simultaneity

operationally by means of light signals. In a later publication 4, which he considered

to be intelligible to all, he made often use of light signals for explaining several

thought experiments, e. g. the famous train experiment. Thismeans, that light signals

were considered as instruments for measuring spatial and temporal distances.

As already mentioned in Sect. 4.2.1, this way of understanding and interpreting

Special Relativity was extended by the construction of a light clock many years

later5 and finally by an approach making use of particles and light rays.6 Einstein had

based the theory of Special relativity on two postulates, the “principle of relativity”
and the “principle of the constancy of the velocity of light”. According to the light

postulate, the propagation of light is independent of the state of motion of the source

of light.7 This light principle proved to be very important for the “explanation” of

many relativistic effects. It is, however, at first not a theorem of Special Relativity. It

must be justified either by another theory8, by the assumption that light is composed

of photons, i.e. of zero-mass particles9 or by experimental evidence.10

In the same sense as Einstein, many other physicists used light signals for

explaining and interpreting the various surprising effects of Special Relativity.

As an example, we mention here the famous text book by Max Born.11 According

to the above mentioned requirement, light signals are indeed truly existing

4 Einstein (1917).
5Martzke and Wheeler (1964).
6 Ehlers et al. (1972).
7 Einstein writes: “Das Licht hat im Vakuum stets eine bestimmte Ausbreitungsgeschwindigkeit,

unabh€angig vom Bewegungszustand der Lichtquelle”. Cf. Stachel (2002), p. 107 and note 35.
8 E.g. by Maxwell’s theoretical treatement of light as an electromagnetic wave phenomenon.
9Mittelstaedt (1976/1989), 3. Aufl. On pp. 124–126 it is shown, that only mass zero particles fulfil

the light principle and vice versa.
10 The first attempt of an empirical justification is de Sitters analysis (1913) of double stars. Direct

laboratory evidence was not known before the 1960th.
11 Born (1920).
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measurement instruments that can be used for the empirical determination of spatial

and temporal distances and thus for an empirical confirmation of the entire theory.

However, light rays which are considered here as measuring apparatuses, are at first

not subject to the theory of Special Relativity. Indeed, light as an electromagnetic

wave phenomenon must be treated in Maxwell’s theory or even in quantum

electrodynamics, if the photon structure of light is taken account of. In any case,

the interpretation of Special Relativity by means of light rays and light signals

makes use of a light-rays semantics in the sense defined above. Hence, in this

interpretation, the theory describes the physical reality as it appears, if we investi-

gate it my means of light signals. It is obvious, that this way to grasp the reality is

not an approach in the sense of realism.

At this point the question arises, why we actually need in addition to the formal

theory of Special Relativity a separate interpretation. There are two reasons. At first,

we cannot leave the theory as it is and relate its propositions directly to the physical

reality, since these propositions are partly in contradiction with our everyday experi-

ence, which we usually assume to be represented correctly by classical physics. For

this reason, the contradiction in question comes from the incompatibility of Special

Relativity and classical mechanics. Hence, the purpose of the present interpretation is

first of all to remove this contradiction such, that theoretical statements – like time

dilatation of moving clocks – are no longer in contradiction with our ordinary

experience. This goal can be achieved in the present case by relating the propositions

of the theory not directly to the physical reality, but to the image that we get grasping

the reality by means of light rays. In this way, the results of Special Relativity loose

much of their confusing character.

This last result leads directly to the second reason for using the interpretation

considered. It was of particular importance in the first two decades after the

discovery of Special Relativity. Since during this period Einstein’s theory had the

bad reputation of being abstract and difficult to understand, it was subject to a clear

rejection and even to political persecution.12 The interpretation considered relates

the propositions of the theory not directly to the physical reality but to the reality, as

it appears if it is investigated by light rays. Within the framework of this indirect

“light rays interpretation”, Special Relativity improves its plausibility, it looses

much of its irritating character and there are no longer reasons for public agitation.

All these details are more or less known. There is, however, a completely

different way to understand Special Relativity, that is based on the present investi-

gations in Chaps. 1 and 2. Instead of removing the contradiction between Special

Relativity and Classical Mechanics by an indirect interpretation with a light-rays

semantics, we can proceed as follows: In a first step, we have to make clear, that

classical physics is neither intuitive nor plausible but loaded with several hypoth-

eses, that can neither be justified by rational reasoning nor by experimental evidence.

Hence, the pretended contradiction between our everyday experience, which is

12 Könneker (2001).
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supposed to be governed by classical physics, becomes irrelevant. One component

of this contradiction, the everyday experience, cannot really be justified.

However, the other component of the suspected contradiction, the theory of

Special Relativity, is very well justified. There is no need to base this theory on

postulates like “the principle of relativity” or “the principle of the constancy of the

velocity of light”. As shown in detail in Chap. 2, the theory of Special Relativity can

be obtained on the same basis as classical mechanics, if merely the hypothesis of the

existence of an absolute and universal time is abandoned. This reconstruction of

Special Relativity shows in detail, that all the well known “surprising” results

of Special Relativity can be obtained, and that without any recourse to the propa-

gation of light. In our reconstruction, light rays and light signals don’t play any role.

Accordingly, nothing must be explained or interpreted by means of light signals.

On account of the rational reconstruction in question, Special Relativity allows for

a direct and thoroughgoing realistic interpretation. The public agitation about

Einstein’s theory in the first decades of the 20th century was based on a fundamen-

tal misunderstanding of classical physics.

5.2.2 Interpreting Quantum Mechanics

5.2.2.1 The Copenhagen Interpretation

Our second example of an interpretation of a theory of Modern Physics is the so

called Copenhagen Interpretation of quantum mechanics, which is considered usu-

ally as Niels Bohr’s interpretation of this theory, However, according to a very

interesting historical investigating by Don Howard,13 this first interpretation of

quantum mechanics was called “Copenhagen interpretation” by Heisenberg only

in 1935, i.e. ten years after the formulation of quantum mechanics. We will not

follow here this historical way of reasoning but instead consider at first Bohr’s early

complementarity interpretation. This interpretation is best characterised by the

keywords “complementarity” and “correspondence” and by the recourse to classical

apparatuses, classical concepts, and ordinary language. This interpretation was

presented first by Bohr in his Como-lecture of 1927, which was published in

1928.14 We mention here in particular two components of this interpretation,

which are most important for the problems discussed in the present treatise.

In the “Copenhagen Interpretation”, Bohr made use again of the methodological

requirement that was used already by Einstein in his investigations of Special and

General Relativity: measuring instruments that are used for the interpretation of

theoretical expressions must be truly existing physical objects. In this sense, Bohr

always assumed that the apparatuses for measuring observable quantities like

13Howard (2004).
14 Bohr (1928).
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position, momentum, energy etc. can actually be constructed in a laboratory.

By means of this methodological assumption, Bohr could explain one of the most

surprising feature of the new theory, which he called “complementarity”. In quan-

tum mechanics, two observables A and B that are canonically conjugate in the sense

of classical mechanics, cannot be measured simultaneously. The most prominent

example of this non-classical behaviour is the complementarity of the position q and
the momentum p. Bohr explained the complementarity of the observables p and q in
the following way: The measuring apparatusesM(p) andM(q) that could be used for
measuring p and q, respectively, are mutually exclusive. In other words, there is no

real instrument M(p, q) that could be used for a joint measurement of p and q.
The second methodological premise that is used in the Copenhagen interpretation

is the hypothesis of the classicality of the measuring instruments. This means, that the

apparatuses that are used for testing quantum mechanics must be not only

truly existing objects in the sense of physics, but these apparatuses must also be

macroscopic instruments that are subject to the laws of classical physics. Hence,

the experimental outcomes of measurements are events in the sense of classical

mechanics, electrodynamics, etc. In this way, the strange and paradoxical features

of quantum mechanics disappear completely in the measurement results, which can

thus be treated by classical physics and classical concepts. However, the epistemolog-

ical costs of this gain of plausibility and intelligibility are very high: In this interpreta-

tion, quantummechanics describes themicroscopic quantumworld as it appears, if we

investigate it by means of classical apparatuses and classical concepts. It is obvious

that this way to grasp the quantum world is not an approach in the sense of realism.

Many years later, in 1948, the same way of reasoning was applied by Niels Bohr

also to the language and logic that we use for the description of quantum phenom-

ena.15 In the meantime of twenty years various attempts and proposals for a new

logic of quantum mechanics were published by several authors.16 Bohr’s critical

reaction to these attempts refer in particular to the “three valued logic” proposed by

Reichenbach.17 Bohrs reaction to this and other attempts reads:

“Incidentally, it would seem that the recourse to three-valued logic sometimes proposed as
a means to dealing with the paradoxical features of quantum theory is not suited to give a
clearer account of the situation, since all well-defined experimental evidence, even if it
cannot be analysed in terms of classical physics, must be expressed in ordinary language
making use of common logic.”

Taking together the old and the new arguments of Bohr, we find that his interpreta-

tion of quantum mechanics refers in a very consistent way to the classical world.

Not only the measuring apparatuses are subject to classical physics, but also the

concepts, the scientific language and its logic are taken from the classical world.

Making use of this interpretation, the “observer” of a quantum system is always “on

the safe side” and not affected by quantum paradoxes. The observer of the quantum

15Bohr (1948).
16 E. g. Birkhoff and von Neumann (1936) ; Reichenbach (1944).
17 Reichenbach (1944).
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world is strictly separated from this strange world and is thinking, speaking and

operating exclusively in the familiar classical world.

Compared with the interpretation of Special Relativity, which we discussed in

the preceding Sect. 5.2.1, the Copenhagen interpretation of quantum mechanics is

at first sight somewhat more complicated. As mentioned in Sect. 5.2.1 and already

in Sect. 2.3, light rays, which are used in the semantics of Special Relativity are not

foreign to the theory but propagate on the null cone of the Minkowskian space-time.

However, the apparatuses that are used for testing and interpreting the propositions

of quantum mechanics, belong to the classical world and are thus not subject to the

theory that they should verify or falsify. However, for the present considerations

this difference to Special Relativity is not crucial. Hence, we repeat that in the

Copenhagen interpretation quantum mechanics describes the physical reality as it

appears, if it is investigated by means of apparatuses, that are truly existing

macroscopic objects which are subject to the laws of classical physics.

Similar as in case of Special relativity we should ask also here, why we need in

addition to the formalism of quantum mechanics a separate interpretation with a

complicated classical-world semantics, that is not a semantics in the sense of

realism. At first, it is again quite clear, that we cannot completely dispense with

an interpretation. Indeed, without an adequate interpretation, we were confronted

with serious contradictions: The formalism of quantum mechanics provides propo-

sitions that plainly contradict our everyday experience, which is assumed for its

own part to be justified by classical physics, in particular by classical mechanics.

As an example we mention here the complementarity of two otherwise coexisting

properties as the position q and the momentum p of a material object. In classical

mechanics, the coexistence of properties q and p is based on the hypothesis of a

thoroughgoing determination of objects. In the Copenhagen interpretation, this and

other contradictions are resolved by relating the propositions of the theory not

directly to the microscopic reality of the quantum world but to the macroscopic

apparatuses of the classical world.

In spite of the obvious merits of Niels Bohr and the Copenhagen school, the

Copenhagen interpretation is not the final and concluding resolution of the episte-

mological problems of quantum mechanics. The only way to understand quantum

mechanics properly and truly is based on the strategy, that we sketched in principle

in the investigations of Chaps. 1 and 3.

In a first step, we have to make clear, that classical physics is loaded with several

hypotheses that can neither be justified by rational reasoning nor by experimental

evidence. In a second step, we have to abandon these hypotheses, in the example

mentioned the hypothesis of thoroughgoing determination. This implies, that also in

our everyday experience the respective hypothesis disappears. Hence, in the example

discussed here, the hypotheses of thoroughgoing determination, is no longer presup-

posed. Consequently, in a final third step, the contradiction between the formalism of

quantummechanics and the correspondingly relaxed everyday experience completely

disappears. The propositions of quantum mechanics can, from now on, be related

consistently to the reality of the quantum world.
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5.2.2.2 The Quantum Theory of Measurement

The actual history of quantum mechanics and its interpretation18 did not follow the

possibility shown here. Instead, the scientific community made use of an alternative

way, taking up a proposal that was indicated and partly elaborated already by J. von

Neumann in his pioneering book 19 of 1932. Here, we have in mind von Neumann’s

idea, to apply quantum mechanics not only to microscopic quantum systems but

also to the entire measurement process and its macroscopic apparatuses. However,

when von Neumann made this proposal and formulated already the first version of a

quantum theory of measurement, many questions were still open. For instance, the

theory could not adequately explain the objectification of the measuring results. For

this reason, von Neumann introduced ad hoc and without any justification the so-

called “projection postulate”. In addition, it was by no means clear at this time,

whether the validity of quantum mechanics is restricted to the microscopic world of

atoms and elementary particles, or whether it can adequately also grasp the macro-

scopic world of apparatuses an measuring processes.

Within the next five decades, it became more and more clear, that the validity of

quantum mechanics is not restricted to the microscopic world of molecules, atoms

and elementary particles. Many macroscopic quantum effects as superfluidity,

superconductivity, and macroscopic tunnelling etc. confirmed, that quantum

mechanics can consistently be applied to these quantum phenomena. In this way,

it became obvious, that quantum mechanics is indeed universally valid and appli-

cable to all physical phenomena from atomic processes to the creation and evolu-

tion of the universe. In particular, quantum mechanics can be applied to the

macroscopic apparatuses, that are used for the experimental confirmation or refuta-

tion of several theoretical propositions. This means that quantum mechanics gov-

erns all processes that are needed for its own verification and falsification. In this

way, classical apparatuses and classical processes are completely eliminated.

On the basis of these results, the quantum theory of measurements were devel-

oped by many authors in full detail. For more information we refer to the literature,

the proceedings of a conference 20 and to several monographs about this field.21 The

result of these efforts can be summarised in terms of an improved new interpreta-

tion of quantum mechanics, which is based on the quantum theory of measurement

and which is clearly distinguished from the original Copenhagen interpretation

discussed above: “Quantum mechanics describes the external, material reality as it

appears, if we investigate it by means of measuring apparatuses that are, on their

part, physical objects and subject to the laws of quantum mechanics.” This

improved interpretation is not an approach exactly in the sense of realism but

nearer to the quantum world than the old Copenhagen interpretation, since it does

18 For all details, we refer to Jammer (1974).
19 von Neumann (1932).
20 Lahti and Mittelstaedt, P. (Eds.). (13–17 August (1990).
21 Busch et al. (1991, 1996), Busch et al. (1995), Mittelstaedt (1998).
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not make use of external classical apparatuses. It is an interpretation similar to the

improved interpretation of Special Relativity mentioned, that uses light rays and

particle trajectories as measurement devices.

As already mentioned above, also in Quantum Mechanics there is a completely

different way to understand the theory, that is based on the investigations of

chapter 3. Instead of removing the contradiction between Quantum Mechanics

and Classical Mechanics by means of one of the two interpretations mentioned,

we can proceed as follows: First, we have to recall, that classical physics is loaded

with hypotheses, that can neither be justified by rational reasoning nor by experi-

mental evidence. Second, by convenient relaxations of these hypotheses the pre-

tended contradiction between Quantum Mechanics and our everyday experience,

which is supposed to be governed by Classical Mechanics, disappears. Hence,

nothing must be explained by means of an “interpretation” and quantum mechanics

allows for a direct realistic understanding of its results.

5.3 Summary

In the preceding Sect. 5.2 we discussed briefly interpretations of two theories of

Modern Physics, of Special Relativity and of Quantum Mechanics. The two exam-

ples discussed here show clearly, why we need interpretations for the two well

known theories of Modern Physics: the theories considered lead to statements that

plainly contradict – at least on first sight – our everyday experience. For both

theories, we could present convincing examples. For this surprising and rather

irritating phenomenon we must find some explanation, that can help to remove

the contradictions in question. In spite of the differences between the two theories in

question, the explanation and the removal of the contradictions have the same basic

structure: the propositions of the theory are considered as statements that show, how

the external physical reality appears to us, if we investigate it by means of

apparatuses that possess in any case empirical reality and that are sometimes

even objects of the theory in question.

In both cases of the theories discussed here, we have applied also a completely

different strategy for avoiding contradictions between the theories and our ordinary

experience. Namely, instead of searching for ways to remove the various contra-

dictions by means of a convenient interpretation, we could also ask where the

contradictions come from. The answer to this question, that we gave in the

preceding chapters indicates, that we are trusting too much in our ordinary, every-

day experience and its pretended justification by classical physics, in particular by

classical mechanics. The idealisation of classical mechanics by incorporating

several hypothetical assumptions can neither be justified conceptually nor by

experimental evidence.

The way, that we proposed in this treatise for avoiding contradictions, should not

be misunderstood as a new competing interpretation of Special Relativity and

Quantum Mechanics, respectively, Instead, it should show the reasons for our
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astonishment about the statements of Modern Physics and in this way also help to

remove them. As we have seen, the reason for our astonishment is rooted in a

misinterpretation of our ordinary experience, more precisely, in the unproved

assumption that our ordinary experience is governed by classical mechanics.

In other words, the goal of the present investigation is enlightenment and not the

establishment of a new interpretation of the theories of Modern Physics. Indeed, we

merely showed, how we could eliminate in principle the reasons for establishing

interpretations of Modern Physics.
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Chapter 6

Concluding Remarks

6.1 Intuitiveness and Truth in Physical Theories

In the beginning of the present treatise we discussed the observation, that many

scientists consider Newton’s classical physics as understandable and intuitive,

whereas Modern Physics of the 20th century is estimated as difficult to grasp and

unintuitive. This assessment is shared by many physicists and presumably by the

majority of philosophers of science. Here, we did not investigate the question, why

physicists as well as philosophers accept these statements as true, - simply since we

consider both theses as erroneous.

In chapter 1 we tried to present an explanation of this conviction in two separate

steps. First, we explained that Newton’s classical physics is incomprehensible and

unintuitive, since classical physics is loaded with hypotheses that originate from the

metaphysics and theology of the 17th and 18th century. Since for these hypotheses

there are no rational explanations and also no empirical evidence, they are indeed

incomprehensible and unintuitive. Second, for similar and corresponding reasons,

the theories of Modern Physics are more comprehensible and more intuitive than

Newton’s classical physics, since these theories contain much less of the metaphys-

ical hypotheses in question. These more general statements were explained in detail

in the first chapter.

On the basis of these still very general results, we raised the intricate more

specific question: Is it possible to reconstruct the well known theories of Modern

Physics merely by abandoning or relaxing some of the mentioned hypotheses of

classical physics? Surprisingly, the answer to this question turned out to be positive

in several cases. As a proof or at least as a justification of these theses, we

reconstructed in the subsequent chapters 2 and 3 the most important theories of

Modern Physics, the Theories of Relativity and the non-relativistic Quantum

Mechanics in Hilbert space.

The theory of SPECIAL RELATIVITY is the most convincing example of our way of

reasoning. We mention here the important result, shown in section (1c), that

Newton’s theory of space-time and classical mechanics is loaded with at least 6

ontological hypotheses O(C)1 . . . O(C)6, which are neither intuitive nor justified by
rational reasoning or by empirical evidence. By abandoning the hypothesis O(C)1

P. Mittelstaedt, Rational Reconstructions of Modern Physics,
Fundamental Theories of Physics 169, DOI 10.1007/978-94-007-0077-2_6,
# Springer Science+Business Media B.V. 2011
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of the existence of an absolute and universal time, we obtained the generalised

Lorentz-transformation TII0(v,o), relativistic mechanics and the Minkowskian

space-timeM(o), where o¼ c is a property of the empty space-time. Hence, Special
Relativity seems to be nothing but a less hypothetical version of Classical Mechan-
ics. However, the following question remain also here: Is the theory of Special

Relativity a-priori true? Obviously not, since Special Relativity is still based on the

other 5 hypotheses O(C)2 . . .O(C)6 of Classical Mechanics, which were not aban-

doned or relaxed in our reconstruction. In addition, Special Relativity could depend
on other hypotheses of Classical Mechanics that we are not aware of.

Even if we cannot assert that Special Relativity is a priori true, our way of

reconstruction of this theory by eliminating one ontological hypothesis suggests

that Special Relativity is at least closer to the empirical truth than Classical

Mechanics and Classical theory of space-time. It is, however, very hard to say,

what is precisely meant by the statement, that a theory T1 is closer to the truth than

another theory T2, if both theories T1 and T2 are not completely true but partly

false.1 Popper has tried to clarify this situation and to give a precise meaning to the

phrase “closer to the truth”. According to Popper2, a partly false theory T1 is closer

to the truth than another partly false theory T2, if T2 allows to derive more false

statements than T1. From a logical point of view, this definition might be a useful

clarification of the phrase mentioned, but in case of our comparison between

Classical Mechanics and Special Relativity it is not directly applicable and helpful.

Hence, we restrict the result of our consideration to the simple statement that

Special Relativity is an improvement of Classical Mechanics, since it is based on

less ontological hypotheses than Classical Mechanics. There is, however one

important remark that should be made here.

Compared with Classical Mechanics, Special Relativity is not based on new

empirical results and not on new additional hypotheses. Hence, compared with

Classical Mechanics, Special Relativity is an improvement. In addition, Special

Relativity is also more “intuitive” than Classical Mechanics, if we distinguish here

clearly the concepts of “directly intuitive” and “indirectly intuitive” as defined in

section (1a). Many of the new, and at first sight astonishing features of Special

Relativity are at closer inspection “indirectly intuitive” in the explained sense.

In the reconstruction of GENERAL RELATIVITY we found many similarities with

Special Relativity but also important differences. The starting point is again Classi-

cal Mechanics, which is loaded by the 6 ontological hypotheses O(C)1 . . . O(C)6.
Similarly as Special Relativity, General Relativity is not a priori true, since in our

reconstruction we abandoned only the two hypotheses O(C)1 and O(C)2. However,
on the basis of this reduced ontology we could already reconstruct the pseudo-

Riemannian structure of space-time, i.e. the pseudo-Riemannian 4-dimensional

space R4. Obviously, this space-time model is closer to the empirical reality than

the Minkowskian space-time of Special Relativity.

1Weingartner (2000), chapter 9.
2 Popper (1963), Appendix (1972), p. 330 ff.
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However, we should keep in mind that General Relativity consists of two

components, the Riemannian space-time R4 and Einstein’s field equations

Gmn¼ –k Tmn, where Gmn is the Einstein tensor, Tmn the energy-momentum tensor of

matter and other fields and k the gravitational constant. This second component is still

missing in our reconstruction of General Relativity. This means in particular, that we

don’t know anything about the coupling constant k and above all, that we have no

survey about those space-time models R4, that are empirical meaningful. It is well

known, that the hypothetical assumption of Einstein’s field equations implies – in

particular in the large-scale region – many solutions that are far from being “directly

intuitive” or “indirectly intuitive”.3

The incorporation of Einstein’s field equations into our reconstruction program of

General Relativity requires new hypothetical assumptions that are not justified by

rational reasoning or by empirical evidence. Hence, we could generate in this way a

situation, in which the theory in question is again loadedwith unjustified hypotheses,

similar to Newton’s ClassicalMechanics. Of course, the two cases are quite different

in detail. Whereas Newton’s Classical Mechanics is loaded with metaphysical and

theological hypotheses, the theory of General Relativity is based on mathematical

and formal hypotheses. For example, we mention here the requirements of general
covariance and of general relativity,Mach’s principle and the requirement, that the

field equations should be the most simple quasi-linear second order differential

equations.4 For a present-day theoretical physicist, these hypotheses sound perhaps

more convincing than the metaphysical hypotheses of Newton, they are, however,

by no means really justified.

Whereas Special Relativity is a relaxed version of Classical Mechanics, which is

based on less hypothetical assumptions and thus nearer to the empirical truth than

Classical Mechanics, for General Relativity this way of reasoning can only be

applied to the first part of the theory, that is concerned with the geometry of the

pseudo-Riemannian space-time. The justification of the second part of General

relativity, Einstein’s field equations, is less convincing since this part is based on

several mathematical as well as methodological hypotheses. Hence, also the impli-

cations of Einstein’s field equations are not completely settled. Our method of

reconstruction shows not only the advantages of the elimination of unsure hypoth-

eses but also the disadvantages of the addition of new hypothetical assumptions.

In the rational reconstruction of QUANTUM MECHANICS we find quite different

strategies. Since we reconstructed here only the non-relativistic quantummechanics,

the two hypotheses O(C)1 and O(C)2 were preserved. However, the abandonment of

the remaining four hypotheses O(C)3 . . .O(C)6 leads to important restrictions of the

possibilities of a formal scientific language, which can adequately be expressed by a

weakening of the formal logic of this language.We argue, that this reduced logic, the

intuitionistic quantum logic, is a-priori true in a much better justified sense than the

pretended a-priori truth of the well known classical logic.

3 Hawking, S. W. and G. F. R. Ellis (1973).
4 For more details cf. Wheeler (1973).
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It is obvious, that these first results are very abstract and still far from a

reconstruction of quantum mechanics. However, the intuitionistic quantum logic

is the right first step, the beginning of a reconstruction of quantum mechanics.

Indeed, after a long way of formal steps we arrive at the Lindenbaum-Tarski algebra

of the calculus of quantum logic, at various lattice structures and in particular at the

lattice LQ
* of the quantum logic of an individual quantum system. The goal of this

approach is the reconstruction of quantummechanics in Hilbert space H(C) over the

complex numbers C. Up to this point no new empirical results were used and no

additional formal assumptions were incorporated into our approach. Hence, the

high degree of apriority of our results is still conserved.

At this point, the reconstruction must stop for a start. The reason is, that the

lattice LQ
* does not restrict the number fields of the Hilbert space in the desired

way. There are not only three fields R, C, and Q – as originally expected according

to the Piron-McLaren theorem – but infinitely many. Meanwhile we know a

mathematical condition that excludes the superfluous number fields, the angle

bisecting condition by Solèr, but this condition is a purely formal hypothesis.

As long as this condition cannot be expressed and justified by arguments that

refer to the most general possibilities of a scientific language of physics, the

apriority of the reconstructed theory is not yet secured. If we were willing to accept

the Solèr condition without mental reservation, then we could incorporate further

refinements into the theory that refer to unsharp properties and to the uncertainty

relation – and that without any loss of apriority. If the numerical value of Planck’s

constant �h is accepted as an empirical component, then we could elaborate the

modifications by unsharp properties even quantitatively. This is indicated in

section (4c) and elaborated in detail in the literature.5

The gain of knowledge, that we can receive by the method of rational recon-

struction is obvious – without restriction – only in Special Relativity. In General

Relativity, we must assume new hypotheses, that lead possibly also to unrealistic

consequences. In contrast to Quantum Mechanics, where we could exclude unreal-

istic models by a convenient hypothesis, in General Relativity a restricting condi-

tion of this kind is not known today. However, the assumption by means of which

we could exclude in Quantum Mechanics unrealistic consequences – the angle

bisecting condition – is presently still a useful hypothesis, which can neither be

proved by theoretical arguments nor by empirical evidence.

At the end of the long way to reconstruct the theories of Modern Physics by

abandoning metaphysical hypotheses of Newton’s classical world, there is still one

open problem. In the real history of physics, the hypothetical components of

classical physics were discovered by the founders of Modern Physics not at once,

but step by step. We mention here the important contributions by Enst Mach, Henry
Poincaré, Albert Einstein, Niels Bohr, Werner Heisenberg, and Erwin Schrödinger
and many others. On the basis of these discoveries, we can provide today rational

reconstructions of the theories of Modern Physics. However, the pioneers of

5Mittelstaedt (2008).
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Modern Physics were only interested in those hypotheses of classical physics, that

are relevant for the construction of the new theories in the 20th century. They did

not investigate the problem, whether there are other, not yet discovered hypotheses

of classical physics, which are still contained as hidden hypothetical components in

the theories of Modern Physics.

The solution of this problem is not only interesting for the future development

of physics, but also for the truth of presently accepted theories. If there were no

residual presuppositions in these theories, according to the possible rational recon-

struction, they could be considered as a-priori true. This is, however very

improbable, since all physical theories are based on several unavoidable metaphys-

ical assumptions. We mention here for instance the assumption, that there is

external world, outside of our consciousness. This hypothesis is well known and

often called “metaphysical realism”. Other options are the assumptions that the

underlying ontology of physical theories is an ontology of objects and properties, as

we have used it here, or an ontology of processes.6 The decision between these

options has presumably consequences for the language and logic, which we use for

the formulation of the physical theories. Many other, quite general assumptions of

this kind are conceivable. We will not go into details here, but refer to the extended

literature.7 What counts here is, that physics without any kind of metaphysics seems

to be impossible. The elimination of metaphysical hypotheses of classical physics,

that we discussed in the present treatise, refer only to avoidable hypotheses but not

to metaphysical assumptions at all.

6 Kuhlmann, M. (2000, 2010).
7 Vollmer, G. (2000, 2007) and the literature quoted in these articles.
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