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Foreword

According to a traditional, narrow definition, physics is the science explor-
ing the laws of the non–living part of nature, while biology studies living
beings. This division stems from times in which biology was still to a large
extent a descriptive science whose main purpose was to order, structure and
classify the observations made in the living part of nature. This changed dra-
matically in recent decades. Modern biology is an explaining, quantitative
science employing methods which often come from chemistry and physics.
Vice versa, physicists also became interested in biological questions, and
the interdisciplinary field of biophysics emerged. A similar process is now
taking place with physics, more precisely theoretical physics, and the social
sciences, particularly economics. There are three driving forces: First, there
is a strong tendency in economics towards working more quantitatively. Not
surprisingly, it is especially strong in finance. Second, a wealth of empir-
ical economic data became available during the last few decades. This is
indispensable for theoretical physicists whose key competence is the con-
struction of mathematical models based on empirical information. Third,
complex systems moved in the focus of research in physics. Although the
ultimate definition of complex systems is still debated, most researchers
would agree to viewing the economy as a good example.

The new interdisciplinary field of econophysics attracts talented individ-
uals from different branches of physics. However, there is one thing many
of them have in common: often, they have worked in experimental physics
or, at least, they analyzed experimental data. This is natural and also
helpful for a field where the challenge is to lay the theoretical foundations.
Dr. Münnix is an excellent example for that. He is a gifted experimentalist
who worked on quantum dots before he joined my research group to start
his dissertation project in econophysics. Dr. Münnix considerably strength-
ened the econophysics team, which then consisted of him, Dr. R. Schäfer,
two Master students and myself. He took the lead in so many of our activi-
ties and produced such an impressive series of results that his thesis deserves
to be published as a book. The introduction presents econophysics in a nut-
shell and thus makes it possible for every physicist to become familiar with
the defining issues of the field. In the research part, comprising the three
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directions that were of particular importance in the emergence of the finan-
cial crisis of 2008–2009: Dynamics of dependencies, Epps effect and credit
risk. Various original and new results are presented. It is a great pleasure
for me to recommend this book to everybody interested in econophysics!

Thomas Guhr
Fakultät für Physik, Universität Duisburg–Essen
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Abstract

The central topic of this work is the analysis of statistical dependencies in
financial markets. In this matter, mathematical models are developed using
concepts and methods from statistical physics. In particular, aspects that
had a key role in the emergence of the financial crisis 2008–2009 are studied.

This work is organized in three parts. Methods are developed that both
provide insight into the statistical dependence structure and significantly
increase the precision in estimating correlations. As correlations have count-
less applications in the financial industry, this permits to enhance the esti-
mation of risk also in existing models.

The first part introduces a similarity measure that can be used to classify
typical states of a financial market and to identify their dynamics. In an
empirical study, the versatility of the similarity measure is demonstrated by
identifying critical states of a financial market. Moreover, in a large-scale
empirical study, the structure of statistical dependencies is disclosed by the
concept of copulae. Structural properties of the copula are extracted and
mapped to the corresponding correlations in order to disclose the scope of
correlations.

In the second part, statistical causes for the Epps effect are identified
and compensation methods are developed. The Epps effect refers to the
phenomenon of declining measured correlations on high frequency financial
data. A major portion of the Epps effect can be compensated leading to
a significant improvement in the estimation of correlations. The developed
compensation methods do not require model calibrations nor is an adjust-
ment of model parameters necessary.

In the third part, a structural model for the estimation of credit risk
is discussed. By using Random Matrix Theory it is demonstrated that
the existence of correlations severely limits the effect of diversification in a
credit portfolio. Under the assumption of randomly fluctuating correlations,
a lower bound for the estimation of credit risk is calculated.
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1 Introduction

1.1 Physics and Finance

In recent years, a new trend in economic modeling has emerged. Concepts
of physics are being transferred more and more frequently to problems in
economics. The field of econophysics [8, 9] has formed as the liaison.

The methods of approach in this field are analogous to the approach
of “traditional” physics: Mathematical modeling based on empirical data.
The primary difference is that in econophysics, the mathematics does not
describe fundamental natural laws, but instead describes statistical laws
that arise from the interactions and behavior of human beings. A financial
market represents such a system – with the favorable circumstance that the
actions of its participants create a wealth of data.

The dramatic events of the world economic crisis that broke out in 2008
resulted in data which contain strong correlations as well as large fluc-
tuations, or a high volatility, in economic terms. Deep understanding of
the underlying mechanisms during the crisis will help to improve current
economic models. An important task is the development of methods that
describe the current market situation.

The ever-increasing availability of empirical financial data allows us to
develop improved economic models. These models are fundamentally dif-
ferent from many traditional models in economics, which are often based on
different schools. Models in econophysics are usually motivated by and eval-
uated on empirical data. Certainly, these models can only describe quan-
titative aspects. Many processes in the economy are difficult to describe
quantitatively and can only be captured indirectly. Good examples are psy-
chological or political influences. Thus, it is certainly impossible to develop
a theory that describes every economic aspect involving only concepts of
physics. Rather a collaboration of scientists from various fields is necessary.
However, physics can improve economic models dramatically. For example,
concepts of statistical physics can help to capture and predict the dynamics
of credit and equity markets. One of the most important contributions on
this matter is the estimation of statistical dependence. The quantification

M. C. Münnix, Studies of Credit and Equity Markets with Concepts of  Theoretical Physics, 
DOI 10.1007/978-3-8348-8328-5_1,
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2 1 Introduction

of statistical dependence allows a significant reduction of various types of
financial risk.

Another benefit of econophysics is the identification of analogies between
economic and physical problems. This allows applying existing theories in
physics to very different problems in economics. In particular, theories of
complex systems prove to be very useful. A good example in the context
is Random Matrix Theory (RMT) [10, 11] which allows to predict general
features of a system, such as the eigenvalue density of a correlation matrix.

However, in physics it is often possible to carry out experiments. These
experiments isolate certain features of a complex system in order to test
a hypothesis. In economic systems this is very difficult. For example, on
one hand, it would require vast amounts of money to provoke significant
reactions on a stock market that can be observed. On the other hand, even
if money is not an issue, it is impossible to isolate certain features. Thus,
if a reaction is provoked, it is impossible to determine if the reaction is in
accordance with a model, or if it is caused by something completely new,
which has not been considered yet.

A fundamental difference to traditional physics is that the underlying laws
in an economic system are subject to change in time. For this reason, it is
nearly impossible to develop a full theory of an economic system on a micro-
scopic scale. There are no basic equations such as the Schrödinger equation
in economics. However, rather than describing the individual participants
of an economic system, we can make significant statistical statements based
on the general properties of the system.

The following section 1.2 gives a brief introduction to some elementary
concepts of financial markets. Section 1.3 gives some examples for successful
liaisons between physics and economics. In section 1.4 the aim of this thesis
is motivated and presented.

1.2 Financial Markets

A (financial) market is by its simplest definition a place or an institution
where people can buy or sell certain goods. These things can be a large
variety of items, such as raw materials, industrial manufactures, metals or
agricultural products on a commodity market. Commodity markets already
existed in the copper age and are believed to be the first institutionalized
markets.

Nowadays, an important financial market is the stock market, or stock
exchange. Stocks are small shares of a company. But why do people trade
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small shares of companies, and how did they come into their possession?
The underlying principle is very simple. If a company needs new capital,
for example, to expand into another country, it has several options. One
option is to search for investors who borrow money, either for the payment
of an interest rate, or for the participation in future profits of the company.
But it might be difficult to find investors, if the company needs a very
large amount of capital. In this case, the company can decide to sell a
part of itself in order to gain capital. But it might also be very difficult to
find someone who buys a large part of a company (in exchange for a lot of
money). A common solution is to split the part that shall be sold into many
pieces. These pieces are called stocks. The company can sell its stock for a
predefined price on a stock exchange. Investors can buy these stocks and
receive in return a small participation in future profits, called the dividend,
and voting rights in important decisions of the company.

But why are stocks being bought and sold even after their initial sale by
the company? In principle, we can think of three main reasons.

To illustrate this first reason, let us consider the following example: In-
vestor “A” bought a stock of a company for USD 10.00. In the previous years,
the company made huge losses, so he decides to sell the stock in order to
buy a different stock with the profit. But nobody will pay him USD 10.00,
because the probability of a good future dividend is low. But investor “B”
might offer him to buy the stock for USD 5.00 because her analysis indi-
cates that the company will continue making losses in the near future, but
it will eventually recover and produce profits at some point within three
years. Thus, the two investors agree on a trade at USD 5.00. This simple
example illustrates a central feature of a market. No institution dictates
the price of a stock (after the initial selling). The price is a result of supply
and demand. This already gives a hint of the embedded risk in a market,
because the analysis of investor “B” can of course be wrong. She might have
offered a price too high, if the company does not generate profits within the
next three years.

The second main reason for stocks being traded is even more speculative.
Imagine that an investor knows that a company is going to introduce a
new product on the next day. He thinks that this product will change the
world and therefore the company’s profits will increase dramatically. He
wants to buy stocks of this company very quickly. Because of his huge
expectations on the company’s profits, he is willing to pay a price higher
than the price based on the company’s dividends if he can buy the stock
on this day. He can also go one step further. He might think that, once
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the product is introduced, other investors will want to buy the stock as well
and are willing to pay a price even higher than the price he has paid. Thus,
he decides to sell the stock directly on the next day, when the product
is introduced. In the latter case, the motivation to buy the stock is not
aimed at the company’s dividends anymore. It is only based on the market
participants’ expectations. There is also much more risk involved than in
the first scenario.

A stock can be traded around the world, on multiple stock exchanges.
This leads to a third main reason for stock trading. Let us say a stock is
being traded in Frankfurt for the equivalent of USD 4.00 and the same stock
is being traded in New York at USD 4.10. An investor can buy then the stock
in Frankfurt and sell it directly in New York and make a profit of USD 0.10.
This concept is called arbitrage. The reason for the occurrence of arbitrage
is that the mechanisms described in reason one and two are performed by
the participants of all stock exchanges around the world individually. This
can lead to a different price in Frankfurt than in New York, because the
decision to buy or sell a stock can be very subjective. The prices on different
stock exchanges thus are not always synchronized. In fact, a trader that
exploits arbitrage contributes to the synchronization. In principle, arbitrage
is almost risk-less profit, but often there are other kinds of risk embedded.
For example, the price in New York can change to USD 3.90 at the moment
the investor buys the stock in Frankfurt or the EUR/USD rate can change.

These are three main reasons for stocks being traded. Of course, there are
many more. For example, for risk management, an investor decides whether
to buy or sell a stock only based on the statistical properties of the stock.
We will return to this matter later in this chapter. Nowadays, a significant
amount of stock market volume is traded algorithmically. However, this
type of trading mainly occurs on very short timescales. For example, one
of the most important factors for a hedge fund trying to exploit arbitrage
is the network cable length to the stock exchange. The timescales involved
are in the range of a few milliseconds.

All three scenarios described above share a common underlying princi-
ple. A trade always occurs as a result of information. This information
can be anything from the knowledge of hiring a new employee in a single
company, an overall market prognosis or the detection of arbitrage. With
the trades that occurred due to this information, the information itself be-
comes embedded in the stock prices. A hypothetical market in which all
existing information is embedded in the prices, in which all participants act
perfectly rational based on identical information and in which are no hin-
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drance factors is called an efficient market [12, 13]. Although the individual
interpretation of information might deviate from trader to trader, the mar-
ket as a whole comes to an agreement about the price of a stock. This price
coincides with the “fair” price. It reflects at every point in time the value
of the corresponding company. Since a deviation from the fair price offers
arbitrage, the traders will exploit this immediately and the price returns
to the fair price. Changes of the fair price are induced by the arrival of
new information. In an efficient market the information is assumed to be
completely unpredictably. Thus, the stock prices follow a random motion.

There is controversy over the concept of the fair price. For example,
during the dot-com bubble that burst in 2002, many stock prices of Internet
companies evidently deviated considerably from the fair price. However, the
concept of an efficient market is an important assumption in many economic
theories. In a certain scope, it represents a powerful model. The difficulty
lies in defining this scope.

Another example of financial markets are derivative markets. On these
markets, products are traded that are based on other financial products.
A good example is an option. An option in financial context represents
the right to buy or sell a stock during a certain period in the future at a
predefined price. If an investor thinks that the price of a stock will increase,
but he/she does not want to buy the stock itself, he/she can buy an option
on this stock with the right to buy the stock in the future at a price that
is lower than his expected price. The options themselves are being traded
on derivative markets. This leads to the fact that the price of an option
corresponds to the average market’s expectation for the underlying stock
during a certain period. In other words, if the stock of a company performs
very well, an option to buy at a low price (“call” option) will be much more
expensive than an option to sell at a low price (“put” option).

A very important derivative market is the credit market, where products
based on loans, e.g. housing credits, are traded. On this market, investors
try to estimate the risk of an obligor not being able to pay back the credit
(this is called a default). In principle, profits and losses are made because
some investor’s estimation of risk is superior to the estimation of another
investor. A systematic underestimation of the risk on the housing credit
markets was one of the main causes for the financial crisis of 2008–2009.
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1.2.1 Basic Concepts

We now focus on the particular example of a stock market for introducing
some basic concepts and the nomenclature commonly used in econophysics
literature. Let us enumerate companies with the index k. S(k)(t) is the
price for the stock of company number k at time t. The information of
the price S(k), however, is not continuous, because technically it only exists
for the moment when someone who wants to sell this stock and someone
who wants to buy the stock agree on a certain price, i.e., when a trade
occurs. Strictly speaking, the price is not defined between those points of
trades, but usually S(k)(t) refers to the last traded price before time t. Many
stocks are so frequently traded that S(k)(t) can be seen as continuous in good
approximation. Because of this high frequency, stocks are almost exclusively
traded electronically nowadays. The concept of pricing, however, remains
the same. A stock exchange (or more precisely its clearing office) keeps
a so-called order book. This order book contains entries for everyone who
wants to sell or buy a certain stock at a certain price and a given amount.
For example, if you want to buy 100 shares of IBM at a price of USD 10.00
each, you can advise your broker to initiate the trade. He will then place a
limit-order at the stock exchange. The term “limit” refers to the fact that
you are only willing to buy the stock for USD 10.00 or below. If somebody
else informs the stock exchange that he/she wants to sell his stocks for
USD 10.00, this information will also go into the order book. Because the
prices agree, the stock exchange will clear your entries in the order book
and initiate the trade. As shown in Tab. 1.1, the order book has two sides.
One side contains all offers of stocks to a certain price – this is called the
ask side. The other side’s entries indicate that people are willing to buy the
stock at a certain price – this is the bid side. The highest bid and the lowest
ask price are commonly referred to as best bid and best ask. Usually, there
is a gap between the best bid and the best ask, called the spread. If this
spread does not exist, i.e., if best ask and best bid are at the same price, a
trade occurs, resulting in a new spread.

The limit-order is one of two fundamental ways of trading stocks. The
other one is the market-order. Imagine that you would like to buy a stock
very urgently and you do not care about the precise price (but of course
you have an idea about the price because you have the information of pre-
vious prices S(k)(t)). This corresponds to the example of the trader in the
previous section, who wants to buy a stock very quickly due to his market
expectation. In this situation, your broker tells the stock exchange to buy,
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bid price ask

USD 10.08 100
USD 10.07 200
USD 10.06 150
USD 10.05 50

100 USD 9.95
50 USD 9.94
200 USD 9.93
100 USD 9.92

Table 1.1: Example of an order book for a stock.

e.g., 100 shares of IBM. Because he does not specify a certain price, this
order does not go into the order book. The stock exchange rather looks for
the most inexpensive offer of this stock in the order book. Consequently,
the entry is cleared from the order book and the trade occurs. This process
can also be split into several orders, for example if the most inexpensive
offer only consists of 50 stocks.

Because of the spread, the price can jump after a market order: If the
previous traded price resulted from a “buy” market-order, the last traded
price is the (previous) best ask. If the next order is a “sell” market order, the
price jumps from best bid to best ask with a magnitude of the spread. To
avoid these artifacts in price the information of high frequency data, S(k)(t)
sometimes represents the midpoint price which is the average of best bid
and best ask.

An investor is usually not interested in the actual price of a stock, but
in its relative price change during a given time interval Δt. This is because
he/she wants to anticipate how much profit he/she can make by investing a
portion of his capital in this stock. The information is given by the relative
price change of a stock, which is called the arithmetic return,

r
(k)
Δt (t) =

S(k)(t+Δt)− S(k)(t)

S(k)(t)
=

ΔS
(k)
Δt (t)

S(k)(t)
. (1.1)

Here, t represents a dimensionless, discrete time starting at t = 0. On
a large time horizon, the price of a stock usually follows an exponential
curve. This is caused by an equilibrium between the stock market and
fixed-income investments, such as fixed deposits in a bank. If an investor
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deposits an amount of money V0 at a bank with an interest rate of p, the
capital V (t) increases exponentially,

V (t) = V0(1 + p)t . (1.2)

If the investor finds stocks that potentially deliver a higher profit than given
by the interest rate p, he/she will take his money from the bank and put it
on the stock market. On the other hand, if his stocks are not performing well
compared to the interest rate the bank is offering, he/she will take his money
from the stock exchange and deposit it in the bank again. This mechanism
is often referred to as global arbitrage. Because of this mechanism, the stock
prices also follow an exponential trend in general, which is illustrated by
the evolution of the S&P 500 index in Fig. 1.1. To remove this trend, we
can use the logarithmic difference, or logarithmic return h

h
(k)
Δt (t) = ln

(
S(k)(t+Δt)

S(k)(t)

)
. (1.3)

As the exponential trend is only present on large timescales, the arithmetic
and logarithmic returns are nearly the same for small return intervals Δt
which can be easily shown by

h
(k)
Δt (t) = ln

(
S(k)(t) + ΔS

(k)
Δt (t)

S(k)(t)

)
= ln

(
1 +

ΔS
(k)
Δt (t)

S(k)(t)

)
(1.4)

≈ ΔS
(k)
Δt (t)

S(k)(t)
= r

(k)
Δt (t) . (1.5)

It depends on the actual problem, whether arithmetic or logarithmic returns
should be used. In the following, we will always use arithmetic returns.

1.2.2 Financial Risk

As already mentioned above, financial investments usually come with an
embedded risk. Although this seems quite intuitive, it is very difficult to
identify and quantify all sources of risk. The sources of risk can be manifold.
Market risk, for example refers to the risk that the price of a financial asset is
in general unpredictable. All assumptions that an investor bases his market
expectation on are either hypothetical or based on historical data. Political
risks can also be significant, such as tax changes or bans on exports in the
country that a stock’s company is located. It might be very profitable for
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Figure 1.1: Evolution of the S&P 500 index from 1950 to 2011 on a logarithmic
scale.

banks to give credit and earn the corresponding interest rates, but credit
risk, the risk that an obligor is not able to pay back his loan is very difficult
to estimate. These are just a few examples; the number of different types
of risk is extensive.

However, historically these risks often induce fluctuations on the corre-
sponding asset’s returns. Hence, the standard deviation of the historical
returns is commonly used to estimate and quantify the risk of an asset. The
fluctuations of stock returns are referred to as volatility in economic terms.
However, the term “volatility” does not always refer to the standard devia-
tion, as there are various definitions of volatility in economic literature. We
will use volatility as a synonym for standard deviation.

The fluctuations also include large positive returns, which correspond to
a large profit. These contribute to the risk as much as large losses. In other
words, by this definition enormous profits are not desired, because they are
considered risky. An asset with a constant return, a constant interest rate,
represents the asset with the lowest risk. Although the variance is only
a first approximation for the quantification of financial risk, it reflects the
balance between possible profit and risk. If an investor seeks to make huge
profits, he/she is also exposed to large risks, i.e., the chances of large losses.
On the other hand, if he/she prefers to minimize the risk, the profit will
probably be small.
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Terms often used in connection with risk are covariance and correlation.
Certainly, the volatilities of stocks are not independent. Stocks returns
can be statistically dependent, for example, if the corresponding companies
operate in the same industry branch, in the same country or if they are
exposed to the same risks. When quantifying the dependence of volatilities,
we are only interested in the dependency of the fluctuations. Thus we need
to subtract the mean values,

Σkl =
〈(

r
(k)
Δt −

〈
r
(k)
Δt

〉)(
r
(l)
Δt −

〈
r
(l)
Δt

〉)〉
(1.6)

=
〈
r
(k)
Δt r

(l)
Δt

〉
−
〈
r
(k)
Δt

〉〈
r
(l)
Δt

〉
, (1.7)

where 〈. . .〉 is the average of the time series. We refer to the whole time series
r
(k)
Δt if the argument (t) is omitted. Eq. (1.7) is the well-known covariance

coefficient. It quantifies the dependence of return volatilities.
Let us now consider two pairs of stocks; the first pair’s stocks returns

feature large variances whereas the second pair’s returns have small vari-
ances. Thus, the covariance of the first pair is larger than the second pair’s
covariance. However, it is conceivable that the statistical dependencies of
the two pairs are similar. This motivates the normalization by the standard
deviations σ

(k)
Δt ,

Ckl =

〈
r
(k)
Δt r

(l)
Δt

〉
−
〈
r
(k)
Δt

〉〈
r
(l)
Δt

〉
σ
(k)
Δt σ

(l)
Δt

. (1.8)

This is the Pearson correlation coefficient [14]. The value of Ckl gives us
information about the statistical dependence of the two stocks. Its range
lies between -1 and 1, where we can find the following limiting values

Ckl =

⎧⎪⎪⎨
⎪⎪⎩
+1 completely correlated

0 uncorrelated

−1 completely anticorrelated .

(1.9)

This correlation coefficient is not independent from the choice of the return
interval Δt. The length of the time series itself has also an impact, because
the obtained correlations are noisier on short time series. Both aspects will
be discussed in detail later in this thesis.

A good example for correlated stocks are the companies Intel and Ap-
ple. Both operate in the information technology (IT) industry branch, but
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they are not direct competitors. Apple uses Intel’s integrated circuits in
its products. Apple relies on the prices and quality of Intel’s products and
Intel depends on the quality and economic success of Apple’s products. If
something bad happens to one of the companies – let us say the brilliant
chief physicist of Intel’s research department dies unexpectedly, there will
be consequences for Apple as well. Investors will become aware of this by
the news, or see impacts on the companies’ financial statements and change
their expectations accordingly. This will result in a price drop of both
stocks’ prices – they will follow a correlated motion.

Anticorrelated stocks can be found, for example, for companies that pro-
duce seasonal products. The economic successes of the producers of ice
cream and winter coats are probably anticorrelated. In a very cold win-
ter, people will buy warm winter coats. Ice cream is mostly bought during
summer. However, only few people will buy warm coats during summer or
ice cream during winter. On the other hand, if two companies belong to
completely different industry branches, such as Nestlé, currently the world’s
largest food company, and Airbus, the European aircraft manufacturer, are
probably not significantly correlated.

Anticorrelations are usually very rare on the stock market. This is due to
the fact that the correlation of the overall economic situation is very strong.
This is often referred to as market correlation. Even if two companies have
completely disjunct scopes of business, they might have loans from the same
bank or rely on the same contractor. Moreover, if one company makes losses,
it cannot pay its employees large salaries. Hence, they cannot afford to buy
other companies’ products. Everything is very interconnected which is why
the average correlation of stock’s is usually positive.

Correlations can also be used to identify stocks that belong to the same
industry branch. If the correlation is large, it is very likely that the stocks
belong to the same branch. The primary application of financial correlations
and covariances, however, is the quantification and minimization of risk, for
example in a portfolio, an ensemble of different stocks [15].

A portfolio is a linear combination of assets. These assets can be a large
variety of financial products, but here we hold on to the example of a stock
portfolio. The value V of a portfolio of K stocks is given by

V (t) =

K∑
k=1

wkS
(k)(t) . (1.10)

wk defines the weight of stock k in the portfolio. It is called the fraction
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of wealth invested in stock k. The correlations within this portfolio are
represented by a K ×K symmetric matrix C. Evidently, the largest values
can be found on the diagonal, the correlation of a time series with itself is
always one,

Ckk = 1 k ∈ {1 . . .K} . (1.11)

Analogously, Σ contains all variances and covariances of the portfolio. It
seems logical that the covariance matrix can be used to quantify the overall
portfolio risk, which is defined as the overall portfolio variance. Hence,
the portfolio risk is the weighted sum of all portfolio covariances Σij . It is
denoted by Ω2 and reads,

Ω2 =

K∑
k=1

K∑
l=1

wkwlΣkl = �w†Σ�w , (1.12)

where vector �w contains the fractions of wealth. In this notation, the frac-
tions of wealth need to be normalized to unity. In portfolio optimization, a
discipline of risk management and capital allocation, one tries to minimize
the portfolio risk Ω2 with a careful choice of the fractions of wealth wk. Put
differently, an investor might decide to buy stock l, although he/she does
not know much about the corresponding company itself, but because it is
anticorrelated to stock k and thus lowers his portfolio risk.

Certainly, the variance of stock returns is a simple measurement for finan-
cial risk. An example of a more advanced approach is the estimation of the
return that will not be undershot with a given probability α (the so-called
α-quantile). The name of this concept is Value at Risk (VaR). Moreover,
a general disadvantage of portfolio optimization is that the calculation of
a Pearson correlation coefficient only accounts for linear statistical depen-
dencies. Correlations give very reliable results only if the observed process
can be described by a multivariate Gaussian distribution. However, as we
will discuss in the next chapter, the distribution of stock returns can vastly
differ from this case. Thus, the dependence of stock returns is often non-
linear and more complex. Concepts to overcome these limitations are, for
example, multivariate probability distributions and copulae. However, cor-
relations and variances are still the most commonly used techniques today.
In fact, they work well in “quiet” times, but in times when the stock mar-
ket gains a lot of momentum, such as during a financial crisis, they can
underestimate risks dramatically.



1.3 Contributions of Physics to Economics 13

1.3 Contributions of Physics to Economics

The key competence of every theoretical physicist is the mathematical mod-
eling based on empirical data. The success of econophysics is rooted on this
competence. This might sound trivial because mathematical modeling is the
day-to-day work of many theoretical physicists. However, expertise of the
careful development of a model and the subtle discussion of its scope form
the basis for the success of this field. In the following, we will present some
examples of contributions to economic research that originate in physics.

1.3.1 Geometric Brownian Motion

One characteristic feature of stock return time series is the abundance lot
of apparently arbitrary fluctuations on small timescales, in the order of
seconds to hours, but there seems to be a clear trend on larger timescales.
The fluctuations on small timescales can be caused by speculative trading or
arbitrage, for example. They do not correspond to the economic success of
the company and thus can be seen as noise. The trend on larger timescales,
however, is tied to the company’s economic success.

To model this behavior, let us first turn to the arbitrary portion of this
motion. The price S at time t can then be written as a sum of random price
changes ΔSn for N time steps,

S(T ) =

N∑
n=1

ΔSn + S(t = 0) . (1.13)

As we do not include the trend yet, the average price change is zero – thus,
the expected price after N time steps is the price at the first time step
S(t = 0),

〈S(T )〉 = S(t = 0) . (1.14)

This seems evident, as the motion is completely erratic. The second moment
of the expected price distribution at time t can be written as the sum of
second moments of the price changes,

〈
S2(T )

〉
=

N∑
n=1

M∑
m=1

〈ΔSnΔSm〉 (1.15)

=

N∑
n=1

〈
ΔS2

n

〉
+
∑
n�=m

〈ΔSnΔSm〉 . (1.16)
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As the price steps are independent, the last term in Eq. (1.16) becomes zero.
Moreover, because of this independence we omit the index n and write〈

S2(T )
〉
= N

〈
ΔS2

〉
. (1.17)

The total time T is proportional to the number N of time steps Δt. Hence,
with T = NΔt, we obtain

〈
S2(T )

〉
=

〈
ΔS2

〉
Δt

T . (1.18)

Apparently, the second moment is linear in time, which motivates the no-
tation,

ΔS = σε
√
Δt . (1.19)

This process is called the Wiener process. Here, ε refers to a random variable
that describes ΔS suitably and is normalized to unit variance. This random
variable can be drawn from almost any probability density function, as long
as its first and second moment exists. The standard deviation of the process
is modeled by the variable σ.

We can now include the trend of the price in the process. We denote it
by μ and write

ΔS = μΔt+ σε
√
Δt . (1.20)

This is the Wiener process with drift. The Wiener process is the stochastic
description of a phenomenon that can be observed in all kinds of processes
in nature and apparently also on the stock market. This phenomenon is
named Brownian motion, first observed by Brown in 1827 and illustrated
in Fig. 1.2. The Brownian motion is characterized as diffusive because the
second moment is linear in time, in contrast to a ballistic motion where
this relation is quadratic. One of the first mathematical descriptions of the
Brownian motion was performed in 1900 by Bachelier in his Ph.D. thesis
“Théorie de la Spéculation” (The theory of speculation), which comprises a
stochastic analysis of option markets and stock markets [17]. Independently,
1905 Einstein developed a mathematical description of Brownian motion.
His work was an important step towards the understanding of matter com-
posed of atoms [18]. For the first time, he provided a method that allowed
experimental physicists to count atoms using ordinary microscopes. The
independent works of Bachelier and Einstein on the same topic but in com-
pletely different areas – economics and physics – are a good example for the
many parallels between these fields.
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Figure 1.2: Brownian motion as measured by Perrin. The figure illustrates the
movement of colliding particles with a radius of 0.53 μm. The grid size is 3.2 μm.
Reproduced from [16].

The Wiener process seems suitable for the description of stock return
time series, but a time series of prices has additional features. First, the
price cannot be negative of course. Second, due to the global arbitrage
phenomenon we discussed in section 1.2.1 stock prices grow exponentially
on large time scales. Third, it is observed that the fluctuations of the
price change with the amplitude of the price. These circumstances are not
included in Eq. (1.20). For example, the variance is small if the price is close
to zero, but if the price increases, so do its fluctuations. The magnitude of
the next price change depends on the price itself. We can formalize this
with

ΔS = S
(
μΔt+ σε

√
Δt
)

, (1.21)

which is called geometric Brownian motion. If we draw ε from a standard
normal distribution, the probability of the price S(T ) is given by a log-
normal distribution. If we draw ε from a normal distribution, the geometric
Brownian motion generates an exponential trend as well.

The geometric Brownian motion has countless applications in economic
modeling. The probably most prominent one is the Black and Scholes model,
a model for the calculation of option prices that is very widely used. The
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key assumption is that the price of the option’s underlying stock follows a
geometric Brownian motion. It was developed by Black, Scholes and Merton
and first published in 1973 [19].

1.3.2 Probability Distributions

We briefly discussed that stock returns can be used to calculate correlations
between stocks and thus represent a key ingredient for risk management.
But the returns themselves are also of central importance because very
large negative stock returns, e.g., during a financial crash, indicate dramatic
events in the economy. A natural question to ask is how probable those large
negative returns are, or more generally: How large is the probability density
of a stock return of a certain magnitude x? The standard approach is the
calculation of the probability distribution. One distinguishes two functions.
First, the cumulative distribution function (cdf),

FX(x) = P (X ≤ x), (1.22)

which is the probability P that the random variable X (in our case, the stock
return) is smaller or equal to x. Second, the probability density function
(pdf),

fX(x) =
dFX(x)

dx
. (1.23)

Of course, fX(x) is normalized to unity,

+∞∫
−∞

fX(x)dx = 1 and therefore (1.24)

lim
x→∞FX(x) = 1 . (1.25)

The assumption of a geometric Brownian motion on an exponential trend,
as discussed in the previous section, implies Gaussian distributed stock re-
turns and log-normal distributed stock prices. As already mentioned in
section 1.2.1, both is consistent with empirical data on large time-scales,
e.g., daily data. Hence, the geometric Brownian motion appears to be a fair
assumption in this case.

However, physicists have found that this assumption is completely unjus-
tified for empirical data on small timescales [20, 21]. Fig. 1.3 shows the pdf
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Figure 1.3: Probability density distribution of normalized daily returns of the Intel
Corp. (INTC) stock from 2007 to 2010 on a logarithmic scale. The dashed curve
illustrates the comparison with a standard normal distribution.

for daily returns (Δt = 1d) compared with a Gaussian distribution. For
this return interval and the monitored period, the Gaussian distribution is
a fair approximation. However, if we decrease the return interval down to
intraday returns (Δt in the order of minutes), we obtain a distribution that
differs considerably from the Gaussian case, as shown in Fig. 1.4. Here,
the probability for very large and very small returns is much higher than
given by the Gaussian distribution. These outer regions of the empirical
distribution are often referred to as “fat tails” or “heavy tails”. If assuming
a Gaussian distribution, one underestimates the probability for these large
fluctuations. The risk is misjudged significantly. It has been shown that the
tails of the empirical cumulative return distribution follow a power-law,

F (r) ∝ r−α . (1.26)

The parameter α is approximately 3, but this also changes with the size of
the return [20, 21]. Because of these algebraic tails, it is difficult to find
a suitable probability density function. There are several candidates. A
promising one is the Lévy stable distribution. However, simply the knowl-
edge that one underestimates the risk if assuming Gaussian distributed re-
turns disclosed a fundamental weakness of financial modeling that is still
commonly encountered in practice.
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Figure 1.4: Probability density distribution of normalized 5-min returns of the
Intel Corp. (INTC) stock from 2007 to 2010 on a logarithmic scale. The dashed
curve illustrates the comparison with a standard normal distribution.

Moreover a short-come of many traditional economic models is the as-
sumption of a constant volatility. Empirical studies have shown that the
volatility usually fluctuates in time. Periods of large volatiles tend to appear
in clusters in time [22, 23]. This led to the development of GARCH models,
which we will discuss in chapter 3.

1.3.3 Random Matrix Theory

Random Matrix Theory (RMT) is a good example for common concepts of
physics and finance. Originally it was introduced by Wigner in 1967 to deal
with the statistics of eigenvalues and eigenfunctions of complex many-body
quantum systems. In addition to many applications in physics it also is very
useful for investors. The ansatz of RMT is the following. One exchanges
the Hamiltonian of a system with a matrix that has completely random
entries, but shares certain properties with the Hamiltonian, i.e., symmetry
or invariance against transformations. Despite the randomness, one can
make profound statements about the system’s statistical properties. The
motivation of this approach is that in complex systems, the Hamiltonian is
often unknown, but certain properties of it are known.
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The aim is to describe the general behavior of the system rather than the
microscopic processes. RMT allows us to calculate the statistical features
of the system such as its eigenvalue density. This approach is similar to
the ergodicity in thermodynamics, where one can make statements about
the system, e.g., if time goes to infinity (or the time span is very long).
Ergodicity in RMT increases the number N of random Hamiltonians to
infinity to make statements about the system’s statistics.

In RMT, several ensembles exist, consisting of a symmetry and a probabil-
ity density function for the entries of the Hamiltonian or the Dirac operator.
These represent different systems in physics and exhibit different eigenvalue
densities. In order to compare a measured eigenvalue density the character-
istic scales of the system need to be removed from the measured eigenvalue
spectrum. This procedure is called unfolding. In our case, we want to make
statements about the correlation matrix of a portfolio.

In economics there is certainly no Hamiltonian that describes, for ex-
ample, the movement of stock prices. However, it is possible to formally
map the correlation matrix C of K stocks to a Dirac operator in RMT by
expressing it as

C =
1

T
MM† , (1.27)

where T is the length of the underlying time series and M is a K × T
matrix. A detailed explanation for this notation is given in chapter 4. The
Dirac operator D in the chiral Gaussian orthogonal ensemble (chiral GOE)
in RMT is given by

D =

[
0 W†

W 0

]
, (1.28)

where W is a random matrix. If we choose

W =
1√
T
M , (1.29)

then D and C have identical spectra (apart from the zero modes). However,
we emphasize that this is only a formal analogy. This Dirac operator does
not correspond to laws of motions for the stock market.

But why is this correspondence useful for us? Financial correlation ma-
trices are noisy. This can simply be due to the finite lengths of the time
series. But how large is the portion of this noise? Clearly, if we write the
correlation matrix as in Eq. (1.27) and choose M by Eq. (1.29), the por-
tion of randomness would be one hundred percent. As we can calculate the
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Figure 1.5: Smoothed density of the eigenvalues of the correlation matrix C. For
comparison the density of chiral GOE for σ2 = 0.85 (dotted lone) and σ2 = 0.74

(solid line) is plotted. Taken from [11].

eigenvalue density spectrum of the random matrix using RMT, we can com-
pare it with the eigenvalue spectrum of the correlation matrix and thereby
identify the noise.

The eigenvalue density of the random matrix ensemble can be calculated
analytically [24, 25] as

ρ(λ) =
Q

2πσ2

√
(λmax − λ)(λmin − λ)

λ
, (1.30)

where Q is the ratio of the length of the time series T of returns that the
correlation matrix is based on to the number of stocks K,

Q =
T

K
≥ 1 . (1.31)

Q ≥ 1 is a requirement for the correlation matrix to be non-singular. σ2 is
the variance of the matrix M’s entries. By proper normalization, we choose
σ2 = 1. λmin and λmax are the boundaries of the spectrum and are given by

λmax
min = σ2

(
1 + 1/Q± 2

√
1/Q

)
. (1.32)
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The results of an empirical analysis are shown in Fig. 1.5. Here, the cor-
relation matrix C is calculated from 406 assets of the S&P 500 during the
years 1991-1996. When comparing the spectra, an immediate observation
is that the largest eigenvalue λ1 is 25 times larger than the predicted λmax.
The corresponding eigenvector represents the “market” itself. It has ap-
proximately equal components on all of the K stocks. A first assumption
is that the components of the correlation matrix, which are orthogonal to
the market are pure noise. This amounts to subtracting the contribution of
λmax from the nominal value σ2 = 1, leading to σ2 = 1 − λmax/N = 0.85.
This gives the theoretical distribution for a matrix that is purely random
except for its largest eigenvalue. An improved agreement with the bulk of
the density distribution can be obtained with a smaller value of σ2 = 0.74,
corresponding to 94% of the spectrum.

Thus we are able not only to estimate the amount of noise in the corre-
lation matrix but also to identify it in the eigenvalue density spectrum. A
common practice is to transform the correlation matrix into the diagonal
form, calculate λmin and λmax and then “eliminate” the noise by setting
the eigenvalues that correspond to noise to zero. The correlation matrix
can then be transformed back and one obtains a noise-filtered correlation
matrix. Although this technique might seem a bit primitive, it can signifi-
cantly reduce portfolio risk [10] and is widely used in the financial industry.
However, this is only one method to lower the noise in financial correlation
matrices. There is a wide range of noise reduction techniques, see, e.g.,
Refs. [26–29].

1.4 Motivation and Outline

The previous sections underline the importance of correlation – or in general,
statistical dependence for the proper estimation of risk. This work deals
with central problems related to statistical dependence and risk estimation.
A particular focus lies on the financial crisis of 2008–2009.

What matters in risk management is to uncover statistical laws governing
the time dependence so that one can anticipate periods during which the
market is at risk of sudden change. At first sight, this would seem impossible
since everyone knows that the graphs of financial variables as a function of
time are highly irregular and at first sight unfeasible to predict. A financial
market can be seen as a non-stationary system. One can wonder if physics
can offer any hints of how to make progress.
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In physics, one focuses on “state variables” that correspond to – and hence
identify – the state of the system of interest. In finance, the analog of a state
variable does not yet exist. In chapter 2, we introduce a similarity measure
that enables us to compare a market’s correlation structure between two
different points in time. Using this measure we can identify states of the
market, which correspond to different correlation structures in the financial
market. As a practical example for an application we utilize the measure in
portfolio optimization by calculating correlation matrices that are weighted
by the market similarity. Moreover, we analyze the statistical dependence of
a stock market using copulae, a method that captures statistical dependence
much more precisely than correlations. The use of correlation coefficients
and the corresponding Gaussian copula is discussed in relation to the finan-
cial crisis of 2008–2009 [30]. For example, using the Gaussian copula, one
can vastly underestimate the probability of correlated extreme events. In a
large-scale empirical study we disclose the degree of error that is involved
in the Gaussian copula.

However, the estimation of copulae requires large amounts of data. This
is due to the fact that we have to estimate a two dimensional function
instead of a single correlation coefficient. Estimating the average pairwise
copula of a whole market might be feasible, because the amount of data
is large. For two single stocks on a short time horizon, the amount of
data available is much smaller and thus the estimate of their copula is
probably very noisy. In this case, a traditional correlation coefficient, e.g.,
the Pearson coefficient, is an adequate measure. Moreover, when estimating
the statistical dependence for K stocks, the corresponding K-dimensional
copula is considerably complex and difficult to handle analytically. In many
cases, such as portfolio optimization, a K × K correlation matrix is more
convenient.

Hence, we approach the topic of estimating correlations in chapter 3 where
we develop methods to enhance the precision of estimating correlations in fi-
nancial data. As correlation coefficients are very widely used, this has many
applications and is possibly not restricted to financial data. In particular,
we approach a central problem when calculating financial correlations – the
dependence on the return interval Δt. For the proper estimation of finan-
cial risk, it is indispensable to calculate financial correlations as recent as
possible, i.e., using short time horizons and small return intervals. However,
financial correlations decline on small return intervals. This phenomenon
is referred to the Epps effect. This effect causes distorted correlation co-
efficients and is a major problem in the precise estimation of correlations.
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Since its discovery in 1979, many explanations have been developed that
are partially incompatible with each other. As there are certainly many
mechanisms contributing to the Epps effect – and most of them cannot
be estimated without making considerable model assumptions, we pursue
an alternative approach. We seek for causes that are purely of statistical
origin and hence can be compensated without the requirement of model
calibrations or model parameters.

We discuss two causes for the Epps effect that are purely of statistical ori-
gin. Moreover, we develop compensation methods that allow compensating
for these causes. The compensation methods are demonstrated in a model
set up. In an empirical study we quantify the contribution of these causes
on the Epps effect under certain conditions.

In chapter 4, the estimation of credit risk, another topic in which correla-
tions play a central role is discussed. The estimation of credit risk is much
more complex than the risks in other fields of the economy. This is because
the shape of the loss distribution is asymmetric due to the character of a
default, which occurs if credit is not paid back. Traditional risk measures,
such as the volatility of assets are not applicable to credit risk. The esti-
mation of the loss distribution is the key requirement in the estimation the
risk embedded in a portfolio of credits.

The misjudgment of credit risk was one of the main causes for the finical
crisis of 2008–2009. These dramatic events emphasize the importance of a
precise estimation of credit risk. We develop an analytical model to estimate
the risk within a portfolio of credits. This model can be characterized as
a structural credit risk model, i.e., we use a high level of abstraction. This
allows us to gain insight into the processes in a credit portfolio. However,
despite the level of abstraction, the model has a direct practical application.
This application is given by a portfolio of speculative margin loans, credits
that are given to investors based on their portfolio of stocks or other assets.
The results can be used to estimate the lower bound of risk in a credit
portfolio.

In our model, we assume random correlations with average correlation
level zero. We analyze how the exposure of a credit portfolio to losses is al-
tered by the existence of correlations and their fluctuations. The results can
be used to estimate the lower bound of risk in a credit portfolio. A previous
study indicates by numerical simulations that the existence of correlations
destroys the effect of diversification, the reduction of risk in large portfolios
[31]. We discuss this phenomenon analytically.



2 Dynamics of Statistical Dependencies
in Financial Markets

In this chapter, we pursue two different approaches to give insight into the
statistical mechanics of a financial market1.

In section 2.1 we introduce a similarity measure that enables us to com-
pare the structure of a market at two different points in time. The similarity
measure allows identifying unique events such as financial crises. Moreover,
we are able to identify typical states that the market adopts.

In section 2.2, we perform a large-scale empirical study to disclose the
average dependency structure using copulae. We demonstrate the degree
of error that is involved in the commonly used Gaussian copula and map
structural features of the empirical copula to the markets’ average correla-
tion level.

2.1 Identifying States of a Financial Market

Financial markets are changing more and more rapidly nowadays. This
non-stationarity can lead to a fatal misinterpretation of the involved risks.
Capturing the dynamics of a financial market is an essential task to judge
the current situation. We introduce a measure, based on correlation matri-
ces, that serves to quantify the similarity of market states at two different
points in time. Analyzing the S&P 500 stocks in the 19-year period 1992–
2010 allows us to identify points of drastic change in the correlation struc-
ture and map these points to occurrences of financial crises. We find that a
wide variety of characteristic correlation structure patterns exist in the ob-
servation time window, and that these characteristic correlation structure
patterns can be classified into several typical market states. We thereby
offer a method for recognizing transitions between different market states.
Hence, this similarity measure can give an indication of drastic events before
they are fully developed, and thus offers one the opportunity for a timely
reaction.

1For details see Refs. [3, 5, 6].
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This section is organized as follows. The similarity measure is introduced
in section 2.1.1. In section 2.1.2, an empirical study is presented in which
several states of the US stock market can be identified. As a possible ap-
plication, we discuss in section 2.1.3, a portfolio optimization that utilizes
the similarity measure to calculate similarity-weighted correlation matrices.
We summarize the results in section 2.1.4.

2.1.1 Similarity Measure

The effort to understand the dynamics in financial markets is attracting
physicists as well as economists [8, 32–38]. Statistical dependencies be-
tween stocks are of particular interest, because they play a major role in
the estimation of financial risk. Since the market itself is subject to contin-
uous change, the statistical dependencies also change in time. For example,
changes in supply and demand can lead to diverse market states [39]. But
how similar is the market state right now, compared to previous states?
To calculate this similarity we measure temporal changes in the statistical
dependence between stock returns.

As already discussed in section 1.2.2, a common measure for statistical
dependency between two stock return time series r(i) and r(j) is the Pearson
correlation coefficient Cij . For the sake of simplicity, we omit the index for
the return interval Δt in the notation of this chapter. When calculating
the correlation coefficients of K stocks, we obtain the K × K correlation
matrix C, which gives an insight into the statistical dependencies between
the stocks.

One problem we encounter in extracting useful information from empirical
data is that we seek a correlation matrix from very recent data, in order
to provide a good description of the current correlation structure. This
is because correlations change dynamically, making it difficult to estimate
them precisely [27, 40–42]. However, if the length T of the time series is
short, the correlation matrices C are noisy [10, 11, 26, 27]. On the other
hand, to keep the estimation error low, T can be increased, but this leads
to a correlation matrix that may not describe the present state well.

For T/K < 1 the correlation matrix becomes singular. However, one can
still make significant statistical statements, e.g., for the average correlation
level whose estimation error decreases as 1/K. Here we discuss a measure
based on the average of the difference of two correlation matrices C(L)(t1)
and C(L)(t2) at different times t1 and t2 on the time window L. For example,
the correlation matrix C(L)(t1) is based on time series from the interval
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[t1 − L, t1]. We define

ζ(L)(t1, t2) =
〈∣∣∣C(L)

ij (t1)− C
(L)
ij (t2)

∣∣∣〉
ij

(2.1)

to quantify the difference of the correlation structure for two points in time,
where | · | denotes the absolute value and 〈. . .〉ij denotes the average over
all components. Because we study only the average difference, C(L)(t1) and
C(L)(t2) can be calculated on short time windows.

2.1.2 Empirical Study

To apply the above general statements to a specific example, we analyze
two datasets: (i) we calculate ζ(L)(t1, t2) based on the daily returns of
those S&P 500 stocks that remained part of the S&P during the 19-year
period 1992–2010, and (ii) we study the four-year period 2007–2010 in more
detail based on intraday data from the NYSE TAQ database [43]. Since
the noise increases for very high-frequency data (see chapter 3), we extract
one-hour returns for dataset (ii). For one-hour returns, we consider this
market microstructure noise as reasonably weak.

However, sudden changes in drift and volatility are present on all time
scales. They can result in erroneous correlation estimates. To address this
problem, we employ a local normalization method by Schäfer and Guhr [44]
on dataset (i). For each return r(t) we subtract the local mean and divide
by the local standard deviation,

gloc(t) =
r(t)− 〈r(t)〉n√
〈r2(t)〉n − 〈r(t)〉2n

. (2.2)

The local average 〈. . .〉n runs over last n most recent days. n = 13 yields
nearly normal distributed time series.

We calculate the correlation matrices of dataset (i) for disjunct two months
windows. This corresponds to L = 32 daily stock returns. The results are
presented in Fig. 2.1a. This representation gives a complete overview about
large structural changes of this financial market of the past 19 years in a
single figure. It allows comparing the similarity of the market states at
different times. To make this procedure concrete, consider the following ex-
ample. Pick a point on the diagonal of Fig. 2.1a and designate it as “now”.
From this point the similarity to previous times can be found on the ver-
tical line above this point, or the horizontal line to the left of this point.
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Figure 2.1: The market similarity ζ(L) for two different timescales. in Fig. (a) is
based on daily data with L = 32. Fig. (b) is a more detailed study of the 2007–
2010 period using intraday data and L = 4. The area of Fig. (b) corresponds to
a magnification of the lower right square in Fig. (a).
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Light shading denotes similar market states and dark shading denotes dis-
similar states. We can furthermore identify times of financial crises with
dark shaded areas. This indicates that the correlation structure completely
changes during a crisis. There are also similarities between crises, as be-
tween the “credit crunch” that induced the 2008–2009 financial crisis and
the “market meltdown”, the burst of the dot-com bubble in 2002. A further
example is the overall rise in correlation level in the beginning of 2007. This
event can be mapped to drastic events on the Shanghai stock exchange [45].

Using dataset (ii) we are able to obtain a more detailed insight into recent
market changes, as shown in Fig. 2.1b. This area is represented by the
lower right square in Fig. 2.1a. Using intraday data allows us to calculate
the correlation matrices on shorter time scales. We choose a time horizon of
one week (4 daily returns, L = 4), because it provides insight into changes
in the correlation structure on a much finer time scale, enables us to identify
a short sub-period within “credit crunch” (in the beginning of 2009) during
which the market temporarily stabilizes before it returns to the crisis state.
This phenomenon might be related to the market’s reaction to news about
the progress in rescuing the American International Group (A.I.G.) [46, 47].

The evolutionary structure presented in Figs. 2.1a and 2.1b illustrate
that the correlation matrix sometimes maintains its structure for a long
time (bright regions), sometimes changes abruptly (sharp blue stripes), and
sometimes returns to a structure resembling a structure the market has
experienced before (white stripes). This suggests that the market might
move among several typical market states. To extract such typical market
states, we perform a clustering analysis of the results of dataset (i) 2.

This clustering analysis is based on a top-down scheme: All the correlation
matrices are initially regarded as a single cluster and then divided into two
clusters by the procedure based on the k-means algorithm [48–50]. Each
division step consists of the following process:

1. Choose two initial cluster centers from all matrices. Label all other
matrices by the more similar cluster center, in terms of ζ(L).

a) Recast two new cluster centers to the “center of mass”.
b) Re-label all matrices to their most similar cluster center.
c) Repeat this process until there is no change in labeling.

2. Take the best division out of all possible initial choices, which gives
the least 〈(ζ(L))2〉.

2The clustering analysis has been carried out by T. Shimada; See Ref. [6].
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Figure 2.2: The complete similarity tree of the clustering analysis with zero thresh-
old. Each right end of the tree corresponds to each 2-month term (year-term).
Terms 1, 2, . . . , 6 correspond to January-February, March-April, . . . , November-
December.. The horizontal length of each branch represents the distance from the
center of the sub-cluster to the center of the original cluster before the last dual
division.
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Symbol Industry branch

E Energy
M Materials
I Industrials
CD Consumer Discretionary
CS Consumer Staples
H Health Care
F Financials
IT Information Technology
C Communication
U Utilities

Table 2.1: GICS classifications.

We stop this division process when the average distance from each cluster
center to its members becomes smaller than a certain threshold. To identify
the typical market states, we choose the threshold at 0.1465, as it represents
approximately the best ratio between the distance between clusters and their
intrinsic radius and in the metric induced by the similarity measure.

One can obtain finer structures by choosing smaller threshold values,
ultimately until all the matrices are identified as different components, as
presented in Fig. 2.2. Here, no termination of the division process takes
place until all the correlation matrices are identified as different components.
In other words, we set the aforementioned threshold to zero. We are able to
identify 8 typical market states using a threshold of 0.1465. We enumerate
these states from 1 to 8 and indicate them in Fig. 2.2 as well.

The results of the clustering analysis indicate that there are “hidden”
states sparsely embedded in time, in addition to regimes that dominate the
market during a continuous period and thus are easily found by eye. Because
of the window length of two month (L = 32), some smaller financial crashes
cannot be resolved. Our aim is rather to identify the general evolution of
the market, which is, in some cases, induced by a financial crisis.

To visualize the characteristic structures of each state, we calculate its
average correlation matrix and sort the companies according to their in-
dustry branch, as defined by the Global Industry Classification Standard
(GICS) [51], as listed in Tab. 2.1. The resulting matrices, the industry
branches correspond to the blocks on the diagonal. The correlation be-
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Figure 2.3: Correlation structure of different market states (a-h). Simplified sim-
ilarity tree structure of the 8 market states (i) . The distance of each state to
the average is illustrated by their horizontal distance. Fig (j) shows the overall
average correlation matrix.
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Figure 2.4: Difference matrices for the market states in figures 2.3a-h to the average
correlation matrix shown in Fig. 2.3j. Illustrated using the same colormap as in
Fig. 2.3j.

tween two branches is given by the off-diagonal blocks. The results are
illustrated in Fig. 2.3. We can confirm that the typical states obtained from
the clustering analysis indeed correspond to different characteristic correla-
tion structures. We can see differences between the states in the correlation
between branches as well as in the correlation within a branch. The cor-
relation within the energy, information technology, and utilities branches is
very strong in all states. State 1 shows an overall weak correlation, while
states 3 and 4 feature in addition a strong correlation of the finance branch
to other branches. State 2 shows very unusual behavior: In the period of
the dot-com bubble, many branches are anticorrelated with one another.
In states 5, 6 and 7, the overall correlation level rises, although certain
branches, such as energy, consumer staples, and utilities, are either strongly
or weakly correlated with other branches.

Some of the correlation structures in Fig. 2.3 look quite similar at first
sight. Their distinctiveness can be emphasized by calculating the difference
to the average correlation level. This is illustrated in Fig. 2.4. For example,
state 3 and state 4 appear to be very similar in Fig. 2.3. However, Fig. 2.4
unveils that the correlation within the Energy branch (denoted with “E”) is
significantly different.
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Figure 2.5: Evolution of the market state between 1992 and 2010. The states are
numbered from 1 to 8.

Our analysis also offers insight into market structure dynamics. Fig. 2.5
shows the temporal behavior of the market state. The market sometimes
remains in the same state for a long time, and sometimes stays only for a
short time. The typical duration depends upon the state: Some states (e.g.,
state 1 and state 2) appear in clusters in time while other states appear
more sparsely in time (e.g., state 4). There seems to exist a global trend
on a long time scale, although the market state is switching back and forth
between states.

Another interesting observation in Figs. 2.3 and 2.4 is that the energy
branch can be either strongly correlated to the rest of the market, weakly
correlated, or even anti-correlated. Therefore we study the histogram of the
correlation coefficients C

(32)
ij (t). We present the results in Fig. 2.6. In the

months leading up to the crisis that begun in October 2008, we observe a
bimodal structure in the histogram.

It corresponds to the time period when the Energy branch shows a strong
anticorrelation with other branches. The bimodality suggests that a subset
of stocks – in this case, predominantly the Energy stocks – decouples from
the rest of the market. During the crash, the histogram shows a very nar-
row distribution around large values of the correlation coefficients, which
corresponds to state 8 in Fig. 2.3, where the branch structure is lost almost
completely in an overall strongly correlated market.

The GICS sorting enables us also to take a closer look on the sort stable
period within the crisis, we identified in the beginning of this section in
Fig. 2.1b. A detailed look of the correlation structure is illustrated using
dataset (ii) in Fig. 2.7. While the correlation structure during the crisis
displays an overall high correlation level, the correlation structure of the
stable period is similar to state 7, one of the typical states in a calm period,
which is identified from dataset (i).
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Figure 2.6: Footprint of the state transition in the 2008 crisis by histograms of the
correlation coefficients C(32)

ij (t). (a) Surface plot for the time period September
2007 to March 2009. We use a logarithmic scale to show the bimodal structure
more clearly. (b) Histograms for September 2008 (black solid line) and December
2008 (red dashed line).
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Figure 2.7: Correlation matrix of the 2008–2009 crisis and the stable period during
the crisis.
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2.1.2.1 Alternative Measure: Difference of the Largest
Eigenvalue of Correlation Matrices

A similar result can be achieved using a different approach. The largest
eigenvalue λ1 of the correlation matrix C describes the collective motion
of all stocks. We can also define the similarity measure by the distance of
these eigenvalues,

ζ
(L)
alt (t1, t2) ≡

∣∣∣λ1(C(L)(t1))− λ1(C
(L)(t2))

∣∣∣ . (2.3)

Fig. 2.8 illustrates that this leads to an almost identical result. The ad-
vantage of this technique is that the noise in the correlation matrix only
contributes to small eigenvalues (See, e.g., Refs. [10, 11]). Thus, by only
taking into account the largest one, we can filter out a portion of the noise.
However, this approach also presumes that the corresponding eigenvector
does not change. Our results indicate that the largest eigenvalue almost re-
mains constant, but this might not always be the case, especially in financial
crises.

2.1.3 Application to Portfolio Optimization

The classification of market states, as carried out in the previous section,
is only one of many possible applications of the similarity measure. As a
practical example, we utilize the similarity measure as an instrument in risk
management for the adaptive estimation of correlation matrices.

In this section, we first give a brief introduction to portfolio optimization.
Then, we develop an estimator for calculating similarity-weighted correla-
tion matrices. Eventually, we demonstrate the technique in an empirical
study.

2.1.3.1 Modern Portfolio Theory

The Modern Portfolio Theory (MPT) or Mean-Variance Portfolio optimiza-
tion (MVO), developed by Markowitz in 1952 [52–54] is a standard approach
in economics. It aims at reducing the overall risk of an portfolio Ω2, as in-
troduced in section 1.2.2, by calculating the fractions of wealth.

The assumption is that one can extrapolate the covariance matrix Σ
based on historical data to a certain period in the future. This assump-
tion does not only imply that the statistical dependence does not change,
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but also that the variances remain the same, i.e., they are assumed as con-
stant. Moreover, as the variance, or the volatility is used as a risk measure,
returns are considered as normal distributed returns. Heavy tails of the re-
turn distribution are neglected. Approaches with more suitable distribution
functions have been made [55, 56] and higher statistical moments have been
considered [57, 58].

Nevertheless, in today’s financial world, the MPT is still widely used as
an efficient and powerful tool in many areas mainly because of its simplicity.
The MPT optimization takes three inputs:

1. The covariance matrix Σ

2. The drift or expected return �μ

3. The desired portfolio return R

The correlation matrix directly affects the output of the MPT. A recent
study indicates that the risk of an optimized portfolio is lowest if the co-
variance matrix for the optimization is estimated accurately [59]. Thus,
MTP represents an excellent technique to test new correlation estimation
methods such as the similarity measure.

For the following considerations, let us assume a dimensionless, discrete
time with time step Δt = 1. The value Vp(t) of a portfolio of K assets
at time t is defined as the linear combination of their prices S(k)(t) and
corresponding fractions of wealth wk(t) at time t.

Vp(t) =

K∑

k=1

wk(t)S
(k)(t) = �w†(t)�S(t) , (2.4)

where �S(t) refers to the vector of prices S(k)(t) with K components and
�w(t) contains the fractions of wealth. We include the argument t to the
factions of wealth to emphasize that they change in time. The fractions of
wealth wk(t) are normalized and dimensionless.

As discussed in the introduction, given the covariance matrix Σ(T )(t)
estimated in the interval [T − t, t] and the fractions of wealth, the portfolio
risk is defined as

Ω2(t) =

K∑

k,l=1

Σ
(T )
kl (t)wk(t)wl(t) = �w†(t)Σ(T )(t)�w(t) . (2.5)
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In MTP, the covariance matrix is often separated into the correlation matrix
C and the standard deviations �σ. This is due to the fact that the variance
changes rapidly, whereas the correlation must be estimated on a long time
horizon. Let us estimate the correlation matrices on time horizon T and the
standard deviations on time horizon Tσ. with S(Tσ)(t) = diag(�σ(Tσ)(t)), we
write

Σ(T,Tσ)(t) = S(Tσ)(t)C(T )(t)S(Tσ)(t) , (2.6)

where C(T )(t) refers to the correlation matrix estimated in the interval
[T − t, t]. Hence, the portfolio risk can also be written as

Ω2(t) =

K∑
k,l=1

C
(T )
kl (t)σ

(Tσ)
k (t)σ

(Tσ)
l (t)wk(t)wl(t) . (2.7)

For the sake of simplicity, in the following we assume T = Tσ and thus
denote covariance matrix with Σ(T )(t).

The second input parameter of MTP, the drift �μ, can be estimated, e.g.,
on historical data. Let us consider that we estimate the drift based on
the portfolio’s components historical returns on the time interval [t−Tμ, t].
However, we omit the index Tμ for a simpler notation.

MPT aims for the minimization of Ω2(t) under certain constraints, for
example wk(t) ≥ 0, if short selling is prohibited. Short selling is a concept
in economics in which a portfolio manager can sell assets although he is
not in their possession. This corresponds to negative fractions of wealth.
Although being controversially discussed, short selling represents a powerful
tool in risk management and is very common to encounter.

In our case, we assume short selling to be allowed. Then we only have
one constraint, the budget constraint. This means that the total amount of
capital, which is spent on the securities is fixed. In other words, the sum
over all fractions of wealth needs to be a constant. If the fractions of wealth
are normalized, this constant becomes one,

K∑
k=1

wk(t) = �w†(t) = 1 , (2.8)

where is a vector with unity in all entries. The reduction of the portfolio
risk then leads to the optimization problem

min
�w(t)

{
1

2
�w†(t)Σ(T )(t)�w(t)− γ �w†(t)�μ(t)

∣∣∣ �w†(t) = 1

}
. (2.9)
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Here, γ is called the risk tolerance parameter. It gives a measure of the will-
ingness of the investor to face more risk in order to achieve higher portfolio
returns. We will show later that γ can be mapped to the desired port-
folio return R. The optimization problem can be solved using Lagrange
multipliers λ and γ for the constraints. Thus, we have the Lagrangian

L =
1

2
�w†(t)Σ(T )(t)�w(t)− γ �w†(t)�μ(t) + λ(�w(t)† − 1) (2.10)

with the gradient on the factions of wealth,

∂

∂ �w(t)
L = Σ(T )(t)�w(t)− γ�μ(t) + λ . (2.11)

By ∂/∂ �w(t)L = 0 we obtain optimal fractions of wealth �wopt(t),

0 = Σ(T )(t)�wopt(t)− γ�μ(t) + λ (2.12)

�wopt(t) = γ(Σ(T )(t))−1�μ(t)− λ(Σ(T )(t))−1 . (2.13)

Moreover, the budget constraint † �w(t) = 1 gives

1 = γ †(Σ(T )(t))−1�μ(t)− λ †(Σ(T )(t))−1 (2.14)

λ =
γ †(Σ(T )(t))−1�μ(t)− 1

†(Σ(T )(t))−1
. (2.15)

Inserting Eq. (2.15) into Eq. (2.13) leads to

�wopt(t) =γ(Σ(T )(t))−1�μ(t)− γ †(Σ(T )(t))−1�μ(t)− 1
†(Σ(T )(t))−1

(Σ(T )(t))−1 (2.16)

=γ(Σ(T )(t))−1�μ(t)

− γ(Σ(T )(t))−1
†(Σ(T )(t))−1�μ(t)
†(Σ(T )(t))−1

+
(Σ(T )(t))−1

†(Σ(T )(t))−1
(2.17)

=γ(Σ(T )(t))−1

(
�μ(t)−

†(Σ(T )(t))−1�μ(t)
†(Σ(T )(t))−1

)
+

(Σ(T )(t))−1

†(Σ(T )(t))−1
.

(2.18)

Using α = †(Σ(T )(t))−1�μ(t) and β = †(Σ(T )(t))−1 , this expression can
be simplified to

�wopt(t) =
(Σ(T )(t))−1

β
+ γ(Σ(T )(t))−1

(
�μ(t)− α

β

)
. (2.19)
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However, in this expression, the willingness of the investor to face more
risk, i.e., aim at higher returns is controlled by γ. We can map γ to the
desired portfolio return R, by expressing it through the optimal fractions of
wealth and the expected individual returns, the drift �μ(t). We can express
the desired portfolio return as

R = �w†
opt(t)�μ(t) = �μ†(t)�wopt(t) . (2.20)

Thus, by multiplying Eq. (2.19) with �μ†(t), we obtain

R =
α

β
+ γ

(
�μ†(t)

(
Σ(T )(t)

)−1

�μ(t)− α2

β

)
(2.21)

γ =
R− α

β

�μ†(t)(Σ(T )(t))−1�μ(t)− α2

β

. (2.22)

Therefore, given a certain desired return, an estimation of the covariance
matrix and the drift, the optimal portfolio weights can be calculated. A
value of γ = 0 denotes no risk tolerance. In this case, the investor’s only
aim is to minimize the portfolio variance. The resulting portfolio is referred
to as the minimum variance portfolio (MVP). Large values of γ denote risk
neutrality, i.e., the investor maximizes the desired portfolio return only. The
latter represents the target return portfolio (TRP).

The volatilities can be estimated on short historical time horizons or
using autoregressive models (GARCH) or exponential weighted moving av-
erages (EWMA). For details see, e.g., Refs. [60–62]. Further recent studies
demonstrate how to predict the volatility based on higher order multi-scale
statistics given by a hierarchical process [63, 64]. An overview on various
volatility forecasting techniques is given in Ref. [65].

Generally, the quality of the estimated matrices increases with the length
of the time series, i.e., the amount of data used. For small datasets the
matrices have a large variance and may even be singular or indefinite. In
financial context, however, using long time series results in biased estimates
of the correlation structure, since the dependence of asset returns is not
constant in time.

Good estimates of the correlation structure are the key in MVO. The
problem is that standard estimators equally weight all parts of the dataset.
By consequence, out-of-date and improper information highly affect the es-
timates. Here, we approach this problem by utilizing the similarity measure
for the estimation of weighted covariance matrices. This estimator makes
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use of enough data to adequately limit its variance but – in order to min-
imize its bias – focuses only on parts of the data where the market is in
similar market conditions.

To reduce the effects of time changing structures, common approaches in
literature choose time intervals where the structures are approximately con-
stant. Examples of such approaches are exponentially weighted estimators
like the RiskMetrics estimators [66, 67]. Since these estimators only use
a small part of the data, they show a large variance. Moreover, whenever
the number of effectively used observations is not large compared to the
number of time series, estimated correlation and covariance matrices may
be regarded as dominated by randomness. As discussed in the introduction,
a study indicates that 94% of the spectrum of estimated correlation matri-
ces is equal to the spectrum of random matrices [11]. Only their largest
eigenvalues may be estimated adequately.

Solutions to this issue involve reducing the dimensionality of the prob-
lems by imposing some structure on the correlations, e.g., by using factor
models or shrinkage estimators as in [68] or by noise reduction techniques,
e.g., Random Matrix Filtering [10, 11] or Power Mapping [26, 27]. Other
approaches reduce the dimensionality by using conditional models for the
correlation matrices [69].

With the availability of intraday high frequency financial data, it was ex-
pected that finer sampled data would effectively enlarge the datasets and
improve estimates of parameters. However, when return data are observed
on shorter time intervals, it is contaminated by market microstructure ef-
fects [70]. These effects influence the input parameters of MPT [71] and
induce the Epps effect, discussed in chapter 3.

Since the amount of data for the estimation may only be increased by ei-
ther considering a longer time period or by sampling on higher frequencies,
the mentioned properties of financial time series limit the amount of usable
data. Longer time intervals bias the estimators due to the non-stationarity
of the market. Higher frequencies intensify the effects of the market mi-
crostructure on the estimators.

However, we can circumvent these limits using the similarity measure. We
can enlarge the amount of usable data by adaptively including different parts
of the time series with similar correlation structures into the estimator. The
similarity measure enables us to construct a weighting scheme for correlation
or covariance estimators that attaches high weights on similar parts of the
data and suppresses distortions.
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2.1.3.2 Calculating Weighted Correlation Matrices

The similarity measure ζ(L) can serve as a weighting scheme for estimators
of correlation or covariance matrices. With respect to the reference point
t0 the scheme inscribes high weights to periods where the market behaved
in a similar manner. On the other hand, the periods in which the market
behaved very differently are suppressed. Therefore, consider the adapted
similarity measure

ζ̃(L)(t, t0) =
K − 1

K
− ζ(L)(t, t0), t ∈ [t0 − T, t0], (2.23)

where T is the total number of considered time steps, i.e., the length of the
time series. It is easily checked that (K − 1)/K represents the theoretical
maximum possible value of ζ(L). In case of identical market situations, we
have ζ̃(L) = 1. The highest possible dissimilarity yields ζ̃(L) = 0.

We note that the matrices C(L) in Eq. (2.1) are estimated with window
length L on daily returns. Therefore, within the timespan [t0 − L, t0], they
share identical values with the matrix at t = t0. ζ̃

(L)(t, t0) is then domi-
nated by the amount of identical values and not by the estimated similarity.
Therefore, the similarity measure is not reliable within this region and is
set to the maximum value of the other timespans, resulting in a corrected
measure

ζ̃∗(L)(t, t0) =

{
max(ζ̃(L)(t < t0 − L, t0)) t ∈ [t0 − L, t0]

ζ̃(L)(t, t0) t ∈ [t0 − T, t0 − L[ .
(2.24)

A properly normalized weighting scheme for the estimation of the correlation
or covariance matrix, C(T )(t0) or Σ(T )(t0) at time t = t0 is then given by

g(t, t0, L) = ζ̃∗(L)(t, t0)

/(
t0∑

t′=t0−T
ζ̃∗(L)(t′, t0)

)
, (2.25)

resulting in the weighted estimators

Ĉ(T )(t0) =

t0∑
t=t0−T

g(t, t0, L) C(L)(t) and (2.26)

Σ̂(T )(t0) =

t0∑
t=t0−T

g(t, t0, L) Σ(L)(t) . (2.27)
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C(L)(t) and Σ(L)(t) denote the correlation and covariance matrix of the
interval [t − L, t]. For large T and time series with dynamic correlation
structure, the weighting scheme should be restricted only to the s largest
values of g. This leads to a complete suppression of dissimilar parts of the
data. To accomplish this, let us denote the s-th largest value of g with qs.
The restricted scheme gs is then given by

gs(t, t0, L) = |g − qs|+
/ t∑
t′=t0−T

|g − qs|+ , (2.28)

with

|g − qs|+
{
g(t′, t0, L) g(t′, t0, L) > qs

0 else.
(2.29)

Using this estimator, we are able to calculate the correlation Ĉ(T )(t0) ma-
trix, based on T matrices that have the highest similarity with the current
situation, i.e., similar to C(L)(t0).

2.1.3.3 Empirical Study

Now we apply our estimator to financial data in the context of MPT op-
timization. We use the same dataset (i) of section 2.1.1, i.e., permanent
constituents of the S&P 500 index that are included in the index from 1994
to the mid of 2010. From this dataset, we randomly choose 10 portfolio
constellations of 100 stocks each, as listed in appendix A.6.

On every 14-th day in the period we compute the optimal fractions of
wealth for the constellations regarding the two strategies TRP and MVP.
The required covariance estimates are based on the restricted similarity-
weighted estimator defined in Eqs. (2.27) and (2.28) and alternatively on
the unweighted estimator. The matrices to calculate the similarity measure
are based on moving windows of L = 32 trading days. The weighting
scheme of the estimator includes the s = 300 most similar past days of
the full dataset. In other words, we chose the 300 most similar correlation
matrices from the year 1994 to the point of calculation. The unweighted
estimator is based on a moving window of 300 days, i.e., T=300.

The vectors �μ and �σ is estimated by the returns of the portfolio’s stocks
for every trading day from a moving window of Tμ = 14 trading days. In
the TRP case, the desired return R is adaptively chosen to be 5 percentage
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points above the average component of �μ. The basic idea of this study is to
calculate optimal portfolios for every 14 days of our dataset and to evaluate
them over some investment horizon T ′ with respect to risk and realized
return.

While the covariance matrix and the drift are estimated on data which
is in the past in the point of optimization t0, let us consider an investment
period from day t′ = t0 + 1 to day t = T ′ which is in the future from each
point of optimization. This time window acts as an evaluation period. It
enables us to evaluate how this portfolio would have been performed if it
was optimized at t = 0. In this evaluation window the realized portfolio
return with respect to the point of optimization t0 is given by

Rp(t) =
Vp(t)− Vp(t0)

Vp(t0)
, t ∈ {t0 + 1, t0 + 2, . . . , T ′}. (2.30)

Thereby we can simulate the portfolio performance as if an investor had
performed the optimization at t0. Now we define the realized risk, or realized
variance RV of the portfolio as the variance of the realized portfolio return
in the evaluation window,

RV = var (Rp(t)) , t ∈ {t0 + 1, t0 + 2, . . . , T ′}. (2.31)

This enables us to evaluate the optimization, which is an indication of how
well the covariance matrix was estimated.

A recent study argues that minimum-variance portfolios outperform var-
ious other strategies of portfolio optimization, even with respect to their
return [72]. By contrast, Ref. [73] raises the question whether portfolio
optimization pays out at all. In their results, optimized portfolios do not
significantly outperform naively diversified portfolios, i.e., portfolios where
the same amount 1/K is invested in K assets. We therefore include this
naive portfolio in our study, even though the naive portfolio does not de-
pend on estimators of correlation or covariance. The portfolio strategies
MVP and TRP allow ranking the estimators of the covariance structure
according to the portfolio performance, whereas the outcomes of the naive
portfolio confirm the overall plausibility of the results.

The evaluation results of realized risk and returns are shown in Figs. 2.9
and 2.10. The evaluation periods are 14, 28 and 56 trading days in order
to analyze the stability of the obtained portfolios. The results shown are
averages of the 10 portfolio constellations. The figures illustrate that the
naive portfolio performs worst in terms of risk, especially during the financial
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Figure 2.9: Average realized return and realized risk in mean-variance portfolio op-
timization for a target return of 5% above the market drift and different evaluation
windows. The results are compared to a naive portfolio as a reference.
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Figure 2.9: (continued)

Optimization type

Evaluation unweighted weighted naive

14 day Risk 0.00022 0.00021 0.00041
Return 0.00398 0.00381 0.00472

28 day Risk 0.00048 0.00046 0.00081
Return 0.00802 0.00820 0.00999

56 day Risk 0.00107 0.00099 0.00170
Return 0.01632 0.01699 0.02127

Table 2.2: Average realized return and realized risk in mean-variance portfolio op-
timization for a target return of 5% above the market drift and different evaluation
windows. The results are compared to a naive portfolio as a reference.
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Figure 2.10: Average realized risk in mean-variance portfolio optimization for the
minimum variance portfolio and different evaluation windows. The last column
provides a comparison to the naive portfolio.
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Optimization type

Evaluation unweighted weighted naive

14 day 0.00022 0.00021 0.00041

28 day 0.00047 0.00045 0.00081

56 day 0.00106 0.00098 0.00170

Table 2.3: Average realized risk in mean-variance portfolio optimization for the
minimum variance portfolio and different evaluation windows. The last column
provides a comparison to the naive portfolio.

crisis between 2008-2009. At that time, the incorporation of the correlation
structure into the portfolio weights pays out. Realized risk of the optimized
portfolios consistently lies below the realized risk of the naive portfolios
whereas the similarity-weighted scheme obtains the best results. The results
are robust for the considered investment horizons, which is shown in Tabs.
2.2 and 2.3 in more detail.

In both cases, in the minimum variance portfolio (MVP) as well as in the
5% above market drift portfolio (TRP) perform about equally well when
evaluating on a 14 day window. However, when prolonging the evaluation
window and thereby testing for portfolio stability, the similarity-weighting
significantly reduces the realized risk. Moreover, the TRP case reveals that
the realized return could be improved compared to the unweighted opti-
mization, although the naive portfolio features an even higher return. The
outperforming by the naive portfolio in terms of realized returns is a com-
mon phenomenon. The reason is that it is very difficult to estimate the
drift vector �μ properly. The non-stationarity features of the market make
the drift estimation one of the most challenging tasks in praxis. Because
of the short time horizon, the similarity measure is not applicable here. A
better estimation of �μ would result in a realized return that is closer to the
desired return. However, the main motivation behind MVO is the mini-
mization of the portfolio risk, not the portfolio return. As we estimate �μ
in the same way for both, the weighted and unweighted portfolio, we can
compare the results or in other words, the impact of the estimation of �μ is
identical for both portfolios.
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2.1.4 Summary

We introduced a measure to quantify structural similarities of a market’s
correlation structure at two different points in time. In an empirical study,
we demonstrated the power of this measure that discloses a general dy-
namics of a financial market. By providing a simple instrument to identify
similarities to previous states during an upcoming crisis, one can judge the
current situation properly and be prepared to react if the crisis material-
izes. Another indication for a crisis is given when the correlation structure
undergoes rapid changes.

Using the similarity measure we were able to classify several typical mar-
ket states between which the market jumps back and forth. Some of these
states can easily be identified in the similarity measure. However, there are
several states in which the market only stays for a short period. Thus, these
states are sparsely embedded in time. With a clustering analysis, we were
able to identify these states and disclose a detailed dynamics of the market’s
state.

A further possible application of the similarity measure is portfolio opti-
mization. Given the similarity measure, the portfolio manager is aware of
periods in which the market behaved completely differently and thus can
choose not to include them in his calculations. He/She can furthermore
identify regions in which the market behaved similarly and refer to these
regions when estimating the correlation matrix. In an empirical study, we
demonstrated that the utilization of the similarity measure in portfolio op-
timization leads to a significant reduction of risk.



2.2 A Copula Approach 51

2.2 A Copula Approach to Statistical
Dependence of Stock Returns

The measurement of statistical dependence is often broken down to the
calculation of correlations, such as the Pearson coefficient or the Spearman
coefficient [74]. Correlation coefficients are widely used in various disciplines
of science. They are very common in financial modeling, e.g., in the Capital
Assets Pricing Model (CAPM) [75], Noh’s model [76] (see chapter 3) or
portfolio optimization, as discussed in section 2.1.3.

The Pearson correlation coefficient, however, only accounts for linear sta-
tistical dependence assuming that the observables are nearly normal dis-
tributed. Due to the central limit theorem, this might be justified in some
cases, but often the statistical dependence is much more complex. In these
cases, the statistical dependence cannot be represented by a single num-
ber such as a correlation coefficient. This is, e.g, the case if the statistical
dependence grows with the absolute value of an observable.

The joint probability distribution of the observables holds all information
of the statistical dependence. For example, the cumulative joint probability
distribution of two random variables X and Y reads

FX,Y (x, y) =P (X ≤ x, Y ≤ y). (2.32)

It gives the probability P , that X ≤ x while Y ≤ y. The joint probability
density function is given by

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y). (2.33)

However, a joint probability distribution also contains the individual mar-
ginal probability distributions. These can have different shapes depending
on the underlying process. The statistical dependence of different systems
usually cannot be directly compared with this approach.

Copulae, first introduced by Sklar in 1959 [77, 78], permit a separation
between the pure statistical dependence and the marginal probability dis-
tributions. This allows comparing the statistical dependence of diverse sys-
tems.

The use of copulae is well established in statistics and finance. There
are many classes of analytical copula functions that meet various properties
[79]. Several studies of financial markets are devoted to developing suitable
copulae or fitting existing ones to empirical data [80–82] or are based on
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a small subset of assets [83]. In this study, we chose a different approach.
We perform a large-scale empirical study to disclose the structure of the
average pairwise copula of the US stock returns. As the copula does not
depend on the shape of the return distribution, we are able to average over
the various copulae of different stock pairs even though the shape of their
corresponding marginal distributions may differ, i.e., exhibits stronger or
weaker tails. In particular, we study the intraday stock market returns of
the 428 continuous S&P 500 constituents in 2007–2010 based on intraday
data from the New York Stock Exchange’s TAQ database [43]. Over 12
billion single transactions are analyzed.

This section is organized as follows. After introducing the concept of cop-
ulae in section 2.2.1 we calculate the average pairwise copula in section 2.2.2.
The dynamics of this copula is discussed in section 2.2.3. We summarize
the results in section 2.2.4.

2.2.1 Copulae

The basic concept is simple: Let a and b be two random variables with
probability densities fa(x) and fb(x) and cumulative distributions Fa(x)
and Fb(x), with

+∞∫
−∞

fa(x)dx = 1 , (2.34)

Fa(x) =

x∫
−∞

fa(x
′) dx′ , (2.35)

and analogously for b. Further, let fa,b(x, y) be the joint probability density
and Fa,b(x, y) be the joint cumulative distribution of a and b. The inverse
cumulative distribution function F−1 is called the quantile function. For
example, F−1

a (0.05) represents the value which 5% of all random samples
are smaller or equal to. This evidently gives,

Fa
(
F−1
a (α)

)
= α . (2.36)

F−1(α) is also called the α-quantile. The copula Copa,b(u, v) is defined as
the cumulative joint distribution of quantiles,

Copa,b(u, v) = Fa,b
(
F−1
a (u), F−1

b (v)
)
. (2.37)
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The copula density copa,b(u, v) is consequently defined by

copa,b(u, v) =
∂2

∂u∂v
Copa,b(u, v) . (2.38)

As the quantile functions F−1 are scale free, the copula does not depend on
the underlying marginal distributions. It only contains the pure statistical
dependence. Thus, by obtaining the appropriate copula of a system, one
can simply interchange the marginal distributions without any changes in
the copula. This is very useful if the marginal distributions change for
some reason, but the statistical dependence remains the same. We can
rebuild the joint cumulative distribution from the copula and the individual
distributions by

Fa,b(x, y) = Copa,b (Fa(x), Fb(y)) . (2.39)

2.2.2 Average Copula

To calculate the cumulative copula from empirical data of two return time
series r1 and r2, we use

Cop1,2(u, v) =
1

T

T∑
t=1

1U(r
(1)(t))1V(r

(2)(t)) , (2.40)

where T is the length of the time series. 1U and 1V are indicator functions
relating to the sets

U =
{
x | x ≤ F−1

1 (u)
}

, (2.41)

V =
{
y | y ≤ F−1

2 (v)
}

. (2.42)

Thus 1U is given by

1U (r1(t)) =

{
1 r(1)(t) ∈ U

0 r(1)(t) �∈ U
(2.43)

and analogously for 1V . On empirical data, the aforementioned quantile
function F−1 is given by

F−1
1 (u) =

{
inf {x | F1(x) ≥ u} 0 < u ≤ 1

sup {x | F1(x) = u} u = 0
, (2.44)
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and analogously for r2. We define F1(x) empirically as the percentage of
the portion that is smaller or equal to x compared to the total amount of
values. When calculating the empirical copula density, it is useful to first
define a resolution of the 2D grid, e.g. m = 50. On this m×m grid, we can
calculate the copula by

cop1,2

(
i

m
,
j

m

)
=

1

T

T∑
t=1

1Ūi
(r(1)(t))× 1V̄j

(r(2)(t)) , i, j ∈ 1 . . .m

(2.45)

with

Ūi =

{
x
∣∣∣ F−1

1

(
i− 1

m

)
< x ≤ F−1

1

(
i

m

)}
, (2.46)

V̄j =

{
y
∣∣∣ F−1

2

(
j − 1

m

)
< y ≤ F−1

2

(
j

m

)}
. (2.47)

An accurate estimation of the copula density requires a large amount of
data points. Thus, we estimate the average copula using intraday data.
The analysis is performed for return intervals from 1 minute to 4 hours.
Results are shown in Fig. 2.11

We obtain a similar copula for all return intervals. This is surprising
because it is well-known that the shape of the marginal return distribution
changes towards small return intervals – the tails of the distributions become
stronger [20, 21]. However, apparently this does not change the statistical
dependence in the same magnitude.

For very small return intervals, we find surprising phenomenon. The
buckle in the center of Fig 2.11f is an artifact caused by the discretization
of stock returns. In our calculations, we use a resolution of 0.02. On small
return intervals, the number of certain returns can be larger than the amount
of values per grid step. In our case, this is 2% of the total values in the
marginal distributions. If the amount of returns on a certain value is higher,
it also contributes to the following grid steps. All returns within this interval
in one marginal distribution correspond to the same quantile in the other
margin distribution, resulting in a peak of the copula. This effect mainly
occurs in the center of the marginal distributions and if the exposure to the
discretization is high, i.e., on small return intervals. As the position of the
peaks differs from copula to copula, we see a smoothed peak in the average
pairwise copula.
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Figure 2.11: Average pairwise copula of the S&P 500 stock returns in 2007–2010
for various return intervals. The z-axis in permille. The color shading illustrates
the difference to the Gaussian copula (positive values mean that Gaussian copula
is less dense).
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Figure 2.11: (continued)
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(e) Δt = 10 min, The discretization artifact emerges in the center.
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Figure 2.11: (continued)
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The stability of the copula is especially remarkable because due to the
Epps effect financial correlations decline towards smaller return intervals
(see chapter 3). However, beside the buckle in the center the structure
of the copula remains similar. The buckle corresponds to the amount of
discretization. One can interpret it as the distortion of the statistical de-
pendence due to discretization. In the copula, we can easily identify and
isolate this effect. For a correlation coefficient which provides a single value
instead of a 2D-function, this task becomes more complex. In section 3.2,
we discuss how to compensate for the impact of discretization in a Pearson
correlation coefficient.

The copulae have high density in the outer quantiles. This corresponds to
a higher correlation in the tails of the return distribution than in it’s center.
This is often referred to as tail dependence [84–86]. Our results indicate
that on average, the upper tail dependence is stronger than the lower tail
dependence. For comparison, the average difference to the Gaussian copula
(which is implied by most correlation coefficients) is illustrated in Fig. 2.11.
The (standard normal) Gaussian Copula is given by

Copc(u, v) = Fc(F
−1(u), F−1(v)) , (2.48)

copc(u, v) =
fc(F

−1(u), F−1(v))

f(F−1(u))f(F−1(v))
. (2.49)

Here, fc and Fc refer to the bivariate standard normal probability density
and cumulative distribution with correlation c. f is the univariate stan-
dard normal probability density, while F−1 is the corresponding quantile
function. To calculate the average difference d, we have to calculate the
Gaussian copula based on all coefficients of the correlation matrix C, based
on K = 428 stocks and subtract it from the empirical copula,

d(u, v) =

K∑
i=1

K∑
j=i+1

(
copi,j(u, v)− copCi,j

(u, v)
)

K(K − 1)/2
. (2.50)

This gives us information about how erroneous the dependence is es-
timated if implying a Gaussian copula. The empirical copula exhibits a
stronger dependence than the Gaussian copula. The probability of corre-
lated extreme events significantly is underestimated. Furthermore, on small
return intervals the tail dependence is equally strong for both tails. Towards
larger return intervals, the lower tail dependence becomes stronger than the
upper tail dependence. This might be caused by the market reacting more
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Figure 2.12: Average pairwise copula of 60min stock returns during the crisis
period from 2008/10/15 to 2009/4/1. The color shading illustrates the difference
to the Gaussian copula during this period.

severely on bad news than on good news [87]. We discuss this in more detail
in the next section. Another feature of the empirical copula is the relatively
high density in the (0,1) and (1,0) corners (except during the 2008–2009
crisis), indicating the presence of anti-correlated extreme events.

During the financial crisis period from Oct 2008 to Apr 2009, the differ-
ence to the Gaussian copula increases, as Fig 2.12 illustrates. The assump-
tion of the Gaussian Copula would have been a dramatic mistake during
this period. The Gaussian copula is even being discussed for having a main
impact on the financial crisis [30]. In addition to an overall strong corre-
lation level during the crisis, as discussed in section 2.1.2, a large portion
of the statistical dependence lies in the tails of the marginal distributions.
The probability of correlated extreme events is very high. Surprisingly the
copula during the crisis exhibits a stronger positive tail dependence than
negative tail dependence.
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Figure 2.13: Evolution of the S&P 500 stocks’ average pairwise copula density.
The isosurfaces correspond to a probability of 0.1‰ (blue) and 0.05‰ (red). The
density in the tails is very high.

2.2.3 Dynamics of the Copula

It is evident that statistical dependencies of financial assets change in time.
For example, this can be caused by microeconomic influences, changing
political factors or herding effects. We approached this matter with a simi-
larity measure and the identification of market states in section 2.1. Earlier
studies address this issue by discussing the dynamics of correlations [40–
42, 88]. Here, we discuss a different approach on this topic. We perform a
empirical study of the changes in the average pairwise copula. We calcu-
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late the average copula within 2-week periods within the 2007-2010 period
based on 1-hour returns. Results are shown in Fig. 2.13. To illustrate the
structural changes of the copula, we plot the isosurfaces in the tail regions.
We discover that the tail dependence is stronger during financial crashes,
such as from Oct 2008 to Feb 2010. However, the fluctuations of the tail
dependence are very large. It reflects the current market’s situation in a
sensible manner.

Often financial crashes are accompanied by overall very large correlations.
This raises the question if there is some dependence between the market’s
average correlation level and the tail dependence. To obtain an insight into
this question we compare the average correlation coefficient of the whole
market in each 2-week period to the tail dependence. As correlation coeffi-
cients are still widely used, this maps a correlation coefficient to one of the
most important features of the copula.

To quantify this tail dependence, we calculate the probability of two re-
turns to be simultaneous above or below a certain quantile α. This simple
upper and lower tail dependence coefficient is given by

λl(α) = Cop(α, α) , (2.51)
λu(α) = 1− Cop(1− α, 1− α) . (2.52)

More advanced tail dependence coefficients are, e.g., discussed in Ref. [86].
However, as we only examine the difference between the empirical copula
and the Gaussian copula, we restrict ourselves to this measure. We perform
the analysis for return intervals from 30 minutes to two hours. Results are
shown in Fig. 2.14. We find a very strong relation of the tail dependence
and the average correlation coefficient. For comparison we build the average
tail dependence coefficients λl and λu of the Gaussian copula, given by

λl = λu = Copc(α, α) . (2.53)

To calculate the average Gaussian tail dependence, for each 2-week period,
we calculate the tail dependence of the Gaussian copula based on the cor-
relation matrix’ entries Ci,j of this period,

〈
λ
(Gauss)
l

〉
=
〈
λ(Gauss)u

〉
=

K∑
i=1

K∑
j=i+1

(
CopCi,j

(α, α)
)

K(K − 1)/2
. (2.54)

This gives the opportunity to compare how the tail dependence is overall
misjudged, if using correlation coefficients or the Gaussian copula.
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Figure 2.14: Relation between tail dependence and average correlation level for
different quantiles α and return intervals Δt.
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Figure 2.14: (continued)
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The relation between the market’s average correlation level and the tail
dependence appears to be almost linear. For small return intervals, such as
Δt = 30min and 60min, the tail dependence has a tendency to be stronger
than in the Gaussian case. For small quantiles, such as α = 2% and 4%,
there are many cases where this linear relation does not hold. There are
many outliers that feature a much stronger tail dependence than in the
Gaussian case. On larger return intervals, the tail dependence becomes more
and more similar to the Gaussian case, which is consistent with studies of the
marginal distributions [20]. Here, the lower tail dependence is significantly
higher than the upper tail dependence. This underlines the unsuitability of
the Gaussian copula for the estimation of correlated extreme events. This
is a key ingredient to the estimation of financial risk [15, 31, 81, 82].

2.2.4 Summary

In a large-scale empirical study of the S&P 500 stock’s copula, we uncovered
important features of the statistical dependence structure. This gives the
opportunity to isolate the statistical dependence structure from features of
the marginal probability distributions, such as heavy tails. In general, the
overall average pairwise copula of the 4-year period feature stronger tails
than the Gaussian copula. Extreme events are much more correlated than
assumed by a linear correlation. Moreover, the empirical copula indicates
the presence of anti-correlated extreme events. Despite the large differences
between the Gaussian distribution and the distribution of high frequency
returns, the dependency structure in the central part of the distributions
is quite similar. This explains why techniques to reduce risk that involve
correlations work well in “quiet times”, as these correspond to the center
region of the copula. It also provides insights into the causes for the frequent
failures of theses approaches during stock market crashes. The probability of
simultaneous extreme events, both in correlated and anti-correlated manner,
is underestimated.

In a time-dependent study, where we calculated the empirical copula in
the resolution of 2-weeks, we showed that the Gaussian copula, in particu-
lar, systematically underestimates the tail dependence. The market reacts
especially sensitive to large negative returns resulting in a collective down-
ward motion. The evolution of the copula in the 4-year period discloses a
strong relation between the market’s average correlation level and the tail
dependence. For large return intervals of 4 hours and in the center region
of the distribution, the Gaussian copula describes the situation fairly well.
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But when using smaller return intervals or estimating the tail regions, the
fluctuations in the correlation/tail-dependence relation become very strong.
This enables one to dynamically estimate the degree of error involved in the
usage of correlation coefficients. It might be difficult to construct an ana-
lytically defined copula that fits the empirical data in all respects. However,
a first step towards the reduction of risk is not only to know that correlated
extreme events are underestimated, but also to be able to evaluate to which
extent they are underestimated, given the market’s overall correlation level.



3 Distorted Financial Correlations:
The Epps Effect

The Epps effect describes the decrease of correlation estimates in financial
data towards smaller return (or sampling-) intervals. This behavior has
been of interest since Epps discovered this phenomenon in 1979 [89]. Since
then, this behavior was found in data of different stock exchanges [90–93]
and foreign exchange markets [94, 95]. An example for the Epps effect in
empirical data is presented in Fig. 3.1. Here, the correlation declines for
return intervals Δt smaller than five minutes.

Many economists as well as physicists addressed this phenomenon, be-
cause a precise calculation of correlations is of major importance for the
estimation of financial risk [15, 27, 31, 96]. While the physicists’ approach
is often to construct a model, which offers an explanation for this phe-
nomenon, the standard economy approach is to work on estimators with
the aim to suppress the Epps effect.

Recently, Hayashi and Yoshida introduced an estimator [97], only involv-
ing returns whose time intervals are overlapping. Hence, it deals with the
asynchrony of time series as a cause for the Epps effect. Subsequently,
Voev and Lunde [98] demonstrated that this estimator can be biased in the
presence of noise and proposed a bias correction. Griffin and Oomen [99]
extended the estimator of Hayashi and Yoshida by adjustments for lagged
correlations. The work of Tóth and Kertész [100] also deals with the phe-
nomenon of lagged correlations. They introduce a model that is based on
the decomposition of cross-correlations.

A very similar approach to the estimator of Hayashi and Yoshida, but on a
completely different topic is the discrete correlation function in astrophysics
which was introduced already in 1988 by Edelson and Krolik [101]. Other
approaches to estimate correlations involve Previous-Tick-Estimators [102,
103] or realized kernel functions [104]. The term “previous-tick” simply
refers to the fact that at a given time often no current price information
exists. Thus, the last traded price, the so-called previous tick, is used.

The recent study of Zhang [103] shows that common previous-tick-esti-
mators are biased. They consequently provide an optimal sampling fre-
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Figure 3.1: A typical Epps effect. The Fig. illustrates the Pearson correlation
coefficient between Dominion Resources, Inc. (D) and Xcel Energy (XEL) in
2007 for various return intervals Δt.

quency of returns in order to suppress the Epps effect. Barndorff-Nielson
et. al. [104, 105] examine high frequency correlations and propose multivari-
ate realized kernels to improve the estimation of correlations. An extensive
study of microscopic causes leading to the Epps effect has been performed
by Renò [106].

Certainly many mechanisms contribute to the Epps effect. We can sepa-
rate these mechanisms into two classes. First, statistical effects that origi-
nate from the Markovian features of the time series, e.g., biased estimates
and second, non-Markovian causes. The latter are represented by features
that are not of purely statistical origin, such as trading strategies and static
lead-lag effects, for example due to different time-zones.

We demonstrate that there are two major causes of purely statistical ori-
gin. The aim is not to develop a complete description of the Epps effect.
It is rather to identify statistical causes that can be compensated directly,
without the requirement of adjusting parameters, model calibrations or an
optimal sampling frequency, etc., which is typically required by other com-
pensation methods for the Epps effect [93, 98, 99, 102–104].
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The two major causes we identify are the asynchrony of the time series
and the impact of the decimalization by the tick-size. The tick-size is the
minimum price change of a stock’s price. It is evident that the impact of
the asynchrony – stock prices are not synchronized – grows at small return
intervals. The asynchronous lags, usually in the range of seconds to minutes,
can be neglected when calculating daily returns. We also expect a larger
impact of the tick-size on small return intervals. Small return intervals
are usually accompanied with small price changes. If these price changes
are of the order of the tick-size, we expect a distortion of the correlation
coefficients.

For both causes, we first introduce a simple model, which offers an expla-
nation for this statistical part. Second, based on that model, we present an
estimator, with which these effects can be compensated. Finally, we quan-
tify the impact of this phenomenon on the Epps effect in recent empirical
data and show that it can be a major cause for the Epps effect, especially
when looking at less frequently traded securities.

This chapter is organized as follows1. In section 3.1, we discuss the impact
of asynchronous time series on financial correlations and develop a compen-
sation methods. The impact of the tick-size is taken into account in section
3.2. We combine both findings in section 3.3.

To evaluate the developed compensation methods, we set up a model
that features asynchronous and discretized time series. Within the model
set up, a decay of correlations towards smaller return intervals is observed
which is discussed in section 3.4. Hence, the Epps effect can be reproduced
within this model. Subsequently, the compensation methods developed in
the preceding sections are validated within the model.

In section 3.5, this method is applied to recent empirical data to esti-
mate the impact of the observed effect on the Epps effect. The results are
discussed in section 3.6.

3.1 Asynchronous Time Series

We begin with demonstrating how the asynchrony of time series contributes
to the Epps effect. By “asynchrony” we refer to time series that feature an
arbitrary lag for a given point in time but the average lag is zero. The
asynchrony is simply due to the non-synchronous pricing of stocks.

1For details see Refs. [1, 2].
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Figure 3.2: Illustration of the model for asynchronous trading times of two stocks.
Shown above are the prices S̃ on the underlying timescale. The “sampling” of
theses prices S̃ to prices S on simulated trading times are shown below.

The central assumption of this model is the existence of an underlying
non-lagged time series of prices. The assumption of a finer [100] or even
continuous [97, 105, 106] underlying timescale is a common approach in the
estimation of correlations. This approach is also intuitive, as, e.g., most
stocks are traded at several stock exchanges simultaneously.

3.1.1 Compensating the Correlation Coefficient for
Asynchronous Effects

The basic idea of this approach is the following: Due to the asynchrony,
each term of the correlation coefficient can be divided into a part which
contributes to the correlation and a part which is uncorrelated and therefore
lowers the correlation coefficient.

According to the model assumption, the price change during Δt is based
on price changes on an underlying “microscopic” timescale. Thus, the return
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rΔt can also be expressed as a sum of the underlying returns r̃,

r
(i)
Δt(t) =

N
(i)
Δt (t)∑
j=0

r̃(i)(γ(i)(t) + jΔt̃) . (3.1)

Here r̃(i)(ti) is the return related to S(t) on the underlying time scale of
non-overlapping intervals Δt̃ (e.g. 1 second) given by

r̃(i)(t+ jΔt̃) =
S̃(t+ (j + 1)Δt̃)− S̃(t+ jΔt̃)

S(t)
. (3.2)

The quantity γ(i)(t) in Eq. (3.1) represents the time of the last trade of the
i-th stock at time t,

γ(i)(t) = max(t
(i)
trade)

∣∣∣
t
(i)
trade≤t

. (3.3)

When calculating the return of the interval [t, t+Δt] of two stocks, the actual
price at t and t + Δt generally originates from the past, more precisely at
the times γ(1)(t), γ(2)(t) and γ(1)(t + Δt), γ(2)(t + Δt). These intervals
can be smaller or larger than the initially chosen return interval. When
considering the returns of two stocks within the same interval, two effective
return intervals are obtained that are in most cases not equal in length,
start-point and end-point. Therefore only a fraction of the underlying prices
processed by the return are correlated. The number of terms N

(i)
Δt of the

sum in Eq. (3.1) is given by

N
(i)
Δt(t) =

(γ(i)(t+Δt)− γ(i)(t))

Δt̃
. (3.4)

For the sake of a simpler notation, we normalize the returns to zero mean
and unit variance and indicate them as g and g̃,

g
(i)
Δt(t) =

r
(i)
Δt(t)− 〈r(i)Δt〉

σ
(i)
Δt

(3.5)

g̃(i)(t) =
r̃(i)(t)− 〈r̃(i)〉

σ̃(i)
. (3.6)

To derive the relationship between the normalized returns g̃(i) on the under-
lying timescale and g̃(i) the macroscopic timescale, we start with inserting
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the return, expressed through the sum of small “returns” on underlying time
series,

r
(i)
Δt(t) =

N
(i)
Δt (t)∑
j=0

r̃(i)(γ(i)(t) + jΔt̃) , (3.7)

in Eq. (3.5). This leads to

g
(i)
Δt(t) =

N
(i)
Δt (t)∑
j=0

(
r̃(i)(γ(i)(t) + jΔt̃)

)− 〈r(i)Δt〉√
var(r

(i)
Δt)

(3.8)

=

√
var(r̃(i))√
var(r

(i)
Δt)

×
N

(i)
Δt (t)∑
j=0

(
g̃(i)(γ(i)(t) + jΔt̃)

)
−
〈
r
(i)
Δt

〉
+N

(i)
Δt(t)

〈
r̃(i)
〉

.

(3.9)

In Eq. (3.9), Eq. (3.6) was used to express the underlying returns r̃(i).
As r̃(i) and N

(i)
Δt are uncorrelated and the mean values and variances are

additive, we have 〈
r
(i)
Δt

〉
=
〈
N

(i)
Δt

〉〈
r̃(i)
〉

(3.10)

var
(
r
(i)
Δt

)
=
〈
N

(i)
Δt

〉
var
(
r̃(i)
)

. (3.11)

Therefore, we obtain by insertion into Eq. (3.9)

g
(i)
Δt(t) =

1√〈
N

(i)
Δt

〉
N

(i)
Δt (t))∑
j=0

g̃(i)(γ(i)(t) + jΔt̃)

−
〈r̃(i)〉

(〈
N

(i)
Δt

〉
−N

(i)
Δt(t)

)
√
var(r

(i)
Δt)

. (3.12)
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As the average time interval per return converges to Δt, the mean number
of underlying price changes

〈
N

(i)
Δt

〉
is given by Δt/Δt̃. Thus, we arrive at

g
(i)
Δt(t) =

√
Δt̃

Δt

N
(i)
Δt (t))∑
j=0

g̃(i)(γ(i)(t) + jΔt̃)−
〈r̃(i)〉

(
Δt
Δt̃
−N

(i)
Δt(t)

)
√
var(r

(i)
Δt)

. (3.13)

When using normalized returns, the correlation coefficient of two return
time series r

(1)
Δt and r

(2)
Δt (see Eq. (1.8) simplifies to

corr(r
(1)
Δt , r

(2)
Δt ) = corr(g

(1)
Δt , g

(2)
Δt ) =

1

T

T∑
j=0

g
(1)
Δt (tj)g

(2)
Δt (tj) . (3.14)

As the mean value over T of the second term from Eq. (3.13) is equal to
zero, we obtain in terms of the underlying time series

corr(r
(1)
Δt , r

(2)
Δt ) =

1

T

T∑
j=0

⎛
⎝N

(1)
Δt (tj)∑
k=0

g̃(1)(γ(1)(tj) + kΔt̃)

×
N

(2)
Δt (tj)∑
l=0

g̃(2)(γ(2)(tj) + lΔt̃)

⎞
⎠ Δt̃

Δt
.

(3.15)

Fig. 3.3 illustrates that only a subset of the underlying prices S̃ of two
prices S share an overlapping time-interval. Because of this “overlap” only
a certain amount N̄Δt(t) of the underlying returns is correlated, namely

N̄Δt(t) =
Δto(t)

Δt̃
, (3.16)

with Δto(t) being the time interval of the actual overlap, in which both
stocks have synchronous prices

Δto(t) = min(γ(1)(t+Δt), γ(2)(t+Δt))−max(γ(1)(t), γ(2)(t)) . (3.17)

Each sum can be split up into N
(i)
Δt − N̄ terms that are uncorrelated and N̄
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Figure 3.3: Illustration of the overlap Δto that originates from asynchronous price
information.

that are correlated. Thus, Eq. (3.15) can be written as

corr(r
(1)
Δt , r

(2)
Δt ) =

1

T

T∑
j=0

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
N

(1)
Δt (tj)−N̄Δt(tj)∑
k=N̄Δt(tj)+1

g̃(1)(tk)

︸ ︷︷ ︸
async.

+

N̄Δt(tj)∑
k̄=0

g̃(1)(tk̄)

︸ ︷︷ ︸
sync.

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝
N

(2)
Δt (tj)−N̄Δt(tj)∑
l=N̄Δt(tj)+1

g̃(2)(tl)

︸ ︷︷ ︸
async.

+

N̄Δt(tj)∑
l̄=0

g̃(2)(tl̄)

︸ ︷︷ ︸
sync.

⎞
⎟⎟⎟⎟⎟⎠

Δt̃

Δt

⎞
⎟⎟⎟⎟⎟⎠ ,

(3.18)

where only the sums of synchronous returns are correlated among each
other. In this notation, the underlying time series is indexed as [r̃(i)(t0),
r̃(i)(t1), . . . , r̃

(i)(t
N

(i)
Δt

)], where the returns from t0 to tN̄Δt
are corresponding

to the overlap. When expanding the product, the non-correlated returns
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converge to zero due to the outer average

corr(r
(1)
Δt , r

(2)
Δt ) =

1

T

T∑
j=0

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝
N̄Δt(tj)∑
k=0

g̃(1)(tk)g̃
(2)(tk)

︸ ︷︷ ︸
N̄Δt(t)corrtj (

�̃r1,�̃r2)

+ . . .︸︷︷︸
0

⎞
⎟⎟⎟⎟⎟⎟⎠

Δt̃

Δt

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1

T

T∑
j=0

corrtj (g̃
(1), g̃(2))

N̄Δt(t)Δt̃

Δt

=
1

T

T∑
j=0

corrtj (g̃
(1), g̃(2))

Δto(tj)

Δt
, (3.19)

where corrt represents the correlation of the underlying returns correspond-
ing to the interval [t, t+Δt].
Δto(t)/Δt is the fractional overlap of the corresponding return interval.

This fractional overlap does not depend on the actual timescale of the under-
lying time series. As Eq. (3.19) clearly shows, the correlation coefficient of
the synchronous part of the return time series is multiplied by the fractional
overlap. Hence, this effect can be compensated by

ĉorrasync(r
(1)
Δt , r

(2)
Δt ) =

1

T

T∑
j=0

g
(1)
Δt (tj)g

(2)
Δt (tj)

Δt

Δto(tj)
, (3.20)

which is the final result for the asynchrony compensation.
To review – Initially, we made the assumption of an underlying time

series of prices, which is correlated and which exists on a smaller time scale.
Eq. (3.20) does no longer depend on the time scale of the hypothetical
underlying time series. Neither does it depend on the actual prices on
the underlying time series. Hence, the only necessary assumption is that
there exists underlying information, which is correlated on a finer time
scale. This is an important finding, since the synchronization of returns
from international stock exchanges is a highly non-trivial problem [107].
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3.2 Impact of the Tick-Size

Observations on financial data on very small time scales or small ampli-
tudes are usually referred to as market microstructure [70]. The following
demonstrates that this microstructure has a large impact on the correlation
estimation and can also alter the tail behavior of the return distribution
compared to the underlying price change distribution. Before we turn to
the Epps effect, we disclose a relation between the tail behavior of each mi-
crostructure return distribution for a fixed price change ΔSΔt and the over-
all return distribution. For this purpose, we decompose the set of returns
according to the absolute price changes and disclose its microstructure.

The tick-size or minimum tick, plays an important role in quantitative fi-
nance. All raw price information is discretized by the tick-size. Historically,
the tick-size of most securities has been consecutively reduced resulting in
tick-sizes of 1/100th. This process is often referred to as decimalization [108].
One reason for it was to aim at enhanced market efficiency. In principle,
small tick-sizes allow for a faster clearing of market arbitrage. Nonetheless,
it is controversial whether a smaller tick-size generally improves the market
quality [109–112], e.g., in view of the fact that a larger tick-size ensures
liquidity [113]. Furthermore, a recent study indicates that in some cases
only a fraction of the theoretically possible prices are used. Hence, prices
cluster at certain multiples of the tick-size resulting in an effective tick-size
[114].

However, a large tick-size can lead to erroneous data in financial indices
due to rounding errors [115]. The actual tick-size for stocks is typically
USD 0.01. This is the case for instance on the New York Stock Exchange
(NYSE) and the National Association of Securities Dealers Automated Quo-
tations (NASDAQ). However, some securities such as U.S. Government se-
curities are still quoted in 1/32nds of a dollar.

The tick-size certainly affects many fields in quantitative finance. In this
section we want to focus on its impact on two of the most important observ-
ables: financial returns and financial correlations. These elementary values
are of particular importance for many applications, for example portfolio
optimization [52, 116] and risk management [15].

In section 3.2.1, the influence of the tick-size on the microstructure of
financial return distributions is studied. Subsequently, impact of the tick-
size on the calculation on the Epps Effect. As the identified mechanism is
solely of statistical origin, we are able to develop a method for compensating
this distortion as well, as discussed in section 3.2.2.
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3.2.1 Return Microstructure

A financial return describes the relative price change of a security between
two points in time. As introduced in section 1.2.1, the arithmetic return is
defined as

rΔt(t) =
ΔSΔt(t)

S(t)
. (3.21)

As the price change ΔSΔt can only take values that are multiples of the tick-
size q, its histogram consists of equally spaced peaks as shown in Fig. 3.4.
In other words, the distribution of ΔSΔt is discretized. At first glance,
it is conceivable that the transition from absolute price changes ΔSΔt to
relative price changes rΔt removes this discretization from the distribution,
since the returns are almost continuously distributed, as Fig. 3.5 illustrates.
However, a closer look at the center of the distribution in Fig. 3.6 reveals
that the discretization effects are still visible. Despite its non-visibility, the
discretization affects returns on any interval. We discuss this point more
detailed in sections 3.2.2 to 3.2.5.

For an analytical description of this discretization, we introduce the set
of all returns

RΔt =

{
ΔSΔt(t)

S(t)

∣∣∣ΔSΔt(t) ∈ [N−q, (N− + 1)q, . . . , (N+ − 1)q,N+q]

}
,

(3.22)
where N−q defines the lower and N+q the upper bound of the price change
distribution that is discretized by the tick-size q.

The set of all returns RΔt can be separated into subsets for each price
change ΔSΔt,

RΔt =

N+⋃
n=N−

R
(n)
Δt , (3.23)

with
R
(n)
Δt =

{
ΔSΔt(t)

Y (n)(t)

∣∣∣ΔSΔt(t) = nq

}
. (3.24)

Y (n) in the denominator refers to the subset of starting prices S that increase
(or decrease) by nqS in the interval Δt. Therefore, R

(n)
Δt represents the

returns that are based on the price change nq. Evidently, R(n)
Δt is bounded

by

min(R
(n)
Δt ) =

nq

max(Y (n))
, max(R

(n)
Δt ) =

nq

min(Y (n))
. (3.25)
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Figure 3.4: Center of the 1-minute price change distribution from the Apollo Group
Inc. (APOL) share in the first half of 2007.
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Figure 3.5: 1-minute return distribution from the Apollo Group Inc. (APOL)
share in the first half of 2007.
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Figure 3.6: Center of the 1-minute return distribution from the Apollo Group Inc.
(APOL) share in the first half of 2007 with the calculated bounds corresponding
to a specific price change indicated by the blue regions. Darker shades of blue
imply overlapping bounds.

In our study, empirical data from the TAQ database [43] of the New York
Stock exchange (NYSE) indicate that the approximations max(Y (n)) ≈
max(Y ) and min(Y (n)) ≈ min(Y ) are legitimate for small |n|, where Y
is the set of all prices in the observed period.

Therefore, the interval between minimum and maximum return on a spe-
cific price change

I(R(n)) =
[
min

(
R(n)

)
,max

(
R(n)

)]
(3.26)

increases with |n|, while the distance d between their centers remains almost
constant

d(R(n)) =
qS
2

(
1

min(Y (n))
− 1

max(Y (n))

)

≈ qS
2

(
1

min(Y )
− 1

max(Y )

)
= const. (3.27)



80 3 The Epps Effect

Thus, the intervals I(Y (n)) are increasingly overlapping for larger |n|. From
this viewpoint the discretization is only “visible” for small |n|, that is, for
small price changes. Fig. 3.6 illustrates the clustering of returns with an
example where we compare the returns of the Apollo Group Inc. (APOL)
share with the intervals I(R(n)) calculated by Eqs. (3.26) and (3.27). The
calculated boundaries match with the empirical data.

3.2.1.1 Tail Behavior of Return and Price Change Distributions

Now we investigate how the composition of the returns changes the shape
of their distribution compared to the distribution of price changes. In the
framework of a model, we generate price changes that are, in a first scenario,
Gaussian distributed and, in a second scenario, power-law distributed with a
given tick-size. Afterwards, we calculate returns using uniformly distributed
price values within the minimum and maximum price, Smin and Smax (anal-
ogously to Figs. 3.6 and 3.5). In this manner, we generate a discrete price
change distribution with a specific shape and then divide each set of equal
price changes by uniformly distributed prices. The price distributions are
generated individually for each subset.

To compare the shape of the obtained return distribution with the shape,
which we have chosen for the price change distribution, we normalize the
distributions to zero mean and unit variance

g
(i)
Δt(t) =

r
(i)
Δt(t)− 〈r(i)Δt〉

σ
(i)
Δt

(3.28)

ΔŜ
(i)
Δt(t) =

ΔS
(i)
Δt(t)− 〈ΔS

(i)
Δt〉

σ
(i)
Δt

. (3.29)

The results of this simple setup indicate that neither the tick-size nor the
width of the price change distribution or the absolute sizes of Smin and Smax

have an effect on the shape of the obtained return distribution. Only the
microstructure of its center is affected, as discussed in the previous section.
In general, the return distribution acquires stronger tails compared to the
price change distribution. Surprisingly, the shape-change of the distribution
only depends on the ratio of the minimum and maximum price.

Fig. 3.7 shows the corresponding distributions for Gaussian and power-
law distributed prices and for various price ranges. It turns out that the
influence on the tail behavior is much stronger for a Gaussian price change
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(a) Gaussian ΔS, Smax/Smin = 1.1

−8 −6 −4 −2 0 2 4 6 8

, g

10−5

10−4

10−3

10−2

10−1

100

PD
F

g
ΔŜ
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(b) Power-law ΔS, Smax/Smin = 1.1
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(c) Gaussian ΔS, Smax/Smin = 1.5
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(d) Power-law ΔS, Smax/Smin = 1.5
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(e) Gaussian ΔS, Smax/Smin = 2.0
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Figure 3.7: Comparison of the distributions of normalized price changes ΔŜ and
normalized returns g on different price ranges Smax/Smin using Gaussian dis-
tributed price changes (a,c,e) and power-law distributed price changes (b,e,f). All
calculations were preformed using a standard deviation of 60 tick-sizes.
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Figure 3.8: Change in the tail behavior of the distribution of normalized returns
g compared to the underlying normalized price changes ΔŜ.
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distribution. For a power-law price change distribution, the return distri-
bution retains approximately the same power-law shape, except for the far
tails and the slight sharpening of the center region.

Certainly, the assumption of uniformly distributed prices on each price
change is a rough approximation within this simple setup. In the market,
there can be a strong relation between ΔS and S, which leads to a shape
retaining of the price change distribution to the return distribution. This
is because the prices which undergo a very large price change during the
interval Δt can be much more sparsely distributed than prices which change
only slightly. Furthermore, the price range is usually not large in a period
of time, in which the price distribution is approximately uniform. In view
of this and under the assumption of power-law distributed price changes,
the situation in Figs. 3.7b and 3.7d may describe most stocks suitably. Put
differently, the shape of the return distribution is almost retaining the shape
of the price change distribution in most cases.

However, if the price of a stock covers a large range in a relatively short
period of time, we actually can observe a change in the tail behavior. This is
illustrated in Fig. 3.8 for an ensemble of 50 stocks taken from the S&P 500
index (see appendix A.3) using return intervals of 5 minutes and 1 day. The
stocks have been chosen to provide the highest ratio between their mean
price and its standard deviation. Although the stock ensemble shows the
expected behavior, it is difficult to make an accurate statement regarding the
far tails, as these events are very rare, even within this statistical ensemble.

3.2.2 Impact of the Tick-Size on Financial Correlations

We now turn to the impact of the tick-size on the calculation of correlations
and analyze the impact on the Epps effect. Financial correlations are an
important measure in economics. The knowledge of precise correlations is
essential for quantifying and minimizing financial risk. As we will show, the
discreteness of stock quotes can distort the correlation estimates.

It is a basic assumption in our approach that we can statistically describe
the discreteness in market prices by a discretization of a hypothetical un-
derlying continuous price. This is not to say that market prices actually
result from a discretization process. Individual traders are well aware of the
finite tick-size and may try to exploit it in their trading strategies. How-
ever, there is a large variety of trading strategies simultaneously acting on
the market. These strategies involve a large scale of different investment
horizons. Since the price formation results from the interaction of a large
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diversity of strategies, the price fluctuations on the level of the tick-size can
be viewed as purely statistical. This is the basis for our modeling ansatz.
Despite the interpolation of the price change distribution, neither parameter
fixing nor calibration of the model is necessary.

A financial return is a compound observable value. Due to this fact, we
develop the compensation method step by step. We start with turning to
the distortion of the correlation coefficient of value-discretized time series in
general in section 3.2.3. We develop a compensation for the discretization
error in the correlation between financial (absolute) price changes in section
3.2.4. Eventually, we extend this formalism to financial returns in section
3.2.5. To simplify the notation, we omit the index Δt indicating the return
interval in sections 3.2.4 and 3.2.5.

3.2.3 Estimating Correlations in Value-Discretized
Time Series in General

Almost any time series of data is discretized. This can simply be caused
by numerical reasons, such as a finite number of decimal places. But how
can we measure the impact of the discretization or even compensate it? We
demonstrate, that this can be achieved by a decomposition of the correlation
coefficient and a estimation of the average discretization errors.

Let x1 and x1 be two time series which are correlated. Now, let us consider
the time series x̄1 and x̄2 which are the discretized values of x1 and x2 with
tick-sizes q1 and q2, respectively. Thus we have

x1(t) = x̄1(t) + ϑ(1)(t) (3.30)

x2(t) = x̄2(t) + ϑ(2)(t) , (3.31)

where ϑ(1)(t) and ϑ(2)(t) are the discretization errors. We assume the dis-
cretization errors as uniformly distributed in the intervals ]−q1/2, q1/2] and
]−q2/2, q2/2]. This seems natural, as discretization is commonly caused by a
rounding process. Using Eqs. (3.30) and (3.31) we can write the correlation
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coefficient as

corr(x1, x2) =

〈
(x̄1 + ϑ(1))(x̄2 + ϑ(2))

〉− (〈x̄1〉+ 〈ϑ(1)〉) (〈x̄2〉+ 〈ϑ(2)〉)√
var
(
x̄1 + ϑ(1)

)√
var
(
x̄2 + ϑ(2)

)
(3.32)

=
cov (x̄1, x̄2) + cov

(
x̄1, ϑ

(2)
)
+ cov

(
x̄2, ϑ

(1)
)
+ cov

(
ϑ(1), ϑ(2)

)
σ̂x1

σ̂x2

(3.33)

with

σ̂xi =
√
var (x̄i) + var

(
ϑ(i)
)
+ 2cov

(
x̄i, ϑ(i)

)
. (3.34)

Apart from the terms cov (x̄1, x̄2), var (x̄1) and var (x̄2) of expression
(3.33), which can be calculated with the discretized data, all other terms are
lost in the discretization process. However, these terms can be estimated
when the distributions �x̄1

and �x̄2
of x̄1 and x̄2 are known, as we will

demonstrate. The continuous distributions �x1
and �x2

can be obtained by
interpolating the distributions of the discretized values. We assume these
distributions in the following context to be normalized. Sometimes, the
shape of the distribution for a certain process is known (e.g. Gaussian).
Therefore, the interpolated distribution function can be determined by a fit
of the distributions of x̄1 and x̄2.

If the shape of the distribution is unknown, an interpolation can be per-
formed section by section using, e.g., polynomial or linear fits. The fitting
processes cannot be performed in the traditional way by minimizing the
difference of values from the discrete distribution and the desired fit func-
tion. Rather the discretization process needs to be included. This gains
particular importance when the level of discretization is high and thus the
distribution is discretized only with a small range of values.

As the value that is discretized to, e.g., x′1 can originate from region
x′1 − q1/2 to x′1 + q1/2, the difference function f , which provides a measure
for the residual between the fit and the empirical data is then given by

fx1(�x1 , �x̄1) =

N+∑
n=N−

⎡
⎢⎣
q1(n+

1
2 )∫

q1(n− 1
2 )

�x1(z) dz − �x̄1(nq1)

⎤
⎥⎦ (3.35)

for x1 and analogously for x2.
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To compensate the overall discretization error, we first introduce the dis-
cretization errors that led to a certain discretized value. We refer to these
errors as conditional discretization errors. They are defined as

ϑ(1)n = x1(t̃)− nq1 , t̃ ∈
{
t
∣∣ | x1(t)− nq1| ≤ q1

2

}
(3.36)

ϑ(2)m = x2(t̃)−mq2 , t̃ ∈
{
t
∣∣ |x2(t)−mq2| ≤ q2

2

}
(3.37)

ϑ(1)n,m = x1(t̃)− nq1 ,

t̃ ∈
{
t
∣∣ |x1(t)− nq1| ≤ q1

2
, |x2(t)−mq2| ≤ q2

2

}
(3.38)

ϑ(2)m,n = x2(t̃)−mq2 ,

t̃ ∈
{
t
∣∣ |x2(t)−mq2| ≤ q2

2
, |x1(t)− nq1| ≤ q1

2

}
. (3.39)

Here, ϑ(1)n and ϑ
(2)
m are the discretization errors that resulted in a discrete

value of x̄1 = nq and x̄2 = mq accordingly, where n and m are integers.
Consequently, ϑ

(1)
n,m and ϑ

(2)
m,n are discretization errors that led to a value

of x̄1 = nq and x̄2 = mq, while the other (correlated) time series was
simultaneously discretized to x̄2 = mq and x̄1 = nq. In all cases, t̃ is the
set of time points at which these actual discretizations occur.

Using the interpolated distribution functions �x1
(x(t)) and �x1

(y(t)) and
the interpolated joint distribution function �x1,x2

(x(t), y(t)), the average
discretization errors can be calculated as

〈
ϑ(1)n

〉
=

∫ q1(n+ 1
2 )

q1(n− 1
2 )
(z − nq1)�x1

(z) dz

∫ q1(n+ 1
2 )

q1(n− 1
2 )

�x1
(z) dz

(3.40)

〈
ϑ(2)m

〉
=

∫ q2(m+ 1
2 )

q2(m− 1
2 )
(z −mq2)�x2

(z) dz

∫ q2(m+ 1
2 )

q2(m− 1
2 )

�x2
(z) dz

(3.41)

〈
ϑ(1)n,m

〉
=

∫ q1(n+ 1
2 )

qx(n− 1
2 )
(z − nq1)�x1,y2(z,mq2) dz∫ q1(n+ 1

2 )
q1(n− 1

2 )
�x1,x2(z,mq2) dz

(3.42)



3.2 Impact of the Tick-Size 87

〈
ϑ(2)m,n

〉
=

∫ q2(m+ 1
2 )

q2(m− 1
2 )
(z −mq2)�x1,x2

(nq1, z) dz∫ q2(m+ 1
2 )

q2(m− 1
2 )

�x1,x2(nq1, z) dz
, (3.43)

where

+∞∫
−∞

�x1,x2
(x1(t), z) dz = �x1

(x1(t)) and (3.44)

+∞∫
−∞

�x1,x2(z, x2(t)) dz = �x2(x2(t)) . (3.45)

Therefore the overall average discretization errors can be written as

〈
ϑ(1)
〉
≈ 1

T

N+∑
n=N−

Tn

〈
ϑ(1)n

〉
(3.46)

〈
ϑ(2)
〉
≈ 1

T

M+∑
m=M−

Tm

〈
ϑ(2)m

〉
, (3.47)

where Tn and Tm are the number of values that have been discretized to
nq1 and mq2. Here, q1N− represents the minimum of the discretized time
series x̄1(t). q1N+ is its maximum (M− and M+ is analogously defined).

Now we can calculate the discretization terms of Eq. (3.33). We begin
with:

cov
(
x̄1, ϑ

(2)
)
=
〈
x̄1ϑ

(2)
〉
− 〈x̄1〉

〈
ϑ(2)
〉

(3.48)

=
1

T

N+∑
n=N−

M+∑
m=M−

Tn,m∑
t̃=0

(
nq1ϑ

(2)
m (t̃)

)
− 〈x̄1〉

〈
ϑ(2)
〉

(3.49)

=
q1
T

N+∑
n=N−

n

M+∑
m=M−

Tn,m

〈
ϑ(2)m,n

〉
− 〈x̄1〉

〈
ϑ(2)
〉

. (3.50)

T is the length of the whole time series, while Tn,m is the number of
synchronous pairs of both time series, which are discretized to nq1 and
mq2. We index these pairs with t̃ referring to these certain points in time.
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Analogously, the other discretization terms of Eq. (3.33) can be calculated
as

cov
(
x̄2, ϑ

(1)
)
=

q2
T

M+∑
m=M−

m

N+∑
n=N−

Tn,m

〈
ϑ(1)n,m

〉

− 〈x̄2〉 1
T

N+∑
n=N−

Tn

〈
ϑ(x)n

〉
(3.51)

cov
(
x̄1, ϑ

(1)
)
=

q1
T

N+∑
n=N−

Tnn
〈
ϑ(1)n

〉
− 〈x̄1〉 1

T

N+∑
n=N−

Tn

〈
ϑ(1)n

〉
(3.52)

cov
(
x̄2, ϑ

(2)
)
=

q2
T

M+∑
m=M−

Tmm
〈
ϑ(2)m

〉
− 〈x̄2〉 1

T

M+∑
m=M−

Tm

〈
ϑ(2)m

〉
(3.53)

var
(
ϑ(1)
)
≈ q21

12
(3.54)

var
(
ϑ(2)
)
≈ q22

12
. (3.55)

The terms (3.54) and (3.55) are estimated under the assumption that the
discretization errors are uniformly distributed. Usually, the remaining term
cov(ϑ

(1)
n , ϑ

(2)
m ) cannot be calculated with the distribution functions as it

contains the correlation between the discretization errors. This value is not
necessarily connected to the correlation of the whole time series either. Yet,
we will show in the next section, that this term is negligible in the present
context.

Thus, we have shown that the error caused by the discretization can
be estimated by decomposing the correlation coefficient and approximating
the mean discretization errors. This is achieved by interpolating the discrete
distributions.

3.2.4 Estimating Correlations of Discretized Price
Changes

We now turn to the specific situation on the stock market. The situation
differs, when applying the method from the previous section to stock price
changes. On price changes, the discretization process does not take place
on the actual observable. Instead the price change ΔS is a difference for
two prices S(t) and S(t+Δt) that are discretized by the tick-size q.
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Therefore, the discretization error on a specific price difference ΔS′ can
be in the range from −q to q. However, the probability that a certain value
is from a price difference within this range is not constant. It is described
by a triangular-shaped distribution (See Fig. 3.9a). This is evident, as the
distribution error is the difference of two uniformly distributed discretization
errors. The normalized triangular distribution �Tri around a certain price
change ΔS′ vanishes at ΔS′ − q and ΔS′ + q and has the value 1/q at its
maximum at ΔS′. It reads

�Tri(x,ΔS′) =

⎧⎪⎪⎨
⎪⎪⎩
x−ΔS′+q

q2 (ΔS′ − q) ≤ x < ΔS′

−x+ΔS′+q
q2 (ΔS′ + q) ≥ x ≥ ΔS′

0 else .

(3.56)

The average discretization errors have now to be calculated with the prod-
uct of the triangular distribution �Tri and the interpolated price change
distributions �ΔS(1) , �ΔS(2) (and proper normalization). Thus,

〈
ϑ(1)n

〉
=

∫ q1(n+1)

q1(n−1)
(z − nq1)�ΔS(1)(z)�Tri(z, nq1) dz∫ q1(n+1)

q1(n−1)
�ΔS(1)(z)�Tri(z, nq1) dz

, (3.57)

〈
ϑ(1)n,m

〉
=

∫ q1(n+1)

q1(n−1)
(z − nq1)�ΔS(1),ΔS(2)(z,mq2)�Tri(z, nq1) dz∫ q1(n+1)

q1(n−1)
�ΔS(1),ΔS(2)(z,mq2)�Tri(z, nq1) dz

, (3.58)

while
〈
ϑ
(2)
m

〉
and

〈
ϑ
(2)
m,n

〉
are analogously defined.

Fig. 3.9b shows exemplarily the product of a triangular distribution and
a power-law distribution. The denominator in Eq. (3.57) refers to the area
under this curve. The triangular distribution also needs to be included in
the fitting process. Thus, the difference function becomes

fΔS(�ΔS , �ΔS̄) =

N+∑
n=N−

⎡
⎢⎣
qS(n+1)∫
qS(n−1)

�Tri(z, nqS) [�ΔS(z)− �ΔS̄(nqS)] dz

⎤
⎥⎦

=

N+∑
n=N−

⎡
⎢⎣
qS(n+1)∫
qS(n−1)

�Tri(z, nqS)�ΔS(z) dz − �ΔS̄(nqS)

⎤
⎥⎦ .

(3.59)
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Figure 3.9: Exemplary distribution of discretization errors around a price change
of ΔS = 0.1 and a tick-size of qΔS = 0.01 (a). Fig. (b) shows the product with
power-law distribution given by ρΔS(x) = 10x

−6

Where �ΔS̄ refers to the discretized distribution. �Tri acts like a weighting
function in the residual measure. It provides a weight corresponding to the
probability that the difference of the originating discretization errors result
in the value z.

Now, we are able to estimate the correlation discretization error with the
previously defined Eqs. (3.50) to (3.55).

3.2.5 Estimating Correlations of Discretized Returns

When calculating the correlation of financial returns as defined in Eq. (3.21)
the situation becomes more complex. Here, we also have to take the prices
into account. The discretized correlation coefficient in Eq. (3.33) for two
return time series r(1) and r(2) with underlying tick-sizes q1 and q2 reads

ĉorrtick(r
(1), r(2)) =

1

σ̂(1)σ̂(2)

[
cov
(
r̄(1), r̄(2)

)
+ cov

(
ΔS̄(1)

S(1)
,
ϑ(2)

S(2)

)

+ cov

(
ΔS̄(2)

S(2)
,
ϑ(1)

S(1)

)
+ cov

(
ϑ(1)

S(1)
,
ϑ(2)

S(2)

)]
(3.60)

with

σ̂(i) =

√
var
(
r̄(i)
)
+ var

(
ϑ(i)

S(i)

)
+ 2cov

(
ΔS̄(i)

S(i)
,
ϑ(i)

S(i)

)
. (3.61)
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Here, r̄(1) and r̄(2) refer to the discretized return time series. Analogously
to the correlation between price changes, the individual terms can be es-
timated, but in addition, the starting prices S(1) and S(2) need to be pa-
rameterized. We use the variables k and l for this. q1K− represents the
minimum price within the observed time series, while q1K+ represents the
maximum price. Tn,m,k,l represents the number of pairs whose returns equal
(q1n)/(q1k) = n/k and m/l. Similar to that, Tn,k refers to the number of
returns (from a single time series) that are equal to n/k. Thus, we obtain

cov

(
ΔS̄(1)

S(1)
,
ϑ(2)

S(2)

)
≈ q1

T

N+∑
n=N−

n

M+∑
m=M−

q2

K+∑
k=K−

L+∑
l=L−

Tn,m,k,l

〈
ϑ
(2)
m,n

〉
kl

−
〈
ΔS̄(1)

S(1)

〉〈
ϑ(2)

S(2)

〉
(3.62)

cov

(
ΔS̄(2)

S(2)
,
ϑ(1)

S(1)

)
≈ q2

T

M+∑
m=M−

m

N+∑
n=N−

q1

K+∑
k=K−

L+∑
l=L−

Tn,m,k,l

〈
ϑ
(1)
n,m

〉
kl

−
〈
ΔS̄(2)

S(2)

〉〈
ϑ(1)

S(1)

〉
(3.63)

cov

(
ΔS̄(1)

S(1)
,
ϑ(1)

S(1)

)
≈ q1

T

N+∑
n=N−

K+∑
k=K−

Tn,k
n

k2

〈
ϑ(1)n

〉

−
〈
ΔS̄(1)

S(1)

〉〈
ϑ(1)

S(1)

〉
(3.64)

cov

(
ΔS̄(2)

S(2)
,
ϑ(2)

S(2)

)
≈ q2

T

N+∑
n=N−

K+∑
k=K−

Tn,k
n

k2

〈
ϑ(2)n

〉

−
〈
ΔS̄(2)

S(2)

〉〈
ϑ(2)

S(2)

〉
(3.65)

and

var

(
ϑ(1)

S(1)

)
≈ q21

6

〈
1

(S(1))2

〉
(3.66)

var

(
ϑ(2)

S(2)

)
≈ q22

6

〈
1

(S(2))2

〉
. (3.67)
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The terms
〈
ϑ(1)/S(1)

〉
and analogously

〈
ϑ(2)/S(2)

〉
in Eqs. (3.62) to (3.65)

can be estimated as

〈
ϑ(1)

S(1)

〉
≈ 1

T

N+∑
n=N−

q1

K+∑
k=K−

Tn,k

〈
ϑ
(1)
n

〉
k

. (3.68)

We note that the correlation between ΔS and S is neglected in this ap-
proximation. Also the discretization of the prices in the denominator of the
return is not compensated. However, the model results in the next section
demonstrate that this simplification only induces a minor error. This is
indicated by the approximate-sign in Eqs. (3.62) to (3.68).

Also the impact of specific trading strategies can be calculated using the
presented modeling. Here, the distortion of correlation coefficients, i.e., the
distribution of discretization errors (Eq. (3.56)) needs to be chosen in a
suitable manner.

3.3 Combined Compensation

Having presented compensation methods for distortions of correlations due
to asynchronous time series and due to the tick-size, we now combine both
findings. The compensation of asynchrony acts on each term of the Pearson
correlation coefficient for every point in time. The tick-size compensation,
in contrast, acts on the Pearson correlation coefficient as a whole in terms
of the time series, but it acts on every occurring price change individually.
Both effects superimpose, as illustrated in Fig. 3.10 on empirical data. The
horizontal axis shows the product of normalized 1-min returns for each point
in 2007 (overnight returns are excluded). The vertical axis shows the cor-
responding fractional overlap of each return pair. The discretization effects
are visible in the center, superimposed with the asynchronous characteris-
tics. Similar to the findings of Szpiro [117] for single stocks, the tick-size
induces a nanostructure on the terms of the Person correlation coefficient
for two stocks.

The simultaneous compensation of both effects can be achieved by com-
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Figure 3.10: Product of normalized return pairs versus their fractional overlap for
1-min returns of the shares of Novell Inc. and Unisys Corp.in 2007. The average
fractional overlap is 0.76.

bining both presented compensations. It reads

ĉorr(r(1), r(2)) =
1

σ̂
(1)
Δt σ̂

(2)
Δt

〈
r̄
(1)
Δt r̄

(2)
Δt

Δt

Δto

〉〈
Δt

Δto

〉

×
[
cov

(
ΔS̄

(1)
Δt

S
(1)
Δt

,
ϑ(2)

S
(2)
Δt

)

+ cov

(
ΔS̄

(2)
Δt

S
(2)
Δt

,
ϑ(1)

S
(1)
Δt

)
cov

(
ϑ(1)

S
(1)
Δt

,
ϑ(2)

S
(2)
Δt

)

−
〈
r̄
(1)
Δt

〉〈
r̄
(2)
Δt

〉]
, (3.69)

which is the final result.

3.4 Model Results

Before applying the method to empirical data, we study it in a model setup.
Subsequently, we apply the compensation methods to empirical data from
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the NYSE’s TAQ database [43] to estimate the impact of the presented
causes on the distortion correlations.

While first order autocorrelations are in this context insignificantly small
[118], second order autocorrelations or “volatility clustering” represent a
strong characteristic of return time series and led to the development of
autoregressive models, such as GARCH [119, 120]. Thus, we start by gen-
erating an underlying correlated time series using a GARCH(1,1) model, as
introduced in [69],

r(i)(t) = σ(i)(t)
(√

c η(t) +
√
1− c εi(t)

)
. (3.70)

Here r(i)(t) stands for the return of the i-th stock at time t and c is the
correlation coefficient. The random variables η and ε(i) are drawn from a
Gaussian distribution. η(t) is identical for all stocks; it induces the cor-
relation. The εi are individual for each stock. σ(i)(t) is the non-constant
variance, given by a GARCH(1,1) process,(

σ(i)(t)
)2

= α0 + α1

(
r(i)(t− 1)

)2
+ β1

(
σ(i)(t− 1)

)2
. (3.71)

The initial parameters of the GARCH(1,1) process are chosen as α0 =
2.4 × 10−4, α1 = 0.15 and β1 = 0.84. If σ(i) is set to unity, Eq. (3.70)
becomes Noh’s realization [76], likely familiar to the physics community, of
the Capital Asset Pricing Model (CAPM) [75].

Two return time series r(1) and r(2) are generated representing two cor-
related stocks. The total lengths of these time series is chosen as 7.2× 106,
corresponding to a return interval Δt of one second during one trading year.
From these returns, we generate two underlying price time series S̃(1) and
S̃(2). We set the starting prices at t = 0 to 1000. c is chosen as 0.4.

To model the asynchronous trade processes, these prices are sampled
independently using exponentially distributed waiting times with average
values typical for the stock market. To model the asynchrony, we choose
the average waiting times as 15 and 25 data points (equivalent to seconds
in this setup).

Eventually, we construct the time series of returns from these prices using
return intervals from 60 data points (corresponding to 1 minute) to 1800
data points (corresponding to 30 minutes).

When calculating the correlation of returns of the sampled time series
S̃ using different return intervals Δt, the correlation scales down. This
behavior is very similar to the Epps effect in empirical data. It occurs only
because of the asynchrony of the trading times.
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Figure 3.11: Compensation of asynchrony effects within the model. The dashed
line represents the correlation coefficient that is corrected by the overlap. The solid
line regards in addition only returns, in which time intervals trades occurred.

To model the discretization, we round the prices to integer values. An
integer price of, for example, 1000 then corresponds to a price of 10.00 with
a tick-size of 0.01. The thus obtained time series features both, asynchrony
and discretization. When including the discretization by the tick-size, the
downscaling is even more emphasized. When considering synchronous non-
discretized time series, we set the waiting times to the same value for each
time series (e.g. every 60 seconds). To demonstrate the developed com-
pensation techniques, we first evaluate them separately, using model setups
that only exhibit the relevant feature. This is performed in sections 3.4.1
and 3.4.2. The next step is performed in section 3.4.3 where we combine
both effects simultaneously in a model that features asynchrony as well as
discretization effects.

3.4.1 Asynchrony Compensation

First, we consider a model for the impact of asynchronous correlations while
neglecting discretization effect. The model results are shown in Fig. 3.11.
The black line corresponds to the asynchrony’s impact on the Epps effect in
our model. Using the developed asynchrony compensation, we are ably to
compensate the decline of the correlation within the model, as illustrated
by the dashed line.
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(a) Δt = 150 (b) Δt = 450

(c) Δt = 1500 (d) Mean overlap

Figure 3.12: Distribution of the overlaps for different return intervals Δt = 150

(a), 450 (b) and 1500 (c) data points (corresponding to 2.5, 7.5 and 25 minutes)
in the model setup. Towards larger return intervals, the distribution sharpens, as
well as its mean converges to one (d).

However, there is a remaining effect that still causes a downscaling of
correlations for very small return intervals. This behavior occurs when
the price of either of the stocks did not change during the return interval
and therefore the corresponding return equals zero. Evidently, this event
becomes more probable on smaller return intervals Δt. This remaining
downscaling coincides with the cumulative estimator described by Hayashi
and Yoshida [97]. It can also be expressed in the formalism used here. It
reads
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corr(r
(1)
Δt , r

(2)
Δt )HY = corr(r

(1)
Δt , r

(2)
Δt )
∣∣∣
(γ

(1)
1 (t)�=γ(1)(t+Δt))∧(γ(2)(t)�=γ(2)(t+Δt))

.

(3.72)
Therefore, when combining both estimators, and thus only regarding returns
with overlapping time intervals, the remaining scaling behavior for very
small returns can be compensated as well as indicated by the solid line in
Fig. 3.11.

However, the main contribution is due to the asynchrony and can be
compensated by calculating the overlap. An insight on the component of
the compensation, i.e., the fractional overlaps, for each term of the corre-
lation coefficient, is given in Fig. 3.12. The histograms demonstrate, that
the overlap can also be larger than the actual return interval, implying
that terms with such overlaps are corrected downwards. However, on av-
erage, the fractional overlap is smaller than the return interval, as shown
in Fig. 3.12d. Therefore, the compensation can amplify a specific term
of the correlation coefficient as well as it can attenuate it. The impact of
Hayashi and Yoshida’s estimator is bound to the amount of null returns.
This corresponds to the small peak at Δto/Δt = 0 in the histogram shown
in Fig. 3.12a.

3.4.2 Tick-Size Compensation

Now we turn to the compensation of discretization effects. We set up our
model to generate completely synchronous returns that are discretized.

As we know the actual discretization errors in the model setup precisely,
we can use it to evaluate error estimates that we discussed in section 3.2.4.
A comparison of the estimated average discretization errors with the actual
discretization errors is shown in Fig. 3.13. The estimated values show an
excellent agreement with the original values. The interpolation is restricted
to a single Gaussian fit, as we know the type of the price change distributions
in this case. Thus, we can verify the scope of the estimation itself, not the
suitability of the interpolation.

Before we perform the compensation, we want to test how much impact
each correction term (Eqs. (3.62) to (3.67)) has. We quantify the impact
by calculating Eq. (3.60) and subtract the value of this expression with the
regarded term set to zero. By this method we can see how the correlation
coefficient changes, if a certain term of the discretization compensation is
neglected (set to zero). This gives the opportunity to save computation time,
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Figure 3.13: Benchmark of the error estimation: Comparison between actual and
estimated discretization errors within the model setup.

as for large portfolios, the interpolation of the price change distribution is
computationally very intensive.

Fig. 3.14 illustrates the results of this analysis for different start prices
and correlation coefficients. A visual inspection of the subfigures reveals
that only Eqs. (3.64) to (3.67) provide a sizable contribution to the com-
pensation. Therefore, the compensation can be restricted to the calculation
of these terms. This implies that the distortion of the correlation coefficient
is mainly caused by an improper normalization of the returns, as the signif-
icant terms only appear in the correction of the standard deviations of each
return.

Hence, the main contribution to the distortion of correlation coefficients
in small return intervals is the overestimation of σ. Thus, we have

ĉorrtick(r
(1)
Δt , r

(2)
Δt ) ≈

〈
r̄
(1)
Δt r̄

(2)
Δt

〉
σ̂
(1)
Δt σ̂

(2)
Δt

. (3.73)

Fig. 3.15 shows this overestimated σ and the tick-size-corrected σ̂ versus
the return interval Δt. This is consistent with the findings of Hansen and
Lunde [121]. They demonstrate that the realized variance is overestimated
on small return intervals due to microstructure noise.

Due to the convex shape of the price change distribution, the discretiza-
tion errors are not distributed symmetrically. This effect grows with the
impact of the discretization, i.e., smaller return intervals. Thus, the estima-
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Figure 3.14: Impact of each term of the compensation method for the correlation
coefficient between price changes. Evaluated using Noh’s model, i.e., Eq. (3.70)
with σ(i)(t) = 1.
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tion of variances on the discretized values is biased. This gives the largest
contribution to the distortion of correlation coefficients due to discretized
data. We can correct this behavior with the discussed tick-size compensa-
tion.

The model results are shown in Fig. 3.16. We are able to compensate
the discretization effects. We first focus on the correlations between price
changes. As shown in Fig. 3.16 (a) and (c), the correlation coefficient decays
towards smaller price change intervals. Our model demonstrates that this
effect can also contribute to the Epps effect. This effect becomes especially
relevant when the ratio of the price to the tick-size is sufficiently small. It
is remarkable that this scaling behavior is observed even though the time
series are synchronous. The effect vanishes in our simulation, when both
prices start with a value of 10 000, as Fig. 3.16e illustrates.

When applying the compensation method to return time series as illus-
trated in Figs. 3.16 (b,d,f), we are also able to correct the discretization error
almost completely. The slight decay of the corrected correlation coefficient
on very small return intervals is due to the discussed approximation. These
are the negligence of the correlation between price changes and prices. In
addition, even though the discretization of price changes is corrected, the
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Figure 3.16: Scaling behavior of the correlation coefficient of price changes (a,c,e)
and returns (b,d,f) due to the discretization error in the model setup. The dashed
line represents the presented correction. Evaluated using Noh’s model, i.e., Eq.
(3.70) with σ(i)(t) = 1.



102 3 The Epps Effect

Figure 3.17: GARCH(1,1) Model results of compensation methods for the Epps
effect.

price discretization in the denominator of the return is neglected. A further
improvement of the compensation could be achieved by including these ef-
fects. However this would require further assumptions on the price process
and would increase the necessary computing time dramatically. Thus, the
presented compensation is restricted to this approximation, only making
very few assumptions.

3.4.3 Combined Compensation

In the previous sections, we demonstrate the compensation of asynchrony
and discretization effect separately. The tick-size distortion is mainly caused
by an overestimation of the standard deviations. Thus, we can approximate
the combined compensation given in Eq. (3.69) by

ĉorr(r
(1)
Δt , r

(2)
Δt ) ≈

〈
r̄
(1)
Δt r̄

(2)
Δt

Δt
Δto

〉
σ̂
(1)
Δt σ̂

(2)
Δt

. (3.74)

Fig. 3.17 illustrates the Epps effect in a model setup that exhibit both ef-
fects, i.e. asynchrony and discretization. Using the combined compensation
of Eq. (3.69) we are able to compensate for both effects simultaneously
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which is confirmed by the dashed line in Fig. 3.17. The dotted and dash-
dotted line represents the separate compensation of both effects. Separately,
neither the asynchrony nor the tick-size compensation appear to have a pro-
found impact at first sight. However, combining both methods allows a full
compensation of the Epps effect in our model.

3.5 Empirical Results

After developing methods for compensating statistical errors in the calcula-
tion of correlations and verifying these methods in a model setup, now their
application to empirical data is considered.

Similar to the previous section, we first turn to the asynchrony compensa-
tion in section 3.5.1. The results of the tick-size compensation are discussed
in section 3.5.2. Eventually, we perform the combined compensation in
section 3.5.3.

3.5.1 Asynchrony Compensation

It is difficult to isolate the Epps Effect on single stock pairs, as it can super-
impose with other effects leading to other characteristics of the correlation
coefficient than expected according to the Epps effect.

Hence, we classify two ensembles of stock pairs. After compensating the
asynchrony effect for each pair, we build the average for the ensemble. We
also plot the error bars representing twice the standard deviation 2σ of the
compensation. By this method, we can show the scope of the asynchrony
model and identify regions, in which other effects dominate. Furthermore,
we deliberately chose the year 2007 for our empirical analysis because this
year was relatively “quiet”, with less fluctuation and extraordinary features
than the forthcoming crisis-dominated years. With this approach, we can
be sure that the results can be applied to a “typical” and do not rely on
properties that only exist during financial crises. All data is extracted from
the NYSE’s TAQ database [43].

The first ensemble consists of stock pairs which provide the most stable
correlation. Thereby we want to suppress those effects which are caused
by a change in the correlation during the period in which the correlation
coefficient is calculated. This ensemble represents ideal test conditions for
the asynchrony compensation. To identify those stock pairs with a stable
correlation, we calculate the correlation coefficient of 30 daily returns. After
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shifting this window in 1-day intervals through the year, we calculate the
variance of the obtained correlation coefficients (varcorr). Then we iden-
tify the five stocks providing the smallest variance for each Global Industry
Classification System (GICS) branch of the Standard & Poor’s (S&P) 500
index. This results in an ensemble of 50 stocks as shown in appendix A.1.

As the correlation structure of stocks can be highly non-stationary, we
also evaluate the asynchrony compensation without the restriction to stable
correlations. For this purpose, we select a second ensemble consisting of 5
stock pairs of each GICS branch of the S&P 500 index, whose daily returns
are providing the strongest correlation during the year 2007. These stocks
include highly non-stationary correlations as indicated in appendix A.2.

Fig. 3.18 shows the ensemble average of the correlation coefficient and the
asynchrony-compensated correlation coefficient for both ensembles in 2007
(250 trading days). Before averaging, the correlation coefficients for each
stock have been normalized to the value at a return interval of Δt = 40
minutes.

When considering the whole ensemble we discover that the asynchrony
has a pronounced impact on the Epps effect. The asynchrony effect seems
to be the dominating cause for the Epps effect on return intervals down to
approximately 10 minutes, where the remaining Epps effect is on average
less than 3% of the correlation coefficient’s saturation value at large return
intervals. For smaller return intervals, other effects dominate, e.g. a lag
between the time series of two stocks, as a recent study indicates [100].

However, the ensemble consists also of stocks which are very frequently
traded, providing a very short average waiting time which results in a frac-
tional overlap Δto(t)/Δt close to unity. Evidently the presented compensa-
tion only has a small impact on the correlation estimation of these stocks, as
they are so frequently traded that their time series can almost be described
as continuous. Naturally the presented compensation has the largest im-
pact on less frequently traded stocks, as they actually show an asynchronous
behavior. Many of the stocks in the S&P 500 index are being traded fre-
quently. Thus, we would not expect a large impact of the asynchrony on
“typical” S&P 500 stocks.

Within the statistical ensemble stock pairs can be found that either do
not show an Epps effect or that are so infrequently traded that the assump-
tion of an underlying timeline seems to be unreasonable. Even though the
assumption of an underlying time series is a common and intuitive approach
on this topic, it may not be valid for very infrequently traded stocks.
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Figure 3.18: Asynchrony-compensated correlations of two different stock ensem-
bles. The data is normalized to its saturation value at 40 minutes. The error bars
represents twice the standard deviation 2σ of the compensation.
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When considering single stock pairs, we find that the asynchrony-compen-
sation works well, if a distinguished Epps effect is found. In case of adopting
the presented method as a black box model without looking at the scaling
behavior of the correlation coefficient, we believe that a return interval of 5
minutes represents a good lower bound for the scope of this method.

3.5.2 Tick-Size Compensation

We now demonstrate that the price discretization can result in a sizable
contribution to the Epps effect as well. As the mean price change per
return interval decreases with the length of the interval (see, e.g., [122]),
the width of the price change distribution decreases as well. While the tick-
size remains constant, the discretization error increases. Hence, the tick-size
should also have an impact on the Epps effect - especially for stocks that
are traded at low prices.

But how large is the contribution of the discretization effect to the Epps
effect? To answer this question, we apply the compensation to empirical
data from the NYSE TAQ database [43]. Here, we use a power-law ap-
proach for the interpolation of the price change distribution, as the model
results indicate that the discretization effects are mainly relevant for small
return intervals. On small return intervals, power-law tails can describe
the distribution satisfactory [20]. We perform a least squares fit of a and
b in �ΔS = ax−|b| for each value of the (discrete) distribution and their
next two left and right neighbors individually. For the very central part
of the distribution (consisting of three price changes) a Gaussian fit was
performed.

It is particularly important that stock splits must not be corrected in order
to maintain the correct tick-size. Of course, therefore overnight returns
have to be excluded. To analyze the impact of the discretization effect,
we construct two ensembles (see appendix A.4 and A.5) of stocks from the
S&P 500 index. The first ensemble consists of stocks that are averagely
priced between USD 0.01 and USD 10.00. The second ensemble consists of
stocks that are on average priced between USD 10.01 and USD 20.00. Both
ensembles are composed of 25 stock pairs providing the highest correlation
during the year 2007 (based on daily data).

As Fig. 3.19 demonstrates, we are able to compensate the impact of the
tick-size on the correlation coefficient in empirical market data. Certainly,
the decay cannot be corrected completely with the presented method, as the
discretization effect superimposes with other causes of the Epps effect such
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Figure 3.19: Tick-size compensation of the correlation coefficient between two en-
sembles consisting of the 25 highest correlated stocks from the S&P 500 index that
are averagely quoted within the region of USD0.01–USD10.00 and USD10.01–
USD20.00, respectively. The correlation coefficients have been normalized to its
saturation value at approximately 30 min. The error bars represents twice the
standard deviation 2σ of the compensation.
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as asynchronous or lagged time series. However, we were able to quantify the
contribution of this particular effect to the Epps effect. Our results show,
that the discretization effect can be responsible for up to 40% of the Epps
effect, which we define as the difference between the correlation coefficient
at a given time and its saturation value. The contribution is particularly
large for stocks that are traded at low prices.

3.5.3 Combined Compensation

Eventually, we apply the combined compensation discussed in section 3.3
to the same ensembles as for the tick-size compensation in section 3.5.2.
Results are shown in Fig. 3.20. The empirical results indicate that the two
identified statistical effects can have a profound contribution to the Epps
effect. For the first ensemble, a large portion of the Epps effect can be
compensated. However there is a remaining downscaling effect that cannot
be compensated with the presented techniques.

This is due to the fact that we choose our ensemble to exhibit large
exposure to discretization. However, stocks that are traded on such low
prices are sometimes being traded very infrequently that the assumption of
an underlying time series is not justified and we thus are beyond the scope of
the asynchrony compensation method. However, we can still compensate a
large portion of the Epps effect and thus increase the precision of correlation
estimation.

The second ensemble represents a more adequate candidate to isolate
both, asynchrony and discretization effects. It consists of frequently traded
stocks and is also exposed to a considerable amount of discretization. Here,
a major portion of the Epps effect can be compensated. However, there is a
remaining downscaling of the correlation coefficient towards return intervals
smaller than 10 minutes.

Hence, this does not represent a full description of the Epps effect. How-
ever, both causes together can contribute to a significantly large portion of
the Epps effect. In this case, we are able to compensate the Epps effect
almost completely, only making very few and reasonable assumptions.
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Figure 3.20: Empirical results of combined compensation method for the Epps
effect. Average over the 25 highest correlated stock pairs that were traded between
USD0.01 and USD10.00 (a) and USD10.01 and USD20.00 (b) in 2007. The
correlation coefficients have been individually normalized to the corrected value
at Δt = 30 min. The error bars represents twice the standard deviation 2σ of the
compensation.
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3.6 Summary

We identified two purely statistical causes of the Epps effect. The asyn-
chrony of time series as well as the tick-size have a major impact on the
Epps effect. We developed two methods to compensate for these causes.

After evaluating the compensation methods in a model setup, we applied
them to empirical market data under the assumption of an underlying time
series with non-lagged correlations. The results clearly demonstrate that
the asynchrony as well as the tick-size can have a huge impact on the Epps
effect. They can even be the dominant cause.

However, this is not a full description of the Epps effect as there are
certainly many phenomena contributing to it. In certain scenarios, other
statistical properties of the time series or other causes for the Epps effect
might dominate. The size of the error bars in Fig. 3.20 indicates that the
asynchrony compensation does not give reliable results for return intervals
below 3 minutes. Especially for very small return intervals, a lag between
the time series of two stocks might be the dominating cause, as suggested by
Tóth and Kertész [100]. There are even other, unknown mechanisms that
lead to an inverse Epps effect, i.e., in some cases the correlation increases
significantly for small return intervals. As these mechanism is not under-
stood, an application in portfolio optimization, as discussed in section 2.1.3,
on short return intervals might be difficult. This is due to the fact that in
portfolio optimization, an overestimation (caused by an “inverse” Epps ef-
fect) of correlations, even only for a few stocks, is much more critical than
an underestimation of correlations. Thus, before applying the compensation
methods in portfolio optimization as black box model in terms of portfolio
optimization, other market microstructure effects need to be understood.

For stocks that are infrequently traded at very low prices (often referred
to as penny-stocks) the assumption of uniformly distributed discretization
errors needs to be carefully reflected. It is possible that certain trading
strategies dominate for those stocks leading to an asymmetrical distribution
of discretization errors.

Nonetheless, the presented compensations significantly improve the esti-
mation of financial correlations. These methods do not require parameter
adjustments or model calibrations. Our empirical study indicates that the
identified causes can contribute up to 75% of the Epps effect for stocks that
are traded at low prices.



4 Credit Risk

In financial context, the majority of studies in econophysics are dealing with
market risk, since many concepts in statistical physics are directly applica-
ble. A type of risk that is fundamentally different from the other types
of financial risks discussed in the introduction is represented by credit risk
[123–127]. Modeling credit risk, i.e., the risk that an obligor fails to make
a promised payment, is much more complex. As discussed in the previous
chapters, the risk of a financial asset, e.g., a stock, is often expressed by
its standard deviation. Due to the nearly symmetric shape of the return
distribution of, e.g., stocks, by this definition, large positive returns are
considered just as risky as large negative returns. An investor who uses
volatility as a risk measure acts risk averse. However, due to the asymmet-
ric shape of a credit portfolio’s loss distribution, the variance is not suitable
as a risk measure in this context.

The primary challenge is to model the loss distribution. It specifies the
probability of a certain loss that is caused by obligors that do not pay back
their debt. The loss distribution can be described as skewed and leptokurtic
[123]. Especially the estimation of its tails, the probability of large losses is
of central interest.

The financial crisis of 2008–2009 clearly revealed that an improper esti-
mation of credit risk can lead to drastic effects on the world’s economy. The
vast underestimation of risks embedded in credits for the subprime hous-
ing markets induced a chain reaction that propagated into the worldwide
economy. An improved estimation of credit risk is therefore of vital interest.

As shown by numerical simulations in a previous study of Schäfer et. al.
[31], the concept of diversification, i.e., the reduction of risk by increasing the
portfolio size, cannot be transferred to credit risk. In a portfolio of credits,
such as collateralized debt obligations (CDOs), the effect of diversification
is severely limited by the presence of even weak correlations.

In this chapter, we discuss this matter analytically. We estimate the risk
embedded in a credit portfolio under the assumption of random correlations
with average correlation level zero. This can provide a lower bound for the
estimation of the risk in credit portfolios.

M. C. Münnix, Studies of Credit and Equity Markets with Concepts of  Theoretical Physics, 
DOI 10.1007/978-3-8348-8328-5_4,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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This chapter is organized as follows1. In section 4.1 a brief introduction
on the concept of credits is given. We discuss three types of credit risk
models in section 4.2. In chapter 4.3, we develop the structural credit risk
model step by step, which we demonstrate in an application in section 4.4.
We conclude our findings in section 4.5.

4.1 Phenomenology

A credit is a formalized process of lending money. If a creditor lends money
to an obligor, the credit is a written agreement that the obligor will pay
back the money. The creditor’s reason to lend money is that the obligor
does not only have to pay back the amount he borrowed, but also a surplus,
typically defined by an interest rate and a risk compensation. The obligor
takes credits because he wants to raise his capital. A very common type of
credit is a bond. Bonds are being sold by many kinds of institutions, such as
banks, companies, states, cities, etc. A simple category is the zero-coupon
bond. If an investor buys such bonds from a bank, for a specific amount
of money, technically, he/she lends money to the bank. The bank acts as
an obligor. At maturity, a certain point in the future, defined in the bond
contract, the bank will pay back the creditor not only the amount borrowed,
but also the surplus, which is the profit of the investor. The amount that is
due at maturity is called the face value of the bond. More complex types of
bonds include, e.g., the periodical payment of an interest rate, the coupon,
until maturity is reached.

At first glance, this seems to be an easy way for an investor to make
profits by lending credits, but there are also risks involved. For example,
the obligor might not be able to pay back his debt at maturity because he
went bankrupt or for other reasons. This scenario is referred to as a default.
Even if a default is relatively rare, it can cause huge losses for creditors.
This is especially true if correlations are present in the creditor’s portfolio
of credits, because losses can occur simultaneously. The default probability
is a central key in the estimation of credit risk.

The traditional way of quantifying credit risk is to determine the obligor’s
credit worthiness. A wide range of rating systems exists that aim at clas-
sifying credit worthiness in a system of levels. Prominent examples are the
rating agencies Moody’s and Standard & Poor. Rating agencies periodically
analyze obligors to provide recent information on their credit worthiness.

1For details see Ref. [7].
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Figure 4.1: Sketch of a typical loss distribution p(L). The distribution has a delta
peak at L = 0 corresponding to the case of non-default.

It is evident, that these rating agencies have a huge impact on the world-
wide economy, e.g., if they downgrade the credit rating of a whole country.
Criticism arose during the financial crisis of 2008–2009, as the rating prin-
ciples are not transparent and the agencies are not considered as neutral,
i.e., they pursue interests of the country they are based in. Approaches
are being made to estimate the migration risk, the probability of an obligor
being upgraded or downgraded [128–130].

Often, a creditor does not only issue a single credit, but a large number
of credits to various institutions and individuals. In this credit portfolio
correlations represent an additional observable that influences the risk. For
example, during a bad economy, the probability of simultaneous defaults is
larger than usual. On the other hand, if the investor arranges his credit
portfolio wisely, he/she might be able to lower the risk of simultaneous
defaults, similar to the portfolio optimization on stocks, as discussed in
section 2.1.3. However, this is only feasible if he/she can quantify the credit
portfolio risk properly, which motivates this study.

The probability of losses can be described by the loss distribution, or
the loss given default distribution. The latter distribution is based on the
assumption that a default already occurred, whereas the default probability
is already included in the loss distribution. This corresponds to a delta peak
at L = 0 which, i.e., to the case of non-default. A typical loss distribution
is illustrated in Fig. 4.1.
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4.2 Types of Credit Risk Models

We can distinguish three fundamentally different types of credit risk models
(see, e.g., Ref. [131]). The models of the first type are referred to as
structural models. These models have a long history, going back to the work
of Black and Scholes [19] and Merton [132]. The Merton models assume a
zero-coupon debt structure with a fixed time to maturity T . The equity of
the company is modeled by a stochastic process, for example describing the
price of the company’s stock. Thus, it can be seen as a creditor’s call option
on the obligor’s assets. The risk of default and the associated recovery rate,
the residual payment in case of a loss, are modeled by the company’s equity
at maturity.

The second type of model are reduced-form models. They are frameworks
of many common macroscopic observables or risk factors. Despite of the
large number of input parameters, their functional dependency is usually
simple. Default risk and recovery rate are modeled independently. Some
well known reduced-form model approaches can be found in Refs. [133–137].
These models have to be calibrated with current market data in order to
give reliable results. They are commonly used in practice throughout the
whole financial industry. From a physicist’s point of view, these models are
not satisfactory because due the large number of observables, they do not
allow to gain fundamental insight into the mechanisms of a credit portfolio.
First passage models represent the third type of credit risk models. They

are a mixed form of the previous two models and were first introduced by
Black and Cox [138, 139]. Similar to Merton’s model, the market value of
a company is modeled through a stochastic process. However, a default
occurs whenever the asset goes below a certain threshold for the first time.
The recovery rates are typically modeled independently, for example, by
a reduced-form model [140, 141] or are even assumed to be constant (see,
e.g., Ref. [131]). Recent approaches aim at improving these models by
including the chance of recovery, even if a company’s market value is below
the threshold [139] and estimating correlations between default probabilities
of industry sectors [142].

The latter two models are often implemented in a computer software,
for example, CreditMetrics by JP Morgan [143], CreditPortfolioView by
McKinsey & Company [144] or CreditRisk+ by Credit Suisse [145].
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Figure 4.2: Credit process of the structural model.

As there can be a strong connection between default risks and recovery
rates, the chances of large losses are often underestimated in the reduced-
form and first passage models. Structural models do not require this sepa-
ration.

Structural models provide a “microscopical” tool to study credit risk as
the defaults and recoveries are traced back to stochastic processes modeling
the state of individual obligors. Despite the high level of abstraction, there
is a direct application of these models, namely speculative margin loans:
A broker usually grants investors a credit based on his portfolio, a spec-
ulative margin loan. For example, if the value of the investor’s portfolio
value is USD 100 000, the broker might grant him a credit of USD 30 000
based on this portfolio. The investor can invest the money on more stocks
and try to make more profit than the interest rate on this credit. As the
broker maintains his portfolio, he can always take the investor’s stocks as
a security, if the investor is not willing to pay back his debt. However, if
the value of the portfolio falls below USD 30 000 (plus interest), the broker
is not able to get back the full amount he lent. A default occurs. Hence,
structural models do not only give fundamental insights but also can have
high practical relevance. In the next sections, we will develop a structural
model with consideration for correlation.
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4.3 A Structural Credit Risk Model

We develop a structural credit risk model step-by-step. Our model is based
on Merton’s original model. The aim of our model is to analytically describe
the impact of correlations on the losses of a credit portfolio. In our model,
a default occurs if the price Vk of the k-th asset is below the face value Fk
at maturity time T . The size of the loss then depends on how far Vk(T ) is
below the face value Fk. The situation is sketched in Fig. 4.2. The upright
curve at time T represents the probability distribution, i.e., the pdf, of the
price Vk(T ) at time T . The area below Fk in this curve represents the
exposure to default risk. The motivation of the following is to calculate
this area and consequently the loss distribution for a portfolio of K assets.
We assume that the prices follow a geometric Brownian motion. As already
stated in the introduction, there is a good agreement with empirical data on
large timescales. Because the contract periods of credits are usually several
years, this assumption is well justified.

4.3.1 Definitions and Conventions

Before we turn to the development of the model, we introduce some common
notations that are used in the following sections.

4.3.1.1 Modeling of Asset Prices

As a short example for the notation used in this chapter, we turn to Noh’s
model, as already introduced in section 3.4 and extend it for multiple assets.
To simplify matters, we assume a discrete time with time step Δt = 1. We
can write a single increment of a Brownian motion with the variance σk for
asset k as

ΔVk(t) = σk(
√
1− cεk(t) +

√
cη(t)) , (4.1)

where εk and η are random variables normalized to unit variance. While
εk is drawn individually for each k, all assets share the same η(t) each time
step.

The time series features the constant variance σ2k. A matrix notation is
very convenient when modeling multiple price movements, i.e., a portfolio
of K assets. As an example, we use K securities, all equally correlated with
the coefficient c. In matrix notation ε in Eq. 4.1 corresponds to the vector
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�B(t), given by

�B(t) =

⎛
⎜⎜⎜⎝

ε1(t)
...

εK(t)

η(t)

⎞
⎟⎟⎟⎠ . (4.2)

�B(t) consists of K components, corresponding to each asset plus one com-
ponent, η(t), that induces the correlation. Now we introduce the matrix
A which holds the correlation coefficients and variances. For our example,
this matrix A is given by a K ×K + 1 matrix,

A =

⎛
⎜⎜⎜⎜⎝
σ1
√
1− c 0 · · · 0 σ1

√
c

0
. . .

...
...

...
. . . 0

...
0 · · · 0 σK

√
1− c σK

√
c

⎞
⎟⎟⎟⎟⎠ . (4.3)

AA† leads to the covariance matrix Σ,

AA† =

⎛
⎜⎜⎜⎜⎝

σ21 cσ1σ2 · · · cσ1σK

cσ2σ1
. . .

...
...

. . . cσK−1σK
cσKσ1 · · · cσKσK−1 σ2K

⎞
⎟⎟⎟⎟⎠ = Σ . (4.4)

If we multiply A and �B(t), we obtain the vector of price increments of all
assets K. For a single asset k, the component-wise notation reads

(Δ�V (t))k =
(
A �B(t)

)
k
. (4.5)

In this simple example of Noh’s model, we only have R = 1 additional
risk elements that corresponds to the market correlation. In more realistic
scenarios, for example, when modeling several branches, we can have a larger
number of risk elements R. The matrix A always consists of a square K×K
matrix, stacked with R vectors that model the additional risk elements.
With K ′ = K+R total number of columns, A represents a K×K ′ matrix.
Furthermore, for a simpler notation we introduce the T×N matrix B which
consists of the vectors �B(t) from t = 1 to t = T as columns. We will use this
notation consisting of A, B and �B(t) throughout this chapter. Moreover,
we do not restrict ourselves to the aforementioned example of Noh’s model.
The statistical modeling of asset prices can also be more complex.
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4.3.1.2 Multivariate Gaussian Distributions

The distribution of a vector �v ∈ R
N with independently Gaussian dis-

tributed entries vi, can be written with a scalar product,

p(�v) =

(
1√
2π

)N N∏
i=1

(
1

σi
exp

(
− (vi − μi)

2

2σ2i

))
(4.6)

=

(
1√
2π

)N N∏
i=1

(
1

σi

)
︸ ︷︷ ︸

Cnorm

exp

(
−1

2

N∑
i=1

( v̂i︷ ︸︸ ︷
vi − μi

σi

)2)
(4.7)

= Cnorm exp

(
−1

2
�̂v†�̂v
)

, (4.8)

where �μ refers to the vector of expectation values and �σ is the vector of
standard deviations. Cnorm is the normalization factor and v̂i refers to the
normalized components of the vector �v. If the components are standard
normal distributed, the distribution can be written as

p(�v) =

(
1√
2π

)N
exp

(
−1

2
�v†�v
)

. (4.9)

Analogously, the distribution of a matrix W ∈ R
N×M with Gaussian dis-

tributed components Wij can be written using a trace,

p(W) =

(
1√
2π

)NM N∏
i=1

M∏
j=1

(
1

σij
exp

(
− (Wij − μij)

2

2σ2ij

))
(4.10)

=

(
1√
2π

)NM N∏
i=1

M∏
j=1

(
1

σij

)
︸ ︷︷ ︸

Cnorm

exp

(
−1

2

N∑
i=1

M∑
j=1

( ̂Wij︷ ︸︸ ︷
Wij − μij

σij

)2)

(4.11)

= Cnorm exp

(
−1

2

N∑
k=1

(ŴŴ†)kk

)
(4.12)

= Cnorm exp

(
−1

2
tr(ŴŴ†)

)
. (4.13)
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And for the case of standard normal distributed entries,

p(W) =

(
1√
2π

)NM
exp

(
−1

2
tr(WW†)

)
. (4.14)

We will use this very convenient notation in the following sections.

4.3.1.3 Multidimensional Integration

We will often integrate over all entries of a matrix. Thus we introduce the
following abbreviation. When integrating over all elements of the T × N
matrix B, we write

d[B] ≡
T∏
t=1

N∏
n=1

dBnt . (4.15)

Analogously, we write the integration over the elements of a N dimensional
vector by

d[ �B] ≡
N∏
n=1

dBn . (4.16)

4.3.2 Price Distribution

As we now have the prerequisites, we can develop a description for the
evolution of the asset prices’ probability density. First, we develop our
model for a Brownian motion, which we will later extend to a geometric
Brownian motion. In both cases, the evolution of prices depends on the
covariance matrix Σ. In a next step, we assume that this matrix has random
entries. Thus, we will develop the average distribution of prices under the
assumption of random correlations with average correlation level zero.

4.3.2.1 Brownian Motion

To simplify matters, let us first consider the case of a Brownian motion
without drift. In order to obtain the distribution of the asset prices after
time T , we integrate over all probability densities p(B) of the random vari-
ables in B and filter for those combinations of the random variables, which
satisfy the Brownian motion,

p(�V (T ),A,B) =

∫
p(B)δ

(
�V (T )−

T∑
t=1

(A �B(t))

)
d[B] . (4.17)
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In this notation, the distribution depends on the model setup variables A
and B. The aim of the following calculation is to change this dependency to
the covariance matrix, Σ. The covariance matrix can be measured directly,
while A and B are constructions of the model. We first turn to the delta
distribution in Eq. (4.17). Using a Fourier transform, we can write the
delta distribution as

δ

(
�V (T )−

T∑
t=1

A �B(t)

)
(4.18)

=
K∏
k=1

δ

(
Vk(T )−

T∑
t=1

(
A �B(t)

)
k

)
(4.19)

=

(
1

2π

)K K∏
k=1

+∞∫
−∞

exp

(
−iωkVk(T ) + iωk

T∑
t=1

(
A �B(t)

)
k

)
dωk (4.20)

=

(
1

2π

)K ∫
exp
(
−i�ω†�V (T )

)
exp

(
i�ω†

T∑
t=1

A �B(t)

)
d[�ω] . (4.21)

In the last step, we changed the integration over all ωk to the whole vector
�ω. Now we insert (4.21) into the initial distribution of asset prices (4.17),
change the order of integration and obtain

p(�V (T ),A,B) =

(
1

2π

)K ∫
exp
(
−i�ω†�V (T )

)

×
T∏
t=1

∫
p( �B(t)) exp

(
i�ω†A �B(t)

)
d[ �B(t)]

︸ ︷︷ ︸
R(ω)

d[�ω] . (4.22)

Here, we changed the initial integration over all entries of the matrix B to
a product of intervals of all entries of the vector �B(t). We identify R(ω)
as the characteristic function of this distribution. Now we insert p( �B(t))
as a multivariate standard normal distribution (the individual variances are
modeled by A),

p( �B(t)) =

(
1√
2π

)N
exp

(
−1

2
�B†(t) �B(t)

)
(4.23)
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and perform a further Fourier transformation,

R(ω) =

(
1√
2π

)NT T∏
t=1

∫
exp

(
−1

2
�B(t)† �B(t)

)

× exp

(
i�ω†A �B(t)

)
d[ �B(t)] (4.24)

=

(
1√
2π

)NT T∏
t=1

√
2π

N
exp

(
−1

2
�ω†AA†�ω

)
(4.25)

=exp

(
−T

2
�ω†Σ�ω

)
. (4.26)

If we insert this result in Eq. (4.22), we have

p(�V (T ),Σ) =

(
1

2π

)K ∫
exp
(
−i�ω†�V (T )

)
exp

(
−T

2
�ω†Σ�ω

)
d[�ω] , (4.27)

where the integrand is the characteristic function of a multivariate Gaussian
distribution. Thus, with a further Fourier transformation, we obtain the well
known result of a multivariate Gaussian distribution,

p(�V (T ),Σ) =

(
1√
2πT

)K
1√

det(Σ)
exp

(
− 1

2T
�V (T )†Σ−1�V (T )

)
. (4.28)

We can easily extend this result by introducing a constant drift, described
by the vector �μ. Eq. (4.17) then becomes

p(�V (T ),A,B) =

T∏
t=1

∫
p( �B(t))

× δ

(
�V (T )− �μT −

T∑
t=1

(A �B(t))

)
d[ �B(t)] . (4.29)

This leads to the result

p(�V (T ),Σ) =

(
1√
2πT

)K
1√

det(Σ)

× exp

(
− 1

2T
(�V (T )− �μT )†Σ−1(�V (T )− �μT )

)
. (4.30)
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4.3.2.2 Geometric Brownian Motion

In the previous part, we developed the distribution of prices �V under the
assumption of a Brownian motion. However, a geometric Brownian motion
is the suitable process for the modeling of asset prices. In the following,
we will show that this formalism can easily be extended to a geometric
Brownian motion.

We can map the case of a geometric Brownian motion to an ordinary
Brownian motion (see, e.g., Ref. [146]). This is accomplished by substitut-
ing in Eq. (4.17),

Vk(T )→ V̂k(T ) = ln

(
Vk(T )

Vk,0

)
−
(
μk − σ2k

2

)
T (4.31)

leading to

p(�V (T ),A,B) =
T∏
t=1

K∏
k=1

1

Vk(T )

∫
pk( �B(t))

× δ

(
V̂k(T )−

T∑
t=1

((A �B(t))k

)
d[ �B(t)] (4.32)

and thus eventually leading to

p(�V (T ),Σ) =
1∏K

k=1 Vk(T )

(
1√
2πT

)K
1√

det(Σ)

× exp

(
− 1

2T
�̂V (T )†Σ−1 �̂V (T )

)
. (4.33)

This is the probability density of the prices at time T implying a geometric
Brownian motion with the covariance matrix Σ. The factors 1/Vk are a
consequence of the substitution in Eq. 4.31. They ensure proper normal-
ization.

4.3.3 Average Price Distribution

With Eq. (4.33) we have found an expression for the probability distribution
of asset prices in the case of a correlated Brownian motion. However, we
are not interested in the impact of a specific correlation matrix. Instead we
want to estimate the general impact of correlations. To this end, we want
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to average over all possible correlation matrices and disclose the general
statistical behavior of the system. This will enable us to make a profound
statistical statement.

We use a random matrix approach to calculate the average price distri-
bution for random correlations where the average correlation level is zero.
By averaging over all possible combinations of random variables, we obtain
the average price distribution 〈p(�V (T ))〉 under these assumptions.

Thus, we replace the covariance matrix Σ = AA† of the previous section
with a random correlation matrix and the matrix of standard deviations
S = diag(σ1, . . . , σK)

ΣW = SWW†S , (4.34)

where W ∈ R
K×N is a random matrix. Hence, the element (ΣW )ij consists

of a random number multiplied by σiσj . The entries of W are Gaussian
distributed with

p(W) =

(√
N

2π

)KN
exp

(
−N

2
tr
(
WW†)) . (4.35)

Here, we add the factor N in the nominator because we need the variance in
the average price distribution to be independent from N . We will demon-
strate that this supplement leads to N -independence later in this section.
For N → ∞, we obtain the probability density function of a unit matrix.
This represents the uncorrelated case. Since we only consider correlation
matrices with full rank, we obtain the strongest correlations if we choose
N = K. The case N < K is disregarded as the resulting matrix is not
invertible which is usually required for applications in risk management.
When inserting this ansatz in Eq. (4.27), we obtain

〈p(�V (T ))〉 =
∫

p(W)p(�V (T ),SWW†S)d[W] (4.36)

=

(
1√
2π

)2K+KN √
N
KN
∫

exp

(
−N

2
tr
(
WW†))

×
∫

exp
(
−i�ω†�V (T )

)
exp

(
−T

2
�ω†SWW†S�ω

)
d[�ω]d[W]

(4.37)
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=

(
1√
2π

)2K+KN √
N
KN
∫

exp
(
−i�ω†�V (T )

)

×
∫

exp

(
−N

2
tr
(
WW†))

× exp
(
− T

2

=tr(�ω†SWW†S�ω)︷ ︸︸ ︷
�ω†SWW†S�ω

)
d[W]d[�ω] . (4.38)

In the last steps, we took advantage of the fact that the term �ω†SWW†S�ω
results in a scalar, which can be written as its trace. As the trace is invariant
in cyclic permutation, we can express this term as tr(WW†S�ω�ω†S). Hence,
we write with I denoting the identity matrix,

〈p(�V (T ))〉 =
(

1√
2π

)2K+KN √
N
KN
∫

exp
(
−i�ω†�V (T )

)

×
∫

exp

(
−1

2
tr(WW†(IN + TS�ω�ω†S))

)
d[W]d[�ω] (4.39)

=

(
1√
2π

)2K+KN √
N
KN
∫

exp
(
−i�ω†�V (T )

)

×
∫

exp

(
−1

2

N∑
n=1

( �W †
n(IN + TS�ω�ω†S) �Wn)

)
d[ �Wn]d[�ω]

(4.40)

=

(
1√
2π

)2K+KN √
N
KN
∫

exp
(
−i�ω†�V (T )

)

×
(∫

exp

(
−1

2

≡xi︷︸︸︷
�W †

≡Aij︷ ︸︸ ︷
(IN + TS�ω�ω†S)

≡xj︷︸︸︷
�W )

)
d[ �W ]

)N
d[�ω] .

(4.41)

The last step can be accomplished, as the components of W are independent
identically distributed, hence we can denote the n-th column vector of W,
�Wn by �W . Thus, we can simplify the integration over the matrix W to the
integration over the vector �W ∈ R

K to the power of N .
The integral over d[ �W ] is simply a Gaussian integral, as indicated by xi,

xj and Aij . As �Wn consists of K components, this gives an additional factor
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√
2π

KN
and thus leads to

〈p(�V (T ))〉 =
(√

N
N

2π

)K ∫
exp
(
−i�ω†�V (T )

) 1√
det(IN + TS�ω�ω†S)

N
d[�ω] .

(4.42)

The determinant can also be expressed as

det(IN + TS�ω�ω†S) = NK

(
1 +

T

N
�ω†SS�ω

)
(4.43)

(see appendix B.1). Hence, we arrive at

〈p(�V (T ))〉 =
(

1

2π

)K ∫
exp
(
−i�ω†�V (T )

) 1

(1 + (T/N)�ω†SS�ω)N/2
d[�ω] .

(4.44)

This integral can be solved by identifying the Gamma function [147], as

Γ(x)

ax
=

∞∫
0

zx−1 exp (−az) dz , x > 0, a > 0 . (4.45)

We identify a−x with ((1 + (T/N)�ω†SS�ω))−N/2 and obtain

〈p(�V (T ))〉 =
(

1

2π

)K
1

Γ(N/2)

∫
exp
(
−i�ω†�V (T )

)

×
∞∫
0

z(
N
2 −1) exp

(
−(1 + T

N
�ω†SS�ω)z

)
dz d[�ω] (4.46)

=

(
1

2π

)K
1

Γ(N/2)

∞∫
0

z(
N
2 −1) exp (−z)

×
∫

exp
(
−i�ω†�V (T )

)
exp

(
− T

N

K∑
k=1

σ2kω
2
kz

)
d[�ω]dz (4.47)

=

(
1

2π

)K
1

Γ(N/2)

∞∫
0

z(
N
2 −1) exp (−z)
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×
K∏
k=1

[∫
exp (−iωkVk(T )) exp

(
− T

N
σ2kω

2
kz

)
dωk

]
dz (4.48)

=

(
1

2π

)K
1

Γ(N/2)

∞∫
0

z(
N
2 −1) exp (−z)

×
K∏
k=1

[ √
πN√
zTσk

exp

(
− NV 2

k

4Tzσ2k

)]
dz (4.49)

=

(
1

2π

)K
1

Γ(N/2)

(
K∏
k=1

1

σk

)

×
∞∫
0

z(
N
2 −1) exp (−z)

(
πN

zT

)K
2

exp

(
− N

4Tz

K∑
k=1

V 2
k

σ2k

)
.

(4.50)

This integral is a representation of the Bessel function of the second kind K
of the order (K −N)/2 [148]. Thus, we obtain the result

〈p(�V (T ))〉 =
(√

N

2πT

)K
1

Γ(N/2)

(
K∏
k=1

1

σk

)

× 21−
N
2

⎛
⎝
√√√√N

T

K∑
k=1

V 2
k

σ2k

⎞
⎠

N−K
2

KK−N
2

⎛
⎝
√√√√N

T

K∑
k=1

V 2
k

σ2k

⎞
⎠ .

(4.51)

This is the average distribution of p(�V (T )) if implying a randomly dis-
tributed correlation matrix and an average correlation level of zero. We
stated earlier in this chapter, that we include N in the distribution of the
random matrices W in order to render the variance of the average price
distribution N -independent. The variances only depend on T and σk. The
parameter N is only used to control the correlations. We can demonstrate
this by calculating the variance of the i-th price Vi,

var(Vi(T )) =

∫
d[V ] Vi(T )

2〈p(�V (T ))〉 . (4.52)

We can solve this integral by using hyperspherical coordinates.
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We chose the length

ρ ≡
√√√√ K∑
k=1

V 2
k

σ2k
(4.53)

and parametrize the entry with fixed index i according to

Vi
σi
≡ ρcos(ϑ) . (4.54)

Now we can write the integral in Eq. (4.52) as

var(Vi(T )) =

(√
N

2πT

)K
1

Γ(N/2)

(
K∏
k=1

1

σk

)
21−

N
2

∞∫
0

dρρK−1

×
π∫
0

dϑsin(ϑ)K−2σ2i ρ
2cos(ϑ)2

(√
N

T
ρ

)N−K
2

KK−N
2

(√
N

T
ρ

)

×
∫

dΩk−1 , (4.55)

where the proper sphere in K − 1 dimensions has the volume∫
dΩK−1 =

2π(K−1)/2

Γ((K − 1)/2)

K∏
k=1

σk (4.56)

(as worked out in appendix B.2). Hence, we obtain

var(Vi(T )) = 2σ2i
T

N

Γ(N/2 + 1)

Γ(N/2)
(4.57)

= σ2i T . (4.58)

Thus, the variance of Vi only depends on the standard deviation σi and the
time T . Analogously, in case of a geometric Brownian motion by a simple
substitution as in Eq. (4.31) we obtain,

〈p(�V (T ))〉 =
(√

N

2πT

)K
1

Γ(N/2)

(
K∏
k=1

1

σkVk

)

× 21−
N
2

⎛
⎝
√√√√N

T

K∑
k=1

V̂ 2
k

σ2k

⎞
⎠

N−K
2

KK−N
2

⎛
⎝
√√√√N

T

K∑
k=1

V̂ 2
k

σ2k

⎞
⎠ (4.59)
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with

V̂k(T ) = ln

(
Vk(T )

Vk,0

)
−
(
μk − σ2k

2

)
T . (4.60)

Here, parameter σk refers to the standard deviation of the underlying Brow-
nian motion, i.e., the volatility of asset returns. The resulting prices thus
have the standard deviation,

σ̂k =
√
exp (2μ+ σ2kT ) (exp (σ

2
kT )− 1)V 2

k,0 . (4.61)

Fig. 4.3 illustrates the probability density implying a Brownian motion, as
given in Eq. (4.51) for the two-dimensional K = 2 case. For N = K, we
obtain a very narrow, but heavy-tailed distribution. For larger values of N ,
the distribution slowly approaches to an uncorrelated bivariate Gaussian
distribution. The standard deviation is identical in all three figures. The
width in the center increases and the tails become weaker. Fig. 4.4 shows the
distribution of prices based on a geometric Brownian motion, as given in Eq.
(4.59). The findings are similar to the first case. While we obtain a narrow
but heavy-tailed distribution for N = K, the distribution becomes more
similar to an uncorrelated bivariate log-normal distribution with increasing
values of N .
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Figure 4.3: Illustration of the average price distribution 〈p(�V (T ))〉 assuming a
Brownian motion for T = 1, K = 2 and different values for N . All distributions
have the identical standard deviation σ = 0.15. For N = 2, we obtain a heavy-
tailed distribution while with a singularity at the origin; the Gaussian limit is
reached for N = 100.
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Figure 4.4: Illustration of the average price distribution 〈p(�V (T ))〉 assuming a
geometric Brownian motion for T = 1, K = 2, Vk,0 = 100, μ = 0.05 and different
values for N . All distributions have the identical standard deviation σ̂ ≈ 16 (σ =
0.15). For N = 2, we obtain a heavy-tailed distribution while the uncorrelated
limit is reached for N = 100.
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4.3.4 Loss Distribution

We now turn to the calculation of the loss distribution. In our model, a
default occurs if the price at maturity Vk(T ), corresponding to the obligor’s
equity, is below the face value Fk. The size of the loss is given by the
difference of Fk and Vk(T ). Even if a loss occurs, the creditor might not
lose all money that he lent, because the obligor is still able to pay back
the amount Vk(T ). To compare losses in a portfolio of credits, we have to
normalize them by the corresponding face value. We define the loss Lk of
the k-th asset as

Lk =

{
Fk−Vk(T )

Fk
Vk(T ) < Fk (default)

0 else (no default)
. (4.62)

When calculating the loss distributions, we have to take into account that
in Eq. (4.62), the prices have to be positive. Therefore we assume in all
further considerations that the underlying process of the price distribution
follows a geometric Brownian motion.

When calculating the overall loss of a portfolio, we have to weight each
loss by its face value in relation to the sum of all portfolio face values,

L =

K∑
k=1

fkLk , fk =
Fk∑K
l=1 Fl

. (4.63)

For example if one credit has a loss of 50% by Eq. (4.62) and a face value
of USD 10 000 while another credit has a loss of 90% and a face value of
USD 100 000, one cannot simply average the losses. A proper normalization
of the face values gives an overall loss of L ≈ 86%.

The approach for the loss distribution follows the same principles as the
approach for the price distribution in section 4.3.2. We integrate over the
distribution of prices and filter for those that lead to a given total loss L.
By the above stated definitions, we can define a filter for the total loss at
maturity time T . In the next step we express the filter using a Fourier
transformation. Eventually, we separate those terms that correspond to a
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default and those that describe the price above the face value Fk,

p(L) =

∞∫
0

d[�V (T )]p(�V (T ))δ

(
L−

K∑
k=1

fkLk

)
(4.64)

=

∞∫
0

d[�V ](T )p(�V (T ))
1

2π

+∞∫
−∞

dω exp

(
−iωL+ iω

K∑
k=1

fkLk

)
(4.65)

=
1

2π

+∞∫
−∞

dω exp (−iωL)
∞∫
0

d[�V (T )] exp

(
iω

K∑
k=1

fkLk

)
p(�V (T ))

(4.66)

=
1

2π

+∞∫
−∞

dω exp (−iωL)

×
⎛
⎝ F1∫

0

dV1(T ) exp

(
iωf1

(
1− V1

F1

))
× . . .

×
FK∫
0

dVK(T ) exp

(
iωfK

(
1− VK

FK

))

+

∞∫
Fk

dV1(T )× · · · ×
∞∫
Fk

dVK(T )

⎞
⎠ p(�V (T )) (4.67)

=
1

2π

+∞∫
−∞

dω exp (−iωL)

×
K∏
k=1

⎡
⎣ Fk∫
0

dVk(T ) exp

(
iωfk

(
1− Vk

Fk

))
+

∞∫
Fk

dVk

⎤
⎦ p(�V (T )) .

(4.68)

Here, the expression in the squared brackets acts as an operator, because
p(V ) does not necessarily factorize. We will use this ansatz to calculate
the average loss distribution in the next section. However, Eq. (4.68) can
be used to calculate the loss distribution if the actual price distribution is
known, i.e., the statistical dependence and the underlying process are esti-
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mated. To prepare for this it is handy to write Eq. (4.68) as a combinatorial
sum,

p(L) =
1

2π

+∞∫
−∞

dω exp (−iωL)

×
K∑
k=1

(Kk )∑
j=1

⎡
⎣ ∏

l∈Perm(j,k,K)

Fl∫
0

dVl exp

(
iωfl

(
1− Vl

Fl

))

×
∏

q∈{1...K}
\Perm(j,k,K)

∞∫
Fq

dVq

⎤
⎦p(�V (T )) , (4.69)

where Perm(j, k,K) is the j-th permutation of k elements of the set {1 . . .K}.
For example, if K = 3 and k = 2, we obtain, Perm(1, 2, 3) = {1, 2},
Perm(2, 2, 3) = {2, 3} and Perm(3, 2, 3) = {1, 3}. However, Eq. (4.69)
might need to be estimated numerically, depending on the complexity of
the price distribution p(�V (T )). In section 4.3.6, we will simplify this combi-
natorial sum for a homogeneous portfolio and the average price distribution
〈p(�V (T ))〉.

4.3.5 Average Loss Distribution

Now we have developed all necessary tools to model the average distribu-
tion of losses under the assumption of random correlations and an average
correlation level of zero. We start by inserting the average price distribution
(4.49) into the loss distribution (4.68),

〈p(L)〉 = 1

2πΓ(N/2)

∞∫
0

dz z(
N
2 −1) exp (−z)

+∞∫
−∞

dω exp (−iωL)

×R(ω, z) , (4.70)
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with

R(ω, z) =

K∏
k=1

⎡
⎣ Fk∫
0

dVk exp

(
iωfk

(
1− Vk

Fk

))
+

∞∫
Fk

dVk

⎤
⎦

×
√
N

2σkVk
√
πzT

exp

(
−N(ln(Vk/Vk,0)− (μ− σ2/2)T )2

4zTσ2k

)
.

(4.71)

We rearranged the constants so that each term in R(ω, z) is normalized to
unity. R(ω, z) can now be written as

R(ω, z) = exp

(
K∑
k=1

ln

[( Fk∫
0

dVk

Q(ω,fk)︷ ︸︸ ︷
exp

(
iωfk

(
1− Vk

Fk

))
+

∞∫
Fk

dVk

)

×
√
N

2σkVk
√
πzT

exp

(
−N(ln(Vk/Vk,0)− (μ− σ2/2)T )2

4zTσ2k

)])
.

(4.72)

We write Q (ω, fk) as

Q (ω, fk) =

∞∑
m=0

(iωfk)
m

m!

(
1− Vk

Fk

)m
. (4.73)

Due to the normalization of 〈p(�V )〉, after insertion into Eq. (4.72) the non-
default term and the integral over first term of Q (ω, fk) become one. Thus,
we can start the sum at m = 1 and obtain

R(ω, z) = exp

(
K∑
k=1

ln

(
1 +

∞∑
m=1

(iωfk)
m

m!
Mm,k(z)

))
(4.74)

with

Mm,k(z) =

√
N

2σk
√
πzT

Fk∫
0

1

Vk

(
1− Vk

Fk

)m

× exp

(
−N(ln(Vk/Vk,0)− (μ− σ2/2)T )2

4zTσ2k

)
dVk . (4.75)
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The integrals in Eq. (4.75) can be expressed with the generalized hypergeo-
metrical function pFq. However, this integral representation might be more
intuitive. Moreover, for explicit m = 1, 2 the integrals can be calculated
in a closed form using Mathematica [149], although this results in bulky
expressions, as listed in appendix B.3. In the next step, we develop the
logarithm in Eq. (4.74). Now we expand ln(1 + x) with

x ≡
∞∑
m=1

(iωfk)
m

m!
Mm,k(z) (4.76)

as power series and obtain

ln

(
1 +

3∑
m=1

(iωfk)
m

m!
Mm,k(z)

)
=

3∑
m=1

(iωfk)
m

m!
Mm,k(z)

− 1

2

(
3∑

m=1

(iωfk)
m

m!
Mm,k(z)

)2

+
1

3

(
3∑

m=1

(iωfk)
m

m!
Mm,k(z)

)3

+ . . . (4.77)

Collecting all terms Eq. (4.77) up to the second order in fk yields

〈p(L)〉 ≈ 1

2πΓ(N/2)

∞∫
0

dz z(
N
2 −1) exp (−z)

+∞∫
−∞

dω exp (−iωL)

× exp

(
K∑
k=1

(
iωM1,k(z)fk − ω2f2k

2
(M2,k(z)−M1,k(z)

2)

))

(4.78)

=
1

2πΓ(N/2)

∞∫
0

dz z(
N
2 −1) exp (−z)

+∞∫
−∞

dω

× exp

(
iω

([
K∑
k=1

fkM1,k(z)

]
− L

)

−ω2

2

[
K∑
k=1

f2k
(
M2,k(z)−M1,k(z)

2
)])

. (4.79)
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However, the convergence radius of the power series expansion involved in
this approximation is one. Although we consider large portfolios K, i.e., fk
is small, ω runs from −∞ to +∞. This second-order approximation might
describe the default terms adequately. However, the non-default terms,
corresponding to a delta peak at L = 0 require ω to run from −∞ to +∞.
Thus, the non-default terms cannot be approximated using this second-
order approximation. To address this problem, we will develop an improved
approximation in section 4.3.6. Now we solve the dω integral in Eq. (4.79),

〈p(L)〉 ≈ 1√
2πΓ(N/2)

∞∫
0

dz z(
N
2 −1) exp (−z)

1√
M̂2(z)

exp

(
− (L− M̂1(z))

2

2M̂2(z)

)
(4.80)

with

M̂1(z) =
K∑
k=1

fkM1,k(z) (4.81)

M̂2(z) =

K∑
k=1

f2k (M2,k(z)−M1,k(z)
2) . (4.82)

However, due to the complexity of M1(z) and M2(z), the dz integral needs
to be evaluated numerically. We will present this for an example of a ho-
mogeneous portfolio in the next section.

4.3.6 Homogeneous Portfolios

In case of a homogeneous portfolio, all credits have the same face value F ,
the same variance σ2 and the same weight

fk =
1

K
. (4.83)
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As M1,k(z) and M1,k(z) become identical for every k, we denote them with
M1(z) and M1(z) leading to

M̂1(z) = M1(z) (4.84)

M̂2(z) =
1

K
(M2(z)−M1(z)

2) (4.85)

Mm(z) =

√
N

2σ
√
πzT

F∫
0

1

V

(
1− V

F

)m

× exp

(
−N(ln(V/V0)− (μ− σ2/2)T )2

4zTσ2

)
dV . (4.86)

With insertion into Eq. (4.80), we can calculate the loss distribution for a
homogeneous portfolio in the second order approximation. However, the dz
integral needs to be evaluated numerically.

4.3.6.1 Improved Approximation

The second order approach can be improved by approximating the individ-
ual terms of the loss distribution instead of approximating the expression
as a whole, similar as discussed in [31]. In case of a homogeneous portfolio,
the combinatorial sum in Eq. (4.69) reduces to

〈p(L)〉 = 1

2πΓ(N/2)

∞∫
0

dz z(
N
2 −1) exp (−z)

+∞∫
−∞

dω exp (−iωL)

×
K∑
j=0

(
K

j

)(
R(D)(ω, z)

)j (
R(ND)(z)

)K−j
, (4.87)

with the non-default term

(
R(ND)

)K−j
=

⎛
⎝ ∞∫
F

dV

√
N

2σV
√
πzT

× exp

(
−N(ln(V/V0)− (μ− σ2/2)T )2

4zTσ2

)⎞⎠
K−j

(4.88)

=

(
1

2
+

1

2
Erf

[√
N(ln(F/V0)− (μ− σ2/2)T )

2σ
√
zT

])K−j
(4.89)
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and the default term

(
R(D)(ω, z)

)j
=

( F∫
0

dV

Q(ω,K)︷ ︸︸ ︷
exp

(
iω

K

(
1− V

F

))

×
√
N

2σV
√
πzT

exp

(
−N(ln(V/V0)− (μ− σ2/2)T )2

4zTσ2

))j
.

(4.90)

Analogously to the previous section, we develop Q (ω,K) and consequently
develop the logarithm, resulting in

+∞∫
−∞

dω exp (−iωL)
(
R(D)(ω, z)

)j

=

+∞∫
−∞

dω exp

(
iω

(
j

K
M1(z)− L

)
− ω2j

2K2

(
M2(z)−M1(z)

2
))

(4.91)

=

√
2πK2

j (M2(z)−M1(z)2)
exp

(
− (LK − jM1(z))

2

2j (M2(z)−M1(z)2)

)
. (4.92)

In this approximation, the non-default terms given by Eq. (4.89), can be
calculated exactly. They correspond to a delta peak at L = 0. Another ad-
vantage over the approximation presented in Eq. (4.80) is that the approx-
imation is performed for each number of defaults j separately and weighted
by j/K accordingly. In this approximation, the omitted third term is of
the order j/K3 and thereby much smaller than the third term of the sim-
ple second order approximation (4.86), which would be of the order 1/K2.
Thus, when approximating each term in the combinatorial sum separately,
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Figure 4.5: The loss distribution for K = 10, σ = 0.15, μ = 0.05, T = 1, V0 = 100,
F = 75 and different strengths of correlations N : N = K (solid), N = 2K

(dashed), N = 10K (dotted), N = 30K (dot-dashed).

we obtain an improved approximation. Insertion into (4.87) leads to

〈p(L)〉 ≈ 1

2πΓ(N/2)

K∑
j=0

(
K

j

) ∞∫
0

dz z(
N
2 −1) exp (−z)

(√
2πK2

j (M2(z)−M1(z)2)
exp

(
− (LK − jM1(z))

2

2j (M2(z)−M1(z)2)

)

×
(
1

2
+

1

2
Erf

[
ln(F/V0)− (μ− σ2/2)T

2σ
√
zT

])K−j )
, (4.93)

which is the final result.

4.4 Application

We now apply the analytically developed model to a specific example. To
analyze the impact of correlations, we calculate the loss distribution for
different homogeneous portfolios with sizes K = 10, K = 50 and K = 100
with the parameters V0 = 100, μ = 0.05, σ = 0.15, F = 75 and T = 1.
As stated in the previous section, we can control the amount of correlation
in our model with the parameter N . N = K corresponds to the strongest
impact of random correlations. For N →∞, the correlation matrix becomes
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Figure 4.6: The loss distribution of a homogeneous portfolio with σ = 0.15,
μ = 0.05, T = 1, V0 = 100, F = 75 and different values of K. The dashed
line represents the simple approximation; the solid line represents the improved
approximation. Both have been calculated with maximum random correlations,
N = K. The uncorrelated case is given by the dotted line, calculated with the
improved approximation with N = 30K.
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the identity matrix. Thus, this represents the transition to a system without
correlations. As we have to evaluate the loss distributions numerically,
N →∞ has to be properly interpetrated. Hence we need to identify a value
for which this convergence is valid in good approximation.

Fig. 4.5 illustrates exemplarily the loss distribution for K = 10 and
different values of N . Our study indicates that a value of N = 30K is a
good choice for approximating the uncorrelated case and is still numerically
feasible.

The results are presented in Fig. 4.6. For all portfolio sizes, K = 10,
K = 50 and K = 100, we obtain heavier tails of the loss distribution of the
correlated portfolio compared to the uncorrelated case. Even the second
order approximation, represented by the dashed curve, exhibits these heavy
tails. Using the inserted logarithmic plots, we can identify a nearly power-
law decay of the loss distribution for the correlated case.

The distributions become narrower for larger values of K. However, the
tails of the correlated case remain heavier than those of the uncorrelated
case. While for K = 10, both approximations give similar results, their
difference becomes larger with K. As both approximations have to be per-
formed numerically, we suggest to always use the improved approximation.
However, the tail behavior remains the same, even for the second order
approximation, as indicated by the logarithmic scaled inserts in Fig. 4.6.
This is a strong indication that the tails of the loss distribution are vastly
underestimated, if correlations are not taken into account.

Due to the approximation, the normalization of the loss distribution is
not exact. Especially the normalization of the second order approximation
is poor for large values of K. The normalization might also be used as
an indication for the quality of the approximation. The improved approx-
imation exhibits a delta peak at L = 0, as the non-default terms can be
calculated exactly. However, the interval [0; 0.0002[ was not evaluated due
to numerical feasibility.

In our example, we do not vary the maturity time T , i.e., we choose
T = 1. If the model is properly set up, one can increase T to estimate the
evolution of the loss distribution. However, this evolution depends strongly
on the drifts μk and standard deviations σk. Depending on their value, the
exposure to default risk can either increase or decrease.
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Variable Description Unit

K Number of assets –
T Time of maturity [year]
σk volatility of the k-th asset [year]−1/2

μk drift of the k-th asset [year]−1

N Parameter to control correlations, –
N →∞: uncorrelated limit

Vk,0 start price of the k-th asset [currency]
Fk face value of the k-th asset [currency]

Table 4.1: Input of the structural credit risk model.

4.5 Summary

Our results clearly demonstrate that the risk in a credit portfolio is heavily
underestimated if correlations are not taken into account in the quantifica-
tion of risk. Even with random correlations and an average correlation level
of zero, we obtain distributions whose tails differ in several orders of mag-
nitude. In contrast, the probability of large losses in uncorrelated portfolios
is significantly reduced within the model. This demonstrates that the effect
of diversification, i.e., the reduction of risk in large portfolios, does not give
good results in credit portfolios. Even the presence of random correlations
around zero lowers the effect of diversification dramatically.

Our model can be used to estimate the lower bound of the risk embed-
ded in a credit portfolio. The eigenvalue density of empirical correlation
matrices show that the amount of randomness in stock market return corre-
lations is considerable [11]. Our model is directly applicable to speculative
margin loans, i.e., credits that are based on an investor’s stock portfolio.
An overview of the model’s input parameters is given in Tab. 4.1.

In our model, some features are not taken into account which are present
in empirical data, such as jumps or an overall positive correlation level.
Those features are difficult to treat completely analytically. However, even
in our simple setup we obtain a heavy-tailed loss distribution

The results are especially relevant for CDOs (Collateralized Debt Obli-
gations), bundles of credits that are traded on equity markets. CDOs are
constructed in order to lower the overall risk. The components of a CDO
can be exposed to large risks. It is often believed that the CDO has a signif-
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icantly lower risk. We showed that this diversification only works well if the
correlations in the credit portfolio are identical to zero. Even if the average
correlation level is zero, but the individual correlations fluctuate, we obtain
a heavy-tailed loss distribution. However, the average correlation level, for
example, of stock returns is usually positive, corresponding to the market
risk. A common approach is to remove this kind of risk by hedging. This
corresponds to a shift in the correlation matrix by the size of the market
correlation. The result is a correlation matrix with average correlation level
of zero, as we assumed in our model. Thus, even if a portfolio manager
eliminates the market risk, the probability of large losses is still significant.
In credit portfolios, the risk of simultaneous defaults is not only caused by
positive correlations, but also by their fluctuations.



5 Conclusions

Important aspects of financial markets were studied as complex systems.
The common feature of the studies is the estimation and identification of
statistical dependencies. In this matter, concepts of statistical physics were
used, such as diffusion processes or Random Matrix Theory, to gain deeper
insight into the mechanisms of financial markets. Moreover, the traditional
strength of theoretical physics, the mathematical modeling, was employed to
develop methods that on the one hand improve the estimation of statistical
dependence significantly, and on the other hand permit new insight into the
dynamics of the dependence structure.

The latter was provided by the development of a similarity measure. By
reducing central aspects of the statistical dependence of a financial market
to a simple representation, this allows one to study and visualize the general
evolution of the financial market. Disclosing the dynamics is a key challenge,
as financial markets show non-stationarity behavior. As a large financial
market can be seen as representative for a whole economy, this can permit
to identify tensions in the market before their full emergence to a financial
crisis, for example by recognizing similarities between market crashes in the
past. Moreover, the similarity measure was used to identify typical states
between which the financial market switches back and forth.

One important application of this measure is risk management. By pro-
viding a simple indicatior for an economy’s current status, a portfolio man-
ager can react timely or learn lessons from similar crises in the past. This
application was demonstrated in an empirical study, where it led to a sig-
nificant reduction of risk. However, due to the elementary character of this
method, it can possibly be applied to a wide range of other complex sys-
tems. In several complex systems, it is possible to obtain a large number
of correlated data over time. Such systems include, but are not restricted
to, biological or medical time series, such as EEG, chemical and nuclear
reactions or weather data. All systems share the common attribute, that
their non-stationarity behavior is of particular importance when it comes
to abnormal events.

The measurement of correlations is a powerful instrument to reduce the
complexity of a system in order to treat it analytically. However, correla-
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tion coefficients also have major disadvantages. By reducing the statistical
dependence to a single number, they imply a linear statistical dependence
although the dependence structure of stock returns is usually non-linear.
This is especially true for rare events that have a large impact, i.e., large
negative or positive returns. Using copulae one can describe the statistical
dependence much more precisely. Moreover, because copulae represent a
scale-free measure, it is possible to compare the dependence of different sys-
tems, even if their individual marginal distributions have different shapes.

To disclose the degree of error involved in a correlation coefficient, the
average pairwise copula of the U.S. stock market was estimated in a large-
scale empirical study. By comparing the results to the Gaussian copula,
the copula that is implied by a Pearson correlation coefficient, differences
could be quantified. Furthermore, key features of the empirical copula were
mapped to the corresponding correlation coefficient. As correlation coef-
ficients are convenient to use and common throughout the whole financial
industry, the disclosed relation allows correcting the estimation of risk in
existing applications.

Another approach to improve models that include correlation estimates
was considered in the study of the Epps effect. The Epps effect describes
the decline of correlation estimates in high frequency data. Since the phe-
nomenon was discovered in 1979, many models have been developed to
compensate for this effect. Almost all of these models share the common
requirement for calibration and many of these models are incompatible with
each other. A new approach was carried out in this work. Rather than aim-
ing for a complete compensation of the Epps effect, causes were identified
that contribute to the effect on a completely statistical basis. Hence, com-
pensation methods for these causes could be developed and verified in a
model setup. These compensation methods do not require model calibra-
tions or fitting parameters. In an empirical study, it was demonstrated that
these statistical causes can be responsible for a large portion of up to 75%
of the Epps effect. By including these causes into existing practices, it is
possible to estimate correlations more precisely and thus to estimate the
risk more realistically. Just like the aforementioned similarity measure, this
method is not restricted to financial data. It can be applied to any scenario
where correlations of asynchronous or discretized time series are estimated.

A further focus of this work was devoted to credit risk. This estimation
of credit risk differs significantly from other kinds of financial risk. This is
due to the complex nature of a credit process. The exposure to the risk
of default, the case where a credit is not paid back completely, leads to a
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highly asymmetric probability distribution of losses. A concept of statistical
physics, Random Matrix Theory, was used to estimate the average loss
distribution. By averaging over all possible combinations of correlations, it
is demonstrated that the presence of correlations severely limits the effect
of diversification. This is true even though the average correlation level is
zero. The exposure to risk in a credit portfolio is vastly underestimated, if
correlations are not taken into account. The results can be seen as lower
bound for the estimation of credit risk.

All topics covered in this work have in common that failures in these
fields were a key factor in the emergence of the financial crisis of 2008–
2009. The developed methods can help recognizing a future financial crisis
in its beginning. The improved estimation of risk aims at preventing future
financial crises at their source. Certainly, the models can only capture
quantitative aspects of an economy. For example, political or physiological
factors can only be accounted for indirectly. However, quantitative models
represent a powerful and mandatory tool to estimate risk in global financial
markets that become increasingly complex.
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Symbol Name Stock ex. 〈S〉 σS σS/〈S〉 Avrg. trad.

BSC Bear Stearns Cos. NYSE 133.14 23.90 0.180 25529

SII Smith International NYSE 57.12 10.46 0.183 13949

FRE Federal Home Loan Mtg. NYSE 57.87 10.80 0.187 21389

LSI LSI Corporation NYSE 7.93 1.49 0.187 20497

PCAR PACCAR Inc. NASDAQ 74.10 13.89 0.187 11376

JCP Penney (J.C.) NYSE 69.49 13.08 0.188 15925

CVG Convergys Corp. NYSE 21.77 4.16 0.191 5147

CBG CB Richard Ellis Group NYSE 31.58 6.08 0.193 13992

LIZ Liz Claiborne Inc. NYSE 35.80 6.97 0.195 6330

BC Brunswick Corp. NYSE 28.09 5.54 0.197 5387

CNX CONSOL Energy Inc. NYSE 45.20 8.99 0.199 12842

AKAM Akamai Technologies Inc NASDAQ 42.89 8.63 0.201 22620

MCO Moody’s Corp NYSE 56.88 11.87 0.209 16294

RSH RadioShack Corp NYSE 24.72 5.17 0.209 14454

LUK Leucadia National Corp. NYSE 38.25 8.05 0.211 3429

FLR Fluor Corp. (New) NYSE 115.34 24.90 0.216 7413

NCC National City Corp. NYSE 30.54 6.71 0.220 17876

LXK Lexmark Int’l Inc NYSE 48.47 10.91 0.225 8838

DF Dean Foods NYSE 32.98 7.49 0.227 6647

MBI MBIA Inc. NYSE 58.90 13.50 0.229 17571

FCX Freeport-McMoran Cp & Gld NYSE 82.68 19.07 0.231 45292

FHN First Horizon National NYSE 34.09 7.88 0.231 7319

ESRX Express Scripts NASDAQ 70.84 16.43 0.232 11623

JNPR Juniper Networks NASDAQ 27.11 6.35 0.234 33006

DDS Dillard Inc. NYSE 28.97 6.79 0.234 8291

CMI Cummins Inc. NYSE 117.32 47.60 0.406 9909

JNY Jones Apparel Group NYSE 26.09 6.24 0.239 5803

MON Monsanto Co. NYSE 70.65 16.94 0.240 17403

SOV Sovereign Bancorp NYSE 20.13 4.84 0.240 10837

CMCSA Comcast Corp. NASDAQ 27.05 6.64 0.246 55284

OMX OfficeMax Inc. NYSE 39.68 9.85 0.248 6009

WM Washington Mutual NYSE 36.55 9.09 0.249 39145

KG King Pharmaceuticals NYSE 16.29 4.15 0.254 9548

JEC Jacobs Engineering Group NYSE 71.33 32.20 0.451 5501

CIT CIT Group NYSE 46.43 12.31 0.265 11141

THC Tenet Healthcare Corp. NYSE 5.66 1.51 0.267 12112

KBH KB Home NYSE 37.21 10.34 0.278 16670

GME GameStop Corp. NYSE 47.04 23.36 0.497 9619

CTX Centex Corp. NYSE 37.79 10.53 0.279 14328

CTSH Cognizant Technology Solutions NASDAQ 72.31 20.33 0.281 13112

ODP Office Depot NYSE 28.13 7.92 0.282 14062

NOV National Oilwell Varco Inc. NYSE 88.30 30.40 0.344 19716

GILD Gilead Sciences NASDAQ 57.24 17.77 0.310 26240

ABK Ambac Financial Group NYSE 70.98 23.27 0.328 16261

PHM Pulte Homes Inc. NYSE 21.82 7.34 0.336 15737

LEN Lennar Corp. NYSE 35.41 11.91 0.336 16250

MTG MGIC Investment NYSE 46.61 17.01 0.365 14053

CC Circuit City Group NYSE 13.65 5.00 0.366 16660

ETFC E*Trade Financial Corp. NASDAQ 17.65 6.86 0.389 33380

CFC Countrywide Financial Corp. NYSE 28.75 11.41 0.397 65703

Table A.3: Ensemble of 50 stocks from the S&P 500 index. The stocks provide the
highest relation between the mean price 〈S〉 and its standard deviation σS/〈S〉
with at least 1000 trades per day.
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B Derivations for Credit Risk

B.1 Expansion of det(IN + TS�ω�ω†S)

Since the matrix S�ω�ω†S has rank one, the determinant can be expressed as

det(IN + TS�ω�ω†S) = NKdet(I+
T

N
S�ω�ω†S) (B.1)

= NK exp

(
ln

(
tr

(
I+

T

N
S�ω�ω†S

)))
. (B.2)

Now we express the logarithm with a power series,

det(IN + TS�ω�ω†S) = NK exp

( ∞∑
ν=1

(−1)ν+1

ν

(
T

N
tr(S�ω�ω†S)

)ν
)

(B.3)

= NK exp

( ∞∑
ν=1

(−1)ν+1

ν

(
T

N
tr(�ω†SS�ω)

)ν
)

. (B.4)

As �ω†SS�ω is a scalar, we can remove the trace and write the the power series
again as a logarithm,
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B.2 Calculation of ΩK−1

We can calculate ΩK−1 with the help of a Gaussian integral,

∫
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V 2
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∫
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B.3 M1,k(z) and M2,k(z)
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