


Numerical and Practical Exercises
in Thermoluminescence



Vasilis Pagonis George Kitis Claudio Furetta

Numerical and
Practical Exercises in
Thermoluminescence

With 110 Figures



Vasilis Pagonis
Department of Physics
McDaniel College
Westminster MD 21157
USA

George Kitis
Nuclear Physics Laboratory
Aristotle University of
Thessaloniki
Thessaloniki 540 06
Greece

Claudio Furetta
Department of Physics
University of Rome,
La Sapienza
Rome 00185
Italy

Cover illustration: Typical thermoluminescence glow curves for first and second order
kinetics. The equations for the glow curves are also shown. Figures are drawn by the
authors.

Mathematica is a registered trademark of Wolfram Research, Inc

Library of Congress Control Number: 2005926338

ISBN-10: 0-387-26063-3 e-ISBN 0-387-30090-2
ISBN-13: 978-0387-26063-1

Printed on acid-free paper.

C© 2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed in the United States of America. (TB/SBA)

9 8 7 6 5 4 3 2 1

springer.com



I dedicate this book to my wife, Mary Jo Boylan, whose constant
encouragement and support made this book possible.

Vasilis Pagonis

I dedicate this book to my wife, Φωτεινη, and my mentor,
Professor Stephanos Charalambous.

George Kitis

I am very grateful to my wife, Maria Clotilde, for her loving
support of my scientific work.

Claudio Furetta



Preface

Thermoluminescence (TL) is a well-established technique widely used in dosi-
metric and dating applications.

Although several excellent reference books exist which document both the the-
oretical and experimental aspects of TL, there is a general lack of books that deal
with specific numerical and practical aspects of analyzing TL data. Many times the
practical details of analyzing numerical TL glow curves and of applying theoretical
models are difficult to find in the published literature.

The purpose of this book is to provide a practical guide for both established
researchers and for new graduate students entering the field of TL and is intended
to be used in conjunction with and as a practical supplement of standard textbooks
in the field.

Chapter 1 lays the mathematical groundwork for subsequent chapters by present-
ing the fundamental mathematical expressions most commonly used for analyzing
experimental TL data.

Chapter 2 presents comprehensive examples of TL data analysis for glow curves
following first-, second-, and general-order kinetics. Detailed analysis of numer-
ical data is presented by using a variety of methods found in the TL literature,
with particular emphasis in the practical aspects and pitfalls that researchers may
encounter. Special emphasis is placed on the need to use several different meth-
ods to analyze the same TL data, as well as on the necessity to analyze glow
curves obtained under different experimental conditions. Unfortunately, the liter-
ature contains many published papers that claim a specific kinetic order for a TL
peak in a dosimetric material, based only on a peak shape analysis. It is hoped that
the detailed examples provided in Chapter 2 will encourage more comprehensive
studies of TL properties of materials, based on the simultaneous use of several
different methods of analysis.

Although the subject of TL curve fitting and glow curve deconvolution is beyond
the scope of this book, the readers may find the spreadsheet examples in Chapter
2 useful and easily adaptable for implementing simple curve fitting algorithms.
These algorithms are based on the experimentally measurable maximum TL peak
height and the corresponding temperature (IM and TM). In the examples given, the
activation energy E acts as the adjustable parameter in the computerized curve
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fitting procedure. Several of these curve fitting spreadsheet examples can also be
found in the authors’ website.

Chapter 3 presents for the first time in the TL literature detailed numerical
examples of several commonly used theoretical models, as well as several com-
parative studies of analytical expressions used for kinetic analysis of TL data. The
main thrust of this chapter is to illustrate how to solve the differential equations
describing the traffic of carriers during the various TL processes in the crystal.
A few simple examples of solving the basic differential equations of TL using a
spreadsheet are given mostly for illustrative and educational purposes. The main
body of this chapter consists of a gradual presentation of increasingly complex TL
models using the program Mathematica.

We have found this programming environment to be very efficient, versatile,
and easy to work with, once the basic structure and programming style have been
mastered. We emphasize in particular the transparent nature of the numerical inte-
grating techniques used in Mathematica, which are particularly suited for solving
systems of “stiff” differential equations that are common in theoretical TL work.
The Mathematica numerical integration code is very stable and efficient, with rare
occasional numerical instabilities. All examples given in this book have typical
running times of 1–2 min on a desktop computer. Several of the Mathematica
examples given in this book can also be found in the authors’ website for easy
reference and download.

In Chapter 4, we give numerical exercises relevant to the TL dose response of
dosimetric materials. The models described in this chapter are taken directly from
the published TL literature in order to facilitate direct comparison of the results
with the original papers. As much as possible, we have kept the same symbols
and mathematical notation as the original papers for easy cross-reference. The
Mathematica programs are given in a “modular” form consisting of a small core
of subroutines performing separate tasks, which can be easily adopted by the
readers for a variety of different purposes.

A very important class of TL models is presented, namely models based on
competition during irradiation process, competition during the TL heating process,
as well as models containing competition during both irradiation and heating. The
last exercise in Chapter 4 presents a numerical example of how the superlinearity
and supralinearity coefficients g(D) and f (D) can be calculated from experimental
TL versus dose curves.

In Chapter 5, we present a variety of exercises dealing with practical aspects
of several phenomena commonly encountered in the study of TL materials. A
group of four numerical exercises deal with the accuracy and reproducibility of
measurements performed using TL dosimeters (TLDs). In particular, we show how
the statistical accuracy and reproducibility of TL data can be greatly improved by
using individual correction factors for each TLD. The next two exercises deal
with the commonly observed phenomenon of thermal quenching and comprise a
detailed simulation of thermal quenching effects on the measured TL glow curves
and on the initial rise technique. The next group of two exercises deals with aspects
of the mathematical formalism used in environmental TL dosimetry.
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Two extensive exercises in Chapter 5 concern with the important but somehow
underutilized technique of the TL-like presentation of phosphorescence decay
curves and with the practical aspects of how to correct experimental TL data for
temperature lag effects between the heating element in TL equipment and the
sample itself.

Astute readers will notice the absence from this book of any exercises dealing
with dating applications of TL. We decided that such exercises were beyond the
specific scope of this book and refer the readers to the review papers in the annotated
bibliography, as well as to the monographs dedicated to this important topic.

Perhaps, one of the most useful aspects of this book is the inclusion of an
annotated bibliography on TL topics. To the best of our knowledge, there has been
no other published annotated bibliography in the TL literature, and we believe
that this will be an important tool for both established TL researchers and persons
starting a research project in this field.

Although it is not possible to give a comprehensive annotated bibliography, we
have provided characteristic examples of published articles in the various topics
covered in this book. Several review articles of general interest on TL have also
been included in our listings; these can serve as important introductory material
for the various topics.

Our choices of papers and monographs in the annotated bibliography were
dictated by our desire to guide the reader toward few characteristic and complete
examples of TL data analysis, rather than providing a complete list.

An Appendix is provided with examples of the most basic commands in Math-
ematica for reference purposes, although it can only cover the most rudimentary
aspects of this powerful programming environment.

November 9, 2005

Vasilis Pagonis
George Kitis
Claudio Furetta
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1
Expressions for Evaluating
the Kinetic Parameters

Introduction

Thermoluminescence (TL) is defined as the emission of light from a semiconductor
or an insulator when it is heated, due to the previous absorption of energy from
irradiation. The graph of the amount of light emitted during the TL process as a
function of the sample temperature is known as a “TL glow curve.”

During a thermoluminescence experiment, one typically obtains several glow
curves under different conditions. For example, a series of TL glow curves may
be obtained for a material that was irradiated at several different doses, or was
preannealed at various temperatures. Usually the main goal of measuring and
analyzing these TL glow curves is the extraction of several parameters that can be
used to describe the TL process in the material. Examples of these parameters are
the activation energy E for the TL traps (also called the trap depth), the frequency
factor s, the order of kinetics b of the TL process, the capture cross-sections for the
traps and recombination centers, and the concentrations of these traps and centers.

In this chapter the various theoretical methods and analytical expressions used
to analyze TL glow curves are presented, and they serve as a reference material for
the rest of the chapters in the book. For more extensive descriptions of the various
models that lead to the expressions in this chapter, the reader is referred to the
research articles and textbooks listed at the end of this chapter, as well as to the
annotated bibliography at the end of this book.

Simple Thermoluminescence Model

The process by which materials emit light when heated can be understood by
considering the simplest possible model consisting of two localized levels, an
isolated electron trap (T) and a recombination center (RC), as shown in Figure 1.1.
This is commonly referred to as the one-trap-one-recombination center model
(OTOR).

Let us denote by N the total concentration of the traps in the crystal (m−3), by
n(t) the concentration of filled traps in the crystal (in m−3) at time t, and by nh(t)

1
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RC

 nh

Valence band 

Figure 1.1. The simple two-level model for the thermoluminescence process.

the concentration of trapped holes in the recombination center (in m−3). The initial
concentration of filled traps at time t = 0 is denoted by n0.

In a typical thermoluminescence experiment the sample is heated with a linear
heating rate β = dT/dt from room temperature up to a high temperature usually
around 500◦C. As the temperature of the sample is increased, the trapped electrons
in T are thermally released into the conduction band, as shown by the arrow for
transition 1 in Figure 1.1. These conduction band electrons can either recombine
with holes in the recombination center RC (transition 2), or they can be retrapped
into the electron trap T (transition 3), as shown in Figure 1.1. The intensity of the
emitted light is equal to the rate of recombination of holes and electrons in the
recombination center, and is given by

I (t) = −dnh

dt
(1.1)

Figure 1.2 shows in the schematic diagram the increase in sample temperature
T, the simultaneous emission of light I (t), and the corresponding decrease in the
concentration nh of trapped holes.

Expressions for First-, Second-, and General-Order
TL Kinetics

The equations governing the thermoluminescence processes have been given by
Randall–Wilkins [1], Garlick–Gibson [2] and May–Partridge [3] for first, second,
and general orders, respectively:

I (t) = −dn

dt
= nse−E/kT (1.2)

I (t) = −dn

dt
= n2

N
se−E/kT (1.3)

I (t) = −dn

dt
= nbs ′e−E/kT (1.4)
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Figure 1.2. The temperature profile T (t), the thermoluminescence intensity I (t), and the
concentration of trapped holes nh(t) in the recombination center RC as a function of time
t . A linear heating rate β is used during the experiment.

where

E = the activation energy or trap depth (eV)
k = Boltzmann’s constant (eV K−1)
t = time (s)
T = the absolute temperature (K)
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In a typical experimental situation a linear heating rate β is used to heat the sample,
resulting in the temperature varying as T = T0 + βt , where β = linear heating
rate (K s−1), and

T0 = temperature at time t = 0 (K)
s = a constant characteristic of the electron trap, called the “preexponential

frequency factor” or “attempt-to-escape frequency” (s−1). This parame-
ter is proportional to the frequency of the collisions of the electron with
the lattice phonons. Typically the maximum values of s correspond to
the values of the lattice vibration frequency, i.e. 1012 − 1014 s−1.

N = the total trap concentration (m−3)
n = concentration of trapped electrons at time t (m−3)
b = the kinetic order, a parameter with values typically between 1 and 2
s ′ = the so-called effective preexponential factor for general order kinetics

(m3(b−1)s−1).

Equations (1.2)–(1.4) can be integrated by assuming a linear heating rate β, and
the following equations are obtained:

I (T ) = n0s exp

(
− E

kT

)
exp

[
− s

β

∫ T

T0

exp

(
− E

kT ′

)
dT ′

]
(1.5)

I (T ) = n2
0

s

N
exp

(
− E

kT

)[
1 + n0s

βN

∫ T

T0

exp

(
− E

kT ′

)
dT ′

]−2

(1.6)

I (T ) = s ′′n0 exp

(
− E

kT

)[
1 + s ′′(b − 1)

β

∫ T

T0

exp

(
− E

kT ′

)
dT ′

]− b
b−1

(1.7)

In equations (1.5)–(1.7), the additional parameters are:

n0 = number of trapped electrons at time t = 0 (m−3)
s ′′ = s ′n(b−1)

0
= an empirical parameter acting as an “effective” frequency factor

for general-order kinetics (in s−1).

It must be noted that although equations (1.2) and (1.3) can be derived from
simple thermoluminescence models by using certain simplifying assumptions, the
general-order kinetics equation (1.4) is completely empirical and in general will
have no relationship to actual physical models.

Figure 1.3 shows a comparison of TL glow peaks for first- and second-order
kinetics. In the case of second-order kinetics the emission of light is “delayed” by
the retrapping of the electrons in the trap T; this delay shows mostly during the
descending part of the TL glow curve.

Figure 1.4 shows several first-order and second-order TL glow peaks calculated
by using equations (1.5) and (1.6), and for different initial concentrations n0 of
trapped electrons. It is noted that for TL glow peaks following first-order kinetics,
the temperature TM of maximum TL intensity does not depend on the initial
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Figure 1.3. Schematic comparison of TL glow peaks for first- and second-order kinetics.
The parameters are E = 1 eV, s = 1012 s−1, n0 = N = 103 m−3.
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Figure 1.5. First-order TL glow peaks calculated using equation (1.5) for (a) differ-
ent frequency factors s and E = 1.0 eV, and (b) for different activation energies E and
s = 1012 s−1.

concentration n0, while TM for second-order TL glow curves shifts toward higher
temperatures as n0 decreases.

Figure 1.5 shows several first-order TL glow peaks calculated using equation
(1.5) for (a) different frequency factors s and (b) different activation energies E.
As the energy E is increased or as the value of s is decreased, the TL glow curve
shifts toward higher temperatures.

Figure 1.6 shows several general-order TL glow peaks calculated using equa-
tion (1.7), for different values of the kinetic order parameter b = 1.5 − 1.7. The
parameters used are E = 1 eV, s = 1012 s−1, and n0 = N = 1.

The equation giving the maximum of a glow peak is evaluated by setting
the derivative of expressions (1.5)–(1.7) equal to zero, to yield the following
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Figure 1.6. General order TL glow peaks calculated using equation (1.7) for different
values of the kinetic order parameter b. The parameters used are E = 1 eV, s = 1012 s−1,
β = 1 K s−1, and n0 = N = 1.

equations:

βE

kT 2
M

= s exp

(
− E

kTM

)
first order (1.8)

βE

kT 2
M

= s exp

(
− E

kTM

)[
1 +

(
2kTM

E

)]
second order (1.9)

βE

kT 2
M

= s exp

(
− E

kTM

)[
1 + (b − 1)

(
2kTM

E

)]
general order (1.10)

where TM is the temperature corresponding to the maximum TL intensity IM.
It must be noted that the integrals appearing in equations (1.5)–(1.7) can not

be calculated in terms of elementary functions, and they must be evaluated using
numerical integration methods. Alternatively, an approximating procedure using
a series expansion is usually employed, and will be discussed in a later section of
this chapter.

The analysis of TL peaks can yield at the most three parameters. The individual
TL peaks can be analyzed by using several techniques in order to determine the
kinetic TL parameters, such as the activation energy E, the frequency factor s and
the order of kinetics b. In an experimental situation the quantities of interest are
the temperature TM where the maximum TL intensity IM occurs, and the “width”
of the TL glow peak. In addition, the knowledge of the inflections points of the TL
glow curve can be useful. These inflection points can be computed by setting the
second derivative of the data equal to zero. These geometrical properties of the TL
glow curves are discussed in a later section of this chapter.
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Methods of Analysis

Initial Rise Methods

The experimental methods described in this section apply to any order of kinetics,
and are based on the analysis of the low temperature interval of a peak. The initial
rise method of analysis was first suggested by Garlick and Gibson [2].

The amount of trapped electrons in the low temperature tail of a TL glow peak
can be assumed to be approximately constant, since the dependence of n(T ) on
temperature T is negligible in that temperature region. In fact, as the temperature
increases, the first exponential in equation (1.5) increases, whereas the value of
the second term remains close to unity. This remains true for temperatures up to
a cutoff temperature TC, corresponding to a TL intensity IC smaller than about
15% of the maximum TL intensity IM. A further increase in temperature (T > TC)
makes the second term in equation (1.5) decrease; the competition between the
two terms in equation (1.5) results in the peak-shape of the TL glow curve.

By using this assumption of constant n(T ), the thermoluminescence emission
can be described by

I (T ) ∝ exp

(
− E

kT

)
(1.11)

Figure 1.7 shows the initial rise part of a single TL glow peak. In applying the initial
rise method, a graph of ln(I ) versus 1/kT is made, and a straight line is obtained.
From the slope –E of the line, the activation energy E is evaluated without any
knowledge of the frequency factor s. An example of the initial rise plot is given in
Figure 1.8.

An alternative method is the graphical method proposed by Ilich [4], which is
shown in Figure 1.9. One uses a point IC on the isolated TL glow peak, draws the
tangent at the point N = (TC, IC) and calculates the slope, assuming that I (T ) is
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Figure 1.7. The initial rise part of a thermoluminescence glow curve.
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Figure 1.8. Applying the initial rise technique to the initial rise portion of Figure 1.7.

given by

I (T ) = c exp

(
− E

kT

)
(1.12)

The derivative of this expression is equal to

dI

dT
= c

E

kT 2
exp

(
− E

kT

)
= I

E

kT 2
(1.13)

The slope of the tangent at point N in Figure 1.9 is found by setting T = TC in
equation (1.13) to obtain

dI

dT

∣∣∣∣
T =TC

= IC
E

kT 2
C

. (1.14)

Temperature, °C

0 50 100 150

T
L 

x1
08  (

a.
u.

)

0

2

4

T
C

N

To

Figure 1.9. The graphical method proposed by Ilich.
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In order to find the point M ≡ (T0, 0) where the graph intersects the x-axis, one
uses the equation of the tangent line

I − IC = IC E

kT 2
C

(T − TC)

I = 0. (1.15)

The solution of this system gives the value of E:

E = k
T 2

C

TC − T0
. (1.16)

A large number of points (TC, IC) can be selected and statistically processed in
order to improve the reliability of the results of this method.

Aramu et al [5] applied the initial rise method in the case where the frequency
factor s depends on the temperature T. In this case the TL intensity is given by

I ∝ T α exp

(
− E

kT

)
(1.17)

where α = constant.
From this equation one obtains

d ln(I )

dT
= α

T
+ E

kT 2
(1.18)

This equation can be compared to the equation obtained in the usual case where
the frequency factor s is independent of the temperature T:

d ln(I )

dT
= EIR

kT 2
(1.19)

where EIR is the activation energy obtained using the initial rise method.
By comparing equations (1.18) and (1.19) one obtains the actual activation

energy E :

E = EIR − αkT . (1.20)

Equation (1.20) provides the correct value of E within a few percent, for the case
where the frequency factor s depends on the temperature T.

It is pointed out that if the resolution of the TL glow peak is poor due to the
presence of nearby overlapping peaks, the initial rise method is not applicable.
Such a situation is depicted in Figure 1.10, which shows two different glow peaks,
with the second one containing a shoulder on its ascending part. In cases such as
the one shown in Figure 1.10, one must attempt to separate the composite TL glow
curve into its constituent components before attempting to apply the initial rise
method.

Several methods have been suggested in the literature for applying the initial
rise method to composite TL glow curves.

The first method involves a thermal cleaning technique [6]. The sample is heated
beyond the maximum of the first TL peak, is subsequently cooled to a temperature
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Figure 1.10. Example of overlapping TL glow peaks in which the initial rise method
may fail.

value where the luminescence is negligible, and subsequently reheated beyond the
maximum of the next peak and cooled again. The procedure is repeated for all
the peaks. This method should produce clean initial rise curves for each peak; in
practice, a complete thermal cleaning of the TL peaks is not assured and the E
values may not be very accurate.

The thermal cleaning technique and initial rise method of analysis can be applied
in a more systematic manner by using many heating and cooling cycles, each time
to a slightly higher temperature Tstop, to yield a series of I (T ) graphs to be analyzed
using the initial rise method. By graphing the activation energies E obtained by
this process as a function of Tstop, one obtains usually a “staircase” type of graph,
termed the “E − Tstop graph”. The method can be best applied when the TL peaks
are sufficiently separated in temperature.

An alternative method was introduced by McKeever [7]: an irradiated sample is
heated at a linear rate up to a temperature Tstop corresponding to a point on the low
temperature tail of the first peak. The sample is then cooled and reheated to obtain
all of the glow curve, and the temperature of maximum TL intensity (TM) is noted.
The procedure is repeated several times by re-irradiating the same sample, or by
using a different irradiated sample, using each time a slightly higher value of Tstop

(each time Tstop is increased by 2 to 5◦C). A plot of TM versus Tstop shows a stepwise
curve with each “flat” region corresponding to a different activation energy E.

The method is applicable to single or overlapping first- and second-order peaks,
in which case a smooth staircase structure is produced. When closely overlapping
peaks or a quasi-continuous distribution of TL peaks is present, a smooth line
of slope about 1 is produced for both first- and second-order cases. This method
allows the estimation of the number and position of individual peaks within a
complex glow curve. The trapping parameters can then be estimated by applying
a computerized curve-fitting procedure to the glow curve.
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Figure 1.11. Calculation of the area n(T ) in the whole glow peak—area measurement
method.

A more accurate but also experimentally very demanding technique, called the
fractional glow (FG) method, has been introduced by Gobrecht and Hofmann [8].
In this case the heating and cooling are done in small temperature intervals. The
activation energy E is calculated for each heating and cooling cycle from the ln(I )
versus 1/kT plot.

It is noted that the initial rise method of analysis may be affected by the presence
of the phenomenon of thermal quenching, which is discussed in Chapter 5 of this
book.

Methods of Analysis Employing the Whole TL Glow Curve

These methods are known as “area methods” or “whole glow peak” methods of
analysis, and are based on the measurement of the integral under a glow peak; they
can be applied when a well-isolated and clean peak is available.

The value of the integral n(T ) of the TL intensity over a certain temperature
region can be estimated by the area under the glow curve from a given temperature
T0 in the initial rise region, up to the final temperature Tf at the end of the glow
peak, as shown in Figure 1.11.

n =
∫ tf

t0

I dt = 1

β

∫ Tf

T0

I dT . (1.21)

Assuming first-order kinetics, and by substituting the Randall–Wilkins relations
(1.2) leads to

ln

[
I∫ Tf

T I dT

]
= ln

s

β
− E

kT
. (1.22)
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This equation shows that in the case of first-order kinetics the term ln(I/n(T )) is
a linear function of 1/kT , with a slope −E and an intercept equal to ln(s/β).

May and Partridge [3] and Muntoni et al [9] proposed the same method in the
case of general order kinetics. In this case the equation is

ln

(
I

nb

)
= ln

s ′

β
− E

kT
, (1.23)

which is graphically processed by plotting ln(I/nb) versus 1/kT .
If the kinetic order b is known, one can obtain a broad range of temperatures

in which the curve is a straight line. When the kinetic order is unknown, several
lines are drawn with various values of b and the best straight line is chosen.

Peak Position Methods of Analysis

These methods fall under two broad categories, estimation methods based on the
location of maximum TL intensity TM, and methods which employ variable heating
rates during measurement of the TL glow peaks.

Methods of Analysis Based on the Temperature
at the Maximum

Randall and Wilkins [1] did not solve the first-order equation, but they considered
the maximum temperature of the TL glow peak as corresponding to a temperature
slightly below that in which the probability of an electron escaping from the trap is
equal to unity. These authors found a very simple expression for E, using a value
of s = 2.9 × 109 s−1:

E = 25kTM. (1.24)

Urbach [10] gave a similar relation using s = 109 s−1:

E = TM

500
= 23kTM. (1.25)

The numerical factors in both equations (1.24) and (1.25) are dependent upon the
s value, and hence the values of E are only approximate. These equations can be
used only as a first approximation of the E-values.

Methods of Analysis Based on Various Heating Rates

When the linear heating rate β changes, the temperature TM of the maximum TL
intensity of the peak also changes: faster heating rates produce a shift in temperature
toward higher values of TM. This effect is shown in Figure 1.12.

Bohum [11], Porfianovitch [12] and Booth [13] proposed a method of calculating
E based on two different heating rates for a first-order peak. Considering the
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Figure 1.12. The change in the temperature TM of maximum intensity with the heating
rate.

maximum condition equation (1.8) and using two different heating rates, one
obtains

E = k
TM1TM2

TM1 − TM2
ln

[
β1

β2

(
TM2

TM1

)2
]

(1.26)

If TM can be measured within an accuracy of 1◦C, this method yields E within an
accuracy of 5%.

In a slightly different method, Hoogenstraaten [14], starting from the first-order
equation, suggested the use of several heating rates to obtain the following linear
relation:

ln

(
T 2

M

β

)
= E

kTM
+ ln

(
E

sk

)
. (1.27)

The resultant plot of ln(T 2
M/β) versus 1/kTM should yield a straight line with slope

E and an intercept ln(E/sk).
Chen and Winer [15] reported a method which uses an approximation for the

integral appearing in the general-order expression of I (T ), obtaining the following
equation:

ln

[
I b−1
M

(
T 2

M

β

)b
]

= E

kTM
+ c (1.28)

where c = constant.
By means of this equation it is possible to evaluate the quantity on the left side

for different values of b, and to obtain a set of graphs as a function of 1/kTM.
The value of b for which the graph best approximates linearity is found, and the
graphs are fitted by a straight line whose slope is E . The method is valid for general
heating rates, i.e. the heating rate β does not need to be constant.
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For the case of second-order kinetics the above equation becomes

ln

[
IM

(
T 2

M

β

)2
]

= E

kTM
+ c. (1.29)

This method is useful only when b is appreciably different from unity, since for
b = 1 the temperature TM of maximum TL intensity is independent of the initial
concentration n0 of trapped electrons.

Chen and Winer [15] used the condition of maximum emission and the integral
approximation, and they obtained(

β

T 2
M

)
∼= exp

(
− E

kTM

)(
ks

E

)
[1 + (b − 1) �M] (1.30)

where �M = 2kTM/E . The quantity [1 + (b − 1)�M] is close to unity and can be
considered a constant, so that the plot of ln(β/T 2

M) versus 1/kTM should yield a
straight line of slope −E .

A different method that uses two heating rates was proposed in [16]. It is analo-
gous to the Booth method, which is strictly valid for a first-order peak, but in this
case it is applied to a non-first-order TL peak and it is based on the variation of
IM with the heating rate β, which is much faster than the variation of TM with β.
Using the general-order expression one obtains

E = kTm1Tm2

Tm1 − Tm2
ln

Im1

Im2
. (1.31)

The maximum systematic error in the activation energy E when using equation
(1.31) is less than 1% for any order of kinetics (1.1 ≤ b ≤ 2.5).

Chen and Winer [15] showed that in the case of a temperature-dependent pre-
exponential factor s (s proportional to T α), the graph of ln(T 2

M/β) versus 1/kTM

should yield a straight line of slope E + αkTM instead of the actual activation
energy E .

It must be emphasized that during application of the variable heating rate meth-
ods of analysis, it is essential to have good thermal contact between the heating
element in the TL apparatus and the sample. An example of correcting experimen-
tal data for temperature lag effects is given in Chapter 5.

Isothermal Decay Method

In this section a method of analysis that does not employ any particular heating
cycle will be discussed. The usual experimental procedure in an isothermal decay
experiment consists of quickly heating the sample after irradiation to a specific
temperature, and keeping the sample at this temperature for a given time interval.
The light output (also termed phosphorescence decay) is measured as a function of
time, and so it is possible to evaluate the decay rate of trapped electrons. Graphs of
the TL intensity versus time t at constant temperature are called isothermal decay
curves.
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The method of isothermal decay analysis was illustrated for first-order kinetics
by Garlick and Gibson [2]. The isothermal decay curves at a temperature Ti for TL
peaks following first-order kinetics are exponential graphs as a function of time,
given by

I = I0 exp

(
−s exp

(
− E

kTi

)
t

)
. (1.32)

This equation indicates that a graph of ln(I) versus time will be linear for first-order
kinetics peaks, and that the slope of the line will be

slope = mi = −s exp

(
− E

kTi

)
. (1.33)

By taking the natural logarithm of this equation we obtain

ln(|slope|) = ln s − E

kTi
. (1.34)

The graph of the ln(|slope|) versus 1/kT should be a straight line with slope = −E
and a Y-intercept equal to lns.

If the experiment is carried out with two different constant temperatures, T1 and
T2, two different slopes m1 and m2 are obtained and equation (1.34) gives

ln

(
m1

m2

)
= E

k

(
1

T2
− 1

T1

)
. (1.35)

This equation can be used to calculate E .
The application of isothermal decay analysis for general-order kinetics has been

suggested in [3], [17]. By using isothermal analysis in this case it is also possible to
find the order of kinetics b. By keeping the temperature constant and by integrating
the general-order equation (1.4) with respect to time t, one gets

It = I0

[
1 + s ′nb−1

0 (b − 1)t exp

(
− E

kT

)] b
1−b

(1.36)

where

I0 = s ′nb
0 exp

(
− E

kT

)
. (1.37)

I0 and n0 are, respectively, the initial TL intensity and the initial concentration of
trapped charges and It is the TL intensity at time t . By rearranging equation (1.36)
we obtain (

It

I0

) 1−b
b

=
[

1 + s ′nb−1
0 (b − 1)t exp

(
− E

kT

)]
(1.38)

This equation indicates that a plot of the quantity (It/I0)
1−b

b versus time should be
a straight line when a suitable value of b is found.

Using different isothermal decay temperatures, a set of straight lines of slopes

m = s ′nb−1
0 (b − 1) exp

(
− E

kT

)
(1.39)
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is obtained and the activation energy E can be determined from the plot of ln(m)
versus 1/kT .

Alternatively, b can be determined using the expression of May and Partridge
[3]:

ln

(
dI

dt

)
= ln C + 2b − 1

b
ln(I ). (1.40)

The plot of ln(dI/dt) versus ln(I ) gives a straight line having a slope m =
(2b − 1)/b from which b can be evaluated.

Thermoluminescence materials may exhibit isothermal decay behaviors which
do not follow the expressions for first-, second- and general-order kinetics. They
may follow instead a decay law of the form t−α . For example, a commonly observed
decay law is a 1/t-law, which has been attributed to a uniform distribution of
energies [18]. Another well-known example of such a law, which is temperature
independent, has been observed in calcite and has been interpreted as due to a
quantum mechanical tunneling effect [19].

Methods of Analysis Based on the Shape of the Glow Curve

A popular method of analyzing a TL glow curve in order to ascertain the kinetic
parameters E, s, and b is by considering the shape or geometrical properties of
the peak. TL glow peaks corresponding to second-order kinetics are characterised
by an almost symmetrical shape, whereas first-order peaks are asymmetrical. One
defines the following parameters shown in Figure 1.13:

� TM is the peak temperature at the maximum
� T1 and T2 are, respectively, the temperatures on either side of TM, corresponding

to half intensity
� τ = TM − T1 is the half-width at the low temperature side of the peak
� δ = T2 − TM is the half-width toward the fall-off side of the glow peak
� ω = T2 − T1 is the total half-width
� µ = δ/ω is the so-called geometrical shape or symmetry factor.

T1 T2TM

ω

τ δ

IM

IM

2

Figure 1.13. The geometrical shape quantities τ, δ, ω.
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Grossweiner was the first to use the shape of the glow peak to calculate the trap
depth E [20]. His method is based on the temperature at maximum intensity TM

and on the low temperature at half intensity, T1. By assuming first-order kinetics
he obtained

E = 1.51k
TMT1

TM − T1
. (1.41)

This expression was empirically modified by Chen [21] with a factor of 1.41
replacing Grossweiner’s factor of 1.51, in order to obtain a better accuracy in the
calculation of E .

Lushchik [22] also proposed a method based on the shape of the TL glow peak
for both first- and second-order kinetics. Introducing the parameter δ defined above,
a glow peak can be approximated by a triangle.

For the case of first-order kinetics, the expression for E is

E = kT 2
M

δ
. (1.42)

The Lushchik formula for second-order kinetics is [20]

E = 2kT 2
M

δ
. (1.43)

Chen [21] modified the two previous equations in order to get a better accuracy
in the E value, by multiplying equation (1.42) by 0.978, and equation (1.43) by
0.853.

Halperin and Braner [23] gave a different approach by using both T1 and T2 on
the glow curve:

E = 1.72

τ
kT 2

M (1 − 2.58�M) for first order (1.44)

E = 2

τ
kT 2

M (1 − 3�M) for second order (1.45)

with �M = 2kTM

E
.

The equations of Halperin and Braner require an iterative process in order to
find E , due to the presence of �M which also depends on E . To overcome this
difficulty, a new approximating method was proposed by Chen [21] who obtained
the expressions

E = 2kTM

(
1.25

TM

ω
− 1

)
for first order. (1.46)

E = 2kTM

(
1.76

TM

ω
− 1

)
for second order. (1.47)

Chen [24] also derived general expressions for evaluating E . His method is useful
for a broad range of energies ranging between 0.1 eV and 2.0 eV, and for values
of the pre-exponential factors between 105 s−1 and 1023 s−1. Furthermore, Chen’s
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Figure 1.14. Relationship between the kinetic order b and the geometrical factors µ = δ/ω

and γ = δ/τ .

method does not make use of any iterative procedures and does not require knowl-
edge of the kinetic order, which is found by using the symmetry factor µ from the
peak shape. The equations can be summed up as

Eα = cα

(
kT 2

M

α

)
− bα(2kTM) (1.48)

where α is τ , δ, or ω. The values of cα and bα are summarized as below:

cτ = 1.510 + 3.0(µ − 0.42) bτ = 1.58 + 4.2(µ − 0.42)

cδ = 0.976 + 7.3(µ − 0.42) bδ = 0

cω = 2.52 + 10.2 (µ − 0.42) bω = 1, (1.49)

with µ = 0.42 for the case of first-order TL glow peaks, and µ = 0.52 for the case
of second-order peaks.

Chen [24] calculated a graph of µ ranging from 0.36 to 0.55, for values of b
between 0.7 and 2.5, which can be used for the evaluation of b from a measured µ

as shown in Figure 1.14. Another graph has been proposed by Balarin [25] which
gives the kinetics order as a function of the parameter γ = δ/τ , and which is also
shown in Figure 1.14.

Curve Fitting Methods

The Series Approximation to the TL Integrals

The integral appearing in expression (1.5) for first-order TL glow peaks is

F(T, E) =
∫ T

T0

exp(−E/kT ′)dT ′. (1.50)
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This integral cannot be solved analytically, but can be found by successive inte-
gration by parts to be equal to [26]

F(T, E) = T exp(−E/kT )
∞∑

n=1

(
kT

E

)n

(−1)nn! (1.51)

By keeping only the first two terms in this approximation, the integral can be
approximated by

F(T, E) = kT 2

E
exp(−E/kT )

(
1 − 2kT

E

)
(1.52)

By using this approximation to the integral and by further using the condition for
the temperature TM of the maximum TL intensity equation (1.8), the following
expression can be derived for the TL intensity of first-order TL glow curves [26]:

I (T ) = IM exp

[
1 + E

kT

T − TM

TM
− T 2

T 2
M

(
1 − 2kTM

E

)

× exp

(
E

kT

T − TM

TM

)
− 2kTM

E

]
(1.53)

This equation will be referred to in the rest of this book as the Kitis et al equation
for first-order kinetics, and will be used in Chapter 2 to analyze the first-order TL
glow curves. The advantage of using this equation to approximate equation (1.5)
is that it involves two quantities which are measured experimentally: TM and IM.
The activation energy E can be treated as an adjustable parameter.

By using the series approximation in equations (1.6) and (1.7), the following
expressions can be derived in a similar manner for second- and general-order TL
glow curves [26]:

I (T ) = 4IM exp

(
E

kT

T − TM

TM

)

×
[

T 2

T 2
M

(
1 − 2kT

E

)
exp

(
E

kT

T − TM

TM

)
+ 1 + 2kTM

E

]−2

(1.54)

I (T ) = IMb
b

b−1 exp

(
E

kT

T − TM

TM

)[
1 + (b − 1)

2kTM

E
+ (b − 1)

×
(

1 − 2kT

E

)(
T 2

T 2
M

exp

(
E

kT

T − TM

TM

))] −b
b−1

(1.55)

These expressions will be used in Chapter 2 to evaluate the activation energy E
for general-order kinetics by using a curve fitting procedure.
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Computerized Curve Fitting Procedures

The subject of computerized curve fitting analysis became very popular during
the last decade with the development of sophisticated glow curve deconvolution
techniques (GCD). Some simple examples of curve fitting methods that can be
applied to single TL glow peaks are given in Chapters 2 and 3.

A detailed presentation of this important subject is beyond the scope of this
book, and for detailed reviews the reader is referred to the annotated bibliography
at the end of this book. Only a few general relevant comments will be presented
in this section.

Chen and McKeever [19] have summarized the curve fitting procedures com-
monly used to analyze multipeak TL glow curves. They emphasize the primary
importance of using a carefully measured TL glow curve, since any errors in mea-
suring the glow curve can lead to the wrong results in the computerized procedures.
Such procedures are more likely to yield accurate results in the case of linear su-
perposition of first-order Randall–Wilkins-type mathematical expressions. These
authors concluded that curve fitting methods using a particular theoretical model
should be applied with the utmost care, and extreme caution should be exercised
when drawing conclusions from good curve fitting results.
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2
Analysis of Thermoluminescence Data

Introduction

In this chapter, the analytical expressions presented in Chapter 1 will be used in
several detailed numerical exercises. A variety of methods will be used to analyze
the same TL glow-curve data, and the results from the different methods will be
compared with each other.

Chen and McKeever [1] have provided an excellent summary of how to system-
atically analyze TL glow curves, by following these steps:

(1) Ensure that the temperature measurement during the TL glow peak is accu-
rate, by optimizing the thermal contact between the sample and the heating
element.

(2) Eliminate the possibility of nearby overlapping peaks, by using a thermal
cleaning process. Thermal quenching effects must also be accounted for, if
present, and corrected using theoretical considerations. The study of emission
spectra during the TL glow curve provides also valuable information about
the TL process.

(3) Characterize the isolated glow peak by evaluating the three parameters E, s,
and b using several of the standard methods of analysis. Methods utilizing the
whole glow peak should be preferred over methods based on only a few points
on the glow curve. It is essential to carry out this analysis for different trap
filling, by studying, for example, samples irradiated at different doses.

(4) It is important to get good agreement between several methods of analysis.
Any discrepancies should be examined in more detail.

(5) In order to resolve discrepancies and obtain more information about the pro-
cesses involved, the analysis should be carried out for glow peaks measured
under different heating rates, various irradiation doses, powdered and bulk
samples, etc.

(6) Additional information should be obtained using experimental methods based
on different physical processes, such as isothermal decay techniques, dose-
dependence measurements, excitation and emission spectra, and simultaneous
TL-TSC (thermally stimulated current) measurements.

23
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Exercises 2.1–2.3 contain a detailed example of analyzing first-order TL data
using three different methods: peak shape methods, variable heating rate methods,
and isothermal decay techniques. Similarly, examples of analyzing second- and
general-order TL glow curves are given in Exercises 2.4–2.6. Although the material
in these exercises may seem to be repeated at times, we have chosen to provide
complete and self-contained exercises for easy reference, instead of constantly
referring the reader to previous sections of the book.

Extra attention has been paid to include an error analysis of the data whenever
possible, because there seems to be a general lack of such detailed examples
of error analysis in the TL literature. Exercises 2.7 and 2.9 present examples
of the effect of experimental background on the accuracy of the initial rise (IR)
method, and of the propagation of errors in the peak shape methods of analysis.
Exercise 2.8 is a simulated study of the well-known “15% TL intensity” rule of
thumb which is commonly used in experimental TL work.

Exercise 2.1: Analysis of a First-Order TL Peak

You are given the experimental data in Table 2.1 and Figure 2.1, for a TL glow
curve (TL versus temperature T), and a known heating rate β = 1 K s−1.

(a) Apply the IR method to find the activation energy E. The value for E obtained
using the IR method is assumed to be independent of the order of kinetics.

(b) Apply Chen’s peak shape equations to find the activation energy E , using the
shape parameters τ, δ, and ω. By assuming that the experimental error in
the quantities τ, δ, and ω is �T = 2 K, estimate the error �µ in the value
of the geometrical shape factor µ.

Show that the values of µ and �µ are consistent with the assumption that
the TL glow curve obeys first-order kinetics.

(c) By using the experimental data, apply the whole glow-peak method to find E,
s, and the order of kinetics b. Graph ln(I/nb) versus 1/T for various values of

Table 2.1. The experimental data for a first-order TL glow curve

T(C) TLexperimental T(C) TLexperimental

20 7.56 × 104 85 8.07 × 107

25 1.28 × 105 90 1.20 × 108

30 2.44 × 105 95 1.71 × 108

35 4.54 × 105 100 2.31 × 108

40 8.29 × 105 105 2.90 × 108

45 1.49 × 106 110 3.26 × 108

50 2.61 × 106 115 3.15 × 108

55 4.51 × 106 120 2.43 × 108

60 7.65 × 106 125 1.34 × 108

65 1.27 × 107 130 4.49 × 107

70 2.09 × 107 135 6.75 × 106

75 3.35 × 107 140 2.57 × 105

80 5.27 × 107 145 2.73 × 103



Introduction 25
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glow curve.

b between 0.8 and 1.2, and find the correct value of b that gives a linear graph.
From the slope and intercept of the graph ln(I/nb) versus 1/T calculate E and s.
Verify that the given TL glow curve corresponds to first-order kinetics.

(d) Using the experimental values of IM (maximum TL intensity) and TM

(temperature of maximum intensity), do a curve fitting to the given numerical
data. Use the following analytical equation developed by Kitis et al for
first-order kinetic peaks [2]. The expression relies on two experimentally
measured quantities, IM and TM:

I (T ) = IM exp

[
1 + E

kT
· T − TM

TM
− T 2

T 2
M

×
(

1 − 2kTM

E

)
exp

(
E

kT
· T − TM

TM

)
− 2kTM

E

]
. (2.1)

The activation parameter E can be treated as an adjustable parameter in this
expression. Graph both the experimental data and the calculated first-order
TL glow curve on the same graph and compare them. Calculate the figure of
merit (FOM) of the TL glow curve.

(e) Can it be concluded for this material that this TL peak will always follow
first-order kinetics?

Solution

(a) The IR method. We calculate in Table 2.2. the values of 1/kT (T = temperature
in K, k = Boltzman constant) and the values of the natural logarithm of the TL
data, ln(TL) in a spreadsheet.

We next graph the ln(TL) versus 1/kT data as shown in Figure 2.2.
A very important consideration when applying the IR method is deciding how

many data points to use for the regression analysis of the graph ln(TL) versus
1/kT . We obtain the activation energy E by graphing ln(TL) versus 1/kT for
the initial part of the data. By performing a regression line analysis using the first
16 data points up to a temperature of 100◦C, we obtain the graph in Figure 2.3.
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Table 2.2. Calculated values of 1/kT and the values of ln(TL) for first-order glow curve

T (C) TLexperimental 1/kT (eV−1) ln(TL) T(C) TLexperimental 1/kT (eV−1) ln(TL)

20 7.56 × 104 39.47 11.23 85 8.07 × 107 32.42 18.11
25 1.28 × 105 38.94 11.66 90 1.20 × 108 31.97 18.60
30 2.44 × 105 38.30 12.41 95 1.71 × 108 31.54 18.86
35 4.54 × 105 37.68 12.93 100 2.31 × 108 31.11 19.26
40 8.29 × 105 37.08 13.63 105 2.90 × 108 30.70 19.38
45 1.49 × 106 36.49 14.11 110 3.26 × 108 30.30 19.60
50 2.61 × 106 35.93 14.78 115 3.15 × 108 29.91 19.47
55 4.51 × 106 35.38 15.22 120 2.43 × 108 29.53 19.31
60 7.65 × 106 34.85 15.85 125 1.34 × 108 29.16 18.62
65 1.27 × 107 34.33 16.26 130 4.49 × 107 28.80 17.62
70 2.09 × 107 33.83 16.85 135 6.75 × 106 28.44 15.62
75 3.35 × 107 33.35 17.23 140 2.57 × 105 28.10 12.45
80 5.27 × 107 32.88 17.78 145 2.73 × 103 27.76 7.91

When the first 16 data points are used (intensity up to a temperature of 100◦C,
corresponding to a TL intensity equal to approximately 70% of the maximum TL
intensity), the value of the activation energy E = 0.976 ± 0.004 eV is obtained
with a value of the regression coefficient R2 = 0.9997.

By performing a similar regression line analysis using only the first 11 data
points up to a temperature of 75◦C, we obtain the graph in Figure 2.4.

When the first 11 data points are used (up to a temperature of 75◦C, correspond-
ing to a TL intensity equal to approximately 9% of the maximum TL intensity),
a value of E = 0.986 + 0.003 eV is obtained, with an R2 value of 0.9997. Both
graphs in Figures 2.3 and 2.4 give an equally good fit with the same value of
R2.
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Figure 2.2. The IR method applied to the first-order TL glow curve.
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Figure 2.3. Applying the IR method to the first 16 experimental points.

The example above shows that the value of the activation energy E obtained
from the IR method by doing a regression analysis of the data is very sensitive
to the number of points used in the analysis. Exercise 2.7 is an example of the
influence of the experimental background on the results of the IR method.

As a general practical rule, application of the IR technique should be restricted
to the portion of the TL glow curve corresponding to about 5–10% of the maximum
TL intensity. Exercise 2.8 is a detailed simulation of this so-called “15% intensity”
rule of thumb commonly used in the IR method.

(b) Chen’s peak shape equations. From the given experimental data for a TL
glow peak, we can estimate the three temperatures required for Chen’s peak shape
equations:

T1 = 92◦C = 365 K, T2 = 122◦C = 395 K, TM = 110◦C = 383 K,
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Figure 2.4. Applying the IR method to the first 11 experimental points.
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where

TM = peak temperature at the maximum TL intensity,

T1, T2 = temperatures on either side of TM, corresponding to the half-maximum

intensity.

We first calculate the quantities µ, τ, δ, and ω:

τ = TM − T1 = 18 K,

δ = T2 − TM = 12 K,

ω = T2 − T1 = 30 K,

µ = δ/ω = 12/30 = 0.40.

Using the value of τ :

E = 1.51kT 2
M

τ
− 1.58(2kTM) = 1.060 − 0.104 = 0.956 eV.

Using the value of δ:

E = 0.976kT 2
M

δ
= 1.028 eV.

Using the value of ω:

E = 2.52kT 2
M

ω
− 2kTM = 1.062 − 0.066 = 0.996 eV.

The value of the geometrical shape factor µ = 0.40 is very close to the value
expected for a first-order TL peak which is equal to µ = δ/ω = 0.42.

Using the known experimental error �T = 2 K or the quantities τ, δ, and ω,

we can do an error analysis of the values of µ. By taking the logarithmic derivative
of the equation µ = δ/ω, we find the relative error �µ/µ:

ln µ = ln δ − ln ω∣∣∣∣�µ

µ

∣∣∣∣ =
∣∣∣∣�δ

δ

∣∣∣∣+
∣∣∣∣�ω

ω

∣∣∣∣ =
∣∣∣∣ 2

12

∣∣∣∣+
∣∣∣∣ 2
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∣∣∣∣ = 0.167 + 0.067 = 0.234.

This leads to a value of µ ± �µ = 0.40 ± 0.09. This value is consistent with the
assumption of first-order kinetics.

In order to estimate the error �E in the activation energy E , we take the loga-
rithmic derivative of the equation E = 0.976kT 2

M/δ:∣∣∣∣�E

E

∣∣∣∣ = 2

∣∣∣∣�TM

TM

∣∣∣∣+
∣∣∣∣�δ

δ

∣∣∣∣ = 2

∣∣∣∣ 2

383

∣∣∣∣+
∣∣∣∣ 2

12

∣∣∣∣ = 0.010 + 0.167 = 0.177.

This gives a rather large error in �E = 0.177E = 0.177(1.028) = 0.18 eV.
A much more detailed error analysis of the peak shape equations is given in

Exercise 2.9.
(c) The whole glow-peak method. In the whole glow-peak area method, the area

n(T ) under the glow peak is calculated starting at temperature T , to the maximum
temperature available, as shown in Figure 2.5. In the data shown in Table 2.1, the
maximum available temperature is 145◦C.
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Figure 2.5. Applying the whole
glow-peak method.

The area n(T ) under the glow peak can be approximated by using the sum of all
the data points from any temperature T upwards, up to the maximum temperature
available in the data. According to equation (1.21), this sum must be multiplied
by the temperature interval �T and must be also divided by the heating rate β. In
our case, we are given �T = 5 K and β = 1 K s−1.

In the spreadsheet example shown in Table 2.3, column C labeled “Area” is
calculated using the command:

Cell C1 = sum(B1:B26)∗5/1,

Cell C2 = sum(B2:B26)∗5/1, etc.

Once the “Area” column is calculated, column D labeled “ln(TL/Area)” can be
calculated by using the command:

Cell D1 = ln(B1/C1),

Cell D2 = ln(B2/C2), etc.

Additional columns are created in the spreadsheet for the quantities of ln(TL/Areab)
and for several values of the kinetic order b = 1.2, 1.1, 1.0, and 0.9. Not all
columns are shown for the sake of saving space.

In Figure 2.6, graphs of ln(TL/Areab) versus 1/kT are drawn for several values
of the kinetic order b = 1.2, 1.1, 1.0, and 0.9.

The graphs in Figure 2.6 corresponding to b = 0.9, 1.0, and 1.2 clearly deviate
from straight lines at low values of 1/kT , and must be rejected.

The b = 1.1 graph has the highest value of R2 and therefore gives the best fit.
The data leads us to conclude that the given TL glow peak is described by b = 1.1
kinetics. Due to experimental uncertainties in the data and also due to the fact that
only 27 data points are available on the TL glow curve, we can say that to a good
approximation this can be considered a first-order kinetics TL peak. A regression
line is fitted to the best line corresponding to b = 1.1, to obtain the best slope and
the best intercept, as shown in Figure 2.7:

Best intercept = 24.579 ± 0.11,

Best slope E = 0.979 ± 0.003 eV.
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Table 2.3. The quantities ln(I/n) and 1/kT for first-order glow curve

A B C D E

T(C) TLexperimental Area ln(TL/Area) 1/kT ln(TL/Area1.1)

1 20 7.56 × 104 1.05 × 1010 −11.84 39.61 −14.15
2 25 1.28 × 105 1.05 × 1010 −11.31 38.94 −13.62
3 30 2.44 × 105 1.05 × 1010 −10.67 38.30 −12.98
4 35 4.54 × 105 1.05 × 1010 −10.05 37.68 −12.35
5 40 8.29 × 105 1.05 × 1010 −9.45 37.08 −11.75
6 45 1.49 × 106 1.05 × 1010 −8.86 36.49 −11.17
7 50 2.61 × 106 1.05 × 1010 −8.30 35.93 −10.61
8 55 4.51 × 106 1.05 × 1010 −7.75 35.38 −10.06
9 60 7.65 × 106 1.04 × 1010 −7.22 34.85 −9.53

10 65 1.27 × 107 1.04 × 1010 −6.71 34.33 −9.01
11 70 2.09 × 107 1.03 × 1010 −6.21 33.83 −8.51
12 75 3.35 × 107 1.02 × 1010 −5.72 33.35 −8.03
13 80 5.27 × 107 1.01 × 1010 −5.25 32.88 −7.56
14 85 8.07 × 107 9.81 × 109 −4.80 32.42 −7.10
15 90 1.20 × 108 9.41 × 109 −4.36 31.97 −6.66
16 95 1.71 × 108 8.81 × 109 −3.94 31.54 −6.23
17 100 2.31 × 108 7.95 × 109 −3.54 31.11 −5.82
18 105 2.90 × 108 6.80 × 109 −3.16 30.70 −5.42
19 110 3.26 × 108 5.35 × 109 −2.80 30.30 −5.04
20 115 3.15 × 108 3.72 × 109 −2.47 29.91 −4.67
21 120 2.43 × 108 2.15 × 109 −2.18 29.53 −4.33
22 125 1.34 × 108 9.31 × 108 −1.94 29.16 −4.00
23 130 4.49 × 107 2.60 × 108 −1.75 28.80 −3.69
24 135 6.75 × 106 3.50 × 107 −1.65 28.44 −3.38
25 140 2.57 × 105 1.30 × 106 −1.62 28.10 −3.03
26 145 2.73 × 103
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Figure 2.6. Applying the whole glow-peak method for different kinetic parameters b.
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Figure 2.7. The value of b = 1.1 provides the best least squares fit in the whole glow-curve
method of analysis.

This value of E is in reasonably good agreement with the value of E = 0.986 ±
0.003 eV obtained from the IR method. The frequency factor s is calculated from
the y-intercept of the graph in Figure 2.7:

s = βe(intercept) = 1e24.579 = 4.7 × 1010 s−1.

The errors �s can be calculated from the uncertainties in the intercept of the
regression line as follows:

� (intercept) = ∂(ln s)

∂s
�s = �s

s
= 0.11.

This gives a typical large 11% error for the value of the frequency factor, with the
final value of s reported as s = (4.7 ± 0.5) × 1010 s−1.

(d) Glow-curve fitting using the Kitis et al equation. The given TL data
can be analyzed by using the following analytical equation developed by Kitis
et al [2] for TL peaks following first-order kinetics. The expression relies on two
experimentally measured quantities, IM (the maximum TL intensity) and TM (the
temperature corresponding to the maximum TL intensity):

I (T ) = IM exp

[
1 + E

kT
· T − TM

TM
− T 2

T 2
M

×
(

1 − 2kTM

E

)
exp

(
E

kT
· T − TM

TM

)
− 2kTM

E

]
. (2.2)

For the given experimental data, TM = 384 K and IM = 3.26 × 108. By treating
the activation parameter E as an adjustable parameter, we calculate several graphs
with values of E = 0.9, 1.0, 1.1, and 1.2 eV. The calculations can be set up easily
in a spreadsheet as shown in Table 2.4. Only the first 5 rows are shown for the sake
of brevity.
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Table 2.4. Calculations for glow-curve fitting for several E values

A B C D E F G H I J K L

I (T ) I (T ) I (T ) I (T )
1 T (K) TLexperimental E = 1 eV E = 0.9 eV E = 1.1 eV E = 1.2 eV
2 E = 1 eV 0.9 1.1 1.2
3 293 7.56 × 104 6.96 × 104 1.77 × 105 2.74 × 104 1.08 × 104

4 298 1.28 × 105 1.35 × 105 3.21 × 105 5.69 × 104 2.39 × 104

5 303 2.44 × 105 2.57 × 105 5.72 × 105 1.15 × 105 5.17 × 104 TM = 384 K
6 308 4.54 × 105 4.79 × 105 1.00 × 106 2.28 × 105 1.09 × 105 IM = 3.26 × 108

7 313 8.29 × 105 8.74 × 105 1.72 × 106 4.43 × 105 2.24 × 105

Columns A and B contain the experimental data points for the TL glow curve,
while columns C–F contain the calculated data points using equation (2.2) for four
values of the energy parameter E (E = 0.9, 1.0, 1.1, and 1.2 eV).

The following expression is used to calculate the values of the fitted data in
column C, using equation (2.2) for first-order kinetics:

Cell C3 = $H$6∗EXP(1+$H$2/(0.00008617∗A3)
∗((A3-$H$5)/$H$5)-((A3∗A3)/($H$5∗$H$5))
∗(1-2∗0.00008617∗$H$5/$H$2)∗EXP($H$2/(0.00008617∗A3)
∗((A3-$H$5)/$H$5))-2∗0.00008617∗$H$5/$H$2).

This expression refers to cell A3 which contains the absolute temperature
T (K). Also, note that cell H2 in the spreadsheet contains the value of the energy
parameter E = 1.0 eV, cell H5 contains the value of the experimental para-
meter TM = 384 K, and cell H6 contains the value of the experimental maximum
height parameter IM = 3.26 × 108. The above spreadsheet expression refers to the
values contained in these cells by using the Excel commands $H$2, $H$5, $H$6,
correspondingly.

The user controls the value of the parameter E by changing the value in cell H2,
and the whole spreadsheet calculation is automatically updated.

The graphs calculated for E = 0.9, 1.0, 1.1, and 1.2 eV are shown in Figure 2.8.
It can be seen that when the value of E is too low (graph corresponding to

E = 0.9 eV), the calculated TL points lie above the experimental data. This
is also evident by inspection of the calculated I (T ) values in Table 2.4. On
the other hand, when the value of E is too high (graphs corresponding to
E = 1.1 and 1.2 eV), the calculated TL points lie clearly below the experimental
data.

This procedure is a simple example of a glow-curve fitting procedure, in which
we find the value of E that yields the best fit to experimental data obeying first-order
kinetics.

A more precise numerical method of performing the same fitting procedure is
by calculating the FOM for the graphs above. The FOM is defined as [2]

FOM =

∑
p

∣∣yexperimental − yfit

∣∣
∑

p
yfit

, (2.3)
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Figure 2.8. Calculated first-order TL glow peaks for different E-values.

where yexperimental and yfit represent the experimental TL intensity data and the
values of the fitting function, respectively. The summation extends over all the
available experimental points.

Table 2.5 shows an example of a FOM calculation as applied to the previous data.
Column A contains the experimental data points and columns B and C contain the
calculated data points using equation (2.2) for first-order kinetics, for two values
of the energy parameter E (E = 1.0 and 0.9 eV).

Columns E and F contain the calculation of the quantity |TLexperimental −
TLcalculated|, and cells E29 and F29 contain the calculated values of the FOM.
The expressions used in this example are

Cell E3 = ABS(A3 − B3)

Cell F3 = ABS(A3 − C3)

Cell E29 = SUM(E3:E27)/SUM(B3:B27)

Cell F29 = SUM(F3:F27)/SUM(C3:C27).

The FOM for the value of the parameter E = 1.0 eV is equal to 0.026 = 2.6%,
almost four times smaller than the FOM = 0.094 = 9.4% for the case E = 0.9 eV.

The frequency factor s can be calculated by using the value of E = 1.0 eV
and the temperature of maximum TL intensity TM = 384 K in equation (1.8) for
first-order kinetics:

s = βE

kT 2
M

exp

(
E

kTM

)
= (1)1

(8.617 × 10−5)(384)2
exp

(
1

(8.617 × 10−5)384

)
= 1.05 × 1012 s−1
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Table 2.5. Example of a FOM calculation for first-order glow curve

A B C D E F

TLexperimental I (T ) I (T ) |TLexperimental−I (t)| |TLexperimental−I (t)|
1 E = 1 eV E = 0.9 eV E = 1 eV E = 0.9 eV
2
3 7.56 × 104 6.96 × 104 1.77 × 105 6.01 × 103 1.07 × 105

4 1.28 × 105 1.35 × 105 3.21 × 105 6.83 × 103 1.86 × 105

5 2.44 × 105 2.57 × 105 5.72 × 105 1.30 × 104 3.15 × 105

6 4.54 × 105 4.79 × 105 1.00 × 106 2.42 × 104 5.23 × 105

7 8.29 × 105 8.74 × 105 1.72 × 106 4.41 × 104 8.46 × 105

8 1.49 × 106 1.56 × 106 2.90 × 106 7.88 × 104 1.34 × 106

9 2.61 × 106 2.75 × 106 4.82 × 106 1.38 × 105 2.07 × 106

10 4.51 × 106 4.75 × 106 7.87 × 106 2.38 × 105 3.13 × 106

11 7.65 × 106 8.05 × 106 1.26 × 107 4.02 × 105 4.59 × 106

12 1.27 × 107 1.34 × 107 2.00 × 107 6.64 × 105 6.56 × 106

13 2.09 × 107 2.19 × 107 3.10 × 107 1.07 × 106 9.05 × 106

14 3.35 × 107 3.52 × 107 4.72 × 107 1.68 × 106 1.20 × 107

15 5.27 × 107 5.52 × 107 7.03 × 107 2.55 × 106 1.51 × 107

16 8.07 × 107 8.44 × 107 1.02 × 108 3.67 × 106 1.77 × 107

17 1.20 × 108 1.25 × 108 1.44 × 108 4.93 × 106 1.89 × 107

18 1.71 × 108 1.77 × 108 1.94 × 108 5.92 × 106 1.74 × 107

19 2.31 × 108 2.37 × 108 2.49 × 108 5.84 × 106 1.25 × 107

20 2.90 × 108 2.93 × 108 2.98 × 108 3.62 × 106 5.24 × 106

21 3.26 × 108 3.25 × 108 3.25 × 108 1.16 × 106 1.79 × 105

22 3.15 × 108 3.08 × 108 3.12 × 108 6.59 × 106 3.52 × 106

23 2.43 × 108 2.35 × 108 2.51 × 108 7.99 × 106 1.66 × 107

24 1.34 × 108 1.32 × 108 1.61 × 108 2.81 × 106 2.91 × 107

25 4.49 × 107 4.79 × 107 7.50 × 107 3.03 × 106 2.70 × 107

26 6.75 × 106 9.60 × 106 2.29 × 107 2.85 × 106 1.34 × 107

27 2.57 × 105 8.39 × 105 4.00 × 106 5.83 × 105 3.16 × 106

28
29 FOM = 0.026 0.094

The resolution of the Kitis et al fitting method can be refined by repeating this
process of calculating the FOM for different values of E spaced much closer
together (e.g. E = 1.01, 1.00, 0.99, etc.) and finding the value of E that minimizes
the value of the FOM.

Finally, we summarize in Table 2.6 the results of the various methods for ana-
lyzing the given experimental data.

Table 2.6. Summary of the results of various analysis methods for first-order glow curve

E(eV) s(s−1) Comments below

Initial rise method 0.986 ± 0.003 [1, 5]
Chen’s τ -method 0.956 [2, 5]
Chen’s δ-method 1.03 ± 0.18 [2, 5]
Chen’s ω-method 0.996 [2, 5]
Whole glow-peak method 0.979 ± 0.003 (4.7 ± 0.5) × 1010 [3]
Fitting method using Kitis et al 1.1 ± 0.1 1.05 × 1012 [4, 5]

equation (equation (2.21))
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Comments on the Results of Exercise 2.1

1. The value of E obtained from the IR method is independent of the kinetics of
the TL glow peak.

The presence of thermal quenching affects the value of E obtained in the IR
method. A possible correction method for the value of E is given in Chapter 5.

It is best to use the IR method with samples irradiated at low doses, i.e.
samples away from saturation conditions [3].

The test dose used to obtain the TL glow curve is our “probe” of the material,
and must always be as small as possible, so that on one hand it does not disturb
the system and on the other it can give us a statistically satisfactory signal.
Typical values of test doses may be in the mGy or µGy range.

2. The value of E obtained with peak shape methods can be influenced by the
presence of smaller satellite peaks.

3. The whole glow-curve method yields information on both E and the pre-
exponential factor s. By using the values of E, s, and n0 (obtained from the
area under the glow curve), it is possible to compare directly the experimental
data with the TL intensity obtained using equation (1.5) (see also Exercises
2.4–2.6 in this chapter for second- and general-order kinetics).

4. The Kitis et al method is based on two experimentally measured parameters,
TM and IM. The activation energy E is treated as a fitting parameter. The
method can be easily adopted on a computer to yield high accuracy for E .

5. The pre-exponential factor s can be calculated from the value of TM, E , and β

by using equation (1.8). The estimated uncertainties �s/s from equation (1.8)
can be very large (50–100%), even when the uncertainty �E/E is very small.

(e) Can it be concluded for this material that this TL peak will always follow
first-order kinetics?

In general, one cannot assume that the studied TL glow curve of this material
will always follow first-order kinetics. The analysis should be carried out for glow
peaks measured under different heating rates, various irradiation doses, powdered
and bulk samples, etc.

Some of the criteria for first-order kinetics are:

I. Peak shape: First-order peaks have µ = 0.42.
II. Peak shift: In first-order TL glow peaks, the location of maximum TL intensity

does not shift in temperature for different irradiation doses.
III. Isothermal decay results: These can provide valuable independent information

about the kinetics of the TL process involved at different temperatures. First-
order kinetics corresponds to exponential isothermal decay curves.

Exercise 2.2: Heating Rate Method for First-Order Kinetics

You are given the data in Figure 2.9 for four experimental TL glow curves measured
with different heating rates (TL versus Temperature T , and known heating rates
β1 = 0.5, β2 = 1, and β3 = 2, and β3 = 3K s−1). It is known that this TL peak
follows first-order kinetics.
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Figure 2.9. The experimental TL glow curves for different heating rates. (a) The y-axis is
represented as counts/s and (b) the y-axis is represented as counts/K.

(a) Discuss the observed changes in the peak position and peak shape for different
heating rates.

(b) Apply the two-heating rate equation for E (equation (1.26)), to obtain a quick
estimate of the activation energy E .

(c) Apply also the IM − TM variation method (equation (1.31)), to obtain a quick
estimate of the activation energy E .

(d) By applying the heating rate method of analysis find the kinetic parameters E
and s, and their uncertainties �E and �s.

Solution

(a) The data of Figure 2.9 show that as the heating rate increases, the glow peaks
shift to higher temperatures, and the height of the TL peak changes. Because in a
typical TL experiment, one collects the TL signal as a function of time, the y-axis
in Figure 2.9(a) is represented in counts/s. These units of counts/s are not suitable
for graphing the actual TL glow curve which is a function of temperature, so it is
necessary to convert into temperature units. This is done by dividing each of the
graphs in Figure 2.9(a) by the corresponding heating rate β, and one obtains the
y-axis in counts/K as shown in Figure 2.9(b).

The area under the peaks in Figure 2.9(a) is proportional to the heating rate β,
whereas the area under the glow curves in Figure 2.9(b) is constant.

The temperatures TM for the maximum TL intensity and the corresponding
intensities IM are found from the curves of Figure 2.9(a) and (b), and are listed in
Table 2.7.

(b) We can calculate the energy E from the two-heating rate equation
(equation (1.26))

E = k
TM1TM2

TM1 − TM2
ln

[
β1

β2

(
TM2

TM1

)2
]

. (1.26)
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Table 2.7. Calculation of ln(TM
2/β) and 1/kTM for first-order glow curve

β(K s−1) TM(◦C) TM(K) ln(T 2
M /β) 1/kTM(eV)−1 IM(counts/s) IM(counts/K)

0.5 84 357 12.449 32.507 17 34
1 92 365 11.800 31.794 32 32
2 100 373 11.150 31.113 62 31
3 104 377 10.766 30.782 90 30

Inserting TM1 = 357 K, TM2 = 365 K, β1 = 0.5 K s−1, β2 = 1 K s−1, we obtain

E = 8.617 × 10−5 (357)(365)/(357 − 365) ln[0.5(365)2/1(357)2] = 0.911 eV.

(c) We can also estimate the energy E from the two-intensities equation
(equation (1.31))

E = kTm1Tm2

Tm1 − Tm2
ln

Im1

Im2
. (1.31)

Inserting TM1 = 357 K, TM2 = 365 K, IM1 = 34 (counts/K), IM2 = 32
(counts/K), we obtain

E = 8.617 × 10−5 (357)(365)/(357 − 365) ln[(34/32)0.5] = 0.89 eV.

(d) We calculate the quantities 1/kTM (k = Boltzmann constant) and ln(T 2
M /β)

shown in Table 2.7 with β = given heating rates. As discussed in Chapter 1,
equation (1.27) shows that the slope of the graph ln(T 2

M /β) versus 1/kTM will
be equal to the activation energy E , and that the y-intercept will be equal to
ln(E/sk).

From the slope and intercept of the graph ln(T 2
M /β) versus 1/kTM, in

Figure 2.10, we can calculate the kinetic parameters E and s as follows:

1/kTM  (eV−1)

30.4 30.8 31.2 31.6 32.0 32.4 32.8

ln
(T

M
2 /β

)

10.4

10.8

11.2

11.6

12.0

12.4

12.8

Figure 2.10. Graph of ln(T 2
M /β) versus 1/kTM to determine E and s.
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From the slope of the graph, E = 0.9668 eV.
From the value of the y-intercept = ln(E/sk), we obtain

s = Eeintercept/k = 0.9668e(18.962)/(8.617×10−5) = 1.9 × 1012 s−1.

The values of E and s obtained above can be checked for self-consistency as
follows. Because the temperature TM of the maximum TL intensity is known from
the experimental data, the value of s can be calculated in an independent manner
by rearranging equation (1.8) to obtain

s = βE

kT 2
M

exp

(
E

kTM

)
. (2.4)

By using the values of E = 0.9668 eV, TM = 84◦C = 357 K, β = 0.5 K s−1 in
equation (2.4):

s = (0.5)(0.9668)

(8.617 × 10−5)(357)2
exp

(
0.9668

(8.617 × 10−5)357

)
= 2.1 × 1012 s−1.

This value of s is very close to the value of s = 1.9 × 1012 s−1 obtained above
using the y-intercept of the graph, indicating that the results of the heating rate
method are self-consistent with the assumption of first-order kinetics.

(d) The errors �E and �s can be calculated from the uncertainties in the slope
and y-intercept of the best-fitting regression lines.

From the slope of the regression line, E = 0.967 ± 0.029 eV.
This corresponds to a percent error in E of 100(�E/E) = 100(0.029/

0.967) = 3%.
By taking the logarithmic derivative of the equation s = E exp (intercept)/k, we

obtain

ln s = ln E + intercept − ln k,∣∣∣∣�s

s

∣∣∣∣ =
∣∣∣∣�E

E

∣∣∣∣+ |�(intercept)| =
∣∣∣∣0.0288

0.9668

∣∣∣∣+ |0.91| = 0.94. (2.5)

This leads to a very large (but nevertheless typical) uncertainty in s, of the order
of 94%.

As a general comment on applying the heating rate methods of analysis, we
wish to point out that the methods based on the variation of IM with the heating
rate β are easy to use. These methods are perhaps also more reliable than the
methods based on the changes of TM with the heating rate, because they would be
less affected by the presence of nearby overlapping TL peaks. It is rather strange
that these IM-based methods have not been very popular in the TL literature. In
our opinion, this is due most probably to confusion between the theoretical heights
IM and the corresponding heights measured in an experiment. These latter heights
must be divided by the heating rate β as was shown in this exercise, in order to
correct the units and to normalize the areas under the TL glow peaks.

When using theoretical methods involving IM, the units of the height IM are in
counts/s. However, in experimental data, one measures IM in units of counts/K.
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If one tries to apply the IM methods of analysis using the experimental data in
counts/K, these methods fail dramatically to yield the correct values of E . For
correct application of the method, the experimental values of counts/K must be
changed into counts/s by multiplying with the heating rate β.

This important point has not been emphasized or clarified enough in the TL
literature.

Exercise 2.3: Isothermal Method for First-Order Kinetics

You are given the experimental data in Table 2.8 for the isothermal decay
curves of a TL peak, which were measured for four different temperatures of
T = 50◦C, 60◦C, 70◦C, and 80◦C.

(a) Show that these data are consistent with the assumption that the TL glow peak
follows first-order kinetics.

(b) Find the kinetic parameters E and s.

Solution

(a) Figure 2.11 shows the given data for the four different temperatures T =
50◦C, 60◦C, 70◦C, and 80◦C.

As discussed in Chapter 1, the isothermal decay curves for TL peaks following
first-order kinetics are exponential functions of time, given by

I = I0exp(−s · exp(−E/kT ) · t). (2.6)

This equation tells us that a graph of ln(I ) versus time t will be linear for first-order
kinetics peaks, and that the slope of the line will be

|slope| = s · exp(−E/kT). (2.7)

By taking the natural logarithm of this equation, we obtain

ln(|slope|) = ln s − E/kT . (2.8)

Table 2.8. Data for the isothermal decay curves of a first-order TL peak

t(s) TL, T = 50◦C TL, T = 60◦C TL, T = 70◦C TL, T = 80◦C

0 2.48 × 106 7.22 × 106 1.94 × 107 4.74 × 107

20 2.47 × 106 7.11 × 106 1.87 × 107 4.26 × 107

40 2.45 × 106 7.01 × 106 1.79 × 107 3.83 × 107

60 2.44 × 106 6.91 × 106 1.72 × 107 3.45 × 107

80 2.43 × 106 6.80 × 106 1.65 × 107 3.10 × 107

100 2.42 × 106 6.70 × 106 1.58 × 107 2.78 × 107

120 2.40 × 106 6.61 × 106 1.52 × 107 2.50 × 107

140 2.39 × 106 6.51 × 106 1.46 × 107 2.25 × 107

160 2.38 × 106 6.41 × 106 1.40 × 107 2.02 × 107

180 2.37 × 106 6.32 × 106 1.34 × 107 1.82 × 107

200 2.36 × 106 6.23 × 106 1.29 × 107 1.63 × 107

220 2.35 × 106 6.13 × 106 1.24 × 107 1.47 × 107
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Figure 2.11. The isothermal decay curves for first-order TL data.

The graph of the ln(|slope|) versus 1/kT should be a straight line with
slope = −E and y-intercept = ln s.

We first find ln(TL) for each isothermal curve as shown in Table 2.9.
By graphing the ln(TL) versus time, we obtain straight lines as shown

in Figure 2.12, indicating that the given isothermal TL data obey first-order
kinetics. We next find the regression lines through each of the graphs shown in
Figure 2.12.

(b) Next, we tabulate in Table 2.10 the slopes of these linear graphs and calculate
the natural logarithm of the slopes, ln(|slope|). Finally, we graph in Figure 2.13 the
ln(|slope|) versus 1/kT , where T = temperature (in K) at which the isothermal
decay curves were measured.

The slope of the regression line gives the activation energy E :

E = 1.007 ± 0.002 eV.

Table 2.9. The ln(TL) data for each isothermal curve

TL, ln(TL), TL, ln(TL), TL, ln(TL), TL, ln(TL),
t(s) T = 50◦C T = 50◦C T = 60◦C T = 60◦C T = 70◦C T = 70◦C T = 80◦C T = 80

0 2.48 × 106 14.726 7.22 × 106 15.796 1.94 × 107 16.783 4.74 × 107 17.683
20 2.47 × 106 14.722 7.11 × 106 15.782 1.87 × 107 16.750 4.26 × 107 17.594
40 2.45 × 106 14.718 7.01 × 106 15.771 1.79 × 107 16.718 3.83 × 107 17.498
60 2.44 × 106 14.712 6.91 × 106 15.749 1.72 × 107 16.674 3.45 × 107 17.380
80 2.43 × 106 14.705 6.80 × 106 15.735 1.65 × 107 16.629 3.10 × 107 17.264

100 2.42 × 106 14.701 6.70 × 106 15.720 1.58 × 107 16.584 2.78 × 107 17.150
120 2.40 × 106 14.696 6.61 × 106 15.707 1.52 × 107 16.548 2.50 × 107 17.059
140 2.39 × 106 14.690 6.51 × 106 15.699 1.46 × 107 16.511 2.25 × 107 16.961
160 2.38 × 106 14.687 6.41 × 106 15.683 1.40 × 107 16.462 2.02 × 107 16.863
180 2.37 × 106 14.681 6.32 × 106 15.660 1.34 × 107 16.420 1.82 × 107 16.754
200 2.36 × 106 14.675 6.23 × 106 15.645 1.29 × 107 16.385 1.63 × 107 16.634
220 2.35 × 106 14.673 6.13 × 106 15.632 1.24 × 107 16.346 1.47 × 107 16.527
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Figure 2.12. The isothermal decay curves on semilog scale for first-order TL data.

And the frequency factor s can be found from the intercept of the regression line:

Intercept = ln(s) = 27.87 ± 0.07.

Therefore,

s = exp(27.87) = 1.3 × 1012 s−1.

The error in the frequency factor �s can be calculated from the uncertainties in
the intercept of the regression line as follows:

�(intercept) = �s/s = 0.07.

This gives a rather unusually small error of 7% for the value of the frequency
factor s.

Self-Consistency Check of E and s Values

The values of s and E can be checked for self-consistency as follows: We can calcu-
late theoretical slopes of the isothermal decay curves using the E and s values and
compare them with the experimental slopes obtained from the graphs. Theoreti-
cally, the slopes of the graphs ln(TL) versus time t should be given by equation (2.7)

slope = s exp

(−E

kT

)
.

Table 2.10. The slopes of linear isothermal graphs

Calculated %Difference
T (◦C) |slope|(s−1) 1/kT (eV−1) ln(|Slope|) |slope|(s−1) in slopes

50 2.46 × 10−4 35.93 −8.31 2.49 × 10−4 1.2
60 7.35 × 10−4 34.85 −7.22 7.33 × 10−4 −0.3
70 2.04 × 10−3 33.83 −6.19 2.02 × 10−3 −0.8
80 5.33 × 10−3 32.88 −5.23 5.28 × 10−3 −1.0
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Figure 2.13. The ln(|slope|) versus 1/kT graph for first-order TL data.

By using the values of E = 1.007 eV and s = 1.3 × 1012 s−1 in equation (2.7), we
obtain the theoretical values of the slopes shown on the fifth column of Table 2.10.
The last column in Table 2.10 shows that the percent difference between the theo-
retical and experimental slopes in columns 2 and 5 is very small, of the order of 1%,
indicating that the isothermal decay data are consistent with first-order kinetics.

Exercise 2.4: Analysis of a Second-Order TL Peak

You are given in Table 2.11 and Figure 2.14 the experimental data for a TL glow
curve (TL versus Temperature T ), which was measured with a heating rate β =
1 K s−1.

(a) Apply the IR method to find the activation energy E . The value for E obtained
using the IR method is assumed to be independent of the order of kinetics.

Table 2.11. The experimental data for a second-order TL glow curve

T (◦C) TL (a.u.) T (◦C) TL (a.u.)

46 1.58 × 106 124 1.58 × 108

52 3.09 × 106 130 1.20 × 108

58 5.87 × 106 136 8.64 × 107

64 1.09 × 107 142 5.98 × 107

70 1.95 × 107 148 4.05 × 107

76 3.37 × 107 154 2.71 × 107

82 5.60 × 107 160 1.81 × 107

88 8.78 × 107 166 1.21 × 107

94 1.28 × 108 172 8.17 × 106

100 1.70 × 108 178 5.53 × 106

106 2.00 × 108 184 3.77 × 106

112 2.08 × 108 190 2.59 × 106

118 1.92 × 108 196 1.79 × 106
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Figure 2.14. The second-order TL glow curve.

(b) Apply Chen’s peak shape equations for second-order kinetics to find the ac-
tivation energy E , using the shape parameters τ, δ, and ω. By assuming that
the experimental error in the quantities τ, δ, and ω is �T = 2 K, estimate the
error �µ in the value of the geometrical shape factor µ.

Show that the values of µ and �µ are consistent with the assumption that
the TL glow curve obeys second-order kinetics.

(c) Apply the whole glow-peak method to the data given and find E , s, and
the order of kinetics b. Verify that the given TL glow curve corresponds to
second-order kinetics.

(d) Using the values of IM (maximum TL intensity) and TM (temperature of max-
imum intensity) from the data table, do a curve fitting to the given numerical
data. Use the following analytical equation developed by Kitis et al [2] for
second-order kinetics:

I (T ) = 4IM exp

(
E

kT
· T − TM

TM

)

×
[

T 2

T 2
M

·
(

1 − 2kT

E

)
exp

(
E

kT
· T − TM

TM

)
+ 1 + 2kTM

E

]−2

. (2.9)

The activation parameter E in this expression can be treated as an adjustable
parameter.
Graph both the experimental data and the calculated second-order TL glow
curve on the same graph and compare them.
Calculate the FOM for the TL glow curve.

(e) Can it be concluded from the above analysis that this material will always
follow second-order kinetics?

Solution

(a) The IR method. We calculate in Table 2.12 the values of 1/kT (T = temperature
in K) and the values of ln(TL) in a spreadsheet.
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Table 2.12. Calculated values of 1/kT and the values of ln(TL)

T (◦C) TLexperimental 1/kT (eV−1) ln(TL) T (◦C) TLexperimental 1/kT (eV−1) ln(TL)

46 1.58 × 106 36.38 14.27 124 1.58 × 108 29.23 18.88
52 3.09 × 106 35.71 14.94 130 1.20 × 108 28.80 18.61
58 5.87 × 106 35.06 15.59 136 8.64 × 107 28.37 18.27
64 1.09 × 107 34.44 16.20 142 5.98 × 107 27.96 17.91
70 1.95 × 107 33.83 16.78 148 4.05 × 107 27.57 17.52
76 3.37 × 107 33.25 17.33 154 2.71 × 107 27.18 17.12
82 5.60 × 107 32.69 17.84 160 1.81 × 107 26.80 16.71
88 8.78 × 107 32.15 18.29 166 1.21 × 107 26.44 16.31
94 1.28 × 108 31.62 18.67 172 8.17 × 106 26.08 15.92

100 1.70 × 108 31.11 18.95 178 5.53 × 106 25.73 15.53
106 2.00 × 108 30.62 19.11 184 3.77 × 106 25.39 15.14
112 2.08 × 108 30.14 19.15 190 2.59 × 106 25.06 14.77
118 1.92 × 108 29.68 19.07 196 1.79 × 106 24.74 14.40

We next graph in Figure 2.15(a) the ln(TL) versus 1/kT data and find a regres-
sion line through the first 7 data points, as shown in Figure 2.15(b).

The slope of the regression line gives the activation energy E as

E = 0.969 ± 0.006 eV, with R2 = 0.9997.

(b) Chen’s peak shape equations. From the given experimental data, we can
estimate the temperatures

T1 = 91◦C = 364 K, T2 = 133◦C = 406 K, TM = 112◦C = 385 K,

where

TM = peaktemperature at the maximum TL intensity,

T1, T2 = temperatures on either side of TM, corresponding to the half-maximum

intensity.
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Figure 2.15. IR method analysis.
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We next calculate the quantities µ, τ, δ, and ω:

τ = TM − T1 = 21 K, δ = T2 − TM = 21 K, ω = T2 − T1 = 42 K,

µ = δ/ω = 21/42 = 0.50.

The calculated value of the geometrical shape factor µ = δ/ω = 0.50 is very close
to the theoretical value for a second-order TL peak µ = δ/ω = 0.52.

Using the known experimental error �T = 2 K for the quantities τ, δ, and ω,
we can do an error analysis of the values of µ. As in the case of first-order kinetics,∣∣∣∣�µ

µ

∣∣∣∣ =
∣∣∣∣�δ

δ

∣∣∣∣+
∣∣∣∣�ω

ω

∣∣∣∣ =
∣∣∣∣ 2

21

∣∣∣∣+
∣∣∣∣ 2

42

∣∣∣∣ = 0.095 + 0.048 = 0.143.

This leads to a value of µ ± �µ = 0.50 ± 0.07, which is consistent with second-
order kinetics within the accuracy of the given TL data.

We apply Chen’s equation for second-order kinetics.
Using the value of τ :

E = 1.81kT 2
M

τ
− 2(2kTM) = 1.101 − 0.133 = 0.968 eV.

Using the value of δ:

E = 1.71kT 2
M

δ
= 1.040 eV.

Using the value of ω:

E = 3.54kT 2
M

ω
− 2kTM = 1.077 − 0.066 = 1.011 eV.

In order to find the error �E in the activation energy E , we take the logarithmic
derivative of the equation E = 1.71kT 2

M/δ:∣∣∣∣�E

E

∣∣∣∣ = 2

∣∣∣∣�TM

TM

∣∣∣∣+
∣∣∣∣�δ

δ

∣∣∣∣ = 2

∣∣∣∣ 2

385

∣∣∣∣+
∣∣∣∣ 2

21

∣∣∣∣ = 0.010 + 0.095 = 0.105.

This gives a rather large 10.5% error of �E = 0.105E = 0.105(1.040) = 0.11 eV.
(c) The whole glow-peak method. We graph ln(I/nb) versus 1/T for various

values of b between 1.8 and 2.1, and find the value of b that gives a linear graph.
As in the case of first-order kinetics, n(T ) is the area under the glow peak and it is
calculated starting at a temperature T , up to the maximum temperature available
in the experimental data. In the data shown in Table 2.13, the maximum available
temperature is 196◦C.

By following the same procedure as in the case of first-order kinetics, we set up a
spreadsheet to calculate the quantities ln(I/nb) and 1/kT as shown in Table 2.13.

Additional columns are created in the spreadsheet for the quantities of ln(TL/nb)
for several values of the kinetic order b = 2.0, 2.1, 1.9, and 1.8.

Finally, several graphs are drawn of ln(TL/Areab) versus 1/kT as shown in
Figure 2.16.

It is clear that all four graphs in Figure 2.16 deviate from straight lines, especially
at low values of 1/kT (which correspond to large temperatures located on the high-
temperature end of the TL glow peak). These deviations are due to experimental
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Table 2.13. The quantities ln(I/nb) and 1/kT

A B C D E F G

1/kT
1 T (◦C) (eV)−1 Area ln(TL/Area) ln(TL/n2) ln(TL/n2.1) ln(TL/n1.9) ln(TL/n1.8)

2 46 36.38 9.96 × 109 −8.75 −31.77 −34.07 −29.47 −27.17
3 52 35.71 9.95 × 109 −8.08 −31.10 −33.40 −28.80 −26.49
4 58 35.06 9.94 × 109 −7.43 −30.45 −32.75 −28.15 −25.85
5 64 34.44 9.90 × 109 −6.82 −29.83 −32.13 −27.53 −25.23
6 70 33.83 9.84 × 109 −6.22 −29.23 −31.53 −26.93 −24.63
7 76 33.25 9.72 × 109 −5.66 −28.66 −30.96 −26.36 −24.06
8 82 32.69 9.52 × 109 −5.14 −28.11 −30.41 −25.81 −23.52
9 88 32.15 9.18 × 109 −4.65 −27.59 −29.88 −25.30 −23.00

10 94 31.62 8.65 × 109 −4.21 −27.10 −29.38 −24.81 −22.52
11 100 31.11 7.89 × 109 −3.84 −26.63 −28.91 −24.35 −22.07
12 106 30.62 6.87 × 109 −3.54 −26.19 −28.45 −23.92 −21.66
13 112 30.14 5.67 × 109 −3.30 −25.76 −28.01 −23.52 −21.27
14 118 29.68 4.42 × 109 −3.14 −25.35 −27.57 −23.13 −20.91
15 124 29.23 3.27 × 109 −3.03 −24.94 −27.13 −22.74 −20.55
16 130 28.80 2.32 × 109 −2.96 −24.52 −26.68 −22.37 −20.21
17 136 28.37 1.60 × 109 −2.92 −24.11 −26.23 −21.99 −19.87
18 142 27.96 1.08 × 109 −2.89 −23.69 −25.77 −21.61 −19.53
19 148 27.57 7.19 × 108 −2.88 −23.27 −25.31 −21.23 −19.19
20 154 27.18 4.76 × 108 −2.86 −22.84 −24.84 −20.85 −18.85
21 160 26.80 3.13 × 108 −2.85 −22.41 −24.36 −20.45 −18.50
22 166 26.44 2.04 × 108 −2.82 −21.95 −23.87 −20.04 −18.13
23 172 26.08 1.31 × 108 −2.78 −21.47 −23.34 −19.60 −17.73
24 178 25.73 8.21 × 107 −2.70 −20.92 −22.74 −19.10 −17.28
25 184 25.39 4.89 × 107 −2.56 −20.27 −22.04 −18.50 −16.73
26 190 25.06 2.63 × 107 −2.32 −19.40 −21.11 −17.69 −15.99
27 196
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Figure 2.16. Graphs of ln(TL/Areab) versus 1/kT for several values of kinetic order b.
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Intercept= 3.03 + 0.13
Slope E=−0.954 + 0.004 eV
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Figure 2.17. The parameters E and s ′ can be calculated from the whole glow-peak method.

uncertainties in the data, and also to the fact that only 26 data points are available
on the TL glow curve.

A regression line is fitted to the four graphs above:

b = 1.8: R2 = 0.9983

b = 1.9: R2 = 0.9992

b = 2.0: R2 = 0.9990

b = 2.1: R2 = 0.9979.

The regression line for b = 1.9 gives the largest regression coefficient R2, with
a value that is very close to the regression coefficient for the case b = 2.0. Within
the accuracy of the given experimental data and within the framework of the whole
glow-peak method of analysis, we can conclude that the given TL glow peak data
follow second-order kinetics.

The values of E and s ′ can be calculated from the best-fitting regression line
shown in Figure 2.17:

Best intercept = 3.03 ± 0.13,

Best slope E = −0.954 ± 0.004 eV.

According to equation (1.23), the value of s ′ can be calculated from the intercept
of the regression line:

s ′ = βe(intercept) = 1e(3.03) = 20.697.

The whole glow-peak method yields information about both the activation energy
E and the effective frequency factor s ′ = s/N appearing in equation (1.6):

I (T ) = n2
0

s

N
exp

(
− E

kT

)[
1 + n0s

βN

∫ T

T0

exp

(
− E

kT ′

)
dT ′

]−2

. (1.6)
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Since TL data analysis of a glow curve cannot yield a value for the absolute con-
centration n0 of traps in the material, the factors s/N and n0 appearing in equation
(1.6) represent two empirical fitting parameters for second-order glow peaks. The
value of n0 can be obtained from the area under the glow curve as follows:

Area

β
= 1

β

∫ Tf

T0

I dT =
∫ tf

t0

I dt =
∫ tf

t0

−
(

dn

dt

)
dt

= n(t0) − n(tf) = n0 − 0 = n0. (2.10)

In our example, the area can be estimated by summing the TL intensities
multiplied by the temperature interval �T = 6 K between TL measurements, and
dividing by the heating rate β = 1 K s−1:

n0 ≈ 1

β

∫ Tf

T0

I dT = 1

β

∑
I (T )�T = 1

1

∑
I (T )(6K ) = 9.96 × 109. (2.11)

By using the values of E = 0.954 eV, s ′ = 20.697, n0 = Area = 9.96 × 109, and
β = 1 K s−1, it is possible to calculate the TL intensity using equation (1.6), and
to compare this result directly with the given experimental data. The integral in
equation (1.6) can be calculated using numerical integration methods, as shown
for example in Chapter 3. As an alternative method, the series approximation
given in equation (1.52) can be used to evaluate the integral.

The result of the comparison is shown in Figure 2.18, where the calculated I (T )
from equation (1.6) is compared with the original experimental data. Figure 2.18
shows that the calculated parameters E , s ′, and n0 from the whole glow-peak
method, as well as the second-order equation (equation (1.6)), describe the given
experimental data in a satisfactory manner.
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Figure 2.18. Comparison of calculated TL intensity using equation (1.6) (solid line), and
original experimental data (individual data points). The parameters used in equation (1.6)
were calculated using the whole glow-peak method.
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Table 2.14. Calculations for glow-curve fitting for several E values

A B C D E F G H I J K L

I (T ) I (T ) I (T ) I (T )
1 T(K) TLexperimental E = 1 eV E = 0.9 eV E = 1.1 eV E = 1.2 eV
2 E = 1 eV 0.9 1.1 1.2
3 319 1.58 × 106 1.49 × 106 2.63 × 106 8.45 × 105 4.76 × 105

4 325 3.09 × 106 3.02 × 106 4.97 × 106 1.83 × 106 1.10 × 106

5 331 5.87 × 106 5.94 × 106 9.11 × 106 3.85 × 106 2.48 × 106 TM = 380 K
6 337 1.09 × 107 1.13 × 107 1.62 × 107 7.83 × 106 5.39 × 106 IM = 2.08 × 108

7 343 1.95 × 107 2.08 × 107 2.78 × 107 1.54 × 107 1.13 × 107

The observed discrepancies between experiment and calculation in Figure 2.18
are due to the several approximations involved in applying the whole glow-peak
method, and to the approximation of the area using equation (2.11).

(d) Glow-curve fitting using the Kitis et al equation. We use the analytical
equation developed by Kitis et al [2], which relies on two experimentally measured
quantities, IM = 2.08 × 108 and TM = 380 K:

I (T ) = 4IM exp

(
E

kT
· T − TM

TM

)

×
[

T 2

T 2
M

·
(

1 − 2kT

E

)
exp

(
E

kT
· T − TM

TM

)
+ 1 + 2kTM

E

]−2

. (2.12)

The activation parameter E is treated in this equation as an adjustable parameter.
We calculate several graphs with values of E = 0.9, 1.0, 1.1, and 1.2 eV. The
calculations can be easily set up in a spreadsheet as shown in Table 2.14. Only the
first 5 rows are shown for the sake of brevity.

Columns A and B contain the experimental data points for the TL glow curve,
whereas columns C–F contain the calculated data points using equation (2.12) for
second-order kinetics and for four values of the energy parameter E (E = 0.9, 1.0,
1.1, and 1.2 eV).

The following equation is used to calculate the values of the fitted data in column
C, using equation (2.12) for second-order kinetics:

Cell C3 = 4∗$H$6∗EXP($H$2/(0.00008617∗B3)∗((B3-$H$5)/

$H$5))∗((B3∗B3)/($H$5∗$H$5))∗((1-2∗0.00008617∗

$H$5/$H$2)∗EXP($H$2/(0.00008617∗B3)∗((B3-$H$5)/

$H$5))+1+2∗0.00008617∗$H$5/$H$2)∧-2.

Note that cell H2 in the spreadsheet contains the value of the energy parameter
E = 1.0 eV, cell H5 contains the value of the experimental parameter TM = 380 K,
and cell H6 contains the value of the experimental maximum height parameter
IM = 2.08 × 108. The above spreadsheet expression refers to the values contained
in these cells by using the Excel expressions $H$2, $H$5, $H$6, correspondingly.
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Figure 2.19. Experimental data and fitted graphs calculated for several values of E .

Similar expressions are entered in the columns D, E, and F, and the Excel
command Fill Down is used to fill the rest of these columns.

The graphs calculated for E = 0.9, 1.0, 1.1, and 1.2 eV are shown in Figure 2.19,
together with the given experimental data.

It can be seen in Figure 2.19 that when the value of E is too low (graph corre-
sponding to E = 0.9 eV), the calculated TL points lie well above the experimental
data. This is also evident by inspection of the I (T ) data in Table 2.14. On the other
hand, when the value of E is too high (graph corresponding to E = 1.2 eV), the
calculated TL points lie below the experimental data.

This procedure is a simple example of a single glow-curve fitting procedure, in
which we find the value of E that yields the best fit to experimental data obeying
second-order kinetics.

A more precise numerical method of performing a fitting procedure is by cal-
culating the FOM, using a similar calculation to the one employed for first-order
kinetics (Exercise 2.1).

Table 2.15 shows an example of a FOM calculation as applied to the previous
data. Column A contains the experimental data points and columns B and C contain
the calculated data points using equation (2.12) for second-order kinetics and for
two values of the energy parameter E (E = 1.1 and 0.9 eV).

Columns E and F contain the calculation of the quantity |TLexperimental −
TLcalculated|, and cells E29 and F29 contain the calculated values of the FOM.

The expressions used in this example are

Cell E3 = ABS(A3-B3)

Cell F3 = ABS(A3-C3)
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Table 2.15. Example of a FOM calculation

A B C D E F

I (T ) I (T ) |TLexperimental − I (t)| |TLexperimental − I (t)|
1 TLexperimental E = 0.9 eV E = 1.1 eV E = 0.9 eV E = 1.1 eV
2
3 1.58 × 106 2.63 × 106 8.45 × 105 1.05 × 106 7.38 × 105

4 3.09 × 106 4.97 × 106 1.83 × 106 1.88 × 106 1.26 × 106

5 5.87 × 106 9.11 × 106 3.85 × 106 3.23 × 106 2.03 × 106

6 1.09 × 107 1.62 × 107 7.83 × 106 5.34 × 106 3.03 × 106

7 1.95 × 107 2.78 × 107 1.54 × 107 8.36 × 106 4.10 × 106

8 3.37 × 107 4.59 × 107 2.90 × 107 1.22 × 107 4.77 × 106

9 5.60 × 107 7.20 × 107 5.17 × 107 1.60 × 107 4.24 × 106

10 8.78 × 107 1.06 × 108 8.61 × 107 1.82 × 107 1.74 × 106

11 1.28 × 108 1.45 × 108 1.30 × 108 1.68 × 107 2.42 × 106

12 1.70 × 108 1.81 × 108 1.75 × 108 1.14 × 107 5.81 × 106

13 2.00 × 108 2.06 × 108 2.05 × 108 5.41 × 106 5.28 × 106

14 2.08 × 108 2.12 × 108 2.09 × 108 3.98 × 106 6.81 × 105

15 1.92 × 108 2.01 × 108 1.87 × 108 9.36 × 106 4.38 × 106

16 1.58 × 108 1.77 × 108 1.52 × 108 1.86 × 107 6.65 × 106

17 1.20 × 108 1.47 × 108 1.14 × 108 2.68 × 107 5.95 × 106

18 8.64 × 107 1.18 × 108 8.26 × 107 3.13 × 107 3.86 × 106

19 5.98 × 107 9.16 × 107 5.80 × 107 3.18 × 107 1.74 × 106

20 4.05 × 107 7.01 × 107 4.03 × 107 2.96 × 107 1.97 × 105

21 2.71 × 107 5.32 × 107 2.79 × 107 2.60 × 107 7.11 × 105

22 1.81 × 107 4.02 × 107 1.93 × 107 2.20 × 107 1.14 × 106

23 1.21 × 107 3.04 × 107 1.34 × 107 1.82 × 107 1.26 × 106

24 8.17 × 106 2.30 × 107 9.38 × 106 1.48 × 107 1.21 × 106

25 5.53 × 106 1.75 × 107 6.61 × 106 1.19 × 107 1.08 × 106

26 3.77 × 106 1.33 × 107 4.70 × 106 9.57 × 106 9.31 × 105

27 2.59 × 106 1.02 × 107 3.37 × 106 7.65 × 106 7.78 × 105

28 1.79 × 106 7.90 × 106 2.43 × 106 6.11 × 106 6.39 × 105

29 FOM = 0.178 0.040

Cell E29 = SUM(E3:E28)/SUM(B3 : B28)

Cell F29 = SUM(F3:F28)/SUM(C3 : C28).

The FOM for the value of the parameter E = 1.1 eV is equal to 0.040 =
4%, almost four times smaller than the FOM = 0.178 = 17.8% for the case
E = 0.9 eV.

The frequency factor s can be calculated by using the value of E = 1.1 eV
and the temperature of maximum TL intensity TM = 380 K in equation (1.9) for
second-order kinetics (b = 2):

s = βE

kT 2
M

(
1 + 2kTM

E

) exp

(
E

kTM

)
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Table 2.16. Summary of the results of various analysis methods for
second-order data

E (eV) s or s′ Comments below

Initial rise method 0.969 ± 0.006 [1, 4]
Chen’s τ -method 0.968 [2, 4]
Chen’s δ-method 1.04 ± 0.11 [2, 4]
Chen’s ω-method 1.011 [2, 4]
Whole glow-peak method 0.954 ± 0.004 s′ = 20.697 [3]
Fitting method using Kitis 1.1 ± 0.1 s = 1.38 × 1012 s−1 [4]

et al. second-order equation
(equation (2.12))

= 1(1)

(8.617 × 10−5)(380)2

(
1 + 2(8.617 × 10−5)380

1

)

× exp

(
1

(8.617 × 10−5)380

)
= 1.38 × 1012 s−1. (2.13)

The resolution of the Kitis et al fitting method can be refined by repeating this
process of calculating the FOM for different values of E spaced much closer
together (e.g., E = 1.01, 1.00, 0.99, etc.) and then attempt to minimize the value
of the FOM.

Finally, we summarize in Table 2.16 the results of the various methods for
analyzing the given second-order experimental data.

Comments on the Results of Exercise 2.4

1. The value of E obtained from the IR method is independent of the kinetics of
the TL glow peak.

As in the case of first-order kinetics, the presence of thermal quenching affects
the value of E obtained in the IR method.

A possible correction method for the value of E when thermal quenching is
present is given in Chapter 5.

It is best to use the IR and peak shape methods with samples irradiated at
low doses [3].

2. The value of E obtained with peak shape methods can be influenced by the
presence of smaller satellite peaks.

3. The whole glow-curve method yields information on both E and the pre-
exponential factor s. Because TL cannot yield a value for the absolute concen-
tration n0, the quantities s ′ = s/N and n0 appearing in equation (1.6) represent
empirical fitting parameters for second-order glow peaks. The value of n0 can
be obtained from the area under the glow curve.

By using the values of E , s ′ = s/N , and n0 obtained from the whole glow-
peak method, it is possible to compare directly the experimental data with the
TL intensity obtained using equation (1.6), as was shown in this exercise.
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4. The pre-exponential factor s in these methods can be calculated from the value
of TM, E , and β by using equation (2.13). The estimated uncertainties �s/s
from equation (2.13) can be very large (50–100%), even when the uncertainty
�E/E is very small.

(e) Can we conclude that this TL peak follows second-order kinetics?
Chen et al [4] have provided a list of criteria that should be checked before

claiming that a certain TL glow peak is of second-order.
Unfortunately, the TL literature contains many publications claiming a certain

kinetic order for TL glow curves, based solely on peak shape analysis of a single
glow curve.

The criteria for second-order kinetics were listed by Chen et al. [4] as follows:

I. Peak shape: Second-order peaks exhibit µ = 0.52.

II. Peak shift: In most non-first-order TL glow peaks, the location of maxi-
mum TL intensity shifts toward higher temperatures for lower trap filling
(smaller doses). One must be aware that the observed maximum shift in
the experimental data can also be due to the presence of smaller satellite
peaks.

III. Superlinearity effects: Second-order peaks may exhibit slight superlinearity
effects at low doses.

IV. IM − TM dependence: In second-order peaks, a graph of ln

[
IM

(
T 2

M

β

)2
]

versus 1/kTM will yield a straight line of slope E (equation (1.29)).
V. Isothermal decay results: These can provide valuable independent informa-

tion about the kinetics of the TL process involved at different temperatures.
As discussed in Chapter 1, different kinetic orders correspond to different
mathematical behaviors for the isothermal decay laws.

For second-order isothermal decay, a graph of (It/I0)−1/2 versus time should
yield a straight line of slope E .

The TL-like presentation of isothermal decay data can provide useful in-
formation about the kinetics and the kinetic parameters. A numerical example
using this type of presentation is given in Chapter 5.

Exercise 2.5: Isothermal Method for Second-Order Kinetics

Even though this exercise refers specifically to isothermal data following second-
order kinetics, the exact same method of analysis can be used for general-order
kinetics data.

A TL material is irradiated with a certain dose D, and the sample is heated
rapidly to a temperature of 60◦C. The temperature is then kept constant while the
emitted light is measured as a function of time t . The experiment is then repeated
with the same dose D and for two additional temperatures of 70◦C and 80◦C.
The following isothermal decay data in Table 2.17 is obtained for three different
temperatures T = 60◦C, 70◦C, and 80◦C.
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Table 2.17. Isothermal decay data for second-order kinetics

t(s) TL, T = 60◦C TL, T = 70◦C TL, T = 80◦C

0 6.40 × 106 1.40 × 107 2.30 × 107

100 5.57 × 106 1.02 × 107 1.25 × 107

200 4.92 × 106 7.84 × 106 8.10 × 106

300 4.20 × 106 6.18 × 106 5.45 × 106

400 3.92 × 106 4.90 × 106 3.99 × 106

500 3.54 × 106 4.13 × 106 2.90 × 106

600 3.10 × 106 3.47 × 106 2.39 × 106

700 2.91 × 106 2.95 × 106 1.94 × 106

800 2.70 × 106 2.56 × 106 1.80 × 106

900 2.44 × 106 2.21 × 106 1.34 × 106

(a) Show that these data are consistent with the assumption that this TL peak
follows second-order kinetics.

(b) Find the kinetic parameters E and s.

Solution

(a) The graphs in Figure 2.20 show the given data for the three temperatures
T = 60◦C, 70◦C, and 80◦C.

We can rule out the possibility of first-order kinetics by graphing ln(TL) versus
time as shown in Figure 2.21. The graphs obtained are nonlinear, indicating that
the data do not conform to first-order kinetics.

As discussed in Chapter 1, the isothermal decay curves for TL peaks following
general-order kinetics with a kinetic-order parameter b are given by(

It

I0

) 1−b
b

= 1 + s ′nb−1
0 (b − 1)t exp

(
− E

kT

)
, (1.38)
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Figure 2.20. The isothermal data for three different temperatures and for second-order
kinetics.
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Figure 2.21. The ln(TL) versus time graphs for a second-order TL glow curve.

where

I0 = initial TL intensity,
It = the TL intensity at time t ,
s ′ = s/N = effective frequency factor,
E = activation energy,
n0 = initial trapped charged population,
T = temperature of isothermal decay.

This equation indicates that a plot of the quantity (It/I0)(1−b)/b versus time t should
be a straight line when a suitable value of b is found. After the determination of
value of b, we will graph (It/I0)(1−b)/b versus time t for the three different decay
temperatures, and obtain a set of straight lines of slope m given by

m = s ′nb−1
0 (b − 1) exp

(
− E

kT

)
. (1.39)

The activation energy E and the effective frequency factor s ′′ = s ′nb−1
0 will

be determined from the slope and intercept of the plot of ln(m) versus
1/kT .

Table 2.18 shows the calculation of the quantities (It/I0)(1−b)/b for the isothermal
decay data at T = 70oC, and for four different values of the kinetic-order parameter
b = 1.6, 1.8, 2.0, and 2.2. The graph in Figure 2.22 shows these quantities as a
function of time t .

It can be seen that all four graphs yield satisfactory linear fits, with the following
regression coefficients:

b = 1.6: R = 0.9986
b = 1.8: R = 0.9995
b = 2.0: R = 0.9999
b = 2.2: R = 0.9998.
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Table 2.18. Calculation of the quantities (It/I0)(1−b)/b for the isothermal decay data

(I/I0)(1−b)/b (I/I0)(1−b)/b (I/I0)(1−b)/b (I/I0)(1−b)/b

t(s) T = 70◦C b = 2.0 b = 1.8 b = 1.6 b = 2.2

0 1.40 × 107 1.000 1.000 1.000 1.000
100 1.02 × 107 1.172 1.151 1.126 1.189
200 7.84 × 106 1.337 1.294 1.243 1.372
300 6.18 × 106 1.505 1.438 1.359 1.562
400 4.90 × 106 1.690 1.595 1.482 1.773
500 4.13 × 106 1.842 1.721 1.581 1.947
600 3.47 × 106 2.010 1.860 1.688 2.142
700 2.95 × 106 2.178 1.998 1.793 2.338
800 2.56 × 106 2.338 2.128 1.891 2.526
900 2.21 × 106 2.515 2.270 1.997 2.735

This example illustrates one of the possible difficulties with isothermal decay
data: It may be difficult to obtain an exact estimate of the best linear fit, because
small differences may occur between the graphs for various values of b. The above
values of R indicate that the graph corresponding to b = 2.0 represents the best
linear fit, and therefore the given TL data are consistent with second-order kinetics.

The above type of analysis must be carried out for all available isothermal decay
data. Once the kinetic order b is ascertained by the above type of analysis, we graph
(It/I0)(1−b)/b = (It/I0)−1/2 versus time t , and find the slopes of the resulting linear
graphs.

These graphs are shown in Figure 2.23 for the available isothermal decay data
at T = 60◦C, 70◦C, and 80◦C. We next find the regression lines through each of
the graphs in Figure 2.23.

(b) We now tabulate in Table 2.19 the slopes of these linear graphs and calculate
the natural logarithm of the slopes, ln(slope). Finally, we graph in Figure 2.24 the
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b=2.0  r2=0.99986
b=1.8  r2=0.99953
b=1.6  r2=0.99856
b=2.2  r2=0.99983

Figure 2.22. Graphs calculated for several values of kinetic order b.
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Table 2.19. The slopes of linear isothermal graphs
and their natural logarithms ln(slope)

T(◦C) slope (s−1) 1/kT (eV−1) ln (Slope)

60 6.9580 × 10−4 34.8498 −7.2704
70 1.7310 × 10−4 33.8337 −6.3591
80 3.4560 × 10−4 32.8753 −5.6676
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Figure 2.23. Calculated graphs for kinetic order b = 2.0 and for second-order TL data.
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Figure 2.24. The ln(slope) versus 1/kT graph to determine E for second-order TL data.
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ln(slope) versus 1/kT , where T = temperature (K) at which the isothermal decay
curves were measured.

The slope of the regression line gives the activation energy E :

E = 0.812 ± 0.050 eV.

And the frequency factor s ′′ = s ′nb−1
0 can be found from the intercept of the re-

gression line:

Intercept = ln((b − 1) s ′′) = 21.1 ± 1.7.

Therefore, by substituting in our case b = 2,

s ′′ = exp(21.1) = 1.46 × 109 s−1.

The errors �s ′′ can be calculated from the uncertainties in the intercept of the
regression line as follows:

� (intercept) = ∂(ln s ′′)
∂s ′′ �s ′′ = �s ′′

s ′′ = 1.7.

This gives a typical large error for the value of the effective frequency factor
s ′′ = s ′nb−1

0 .
Once again, it is noted that the parameter s ′′ = s ′nb−1

0 cannot yield any additional
information on the kinetics of the TL process, but rather represents an empirical
fitting parameter for equation (1.38).

Exercise 2.6: Analysis of a General-Order TL Peak

You are given the experimental data in Table 2.20 and Figure 2.25 for a TL glow
curve (TL versus temperature T ), and the known heating rate β = 1K s−1.

(a) Apply the IR method to find the activation energy E . The value for E obtained
using the IR method is assumed to be independent of the order of kinetics.

Table 2.20. Experimental data for general-order kinetics TL peak

T (◦C) TLexperimental T (◦C) TLexperimental

0 8.38 × 105 130 3.96 × 107

10 2.06 × 106 140 1.96 × 107

20 4.74 × 106 150 9.19 × 106

30 1.03 × 107 160 4.22 × 106

40 2.09 × 107 170 1.93 × 106

50 3.98 × 107

60 6.97 × 107

70 1.09 × 108

80 1.49 × 108

90 1.70 × 108

100 1.57 × 108

110 1.18 × 108

120 7.32 × 107
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TL glow curve.

(b) Apply Chen’s peak shape equations to find the activation energy E , using the
shape parameters τ, δ, and ω. By assuming that the experimental error in
the quantities τ, δ, and ω is �T = 2 K estimate the error �µ in the value
of the geometrical shape factor µ.

Show that the values of µ and �µ are consistent with the assumption that
the TL glow curve obeys general-order kinetics.

(c) By using the experimental data, apply the whole glow-peak method to find
E, s, and the order of kinetics b. Graph ln(I/nb) versus 1/T for various
values of b and find the correct value of b that gives a linear graph.

From the slope and intercept of the graph ln(l/nb) versus 1/T , calculate the
kinetic parameters.

Verify that the given TL glow curve corresponds to general-order kinetics.
(d) Using the experimental values of IM (maximum TL intensity) and TM (tem-

perature of maximum intensity), do a curve fitting to the given numerical data.
Use the following analytical equation developed by Kitis et al [2] for general-
order kinetic peaks. The expression relies on two experimentally measured
quantities IM and TM:

I (T ) = IMbb−1 exp

(
E

kT
· T − TM

TM

)

×
[

(b − 1)
T 2

T 2
M

(
1 − 2kT

E

)
exp

(
E

kT
·T − TM

TM

)

+ 1 + (b − 1)
2kTM

E

]− b
b−1

. (2.14)

The activation parameter E can be treated as an adjustable parameter. Graph
both the experimental data and the calculated general order TL glow curve on
the same graph and compare them. Calculate the FOM for the TL glow curve.

(e) Can it be concluded from the above analysis that this material will always
follow general-order kinetics?
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Table 2.21. The values of 1/kT and of the natural logarithm of the TL data, ln(TL)

T (◦C) TLexperimental 1/kT (eV−1) ln(TL) T (◦C) TLexperimental 1/kT (eV−1) ln(TL)

0 8.38 × 105 42.51 13.64 130 3.96 × 107 28.80 17.49
10 2.06 × 106 41.01 14.54 140 1.96 × 107 28.10 16.79
20 4.74 × 106 39.61 15.37 150 9.19 × 106 27.43 16.03
30 1.03 × 107 38.30 16.15 160 4.22 × 106 26.80 15.26
40 2.09 × 107 37.08 16.86 170 1.93 × 106 26.20 14.47
50 3.98 × 107 35.93 17.50
60 6.97 × 107 34.85 18.06
70 1.09 × 108 33.83 18.51
80 1.49 × 108 32.88 18.82
90 1.70 × 108 31.97 18.95

100 1.57 × 108 31.11 18.87
110 1.18 × 108 30.30 18.58
120 7.32 × 107 29.53 18.11

Solution

(a) The IR method. We calculate in Table 2.21 the values of 1/kT (T = temper-
ature (K), k = Boltzman constant) and the values of the natural logarithm of the
TL data, ln(TL).

We next graph the ln(TL) versus 1/kT data and find a regression line through
the first 7 data points, as shown in Figure 2.26.

The slope of the regression line gives the activation energy E as

E = 0.580 ± 0.006 eV, with R2 = 0.9996.

(b) Chen’s peak shape equations. From the given experimental data for a TL
glow peak, we can estimate the three temperatures required for Chen’s peak shape
equations:

T1 = 64◦C = 337 K, T2 = 117◦C = 390 K, TM = 91◦C = 364 K,

1/kT   (eV)−1 1/kT   (eV)−1
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Figure 2.26. The IR analysis for general-order kinetics data.
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where

TM = peak temperature at the maximum TL intensity,

T1, T2 = temperatures on either side of TM, corresponding to the half-maximum

intensity.

We next calculate the quantities µ, τ, δ, and ω:

τ = TM − T1 = 27 K, δ = T2 − TM = 26 K,

ω = T2 − T1 = 53 K, µ = δ/ω = 26/53 = 0.490.

The calculated value of the geometrical shape factor µ = δ/ω = 0.490 corre-
sponds to a value of µ for a general-order TL peak with an approximate value of
b = 1.6 (Figure 1.14).

Using the known experimental error �T = 2 K for the quantities τ, δ, and ω,
we can do an error analysis of the values of µ. As in the similar examples for
first- and second-order kinetics data,∣∣∣∣�µ

µ

∣∣∣∣ =
∣∣∣∣�δ

δ

∣∣∣∣+
∣∣∣∣�ω

ω

∣∣∣∣ =
∣∣∣∣ 2

26

∣∣∣∣+
∣∣∣∣ 2

53

∣∣∣∣ = 0.077 + 0.038 = 0.115.

This leads to a value of µ + �µ = 0.490 ± 0.056 which is consistent with
general-order kinetics, within the accuracy of the TL experiment.

In order to find the activation energy E , we apply Chen’s equation for general-
order kinetics:

Eα = cα

(
kT 2

M

α

)
− bα(2kTM), (2.15)

where α is τ, δ, or ω and the values of cα and bα are summarized below

cτ = 1.510 + 3.0(µ − 0.42), bτ = 1.58 + 4.2(µ − 0.42)

cδ = 0.976 + 7.3(µ − 0.42), bδ = 0

cω = 2.52 + 10.2(µ − 0.42), bω = 1. (2.16)

Using the value of τ :

E = 1.720kT 2
M

τ
− 1.874(2kTM) = 0.727 − 0.117 = 0.610 eV.

Using the value of δ:

E = 1.487kT 2
M

δ
= 0.653 eV.

Using the value of ω:

E = 3.234kT 2
M

ω
− 2kTM = 0.671 − 0.062 = 0.609 eV.
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Table 2.22. Calculation of the quantities ln(I/nb) and 1/kT for general-order data

T (◦C) TL 1/kT Area ln(TL/n1.2) ln(TL/n1.4) ln(TL/n1.5) ln(TL/n1.6)

0 8.38 × 105 42.51 9.99 × 108 −13.99 −18.60 −20.90 −23.20
10 2.06 × 106 41.01 9.98 × 108 −13.09 −17.70 −20.00 −22.30
20 4.74 × 106 39.61 9.96 × 108 −12.25 −16.86 −19.16 −21.46
30 1.03 × 107 38.30 9.91 × 108 −11.47 −16.08 −18.38 −20.68
40 2.09 × 107 37.08 9.81 × 108 −10.75 −15.35 −17.65 −19.95
50 3.98 × 107 35.93 9.60 × 108 −10.08 −14.68 −16.98 −19.28
60 6.97 × 107 34.85 9.20 × 108 −9.47 −14.06 −16.35 −18.65
70 1.09 × 108 33.83 8.50 × 108 −8.93 −13.50 −15.78 −18.07
80 1.49 × 108 32.88 7.41 × 108 −8.45 −13.00 −15.27 −17.54
90 1.70 × 108 31.97 5.92 × 108 −8.05 −12.55 −14.80 −17.05

100 1.57 × 108 31.11 4.22 × 108 −7.72 −12.16 −14.37 −16.59
110 1.18 × 108 30.30 2.65 × 108 −7.46 −11.80 −13.97 −16.14
120 7.32 × 107 29.53 1.48 × 108 −7.23 −11.45 −13.56 −15.67
130 3.96 × 107 28.80 7.45 × 107 −7.02 −11.11 −13.15 −15.19
140 1.96 × 107 28.10 3.49 × 107 −6.82 −10.75 −12.72 −14.68
150 9.19 × 106 27.43 1.53 × 107 −6.58 −10.35 −12.24 −14.12
160 4.22 × 106 26.80 6.15 × 106 −6.27 −9.85 −11.65 −13.44
170 1.93 × 106 26.20

In order to find the error �E in the activation energy E , we take the logarithmic

derivative of the equation E = 1.487kT 2
M

δ
:

∣∣∣∣�E

E

∣∣∣∣ = 2

∣∣∣∣�TM

TM

∣∣∣∣+
∣∣∣∣�δ

δ

∣∣∣∣ = 2

∣∣∣∣ 2

364

∣∣∣∣+
∣∣∣∣ 2

26

∣∣∣∣ = 0.011 + 0.077 = 0.088.

This gives an error �E of the order of 8.8% or �E = 0.088E = 0.082(0.653) =
0.060 eV.

(c) The whole glow-peak method. We graph ln(I/nb) versus 1/T for various
values of b between 1.2 and 1.6, and find the correct value of b that gives a linear
graph. As in the case of first-order kinetics, n(T ) is the area under the glow peak
and it is calculated starting at a temperature T , up to the maximum temperature
available in the glow curve. In the data shown in Table 2.22, the maximum available
temperature is 170◦C.

By following the same procedure as in the case of first-order kinetics, we set up
an Excel spreadsheet to calculate the quantities ln(I/nb) and 1/kT as shown in
Table 2.22, for several values of the kinetic order b = 1.2, 1.4, 1.5 and 1.6.

Finally, graphs of ln(TL/Areab) versus 1/kT are drawn in Figure 2.27 for several
values of the kinetic order b = 1.2, 1.4, 1.5, and 1.6.

The graphs corresponding to b = 1.5 and 1.6 best approximate straight lines.
The b = 1.5 graph has the highest value of R2 and therefore gives the best fit.
A regression line is fitted to the data corresponding to b = 1.5 in Figure 2.28, to
obtain the best slope and the best intercept:

Best intercept = 3.345 ± 0.17,

Best slope E = −0.568 ± 0.005 eV.
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1/kT  (eV−1)

24 28 32 36 40 44

ln
(T

L/
nb )

−28

−24

−20
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−8
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b=1.2
b=1.4
b=1.5
b=1.6

Figure 2.27. Graphs for several values of kinetic order b.

It is noted that this value of E = 0.568 ± 0.005 eV is in good agreement with
the value of E = 0.580 ± 0.006 eV obtained from the IR method.

Within the accuracy of the given experimental data and within the framework
of the whole glow-peak method of analysis, we can conclude that the given TL
glow peak follows general-order kinetics described by b = 1.5.

The value of s ′ can be calculated from the best-fitting regression line shown in
Figure 2.28:

s ′ = βe(intercept) = 1e(3.345) = 28.36.

The whole glow-peak method yields information about both the activation en-
ergy E and the effective frequency factors s ′ and s ′′ = s ′nb−1

0 appearing in

b=1.5
Slope= −E=−0.568 eV
Intercept=3.345

1/kT  (eV)−1

24 28 32 36 40 44

ln
(T

L/
n1.

5
)

−24

−20

−16

−12

−8

Figure 2.28. The value of b = 1.5 gives the best fit for the whole glow-curve analysis. The
parameters E and s ′ can be calculated from this graph.
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equation (1.7):

I (T ) = s ′′n0 exp

(
− E

kT

)[
1 + s ′′(b − 1)

β

∫ T

T0

exp

(
− E

kT ′

)
dT ′

]− b
b−1

. (1.7)

Because TL data analysis of a glow curve cannot yield a value for the absolute
concentration n0 of traps in the material, the quantities s ′′, b, and n0 appearing in
equation (1.7) represent three empirical fitting parameters for general-order glow
peaks.

The value of n0 can be estimated from the area under the glow curve as in
Exercise 2.4, by summing the TL intensities multiplied by the temperature interval
�T between TL measurements, and by dividing with the heating rate β:

n0 ≈ 1

β

∫ T f

T0

I dT = 1

β

∑
I (T )�T = 1

1

∑
I (T )(10 K) = 9.99 × 109.

By using the values of E = 0.56 eV, s ′ = 28.36, n0 = Area = 9.99 × 109, and
β = 1 K s−1, it is possible to calculate the TL intensity using equation (1.7), and
to compare this result directly with the given experimental data.

The result is shown in Figure 2.27, where the calculated I (T ) from equation (1.7)
is compared with the original experimental data. Figure 2.29 shows that the cal-
culated parameters E , s ′, and b and n0 from the whole glow-peak method, as
well as the general order equation (1.7), describe the given experimental data in a
reasonably accurate manner.

The observed discrepancies between experiment and calculation in
Figure 2.29 are due to the several approximations involved in applying the whole
glow-peak method.

Temperature, oC

0 50 100 150 200 250

T
L 

x1
08  (

a.
u.

)

0.0

0.4

0.8

1.2

1.6

2.0

Calculated
Experimental TL

Figure 2.29. Comparison of calculated TL intensity using equation (1.7) (solid line), and
original experimental data (individual data points). The parameters used in equation (1.7)
were obtained from the whole glow-peak method.
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(d) Glow-curve fitting using the Kitis et al equation. We use the following
analytical equation developed by Kitis et al [2] for TL peaks following general-
order kinetics. The expression relies on two experimentally measured quantities
IM (the maximum TL intensity) and TM (the temperature corresponding to the
maximum TL intensity):

I (T ) = IMbb−1 exp

(
E

kT
· T − TM

TM

)

×
[

(b − 1)
T 2

T 2
M

·
(

1 − 2kT

E

)
exp

(
E

kT
· T − TM

TM

)

+ 1 + (b − 1)
2kTM

E

]− b
b−1

. (2.17)

For the given experimental data, TM = 364 K and IM = 1.70 × 108. By treating
the activation parameter E as an adjustable parameter, we calculate several graphs
with values of E = 0.4, 0.5, 0.6, and 0.7 eV. The calculations can be set up easily
in a spreadsheet as shown in Table 2.23.

Columns A–C contain the experimental data points for the TL glow curve,
whereas columns D–G contain the calculated data points using equation (2.17)
for general-order kinetics b = 1.5 and for four values of the energy parameter
E(E = 0.4, 0.5, 0.6, and 0.7 eV).

The following equation is used to calculate the values of the fitted data in column
D, using equation (2.17) for general-order kinetics:

Cell D3 = ($I$8∧($I$8/($I$8-1)))∗$I$6∗EXP($I$2/(0.00008617∗B3)
∗((B3-$I$5)/$I$5))∗((B3∗B3)/($I$5∗$I$5)
∗(1-2∗0.00008617∗B3/$I$2)∗EXP($I$2/(0.00008617∗B3)
∗((B3-$I$5)/$I$5))∗($I$8-1)+1+($I$8-1)
∗(2∗0.00008617∗$I$5/$I$2))∧-($I$8/($I$8-1)).

This expression refers to cell B3 which contains the absolute temperature T (K).
Also, note that cell I2 in the spreadsheet contains the value of the energy parameter
E = 0.4 eV, cell I5 contains the value of the experimental parameter TM = 364
K, and cell I6 contains the value of the experimental maximum height parame-
ter IM = 1.70 × 108. The parameter b = 1.5 is contained in cell I8. The above
spreadsheet expression refers to the values contained in these cells by using the
Excel expressions $I$2, $I$5, $I$6, and $I$8, correspondingly.

The user controls the value of the parameter E by changing the value in cell I2,
and the whole spreadsheet calculation is automatically updated.

The graphs calculated for E = 0.4, 0.5, 0.6, and 0.7 eV are shown in
Figure 2.30.

It can be seen in Figure 2.30 that when the value of E is too low (graph cor-
responding to E = 0.4, and 0.5 eV), the calculated TL points lie well above the
experimental data. This is also evident by inspection of the calculated columns
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Figure 2.30. The experimental data and fitted curves for several values of E .

I (T ) in Table 2.23. On the other hand, when the value of E is too high (graph corre-
sponding to E = 0.7 eV), the calculated TL points lie well below the experimental
data.

Table 2.24 shows the FOM calculation as applied to the previous data. Column
A contains the experimental data points and columns B–E contain the calculated
data points using equation (2.17) for general-order kinetics and for four values of
the energy parameter E (E = 0.4, 0.5, 0.6, and 0.7 eV).

Columns F–I contain the calculation of the quantity |TLexperimental − TLcalculated|,
and the cells in the last row contain the calculated values of the FOM.

The FOM for the value of the parameter E = 0.60 eV is equal to 0.003 = 0.3%,
almost 100 times smaller than the FOM = 0.300 = 30.0% for the case E = 0.4 eV.

The frequency factor s can be calculated by using the value of E = 0.60 eV and
the temperature of maximum TL intensity TM = 364 K in equation (1.10), which
is applicable for general-order kinetics:

s = βE

kT 2
M

(
1 + 2kTM(b − 1)

E

) exp

(
E

kTM

)

s = (1)0.60

(8.617 × 10−5)(364)2

(
1 + 2(8.617 × 10−5)364(1.5 − 1)

0.60

)

× exp

(
0.60

(8.617 × 10−5)364

)
= 1.05 × 1012 s−1. (2.18)
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Table 2.25. Summary of the results of various analysis methods for
general-order data

E (eV) Frequency factor (s or s′′) Comments below

Initial rise method 0.580 ± 0.006 [1,4]
Chen’s τ -method 0.610 [2,4]
Chen’s δ-method 0.653 ± 0.06 [2,4]
Chen’s ω-method 0.609 [2,4]
Whole glow-peak

method
0.568 ± 0.005 s′ = 28.36 [3]

Fitting method using
Kitis et al equation

0.60 ± 0.1 s = 1.05 × 1012 s−1 [4]

Finally, we summarize in Table 2.25 the results of the various methods for
analyzing the given experimental data for general-order kinetics.

Comments

1. The value of E obtained from the IR method is independent of the kinetics of
the TL glow peak.

As in the case of first- and second-order kinetics, the presence of thermal
quenching affects the value of E obtained in the IR method.

A possible correction method for the value of E is given in Chapter 5.
It is best to use the IR and peak shape methods with samples irradiated at

low doses [3].
2. The value of E obtained with peak shape methods can be influenced by the

presence of smaller satellite peaks.
3. The whole glow-curve method yields information on both E and the pre-

exponential factor s′′ = nb−1
0 s ′. Because TL cannot yield a value for the absolute

concentration nb−1
0 , the factor s′′ and the n0 appearing in equation (1.7) repre-

sent two empirical fitting parameters for general-order glow peaks. The value
of n0 can be estimated from the area under the glow curve.

By using the values of E , s ′′, and n0, it is possible to compare directly the
experimental data with the TL intensity obtained using equation (1.7).

4. The pre-exponential factor s can be calculated from the values of TM, E , and
β by using equation (2.18). The estimated uncertainties �s/s from equation
(2.18) can be very large (50–100%), even when the uncertainty �E/E is very
small.

(e) Can it be assumed for this material that this TL peak will always follow
general kinetics of order b = 1.5?

In general, one cannot assume that the studied TL glow curve of this material
will always follow general-order kinetics of the same order found in analyzing one
set of data. The analysis should be carried out for glow peaks measured under
different heating rates, various irradiation doses, powdered and bulk samples,
etc.
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Some of the criteria for general-order kinetics are:

I. Peak shape: first-order peaks have µ = 0.42, second-order peaks have µ =
0.52, and general-order kinetics have values in-between (see Figure 1.14).

II. Peak shift: In most non-first-order TL glow peaks, the location of maximum
TL intensity shifts toward higher temperatures for lower trap filling. One must
be aware that the observed maximum shift can be also due to the presence of
smaller satellite peaks.

III. IM − TM dependence: In general-order peaks a graph of ln

[
I b−1
M

(
T 2

M

β

)b
]

versus 1/kT M will yield a straight line of slope E (equation (1.28)).
IV. Isothermal decay results: These can provide valuable independent informa-

tion about the kinetics of the TL process involved at different temperatures.
General-order kinetics corresponds to decay curves described by a plot of the

quantity

(
It

I0

)1−b
b

versus time, which should be a straight line when a suitable

value of b is found.

Exercise 2.7: Influence of the Background on the Results
of the IR Method

Given the experimental data of Table 2.26, estimate the influence of the background
on the activation energy obtained using the IR method.

Solution

In Exercise 2.1, it was found that the activation energies calculated using the IR
method depend strongly on the number of points chosen, i.e. on the TL intensity
Istart at the starting temperature of the IR region. From a statistical point of view, the
IR region must start from the temperature at which the TL intensity is higher than
the background by at least three times the standard deviation of the background
signal.

Table 2.26. Experimental data-effect of background on IR method

T (K) TL T (K) TL T (K) TL T (K) TL T (K) TL

293.4 5 341 6 353.8 11 357.8 25 379.8 228
297.8 3 345.8 4 354.2 25 358.2 21 382.6 316
302.6 2 350.6 7 354.6 19 360.6 25 385 400
307.4 8 351 8 355 13 363 41 387.4 538
312.2 4 351.4 9 355.4 14 365.4 51 389.8 646
317 4 351.8 10 355.8 11 367.8 46 396.6 1420
321.8 1 352.2 16 356.2 20 370.2 79 401 2152
326.6 7 352.6 15 356.6 25 352.6 110 405.8 3452
331.4 5 353 12 357 15 375 128 410.2 5127
336.2 5 353.4 16 357.4 27 377.4 197 413 6483
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Table 2.27. Data for the two IR lines

1/kT ln(TL) ln(TL − bg) 1/kT ln(TL) ln(TL − bg)

32.58 3.00 2.69 30.95 4.85 4.81
32.54 3.22 2.99 30.75 5.28 5.26
32.51 2.71 2.28 30.56 5.43 5.51
32.47 3.30 3.08 30.33 5.76 5.74
32.43 3.22 2.99 30.14 5.99 5.98
32.40 3.04 2.76 29.96 6.29 6.28
32.18 3.22 2.99 29.77 6.47 6.46
31.97 3.71 3.58 29.26 7.26 7.25
31.76 3.93 3.82 28.94 7.67 7.67
31.55 3.83 3.71 28.60 8.15 8.15
31.35 4.37 4.30 28.29 5.84 8.54
31.15 4.70 4.65 28.10 8.78 8.78

By examining the given data, it is clear that the TL intensity at low temperatures
is due to the background only. Therefore, the first 15 points, i.e. the TL in the
temperature region [293–350 K] can be used to evaluate the mean value of the
background. It is found by averaging these 15 points that the background is equal
to bg = 5.2 ± 2.3 counts.

Once the background is evaluated and in order to show its effect on the activation
energy calculation, the IR linear fit is applied twice. In the first case, the fit is
performed using the TL data as given, by graphing ln(TL) versus 1/kT , and in
the second case, by subtracting the background and graphing ln(TL − bg) versus
1/kT . The corresponding data for the two fits are shown in Table 2.27.

The resulting IR lines are shown in Figure 2.31, where one can see the different
slopes obtained. The activation energy values obtained from each IR line are:

29 31 33
1/kT   eV−1

2

4

6

8

ln
(T

L
)

a

b
Figure 2.31. IR plots: (a)
without background subtraction
and (b) with background
subtracted.
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(a) Without background subtraction: E = 1.3087 ± 0.022.

(b) With background subtracted: E = 1.3780 ± 0.024.

It is seen that by ignoring the background, the IR method in this exercise leads to
a serious underestimation of the activation energy E by 5%.

Exercise 2.8: Study of the 15% Rule of Thumb
for the IR Technique

A well-known rule of thumb for the IR method is that the method holds only up to
a temperature that corresponds to a TL intensity lower than 10–15% of the peak
maximum intensity, IM.

Calculate a synthetic glow peak with the trapping parameters E = 1 eV, s =
1012 s−1, n0 = 106 m−3 and verify the applicability of the 15% rule by following
these steps:

(a) Express the rule of thumb in a mathematical form by examining the two terms
in the analytical expression for first-order TL glow peaks.

(b) Express the mathematical condition in (a) as a function of the percent ratio
%IIR/IM = (IIR/IM) × 100% where IIR is the maximum TL intensity of the
IR region.

(c) Examine how the activation energy values obtained by the IR method depend
not only on the end of the IR region (i.e. on the %IIR/IM value), but also on
the starting TL intensity Istart of the IR region.

Solution

(a) By substituting the series approximation for the TL integral from
equation (1.52) into equation (1.5) for first-order TL glow peaks, we obtain the
following analytical expression:

I (T ) = n0 · s · exp

(
− E

kT

)
· exp

[
− skT 2

βE
· exp

(
− E

kT

)
·
(

1 − 2kT

E

)]
.

(2.19)

This expression consists of two parts, the increasing IR part n0s exp(−E/kT ) and
the function F2(T ) given by

F2(T ) = exp

[
− skT 2

βE
· exp

(
− E

kT

)
·
(

1 − 2kT

E

)]
. (2.20)

The IR method holds when the condition F2(T ) ∼ 1 is fulfilled.
Using a spreadsheet program, it is straight forward to evaluate a single TL glow

peak with the given parameters, as well as the values of the expression F2(T ) at
various temperatures T . The result is shown in Figure 2.32 where one can identify
the part of the glow peak which must be used for the correct application of the IR
method.
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Figure 2.32. The function
F2(T ) with the respective TL
glow peak, showing the region
where the IR method holds.

(b) The commonly used rule of thumb for the IR method says that the method
holds up to the temperature at which the TL intensity is less than 10–15% of the
peak maximum intensity IM. From the data shown in Figure 2.32, one can extract
the data for a plot of F2(T ) versus the percent ratio %IIR/IM. The result is shown
in Figure 2.33 from which one can conclude that the 15% rule for the IR method
holds when F2(T ) > 0.95.

(c) The IR method is applied to the synthetic glow peak by varying the starting
TL intensity Istart. The upper limit %IIR/IM was left to vary and an IR plot was
accepted if its correlation coefficient was better than 0.999. Figure 2.34 shows the
resulting activation energies E as a function of the percent ratio %IIR/IM. The
values of Istart and %IIR/IM for curves (a)–(e) are shown in Table 2.28.

The data for curve (a) in Figure 2.34 show that the 15% IIR/IIM rule of thumb is
applicable up to about 26% of the maximum TL intensity. Even at this high ratio
of 26%, the activation energy obtained using the IR method is E = 0.9964 eV
which corresponds to a very small error of 0.36% relative to the reference value
of E = 1 eV used for the evaluation of the synthetic peak. The corresponding IR
plot is shown in Figure 2.35.
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Figure 2.33. The values of the condi-
tion factor F2(T ) at various %IIR/IM.
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Figure 2.34. Activation energy
values E resulting from the IR
method by using the conditions
given in the Table 2.28.

The results of Figure 2.34 show clearly that the commonly used 15% rule of
thumb does not always apply. The correct application of the IR method depends
strongly on the extent of the selected IR region. It also depends critically on the
clear and accurate definition of the beginning of the IR region. In an experimental
situation, this beginning must be defined according to the value of the background
of the data, which also affects the results as was shown in the previous exercise.

Exercise 2.9: Error Analysis for Peak Shape Methods

Using a synthetic general-order glow-peak with E = 1 eV, s = 1012 s−1, and
b = 1.5

(a) Find how the estimated error in the temperatures T1, TM, and T2 is propagated
in the symmetry factor µ, as a function of the error in temperature.

(b) Investigate what the error in temperature �T must be, so that one can dis-
criminate between kinetic orders having a difference �b = 0.1.

(c) Find how the estimated error in the temperatures T1, TM, T2, and µ is propa-
gated in the values of the activation energies E evaluated using general peak
shape methods.

Table 2.28. Istart and Tstart for the
15% rule of thumb study

Curve Tstart (K) Istart/IM

a 273 1.3 × 10−6

b 314 3.13 × 10−4

c 330 2.0 × 10−3

d 346 1.0 × 10−2

e 355 2.3 × 10−2
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Figure 2.35. The open circles are the
points on the glow peak and the solid line
represents the IR line with slop E = 1 eV.

Solution

(a) The symmetry factor µ, is defined by the relation

µ = T2 − TM

T2 − T1
. (2.21)

The errors on T1, T2, and TM are propagated in the value of µ, according to the
expression [5]:

σµ = ±
√(

∂µ

∂T1
· �T1

)2

+
(

∂µ

∂T2
· �T2

)2

+
(

∂µ

∂TM
· �TM

)2

. (2.22)

By evaluating the partial derivatives using equation (2.21) and substituting into
equation (2.22), we find the following expression for the standard deviation
σµ of µ:

σµ = ±
√(

T2 − TM

(T2 − T1)2
· �T1

)2

+
(

TM − T1

(T2 − T1)2
· �T2

)2

+
(

− 1

T2 − T1
· �TM

)2

(2.23)

Using a spreadsheet program, one can easily generate a synthetic glow peak
and evaluate the temperatures T1, T2, and TM by using, for example, the series
approximation from equation (1.52) in the general-order equation (1.7).

In experimental situations, the errors in temperature depend on the temperature
interval used for sampling the TL signal. For example, if one measures the TL
intensity per every 2 K, then the possible error in temperature TM, T1, T2, etc., can
be taken to be half of this interval (1 K).

In this exercise, the experimental situation is simulated by generating the syn-
thetic glow peak using different temperature intervals to evaluate the TL intensity.
This is shown in column 1 of Table 2.29. In the first row of the table, it is shown
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Table 2.29. Data table 1 for error propagation in peak shape methods

Step TM (K) T1 (K) T2 (K) �T (K) µ σµ 3σµ/�µ

0.001 384.301 365.29 401.718 0.0005 0.478121 0.000017 0.005
0.005 384.305 365.29 401.715 0.0025 0.477968 0.000084 0.026
0.01 384.31 365.29 401.71 0.005 0.47759 0.00017 0.053
0.05 384.35 365.25 401.7 0.025 0.475995 0.00084 0.26
0.1 384.4 365.3 401.7 0.05 0.475275 0.00168 0.53
0.2 384.6 365.2 401.6 0.1 0.46033 0.00336 1.05
0.3 384.6 365.4 401.7 0.15 0.471074 0.005 1.57
0.4 384.6 365.4 401.8 0.2 0.472527 0.0067 2.1
0.5 385 365.5 401.5 0.25 0.465753 0.0085 2.67
0.6 384.6 365.4 402 0.3 0.475410 0.01 3.14
0.7 385 365.4 401.8 0.35 0.461538 0.012 3.52
0.8 385 365 401.8 0.4 0.456522 0.013 4.08
0.9 385.5 365.7 401.7 0.45 0.450000 0.015 4.71
1 385 365 402 0.5 0.459459 0.0165 5.18

that the first synthetic glow peak was generated by evaluating the TL every 0.001
K. The error in temperature is given by column 5 and was taken equal to one half
of the step used in measuring TL (�T = 0.0005 K).

For the sake of simplicity in the evaluations, it is assumed that �T1 = �T2 =
�TM = �T . The values of TM, T1, T2, symmetry factor µ, and its standard de-
viation σµ according to equation (2.23) are listed in columns 2, 3, 4, 6, and 7 of
Table 2.29, respectively, for different values of �T .

(b) From the first row of Table 2.29, the symmetry factor for b = 1.5 is equal
to µ = 0.478121. The symmetry factors for the neighboring values of b = 1.4
and b = 1.6 are found in a similar fashion to be equal to µ = 0.468176 and µ =
0.487376, respectively. The difference between these two symmetry factors for
b = 1.5 and b = 1.6 is �µ = 0.00925.

In order for one to be able to discriminate between these two values, the following
condition must be fulfilled.

3σµ > �µ. (2.24)

The data of Table 2.29 show that this condition holds only when �T > 0.1 K.
For all values of µ that satisfy the condition 3σµ < �µ, the respective values of
µg belong to a kinetic order b = 1.5. Therefore, the error in temperature �T must
be less than 0.2 K in order for the evaluated symmetry factor µ to correspond to
the kinetic order b = 1.5, and not to 1.4 or 1.6.

(c) The general peak shape method equation for evaluating the activation energy
E is given by equation (1.48):

E = cα · kTM
2

a
− bα(2kTM), (1.48)
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where α stands for τ , δ, and ω and the coefficients are given by equation (1.49):

cτ = 1.510 + 3.0(µ − 0.42), bτ = 1.58 + 4.2(µ − 0.42)

cδ = 0.976 + 7.3(µ − 0.42), bδ = 0

cω = 2.52 + 10.2(µ − 0.42), bω = 1. (1.49)

The errors on T1, T2, and TM are propagated in the value of E , according to the
expression:

σE = ±
√(

∂ E

∂TM
· �TM

)2

+
(

∂ E

∂a
· �a

)2

+
(

∂ E

∂µ
· �µ

)2

. (2.25)

Taking into account equation (1.49), equation (2.25) becomes for the case of Eτ

σEτ = ±
√((

2cτ kTM
τ

− 2kbτ

)
· �TM

)2 +
(

cτ kT 2
M

τ2 · �τ

)2

+
(

3kT 2
M

τ
− 8.4kTM

)
· �µ)2.4 (2.26)

The corresponding equations for Eδ and Eω are

σEδ =
√(

2cδkTM

δ
· �TM

)2

+
(

cδkT 2
M

δ2
· �δ

)2

+
(

7.3kT 2
M

δ
· �µ

)2

, (2.27)

σEω =
√(

2cωkTM

ω
· �TM

)2

+
(

cωkT 2
M

ω2
· �ω

)2

+
(

10.2kT 2
M

ω
· �µ

)2

. (2.28)

For the sake of simplicity, we assume that �T1 = �T2 = �TM = �T . The quan-
tities τ , δ, and ω are given by the relations:

ω = T2 − T1,

δ = T2 − TM,

τ = TM − T1. (2.29)

The error propagation for ω is

σω = ±
√

�T 2
2 + �T 2

1

σω = ±�T
√

2 (2.30)

with similar expressions for τ and δ. Therefore, in equations (2.26–2.28) one must
use

�τ = �δ = �ω = 1.41 �T .

The results for the error �E are shown in Table 2.30, which continues Table 2.29.
The data in Table 2.30 show that the error in the activation energy depends on the
peak shape quantity used in the evaluation (τ, δ, or ω). However, as in the previous
question of this exercise, the most accurate values of the activation energy (with
the lowest errors of 1% or less) are obtained when the temperature is measured
with an accuracy better than 0.1 K.
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Table 2.30. Data table 2 for error propagation in peak shape methods

�T Eτ 100 × σEτ Eδ 100 × σEδ Eω 100 × σEω

0.0005 1.00672 0.0051 1.02316 0.0099 1.02125 0.0064
0.0025 1.0062 0.025 1.00624 0.0494 1.0208 0.0318
0.005 1.0056 0.051 1.00224 0.0989 1.02025 0.0635
0.025 1.9981 0.252 1.01598 0.495 1.01328 0.317
0.05 0.9971 0.504 1.01531 0.995 1.01247 0.636
0.1 0.9669 0.97 0.9982 2.02 0.9841 1.27
0.15 0.9852 1.49 1.0054 3.02 1.0015 1.92
0.2 0.9877 1.99 1.00742 4.00 1.00375 2.55
0.25 0.9489 2.4 0.9720 5.24 0.9664 3.25
0.3 1.0113 2.99 1.01125 5.91 1.0081 3.78
0.35 0.9488 3.33 0.9725 7.14 0.9666 4.45
0.4 0.9193 3.65 0.9447 8.05 0.9375 4.97
0.45 0.9214 4.19 0.9446 9.59 0.9388 5.84
0.5 0.924 4.56 0.9497 9.91 0.9425 6.15
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3
Simple TL Models

Introduction

In this chapter several examples are given of implementing simple thermolumines-
cence (TL) kinetic models. In the first two exercises of this chapter, the models are
implemented in EXCEL using a simple numerical integration algorithm known as
Euler’s method. This method is known to be less accurate than the commonly em-
ployed higher order Runge–Kutta algorithms, but is included here for educational
and demonstration purposes.

In the rest of this chapter several examples are given of using the programming
language Mathematica to implement simple TL models. Some information on the
algorithms and numerical integration techniques used in Mathematica, and a brief
introduction to some of its features is given in the Appendix. The authors have found
the numerical integration code in Mathematica to be very efficient and accurate,
with most of the examples given in this chapter requiring typical running times of
1–2 min on a desktop computer. The complexity of the Mathematica programs is
gradually increased in this chapter, and the reader is introduced incrementally to
the capabilities of this powerful programming environment.

Exercise 3.3 demonstrates how Mathematica can be used to numerically inte-
grate the differential equations for first-, second-, and general-order kinetics and
how it can be used to present graphically the results of the integration. In Exercise
3.4 the differential equations for the well-known one-trap-one-recombination cen-
ter model (OTOR) of TL are solved numerically, and the exact numerical solutions
are compared with the commonly used quasi-equilibrium (QE) approximation. In
Exercise 3.5 the kinetic equations for the more realistic and hence more complex
interactive-multi-trap-system (IMTS) model for TL are developed, and detailed
numerical results are presented.

In Exercise 3.6 the accuracy of an analytical expression for first-order kinet-
ics is examined by calculating the figure of merit (FOM). This useful analytical
expression for first-order kinetics is based on two experimentally measured pa-
rameters: the temperature TM of maximum TL intensity, and the maximum TL
intensity IM. Exercises 3.7 and 3.8 are an extension of Exercise 3.6 for second-
and general-order kinetics.

79
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Exercise 3.9 is a comparative study of the accuracy of several analytical expres-
sions available in the literature, which are used to represent first-order TL glow
curves. Six different analytical expressions are compared and contrasted based on
the goodness of fit to a simulated first order TL glow curve. Finally Exercise 3.10
is an extension of Exercise 3.9, consisting of a comparative study of five different
analytical expressions for general order kinetics.

Finally Exercise 3.11 is a systematic study of the behavior of TL glow peaks
exhibiting mixed order kinetics. A general comparison is made of mixed-order and
general-order kinetics.

Whenever possible, special effort has been made to use the same terms and
symbols as in the original research papers in the literature, in order to facilitate the
work of researchers interested in pursuing more detailed studies of the numerical
models in this chapter.

Exercise 3.1: Numerical Integration of First-Order Equation

Use a calculator or a spreadsheet program like EXCEL to integrate numerically
the standard equation for first-order kinetics

I (t) = −dn

dt
= nse−E/kT , (3.1)

where E = thermal activation energy of the trap (eV)
s = frequency factor (s−1)

T = temperature of the sample (K)
k = Boltzmann constant (eV K−1)

N = total concentration of the traps in the crystal (cm−3)
n = filled concentration of the traps in the crystal (cm−3)

n0 = initial concentration of filled traps at time t = 0 (cm−3).

Use a simple numerical integration method such as Euler’s method for numer-
ical integration [1]. The program should allow the user to change the values of
the parameters E, s, β and n0 in order to examine the effect of these param-
eters on the TL glow curve and should graph the numerically obtained graphs
TL(T), n(T).

Use the following set of numerical values of the parameters: n0 = 1010 cm−3,
E = 1 eV, s = 1012 s−1, k = 8.617 × 10−5 eV K−1, β = 1 K s−1 and assume a
linear heating rate β.

Solution

The differential equation can be written in terms of the temperature T instead of
the time t by writing

dn

dt
= dn

dT

dT

dt
= dn

dT
β = −nse−E/kT , (3.2)

where β = linear heating rate in K s−1.
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By writing
dn

dT
= �n

�T
and rearranging the given differential equation we obtain

�n = n(T + �T ) − n(T ) = −nse−E/kT �T

β
. (3.3)

The left-hand side of this equation represents the difference between the value of
the electron concentration at temperatures T and T + �T , so that by rearranging:

n(T + �T ) = n(T ) − n(T )se−E/kT �T

β
. (3.4)

This equation forms the basis of the integration procedure we will use to nu-
merically integrate the first-order equation and is known as Euler’s method.
The calculations can be carried out easily using a calculator, or by using a
spreadsheet.

By using the values of n0 = 1010 cm−3, E = 1 eV, s = 1012 s−1, k = 8.617 ×
10−5 eV K−1, �T = 1 K, β = 1 K s−1 we obtain the following values of n(T)
using equation (3.4):

T0 = 20◦C = 293 K

n0 = 1010

T1 = 21◦C = 294 K

n1 = n0 − n0se−E/kT1
�T

β
= 1010 − 1010 × 1012 e− 1.0

8.617×10−5×294
1

1

= 1010 − 71984

TL = −β
�n

�T
= β

n0 − n1

�T
= 1

1010 − (1010 − 71984)

1
= 71984

T2 = 22◦C = 295 K

n2 = n1 − n1se−E/kT2
�T

β

= 1010 − (1010 − 71984) × 1012e− 1.0
8.617×10−5×295

1

1
= 1010 − 82289

TL = −β
�n

�T
= β

n0 − n1

�T
= 1

1010 − (1010 − 82289)

1
= 82289.

By continuing in a similar manner, we can obtain Table 3.1 with the first five values
of n(T).

The above series of calculations is best implemented on a spreadsheet type
of program like EXCEL. The EXCEL program will contain three columns:
the first column contains the temperature values T at intervals of �T = 1◦C,
while the second column will contain the values of n(T + �T ) calculated from the
above equation. The third column will contain the difference between successive
values of the concentrations n(T), and will be proportional to the observed TL
intensity.
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Table 3.1. Calculation of n(T) for first-order
kinetics equation

T(◦C) n(T) TL(T) = −βdn/dT

20 10,000,000,000
21 9,999,928,016 71,984
22 9,999,845,727 82,289
23 9,999,751,742 93,985
24 9,999,644,496 107,246

The result of implementing the above calculations in an EXCEL spreadsheet
is shown in Table 3.2, together with the graphs of n(T) and TL(T) in Figure 3.1.
For the sake of brevity, only the first few lines of the spreadsheet calculations are
shown here. The following formulas are entered in cells C6, C7 and D7 in order
to implement Euler’s equation.

Cell C6 = $B$3,

CellC7 = C6-C6∗$B$1∗EXP(−$B$2/(0.00008617∗(273 + B7)))∗1,

CellD7 = C6-C7, etc.

An important advantage of using a spreadsheet is that by changing the value of
one of the parameters in the spreadsheet (such as s, E, n0), the user can immediately
see the resulting changes in the graphs of n(T) and TL(T).

Exercise 3.2: The One-Trap-One-Recombination
Center Model

Use EXCEL to integrate numerically the differential equation describing the TL
process for the OTOR model. This model consists of an isolated electron trap and
a recombination center (RC), as shown in Figure 3.2.

Table 3.2. Calculations of n(T) and TL(T) for first-order
kinetics equation

A B C D

1 s = 1.00 × 1012 s−1

2 E = 1 eV
3 n0 = 1.00 × 1010 cm−3

4
5 T(◦C) n(T) TL(T) = −βdn/dT
6 20 10,000,000,000
7 21 9,999,928,016 71,984
8 22 9,999,845,727 82,289
9 23 9,999,751,742 93,985

10 24 9,999,644,496 107,246
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Figure 3.1. Results from integrating the equation for first-order kinetics.

By applying the QE conditions, we arrive at the following general analytical
expression for the TL intensity in the OTOR model [2]:

I = −dn

dt
=

sn2 exp

(
− E

kT

)
n Ah + (N − n)An

· Ah, (3.5)

where E = thermal activation energy of the trap (eV)
s = frequency factor (s−1)

T = temperature of the sample (K)
k = Boltzmann constant (eV K−1)

N = total concentration of the traps in the crystal (cm−3)
n = concentration of filled traps in the crystal (cm−3)

n0 = initial concentration of filled traps at time t = 0 (cm−3)
An = probability coefficient of electron retrapping in the traps (cm3 s−1)
Ah = probability coefficient of electron recombining with holes in the RC

(cm3 s−1).

Use Euler’s method in a spreadsheet. The program should allow the user to change
the values of E, s, β, n0, An, and Ah in order to see the effect of these parameters
on the TL glow curve, and should graph the numerically obtained graphs TL(T),
n(T).

Conduction band 

Ah An

Trap
     n, N 

RC

Valence band 

Figure 3.2. The OTOR model.
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Use the following values for the parameters:

E = 1 eV, s = 1012 s−1, N = 1010 cm−3, An = 10−7 cm3s−1,

β = 1 Ks−1, A n/A h = 10−2, n0 = N

The conditions under which the OTOR model produces first-order or second-order
TL glow curves can be examined by varying the above parameters.

Show that with the given parameters, the OTOR model produces a first-order
TL glow peak. Since in our case An/Ah = 10−2, the probability coefficient of
retrapping in the trap is much smaller than the recombination probability coefficient
of the electrons in the RC, and we would expect the OTOR model to produce a
first-order TL peak.

Solution

The given equation can be written as

dn

dt
= −

sn2 exp

(
− E

kT

)
n Ah + (N − n)An

· Ah. (3.6)

As in the previous example, the derivative dn/dt can be written in terms of the
temperature T instead of the time t by writing

dn

dt
= dn

dT

dT

dt
= dn

dT
β, (3.7)

where β = linear heating rate in K s−1.

By approximating
dn

dt
= �n

�T
and rearranging we obtain

�n = n(T + �T ) − n(T ) = −
sn2 exp

(
− E

kT

)
n Ah + (N − n)An

· Ah · �T

β
. (3.8)

Finally by rearranging:

n(T + �T ) = n(T ) −
sn2 exp

(
− E

kT

)
n Ah + (N − n)An

· Ah · �T

β
. (3.9)

As in the previous example, we will use this equation which expresses Euler’s
numerical integration method to numerically integrate the differential equation.

We set up an EXCEL spreadsheet as shown in Table 3.3. The first 10 rows of the
spreadsheet contain the input parameters of the OTOR model. Only the first five
calculated values of I(T) and n(T) are shown. Column A contains the values of time
t = 0,1,2. s and column B contains the corresponding temperature T = T0 + βt
where T0 = 21◦C = temperature at time t = 0 and β = heating rate = 1K s−1.
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Table 3.3. Calculations of n(T) and TL(T) for the OTOR model

A B C D

1 OTOR model of
Thermoluminescence

2 Input parameters
3 E = 1 eV
4 s = 1.00 × 1012 s−1

5 N = 1.00 × 1010 cm−3

6 An = 1.00 × 10−7 cm3s−1

7 Ah = 1.00 × 10−5 cm3s−1

8 β = 1 ◦Cs−1

9 n0 = 1.00 × 1010 cm−3

10 �T = 1 ◦C
11
12 time t (s) Temperature T (◦C) n(T) TL
13 0 21 1.00 × 1010

14 1 22 9999917710.31 82289.69
15 2 23 9999823724.94 93985.37
16 3 24 9999716477.76 107247.18
17 4 25 9999594206.00 122271.76
18 5 26 9999454927.25 139278.76

Column C contains the calculation for the instantaneous concentration of filled
traps n(T). The calculation is carried by using the formulas:

Cell C13 = $B$9 (this is the initial concentration n0),

Cell C14 = C13-(C13∗C13∗$B$7∗$B$4∗EXP(-$B$3/(0.00008617∗

(273 + B14)))/$B$8)/(($B$5-C13)∗$B$6 + C13∗$B$7),

Cell C15 = C14 − (C14∗C14∗$B$7∗$B$4∗EXP(-$B$3/(0.00008617∗

(273 + B15)))/$B$8)/(($B$5-C14)∗$B$6 + C14∗$B$7), etc.

Column D contains the calculated values of the TL intensity:

D14 = C13-C14

D15 = C14-C15 etc.

The results of the calculation using Euler’s method are shown in Table 3.3 and
graphs of TL(T), n(T) are shown in Figure 3.3.

Since for the given parameters An/Ah = 10−2, the retrapping probability of the
thermally ejected electrons is much smaller than the probability of their recombin-
ing at the RC, we might expect the calculated TL glow peak to follow first-order
kinetics. The calculated TL glow curve in Figure 3.3 has indeed the characteristic
asymmetric shape of first-order kinetics peaks, with the following temperature
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Figure 3.3. The results from the OTOR model.

parameters:

TM = 384 K

τ = 17 K

δ = 13 K

ω = 30 K

and the geometrical shape factor µ = δ/ω = 13/30 = 0.43.
As expected, the geometrical shape factor is very close to the expected value of

µ = 0.42 for a first-order kinetics peak.
Several more examples of results obtained with the OTOR model are given in

Exercise 3.4 of this chapter by using Mathematica.

Exercise 3.3: Calculation of Glow Peaks Using Mathematica
(a) Write a computer program in Mathematica to numerically integrate the equa-

tions for first-, second- and general-order kinetics:

I (t) = −dn

dt
= nse−E/kT

I (t) = −dn

dt
= n2

N
se−E/kT

I (t) = −dn

dt
= nb s

N
e−E/kT (3.10)

Use the following numerical values: E = 1.0 eV, s = 1012 s−1, β = 1 K s−1,
n0 = N = 1010 cm−3.

(b) Modify the program so that it graphs the solutions for different initial electron
trap occupancies n0. Show that in the case of first-order kinetics, changes in
n0 do not affect the position of the maximum intensity (Tmax) of the first-order
TL glow curve, but these changes affect the maximum height (Imax) of the
glow curve.

(c) Show that in the cases of second- and general-order kinetics, changes in
the initial electron trap concentration n0 affect the position of both the
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maximum intensity (Tmax) and the maximum height (Imax) of the glow
curve.

Solution

The following simple program in Mathematica solves the differential equation for
first-order kinetics with the initial value n0 =N. The parameter beta1 represents the
linear heating rate β. The command Remove is always introduced at the beginning
of all Mathematica programs in this book, in order to clear the memory from all
variables and programs. The command NDSolve is used to perform the numeri-
cal integration of the differential equation, and stores the result of the numerical
integration as the parameter sol (which stands for the solution of the differential
equation). The parameter x represents the temperature T (in ◦C) and the function
n1[x] represents the electron concentration n(T). The integration is carried from
a temperature of T = 0◦C to T = 200◦C, and a maximum number of integration
steps is set at 50,000 by using the variable MaxSteps. The command Plot is used
to graph the result n(T) and TL(T) of the numerical integration procedure.

(a) First-Order Kinetics

Remove["Global`*"];
E1 = 1.0; s1 = 10^12; k1 = 8.617*10^-5; beta1 = 1;
N1 = 10^10; no = 1*N1; Npoints = 200;

sol = NDSolve[{n1'[x] == -n1[x]*(s1/beta1)*E^(-E1/
(k1*(273+x))), n1[0] == no}, {n1}, {x, 0, Npoints},
MaxSteps → 50000];

Plot[Evaluate[n1[x]/.sol], {x,0,Npoints}, PlotRange →
All, AxesLabel → {"T", "n(T)"}];

Plot[Evaluate[-n1'[x]/.sol],{x,0,Npoints}, PlotRange → All,
AxesLabel → {"T", "TL(T)"}];

The results of running the program for first order kinetics are given in Figure 3.4.
By changing the third line containing the parameter sol in the above simple

program, we obtain the solution of the second-order and general-order equations
as follows.
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Figure 3.4. The result of numerical integration for first-order kinetics using Mathematica.
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Figure 3.5. The result of numerical integration for second-order kinetics using
Mathematica.

The results of integrating the second-order kinetic equation are shown in Fig-
ure 3.5.

Second-Order Equation

Remove["Global`*"];
E1 = 1.0; s1 = 10^12; k1 = 8.617*10^-5; beta1 = 1;
N1 = 10^10; no = 1*N1; Npoints = 200;

sol = NDSolve[{n1'[x] == -n1[x]^2/N1*(s1/beta1)*E^(-E1/
(k1*(273+x))), n1[0] == no}, {n1}, {x, 0, Npoints},
MaxSteps → 50000];

Plot[Evaluate[n1[x]/.sol],{x,0,Npoints}, PlotRange → All,
AxesLabel → {"T", "n(T)"}];

Plot[Evaluate[-n1'[x]/.sol],{x,0,Npoints}, PlotRange → All,
AxesLabel → {"T", "TL(T)"}];

General-Order Kinetics

By simply changing the third line and by increasing the number of points Npoints
in the previous program, the following integrates the differential equation for
general-order kinetics with a general-order value of b = 1.5.

The results of integrating the general-order kinetics equation are shown in
Figure 3.6.

Remove["Global`*"];
E1 = 1.0; s1 = 10^12; k1 = 8.617*10^-5; beta1 = 1;
N1 = 10^10; no = 1*N1; Npoints = 450; b = 1.5;

sol = NDSolve[{n1'[x] == -n1[x]^b/N1*(s1/beta1)*E^(-E1/
(k1*(273+x))), n1[0] == no}, {n1}, {x, 0, Npoints},
MaxSteps → 50000];

Plot[Evaluate[n1[x]/.sol], {x,0,Npoints}, PlotRange → All,
AxesLabel → {"T", "n(T)"}];

Plot[Evaluate[-n1'[x]/.sol],{x,0,Npoints}, PlotRange → All,
AxesLabel → {"T", "TL(T)"}];
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Figure 3.6. The result of numerical integration for general-order kinetics using
Mathematica.

(b) Graphing Different Values of the Parameter n0—First-Order Kinetics

By making simple changes in the program we can graph the solutions of the first-
order kinetics for three different values of the parameter n0 = N , 0.5N, and 0.1N.
The solutions of the first-order equation for these three values of n0 are stored in
the variables sol1, sol2, sol3 and are graphed using the Plot command. The graphs
are stored in the graphic objects gr1, gr2, and gr3. Finally the three graphs are
shown together by using the Mathematica command Show.

Remove["Global`*"];
E1 = 1.0; s1 = 10^12; k1 = 8.617*10^-5; beta1 = 1;
N1 = 10^10; no = 1*N1; Npoints = 200;
sol1 = NDSolve[{n1'[x] == -n1[x]*(s1/beta1)*E^(-E1/
(k1*(273+x))), n1[0] == no}, {n1}, {x, 0, Npoints}];

no = 0.5*N1;
sol2 = NDSolve[{n1'[x] == -n1[x]*(s1/beta1)*E^(-E1/
(k1*(273+x))), n1[0] == no}, {n1}, {x,0, Npoints}];

no = 0.1*N1;
sol3 = NDSolve[{n1'[x] == -n1[x]*(s1/beta1)*E^(-E1/
(k1*(273+x))), n1[0] == no}, {n1}, {x, 0, Npoints}];

gr1 = Plot[Evaluate[-n1 '[x] /.sol1], {x, 0, Npoints},
AxesLabel → {"T", "TL(T)"}, PlotRange → All];

gr2 = Plot[Evaluate[-n1 '[x] /.sol2], {x, 0, Npoints},
AxesLabel → {"T", "TL(T)"}, PlotRange → All];

gr3 = Plot[Evaluate[-n1 '[x] /.sol3], {x, 0, Npoints},
AxesLabel → {"T", "TL(T)"}, PlotRange → All];

Show[{gr1, gr2, gr3}, PlotLabel → "First order kinetics:
no=1*N, 0.5*N, 0.1*N", ImageSize → 755];

As seen in Figure 3.7, the position of the maximum intensity (Tmax) of the first-
order TL glow curve stays the same for different values of the parameter n0, but the
maximum height (Imax) of the glow curve decreases, while the overall asymmetric
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Figure 3.7. First-order kinetics calculation for different values of the parameter n0.

shape of the TL glow curve remains the same. The symmetry factor µ = 0.42 for
all graphs is shown in Figure 3.7.

(c) Graphing Different Electron Trap Occupancies n0—Second Order Kinetics

By making simple changes in the program we can also graph the solutions of the
second-order kinetics for three different electron trap occupancies n0 = N, 0.5N,
and 0.1N. The results are shown in Figure 3.8.

Remove["Global`*"];
E1 = 1.0; s1 = 10^12; k1 = 8.617*10^-5; beta1 = 1;
N1 = 10^10; no = 1*N1; Npoints = 200;
sol1 = NDSolve[{n1'[x] == -n1[x]^2/N1*(s1/beta1)*
E^(-E1/(k1*(273+x))), n1[0] == no}, {n1},
{x, 0, Npoints}];

no = 0.5*N1;
sol2 = NDSolve[{n1'[x] == -n1[x]^2/N1*(s1/beta1)*
E^(-E1/(k1*(273+x))), n1[0] == no}, {n1},
{x, 0, Npoints}];

no = 0.1*N1;
sol3 = NDSolve[{n1'[x] == -n1[x]^2/N1*(s1/beta1)*
E^(-E1/(k1*(273+x))), n1[0] == no}, {n1},
{x, 0, Npoints}];

gr1 = Plot[Evaluate[-n1 '[x] /.sol1], {x, 0, Npoints},
AxesLabel → {"T", "TL(T)"}, PlotRange → All];

gr2 = Plot[Evaluate[-n1 '[x] /.sol2], {x, 0, Npoints},
AxesLabel → {"T", "TL(T)"}, PlotRange → All];

gr3 = Plot[Evaluate[-n1 '[x] /.sol3], {x, 0, Npoints},
AxesLabel → {"T", "TL(T)"}, PlotRange → All];

Show[{ gr1, gr2, gr3}, PlotLabel → "Second order kinetics:
no=1*N, 0.5*N, 0.1*N", ImageSize → 755];



Introduction 91

0 50 100 150 200
Temperature T, oC

0

2 × 108

1.5 × 108

1 × 108

5 × 107

T
L(

T
)

SECOND ORDER GLOW PEAKS: no/N=1, 0.5, 0.1

Figure 3.8. Second-order kinetics calculation for different initial occupancies.

As seen in Figure 3.8, both the position of the maximum intensity (Tmax) of the
second-order TL glow curve and the maximum height (Imax) of the glow curve
change with the value of n0. Nevertheless, the geometrical shape factor remains
the same (µ = 0.52) for all graphs in Figure 3.8.

Figure 3.9 shows the general-order graphs for three different electron trap oc-
cupancies n0/N = 1, 0.5, and 0.1 and for a kinetic order b = 1.5. The rest of the
parameters are the same as in the case of first- and second-order kinetics.

As seen in Figure 3.9, both the position of the maximum intensity (Tmax) and
the maximum height (Imax) of the general-order TL glow curve change with the
value of n0. Nevertheless, the overall shape of the glow peaks remains the same
for all graphs in Figure 3.9.

Exercise 3.4: The OTOR Model in Mathematica
(a) The OTOR model was introduced in Exercise 3.2 of this chapter. A detailed
study of the OTOR model can be found in Ref. [4], and in its most general form
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Figure 3.9. General-order kinetics calculation for different initial occupancies.
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the OTOR is described by the following equations:

dn

dt
= −sn exp

(
− E

kT

)
+ (N − n)Ahnc (3.11)

dnc

dt
= −dn

dt
− Ahnc(n + nc) (3.12)

dnh

dt
= dn

dt
+ dnc

dt
(3.13)

ITL = −dnh

dt
= nc(n + nc)Ah. (3.14)

All symbols in these equations are identical to the ones employed in Exercise
3.2 of this chapter. In addition, nc(t) and nh(t) represent the instantaneous concen-
trations of the electrons and holes in the conduction band and RC, respectively.

The first equation expresses mathematically the fact that electrons in the trap
can be either thermally excited in the conduction band (term −sn exp(−E/kT )),
or they can be retrapped in the trap with a probability coefficient An (term (N −
n)Annc). The second equation represents the change in the concentration of the
electrons in the conduction band nc. The concentration of these free electrons in the
conduction band can be reduced by either trafficking into the trap (term – dn/dt), or
by recombining in the RC with a probability coefficient Ah (term –Ahnc(n + nc)).

The third equation describes the conservation of total charge in the crystal, with
the left-hand side being equal to the rate of change of the concentration of holes
trapped in the RC, and the right-hand side representing the rate of change of the
total concentration of electrons in the crystal.

Write a Mathematica program that solves this system of differential equations
for the OTOR model. Use the same numerical values as in Exercise 3.2 in this
chapter.

(b) Compare the exact solution of the OTOR differential equations from part (a)
with the following approximate equation derived using the QE approximation [4]:

IQE(T ) = −dn

dt
=

sn2 exp

(
− E

kT

)
n Ah + (N − n)An

· Ah. (3.15)

Examine the accuracy of the quasistatic equilibrium approximation, by graphing
the exact solution from part (a) together with the above expression (3.15) for IQE(T )
on the same graph.

(c) Show that in the case of An/Ah = 10−2 and n0 = N , the OTOR model
produces a first-order TL peak. This corresponds to the situation where the proba-
bility of retrapping of electrons in the trap is much smaller than the recombination
probability of the electrons in the RC.

In the case An/Ah = 100 (probability coefficient of retrapping is much larger
than the recombination probability coefficient) and n0 = N , show that the OTOR
model produces a second-order TL peak.

In the case of An/Ah = 1 and n0 = N (equal retrapping and recombination
probabilities), show that the OTOR model produces a second-order TL peak.
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Solution

(a) The following Mathematica program integrates the differential equations for the
OTOR model. The solution is stored in the parameter sol as in previous examples,
and the command Plot is used to graph the functions nc[x], n1[x], nh[x], -nh′[x]
which correspond to the functions nc(T ), n(T), nh(T ), and TL(T). The graph of the
TL glow curve is stored in the graphical object gr1.

In the second part of the program the differential equation (3.15) is integrated
and the result is stored in the parameter solQE. The command Plot is used to
graph the function −nh′[x] which represents the intensity of the TL glow curve.
The corresponding graph of the TL glow curve is stored in the object gr2, and the
command Show is used to graph both the solutions of (3.15) and of the system
(3.11)–(3.14) on the same graph.

Remove["Global`*"];
E1 = 1.0; s1 = 10^12; k1 = 8.617*10^-5; beta1 = 1;
N1 = 10^10; An = 10^-7; Ah = 100*An; no = 1*N1;
Npoints = 200;

sol = NDSolve[{n1'[x] == -n1[x]*(s1/beta1)*E^(-E1/
(k1*(273+x)))
+An*(N1-n1[x])*nc[x]/beta1, nc'[x] == -n1'[x]-Ah*nc[x]*
(n1[x]+nc[x])/beta1, nh'[x] == n1'[x]+nc'[x],
n1[0] == no, nc[0] == 0, nh[0] == n1[0]+nc[0],
{n1, nc, nh}, {x, 0, Npoints}];

Plot[Evaluate[n1[x]/.sol], {x, 0, Npoints},
AxesLabel → {"T","n(T)"}];

Plot[Evaluate[nc[x]/.sol], {x, 0, Npoints},
AxesLabel → {"T", "nc(T)"}];

Plot[Evaluate[nh[x]/.sol], {x, 0, Npoints},
AxesLabel → {"T", "nh(T)"}];

gr1 = Plot[Evaluate[-nh'[x]/.sol], {x, 0, Npoints},
AxesLabel → {"T", "TL(T)"}];

Print["OTOR:E=", N[E1], "s=", N[s1], "β=", N[beta1], "no=",
N[no], "N=", N[N1], "Ah=", N[Ah], "An=", N[An]];

solQE = NDSolve[{n2'[x] == -n2[x]^2*(s1/beta1)*E^(-E1/
(k1*(273+x)))*Ah/(n2[x]*Ah+(N1-n2[x])*An),
n2[0] == no}, {n2}, {x, 0, Npoints}];

gr2 = Plot[Evaluate[-n2'[x]/.solQE], {x, 0, Npoints},
AxesLabel → {"T", "TLQE(T)"}];

Show[{gr1, gr2}, AxesLabel → {"T", "TL(T) and TLQE(T)"}];
Plot[Evaluate[(-nh'[x]/.sol)+(n2'[x]/.solQE)],
{x, 0, Npoints}, AxesLabel → {"T", "TL(T)-TLQE(T)"},
PlotRange → All];

The results from running the program are shown in Figure 3.10.
The results of Figure 3.10 show that as the sample is heated from 0 to

200◦C, the concentrations of trapped electrons and holes n(T) and nh(T ) decrease
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Figure 3.10. Results of the OTOR model in Mathematica.

simultaneously, with the maximum decrease taking place around 110◦C. This tem-
perature coincides with the observed maximum of the TL glow curve.

The graph nc(T ) shows that the concentration of free electrons in the conduction
band increases up to a temperature of approximately 130◦C, which is higher than
the corresponding maximum of the glow curve. This result means that one would
expect the TL and thermally stimulated current curve (TSC) to occur at different
temperatures. This is indeed found experimentally for some dosimetric materials.

(b) The last four lines in the program calculate the TL intensity IQE(T ) as
given by the quasistatic equilibrium approximation in equation (3.15). The result
of graphing together the exact solution I(T) from part (a), and the approximation
IQE(T ) from equation (3.15) are shown in Figure 3.11. As can be seen, the approx-
imation result is indistinguishable from the exact solution, at least on the scale of
the graph shown here.

Figure 3.11 shows the difference I (T ) − IQE(T ) as a function of the temperature
T. It can be seen that the differences between the two intensities are indeed very
small at all temperatures (with the residuals being less than 0.001% of the TL
intensity).

(c) The graphs in Figure 3.12 show the results from the program using different
An/Ah ratios. The rest of the parameters in the computer program are left the same.

In Figure 3.12(a) the ratio An/Ah = 0.01, i.e. the probability coefficient Ah of
the free electrons in the conduction band recombining in the RC is 100× larger
than the probability coefficient An of being retrapped in the electron trap. One
would expect under these circumstances that first-order kinetics will dominate the
kinetic process: The calculated TL glow curve has indeed the characteristic shape
for first-order peaks.
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Figure 3.11. Comparison of the exact solution for the OTOR model with the quasi-
equilibrium (QE) approximation.
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Figure 3.13. The IMTS model.

In Figure 3.12(b) the ratio An/Ah = 1, i.e. the probability coefficient Ah of
recombining in the RC is equal to the retrapping probability coefficient An. One
would expect under these circumstances that second-order kinetics will dominate
the kinetic process: The calculated TL glow curve has indeed the characteristic
shape for second-order peaks. By calculating the geometrical shape factor µ in
Figure 3.12(b) one obtains µ = 0.52 and hence this glow curve has the shape of
second-order kinetics peak.

In Figure 3.12(c) the ratio An/Ah = 100, i.e. the probability coefficient Ah of
recombining in the RC is 100× smaller than the retrapping probability coefficient
An. One would expect under these circumstances that heavy retrapping will affect
the shape of the glow curve, by extending the observed TL peak over a much larger
temperature range. This is seen to be indeed the case in Figure 3.12(c).

It must be noted that the situation An/Ah = 100 shown in Figure 3.12(c) repre-
sents a purely theoretical result and has not been observed in actual experimental
results.

Exercise 3.5: The IMTS Model in Mathematica
(a) Write a computer program to integrate the kinetic rate equations relevant to
the IMTS model shown in Figure 3.13 [2]. The model consists of two trapping
states and a RC. The first trap is considered to be the one responsible for TL
(denoted as the active trap (AT) below), and the second trap is denoted as the
thermally disconnected deep trap (TDDT). The two traps are characterized by
total concentrations N and M, and by instantaneous occupancies n(t) and m(t),
respectively.

Because of the conservation of charge in the crystal, the concentration of holes
in the RC at any moment must be equal to the total instantaneous concentration of
electrons n + m + nc.

The kinetic equations for this model are [2]
dn

dt
= −ns exp(−E/kT ) + An(N − n)nc (3.16)

dm

dt
= Am(M − m)nc (3.17)
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Figure 3.14. The results of the IMTS model using Mathematica.

dnc

dt
+ dn

dt
+ dm

dt
= −(n + m + nc)nc Ah (3.18)

I = −d(n + m + nc)

dt
= (n + m + nc)nc Ah, (3.19)

where E = thermal activation energy of the trap (eV)
s = frequency factor (s−1)
T = temperature of the sample (K)
k = Boltzmann constant (eV K−1)
N = total concentration of AT in the crystal (cm−3)
n = instantaneous concentration of filled AT in the crystal (cm−3)
n0 = initial concentration of filled traps at time t = 0 (cm−3)
An = probability coefficient of electron retrapping in the AT traps (cm3 s−1)
Ah = probability coefficient of electron recombination with holes in the

RCs (cm3s−1)
Am = probability coefficient of electron retrapping in the TDDT traps

(cm3s−1)
m = concentration of filled TDDT traps in the crystal (cm−3)
M = total concentration of available TDDT traps in the crystal (cm−3)
nc = concentration of electrons in the conduction band (cm−3)

n + m + nc = total instantaneous concentration of electrons and holes in the
crystal (cm−3).
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The interpretation of the first equation is identical to the one given in the previous
example for the OTOR model. The second equation expresses the fact that electrons
can be trapped into the TDDT with a probability coefficient Am (term Am(M −
m)nc). Since this trap is considered thermally disconnected, there is no thermal
excitation of these electrons in the conduction band. The third equation represents
the conservation of charge in the crystal, with the left-hand side equal to the rate of
change of the concentration of electrons, and the right-hand side equal to the rate
of change of the concentration of holes in the crystal. The last equation expresses
the TL intensity that is equal to the rate of change of the concentration of holes in
the RC (term (n + m + nc)nc Ah).

Use the following numerical values:

E = 1 eV, s = 1012 s−1, N = 1010 cm−3, M = 1010 cm−3, An = 10−7 cm3 s−1,
β = 1 Ks−1, n0 = 109 cm−3, m0 = 109 cm−3, Am = 10−5 cm3s−1, Ah =
10−5 cm3s−1. A linear heating rate is assumed.

Solution

(a) The following Mathematica program integrates the differential equations for
the IMTS model. The solution of the system of differential equations (3.16)–(3.18)
is stored in the parameter sol as in previous exercises, and the command Plot is
used to graph the functions nc(T ), n(T), nh(T ), m(T ), and TL(T).

Since the value of the ratio An/Ah = 0.01, i.e. the recombination probabil-
ity coefficient Ah is 100× larger than the retrapping probability coefficient An,
one would expect that first-order kinetics will dominate the kinetic process:
The calculated TL glow curve has indeed the characteristic shape for first-order
peaks.

The concentration of electrons in the AT decreases as the temperature increases,
while the instantaneous concentration of electrons in the conduction band has a
very similar shape to the measured TL glow curve. In addition, the nc(T ) and
TL(T) maxima occur at the same temperature, indicating that in this example the
TL and TSC peaks are not shifted with respect to each other. The concentration
of electrons in the TDDT increases with temperature and reaches saturation after
140◦C, shortly after the end of the TL glow curve.

Remove["Global`*"];
E1 = 1.0; s1 = 10^12; k1 = 8.617*10^-5; beta1 = 1;
Npoints = 250;
N1 = 10^10; M = 10^10; no = 10^9; mo = 10^9; An = 10^-7;
Am = 10^-5; Ah = 10^-5;
sol = NDSolve[{n1'[x] == -n1[x]*(s1/beta1)*E^(-E1/(k1*(273+x)))
+An*(N1-n1[x])*nc[x])/beta1, nc'[x] == -n1'[x]-Ah*nc[x]
*(m[x]+n1[x]+nc[x])/beta1-nc[x]*(M-m[x])*Am/beta1, m'[x]
== nc[x]*(M-m[x])*Am/beta1, m'[x] == nc[x] * (M-m[x])
*Am/beta1, n1[0] == no, nc[0] == 0, m[0] == mo},
{n1, nc, m}, {x, 0, Npoints}, MaxSteps → 50000];
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Plot[Evaluate[n1[x]/.sol], {x, 0, Npoints},
AxesLabel → {"T", "n1(T)"}, PlotRange → All,
ImageSize → 753];

Plot[Evaluate[nc[x]/.sol], {x, 0, Npoints},
AxesLabel → {"T", "nc(T)"}, PlotRange → All,
ImageSize → 753];

Plot[Evaluate[m[x]/.sol], {x, 0, Npoints},
AxesLabel → {"T", "m(T)"}, PlotRange → All,
ImageSize → 753];

Plot[Evaluate[nc[x]*(m[x]+n1[x]+nc[x])*Ah/.sol],
{x, 0, Npoints}, PlotRange → All,
AxesLabel → {"T", "TL(T)"}, ImageSize → 753];

Exercise 3.6: Analytical Expressions for First-Order Kinetics

As was discussed in Chapter 1, Kitis et al [3] developed the following analytical
equation for first-order kinetics peaks. The expression relies on two experimen-
tally measured quantities IM and TM, and the third parameter is the activation
energy E.

I (T ) = IM exp

[
1 + E

kT
· T − TM

TM
− T 2

T 2
M

·
(

1 − 2kTM

E

)

× exp

(
E

kT
· T − TM

TM

)
− 2kTM

E

]
. (3.20)

In this expression IM = maximum TL intensity, TM = temperature at which
the maximum intensity occurs and T = temperature in degrees K. It is also
noted that the usual kinetic parameters s and n0 are not present in this analytical
expression.

Compare the accuracy of the above expression with the exact solution of the
first-order kinetics differential equation, by graphing both glow curves on the same
graph.

A precise numerical method of expressing the accuracy of expression (3.20) is
by calculating the FOM. The FOM is defined as [3]

FOM =

∑
p

∣∣yexperimental − yfit

∣∣
∑

p
yfit

, (3.21)

where yexperimental and yfit represent the experimental data and the values of the
fitting function, respectively. The summations extend over all the available points.

Calculate the FOM for expression (3.20) for first-order kinetics.
Use the following numerical values: E = 1.0 eV, s = 1012 s−1, β = 1◦C s−1,

n0 = N = 1010 cm−3.



100 3. Simple TL Models

Solution

The following Mathematica program integrates the first-order kinetics equation
(3.10) as in the previous Exercise 3.3, and stores the result of the numerical
integration into the parameter sol. The third line of the program calculates the
maximum value of the TL glow curve and stores it in the parameter maxTL.
The next line of the program sets up a list named tlcalc with the data of the TL
glow curve stored as pairs (T,TL). Each individual TL intensity is divided by the
maximum TL intensity maxTL, resulting in a normalized TL glow curve with a
maximum TL intensity IM = 1.

The sixth line of the program graphs the calculated normalized TL glow curve.
The command ListPlot is used to graph the normalized TL glow curve, and
the program stores this graph as a graphics object named gr1. The next two
lines calculate the temperature corresponding to the maximum TL intensity, and
stores it in the parameter tempMax. The next line calculates the values of the
TL glow curve using expression (3.20) with IM = 1, and stores them in the list
tlKitis.

The next line of the program graphs the list tlKitis using the command ListPlot,
and stores this graph as a graphics object named gr2. Finally the program uses
the command Show to graph both the result of numerically integrating equation
(3.10) and the calculated glow curve from equation (3.20) on the same graph.

Remove["Global`*"];
E1 = 1.0; s1 = 10^12; k1 = 8.617*10^-5; beta1 = 1;
N1 = 10^10; no = 1*N1;
sol = NDSolve[{n1'[x] == -n1[x]*(s1/beta1)
*E^(-E1/(k1*(x+273))), n1[0] == no}, {n1}, {x,0,273},
MaxSteps → 50000];

maxTL = Max[Table[Evaluate[-n1'[x]/.sol], {x, 0, 200}]];
tlcalc = Table[{x+273, First[Evaluate[-n1'[x]/.sol]]/maxTL},
{x, 0, 200}];
gr1 = ListPlot[tlcalc, PlotJoined → True,
PlotLabel → "Calculated Normalized TL", ImageSize → 755,
PlotRange → All];
tempList = Position[Table[Evaluate[-n1'[x]/.sol],
{x, 0, 200}], maxTL]// Flatten;
tempMax = tempList[[1]]-1+273;
tlKitis = Table[{temp, Exp[1+(E1*(temp-tempMax)/
(k1*temp*tempMax))-(temp^2*(1-2*K1*tempMax/E1)/tempMax^2)
*Exp[E1*(temp-tempMax)/(k1*temp*tempMax)]-2*k1*tempMax/
E1]}, {temp, 273, 473}];

gr2 = ListPlot[tlKitis, ImageSize → 755,
PlotLabel → "Calculated Kitis TL", PlotRange → All];
Show[{gr1, gr2}, PlotLabel → "Calculated and Kitis TL"];
diffList = tlcalc-tlKitis; diffTL = diffList[[All, 2]];
gr3 = ListPlot[diffTL, PlotRange → All,
PlotLabel → "Calculated TL minus Kitis TL"];
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sum1 = Apply[Plus, Abs[diffTL]]; Print["sum1 = ", sum1];
Sum2 = Apply[Plus, tlKitis[[All, 2]]];
Print["sum2 = ", sum2];

Print["FOM = ", sum1/sum2];

In the last five lines of the above program, the FOM is calculated by using the two
lists, namely tlcalc and tlKitis. The two lists are subtracted and the result is stored
in the list diffTL, which is then graphed using the command ListPlot. The graph
is also stored as the graphic object gr3.

The commands Apply, Abs and Plus are used to calculate the two sums which
appear in the expression for the FOM, namely the sums

Sum1 = ∑
p

∣∣yexperimental − yfit

∣∣ (3.22)

Sum2 = ∑
p

yfit (3.23)

Finally the program prints out the FOM value as the ratio of sum1 and sum2.
The results of running the above program are shown in Figure 3.15. It is seen

that expression (3.20) does an excellent job in approximating the TL glow curve,
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Figure 3.15. FOM calculation for fit to first-order kinetics glow curve using the analytical
expression of Kitis et al.
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and the two graphs are indistinguishable from each other, at least on the scale of the
graph. Furthermore, the differences between the two normalized TL glow curves
are between +0.02 and −0.03, i.e. between +2% and −3% of the maximum TL
intensity IM = 1. These differences are also known as the residuals. The FOM
value is equal to 0.0287 which corresponds to a percent accuracy of 2.87% for the
goodness of fit.

Exercise 3.7: Analytical Expressions for
Second-Order Kinetics

Repeat the previous exercise by using the following second-order kinetics expres-
sion developed by Kitis et al [3]:

I (T ) = 4IM exp

(
E

kT
· T − TM

TM

)

×
[

T 2

T 2
M

·
(

1 − 2kT

E

)
exp

(
E

kT
· T − TM

TM

)
+ 1 + 2kTM

E

]−2

. (3.24)

Compare the accuracy of expression (3.24) with the exact solution of the second-
order kinetics differential equation (3.10), by graphing both glow curves on the
same graph, and by calculating the FOM.

Use the following numerical values: E = 1.0 eV, s = 1012 s−1, β = 1 K s−1,
n0 = N = 1010 cm−3.

Solution

The following Mathematica program integrates the second-order kinetics equation
as in the previous example, and follows exactly the same layout, with the only
difference being that it uses expression (3.24) for second-order kinetics.

Remove["Global`*"];
E1 = 1.0; s1=10^12; k1 = 8.617*10^-5; beta1 = 1;
N1 = 10^10; no = 1*N1;
sol = NDSolve[{n1'[x] == -n1[x]^2/N1*(s1/beta1)*E^(-E1/
(k1*(x+273))), n1[0] == no}, {n1}, {x, 0, 273},
MaxSteps → 50000];
maxTL=Max[Table[Evaluate[-n1 '[x]/. sol], {x, 0, 200}]];
tlcalc = Table[{x + 273, First[Evaluate[-n1 '[x]/. sol]]/
maxTL}, {x, 0, 200}];
gr1 = ListPlot[tlcalc, PlotJoined → True,
PlotLabel → "Calculated Normalized TL", ImageSize → 755];
tempList = Position[Table[Evaluate[-n1 '[x]/. sol],
{x, 0, 200}], maxTL]//Flatten;
tempMax = tempList[[1]] - 1 + 273;
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tlKitis = Table[{temp, 4*Exp[E1*(temp - tempMax)/
(k1*temp*tempMax)]*((temp^2*(1-2*K1*tempMax/E1)/tempMax^2)
*Exp[E1*(temp-tempMax)/(k1*temp*tempMax)]+1+2*k1*tempMax/
E1)^-2}, temp, 273, 473];

gr2 = ListPlot[tlKitis, ImageSize → 755,
PlotLabel → "Calculated Kitis TL"];

Show[{gr1, gr2}, PlotLabel → "Calculated and Kitis TL"];
diffList = tlcalc-tlKitis; diffTL = diffList[[All, 2]];
gr3 = ListPlot[diffTL, PlotRange → All,
PlotLabel → "Calculated TL minus Kitis TL"];

sum1 = Apply[Plus, Abs[diffTL]]; Print["sum1=", sum1];
Sum2 = Apply[Plus, tlKitis[[All, 2]]]; Print["sum2=", sum2];
Print["FOM=", sum1/sum2];

The results of running the above program are shown in Figure 3.16. The expres-
sion of Kitis et al [3] approximates very well the second-order TL glow curve,
and the differences between the normalized TL glow curves are between +0.008
and −0.006, i.e. between +0.8% and −0.6% of the maximum height of the TL
glow peak. The FOM value is equal to 0.0083, corresponding to a goodness of fit
of 0.83%.
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Figure 3.16. FOM calculation for second-order kinetics using Mathematica.
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Exercise 3.8: Analytical Expressions for
General-Order Kinetics

Repeat the previous exercise by using the following general-order kinetics expres-
sion developed by Kitis et al [3]:

I (T ) = Im · b
b

b−1 exp

(
E

kT

T − Tm

Tm

)[
1 + (b − 1)

2kTm

E
+ (b − 1)

(
1 − 2kT

E

)

×
(

T 2

T 2
m

exp

(
E

kT
· T − Tm

Tm

))] −b
b−1

. (3.25)

Here b = order of kinetics, usually a value between 1 and 2.
The computer program follows the exact same outline as the previous exam-

ple, with the following line replacing the corresponding line for second-order
kinetics.

tlKitis=
Table[{temp, (b^(b/(b-1)))*Exp[E1*(temp-tempMax)/
(k1*temp*tempMax)]*((b-1)*(temp^2*(1-2*k1*tempMax/E1)/
tempMax^2)*Exp[E1*(temp-tempMax)/(k1*temp*tempMax)]+1
+(b-1)*2*k1*tempMax/E1)^(-b/(b-1))}, {temp, 273, 723}];

The FOM value is equal to 0.0091 which corresponds to a percent accuracy of
0.91% for the goodness of fit (Figure 3.17).

Exercise 3.9: Comparative Study of the Accuracy of
Analytical Expressions for First-Order TL Glow Peaks

The analytical expressions A–F listed below are found in the literature, and they
all describe a single first-order glow peak with kinetic parameters E and s.

(a) Calculate a synthetic reference glow peak (RGP) of first-order kinetics with
trapping parameters E = 1 eV and s = 1012 s−1, n0 = 106 cm−3.

(b) Investigate the accuracy of the following expressions A–F by calculating the
FOM for each expression by using the RGP from part (a).

A [5, 6] : I (T ) = As exp

(
− E

kT

)
exp

[
− skT 2

βE
exp

(
− E

kT

)(
1 − 2kT

E

)]
.

(3.26)

Expression (3.26) can be easily derived from the Randall–Wilkins equation (1.5)
for first-order kinetics by replacing the parameter n0 with the Area A under the
glow curve, and by using the series approximation of the integral in the first-order
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Figure 3.17. FOM calculation for general-order kinetics using Mathematica.

kinetics, equation (1.52).

B [5, 6] : I (T ) = IM exp

{
1 + E

kTM

(
T − TM

TM

)
− exp

[
E

kTM

(
T − TM

TM

)]}
(3.27)

C [5, 6] : I (T ) = IM exp

{
1 + E

kT

(
T − TM

TM

)
− exp

[
E

kT

(
T − TM

TM

)]}
.

(3.28)

Expression (3.28) is derived by approximating a linear heating rate function by
a hyperbolic heating rate profile. It is sometimes referred to as the Hyperbolic
approximation.

D [7] : I (T ) = IM exp

{
1 + E

kT

(
T − TM

TM

)

− T 2

T 2
M

exp

[
E

kT

(
T − TM

TM

)
(1 − �M) − �M

]}
, (3.29)

with, � = 2kT/E and �M = 2kTM/E .
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Equation (3.29) is the first-order equation developed by Kitis et al [3], referred
to several times in this book.

E [5, 6] : I (T ) = A√
2π [σ − α(T − c)]

exp

{
− (T − c)2

2[σ − α(T − c)2]

}
. (3.30)

Expression (3.30) is termed as a “modified Gaussian” curve and relies on a total
of four adjustable parameters A, α, σ , and c while the rest of the functions in
this exercise are based on three adjustable parameters. The activation energy E is
deduced from the width of the modified Gaussian.

F [8] : I (T ) = 2.713IM

(
T − TM

b
+ 0.996

)15

exp

{
−T − TM

b
+ 0.996

}16

.

(3.31)

Expression 3.31 is known as the Weibull approximation to the first-order glow
peak, and the activation energy is given by the expression

E = TM
k

b
[−b +

√
7b2 + 242.036T 2

M ], (3.32)

where b = width of the Weibull function.
In the above expressions A = area under the glow curve (counts), E = activation

energy (eV), s = frequency factor (s−1), T = temperature (K), k = Boltzmann
constant (eV K−1), IM = maximum intensity of the glow peak (counts per K),
TM = temperature at peak maximum (K).

Solution

The glow curves of TL materials are in most cases complex curves consisting of
many overlapping glow peaks. The deconvolution of complex glow curves into
their individual glow peaks (glow-curve-deconvolution—GCD) is widely applied
for dosimetric purposes and for evaluating the trapping parameters E and s using
curve fitting methods.

The purpose of this exercise is to investigate the accuracy of the expressions A–F
from the literature by calculating the FOM for each of these analytical expressions
and for the given RGP.

The success of each one of the above expressions in fitting the RGP can be
tested by two possible procedures. The first and simplest possibility is to evaluate
the parameters IM and TM from the RGP and to insert them directly in each one
of the listed first-order kinetic expressions, in order to obtain the respective peak.
The glow peak obtained in this manner is then directly compared with the RGP
through the FOM value.
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Table 3.4. FOM values for a variety of analytical expressions for first-order kinetics

Peak Integral IM E TM S FOM(I)% FOM(II)%

RGP 999261.5 30664.5 1 384.6 1012

A 999234.1 30662.0 1.00012 384.5 1.01 × 1012 0.013 0.49
B 993623.0 31154.0 1.09 385.66 4.84 5.8
C 999124.0 30649.5 1.027 384.37 0.8 2.6
D 999260.1 30663.9 1.00018 384.494 0.0058 0.019
E 998951.4 1.1 –
F 1000098.0 30700.0 1.001 384.54 0.027 0.23

The second possible procedure is to use a computerized glow-curve fitting pro-
cedure by using commercially available software. In this exercise the curve fitting
procedure was performed using the MINUIT program [9].

The results are shown in Table 3.4. The column labeled FOM(I) is obtained
by using the MINUIT program where E , IM, and TM are free parameters. The
parameters α, σ , and c in expression E are also treated as adjustable fitting param-
eters. The column labeled FOM(II) is obtained when the values of E , IM, and TM

corresponding to the RGP are inserted into the expressions A–F and the respective
glow peak is evaluated.

It is noted that the analytical expression E (the “modified Gaussian” curve), relies
on several adjustable fitting parameters (α,c,σ ) for which there is no analytical
expression in the literature. As a consequence, only results for FOM(II) are given
in Table 3.4. For the rest of the analytical expressions, both FOM(I) and FOM(II)
values are listed in Table 3.4.

Both the FOM(I) and FOM(II) values give an estimate of the accuracy by which
each expression fits the RGP. It is important to note that the FOM(II) values are
very sensitive to small changes in the parameters IM,TM used in expressions A–F
in this exercise.

The final conclusions for each expression are summarized as following:

(i) The expression which best fits the RGP is expression D by Kitis et al.
(ii) Although expression A is mathematically equivalent to expression D, it gives

a slightly higher FOM. The reason is that in expression A the frequency factor
is a free parameter and it is not easy to achieve very small variation steps for
the parameters during the curve fitting procedure.

(iii) Expressions B and C give very poor FOM values.
(iv) On the other hand, expressions E and F although not physically based, seem

to give a better fit to the RGP than expressions B and C.
(v) Expression D is clearly preferable from the rest of the functions in the list

for GCD analysis of complex TL glow curves.
(vi) On the other hand, expression F is included in several commercially available

software packages (such as SigmaPlot or PeakFit), and can be used as an
accurate first-order glow peak algorithm.
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(vii) If only the glow-peak area is of interest, then all expressions provide a good
estimate of it as seen in column 2 of the Table 3.4, with an accuracy better
than 1% from the reference value of A = n0 = 106.

Exercise 3.10: Comparative Study of the Accuracy of
Analytical Expressions for General-Order TL Glow Peaks

The analytical expressions A–E listed below are found in the literature, and all
describe a single general-order glow peak with kinetic parameters E, b, and s.

(a) Calculate a synthetic RGP for second-order kinetics with trapping parameters
E = 1 eV, s = 1012 s−1, n0 = N = 106 cm−3.

(b) Use the second-order RGP from part (a) to investigate the accuracy of the
following expressions A–E. Calculate the FOM for each expression.

(c) The general-order expressions in the list below cannot be used for b = 1
because of the presence of the ratio b/(b − 1). Nevertheless, these expressions
can still be used to fit a first-order glow peak by using a value of b very close
to 1. Use the general-order expression C and find the value of the kinetic order
b for which this general order expression fits best a first-order RGP.

(d) Having found the appropriate value of b in part (c), estimate the accuracy
with which the expressions A, B, and D fit the first-order RGP.

A [5, 6] : I (T ) = As exp

(
− E

kT

)

×
[

1 + (b − 1)
skT 2

βE
exp

(
− E

kT

)(
1 − 2kT

E

)]− b
b−1

(3.33)

B [7] : I (T ) = IM b
b

b−1 exp

(
E

kT

T − TM

TM

)

×
[

(b − 1)(1 − �)
T 2

T 2
M

exp

(
E

kT

T − TM

TM

)
+ ZM

]− b
b−1

, (3.34)

where ZM = 1 + (b − 1)�M

C [10] : I (T ) = IM exp

(
E

kT

T − TM

TM

)[
1 + b − 1

b

E

kTM

×
{

T

TM
exp

(
E

kT

T − TM

TM

)
F

(
E

kT

)
− F

(
E

kTM

)}]− b
b−1

,

(3.35)

where F(x) is defined by

F(x) = 1 − a0 + a1x + x2

b0 + b1x + x2
, (3.36)
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with

α0 = 0.250621 b0 = 1.681534

α1 = 2.334733 b1 = 2.330657

D [10] : I (T ) = IM exp

(
E

kT 2
M

(T − TM)

)

×
[

1

b
+
(

b − 1

b

)
exp

(
E

kT 2
M

(T − TM)

)]− b
b−1

(3.37)

E [11] : I (T ) = 5.2973 IM

[
1 + exp

{
−
(

T − TM

a2
+ 0.38542

)}]−2.4702

× exp

{
−
(

T − TM

a2
+ 0.38542

)}
. (3.38)

Equation (3.38) is a special case of the four-parameter logistic asymmetric function,
which was shown to describe accurately second-order TL glow peaks [11]. The
activation energy in the case of expression E is given by

E = kTM

[
−2 +

√
4 + 1.189

T 2
M

a 2
2

]
, (3.39)

where a2 represents the width of the logistic asymmetric function.
The rest of the symbols in the above expressions are A = area under the glow

peak (counts), E = activation energy (eV), s = frequency factor (s−1), b = kinetic
order, T = temperature (K), k = Boltzmann constant (eV K−1), IM = Intensity at
peak maximum (counts K−1), TM = temperature at peak maximum (K).

Solution

(a) The purpose of this exercise is to investigate the accuracy of the expressions
A–E from the literature by calculating the FOM for each of these analytical ex-
pressions and for the given RGP.

The RGP necessary to test the expressions can easily be obtained by numerical
integration of the exponential integral (see exercises 3.3 and 3.7 in Chapter 3). As
an alternative to numerical integration, Expression A is suggested for the creation
of the RGP.

The success of each one of the above expressions to fit the RGP can be tested
by the two procedures described in the previous exercise. The results are shown
in Table 3.5. The values of FOM(I) are obtained from the curve fitting procedure
where E, IM, and TM are free parameters, whereas FOM(II) is obtained when the
values of E , IM, and TM corresponding to the RGP are inserted into the expressions
A–E and the respective glow peak is evaluated.

Both FOM(I) and FOM(II) values are seen to give the same order of magnitude
of FOM values. The final conclusions for each expression are summarized as
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Table 3.5. FOM values for a variety of analytical expressions for general-order kinetics

Peak Integral IM E TM s FOM(I)% FOM(II)%

RGP 996733.6 20876.1 1 383.9 1012

A 996728.9 20875 1.00009 384 1.009 × 1012 0.017 0.66
B 996734.7 20874.9 1.00009 383.73 0.0016 0.7
C 996734 20876.1 0.99998 383.84 0.00003 0.2
D 990456.3 20954.6 1.096 385.36 4.8 6.6
E 1004142 20870 0.969 383.62 1.4 –

following:

(i) Expressions A, B, and C result in almost perfect fits for the second-order
RGP.

(ii) Expression D gives very poor results.
(iii) Expression E, although not based on a physically meaningful model fits better

the RGP than expression D.
(iv) On the other hand, expression E is included in several commercially available

software packages and can be used as a second-order glow peak algorithm.
(v) The difference between FOM(I) and FOM(II) for expressions A, B, and C

is very high although the difference between the values of E, IM and TM

of the RGP is negligible compared with those obtained by the curve fitting
procedure.

(vi) In the case of expression D the difference between FOM(I) and FOM(II) is
very low and the differences between the values of E, IM, and TM of the RGP
are negligible compared with those obtained by the curve fitting procedure.

(vii) If only the glow-peak area is of interest, then all expressions A–E give an
accurate estimate of it, with an accuracy better than 1%.

(b) The general-order equation is not valid for b = 1 because of the presence
of the term b/(b − 1) in expressions A–D. However, it could be valid for b slightly
higher than 1. To investigate whether the general-order expressions in this exercise
can be used to fit a first-order glow peak, we will use expression C. The first-order
kinetics RGP is obtained as in the previous example with the parameters E = 1 eV
and s = 1012 s−1.

The purpose of this investigation is not a simple comparison of various expres-
sions, but to examine the possibility of using a general-order expression to fit a
first-order glow peak. This in turn simplifies the development of a single algorithm
that can be used for all values of the kinetic order b.

Using the MINUIT program [9], the curve fitting procedure was applied for the
b values listed in column 1 of Table 3.6. The FOM(I) values obtained are listed in
column 2.

It is clear that a general-order expression fits very accurately with the first order
RGP for b < 1.05. However, the best b value is 1.000005.
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Table 3.6. FOM values for
several values of b for first-order
kinetics

b FOM(I)%

1.05 1.8
1.005 0.18
1.0005 0.017
1.00005 0.0011
1.000005 0.0007
1.0000005 0.00073

(c) Having found the value of b = 1.000005 for which the general-order ex-
pression C best approximates the first-order kinetics RGP, the expressions A, B,
and D were tested by inserting the values of IM, TM, and E of the RGP into ex-
pressions A, B, and D and calculating the FOM values. The results are shown in
Table 3.7.

The results in Table 3.7 show that the general-order kinetics expressions A,
B, and C approximate very well the first-order kinetics RGP when a value of
b = 1.000005 is used.

Exercise 3.11: Numerical Study of Mixed-Order Kinetics

Certain TL glow peaks have been known to exhibit “mixed order” kinetics. The
mixed order kinetic equation is given by the expression [12, 13]:

I (T ) = h2s ′α exp

(
− E

kT

) exp

(
hs ′ kT 2

βE
exp

(
− E

kT

)(
1 − 2kT

E

))
[

exp

(
hs ′ kT 2

βE
exp

(
− E

kT

)(
1 − 2kT

E

))
− α

]2 ,

(3.40)

where in some models the pre-exponential factor is given by s ′ = s/N , while in
other models it is given by s ′ = s/(N + h).

Table 3.7. FOM values for several
values of b for a variety of
analytical expressions

Expression FOM(I)%

A 0.0058
B 0.0059
C 3.76
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The parameter α = n0/(n0 + h) is the parameter characterizing the mixed-order
kinetics. As α → 0 equation (3.40) reduces to the expression for first-order kinet-
ics, and as α → 1 it reduces to second-order kinetics.

The purpose of this exercise is to perform a systematic study of the behavior
of the glow peaks following mixed-order kinetics using the parameters E = 1 eV,
s = 1012 s−1, and n0 = N = 103 m−3, and assuming two different cases, case I
with s ′ = s/(N + h) and case II with s ′ = s/N .

For each of the two cases I and II calculate the following and compare the results.

(a) Study the shape of mixed-order glow peaks as a function of the parameter α.
(b) Compare the behavior of the parameter α and of the kinetic order b as a function

of symmetry factor µg.
(c) Evaluate the behavior of the peak maximum temperature TM as a function of

α and compare it with the corresponding behavior of a general-order kinetics
glow peak.

(d) Repeat (b) for the full width at half maximum (FWHM = ω)
(e) Evaluate the activation energy of the mixed-order glow peaks using the peak

shape equations (1.48) for general-order glow peaks and discuss the validity
of these equations for mixed-order kinetics.

(f) Find a graphical relation between the mixed-order kinetics parameter α and
the general-order kinetics parameter b.

(g) Compare the shape of mixed and general-order glow peaks of the same sym-
metry factor.

Solution

All calculations needed for the present exercise can be easily performed in a spread-
sheet program or in Mathematica. Care must be taken concerning the numerical
accuracy of the evaluations which will depend upon the temperature increment
used in the glow-peak evaluation. For example, if one evaluates the TL intensity
every 1 K (�T = 1 K) the error in the resulting values of TM and FWHM will
be of the order of 0.5 K. In the evaluations below the Mathematica program was
used with a very small temperature interval �T = 0.001 K, since there was no
substantial difference in the calculation time if a value of �T = 1 K was chosen
instead. Equation (1.7) was used to calculate the general-order kinetics glow peaks.

Case I: s ′ = s/(N + h)

Taking into account that s ′ = s/(N + h) and n0 = N we can find after some
algebra that

h2s ′ = (1 − α)2

α
sn0 (3.41)

and

hs ′ = (1 − α)s. (3.42)
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Figure 3.18. Shapes of mixed-order kinetics glow peaks as a function of α.

By inserting equations (3.41) and (3.42) in (3.40) we can proceed to the required
calculations by noting that I(T) depends only on the known parameters E, α, s,
and n0.
(a) The shapes of mixed-order glow peaks as a function of the parameter α are
shown in Figure 3.18. The glow-peak shapes behave in a manner similar to that of
the general-order kinetics (see Figure 1.6).

(b) Figure 3.19 shows the behavior of the parameter α and of the kinetic order
b as a function of the symmetry factor µg.

The parameter α is given in values of (α + 1) in order to fit on the same scale with
the kinetic order b. From Figure 3.19 we can see that the mixed- and general-order
glow peaks coincide exactly when α + 1 = b. This happens for first-order kinetics
where α → 0, and for values of the symmetry factor µg ≥ 0.50. In the intermediate
cases the mixed- and general-order glow peaks show some differences, even in
cases where they have the same symmetry factor (see Figure 3.24 below).

(c) Figure 3.20 shows the glow peak maximum temperature TM as a function
of α and b.

Note that the y-axis covers a temperature region of only 2 K. The behavior of
glow peaks with mixed-order kinetics is very different from that of general-order
peaks, although the peak maximum variation is less than 1.5 K for values of b
between 1 and 2, and for values of α between 0 and 1. These differences are seen
here because the glow peaks were evaluated using a temperature increment of
�T = 0.001 K and therefore the accuracy of TM was better than 0.001 K.
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Figure 3.19. Parameter α and kinetic order b as a function of symmetry factor. The pa-
rameters α is used as α + 1 in order to fit on the same scale with b.

(d) Figure 3.21 shows the variation of the FWHM = ω with α and b. The vari-
ation of the FWHM as a function of α in the case of mixed-order glow peaks is
very similar to the corresponding behavior of the general-order glow peaks. The
slight differences are seen here because the accuracy is of the order of 0.001 K.
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Figure 3.20. Peak maximum temperature as a function of α and b. The parameter α + 1
is used instead of α, in order to fit on the same scale as b. Note the extent of the y-scale.
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Figure 3.21. FWHM (ω) as a function of α and b. The parameter α is used as (α + 1) in
order to fit on the same scale as b.

In the case of experimental measurements, this difference will not be easily
seen.

(e) Figure 3.22 shows the activation energy E as a function of α.
The peaks shape equations (1.48) are used to calculate the energy E [13]. The

results of Figure 3.22 show that when the peak shape methods are applied to mixed-
order glow peaks, they give the correct values of E for α → 0 and α > 0.8. In the
intermediate cases the methods underestimate E by less than 2% for the methods
based on τ and δ, and less than 3–4% for the methods based on ω.
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Figure 3.22. Activation energies E as a function of α calculated using equation (1.48).
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Figure 3.23. Parameter α as a function of the kinetic order b, for glow peaks having the
same symmetry factor.

These results are in agreement with those of Chen et al [12]. Therefore, we
conclude that the general peak shape equations (1.48) can be applied in the case
of mixed-order kinetics without any significant loss in accuracy.

(f ) Graphical relation of the parameter α as a function of the kinetic order b.
This relationship can be found by using trial and error, and by identifying mixed-

and general-order glow peaks having the same symmetry factor µ. By requiring
that the values of the symmetry factor differ by less than 10−4, the appropriate
values of α and b were found and plotted in Figure 3.23.

(g) Comparison of mixed- and general-order glow peaks having the same sym-
metry factor.

As was discussed above (Figure 3.19), differences between mixed-order and
general-order glow peaks exist only in the intermediate values of α and b.
Figure 3.24 shows a comparison between mixed- and general-order glow peaks
having the same symmetry factor. The general-order glow peak (solid line) corre-
sponds to b = 1.4325 and a symmetry factor 0.471502, whereas the mixed-order
glow peak (dash line) correspond to α = 0.6 and a symmetry factor 0.471503.

Case II: s ′ = s/N

If we now consider the value of s ′ = s/N and take n0 = N , we find after some
algebra that

h2s ′ =
(

1 − α

α

)2

sn0 (3.43)
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Figure 3.24. Solid line: General-order glow peak with b = 1.4325 and symmetry factor
0.471502. Dash line: Mixed-order glow peak with α = 0.6 and symmetry factor 0.471503.

and

hs ′ = 1 − α

α
s (3.44)

Therefore the behavior of the glow peaks in case II can be simulated by using
equation (3.40) with the values of h2s ′ and hs ′ given by equations (3.43) and
(3.44).
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Figure 3.25. Behavior of TM as a function of the parameters α. Curve (a) is for Case I and
curve (b) is for Case II.
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Figure 3.26. Behavior of FWHM as a function of the parameter α. Curve (a) is for Case I
and curve (b) is for Case II.

The results obtained are the same as those found in Case I with accuracy better
that 10−3. The only substantial differences were found in the behavior of TM and
FWHM.

The different behavior of TM is shown in Figure 3.25. The reason for this dif-
ference between Cases I and II is that the pre-exponential factor in Case I varies
according to 1 − α, whereas in Case II it varies according to (1 − α)/α.

Therefore, equation (3.40) in Case II has an additional dependence on 1/α. This
factor has a functional behavior similar to that of the heating rate 1/β, causing TM

to increase as the value of α is increased.
Differences are also seen in the behavior of FWHM, which are shown in

Figure 3.26.
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4
TL Dose Response Models

Introduction

The dependence of the Thermoluminescence (TL) signal on the dose imparted on
TL materials is of great practical importance in the fields of radiation protection
dosimetry and in dating applications. In this chapter several examples of theoretical
models are given that have been used to explain the TL versus dose response of a
variety of materials.

The first section of this chapter gives an overview of nonlinear response exhib-
ited by several materials, and introduces the terminology used in describing these
nonlinearities. The rest of the chapter gives specific exercises based on published
kinetic models in the TL literature. The first exercise is based on the one-trap
one-recombination center model and demonstrates several basic characteristics
of such models. In particular, this model shows the importance of incorporating
appropriate relaxation periods after each irradiation or heating stage in the sim-
ulation. The second exercise is typical of a class of kinetic models based on the
existence of competing traps, and shows how competition between traps during
irradiation can lead to superlinear behavior in the TL dose response of mate-
rials. The third exercise describes a more complex case in which competition
phenomena are of importance during both the excitation and the heating stage
of TL.

The fourth exercise in this chapter provides an example of obtaining the su-
perlinearity index g(D) and the supralinearity index f (D) from experimental
TL versus dose curves. The quantities f (D) and g(D) are defined in the next
section.

The computer programs are written in Mathematica, and the results of the pro-
grams are compared with specific numerical data in the original published papers.
Special effort was made to use the same notation as in the original papers, in order
to facilitate cross-referencing in the literature for readers interested in pursuing
these models further.

The programs in this chapter have a similar structure consisting of a main proce-
dure which calls several subroutines to solve the systems of differential equations
and to reinitialize the parameters between the irradiation and relaxation stages in
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the simulations. It is our hope that this “modular” programming will make it easier
for interested readers to modify the programs and to develop their own code for a
variety of purposes.

Overview of Nonlinear Dose Response of TL Materials
and Terminology

In this section some fundamental concepts and terminology is presented, relevant
to experimentally observed nonlinear dose response of TL materials to radiation.
A comprehensive review of the various theoretical aspects of the models presented
in this section can be found, for example, in the book by Chen and McKeever [1],
and in the review article by McKeever and Chen [2].

Several important TL materials exhibit a nonlinear dose response that can be
expressed in the mathematical form:

Imax = aDk (4.1)

where Imax represents the maximum TL intensity (or the TL integral), D is the
dose of the radiation and a, k are constants. When Imax is plotted as a function of
the dose D on a log–log scale, this equation yields a straight line with a slope k
that may be larger than unity. For example, Halperin and Chen [3] found that the
dose response of UV irradiated diamonds exhibited a slope k between 2 and 3 at
certain wavelengths. These authors suggested the term superlinearity to describe
this more than linear dose response.

Chen and McKeever [4] suggested using the term superlinearity for the increase
of the derivative of the dose of the TL response function. If the measured TL
signal is S(D), the increase in the derivative of S(D) is expressed by the fact that
the second derivative d2S/dD2 > 0. Cases where d2S/dD2 < 0 are characterized
as sublinear, and cases where d2S/dD2 = 0 are characterized as a linear dose
response. These authors defined the following dimensionless quantity termed the
superlinearity index g(D):

g(D) =
[

DS′′(D)

S′(D)

]
+ 1. (4.2)

As long as S′(D) > 0, a value of g(D) > 1 signifies superlinearity, while a value
of g(D) = 1 denotes a linear dose response, and g(D) < 1 signifies sublinearity.
In the special case where S(D) = αDk + β, one obtains g(D) = k. The application
of equation (4.2) requires the knowledge of an analytical expression which can
fit the experimentally obtained TL dose response curves. Otherwise, this equation
cannot be applied to the experimental data.

In some low dose ranges several TL materials show a linear dose dependence,
followed by a superlinear dose range and by a sublinear range while approach-
ing saturation. For example, gamma-irradiated LiF is known to exhibit such a
behavior, as reported for example by Cameron et al [5]. This type of linear-
superlinear-saturation behavior can be explained within the framework of TL
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models based on competition between traps during the excitation of the sample. A
typical example of a TL model based on competition during excitation is given in
Exercise 4.2.

Chen and McKeever suggested using the term supralinearity to describe this
particular nonlinear dose response. Some authors [6] quantified this behavior by
introducing the following dimensionless function termed the supralinearity index
or dose response function f (D):

f (D) = [S(D)/D] / [S(D1)/D1] (4.3)

where D1 is a normalization dose in the initial linear range. Values of f (D) > 1
indicate values of S(D) above the initial linear range.

In summary, superlinearity is a measure of the rate of change of the dose response
with the dose, and is described quantitatively by the superlinearity index g(D).
On the other hand, supralinearity is described quantitatively by the supralinearity
index f (D), and is mostly used in TL applications in dating and dosimetry.

Rodine and Land [7] suggested that the superlinear behavior of some materials
might be explained by competition during the heating phase, instead of competition
during the excitation stage. Within the framework of such models, the initial dose
dependence of the TL response may be quadratic in nature. Kristiapoller et al [8]
developed a mathematical formulation of TL models of this type.

Chen and Fogel [9] discussed some of the disadvantages of these two separate
approaches, especially the main assumption that when competition occurs during
the irradiation stage, no competition takes place during the heating phase, and
vice versa. These authors developed a model that combines the characteristics of
the two models: competition during heating and competition during excitation
models. A typical example of the TL model of Chen and Fogel [9] based on both
competition approaches is given in Exercise 4.3.

Exercise 4.1: The Filling of Traps in Crystals
During Irradiation

Write a computer program to integrate the kinetic rate equations relevant to the
TL model shown in Figure 4.1 [10]. The model consists of one trapping state and
one recombination center. The arrows in Figure 4.1 indicate the allowed electron
and hole transitions from the conduction and the valence band.

The trap is characterized by total concentration N in the crystal and by instanta-
neous electron occupancy n(t). The recombination center has instantaneous hole
occupancy nh(t) and total concentration Nh in the crystal. The functions nc(t) and
nv(t) represent the instantaneous concentrations of free electrons in the conduction
band and free holes in the valence band correspondingly. The equations describing
the rate of change of the functions n(t), nh(t), nc(t), and nv(t) during the irradiation
process are [10]

dn

dt
= nc(N − n)A (4.4)
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Figure 4.1. Kinetic model for the filling of traps during crystal irradiation.

dnv

dt
= R − nv(Nh − nh)Ah (4.5)

dnh

dt
= nv(Nh − nh)Ah − ncnh Ar (4.6)

dnc

dt
+ dn

dt
= dnh

dt
+ dnv

dt
. (4.7)

The first equation expresses mathematically the fact that electrons in the conduc-
tion band can be trapped into the electron trap. The second equation describes the
process by which free holes in the valence band are created at a constant rate R dur-
ing the excitation, and these holes can also be trapped from the valence band into the
recombination center as indicated by the term −nv(Nh − nh)Ah. The third equation
expresses the fact that the concentration of holes in the recombination center is
changed by either trapping electrons from the conduction band (term −ncnh Ar), or
by trapping holes from the valence band (term nv(Nh − nh)Ah). The last equation
(4.7) expresses the conservation of total charge in the crystal, with the left-hand
side being equal to the total instantaneous concentration of electrons, and the right-
hand side representing the total concentration of holes in the crystal at any time t.

The parameters in the above expressions are as follows:

A = transition probability coefficient of electrons into the trap (cm3 s−1)
Ah = trapping probability coefficient of holes from the valence band into

the recombination center (cm3 s−1)
Ar = recombination probability coefficient of electrons from the conduc-

tion band into the recombination center (cm3 s−1)
n = instantaneous concentration of electrons in the electron trap at time

t (cm−3)
N = total concentration of electron traps in the crystal (cm−3)

(N − n) = instantaneous concentration of empty main traps available at time t
nh = instantaneous concentration of holes in the recombination center

(cm−3)
Nh = total concentration of holes in the crystal (cm−3)
nc = instantaneous concentration of electrons in the conduction band

(cm−3)
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nv = instantaneous concentration of holes in the valence band (cm−3)
R = constant rate of production of electron–hole pairs per cm3 per second

(cm−3 s−1)

Use the following numerical values N = 1015 cm−3, Nh = 3 × 1014 cm−3, A =
10−17 cm3 s−1, and Ar = 10−13 cm3 s−1, Ah = 10−15 cm3 s−1, R = 1014 cm−3 s−1.
The initial conditions at time t = 0 are n(0) = nh(0) = nc(0) = nv(0) = 0.
(a) Obtain and graph the solution of these coupled differential equations by as-

suming that the sample is irradiated for time t. By varying the irradiation time
t, obtain and graph the functions n(t) at the end of the irradiation period as a
function of time t. Show that this yields a nonlinear function n(t) for the filling
of the traps.

(b) Extend the calculation of the solution for a time period T = 60 s after the end of
the irradiation, by setting the rate of production of electron–hole pairs equal to
R = 0. Graph the final concentration of electrons n(t + T ) at the end of the 60
s relaxation period as a function of irradiation time t. Show that this relaxation
procedure results in a linear function n(t + T ) for the filling of the traps.

Solution

The following program in Mathematica solves the system of differential equations
(4.4)–(4.7) and graphs the solution represented by the functions n(t) and n(t + T ).

The main program programMain contains the two subroutines, solveDiffeq and
initValues, which are used in several of the Mathematica programs in this chapter.
The first subroutine solveDiffeq solves the system of four differential equations
above with the initial conditions given, and stores the result of the numerical
integration as the parameter sol. The command NDSolve is used once more to
perform the numerical integration of the system of coupled differential equations.
The subroutine solveDiffeq is called by using a total of six parameters, namely
the initial condition parameters n(0), nh(0), nv(0), and nc(0) (represented by the
variables n10, nh0, nv0, nc0), the pair production parameter R and the irradiation
time tfinal.

The second subroutine initValues sets the initial values of n(0), nh(0), nv(0),
and nc(0) at the beginning of the relaxation stage equal to the final values of
n(t), nh(t), nv(t), and nc(t) at the end of the irradiation stage. This subroutine
is called by using two parameters, the parameter b (representing the solution of
the system of differential equations) and the irradiation time represented by the
parameter d.

There are two stages in the simulation, the irradiation stage and the relaxation
stage. During the irradiation stage the subroutine solveDiffeq is called to solve the
system of differential equations for a certain irradiation time given by the parameter
tfinal9=irrTime, and for the given value of R = 1014 cm−3 s−1. The solution is
stored in the parameter sol9. At the end of the irradiation stage the subroutine
initValues is called in order to set-up the initial values for the subsequent relaxation
stage, as described above.

Next, during the relaxation stage, the subroutine solveDiffeq is called to solve
the system of differential equations for a time period T=tfinal10=60 s and for
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Figure 4.2. Results of the model for the filling of traps during crystal irradiation using
Mathematica.

the value of R = 0. This 60-s relaxation period allows the electrons and holes
accumulated in the conduction and valence band to be trapped into the available
trap and recombination centers. The solution of the differential equations for this
stage is stored in the parameter sol10.

The program contains a FOR loop, which calls the programMain and solves the
system of differential equations for several irradiation times. The various irradia-
tion times are contained in the parameter irrTime, starting at 0 s and ending at 20 s,
in steps of 1 s. The values of n(t) at the end of each irradiation stage are saved in the
Mathematica list n1List1 by using the command AppendTo. In a similar manner
the values of n(t + T ) at the end of the irradiation stage are saved in the Mathemat-
ica list n1List2. Finally the two lists are graphed by using the command ListPlot.

The result of running the program is shown in Figure 4.2.
The first graph shows that a nonlinear function n(t) for the filling of the traps is

obtained at the end of the irradiation period. The second graph indicates that the
final function n(t + T ) calculated at the end of the 60 s relaxation period, yields a
linear function for the filling of the traps. The last graph is identical to the published
data in Chen et al [10], Figure 2.

This exercise illustrates the importance of including appropriate relaxation pe-
riods after each irradiation or heating stage of multistage simulations of the TL
kinetic processes.

One can also obtain valuable insight into the nature of the trap filling process
in this example, by further examining the variation of n(t), nh(t), nv(t), and nc(t)
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Irradiation graphs for irradiation time = 10 sec
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Figure 4.3. Variation of the functions n(t), nh(t) , nc(t), and nv(t) during the irradiation
stage.

during the irradiation and relaxation process. This can be accomplished easily by
using the ListPlot command during each stage of the simulation.

Typical results are shown in Figure 4.3 for the variation of the functions of n(t),
nh(t), nc(t), and nv(t) during the irradiation stage, for a total irradiation period
of t = 10 s. These graphs show that the functions nh(t), nv(t), and nc(t) increase
with time during the irradiation process, indicating that holes and electrons are
accumulating in the valence and conduction band.

Figure 4.4 shows the variation of the same functions during the subsequent 60-s
relaxation stage. It is seen that the concentrations of holes in the valence band
(nv) and electrons in the conduction band (nc) decrease during the 60-s relaxation
period, and that they quickly reach negligible values. The electrons and holes
released from the bands get trapped in the electron trap and in the recombination
center correspondingly, resulting in an increase of the final concentrations n(t) and
nh(t). At all times, the sum total of electron concentrations n(t) + nc(t) is equal
to the sum total of the hole concentrations nv(t) + nh(t), as required by charge
conservation.

Listing of Program for Exercise 4.1

Remove["Global`*"];
programMain := (
A = 10^-17; Ar = 10^-13; Ah = 10^-15;
N1 = 10^15; Nh = 3*10^14;
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Relaxation Graphs for irradiation time= 10
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Figure 4.4. Variation of n(t), nh(t), nc(t), and nv(t) during the 60-s relaxation stage.

solveDiffeq[n10–,nh0–,nv0–,nc0–,R–,tfinal–]:=Module[{t},
sol = NDSolve[{n1'[t] == A*(N1-n1[t])*nc[t],
nh'[t] == -Ar*nh[t]*nc[t] + Ah*nv[t]*(Nh-nh[t]),
nv'[t] == R-Ah*nv[t]*(Nh-nh[t]), nc'[t] == nh'[t]
+ nv'[t] -n1'[t], n1[0] == n10,

nc[0] == nc0, nv[0] == nv0, nh[0] == nh0, {n1, nh, nv,
nc, {t, 0, tfinal}, MaxSteps → 50000]];

initValues[b–,d–]: = Module[{},n10 = Last[n1[d]/.b];
nh0 = Last [nh[d]/.b]; nv0 = Last[nv[d]/.b];
nc0 = Last[nc[d]/.b]];

(*-----------------------------------------------------*)

(*irradiation *)
R = 10^14; tfinal9 = irrTime;
solveDiffeq[n10, nh0, nv0, nc0, R, tfinal9];
Sol9=sol;

(* Relaxation stage *)
initValues[sol9,tfinal9];
R = 0; tfinal10 = 60;
solveDiffeq[n10, nh0, nv0, nc0, R, tfinal10];
sol10 = sol;
)
(*-------------------------------------------------*)

tstart = 0; tend = 20; tstep = 1;
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n1List1 = {}; n1List2 = {};
For[tloop = tstart, tloop ≤ tend, tloop+= tstep,
n10 = 0; nh0 = 0; nv0 = 0; nc0 = 0;
irrTime = tloop;
programMain;
initValues[sol9, tfinal9]; (*find n(t) at the end of
irradiation stage*);

AppendTo[n1List1, {tloop, n10}];
initValues[sol10, tfinal10]; (*find n(t+T) at the end of
relaxation stage*);

AppendTo[n1List2, {tloop, n10}];
]

gr1 = ListPlot[n1List1, PlotRange→All, PlotJoined → True,
PlotLabel→ "n(t) vs t", ImageSize → 723];

gr2 = ListPlot[n1List2, PlotRange→All, PlotJoined→True,
PlotLabel→ "n(t+T) vs t", ImageSize → 723];

Show[{gr1, gr2}, PlotLabel→ "n(t+T) and n(t) vs time"];

Exercise 4.2: Competition During Excitation Model

Write a computer program to integrate the kinetic rate equations relevant to the TL
model shown in Figure 4.5 [11]. The model consists of two electron trapping states
characterized by total concentrations N1 and N2, and by instantaneous occupancies
n1(t) and n2(t), respectively. The first trap is considered to be the one responsible
for TL, and the second trap is denoted as the competitor trap. The model also
contains a recombination center, with instantaneous hole occupancy p(t).

During the irradiation process the electrons are raised from the valence band
into the conduction band, and can be trapped into either N1 or N2, with the two
traps competing for the electrons as shown in Figure 4.5.

The kinetic equations for this model are [11]

dn1

dt
= A1(N1 − n1)nc (4.8)

dn2

dt
= A2(N2 − n2)nc (4.9)

nc

        A2   A1

  Ak      n1, N1

n2, N2

p R

Figure 4.5. The competition during excitation model.
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dnc

dt
= R − dn1

dt
− dn2

dt
− Aknc p (4.10)

p = n1 + n2 + nc. (4.11)

The first two equations express mathematically the fact that electrons in the
conduction band can be trapped into either the main or into the competitor trap.
The third equation expresses the fact that the electrons in the conduction band
are produced by the constant excitation rate R, and can also be trapped into ei-

ther of the two traps (terms −dn1

dt
and − dn2

dt
), or into the recombination center

(term −Aknc p). The last equation (4.11) expresses the conservation of total charge
in the crystal, with the left-hand side being equal to the concentration of holes
trapped in the recombination center, and the right-hand side representing the total
concentration of electrons in the crystal at any moment t. As discussed in the book
by Chen and McKeever [1], the last equation is based on the assumption that the
concentration of free holes in the valence band can be neglected as compared with
the accumulated concentration of holes p(t).

The parameters in the above expressions are as follows:

A1 = transition probability coefficient of electrons into the main trap
(m3 s−1)

A2 = transition probability coefficient of electrons into the competitor
trap (m3 s−1)

Ak = transition probability coefficient of electrons from the conduction
band into the recombination center (m3 s−1)

n1 = instantaneous concentration of electrons in the main trap at time
t (m−3)

N1 = total concentration of main traps in the crystal (m−3)
(N1 − n1) = instantaneous concentration of empty main traps available at time t

n2 = instantaneous concentration of electrons in the competitor trap
(m−3)

N2 = total concentration of competitor traps in the crystal (m−3)
nc = instantaneous concentration of electrons in the conduction band

(m−3)
R = constant rate of production of electron–hole pairs per m3 per

second (m−3 s−1)
p = instantaneous concentration of holes in the recombination center

(m−3)

Use the following numerical values N1 = N2 = 1023 m−3, A1 = Ak =
10−22 m3 s−1, and A2 = 3 × 10−21 m3 s−1, R = 1021 m−3 s−1. The initial condi-
tions at time t = 0 are n1(0) = n2(0) = nc(0) = p(0) = 0.

Solution

The following program in Mathematica solves the system of differential equations
(4.8)–(4.10) and graphs the solution represented by the functions n1(t), n2(t), and
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nc(t). The structure of the program is very similar to that of the previous exercise,
with the main program programMain containing the two subroutines solveDiffeq
and initValues. The first subroutine solveDiffeq is called by using a total of five
parameters: the three initial condition parameters n1(0), n2(0), and nc(0), the pair
production parameter R, and the irradiation time tfinal. The second subroutine
initValues sets the initial values of n1(0), n2(0), and nc(0) at the beginning of the
relaxation stage equal to the final values of n1(t), n2(t), and nc(t) at the end of the
irradiation stage.

The program contains a FOR loop, which solves the system of differential equa-
tions for several irradiation times contained in the parameter irrTime, starting at 1 s
and ending at 800 s, in steps of 30 s. The values of n1(t), n2(t), nc(t), and ln(n1(t))
at the end of the irradiation stage are saved in the Mathematica lists n1List1,
n2List1, ncList, and logn1List1 and are graphed by using the command ListPlot.

The result of running the program is shown in Figure 4.6.
The graphs of n1(t) above shows the existence of two regions with different

dose response, for 0 < t < 150 s and for t > 150 s. The change in TL dose re-
sponse coincides with the onset of saturation effects for the competitor trap at
approximately t = 150 s, as seen clearly in the second graph.

The regions of different dose response are seen clearly in the log–log plot of
n1(t) versus time, which shows the existence of an initial linear dose response
on the log–log scale, followed by a superlinear region and finally the onset of
saturation for the main trap.

The last graph is identical to the published data in Bowman and Chen [11],
Figure 2.
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Figure 4.6. Results from the competition during the excitation model.
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Listing of Program for Exercise 4.2

Remove["Global`*"];
programMain := (
k1 = 8.617*10^-5;
A1 = 10^-22; A2=30*10^-22; Ak = 10^-22;
N1 = 10^23; N2 = 10^23;

solveDiffeq[n10–,n20–,nc0–,R–,tfinal–l]:=
Module[{t}, sol =
NDSolve[{n1'[t] == A1*(N1-n1[t])*nc[t],
n2'[t] == A2*(N2-n2[t]*nc[t], nc'[t] == R-n1'[t]-n2'

[t]-Ak*nc[t]*(n1[t] + n2[t] + nc[t]),n1[0] == n10,
n2[0] == n20,nc[0] == nc0}, {n1,n2,nc}, {t,0,tfinal},
MaxSteps→50000]];

initValues[b–,d–] : = Module[{},n10 = Last[n1[d]/.b];
n20 = last[n2[d]/.b];
nc0 = Last[nc[d]/.b]];

(*----------------------------------------------*)

(*irradiate for irrTime*)
R = 10^21; tfinal7 = irrTime;
solveDiffeq[n10,n20,nc0,R,tfinal7];
sol7 = sol;
graphAllEleven[sol7, tfinal7];

(*Relaxation stage *)
initValues[sol7,tfinal7];
R = 0; tfinal8 = 60;
SolveDiffeq[n10,n20,nc0,R, tfinal8];
sol8 = sol;
graphAllEleven[sol8, tfinal8];

)
(*-------------------------------------------------*)

tstart = 1; tend = 800;tstep = 30;
n1List1 = {}; n2List1 = {};ncList1 = {}; logn1List1 = {};
For[tloop = tstart, tloop≤tend, tloop,+ = tstep,
irrTime=tloop;n10=0;n20=0;nc0=0;
programMain;
initValues[sol8, tfinal8]; (*find n1,n2,nc at end of
relaxation section*);

AppendTo[n1List1, {irrTime,n10}]; AppendTo [n2List1,
{irrTime, n20}];

AppendTo[ncList1, {irrTime,nc0}]; AppendTo [long1List1,
{Log[irrTime], Log[n10]}];

]
ListPlot[n1List1, PlotRange → All, PlotJoined → True,
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Figure 4.7. Model with competition during both excitation and heating: irradiation stage.

PlotLabel → "n1 vs t", ImageSize → 723];
ListPlot[n2List1, PlotRange → All, PlotJoined → True,

PlotLabel → "n2 vs t", ImageSize → 723];
ListPlot[logn1List1, PlotRange → All, PlotJoined → True,

PlotLabel → "ln(n1) vs ln (t)",ImageSize → 723];

Exercise 4.3: Superlinearity Model with Competition During
Both Excitation and Heating

Write a computer program to integrate the kinetic rate equations relevant to the TL
model shown in Figures 4.7 and 4.8 [9]. The model consists of two trapping states
characterized by concentrations N1 and N2, and by instantaneous occupancies n1(t)
and n2(t) respectively. The first trap is considered to be the one responsible for TL,
and the second trap is denoted as the competitor trap. The model also contains a
recombination center, with instantaneous occupancy m(t) and total concentration
of hole traps given by M .

The simulation should contain three stages: the irradiation process, an interme-
diate relaxation stage, and the heating (measurement of TL) stage.

During the irradiation process the electrons are raised from the valence band
into the conduction band, and can be trapped into either N1 or N2, with the two
traps competing for the electrons. These electrons in the conduction band can

   n c
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n2, N2

    m 

     nv

Figure 4.8. Model with competition during both excitation and heating: heating stage.
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also recombine with holes at the recombination center. Simultaneously, an equal
number of holes are created in the valence band by the irradiation process. These
holes can be trapped directly into the recombination center increasing the hole
occupancy m(t).

The kinetic equations for the excitation stage in this model are [9]

dn1

dt
= A1(N1 − n1)nc (4.12)

dn2

dt
= A2(N2 − n2)nc (4.13)

dm

dt
= Annv(M − m) − Ammnc (4.14)

dnv

dt
= R − Annv(M − m) (4.15)

dnc

dt
+ dn1

dt
+ dn2

dt
= dm

dt
+ dnv

dt
. (4.16)

The first two equations express mathematically the fact that electrons in the
conduction band can be trapped into either the main or the competitor trap. The third
equation expresses the fact that the number of holes in the recombination center is
changed by either trapping additional holes from the valence band (term Annv(M −
m)), or by trapping electrons from the conduction band (term −Ammnc). The fourth
equation expresses the fact that holes are produced continuously in the valence band
by the excitation rate R, but they are also captured into the recombination center
(term −Annv(M − m)). The last equation is the conservation of total charge in
the crystal, with the left-hand side being equal to the total rate of change of the
concentration of holes, and the right-hand side being equal to the total rate of
change of the concentration of electrons in the crystal.

The parameters in the above expressions are as follows:

A1 = transition probability coefficient of electrons into the main trap
(m3 s−1)

A2 = transition probability coefficient of electrons into the competitor
trap (m3 s−1)

Am = transition probability coefficient of electrons from the conduction
band into the recombination center (m3 s−1)

An = capture probability coefficient of holes from the valence band into
the recombination center (m3 s−1)

n1 = instantaneous concentration of electrons in the main trap at time
t (m−3)

N1 = total concentration of main traps in the crystal (m−3)
(N1 − n1) = instantaneous concentration of empty main traps available at

time t
n2 = instantaneous concentration of electrons in the competitor trap

(m−3)
N2 = total concentration of competitor traps in the crystal (m−3)
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nc = instantaneous concentration of electrons in the conduction band
(m−3)

nv = instantaneous concentration of holes in the valence band (m−3)
R = constant rate of production of electron–hole pairs per m3 per

second (m−3 s−1)
m = instantaneous concentration of holes in the recombination center

(m−3)
M = total concentration of holes in the crystal (m−3)

Use the following numerical values N1 = 1023 m−3, N2 = 1021 m−3, M = 1.01 ×
1023 m−3, A1 = 10−21 m3s−1, A2 = 10−19 m3 s−1, Am = 10−21 m3 s−1, An =
10−21 m3 s−1, and R = 1021 m−3 s−1. The initial conditions at time t = 0 are
n1(0) = n2(0) = nc(0) = nv(0) = m(0) = 0.

The irradiation stage must be followed by a relaxation period of 60 s, to allow
the charges in the conduction and valence band to relax into the various energy
levels. During the heating stage the electrons are raised thermally from the main
trap into the conduction band with a probability equal to s exp(−E /kT ), and they
can be trapped into either N1 or N2, with the two traps competing for the electrons.
The competing trap is assumed to be thermally disconnected, so that there is no
thermal excitation of the trapped electrons (n2) into the conduction band. The
electrons can also recombine with holes in the recombination center to produce
the observed TL. After the end of the irradiation no additional holes are being
produced in the valence band, so we can assume that nv = 0 at all times during
the heating stage.

Figure 4.8 shows the possible transitions during the heating stage.
The kinetic equations for the heating stage in this model are [9]

dn1

dt
= −sn1 exp(−E /kT ) + A1(N1 − n1)nc (4.17)

dn2

dt
= A2(N2 − n2)nc (4.18)

dnv

dt
= nv = 0 (4.19)

I = −dm

dt
= Ammnc (4.20)

dm

dt
= dnc

dt
+ dn1

dt
+ dn2

dt
(4.21)

The additional parameters in these equations are E = activation energy and s =
frequency factor for the main trap.

Solution

The following program in Mathematica solves the system of differential equations
(4.12)–(4.21) and graphs the solution represented by the functions n1(t), n2(t),
m(t), nv(t), and nc(t). The structure of the program is very similar to that of
the previous exercise, with the main program programMain containing the two
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Figure 4.9. Results from the model with competition during both excitation and heating.

subroutines, solveDiffeq and initValues. The first subroutine solveDiffeq is called
by using a total of nine parameters: the five initial condition parameters n1(0), n2(0),
nv(t), m(0), and nc(0), the pair production parameter R, the relevant time tfinal,
the irradiation temperature irrTemp, and the heating rate parameter βheat. The
second subroutine initValues provides the connection between different stages by
setting the initial values of n1(0), n2(0), m(0), nv(t), and nc(0) at the beginning of
each stage equal to the final values of n1(t), n2(t), m(t), nv(t) and nc(t) at the end
of the previous stage.

The subroutines are called three times, for the irradiation, relaxation, and heat-
ing stages. It is noted that if irradiation of the sample is taking place at room
temperature, the thermal excitation probability s exp(−E/kT ) is equal to zero.
As a result of this, we can combine the two sets of differential equations above, as
seen in the listing of the Mathematica program. The program also calculates and
saves the maximum TL intensity (TLmax) in the parameter sn.

The program contains a FOR loop, which solves the system of differential
equations for several irradiation times contained in the parameter irrTime, starting
at 0.3 s and ending at 400 s, in steps of 0.5 s. The values of n1(t), n2(t), nc(t), m(t),
nv(t), and ln(n1(t)) at the end of the relaxation stage, as well as their logarithms,
are saved in Mathematica lists and are graphed by using the command ListPlot.

The result of running the program is shown in Figure 4.9.
Figure 4.10 shows the functions n1(t), n2(t), m(t), and TLmax as a function of

the irradiation time t , on a log–log scale. It is seen that at small irradiation times
the TL versus dose graph is initially quadratic (slope = 2 on the log–log scale),
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Figure 4.10. Superlinearity graph from the model of Chen and Fogel with competition
taking place during both the excitation and heating stages.

followed by a superlinear region where k > 2, to be followed by a linearity region
(slope k = 1), and finally by approach to saturation.

Figure 4.10 is identical to the published data of Chen and Fogel [9].

Listing of Program for Exercise 4.3

Remove["Global`*"];
programMain : = (

E1 = 1; s1 = 10^13;
k1 = 8.617*10^-5;
f = 10^21;
A1 = 10^-21;A2 = 10^19; Am = 10^-21;Ah = 10^-21;
N1 = 10^23;N2 = 10^21;M = 1.01*10^23;

solveDiffeq[n10–, n20–, m0–, nv0–, nc0–, R–, tfinal–,
βheat–, irrTemp–] : =

Module[{t},
sol =
NDSolve[{n1'[t] == A1*(N1-n1[t])*nc[t]-
n1[t]*s1*E^ (-E1/(k1*(273+irrTemp+βheat*t))),
n2'[t] == A2*(N2-n2[t])*nc[t],
m'[t] == -Am*m[t]*nc[t]+Ah*nv[t]*([M-m[t]),
nv'[t] == R-Ah*nv[t]*(M-m[t]), nc'[t] == m'[t]
+ nv'[t]-n1' [t]-n2'[t],n1[0] == n10,

n2[0] == n20,nc[0] == nc0, nv[0] == nv0,m[0]
== m0},{n1,n2,m,nv,nc}, {t,0,tfinal},

MaxSteps→50000]];

initValues[b–,d–]:= Module[{},n10 = Last[n1[d]/.b];
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n20 = Last[n2[d]/.b];m0 = Last[m[d]/.b];
nv0 = Last[nv[d] /.b];nc0 = Last[nc[d] /.b]];

(*----------------------------------------------*)

(* irradiation *)
R = 10^21;tfinal19 = irrTime; βheat = 0; irrTemp = 20;
solveDiffeq[n10, n20,m0,nv0,nc0,R,tfinal9,βheat,
irrTemp]; sol9=sol;

(* Relaxation stage *)
initValues[sol9,tfinal9];
R = 0;tfinal10 = 60; βheat = 0; irrTemp = 20;
solveDiffeq[n10, n20,m0,nv0,nc0,R,tfinal10,βheat,
irrTemp];sol10=sol;

(*step 3- record maxTL*)
initValues[sol10,tfinal10];
R = 0;βheat = 5; irrTemp = 20;tfinal11 = (170-irrTemp)/

βheat;
solveDiffeq[n10, n20,m0,nv0,nc0,R,tfinal11,βheat,
irrTemp]; sol11 = sol;

tlList4 = Table[{First[Evaluate[(m[t]*nc[t]*Am)/
.sol11]]},{t,0,tfinal11,0.2}];

sn = Max[tlList4];
)
(*----------------------------------------------*)
tstart = 0.3;tend = 400;tstep = 0.5;
n1List = {}; n2List1 = {}; mList1 = {}; snList1 = {};
logsnList1 = {}; logn1List1 = {}; logn2List1 = {};
logmList1 = {};
For[tloop=tstart, tloop≤tend,tloop+=tstep,
n10=0;n20=0;m0=0;nv0=0;nc0=0;
irrTime=tloop;
programMain;
initValues[sol10,tfinal10]; (*find n1,n2,m,TLmax at
end of first irradiation section*);

AppendTo[lognList1,{Log[irrTime], Log[n10]}];
AppendTo [logn2List1,{Log[irrTime], Log[n20]}];

AppendTo[logmList1,{Log[irrTime], Log[m0]}]; AppendTo
[logsnList1,{Log[irrTime], Log[sn]}];

AppendTo[n1List1,{tloop, n10}]; AppendTo[n2List1,
{tloop, n20}]; AppendTo[mList1, {tloop, m0}];

AppendTo[snList1, {tloop, sn}];
]

ListPlot[n1List1,PlotRange→All,PlotJoined→True,
AxesLabel→{t,n1}, ImageSize→723];
ListPlot[n2List1,PlotRange→All,PlotJoined→True,
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Table 4.1. The TL response vs Dose D data

Dose (Gy) y(D) (a.u.) Dose (Gy) y(D) (a.u.)

0.001 0.001166 75 170.2
0.005 0.005831 100 256.5
0.010 0.01166 250 942.1
0.050 0.05834 500 2,204
0.100 0.1168 750 3,204
0.500 0.5873 1,000 3,876
1 1.183 2,000 4,753
2 2.4 5,000 4,844
5 6.254 7,500 4,844

10 13.34 10,000 4,844
25 39.32 50,000 4,844
50 96.97

AxesLabel→{t,n2}, ImageSize→723];
ListPlot[mList1,PlotRange→All,PlotJoined→True,
AxesLabel→{t,m}, ImageSize→723];
ListPlot[snList1,PlotRange→All,PlotJoined→True,
AxesLabel→{t,TLmax}, ImageSize→723];
ListPlot[logsnList1,PlotRange→All,PlotJoined→True,
AxesLabel→{ln(t),ln(TLmax)}, ImageSize→723];
ListPlot[logn1List1,PlotRange→All,PlotJoined→True,
AxesLabel→{ln(t),ln(n1)}, ImageSize→723];
ListPlot[logn2List1,PlotRange→All,PlotJoined→True,
AxesLabel→{ln(t),ln(n2)}, ImageSize→723];
ListPlot[logmList1,PlotRange→All,PlotJoined→True,
AxesLabel→{ln(t),ln(m)}, ImageSize→723];

Exercise 4.4: The f (D) and g(D) Functions

Table 4.1 lists the gamma doses (D) given to a set of thermoluminescence dosime-
ters (TLDs), and the corresponding TL net emission, y(D) in arbitrary TL reader
units.

Figure 4.11 shows the plot y(D) versus D obtained from the data. The experi-
mental data have been fitted by the following equation

y(D) = A(1 − e−BD ) − C De−BD (4.22)

where D is the given dose, A is the TL response at the saturation level (4844 a.u.),
B = 0.291 × 10−2 Gy−1, and C = 12.93 Gy−1.

The aim of this exercise is to study the functions f (D) and g(D) and determine
for which doses the TL response is linear, superlinear, supralinear, or sublinear.

The superlinearity index g(D) gives an indication of the change in the slope of
the dose response; the supralinearity index f (D) is used in the case where the main
interest is in the amount of deviation from linearity, i.e., whether the TL signal is
above or below the linear extrapolated range, and to make corrections if needed.
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Figure 4.11. Plot of the TL
response versus dose.

The superlinearity index g(D) is defined as

g(D) =
[

Dy′′(D)

y′(D)

]
+ 1 (4.23)

while the supralinearity index f (D) is defined as

f (D) =

[
y(D)

D

]
[

y(D1)

D1

] . (4.24)

The following is the meaning of the symbols used in the two previous equations:

� y denotes the TL signal obtained at a given dose D;
� y = y(D) is the analytical expression giving the behavior of y as a function of

dose D and it is found by fitting the experimental values;
� y′(D) and y′′(D) are, respectively, the first and second derivatives of the function

y(D);
� D1 is the normalization dose in the initial linear range of the y = y(D) curve.

Solution

The first and the second derivatives of equation (4.22) are

y′ = (A · B − C + B · C · D)e−B D (4.25)

y′′ = (2C − A · B − B · C · D)Be−B D. (4.26)

Table 4.2 gives the numerical values of the first and second derivative as a
function of the dose D.

Calculating now the g(D) and f (D) functions according to equations (4.23) and
(4.24) and plotting both the first and second derivative as a function of the dose,
we obtain Figures 4.12 and 4.13, respectively.
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Table 4.2. The values of the first and second derivatives as a function of dose

Dose (Gy) y′(D) y′′(D) Dose (Gy) y′(D) y′′(D)

0.001 1.166 0.03423 75 3.206 0.02092
0.005 1.166 0.03423 100 3.684 0.01741
0.010 1.166 0.03423 250 5.108 0.003314
0.050 1.168 0.03422 500 4.663 −0.4788 × 10−2

0.100 1.169 0.03421 750 3.314 −0.5400 × 10−2

0.500 1.183 0.03413 1,000 2.113 −0.4100 × 10−2

1 1.2 0.03402 2,000 0.2268 −0.5483 × 10−3

2 1.234 0.03382 5,000 9.08 × 10−3 −0.2462 × 10−6

5 1.335 0.03320 7,500 9.41 × 10−7 −0.2615 × 10−9

10 1.498 0.03219 10,000 8.68 × 10−11 −3.2824 × 10−13

25 1.959 0.02929 50,000 1.215 × 10−60 −3.7499 × 10−63

50 2.635 0.02486
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Figure 4.12. First derivative of the
TL signal y(D).

y'
' (

D
)

1E-3 1E-2 1E-1 1E0 1E1 1E2 1E3 1E4
Dose

−8E-3

4E-3

2E-2

3E-2

Figure 4.13. Second derivative of
the TL signal y(D).
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Table 4.3. The f (D) and g(D) functions Vs dose

Dose (Gy) g(D) f (D) Dose (Gy) g(D) f (D)

0.001 1 1 75 1.489 1.946
0.005 1 1 100 1.472 2.200
0.010 1 1 250 1.182 3.232
0.050 1.001 1.001 500 0.4866 3.781
0.100 1.003 1.001 750 −0.2222 3.664
0.500 1.014 1.007 1,000 −0.9401 3.324
1 1.028 1.015 2,000 −0.3835 × 101 2.038
2 1.055 1.029 5,000 −0.1256 × 102 0.8308
5 1.124 1.073 7,500 −0.1983 × 102 0.5539

10 1.215 1.144 10,000 −0.3680 × 102 0.4154
25 1.347 1.349 50,000 −0.1532 × 103 0.08307
50 1.472 1.663

Table 4.3 lists the f (D) and g(D) functions versus dose.
We now plot both functions f (D) and g(D) as a function of the dose, as shown

in Figures 4.14 and 4.15.
In Figure 4.16 we show both coefficients f (D) and g(D) on the same graph, to

emphasize their differences and similarities. It is noted that g(D) is a functional rep-
resentation of the nonlinear response and therefore can have negative values as well.

On the other hand, f (D) is a normalization of the data with respect to the lowest
available dose and therefore can only have positive values.

Discussion

Values of g(D) > 1 indicates a superlinearity region, while g(D) = 1 means a
linear region and g(D) < 1 denotes a sublinearity region.

In a similar manner, f (D) < 1 means a sublinear region, f (D) ∼ 0 means a
saturation region and f (D) > 1 indicates a supralinearity region.

The general features concerning the TL versus dose behavior can be outlined as
follows:

� if y′′(D) > 0, y′(D) and y(D) increase with D and y(D) is superlinear,
� if y′′(D) < 0, y′(D) and y(D) decrease with D and y(D) is sublinear,
� if y′′(D) = 0, y′(D) is constant with D and y(D) is linear.

The analysis of some of the data in Figure 4.11 indicates the following results.

D = 50 Gy: y′ > 0 means y is increasing; y′′ > 0 and y′ is increasing, and the
graph is concave upwards. g > 1 and so y is superlinear; f > 1 means the
curve is also supralinear.

D = 500 Gy: y′ > 0, then y is increasing; y′′ < 0, y′ is decreasing and the
graph is concave downwards; g < 1 means y is sublinear; f > 1 means y is
supralinear.
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Figure 4.14. The function f (D).
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Figure 4.15. The function g(D).
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D = 104Gy: y′ > 0 which means y is increasing; because y′′ < 0, y′ is decreas-
ing and the graph is concave downwards; g < 1, f < 1 mean y is sublinear
in D, and y is approaching saturation.
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5
Miscellaneous Applications
of Thermoluminescence

Introduction

The introductory sections of this chapter present some of the fundamental defi-
nitions, terminology, and equations used to describe the statistical accuracy and
reproducibility of thermoluminescence data.

In Exercises 5.1–5.4, we study the accuracy and reproducibility of thermolu-
minescence dosimetry (TLD) systems and the various quantities used to describe
them. Exercises 5.5 and 5.6 demonstrate two characteristic examples of data anal-
ysis in environmental dosimetry and dose monitoring.

In Exercises 5.7 and 5.8, we perform a numerical simulation of the phenomenon
of thermal quenching that is exhibited by many TL materials.

In Exercise 5.9, the mathematical basis and a numerical simulation of the TL-
like presentation of phosphorescence decay data are given. In Exercise 5.10, we
look at the important experimental problem of temperature lag and how to correct
experimental glow curves for this common experimental effect.

Finally, Exercise 5.11 is the study of the various terms appearing in the first-
order and general-order equations for TL glow peaks. By performing a numerical
analysis of these terms for a wide range of the activation energies E and the
frequency factors s, a formula is derived for the activation energy E as a function
of the full width at half maximum (FWHM) ω and the temperature TM of maximum
TL intensity. This formula is compared with the well-known equation (1.49).

Reproducibility of TLD Systems

The dosimetric properties of TLDs systems depend in a complex manner on the
combination of several different factors, such as the individual TL equipment used
in the experiment (usually referred to as the TL reader), the TL dosimeters used,
and the readout and annealing procedure used for the dosimeters.

A quantity of interest in experimental TLD work is the lower detection limit
DLDL that is defined as three times the standard deviation σBKG of the zero-dose
reading, which is a TL reading taken after annealing of the dosimeters but before

144
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any irradiation takes place. The lower detection limit DLDL is typically given in
units of the absorbed dose (Gy).

DLDL = 3σBKD. (5.1)

Burkhardt and Piesh [1] used a batch of 10 TLD dosimeters in a classic ex-
perimental study of the reproducibility of TLD systems. They irradiated these 10
dosimeters from the lowest detectable dose DLDL of the system, up to a high dose
equal to 1,000 times the DLDL. They calculated the relative standard deviation s(D)
of the TL readings as a function of the dose D received by the 10 dosimeters, and
presented it graphically as a function s(D) of the dose D.

These authors found that the results could be represented by a two-parameter fit
of the form:

s(D) =
[

A2

D2
+ B2

]1/2

. (5.2)

In this equation, the symbols represent the following:

s(D) = relative standard deviation at different doses D
A = value of the absolute standard deviation (SD) at very low doses and
B = relative SD at high doses

A typical experimental result for the graph s(D) as a function of dose D is shown
in Figure 5.1, and represents graphically the reproducibility of dose measurements
in TLD systems. The data in Figure 5.1 show that the relative standard deviation
becomes very large at low doses, while it becomes essentially constant and of the
order of a few percent at high doses.

The dose range where a constant s(D) value is obtained depends on the properties
of the batch of dosimeters used, as well as on the properties of the individual TL
reader used in the experiment.
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Figure 5.1. Typical reproducibility graph for TLD systems: the relative standard deviation
s(D) of the data obtained with a group of 10 dosimeters is plotted as a function of the dose D.
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Zarand and Polgar ([2],[3]) developed a slightly different theoretical expression
for the dependence of the relative standard deviation s(D) on the dose D received by
the dosimeter. They found that in some experimental situations the relative standard
deviation of the data could be represented more accurately by the expression:

s(D) =
[

A2

D2
+ 1

k D
+ B2

]1/2

. (5.3)

In this equation the extra term 1/k D appears, where D is the absorbed dose as in
the previous equation and k is the constant representing the photoelectron-to-dose
conversion factor. The rest of the symbols in this equation remain the same as in
equation (5.2).

Another way of representing the reproducibility of a TLD system is by perform-
ing a statistical analysis using a group of dosimeters of the same type. For example,
the group of 10 dosimeters are annealed, irradiated, and read out using the same
procedure several times, perhaps 10 times for each dosimeter. The analysis of the
means and standard deviations (also called the coefficients of variation) can help
in identifying the different sources of variation in the reproducibility of the system.
These sources can be associated with the TL reader, with the TL elements, or with
some other source in the dosimetry procedure.

The following coefficients of variation can be defined [4] as:

The system variability index (SVI) or % CV: this is the mean value of the percent
standard deviations of each TL detector. This quantity gives a measure of the
reproducibility of the whole system.

The reader variability index (RVI) or % CV: this is the percent standard de-
viations of the mean values of each cycle of readings. This quantity gives a
measure of the long-term reader reproducibility.

The detector variability index (DVI): this quantity gives a measure of the repro-
ducibility of the TL detectors, and is defined as:

DVI =
√

(SVI)2 − (RVI)2. (5.4)

Exercise 5.2 in this chapter provides a numerical exercise for calculating the quan-
tities SVI, RVI, and DVI.

Definitions for Reference and Field dosimeters

In TLD applications, it is common to divide the available dosimeters in two classes,
reference dosimeters and field dosimeters. The main difference between refer-
ence and field dosimeters comes from their different uses. The field dosimeters
are to be used for calibrating TLD readers and for monitoring radiation in all
dosimetric applications. On the other hand, the reference dosimeters are used to
produce an “average response” to which the response of the field dosimeters is
normalized.

Typically, the group of reference dosimeters is chosen as a subgroup of the batch
of all the available dosimeters. A typical example may be to choose 10 reference
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dosimeters out of a batch of 100 available dosimeters. It is noted that after an
irradiation test, the net TL signal of the 10 reference dosimeters must be closer to
the average value than those of the other samples. These 10 reference dosimeters
will be considered as representative of the whole batch and should not be used for
field applications.

A comprehensive example of how to set up and calibrate a TLD system for
radiation monitoring is given by Plato and Miklos [5]. These authors advocated the
use of element correction factors (ECFs) for personal dosimetry, and presented a
10-step procedure for producing ECFs for a system of 3,000 TLDs. They suggested
that the ECF procedure greatly increases the accuracy in measuring doses with TLD
systems. The main advantage of using individual ECFs during TL dosimetry is
that ECFs represent only variations within the TL elements and not variations due
to stability problems with the TLD reader.

The basic idea behind the ECF procedure is to determine the mean response of
the reference dosimeters, and to generate ECFs for the field dosimeters. By applying
these individual ECFs, the accuracy of the field dosimeters is greatly improved. It
must be noted that ECFs can also be found in the TLD literature under the names
“element correction coefficients” (ECCs), or “individual correction factors”, or
“relative intrinsic sensitivity factors.”

A simplified calibration procedure of dosimeters is as follows. The first step
consists of annealing all the TLD dosimeters (i = 1, 2 . . N ) according to the man-
ufacturer’s recommended anneal procedure. The dosimeters can then be read out
using the appropriate read out cycle to find the intrinsic TL background signal
for each dosimeter. This background must be subtracted from the TL signal in all
subsequent TL measurements.

The dosimeters are then irradiated to a known dose that will be typical of the
application in which the dosimeters will be used. After irradiation, it is best to
read out the irradiated dosimeters in a single session if possible, and by using
always the same readout cycle. This step determines the TL signal Mi for each
dosimeter.

In the next step, one calculates the mean response M of the batch of N dosimeters
by taking the average

M = 1

N

N∑
i=1

Mi . (5.5)

If desired, the average response of the N dosimeters can be measured several
more times using the same anneal and irradiation procedure, in order to improve
the accuracy of the measurements.

Once the average response M has been determined, one calculates the individual
sensitivity factor Si for the i th dosimeter belonging to the batch of N dosimeters,
by using the definition

Si = M

Mi
, (5.6)

where Mi is the net reading of the i th dosimeter.
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The individual Si factors are associated with each i dosimeter and are used to
correct the net dosimeter response Mi at any absorbed dose using the expression:

M(i)cor = Mi Si . (5.7)

As shown in numerical Exercise 5.3 in this chapter, the above procedure can
improve the reproducibility of the batch of TLD dosimeters and reduce the relative
standard deviation from a typical value of 20% down to a few percent.

For a much more detailed description of a recommended calibration procedure
for TLD systems, the reader is referred to the work of Plato and Miklos [5].

Exercise 5.1: Lower Detection Limit, DLDL

You are given in the Table 5.1 the readings of 10 TLDs of the same kind. The
second column shows the TLD background reading (no irradiation), and column
three shows the TLD readings after the TLDs are irradiated with a dose of 3 µGy
using a Co60 source.

Calculate the lower detection limit, DLDL.

Solution

The lower detection limit DLDL is defined as three times the standard deviation of
the zero-dose reading, σBKG, given in units of the absorbed dose (in units of Gy).
Thus, we calculate the average and standard deviation of the data in the second
column:

M0 (average of the zero-dose readings) = 4.24 reader units.
σBKG (standard deviation of M0) = 2.16 reader units.

To obtain DLDL, we need to transform first the reader units into absorbed dose
(Gy). For this, we have to calculate the calibration factor of the TL reader ΦC,

Table 5.1. Calculation of the lower detection limit, DLDL

M0 (reader units)
read out after Mi (reader units) Mi − M0i

TLD annealing read out after readout minus
no. (intrinsic background) irradiation background

1 5.34 799.5 794.16
2 9.91 751.9 741.99
3 3.97 787.2 783.23
4 3.82 877.8 873.98
5 3.99 760.7 756.71
6 4.07 1306.0 1301.93
7 3.26 1000.0 996.74
8 2.99 1003.0 1000.01
9 2.53 935.0 932.47

10 2.55 973.2 970.65
M ± σBKG = 4.24 ± 2.16 M = 915.19 ± 168.54
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which is given by the ratio of the calibration dose DC divided by the average value
of the net TL readings M :

ΦC = DC

M
= DC

1

N

N∑
i=1

(Mi − M0i )

, (5.8)

where DC is the calibration dose, N is the number of TLDs, Mi is the reading of
the i th TLD, and M0i is the zero-dose reading (background) of the i th TLD.

The average value of the 10 net readings is M = 915.19 (reader units) with a
standard deviation σ = 168.54 (reader units).

The calibration factor is

ΦC = 3

915.19
= 3.3 µGy/TL reader unit

and its error is

�ΦC

ΦC
= �D

D
+ �M

M
= 168.54

915.19
= 0.18

and

�ΦC = 0.18 × 3.3 = 0.64 µGy/TL reader units.

Finally, we have

ΦC = 3.3 ± 0.6 µGy/TL units

and

DLDL = (6.48) × (3.3) = 21 µGy.

Exercise 5.2: Reproducibility Measurements

You are given in Table 5.2 the readings of 10 TLDs. Each TLD was annealed
using the appropriate annealing procedure, then irradiated with the same dose,
and the TL signal was read out. This procedure has been carried out over five
cycles.

(1) Study the variability of the TL system. This represents a measure of the vari-
ability of the combined TL system consisting of the TL reader, the annealing,
and the irradiation procedures, and the TL dosimeters.

(2) Study the variability of the TL reader only.
(3) Study the variability of the TLDs only.

Solution

(1) By working across each row of Table 5.2, we calculate the average, the standard
deviation, and the covariance for each detector, with the results of these calculations
shown in Table 5.3. By using the last column of Table 5.3, we also find the average
covariance CV of the group of dosimeters.
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Table 5.2. Data table for reproducibility of TLD measurements

1st reading 2nd reading 3rd reading 4th reading 5th reading
(TL reader (TL reader (TL reader (TL reader (TL reader

Dosimeter no. units) units) units) units) units)

1 6.957 6.836 6.702 6.735 6.898
2 6.752 7.065 6.804 6.665 6.956
3 6.686 6.764 6.588 6.756 6.630
4 6.708 6.532 6.606 6.830 6.826
5 6.853 6.833 6.980 6.860 6.978
6 6.731 6.783 6.782 6.819 6.852
7 6.759 6.578 6.629 6.672 6.654
8 6.686 6.836 6.944 6.840 6.762
9 6.843 6.662 6.772 6.797 6.637

10 6.788 6.696 6.557 6.627 6.474

This CV value expressed in % gives us the SVI of the TL system.

CV = 0.015.

%CV = SVI = 1.5%.

As discussed in the introductory sections of this chapter, the quantity % CV = SVI
gives a measure of the reproducibility of the whole system.

(2) By working across each column of Table 5.2, we calculate the mean readings
for each cycle, the average of the mean readings, their standard deviation, and the
associated covariances, with the results of these calculations shown in Tables 5.3
and 5.4. These covariances give us the variability index of the TL reader only, or
RVI.

SD = 0.015
%CV = RVI = SD/mean = 0.015/6.760 = 0.0022 = 0.2%.

As discussed in the introductory sections of this chapter, the quantity %CV = RVI
gives a measure of the long-term reproducibility of the reader system.

Table 5.3. Statistical analysis of data in Table 5.2

Mean values of
Dosimeter no. the five readings Standard deviation CV

1 6.786 0.146 0.022
2 6.848 0.161 0.024
3 6.685 0.077 0.012
4 6.700 0.132 0.020
5 6.901 0.072 0.010
6 6.793 0.045 0.007
7 6.658 0.066 0.010
8 6.814 0.096 0.014
9 6.742 0.089 0.013

10 6.628 0.121 0.018
CV 0.015
%CV 1.5%
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Table 5.4. Calculation of reader variability index (RVI), system
variability index (SVI), and variability index of the detectors (DVI)

1st 2nd 3rd 4th 5th
reading reading reading reading reading mean SD %CV

6.776 6.759 6.736 6.760 6.767 6.760 0.015 0.2%

(3) The DVI is then given by the following expression:

DVI =
√

(SVI)2 − (RVI)2 = √
2.25 − 0.04 = 1.5%.

From the results obtained, it is evident that a better reproducibility can be achieved
by carefully selecting the individual dosimeters or by using the individual sensi-
tivity factors associated to each dosimeter, as discussed in the next exercise.

Exercise 5.3: Individual Correction Factors, Si

In Table 5.5, the net response of a group of nine TLDs at a specific dose of 3.78 µGy
are given. The aim of the exercise is to study the effect of the individual correction
factors Si on the standard deviation of the data. Calculate the individual correction
factors for each of the nine TLDs and the standard deviation of the data for each
dosimeter before and after using the Si corrections.

Solution

The general definition of the individual sensitivity factor, Si , where i stands for
the i th dosimeter belonging to a batch of N TLDs is

Si = M

Mi
, (5.9)

Table 5.5. Data table for the
individual sensitivity factor,
Si exercise

Net
Dose readings

(µGy) (counts)

3.78 12,993
3.78 11,739
3.78 8,212
3.78 8,339
3.78 8,527
3.78 9,098
3.78 7,571
3.78 9,948
3.78 9,749
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Table 5.6. Calculation of the individual sensitivity factor, Si

Net
readings Average SD (%) Corrected SD(%)

Dose counts (counts) before Si factor readings Corrected after
(µGy) Mi M correction Si = M/Mi M(i)cor = Mi Si average correction

3.78 12,993 9,575 18.6 0.737 9,575.84 9,575.66 0.03
11,739 0.816 9,579.02

8,212 1.166 9,575.19
8,339 1.148 9,573.17
8,527 1.123 9,575.82
9,098 1.052 9,571.10
7,571 1.265 9,577.32
9,948 0.963 9,579.92
9,749 0.982 9,573.52

where Mi is the net reading of the i th dosimeter and M is the average of the net
readings of the N dosimeters.

As discussed in the introductory sections of this chapter, the individual Si factors
are associated with each i-dosimeter and are used to correct the net dosimeter
response Mi at any absorbed dose

M(i)cor = Mi Si . (5.10)

The third column in Table 5.6 contains the average of the net readings for
the group of dosimeters, while the fourth column contains the percent standard
deviation (SD%) for the nine readings.

The fifth column is calculated using the definition of Si and the sixth column
shows the corrected values of the net readings. The last column in Table 5.6 shows
the % SD when using the corrected net readings.

As can be seen from the Table, by using the individual sensitivity factor Si the %
standard deviations are reduced from 18% to only 3%.

Exercise 5.4: Relative Standard Deviation Versus Dose

The dosimetric properties of a TLD system are given by the combination of the
following factors:

� TL reader (PM dark current, readout profile)
� Thermoluminescent material (batch quality, batch history)
� Annealing procedure
� Calibration (irradiation system)
� Zero-dose reading

All the previous factors affect the reproducibility of the TLD system. Furthermore,
the reproducibility results are also dependant on the irradiation dose.

As discussed in the introduction to this chapter, the reproducibility of a TLD
system can be expressed as the variation of the standard deviation s(D) of the TL
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Table 5.7. TL readings and their
experimental relative standard
deviations

Dose (µGy) Experimentals SD%

3.78 18.6
4.12 13.8
6.14 11.9

11.2 8.3
24.5 4.5
49.1 2.3

147 2.1
294 2.4
589 1.5

1,178 1.5

readings at different doses D. This variation can often be expressed by using a
two-parameter fit [1]:

s(D) =
[

A2

D2
+ B2

]1/2

, (5.11)

where A is absolute SD at very low dose (zero dose), expressed in dose units, B
is relative SD at high dose expressed in reader units.

In this exercise, a typical example of the variation of s(D) with the dose D is
given.

The first two columns of Table 5.7 list the experimental relative standard devia-
tion s(D) at each dose D. Find the coefficients A, B such that the theoretical plot
from equation (5.11) fits the experimental data.

Solution

By inspecting the second column of Table 5.7, we see that the standard deviation
at large doses becomes constant and equal to 1.5%. This is in agreement with
equation (5.11), which tells us that the value of the constant S(D) at large doses
should be constant and equal to B = 1.5.

Equation (5.11) tells us that by graphing the quantities s(D)2 − B2 versus 1/D2,
we should find a linear function with a slope equal to A2, as shown in Figure 5.2.

The values of the constants A and B are therefore equal to A2 = slope = 4180.39
and B2 = 1.25. Figure 5.3 shows that the experimental and theoretical data are in
a reasonably good agreement.

Exercise 5.5: Dose Monitoring in a Nuclear
Medicine Department

In the nuclear medicine department of a hospital, it was decided to monitor the
radiation level. In order to perform this measurement, a batch of TLDs was annealed
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Figure 5.2. The standard deviations s(D)2 − B2 versus 1/D2 fit a linear function with
slope A2.

and the main dosimetric characteristics were studied to determine the fading factor
of the material (λ).

Subsequently, a dose monitoring experiment was carried out over a period of
2 months by placing several TLDs in various positions in the hospital. The envi-
ronmental dose value corresponding to the TL emission recorded at the end of the
storage period is incorrect, and needs to be corrected for the fading effect of the
TLDs.

Find the corrected environmental dose over a period of 2 months (1,440 hours)
when the fading factor of the TL material is λ = 3.2 × 10−4 h−1 and the measured
incorrect environmental dose at the end of the 2 months is DBF(tS) = 42.47 mGy.

Dose D (µGy)

1 10 100 1,000 1,0000

s(
D

) 
(%

)

1

10

100

Experimental s(D )
s(D) Calculated using (5.11)

Figure 5.3. Comparison of the experimental values of s(D) and the theoretical relative
standard deviations s(D) calculated from equation (5.11).
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Solution

Let us indicate by ḊB the corrected environmental dose rate.
During the monitoring time ts two effects are in competition: the first is the

growth of the TL information due to the environmental dose, and the second is
the fading of the TL signal in the TLDs. The equation describing this competing
process is as follows [6, p. 138]:

DBF(ts) = ḊB

λ

[
l − exp(−λ ts)

]
(5.12)

from which the corrected environmental dose rate ḊB can be determined:

ḊB = DBF(ts) λ

1 − exp(−λ ts)
. (5.13)

By substituting the given numerical values in equation (5.13), we find

ḊB = DBF(ts) λ

1 − exp (−λ ts)
= 42.47 × 3.2 × 10−4

1 − exp (−3.2 × 10−4 × 1, 440)
= 0.037 mGy h−1

and the corresponding corrected environmental dose over the period of storage is
equal to 0.037 mGy h−1 × 1, 440 hours = 53 mGy.

Exercise 5.6: Determination of the Self-Dose in a TL Material

During a study of the dosimetric characteristics of a thermoluminescent phos-
phor, it was found that it was affected by a self-dose effect, due to the presence
of isotopic substances in the material. In order to take into account this effect
and to correct the TL emission in dosimetric applications, the thermoluminescent
material was annealed and then stored in a lead box to avoid any external irradi-
ation. The period of storage was 1,440 hours and at the end of this time, the TL
was measured to determine the self-dose, which was found equal to DSDF(ts) =
10.54 µGy.

Calculate the corrected value of the self-dose when the fading factor of the
material λ is known to be λ = 5.2 × 10−4 h−1.

Solution

The equation describing the corrected self-dose rate is [6, p. 138]

ḊSD = DSDF(ts)λ

1 − exp (−λts)
. (5.14)

And the corresponding corrected self-dose will be equal to

DSD = ḊSDF × time = DSDF(ts)λ

1 − exp (−λts)
× time. (5.15)
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By substituting the given numerical values in equation (5.15), we find

DSD = DSDF(ts)λ

1 − exp (−λts)
× time = 10.54 × 5.2 × 10−4

1 − exp (−5.2 × 10−4 × 1, 440)
1, 440

= 0.0104 × 1, 440 µGy.

The corrected total self-dose is therefore 14.97 µGy.

Exercise 5.7: Simulation of Thermal Quenching
in TL Materials

The phenomenon of thermal quenching is present in several important thermolu-
minescence materials, such as quartz and Al2O3. The purpose of this exercise is
to simulate the influence of the thermal quenching effect on the experimentally
measured first-order TL glow curves by using the following procedure.

(a) Evaluate the first-order TL peak intensity with parameters E = 1 eV, s = 1012

s−1 and n0 = 103 cm−3 when no thermal quenching is present, and also when
thermal quenching is present. Use the thermal quenching parameters W =
0.85 eV and C = 1011 s−1.

(b) Find the dependence of the peak integrals (area under the glow curve), peak
maximum temperature, and FWHM on the heating rate β used during the
measurement of the TL glow curve.

(c) Evaluate the thermal quenching parameters W and C by using the experimen-
tally measured quenched TL intensity.

(d) Evaluate the influence of thermal quenching on the calculated activation energy
E by applying the peak shape methods and the variable heating rate method
of analysis.

Solution

(a) A first-order glow peak is described by the usual Randall–Wilkins expression
(see equation 1.4 in introduction):

I (T ) = n0s exp

(
− E

kT

)
exp

[
− s

β

∫ T

T0

exp

(
− E

kT ′

)
dT ′

]
. (1.4)

As discussed in Chapter 1, the integral appearing in equation (1.4) can be evaluated
by a series of approximation, and the TL intensity can be written in the approximate
form:

I (T ) = n0s exp

(
− E

kT

)
exp

[
− skT 2

βE
exp

(
− E

kT

)(
1 − 2kT

E

)]
. (5.16)

The thermal quenching efficiency η(T ) is given by the expression [7]

η(T ) = 1

1 + C exp

(
− W

kT

) , (5.17)
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where C and W are the thermal quenching pre-exponential factor and activation
energy, respectively.

The experimentally observed TL glow curve corresponds to a quenched TL
glow peak with intensity denoted by IQU (T ). This quenched TL intensity is found
by multiplying the quenching efficiency η(T ) by the unquenched TL intensity
IUNQ(T ), i.e.

IQU(T ) = IUNQ(T )η(T ). (5.18)

The values of all parameters given in this exercise are such that the influence
of thermal quenching is negligible at the lowest available heating rate. This type
of calculation is easily setup on a spreadsheet that contains the temperature T , the
calculated unquenched TL intensity using equation (5.16), and the quenched TL
intensity calculated using equation (5.18).

A series of simulated unquenched and quenched glow peaks are calculated in
this manner, and they are shown in Figure 5.4.

From the calculated TL glow curves of Figure 5.4, one can evaluate easily
the peak integral (represented by the area under the curve), the temperature of
maximum TL intensity TM, the FWHM, and the symmetry factor µg of each glow
peak. Special care must be taken during the peak integral (area) evaluation. The
peak integral is evaluated by summing the TL intensity from a temperature T0 up
to the temperature at which the glow peak ends.

However, two more actions are necessary: (i) To multiply by the temperature
interval �T between two successive TL intensities and (ii) To divide by the heating
rate β. The expression for peak integral evaluation is

Peak integral = 1

β
·
∑

i
IQU(T ) · �Ti . (5.19)
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Figure 5.4. Simulated unqu-
enched glow peaks (dashed lines)
and their respective quenched
glow peaks (solid lines).
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Table 5.8. The temperature of maximum TL intensity TM, the FWHM, and the
geometrical shape factor µ for both quenched and unquenched TL glow curves

β (K s−1) Area TMUNQ[K] TMQU[K] FWUNQ FWQU µg E(eV)

0.01 987.374 336.293 336.16 22.831 22.846 0.4237 1.032
0.05 946.311 351.793 351.269 24.942 25.017 0.4248 1.031
0.1 909.029 358.902 357.999 25.942 26.096 0.4257 1.029
0.5 746.875 376.533 373.734 28.500 29.310 0.4301 1.012
1 643.664 384.655 380.419 29.718 31.247 0.4335 0.995
2 529.153 393.123 387.023 31.014 33.708 0.4374 0.966
4 414.312 401.96 393.585 32.394 36.814 0.4414 0.925
8 309.511 411.19 400.183 33.867 40.665 0.4446 0.871

12 255.764 416.782 404.101 34.774 43.290 0.4459 0.835
18 208.504 422.523 408.091 35.718 46.199 0.4464 0.796
25 175.088 427.287 411.396 36.510 48.769 0.4462 0.763
35 145.27 432.276 414.863 37.348 51.600 0.4455 0.727

Column 2 in Table 5.8 shows the results of calculating the peak integral for the
quenched TL glow curves shown in Figure 5.4. The behavior of the peak integral as
a function of the heating rate β is also shown in graphical form in Figure 5.5. The
unquenched integral is expected to remain constant and equal to A = 103 and to
be independent of the heating rate, whereas the quenched peak integral drastically
decreases as the heating rate increases.

The temperature of maximum TL intensity TM and the FWHM for both quenched
and unquenched TL glow curves are also shown in Table 5.8 together with the
geometrical shape factor µ for the quenched glow curves. The value of µ for the
unquenched curves is of course constant and equal to the first-order kinetics value
of µ = 0.42.

The behavior of the temperature of maximum TL intensity peak maxima (TMUNQ

and TMQU in columns 3 and 4 in Table 5.8) is shown as a function of the heating
rate in Figure 5.6. It is clear that as the heating rate increases, the peak maximum
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Figure 5.5. The behavior of peak in-
tegral as a function of the heating rate.
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Figure 5.6. The behavior of peak
maxima as a function of the heating
rate.

TM of the quenched glow peak, as well as the glow curve as a whole, shift to lower
temperatures due to the effect of thermal quenching.

The behavior of the FWHM (columns 5 and 6 in Table 5.8) as a function of the
heating rate is shown in Figure 5.7. It is interesting to note that as the heating rate
increases the glow peak becomes much broader due to thermal quenching. On the
other hand, a slight increase of the symmetry factor (column 7 in Table 5.8) is also
caused by the thermal quenching phenomenon.

(b) It is possible to evaluate the thermal quenching parameters C and W from a
set of quenched experimental TL data. If IQUE is the quenched peak integral and A
is the constant unquenched peak integral, then according to equations (5.18) and
(5.19), we have

IQUE = Aη(T ). (5.20)

Since in practice most TL peaks cover a narrow range of temperatures, we can
approximate the quenching function η(T ) by its value at the peak maximum η(TM).
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Figure 5.7. Behavior of FWHM as a
function of heating rate.
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In this case, equation (5.20) is written as

IQUE = A

1 + C exp

(
− W

kTM

) . (5.21)

Equation (5.21) can also be rearranged as

A

IQUE
− 1 = C exp

(
− W

kTM

)
. (5.22)

In some cases the thermal quenching effects are present even from the lowest
available heating rate β. In these cases, the value of constant A that is equal to the
peak integral of the unquenched glow peak is not known. In such situations, the
thermal quenching parameters can be evaluated by a fitting of the experimental
peak integral to equation (5.21), with A, C, and W being the free fitting parameters.

In most practical cases, however, the influence of thermal quenching manifests
itself for higher heating rates, whereas there is usually only a small thermal quench-
ing effect for lower heating rates. Therefore, the peak integral of the unquenched
glow peak is known and is equal to the constant A. Equation (5.22) now tells us
that a plot of ln(A/IQUE − 1) versus 1/kTM will yield a straight line with slope −W
and intercept ln(C), from which C can be evaluated.

By using the values of IQU and TMQU from columns 2 and 4 in Table 5.8,
and by using the value of the constant peak integral A = 1, 000, the plot of ln
(A/IQUE − 1) versus 1/kTM is shown in Figure 5.8.

The quenching parameters obtained from Figure 5.8 are W = 0.9255 ±
0.0045 eV and C = 1.019 × 1012 s−1. The value of W obtained differs by al-
most 8% from the value of W = 0.85 eV used to produce the simulated data,
whereas the value of C is larger by an order of magnitude (1011 s−1). The reason
for these differences is that the method applied here is only approximate, since it
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meters evaluation.
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perature, solid line as obtained by the
original values of W and C , and open
circles as obtained from the approxi-
mate method used in this exercise.

involves a single value η(TM ) as representative of the thermal quenching factor
η(T ) across the whole glow peak.

However, the differences between the calculated and the original quenching
parameters are not as significant as they may seem. This can be seen from the
evaluation of η(T ) using both the original parameters C and W , as well as the
values of C and W obtained by the present approximate method. The results are
shown in Figure 5.9.

The solid line corresponds to the values of η(T ) obtained by using the original W
and C values (0.85 eV, 1011 s−1), whereas the open circles are calculated using the
W and C values obtained by the present approximate method (0.925 eV, 1.019 ×
1012 s−1). It is clear that both sets of W and C values give essentially the
same η(T ) graphs for heating rates up to 8 K/s, with an accuracy 5% or
better.

A generalization of the present method for the important dosimetric material
Al2O3 can be found in reference [7].

(c) As discussed in Chapter 1, all peak shape methods are based on the values of
the temperature of maximum TL intensity TM and on the value of the FWHM of
the glow peak. Taking into account the results of columns 4 (TMQU) and 5 (FWHM)
of Table 5.8 and using the Chen peak shape methods for general-order kinetics
[8], the influence of the thermal quenching on the activation energy E evaluation
can be estimated. We note that it is necessary to use the general-order equation for
the activation energy E because of the variation of the symmetry factor with the
heating rate (column 7 in Table 5.8).

The results are shown in the last column of Table 5.8, where we can see the
dramatic effect of the thermal quenching phenomenon on the values of E calculated
using the peak shape methods.

Using the simulated results in Table 5.8, the influence of the thermal quenching
on the variable heating rate method of finding the activation energy E can also
be evaluated. The variable heating rate method of analysis consists of a plot of
ln(T 2

M/β) versus 1/kTM, which is a straight line with slope equal to E and intercept
equal to ln(Ek/s). Using the data of columns 1 and 4 in Table 5.8, the E and s
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values obtained from the plot of ln(T 2
M/β) versus 1/kTM is E = 1.196 ± 0.02 eV

and s = 8.085 × 1014 s−1.
The conclusion is that when thermal quenching is present, the variable heating

rate method overestimates significantly the values of E and s relative to the original
values of E and s used in the simulation (E = 1 eV, s = 1012 s−1).

Exercise 5.8: The Effect of Thermal Quenching on the Initial
Rise Method of Analysis

The purpose of this exercise is to study the effect of thermal quenching on the
initial rise method of analysis. A series of quenched TL glow curves are simulated
and the initial rise method of analysis is applied in order to find the activation
energy E.

A first-order glow peak with parameters E = 1.1 eV, n0 = 103 m−3 and s =
1012 s−1 is influenced by thermal quenching described by the parameters W =
0.85 eV and C = 1011 s−1.

(a) Evaluate the quenching efficiency η(T ), the unquenched glow peak IUNQ(T )
and the quenched glow peak IQU(T ) for heating rates β = 0.01, 1, 5, 10, and
20 K s−1 as in the previous exercise.

(b) Plot η(T ), IUNQ(T ), IQU(T ) and evaluate the activation energy EQU by applying
the initial rise method to the quenched TL intensity IQU(T ). Discuss how
thermal quenching affects the initial rise method for evaluating the activation
energy.

(c) Apply a suitable correction method to evaluate the real activation energy from
the activation energy EQU obtained from the quenched glow peaks.

Solution

(a)As discussed in the previous exercise, the simulated TL glow curves can be
calculated using the following approximate expression in a spreadsheet:

I (T ) = n0 s exp

(
− E

kT

)
exp

[
− skT 2

βE
exp

(
− E

kT

)(
1 − 2kT

E

)]
. (5.23)

The thermal quenching efficiency η(T ) is given by the expression [7]

η(T ) = 1

1 + C exp

(
− W

kT

) , (5.24)

where C and W are the thermal quenching pre-exponential factor and activation
energy, respectively. The quenched glow peak IQU(T ) is calculated by using the
expression

IQU(T ) = IUNQ(T )η(T ). (5.25)
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Figure 5.10. Right axis: Thermal quenching efficiency η(T). Left axis: unquenched (dashed
lines) and quenched (solid lines) glow peaks for heating rates 0.01, 1, and 5 K s-1. The
horizontal solid lines correspond to 10% of the unquenched peak maximum intensity, IM.

A series of simulated unquenched and quenched glow peaks calculated in the same
method as in the previous exercise are shown in Figure 5.10 for heating rates of
0.01, 1, and 5 K s−1.

Before attempting to apply the initial rise method of analysis, one has to define
the temperature region in which the method is going to be applied. As a practical
rule, the TL intensity at the upper temperature limit should not exceed approxi-
mately 10% of the maximum intensity IM. The horizontal lines on the unquenched
glow peaks in Figure 5.10 show the exact location of this 10% limit.

The location of the lower temperature limit is not so obvious because the simu-
lation starts from 273 K, and the TL is evaluated even at temperatures far from the
temperature region of the glow peak. The simplest assumption would be to take
the lower temperature of the initial rise region as located 20–30 K below the upper
temperature limit.

The results of Figure 5.10 indicate that for the glow peak measured with a
heating rate of 0.01 K s−1 the initial rise region is located in a temperature area
where the values of the quenching function η(T) are very close to 1. Therefore,
according to equation (5.25), the TL in this temperature region is influenced very
little by thermal quenching. On the other hand, inspection of Figure 1 shows that
the rest of the TL glow peaks at heating rates 1 and 5 K s−1 are strongly influenced
by thermal quenching effects.

On general grounds, one would expect that the initial rise method for activation
energy evaluation will be much less influenced by the thermal quenching than the
peak shape methods and variable heating rate methods of analysis. This can be
expected because the latter methods depend on TM and the FWHM, which are
highly influenced by the thermal quenching as shown in the previous exercise.
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(b) The initial rise method was applied to the simulated quenched glow peaks
and the activation energy, EQU, is obtained. An example of an initial rise plot
for β = 5 K s−1 is shown in Figure 5.11. The upper straight line corresponds
to an initial rise plot of the unquenched glow peak. The open circles corre-
spond to the initial rise plot of the quenched glow peak in the same temperature
region.

The middle solid line is the initial rise line of the quenched glow peak extrapo-
lated to the whole temperature region. The slope of the middle solid line represents
EQU, and it is seen to be lower than the corresponding slope of the unquenched
data that gives a value of E = 1.0945 eV, very close to the original E value of
E = 1.1 eV used in the simulation.

From Figure 5.11, it is clear that the linearity of the initial rise plot is affected by
the thermal quenching effect and that this effect is smaller at lower temperatures.

The resulting values of the activation energy using the quenched data are shown
in Table 5.9 column 2, with the original value being E = 1.1 eV. The difference
�E = 1.1 − EQU is shown in column 3. The results in the Table show that the
E-values obtained using the initial rise method on quenched TL data are underes-
timating the real activation energy E. In the present example, the underestimation
is of the order of 10% for the highest available heating rates.

(c) According to equation (5.25), the initial rise method is simulated by an
expression of the form:

IQU(T ) = n0s exp

[
− ER

kT

]
· η(T ), (5.26)

where ER is the real value of the activation energy.
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The experimental initial rise region for the quenched data is expressed by

IQU(T ) = n0 sQU exp

[
− EQU

kT

]
, (5.27)

where, SQU and EQU are the frequency factor and the activation energy of the
quenched experimental glow peak, respectively.

Taking the natural logarithm of equations (5.26) and (5.27), we have

ln[IQU(T )] = ln[n0s] − ER

kT
+ ln[η(T )] (5.28)

ln[IQU(T )] = ln[n0sQU] − EQU

kT
. (5.29)

Taking the derivatives with respect to 1/kT , we have

d ln[IQU(T )]

d[1/kT ]
= −ER + d ln[η(T )]

d[1/kT ]
(5.30)

d ln[(IQU(T ))]

d[1/kT ]
= −EQU. (5.31)

From equations (5.30) and (5.31) we have

ER = EQU + d ln[η(T )]

d[1/kT ]
. (5.32)

Taking into account equation (5.24), the difference �E = ER − EQU is

�E = WC exp (−W/kT )

1 + C exp (−W/kT )
. (5.33)

Equation (5.33) was derived by Petrov and Bailiff [9] and expresses the cor-
rection term to be applied to the activation energy E when thermal quenching is
present. In applying equation (5.33) one has to decide what to use for the tem-
perature T. Petrov and Bailiff [9] suggested that this temperature can be the one
corresponding to the middle of the initial rise temperature region, provided that
this region is not broader than 10–15◦C.

The results of this correction procedure are given in columns 3, 4, and 5 of
Table 5.9. Column 3 contains the difference between ER = 1.1 eV and EQU

(column 2). Column 4 shows the temperature region in which the initial rise plot
was performed in order to obtain the values of EQU of column 2. Column 5 gives

Table 5.9. Calculation of the activation energy E using the quenched data

β(K s−1) EQU (eV) �E (eV) IR region (K) �E [8] (eV) ER (eV)

0.01 1.085 0.015 311–337 0.009 1.0912
1 1.055 0.045 333–365 0.043 1.0985
5 1.018 0.082 345–369 0.077 1.0993

10 1.000 0.100 348–372 0.095 1.0995
20 0994 0.106 349–373 0.102 1.0997
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the difference �E = ER − EQU evaluated by using the equation (5.33). The agree-
ment between columns 3 and 5 is satisfactory.

An alternative method to find the ER from the quenched initial rise data was
suggested by Kitis [10]. Equation (5.26) can be written as

ln

[
IQU(T )

η(T )

]
= ln(n0s) − ER

kT
. (5.34)

By substituting the value of the thermal quenching factor η(T ) from equation
(5.24), equation (5.34) is transformed into

ln[IQU(1 + C · exp(−W/kT ))] = ln(n0s) − ER

kT
. (5.35)

By applying equation (5.35) to the quenched initial rise region of the glow peak,
one obtains directly the real activation energy ER . The results of this procedure
are listed in column 6 of Table 9. The values of ER shown in column 6 are in
excellent agreement with the original value ER = 1.1 eV used for the simulations.
The advantage of this procedure relative to that by Petrov and Bailiff [9] is that the
values of η(T ) are taken into account in the whole temperature region of the initial
rise plot, instead of using only one value η(TM) corresponding to the temperature
in the middle of the initial rise region.

Exercise 5.9: TL-Like Presentation of Phosphorescence
Decay Curves

Simulate the phosphorescence decay of a first-order glow peak with parameters
I0 = 103, E = 1 eV, and s = 1012 s−1 at the decay temperatures 350, 355, 360,
365, 370, and 375 K.

(a) Compare the phosphorescence decay curves with the so-called TL-like presen-
tation form of phosphorescence for both first-order and general-order kinetics.

(b) Evaluate the trapping parameters E and s by using the simulated data for the
TL-like presentation of phosphorescence.

(c) Compare the phosphorescence decay curves with the TL-like presentation
curves for different kinetic orders b between b = 1 and b = 2. Indicate the
similarities and differences between the usual TL glow peaks and the TL-like
presentation of the data. Evaluate the peak shape characteristics of the TL-like
presentation decay curves.

(d) Investigate whether thermal quenching influences the phosphorescence decay
of the material at high temperatures. Also investigate the effect of quenching on
the evaluation of the trapping parameters E and s by using phosphorescence
data. Use the following thermal quenching parameters: W = 0.85 eV and
C = 1011 s−1.
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Solution

(a) The intensity of phosphorescence decay as a function of time and at a given
decay temperature Td is given for first-order kinetics by the expression

I (t) = I0 exp

(
− t

τ

)
(5.36)

and for general-order kinetics by the expression

I (t) = I0

{
1 + (b − 1)

t

τ

}− b
b−1

(5.37)

with τ = seff exp(−E/k Td), and I0 represents the phosphorescence intensity at
time t = 0. The “effective frequency factor” seff is equal to seff = s for first-order
kinetics, and seff = s ′′ = s ′nb−1

0 for general order kinetics.
By defining x = ln(t) and t = exp(x), equation (5.36) is rewritten as ([11]–[13])

I (t) = I0 exp

(
−exp(x)

τ

)
. (5.38)

Multiplying both sides by t, and using a new variable y = I t , one gets
from equation (5.36) the so-called TL-like presentation form of the first-order
phosphorescence decay curve, i.e.

y = I0 exp(x) · exp

(
−exp(x)

τ

)
. (5.39)

Working in a similar way with equation (5.37), one gets the TL-like presentation
form of the general-order phosphorescence decay curve, i.e.

y = I0 exp(x)

{
1 + (b − 1)

exp(x)

τ

}− b
b−1

. (5.40)

Equations (5.39) and (5.40) describe peak-shaped curves mathematically similar
to those of the TL intensity as a function of temperature, so they were termed
TL-like presentation of phosphorescence decay. The condition for the maximum
intensity in the TL-like presentation of TL can be found by solving the equation
dy/dx = 0. The result for both first- and general- order kinetics is

xm = ln(τ ) (5.41)

from which the following is derived:

τ = exp(xm) = seff · exp

(
− E

kTd

)
. (5.42)

Equation (5.42) shows that the constant τ (Td) can be evaluated directly from
the TL-like presentation curve, regardless of the order of kinetics. Moreover, by
recording the phosphorescence at two or more decay temperatures, the kinetic
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parameters E and seff can be computed from equation (5.42) by the relation

xm(Td) = E

kTd
− ln(seff). (5.43)

From an experimental point of view, one measures the phosphorescence at two
decay temperatures T1 and T2. The values of xm(T1) and xm(T2) are obtained
directly from the maxima of the peak-shaped curves and by using equation (5.41)
with two different temperatures, the activation energy is computed by the relation

E = k D
T1T2

T1 − T2
(5.44)

with

D = xm(T2) − xm(T1). (5.45)

By using a spreadsheet program, one can easily simulate phosphorescence
curves as a function of time, as well as the corresponding TL-like presentation
of phosphorescence decay curves as follows:

(i) Evaluate the decay curve using equation (5.36) or (5.37) for the respective
kinetic order and obtain two columns, with time (t) and phosphorescence
intensity (I).

(ii) Evaluate the columns x = ln(t) and y = I t .
(iii) Plot y versus x. This type of calculation can easily be set up in a spreadsheet.

Some specific examples calculated for the given trapping parameters and decay
temperatures are shown in Figure 5.12. In Figure 5.12(a), one can easily see that
the exponential decay curve appears featureless when compared with the peak-
shaped TL-like presentation. In the case of the exponential form, one must plot
the data in a semilog scale and evaluate the time constant τ by a least squares fit,
whereas in the TL-like presentation the time constant τ is directly obtained by
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Figure 5.12. (a) Shape of phosphorescence decay curves as a function of time. (b) TL-like
presentation of the phosphorescence decay curves in (a). The decay temperatures used are
(1) 350 K, (2) 355 K, (3) 360 K, and (4) 365 K.
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Table 5.10. The values of xm

obtained from the maximum of the
TL-like presentation decay curves

Td [K] xm

350 5.52545
355 5.05625
360 4.60517
365 4.15906
370 3.73767
375 3.33220

the location of the maximum of the peak-shaped curves in Figure 5.12(b). As the
decay temperature increases, the maximum clearly shifts to lower ln(t) values, i.e.
the time constant τ decreases.

(b) By simulating the phosphorescence decay curves for the decay temperatures
given, the values of xm are directly obtained from the maximum of the TL-like
presentation decay curves. The results are shown in Table 5.10. Using the results
of Table 5.10, a plot of xm versus 1/kTd gives the trapping parameters according
to equation (5.43). The values obtained are E = 0.993 ± 0.003 and s = (8.11 ±
0.91) 1011 s−1, which are very close to the original parameters of E = 1 eV and
s = 1012 s−1.

(c) Using equation (5.37), the phosphorescence intensity (I) versus time (t)
are evaluated for different values of the kinetic order b. The respective TL-like
presentation curves can be obtained either by the transformation of x = ln(t) and
y = It or directly from equation (5.40). Examples of exponential and TL-like
phosphorescence decay curves for values of b between b = 1 and b = 2 are shown
in Figure 5.13. The exponential decay is plotted in semilog scale. Once again
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Figure 5.13. Exponential and TL-like presentation of general-order phosphorescence de-
cay curves (1) b = 1, (2) b = 1.2, (3) b = 1.6 and (4) b = 2.
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Table 5.11. The values of the geometrical shape factor µg versus kinetic order b
evaluated from the simulated TL-like presentation curves

b 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
µg 0.4099 0.4235 0.4359 0.4473 0.4578 0.4672 0.4767 0.4851 0.4932 0.5008 0.5080

the exponential presentation appears featureless when compared with the TL-like
representation of the data.

By using an analysis similar to the one employed for TL glow curves, the peak-
shaped TL-like presentation curves can be characterized by the peak maximum
position xm , as well as by the half maximum intensities xm1 and xm2, respectively.
One can also define the width parameters ω = xm2 − xm1, δ = xm2 − xm , τ =
xm − xm1 and finally the symmetry factor µg = δ/ω.

The values of these parameters are easily evaluated from the simulated TL-
like presentation curves. The values of the geometrical shape factor µg versus
kinetic order b are listed in Table 5.11 and shown in Figure 5.14. According
to these results, the relation between the symmetry factor and the kinetics or-
der of the TL-like presentation phosphorescence decay curves is almost identi-
cal with the respective behavior of these parameters in the usual TL glow peak
(Figure 1.15).

(d) If thermal quenching is present, the exponential decay curve for first-order
kinetics is given by the expression.

IQU = η(Td)I0 exp

(
− t

τ (Td)

)
, (5.46)

where Td is the decay temperature and η(Td) is the quenching efficiency at the
decay temperature Td.

In order to evaluate the trapping parameters E and seff, one has to obtain equation
(5.46) at various decay temperatures Td, and to evaluate τ (Td) from the slope of
the graph on a semilog scale. However, since η(Td) has unique values at each
temperature Td, its influence is restricted in changing the intercept from a value of
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Figure 5.14. Symmetry factor µg

versus kinetic order b.
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Table 5.12. The corrected peak maximum TMc and the temperature lag �T

β(K s−1) TM1 (K) TMc (K) �T (K) E(TM1) (eV) E(TMc) (eV) TMe (K) �T (K)

1 481.5 481.5 0 0 0 481.5 0
2 489.0 489.0 0 1.96 1.96 488.4 0.64
3 494.8 493.4 1.4 1.78 1.98 492.4 2.43
4 499.2 496.5 2.7 1.71 1.99 495.2 3.98
8 510.2 504.0 6.2 1.62 2.02 502.1 8.14

12 518.2 508.4 9.8 1.54 2.03 506.1 12.11
18 529.8 512.8 17.0 1.40 2.05 510.1 19.69
25 548.2 516.33 31.9 1.19 2.07 513.3 34.84

ln(I0) in the case of no quenching to a value of ln(η(Td)I0) in case of quenching,
whereas the value of the slope remains the same.

This means that the evaluation of the trapping parameters E and seff is not
influenced by the presence of thermal quenching when using phosphorescence
data. Therefore, the phosphorescence decay method is the only available method
of trapping parameter evaluation, which is not influenced by thermal quenching.

Exercise 5.10: Temperature Lag Corrections

During experimental TL work, the temperature measured is usually that of the
heating element as measured by a thermocouple attached to it. In order to perform
a TL glow curve analysis and extract meaningful parameters from the data, it is
imperative to know the true temperature of the sample. Experimentally, it is found
that there is a temperature lag between the thermocouple measurement and the
actual temperature of the sample. The purpose of this exercise is to show how to
correct experimental TL data for this temperature lag effect.

You are given the experimental peak maximum TMg of peak 5 of LiF:Mg, Ti as a
function of the heating rate used to measure the glow curve. The heating rate is in
column 1 of Table 5.12 and the peak maxima are shown in column 2. In graphical
form, the TMg values are shown in curve (a) of Figure 5.15.

(a) Find the corrected peak maxima TMc by applying a correction due to the
temperature lag effect. Evaluate the temperature lag �T at the peak maximum
position.

(b) Apply the variable heating rate method using the uncorrected peak maxima
TMg and also by using the corrected TMc values. Comment on the observed
differences.

(c) Find the activation energy E for this TL glow peak by applying the two heating
rate method of analysis, and study the influence of the temperature lag effect
on the value of E.

(d) If the value of E is known to be E = 2.05 eV, find again the temperature lag
under this assumption, and compare with the values of �T obtained in (a).

(e) Discuss some of the experimental factors which can influence the temperature
lag between the sample and the heating element.
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Figure 5.15. Left y-axis: (a) Experimental values TMg (b) Corrected values TMc, as functions
of the heating rate. Right y-axis: Temperature lag �T as a function of the heating rate.

Solution

(a) During TL readout with readers using contact heating, the temperature of
the sample differs from the temperature of the heating element. This differ-
ence is called temperature lag. A simple approximate method to find the tem-
perature lag based on TL measurements only is described by the following
equation [14]:

TM j = TMi − c · ln

(
βi

β j

)
, (5.47)

where TMj and TMi are the maximum temperatures of the glow peak with rate of
heating β j and βi , respectively, and c is a constant. The experimental data were ob-
tained using 6LiF:Mg,Ti chips of dimensions 3 × 3 × 0.9 mm. The measurements
were recorded with a Harshaw model 3500 manual TLD reader with continuous
nitrogen flow. The test dose was 12 mGy from a beta-ray source.

The steps required to evaluate the temperature lag are as follows:

Step 1: The constant c is evaluated using two very low heating rates, where the
temperature lag is assumed to be zero. In practice, however, solid chip samples
cannot completely avoid the temperature lag effect, even at these low heating rates.
Using the TMg temperatures corresponding to the heating rates 1 and 2 K s−1 from
Table 5.12, the constant c can be found by using equation (5.47):

c = TM2 − TM1

ln(2)
= 10.8202. (5.48)

Step 2: Using equation (5.47) and the evaluated constant c, the corrected peak
maximum TMc at every heating rate β is estimated and listed in column 3 of
Table 5.12. These corrected peak temperatures are also shown as curve (b) in
Figure 5.15.
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Mg/β) versus
1/kTMg plot with the experimental
data. (b) The sample plot using the
data for heating rates 1 − 8K s−1.
(c) The same plot using the temper-
ature lag corrected values TMc.

Step 3: The temperature lag �T at the position of the peak maximum is TMg −
TMc and is given in column 4 of Table 5.12, and in graphical form as curve (c) in
Figure 5.15.

(b) The variable heating rate method (see Exercise 2.2 in Chapter 2) consists of
a plot of ln(TM

2/β) versus 1/kTM. This plot should be theoretically a straight line
with slope E and intercept A = ln(E/s k), from which the pre-exponential factor
s can be calculated using s = (E/k)exp(−A).

The plots of ln(TM
2/β) versus 1/kTM are shown in Figure 5.16 by using both the

uncorrected experimental data, as well as using the corrected peak temperatures
TMc. Figure 5.16 shows that the experimental values of TMg (solid circles) do not
lead to a straight line due to the temperature lag effect.

By using the uncorrected experimental data for heating rates 1 − 8 K s−1, a very
good line is obtained (R = 0.994), from which it is found that E = 1.429 ± 0.066
eV and A = −22.1694 ± 1.559. The calculated value of s = 7.043 × 1013 s−1.

By using the corrected peak temperatures TMc, a very good straight line is
obtained (R = 0.9996) for all the data points. From the best fitted line through the
corrected data, one obtains E = 1.898 ± 0.016 eV, A = −33.3549 ± 0.036, and
the calculated s = 6.742 × 1018 s−1.

The conclusion is that when using the uncorrected TMg data, the activation
energy E is seriously underestimated. On the other hand, by using the corrected
TMc data the values of activation energy approaches sufficiently the known values
of E, which is between 1.9 and 2.1 eV.

(c) In the two-heating-rate method the activation energy is evaluated by the
equation [15]:

E = kTM1TM2

TM1 − TM2
ln

(
β1

β2
· T 2

M1

T 2
M2

)
. (5.49)

Assuming that TM1 is the temperature corresponding to the lowest available
heating rate of 1 K s−1, and by substituting for TM2 each of the higher heating rates
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shown in Table 5.12 successively, the resulting values of E are listed in columns 5
and 6 of Table 5.12, for the uncorrected and corrected peak maxima, respectively.
The results listed in column 5 of Table 5.12 show clearly the extreme influence of
the temperature lag on the activation energy values obtained by the two heating
rate method of analysis.

On the other hand, the results of column 6 show the effectiveness of the tem-
perature lag correction.

(d) If the activation energy E of glow peak is known, then the calculation of the
temperature lag effect can be achieved more accurately as follows. In this case,
the constant c can be evaluated by the equation [14]:

c = TM j TMi
k

E
, (5.50)

which involves the known activation energy of the peak.
By using the two lowest available heating rates (i = 1 and j = 2) from column 2

of Table 5.12, one finds c = 9.8971. Using equation (5.47), the new peak maxima
TMe are evaluated and listed in column 7 of Table 5.12.

The new values of the temperature lag are equal to TMg − TMe and are listed
in column 8. It is interesting to observe that at the heating rate of 2 K s−1, a
�T = 0.64 K is detected, whereas initially this temperature lag was assumed to
be zero.

By applying the variable heating rate method to the data of column 7, it is found
that E = 2.07 ± 0.016 eV, i.e. 1% difference with the used value of 2.05 eV. The
intercept is A = −37.5145 ± 0.367 from which the value of s = 4.55 × 1020 s−1.

(e) The critical point of the temperature lag correction method is to avoid the
temperature lag at the lowest available heating rates. This can be achieved by using
silicon oil of very high thermal conductivity between the heating element and the
chip. Even better, one can use loose powder instead of chips, with the silicon oil
applied on the heating element. The extrapolation of loose powder results to the
chip is permitted because the correction method described here involves the glow
peak positions only.

Some of the additional factors that can influence the temperature lag effect are
as follows:

1. Temperature gradients across the heating element.
2. Temperature gradients across the sample itself.
3. Nonideal thermal contact between the heating element and the sample.
4. Effects of the inert atmosphere in the TL chamber.

Exercise 5.11: Study of the Integrals Appearing in the
Expressions for First- and General-Order TL Kinetics

The purpose of this exercise is to study the various terms that appear in the equations
describing first-order and general-order TL glow peaks. By performing a numerical
analysis of these terms for a wide range of the activation energies E and the
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frequency factors s, a formula is derived for the activation energy E as a function
of the FWHM ω and the temperature TM of maximum TL intensity. This formula
is compared with the well-known equation (1.49).

The analytical expression of a first-order single glow peak with the series ap-
proximation is given by equation (3.26):

I (T ) = n0 s exp

(
− E

kT

)
exp

{
− skT 2

βE
exp

(
− E

kT

)(
1 − 2kT

E

)}
. (5.51)

The corresponding equation for general-order kinetics is (3.33):

I (T ) = n0 s exp

(
− E

kT

)[
1 + (b − 1)

skT 2

βE
exp

(
− E

kT

)(
1 − 2kT

E

)]− b
b−1

.

(5.52)

Assuming for simplicity that n0 = 1, these analytical expressions consist of two
parts F1(T ) and F2(T ) such that:

F1(T ) = s exp

(
− E

kT

)
(5.53)

First-order F2(T ) = exp

{
− skT 2

βE
exp

(
− E

kT

)
·
(

1 − 2kT

E

)}
(5.54)

General-order F2(T ) =
{

1 + (b − 1)skT 2

βE
exp

(
− E

kT

)(
1 − 2kT

E

)}− b
b−1

.

(5.55)

The first function F1(T ) is the well-known Boltzmann function and is an increasing
function of temperature, while the function F2(T ) is a decreasing function of
temperature. The product of the two functions yields the peak-shaped graph I (T )
for the TL intensity.

(a) Find an expression for the peak maximum intensity IM for both first- and
general-order kinetics in terms of E and TM.

(b) Find an expression for F1(T ) and for F2(T ) in terms of E and TM .
(c) Evaluate synthetic glow peaks of any kinetic order using equations (5.51)–

(5.52) and (5.51)–(5.53) and obtain the values of IM, TM, ω, and µg for arbitrary
pairs of E and s values. Investigate the degree of variation of the functions
F1(T ) and F2(T ) for arbitrary E and s pairs. Discuss the properties of these
functions.

(d) Find expressions for the activation energy E based on the peak shape of the
glow curves, in terms of the width ω of the glow curve.

(e) Discuss the findings and find a general peak shape expression for the activation
energy.

(f) Compare the peak shape expression derived in this exercise with the respective
equation (1.48) derived by Chen [16].
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Solution

(a) The maximum intensity IM is obtained by replacing T = TM in equation (3.26):

IM = s exp

(
− E

kTM

)
exp

{
− skTM

2

β · E
exp

(
− E

kTM

)(
1 − 2kTM

E

)}
(5.56)

and by replacing T = TM in equation (3.33) for general-order kinetics:

IM = s exp

(
− E

kTM

){
1 + (b − 1)skTM

2

β · E
exp

(
− E

kTM

)(
1 − 2kTM

E

)}− b
b−1

.

(5.57)

The conditions for the maximum are given by equations (1.8) and (1.10):

First-order kinetics
βE

kT 2
M

= s exp

(
− E

kTM

)
(5.58)

General-order kinetics
βE

kT 2
M

=
(

1 + (b − 1)
2kTM

E

)
s exp

(
− E

kTM

)
. (5.59)

By substituting equations (1.8) and (1.10) into equations (5.56) and (5.57) normal-
ized over the heating rate β leads to the following expressions for IM, respectively
[14–15]:

First-order kinetics IM = E

kT 2
M

· 1

e
· exp

(
2kTM

E

)
(5.60)

General-order kinetics IM = E

kT 2
M

·

⎧⎪⎨
⎪⎩

b

1 + (b − 1) · 2kTM

E

⎫⎪⎬
⎪⎭

− b
b−1

. (5.61)

(b) Using equations (5.58) and (5.59), the function F2(T ) from equations (5.54)
and (5.55) at the maximum position TM becomes, respectively:

First-order kinetics F2(TM) = 1

e
exp

(
2kTM

E

)
(5.62)

General-order kinetics F2(TM) =

⎡
⎢⎣ b

1 + (b − 1) · 2kTM

E

⎤
⎥⎦

− b
b−1

. (5.63)

(c) Using a spreadsheet program, we can easily evaluate synthetic glow peaks
of any kinetic order, using equations (5.51) and (5.52), in order to obtain TM, IM,
ω, and the symmetry factor µg . By considering any arbitrary pair E and s in the
range E = 0.5–2 eV and s = 109–1020 s−1, we will find that the functions F1(TM)
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Table 5.13. Values of the functions F1(T), F2(T), and the pseudo-constants Cb, Cd ,
and Cf

b µg F1(T ), F2(T ) = Cb I ω = Cd Cf = Cd/Cb

1 0.41416 ± 0.0025 0.38937 ± 0.0042 0.91762 ± 0.0038 2.3567 ± 0.0272
1.1 0.43011 ± 0.0025 0.37302 ± 0.0044 0.91585 ± 0.0036 2.4552 ± 0.0305
1.2 0.44279 ± 0.0026 0.35837 ± 0.0045 0.91343 ± 0.0033 2.5488 ± 0.0333
1.3 0.45438 ± 0.0026 0.34432 ± 0.0047 0.91054 ± 0.0030 2.6445 ± 0.0370
1.4 0.46506 ± 0.0027 0.33317 ± 0.0049 0.90729 ± 0.0028 2.7232 ± 0.0409
1.5 0.47496 ± 0.0027 0.32222 ± 0.0050 0.90374 ± 0.0025 2.8047 ± 0.0442
1.6 0.48418 ± 0.0027 0.31222 ± 0.0052 0.90000 ± 0.0022 2.8826 ± 0.0485
1.7 0.49280 ± 0.0027 0.30298 ± 0.0053 0.89613 ± 0.0019 2.9577 ± 0.0521
1.8 0.50087 ± 0.0027 0.29439 ± 0.0054 0.89213 ± 0.0016 3.0304 ± 0.0559
1.9 0.50852 ± 0.0028 0.28652 ± 0.0055 0.88808 ± 0.0014 3.0995 ± 0.0597
2 0.51575 ± 0.0027 0.27916 ± 0.0056 0.88397 ± 0.0011 3.1615 ± 0.0636

and F2(TM) vary extremely slowly. For a given order of kinetics, these functions
can be considered pseudo-constants, let us say Cb. For b = 1, Cb = F1(TM) and
for b > 1, Cb = F2(TM).

The reader can evaluate the values of the pseudo-constant Cb for various kinetic
orders and verify that the value of Cb will be within the ranges given in Table 5.13.

(d) Using the results from (c), equations (5.60) and (5.61) can be solved for the
activation energy E for any kinetics order to yield:

E = IM

Cb
kT 2

M. (5.64)

Using the parameter ω = T2 − T1, equation (5.64) becomes

E = IM · ω

Cb
· kT 2

M

ω
. (5.65)

Observing equation (5.65) one can argue that in order to have a peak shape formula
similar to the very well-known Chen expressions, the following requirement has
to be fulfilled:

IM · ω = Constant = Cd . (5.66)

Equation (5.66) does indeed hold for any pair of (E, s) values and for any kinetic
order b. It is nothing else than the well-known triangle assumption made in the
past in order to obtain the peak shape methods. The values given in the literature
are 0.92 and 0.88 for first- and second-order kinetics, respectively [15]. The reader
can evaluate the values of Cd from the derived synthetic glow peaks and verify
that Cd will be within the values given in Table 5.13.

Therefore, the new form of equation (5.65) is

E = Cd

Cb
· kT 2

M

ω
. (5.67)
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Since the ratio of two pseudo-constants will be a pseudo-constant as well,
equation (5.67) is rewritten as

E = C f · kT 2
M

ω
. (5.68)

(e) Discussion of the findings
The symmetry factor µg is a quantity that can be obtained experimentally from

the measured glow curves. Therefore, it is of interest to study the behavior of
the pseudo-constants as a function of µg . The pseudo-constant Cb is a linear
function of the symmetry factor µg as shown in Figure 5.17. The linear function of
Figure 5.17 is

Cb = (0.8418 ± 0.032) − (1.0927 ± 0.0068)µg. (5.69)

The behavior of the pseudo-constant Cd is shown in Figure 5.18, where one
observes that the pseudo-constant Cd varies by only 4%, whereas Cb varies by
30% from b = 1 to b = 2. This means that the behavior of the ratio Cf = Cd/Cb

should be governed mainly by the behavior of Cb. Therefore, Cf should also be
a linear function of µg , as shown in Figure 5.19. The linear relationship obtained
from Figure 5.19 is

C f = (−1.0593 ± 0.0677) + (8.1641 ± 0.1409)µg. (5.70)

By combining equations (5.68) and (5.70), a new expression for the activation
energy which holds for any kinetics order b is deduced, i.e

E = (8.1641 µg − 1.0593)
kT 2

M

ω
. (5.71)

(f) The respective Chen equation (1.49) is

Ec = (2.52 + 10.2(µg − 0.42) · kT 2
M

ω
− 2kTM. (5.72)

The difference �E = Ec − E between (5.71) and (5.72) after some algebra is
found to be

�E = (2.0359 − 0.7047)
kT 2

M

ω
− 2kTM (5.73)

or

�E = kTM

[
(2.0359µg − 0.7047)

TM

ω
− 2

]
. (5.74)

From equation (5.74), it seems that the difference becomes zero when

TM

ω
= 1

1.0179µg − 0.352
. (5.75)

Equation (5.75) gives TM/ω = 13 for µg = 0.42 and 5.7 for µg = 0.52 and
intermediate values for the other µgs. Therefore, the agreement of the present
peak shape expression with that of Chen’s depends on the specific glow peak.
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Figure 5.17. Pseudo-constant Cb versus symmetry factor.
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Figure 5.18. Pseudo-constant Cd versus symmetry factor.
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Figure 5.19. Pseudo-constant C f versus symmetry factor.

From Equation (5.74), it can be found that the highest deviation of the
present formula relative to that of Chen for first-order kinetics with µg = 0.42, is
(�E/E) = 0.15/2.52 = 5.9% and for second-order kinetics with µg = 0.52, is
(�E/E) = 0.353/3.54 = 9.9%.

For a more detailed study of the subject in this exercise and the development of
acceptance criteria for E and s values, see the work by Kitis [17].
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Annotated Bibliography

The textbooks, monographs, and papers included in this annotated bibliography
were chosen by their relevance to the topics covered in this book. The list is not
meant to be comprehensive but rather to provide a starting point for researchers
and graduate students in the field. They are listed in reverse chronological order
and comprise the following categories:

1. Thermoluminescence books
2. Papers dealing with numerical methods used in TL data analysis
3. Papers describing kinetic models in TL
4. TL versus dose dependence papers
5. Review papers in TL
6. Papers on curve fitting and deconvolution functions
7. Papers on thermal quenching and Temperature lag effects

1. Thermoluminescence Books

Handbook of Thermoluminescence

C. Furetta
World Scientific Publishing Co., Singapore, 2003.
This book on TL provides experts, teachers, students, and technicians practical
support for research, study, and routine work. Special effort has been made to
include the TL terminology commonly used in the literature. The topics are given
in alphabetical order to facilitate searching for topics. The topics covered are
various TL models, methods for determining the kinetic parameters, procedures for
characterizing a thermoluminescent dosimetric system, and others. The analytical
treatments of TL models are fully developed.

182
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Radiation Dosimetry-Instrumentation and Methods,
2nd Edition

Gad Shani
CRC Press, 2000.
This is an extensive reference book for medical applications of dosimetry, and is
an assembly of various developments in the field. After two chapters describing
theoretical aspects of dosimetry and radiation interactions, an extensive chapter is
dedicated to the properties and uses of ionization chambers. The fourth chapter
in the book covers broad aspects of thermoluminescence dosimetry (TLD), with
emphasis on commonly used dosimetric materials like LiF:Mg,Ti. The rest of the
book covers several other techniques used in dosimetry, like the radiographic film,
3-D dosimetry and neutron dosimetry.

Operational Thermoluminescence Dosimetry

C. Furetta and P.S. Weng
World Scientific, Singapore, 1998.
This small book is mainly derived from a course on thermoluminescence given
by one of the Authors (C. Furetta) at the National Tsing Hua University, Taiwan,
in 1982/83. The main features of the book are the mathematical treatment of the
various theories of thermoluminescence, as well as of the experimental methods
used to evaluate the TL parameters. Another important part of the book covers
the procedures for the set up of a thermoluminescent dosimetric system, as well
as the factors used in the dose determination from the thermoluminescent emis-
sion. Others parts of the book include (i) the precision and the accuracy in TL
measurements, (ii) practical procedures for environmental, personal, and clinical
dosimetry, and (iii) lower detection limit. The book is of a practical nature and can
be very useful for students and technicians in the field of thermoluminescence, as
well as form the basis for a course in solid-state dosimetry.

An Introduction to Optical Dating: The Dating of
Quaternary Sediments by the Use of Photon-Stimulated
Luminescence

M.J. Aitken
Oxford University Press, 1998.
The book discusses optical dating, a rapidly developing technique which is
used primarily in the dating of sediments deposited in the last 500,000 or
more years. The book is divided into three parts consisting of the main text,
the technical notes, and the appendices. The book introduces the method with
characteristic applications, and discusses the limitations of the optical dating
technique.
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Theory of Thermoluminescence and Related Phenomena

R. Chen and S.W.S. McKeever
World Scientific Publishing Co., Singapore, 1997.
This is the authoritative and most informative book on thermoluminescence writ-
ten by two of the world’s experts on the topic. After an introductory chapter on
thermally stimulated processes, three chapters are devoted to TL, analysis of TL
glow curves and the nonlinear dose dependence of TL. Fifth chapter and a chapter
on TL applications, covers optical phenomena, followed by mathematical consid-
erations on solving differential equations and peak fitting. Two chapters are on
related phenomena and simultaneous measurements of TL and other thermally
stimulated process. Final chapter covers miscellaneous effects related to TL.

Thermoluminescence Dosimetry Materials:
Properties and Uses

S.W.S. McKeever, M. Moscovitch, and P.D. Townsend
Nuclear Technology Publishing, UK, 1995.
This book provides a review of the TL properties and dosimetric properties of the
most common TLD materials. The emphasis in the book is placed on making links
between the solid-state defects in these materials and their dosimetry properties.
After an introductory chapter giving a broad description of the TL process and TL
dosimetry, three extensive separate chapters are dedicated to Fluorides, Oxides,
and Sulphates/Borates.

Thermoluminescent Materials

D.R. Vij, Editor
PTR Prentice Hall, New Jersey, 1993.
This book provides a very broad review of materials exhibiting TL of practical
use. The types of materials covered range from natural materials like minerals and
quartz, to organic materials like polymers and finally to a wide range of inorganic
materials. Methods of preparation for several materials and list of their character-
istics and uses are provided. Each chapter also contains a list of applications for
the materials covered in the chapter.

Thermoluminescence in Solids and Its Applications

K. Mahesh, P.S. Weng, and C. Furetta
Nuclear Technology Publishing, UK, 1989.
The aim of the book is to offer a comprehensive study of the features of thermolu-
minescence from both a theoretical and a practical point of view. After a chapter
dedicated to the historical background, the second chapter covers the general prop-
erties of luminescence phenomena, and the principles and methods of thermolu-
minescence. Two chapters are dedicated to TL materials and instrumentation, and
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a short chapter introduces the models and the theories of thermoluminescence. A
very interesting part of the book is dedicated to the TL-related phenomena, i.e. ES,
TSEE, TSC, TSD. The last two chapters include applications and developments
in TL. One of the appendices covers the phosphor terminology. The book can be
very useful for teachers and students in solid-state physics, nuclear science, and
radiation dosimetry, although the more recent TL models are not included due to
its year of publication.

Thermoluminescence Dating

M.J. Aitken
Academic Press, 1985.
This book is a comprehensive introduction to TL dating covering pottery dating,
natural and artificial irradiation of samples, special dating methods, TL methods
that can be used for other types of materials, and sediment dating. Even though
some of the topics may be dated, it is still a valuable and clearly written introduction
to TL dating.

Thermoluminescence of Solids

S.W.S. McKeever
Cambridge University Press, UK, 1985.
This is the first book that presented thermoluminescence from a solid-state physics
point of view and for this reason it is very important. The aim of the book is to
unify the various aspects of thermoluminescence, i.e. dating, dosimetry, kinetics
studies, etc. The starting point of the book is the description of thermolumines-
cence within the context of luminescence phenomena. A theoretical background
follows which includes the elementary concepts and the various models used in
TL. An important chapter takes into consideration the relationship between crystal
defects and thermoluminescence. More or less half of the book covers thermolu-
minescent materials and their application in personal, environmental, and medical
dosimetry. Other subjects of the book include dating, geological applications of
TL and instrumentation.

Thermoluminescence and Thermoluminescent Dosimetry,
Vols. I, II, and III

Y.S. Horowitz
CRC Press, USA, 1984.
This extensive three-volume book covers most theoretical and applied aspects of
TL. The first volume covers general aspects of TL, TL kinetic models, and lists of
important TL dosimetric materials and their properties. The second volume covers
TL versus dose response and TL models for superlinearity and sensitization and
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the uses of TLDs for various radiation fields, and track structure theory. The final
volume covers instrumentation and applications of TL.

Analysis of Thermally Stimulated Processes

R. Chen and Y. Kirsh
Pergamon Press, USA, 1981.
This book is one of the most important publications in the field of the thermally
stimulated processes. The Authors cover the following thermally stimulated pro-
cesses: Thermoluminescence (TL), thermally stimulated conductivity (TSC), ther-
mally stimulated electron emission (TSEE), thermally stimulated depolarization
(TSD), thermogravity (TG), derivative thermogravity (DTG), and differential ther-
mal analysis (DTA). The book is presented as an interdisciplinary text. The theories
concerning first-, second-, and general-order kinetics in TL are fully developed and
explained. A full chapter is dedicated to the various methods used in the evaluation
of the kinetics parameters from the thermally stimulated curves. Each chapter has
a very large list of references.

Thermoluminescence Dosimetry

A.F. McKinley
Adam Hilger Ltd., Bristol, UK, 1981.
Persons who had the opportunity to meet Alastair McKinley are familiar with his
very clear method of explaining scientific subjects. This small book provides a
clear introduction to the use of TLDs in ionizing radiation measurements, with
particular emphasis in clinical dosimetry. The theory of thermoluminescence is
described briefly and only first-order kinetics is taken into consideration. The
most important parts of the book are:

(i) The use of TLDs for specific applications such as clinical, personal, environ-
mental, charged particle, neutron, and mixed-field dosimetry;

(ii) Experimental problems regarding the annealing procedures, the storage and
handling of TLDs and their irradiation.

Although the book of McKinley is more than 20 years old, it contains many
practical suggestions that are still useful.

Thermoluminescence: Its Understanding and Applications

K.S.V. Nambi
Published by Instituto de Energia Atomica, Cidade Universitaria Armando de
Salles Oliveira, Säo Paulo, Brasil, 1977.
The book by Nambi, of about 100 pages in A4 size, can be considered the first
effort to present together the known aspects of thermoluminescence at that time.
It is surprising how many aspects of TL are included in this book, which would
normally be found dispersed in hundreds of scientific publications. One of the
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most interesting parts of the book is that it considers the various factors affecting
TL, effects which very often are not taken into consideration. The book also
contains interesting information concerning the use of TL in the forensic sciences.

2. Papers Dealing with Numerical Methods Used
in TL Data Analysis

Limitation of Peak Fitting and Peak Shape Methods for
Determination of Activation Energy of Thermoluminescence
Glow Peaks

C.M. Sunta, W.E.F. Ayta, T.M. Piters, and S. Watanabe, Radiat. Meas. 30
(1999) 197.
This paper investigates the validity of peak shape methods of TL analysis and of
peak-fitting techniques under two conditions (a) when the retrapping probability
is much higher than the recombination probability and (b) when the traps are
filled near the saturation level. Examples of calculations are given within the
OTOR and IMTS models of thermoluminescence, and it is recommended that the
peak shape and peak-fitting methods can be applied only at low doses, far from
TL saturation conditions.

Anomalies in the Determination of the Activation Energy of
Thermoluminescence Glow Peaks by General-Order Fitting

C.M. Sunta, W.E.F. Ayta, T.M. Piters, R.N. Kulkarni, and S. Watanabe, J. Phys.
D: Appl. Phys. 32 (1999) 1271.
Several TL glow curves are calculated within the OTOR, NMTS, and IMTS models
and under the quasi-equilibrium (QE) conditions. These glow curves are analyzed
by fitting them using the empirical general-order (GO) kinetics model, in order to
find the parameters b and E. It is shown that the fitted value of E and the quality
of fit (figure of merit, FOM), depart from the expected values as b deviates from
1 to 2. These results are applied to the interpretation of the E values obtained
experimentally for peak 5 of LiF (TLD − 100).

Analysis of the Blue Phosphorescence of X-Irradiated Albite
Using a TL-Like Presentation

Y. Kirsh and R. Chen, Nucl. Tracks Radiat. Meas. 18 (1991) 37.
This paper describes a procedure by which a featureless exponential decay curve
is transformed into a peak-shaped curve, which resembles the corresponding ther-
moluminescence curve. The paper treats first- and general-order decay curves and
derives analytical expressions for the corresponding peak-shaped curves. These
expressions can be used for a direct fit of the experimental decay curves in
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I (T ) × t versus ln(t) scale, from which trapping parameters like activation en-
ergy, frequency factor, and kinetic order can be obtained. Furthermore, this kind
of treatment of the experimental isothermal decay curves can be successfully ex-
trapolated to the optical simulated luminescence decay curves.

Determination of Thermoluminescence Parameters from
Glow Curves: II in CaSo4:Dy

J. Azorin and A. Gutierrez
Nucl. Tracks 11 (1986) 167.
This paper is a good example of a comprehensive analysis of TL glow curves
which follow second-order kinetics. A wide variety of methods is used to analyze
the TL glow curves and the results of the different methods are in good agreement.
Isothermal methods, heating rate methods, initial rise, peak shape, and thermal
cleaning methods are used. The E and s values for the curves are calculated and
the results of different methods are compared with each other.

A Theoretical Study on the Relative Standard Deviation of
TLD Systems

P. Zarand and I. Polgar, Nucl. Instr. Methods 205 (1983) 525.

On the Relative Standard Deviation of TLD Systems

P. Zarand and I. Polgar, Nucl. Instr. Methods 222 (1984) 567.
In these two papers the authors propose a model to describe the relative standard
deviation of the TL readings obtained after a given dose. The different behaviors
of TLD systems in the low-dose range are also discussed. In the second paper the
theoretical model is submitted to experimental verification.

Analysis of Thermoluminescence Data Dominated by
Second-Order Kinetics

R. Chen, D.J. Huntley, and G.W. Berger, phys. stat. sol. (a) 79 (1983) 251.
This paper describes the TL response for peaks following second-order kinetics.
The plateau test is applied to calculated second-order glow peaks, and also for the
case of a distribution of second-order peaks. The paper also contains a very useful
set of criteria indicating second-order kinetics in TL experiments.

Reproducibility of TLD Systems. A Comprehensive Analysis
of Experimental Results

B. Burkhardt and E. Piesh, Nucl. Instr. Methods 175 (1980) 159.
The paper presents a study of the statistical errors involved in low-dose mea-
surements of TLD systems. The analysis takes into account the dark current, the
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zero dose reading, and the irradiation and annealing procedures. A two-parameter
expression of the standard deviation versus exposure is given.

Effects of Various Heating Rates on Glow Curves

R. Chen and S.A.A. Winer, J. Appl. Phys. 41 (1970) 5227.
This is a classic paper describing the theoretical basis of the heating rate meth-
ods for evaluating trapping parameters. Many details given in the derivation of
the methods are very useful for everyone who wishes to study in depth the heat-
ing rate effects during TL measurements. The paper shows that Hoogenstraten’s
variable heating rate methods are valid for any general monotonically increasing
heating rate function. The method of finding E by using the variation of maximum
TL intensity Im with heating rate is found to be applicable to all first-order TL
peaks, and similar methods are introduced for general-order peaks. The heating
rate method based on the peak maximum intensity Im, surprisingly has not found
much application up to now. Examples of applying the method of analysis to ZnS
samples are given.

On the Calculation of Activation Energies and Frequency
Factors from Glow Curves

R. Chen, J. Appl. Phys. 40 (1969) 570.
This is a classic paper that introduces several well-known peak shape methods
of analysis of glow peaks. The equations are developed by using a combination
of theoretical, empirical, and computational analysis for a wide variety of acti-
vation energies and frequency factors. Several formulas are developed for cases
when the frequency factor depends on temperature, and for second-order glow
peaks.

Glow Curves with General-Order Kinetics

R. Chen, J. Electrochem. Soc.: Solid-State Sci. 116/9 (1969) 1254.
Another classic paper where the peak shape method is developed for general-
order kinetic peaks. The geometrical shape factor µ for general-order kinetics is
calculated for values of the general order b between 0.7 and 2.5.

3. Papers Describing Kinetic Models in TL

A Critical Look at the Kinetic Models of
Thermoluminescence: I. First-Order Kinetics

C.M. Sunta, W.E.F. Ayta, J.F.D. Chubaci, and S.Watanabe, J. Phys. D: Appl. Phys.
34 (2001) 2690.
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The Quasi-Equilibrium Approximation and Its Validity
for the Thermoluminescence of Inorganic Phosphors

C.M. Sunta, W.E.F. Ayta, R.N. Kulkarni, J.F.D. Chubaci and S. Watanabe, J. Phys.
D: Appl. Phys. 32 (1999) 717.
These two papers examine the validity of the quasi-equilibrium (QE) assumptions
commonly used in TL kinetic models. The papers include also a study of the
conditions under which glow peaks of first-order kinetics are produced within TL
kinetic models. Numerically computed glow curves without the QE approxima-
tions are calculated by using generalized multiple trap models. These glow curves
are compared with analytically calculated glow curves, to verify whether the QE
condition is satisfied. It is found that under a wide variety of combinations of
parameters, the QE conditions are satisfied, even when retrapping is predominant
over recombination. The paper concludes that the use of the QE approximation for
analyzing glow curves is legitimate.

General Order and Mixed Order Fits of Thermoluminescence
Glow Curves—a Comparison

C.M. Sunta, W.E.F. Ayta, J.F.D. Chubaci, and S. Watanabe, Radiat. Meas. 35
(2001) 47.
The authors compare the glow curves calculated using standard TL models with the
glow curves obtained using general-order and mixed-order kinetics expressions.
The goodness of fit is expressed by the figure of merit (FOM). They conclude
that the mixed-order expressions characterize glow peaks more accurately than
general-order expressions. They attribute this to the fact that the kinetic-order
parameter b changes with temperature, while the mixed-order kinetics parameter
α remains constant with temperature.

Theoretical Models of Thermoluminescence and Their
Relevance in Experimental Work

C.M. Sunta, W.E. Feria Ayta, R.N. Kulkarni, T.M. Piters, and, S. Watanabe, Radiat.
Prot. Dosim. 84 (1999) 25.
TL glow peaks are computed for the OTOR, NMTS, and IMTS models for a
variety of input parameters. The characteristics of these calculated glow peaks are
described, namely the effect of dose on the temperature of glow peak maximum,
on the shape of the glow curve, and on the supralinearity of response. The results
lead to the conclusions that the glow peak properties of the OTOR, NMTS, and GO
models do not agree with the experimental properties of TL phosphors. The IMTS
model on the other hand, is capable of producing glow peaks whose characteristics
match with the experimental properties.
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General Order Kinetics of Thermoluminescence—a
Comparison with Physical Models

C.M. Sunta, R.N. Kulkarni, T.M. Piters, W.E.F. Ayta, and E. Watanabe, J. Phys.
D: Appl. Phys. 31 (1998) 2074.

Pre-Exponential Factor in General-Order Kinetics of
Thermoluminescence and Its Influence on Glow Curves

C.M. Sunta, W.E.F. Ayta, R.N. Kulkarni, R. Chen, and S. Watanabe, Radiat. Prot.
Dosim. 71 (1997) 93.
In these two papers the authors study the behavior of the empirical parameters, the
kinetic-order b and the pre-exponential factor s, which characterize general-order
kinetics. Several TL glow curves are calculated within the OTOR, NMTS, and
IMTS models and are analyzed using analytical methods, the shape of the glow
curves and the isothermal characteristics. It is shown that b and s are not constant
during the measurement of the TL glow curve, except when the kinetic order b is
equal to 1 or 2. At the limit of very low trap occupancies (doses) the OTOR system
produces second-order glow curves, and the IMTS model produces first-order glow
curves. The implications of the general-order kinetics model for actual physical
systems are discussed. The paper also shows that when appropriately defined, the
pre-exponential factor also has a fixed value independent of trap occupancy. The
empirical model seems to diverge from the experimental observations when the
experimentally determined kinetics is non-first order.

Interactive Trap System Model and the Behavior of
Thermoluminescence Glow Peaks

C.M. Sunta, W.E.F. Ayta, and S. Watanabe, Mater. Sci. Forum 239–241 (1997)
745.
In this paper the authors study a model consisting of a thermally active trap,
a luminescence center, a deep thermally disconnected trap, and a shallow trap
level. It is shown that such a model can explain several properties of experimental
glow curves, like the shape, supralinearity properties of TL versus dose curves,
sensitization by a predose, phototransfer, and stability of the peak positions.

General-Order Kinetics of Thermoluminescence and Its
Physical Meaning

C.M. Sunta, W.E.F. Ayta, R.N. Kulkarni, T.M. Piters, and S. Watanabe, J. Phys.
D: Appl. Phys 30 (1997) 1234.
This paper is an in-depth study of the empirical general-order kinetics (GOK)
model, and an attempt is made to find a correlation between the empirical



192 Annotated Bibliography

parameters b and s ′ in the GOK, with the physical parameters used in physically
meaningful TL models. It is shown that the values of b and s ′ depend on the trap
filling, and that the units of s ′ also change with dose.

On the General Order Kinetics of the Thermoluminescence
Glow Peak

M.S. Rasheedy, J.Phys.: Condens. Matter 5 (1993) 633.
This paper introduces a new TL general-order equation in which the frequency
factor is redefined in units of s−1, and is also constant for a given sample and
for a given constant initial trap concentration n0 (dose). Nevertheless, this new
frequency factor is found to vary when the sample dose n0 is varied.

Mixed First and Second Order Kinetics in Thermally
Stimulated Processes

R. Chen, N. Kristanpoller, Z. Davidson, and R. Visokecas, J. Luminescence 23
(1981) 293–303.
In this paper the mixed-order kinetics is shown to result from the more general set
of three differential equations governing the “traffic” of carriers between a trap, the
conduction band, and a recombination center under certain physical assumptions.
Also, the applicability of this equation is discussed as an empirical approximation
to the more general case. The solution of this equation is investigated and methods
of experimentally extracting the trapping parameters of mixed-order kinetics are
introduced. The advantages of the mixed-order kinetics presentation as opposed
to the general-order kinetics models are discussed.

4. TL versus Dose Dependence Papers

On the Energy Conversion in Thermoluminescence
Dosimetry Materials

A.J.J. Bos, Radiat. Meas. 33 (2001)737–744.
In the TL literature the thermoluminescence efficiency η of dosimetric materials is
always taken equal to unity for the sake of simplicity. To the best of our knowledge,
this is one of the few papers in the TL literature which looks at TL materials from
the specific viewpoint of how efficiently they transform absorbed energy into
easily detectable light (as a consequence to exposure to ionizing radiation). The
maximum possible efficiency of well-known TL materials does not vary much
and is found to be approximately 13%. Among the distinct steps in the conversion
process (trapping, transfer, and recombination under the emission of light), the
trapping appears to be the less efficient process.
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Supralinearity and Sensitization of Thermoluminescence. I. A
Theoretical Treatment Based on an Interactive Trap System

C.M. Sunta, E.M. Yoshimura, and, E. Okuno, J. Phys. D: Appl. Phys. 27 (1994)
852.

Supralinearity and Sensitization Factors in
Thermoluminescence

C.M. Sunta, E.M. Yoshimura, and, E. Okuno, Radiat. Meas. 23 (1994) 655.
In these two theoretical papers the authors interpret the linear and supralinear be-
havior of TL versus dose curves within a model consisting of two electron traps
and one recombination center. The model also provides an explanation and quan-
titative description for the predose sensitization observed in many TL materials.
The case of LiF TLD-100 is used to demonstrate the applicability of the theory to
actual experimental results.

Superlinearity in Thermoluminescence Revisited

R. Chen and G. Fogel, Radiat. Prot. Dosim. 47 (1993) 23.
In this paper a kinetic model consisting of two trapping states and one recombina-
tion center is presented. The model combines two previously published separate
approaches based on the competition during excitation and on the competition
during readout. The kinetic rate equations are solved without any simplifying as-
sumptions and it is found that the model can explain the very strong superlinearity
of the 110◦C TL peak, which is observed experimentally in synthetic quartz.

5.5 eV Optical Absorption, Supralinearity and Sensitization
of Thermoluminescence in LiF:Mg,Ti.

S.W.S. McKeever, J. Appl. Phys. 68(2) (1990) 724–731.
The TL literature contains discussions of many competitive energy levels for dosi-
metric materials, but very few papers attempt to identify the nature of these com-
peting centers. This paper is, indeed, the most serious attempt to identify the
competitors responsible for the supralinearity of LiF:Mg,Ti. In the first part of
the paper the author describes the properties that a competitor would possess. In
the second part, the author discusses in detail the possibility that the well-known
optical absorption band at 5.5 eV is the possible competitor.

Mechanism of Supralinearity in Lithium Fluorite
Thermoluminescence Dosemeters

E.F. Mishe and S.W.S. McKeever, Radiat. Prot. Dosim. 29 (1989) 159–175.
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This is a very fundamental paper which can be separated into two parts. The first
part examines in detail the factors that affect the dose response function of LiF,
such as linear energy transfer, impurity content, and heating rate. A comprehensive
analysis of all data, lead the authors to the conclusion that the mechanism, which
governs the TL dose response is operative in the heating stage of the TL process
and not during the radiation absorption stage. In the second part a model for supra-
linearity is given, with a complete mathematical formulation, which successfully
describes the observed experimental behavior. This paper is necessary for a deeper
understanding of supralinearity as due to competition during the heating stage
of TL.

Solution of the Kinetic Equations Governing Trap Filling.
Consequences Concerning Dose Dependence and Dose-Rate
Effects

R. Chen, S.W.S. McKeever, and S.A. Duranni, Phys. Rev. B 24 (1981) 4931.
In this classic paper the authors solve the differential equations for the simple
one-trap-one recombination center, one-trap-two centers and two-traps-one center
models of TL. An additional period of time is introduced at the end of the excitation
period, which allows the relaxation of the charge carriers in the bands. Results
are obtained for various dose rates. The growth curves of TL versus dose are
calculated and shown to yield superlinear behavior under appropriate choices of
parameters.

Superlinear Filling of Traps in Crystals Due to Competition
During Irradiation

S.G.E. Bowman and R. Chen, J. Luminescence 18/19 (1979) 345.
A simple model is studied consisting of two traps and one recombination center.
The two traps are competing for electrons during the excitation period, leading
to a linear-superlinear-linear-saturation behavior of the TL as a function of the
dose.

Dose Dependence of Thermoluminescence Peaks

N. Kristianpoller, R. Chen, and M. Israeli, J. Phys. D: Appl. Phys. 7 (1974) 1063.
This is a theoretical investigation of the dependence of the maximum TL intensity
IM and of the corresponding peak temperature TM on the excitation dose given
to the sample. The model consists of an electron trap, a competing thermally
disconnected deep trap and a recombination center. The kinetic equations are
solved numerically and it is shown that superlinear behavior may arise within this
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model, with the power of dose dependence equal to 2 or greater. The area under
the glow peak is also studied as a function of the dose.

5. Review Papers in TL

Review: Models in Thermoluminescence

C. Furetta and G. Kitis, J. Mater. Sci. 39 (2004) 2277.
This recent review paper gives the fundamental equations and analytical solutions
for several commonly used TL models, namely for the Randall–Wilkins, Garlick–
Gibson, Adirovitch, May–Partridge, Braunlich–Scharman, Sweet and Urquhart,
and mixed-order kinetics. The paper contains extensive results from general-order
kinetics models and studies the influence of the properties of general-order peaks
to dosimetry and to TL dating.

Luminescence Models

S.W.S. McKeever and R. Chen, Radiat. Meas. 27 (1997) 625.
This is an excellent review paper which can be very useful for new researchers in
the field of TL modeling. It contains a description of the general one trap model
(GOT), first-order Randall–Wilkins, second-order Garlick–Gibson, general-order
kinetics, mixed-order kinetics, interactive kinetics, and the Schon-Klasens TL
models. The quasi-equilibrium condition is examined and discussed extensively.
Separate sections discuss tunneling phenomena and localized transitions. An ex-
tensive section presents several models that can describe different aspects of the
growth of TL with dose: competition during excitation, competition during read-
out, and combined competition during both excitation and readout. Also contained
in this paper are models for the optical bleaching of TL and for phototransferred
TL. A review is given for several OSL models and the implications for dating
techniques are discussed.

Kinetic Analysis of Thermoluminescence—Theoretical
and Practical Aspects

Y. Kirsh, phys. stat. sol. (a) 129 (1992) 15.
This review article is organized in four sections: the first section contains the
basic equations and results from several commonly used TL models. The second
section reviews the main methods of analysis such as the initial rise method, curve
fitting methods, peak shape equations for E, heating rate methods, and isothermal
analysis. The third section discusses how these methods can be applied to complex
TL curves and the last section presents additional experimental methods that can
provide information about the TL process such as optical absorption, ESR, and
TSC.
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6. Papers on Curve Fitting and Deconvolution Functions

Fit of First Order Thermoluminescence Glow Peaks Using
the Weibull Distribution Function

V. Pagonis, S.M. Mian, and G. Kitis, Radiat. Prot. Dosim. 93 (2001) 11–17.

Fit of Second Order Thermoluminescence Glow Peaks Using
the Logistic Distribution Function

V. Pagonis and G. Kitis, Radiat. Prot. Dosim. 95 (2001) 225–229.
These two papers describe single glow peak algorithms which are available in sev-
eral existing commercial programs. Analytical expressions are given which fit first-
and second-order kinetics glow peaks. The proposed algorithms give excellent fits
to TL glow peaks, although they are not physically based. Analytical expressions
are given which allow an accurate evaluation of the activation energy E.

Thermoluminescence Glow Curve Deconvolution Functions
for First, Second and General Order Kinetics

G. Kitis, J.M. Gomez-Ros, and J.W.N. Tuyn, J. Phys. D: Appl. Phys. 31 (1998)
2636.

Thermoluminescence Glow-Curve Deconvolution Functions
for Mixed Order of Kinetics and Continuous Trap Distribution

G. Kitis and J.M. Gomez-Ros, Nucl. Instrum. Methods Phys. Res. A 440 (2000)
224.
In these two papers the authors develop several new analytical expressions for use
in GCD analysis, several of which are also found in this book. The expressions
describe accurately glow peaks following first- second- and general-order kinetics.
Similar expressions are developed for mixed-order kinetics and for continuous trap
distributions. The usefulness of these analytical expressions lies in the fact that
two of the parameters IM and TM are determined experimentally. The accuracy of
the expressions is tested by calculating the figure of merit (FOM) for synthetic
glow curves.

Computerized Glow Curve Deconvolution: Application to
Thermoluminescence Dosimetry

Y.S. Horowitz and D. Yossian, Radiat. Prot. Dosimetry (special Issue) 60 (1) 1995.
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This special issue of the journal Radiation Protection Dosimetry covers almost
everything in the TL literature regarding the method of glow curve deconvolution
analysis. It is an absolutely necessary tool for everyone wishing to use glow curve
analysis as a research and dosimetric analysis tool.

An Intercomparison of Glow Curve Analysis Computer
Programs: I Synthetic Glow Curves

A.J.J. Bos, T.M. Piters, J.M. Gomez Ros, and A. Delgado, Radiat. Prot. Dosim.
47 (1993) 473.

An Intercomparison of Glow Curve Analysis Computer
Programs: II Measured Glow Curves

A.J.J. Bos, T.M. Piters, J.M. Gomez Ros, and A. Delgado, Radiat. Prot. Dosim.
51 (1994) 257.
The series of these two papers presents the results of an evaluation of the ca-
pabilities of computer programs written to analyze glow curves in the frame-
work of the GLOw Curve Analysis INtercomparison (GLOCANIN) project. The
papers contain the results of an analysis of 13 different computer programs
involving 11 participants from 10 countries on both computer generated and
on experimentally measured glow curves. The intercomparison concentrated on
the goodness of fit, the determination of the peak area, the temperature of the
peak maxima, and the trapping parameters, i.e. activation energy and frequency
factor.

7. Papers on Thermal Quenching and Temperature
Lag Effects

Thermal Quenching of F-Center Luminescence in Al2O3:C

M.S. Akselrod, N. Agersnap Larsen, V. Whitley, and S.W.S. McKeever, J. Appl.
Phys. 84 (1998) 3364.
Thermal quenching is an effect of importance in experimental thermolumines-
cence. This paper reports on experimental methods of evaluating the activation
energy and frequency factor for thermal quenching. The paper also contains an
analytical presentation of the heating rate method of TL glow curve analysis, and
establishes that the quenching parameters are independent of sample type, degree
of tap filling, cooling rate, and the heating rate. Finally, the influence of thermal
quenching is simulated by numerical solution of the differential equations govern-
ing the processes.
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Temperature Distribution in Thermoluminescence
Experiments. I: Experimental Results

D.S. Betts, L. Couturier, A.H. Khayarat, B.J. Luff, and P.D. Townsend, J. Phys D:
Appl. Phys. 26 (1993) 843.

Temperature Distribution in Thermoluminescence
Experiments. II: Some Calculational Models

D.S. Betts and P.D. Townsend, J. Phys D: Appl. Phys. 26 (1993) 849.

Effects of Non-Ideal Heat Transfer on the Glow Curve in
Thermoluminescence Experiments

T.M. Piters and A.J.J. Bos, J. Phys. D: Appl. Phys. 27 (1994) 1747.

A Simple Method to Correct for the Temperature Lag in the
TL Glow Curve Measurements

G. Kitis and J.W.N. Tuyn, J. Phys. D: Appl. Phys. 31 (1998) 2065.
This series of four papers deals with the heat transfer effects inside the TL glow
oven. The majority of TL readers use contact heating for the readout of the sam-
ple. The temperature recorded is the temperature of the thermocouple fixed on the
heating strip, and not the temperature of the sample. However, when one wants
to extract physical information from the glow curves it is essential to know the
sample’s true temperature. The above papers present experimental results con-
cerning the estimation of the temperature difference between the heating strip and
the samples called the temperature lag, and concerning the temperature differ-
ences between the lower and upper side of the sample, called the thermal gradient.
They propose theoretical expressions for evaluating these effects and their influ-
ence on any physical information obtained from the glow curves, like the trapping
parameters (activation energy and frequency factors).

Thermal Quenching and the Initial Rise Technique of Trap
Depth Evaluation

S.A. Petrov and I.K. Bailiff, J. Luminescence 65 (1996) 289.
This paper describes the influence of thermal quenching on the activation energy
values obtained with the initial rise technique. An analytical expression for cor-
recting the activation energy obtained using this technique is given. Furthermore,
the correction expression is generalized for any arbitrary form of internal thermal
quenching behavior.
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Effects of Cooling and Heating Rate on Trapping Parameters
in LiF:Mg,Ti Crystals

A.J.J. Bos, R.N.M. Vijverberg, T.T. Piters, and S.W.S. McKeever, J. Phys. D: Appl.
Phys. 25 (1992) 1249.
This paper is very good example of how trapping parameters (activation energy
and frequency factor) are influenced by dynamic experimental parameters. These
parameters include the cooling rate after a high temperature annealing, linear read-
out heating rate, and the use of a quadratic heating function. The discussion section
contains an excellent presentation of the defect processes taking place during cool-
ing rate, and readout heating rate, which influence the trapping parameters.

Thermal Quenching of Thermoluminescence in Quartz

A. Wintle, Geophys. J.R. Astr. Soc. 41 (1975) 107
This is the classic study of the effect of thermal quenching on the evaluation of the
energy E using the initial rise method, for the 325◦C thermoluminescence peak
of quartz. The thermal quenching effect is confirmed by using radioluminescence
measurements.



Appendix: A Brief Introduction
to Mathematica

This appendix gives a brief introduction to some of the commands used in
Mathematica. Only a very rudimentary listing of commands and examples are
given here, and the reader is referred to the Mathematica Handbook.

The following short program uses the command Plot to graph the functions e−x2

from x = −3 to x = 3.

Plot[Exp[-x^2],{x,-3,3}];

Mathematica produces the following output:

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

The following short program uses the command Plot to graph the functions
x2, x3, and x4 from x = 0 to x = 1. The graphs are stored in the graphic objects
gr1, gr2, and gr3. Finally, the three graphs are shown together by using the
Mathematica command Show.

gr1=Plot[x^2,{x,0,1}];
gr2=Plot[x^3,{x,0,1}];
gr3=Plot[x^4,{x,0,1}];
Show[{gr1,gr2,gr3}];

200
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Mathematica produces the following output:

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

The following simple program in Mathematica solves the differential equation
y′(x) = ay(x) + 1 with the initial condition y(0) = 0.

DSolve[{y'[x]==a y[x] + 1,y[0]==0},y[x],x]

Mathematica produces the following outut:{{
y[x] → −1+ eax

a

}}
.

The command NDSolve can be used to perform the numerical integration of
the differential equations in the various TL models. For example, the following
short program solves the differential equation y′(x) = y(x) and stores the result
of the numerical integration as the parameter sol (which stands for the solution of
the differential equation). The integration is carried out from x = 0 to x = 2, and
with the initial condition y(0) = 1.

The command Plot is used to graph the result of the numerical integration
procedure from x = 0 to x = 1. The symbol “/.sol” in this program is interpreted
as “given or using the values of the parameter sol.”

sol=NDSolve[{y'[x]==y[x],y[0]==1},y,{x,0,2}];
Plot[y[x]/.sol,{x,0,1}];

Mathematica produces the following output:

0.2 0.4 0.6 0.8 1

1.25

1.5

1.75

2

2.25

2.5

2.75
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Mathematica uses simple useful objects called Lists. For example, the following
is a list of (x, y) points called listXY. The points in the list can be graphed using
the command ListPlot.

listXY={{0,0},{1,10},{3,40},{5,100}};
ListPlot[listXY];

Mathematica produces the following output:

1 2 3 4 5

20

40

60

80

100

One method of producing a list of numbers is by using the command Table, which
in the example below produces a list of numbers and their squares from x = 1 to
x = 10 in steps of x = 1.5.

a=Table[{i,i^2},{i,1,10,1.5}]
ListPlot[a];

Mathematica produces the following output:

{{1,1},{2.5,6.25},{4.,16.},{5.5,30.25},{7.,49.},
{8.5,72.25},{10.,100.}}.

4 6 8 10

20

40

60

80

100
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Mathematica can also solve systems of differential equations as seen in the fol-
lowing example which solves the system of equations x ′(t) = −y(t) − x(t)2 and
y′(t) = 2x(t) − y(t) with appropriate initial conditions. The command Plot is
again used to graph the solutions x(t) and y(t).

sol=NDSolve[{x'[t]==-y[t]-x[t]^2,y'[t]==2x[t]-y[t],
x[0]==y[0]==1},{x,y},{t,10}];

Plot[{x[t]/.sol,y[t]/.sol},{t,0,1}];

Mathematica produces the following output:

0.2 0.4 0.6 0.8 1

-0.2

0.2

0.4

0.6

0.8

1
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Figure 3.1. Results from integrating the equation for first-order kinetics.

By applying the QE conditions, we arrive at the following general analytical
expression for the TL intensity in the OTOR model [2]:

I = −dn

dt
=

sn2 exp

(
− E

kT

)
n Ah + (N − n)An

· Ah, (3.5)

where E = thermal activation energy of the trap (eV)
s = frequency factor (s−1)

T = temperature of the sample (K)
k = Boltzmann constant (eV K−1)

N = total concentration of the traps in the crystal (cm−3)
n = concentration of filled traps in the crystal (cm−3)

n0 = initial concentration of filled traps at time t = 0 (cm−3)
An = probability coefficient of electron retrapping in the traps (cm3 s−1)
Ah = probability coefficient of electron recombining with holes in the RC

(cm3 s−1).

Use Euler’s method in a spreadsheet. The program should allow the user to change
the values of E, s, β, n0, An, and Ah in order to see the effect of these parameters
on the TL glow curve, and should graph the numerically obtained graphs TL(T),
n(T).

Conduction band 

Ah An

Trap
     n, N 

RC

Valence band 

Figure 3.2. The OTOR model.
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Figure 3.18. Shapes of mixed-order kinetics glow peaks as a function of α.

By inserting equations (3.41) and (3.42) in (3.40) we can proceed to the required
calculations by noting that I(T) depends only on the known parameters E, α, s,
and n0.
(a) The shapes of mixed-order glow peaks as a function of the parameter α are
shown in Figure 3.18. The glow-peak shapes behave in a manner similar to that of
the general-order kinetics (see Figure 1.6).

(b) Figure 3.19 shows the behavior of the parameter α and of the kinetic order
b as a function of the symmetry factor µg.

The parameter α is given in values of (α + 1) in order to fit on the same scale with
the kinetic order b. From Figure 3.19 we can see that the mixed- and general-order
glow peaks coincide exactly when α + 1 = b. This happens for first-order kinetics
where α → 0, and for values of the symmetry factor µg ≥ 0.50. In the intermediate
cases the mixed- and general-order glow peaks show some differences, even in
cases where they have the same symmetry factor (see Figure 3.24 below).

(c) Figure 3.20 shows the glow peak maximum temperature TM as a function
of α and b.

Note that the y-axis covers a temperature region of only 2 K. The behavior of
glow peaks with mixed-order kinetics is very different from that of general-order
peaks, although the peak maximum variation is less than 1.5 K for values of b
between 1 and 2, and for values of α between 0 and 1. These differences are seen
here because the glow peaks were evaluated using a temperature increment of
�T = 0.001 K and therefore the accuracy of TM was better than 0.001 K.
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