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Preface

Thermodynamics is one of the foundations of science. The subject has been
developed for systems at equilibrium for the past 150 years. The story is
different for systems not at equilibrium, either time-dependent systems or
systems in non-equilibrium stationary states; here much less has been done,
even though the need for this subject has much wider applicability. We have
been interested in, and studied, systems far from equilibrium for 40 years and
present here some aspects of theory and experiments on three topics:

Part I deals with formulation of thermodynamics of systems far from
equilibrium, including connections to fluctuations, with applications to non-
equilibrium stationary states and approaches to such states, systems with
multiple stationary states, reaction diffusion systems, transport properties,
and electrochemical systems. Experiments to substantiate the formulation are
also given.

In Part II, dissipation and efficiency in autonomous and externally forced
reactions, including several biochemical systems, are explained.

Part III explains stochastic theory and fluctuations in systems far from
equilibrium, fluctuation–dissipation relations, including disordered systems.

We concentrate on a coherent presentation of our work and make connec-
tions to related or alternative approaches by other investigators. There is no
attempt of a literature survey of this field.

We hope that this book will help and interest chemists, physicists, bio-
chemists, and chemical and mechanical engineers. Sooner or later, we expect
this book to be introduced into graduate studies and then into undergraduate
studies, and hope that the book will serve the purpose.

My gratitude goes to the two contributors of this book: Prof. R. Stephen
Berry for contributing Chap. 14 and for reading and commenting on much of
the book, and Dr. Marcel O. Vlad for discussing over years many parts of
the book.

Stanford, CA John Ross
January 2008
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Part I

Thermodynamics and Fluctuations
Far from Equilibrium



1

Introduction to Part I

Thermodynamics is an essential part of many fields of science: chemistry, biol-
ogy, biotechnology, physics, cosmology, all fields of engineering, earth science,
among others. Thermodynamics of systems at equilibrium has been developed
for more than one hundred years: the presentation of Willard Gibbs [1] is pre-
cise, authoritative and erudite; it has been followed by numerous books on
this subject [2–5], and we assume that the reader has at least an elementary
knowledge of this field and basic chemical kinetics.

In many instances in all these disciplines in science and engineering, there
is a need of understanding systems far from equilibrium, for one example
systems in vivo.

In this book we offer a coherent presentation of thermodynamics far
from, and near to, equilibrium. We establish a thermodynamics of irreversible
processes far from and near to equilibrium, including chemical reactions, trans-
port properties, energy transfer processes and electrochemical systems. The
focus is on processes proceeding to, and in non-equilibrium stationary states;
in systems with multiple stationary states; and in issues of relative stabil-
ity of multiple stationary states. We seek and find state functions, depen-
dent on the irreversible processes, with simple physical interpretations and
present methods for their measurements that yield the work available from
these processes. The emphasis is on the development of a theory based on
variables that can be measured in experiments to test the theory. The state
functions of the theory become identical to the well-known state functions
of equilibrium thermodynamics when the processes approach the equilibrium
state. The range of interest is put in the form of a series of questions at the
end of this chapter.

Much of the material is taken from our research over the last 30 years.
We shall reference related work by other investigators, but the book is not
intended as a review. The field is vast, even for just chemistry.



4 1 Introduction to Part I

1.1 Some Basic Concepts and Definitions

We consider a macroscopic system in a state, not at equilibrium, specified
by a given temperature and pressure, and given Gibbs free energy. For a
spontaneous, naturally occurring reaction proceeding towards equilibrium at
constant temperature T , and constant external pressure p, a necessary and
sufficient condition for the Gibbs free energy change of the reaction is

∆G ≤ 0. (1.1)

For a reaction at equilibrium, a reversible process, the necessary and sufficient
condition is

∆G = 0. (1.2)
Another important property of ∆G is that it is a Lyapunov function in that
it obeys (1.1) and (1.3)

d∆G
dt

≥ 0. (1.3)

where t is time, until equilibrium is reached. Then (1.2) and (1.4) hold

d∆G
dt

= 0. (1.4)

A Lyapunov function indicates the direction of motion of the system in time
(there will be more on Lyapunov functions later).

An essential task of thermodynamics is the prediction of the (maximum)
work that a system can do, such as a chemical reaction; for systems at constant
temperature and pressure the change in the Gibbs free energy gives that
maximum work other than pressure–volume work.

Systems not at equilibrium may be in a transient state proceeding towards
equilibrium, or in a transient state proceeding to a non-equilibrium stationary
state, or in yet more complicated dynamical states such as periodic oscillations
of chemical species (limit cycles) or chaos. The first two conditions are well
explained with an example: consider the reaction sequence

A⇔ X ⇔ B, (1.5)

in which k1 and k2 are the forward and backward rate coefficients for the first
(A ⇔ X) reaction and k3 and k4 are the corresponding rates for the second
reaction. In this sequence A is the reactant, X the intermediate, and B the
product. For simplicity let the chemical species be ideal gases, and let the
reactions occur in the schematic apparatus, Fig. 1.1, at constant temperature.

We could equally well choose concentrations of chemical species in ideal
solutions, and shall do so later. Now we treat several cases:

1. The pressures pA and pB are set at values such that their ratio equals the
equilibrium constant K

pB

pA
= K. (1.6)
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Fig. 1.1. Schematic diagram of two-piston model. The reaction compartment (II)
is separated from a reservoir of species A (I) by a membrane permeable only to
A and from a reservoir of species B (III) by a membrane permeable only to B.
The pressures of A and B are held fixed by constant external forces on the pistons.
Catalysts C and C′ are required for the reactions to occur at appreciable rates and
are contained only in region II

If the whole system is at equilibrium then the concentration of X is

Xeq =
k1

k2
A =

k4

k3
B, (1.7)

and K can be expressed in terms of the ratio of rate coefficients

K =
k1k3

k2k4
. (1.8)

At equilibrium ∆G = 0, or in terms of the chemical potentials µA =
µB = µX.

2. The pressures of A and B are set as in case 1. If the initial concentration of
X is larger than Xeq then a transient decrease of X occurs until X = Xeq.
For the transient process of the system towards equilibrium ∆G of the
system is negative, ∆G < 0.

3. The pressures of A and B are set such that

pB

pA
< K. (1.9)

Then for a given initial value of pX a transient change in px occurs until a non-
equilibrium state is reached. The pressure at that stationary state must be
determined from the kinetic equations of the system. For mass action kinetics
the deterministic kinetic equations (neglect of fluctuations in the pressures or
concentrations) are

dpX

dt
= k1pA + k4pB − pX (k2 + k3) . (1.10)

Hence at the non-equilibrium stationary state, where by definition dpX

dt = 0,
we have for the pressure of X at that state

pX
ss =

k1pA + k4pB

k2 + k3
. (1.11)
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For the transient relaxation of X to the non-equilibrium stationary state ∆G
is not a valid criterion of irreversibility or spontaneous reaction. We shall
develop necessary and sufficient thermodynamic criteria for such cases.

For non-linear systems, say the Schlögl model [6]

A+ 2X ⇔ 3X (1.12)

X ⇔ B (1.13)

with the rate coefficients k1 and k2 for the forward and reverse reaction in
(1.12), and k3 and k4 in (1.13), there exists the possibility of multiple sta-
tionary states for given constraints of the pressures pA and pB. The kinetic
equation for pX is

dpX

dt
= k1pAp

2
X + k4pB − (k2p

3
X + k3pX

)
, (1.14)

which is cubic in pX and hence may have three stationary states (right hand
side of (1.14) equals zero) Fig. 1.2.

The region of multiple stationary states extends for the pump parameter
(equal to pA/pB) from F1 to F3; the line segments with positive slope, marked
α and γ, are branches of stable stationary states, the line segment with negative
slope, marked β, is a branch of unstable stationary states. A system started
at an unstable stationary state will proceed to a stable stationary state along

Fig. 1.2. Stationary states of the Schlögl model with fixed reactant and products
pressures. Plot of the pressure of the intermediate pX vs. the pump parameter
(pA/pB). The branches of stable stationary states are labeled α and γ and the branch
of unstable stationary states is labeled β. The marginal stability points are at F1

and F3 and the system has two stable stationary states between these limits. The
equistability point of the two stable stationary states is at F2
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a deterministic trajectory. The so-called marginal stability points are at F1

and F3. For a deterministic system, for which fluctuations are very small,
transitions from one stable branch to the other occur at the marginal stability
points. If fluctuations are taken into account then the point of equistability is
at F2, where the probability of transition from one stable branch to the other
equals the probability of the reverse transition.

An examples of such systems in the gas phase is the illuminated reaction
S2O6F2 = 2SO3F, [7]. An example of multiple stationary states in a liquid
phase (water) is the iodate-arseneous acid reaction, [8]. Both examples can be
analyzed effectively as one-variable systems.

1.2 Elementary Thermodynamics and Kinetics

Let us consider J coupled chemical reactions with L species proceeding to
equilibrium, and let the stoichiometry of the jth reaction, with 1 ≤ j ≤ J , be

L∑

l=1

νjlXl = 0. (1.15)

The stoichiometric coefficient νji is negative for a reactant, zero for a catalyst
and positive for a product. We introduce progress variables ξj for each of the
j reactions

dnl =
J∑

j−1

νjldξj (1.16)

where ni denotes number of moles of species i, and the affinities Aj [9]

Aj = −
L∑

l=1

νjlµl, (1.17)

expressed in terms of the chemical potentials µl. (The introduction of chemical
potentials in chemical kinetics requires the assumption of local equilibrium,
which is discussed in Chap. 2.) With (1.17) we write the differential change
in Gibbs free energy for the reactions

d∆G = −
J∑

j=1

Ajdξj (1.18)

For the jth reaction the kinetics can be written

dξj/dt = t+j − t−j (1 � j � J), (1.19)

where t+j , t
−
k are the reaction fluxes for this reaction step in the forward and

reverse direction, respectively. Hence the affinities may be rewritten

Aj = RT ln(t+j /t
−
j ), (1.20)
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which is easily obtained for any elementary reaction by writing out the t+j /t
−
j

in terms of concentrations and the introductions of chemical potentials, (2.4).
The time rate of change of the Gibbs free energy is

d∆G
dt

= −
J∑

j=1

Aj
dξj
dt

= −
J∑

j=1

[
RT ln

(
t+j /t

−
j

)] (
t+j − t−j

)
(1.21)

in which each term on the rhs is a product of the affinity of a given reaction
times the rate of that reaction. The rate of change of ∆G is negative for every
term until equilibrium is reached when ∆G of the reaction is zero. Hence ∆G is
a Liapunov function and provides an evolution criterion for the kinetics of the
system. The form of (1.21) is the same as that of Boltzmann’s H theorem for
the increase in entropy during an irreversible process in an isolated system [10].

For an isothermal system we have

dG = dH − TdS, (1.22)

and hence
dG
dt

=
dH
dt

− T
dS
dt
. (1.23)

At constant concentration (chemical potential), and hence pressure for each
of the reservoirs we have the relation

dH
dt

= −T dSrev

dt
, (1.24)

where dSrev is the differential change in entropy of the surroundings due to
(reversible) passage of heat from the system to the surroundings. Hence we
may write

dG
dt

= −T
[
dS
dt

+
dSrev

dt

]
= −T dSuniv

dt
, (1.25)

that is the product of T and the total rate of entropy production in the
universe is the dissipation.

For a generalization of the model reaction, (1.12, 1.13), we write

A+ (r − 1)X
k1

�
k2

rX,

(s− 1)X +B
k4

�
k3

sX.

for which the variation in time of the intermediate species X is

dpX/dt = k1pAp
r−1
x − k2p

r
X − k3p

s
X + k4pBp

s−1
X . (1.26)
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The stability of the stationary states of the system described by this equation
can be obtained by linearizing (1.26) around each such state [11]. The stability
criteria so obtained are

dpX/dt = 0 at each steady state,
d(dpX/dt)/dpX < 0 at each stable steady-state,
d(dpX/dt)/dpX > 0 at each unstable steady-state,
d(dpX/dt)/dpX = 0 at each marginally stable steady-state,

and
d(dpX/dt)/dpX =d2(dpX/dt)/dp2X = 0 at each critically stable

steady-state. (1.27)

At a critically steady (stationary) state the left and right marginal stability
points coincide.

In the next few chapters, we shall formulate these kinetic criteria in terms
of thermodynamic concepts.

Several important issues need to be addressed in non-equilibrium thermo-
dynamics:

What are the thermodynamic functions that describe the approach of such
systems to a non-equilibrium stationary state, both the approach of each
intermediate species and the reaction as a whole?

How much work can be obtained in the surroundings of a system relaxing
to a stable stationary state?

How much work is necessary to move a system in a stable stationary state
away from that state?

What are the thermodynamic forces, conjugate fluxes and applicable ex-
tremum conditions for processes proceeding to or from non-equilibrium sta-
tionary states? What is the dissipation for these processes?

What are the suitable thermodynamic Lyapunov functions (evolution cri-
teria)?

What are the relations of these thermodynamic functions, if any, to ∆G?
What are the relations of these thermodynamic functions to the work that

a system can do in its approach to a stable stationary state?
What are the necessary and sufficient thermodynamic criteria of stability

of the various branches of stationary states?
What are the thermodynamic criteria of relative stability in the region

where there exist two or more branches of stable stationary states? What are
the necessary and sufficient thermodynamic criteria of equistability of two
stable stationary states?

What are the thermodynamic conditions of marginal stability?
What are interesting and useful properties of the dissipation?
We shall provide answers to some of these questions in Chap. 2 for one vari-

able systems, based on a deterministic analysis. In later chapters, we discuss
relevant experiments and compare with the theory.
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Then we address these same questions in Chap. 3 for multivariable systems,
with two or more intermediates. Now our approach takes inherent fluctuations
fully into account and we find a state function (analogous to ∆G) that satisfies
the stated requirements. We also present a deterministic analysis of multivari-
able systems in Chap. 4 and compare the approach and the results with the
fluctuational analysis. In Chap. 5 we turn to the study of reaction-diffusion
systems and the issue of relative stability of multiple stationary states. The
same issue is addressed in Chap. 6 on the basis of fluctuations, and in Chap. 7
we present experiments on relative stability.

The thermodynamics of transport properties, diffusion, thermal conduc-
tion and viscous flow is taken up in Chap. 8, and non-ideal systems are treated
in Chap. 9. Electrochemcial experiments in chemical systems in stationary
states far from equilibrium are presented in Chap. 10, and the theory for such
measurements in Chap. 11 in which we show the determination of the intro-
duced thermodynamic and stochastic potentials from macroscopic measure-
ments.

Part I concludes with the analysis of dissipation in irreversible processes
both near and far from equilibrium, Chap. 12.

There is a substantial literature on this and related subjects that we shall
cite and comment on briefly throughout the book.

Acknowledgement. A part of the presentation in this chapter is taken from ref. [12].
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2

Thermodynamics Far from Equilibrium: Linear
and Nonlinear One-Variable Systems

2.1 Linear One-Variable Systems

We begin as simply as possible, with a linear system, (1.5), repeated here

A⇔ X ⇔ B, (2.1)

with rate coefficients k1 and k2 for the rate coefficients in the forward and
reverse reaction of the first reaction, and similarly k3 and k4 for the second
reaction. The deterministic rate equation is (1.10), rewritten here in a slightly
different form,

dpX

dt
= (k1pA + k4pB) − (k2 + k3) pX (2.2)

for isothermal ideal gases; the pressures of A and B are held constant in an
apparatus as in Fig. 1.1 of Chap. 1. We denote the first term on the rhs of (2.2)
by t+X and the second term by t−X [1]. The pressure of pX at the stationary
state, with the rhs of (2.2) set to zero, is

ps
X

pX
=
t+X
t−X

=
t+s
X

t−X
. (2.3)

since t+X is a constant.
Now we need an important hypothesis, that of local equilibrium. It is as-

sumed that at each time there exists a temperature, a pressure, and a chemical
potential for each chemical species. These quantities are established on time
scales short compared with changes in pressure, or concentration, of chemi-
cal species due to chemical reaction. Although collisions leading to chemical
reactions may perturb, for example, the equilibrium distribution of molecu-
lar velocities, that perturbation is generally small and decays in 10–30ns, a
time scale short compared with ranges of reaction rates of micro seconds and
longer. There are many examples that fit this hypothesis well [2]. (A phenom-
enological approach beyond local equilibrium is given in the field of extended
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irreversible thermodynamics [3, 4], which we do not discuss here.) We thus
write for the chemical potential

µX = µ0
X +RT ln pX (2.4)

where µ0
X is the chemical potential in the standard state. Hence we have

µX − µs
X = −RT ln

t+X
t−X
. (2.5)

We define a thermodynamic state function φ [1]

φ (pX) = VII

∫
(µX − µs

X)dpX (2.6)

where VII is a volume shown in Fig. 1.1 of Chap. 1. This function has many
important properties. At the stationary state of this system φ is zero. If we
start at the stationary state and increase pX then dpX ≥ 0 and the integrand
is larger than zero. Hence φ is positive. Similarly, if we start at the station-
ary state and decrease pX then dpX and the integrand are both negative
and φ is positive. Hence φ is an extremum at the stable stationary state, a
minimum.

Before discussing further properties of this state function, we can proceed
to nonlinear one-variable systems, which also have only one intermediate.

2.2 Nonlinear One-Variable Systems

We write a model stoichiometric equation

A+ (r − 1)X
k1

�
k2

rX,

(s− 1)X +B
k4

�
k3

sX. (2.7)

and imagine this reaction occurring in the apparatus, Fig. 1.1 of Chap. 1. Since
this isothermal systems has chambers I and III at constant pressure and cham-
ber II at constant volume the proper thermodynamic function for the entire
system is a linear sum of Gibbs free energies for I and III and the Helmholtz
free energy for II. If in (2.7) s = 1 and r = 1 then we have the linear model
(2.1). If we set r = 3 and s = 1 then we have the Schlögl model, (1.12, 1.13).
We shall use the results obtained above for the linear model to develop re-
sults for the Schlögl model. The deterministic kinetic equation for the Schlögl
model was given in (1.14) and is repeated here

dpX

dt
= k1pAp

2
X + k4pB − (k2p

3
X + k3pX

)
. (2.8)
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The first two positive terms on the rhs of (2.8) are again given the symbol t+X
and the two negative terms the symbol t−X ; their ratio is

t+X
t−X

=
k1pAp

2
X + k4pB

k2p3
X + k3pX

, (2.9)

which we use to define the quantity p∗X

t+X
t−X

=
p∗X
pX

. (2.10)

Hence p∗X is

p∗X =
k1pAp

2
X + k4pB

k2p2
X + k3

. (2.11)

The quantity p∗X is the pressure in a reference state for which (2.10) holds.
If we compare (2.3) with (2.10) we see the similarity obtained by defining

p∗X . We gain some insight by comparing the linear model with the Schlögl
model in the following way: assign the same value of pA to each, the same
value of pB to each, and similarly for T, VI, VII, VIII, the equilibrium constant
for the A⇔ X reaction and that for the B ⇔ X reaction. Then the two model
systems are ‘instantaneously thermodynamically equivalent.’ If furthermore
t+X has the same value in the two systems at each point in time, and the same
for t−X , the two systems are ‘instantaneously kinetically indistinguishable.’
Hence following (2.5 and 2.6) we may write

µX − µ∗
X = RT ln

pX

p∗X
= −RT ln

t+X
t−X

(2.12)

and for our chosen thermodynamic function

φ∗ (pX) =
∫

(µX − µ∗
X) dpX . (2.13)

In the instantaneously indistinguishable linear system pX
∗ denotes the pres-

sure of X in the stationary state. The function in (2.13) is an excess work,
the work of moving the system from a stable stationary state to an arbitrary
value pX compared with the work of moving the system from the stationary
state of the instantaneous indistinguishable linear system to pX .

The integrand in (2.13) is a species-specific activity, which plays a funda-
mental role, as we now show.

The integrand in (2.13) is a state function and so is φ∗; as before, φ∗ is an
extremum at the stable stationary state, a minimum. We come to that from

(d (µx − µ∗
x) /dpx) |ss = −RT [(dt+x /dpx

)
ss
− (dt−x /dpx

)
ss

]
/
(
t+x |ss

)

= −VII

(
t+X |ss

)−1
[d (dpx/dt) /dpx] |ss (2.14)
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and (1.24), so that we have the following necessary and sufficient conditions
for the species-specific activity (the driving force for species X)

µx − µ∗
x = 0 at each steady-state,

d (µx − µ∗
x) /dpx > 0 at each stable steady-state,

d (µx − µ∗
x) /dpx < 0 at each unstable steady-state, and

d (µx − µ∗
x) /dpx = 0 at each marginally sable steady-state. (2.15)

In addition we have

d (µx − µ∗
x) /dpx = d2 (µx − µ∗

x) /dp2
x = 0 at each ciritically stable

steady-state. (2.16)

It is useful to restate these results in terms necessary and sufficient conditions
for the state function φ∗(pX), (2.13):

dφ∗

dpX
= 0 at each stationary state (2.17)

d2φ∗

dp2
X

≥ 0 at each stable stationary state with the equality sign

holding at marginal stability (2.18)

d2φ∗

dp2
X

≤ 0 at each unstable stationary state with the equality sign

holding at marginal stability (2.19)

Hence (2.17, 2.18) are necessary and sufficient conditions for the existence and
stability of nonequilibrium stationary states.

There are more conditions to be added after developing the connection of
the thermodynamic theory to the stochastic theory.

It may seem strange that in (2.12) the chemical potential difference on
the lhs is related to the logarithm of a ratio of fluxes and each flux consists
of two additive terms. We can find an interpreation by comparison with a
single reaction, that of A+B = C +D. We can write the flux in the forward
direction

t+ = kfV [A] [B] = V [A] [B] ῡABσ̄AB , (2.20)

where the brackets indicate concentrations of species, V is the reaction vol-
ume, ν̄AB is the average relative speed of A and B, and σ̄AB is the reaction
cross section, averaged with a weighting of the relative speed. Hence the term
kfV [A][B] is the flux of A and B to form C and D, and kf [C][D] is the flux
pf products to form reactants. The chemical potential difference between the
products and reactants is the driving force toward equilibrium and is propor-
tional to the logarithm of the ratio of the fluxes in the forward and reverse
direction, see (1.20). For the reaction mechanism (2.7), the flux of reactants to
form X comes from two sources: the reaction A with X and the reaction B to
form X. The total flux is the sum of fluxes from these two sources. Similarly,
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the flux of removing X has two sources. In all cases these fluxes are indications
of the respective escaping tendencies and hence the relation to the chemical
potentials. Thus (2.12) connects the lhs, the chemical driving force toward a
stable stationary state, to the ratio of sums of fluxes of X , the rhs.

If A and B are chosen such that the ratio of their pressures equals the
equilibrium constant then φ∗ equals ∆G and p∗X = ps.

2.3 Dissipation

For a spontaneously occurring chemical reaction at constant pressure, p, and
temperature, T , the Gibbs free energy change gives the maximum work, other
than pV work, that can be obtained from the reaction. For systems at constant
V, T it is the Helmholtz free energy change that yields that measure. If no work
is done by the reaction then the respective free energy changes are dissipated,
lost. For reactions of ideal gases run in the apparatus in Fig. 1.1 in Chap. 1,
we can define a hybrid free energy, M ,

M = µA

(
nI

A + nII
A

)
+ µB

(
nII

B + nIII
B

)
+ µxn

II
x

−RT (nII
A + nII

B + nII
x

)
. (2.21)

The time rate of change of M is

dM/dt = µAdnI
A/dt+ µB dnIII

B /dt+ µx dnII
x /dt (2.22)

if there is no depletion of the reservoirs I and III. According to conservation
of mass we have

0 = µ∗
x dnI

A/dt+ µ∗
xdnIII

B /dt+ µ∗
xdnII

x /dt, (2.23)

and therefore we may write

dM/dt =(µA − µ∗
x) dnI

A/dt+ (µB − µ∗
x) dnIII

B /dt

+ (µx − µ∗
x) dnII

x /dt. (2.24)

Hence we write for the dissipation D

D = −dM/dt = −dMres/dt− dMx/dt (2.25)

where the first term on the rhs is the dissipation due to the conversion of A
to X at the pressure p∗X and at the rate −dnI

A
dt and the conversion of X to B

at the same pressure of X and the rate dnIII
B

dt . The second term on the rhs of
(2.25) is

−dMx/dt = − (µx − µ∗
x) dnII

x /dt

= RT
(
t+x − t−x

)
ln
(
t+x /t

−
x

)

≡ Dx. (2.26)
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From this last equation it is clear that we have for DX

Dx = −dMx/dt ≥ 0 for all px, (2.27)

regardless of the reaction mechanism; the equality holds only at the station-
ary state.

As we shall discuss later, the total dissipation D is not an extremum at
stationary states in general, but there may be exceptions. DX is such an
extremum and the integral

φ∗ =
∫

(µX − µ∗
X) dnX (2.28)

is a Lyapunov function in the domain of attraction of each stable station-
ary state.

The dissipation in a reaction can range from zero, for a reversible reaction,
to its maximum of ∆G when no work is done in the surroundings. Hence the
dissipation can be taken to be a measure of the efficiency of a reaction in
regard to doing work. There is more on this subject in Chap. 12.

2.4 Connection of the Thermodynamic Theory
with Stochastic Theory

The deterministic theory of chemical kinetics is formulated in terms of pres-
sures, for gases, or concentrations of species for gases and solutions. These
quantities are macroscopic variables and fluctuations of theses variables are
neglected in this approach. But fluctuations do occur and one way of treating
them is by stochastic theory. This kind of analysis is also called mesoscopic in
that it is intermediate between the deterministic theory and that of statistical
mechanics. In stochastic theory, one assumes that fluctuations do occur, say
in the number of particles of a given species X , that there is a probability
distribution P (X, t) for that number of particles at a given time, and that
changes in this distribution occur due to chemical reactions. The transitions
probabilities of such changes are assumed to be given by macroscopic kinet-
ics. We shall show that the nonequilibrium thermodynamic functions φ for
linear systems, φ∗ (for nonlinear systems), the excess work, determines the
stationary, time-independent, probability distribution, which leads to a phys-
ical interpretation of the connection of the thermodynamic and stochastic
theory. At equilibrium, the probability distribution of fluctuations is deter-
mined by the Gibbs free energy change at constant T, p, which is the work
other than pV work.

We restrict the analysis at first to reaction mechanisms for which the
number of molecules of species X changes by ±1 in each elementary step.

We take the probability distribution to obey the master equation which
has been used extensively. For the cubic Schlögl model ((2.7) with r = 3,
s = 1) the master equation is [1, 5]
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∂P (X, t) /∂ = t+ (X − 1)P (X − 1, t) + t− (X + 1)P (X + 1, t)

− [t+ (X) + t− (X)
]
P (X, t) . (2.29)

The first two terms on the rhs yield an increase in X , the last two terms a
decrease in X .

The fluxes in this equation are

t+ (X) = c1AX (X − 1) /2! + c4B,

t− (X)c2X (X − 1) (X − 2) /3! + c3X, (2.30)

with the parameters ci related to the rate coefficients ki by

ki = V mi−1 (ci/nt!) for 1 ≤ i ≤ 4, (2.31)

where mi is the molecularity of the ith step and ni the molecularity in X .
From the master equation, we can derive the result that the average con-

centration, the average number of X in a volume V , obeys the deterministic
rate equation in the limit of large numbers of molecules.

The time-independent solution of the master equation is

Ps (X) = Ps (0)
X∏

i=1

t+ (i− 1)
t− (i)

, (2.32)

which by retention of only the leading term in the Euler-MacLaurin summa-
tion formula reduces to

Ps (X) = N exp
[∫ x

1

ln
t+ (y)
t− (y)

dy
]

(2.33)

andN is a normalization constant. The connection between the thermodynamic
and stochastic theory is established with the use of (2.12) to give

Ps (X) = N exp
[
− 1
RT

∫ x

(µx − µ∗
x) dX

]
, (2.34)

The Lyapunov function φ∗, (2.13), is both the thermodynamic driving force
toward a stable stationary state and determines the stationary probability
distribution of the master equation. The stationary distributions (2.33, 2.34)
are nonequilibrium analogs of the Einstein relations at equilibrium, which give
fluctuations around equilibrium.

There is another interesting connection [1]. We define P (X1, t1; X0, t0) to
be the probability density of observing X1 molecules in V at time t1 given
that there are X0 molecules at t0. This function is the solution of the master
equation (2.29) for the initial condition

P (X, t = t0) = δ(X −X0) . (2.35)
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The probability density can be factored into two terms, [1],

P (X1, t1;X0, t0) = F1 (X0 → X1)F2 (X1, X0, t1 − t0) , (2.36)

in which the first term on the rhs is independent of the path from X0 to X1

and independent of the time interval (t1 − t0). To the same approximation
with which we obtained (2.33) we can reduce the first term to

F1 (X0 → X1) = exp
[(

1
2

)∫ x1

x0

(
ln t+/t−

)
dX
]
, (2.37)

and find it to be of the same form as the probability distribution (2.33).
It contains the irreversible part of the probability density (2.36).

2.5 Relative Stability of Multiple Stationary
Stable States

For systems with multiple stable stationary states there arises the issue of
relative stability of such states. As in the previous section we treat systems
with a single intermediate and stoichiometric changes in X are limited to ±1.

In regions of multistability the stationary probability distribution is bi-
modal and is shown in Fig. 2.1 for the cubic Schlögl model.

Stable stationary states are located at maxima, labeled 1 and 3, and un-
stable stationary states at minima, labeled 2.

Consider now the ratio of the probability density (2.36), for a given tran-
sition from X1 to X2 to that of the reverse transition

P (X2, t2;X1, t1)
P (X1, t2;X2, t1)

= exp
[∫ 2

1

ln
t+x
t−x

dX
]

(2.38)

We obtain this equation with the use of (2.36, 2.37), once for the numerator
and once for the denominator on the lhs of (2.38), canceling the F2 terms, and
moving the remaining term in the denominator to the numerator. Equistability
of two stable stationary states, labeled now 1 and 3 to correspond to Fig. 2.1,
is defined by

P (X3, t;X1, 0)
P (X1, t;X3, 0)

= 1, (2.39)

which with the use of the second and third line of (2.26) we may also express as

∫ 3

2

Dx dt =
∫ 1

2

Dx dt. (2.40)

The integral of the species-specific dissipation from the unstable stationary
state 2 to the stable stationary state 3 equals, at equistability, to the integral
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Fig. 2.1. Plot of the integral in (2.34), marked φs vs. X for the Schlögl model,
(1.12, 1.13), with parameters: c1 = 3.10−10 s−1; c2 = 1.10−7 s−1; c3 = 0.33 s−1; c4 =
1.5.10−4s−1; and A = B. For curve (a) B = 9.8.106 ; for curve (b) B = 1.01.106 ; curve
(c) B = 1.04.106 . Curve (b) lies close to the equistability of the stable stationary
states 1 and 3; 2 marks the unstable stationary state

of the dissipation from the unstable stationary state 2 to the stable stationary
state 1, whereas the integral of the total dissipation for the limits in (2.40)
goes to infinity and that of the species-specific dissipation is finite. We can
restate (2.40) in terms of the excess work (see the first and third equation
of (2.26) ∫ 3

2

(µX − µ∗
X) dnII

X =
∫ 1

2

(µX − µ∗
X) dnII

X; (2.41)

at equistability the integral of the excess work from 2 to 3 equals the integral
of the excess work from 2 to 1. Equations (2.39–2.41) provide necessary and
sufficient conditions of equistability of stable stationary states.

The master equation has been investigated for a sequence of unimolecu-
lar (nonautocatalystic) reactions based on moment generating functions [6];
these yield Poissonian stationary distribution for single intermediate systems
in terms of the number of particles X of species X, with Xss that number in
the stationary state

Ps (X) =
[
(Xss)X /X !

]
exp (−Xss) . (2.42)

Our results are consistent with (2.41) as can be seen from the use of (2.13) and
(2.34), a change of variables to particle numbers X , and the use of Stirling’s
approximation
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Ps (X) = ℘ exp
[
− (kBT )−1 ×

∫ nx

(µx − µss
x ) dn′

x

]

= ℘ exp (X lnXss −X lnX +X)
= ℘ [(Xss)x /X !] . (2.43)

Here p is the normalization constant exp(−Xss). The formulation given in this
chapter has the advantage of the physical interpretation in terms of species-
specific thermodynamic driving forces and in terms of Liapunov functions;
further our formulation is generalizable to autocatalytic systems and many
variable systems.

2.6 Reactions with Different Stoichiometries

We analyze systems with stoichiometric changes in X other than ±1. We
begin by defining the flux

t±X =
∑

j

|νjX |t±j (2.44)

and again choose p∗X for any given pX so that we have

µX − µ∗
X = RT ln

(
t−X/t

+
X

)
. (2.45)

Let the reactions occur in the apparatus Fig. 1.1 of Chap. 1; then the rate of
change of the mixed free energy M is

dM/dt = µAdnI
A/dt+ µBdnIII

B /dt+ µXdnII
X/dt, (2.46)

and we need to consider conservation of mass. For example, for the reaction
mechanism

A � X, 2X � B

mass conservation requires

0 = µ∗
XdnI

A/dt+ 2µ∗
XdnIII

B /dt+ µ∗
XdnII

X/dt, (2.47)

so that we have
dM
dt

= (µA − µ∗
X)dnI

A/dt+ (µB − 2µ∗
X) dnIII

B /dt

+ (µX − µ∗
X) dnII

X/dt, (2.48)

The species-specific term in this equation is

−dMX/dt = − (µX − µ∗
X) dnII

X/dt

= RT
(
t+X − t−X

)
ln
(
t+X/t

−
X

)
= DX (2.49)

and DX ≥ 0 for all pX .
The relation to the stochastic theory does not generalize here for cases

without detailed balance except for the approach to equilibrium, [1].
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3

Thermodynamic State Function for Single
and Multivariable Systems

3.1 Introduction

In Chap. 2 we obtained a thermodynamic state function φ∗, (2.13), valid for
single variable non-linear systems, and (2.6), valid for single variable lin-
ear systems. We shall extend the approach used there to multi-variable sys-
tems in Chap. 4 and use the results later for comparison with experiments
on relative stability. However, the generalization of the results in Chap. 2 for
multi-variable linear and non-linear systems, based on the use of deterministic
kinetic equations, does not yield a thermodynamic state function. In order to
obtain a thermodynamic state function for multi-variable systems we need to
consider fluctuations, and now turn to this analysis [1].

We start with the master equation [2]

∂

∂t
PX (X, t) =

∑

r

[W (X− r, r)PX (X− r, t) −W (X, r)PX (X, t)], (3.1)

in which PX is the probability distribution of finding X particles (molecules)
in a given volume, and W (X, r) is the transition probability due to reac-
tion from X to X+r particles. Now we do a Taylor expansion of the term
W (X − r, r)P (X − r, t) around X

W (X − r, r)PX(X− r, t) = W (X, r)PX (X, t)

+
∞∑

m=1

(−1)m

m!
(r · ∇X)m [W (X, r)PX(X, t)] , (3.2)

and introduce the concentration vector:

x = X/V ; (3.3)

then we have the reduced relations

∇X =
1
V
∇x, PX (X, t)∆X=Px (x, t) dx,∆X=1, w (x, r;V )=

1
V
W (xV, r),

(3.4)
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where V is the volume of the system. We substitute these relations into (3.2)
and obtain

W (X − r, r)PX (X − r, t) = dxW (xV, r)Px (x, t)

+ dx
∞∑

m=1

(−1)m

m!

(
1
V

r · ∇x

)m

[W (xV, r)Px (x, t)] . (3.5)

Next we introduce the momentum operator

p̂ = − 1
V
∇x (3.6)

with which we can write

1+
∞∑

m=1

(−1)m

m!

(
1
V

r · ∇x

)m

. . . . . = 1+
∞∑

m=1

1
m!

(r · p̂)m
. . . . . = exp (r · p̂) . . . .

(3.7)

The master equation becomes:

1
V

∂

∂t
Px (x, t) =

∑

r

w (x, r;V ) [exp (r · p̂) − 1]Px (x, t) = Ĥ+ (x, p̂)Px (x, t) ,

(3.8)

where we have defined the Hamiltonian operator (2–4)

Ĥ+ (x, p̂) . . . =
∑

r

w (x, r;V ) [exp (r · p̂) . . . .− 1] . (3.9)

Thus we have formally, and exactly, converted the master equation to a
Schroedinger equation. This has the substantial advantage that we can apply
well-known approximations in quantum mechanics to obtain solutions to the
master equation. In particular we refer to the W.K.B. approximation valid
for semiclassical cases, those for which Planck’s constant formally approaches
zero. The equivalent limit for (3.8) is that of large volumes (large numbers
of particles). Hence we seek a stationary solution of (3.8), that is the time
derivative of PX(X, t) is set to zero, of the form

P (n)
s (X) = C(n) exp [−V Sn(X)] (3.10)

where Sn will be shown to be the classical action of a fluctuational trajectory
accessible from the nth stable stationary state. We substitute (3.10) into the
stationary part of (3.8) and obtain

H

[
x,
∂Sn(x)
∂x

]
= 0, (3.11)
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the equation satisfied by Sn(X) with the Hamiltonian function (not operator)

H(x,p) =
∑

r

w(x, r)[exp(r · p) − 1], (3.12)

and the boundary condition

Sn(xs
n) = 0. (3.13)

These equations show that it is the classical action Sn that satisfies the
Hamiltonian–Jacoby equation (3.11) with coordinate x, momentum p =
∂Sn (x)/∂x, and Hamiltonian equal to zero (stationary condition). The Hamil-
tonian equations of motion for the system are

dx
dt

=
∑

r

rw(x, r) exp(r.p) (3.14)

and
dp
dt

= −
∑

r

[exp(r.p) − 1]
∂w(x, r)
∂x

. (3.15)

From these relations we determine the action

Sn(x) =
∫ 0

−∞
dt p · dx/dt (3.16)

for the fluctuational trajectory starting at the nth stable stationary state xs
n

with p = 0 at t = −∞ and ending at x at t = 0.

3.2 Linear Multi-Variable Systems

Let us apply these equations to a linear reaction system [1]

A
k1

�
k2
X

k3

�
k4
Y

k5

�
k6
B (3.17)

run in an apparatus as in Fig. 1.1 of Chap. 1, with the pressures of A and B
held constant. The deterministic kinetic equations are

dX
dt

∣
∣∣
det

= k1A− (k2 + k3)X + k4Y = −[(k2 + k3)(X −Xs)] − k4(Y − Ys)]

(3.18)

and

dY
dt

∣
∣
∣
det

= k3X − (k4 + k5)Y + k6B = −[(k4 + k5)(Y − Ys)] − k3(X −Xs)].

(3.19)
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Table 3.1. Mechanics steps and r values for A → X → Y → B

Step X Y W (r, X)

1 +1 0 k1A
2 −1 0 k2X
3 −1 +1 k3X
4 +1 −1 k4Y
5 0 −1 k5Y
6 0 +1 k1B

For the reaction mechanism in (3.17) there are six elementary reaction steps
with different values of r and transition probabilities, and these are listed in
Table 3.1, taken from [1].

Now we use the Hamiltonian equations of motion to obtain the fluctua-
tional trajectories:

dX
dt

∣
∣
∣
fl

= k1A− exp(px) − k2X exp(−px) − k3X exp(py − px)

+k4Y exp(px − py),
dY
dt

∣∣
∣
fl

= k3X − exp(py − px) − k4Y exp(px − py)

−k5Y exp(−py) + k6B exp(py),
dpx

dt
= k2[1 − exp(−px)] + k3[1 − exp(py − px)],

dpy

dt
= k4[1 − exp(px − py)] + k5[1 − exp(−py)]. (3.20)

We see that we obtain coupled non-linear equations for this reaction mecha-
nism with linear rate laws. There are several ways of solving these equations.
We show that Hamilton’s equations have the solution

px = ln(X/Xs) (3.21)

and
py = ln(Y/Ys), (3.22)

which gives the momenta on the fluctuational trajectory in terms of the stable
stationary state concentrations of the deterministic kinetic equations. To show
this we substitute (3.21) and (3.22) into the first two equations of (3.20) and
obtain

dX
dt

∣
∣
∣
fl

= (k2 + k3)(X −Xs) − k3[Xs(Y − Ys)/Ys]

and
dY
dt

∣
∣
∣
fl

= (k4 + k5)(Y − Ys) − k4[Ys(X −Xs)/Xs]. (3.23)
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Next we substitute (3.21) and (3.22) into the last two equations of (3.20) with
the result

dpx

dt
= −(1/X)[k2(X −Xs) − k3(XsY/Ys −X)]

= (1/X)
dX
dt

∣
∣
∣
fl
,

dpy

dt
= −(1/Y )[k4(YsX/Xs − Y ) + k5(Y − Ys)]

= (1/Y )
dY
dt

∣
∣
∣
fl
, (3.24)

which agrees with differentiation of (3.21) and (3.22) with respect to time.
The Hamiltonian of the system, (3.12), is explicitly

H(x,p) = V −1{k1A[exp(px) − 1] + k2X [exp(−px) − 1]

+k3X [exp(py − px)] + k4Y [exp(px − py) − 1]

+k5Y [exp(−py) − 1] + k6B[exp(py) − 1]}. (3.25)

Substituting (3.21) and (3.22) into (3.25) yields

H(x,p) = V −1{k1A(X/Xs − 1) + k2X(Xs/X − 1)

+k3X [XsY/(XYs) − 1] + k4Y [XYs/(XsY ) − 1]

+k5Y (Ys/Y − 1) + k6B(Y/Ys − 1)},
= V −1[(k1A− k2Xs − k3Xs + k4Ys)(X/Xs)

+(k3Xs − k4Ys − k5Ys + k6B)(Y/Ys)

−(k1A− k2Xs − k5Ys + k6B)]. (3.26)

In the second equation of (3.26) the terms have been arranged into three
groups according to

dXs/dt = 0, dYs/dt = 0, (3.27)

and
dXs/dt+ dYs/dt = 0, (3.28)

all of which vanish and hence the Hamiltonian vanishes, H(x,p) = 0.
Equation (3.23) determine the fluctuational trajectory in the space of concen-
trations (X,Y ). This trajectory is in general not the same as the time-reversed
deterministic path from given initial values of (X,Y ) to the stable station-
ary state, except for the case for which the concentrations (A,B) have their
equilibrium ratio. The master equation for this linear system does not have
detailed balance unless (A,B) have their equilibrium ratio. For a discussion
of detailed balance, microscopic reversibility and mesoscopic balance see the
end of Chap. 18.
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From the above relations we find the action, (3.16), given by

Sn(x) =

0∫

−∞
dt
[
ln(X/Xs)

dx
dt

|fl + ln(Y/Ys)
dy
dt

|fl
]

=
∫ x,y

s

[ln(X/Xs)dx + ln(Y/Ys)dy]. (3.29)

From the second of these equations we see that the integrand is an exact
differential and hence the action is independent of the path of integration
in concentration space. The action is a state function. This result has been
reported in a number of publications [2, 5–7].

The physical interpretation of the action in (3.29) comes from consider-
ation of the free energy M , see Chap. 1, (2.21) for the three compartments,
Fig. 1.1 in Chap. 1

M = GI +AII +GIII. (3.30)

For differential changes in A,X, Y,B the differential change in M is

dM = µA dnA + µX dnX + µY dnY + µB dnB. (3.31)

The differential excess free energy change dφ is the difference between dM
the system with arbitrary concentrations of X and Y and dMs for the system
in the stationary state. Hence we have

dφ = (µX − µs
X)dnX + (µY − µs

Y )dnY . (3.32)

When we compare (3.32) with the second equation of (3.29) we see that

dφ/kT = V dS, (3.33)

This important physical result was first given in [1]: the mathematical concept
of the action can be identified with the thermodynamic excess work.

On a fluctuational trajectory the differential excess free energy is posi-
tive and zero at a stable stationary state. We show this by considering the
differential action

dS

dt

∣
∣
∣∣
∣fl

= p · dx/dt|fl − H(x,p) =
∑

r

w(x, r)[(r · p) exp(r · p) − exp(r · p) + 1].

(3.34)

The transition probabilities ω(x, r) are all positive and the square bracket
is larger than zero except for p = 0, that is at the stable stationary state.
Therefore we have

dS
dt

|fl ≥ 0 (3.35)

and hence from (3.36) the excess differential free energy dφ is positive in
general and zero at stationary states.
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Suppose we prepare this system at a given (x, y) and let it proceed along
the deterministic trajectory back to the stationary state. Along this path dφ
is negative which follows from the deterministic variation of the action in time

dS
dt

|det = ∇S · dx
dt

|det = p · dx
dt

|det = p · dx
dt

|det −H(x,p)

=
∑

r

w(x, r)[(r · p) − exp(r · p) + 1], (3.36)

which holds since the Hamiltonian is zero. For all real values of r ·p the square
bracket in the second line of (3.36) is negative unless p = 0. And therefore

dS
dt

|det ≤ 0 (3.37)

with the equality holding only at a stationary state. Hence an excess work is
required to move a system from a stable stationary state, and excess work can
be done by a system relaxing towards a stable stationary state. The action and
the excess work are both Liapunov functions; they serve for non-equilibrium
systems the role the Gibbs free energy serves for systems going to equilibrium.

We note here that (3.35) and (3.37) hold for non-linear multi-variable
systems as well; no assumption of a linear reaction mechanism was made in
their derivation.

For linear systems in (3.29) and (3.33) the first derivatives of the excess
work with respect to species numbers or concentrations x, y are zero at each
stationary state, and the second derivative is equal to or greater than zero at
each stable stationary state, and equal to or less than zero at each unstable
stationary state, in exact parallel for single variable systems, (2.17)–(2.19).

The fluctuational trajectory away from a stationary state to a given point
in concentration space (x, y) may differ from the deterministic path from that
point back to the stationary state, for systems without detailed balance. Of
course, the free energy change must vanish for a closed loop in the space
of (A,B,X,Y) but need not vanish for a closed loop in the restricted space
of (x, y).

3.3 Nonlinear Multi-Variable Systems

We turn next to consideration of a non-linear multi-variable system, for ex-
ample the model

A+ (m− 1)X
k1�
k2
mX,

rX + (s− 1)Y
k3�
k4

(r − 1)X + sY,

nY
k5�
k6

(n− 1)Y +B. (3.38)
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The stationary distribution is given by (3.10) and (3.16) with p and dx/dt
obtained from solutions of Hamilton’s equations. We now choose our reference
state not as in Chap. 2, but in analogy with 3.21 and 3.22 we identify a
reference state by using the equations

px = ln(X/X0)

py = ln(Y/Y 0). (3.39)

Equation (3.38) yield unique values of (X0, Y 0) in the absence of certain cross-
ings of fluctuational trajectories in the (X,Y ) space, called ‘caustics’, see [8].
There may be more than one fluctuational trajectory which starts at p = 0
at a stable stationary state and passes through a given (X,Y ). These trajec-
tories will have different values of p and the one with the lowest value of p
will determine the action in the thermodynamic limit, the contributions from
other trajectories vanishing in that limit.

Hence we find for the action the expressions

Sn(x) =

0∫

−∞
dt
[
ln(X/X0)

dx
dt

|fl + ln(Y/Y 0)
dy
dt

|fl
]

=
∫ x,y

s

[ln(X/X0)dx + ln(Y/Y 0)dy]

= 1/RT
∫ x,y

s

[(µX − µX
0)dx + (µY − µY 0)dy]

= (1/V kT )
∫ X,Y

s

dφ0. (3.40)

Here the reference state (X0, Y 0) replaces the starred reference state of
Chap. 2 (see (2.11)). The important point is that the action and the excess
work in (3.40) are state functions for single and multi-variable systems. Both
X0 and Y 0 are functions of X and Y in general, but the integrand in (3.40)
is an exact differential, because p is the gradient of the action, (3.16). For
the starred reference state the excess work is a state function only for single
variable systems.

The fluctuational trajectory away from a stationary state to a given point
in concentration space (X,Y ) in general differs from the deterministic path
from that point back to the stationary state for systems without detailed
balance. We show this in some calculations for the Selkov model; in (3.38)
we take m = n = r = 1, s = 3; other parameters are given in [1], p. 4555.
Figure 3.1 gives some results of these calculations.

S1 and S3 are stable stationary states (stable foci); S2 denotes an unstable
stationary state. The solid line from S2 to S3 indicates the deterministic tra-
jectory. The other solid line through S2 is the deterministic separatrix, that
is the line that separates deterministic trajectories, on one side going towards
S2 and on the other side going towards S3. The dotted lines are fluctuational
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Fig. 3.1. From [1] S1 and S3 are stable stationary states (stable foci); S2 denotes
an unstable stationary state. The solid line from S2 to S3 indicates the deterministic
trajectory. The other solid line through S2 is the deterministic separatrix, that is
the line that separates deterministic trajectories, on one side going towards S2 and
on the other side going towards S3. The dotted lines are fluctuational trajectories:
one from S3 to S2 and the others proceeding from S2 in two different directions. The
fluctuational trajectory need not differ so much from the reverse of the deterministic
trajectory, as we shall show for some sets of parameters in Chap. 4.

trajectories: one from S3 to S2 and the others proceeding from S2 in two dif-
ferent directions. The fluctuational trajectory need not differ so much from
the reverse of the deterministic trajectory, as we shall show for some sets of
parameters in Chap. 4.

For one-variable systems the fluctuational trajectory away from the sta-
tionary state is the same as the deterministic trajectory back to the stationary
state. Therefore for such systems φ∗ equals φ0.

In summary, we define the state function φ0 with the use of (3.40)

φ0 =
∫ X,Y

s

dφ0 (3.41)

and list the following results (compare with the results listed in Chap. 2 for
single variables systems).

φ0 is a state function. It is a potential for the stationary probability distri-
bution of the master equation, and is a Lyapunov function in the domain of
each stable stationary state. See also [8–14]. It is an extremum at stationary
states; a miminum (zero) at stable stationary states, a maximum at unsta-
ble stationary states, (3.35). For a fluctuational trajectory φ0 increases away
from the stable stationary state, (3.35); for a deterministic trajectory towards
a stable stationary state it decreases, (3.36). The first derivative of φ0 is larger
than zero at each stable stationary state, smaller than zero at each unstable
stationary state. The function φ0 provides necessary and sufficient criteria for
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the existence and stability of stationary states. φ0 serves to determine relative
stability of multi-variable homogeneous systems in exactly the same way as
shown in (2.38) for single variable systems. Comparison with experiments on
relative stability requires consideration of space-dependent (inhomogeneous)
systems and that subject is discussed in Chap. 5.

The specification of the reference state X0, Y 0 requires solution of the
master equation for a particular reaction mechanism. This in general demands
numerical solutions, which can be lengthy. We therefore return in Chap. 4 to
a presentation of multi-variable systems by means of starred reference states,
in continuation of Chap. 2.

The state function φ0 can be determined from macroscopic electrochemical
measurements, as well as other measurements, see Chap. 11.

Acknowledgement. This chapter is based largely on [1].
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4

Continuation of Deterministic Approach
for Multivariable Systems

In Chap. 2 we analyzed single variable linear and non-linear systems with sin-
gle and multiple stable stationary states by use of the deterministic equations
of chemical kinetics. We introduced species-specific affinities and the concept
of an excess work; with these we showed the existence of a thermodynamic
state function φ∗ and compiled its many interesting properties, see (2.15–
2.19), including its relation to fluctuations as given by the stationary solution
of the master equation, (2.34). We continue this approach here by turning to
systems with more than one intermediate, [1].

We begin again with linear reactions and consider the reaction mechanism

A
k1

�
k2

X
k3

�
k4

Y
k5

�
k6

B, (4.1)

run in the apparatus, Fig. 1.1 of Chap. 1. Both X and Y are present in volume
II; the pressures of A and B are held constant. The hybrid free energy M of
the system (see (2.21)) is

M = GI +AII +GIII, (4.2)

The pressures of X and Y vary in time according to the mass-action kinetic
equations

dpX

dt
= t+X − t−X ,

dpY

dt
= t+Y − t−Y , (4.3)

where the reaction rates are

t+X = k1pA + k4pY ,

t+Y = k3pX + k6pB,

t−X = (k2 + k3)pX ,

t−Y = (k4 + k5) pY . (4.4)
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There is a unique stationary state for this system in which the pressures of X
and Y are

ps
X = (k1pA + k4p

s
Y ) / (k2 + k3)

ps
Y = (k3p

s
X + k6pB) / (k4 + k5) (4.5)

We identify species-specific affinities for X and Y , (µs
X − µX) and (µs

Y − µY ),
both of which vanish at the stationary state. They are related to the reaction
rates by the equations

(µX − µs
X) = −RT ln

(
t+s
X /t−X

)

(µY − µs
Y ) = −RT ln

(
t+s
Y /t−Y

)
. (4.6)

We can find an interpretation of the species-specific affinities with a thought
experiment carried out in the apparatus shown in Fig. 4.1.

Each reservoir is separated from the central reaction chamber by a mem-
brane permeable only to the species in that reservoir. C,C′,C′′ are catalysts
for the three reactions in (4.1), all of which occur only in the central chamber.
From [1].

Consider a change of the thermodynamic state of the entire system in
which one mole of X at the pressure pX is formed from ∆nA moles of A, ∆nB

Fig. 4.1. Schematic drawing of a four piston model. The pressures of A, X, Y, B are
held constant by external forces on the respective pistons
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moles of B, and ∆nY moles of Y . The change in the free energy of the entire
system is

∆M (pX) = −µA∆nA − µB∆nB − µY ∆nY + µX . (4.7)

For the four piston apparatus the change inM , (4.7), is the same as the change
in G, since all reservoirs are at constant pressure and temperature. Similarly
we may consider the change in M at the pressure of the stationary state, for
which we have

∆M (ps
X) = −µA∆nA − µB∆nB − µY ∆nY + µs

X . (4.8)

Hence we see that the species-specific affinity is an excess free energy, an
excess work,

∆M (pX) − ∆M (ps
X) = (µX − µs

X) (4.9)
with the relations to the kinetic expressions given by (4.6). A similar inter-
pretation holds for (µY − µY

s).
The function

φ =
∫ nX , nY

ns
X , ns

Y

(µX − µs
X) dnX + (µY − µs

Y ) dnY (4.10)

is a thermodynamic state function and a Liapunov function for the system.
The stability property listed in Chap. 2, (2.17) and (2.18), hold for the linear
two variable system and the function in (4.10) determines the fluctuations in
the stationary state of the master equation for this system, the analogue of
(2.34). Next we study a non-linear system with multiple intermediates and
multiple stationary

A+ (m− 1)X
k1

�
k2

mX,

qX + (r − 1)Y
k3

�
k4

(q − 1)X + rY,

nY
k5

�
k6

(n− 1)Y +B. (4.11)

states, which, for example for m,n, q = 1, r = 3, is the Selkov model which
may have multiple stationary states and limit cycles. The reactions occur in
an apparatus like Fig. 4.2, in volume II.

The macroscopic, the deterministic, kinetic equations for this system are

dpX/dt = t+X − t−X ,

t+X = k1pAp
m−1
X + k4p

q−1
X pr

Y ,

t−X = k2p
m
X + k3p

q
Xp

r−1
Y ,

dpY /dt = t+Y − t−Y ,

t+Y = k3p
q
Xp

r−1
Y + k6p

n−1
Y pB,

t−Y = k5p
n
Y + k4p

q−1
X pr

Y (4.12)
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Fig. 4.2. Schematic diagram for two-piston model. From [1]

for reactions of ideal gases (and for ideal liquids if expressed in terms of
concentrations).

We need again the concept of thermodynamic and kinetic indistinguisha-
bility of the given non-linear system with a specified linear system: the state
variables, equilibrium constants, and quantities derivable from them are iden-
tical and so are the kinetic terms. The species-specific affinities, marked by a
star, must satisfy two conditions: (µX −µ∗

X) and (µY −µ∗
Y ) must each vanish

at all stationary states, and the values of each bracket must be identical in
all instantaneously indistinguishable systems. This can be achieved with the
substitutions

k1p
m−1
X = k†1,

k2p
m−1
X = k†2,

k3p
q−1
X pr−1

Y = k†3,

k4p
q−1
X pr−1

Y = k†4,

k5p
n−1
Y = k†5,

k6p
n−1
Y = k†6. (4.13)

Here the dagger denotes the instantaneously indistinguishable linear system.
Since pX = p†X , we have

p∗X = ps†
X ,

p∗Y = ps†
Y . (4.14)

The substitution of (4.14) into (4.5) yields the equations necessary for obtain-
ing the two unknowns p∗X and p∗Y

p∗X =

[
k1 (pX)m−1

pA + k4 (pX)q−1 (pY )r−1
p∗Y
]

[
k2 (pX)m−1 + k3 (pX)q−1 (pY )r−1

] ,

p∗Y =

[
k3 (pX)q−1 (pY )r−1 p∗X + k6 (pY )n−1 pB

]

[
k4 (pX)q−1 (pY )r−1 + k5 (pY )n−1

] . (4.15)
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It is useful to define the quantities

t+∗
X = k1 (pX)m−1 pA + k4 (pX)q−1 (pY )r−1 p∗Y ,

t+∗
Y = k3 (pX)q−1 (pY )r−1p∗X + k6 (pY )n−1

pB

(4.16)

and we recall (2.12) which we can use here.
Hence as in Chap. 2, we may define a function φ

φ =
∫ nX , nY

ns
X ns

Y

(µX − µ∗
X) dnX + (µY − µ∗

Y ) dnY

= −V II

∫ PX ,pY

ps
X ,ps

Y

ln
(
t+∗
X /t−X

)
dpX + ln

(
t+∗
Y /t−Y

)
dpY . (4.17)

If pA and pB are chosen such that their ratio differs from the equilibrium
constant of the system and either X or Y are in an autocatalytic step then the
starred quantities are functions ofX,Y and φ is not a state function. Neither is
φ in (4.17) a solution to the stationary form of the master equation, although
in some cases it can be a useful approximation (see below). This differs from
the earlier results where we found φ to be a state function for any system
for which equilibrium is the only stationary state; for any non-autocatalytic
system for which there is only one stationary state; and for any system with
only one intermediate, whether there is autocatalysis or not. In all these three
case φ provides a solution to the time independent master equation.

As is the cases in earlier chapters, the function φ in (4.17) is zero at station-
ary states, increases on removal from stable stationary states and decreases
from any initial given state on its approach to the nearest stable stationary
state along a deterministic kinetic trajectory. These specifications make φ a
Liapunov function in the vicinity of stable stationary states, which indicates
the direction of the deterministic motion. Hence for every variation from a
stable stationary state we have

(δφ)pXs ,pY s > 0. (4.18)

This equation serves as a necessary and sufficient criterion for the existence
and stability of stationary states for non-autocatalytic and auto-catalytic sta-
tionary states in multi-variable systems.

The hypothesis that the function φ, (4.17), provides a solution to the sta-
tionary master equation, time-independent, requires a guess: we know that
the deterministic trajectory is the most probable path from some initial X,Y
to the closest stable stationary state; what, however, is the most probable
fluctuational trajectory from that stable state to X,Y ? The guess is that
this fluctuational trajectory is the reverse of the deterministic relaxation from
X,Y to the stationary state. This guess (approximation) is sometimes good,
but can also be quite bad. An example of each is given in the next two figures.
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In Fig. 4.3, [2], we plot a cut through the stationary solution of the master
equation for selected parameters of the Selkov model vs. the variable Y ; the
dotted line is a numerical solution of the probability distribution and the solid
line is that distribution calculated from (4.15–4.18) with the approximation
described in this paragraph and the same parameters for the Selkov model.
The approximation gives a reasonable estimate. A different impression is gath-
ered from the plot shown in Fig. 4.4: A most probable fluctuational trajectory
obtained from numerical integration of the stationary solution of the master

Fig. 4.3. Plot of the stationary probability distribution of the Selkov model: a cut
at constant X vs. Y . The parameters used are given in [2], see the caption to Fig. 8
in that reference. From [2]

Fig. 4.4. Plot in the concentration space of the variables x, y of the Selkov model:
(a) optimal fluctuational trajectory from a stable stationary state (x, y)st to a given
point (x, y)p and (b) the deterministic return to the stationary state. From [3]
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equation, again for the Selkov model, with parameters given in [3], p. 5745.
There is a clear difference between that most probable fluctuational trajec-
tory away from the stable stationary state and the deterministic return to
that state.

We shall use the results of this chapter when we come to the analysis
of reaction diffusion systems and a discussion of the relative stability of two
stationary stable states based on theory and experiments.

Acknowledgement. This chapter is based on the results reported in [1–3].
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5

Thermodynamic and Stochastic Theory
of Reaction–Diffusion Systems

Relative Stability of Multiple Stationary States

So far we have considered only homogeneous reaction systems in which con-
centrations are functions of time only. Now we turn to inhomogeneous reaction
systems in which concentrations are functions of time and space. There may
be concentration gradients in space and therefore diffusion will occur. We shall
formulate a thermodynamic and stochastic theory for such systems [1]: first we
analyze one-variable systems and then two- and multi-variable systems, with
two or more stable stationary states, and then apply the theory to study rel-
ative stability of such multiple stable stationary states. The thermodynamic
and stochastic theory of diffusion and other transport processes is given in
Chap. 8.

Let us take a one-variable system, such as the Schlögl model

A+ 2X � 3X,
X � B (5.1)

for which the deterministic kinetics in a homogeneous system is

dX
dt

= t+(X) − t−(X), (5.2)

where X denotes the total number of molecules of that species in a given
constant volume and t+, t− are the kinetic fluxes that increase and decrease
X , respectively.

For inhomogeneous systems the number densities (concentrations) are
functions of time and spatial coordinates. In a one-dimensional system
with spatial coordinate z we discretize the space into many boxes, labelled
with . . . i− 1, i, i+ 1, see Fig. 5.1.

The increase and decrease of the number of particlesXi are due to reaction
and diffusion into and out of box i and can be written

dXi

dt
= t+(Xi) − t−(Xi) + t+Di − t−Di, (5.3)
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with the first two terms on the rhs denoting increase and decrease due to
reaction, and the third and fourth term are fluxes of diffusion into and out of
box i

t+Di
= d(Xi−1 +Xi+1)

t−Di
= 2dXi, (5.4)

where d is a constant diffusion coefficient. In the continuous limit we have

dx(z)
dt

= t+[x(z)] − t−[x(z)] +D
∂2x(z)
∂z2

, (5.5)

where D = l2d is the diffusivity of the system and l is the length of a box.
Changes in the reactant A and product B take place at constant temperature
and pressure (pA, pB) and changes in X at constant temperature and volume;
hence the differential hybrid free energy dMi for box i and the auxiliary
reservoirs is

dMi = µ(Ai)dAi + µ(Xi)dXi + µ(Bi)dBi, (5.6)

where Ai and Bi are the number of molecules of reactant A and product B
in box i.

Next, we seek a linear system which is thermodynamically and kinetically
equivalent to the system described by (5.3)

dXL
i

dt
= ai − biX

L
i + t+L

Di − t−L
Di . (5.7)

The superscript L denotes the Linear equivalent system. The instantaneous
equivalencies are guaranteed by the requirements

ai = t+(Xi) and bi =
t−(Xi)
Xi

. (5.8)

The stationary solution of (5.7) is

XLS
i = XL

i

ai + t+LS
Di

biXL
i + t−L

Di

, (5.9)

where
t+LS
Di = d

(
XLS

i−1 +XLS
i+1

)
. (5.10)

The difference between the free energy change dM at an arbitrary state
XL

i and that at the stationary state XLS
i under the conditions of given

Ai, Bi, dAi, dBi, and dXi is the excess work for box i in this equivalent
linear system

d̃Φi

(
XL

i

)
= dMi − dM s

i

=
{
µ
(
XL

i

)
− µ
(
XLS

i

)}
dXL

i = kT ln
XL

i

XLS
i

dXL
i , (5.11)
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where {
µ
(
XL

i

)
− µ
(
XLS

i

)}
(5.12)

is the driving force towards the stationary state. On the lhs of (5.11) the curl
on d indicates that the differential is inexact.

In a non-linear system the driving force is the potential difference between
state Xi and a reference state X∗

i , which is the stationary state of the equiv-
alent linear system at the specified value of Xi. Thus from (5.8) and (5.9)
we have

X∗
i = XLS

i = Xi
t+(Xi) + t+∗

Di

t−(Xi) + t−Di

, (5.13)

where
t+∗
Di = d(X∗

i−1 +X∗
i+1).

The excess work for box i of the non-linear system is

d̃Φi(Xi) = {µ(Xi) − µ(X∗
i )}dXi = kT ln

Xi

X∗
i

dXi, (5.14)

which is obtained by substitution of superscript ‘S’ in (5.11) by a superscript
star ‘∗’. The total excess work is the sum of that work in all the boxes

Φ[{Xi}] = kT
∑

i

∫ xi

ln
X ′

i

X ′∗
i

dX ′
i

= kt
∑

i

∫ xi

ln
t−(X ′

i) + t−Di

t+(X ′
i) + t+∗

di

dX ′
i. (5.15)

The number of X molecules in each box i is an independent variable Xi and
hence the present reaction–diffusion system is isomorphic to a multivariable
homogeneous system. To evaluate Φ in (5.15) a path of integration needs to
be specified because Φ is not a state function.

There are two limiting cases which we can easily check. In the homogeneous
limit there is no diffusion; hence we have only one box for which

t+D = t−D = 0; (5.16)

and therefore (5.15) reduces to

Φ(X) = kT

∫ x

ln
X ′

X ′∗ dX ′ = kT

∫ x

ln
t−(X ′)
t+(X ′)

dX ′. (5.17)

This is the result for a homogeneous chemical reaction, see (2.12) and (2.13).
In the limit of no reaction we set

t+(Xi) = t−(Xi) = 0, (5.18)
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and (5.15) reduces to

Φ[{Xi}] = kT
∑

i

∫ xi

ln
X ′

i

X ′∗
i

dX ′
i

= kT
∑

i

∫ xi

ln
t−Di

t+∗
Di

dX ′
i; (5.19)

this agrees with the analysis for diffusion only, see appendix.
In the limit of a continuous distribution in the spatial variable z in (5.15)

that equation becomes

Φ[x(z)] = S

∫
dz

[∫ x(z)

dx′{µ(x′) − µ(x′∗)}
]

, (5.20)

where S is the area of the system perpendicular to the z-axis.
Reaction–diffusion systems, linear or not, can be mapped into multi-

variable reaction systems, as stated after (5.15). For such multi-variable re-
action systems which can be linearized in the vicinity of a stable stationary
state, we have at that state

dΦ
dXi

∣∣
∣
s

det
= 0, (5.21)

where the subscript ‘det’ denotes the deterministic path as the path of inte-
gration. The time derivative of Φ satisfies the equation

d
dt
Φ ≤ 0, (5.22)

which is proven in Appendix at the end of this chapter. Φ is a minimum at
stable stationary states and is a Liapunov function in the vicinity of such
states.

For linear reaction mechanisms Φ can be shown to be the solution of the
stationary master equation (see Appendix A in [1]); we shall have no need
for it.

5.1 Reaction–Diffusion Systems with Two Intermediates

We now consider reaction-diffusion systems with two intermediates and mul-
tiple stationary states, which may be nodes or foci.1 For a real eigenvalue that
approach is monotonic; for a complex eigenvalue with negative real part that
approach is one of damped oscillations. In the absence of cross diffusion the
deterministic rate equations in one dimension, z, are
1 A node (focus) is a stationary state which is approached in time described by an

eigenvalue which is real (complex, with negative real part).
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Fig. 5.1. Schematic apparatus for reaction–diffusion system in one spatial dimen-
sion. The boxes 1 through N are separated from a constant-pressure reservoir of A
by a membrane permeable only to A, and similarly for the reservoir of B. From [1]

dx
dt

= t+x (x, y) − t−x (x, y) +Dx
∂2x

∂z2
;

dy
dt

= t+y (x, y) − t−y (x, y) +Dy
∂2y

∂z2
. (5.23)

with the usual notation. With discretization of the system into boxes, as in
Fig. 5.1, we write

dXi

dt
= t+x (Xi, Yi) − t−x (Xi, Yi) + dx(Xi+1 +Xi−1 − 2Xi);

dYi

dt
= t+y (Xi, Yi) − t−y (Xi, Yi) + dy(Yi+1 + Yi−1 − 2Yi). (5.24)

5.1.1 Linear Reaction Systems

For linear reaction systems, for example

A
k1

�
k2

X
k3

�
k4

Y
k5

�
k6

B, (5.25)

the chemical fluxes must take the form

t+X(Xi, Yi) = aX + bXYi; t−X(Xi, Yi) = cXXi;
t+Y (Xi, Yi) = ay + byXi; t−Y (Xi, Yi) = cyYi (5.26)

For the example in (5.25) we have

t+X(Xi, Yi) = k1A+ k4Yi, t
−
X(Xi, Yi) = (k2 + k3)Xi,

t+Y (Xi, Yi) = k6B + k3Xi and t−Y (Xi, Yi) = (k4 + k5)Yi (5.27)
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The differential change in the hybrid free energy in box i and and the reser-
voirs is

dMi = µ(Ai)dAi + µ(Xi)dXi + µ(Yi)dYi + µ(Bi)dBi, (5.28)

where dXi and dYi are the spontaneous changes of those molecules in box i
as given by the deterministic kinetic equations, and dAi and dBi are the cor-
responding changes in the reservoirs. For fixed A, B, dAi, dBi dXi, dYi the
difference between the differential hybrid free energy change at an arbitrary
state (Xi, Yi) and that at the stationary state

(
XS

i , Y
S
i

)
yields the differential

excess work for box i

dΦi = dMi − dMS
i

= {µ(Xi) − µ
(
XS

i

)
}dXi + {µ(Yi) − µ

(
Y S

i

)
}dYi

= kT ln
Xi

XiS
dXi + kT ln

Yi

YiS
dYi, (5.29)

where

(XS
i , Y

S
i ) =

[
ax + bxY

S
i + dx(XS

i+1 +XS
i−1)

(cx + 2dx)
,

ay + byX
S
i + dy

(
Y S

i+1 + Y S
i−1

)

(cy + 2dy)

]

(5.30)

is the stationary solution of the linear reaction diffusion system. We can then
write dΦi as

dΦi = kT ln
(cx + 2dx)Xi

ax + bxY S
i + dx(XS

i+1 +XS
i−1)

dXi

+kT ln
(cy + 2dy)Yi

ay + byXS
i + dy(Y S

i+1 + Y S
i−1)

dYi. (5.31)

The total excess work is the sum over all boxes i

Φ[{Xi, Yi}] =
∑

i

(∫ Xi

dX ′
i{µ(X ′

i) − µ(X ′S
i )}

+
∫ Yi

dY ′
i {µ(Y ′

i ) − µ
(
Y ′S

i

)}
)

. (5.32)

For linear systems the integral in (5.31) is path independent and therefore Φ
is a state function. The first derivative of Φ with respect to Xi is

∂

∂Xi
Φ[{Xi, Yi}] = µ(Xi) − µ(XS

i ), (5.33)
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which is zero at the stable stationary state; and similarly the first derivative
with respect to Yi. The second derivative of Φ with respect to Xi is

∂2

∂X2
i

Φ[{Xi, Yi}] = RT
1
Xi

> 0 (5.34)

that is larger than zero, and hence Φ is a minimum at the stable stationary
state. The derivative with respect to time is

d
dt
Φ[{Xi, Yi}] =

∑

i

(
dXi

dt
{µ(Xi) − µ(XS

i )}

+
dYi

dt
{µ(Yi) − µ(Y S

i )}
)
. (5.35)

The right hand side of (5.34) is negative semidefinite, so that the system tends
towards the minimum of Φ, that is towards the stable stationary state. Thus
the function Φ is a Liapunov function of the system. Further, Φ satisfies the
stationary solution of the master equation in the thermodynamic limit. All
these properties assure that the function Φ provides nessecary and sufficient
conditions for the existence and stability of stationary states.

5.1.2 Non-Linear Reaction Mechanisms

Next we analyse chemical reaction systems with autocatalytic steps in which
the kinetic reaction terms may be non-linear functions of the concentrations of
the intermediate species. We have in mind, once again, a reaction mechanism
as shown in (4.11). We require that the number of X molecules changes by
±1 or 0 in each elementary reaction step, and similarly for Y . For each set of
(Xi, Yi) we can construct at each instance a thermodynamically and kinet-
ically equivalent system; the mapping from the non-linear to the equivalent
linear system is unique. The linear equivalent system is chosen as shown in
(5.26), but now the coefficients satisfy the relations given in Table 5.1.

Table 5.1. Relations of the terms in the rate equations of a non-linear system,
(4.11) and (4.12), to the kinetically equivalent linear system for each set of variables,
see (5.26). From (1)

Linear Non-linear

axi = k1AXm−1
i

bxi = k4X
q−1
i Y r−1

i

cxi = k2X
m−1
i + k3X

q−1
i Y r−1

i

ayi = k6BY n−1
i

byi = k3X
q−1
i Y r−1

i

cyi = k5Y
n−1

i + k4X
q−1
i Y r−1

i
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The reference state (X∗
i , Y

∗
i ) is defined by the equations

X∗
i =

axi + bxiY
∗
i + dx(X∗

i+1 +X∗
i−1)

(cxi + 2dx)

=
k1AX

m−1
i + k4X

q−1
i Y r−1

i Y ∗
i + dx(X∗

i+1 +X∗
i−1)

k2X
m−1
i + k3X

q−1
i Y r−1

i + 2dx

(5.36)

Y ∗
i =

ayi + byiX
∗
i + dy(Y ∗

i+1 + Y ∗
i−1)

(cyi + 2dy)

=
k6BY

n−1
i + k3X

q−1
i Y r−1

i X∗
i + dy(Y ∗

i+1 + Y ∗
i−1)

k5Y
n−1
i + k4X

q−1
i Y r−1

i + 2dy

. (5.37)

As the system approaches a stationary state the starred variables approach
their values of the stationary state. For the Selkov model the stationary state
of the linear equivalent system is

(X ′S
i , Y

′S
i ) = (X∗

i , Y
∗
i )

=
(
k1A+ k4Y

2
i Y

∗
i + dx(X∗

i+1 +X∗
i−1)

(k2 + k3Y 2
i + 2dx)

,

k6B + k3Y
2
i X

∗
i + dy(Y ∗

i+1 + Y ∗
i−1)

(k5 + k4Y 2
i + 2dy)

)
, (5.38)

where the prime indicates the corresponding value of the linear equivalent
system.

The differential excess work for the equivalent linear system is given in
(5.29), and the instantaneous differential excess work for the non-linear sys-
tem is

d̃Φi = {µ(Xi) − µ(X∗
i )}dXi + {µ(Yi) − µ(Y ∗

i )}dYi

= kT ln
Xi

X∗
i

dXi + kT ln
Yi

Y ∗
i

dYi, (5.39)

where again the curl on d on the lhs indicates an inexact differential. The
quantities in brackets on the first line of (5.39) are the species-specific driving
forces for species X and Y towards the reference state (X∗

i ,Y
∗
i ). Formally

the function Φ for non-linear systems can be determined by changing the
superscript ‘S’, which indicates the stationary state for the linear system,
(5.29) to a ‘∗’ defined in (5.36) and (5.37) with corresponding relations given
in Table 5.1. The total excess work is
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Φ =
∑

i

∫ XiYi

d̃Φi

=
∑

i

∫ XiYi

{µ(Xi) − µ(X∗
i )}dXi

+{µ(Yi) − µ(Y ∗
i )}dYi

= kT
∑

i

∫ XiYi

ln
Xi

X∗
i

dXi + ln
Yi

Y ∗
i

dYi. (5.40)

The function Φ is determined when we choose a path of integration, such as
the deterministic path or its reverse. Φ is zero at the stationary state and its
first derivatives at the stationary state are zero

∂Φ

∂Xi

∣
∣∣
S

=
∂Φ

∂Yi

∣
∣∣
S

= 0. (5.41)

Since the non-linear system is indistinguishable from the instantaneously
equivalent linear system, we have

dΦ
dt

∣
∣
∣
non−linear

=
dΦ
dt

∣
∣
∣
linear

. (5.42)

The rhs of this equation is negative semi-definite (Appendix) and we have the
result

dΦ
dt

∣
∣
∣
non−linear

≤ 0 (5.43)

at every state (Xi, Yi); the equality holds only at the stationary state. Φ
decreases in time and at the stationary state it is a minimum. Hence Φ is a
Liapunov function and serves to determine the necessary and sufficient condi-
tions for the existence and stability of stationary states for the systems under
consideration here.

5.1.3 Relative Stability of Two Stable Stationary States
of a Reaction–Diffusion System

Consider a reaction system with two stable stationary states. We wish to con-
sider the issue of relative stability of these two states for stated external con-
straints. We do that routinely for systems at or near equilibrium, say water
(liquid) and water (vapour), at one atmosphere pressure and temperature T .
For T < 100◦C the water (l) is more stable and the Gibbs free energy of water
(l) is less than that of water vapour (v); if two phases of water, one liquid, the
other vapour, are placed in contact with each other then the vapour will con-
dense to form liquid, the more stable phase. If T > 100◦C then the reverse is
true, and Gv < Gl. A similar argument holds for two stable stationary states
of a reaction diffusion system.
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Fig. 5.2. Schematic apparatus for determining relative stability of two stable sta-
tionary states of a reaction–diffusion system. For description see text. From [1]

Imagine the following schematic apparatus. Take a semi-infinite tube and
fill it with one stable stationary state, call it 1, and take another semi-infinite
tube and fill it with the other stable stationary state, call it 3. Both tubes are
at the same external constraints, of temperature, pressure and concentration
of species. Place the tubes lengthwise together, see Fig. 5.2a, at first with a
partition between them.

Then remove the partition, Fig. 5.2b; reaction and diffusion will occur
and during some transient time a reaction diffusion front may form in an
interphase region, Fig. 5.2c, and travel into the less stable state. At external
constraints corresponding to equistablity the velocity of propagation of the
reaction–diffusion front is zero.

We now show that the concept of excess work as developed in this and
earlier chapters serves as a criterion of equistability, in the same way as the
Gibbs free energy serves that purpose for systems at equilibrium. Once a
reaction diffusion front is established, see Fig. 5.3 we may calculate the excess
work of creating that front from phase 1 and, separately calculate the excess
work of establishing that front from phase 3.

If these two excess works are equal than we expect equistability and zero
velocity of front propagation. If the excess work to form the front from phase
1 is less than that necessary to form the front from phase 3, then we ex-
pect phase one to be more stable than phase 3. To do that calculation we
divide the interphase region into N boxes of a specified length L, with the
boundary conditions of the concentrations on the left side of the interphase
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Fig. 5.3. Plot of concentration vs. position z. The initial concentration profile is
shown by the solid line; the space with negative z is filled initially with stationary
state 1, the space with positive z is filled initially with stationary state 3. The dotted
line indicates the interface region. From [1]

region set at the concentration of state 1, and those on the right side with
the concentrations of state 3. The initial concentrations in the interphase re-
gion are set to those of phase 1 3. In each case diffusion and reaction will
occur in each box i, and each box follows a different deterministic path from
the initial stationary state 1 or 3 to the stable front condition in box i. We
obtain these paths from integrating numerically the 2N ordinary differential
equation

dXi

dt
= t+x (Xi, Yi) − t−x (Xi, Yi) + dx(Xi+1 +Xi−1 − 2Xi),

dYi

dt
= t+y (Xi, Yi) − t−y (Xi, Yi) + dy(Yi+1 + Yi−1 − 2Yi),

(i = 1, . . . , N). (5.44)

Along the calculated trajectories we evaluate (X∗
i , Y ∗

i ) from (5.35) and
(5.36). Then we can obtain the excess work from the last line of (5.40)

∆Φ(1 → 3) = kT
∑

i

∫ phase 3

phase 1

ln
Xi

X∗
i

dXi + ln
Yi

Y ∗
i

dYi. (5.45)

We can split the expression on the rhs into two parts

∆Φ(1 → 3) = kT
∑

i

∫ St.Fr.

phase 1

{
ln
Xi

X∗
i

dXi + ln
Yi

Y ∗
i

dYi

}

− kT
∑

i

∫ St.Fr.

phase 3

{
ln
Xi

X∗
i

dXi + ln
Yi

Y ∗
i

dYi

}

= ∆Φ(1 → St.Fr.) − ∆Φ(3 → St.Fr.). (5.46)
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The sign of ∆Φ determines the prediction of the theory of the direction of
propagation of the interface: if we have

∆Φ(1 → St.Fr.) > ∆Φ(3 → St.Fr.), (5.47)

then 3 is the more stable phase and the interface region moves in the direction
which annihilates phase 1. For the opposite case we have

∆Φ(1 → St.Fr.) < ∆Φ(3 → St.Fr.) (5.48)

for which phase 1 is more stable and the interface region moves in the direction
which annihilates phase 3. For the case

∆Φ(1 → St.Fr.) = ∆Φ(3 → St.Fr.) (5.49)

the thermodynamic theory predicts equistability of the two phases and the
interface does not move.

5.1.4 Calculation of Relative Stability in a Two-Variable Example,
the Selkov Model

In this section we compare the predictions of the thermodynamic theory for
relative stability in a two-variable example, the Selkov model, with the results
obtained from numerical integration of the reaction diffusion equation. The
model, constructed for early studies of glycolysis, has two variables, X and
Y , and two constant concentrations. The reaction mechanism is

A↔ X

X + 2Y ↔ 3Y
Y ↔ B (5.50)

and the reaction–diffusion equations in one dimension (z) are

∂x

∂t
= k1A+ k4y

3 − k2x− k3y
2x+Dx

∂2x

∂z2
,

∂y

∂t
= k6B + k3y

2x− k5y − k4y
3 +Dy

∂2y

∂z2
, (5.51)

where k1 is the rate coefficient of the first reaction in (5.49) in the forward
direction, k2 for the first reaction in the backward reaction, and so on; x and
y are the concentrations of X and Y , respectively. For certain ranges of the
parameter k6B and the other parameters (see [1] p. 3451) there are three
stationary states, two of which are stable and labelled 1 and 3, and one of
which is unstable and labelled 2. In an arrangement as in Fig. 5.2, initially
the left side is in phase 1, the right side in phase 3. The direction of prop-
agation is determined by all the kinetic parameters, the concentrations of
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Fig. 5.4. Plots of concentration profiles of X and Y vs. distance z during the
front propagation to the right in the Selkov model. The solid line is the initial
concentration profile; the dotted lines are concentration profiles with a spacing of
500 in arbitrary time units. For values of parameters see the caption to Fig. 4 in [1].
From [1]

A and B, and the ratio of the diffusivities δ = Dy/Dx. In Fig. 5.4 we show
an example of the solutions of the reaction diffusion equations for this sys-
tem.

For certain values of the parameters a stationary front is obtained; the
interface propagates with zero velocity. Figure 5.5 shows a plot, the solid line,
of zero propagation velocity of the interface in the parameter space of k6 and δ.
Above that line the interface propagates to the right (see Fig. 5.2) and below
that line to the left. For large δ (the ratio of the diffusivities) the curve of zero
propagation velocity is nearly independent of δ, but for δ < 1 that velocity
depends on both δ and k6.

The predictions of the thermodynamic theory presented in this chapter
for equistability of two stable stationary states for the Selkov model is shown
in Fig. 5.6. The results of the theory run parallel to the calculations and ap-
proach them as the length of the interface region is increased. To show this
quantitatively we define the relative error

relative error =
|numerical result − theoretical result|

numerical result
(5.52)
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Fig. 5.5. The solid line is a plot of zero velocity of the interface between phase 1
and 3 calculated for the Selkov model. Above the solid line the interface moves to
the right, below the solid line to the left. From [1]

Fig. 5.6. Comparison of the predictions of equistability from the thermodynamic
theory (b, c, d) with the numerical solution (a) repeated from Fig. 5.5. The theo-
retical results are given for different lengths of the interface region L, see Fig. 5.5:
(b) 6L, (c) 2L, (d) L. The curves run parallel to the numerical calculations and
approach them as the length of the interface region, and the number of boxes, are
increased. From [1]
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Fig. 5.7. Percent error according to (5.51) vs. the length of the interface region.
See text. From [1]

and plot in Fig. 5.7 the percent error according to (5.51) vs. the length of the
interface region, L, for two values of the ratio of the diffusion coefficients.
The error is less than 0.2% when L exceeds 4.6× 104, in units of length as in
the diffusion coefficient DX .

A system such as the Selkov model may have many Liapunov functions.
We note that any Liapunov function of a system with multiple stationary
states may serve as a criterion of relative stability [2]. Moreover the derivative
of the Liapunov function with respect to L, the length of the interphase region,
may also serve as such a criterion.

An interesting aside: In Fig. 5.4 we see the annihilation of a homogeneous
stationary state by another homogeneous stationary state. It need not be that
way always. In Fig. 5.8 we see another possible result for an enzymatic two-
variable system with two stable stationary states [3] and an initial condition
as in Fig. 5.4. Here, however, the interface propagates to the left but a space-
dependent structure develops in the region on the right. The calculated inho-
mogeneous pattern is similar to that observed in dendritic solidification [4].
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Fig. 5.8. Calculation of front propagation for a two-variable enzymatic reaction
model with concentrations S and P plotted vs. distance X. The concentration pro-
files are given at time intervals of ∆t = 400 in arbitrary units. From [3]

Acknowledgement. This chapter is based primarily on [1].

Appendix

The time derivative of the excess free energy Φ of a linear or linearized one-
variable inhomogeneous system is

d

dt
Φ[{Xi, Yi}] = kT

N∑

i=1

(
ln

t−i
t+S
i

{t+i − t−i }
)
, (A1)

where

t+i = ai + d(Xi−1 +Xi+1)

= t+S
i + d(Xi−1 −XS

i−1) + d(Xi+1 −XS
i+1),

t−i = (bi + 2d)Xi = t−S
i + (bi + 2d)(Xi −XS

i ). (A2)
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Substitution of (A2) into (A1) yields

d
dt
Φ = kT

N∑

i=1

ln
(

1 +
Xi −XS

i

XS
i

)
[d(Xi−1 −XS

i−1)

+ d(Xi+1 −XS
i+1) − (bi + 2d)(Xi −XS

i )]. (A3)

With the use of the inequality

ln(1 +X) ≤ X, (A4)

we have

d
dt
Φ ≤− kT

N∑

i=1

Xi −XS
i

XS
i

[d(Xi−1 −XS
i−1)

+ d(Xi+1 −XS
i+1) − (bi + 2d)(Xi −XS

i )]

= − kT (X −XS)TA(X −XS), (A5)

where

(X −XS) =

⎡

⎢
⎣

X1 − XS
1

X2 − XS
2

...

⎤

⎥
⎦ (A6)

and A is a rectangular matrix which can be written as the product of two
other matrices

A = BC (A7)

with

B =

⎡

⎢
⎢
⎣

1/XS
1 0 . . . 0

0 1/XS
2 0 . . .

.
.

⎤

⎥
⎥
⎦ (A8)

and

C =

⎡

⎢
⎢
⎣

b1 + 2d −d
−d b2 + 2d −d

. . .
. . .

⎤

⎥
⎥
⎦ . (A9)

The matrices B and C are both positive definite and so is their product, the
matrix A, When (X − XS) is not zero, the rhs of (A5) is negative definite;
and when it is zero, that is at the stationary state, the rhs of (A5) is zero.
Therefore the rhs of (A5) is negative semi-definite. Thus we have shown that

d
dt
Φ ≤ 0. (A10)
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6

Stability and Relative Stability of Multiple
Stationary States Related to Fluctuations

In Chap. 5 we discussed reaction diffusion systems, obtained necessary and
sufficient conditions for the existence and stability of stationary states, de-
rived criteria of relative stability of multiple stationary states, all on the basis
of deterministic kinetic equations. We began this analysis in Chap. 2 for ho-
mogeneous one-variable systems, and followed it in Chap. 3 for homogeneous
multi-variable systems, but now on the basis of consideration of fluctuations.
In a parallel way, we now follow the discussion of the thermodynamics of re-
action diffusion equations with deterministic kinetic equations, Chap. 5, but
now based on the master equation for consideration of fluctuations.

We study again the example of the Selkov model

A
k1�
k2

X 2Y +X
k3�
k4

3Y Y
k5�
k6

B, (6.1)

which is the same as (5.49). This system may have multiple stationary states
and we consider an arrangement as shown in Fig. 6.1.

As reaction and diffusion occurs an interface develops, which may travel
either to the right or to the left, depending on which of the stationary states
is more stable. If the two stationary states are equally stable then the velocity
of the interface region is zero. We again discretize the space in the interface
region and label the increments with the index i

L = N∆z zi = i∆z z0 = 0, zN = L, (6.2)

where L is the length of the N segments each of width ∆z. The deterministic
kinetic equations are [1]

dXi

dt
= k1A− k2Xi − k3XiY

2
i + k4Y

3
i +

DX

∆z2
(Xi+1 − 2Xi +Xi−1)

dYi

dt
= k6B − k5Yi − k3XiY

2
i + k4Y

3
i +

DY

∆z2
(Yi+1 − 2Yi + Yi−1) (6.3)
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Fig. 6.1. Plot of concentration vs. position z. The initial concentration profile is
shown by the solid line; the space with negative z is filled initially with stationary
state 1, the space with positive z is filled initially with stationary state 3. The dotted
line denotes the interphase region. Repeated from Chap. 5

written here for the discreet case. As boundary conditions we take that the
concentrations of X , Y are held fixed at the left end of the system at the
values of one stationary state, and at the right end at the values of the other
stationary state.

We wish to consider fluctuations in concentrations of the intermediate
species and proceed, as in Chap. 3, with the master equation [2]

∂P
(−→
X,

−→
Y ; t
)

∂t
=
∑

rx,ry

[
W
(−→
X −−→r X ,

−→
Y −−→r Y ;−→r X ,

−→r Y

)
P
(−→
X,

−→
Y ; t
)

−W
(−→
X,

−→
Y ;−→r X ,

−→r Y

)
P
(−→
X,

−→
Y ; t
)]
,

(6.4)

where the sum is over the elementary reactions listed in Table 6.1 for the
Selkov model.

The notation is close to that in Chap. 3. The concentrations in the N
boxes are denoted by vectors with arrows over the symbols. The magnitudes
of the changes in X and Y are given by r (see text after (3.1)). We use again
the eikonal approximation according to which the stationary probability of
the nth stationary state is given by,

P (n)
(−→
X,

−→
Y
)

= C(n) exp
(
−Sn

(−→
X,

−→
Y
)
,

Sn

(−→
X

(n)
st ,

−→
Y

(n)
st

)
= 0,

H
(−→x ,−→y ;∇−→x sn (−→x ,−→y ) ,∇−→y sn (−→x ,−→y )

)
= 0,

H(−→x ,−→y ;−→p x,
−→p y) =

∑

rx,ry

w(−→x ,−→y ;−→r x,
−→r y)(exp(−→r x · −→p x + −→r y · −→p y) − 1),

−→p x ≡ ∇−→x sn(−→x ,−→y ),−→p y ≡ ∇−→y sn(−→x ,−→y ), (6.5)
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Table 6.1. Elementary reactions for a Sel’kov model system distributed in one
dimensiona

Elementary reaction rx and ry W (x, y; rxry)

A ⇁ Xi rx,i = +1 kiA
Xi ⇀ A rx,i = −1 kiXi

Xi + 2Yi ⇀ 3Yi rx,i = −1 kiXiY
2

i

ry,i = +1
3Y1 ⇁ Xi + 2Y1 rx,i = +1 kiY

2
i

ry,i = −1
Yi ⇀ B ry,i = −1 kiYi

B ⇁ Yi ry,i = +1 kiB
X0 ⇀ X1 rx,i = +1 dxX0

X1 ⇀ X0 rx,i = −1 dxX1

Y0 → Y1 ry,i = +1 dyY0

Y1 ⇁ Y0 ry,i = −1 dyY1

Xi ⇀ Xi+1 rx,i = −1 dyXi

rx,i+1 = +1
Xi+1 ⇀ Xi rx,i = +1 dyXi+1

rx,i+1 = −1
Yi ⇀ Yi+1 ry,i = −1 dyYi

ry,i+1 = +1
Yi+1 ⇁ Yi ry,i = +1 dyYi+1

ry,i+1 = −1
a All reactions including species with an index i denote N reactions, one for each
box. The terms W are the transition probabilities in the master equation, (6.4)

the first line of (6.5). The action Sn at the stationary state is zero, the second
line. The Hamiltonian function is zero for the most probable fluctuational
trajectory and the conjugate momentum is the gradient of the action. Next,
we define the reduced quantities

−→x ≡ −→
X/Ω, −→y ≡ −→

Y /Ω, w (−→x ,−→y ;−→r x,
−→r y) ≡W

(−→
X,

−→
Y ;−→r x,

−→r y

)
Ω (6.6)

and
sn (−→x ,−→y ) ≡ Sn

(−→
X,

−→
Y
)
/Ω, (6.7)

where Ω is the volume of the system, and the dot product in (6.5) has the
usual vector meaning

−→
f · −→g ≡

∑N

i=1
figi (6.8)

and the sum is over all the N boxes.
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The Hamiltonian equations of motion are

ẋi =
∑

rx,ry

rx,iw(−→x ,−→y ;−→r x,
−→r y) exp(−→r x · −→p x + −→r y · −→p y),

ẏi =
∑

rx,ry

rx,iw(−→x ,−→y ;−→r x,
−→r y) exp(−→r x · −→p x + −→r y · −→p y),

ṗx,i = −
∑

rx,ry

(exp(−→r x · −→p x + −→r y · −→p y) − 1)∇x,iw(−→x ,−→y ;−→r x,
−→r y),

ṗy,i = −
∑

rx,ry

(exp(−→r x · −→p x + −→r y · −→p y) − 1)∇x,iw(−→x ,−→y ;−→r x,
−→r y), (6.9)

and the sum over rx, ry goes over all elementary reactions listed in Table 6.1.
The action is obtained from the first line in (6.10)

sn(−→x (t),−→y (t)) =
∫ t

t0

dt′(−→p x · −̇→x + −→p y · −̇→y )

=
∫ t

t0

dt′
∑

rx,ry

(−→r x · −→p x + −→r y · −→p y)w(−→x ,−→y ;−→r x,
−→r y)

× exp(−→r x · −→p x + −→r y · −→p y)

=
∫ t

t0

dt′
∑

rx,ry

[
(−→r x · −→p x + −→r y · −→p y)

× exp(−→r x · −→p x + −→r y · −→p y)

+ 1 − exp(−→r x · −→p x + −→r y · −→p y)
]
w(−→x ,−→y ;−→r x,

−→r y).

(6.10)

We have subtracted H(x, p) = 0 in the third line of (6.10). We use the in-
equality

x exp(x) + 1 − exp(x) ≥ 0

and the fact that w is always positive to prove that along a fluctuational path
away from a stationary state we have

dsn(−→x (t),−→y (t))
dt

|flue ≥ 0 . (6.11)

We need to prove one more important fact that we obtain from the equations
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dsn (−→x ,−→y )
dt

∣
∣∣
∣
det

= ∇−→x sn (−→x ,−→y )
d−→x
dt

∣
∣∣
∣
det

+ ∇−→y sn (−→x ,−→y )
d−→y (−→x ,−→y )

dt

∣
∣∣
∣
det

=
∑

rx,ry

−→p x · −→r xw (−→x ,−→y ;−→r x,
−→r y)

+ −→p y · −→r yw (−→x ,−→y ;−→r x,
−→r y)

=
∑

rx,ry

(−→p x · −→r x + −→p y · −→r y + 1

− exp(−→p x · −→r x + −→p y · −→r y))w(−→x ,−→y ;−→r x,
−→r y), (6.12)

where we have made use of the relations

p = ∇sn(x) and H(x, p) = 0.

Finally, with the inequality

x+ 1 − exp(x) ≤ 0,

we see that
dsn(−→x ,−→y )

dt
|det ≤ 0 . (6.13)

This proves that the stationary solution of the master equation, sn(x, y), is
a Lyapunov function for the deterministic path from (x, y) to the stable sta-
tionary state.

In Chap. 3 we made the connection between the stationary solution of the
master equation and the thermodynamic excess work, a state function, Φ0.
For a system with two intermediates, the variables (x, y) we can write

ds =
1

kTV
dφ0

= (µx − µx0) dnx,fl + (µy − µy0) dny,fl, (6.14)

where (x0, y0) refer to a reference state given by

px = ln(x/x0),

py = ln(y/y0), (6.15)

which hold for an equivalent linear system. The displacements on the rhs of
(6.14) are along the most probable fluctuational path. The momentum p is
the gradient of the action, and therefore ds and dφ0 are exact differentials.

If we think of the interphase region divided into N boxes, then the state
function of the total excess work is the sum of that in each box

Φ0(X,Y ) =
∫ (X,Y )

s

N∑

i=1

kTV dφ0
i

= kTV

N∑

i=1

[∫ (X,Y )

s

dXi ln
(
Xi/X

0
i

)
+ dYi ln

(
Yi/Y

0
i

)
]

(6.16)



64 6 Stability and Relative Stability of Multiple Stationary States

The reference state is determined as in the prescription for the homogeneous
case, but now in the full 2N dimensional case.

Figure 6.1 shows the developed interface region, the dotted line. At equi-
stability this line does not move. At equistability translation of the dotted
line does not change Φ0. If the stationary state 1 (SS1) is slightly more stable
than the stationary state 3 (SS3), then the deterministic motion of the front
is a translation to the right. Since Φ0 is a Lyapunov function, ∆Φ0 for this
process must be negative. Similarly for the opposite case, 3 slightly more sta-
ble than 1, ∆Φ0 is also negative. Hence at equistability the limiting value of
∆Φ0 for a translation along the position z must be zero.

The change in the excess work for establishing the stable front (SF) from
SS1 equals at equistability the change in excess work of establishing the stable
front from SS3

∆Φ0(SS1 → SF) = ∆Φ0(SS3 → SF). (6.17)

Thus the stationary probability distribution of the master equation in the
eikonal approximation is a Lyapunov function, which gives necessary and suf-
ficient conditions of the existence and stability of non-equilibrium stationary
states and provides a measure of relative stability on the basis of inhomoge-
neous fluctuations, (6.17).

Acknowledgement. This chapter is based on the results in refs. [1] and [2].
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Experiments on Relative Stability in Kinetic
Systems with Multiple Stationary States

7.1 Multi-Variable Systems

We start with experiments on a multi-variable system, the bromate oxidation
of ferroin, [1], also called the minimum bromate oscillator. The bistability and
chemical oscillations of this system were characterized in [2].

The goal of these experiments is the measurement of the front propagation
of one of the two stable stationary states into the other, see Chap. 5 partic-
ularly Sects. 5.1.3 and 5.1.4 and Figs. 5.2–5.7. From such measurements we
can determine equistability conditions for the two stationary states where the
front propagation velocity is zero. We thus obtain kinetic and thermodynamic
conditions for the coexistence of the two stationary states.

Other suggestions have been made concerning the measurement of relative
stability. One such suggestion [3] was based on the connections of two con-
tinuous stirred tank reactors, CSTRs, each filled with one or the other stable
stationary state; the final state of both CSTR is predicted to be the more sta-
ble stationary state. However, the final state has been shown theoretically [4]
and experimentally [5,6] to depend also on the strength and manner of mixing
of the CSTRs, and therefore is not a useful, direct measure of relative stability.

We assume that the reaction mechanism of this reaction given by Noyes
et al. (NFT) [7] is adequate, although recognized to be perhaps over-simplified:

BrO −
3 + Br− + 2H+ → HOBr + HBrO2,

HBrO2 + Br− + H+ → 2HOBr,

HOBr + Br− + H+ → Br2 + H2O,

HBrO2 + BrO −
3 + H+ → 2BrO .

2 + H2O,

BrO .
2 + Fe(phen)3

2+ + H+ → Fe(phen)3
3+ + HBrO2,

HBrO2 → HOBr + BrO −
3 + H+.

We measured bistability (1) for this reaction and the results are shown
in Fig. 7.1.
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Fig. 7.1. Measured hysteresis in our reaction system [1]. Plot of the redox potential
of Br−, EPt, as a function of the flow rate coefficient kf (in units of reciprocal
residence times, the time spent by a volume element in the laminar flow reactor
(LFR)). Filled dots represent one of the stable stationary states (the oxidized state)
and empty dots the other stable state, the reduced state. From [1]

Fig. 7.2. Schematic diagram of the apparatus. Each solution, one corresponding to
one stable stationary state and the other to the other stationary state, is stored in
one of two continuous-stirred tank reactors (CSTR) and pumped at a determined
and variable rates through the laminar flow reactor (LFR), where they are brought
in contact with each other in a sharp well-defined boundary. For the remainder of
the definitions see the text. From [1]

For an apparatus we choose one to be related to the schematic versions
given in Chap. 5. Two solution mixtures, one corresponding to one of the sta-
ble stationary states and the other to the other stationary state, are flowed
through a laminar flow reactor [1], Fig. 7.2, in two very thin (1mm) streams
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Fig. 7.3. Intensity profile across the interface of the two stationary states brought
in contact in the laminar flow reactor. Both solutions flowed through the reactor at
a rate such that there is no time for diffusion to occur. This measurement is taken
prior to the start of the experiment itself. From [1]

in contact with each other on one edge of each solution. There is hardly
any mixing due to flow, see Fig. 7.3, which shows measurements of the sharp
interface, of extent less than 0.5mm, between the two layers. In these exper-
iments the blue (oxidized) stationary state is more stable than the reduced
state. After a transient period, to establish stationary conditions, the flows of
the two streams are stopped and diffusion occurs across the interface, since
the two stationary states have different concentrations of the various species.
Two time scales are of importance here: the rate of front propagation of one
solution into the other, and the rate of change of concentrations in the stopped
solutions. From various estimates we determined that the concentrations of
the solutions due to homogeneous chemical reactions in each of the streams
changed but little in about 60 s. Hence measurements of front propagation of
one solution into the other was restricted to such times. The measurements
were made by light absorption with an interference filter (Corion) and an ab-
sorption maximum at 490 nm that converted the red/blue image to a contrast
enhanced black/white image. The light intensity is measured and recorded in
a charge coupling device (CCD) and then processed by computer.

The experimental results are shown in Fig. 7.4.
In an experiment we measured the front propagation five times for each

flow rate. The five velocities at each flow rate are averaged and a symbol in
Fig. 7.4 represents that average. The experimental points are then fitted to a
straight line and extrapolated to zero velocity, which gives the flow rate for
equistability. The average value of the flow rate at equistability determined
from the measurements is (6.1 ± 0.6) × 10−3 s−1.
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Fig. 7.4. Plots of the measured dependence of the velocity of front propagation of
one stationary state into the other on the flow rate, kf . The eight different symbols
correspond to eight experiments done under the same conditions on different days.
Two of the plots are shifted from their original positions for the purpose of better
display: circles by −0.6 cm min−1 in V; diamonds by −0.7 cm min−1 in V. Lines are
fitted to each set of points for purpose of extrapolation to zero velocity of front
propagation. The precision of the points at the largest velocities is insufficient to
permit extrapolation. The average value of the flow rate coefficient at zero velocity
of propagation is 6.1 ± 0.6 × 10−3 s−1. From [1]

This experimental result was compared with a calculation based on
the NFT mechanism R1–R6, yet further simplified to a two-variable sys-
tem [6]. Deterministic reaction–diffusion equations were solved numerically
as described in Sect. 5.1.4, and the value of the flow rate at equistability was
determined to be 12.2 × 10−3 s−1.

A further comparison based on the thermodynamic theory of reaction
diffusion systems presented in Sects. 5.1.3 and 5.1.4, yields the value of
12.45 × 10−3 s−1. In view of the difficulties and limited precision of the ex-
periments and the use of a very simple model of the reaction mechanism the
agreements of the experiment with the thermodynamic theory and the calcu-
lations are satisfactory.

For more details on the calculations and the application of the thermody-
namic theory for this particular reaction see [1].

7.2 Single-Variable Systems: Experiments on Optical
Bistability

Interference filters can be made with ZnSe and alternating layers of ThF4

in a stack. Irradiation of such filters with light from an argon laser (514 nm)
produces optical bistability in certain ranges of power of the irradiating light:
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a plot of the power of the light transmitted by the filter vs. the power of the
irradiating light shows hysteresis and hence multiple stationary states. A part
of the incoming light is absorbed by the filter and turned into heat. The
resulting increase in temperature changes the band gap in the semiconductor,
which alters the absorption. This feedback leads to multiple stationary states;
the equation of change for the temperature is [8]

dT
dt

=
PinAbs[T ]
CdA

− T − T 0

τ
, (7.1)

where Pin is the wattage of the irradiating light, d is the depth of the filter,
A is the area of the irradiated surface of the filter, Abs[T ] is the calculated
fraction of the light absorbed, T 0 is the room temperature (the temperature
of the filter not irradiated), and τ is the combined heat transfer coefficient for
convection, radiation and conduction.

On irradiation of a given region of the filter there results two possible
temperature profiles [8] as given by the transmitted light, or the absorbed
light, as a function of the distance z, (calculated) see Fig. 7.5.

In Fig. 7.5a the power of the incident light onto the filter is sufficient to
keep most of the irradiated region in the upper (higher T ) of the two pos-
sible stationary states labelled with T3. The non-irradiated region is at T 0

(about 20◦C). There is a short connecting region in the lower stationary state,

Fig. 7.5. Two possible stable stationary states of an optically bistable interference
filter. The region of irradiation is the length L; the ambient temperature is T 0; the
upper temperature is T3 and the lower one is T1. From [8]
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Fig. 7.6. Calculated plots of the decay of temperature profiles on stoppage of ir-
radiation of the upper stationary state (a) and the lower stationary state (b); see
text. From [9]

labelled 1. In Fig. 7.5b the power of the incident light has been increased slowly
from zero to a value such that most of the irradiated region is in the lower
stable stationary state.

The upper and lower stable stationary states decay differently on stopping
the irradiation by the laser. In Fig. 7.6 we calculated decays from the upper
(a) and the lower stationary states [9]. The upper state (a) is annihilated
by fronts moving inward from the boundaries; the lower state (b) by the
simultaneous decay of all regions at the higher temperatures toward T 0. From
such measurements the power of the irradiating light at equistability can be
determined. The plots of the measurements of the corresponding calculated
plots in Fig. 7.6 are shown in Fig. 7.7. The similarities are clear.

The power of the irradiating light at equistability was measured to be
1.395±0.015 mW and the calculated value, on the basis of the thermodynamic
theory, 1.375mW. The thermodynamic theory is parallel of that for reaction–
diffusion but amended for a problem in thermal conduction [8]. The agreement
may be better than warranted.
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Fig. 7.7. Measured plots of the decay of temperature profiles on stoppage of irradi-
ation of the upper stationary state (a) and the lower stationary state (b); see text.
From [9]

Acknowledgement. This chapter is based on refs. [1, 8,9].
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8

Thermodynamic and Stochastic Theory
of Transport Processes

8.1 Introduction

In this chapter we present the thermodynamic and stochastic theory of simple
transport processes, linear and non-linear: diffusion, thermal conduction and
viscous flow. We refer only briefly to more advanced work on hydrodynamic
equations and some interesting experiments, and on light scattering from a
fluid in a temperature gradient. A suitable introduction to the chapter may
well be a review of the some of the main results obtained in earlier chapters
on chemical reactions, and we begin with that review.

For a model chemical reaction such as the Schlögl model

A+ 2X k1⇐⇒
k2

3X

X
k3⇐⇒
k4

B, (8.1)

we define a species-specific affinity

Φ(X) =
∫ x

(µx − µx∗) dX, (8.2)

which is an excess work relative to a starred reference state defined by the
kinetics of the system. The relation of (8.2) to the chemical kinetics comes
from the rate equation for the intermediate X

dX/dt = tx
+ − tx

−, (8.3)

where

tx
+ = k1AX

2 + k4B

tx
− = k2X

3 + k3X (8.4)

for the model (8.1). The relation is

µx − µx∗ = −kT ln
(
tx

+

tx
−

)
(8.5)
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and the quantity µX∗ approaches its value in each of the stationary states
µS

X as each of the stationary states in the reaction model is approached. The
theory reviewed here can be generalized to multi-variable systems and to other
choices of reference states (see Chap. 3).

From (8.2) we can draw several important consequences:

1. The function Φ provides necessary and sufficient conditions of global sta-
bility; it has an extremum at each stationary state

∂Φ/∂X = 0 (8.6)

and its second derivative shows whether a given stationary state is stable
or unstable

∂2Φ
∂X2

{
> 0 for stable stationary states
< 0 for unstable stationary states.

(8.7)

2. The function Φ is the driving force (frequently so-called, in fact a poten-
tial) toward stable stationary states. Φ is lower bounded and is a Liapunov
function with the derivative of Φ with respect to time

.

Φ = −kT ln
(
tx

+

tx
−

)
[tx+ − tx

−] ≤ 0 (8.8)

in the form of Boltzmann’s H theorem.
3.

.

Φ is a component of the total dissipation and is zero at stationary states.
4. dΦ is a measureable excess work: for a linear system it is the negative of the

work, other than pressure–volume work, obtained from the spontaneous
relaxation dX at X along the deterministic trajectory, minus the work of
displacing the system the same extent dX at XS. For a non-linear system
we substitute in the prior sentence X∗ for XS. For each X of a non-linear
system there is an X∗ and an instantaneous linear equivalent system at
each instant, which makes this substitution possible.

5. If a system approaches the stationary state of equilibrium then Φ ap-
proaches correctly the thermodynamic free energy change.

6. The function Φ provides a criterion of relative stability of two stable sta-
tionary states, labelled 1 and 3; at equistability of the two stationary
states the condition holds

∫ 3

1

(µx − µx∗) dX = 0. (8.9)

7. The function Φ yields the stationary probability distribution of a stochas-
tic, birth–death master equation for single variable systems

Pst(X) = P0 exp
(
−Φ(X)

kT

)
, (8.10)
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where P0 is a normalization constant. The combination of (8.2) and (8.10)
is a generalization of the fluctuation equation of Einstein to station-
ary non-equilibrium states and conditions far from equilibrium. For one-
variable systems the excess work Φ is a state function. In general the
excess work is not a state function for the reference state as defined in
this section (see also Chap. 4). The excess work is a state function for the
reference state as defined in Chap. 3.

8.2 Linear Transport Processes

In this chapter we formulate the thermodynamic and stochastic theory of the
simple transport phenomena: diffusion, thermal conduction and viscous flow
(1) to present results parallel to those listed in points 1–7, Sect. 8.1, for chemi-
cal kinetics. We still assume local equilibrium with respect to translational and
internal degrees of freedom. We do not assume conditions close to chemical or
hydrodynamic equilibrium. For chemical reactions and diffusion the macro-
scopic equations for a given reaction mechanism provide sufficient detail, the
fluxes in the forward and reverse direction, to write a birth–death master
equation with a stationary solution given in terms of Φ. For thermal conduc-
tion and viscous flow we derive the excess work Φ and then find Fokker–Planck
equations with stationary solutions given in terms of that excess work.

8.2.1 Linear Diffusion

Consider the simple experiment shown schematically in Fig. 8.1.
The total pressure is essentially constant, because of the large excess of

A, but diffusion of X occurs because we set the number of molecules of X in
volume 1, X1, larger than X3.

We assume that the diffusion of X across the membranes separating vol-
umes 1 and 2, and 2 and 3 is slow compared to the time necessary to achieve
a homogeneous concentration of X in volume 2 by diffusion or stirring. The
macroscopic temporal variation of the number of X in volume 2 (V ), with
symbol X , is

dX/dt = V (k1x1 + k3x3) − (k1 + k3)X = t+ − t−, (8.11)

Fig. 8.1. Two species A and X are present: A is distributed homogeneously in all
three volumes 1, 2, 3, in large excess over species X. Two pistons with membranes
permeable to A but not to X keep the concentration of X in volume 1 different from
that in volume 3, so that diffusion occurs
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where the concentration of X is x, and the stationary concentration of X is
given by

Xs =
V (k1x1 + k3x3)

k1 + k3
. (8.12)

We write the chemical potential of X , considered an ideal gas, as

µ(X,T ) = µ◦(T ) + kT lnX, (8.13)

where the first term on the rhs is the standard chemical potential. Hence
we have for the difference in the chemical potential of X and that in the
stationary state

µ− µs = kT ln
(
X

Xs

)
= kT ln

(
t−

t+S

)
. (8.14)

In this equation we have

t+S = t+ = V (k1x1 + k3x3). (8.15)

We now define the function Φ, an excess work, as

Φ =
∫ x

(µ− µs)dX = kT

∫ x

ln
(
t−

t+S

)
dX (8.16)

in analogy with (8.2). At the stationary state we have

(∂Φ/∂X)st = 0 (8.17)

and Φ is therefore an extremum at that state. The second derivative of Φ with
respect to X at that state

∂2Φ/∂X2 = kT/X > 0 (8.18)

is positive definite and hence the stationary state is stable. Φ is a Liapunov
function; it is bounded, that is Φ ≥ 0, and

.

Φ is

.

Φ = −kT ln
(
t+

t−

)
[t+ − t−] ≤ 0. (8.19)

All the equations are valid for arbitrarily large displacement from diffusional
equilibrium. The driving force for evolution towards the stationary state,
(8.14), is not linearly related to the flux of that evolution, (8.11).

The dissipation is

D = −(µ1 − µ)
.

X1 + (µ− µ3)
.

X3, (8.20)

and on further rearrangement we obtain

D = −(µ1 − µs)
.

X1 + (µs − µ3)
.

X3 −
.

Φ . (8.21)

The total dissipation is the sum of the dissipation in the stationary state, the
first two terms in (8.21) and − .

Φ.
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We assume that the fluctuations in this system are given by a birth–death
master equation

dP (X, t)/dt = V2(k1x1 + k3x3)P (X − 1, t) + (k1 + k3)(X + 1)P (X + 1, t)
− {V2(k1x1 + k3x3) + (k1 + k3)X}P (X, t) (8.22)

for which the stationary (time-independent) solution in the thermodynamic
limit is

PS(X) = P0 exp

(∫ X

ln
(
t+(X ′)
t−(X ′)

)
dX ′
)

= P0 exp
(
− 1
kT

Φ
)
. (8.23)

Compare with (2.29, 2.33 and 2.34) in Chap. 2 for chemical systems. The
macroscopic driving force towards the stationary state, (8.16), also determines
the fluctuations from the stationary state, (8.23).

The generalization to systems with spatial variations, see Fig. 5.1, has been
discussed in Chap. 5.

8.2.2 Linear Thermal Conduction

We follow a path for this transport process analogous to diffusion and chemical
reaction. Consider a simple schematic of an apparatus consisting of two heat
reservoirs, each of infinite heat capacity, one at temperature T1 and the other
at T2, with T1 > T2, Fig. 8.2.

Volume 2 is between two thermal reservoirs labelled 1 and 3. Volume 2 is
of small width so that its temperature T is uniform within it. The flow of heat
occurs with conservation of energy and no work done.

We write for the ‘mixed’ thermodynamic function M

dM = dS1 + dS + dS3, (8.24)

where S is the entropy, or

dM =
dQ1

T1
+

dQ
T

+
dQ3

T3
. (8.25)

At the stationary state we have

dMS =
dQ1

T1
+

dQ
TS

+
dQ3

T3
. (8.26)

Fig. 8.2. Schematic apparatus for study of thermal conduction
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Hence the driving force towards the stationary state is

T−1
S dΦ = −(dM − dMS) =

(
1
TS

− 1
T

)
dQ (8.27)

for the same changes dQ1, dQ, dQ3. The integral of dΦ is

Φ(T ) = Φ(T ) − Φ(TS) = CV

(
T − TS − TS ln

(
T

TS

))
. (8.28)

This is an excess work as seen from the last two equations.
The macroscopic transport equation for this thermal conduction process is

dT/dt = κ1(T1 − T ) + κ3(T3 − T ) = F (T ), (8.29)

where κ1 and κ3 are proportional to thermal conduction coefficients for the
interface of the system with the heat reservoirs 1 and 3, respectively. The
temperature of the stationary state is

TS =
κ1T1 + κ3T3

κ1 + κ3
(8.30)

and hence we may write

dT/dt = (κ1 + κ3)(TS − T ). (8.31)

In (8.27) we divide by dt, use the equation
dQ
dt

= CV dT and obtain for the
time derivative of Φ

.

Φ = CV

(
1 − TS

T

)
2κ(TS − T ) ≤ 0; 2κ = κ1 + κ3. (8.32)

Since Φ(T ) ≥ 0 and lower-bounded we see that it is a Liapunov function.
The derivative of Φ(T ) with respect to T is

dΦ
dT

= CV

(
1 − TS

T

)
⎧
⎪⎨

⎪⎩

> 0 T > TS

= 0 T = TS

< 0 T < TS

(8.33)

and the second derivative with respect to T is

d2Φ
dT 2

=
CV

T 2
≥ 0 (8.34)

so that Φ is a minimum at the stationary state TS.
The total dissipation is the sum of the dissipation of the reservoirs in the

stationary state, and Φ̇.
Next we seek a stochastic equation for the distribution of fluctuations of the

macroscopic temperature T for which the excess work (8.28) is its stationary
distribution. This is a Fokker–Planck type equation
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∂

∂t
P (T, t) = − ∂

∂T
(F (T ) P (T, t)) +

∂2

∂T 2
{(f(T ) P (T, t))} (8.35)

in which the probability diffusion coefficient f(T) is cT with c = k(κ1T1+
κ3T3)/CV, which is constant. The stationary solution of the stochastic equa-
tion is

PS(T ) = P0
TS

T
exp
(
− 1
kTS

Φ
)
. (8.36)

We rescale the temperature τ = CV/kTST and use Stirling’s approximation
for lnX ! = X lnX −X and obtain for the stationary distribution

PS(τ) =
P ′

0

τ
exp
(
−τ + τS + τS ln

(
τ

τS

))
≈ P̃0

Γ(τS)
ττS−1

e−τ , (8.37)

where Γ is the gamma function. If we expand this solution around TS we arrive
at the expected quadratic form

Φ(T ) = CV

(
T − TS − TS ln

(
T

TS

))
≈ CV

2
(T − TS)2

TS
. (8.38)

and the Gaussian stationary distribution

PS(T ) = P0 exp
(
− Φ
kTS

)
= P0 exp

(
− CV

2kTS
2 (T − TS)2

)
. (8.39)

This is exactly the same form as the equilibrium probability distribution for
the fluctuations in temperature (2) at the equilibrium temperature TS = Tequ.
For an ideal gas we have E = CVT and the fluctuations are in the Gaussian
form in energy

Φ(E) =
1
2

(E − ES)2

CVTS
. (8.40)

The generalization to a system with a discreet distribution of temperature
follows closely the development for diffusion.

For an experimental test of the theory for thermal conduction see Sect. 7.2.

8.2.3 Linear Viscous Flow

We consider both cases of simplified Couette flow, Fig. 8.3, and Poiseuille flow,
Fig. 8.4, see [3]

Fig. 8.3. Simple model for Couette flow. Section 1 and 3 are moving with fixed but
different speeds. Section 2 relaxes to a stationary state through frictional forces on
the interfaces between 1 and 2, and 2 and 3
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Fig. 8.4. Simple model for Poiseuille flow. A block of fluid, gas or liquid, is pushed
through a narrow region between neighbouring blocks at rest

The Newtonian equation for Couette flow is

ρ
dυ
dt

= α(υ1 − υ) − α(υ − υ3) = 2α(υS − υ), (8.41)

where α is the friction coefficient at the interfaces between the system and
the two neighbouring blocks. The steady state mass velocity is νS = 1/2(ν1 +
ν3) and ρ is the mass density of the system. Because of the shear forces on
the system there is a generation of heat at the interfaces of region 1 and
2, and of regions 2 and 3. These dissipative terms are usually neglected in
hydrodynamics but are essential here. We assume that the entire system,
regions 1, 2, and 3, are at one temperature.

For Poiseuille flow the middle block is driven by constant force fV =
F1 − F2 with f the force density and V the volume of the system. Newton’s
equation is

ρ
dυ
dt

= f − 2αυ = 2α(υS − υ), (8.42)

which is the same as that for Couette flow.
In the case of Coutte flow there is no pressure–volume work

dW pv = −p dV = 0. (8.43)

But in the case of Poiseuille flow the pressure–volume work done on the sys-
tem is

dW = −(p1 − p2) dV = −(p1 − p2)Sυ dt = −fV υ dt = −2αV υSυ dt, (8.44)

where S is the surface over which the force is exerted and p is the pressure.
The heat generated by dissipation (friction) is in the two cases

dQ =1
/
2αV ((υ1 − υ)2 + (υ3 − υ)2)dt (Couette),

dQ = αV υ2 dt (Poiseuille). (8.45)

In the moving frame of velocity vS the kinetic energy changes dK are

dK = ρV (υ − υS)dυ (8.46)

in both types of flow.
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The minimum work necessary for removing the system from a stationary
state is given by considering changes in kinetic energy. For the three sections
these are

dE1 = υ1 dP1, dE2 = υ2 dP2, dE3 = υ3 dP3, (8.47)

where dPi is the momentum of the ith section. The composite of dM equals
dE1 +dE2 +dE3, and hence for the differential minimum excess work we have

dΦ = dM − dMS = (υ − υS)dP = ρV (υ − υS) dυ, (8.48)

where we omit the subscript 2, and

dMS = v1 dP1 + v2S dP2 + v3 dP3. (8.49)

For the properties of the excess work we find

Φ =1/2ρV (υ − υS)2 ≥ 0, (8.50)

where the equality in the second equation holds only at the stationary state.
The time derivative of Φ, with the use of (8.42) is

.

Φ = −2αV (υ − υS)2 ≤ 0 (8.51)

and again the equality in the second equation holds only at the stationary
state. The last two equations show that Φ is a Liapunov function. The excess
work is the kinetic energy of section 2 relative to a coordinate system moving
with velocity vS.

At the stationary state we have the necessary and sufficient extremum
condition

dΦ/dυ = 0, (8.52)

and the stationary state is stable since

d2Φ/dυ2 = ρV > 0. (8.53)

For Couette flow the total dissipation is

dQ
dt

= αV ((υ1 − υ)2 + (υ3 − υ)2) =
dQS

dt
− dΦ

dt
(8.54)

and we may write
Dtotal = Dst −

.

Φ (8.55)

the same as for the other transport processes.
For Poiseuille flow the total production of heat is

dQ
dt

= 2αV υ2

=
dQS

dt
− dΦ

dt
+ V (fυ dt− fυS dt) + V (f dl − f dlS), (8.56)
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and in the stationary state it is dQS
dt . The total thermal dissipation consists of

the first two terms in the second equation; the third term is the production of
heat due to changes in pressure–volume work on relaxation to the stationary
state, and the fourth term is the change in potential energy of the system
during that relaxation.

Next we seek the stochastic equation for the probability distribution of
fluctuations in the macroscopic mass velocity for which the excess work, (8.50),
gives the stationary distribution. It is the Fokker–Planck equation with con-
stant probability coefficient c = 2αkT/ρ2

∂P (υ, t)
∂t

= −2
α

ρ

∂

∂υ
((υS − υ)P (υ, t)) +

c

V

∂2

∂υ2
P (υ, t) (8.57)

with the stationary solution

PS(υ) = P0 exp
(
−αV
cρ

(υS − υ)2
)

= P0 exp
(
− Φ
kT

)
. (8.58)

At equilibrium vS = 0 and then (8.58) yields the equilibrium distribution of
mass velocity.

For all the one-variable problems considered in this chapter the excess
work Φ is a state function.

The generalizations to the N-block model and continuous flow for both the
Couette and Poiseuille geometries proceed analogously to the cases of diffusion
and thermal conduction.

8.3 Nonlinear One-Variable Transport Processes

When in the discussion of one-variable chemical kinetics we made the tran-
sition from linear to non-linear kinetic equations, Sect. 2.2, we invoked the
concept of linear equivalent systems, both thermodynamically and kinetically.
We shall use the same approach here and apply it only to the case of thermal
conduction, as a reminder. See [1] for detailed treatments of all three transport
processes.

We now pose a non-linear equation as an example

dT
dt

= κ1(T )(T1 − T ) − κ3(T )(T − T3), (8.59)

where the thermal conduction coefficients κ1 and κ3 are functions of temper-
ature; compare with (8.29) for a linear system where these coefficients are
constants. We introduce a temperature T ∗

T ∗ ≡ κ1(T )T1 + κ3(T )T3

κ1(T ) + κ3(T )
, (8.60)
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which we substitute for TS in the linear problem to obtain the excess work

Φ =
∫ T

CV

(
1 − T ∗

T

)
dT, (8.61)

which has all the properties listed in Sect. 8.1.

8.4 Coupled Transport Processes: An Approach
to Thermodynamics and Fluctuations
in Hydrodynamics

8.4.1 Lorenz Equations and an Interesting Experiment

We present a brief introduction to coupled transport processes described
macroscopically by hydrodynamic equations, the Navier–Stokes equations [4].
These are difficult, highly non-linear coupled partial differential equations;
they are frequently approximated. One such approximation consists of the
Lorenz equations [5,6], which are obtained from the Navier–Stokes equations
by Fourier transform of the spatial variables in those equations, retention of
first order Fourier modes and restriction to small deviations from a bifurca-
tion of an homogeneous motionless stationary state (a conductive state) to an
inhomogeneous convective state in Rayleigh–Benard convection (see the next
paragraph). The Lorenz equations have been applied successfully in various
fields ranging from meteorology to laser physics.

What is Rayleigh–Benard convection? Consider a fluid held between two
thermally conductive parallel plates held horizontally, which is perpendicular
to the gravitational field. If a temperature gradient is applied across the plates,
with the bottom plate cooler, then for a given temperature difference a stable
stationary homogeneous state will be attained and this is a conductive state.
If, however, the lower plate is warmer than the top plate then a stationary
convective state may be attained; for a given temperature difference, given
fluid and given geometry of plate separation, the fluid near the top plate, being
heavier than that near the bottom plate, will sink (flow) in the gravitational
field. The homogeneous state has become unstable, a bifurcation occurs and a
stable inhomogeneous state consisting of convective rolls becomes stable. On
further increase of the temperature difference still more complicated dynamic
states, including chaos, may appear.

What is the purpose of a thermodynamic and stochastic theory of hy-
drodynamics? The thermodynamic potential (state) functions for irreversible
processes approaching equilibrium are known, for example the Gibbs free en-
ergy change for a process at constant temperature and pressure. Changes
in that energy yield the maximum work, other than pressure–volume work,
available from that process. Then, by analogy, the aims of a theory of ther-
modynamics for hydrodynamics are the establishment of evolution criteria
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(Liapunov functions) with physical significance, such as the excess work; the
work and power available from a transient decay to a stationary state; macro-
scopic necessary and sufficient criteria of stability of stationary states; thermo-
dynamic criteria for bifurcations from one type of stationary state to another
type; thermodynamic criteria of relative stability, that is thermodynamic cri-
teria of state selection; and a connection of the thermodynamic theory to
fluctuations.

Attempts in these directions have a long history going back to Helmholtz,
Korteweg, and Rayleigh, which we shall not review here; for a comprehensive
account see Lamb’s classical treatise [4]. The emphasis was on the total dissi-
pation, which, however, does not provide thermodynamic evolution criteria far
from equilibrium. Glansdorff and Prigogine [4, 7] considered the second vari-
ation of the entropy as a criterion for evolution and stability. Their approach
is limited to small deviations from a stationary state, provides only sufficient
not necessary conditions, has no connections with work or excess work and no
connections with fluctuations (master equation). Keizer formulated a stochas-
tic approach for the relaxation to stationary states and fluctuations around a
single stationary state [8]; he assumed Gaussian fluctuations, limited to small
fluctuations related to linearized kinetics (for chemical kinetics). There are
several articles on the statistical mechanics of stationary states and fluctuat-
ing hydrodynamics, which consists of the addition of Gaussian fluctuations
to the linearized Navier–Stokes equations [9]. Here the thermodynamics may
be sufficient for systems approaching equilibrium but not for stationery states
far from equilibrium. In none of these studies are connections made to work
or power, nor to Liapunov functions, nor to issues of relative stability when
several states are available.

We developed our thermodynamic theory for the Lorenz equations, ob-
tained with approximations from the Navier–Stokes equations (we present
almost no mathematics here; that is given in detail in [10]). The Lorenz equa-
tions are

.

X = P (Y −X),
.

Y = −XZ − Y + rX,
.

Z = XY − bZ, (8.62)

where X represents the amplitude of the stream function of the macroscopic
velocity of the fluid; Y the reduced temperature mode of the thermal conduc-
tion and Z the reduced temperature mode related to the vertical flow in the
liquid layer. P is the Prandtl number (the kinematic viscosity divided by the
thermal conductivity). The parameters r and b are

r = Rq2/(π2 + q2)3, b = 4π2/(π2 + q2), (8.63)

where R is the Rayleigh number

R =
ραgh3 ∆T

ηκ
(8.64)
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and ρ is the density, α is the thermal expansion coefficient, g is the gravi-
tational constant, h is the height of the fluid layer, ∆T is the temperature
difference across the layer of liquid, η is the viscosity, and κ is the thermal
conductivity. These are the variables and parameters of this system.

One solution of the Lorenz equations is (X,Y, Z) = (0, 0, 0). When the
control parameter r is less than unity, that is the Rayleigh number is less
than its critical value Rc, then the zero solution is unique and stable, and it
corresponds to the motionless conductive state of the fluid. At the bifurcation
point r = 1 this solution becomes unstable, and a new solution becomes stable
corresponding to convective modes. These solutions can be used to construct
an excess work function, just as we did for single transport properties.

Now we retun to a fascinating experiment. Zamora and Ray de Luna [11]
carried out Rayleigh–Benard experiments in an apparatus that could be in-
verted 180◦ in the gravitational field. In their experimental arrangement the
bottom and top sides of the fluid are connected to heat reservoirs at differ-
ent temperatures. Suppose a stationary state is homogeneous and conductive,
achieved by setting the low temperature reservoir below the one at high tem-
perature in the gravitational field. Next the entire apparatus is turned in the
gravitational field; then the conductive state becomes unstable and a stable
convective state appears. Throughout the experiment the reservoir tempera-
tures are held fixed and the average temperature of the fluid is nearly con-
stant. They measured the heat fluxes into and out from the reservoirs during
all transients, that is the relaxations from a conductive to a convective state
and the reverse. For example, say the fluid is in a convective state; invert the
apparatus; the convective state is unstable and a transient change to a con-
ductive state takes place. Measure the heat fluxes in and out of the reservoirs.
The integration of the differences of the heat fluxes in and out during this
transient process is the total energy change accompanying the destruction of
the convective rolls. Similarly they measured the total energy change accom-
panying the formation of the convective rolls. The results show that the heat
releases for both the destruction and formation of convective structures are
positive, which means that the system always releases energy in the form of
heat when it approaches a stable stationary state, either the convective state
or the motionless conductive state. In an auxiliary experiment they found that
the change in average temperature of the system is very small; the change in
internal energy due to this small temperature is less than 10% of the heat
release during the relaxation processes, and so this can not be the reason for
the experimental observations. Moreover, the change in internal energy cannot
explain the observed heat release in both the destruction and the formation
of a convective structure.

Our theory based on the concept of exess work accounts for these ex-
periments, at least qualitatively. According to our theory, when the system
approaches a stable stationary state, either convective or conductive, there is
a decrease in Φ, the excess work, and a positive excess work is released, which
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Fig. 8.5. The product of the total rate of dissipation times temperature (solid line)
in Js−1 and the time derivative of excess work (dashed line) vs. time in the following
processes for the Lorenz model: (a) Gravity is initially set in the direction along
which the temperature decreases, and the system is at a stable motionless conductive
stationary state; at t = 0, invert the direction of gravity; the motionless conductive
state becomes unstable and the system approaches the convective stationary state.
(b) The reverse process. The temperature difference is |∆T | = 4K for both cases

will be dissipated and released as heat. This is shown in a calculation from
the theory in Fig. 8.5, from [10].

Figure 8.5a is for the transition from a conductive to a convective state,
and Fig. 8.5b for the reverse transition. In each case the integral of dΦ/dt
over time is negative, that is excess work is dissipated and heat is generated.
Further, we note that the entropy production in the convective state is always
larger than that in the conductive state, and no explanation of heat release
in the transition from one state to the other can thereby be derived.

The theoretical results, based on the Lorenz model, agree with experiments
qualitatively in that the total excess work change is of the same order of
magnitude as the heat release measured in the experiments, and this is a
major confirmation of our theory.

There may be several reasons for a lack of quantitative agreement. First,
the convective stationary state in the theory is a focus, not a node. (A node is
approached with an eigenvalue that is real and negative and hence provides for
a damped monotonic approach, whereas a focus is approached with a complex
eigenvalue with the real part negative, that is a damped oscillatory approach.)
In the experiments, however, the convective stationary state is a node due to
the rigid boundaries. Second, because of the truncation to the first order in
Fourier modes in the Lorenz model, this model can be a good approximation
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near a bifurcation point from a conductive to a convective state. However, in
these experiments the bifurcation point is ∆T = 0.95 K and all the data are
collected between ∆T = 3–10 K, fairly far from the bifurcation.

8.4.2 Rayleigh Scattering in a Fluid in a Temperature Gradient

In a simple fluid, in an imposed temperature gradient, light is scattered due to
fluctuations in temperature and due to fluctuations in the transverse hydro-
dynamic velocity. Excellent experiments have been made on the measurement
of this light scattering. The problem has been studied theoretically as well, by
means of fluctuating hydrodynamics [9], valid for small fluctuations around
a conductive state with a constant temperature gradient, which can be close
to or far from equilibrium. Theory and experiment are in very good agree-
ment [12].

In [13] we developed the relation of our studies on the thermodynamic
and stochastic theory of transport properties to the reported research on this
topic. There we showed that the deterministic excess work, as formulated in
Chap. 2 for reactions and in this chapter for transport processes, provides a
thermodynamic interpretation of fluctuations around a stationary state, ei-
ther close to or far from equilibrium, for the case of Raleigh scattering from
fluctuations in a fluid with an imposed temperature gradient. The station-
ary probability distribution is determined by a quantity proportional to the
excess deterministic work. From the probability distribution we obtain, in
the Gaussian approximation for small fluctuations, the matrix of correlations
derived from fluctuating hydrodynamics, (8.51) in [13]. Thus in this limit of
small fluctuations there is agreement between the theory of fluctuating hydro-
dynamics and our theory of the thermodynamics and fluctuations in transport
properties.

8.5 Thermodynamic and Stochastic Theory
of Electrical Circuits

This topic is mentioned but not discussed here; for its presentation see [14].

Acknowledgement. Section 8.2 of this chapter is based on ref. [1]; Sect. 8.4.1 on [9];
and Sect. 8.4.2 on [13].
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9

Thermodynamic and Stochastic Theory
for Non-Ideal Systems

9.1 Introduction

The presentations in the prior chapters have been limited to ideal systems,
either gases or solutions. We now extend the thermodynamic and stochastic
theory to non-ideal systems.

The formulation of the theory requires deterministic equations either of
kinetics or transport for non-ideal systems. We shall illustrate the approach
with the Bronsted theory of non-ideal reactants and products, which has been
used extensively.

For a reaction aA + bB it is assumed in the Bronsted theory [1] that the
reaction proceeds through an activated complex C†

aA+ bB � C† → products, (9.1)

and that the rate of the reaction is

−dC†

dt
= k†C†, (9.2)

where C† is the concentration of the activated complex. Furthermore, we
assume (quasi)equilibrium between the reactants A and B and the activated
complex

K† =
aC†

(aA)a (aB)b
=

γC†C†

(γAA)a (γBB)b
, (9.3)

so that the forward rate can be written

−dC†

dt
= k† ·K ′ (aA)a (aB)b

γC†
= kf

(γA)a (γB)b

γC†
AaBb, (9.4)

where a is the activity, γ is the activity coefficient and the effective rate
coefficient is

Kf = k† ·K†. (9.5)
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The Bronsted theory is well confirmed by experiment [2]. For electrolytes at
small concentrations the activity coefficients are given by the Debye–Huckel
theory. For uncharged species acitivity coefficients may be estimated by reg-
ular solution theory. Our presentation, based on the Bronsted theory, is not
limited to that theory.

For a reversible chemical reaction

aA+ bB � dD + eE, (9.6)

the rate of the reverse reaction is

k‡ ·K‡ (aD)d (aE)e

γC‡
= kr

(γD)d (γE)e

γC‡
DdEe, (9.7)

where C‡ is the complex formed by the reverse reaction. The relation for the
equilibrium constant of reaction (9.6) is

K = K†/K‡, (9.8)

K =
ad

Da
e
E

aa
Aa

b
B

(9.9)

and the activated complex in the forward direction is assumed to be the same
as in the reverse direction.

9.2 A Simple Example

It suffices to develop the theory for one simple example, that of a linear one-
variable reaction system

A
k1

�
k2

X
k3

�
k4

B, (9.10)

where the species A and B have either constant concentrations, as determined
by measurements of concentrations, or constant activities, as determined by
electrode measurements. We have a choice and we choose constant concentra-
tions. The kinetics of the reaction for ideal systems is

dX
dt

= k1A+ k4B − (k2 + k3)X. (9.11)

The system approaches either equilibrium, when B
A = k1 k3

k2 k4
, or a stationary

state when this equality does not hold.
For non-ideal systems we use the Bronsted theory, (9.4), for each forward

and reverse step of the reaction mechanism, (9.10), and obtain

dX
dt

=
k1

γc1
aA +

k4

γc4
aB −

(
k2

γc2
+

k3

γc3

)
ax ≡ t+ − t−, (9.12)
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where Ci denotes activated complexes of A, B or X . We have included
the quasi-equilibrium constants of (9.3) into the respective rate coefficients.
Although not essential for our development here, we assume that

γc1 = γc2 and γc3 = γc4. (9.13)

Each activity coefficient may be a function of the concentrations of each of the
species present, A, B, X, Ci. Thus the kinetic terms t+ and t− are non-linear
functions of X , with the non-linearities due to the non-idealities.

The differential hybrid free energy for an arbitrary state with X mole-
cules is

dM = µA dA+ µX dX + µB dB. (9.14)

The difference between dM and the same quantity at the stationary state XS

for the same A,B,dA, dB, and dX gives the differential excess work

dΦ = dM − dMS = (µx − µxs) dX = RT ln
aX

aXS

dX, (9.15)

where the activity aX equals the concentration X in an ideal system. For a
non-ideal system we write for the chemical potentials

µA = µ0
A +RT ln aA = µ0

A +RT ln (A · γA)

= µA|ideal +RT ln γA,

µX = µ0
X +RT ln aX = µ0

X +RT ln (X · γX)

= µX |ideal +RT ln γX ,

µB = µ0
B +RT ln aB = µ0

B +RT ln (B · γB)

= µB |ideal +RT ln γB , (9.16)

where µ0
A, etc. are standard chemical potentials at unit acivity. We omit the

contributions of the activated complexes to the free energy because their con-
centrations are small.

The reaction mechanism (9.10) with non-ideal species can be mapped to
a thermodynamically and kinetically equivalent ideal linear system at each
instant. We require that the activities of A, X, B are the same in the two
systems and the kinetic equivalency is assured by the same t+ and t− in the
two systems, see Table 9.1, from [3].

At each value of the affinity aX a thermodynamically and kinetically equiv-
alent ideal linear system can be obtained from the transformations

kid
1 = k1

1
γC1

, kid
2 = k2

1
γC2

,

kid
3 = k3

1
γC3

, kid
4 = k4

1
γC4

, (9.17)
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Table 9.1. Mapping from a non-ideal to an ideal linear system

Ideal linear system Nonideal linear system

µA, µX , µB µA, µX , µB The same in two systems
t+, t− t+, t− The same in two systems
dX/dt dX/dt The same in two systems
aA, aX , aB aA, aX , aB The same in two systems

Aid, X id, Bid A, X, B
kid
1 , kid

2 , kid
3 , kid

4 k1, k2, k3, k4

The kinetic rate equation for the instantaneously equivalent linear and ideal
system is

dX
dt

= kid
1 A

id + kid
4 B

id − (kid
2 + kid

3

)
X id

= kid
1 aA + kid

4 aB − (kid
2 + kid

3

)
ax = t+id − t−id. (9.18)

We define the activity aX∗ by the relation

aX∗

aX
=
t+

t−
. (9.19)

This activity is a function of X and at the kinetic stationary state

aX∗ |st.st. = aXS . (9.20)

With the equivalence relations (9.17) we have

aX∗ = aX
t+

t−
= aid

X

t+

t−id
= X id t

+
id

t−id
= X id

S , (9.21)

and we see that aX∗ is the activity of the stationary state of the instanta-
neously equivalent ideal linear system. The difference between the hybrid free
energy of an arbitrary state aX , and that of the reference state aX∗ for the
same aA, aB, dA, dB, dX yields the differential excess work

dΦ = dM − dM∗ = (µX − µX∗) dX

= RT ln
aX

aX∗
dX = RT ln

t−

t+
dX, (9.22)

and the total excess work is

Φ (X) =
∫

(µX − µX∗) dX = RT

∫
ln
t−

t+
dX. (9.23)

The properties of the function Φ(X) constitute the thermodynamic and sto-
chastic theory and these properties are reviewed in Sect. 8.1, points 1–7.

The cases for more complicated chemical reaction mechanisms can be de-
veloped in a similar way without further complications, see [3].

Acknowledgement. This chapter is based on a part of ref. [3].
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Electrochemical Experiments in Systems
Far from Equilibrium

10.1 Introduction

Electrochemical experiments in chemical systems at equilibrium have provided
extensive information on thermodynamic quantities, such as Gibbs free energy
changes and related equilibrium constants [1]. At equilibrium the Gibbs free
energy change of a chemical reaction is related to the voltage (the electro-
chemical potential) generated by that reaction run in an electrochemical cell

∆G = −nFE, (10.1)

where ∆G is the Gibbs free change of the reaction, n is the number of equiva-
lents of electrons transferred from one electrode to the other for the stoichio-
metric reaction as written and E is the electrochemical potential.

In Chap. 2–9 we presented a thermodynamic and stochastic theory of
chemical reactions and transport processes in non-equilibrium stationary and
transient states approaching non-equilibrium stationary states. We established
a state function Φ, which for systems approaching equilibrium reduces to ∆G.
Since Gibbs free energy changes can be determined by macroscopic electro-
chemical measurements, we seek a parallel development for the determination
of Φ by macroscopic electrochemical and other measurements.

We begin with a discussion of two kinds of experiments and then, in the
next chapter, turn to the development of the thermodynamic and stochastic
theory to connect with these experiments. There are very few thermodynamic
measurements on complex open reaction systems (see [2] as one example).

10.2 Measurement of Electrochemical Potentials
in Non-Equilibrium Stationary States

When chemical species come into equilibrium with an electrode in an open
circuit, the potential between the electrode and a reference electrode is related
to the potential difference of the half reaction occurring at the electrode. If no
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other reactions are occurring then this potential is related to the Gibbs free
energy difference of the half reaction at the electrode. If there are other re-
actions occurring then the species may be in non-equilibrium states, even
though they are in equilibrium with the electrode, and the potential is that
of a non-equilibrium stationary state. If local equilibrium holds then the po-
tential is the Gibbs free energy difference; if it does not hold, in that there
are degrees of freedom, such as the reactions, which are explicitly held away
from equilibrium, then deviations from the Gibbs free energy difference may
occur. We shall speak of Nernstian, (10.1), and non-Nernstian contributions
to the electrochemical potential. There is one prior measurement of the type
to be described and that is by Keizer and Chang [3], following a suggestion
by Keizer [4] that there should be a non-Nernstian contribution to the elec-
trochemical potential in nonlinear reaction systems approaching to, or in, sta-
tionary states far from equilibrium. They reported a very small non-Nernstian
contribution in an Fe(II)/Fe(III) reaction system in a non-equilibrium station-
ary state.

We studied the autocatalytic minimal bromate reaction, which can be
oscillatory, but was studied in a bistable regime. A proposed mechanism for
this reaction, and participating species, are listed in Table 10.1.

The net reaction is the oxidation of Ce(III) to Ce(IV) by bromate. In the
bistable regime there is a state, where essentially no reaction occurs, which
coexists with a state in which a percentage of Ce(III) is oxidized to Ce(IV). In
this system we measured [6] at the same time the optical density which gives
concentrations of Ce(IV) by Beer’s law, and hence also the concentration of
Ce(III) by conservation, and the emf of a Pt electrode which at equilibrium
follows the Nernst equation (10.1). The experiment consisted of the measure-
ment of the emf of the Ce(III)/Ce(IV) half reaction at a redox (Pt-Ag/AgCl)
electrode under equilibrium and stationary non-equilibrium conditions. The
apparatus is shown in Fig. 10.1, but in these experiments the parts 4–7 were
not present. From these measurements we determined that there exists a
non-Nernstian contribution in a non-equilibrium stationary state as shown in
Table 10.2. The concentration of [Ce(III)]ss in the stationary state is obtained

Table 10.1. Reaction mechanism for the minimal bromate reaction, from (5)

Number Reaction

(B1) BrO−
3 + Br− + 2H+ � HBrO2 + HOBr

(B2) HBrO2 + Br− + H+ � 2HOBr
(B3) HOBr + Br− + H+ � Br2 + H2O
(B4) BrO−

3 + HBrO2 + H+ � 2BrO·
2 + H2O

(B5) Ce3+ + BrO·
2 + H+ � Ce4+ + HBrO2

(B6) Ce4+ + BrO·
2 + H2O � Ce3+ + BrO−

3 + 2H+

(B7) 2HBrO2 = BrO−
3 + HOBr + H+
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Fig. 10.1. Schematic drawing of apparatus: 1, combination electrode Pt, Ag–AgCl; 2,
voltmeter; 3, Br− electrode; 4, Pt electrode; 5, salt bridge; 6, constant current source;
7, Pt electrode; 8, stirrer bar. The inlet flow and aspiration outlet on the CSTR (left
vessel) are not shown. CSTR – continuous stirred tank reactor. From (7)

Table 10.2. Results from the minimal bromate experiment with various concen-
trations of Ce(III) in the combined feedstreams into the reactor, [Ce(III)]0, from [6]

[Ce(III)]0 (M) [Ce(III)]ss (M) IE emf (mV) M emf (mV)

1.500 × 10−3 1.393 × 10−3 1,167.0 1,180.2
1.397 × 10−3 1.361 × 10−3 1,176.0 1,183.0
1.297 × 10−3 1.277 × 10−3 1,187.5 1,189.7
8.333 × 10−4 8.700 × 10−4 1,223.7 1,223.8

from the absorption measurement. The local equilibrium emf, the third col-
umn in Table 10.2 is calculated from the ratio Ce(III)/Ce(IV) and the Nernst
equation. The measured emf in the fourth column of the table is that mea-
sured by the Pt electrode. The difference is small, about 1% of the emf at
the largest inflow concentration of Ce(III)0 and decreases for smaller inflow
concentrations.

10.3 Kinetic and Thermodynamic Information
Derived from Electrochemical Measurements

In the experiment to be described we study the electrochemical displacement
of a non-linear chemical system, the minimal bromate reaction, from non-
equilibrium stationary states and from equilibrium. In the following chapter
we shall relate such measurements to the thermodynamic and stochastic the-
ory of potentials governing fluctuations in electrochemical systems in station-
ary states far from, near to and at equilibrium.
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We study again the minimal bromate reaction [7]. We measure the Ce(III)/
Ce(IV) potential of this system on an apparatus shown in Fig. 10.1. The combi-
nation electrode (1) measures this potential as read on the voltmeter (2). (The
bromide electrode was not used in these experiments.) The contents of three
reservoirs are pumped separately into the CSTR; the three reservoirs contain
0.00450 M CeIII, 0.0100 M BrO−

2 , and 1.00 × 10−6 M Br−, and each reservoir
contains also 0.72 M H2SO4. To run the reaction at equilibrium the three so-
lutions are mixed and allowed to react for a day prior to being pumped into
the CSTR. We measure the voltage on the voltmeter, 2, in Fig. 10.1, with zero
imposed current from the current source 6; then we impose various currents
with 6 and displace the equilibrium mixture in the CSTR from equilibrium.
Figure 10.2 shows the measured voltages plotted against the imposed current,
as well as the Ce(IV) concentration, and the product of the measured volt-
age minus the stationary state voltage, in this case the equilibrium voltage,
multiplied by the imposed current.

A non-equilibrium stationary state is achieved by flowing the reacting
solutions into the CSTR at given flow rates, that is given residence times in
the reactor; the measurements just described are repeated, and shown for a
residence time of 175 s in Fig. 10.3, and a residence time of 400 s in Fig. 10.4.

First, it is interesting to compare the equilibrium displacement plot
(Fig. 10.2) with the plots of displacements from non-equilibrium stationary

Fig. 10.2. Plot of voltage V , as measured on 2 in Fig. 10.1, the power input
(V − Vss)I and the Ce(IV) concentration vs. the imposed current I . Vss is the mea-
sured voltage at the stationary state, here equilibrium, at zero imposed current. The
residence time in the CSTR is 200 s, from [7]
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Fig. 10.3. Experiments as in Fig. 10.2 for a non-equilibrium stationary state at
zero imposed current and displacements from that state with imposed currents. The
residence time is 175 s. The arrows indicate transitions to other stationary states,
from [7]

Fig. 10.4. Same as Fig. 10.3, but the residence time is 400 s, from [7]

states (Figs. 10.3 and 10.4). To achieve a given displacement, either in Ce(IV)
concentration or in the potential from its stationary value at zero current,
a larger imposed current is necessary in the non-equilibrium cases, Figs. 10.3
and 10.4, than in the equilibrium case, Fig. 10.2. We further note that the
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plot of (V − Vss)I in the equilibrium case is nearly symmetric, those on the
non-equilibrium cases is not.

The plots of power input vs. imposed current can be obtained by a simple,
nearly dimensional argument from our theory. For a one-variable linear system
the excess work is, see Sect. 2.1,

φ =
∫

(µx − µx
s) dX (10.2)

hence dφ is
dφ = (µX − µs

X) dX (10.3)

and
φ̇ = (µx − µx

s) Ẋ (10.4)

so that with Nernst’s equation we have

φ̇ = −(V − Vs)I (10.5)

The time derivative of the excess work, which is that part of the dissipation
due to the variation is X , equals the power input necessary to maintain the
system away from its stationary state. In the next chapter we develop the
theory in a more substantial way.

Acknowledgement. This chapter is based in part on [6] and [7].
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Theory of Determination of Thermodynamic
and Stochastic Potentials from Macroscopic
Measurements

11.1 Introduction

We have several purposes in mind for this chapter: First we present a develop-
ment of the theory for the determination of thermodynamic and stochastic po-
tentials, φ, for non-equilibrium systems from electrochemical measurements;
second, a parallel development for neutral (not ionic) systems in general; and
third, the presentation of suggestions for testing the consistency of the master
equation with such measurements [1].

For the first purpose we choose a chemical reaction system with some ionic
species, as for example the minimal bromate reaction, for which we presented
some experiments in Chap. 10. The system may be in equilibrium or in a non-
equilibrium stationary state. An ion selective electrode is inserted into the
chemical system and connected to a reference electrode. The imposition of a
current flow through the electrode connection drives the chemical system (CS)
away from its initial stationary state to a new stationary state of the combined
chemical and electrochemical system (CCECS), analogous to driving the CS
away from equilibrium in the same manner. A potential difference is generated
by the imposed current, which consists of a Nernstian term dependent on
concentrations only, and a non-Nernstian term dependent on the kinetics. We
shall relate the potential difference to the stochastic potential; for this we need
to know the ionic species present and their concentrations, but we do not need
to know the reaction mechanism of the chemical system, nor rate coefficients.

For the second purpose we offer a suggestion for reaction systems with
or without ionic species for an indirect method of determining the stochas-
tic potential from macroscopic measurements. We impose an influx of any
of the stable intermediate chemical species into the system (CS), and thus
displace the CS from its initial stationary state to a new stationary state of
the combined CS and the imposed influx. We measure the concentrations of
species in the new stationary state and repeat this experiment for different
imposed influx rates. We can fit these measurements to an assumed reaction
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mechanism and an assumed master equation to determine rate coefficients
and the stochastic potential.

11.2 Change of Chemical System into Coupled Chemical
and Electrochemical System

Let us consider a simple model system

R+ +Q+

k+
+1

�
k−
+1

A1 +B2

k+
0

�
k−
0

B1 +A2

k+
+1

�
k−
−1

R− +Q− (11.1)

where R+, Q+, R−, and Q− are held at given constant concentrations
R+, Q+, R−, Q− respectively. The species A1, A2, B1 and B2 (at con-
centrations A1, A2, B1, and B2) respectively, are uniformly distributed in a
CSTR. The deterministic kinetic equations are

dA1

dt
=

dB2

dt
= k+

+1R+Q+ + k−0 B1A2 − (k−+1 + k+
0 )A1B2

dA2

dt
=

dB1

dt
= k−−1R−Q− + k+

0 A1B2 − (k+
−1 + k−0 )B1A2 (11.2)

and for values of R+Q+/R−Q− not equal to the equilibrium constant for the
overall reaction a non-equilibrium stationary state is achieved in time. The
concentrations not given are assumed to be measurable.

To move this chemical system (CS) away from its stationary state we insert
an electrode into the CS and connect this electrode to a reference electrode,
see Fig. 10.1 in Chap. 10. The electrode reactions are

A1 + e− � A2, B1 + e− � B2 (11.3)

We consider a combination of the electrode reactions in (11.3) with the
buffered species R+, Q+, R−, Q−,

R+ � A1 + e− � A2 � R−; Q+ � B1 + e− � B2 � Q−. (11.4)

The sum of the reactions in (11.3) and (11.4) is the chemical reaction in
(11.2). Upon insertion of the electrode into CS and the imposition of a current
flow through the external circuit a new stationary state is achieved in time, a
stationary state of the CCECS.

The expression for a given imposed current j is given by the Butler–Volmer
equations, (11.2) and (11.3). These are essentially empirical equations [2, 3];
Bard and Faulkner refer to them as the Butler–Volmer ‘approach’. According
to those equations the imposed current is given by

j = j−1 − j+1 + j−2 − j+2 + j−3 − j+3 + j−4 − j+4 + j−5 − j+5 + j−6 − j+6 , (11.5)



11.2 Change of Chemical System into Coupled Chemical 103

where

j+1 = FCR+A1 exp[−∆G‡
R+A1

(0)/RT ] exp(−αR+A1fE)

j−1 = FCA1R+A1 exp[−∆G‡
R+A1

(0)/RT ] exp[(1 − αR+A1)fE], etc. (11.6)

In these equations E is the potential difference between the two electrodes, F
is the Faraday constant; CR+ etc. are Arrhenius prefactors; R+, A1 are con-
centrations; ∆G‡

R+A1
(0) is the Gibbs free energy of activation of the electrode

reaction R+ = A1 + e− when the potential difference between the electrode
and the reacting solution vanishes, and similarly for the other activation en-
ergies; aR + A1 is the transfer coefficient for the R+/A1 reaction etc., and
f = F/RT . In (11.5) the first term is the current due to the half-cell reaction

R+ → A1 + e− (11.7)

and the second term due to

A1 + e− → R+ (11.8)

and similarly for the other reactions in (11.5).
The chemical kinetics of the CCECS are given by a combination of the

chemical terms in (11.2) and the electrochemical terms in (11.5)

dA1

dt
= k+

+1R+Q+ + k−0 B1A2 − (k−+1 + k+
0 )A1B2 +

1
F

(j+1 − j−1 + j−2 − j+2 ),

dA2

dt
= k−−1R−Q− + k+

0 A1B2 − (k+
−1 + k−0 )B1A2 +

1
F

(j+2 − j−2 + j−3 − j+3 ),

dB1

dt
= k−−1R−Q− + k+

0 A1B2 − (k+
−1 + k−0 )B1A2 +

1
F

(j+4 − j−4 + j−5 − j+5 ),

dB2

dt
= k+

+1R+Q+ + k−0 B1A2 − (k−+1 + k+
0 )A1B2 +

1
F

(j−6 − j+6 + j+5 − j−5 ).

(11.9)

For a stationary state of the CCECS we have

dA1

dt
=

dA2

dt
=

dB1

dt
=

dB2

dt
= 0. (11.10)

The concentrations of the chemical species: A1, A2, B1, B2 in the stationary
state of the CCECS are altered from those in the CS due to imposition of a
current. Thus by varying the input current j, stationary (without electrodes)
and non-stationary (with electrodes), states of the CS are all time independent
and hence the concentrations are easy to measure.
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11.3 Determination of the Stochastic Potential φ
in Coupled Chemical and Electrochemical Systems

The differential of the stochastic potential for the chemical system in one of
its stationary states, dφc, is (see Chap. 3)

dΦc =
∑

i

(µi − µ0
i )dni (11.11)

with the index i extending over A1, B1, taken to be neutral, and the species
A2, B2 taken to be negatively charged. The chemical potentials µ0

i are those
of the species in a reference state; the concentrations xj of the species Xj

is obtained from the momentum canonically conjugate to xj along a fluctu-
ational trajectory, see Chap. 3. The differential dΦc is exact and any path of
integration suffices to obtain Φ. The exponential of the integral in (11.11) is a
formal representation of the eikonal approximation for the stationary solution
of the master equation of the chemical system.

We choose the same variables for the chemical as for the electrochemical
system. The reactions at the electrodes are sufficiently fast that the measured
potential is the equilibrium potential; fluctuations in that potential and in the
imposed current are neglected. This is analogous to neglecting fluctuations in
concentrations of species in equilibrium with mass reservoirs. For systems for
which equilibrium is the only stable attractor, the chemical potential of each
chemical species, say that of A2, is

µA2 + EA2NF , (11.12)

where EA2 is the potential for a given imposed current, N is the number of
equivalents in the half-cell reaction for A2, and F is the Faraday constant. We
postulate that we may write dΦE for the CCECS in a parallel way

dΦE = (µA1 − µ0
A1

)dnA1 + (µB1 − µ0
B1

)dnB1

+ (µA2 + EA2NF − µ0
A2

− E0
A2

NF )dnA2

+ (µB2 + EB2NF − µ0
B2

− E0
B2

NF )dnB2

= dΦc + (EA2 − E0
A2

)NFdnA2 + (EB2 − E0
B2

)NFdnB2 , (11.13)

where the first line is for the neutral species and the next two line for the
ionic species. The fourth line gives the relation of the stochastic potential of
the combined systems to that of the chemical system.

This postulate is consistent to given approximations with an expansion of
the master equation or an equivalent Hamilton–Jacobi equation. The deriva-
tion is given in Appendix A and B of [1]; the mathematics is complex and
specialized. The study of stochastic equations of electrochemical systems is
in its infancy; we know of no prior work on this subject. Further intensive
studies will be necessary to fully substantiate the postulate of (11.13).
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At a stationary state of the combined system the differential dΦE = 0 and
therefore we have for dΦc the result

dΦc = − NF [(EA2 − EA2(s)) − (E0
A2

− EA2(s))]dnA2

− NF [(EB2 − EB2(s)) − (EB2 − EB2(s))]dnB2 , (11.14)

where we added and subtracted the potentials EA2(s) of A and EB2(s) of B
in the stationary state of the system of the chemical system. The first term
in each square bracket depends on concentrations only and thus is the Nerns-
tian contribution to the measured electrochemical potential. The second term
in each square bracket depends on the kinetics of the chemical system and
thus is the non-Nernstian contribution the electrochemical potential. Mea-
surements of this potential, say with ion-specific electrodes, yield the slopes
∂Φc/∂nA2 and ∂Φc/∂nB2 ; thus with measurements of the macroscopic con-
centrations of A1, A2, B1 and B2 at a sufficient number of displacements from
the stationary state of the chemical system we can determine the stochastic
potential of that system from macroscopic measurements. (The experimental
results reported in Chap. 10 are insufficient for this purpose. More experimen-
tation is in progress in the laboratory of Prof. K. Showalter at the University
of West Virginia and at its completion a comparison of the stochastic poten-
tial as given by the theory and the experiments can be made.) To obtain these
results no direct use of any master equation has been made and no model of
the reaction mechanism was necessary.

11.4 Determination of the Stochastic Potential
in Chemical Systems with Imposed Fluxes

Consider the chemical system in (11.1) with the species being either ions or
neutrals; the system is in a reaction chamber in a non-equilibrium stationary
state. We impose a flux of species A1, J = k′A′

1, into the reaction chamber
with Q+ and Q− held constant and thereby move the chemical system to
a different non-equilibrium stationary state with different concentrations of
the reacting species A1, B1, A2, B2. This procedure allows the sampling
of different combinations of the reacting species by means of the imposition
of different fluxes of these reactants. These combinations represent different
non-stationary states in the absence of imposed fluxes, but with the imposed
fluxes they are stationary states and hence measurements may be made with-
out constraints of time. If we would attempt to measure concentrations in
non-stationary states then the measurement technique would have to be fast
compared to the time scale of change of the concentrations due to chemical
reactions.

Now we impose a flux of a chemical species present in the system and in-
quire on the effect of that imposition on the stochastic potential of the system.
For that we need to go from the deterministic kinetic equations to a stochastic
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equation, say the lowest order eikonal approximation to the chemical master
equation. The response measurements to the imposed flux provide an indi-
rect determination of the stochastic potential, one that depends on the use
of the master equation, an assumed reaction mechanism, and assumed rate
coefficients.

This procedure is easy for a one-variable system because we know the
solution of the stationary master equation to this approximation. For example,
for the one-variable Schlögl model we have the elementary reaction steps

A+ 2X
k1

�
k2

3X, X
k3

�
k4

B, (11.15)

with the concentrations of A and B held constant. The kinetic equation with-
out the imposed flux is

dX
dt

= k1AX
2 + k4B − (k2X

3 + k3X) ≡ t+ − t−. (11.16)

Let the imposed flux be J = k′X ′. The stationary solution of the lowest order
eikonal approximation of the master equation for the system (11.15) with the
imposed flux is

P (X) ≈ exp
(
− Φ′

kBT

)
, (11.17)

where

− 1
kBTV

∂Φ′

∂X
= ln

(
t+ + J

t−

)
= ln

(
t+

t−

)
+ ln

(
1 +

J

t−

)
. (11.18)

In the absence of an imposed flux the solution reduces to

− 1
kBTV

∂Φ

∂X
= ln

(
t+

t−

)
. (11.19)

At a stationary state of the system with imposed flux we have ∂Φ′/∂X = 0
and hence from (11.18) we obtain

− 1
kBTV

∂Φ

∂X
= ln

(
t+

t−

)
= − ln

(
1 +

J

t−

)
. (11.20)

Thus from measurements with imposed flux we obtain the derivative of the
stochastic potential for the system without imposed flux, but we need kinetic
information, the rate coefficients in t−, as well.

For multi-variable systems this approach is more difficult; the determina-
tion of the stochastic potential requires sufficient measurements to determine
rate coefficients and then the numerical solution of the stationary form of the
master equation. Details of this procedure are described in Appendix A of [1].
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11.5 Suggestions for Experimental Tests
of the Master Equation

A direct test of the master equation for systems in non-equilibrium station-
ary states comes from the measurements of concentration fluctuations; such
measurements have not been made yet. Some other tests of the master equa-
tion are possible based on the earlier sections in this chapter, where we can
compare measurements of the stochastic potential with numerical solutions
of the master equation (which requires knowledge of rate coefficients and the
reaction mechanism of the system).

There are other indirect methods. Consider a one-variable system (or an
effectively one variable). Let the system have multiple stationary states and
in Fig. 11.1, taken from [1], we show a schematic diagram of the hysteresis
loop in such systems.

Several experiments can be suggested to test aspects of the predictions of
the master equation. To construct a diagram as in Fig. 11.1 from the master
equation we need to know or guess rate coefficients and the reaction mecha-
nism of the system. For the experiments we need to measure the concentration
c of a given species as the the influx coefficient is varied. Thus we establish the
solid lines by experiment. If we can form a CCECS, as discussed in Sects. 11.2
and 11.3 of this chapter, then we can locate the combined system at point 1 on
line A by imposing a given current flow. This point is a stable stationary state
of the combined system. If the imposed current is stopped (the electrochemical
system is disconnected) then the chemical system will return deterministically

Fig. 11.1. Typical hysteresis loop for a one-variable system with a cubic kinetic
equation: plot of concentration c vs. influx coefficient. Solid lines, stable stationary
states (nodes); broken line, unstable stationary state. For a discussion of lines A and
B and numbers, see the text
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to the nearest stable stationary state of the chemical system, that is point 2
on line A and on the stable branch I. We can repeat this experiment by lo-
cating the CCECS, say on point 3 on line A; then on stopping the imposed
current the chemical system will return to point 4 on line A and on the stable
branch II. By means of such experiments we can locate the branch of unstable
stationary states, the separatrix, the dotted line in Fig. 11.1, and compare it
with predictions of the master equation.

The same approach works for the displacement of a system by imposition
of an influx of a given species, see Sect. 11.4 of this chapter.

Equistability of a homogeneous stable stationary state on the upper branch
of the hysteresis loop, labelled I in Fig. 11.1, with a homogeneous stable sta-
tionary state on the lower branch, labelled II, occurs at one value of the influx
coefficient k within the loop. Say that point occurs at the location of line
A. The predictions of the stationary solution of the master stochastic master
equation are (a) the minimum of the bimodal stationary probability distrib-
ution is located on the separatrix, and (b) at equistability the probability of
fluctuations P (c) obeys the condition

∫ 5

4

P (c)dc =
∫ 5

2

P (c)dc. (11.21)

Approximately, at equistability the height of the probability peak at point
2 equals that at point 4. To either side of the value of k at equistability,
the peak of the more stable stationary state is higher than the other peak. A
comparison of deterministic and stochastic calculations (not experiments) has
been discussed in a different context, that of viewing the stochastic potential
as an excess work [4, 5].

A point at the end of a hysteresis loop, such as point 7 in Fig. 11.1, is
called a marginal stability point. Near such points, such as 6, critical slowing
occurs. After a perturbation of the system in the stable stationary state at 6
the system returns to 6, but increasingly more slowly for values of the influx
coefficient to the left of 6 but to the right of 7, and increasingly faster to the
right of 6. This effect has been observed experimentally in several systems [6].
Critical slowing down manifests itself in the stationary solution of the master
equation near marginal stability points. Hence a quantitative comparison of
experiment and theoretical predictions leads to a test of the master equation
and the assumed parameters.

Acknowledgement. This chapter is based on [1].
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Dissipation in Irreversible Processes

12.1 Introduction

We have introduced the concept of dissipation in Chap. 2.3; it is related to the
entropy production in irreversible chemical and physical systems, and has been
discussed in the scientific literature and in texts extensively. Here we present
some relatively new developments and return to the issue of dissipation and
efficiency in chemical reactions in Chap. 13 and later.

We begin with several exact solutions for the entropy production in simple
irreversible processes [1].

12.2 Exact Solution for Thermal Conduction

12.2.1 Newton’s Law of Cooling

We consider a macroscopic, homogeneous system with cylindrical shape of
length l and cross-sectional area A; the temperature of the cylinder is T , which
is generally time-dependent. Heat is transported across the boundary of the
cylinder at each end in contact with two thermal baths, one with temperature
T1 at one end, and the other with T2 at the other end; without restrictions
we assume T1 > T2. We take the conduction of heat to be given by Newton’s
equations

lAρc
dT
dt

= k

(
T1 − T

l

)
+ k

(
T2 − T

l

)
, (12.1)

where l is the length of the cylinder, A the cross-sectional area, k the thermal
conductivity, ρ the density of the system taken to be constant and c the
mass specific heat capacity, also taken to be constant. The solution of this
equation is

T (t) = Tst + [T0 − Tst] exp[−2 ∈ t], (12.2)
where the relaxation rate is

2 ∈= 2k/(ρcAl2) (12.3)
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and the stationary state temperature in the limit of long time is

lim
t→∞T = Tst = (T1 + T2)/2. (12.4)

The rate of entropy production is the product of the heat flux times the
conjugated force

σ = Alk.
T1 − T

l
· 1
l

(
1
T

− 1
T1

)
+Alk.

T2 − T

l
· 1
l

(
1
T

− 1
T2

)

=
kA

TT1T2l
[T 2(T1 + T2) − 4T1T2T + T1T2(T1 + T2)] ≥ 0 (12.5)

and is always positive. Note that the flux is not proportional to the force.
The derivative of the entropy production with respect to temperature is

d
dT

σ(T ) =
Ak(T 2 − T1T2)(T1 + T2)

lT 2T1T2
(12.6)

and at the stationary state we have

σ(Tst) = Ak(T1 − T2)2/2lT1T2. (12.7)

Hence we may rewrite (12.5) as

d
dT

σ(Tst) =
Ak(T1 − T2)2

lT1T2(T1 + T2)
(12.8)

which is always positive and therefore the rate of entropy production is never
an extremum at a stationary state, whether close to or far from equilibrium,
except at equilibrium. This will be discussed further, later in this chapter.

At equilibrium, at T1 = T2, the entropy production rate has an extremum
which is a minimum.

The dimensionless ratio
[
σ(T )/T

dσ(T )/dT

]

T=Tst

= 1 > 0 (12.9)

is positive for any non-equilibrium stationary state; at equilibrium this ratio
is zero [

σ(T )/T
dσ(T )/dT

]

T=Teq

=
[
T − Teq

T + Teq

]

T=Teq

= 0. (12.10)

12.2.2 Fourier Equation

The extension of Newton’s law of cooling leads to Fourier’s law of heat con-
duction. The heat flux is given by

J = −k∇T (12.12)
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and the thermodynamic force is

∇T−1. (12.13)

Again we find the flux not to be proportional to the force. We insert the flux
into the balance expression

ρc(∂T/∂t) + ∇ · J (12.14)

set to zero, and obtain Fourier’ law

∂T/∂t = λ∇2T, (12.15)

where λ = k/ρc is the thermal diffusivity. The entropy production of the whole
system is a functional of the temperature field T (r) and is

σ[T (r)] =
∫

J · ∇T−1dr = k

∫
[∇T (r)]2

[T (r)]2
dr ≥ 0. (12.16)

To see if the entropy production rate has an extremum for the stationary state
corresponding to a constant heat flux J0 we evaluate the functional derivative
with respect to the temperature field

δ

δT (r′)
σ[T (r)] = 2k

∫ [(
1

T (r)
(∇rδ(r − r′)) · (∇ ln T (r))−

δ(r − r′)
T (r)

(∇ ln T (r))2
)]

dr = 2k
[
(∇T (r′))2

(T (r′))3
− ∇2T (r′)

(T (r′))2

]
(12.17)

For a stationary state Fourier’s equation (12.15) reduces to Laplace’s equation

∇2Tst(r) = 0. (12.18)

We insert the stationarity condition J0 = −k∇Tst (r) into (16, 17) to obtain

σ[Tst(r)]|st =
|J0|2
k

∫
dr

|Tst(r)]2
=

{
= 0 if |J0| = 0

> 0 if |J0| > 0
(12.19)

and
δ

δT (r′)
σ[T (r)]|st =

2|J0|2
k(Tst(r′))3

=

{
= 0 if |J0| = 0

> 0 if |J0| > 0.
(12.20)

These equations show that the entropy production rate is an extremum if and
only if the stationary state is the state of equilibrium.
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12.3 Exact Solution for Chemical Reactions

Consider a general reaction network with ideal mass-action laws of kinetics

Sa∑

u=1

α+
uwAu +

Sx∑

u=1

β+
uwXu �

Sa∑

u=1

α−
uwAu +

Sx∑

u=1

β−
uwXu, (12.21)

where the forward and backward extensive reaction rates are

r±w (a,x) = V k±w

[
Sa∏

u=1

(au)αuw
±
] [

Sx∏

u=1

(xu)βuw
±
]

. (12.22)

In these equations, Au, u = 1, . . . , Sa are stable species with concentrations
au, u = 1, . . . , Sa kept constant by interactions with a set of reservoirs con-
nected to the system, and Xu, u = 1, . . . , Su are reaction intermediates with
variable concentrations xu, u = 1, . . . , Sx. V is the volume of the system. The
system can be kept away from equilibrium by controlling the concentrations
of the stable species.

The entropy production rate is the sum of the product of the net flux
times the affinity for each elementary reaction step (compare with the form
of (1.21))

σ(a,x) = kB

R∑

w=1

[r+w (a,x) − r−w (a,x)] ln
[
r+w (a,x)
r−w (a,x)

]
≥ 0. (12.23)

The entropy production depends only on concentrations but not explicitly on
time. The differential of the entropy production can be evaluated with the
use of (12.23)

δσ(a,x)=
Sx∑

u=1

δ lnxu
∂

∂ lnxu
σ(a,x) =

Sx∑

u=1

r̃u(a,x)δ lnxu +
Sx∑

u=1

Bu(a,x)δ lnxu,

(12.24)

where the net reaction rates of the species are

r̃u(a,x) =
R∑

w=1

[r+w (a,x) − r−w (a,x)](β+
uw − β−

uw) (12.25)

and

Bu(a,x) =
R∑

w=1

[β+
uwr

+
w (a,x) − β−

uwr
−
w (a,x)] ln

[
r+w (a,x)
r−w (a,x)

]
. (12.26)

For a stationary state x = xst the net reaction rates of the active species
equals zero and the first sum in the second of the equations in (12.24) is
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zero. The second sum in the second of equations in (12.24) is however in
general not zero. It is zero only at thermodynamic equilibrium where detailed
balance holds

r+w (a,x) = r−w (a,x). (12.27)

We now select a very simple example of a reaction mechanism consisting of
two elementary reactions

νA � Xν, νX � νB (12.28)

to show that the entropy production never has an extremum except at equi-
librium. A few counter examples suffice to negate the principle of minimum
entropy production for chemical reactions [2,3]. For the reaction (12.28) there
is a single stable stationary state for which we have

x = xst =
{

1
2
[(a)ν + (b)ν ]

}1/ν

. (12.29)

For a 
= b the stationary state is a non-equlibrium state, and for a = b = xst

the stationary state is one of thermodynamic equilibrium. The variation of
the entropy production rate at x = xst is

δσ(a, b, xst) = (δ ln xst)V kBνk
1
2
[(a)ν + (b)ν ] ln

(
[(a)ν + (b)ν ]2

4aνbν

)
(12.30)

From the algebraic inequality

[(a)ν + (b)ν ]2

4aνbν
=

{
1 for a = b

> 1 for a 
= b
(12.31)

it follows that
δσ(a, b, xst)
δ ln xst

=

{
0 for a = b

> 0 for a 
= b
(12.32)

and the entropy production rate has an extremum if and only if the system
is at thermodynamic equilibrium. For non-equilibrium stationary states, no
matter how close to equilibrium, the entropy production rate does not have
an extremum.

We have shown explicitly and without approximation that for two cases
of irreversible processes the rate of entropy production has no extremum at
stationary states neither near nor far from euilibrium. If the flux of any trans-
port process is strictly proportional to the force then the entropy production
is the square of either and trivially has an extremum, a minimum, at a sta-
tionary state.
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12.4 Invalidity of the Principle of Minimum Entropy
Production

In 1987 we were concerned with the validity of the so-called principle of min-
imum entropy production rate [4, 5]. In the first article we showed by expan-
sion of the entropy production the general invalidity of the principle. Once
the entropy production rate is expanded in the affinity, the deviation from
equilibrium, then two operations are required (1). the differentiation of the
entropy production rate with respect to temperature and (2). the termination
of the series expansion in the affinity to simulate the requirement ‘close to
equilibrium’. The problem arises with the fact that these two operations do
not commute. Only if operation 2 preceeds 1, an incorrect procedure, then the
dissipation shows an extremum at a stationary state. Only the incorrect pro-
cedure leads to a ‘principle’. If operation 1 preceeds 2 then the dissipation has
no extremum at a stationary state, the same result as obtained in Sects. 12.2
and 12.3 without any approximations.

Glansdorff and Prigogine [3] stated the principle in the following way: ‘. . .
if the steady states occur sufficiently close to equilibrium states they may
be characterized by an extremum principle according to which the entropy
production has its minimum value at the steady state compatible with the pre-
scribed conditions (constraints).’

Over the years much has been made of the principle of minimum entropy
production. A few quotes will suffice.

Lehninger in the 1975 edition of his well-known text on biochemistry [6]
states ‘.. at least two general attributes of open systems have considerable sig-
nificance in biology . . . the most important implication is this: in the formalism
of nonequilibrium thermodynamics, the steady state, which is characteristic
of all smoothly running machinery, may be considered to be the orderly state
of an open system, the state in which the rate of entropy production is at
a minimum and in which the system is operating with maximum efficiency
under the prevailing conditions’.
Clearly wrong. A broader statement was made by Katchalsky [7]: ‘This re-
markable conclusion . . . sheds new light on the ‘wisdom of living organisms’.
Life is a constant struggle against the tendency to produce entropy by irre-
versible processes. The synthesis of large, information rich macromolecules,
the formation of intricately structured cells, the development of organization,
all these are powerful anti-entropic forces. But since there is no possibility
of escaping the entropic doom imposed on all natural phenomena under the
Second Law of Thermodynamics, living systems choose the least evil–they
produce entropy at a minimum rate by maintaining a steady state.’
Colorful but wrong. Voet and Voet, in a widely used text on ‘Biochemistry’ [8]
state: “Ilya Prigogine, a pioneer in the development of irreversible thermo-
dynamics, has shown that a steady state produces the maximum amount of
useful work for a given energy expenditure under the prevailing conditions.
The steady state of an open system is therefore a state of maximum efficiency.”

Wrong again on several counts, see Chap. 13 and later.
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12.5 Invalidity of the ‘Principle of Maximum Entropy
Production’

This principle states that irreversible processes proceed in a direction which
produces maximum entropy production. If there is a choice then the path
with the highest entropy production has the fastest rate. This principle is
much less well known, yet there are hundreds of articles on this subject and
several reviews [9]. For chemistry, and hence for biology, the principle is gen-
erally invalid. The rates of reactions are governed by the Gibbs free energy
of activation, not by the rate of entropy production. There is in general no
relation between thermodynamic quantities, such as the rate of entropy pro-
duction, the Gibbs free energy, etc, and quantities determining the rates of
reactions. There may some empirical relations but they are of limited use.
There is experimental evidence against this principle [10].

See Chap. 2, (2.40) for an expression of equistablity in terms of an integral
over time of the species-specific dissipation, (2.26). It may appear to be some
connection with the ‘principle’ under discussion, but there is none.

In Sect. 8.4.1, we discuss a Rayleigh–Benard experiment, see [11] in
Chap. 8, which is a clear refutation of this ‘principle’ in the field of transport
processes and hydrodynamics.

12.6 Editorial

If a theory is proven wrong, or a better theory has been offered, how long does
the process of adaptation by the scientific community take? The longer the
old theory has been believed to be correct, the longer the time of adaptation
of a new and better theory. Scientists seldom change their mind, they cease
to practice science and they die off. (A rephrasing of a thought expressed by
Max Planck.) Younger scientists not steeped in the old theory tend to adapt.
A point in case: The second edition of ‘Physical Chemistry’, a widely used
text by Noyes and Sherrill published in 1938, makes no mention of quan-
tum mechanics, nearly 50 years after Planck and 12 years after Schrodinger
and Heisenberg. Several books on quantum mechanics, including Pauling and
Wilson’s ‘Introduction to Quantum Mechanics’ had appeared by 1935.

Acknowledgement. This chapter is based on part of [1].
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13

Efficiency of Irreversible Processes

13.1 Introduction

A chemical reaction with a Gibbs free energy change less than zero (negative)
can proceed spontaneously, irreversibly, and can produce work. If the reaction
is run reversibly, then the maximum work, other than pV work, is ∆G, for
the reaction as written. If the reaction is run irreversibly then there is some
entropy production and some work may be done, but less than ∆G. If no work
is done then the rate of entropy production is

T
dS
dt

= ∆G(rate), (13.1)

where ‘rate’ denotes the rate of the reaction. It is instructive to derive this
equation: The definition of the Gibbs free energy is

G = H − TS, (13.2)

where all quantities refer to the system. Hence we have

dG
dt

=
dH
dt

− T
dS
dt

(13.3)

at constant T . At constant pressure the enthalpy term becomes

dH
dt

=
dQp

dt
= −T dSsurr

dt
(13.4)

so that
dG
dt

= −T dSsurr

dt
− T

dSsystem

dt
(13.5)

or
dGsystem

dt
= −T dSuniverse

dt
. (13.6)

By convention the sum of an entropy change in the system plus that of the
surroundings is called the entropy change of the universe, and the lhs of (13.6)
is another way of writing the rhs of (13.1).
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As an example consider a reaction run in an electro-chemical cell: There
are two half cells with an electrode in each of the two half cells. If the elec-
trodes are shorted (connected with a wire) then the reaction produces no
work, only dissipation (heat). If a potential is applied externally across the
electrodes, equal and opposite to that generated by the electro-chemical cell,
then the reaction is at equilibrium. A differential change in the applied poten-
tial produces an infinitesimal electron current and an infinitesimal, reversible
amount of electrical work. For a finite amount of electrical work produced
reversibly we have

∆G = −ENF = WX , (13.7)

where E is the cell potential, N the number of electrons transferred from one
electrode to the other for the cell reaction as written and F is the Faraday
constant, the number of Coulombs per mole of electrons. If the applied po-
tential is less than the cell potential, then less than the maximum work is
done by the cell. The difference between the cell potential and the applied
potential, times the amount of charge transferred by unit time, equals the
product of the temperature times the rate of entropy production, that is the
dissipation.

The power output of an electro-chemical cell (or a battery) is the product
of the applied voltage times the current. A reversible electro-chemical cell
has zero current and hence zero power output, and zero entropy production.
Power output requires an irreversible process run in finite time; therefore
power output is concurrent with entropy production (dissipation). One use of
the term ‘efficiency’ of a process, such as a reaction, is in reference to energy
transduction, for example what part of ∆G of a reaction is used to produce
work; there are other uses of this term.

13.2 Power and Efficiency of Heat Engines

We begin with an analysis of heat engines, which are devices, run in a cycle,
that accept heat at a high temperature, do some work, and reject heat at
a lower temperature. The standard example is the reversible Carnot engine
which runs in a cycle starting, say, at V1 (Fig. 13.1) and the upper reservoir
temperature T1, proceeding isothermally at T1 to V2, then adiabatically to V3

and T2, then isothermally at the lower reservoir temperature T2 to V4, and
finally returning adiabatically to the starting point at T1 and V1.

On the first isothermal branch a quantity of heat, Q1, flows reversibly from
the heat reservoir to the engine, both being a T1; similarly, on the second
isothermal branch a quantity of heat Q2 flows from the engine to the heat
reservoir, both at T2. A total amount of work W is done in one cycle. For the
isothermal steps we have the entropy changes

∆S1 =
Q1

T1
and ∆S2 =

Q2

T2
(13.8)
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Fig. 13.1. Pressure–volume diagram of an isothermal heat cycle, from [1]

or, for the cycle
Q1

T1
+
Q2

T2
= 0. (13.9)

Since for the cycle we have

∆E = 0 = W +Q1 +Q2 (13.10)

then
−W

Q1
= 1 − T2

T1
(13.11)

the well-known expression for the efficiency of a reversible Carnot engine, that
is the maximum work available per cycle for a given heat input Q1 and the
given reservoir temperatures.

The reversible Carnot engine has no power output, since the reversible
work done takes an infinite time. The power is the work done in a finite
time, and hence here is zero. To achieve power output [1] there must be some
spontaneous, natural, irreversible process [2, 3]. We shall assume that heat
flows spontaneously from the reservoir at T1 to the heat engine at T1

∗, see
Fig. 13.1, according to a simple linear rate law

dQ1/dt = α(T1 − T ∗
1 ) (13.12)

during the isothermal expansion from V1 to V2. The cycle continues with
an adiabatic expansion from V2 to V3 and T2

∗; next comes an isothermal
compression to V4, where the heat engine at T2

∗ is connected to the heat
reservoir at T2 and heat flows at a non-zero rate according to an equation
similar to (13.12). The final step in the cycle is an adiabatic compression back
to V1 and T1

∗. During the isothermal expansion, the first step in the cycle, the
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external pressure must be less than the pressure of the system, contained in a
cylinder with a piston, and the piston is accelerated with a force proportional
to p − pext; we retain the kinetic energy of the piston in the energy balance
but neglect the kinetic energy associated with the macroscopic motion of the
working fluid in the cylinder.

We begin with the first and second law of thermodynamics

T dS = dE + p dV, (13.13)

which holds for systems for both reversible and irreversible processes, since
only state variables appear in the equation.

Our system consists of the working fluid, the cylinder and the piston of
mass m. To calculate the entropy change of the system in an irreversible
expansion we write

T dS = dE + pexdV + (p− pex)dV
= dQ− dK + (p− pex)dV, (13.14)

where dK is the kinetic energy change of the piston. The piston satisfies
Newton’s second law

p− pex = m
d2V

dt2
(13.15)

for a piston of unit area. For the kinetic energy we have

K =
m

2

(
dV
dt

)2

,

dK = m
d2V

dt2
dV (13.16)

and hence we find
dS = dQ/T. (13.17)

By including the piston in the system we see that the entropy change of
the system can be written in the same form for reversible and irreversible
processes. With inclusion of the piston in the system we insure that on ex-
pansion, reversible or irreversible, there is no dissipation and hence (13.17)
applies in both cases.

We turn next to the calculation of the rates of all the steps in the irre-
versible cycle. For the first isothermal step heat flows from the reservoir to
the system and may change the internal energy of the system and the kinetic
energy of the piston, and may be used to produce work in the surroundings.
We may write

dQ1

dt
=

dE
dt

+
dK
dt

+ pex
dV
dt
, (13.18)
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If the working fluid is taken to be an ideal gas then dE/dt = 0 for the
isothermal expansion so that

dQ1

dt
= m

d2V

dt2
dV
dt

+ pex
dV
dt
. (13.19)

On combining (13.19), (13.20) and (13.12) we obtain

dQ1

dt
= α(T1 − T ∗

1 ) = p
dV
dt

=
RT ∗

1

V

dV
dt
, (13.20)

where in the second line we have substituted the equation of state for one
mole of an ideal gas. The equation of motion for the volume of the system is
therefore

dV/dt = V/f1, (13.21)

with
f1 ≡ R

α

T ∗
1

T1 − T ∗
1

. (13.22)

The time necessary to complete the isothermal expansion from V1 to V2 is

t1 = f1 ln(V2/V1) (13.23)

and the heat transferred is

Q1 =
∫ t1

0

α(T1 − T ∗
1 )dt = αt1(T1 − T ∗

1 )

= RT ∗
1 ln(V2/V1). (13.24)

For the first adiabatic branch the system is decoupled from the heat reservoir
at T1; dQ is zero and from (13.17) we see that the system undergoes a reversible
adiabatic expansion from V2 to V3 at temperature T ∗, which, for an ideal
gas, gives

Cυ
dT ∗

dt
+
RT ∗

V

dV
dt

= 0. (13.25)

The external pressure in the adiabatic processes is undetermined; we choose
pext to have the form

pex =
RT ∗

V
−m

V

f2
1

, (13.26)

so that the equation of motion becomes identical to (13.17); the upper bounds
on the power and efficiency of the heat engine are independent of the choice
of this process. With (13.17) we find that the time necessary for this adiabatic
expansion is

t2 = f1 ln
V3

V2
=

f1
(γ − 1)

ln
T ∗

1

T ∗
2

, (13.27)
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where γ is the ratio of the heat capacities Cp/Cv and we have used the relation

T ∗
1 V

γ−1
2 = T ∗

2 V
γ−1
3 (13.28)

for an adiabatic process of an ideal gas. The kinetic energy of the piston is
convertible into work.

For the next isothermal and adiabatic compression steps we proceed in a,
respectively, parallel way. The equation for the isothermal compression is

dV/dt = V/f2 (13.29)

with
f2 ≡ R

α

T ∗
2

T ∗
2 − T2

; (13.30)

the time for the isothermal compression is

t3 = f2 ln(V3/V4) (13.31)

and the heat transferred during the second isothermal branch is

Q2 = −RT ∗
2 ln(V3/V4). (13.32)

The time for the adiabatic compression (compare with (13.27)) is

t4 = −f2 ln
V1

V4
=

f2
(γ − 1)

ln
T ∗

1

T ∗
2

. (13.33)

The total work done by the system, including the conversion of the kinetic
energy of the piston, is for one complete cycle obtained from the first law:
since ∆E = 0 for the cycle we have

W = Q1 +Q2 (13.34)

or from (13.24) and (13.32)

W = RT ∗
1 ln

V2

V1
−RT ∗

2 ln
V3

V4
. (13.35)

The second and fourth steps are effectively reversible adiabatics and hence
we have

T ∗
1 V

γ−1
1 = T ∗

2 V γ−1
4 ,

T ∗
1 V

γ−1
2 = T ∗

2 V γ−1
3 , (13.36)

where
γ − 1 + (R/Cv) = Cp/Cv; (13.37)

thus
V2/V1 = V3/V4 (13.38)
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and

V2 = V3

(
T ∗

2

T ∗
1

)v

(13.39)

where ν = 1/(γ − 1). With these identities we can change (13.35) to

W = R(T ∗
1 − T ∗

2 )
(

ln
V2

V1
+ ν ln

T ∗
2

T ∗
1

)
. (13.40)

We calculate the average power per cycle by first finding the total cycle time,
ttot, from (13.23), (13.27), (13.31), (13.33)

ttot = f1 ln
V2

V1
+ f2 ln

V2

V1
+ ν(f1 + f2) ln

T ∗
1

T ∗
2

. (13.41)

Hence the power output is

P =
W

ttot
=

α

lnV3/V1

(T ∗
1 − T ∗

2 )
(
ln V3

V1
+ ν ln T∗

2
T∗
1

)

T∗
1

T1−T∗
1

+ T∗
2

T∗
2 −T2

, (13.42)

which is an explicit function of the compression ratio, V3/V1, the ratio of the
maximal to minimal volume of the working fluid in the heat engine.

In Fig. 13.2, taken from [1], we plot the average power output divided
by the maximum power output as a function of the difference between the
temperatures of the engine during the isothermal steps of the cycle.

Curzon and Ahlborn [2], in their original work on this subject, argue that
the power output on this plot must have a maximum: for an explanation
see the caption to Fig. 13.2. The efficiency of the engine is defined as W/Q1

and thus we have
η =

W

Q1
− 1 +

Q2

Q1
− 1 − T ∗

2

T ∗
1

, (13.43)

where we have used (13.24) and (13.32). To obtain the maximum power we
need to differentiate the expression of the power output (13.42), which is given
in detail in Appendix A of [1]. In the limit of large compression ratio we obtain
for the efficiency at maximum power

ηm ≤ 1 −
√
T2/T1. (13.44)

Consider an example for a heat engine where the high temperature reservoir
is at T1, say 1, 000 ◦K and the low temperature reservoir at T2, say 500 ◦K.
The efficiency of the reversible Carnot engine, (13.11), is 0.5, whereas the
efficiency of an heat engine with power output, at maximum power, (13.44),
is about 0.3. Due to the requirement of power output there is a 40% drop in
the efficiency of the heat engine! This is the main lesson of this chapter. The
analysis is idealized but the makes the point, that achieving power output
necessitates losses in efficieny.
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Fig. 13.2. The average power output (normalized by Pmax) as a function of the
difference between the engine’s temperatures during the isothermal process. The
following parameters were used in this figure: T2/T1 = 0.3, ln(V3/V1) = 3, and
(T ∗

1 /T1) = T ∗
2 /(2T ∗

2 − T2), which corresponds to maximization with respect to T ∗
1 .

The power vanishes when T ∗
1 = T1 or T ∗

2 = T2 because the cycle time is then infinite.
It vanishes again when T ∗

1 = T ∗
2 because then no work is done by the system. Thus,

the power output must have a maximum at some intermediate temperatures

Fig. 13.3. The graph is explained in the text, from [1]

In Fig. 13.3 we show values of the maximum power output, normalized by
the maximum power output at infinite compression ratio, and the efficiency
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at the maximum power output for two values of the ratio (T1/T2) = 0.5 and
0.1 as a function of the compression ratio. The upper bounds are obtained in
the infinite compression ratio, and are independent of the choice of pex in the
adiabatic steps.

In this limit the time spent on the adiabatics is negligible compared to
the total time for one cycle and thus (13.44) is valid for any cycle with two
isothermal processes. Moreover, in the limit of high compression ratio the
properties of any working fluid approach those of an ideal gas during most of
the cycle and hence (13.44) is valid regardless of the working fluid of the heat
engine.

In [1], other proofs are given including one to show that the maximum
power cycle is one with two isothermal steps.

In [4] there is an analysis of time-dependent thermodynamic systems by
obtaining the entropy production in terms of the relevant relaxation times in
the system. The various physically possible limits of these relaxation times
and their ratios leads to a classification into reversible, both quasistatic and
otherwise, and irreversible processes. In one of these limits it is possible for a
reversible process not to be quasistatic, but this limit is not physically interest-
ing since for thermal conduction it would require infinite thermal conductivity.
Hence our statement that power output requires irreversible processes is here
substantiated.

In the next Chap. 14, there is a presentation of ‘Finite Time Thermo-
dynamics’, by R.S. Berry, which is another way of formulating thermodynam-
ics for systems not at equilibrium.

Acknowledgement. Section 13.2 of this chapter has been taken, with some editing
and rewording from [1].
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Finite-Time Thermodynamics

R. Stephen Berry

University of Chicago

14.1 Introduction and Background

Traditional thermodynamics evolved from Carnot’s introduction of the
concept of the ideal reversible process, a process that would proceed infi-
nitely slowly. Precisely because of that constraint, such a process would incur
none of the losses of friction or other kinds of dissipation that result from
real-time operation. The concepts of thermodynamic potentials such as the
free energies provide limits of performance based on exactly those reversible
processes as the standards of comparison with real processes. Onsager and
then others showed that one can say useful things about irreversible processes,
especially those near equilibrium. An entire field of engineering thermody-
namics grew out of the concept of ‘local thermal equilibrium’ or LTE, in
which one can describe a large system such as a flow process in terms of how
the system changes as it moves, in effect, through a succession of steps which
may be near or quite far from true thermodynamic equilibrium but that can
be assigned local temperatures.

Here we introduce another approach to dealing with non-equilibrium
processes. The goal here is ultimately finding ways to improve the efficiency
of energy use for various technologies, by using the analogues of traditional
thermodynamic potentials for processes whose very definitions constrain them
to operate at non-zero rates or in finite time. These analogues determine the
ideal limits of performance for the time- or rate-constrained systems, and offer
an alternative to the methods that are given in the other chapters of this book,
especially those of Chap. 8. We first examine the background that motivated
the introduction of this approach, then review the fundamental theorems that
justify their existence, move on to show how one can find those finite-time lim-
its of performance, and finally, show some examples of how one can optimize
particular processes to approach as closely as possible to those limits. Since
we are going beyond the equilibrium domain, we must include in the definition
of any finite-time process the inherent, unavoidable irreversibilities, as was
discussed in Chap. 12. In this approach, we deal only with the traditional
mean values of the thermodynamic quantities and not with fluctuations.
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The motivation for what became known as ‘Finite-Time Thermodynamics’
was a search for ways to identify especially attractive targets for improv-
ing efficiency of energy use. That, in turn, had been motivated by the au-
thor’s concern about the severe air pollution that afflicted many American
and other cities for many years, through the 1960s. It seemed that one should
try to go beyond addressing symptoms by, for example, putting precipitators
onto sources of emission, and try to reduce the levels of pollutants by re-
ducing the amounts of energy whose consumption was generating those pollu-
tants. Empirical comparisons of actual energy use, step-by-step, in many kinds
of processes, with the ideal thermodynamic limits for those same processes
proved to be a very useful guide. Processes whose energy and free energy
consumptions differed significantly from the thermodynamic limits were good
targets for technological improvements. However one observer challenged this
work: ‘Why are you comparing the actual use with the ideal, reversible limit?
Who would order a car from a manufacturer who made his products infinitely
slowly?’

This question led to a very productive scientific question: ‘What would
be the necessary and sufficient conditions for the existence of analogues of
the thermodynamic potentials, for processes constrained to operate in finite
time?’ Answering this question was almost the first step in the development
of the subject. However in fact two prior steps really began the subject. The
first was a study by Curzon and Ahlborn [1] introduced in Chap. 13, which ex-
amined the conditions under which the Carnot engine would operate to maxi-
mize power, rather than maximizing efficiency, which had been the traditional
quantity to optimize ever since Carnot introduced the engine operating on a
cycle of two isothermal steps separated by two adiabatic steps, all precisely
reversible. The Curzon–Ahlborn engine, like any other, of course must operate
at a non-zero rate or it produces no power at all. The result of that study
was a striking conclusion that the efficiency ηmaxP of the Carnot-type engine
operating to produce maximum power Pmax occurs when there is a specific
relation between the two temperatures TH and TL between which the process
operates: ηmaxP = 1 − [TL/TH]1/2. This is, of course, very reminiscent of the
efficiency ηrev of the reversible Carnot engine, which is ηrev = 1 − [TL/TH].
Curzon and Ahlborn showed that some real power plants in fact operate with
efficiencies rather close to those corresponding to maximum power produc-
tion. Chapter 13 introduced the Carnot engine and its variation to allow irre-
versible expansion and heat transfer, in order to do work and incorporate the
constraint of finite-time operation.

The second step historically in the approach discussed here was a sort of
test case, the analysis of a simple model system that consisted of a Carnot
cycle that operated in short, finite-time steps [2]. In this work, the system op-
erates through a series of small, discrete steps in which the pressure changes
discontinuously and the system is connected to its heat reservoirs by finite heat
conductances. The results gave the values and conditions for maximum effec-
tiveness, the ratio of the work actually done, per cycle, to the total change of
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availability, the maximum work that could be extracted from the cycle. They
also gave the maximum efficiency, the maximum power per cycle, the optimal
period per cycle and the rate at which that maximum power is delivered.

Following that analysis of a model problem came the rigorous basis of what
became ‘Finite-Time Thermodynamics,’ the theorems giving necessary and
sufficient conditions for the existence of potential-like quantities for finite-time
processes and a first algorithm to evaluate such potential-like functions [3].
This approach relies on relating thermodynamics to the formalism of classical
mechanics, in the spirit of Chap. 3 but uses somewhat different mathematical
tools. The essence is the construction of an exact differential for the process
of interest, a quantity that satisfies the constraints of that process but is
independent of the path, so long as it satisfies those constraints. The two
quantities whose limits one wants such potentials to provide are of course
heat exchanged and work done. In traditional thermodynamics, the enthalpy
H is a potential for heat exchanged in a process at constant pressure; the
Gibbs free energy is its counterpart for work exchanged at constant temper-
ature and pressure. The key step in constructing the generalized potential is
adding to the inexact differential form that gives the heat or work exchanged
another differential term which (a) is zero on the paths satisfying the given
constraints, and (b) makes the inexact differential into an exact differential.
This construction is well known in many contexts as a Legendre or Legendre–
Cartan transformation. In Sect. 14.2 we shall examine how such constructions
can be carried out, first for reversible processes and then for more general
cases. From there, we go on to construct some examples and then see how we
can find actual ways to best approach the limits they set.

14.2 Constructing Generalized Potentials

Suppose we want to construct a potential for work for a process with some
general constraint that a function g(P, V ) = const. or dg = 0. The work itself
is the value of the integral of PdV along the chosen path. We want then to
construct an exact differential Ω by adding to PdV a term fdg that makes
dΩ = PdV +fdg into an exact differential. That is, we want to make an exact
differential of

PdV + fdg = PdV + f

(
∂

∂P
dP +

∂g

∂V
dV
)

=
(
P + f

∂g

∂V

)
dV +

(
f
∂g

∂P

)
dP. (14.1)

which we can do by making the cross-derivatives equal:

∂ (P + f∂g/∂V )
∂P

= 1 +
∂f

∂P

∂g

∂V
+ f

∂2g

∂V ∂P
=
∂ (f∂g/∂P )

∂V

=
∂f

∂V

∂g

∂P
+ f

∂2g

∂V ∂P
. (14.2)
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This rearranges to give the condition
(
∂f

∂V

)

P

(
∂g

∂P

)

V

−
(
∂f

∂P

)

V

(
∂g

∂V

)

P

≡ {f, g}P,V = 1. (14.3)

The symbol { . . . } indicates a Poisson bracket. Thus the new function based
on a function f that solves (14.3) makes the expression (14.1) into an exact
differential, so that Ω becomes a potential. The solution of (14.3) is, in general,
not unique, but all solutions for a given constraint dg = 0 yield the same
changes of the potential Ω between the given end points.

This construction is applicable not only for reversible processes but, far
more generally, for quasistatic processes, that is, for processes that can be
described as a series of steps taking the system through a succession of states
characterizable by equilibrium values of the conventional thermodynamic vari-
ables. These may correspond just to discrete points along a process pathway; it
is not necessary that the thermodynamic variables be well defined at all points
along the path. This means that we can describe the process we study as a
time-parametrized sequence of internally equilibrated states. Then one can
prove that there is a function of state Ω whose change ∆Ω gives uniquely the
value of the maximum work W or heat Q transferred in the given process [3].
One can extend this to processes in which subsystems within the larger system
go through their own quasistatic succession of states, but are not in equilib-
rium with each other.

Thus, the potential can reflect the time dependence of the process ex-
plicitly. Suppose that P and V are functions of time t, as P (t) and V (t),
respectively, governed by the differential equations P (t) = F (P, V, t) and
V (t) = G(P, V, t). Then we can construct invariant differential forms

dθ1 = dP − Fdt and dθ2 = dV −Gdt

which we can then use to create the exact differential, that of the desired
potential,

dP = dW + f1dθ1 + f2dθ2. (14.4)

This is a potential for any process for which dθ1/dt = 0 and dθ2/dt = 0. This
can be extended to more variables as well.

14.3 Examples: Systems with Finite Rates
of Heat Exchange

One rather simple but straightforward illustrative example is a system that
does work but differs from ideal reversible engines by exchanging heat with
its reservoirs at finite rates, given by a linear relation,

q =
dQ
dt

= κ (T ex − T ) or, in terms of entropy change,
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dS
dt

=
Q̇

T
=
κ (T ex − T )

T
(14.5)

where κ is the heat conductance and T ex is the reservoir temperature [4].
While the second equation is universally correct for reversible processes, it also
can apply to quasistatic processes, and to those such as described in (13.4)–
(13.6) of Chap. 13. This is a useful model both because it can be completely
solved, and because it has wide applicability. For such a system, minimizing
the loss of availability, i.e., of the total work available, is equivalent to min-
imizing the total entropy production, which, for this system, is achieved by
holding the rate of entropy production constant on each branch of the cycle.
From this, one can obtain the value of the maximum work that such an en-
gine can provide, a value considerably more realistic than that of the ideal
reversible model.

In carrying out this analysis, it is often convenient to choose as the con-
trol variable the system’s temperature T . One might alternatively choose the
reservoir temperature T ex but the analysis is easier if we use T , and it can
be controlled in practice by making small adiabatic adjustments along the
path of the process. We assume that such adjustments require only infinitesi-
mal times.

The analysis begins with a basic theorem: For this system, minimum en-
tropy production implies a constant rate of entropy production on each branch
of the cycle. In the limit of a slow process, this rate is the same for all branches
of the cycle. A second theorem follows: Suppose the total cycle time is τ , that
the entropy produced on the ith branch of the cycle is σi, and that κ is the
maximum of the heat conductances on all branches. Then a lower bound for
the entropy production, per cycle, is

∆S ≥
(
∑

1

|σi|
)2

/κτ. (14.6)

Furthermore the work such a system can produce is also bounded:

W ≤Wrev − T0

(
∑

1

|σi|
)2

/κτ. (14.7)

Here T0 is the ratio of the loss of availability ∆A, to the entropy production
∆S,

T0 = ∆A/∆S. (14.8)

This relation is not restricted just to reversible and quasistatic processes. Here,
we only outline the proofs, which can be found in [4]. The entropy production
is the objective function to be minimized. The total cycle period τ is divided
into segments for each branch; one then minimizes the entropy production for
each branch, for which the initial and final states and time are fixed, using
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whatever control variables one has chosen. Then one optimizes the initial and
final states of all the linked branches so that the branches join continuously,
again using the control variables to do the joining. Finally, one optimizes the
distribution of times on each branch, within the constraint that the total cycle
time is τ .

Another illustration shows how the method can be extended to still more
realistic systems. Consider a heat engine whose heat transfer rate depends, as
in the previous example, on the difference between the temperatures of the
reservoir and the system and which also has friction, which causes a loss of
work. (Maximum power cycles require two isothermal branches [5].) The heat
transfer relation is that of (14.5), and we assume here that the frictional losses
depend linearly on the velocity at which the system changes volume, e.g., on
the velocity of a piston. Expressed in terms of the system’s volume V , this
relation is

dWfriction = −αV̇ dV (14.9)

but other forms are also appropriate for some situations. Hence the net useful
work produced by the system, in undergoing a small expansion dV is the
inexact differential

−dWnet = PdV − αV dV = PdV − αV 2dt. (14.10)

We suppose that the heat generated by friction goes entirely into the environ-
ment and does not contribute to the entropy of the system.

We need one more condition to specify enough to make this a solvable
problem. For this, we choose to define the time dependence of the volume.
Let us choose a sinusoidally varying volume,

V̇ =
π(Vmax − Vmin)

τ
sin(2πt/τ),

as in a conventional internal combustion engine.
The cyclic, sinusoidal engine with friction and finite heat transfer requires

that the pressure and volume be related by a general polytropic connection,

P/P0 = (V0/V )ς
,

where, if the process is adiabatic, ς = γ ≡ CP /CV . We suppose that the
exponent is constant, whatever it may be. If we substitute the sinusoidal time
variation of the volume as given previously into the expression for the work
produced by the system, we immediately obtain the condition that the cross
derivatives of Ω are equal and

dΩ = P0 (V0/V )ς dV − α

[
π (Vmax − Vmin)

τ

]2
sin2 (2πt/τ) dt. (14.11)
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This integrates immediately so that the time integral from t = 0 to t = t0 is

Ω =
P0V0

1 − ς

(
V0

V

)ς−1

− απ

τ
(Vmax − Vmin)2 sin2 (πt0/τ) (14.12)

which is the potential for this engine.

14.4 Some More Realistic Applications: Improving
Energy Efficiency by Optimal Control

Showing that potentials can be defined and constructed for finite-time
processes are only the first two of three steps to successful use of the con-
cept. Knowing that the potentials can be constructed is reassuring, even a
justification for going further, but it does not do a thing to improve how
we use energy. Finding a way to evaluate the potentials brings us closer to
using thermodynamics in real systems, by showing quantitatively what the
minimum work or heat exchange would have to be, if a specific process were
to operate optimally but at a given non-zero rate or in a fixed finite time.
The real fruition of this approach comes in determining a pathway to operate
a process as nearly as possible to the ideal, finite-time limit. How, we must
ask, can we design and operate the process so that the actual work done is
as close as we can bring it to the limit given by the change in the finite-time
thermodynamic work potential?

It was pointed out very early [3] that the natural way to find such optima
is through the application of optimal control theory. In fact the first such
application was carried out by Rubin [6, 7], specifically to find the pathways
and optimal performance so obtained for a cyclic engine of the sort described
above, Rubin found the conditions for optimum power and for optimum ef-
ficiency, which of course are normally different. It was in these works that
he introduced the term ‘endoreversible’ to describe a process that could have
irreversible interactions with its environment but would be describable inter-
nally in terms of the thermodynamic variables of a system at equilibrium.
An endoreversible system comes to equilibrium internally very rapidly com-
pared, whatever heat or work exchange it incurs with the outside. It was here
that one first saw the comparison of the efficiency for maximum power of the
Curzon–Ahlborn engine compared graphically with the maximum efficiency,
in terms of a curve of power vs. heat flow. Figure 14.1 is an example of this.

Optimal control theory was a useful tool for finding the pathway, in terms
of the time dependence of temperature T and volume V , that yields the op-
timum power or the optimum efficiency for a given fixed cycle time. We shall
only outline the method and show some of the results here; the full derivation
is available [6].
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Power
Max efficiency

Max power

Rate of heat flow

Fig. 14.1. A representation of power delivered vs. heat flow into the system; the
two lines correspond to efficiencies. The steeper straight line has the slope of the
maximum efficiency, η = 1− TL/TH and touches the curve at the point of zero heat
flow; the line going through the maximum of the curve crosses that curve at its
maximum, and has the slope η = 1 − (TL/TH)1/2

Optimal control theory is a formalism created to be similar in structure
to Hamiltonian mechanics. One describes the evolution of a system in terms
of some set of state variables and a control function (or functions) which also
depends on those variables or related ones. The problem is stated in terms of
a goal whose degree of achievement is measured by a performance index or
objective function that we can write as a time integral of a time-dependent
function L, relating the state variables x(t) and the control variables u(t):

I =

t2∫

t1

L [x (t) ,u (t)] dt, (14.13)

where I(t1, t2) is that objective whose value we want to maximize or minimize.
The formal procedure treats L analogously to the Lagrangian, from which
we define a Hamiltonian H [x(t), u(t), ψ(t)], where ψ(t) plays the role of a
Lagrange multiplier so the Hamiltonian can be written

H (x,u,ψ) = L (x,u) + ψ · ẋ (14.14)

and, just as in the Hamiltonian formalism of mechanics, the time dependences
of the adjoint variable ψ and the state variable set x are simply derivatives of
the Hamiltonian with respect to the conjugate variables,

ψ(t) = −∂H/∂x and x = ∂H/∂ψ. (14.15)
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Fig. 14.2. Schematic portrayal of the time history for a Carnot-like engine with
friction and finite heat conductance to its reservoirs, optimized to produce max-
imum average power. The upper figure shows the temperature variation and the
lower, the volume changes, as the system goes through its isothermal and adiabatic
branches

The desired objective corresponds to the absolute maximum (or minimum) of
H over the range of the set of the control variables u.

If one maximizes the mean power produced, the energy per cycle, one
obtains an explicit pathway for the cycle, the volume (or piston displacement)
and temperature as functions of time. Such an optimal pathway is sketched
schematically but in fact from real calculations of the optimal Carnot-like
cycle with heat leak and friction, in Fig. 14.2.

14.5 Optimization of a More Realistic System:
The Otto Cycle

The Otto cycle is essentially the cycle describing the internal-combustion auto-
mobile engine. This is a four-stroke cycle, in contrast to the simpler two-stroke
Carnot cycle and the various others, such as the Stirling and Brayton cycles,
that operate on a single oscillation of the piston. The Otto cycle consists
of an intake expansion, a compression, an expansion resulting from ignition
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that delivers the power of the cycle, and the final exhaust compression. The
model used for this analysis [8, 9] includes heat leak and quadratic, velocity-
dependent friction, much as in the previous examples. However the rate of
heat loss here is proportional to the instantaneous surface area of the cylinder
as well as to the difference between interior and exterior temperatures. The
one control variable in this analysis is the time path of the piston. The com-
pression ratio, the fuel/air composition, fuel consumption and total period of
the cycle are constant. The essential question the analysis addresses is, ‘How
can one best move the piston as a function of time, to maximize the average
power delivered?’

The solution for the intake, compression and exhaust strokes is very
straightforward. The optimal piston velocity in each of these is constant,
with a brief acceleration or deceleration at the maximum allowed rate at
the juncture of each stroke with the next. The analysis was done both with
no constraint on the maximum acceleration and deceleration, and with finite
limits on the acceleration. The power stroke required numerical solution of
the optimal control equations, in this case a set of non-linear fourth-order
differential equations. Figure 14.3 shows the optimal cycle with limits on the
acceleration and deceleration, both in terms of the velocity and position as
functions of time. The smoother grey curves show the sinusoidal motion of a
conventional engine with a piston linked by a simple connecting rod to the
drive shaft that rotates at essentially constant speed. The black curves show
the optimized pathway.

The most striking characteristic of the optimized time path is the marked
deviation from sinusoidal motion in the power stroke, the first stroke shown at
the beginning of the cycle. The piston accelerates very rapidly as the fuel–air
mixture ignites and then, most important, the piston moves out at essentially
its maximum rate. This is precisely what enables this optimized cycle to trans-
form as much of the heat energy as possible into work before it can leak out
of the cylinder into the surroundings.

What can such optimization achieve? One criterion is the effectiveness,
sometimes called the ‘second-law efficiency,’ which is the ratio of the work
done by the process to that it would do reversibly. The conventional Otto
cycle used for this analysis would have an effectiveness of 0.633; the most
effective of the optimized engines modeled in the analysis but with a maximum
piston velocity of 22.4m/s−1 would be 0.698; with no velocity constraint, that
would go only to 0.705. The model used in the analysis dissipates about 3/5
of its total losses as friction and 2/5 as heat loss. If the engine chosen as
the conventional basis for comparison were to lose only about 30% of its
total through friction and 70% through heat leak, the effectiveness of the
optimized engine would be as much as 17% greater than the conventional
engine.
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Fig. 14.3. Velocity and position of the piston in a conventional Otto cycle engine
(grey curves) and in an engine whose piston path is optimized to give maximum
power. The first stroke is of course the power stroke, showing the very rapid ac-
celeration of the piston on ignition and the fast expansion that captures the heat
energy

14.6 Another Example: Distillation

One of the most energy-inefficient of widely used industrial processes is distil-
lation, or heat-driven separation processes generally. The traditional distilla-
tion column, familiar to students who have had chemistry laboratory courses,
has a source of heat at the bottom and a cooling fluid that runs the length
of a vertical column, so that there is a temperature gradient, cooling as the
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material passes up the column. The most volatile material reaches the top
and passes out of the column. The least volatile remains behind in the bot-
tom. As material moves up the column, it condenses and re-vapourizes many
times at the flat areas called ‘trays’ arrayed through the length of the col-
umn. The consequence of this is that considerable entropy is generated in
that recycling between vapour and liquid phases at the trays. That the process
could be made more efficient by reducing the amount of vapour–liquid–vapour
recycling led to a series of new analyses based on optimization via meth-
ods of finite-time thermodynamics. The first was a minimization of entropy
production [10].

Here, we follow a later, simpler formulation that illustrates the power
of optimal control for finite-time thermodynamic processes [11]. We take as
the control variable the set of temperatures at a given number of equally
spaced heat-exchange points along the length of the distillation column. The
(assumed) binary mixture comes in as a feed at rate F and is separated
into the less volatile ‘bottom’ at rate B and the distillate, at rate D, that
collects at the top of the column. Let x be the mole fraction of the more
volatile component in the liquid and y, the corresponding mole fraction in
the vapour, and their subscripts, the indications of the respective points of
reference. Thus the total flow rates, for steady flow, must satisfy F = D+B,
and xFF = xDD + xBB. We index the trays from 0 at the top to N at the
bottom. Mass balance requires that the rate Vn+1 of vapour coming up from
tray n + 1, less the rate of liquid dropping from tray n, Ln, must equal D
for trays above the feed point at which F enters, and must equal −B below
the feed point. Likewise the mole fractions must satisfy the condition that
yn+1Vn+1−xnLn = xDD above the feed and −xBB below the feed. The heat
required at each nth tray is

Qn = VnH
νap
n + LnH

liq
n − Vn+1H

vap
n+1 − LnH

liq
n−1 (14.16)

and the total entropy change is the sum of the contributions from the feed,
bottom and distillate,

∆Sstreams = −FsF +DSD +BSB , (14.17)

where the entropies per mole of mass flow, with i = F, D or B, are

si = xi

(
sref,1 + cliq,1

p ln
Ti

Tref

)
+ (1 − x)

(
sref,2 + cliq,2

p ln
Ti

Tref

)

+R [xi lnxi + (1 − xi) ln (1 − xi)] (14.18)

in terms of reference values of the individual entropies. Then the total entropy
change becomes

∆Su,sep =
N∑

n=1

Qn

Tn
+ ∆Sstreams =

N∑

n=1

Qn

Tn
+ F (dsD + bsB − sF )
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in terms of the constants

d ≡ xF − xB

xD − xB
, b ≡ xF − xD

xD − xD
.

The entropy associated with heat conduction in each jth tray,

∆Su,hx
j = Qj

(
1
Tj

− 1
T ext

j

)

is also included in the optimization. The analysis was carried out for two
models of heat conductance, Fourier transfer in which the rate of heat flow
is proportional to the difference of the inverses of internal and external tem-
perature, and Newtonian transfer, in which the rate is simply proportional
to the temperature difference. The results are almost identical. One finds the
external temperatures at each contact point in terms of the conductivity and
the internal temperature, and from that set, one obtains the total entropy
change produced in the process. The optimization was carried out by com-
putation to minimize the total entropy production, for the separation of an
equimolar mixture of benzene and toluene, with the goal of 95% separation
in the distillate and bottom. Three columns, with 25, 45 and 65 trays were
evaluated. Figure 14.4 shows schematic diagrams of a traditional column and
the column with heat exchanges at distributed points.

Fig. 14.4. Schematic representations of two distillation columns; left, a traditional
column; right, a column with heat-exchange points along the column
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Fig. 14.5. Entropy changes computed for a traditional ‘Adiabatic’ column of 25
trays, for an optimized ‘Diabatic’ 25-tray column with heat exchange at each tray,
and an ideal, reversible column with no entropy produced by heat exchange, hx

The net saving in entropy is most apparent in a graphic comparison of
the entropy change produced in a traditional ‘Adiabatic’ column and an opti-
mized ‘Diabatic’ column, that is, one with heat exchangers along the column.
The reversible limit is still clearly lower than the finite-time system, but the
separation part of that entropy is very similar for the optimized realistic and
reversible columns; the difference is almost entirely in the heat exchange. This
is shown in Fig. 14.5.

14.7 Choices of Objectives and Differences of Extrema

One of the rich aspects of finite-time thermodynamics is the way it opens
options for optimizing any of several objective functions. In traditional equi-
librium thermodynamics, efficiency, the network delivered per unit of heat
taken in from the high-temperature reservoir, is the only objective one has.
The other useful objectives such as power and cost have meaning only for
systems operating in finite time. It is useful to get some sense of the dif-
ferences of operating conditions for a chosen process optimized for different
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Fig. 14.6. Optima for an endoreversible, finite-time Carnot-type engine with finite
heat conductances to its hot and cold reservoirs. The vertical axis represents contact
time with the cold reservoir, and the horizontal axis, with the hot reservoir. Condi-
tions for maximum revenue lie in the shaded region between the limits of minimum
entropy production and maximum power production

objectives. It is illustrative to consider the endoreversible Carnot engine, that
is, a Carnot cycle operating endoreversibly but with finite heat conductances
to its hot and cold reservoirs. The behaviour of this system can be described
graphically in terms of the contact times with those two reservoirs. Any line
sloping down at 45◦ corresponds to operating at a fixed time. For very short
contact times, the system can do no network because it cannot absorb or de-
posit adequate amounts of energy as heat; under those conditions, the engine
requires power to operate its cycle. The conditions dividing the positive power
delivery regime from the negative define a smooth curve in the space of the
two contact times, as shown in Fig. 14.6. The conditions for minimum entropy
production and for maximum power define two boundaries, between which
the system can operate to maximize revenue. That is, the cost of operating
can be expressed in terms of the entropy produced, per cycle, and the return
of profit can be expressed in terms of the power delivered. The greater the
return for power, relative to the cost of running the engine and generating
entropy, the closer one wants to operate near the limit of maximum power. If,
on the other hand, the operating costs are high, one wants to operate near the
boundary set by minimum entropy production. Hence the profitable range of
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operation lies in the shaded region between the lines of maximum power and
minimum entropy production of Fig. 14.6. Operating at maximum efficiency
corresponds to operating on a line which, in the positive power region, lies
between the limits of maximum power and minimum entropy production.

There has sometimes been confusion regarding the equivalence or inequiv-
alence of criteria that, when stated conventionally, seem different. For exam-
ple, under some constraints, minimization of entropy production may become
equivalent to maximizing power, as would be the case if the coloured region
of Fig. 14.6 were to shrink to a single line. However in general, these two, and
other criteria as well, correspond to different operating conditions. Hence it is
important to identify and choose the constraints that one’s process must sat-
isfy, as well as to do the same with both the objective function and the control
variable or variables. This issue has been examined in some detail because of
just that confusion [12].

In closing this chapter, we can point out how thinking of optimizing finite-
time processes can sometimes suggest control variables that would not be
obvious in the context of reversible thermodynamics. The piston path is one,
and one can carry out the same kind of analysis for the diesel cycle. We leave
to the reader the challenge of finding others.
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Reduction of Dissipation in Heat Engines
by Periodic Changes of External Constraints

15.1 Introduction

In Chaps. 13 and 14 we presented a discussion of heat engines operating in
finite time with some irreversible (spontaneous) process, such as heat conduc-
tion, contributing to a non-zero power output and dissipation.

In this chapter we continue the analysis of heat engines driven by chemical
reactions by investigating the effects of periodic changes of some external
constraints on the efficiency of the engine and on the dissipation. The effects of
such periodic changes on the efficiency and dissipation of non-linear reactions,
including oscillatory reactions, will be taken up in the following chapters.

15.2 A Simple Example

Consider a thermal engine driven by a chemical reaction: Reactants flow into
a continuous flow stirred reactor tank (CSTR) which is in contact with a heat
exchange fluid at Tex, see Fig. 15.1, taken from [1]. Work may be done by the
movable piston in the tank. Exo- or endothermic reactions occur in the tank
which change the temperature of the outflowing chemicals from that of the
incoming chemicals, assumed to be Tex. The temperature difference between
the products and the heat-exchange fluid can be used to run a heat engine.
We apply a periodic variation in the external pressure and let the volume of
the CSTR vary. We investigate the possibility of producing a positive power
output in the pressure–volume work reservoir such that the total power output
is larger than that of the heat engine alone. We assume that the reactants are
in the gas phase, are perfect gases, have constant heat capacity, and flow into
the reactor at a constant rate.

We write the stoichiometric equation for the jth reaction as
∑

i

vijAi = 0 (15.1)
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Fig. 15.1. The engine consists of a reactor tank with a movable piston which may do
work against an external pressure pex(t) and a heat engine which uses the different
temperature of products and heat-exchange fluid to produce work

with the stoichiometric coefficient νij and the species Ai; the reaction rate
(number of reactions per unit time in a unit volume) is rj . The dynamical
equations of motion are

U̇ = jQ − pV̇ +
∑

i

ṅ
(in)
i + hi(Tex) −

∑

i

ṅ
(out)
i hi(T ) (First law),

V̇ =
A2

m
(p− pex) (Newton’s law),

ṅi =
∑

j

vijrjV + ṅ
(in)
i − ṅ

(out)
i (Reaction kinetics),

(15.2)

where the quantities U, p, T, V are energy, pressure, volume and temperature
respectively;

ni, ṅ
(in)
i , ṅ

(out)
i

are, respectively, the number of moles of species i in the reactor, and the
number of moles of that species entering and leaving the reactor per unit
time; A and m are the area and the mass of the piston. The constituent
equations are

pV =
∑

i

niRT, (15.3)

for ideal gases,
U = U0 +

∑

i

nicviT (15.4)

for energy, and
jQ = a(Tex − T ) (15.5)

for Fourier’s law of conduction of heat. We take the system to be in stable
stationary state and when we apply the external variation of pressure the
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response of the system to that external variation is also periodic. When the
system thus responds we take the average of the first law, the first of (15.2),
with the definition of the average

[(〈 〉) = (1/r)
∫ τ

0

dt . . .] (15.6)

and we obtain

〈U̇〉 = 0 = 〈jQ〉 − 〈pV̇ 〉

+

〈
∑

i

ṅ
(in)
i hi(Tex) −

∑

i

ṅ
(out)
i hi(T )

〉

. (15.7)

We can use the average of the third line of (15.2) to eliminate
〈
ṅ

(in)
i

〉

〈ṅ(in)
i 〉 = 〈ṅ(out)

j 〉 −
∑

j

νij〈rjV 〉 (15.8)

and obtain for the average power output via the piston

Pp = 〈pV̇ 〉 (15.9)

Pp = 〈jQ〉−
∑

j

〈rjV 〉
∑

i

vijhi(Tex)

+
∑

i

〈ṅ(out)
i [hi(Tex) − hi(T )]〉. (15.10)

With the enthalpy change of the reaction

∆Hj(Tex) =
∑

i

vijhi(Tex) (15.11)

the enthalpy for ideal gases

hi(T ) = h0
i + cpiT (15.12)

and Fourier’s law of heat conduction, (15.5), we obtain

Pp =α〈Tex − T 〉 −
∑

j

〈rjV 〉∆Hj(Tex)

+
∑

i

cpi〈ṅ(out)
i (Tex − T )〉. (15.13)

Next we calculate the power output of the Carnot engine operating between
the temperature of the products, T, and the temperature of the heat bath Tex.
We should run the engine as we considered in Chap. 13, that is irreversible.
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However for comparing the power output of the engine with (mode b), and
without (mode a), an external variation of the pressure we shall assume for
simplicity that the heat engine is ideal, that is reversible, with the rate of the
work output determined by the rate of product outflow. The heat per unit
time that is transferred to or from the products is

∑

i

ṅ
(out)
i cpi(T − Tex). (15.14)

The heat capacity at constant pressure appears in that equation because we
take the products to be at the constant pressure p2. The power produced by
the Carnot engine, Pc, is then [2]

Pc =
∑

i

cpi

〈
ṅ

(out)
i

(
T − Tex + Tex ln

Tex

T

)〉
, (15.15)

which leads to the total power output

P =Pp + Pc = α〈Tex − T 〉 −
∑

j

〈rjV 〉∆Hj(Tex)

+
∑

i

cpiTex

〈
ṅ

(out)
i ln

Tex

T

〉
. (15.16)

The process of pushing the gases through the reactor requires no work because
we neglect viscous effects; the products in their final state have the same
temperature as the reactants and there is no change in the number of moles
during the reaction.

The various expressions for the power output can be simplified if we con-
sider only one reaction ∑

i

viAi = 0 (15.17)

and all species are withdrawn from the reactor at the same rate. With these
assumptions the average conversion rate of chemicals 〈rV 〉 is the same in mode
(a) and (b). We denote with 〈〉a and 〈〉b the time averages in the respective
modes, and write the power output via the piston (see (15.13))

P(b)
p =

(

α+
∑

i

cpiṅ
(out)
i

)

(〈T 〉a − 〈T 〉b). (15.18)

A positive power output via the piston implies that the average temperature
of the reactor contents in the perturbed case is lower than in the unperturbed
case. The difference in total power output of the perturbed and unperturbed
case is

∆P = P(b) − P(a), (15.19)
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which is

∆P = α(〈T 〉a − 〈T 〉b)
+
∑

i

cpiṅ
(out)
i Tex(〈lnT 〉a − 〈ln T 〉b). (15.20)

If the system is in a stable stationary state then it follows that a positive
power output via the piston in case (b) also produces an increased total power
output.

From conservation of energy we have the condition that if P(b) > P(a)

then the total work in mode (b) is larger than that in mode (a), that is
|W (b) − W (b)| = |Q(b) − Q(a)| > 0. Thus in the perturbed mode a larger
amount of heat is converted into work for the same average reaction rate, see
Fig. 15.2, taken from [1],

The difference in the global entropy change per mole of chemical through-
put in the mode (b) minus that of mode (a) is

−Q
(b) −Q(a)

Tex
. (15.21)

Thus if ∆P > 0 then mode (b) has a smaller increase in entropy, a smaller
increase in entropy production, and a larger efficiency.

Fig. 15.2. For each mole of reactants converted into products, a certain amount of
heat is converted into work. More heat is converted into work in the system which
is subject to external pressure variations and which produces pressure–volume work
[mode (b)]. The figure is drawn for an endothermic reaction for which Q(b), the net
quantity of heat flowing from the reservoir to the system (reactor tank and heat
engine) is larger than Q(a)
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Fig. 15.3. The reaction rate r opens a new channel among the physical proper-
ties p, V and T of the system which can change the phase relations among those
quantities such that the average pressure on expansion is larger than on compression.
From [3]

A positive power output in the work reservoir necessitates that the pressure
on expansion be larger, on the average, than on compression. This requirement
can be met by control of the relative phase of the external pressure and the
volume of the system; the control is obtained by a suitable coupling of the
external pressure variations to the non-linear processes in the reaction tank.
This coupling is illustrated in Fig. 15.3.

As an example consider a second-order reaction: Here the suitable coupling
between pex and V , over and above the coupling due to the compressibility of
the system (the equation of state triangle in Fig. 15.3), comes from the fact
that on decreasing V the number of reactions per unit time increases as V −1

for fixed total number of particles. For an exothermic (endothermic) reaction
this effect leads to increased (decreased) production of heat as V decreases,
and consequently to temperature and pressure changes, in addition to those
due to compression. For first-order reactions coupling can be achieved through
the temperature dependence of rate coefficients.

15.3 Some Calculations and Experiments

15.3.1 Calculations

We turn now to some calculations and experiments to substantiate all the
points made so far. In [4] calculations are reported for the combustion reaction

CH4 + 2O2 → CO2 + 2H2O. (15.22)



15.3 Some Calculations and Experiments 153

Fig. 15.4. Combustion chamber (CSTR) stirred and coupled to a thermal engine.
From [4]

The calculations were made to simulate an experiment in an apparatus shown
schematically in Fig. 15.4, which is similar to that shown in Fig. 15.1, in which
the temperature of the products T is measured.

The reactants enter the CSTR at the bath temperature, react in the CSTR
and raise the temperature. The thermal engine is supposed to operate as an
ideal Carnot engine, see [2]. The stoichiometric ratio of oxygen to methane
is taken to be 2:1 and the evolution equations [1] of the temperature and
concentrations are

C

(
dT
dt

)
= −∆H(T )r + (α+ 3jcpc0)(TB − T ),

d [CH4]
dt

= −r + j(c0 − [CH4]),

[O2] = 2[CH4],
C = 3c∆cvc0 − 3∆cv(c0 − [CH4]),
cp = (cp,CH4 + 2cp,O2)/3,
cv = (cv,CH4 + 2cp,O2)/3,
∆cv = cv − (cv,CO2 + 2cv,H2O)/3, (15.23)

where cpi and cvi are heat capacities at constant pressure and volume, respec-
tively, of the chemical species i, α is a heat transfer coefficient multiplied by
the area of the transfer surfaces and divided by volume of the CSTR; c0 is the
concentration of methane in the input stream; ∆H is the enthalpy change of
the stoichiometric reaction, (15.22), which we approximate by

∆H(T ) = ∆H0(TB) +
∑

i

vicpi(T − TB), (15.24)

where νi are the stoichiometric coefficients in (15.22). The term j in the first
two lines of (15.23) gives changes in concentrations due to input and output
fluxes. The first term in the first line of (15.23) is the heat generated by the
reaction in unit time, and the second term describes energy changes due to
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the fluxes of reactants into the CSTR and due to conduction of heat through
the walls of the CSTR.

The input and output flux is written as

j = j0[1 + ε sinωt] (15.25)

and two modes of operation are compared: in the first there is a constant flux,
that is ε is zero, and in the second there is an oscillatory flux with amplitude ε.
We wish to compare the efficiency of the heat engine, that is the ratio of the
power output to the power input. We take the power output of the ideal
Carnot engine (see [2]) to be proportional to the the influx j

P0 = 3Vj{cpc0 − ∆cp(c0 − [CH4])}
· [T − TB(1 + ln(T/TB))], (15.26)

and the efficiency to be
η = (P0)/〈Pi〉, (15.27)

where Pi is the power input. In (15.26) V is the volume of the combustion
chamber and ∆cp = cp − (cp,CO2 + cp,H2O)/3. (15.28)
There are at least two choices for the formulation of the power input, de-
pending on whether all the fuel in the input is counted in the cost of the
power input or only the fuel that is burned. In the first choice we have for the
efficiency

η1 = 〈P0〉/〈V TB3jcpc0〉, (15.29)

in which the heat content of the input flux is approximated by the denomi-
nator.

These equations were solved numerically and in Fig. 15.5 we show the ratio
of the efficiency as defined in (15.29) for an oscillatory influx of reactants
to that efficiency for a steady (constant) influx vs. ω, the frequency of the
oscillatory influx, (15.25). The autonomous system, with a steady influx, is in a
stable focus, that is the autonomous system on being perturbed briefly returns
to the stable state with an oscillatory component. In order to emphasize the
effects of an oscillatory influx, conditions were chosen for the steady influx
such that only 10% of the heat input is converted to work.

We see that substantial increases in efficiency can be achieved with an
oscillatory influx, as much as 30% for the conditions chosen. Variations in
the ratio of efficiencies shown in Fig. 15.5 depend both on the amplitue and
frequency of the periodic perturbation of the input (and output) flux. The
increase in the ratio of frequencies at certain frequencies ω are related to
resonance phenomena and appropriate phase relations of the response of the
system to the oscillatory influx. At higher amplitudes of oscillatory perturba-
tions there are two resonance peaks (an issue we shall re-visit in later chapters
in which we dicuss perturbing chemical reactions).

The expression for the power output, (15.26), is the product of the flux
j, which is an effective rate coefficient with units inverse time, t−1, and a
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Fig. 15.5. Plot of the ratio of the efficiency, (15.29), for the case of an oscillatory
influx into the CSTR, to that for a steady influx, vs. the frequency of the oscillatory
influx ω, for four different amplitudes of perturbation ε, (15.25), the smallest being
0.1 (dotted line), and the largest 0.4 (solid line). The symbol ω0 denotes the frequency
of the damped oscillation in the autonomous system. From [4]

composite term with units of energy (since power equals energy per unit time).
The composite term is sometimes referred to as a thermodynamic force

F = V [T − TB(1 + ln(T/TB))]
· 3 · [cpc0 − ∆cp(c0 − [CH4])]. (15.30)

In Fig. 15.6 we show a plot of the thermodynamic force, (15.30), and the flux,
(15.25), vs. ωt, the product of the perturbation frequency and the time, for
the case ε = 0.1. The changes in efficiency for that amplitude of perturbation
are small, yet much can be learned. At a frequency of 11.5 s−1 the force is
out of phase with the influx and the ratio of efficiency dips below unity. The
imposition of the perturbation lowers the efficiency in this case. However at
the frequency of 7.6 s−1 the flux and force are nearly in phase and the ratio of
efficiency has increased to 1.03. Here the perturbation frequency is very close
to the frequency of the autonomous system and the resonance nature of the
response is apparent.

A plot of the phase relation of the flux and the force for the larger am-
plitude of perturbation ε = 0.4 is shown in Fig. 15.7. For this case, as seen
in Fig. 15.5, the plot of relative efficiency vs. frequency has two maxima. At
high frequency of external perturbation, ω = 20.0 s−1, the amplitude of the
force is small and out of phase with the flux and the ratios of efficiencies are
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Fig. 15.6. Plot of the thermodynamic force F , (15.30), in reduced units,
F/2.4V RTBc0, and the flux j, (15.25), vs. ωt for three frequencies of perturbation.
The amplitude of perturbation ε = 0.1. From [4]

Fig. 15.7. Similar to Fig. 15.6 but for amplitude of perturbation ε = 0.4 and for
the frequencies of perturbation as shown in the figure. From [4]

below unity. At the frequency of 10.5 s−1 the amplitude of the force is larger
and nearly in phase with the flux; the ratio of efficiencies is about 1.26. At the
frequency ω = 6.0 s−1 the amplitude is larger but out of phase with the flux
and that is close to the minimum between the two maxima in Fig. 15.5. The
response for each of the three highest frequencies has a period of twice that
of the external perturbation. The period of response changes to that of the
perturbation at ω = 5.3 s−1. Finally, at a frequency of 3.2 s−1 the amplitude
of the force is large, still increasing, and is in phase with the flux; this is close
to the first peak in Fig. 15.5.

Further calculations are reported in [5, 6].



15.3 Some Calculations and Experiments 157

15.3.2 Experiments

Experiments were made on the combustion of methane with oxygen [7] in an
apparatus somewhat similar to that of Fig. 15.4 and shown in Fig. 15.8.

Measurements consist of the temperature of the products and their chemi-
cal composition. Typical results are shown in Fig. 15.9 in plots of an oscillatory
influx and the temperature of the reaction products vs. time.

In (a) and (b) there is an efficiency increase of 1.008 and 1.08, respectively,
in comparing the oscillatory input flux with constant input flux; the temper-
ature variation and the flux are in phase. In (c) the efficiency is 0.976 and the
temperature variation and the flux are not in phase. The changes in efficiency
are smaller here than in the calculations, Fig. 15.5, since the possible conver-
sion to work, for constant influx, is more efficient here (about 26%) compared
to about 10% in the example in the calculations. Further experiments are

Fig. 15.8. Sketch of the combustion chamber. Taken from [7]

Fig. 15.9. Plots of the temperature of the reaction products (solid line full scale)
and the input flux (solid line, small amplitude) vs. time. See the text. Taken from [7]
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reported in [8]. For an analysis of the efficiency of power production in simple
non-linear electro-chemical systems see [9].

Acknowledgement. This chapter is based on [1,3,4,7].
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Dissipation and Efficiency in Biochemical
Reactions

16.1 Introduction

After the discussions of dissipation and efficiency in thermal engines we turn
to similar considerations for chemical reactions. The main focus will be on
oscillatory chemical reactions, as here positive and negative changes in effi-
ciency can be effected in various ways, with illustrations taken frequently from
biochemical reactions.

16.2 An Introduction to Oscillatory Reactions

Many chemical and biochemical reactions can be in an oscillatory regime
in which the concentrations of intermediates and products vary in a regular
oscillatory way in time; the oscillations may be sinusoidal but usually are
not. Sustained oscillations require an open system with a continuous influx of
reactants; in a closed system oscillations may occur initially when the system
is far from equilibrium, but disappear as the system approaches equilibrium.
A simple example of an oscillatory reaction is the Selkov model [1]

A
k1

�
k2

S, S + 2P
k3

�
k4

3P, P
k5

�
k6

B, (16.1)

where A and B are controllable bath concentration and the substrates S and
P are the freely responding internal concentrations. If A and B are chosen
such that the system is far from equilibrium then oscillations of S and P
may occur. It is the non-linearity of the second step in the Selkov model
that leads to the possibility of oscillatory concentrations. See [2, 3] for ex-
tensive discussions of oscillatory chemical and biochemical reactions. Here we
are interested in the dissipation of oscillatory reactions, in the dissipation of
externally driven oscillatory reactions, and conversely in the efficiency such
processes of converting the Gibbs free energy of the overall reaction to work.
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If in such systems there is the possibility of more than one set of products,
then the distributions into these several products may be effected by means
of external periodic variations of constraints such as influx of reactants or
temperature. For a review of earlier work of forced oscillations in systems of
chemical interest see [4].

The dissipation, or the rate of entropy production, for chemical reactions
is given by

σR = (1/T )
∑

Akυk, (16.2)

where the sum extends over all elementary steps of the reaction mechanism of
the reaction, T is the temperature of the isothermal reaction, Ak the affinity
(the negative of the Gibbs free energy change) of the kth step, and vk the
rate of that step. If each species is an ideal solute, with standard state of unit
molarity, then the affinity can be rewritten as

Ak = RT ln
(
υ+

k /υ
−
k

)
, (16.3)

where the plus (minus) denotes the rate in the forward (backward) reaction.
Hence the dissipation is

σR = Σvk ln
(
υ+

k /υ
−
k

)
. (16.4)

Let us formulate the dissipation for a system with two internal variable
(X,Y ) coupled to an input bath A and an output bath B. The internal re-
actant X is converted to the variable Y by an arbitrary non-linear reaction
mechanism

Ẏ int = −Ẋ int = f(X,Y ), (16.5)

where the superscript ‘int’ denotes consideration of only internal contributions
to the fluxes ofX and Y . The input and output baths also couple to the system
and hence we have

Ẋ = Ẋ in + Ẋ int, Ẏ = Ẏ int + Ẏ out. (16.6)

For the system–bath exchange we take first-order reactions

Ẋ in = kA− k̄X, Ẏ out = k′B − k̄′Y. (16.7)

The bath concentrations are externally controlled whereas the concentra-
tions of X and Y are free to respond.

Except for the chemical degree of freedom, we assume that all other equi-
librations (translation, rotations, vibrations) take place in times shorter than
the chemical reactions; further we assume the solutions are dilute. Hence the
chemical potential of a species is

µx = µ0
x + kBT lnX (16.8)

and the dissipation of chemical energy in the reactions of our (X, Y ) system is

DAX =
1
τ

∫ τ

0

(µA − µX) Ẋ indt, (input)
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DXY =
1
τ

∫ τ

0

(µX − µY ) f(X,Y ) dt, (interior)

DY B =
1
τ

∫ τ

0

(µY − µB)
(
−Ẏ out

)
dt. (output)

(16.9)

The integrals extend over a full period of an oscillation, τ , for oscillatory
reactions. Combining the above equations we find for the total dissipation of
this (A, X, Y, B) system to be the sum

DAX +DXY +DY B (16.10)

that is
D =

1
τ

∫ τ

0

(
µAẊ

in + µBẎ
out
)

dt. (16.11)

The dissipation is a production of heat assumed to be conducted away suf-
ficiently fast so that the reaction system is isothermal. Later in the chapter we
shall show calculations of the dissipation of a part of glycolysis for stationary
states and oscillations.

Next we consider an oscillatory system, such as (16.1), in which there is
an oscillatory input of the concentration of the reactant A. In that case the
response of the system is not only at the natural frequency of the system but
also at other frequencies related to the frequency of the external perturbation
of the reactant A. The variety of responses of a typical system are shown in
Fig. 16.1.

For a given choice of the perturbation amplitude and ωp the response of
the system can be periodic, biperiodic or chaotic. Periodic trajectories (re-
sponses) lie in a region called entrainment bands which approach the abscissa

Fig. 16.1. Response of an oscillatory system, a limit cycle, with autonomous fre-
quency ω0, to a sinusoidal external perturbation of reactant with frequency ωp.
Plot of the amplitude of the perturbation vs. ratio of frequencies. For explanatory
discussion see text. Taken from [4]
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Fig. 16.2. The plot is described in the next paragraph. From [5]

with narrow tongues and are marked with their frequencies. Only a few en-
trainment bands are shown but there is an infinite number with rational values
of ωp/ω0. Biperiodic trajectories appear in the cross-hatched region. Chaotic
trajectories appear at the dark dot amidst a nested set of period doubling
regions. There may be multiple attractors marked at a and b in the figure. At
sufficiently large amplitudes the system responds with the frequency of the
applied perturbation.

In Fig. 16.2 we show a plot of the dissipation calculated for the Selkov
model, (16.1), in which the concentration of the reactant A is perturbed sinu-
soidally with a small amplitude of 5%; on the abscissa we show the variation
of the ratio of frequency of perturbation to that of the frequency of the au-
tonomous reaction. We see that within the regions of entrainment bands, at
0.5, 1.0, 2.0, and barely visible at 1.5, the dissipation varies significantly. The
variations are small in magnitude because of the small amplitude of the per-
turbation. Again, later in the chapter we show a similar calculation for a part
of glycolysis.
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16.3 An Oscillatory Reaction with Constant Input
of Reactants

Consider the following model for the reaction mechanism of the beginning
part of glycolysis (Fig. 16.3) [6] for the production of the energy rich chemical
species ATP (adenosine triphosphate), which is the universal energy coinage
in biochemical reactions.

In the first reaction glucose reacts with ATP to produce ADP and PEP;
the enzyme for this first step is hexokinase; the notation is similar for the
remaining reaction steps, with the enzymes as indicated. The rate of influx of
glucose into the system is constant. Due to the feedback mechanisms in both
the PFK and PK reactions chemical oscillations of some species may occur,
see Fig. 16.4. These oscillations have been observed [1] and are also obtained
from numerical solutions of the deterministic mass action rate equations of
the model in Fig. 16.1 for given glucose inflow conditions, see Fig. 16.4.

The four different periods of oscillations are for different experimental
conditions; for a given set of experimental conditions all species oscillate with
the same period. For lower glucose inflow oscillations cease and the system is
in a stable stationary state (a node or a focus).

In Fig. 16.5 we plot the period of chemical oscillations in the system vs. the
total adenine nucleotide concentration, that is the sum of the concentrations
of ATP, ADP and AMP, labelled A(MDT)P, for several values of influx con-
ditions. At low values of A(MDT)P there are no oscillations. The oscillations
appear at the marginal stability point, and after that the period varies.

Curve c in Figs. 16.5–16.7 is closest to physiological conditions. The
stationary concentration of ATP is constant for the calculations on the
mechanism in Fig. 16.3 and hence a decrease of A(MDT)P, going to the right in

Fig. 16.3. Model for glycolysis. Arrows in one direction indicate almost irreversible
reactions. Arrows in both directions indicate reactions almost at equilibrium. Bro-
ken lines indicate activation (with encircled plus sign) or inhibition (with encircled
minus sign) by metabolites. GLU is glucose, HK is hexokinase, F6P is fructose 6
phosphate, PFK is phosphofructose kinase, FDP is fructose 1,6 bi-phosphate, PEP is
phosphoenolpyruvate, PK is pyruvate kinase, PYR is pyruvate, and AK is adenylate
kinase and LAC is lactate. From [7]
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Fig. 16.4. Time dependence of the concentrations of Fru-6-P, Fru-1,6-P2, P-e-Prv,
Prv and ADP as calculated from the model. The of Glc and LAC were assumed to
be constant. The figure shows four different oscillation periods. The concentration of
Fru-6-P has been reduced by a factor of four. Abbreviations are given in the caption
of Fig. 16.3. From [7]

Fig. 16.5. Plot of the period of the chemical oscillation, T , vs. the total adenine
nucleotide concentration for various values of influx conditions. The points of mar-
ginal stability, the transitions from non-oscillatory to oscillatory conditions, are on
the extreme left of each curve. From [7]

Fig. 16.6, implies an increase in the ATP/ADP ratio. This is shown explicitly
in Fig. 16.6, taken from [7], where we plot the average ratio of ATP/ADP for
the oscillatory system, averaged over one oscillation, divided by that ratio in
the unstable stationary state within the oscillatory system, vs. A(MDT)P.
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Fig. 16.6. Dependence of the average ratio of ATP/ADP in the oscillatory regime
divided by that ratio in the stationary state. From [7]

Fig. 16.7. Dependence of the average dissipation in the oscillatory regime on the
overall reaction of ADP to ATP on the total adenine nucleotide concentration.
From [7]

One of the curves in Fig. 16.6 is for given influx conditions. Hence when the
system becomes oscillatory there is an increase in the average ATP to ADP
ratio, that is an increase in the concentration of the ATP which is energy-rich
compared to ADP. This in turn implies that on the average a larger fraction
of the Gibbs free energy change for the overall conversion of ADP into ATP
in the reaction mechanisms shown in Fig. 16.3 is channelled towards ATP and
hence a smaller fraction towards dissipation. We show this important result
in Fig. 16.7.
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Fig. 16.8. Comparison of changes in the ratio of concentrations of ATP/ADP during
oscillatory (filled circles) and stationary state (open circles) conditions in glycolysis
in muscle. Reproduced with permission from [8]

There is a substantial fractional change, a decrease, in the dissipa-
tion as chemical oscillations begin to appear. These results of calcula-
tions on this simple model have been substantiated by experiments, see
Fig. 16.8.

The lesson here is of fundamental importance. In reactions with feed-
back, and hence non-linearities in their kinetic equations, as so frequently
found in biochemical reactions, there may occur oscillations and with that the
possibility of controlling the dissipation with small changes in experimental
conditions. Take curve c in Fig. 16.7, for example, where we see that a change
(a decrease) in A(MDT)P of about 5% can lower the dissipation by nearly
20%. Conversely, if the system is oscillatory, say curve c at A(MDT)P = 41,
and the need for heat, that is an increase in dissipation, becomes more urgent
than the need for ATP, then a 5% change (an increase) in A(MDT)P can
achieve that increase in dissipation by 20%.

In oscillatory reactions the Gibbs free energy of the overall reaction is
oscillatory, the rate is oscillatory, and so is the dissipation. There now ap-
pears a new quantity, the phase relation between the oscillatory Gibbs free
energy and the oscillatory rate. The dissipation, which is the product of these
two quantities (see (13.1) and (13.6) in Chap. 13) depends critically on this
phase relation and is controlled by it. There is an analogy here between DC
and AC circuits on the one hand, and reactions in time-independent sta-
tionary states and in oscillatory states, on the other. We return to that in-
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teresting possibility of an ‘alternating current chemistry’ in Chap. 17 when
we discuss experiments on reactions in which we determine these phase
relations.

In [9], an analysis of the results of decreased dissipation with the onset
of oscillations in the mechanism of glycolysis is presented, Fig. 16.3, as shown
in Fig. 16.7. This reaction mechanism can be thought of as a combination
of the phophofructose kinase (PFK) reaction and the pyruvate kinase (PK)
reaction.The PFK subsystem by itself shows sustained oscillations in ranges
of parameters of the order of experimental values. The (PK) reaction, how-
ever, is in a stable stationary state, which on perturbation away from that
state relaxes back to the stationary state with an oscillatory component (a
stable focus). If, for a given set of kinetic parameters, the period of oscillation
of the (PFK) reaction is of the same order of magnitude as the oscillatory
relaxation of the (PK) reaction, then the onset of oscillatory behaviour in
the entire reaction mechanism past marginal stability forces a tuning of the
(PFK) reaction period to that of the (PK) reaction. Thus the (PK) reaction
tunes the frequency of the primary oscillophor, the (PFK) reaction and the
species involved in this reaction, so that a resonance response results in the
(PK) reaction. It is this resonance response that leads to decreased dissipation
and an increase in the efficiency of the reaction to produce ATP.

In [10], we showed, as additional evidence, that substantial changes in
dissipation may occur when the reaction mechanism in Fig. 16.3 is driven
by a periodic input of glucose concentration. Within certain ranges of the
frequency of the imposed periodic input of glucose, entrainment of the reaction
mechanism may take place (see the discussion near Figs. 16.1 and 16.2) as
shown in Fig. 16.9.

Fig. 16.9. Change in dissipation in entrainment bands. See text following the figure.
From [10]
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In Fig. 16.9 we plot the dissipation in an oscillatory state, averaged over
one oscillation, minus the dissipation in the unstable stationary state from
which the oscillations arise, divided by that same dissipation. T0 and T are
the periods of the self-sustained oscillation and the period of the external
perturbation, respectively. The two circles on the curve near T0/T = 1 in-
dicate the extent of this fundamental entrainment band, and the two circles
near T0/T = 2 indicate the extent of this sub-harmonic entrainment band.
The dissipation varies substantially in the fundamental entrainment band,
and varies in the sub-harmonic entrainment band, but less so. Fundamental
entrainment occurs in the range 0.85 < T0/T < 1.25, which agrees well with
the experimental findings 0.83 < T0/T < 1.42, [11].

Acknowledgement. Based in part on [7,9].
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Three Applications of Chapter 16

In this chapter, we study the efficiency of three biochemical reactions: two
systems with calculations, one with experiments. All three cases are applica-
tions of achieving variable efficiency and dissipation by means of externally
forced oscillatory reactions, discussed in Chap. 16.

17.1 Thermodynamic Efficiency in Pumped
Biochemical Reactions

We investigate the problem of establishing a concentration gradient, say across
a membrane. This establishment requires energy, for example from ATP. In
turn the gradient may be used to do work in the surroundings of the system.
The subject is closely related to the issue of the efficiency of biological pumps,
such as pumps for sodium ions, potassium ions, and protons.

Let us analyze a possible experimental system, shown in Fig. 17.1.
White light of a given intensity illuminates all of subvolume A and is

absorbed by a chromatophore, Chr. This absorbed light provides the energy
for the formation of ATP from ADP and phosphate, Pi. The ATP is used in
the enzymatic PFK reaction to yield FDP. By means of this production, a
gradient of FDP is established with the concentration of FDP in section A
exceeding the concentration of FDP in the section B. Because of the decrease
in F6P in A, a gradient is also established in F6P with (F6P)A < (F6P)B.
Diffusion occurs across the membrane of both FDP and F6P, but if the rate of
formation of FDP is sufficiently fast then a stationary state gradient in FDP
and F6P will be formed. FDP reacts in B to form F6P.

The energy of the light absorbed by the chromatophore in A can establish
and maintain a chemical potential difference in FDP and F6P, which may be
used to do work. For discussions of the use of light to drive systems away from
equilibrium see [2–6].

The deterministic kinetic equations for this system are highly nonlinear
because of both the chromatograph reaction and the PFK reaction. (These
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Fig. 17.1. A possible experiment for establishing a concentration gradient across a
membrane. For description, see the text following the figure (from [1])

Fig. 17.2. Plot of a parameter σ3, proportional to the light intensity, vs. FXP, the
sum of the concentrations of F6P and FDP in compartments A and B (from [1])

equations are given in detail in [1].) We reproduce here only a plot of the
dynamical domains of the stationary state solutions of the kinetic equations
obtained by numerical analysis. These are shown in Fig. 17.2.

There are several different dynamic domains possible at stationary state:
stable nodes, sn; stable foci, sf; and unstable foci, uf, that is stable oscillations.

We can study this system with a constant input of light intensity or an
oscillatory input of light intensity with a given frequency and amplitude. Three
cases, marked I, II, and III, are shown in Fig. 17.2 for which calculations were
made of the efficiency of energy transduction from light to work: two of these
are within a region of a stable focus, and one within a region of a limit cycle.

We need to define this efficiency of energy transduction and do so by
defining first the power input for a given light intensity I0

Pin = I0 (17.1)

There can be a choice here whether we take the power input to be given
by the total light intensity or by the light intensity absorbed by the chro-
matophore (17.6). The power output of the system in Fig. 17.1 is taken to be
the PFK reaction
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Pout = ∆G1JPFK,

with ∆G1 = ∆G0,1 +RT ln
(

FDPA

F6PA · PiA

)
(17.2)

in which JPFK is the rate of the PFK reaction. The power output can produce
work in unit time, the work obtained from transferring F6P to FDP.

The experimental system, Fig. 17.1, can be viewed either as an energy
transduction or a power transduction engine in which light energy per unit
time is converted to Gibbs free energy per unit time. We define the ther-
modynamic efficiency of this engine as the ratio of the power output to the
power input

η =
(Pout)
(Pin)

, (17.3)

where the angle brackets denote an average over one period oscillation of the
light input. We wish to compare this efficiency under stationary state con-
ditions in which the light input, the illumination, is constant to that under
conditions in which the light intensity varies sinusoidally with a given am-
plitude and frequency. In Fig. 17.3 we show ratios of efficiency vs. ratios of
frequency for three cases indicated in Fig. 17.2. For the two cases I and II,
the system under steady illumination is in a stable focus, and for case II, the
system is in stable limit cycle. For cases I and II (stable focus), the increases in
the efficiency ratio occur at and near the frequency of relaxation of the stable
focus and reach as high as 10%. For case III, a stable limit cycle, there are
small increases in the efficieny near the 1:3, 1:2, and 2:1 entrainment bands,
and a decrease near the 1:1, the fundamental entrainment band.

Changes in efficiency with oscillatory input may come about due to phase
shifting of fluxes and forces, in this case the rate of the PFK reaction and the

Fig. 17.3. Plot of the relative efficiency, the ratio of the efficiency of the system
with oscillatory illumination to that with constant illumination, vs. the ratio of
the frequency of illumination to the frequency of the autonomous system for the 3
cases, I, II, III, shown in Fig. 17.2. The amplitude of the oscillatory component of
the illumination is 25% for the top curve and 10% for the lower two curves. From [1]
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Gibbs free energy change of that reaction; due to changes in the magnitude of
response upon oscillatory input; and due to changes in average values of the
flux and the force. These points will be shown with experimental evidence in
Sect. 17.3.

17.2 Thermodynamic Efficiency of a Proton Pump

Protons are pumped in living systems to establish a proton gradient, and the
energy necessary for this pumping is frequently provided by the hydrolysis
of ATP, in which ADP and phosphate are formed [7]. In this section, we
study a model of a proton pump found in the plasma membrane of plants
[8–12] and include the coupling of potassium and calcium ion transport. As in
prior examples, we calculate the thermodynamic efficiency [13] of the proton
pump with a constant influx of ATP and compare that to the thermodynamic
efficiency with an oscillatory influx of ATP, the average of which is the same
as the constant concentration of ATP.

In formulating the mechanism of the proton pump, we require the presence
of certain nonlinearities to find the possibility of changing the dissipation, or
the efficiency, with an oscillatory input of ATP. The minimum elements of a
proton pump, although nonlinear, lead only to monotone relaxation kinetics,
and thus only to decreases in efficiency upon imposition of an oscillatory influx
of ATP. However, by including the coupling of other ion transport processes,
such as those of potassium and calcium, the mechanism of the proton pump
behaves like a damped oscillator, which has been observed in experiments
(17.12). With that property a change in efficiency, increases and decreases, is
feasible with an oscillatory influx of ATP.

The reaction sequence of a model of the cyclic, ATP driven proton pump
[11,13] is given in Fig. 17.4.

In step 1, on the inner surface of the membrane, the uncharged enzyme X
is phosphorylated, and in step 2 a proton from the cytoplasma binds to the

Fig. 17.4. Model reaction sequence for a proton pump. See the text following the
figure (from [13])
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phosphorylated enzyme. In step 3, the enzyme releases inorganic phosphate,
retains the Gibbs free energy from the hydrolysis, and then undergoes con-
formational changes (or transit) in step 4. In step 5, a proton is transferred
to the extracellular fluid and then returns in step 6 to the initial state for
another cycle. The carrier concept is a convenience.

The rate coefficients k2 and k−2 in step 4 are potential dependent and
assumed to be given by

k±2 = k±20 exp [− (±F∆ψ/2RT )] (17.4)

where the symbols are defined after (17.5).
The deterministic kinetic equations for this system are given in [13], but

we need not repoduce them here; they are nonlinear and for experimental
values of the rate coefficients represent a damped oscillator.

The thermodynamic efficiency of the proton pump is defined by the equa-
tion

η = 〈
(
µH+

o
− µH+

i

)
jc + ∆ψIp〉/〈−∆Ghydjhyd〉. (17.5)

The angle brackets indicate a time average over one period of the oscillatory
input of ATP. The (. . .) bracket gives the difference in the chemical potential
of the protons across the membrane, which is equal to the work required to
move protons against the proton concentration gradient. The rate at which
protons are pumped into the extrcellular fluid is jc; ∆ψ. Ip is the work required
to move charged particles against the membrane potential times the rate at
which the proton pump performs this process; ∆Ghyd is the Gibbs free energy
change for the hydrolysis of ATP; and jhyd is the rate of hydrolysis.

The efficiency of the proton pump is defined as the total chemical and
electrical work produced in unit time divided by the power made available
from the hydrolysis of ATP, that is the Gibbs free energy change of hydrolysis
in unit time

jc = jhyd = k1 [ATP] (XT −Xin) − k−1 [ADP]Xin (17.6)

with
−∆Ghyd = −∆G◦ +RT ln([ATP]/[ADP] [Pi]), (17.7)

where XT is the total ATPase concentration, Xin is the enzyme concentration
within the membrane, Pi is the concentration of inorganic phosphate, and
∆G0 is the standard Gibbs free energy change of the hydrolysis of ATP.

The efficiency for this model of a proton pump has been calculated [13]
for different parameters in the stationary state mode and for a range of fre-
quencies and amplitudes of ATP influx in the oscillatory mode. In Fig. 17.5,
from [13], we plot the ratio of the efficiency in the oscillatory mode to that in
the stationary mode vs. the ratio of the frequency of the ATP oscillation to
the frequency of the autonomous system, the damped oscillator.

The relative efficiency is clearly a function of the frequency of the ATP
oscillatory influx, with increases in certain ranges of frequency and decreases
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Fig. 17.5. The ratio of the efficiency in the oscillatory mode to that in the stationary
state mode vs. the ratio of the frequency of the ATP oscillation to the relaxation
frequency of the autonomous system. The amplitudes of perturbation are: 0.1 [ATP]
squares; 0.3 [ATP] circles; 0.6 [ATP] triangles

in others. Changes in efficiency increase with the amplitude of perturbation.
The solid curves are for one set of parameters, and the broken curves for
another set (see [13]). For the first set parameters, solid curves with lower
potassium and calcium conductances, there is a single range of frequencies
with increased efficiencies with a maximum located at about ω/ω0 = 0.5.
For the second set of parameters, broken curves with higher potassium and
calcium conductances, the system is near a Hopf bifurcation, a transition in
the autonomous system from damped oscillations to undamped oscillations,
which is a limit cycle. As this bifurcation is approached, a second maximum
appears in the relative efficiency located at about ω/ω0 = 2. For more details
see [13].

Region at higher frequencies have not been investigated.
More on the subject of efficiencies are presented in the next section.

17.3 Experiments on Efficiency in the Forced Oscillatory
Horse-Radish Peroxidase Reaction

In this section, we turn to experiments on the horse radish peroxidase (HRP)
reaction [14, 15], which is the oxidation of nicotinamide adenine dinucleotide
(NADH) catalyzed by HRP

NADH + H+ +
1
2
O2

HRP−−→NAD+ + H2O (17.8)
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NAD+ is recycled to NADH by glucose-6-phosphate dehydrogenase (G6PDH)

NAD+ + G6P G6PDH−−→ 6PGL

+ NADH + H+. (17.9)

This reaction under fixed pressure of oxygen is oscillatory, a limit cycle.
First, we show experimentally that the mode of supply of reactants, steady

or oscillatory, with the average concentration of the oscillatory mode equal to
that of the steady mode, can alter the stationary state concentrations of the
reaction. Second, we show that a change in the stationary state concentration
of a nonequilibrium chemical reaction is generally equivalent to a change in the
average rate of the reaction. If an oscillatory input flux of a reactant is applied
then there will be a temporal variation of the Gibbs free energy and the rate.
Third, we show that there may be a phase shift of the temporal variation of
∆G with that of the temporal variation of the rate of the reaction, which may
result in changes in dissipation, power output, and efficiency of the process.

The apparatus used for these experiments, shown in Fig. 17.6, consists of
a reaction vessel, means of measuring the NADH (absorption) and O2 (with
an oxygen microelectrode) concentrations, and devices for a constant and
oscillatory influx of O2.

The Gibbs free energy change of the reaction is calculated from the mea-
surements with the equation

∆G = ∆Go + RT ln
NAD+

NADH [O2]
1/2

. (17.10)

Fig. 17.6. For description see text (from [14])
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The rate of the HRP reaction, JHRP, is determined from the slope of the
measurement of the NADH concentration as a function of time, since we have

dNADH
dt

= JG6PDH − JHRP, (17.11)

where JG6PDH is the known rate of regeneration of NADH from NAD+. The
dissipation of the HRP reaction is calculated from the equation

D = ∆G (JHRP) . (17.12)

Some of the experimental results obtained in this study [14, 15] are
shown in the next four figures. In Fig. 17.7 we present a plot of the NADH
absorption (concentration), dashed line, and O2 concentration in solution,
solid line, in mM/l (scale on the ordinate at the right). The oxygen input,
stationary or oscillatory, is shown in the top line. In Fig. 17.7 we see that
changes in the NADH absorption and O2 concentration in solution occur

Fig. 17.7. (a) Plot of NADH (dashed line) absorption and O2 concentration in
solution (solid line) vs. time. Oxygen input, not to scale, is shown above. The O2

perturbation is ±50% of its original value and its period is 60 s. (b) Same plot as
(a). The O2 perturbation is ±75% and its period is 230 s (from [15])
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when the O2 gas influx changes from stationary to oscillatory, and hence the
average concentrations of these two species differ in the region of oscillatory
influx of O2 from that in the stationary influx.

We use (17.10, 17.11) to calculate from the data in Fig. 17.7 the Gibbs
free energy change and the rate of the HRP reaction, and these are shown in
Fig. 17.8. Again there are changes in the oscillatory influx compared with the
stationary influx, changes in average values of these quantities, and a change
in their relative phase.

The change in relative phase of the rate and the Gibbs free energy change
is given in more detail and clearly shown in Fig. 17.9.

These changes imply a change in the dissipation of the reaction, see (17.12),
and hence in the efficiency of the reaction as shown in Fig. 17.10.

Fig. 17.8. Plot of ∆G1 and the rate of the HRP reaction, (17.8), vs. time for the
data plotted in Fig. 17.7a (from [15])

Fig. 17.9. Plot of the phase difference between the Gibbs free energy change and
the rate of the HRP reaction in units of 2π for the data presented in Fig. 17.7a. The
darkened symbols denote the region of oscillatory influx of O2 (from [15])
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Fig. 17.10. Plots of average NADH concentrations (triangles) and average dissipa-
tion (diamonds) vs. time for the data shown in Figs. 17.7a and 17.7b, respectively.
Darkened symbols designate regions of oscillatory influx of O2 (from [15])

These experimental results substantiate the claims made at the beginning
of this section (the paragraph following (17.9)).

The results presented here are of interest to biological processes that pro-
duce and maintain concentration gradients by continuous consumption of a
chemical fuel, which may require tuning of efficiency, and conversely dissi-
pation; they are applicable to biological energy transduction engines. The
capacity to change average stationary state concentrations, by means of an
oscillatory, vs. a constant input of fuel, without changing the average input of
fuel, provides the means to adjust to changing demands of efficiency, if work
to be done is needed, or dissipation, if heat is needed.

Acknowledgement. This chapter is based on: Section A. [1]; section B. [13]; section
C. [14,15].
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Part III

Stochastic Theory and Fluctuations in Systems
Far from Equilibrium, Including Disordered

Systems
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Fluctuation–Dissipation Relations

We introduced the concepts of fluctuations and dissipation in Chap. 2, where
we discussed the approach of a chemical system to a nonequilibrium station-
ary state; we recommend a review of that chapter. We restricted there the
analysis to linear and nonlinear one-variable chemical systems and shall do
so again in this chapter, except for a brief referral to extensions to multivari-
able systems at the end of the chapter. In Chap. 2 we gave some connections
between deterministic kinetics, with attending dissipation, and fluctuations,
see for example (2.33), which equates the probability of a fluctuation in the
concentration X to the deterministic kinetics, see (2.8, 2.9). Here we enlarge
on the relations between dissipative, deterministic kinetics, and fluctuations
for the purpose of an introduction to the interesting topic of fluctuation dis-
sipation relations. This subject has a long history, more than 100 years [1,2];
Reference [1] is a classical review with many references to fundamental earlier
work. A brief reminder of one of the early examples, that of Brownian motion,
may be helpful.

The dynamics of a Brownian particle of mass m velocity v is described by
a Langevin equation [3]

mdv/dt+ γv = F (t), (18.1)

where the first term is the force due to acceleration of the particle, the second
term the frictional force on the particle, and F (t) is a delta correlated Gaussian
random force for which the first two moments are

〈F (t)〉 = 0, 〈F (t)F (t′)〉 − 2λδ(t− t′), (18.2)

in which λ is a parameter that gives the strength of the fluctuations that
affect the Brownian particle. In a derivation due to Langevin, given in [3],
it is shown that the friction coefficient γ in (18.1), which characterizes the
dissipative process, and λ, which characterizes the fluctuations, are related by

λγ = kT. (18.3)
Equation (18.3) is a fluctuation–dissipation relation.
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Now consider an one-variable open chemical system, either linear

A
k1↔
k2
X

k3↔
k4
B. (18.4)

or nonlinear
A+ 2X k1↔

k2
3X, X

k3↔
k4
B. (18.5)

We have defined a thermodynamic state function for the linear system in
(2.6, 2.5), and for the nonlinear system in (2.13, 2.12), in each case in terms
of species-specific affinities and the kinetic rates in the forward and reverse
reactions. (We labeled these state functions there with φ and φ∗, respectively,
but use here the common label φ). With two definitions, one for the net rate
of the reaction

t(x) = t+(x) − t−(x) (18.6)

and the other for the total rates in the forward and reverse reaction

D(x) = [t+(x) + t−(x)]/2 (18.7)

we write a fluctuation–dissipation relation (not out of thin air)

t(x) = 2D(x)tan h
[
− 1

2V kt

(
∂φ

∂x

)]
(18.8)

t(x) = 2D(x) tanh[−A(x)/2kT ] (18.9)

with the species specific affinity A(x)

A(x) = µX(x) − µX(xs), (18.10)

for the linear case, and

A(x) = µX(x) − µX(x∗) (18.11)

for the nonlinear case. Equation (18.8) is derived in [4], and we can make
it readily reasonable: substitute (18.6, 18.7) into (18.8), write out the tan h
term, tan hx = [expx−exp−x]/[expx+exp−x], and you obtain consistently
the derivative of (2.6) for the linear reaction mechanism, and (2.13) for the
nonlinear reaction mechanism.

What are the advantages of the formulation, (18.8)? The term t(x) is the
net flux of the deterministic kinetics, (18.6), and the derivative of the state
function φ is the species specific affinity, (µx − µs

x), for the linear case, or
(µx − µ∗

x) for the nonlinear case, the driving force for the reaction toward a
stationary state. Thus we have a flux-driving force relation. Second, the formu-
lation is symmetric with respect to t+(x) and t−(x), which is not the case with
other formulations. Third, the state function φ determines the probability dis-
tribution of fluctuations in x from its value at the stationary state, see (2.34).
Further, as we shall show shortly, the term D(x) is a measure of the strength
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of the fluctuations of the total number of reaction events (total in the forward
and reverse reaction) and for both reasons (18.8) is a fluctuation–dissipation
relation. We emphazise that (18.8) is nonlinear and holds for arbitrarily large
fluctuations.

Another advantage of (18.8) is due to obtaining expressions easily for four
regimes for different regions of the affinity and the dissipation.

1. The fluctuation limited regime
For large positive and negative values of the affinity for which tanh y≈±1,
(18.8) becomes

t(x) ≈ −2D(x)sign A(x) (18.12)

with
sign A(x) = |A(x)|/A(x) (18.13)

The system is far from the stationary state and the magnitude of A(x)
plays no role. The sign of A(x) determines the sense of the reaction, for-
ward or backward. This case is irreversible in the sense of kinetics.

2. The intermediate regime
Here the values of A(x), in the range 2.9 > |A(x)|/2kT > 0.2, and the
value of D(x) are both important and (18.8) cannot be further simplified.

3. The dissipation limited regime
Here the species-specific affinity is small and tanh y ≈ y and (18.8)
reduces to

t(x) = −D(x)A(x)/kT (18.14)

Although the net rate is proportional to A(x), (18.14) is nonlinear because
of the x dependence of D.

4. The linear thermodynamic regime
If we linearize the net rate, the affinity, and the strength of the fluctuations
D(x) away from a stationary state then (18.8) reduces to

t(x) = −D(xs)A(x)/kT (18.15)

where the net rate and the affinity are linear functions of x.

We need to return to a promised interpretation of the quantity D(x) in
the fluctuation–dissipation relation, (18.8). Consider the concept of ‘reaction
event’ [5], that is a generation or consumption of X in reactions (18.4) or
(18.5). Let the total number of reaction events be labelled q(t), which occur
in the time interval (0, t). Further we take q(t) to be a nondecreasing random
function of time even at a stationary state and at equilibrium. The variable q is
a discreet time scale; the chemical reaction is a clock, the time being measured
by the number of reaction events. Since the reaction events are independent
the distribution of reaction events obeys Poisson statistics [6]. The first and
second moments of the Poisson distribution are

〈q(x, t)〉 = 2VD(x)t,

〈∆q2(x, t)〉 = 2VD(x)t. (18.16)
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The second of (18.16) is similar to the Einstein equation for the mean square
displacement of a Brownian particle in one dimension

〈∆X2〉 = 2Dt. (18.17)

HereX is the displacement, in one variable, andD is the diffusion coefficient of
the Brownian particles. Hence we can identify D(x) in (18.16) as a probability
diffusion coefficient in concentration space. The dispersion of q, the second
equation in (18.16), is proportional to D(x) and hence D(x) is a measure of
the strength of the fluctuations of q at a stationary state.

Further insight into the quantity D(x) can be obtained by introducing the
age τ of a fluctuation state, that is the time interval between the last transition
X ± 1 → X and the moment of observation. The age τ is determined by a
succession of random events and hence is a random variable, and obeys a
stochastic master equation ([4], p. 7273). From the stationary form of that
equation we derive the relation

D(x) = 1/(2V 〈τ(x)〉). (18.18)

We see that the diffusion coefficient in concentration space decreases as the
average of the age of a fluctuation state increases, and thusD(x) can be viewed
as a measure of the instability of the fluctuation state. (There is no connection
here with the concept of macroscopic stability of a stationary state.)

The quantity <τ(x)> depends on the size of the system and for a macro-
scopic system it is a very small quantity that may not be accessible to direct
measurement. However, we can make a connection to a macroscopic time scale
that of the mean lifetime of an intermediate, x, for a stationary state, which
we label <θ(x)>, which is an observable. For a macroscopic stationary state,
the mean lifetime of a given concentration of the intermediate is given by the
ratio of the concentration x present in the system and its rate of disappearence

<θ(x)> = xs/t
−(xs) (18.19)

Since t− = t+ we have from the definition of D(x), (18.7),

〈θ(xs)〉 = xs/D(xs). (18.20)

From (18.18, 18.20) we obtain

〈θ(xs)〉/〈τ(xs)〉 = 2Xs. (18.21)

Thus the ratio of the chemical time scale, given by the mean lifetime, to the
fluctuation time scale is proportional to the number of intermediates, Xs =
V xs. For an appreciation of these time scales we make estimates for a slow and
a fast reaction. We consider a macroscopic system with volume of 10−6 m3. In
the first case, we take the concentration to be xs = 2.7 × 1022 molecule m−3,
which at 0 ◦C corresponds to a partial pressure of X, pst

s = 10−3 atm. In the
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second case, we take the concentration to be xs = 1.3 × 1022 molecule m−3

at the same partial pressure and at 300 ◦C. For the quantities discussed we
obtain the estimates

(a) For the slow process:

〈θ〉 = 103 s, 〈τ〉 = 1.85 × 10−14 s,

D = 2.7 × 1019 s−1 m−3.

(b) For the fast process:

〈θ〉 = 10−2 s, 〈τ〉 = 3.9 × 10−19 s.

D = 1.3 × 1024 s−1 m−3.

These estimates confirm our expectations that the mean age of a fluctuation
is small indeed.

The analysis of fluctuation–dissipation relations goes beyond what we in-
tend to present here. In a few sentences we indicate directions and give some
references. The stochastic transition probability can be formulated in terms
of a ‘chemical’ Lagrangian for which an explicit expression can be given for
one-variable systems in the thermodynamic limit of large systems (many par-
ticles) [7]. The fluctuation–dissipation relation discussed earlier can be ob-
tained with his formalism, and there is an important connection between the
chemical Lagrangian and the excess work φ that determines the stochastic
probability distribution, (2.34).

A thermodynamic approach to nonequilibrium fluctuations is given in [8].
A connection is made to the work of Greene and Callen [9]. A detailed com-
parison is presented with the work of Keizer, which is limited to Gaussian
fluctuations around a stable stationary state, and therefore not well suited to
predictions of relative stability of multiple stationary states.

The problem of fluctuation–dissipation relations in multivariable systems
is analyzed in [15]; the mathematics needed for that task goes beyond the
level chosen for this book, and hence only a brief verbal summary is pre-
sented. A statistical ensemble is chosen, which consists of a large number of
replicas of the system, such as for example the Selkov model, each charac-
terized by different composition vectors. There exists a master equation for
this probability distribution of this ensemble, which serves as a basis for this
approach; an analytical solution of this master equation is given in [15].

In statistical mechanics, the condition of microscopic time reversal (micro-
scopic reversibility) [16, 18] expresses the invariance of the microscopic equa-
tions of evolution with respect to changing the sign of the time variable. For
systems without solenoidal fields, the application of time reversal leads to the
condition of detailed balance, which states that for each direct process there
is a reverse process, and at equilibrium the rate of each direct process equals
the rate of the reverse process.

A less restrictive condition than microscopic reversibility is that of meso-
scopic reversibility [15], which follows from the assumption that the ensemble
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master equation is invariant with respect to a change of sign of the time
variable. The condition of mesoscopic reversibility is introduced not for equi-
librium but for stationary states far from equilibrium. For example for the
Schlögl model

A1 + 2X1 � 3X1

A2 �X1 (18.22)

microscopic reversibility (detailed balance) requires

r+1 = r−1 , r
+
2 = r−2 (18.23)

where the r’s are rates of reaction in the forward (+) and the reverse (−)
direction of the first and second step of (18.22), as indicated by subscripts.
Mesoscopic balance requires the less restrictive condition

r+1 + r+2 = r−1 + r−2 . (18.24)

Most chemical systems of interest do not obey either the condition of detailed
balance or that of mesoscopic balance. Nevertheless, the condition of meso-
scopic balance provides a useful reference state. Mesoscopic balance can be
described by an extremum principle: if the contributions of different reactions
to the total number of reaction events are constant then the dispersions of
the net numbers of the reaction events have minimum values for mesoscopic
reversibility. We can obtain relations that provide a measure of the extent of
deviation from mesoscopic reversibility, which are proportional to the average
values of the net numbers of reaction events. Within that framework, explicit
expressions can be derived for fluctuation–dissipation relations for multivari-
able systems.

For a review of developments on this and related subjects see [19].

Acknowledgment. This chapter is base in part on [4,7,15].
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Fluctuations in Limit Cycle Oscillators

There are many examples of oscillatory systems: model chemical reactions,
chemical systems, biochemical systems, etc. [1]. A well-known model is that
of Selkov [2]

R
k1

�
k2

X, X + 2Y
k3

�
k4

3Y, Y
k5

�
k6

P, (19.1)

where R (P ) denotes reactant (product) with fixed concentrations, X and Y
are two intermediate oscillating chemical species and the ks are rate coeffi-
cients in the deterministic rate equations. Oscillations of X and Y occur in
given ranges of the kinetic rate coefficients and constraints of R and P . In
a stochastic analysis based on a birth–death master equation there are fluc-
tuations around the deterministic oscillatory trajectory. We investigate these
fluctuations without entering into too much mathematics.

Quite generally, we write the deterministic dynamic equation for the chem-
ical species xi in the form

dxi

dt
= A1 (x1, . . . , xN ) (N ≥ 2) (19.2)

and suppose that a solution exists which is a stable limit cycle. It is convenient
to choose another set of variables

(ξ1, . . . , ξN )

and the transformation from the set x to the set ξ is given by

Bij =
∂xi

∂ξj
. (19.3)

We want the co-ordinates ξi to be perpendicular to each other and achieve
that with the orthogonal unitary transformation matrix

∑

k

BikBjk = δij . (19.4)
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The dynamical equations in terms of the ξi variables are

dξi
dt

=
∑

j

(
B−1

)
ij
Aj =

∑

j

BjiAj . (19.5)

Close to the deterministic limit cycle we choose one coordinate, say ξ1, as the
length along the limit cycle.

For a two-variable system the deterministic kinetic equations are

dx1

dt
= A1 (x1, x2) ,

dx2

dt
= A2 (x1, x2) . (19.6)

We write x1 and x2 for the concentrations of the species X and Y , and then
A1 and A2 in (19.6) for the Selkov model are

A1 = k1 + k4x
3
2 −
(
k2 + k3x

2
2

)
x1,

A2 = k6 + k3x
2
2x1 −

(
k5 + k4x

2
2

)
x2. (19.7)

The birth–death master equation in terms of the numbers of species X and
Y is

dP (X,Y )
dt

= Ωk1P (X − 1, Y ) + k2 (X + 1)P (X + 1, Y )

+
k3

Ω2
(X + 1) (Y − 1) (Y − 2)P (X + 1, Y − 1)

+
k4

Ω2
(Y + 1)Y (Y − 1)P (X − 1, Y + 1)

+ k5 (Y + 1)P (X,Y + 1) +Ωk6P (X,Y − 1)

−
[
Ωk1 + k2X +

k3

Ω2
XY 2 +

k4

Ω2
Y 3 + k5Y +Ωk6

]
P (X,Y ) ,

(19.8)

In the stationary state the left-hand side of (19.8) is set to zero.
Numerical solution of the stationary state of (19.8) obtained by a Monte

Carlo procedure is shown in Fig. 19.1, taken from [3].
The symbol Ω appears in the master equation, (19.8). The deterministic

path of the stable limit cycle is located on the ridge of the crater. The ex-
ponential in the stationary distribution of the master equation in the eikonal
limit is an excess work related to thermodynamic functions, see Chaps. 2–7.

In [3] the master equation is approximated by a Fokker–Planck equation,
which is linearized close to the deterministic limit cycle trajectory; the prob-
ability distribution in the degree of freedom perpendicular the limit cycle
trajectory becomes a Gaussian distribution. A comparison of the numerical
(Monte Carlo) results with those of the Fokker–Planck equation is given in
Fig. 19.2.
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Fig. 19.1. Monte Carlo results for the stationary probability distribution for the
Selkov model with the shape of a volcanic crater. The parameters are k1 = 1.0, k2 =
0.2, k3 = 1.0, k4 = 0.1, k5 = 1.105 and k6 = 0.1. The system has a stable deter-
ministic limit cycle located on the ridge of the center. The symbol Ω denotes the
effective dimensionless volume which scales the total number of molecules, taken to
be Ω = 50, 000

Fig. 19.2. Plot of the probability distribution in a cross section, tranverse to the
ridge, for the Selkov model. (a) results of the Monte Carlo calculation (b) solution
of the linearized Fokker–Planck equation. Taken from [3]
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Fig. 19.3. Comparison of the analytical results with the numerical calculations on
the Selkov model. The parameters are the same as in Fig. 19.1. Curve a: x, the
concentration of X vs. time; curve b: y, the concentration of Y vs. time; curve c:
numerical result of the probability density in the cross section along the limit cycle
with the maximum value normalized to unity; curve d: analytical result for the
same as in curve c; curve e: numerical result for the product of the area of the cross
section times the velocity, which is almost constant; curve f: analytical result the
same plotted in quantity as curve e. From [3]

The solution to the linearized Fokker–Planck equation has only a single
peak; the linearization misses the second peak on the crater 180◦ opposite the
first peak. The Monte Carlo calculation yields two peaks.

Other comparisons of the results of the linearized Fokker–Planck equation
and the numerical solutions of the master equation are shown in Fig. 19.3.

The agreement is satisfactory.
In [4] further studies are presented on fluctuations near limit cycles, on the

basis of approximate solutions of the master equation (rather than the Fokker–
Planck equation). In [5] there is an analysis of fluctuations (the stochastic
potential) for a periodically forced limit cycle, with references to earlier work.
Both these articles are intensive mathematical treatments.

Acknowledgement. This chapter is based in part on [3].
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Disordered Kinetic Systems

In the usual mass action chemical kinetics the rate coefficients are parameters
with fixed values; these values may change with temperature, pressure, and
possibly ionic strength for reactions among ions. In the field of disordered
kinetics we broaden the study to systems in which the rate coefficients may
vary. For some prior reviews on disordered kinetics, see [1–5].

Rate coefficients may vary due to environmental fluctuations and there are
two categories of disorder: static and dynamic. In systems with static disor-
der the fluctuations of the environment are frozen and one fluctuation, once
it occurs, lasts forever. For these systems, the fluctuations are introduced
in the theoretical description by using random initial or random boundary
conditions. (Thermal fluctuations are usually too small to be considered.) A
typical example of a chemical reaction in a system with static disorder is a
combination of an active intermediate in radiation chemistry in a disordered
material, such as the sulphuric acid glass [6, 7]. The radiation of the active
intermediate produces a reaction and the rate of that reaction differs at dif-
ferent sites in the glass. In systems with dynamical disorder the structure of
the environment changes as the reaction progresses and the rate coefficients
are random in time. An example of dynamic disorder is that of an enzyme in
which a catalyzed reaction takes place at the active site of the enzyme and
the rate of that reaction may depend on the configuration of the enzyme. As
that configuration changes in time so does the rate coefficient of the catalytic
reaction [8, 9].

The same system can display both types of disorder, depending on exter-
nal conditions. For example, in the case of protein–ligand interactions [8, 9],
the reaction rates are random because a protein can exist in many different
molecular conformations, each conformation being characterized by a differ-
ent reaction rate. At low temperatures, the transitions among the different
conformations can be neglected, and the system displays static disorder. For
higher temperatures, however, the transitions among the different conforma-
tions cannot be neglected, and the system displays dynamical disorder.
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The chemical processes occurring in both types of disordered systems have
the interesting property that fluctuations of the environment have a funda-
mental influence on the kinetic behaviour of the system and can lead to the
substantial modification of the time dependence of the concentrations of the
different chemicals. In contrast, in the case of chemical fluctuations described
by a master equation the contribution of fluctuations for macroscopic systems
is negligible. The qualitative difference between the fluctuations in these two
types of systems can be investigated by studying the relative fluctuations of
the number of molecules NΩ of a chemical in the limit of very large volumes,
Ω → ∞. The relative fluctuations ρm(Ω) of different orders on NΩ are defined
as ratios between the cumulants of NΩ, 〈〈[NΩ]m〉〉, where m = 2, 3, . . . and
the successive orders of the corresponding average value 〈NΩ〉

ρm (Ω) = 〈〈[NΩ]m〉〉/ (NΩ)m
. (20.1)

In the eikonal approximation for ordered systems without environmental fluc-
tuations all cumulants 〈〈[NΩ]m〉〉 are proportional to the volume Ω of the
system in the limit Ω → ∞ [10],

〈NΩ〉 ∼ Ω, 〈〈[NΩ]m〉〉 ∼ Ω,m = 2, 3, . . . as Ω → ∞, (20.2)

and therefore all relative fluctuations tend to zero in the thermodynamic limit

ρm (Ω) ∼ Ω−(m−1),m = 2, 3, . . . as Ω → ∞. (20.3)

The fluctuations of this type are called non-intermittent; they are com-
monly encountered in statistical mechanics and have a negligible contribution
to the behaviour of macroscopic systems. For these types of processes in the
limit of large volumes, the average values of concentrations computed by tak-
ing fluctuations into account are practically identical to the values computed
by neglecting the fluctuations and solving the deterministic kinetic equations.

The rate processes in disordered systems have a qualitatively different be-
haviour: For them, the relative fluctuations generally do not tend towards zero
in the limit of large volumes. Although there is no universal asymptotic be-
haviour, the most typical situation is that for which the relative fluctuations
tend towards constant values different from zero. In this case, the fluctuations
are called intermittent, and they make a significant contribution to the av-
erage values of the concentrations: The average concentrations computed by
taking the fluctuations into account are very different from the corresponding
deterministic values, computed by neglecting the fluctuations. A less-typical
behaviour is the one where the relative fluctuations diverge to infinity in the
limit of large volumes; this case corresponds to fractal kinetics.

These features occur both for systems with static and for systems with
dynamical disorder. A typical example is a first-order chemical reaction, A→
Products, described by the kinetic equation

dN/dt = −kN. (20.4)
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For a system without environmental fluctuations, the dynamical behaviour
of this process is trivial. For a system with environmental fluctuations, how-
ever, even though the evolution (20.4) is linear in the number of particles,
N , this equation describes some non-linear coupling effects between the vari-
able, N , and the rate coefficient, k, which is a random variable rather than
a known number. If only environmental fluctuations are taken into account,
and the sampling (chemical) fluctuations are neglected, the average number
of molecules at time t, N(t), can be evaluated by repeated integration of
the differential (20.4) for different random trajectories of the rate coefficient,
k = k(t), and by taking an average over all possible trajectories k = k(t),

〈N (t)〉 =
〈

exp
[
−
∫ t

0

k (t′) dt′
]〉

. (20.5)

From (20.5) we see that not only the average value of the rate coefficient
k = k(t) contributes to the average value of the number of molecules, 〈N(t)〉,
but rather all cumulants of the rate coefficient. This is true not only for
dynamical disorder, where the rate coefficient is a random function of time,
but also for static disorder, where the rate coefficient is a random number.

The evaluation of stochastic averages of the type in (20.5) is not a triv-
ial problem, not even in cases of isolated reactions of first or second order.
For simple reactions, analytic solutions are available in some cases, based
on the method of characteristic functionals, or on the method of generalized
cumulant expansion suggested by Lax [11, 12] and Van Kampen [13] and ex-
panded by others [14, 15]. We outline only the main physical significance of
the method of expanded cumulant expansion, which starts out from a general
kinetic equation of the type

dC (t) /dt = Φ [C (t) ;k(t)] , (20.6)

where Φ[C(t); k(t)] is generally a non-linear function of the composition vector
C(t) and of the vector k(t) of the rate coefficients. By using the cumulant
expansion technique, an infinite chain of evolution equations can be derived
from (20.6). This chain of equations describes the relationships between the
moments of the composition vectors and the various cumulants of the rate
coefficients. In the case where the fluctuations of the rate coefficients are weak
and have correlations that decay fast, an effective evolution equation for the
average composition vector, 〈C(t)〉 can be derived:

d〈C (t)〉/dt = Ψ [〈C (t)〉] , (20.7)

where the effective (renormalized) vector of the reaction rates, Ψ [〈C(t)〉] is
generally different from the vector of the (bare) fluctuating reaction rates,
Φ[C(t);k(t)]. In this context, the cumulant expansion technique has a signifi-
cance similar to the renormalization technique from quantum field theory: The
influence of the environment on the reaction system is taken into account by
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replacing the vector of bare (fluctuating) reaction rates by a vector of dressed
(renormalized) effective reaction rates [16]. Similar techniques are used for
the study of wave propagation in random media and for the description of
transport processes in disordered lattices [17].

Alternative techniques have been developed for the particular case of
Markovian fluctuating rates. The main assumption is that the fluctuations
of the rate coefficients can be described by a local evolution stochastic equa-
tion [16, 18]:

∂

∂t
P (k; t) ≡ LP (k; t) , (20.8)

where L is a linear integral or differential evolution operator of the Fokker–
Plank or the Master equation type. The main idea is to introduce a joint
probability distribution for the composition vector and for the rate coefficients,
P(C,k; t). This joint probability distribution obeys the stochastic Liouville
equation

∂

∂t
P (C,k; t) = LP (C,k; t) −∇C · [Φ (C;k) P (C,k; t)] . (20.9)

By solving this equation it is possible to evaluate the moments of the
composition vector.

These techniques fail for strong environmental fluctuations. An interesting
case of strong fluctuations is that where the rate coefficients obey Levy statis-
tics. In the particular case of first-order processes, Levy fluctuations lead to
stretched exponential integral kinetic equations of the Kohlrausch Williams–
Watts (KWW) type:

〈C (t)〉/〈C (0)〉 = exp [− (ωt)α] , (20.10)

where ω is a characteristic frequency and α is a dimensionless scaling exponent
between zero and one, 1 > α > 0. The stretched exponential law is encoun-
tered not only in chemical kinetics but also in other chemical and physical
rate processes occurring in disordered media. It was first proposed in 1864 by
Kohlrausch to describe mechanical creep [19] and was later used to describe
the dielectric relaxation in polymers [20] and for describing the failure data in
reliability theory [21]. More recently, the KWW law has been used to fit the
data on remnant magnetization in spin glasses, on the decay of luminescence
in porous glasses, on the relaxation processes in viscoelasticity, on the reaction
kinetics of bio-polymers [9], and on the dynamics of recombination kinetics
in radiochemistry [6, 7]. Further applications include the description of the
statistical distributions of open and closed times of ion channels in molecular
bio-physics [22], and even the description of the survival function of cancer
patients [23].

The ubiquity of the stretched exponential law has led to the idea that it
should be generated by some kind of universal mechanism that is independent
of the details of a given individual process. An argument in favour of this opin-
ion is the close connection between the KWW law and the stable probability



20 Disordered Kinetic Systems 201

densities of the Levy type, which emerge as a result of the occurrence of a
large number of independent random events described by individual probabil-
ity densities with infinite moments [24,25]. Many attempts to search for such
a universal mechanism of occurrence of the stretched exponential have been
presented in the literature. A first attempt is a generalization of a mechanism
of parallel relaxation, initially suggested by Forster [26] for the extinction of
luminescence and extended by other authors [5]. A second model assumes a
complex serial relaxation on a multi-level abstract structure, which empha-
sizes the role of hierarchically constrained dynamics [27]. A third model is a
generalization of the defect-diffusion model of Shlesinger and Montroll [28].
All three models were carefully examined by Klafter and Shlesinger [29]; they
showed that in spite of the different details of the three models, there is a
universal common feature: the existence of a broad spectrum of relaxation
rates described by a scale-invariant distribution. A complementary approach
of the universal features of the stretched exponential is based on the powerful
technique of fractional calculus and its connections with the theory of Fox
functions [30].

A different approach to stretched exponential kinetics has been suggested
by Huber [31]. Based on a careful examination of the models used for the de-
scription of the extinction of luminescence, he has derived a general relaxation
function:

〈C(I)〉/〈C(0)〉 = exp
[
−
∫ ∞

0

ρ (ω) [1 − exp(−ωt)] dω
]
, (20.11)

where ρ(ω)dω is the average number of channels involved in the relaxation
process and characterized by an individual relaxation rate between ω and
ω+dω. The stretched exponential corresponds to a scaling law of the negative
power law type

ρ (ω) dω ∼ ω−(1+ω)dω, (20.12)

which is consistent with the general ideas of self-similarity developed by
Klafter and Shlesinger [29].

A number of generalizations of the Huber approach have been reported in
the literature. It has been shown that Huber’s equation is exact for a Pois-
sonian distribution of independent channels [32]. Moreover, Huber’s equation
also holds beyond the validity range of Poissonian distribution: It emerges
as a universal scaling law for a uniform random distribution of a large num-
ber of channels characterized by non-intermittent fluctuations [33, 34]. Also,
a second universal relaxation law has been identified that includes (20.11) as
a particular case. For finite intermittent fluctuations, this equation predicts a
crossover from a stretched exponential behaviour for moderately large times
to a negative power law for very large times.

Equation (20.11) correspond to systems with static disorder. Similar equa-
tions have been derived for systems with dynamical disorder. The resulting
equations have the same structure with the difference that the density of
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states is replaced by a functional density of states, and the integrals over the
numbers of states are replaced by functional integrals [35]. The analysis of the
asymptotic behaviour of these functional equations is complicated. However,
a general pattern emerges, i.e., the stretched exponential relaxation function
is stable; it is insensitive to the perturbations generated by the fluctuations
of the numbers of channels.

Some progress has been made in the direction of applying the thermody-
namic and stochastic theory of rate processes presented here to disordered
systems. In some cases [35] it is possible to construct a stochastic potential
with the properties the same as that for ordered systems discussed in Chaps.
2–11. A general set of fluctuation–dissipation relations has been derived that
establishes a connection between the expression of the average kinetic curve,

ρ (ω) dω ∼ ω−(1+ω)dω,

and the factorial moments,

Fω(t) = 〈N(N − 1), . . . , (N −m+ 1)〉 (t)

of the number of molecules present in the system at time t [14, 15]:

Fω(t) = [〈C(t)〉/〈C(0)〉]ω . (20.13)

The problems are much more complicated, when, in addition to the non-linear
coupling between the rate coefficients and the concentrations, the kinetics of
the process is also non-linear. This problem can, however, be studied analyt-
ically if the concentration fluctuations are neglected.

Acknowledgement. This chapter follows a prior review of this subject [36], with
editorial changes.
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Amplitude of perturbation, 155, 156
Arrhenius prefactors, 103
ATP

hydrolysis of, 172
oscillatory influx of, 172

ATP/ADP in oscillatory regime, 166

Bath exchange system, 160
Bimodal stationary probability

distribution, 108
Biological energy transduction engines,
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Biperiodic trajectories, 162
Birth–death master equation, 77
Boltzmann’s H theorem, 8
Brownian particle

diffusion coefficient of, 186
dynamics of, 183
Einstein equation for mean square

displacement of, 186
Butler–Volmer approach, 102

Carnot engine, 76, 122, 123, 132
Chaotic trajectories, 162
Charge coupling device (CCD), 67
Chemical fluxes, 45
Chemical oscillations in system and

adenine nucleotide concentration,
163

Chemical potential, 12
Chemical reactions, 116
Chemical system (CS), for electrode

connection, 101

Closed system oscillations, 159
Combined chemical and electrochemical

system (CCECS), 101
Conjugate momentum, 61
Constant diffusion coefficient, 42
Continuous flow stirred reactor tank

(CSTR), 66, 147
Continuous stirred tank reactor, 97

equilibrium mixture in, 98
residence time in, 98, 99

Convective stationary state, 86
Couette flow, 79

heat generated by dissipation in, 80
Newtonian equation for, 80
simple model for, 79

Coupled transport processes, 83
Lorenz equations, 84, 85

CSTR. See Continuous stirred tank
reactor, 147

Curzon–Ahlborn engine, 132

Diabatic column, 144
Dissipation for chemical reactions, 104,

160

Eikonal approximation, for chemical
solution, 106

Einstein equation, Brownian particle,
186

Electrochemical
cell, 122
experiments, 95
systems, stochastic equations of, 104
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Endoreversible cyclic engine, 137
Energy transduction efficiency, 170
Entropy production, 116

differential of, 116
in irreversible chemical and physical

systems, 113
rate of, 114, 117

Equation of motion, 125
Equilibrium displacement plot, 98
Equivalent linear system, differential

excess work, 48
Euler-MacLaurin summation, 17
Excess free energy Φ of linear/linearized

one-variable inhomogeneous
system, time derivative, 56

error vs. length of interface region, 55
predictions of equistability, 54
rectangular matrix, 57
two variable enzymatic reaction

model, 56
zero velocity of interface, 54

Excess work, 75
Extracellular fluid, 173

Faraday constant, for half-cell reaction,
104

Finite rates of heat exchange systems,
134

Finite-time Carnot-type engine, 145
Finite-time processes, 137
Finite-Time Thermodynamics, 132, 142,

144
Fluxes and forces, phase shifting of, 171
Fokker-Planck equation, 192
Four piston model, 34
Four-stroke cycle, 139
Fourier Equation, 114
Fourier’s law of conduction of heat, 114,

148, 149
Fourth-order differential equations, 140
Free energy, 42
Function Φ, 74

global stability of, 74
second derivative of, 76
stationary probability distribution,

74

Gaussian distribution, 79, 192
Gaussian random force, 183

Gibbs free energy, 4, 7, 15, 16, 29, 50,
103, 171, 173, 175

chemical reaction with, 121
definition of, 121
of activation, 119

Global entropy change per mole of
chemical, 151

Glucose-6-phosphate dehydrogenase
(G6PDH), 175

Glycolysis model, 163

Hamiltonian equations, 26, 62
Hamiltonian equations of motion, 25
Hamiltonian function, 25, 61
Hamiltonian–Jacoby equation, 25, 104
Heat capacities, ratio of, 126
Heat engines, power and efficiency of,

122
Heat flux, 114
Heat-driven separation processes, 141
Helmholtz free energy, 12, 15
Homogeneous and inhomogeneous state,

83
Homogeneous reaction systems, 41
Hopf bifurcation, 174
Horse radish peroxidase (HRP) reaction,

174
Hybrid free energy, 33, 46

Ideal Carnot engine, 153, 154
Ideal mass-action laws of kinetics, 116
Internal-combustion automobile engine,

139
Iodate-arseneous acid reaction, 7
Irreversible chemical and physical

systems, entropy production in,
113

Irreversible thermodynamics, develop-
ment of, 118

Isothermal heat cycle, pressure-volume
diagram of, 123

Kinetic equation, 6
Kinetics in a homogeneous system, 41

Lagrange multiplier, 138
Laminar flow reactor (LFR), 66
Langevin equation, 183
Legendre/Legendre-Cartan transforma-

tion, 133



Index 207

Linear diffusion, 75
chemical potential (species), 76
dissipation, 76
Liapunov function, 76
pressure and diffusion, 75

Linear equivalent system, 42
Linear multi-variable systems, 25, 29
Linear one-variable systems, 11, 12
Linear reaction

diffusion system, stationary solution,
46

mechanisms Φ, stationary master
equation, 44

Linear thermal conduction, 77
driving force towards the stationary

state, 78
equilibrium probability distribution,

79
heat reservoirs, 77
macroscopic transport equation for,

78
mixed thermodynamic function, 77
stationary distribution, 78, 79
total dissipation, 78

Linear transport processes, 75
Linear viscous flow, 79

couette flow model, 79
Newtonian equation for, 80
total dissipation for, 81

heat generated by dissipation in, 80
Poiseuille flow model, pressure

volume work on, 80
Local thermal equilibrium (LTE), 131
Lyapunov function, 4, 8, 16, 17, 20, 29,

31, 35, 76
existence and stability of non-

equilibrium stationary states,
64

for deterministic path, 63

Mass-action kinetic equations, 33
Master equation, fluctuations, 59

for equivalent linear system, 63
Methane combustion with oxygen, 157
Minimal bromate reaction mechanisms,

96
Ce (III) concentrations, 97
Ce (III)/Ce(IV) potential, 97, 98
electrochemical displacement, 97

non-equilibrium stationary state, 98
oxidation, 96

Minimum entropy production principle,
117, 118

Mixed thermodynamic function, 77
Monotone relaxation kinetics, 172

Monte Carlo calculation, 194

Multi-variable systems, minimum
bromate oscillator, 37, 65

bistability measurement, 65
front propagation, 65, 67

relative stability, 65
velocity of front propagation, 68

Multiple stable stationary state systems,
18

Nernstian contribution, for measuring
electrochemical potential, 105

Newton’s Law of Cooling, 113, 114

Nicotinamide adenine dinucleotide
(NADH), 174

Non-autocatalytic system, 37
Non-equilibrium chemical reaction, 175

Non-equilibrium stationary state
displacement plot, 99

Non-equilibrium stationary states,
electrochemical potentials
measurement, 95

Gibbs free energy difference, 96
minimal bromate reaction, 96

Non-equilibrium stationary states,
master equation for systems in,
107

Non-ideal systems

activated complex, 89, 91
chemical potentials, 91

forward rate, 89

rate of the reverse reaction, 90
reaction mechanism, 91

total excess work, 92
Nonlinear multi-variable systems, 29

Nonlinear one-variable systems, 12
Nonlinear one-variable transport

processes, 82
Non-linear reaction mechanism, 47, 160

Non-linear system
driving force, 43

total excess work, 43
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Nonequilibrium thermodynamics,
formalism of, 118

One-variable open chemical system, 184
One-variable system, stochastic theory,

41
Optical bistability, single-variable

systems, 68, 70
decay of temperature profiles,

stoppage of irradiation, 71
stable stationary states of optically

bistable interference filter, 69
Optima for endoreversible, 145
Optimal control theory, 137
Oscillatory influx, 154
Oscillatory reactions, 159

with constant input of reactants, 159,
163

Oscillatory system, 161
Otto cycle, 139, 140
Oxygen microelectrode, 175

PFK reaction, rate of, 171
Phase shifting, of fluxes and forces, 171
Phophofructose kinase (PFK) reaction,

167
Planck’s constant, 24
Poiseuille flow model, 80
Poissonian stationary distribution, 19
Poisson statistics, 185
Power transduction engine, 171

thermodynamic efficiency of, 171
Principle of Maximum Entropy

Production, invalidity of, 119
Principle of Minimum Entropy

Production, invalidity of, 118
Proton pump

model, 172
model reaction sequence for, 172
thermodynamic efficiency of, 172

Pyruvate kinase (PK) reaction, 167

Quasistatic processes, 134, 135

Rayleigh number, 84
Rayleigh scattering in fluid in

temperature gradient, 87
Rayleigh-Benard convection, 83
Reaction-diffusion equations in one

dimension, 52

Reaction-diffusion system
apparatus, 45
isomorphic, 43
two intermediates, V ∗ 5, 44

Relative error, equistability of two
stable stationary states , 53

Relative stability in a two-variable, 52
Reversible adiabatic expansion, 125

Schlögl model, 6, 12, 13, 16, 18, 106
Schlogl model, 73

stationary states, 74
Schroedinger equation, 24
Second-law efficiency, 140

Second law of thermodynamics, 118
Selkov model, 30, 35, 159, 162

stationary probability distribution of,
38

stationary state of linear equivalent,
48

system distribution in one dimension,
60

Species-specific affinity, 73
Stable front (SF), 64
Stable stationary states of reaction

diffusion system, relative stability,
49

Stationary state 1 (SS1), 64
Stationary states

macroscopic driving force, 77

reaction model, 74
Stirling and Brayton cycles, 139
Stirling’s approximation, 19
Stochastic theory, 17, 20

and thermodynamic theory, 16
reaction diffusion system, 45

Stoichiometric coefficient, 7

Taylor expansion, 23
Thermodynamic efficiency, in pumped

biochemical reactions, 169
Thermodynamic equilibrium, stationary

state in, 117
Thermodynamic evolution criteria, 84
Thermodynamic force F , 155

Thermodynamic state function φ, 12, 35
Thermodynamic theory and stochastic

theory, 16
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Time-dependent thermodynamic
systems, 129

Total excess work, 43, 46, 48, 86, 92
Two-stroke Carnot cycle, 139

Vapour-liquid-vapour recycling, 142

Zero entropy production, 122




