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Introduction

This book was greatly inspired by ideas and results from famous works by M. Kac
[67–70]. He showed that various methods of probability theory can be fruitfully
applied to important problems of analysis (integral and differential equations). The
interconnections between probability and analysis problems play also a central role
in the present book.

Our approach is based mainly on the application of analysis methods to
probability theory. We widely use the method of operator identities, which was
developed in our books [147–149] (see also references therein). The largest chapter
of the book is dedicated to Levy processes. Using the method of operator identities
we show that, for a broad class of the Levy processes, the Ito representation of
the generator L can be written in a convolution type form. Numerous applications
follow.

In particular, the exponential asymptotics of the probability p(t,Δ) (that
Levy processes Xτ for 0 ≤ τ ≤ t stay within the given domain Δ) is proved for the
case that t tends to infinity. Thus, an essential generalization of an old problem
by M. Kac (for the stable Levy processes) is formulated and solved. Among other
important problems treated in this book are, for instance, the principle of imper-
ceptibility of boundary, generalized stationary processes, prediction problems, dual
systems, approximation of positive functions, and integrable operators. We note
that the formulation and the first results on the principle of imperceptibility of
boundary were obtained by M. Kac [67]. The scalar dual differential equations were
investigated first by I.S. Kac and M.G. Krein [66] (see also the book by H. Dym
and H.P. McKean [34]). The notion of linear positive polynomial operators, which
are essential for positive approximation, was introduced by P.P. Korovkin [76].

The class of so-called integrable operators was studied and interesting ap-
plications of this class to some physics problems and random matrix theory were
found in [30,64] in the 1990s. Initial fundamental results for an even more general
class were obtained by the author in 1968 in his paper [136], which was the first
paper dedicated to the method of operator identities. Here we discuss further ap-
plications of such operators to Riemann–Hilbert problems, random matrix theory,
and canonical systems.

The first concrete example of a non-factorable positive operator in Hilbert
space is constructed. (The existence of such an operator was proved more than 30
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2 Introduction

years before in the seminal work by D.R. Larson [87].)
In Chapter 9 we introduce an important fundamental principle: solutions

of a number of basic problems of physics are given by the functions at which
an extremum of the functional F = λE + S is attained, where E stands for
energy and S for entropy. In this way, famous Gibbs-type formulas are proved
rigorously. Interesting connections with game theory and ideas by J. von Neumann
and O. Morgenstern [110] appear here. Correspondingly, energy and entropy may
be considered as two players of a kind of cooperative game. We compare pure
strategy (classical mechanics) with mixed strategy (quantum mechanics).

Chapter 10 is dedicated to inhomogeneous Boltzmann equations. The cases of
the classical and quantum (for Fermi and Bose particles) Boltzmann equations are
treated in this chapter. We compare again the corresponding classical and quantum
results using a game theoretic point of view. The asymptotics and stability of
solutions of Boltzmann equations are also considered.

In the last chapter we investigate the properties of the operator Bezoutiant.
In the chapter we omit the assumption that the operator Bezoutiant is normally
solvable. We investigate the following problems: to describe the conditions under
which the entire functions have no common zeroes, to extend the Schur–Cohn
theorem to new classes of entire functions. We apply the general results to the
theory of the Bessel and confluent hypergeometric functions.

Let us describe the contents of the book in greater detail. Chapter 1 is ded-
icated to the theory of Levy processes. During the last 30 years there has been
a great revival of interest in Levy processes. New theoretical developments, new
approaches, and new applications were obtained (see, e.g., [3, 10, 63, 147, 158, 166,
176,194] and references therein).

Definition 0.1. A Levy process Xt (t > 0) is a stochastic process which satisfies
the following conditions:

1) Xt has independent and stationary increments.

2) X0 = 0, almost surely.

3) Xt is stochastic continuous, that is, for all a > 0 and for all s ≥ 0 the relation

lim
t→s

P
{|Xt −Xs| > a

}
= 0 (0.1)

holds.

Our approach to Levy processes is based on the following facts. The Levy
process Xt defines a strongly continuous semigroup Pt. The generator L of the
semigroup Pt is a pseudo-differential operator (Ito formula). We show that for a
wide class of Levy processes, the Ito representation of the corresponding generator
L can be written in a convolution type form

Lf =
d

dx
S

d

dx
f, (0.2)
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where the operator S is given by the relation

Sf =
1

2
νf +

∫ ∞

−∞
k(y − x)f(y)dy (ν = ν ≥ 0). (0.3)

The obtained representation (0.2), (0.3) enables us to apply the theory of integral
equations with difference kernels [147]. We use this representation to study the
probability p(t,Δ) (which was already mentioned above) that the Levy processes
Xτ stay within the given domain Δ, see Section 1.5 in Chapter 1. M. Kac obtained
the first results of this type for Cauchy processes (see [67] ). H. Widom dealt with
p(t,Δ) for symmetric stable processes (see [190]). Note that the stable processes
form a special subclass of the Levy processes. We develop further the results by
M. Kac and prove them for a wide class of Levy processes. In particular, we obtain
the asymptotic formula

p(t,Δ) = e−t/λ1
(
c1 + o(1)

)
, λ1 > 0, c1 > 0, t → ∞. (0.4)

We separately consider the case, when Δ = [−a, a], a depends on t and

a(t) → ∞, t → ∞. (0.5)

We compare the obtained results with the well-known classical results: the iterated
logarithm law, the first hitting time, the most visited sites, and investigate in detail
a number of concrete examples of the Levy processes.

In Chapter 2 we consider the stable processes Xt as t → +0. The principle
of imperceptibility of the boundary was formulated by M. Kac in the following
dramatic form: “The information that we shall be eaten at the boundary of the
domain has not yet reached us” [67]. Here we prove this hypothesis (in the weak-
ened form). We note that the M. Kac principle is closely connected with the
asymptotics of the eigenvalues λn(α) of the quasi-potential operator Bα. (See re-
lations (1.11.2)–(1.11.8) for the definition of Bα.) For symmetric stable processes
we proved that

λn(α) =
( 2a
nπ

)α(
1 + o(1)

)
, n → ∞, 0 < α ≤ 2. (0.6)

The quasi-potential operator Bα plays an essential role in the problems of Levy
processes (Chapters 1 and 2). It is of interest that the same operator Bα plays an
important role in certain approximation problems too (Chapter 3).

In Chapter 3 we consider the class Zα of continuous 2π-periodical functions
f(x) which satisfy the inequality∣∣f(x+ h)− f(x− h)− 2f(x)

∣∣ ≤ 2
∣∣h∣∣α, 0 < α < 2. (0.7)
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Korovkin’s operators [76] are defined by the relations

Lnf =
1

π

∫ π

−π

Un(t− x)f(t)dt, f(x) ∈ Zα, (0.8)

where

Un(t) =
1

2Dn

∣∣∣∣∣
n∑

k=0

ϕ

(
k

n

)
eikt

∣∣∣∣∣
2

, Dn =

n∑
k=0

ϕ2

(
k

n

)
, Dn �= 0. (0.9)

We study the method of approximating functions f(x) of the class Zα by Lnf.
The measure of this approximation is the value

Cn(ϕ, α) = sup
f∈Zα

∥∥f(x)− Lnf
∥∥, (0.10)

where
∥∥f(x)∥∥ = max

|x|≤π

∣∣f(x)∣∣. Under certain conditions we proved that

nαCn(ϕ, α) = C(ϕ, α) + o(1), n → ∞, 0 < α < 2. (0.11)

The explicit formulas for C(ϕ, α) and

C∗(α) = inf
ϕ∈C

(1)
0 [0,1]

C(ϕ, α), 0 < α < 2 (0.12)

are given. Here C
(1)
0 [0, 1] stands for the set of functions ϕ(x), which are continuous

together with their first derivative ϕ′(x) on the interval [0, 1] and satisfy equalities
ϕ(0) = ϕ(1) = 0. It is important that

gn(x) = Lnf ≥ 0, f(x) ≥ 0, x ∈ [0, 1]. (0.13)

Inequalities in (0.13) mean that we approximate the non-negative function f(x)
by non-negative functions gn(x) = Lnf . Such a kind of approximation appears in
a number of probabilistic problems. (One of the examples is the case that f(x) is
a density function.)

In Chapter 4 we consider generalized stationary processes. Similar to the pre-
vious Chapters 1-3, our approach in Chapter 4 is based on the theory of operators
with difference kernels [147]. The notion of generalized stationary processes was
introduced by I.M. Gelfand and N.Ya. Vilenkin [45]. Note that any device has a
certain “inertia” and, hence, it measures not a classical, but a generalized process.
We study an important class of the generalized processes: Sj-generalized station-
ary processes (see [149, Ch. 6]). These processes are associated with the bounded
operators with difference kernels:

Sjϕ =
d

dt

∫ b

a

s(t− u)ϕ(u)du. (0.14)
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Following [115, 116], we solve in Chapter 4 the optimal filtering and prediction
problems for the Sj-generalized stationary processes. We introduce and investigate
also some interesting subclasses of the Sj-generalized stationary processes: white
noise type processes, power–law noises.

Problems of triangular factorization are discussed in Chapter 5. We stress that
the triangular factorization plays an essential role in a number of problems: integral
equations [144, 147], inverse problems [148, 149], non-linear differential equations
[148]. It is well-known that the positive definite and invertible m×m matrices
admit triangular factorization. D. Larson [87] proved the existence of a positive
definite and invertible but non-factorable operator. In Chapter 5 we construct
concrete examples of such operators. In particular, the operators

Sf = f(x)− μ

∫ ∞

0

sin(π(x− t))

π(x− t)
f(t)dt, f(x) ∈ L2(0,∞), 0 < μ < 1 (0.15)

are positive definite and invertible but non-factorable. Such operators are used
in a number of theoretical and applied problems: in optics, in random matrices
theory [105], generalized stationary processes (see Chapter 4), Bose gas theory
[105]. Using positive definite and invertible but non-factorable operators we could
substitute pure existence theorems [87] by concrete examples in the well-known
problems posed by J.R. Ringrose [126], and R.V. Kadison and I.M. Singer [71].
We note that the Kadison–Singer problem was stated independently by I. Gohberg
and M.G. Krein [52].

In Chapter 6 we compare the thermodynamics characteristics of quantum
and classical approaches. E. Wigner and J.G. Kirkwood (see [69]) showed that the
quantum statistical sum

Zq(β, h) =

∞∑
n=1

e−βEn(h), β = 1/kT (0.16)

and the classical statistical sum

Zc(β) =

∫∫
e−βH(p,q)dpdq (0.17)

are connected by the relation

lim
h→0

(2πh)NZq(β, h) = Zc(β), (0.18)

where N is the dimension of the corresponding coordinate space, k is the Boltz-
mann constant, T is the temperature and

H(p, q) =
1

2m

N∑
j=1

p2j + V (q). (0.19)
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Here En(h) are the eigenvalues of the corresponding energy operator L. We stress
that relation (0.19) holds when h → 0. However, the comparison of the quantum
and classical approaches without the demand for h to be small is of essential
scientific and methodological interest. To do it we consider the quantum mean
energy

Eq(β, h) =

∞∑
n=1

En(h)e
−βEn(h)/Zq(β, h) (0.20)

and the classical mean energy

Ec(β) =

∫∫
H(p, q)e−βH(p,q)dpdq/Zc(β) (0.21)

of the same system. In Chapter 6 we discuss the following conjectures:

1) The inequality
(2πh)NZq(β, h) ≤ Zc(β) (0.22)

holds for all h > 0 and β > 0.

2) The inequality
Eq(β, h) ≥ Ec(β) (0.23)

holds for all h > 0 and β > 0.

3) The asymptotic relations

(2πh)NZq(β, h) = Zc(β)
(
1 + o(1)

)
, β → 0, (0.24)

Eq(β, h) = Ec(β)(β)
(
1 + o(1)

)
, β → 0 (0.25)

are valid.

Recall that β = 1/kT . Hence, the relation β → 0 is equivalent to the relation
T → ∞. By proving inequality (0.22) we use D. Ray’s results [125]. It is interesting
that inequalities (0.18) and (0.22) can be interpreted in terms of the principle of
imperceptibility of the boundary (see Chapter 2).

In Chapter 7 we generalize the Kac–Krein notion of dual string equations for
some classes of canonical continuous and discrete systems. In the last section of
the chapter the obtained results are illustrated by a number of concrete examples.

In Chapter 8 we consider the class of generalized integrable operators

Sf = L(x)f(x) + P.V.

∫ b

a

D(x, t)

x− t
f(t)dt, (0.26)

where f(x) ∈ Lk(a, b), the k×k matrix functions L(x) and D(x, t) are such that

L(x) = L∗(x), D(x, t) = −D∗(t, x), (0.27)
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and the symbol P.V. indicates that the corresponding integral is understood as
the principal value. Here L∗ denotes the matrix that is adjoint to L. We assume
that the kernel D(x, t) is degenerate, that is,

D(x, t) = iA(x)JA∗(t), (0.28)

where A(x) is a k×m matrix function (k ≤ m) and J is a constant m×m matrix
such that

J = J∗, J2 = Im. (0.29)

We describe interconnections of these operators with the Riemann–Hilbert prob-
lems, canonical systems, and various applications.

Operators (0.26) were introduced and studied in our paper [136]. A special
important subclass of operators S, where

k = 1, L(x) = 1, D(x, x) = 0, (0.30)

was dealt with later in the work [64]. The operator identity

(QS − SQ)f =

∫ b

a

D(x, t)f(t)dt, Qf = xf(x) (0.31)

plays an essential role in our approach. If the operator S is invertible, then, ac-
cording to (0.31), the operator T = S−1 has the form

Tf = M(x)f(x) + P.V.

∫ b

a

E(x, t)

x− t
f(t)dt, (0.32)

where
E(x, t) = iB(x)JB∗(t), (0.33)

B(x) is a k×m matrix function, M(x) is an m×m matrix function, and M(x) =
M∗(x). We associate [148], with the operators S and T , the canonical differential
system

d

dx
W (x, z) = i

JH(x)

x− t
W (x, z), W (a, z) = Im. (0.34)

The monodromy matrix W (z) = W (b, z) of system (0.34) coincides with the solu-
tion of the Riemann–Hilbert problem

W+(σ) = W−(σ)R2(σ), a ≤ σ ≤ b, (0.35)

where
W±(σ) = lim

y→±0
W (z), z = σ + iy. (0.36)

Here R(σ) is the J-module of W+(σ) (see [122]). We note that in the formulated
Riemann–Hilbert problem the matrix function R(σ) is given.
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It follows from (0.34) that W (x, z) in the neighborhood of z = ∞ admits the
representation

W (x, z) = Im +
M1(x)

z
+

M2(x)

z2
+ · · · , (0.37)

where

M1(x) = i

∫ x

a

JH(t)dt. (0.38)

In Chapter 8, we give a procedure to recover the matrix function M1(x), which
can be used in random matrix theory [36, 106]. Let us note that the monodromy
matrix W (z) = W (b, z) is the M.S. Livshits characteristic matrix function of the
operator

Af = xf(x) + i

∫ x

a

β(x)Jβ∗(t)f(t)dt, f(x) ∈ L2
k(a, b), (0.39)

(see [30, 106, 178]). Here the k×m matrix function β and the Hamiltonian H are
connected by the relation

H(x) = β∗(x)β(x). (0.40)

In terms of W (z), we obtain a sufficient condition of the linear similarity of the
operator A to the self-adjoint operator

Qf = xf(x), f(x) ∈ L2
k(a, b). (0.41)

The corresponding result is essentially stronger then our old theorem [136]. We
treat in detail the case that

β(x)Jβ∗(x) = 0. (0.42)

The inverse problem to recover the Hamiltonian H(x) of system (0.34) from the
given J-module R(σ) is solved. In the last section of Chapter 8 we consider a
number of examples, both new and classic.

In Chapter 9 we consider the mean energy E and entropy S together. For
that purpose we introduce the functional

F = λE + S,

where λ = −1/(kT ), k is the Boltzmann constant, and T is temperature. We
formulate an important fundamental principle.

Fundamental principle. The functional F defines the game between the mean en-
ergy E and entropy S.

Using this fundamental principle, we derive rigorously the well-known Gibbs
formulas. In game theory [109], the transition from deterministic to probability
strategy leads to a gain for players. Similar to game theory, the transition from
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classical to quantum mechanics leads also to a gain for both players, that is, for
both energy and entropy (see formula (6.0.7) and Theorems 6.7 and 6.10).

The necessity of the game theoretic approach can be explained in the fol-
lowing way. According to the second law of thermodynamics, a physical system
in equilibrum has maximal entropy among all states with the same energy. So en-
tropy depends on the value of energy and we have the game theory situation. We
note that, according to definition, “game theory models the situations in which
an individual success in making choices depends on the choices of others”.

In Chapter 9 we apply the game theoretic approach to the following im-
portant problems: quantum and classical mechanics (Gibbs-type formulas), non-
extensive statistical mechanics, and algorithmic information theory.

The classical and quantum versions of the Boltzmann equation are investi-
gated in Chapter 10. We note that the quantum version of the Boltzmann equation
contains both the fermion and boson cases. The important notion of Kullback–
Leibler distance is essentially generalized and new conventional extremal problems,
which appear in this way, are solved. The solution f(t, x, ζ) of the Boltzmann
equation is studied in the bounded domain Ω of the x-space. Such an approach
essentially changes the usual situation, that is, the total energy depends on t and
the notion of distance between a stationary solution and an arbitrary solution of
the Boltzmann equation includes the x-space. Thus, the notion of distance remains
well-defined in the spatially inhomogeneous case too. (We recall that the Kullback–
Leibler distance is defined only in the spatially homogeneous case.) The compar-
ison of the classical and quantum mechanics, which was treated in [153, 159], is
generalized here for the case of the Boltzmann equations. It is especially interest-
ing for applications that the fermion and boson cases are essentially different from
this point of view. In the last section of the chapter we introduce dissipative and
conservative solutions and find the conditions under which stationary solutions of
the classical Boltzmann equation are stable.

In the last Chapter 11 we consider the operator version of Bezoutiant. The
matrix Besoutiant is used in order to define the number of common zeroes of two
polynomials and describe the distribution of the zeroes of polynomials with re-
spect to the circle |z| = 1. M.G. Krein extended the notion of Bezoutiant to entire
functions. Various important and interesting results were published as a further
development of Bezoutiant theory. In Chapter 11 we introduce main notions of
Bezoutiant theory. We omit the assumption that the operator Bezoutiant is nor-
mally solvable. This result allows us to apply the general theory to a number of
important examples. We would like to emphasize that these examples are the first
specific non-trivial examples in the operator Bezoutiant theory.

The book is devoted to important problems on the frontier between anal-
ysis (integral and differential equations, spectral theory, and operator theory),
probability theory and applications (stable processes, Levy processes, prediction
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theory, and positive approximation), and statistical physics (entropy, Gibbs-type
formulas, laws of thermodynamics, Boltzmann equations, extremal problems, and
game theoretic interpretation). It could be of interest to the specialists in all those
domains.

I am grateful to A. Sakhnovich for his help and very useful remarks and to
I. Roitberg for her help in printing the book.



Chapter 1

Levy processes

In the famous article by M. Kac [67] a number of examples demonstrate the inter-
connection between probability theory and the theory of integral and differential
equations. The investigation of these processes reduces to the solution of integro-
differential equations of a special form. However, as Kac writes, the solution of
the integro-differential equations “offers formidable analytic difficulties”. Kac was
able to overcome these difficulties only for Cauchy processes [67].

Later M. Kac’s method was used both for symmetric stable processes [141],
[190] and non-symmetric stable processes [144, 146, 147]. In the present chapter
with the help of M. Kac’s idea [67] and the theory of integral equations with
difference kernels [147] we investigate a wide class of Levy processes. We note
that stable processes belong to the class of Levy processes. The name Levy pro-
cesses refers to Paul Levy, who introduced and investigated Levy processes, Levy
measures, the Levy distribution, and stable distribution.

Within the last ten years the Levy processes have found a number of new
important applications, particularly to financial problems. We consider separately
the examples of Levy processes which are used in financial mathematics.

1.1 Main notions

We recall that an event happens almost surely (a.s.) if it happens with probability
1. The increments of the process Xt are called independent if these increments
Xt2−Xt1 , Xt3−Xt4 , . . . , Xtn−Xtn−1 are mutually (not just pairwise) independent.

Definition 1.1. A stochastic process {Xt : t ≥ 0} is called a Levy process, if the
following conditions are fulfilled:

1. Almost surely X0 = 0, that is, P (X0 = 0) = 1.

2. For any 0 ≤ t1 < t2 < · · · < tn < ∞ the random variables

Xt2 −Xt1 , Xt3 −Xt4 , . . . , Xtn −Xtn−1

. , 
I 10.1007/978-3-0348-0356-4_1,  
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are independent (independent increments).

3. For any s < t the distributions of Xt − Xs and Xt−s are equal (stationary
increments).

4. The process Xt is almost surely right continuous with left limits.

Then the Levy–Khintchine formula gives (see [10], [166])

μ(z, t) = E {exp [izXt]} = exp [−tλ(z)], t ≥ 0, (1.1.1)

where

λ(z) =
1

2
νz2 − iγz −

∫ ∞

−∞

(
eixz − 1− ixz1|x|<1

)
μ(dx). (1.1.2)

Here ν ≥ 0, γ = γ, z = z, 1|x|<1 stands for the function of x, which equals 1 when
|x| < 1 and equals 0 when |x| > 1, and μ(dx) is a measure on the axis (−∞,∞)
satisfying the conditions ∫ ∞

−∞

x2

1 + x2
μ(dx) < ∞. (1.1.3)

The Levy–Khintchine formula is determined by the Levy–Khintchine triplet (ν, γ,
μ(dx)).

By Pt(x0,Δ) we denote the probability P (Xt ∈ Δ) when P (X0 = x0) = 1
and Δ ∈ R. The transition operator Pt is defined by the formula

Ptf(x) =

∫ ∞

−∞
Pt(x, dy)f(y). (1.1.4)

Let C0 be the Banach space of continuous functions f(x), satisfying the condition
lim f(x) = 0, |x| → ∞ with the norm ‖f‖ = supx|f(x)|. We denote by Cn

0 the set
of f(x) ∈ C0 such that f (k)(x) ∈ C0 (1 ≤ k ≤ n). It is known that [166]

Ptf ∈ C0, (1.1.5)

if f(x) ∈ C2
0 .

Now we formulate the following important result (see [166]).

Theorem 1.2 (Levy-Ito decomposition). The family of operators Pt (t ≥ 0) defined
by the Levy process Xt is a strongly continuous semigroup on C0 with the norm
‖Pt‖ = 1. Let L be its infinitesimal generator. Then

Lf =
1

2
ν
d2f

dx2
+ γ

df

dx
+

∫ ∞

−∞

(
f (x+ y)− f(x)− y

df

dx
1|y|<1

)
μ(dy), (1.1.6)

where f ∈ C2
0 .
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1.2 Convolution type form of infinitesimal generator

In this section we prove that under some conditions the infinitesimal generator L
can be represented in the special convolution type form

Lf =
d

dx
S

d

dx
f, (1.2.1)

where the operator S is defined by the relation

Sf =
1

2
νf +

∫ ∞

−∞
k(y − x)f(y)dy. (1.2.2)

We assume that for arbitrary M(0 < M < ∞) the inequality∫ M

−M

|k(t)|dt < ∞ (1.2.3)

holds. The representation of L in form (1.2.1) is convenient as the operator L
is expressed with the help of the classic differential and convolution operators.
Using the obtained convolution form of the generator L and the theory of integral
equations with difference kernels [147] we investigate the properties of a wide class
of Levy processes.

By Cs we denote the set of functions f(x) ∈ C0 which have the following
property:

For every f(x) ∈ Cs there exist such M and m (0 < m < M < ∞) that

f(x) = 0, x/∈[−M,−m]
⋃

[m,M ], (1.2.4)

that is, the function f(x) is equal to zero in the neighborhood of x = ∞ and in
the neighborhood of x = 0.

Further the measure μ(dy) is defined on the half-axis (−∞, 0] and [0,−∞) by
the relation μ(dy) = dμ(y), where the function μ(y) is monotonically increasing
on the half-axis (−∞, 0] and [0,−∞). Hence we have∫ ∞

−∞
f(x)μ(dx) =

∫ 0

−∞
f(x)dμ(x) +

∫ ∞

0

f(x)dμ(x).

Lemma 1.3. Let the following conditions be fulfilled.

1. The function μ(x) is monotonically increasing on the half-axis (−∞, 0] and
[0,−∞) and ∫ ∞

−∞

x2

1 + x2
dμ(x) < ∞. (1.2.5)
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2. For arbitrary M (0 < M < ∞) we have∫ M

−M

|μ(x)|dx < ∞,

∫ M

−M

|x|dμ(x) < ∞. (1.2.6)

Then the expression

J =

∫ ∞

−∞
[f(y + x)− f(x)]dμ(y) (1.2.7)

can be represented in the convolution type form

J =
d

dx

∫ ∞

−∞
f ′(y)k(y − x)dy (1.2.8)

where f(x) ∈ C2
0 , k(x) =

∫ x
0
μ(y)dy.

Proof. Let us introduce the following notation:

J1 =
d

dx

∫ x

−∞
f ′(y)k(y − x)dy, f(x) ∈ Cs, (1.2.9)

J2 =
d

dx

∫ ∞

x

f ′(y)k(y − x)dy, f(x) ∈ Cs. (1.2.10)

Using (1.2.9) we have

J1 = − d

dx

∫ x

−M

[f(y)− f(x) + f(x)]k′(y − x)dy. (1.2.11)

From (1.2.9) and (1.2.11) and the formula k(x) =
∫ x
0
μ(y)dy we deduce the relation

J1 = f(x)k′(−M − x) +

∫ 0

−M−x

[f(y + x)− f(x)]dμ(y). (1.2.12)

When M → ∞ we obtain the equality

J1 =

∫ 0

−∞
[f(y + x)− f(x)]dμ(y). (1.2.13)

In the same way we deduce the relation

J2 =

∫ ∞

0

[f(y + x)− f(x)]dμ(y). (1.2.14)

Relation (1.2.8) follows directly from formulas (1.2.13), (1.2.14) and the equality
J = J1 + J2. The lemma is proved. �
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Lemma 1.4. Let the following conditions be fulfilled.

1. The function μ(x) satisfies conditions 1 of Lemma 1.3.

2. For arbitrary M (0 < M < ∞) we have∫ M

−M

|k(x)|dx < ∞,

∫ M

−M

|xμ(x)|dx < ∞, (1.2.15)

where

k′(x) = μ(x), x �= 0. (1.2.16)

Then the equality

J =

∫ ∞

−∞

(
f(y + x)− f(x)− y

df(x)

dx
1D(y)

)
dμ(y) + Γf ′(x), (1.2.17)

is valid, where Γ = Γ and f(x) ∈ Cs.

Proof. From (1.2.9) we obtain the relation

J1 = f ′(x)γ1−
∫ x

x−1

(
f ′(y)− f ′(x)

)
k′(y−x)dy−

∫ x−1

−M

f ′(y)k′(y−x)dy, (1.2.18)

where γ1 = k(−1). We introduce the notation

P1(x, y) = f(y)− f(x)− (y − x)f ′(x), P2(x, y) = f(y)− f(x). (1.2.19)

Integrating by parts (1.2.18) and passing to the limit when M → ∞ we deduce
that

J1 = f ′(x)γ2 +
∫ 0

−1

P1(x, y + x)dμ(y) +

∫ −1

−M−x

P2(x, y + x)dμ(y), (1.2.20)

where γ2 = k(−1)− k′(−1). It follows from (1.2.19) and (1.2.20) that

J1 =

∫ x

−∞

(
f(y + x)− f(x)− y

df(x)

dx
1D(y)

)
dμ(y) + γ2f

′(x). (1.2.21)

In the same way it can be proved that

J2 =

∫ ∞

x

(
f(y + x)− f(x)− y

df(x)

dx
1D(y)

)
dμ(y) + γ3f

′(x), (1.2.22)

where γ3 = −k(1) + k′(1). The relation (1.2.17) follows directly from (1.2.21) and
(1.2.22). Here Γ = γ2 + γ3. The lemma is proved. �
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Remark 1.5. The operator L0f = d
dxf can be represented in form (1.2.1), (1.2.2),

where

S0f =

∫ ∞

−∞
p0(x− y)f(y)dy, (1.2.23)

p0(x) =
1

2
sign(x). (1.2.24)

From Lemmas 1.3, 1.4 and Remark 1.5 we deduce the following assertion.

Theorem 1.6. Let the conditions of either Lemma 1.3 or Lemma 1.4 be fulfilled.
Then the corresponding operator L has a convolution type form (1.2.1), (1.2.2).

Proposition 1.7. The generator L of the Levy process Xt admits the convolution
type representation (1.2.1), (1.2.2) if the corresponding function μ(x) is differen-
tiable, when y �= 0, and if there exist such C > 0 and 0 < α < 2, α �= 1 that

μ′(y) ≤ C|y|−α−1. (1.2.25)

Proof. The function μ(y) has the form

μ(y) =

∫ y

−∞
μ′(u)du1y<0 −

∫ ∞

y

μ′(u)du1y>0. (1.2.26)

First we shall consider the case when 1 < α < 2 and introduce the function

k0(y) =

∫ y

−∞
(y − u)μ′(u)du1y<0 −

∫ ∞

y

(y − u)μ′(u)du1y>0. (1.2.27)

We obtain the relation

k(y) = k0(y) + (γ − Γ)p0(y), 1 < α < 2, (1.2.28)

where p0(y) and k0(y) are defined by (1.2.24) and (1.2.27) respectively. The con-
stant Γ is defined by the relation

Γ = k0(−1)− k′0(−1)− k0(−1) + k′0(1), 1 < α < 2, (1.2.29)

It follows from (1.2.25)–(1.2.27) that the conditions of Lemma 1.4 are fulfilled.
Hence the proposition is valid when 1 < α < 2. Let us consider the case when
0 < α < 1. As in the previous case the function μ(x) is defined by relation (1.2.26).
We introduce the functions

k0(y) = y

∫ y

−∞
μ′(u)du+

∫ 0

y

μ′(u)udu, y < 0, (1.2.30)

k0(y) = −y

∫ ∞

y

μ′(u)du−
∫ y

0

μ′(u)udu, y > 0, (1.2.31)

and
k(y) = k0(y) + γp0(y), 0 < α < 1. (1.2.32)

In view of (1.2.25) and (1.2.30), (1.2.31) the conditions of Lemma 1.3 are fulfilled.
Hence the proposition is proved. �
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Corollary 1.8. If condition (1.2.25) is fulfilled, then

k0(y) ≥ 0, −∞ < y < ∞, 1 < α < 2, (1.2.33)

k0(y) ≤ 0, −∞ < y < ∞, 0 < α < 1. (1.2.34)

Let us consider separately the important case when α = 1 in the neighbor-
hood of y = 0.

Proposition 1.9. The generator L of the Levy process Xt admits the convolution
type representation (1.2.1), (1.2.2) if there exist such C > 0 and m > 0 that

μ′(y) ≤ C|y|−2e−m|y|. (1.2.35)

Proof. Using formulas (1.2.26)–(1.2.29) we see that the conditions of Lemma 1.4
are fulfilled. The proposition is proved. �

Example 1.10 (The stable processes). The Levy process X(t) is called a stable
process if

E[exp (izX(t))] = exp
{
−t|z|α

[
1− iβ (sign z)

(
tan

πα

2

)]}
, (1.2.36)

where 0 < α < 2, α �= 1, −1 ≤ β ≤ 1, t > 0. When α = 1, we have

E [exp (izX(t))] = exp

{
−t|z|

[
1 +

2iβ

π
(sign z) (log |z|)

]}
, (1.2.37)

where −1 ≤ β ≤ 1, t > 0. The stable processes are a natural generalization of the
Wiener processes. For the stable processes we have ν = 0, γ = γ and

μ′(y) = |y|−α−1(C11y<0 + C21y>0), (1.2.38)

where C1 > 0, C2 > 0. Hence the function μ(y) has the form

μ(y) =
1

α
|y|−α(C11y<0 − C21y>0). (1.2.39)

Let us introduce the functions

k0(y) =
1

α(α− 1)
|y|1−α(C11y<0 + C21y>0), (1.2.40)

where 0 < α < 2, α �= 1. When α = 1, we have

k0(y) = − log |y| (C11y<0 + C21y>0). (1.2.41)

It means that the conditions of Theorem 1.6 are fulfilled. Hence the generator L
for the stable processes admits the convolution type representation (1.2.1), (1.2.2).
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Proposition 1.11. The kernel k(y) of the operator S in representation (1.2.1) for
the stable processes has form (1.2.28), when 1 ≤ α < 2, and has form (1.2.32)
when 0 < α < 1.

Example 1.12 (The variance damped Levy processes). For the variance damped
Levy processes we have ν = 0, γ = γ and

μ′(y) = C1e
−λ1|y||y|−α−11y<0 + C2e

−λ2|y|y−α−11y>0, (1.2.42)

where C1 ≥ 0, C2 ≥ 0, C1 + C2 > 0, λ1 > 0, λ2 > 0, 0 < α < 2. It follows
from (1.2.40) that the conditions of Proposition 1.7 are fulfilled when α �= 1. If
α = 1, the conditions of Proposition 1.9 are fulfilled. Hence the generator L for
the variance damped Levy processes admits the convolution type representation
(1.2.1), (1.2.2) and the kernel k(y) is defined by formulas (1.2.27), (1.2.28), when
1 ≤ α < 2, and by formula (1.2.32) when 0 < α < 1.

Example 1.13 (The variance Gamma process). For the variance Gamma process
we have ν = 0, γ = γ and

μ′(y) = C1e
−G|y||y|−11y<0 + C2e

−M |y|y−11y>0, (1.2.43)

where C1 ≥ 0, C2 ≥ 0, C1 + C2 > 0, G > 0, M > 0. It follows from (1.2.41) that
the conditions of Proposition 1.9 are fulfilled and the generator L of the variance
Gamma process admits the convolution type representation (1.2.1), (1.2.2). The
kernel k(y) is defined by relations (1.2.30) and (1.2.31).

Example 1.14 (The normal inverse Gaussian process). In the case of the normal
inverse Gaussian process we have ν = 0, γ = γ and

μ′(y) = CeβyK1(|y|)|y|−1, C > 0, −1 ≤ β ≤ 1, (1.2.44)

where Kλ(x) denotes the modified Bessel function of the third kind with the index
λ. Using equalities

|K1(|x|)| ≤ Me−|x|/|x|, M > 0, 0 < x0 ≤ |x|, (1.2.45)

|K1(|x|)x| ≤ M, 0 ≤ |x| ≤ x0 (1.2.46)

we see that the conditions of Proposition 1.9 are fulfilled. Hence the corresponding
generator L admits the convolution type representation (1.2.1), (1.2.2) and the
kernel k(y) is defined by relations (1.2.30) and (1.2.31).

Example 1.15 (The Meixner process). For the Meixner process we have

μ′(y) = C
expβx

x sinhπx
, (1.2.47)

where C > 0, −π < β < π. The conditions of Proposition 1.9 are fulfilled. Hence
the corresponding generator L admits the convolution type representation (1.2.1),
(1.2.2) and the kernel k(y) is defined by relations (1.2.30), (1.2.31).
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Remark 1.16. Examples 1.10–1.15 are used in finance problems [167].

Example 1.17 (Compound Poisson process). We consider the case when ν = 0,
γ = 0 and

M =

∫ ∞

−∞
μ′(y)dy < ∞. (1.2.48)

Using formulas (1.2.1) and (1.2.2) we deduce that the corresponding generator L
has the convolution form

Lf = −Mf(x) +

∫ ∞

−∞
μ′(y − x)f(y)dy. (1.2.49)

1.3 Potential

The operator

Qf =

∫ ∞

0

(Ptf)dt (1.3.1)

is called potential of the semigroup Pt. We note that the operator Pt is defined by
relation (1.1.4). The generator L and the potential Q are (in general) unbounded
operators. Therefore the operators L and Q are defined not in the whole space
L2(−∞,∞) but only in the subsets DL and DQ respectively. We use the following
property of the potential Q (see [166]).

Proposition 1.18. If f = Qg (g ∈ DQ), then f ∈ DL and

−Lf = g. (1.3.2)

Example 1.19 (Compound Poisson process). Let the generator L have form (1.2.47)
where

M =

∫ ∞

−∞
μ′(x)dx < ∞,

∫ ∞

−∞
[μ′(x)]2dx < ∞. (1.3.3)

We introduce the functions

K(u) = − 1

M
√
2π

∫ ∞

−∞
μ′(x)e−iuxdx, (1.3.4)

N(u) =
K(u)

1−√
2πK(u)

. (1.3.5)

Let us note that

|K(u)| < 1√
2π

, u �= 0; K(0) = − 1√
2π

. (1.3.6)

It means that N(u) ∈ L2(−∞,∞). Hence the function

n(x) = − 1√
2π

∫ ∞

−∞
N(u)e−iuxdu (1.3.7)
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belongs to L2(−∞,∞) as well. It follows from (1.2.47), (1.3.2) and (1.3.7) that
the corresponding potential Q has the form (see [166, Ch. 11])

Qf =
1

M

(
f(x) +

∫ ∞

−∞
f(y)n(x− y)dy

)
. (1.3.8)

Proposition 1.20. Let conditions (1.3.3) be fulfilled. Then the operators L and Q
are bounded in the space L2(−∞,∞).

Now we shall give an example when the kernel n(x) can be written in an
explicit form.

Example 1.21. We consider the case when

μ′(x) = e−|x|, −∞ < x < ∞. (1.3.9)

In this case M = 2 and the operator L takes the form

Lf = −2f(x) +

∫ ∞

−∞
f(y)e−|x−y|dy. (1.3.10)

Formulas (1.3.4)–(1.3.7) imply that

Qf =
1

2
f(x)− 1

4
√
2

∫ ∞

−∞
f(y)e−|x−y|√2dy. (1.3.11)

1.4 Truncated generators and quasi-potentials

Let us denote by Δ the set of segments [ak, bk] such that

a1 < b1 < a2 < b2 < · · · < an < bn, 1 ≤ k ≤ n.

By CΔ we denote the set of functions g(x) on L2(Δ) such that

g(ak) = g(bk) = g′(ak) = g′(bk) = 0, 1 ≤ k ≤ n, g′′(x) ∈ Lp(Δ), p > 1.
(1.4.1)

We introduce the operator PΔ by relation PΔf(x) = f(x) if x ∈ Δ and PΔf(x) = 0
if x/∈Δ.

Definition 1.22. The operator

LΔ = PΔLPΔ (1.4.2)

is called a truncated generator.

Definition 1.23. The operator B with the definition domain dense in Lp(Δ) is
called a quasi-potential if the functions f = Bg belong to definition domain of LΔ

and
−LΔf = g. (1.4.3)
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It follows from (1.4.3) that

−PΔLf = g, (f = Bg). (1.4.4)

Remark 1.24. In a number of cases (see the next section) we need relation (1.4.4).
In these cases we can use the quasi-potential B, which is often simpler than the
corresponding potential Q.

Remark 1.25. The operators of type (1.4.2) are investigated in the book ( [147,
Ch. 2]). From relation (1.4.3) we deduce that

Bg �= 0, if g �= 0. (1.4.5)

Definition 1.26. We call the operator B regular if the following conditions are
fulfilled.

1. The operator B is compact and has the form

Bf =

∫
Δ

Φ(x, y)f(y)dy, f(y) ∈ Lp(Δ), p ≥ 1, (1.4.6)

where the function Φ(x, y) can have a discontinuity only when x = y.

2. There exists a function ϕ(x) such that

|Φ(x, y)| ≤ ϕ(x− y), (1.4.7)∫ R

−R

ϕ(x)dx < ∞ if 0 < R < ∞. (1.4.8)

3.
Φ(x, y) ≥ 0, x, y ∈ Δ, (1.4.9)

Φ(ak, y) = Φ(bk, y) = 0, 1 ≤ k ≤ n. (1.4.10)

4. Relation (1.4.5) is valid.

Remark 1.27. In view of condition (1.4.7) the regular operator B is bounded in
the spaces Lp(Δ), 1 ≤ p ≤ ∞ (see [147, p. 24]).

Remark 1.28. If the quasi-potential B is regular, then the corresponding truncated
generator LΔ has a discrete spectrum.

Further we prove that for a broad class of Levy processes the corresponding
quasi-potentials B are regular.

Example 1.29. We consider the case when

ϕ(x) = M |x|−κ , 0 < κ < 1. (1.4.11)
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Proposition 1.30. Let condition (1.4.11) be valid and let the corresponding regular
operator B have an eigenfunction f(x) with an eigenvalue λ �= 0. Then the function
f(x) is continuous.

Proof. According to Definition 4.3 there exists an integer N(κ) such that the
kernel ΦN (x, t) of the operator

BNf =

∫
Δ

ΦN (x, y)f(y)dy, f(y) ∈ Lp(Δ) (1.4.12)

is continuous. Hence the function f(x) is continuous. The proposition is proved.
�

1.5 Probability of the Levy process remaining within
the given domain

In many theoretical and applied problems it is important to estimate the quantity

p(t,Δ) = P (Xτ ∈ Δ; 0 ≤ τ ≤ t), (1.5.1)

that is, the probability that a sample of the process Xτ remains inside Δ for
0 ≤ τ ≤ t (ruin problem)

The integro-differential equations corresponding to the stable processes were
derived by Kac [67] (symmetric case) and in our works (non-symmetric case, see
[144, 146, 147]). Now we get rid of the requirement for the process to be stable
and consider the Levy process Xt with the continuous density ρ(x, t). In view of
(1.1.1) we have

ρ(x, t) =
1

2π

∫ ∞

−∞
e−ixzμ(z, t)dz, t > 0. (1.5.2)

We introduce the sequence of functions

Qn+1(x, t) =

∫ t

0

∫ ∞

−∞
Q0(x− ξ, t− τ)V (ξ)Qn(ξ, τ)dξdτ, (1.5.3)

where the function V (x) is defined by relations V (x) = 1 when x/∈Δ and V (x) = 0
when x ∈ Δ. We use the notation

Q0(x, t) = ρ(x, t). (1.5.4)

For Levy processes the relation

Q0(x, t) =

∫ ∞

−∞
Q0(x− ξ, t− τ)Q0(ξ, τ)dξ (1.5.5)
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holds. Using (1.5.3) and (1.5.5) we have

0 ≤ Qn(x, t) ≤ tnQ0(x, t)/n!. (1.5.6)

Hence the series

Q(x, t, u) =

∞∑
n−0

(−1)nunQn(x, t) (1.5.7)

converges. The probabilistic meaning ofQ(x, t, u) is defined by the relation (see [69,
Ch. 4]):

E

{
exp

(
−u

∫ t

0

V (Xτ )dτ

)
, c1 < Xt < c2

}
=

∫ c2

c1

Q(x, t, u)dx. (1.5.8)

The inequality V (x) ≥ 0 and relation (1.5.8) imply that the function Q(x, t, u)
monotonically decreases with respect to the variable “u” and the formulas

0 ≤ Q(x, t, u) ≤ Q(x, t, 0) = Q0(x, t) = ρ(x, t) (1.5.9)

hold. In view of (1.5.2) and (1.5.9) the Laplace transform

ψ(x, s, u) =

∫ ∞

0

e−stQ(x, t, u)dt, s > 0 (1.5.10)

has a meaning. According to (1.5.3) the function Q(x, t, u) is the solution of the
equation

Q(x, t, u) + u

∫ t

0

∫ ∞

−∞
ρ(x− ξ, t− τ)V (ξ)Q(ξ, τ, u)dξdτ = ρ(x, t). (1.5.11)

Taking from both parts of (1.5.11) the Laplace transform and bearing in mind
(1.5.10) we obtain

ψ(x, s, u) + u

∫ ∞

−∞
V (ξ)R(x− ξ, s)ψ(ξ, s, u)dξ = R(x, s), (1.5.12)

where

R(x, s) =

∫ ∞

0

e−stρ(x, t)dt. (1.5.13)

Multiplying both parts of relation (1.5.12) by exp(ixp) and integrating them with
respect to x (−∞ < x < ∞) we have∫ ∞

−∞
ψ(x, s, u)eixp[s+ λ(p) + uV (x)]dx = 1. (1.5.14)

Here we use relations (1.1.1), (1.5.2) and (1.5.13). Now we introduce the function

h(p) =
1

2π

∫
Δ

e−ixpf(x)dx, (1.5.15)
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where the function f(x) belongs to CΔ. Multiplying both parts of (1.5.14) by h(p)
and integrating them with respect to p (−∞ < p < ∞) we deduce the equality∫ ∞

−∞

∫ ∞

−∞
ψ(x, s, u)eixp[s+ λ(p)]h(p)dxdp = f(0). (1.5.16)

We have used the relations

V (x)f(x) = 0, −∞ < x < ∞, (1.5.17)

1

2π
lim

∫ N

−N

∫
Δ

e−ixpf(x)dxdp = f(0), N → ∞. (1.5.18)

Since the function Q(x, t, u) monotonically decreases with respect to “u”, this is
also valid for the function ψ(x, s, u) according to (1.5.10). Hence there exists the
limit

ψ(x, s) = limψ(x, s, u), u → ∞, (1.5.19)

where
ψ(x, s) = 0, x/∈Δ. (1.5.20)

The probabilistic meaning of ψ(x, s) follows from the equality∫ ∞

0

e−stp(t,Δ)dt =

∫
Δ

ψ(x, s)dx. (1.5.21)

Using the properties of the Fourier transformation and conditions (1.5.19), (1.5.20)
we deduce from (1.5.16) the following assertion.

Theorem 1.31. Let the considered Levy process have a continuous density. Then
the relation (

(sI − LΔ)f, ψ(x, s)
)
Δ
= f(0) (1.5.22)

holds.

Remark 1.32. For the symmetric stable processes relation (1.5.22) was deduced
by M. Kac [67] and for the non-symmetric stable processes it was deduced in our
works [144,146,147].

Remark 1.33. It is known that stable processes, variance damped Levy processes,
variance Gamma processes, the normal inverse Gaussian process, and the Meixner
process have continuous densities (see [167]).

Remark 1.34. So we have obtained the formula (1.5.21) for the Laplace transform
of p(t,Δ) in terms of ψ(x, s). The double Laplace transform of p(t,Δ) was obtained
by G. Baxter and M.D. Donsker [6] for the case when Δ = (−∞, a].

We express the important function ψ(x, s) with the help of the quasi-potential
B.
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Theorem 1.35. Let the considered Levy process have continuous density and let the
quasi-potential B be regular. Then in the space Lp(Δ) (p > 1) there is one and
only one function

ψ(x, s) = (I + sB∗)−1Φ(0, x), 0 ≤ s < s0, (1.5.23)

which satisfies relation (1.5.22).

Proof. In view of (1.4.4) we have

−BLΔf = f, f ∈ CΔ. (1.5.24)

Relations (1.5.23) and (1.5.24) imply that(
(sI − LΔ)f, ψ(x, s)

)
Δ
= −((I + sB)LΔf, ψ

)
Δ
= −(LΔf,Φ(0, x)

)
Δ
. (1.5.25)

Since Φ(0, x) = B∗δ(x) (δ(x) is the Dirac function), then according to (1.5.23)
and (1.5.25) relation (1.5.22) is valid.

Let us suppose that in L(Δ) there is another function ψ1(x, s) satisfying
(1.5.22). Then the equality(

(sI − LΔ)f, ϕ(x, s)
)
Δ
= 0, ϕ = ψ − ψ1 (1.5.26)

is valid. We write relation (1.5.26) in the form(
LΔf, (I + sB∗)ϕ

)
Δ
= 0. (1.5.27)

Due to (1.4.4) the range of LΔ is dense in Lp(Δ). Hence in view of (1.5.27) we
have ϕ = 0. The theorem is proved. �

The analytical apparatus for the construction and investigation of the func-
tion ψ(x, s) is based on relation (1.5.22) and properties of the quasi-potential B.
In the following three sections we shall investigate the properties of the operator
B.

1.6 Non-negativity of the kernel Φ(x, y)

In this section we deduce the following important property of the kernel Φ(x, y).

Proposition 1.36. Let the density ρ(x, t) of Levy process Xt be continuous (t > 0)
and let the corresponding quasi-potential B satisfy conditions (1.4.6)–(1.4.8) of
Definition 1.26. Then the kernel Φ(x, y) is non-negative, that is,

Φ(x, y) ≥ 0. (1.6.1)



26 Chapter 1. Levy processes

Proof. In view of (1.5.9) and (1.5.10) we have ψ(x, s, u) ≥ 0. Relation (1.5.19)
implies that ψ(x, s) ≥ 0. Now it follows from (1.5.23) that

Φ(0, x) = ψ(x, 0) ≥ 0. (1.6.2)

Let us consider the domains Δ1 and Δ2 which are connected by relation Δ2 =
Δ1 + δ. We denote the corresponding truncated generators by LΔ1

and LΔ2
, the

corresponding quasi-potentials by B1 and B2 and the corresponding kernels by
Φ1(x, y) and Φ2(x, y). We introduce the unitary operator

Uf = f(x− δ), (1.6.3)

which maps the space L2(Δ2) onto L2(Δ1). At the beginning we suppose that
the conditions of Theorem 1.6 are fulfilled. Using formulas (1.2.1) and (1.2.2) we
deduce that

LΔ2
= U−1LΔ1

U. (1.6.4)

Hence the equality

B2 = U−1B1U (1.6.5)

is valid. The last equality can be written in the terms of the kernels

Φ2(x, y) = Φ1(x+ δ, y + δ). (1.6.6)

According to (1.6.2) and (1.6.6) we have

Φ1(δ, y + δ) ≥ 0. (1.6.7)

As δ is an arbitrary real number, relation (1.6.1) follows directly from (1.6.7). We
remark that an arbitrary generator L can be approximated by the operators of
form (1.2.1) (see [166, Ch. 2]). Hence the proposition is proved. �

In view of (1.4.1), (1.4.5) and relation Bf ∈ CΔ the following assertion is
valid.

Proposition 1.37. Let the quasi-potential B satisfy the conditions of Proposition
1.36. Then the equalities

Φ(ak, y) = Φ(bk, y) = 0, 1 ≤ k ≤ n (1.6.8)

are valid.

1.7 Sectorial operators

1. We introduce the following notions.
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Definition 1.38. The bounded operator B in the space L2(Δ) is called sectorial if

(Bf, f) �= 0, f �= 0 (1.7.1)

and

−π

2
β ≤ arg (Bf, f) ≤ π

2
β, 0 < β ≤ 1. (1.7.2)

It is easy to see that the following assertions are valid.

Proposition 1.39. Let the operator B be sectorial. Then the operator (I + sB)−1

is bounded when s ≥ 0.

Proposition 1.40. Let the conditions of Theorem 1.35 be fulfilled. If the operator
B is sectorial, then formula (1.5.23) is valid for all s ≥ 0.

In the present section we deduce the conditions under which the quasi-
potential B is sectorial. Let us consider the case when∫ ∞

x

ydν(y) < ∞, (x > 0), (1.7.3)

∫ x

−∞
|y|dν(y) < ∞, (x < 0). (1.7.4)

The corresponding kernel k(x) of the operator S (see (1.2.2)) has the form

k(x) =

∫ ∞

x

(y − x)dν(y)d < ∞, (x > 0), (1.7.5)

k(x) =

∫ x

−∞
(x− y)dν(y) < ∞, (x < 0). (1.7.6)

We obtain the following statement.

Proposition 1.41. Let conditions (1.7.3) and (1.7.4) be fulfilled. Then the kernel
k(x) is monotone on the half-axis (−∞, 0) and on the half-axis (0,∞).

We shall use the following Pringsheim’s result.

Theorem 1.42. (see [175, Ch. 1]) Let f(t) be a non-increasing function over (0,∞)
and integrable on any finite interval (0, �). If f(t) → 0 when t → ∞, then for any
positive x we have

1

2

(
f(x+ 0) + f(x− 0)

)
=

2

π

∫ ∞

+0

cosxu

(∫ ∞

0

f(t) cos tudt

)
du, (1.7.7)

1

2

(
f(x+ 0) + f(x− 0)

)
=

2

π

∫ ∞

0

sin (xu)

(∫ ∞

0

f(t) sin (tu)dt

)
du. (1.7.8)
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It follows from (1.7.3)–(1.7.6) that

k(x) → 0 and k′(x) → 0, when x → ±∞. (1.7.9)

We suppose in addition that

xk(x) → 0 and x2k′(x) → 0, when x → ±0. (1.7.10)

Using the integration by parts we deduce the assertion.

Proposition 1.43. Let conditions (1.7.3), (1.7.4) and (1.7.9), (1.7.10) be fulfilled.
Then the relation ∫ ∞

−∞
k(t) cosxtdt =

∫ ∞

−∞

1− cosxt

x2
dν(t) (1.7.11)

holds.

Relation (1.7.11) implies that∫ ∞

−∞
k(t) cosxtdt > 0. (1.7.12)

It follows from Proposition 1.41, Theorem 1.42 and relations (1.7.9), (1.7.10) that
the kernel k(x) of the operator S admits the representation

k(x) =

∫ ∞

−∞
m(t)eixtdt. (1.7.13)

In view of (1.7.12) we have
Re (m(u)) > 0. (1.7.14)

Due to (1.7.13) and (1.7.14) the relation

(Sf, f) =

∫ ∞

−∞
m(u)

∣∣∣∣∫
Δ

f(t)eiutdt

∣∣∣∣2 du (1.7.15)

is valid. Hence we have

−π

2
≤ arg(Sf, f) ≤ π

2
, f(t) ∈ L2(Δ). (1.7.16)

Proposition 1.44. Let conditions (1.7.3), (1.7.4) and (1.7.10) be fulfilled. Then the
corresponding operator B is sectorial.

Proof. Let the function g(x) satisfy conditions (1.4.1). Then the relation

(−Lg, g) = (Sg′, g′) (1.7.17)

holds. Equalities (1.4.3) and (1.7.17) imply that

(f,Bf) = (Sg′, g′), g = Bf. (1.7.18)

Inequality (1.7.1) follows from relations (1.7.14) and (1.7.18). Relations (1.7.16)
and (1.7.18) imply (1.7.2) with β = 1. The proposition is proved. �
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Remark 1.45. The variance damped processes ( Example 1.12), the normal in-
verse Gaussian process (Example 1.14), and the Meixner process (Example 1.15)
satisfy the conditions of Proposition 1.44. Hence the corresponding operators B
are sectorial.

2. Now we introduce the notion of strongly sectorial operators.

Definition 1.46. The sectorial operator B is called strongly sectorial if for some
β < 1 relation (1.7.2) is valid.

Proposition 1.47. Let the following conditions be fulfilled.

1. Relations (1.7.3), (1.7.4) and (1.7.10) are valid.

2. For some m > 0 the inequality

m

|x|2 ≤ ν′(x), |x| ≤ 1 (1.7.19)

holds.

3. ∫ ∞

−∞
k(t)dt < ∞. (1.7.20)

Then the corresponding operator B is strongly sectorial.

Proof. As it is known (see [175, Ch. 1]) the inequality

|
∫ ∞

−∞
k(t) sin (xt)dt| ≤ M

|x| , M > 0, |t| ≥ 1 (1.7.21)

is valid. From formulas (1.7.11) and (1.7.19) we conclude that∫ ∞

−∞
k(t) cosxtdt ≥

∫ 1/x

−1/x

ν′(t)
1− cosxt

x2
dt ≥ N

|x| , N > 0, |x| ≥ 1. (1.7.22)

It follows from (1.7.21) and (1.7.22) that

−π

2
β ≤ arg(Sf, f) ≤ π

2
β, 0 < β < 1. (1.7.23)

Hence according to (1.7.18) the corresponding operator B is strongly sectorial.
The proposition is proved. �

Remark 1.48. The variance damped processes (Example 1.12, α ≥ 1), the normal
inverse Gaussian process (Example 1.14), and the Meixner process (Example 1.15)
satisfy the conditions of Proposition 1.47. Hence the corresponding operators B
are strongly sectorial.
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Proposition 1.49. Let conditions (1.7.3), (1.7.4) and (1.7.10) be fulfilled. If the
operator S has the form

Sf = νf +

∫
Δ

k(x− t)f(t)dt, ν > 0, (1.7.24)

then the corresponding operator B is strongly sectorial.

Proof. It is easy to see that for some β < 1, relation (1.7.23) is valid. According
to relation (1.7.18) the corresponding operator B is strongly sectorial. �

1.8 Quasi-potential B, structure and properties

Let us begin with the symmetric segment Δ = [−c, c].

Theorem 1.50 (see [147, p. 140]). Let the following conditions be fulfilled:

1. There exist the functions Nk(x) ∈ Lp(−c, c), p > 1 which satisfy the equations

SNk = xk−1, k = 1, 2. (1.8.1)

2.

r =

∫ c

−c

N1(x)dx �= 0. (1.8.2)

Then the corresponding operator B has the form

Bf =

∫ c

−c

Φ(x, y, c)f(y)dy (1.8.3)

where

Φ(x, y, c) =
1

2

∫ 2c−|x−y|

x+y

q[(s+ x− y)/2, (s− x+ y)/2]ds, (1.8.4)

q(x, y) = [N1(−y)N2(x)−N2(−y)N1(x)]/r. (1.8.5)

It follows from (1.8.4) and (1.8.5) that

Φ(±c, y) = Φ(x,±c) = 0. (1.8.6)

Here we use the relation

q[(s+ x− y)/2, (s− x+ y)/2] (1.8.7)

= [N1((x− y − s)/2)N2((s+ x− y)/2)−N2((x− y − s)/2)N2((s+ x− y)/2)]/r.

Thus

q[(s+ x− y)/2, (s− x+ y)/2] = −q[(−s+ x− y)/2, (−s− x+ y)/2]. (1.8.8)

From formulas (1.8.4) and (1.8.5) we deduce the following statement.
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Proposition 1.51. Let the conditions of Theorem 1.50 be fulfilled. There exists a
function ϕ(x) such that

|Φ(x, y, c)| ≤ ϕ(x− y), (1.8.9)∫ R

−R

ϕ(x)dx < ∞ if 0 < R < ∞. (1.8.10)

Proof. Relation (1.8.4) can be written in the form

Φ(x, y, c) =

∫ c+(x−y−|x−y|)/2

x

q(t, t− x+ y)dt. (1.8.11)

By relations
Nk(x) = 0, x/∈[−c, c], k = 1, 2 (1.8.12)

we extend the functions Nk(x) from the segment [−c, c] to the segment [−2c, 2c].
It follows from (1.8.11) and (1.8.12) that inequality (1.8.9) is valid if

ϕ(x) =

∫ c

−c

[|N1(t)N2(t− x)|+ |N2(t)N1(t− x)|]dt/|r|. (1.8.13)

Equality (1.8.13) implies that ϕ(x) ∈ Lp[−2c, 2c]. The proposition is proved. �
It follows from Proposition 1.51 that the operator B is bounded in all the

spaces Lp(−c, c), p ≥ 1. We shall prove that the operator B is compact.

Proposition 1.52. Let the conditions of Theorem 1.50 be fulfilled. Then the operator
B is compact in all the spaces Lp(−c, c), p ≥ 1.

Proof. Let us consider the operator B∗ in the space Lq(−c, c), 1/p + 1/q = 1.
Using relation (1.8.3) we have

B∗fn =

∫ c

−c

Φ(y, x, c)fn(y)dy (1.8.14)

where the functions fn(x) → 0 in the weak sense. Relation (1.8.14) can be repre-
sented in the form

B∗fn =

∫ c

−c

fn(y)

∫ c+(y−x−|x−y|)/2

y

q(t, t− y + x)dtdy. (1.8.15)

By interchanging the order of integration in (1.8.15) we see that ‖B∗fn‖ → 0,
that is, the operator B∗ is compact. Hence the operator B is compact too. The
proposition is proved. �

Using formulas (1.8.5) and (1.8.11) we obtain the assertion.

Proposition 1.53. Let the conditions of Theorem 1.50 be fulfilled. If the functions
N1(x) and N2(x) can have a discontinuity only when x = ±c, then the function
Φ(x, y, c) can have a discontinuity only when x = y.
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Corollary 1.54. Let the conditions of Proposition 1.53 be fulfilled. Then the eigen-
vectors of the corresponding operator B are continuous.

Remark 1.55. In view of (1.6.4) and (1.6.5) Proposition 1.51 is valid not only in
the case of the symmetric segment [−c, c] but in the general case [−a, b] too.

1.9 Long time behavior

1. The probability p(t,Δ) of the Levy processXτ remains inside the given domain
Δ when 0 ≤ τ ≤ t (ruin problem) is investigated in Section 5 of this chapter. In
order to investigate the asymptotic behavior of p(t,Δ) when t → ∞, we use
the non-negativity of the kernel Φ(x, y). We apply the following Krein–Rutman
theorem (see [82, Section 6]).

Theorem 1.56. If a linear compact operator B, leaving invariant a cone K, has
a point of the spectrum different from zero, then it has a positive eigenvalue λ1

not less in modulus than any other eigenvalues λk (k > 1). To this eigenvalue λ1

corresponds at least one eigenvector g1 ∈ K (Bg1 = λ1g1) of the operator B and
at least one eigenvector h1 ∈ K∗ (B∗h1 = λ1h1) of the operator B∗.

We remark that in our case the cone K consists of non-negative functions
f(x) ∈ Lp(Δ) and K = K∗. Hence we have

g1(x) ≥ 0, h1(x) ≥ 0. (1.9.1)

We introduce the normalizing condition

(g1, h1) =

∫
Δ

g1(x)h1(x)dx = 1. (1.9.2)

Let the interval Δ1 and the point x0 be such that

x0 ∈ Δ1 ∈ Δ. (1.9.3)

Together with quantity p(t,Δ) we consider the expression

p(x0,Δ1, t,Δ) = P ((Xτ ∈ Δ)
⋂

(Xt ∈ Δ1), 0 ≤ τ ≤ t), (1.9.4)

where x0 = X0. If the relations x0 = 0, Δ1 = Δ are valid, then p(x0,Δ1, t,Δ) =
p(t,Δ). In this section we investigate the asymptotic behavior of p(x0,Δ1, t,Δ)
and p(t,Δ) when t → ∞.

Now we formulate the main result of this section.

Theorem 1.57. Let the considered Levy process have continuous density, let the
corresponding quasi-potential B be regular and strongly sectorial, and let the op-
erator B have a point of the spectrum different from zero. Then the asymptotic
equality

p(t,Δ) = e−t/λ1 [q(t) + o(1)], t → +∞ (1.9.5)
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holds. The function q(t) has the form

q(t) = c1 +
m∑

k=2

cke
itνk ≥ 0, (1.9.6)

where the νk are real.

Proof. The spectrum (λk, k > 1) of the operator B is situated in the sector

−π

2
β ≤ argz ≤ π

2
β, 0 ≤ β < 1, |z| ≤ λ1. (1.9.7)

We introduce the domain Dε:

−π

2
(β + ε) ≤ argz ≤ π

2
(β + ε), |z − (1/2)λ1| < (1/2)(λ1 − r), (1.9.8)

where 0 < ε < 1− β, r < λ1. If z belongs to the domain Dε then the relation

Re (1/z) > 1/λ1 (1.9.9)

holds. As the operator B is compact, only a finite number of eigenvalues λk,
1 < k ≤ m of this operator does not belong to the domain Dε. We denote the
boundary of domain Dε by Γε. Without loss of generality we may assume that the
points of spectrum λk �= 0 do not belong to Γε. Taking into account the equality

(Φ(0, x), g1(x)) = λ1g1(0), (1.9.10)

we deduce from formulas (1.5.21) and (1.5.23) the relation

p(t,Δ) =

m∑
k=1

nk∑
j=0

e−t/λktjck,j + J, (1.9.11)

where nk is the index of the eigenvalue λk,

J = − 1

2iπ

∫
Γ

1

z
e−t/z((B∗ − zI)−1Φ(0, x), 1)dz. (1.9.12)

We recall that the index of the eigenvalue λk is defined as the dimension of the
largest Jordan block associated to that eigenvalue. We note that

n1 = 1. (1.9.13)

Indeed, if n1 > 1, then there exists such a function f1 that

Bf1 = λ1f1 + g1. (1.9.14)

In this case the relations

(Bf1, h1) = λ1(f1, h1) + (g1, h1) = λ1(f1, h1) (1.9.15)
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are valid. Hence (g1, h1) = 0. The last relation contradicts condition (1.9.2). It
proves equality (1.9.13).

Relation (1.8.9) implies that

Φ(0, x) ∈ Lp(Δ). (1.9.16)

We denote by W (B) the numerical range of B. The closure of the convex hull of
W (B) is situated in the sector (1.9.7). Hence the estimation

‖(B∗ − zI)−1‖p ≤ M/|z|, z ∈ Γε (1.9.17)

is valid (see [172] for the Hilbert case p = 2 and [118] for the Banach space p ≥ 1).
By ‖B‖p we denote the norm of the operator B in the space Lp(Δ).

It follows from estimation (1.9.17) that the integral J exists.
Among the numbers λk we choose the ones for which Re (1/λk) (1 ≤ k ≤ m)

has the smallest value δ. Among the obtained numbers we choose μk (1 ≤ k ≤ �)
the indexes nk of which have the largest value n. We deduce from (1.9.10)–(1.9.12)
that

p(t,Δ) = e−tδtn

[
�∑

k=1

e−t/μkck + o(1)

]
, t → ∞. (1.9.18)

We note that the function

Q(t) =

�∑
k=1

eitIm (μ−1
k )ck (1.9.19)

is almost periodic (see [94]). Hence in view of (1.9.18) and the inequality p(t,Δ) >
0, t ≥ 0 the relation

Q(t) ≥ 0, −∞ < t < ∞ (1.9.20)

is valid.
First we assume that at least one of the inequalities

δ < λ−1
1 , n > 1 (1.9.21)

is valid. Using (1.9.21) and the inequality

λ1 ≥ λk, k = 2, 3, . . . (1.9.22)

we have
Imμ−1

j �= 0, 1 ≤ j ≤ �. (1.9.23)

It follows from (1.9.19) that

cj = lim
1

2T

∫ T

−T

Q(t)e−it Im (μ−1
j )dt, T → ∞. (1.9.24)
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In view of (1.9.20) the relations

|cj | ≤ lim
1

2T

∫ T

−T

Q(t)dt = 0, T → ∞, (1.9.25)

are valid, that is, cj = 0, 1 ≤ j ≤ �. This means that relations (1.9.21) are not
valid. Hence the equalities

δ = λ−1
1 , n = 1 (1.9.26)

hold. From (1.9.18) and (1.9.19) we get the asymptotic equality

p(t,Δ) = e−t/λ1 [q(t) + o(1)], t → ∞, (1.9.27)

where the function q(t) is defined by relation (1.9.6) and

ck = gk(0)

∫
Δ

hk(x)dx, νk = Im (μ−1). (1.9.28)

Here gk(x) are the eigenfunctions of the operator B corresponding to the eigen-
values λk, and hk(x) are the eigenfunctions of the operator B∗ corresponding to
the eigenvalues λk. The following conditions are fulfilled:

(gk, hk) =

∫
Δ

gk(x)hk(x)dx = 1, (1.9.29)

(gk, h�) =

∫
Δ

gk(x)h�(x)dx = 0, k �= �. (1.9.30)

Using the almost periodicity of the function q(t) we deduce from (1.9.27) the
inequality

q(t) ≥ 0. (1.9.31)

The theorem is proved. �

According to Theorem 1.57 and the relation 0 < Re (1/λk) ≤ 1/λ1 the fol-
lowing assertion holds.

Corollary 1.58. Let the conditions of Theorem 1.57 be fulfilled. Then all the eigen-
values λj of B belong to the disk

|z − (1/2)λ1| ≤ (1/2)λ1. (1.9.32)

All the eigenvalues λj of B which belong to the boundary of disc (1.9.32) have the
indexes nj = 1.

Remark 1.59. The exponential decay of the transition probability Pt(x,B) was
proved by P. Tuominen and R.L. Tweedie [181]. Theorem 1.57 gives the exponen-
tial decay of p(t,Δ). These two results are independent.
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We note that P. Tuominen and R.L. Tweedie [181] prove only the existence
of the corresponding decay parameter λ. Theorem 1.57 gives the method of con-
structing the corresponding decay parameter in the case of p(t,Δ). (The definitions
of Pt(x,B) and p(t,Δ) are given in Section 1 and by relation (1.5.1) respectively.)

Using formula (1.9.11) we obtain the following assertion.

Corollary 1.60. Let the considered Levy process have the continuous density, let
the corresponding quasi-potential B be regular and strongly sectorial, and let the
operator B have no points of the spectrum different from zero. Then the equality

lim
(
p(t,Δ)et/λ

)
= 0, t → +∞ (1.9.33)

holds for any λ > 0.

2. Now we find the conditions under which the operator B has a point of the
spectrum different from zero.

We represent the corresponding operator B in the form B = B1 + iB2 where
the operators B1 and B2 are self-adjoint. We assume that B1 ∈ Σp, that is,

∞∑
1

|sn|−p < ∞, (1.9.34)

where sn are eigenvalues of the operator B1 and p > 1. As operator B is sectorial,
then

B1 ≥ 0. (1.9.35)

Theorem 1.61. Let the considered Levy process have continuous density and let
the corresponding quasi-potential B be regular and strongly sectorial. If B1 ∈ Σp,
p > 1 and

1/p > β, (1.9.36)

then the operator B has a point of the spectrum different from zero.

Proof. It follows from estimation (1.9.17) that

‖(I − zB)−1‖p ≤ M, |argz| ≥ β + ε. (1.9.37)

Let us suppose that the formulated assertion is not valid, that is, the operator B
has no points of the spectrum different from zero. We set

N(r,B) = sup‖(I − reiθB)−1‖, 0 ≤ θ ≤ 2π. (1.9.38)

It follows (see [51, Ch. 4, Section 11]) from condition B1 ∈ Σp that B2 ∈ Σp.
Hence the estimation

logN(r,B) = O(rp) (1.9.39)
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holds (see [51]). According to the Phragmen–Lindelöf theorem and to relations
(1.9.36)–(1.9.39) we have

‖(I − zB)−1‖ ≤ M. (1.9.40)

The last relation is possible only when B = 0. But in our case B �= 0. The obtained
contradiction proves the theorem. �
Proposition 1.62. Let the kernel of Φ(x, y) of the corresponding operator B be
bounded. If this operator B is strongly sectorial, then it has a point of the spectrum
different from zero.

Proof. As in Theorem 1.61 we suppose that the operator B has no points of the
spectrum different from zero. Using the boundedness of the kernel Φ(x, y) we
obtain the inequality

TrB1 < ∞. (1.9.41)

It follows from relations (1.9.35) and (1.9.41) that p = 1 (see the triangular model
of M. Livshits [98]). Since 1/p = 1 > β all relations (1.9.36)–(1.9.40) of Theorem
1.61 are valid. Hence the proposition is proved. �

3. Now we shall consider the important case when

rankλ1 = 1. (1.9.42)

We recall that the rank of an eigenvalue is defined as the number of linearly
independent eigenvectors with that eigenvalue, that is, the rank of an eigenvalue
coincides with the geometric multiplicity of this eigenvalue.

Theorem 1.63. Let the conditions of Theorem 1.57 be fulfilled. In case (1.9.42) the
relation

p(t,Δ) = e−t/λ1 [c1 + o(1)], t → +∞ (1.9.43)

holds.

Proof. In view of (1.9.31) we have

lim
1

T

∫ T

0

q(t)dt ≥
∣∣∣∣∣lim 1

T

∫ T

0

q(t)e−itIm (μ−1
j )dt

∣∣∣∣∣ , T → ∞, (1.9.44)

that is,

g1(0)

∫
Δ

h1(x)dx ≥ |gj(0)
∫
Δ

hj(x)dx|. (1.9.45)

In the same way we can prove that

g1(x0)

∫
Δ1

h1(x)dx ≥
∣∣∣∣gj(x0)

∫
Δ1

hj(x)dx

∣∣∣∣ , (1.9.46)

where
x0 ∈ Δ1 ∈ Δ. (1.9.47)
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It follows from (1.9.46) that

g1(x0)h1(x) ≥
∣∣∣gj(x0)hj(x)

∣∣∣ . (1.9.48)

We introduce the normalization condition

g1(x0) = gj(x0). (1.9.49)

Due to (1.9.46) and (1.9.48) the inequalities∫
Δ1

h1(x)dx ≥
∣∣∣∣∫

Δ1

hj(x)dx

∣∣∣∣ , (1.9.50)

h1(x) ≥ |hj(x)| (1.9.51)

are valid. The equality sign in (1.9.50) and (1.9.51) will hold only if

hj(x) = |hj(x)|eiα. (1.9.52)

It is possible only in the case when j = 1. Hence there exists such a point x1 that

h1(x1) > |hj(x1)|. (1.9.53)

Thus we have

1 =

∫
Δ1

g1(x)h1(x)dx >

∫
Δ1

gj(x)hj(x)dx = 1, (1.9.54)

where x1 ∈ Δ1. The received contradiction (1.9.54) means that j = 1. Now the
assertion of the theorem follows directly from (1.9.5). �
Corollary 1.64. Let conditions of Theorem 1.57 be fulfilled. If rankλ1 = 1 and
x0 ∈ Δ1 ∈ Δ, then the asymptotic equality

p(x0,Δ1, t,Δ) = e−t/λ1g1(x0)

∫
Δ1

h1(x)dx[1 + o(1)], t → +∞ (1.9.55)

holds.

The following Krein–Rutman theorem [82] gives sufficient conditions when
relation (1.9.42) is valid.

Theorem 1.65. Suppose that the non-negative kernel Φ(x, y) satisfies the condition∫
Δ

∫
Δ

|Φ(x, y)2|dxdy < ∞ (1.9.56)

and has the following property: for each ε > 0 there exists an integer N = N(ε)
such that the kernel ΦN (x, y) of a the operator BN takes the value zero on a set
of points of measure not greater than ε. Then

rankλ1 = 1; λ1 > λk, k = 2, 3, . . . . (1.9.57)
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It is easy to see that the following assertion is valid.

Proposition 1.66. Let the inequality

Φ(x, y) > 0, (1.9.58)

be valid, when x �= ak, x �= bk, y �= ak, y �= bk. Then

g1(x) > 0, (1.9.59)

when x �= ak, x �= bk.

4. Let us consider separately the case when the operator B is regular and

k(x) = k(−x). (1.9.60)

The corresponding operator S is self-adjoint. Hence the operator B is self-adjoint
and strongly sectorial. In this case equality (1.9.11) can be written in the form

p(t,Δ) =

∞∑
k=1

e−t/λkgk(0)

∫
Δ

gk(x)dx. (1.9.61)

1.10 Stable processes, main notions

1. Let X1, X2, . . . be mutually independent random variables with the same law
of distribution F (x). The distribution F (x) is called strictly stable if the random
variable

X = (X1 +X2 + · · ·+Xn)/n
1/α (1.10.1)

is also distributed according to the law F (x). The number α (0 < α ≤ 2) is
called a characteristic exponent of the distribution. The homogeneous process
X(τ) (X(0) = 0) with independent increments is called a stable process if

E [exp (iξX(τ))] = exp
{
−τ |ξ|α

[
1− iβ (sign ξ)

(
tan

πα

2

)]}
, (1.10.2)

where 0 < α < 2, α �= 1, −1 ≤ β ≤ 1, τ > 0. When α = 1 we have

E [exp (iξX(τ))] = exp

{
−τ |ξ|

[
1 +

2iβ

π
(sign ξ) (log |ξ|)

]}
, (1.10.3)

where−1 ≤ β ≤ 1, τ > 0. In many theoretical and applied problems it is important
to estimate the value

pα(t, a) = P (sup |X(τ)| < a, 0 ≤ τ ≤ t). (1.10.4)

For the stable processes the asymptotic of pα(t, a) (Theorem 1.56) was found
earlier in the papers (see [190] and [144,146,147]). The value of pα(t, a) decreases
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very quickly by the exponential law when t → ∞. This fact prompted the idea
to consider the case when the value of a depends on t and a(t) → ∞, t → ∞.
In this chapter we deduce the conditions under which one of the following three
cases is realized:

1) lim pα(t, a(t)) = 1, t → ∞.

2) lim pα(t, a(t)) = 0, t → ∞.

3) lim pα(t, a(t)) = p∞, 0 < p∞ ≤ 1, t → ∞.

We also investigate the situation when t → 0.
We compare the obtained results with well-known results (the iterated log-

arithm law, the results for the first hitting time, the results for the most visited
sites problems).

Remark 1.67. In the famous work by M. Kac [67] the connection of the theory of
stable processes and the theory of integral equations was shown. M. Kac considered
in detail only the case α = 1, β = 0. The case 0 < α < 2, β = 0 was later studied
by H. Widom [190]. As to the general case 0 < α < 2, −1 ≤ β ≤ 1 it was
investigated in our works [144,146,147]. In all the mentioned works the parameter
a was fixed. Further we consider the important case when a depends on t and
a(t) → ∞, t → ∞ ( see [158]).

1.11 Stable processes, quasi-potential

1. In this section we formulate some results from our paper [146] (see also [147,
Ch. 7]). Here ψα(x, s, a) is defined by the relation

ψα(x, s, a) = (I + sB∗
α)

−1Φα(0, x, a). (1.11.1)

The quasi-potential Bα and its kernel Φα(x, y, a) will be written later in explicit
form.

Further we consider three cases.

Case 1. 0 < α < 2, α �= 1, −1 < β < 1.
Case 2. 1 < α < 2, β = ±1.
Case 3. α = 1, β = 0.

Now we introduce the operators

Bαf =

∫ a

−a

Φα(x, y, a)f(y)dy (1.11.2)

acting in the space L2(−a, a).
In Case 1 the kernel Φα(x, y, a) has the following form (see [144,147]):

Φα(x, y, a) = Cα(2a)
μ−1

∫ a2−xy

a|x−y|
[z2 − a2(x− y)2]

−ρ
[z−a(x−y)]2ρ−μdz, (1.11.3)
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where the constants μ, ρ, and Cα are defined by the relations μ = 2− α,

sin (πρ) =
1− β

1 + β
sin (π(μ− ρ)), 0 < μ− ρ < 1, (1.11.4)

Cα =
sin (πρ)

sin (πα/2) (1− β)Γ(1− ρ)Γ(1 + ρ− μ)
. (1.11.5)

Here Γ(z) is Euler’s gamma function. We remark that the constants μ, ρ, and Cα

do not depend on parameter a.
In Case 2 when β = 1 the relation (see [144,147])

Φα(x, y, a) =
cos (πα/2)

(2a)α−1Γ(α)
{[a(|x−y|+y−x)]α−1−(a−x)α−1(a+y)α−1} (1.11.6)

holds. In Case 2 when β = −1 we have (see [144,147])

Φα(x, y, a) =
cos (πα/2)

(2a)α−1Γ(α)
{[a(|x−y|+x−y)]α−1−(a+x)α−1(a−y)α−1}. (1.11.7)

Finally, in Case 3 according to M. Kac [67] the equality

Φ1(x, y, a) =
1

π
log

(
a2 − xy +

√
(a2 − x2)(a2 − y2)

a2 − xy −√(a2 − x2)(a2 − y2)

)
(1.11.8)

is valid.
The assertion below (see [147, Ch. 7]) follows from formulas (1.11.2)–(1.11.8):

Proposition 1.68. Let one of the following conditions be fulfilled:

I. 0 < α < 2, α �= 1, −1 < β < 1.

II. 1 < α < 2, β = ±1.

III. α = 1, β = 0.

Then the corresponding operator Bα is regular and strongly sectorial.

2. Let us introduce the notation

pα(t,−b, a) = P (−b < X(τ) < a for 0 ≤ τ ≤ t), (1.11.9)

where a > 0, b > 0. We consider in short the case when the parameter b is not
necessary equal to a. As in the case (−a, a) we have the relation∫ ∞

0

e−supα(u,−b, a)du =

∫ a

−b

ψα(x, s,−b, a)dx. (1.11.10)

Here ψα(x, s,−b, a) is defined by the relation

ψα(x, s,−b, a) = (I + sB∗
α)

−1Φα(0, x,−b, a), (1.11.11)
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Now the operator Bα has the form

Bαf =

∫ a

−b

Φα(x, y,−b, a)f(y)dy (1.11.12)

and acts in the space L2(−b, a). The kernel Φα(x, y,−b, a) is connected with
Φα(x, y, a) (see (1.11.3) and (1.11.7)) by the formula

Φα(x, y,−b, a) = Φα

(
x+

b− a

2
, y +

b− a

2
,
a+ b

2

)
. (1.11.13)

In this way we have reduced the non-symmetric case (−b, a) to the symmetric one
(−a+b

2 , a+b
2 ). Let us consider separately the case 0 < α < 2, β = 0. In this case

the operator Bα is self-adjoint.We denote by λj (j = 1, 2, . . .) the eigenvalues of
Bα and by gj(x) the corresponding real normalized eigenfunctions. Then we can
write the new formula for pα(t,−b, a) which is different from 1.9.11:

pα(t,−b, a) =

∞∑
j=1

gj(0)

∫ a

−b

gj(x)dxe
−tμj , (1.11.14)

where μj = 1/λj .

1.12 On sample functions behavior of stable processes

From the scaling property of the stable processes (see (1.10.1)) we deduce the
relations

pα(t, a) = pα

(
t

aα
, 1

)
, (1.12.1)

λk(a, α) = aαλk(1, α). (1.12.2)

We introduce the notation

λα(1) = λα, pα(t, 1) = pα(t), gα(x, 1) = gα(x), hα(x, 1) = hα(x). (1.12.3)

Using relations (1.12.1), (1.12.2) and notation (1.12.3) we can rewrite Theorem
1.56 in the following way.

Theorem 1.69. Let one of the following conditions be fulfilled:

I. 0 < α < 2, α �= 1, −1 < β < 1.

II. 1 < α < 2, β = ±1.

III. α = 1, β = 0.
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Then the asymptotic equality

pα(t, a) = e−t/[aαλα]gα(0)

∫ 1

−1

hα(x)dx[1 + o(1)], t → ∞ (1.12.4)

holds.

Proof. The corresponding operator Bα is regular and strongly sectorial (see Propo-
sition 1.68). The stable processes have continuous density (see [167]). So all con-
ditions of Theorem 1.56 are fulfilled. It proves the theorem. �
Remark 1.70. The operator Bα is self-adjoint when β = 0. In this case hα = gα.

Remark 1.71. The value λα characterizes how fast pα(t, a) converges to zero when
t → ∞. The two-sided estimation for λα when β = 0 is given in Section 1.15.

3. Now we consider the case when the parameter a depends on t. From Theorem
1.69 we deduce the assertions.

Corollary 1.72. Let one of conditions I–III of Theorem 1.69 be fulfilled and

t

aα(t)
→ ∞, t → ∞. (1.12.5)

Then the equalities

1)

pα(t, a(t)) = e−t/[aα(t)λα]gα(0)

∫ 1

−1

hα(x)dx[1 + o(1)], t → ∞, (1.12.6)

2)
lim pα(t, a) = 0, t → ∞, (1.12.7)

3)
limP (sup |X(τ)| > a(t)) = 1, 0 ≤ τ ≤ t, t → ∞. (1.12.8)

are valid.

Corollary 1.73. Let one of conditions I–III of Theorem 1.69 be fulfilled and

t

[a(t)]α
→ 0, t → 0. (1.12.9)

Then the equalities

1)
lim pα(t, a(t)) = 1, t → 0 (1.12.10)
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2)
limP (sup |X(τ)| > a(t)) = 0 0 ≤ τ ≤ t, t → 0 (1.12.11)

are valid.

Corollary 1.73 follows from (1.12.1) and the relation

lim pα(t) = 1, t → 0. (1.12.12)

Corollary 1.74. Let one of conditions I–III of Theorem 1.69 be fulfilled and

t

[a(t)]α
→ T, 0 < T < ∞, t → ∞. (1.12.13)

Then the following equality holds:

lim pα(t, a(t)) = pα(T ), t → ∞. (1.12.14)

Corollary 1.74 follows from (1.12.1).

1.13 Wiener process

1. We consider separately the important special case when α = 2 (Wiener pro-
cess). In this case the kernel Φ2(x, t,−b, a) of the operator B2 coincides with the
Green’s function (see [10, 67]) of the equation

−1

2

d2y

dx2
= f(x), −b ≤ x ≤ a (1.13.1)

with the boundary conditions

y(−b) = y(a) = 0, b > 0, a > 0. (1.13.2)

It is easy to see that

Φ2(x, t,−b, a) =
2

a+ b

{
(t+ b)(a− x), −b ≤ t ≤ x ≤ a,

(a− t)(b+ x), −b ≤ x ≤ t ≤ a.
(1.13.3)

Equality (1.12.1) is also valid when α = 2 and when b = a, that is,

p2(t, a) = p2(t/a
2, 1). (1.13.4)

The eigenvalues of problem (1.13.1), (1.13.2) have the form

μn =

(
nπ

a+ b

)2
/

2, n = 1, 2, 3, . . . . (1.13.5)
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The corresponding normalized eigenfunctions are defined by the equality

gn(x) =

√
2

a+ b
sin

((
nπ

a+ b

)
(x+ b)

)
. (1.13.6)

Using formulas (1.13.5) and (1.13.6) we have

p2(t,−b, a) =

∞∑
m=0

4

(2m+ 1)π
sin

(
(2m+ 1)bπ

a+ b

)
e
−t( (2m+1)π

a+b )
2
/
2
. (1.13.7)

Remark 1.75. If b = a = 1, then relation (1.13.7) takes the form

p2(t) =

∞∑
m=0

(−1)m
2

(m+ 1/2)π
e
−t
(
(m+1/2)π

)2/
2
. (1.13.8)

Series (1.13.8) satisfies the conditions of Leibniz’s theorem. It means that p2(t, a)
can be calculated with a given precision when the parameters t and a are fixed.

From (1.13.4) and (1.13.8) we deduce that

p2(t, a) =
4

π
e−tπ2/8(a(t))2(1 + o(1)), (1.13.9)

where t/(a(t))2 → ∞.

Proposition 1.76. Theorem 1.69 and Corollaries 1.72–1.74 are valid in the case
when α = 2 too.

Remark 1.77. From the probabilistic point of view it is easy to see that the function
p2(t) (t > 0) is monotonic decreasing and

0 < p2(t) ≤ 1; lim p2(t) = 1, t → 0. (1.13.10)

2. Now we shall describe the behavior of p(t,−b, a) when b → ∞. To do it we
consider

d

dt
p2(t,−b, a) = − 2π

(a+ b)2

∞∑
m=0

(2m+ 1) sin

(
(2m+ 1)bπ

a+ b

)
e
−t( 2m+1

a+b π)
2
/
2
.

(1.13.11)
We use the following Poisson result (see [38]).

Theorem 1.78. If the function F (x) satisfies the inequalities∫ ∞

0

|F (x)|dx < ∞,

∫ ∞

0

|F ′(x)|dx < ∞, (1.13.12)

then the equality

∞∑
m=0

F (m) =
1

2
F (0) +

∫ ∞

0

F (x)dx+ 2

∞∑
m=1

∫ ∞

0

F (x) cos(2πmx)dx (1.13.13)

holds.
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Thus in case (1.13.11) we have

F (x) = G(x)−G(2x), (1.13.14)

where

G(x) = − 2π

(a+ b)2
x sin

(
xbπ

a+ b

)
e
−t( x

a+bπ)
2
/
2
. (1.13.15)

It is easy to see that conditions (1.13.12) are fulfilled and

F (0) = 0,

∫ ∞

0

F (x)dx =
1

2

∫ ∞

0

G(x)dx. (1.13.16)

Using (1.13.15) and (1.13.16) we deduce the equality∫ ∞

0

F (x)dx = − 1

πt

∫ ∞

0

ue−u2/2 sin

(
ua√
t

)
du, (1.13.17)

where u = xπ
a+b

√
t. Now we use the following relation from the sine transformation

theory (see [175]) ∫ ∞

0

ue−u2/2 sin (xu)du =

√
π

2
xe−u2/2. (1.13.18)

In view of (1.13.17) and (1.13.18) the equality∫ ∞

0

F (x)dx = − a√
2π

t−3/2e−a2/2t (1.13.19)

holds. Now we calculate the integrals

Jm = 2

∫ ∞

0

G(2x) cos (2πmx)dx, Im = 2

∫ ∞

0

G(x) cos (2πmx)dx. (1.13.20)

Using again formula (1.13.18) we have

Jm = −
√

2/πt−3/2
(
Ame−A2

m/2t −Bme−B2
m/2t
)
, (1.13.21)

where Am = 2m(a+ b) + a, Bm = 2m(a+ b)− a. In the same way we obtain that

Im = −
√

1/2π t−3/2
(
Cme−C2

m/2t −Dme−D2
m/2t
)
, (1.13.22)

where Cm = m(a+ b)+a, Dm = m(a+ b)−a. From relation (1.13.7) and equality(∫ d/
√
t

c/
√
t

e−u2/2du

)′
= −1

2
t−3/2

(
de−d2/2t − ce−c2/2t

)
(1.13.23)
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we obtain the following representation of p2(t,−b, a):

p2(t,−b, a) = 1−
√

2/π

∫ ∞

a/
√
t

e−u2/2tdu+ qα(t,−b, a), (1.13.24)

where

q2(t,−b, a) =
√

2/π

∞∑
m=1

(
2

∫ Am/
√
t

Bm/
√
t

e−u2/2tdu−
∫ Cm/

√
t

Dm/
√
t

e−u2/2tdu

)
.

(1.13.25)
So we have deduced two formulas (1.13.7) and (1.13.24) for p2(t,−b, a). Formula
(1.13.7) is useful when t is big and the parameters a and b are fixed.

Proposition 1.79. In the case of the Wiener process (α = 2) the asymptotic equality

p2(t,−b, a) =
4

π
sin

(
aπ

a+ b

)
e−t(π)2/(2(a+b)2)[1 + o(1)], t → ∞ (1.13.26)

holds.

Formula (1.13.24) is useful when b is big and parameters a and t are fixed.

Proposition 1.80. In the case of the Wiener process (α = 2) the asymptotic equality

p2(t,−b, a)

= 1−
√

2/π

∫ ∞

a/
√
t

e−u2/2tdu−
√
2/π

∫ (b+2a)/
√
t

b/
√
t

e−u2/2tdu[1 + o(1)], (1.13.27)

where b → ∞, is valid.

The well-known formula (see [41]) for the first hitting time

p2(t,−∞, a) = 1−
√

2/π

∫ ∞

a/
√
t

e−u2/2tdu (1.13.28)

follows directly from (1.13.27).

1.14 Iterated logarithm law, most visited sites and first
hitting time

It is interesting to compare our results (Theorem 1.56, Corollaries 1.72–1.74 and
Propositions 1.76–1.80) with the well-known results mentioned in the title of the
section.
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1. We begin with the famous Khintchine theorem (see [10]) about the iterated
logarithm law.

Theorem 1.81. Let X(t) be a stable process (0 < α < 2). Then almost surely (a.s.)
we have that

lim
t→∞

sup |X(t)|
(t log t)1/α| log | log t||(1/α)+ε

=

{
0, ε > 0 a.s.

∞, ε = 0 a.s.
(1.14.1)

We introduce the random process

X∗(t) = sup
0≤τ≤t

|X(τ)|. (1.14.2)

From Corollaries 1.72–1.74 and Proposition 1.76 we deduce the assertion.

Theorem 1.82. Let one of conditions I–III of Theorem 1.69 be fulfilled or let α = 2
and

b(t) → ∞, t → ∞. (1.14.3)

Then

b(t)X∗(t)
/
t1/α → ∞ (P ), X∗(t)

/(
b(t)t1/α

)
→ 0 (P ). (1.14.4)

(The convergence in probability is denoted by symbol (P ). A sequence Xn

of random variables converges in probability towards X if for all ε > 0 we have

lim
n→∞P (|Xn −X| ≥ ε) = 0.

Recall that an event happens almost surely if it happens with probability 1. “Al-
most surely” convergence implies convergence in probability.)

In particular it follows from Theorem 1.82 that

((log t)
ε
X∗(t))

/
t1/α → ∞ (P ), X∗(t)

/(
(log t)

ε
t1/α
)
→ 0 (P ),

(1.14.5)
when ε > 0 and t → ∞.

We see that our approach and the classical one have some similar points
(estimation of |X(τ)|), but these approaches are essentially different. We consider
the behavior of |X(τ)| on the interval (0, t), and in the classical case |X(τ)| is
considered on the interval (t,∞).

2. Let X(t) be a stable process (1 < α < 2, β = 0) and let Lx
t be the local

time at time t and position x. The most visited site V (t) of X(t) is defined by

the relation L
V (t)
t = supx∈R Lx

t . We formulate the following result (see [3] and
references therein).
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Theorem 1.83. Let 1 < α < 2, β = 0, γ > 9/(α− 1). Then the relation

lim (log t)
γ
t−(1/α)|V (t)| = ∞, t → ∞ (a.s.) (1.14.6)

holds.

To this important result we add the following estimation.

Theorem 1.84. Let one of the conditions I–III of Theorem 1.69 be fulfilled or let
α = 2 and

b(t) → ∞, t → ∞. (1.14.7)

Then

|V (t)|
/(

b(t)t1/α
)
→ 0 (P ). (1.14.8)

The theorem above follows directly from the inequality X∗(t) ≥ |V (t)|.
In particular we have

|V (t)|
/(

(log t)
ε
t1/α
)
→ 0 (P ) (1.14.9)

when ε > 0 and t → ∞.

3. The first hitting time Ta is defined by the formula

Ta = inf
t≥0

(X(t) ≥ a). (1.14.10)

It is obvious that

P (Ta > t) = P ( sup
0≤τ≤t

X(τ) < a). (1.14.11)

We have

P (Ta > t) ≥ P (−b < X(τ) < a, 0 ≤ τ ≤ t) = pα(t,−b, a). (1.14.12)

So our formulas for p(t,−b, a) estimate P (Ta > t) from below. It is easy to see
that

p(t,−b, a) → P (Ta > t), b → +∞. (1.14.13)

Remark 1.85. Our results can be interpreted in terms of the first hitting time
T[−b,a] as one of the barriers either −b or a (ruin problem). Namely, we have

P (T[−b,a] > t) = p(t,−b, a). (1.14.14)

The distribution of the first hitting time for the Levy processes is an open problem.

Remark 1.86. B.A. Rogozin in his interesting work [127] established the law of
the overshoot distribution for stable processes when the existing interval is fixed.
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4. In a traditional way (see [10]) we shall show that the first relation of (1.14.4)
holds not only in probability but almost surely too.

Theorem 1.87. Let the following conditions be fulfilled.

1. Either one of the conditions I–III of Theorem 1.69 is valid or α = 2.

2. The corresponding function b(t) is non-negative and increasing.

3. The series ∞∑
n=1

eb(2
n)α
/
λ1

converges.

4. t1/α/b(t) → ∞, t → ∞.

Then

b(t)X∗(t)
/
t1/2 → ∞, t → ∞ (a. s.).

Proof. We recall that

p (t, a (t)) = P (X∗ (t) ≤ a (t)) . (1.14.15)

The scaling property of the stable processes implies

p (t, a (t)) = p

(
t

aα(t)
, 1

)
, a(t) =

t1/2

b(t)
. (1.14.16)

Using (1.14.16) and Theorem 1.69 we have

p
(
t, a(t)

)
= c1e

−t
/
(aα(t)λ1)

[
1 + o(1)

]
, t → ∞, c1 �= 0.

Hence the relation

p
(
2n, a(2n)

)
= c1e

−bα(2n)
/
λ1
[
1 + o(1)

]
, n → ∞

is valid (n is integer and n > 0). According to condition 3 of the theorem we can
use the Borel–Cantelly lemma. We obtain that

X∗(2n) > a
(
2n
)

(a.s.) (1.14.17)

for all n large enough. A monotonically argument shows

X∗(t) > a
(
t
)

(a.s.) (1.14.18)

for all t large enough. The assertion of the theorem follows from condition 4 and
relation (1.14.18). �
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1.15 Two-sided estimation of the greatest eigenvalue of
the operator Bα

We consider the case when

0 < α < 2, α �= 1, β = 0. (1.15.1)

The value λ1(α) characterizes how fast p(t, a) converges to zero when t → +∞.
The knowledge of λ1(α) plays an essential role when solving some approximation
problems. The following two-sided estimation of the λ1(α) holds (see [123,147]).

Theorem 1.88. Under the condition (1.15.1) we have

aα Γ
(
α+3
2

)
Γ
(
α
2 + 1

) Γ(α+
3

2

)
≤ λ1(α) ≤ aα

Γ (α+ 1)
, 0 < α ≤ 2. (1.15.2)

Below we fix a = 1 and write down the numerical estimates, for μ1(α) =
1/λ1(α) and for several values of α, which follow from (1.15.2):

0.89 ≤ μ1

(
1

2

)
≤ 0.99; 1 ≤ μ1(1) ≤ 1.18, (1.15.3)

1.33 ≤ μ1

(
3

2

)
≤ 1.62; 2 ≤ μ1(2) ≤ 2.5. (1.15.4)

It is known [74] that
μ1(1) ≈ 1.16. (1.15.5)

When α = 2 we have

μ1(2) =
(π
2

)2
≈ 2.47. (1.15.6)

Relations (1.15.5) and (1.15.6) show that the upper estimate of μ1(α), which
follows from (1.15.2), indeed, produces a good approximation of μ1(α).

Open problem 1.89. Find a method to calculate μ1(α) for a broad class of Levy
processes and for the stable processes, in particular.



Chapter 2

The principle of imperceptibility
of the boundary in the theory of
stable processes

Introduction

In this chapter we study the probabilistic characteristics of the stable process X(t)
as t → 0. In this way we obtain a weakened form of the principle of imperceptibility
of the boundary, which was introduced by M. Kac. The principle was formulated
by M. Kac [67] in the following dramatic form: “The information that we shall
be eaten at the boundary of the domain has not yet reached us”. Section 2.2
contains a precise mathematical formulation of the principle of imperceptibility of
the boundary and the weakened form of this principle. We note that Kac’s principle
is closely connected with the asymptotic behavior of the eigenvalues λn(α) of the
operators Bα. In this chapter we deduce the relation

λn(α) =

(
2a

πn

)α [
1 + o(1)

]
, n → ∞,

where 0 < α < 2, β = 0.

2.1 On a probabilistic inequality

Consider symmetric stable processes X(t) (β = 0, 0 < α ≤ 2) and put

pα (t, a) = P
(
Xτ ∈ [−a, a] ; 0 ≤ τ ≤ t

)
. (2.1.1)
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Lemma 2.1. The relation

pα (t, a) =

∫ a

−a

pα (0, y, t, a) dy (2.1.2)

is valid. Here

pα (x, y, t, a) =

∞∑
n=1

e−t/λn(α)gn(x, α)gn(y, α), (2.1.3)

where gk(x, α) are the eigenfunctions of the operator Bα corresponding to the
eigenvalues λn(α), ‖gn(x, α)‖ = 1.

Proof. Recall that the operator Bα has the form (1.4.6). If 1 < α ≤ 2, we can
apply Mercer’s theorem:

Φ(x, y) =

∞∑
n=1

λn(α) gn(x, α) gn(y, α). (2.1.4)

From (1.5.23) and (2.1.4) we deduce that

Ψα(x, s) =

∞∑
n=1

λn(α) gn(0, α) gn(x, α)
/
(1 + sλn(α)) . (2.1.5)

According to (1.5.21) we have

pα(t, a) =

∞∑
n=1

gn(0, α)

∫ a

−a

gn(y, α)dy e−t/λn(α).

If 0 < α ≤ 1, then there exists such an integer m that the kernel Φα,m(x, y) of the
operator Bm

α is continuous. Using again Mercer’s theorem we obtain the inequality

∞∑
k=1

λm
k (α) g2k(x, α) < ∞. (2.1.6)

Hence the series

q(t, a) =
∞∑
k=1

gk(0, α)

∫ a

−a

gk(y, α)dy e−t/λk(α), 0 < α ≤ 1 (2.1.7)

converges. Formulas (1.5.21) and (1.5.23) imply that

pα(t, a) = q(t, a). (2.1.8)

Lemma 2.1 is proved. �
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Let us denote by Pα (x,Δ, t, a) the probability of the following event:
the particle located at the point x at the initial moment will stay in the strip

[−a, a] during the time period 0 ≤ τ ≤ t and will belong to the interval Δ ⊂ [−a, a]
at the moment t. Formula (2.1.2) takes the form

pα (x,Δ, t, a) =

∫
Δ

pα (x, y, t, a) dy. (2.1.9)

For a = ∞ it is known [67] that

pα (x,Δ, t,∞) =

∫
Δ

pα (x, y, t,∞) dy. (2.1.10)

The function pα (x, y, t,∞) can be written in the form

pα (x, y, t,∞) = Pα (x− y, t,∞) . (2.1.11)

The probability to find the particle on interval Δ at time t decreases if a possibility
of the particle being destroyed on the boundary appears (see [67, 69]). Hence we
have

pα (x, y, t, a) ≤ Pα (x− y, t,∞) . (2.1.12)

It follows from (2.1.12) that

pα (x, x, t, a) ≤ Pα (0, t,∞) . (2.1.13)

Using thus relation (see [67])

Pα (0, t,∞) =
1

π
t−1/α Γ

(
1 +

1

α

)
, (2.1.14)

we deduce the inequality

pα (x, x, t, a) ≤ 1

π
t−1/α Γ

(
1 +

1

α

)
. (2.1.15)

2.2 A weakened principle of imperceptibility of the
boundary

M. Kac’s heuristic principle of imperceptibility of the boundary (see [67]) states
that the influence of the boundary on the behavior of a particle is small for a small
period of time, that is

pα (x, y, t, a) ≈ pα (x, y, t,∞) , (2.2.1)

if −a < x, y < a, t → 0.
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For x ≈ y relation (2.2.1) in a weakened form reads as

pα (x, x, t, a) ≈ pα (x, x, t,∞) , t → 0,

that is,
pα (x, x, t, a) = pα (x, x, t,∞) [1 + o(1)], t → 0. (2.2.2)

Relation (2.2.2) means that the influence of the boundary on the probability that
the particle is found near the point of departure is small if the time period is small.

We shall prove that (2.2.2) holds in the mean, namely

t1/α [pα (x, x, t,∞)− pα (x, x, t, a)] =⇒ 0, t → 0. (2.2.3)

We begin with the following fact.

Theorem 2.2. The asymptotic formula∫ a

−a

pα (x, x, t, a) dx =

∫ a

−a

pα (x, x, t,∞) dx [1 + o(1)], t → 0 (2.2.4)

is valid for 0 < α < 2, α �= 1.

Proof. Inequality (2.1.15) implies that

rα(t) =

∫ a

−a

Pα(x, x, t) dx ≤ 2a

π
t−1/α Γ

(
1 +

1

α

)
. (2.2.5)

To obtain a lower estimation of rα(t) we use the equalities (1.11.3)–(1.11.5). Then
we have

Φα(x, y) = Γ(1− α) |x− y|α−1 sin (πα/2)

π
+Ψα(x, y), (2.2.6)

where 0 < α < 2, α �= 1. For arbitrary 0 < ε < a the function Ψα(x, y) satisfies
the inequality

∣∣Ψα(x, y)
∣∣+ ∣∣∣∣ ∂∂yΨα(x, y)

∣∣∣∣ ≤ Mε, −a+ ε ≤ x, y ≤ a− ε. (2.2.7)

If 1 < α < 2 then the inequality∣∣∣∣ ∂2

∂y2
Ψα(x, y)

∣∣∣∣ ≤ Mε, −a+ ε ≤ x, y ≤ a− ε. (2.2.8)

is valid as well.
Note that relations (2.2.6)–(2.2.8) follow directly from (1.11.3). We introduce

the operator

Pεf =

⎧⎨⎩ f(x), x ∈ [−a+ ε, a− ε],

0, x /∈ [−a+ ε, a− ε],
(2.2.9)
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Bα,ε = PεBαPε, Cα,ε = PεSαPε. (2.2.10)

According to Krein’s result (see [51, Ch. 3, Section 10]) relations (2.2.6)–(2.2.8)
imply the following estimations of s-numbers:

sn (Bα,ε − Cα,ε) = o
(
n−3/2

)
, 0 < α < 1, (2.2.11)

sn (Bα,ε − Cα,ε) = o
(
n−5/2

)
, 1 < α < 2. (2.2.12)

The integral operators similar to Cα,ε were investigated in a number of papers
(see [11, 68,128]). The asymptotic formula

sn (Cα,ε) = [2(a− ε)/πn]
α
[1 + o(1)] , 0 < α < 2, α �= 1 (2.2.13)

was deduced. Using Ky Fan’s theorem [40] and relations (2.2.11)–(2.2.13) we obtain
the asymptotic equality

sn (Bα,ε) = [2(a− ε)/πn]
α
[1 + o(1)] , 0 < α < 2, α �= 1. (2.2.14)

In view of (2.2.14) we have

rα,ε(t) =

∞∑
n=1

exp [−t/sn (Bα,ε)] =
2(a− ε)

π
t−

1
αΓ

(
1 +

1

α

)
[1 + o(1)], t → 0.

(2.2.15)
The operators Bα and Bα,ε are positive definite. Hence, the eigenvalues λn(Bα)
and λn(Bα,ε) of the operators Bα and Bα,ε coincide with sn(Bα) and sn(Bα,ε).

Now we use the following property of s-numbers (see [51, Ch. 2, Section 2]):

sn(AB) ≤ ‖B‖sn(A), sn(BA) ≤ ‖B‖sn(A). (2.2.16)

It follows from relations (2.2.10) and (2.2.16) that

sn(Bα,ε) = λn(Bα.ε) ≤ sn(Bα) = λn(Bα).

Hence, we have the inequality

rα,ε(t) ≤ rα(t). (2.2.17)

The assertion of the theorem is immediate from (2.2.5), (2.2.15), and (2.2.17). �

Remark 2.3. Relations (2.1.11) and (2.1.12) imply that

pα (x, x, t, a) ≤ pα (x, x, t,∞) . (2.2.18)

Relation (2.2.3) follows from (2.2.4) and (2.2.18).
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Thus we proved the relation (2.2.3) which is the weakened principle of im-
perceptibility of the boundary.

Relation (2.2.4) can be written in the form

rα(t) =
∞∑
k=1

exp [−t/λn (Bα)] =
2a

π
t−

1
αΓ

(
1 +

1

α

)
[1 + o(1)], t → 0. (2.2.19)

Formulas (2.2.14), (2.2.16), and (2.2.19) imply the following statement from [141].

Corollary 2.4. The asymptotic equality

λn

(
Bα

)
=

(
2a

πn

)α

[1 + o(1)], n → ∞, 0 < α < 2, α �= 1 (2.2.20)

holds.

2.3 Cauchy process

Let us consider the case when α = 1, β = 0 (Cauchy process). The corresponding
operator B1 is defined by formulas (1.11.2) and (1.11.8).

M. Kac’s paper [67] contains a heuristic deduction of the relation

λn(B1) =
2a

πn
[1 + o(1)], n → ∞. (2.3.1)

In this section we give a rigorous proof of formula (2.3.1). Another and more
complicated proof of (2.3.1) was given in [75].

Theorem 2.5. Formula (2.2.4) is valid when α = 1 as well.

Proof. The operator B1 is defined by formulas (1.11.2) and (1.11.8). We present
this operator in the form

B1 = K1 +K2, (2.3.2)

where

Knf =

∫ a

−a

Kn(x, t)f(t)dt. (2.3.3)

The kernels of the integral operators Kn are defined by the formulas

K1(x, t) =
1

π
log |x− t|, (2.3.4)

K2(x, t) =
1

π
log

a2 − tx+
√

(a2 − x2) (a2 − t2)

a
. (2.3.5)

Let us introduce the operators

B1,ε = PεB1Pε, Kn,ε = PεKnPε, n = 1, 2, (2.3.6)
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where the operator Pε is defined by relation (2.2.9). For arbitrary 0 < ε < a we
have

|K2(x, t)|+
∣∣∣∣∂K2(x, t)

∂t

∣∣∣∣ ≤ Mε, −a+ ε ≤ x, t ≤ a− ε. (2.3.7)

Using Krein’s result (see [51, Ch. 3, Section 10]) we deduce that

sn (K2,ε) = o
(
n−3/2

)
. (2.3.8)

It is known [40] that

λn (K1,ε) =
2(a− ε)

πn
[1 + o (1)] , n → ∞. (2.3.9)

According to Ky Fan’s theorem in [40] we deduce from (2.3.8) and (2.3.9) that

sn (B1,ε) =
2(a− ε)

πn
[1 + o (1)] , n → ∞. (2.3.10)

In view of (2.3.10) we have

r1,ε(t) =
∞∑

n=1

exp
[−t
/
sn (B1,ε)

]
=

2(a− ε)

πt
[1 + o (1)] , t → 0. (2.3.11)

The operators B1 and B1,ε are positive definite. Hence

λn(B1) = sn(B1), λn(B1,ε) = sn(B1,ε). (2.3.12)

The inequality
λn(B1,ε) ≤ λn(B1) (2.3.13)

implies that

r1,ε ≤ r1(t) =
∞∑

n=1

exp
[−t
/
sn(B1)

]
. (2.3.14)

If α = 1, β = 0, then formulas (1.1.1) and (1.5.2) imply that

P (x− y, t,∞) = ρ(x− y, t) =
t

π [t2 + (x− y)2]
. (2.3.15)

Relations (2.1.14) and (2.1.15) hold in the case α = 1 as well, that is,

r1(t) ≤ 2a

πt
. (2.3.16)

The assertion of the theorem follows from (2.3.11), (2.3.14), and (2.3.16). �
Thus we have proved that relation (2.2.3) holds in the case α = 1 too (the

weakened principle of imperceptibility of the boundary).

Corollary 2.6. The asymptotic equality (2.3.1) holds.
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2.4 Wiener process, case α = 2

Let us consider separately the important case when α = 2, b = a. The density in
the case α = 2 has the form (see (1.10.2))

P (x, t) =
1

2
√
πt

e−x2/(4t). (2.4.1)

In this case the kernel Φ2(x, y,−a, a) coincides with the Green’s function of the
equation

−d2y

dx2
= f(x), −a < x < a (2.4.2)

with the boundary conditions

y(−a) = y(a) = 0. (2.4.3)

The eigenvalues of the problem (2.4.1), (2.4.2) have the form

μn =
(nπ
2a

)2
. (2.4.4)

Hence we have

λn (B2) =
4a2

(nπ)2
. (2.4.5)

It follows from (2.1.3) and (2.2.5) that

r2(t) =

∞∑
n=1

e−t/λn(B2). (2.4.6)

Formulas (2.4.5) and (2.4.6) imply the equality

r2(t) =
∞∑

n=1

e−n2/λ, λ =
4a2

π2t
. (2.4.7)

Using Poisson’s formula (see [38, Ch. 3, Section 2]) we can write

∞∑
n=1

e−n2/λ = −1

2
+

∫ ∞

0

(
e−x2/λ + 2

∞∑
n=1

e−x2/λ cos 2πnx
)
dx. (2.4.8)

From (2.4.8) and formula∫ ∞

0

e−x2/λ cos 2πnx dx =

√
λπ

2
e−λπ2n2

, n = 0, 1, 2, . . . (2.4.9)

we deduce the relation

∞∑
n=1

e−n2/λ = −1

2
+

1

2

√
λπ +

√
λπ

∞∑
n=1

e−λπ2n2

. (2.4.10)
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Now, use the inequality

e−λπ2x2 ≤ e−λπ2x, x ≥ 1, λ ≥ 0. (2.4.11)

It follows from (2.4.11) that

∞∑
n=1

e−λπ2n2 ≤ e−λπ2

1− e−λπ2 , λ > 0. (2.4.12)

Formulas (2.4.7), (2.4.10), and (2.4.12) immediately imply the asymptotic relation

r2(t) = a

√
1

πt
− 1

2
+ o
(
t−1/2 e−4a2/t

)
, t → 0. (2.4.13)

Remark 2.7. Formula (2.4.13) shows that the weakened principle of the impercep-
tibility (2.2.3) holds in the case α = 2 too.

Remark 2.8. Formula (2.4.13) contains the second term of the asymptotics, which
is equivalent to (−1/2). This term characterizes the influence of the boundary. It
is interesting that the second term of the asymptotics in (2.4.13) does not depend
on the length of the domain [−a, a].

The following problem is an analog of the famous Weyl problem from the
spectral theory of differential equations.

Open problem 2.9. Find the second term (the influence of the boundary) in the
asymptotic formula (2.2.19) when 0 < α < 2.

2.5 General case

For an arbitrary stable process (0 < α ≤ 2, −1 ≤ β ≤ 1) we have

pα(x, y, t, β,∞) = Pα(x− y, t, β,∞). (2.5.1)

We shall use the following statement (see [102, Ch. 5], [194, Ch. 2]).

Theorem 2.10. Let one of the conditions

I. 1 < α ≤ 2, −1 ≤ β ≤ 1,

II. 0 < α < 1, −1 < β < 1,

be fulfilled. Then the equality

Pα(0, t, β,∞) =
1

π
Γ

(
1 +

1

α

)
t−1/α

(
cos

πγ

2

)1/α ∣∣∣sin π

2α
(γ + α)

∣∣∣ (2.5.2)

is valid.
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Here the parameter γ is defined by the relations

μ2 =
(
cos

πα

2

)2
+ β2

(
sin

πα

2

)2
, sign (μ) = sign (1− α), (2.5.3)

cos
(πγ

2

)
= μ−1 cos

(πα
2

)
. (2.5.4)

From the probability point of view we deduce (see [69, 70]) that

pα(x, x, t, β,∞) ≤ P (0, t, β,∞),

that is, ∫ a

−a

pα(x, x, t, β, a)dx ≤ 2aP (0, t, β,∞). (2.5.5)

The weakened principle of the imperceptibility of the boundary takes the form∫ a

−a

pα(x, x, t, β, a)dx = 2aP (0, t, β,∞)[1 + o(1)], t → 0. (2.5.6)

The relation (2.5.6) has been proved in the following two cases:

I. 0 < α ≤ 2, β = 0 (the symmetric case, see Sections 2.2–2.4);

II. 1 < α < 2, β = ±1 (the completely asymmetric case, see paper [146]).

Remark 2.11. While proving case II we essentially used the important result of
M. Dzhrbashyan [36] concerning Mittag–Leffler type functions.



Chapter 3

Approximation of positive
functions by linear positive
polynomial operators

3.1 Introduction

The class of continuous 2π-periodical functions f(x) which satisfy the inequality∣∣f(x+ h) + f(x− h)− 2f(x)
∣∣ ≤ 2

∣∣h∣∣α, 0 < α < 2 (3.1.1)

is denoted by Zα. Let us introduce the operator

Lnf =
1

π

∫ π

−π

Un(t− x)f(t)dt, f(x) ∈ Zα, (3.1.2)

where

Un(t) =
1

2Dn

∣∣∣∣∣
n∑

k=0

ϕ

(
k

n

)
eikt

∣∣∣∣∣
2

, (3.1.3)

Dn =

n∑
k=0

ϕ2

(
k

n

)
, Dn �= 0, ϕ(x) = ϕ(x). (3.1.4)

The method of approximation of functions of the class Zα by linear positive poly-
nomial operators Ln is given by formulas (3.1.2)–(3.1.4) (see [5,76,124,195]). The
measure of this approximation is the value

Cn(ϕ, α) = sup ‖f(x)− Lnf(x)‖ , f ∈ Zα (3.1.5)

where the norm ‖f(x)‖ is defined by the relation

‖f(x)‖ = max
−π≤x≤π

|f(x)|. (3.1.6)
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By C
(1)
0 [a, b] we denote the set of functions ϕ(x) continuous on the segment

[a, b], ϕ(a) = ϕ(b) = 0 and the first derivative ϕ′(x) is continuous on the segment

[a, b]. Further we suppose that ϕ(x) ∈ C
(1)
0 [0, 1]. In this chapter we deduce that

(see [124])

nαCn(ϕ, α) = C(ϕ, α) + o(1), n → ∞, 0 < α < 2. (3.1.7)

The formulas for C(ϕ, α) and

C∗(α) = inf
ϕ∈C

(1)
0 [0,1]

C(ϕ, α), 0 < α < 2 (3.1.8)

are deduced. It is interesting that the operator B, which was investigated in Chap-
ter 1, plays an essential role in the formulated approximation problems.

We note that gn(x) = Lnf(x) ≥ 0 if f(x) ≥ 0. It means that we approximate
the non-negative functions f(x) by non-negative functions gn(x). Such kind of
approximation is important in a number of probabilistic problems (example: f(x)
is a density).

3.2 The asymptotic formula for Cn(ϕ, α)

1. The function Un(t) of the form (3.1.3) can be written down as

Un(t) =
1

2
+

n∑
k=1

σ
(n)
k cos kt, (3.2.1)

where

σ
(n)
k =

Dk,n

Dn
, Dk,n =

n−k∑
s=0

ϕ
( s
n

)
ϕ

(
s+ k

n

)
. (3.2.2)

Theorem 3.1 (See [124]). If ϕ(x) ∈ C
(1)
0 [0, 1], ϕ(x) �≡ 0 and 0 < α < 1, then the

formula
nαCn(ϕ, α) = C(ϕ, α) + o(1) (3.2.3)

is valid. Here

C(ϕ, α) =
Γ(α− 1) sin

(
απ
2

)
π
∫ 1
0
ϕ2(x)dx

∫ 1

0

ϕ′(x)
∫ 1

0

ϕ′(y) |x− y|1−α dy dx. (3.2.4)

Proof. It follows from (3.1.2) and (3.2.1) that

Lnf(x)− f(x) =
1

π

∫ π

−π

f(x+ t) + f(x− t)− 2f(x)

2
Un(t) dt. (3.2.5)

The function |t|α belongs to the class Zα. From (3.1.1), (3.1.5) and (3.2.5) we have

Cn(ϕ, α) =
2

π

∫ π

0

tαUn(t) dt, 0 < α < 2. (3.2.6)
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Applying Abel’s transformation (see [195, Ch. 1]) to the kernel Un(t) and recalling
that (see [195, Ch. 2])

1

2
+

n∑
k=1

cos kt =
sin
(
(2n+ 1)/2

)
2 sin (t/2)

, (3.2.7)

we obtain the equality

Un(t) =

n∑
k=0

Δσ
(n)
k

sin
(
(k + 1/2)t

)
2 sin (t/2)

, (3.2.8)

where

Δσ
(n)
k = σ

(n)
k − σ

(n)
k+1, 0 ≤ k ≤ n− 1; σ

(n)
0 = 1, Δσ(n)

n = σ(n)
n . (3.2.9)

Substituting (3.2.8) in (3.2.6) we get

Cn(ϕ, α) =
π

2

n∑
k=0

Δσ
(n)
k Fk(α), (3.2.10)

where

Fk(α) =

∫ π

0

tα
sin
(
(k + 1/2)t

)
2 sin (t/2)

, 0 < α < 2. (3.2.11)

On the segment |t| ≤ π the function
1

sin (t/2)
can be written in the form [53]

1

sin (t/2)
=

2

t
+

∞∑
v=1

avt
2v−1, av =

2
(
22v−1 − 1

) |B2v|
(2v)! 22v−1

, (3.2.12)

where B2v are Bernoulli numbers. It means that the function Fk(α) can be repre-
sented as

Fk(α) =

∫ π

0

tα−1 sin

[(
k +

1

2

)
t

]
dt + mk(α) (3.2.13)

where

mk(α) =
∞∑
ν=1

aν

∫ π

0

tα−1 sin

[(
k +

1

2

)
t

]
dt, 0 < α < 2. (3.2.14)

If 0 < α < 1, then, using the well-known relation∫ ∞

0

tα−1e−itdt = e−iαπ
2 Γ(α), 0 < α < 1, (3.2.15)

we deduce∫ π

0

tα−1 sin

[(
k +

1

2

)
t

]
dt =

1(
k + 1

2

)2 ∫ (k+ 1
2 )π

0

xα−1 sinx dx
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= Γ(α)
(
sin

απ

2

)(
k +

1

2

)−α

−
(
k +

1

2

)−α ∫ ∞

(k+ 1
2 )π

xα−1 sinx dx. (3.2.16)

In order to estimate mk(α) (see (3.2.14)) we observe that∣∣∣∣∫ π

0

t2v+α−1 sin

[(
k +

1

2

)
t

]
dt

∣∣∣∣ = 2v + α− 1

k + 1
2

∣∣∣∣∫ ∞

0

t2v−2+α cos

[(
k +

1

2

)
t

]
dt

∣∣∣∣ .
Hence we have∣∣∣∣∫ π

0

t2v+α−1 sin

[(
k +

1

2

)
t

]
dt

∣∣∣∣
≤ 2v − 1 + α(

k + 1
2

)2 {π2v−2+α + (2v − 2 + α)

∫ π

0

t2v−3+α

∣∣∣∣sin [(k +
1

2

)
t

]∣∣∣∣ dt}
≤ 2(2v − 1 + α)(

k + 1
2

)2 π2v−2+α, v ≥ 1. (3.2.17)

Leonhard Euler expressed the Bernoulli numbers in terms of the Riemann zeta–
function (see [39]) as

B2n = (−1)n+1 2(2n)!

(2π)2n

(
1 +

1

22n
+

1

32n
+ · · ·

)
. (3.2.18)

It follows from (3.2.18) that

|B2n| = O

(
(2n)!

(2π)2n

)
. (3.2.19)

Using the second relation in (3.2.12) and (3.2.14), (3.2.17), (3.2.19) we get

mk(α) = O

((
k +

1

2

)−2
)
, k ≥ 0. (3.2.20)

For the integral in the right-hand side of (3.2.16) we have∣∣∣∣∣
∫ ∞

(k+ 1
2 )π

xα−1 sinx dx

∣∣∣∣∣ = (1− α)

∫ ∞

(k+ 1
2 )π

xα−2 cosx dx. (3.2.21)

Using the second law of the mean, we have∣∣∣∣∣
∫ N

(k+ 1
2 )π

xα−2 cosx dx

∣∣∣∣∣ ≤ 2

[(
k +

1

2

)
π

]α−2

,

(
k +

1

2

)
π < N < ∞.

(3.2.22)
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It follows from (3.2.21) and (3.2.22) that∣∣∣∣∣
∫ ∞

(k+ 1
2 )π

xα−1 sinx dx

∣∣∣∣∣ = O

((
k +

1

2

)−2
)
. (3.2.23)

By (3.2.13), (3.2.15), (3.2.20) and (3.2.23) we deduce the relation

Fk(α) = Γ(α)

(
k +

1

2

)−α

sin
(απ

2

)
+O

((
k +

1

2

)−2
)
, 0 < α < 1. (3.2.24)

Hence by (3.2.10) we obtain the equality

Cn(ϕ, α) =
2Γ(α)

π
sin
(απ

2

) n−1∑
k=0

Δσ
(n)
k

(
k +

1

2

)−α

+ rn(ϕ, α), 0 < α < 1,

(3.2.25)
where ∣∣rn(ϕ, α)∣∣ ≤ M

n∑
k=0

∣∣∣Δσ
(n)
k

∣∣∣ (k +
1

2

)−2

, 0 < M < ∞. (3.2.26)

In view of (3.2.2) and (3.2.9) we have

Δσ
(n)
k =

ΔDk,n

Dn
; ΔDk,n = Dk,n −Dk+1,n. (3.2.27)

Let us take into account that

ϕ(0) = ϕ(1) = 0, ϕ(x) ∈ C
(1)
0 [0, 1].

Then relations (3.2.2) and (3.2.27) imply

ΔDk,n =

n−k−1∑
s=0

ϕ
( s
n

)[
ϕ

(
s+ k

n

)
− ϕ

(
s+ k + 1

n

)]

= −
n−k−1∑
s=0

[
ϕ
( s
n

)
ϕ′
(
s+ k

n

)
1

n
+ o

(
1

n

)]
= O(1), (3.2.28)

0 ≤ k ≤ n− 1,

ΔDn,n = ϕ(0)ϕ(1) = 0. (3.2.29)

According to (3.2.26)–(3.2.28) we obtain

∣∣rn(ϕ, α)∣∣ ≤ M

Dn

n∑
k=0

1

(k + 1/2)2
= o

(
1

n

)
. (3.2.30)
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Let us consider now the expression

nα
n∑

k=0

Δσ
(n)
k

(
k +

1

2

)−α

=

n−1∑
k=0

(
k + 1/2

n

)−α
ΔDk,n

Dn
. (3.2.31)

In view of (3.2.28) the formula

nα
n∑

k=0

Δσ
(n)
k

(
k +

1

2

)−α

=

n−1∑
k=0

(
k + 1/2

n

)−α ∑n−k−1
s=0

[
ϕ
(
s
n

)
ϕ′ ( s+k

n

)
1
n + o

(
1
n

)]∑n
s=0 ϕ

2
(
s
n

)
1
n

1

n
(3.2.32)

is correct. The right-hand side of (3.2.32) is a double integral sum.

When n → ∞ we get

lim
n→∞nα

n∑
k=0

(
k +

1

2

)−α

Δσ
(n)
k

=

∫ 1

0

y−α

∫ 1−y

0

ϕ(x+ y)ϕ′(x) dx dy
1∫ 1

0
ϕ2(x)dx

. (3.2.33)

Let C(ϕ, α) be defined by

C(ϕ, α) = lim
n→∞Cn(ϕ, α), 0 < α < 1. (3.2.34)

Then relation (3.2.3) follows from (3.2.25), (3.2.30), (3.2.33), and we have

C(ϕ, α) =
2Γ(α) sin απ

2

π
∫ 1
0
ϕ2(x)dx

∫ 1

0

y−α

∫ 1−y

0

ϕ(x+ y)ϕ′(x) dx dy. (3.2.35)

Integrating by parts the right-hand side of (3.2.35) we obtain

C(ϕ, α) =
2Γ(α− 1) sin

(
απ
2

)
π
∫ 1
0
ϕ2(x)dx

∫ 1

0

ϕ′(x)
∫ 1

x

ϕ′(y) (y − x)1−α dy dx. (3.2.36)

The assertion of the theorem follows now from formula (3.2.36) and the equality∫ 1

0

ϕ′(x)
∫ 1

x

ϕ′(y) (y − x)1−α dy dx =

∫ 1

0

ϕ′(y)
∫ y

0

(y − x)1−α ϕ′(x) dx dy.

(3.2.37)
�
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2. Let us consider the case when

1 < α < 2. (3.2.38)

We denote by ω(δ) the modulus of continuity of the derivative of the function
ϕ(x), that is, a monotonically increasing function ω(δ) such that

|ϕ′(x+ δ)− ϕ′(x)| ≤ ω(δ). (3.2.39)

Theorem 3.2 (See [124]). Let ϕ(x) ∈ C
(1)
0 [0, 1], ϕ(x) �≡ 0 and

lim
n→∞ω

(
1

n

)
nα−1 = 0 for some 1 < α < 2. (3.2.40)

Then the relation

nαCn(ϕ, α) = C(ϕ, α) +O

[
nα−1ω

(
1

n

)]
(3.2.41)

is valid. Here

C(ϕ, α) =
Γ(α− 1)

π
∫ 1
0
ϕ2(x)dx

∫ 1

0

ϕ′(x)
∫ 1

0

ϕ′(y) |x− y|1−α dy dx. (3.2.42)

Proof. It follows from (3.2.2), (3.2.27), (3.2.39) and (3.2.40) that

ΔDk,n =

n−k−1∑
s=0

[
ϕ
( s
n

)
ϕ′
(
s+ k

n

)
1

n
+O

(
1

n
ω

(
1

n

))]
. (3.2.43)

Hence by (3.2.10), (3.2.11) and (3.2.29) we obtain the equality

Cn(ϕ, α) = − 2

πDn

n−1∑
k=0

n−k−1∑
s=0

[
ϕ
( s
n

)
ϕ′
(
s+ k

n

)
1

n
+O

(
1

n
ω

(
1

n

))]
Fk(α).

(3.2.44)
Now we estimate the functions Fk(α). By (3.2.13) and (3.2.20) we have

Fk(α) =

∫ π

0

tα−1 sin
(
(k + 1/2) t

)
dt + O

(
(k + 1/2)

−2
)
. (3.2.45)

Integrating by parts the right-hand side of (3.2.45) we get

Fk(α) =

(
k +

1

2

)−α

(α− 1)

∫ π(k+1/2)

0

tα−2 cos t dt + O
[
(k + 1/2)

−2
]
,

that is,
Fk(α) = O

(
(k + 1/2)

−α)
.
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Hence we have
n∑

k=1

∣∣Fk(α)
∣∣ = O(1). (3.2.46)

Substituting in (3.2.44) s+ k = ν and applying (3.2.46) we deduce the relation

Cn(ϕ, α) = − 2

πnDn

n−1∑
k=0

n−1∑
ν=k

ϕ

(
ν − k

n

)
ϕ′
(ν
n

)
Fk(α) +O

[
1

n
ω

(
1

n

)]
. (3.2.47)

Now we rewrite (3.2.47) in the form

Cn(ϕ, α) = − 2

πnDn

n−1∑
ν=0

ϕ′
(ν
n

) ν∑
k=0

ϕ

(
ν − k

n

)
Fk(α) +O

[
1

n
ω

(
1

n

)]
. (3.2.48)

Using Abel’s transformation ( [195, Ch. 1]) and the equality ( [195, Ch. 2])

n∑
k=0

sin
(
(k + 1/2)t

)
=

1− cos
(
(n+ 1)t

)
2 sin (t/2)

, (3.2.49)

we obtain

ν∑
k=0

ϕ

(
ν − k

n

)
Fk(α) =

ν−1∑
k=0

[
ϕ

(
ν − k

n

)
− ϕ

(
ν − k − 1

n

)]
Φk(α), (3.2.50)

where

Φk(α) =
k∑

s=0

Fs(α) =

∫ π

0

tα
1− cos

(
(k + 1)t

)
4 sin2 (t/2)

dt, 1 < α < 2. (3.2.51)

From the inequality ∣∣Φk(α)
∣∣ ≤ ∫ π

0

tαdt

2 sin2 (t/2)

we conclude that

Cn(ϕ, α) = − 2

πDn
· 1

n2

n−1∑
ν=0

ϕ′
(ν
n

) ν−1∑
k=0

ϕ′
(
ν − k

n

)
Φk(α) +O

[
1

n
ω

(
1

n

)]
.

(3.2.52)
The relations

1

n2

n−1∑
ν=0

ϕ′
(ν
n

) ν−1∑
k=0

ϕ′
(
ν − k

n

)
−
∫ 1

0

ϕ′(x)
∫ x

0

ϕ′(x− y) dy dx = O

[
ω

(
1

n

)]
,

(3.2.53)∫ 1

0

ϕ′(x)
∫ x

0

ϕ′(x− y) dy dx = 0 (3.2.54)
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imply that

1

n2

n−1∑
ν=0

ϕ′
(ν
n

) ν−1∑
k=0

ϕ′
(
ν − k

n

)
= O

[
ω

(
1

n

)]
. (3.2.55)

In view of (3.2.51), (3.2.52) and (3.2.55) we have

Cn(ϕ, α) = − 2

πDn
· 1

n2

n−1∑
ν=0

ϕ′
(ν
n

) ν−1∑
k=0

ϕ′
(
ν − k

n

)
Φ̃k(α) +O

[
1

n
ω

(
1

n

)]
,

(3.2.56)
where

Φ̃k(α) = −
∫ π

0

tα
cos
(
(k + 1)t

)
4 sin2 (t/2)

dt. (3.2.57)

Now (3.2.12) and (3.2.15) yield

Φ̃k(α) = −(k + 1)1−α sin
(απ

2

)
Γ(α− 1) +O

[
(k + 1)−1

]
.

Hence

nαCn(ϕ, α) =
2Γ(α− 1) sin απ

2

πDn
1
n

n−1∑
ν=0

ϕ′
(ν
n

) 1

n

ν−1∑
k=0

ϕ′
(
ν − k

n

)(
k + 1

n

)1−α
1

n

+O

[
nα−1 ω

(
1

n

)]
. (3.2.58)

From (3.2.40) and (3.2.58) we get the assertion of the theorem. �

3. Now we consider the case when α = 1.

Theorem 3.3. Let ϕ(x) ∈ C
(1)
0 [0, 1], ϕ(x) �≡ 0, α = 1 and

lim
n→∞ (log n)ω

(
1

n

)
= 0. (3.2.59)

Then we have the equality

nCn(ϕ, 1) = C(ϕ, 1) + o(1), (3.2.60)

where

C(ϕ, 1) = − 1

π
∫ 1
0
ϕ2(x)dx

∫ 1

0

ϕ′(x)
∫ 1

0

ϕ′(y) log |x− y| dy dx. (3.2.61)

Proof. It follows from (3.2.44) and (3.2.45) that

Cn(ϕ, 1) = − 2

πDn

n−1∑
k=0

n−k−1∑
s=0

(
ϕ
( s
n

)
ϕ′
(
s+ k

n

)
1

n
+O

[
1

n
ω

(
1

n

)])
Fk(1),

(3.2.62)
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Fk(1) =
1

k + (1/2)
+O

[(
k +

1

2

)−2
]
. (3.2.63)

We deduce from (3.2.63) that

n−1∑
k=0

Fk(1) = log n+M0 + o(1). (3.2.64)

In view of (3.2.62) and (3.2.64) we have

Cn(ϕ, 1) = − 2

πDn
· 1
n

n−1∑
k=0

n−k−1∑
s=0

ϕ
( s
n

)
ϕ′
(
s+ k

n

)
Fk(1) +O

[
log n

n
ω

(
1

n

)]
.

(3.2.65)
Substituting s+ k = ν in (3.2.65) we conclude that

Cn(ϕ, 1) = − 2

πDnn
· 1
n

n−1∑
ν=0

ϕ′
(ν
n

) ν∑
k=0

ϕ

(
ν − k

n

)
Fk(1) +O

[
log n

n
ω

(
1

n

)]
.

(3.2.66)
Applying Abel’s transformation to sum

ν∑
k=0

ϕ

(
ν − k

n

)
Fk(1)

and using (3.2.64) we obtain

Cn(ϕ, 1) = − 2

πDn
· 1

n2

n−1∑
ν=0

ϕ′
(ν
n

) ν∑
k=0

ϕ′
(
ν − k

n

) [
log (k + 1) +M0 + o(1)

]
.

(3.2.67)
Relations (3.2.55) and (3.2.67) imply that

Cn(ϕ, 1) = − 2

πDn
· 1

n2

n−1∑
ν=0

ϕ′
(ν
n

) ν∑
k=0

ϕ′
(
ν − k

n

)
log

k + 1

n
+ o

(
1

n

)
. (3.2.68)

Theorem 3.3 follows now from (3.2.60), (3.2.68) and the equality∫ 1

0

ϕ′(y)
∫ 1

y

log (x− y)ϕ′(x) dx dy =

∫ 1

0

ϕ′(y)
∫ y

0

log (y − x)ϕ′(x) dx dy. �

Remark 3.4. L.I. Bausov [5] investigated the case when 0 < α < 1 and ϕ(x) has
the second continuous derivative from which he obtained the following important
result:

C(ϕ, α) =
2Γ(α) sin

(
απ
2

)
π

∫ 1

0

ϕ2(x)dx

∫ 1−y

0

(
ϕ(x+ y)ϕ′(x)dx+ ϕ(0)ϕ(y)

)
dy.

(3.2.69)
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Our formula (3.2.35) follows from (3.2.69) when

ϕ(0) = ϕ(1) = 0. (3.2.70)

Condition (3.2.70) allows us to transform formula (3.2.35) to self-adjoint form
(3.2.4). This fact we shall use in the next section.

3.3 Precise value of C∗(α)

Let us consider the operator

Aαf = − d

dx
Sα

d

dx
f, (3.3.1)

where the operators Sα act in L2(−1, 1) and are given by the formulas

Sα(f) =
Γ(α− 1) sin

(
απ
2

)
π

∫ 1

−1

f(y)|x− y|1−αdy, 0 < α ≤ 2, α �= 1, (3.3.2)

S1 =
1

π

∫ 1

−1

f(y) log |x− y|dy. (3.3.3)

The domain Dα of the operator Aα is described by the relations

f ′(x) ∈ L(−1, 1),
d

dx
Sαf

′ ∈ L2(−1, 1), f(−1) = f(1) = 0.

Remark 3.5. If Xt is a symmetric stable process and Δ = [−1, 1], then the corre-
sponding operator LΔ (see (1.4.2)) and the introduced operator Aα (see (3.3.1)–
(3.3.3)) are connected by the equality

−LΔ = Aα. (3.3.4)

The operator Aα is a positive operator with a discrete spectrum ( see Chapter
1, Section 1.11). Let us denote by μ1(α) the minimal eigenvalue of the operator
Aα. The following assertion holds.

Theorem 3.6. Let ϕ(x) ∈ C
(1)
0 [0, 1], ϕ(x) �≡ 0 and let C(ϕ, α) be defined by formula

(3.2.42) when α �= 1 and by formula (3.2.61) when α = 1. Then the equality

C∗(α) = inf
ϕ∈C

(1)
0 [0,1]

C(ϕ, α) = 2αμ1(α), 0 < α < 2 (3.3.5)

is valid.

Proof. It follows from (3.2.42), (3.2.61) and (3.3.1)–(3.3.3) that

C(ϕ, α) = 2α(Aαψ, ψ)
/‖ψ(y)‖2, (3.3.6)
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where

ψ(y) = ϕ

(
y + 1

2

)
, ‖ψ(y)‖2 =

∫ 1

−1

|ψ(y)|2dy. (3.3.7)

The assertion of the theorem follows from (3.3.6) and the relation

inf (Aαψ,ψ)
/‖ψ‖2 = μ1(α), ψ ∈ Dα. (3.3.8)

�

From the two-sided estimation of μ1(α) (see (1.15.2)) we have a two-sided
estimation of C∗(α):

2αΓ(α+ 1) < C∗(α) < 2α
Γ(α/2 + 1) Γ(α+ 3/2)

Γ
(
(α+ 3)/2

) , 0 < α < 2. (3.3.9)

3.4 Korovkin’s and Fejer’s operators

1. Korovkin’s operators are defined by formula (3.1.2), when

ϕ(x) = sin (πx), 0 ≤ x ≤ 1. (3.4.1)

In this case we have

A2ψ =
(π
2

)2
ψ, −1 ≤ y ≤ 1, (3.4.2)

where

ψ(y) = ϕ

(
y + 1

2

)
= cos

(π
2

)
y. (3.4.3)

Thus ψ(y) is the non-negative eigenfunction of the operator A2.
It follows from (3.3.8) that ψ(y) of the form (3.4.3) gives the best approxi-

mation in the class Z2. This result was obtained by Korovkin [76]. The last result
explained why Korovkin’s operators give a good approximation when α ≈ 2.

2. Let us consider the case when

ϕ(x) = 1, 0 ≤ x ≤ 1. (3.4.4)

In view of (3.1.3) and (3.1.4) we have

Dn = n+ 1, Un(t) =
1

2(n+ 1)

∣∣∣∣∣
n∑

k=0

eikt

∣∣∣∣∣
2

,

that is,

Un(t) =
2

n+ 1

(
sin
(
1
2 (n+ 1)t

)
2 sin

(
1
2 t
) )2

. (3.4.5)
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Formula (3.4.5) shows that in case (3.4.4) the function Un(t) coincides with the
Fejer kernel (see [195, Ch. 3]).

We note that the function ϕ(x) = 1 does not satisfy the condition

ϕ(0) = ϕ(1) = 0, (3.4.6)

that is, ϕ(x) = 1 �∈ C
(1)
0 [0, 1].

Let us use formula (3.2.69) when ϕ(x) = 1. In this case we obtain the well-
known estimation for Fejer’s operators (see [5, 111]):

C(F, α) =
2Γ(α)

π(1− α)
sin
(απ

2

)
. (3.4.7)

Conjecture 3.7. Formula (3.3.5) remains valid even without condition (3.4.6).



Chapter 4

Optimal prediction and matched
filtering for generalized
stationary processes

4.1 Introduction

1. Optimal prediction of classical stationary processes. A complex-valued stochas-
tic process X(t) is called stationary in the wide sense (see, e.g., [32]), if its expec-
tation is a constant,

E
[
X(t)

]
= const, −∞ < t < ∞

and the correlation function depends only on the difference (t− s), that is,

KX(t, s) = E
[
X(t)X(s)

]
= KX(t− s).

We assume that E
[|X(t)|2] < ∞. Let us consider a system with the memory depth

ω that maps the input stochastic process X(t) into the output stochastic process
Y (t) in accordance with the following rule:

Y (t) =

∫ t

t−ω

X(s)g(t− s)ds, g(x) ∈ L(0, w). (4.1.1)

In the optimal prediction problem one needs to find a filter g(t) such that the
output process Y (t) is as close as possible to the true process X(t + τ), where
τ > 0 is a given constant. The measure of closeness is understood in the sense of
minimizing the quantity

E
[
|X(t+ τ)− Y (t)|2

]
.

Wiener’s seminal monograph [192] solves the above problem for the case ω = ∞
in (4.1.1). His results were extended to the case ω < ∞ in [193].
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2. Matched filters. Let the system receive a signal a(t) corrupted by noise X(t)
which we assume to be a zero-mean stochastic stationary process in the wide sense
(the more natural generalized stationary process is discussed below). In accordance
with (4.1.1) the system output is

a0(t) + Y (t) =

∫ ω

0

g(τ)
[
a (t− τ) +X (t− τ)

]
dτ. (4.1.2)

We consider the case when the signal a(t) is deterministic. In this case the standard
criterion is to maximize at the moment t0 the signal-to-noise ratio

S
/
N =

a20(t0)

σ2
, where σ2 = E

(
|Y (t)|2

)
. (4.1.3)

Such filters are named matched filters and the formulas for them were derived
in works [112, 185]. Matched filters are used in radar systems [91] and communi-
cations [60].

3. Generalized stationary processes. Gelfand and Vilenkin introduced in [45] the
concept of generalized stochastic processes. An (ordinary) stochastic process is a
function X(t) of t such that for each t, X(t) is a random variable. A generalized
stochastic process is a functional X which assigns random variables X(ϕ) to the
test functions ϕ.

One of the advantages of this approach is that the derivatives of classical
stochastic processes (while generally may not exist in the usual sense) can be
thought as generalized functions. For example, white noise X(t) (having equal
intensity at all frequencies within a broad band) is not a stochastic process in
the classical sense. In fact, white noise can be thought of as the derivative of a
Brownian motion, which is a continuous stationary stochastic process W (t).

It is well known that W (t) is nowhere differentiable. This means that white

noise dW (t)
dt does not exist in the ordinary sense. In fact, white noise is a generalized

stochastic process. Generally, any receiving device has a certain “inertia” and
hence instead of actually measuring the classical stochastic process ζ(t) it measures
its average value

Φ(ϕ) =

∫
ϕ(t)ζ(t)dt, (4.1.4)

where ϕ(t) is a certain function characterizing the device.

4. SJ -processes, white noise type processes. In this chapter we use an important
class of generalized processes: SJ -generalized processes (see [148, Ch. 6]). The
process Φ is called an SJ -generalized process, if for ϕ(t) and ψ(t) vanishing outside
of J = [a, b] we have

E
[
Φ(ϕ)Φ(ψ)

]
= (SJϕ, ψ)L2 , (4.1.5)
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where SJ is a bounded operator of the form

SJϕ =
d

dt

∫ b

a

ϕ(u) s(t− u)du ∈ L2(a, b). (4.1.6)

For SJ -generalized processes we solve the optimal filtering and prediction
problems (see [115,116]).

We introduce and investigate interesting subclasses of the SJ -generalized
processes: white noise type processes, power–low noises.

4.2 Generalized stationary processes

Let K be the set of all infinitely differentiable finite functions. A stochastic func-
tional Φ assigns to any ϕ(t) ∈ K a stochastic value Φ(ϕ). A stochastic functional
Φ is called linear if Φ

(
αϕ+βψ

)
= αΦ(ϕ)+βΦ(ψ). Let us now assume that all the

stochastic values Φ(ϕ) have expectations m(ϕ) that depend continuously on ϕ as

m(ϕ) = E
[
Φ (ϕ)

]
=

∫ ∞

−∞
x dF (x), where F (x) = P

[
Φ(ϕ) ≤ x

]
.

The function m(ϕ) is linear in the space K. The bilinear functional

B(ϕ, ψ) = E
[
Φ (ϕ) Φ (ψ)

]
(4.2.1)

is a correlation functional of a stochastic process. It is supposed that B(ϕ, ψ) is
continuously dependent on each of the arguments.

The stochastic process Φ is called generalized stationary in the wide sense
[45, 148] if for any functions ϕ(t) and ψ(t) from K and for any number h the
equalities

m
[
ϕ(t)
]
= m
[
ϕ(t+ h)

]
, B

[
ϕ(t), ψ(t)

]
= B
[
ϕ(t+ h), ψ(t+ h)

]
(4.2.2)

hold.
Let us denote by KJ the set of the functions from K such that ϕ(t) = 0

when t /∈ J = [a, b]. The correlation functional BJ(ϕ, ψ) is called a segment of the
correlation functional B(ϕ, ψ) if

BJ(ϕ, ψ) = B(ϕ, ψ), ϕ, ψ ∈ KJ . (4.2.3)

In what follows we consider the generalized stationary processes of the form

BJ(ϕ, ψ) = (SJϕ, ψ)L2 , (4.2.4)

where (·, ·)L2 is the inner product in the space L2(a, b), and SJ is a bounded
non-negative operator acting in L2(a, b) and having the form

SJϕ =
d

dt

∫ b

a

s(t− u)ϕ(u) du. (4.2.5)
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Definition 4.1. Generalized stationary processes satisfying (4.2.4) and (4.2.5) are
called SJ -generalized processes.

Example 4.2 (White noise). It is well-known that white noiseW is not a continuous
stochastic process. In fact, it is a generalized stationary process with correlation
functional [92]

BW (ϕ, ψ) =

∫ ∞

0

∫ ∞

0

δ(t− s)ϕ(t)ψ(s) ds dt.

Thus, in this case we have

BW (ϕ, ψ) = (ϕ, ψ)L2
(4.2.6)

and hence (4.2.6) implies that white noise W is a very special SJ -generalized
stationary process with

SJ = I. (4.2.7)

It means that the corresponding kernel function s(t) has the form

s(t) =

{
1
2 , t > 0,

− 1
2 , t < 0.

4.3 Generalized processes, examples

1. Let us consider an SJ -generalized process. By f(z) we denote the Fourier
transformation of the kernel of the operator SJ . The kernel of SJ = I (white
noise) is a δ(t− s) function. The Fourier transformation of δ(t) is fW (z) = 1 (i.e.,
equal intensity at all frequencies).

Now we introduce a new notion of the white noise type processes.

Definition 4.3. The SJ -generalized process is called a white noise type process if
the corresponding function f(z) is a piecewise constant function.

Example 4.4. We introduce the operator ω,

SJ,1 = Df +
i

π
−
∫ ω

0

f(t)

x− t
dt, f(t) ∈ L2(0, ω), (4.3.1)

where −
∫ ω
0

is the Cauchy principal value integral and D ≥ 1.
The kernel of SJ,1 has the form

k1(x) = Dδ(x) +
i

πx
. (4.3.2)

Hence the corresponding function f(z) is defined by the relation [18]

f(z) =

{
D + 1, z > 0,
D − 1, z < 0.

(4.3.3)
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Thus, in case (4.3.2) we have a white noise type process.
Further we need the following result (see [147, Ch. 3, Section 4]).

Proposition 4.5. If D > 1, then the operator SJ,1 is positive definite, invertible
and

S−1
J,1f = D1f − iβ

π
−
∫ ω

0

(
t

ω − y

)iα(
x

ω − x

)−iα
f(t)

x− t
dt (4.3.4)

where

D1 =
D

D2 − 1
, β =

1

D2 − 1
, (4.3.5)

and the number α is given by the equality

cosh (απ) = D sinh (απ). (4.3.6)

Example 4.6. We introduce the operator

SJ,2f = f(x)− μ

∫ ω

0

f(t)
sin (π(x− t))

π(x− t)
dt (4.3.7)

where −1 ≤ μ ≤ 1. The kernel of SJ,2 has the form

K2(x) = δ(x)− μ
sin(πx)

πx
. (4.3.8)

The corresponding function f2(z) is given by the relation [18]

f2(z) =

{
1− μ, −π < z < π,

1, z /∈ [−π, π].
(4.3.9)

Hence in case (4.3.8) we have a white noise type process.
The following statement is valid (see [30]).

Proposition 4.7. If −1 ≤ μ ≤ 1, then the operator SJ,2 is positive definite and
invertible.

Remark 4.8. When μ = 1, the operator SJ,2 plays an essential role in random
matrix theory (see [106]).

2. Now we consider the following example.

Example 4.9 (Power–low noise). The important special case of generalized sta-
tionary processes is obtained when

SJ,3f =

∫ T

0

f(t)|x− t|−αdt, 0 < α < 1. (4.3.10)

The kernel of SJ,3 has the form

k3(x) = |x|−α. (4.3.11)
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The corresponding function f3(z) is defined by the relation [18]

f3(z) =
1

π
sin
(απ

2

)
Γ(1− α)|z|α−1. (4.3.12)

The following assertion is well-known (see [147, Ch. 3, Section 1]).

Proposition 4.10. If 0 < α < 1, then the operator SJ,3 is bounded and positive
definite.

4.4 Problem of optimal prediction

The problem of optimal prediction for a time interval τ > 0 forward can be stated
as follows:

We are required to select g(x) of the device (4.1.1) so that the output process
Y (t) is as close as possible to the process X(t+ τ).

As a measure of closeness Y (t) to X(t+ τ) we take the quatity ε defined by

ε2 = E
(∣∣X (t+ τ)− Y (t)

∣∣2) . (4.4.1)

It is well-known [92, 107, 147], that in the classical case the solution g(t) can be
found by solving the equation∫ ω

0

g(v)kx(u− v)dv = kx(u+ τ), (4.4.2)

where kx(t− s) is the correlation function of the stationary process X(t).
In the generalized case the solution g(u) of the optimal prediction problem

satisfies the equation

SJg = kx(u+ τ), 0 ≤ u ≤ ω, τ > 0, (4.4.3)

which is a general form of (4.4.2).
We suppose that the corresponding function k(x) is continuous when x �= 0.

We note that examples SJ,n, (n = 1, 2, 3) satisfy this condition (see (4.3.2), (4.3.8),
(4.3.11)). If SJ is invertible, then

g = S−1
J

[
k(u+ τ)

]
. (4.4.4)

Remark 4.11. The operator SJ,1 is invertible and the operator S−1
J,1 has form

(4.3.4). The operator SJ,2 is invertible too. The operator SJ,3 is not invertible.
The corresponding equation

SJ,3 g = k3(u+ τ), τ > 0

is studied in our book [147, Ch. 3].
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4.5 Generalized matched filters

The problem is to choose the function g(t) (see (4.1.2)) so that it characterizes the
detected signal in an optimal way. If we consider the classical stationary processes
X(t), then the criterium of the system quality at the moment t0 is signal-to-noise
ratio

S/N =
a20(t0)

σ2
, a0(t) =

∫ ω

0

g(τ) a(t− τ) dτ (4.5.1)

where

σ2 = E
(∣∣y (t)∣∣2) =

∫ ω

0

∫ ω

0

g(u)B(u− v) g(v) dv du. (4.5.2)

Here B(u) is the correlation function of the process x(t).
Let us now replace formula (4.5.2) by

σ2 = B(g, g), g ∈ L2(0, ω), (4.5.3)

using correlation functional B(ϕ, ψ) defined by (4.2.1). Then formula (4.5.1) makes
sense in the case of the generalized stationary process as well.

We investigate the following problem.

Problem 4.12. Find g(t) ∈ L2(0, ω) such that the signal-to-noise ratio S/N at the
moment t0 has the greatest value.

We solve the formulated problem for the case of SJ -generalized processes,
where J = [0, ω]. In this case relation (4.5.3) takes the form

σ2 = (SJ , g, g). (4.5.4)

If g(t) is a solution to the problem (4.5.1) then cg(t) is a solution as well. Hence,
without any loss of generality we may assume that

a0(t0) =

∫ ω

0

g(t) a(t0 − t) dt = 1. (4.5.5)

Thus, Problem 4.12 is equivalent to the following problem.

Problem 4.13. Find the minimum of the form (SJg, g) under constraint (4.5.5).

Proposition 4.14. We assume that the function h0(t) = a(t0 − t) ∈ L2(0, ω) and
there exists a function f0(t) ∈ L2(0, ω) which satisfies the relation

SJf0 = h0(t). (4.5.6)

Then the solution νmin to the Problem 4.13 is given by formula

νmin =
1

(h0, f0)
, (4.5.7)

when
g = βf0, β �= 0. (4.5.8)
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Proof. Taking into account equality (4.5.6) we rewrite condition (4.5.5) in the
form

(g, SJf0) =
(√

SJg,
√
SJf0

)
= 1. (4.5.9)

The Schwarz inequality implies 1 ≤ (SJg, g)(SJf0, F0), that is,

(SJg, g) ≥ 1

(SJf0, f0)
=

1

(h0, f0)
. (4.5.10)

Equality in (4.5.10) holds if and only if√
SJg = β

√
SJf0. (4.5.11)

Hence, we obtain relations (4.5.7) and (4.5.8). The proposition is proved. �
In view of (4.5.5) and (4.5.11) we have

β =
1

(h0, f0)
. (4.5.12)

Let us denote by gopt and μmax the solutions to Problem 4.12. It follows from
Proposition 4.14 that

gopt =
f0

(h0, f0)
, μmax = (h0, f0). (4.5.13)

Theorem 4.15. If the operator SJ is invertible, then there always exists a unique
solution f0 = S−1

J h0 and

gopt =
(
S−1
J h0

) / (
h0, S

−1
J h0

)
, (4.5.14)

μmax =
(
h0, S

−1
J h0

)
. (4.5.15)

Example 4.16 (White noise). Recall that in the white noise case SJ = I. Hence,
the solution is unique and has the form

gopt =
a(t0 − t)∫ ω

0
|a(t0 − t)|2 dt , μmax =

∫ ω

0

|a(t0 − t)|2 dt. (4.5.16)



Chapter 5

Effective construction of a class
of positive operators in Hilbert
space, which do not admit
triangular factorization

5.1 Introduction

To introduce the main notions of triangular factorization (see [27, 71, 87, 140, 142,
156]) consider a Hilbert space L2(a, b) (−∞ ≤ a < b ≤ ∞). The orthogonal
projectors Pξ in L2(a, b) are defined by the relations(

Pξf
)
(x) = f(x) for a < x < ξ,

(
Pξf
)
(x) = 0 for ξ < x < b

(
f ∈ L2(a, b)

)
.

Denote the identity operator by I.

Definition 5.1. A bounded operator S− on L2(a, b) is called lower triangular if for
every ξ the relations

S−Qξ = QξS−Qξ, (5.1.1)

where Qξ = I − Pξ, hold. The operator S∗
− is called upper triangular.

Definition 5.2. A bounded, positive definite and invertible operator S on L2(a, b)
is said to admit a left (right) triangular factorization if it can be represented in
the form

S = S−S∗
− (S = S∗

−S−), (5.1.2)

where S− and S−1
− are bounded and lower triangular operators.

. , 
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Further, we often write factorization meaning a left triangular factorization.
In paper [156, p. 291] we formulated necessary and sufficient conditions un-

der which the positive definite operator S admits a triangular factorization. The
factorizing operator S−1

− was constructed in an explicit form. We proved that a
wide class of operators admits a triangular factorization [156].

D. Larson proved [87] the existence of positive definite and invertible but
non-factorable operators. In the present article we construct concrete examples of
such operators. In particular, the operator

Sf = f(x)− μ

∫ ∞

0

sinπ(x− t)

π(x− t)
f(t)dt, f(x) ∈ L2(0,∞), 0 < μ < 1 (5.1.3)

is positive definite and invertible but non-factorable. Using positive definite and
invertible but non-factorable operators we have managed to substitute pure exis-
tence theorems [87] by concrete examples in the well-known problems posed by
J.R. Ringrose [126], R.V. Kadison and I.M. Singer [71]. We note that the Kadison–
Singer problem was posed independently by I. Gohberg and M.G. Krein [52].

The non-factorable operator S, which is defined by formula (5.1.3), is used
in a number of theoretical and applied problems (in optics [170], random matrices
[178], generalized stationary processes [115, 116], and Bose gas theory [105]). The
results obtained in the paper are interesting from this point of view too.

5.2 A special class of operators and corresponding
differential systems

In this section we consider operators S of the form

Sf = f(x)− μ

∫ ∞

0

h(x− t)f(t)dt, f(x) ∈ L2(0,∞), (5.2.1)

where μ = μ and h(x) admits representation

h(x) =
1

2π

∫ ∞

−∞
eixλρ(λ)dλ. (5.2.2)

We suppose that the function ρ(λ) satisfies the following conditions:

1. The function ρ(λ) is real and bounded,

|ρ(λ)| ≤ U, U > 0 (−∞ < λ < ∞). (5.2.3)

2. ρ(λ) = ρ(−λ) ∈ L(−∞,∞).

Hence, the function h(x) (−∞ < x < ∞) is continuous and real. The corresponding
operator

Hf =

∫ ∞

0

h(x− t)f(t)dt (5.2.4)
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is self-adjoint and bounded, where ‖H‖ ≤ U . We introduce the operators

Sξf = f(x)− μ

∫ ξ

0

h(x− t)f(t)dt, f(x) ∈ L2(0, ξ), 0 < ξ < ∞. (5.2.5)

The following statement is valid.

Proposition 5.3. If −1/U < μ < 1/U , then the operator Sξ, which is defined by
formula (5.2.5), is positive definite, bounded and invertible.

Hence, we have

S−1
ξ f = f(x) +

∫ ξ

0

Rξ(x, t, μ)f(t)dt. (5.2.6)

The function Rξ(x, t, μ) is jointly continuous in x, t, ξ, μ. M.G. Krein (see [52,
Ch. IV, Section 7]) proved that

S−1
b = (I + V+)(I + V−), 0 < b < ∞, (5.2.7)

where the operators V+ and V− are defined in L2(0, b) by the relations

(
V ∗
+f
)
(x) =

(
V−f
)
(x) =

∫ x

0

Rx(x, t, μ)f(t)dt. (5.2.8)

Krein’s formula (5.2.7) holds for the Fredholm class of operators. The operator Sb

belongs to this class. The kernel of the operator V− does not depend on b. Hence, if
the operator S admits factorization, then formula (5.2.7) holds for the case b = ∞
too, that is,

S−1 = (I + V+)(I + V−). (5.2.9)

Remark 5.4. Relation (5.2.9) also follows from Theorem 2.1 in the paper [156].

Let us introduce the function

q1(x) = 1 +

∫ x

0

Rx(x, t, μ)dt. (5.2.10)

Using the relation Rx(x, t, μ) = Rx(x− t, 0, μ) (see [52, formula (8.12)]), we obtain

q1(x) = 1 +

∫ x

0

Rx(u, 0, μ)du. (5.2.11)

According to a well-known Krein’s formula (see [52, Ch. IV, formulas (8.3) and
(8.14)]) we have

q1(x) = exp

{∫ x

0

Rt(t, 0, μ)dt

}
. (5.2.12)
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Together with q1(x) we shall consider the function

q2(x) = M(x) +

∫ x

0

M(t)Rx(x, t, μ)dt, (5.2.13)

where

M(x) =
1

2
− μ

∫ x

0

h(s)ds. (5.2.14)

The functions q1(x) and q2(x) generate the 2×2 differential system

dW

dx
= izJH(x)W, W (0, z) = I2. (5.2.15)

Here W (x, z) and H(x) are 2×2 matrix functions and J is a 2×2 matrix:

H(x) =

[
q22(x) 1/2
1/2 q21(x)

]
, J =

[
0 1
1 0

]
. (5.2.16)

Note that according to [152, formulas (53) and (56)] we have

q1(x)q2(x) = 1/2. (5.2.17)

It is easy to see that
JH(x) = T (x)PT−1(x), (5.2.18)

where

T (x) =

[
q1(x) −q1(x)
q2(x) q2(x)

]
, P =

[
1 0
0 0

]
. (5.2.19)

Consider the matrix function

V (x, z) = e−ixz/2T−1(x)W (x, z)T (0). (5.2.20)

Due to (5.2.15)–(5.2.20) we get

dV

dx
= (iz/2)jV + Γ(x)V, V (0) = I2, (5.2.21)

where

Γ(x) =

[
0 B(x)

B(x) 0

]
, j =

[
1 0
0 −1

]
, (5.2.22)

B(x) =
q′1(x)
q1(x)

= Rx(x, 0, μ). (5.2.23)

Let us introduce the functions

Φn(x, z) = v1n(x, z) + v2n(x, z) (n = 1, 2), (5.2.24)

Ψn(x, z) = i[v1n(x, z)− v2n(x, z)] (n = 1, 2), (5.2.25)
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where vin(x, z) are elements of the matrix function V (x, z). It follows from (5.2.21)
that

dΦn

dx
= (z/2)Ψn +B(x)Φn, Φ1(0, z) = Φ2, (0, z) = 1, (5.2.26)

dΨn

dx
= −(z/2)Φn −B(x)Ψn, Ψ1(0, z) = −Ψ2(0, z) = i. (5.2.27)

Consider again the differential system (5.2.15) and the solution W (x, z) of this
system. The element w1,2(ξ, z) of the matrix function W (x, z) can be represented
in the form (see [149, p. 54, formula 5.2.5])

w1,2(ξ, z) = iz
(
(I − zA)

−1
1, S−1

ξ 1
)
ξ
, (5.2.28)

where the operator A has the form

Af = i

∫ x

0

f(t)dt. (5.2.29)

It is well-known that
(I − zA)−11 = eizx. (5.2.30)

We can obtain a representation of W (ξ, z) without using the operator S−1
ξ . Indeed,

it follows from (5.2.20), (5.2.24), and (5.2.25) that

W (x, z) = (1/2)eixz/2T (x)

[
Φ1 − iΨ1 Φ2 − iΨ2

Φ1 + iΨ1 Φ2 + iΨ2

]
T−1(0). (5.2.31)

According to equality (5.2.11) we have q1(0) = 1. Due to (5.2.19) we infer

T (0) =

[
1 −1

1/2 1/2

]
, T−1(0) =

[
1/2 1
−1/2 1

]
. (5.2.32)

Further we plan to use Krein’s result from [80]. For that purpose we introduce the
functions

P (x, z) = eixz/2[Φ(x, z)− iΨ(x, z)]/2, (5.2.33)

P∗(x, z) = eixz/2[Φ(x, z) + iΨ(x, z)]/2, (5.2.34)

where

Φ(x, z) = Φ1(x, z) + Φ2(x, z), Ψ(x, z) = Ψ1(x, z) + Ψ2(x, z). (5.2.35)

Using (5.2.26), (5.2.27) and (5.2.33), (5.2.34) we see that the pair P (x, z) and
P∗(x, z) is a solution of the Krein system

dP

dx
= izP +B(x)P∗,

dP∗
dx

= B(x)P, (5.2.36)

where
P (0, z) = P∗(0, z) = 1. (5.2.37)

It follows from (5.2.33) and (5.2.34) that

P (x, z)− P∗(x, z) = −ieixz/2Ψ(x, z). (5.2.38)
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5.3 Non-factorable positive definite operators,
a sufficient condition

The linear bounded operator S on a Hilbert space H is the positive definite oper-
ator if (Sf, f) > 0 for all f ∈ H, f �= 0.

We assume that the following relation holds:

M(x) = (1− μ)/2 + q(x), q(x) ∈ L2(0,∞), (5.3.1)

where the function M(x) is defined by (5.2.14). Condition (5.3.1) can be rewritten
in an equivalent form:∫ ∞

0

h(x)dx = 1/2,

∫ ∞

x

h(u)du ∈ L2(0,∞). (5.3.2)

Now, we need the relations (see [147, Ch. 1, formulas (1.37) and (1.44)])

Sξ1 = M(x) +M(ξ − x), Sξ = UξSξUξ, (5.3.3)

where Uξf(x) = f(ξ − x), 0 ≤ x ≤ ξ. It follows from (5.3.1) and (5.3.3) that

Sξ1 = 1− μ+ q(x) + Uξq(x). (5.3.4)

Hence the relation

S−1
ξ 1 =

1

(1− μ)

(
1− rξ(x)− Uξrξ(x)

)
(5.3.5)

is valid. Here rξ(x) = S−1
ξ q(x). Using formulas (5.2.28), (5.3.1), and (5.3.5), we

obtain the following representation of w1,2(ξ, z).

Lemma 5.5. The function w1,2(ξ, z) has the form

w1,2(ξ, z) = eizξG(ξ, z)−G(ξ, z), (5.3.6)

where

G(ξ, z) =
1

1− μ

[
1− iz

∫ ξ

0

e−izxrξ(x)dx

]
. (5.3.7)

Note that the operator S defined by formula (5.2.1) is positive definite,
bounded and invertible. According to (5.2.7) we have

Q(x) = (I + V−)q(x) ∈ L2(0,∞). (5.3.8)

Hence, there exists a sequence xn such that

Q(xn) → 0, xn → ∞. (5.3.9)

Now, we prove the following statement.



5.3. Non-factorable positive definite operators, a sufficient condition 91

Lemma 5.6. Let relation (5.3.9) be valid. Then we have

lim
xn→∞ q1(xn) =

1√
1− μ

. (5.3.10)

Proof. In view of (5.2.10), (5.2.13), and (5.3.1) we get

q2(x) = q1(x)(1− μ)/2 +Q(x). (5.3.11)

Taking into account the relation q1(x)q2(x) = 1/2 (see [152, formulas (53) and
(56)]), we obtain the equality

1/2 = q21(x)(1− μ)/2 + q1(x)Q(x). (5.3.12)

Formula (5.3.10) follows directly from relations (5.3.9), (5.3.12), and inequality
q1(x) > 0. �

It follows from (5.2.19) and (5.3.10) that

T (xn) →
[

C −C
1/2C 1/2C

]
, xn → ∞, C = 1

/√
(1− μ) . (5.3.13)

Hence, in view of (5.2.32), (5.2.33), (5.2.35), and (5.3.13) the following assertion
holds.

Lemma 5.7. Let xn tend to ∞. Then, w1,2(ξ, z) has the asymptotics

w1,2(xn, z) = −iCeixnz/2Ψ(xn, z)
(
1 + o(1)

)
. (5.3.14)

Lemma 5.8. Suppose that the operator S of the form (5.2.1) admits a factorization.
Then we have

lim
ξ→∞

e−izξw1,2(ξ, z) = G(z), Im z < 0, (5.3.15)

lim
ξ→∞

w1,2(ξ, z) = −G(z), Im z > 0, (5.3.16)

where

G(z) =
1

1− μ
[1− iz

∫ ∞

0

e−izxr(x)dx], r(x) = S−1q(x). (5.3.17)

Proof. According to (5.2.9) we have S−1
− = I+V−, where V− is defined by (5.2.8).

Hence, the operator function S−1
ξ strongly converges to the operator S−1 when

ξ → ∞. Then the function rξ(x) = S−1
ξ q(x) strongly converges to r(x) = S−1q(x),

when ξ → ∞, and r(x) ∈ L2(0,∞). Using (5.3.6) and (5.3.7) we obtain relations
(5.3.15) and (5.3.16). The lemma is proved. �

From Lemma 5.8 we derive the following important assertion.
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Proposition 5.9. If at least one of the equalities (5.3.15) and (5.3.16) is not valid,
then the corresponding operator S does not admit factorization.

Note that a new approach to the notion of the limit of a function was used
in Lemma 5.6. Namely, we introduce a continuous function F (x), which belongs
to L(0,∞), and consider sequences xn → ∞, such that

F (xn) → 0. (5.3.18)

Definition 5.10. We say that the function f(x) tends to A almost surely (a.s.) if
relation (5.3.18) implies

f(xn) → A, xn → ∞. (5.3.19)

Equality (3.10) can be written in the form

lim
x→∞ q1(x) =

1√
1− μ

, a.s. (5.3.20)

Remark 5.11. From a heuristic point of view “almost all” sequences xn → ∞
satisfy relation (5.3.18). This is the reason for using the probabilistic term “almost
surely”.

5.4 A class of non-factorable positive definite operators

Introduce a partition
0 = a0 < a1 < · · · < an = a, (5.4.1)

and consider the function ρ(λ) = ρ(−λ) such that

ρ(λ) =

{
0, a ≤ λ,

bk−1, ak−1 ≤ λ < ak,
(5.4.2)

where
b0 = 1; −1 ≤ bk ≤ 1 (0 < k ≤ n− 1). (5.4.3)

In the case of ρ given by (5.4.2) and (5.4.3) we can put U = 1 in (5.2.3). Further,
we investigate the operators S, which are defined by formulas (5.2.1), (5.2.2),
and (5.4.2). The spectral function σ(λ) of the corresponding system (5.2.36) is
absolutely continuous and such that (see [80])

σ′(λ) = [1− μρ(λ)]/(2π). (5.4.4)

Remark 5.12. The operators S, which are defined by formulas (5.2.1), (5.2.2), and
(5.4.2), appear in the theory of generalized stationary processes of white noise
type (see [115, 116]). If n = 1 and a1 = π, then the corresponding operator S has
the form (5.1.3).
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It follows from (5.2.2) and (5.4.2) that

h(x) =
1

π

n∑
k=1

bk−1
sin akx− sin ak−1x

x
. (5.4.5)

According to (5.4.4) we have ∫ ∞

−∞

log σ′(u)
1 + u2

du < ∞. (5.4.6)

It follows from (5.4.6) (see [80]) that∫ ∞

0

|P (x, z0)|2dx < ∞, Im z0 > 0. (5.4.7)

Hence, there exists a sequence xn such that

|P (xn, z0)|2 → 0, xn → ∞. (5.4.8)

Now, we use the corrected form of Krein’s theorem (see [80, 155]):

Proposition 5.13. 1. There exists the limit

Π(z) = lim
xn→∞P∗(xn, z), (5.4.9)

where the convergence is uniform at any bounded closed set of the upper half-
plane Im z > 0.

2. The function Π(z) can be represented in the form

Π(z) =
1√
2π

exp

{
1

2iπ

∫ ∞

−∞

1 + tz

(z − t)(1 + t2)
(log σ′(t))dt+ iα

}
, (5.4.10)

where α = α. Here σ is the spectral function of system (5.2.36), which corre-
sponds to ρ given by (5.4.2) and (5.4.3), that is, this σ is defined by (5.4.4).

Remark 5.14. The function |Q(x)|2 + |P (x, z0)|2 belongs to the space L(0,∞).
Hence, there exists a sequence xn such that relations (5.3.9) and (5.4.8) are valid
simultaneously.

If (5.4.5) holds, then the following conditions are fulfilled:

0 < δ ≤ ‖S‖ ≤ Δ < ∞,

∫ ∞

0

|h(x)|2dx < ∞. (5.4.11)

Therefore, in formula (5.4.10) we have (see [152, Proposition 1]):

α = 0. (5.4.12)
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One can easily see that

− 1

2iπ

∫ ∞

−∞

1 + tz

(z − t)(1 + t2)
log(2π)dt =

1

2
log(2π). (5.4.13)

It follows from (5.4.10), (5.4.12), and (5.4.13) that Π(z) has the form

Π(z) =
n−1∏
k=0

[(
ak+1 + z

ak+1 − z

)(
ak − z

ak + z

)]log(1−bkμ)/2iπ

, Im z > 0. (5.4.14)

Proposition 5.15. The solution of system (5.2.36) is defined by the formulas

P (x, z) = eixz
(
1 +

∫ x

0

Rx(s, 0, μ)e
−izsds

)
, (5.4.15)

P∗(x, z) = 1 +

∫ x

0

Rx(0, s, μ)e
izsds. (5.4.16)

The relation
Π(z)Π(ξ)

i(z − ξ)
=

∫ ∞

0

P (x, z)P (x, ξ)dx (5.4.17)

holds.

Using the relation (see [52, Ch. IV, formula (8.12)])

Rx(x, t, μ) = Rx(x− t, 0, μ), (5.4.18)

we write relation (5.4.15) in the form

P (x, z) = eixz +

∫ x

0

Rx(x, u, μ)e
izudu = V−eixz. (5.4.19)

Equality (5.4.17) can be represented in the form (see (5.2.7))

Π(z)Π(ξ)

i(z − ξ)
= lim

b→∞
(S−1

b eixξ, eizx). (5.4.20)

The operator function S−1
b is bounded and monotonically increasing with respect

to b (see [149, p. 41, formula (1.16)]). Hence, the operator function S−1
b strongly

converges, when b → ∞, to S−1 and relation (5.4.20) takes the form

Π(z)Π(ξ)

i(z − ξ)
= (S−1eixξ, eizx). (5.4.21)

Using (5.4.10) we obtain the following result:
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Proposition 5.16. Let Π(z) be defined by formula (5.4.10), then

Π(z) = 1 +

∫ ∞

0

eiztγ(t)dt, γ(t) ∈ L2(0,∞). (5.4.22)

Proof. According to (5.4.4) and (5.4.10)–(5.4.13) we have

Π(z) = exp[− 1

2π

n−1∑
k=0

log(1− μbk)

∫
Δk

∫ ∞

0

ei(z−t)xdxdt], (5.4.23)

where Δk = [−ak+1,−ak]U [ak, ak+1]. Changing the order of the integrals we de-
duce the equality

Π(z) = exp[

∫ ∞

0

eizxγ1(x)dx], (5.4.24)

γ1(x) = − 1

π

n−1∑
k=0

log(1− μbk)
sin ak+1x− sin akx

x
. (5.4.25)

Formula (5.4.22) follows directly from (5.4.24), (5.4.25) and the equality

γ(x) = γ1(x) + γ2(x)/2! + γ3(x)/3! + · · · , (5.4.26)

where

γn(x) =

∫ x

0

γ1(t)γn−1(x− t)dt, n > 1. (5.4.27)

Formulas (5.4.25)–(5.4.27) imply that γ(x) ∈ L2(0,∞). The proposition is proved.
�

We represent the left-hand side of (5.4.21) in the form

Π(z)Π(ξ)

i(z − ξ)
=

∫ ∞

0

e−i(z−ξ)uduΠ(z)Π(ξ). (5.4.28)

Relations (5.4.22) and (5.4.23) imply that

Π(z)Π(ξ)

i(z − ξ)
= (T eixξ, eizx), (5.4.29)

where the operator T is defined by the formula

Tf = f(x) +

∫ ∞

0

γ(x, t)f(t)dt, f(x) ∈ L2(0,∞) (5.4.30)

and the kernel γ(x, t) has the form

γ(x, t) = γ(x− t) + γ(t− x) +

∫ ∞

0

γ(x− s)γ(t− s)ds. (5.4.31)

We note that γ(t) = 0, if t < 0. Comparing formulas (5.4.21) and (5.4.29) we
obtain the important equality

S−1 = T. (5.4.32)
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Remark 5.17. Formulas (5.4.30)–(5.4.32) for constructing S−1 coincide with the
famous Wiener–Hopf formulas. It is interesting that in our case Krein’s condition
h(x) ∈ L(−∞,∞) is not fulfilled, but the corresponding formulas hold. In partic-
ular, we have constructed the operator S−1 for the classical operator (5.1.3).

Now we prove the main result of this chapter.

Theorem 5.18. The bounded positive definite and invertible operator S, which is
defined by formulas (5.2.1) and (5.4.5) does not admit a left triangular factoriza-
tion.

Proof. If the operator S admits the factorization, then according to (5.4.31) the
relation

lim
t→x−0

γ(x− t) = lim
t→x−0

Rx(x, t) (5.4.33)

must be valid. Using (5.4.25)–(5.4.27) we have

γ(0) = − 1

π

n−1∑
k=0

log(1− μbk)(ak+1 − ak). (5.4.34)

From relations (5.2.5), (5.2.6) and (5.4.5) we obtain that

R0(0, 0) =
1

π

n−1∑
k=0

μbk(ak+1 − ak). (5.4.35)

In view of − log(1− x) > x (x ∈ (−1, 1)) the inequality

γ1(0) > R0(0, 0) (5.4.36)

holds. Hence, the relation (5.4.33) does not hold. The theorem is proved. �

5.5 Examples instead of existence theorems

Let the nest N be the family of subspaces QξL
2(0,∞). The corresponding nest

algebra Alg(N) is the algebra of all linear bounded operators in the space L2(0,∞)
for which every subspace of N is an invariant subspace.

Put DN = Alg(N)
⋂
Alg(N)∗. The set N has multiplicity 1 if the diagonal

DN is abelian, that is, DN is a commutative algebra. We can see that the lower
triangular operators S− form the algebra Alg(N), the corresponding diagonal DN

is abelian, and it consists of the commutative operators

Tϕf = ϕ(x)f, f ∈ L2(0,∞), (5.5.1)

where ϕ(x) is bounded. Hence, the introduced nest N has multiplicity 1.

Ringrose Problem. Let N be a multiplicity 1 nest and T be a bounded invertible
operator. Is TN necessarily multiplicity 1 nest?

We obtain a concrete counterexample to Ringrose’s hypothesis.
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Proposition 5.19. Let the positive definite, invertible operator S be defined by the
relations (5.2.1) and (5.4.5). The set S1/2N fails to have multiplicity 1.

Proof. We use a well-known result (see [27, p. 169]):

The following assertions are equivalent:

1. The positive definite, invertible operator T admits factorization.

2. 2. T 1/2 preserves the multiplicity of N .

We stress that in our case the set N = QξL
2(0,∞) is fixed. The operator S

does not admit factorization. Therefore, the set S1/2N fails to have multiplicity
1. The proposition is proved. �

Next, consider the operator

V f =

∫ x

0

e−(x+y)f(y)dy, f(x) ∈ L2(0,∞). (5.5.2)

An operator is said to be hyperintransitive if its lattice of invariant subspaces
contains a multiplicity 1 nest. Note that the lattice of invariant subspaces of the
operator V coincides with N , see [99] and [175, Ch. 11, Theorem 150]. Hence, we
deduce the following answer to Kadison–Singer [71] and to the Gohberg–Krein [52]
question.

Corollary 5.20. The operator W = S1/2V S−1/2 is a non-hyperintransitive compact
operator.

Indeed, the lattice of the invariant subspaces of the operator W coincides
with S1/2N.

Remark 5.21. The existence parts of Theorem 5.18, Proposition 5.19, and Corol-
lary 5.20 have been proved by D.R. Larson [87].

5.6 White noise type process, a special case

Let us consider an operator S of the form (5.2.1). We suppose that h(x) is defined
by (5.4.5) and that

b0 = 0. (5.6.1)

In the case that (5.6.1) holds, relation (5.3.1) takes the form

M(x) = 1/2 + q(x), q(x) ∈ L2(0,∞), (5.6.2)

where the function M(x) is defined by (5.2.14).
Condition (5.6.2) can be written in the equivalent form∫ ∞

0

h(x)dx = 0,

∫ ∞

x

h(x)dx ∈ L2(0,∞). (5.6.3)

We formulate the analogue of Lemma 5.5 for case (5.6.1).
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Lemma 5.22. The function w1,2(ξ, z) has the form

w1,2(ξ, z) = eizξG(ξ, z)−G(ξ, z), (5.6.4)

where

G(ξ, z) = 1− iz

∫ ξ

0

e−izxrξ(x)dx. (5.6.5)

Here rξ(x) = S−1
ξ q(x).

We note that the operator S is positive definite, bounded and invertible.
According to (5.2.7) we obtain

Q(x) = (I + V−)q(x) ∈ L2(0,∞). (5.6.6)

Hence there exists a sequence xn such that

Q(xn) → 0, xn → ∞. (5.6.7)

Now instead of (5.3.11) we have

q2(x) = q1(x)/2 +Q(x). (5.6.8)

Taking into account the relation q1(x)q2(x) = 1/2 (see [Sakh19]) we get the equal-
ity

lim
xn→∞ q1(xn) = 1. (5.6.9)

Therefore the analogue of Lemma 5.7 has the form:

Lemma 5.23. The function w1,2(xn, z) satisfies the asymptotic equality (xn → ∞)

w1,2(xn, z) = −eixnz/2Ψ(xn, z)(1 + o(1)). (5.6.10)

Formulas (5.4.1)–(5.4.17) hold in case (5.6.1) too, only C = 1. Taking into
account Lemma 5.23 and relation (5.2.38) we have

lim
xn→∞w1,2(xn, z) = −Π(z), Im z > 0. (5.6.11)

Comparing formulas (5.3.14) and (5.6.11) we see that

− lim
y→+0

G(−iy) = − lim
y→+0

Π(iy) = −1. (5.6.12)

So, in case (5.6.1) the necessary condition of the operator S to be factorable is
fulfilled.
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Example 5.24 (Optimal problem). We consider generalized white noise type pro-
cesses. The corresponding operators Sξ are defined by formulas (5.2.1), (5.4.5).
We assume that

h0(t) = e−tλ, λ > 0, t > 0. (5.6.13)

The solution of the optimal problem has the form (see Chapter 4, Section 4.5)

gopt = (S−1
ξ h0)/(S

−1
ξ h0, h0)ξ, νmax(ξ) = (S−1

ξ h0, h0)ξ. (5.6.14)

We need the following well-known statement (see [80]).

Proposition 5.25. The solution of system (5.2.36) is defined by the formulas

P (x, z) = eixz
[
1 +

∫ x

0

Rx(s, 0, μ)e
−izsds

]
, (5.6.15)

P∗(x, z) = 1 +

∫ x

0

Rx(0, s, μ)e
izsds. (5.6.16)

Using the relation (see [52, formula (8.12)])

Rx(x, t, μ) = Rx(x− t, 0, μ), (5.6.17)

we write relation (5.6.15) in the form

P (x, z) = eixz +

∫ x

0

Rx(x, u, μ)e
izudu = V−eixz. (5.6.18)

In view of (5.2.7) we can represent νmax(ξ) in the following way:

νmax(ξ) = (V−h0, V−h0)ξ =

∫ ξ

0

|P (x, iλ)|2dx. (5.6.19)

It follows from (5.2.36) and (5.6.19) that

νmax(ξ) =
[|P∗(iλ)|2 − |P (iλ)|2] /2λ. (5.6.20)

Using (5.4.8), (5.4.9) and (5.6.20) we deduce the equality

lim
ξ→∞

νmax(ξ) = |Π(iλ)|2/2λ. (5.6.21)

We note that in the case of white noise type processes, the function Π(iλ) is given
in an explicit form (see (5.4.6)).



Chapter 6

Comparison of thermodynamic
characteristics of quantum and
classical approaches

Introduction

In the theory of quantum systems the statistical sum

Zq(β, h) =

∞∑
n=1

e−βEn(h), β =
1

kT
(6.0.1)

plays the main role. In formula (6.0.1) k is the Boltzmann constant, T is absolute
temperature, h is the Planck constant, En(h) are eigenvalues of the energy operator
H of the considered system. In classical physics the integral

Zc(β) =

∫∫
e−βH(p,q) dp dq (6.0.2)

is the analog of sum (6.0.1). In formula (6.0.2) the function H(p, q) is the clas-
sical Hamiltonian, p are corresponding generalized momenta, q are generalized
coordinates.

E. Wigner and J.G. Kirkwood (see [69, Ch. 4]) showed that quantum statis-
tical sum Zq(h, β) and classical statistical sum Zc(β) are connected by the relation

lim
h→0

(2πh)NZq(h, β) = Zc(β), (6.0.3)

where N is the dimension of the corresponding coordinate space. However the
comparison of the quantum and classical approaches without the demand for h
being small is of important scientific and methodological interest.
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To do it we consider the quantum mean energy

Eq(β, h) =

∑∞
n=1 En(h)e

−βEn(h)

Zq(h, β)
(6.0.4)

and the classical mean energy

Ec(β) =

∫∫
H(p, q) e−βH(p,q) dp dq

Zc(β)
(6.0.5)

of the same system.
In this chapter we shall discuss the following conjectures (see [151,153]).

Conjecture 6.1. The inequality

(2πh)N Zq(β, h) ≤ Zc(β) (6.0.6)

is valid for all h > 0 and β > 0.

Conjecture 6.2. The inequality

Eq(β, h) ≥ Ec(β) (6.0.7)

holds for all h > 0 and β > 0.

Conjecture 6.3. The asymptotic equalities

(2πh)N Zq(β, h) ≈ Zc(β), β → +0, (6.0.8)

Eq(β, h) ≈ Ec(β), β → +0, (6.0.9)

are valid.

Remark 6.4. We note that β = 1
kT , which means that the relation β → +0 is

equivalent to the relation T → +∞.

Remark 6.5. We stress that relations (6.0.3) and (6.0.8) are similar, but do not
coincide.

We begin with important special cases: potential well, oscillator. We prove
that in these cases the relations (6.0.6)–(6.0.9) are valid.

Then we introduce measure and integration connected with Wiener processes
(see [69, 117]). Using these notions we formulate the important D. Ray’s results
[125] which can be interpreted as a weak form of the principle of imperceptibility
of the boundary. With the help of D. Ray’s results we prove that relations (6.0.6)
and (6.0.8) hold for a broad class of problems. It follows from (6.0.6) and (6.0.8)
that (6.0.7) and (6.0.9) are valid in the sense of a mean.

In the last section we compare the quantum entropy Sq and classical entropy
Sc.
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6.1 Quasi-classical case

Let us consider the Schrödinger differential operator

Lψ = − h2

2m
Δψ + V (x)ψ (6.1.1)

and the corresponding classical expression of energy

H(p, x) =
1

2m

N∑
j=1

p2j + V (x1, x2, . . . , xN ). (6.1.2)

E. Wigner and J.G. Kirkwood obtained the following result (see [69, Ch. 4]).

Proposition 6.6. If the inequalities

Zc(β) =

∫∫
e−βH(p,x) dp dx < ∞, (6.1.3)

k(β) =
1

m

∫∫
e−βH(p,x)

N∑
j=1

(
∂V

∂xj

)2

dp dx < ∞ (6.1.4)

are valid, then the relation

(2πh)NZq(β, h) = Zc(β)− h2k(β) + o(h2), (6.1.5)

where k(β) > 0, holds.

It follows from (6.1.5) that for small h the inequality (6.0.6) is valid.

6.2 One-dimensional potential well

In the case of the potential well the spectrum En of the system coincides with the
spectrum of the boundary problem

− h2

2m

d2

dx2
y + Ey = 0, y(0) = y(a) = 0, (6.2.1)

that is, we have

En(h) =
h2 π2

2ma2
n2, n = 1, 2, . . . . (6.2.2)

The Hamiltonian function H(p, q) in the case of a potential well has the form

H(p, q) =
1

2m
p2 for 0 < q < a, H(p, q) = ∞ for q /∈ [0, a]. (6.2.3)
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Using formula (6.2.2) we obtain that

Eq(β, h) =
π2 h2

2ma2

∑∞
n=1 e

−n2/λ n2∑∞
n=1 e

−n2/λ
(6.2.4)

where

λ =
2ma2

βπ2h2
. (6.2.5)

According to (6.2.3) and to relations∫ ∞

−∞
e−

x2

λ dx =
√
λπ,

∫ ∞

−∞
x2 e−

x2

λ dx =
λ
√
λπ

2
(6.2.6)

we have the formula

Ec(β) =
1

2
β. (6.2.7)

Theorem 6.7. Inequality (6.0.7) holds for a one-dimensional well.

Proof. Without loss of generality we shall suppose that

π2 h2

2ma2
= 1. (6.2.8)

Formula (6.2.4) immediately implies the inequality

Eq(β, h) > 1. (6.2.9)

Then, according to (6.2.7) inequality (6.0.7) holds for

β ≥ 1

2
. (6.2.10)

Let us pass to the case β ≤ 1
2 . Using the Poisson formula (see [38]) we can

write

∞∑
n=1

e−n2/λ = −1

2
+

∫ ∞

0

e−x2/λdx+ 2

∞∑
n=1

∫ ∞

0

e−x2/λ cos 2πnx dx. (6.2.11)

Since ∫ ∞

0

e−x2/λcos 2πnx dx =

√
λπ

2
e−λn2π2

, n = 0, 1, 2, . . . (6.2.12)

we have ∞∑
n=1

e−n2/λ = −1

2
+

1

2

√
λπ

∞∑
n=1

e−λn2π2

. (6.2.13)
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Differentiating (6.2.13) with respect to λ we obtain

∞∑
n=1

n2e−n2/λ =
1

4
λ3/2

√
π +

1

2
λ3/2

√
π

∞∑
n=1

e−λn2π2 − (λπ)5/2
∞∑

n=1

e−λn2π2

n2.

(6.2.14)
Let us now use the inequalities

e−λπ2x2 ≤ e−λπ2x, x ≥ 1, λ ≥ 0, (6.2.15)

x2e−λπ2x2 ≤ e−λπ2x, x ≥ 1, λ ≥ 1. (6.2.16)

It follows from (6.2.13) and (6.2.14) that

Eq(β, h) >
1

2β

1− (π2/β
)∑∞

n=1 n
2e−π2n2/β

1− (β/π)1/2 +
∑∞

n=1 e
−π2n2/β

. (6.2.17)

It is easy to see that

√
β

π
>

(
1 + π2

β

)
e−π2/β

1− eπ2/β
, β ≤ 1

2
. (6.2.18)

By (6.2.15) and (6.2.1) the inequality (6.2.18) implies that√
β

π
>

∞∑
n=1

e−π2n2/β +
π2

β

∞∑
n=1

n2e−π2n2/β , β ≤ 1

2
. (6.2.19)

Inequality (6.2.19) can be written in the form

1− (π2/β
)∑∞

n=1 n
2e−π2n2/β

1− (β/π)1/2 +
∑∞

n=1 e
−π2n2/β

> 1, β ≤ 1

2
. (6.2.20)

The assertion of the theorem immediately follows from inequalities (6.2.6), (6.2.17)
and (6.2.20). �

Remark 6.8. Formulas (6.0.1), (6.0.4), (6.2.13), (6.2.15) and (6.2.16), (6.2.17) im-
ply the asymptoic relations

Zq(β, h) =
a

h

√
m

2πβ

(
1− h

a

√
πβ

2m
+ o

(
e
−2ma2

βh2

))
, β → 0, (6.2.21)

Eq(β, h) =
1

2β

/((
1− h

a

√
πβ

2m

)
+ o

(
1

β2
e
−2ma2

βh2

))
, β → 0. (6.2.22)
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6.3 Harmonic oscillator

In the case of a harmonic oscillator, the spectrum En of the system coincides with
the spectrum of the boundary problem

− h2

2m

d2

dx2
y +

(
E − mω2x2

2

)
y = 0, −∞ < x < ∞, (6.3.1)

that is, we have

En(h) = hω(n− 1/2), n = 1, 2, . . . . (6.3.2)

The Hamiltonian function H(p, q) in the case of a harmonic oscillator has the form

H(p, q) =
p2

2m
+

mω2q2

2
. (6.3.3)

Using formulas (6.0.2) and (6.2.6) we deduce that

Zc(β) =
2π

βω
. (6.3.4)

It follows from (6.0.1) and (6.3.2) that

Zq(h, β) =
1

2 sinh (hωβ/2)
. (6.3.5)

Formulas

Eq(β, h) =
hω

2 tanh (hωβ/2)
, Ec(β) =

1

β
(6.3.6)

follow directly from (6.0.1), (6.0.2), (6.0.4), (6.0.5) and (6.3.2), (6.3.3).
Due to (6.3.4)–(6.3.6) we obtain the following assertion.

Proposition 6.9. In case of a harmonic oscillator, relations (6.0.8) and (6.0.9)
hold.

Theorem 6.10. For a harmonic oscillator, inequality (6.0.7) is valid for all h > 0
and β > 0.

Proof. It follows from (6.3.6) that

Eq(β, h) → Ec(β), h → 0, (6.3.7)

∂Eq(β, h)

∂h
=

ω

2

(
ehωβ − e−hωβ

4
− hωβ

2

)/
sinh2

hωβ

2
> 0. (6.3.8)

Hence, the function Eq(β, h) is monotonically increasing with respect to h. Now
the assertion of the theorem follows directly from (6.3.7). �
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6.4 General case, statistical sum

1. Further we need the main notions of measure and integration connected with
Wiener processes (see [69,117,169]). Let us consider the set of continuous functions
x(τ) (0 ≤ τ ≤ t) with values on R

N and

x(0) = x0 = 0, x(τj) ∈ Ej , 1 ≤ j ≤ n,

where
0 = τ0 < τ1 < · · · < τn ≤ t,

Ej are Borel sets in R
N . The introduced set of functions has by definition the

probability measure

Prob {x(τj) ∈ Ej , 1 ≤ j ≤ n} =

∫
E1

dx1 . . .

∫
En

dxn

n∏
j=1

p (xj − xj−1, τj − τj−1) ,

(6.4.1)
where

p(x, t) = (2πt)−N/2 exp

(
−x2

2t

)
. (6.4.2)

The Wiener integral is defined with the help of introduced measure (6.4.1), (6.4.2)
in the usual way. We denote this integral by the symbol of the mathematical
expectation E.

2. D. Ray [125] proved the following assertions.

Theorem 6.11. Let Ω be an open set in R
N such that at each boundary point x of

Ω, there is a sphere with center x, some open sector of which is entirely outside
the closure Ω of Ω.

Let V (x) be a non-negative Borel measurable function defined on Ω, bounded
on each bounded subset of Ω. Let V (x) satisfy, at almost every point x in Ω, a
Lipschitz condition of the form

|V (x′)− V (x)| < M(x) |x− x′|α , 0 < α ≤ 1, (6.4.3)

x′ in some neighborhood of x.
For x, y ∈ Ω, t > 0, s > 0, set

K(x, y; t) = p(x− y, t) (6.4.4)

× E

{
exp

(
−
∫ t

0

V (y + x(τ))dτ

)
; y + x(τ) ∈ Ω, 0 ≤ τ ≤ t

∣∣∣x(t) = x− y

}
.

Then K(x, y; t) is the Green’s function of the differential equation

1

2
Δϕ(x, t)− V (x)ϕ(x, t) =

∂

∂t
ϕ(x, t), x ∈ Ω, t > 0, (6.4.5)

with the zero boundary value conditions.
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Theorem 6.12. Let Ω and V (x) be as in Theorem 6.11, and suppose also either Ω
is bounded or that lim

|x|→∞, x∈Ω
V (x) = ∞. Then the differential operator

L = −Δ
/
2 + V (x) (6.4.6)

on L2(Ω), with the zero boundary value conditions, has a discrete spectrum λn

(λn > 0) with eigenfunctions forming a complete orthonormal basis in L2(Ω).

Theorem 6.13. Let the conditions of Theorem 6.12 be fulfilled. Then∑
n

e−λnt =

∫
Ω

K(x, x; t) dx ≤ 1

(2πt)N/2

∫
Ω

e−tV (x) dx, t > 0. (6.4.7)

We copy D. Ray’s proof of inequality (6.4.7).
By Jensen’s inequality [7],∫

Ω

K(x, x; t) dx =

∫
Ω

dx
1

(2πt)N/2

× E

{
exp

(
−
∫ t

0

V (x+ x(τ))dτ

)
; x+ x(τ) ∈ Ω, 0 ≤ τ ≤ t

∣∣∣x(t) = 0

}
≤
∫
Ω

dx
1

(2πt)N/2

1

t

∫ t

0

dτ

× E
{
exp (−tV (x+ x(τ))); x+ x(τ) ∈ Ω, 0 ≤ τ ≤ t

∣∣∣x(t) = 0
}
.

Hence we have∫
Ω

K(x, x; t) dx

=
1

(2πt)N/2

1

t

∫ t

0

dτ E

{∫
x∈Ω, x+x(τ)∈Ω

exp (−tV (x+ x(τ))) dx
∣∣∣x(t) = 0

}

≤ 1

(2πt)N/2

1

t

∫ t

0

dτ E

{∫
Ω

exp (−tV (x)) dx
∣∣∣x(t) = 0

}
=

1

(2πt)N/2

∫
Ω

exp (−tV (x)) dx.

Therefore inequality (6.4.7) holds.
D. Ray proved [125] the asymptotic relation∑

n

e−λnt ≈ 1

(2πt)N/2

∫
Ω

e−tV (x)dx, t → 0. (6.4.8)

Remark 6.14. The results of type (6.4.7) and (6.4.8) whenQ = R
N were deduced in

a number of papers (see the results and references in B. Simon’s book [169, Ch. 3]).
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The relation (6.4.8) can be interpreted as the weak form of Kac’s principle
of imperceptibility of the boundary in the case of equation (6.4.5). We note, that
Chapter 2 is dedicated to the weak form of the principle of imperceptibility of the
boundary in the case of a stable process. Relations (6.4.7) and (6.4.8) are analogs
of relations (2.2.5) and (2.2.19) respectively.

3. It is interesting that D. Ray’s results can be interpreted in a new way. We shall
show that inequalities (6.0.6) (Conjecture 6.1) and (6.0.8) (Conjecture 6.3) follow
from inequalities (6.4.7) and (6.4.8) respectively. Let us consider the Schrödinger
differential operator

ΔΨ = − h2

2m
ΔΨ+ V (x)Ψ− EΨ (6.4.9)

in an open subset Ω of N -dimensional Euclidean space R
N . We assume that

Ψ
∣∣
Γ
= 0, (6.4.10)

where Γ is the boundary of Ω. Taking into account the relation

λn = En
m

h2
,

we see that in case (6.4.9) inequality (6.4.7) has the form∑
n

e−tEnm

h2 ≤ 1

(2πt)N/2

∫
Ω

e−t m
h2 V (x)dx. (6.4.11)

From (6.1.2) and (6.1.3) we obtain that

Zc(β) =
(
2πm/β

)N/2
∫
Ω

e−βV (x)dx. (6.4.12)

Putting t = h2

m β we write (6.4.11) in the form

hN

(
2πβ

m

)N/2∑
n

e−Enβ ≤
∫
Ω

e−βV (x)dx. (6.4.13)

Relations (6.4.12) and (6.4.13) imply that

(2πh)NZq(h, β) ≤ Zc(β), β =
1

kT
. (6.4.14)

In the same way we deduce from (6.4.8) that

(2πh)NZq(β, h) → Zc(β), β → 0, β =
1

kT
. (6.4.15)

So we have proved the following statement.
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Theorem 6.15. Let the conditions of Theorem 6.12 be fulfilled. Then relations
(6.0.6) and (6.0.7) are valid.

Corollary 6.16. Let the conditions of Theorem 6.12 be fulfilled. If∫
Ω

e−βV (x)dx < ∞, (6.4.16)

then ∑
n

e−Enβ < ∞. (6.4.17)

Example 6.17 (Potential well). If Ω is bounded and V (x) = 0, then according to
(6.4.12) we have

Zc(β) = (2πm/β)N/2 volQ. (6.4.18)

Example 6.18 (One-dimensional potential well). From formulas (6.0.1), (6.0.4) and
(6.2.2) we get the equality

d

dh
(2πhZq(β, h)) = 2πZq(β, h)[1− 2βEq(β, h)]. (6.4.19)

According to Theorem 6.7 we have

Eq(β, h) ≥ 1

2β
,

that is,
d

dh
(2πhZq(β, h)) ≤ 0, β > 0, h > 0. (6.4.20)

So the following assertion is valid.

Proposition 6.19. The function 2πhZq(β, h) is monotonically increasing when h →
+0.

We note, that the function Zq(β, h) can be represented as a function of
√
βh.

It means that formula (6.2.21) is valid when h → +0. Hence we have obtained for
the one-dimensional potential well the analog of the Wigner–Kirkwood formula

Zq(β, h) =
1

2πh

[
Zc(β)− hπ + o

(
h2
)]

. (6.4.21)

It has been stated in a number of works [69,86], that the deviation (2πh)NZq(β, h)
from the classical expression Zc(β) goes at least with the second power of h. This
statement is valid under some additional conditions, but it is not valid for the
potential well. The term following the classical one in formula (6.4.21) turns out
to be of the first power of h. It is interesting to note that the coefficient of h in
formula (6.4.21) does not depend on the value of a.
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Example 6.20 (Harmonic oscillator). From formulas (6.0.1), (6.0.4) and (6.3.2) we
get the equality

d

dh

(
2πhZq(β, h)

)
= 2πZq(β, h)

[
1− βEq(β, h)

]
. (6.4.22)

According to Theorem 6.10 we have

Eq(β, h) ≥ 1

β
,

that is, inequality (6.4.20) is valid in this case too. Hence Proposition 6.19 holds
in case of the harmonic oscillator too.

We note that the function Zq(β, h) can be represented as a function of βh. It
means that the following assertion is valid for the one-dimensional potential well
and for a harmonic oscillator.

Proposition 6.21. The function 2πhZq(β, h) is monotonically increasing when β →
+0.

Open problem 6.22. Are Propositions 6.19 and 6.21 valid in the general case?

6.5 General case, mean energy

The following assertion confirms partially Conjecture 6.2.

Theorem 6.23. Let the conditions of Theorem 6.12 be fulfilled and

Eq(β, h) < ∞, Ec(β) < ∞. (6.5.1)

Then the inequality ∫ β

+0

[
Eq(γ, h)− Ec(γ)

]
dγ ≥ 0, β > 0 (6.5.2)

holds.

Proof. Using relations (6.0.1), (6.0.2) and (6.0.4), (6.0.5) we have

Eq(β, h) = − ∂Zq(β, h)

∂β

/
Zq(β, h), (6.5.3)

Ec(β) = − ∂Zc(β)

∂β

/
Zc(β). (6.5.4)

Relations (6.5.3), (6.5.4) imply that∫ β

τ

[
Eq(γ, h)− Ec(γ)

]
dγ = log

Zc(γ)

(2πh)NZq(γ, h)

∣∣∣∣β
τ

, 0 < τ < β. (6.5.5)
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According to (6.4.15) and (6.5.5) we obtain that∫ β

+0

[
Eq(h, γ)− Ec(γ)

]
dγ

= lim
τ→+0

∫ β

τ

[
Eq(h, γ)− Ec(γ)

]
dγ = log

Zc(β)

(2πh)NZq(β, h)
≥ 0. (6.5.6)

The theorem is proved. �
Example 6.24 (Potential well). Let Ω be as in Theorem 6.11. If Ω is bounded and
V (x) = 0, then according to (6.4.18) and (6.5.4) we have

Ec(β) = N/2β. (6.5.7)

6.6 Conclusion

For small values of h the relation between quantum and classical statistical sums
was deduced by E. Wigner and J.G. Kirkwood. However, the comparison of the
quantum and classical approaches for energy, statistical sum and entropy without
the demand of h being small is of essential scientific and methodological interest.
Here we obtain some general results and discuss some conjectures connected with
the formulated problem.

In particular, general and rigorous results on relations between ordinary
quantum and classical statistical sums (see Theorem 6.15) could be derived from
an important work by D. Ray [125] on the spectra of Schrödinger operators.



Chapter 7

Dual canonical systems and dual
matrix string equations

Introduction

The string equation

−d2ϕ(x, λ)

dx2
= λρ2(x)ϕ(x, λ), ρ(x) > 0, 0 ≤ x ≤ l (7.0.1)

can be rewritten in the form

−d2ϕ(x, λ)

dx2
= λ

dM

dx
ϕ(x, λ), (7.0.2)

where

M(x) =

∫ x

0

ρ2(t)dt.

The variable x can be viewed as a function of M and the equation

d2ϕ̃(M,λ)

dM2
= λ

dx

dM
ϕ̃(M,λ) (7.0.3)

is said to be dual to equation (7.0.2). The notation of a dual string was introduced
and investigated by I.S. Kac and M.G. Krein [66], see also [34, Sections 6.8 and
6.9].

Let us add conditions

ϕ(0, λ) = 1, ϕ′(0, λ) = 0, (7.0.4)

ϕ̃(0, λ) = 0, ϕ̃′(0, λ) = 1 (7.0.5)

. , 
I 10.1007/978-3-0348-0356-4_7,  
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to equations (7.0.2) and (7.0.3). As it was shown in the work [66] there are spectral
functions τ(λ) and τ̃(λ) of problems (7.0.2), (7.0.4) and (7.0.3), (7.0.5) such that

τ(λ) = τ̃(λ) = 0, λ < 0; τ̃(λ) =

∫ λ

0

μ dτ(μ), λ > 0. (7.0.6)

In this chapter we generalize the notion of dual equations to a class of canon-
ical systems (see [35]):

dW (x, λ)

dx
= iλJH(x)W (x, λ), 0 ≤ x ≤ l, (7.0.7)

where J and H(x) are (2m)× (2m) matrices, W (x, λ) is (2m)×m matrix and

J =

[
0 Im
Im 0

]
, W (x, λ) =

[
w12(x, λ)
w22(x, λ)

]
, H(x) ≥ 0. (7.0.8)

We consider a special case of a canonical system when H(x) has the form

H(x) =

[
P (x) 0
0 P−1(x)

]
, (7.0.9)

where P (x) > 0 is a continuous m × m matrix function. It follows from relation
(7.0.7) that ⎧⎪⎪⎨⎪⎪⎩

dw12

dx
= iλP−1(x)w22(x, λ),

dw22

dx
= iλP (x)w12(x, λ).

(7.0.10)

Let us add the boundary conditions

w12(0, λ) = 0, w22(0, λ) = I. (7.0.11)

System (7.0.10) can be reduced to two systems of the second order,

− d

dx

(
P (x)

dw12

dx

)
= λ2P (x)w12, (7.0.12)

− d

dx

(
P−1(x)

dw22

dx

)
= λ2P−1(x)w22. (7.0.13)

Here the following conditions are fulfilled:

w12(0, λ) = 0,
dw12

dx

∣∣∣∣
x=0

= iλP−1(0), (7.0.14)

w22(0, λ) = Im,
dw22

dx

∣∣∣∣
x=0

= 0. (7.0.15)
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We note that the spectral matrix functions τ(λ) and τ̃(λ) of systems (7.0.12),
(7.0.14) and (7.0.13), (7.0.15) satisfy the equality (7.0.6). Systems (7.0.12), (7.0.14)
and (7.0.13), (7.0.15) are mutually dual (see [35]).

The equations of form (7.0.12) play an important role in a number of theoret-
ical and applied problems (prediction theory [34, 79], vibration of a thin straight
rod [25], string equation [47]). Thus, the investigation of the direct and inverse
spectral problem for system (7.0.12) is of great interest. For that purpose, in a
number of works [25, 34, 79], equation (7.0.12) is reduced to the Sturm–Liouville
equation

−d2y

dx2
+ q(x)y = λ2y. (7.0.16)

In the present chapter, we solve spectral problems for system (7.0.12) by
transferring to the canonical system of the form (7.0.7), (7.0.9). This approach
permits us to consider the matrix case (m ≥ 1), to get rid of the demand for
differentiability of P (x) and to get a simpler procedure for finding P (x) by the
known spectral data.

In this chapter we introduce the duality notion for canonical discrete systems
[154] (see also some results and references in [130])

W (k, λ)−W (k − 1, λ) = iλJ γ(k)W (k − 1, λ), k ≥ 1, (7.0.17)

where W (k, λ) and γ(k) are (2m)× (2m) matrices and

γ(k) ≥ 0. (7.0.18)

The well-known recurrent relation

bkϕ(k + 1, λ) + akϕ(k, λ) + b∗k−1ϕ(k − 1, λ) = λϕ(k, λ), k > 0, (7.0.19)

in which bk, ak, ϕ(k, λ) are m × m matrices, can be reduced to the canonical
system of the form (7.0.17).

The matrix polynomials are orthogonal with respect to the corresponding
matrix function τ(λ), that is,∫ ∞

0

ϕ(k, λ)[dτ(λ)]ϕ∗(l, λ) = δklIm, (7.0.20)

where δkl is the Kronecker symbol.
We present a method of constructing the system

b̃kϕ̃(k + 1, λ) + ãkϕ̃(k, λ) + b̃∗k−1ϕ̃(k − 1, λ) = λϕ̃(k, λ), (7.0.21)

which is dual to the original system (7.0.20). The polynomials ϕ̃(k, λ) are orthog-
onal with respect to the corresponding matrix function τ̃(λ), that is,∫ ∞

0

ϕ̃(k, λ)[dτ̃(λ)]ϕ̃∗(l, λ) = δklIm.

The spectral matrix functions τ(λ) and τ̃(λ) satisfy relation (7.0.6).
In the last section of the chapter the obtained results are illustrated by a

number of concrete examples.

Chapter 7. Dual canonical systems and dual matrix string equations
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7.1 Canonical differential system

1. In this section we shall focus on a canonical system of the form (7.0.7), (7.0.8),
where

H(x) = R(x)R∗(x). (7.1.1)

Here (2m)×m matrix R(x) is such that∫ l

0

‖R(x)‖2dx < ∞, R∗(x)JR(x) = 0. (7.1.2)

Let p(x) and q(x) be a pair of m×m matrix functions and∫ l

0

(
‖p(x)‖2 + ‖q(x)‖2

)
dx < ∞. (7.1.3)

We introduce the matrix functions

M(x) =

∫ x

0

p(t)p∗(t)dt, N(x) =

∫ x

0

q∗(t)q(t)dt, (7.1.4)

R(x) =

[
r1(x)
r2(x)

]
=

[ −iN(x)
Im

]
p(x). (7.1.5)

Then, for canonical systems (7.0.7) with Hamiltonian H(x) of the form (7.1.1),
(7.1.5) we define the dual canonical system

dW̃ (x, λ)

dx
= iλJH̃(x)W̃ (x, λ), 0 ≤ x ≤ l (7.1.6)

with Hamiltonian
H̃(x) = R̃(x)R̃∗(x), (7.1.7)

where

R̃(x) =

[
r̃1(x)
r̃2(x)

]
= iJ

[ −iM(x)
Im

]
q(x). (7.1.8)

Thus, iR̃(x) is obtained from R(x) by first interchanging p(x) and q∗(x) and then
interchanging the positions of the block entries.

2. Now we introduce the operator identities which are connected with canonical
systems (7.0.1) and (7.1.6) (see [35]). Let

Bf = q(x)

∫ x

0

p(t)f(t)dt (7.1.9)

and

Cf = −p∗(x)
∫ x

0

q∗(t)f(t)dt (7.1.10)
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be operators from Hilbert space Lm
2 (0, l) into itself. It is easy to see that

(B∗ − C)f = p∗(x)
∫ l

0

q∗(t)f(t)dt = Π2Π
∗
1f, (7.1.11)

where
Π1 g = q(x)g, Π2 g = p∗(x)g, g ∈ C

m. (7.1.12)

It follows from (7.1.5). (7.1.8) and (7.1.9), (7.1.10) that

CBf = i

∫ x

0

R∗(x)JR(t)f(t)dt, (7.1.13)

BCf = i

∫ x

0

R̃∗(x)JR(t)f(t)dt. (7.1.14)

Moreover, in view of (7.1.11) we have

CB −B∗C∗ = B∗Π1Π
∗
2 −Π2Π

∗
1B, (7.1.15)

BC − C∗B∗ = Π1Π
∗
2B

∗ −BΠ2Π
∗
1. (7.1.16)

3. Spectral function. Let us introduce the space L2(H) of (2m)× 1 vector func-
tions f(x), equipped with the inner product

(f, f)L2(H) =

∫ l

0

f∗(x)H(x)f(x)dx. (7.1.17)

Definition 7.1. (see [149, Ch. 4]) A non-decreasing m × m matrix function τ(λ)
(−∞ < λ < ∞) is said to be a spectral matrix function of canonical system (7.0.1)
if the operator

V f =

∫ l

0

[ 0 Im ]W ∗(x, λ)H(x)f(x)dx (7.1.18)

maps the space L2(H) isometrically into the space L2(τ), where the inner product
is defined by

(f1, f2)L2(τ) =

∫ ∞

−∞
f∗
2 (λ)[dτ(λ)]f1(λ).

We shall give a description of the set of all spectral matrix functions τ(λ)
and τ̃(λ) for canonical systems (7.0.1), (7.1.1) and dual systems (7.1.6), (7.1.7).
To begin, we define the operators

Φjg = r∗j (x)g, Φ̃jg = r̃∗j (x)g, j = 1, 2, (7.1.19)

where Φj and Φ̃j map C
m into Lm

2 (0, l). Then

Φ∗
jf =

∫ l

0

rj(x)f(x)dx, Φ̃∗
jf =

∫ l

0

r̃j(x)f(x)dx (7.1.20)
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and according to (7.1.15) and (7.1.16) we have

(A−A∗)f = i(Φ1Φ
∗
2 +Φ2Φ

∗
1)f = i

∫ l

0

R∗(x)JR(t)f(t)dt, (7.1.21)

(Ã− Ã∗)f = i(Φ̃1Φ̃
∗
2 + Φ̃2Φ̃

∗
1)f = i

∫ l

0

R̃∗(x)JR̃(t)f(t)dt, (7.1.22)

where A = CB, Ã = BC.
It is easy to see that the operators A = CB and Ã = BC which are defined by

formulas (7.1.13) and (7.1.14) respectively are Volterra Hilbert–Schmidt operators.
Therefore these operators have no non-zero points of spectrum.

Lemma 7.2. Let the operators A = CB, Ã = BC and Φj, Φ̃j (j = 1, 2) be defined
by formulas (7.1.13), (7.1.14) and (7.1.19) respectively. Assume further that rj(x)
and r̃j(x) are given by formulas (7.1.4), (7.1.5) and (7.1.4), (7.1.8) and that p(x)
and q(x) are invertible for almost every point x ∈ (0, l) (in addition to (7.1.13)).
Then

1. KerA = 0, Ker Ã = 0;

2. KerΦ2 = 0, Ker Φ̃2 = 0;

3. RangeA
⋂

RangeΦ2 = 0, Range Ã
⋂

Range Φ̃2 = 0.

Proof. If f ∈ KerA, then the equality∫ x

0

[N(x)−N(t)]p(t)f(t)dt = 0

is valid, that is,

N ′(x)
∫ x

0

p(t)f(t)dt = 0.

Hence

∫ x

0

p(t)f(t)dt = 0, and f(x) = 0.

The relation KerΦ2 = 0 is evident.
Let us suppose that

Af = Φ2g

for some f ∈ L2m
2 (0, l) and some g ∈ C

m. This forces the equality∫ x

0

[N(t)−N(x)]p(t)f(t)dt ≡ g ∈ C
m

for all x ∈ (0, l). Thus, upon letting x → 0, we see that g = 0 and therefore
Af = 0, that is, f = 0.

The stated assertion for Ã and Φ̃2 are proved in the same way. �
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Definition 7.3. A pair of m×m matrix functions P (λ) and Q(λ) analytic almost
everywhere in C \ R+ is called a Stieltjes pair if

P ∗(λ)P (λ) +Q∗(λ)Q(λ) > 0, λ ∈ C \ R+,

Q∗(λ)P (λ)− P ∗(λ)Q(λ)

λ− λ
≥ 0, λ ∈ C \ R+,

λQ∗(λ)P (λ)− λP ∗(λ)Q(λ)

λ− λ
≥ 0, λ ∈ C \ R+.

Our next theorem is a special case of some results from [149, Ch. 4] and [13,
Sec. 7] which can be applied here because of Lemma 7.2.

Theorem 7.4. Let conditions of Lemma 7.2 be fulfilled and let

A(λ) = I2m + λ

[
Π∗

1B
−iΠ∗

2

]
(I − λB∗C∗)−1

(Π2 − iB∗Π1) =

[
a(λ) b(λ)
c(λ) d(λ)

]
︸︷︷︸
m

︸︷︷︸
m

.

(7.1.23)
Then for every Stieltjes pair P (λ), Q(λ) the following statements hold:

(1) det {c(λ)P (λ) + d(λ)Q(λ)} �= 0, Imλ > 0;

(2) The function

v(λ) = i
[
a(λ)P (λ) + b(λ)Q(λ)

] [
c(λ)P (λ) + d(λ)Q(λ)

]−1
(7.1.24)

admits a representation of the form

v(λ) = α+

∫ ∞

0

(
1

μ− λ
− μ

1 + μ2

)
dτ(μ), (7.1.25)

where

τ(μ) = 0, μ < 0; α = α∗, (7.1.26)∫ ∞

0

μkdτ(μ)

1 + μ2
< ∞, k = 0, 1; (7.1.27)

(3) The m×m matrix functions τ(μ) and

τ̃(μ) =

∫ μ

0

λdτ(λ) (7.1.28)

are spectral matrix functions of systems (7.0.7), (7.1.1), (7.1.5) and (7.1.6)–
(7.1.8) respectively;

(4) Conversely, every monotone non-decreasing matrix function τ(μ) on (0,∞)
for which condition (7.1.26) and statement (3) hold, is obtained from some
Stieltjes pair by formula (7.1.24).
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4. Dual matrix string equation. Let W (x, λ) be the solution of the canonical
system (7.0.7), (7.1.1) and let

ϕ(x, λ) = R∗(x)W (x, λ)

[
0
Im

]
. (7.1.29)

Then, since

W (x, λ) = I2m + iλJ

∫ x

0

R(t)R∗(t)W (t, λ)dt,

it is readily seen that

ϕ(x, λ) = r∗2(x) + iλ

∫ x

0

R∗(x)JR(t)ϕ(t, λ)dt. (7.1.30)

Hence, the operator V defined by (7.1.18) can be expressed in terms of ϕ as

(V f)(λ) =

∫ l

0

ϕ∗ (x, λ)R∗(x)f(x)dx. (7.1.31)

In the same way we obtain

ϕ̃(x, λ) = r̃∗2(x) + iλ

∫ x

0

R̃∗(x)JR̃(t)ϕ̃(t, λ)dt, (7.1.32)

(Ṽ f)(λ) =

∫ l

0

ϕ̃∗ (x, λ) R̃∗(x)f(x)dx. (7.1.33)

Theorem 7.5. If R(x) is defined by relation (7.1.5) and if p(x) and q(x) are invert-
ible for almost every point x ∈ (0, l), then ϕ(x, λ) is the solution of the differential
equation

−
(
p−1 d

dx
q−1

) (
q∗−1 d

dx
p∗−1

)
ϕ = λϕ (7.1.34)

with boundary condition(
p∗−1ϕ

)
(0, λ) = Im,

(
p∗−1ϕ

)′
(0, λ) = 0. (7.1.35)

Proof. Upon inserting R(x) into equation (7.1.30) we obtain

p∗−1(x)ϕ(x, λ) = Im + λ

∫ x

0

[N(t)−N(x)]p(t)ϕ(t, λ)dt

and
d

dx

[
p∗−1(x)ϕ(x, λ)

]
= −λq∗(x)q(x)

∫ x

0

p(t)ϕ(t, λ)dt. (7.1.36)

The stated conclusions follow directly from (7.1.36). �
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In the same way we deduce the following result.

Theorem 7.6. If R̃(x) is defined by relation (7.1.8) and if p(x) and q(x) are invert-
ible for almost every point x ∈ (0, l) then ϕ̃(x, λ) is the solution of the differential
equation

−
(
q∗−1 d

dx
p∗−1

) (
p−1 d

dx
q−1

)
ϕ̃ = λϕ (7.1.37)

with boundary conditions(
q−1ϕ̃

)
(0, λ) = 0,

(
q−1ϕ̃

)′
(0, λ) = (pp∗)(0). (7.1.38)

Notice that the original differential equation (7.1.34) may be obtained from
the dual differential equation (7.1.38) by interchanging p(t) and q∗(t) and con-
versely. However, the stated conclusions depend also on the change in boundary
conditions as a consequence of transfer from one system to the other. We stress
that Theorem 7.4 is valid for systems (7.1.34), (7.1.35) and (7.1.37), (7.1.38).

This section is based on our paper with H. Dym [35].

7.2 On reduction of the canonical system to two dual
differential systems

1. In this section we consider again the canonical system (7.0.7), (7.0.9). In Sec-
tion 7.1 we assumed that H(x) has the form (7.1.1), (7.1.2). Now we suppose that
H(x) is defined by (7.0.9).

In the introduction we reduced the canonical system (7.0.7), (7.0.9) to two
differential systems (7.0.12), (7.0.13) with boundary conditions (7.0.14), (7.0.15).

2. Now we apply the general spectral theory of canonical systems [149, 152], to
the case (7.0.7), (7.0.9). For this aim we introduce m× 1 vector function

F (λ) =

∫ l

0

[
w∗

12(x, λ)p
−1(x)g1(x) + w∗

22(x, λ)p(x)g2(x)
]
dx, l < ∞, (7.2.1)

where g1(x) and g2(x) are m× 1 vector functions such that∫ l

0

[g∗1(x)g1(x) + g∗2(x)g2(x)] dx < ∞. (7.2.2)

Further we investigate the case when the spectral m×m matrix function τ(λ) for
system (7.0.7), (7.0.9) is odd, that is,

τ(λ) = −τ(−λ). (7.2.3)
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Let us introduce the m× 1 vector functions

F1(λ) =

∫ l

0

w∗
12(x, λ) p

−1(x) g1(x) dx, (7.2.4)

F2(λ) =

∫ l

0

w∗
22(x, λ) p(x) g2(x) dx. (7.2.5)

In view of conditions (7.0.12), (7.0.14) the matrix function w12(x, λ) is odd with
respect to λ and in view of (7.0.13), (7.0.15) the matrix function w22(x, λ) is even
with respect to λ. Hence, according to (7.2.4), (7.2.5) the function F1(λ) is odd
and the function F2(λ) is even. Then it follows from formula (7.2.1) that

2

∫ ∞

0

F ∗
1 (λ) [dτ(λ)]F1(λ) =

∫ l

0

g∗1(x)g1(x)dx, (7.2.6)

2

∫ ∞

0

F ∗
2 (λ) [dτ(λ)]F2(λ) =

∫ l

0

g∗2(x)g2(x)dx. (7.2.7)

From relations (7.2.6), (7.2.7) we easily obtain the following assertion (see [152]):

Proposition 7.7. Let τ(λ) be a spectral matrix function satisfying condition (7.2.3).
Then

1) the matrix function τ1(λ), where

dτ1(λ) =

{
0, λ < 0,

2λdτ(
√
λ), λ ≥ 0

(7.2.8)

is a spectral one for system

− d

dx

(
p(x)

du1

dx

)
= λ2p(x)u1 (7.2.9)

with boundary condition

u1(0, λ) = 0,
du1

dx

∣∣∣∣
x=0

= p−1(0); (7.2.10)

2) the matrix function τ2(λ), where

dτ2(λ) =

{
0, λ < 0,

2dτ(
√
λ), λ ≥ 0

(7.2.11)

is a spectral one for system

− d

dx

(
p−1(x)

du2

dx

)
= λ2p−1(x)u2 (7.2.12)

with boundary condition

u2(0, λ) = Im,
du2

dx

∣∣∣∣
x=0

= 0. (7.2.13)
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In other words, system (7.2.12), (7.2.13) is an original one and system (7.2.9),
(7.2.10) is dual.

Remark 7.8. It is proved in our paper with V. Bolotnikov [13] that there exists
a spectral matrix function τ(λ) of problem (7.0.7), (7.0.9) satisfying condition
(7.2.3). A complete description of the spectral matrix functions of this type is
given in the same article [13].

3. Let us consider the boundary positive definite operator S acting in the space
L2
m(0, l) of the m× 1 vector functions and defined by formula

Sf =
d

dx

∫ l

0

s(x− t)f(t)dt, (7.2.14)

where s(x) is an m × m matrix function. The matrix function s(x) permits the
representation (see [148]):

s(x) =
d

dx

∫ ∞

−∞

(
1 +

iλx

1 + λ2
− eiλx

)
dτ(λ)

λ2
, (7.2.15)

where τ(λ) is a monotonically increasing m×m matrix function such that∫ ∞

−∞

d[Tr τ(λ)]

1 + λ2
< ∞. (7.2.16)

Owing to (7.2.15) the relation

s(x) = −s∗(−x) (7.2.17)

is valid. Let us note that relation (7.2.17) is a condition of the operator S (see
(7.2.14)) being self-adjoint.

Further we suppose that the condition

τ(λ) + τ(−λ) = const, −∞ < λ < ∞ (7.2.18)

is fulfilled. From formulas (7.2.15) and (7.2.18) we deduce the following assertion.

Lemma 7.9. Let s(x) permit representation (7.2.15), where τ(λ) satisfies condition
(7.2.18). Then relations

s(x) = −s(−x), 0 ≤ x ≤ l, (7.2.19)

v(iμ) + v∗(iμ) = 0, μ = μ, (7.2.20)

where

v(z) =

∫ ∞

−∞

(
1

λ− z
− λ

1 + λ2

)
dτ(λ), (7.2.21)

are valid.
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Let us also suppose that the operator S is invertible and let us introduce the
m×m matrix functions

N1(x) = S−1M(x), N2(x) = S−1Im, (7.2.22)

where
M(x) = s(x), 0 ≤ x ≤ l. (7.2.23)

Formulas (7.2.22) should be understood in the following way: every column of the
matrix on the left-hand side is obtained from the corresponding column of the
matrix on the right-hand side as a result of the application of the operator S−1.

It follows from relation (7.2.14), (7.2.17) and (7.2.19) that

SIm = M(x) +M(l − x), (7.2.24)

that is,
S(Im −N1) = M(l − x). (7.2.25)

Setting Uf = f(l − x) and taking into consideration equality (7.2.19), we have

USU = S. (7.2.26)

It follows from (7.2.25) (7.2.26) that

S
[
Im −N1(l − x)

]
= M(x),

that is,
N1(x) = 1−N1(l − x). (7.2.27)

As the operator S is positive definite and invertible, the operator

Sζf =
d

dx

∫ ζ

0

s(x− t)f(t)dt, f(x) ∈ L2
m(0, ζ), 0 < ζ ≤ l (7.2.28)

is positive definite and invertible too. Let us introduce the notation

(M1,M2)ζ =

∫ ζ

0

M∗
2 (x)M1(x)dx, (7.2.29)

where M1(x) and M2(x) are matrix functions.
Setting N1(x, ζ) = S−1

ζ M(x) we consider the expression

(
S−1
ζ M(x), Im

)
ζ
=

∫ ζ

0

N1(x, ζ)dx. (7.2.30)

According to (7.2.27) we have

N1(x, ζ) = Im −N1(ζ − x, ζ). (7.2.31)
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From (7.2.31) we obtain the equality∫ ζ

0

N1(x, ζ)dx = ζ −
∫ ζ

0

N1(ζ − x, ζ)dx,

that is, ∫ ζ

0

N1(x, ζ)dx =
1

2
ζ. (7.2.32)

In view of (7.2.30) equality (7.2.32) can be written in the form(
S−1
ζ M, Im

)
=

1

2
ζIm. (7.2.33)

Thus, the following statement is proved.

Lemma 7.10. Let the monotonically increasing m×m matrix function τ(λ) satisfy
conditions (7.2.16) and (7.2.18). If the operator S is bounded together with the
inverse one, equality (7.2.33) holds.

Remark 7.11. If τ(λ) is an absolutely continuous matrix function and

C1Im ≤ τ ′(λ) ≤ C2Im, 0 < C1 < C2 < ∞, −∞ < λ < ∞,

then the operators Sζ and S−1
ζ are bounded

We suppose in addition that the operator S admits the triangular factoriza-
tion

S = S−S∗
−, (7.2.34)

where the operators S− and S−1
− are bounded and low triangular (see Chapter 5,

Introduction).
Let

F1(x) = S−1
− M, F2(x) = S−1

− Im, (7.2.35)

then the Hamiltonian

H(ζ) =
d

dζ

⎡⎢⎣
(
S−1
ζ M,M

)
ζ

(
S−1
ζ M, Im

)
ζ(

S−1
ζ Im,M

)
ζ

(
S−1
ζ Im, Im

)
ζ

⎤⎥⎦ (7.2.36)

of system (7.0.7) has the form

H(ζ) =
{
F ∗
p (ζ)Fq(ζ)

}2
p,q=1

. (7.2.37)

Comparing formulas (7.2.33) and (7.2.36), (7.2.37) we obtain the equality

F ∗
1 (ζ)F2(ζ) =

1

2
Im. (7.2.38)
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Hence the matrix H(x) can be written in the form

H(x) =
1

2

[
Q(x) Im
Im Q−1(x)

]
(7.2.39)

where
Q(x) = 2F ∗

1 (x)F1(x), Q−1(x) = 2F ∗
2 (x)F2(x). (7.2.40)

Owing to (7.2.35) the inequalities∫ l

0

∥∥Q±1(x)
∥∥ dx < ∞ (7.2.41)

are valid.
Let us consider now the system

dY (x, λ)

dx
= iλJH(x)Y (x, λ), x ≥ 0. (7.2.42)

We write the matrix Y (x, z) in the block form

Y (x, z) = col [Y1(x, z), Y2(x, z)], (7.2.43)

where Y1(x, z) and Y2(x, z) are m×1 vector functions. Let us introduce the bound-
ary conditions

Y2(0, z) = 0. (7.2.44)

As was shown in the book [149, Ch. 4] the matrix function τ(λ) is a spectral one
for boundary problem (7.2.42), (7.2.44).

From the above we deduce the solution of the inverse spectral problem for
system (7.2.39), (7.2.42), (7.2.44) (see [149]).

Theorem 7.12. Let the given monotonically increasing m × m matrix function
τ(λ) (−∞ < λ < ∞) satisfy conditions (7.2.16) and (7.2.18) and be such that
the operator S defined by formulas (7.2.14), (7.2.15) is bounded together with the
inverse one and admits triangular factorization (7.2.34).

Then τ(λ) is a spectral matrix function of system (7.2.42), (7.2.44), where
H(x) has form (7.2.39) and

Q−1(x) = 2F ∗
2 (x)F2(x), F2(x) = S−1

− Im. (7.2.45)

Remark 7.13. In view of (7.2.36) formula (7.2.45) can be written in the form

Q−1(ζ) = 2
d

dζ

(
S−1
ζ Im, Im

)
ζ
. (7.2.46)

Replacing
Y (2x, λ) = U(x, λ)eixλ (7.2.47)
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we reduce system (7.2.39), (7.2.42) to the form

dU(x, λ)

dx
= iλJH1(x)U(x, λ), (7.2.48)

H1(x) =

[
P (x) 0
0 P−1(x)

]
, P (x) = Q(zx). (7.2.49)

We rewrite U(x, λ) in the form U(x, λ) = col
[
u1(x, λ), u2(x, λ)

]
. Then condition

(7.2.44) leads to the condition

u2(0, λ) = 0. (7.2.50)

Remark 7.14. System (7.2.48)–(7.2.50) coincides with system (7.0.7), (7.0.9) stud-
ied in the first part of this section.

The next assertion follows directly from the general spectral theory of canon-
ical systems (see [149, Ch. 4]).

Proposition 7.15. The set of spectral matrix functions τ(λ) of system (7.2.39),
(7.2.42), (7.2.44) on the segment [0, 2l] coincides with the set of spectral matrix
functions of system (7.2.48)–(7.2.50) on the segment [0, l].

Remark 7.16. Using Proposition 7.15 and Theorem 7.12 we can solve the inverse
spectral problem for string equation (7.0.12). In a number of works ( [25, 47, 79])
equation (7.0.12) is reduced to the Sturm–Liouville equation (7.0.16). We think
that Theorem 7.12 gives a more adequate approach to the corresponding inverse
problem.

7.3 Spectral data and uniqueness theorems

Let β(x) be a matrix of the form

β(x) = [β1(x) β2(x)], (7.3.1)

where β1(x) and β2(x) are m×m matrix functions satisfying the conditions

β2(x)β
∗
1(x) + β1(x)β

∗
2(x) = Im, 0 ≤ x ≤ l, (7.3.2)∥∥β′

k(x)
∥∥ ≤ c, 0 ≤ x ≤ l, k = 1, 2. (7.3.3)

Further set
H(x) = β∗(x)β(x). (7.3.4)

We use the following theorem (see [149, Ch. 8]).

Theorem 7.17. Assume that conditions (7.3.1)–(7.3.4) are satisfied. Then the ca-
nonical system (7.0.7) is uniquely determined by its spectral function τ(λ) and
α.
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We recall that the Weyl–Titchmarsh function of the corresponding canonical
system has the form

v(z) = α+

∫ ∞

−∞

(
1

λ− z
− λ

1 + λ2

)
dτ(λ). (7.3.5)

Comparing (7.2.21) and (7.3.5) we deduce that in case (7.2.39) we have

α = 0. (7.3.6)

To apply the formulated theorem we set

β1(x) =

√
Q(x)

2
, β2(x) =

√
Q−1(x)

2
. (7.3.7)

In this case relation (7.3.2) is fulfilled. Hence, we obtain the following assertions.

Corollary 7.18. Let the condition∥∥Q′(x)
∥∥ ≤ c, 0 ≤ x ≤ l (7.3.8)

be valid. Then the canonical system (7.0.7), (7.2.39) is uniquely determined by its
spectral m×m matrix function τ(λ).

Corollary 7.19. Let the condition∥∥P ′(x)
∥∥ ≤ c, 0 ≤ x ≤ l (7.3.9)

be valid. Then the canonical system (7.0.7), (7.2.49) is uniquely determined by its
spectral m×m matrix function τ(λ).

Remark 7.20. The analogue of Theorem 7.17 for case (7.0.7), (7.1.1) was deduced
in the book [149, Ch. 8].

7.4 Example

In this section we consider a concrete dual pair.

Example 7.21. Let m = 1 and

P (x) = exp
(−x2

)
. (7.4.1)

Setting

y1(x, λ) = u1(x, λ) exp

(
−x2

2

)
, (7.4.2)

y2(x, λ) = u2(x, λ) exp

(
x2

2

)
, (7.4.3)
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we rewrite equations (7.0.12), (7.0.13) in the form

− d2y1
dx2

+ x2y1 = (z − 1)y1, z = λ2, (7.4.4)

− d2y2
dx2

+ x2y2 = (z + 1)y2, z = λ2. (7.4.5)

Here conditions (7.0.14) and (7.0.15) take the forms

y1(0, λ) = 0, y′1(0, λ) = 1, (7.4.6)

y2(0, λ) = 1, y′2(0, λ) = 0. (7.4.7)

Boundary problem (7.4.5), (7.4.7) describes the harmonic oscillator (see [33]) and
has been well studied. It is known (see [33]) that the spectral function τ2(λ) of
this problem is a piecewise constant function with jumps

μk = σ2(λk + 0)− σ2(λk − 0) = 2
√
π
(2k)!

k!4k
(7.4.8)

in the points
λk = 4k (k = 0, 1, 2, . . .). (7.4.9)

In view of formulas (7.2.8) and (7.2.11), the spectral function τ1(λ) of the dual
boundary problem (7.4.4), (7.4.6) is also piecewise constant with the jumps

μ̃k = λkμk (k = 1, 2, . . .) (7.4.10)

in the points
λ̃k = λk (k = 1, 2, . . .). (7.4.11)

A number of concrete examples for the case (7.0.9) may be found in [31] and in
the paper of Krein [79].

7.5 On a mean value theorem in the class of Nevanlinna
functions and its applications

We consider the linear–fractional transformations (see (7.1.24)):

v(λ) = i
[
a(λ)P (λ) + b(λ)Q(λ)

] [
c(λ)P (λ) + d(λ)Q(λ)

]−1
, (7.5.1)

where a(λ), b(λ), c(λ) and d(λ) are fixed m×m matrix functions.

Definition 7.22. A pair of m ×m matrix functions P (λ) and Q(λ) meromorphic
in the open upper half-plane C+ is called a Nevanlinna pair if

P ∗(λ)P (λ)+Q∗(λ)Q(λ) > 0, P ∗(λ)Q(λ)+Q∗(λ)P (λ) ≥ 0, Imλ > 0. (7.5.2)
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We introduce the (2m)× (2m) matrices

A(λ) =

[
a(λ) b(λ)
c(λ) d(λ)

]
, J =

[
0 Im
Im 0

]
. (7.5.3)

Definition 7.23. We say that A(λ) satisfies the plus-condition if relations

g ∈ C
2m, g �= 0, g∗Jg ≥ 0 (7.5.4)

imply
h∗Jh > 0, h = A(λ)g, Imλ > 0. (7.5.5)

We denote by N (A) the class of all matrix functions of form (7.5.1) where
P (λ), Q(λ) is any Nevanlinna pair and A(λ) is the matrix function of form (7.5.3)
satisfying the plus-condition.

It is well-known that the matrix-function v(λ) ∈ N (A) have the property

v(λ)− v∗(λ)
λ− λ

≥ 0, Imλ > 0. (7.5.6)

Further we consider two special cases of Nevanlinna pairs

P (λ) = θ, Q(λ) = Im, θ = θ∗ > 0 (7.5.7)

and
P (λ) = θ, Q(λ) = iqIm, θ = θ∗ > 0, q ∈ R, (7.5.8)

where R is the real axis. With (7.5.7) and (7.5.8) we associate the corresponding
functions

v(λ) = i
(
a(λ)θ + b(λ)

)(
c(λ)θ + d(λ)

)−1
(7.5.9)

and
v(q, λ) = i

(
a(λ)θ + iqb(λ)

)(
c(λ)θ + iqd(λ)

)−1
. (7.5.10)

Notice that the Fourier type transformations corresponding to v(λ) have certain
extremal properties ( [129, Theorem 3]). The functions v(q, λ) generate orthogonal
spectral functions and are also extremal. We shall show that v(λ) is the mean
of v(q, λ), where q changes from −∞ to +∞. This implies that the extremal
properties of v(λ) are directly connected with the extremal properties of v(q, λ).

Theorem 7.24. Let the matrix function A(λ), defined by (7.5.3), satisfy the plus-
condition. We suppose that

det [c(λ)θ − d(λ)] �= 0 (7.5.11)

almost everywhere in C+. Then

v(λ) =
1

π

∫ ∞

−∞
v(q, λ)

dq

1 + q2
, (7.5.12)

where v(λ) and v(q, λ) are defined by relations (7.5.9) and (7.5.10) respectively.
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Proof. First prove that

det [c(λ)P (λ) + d(λ)Q(λ)] �= 0, λ ∈ C+ (7.5.13)

for Nevanlinna pair P (λ), Q(λ). Suppose that (7.5.13) does not hold. That is, for
some λ ∈ C+ and f �= 0 the equality

(
c(λ)P (λ) + d(λ)Q(λ)

)
f = 0 is valid. Hence

we have (
A(λ)g

)∗
J
(
A(λ)g

)
= 0, g =

[
P (λ)
Q(λ)

]
f. (7.5.14)

Using (7.5.2) we get

g∗Jg ≥ 0, g �= 0. (7.5.15)

By the plus-condition the inequality (7.5.15) implies(
A(λ)g

)∗
J
(
A(λ)g

)
> 0,

which contradicts (7.5.14). The relation (7.5.13) is proved.

It follows from (7.5.13) that

det
[
c(λ)θ − izd(λ)

] �= 0, z ∈ C+ ∪ R, λ ∈ C+. (7.5.16)

We have also

det d(λ) �= 0, λ ∈ C+. (7.5.17)

Indeed, let d(λ)f = 0, f �= 0. We put g = col [0 f ]. Then we obtain

g∗Jg = 0, h∗Jh = 0, h = A(λ)g. (7.5.18)

In view of the plus-condition we obtain the inequality h∗Jh > 0, which contradicts
(7.5.18). Thus, inequality (7.5.17) is proved.

Now, omitting the variable λ in the notation, put

u = −id−1cθ, X1 = (ibu− aθ)(Im + u2)−1d−1, (7.5.19)

X2 = −X1d, X3 = (iaθ −X2)(idu)
−1. (7.5.20)

The matrix functions u(λ) and Xk (k = 1, 2, 3) are well-defined. Indeed, the invert-
ibility of d(λ) follows from (7.5.17). The invertibility of Im+u2(λ) follows from the
inequalities det (u(λ)± iIm) �= 0. Here, the inequality det (u(λ) + iIm) �= 0 holds
by the assumption (7.5.11). The relation det (u(λ)− iIm) �= 0 is a particular case
of (7.5.16). The invertibility of u(λ) follows from (7.5.16) too.

Now we introduce the notation

Z(λ) =
qX1(λ) +X3(λ)

1 + q2
+X2(λ)

(
qIm + u(λ)

)−1(
id(λ)

)−1
. (7.5.21)
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The definitions of Xk in (7.5.19) and (7.5.20) imply

i (1 + q2)Z d (q Im + u)

= (1 + q2)X2 + i (q X1 +X3) d (q Im + u)

= q2(X2 + iX1 d) + i q (X1 d u+X3 d) +X2 + iX3 d

= i q
(
X1 d u+ (a θ +X1 d)u

−1
)
+ i a θ

= i q
(
X1 d (Im + u2)u−1 + a θ u−1

)
+ i a θ

= −q b+ i a θ. (7.5.22)

We need the relation

v(q, λ)(id(λ))(qIm + u(λ)) = i(a(λ)θ + iqb(λ)) (7.5.23)

which follows from (7.5.10) and the definition of u(λ) in (7.5.19). From (7.5.21)–
(7.5.23) we obtain

v(q, λ)

1 + q2
= Z(λ). (7.5.24)

In view of (7.5.16) the spectrum of u(λ) belongs to C−. Hence for the principal
value of the integral we get

1

i

∫ ∞

−∞
X2(qIm + u)−1d−1 dq

=
1

2i
X2

∫ ∞

−∞

((
qIm + u

)−1 − (qIm − u
)−1
)
dq d−1 = πX2d

−1. (7.5.25)

It is evident that ∫ ∞

−∞

q

1 + q2
dq = 0,

∫ ∞

−∞

dq

1 + q2
= π. (7.5.26)

By (7.5.21), (7.5.24) and (7.5.25), (7.5.26) we have

1

π

∫ ∞

−∞
v(q, λ)

dq

1 + q2
= X2d

−1 +X3. (7.5.27)

From (7.5.19) and (7.5.20) we obtain

X2 =
(
bu+ iaθ

)(
Im + u2

)−1
, (7.5.28)

X3 = aθu−1d−1 + i
(
bu+ iaθ

)(
Im + u2

)−1
u−1d−1. (7.5.29)

Using (7.5.28) and (7.5.29) we derive

X2d
−1 +X3 = i

(
aθ + b

)(
d+ idu

)−1
. (7.5.30)
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From the definitions of u and v and using formula (7.5.30) we deduce that

X2d
−1 +X3 = i

(
aθ + b

)(
cθ + d

)−1
= v. (7.5.31)

Formulas (7.5.27) and (7.5.31) yield (7.5.12). By the theorem’s conditions, as-
sumption (7.5.11) holds everywhere in C+, excluding, perhaps, isolated points.
Let λ0 be such an isolated point. Then (7.5.12) is valid in a neighborhood of λ0.
According to (7.5.13), the functions v(q, λ) are bounded in q and in λ in some
neighborhood of λ0. Now it is immediate that formula (7.5.12) holds at λ = λ0 as
the limit of equalities (7.5.12), where λ tends to λ0. �
Remark 7.25. Theorem 7.24 is closely related to the paper [48]. This paper was
dedicated to the case when n = 1, and a(λ)d(λ)− b(λ)c(λ) = 1.

Example 7.26 (Canonical system). A canonical system has the form (7.0.7), where
W (x, λ) is a (2m) × (2m) matrix function and W (0, λ) = I2m. We introduce the
(2m)× (2m) matrix functions

A(x, λ) = W ∗(x, λ), A(λ) = A(l, λ).

By (7.0.7) we have∫ l

0

A(x, λ)H(x)A(x, z)dx =
A(λ)JA∗(z)− J

λ− z
. (7.5.32)

We assume that the positive type condition∫ l

0

H(x)dx > 0 (7.5.33)

is fulfilled. Then, according to [52, p. 249] we get∫ l

0

A(x, λ)H(x)A∗(x, λ)dx > 0. (7.5.34)

From (7.5.32) and (7.5.34) we have

A(λ)JA(λ) > J, λ ∈ C+ (7.5.35)

and therefore the plus-condition is satisfied. According to W (0, λ) = I2m we get
A(x, 0) = I2m. Thus by partitioning (7.5.3) we have

det
(
c(0)θ − d(0)

)
= det

(−I2m
) �= 0. (7.5.36)

Hence the inequality
det
(
c(λ)θ − d(λ)

) �= 0 (7.5.37)

holds almost everywhere. So under the positivity type condition (7.5.33) the con-
ditions of Theorem 7.24 are fulfilled. Then the Weyl–Titchmarsh matrix function
of the canonical system satisfies (7.5.12).
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Remark 7.27. Canonical systems include Dirac type systems, matrix Schrödinger
equations and matrix string equations [145,149].

Remark 7.28. This section is based on our paper with A.L. Sakhnovich [131].

7.6 Dual discrete canonical systems and
dual orthogonal polynomials

1. In this section we introduce the duality notion for the canonical discrete sys-
tems

W (k, z)−W (k − 1, z) = izJγ(k)W (k − 1, z), k ≥ 1, (7.6.1)

where W (k, z), γ(k) and J are (2m)× (2m) matrices and

J =

[
0 Im
Im 0

]
, γ(k) ≥ 0, W (0, z) = I2m. (7.6.2)

The well-known recurrent relations

bkϕ(k + 1, z) + akϕ(k, z) + b∗k−1ϕ(k − 1, z) = zϕ(k, z), ϕ(−1, 0) = 0, k ≥ 0,
(7.6.3)

in which bk, ak, ϕ(k, z) are m ×m matrices, can be reduced to the form (7.6.1),
(7.6.2). The matrix polynomials ϕ(k, z) are orthogonal with respect to the corre-
sponding spectral m×m matrix function τ(λ), that is,∫ ∞

0

ϕ(k, λ)[dτ(λ)]ϕ∗(l, λ) = δklIm, (7.6.4)

where δkl is the Kronecker symbol. In this section we present a method to construct
the system

b̃kϕ̃(k + 1, z) + ãkϕ̃(k, z) + b̃k−1ϕ̃(k − 1, z) = zϕ̃(k, z), (7.6.5)

which is dual to the original system (7.6.3). The matrix polynomials ϕ̃(k, z) are
orthogonal with respect to the corresponding spectral m×m matrix function τ̃(λ),
that is, ∫ ∞

0

ϕ̃(k, λ)[dτ̃(λ)]ϕ̃∗(l, λ) = δklIm. (7.6.6)

The description of all spectral matrix functions τ(λ) and τ̃(λ) satisfying relations

τ(λ) = τ̃(λ) = 0, λ < 0; τ̂(λ) =

∫ λ

0

μdτ(μ), λ > 0 (7.6.7)

is given. The obtained results are new even for the scalar case (m = 1).
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2. Operator identities. The method of operator identities [143, 145, 149] plays
a significant role in this section. We shall write here the fundamental operator
identities referring to the problem under consideration.

We denote by l2m(N) the space of vector-columns

�f = col
[
f0, f1, . . . , fN−1

]
with the norm ∥∥∥�f∥∥∥2 =

N−1∑
k=0

f∗
kfk,

where fk are m× 1 vectors. In the space l2m(N) we introduce the operators B and
C:

(B �f)k = qk

k−1∑
j=0

pjfj , 1 ≤ k ≤ N − 1, (7.6.8)

(B �f)0 = 0, (7.6.9)

(C �f)k = −p∗k
k∑

j=0

q∗j fj , 0 ≤ k ≤ N − 1. (7.6.10)

Here pk and qk are m×m matrices. It follows from (7.6.8)–(7.6.10) that

(
(B∗ − C) �f

)
k
= p∗k

N−1∑
j=0

q∗j fj , 0 ≤ k ≤ N − 1. (7.6.11)

Equality (7.6.11) can be written in the form

B∗ − C = Π2Π
∗
1, (7.6.12)

where

(Π1g)k = qkg, (Π2g)k = p∗kg, g ∈ G, 0 ≤ k ≤ N − 1 (7.6.13)

(G is a space of the m× 1 vectors). From identity (7.6.12) we deduce the relations

CB −B∗C∗ = B∗Π1Π
∗
2 −Π2Π

∗
1B, (7.6.14)

BC − C∗B∗ = Π1Π
∗
2B

∗ −BΠ2Π
∗
1. (7.6.15)

We introduce the operators

A = CB, Φ1 = B∗Π1, Φ2 = iΠ2, (7.6.16)

Ã = BC, Φ̃1 = −iΠ1, Φ̃2 = BΠ2. (7.6.17)
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Using notations (7.6.16) and (7.6.17) we can write relations (7.6.14) and (7.6.15)
in the form

A−A∗ = i (Φ1Φ
∗
2 +Φ2Φ

∗
1) , (7.6.18)

Ã− Ã∗ = i
(
Φ̃1Φ̃

∗
2 + Φ̃2Φ̃

∗
1

)
. (7.6.19)

From (7.6.8) and (7.6.9) we have

(A�f)k = −p∗k
k∑

j=1

q∗j qj
j−1∑
l=0

plfl, k ≥ 1, (7.6.20)

(A�f)0 = 0. (7.6.21)

Formula (7.6.20) can be rewritten in the form

(A�f)k = −p∗k
k−1∑
l=0

⎛⎝ k∑
j=l+1

q∗j qj

⎞⎠ plfl, k ≥ 1. (7.6.22)

Setting

L(k) =
k∑

j=1

q∗j qj , k ≥ 1, L(0) = 0, (7.6.23)

we represent (7.6.22) in the form

(A�f)k = −p∗k
k−1∑
j=0

(
L(k)− L(j)

)
pjfj , k ≥ 1. (7.6.24)

Using (7.6.13) and (7.6.16) we obtain

(Φ2g)k = ip∗kg, 0 ≤ k ≤ N − 1, (7.6.25)

(Φ1g)k = p∗k
(
L(N − 1)− L(k)

)
g, 0 ≤ k ≤ N − 1. (7.6.26)

According to (7.6.8) and (7.6.9) the equality

(Ã �f)k = −qk

k−1∑
j=0

(
M(k − 1)−M(j − 1)

)
q∗j fj (7.6.27)

is valid. Here

M(k) =

k∑
j=0

pjp
∗
j , k ≥ 0, M(−1) = 0.
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From (7.6.13) and (7.6.17) we deduce that

(Φ̃1g)k = −iqkg, 0 ≤ k ≤ N − 1, (7.6.28)

(Φ̃2g)k = qkM(k − 1)g, 0 ≤ k ≤ N − 1. (7.6.29)

Let orthogonal projectors Pk be defined by the equality

Pk
�h = �hk, 1 ≤ k ≤ N, P0

�h = 0, (7.6.30)

where

�h = col [h1, h2, . . . , hmN ], �hk = col [h1, h2, . . . , hmk, 0, 0, . . . , 0].

It is obvious that the relations

A∗Pk = PkA
∗Pk, (Pk − Pk−1)A(Pk − Pk−1) = 0, (7.6.31)

Ã∗Pk = PkÃ
∗Pk, (Pk − Pk−1)Ã(Pk − Pk−1) = 0 (7.6.32)

are valid.

3. Canonical systems (discrete case). In this section the following systems of
difference equations are considered:

W (k, z)−W (k − 1, z) = izJγ(k)W (k − 1, z), k ≥ 1 (7.6.33)

and
W̃ (k, z)− W̃ (k − 1, z) = izJγ̃(k)W̃ (k − 1, z), k ≥ 1, (7.6.34)

where W (k, z), W̃ (k, z), γ(k) and γ̃(k) are (2m)× (2m) matrices, k = 0, 1, 2, . . .,

J =

[
0 Im
Im 0

]
, W (0, z) = W̃ (0, z) = I2m. (7.6.35)

The matrices γ(k) and γ̃(k) are defined by the relations

γ(k) = σ(k)− σ(k − 1), γ̃(k) = σ̃(k)− σ̃(k − 1), (7.6.36)

where
σ(k) = Π∗PkΠ, σ̃(k) = Π̃∗PkΠ̃, 1 ≤ k ≤ N. (7.6.37)

Here we use the notation

Π =
[
Φ1 Φ2

]
, Π̃ =

[
Φ̃1 Φ̃2

]
. (7.6.38)

In view of formulas (7.6.25), (7.6.26) and (7.6.28), (7.6.29) the equalities

γ(k) =

[ {
L(N − 1)L(k − 1)

}
pk−1

−ipk−1

] [
p∗k−1

{
L(N − 1)− L(k − 1)

}
ip∗k−1

]
,

(7.6.39)

γ̃(k) =

[
iq∗k−1

M(k − 2)q∗k−1

] [−iqk−1 qk−1M(k − 2)
]

(7.6.40)
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(k ≥ 1), are valid. It is obvious that

γ(k) ≥ 0, γ̃(k) ≥ 0, (7.6.41)

γ(k)Jγ(k) = γ̃(k)Jγ̃(k) = 0. (7.6.42)

We shall call the system (7.6.34) dual to the system (7.6.33).

4. Spectral theory. Let us recall the main notions of the spectral theory [149,
Ch. 8] of systems (7.6.33). We suppose that

rank q(k) = rank p(k) = m, 0 ≤ k ≤ N − 1. (7.6.43)

With canonical systems (7.6.33) and (7.6.34) we associate the matrix functions

v(z) = i
(
a(z)R(z) + b(z)Q(z)

)(
c(z)R(z) + d(z)Q(z)

)−1
(7.6.44)

and
ṽ(z) = i

(
ã(z)R(z) + b̃(z)Q(z)

)(
c̃(z)R(z) + d̃(z)Q(z)

)−1
. (7.6.45)

The coefficient matrices of the linear–fractional (Möbius) transformations (7.6.44)
and (7.6.45) have the forms

W ∗(l, z) =
[

a(z) b(z)
c(z) d(z)

]
(7.6.46)

and

W̃ ∗(l, z) =

[
ã(z) b̃(z)

c̃(z) d̃(z)

]
. (7.6.47)

Meromorphic m×m matrix function R(z) and Q(z) satisfy the relations

det
(R∗(z)R(z) +Q∗(z)Q(z)

) �= 0, Im z > 0, (7.6.48)

R∗(z)Q(z) +Q∗(z)R(z) ≥ 0, Im z > 0. (7.6.49)

The matrix functions v(z) and ṽ(z) belong to the Nevanlinna class and admit the
representations

v(z) = βz + α+

∫ ∞

−∞

(
1

λ− z
− λ

1 + λ2

)
dτ(λ) (7.6.50)

and

ṽ(z) = β̃z + α̃+

∫ ∞

−∞

(
1

λ− z
− λ

1 + λ2

)
dτ̃(λ), (7.6.51)

where α = α∗, α̃ = α̃∗, β ≥ 0, β̃ ≥ 0, τ(λ) and τ̃(λ) are monotonically increasing
m × m matrix functions. We shall show that τ(λ) and τ̃(λ) are spectral matrix
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functions of canonical systems (7.6.33) and (7.6.34) respectively. Let us consider
now the canonical system

Y (k, z)− Y (k − 1, z) = izJγ(k)Y (k − 1, z), 1 ≤ k ≤ N, (7.6.52)

where
Y (k, z) = col

[
Y1(k, z) Y2(k, z)

]
,

Y1(k, z), Y2(k, z) are vector functions of m × 1 order. We add the boundary con-
dition

D2Y1(0, z) +D1Y2(0, z) = 0. (7.6.53)

Here D1 and D2 in (7.6.53) are matrices of m×m order. We shall suppose that

D1D
∗
2 +D2D

∗
1 = 0, D1D

∗
1 +D2D

∗
2 = Im. (7.6.54)

We denote by l2m(γ,N) the space of the vectors

�g = col
[
g(0) g(1) . . . g(N − 1)

]
,

where g(k) are vector columns of order 2m. The norm in l2m(γ,N) is defined by
the equality ∥∥�g∥∥2

γ
=

N−1∑
k=0

g∗(k)γ(k + 1)g(k).

We associate with system (7.6.52) and conditions (7.6.53) the operator

VN�g =
N−1∑
k=0

[
D1 D2

]
W ∗(k, u) γ(k + 1) g(k), (7.6.55)

that maps vectors from l2m(γ,N) into vectors f(u) (−∞ < u < ∞) of order m.

Definition 7.29. A monotonically increasing matrix function τ(u) (−∞ < u < ∞)
of m×m order is called a spectral matrix function of system (7.6.52), (7.6.53) if
the corresponding operator VN maps l2m(γ,N) isometrically into l2m(τ).

The inner product in l2m(τ) is defined by formula

(
f1(u), f2(u)

)
=

∫ ∞

−∞
f∗
2 (u)[dτ(u)]f1(u).

Without loss of generality (see [149]) we can suppose that

D1 = 0, D2 = Im,

that is, the boundary condition has the form

Y1(0, z) = 0. (7.6.56)
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Let us consider the system

Ỹ (k, z)− Ỹ (k − 1, z) = iz J γ̃(k) Ỹ (k − 1, z), 1 ≤ k ≤ N (7.6.57)

and the boundary condition
Ỹ1(0, z) = 0. (7.6.58)

We denote by τ̃(u) the spectral matrix function of system (7.6.57), (7.6.58). The
following theorem follows directly from results of the book [149, Ch. 8].

Theorem 7.30. Let operators A and Ã be defined by formulas (7.6.24) and (7.6.27)
respectively, and let the following conditions be fulfilled:

rank pk = rank qk = m. (7.6.59)

Then the following assertions are valid.

1. Let v(z) and ṽ(z) admit representations (7.6.44) and (7.6.45), respectively.

Then parameters β and β̃ from (7.6.50) and (7.6.51) are equal to zero. The
matrix functions τ(u) and τ̃(u) from (7.6.50) and (7.6.51) are spectral matrix
functions of systems (7.6.33) and (7.6.34), respectively.

2. Let τ(u) and τ̃(u) be spectral m×m matrix functions of systems (7.6.33) and
(7.6.34). Then there exist α and α̃ such that corresponding matrix functions

v(z) = α+

∫ ∞

−∞

(
1

u− z
− u

1 + u2

)
dτ(u)

and

ṽ(z) = α̃+

∫ ∞

−∞

(
1

u− z
− u

1 + u2

)
dτ̃(u)

can be represented in forms (7.6.44) and (7.6.45), respectively.

7.7 Classical discrete systems. Examples

1. In this section we shall show how systems (7.6.33) and (7.6.34) can be reduced
to the classic form

bkϕ(k + 1, z) + αkϕ(k, z) + b∗k−1ϕ(k − 1, z) = zϕ(k, z), 0 ≤ k ≤ N − 1,

ϕ(−1, z) = 0, (7.7.1)

where ak, bk are m × m matrices and ak = a∗k, det bk �= 0. Let us represent the
solution W (k, z) of system (7.6.33) in the block form

W (k, z) =
{
wij(k, z)

}2
i,j=1

,

where all the blocks wij(k, z) are of m×m order.
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We consider the m×m matrix functions

ϕ1(k, z) = r∗1(k)w11(k, z) + r∗2(k)w21(k, z), 0 ≤ k ≤ N − 1, (7.7.2)

ϕ2(k, z) = r∗1(k)w12(k, z) + r∗2(k)w22(k, z), 0 ≤ k ≤ N − 1, (7.7.3)

where
r1(k) =

[
L(N − 1)− L(k)

]
pk, r2(k) = −ipk. (7.7.4)

It follows from (7.6.33) that

w1s(k, z)− w1s(k − 1, z) = izr2(k − 1)ϕs(k − 1, z), (7.7.5)

w2s(k, z)− w2s(k − 1, z) = izr1(k − 1)ϕs(k − 1, z), (7.7.6)

s = 1, 2.

From (7.7.3) we obtain

r∗−1
2 (k)ϕ2(k, z) = r∗2

−1(k)r∗1(k)w12(k, z) + w22(k, z), 0 ≤ k ≤ N − 1. (7.7.7)

Using the notation
Δϕ(k) = ϕ(k)− ϕ(k − 1)

we deduce from (7.7.7) the relation

Δ
[
r∗2

−1(k)ϕ2(k, z)
]
= Δ

[
r∗2

−1(k)r∗1(k)w12(k, z)
]
+Δw22(k, z), 1 ≤ k ≤ N − 1,

(7.7.8)
ϕ2(0, z) = r∗2(0) = ip∗0. (7.7.9)

In view of (7.7.4), (7.7.5) and (7.7.8) the relation

Δ
[
r∗2

−1(k)ϕ2(k, z)
]
=
(
Δ
[
r∗2

−1(k)r∗1(k)
])

w12(k, z) (7.7.10)

holds. We have taken into account that

r∗1(k − 1) r2(k − 1) + r∗2(k − 1) r1(k − 1) = 0. (7.7.11)

It follows from (7.6.23) and (7.7.4) that

Δ
[
r∗2

−1(k)r∗1(k)
]
= iq∗kqk, 1 ≤ k ≤ N − 1. (7.7.12)

According to (7.7.9), (7.7.10) and (7.7.12) we have

−Δ
{
q−1
k q∗k

−1Δ
[
p∗k

−1ϕ(k, z)
]}

= zpk−1ϕ(k − 1, z), 2 ≤ k ≤ N − 1, (7.7.13)

ϕ(0, z) = p∗0, ϕ(1, z) = p∗1(1− zq∗1q1p0p
∗
0), (7.7.14)

where
ϕ(k, z) = −iϕ2(k, z). (7.7.15)
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The equation (7.7.13) is an analogue of the matrix string equation. The equation
(7.7.13) can be rewritten in the classic form (7.7.1), where

as = p−1
s

(
q−1
s+1q

∗−1
s+1 + q−1

s q∗s
−1
)
p∗s

−1, s ≥ 1, (7.7.16)

a0 = p−1
0 q−1

1 q∗1
−1p∗0

−1, (7.7.17)

bs = −p−1
s q−1

s+1q
∗−1
s+1p

∗−1
s+1 , s ≥ 0. (7.7.18)

We note that the second boundary condition in (7.7.14) can be omitted; it follows
from formulas (7.7.1) and (7.7.17). In terms of equation (7.7.1) formula (7.6.55)
takes the form

F (u) = V �f =

N−1∑
k=0

ϕ∗(k, u)fk, (7.7.19)

where
fk = r∗1(k)g1(k) + r∗2(k)g2(k).

According to Definition 7.29 the spectral matrix function τ(u) of system (7.7.1)
can be characterized by the relation∫ ∞

−∞
F ∗(u)[dτ(u)]F (u) =

N−1∑
k=0

f∗
kfk,

as the relation
N−1∑
k=0

g∗(k)γ(k + 1)g(k) =

N−1∑
k=0

f∗
kfk

holds. Now we shall consider the dual system (7.6.34) and introduce the matrix
function

ϕ̃2(k, z) = r̃∗1(k)w̃12(k, z) + r̃∗2(k)w̃22(k, z), (7.7.20)

where
r̃1(k) = q∗k, r̃2(k) = −iM(k − 1)q∗k. (7.7.21)

As in the case of system (7.6.33) we obtain the relations

Δ
{
p∗−1
k−1p

−1
k−1Δ

[
q−1
k ϕ̃(k, z)

]}
= zq∗k−1ϕ(k − 1, z), 2 ≤ k ≤ N − 1, (7.7.22)

ϕ̃(0, z) = 0, ϕ̃(1, z) = p0p
∗
0, (7.7.23)

where
ϕ̃(k, z) = iϕ̃2(k, z). (7.7.24)

It follows from (7.7.22) that

zψ(k, z) = b̃kψ(k+1, z)+ ãk+1ψ(k, z)+b∗k−1ψ(k−1, z), 0 ≤ k ≤ N−2, (7.7.25)

ψ(0, z) = p0p
∗
0. (7.7.26)
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Here we use the notation

ψ(k, z) = ϕ̃(k − 1, z), 0 ≤ k ≤ N − 2, (7.7.27)

b̃k = −q∗−1
k+1p

∗−1
k+1p

−1
k+1q

−1
k+2, k ≥ 0, (7.7.28)

ãk = q∗−1
k+1

(
p∗−1
k+1p

−1
k+1 + p∗−1

k p−1
k

)
q−1
k+1, k ≥ 0. (7.7.29)

According to Definition 7.29 the spectral matrix τ̃(λ) of system (7.7.25), (7.7.26)
can be defined by the relation∫ ∞

−∞
F̃ ∗(u)[dτ̃(u)]F̃ (u) =

N−2∑
k=0

f∗
kfk, where F̃ (u) = Ṽ �f =

N−2∑
k=0

ψ∗(k, u)fk.

2. On the connection between τ(u) and τ̃(u). Now we shall consider the following
interpolation problem.

Problem 7.31. Let the operator identities (7.6.18), (7.6.19) be fulfilled. It is neces-
sary to find monotonically increasing m×m matrix functions τ(u) and τ̃(u) such
that representations

IH =

∫ ∞

−∞

(
IH −Au

)−1
Φ2[dτ(u)]Φ

∗
2

(
E −A∗u

)−1
, (7.7.30)

IH =

∫ ∞

−∞

(
IH − Ãu

)−1
Φ̃2[dτ̃(u)]Φ̃

∗
2

(
IH − Ã∗u

)−1
(7.7.31)

hold and

τ(u) = τ̃(u) = 0, u < 0; τ̃(u) =

∫ u

0

s dτ(s), u > 0. (7.7.32)

(Here H = l2m(N), IH is the identity operator in the space H.)
With operator identity (7.6.12) we associate the (2m)×(2m) matrix function

Θ(z) =

{
I2m + z

[
Π∗

1C
∗

−Π∗
2

] (
I −B∗C∗z

)−1 [
Π2 CΠ1

]}
Γ. (7.7.33)

Here

Γ =

[
Im Π∗

1Π1

0 Im

]
. (7.7.34)

We represent Θ(z) in the block form

Θ(z) = {Θij(z)}2i,j=1 ,

where all the blocks Θij(z) are of m×m order.
From the results of article [13] we directly deduce the following assertions.
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Theorem 7.32. Let operators B, C and Π1, Π2 be defined by formulas (7.6.8)–
(7.6.10) and (7.6.13), the following condition being fulfilled:

det pk �= 0, det qk �= 0, k ≥ 0. (7.7.35)

The matrix functions τ(λ) and τ̃(λ) are solutions of interpolation Problem 7.31 if
and only if the matrix function

s(z) =

∫ ∞

0

dτ(λ)

λ− z
(7.7.36)

can be represented in the form

s(z) =
[
Θ11(z)R(z) + Θ12(z)Q(z)

] [
Θ21R(z) + Θ22(z)Q(z)

]−1
, (7.7.37)

where R(z), Q(z) are a Stieltjes pair.

Theorem 7.33. Let the conditions of Theorem 7.32 be fulfilled. Matrix functions
τ(λ) and τ̃(λ) satisfying relations (7.7.32) are spectral matrix functions of corre-
sponding systems (7.7.14), (7.7.15) and (7.7.25), (7.7.26) if and only if the matrix
function s(z) defined by formula (7.7.36) can be represented in form (7.7.37).

It follows from Theorems 7.32 and 7.33 that the set of the solutions of inter-
polation Problem 7.31 coincides with the set of solutions of the spectral problem
for the corresponding systems.

Remark 7.34. Let the conditions of Theorem 7.32 be fulfilled. Then the following
assertions are valid.

1. If τ(λ) is a spectral m×m matrix function of system (7.7.14), (7.7.15) such
that τ(λ) = 0 when λ < 0, then

τ̃(λ) =

∫ λ

0

s dτ(s) (7.7.38)

is a spectral matrix function of system (7.7.25), (7.7.26).

2. If τ̃(λ) is a spectral m×m matrix function of system (7.7.25), (7.7.26) such
that τ̃(λ) = 0 when λ < 0, then there exists a spectral matrix function of
system (7.7.14), (7.7.15) connected with τ̃(λ) by relation (7.7.38).

3. On roots of matrix orthogonal polynomials. As it is known [148] the spectral
m × m matrix function τ(λ) and the sequence of the matrix polynomials ϕn(z)
(n = 0, 1, 2, . . .) correspond to difference system (7.7.1). The matrix polynomials
ϕn(z) are such that ϕ0(z) = Im and

bkϕk+1(z) + akϕk(z) + b∗k−1ϕk−1(z) = zϕk(z), (7.7.39)
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where ak = a∗k, det bk �= 0. The polynomials form an orthogonal system, that is,∫ β

α

ϕj(λ)[dτ(λ)]ϕ
∗
k(λ) = δjkIm, (7.7.40)

where −∞ ≤ α, β ≤ ∞, 0 ≤ j, k < ∞.

Theorem 7.35. The roots of the polynomials detϕn(z) are real and are located in
the interval (α, β).

Proof. Let z0 be a root of detϕn(z). Then for some constantm×1 vector h (h �= 0)
the equality

h∗ϕn(z0) = 0 (7.7.41)

is fulfilled.
Let us also note that in view of (7.7.40) the relation∫ β

α

ϕn(λ)[dτ(λ)]ψ
∗
l (λ) = 0, (7.7.42)

where ψl(z) is an m × m matrix of degree l and l < n, is valid. It follows from
relations (7.7.41) and (7.7.42) that

h∗
∫ β

α

ϕn(λ)[dτ(λ)]
ϕ∗
n(λ)

λ− z0
h = 0. (7.7.43)

We shall write relations (7.7.43) in the form

z0h
∗
∫ β

α

ϕn(λ)

λ− z0
[dτ(λ)]

ϕ∗
n(λ)

λ− z0
h = h∗

∫ β

α

λ
ϕn(λ)

λ− z0
[dτ(λ)]

ϕ∗
n(λ)

λ− z0
h = 0. (7.7.44)

From formula (7.7.40) we deduce the representation

h∗ ϕn(λ)

λ− z0
=

n−1∑
k=0

c∗kϕk(λ), (7.7.45)

where ck are m× 1 vectors. Hence the inequality

h∗
∫ β

α

ϕn(λ)

λ− z0
[dτ(λ)]

ϕ∗
n(λ)

λ− z0
h =

n−1∑
k=0

c∗kck > 0 (7.7.46)

is valid. Thus formula (7.7.44) signifies that z0 is the centre of gravity of the mass
distribution on the segment [α, β]. Thus the estimation α ≤ z0 ≤ β holds. Let us
show that z0 �= α. We shall suppose that z0 = α. Then we have

h∗
∫ β

α

(λ− α)
ϕn(λ)

λ− α
[dτ(λ)]

ϕ∗
n(λ)

λ− α
h = 0. (7.7.47)
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If β < ∞ then the inequality∫ β

α

(λ− α)
ϕn(λ)

λ− α
[dτ(λ)]

ϕ∗
n(λ)

λ− α
≥
∫ β

α

ϕn(λ)[dτ(λ)]ϕ
∗
n(λ) > 0 (7.7.48)

is valid. As relations (7.7.47) and (7.7.48) contradict one another, then z0 �= α. It

is proved in the same way that z0 �= β. If β = ∞ then for some finite β̃ relation
(7.7.48) is fulfilled, that is, z0 �= α in this case too. The theorem is proved. �

Further we shall consider the case when the spectrum of system (7.7.39) is
non-negative, that is, α ≥ 0. From Theorem 7.35 we deduce the following asser-
tions.

Corollary 7.36. If the spectrum of system (7.7.39) is non-negative, then all the
roots of the polynomial detϕn(z) are positive.

Corollary 7.37. If the spectrum of system (7.7.39) is non-negative, then all the
m×m matrices ϕn(0) are invertible.

4. Recurrent formula. In the scalar case (m = 1) the recurrent formula for the
orthogonal polynomials is written in the form (see [173])

Φn+1(z) =
(
Anz +Bn

)
Φn(z)− CnΦn−1(z), (7.7.49)

where
An = An �= 0, Bn = Bn, Cn = Cn �= 0. (7.7.50)

Setting

hn =

∫ ∞

−∞
|Φn(λ)|2 dτ(λ),

we shall introduce the normalized polynomials

ϕn(z) =
Φn(z)√

hn

. (7.7.51)

It follows from (7.7.49) that

zϕn(z) = bϕn+1(z) + anϕn(z) + bn−1ϕn−1(z), (7.7.52)

where

bn =

√
hn+1

hn

/
An, an = −Bn

An
. (7.7.53)

Example 7.38 (Laguerre polynomials). In the case of Laquerre polynomials Lγ
n(z)

we have (see [4, Ch. 10]):

α = 0, β = ∞, τ ′(λ) = e−λλγ (λ > 0), γ > −1, (7.7.54)
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An =
−1

n+ 1
, Bn = −2n+ γ + 1

n+ 1
, Cn =

n+ γ

n+ 1
, (7.7.55)

hn =
Γ(γ + n+ 1)

n!
, Lγ

n(0) =
Γ(γ + n+ 1)

n!Γ(γ + 1)
. (7.7.56)

Using formulas (7.7.53) and (7.7.55), (7.7.56) we obtain

an = 2n+ γ + 1, bn = −
√

(n+ 1)(n+ γ + 1). (7.7.57)

5. Method to calculate parameters pk and qk of system. We have shown how
system (7.6.33) can be reduced to the classical system (7.7.1). Here the coefficients
ak and bk are expressed by the parameters pk and qk (see (7.7.17)–(7.7.19)). In
this section we find a simple connection between the parameters pk, qk of system
(7.7.1) and the values of the matrix polynomials ϕn(z) in the point z = 0. We
shall need the following assertion.

Lemma 7.39. If the spectrum of system (7.7.1) is non-negative, then

Tk = ϕ∗
k(0)bkϕk+1(0) < 0, k ≥ 0. (7.7.58)

Proof. It follows from relation (7.7.39) that

bkϕk+1(0) + akϕk(0) + b∗k−1ϕk−1(0) = 0, (7.7.59)

that is,

ϕ∗
k(0)akϕk(0) = −(Tk + T ∗

k−1

)
. (7.7.60)

We shall use the relations

ak =

∫ ∞

0

λϕk(λ)[dτ(λ)]ϕ
∗
k(λ), (7.7.61)

bk =

∫ ∞

0

λϕk(λ)[dτ(λ)]ϕk+1(λ), (7.7.62)

which follow directly from (7.7.39) and from the fact that the system of the matrix
polynomials ϕn(z) is orthogonal and normalized. Similarly to the deduction of
(7.7.48) we deduce

ak > 0, k ≥ 0 (7.7.63)

from formula (7.7.61). As

T0 = −ϕ∗
k(0)akϕk(0) = T ∗

0 > 0,

it follows from (7.7.60) that

Tk = T ∗
k , k ≥ 0. (7.7.64)
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Now we shall consider the auxiliary matrix function

τν(λ) = (1− ν)τ0(λ) + ντ(λ), 0 ≤ ν ≤ 1, (7.7.65)

where

τ0(λ) =

{
0, λ < 0,
−e−λIm, λ ≥ 0.

Laguerre polynomials L0
n(λ)Im correspond to the matrix τ0(λ). The matrices Tk(ν)

correspond to the spectral matrix τν(λ). In view of (7.7.56) and (7.7.57) we obtain

Tk(0) < 0. (7.7.66)

It follows from relation (7.7.65) that∫ ∞

0

ψn(λ)[dτν(λ)]ψ
∗
n(λ) > 0, 0 ≤ ν ≤ 1, (7.7.67)

where ψn(z) is an arbitrary matrix polynomial of degree n (n = 0, 1, . . .) with
the leading coefficient equal to Im. As it is known (see [148]) this fact implies
the existence of the orthogonal and normalized system of polynomials ϕn(λ, ν)
continuously dependent on the parameter ν. It means that the matrices Tk(ν) are
also continuous. From Corollary 7.37 and inequality (7.7.63) we obtain that

detTk(ν) �= 0. (7.7.68)

Relations (7.7.64), (7.7.66), (7.7.68) and continuity of Tk(ν) imply that Tk(ν) < 0.
The lemma is proved. �

In view of (7.7.58) and (7.7.59) the following assertion holds.

Theorem 7.40. If the spectrum of system (7.7.1) is non-negative, then the coeffi-
cients ak and bk can be represented in form (7.7.17)–(7.7.19), where

pk = ϕ∗
k(0), qk+1 = Uk(−Tk)

−1/2 (7.7.69)

and Uk are arbitrary m×m matrices.

6. Laguerre polynomials. We deduce from formulas (7.7.56), (7.7.57) and (7.7.69)
that the equalities

pn =
Lγ
n(0)√
hn

=

√
Γ(γ + n+ 1)

n!

1

Γ(γ + 1)
, (7.7.70)

qn+1 =

√
n!

Γ(γ + n+ 2)
Γ(γ + 1) (7.7.71)
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hold for Laguerre polynomials Lγ
n(z). Let us consider the dual problem correspond-

ing to the case of Laguerre polynomials. In view of (7.7.28), (7.7.29) and (7.7.70),
(7.7.71) the equalities

ãn = 2n+ γ + 2, b̃n = −
√

(γ + n+ 2)(n+ 1) (7.7.72)

are valid.
Comparing formulas (7.7.57) and (7.7.72) we deduce the following statement.

Proposition 7.41. The dual system of Laguerre polynomials Lγ+1
n (z) corresponds

to the original system of Laguerre polynomials Lγ
n(z).

7. Jacobi polynomials. In the case of Jacobi polynomials Φ
(α,β)
n (z) we have (see [4,

Ch. 10])
a = −1, b = 1, τ ′(λ) = (1− λ)α(1 + λ)β , (7.7.73)

where α > −1, β > −1. In order to have a system with a non-negative spectrum

we shall shift z, that is, we shall consider the polynomial system Φ
(α,β)
n (z−1). For

this new system formulas (7.7.73) have the form

a = 0, b = 2, τ ′(λ) = (2− λ)αλβ . (7.7.74)

Similarly to Proposition 7.41 the following assertion can be proved.

Proposition 7.42. The dual system of the polynomials Φα,β+1
n (z − 1) corresponds

to the original system of Jacobi polynomials Φ
(α,β)
n (z − 1).

In conclusion we shall write parameters of some special cases of Jacobi poly-
nomials.

I: Let α = β = −1

2
, that is, we shall consider Chebyshev polynomials. In this

case we shall obtain

bn =
1

2
, n ≥ 1; b0 =

1√
2
, an = 1, n ≥ 0,

pn = (−1)n
√

2

π
, n ≥ 1; p0 =

1√
π
, qn =

√
π(−1)n, n ≥ 0.

II: Let α = β = 0, that is, we shall consider Legendre polynomials. We shall
obtain

bn =
n+ 1√

(2n+ 1)(2n+ 3)
, an = 1, n ≥ 0;

pn = (−1)n
√
n+

1

2
, qn = (−1)n

√
2

n+ 1
, n ≥ 0.



Chapter 8

Integrable operators and
canonical differential systems

Introduction

In the article [136] we considered the operators of the type

Sf = L(x)f(x) + P.V.

∫ b

a

D(x, t)

x− t
f(t)dt, (8.0.1)

where f(x) ∈ L2
k(a, b) and the k×k matrix functions L(x) and D(x, t) are such

that

L(x) = L∗(x), D(x, t) = −D∗(t, x). (8.0.2)

(The symbol P.V. indicates that the corresponding integral is understood as the
principal value.)

We supposed that the kernel D(x, t) is degenerate, that is,

D(x, t) = iA(x)JA∗(t), (8.0.3)

where A(x) is a k×m matrix function (k ≤ m), J is a constant m×m matrix such
that

J = J∗, J2 = Im. (8.0.4)

Later in the work [64] the important class of the operators S, when

k = 1, L(x) = 1, D(x, x) = 0, (8.0.5)

was studied in detail. These results have a number of interesting applications
[29, 30,58,59].
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In our works [136, 149] the connection of the operators S with the spectral
theory of non-selfadjoint operators was shown. The operator identity

(QS − SQ)f =

∫ b

a

D(x, t)f(t)dt, Qf = xf(x), (8.0.6)

plays an essential role in these works. From identity (8.0.6) we obtain the state-
ment.

Proposition 8.1. Let the kernel D(x, t) be defined by relations (8.0.3) and (8.0.4).
If the operator S is invertible, then the operator T = S−1 has the form

Tf = M(x)f(x) + P.V.

∫ b

a

E(x, t)

x− t
f(t)dt, (8.0.7)

where M(x) = M∗(x) and the kernel E(x, t) is also degenerate and has the form

E(x, t) = iB(x)JB∗(t). (8.0.8)

Here B(x) is a k×m matrix function.

We shall show (Section 8.1) that the operators S and T lead to the Riemann–
Hilbert matrix problem

W+(σ) = W−(σ)R2(σ), a ≤ σ ≤ b, (8.0.9)

where the m×m matrix function W (z) is analytic, when z /∈[a, b]. Here matrix
function R2(σ) is given, the matrices W±(σ) are defined by the relation

W±(σ) = lim
y→±0

W (z), z = σ + iy. (8.0.10)

In the present chapter a significant role is played by the canonical differential
system

d

dx
W (x, z) = i

JH(x)

z − x
W (x, z), W (a, z) = Im. (8.0.11)

The monodromy matrix of system (8.0.11) coincides with the solution of the
Riemann–Hilbert problem (8.0.9), that is,

W (z) = W (b, z). (8.0.12)

It easily follows from (8.0.11) that W (x, z) in the neighborhood of z = ∞ admits
the representation

W (x, z) = Im +
M1(x)

z
+

M2(x)

z2
+ · · · , (8.0.13)
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where

Mk(x) =
∑

p+l=k−1

i

∫ x

0

JH(t) [tpMl(t)] dt, p ≥ 0, l ≥ 0, k ≥ 0, M0 = I.

(8.0.14)
In view of (8.0.11) and (8.0.14) all the coefficients Mk(x) are defined if the coeffi-
cient M1(x) is known. This fact is of interest as the representation

W (b, z) = Im +
M1(b)

z
+

M2(b)

z2
+ · · · (8.0.15)

is closely connected with the problems of random matrices theory [30,59,191]. In
this chapter we give the procedure for constructing the matrix function M1(x).

Let us note that W (z) is a characteristic matrix function [17, 99] of the
operator

Af = xf + i

∫ x

a

β(x)Jβ∗(t)f(t)dt, f(x) ∈ L2
k(a, b), (8.0.16)

where β(x) is a k×m matrix function such that

β∗(x)β(x) = H(x). (8.0.17)

In the terms of W (z) we obtain a sufficient condition of the linear similarity of the
operator A to the selfadjoint operator

Qf = xf, f(x) ∈ L2
k(a, b). (8.0.18)

This result is essentially stronger than our old theorem [137] in which it was
required that

‖W (z)‖ ≤ C, z �= z. (8.0.19)

We also obtain the corresponding sufficient conditions in the terms of β(x). We
separately consider the case when

β(x)Jβ∗(x) = 0. (8.0.20)

Investigating this case we use the analogue of the well-known Plemelj formula
for the limiting values of the multiplicative integral. We recall that the Plemelj
formula deals with the integral

f(z) =

∫ b

a

p(t)

z − t
dt. (8.0.21)

Case (8.0.20) is not contained in the previous papers [133–135] dealing with the
limiting values of a multiplicative integral.

Chapter 8. Integrable operators and canonical differential systems
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We show that the class of the operators (8.0.16), (8.0.20) is closely connected
with the matrix version of class (8.0.3) when

k ≥ 1, L(x) = Ik, D(x, x) = 0. (8.0.22)

For this class the corresponding matrix function R2(x) from (8.0.9) has a special
structure, namely

[R(x)− Im]2 = 0. (8.0.23)

We note that R(x) is the J-module (see [122]) of the matrix W+(x). In this chapter
we investigate the following inverse problem (see [149, Ch. 3]).

Problem 8.2. To recover the Hamiltonian H(x) of system (8.0.11) by the given
J-module R(x).

In the last part of the chapter we consider a number of examples both new
and classic belonging to our scheme.

8.1 Integrable operators and Riemann–Hilbert
problem

In this section we consider a special case of the matrix Riemann–Hilbert problem.
Our approach to this problem is based on the J-properties of the corresponding
m×m matrix function W (z).

We suppose that the following conditions are fulfilled.

1) The matrix function W (z) is analytic in the domain z /∈[a, b], (−∞ < a < b <
∞) and satisfies the equality

W (z) = Im +
1

2πi

∫ b

a

F (x)

x− z
dx, (8.1.1)

where F (x) is a measurable and bounded m×m matrix function on the seg-
ment [a, b].

2) The relations

W ∗(z)JW (z̄) = J, (8.1.2)

i
W ∗(z)JW (z)− J

z − z̄
≥ 0, z �= z̄ (8.1.3)

hold. (The m×m matrix J satisfies the equalities J = J∗, J2 = I.)

Equality (8.1.1) guarantees almost everywhere the existence of the limits

W±(x) = lim
y→±0

W (z), z = x+ iy. (8.1.4)
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It follows from (8.1.3) that W−1
+ (x) and W−(x) are J-contractive matrices. Hence

we can use the polar decomposition (see [122, p. 172, Theorem 8])

W+(x) = U(x)R(x), W−(x) = U(x)R−1(x), (8.1.5)

where the m×m matrix functions U(x) and R(x) are such that

U∗(x)JU(x) = J, JR(x) = R∗(x)J (8.1.6)

and the spectrum of R(x) is positive.
The matrix function R(x) is called J-module of the matrix function W+(x).

Due to (8.1.5) and (8.1.6) we have

R2(x) = JW ∗
+(x)JW+(x). (8.1.7)

From relation (8.1.3) we deduce that JR2(x) ≥ JR−2(x). Hence according to the
theory of J-module [122, Ch. 2, p. 176] the relations

D(x) = J
[
R(x)−R−1(x)

] ≥ 0, x ∈ [a, b], (8.1.8)

D(x) = 0, x/∈[a, b] (8.1.9)

hold. Now we introduce the measurable matrix functions F1(x), F2(x) with the
help of the relations

F ∗
1 (x)F1(x) = D(x), F2(x) = F1(x)JU

∗(x). (8.1.10)

Remark 8.3. The matrix functions F1(x) and F2(x) are k×m matrices, where
k = sup {rankD(x)}, a ≤ x ≤ b. Hence k ≤ m.

Using relations (8.1.1), (8.1.5) and (8.1.8) we can write

W+(x)−W−(x) = F ∗
2 (x)F1(x) = F (x). (8.1.11)

In addition to conditions 1) and 2) (see relations (8.1.1)–(8.1.3)) we suppose:

3) The matrix functions F1(x) and F2(x) are bounded on the segment [a, b].

Let us define the operators Π and Γ by formulas

Πg =
1√
2π

F1(x)g, Γg = − i√
2π

F2(x)g,

where g is a m×1 vector, Πg and Γg belong to L2
k(a, b). Then we have

Π∗f(x) =
1√
2π

∫ b

a

F ∗
1 (x)f(x)dx, (8.1.12)

Γ∗f(x) =
i√
2π

∫ b

a

F ∗
2 (x)f(x)dx, (8.1.13)

where f(x) ∈ L2
k(a, b). The next assertion follows from formulas (8.1.1), (8.1.12)

and (8.1.13).
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Proposition 8.4. The matrix function W (z) admits the realization

W (z) = Im − Γ∗(Q− zI)−1Π, (8.1.14)

where the operator Q is defined by the relation

Qf = xf, f(x) ∈ L2
k(a, b). (8.1.15)

Now we introduce the k×k matrix

L(x) =

(
Ik +

1

4
(F1(x)JF

∗
1 (x))

2

)1/2

(8.1.16)

and consider the operators

Sf = L(x)f(x) +
i

2π
P.V.

∫ b

a

F1(x)JF
∗
1 (t)

x− t
f(t)dt, (8.1.17)

Tf = L(x)f(x)− i

2π
P.V.

∫ b

a

F2(x)JF
∗
2 (t)

x− t
f(t)dt. (8.1.18)

The introduced operators S and T act in the space L2
k(a, b) and f(x) is a k×1

vector function.

Theorem 8.5. (See [149, p. 45–46]) The operators S and T are positive, bounded
and

T = S−1, SF2(x) = F1(x)J. (8.1.19)

From relation (8.1.5) we deduce that

W+(x) = W−(x)R2(x), x ∈ [a, b], (8.1.20)

W+(x) = W−(x), x/∈[a, b]. (8.1.21)

Formulas (8.1.20) and (8.1.21) lead to the Riemann–Hilbert problem.

Problem 8.6. Recover the matrix function W (z) from the given J-module R(x) of
W+(x).

In the case J = I, Problem 8.6 plays an essential role in the prediction theory
of stationary processes [192]. The case when J �= I is important for the theory of
random matrices [29, 30].

We suppose that the givenm×mmatrix function satisfies the next conditions.

1) JR(x) = R∗(x)J , a ≤ x ≤ b; R(x) = I, x /∈ [a, b].

2) The spectrum of R(x) is positive and relations (8.1.8), (8.1.9) are valid.

3) The matrix functions R(x) and R−1(x) are bounded on the segment [a, b].
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It follows from the previous calculations that Problem 8.6 can be solved in the
following way.

I. By the given matrix R(x) we construct the matrix D(x) (see (8.1.8)).

II. Using the first of equalities (8.1.10) we find a measurable matrix function
F1(x).

III. With the help of formula (8.1.17) the operator S is constructed.

IV. Due to the second equality of (8.1.19) we have F2(x) = S−1F1(x)J .

Here we add to the conditions 1)–3) a new important condition:

4) The constructed operator S is invertible.

Now it is easy to see that formulas (8.1.1) and (8.1.11) give the solution of the
Riemann–Hilbert problem (8.1.20) with the normalizing condition

W (z) → I as z → ∞. (8.1.22)

Remark 8.7. The operators S and T defined by formulas (8.1.17) and (8.1.18) are
called integrable [29, 30]. The case when k = 1 and

F1(x)JF
∗
1 (x) = 0 (8.1.23)

has important applications in the theory of random matrices (see [29, 30, 191]).
The general case was used in the spectral theory of non-selfadjoint operators [136,
137,149].

8.2 Limiting values of the multiplicative integral

Let β(x) be a k×m matrix function (k ≤ m). We consider the canonical system
of the form

d

dx
W (x, z) = i

JH(x)

z − x
W (x, z), W (a, z) = Im, (8.2.1)

where the m×m matrix J is such that J = J∗, J2 = Im, and H(x) = β∗(x)β(x),
a ≤ x ≤ b.

Systems (8.2.1) play an important role in the theory of non-selfadjoint oper-
ators [99,149], in the Riemann–Hilbert problem, in the theory of random matrices.
The solution of systems (8.2.1) can be represented in the form of the multiplicative
integral

W (x, z) =

x
�∫
a

e
iJ

z−tdE(t), (8.2.2)
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where E(x) =
∫ x
a
H(t)dt. The multiplicative integral is defined by the relation

b
�∫
a

ef(t)dE(t) = lim
maxΔtj→0

ef(tn−1)ΔE(tn−1)ef(tn−2)ΔE(tn−2) · · · ef(t0)ΔE(t0), (8.2.3)

where a = t0 < t1 < · · · < tn = b. The analogues of the Plemelj formulas

W±(b, σ) = lim
ε→0

[

b
�∫

σ+ε

e
iJ

σ−tdE(t)e±πJH(σ)

σ−ε
�∫
a

e
iJ

σ−tdE(t)] (8.2.4)

were deduced for the limiting values

W±(b, σ) = lim
y→0

W (b, z), z = σ + iy (8.2.5)

of the multiplicative integral (see [133–135]). In order to obtain formulas (8.2.4) it
was supposed in particular that the matrix function JH(x) for each x is linearly
similar to a certain selfadjoint matrix. Now we shall consider the case when

β(x)Jβ∗(x) = 0. (8.2.6)

It follows from (8.0.17) and (8.2.6) that

[JH(x)]2 = 0. (8.2.7)

Thus the matrix function JH(x) is a nilpotent one and hence it is not similar
to a selfadjoint matrix function. In this case as well the analogue of the Plemelj
formula is valid.

Lemma 8.8. [157] Let the k×m matrix function β(x) be continuous on the segment
[a, b] and satisfy the estimations

‖β(x)‖ ≤ M,

∥∥∥∥β(x)Jβ∗(t)
x− t

∥∥∥∥ ≤ M, a ≤ x, t ≤ b. (8.2.8)

Then there exists the limit

V (x, σ) = lim
y→+0

(
W (x, σ + iy)−W (x, σ − iy)

)
(8.2.9)

and for some M1 the inequality

‖V (x, σ)‖ ≤ M1 (8.2.10)

is valid.
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Lemma 8.9 ( [157]). Let the conditions of Lemma 8.8 be fulfilled. Then there exist
the limits

V1(x, σ) = lim
ε→0

x
�∫

σ+ε

eiJ
dE(t)
σ−t Jβ∗(σ), (8.2.11)

V2(x, σ) = lim
ε→0

β(σ)

σ−ε
�∫
a

eiJ
dE(t)
σ−t . (8.2.12)

Now we formulate the main result of this section [157].

Theorem 8.10. Let the conditions of Lemma 8.8 be fulfilled. Then the equality

lim
y→+0

(
W (x, σ + iy)−W (x, σ − iy)

)
= lim

ε→+0

⎛⎜⎝
x
�∫

σ+ε

e
iJ

σ−tdE(t)
(
2πJH(σ)

) σ−ε
�∫
a

e
iJ

σ−tdE(t)

⎞⎟⎠ (8.2.13)

is valid. Here a < σ < x, E(x) =
∫ x
a
H(t)dt.

Remark 8.11. Equality (8.2.13) can be written in the form

lim
y→+0

(
W (x, σ + iy)−W (x, σ − iy)

)
= lim

ε→+0

⎛⎜⎝
x
�∫

σ+ε

e
iJ

σ−tdE(t)
(
eπJH(σ) − e−πJH(σ)

) σ−ε
�∫
a

e
iJ

σ−tdE(t)

⎞⎟⎠ . (8.2.14)

The corresponding matrix function W (z) = W (b, z) can be represented in form
(8.1.1), where

F (x) = V (b, x) = W+(x)−W−(x). (8.2.15)

It follows from Theorem 8.10 that

F (x)JF ∗(x) = 0. (8.2.16)

Using formulas (8.1.11), (8.2.15) and polar decomposition (8.1.5) we deduce that

(R−R−1)J(R−R−1)∗ = 0. (8.2.17)

From the last relation and the second of the equalities (8.1.6) we obtain the fol-
lowing important result.

Corollary 8.12. Let the conditions of Lemma 8.8 be fulfilled. The corresponding
J-module R(x) of W+(x) satisfies the relation

(R(x)− I)2 = 0. (8.2.18)
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Thus under some additional conditions we deduce the equality (8.2.18) from
(8.2.7).

Open problem 8.13. Find the conditions under which relation (8.2.7) follows from
(8.2.18).

8.3 Spectral theory

We begin with some important notions. Let the linear bounded operator A have
the form

A = AR + iAI , (8.3.1)

where AR and AI are self-adjoint operators acting in Hilbert space H and there
is a bounded linear operator K which maps a Hilbert space G in H so that

AI = KJK∗, (8.3.2)

where J acts in G and J = J∗, J2 = I.

Definition 8.14 (See [17, 99]). The operator function

W (z) = I − 2iK∗(A− zI)−1KJ (8.3.3)

is called the characteristic operator function of A.

We recall that the simple part of A is an operator which is induced by A
on the subspace H1 =

∑∞
k=0 A

kDA, where DA = (A−A∗)H. In paper [137] we
deduced the following assertion.

Theorem 8.15. If the characteristic operator function W (z) of the operator A
satisfies the condition

‖W (z)‖ ≤ c, z �= z̄ (8.3.4)

for some c, then the simple part of A is linearly similar to a self-adjoint operator
with an absolutely continuous spectrum.

It follows from relation (8.3.4) that W (z) admits the representation (8.1.1)
and the matrix

F (x) = W+(x)−W−(x) (8.3.5)

is bounded on the segment [a, b], that is,

‖F (x)‖ ≤ c1, a ≤ x ≤ b. (8.3.6)

We note that inequality (8.3.4) does not follow from relation (8.3.6). However
Theorem 8.5 is correct when condition (8.3.6) is fulfilled. Using this fact we get a
new version of Theorem 8.15.
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Theorem 8.16. If the characteristic operator function W (z) of the operator A
satisfies the conditions (8.3.5) and (8.3.6), then the simple part of A is linearly
similar to a self-adjoint operator with an absolutely continuous spectrum.

Example 8.17. We consider the case when

F1(x) = [x+ i, x− i], 0 ≤ x ≤ 1, J =

[ −1 0
0 1

]
. (8.3.7)

The corresponding operator S (see (8.1.17)) has the form

Sf = f(x)− 1

π

∫ 1

0

f(t)dt. (8.3.8)

Due to relations (8.1.17) and (8.1.19) we have

F2(x) =
[−q(x), q(x)

]
, (8.3.9)

where

q(x) = x+
1

2(π − 1)
+ i

1

π − 1
. (8.3.10)

Using the property of the Cauchy integral (see [108]) we deduce from relation
(8.1.1) that

W (z) = − 1

2πi
F (0) log z +O(1), z �= z̄, |z| < 1

2
, (8.3.11)

W (z) = − 1

2πi
F (1) log (z − 1) +O(1), z �= z̄, |z − 1| < 1

2
. (8.3.12)

It follows from formulas (8.1.11) and (8.3.7), (8.3.9) that F (0) �= 0, F (1) �= 0.
Hence the constructed W (z) satisfies the conditions of Theorem 8.16 but does not
satisfy the condition (8.3.4) of Theorem 8.15.

From Theorems 8.10 and 8.16 we obtain directly the following assertion.

Corollary 8.18. Let the conditions of Lemma 8.8 be fulfilled. If operator A is defined
by relation (8.0.16), then the simple part of A is linearly similar to a self-adjoint
operator with an absolutely continuous spectrum.

8.4 Canonical differential systems

It follows from Theorem 8.5 that the operator

Sξf = L(x)f(x) +
i

2π
P.V.

∫ ξ

a

F1(x)JF
∗
1 (t)

x− t
f(t)dt (8.4.1)

is positive, bounded and invertible in L2
k(a, ξ). We note that S = Sb.
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We set
Φ(ξ, x) = S−1

ξ F1(x), (8.4.2)

B(ξ) =
1

2π

∫ ξ

a

F ∗
1 (x)Φ(ξ, x)dx. (8.4.3)

Lemma 8.19 (See [149, Ch. 3]). The matrix function B(ξ), which is defined by
formulas (8.4.1)–(8.4.3), is absolutely continuous and monotonically increasing.

Now let us consider the system of integral equations

W (x, z) = I + iJ

∫ x

a

dB(ξ)

z − ξ
W (ξ, z). (8.4.4)

Corollary 8.20. If the matrix function B(x) is absolutely continuous, then integral
system (8.4.4) is equivalent to the differential system

dW (x, z)

dx
=

iJH(x)

z − x
W (x, z), W (a, z) = Im, (8.4.5)

where
H(x) = B′(x) ≥ 0, W (b, z) = W (z). (8.4.6)

Due to (8.4.4) the relation

W (x, z) = I +M1(x)/z +M2(x)/z
2 + · · · (8.4.7)

is fulfilled in the neighborhood of z = ∞. It follows from (8.4.4) and (8.4.7) that

M1(x) = iJB(x). (8.4.8)

Formulas (8.4.2), (8.4.3) and (8.4.6) give the solution W (z) of inverse Problem
8.2.

Relations (8.1.10) and (8.1.11) imply the following assertion.

Proposition 8.21. If the equality

F1(x) = 0, α ≤ x ≤ β, α �= β (8.4.9)

holds, then

F2(x) = 0, W+(x) = W−(x), R(x) = I, α ≤ x ≤ β. (8.4.10)

We note that in case (8.4.9) the matrices W+(x) and W−(x) are J-unitary.
Hence the last relation in (8.4.10) is valid.

Corollary 8.22. If condition (8.4.9) is fulfilled, then

B′(x) = H(x) = 0, α ≤ x ≤ β. (8.4.11)
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Remark 8.23. In random matrix theory [30] there was considered a very significant
multisegment case

R(x) = I, x/∈Δ, (8.4.12)

where Δ is the system of the segments [ak, bk] such that a1 < b1 < a2 < b2 <
· · · < an < bn.

It follows from equality (8.4.11) that

H(x) = 0, x/∈Δ. (8.4.13)

8.5 Inverse problem, examples

We recall that the J-module R(x) satisfies the following conditions:

I. The spectrum of R(x) is positive.

II. The relations J
(
R(x)−R−1(x)

) ≥ 0 and JR(x) = R∗(x)J are valid.

We introduce the additional condition

III.
(
R(x)− I

)2
= 0.

This condition is fulfilled in a number of concrete problems (see [30]). In the present
section we consider the classes of R(x) satisfying conditions I-III. For these classes
we describe in detail the method of solving inverse Problem 8.2.

Example 8.24. Let us consider the case when

J =

[ −Im 0
0 Im

]
(8.5.1)

and

R2(x) =

[
0 ϕ(x)

−ϕ∗(x) 2Im

]
, 0≤x ≤ r, (8.5.2)

where ϕ(x)ϕ∗(x) = Im. From (8.5.2) we deduce that

R(x) = 1/2

[
Im ϕ(x)

−ϕ∗(x) 3Im

]
. (8.5.3)

The matrix R(x) satisfies conditions I–III. It follows from condition I. that the
matrix R(x) is unique.

From (8.5.3) we obtain that

R(x)−R−1(x) =

[ −Im ϕ(x)
−ϕ∗(x) Im

]
. (8.5.4)

According to (8.5.4) we have

D(x) = J [R(x)−R−1(x)] =

[
Im −ϕ(x)

−ϕ∗(x) Im

]
. (8.5.5)
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Hence the equality
F1(x) =

[
Im, −ϕ(x)

]
(8.5.6)

holds. Using (8.5.6) we obtain the relations

F1(x)JF
∗
1 (x) = 0, (8.5.7)

F1(x)JF
∗
1 (t) = ϕ(x)ϕ∗(t)− Im. (8.5.8)

Thus in case (8.5.3) we deduce from (8.4.1) and (8.5.8) that the operator Sξ has
the form

Sξf = f(x) +
i

2π
P.V.

∫ ξ

0

ϕ(x)ϕ∗(t)− Im
x− t

f(t)dt. (8.5.9)

The fact that the operator V defined as

V f =
1

π
P.V.

∫ ∞

−∞

f(t)

x− t
dt, f ∈ L2(−∞,∞) (8.5.10)

is unitary implies that in the space L2(0, ξ) we have

Sξ ≥ 0. (8.5.11)

Proposition 8.25. Further we suppose that the operator Sr is invertible in L2(0, r).

So the operators Sξ, ξ ≤ r are invertible in L2(0, ξ) as well.

Remark 8.26. If ϕ(x) satisfies Hölder condition

|ϕ(x)− ϕ(t)| ≤ |x− t|α, 0 < α ≤ 1,

then there exists such r > 0 that Sr is invertible in L2(0, r).

Using relation (8.4.2) we have

Φ(ξ, x) +
i

2π
P.V.

∫ ξ

0

ϕ(x)ϕ∗(t)− Im
x− t

Φ(ξ, t)dt = F1(x), (8.5.12)

where
Φ(ξ, x) =

[
Φ1(ξ, x), Φ2(ξ, x)

]
. (8.5.13)

Here Φk(ξ, x) are the m×m matrix functions (k = 1, 2). It follows directly from
(8.5.6) and (8.5.12) that

Φ1(ξ, x) +
i

2π
P.V.

∫ ξ

0

ϕ(x)ϕ∗(t)− Im
x− t

Φ1(ξ, t)dt = Im, (8.5.14)

Φ2(ξ, x) +
i

2π
P.V.

∫ ξ

0

ϕ(x)ϕ∗(t)− Im
x− t

Φ2(ξ, t)dt = −ϕ(x), (8.5.15)
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and
Φ1(ξ, x)Φ

∗
1(ξ, x) = Φ2(ξ, x)Φ

∗
2(ξ, x). (8.5.16)

Due to (8.4.3) the formula

B(ξ) =
1

2π

∫ ξ

0

[
Φ1(ξ, x) Φ∗

2(ξ, x)
Φ2(ξ, x) −ϕ∗(x)Φ2(ξ, x)

]
dx (8.5.17)

holds.

Example 8.27. We separately consider the partial case of Example 8.24, when
m = 1.

Let the function Φ1(ξ, x) be the solution of equation (8.5.14). It is easy to
see that the function −ϕ(x)Φ1(ξ, x) satisfies equation (8.5.15), that is,

Φ2(ξ, x) = −ϕ(x)Φ1(ξ, x). (8.5.18)

Hence formula (8.5.17) takes the form

B(ξ) =
1

2π

∫ ξ

0

[
Φ1(ξ, x) −Φ1(ξ, x)ϕ(x)

−ϕ(x)Φ1(ξ, x) Φ1(ξ, x)

]
dx. (8.5.19)

Example 8.28. Let us consider the particular case of Example 8.24, when

m = 1, ϕ(x) = e2iux, u = ū. (8.5.20)

Example 8.28 plays an important role in the theory of random matrices [30,58,191].
In this case the operator Sξ takes the form

Sξf = f(x)− 1

π

∫ ξ

0

eiu(x−t) sinu(x− t)

x− t
f(t)dt. (8.5.21)

The operator Sξ defined by formula (8.5.21) is invertible in the space L2(0, ξ) for
all 0 < ξ < ∞.

We denote by Ψ(ξ, x, u) the solution of the equation

Ψ(ξ, x, u)− 1

π

∫ ξ

0

sinu(x− t)

x− t
Ψ(ξ, t, u)dt = e−iux. (8.5.22)

Then according to relations (8.5.21) and (8.5.22) we have

Φ1(ξ, x, u) = eiuxΨ(ξ, x, u), Φ2(ξ, x, u) = −eiuxΨ(ξ, x, u). (8.5.23)

It follows from (8.5.19) and (8.5.23), that

B(ξ, u) =
1

2π

∫ ξ

0

[
eiuxΨ(ξ, x, u) −e−iuxΨ(ξ, x, u)

−eiuxΨ(ξ, x, u) e−iuxΨ(ξ, x, u)

]
dx. (8.5.24)
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Example 8.29. Let us consider the case when m = 1 and

J =

[ −1 0
0 1

]
, (8.5.25)

R(x) =
1

2

[
2− |ψ(x)|2 −ψ(x)

2

ψ(x)
2

2 + |ψ(x)|2
]
, 0≤x ≤ r. (8.5.26)

The matrix R(x) satisfies conditions I-III.
It means that R(x) is the J-module of the matrix W+(x) which satisfies

relation (8.0.9). From (8.5.25) and (8.5.26) we deduce that

R(x)−R−1(x) = JD(x) = JF ∗
1 (x)F1(x), (8.5.27)

where
F1(x) =

[
ψ(x), ψ(x)

]
. (8.5.28)

Using (8.5.28) we obtain the relations

F1(x)JF
∗
1 (x) = 0, (8.5.29)

F1(x)JF
∗
1 (t) = ψ∗(x)ψ(t)− ψ(x)ψ∗(t). (8.5.30)

Thus we deduce from (8.5.30), that the operator Sξ in case (8.5.26) has the form

Sξf = f(x) +
i

2π
P.V.

∫ ξ

0

ψ∗(x)ψ(t)− ψ(x)ψ∗(t)
x− t

f(t)dt. (8.5.31)

Proposition 8.30. Further we suppose that the operators Sξ are positive and in-
vertible in the space L2(0, ξ) for all 0 < ξ ≤ r.

Remark 8.31. If ψ(x) satisfies the Hölder condition, then there exists such r > 0
that the operators Sξ are positive and invertible in the space L2(0, ξ) for all 0 <
ξ ≤ r.

It follows directly from (8.5.28) and (8.5.31), that

Φ1(ξ, x) +
i

2π
P.V.

∫ ξ

0

ψ∗(x)ψ(t)− ψ(x)ψ∗(t)
x− t

Φ1(ξ, tdt = ψ(x), (8.5.32)

Φ2(ξ, x) +
i

2π
P.V.

∫ ξ

0

ψ∗(x)ψ(t)− ψ(x)ψ∗(t)
x− t

Φ2(ξ, t)dt = ψ(x), (8.5.33)

where
Φ1(ξ, x)Φ

∗
1(ξ, x) = Φ2(ξ, x)Φ

∗
2(ξ, x). (8.5.34)

Due to (8.5.31) and (8.5.33) we have

F2(x) =
[−Φ1(1, x), Φ2(1, x)

]
, Φ1(ξ, x) = Φ2(ξ, x), (8.5.35)

B(ξ) =
1

2π

∫ ξ

0

⎡⎣ ψ(x)Φ1(ξ, x) ψ(x)Φ1(ξ, x)

ψ(x)Φ1(ξ, x) ψ(x)Φ1(ξ, x)

⎤⎦ dx. (8.5.36)
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Remark 8.32. If
ψ(x) = i

√
γe−iux, 0 < γ ≤ 1, (8.5.37)

then due to (8.5.26) we have

R2(x) =

[
1− γ γe2iux

−γe−2iux 1 + γ

]
. (8.5.38)

The corresponding Riemann–Hilbert problem was considered in [30].

Let us represent ψ(x) in the form

ψ(x) = A(x) + iB(x), (8.5.39)

where
A(x) = A(x), B(x) = B(x). (8.5.40)

Then the operator Sξ takes the form

Sξf = f(x)− 1

π
P.V.

∫ ξ

0

A(x)B(t)−B(x)A(t)

x− t
f(t)dt. (8.5.41)

We introduce the functions

ψ1(x) =
√
π
(
Ai(x) + iAi′(x)

)
, (8.5.42)

where Ai(x) is an Airy function, and

ψ2(x) =

√
π

2

(
Jα
(√

x
)
+ i

√
xJ ′

α

(√
x
))

, α > −1, (8.5.43)

where Jα(z) is a Bessel function. The cases (8.5.26), (8.5.42) and (8.5.26), (8.5.43)
are used in a number of applications (see [59]).



Chapter 9

The game between energy and
entropy

Introduction

In this chapter we consider the mean energy E and entropy S together. As it was
already mentioned in the Introduction to the book, we introduce the functional
F = λE(p, q) + S(p, q), where λ = −1/(kT ), k is the Boltzmann constant, T
is temperature. Then, the functional F attains its maximum at the point (p, q)
such that the corresponding probability P (p, q) is given by the Boltzmann–Gibbs–
Shannon formula for classical mechanics. A similar approach is used to prove other
Gibbs-type formulas. We note that the compromise function F is closely related
to the well-known Helmholtz free energy.

In the present chapter we apply extremal problems and a game theoretic
approach in the following important domains: quantum and classical mechanics
(Gibbs-type formulas), non-extensive statistical mechanics and algorithmic infor-
mation theory.

9.1 Connection between energy and entropy (quantum
case)

Let the eigenvalues En of the energy operator L be given. Consider the mean
energy Eq =

∑
n EnPn and the entropy Sq = −∑n Pn logPn. Here Pn are the

corresponding probabilities, that is,
∑

n Pn = 1. Hence Pn can be represented in
the form Pn = pn/Z, where Z =

∑
n pn. Our aim is to find the probabilities Pn.

For that purpose we consider the function

F = λEq + Sq, (9.1.1)

. , 
I 10.1007/978-3-0348-0356-4_ ,  
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where λ = −1/(kT ).

Fundamental Principle. The function F defines the new extremal problem for the
mean energy Eq and the entropy Sq.

To find the stationary point of F we calculate

∂F

∂pk
= λ
(
Ek/Z −

∞∑
n=1

Enpn/Z
2
)
− (log pk)/Z +

∞∑
n=1

pn log pn/Z
2. (9.1.2)

It follows from (9.1.2) that the point

pn = eλEn , n = 1, 2, . . . (9.1.3)

is a stationary point. Moreover, the stationary point is unique up to a scalar
multiple. Without loss of generality this multiple can be fixed as in (9.1.3).

Corollary 9.1. The basic formulas

Zq =
∑
n

eλEn , Eq =
∑
n

En
eλEn

Zq
, (9.1.4)

Sq = −
∑
n

Pn

Zq
log

Pn

Zq
(9.1.5)

are immediate from (9.1.3)

By direct calculation we get in the stationary point (9.1.3) the equalities

∂2F

∂p2k
= −Zk/(pkZ

2) < 0, Zk :=
∑
j 
=k

pj ;
∂2F

∂pk∂pj
= 1/Z2 > 0, j �= k. (9.1.6)

Relations (9.1.3) imply the following assertion.

Corollary 9.2. The stationary point (9.1.3) is a maximum of the function F .

Proof. We use the following result (see [120, Ch. 7, Problem 7]):

det

⎡⎢⎢⎢⎢⎣
r1 a a . . . a
b r2 a . . . a
b b r3 . . . a
. . . . . . . . . . . . . . .
b b b . . . rk

⎤⎥⎥⎥⎥⎦ =
af(b)− bf(a)

a− b
, (9.1.7)

where

f(x) = (r1 − x)(r2 − x) · · · (rk − x). (9.1.8)
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In the case that a = b, the equality below is easily derived from (9.1.7)

det

⎡⎢⎢⎢⎢⎣
r1 a a . . . a
a r2 a . . . a
a a r3 . . . a
. . . . . . . . . . . . . . .
a b a . . . rk

⎤⎥⎥⎥⎥⎦ = −af ′(a) + f(a). (9.1.9)

Using (9.1.6) and (9.1.9) we calculate the Hessian Hk(F ) in the stationary point

Hk(F ) = Z−2k[−f ′(1) + f(1)], (9.1.10)

where f is given by (9.1.8) and rn = −Zn/pn. Rewrite (9.1.10) in the form

Hk(F ) = (−Z)−k

(
1−
(

k∑
n=1

pn

)/
Z

)/
k∏

n=1

pn

to see that the relation sgn
(
Hk(F )

)
= (−1)k is valid. Hence, the corollary is

proved. �
Note that the basic relations (9.1.3) are obtained by solving a new extremal

problem. Namely, in the introduced function F the parameter λ is fixed instead
of the energy E, which is usually fixed.

Remark 9.3. The traditional approach to entropy was described by A. Wehrl [188]
in the following statement: “Traditionally entropy is derived from phenomenologi-
cal thermodynamical considerations based upon the second law of thermodynam-
ics. This method does not seem to be appropriate for a profound understanding
of entropy.”

Various kinds of entropy are actively studied and applied, and many signifi-
cant developments appeared in recent years (see, e.g., [8,9,46,54,61,62,73,78,113,
188, 189] and references therein), which confirms also the importance of turning
to foundations and of the rigorous treatment of this notion.

Since the famous Boltzmann–Gibbs–Shannon (or simply Gibbs) formula is
fundamental in entropy and thermodynamics, the following interestingWehrl prob-
lem appears

Problem 9.4. Find a simple and rigorous way to treat the Gibbs formula.

In the present section we proposed a rigorous approach to the Gibbs formula
for Pn, which helps to cope with the Wehrl problem above.

9.2 Connection between energy and entropy (classical
case)

Let us introduce the classical Hamiltonian H(p, q), where p are corresponding
generalized momenta, q are the generalized coordinates. Then the mean energy
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Ec and entropy Sc are defined by the formulas

Ec =

∫∫
H(p, q)P (p, q) dp dq, (9.2.1)

Sc =

∫∫
P (p, q) logP(p, q) dp dq, (9.2.2)

where

P (p, q) ≥ 0,

∫∫
P (p, q) dp dq = 1. (9.2.3)

In the classical case we consider again the game between the energy Ec and
the entropy Sc. In the same way as in Section 9.1 we introduce the compromise
function

Fc = λEc + Sc, (9.2.4)

where λ = −1/kT .

Next, we use the calculus of variations. The corresponding Euler equation
takes the form

δ

δP

(
λH(p, q)P(p, q)− P(p, q) logP(p, q) + μP(p, q)

)
= 0. (9.2.5)

Here
δ

δP
stands for the functional derivation, μ is the Lagrange multiplier, and

our extremal problem is conditional (see (9.2.3)). Because of (9.2.5) we have

λH(p, q)− 1− logP(p, q) + μ = 0. (9.2.6)

From (9.2.6) we obtain

P (p, q) = CeλH(p,q). (9.2.7)

Formulas (9.2.3) and (9.2.7) imply that

P(p, q) = eλH(p,q)/Zc, Zc =

∫∫
eλH(p,q)dpdq. (9.2.8)

Remark 9.5. The famous formula (9.2.8) is deduced above. We think that it is
done in the simplest way. Note that

δ2

δP2
Fc = −1/P < 0. (9.2.9)

It means that, under condition (9.2.3), the functional Fc of the form (9.2.4) attains
a maximum for P(p, q), which is defined by formula (9.2.8).
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9.3 Third law of thermodynamics

1. Quantum case. We suppose that h in the energy operator is fixed and its
eigenvalues En = En(h) are indexed so that

E1 ≤ E2 ≤ E3 ≤ . . . . (9.3.1)

We assume that the statistical sum Zq is bounded:

Zq(β) =

∞∑
n=1

e−βEn < ∞, β =
1

kT
. (9.3.2)

For simplicity, we assume that (9.3.2) holds for all β > 0. Since for every ε > 0
there is an Nε, such that

0 < Ene
−εEn < 1 for all n > Nε, (9.3.3)

the inequality (9.3.2) for all β > 0 implies

∞∑
n=1

Ene
−βEn < ∞ for all β > 0. (9.3.4)

Therefore we have

Eq(β) =
∞∑

n=1

Ene
−βEn/Zq(β). (9.3.5)

From (9.3.1), (9.3.2), (9.3.4), and (9.3.5) we deduce the following relations:

∞∑
n=1

Ene
−βEn = e−βE1

(
mE1 +O

(
e−β(Em+1−E1)

))
, β → ∞, β = 1/kT,

Zq(β) = e−βE1

(
m+O

(
e−β(Em+1−E1)

))
, β → ∞, β = 1/kT, (9.3.6)

Eq(β) = E1 +O
(
e−β(Em+1−E1)

)
, β → ∞, β = 1/kT, (9.3.7)

where m is the multiplicity of E1.
Equalities (9.1.4) and (9.1.5) imply a formula for entropy

Sq(β) = βEq(β) + logZq(β). (9.3.8)

Using relations (9.3.6)–(9.3.8), we obtain

Sq(β) → log(m), β → ∞, β = 1/kT. (9.3.9)

Compare (9.3.9) with the well-known statement:

Third law of thermodynamics. If β → ∞, then Sq(β) → 0.

Thus, we have proved the following assertion.
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Theorem 9.6. Let the conditions (9.3.1) and (9.3.2) be fulfilled. Then the relation
m = 1 and the third law of thermodynamics are equivalent.

Remark 9.7. The equality m = 1 means that the ground state is non-degenerate.

Remark 9.8. If m > 1, we obtain the so-called residual entropy log(m) (see,
e.g., [78] and references therein).

2. Classical case. Now, we consider briefly the third law of thermodynamics for
the classical case. First, assume that the dimension N of the coordinate space is
equal to 1. In the case of a potential well, the following formulas hold (see Section
6.2):

Ec(β) = 1/(2β), Zc(β) =
√

2πma2/β. (9.3.10)

The corresponding formulas for the oscillator (see Section 6.3) have the form

Ec(β) = 1/β, Zc(β) = 2π/(βω). (9.3.11)

It follows from (9.2.1), (9.2.2), and (9.2.8) that

Sc(β) = βEc(β) + logZc(β), β = 1/kT. (9.3.12)

Because of (9.3.12), in both cases (9.3.10) and (9.3.11) we have

Sc(β) = c1 + c2 log β, (9.3.13)

where c1 and c2 are constants. Note that relation (9.3.13) holds also for an arbitrary
N (the corresponding formulas for the potential well are adduced in Section 6.5).
In view of (9.3.13), we formulate our conjecture:

Conjecture 9.9. In the classical case the result

Sc(β) = c1 + c2 log β + o(1), β → ∞

is valid.

9.4 Entropy and energy in non-extensive statistical
mechanics

1. Following C. Tsallis [180] we define entropy by a basic formula from non-
extensive mechanics:

Sq = (1−
n∑

i=1

pqi )/(q − 1),

n∑
i=1

pi = 1, pi > 0, q > 0, (9.4.1)
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where n is the total number of states. Energy is defined by the formula (see [180])

Uq =

(
n∑

i=1

pqiEi

)/(
n∑

i=1

pqi

)
, (9.4.2)

where Ei are the eigenvalues of the Hamiltonian of the corresponding system. We
interpret the connection between Uq and Sq in terms of game theory.

In our approach we consider a new extremal problem. Namely, we fix the
Lagrange multiplier β = 1/T , that is, we fix the temperature and introduce a
compromise function F (β, p1, p2, . . . , pn) = −βUq+Sq. Then, the mean energy Uq

and the entropy Sq are two players of a game and the compromise result is the
extremum point of F .

2. The stationary point of the function F (β, p1, p2, . . . , pn) is a solution of the
system

∂F (β, p1, p2, . . . , pn)

∂pi
= 0, 1 ≤ i ≤ n. (9.4.3)

It is easy to see that in accordance with [180, p. 12] we get

pi = Ẑ−1
q

(
1− (1− q)β (Ei − Uq)

/(
n∑

i=1

pqi

)) 1
1−q

, (9.4.4)

where

Ẑq =

n∑
i=1

(
1− (1− q)β (Ei − Uq)

/(
n∑

i=1

pqi

)) 1
1−q

. (9.4.5)

3. Extremum points. We introduce the values

Emax = max{E1, E2, . . . , En}, Emin = min{E1, E2, . . . , En}. (9.4.6)

We need such a solution p̃i of system (9.4.4), (9.4.5), that

p̃i > 0, 1 ≤ i ≤ n. (9.4.7)

Proposition 9.10. Let the conditions

q > 1, β > 0, 1− β(q − 1)(Emax − Emin)n
q−1 > 0 (9.4.8)

hold. Then every solution of system (9.4.4), (9.4.5) satisfies conditions (9.4.7).

Proof. The assertion of the proposition follows directly from (9.4.4), (9.4.5) and
the inequality

zq =
n∑

i=1

pqi ≥ n1−q. �
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Proposition 9.11. Let the conditions

0 < q < 1, β > 0, 1 + β(1− q)(Emin − Emax) > 0 (9.4.9)

hold. Then every solution of system (9.4.4), (9.4.5) satisfies conditions (9.4.7).

Proof. The assertion of the proposition follows directly from (9.4.4), (9.4.5) and
the inequality

zq =
n∑

i=1

pqi ≥ 1. �

Remark 9.12. Proposition 9.11 is valid in the case n = ∞ as well.

Let us denote by D = {(p1, p2, . . . , pn)} the set of points, where

pi ≥ 0, 1 ≤ i ≤ n;

n∑
i=1

pi = 1. (9.4.10)

The set D is compact and convex. A topological space X is said to have the fixed
point property (briefly FPP) if for any continuous function f : X → X there exists
x ∈ X such that f(x) = x. According to the Brouwer fixed point theorem, every
compact and convex subset of a euclidean space has the FPP.

It is easy to see that the following statement is valid.

Proposition 9.13. Let the conditions of either Proposition 9.10 or Proposition 9.11
hold. Then the relations

ri = Ẑ−1
q

(
1 + (q − 1)β (Ei − Uq)

/(
n∑

i=1

pqi

)) 1
1−q

, (9.4.11)

where

Ẑq =

n∑
i=1

(
1 + (q − 1)β (Ei − Uq)

/(
n∑

i=1

pqi

)) 1
1−q

, (9.4.12)

continuously map the set D into itself.

Using the Lefschetz fixed point theorem [90] and Proposition 9.13 we obtain
the assertion:

Theorem 9.14. Let the conditions of either Proposition 9.10 or Proposition 9.11
hold. Then there exists one and only one point

P̃ = (p̃1, p̃2, . . . , p̃n),

which satisfies relations (9.4.4), (9.4.5), and

n∑
i=1

p̃i = 1, p̃i > 0. (9.4.13)
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Proof. Taking into account (9.4.11) and (9.4.12), we obtain the analyticity of
{ri} in D. More precisely, the functions {ri} are analytic in the domain pi > 0
(1 ≤ i ≤ n) and continuous in the domain pi ≥ 0 (1 ≤ i ≤ n). Furthermore, the
fixed points belong to the domain, where pi > 0 (1 ≤ i ≤ n), see (9.4.7). Hence,
the map under consideration has only a finite number Nf of fixed points. Thus,
we can apply the Lefschetz fixed point theorem [90]. According to this theorem
the number Nf coincides with the Euler characteristics χ(D) of D. In view of the
well-known Euler formula we have χ(D) = 1. The theorem is proved. �

We stress, that we consider the extremal problem for the introduced function
F , which contains the fixed parameter β, but the energy Uq is not fixed. The case,
where the energy Uq is fixed, was treated in a number of works (see [180]).

For the proof of our next proposition, we use the classical iteration method
and take P0 = (1/n, 1/n, . . . , 1/n) as the starting point.

Proposition 9.15. If β is small, then

p̃i≈ 1

n
+ β
(
Ei − E

)
n−q, (9.4.14)

where E = (
∑n

i=1 Ei)/n.

9.5 Algorithmic entropy, thermodynamics, and game
interpretation

1. Introduction. Algorithmic information theory (AIT) is an important and ac-
tively studied domain of computer science. See, for instance, interesting results
and numerous references in [21, 95, 168] (see also recent discussions on infor-
mation, its measurement, entropy, and connections to quantum theory in, e.g.,
[1, 2, 22, 72, 96, 104, 174]). AIT can be interpreted in terms of statistical physics
(SP) (see [2, 174,186] and references therein). Let us introduce the corresponding
notions from AIT and SP.

I. The set of all AIT programs corresponds to the set of energy eigenvectors
from SP.

II. The length �k of an AIT program corresponds to the energy eigenvalue Ek

from SP. (Here and further k ≥ 1.)

We denote by Pk the probability that the length of the program is equal to �k,
that is, Pk = P (� = �k). Next, we introduce the notions of the mean length L (of
programs) and of the entropy S:

L =
∑
k

Pk�k, S = −
∑
k

Pk logPk. (9.5.1)
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The connection between L and S we interpret in terms of game theory. The ne-
cessity of the game theory approach can be explained in the following way. The
notion of a Gibbs ensemble is introduced in AIT using an analogy with the second
law of thermodynamics:

The Gibbs ensemble maximizes entropy on the a of programs where the values {lk}
and L are fixed.

So, the problem of a conditional extremum appears. But the correspond-
ing equation for the Lagrange multiplier is transcendental and very complicated.
Therefore, another argumentation is needed to find the basic Gibbs formulas. This
problem exists also for the SP case (see [42, Ch. 1, Section 1] and [86, Ch. 3, Sec-
tion 28]). We use our approach to the extremal SP problem [151, 153, 159, 161]
to treat also the corresponding AIT problem. Namely, we fix the Lagrange mul-
tiplier β = 1/kT . That is, we fix the AIT analogue T of the temperature from
SP and introduce the compromise function F = −βL+ S. Then the mean length
L and the entropy S are two players of a game and the compromise result is the
extremum point of the F . Finally, we note, that the AIT analogue of temperature
was discussed by K. Tadaki [174]. He proved the following assertion:

If the temperature is a computable positive number bounded by 1, it can
be interpreted as the compression rate in the AIT analogue of thermodynamic
theory.

2. Connection between length and entropy, a game theoretic point of view Let
the lengths �k of the programs be fixed. Consider the mean length L and the
entropy S, which are given in (9.5.1). Note that

∑
k Pk = 1. Hence, Pk can be

represented in the form Pk = pk/Z, where Z =
∑

k pk. Our aim is to find the
probabilities Pk. For that purpose we consider the function

F = λL+ S, (9.5.2)

where λ = −β = −1/kT .

Fundamental Principle. The function F defines a game between the mean length
L and the entropy S.

To find the stationary point of F we calculate

∂F

∂pj
= λ
(
�j/Z −

∞∑
k=1

�kpk/Z
2
)
− (log pj)/Z +

∞∑
k=1

pk log pk/Z
2. (9.5.3)

It follows from (9.5.3) that the point

pk = eλ�k , k = 1, 2, . . . (9.5.4)

is a stationary point. Moreover, the stationary point is unique up to a scalar
multiple. Without loss of generality this multiple can be fixed as in (9.5.4). By
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direct calculation we get in the stationary point (9.5.4) the equalities

∂2F

∂p2k
= −Zk/(pkZ

2) < 0, Zk :=
∑
j 
=k

pj ;
∂2F

∂pk∂pj
= 1/Z2 > 0, j �= k. (9.5.5)

Relations (9.5.5) imply the following assertion (see Section 9.1).

Corollary 9.16. The stationary point (9.5.4) is a maximum point of the function
F .

So, we have proved the proposition below.

Proposition 9.17. The mean length and entropy satisfy relations

L =
∑
k

�ke
λ�k/Z, (9.5.6)

S = −
∑
k

(eλ�k/Z) log(eλ�k/Z), (9.5.7)

where Z =
∑

k e
λ�k .

Note that the basic relations (9.5.4), (9.5.6), and (9.5.7) are obtained by solv-
ing a new extremal problem. Namely, in the introduced function F the parameter
λ is fixed instead of the length L, which is usually fixed.



Chapter 10

Inhomogeneous Boltzmann
equations: distance, asymptotics
and comparison of the classical
and quantum cases

10.1 Introduction

We consider the classical and quantum versions of Boltzmann equations (where
the quantum version contains both the fermion and boson cases). The important
notion of Kullback–Leibler distance [85], which was fruitfully used before (see
further references in the recent papers [55,171,183]), is essentially generalized and
new conventional extremal problems, which appear in this way, are solved. The
solution f(t, x, ζ) of the Boltzmann equation is studied in the bounded domain
Ω of the x-space. Such an approach essentially changes the usual situation, that
is, the total energy depends on t and the notion of distance between a stationary
solution and an arbitrary solution of the Boltzmann equation includes the x-space.
Thus, the notion of distance remains well-defined in the spatially inhomogeneous
case too. Recall that the Kullback–Leibler distance is defined only in the spatially
homogeneous case. The comparison of the classical and quantum mechanics, which
was treated in [151, 153, 159], is generalized here for the case of the Boltzmann
equations. It is especially interesting for the applications that the fermion and
boson cases are essentially different from this point of view. In the last section
of the paper we introduce the dissipative and conservative solutions and find the
conditions under which the stationary solution of the classical Boltzmann equation
is stable.

. , 
I 10.1007/978-3-0348-0356-4_ ,  
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First, we discuss the classical case. The well-known classical Boltzmann equa-
tion for a monoatomic gas has the form

∂f

∂t
= −ζ·�xf +Q(f, f), (10.1.1)

where t ∈ R stands for time, x = (x1, . . . , xn) ∈ Ω stands for space coordinates,
ζ = (ζ1, . . . , ζn) ∈ R

n is velocity, and R denotes the real axis. The collision operator
Q is defined by the relation

Q(f, f) =

∫
Rn

∫
Sn−1

B(ζ − ζ∗, x)[f(ζ ′)f(ζ ′∗)− f(ζ)f(ζ∗)]dσdζ∗, (10.1.2)

where B(ζ− ζ∗, x) ≥ 0 is the collision kernel and
∫
Sn−1 gdσ is the surface integral.

Here we used the notation

ζ ′ = (ζ∗ + ζ)/2 + x|ζ∗ − ζ|/2, ζ ′∗ = (ζ∗ + ζ)/2− x|ζ∗ − ζ|/2, (10.1.3)

where x ∈ Sn−1, that is, x ∈ R
n and |x| = 1. The solution f(t, x, ζ) of the

Boltzmann equation (10.1.1) is the distribution function of gas. We start with some
global Maxwellian function M , which is the stationary solution (with the total
density ρ) of the Boltzmann equation. The notion of distance between the global
Maxwellian function and an arbitrary solution f (with the same value ρ of the
total density at the fixed moment t) of the Boltzmann equation is introduced. As
already mentioned before, our approach enables us to treat also the inhomogeneous
case. An extremal problem to find a solution of the Boltzmann equation, such that
dist{M,f} is minimal in the class of solutions with the fixed values of energy and
of n moments, is solved.

The same considerations prove fruitful for the quantum Boltzmann equation.
Our definition of the quantum entropy Sq is slightly different from the previous
definitions (see [28, 101]). We show that the natural requirement

Sq → Sc, ε → 0 (Sc is the classical entropy) (10.1.4)

is not fulfilled in the case of the old definition, however (10.1.4) holds in the case
of our modified definition (see Section 10.6).

Some necessary preliminary definitions and results are given in Section 10.2.
An important functional, which is an analogue of the “compromise function” F
from Chapter 9 and attains maximum at the global Maxwellian function, is intro-
duced in Section 10.3. The distance between solutions of (10.1.1) and the corre-
sponding extremal problem are studied in Section 10.4. The modified Boltzmann
equations for Fermi and Bose particles (the quantum cases) are considered in
Sections 10.5 and 10.6. A comparison of the classical and quantum cases is also
conducted in Section 10.6. Finally, Section 10.7 is dedicated to the asymptotics
and stability of solutions.

We use the notation C1
0 to denote the class of differentiable functions f(ζ),

which tend to zero sufficiently rapidly when ζ tends to infinity.
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10.2 Preliminaries: basic definitions and results

In this section we present some well-known notions and results connected with the
Boltzmann equation. The distribution function f(t, x, ζ) is non-negative:

f(t, x, ζ) ≥ 0, (10.2.1)

and so the entropy

S(t, f) = −
∫
Ω

∫
Rn

f(t, x, ζ) log f(t, x, ζ)dζdx (10.2.2)

is well-defined.

Definition 10.1. A function φ(ζ) is called a collision invariant if it satisfies the
relation ∫

Rn

φ(ζ)Q(f, f)(ζ)dζ = 0 for all f ∈ C1
0 . (10.2.3)

It is well-known (see [182]) that there are the following collision invariants:

φ0(ζ) = 1, φi(ζ) = ζi (i = 1, 2, . . . , n), φn+1(ζ) = |ζ|2. (10.2.4)

The notions of density ρ(t, x), total density ρ(t), mean velocity u(t, x), energy
E(t, x), and total energy E(t) are introduced via formulas

ρ(t, x) =

∫
Rn

f(t, x, ζ)dζ, ρ(t) =

∫
Ω

ρ(t, x)dx, (10.2.5)

u(t, x) =
(
1/ρ(x, t)

) ∫
Rn

ζf(t, x, ζ)dζ, (10.2.6)

E(t, x) =

∫
Rn

|ζ|2
2

f(t, x, ζ)dζ, E(t) =

∫
Ω

∫
Rn

|ζ|2
2

f(t, x, ζ)dζdx. (10.2.7)

The function

f =
(
ρ/(2πT )n/2

)
exp
(− |ζ − u|2/(2T )) (10.2.8)

is called the global Maxwellian and is a function of the mass density ρ > 0, bulk
velocity u = (u1, . . . , un) and temperature T . We assume that the domain Ω is
bounded and so its volume is bounded too:

Vol(Ω) = VΩ < ∞. (10.2.9)

Therefore, the function

M(ζ) =
(
ρ/
(
VΩ(2πT )

n/2
))

exp
(− |ζ − u|2/(2T )) (10.2.10)

is a global Maxwellian with the constant total density ρ.
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Proposition 10.2 (See [182]). The global Maxwellian function M(ζ) is the station-
ary solution of the Boltzmann equation (10.1.1).

The time derivative of the entropy is given by the formula

dS

dt
= U(f) +

∫
Ω

D(f)dx, (10.2.11)

where some variables are omitted for convenience and D and U are given by the
formulas

D(f) =
1

4

∫
R2n

∫
Sn−1

B(ζ − ζ∗, x)[f(ζ ′)f(ζ ′∗)− f(ζ)f(ζ∗)]

× log
f(ζ ′)f(ζ ′∗)
f(ζ)f(ζ∗)

dσdζ∗dζ, (10.2.12)

U(f) =

∫
Ω

∫
Rn

(ζ · �xf)(log f + 1)dζdx. (10.2.13)

The inequality D(f) ≥ 0 follows directly from the inequality (x − y) log(x/y),
where x > 0, y > 0. So, we have the following variation of the famous Boltzmann
theorem.

Theorem 10.3. Let f ∈ C1
0 be a non-negative solution of equation (10.1.1) and

suppose that

U(f) ≥ 0. (10.2.14)

Then the following inequality holds:

dS/dt ≥ 0. (10.2.15)

Remark 10.4. As usual (see [183]), we suppose that the solution f is smooth.

Using the Gauss–Ostrogradsky formula we write

U(f) =

∫
∂Ω

∫
Rn

[ζ·n(x)]f log fdζdσ, (10.2.16)

where ∂Ω is the piecewise smooth boundary of Ω, and the integral
∫
∂Ω

gdσ is the
surface integral with n(x) being the outward unit normal to that surface, x ∈ ∂Ω.

Remark 10.5. It follows from (10.2.16) that −U(f) is the total flow of the entropy
across the boundary Ω.

Proposition 10.6. If f(t, x, ζ) = f(t, x,−ζ) for all x ∈ ∂Ω, then U(f) = 0.
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10.3 Extremal problem

Similar to the cases considered in [159, 162], an important role is played by the
functional

F (f) =
(
F (f)

)
(t) = λE(t) + S(t), λ = −1/T, (10.3.1)

where S and E, respectively, are defined by formulas (10.2.2) and (10.2.7), and the
functional (10.3.1) is considered on the class of functions with the same ρ(t) = ρ
at the fixed moment t. The parameters λ = −1/T and ρ are fixed.

Now, we use the calculus of variations (see [56]) and find the function fmax

which maximizes the functional (10.3.1). The corresponding Euler’s equation takes
the form

δ

δf

[
λ
|ζ|2
2

f − f log f + μf
]
= 0. (10.3.2)

Here δ
δf stands for the functional derivative. Our extremal problem is conditional

and μ is the Lagrange multiplier. Hence, we have

λ
|ζ|2
2

− 1− log f + μ = 0. (10.3.3)

From the last relation we obtain

f = Ce−|ζ|2/(2T ). (10.3.4)

Formulas (10.2.10) and (10.3.4) imply that

f = M(ζ) =
ρ

VΩ(2πT )n/2
e−

|ζ|2
2T . (10.3.5)

In view of (10.2.2), (10.2.7), and (10.3.1) we see that

F (f) =

∫
Ω

∫
Rn

Lf (t, x, ζ)dζdx, Lf = −
( |ζ|2
2T

+ log f
)
f. (10.3.6)

For positive f (including the case f = M) and for Lf given in (10.3.6), we have
the inequality

δ2

δf2
Lf = −1/f < 0. (10.3.7)

Corollary 10.7. The global Maxwellian function M(ζ), which is defined by formula
(10.3.4), gives the maximum of the functional F on the class of functions with the
same value ρ of the total density ρ(t) at the fixed moment t.

It follows from (10.2.5), (10.3.5), and (10.3.6) that

F (M) = −ρ log
( ρ

VΩ(2πT )n/2

)
. (10.3.8)
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Therefore, Corollary 10.7 can also be proved without using the calculus of variation
(see [177]). Indeed, taking into account relations (10.3.5), (10.3.6), and (10.3.8) and
the fact that the total densities of M and f are equal, we have

F (M)− F (f) =

∫
Ω

∫
Rn

M
(
1− f

M
+

f

M
log

f

M

)
dζdx. (10.3.9)

Using inequality 1− x+ x log x > 0 for x > 0, x �= 1, we derive from (10.3.9) that

F (M)− F (f) > 0 (f �= M). (10.3.10)

Remark 10.8. Since the extremal problem is conditional, the connection between
the energy and entropy can be interpreted in terms of game theory. The functional
(10.3.1) defines this game. The global Maxwellian function M(ζ) is the solution
of it. A game interpretation of quantum and classical mechanics problems is given
in the papers [159,162].

Remark 10.9. Inequality (10.3.10) is valid for all the non-negative functions f with
the fixed density ρ at t (not necessarily solutions of the Boltzmann equation).

10.4 Distance

Let f(t, x, ζ) be a non-negative solution of the Boltzmann equation (10.1.1). We
assume that T and the value ρ = ρ(t) at some moment t are fixed. According to
(10.3.10) we have

F (M)− F (f) ≥ 0, (10.4.1)

where the global Maxwellian function M(ζ) is defined in (10.3.5). The equality in
(10.4.1) holds if and only if f(t, x, ζ) = M(ζ). Hence, we can introduce the follow-
ing definition of distance between the solution f(t, x, ζ) and the global Maxwellian
function M(ζ):

dist{M, f} = F (M)− F (f). (10.4.2)

Remark 10.10. In the spatially homogeneous case (if not only the total densities
ρM and ρf of M and f are equal but the energies EM and Ef are equal too),
our definition (10.4.2) of distance coincides with the Kullback–Leibler distance
(see [183]). However, our approach enables us to treat also the inhomogeneous
case.

Next, we study the case EM �= Ef and start with an example.

Example 10.11. Let T1 �= T and consider the global Maxwellian function

M1(ζ) =
ρ

VΩ(2πT1)n/2
exp
(
− |ζ|2

2T1

)
. (10.4.3)
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Direct calculation shows that

E1 = EM1
= ρnT1/2 �= E, (10.4.4)

F (M1) = −ρ

(
log
( ρ

VΩ(2πT1)n/2

)
− n(1− T1/T )/2

)
. (10.4.5)

It follows from (10.3.8) and (10.4.5) that

dist{M,M1} = −ρn
(
log(T1/T )− T1/T + 1

)
/2. (10.4.6)

We introduce the class C(ρ,E1, U) of non-negative functions f(t, x, ζ) with
the given total density ρ (see (2.8)), total energy∫

Ω

∫
Rn

|ζ|2
2

f(t, x, ζ)dζdx = E1, (10.4.7)

and total moments U =
(
U1, U2, . . . , Un

)
, where

Uk =

∫
Ω

∫
Rn

ζkf(t, x, ζ)dζdx. (10.4.8)

Recall that the global Maxwellian function M is defined by (10.3.5).

Extremal problem. Find a function f , which minimizes the functional dist{M,f}
on the class C(ρ,E1, U).

The corresponding Euler’s equation takes the form

δ

δf

[
(λ+ ν)

|ζ|2
2

f − f log f + μf + f
∑
k

γkζk

]
= 0. (10.4.9)

Recall that our extremal problem is conditional, and μ, ν, γk are the Lagrange
multipliers. Hence, we have

(λ+ ν)
|ζ|2
2

− log f − 1 + μ+
∑
k

γkζk = 0. (10.4.10)

From the last relation we obtain

f = C exp
(
(λ+ ν)

|ζ|2
2

+
∑
k

γkζk

)
. (10.4.11)

According to (10.2.5) we have λ+ ν < 0. Now, we rewrite (10.4.11) as

f = C1

(
− 2π

λ+ ν

)−n/2

exp
(λ+ ν

2

∑
k

(
ζk +

γk
λ+ ν

)2)
, (10.4.12)
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where

C1 = C
πn/2

(−(λ+ ν)/2)n/2
exp
(
−
∑

k γ
2
k

2(λ+ ν)

)
. (10.4.13)

To calculate the parameters μ, ν, γk we use again the well-known formulas∫ ∞

−∞
e−aξ2dξ =

√
π/a,

∫ ∞

−∞
ξ2e−aξ2dξ =

1

2a

√
π/a, a > 0. (10.4.14)

Formulas (10.2.5), (10.4.7), (10.4.8), (10.4.12), and (10.4.14) imply that

C1 = ρ/VΩ, γk/(λ+ ν) = −Uk/ρ, −(λ+ ν) = T−1
1 , (10.4.15)

where

T1 =
2

nρ
E1 − 1

nρ2

∑
k

U2
k . (10.4.16)

Because of (10.4.12) and (10.4.15) we see that f is just another global Maxwellian
function

f = M2(ζ) =
ρ

VΩ(2πT1)n/2
exp
(
− |ζ − U/ρ|2

2T1

)
. (10.4.17)

In the same way as (10.4.5) we obtain

F (M2) = −ρ

(
log
( ρ

VΩ(2πT1)n/2

)
− n(1− T1/T )/2

)
− 1

2ρT
|U |2. (10.4.18)

Moreover, formulas (10.3.6) and (10.4.2) imply the relations

dist{M, f} =

∫
Ω

∫
Rn

(
LM (t, x, ζ)− Lf (t, x, ζ)

)
dζdx,

δ2

δf2
(LM − Lf

)
= 1/f.

(10.4.19)
That is, the functional dist{M,f} attains its minimum on the function f = M2,
which satisfies conditions ρ(t) = ρ, (10.4.7), and (10.4.8). More precisely, in view
of (10.4.18) we have

dist{M,M2} = −nρ

2

(
log(T1/T )− T1/T + 1

)
+

|U |2
2ρT

. (10.4.20)

Hence, the following assertion is valid.

Proposition 10.12. Let M and M2 be defined by (10.3.5) and (10.4.17) respective-
ly. If the function f satisfies conditions ρ(t) = ρ, (10.4.7), (10.4.8), and f �= M2,
then

dist{M, f} > −nρ

2

(
log(T1/T )− T1/T + 1

)
+

|U |2
2ρT

.
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Definition 10.13. We denote by M̂ the Maxwell function of the form (10.3.5),
where ρ = (1/e)(2πT )n/2VΩ.

According to (10.3.10) we have

F (M̂) > F (M), M �= M̂. (10.4.21)

Hence the following statement is valid.

Proposition 10.14. The inequality

Ĝ(f) = F (M̂)− F (f) > 0, f �= M̂ (10.4.22)

is fulfilled for all non-negative f .

We call Ĝ in (10.4.22) the Lyapunov functional, and will study it in greater
detail in Section 10.7.

10.5 Modified Boltzmann equations for Fermi and Bose
particles

We study the modified Boltzmann equation which takes into account the quantum
effect [28, 100]

∂f

∂t
= −ζ·�xf + C(f, f). (10.5.1)

The collision operator C is defined by the relation

C(f, f) =

∫
Rn

∫
Sn−1

B(ζ − ζ∗, x)
[
f (ζ ′) f (ζ ′∗) (1 + εf(ζ)) (1 + εf (ζ∗))

− f(ζ)f (ζ∗) (1 + εf (ζ ′)) (1 + εf (ζ ′∗))
]
dσdζ∗, (10.5.2)

where ζ ′ and ζ ′∗ are introduced in (10.1.3), and ε ∈ R. If ε = 0, the right-hand
side of (10.5.2) coincides with the right-hand side of (10.1.2), that is, we get the
classical case. The inequalities ε > 0 and ε < 0 hold for bosons and fermions,
respectively. Similar to the classical case the quantum density ρε and quantum
energy Eε are given by formulas (10.2.4) and (10.2.7), respectively. However, the
quantum entropy S(t, ε) (ε �= 0) is defined in a more complicated way:

S(t, f, ε) = −
∫
Ω

∫
Rn

[f log f − (1/ε)(1 + εf) log (1 + εf) + f ]dζdx. (10.5.3)

Remark 10.15. Our definition (10.5.3) of entropy is slightly different from the
previous definitions (see [28,101]). Namely, formula (10.5.3) contains the additional
summand

−ρε = −
∫
Ω

∫
Rn

fdζdx. (10.5.4)
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We shall show that the natural requirement

S(ε) → Sc, ε → 0 (10.5.5)

is fulfilled only in the case that (10.5.3) holds.

10.6 Modified extremal problem

1. We assume again that the domain Ω is bounded and introduce the functional

Fε(f) = λEε(f) + S(f, ε), λ = −1/T, (10.6.1)

where Eε(f) and S(f, ε) are defined by formulas (10.2.7) and (10.5.3) respectively.
The parameters λ = −1/T and ρ are fixed.

Again we use the calculus of variations (see [28]) and find the function fmax

which maximizes the functional (10.6.1) under the additional condition∫
Ω

ρ(t, x)dx = ρ. (10.6.2)

The corresponding Euler equation takes the form

λ
|ζ|2
2

− log f + log(1 + εf)− 1 + μ = 0. (10.6.3)

From the last relation we obtain

f/(1 + εf) = Ce−
|ζ|2
2T . (10.6.4)

Formula (10.6.4) implies that

f = Mε =
Ce−

|ζ|2
2T

1− Cεe−
|ζ|2
2T

. (10.6.5)

It is required that the distribution Mε is positive, that is,

C > 0, −∞ < Cε ≤ 1, (10.6.6)

and further we assume that (10.6.6) holds. Moreover, (10.6.6) yields also the pos-
itivity of 1 + εMε:

Mε(ζ) > 0, 1 + εMε(ζ) > 0. (10.6.7)

According to (10.2.5) and (10.6.2), the constant C is defined by the equality

VΩ

∫
Rn

Ce−
|ζ|2
2T

1− εCe−
|ζ|2
2T

dζ = ρ. (10.6.8)
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In view of (10.6.1), we have a relation which is similar to (10.3.6):

Fε(f) =

∫
Ω

∫
Rn

Lf,ε(t, x, ζ)dζdx. (10.6.9)

Though the function Lf,ε is more complicated than Lf in (10.3.6), we easily get
an analog of (10.3.7):

δ2

δf2
Lf,ε = − 1

f(1 + εf)
< 0, (10.6.10)

which clearly holds if f and 1 + εf are positive, including the case that f = Mε.

Corollary 10.16. The functional Fε given by (10.6.1) attains its maximum (for
positive functions f satisfying condition (10.6.8)) on the function Mε of the form
(10.6.5). That is, for the distance Gε we get

Gε(f) := Fε(Mε)− Fε(f) > 0 (f �= Mε). (10.6.11)

Remark 10.17. The global Maxwellians Mε play an essential role in boson and
fermion theories. When the standard approach is used, they are deduced in a more
complicated way (see [86, Ch. V, Sections 52, 53] and [42, Ch. 1, Sections 9, 10]).

2. Using spherical coordinates, we calculate the integral on the left-hand side of
(10.6.8)∫

Rn

Ce−
|ζ|2
2T

1− εCe−
|ζ|2
2T

dζ = ωn−1C

∫ ∞

0

rn−1e−
r2

2T

1− εCe−
r2

2T

dr, ωn−1 =
2πn/2

Γ(n/2)
, (10.6.12)

where ωn−1 is the surface area of the (n−1)-sphere of radius 1, and Γ(z) is Euler’s
Gamma function. Taking into account (10.6.8) and (10.6.12) we obtain

(2πT )n/2VΩCLn/2(Cε) = ρ, (10.6.13)

where

Ln/2(z) =
2

(2T )n/2Γ(n/2)

∫ ∞

0

rn−1e−
r2

2T

1− ze−
r2

2T

dr. (10.6.14)

Because of the equality∫ ∞

0

e−ar2rn−1dr =
1

2
a−n/2Γ(n/2) (10.6.15)

the function Ln/2(z) admits the expansion

Ln/2(z) =

∞∑
m=1

(
zm−1/mn/2

)
, (10.6.16)

which yields the next statement.
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Proposition 10.18. The function Ln/2(z) monotonically increases for 0 < z < 1
and

L1/2(1) = L1(1) = ∞, Ln/2(1) < ∞ for n > 2. (10.6.17)

Remark 10.19. It is easy to see that Ln/2(z) = ∞ for z > 1.

In view of Proposition 10.18 we have:

Corollary 10.20. If ε > 0 (boson case) and either n = 1 or n = 2, then equation
(10.6.13) has one and only one solution C such that C > 0, Cε < 1, and so
(10.6.6) holds.

Corollary 10.21. If ε > 0 (boson case), n > 2 and

(2πT )n/2VΩLn/2(1) > ερ, (10.6.18)

then equation (10.6.13) has one and only one solution C such that C > 0 and
Cε < 1. If, instead of (10.6.18), we have (2πT )n/2VΩLn/2(1) = ερ, then the
solution of (10.6.13) is given by C = 1/ε and the corresponding Mε has singularity
at ζ = 0.

Remark 10.22. The function Ln/2(z) belongs to the class of L-functions [88] and
is connected with the famous Riemann zeta–function

ζ(z) =

∞∑
k=1

1

kz
; Re (z) > 1 (10.6.19)

by the relation
Ln/2(1) = ζ(n/2). (10.6.20)

Hence, some useful estimates for Ln/2(1) follow. In particular, we get

L3/2(1) = 2.612, L2(1) = 1.645, L5/2(1) = 1.341, L3(1) = 1.202. (10.6.21)

Let us consider the fermion case (i.e., the case ε < 0). The next proposition
easily follows from (10.6.14) and monotonical increase of ax(1 + ax)−1 (a > 0) on
the positive half-axis.

Proposition 10.23. Let ε < 0. Then the function CLn/2(Cε) monotonically in-
creases with respect to C > 0. Furthermore, we have CLn/2(Cε) → ∞ for C → ∞.

Corollary 10.24. If ε < 0 (fermion case), then equation (10.6.13) has one and only
one solution C such that C > 0.

3. Consider now the energy for the global Maxwellian Mε:

Eε(Mε) =

∫
Ω

∫
Rn

|ζ|2Ce−
|ζ|2
2T

1− εCe−
|ζ|2
2T

dζdx/2 = VΩωn−1C

∫ ∞

0

rn+1e−
r2

2T

1− εCe−
r2

2T

dr/2.

(10.6.22)
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Formulas (10.6.12)–(10.6.14) and (10.6.22) imply that

Eε(Mε) =

(
nρT

2

)
Ln/2+1(Cε)

Ln/2(Cε)
. (10.6.23)

According to (10.4.4) the corresponding classical energy E = E0 = Ec is given by
the formula

Ec(M) =
nρT

2
(M = M0). (10.6.24)

Proposition 10.25. If ε > 0 (boson case), then we have

Eε < Ec. (10.6.25)

If ε < 0 (fermion case) and

either n ≥ 2, −Cε ≤ 1 or n = 1, −Cε < 33/2/25/2 ≈ 0.91, (10.6.26)

then we have
Ec < Eε. (10.6.27)

Proof. Taking into account (10.6.16), we obtain Ln/2+1(Cε)/Ln/2(Cε) < 1 for
ε > 0. Hence, in view of (10.6.23) and (10.6.24) the inequality (10.6.25) holds in
the boson case.

If ε < 0 and conditions (10.6.26) hold, the inequalities

Ln/2(Cε) > 0 and Ln/2+1(Cε)− Ln/2(Cε) > 0

follow from (10.6.14) and (10.6.16), respectively, and we get

Ln/2+1(Cε)/Ln/2(Cε) > 1.

That is, in view of (10.6.23) and (10.6.24) the inequality (10.6.27) is proved in the
fermion case. �

4. For the classical case ε = 0 formula (10.6.13) (see also (10.2.10)) implies

C = C0 = ρ/VΩ

(
2πT
)n/2

. (10.6.28)

In view of (10.3.1), (10.3.8), and (10.6.28) we easily derive for M = M0 that

Sc =
1

T
Ec − ρ logC0. (10.6.29)

To calculate the quantum entropy S(Mε, ε) we recall (10.6.5) and use equalities

Mε = g/(1− εg), 1 + εMε = (1− εg)−1, g := Ce−|ζ|2/(2T ) (10.6.30)
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to simplify the expression, which stands under the integral on the right-hand side
of (10.5.3) and which we denote by LS :

LS = Mε(1 + log g) + (1/ε) log(1− εg). (10.6.31)

Substitute log g = logC − (1/2T )|ζ|2 into (10.6.31) and substitute (10.6.31) into
(10.5.3) to get

S(Mε, ε) =
1

T
Eε − (1 + logC)ρ− 1

ε
VΩ

∫
Rn

log(1− εg)dζ. (10.6.32)

Using integration by parts and the definition (10.2.7) of energy we rewrite (10.6.32):

S(Mε, ε) =
1

T
Eε − (1 + logC)ρ+

2Eε

nT
. (10.6.33)

From (10.6.1), (10.6.24), (10.6.29), and (10.6.33) we see that

S(Mε, ε)− Sc =
n+ 2

nT
(Eε − Ec)− ρ log(C/C0), (10.6.34)

Fε − Fc =
2

nT
(Eε − Ec)− ρ log(C/C0) (Fc = F0). (10.6.35)

The behavior of C is of interest and we start with the proposition below.

Proposition 10.26. The following inequalities are valid:

C > C0 for ε < 0; C < C0 for ε > 0. (10.6.36)

Proof. According to (10.6.14) and (10.6.16) we have

Ln/2(z1) < Ln/2(0) = 1 < Ln/2(z2) for z1 < 0 < z2 ≤ 1. (10.6.37)

Therefore, it is immediate that

C0Ln/2(C0ε1) < C0, C0 < C0Ln/2(C0ε2) for ε1 < 0 < ε2. (10.6.38)

In view of Propositions 10.18 and 10.23 the functions CLn/2(Cε1) and CLn/2(Cε2)
increase with respect to C > 0, and so formulas (10.6.13) and (10.6.38) imply
(10.6.36). �

It is immediate from (10.6.36) that C is bounded for ε > 0. However, C is
bounded also for the small values of |ε|, when ε is negative. Indeed, let −(2C0)

−1 <
ε < 0. Then, formula (10.6.14) yields

2Ln/2(2C0ε) > 2Ln/2(−1) > Ln/2(0) = 1.

Therefore, we have 2C0Ln/2(2C0ε) > C0, which in view of Proposition 10.23 im-
plies C < 2C0.
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Now, rewrite (10.6.13) as z = C0ε/Ln/2(z), where z = Cε, and note that∣∣∣ ddz C0ε
Ln/2(z)

∣∣∣ < 1 for |z| < 1 and small values of ε. (Since C is bounded, we see

that |z| < 1/2 for the sufficiently small values of ε.) Thus, we apply an iteration
method to the equation z = C0ε/Ln/2(z) and derive

C = C0 +O(ε), ε → 0. (10.6.39)

Next we note that formula (10.6.13) yields CLn/2(Cε) = C0. Therefore, taking
into account (10.6.39) we get

C/C0 = 1/Ln/2(Cε) = 1− (C0ε)/2
n/2 +O(ε2). (10.6.40)

Moreover, from (10.6.40) we see that

log(C/C0) = −(C0ε)/2
n/2 +O(ε2). (10.6.41)

Using relations (10.6.16), (10.6.23), (10.6.24), and (10.6.39), we derive

Eε − Ec = −nρTC0ε

4(2n/2)
+O(ε2), ε → 0. (10.6.42)

Because of (10.6.34), (10.6.35), (10.6.41), and (10.6.42), we get the next proposi-
tion.

Proposition 10.27. For ε → 0, we have equality (10.6.42) as well as equalities

S(Mε, ε)− Sc = − (n− 2)ρC0ε

4(2n/2)
+O(ε2), (10.6.43)

Fε − Fc =
ρC0ε

2(2n/2)
+O(ε2). (10.6.44)

Corollary 10.28. Let ε1 < 0 < ε2 be small. Then

S(Mε2 , ε2) < Sc < S(Mε1 , ε1) for n > 2, Fε1 < Fc < Fε2 for all n.
(10.6.45)

Remark 10.29. We recall that in view of Proposition 10.25 the inequalities

Eε2 < Ec < Eε1 , ε1 < 0 < ε2 (10.6.46)

hold without the demand for εi to be small. Here Eε2 corresponds to the boson
and Eε1 to the fermion case.

Remark 10.30. We note that relations (10.6.44) as well as their physical interpre-
tation are contained in the well-known book by L. Landau and E. Lifshitz [86, Sec-
tion 55].
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Conjecture 10.31. Relation (10.6.27), which was proved for all −Cε ≤ 1 (ε < 0)
in the case that n ≥ 2, is valid also for all −Cε ≤ 1 (ε < 0) in the case that
n = 1. We recall that (10.6.27) holds for n = 1 and −Cε < 33/2/25/2. Moreover,
(10.6.27) holds in the extremal case Cε = −1. Indeed, using (10.6.20), (10.6.21),
the relation ζ(1/2)≈− 1.46 and the well-known equality (see, e.g., [88, p. 17])

Ls(−1) = ζ(s)(1− 21−s), (10.6.47)

we obtain
L3/2(−1)≈0.765, L1/2(−1)≈0.6. (10.6.48)

Hence, L3/2(−1)/L1/2(−1) > 1 and the conjecture is proved for the case that
Cε = −1.

10.7 Lyapunov functional

10.7.1 Classical case

In this subsection we extend the study of the classical Boltzmann equation (10.1.1)
and assume that f(t, x, ζ) is its non-negative solution. Using the Gauss–Ostro-
gradsky formula we write∫

Ω

∫
Rn

(|ζ|2/2)ζ·�xfdζdx =

∫
∂Ω

∫
Rn

(|ζ|2/2)[ζ·n(x)]fdζdσ = A(t,Ω), (10.7.1)∫
Ω

∫
Rn

ζ·�xfdζdx =

∫
∂Ω

∫
Rn

[ζ·n(x)]fdζdσ = B(t,Ω), (10.7.2)

where ∂Ω is the piecewise smooth boundary of Ω, and the integral
∫
∂Ω

gdσ is the
surface integral with n(x) being the outward unit normal to that surface, x ∈ ∂Ω.

Remark 10.32. Here A(t,Ω) and B(t,Ω) are the total energy flux and the total
density flux through the surface ∂Ω per unit time, respectively.

Definition 10.33. We say that a non-negative solution f(t, x, ζ) of (10.1.1) belongs
to the class D(Ω) of dissipative functions, if A(t,Ω) ≥ 0 for all t.

Definition 10.34. We say that a non-negative solution f(t, x, ζ) of (10.1.1) belongs
to the class C(Ω) of conservative functions, if A(t,Ω) = 0 for all t.

Clearly we have C(Ω)⊂D(Ω).We note that the same definitions are applicable
in the quantum case.

Proposition 10.35. If inequality f(t, x, ζ) ≥ 0 and condition f(t, x, ζ) = f(t, x,−ζ)
for x ∈ ∂Ω hold, then we have f(t, x, ζ) ∈ C(Ω).
Proof. Since

∫
Rn(|ζ|2/2)f(t, x, ζ)ζdζ = 0, it follows that A(t,Ω) ≡ 0 for A which

is given by (10.7.1). �
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Remark 10.36. The so called bounce-back condition f(t, x, ζ) = f(t, x,−ζ) means
that particles arriving with a certain velocity to the boundary ∂Ω will bounce back
with the opposite velocity (see [182, p. 16]).

Corollary 10.37. The global Maxwellian functions M of the form (10.3.5) belong
to the conservative class C(Ω).

Furthermore, the next assertion can be easily derived via direct calculation.

Corollary 10.38. The global Maxwellian functions M of the form (10.2.10), also
belong to C(Ω).
Example 10.39. The well-known and important Maxwellian diffusion example (see
[182, p. 16]) is described by the property

f(t, x, ζ) = ρ−(x)Mb(ζ) for x ∈ ∂Ω, ζ·n(x) > 0, (10.7.3)

where Mb(ζ) has the form (10.3.5). When we have∫
∂Ω

∫
ζ·n(x)>0

(|ζ|2/2)[ζ·n(x)]fdζdσ ≥
∫
∂Ω

∫
ζ·n(x)<0

(|ζ|2/2)|ζ·n(x)|fdζdσ,
(10.7.4)

the function f in (10.7.3) is dissipative. If in relation (10.7.4) we have equality,
then f is conservative. Hence, such functions satisfy our statements below (and
the results below are new even for this case).

Now, consider the Lyapunov functional Ĝ(f) = F (M̂)−F (f) for the equation
(10.1.1). According to (10.4.22) we have

Ĝ(f) > 0 for f �= M̂, Ĝ(M̂) = 0. (10.7.5)

Using Theorem 10.3 we derive the following assertion.

Theorem 10.40. Let f ∈ C1
0 be a non-negative dissipative solution of (10.1.1) and

let inequality (10.2.14) hold. Then the inequality (dĜ/dt) ≤ 0 is valid.

Proof. The function φ(ζ) = |ζ|2 is a collision invariant (i.e., (10.2.3) holds). There-
fore, taking into account (10.1.1), (10.7.1), and Definition 10.33 we have

d

dt

∫
Ω

∫
Rn

(|ζ|2/2)fdζdx = −A(t,Ω) ≤ 0, (10.7.6)

that is, (dE/dt) ≤ 0. Recall also that M̂ is a stationary solution, and so dĜ/dt =
−dF (f)/dt. Now, the assertion of the theorem follows from (10.2.15) and (10.3.1).

�
According to Theorem 10.40, if its conditions are fulfilled and

(
Ĝ(f)

)
(t0) <

δ, then the inequality
(
Ĝ(f)

)
(t) < δ holds for all t > t0. Thus, the following

important result is proved.
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Theorem 10.41. If the distance is defined by Ĝ and f is dissipative, the stationary
solution M̂ is locally stable.

The previous results on local stability [100,177] were obtained for the spatially
homogeneous Boltzmann equation.

Corollary 10.42. Let conditions of Theorem 10.40 be fulfilled. Then the function
F (f) monotonically increases with respect to t and is bounded. Hence, there is a
limit

lim
t→∞F (f) = Φ ≤ F (M̂). (10.7.7)

Next, assume that the following limits exist:

ρ∞ = lim
t→∞ ρ(t) �= 0, U∞ = lim

t→∞U(t), (10.7.8)

where ρ(t) and U(t) are given by (10.2.5) and (10.4.8), respectively. We see from
(10.3.8) and (10.7.8) that the functions M and M(t) of the form (10.3.5), where
ρ∞ and ρ(t), respectively, are substituted in place of ρ, satisfy relations

F (M) = −ρ∞ log
( ρ∞
VΩ(2πT )n/2

)
= lim

t→∞F (M(t)). (10.7.9)

Proposition 10.43. Let the relations (10.7.7) and (10.7.8) hold. Then we have the
inequality

F (M)− Φ ≥ |U∞|2/(2ρ∞T ). (10.7.10)

Moreover, if the inequality (10.7.10) turns into equality, there exists a unique Max-
wellian function MU of the form (10.4.17) (with ρ = ρ∞ and U = U∞) such that

F (MU ) = Φ. (10.7.11)

If the inequality (10.7.10) is strict, that is,

F (M)− Φ > |U∞|2/(2ρ∞T ), (10.7.12)

there are two such functions (M1 and M2) satisfying

F (Mk) = Φ (k = 1, 2). (10.7.13)

Proof. It is immediate that

y(x) := x− 1− log x = 0 for x = 1, y(x) > 0 for x > 0, x �= 1. (10.7.14)

Since y ≥ 0, according to Proposition 10.12 we have

F (M(t))− F (f(t)) ≥ |U(t)|/(2ρ(t)T ). (10.7.15)

In view of (10.7.7)–(10.7.9) and (10.7.15) we get (10.7.10).
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Now using (10.4.20) we rewrite equation (10.7.11) (or, correspondingly, equa-
tion (10.7.13)) in the form

2

nρ∞

(
F (M)− Φ− |U∞|2

2ρ∞T

)
= x− 1− log x, (10.7.16)

where MU or, correspondingly, Mk are expressed via solutions xk of (10.7.16) in
the form (compare with (10.4.17))

MU = Mk =
ρ∞

VΩ(2πxkT )n/2
exp
(
− |ζ − U∞/ρ∞|2

2xkT

)
.

According to (10.7.14), the equation (10.7.16) has a unique solution when (10.7.10)
turns into equality and has two solutions when (10.7.10) is a strict inequality. �
Corollary 10.44. Let the conditions of Proposition 10.43 be fulfilled. Then

F (Mk)− F (f) → 0, t → ∞. (10.7.17)

Corollary 10.45. Let the conditions of Proposition 10.43 be fulfilled, where the
strict inequality (10.7.12) holds. If the limit

E∞ = limE(t) (t → ∞) (10.7.18)

exists and the corresponding solution f(t, x, ζ) converges to a Maxwellian function,
then either E∞ = E1 or E∞ = E2.

Remark 10.46. Proposition 10.43 and Corollaries 10.44 and 10.45 are valid if the
limit (10.7.7) exists. We do not suppose there, that the corresponding solution f
is dissipative.

10.8 Conclusion

We see that the study of Boltzmann equations in a bounded domain Ω and the sug-
gested new extremal problem allow us to introduce a notion of distance and obtain
various results for the inhomogeneous classical and quantum cases. In particular,
the notion of dissipative solutions is introduced and asymptotics and stability of
solutions of the classical and quantum Boltzmann equations is studied. Following,
e.g., [119, 165] we plan also to consider solutions of the Boltzmann equations for
the case of Tsallis entropy. The approach could be applied to other related equa-
tions, such as the Fokker–Planck equation. See also a further discussion of the
results in Chapter “Comments”.



Chapter 11

Operator Bezoutiant and roots
of entire functions, concrete
examples

11.1 Introduction

The matrix Bezoutiant is used in order to define the number of common zeroes
of two polynomials f(z) and g(z) and to describe the distribution of the zeroes of
polynomials with respect to the circle |z| = 1 (see [81]). M.G. Krein extended the
notion of Bezoutiant to entire functions of the form

F (z) = 1 +

∫ a

0

eiztΦ(t)dt, Φ(t) ∈ L(0, a). (11.1.1)

The result by M.G. Krein was not published and I became acquainted with it
through the manuscript given to me by M.G. Krein in 1974. In 1976 I. Gohberg
and G. Heinig published the article [50], in which they derived Krein’s theorem
and generalized it for the matrix functions F (z) of type (11.1.1). In the same year,
1976, we extended [138] the Krein’s theorem to the class of functions of the form

F (z) = 1 + iz

∫ a

0

eiztΦ(t)dt, Φ(t) ∈ L(0, a). (11.1.2)

Further development of Bezoutiant Theory was achieved in [49,57,114]. In partic-
ular, a connection between the two important problems was established:

Problem 11.1. Find the number N of common zeroes of the two entire functions
F1(z) and F2(z).

Problem 11.2. Find the dimension M of the corresponding Bezoutiant kernel.

. , 
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Recall that the Bezoutiant is an operator. (Its definition will be given later
on.) Under certain conditions the equality

N = M (11.1.3)

holds.
When F1(z) and F2(z) are polynomials, then the corresponding Bezoutiant

T is a matrix. In this case the Problem 11.2 can be solved using a finite number
of arithmetic operations. In the operator case the situation is more complex. Up
till now there has not been a single concrete example of an effective application of
the operator Bezoutiant theory. We apply the operator Bezoutiant theory to the
entire functions of the form

Fk(z) =

∫ a

0

eiztΨk(t)dt. (11.1.4)

We investigate in detail the class Z of functions Fk(z) of the form (11.1.4) when
Ψk(t) is a polynomial with algebraic coefficients.

More precisely, M.G. Krein extended the Schur–Cohn theorem to entire func-
tions of the form (11.1.1). In our paper [138] this result was extended to functions
of the form (11.1.2). It was assumed that the corresponding Bezoutiant operator
T is normally solvable. In the present chapter we deduce the Schur–Cohn type
theorems without this assumption, which enables us to investigate the class of
functions belonging to Z.

Let us formulate some results. The theorem below is proved in Section 11.5.

Theorem 11.3. Let the following conditions be fulfilled.

1. The functions Fk(z) have the form (11.1.4) and belong to the class Z.

2. The inequality
Ψ1(x) �= Ψ2(a− x) (11.1.5)

holds, that is, the difference between Ψ1(x) and Ψ2(a− x) is non-zero on a
set of a positive measure.

3. ∫ a

0

Ψk(x)dx �= 0, k = 1, 2. (11.1.6)

Then the corresponding functions F1(z) and F2(z) have no common zeroes. If
Ψ1(x) �= Ψ1(a− x), the function F1(z) has neither real zeroes nor conjugate pairs
of zeroes.

The following equality holds,

F2(z) =

∫ a

0

e−iztΨ2(t)dt = e−iaz

∫ a

0

eiztΨ2(a− t)dt. (11.1.7)

Hence we obtain our next assertion.
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Proposition 11.4. The functions F2(z) and

F2,1(z) =

∫ a

0

eiztΨ2(a− t)dt (11.1.8)

have the same zeroes.

Remark 11.5. If F2(z) ∈ Z, then we have also F2,1(z) ∈ Z.

Example 11.6. Let Ψ(t) = tn, where n ≥ 0 and n is an integer. In this case we
have:

F (n, z) =

∫ a

0

eitztndt = −(−i)n+1 dn

dzn
(
z−1(1− cos(az)− i sin(az))

) ∈Z.

(11.1.9)

Corollary 11.7. Functions F (n1, z) and F (n2, z) (n1 �= n2), which are given by
(11.1.9), have no common zeroes.

Example 11.8. Let Ψ(t) = tn(a − t)m, where n and m are integers and n ≥ 0,
m ≥ 0. The corresponding function F (n,m, z) belongs to the class Z. If n = m
we have

F (n, n, z) =
√
πΓ(n+ 1)(z/a)−(n+1/2)J(n+1/2)(az/2)e

iaz/2 ∈Z, (11.1.10)

where Γ(z) is Euler’s Gamma function and Jν(z) is the Bessel function. The func-
tions J(n+1/2)(z) form a subclass Z1 of the class Z.

For the subclass Z1, the Theorem 11.3 has been well-known for more than a
hundred years (see [121,187]).

Example 11.9 (Open problem). Use our approach for the case

Ψ(t) = tn+1/2(a− t)m+1/2, (11.1.11)

where n and m are integers and n ≥ 0, m ≥ 0.

The results (Sections 11.2–11.5) are valid for case (11.1.11), too. The class of
Bessel functions J(n)(z), where n is integer and n ≥ 0 can be reduced to this case
(see (11.1.10)). Let us formulate the related Bourget’s hypothesis [187]:

Bourget’s hypothesis. Two functions Jn(z) and Jm(z), where n and m are non-
negative integers with n �= m, have no common zeroes other than the origin.

Using Siegel’s theorem [169,187] Bourget’s hypothesis was proved.

Remark 11.10. The functions F (z) from Examples 11.8 and 11.9 can be expressed
in terms of the confluent hypergeometric function Φ(b, c, z), if we use the repre-
sentation [4]:

Φ(b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

ezttb−1(1− t)c−b−1dt, (11.1.12)

where Re (c) > Re (b) > 0.

In Section 11.4 we obtain an analogue of the Schur–Cohn and Krein theorems
(see Theorem 11.24).
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11.2 Main notions

By [H1, H2] we denote the set of linear bounded operators acting from the Hilbert
spaceH1 into the Hilbert spaceH2. We denote them-dimensional space of constant
m×1 vectors by G. Now we introduce the m×m matrix functions

F1(z) = Im − zP ∗(I −Az)−1Π, (11.2.1)

F2(z) = Im − zQ∗(I −Az)−1Π. (11.2.2)

Here the operators A, P , Q and Π are such that

A∈ [L2
m(0, a), L2

m(0, a)], Π∈ [G,L2
m(0, a)], P ∗∈ [L2

m(0, a), G], Q∗∈ [L2
m(0, a), G].

Let us note that the representation of the given matrix functions F1(z) and F2(z)
is called a realization. The methods of realization are well-known (see [139]).

Usually we assume that the spectrum of A (i.e., Sp(A)) coincides with zero.

Hence the functions F1(z) and F2(z) defined by (11.2.1) and (11.2.2), respec-
tively, are entire matrix functions. Let us associate with the pair F1(z) and F2(z)
the operator identity

TB − C∗T = N2N
∗
1 , (11.2.3)

where B,C, T ∈ [L2
m(0, a), L2

m(0, a)], N1, N2 ∈ [G,L2
m(0, a)] and, moreover,

B = A+ΠP ∗, C = A+ΠQ∗, N∗
1 = Π∗T. (11.2.4)

Here, the choice of N2 ∈ [G,L2
m(0, a)] depends on the considered problem. Clearly,

we have

N∗
1 , N

∗
2 ∈ [L2

m(0, a), G]; Π∗ ∈ [L2
m(0, a), G].

We denote by LT the kernel of T and by L1 the maximal invariant subspace of B
such that

N∗
1L1 = 0. (11.2.5)

In paper [138] (see also [147, Ch. 5]) we proved the following assertion.

Theorem 11.11. Let the following conditions be fulfilled:

1. Relations (11.2.3) and (11.2.4) are valid.

2. If L �= 0 is an invariant subspace of A∗, then Π∗L �= 0.

Then the equality

L1 = LT (11.2.6)

holds.
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Proof. The formula N∗
1 = Π∗T (see (11.2.4)) implies that

LT⊆KerN∗
1 . (11.2.7)

It follows from relations (11.2.3) and (11.2.7) that

TBf = 0 for f ∈ LT , (11.2.8)

that is, the subspace LT is B invariant. Hence, in view of (11.2.7) we have

LT⊆L1. (11.2.9)

From the operator identity (11.2.3) we obtain also that the subspace H1 = TL1 is
C∗ invariant. Due to (11.2.5), the relation Π∗H1 = 0 is valid. It means that on the
subspace H1 the operators C∗ and A∗ coincide. Using condition 2 of the theorem,
we get the equality H1 = 0, that is,

L1⊆LT . (11.2.10)

The assertion of the theorem follows directly from (11.2.9) and (11.2.10). �

Example 11.12. Let us consider the case when T = 0. In view of relation (11.2.4)
we have N1 = 0. This means that L1 = LT = L2

m(0, a).

Example 11.13. Let us consider another extreme case, namely, the case that

Af = i

∫ x

0

f(t)dt, f(x) ∈ L2(0, a); P = Q = 0. (11.2.11)

In this case we have

(A−A∗)f = i

∫ a

0

f(t)dt. (11.2.12)

It follows from (11.2.4), (11.2.11) and (11.2.12) that we can put (in (11.2.3))

T = I, N1g = g, N2g = ig, g ∈ G = C. (11.2.13)

We see that LT = 0. It is well-known that the operator A, defined by relation
(11.2.11), has no invariant subspaces orthogonal to 1. Hence L1 = 0, that is, we
have again the equality L1 = LT .

11.3 Properties of the operator B

Further we consider only the case when m := dimG = 1. In this section we
formulate the properties of the operator B for that case (see [138]).
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Proposition 11.14. If z is a regular point of (I − Az)−1 and F−1
1 (z), then z is a

regular point of (I −Bz)−1 and

(I −Bz)−1 = (I −Az)−1 + z(I −Az)−1ΠF−1
1 (z)P ∗(I −Az)−1. (11.3.1)

Proof. Put f = (I − Bz)−1g. From (11.2.4) we obtain g = (I − Az)f − zΠP ∗f
and therefore

f = (I −Az)−1g + z(I −Az)−1ΠP ∗f. (11.3.2)

Hence, we have P ∗f = P ∗(I −Az)−1g + zP ∗(I −Az)−1ΠP ∗f and the equality

P ∗f = F−1
1 (z)P ∗(I −Az)−1g (11.3.3)

holds. Finally we substitute (11.3.3) into (11.3.2) to derive (11.3.1) . �

Remark 11.15. In view of (11.2.4) and (11.3.1) we have

(I −Bz)−1Π = (I −Az)−1ΠF−1
1 (z). (11.3.4)

Proposition 11.16. The following relation holds for all z ∈ C:

(B − zI)p+1 =

p∑
s=0

(A− zI)p−sΠP ∗(B − zI)s + (A− zI)p+1. (11.3.5)

Proof. We prove (11.3.5) by induction. For the case that p = 0, formula (11.3.5)
takes the form

(B − zI) = (A− zI) + ΠP ∗, (11.3.6)

and its validity is apparent from the definition of B in (11.2.4). Now, assuming

(B − zI)p =

p−1∑
s=0

(A− zI)p−1−sΠP ∗(B − zI)s + (A− zI)p, (11.3.7)

multiplying the left-hand side of (11.3.7) by the left-hand side of (11.3.6) and the
right-hand side of (11.3.7) by the right-hand side of (11.3.6) (from the left) and
taking into account the equality

ΠP ∗
(

p−1∑
s=0

(A− zI)p−1−sΠP ∗(B − zI)s + (A− zI)p

)
= ΠP ∗(B − zI)p,

we obtain (11.3.5). �

Let λ be an eigenvalue of the operator B and let fp be a corresponding root
vector, that is,

(B − λI)p+1fp = 0, (B − λI)pfp �= 0. (11.3.8)
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If λ does not belong to the spectrum of A, equation (11.3.5) implies that

fp =

p∑
s=0

(A− λI)−s−1hs, (11.3.9)

where

hs = −ΠP ∗(B − λI)sfp. (11.3.10)

Let us now consider the chain of root vectors

fp−k = (B − λI)kfp, 0 < k ≤ p. (11.3.11)

It follows from (11.3.5) and (11.3.10) that

(B − λI)kfp = (A− λI)kfp +

k−1∑
s=0

(A− λI)k−s−1ΠP ∗(B − λI)sfp

= (A− λI)kfp −
k−1∑
s=0

(A− λI)k−s−1hs.

Hence, using (1.3.5) and (1.3.7) we obtain

fp−k =

p∑
s=k

(A− λI)k−s−1hs. (11.3.12)

In view of (11.3.10)–(11.3.12) we have

f0 = (A− λI)−1hp, (11.3.13)

where

hp = −ΠP ∗f0. (11.3.14)

Since f0 �= 0, formulas (11.3.13) and (11.3.14) yield the following proposition.

Proposition 11.17. If the eigenvalue of B does not belong to the spectrum of A,
then

P ∗f0 �= 0. (11.3.15)

Let μ be an eigenvalue of the operator C and let gq be the root vector of the
order q. In a similar way to Proposition 11.17 we obtain the following statement.

Proposition 11.18. If the eigenvalue of C does not belong to the spectrum of A,
then

Q∗g0 �= 0. (11.3.16)
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11.4 The explicit form of the Bezoutiant

In this section we consider an important subclass of the entire functions which can
be represented in the form

Fk(z) =

∫ a

0

eiztΨk(t)dt, (k = 1, 2), Ψk(t) ∈ L(0, a). (11.4.1)

Namely, we suppose that

Rk :=

∫ a

0

Ψk(u)du �= 0, k = 1, 2. (11.4.2)

Therefore, without loss of generality we assume that

Rk = 1. (11.4.3)

For functions of this subclass we construct the operator Bezoutiant T in its explicit
form. From relations (11.4.1) and (11.4.3) we obtain that

Fk(z) =

[
1 + iz

∫ a

0

eiztΦk(t)dt

]
, (11.4.4)

where

Φk(t) =

∫ a

t

Ψk(s)ds. (11.4.5)

Formula (11.4.4) can be represented as

Fk(z) = 1− zP ∗
k (I −Az)−11, (11.4.6)

where the operator A is defined by relation (11.2.11) and

P ∗
k f = −i

∫ a

0

f(t)Φk(t)dt. (11.4.7)

We use here the equality
(I −Az)−11 = eizx. (11.4.8)

We choose α and β so that α+ β �= 0 and put

M1(x) = Φ2(x)− βM2(x), M2(x) = [Φ2(x) + Φ1(a− x)− 1]/(α+ β). (11.4.9)

To the pair of functions F1(z) and F2(z) we assign the operator T acting in L2(0, a)
and defined by formulas (see [147, p. 11])

Tf =
d

dx

∫ a

0

(
∂

∂t
Φ(x, t)

)
f(t)dt, (11.4.10)
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where

Φ(x, t) =
1

2

∫ 2a−|x−t|

x+t

Q(
s+ x− t

2
,
s− x+ t

2
)ds, (11.4.11)

Q(x, t) = M2(a− t)M1(x) + [1−M1(a− t)]M2(x). (11.4.12)

Using formulas (11.4.10)–(11.4.12), we represent the operator T in the form (see
[147, p. 25])

Tf = c

∫ a

0

U(x, t)f(t)dt, c = − 1

(α+ β)
�= 0, (11.4.13)

where

U(x, t) =

∫ a

t

[Ψ2(a− s)Ψ1(a− s− x+ t)−Ψ2(s+ x− t)Ψ1(s)]ds (11.4.14)

for x < t and

U(x, t) =

∫ a+t−x

t

[Ψ2(a− s)Ψ1(a− s− x+ t)−Ψ2(s+ x− t)Ψ1(s)]ds (11.4.15)

for x > t.

Proposition 11.19. Let the condition Ψk(t) ∈ L(0, a) (k = 1, 2) be fulfilled. Then
the operator T defined by formulas (11.4.13)–(11.4.15) is bounded in the space
L2(0, a).

Proof. We extend the functions Ψk(t) using formula

Ψk(t) = 0, t/∈[0, a]. (11.4.16)

It follows from (11.4.13) and (11.4.14) that

|U(x, t)| ≤ h(x− t), (11.4.17)

where

h(x) =

∫ a

0

[∣∣∣Ψ2(a− s)Ψ1(a− s− x)
∣∣∣+ ∣∣∣Ψ2(s+ x)Ψ1(s)

∣∣∣] ds, |x| ≤ a.

(11.4.18)
It is easy to see that ∫ a

−a

h(x)dx < ∞. (11.4.19)

Since h ≥ 0 and (11.4.19) holds, the operator
∫ a
0
h(x − t) · dt with difference

kernel is bounded. Hence, in view of (11.4.13) and (11.4.17), the operator T is
also bounded. �
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For the operator T considered in Proposition 11.19 and operators A of the
form (11.2.11) and Pk of the form (11.4.7), respectively, the following subcase of
the identity (11.2.3) holds (see [138]):

TB1 −B∗
2T = N2N

∗
1 , (11.4.20)

where (for Πg = g)

Bk = A+ΠP ∗
k , N2g = −i(α+ β)M2(x)g, N1g = M2(a− x)g. (11.4.21)

A direct calculation shows that

T ∗1 = M2(a− x). (11.4.22)

Relation (11.4.22) can be written in the same form as in (11.2.4):

N∗
1 = Π∗T, (11.4.23)

and so we, indeed, have the subcase of relations (11.2.3) and (11.2.4).
Now, let us consider the function

F2,1(z) = F2(z)e
iaz = 1 + iz

∫ a

0

eiztΦ2,1(t)dt, (11.4.24)

where
Φ2,1(t) = 1− Φ2(a− t). (11.4.25)

It follows from relations (11.4.9) and (11.4.25) that

Φ1(t)− Φ2,1(t) = (α+ β)M2(a− x). (11.4.26)

We note that the zeroes of functions F2(z) and F2,1(z) coincide. Theorem 2.3 from
the book [147, p. 114] states that if dimLT = N < ∞, then the number of common
zeroes of F1(z) and F2(z) is equal to N . Hence, we obtain the next theorem.

Theorem 11.20. Let the conditions Ψk(x) ∈ L(0, a) be fulfilled and let dimLT =
N < ∞, where the operator T is defined by formulas (11.4.13)–(11.4.15). Then
the number of common zeroes of F1(z) and F2,1(z) is equal to N as well.

Remark 11.21. It is important that the operator T is constructed in terms of the
given functions F1(z) and F2(z), that is, in terms of Ψ1(x) and Ψ2(x).

Let us consider a special case when

Ψ1(x) = Ψ2(x) = Ψ(x), β = α, Re (α) > 0. (11.4.27)

Hence, the equalities

F1(z) = F2(z) = F (z) and B1 = B2 = B (11.4.28)

hold.
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Corollary 11.22. Let conditions (11.4.27) be fulfilled. Then the operator T defined
by formulas (11.4.13)–(11.4.15) is self-adjoint.

Recall that kF (zj) stands for the multiplicity of the root zj of the function
F (z) and d(λj) stands for the dimension of the root subspace Lj corresponding to
the eigenvalue λj of the operator B. It is an important property of the operator
B (see [147, property II, p.108]) that

d(λj) = kF (zj) = dimLj , zj = 1/λj . (11.4.29)

Proposition 11.23. Let conditions (11.4.27) be fulfilled. If the corresponding oper-
ator T is positive definite, then all zeroes zj of F (z) are such that Im zj > 0.

Proof. It follows from (11.4.9), (11.4.20) and (11.4.21) that

(TB −B∗T )f = −2iRe (α)M2(x)

∫ a

0

f(t)M2(t)dt. (11.4.30)

We denote by fj and by λj the eigenfunction of the operator B and the corre-
sponding eigenvalue, respectively. In view of (11.4.30) we have

(λj − λj)(Tfj , fj) = −2iRe (α) |(M2(x), fj)|2 . (11.4.31)

Taking into account the inequality (Tfj , fj) > 0 we see that L1 = 0, that is,
(M2(x), fj) �= 0. Hence according to (11.4.31) we have Imλj < 0. In view of
(11.4.29) the assertion of the proposition is proved. �

Let us consider the subspace

Hr =

r∑
j=1

Lj , dimHr =

r∑
j=1

d(λj). (11.4.32)

The operator B generates the operator Br = PrBP ∗
r with the eigenvalues λj

(1 ≤ j ≤ r), where Pr stands for the orthogonal projector from L2(0, a) on the
subspace Hr. It follows from (11.4.30) that

(TrBr −B∗
rTr)f = −2iRe (α)M2,r(x)

∫ a

0

f(u)M2,r(u)du, (11.4.33)

where
Tr = PrTPr, M2,r = PrM2. (11.4.34)

The spectrum Sp(Br) belongs to the upper half-plane C+. Hence, the solution Tr

of the operator equation (11.4.33) can be presented in the form (see [26, Ch. 1])

Tr =

∫ ∞

0

eiB
∗
r tY e−iBrtdt, Y f = 2Re (α)M2,r(x)

∫ a

0

f(u)M2,r(u)du. (11.4.35)

We denote by κ− and κ+ the dimensions of the maximal invariant subspaces of
the operator T on which it is negative and positive, respectively. Using relation
(11.4.35) we obtain the following assertion.
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Theorem 11.24 (an analogue of the Schur–Cohn, Krein theorems). Let the condi-
tions of Theorem 11.20 and equalities (11.4.27) hold. Then the inequalities

κ+ + dimKerT ≥
∑

kF (zj), Im zj > 0, (11.4.36)

κ− + dimKerT ≥
∑

kF (zj), Im zj < 0 (11.4.37)

are valid.

If the operator T is normally solvable, the left-hand side of (11.4.36) (of
(11.4.37)) is equal to the right-hand side (see [81, 114,138,147]).

11.5 Classes of entire functions without common zeroes

Now we shall consider the important special case that

Ψk(x) =

Qk∑
p=0

bk,px
p, bk,Qk

�= 0, x ∈ [0, a]. (11.5.1)

We suppose that
Q := Q1 ≥ Q2. (11.5.2)

The notation D stands for the operator D = d
dx . Then the relation

dQ+1

dxQ+1
(Tf) = L(D)f(x) +

∫ x

0

V (x− t)f(t)dt (11.5.3)

is valid. Here the kernel V (x − t) and the differential operator L(D) are defined
by the relations

V (u) =
∑

p+k=Q

[
(−1)kΨ

(p)
2 (u)Ψ

(k)
1 (0) + (−1)p+1Ψ

(k)
2 (a)Ψ

(p)
1 (a− u)

]
, (11.5.4)

L(D) =
∑

p+k+s=Q−1

[
(−1)kΨ

(p)
2 (0)Ψ

(k)
1 (0) + (−1)p+1Ψ

(k)
2 (a)Ψ

(p)
1 (a)

]
Ds.

(11.5.5)
We denote by r the order of the differential operator L(D) defined by relation
(11.5.5). If r = 0, then L(D)f(x) = αf(x) (and we will at first require α �= 0).

Example 11.25. Let us consider the case that

Ψ1(x) = Ψ2(a− x). (11.5.6)

In this case we have
F2(z) = e−izaF1(z). (11.5.7)

Using relations (11.4.13)–(11.4.15) and (11.5.4), (11.5.5) we obtain the following
assertion.
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Proposition 11.26. If relation (11.5.6) is fulfilled, then all the zeroes of the corre-
sponding functions F1(z) and F2,1(z) coincide and T = 0, LT = L2(0, a).

Now we consider the case in which

Ψ1(x) �= Ψ2(a− x). (11.5.8)

To apply equality (11.5.3) we need a well-known Titchmarsh Theorem (see [175,
Theorem 152]).

Theorem 11.27 (See [175]). Let f and V belong L1(0, a) and let∫ x

0

V (x− t)f(t)dt = 0 (11.5.9)

for almost all x ∈ (0, a). Then there are a1, a2 ∈ [0, a] such that f(x) = 0 for
almost all x ∈ (0, a1), V (x) = 0 for almost all x ∈ (0, a2) and a1 + a2 = a.

Proposition 11.28. Let the following conditions be fulfilled:

1. The functions Ψk(x) have the form (11.5.1), where (11.5.2) holds and con-
dition (11.5.8) is valid.

2. Similar to Section 11.4 we have

Rk :=

∫ a

0

Ψk(x)dx = 1, k = 1, 2. (11.5.10)

3. The numbers a and bp,k are algebraic.

4. The corresponding differential operator L(D) is not equal to the zero operator.

Then the corresponding functions F1(z) and F2,1(z) have no common zeroes. If

Ψ1(x) �= Ψ1(a− x), then the corresponding function F1(z) has neither real zeroes
nor conjugate pairs of zeroes.

Proof. We prove the theorem by contradiction. Let common zeroes {zj} of F1(z)
and F2,1(z) exist. Then it follows from [138, Section 2] (see also formulas (2.14) and
(2.22) in [147, Ch. 5]) that there exists a root zj such that Tfj = 0 for fj = ezjx.
Hence we have (see (11.5.3))

L(zj)fj(x) +

∫ x

0

V (x− t)fj(t)dt = 0. (11.5.11)

Therefore, since −L(zj) is an eigenvalue of the Volterra operator

T1f =

∫ x

0

V (x− t)f(t)dt,

it must be equal to zero, that is,

L(zj) = 0. (11.5.12)
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Using relations (11.5.11), (11.5.12) and Theorem 11.27 we see that

V (u)≡0. (11.5.13)

Definition (11.4.1) and equalities

F (m, z) =

∫ a

0

eitztmdt = −(−i)m+1 dm

dzm
[
z−1(1− cos az − i sin az)

]
(11.5.14)

imply that in the case that (11.5.1) and condition 3 of the proposition hold, the
corresponding function F1(z) admits representation

F1(z) = P (z) cos az +Q(z) sin (az) +R(z), (11.5.15)

where P (z), Q(z) and R(z) are rational functions with algebraic coefficients. Equa-
tion F1(z) = 0 is equivalent to the equation

P (z)(1− t2) + 2Q(z)t+R(z)(1 + t2) = 0, (11.5.16)

where t = tan(az/2). According to relation (11.5.12) the common zero zj of the
equations F1(z) = 0 and F2,1(z) = 0 is an algebraic number. Relation (11.5.16)
implies that t = tan(azj/2) is an algebraic number too. This fact contradicts to
the following well-known assertion (see [169,187]):

If zj is an algebraic number then tan (azj/2) is a transcendental number.

Hence, the assertion of the theorem is proved. �
Next, assume that condition 4 of Proposition 11.28 is not valid, that is,

L(D) = 0.

Proposition 11.29. Let conditions 1–3 of Proposition 11.28 be fulfilled and L(D) =
0. Then dimLT = 0 and the corresponding functions F1(z) and F2(z) have no
common zeroes. If Ψ1(x) �= Ψ1(a− x), then the corresponding function F1(z) has
neither real zeroes nor conjugate pairs of zeroes.

Proof. This proposition is also proved by contradiction. Let dimLT > 0. Then
(similar to the proof of Proposition 11.28) we use Theorem 11.27 to derive V (u)≡0.

Hence, it follows from (11.5.3) that dQ+1

dxQ+1 (Tf) = 0, that is, Tf is a polynomial
(with respect to x) of order Q. Therefore, we see that M2(x) = T1 is a polynomial
of order P ≤ Q. Taking into account the properties of Tf and M2, which are
discussed above, and relations (11.4.20) and (11.4.21), we obtain

dQ+1

dxQ+1
(TB1 −B∗

2T ) = i
dQ

dxQT = 0.

The last relation implies that M2(x) is a polynomial of order P ≤ Q−1. Iterating
the whole procedure, we derive M2(x) = 0. Therefore, due to (11.4.9), the equal-
ity Φ2(x) = 1 − Φ1(a− x) holds, that is, Ψ2(x) = Ψ2(a− x). The last equality
contradicts condition (11.5.8). �
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Our next theorem is apparent from Propositions 11.28 and 11.29.

Theorem 11.30. Let conditions 1–3 of Proposition 11.28 be fulfilled. Then the cor-
responding functions F1(z) and F2,1(z) have no common zeroes.

If Ψ1(x) �= Ψ1(a− x), then the corresponding function F1(z) has neither real zeroes
nor conjugate pairs of zeroes.

Example 11.31. Let us consider the special case of functions of the form (11.5.1):

Ψk(x) = xmk(a− x)nk , k = 1, 2, 0 ≤ x ≤ a. (11.5.17)

We assume that mk and nk are non-negative integer and

Q = Q1 = m1 + n1 ≥ Q2 = m2 + n2. (11.5.18)

Remark 11.32. If the relations

n1 = m2, m1 = n2 (11.5.19)

are valid, then Ψ1(x) = Ψ2(a− x). Hence the zeroes of the corresponding functions
F1(z) and F2,1(z) coincide.

If (11.5.19) does not hold (i.e., at least one of relations (11.5.19) does not
hold), the order of the operator L(D) is given in the next proposition.

Proposition 11.33. Let relations (11.5.17) and (11.5.18) be fulfilled. We require
that at least one of equalities (11.5.19) is not valid. For the particular case that

m1 = n1, m2 = n2, m1 > n2 + 1,

where (11.5.19) is, clearly, not valid, we require additionally that m1 − n2 is odd.
Then the order r of the corresponding differential operator L(D) is given by

the formula
r = max {n1 −m2 − 1, m1 − n2 − 1} ≥ 0. (11.5.20)

Proof. The inequality r ≥ 0 follows from (11.5.18) and either inequality n1 �= m2

or inequality m1 �= n2. Next, we represent the differential operator L(D) in the
form L(D) = L1(D) + L2(D), where

L1(D) =
∑

p+k+s=Q−1

(−1)kΨ
(p)
2 (0)Ψ

(k)
1 (0)Ds, (11.5.21)

L2(D) =
∑

p+k+s=Q−1

(−1)p+1Ψ
(k)
2 (a)Ψ

(p)
1 (a)Ds. (11.5.22)

The order of L1(D) is given by the equality r1 = max{n1−m2−1, 0}. This result
follows from formulas (11.5.18), (11.5.21) and the equalities

r1 = max{Q − 1− p− k, 0}, p = m2, k = m1.
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In a similar way we obtain r2 = max{m1 − n2 − 1, 0}, for which purpose we use
the equalities p = n1, k = n2. Thus, the theorem is proved for the cases that
either r1 �= r2 or r1 = r2 = 0.

Let us now consider the case r1 = r2 > 0 (i.e., n1 + n2 = m1 + m2 and
m1 > n2 + 1). The coefficients before Dri in Li (i = 1, 2) are, respectively,

B1 = (−1)m1+1an1+n2m2!m1!, B2 = (−1)n2am1+m2n2!n1! (11.5.23)

From (11.5.23) and the theorem’s requirements we see that either m2!m1! �= n2!n1!
and so |B1| �= |B2| or m1 = n1 > m2 = n2 and B1 = B2 �= 0. In both cases the
inequality B1 +B2 �= 0 holds, and so r = r1 = r2. �
Remark 11.34. If relations (11.5.17) and (11.5.18) hold, we have

F̃k(z) = a−(mk+nk+1)Fk(z/a)/R̃k,

where Fk is generated by Ψk and F̃k is generated by Ψ̃k of the form

Ψ̃k(x) :=
1

R̃k

xmk(1− x)nk (x ∈ [0, ã], ã = 1), R̃k :=

∫ 1

0

xmk(1− x)nkdx.

If, in addition, (11.5.19) does not hold (i.e., at least one of relations (11.5.19) does

not hold), then Ψ̃k and ã satisfy conditions 1–3 of Proposition 11.28 .

Theorem 11.30 and Remark 11.34 imply the following statement.

Theorem 11.35. Let relations (11.5.17) and (11.5.18) hold. Assume that relations
(11.5.19) do not hold. Then F1(z) and F2,1(z) have no common zeroes. If also
n1 �= m1, then F1(z) has neither real zeroes nor conjugate pairs of zeroes.

Example 11.36. Next, we consider in greater detail the subcase

m1 = m2 = 0, n1 �= n2, a = 1. (11.5.24)

For that subcase we have (compare with formula (11.1.9))

Fk(z) = −(−i)nk+1 dnk

dznk

(
z−1(1− cos z − i sin z)

)
, k = 1, 2. (11.5.25)

Corollary 11.37. Let the conditions (11.5.24) be fulfilled. Then the corresponding
functions F1(z) and F2(z), which are given by (11.5.25), have no common zeroes.
The function F1(z) has neither real zeroes nor conjugate pairs of zeroes.

Remark 11.38. Using relation (11.1.12) and Remark 11.34 we can reformulate The-
orem 11.35 and Corollary 11.37 in terms of the hypergeometric function Φ(b, c, z).

Example 11.39. Let us consider another subcase:

m1 = n1, m2 = n2, n1 �= n2, a = 2. (11.5.26)
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In this subcase we have, see [4] (see also (11.1.10))

Fk(z) =
√
πΓ(n+ 1)(z/2)−(nk+1/2)J(nk+1/2)(z)e

iz, (11.5.27)

where Γ(z) is Euler’s Gamma function and Jν(z) is the Bessel function of the first
kind, which is holomorphic in C \ [0, ∞). It follows from (11.5.27) that the zeroes
of Fk(z) and J(nk+1/2)(z) (other than the origin) coincide. Because of (11.5.26),

formula (11.5.19) does not hold. We have also Fk(z) = Fk(z). Therefore, we can use
Theorem 11.35 in order to obtain the following well-known assertion (see [4,149]).

Corollary 11.40. If n1 �= n2, the functions J(n1+1/2)(z) and J(n2+1/2)(z) have no
common zeroes in C \ [0, ∞).

Now, we consider the functions Fk of the class (11.1.4), where Ψ(t) is a poly-
nomial, but we do not assume anymore that the coefficients of Ψ(t) are algebraic.

Theorem 11.41. Let the following conditions be fulfilled.

1. The functions Ψk(x) have the form (11.5.1), where (11.5.2) holds.

2. The inequality (11.5.8) holds.

3. We suppose that

Rk =

∫ a

0

Ψk(x)dx = 1, k = 1, 2. (11.5.28)

4. The function V , which is given by (11.5.4), does not identically equal zero on
[0, a].

Then the corresponding functions F1(z) and F2,1(z) have no common zeroes. If

Ψ1(x) �= Ψ1(a− x), then the corresponding function F1(z) has neither real zeroes
nor conjugate pairs of zeroes.

Proof. In the same way as in the proof of Proposition 11.28 we obtain the equality
(11.5.13), which contradicts condition 4 of the theorem. This proves the theorem.

�

Using relations (11.5.3) and (11.5.4) we obtain the following assertion.

Proposition 11.42. Let (11.5.17) and (11.5.18) hold. Then the equality

DQ+1TDQ+1 =
(
L(D)DQ+1 +M(D)

)
f, M(D) = −

∑
k+p=Q

V (k)(0)Dp

(11.5.29)
is valid for functions f , which are 2Q times differentiable and f (2Q) ∈ L2(0, a).
Here the operator L(D) is defined by formula (11.5.5).



218 Chapter 11. Operator Bezoutiant and concrete examples

11.6 A generalization of the Schur–Cohn theorem,
examples

In this section we consider the case when the condition (11.4.27) is fulfilled, that
is,

Ψ1(x) = Ψ2(x) = Ψ(x). (11.6.1)

Hence, we have the equality

F1(z) = F2(z) = F (z). (11.6.2)

The corresponding integral operator T is defined by formula (11.4.13) and its
kernel T (x, t) is expressed via U(x, t), that is, T (x, t) = −c1U(x, t). Here

c1 = 1/(2Re (α)) > 0,

and formulas (11.4.14) and (11.4.15) for U(x, t) take the form

U(x, t) =

∫ a

t

[
Ψ(a− s)Ψ(a− s− x+ t)−Ψ(s+ x− t)Ψ(s)

]
ds (11.6.3)

for x < t,

U(x, t) =

∫ a+t−x

t

[
Ψ(a− s)Ψ(a− s− x+ t)−Ψ(s+ x− t)Ψ(s)

]
ds (11.6.4)

for x > t.

Without loss of generality we can suppose that c1 = 1.

Example 11.43. We assume that the function F (z) has a special form

F (n, z) =

∫ 1

0

eizttndt, (11.6.5)

where n ≥ 0 is an integer, that is, we assume that

a = 1, Ψ(t) = tn, Q = n. (11.6.6)

Proposition 11.44. Let the function F (n, z) be defined by formula (11.6.5). Then
we have the equality

V (u) ≡ 0. (11.6.7)

Proof. Using formulas (11.5.4) and (11.6.6) we have

V (u) = (−1)n+1n!un +
∑

p+k=n

n!

(n− p)!

n!

(n− k)!
(−1)p(1− u)n−p. (11.6.8)
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Equality (11.6.8) can be rewritten in the form

V (u) = n!

(
(−1)nun +

n∑
p=0

Cp
n(−1)p+1(1− u)n−p

)
. (11.6.9)

The assertion of the proposition follows from (11.6.9) and the well-known equality

n∑
p=0

Cp
n(−1)p(1− u)n−p = (−1)nun. (11.6.10)

�
Because of (11.5.29) and (11.6.7), we see that

M(D) = 0. (11.6.11)

In the case that (11.6.6) holds, relation (11.5.5) takes the form

Ln(z) = (n!)2
∑

p+k+s=n−1

(−1)p+1zs

(n− k)!(n− p)!
(p ≥ 0, k ≥ 0, s ≥ 0),

where Ln = L. The last formula can be rewritten as

Ln(z) = (n!)2
n−1∑
s=0

zs

⎛⎝ ∑
p+k=n−1−s

(−1)p+1

(n− k)!(n− p)!

⎞⎠ . (11.6.12)

In particular, from (11.6.12) we immediately see that

L1(z) = −1, L2(z) = −z, L3(z) = −z2 − 3, L4(z) = −z3 − 8z. (11.6.13)

Proposition 11.45. Let (11.6.6) hold. Then we have

Ln(z) = (−1)n+1Ln(−z). (11.6.14)

Proof. Let us consider the class of functions f(z) such that

f (k)(0) = f (k)(1) = 0, 0 ≤ k ≤ 2n.

It is apparent that for the scalar product ( ·, ·) in L2(0, a) we have the equality

(Dkf, f) = (−1)k(f,Dkf). (11.6.15)

In view of T = T ∗, we have also

(Dn+1TDn+1f, f) = (f,Dn+1TDn+1f). (11.6.16)

On the other hand, using (11.5.29) and (11.6.11) we obtain

Dn+1TDn+1 = L(D)Dn+1. (11.6.17)

Substitute (11.6.17) into (11.6.16) and compare the result with (11.6.15) to see
that L(D)Dn+1 contains only terms with even degrees of D. The statement of the
proposition follows. �
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Let us rewrite (11.6.12) in the form

Ln(z) = −
n−1∑
s=0

asz
s, (11.6.18)

where

an−1 = 1, a0 = n!
2

n+ 1
(n is odd); a1 = n!

2

n+ 2
(n is even). (11.6.19)

We see from (11.6.14) that as = 0 if n+ s is even.

Example 11.46. Let us consider the case (11.6.5) where n = 1. Then, according to
(11.6.5), (11.6.18) and (11.6.19) we have

L1(z) = −1, F (1, z) = −[(iz − 1)eiz + 1]/z2 (11.6.20)

and according to (11.6.3) and (11.6.4) we have

T (0, t) = T (1, t) = 0. (11.6.21)

Moreover, formulas (11.5.29), (11.6.7) and (11.6.20) imply

d2

dx2
T

d2

dx2
f = − d2

dx2
f. (11.6.22)

It follows from (11.6.21) and (11.6.22) that the equality(
T

d2

dx2
f,

d2

dx2
f

)
= (f ′, f ′) (11.6.23)

holds for all f such that f ′′ ∈ L2(0, 1) and f(0) = f(1) = 0. Since, for any

f̃ ∈ L2(0, 1) there is f such that f(0) = f(1) = 0 and f ′′ = f̃ , formula (11.6.23)
yields T > 0.

Using the fact that T > 0 and Proposition 11.23 we obtain:

Corollary 11.47. All the roots of the function F (1, z) belong to the open upper
half-plane.

Example 11.48. Let us consider the case (11.6.5) where n = 2. Then

L2(z) = z, F (2, z) =
[
(z2 + 2iz − 2)eiz + 2

]
/z3. (11.6.24)

Now, we prove a general result.

Theorem 11.49. All the roots of the function F (n, z) belong to the open upper
half-plane.
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Proof. It follows from (11.6.5) that the following relations

h(π/2) = lim
r→+∞

logF (1, ir)

r
= 0, h(−π/2) = lim

r→+∞
logF (1,−ir)

r
= 1 (11.6.25)

are valid. So, in view of Corollary 11.47 the function F (1, z) has the properties:

1. All the roots of the function F (1, z) belong to the open upper half-plane.

2.
h(π/2) < h(−π/2). (11.6.26)

It is well-known (see [93, Ch. 9]) that the derivatives of such functions also have
the properties 1 and 2. This proves the theorem. �



Comments

Chapter 1.

1. Chapter 1 is based on the paper [158].

2. Sample functions of Levy processes are discontinuous. The presence of jumps
in the price is the most important argument for using the Levy processes in
financial mathematics [167].

Chapter 2.

1. Chapter 2 is based on the papers [67, 146].

Chapter 3.

1. Chapter 3 is based on the papers [5, 123].

2. P.P. Korovkin [76] introduced the linear operators Lnf . He obtained the first
important results connected with approximating the functions f(x) of the
class Zα by the functions g(x) = Lnf .

3. A number of works [5, 76, 111] are dedicated to the problem of finding a
simple expression of the function φ(x) which gives a good approximation for
the functions belonging to the class Zα. Section 3.3 of Chapter 3 gives the
best φ(x), that is, the solution of the formulated problem. In case α = 2 the
corresponding best φ(x) was found by P.P. Korovkin (see (3.4.1)).

Chapter 4

1. The essential part of Chapter 4 is based on the papers [115,116].

Chapter 5.

1. Chapter 5 is based on the papers [140,156].

2. If an n×n matrix is positive definite and invertible, then this matrix admits
the triangular factorization (see [44]). This assertion is not valid for operators
(see Larson [87] and Chapter 5).
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Chapter 6.

1. Chapter 6 is based on the papers [151, 153]. In this chapter we use also
M. Kac’s [67] and D. Ray’s [125] results.

2. In Chapter 6 we consider only the case when the corresponding operator
has a discrete spectrum. Let us consider the example when the spectrum is
continuous. Namely, we shall consider the Schrödinger differential operator

Ly = − h2

2m

d2

dx2
y + V (x)y, 0 ≤ x < ∞. (C1)

The boundary condition has the form

y(0) = 0. (C2)

We assume that

V (x) ≥ 0,

∫ ∞

0

V (x)dx < ∞. (C3)

In this case the spectrum of the operator L is continuous. We associate with
the boundary problem (C1)–(C3) the following problem:

Lay = − h2

2m

d2

dx2
y + V (x)y, 0 ≤ x ≤ a < ∞, y(0) = y(a) = 0. (C4)

Problem (C4) generates the values: Zq(a, β, h), Zc(a, β), Eq(a, β, h), Ec(a, β).
Now we define Eq(β, h), Ec(β). for system (C1), (C2):

Eq(β, h) = lim
a→∞Eq(a, β, h), Ec(β) = lim

a→∞Ec(a, β). (C5)

We note that

Zq(β, h) = lim
a→∞Zq(a, β, h) = ∞, Zc(β) = lim

a→∞Zc(a, β) = ∞. (C6)

Further we assume that

V (x) = 0, 0 ≤ x < ∞. (C7)

From (C5) and relations (6.2.4)–(6.2.7) (see Chapter 6) we obtain that

Eq(β, h) = Ec(β) =
1

2β
. (C8)

We note, that in case (C1), (C2), (C5) the quantum mean energy Eq(β, h)
and classical mean energy Ec(β) are equivalent.

In case of the continuous spectrum we have the following problem:

Open problem. Find conditions under which the equality

Eq(β, h) = Ec(β) (C9)

holds.
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Chapter 7.

1. Chapter 7 is based on the papers [35] and [154].

Chapter 8.

1. Chapter 8 is based on the paper [157].

Chapter 9.

1. Chapter 9 is based on the papers [159,161–164].

Chapter 10.

1. Chapter 10 is based on the paper [164].

2. The results of this chapter can be used to study the Fokker-Plank equation
(see [19,20,132]).

3. We introduce a table in which we show the signs of the differences between the
quantum and corresponding classical values of some basic physical quantities.

Table 1.

S.E. F.n > 2 B.n > 2 F.n=1 B.n=1 F.n=2 B.n=2
Sq - + - - + ? ?
Eq + + - + - + -
Fq - + - + - +
Zq -

Here S.E. – Schrödinger equation, F. – fermion case, B. – boson case. We
note, that some results in the table we have proved only for small ε (fermion
and boson cases) and some results we have proved only for specific potentials
(Schrödinger equation).

Table 1 shows that the quantum effect in the boson cases gives the signs,
which are opposite to the corresponding signs in the fermion cases.

4. We note that the extremal principles (e.g., the principle of least action, the
principle of least time and the principle of least resistance) remain central
in modern physics. In the present chapter (and Chapter 9) we consider the
interaction of two or more physical values. In this situation we use a special
extremal principle, which is based on ideas of game theory. We consider the
classical and quantum problems from the game point of view. The players
are mean energy E, free energy F and entropy S.The strategy of the game in
the classical case is determinate and the strategy of the game in the quantum
case is probabilistic.
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Table 1 enables us to compare the classical and quantum results, that is,
to compare the determinate and probabilistic strategies. The signs of the dif-
ference between the quantum and the corresponding classical values of some
basic physical quantities are shown in the table. We recall that the compar-
ison of determinate and probabilistic strategies is a fundamental problem of
the Neumann-Morgenstern game theory [110].

In particular, from Table 1 we derive:

1. The signs in the boson cases are opposite to the corresponding signs in
the fermion cases.

2. If n > 2 then the signs for Sq are opposite to the corresponding signs
for Fq (boson and fermion cases).

3. The signs for Eq are opposite to the corresponding signs for Fq (boson
and fermion cases).

4. The signs for Eq are opposite to the corresponding signs for Sq (Schrödin-
ger equation).

Chapter 11.

1. Chapter 11 is based on the paper [160] but contains some developments (and
also minor corrections).
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Glossary of important notations

C complex plane
C+ open upper half-plane {z : Im (z) > 0}
C0 space of the continuous functions f(x), which satisfy the

condition lim f(x) = 0 (|x| → infty) and have the norm defined
by ‖f‖ = supx|f(x)|

Cn
0 set of functions f(x) ∈ C0 such that f (k)(x) ∈ C0 (1 ≤ k ≤ n)

C
(1)
0 [0, 1] set of the functions f(x), which are continuous together with

their first derivative f ′(x) on the interval [0, 1] and satisfy
equalities f(0) = f(1) = 0

col
[
Y1 Y2

]
column

[
Y1

Y2

]
e exponential function, ez = exp(z)
i complex unity, i2 = −1
Im (α) imaginary part of α
KerA kernel of an operator A, that is, the subspace,

which A maps to zero
kF (zj) multiplicity of the root zj of the function F (z)
LT = KerT
P (X = 0) probability of the event X = 0
R real axis
Range (A) range of an operator A
Re (α) real part of α
Sp(A) spectrum of an operator A
[H1, H2] set of linear bounded operators acting

from the Hilbert space H1 into the Hilbert space H2

(·, ·) scalar product in L2(0, a)
(·, ·)Δ scalar product in L2(Δ), that is,

in L2 on the set of segments Δ
(·, ·)H scalar product in the Hilbert space H
1|x|<1 function of x, which equals 1 when |x| < 1

and equals 0 when |x| > 1

. , 
I 10.1007/978-3-0348-0356-4,  

© Springer Basel 2012 

L A. Sakhnovich Levy Processes, Integral Equations, Statistical Physics: Connections and 
Interactions, Operator Theory: Advances and Applications 225, DO

241



Index

Abel’s transformation, 65, 70, 72
Airy function, 167
Algebraic number, 202, 213, 214, 217
Almost surely, 2, 11, 12, 48, 50, 92

Bernoulli numbers, 65, 66
Bessel function, 2, 18, 167, 203, 217
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Khintchine theorem, 48
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Kullback–Leibler distance, 9, 181, 186
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Leibniz theorem, 45
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Levy–Ito decomposition, 12
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